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Elements of Vibration

1.1.  INTRODUCTION

Thwchnpvergwesthebnefhmryofnbnzwnmasimphand

systematic way. The various vibration terms and definitions are dis-
cussed. Many items telaud to vnhranon. types of wbranon. pam of

vibratory system,

lysis, ete, aro di d in this

chapter. In the end some solved numerical problems are presented.
1.2. HISTORY OF VIBRATION

made the vibration known and more interesting to the

The discovery of musical xnttruments such as drums, whistles ete.
ientists and

engineers. It was known since long that sound i m related to vibration ;

but no mathematical relation was

ilable, Galileo (1564-1642), an

Italian mathematician, studied the ns-:illamns of strings and simple

dul He devel be the
lengthola,“ andlu-., and di d the term
resonance. Then Galileo and Hooke developed relationship between the
frequency and pitch of sound.

lot of scientific contribution towards dy

Sir Isaac Newton (1642-1727), an English mathematician, made a
ics by introducing the

definitions of force, mass, momentum and three laws of motion.

ped the equation of motion for

Daniel Bernoulli (1700-1782) devel.

vibrations of beams and studied the v:b_ranng strings nnd discovered

the principle of superposition of bar

i

in free
L. Euler (1707-1783) worked on the bending vibrations of a rod

————— e

and studied the dynamics of a vibrating ring. J.B.J. Fourier (1768-
1830) was a French mathematician who made valuable contribution to
the development of vibration theory. He has shown that any periodic
function can be repr ted by a series of sines and cosines. This work
of Fourier helps in analysing the experimentally obtained vibration
plots analytically.

Lagungu (1736-1818) an ltahan mathematician, worked on
d a very important equauon known
as Lagrange’s equahon 'l'bu equation is very useful in deriving the
equations of motion for a vibrating system.

Lord Rayleigh (1842-1919), an English physicist, has computed
the approximate natural frequencies of vibrating bodies using an ener-

(1
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2 MECHANICAL VIBRATIONS

gy approach. The method derived by him is vseful in developing the

ions of motion and the technique is k as Rayleigh's method.

J.H, Poincare (1854-1912), a French mathematician, contributed

a lot in the field of pure and applied mathematics. His work on non-

linear vibrations is outstanding. S.P. Timoshenko (1878-1972), a Rus-

sian engineer, worked in the field of elasticity, strength of materials

and vibrations. He studied the vibrations in beams and his work s
known as Timoshenko Beam Theory.

Frahmdiswveudbbeimpoﬁa.neeofmiomlvihnﬂousintbo

design of shaft and developed some vibratory instruments in 1909 such

as Frahm’s Reed Tachometer for ring the fi of vibrati
and dy ic vibration absorber,

i A lot of work has been done in vibration by many authors. About
thirty years back, the vibrati lysis of plex multidegree of

&eedomsymmvuydiﬁe\dt.llutmwiﬁnhhelpofﬁniu
1 thod and other ad d techniques the engineers are able
to use computers to conduct ically detailed vibration analysis of

pl hanical systems even having th ds degree of freedom.
1.3. BASIC CONCEPTS OF VIBRATION

With the discovery of musical instruments like drums, the vibra-
tion became a point of interest for scientists and since then there has
bemmuchinvuﬁpﬁonlnthoﬁddofvibnﬁon.wbodiuh-ving
mmmddnddtymunbhnfvﬂx:ﬁon.mmhinhcnmofm
bedy and elasticity relati ion among its parts. When body
particles are displaced by the applicati of external force, the internal
forces in the form of elastic energy are present in the body. These forces
try tobring the body to its original position. At equilibrium position, the
wholeeftheduﬁcemrgyilconvertedinmkineﬁtwmdbody
continues to move in the opposite direction b of it. The whole of
thahineﬁcmrgybminmvubdinbehﬁicoutninmrgydue
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2. Using shock absorbers.
3. Dynamic absorbers.
4. Resting the system on proper
1.5. DEFINITIONS -
_Periodic motion. A motion which repeats itself after equal inter-
vals of time.

Time period. Time taken to complete one cycle.

Frequency. Number of cycles per unit time.

Amplitude. The maximum displacement of a vibrating body from
its equilibrium position.

Natural frequency. When no external force acts on the system
after giving it an initial displ t, the body vib These vibra-
tions are called free vibrations and their frequency as natural frequen-
cy, It is expressed in rad/sec or Hertz.

Fundamental Mode of Vibration. The fundamental mode of
vibration of a system is the mode having the lowest natural frequency.

Degree of freedom. The mini ber of independent coor-
dinates required to specify the motion of a system at any i is
known as degrees of freedom of the system.

X, Ky Ki
. 5 [ ] X

o K2 K2
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Fig. 1.2. Finita degres of freedom.

In general, it is equal to the ber of independent displ. t
that are possible. This number varies from zero to infinity. The one, two
and three degrees of freedom systems are shown in figure 1.2, In single
degree of freedom there is only one independent coordinate (x,) to
specify the configuration as shown in figure 1.2 (2). Similarly, there are
two (xy, x). and three coordinates (x,, ¥; and xy) for two and three
d of freed y as shown in figure 1.2 (b) and 12 (c)

gr

ELEMENTS OF VIBRATION 3

to which the body again returns to the equilibrium position. In this way,

ib y motion is repeated indefinitely and exchange of energy takes
place. Thus, any motion which repeats itself after an interval of time is
called vibration or oscillation. The swinging of simple pendulum as
shown in figure 1.1 is an example of vibraticn or oscillation as the
motion of ball is to and fro from its mean position repeatedly. The main
reasons of vibration are as follows :

1. Unbalanced centrifugal force in the system. This is caused
because of non-uniform material distribution in a rotating
machine element.

. Elastic nature of the system.
External excitation applied on the system.

4. Winds may cause vibrations of certain systems such as

electricity lines, telephone lines, etc.
14. IMPORTANCE OF VIBRATION STUDY IN ENGINEERING

The struet designed to support the high speed engines and
turbines are subjected to vibration. Due to faulty design and poor

facture there is unbal in the engines which i

and unpi t 5t in the rotating system b of vibration.
The vibration causes rapid wear of machine parts such as bearings and
gears. Unwanted vibrations may cause loosening of parts from the

achine. B of improper design or material-distribution, the
wheels of locomotive can leave the track due to excessive vibration
which results in accident or heavy loss. Many buildings, structures and
bridges fall because of vibration. If the frequency of excitation coincides
with one of the 1 freq ies of the , a condition of
resonance 18 reached, and dangerously large oscillations may occur
which may result in the mechanical failure of the system.

Sometimes because of heavy vibrations proper readings of instru-
ments cannot be taken. Excessive vibration is dangerous for human
beings. Thus keeping in view all these devastating effects, the study of
vibration is essential for a mechanical engi to minimize the vibra-
tional effects over mechanical comp ts by designing them suitabl

Vibration can be used for useful purposes such as vibration testing
equipments, vil Y yors, hoppers, sieves and compactors.
Vibration is found very fruitful in mechanical workshops such as in
improving the efficiency of machining, casting, forging and welding
techniqs ical instr ts and earthquakes for geological re-
search. It is useful for the propagation of sound.

Thus undesirable vibrati hould be eliminated or reduced upto
certain extent by the following methods :

1. R ing external excitation, if possibl

w N
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Fig. 1.3. Infinite degree of freedom.
pectively. A il beam as shown in figure 1.3 has infinite
degree of freedom.
Simple Harmonic Motion. The motion of a body to and fro about
a fixed point is called zsimple harmonic motion. The motion is periodic
and its acceleration is always directed towards the mean position and
is proportional to its distance from mean position. The motion of a
simple pendulum as shown in figure 1.1 is simple harmonic in nature.
Let a body having simple harmonic motion 1s represented by the
equation

x=Asinox LAL5.1)
x = Am 0§ ot «{1.5.2)
X =—Aw’sin ot

r=e@x L 11.5.3)

where x, x and ¥ represent the displacement, velocity and acceleration
of the body respectively.

D i [t is the resistance to the motion of a vibrating body.
The vibrations associated with this resi e are known as damped
vibrations.

Phase difference. Suppose there are two vectors x, and xy
having frequencies o rad/sec each. The vibrsting motions can be ex-
pressed as

x; = A, sin &
xy = Ay sin (et +§) ~(154)
In the above equation the term ¢ is known as the phase difference.
R When the freq; v of ext: | excitation is equal to
the natural frequency of a vibrating body, the amplitude of vibration
becomes excessively large. This ptis k 1 a8
Mechanical sy The sy isting of mass, stiffness

and damping are known as mechanical systems.

Continuous and Discrete Systems. Most of the mechanical
yst include elasti bers which have infinite number of degree
of freed Such sy are called i Continuous
systems are also known as distributed systems. Cantilever, simply
supported beam etc. are the ples of such sy
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Systems with finite number of degrees of freedom are called

ete or lumped syst
1.6. PARTS OF A VIBRATING SYSTEM

A vibratory system basically consists of three elements, namely
the mass, the spring and damper. In a vibrating body there is exchange
of energy from one form to another. Energy is stored by mass in the
form of kinetic energy (1/2 mz?), in the spring in the form of potential
energy (1/2 kx*) and di ipated in the damper in the form of heat
energy which opp the motion of the sy Energy enters the

system with the application of external force known as excitation. The
excitation disturbs the mass from its mean position and the mass goes
up and down from the mean position. The kinetic energy is converted
into potential energy and potential energy into kinetic energy, This
sequence goes on repeating and the system continues to vibrate. At the
same time damping force cx acts on the mass and opposes its motion.
Thus some energy is dissipated in each cycle of vibration due to damp-
ing, The free vibrations die out and the system remains at its static
equilibrium position. A basic vibratory system is shown in figure 1.4,

v

SPRING $
K <

A
VWV

EXCITATION 1

Fig. 1.4. Vibrating System,

The equation of motion of such a vibratory system can be written
as

mx+cx+hz=0 .{1.6.1)
where ¢x =damping force
kx = spring force
mi = inertia force
1.7. METHODS OF VIBRATION ANALYSIS
There are various methods by means of which we can derive the

equations of ion of a vib y 8y . Some of the methods are
discussed here.

8 MECHANICAL VIBRATIONS
on tho system is F, spring force kx, damping force cx and inertia force
mx, then the equation of motion can be written as
mi+ex+he=F -{(17.3.1)
The above three methods will be discussed in detail later on.
1.8. TYPES OF VIBRATION
Some of the important types of vibration are as follows :
L8.1. Free and Forced Vibration

Aftor disturbing the system the external excitation is removed,
then the system vibrates on its own. This type of vibration is known as
free vibration. Simple pendulum is one of the examples.

The vibration which is under the influence of external force is
called forced vibration. Machine tools, slectric bells etc. are the suitable
examples.

1.8.2. Linear and Non-linear Vibration

If in a vibratory system mass, spring and damper behave in a
linear manner, the vibrations caused are known as linear in nature.
Linear vibrations are governed by linear diﬂerenual equatxon.s They
follow the law of superposition. Math i peaking, if a, and a,
are the solutions of equations (1.8.2.1) and (1.8.2.2) respecuvely. then
(@ +ay) will be the solution of equation (1.8.2.3).

mi + e + ke =Fy(t) (1821

mx +ex + kx = Fyft) LA1.822)

mx +cx + kx = Fy(t) + Fa(t) ..(1.8.2.3)

On the other hand, if any of the basic of a vib y
system behaves non-linearly, the vibration is called 1t . Linear

vibration becomes non-linear for very large amplitude of vibration. It
does not follow the law of superposition.

1.8.3. Dampesd and Undamped Vibration
Ifthe vib Y 8y has a damper, the motion of the sy wili

be opposed by it and the energy of the system will be dissipated in
friction. This type of vibration is called damped vibration.

On the trary, the system having no damper is k as
undamped vibration.

1.8.4. Deterministic and Random Vibration
lfmthenbﬂmry-ymthonmomofanemnlemuhonu

X it Contrary to it

&henmdehmmlﬂcﬁbnﬁmsmhmumdmwmm

ELEMENTS OF VIBRATION 7

1.7.1. Energy Method
According to this method the sum of the energies associated with
the system is constant.

Kinetic energy + Potential energy = constant
(K.E. + P.E.) = constant
:‘ (; mx’ ; kx’]s 0
mx X+ kxx =0
or mx 4+ kx=0 LAL7.01)
This is the equation of motion.
If the motion is simple harmonic given as

x=A sin
So ¥=- Ao’ sin ot
Then - mAw’ sin wt + kA sin @t =0 +{1.7.1.2)
Thus ®= V-k— rad/sec
m
.(1.7.1.3)
14fk
o f_—z.n m Bz
1.7.2. Rayleigh’s Method

This method is the extension of energy method. The method is
based on the principle that the total energy of a vibrating system is
equal to the maximum potential energy.

At any moment total energy is either the Kinetic energy or poten-
tial energy or the sum of the both. Let us say the total energy is kinetic
energy which is expressed as

(KE)ous =[ L mi? L = L maa?

“(Lae) Slgpa2
(P'E')m-lzh]m 5 kA
So m (0A) = kA

mo® =k
w="k/m

i Vk/m Hz +AL7.2,1)
2n

1.7.3. Equilibrium Method
According to this method the algebraic sum of the forces and

mamonte acting an the avetom muct ha sara 1fthe avtarnal fares arting
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1.8.5. Longitudinal, Transverse and Torsional Vibrations

Figure 1.5 represents a body of mass m carried on one end of a
weightless spindle, the other end being fixed. If the mass m moves up
and down parallel to the spindle axis, it is said to execute longitudinal
vibrations as shown in figure 1.5 (a).

igis, IIIIIIN I P Lslis

Fig. 1.5. Vibrations in spindle,

When the particles of the body or shaft move approximately
perpendicular to the axis of the shaft, as shown in figure 1.5 (b), the
vibrations so caused are known as transverse.

Ifthespmdlegetsalbemately‘ isted and untwisted on of
vib ¥ of the suspended disc, it is called to be undergoing
torsional vibrations as shown in figure 1.5 (c).

1.8.6, Transient Vibration

In ideal systems the free vibrations continue indefinitel, y a8 there
is no damping. The amplitude of vibration decay ti
of damping (in a real gy ) and ishes ulti ly. Such vrbrauon
in a real system is called transient vibration.
1.9. PERIODIC AND HARMONIC MOTION

The motion which repeats itself after an equal interval of time is
known as periodic motion. The equal interval is called time period. If
we consider a motion of the type x, = A; sin a¥, here o is the natural
&equencynndthemomnwﬂlbewpeamdaﬁnrh/mﬁmﬁehnmmc
motion is one of the form of penodxc ti ha is
represented in terms of circular sine and cosine functions. All harmonic
motions are periodic in nature but vice-versa is not always true. In the
equation x) = A, sin ¥, x, is the displacement and A; the amplitude.

ﬂevelocitymdnmlonﬁmmil-%-m»mu and % = - @'x,
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regpectively 'l'hmthe leration in a simple harmonic motion is
always ta itz displ t and di d t is a particular
nxedpoletushm!hazwhmhAmonkmohmsotsmpenodm
added, the resultant harmonic motion of same period is obtained.

Addition of Harmonic Motion

When we add two harmonic motions of the same frequency, we get
the resultant motion as harmonic. Let us have two harmonic motions of
amplitudes A, and A, the same frequency w and phase difference ¢ as

2 =A, sin o +(1.9.1)
3 =A; sin (¢ + ¢) (1.9.2)
The resultant motion is given by adding the above equations
x=x1+x;= A, sin W + A, sin (@f + ¢)
= A, sin o +A; (sin % c0s & + 8in § cos u¥)
= sin ¢ (A, + A, cos §) + A, cos @ sin 6.(1.9.3)
Assuming A, +Ajcos¢=Acos
Azsing=Asind .(1.9.4)
Now equation (1.9.3) can be written as
x=Asin ot cos 6+ A sin 8 cos wt
=A sin (¢ + 6) .{(1.9.5)

. The above equation shows that the resultant displacement is also
simple harmonic motion of amplitude A and phase 6. To find out the
value of A, squaring and adding equation (1.9.4), we get

A*=(A;+Aycos §) + Al sin ¢
=A'+A] cos’p+ 24,4, cos 0 + Adsin%
=A}+ A3+ 24,4, cos ¢
or A= (A] + A} + 24,4, cos )2 .{1.9.6)

Flg. 1.6. Addition of two harmonic mationa

12 MECHANICAL VIBRATIONS
where A is the amplitude of vibration,
o angular frequency,
¢ and a phase angles, and
x digplacement
If the phase angle is zero, the above equation can be expr d as
x=Asin ot L(1L11.2)

The velocity of such a vibratory motion can be determined as
#=dx/dt and the acceleration as ¥ = d’x/dt*

So x=Ao cos ¥ -.{1.11.3)
[differentiating equation (1.11.2) w.r.t. time]

%=~ Ao’ sin of
= - o' .{1.11.4)

The above two equations are widely used in vibration analysis.
1.12. FOURIER SERIES AND HARMONIC ANALYSIS

J. F‘ounef, a French math tician, developed a periodic function
in terms of series of sines and cosines. th the help of this mathemati-
cal series known as Fourier Seres, the vibration results obtained
experimentally can be analysed analytically. If x(¢) is a periodic func-
tion with period T, the Fourier Scries can be written as

x(t):%+a|mm+c,msm+agms3w+ .....

+ by sin o + by sin 20 + by sin 3wt + ...
G,y i 12.1)
_2+Z(a,ousnnx+bnmnuui) i &
n=1
where ©=22/T is the fundamental frequency and a,aj,as,..
by, by, by.... are constant coefficients. The term (a, cos w¢ + b, sin w¢) is
called the Fundamental or First Harmonic. The term
{az cos 20 + by sin 2 @) is called the second Harmonic and so on.

o+ 2x -
I cos nx de = % =0 (n#0)
*
o
a+2n W
%
2. cinud:=-1 "":"" =0 (n#0)
a
o
@+2x
3. | cosmxcosnxdx (n#0)
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The resultant phase difference can be determined from the equa-
tion (1.9.4) as

Az sin ¢
A, +A 089
a2 Azsing «£1.9.7)
Ay +Azcos d

The graphical method for the addition of two simple harmonic
motions is shown in figure (1.6).
1.10. ORTHOGONAL FUNCTIONS

Consider the set of functions fi(z), fu(x)... fu(x)... fulx) defined such

tan @ =

0 =tan

that
b
[f@) fu®y . dx=0  ifmam ..(1.10.1)
a
b
and I fuw) . dx=r  ifm=n) (1.10.2)
o
where A is non-zero quantity and
m=123..
n=1,238...

The above functions are termed as orthogonal functions.
Certain relations of Fourier series are orthogonal in nature such

as
Jﬂn n@ sin m9 . deg[o nvm] «(110.3)
n=m
-
0O nem
Imlnaeolme.do-[x n=m] +(1.10.4)
-

Iﬁnnemma.deu[g "*"‘]

n=m -{(1,10.5)

-
1.11. SINUSOIDAL MOTION

This is periodic vibratory motion and is referred as simple har-
monic motion. It can be shown mathematically as

-Aooe(wu-o)
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@+ 2n
=% j [cos (m + n) 2 + cos (m - n) x] dx
sin(m+n)x gm nzx (m0)
m+n 4
a+2n
4. J cos® nx dx = o =N (n»0)
n+2:
5. J sin mx cos nx dx
a
P om(m—n)g*em(mong]=o o
2 m-n m+n
ak2n e
6. J sin nx cof nx dx = Ml =0
«
a+2n
7. gin mx sin nx dx
¢ vin
sinfm-n)x (m+n)x 26 i
m-n m+n &
a+2x v
a+2e
.2 _| x_sin2nx - %0
Fircalp o[ oo
a
Determination of @,

Integrate both sides of equation (1.12.1) over any interval of length
T = 21/ All the integrals on the right hand side of the above equation
are zero except the one containing aq, that is

2=/@ 2n/w
@odt @g2x _Go®
jx(t)d!-j "2 "2 o ®
0 0
2x/w
© A112.2)
So Go= x(tydt

0
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Determination of a,,
To find a,, multiply both sides of equation (1.12.1) by cos wnf and
integrate over any interval of time T = 2r/0
2n/0 2z/0
I:a(l) coa (nat) dt = Ia. coe” (na) dt
0 0
In/w
= Ia, (hﬁ%_%]d‘
]
®
2n/0

i =¥ (¢ cos (nek) dt ~(1.12.3)

0
Similarly, we can find 6, by multiplying sin (nax) both sides
2x/@

So b,.:%fx(cmn(m)dz
o
The above mathematical analysis is known as harmonic analysis,
Numerical Method For Practical Harmonic Analysis
lnpndioe,theﬁmd.ionisoﬂengiven not by a formula but by a

graph or by a table of correspanding values. In such cases, the integrals
to determine ay, @, and b, cannot the evaluated. Thus the following

alternative forms of these integrals are used :
Since the mean value of a function y =f (x) over the range

(1.12.4)

b
o1 I
(a.b)llb_a flx)ydx
a
Thuethomeanvdueofaﬁxmﬁmyax(f)mthemge

2/
=), g;j
[0, = )"21: ) x(t)dt
the above integrals become
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In the above equation if ¢ = 0, the work done will be zero. It means

force and displacement should not be in shase to get the work done.
1.14. BEATS

When two harmonic motions pass through some pointin a medium

t displ t at that point is the vector

sum of the displ: due to two p t i This super-
position of motion is called interfs The ph of beat occurs
as a result of interference between two waves of slightly different
frequencies moving along the same straight line in the same direction.

simult ly, the I

-

AMPUTUDE

Fig. 1.7. Beats.

Consider that at particular time, the two wave motions are in the
same phase. At this stage the resultant amplitude of vibration will be
maximum. On the other hand, when the two motions are not in phase

with each other, they produce minimum amplitude of vibration.

Again after some time the two motions are in phake and produce
maximum amplitude and thon minimum amplitude. This process goes
i ly keeps on chang-
is known as beat,

Let us consider two waves of the same amplitude A and slightly
different frequencies w, and . If x) and x, are the displacements of

on repeating and the Itant amplitud
ing from i to mini This ph

these waves at any time t, then

Xy = A sin ayt ..(1.14.1)
Xz = A sin @yt «£1,14.2)
The resultant displacement » at any time is given by adding the

above two equations
T +xy=x=A (sin @t + sin wy)
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2z/@
g°=2x%£x(t)dt
:2[manvdmn{x(t)in(0,%]]

2%/
¢,=2x§ £x(t)co|(n&)dt

=2[meanvalmofx(t)m(nut)h(o.%]]
mﬂl/u
b,,=2xE £ x(t) sin (n @ £) dt
-2[meannluuofz(t)dn(nmt)in(0.%)]

1.13. WORK DONE BY A HARMONIC FORCE

Let a harmonic force F = F, sin e is acting on a vibrating body
hlviwmotionxnzolin(m-’).Thamkdonobytbafoteaduringa
small displacement dx is Fdx. So the work done in one cycle

T
&
W=jF§{dl
0
T
zf[posinm%mincw-o)]dt
0

T
=IF.,dnmtweou(W—0)dt
0

il R

T
=xoFg0 Iuinnlcoc(nl—o)dt TR < T es
0

r
=8ij[lm2«:m!‘lingl—2mw1]“
0 A

Putting 7'=2n/0

W=xFyzsiné .(113.1)
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=um‘””;”‘”m‘”‘;‘°”‘
x=Bsin ("";‘“’]z (114.3)
where B sA (50
Equation (1.14.3) repr a simple harmonic motion whose

amplitude is B. The maximum value of B is 24 and minimum zero. The
frequency of beat is (@ - ©)/2n Hz. See figure 1.7.

Differentiating equation (1.14.3) w.r.t time, we get
dx . [+ W -y . (G-
fonelB15)] (555 55

e ) i 235

2
The term - is called the slope of the beat,

dt
The existence of beats can also be shown mathematically. Let
y - @ = A = a very small value ~A1.14.4)

(" beats occur only when @, and m, are slightly different)
Then the resultant displacement x at any time is given by adding
the equations (1.14.1) and (1.14.2)
X=x) +x;
=Asin ot +A sin (@) + Aw) ¢
=Asinw t+A [sin o fcos Aot +sin Awk cos o, ¢ ]
=(A + A cos Aux) sin ©; ¢ + (A sin A o) cos wy ¢
Let x=Xsin (0t +9¢)
X 8in @, £ cos ¢ + X sin ¢ cos wy ¢
=(A+Acos At)sin ¢+ (AsinAwi)cosw £
Equaﬁngthetmmsofslnm,tandenso.tmbothsidel.wexat
Xcosdp=A+Acos Ao
Xsing=AsinAwt
Adding the squares of above two eqns., we get the amplitude of the
resultant motion.
ie X=V(A+A cos A )’ + (A sin A we)?
=V247 247 cos A ¢
=A Y2 (1 +cos A ) (1.145)
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1f the amplitudes of the two sinusocidal motions are approximately
equal then,
xy=Asginw ¢ .{1.14.8)
% =Bsinwyt ~(1.14.7)
Resultant displacement x at any time is given by adding Eqns.
(1.14.6) and (1.14.7)
x=Asinuyt+Bsinwy?
Applying eqn. (1.14.4), we get
x=Asinoy t+Bein(o;+Aw)t (" 0y =, +Aw)

On a similar analysis like above we get the amplitude of resultant
motion as

X =V(A+B cos A we)’ + (B sin A )
=VAT+ Bi 4 2AB cos A ux (1.14.8)
This expression is seen to vary between (A + B) and (A - B) with a
frequency A® which is the difference of natural frequency of the beats
phenomena,

Under the conditions of the two frequencies being :hghtly dxt-
ferent from each other, the phase diffe bet thn two

motions keeps on shifting slowly nnd ti . At the t
when these motions, repr d by r vecum arein pbase with
each other, the amplitude of the It is and

equal to the sum of amplitude of individual motion i.e. (4 + B). At a
moment, when they are out of phase, the resultant amplitude is equal
to the difference of the individual amplitude i.e. (A - B).

Thus the resultant amplitude econtinuously keeps on changing
from maximum of (A4 + B) to minimum of (A ~ B) with a frequency equal
to the difference between the individual component frequencies, This is
the BEATS PHENOMENA.

Thefrequmcy of the beats i.e. Aw should be small in order to
The amplitudes A & B should be ap-
pmnmtelyoqualtozetcleuanddmbeab.

This can be shown math ically from equation 1.14.8,

Case-1. When the two sinusoidal motions are in phase, then phase
difference An =0

Resultant amplitude = YA® + B2 + 2AB cos 0°

=YAT+ B*+ 24B (" Cos0°=1)
=(A+B)
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Again differentiating, we get
¥=i' 0’ Ac

-’ X «{1.15.5)

IMAGINARY
Y4

. ‘\l"

» ANTICLOCK WISE

Fig. 1.8 B,

This is known as acceleration vector and its amplitude is ©°X. In
figure 1.8 B, it is shown that velocity vector leads the displacement by
90° and the acceleration vectw leads the displacement by 180°. All the

ct with tant ang locity rotate in the same direction
(anticlockwise).
SOLVED EXAMPLES
Exaxpig 1.1. Add the following harmonic maotions analytically
and check the solution graphically. (P.U., 89)
x) =4 cos (ot + 10°)
x, = 6 sin (@t +607)

Sounmﬂeﬁqumqulmfubothxlmdn,wmm
the sum as
x=A sin{ot +a)
T=x4x
A (sin o¢ cos 0+ cos 0 8in o) = 4 cos (¢ + 10°) + 6 =in (ox + 60°)
=4 cos ¥ cos 10° - 4 sin ¥ sin 10°
+ B 8in a¥ cos 60°+ 6 cos ¢ sin 60°
sin @t (A cos o) + cos ot (A sin o) = sin w¢ (~ 4 sin 10° + 6 cos 60°)
+ cos @2 (4 cos 10° + 8 &in 80°)
= gin of (- 6945 + 3) + cos wt (3.9392 + 5.1961)
= gin ¢ (2.305) + cos @ (9.135)
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Case-I1. When two sinusoidal motions are out of phase then phase
difference Aw = 180°

Resultant amplitude = VAZ + B* + 2AB cos 180°

B\IAI+?-W
=(A-B) [ Cos 180°=-1]
118 nmmouormmoucummmcomm
Suppose a vector X be repr dasa pl
X=x+iy .{1.15.1)
where i = V-1
and x and y denote the real and imagi p ts of X, respectively,

refer figure 1. thandymknawnacthemhudxmagmaryparuof
vector X. If the vector makes angle 8 with the x-axis, it can be written
a8

X=AcosB+iAsin®
=Ae'® .{1.15.2)
where A is the modulus or the absolute value of the vector X.

The relation shown by equation (1.15.2) is known as Euler's
formuls.

Fig. 18 A
We can find the value of 8 as

6=tan”'2

«(1.15.3)

Velocity can be determined by differentiating equation (1.15.2)
with respect to time as

§=%=imm“' (since 0 =)
=io As'
=ioX ~(1.15.4)
This is known as velocity vector.
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g the corresponding coefficients of cos ¢ and sin ¢ on
bothndn,weobtun

A cos a = 2.305
Asin o =9,135
A =V(2.305)" +(9.135)" = \(88.7612)
=9.42

9.135
tan @ = 2305 =3.963

a=tan" (3.963)
o =75.838°
So x=9.42 sin (@ + 75.838%)
Graphical Method

For adding the two motions graphically. Let us put the two equa-
tions as

x3= 4 cos (¢ + 10°) =4 sin (w¢ + 100°)
x; = 6 8in {o¢ + 60°)

Since both the equations are in the same form, the vector diagram
can be drawn as shown in figure 1.9.

C

Fig. 1.9.
The sum of the vectors as obtained by tis 9.4 and at
an angle of 76°.

~ x=9.4sin (©f + 76°) which agrees closely with the analytical
results.
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Procedure
(i) Draw OX and OY axes.

(i) Draw vector x; equal to OB = 6 sin (¢ + 60°) Le. the length
of x, is 6 unit and it makes an angle 60° with OX axis.

(#ii) Draw vectorx; = 4 sin (¢ + 100°) i.e. the length of x5 is 4 unit
and it makes angle 100° with OX or 10° with OY axis. It is
represented by OD.

(iv) From B draw a line parallel to OD and from D draw a line
parnllellaOB Both the lines intersect at C. Now OC is the

ion which ie equal to 9.4 units and

mkesananzle’ls"mthox
ExampLz 1.2. Split the harmonic motion x = 10 sin (ot + n/6), into
two harmonic motions one having a phase angle of zero and the other of

45° (P.U., 90)
Sovurion.
Graphical Method (Refer figure 1.10)
1. Draw OX and OY axes.
2. Draw OA =10 sin (&t + 30%).
3. OA makes 30° with OX.
4. Draw OC making 45° with OX.
5. Complete the parallelogram with arms OC and OB.
6. Measurement of OB gives x; = 3.6 sin ¢ and the measure-

ment of OC gives the value of x; i.e. 23 = 7.1 sin (a¢ + 45%)

Fig. 1.10.

Let the equations are x, = a sin of
and 2y =b gin (of + 45°)
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t

:J‘ [Posinax%xolin ((m-!/3)]dt
0

4
=P,,x°cojn'n ¢ cos (e — 1/3) dt
0
ty
=P.xomjs&nm(ma!eo¢x/3¢sinmlinu/3)dt
0
4

'PMJ [Zsme:colw \Ein mw)]
0

4

-Poxowj ['i”‘z“ +?(1 -eosZor)]dl
0 (

(i) Work done during eycle T'= 2%

y f

=% [V3]=5.44 N-m ni

(i) Putting ¢ = 1 i
_c082x2x V3 1 4

K[ ““—“—'2)(2' *JE--";IH!&KQG] ‘

=:[.4“ 5+ 4']“45

=5.44 N-m
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Since X=X +xg
10 sin (ox + %/6) = a gin @ + b sin (¢ + 457)
10 sin ¢ cos ®/6 + 10 cos o sin 2/6
=a sin ¢ + b sin @ cos 45° + b cos w¢ sin 45°
Comparing the coefficients of sin ¢ and cos w¢ both sides, we
obtain the values of @ and b as
sin o (10 cos x/6) = (a + b cos 45°) sin w¢
cos ¢ (10 sin x/6) = (b sin 45°) cos @
Solving these equationsa = 3.67
b=7.07
So the equations of harmonic motions can be written as
z,=3.67 sin &¢
and %3 =7.07 sin (¢ + 45°).
EXAMPLE 1.8. Show that the resultant motion of three harmonic
motions given below is zero.
x;=asin o
xp = a sin {0 + 2n/3)
xy=a sin (¢ +4n/3) (P.U,89; MD.U, 90)
Soi.mm'l'heruulmtmouonumvmas
X=Xyt Xy Xy
=a gin o + a sin (@ + 22/3) + a sin (@ + 48/3)
=a sin o + a sin o ¢os 2x/3 + a cos ¢ sin 2x/3
+a 8in of cos 4%/3 + a cos ¥ sin 4x/3
=a §in wé +a sin @t (—-1/2) + a cos et (.866)
+a sin wt (-1/2} + a cos @t (- .866)
x =a sin @ — a 8in ¢ + .866 a cos o — 866 a cos w¢
=0
Hence, the resultant motion is zero.
Examrrs 1.4. A force Pysinet acts on a displacement
xg sin (ot - x/3). If
Py=100N, x,=002m, =2nrad/sec
Find the work done during (i) the first cycle (ii) the first second (iii)
the first quarter second.

&mman.kadona-JP.%dl
0
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(iii) Putting £ = 1/4

eosux N3
3 1
=R --‘—xwl'x -‘—unkx‘
= 1.609 N.m
ExaupLE 1.5. A body describes simult ly two moti
x;=3sin40t, xg=4a'n4lt
What is the i and mi; plitude of bined mo-
tion and what is the beat frequency ¥
Sorurion. If a body is subjected to two h i tions given by
x) =a sin ot
X, =b sin wyt
Maximum amplitude is (¢ + b) and minimum amplitude is (@ ~ b).
So in the present problem Max. amplitude = 3 + 4 =7 and minimum
amplitude=4-3=1.

Butﬁ'oquaaqzm-m'
41-40 1
- 52"&

Examrrx 1.6. Develop the Fourier Series for the curve shown in
figure 1.11.

Fig. 1.11.
Sorurion. The function is defined as
2(t) =-1/2, -r<x<0
=1/2, O<z<x
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hhumtwthemphhqmmma!abmtﬁeoﬁginmdbence
the function is odd. Therefore, ag =a, = 0 and

x
Jf(x)linuzdx

-
+

b, =

A

=
2f1
L= 2linnxd:
0
Since x(¢) sin nx is an even function.
1! cosnx
n i
-;!;(l—emu)=0hnbeingcm

2 .
= for n being odd.

So s(t)-%[ﬁ.nx&-%sin&-bé—lin&i—.h.]

ExamrLe 1.7. ﬁcmﬁliwmﬁonofapdmiagimby
as—&mmaauxmwmnonddicplmmntofﬁmpb
hmukmdonandlheamﬁﬂdnh)inch.ﬂnd(a)l&mﬂnd
frequency (b) displ t, velocity and acceleration after 21.5 seconds.

Sozwmmdwmdmhbammicthcequﬁonofdilﬂmm
can be written as

* x=Xsin o
x = X cosax
%=~ Xsin ot
As per the problem ¥ = - 9x
So -9 =o't
’ ®w=3
T=%=%“r2.0§lemd

’“%35163“""3 cycles/sec

Now the equation can be written
x =X sin 3¢
The value of amplitude is 2ie. X =2
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SoruTron. The periodic function in terms of sine and cosine geries
can be written as
[
x(!)=5°+a,cosor+a,coa2¢u+a3eos8w+....

+ by sin wt + by sin 2% + by sin 3ex + ...
The equation for the curve shown for one cycle is
For OA x(t) = 20t 051<0.05
For AC =-20t+2 005<t<0.1
The time period of motion is =0.10

m:ﬁnquency:%=

@y, using equation (1.12.2) can be expressed as
2x/@

%_0o

0.05 01
=3 !(20:):1: 'I(.-zoc +2)dt
0 095

=22 1100¢° ;% + (-100¢° + 20 |31

=1[.05 x .05 x 100 - 100 (.1* - ,05%) + 20 (.1 - .05)]
ay=1025-1+.25+11=05
a, can be determined from equation (1.12.3) as
2x/w

@
a; = "!;x(t)eos(m)d:

05 A0
:% Jmm(mmt)dt+j(—20!+2)cm(20mt)dt
0

05
06
i cos 20nnf
=20[20(~stm201mt-—(-—-;!—]
. o
0.10
=t _ Cos 20mnt
+—ﬂ)(” sin 20nnt 2022 )m
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So x=2sin 3¢
x =2 gin (3 x 21.5) = 1.97 inch
=3 (2 cos 3¢) = 6 cos (3 x 21.5) = 0.35 inch/sec
f=-0'x=-9x197
=—17.73 in/sec*
Examprz 1.8. Add two harmonic motions expressed by the follow-
ing equations :
x; =3 sin (©f +30°) ; x;=2cos (0t~ 15°)
and express the result in the form x = A sin (o¢ + ¢). (Roorkee Uni., 70)

SoLurion. ;=3 (sin ©¢ cos 30" + cos o sin 30°)
%3 =2 (cos wt cos 15° + sin ¢ sin 15°)
Adding the motions, we get -

Xy +x3 = 2.598 sin a2 + 1.5 cos ax + 1.93 cos ¢ + .5176 sin ¥
x=3.1]18in @ +3.43 cos ¥ = A sin (02 + ¢)
=A (8in ¢ cos § + cos OX 8in §)
Comparing the results, we get
Acos¢=311
Asin$=343
3.43
hn’:m
©=478°
A=\31r 4345
A=4863
Now equation can be written as
x = 4.63 sin (ox + 47.8°).

Examrre 1.9. A periodic motion observed on the oscilloscope is
illustrated in figure 1.12. Represent this motion by harmonic series.

(P.U,91)
OF- A
C
0 005 10 t{Sec)

Fig. 1.12.
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smm ]B.Iﬂ ]

zc{- 20%n
05
Since @ = 20

£ ©os nt
landjtoosntdl=-'—‘smn£- B

=—20[ﬁ(-cosnx*l-msnn+cos2m)‘
20 Gl
= =20 —=5—; (- 2 copnx + 1 + cos 2xn) |
({wmt’n’ J
=——$3. for odd values of n
nn
=0, for cven values of n

b, can be determined from equation (1.12.4) as
2n/w

b, = m/xj x . (t) sin (nex) dt
0

t ) SN
1 == nt+—;sinné
Jtsmntdt Pl P

_sinnt
Icoantdt—-——"

s
=t 8 2 CEE 20nnt|
b_:ﬂ{m{mmm\»(sz sin } :
a0
08 ]

oe
+2({2o sgeen) ]

+m[_m{;_'_maow+-—‘—,smzow}

20xn (20mn)

Soweget b, =0 )
Thus harmonic series can be shown as

4fcos20m, 1 0 1 loom.,.}
:(t)=0.25-—n;[ ay +(3)1°°‘6° *(5)2“”
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Solution by Numerical Method
I.aztttba Fourier series upto the third harmonic representing x (t)
in [0. = )be
o

x(‘)=%+a|mu¢+a¢m2ﬂ+o,m3u

+b|sinmt+b,ﬁin2u+b,sinamt...

pet us now divide the time period into 12 equal intervals of 30°
each in the range (0, 2x)

i—g»zsussvnsone
@t ——= (Angles)
Fig. 1.13.
No.ofelunanuinomcyde=b=12
Now we can derive table 1.9.1.
From the table :
Lx(t)=60
Zx(f)cos 8 =-24876
ELx(t)gin6 =0
Zx(t)cos20,=0
Lx(f);8in20,=0
Lx(t) cos30,=-3320
Ix(t);sin30,=0
%"=2xmunvaluonf:(t)
=280 _
2xlzli.o
n,=2xmennvalued'x(t).cu(ml),
=2 24306 o 146
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by = 2 xmean value of  (#); sin (),
0 _
=2XT§-0
Gz =2 x mean value of x (2); cos (2wf);
0
w2xX-==0

12
by =2 x mean value of x (t); sin (20¢);

8-
=2X’IE-0
0g= 2 x mean value of x (£); cos (3 © )y
-3.320
-21:—-—‘2 =-0.553
b3 = 2 x mean value of x (£); sin (3x¥)g -
=2x5=0
.. Fourier series
x(t)-ﬁ.o-4.146:0!20#—0.553&360#*....
ExawprLg 1.10." A harmonic motion is given .by a.:(t)=
10:in(80¢-n/x)nunwherelisinmon‘dluﬁiphauar.wkm:'-dl?u
h‘nd(i)frquncyandtkcpgiodof tion, (if) the (PK'J e
ment, velocity and acceleration. U.,
SoLuUTION. Let us assume a solution of the form
x = A sin (of - §)
Maximum velocity z = @A
Maximum Acceleration ¥ = - o° A
where A = max. displ it and the freq ,n&.
By comparing our equation with the given equation, we get
o= 30 rad/sec
¢=x/3
A=10mm
Max. velocity x=md
= 30 x 10 = 300 mm/sec
Acceleration F=-wfA
=~ (30)* x 10
=9000 mm/sec’

2n_2x
= = 0209 sec.

Period of motion
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ExawpLg 1.11. If there is a non-zero number y such that
olt+y)=0(t)

What is the type of motion ¢ (t) ? State its most important charac-
teristic. (P.U, 93)

Sorurion. This type of motion is called the periodic motion. The
important characteristic of this type of motion is its repeatability or
periodicity, Here, y is called the period of motion. It means that the
motion is repeated itself after an interval of time y.

Examrrg 1.12. Represent the periodic motions given in figure 1.14
by harmonic series. (P.U., 87, 88)

TR

2em

-t = — —
t

2cm ‘-

. 59 P S

[Bisee Oisee
Fig. 1.14.

Sorurion. The equation of line AB is given by
x(t)=-20t+2 0<¢502
The time period of motion = 0.2

So W=Q=&=10K

T-03
2%/t 02
=5 Iz(t).dl=-1£$ I(—zouzth
0 0
0z
' -5{'2,‘,“’4,2:] =5(-10(27+2x.2)
]

=5(-4+.4)=0

2/ 0.2
a,z%[z(l).m(n«)dl:%‘—f(-m +2) cos (10mnt) dt
0 0

_on Jt8in 107t cos 10mn¢) %2 ; 02
""‘m[ zo{ 1070 (1%)’}'.*.2'“”""“0
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|

lODx’n
a,=0
[ 2z/0
and  5,=% I(-m+2)lin(ruu)dz
)
02

210[ I(-W.ainlOmtdt+2lin 10mnt) dt
[}

02 02
~20 l ~2cog 10:»: + | cos 10mne
10zn

=1

=

dt

°
[

+2 cos 10nnt }

10mn
o 2008 2%n 2 cos 2rn - 2
m[ ”[ 0 10z
310[ mx.zx(—l)'+2x(—lfx—-2]
10 % 10%n

4 4
"o[mm]"{.
Thu:hum.emuunbewﬂtunu
w0=12 x Lain 10ens.

=1

MIJIJ&W&MMMMWI 15
by harmonic (P.U, 88)

loﬁbl/l/

M Y
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+Z [——m(l%)+a—-3§nm(12m)]m4m

*n?
Exame1 1.14, Represent 17 ¢ ™ in rectangular form. (P.U.94)
SoLurion. X=17¢9%
here 8=tan? ¥
x
X=Ae"™ =4 (cos 0 +i sin 8)
and X=Ae"=A(cos 0-isin @)
Given 8 = 3.74 (radians)
_3m
312" 180° = 214.39°
Thus X =A (cos 214.39° - i sin 214.39%)
=17 |- 0.82 - i(- .564)]
=-13.94+i958 {since A=17)

Exampir 1.15. Represent 3 +i 6 in exponential form.
Sowvmion. X=3+i6
A=V3"46 =670
e¢=tan" 6/3
6 =63.43° = 1.1086 radian
X=Ac®
= 6.7 1108,
Exaurte 1.16. A force Pysinut acts on a displacement
X 8in (¢ — n/6)
where Pp=25N, x,=0.05m
and  @=20r rad/sec
What is the work done during
(i) the first second ?
(if) the first 1/40 second ? (P.U., 94)
SorurioN. We know that work done is given by

L
dx
iy
o

£

=Pm_[linmem(t¢-n/6)dt
0
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Sovrurion. Time period of motion = 0.50 sec
frequency o= ‘% = 4x rad/sec
Equation of curve for one cycle
«0=1%  ocis03

=0 03<ts05

0.3 03
2
T S I S B
0 4
0.3 03

a_-%’lx(‘)m(ﬂﬁ)dl:ljmmlwdt ¥
1]

03
_--J'tcnsmdl 400[ Py lSt”

Lo{oa sin (1.2%n) | cos (1.2xn) - 1

16x*n*

=108inlam) :,i? {oos (1.2xm) -1}

——-Ix(:)m(mx)a-——udn(tw)dcl

16x’n*

=.;‘°_2[_;A_z+_é’%':‘l}
1

....._(__...._2 " -nuzg,)

wo[ m-um,'_(mu

Thus su)=a°+2(a.mm+b.¢inm)

=l

10
=% Z[ <1m).x“;m(1m)-u]m4w

o
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Ul

-ij[sinw {cos wt cos 2/6 + sin @t sin /6] dt
]
‘l

=Pox.,mjlsinu!wsa8x .866+-;jsin’utl dt
0
4

2
P"““I[Zmnmmmx 866+2 ';u}dt
0

4
=P°’Tj[m'n 20t X .sas»,%]d:

0
_Po:om _ 08 2 sin 20x¢
== | T 88645~ 2x2m]
= 20%, xy=0.05m, Po=25 N
P°x°m[40!x10""+5+72x10“’—647x10“’]-198N—m
(ii) When the time t; = 1/40 sec
Poxo 25x.05x20% _785
3= 3 =5 =3925
Poxo © [ - cos 40t t_sindoxt 866] . .
3 [ 40% x.866¢2- 80% mt-l/.Osec
LL _sinx 866
“3”5[' aox 8884 56~ sox 401:]
=0.48 N-m

ExaupLr 1.17. A harmonic motion given by the equation
x =5 sin (3t + ) is 20 be split into two components such that one leads
it by 30° and the other lags it by 80°. Find the components.
SorurioN. Let the required components are given by
%) =A; sin (3¢ + § ~ 80°) and x; = A; sin (37 + ¢ + 30°). We can solve the
equation graphically as shown in figure 1.16.
Procedure :
1. Draw OA =5 cm showiag 5 sin (3t + ¢) in any direction as
shown.
2. Draw OB’ from O making angle 80° (lag} with OA.
3. Draw OC’ from O making angle 30° (leading) with OA.
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Fig. 1.16.
4. RuolvnOAnlongOB'nndO(.‘uOBandOCWaively.
5. OB and OC are the required components,
6. BymusunmsntOB:2.663in(3¢¢¢-80°)i.¢.A1-2.68

OC=5.248in (3t + ¢+ 30% ie. Ay = 5.24

ExampLr 1.18. A body is subjected to two harmonic motions as
given below :

xy=15sin (Wt +x/6) and x3=8cos (Wt +x/3)
Whathamonwmuoudmuldbcgwenmthcbodybbnnguw
equilibrium ? (M.D.U,, 95; P.U., 99)
SOLUTION. Let A sin (¢ + ) extra motion be given to the body.
Then Asin(Wt+9)+x;+23=0
Expanding various terms, we got
Agin @t cos ¢ +Acoswising
+ 15 8in @ ¢ cos /6
+ 15 cos w ¢ 8in x/6
+8 cos wt cos =/3
-Beinwetsinxk/3=0
8in © #A cos ¢ +6.07) + cos 0 HA sin ¢+ 11.5) =0
The coefficients of sin a¢ and cos ¢ are equated to zero.
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Represent the periodic motions given in figure 1.3 P by harmonic series.
x4

o, o
i

Fig. 1.3 P.
5. Spl.ig up the harmonic motion x = 10 sin (w + x/6) into two harmonic
motions one having a phase angle of zero and the other of 46°. (P.U, 90)
6. Add the following vectors analytically
x1 =4 co8 (f + 10°); xg =6 sin (wt + 60°)
Check the solution graphically. (P.U., 89)
A harmonic displacement is given by x(¢) = § sin (20 + n/3) mm, where ¢
is in seconds and phase angle in radians. Find (i) frequency and period of
motion, (if) the maximum displacement velocity and acceleration.
8, madnsphcﬂumofﬂnshdexinlhcsbdercukmunvmby

N

xw24cos Ot +3/2 08 1651
Plot a displacement versus time diagram. What is the acceleration of the
piston at ¢ = 1/8 sec. {P.U,92)
9 R the followi ¥ bers in exy tial form
(l)-3014 (i) - 3 -Jj4 (P.U, 59
10, P)ndthumnoﬂwoh-rmm:cmobouofmllm;phmdnbntohhghuy
Di the beat ph that result from this
sum. (P.U., 99)
1L ShomedmphhumkmMm(SEM)mlhhqmmy And
whnnuddedmllmnltmaperiodlc of fir kb
the above for n ber of h ic functi \vith fre i
P, 2p, np, ete (P.U., 96)

12 Expmnf(x)exuahdfnnxuiuuﬁuin0<x<!

13. Find the half-range cosine series for the fanction 1
interval < x < 1. [yt =17 in the

H e
ence prove that x* =8 (1)’ (3), (5,2 ]

14. ﬁofdhmmdymmhphmlmmdamn

hine part for the ion x of the flywheel. Expand y in the form of a
Fourier series:
x=0 %/6 20/6 3n/6 4x/6 5x/6
y=0 92 144 178 17.3 117

15. Obtain the constant term and the coefficients of the first sine and cosine
terms in the Fourier expansion of y as given in the following table :

[ x 0 1 2 3 4 5

y 9 18 24 28 26 20
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Thus A cos $=-6.07
Adin¢=-1185
- tan g =115~ 1894

$=62.17°,242.17°
Now A?sin® ¢ +A? cos® ¢ = (11.5)" + (6.07)* = 169.0

A'=169
A=13
The equation of harmonic motion can be written as
13 sin (0 ¢ + 242.17°)
Problems
1. Represent the periodic motion given in figure 1.1 P, by harmonic motion.
{(AMLE, 89
Fig. 11P.
2. Abody is subjected to the two h i tions as
x1 =15 sin (ot + 2/6)
x3= 8 cos (0 + %/3)
What extra motion sheuld be given to the dody to bring it to the static
equilibriam 7 (P.U,, 90)
8. Represent the periodic motion given in figure 1.2 P, by harmenic series.
(P.U. 85)
of
PART OF SINE WAVE
© b
—»f 0-2Sec | N
Fig. 1.2P.

2
Undamped Free Vibrations

2.1. INTRODUCTION

When the elastic system vibrates because of inherent forces and
no external force is included, it is called free vibration, If during
vibrations there is no loss of energy due to friction or resistance it is
known as undamped vibration, Free vibrations which occur in absence
of external force are easy to analyse for single degree of freedom
systems; that is a system where only one coordinate is required to
describe the motion, Other motions also may occur; but they can be
neglected for analysis.

A vibratory system having mass and elasticity with single degree
of freedom is the simplest case to analyse. For example, a single
cylinder engine with a flywheel offers very simple mathematical solu-
tion and good results for practical purpose.

Determination of natural freq ies to avoid r is essen-
tial in machine elements. In the present chapter the development of

tions of motion is di d and natural freq ies of the sy
nre determined. The effects of damping on natural freq ies have
been neglected. The methods for determining the natural fr of
the system are discussed and used for enttam physical uystamn Inthe
end, some numerical problems are solved.

2.2, DERIVATION OF DIFFERENTIAL EQUATION

The equations of motion for a single degree of freedom system can
be found by employing many methods, but in this chapter the discus-
sion will limit to three methods i.e. Newton’s method, Energy method
and Rayleigh's method.
2.2.1. Newton’s Method
Spring-mass system in vertical position

Consider a spring-mass system of figure 2.1 constrained to move
in a rectilinear manner along the axis of the spring. Spring of constant
stiffness & which is fixed at one end carries a mass m at its free end.
The body is displaced from its equilibrium position vertically
downwards. This equilibrium position is called static equilibrium. The
free body diagram of the system is shown in figure 2.2.

41)
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113 k(Gex)
Fig.22

Fig. 2.1.
In equilibrium position, the gravitational pull W, is balanced b:
force of spring, such that Ly
mg=W=kS
where § is the static deflection of the spring. Since the mass is displaced

:‘:_'um its equilibrium position by a distance x and then released, so after
me ¢,

Restoring force = W~ &(5 + x)

mx=W-k5—kx
s R - W= k§)
mi+kx=0 .A2.2.1)

whorei-%i-tbemleutionofmu.m.'l‘hiuilmognhedutha

equation for simple harmonic motion.

The solution is x = A cos @,¢ + B sin w,¢ .{(2.2,2)
yvk.amA and B are constants which can be found by considering the
initial conditions, and ¢, is the circular fr i of the moti

Substituting equation (2.2.2) in (2.2.1), one gets
- (A cos @yt + B sin ,0) + (R/m)A cos @yt + B sin ,£) =0
Since (A cos w,f + B sin o,2) 2 0 .
—@l+k/m=0
, =Vk/m rad/s
The frequency of vibration, f, = ©,/2x

% 7o % \’ ﬁ He .22.3)

Equation (2.2.1) can be obtained by ‘D’ Alembert’s Principle also
.whicl‘x states that the resultant force acting on a body along with the
inertia fgree is zero, then the body will be in static equilibrium. Inertia
force acting on the body is represented mathematically as

Fo=m.f

" MECHANICAL VIBRATIONS
B_Csing
A'Ccnso'“m’
or ¢=tan”’ B A .
A 0, Xy
and B* + A= C* (cos” ¢ +sin” 9)
or C=VBT A% = [ﬁj*,g
Wy

Eqn. (2.2.3B) can be written by substituting the value of C and ¢

x=\/(%r+,g,m(@_..-m--_vo_J

0 Xp
Similarly, expression for x also can be obtained.
Spring-mass System in Horizontal Position
In the system shown in figure 2.3 a bod i
t . ly of mass m is free to mov
on a fixed horizontal surface. The mass is supported on fricti o:::::

rollers. The spring of constant stuffiness k is attached
to a fix
4t one side and to mass m at other side. A

init

-(2.2.3C)

k >

Fig. 2.3. Single dagree of freedom systems.
According to Newton's second law
mass X acceleration = resultant force on the mass
mz=-kx

21 [t

(3) Applied force () Effective force

Free body diagram
Fig. 24,

mi+kx=0 .(22.4)

This isidenti to (2.2.1) which shows that the
|
ll"equency ofa given system is same w it vibral na zon
sa hether it vibrates i hori tal
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where m = mass of the body, and
f = linear acceleration of the centre of mass

Assuming that the resultant force acting on the body is F, then the

body will be in static equilibrium if
F+F=o

It is to be mentioned that the inertia force and accelerating force
(m.f) are equal in magnitude but opposite in direction. The inertia force
is an external force acting on the body. If we consider figure 2.1, the
spring force of the body &.x will be acting in the upward direction. The
acceleration of the body is X which acts in the downward direction. The
accelerating force is acting downwards and so the inertia force will be
acting in the upward direction. So the body will be in static equilibrium
under the action of these two k.x and mx forces. Mathematically, it can
be written

mx+kx=0 -
The same equation was obtained by Newton’s method.

In eqn. (2.2.2), constants A and B can be determined by consider-
ing that the displacement x is xo at £ = 0 and velocity x is vy at # = 0,

Applying these conditions in eqn. (2.2.2), we get
x=x=Ac0s0+Bsin0, = x=A (att=0)
and x=-Aaqsino,t+Bo,cosw,
vg==29@,.0+Bw,.cos0, = vg=B.w, (att=0)
The equation of displacement can be written as

z=xqeum.t+y‘i-dna\.t (2.2.3A)

Vg
A= d B=—
[ A =x, an m,,]
Trigonometric Form

Equation (2.2.2) could be written in most general form of S.H.M.
by assuming A =Ccos ¢, B=Csin¢

Then the equation (2.2.2) in trig: tric form can be written as
x=Ccos ¢cos w,t+C sin$sinw,?
=C cos (@, - §) ..(2.2.3B)
Equation (2.2.3A) can be written after differentiation, as
X ==X 0, S0 0, £ + Uy cOS ), ¢

or =-x¢ainm,t+£fooom,!

X
0,
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2.2.2. Energy Method

Equation (2.2.4) can also be derived assuming the system to be a
conservative one. In a conservative system the total sum of the energy
i constant. In a vibratory system the energy is partly potential and
partly kinetic. The kinetic energy 7 is because of velocity of the mass
and potential energy V is stored in the spring because of its elastic
deformation. According to conservation law of energy, we know

T + V= constant ..(2.2.5)
Differentiation of the above equation w.r.t. time, will be zero.
% T+V)=0 «(2.2.6)

Kinetic and potential energies for system shown in figure 2.1 are
given by

kst 1
T= 5 mx «(22.7)
V=i ket (228
dfl .2 1,2}
So & [2 ma® + 3 kx"|=0
(mxx + kxx)=0
or mx+kx=0 ~(2.2.9)
This is the same equation as obtained by Newton's method.
2.2.3. Rayleigh's Method

In deriving the expression for motion, it is assumed that the
maximum kinetic energy at the mean position is equal to the maximum
potential energy at the extreme position. The motion is d to be
simple harmonic, then

x=Asin@,t .£2.2.10)
where x = displacement of the body from mean position after time ¢.
A = maximum displacement from mean position to the extreme
position
Differentiating equation (2.2.10) w.r.t., time we get
x=w,Acosw,t
Maximum velocity at the mean position,
x=@A
So maximum kinetic energy at mean position
=1/2mt =1/2 m 07A® (2.2.11)
and maximum potential energy at the extreme position

o .:. kAT .(2.2.12)
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Equating equation (2.2.11) and (2.2.12), we get
1 o atat=1pas

al=k/m

i \f."_ .{2.2.13)
©n m

Equation (2.2.13) is identical to (2,2.1) and (2.2.9). These
::ethx are widely used for the determination of natural frequency of
e system,

2.3. TORSIONAL VIBRATIONS

Suppose a system having a rotor of mass moment of inertia J
connected to & shaft (at its end) of torsional stiffness &y, is twisted by
an angle 6 as shown in figure 2.6

The body is rotated through an angle 6 and released, the torsional
vihnemmng-gum“nmcdm&mmm
the axis of rotation is usually negligible compared with 1. The froe body

gram of | angular displ 0 is shown in 2.6.The
equation of motion is written as -
B=—Kr0 (restoring torque)
B+K0=0
- \.;
“ky8 18
Torques are balanced
Fig. 2.6
a8
where MECHANICAL VIBRATIONS

k. = equivalent stiffness of the
ky, ky = stiffnesses of Springs
* = deflection of the system
Ax = Force on the system

Thus equivalent spri 2 i
spring stiffnesses, *Pring stiffness is equal to the sum of individual

Springs in series

System

X=xptxgtag+
Force
‘-:%’E+ FA’E+ Force
e 1 ky ky L TR
or 1

PSP

. S e
Bk TRyt

individual spring t;
2,

equivalent spring stiffness
fnesses.

T:HE COMPOUND PENDULYM

© &ystem which is suspended vert;
i e T AT ot v
P pendulum, It js an example of unda t'y, i known as
reedom system, See figure 2.8, mped singlo degree of

W WCese

Fig. 28,
Let w=mi“'°f‘h°mbody

m=-=
O = point of suspension
I¢ X 3
=radius of gyration about an axig through the centre of gravity G
ity

UNDAMPED FREE VIBRATIONS 47
or 5+¥0=0 +(23.1)
Putting . 5’! {2.32)

The equation (2.3.1) becomes

B+wie=0 .(2.3.3)
This equation is of the same form as equations (2.2.1) and (2.2.9)
The natural frequency can be determined as

W, = v kTr .(2.3.4)

The tersional stiffness kpof shaft can be determined with the help
of this relation ie.,

§=% or Ki=5=5%  (From Stremgth of Materials)
& _Gx
. szd‘
whered = dia. of shaft, { = length of shaft, J =n/32 d* «(2.3.5)

24. EQUIVALENT STIFFNESS OF SPRING COMBINATIONS

in series or parallel or both. They can be replaced by a single spring of
the same stiffness as they all show the same stiffness jointly. See
figure 2.7.

- . K,
N F 3k
2
m
Springs in paraliel Springs in series
Fig. 2.7
Springs in parallel

The deflection of individual spring ie equal to the deflection of the
system.,

So R+ hyx =hx
ko =ky +ky .(2.4.0)
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h = distance of point of suspension from G
I = moment of inertia of the body about O.

= mk* + mh*
If OG is displaced by an angle 8, restoring torque T.
T=-hWsin®
=-mgh sin 0 .2.5.1)
If 8 is small sin 6 = 8, then equation (2.5.1) is written as
T=-mght .(25.2)
Inertia torque is given as
=-18 .{2.5.3)
S ing up all acting on the body
18 +mgho=0 .4254)

The natural frequency ®, ¢can be determined as

ae\p
" ;\’_'Z!&"_. g‘\‘_ﬂ"_
ohe %= N FoNy

+mh?
and natural frequency in Hz

= ‘\’.J"_ ..{25.5)
f=ge Y i 2

26. TRANSVERSE VIBRATION'S OF BEAMS

Beams are widely used for structural elements such as floor
supports, parts of chassis, etc. Beams of different dimensions are used
for different purposes. A vibrating beam is an elastic distributed mass
system which has infinite degree of freedom and hence the same
number of the natural freq: y. But from practical point of view only
a few of the lower natural frequencies are important.

Consider the beam shown in figure 2.9 (a and b). If the mass per
unit length of the beam is m and y is the amplitude, the maximum
kinetic energy is given as

KE.= ] o? I yidm A26.0)

where , is the natural frequency of the beam. If the bending moment
is M and slope of elastic curve is 6, the strain energy of the beam can be
expressed as

Strain energy = % I Mdo (262
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Beam element Beam deflection
Fig. 29 (a) Fig. 29. (b)
: l{auallyt_bedeﬂedionof&hebeami.mallandfwthattha
g T are d
-dy

e_d.x and Rd® =dx .{2.6.3)

1_do d* ‘
So R &= dT{ «(264)

?rnmbemthmry,nkmwtbat%:%whmkhthemdimof

curvature and EI the flexural rigidity.

Sminensmyhuprmdu=%f%dzusingabovemlaﬁom

2
and equation (2.6.3), we have strain energy as % I EI [33 dr(2.6.5)

Since the maximum strain energy is equal to maximum kinetic

energy, so

J ol jy’dmséfm[%In
(&) u

2
o= & .(266)

yidm

where dm=pAdx

m = mass per unit length, dm =m . dx
This expression gives the lowest natural frequency of transverse

vibration of a beam. The ratio o is called Rayleigh's quotient.

2
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2.8  BIFILAR SUSPENSION

In bifilar suspension a weight W is suspended by tw: exibl
strings as shown in figure 2.9 (d). Rl e ¢

774
g H ¥
AL ;
Al :
1 l /T8
Displaced ..lt ' L
positol ‘7"% , lh:'oz !
' 1
AL 1 i ]
i ]
Inrhal N ! , '
posit § '1
el 1
A \{?-L s
~— 1, (z-—;-\a‘
w

Fig. 2.9 (d). Bifilar Suspension.

Initially the support and the bar AB are parallel. The bar AB i
given a slight twist 8 and then released. Lot the strings nr: diaplnce:
by angles ¢, and ¢,. If?, and iy are the distances of two ends from the
centre of gravity G, then tensions 7, and Tp can be written as

- Wiy Wi,
Ty= IL+5 and Ty =l|—*[; D

SincF the angles ¢, and ¢, are small, so the effects of vertical
accelerations can be neglected. Only the horizontal components of

tensions will be idered which are given as
T,.9; and Ty . &, and both are perpendicular to A’ B,
From the geometry of figure
1,8=1¢; and Ig.0=1.¢;
N )
or o =4 .0/, ¢,=-‘-I- i)

The resisting torque T for the system, can be written as
T=TA.Q|.I|+T..¢9.IQ
_ W, ‘l_,_e“( Wi, 1.8 :
LT g T 5
(SubnituﬁneTAandT,fmm(i)and’.and‘,fromeqn. ()]
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2.7. BEAMS WITH SEVERAL MASSES

st

Let us consider a weightless beam carrying several masses on itself

as shown in figure 2.9 (c). Let us assume three weights W, W; and W;
which cause yy, y; and yy the static displacements respectively. ACB

the static deflection curve. Say w, is the natural frequency

P
of vibration of the beam and it executes harmonic motion.

W C Wa W3

Flg. 2.9(¢)
The maximum velocity of each mass can be written in terms of

frequency Le. 0y, 0,3 Wy; and so on.

The system itself is the extension of Rayleigh's method to deter-

mine the natural frequency.

The maximum kinetic energy of the system
3,
1

T = % (Wi + Watony2)* + Wa(@nys)

2 2 B
25 2 2 2] _ O 2 7
L [wm S Wayd + Wy,] =2 '}-:1 Wy? 271
Tue Potential Energy (V) of deformation due to bending is given as
1 1 1
Vs = 3 Wiy, + iw,y, +3 Ways
1 s
=3 (W + Wayg + Wyya) = 7 VZ‘W;y,- .42.7.2)
1=
Since the system is conservative, so its maximum kinetic energy
is equal to maximum potential energy.

So Toss™ Vines
“,} n n
i S Wiyi=Y Wiy
i=l i=l
n
gy Wo,
=
Thus oy=—— A2.7.3)
2 wol
i=1
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Wi, 1,0
Shelpith
- ﬂ“:_? LG
Weknow that T'=1 .«
where T = Torque

I = moment of inertia = g Iy

o = angular acceleration
k = radius of gyration

T
So a=7
Wi ;8 gl 8 )
= = o)
W LK %
1. —k
&8
We also know that

Angular acceleration

@ = Angular displacement
where @ = Angular velocity of bar AB
oi-f ,l,zl, .8
1.k%.8
g.h.0
e )
.o
Thus radius of gyration & can be determined with the help of
eqn. (¢). Moment of inertia of the bar can be determined as given below
1=!H.Z5'l"”.!;l.‘.‘lz
g gz 1o (A
This bifilar suspension is a method or device by means of which we
can find the moment of inertia of the bar suspended by two strings.

29 TRIFILAR SUSPENSION

In trifilar suspension there is a disc usually circular or triangular
type suspended by three wires of equal length. The support and disc
both are horizontal. The wires are in equilateral position i.e. 120° apart
from each other. The method is used to find the mass moment of inertia
of complicated shapes. Refer figure 2.9 (e).

In this case with an lar displ t 8 in hori | plane,
each string will be digplaced by an angle ¢ in the vertical plane.

Then tension in each wire, T'= g
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Suppert

/S'rlnq or wire
L *

Fig. 2.9 (e). Yrifilar Suspension.
where W is the weight of the disc.
and r.e=1.¢

or .E—‘—

Horizontal comp t of each tension=7". ¢

- 2 (7]

Total torque (restoring) = W(

Accelerating torque =7 , o
W
&8

@ i L)
We know that
Accelerating torque = Restoring torque

W3 a-¥

- A . a= 7 “.0

where k is the radius of gyration.

But Angular Acceleration _ 3
Angular displacement = ©

#49.3_‘02
)
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) SoLutioN. The deflection at the centre of a bar fixed at both ends
with load F at the centre is given as

deflection = FI*/192 EI
stiffness = load/deflection
=192 EI/1®*
The g ! equation for undamped free vibration is written as
mz+kx=0

@, =vk/m = !% rad/sec
1 192E1
f.=§; 2 Hz

Examrre 2.3. Determine the effect of the mass of the spring on the
natural frequency of the system shown in
figure 2.12. (M.D.U., 94)

SoLUTION. Let x be the displacement
of mass m and so the velocity will be x.
The velocity of spring element at a dis-
tancey from the fixed end may be written
as ¥ where lis the total length of spring.

The kinetic energy of spring element
dy is written as
1 ¥
5(9")’)(, x). Fig. 2.12.
where p being the mass of spring per unit length.
Total kinetic energy of the system '

where mass of the spring m, = pl
Potenﬁalmergyoﬂhesystem:%h'
Total energy of the system = K.E. + P.E.

b ST W (T T v
zm?+2m.svzk'-constmt
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o 19
=k
or 1/ 5
With the help of above expression, the value of radius of gyration
can be determined and then the mass moment of inertia of the disc can
be evaluated with the help of this relation :
¥
&
SOLVED EXAMPLES
ExamPLE 2.1. Determine the natural frequency of the mass m
placed at one end of a il beam of negligible mass as shown in
figure 2.10.

m -
<% t8
Fig. 2.10.
Sorurion. The stiffness of beam is given as
k=3EI/1
where EI is the flexural rigidity of the beam.
The g 1 equation of motion for undamped free vibrations is

given as
mi+hke=0
Substituting the value of k in the above equation, we get

n;-b%x:.-o

So u.='\l%rullm
or /,=%‘\!—3”—::Tuz

Exaxrrr 2.2. Find the natural frequency of the system shown in
figure 2.11.

po- Y2+
— z —

Fig. 2.1
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Differentiating the above equation with respect to time

Exasmpre 2.4. Find the natural frequency of the system shown in

figure 2.13.
Given ky=ky=1500 N/m, ky=2000 N/m,m=>5 kg.

PP 7 IV
3
LE $H Igtk) i.u,uzn,l
5 ki
\71J E T
e k3 ks
Y ITTTIYT
Froe body diagram
Fig.2.13
Sorurion.  Given m=5kg
Equivalent stiffness in parallel
E,=ky+hy+kg
= 1500 + 1500 + 2000
=5000 N/m
k _Af5000 _ /
““l\jm _‘\J 5 = 3162 rad/soc
fa= 5 V1000 = 5.03 Hz

Examprx 2.5. An unknown mass m is attached to one end of a
cpringofmﬁmsskhauingmumlﬁ'equemofslh. When 1 kg mass
is attached with m the natural frequency of the system is lowered by
20%. Determine the value of unknown mass m and stiffness k. (P.U,, 98)

1 »\’ k
Sorvrion. fi=6Hz= 3% Ym A1)
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80

_L‘\’ k
100 =5 Vg ~A2)

So G_6 _ Ni/m
48 \}k/mfll

1.25°% = k/m m+l
(1.25) k/m+1 m

m=17TTkg
Stiffness from equation (1) can be determined as
A g
6= 2" /m
L]
m
k =2523.94 N/m
EXAMPLE 2.6. A spring-mass system (k
1 —m;) has a natural fre-
quency f,. Calculau the value of ky another spring which when con-
nected to k, mparallclinawauluﬁ'aquenq by 30%.
SoLvmion.  f, = \/k,/m,

motberspﬁnghcmneaedhk. in parallel, so ke = k, + Ry

fa=6x

(6x2n) =

S0, oo,
f: 106 /1= m,
i1 [ m
2 13 Yo, bk,
1A b
13 ky+ kg

169k, =k, +k,
hy= 69,

Examriz 2.7. A simple U tube
manometer filled with liguid is shown
in figure 2.14. Calculate the frequency
of lting motion if the i
Iengtlsofcmanamdertubcic.ISnL

I{idv column is displaced from equi-
librium position by a distance x. Ifpand

MECHANICAL VIBRATIONS

‘\,&b’ -"
So W, = T =d %‘- rad/sec

EXAMPLE 2.9, Determine the natural

pulley system shown in figure 2.16. e g L ‘P’(‘i%m;;l)
(]
x X=r8
FREE
DMGﬂgao ¥

Flo.z.ll.iprhmll‘mumm
SoLurion. The total energy T of the system
T= kinetic energy of the ineti
potil cagt mass m + kinetic ene
sl Loy 1G0 ¥ 1 :
2 +2lé’+§h =§mr’92+519’¢%kr’6’=cmxtant

rgy of pulley M+

From free body diagram it is clear that at any moment x = r9
Moment of inertia of pulley 7 = 1,2 44,
Dxﬂ'erentiau'ng total energy equation with respect to time, we get
mr*08 + 168 + kr'6 = 0
m0 4+ 10 + kg =g
mr* + 172 M8+ kr'e =g
2
be—M___ o 0
mr® 4 1 M2
2
2kr®
awy Az
EY] on e M rad/sec

ExaMrrg 2.10. A circular oyl
) i cylinder of mass 4 kg and radius 1
;: S;n“et;t«ri;{ a spring of stiffness 4000 N/m as shown in ﬁgu;m;cl’;
il o roll on horizontal rough surface without slipping, detznm.n" ;
natural frequency, (P.U.93, P.U.. 99)

UNDAMPED FREE VIBRATIONS 2

A are the mass density of liquid and cross section area of the tube

respectively, then the mass of the liquid column is p AL, With x as
velocity of liquid, the kinetic energy is given as

KE. = % (0 AlZ*

P.E. = (p Axg)r = p Ags’
Total energy of the system is constant

% p Al +pAge=C
Differentiating it with respect to time, we get

p Al + 2p Agxx =0
I+2gx=0

So W, = V¥ rad/sec e

14/2x981 .
fu= E 15 Hz =182 Hz

ExaurLs 2.8 An electric motor is supported by six springs of
stiffness k each. The moment of inertia of the motor is I. Determine the
natural frequency of the system. Refer figure 2.15.

Fig. 2.15.
SoLuTION. The restoring torque is given as
= spring force x displacement
=6 (kb0
I8 =-6rb’6
T8+ 6kb*8 =0

6kb%9

94,

=0

UNDAMPED FREE VIBRATIONS J

X ; re=x

Fig. 2.17

Sorurion. Total energy of the system
T=KE. due to translatory motion
+ KE. due to rotary motion + P.E. of spring

1 _..1 1,2
=5 mi +216’+2Iu
1 11 1 et =18)
=-imr’9’¢2.2mr’9’+2kr’8’ (
T=%m’r‘0’+%kr’8’=oonskam
Differentiating 7' with respect to time, we get
0=%.2mr’09+kr’00=0

gmﬂmm-o

a2 =\/g"“m°°

3/2mr*

_ 1 4/2x4000 _
f-'z,.‘\lmsxd =411Hz

Exampre 2.11. Find the natural frequency of the system shown in
figure 2.18. (P.U. Aero 94)

Fig. 218

Sowvrion. KE. =
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From the geometry of figure
x=0"a
=00'x8
= (00" +0'0")x 9§
x=(r+b)80 (8, being small)

=1p2.1
P.E,—zlu: +2kx’

=2.%hl(r+b)0}’=b(r+b)'9’

Now, energy is conserved, so

3/4 mre*+ kir+5)2 0% is
respect to time gives

374 mr'® + kir+b)0=0

Hence the f fvibration is -1 \/ 44 +6)°
requency of vibration is 2z 5%:’;1- Hz

mrﬁt]‘:ﬂll& Find the natural frequency of the system shown in

» 80 differentiating on with

Fig. 2.18
SoLuTION. Let 3, = deflection of spring=R . ¢
Spring force = kx; =k R.9
X =r. 8 =downward movement of mass m
Total Kinetic energy = K.E. of the mass + K.E. of rotating element

e B 47
2m:,~r2[92

Potential energy of spring = ; ki

Totalonergy:%nﬁh%lé’\s%kx%

— MECHANICAL VIBRATIONS
For this value of deflecti the corresp. rding deflecti at point D
P .
= (/)" and stiffness ky(a/1) = ky

ksand k) are connected in series, so their i
Y equivalence can be
phaky ka@n's,
d+ R kaasl) + ky
Natural frequency can be written as

=4 1,& 1 ‘\/ kika(asy?
e V= == ' Lmlesd)
2t Ym " 2x miky + ky(asty} -
EXAMPLEZ2.14. Calculanlhenammllmqmcy the system
inﬁgure2.21ifthemwoftkemdivwligiblemm;fmd:them

T AT
acoso | \\ b(:me
i \ol bkcos®
uiccsq \'l

B
mg
Fig. 2.21

SorurTioN. From the torque equation, we get

18 = - Restoring torque

ml’o=-(mgsinex-hasine(amo;-kbstne(bme)

For small 6, sin 6 = 0 and cos 6 = 1 .

ml* B = mgl6 - ka’e - kb

mI%8 + (mgl + ka® + kb¥0 <0

501’1’&“‘“’*“’229=0

it
o :i.‘fmli»kaukb'
g 2n mi* He
Ifno spring is used, the system b a simple pendul

ExawpLe 2.15. Determine the tural !
shown in figure 2.22 where » R W stem
1 = moment of inertia of rocker about its axis

k, = spring stiffness
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By energy method, we get
;- '§+;;-I'O’¢%kx;=eonmnt
Differentiating the above expression w.r.t B, we get

df1 rgp lygr Lymage| d
Eéiz-mr 6+ 18 zm‘e] do (Contt)
mrt OB+ T108+kR B0=0
(mr'¢1)6+kR"e=O
kR*
r— |8 =0
)

_-\’ kR” _ rfs—l“\’ kR
OE=NGEer T Nt

ExampLg 2.13. Find the natural frequency of vthe system in figure
2.20 assuming the bar CD to be weightiess and rigid.

A
P2Irare
——"=I
2l

j—— L -
?n—"la :n
C

k2

Fig. 2.20.
Sorurion. To find the natural frequency the value of equivalent

spring at A is to be determined. _
Let us consider a force P at D, so the force at point B can be written

as Pl/a.

(Fn.a=P.l
Pt
Fa==3")
The deflection at point B can be expressed as
sy=t2_ Pl
"k aks
P.8=Fp.8
_Fy. 8

UNDAMPED FREE VIBRATIONS
k,:pu:hmdaﬁf.ﬁlm
m, = mass of spring
m, = mass of valve
and mp = mass of push rod.
k_b—o{c——l—h'
ROCKER
ARM
2|z 2
= A |- -
mp =3
B SPRING
Xp <:5’»
cAM ‘~E *
+

my
Fig. 2.22. Push rod rocker arm and vaive of engine.

SoLuTIoN. Let us consider the system to be conservative for which
the sum of potential and kinetic energy is constant.

&E.=%lo’+§n.(ao)’¢§%(a°)’+%%‘(“>'
=%U+M’+;mﬁ’+%"‘l"ﬁ’
PE. = L ka0)’ + J k607

-;{ﬁ,ﬂZQ'uw
Total energy =KE. + P.E.
Diﬂannﬁaﬁngtbebhlmrgywitbrmpdhﬁme.ngﬁ
(Iﬁm#’i—%m,ﬂ'#%M,b’”f(‘.ﬁ’#‘pb’”=o
This equation is of the form
B+%0=0
So the natural frequency of the system can be determined as

_l'\l (ka’ + kb
’,'_2! - R e
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ExampLE 2.16. A mass is suspended from a spring system as shown

in figure 2.23. Determine the natural frequency of the system. (P.U., 89)
ky = 5000 N/m, ky = k; = 8000 N/m, m =25 kg

Fig. 2.23

Sorution. Since springs k; and k; are connectad in parallel, so
their equivalence k is given as k = &, + k4. Again & and k; are connected
in series, 50 the equivalence £, is given as
i1 .1
k Ry kavky R
I

2 x 8000 ~ 5000
k., =3809.52 N/m
The natural frequency
1 - [3809.52

D _po Lk /m =2\ 380822

2x 25
fa=196Hz
Examprr 2.17. A mass m guided in x - x direction is connected by
@ spring configuration as shown in figure 2.24. Set up the equation of

+
ke

mass m. Write down the expression for equivalent spring consta
' (P.U., 93)
‘o

%9

o3 ‘L -

X n X
P “\
2
3
62
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and %=(12)’x4x"

12)° x 4=’ x 4.
b = XA XABE 56 28 kg/em
EXAMPLE 2.19, A body weighing 5 kg is hun, ? 3
) A bo & on two helical s,
in parallel. One spring is elongated 1 cm by a force of 0.3 kg; lhep:‘t,ltﬁ
spring requires a force of 0.2 kg for an elongation of 1 em. Caleulate the
natural frequency of vibration. (Uni. Roorkee, 67)
SoLvtioN. k=03 kg/cm, ky;=0.2kg/em
The springs are connected in parallel
ke=hy+k;=03+.2=05kg/cm
L2
m

11’.50
='éi —5-x!l81 =1.58 Hz

EXAMPLE 2.20. Determine the equations o, ti0}
shown in figure 2.25, E et Meas,?ralegs)

Natural frequency, f, = él
=

SO AN

™

Fig. 2.25,
Sorutron. Wehxq_wthat
(a) J8 = torgue
mzfe.-mgume- (ka sin 6)(a cos 0)
mi*6 + (mgl + ha’) 0 =0
when 6 is very small sin 8=, cos 6= 1
2
So w, = r_ng!"#ka_ rad/sec
®) mi* 8 = - (ka sin 8)(a cos 8) - mgl(1 - cos 8)
ml“d + ka®0 =0

2
Natural frequency, @, = % rad/sec

UNDAMPED FREE VIBRATIONS 7

Sorurion. Springs k;and ky are connected in parallel, their
equivalence ks
kan=ky+ky
k.2q 18 connected to &y in series
P kikagy  ky(ky 4 k)
S TR PP TR YR
Springs ks and kg are connected in series, their equivalence is
Kiven as

Springs k,j23, ks and kg make angles ¢y, o and @, respectively
with the direction of motion, so equivalent stiffness &, can be deter-
mined as

k, = kg c05” 0y + by 05?0ty + ko cos” oy
btk + ki) Rk
s I;,l.(# :, ¥ Jk;, i+ kg cus® ay
The equation of mation of mass m can be written as mx + kx =0

cos® oy + kg cos® ay +

k
natural frequency, ©, = ’*"'

Nota: [f any spring makes angle awith direction of motion of mass m_as shown
here in the figure, the displ t x of mass defe the spring-by ¥ cos iwalong its
axis. The force along the spring axis will be kx cos «. Again the component of force
along the direction of mation will be kx cos” @

Exampre 2.18. A spring mass system has spring constant of

k kglem and the weight of mass W kg. It has natural frequency of
vibration as 12 c.p.s. An extra 2 kg weight is coupled to W and natural
frequency reduces by 2 c.p.s. Find kand W. (P.U,, 92)

Sorurion. Given f|=$‘- \Jﬁf;g =12
...L‘\‘ k_ _10_o-
f.‘_& Wiz =12-2=10

or lﬁw% =(12)*. 4n*

W+2 144
w -100- 14
W=2/44=454 ke
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Exawrre 2.21. Find out the equation of motior for the vibratory
system shown in figure 2.26. (PU., 94)

= t’o“‘“
e b =
Fig. 2.26.
Sorurion. The equation of motion can be written as
(ka)a® + (mb)bl = Fy sin «t . b
ka®® + mb™0 = Fy sin a¢ . b
It can be solved for natural frequency. &
ExAmpLE 2.22. An indi hanism is sh in figure 2.27.
The arm pivoted at point O has a mass moment of inertia I. Find the
uaxwv_xlﬁequenqofthuymm. In the figure symbols have their usual

meanings. (P.U.,, 84)
k2
)
[ i3
| | A E
a T |
| v e,
-,j..{& _______ ’
e T —
my
lI
Fig.227.
SoruTion. Total energy (T) of the system = kinetic energy (K.E.)
+ Potential energy (P.E.)

KE. = %leu% m,(aﬂ)’+-,‘1; machy?

PE. = % ks{ad)* + -;- ky(50)" + % ky(c8)y*
T=KE.+PE.

@-Outholumd'energyi- constant.
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It gives,
T+ mpa® + mych)B + (ha® + by + kb0 =0
It is of the form
B+ko=0
So natural frequency of the system can be expressed as
z-\'(kﬂ’#k c’+hﬁz
W, (IHngalz»m,c’)) rad/sec

ExampLE2.23. Calculate the natural frequency of vibration of a two
rotor system as shown in figure 2.28. Neglect the weight of the shaf,

(P.U,, 93)

y Wy
—a e W

———
Fig.2.28
Given
W:=60kg, Wy=92kg, 1=256em, a=15cm, I=625cm",
E=2x10° kg}/em®
SoLuTioN. From strength of materials (static deflecti i
we know that » D
Wia' Wa'@l-a)
N=ZET YT eEr
- wat s W.a*3l - a)
27 3EI 6EI
gy m—80X 15)° 92 % (15)%3 x 25.6 - 15)
1 +
3x2x10°x6.25 8x2x10°%6.25
=5400 x 10 % + 17056.8 x 10™°
=22.456 x 10 em.
yp=—92x258'  60x15%76.8 - 15)
3x2x10°%6.25 Bx2x10°x6.25
=52.28 x 10~ cm.

MOUNANICAL VIBRATIONS
Solhemtunlfnquencyaﬂhem
(ky + ko)a® ~ (a + bymg
W= \jh,—
mia+ b’
E'\'(kx*w g
‘_m(a+b)’ ~a%b rad/sec
When t, = 0, the system will not vibrate,
Thus O=M__‘_
m@+b)} a+bd
(ky + -
m@+b) 8
(ky + ko)a® = mga + mgb
b= 1+ k9a’ - mga [a(knkz) ]
- = -1la

mg mg
Thirdly, the maximum acceleration of the mass
=- o’ (amplitude) = ~¥(e + b)9
Putting the value of 0,, we get

= \/[(_*l_‘.iz)"_’- b]l (@a+b)0

@+b’m a+
S
=[_x _ (ki +hga }Nm

a+db  (@+b)’m

e k1t R’

&9 (a«'-b)mo 5
Examrre 2.25. Using energy method find the natural uency
mshmuinﬁcwtz.m.m“rdmaybymm?:;umibz
he spring mass pulley system and no slip.

1
Given J = 4 me” for pulley. (P.U., Aero 93, 76)

UNDAMPED FREE VIBKATIUNS o
Natural frequency @, is given by (see article 2.7)
g2) Wy Wy + Waya)
ol Z ; & l.y'l -
Y Wyl Wi+ Won
_ 980[60 x 22.456 x 10~ + 92 x 52.28 x 107
60 x (22.456 x 10) + 92 x (52.28 x 107)"*
So aﬁ =21419.07
oy, = 146.35 rad/sec

and f.=%=23.29“l

ExampLs 2.24. Find the natural frequency of vibration of the
system for small amplitudes. If k;, ka a and b are fixed, determine the
value of b for which the system will not vibrate. Find maximum accelera-
tion of the mass. The system is shown in figure 2.29. (P.U,ME., 94)

Fig. 2.29.
SoLurion. At any moment x =(a +b) 6
X=(a+b)®
The various forces are
mi=m(a+b) B (inertia)
kx=(k;+k)ab (spring)
mg=mg (due to gravity)

Taking moments about 0, we get
mia + 5 (a #b)+(ky+h)a’ 8- (a +b)mgh =0
(a + 5)’mb + ((ky + ko)a® - (a + bymg) B =0

2 _
ST (Ry + kola” — (@ + b)mg ‘0=°

or {a+ by J
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Sorvron. T = KE. of mass + KE. of pulley
N L et
For any small displacement 8,

x=rf (where x = displacement of mass m
at any instant)

y=x/2 (y= vertical displacement of pulley centre)
=%M.:?+%m¢i:/2)’¢—;-.%nu-’§
-%M,?-f%mi"
The potential energy is given by
V=PE. -
=3k
e
=%,.,x
The energy of the system is constant.
So LT +N=0

L T, e
Al,x:+4m.n+‘hx 0

M+ 3mis Fhe=0

(u1+-i-m§+%k.:-o
So natural frequency is

@, = \j% > rad/sec

3m
M+ 1

T
(4M, +3m)

Examprg 2.26. Find the natural frequency of the system shown in

rad/sec

figure 2.31.

ky=hky=ky=k,=ks=kg=k=1000 N/m. (P.U., ME Civil, 94)
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100t

Fig. 2.31.
Sorurion. Springs k), k; and &, are connected in parallel
Their equivalence, k,; = ky + k; + k, = 3k
Similarly equivalence of kj, k, and k,

h,g =3k
Similarly ke =3k,
Agsin k,; k,; and k5 are in series, their equivalence, k,.
= LD ot ST S
k. 3k 3k 3%
Thus ko=k
Natural frequency of the system
w, = q% = QI_;%% = (.99 rad/sec
Examprg 2.27. Find the natural frequency of the system shown in
figure 2.32. k=2 x10° N/m, m = 20 kg. (P.U., Aero 93)
PIPIIIIIFIIVIIIIIINE
k LI 4
»
k >
<k
k
2k
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Period of oscillation

=2 _ ‘\/Ln_
T= = =2z oA sec

Frequency when p is 1.2 p, @, = \( 1204 _
m

ExaMpLe 3.29. A pendulum consists of a stiff wei,

2 weightless rod
lcn.gth { carrying @ mass m on its end as shown in figure 2‘.’;5 ﬂz:;’
Springs each of stiffness k are attached to the rod at a distance o fro
the upper end. Determine the frequency for small oscillations. (P.U. 88)

ad/sec where A = _:_ Dt

Fig. 235,
Sortrion. The equation of motion can be written as

18 = - ka®0 - ka®y - mgle (where 8 = angular

pl t of penduium rod)

=~ 2 ka0 - mglo
Q+M)§-o
7 =
But T=mi?

& 2ka
L

rad/sec

- (PU, 94)
SoLUTION. The natural frequency of pendulum is given as
&,
W, 7

UNDAMPED FREE VIBRATIONS

P 3.1
i Em =t e
undmseriesh‘ ™
See figure 2.33, k.=12’31£
e Lpisikebeehiiit
%3 $1%
x
K 3 x
Sk % ]
) (5 .
Bk
8
A 13k
ic) o X
)
t)
f te)
Fig. 2.33.
,’k, -\’2x105113
So natural frequency @, = m - Y 20x21
= 78.68 rad/sec
and fy=125Hz

ExaMPLE 2.28. A cylinder of diameter D and mass m floats verti-
cally in a liquid of mass density p as shown in figure 2.34.

It is depressed slightly and released. Find the m@d of itf mllq-
tion. What will be the frequency if salty liquid of specific gravity 1.2 is

used ? (P.U.,90; M.D.U., 81)
Sorurion. Let us x the dispk t of the eylinder
Restoring force = p(Ax)

According to Newton's law
m3 =~ pAz
mi + pAx =0

UNDAMPED FREE VIBRATIONS m
O
,.—2‘
@y =fa . 28 = 5 x 2% rad/sec = 10 n rad/sec
d=.002m
We know that
T G0 _T_GJ_
;e e S ]
J=x/32d"
Ga/32d _ 85%10" x3.14x (002)* _3.336 x 10*
¢ auilss S 3 [
1’0.;/3?4“ 3.336 x 10*
100 i 1% 0098
{=135cm. -

Exampre 2.31. Derive the differential clquaﬁou of motion for a
spring controlled simple pendulum as shown in figure 2.36.

PIIIIIIIIIIITINIIII7]

[
L

AN LN

2

-Oj; my

Fig. 2.36.
spring is in its unstretched position when the pendulum rod is
vu-thu e (P.U,, 93)
Sorurion. Let us say the system is displaced by an angle 8 to the
right.
We can write the equation as
=-mgld-ka.ab®
mi® + (mgl + ka®P =0 d=mlY
2
9*[M 8=0

ml'

2
b+[§4% =0

2
The frequency w,= V5 + ?‘5 rad/sec
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Mu&u.ASkgmanwackcdwt}ulomrmd ;
whose upper end is fixed, vibrates with a natural period :; ::’;:3-'
De_termme the na!urglperi.odwhen @ 2.5 kg mass is attached to the mid
Ppoint of the same spring with the upper and lower ends fixed. (P.U.,92)

Sourion. Natural frequency can be
2K
2K
Second Position

o= \’”i‘ «13.95 %"
(2K and 2K in parsfief)

or  (13.952 ’%

k=m(13.95)" = 5(13.95)% First Postion
=973 N/m

when the spring is divided into two parts, its stiff i ice i.
3 ness will be t
2k, But now two parts of the spring are in parallel, so k, =4k et

\/u w/ 9
Then asNT - igjsﬁass.wmd/m

2rn
—
Wy
ExanrLg 2.33. A circular cylinder of mass m 1 2
. 1 and radi
connected by a spring of stiffness k on an inclined plane as shou:;r: i‘:

" 2n
Natural period 39.45 = 0.159 gec.

Fig.2.37.
Sorurion. By a ing Newton': a o
lnotionunbewﬂumpzhn‘ : 0w o
mi=-kx+F,
where Fy= friction force
mé + ke~ Fr=0 A1)
- MECHANICAL VIBRATIONS
equivalent stiftness " 104 ks are in series, let 4, be their
IS S
LTETRYE
I Y oW |
‘2*15+§=1.499
k1 =0.667 kg/em
The two lower spri .
equivalence £,, Prings ks and ks are connected in parallel so their

ha=kyths=545=10kg/em
Anmk,,andkaminpamllel.ntheiroqm'vnlenuk

‘.'k.1+k.q=.667+l.011.367kg/cm
fe=10Hz

f,,afﬁzi-\’&
2 2% Ym

1k

2_ 1 &

2 4x*m
10y~ 1 1.667 x 980
(10y W
W = 1:667 x 980
100 x 4x*
: &::?‘um]'he cxka:«d from a single eylinder four stroke diesel
S ta'auml’e and thepr;cfwf therein is to be
‘l::t;z:uﬂ:’an‘;mmmbesolhauheww;l - s

% cdumuwﬂlbcs.ﬁa‘mdawer uency

themﬂmmminmdkmrﬁruem;:usp::a%rpg

=0.414 kg

=

(MD.U, 91,
Sovurion, wounﬁndmemqwm"wim 93)
N
=7 *speed of engine
ke N =No. of eylinders
heqmq.—.]/2x600=3mrpm_
"‘g‘:fomaltnmd/lec
Froquency in manometer

10x
=35~ 8.97 rad/sec

UNDAMPED FREE VIBRATIONS

Also Iéu-F,.r
%mr’ﬁ--i‘,.r

At any moment ; x=rd)
F,:--imrﬂ

13 Garth
= —=mr-
2 r

1 . w(2)
:—me

Equation (1) can be written a5

n&+h+%m§=0
%m;uﬂo

]
tam* ¢

‘\’ 2k
So = N3n rad/sec

ExaMpLE 2.34. Consider the system shown in figure 2.38.

4 Lessgilist,
k2 3Ke
b KQ' K'Z
” [w
Ke,

e
PII77T777
Fig. 238, Fig. 2.39.
If ky=2 kg /em, ky=1.5 kgy /em
k; =3.0 bg,/crn. k.sh“: 5 kg,/cm
Find weight W if the system has a natural frequency of 10 Hz.

MIT Aawa O1Y

WY
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The kinetic and potential energies can be written as
KE. =Taif g
2z
V=pAs®
where p = weight per unit volume

A = cross section area
I = length of fluid column

Total energy T+ V=constam
So Lrev=o
d (1 pAl 2},
dl(z 2 x #M:}l 0
9}‘5‘2.:&&:0 -
or Li’be:Q
g
i+2r§=0

Thus m,,:‘\[gfl_'

But we have , = 8.97 rad/sec

8.97= ‘\/ %"9

[=0243 m

ExampLE 2.36. In figure 2.40 a thin semi-cireular cylinder of mass
M and radius R slides on the horizontal surface without slipping.
Determine the natural frequency.

0
0
G

Fig. 2.40.
SoLution. Let us say the distance between O and C.C. is r
We can find the equation of motion by equating the maximum

natantial aftha bnlon




N
Let us assume the motion of the form
8 =A sin w¢
where 8 = small angular displacement
A =amplitude P.E. = Mgh (h=r-rcos@)
(P.E.)npe = Mgr(1 - cos 6) (expanding cos 6)

= o @
-8
M & .
=Mgr e} (leaving smaller terms)
A? ar
¥ Mgr. %5 = MgA® 5 Brax=4)
(KE.)...-%I,Q’:%IM’QS ®=w8)

But L=lcog+M@R~r)}
= o~ Mr) + M(R - ry*
= (MR~ Mr*y + M(R - r)*
=MR -+ (R-r
=MIR -1 + R+ 1 - 2Rr|
=2MRR -r)
Putting  (KE.)par= (PE )y,
m’ 2
;;EWR(R—r)zéunA'

1
=5 Megr/MRR 1) (Opune = A)

o~V

Examrrs 2.37. In figure 2.41, find the natural ue)
.41, the
:ynt;%%/ntzwk attached at one end of Migmungd"fand
= m.

b e g

Fig. 241.

TRASIAIVILAL VIBRATIONS

The equation of motion can be written as

19=*27'sin0.g-

~_ gy a amg
g 3=
—_amg ab
= 2 ol (when ¢ is very amall sin o=0)
__a'mgh
4
k]
But =2k
=72
2
amég _
B ar =0
' a‘mBx12y
4 mLF
3a’p
P 20 a
Vg2t
So w, = qujg -2 V%'
Lt L !
2nLAf L

Perwd of moti 2x [
on = o, i @ sec.

Examerr 2.39. The cylinder of mass m and
o : 5 radius r rolls wi
slipping on a cm'.ular surface of radius B. Determine the nazru’:ul ;':;;:ﬂ"’
for small oscillations about the lowest point. Refer figure243.  (P.U ;?;

O
‘
ol
I‘\7
A |
% '
|

A

v i

":L.---_ 5
{0

%

-

A
Fig. 2.43

SoLUTIoN, When the cylinder is in the L i i
PPttt gt owest position, the point

ArcAB=ArcA'B
Rterd
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SoLuTioN. Let us assume very small angular displacement 8 of the
rod in the vertical plane.
Deflection of spring = 0.2 16
Spring force =026k
The equation of motion can be written as
I8 =~ (0.2 1Y0.210 k) = - .04 I’k
and I=m(0.81)" = 0.64 mt*
0.64 mi*0 + .04 *40 =0

l.'\’!l. _ 1441000 _10 -
So mu‘ = - TR =2.56 rad/sec

ExampLg 2.38. A bifiliar suspension consists of a thin cylindrical
rod of mass m suspended symmetrically by two equal strings as shown
in figure 2.42,

LLfhdbbs dllilids
a —
I t
v |
! r

I
—f—

1Y
Fig. 2.42.
Find the period of motion for small I illations of the rod
about the vertical axis Y-Y. (P.U, 89
Sorurion. The mass carried by each string in static position,

-m.g
T= 2

Let the rod is rotated by an angle 6 in the horizontal plane and
corresponding angular movement of the strings is ¢ in the vertical plane.

- )
Then =3 8
2
UNDAMPED FREF VIRRATIONS X$
So o= RY
s

The kinetic energy of the cylinder is due to translation and rota-
tion as well
The distance OC =R ~r
8o translational velocity of the cylinder centre = (£ - 10
Rotational velocity of cylinder = (b - 8) ~
PE. =mgh=mg . CD = mgiOC' - O
=mgliR - r) - (R - r) s 0] o OD=(R - 1) eos )
=mg(R - r)1 - cos 8)

K.E. due to transiation = % miR - 16"

K.E. due to rotation = ; I - 0y

s ¢ (
mr"‘;Rﬁ-ﬂ' - I-mr"'“!! -1 #
\r ) 4 \r

The total unergy of the system is written ws
2

"W(R~r)(l—msﬂ)+,!-m (R~r)"9"+—l-mr" n(l?- 1? o
2 4 \r J

3 2p2
=2 miR - r* 6" + mg(R —ry(1 - cos 8) - constan)
Differentiating the above equation with respect to time, we et
(sin0 0 when

2.gm(l{-rpzu-(;+nlg(‘lf—r)sin69=0 A
4 B 1s very small)

g(R-r)'B'+gﬁ—()

. -'\}._&,_ g
So u, = TR rad/sec

ExampLE 2.40. Determine the natural
frequency of the mass m = 15 kg as shown in
figure 2,44, assuming that the cords do not
stretch and slide over the pulley rim. Assume
that the pulley has no mass,

Given, k; =8 x 10° N/m
ky=6% 10" N/m

Sorvrion. At any instant the force in
soring k. I8 twics to that of b, a¢ mace m ic
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acting at the centre of pulley, If we find equivalent stiffn

system, the natural frequency can be determined. e
Let us say P is the force in spring k; and so P/2 will be in ky.
Displacement of mass m is given as

Xz = P
k;
So extension in spring &, isx, = 2%
1
The mass moves half of x, i.e. x,/2
Thus the displacement of mass m due to ky is given as

i SIS
7%= g
Total movement of mass m is given as

1

2

x= + 2y

it B
ik Tk
The equivalent stiffness of the system.

The natural frequency of mass m is given as

p ,_1_\[& =_1.\/_-.2b_€« "
2 Ym 2x (ky + 4k,
- '\f., L. I
n (k2 + 4k;)m
A -\/ Bx10°x 6 x 10°

n T (Ex10°+4x8x10%15

Exampis 2.41. A homogeneous soild cylinder of length L, cross
setional area A and specific gravity S (S < 1L.0)is floating in water with
s axis vertical. Neglecting any accompanying motion of water, deter-
iine the differential equation of motion and the period of oscillation of
i cylinder if it is depressed slightly and then released.

(AM.LE,, 94)

=29Hz

Qrassmmens: Dol & & am
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We know that equation of motion is given by
I.6+K,.0=0 or 9+?e=o

and the natural frequency  is given by
“ ,K,

w= T

Natural frequency when the wheel is not locked to arm

G x
m.s\l——~d‘/m (*+a* ,\j___g_x_d_‘__
L 32 32Lm (a7
Natural frequency when the wheel is locked to arm
a=\E[x 2 -\jﬂ.x‘d'
V(o oot NE2E
mw.Amwmoris:hwninﬁgunz’(?ache ?
'lue_fwolm&::wh:chaxnytheballsofmassmeachamconnrcudw?bf':
oring of stiffness k gnd has a natural length of 2e. Find out the

xpression for the inclination of the links with verti
» s25s o with vertical when the gover-

SOLUTION. Since the spring expands about the spindl
c_lea of it, so it is assumed that the spring is fixed at t;’:eenetr\:nofbot&
nl._ Thus the spring will be equivalent to two springs. Hence,
juivalent stiffness of spring will be 2 k. Various forces acting on th;
‘ms and balls are shown in fieure 2 48 (h

UNDAMPED FREE VIBRATIONS i

‘The volume of the cylinder =A.L
ALS
g

Mass of cylinder =

Fig. 2.45. )
Let x be the depth up to which the cylinder is submerged in wazer.
Then weight of water displaced = A . x and this provides the restiring
force. When the cylinder is depressed slightlv. the mass will be sab.
Jjected to acceleration x, then equation of mation
mz s kx=0

&'\A.x:()
4

\ji '\]_A,G ‘\}s ad sec
w= N = = Vg rad sec

SAL S

Time period, = 2x % sec

ExAmpLE 2.42. A steel shaft of length L and diamcter d 12 used as
a torsion spring for the wheel of a light automabile as shoron tn figur
2.46. Mass of the wheel and tyre assembiv is m and its radius of gvration
about ils axle is r. Determine the natural frequency of the system with
the wheel locked to the arm. How will the natural frequency change if
the wheel is not locked to the arm and froe to rotate about its axle 7

Sofution. The moment of mertia of wheel and tyre about shaft
axis is given as

I=mr® e ma’=m v’y
.Awhen the wheel is not locked to arm)

and I=ma* ~iwhen the wheel is locked to arm)
Torsional stiffness of shaft is given by
e % B o
UNDAMPED FREE VIBRATIONS 89

Fig. 2.47.
When the guovernor rotates with angular speed w, let the arms be
inclined to the vertical at an angle 8. For equilibriuth, taking moment
of all forces about 0, we get

Fo.leosB=m.g.lsin8+Fs.acosB B3]

where F¢ = Centrifugal force = mw’r
and Fg =Spring force = stiffness x deflection

=2kx2asin@

= 4ak sin 6

Q
g
e
mg
(=) ®)

Fig. 2.48,
Substituting the values in eqn. (), we get
mao’r.lcos®=m.g . Isin0+4a’k sin B cos 0
For small angles and neglecting obliquity effects,
xinAZA racA=1
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Equation (i) can be written as
mo'rl=m.g.1.04+4a%k . 8
ma’ r . 1= (mgl+4a’ by o
Radius of rotation r can be written as
r=e+l.siné
=e+l.0
Equation (i) can be written as

i)

(8ince 8in 6= ¢)

mm’(nl.s).l-(mgtua’k)e
emm’l+mm’l’.0=(ml¢4a’h)8

or fe—mute
(mgl + 4a® k - ma® 1)

Problems
1. Acarhavingnmmoﬂmolgdeﬂ«h'u ¥
Find the natural frequency of ear in n;ﬁczmumr -

2. The natural frequency of a Spring-mass i
. : system is 15 Hz. An extra 3 kg
mass is coupled to its mass and natural reduces Find
the mass and stiffness of the system. e

3. Find the natural frequency of the i
L t system sh b7 A
without spring st the mid span of the thmwb:-‘;. [

Fig.2.1 P,

4. Acpﬁ.ng_nunum has a period 0.25 sec. What wili

if the spring constant is increased by 50% 7
5. Aspring mass system haz a natural fr

n t equency of 12 Hz. Wi

eonstanl is reduced by BOO N/m, the freguency is du:::dm):;m

. ;(zmnne the mass and spnng eonstant of the orighual svstem. '
termine the natural frequency of vibration of the s 'u

figure 2.2 P. Assume the bar AR as weightiess and rigidyl  shown i

7. Atorsion pendulum has to have a natural f; ngth
. 1 requency of 6 Hz. What Ie
ofnﬂcelmnn(d:mr?mchouu be used for this pendulum. The

inertia of the mass fixed at the free end i 2
G =0.83x 10" N/m? iz 0.0088kg-m® . Take

hthmp.md'

7z
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librium and released it performs harmonic oscillati moving

e . T oscillations by i

m ﬁmh about its axis. Determine an expression for the coefficient or'.d:
on in terms of the natura] frequency.

13. Aweightless steel cantilever. 450 mm i

" , 20 mm

mmm;“mzﬂsultiummhed::do:wxg
further urmm. by m.. spring 5 N/mm stiffers, Determine the natural

E=211x10" N/m? P.U, 99)

14, Figure 2.6 P shows a rectangular block of mass resting on the top
ire 2.6 P M
semi-cylindricsl surface, If the block is slightly tipped at onoen 5

frequency of osciflations, ndfind the
Ans, n=-L \12(r-d/2)g
2 P+ 4d?)
—— ]
¥
d
i
P
r
Fig. 26 P,
15, Amundmdofdiumurwminbentinwarighungleuditi-uud

lotupgo:a wd@lwnlokgushwninﬁxnn'&ﬂ?. Caleulate the
quency of the syst. % negloct the weight of the rod,

Fig.27P.
Given E=211x10% kg/em?
G = 0842 ks /ren?
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AA
M
x

AAA
Wy
>

Fig. 2.2 P.

8. Abar 600 mm long rolls on wheels of negligible weight on a circular path
with A radius of 500 mm as shown in figure 2.3 P. Determine the natural
frequency of oscillation for the bar if it moves in the vertical plane when
it is displaced slightly from its equilibrium position.

Fig. 24 P.

Fig. 2.3P.

9. The uniform stiff rod is restrained to move vertically by both linear and

torsional springs as shown in figure 2.4 P. Calculate the frequency of the
vertical oscillation of the rod.

10. Using Rayleigh’s method find the natural frequency of u ilever beam
due to its weight only.

11. To measure the radius of curvature of a surface a sphere of radius 6 em
is placed on it, For small displacements along the curve the sphere

W 50 vibrations in 70 ds. Calculate the radius of curvature,

12. For determining the coefficient of dry friction, the device shown in figure
2.5 P is used. A bar rests on two equal disks rotating with equal speeds
in opposite directions, If the bar is displaced from the position of equi-

OMO,
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16, A steel shaft § cm diameter and 50 cm long fixed at one end carries a
flywheel of weight 1000 kgf and radius of gyration 30 cm et its free end.
Find the freg of free longitudinal . and torsional vibra-
tions.

E=2x10° kgl/em?, € =3.8%10° kgf/em®, (KU.)
17. Ahollow shaft of 15 cm external dismeter, and 10 cm internal di
150 cm long has one of its ends fixed. The other end carries a disc of 600
kaf weight. D ine the frequency of lungitudinal and
vibrations. Assume E = 2 x 10° kgf/em?. (KU.)
18. Alhnﬁmppuudfreelyatlhoondnhuimuoﬂoonpheedgﬁel‘n
from one end. Find the frequency of the natural se vit if
the length of the shaft is 75 cm, £ = 200 GN /m” and shaft diameter is

4cm. (KU
19. Aload W is vertically suspended on two springs of constants Sy and Sz as
shown in figure 2.8 P. D ine the | spring t and the
frequency of the load. KUY

Fig.29P.

Fig. 28 P.

20. An integral pulley shown in the above figure 2.9 P is restrained in its
movement about its own axis by a torsional spring of stiffness K and a
linear spring of stiffness k. A load of mass m is hung from the smaller
pulley by means of an inextensible string. Using D’Alembert’s principle
derive the eguation of motion for small cscillations and determine the
natural frequency. Take J as mass moment of inertia of the pulley about
its axis. (UPSC,92)

21. mpmpollarohship.ofwdgmw’N-ndpohxmmMaﬁncrﬁl
10,000 kg-m?, is connected to the engine through a hollow stepped steel
propeller shaft, as shown in figure 2.10 P. A ing that water provid

a viscous damping ratio of 0,1,d ine the torsi 'nhn t.fpz-y‘_r

of the propeller when the engine ind: ah Pl
ment of 0.05 sin 314t rad at the base (point A) of the propelier shafl.
Madnlis of rioidity for stee] = 8 x 10% N/em?*
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== — Engine vibratory
disturbonce

Propeller  Hotiow steppad
o3y ) propeller shafy

—‘“&r}ﬁ
A $h
OXx 8
o—Ta__ 2
Tm'ﬁ:lmwm m
Kz = 2000 N/m
I=3m L

% m Fig.211p,
» The uniform slender rod AB of .
S T
P Disturisis u‘. " fotl‘\undnﬂhomdwud:minﬁgunz.lz

A ol L g i
osulhmnoﬂhemdinum“fmm 1 ,hl:.‘ﬂ.:iormnnugnln

3

ir;ter:nally or e 't:r'r 1 istance ma
. Or externally. For exam ;
Water is resisted by the water iuel':',!:i:teh: mmotion of the car wheels in

resistance / friction becay
£ > se of read surfs 3 <
°f this resistance vibrations di out over g for. """ 108 90 it Because

In this chapter vari.
= t ous types of damping is di i
::dai:“:'l: of motion for a single degree o?;lrﬁ s i
end some problems are solved, 0 e s dorired
3.2. TYPESOF DAMPING
There are mainly four types damping mechanical systems
of < :
{a) Viscous damping = : :
(&) Coulomb damping
(¢) Structural damping
(d) Non-linear Sl i
»S4p or i i
o w: 'mterrma) damping.
"_Vhe:.i the system l:l allowed to vibrate i

adiac;:m onz,e motion of one layer aver (he
can be exp]
by fluid film orggc:l:;:b’ figure 3.1 where two lates are separated

ViINUAMITU TREG ¥ IBRA TR

|

23. (a) A weight W is at-
tached to the end of a
small cantilever beam of
length { by a cable of
stiffness k shown in fig-
ure 213 P. If W=50N,
EI=1000N-m*  and
k=2000 N/m.  Deter
mine the leagth [ of the
beam that will make the
system’s  undamped Fig. 2.13P.

natural frequency
fa =2 Hz. Consider the mass of both cable and beam as negligible com-

pared with the mass of the weight W.
(5) Calculate the 1 fin in sideway, (in X-direction) for the

frame of figure 2.14 P and also the period of vibration.
8 w=30x K°N ¢ &

:
l

¢

AAAAAA

AA
VWY vvv‘\'

&

!
'
’
/

1000 mm
-

Ellyg= (EXleq

/
ISOIIOXZN-INNz

/
A
"‘Y" Fig. 2.14P.

(c) A bicycle wheel and tire are supported so that they are free to rotate
about their centroidal axis

the hub of the
wheel. A small weight W
is taped to the tire as
shownin figure 2.15P ata
distance R from the axis of
rotation. When this
weight is displaced slight-
ly from the vertical axis
shown, the wheel is ob-
served to oscillate 3 cycles
every 10 seconds. If
R=¢.28m and
W =3.34 N, determine the

and tire.
(Roorkee Uni., 94-95)
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PLATE

zf-,"‘—m—‘_—““ T —a MOVING
V=i
1

{ .
' 4
i -

¢ .

' 0

| 4

gt FIXED PLATE

Fig. 3.1, Viscosity.
to the fixed plate with & velocity x. The net force F required for
maintaining the velocity x of the plate is expressed as

F= [{?i -£3.2:1)

where A = area of the plats
t = thickness of the fluid film
1 — coefficient of absolute viscosity of the Him
The force F can also be written as
F=ex

Se c=uA/t
where ¢ is viscous damping coetiicient. The main components of a
viscous damper are cylinder, piston and viscous fluid,

There is clearance between the eylinder walls and the piston. More
the clearance, more will be the velocity of the piston in the viscous fluid
and ;t will offer less value of viscous damping coefficient, The basic
system is shown in figure 3.2, The damping foree is opp 10 the
direction of velocity.

A3.2.2)

P

( o0H | 55k
[:' 3 _J .‘j h.PlSTN
| VISCOUS
L e “1 FLuio
CLEARANCE
Fig.3.2.

The damping resistance depends on the pressure difference on the
both sides of the piston in the viscous medium. Figure 3.3 shows the
example of free vibrations with viscous damping. The equation of
motion for the system can be written as

mx +cx4 bx=0




SN

2
The differential equations used in the analysis are simple and can
be solved easily. This type of damping is widely used in engineering.
Energy Dissipation in Viscous Damping
For a vibratory body some amount of energy is dissipated because

of damping. This energy dissipation can be per cycle. For a viscously
damped system the force F is expressed as

F=d=c%
where i:%:_

Work done dW:F.dx:[c%:-].dx

'I‘hernuofchngeofworkpucydei.e

2n/u
Energy dissipated A T = ( yl ]
- dx
AE= I ‘{d,)l-d‘ 43.2.4)
o
Let us the simple h i tion of the type
r=Asinw

f
] -

The equation (3.2.4) can be written as
2x/0
AE =I co'a? (%]dz
0

AE = xewA? ..(325)

X MECHANICAL VIBRATICNS

(b} Coulomb Damping
‘When one body is allowed to slide over the other, the surface of one

hody offers some resi e to the t of the other body on it.
This remstmg force is called force of friction. Thus force of friction arises
only b of rel m it bet: the two surfaces. Some

amount of energy is wasted in overcoming this friction as the surfaces
are dry.

So it is sometimes known as dry friction. The general expression
for coulomb damping is

F=pRy (328

where  is the coefficient of friction and Ry is the normal reaction.
Friction force F is proportional to the normal reaction R ¢ on the mating
surface. The system is shown in figure 3.4,

N

mg

Fig. 3.4
The friction force acts in a direction opposite to the direction of
velocity. The damping resistance is almost constant and does not
depend on t.he rubbing veloaty The three possible conditions of
I ping are sh in figure 3.5 with mathematical expres-

SI0NS.
i
kx
[77] -0
(a) Equilibrium position mx+kx=0
x b
= - F
(b) Mass is moving to the right mE+Rx+F=0
A i
= —
(c) Mass is moving to the left mi+hkr-F=0
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From the above equation it is clear that the energy dissipation per
cycle is proportional to the square of the amplitude of motion.

The total energy of a vibrating system can be either maximum of
its potential or kinetic energy. The maximum kinetic energy of the
system can be written as

E=(K~E-)m:=%m‘i\,ul

= % mew’A? .(3.26)
We can find the ratio of AE to E.

This ratio is known as specific damping capacity of the system.

Thus specific damping ratio
b= AE _ xcm’
E mm *A?
2 .
][ ) %r .(32.7)
2m me
which is a constant quantity.

This relation is very useful in the design of vibratory instr t
The damping materials are rated by their damping capacity f.

Eddy Current Damping. This type of damping is based on the
principle of generstion of eddy current which provides the damping. If
a non-ferrous conducting object (such as a plate, red, etc.) is moved in
adirection perpendicular to the lines of magnetic flux which is produced
by a permanent magnet, then as the object moves, current is induced
in the object. The current is proportional to the velocity of the object

ing that the magnetic flux and the dimensions of the body remain
constant. This current is the induced eddy current and sets up a
magnetic field so as to oppose the original magnetic field that has
induced it. This provides a resistance to the motion of the object in the
magnetic field. The resisting or d: force produced by this flux
field from eddy currents is also pmpomonal to the velocity. This is a
mechanical damping of viscous type. Thm type of dampmg is used in
vibrometers and in some vibrati The magnetic field
mnbesetuphyunngnpenmentmngnetwawll wound on a
magnetic core with current passing through it. Refer figure 3.3 (a).

Oirection of motion of object

Object
Permanent
N S magnet
= Direction of mognet - fhux
FREE DAMPED VIBRATION o

Let us consider the leftward movement of the body the equation
for which can be written as

mx +kx=F .{3.2.9)
The solution of the above equation can be written as

F

P .43.2.10)

z=Bem £ f‘Dmn'\[—;—‘e»
m m

where w = Vk/m. )
Let us assume the motion characteristics of the system as
x =X, at?{=0
x=0 ate=0

we get, Bz(xo-l—?) D=0
So equation (3.2.10) can be written as

\/Z r A3211)
x = (%o~ F/k) cos u--

‘This solution holds good for half the cycle. When ¢t = n/w, half the

cycle is lete. So disp t for half the cycle can be obtained
from the abovo equation.
x=(xo-F/k)cosx + F/k
=~(xg=-F/k)y+F/k
2F .(3.2.12)
==|Xg= T

This is the amplitude for left extreme position of the body. It is
clear that the initial displ t xp is reduced by 2F/k. In the next
half cycle when the body moves to the right the initial displacement will
be reduced by 2F/%. So in one complete cycle the amplitude reduces by
4F/k, 'l'he amphtude decay for coulomb damping is shown in figure 3.6.
The g of the sy ins unckanged in coulomb
damping.

(¢) Structural damping

It is the inherent characteristics of the material and the resistance
is offered by the elastic properties from within the body. There is
intermolecular friction in the structure which opp its
The magnitude of this damping is very small as compared to other
dampings. Experiments show that for elastic mate.ials for loading and
unloading conditions a loop is formed on stress-strain curve. This loop
is called hysteresis loop. Refer figure 3.6 (u). The area of this loop is the
amount of energy dissipated in one cycle during vibrations. This type
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X /o

Fig. 3.6. Amplitude decay in coulombd damping

of damping .is.aometimas known as hysteresis damping. It has been
found t.hnt it is not the function of frequency, but is approximately
proporut_mal to the square of amplitude of vibration, It is proportional
to the stiffness of the system, The energy loss per cycle is expressed as

E =nk)A? ..(3.2.13)
where A = amplitude of vibration

A =dimensionless damping factor

Stress (Force!
Lo
/ Unioading
/ Stroin (Displocement )
[0 MECHANICAL VIBRATIONS
which causes dissipation of vibrational energy when the interface of

muchine elements or parts in contact are under fluctuating loads. The
amount of damping depends on surface roughness of contacting parts
contact pressure and the amplitude of vibration. The energy dissipated
por cyele depends upon the coefficient of friction, the pressure at the
contacting parts and amplitudes. There is an optimum value of pres-
sure for which the energy dissipated is maximum. This value is dif-
furent for different amplitudes. Larger the energy dissipation, larger is
the effective damping in the system. Refer figure 3.6 (c).

Lorge omitude
4
£3
a 8
g%’; Smoll omoldude
:
w e

Confoct pressure

Fig. 3.6 (c).
3.3. DIFFERENTIAL EQUATIONS OF DAMPED FREE VIBRATION
A damped spring and mass system is the simple physical model
used for vibration analysis. We know that viscous damping force is
proportional to the velocity across the damper, so for analysis purpose
we are using viscous damping here. Consider a mass m attached from
one end of the spring k, the other of which is fixed. A damper is also
provided as shown in figure 3.7.

A

AN
”%
3

Fig. 3.7. Single degree of [reed yatem with vi ping
The various forces can be written as damping force

v
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In the above expression A is related to the property of the material
and kA is representing the shape, size and property of the material.
Equation (3.2.13) can be written as
E=pA* .(3.2.14)
where B = nkd
Ifthismu-yhmnhdequd to the energy dissipation by viscous
damping =
mlaml
et
no

The damping force can be written as
F=cx 3 ;
_fx _PoA pA ..(3.2.15)
xw e L

The amplitude decay is found to be exponential in nature.

When force (F) is plotted inst dispk t (x), then a close
loop as shown in figure 3.6 () is formed. The area of the loop denotes
the energy dissipated by the damper in one cycle of motion which is
given by eqn. (3.2.13),

CaA / cwf- 2
4

-A .
A b
& M
Fig. 3.6 (b).
(d) Non-Linear, Slip or Interfacial Damping
The hi 1 are d through various types of
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- md® x .
accelerating force — J—{,‘— =mx
and spring force kx
Thus the equation of motion can be written as
-{3.8.1

my +cx +kx=0
This is called the characteristics equation of the system. This is
the differential equation of second orderin x.
Assuming a solution of the form
x=¢" where u is a constant to be determined.

i=ue | (3.3.2
. {332
Then ¥ =u'e" }
Kz o+— ..
§ - ¥
X i
Fig. 3.8. Free body diagram.

Substituting the values of x and X in equation (3.3.1) from the
above equation, we get
mu%e™ + cue + ke* =0

.(3.33)
or ut :T': + :—; =0

Solving the ahove equation for u, we get

_~e/mi 2/m® - dk/m
= 2

u=-c¢/2Zm#% ‘{(;'/Zm)2 -k/m «{3.3.4)
The two roots can be writter: as
— Nt/ omy — /—
Wl C/@-’,—L"J‘ | 2 4335
and Ug=—c/2m—"N(e/2m)" - k/m |
Now the solution of equation (3.3.1) can be written a5
..{3.3.6)

x=Ae" + A"
where A, and A, are two arbitrary constants and u, and u, its two roots.

This equation can be written as

iy
boerm o N 2mp - Mmit . A e/ Vie/2m) <himie .43.3.7)
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Critical D ing C t and Damping Ratio
The critical damping ¢, is defined as the value of damping coeffi-

cient ¢ for which the mathematical term (¢/2m)? - i in equation (3.3.7)
is equal to zeroi.e.

cY &
] -0
or ‘S‘ = L
2m m
or e =2m k/m =2muo .43.38)

The ratic of ¢ to ¢, is termed as d ping ratio. It is indicated by
the symbol ¢. Mathematicaliy, it can be written as

e=< .(3.3.9)

ct

Let us consider the term i of equation (3.3,7)

£ _fe)s _ .(3.3.10)
2m " (c_|2m ~ @

" So cquation (3.3.7) can be written with the help of equation
'3.3.10) a§

: P
r=Agel€ gl-,,,+“,_t-v€z_,,_ (3311

The nature of the system depends upon the value of damping.
Jepending upon the value of d ping ratio ¢, the damped syst, are
ut into three categories which are as follows ;

A) Over-damped system

When the value of damping ratio ¢ in equation (3.3.11) is more
ban one ie £>1, the system is known as over-damped one. This
notion is called aperiodic. When ¢ = 0 the displacement is the sum of
yandAj e

X=A;+ 4
The values of A, and A, are negative. The value of displacement x
ves on decreasing with time, The characteristics of this type of motion
re shown in figure 3.9. The system is non-vibratory in nature. The .
ystem comes to equilibrium in an exponential manner. Once the
7stem is disturbed, it will take infinite time to come back to equilib-
The values of constants A, and Aj; can be determined from initial
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€« 0

cer

/s

\e:l
\
\Cn'hul
\dompinq
\
\
AN
~
ozt ‘\\‘
i 1 A A 7
1 2 3 4 5
ot
Fig. 3.9 (a). Disp), time plots for over-dampi 9
and critical damping (c 2 1).
Applying initial conditions to equation (3.3,12), we get
20= Ay
H —{"—"-} =A (-0 +A (3.3.14)
0= =A(- * Ay RIRLES NG N
dt el

Xy =—-wA, +A,
Xg == tavy + Ay
Ag =% + o
Sa the solution of equation (3.3.13) can be written as
x =xge™ "+ (pF @ xp) te
= Lo+ (x + wxg)t] &% .{(3.3.15)

We observe in equation (3.3.15) that the value of x decreases as ¢
increases and finally becomes zero as ¢ tends to infinity. This is also an
aperiodic motion.
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xo and %, respectively, then we can have two equations and two un-
knowns.

A

A'ef-e +‘/€7—|] wt
x, :

we —-
A2
Flg. 3.9. Di time curve for ped sy
Putting the conditions to equation (3.3.11), we get
xo=A+A;
and i,:[%] =Ae+VE- 1o+ A -e- Ve - 1o
=0

-43.3.12)

So from equation (3.3.12) the values of A, and A, can be deter-
mined. The displacement time plots for overdamping and critical damp-
ing showing the variation of displacement (x) with the angle turned
(e . #) for different values of & = 1 can be seen from figure 3.9 (a).

(B) Critically Damped System
The system is gaid to be critically damped when g = 1 Le.

N
2mn ' m
The two roots of equation (3.3.6) u, and u, are equal to each other,
Uy=lUy=-E@=~Q
So the approximate solution of equation (3.3.3) may be written as
r=Aw T Age T = (A + A 06 ®  ..(3313)

In the above equation A; and A, are arbitrary constants whose
\! ran ha dot inad fram initial sanditions ag in ease of aver.

FREE DAMPED VIBRATION '
this property (critical damping) the electrical in-

trum cSap Of isplaced body is brought to equi-
:b en‘m ll’.e‘dﬂlgﬂed ‘?‘l“‘ﬂr:i::: ;‘1\'39 lace t-time curve is shown
ibrium in P P
l:x figure 3.10. Refer figure 3.9 (a) also.
X
o

Fig. 3.10. Displacement-time curve for critically damped system.

(C) Under-damped System . ‘
In this case the value of damping ratio €18 less than unity. The

roots of equation (3.3.5) can be ﬂit}en as
ulsl-cq\/l-s’lm
ug=[- c-j‘vflm——zl W

wherej = V-1 is the imagi v unit of comp

roots of the above squation are imaginary.
Equation for disp! t can be written as

.
l-(.;ql-zl-ﬂ*_Agel'l'l t-cle

.(3.3.16)
lex roots. It is clear that the

x=Ag O 3
— M)fl‘[;""‘*Az‘_ Vi-c "')

We know that &@* = cos x +j sin x.
—e (A, cos V1- € wt + Ay jsin V1-€ ot
+Agcon VI ot - Agjsin V1-¢ ot

=¢ “[(Ay + Ay) cos -2 w

+(A, - Ag) j sin ‘1'; o]
e (Cycos VI- ¢ @t +CysinVI-€ @]
where Cy=A+A;
and CQ=(AX—AI)j

x=C,¢""’sin(‘fl e at+e)
= Coe “ooa(V1- & wf +6) 43317
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Cy, ¢, and ¢, are arbitrary constan i

( b an ts which
deten:xilan;d ﬁ'.om the initial conditions, The amplitude dma:ns el:xe
ponentially with time as can be seen from equation (3.3.17),

'l‘heterm\/l-e’u:ud -(3.3.18)
is called the frequency of damped vibrati da.m'
?atural frequency q, with the damping eoetﬂcie:xr. & caa:'):e:‘;en ﬁz‘:
tgure 3.10 (a). The displacement-time plot for an undor damped system

10

0.8

G &}

NE

Oa

02

Q

|b.3.|0‘.)- Vi of P Q ,hummmw
ihcming the variation of di ent (x) with
: ; ith the afigie( turned (w. t)
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3.4. LOGARITHMIC DECREMENT

It is deﬁngd as the natural logarithm of the ratio of any two
successive amplitudes on the same side of the mean line, Let us refer
figure 3.11 for two successive umplitudes x; and x;.

As per the definition, logarithmic decrement 3 is given as
x
d=ln>=
In % (341
We rewrite equation (3.3.17) for amplitude as
x=Cie ™ eos (V1-¢ ok + ¢y)

Fet ¢y and t; denote the times corresponding to two successive
amplitudes. We can find the ratio of amplitudes x, and x, as

% Coe™ " cos (V1 - o2t 8
*2 Cye ™ “reos (VI - any - 9y)

cetmin-1 @5 O - by 4 43)

-(3.4.2)
o8 (V1 -2° ity + ¢y)
Let us assume 2= ¢, +4
2x. 3
where ;= é is the period of damped vibration. The term
€08 (Wgt) +9,) las V-t =

€08 (Wg (2 + t4) + ¢;) o

..(3.4.3)

5 €08 (@) + &) oSO8 (@t + ¢;)
m{‘”‘l“';ﬁlfhl €08 j{wyfy + 27%) + ]
Again considering equation (3.4.2) and using equation (3.4.3) in it,

we have

fud . R ) cude
= Vhotd o e,
‘_8- =€ u,

x (1)
_lsevl—.?;-ﬂhuvl-t

Xz

when the value of ¢ is very small, above equation can be written as
5=2ne .(3.4.5)

.(344)

———— -

It is clear that o, is always less than undamped natural frequency
. We obtain oscillatory motion in this case. Theoretically the system
will never come to rest although the amplitude of vibration may be
very-very small. The displacement-time curve for underdamped system
is shown in figure 3.11. Time period of the motion is given as

2n orF H.g‘
m;ﬁl_é g

x

}—‘Tms PERIOD —w|

OVERDAMPED
o !:_ CRITICALLY DAMPED
7/' T~ L 4—UNDERDAMPED

DISPLACEMENT

~
‘5
-

o

| - 2K ]
’__ oy —] TIME —»
Fig. 311,

All the three types of damping responses (x - t) are presented in
this figure.
Use of Critical Damping
From figure 3.11, it can be seen that for a periodic motion, a
critically damped system has the least amount of damping out of the
three systems i.e. overdamped, underdamped and critically damped
This means that the vibrating body which has been displaced from its
mean position would come to the state of rest in the smallest possible
time without executing oscillations about the mean position i.e. the
body will come to mean position without overshooting. (Overshooting
means that the oscillating body after oscillating on one side of the mean
. position, does not cross to the other side of the mean position).
This feature of critical damping is used for practical applicati
in large guns so that after firing, the guns return to their original
position in the minimum time without vibrating and are thus ready for
next firing without delay. If the damping provided is an overdamped
one, then considerable delay will be caused.

FREE DAMPED VIBRATION "3

Figure 3.12 shows the variation trend of the logarithmic decre-
ment & with € as expressed by equations (3.4.4) and (3.4.5).

o\
[7 "’
&

-
\
\
2

Fig.3.12.

If the system executes n cycles, the logarithmic decrement § can
be written as
o .(3.46)

Tyt
where x, = amplitude at the starting position
X, .1 =amplitude after n cycles
It can be proved mathematically as

1
6-—;"’&

— i = N
X3 X3 X4 Xy
x1 (%2 (%3 X, n
e | el | el W B B )
ElEIEHE e
Ilﬁalni
*2e1
(347
So 6—-1|n-x'--‘
A X3y

3.4.1 Vibrational Energy and Logarithmic Decrement
Let the amplitude at any given instant be x, and that after one

cycle be x;.
. Logarithmic decrement § = In -:—;

X _ 8
or g
X9
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or _X_! =¢"
x

Expanding e”?, we get

b5 88
e 1-54+ =31t

21!
Let E, be the vibrational energy at amplitude x,
1
5:‘53’:
Similarly, let E; be the vibrational energy at amplitude x,, 80
_1
Ey=z kg
E\-E E, 3
Now I 12
S R
=1-e% (substituting the value of?)
1
25)°  (28)
w1-[1om. @ @, ]
—o5. 287 (28
e T T
Forsmallﬁ,hig‘hermmuf&mayhemglmd,w
e
1
_AE
r G—E

rthere AE =E, - E, = energy dissipated in one cycle

OLVED EXAMPLES

) Examrrg 3.1, A damping force h ing magnitude 2 cos (2nz - n/4) N,
tves & cos 2xt m displacement. Caleulate

(a) the energy dissipated during first 5 seconds, and

(b) the energy dissipated during the first 3/4 sec.

w. The displacement leads the force by 7/4 = 46° angle.
hemwxllbcmrgydiuipatiomWoknowthatfommddisplammam
re given as F = F;, cos (¢ - ¢), x=A cos et

Time period of force F and displacement x is

2 _2x
T!mcu-lm
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dx 2
[a]‘_o_x_-m,m,-o
=-3w+A,
A‘; =3w
Therefore, the displacement x is given as
x=(3+3mt)e ™
or =31 +whe™™
(b) When € = 0.3, the system is underdamped.
The digplacement is given as
x =A™ sin (V1 - €2 ot + ¢)
=Aye ™™ sin (VI- .09 wt +¢)
=A™ sin (0.953 ¢ + ¢)
To find A, and ¢, we put the boundary conditions as
xl;.03=A, 8inQ
X;c0=0=~_3sin¢+.953 cos ¢
tan =253 = 3.7
¢=72"31
- A, =3/8in ¢=38.145
The equation of motion can be written as
x=3.145 ¢ **** 5in (.953 wt + 72° 31)
(¢) The system is overdamped for € = 2.0

The equation for displ. t is given as
‘ll \Il
szlel-u e 1w +A‘¢"‘ C-1le

=A‘J"'G"¢A3c"'5"
Applying the initial conditions to the above equation to find
1and Ay
2= =3=A 1+ Ay
ilt-o"o’(‘z*ﬁ)Ml*(‘z'ﬁMl
— 26794, -3.732 A, =0
A;+1393A,=0
Solving it, we get
A;=-0.232
A, =3232

FREE DAMPED VIBRATION s
{a) In 5 seconds there will be 5 complete cycles.
Energy dissipated =n ( x FoA sin 5
=5(rx2x5xsin45° ) N -m

=1110IN-m

(b) During 3/4 sec only a part of cycle is complete. To find the
energy during this period, we have expression as

t
N—— dx
Energy dissipation = del
(1}
3/4

f x)d
=J [2@[2“-;]&-{5@2‘!?‘
0
374
=j [2eos[2n-§](-5xm sin m]dt
0

374
.;J [(-20:)003(2!1- %]liﬂ Zﬂ]dl
0
374
=J- [(—Nu)[ms?ﬂ.m%+sin2ﬂﬁn§)
o

(sin2n t)] dt
374
_I = 1 2 it
= (—44.406) (2 sin 4nf + 5 5in m]dr
0
=~4062 N.m

ExampLe 3.2. Find the equation of mation for the system shown in
figure 3.7 when (a) €= 1.0, (b) €= 0.3 and (c) £ = 2.0, if the mass m is
displaced by a distance of 3 cm and released.

SoruTion. (a) When ¢ = 1.0 the system is critically damped.
x={A +Ad)e !
The displacement is 3 cm at ¢ =0, so putting this initial condition,
we get

2-A.
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Exampre 8.3. A gun barrel having mass 560 kg is designed with
the following data !
Initial recoil velcity 36 m/sec ; Recoil distance on firing 1.5 m
Calculate
i) spring constant. (5) damping coefficient, and

(¢} time required for the barrel to return to a position 0.12 m
from its inttial position, (P.U,, 99)
SoLuTIoN. (a) The kinetic energy of the barrel must be equal ta the
strain energy of the spring, so
1 .2 1,2
gmE =3 kx

%x 560 x 36 x 36 -;k(LS)z

£=322.56 10" N/m
(b) The critical damping is given by
C, = 2Vkm =2 V322560 x 580 = 26880 Ns/m
(¢) Natural frequency o can be détermined as

NN
w= = e 560 = 24 rad/sec

2z _2=x
@ 24

The time taken by the gun barrel is
only 1— of the total cycle time because

Time period = 0.26166 sec

recoil takes place only during the quarter
of cycle.

Time for recoil =} - Time period = ! x0.26166 =0.0654 sec

where T'= ¢ycle time

For critical damping the displ t is given as
x=iA;, +Ast) e ™
Initial conditions are given as

:el.Sm} ati=0

=0
So 16=4,
x=—0A; +As
=-1l5wm+A4A;
~=18m=18x24=36
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Here x=.12m
12 =(15+ 360 *¥
=151+ 24 e ™
08 = (1 4 240e 2
Solving this equation for ‘¢ by hit and trial method :-

t (142410) e = (24t
= ; -
0.10 34 0.0907 0.308
0.15 46 0.02732 0.125
0.20 5.8 0.00823 0.047
0.18 5.32 0.0133 0.0707
017 5.08 0.0169 0.085
. t can be approximately taken as 0.17 seconds.
00635 047
.50
\\ rihcally domped
1 s Ex|
\
Undamped
» part \‘
€= 0 \
‘\
0.12 y
[}

Fig. 3.12 ().
Solving it for ¢, we have
t=0.17 sec
Total time = 0.17 + 0.0654 = 0.2354 sec

ExamrrLe 3.4. A dan.per offers resist: 0.05N at
N4 ol cor The Aamner is used with k = 9 N/m. Determine the damping

I i P
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{¢) 8= 1 in .-‘-l-
Ny
1, % 1 ( x ] 1
=1 ="Ea0 ¥
n=gln % 542 In l"‘/sr 542 Ins
n =296 cycles

EXAMPLE 8.6. A vibratory system in a vehicle 13 to be designed with
e following parameters :
k=100N/m, C =2 N~sec/m,m«1kg
Calculate the decrease of amplitude from its starting value after
complete oscillations and (b) the frequency of oscillation.

Sotumion. (@) o= \J,i- s \/“—1’0 = 10 rad/sec

C. =2 Vkm = 24100 x 1 = 20 N-sec/m
st g
C, 20
2ne 2nx 0.10
8=yl = =0.63
H-& Ni1-01°

= 0.10

N
We know that, 6:-1- . I
no X,
n=3

Xy

63x3=In
X,

n4 |

I e ®ag62
Xpst

6) ay =W Vi-¢
=10V1 - .17 = 9.95 rad/sec

EXAMPLE 3.7. A thin plate of area A and weight W is attached to the
nd of a spring and allowed to oscillate tn a viscous fluid as shown in
igure 3.13. If f, is the frequency of oscillation of the system in air and
iy in the liquid, show that

= “2‘;% \ e

vhere the damping force on the plate is Fy = 02Au, v being the velocity.

SOLUTION. Fy=02Av

We know that damping force is generally given by the relation

Fy=cx
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Sorvrion. Damping fores F=Cx
x=04m/sec, F=05N

The system is under-damped, The frequency of damped vibration

'\’ 9
w=V1-¢ o= ““""’”’"‘o.m

=7.14 rad/sec

ExAmpLE 3.5. A vibrating system is defined by the following

parameters .
m=38kg, k=100N/m, C=3 N - sec/m

Determine (a) the damping factor, (b) the natural frequency of
damped vibration, (c) logarithmic decrement, (d) the ratio of two con-
secutive amplitudes and (e) the number of cycles after which the original
amplitude is reduced to 20 peircent.

Sorurion. Critical damping is determined as
C.=2Ykm =2 V100 x 3 = 34.64 N-sec/m

C 3
(@) £E= C. =3164" 0.086

®) q,=m41-e’=\j£¢u-.oes')
z\j¥u-.oss’) =5.75 rad/sec

() 5= 278 2x x 086
vi- ? 1~
(d) The ratio b two tive amplitudes say x;/x;

=0.542

5=In=
Xg

x
or e‘:—‘
X2

o172
X2
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Fig. 313,
So comparison gives ¢ = 2Aa
fi= —2‘!“- where @=vk/m

e=ff - {gpc‘i:%:%]
2aAY_ (-1
'm | f2
T \ (L - £5)
a*.[_."Al 2
1
_lajk ma—m mo.faa
A N Y -R=3 g VA0
Wy
=8A fi fi —f2

BENE-R
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ExampLE 3.8. Derive ti i ” 3y :
figure 3.14, 9 of for the sy in

P—1

"

fe— b —
Fig. 3.14.

If m =15 kg, k=4900 Ns/m a=6cmandb="1 ;
o & - =14 em, determine
the value of C for which the system is critically damped. (P.U, 91)

SoLurron. Let us consider the dow: ;
of the weight W. oward angular displacement §

The displacement of spring = ab
So the spring force = kaf

damping force =Cx = Ca
The equation of motion can be written as
I8 + a(ka®) + a(Cab) = 0

gb’G+Ca’0+ka’9=0
Ca )
o 6»#0+%§0=0
The solution of the above equation

2Wb* 2Wh* | Wa?
The system is critically damped when the radical is zero

Ca'g a\/q
2w b YW
C,.:gh V.‘y_k =%vm

a &

2 —
X214 [3500% 15 = 400 N-sec/m

uug-&h\][&’z]‘_m
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J=.05 kg-m*
Gl T oI
Lt [*' =1 ]
_45x100xw/82x (1) x d‘]

k, = 8.83125 x 10° Nm/rad
So C=ex2V8.83125% 10° x .05

=0.109 x 2 x 2.1013 x 10* = 45.809 Nm/rad
This is damping torque per uait velocity.

{c) Periodic time of oscillation = %
;. 2r
-
m‘ll-t \!LJE (l—(.lw)}]

2r

= =1.503 x 107 sec
; 18.83125 % 10° (.9881)
05

(d) When the disc is removed from viscous fluid, the natural
frequency is given

=8

T2

1,k, _ﬂ,s.samsx 10°
But w= = 05
=4202.67 rad/sec
_ 420267 _
= 669.2 Hz

Se f

ExampLg 3.10. Determine suitable expression for equation of mo-
tion of the damped vibratory system shown in figure 3.16. Find the
critical damping coeffictent when a=010m, b=013m,
k=4900 N/mand M = 1.5 kg. (P.U. 78)
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ExamPLE 3.9. The torsional pendulum with a disc of moment of
inertia J = 0.05 kg-m® immersed in a viscous fluid is shown in figure
3.15. During vibrations of pendulum, the observed amplitudes on the
same side of the neutral axis for successive cycles are found to decay 50%
of the initial value. Determine

(a) logarithmic decrement

(b) damping torque per unit velocity

(c) the periodic time of vibration

(d) the frequency when the disc is removed from the fluid.

Lhdbbbdbfiddd.

SHAFT k>

Fig. 3.15. Torsional Pendulum.
Assume G =4.5 x 10" N/m” for the material of shaft
d=0.10m,1=050 m,M.L of disc=0.05 kg-m*.  (P.U.,98)

Sorution. (a) Say initial displ tis 8, it ing 50% so
§ = log, (6/8/2) =log, 2
8=0.693
2nre
(] &=
&) hl =
So (1-¢) 8% =4ax’e?
) 8% = (4n* + 5%
8 0.693
= = =0.109
AR+ & Vi + (693)
‘We know thate= C/C,
or C=¢C.
But C.=2kJ (in torsion)
C=v WET
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SoLuTioN. Let us assume that the mass M is displaced by an angle
8, then
Spring force =k(b0)
Damping force =Cla®)
Equation of motion can be written as
18 + kb(b8) + Cata®) =0
Ma*® +Ca®0 + kb0 =0 [ I=Md%
or 8+ CML:‘} + %—3 =0
co kb

°+ﬁ E:.-O'—’O

The roots of the equation are

-c_ (e k¥
"l.2=§M> M M q?

The critical damping coefficient is given as

P 2 s
2M | Mg

or C.= % kM

=2x '}—g Ji900 X 15 = 222,90 N-sec/m

ExampLE 3.11. A mass of 10 kg is kept on two slabs of isolators
placed one vver the other. One of the isolators is of rubber having a
stiffness of 3 kNI!m and damping coefficient of 100 N-see/m while the
other isolator is of felt with stiffness of 12 kN /m and dqrnpingmﬂic{ent
of 300 N.sec/m. If the system is set in motion in vertical direction,
determine the damped and undamped natural frequencies of the system.

(M.D.U,, 84)
Soturron. ‘The isolators are connected in series. We can find
k.and C, as equivalence for both.
), S
k. 3000 12000
k.= 2400 N/m

Lok X LA

1
C.~C, "¢, 100 T300 " 300
. =75 N-sec/m
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-‘\’_‘_ -\’2400
O =N e T-ls.ﬁnd/nec

fa=0,/2x=247Hz

i C. = 75 o
Hhom - 2x V240010 - 024
Damped patural frequency
a=V1-¢€ @,=V1-(247 (1549
=15.03 rad/sec
hm;:;::? 312 :f:;r;omalzz-uu mass system with coulomb
$ @ mass of 5. attached to a spring of sti| 980 ¥
{ the coefficient of friction is 0.025, caleulate ol it

(@) the frequency of free oscillations,
(B) the ber of cycles corresponding to 50% reduction in
amplitude if the initial amplitude is 5.0 cm, and
(c) the time taken to achieve this 50% reducti
(M.D.U.,94; P.U, 94)
Sorutron. For a horizontal system the foree is given as
F=pmg=.025%x5%x981=1226N

(@) The natural frequency
\' k ‘\, 980
b i e 5 14 rad/sec
14

= % o 223 Hz
(b) Amplitude after 50% reduction is half of the initial amplitude
., 0.025 m
Reduction in amplitude per cycle
4F _4x1.22
k980
=5x10"m
Cycles pleted in 50% reducti

.025
=005 = 5 cycles.

fe) Time taken to achieve 50% reduction
2z
= No. of cycles . 2 2
— ["-2)

=5x—l—2%=2.42m
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Damping ratio e= L. . 3.16 x 107
C. 632

Logarithmic decrement 8 can be written as
2re 27 x 3.16 x 107

&= =
Vi-2 Vi-(@316x 1072
§=0.0198
We know that, &= 1 n 2
R %y

*i
Ta-1

6.n=In

where n no. of cycles = 5

0198 x5 =1n X2~ 0.0990
Xg

31104,
X
ExAMPLE 3.15. A door 200 cm high, 75 cm wide and 4 cm thick and
weighing 35 kg is fitted with an automobile door closer. The door opens
against a spring with a modulus of 1 kg-cm/ radian. Ifthe door is opened
90° and released, how long will it take the door to be within 1° of
closing ? Assume the return spring of the door to be critically damped.
(P.U.,, 93)
SoruTion. For a critically damped sy , the equation of moti
can be written as

x=(A; +Agt)e™

. t=0
given that at [z:x/2,so S50

bl
o
"~
3
-

le—75cm o)

— 200 ¢m——

[
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ExampLE 3.13. For the system shown in figure 3.17, the chamtl:-
teristic of the dashpot is such that when a constant force of 49 N is
applied to the piston its velocity is found to be constant at 0.12 m/ sec.
(a) Determine the value of C
b) Wouldyoucp-dthemmplchlydcmmbemri«ﬂcorapaiaik ?
(P.U., 89}

245N/m

ISkg

Fig.3.17
SoruvTrion. (a) The viscous force is given by
F=Cx

C=;=.-l—2-=408'33 N-sec/m

D= \Jﬁ - \12145—5 = 4,04 rad/sec

The equation of motion can be written as
mi+Cx+kx=0
C 408.33
==—2m—E=2x15xLO4
Since ¢ is more than unity, so the system is overdamped. The
motion will be aperiodic in nature,

Examprs 3.14. A body of 5 kg is supported on a spring of stiffness
200 N/m and has dashpet connected to it which produces a resistance
of 0.002 N at a velocity of 1 cm/sec. In what ratio will the amplitude of
vibration be reduced after 5 cycles. (P.U,,92; M.D.U,, 91)

‘\’ '\’200
SOoLUTION. @y = -'i- = 5 =6.32 rad/sec

C=F/x=.002/.01=02N-gec/m
Critical damping C.= 2ma)y, =2 x 5 x 6,32
=63.2 N-sec/m

=336
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weget  w2=A, =4

Sk 1

these

in the above equation, we get

z-[—%«%t e = /21 + k)™

Applying the second boundary condition, we get
T&:%u +ane ™ (17 = n/180)

€ = 90(1 + we)
Solving the above equation, we find
wt =6.516
Here moment of inertia of the door about the xx-axis can be
written as
I, = ém(a2 1 6% + mar2)* =%ma’ + %mbz + !';é
3 3.1 .4
=gma+ -imb
Givena =75cm, b =4 cm, m = 35 kg.
Substituting the values, we find
I, = 147936 kg-cm?
The frequency of vibration is given by
AR
0, = T
k, = 1 kg-cm/rad = 981 kg em?/rad sec’
I.. = 147936kg-cm’
981
=N 147936 - 0.08 rad/sec
We know thatw, . t = 6.516
6516
So t= 008 - 81.45 sec
Exampig 3.16. The damped vibration record of a sprirg-mass-
dashpot system shows the following data :
Amplitude on second cyele =1.2cm
Amplitude on third cycle = 1.05¢cm

units

Spring constant, k=8kg/em
Weight on the spring, W=2kg
Determine the damping 3 ing the vi d

(P.U.. 85)
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Sorurion. Frequency o, = \Ji = V;gs—l = 62.64 rad/sec

6=Inﬂ where x;=12cm
E x3=1.05 cm

1.2
8=In mso.l%ﬁ

2xe 3 A
&= ﬁ? (logarithmic decrement relation)
01335 &
pEa o L0

ea(l-e945x10™
#(1+45%x10%-45x10%=0
£%1.00045) = 4.5 x 10™*

£=0.0212
o 8
&
Se,’ C=c.C.=¢(2mw,,
=.0212x[2x 31‘6?1'“]: 0.541 kg-sec/m

mru&llAbodyofmmll=lkg,li¢xonadlyhaﬁmntal

dane and is conrnected by spring to a rigid support. The body is
lisplaced from the unstressed position by an amount equal to 0.255 m
vith the tension in the spring at this displacement equal to 5 Kg, and
hen released with zero velocity. How long will the body vibrate and at
vhat distar.ce from the unstressed position will it stop if the coefficient

ffriction i 0.25 7 (P.U., 91)
SoLtitoN. m=1kg
u=025
Spring force  =5x9.81=49.05N
kx=49.05N
k =‘—’:;i'§- =§7%5'§= 192.35 N/m
for horizontal system

Fopumg=25x1x980=245N

Natural frequency ®, = Vk/m = V l—9—2'1—-:‘35
, = 13.86 rad/sec
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SOLUTION. m =1 tonne = 1000 kg
legarithmic decrement for n cycles is given by

Here n =4 cycles
e R}
8 = hg'z&,,

1 5
i log, 010" 0.978
We have equation

6:%
1-¢

2xe
0.978=r?
p =
ﬁ:o.l“
) A
£=0,023
So £=0.15

Dnmpodﬁ'oqmnqqy-%‘,-
w=a%-8.8nd/m

%::-\Iz-c’

o 98
B =l VI-.15x.15
@, =9.9 rad/sec

eV

m
L]
m
Se h:muf
= 1000 x (9.9) = 98010 N/m

(&’:

Critical damping
C.=2m.w,=2x1000x9.9
= 19800 N-m/rad

£= o

C.

FREE DAMPED VIBRATION (K3}

Total displacement of body = 0.255 m

Red in 1itud el

1
ycie

WP 4x2452
& angg S ookm
255
No. of cycles performed = o™ 5

Time taken = No. of cycles x ;2;-

2z
=5x 13.86 = 2.27 sec

EXAMPLE 3.18. A vertical spring mass system has a mass of 0.5 kg

and on initial deflection of 0.2 cm. Find the spring stiffness and the
natural frequency of the system. (P.U.,, 85!

Sotvrion. m=05%kg
Initial deflection=0.2 em
Spring force =mg=.5x98

-49N
Spring constant =F/x
=49 2450 N/m
2x10
_-\’i _‘\’Z&_’rf? -
o=y o= 0.5 =70 rad/sec
T0
fe on= 11.14 Hz

EXAMPLE 3.19. Free vibration records of 1 tonne machine mounted

on an isolator is shown in figure 3.19. Identify the type of isolator and
its characteristics t.e. the spring. (P.U, %4

smm
H
2:95
H /\ 275
! P
| 5 00
g /\Uf\v‘:‘*’
1 Hees.
- 020
AV
‘ L—(J,(ulw;. 1
318

|

Eim 240
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So C=¢C, =0.15x 19800 = 2970 N - m/rad
ExampLe 3.20. Demped vibration of spring-mass-dashpot system

gives the following information :

Amplitude of second cycle =1.2cm
Amplitude of third cycle =105cm

Spring constant =8kg/em
Weight of spring W=2kg
Determine the damping constant, assume it to be viscous,

(P.U,, 88)
Sorurron. We can find logarithmic decrement by the relation

x 12
Bmin 2=y =0133

2ne

Al Sw .

~ Vi-é
@ ans
1-¢) 4 4

which gives, =002
c:gC,:0.0‘ZXZ\me

s 8x2 kg.om

=0.02x2 981 0.016 e

ExampLs 3.21. The single pendulum is pivoted at point O as shown
in figure 3.20.
K . SPRING
M_. -AS,Q—FGRCE(
-ﬁ, ‘elg =K@
o ¢ (el

K3 —‘; of

2 !

‘ K2 _GI__E —/1 pavenG
/e,  FORCE
£ ¢ 4p;  =chd
=50
I -
X SO ;
-~
Fig.3.20.

If the mass of the rod is negligible for small cscillation, find the

ped natural freg -y of the penduium. (P.U., ME. Civil, 94)
Sorution. The equation of motion can be written as
mi% = - kil 0 - CLIO - mal®
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mi*B + CUEB + (k1 + mgl)e =0
CI}Q (hyli? + mel)
T
The general equation for such a system is
B4260,0+026=0
let us e this tion with

¥ 4 &

b+ =0

| form, we have

D % A1)

(k' + mgt) A2)
mit
ci?
O x 2

nd wl=

So ...{3) from equation (1)

" 2 _[cnd i A4
-~ 2aml’J
From equation (4) and (2), we get

cl? kuli? + mgl
2eml®) | ml

I T IS L. S .A5)
W= amléth 1} + mgl)

We know that damped frequency , is given by the expression
af=(1-cho!

Using equation (5) in the above expression, we get

PO PO il + mgl
W Pk ema ) mi?

(Putting w, from equation (2))

w’(lc;l, + mgi) - C*1f \( Ryl f + mgl
Ami® (kyl{ + mgl mi®

ki + " Ci
So = \j_.u__i'ﬁ _[(Cha
e ml? [z"us
ExampLs 3.22. A gun barrel of mass 600 kg. has a recoil spring of
tiffness 294000 N/meter. If the barrel recoils 1.3 m on firing, deter-
nine,
() the initinl rosnil velarite af the hnrrel
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Solving the above equation for ¢ when x = 0.05 m by hit and trial
method :

t 1.3+287¢ B 5
0.10 417 0.11 0.460
0.20 7.05 0.012 0.085
0.21 733 0.0096 0.071
0.22 7.63 0.0077 0.049

<t can be approximately taken as 0.22 seconds.
Total time = 0.22 + 0.071 = 0.29 sec

0.071 4. 0.22
1.3 =
N
N
1 \ Criticat
- \ E=)
£ \
= Undamped \
€=0 \
\
1
‘l
o] Og n
Y F
t(sec)—= /
\\ s
\~‘§--o—‘
Fig. 3.20 (a).

Exampre 3.23. A mass of 1 kg is attached to a spring having a
stiffness of 3920 N/m. The mass slides on a horizontal surface, the
coefficient of friction between mass and surface being 0.1. Determine the
frequency of vibrations of the system and the amplitude after one cycle
if the initial amplitude is 0.25 em. (P.U., 90)

Soruvrion. m=1kg, p=0.1

k = 3920 N/m

o VE A e

o, 626
f.— on 9.97 Hz
Force sum¢=.lx1x9.8=.98N

|

B T |
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(b) the critical damping coefficient of the dashpot which is
engaged at the end of the recoil stroke.

(c) the time required for the barrel to return to a pesition 5 ¢m

from the initial position. (P.U., 88)

SoLution. The kinefic energy of the barrel must be equal to the
potential energy of the spring. so

1 -._l 2
Em{-zkx

\]Lx;‘ gyfws_l_g
g = 600

x=28.77T m/sec
th) The critical damping is given by
C.= 2Vkm
= 24294000 x 600
= 26563 N-sec/m
(¢) The natural frequency w, is given as

W, = \J-k— = d% =221 rad ‘sec

2r_ 2x

Timeperiod = ZF = 5% = 0.283 sec

221

Time for recoil = -:' - Time period = % x 0.383 = 0.071 sec

For critical damping the displ is given as
x= (A + A

The initial conditions are given as
S 1'3} at t=0

x=0
13=4,
0=A;- A,
Ay =287
So the equation of motion can be written as
x=(13+28.70 2

We have to find the value of f when we are given x=0.05m
Qaluine it + =099 cor
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Reduction in amphitude/cycle

Finally the amplitude
=.0025 - .001 = .0015m

ExaMPLE 3.24. Determine the power required to vibrate a spring
mass system with an amplitude of 15 cm and at a frequency of 100 Hz.
The system has a damping factor 0.05 and a damped netural frequency
of 22 Hz as found out from the vibration record. The mass of the system
is 0.5 kg. (P.U, 94)

. Sorution. Energy dissipated/cycle
= rCoX*(N-m)
® = 2x x 100 rad/sec = 200x rad/sec
X = 0.15 m (Amplitude)
£=.06
when ¢ is very small, we can take
C=Cs
C = 2ma.c
=2x.5x44nx .05
= 6.90 N-sec/m
Energy dissipated per cycle
=nx6.90 x 200x x .15 x.15
=308.5 N-m

ExampLe 3.25. A torsional pendulum when immersed in oil indi-
cates its natuml fnquency as 200 Hz. But when it was put to vibration
in having no damping, its natural frequency was observed as
250 Hz. Find the value of damping factor of the oil.

Sorvrion. The expression for torsional vibrations in vacuum
{€=0)1s

o, =2rx22
= 44n rad/sec

B+hb=0
k
6+IO-0

0, = -’;- rad/sec

f,,:%=
. =2 r x 250 = 500 x rad/sec
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For vibration when immersed in oil
f3=200 Hz
So 04 =200 x 21 = 4007 rad/sec
W=V1- m,
400 % =V1-¢’ 500 %
8= \‘1 - ?
w 64=1-¢
ef=1-.64=.36
e=06
ExAupLE 3.26. The disc of a torsional pendulum has a moment of
inertia of 600 kg-cm* and is immersed in a viscous fluid. The brass shaft
attached to it is of 10 cm diameter and 40 em long. When the pendulum
s vibrating, the observed amplitudes on the same side of the rest position
‘or successive cycles are 9°, 6° and 4°. Determine
{a) logarithmic decrement
(b) damping torque at unit velocity, and
(¢) the periodic time of vibration.
Assume for the brass shaft,
G=4.4% 10" N/m®., (M.D.U., 93)
Socution. (a) The logarithmic decrement is given by
8, 9
Ealne’-lne-lnl.S
5=0.405
®) 5=7PR
Vi-&
r 81 - =4x’e*
(-405)* (1 - €)* = 4’’’
.164 (1 -¢*) = 39.43¢°
€=0.0645
We know that, &=C/C.

wnd C.=2%kJ
I = 600 kg-cm? = 0.06 kg-m®
Gl G =
k=T =1m"
_5.4x10'°x_x_x
T 04 32

'
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The value of ¢ is more than one, o it is an overdamped system, its
equation (3.3.11) can be written as :

x=Al‘I—u\‘¢ -llm‘A‘l-z-\ﬁm
Substituting the values of € and @, in the above equation, we get

= -Alcl—lo\h'-mol ’MGI-I-\E’-"‘OI

x=A ¢""'5"°'+A, 2- e

<A, e 0T 4 193
The initial condition are given as
@) x=001 at ¢=0
@) 2=-V, at t=0
P2 T 10714607 1403 4, 1002

Applying the conditions, we get

O1=A,+A,
~Vp=-10.71A, - 149.3 A,
Se A =-72x10"Vy+.0107

Ay =17.2 x 107V, - .0007

Now the equation of displacement can be written by substituting
the values of A, and A; in above equation, so

2= (=7.2%107 Vo +.0107) 0 4 (7.2 x 107 V; - .0007)e™ 1493
This is the general expression,

(b) Static equilibrium means x=0 at ¢=1/100 sec. Substituting
the values x = 0 and £ = 1/100 in the general expression, we get

0=(~7.2x 10"V, + .0107)(0.8984) + (7.2 x 10 Vo~ .0007) x 2246

Solving it Vo =2.01 m/sec

Exaurrz 3.28. The successive amplitudes of vibrations of vibratory
system as obtained under free vibration are 0.69, 0.32, 0.19, 0.099 units
respectively. Determine the damping ratio of the system. (P.U.,, 95)

SoLurion. Logarithmic decrement 8 is given as

1 0.69 \_
8= 3 lng,L-o—-—m =0.647
But we know the relation

e

_ e

1-»

r damping ratio

8‘
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C =¢C, =0.0645 x 2Vk,J
=0.0645 x 2 1.08 x 10° % 0.06

=32.83 N-m/rad
() T= % = mz;‘—-? = Periodic time

\/& \/ 108x10°
W, = 7 = 06 = 42426 rad/sec
Te +m?

4242.6 V1 - (.06845)

=1.48x10™ sec.

ExampLE 3.27. The system shown in fig 3.21 is displaced from its
static equilibrium position to the right a distance of 0.01 m. An impul-
sive force acts towards the left on the mass at the instant of its release to
give it an initial velocity V, in that direction. If the system has the
following parameters :

k=15700 N/m, ¢ = 1570 N.sec/m, m = 9.8 kg

Fig. 3.21.
(@) Derive the expression for the displacement from the equilibrium
position in terms of time ¢ and initial velocity V),
() What value of Vo would be required to make the mass pass the
position of the static equilibrium 1/100 sec after it is applied ?
(M.D.U, 95)

Sorurion. (a) The equation of motion for the system shown in
figure 3.21 can be written as

miecx+hkx=0
The natural frequency of the system can be determined

-\’k ‘\115700
w, = XN = Y gg =40rad/sec

e ___ 1570 _
2mm, 2x98x40

The damping factor € = 20
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(647 = :—’f:', = .4186 - .4186 ' = 39.438 ¢*

39.8566 ¢* = 4186

e=0.102,

Note. When the individual successive amplitude ratios are not same,
we take the logarithmic decrement for the first and the last amplitude i.e.
over the entire range of available data. In this case there are three cycles
(n=3).

ExamrLe 3.29. A shock absorber is to be designed so that its
overshoot is 10% of the initial displi ¢t when rel d. Dcm'mbfc
the damping factor. If the damping factor is reduced to one half this
value, what will be the overshoot ¥ (AM.LE,, 1993)

SoruTioN. Let us assume that the damper of shock absorber is of
viscous type, logarithmic decrement § is given by

a-hg,[zl’]-lq.uonz.sozss

Mnmm-mgaaﬁ, )

lf;hveqmalN:Zlf,org:-%:z‘sg“.—.o,m

Exact value of § can be determined with the help of equation (i)

5= or 6’=“"‘—”‘£
1-§ 1-¢

2p2
o (2.30258)" = :"—_%

or £=0344
Again, damping factor reduced to half
o5 _ 0344

y=3=22H-01m

228 2mx0.172

Then &= " \1-(72p

& =1.095
Nowwenhmt.&‘:log.[%)
2

*1

K = /%9, In 1.095=
1.085 = log, (x;/x), In1 <

or  # 2= Ao = x, X 0.3345 = 33.45%
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Problems

. Prove that for the damped spring-mass system, the peak amplitude

occurs at a frequency ratio given by the expression.

(2] -

. For a system having viscous damping, plot a curve for the number of

cycles elapsed for the amplitude to decay to 50% of the initial value,
against the damping factor,

A body of mass 1500kgususpendedmalufspﬂng The system was set
into vibration and the freg 'y of vibration was measured as 0.982 Hz.
'I'hewecmrveamplnudu-mmuurodtobolam.ﬂ cm, 3.4 em,
2.7 cm. Determine the spring stiffoess and the coulomb damping.

. Show that for viscous damping, the loss factor is independent of the

amplitude and propertional to the frequency.

. Atransformer of 3000 kg massis d on an isolat bodying a coil

spring and a coulomb damper, Design the isolator, so that the natural
frequency of the system is 4.5 Hz and an initial displacement of 5 mm
given to the transformer dies out completely in three cycles.

3 'lhemmohvibnﬁnguyzhmweig}\umt{mdhmdowvibrnwina

viscous medium. Determine the damping ratio and damping coefficient.
When a harmenic exciting force of 3¢ N results in a resonant amplitude
of 15 mm with a period of 0.2 sec.

. Derive the differential equations of motion for the system shown in figure

31P

R
3K
Lo

-
- |

Fig.31 P

. A gun barrel weighing W kg has a recoil spring whose stiffness is k kg/m.

If W =450 kg, & = 36000 kg/cm and the barrel recoils 1 m on firing deter-
nune,

(@) The initial recoil velocity of the barrel

{b) The cnitical damping coefficient of a dashpot which is engaged at the
end of the recoil stroke,
(¢) The time required for the barrel to return to a position 5 cm from its
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d v/\ AL
e
1 AA s
(I)I /\ r—.
i © 23 Sac |
Fig. 3.3P.

3.3 (b) P. Determine in each case the type of damping and its charac-
istics. Alsod ine the und " 1 5 :

(Roorkee Uni.)
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9. Show that, for small amounts of damping, the damping ratio € can be
expressed as
Wy ~ Wy
€
wz + Wy
where w2 and o1 denote the frequencies on either side of the resonance

where the amplitude is [vli']o! its maximum value.

10. A mass of 3 kg is supposed on an isolator having a spring constant of
3000 N/m and viscous damping. If the amplitude of free vibration of the
mass falls to one half its original value in 2 sec., determine the damping
coeflicient of the isolator.

11 A slab door, 2 m high, 0.75 m wide, 40 mm thick and with a mass of 36
kg, is fitted with an automatic door closer. 'l‘he door opens against a
twtianwﬂngvithn dulus of 10 N-m/radi the
d ng to critically damp lbenmmswmgoﬂhedoor lfthedoons
opemd 90° and released, how long will it take until the door is within 1°
of closing 7

12, lntheﬂm3.2PAuMztwnlmhmgeMvhlcbwemm!esmgid
bar AB of length [ roi Find the ystem for
small deflection of the mass m.

Fig.32P

13. A mass of 4.5 kg hangs from a spring and makes damped vibrations. The
time of 50 complete oscillations is found to be 20 sec and the ratio of first
downward displacement to the sixth is found to be 2.25. Find the stiffness
of the spring in kN/m and the damping force in N/m/sec. (KU.)

14. The mass of a machine is 100 kg. Its vibrations are damped by a vi
dashpot which diminishes amplitude of vibrations from 4 cm to 1 em in
three complete oscillations. If the machine is mounted on four springs
each of stiffness 250 Newton per em, and ({) resistance of the dashpot at
unit velocity and {ii) the periodic time of the damped vibrations,

(LAS.,92)

15. Amdnubuamucofmkg hnphc.dnnmdxﬂmeutuohkonmd

g free vib ds are shown infigures 3.3 (a) Pand

4

Forced Vibration

4.1. INTRODUCTION

There are vibrations the amplitude of which is maintained almost
constant due to the application of external forces. We can take the case
of ringing electric bell, it rings so long as the electrie supply is there.
But as soon as the electric supply is off, the functioning of the bell is
stopped. Sound is db of vibration. Ringing of bell means
the amplitude of vibration is maintained almost constant throughout
the operation. This type of vibration which occurs under the influence
of external force, is called forced vibration. Machine tools during opera-
tions have this type of vibrations. In free vibrations the oscillations die
out in course of time due to energy dissipation by damping. The time
taken depends upon the t of damping present in the system.

The external force keeps the system vibrating. This foree is called
external excitation. The excitation may be periodic, impulsive or ran-
dom in nature. Again the periodic force may be harmonic and non-har-
monic. Vibrati b of impulsive forces are called transient.
Earthquake is b of random forces.

In this chapter, we discuss the application of harmonic excitation,
its effects on the system and vibration measuring instruments. Solved

ical probl are pr d in the end.

4.2 SOURCES OF EXCITATION

The external excitation to a system can be easily detected. This
excitation is in the form of motion and so produced by one dynamic
system to another, Both such systems are connected together rigidly

and form one dynamic sy having I degrees of freed
Another excitation is internal and occurs due to unbalance in the
system. There are various r of unbal in the sy few of

which are listed here.

(a) Thermal effects. Different members of the machine are made
of metals having different coefficient of thermal expansion. The heating
of such members during machining operation give rise to unbalance
due to variations in the rate of heat transfer and expansion on the
interfaces of the adjacent s

@

(b) R During r of a unit or a part large
amplitudes are produced which give rise to the unbalance.
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(c) Loose or defective mating part. During the operation, the
loose or defective part may lead to which is responsible for
unbalance. Similarly, coupling misalignment or defective assembly or
nstallation may be the cause of unbalance.

{(d) Bent shaft. The bent shaft is prone to failure due to unbalance
caused at the critical speeds.

(¢) Bearing or journal defects. These defects such as locse
parts, improper clearance, surface roughness, out of roundness and
excessive and play of shaft give rise to unbalance in the system.

V)Vnmtmlnmmln'nonutoftheww.haw
studied the turning ag of two ke and four strok
engines. The torque variation is periodic. There is unevan power supply
during the strokes which is responsible for unbal e.g. punching
operation in a punching press.

(g) Mass of rotating parts not distributed uniformly. It
causes eccentricity of the mass and ultimately the unbalance or
centrifugal force are produced in the system.

(h) Magnetic effects. The various stray magnetic fields in the
vicinity of the machine elements and the various currents flowing
through them, are the reasons of unbalance.

4.3. EQUATIONS OF MOTION WITH HARMONIC FORCE

Consider a spring mass system with viscous damping, while a
harmonic force of frequency @ and amplitude F acts on it, as shown in

figure 4.1.

ek kx

FSinwt

F Sinwt

Fig. 4.1. Force vibration with vk ping.

The mass m is displaced from its equilibrium position by a dis-

tance x in the downward direction. The mass m is put to three forces

spring force kx, damping force cx and harmonic excitation F sin ax. 'l'he
direction of these forces is shown in figure 4.1.
The equation of motion can be written as

PSS S _ Sy “43n
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& F/k
Q k_mol| (co
k& k
F/k
= _\[ .{4.3.6) (Putting ©}=m/k)
w cw
&)
_ab_  cwA
oy sy 06 kA-mwA k- ;?
_ co/k ..(43.7)

1-
o
co_cfc |(2m
We know that % _c,(%)(k]'m
=E M, 2 0=2:2
o o,

Putting this value in equation (4.3.7), we get

2e 0/,
—_— .(43.8)
e 1~ (w/w,)
Again equation (4.3.6) can be written as
Fou .(4.39)

TV - @700 + (2ew/a)]

Let us assume that F/k =X, where X, is called zero frequency
deflection. The above equation can be put as

X

A=
Vi1 - /o) + (2e0/@,)"]

4. 1 (4.3.10)
X V- @/0)7 + (2e0/0)’)

The non-dimensional quantity A/X, is known as magnification
factor or amplitude ratio.
So the particular solution of equation (4.3.3) can be written as

X, Saje-9 .(4.3.11)
Vil - (/o)1 + [2ew/w,))

The comj.lete solution can be written as

-—— i
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This is second order linear differential equation with tant
coefficient. The general solution of the above equation is of the form
X=X 4x, ...(4.3.2)
where x, = complementary solution
x, = particular solution
x, is the solution of the homog
mx +ex+kx Owhxd:wehmnlrmdydunmndmthem
chapter in detail. A solution x, = A sin (ex - ¢) ..{4.3.3)
unboummedwhmAistbenmplitudeofvihntionand’isthem
of the displacement with respect to harmanic force.
X, = WA cos (o - ¢)
= o sin (o - ¢ + ©/2)
X, « 0'A gin (¢ - § + %) -(4.3.4)
Substituting equation (4.2.4) in equation (4.2,1), we get
Mme’A Sin (o - &+ %) + coA sin (G — ¢+ 1/2)
+RAsIN (o - §)-Fsinex =0 ..(4.35)
However, x, vanishes because of damping with time. Equation
(4.3.5) represents four forces namely inertia force, damping force,
“ﬁundb-m:fuu.hmwubonoﬂhenfm,du
system is supposed to be in equilibrium. The vector diagram coming out
from this equation (4.3.5) is drawn in figure 4.2. Jt is shown in the figare
that spring force is perpendicular to damping force and damping force
is perpendicular to inertia force.

From figure 4.2, let us consider triangle oab
F? = (kA - me’A)® + (ced)?

A=
(k - + (o)
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The value of x, can be taken from equation {3.3.17)
So x can be written as
x=A;e " cos (V1 > Onf + @)

X, sin (¢ -
" % .(4.3.12)
11 - @@ + [(2c w/e,)

The values of constant A; and ¢, can be determined from initial
conditions.

) The frequency at which maximum amplitude occurs can be ob-
tained by differentiating equation (4.3.10) with respect to (n/w,) and
equating the differential to zero.

dA/X) 201 - /@) - 2Aa/e)] + 202 w/o,) (26
d©76) " 2 ([ - (@)1 + 2t a/ay T

=0

which leads to —“;“— =Vi-2¢ (4.3.13)
where @y, is the frequency corresponding to the maximum amplitude.
At resonance @ = @, putting this value in equation (4.3.10)

A _1

X% ..(4.3.14)

4.3.1. Total Response

The first part of equation (4.3.12) vanishes with time while the
second part remains into existence. The amplitude remains constant
due to second part and it is called steady vibration, The vibration
because of first part is called transient and it occurs at the damped
natural frequency of the system.

The complete solution of equation (4.3.12) is the superposition of
transient and steady state vibrations which is shown in figure 4.3.

/\/\An-‘
\_/ i 3
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2]

el NI\ 7
vV V °

Fig. 43.
1.3.2. Characteristic Curves

The ratio »/w, is called the frequency ratio where w is the frequen-
1y of excitation. Similarly, A/X, is known as magnification factor or
wumplitude ratio.

A curve between frequency ratio and magnification factor is
tnown as frequency response curve, Similarly a curve between phase
angle and freq: ratioisk as phase-freq: P curve.
Both curves which are drawn with the help of equations (4.3.10) and
4.3.8) as shown in figure 4.4.

The following points are noted from these equations and figures :

1. At zero frequency magnification is unity and damping does
not have any effect on it.

2. Damping reduces the magnification factor for all values of
frequency.

3. The maximum value of amplitude occurs a little towards left
of resonant frequency.

4. At resonant frequency the phase angle is 90°.

5. The phase angle increases for decreasing value of damping
above resonance.

6. The amplitude of vibration is infinite at t fir
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angle is reduced and F is bal d by spring force kA which
are almost equal and opposite in magnitude. See figure 4.5 (a).
) w/e,=1

When the frequency of excitation @ increases and becomes
equal to the natural freq ¥ O, occurs. The
phase angle becomes 90°. Inertia force and spring force are
found to be equal and oppesite. Excitation force balances the
damping force ie. cwd =F. Thus giving the amplitude of
vibration at resonance

A=F/cw ..(4.3.3.1)

See figure 4.5(b).

(e) w/wm,>>1

At very high frequencies w, inertia force increases very
rapidly and its magnitude is very large. Damping and spring
force are small in magnitude. When the value of w/w, i3 very
high, the phase angle ¢ is very close to 180°. See figure
45 ().
4.4, RESPONSE OF A ROTATING AND RECIPROCATING
UNBALANCE SYSTEM

A machine having rotor as one of its components is called a
rotating machine, like turbines and I.C. engines. The problem of un-

R R 4 S—— A el

— S Vi AR e W

151

PHASE ANGLE
?®

%-—o

Fig. 4.4,
7. The amplitude ratio is below unity for all values of damping
which are more than 0.70.
B. The variation in phase angle is because of damping. Without
damping it is either 180° or 0.
4.3.3. Variation of Frequency Ratio w/w,

There are three possibilities of @ variationi.e., 0 < @, © = ©, and
©> w,. This variation of ® will affect the magnitude of various forces
acting on the system. The three cases are discussed here.

(a) a/®, <<1
We know that inertia and damping forces are given by the
expressions mo’A and coA respectively. It is clear that both
the terms are affected by w. When the value of  is very
small, inertia and damping forces are reduced considerably
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coincide with the axis of rotation, The distance between axis of rotation
and the centre of gravity is called eccentricity e and the mass acting at
a distance e from the axis of rotation is known as eccantric mass mg. A
rotating machine supported on springs is shown in figure 4.6, The mass
of the machine including the eccentric mass is m and the angular speed
of rotor as © rad/sec.

FOUNDATION

Fig. 4.6. Rotating unbalance.

k and ¢ being the spring stiffness and damping coefficient respec-
tively. The system may be assumed to have single degree of freedom as
it can move in one direction only. Let the eccentric mass m, make an
angle @t with the reference axis. At any moment vertical displacement
is given as x + e sin @¢. The centrifugal force of eccentric mass will be
mq w" e. This force can be resolved into two components, i.e., vertical
and hori 1. Vertical P t is of much significance which acts
as equivalent excitation and can be expressed as mq e o” sin ¥.

The differential equation of motion can be written as

(m-md%fm%(s+¢sintﬂ)+kx+c%-0

(m — mg) & + Mg X = mota’e in @ + kx +cx =0
or mE + ¢k + kx = moo’e sin o2 .{4.4.1)
This equation represents damped forced vibration. Comparing
this equation with equation (4.3.1), we see that myw’e = F and rest of
the things are same. mea’ acts as the excitation force on the system.
To find the amplitude A and phase angle ¢, above equation can be
solved like equation (4.3.1).

A= mg_ﬂo’/k v

afoa aiie- Tl L Reme s SR
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A @/ ( o= !.]
me 1 - (/0,4 + (2 o/v,)’] o
m -{4.4.2)
At resonance ® = @,
41
—_"‘z - .(44.3)
m
The phase angle can be written as
2e(w/w,)
tan ¢ = ..(4.4.4)
S wey
The complete solution in this case can be written as
X=x.+ x,
A Meos (V- ot +6)
moe w'/k (4.45)

+
V 2
» E-2
[l —[0\.) ]‘4'[2:“]’
The variation of A 4':”! with frequency ratio for various values of

ilamping factor is shown in figure 4.7 while the curve between the
>hase angle and frequency ratio is the same as shown in figure 4.4. The
ollowing points are luded from this tion and figure :

6+ =00
‘ o
qTZ”E 3
- 2+ 2
Mo |
Et[‘ﬂ
0

Vagg o 3

Fig. 4.7. Amplitude frequency response curve,
1. Damping factor plays very important role during resonance
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of the engine including the reciprocating part is m. The crank length
and the connecting rod length are'e and / respectively.

hmfmdmwndpmﬁn(mmm.happmﬁmulyequl
toF:mgm’[ﬁnmt+(%]Ainzu}lfeinverylmallucompandtn
l,neeondhlmmicofthenbmeoquaﬁoni.e.%sinhpanmbe
neglected and the exciting force F becomes equal to mg e @ sin wf
which is the same as that for rotating unbalance. Hence, for small value
of e, the previous analysis of rotating unbalance is applicable to this
also.

4.5. SUPPORT MOTION

In case of locomotives or vehicles the wheels act as base or support
for the system. The wheels can move vertically up and down on the road
surface during the motion of the vehicle.

At the same time there is relative motion between the wheels and
the chassis. So chassis is having motion relative to the wheels and the
wheels are having motion relative to the road surface. The amplitude
ofvibuﬁoninunoﬁupportmoﬁondepmd-onthcupeodofvehide
and nature of road surface, The vibration measuring instruments are
designed on the support motion approach. Such systoms are supposed
to have single degree of freedom for the simplicity of mathematical
expression. In a vibratory system where the support is put to excitation
sbsolute and relative motion become impoertant from subject point of
view.

4.5.1. Absolute Motion

Absolut tion of a mass its motion with respect to the
wwdimunymmaﬁanhodmth;unh.hsbminﬁzumt&the
absolute displacement of support is y = B sin a¢ and the absolute dis-

‘F
R

:f

Wy

k(x-y) cti-p

R —]
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2 When the value of @ is very small as compared to @,, it is
known as low speed system. For a low speed system the

A
value of | -—— | — 0.
me

3. Similarly, for a high speed system @ is very high, then
[—-A— — L

g o
4. At very high speed the effect of damping seems to be negligible.
5. A comparison between figures 4.4 and 4.7 shows that peak
amplihﬂummwmorightdmminﬁgmt1md
on the contrary the peak amplitude falls to the left of
resonance in figure 4.4.
6. At resonance w =, and so

Considering a reciprocating engine as sh in figure 4.7 (a), let
the equivalent mass of the reciprocating part be mg and the total mass
N
N
\"'. 8 Dhze
N ag=1
m .

3 l L)
4’ C
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placement of the mass m from its equilibrium position is x. 'l'h.e dis-
placement of mass m relative to the support is z. The net elongation of
the:pringis(z—y)andthenlativon?oti?nb_etweenther\vomdsoﬂhe
damperis (x -¥). Thenz=x-yandz=x-y.
The equation of motion can be written as
mi+e(x-y)+hkix-y)=0
or mzicx+hr=cy+ky +(4.5.1.1)
The support is subjected to harmonic vibration, y = B sin «¢. Sub-
stituting this value of y in equation (4.5.1.1), we get
mX +cx + kx = cBw cos ¢ + kB sin ot
=B [k sin ¢ + cw cos 6¥]

=B VR +c*o’ [\,T:c’w’ linmt+\h::'c,w, ooso:t]
=BV + c*0® [cos o sin @t + sin a cos )

mi + ¢k + ke =B VR + c20? sin (of +0) (4.5.1.2)
and ma:? f, .
where a=tan™ "..El,m-l (2e 0/w,) &

..(4.5.1.3)
Steady state solution can be written as
x=Agn (o +a-¢) .{4.5.1.4)

Comparing equation (4.5.1.2) with equation (4.3.1), we see that
F=BVR + . )
Let us go back to equation (4.3.9) Le.
Al F/k
Vi1 - @/ + 1 (2 /0" )
Steady state amplitude can be written from equation (4.5.1.2) as
BYR + PP /k
"V - (/e + (22 0/0, 1
A_ 1+ (2 /o)
B N1 - (/@) + [ (2 /']

=ataﬁcdeﬂeaion[-.-Q—£[—%}(—?—]m=;mio=k£—

..{4.5.1.5)
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The ratio £ is called the displacement transmissibility which is i
&onﬁod&.mﬂiﬁﬂod&nhﬂyh&omﬁ%dﬂnm
Wehowtbnﬂ-nc-?
or a=tan™ P=tan 22 0/,
2 w/e),
and tang=——
¢ 1-(w/w,)
¢=tan” 2 /e,

Amplitude Ratio A/B

)
]
e
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% ratio can be written ag
z w/e,)?
n= ..(4.5.2.3)
BV~ @) + Beava]?
and o=tan" 2 W/ @,
{\l (@) +.(4.5.2.4)

The characteristics of this i .
4.4 for frequency. ¢quation are shown in figures 4.7 and

The following conclusions are drawn from these figures and equa-

1. When (6/@,) > 3, the amplitude ratio [% is almost unity. It
means that the relative amplitude ' Z’ and the support
amplitude Blm equal, This is the principle on the basis of
w!alch vipmhm messuring instruments are designed which
will be discussed later on in this chapter.

z . ¢ 2

2. For (EJ ratio being unity, the mass m will be having no

displacément,

3. Damping does not have any effect on g ratio for high values
of w/w, Le. for w/w, >3,
4.6. VIBRATION ISOLATION

unbalanced forces set up during their workin, i
v . 2. These are the disturb-
ing fo‘ra:a g;h:;b damage the foundation on which the machinuu:re
ounted. e vibrations t itted to the foundation should
:‘l’umnated or reduced considerably b using some devices such :
Tings, dampers, etc., between the foundation and the machi Th
devices isolate the vibrations by absorbing some disturbi iy
n|
t.hemul_vea and allow only a fraction of it to pass through tLexm?o'trﬁ
fa\!n_dgum. Thus the amplitude of vibration is minimised and the
_ndmr.ung structure or foundation is not put to heavy disturbances. The
isolation hgmuudiglermsofforenormnﬁon. Lesser the amount of
_Eorfefr motion ul-anmtted to the foundation greater is said to be the
¢ So are mounted on isolati . There are two
lasic requirements for an isolator : Firstly, there should be no rigid
‘onnection between the unit (Machi , engine or vib body, etc.)
nd the base otherwise the undssired vibrations will be compietaty
ransmitted from the unit to the base, It may damage the supporting

tructure.
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So phase (¢ - ) can be written as
¢-a=tan” [—’4‘-2’-3;—] - tan” (u f:-.) ~{45.16)
1-|2
=)

With the help of equations (4.5.1.5) and (4.5.1.6) steady state
amplitude and phase are shown in figure 4.9. We conclude the following
points from this figure :

1. At frequency ratio w/w, =2 for all values of damping the
amplitude ratio (A/B) is unity.

2. The amplitude ratio is less than one for all values of damping
when w/a, > V2.

3. For high values of frequency ratic (@W/®,>>2), the
amplitude ratio is quite small which means that the support
displacement is almost negligible.

4. Forhighvaluao!ﬁeqmncynﬁothedampén(dou_n?t
have any important role so far as the amplitude ratio is
concerned.

5. The phase angle is not 90° at resonance as in case of force
excitation (see figure 4.4).

4.5.2. Relative Motion

In section (4.5.1), we have assumed that z is the relative displace-

ment of the mass with respect to the support. So it can be written as

z=x-y
or x - : —j
et .{452.1)
Substituting the above relations in equation (4.5.1.1), we get
mE+y)tcz+hkz=0

mz ez 4 ha=-my
The sinusoidal support excitation is assumed in the system ie
y = B sin ex. Substituting the value of y in the above equation, we have
mi + ¢z + ks =me® B gin ot (4.52.2)
This equation is known as relative equation of motion and it is of
the same form as equation (4.4.1) i.e.
ME +cx + kx = mg (e sin o
Let us assume that the steady state relative amplitude Z lags the
excitation by angle o, so
z=2 sin (¢ ~ @)
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Secondly, it should be ensured that the isolators remain together
in case the damping material (rubber, cork, felt, pad, etc.) fails, Tt
should be just to keep the machine or unit in the safe position with
respect to the support.

The materials normally used for vibration isolation are rubber,
felt cork, metallic springs, etc. These are put between the foundation
and the vibrating body.

Rubber as an isolator is quite useful for shear loading. Its sound
transmissibility is very low. Its properties are influenced by heat,
gasoline, oil, etc. So it cannot be used at high temperature in the
presence of gasoline and cil. It is preferred for light loads and high
frequency oscillations,

The damping factor of felt is high so it is specially used for low
frequency ratios. Its pads are put between the machine and the sup-
port. It is preferred to use many pads at-a time rather than a single
large pad of the same size,

Cork is suitable for compressive loads. It is not perfectly elastic.
At high loads it becomes more flexible.

Metal springs uséd are of two types namely helical spring and leaf
spring. The spring has high sound transmissibility which can be re-
duced by covering it with pads of felt, cork or rubber, The spring can be
used in all working conditions as it is not affected by air, water, oil or
usual temperature variation. They are useful for high frequency ratios.

4.7. TRANSMISSIBILITY

Let us consider figure 4.8 for analysis. The spring and damping
forces are kx and cx respectively.

The amplitude of vibration is A, 50 the maximum value of these
forces will be kA and cwA respectively. The forces are porpendicular to
each other, because of phase difference being 90° so their resultant Fr
is given as

Fr="(RA) + (cad)? = AVR® + 2od) 47D

In the above equation Fy is the force t itted to the found.
tion. The disturbing force is F. The ratio of F» to F is called transmissi-
bility. So it can be expressed mathematically, as

Fr {4.7,2)

From equation (4.2.9), we have
F—ab N _viaren B2 10 s 2 T
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Substituting the values of F and Fr in equation (4.6.2), we have

. AVE 6

Ak Ju - @/, + 28 0/, )
- Vi /A

Vi1 - (/0% + [2 en/or,)?

N S (VYT AAT4)
F - @) + 2c /el

The above equation is the same as equation (4.4 1.5), so

Fr A
=B .{4.7.5)

TR.

If % =0.25, then the system is said to have 25% transmissibility.

The following informations are available from equation (4.7.4) and
figure 4.9 :

1. The area of vibration isolation starts when transmissibility
is less than unity and @/, > V2. Thus when the frequency
© of exciting force is given, the isolation mounts can be
designed such that /6, > ¥2. If & is small the value of @,
should be small and the value of natural frequency

(d).- \Ji results from high value of mass or low value of
stiffness. Thus if the disturbing frequency w is low the
isolation can be accomplished by adding certain amount of
mass to the system.

2. Damping is important specially at resonance otherwise TR
will be excessively large.

3. In the vibration isolation region w/®, > VZ, so equation
(4.6.4) in absence of damping can be written as

1
TR.s ——

(@@ -1

4. Unity value of T.R. occurs at two points where w/w, is zero
and ¥2 for all values of damping.

5. Under ideal operating conditions, T.R. must be zero. Hence,
@/, should be as large as possible. Thus, the natural

frequency of the system should be small i.c. weak spring
with fairly heavy mass.
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Substituting the equivalent damping coefficient C, in place of Cin
eqn, 4.3.6, we get

F/k

o] ]

) This equation contains A within the radical. Squaring and alge-
araically solving the above equation for A, we get .

(4.8.5)

~{4.8.6)

~{4.8.7)

F_4
If F, >= the numerator of the fraction under the radical is nega-

ive, the radical is imaginary, and the approximate solution can not be
sed. However, the exact solution was derived by Den Hartog.

To avoid imaginary values of A so that A is always real, we need

s have

i- [ 15‘1 T, 0 L{488)
3 :—F;<1or%>% {where Fy = Ryl

;z< z .{489)

The phase angle ¢ can be found using eqn. (4.3.7) by substituting
. in place of C.

Cook i
¢ =tan”’ [ 'l—_—';‘;-u;:- =tan”' 1—‘(“‘;—} +(4.8.10)
a

‘Subsm,uting the value of A from eqn. (4.8.7) in eqn, (4.8.10), we
tam
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48 FORCED VIBRATIONS WITH COULOMB DAMPING

(Refer section 3.2 also)

For a single degree of freedom system with coulomb damping or

dry friction dampi bjected to a h ic force F sin o¢, the equa-
tion of motion is given by
Mz+hkxtpRy=Fsinat .(48.1)

An exact solution is available due to early work of J.P. Den Hartog
for small damping force so that the motion is continuous. For high value
of dry damping force the motion does not remain continuous. If the dry
friction force is small compared to harmonic force, an approximate
solution is required for this case.

x
Fsinw! « ;
m ;

777 7777777

Fig. 4.10.

The sign of frictional force (R ) is positive when the mass moves
from left to right and negative when the mass moves from right to left.
By finding an equivalent viscous damping ratio, we find an ap-
proximate solution of egn. (4.8.1). For viscous damping ratio, we equate
the energy dissipated due to dry friction te the energy dissipated by an
quivalent vi damper during a full cycle of motion. The energy
dissipated by friction force pRy in a quarter cycle is uRyA. So in a full
cycle, the energy dissipated by dry friction damping is given by

AE=4pRyA=4FA .(482)
where  Fy= Frictional force
A = Amplitude of motion

If equivalent viscous damping is denoted by Ce, the energy dis-
sipated during a full cycle is given by egn. (3.2.5).

AE=xC, wA®? .(4.8.3)

Equating the above two equations, we obtain an equivalent vis-
cous damping factor which is measured in terms of dry friction

®C, wA'=4F/A
- 4 F, -4uR~
c, —Lw T A4.8.4)

The steady state amplitude for the system having viscous damping

is given by eqn. (4.3.6).

a=ear\[1-(21T+{%]
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AF,

¢=tan™! :; (4.8.11)
1-[ A%
oF

Eqn. (4.8.11) shows that tan ¢ is constant for a given value of
F/F;. ¢ is discontinuous at &‘ 1 (resonance) since it takes positive
vnluetor£<lmdnnegxtivevalnofur&>l.Thuqun.(l.B.ll)am
be expressed as

P | Q- ‘;" X (48.12)
(%

Eqn. (4.8.7) shows that friction limits the amplitude of forced
vibmﬁonforf:sl.Mmomcewhen%:l,themplimdem
infinite. This is explained below. The energy directed into the system
over the cycle when it is excited h ically at r is

AE,':I Fsinwt.dx

T
-I Painwe. L a (4813
dt
0
From eqn. 4.3.3, x = A sin (@ — ¢)

dx— -
G = O cos (¢ - ¢)

Substituting % in (4.8.13), we get
2n/w
AE) = j Feinot.(0Acos(@t~-¢ldt  ..(4814)

’ [ r=?—£]

At resonance ¢ = 90°, .. eqn. (4.8.14) becomes
/e

AE, = FA® I sin® @t dt=xFA .(4.8.15)
0
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The energy dissipated from the sy is given by eqn. (4.8.2).
Since =FA > 4Ry, A for A to be real value, AE,’ > AE at resonance, Thus

more £y i8 directed into the syst per cycle than is dissipated per
cycle, This extra energy builds up the amplitude of vibration.

Fornon—rmceondiﬁona[j:-ﬂ 1 ),theen«gyinnutﬁvmoqn.
(4.8.14) is given by
2x/w
AE, =aFA I sinwtcos (We-¢)df=xFAsin¢
0
(See equation 1.13.1) -..{4.8.16)

Due to presence of sin ¢, the input energy curve is made to coincide
with dissipated energy curve, 8o amplitude is limited. Phase of motion
¢ can be seen to limit the amplitude of motion, Refer figure 4.11.

A

A= amplitude
AE = 4pRyA
Energy dissipated
AE, =TFA
Energy Input
4] 4E
Fig. 411,
49 FORCED VIBRATION WITH HYSTERESIS OR STRUCTURAL

DAMPING

It has been mentioned earlier in section 3.2 that when a material
i subjected to cyclic reversal of loading and unloading, energy is
dissipated within the material itself.

Considering a single degree of freedom system with hysteresis
dampinzmdmhjecﬁsdhnhnmonicfontfﬁnuulhminﬁm
4.12. The equation of motion of mass can be derived as

mi + A% 5 ¢ ke P oin ot 49.1)
Where % !idmmmmm.hmmwﬁm
dnmping,uah ing force is a function of forcing frequency ‘o,
1% MECHANICAL VIBRATIONS
From eqn. 4.9.3 and eqn. 4.9.5
B_xkh_
Co=E-Zthoy .(4.9.10)
Substituting eqn. 4.9.10 in eqn. 4.9.9
A= L] .4.9.11)
J[ 1 -[& IT#I’

A 1

or Fih= W -(4.9.12)

\
The phase angle ¢ can be found using eqn. 4.3:7 by substituting
C, in place of C

s
¢=tan"! [—c“’—", J 49.13)

(2]

@,

From eqn. 4.9,10, we get

Substituting value of C, @ in eqn. 4.9.13, we get

C,o=2k
¢ =tan™! ". .(4.9.14)
! l o I

If the harmonic excitation is assumed to be Fe*®, the eqn. 4.9.1
becomes

mii+ ( % ]é +he=Fel™ (49.15)

In this case, response x is also a harmonic function involving the
factor e, Hence, % is given by { ® x and eqn. 4.9.15 becomes
mi+k(1+i)z=Fe™ ..{4.9.16)
Where & (1 + i}) is called COMPLEX STIFFNESS OR COMPLEX
DAMPING. The steady state solution of eqn. (4.9.16) is given by real
part of eqn. (4.9.17)

Fe*™

[-(2]2]

x=

.(4.9.17)

—
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For most structural elements the energy dissipated per cycle is
proportional to the square of the amplitude and independent of frequen-
cy over a wide range, i.e. from eqn. (3.2.14).

Energy dissipated per cycle = 34 .{492)
L x
7 A =
; F snet
7 n
’ A
2 1
‘7/’,’7”' vl CL L ICL
Fig. 412,

1fC, is equivalent viscous damping for this case, then equating t!:e
energy dissipated per cycle in structural damping to the energy dis-

pated by an equivalent damper during a full cycle, we get;
rC, w A® = BA?
C= ,f—, .(49.3)
From eqn. (3.2.13), we get,
Energy loss per cycle = 1 kAA* (494
From eqn. {4.9.2) and (4.9.4), we get
nkrA®=pA’
or B =mk) .{4.9.5)
or A=P/rk .(4.9.6)
The differential equation given by eqn. 4.9.1 can now be written as
m:-t[% ]Suk.::F-inu 49D

whml-%ilcalhdtheltmctumldampinzﬁcmrorbu&dor.

The steady state soln. of eqn. (4.9.1) can be obtained by m}m.imt-
ing eqn. (4.3.3) in eqn. (4.9.1). The same results can be obtained by
substituting the value of C, in place of C in eqn. (4.3.6) and eqn. (4.3.7).

Thus the solution of eqn. 4.9.1 is given as : o

Steady state amplitude for system having hysteresis damping is
given by eqn. 4.3.6 as

A= L4 .(499)

V-(277+(%2]
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Eqgn. (4.9.12) and eqn. (4.9.14) are plotted in figure 4.13 for several
values of A. A comparison of figure 4.13 with figure (4.4) for viscous
damping reveals the following :

(1) Amplitude ratio A/(F/k) attains its maximum value of F/kA at
resonant frequency (@ = @,) in the case of hysteresis damping, while it

at a frequency below (@ < @,) in viscous damping.
L]

-
~
o
~
«
o
w
2
A3
1 L 1
0 1 2 3 4 s
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(2) The phase angle ¢ has a value of tan™* (A) at ©@ =19 in case of
hysteresis damping, while it has a value of zero at @ =0 in viscous
damping. This shows that the response can never be in phase with
forcing function in case of hysteresis damping.

4.10 FORCED VIBRATIONS WITH COULOMB AND VISCOUS
DAMPING

Somai.muthmisam, d damping isting of couloumb
damping and viscous damping in psullal arrangement. The equivalent
damping coefficient in this case is given by sum of viscous damping
coefficient and the equivalent damping coefficient as given by eqn.
(4.8.4).

c. -m% .{4.10.1)

Substituting this value of C, in place of C in eqn. (4.3.6), we get
Frk

V[o-(]T{(e-Z)e]

The above eqn. can be written in the following form :

(]I h
(&) () Jro s

Solving the above quadratic eqn. for A, we get the amplitude of
vibration of the system both for Coulomb and viscous damping.

If there is no viscous damping then putting C =0 in above equa-
tion, we get the amplitude corresponding to eqn. (4.8.5). If on the other
bhand there is no coulomb damping then putting Fy= 0 in eqn. (4.10.3),
the amplitude obtained is same as given by eqn. (4.3.6)

Similarly, from eqn. (4.3.7) we get the phase angle by substituting

An

+(4.10.2)

C, in place of C.
=~ 2
[C xmA]k
stan | ~——————— ..(4.10.4)
. 1-(@/w,)

4.11. VIBRATION MEASURING INSTRUMENTS

The instruments which are used to measure the displacement,
velocity or acceleration of a vibrating body are called vibration measur-
ing instruments. Vibration measuring devices having mass, spring,
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means heavy mass of the body of the instrument which makes its rare
application in practice specially in systems which require much sophis-
tication. The frequency range of a vibrometer depends upon several
factors such as damping, its natural frequency, etc. It may have natural
frequency 1 Hz to 5 Hz.

8
g=00
6+
10
e o
7 5
g
2t 25
S1Y
il [ [=—VIBROMETER ——
,._3, >
oo, 701
10
e i 2 3 4 5 6
,t-.

Fig. 4.14. Vibration measuring instrument.
The relative motion (2) between the mass and vibrating body is

converted into proportional voltage by assuming the mass as per-
manent magnet (refer figure 4.15),

L LLLLL L L
7
ROTATING 5 : 2 x
U
DRUM T4 ZE)
LA V]
A v
"W :
DAgE A ///////////1

VIBRATING BODY ¥y= B Sinwt
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dashpot, etc. are known as seismic instruments. The quantities to be
measured are displayed on a screen in the form of electric signal which
can be readily amplified and recorded, The output of electric signal of
the instrument will be proportional to the quantity which is to be
messured The mput is reproduced as output very preclsely 'Pwo types
of t s ) as vib ter and are
widely used. A vibr ter or a sei ter is a device to measure the
displacement of a vibrating body. Similarly, other device known as an
accelerometer is an instrument to measure the acceleration of a vibrat-
ing body. Vibrometer is designed with low natural frequency and
accelerometer with lngh natural frequency So vibrometer is known as
low freq: tr and ter as high frequency
transducer.
4.11.1, Vibrometer
Let ug consider equation (4.5.2.3) again, i.e,
Z_. (o/a,)’
B 1 - (/o) + e /o,
Let us assume @/®, = r in the above equation

- TR B NCRIBRY)
B -+ [2er)?
We have plotted the characteristics of this equation in figure 4.7.
It is repeated here for co; i in figure 4.14.
When the value of r is very high (more than 3), the above equation
can be written as

> |
= =1
Nia-~P¢
=B .44.11.12)
(as 2¢r is very small term, 2o it is neglected
for a wide range of damping factors)

Se the relative amplitude Z is showp equal to the amplitude of
vibrating body B on the screen. Though Z and B are not in the same
phase but B being in single harmonie, will result in the output signal
as true reproduction of input quantity. From figure 4.14 it can be seen

that for large values of @/, (r), the ratio % approaches unity for every

N IN

value of damping. The instrument shown mn figure 4.15 works as a
vibrometer for very large vatue of r.

Vibrometer known as low frequency transducer is used to measure
the high frequency m of a vxbmtmg body. Since the ratio r is very high

L SERy - W PR T VEURE R ORaly SR ¥ S
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4.11.2, Accelerometer

An accelerometer is used to measure the acceleration of a vibrat-
ing body. If the natural frequency w, of the instrument is very high
compared to the frequency « which is to be measured, the ratio
®/®, (r) is very small i.e. @/, << 1. The range of frequency measure-
ment is shown in figure 4.14. Since the natural frequency of the
instrument is high so it is very light i in construmon. With the help of
clectronics integration devices it di velocity and displ
both. Because of its small size and uufulnu- for detormu'ung velocity
and displacement besides acceleration, it is very widely used as a
vibration measuring device and is termed as high frequency
transducer. The voltage signals obtained from an accelerometer are
usually very small which can be preamplified to see them bigger in size
on oscilloscope. For getting velocity and displacement double integra-
tion device may be used and the results are obtained on screen.

Again considering equation (4.5.2.3) and assuming o/a, << 1, we
can also assume that (o/w,) — 0

zZ_ (o B (4112.1)
B _[o,.)"f or Z =

where f is a factor which remains constant for the useful range of
accelerometer.

b - an122
e i aer |

Cln #1481 P
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Inthiseqmﬁonn’Binhouedmﬁmoﬂhvﬂ:nﬁngbody.lth
clearly seen that the acceleration is multiplied by a fmé.'l‘okup

the value of factor fequal to 1 for very high range of /e, ratio, £ should

results for very high value of its natural frequency. With the hel
equation (4.11.2.2), a figure 4.16 is drawn to show the linear :Bq)ol:i::
of tha' accelerometer. It is seen that for e =0.70 there is complete
l;:oen;:y f:r:lecelmﬂer for /@, < .25. Thus the instrument with
nal frequency will have a useful frequi range from 0 to
25 Hz at £=0.70 and will provide very mnmh. For this
purpose electromagnetic type accelerometers are widely used
nowadays.
4.12. QUALITY FACTOR AND HALF POWER POINTS

With the help of equation (4.3.10) a curve is drawn for a small
value of damping (say € = 0.05) as shown in figure 4.17. 'l‘h:"ymrve is
drawn between amplitude ratio (A/X,) and ﬁ'equeoq ratio (w/m,).

Alxg

Ve

Yo' 2, 0>

‘BAND WIDTH
Fig. 4.17.
Equation (4.3.10) at can be as equation (4.3.14) ie.
A_1 o
X %" (4.12.1)

mmpﬁtude{aﬁoatrmnmhulbduqmlityw&m
points where mpﬁtudanthh%z.‘lmkm known as half power

p.oinu.CmdDmlhehaltpowerpoiMa.Almmeqmdq-hqm-
¢les corresponding to points C and D respectively.
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4.13. FREQUENCY MEASURING DEVICE

The working of frequency measuring instruments is based on the
principle of r Atr the amplitude of vibration is found
to be maximum and then the excitation frequency is equal to the
natural frequency of the instrument. Two types of instruments are

discussed here.

Fullarton Tachemeter. This instrument is known as single reed
instrument. It consists of a thin strip carrying small mass attached at
ane of its free ends, The strip is treated as a cantilever the length of
which is changed by of a screw hanism as shown 1n figure
4.18. The strip of the instrument is pressed over the vibrating body to
find its natural frequency, We go on changing the length of the strip till
amplitude of vibration is maximum, At the instant, the excitation
frequency equals the natural frequency of cantilever strip which can be
directly seen from the strip itself. The strip has different frequencies for
its different lengths.

SCREW
MECHANISM

MASS ‘STRIP

— 2 —h|

S S—

Fig. 4.18. Frequency measuring device.

The natural frequency can be determined with the help of this
formula

1 4381
2r ¥ Pm
where symbols have their usual meanings.

Frahm Tachometer : This is known as multi reed instrument
also It consists of several reeds of known different natural frequencies.
There may be a known series of frequencies for the reeds. Small
difference in the frequencies of successive reeds will show more ac-
curate results. The instrument is brought in contact with the vibrating
body whose frequency 15 to be measured and one of the reeds will be
having maximum amplitude and hence that reed will be showing the

froanenev of the vihrating hadw

fu= Hz
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For a harmonic displacement A sin (¢ + ¢), the maximum velocity
is Aw and the energy of vibration of mass m is = ma’A%. Thus the
energy of vibration is proportional to the square of amplitude,

The energy absorbed at point G is %m’R’ and the energy
nbeorbedntMnucmbhﬁwnu%mm’[%].=%(md%’]So
the energy at points C and D is half of the energy which is at G.

Maﬁngmdmpﬁhduntbdfwermhhi;%.%:%ln
equation (4.3.10) both sides, we get

A 1
(WX_]. "1 - @/ + [2¢ 0/

1(1 1

5[55]‘= 1 - (@) + (2 0/0,)"
Solving for (w/m,)’, we get

(/@) =(1-2eH £ 2eN1 -7
Since ¢ is very small, its higher order powers can be neglected, so

&

[ﬂ =1-2 and (w/w,) =1+2

=112

—

0

";'dau'z;-uauc

The difference of frequency ratios at power points is called band
width. Mathematically, it can be written as

%= m;g,a,,mh-m (4122)

FORCED VIBRATION 177

The mathematical analysis involved in the calculation of the
natural frequency of the vibrating body with the help of a Frahm’s Reed
Tachometer is discussed below :

Let m be the mass attached to the end of each reed of length [ and
E be the modulus of elasticity of the reed material.

The static deflectiof of the reed considering it to be a cantilever
fixed at one end is given by

5
= 3Er
where = %‘g = moment of inertia of the reed about the base
We know thatk .x, =mg
where k = stiffness of the reed
So natural ﬁ'equmcyofthereed=f.=§l; i-
le.‘\,_‘_m' ,.l‘\'.‘.
"2k Yx,.m 2x Vx, 7
stada ¥
e viem Reeds with different notural frequency 1_ 4
4
]
‘ J>
Nut bolt
i | 0] O}

Vvhmnnq Body

Fin 410 Frahm's Dacd Taskhamatan




178 MECHANICAL VIBRATIONS

_1[g.3E1 L\/m He
2% “mogl 2% Yy P

Thus by having different values of mass ‘m’ or length 7’ of the reed,
we can have a series of reeds with definite known frequencies.

The one which has a frequency equal to the natural frequency of
the vibrating body, vibrates with a large amplitude. Thus the frequency
of the vibrating body can be determined easily by knowing the reed with
maximum amplitude.

The accuracy of the instrument depends upon the difference be-
tween the value of the natural frequency of the successive reeds.

The instrument will be more accurate if the differsnce in the value
of frequency is smaller. Refer figure 4.19.

4.14. CRITICAL SPEED

We have already discussed that when the natural frequency of the
system coincides with the external forcing frequency, it is called
resonance. The speeds at which resonance occurs are known as the

itical speeds. These speeds are also termed as whirling speeds or
whipping.

At these speeds the amplitude of vibration of rotors is excessively
large and the large amount of force is tr; itted to the foundations or
bearings. In the region of critical speeds the system may fail because of
violent nature of vibrations in the t direction, Therefore, it is
very important to find the natural frequency of the shaft to avoid the
occurrence of critical speeds which may result in excessive noise and its
breakage into pieces.

The critical speed may occur because of eccentric mounting of the
rotor, nonupiform distribution of rotor material, bending of shaft ; etc.

Let us consider a shaft rotating horizontally in bearings A and B
as shown in figure 4.20.

. ~UNDEFLECTED
POSITION

Fig. 420,

The shaft being of negligible weight, carries & rotating disc of

wainht W
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-1 '\/8_ (4.14.2)
=3¢ V3 B2

With the help of equation (4.14.1), we can plot a curve between
(x/e) versus («./w) which is shown in figure 4.21.

i

'
!
U
!
1
I

~10 0y (Werw)

'
1
i
t

Fig.4.21.

There are three possible combinations of speed i.e, © =@, > ),
and o < ,.

When © = @, the amplitude ratio b infinite which
severe vibration and excessive loads on bearings and the disc will try to
fly out. Proper damping is provided to control the disc from flying out.

In case when @ < o, the amplitude ratio will be positive and C will
lie between O and G. When > ., the ratio (x/e) is found to be
negative. It means G falls between O and C. Thus at high speeds the
disc rotates with heavy side inside. Here heavy side means the centre
of gravity. Then the disc rotates about its centre of gravity G and
vibrati are mini This pt is useful for stabilization of
aircrafts at high speeds.

4.15. CRITICAL SPEED WITH DAMPING

When damping is considered in the system, the three points O, C
and G do not lie in a straight line as we found in case when damping
was not taken into account. In the present case let CG is the eccentricity
e, OC = x the deflection of the shaft and OG = r as shown in figure 4.22.

The centrifugal force acts at G and its direction is along OG
outwards. The magnitude of this force is equal to Fy = m@’r. The shaft
deflects by the amount OC, so, the restoring force Kyx acts at C in the
inward direction. This force tries to resist the bending of the shaft. Its
direction is towards point O. An equal and opposite force to Fy; acts at
the geometric centre C of the shaft. This force F,, is balanced by the
damping force cax and restoring force Kx as clearly shown in figure
4.22.

PORCED VIBRATION 9

Supposing k, = stiffness of shaft,
¢ = eccentricity of the disc
= CG (radial distance)
x = lateral deflection of the shaft centre,
from O (i.e. OC)
@ = uniform angular velogity of shaft
@, = critical spepd of sha®t
C = geometric centrs of the disc
@ = centre of gravity of the disc which is at a distance
e from C
Considering the equilibrium of the disc, two forces are acting on it.
The centrifugal force acts radially outwards through G and restoring
force acts through C radially inwards. For the equilibrium of the disc,
these forces act through the same line and so the points O, C and G
must lie on the same straight line. The restoring force is equal to
centrifugal force for the disc equilibrium.
Thus, restoring force = Centrifugal force

A,x--:!o’(ne)

¥
h,x-‘ u’x-' w'e

Xyl {4.14.)
e

mumxngdzfgag,-bm 5 is static deflection)
wuau.u.fnuoisinnnm.mmmmmuomwmu

critical speed.
"

and we know that @ =2xf, so0

i NT

L)
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Fig. 4.22.

We can consider the different values of phase angle ¢.
(1) When ¢ =0, it is having no damping.

(ii) When ¢ < 90°, it is having damping.

(iii) When ¢ = 90°, the deflection of the shaft is maximum hence,
the critical speed.

(iv) When ¢ = 180° the point G will have a tendency to come
closer to point O and there will be least vibrations. This is
the case when the speed is more than the critical speed.

From figure, we get
GC =rsina=CGsin¢=esingd
rsine=esing¢ .(4.15.1)
and OC =rcosa
But OC+CC'=x+ecos¢
reosX=x+ecosd .£4.15.2)
Considering the equilibrium of the system, we have
kx=Fg.cma
cax = Fgsina
Rearranging the above equations
kx~Fgeosa=0
kx - mm” cosa =0 ...(4.15.3)
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ctxx — Fgsinoa=0

ot — mer sin =0 (4.15.4)
Substituting the values of rcos @ and rsina from equations

(4.15.2) and (4.15.1) into equations (4.15.3) and {4.15.4), we get
kx-me’(x+ecos§)=0

~-me*)z=ma’ecos ..(4.16.5)
e =ma’ esin § ..{4.15.6)
With the help of above equations (4.15.5) and (4.15.6), we can find
-he phase angle as
cmx ot 2e(w/v,)
tan ¢ = = = .(4.15.7)
T o [1 = (ovw.)‘]
C

Noting that damping ratioe = -é-vf— =

m
2qﬂm

m

as @, = -’;

Squaring and adding equations (4,15.5) and (4.15.6), we get
[k, = me®) 2)? + [eax]® = [mae]*

2 {lk, — mo]? + few]’} = (mo?)’ €

£ tmo’? l™?
& e -mol’ + (oml’ [ m’]’ eo)]‘
x o

(/o)
(1 -a/a)* + 28 wo, /)"

x :r'—ﬁ""" {4.15.8)
¢ V1 - B + (280 A

MECHANICAL VIBRATIONS
my=1kg
e=4cm

At phase angle 90°, the condition of resonance will occur i.e.
o=,

{a) So w, = 1000/60 = 16.67 cycles/sec
@) e _ﬁ“_
m,
‘"’f (©/w,)*
Az = :

Vi1 - (/@)% + [2e0/0,]

1x4(1500
~ 25 | 1000

V- fz2] T e mctze]

Ayp = 0.226 cm

e}

(d) tan ¢y00 = %

= 2 x 053 x 1500,/1000
1 (1500 f
1000
=-.1272
0 =172" 45",

Exampii 4.3. An electric motor is supported on a spring and a
dc{hpot. The spring has the stiffness 6400 N/m and the dashpot offers
resistance of 500 N at 4.0 m/ sec. The unbalanced mass 0.5 kg rotates at
5 em radius and the total mass of vibratory system is 20 kg. The maotor
runs at 400 rpm.

Determine {a) damping factor (b) amplitude of vibration and phase
angle (c) resonant speed and resonant amplitude, and (d) forces exerted
by the spring and dashpat on the motor.

Sorvrion. Given & = 6400 N/m

cm FSOO_leN sec/m
my =5 kg

m=20kg
m:—g“fu:?-xﬂ-tlﬁﬁﬁrad/m

(dividing by w} )
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SOLVED EXAMPLES

Mu(LAu;bqumhwmmlhusupmdedby
asprmxofmﬂ'nm lOOONImanduuputlomemmmunnof
ION. A i \ping, determine

(a) the momnl frequency
(b) the phase angle al resonance
(¢) the amplitude at resonance
(d) the frequency corresponding to the peak amplitude and
(e) damped frequency
Take C =40 N-sec/m
Sorution. (a) Frequency at resonance

0=0,= k Jlm =31.62 rad/sec

Dmpingﬁmrzumenu
__c 40 =
v T 1T T Lk
(b) Phase angle at resonance
tan ¢==
So ¢=n/2
(c) Amplitude at resonance
F 10 - 3
;.-.:m-'-———“—""‘oxal-sz 79x107 m

(d) The frequency corresponding to the peak amplitude
Opeay = V1 - 26 =31.62 V1 —2(632)
= 14.14 rad/sec
() The damped frequency is given as
W-‘Jl-tlm-ql—(.aa? 3162
=24.5 rad/sec
Exauris 4.2 The vibrating system as shown in figure 4.6 is
displayed for vibrati | characteristics. The total mass of the system is
25 kg. Anpocdofwwrpm. the system and the eccentric mass have a

phandtﬂ!nmof”audtkcmnupoud&@amplntudeulSmTln
mnauunbahncdmmnfthGmdtuaowndcm.

Determine (a) the natural freq of the sy (b) the d. g factor
(c)wmpluu&utswmmwmpmmawoomm
Sorution. Given m = 25 kg
A=15cm
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-criﬁeddnmﬁng:!‘\ﬁ;n“

= 2\46400 x 20 = 715.54 N-sec/m

=V -\ i e

= 170.90 rpm.
b € __12
TC, 715.54

e s

=.175

(where r = /1, )
- + [2er]

5x5( 400
20 |170.90

400
2x 175 x 17090].

400
s [\ i

1-77 (400
“{1709

=-.1829

¢ =168 41",
(¢) The resonant speed is given as
®, = 17.88 rad/sec
= 170.90 rpm.

5x56 -
Aresonant = m 2x.175 x 20

(d) The force because of dashpot on the motor
F,=caA

=0.357 ecm

=125 x %x.15%10"*

=785N

Force because of spring F, = kA
=6400%.15x 10
=96N

Resultant force F=VF: P =\185+96°

=124 N.

2xx 400
60




SoLuTioN. Spring stiffness k = force/deflection
_T70x9.81

= X107 = M33Bx 10°N/m

e=cr=0.23
Undamped natural freq Y,

_AJE _4[34335x10° _
“’*‘Vm .‘\j-—---——70 =22.15 rad/sec

Damped natural freq
0y=oV1-¢ =22.15V1 - (23)
=21.57 rad/sec
Logarithmic decrement

5= 2ne - 2xx.23 148
Vi-& W1 (237
Ratio of suceessive amplitudes
%:- =ef=e'®- 439
The relation is
A 1 (r=o0/0,)
F/k N - + @er)?
Given F=T000 N, %k=34.335x10°N/m, r=0.78
A __700/.
V(1 - 785 + (2% .28 x .78y
=.038 m.

2r _2x.23x.78

tan ey Sr—————
¢ 1-r 1-(.78)

=0.818

A~ 495 DO

MECHANICAL VIBRATIONS

ExampLr 4.6. The vibrations of the platform of railway 7
B station
l_mwdzcatt_he rungeofl‘.’-b’on.Ambma‘oumeasurla;

resting on the platform. The total mass of the instr and found, ”

is50 kg. What is the maximum value of spring stiffness, i the amplitude

:(f::.:::mgua ﬁu::mlion is o be less than 10% of the pz'::cfforn. vibration
ven = 1

afx .umyranp. Takee = 0.20. System is treated as single

SorurioN. Given £ = 0.20
T.R.=.10
m =50 kg

T.R. =T% [
-7+ (2er)? "= a/el
o.zo.T-LLtﬁLL
-2+ (4r)?

r=415=0/w,
When ©=2rx 12 = 24x rad/sec

24
@, = 7% = 18.17 rad/sec

1/;
o ="\

ol=k/m
k=wim =(18.17)* x 50
=16.50x 16° N/m
Stiffness of each spring = L“”"‘.ﬁf

=4.12 x 10° N/m.

mu‘lAnl'bmﬁngbod’hu rted by six isol
having stiffness 32000 N/m and 6 dash b _wmf“meacrat

p ing d
400 N-sec/m. Thuibmdngbodyhtobeinolaud a i ?
) ’ rotating dev
mmmmﬂmqo.osmma 600 rpm. rauz.’-aoq."‘ o
Determine
(@) Amplitude of vibration of the body
(b) Dynamic load on each isolator due to vibrqtion.
Sorvrion. Given k = 6 x 32000 = 19200 N/m

¢ =6 x 400 = 2400 N-sec/m
m =920 ko
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EXAMPLE 4.4. A body of mass 70 kg is suspended from a spring
which deflects 2.0 cm under the load. It is subjected to a damping effect
adjusted to a value 0.23 times that required for critical damping. Find
the natural frequency of the undamped and damped vibrations and
ratio of successive amplitudes for damped vibrations.

If the body is subjected to a periodic disturbing force of 700 N and
of frequency equal to 0.78 times the natural undamped frequency, find
the amplitude of forced vibrations and the phase difference with respect
to the disturbing force.

-l
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7 7 i nd it runs
Exampre 4.5. The weight of an electric mottorn 125 kg ai it rus
at 1500 rpm. The armature weighs 35 kg and its centre of gravity ‘lws
0.05 cm from the axis of rotation. The motor is mou.md on ﬁw.?:;:ﬁ:
IgL i that the force tr d is one 4
iﬁﬁ%ﬂﬁu’; that the weight of the motor is equally dis-
tributed among the five springs.

Determine
(a) stiffness of each spring
b) d: ic force tr itted to the base at operating speed
{¢) natural frequency of the system. (P.U,, 98)
Sorvrion. Transmissibility is given as
TR. =— 15— (when ¢ is negligible)
(/)" -1
i B
1 @) -1
@/, =12
/e, = V12 =3.46
1500
(q,-u/3.t6=m=433.5 rpm.
B85, cles/sec
fe="5 = 7.22 cy!
13
We know that , = J;
2nN 22 x 4335 _ 373 rad/sec
o, = E = 60 45.
@, = Vk/m (m=Totalmns=125+85=160kg)
160
k=0l m=45373x 458373 x g2
=33577.3 N/m
Stiffness of each spring = 33577.3/5=6715.5 N/m
TR - foree transmitted _ Fre
= Smpressed force  F
Fra=FTR.
2l
=m T
3 05 (211_1_529]’ oLl
=281 100 60 11
FORCED VIBRATION 59
N =600 rpm
B =0.06 mm
0= 222590 . 62,8 rad/sec
A ’ k _A ’192000 <
o= Yoo = 30 80 rad/sec
® _628
;: =T = 0.785
c 2400 ~050

€= 5Vkm ~ 2V192000 x 30
() Amplitude A can be determined as
A _ Vie@ey  N1+@x5x.785°
B -+ 2er®  V1- (6162 +(6162)
=1.4549
A = .06 x 1.4549 = 087 mm
(b) The dynamic load F, can be found as
Fp=2Z B+’
where Z is the relative amplitude of vibration, we have relation for that
also

z -
B -+ et
Z _ (,785)
06 {1 - (7854 + (2 x .5 x.785]°
=0.705
Z=.042x10%m
So  Fp=.042x10(192000)* + (2400 x 62.8)"
=1025N
Dynamic load on each isolator

= 10625 = 1708 N.

Mu‘.&dvibm&orybodyofmlsohgwppawdon:pringa
of total stiffness IMOkNlmhmammdngynbdamfofeeofszSNax
a speed of 6000 rpm. If the damping factor is 0.3, determine

(a) the lituds d by the unbal and its phase angle

¥

(b) the transmissibility and
(¢) the actual force transmitted and its phase angle.
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m=150kg, k = 1050 k N/m

.‘\’li ‘\’1050)( 10
D m - ¥ 150  =83.66rad/sec
© _ 200

=750

res~—a

’ ®, 83.66
(a) Amplitude by unbalance force

43#
f 1~ + (2er)?

525/1060 x 10°

A= = -
V-5 +l2xantap X 0m
Mm..u-{l?"’]

=tan™? 2x.8x75
(7.5)'
¢=175°20"
(&) Transmissibility

¥l

- 1+(2x.3x75 %
Il-(7.5)’l’+t2x.3x7.sl}
= 083
(c) Force transmitted
F,--Fx.m J
=525 x .083
=43.58N.
EXAMPLE4.9. A vibrometer havi i ibrati
Mcune_ part as 4 mm and e=:¢;'aumﬂewhlmldufmm;;$
Mmhﬂml&m&mwnmﬂmﬂuﬁ:mwmu
IOMAddqniuthM,‘.L, cy of vibr if the fr
of the vibration part is 12 rad/ sec. o

o MECHANICAL VIBRATIONS

Displacement B = z(‘—;—’f]
=004 1=4x4) :: :'4 =.021 em

Velocity s@B = %’%_v B
=|2xx %Jx .021 = 0.26 cm/sec
Acceleration  =@’B =0 (wB)

= 2"16—%" X .26 = 3.265 cm/sect.

ExampLE 4.12. Prove that an undamped measuring instrument
will show a true response for frequency ratio (w/w,) = 7’2—

- ¥
SoruTionN. .
Since e=0
For a true response Z = B, so

1= L

l_’-’

2 =1

- o |
r—vz—lz.(o/ﬂ,—vz—

ExamMpLE 4.13. For measuring the frequency of vibration of a
a'ryntem,nthm’aRdeuhomuristobedesigued.Amaof0.0lkg
is to be placed at the end of one of the reeds so that the reed is in
monamalaﬁvqumofﬁ”z.i‘heabdmdbdommlongand.’i
mm wide. Determine the length of the reed. Take E = 2 x 10" N/m?.

Sorurion. Deflection for a cantilever is given as

ion = m&L

Deﬂechon-wl
h=__m& __mgl3El 3EI
deflection "'8” P

1
I=i568 where ¢ = thickness of reed

12
The natural frequency, f; is given as

fi=LAfh _14/3E1
"2 Vm "2z Y
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Sorvmion. ¢ = 0.2, © = 12 rad/sec
'l'bomplitudeoﬂhnmﬂddvnluoissmi-.z-Smm
B=4mm
Say r=o/o
zZ_ ad
BN -+ @)

5 rt _ r
[I)"(1—r')’+(2£r)’-(1-")’+(2*-?!)'
56257 - 28757 +1.5626=0
r=212
w

—_—=r

©_12 _
“37:2.12-5.“7“/“1:

ExaupLs 4.10. A vibrometer indicates 2 percent error in measure-
mtandit:mtumlfrwuencyu5ﬂz.lfwmdfuqunqwlwn
be measured is 40 Hz, find the value of damping factor (&).

z (since 2% is there)
% =102

B

Z

B Na-ry+ ey

g
"
a0 (- 64)7 + (16¢)"
£ =0.35.
mnucu..«mmmuwmﬁndm
displacement, wbdondaw&mdoudan?chmmma
I”mlﬂhendurdﬂeqmcyoﬂlniutmmatu5ﬂzud¢m
0.004 cm. what are the three readings ? Assume no damping.
SoLUTION. ®, =5 Hz =5x 2x = 10% rad/sec

z_ o~
B 17

193

2__1 3EI
o F=% tm
I=45.003¢ =25x 107
m=.01kg
{=.04m
E =2x 10" N/m*
f=15
1 3x2x10"x25%10%’
e ot e (04 x .01
23786 x 10" m®
t=72x10"m.

Exampre 4.14. What will be the frequency ratio when the
amplitude in forced vibrations is maximum. Determine the peak
amplitude and the corresponding phase angle.

SorutioN. We know that

A b
X, \1(1 -+ (2er)?

where r = 0/0,.

Awillbe i when d inator is mini Le.
ad;[(l-r")zw(‘lu)’]=0
%[l+r‘-2r’04czr’l-0
4 - 4r+8e'r=0
47 -448%=0

or P-1+28=0, rA=1-2¢

r=(1-2e%"7

And substituting the vaiue of ~*, we get
1

Al
X-I,... V(- 14264 + (207 (1 - 27

N |
Vit v 4 et
i

2 V1-¢
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L3

1-7 1-1-
=2:\11—2:’
—
Vi-2
£
ExawrLe 4.16. Consuider the spring mass system shown in figure
4.1. The mass is given a velocity of 0.1 m/sec. What will be the sub-
quent displ t and velocity of the mass if
C =100 N-sec/m
k =3000N/m
m =20 kg
Fsinat=0
Assume the initial velocit:
state response of the mass if Fyuo:l&:ﬂ?::;;‘m N Colonlote the steady
SoLurton. The equation of motion can be written as
mi+cx+hkr=0
and =2 " (A cos wg + B sin 0g)

-\’k ‘\’3000
0, = = 0 = 12,24 rad/sec

L St |, |
2mo, 2x20x12.24
Damped frequency,

w=V1-¢ o,
=V1- 2047 12.24
= 11.98 rad/sec

Substituting the values of m,, € and @y, we get

xme WAXRU 4 0611981 + B sin 11.98¢)

=% (4 c05 11.98 t + B 5in 11.981)

Velocity 5= %X

=

=0.204

=11.98¢ % (- A 5in 11.98¢ + B cos 11.98 1)
~249¢ " (4 c08 11.98¢ + B sin 11.98 ¢)
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pu_llgd on the mad_sur_facc with a velocity of 60 km /hr. Caleulate the
critical speed of trailer if the vibration amplitude is 1.5 cm for the trailer
mass of 50 kg.

Sorurion. For negligible damping, we know
A_1 sincee =0 (ifA>B)
B 12

r=w/u,

o, = \J;’f‘-, B=6cm

The time period of forced vibration is given as

©=28f=2xx 7‘.;: 13.08 rad/sec

AisgivenasA=15cm
A .1
B Ay
16_ 1
[
rF-1=4
F=5r=223
r=e/v,

B>A)

FORCED VIBRATION e
Applying boundary conditions, we have
At t=0,x=0
and At t=0,x=.1 m/sec
0=¢".A, A=0
and 0.1=1198(B)-2.49

1198 B=.1+249
B =2.59/11.98=0216
So x=0.216¢ > 5in 11.98¢
%=11.98 7% 0.216 cos 11.98¢
249 ¢ ** 0.216 sin 11.98¢
=258 co5 11.98¢ - 0.53 ¢ “*sin 11.98¢
=e¢ ¥ (2,58 cos 11.98¢ - 0.53 sin 11.98¢)
The transient isx =x, (Complementary selution)
x.=0.216 & *** sin (11.98¢ + ¢)
where ¢ = tan™' A/B.
The steady state response of the system
= T
= 5
V(3000 - 20 x 10 x 10)? + (100 x 10)*
=0.11 sin (102 - @)
o1 2e0/m,
1- (/o)
o1 2%.204 % 10/1224

= {a
10 T
5 [12.24

=tan™ (1)
o= 45"
X=X, 4%,
=D e *** gin (11.98 + ¢) + 0.11 sin (10t - 45)
Applying the boundary conditions the values of D and ¢ can be
determined and then the value of x be written finally.
Examrrs 4.16. Figure 4.23 shows an automobile trailer which
moves over the road surface making approximately sinusoidal profile

&in (301 - )

where a=

FORCED VIBRATION Rt

So ©, = 0/r= 13.08 5.86 rad/sec

23"
AE
(ﬂ, m

m.’. .m=k
k= (5.86)° x 50 = 1716.98 N/m
At critical speed there will be resonance, i.e. @ =,
® = 586 rad/sec
w=2rf
or f=w/2r
or T=2x/w=1.07 sec

~

A8
Vi T e

or 26.9 km/hr.

ExampLE 4.17. A 3 kg mass is suspended in a box by a r;_m'ng‘as
shown in figure 4.24. The box is put on a platform having vibration
y = 0.8 sin 6t cm. Determine the absolute amplitude of the mass.

Given k=6000N/m. {P.U., 76 Aerv)
K
. /.
Fig. 4.24
Sorvrion. Damping because of air is neglected in engineering
problems.
Then the amplitude of the relative motion of mass is given by
. .
B 1-7
where r = 0/,
Z and B are the relative and support amplitudes respectively.
Since y=Bsinwt
So by comparison, we get
B=08cm
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and © =6 rad/sec (By comparing with
equation A = B sin ax )
r=w/m,

.\‘\’L _-\’eooo
el P 3
= 44.72 rad/sec

"Wﬂ\-'a?‘.ﬁ-.la

r*=0.018
08x.018
Z= 1~ 018 =0.0146 cm
Thus the absolute amplitude of the mass
Z+B=00146+08
=0.814 cm.
ExampLg 4.18 Determine the relative amplitude of the end of
mnﬁkmmduu}hrfapeambanforthesymahowuinﬁ;untzi
1’h¢b¢o¢£sp¢vformwalumcnkmodony=0.8.in 10t em in a

direction perpendicular to the reed. The natural uency of the
is twice the disturbing frequency. P o owem

i et
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Logarithmic decrement

2%e 1.19
8= = =1.21 units
Vi@ V119

¢=84.1°

ExampLE 4.20. Determire the limiting frequency @ for an Ac-
celerometer with 2.5% error having damping factor £=0.70 and
natural frequency 80 Hz.

SoLuTioN. For accelerometer, we have

(] e

where

f=
\Qu - (/e + 26 w/o,)Y)

In the above equation in case of Accelerometer, the ratio
w/w, << 1 or w/w, — 0, then the factor f can be written as unity.

The approximate expression is written by
gx (/@) =r?
ANEY
Then percentage error in the instrument
%Emt:%?ﬁx 100=(1 -f) x 100
Putting the data for £, we get

Y, S—
Y-+ @x.1xr)}

o S
f Va+r-27+ 1.96r%)

"N -0t 1
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Exaurig 4.19. Investigate the terms involved in the equations of
motion of one degree of freedom system as given by
5% 4+ 3% + 12x = 10 sin ¢,
SoruTion. The general expression is given by the equation
mz +cg+kx=Fsinat
By comparison, we have
m=5 c¢=3, k=12, F=10
With the help of above values, we find :
Natural frequency

AE A2
o= Y= NF 1.55 units

Damping factor
= B~ SxE AT 0
Damped frequency
@ =V1-¢ o, =V(1-019) 1.55
=152 units
Critical damping
cl
3 De
C.=w,.2m
=155x2x5=15.5 units

X, = deflection = % =10/12=0.833

Amplitude at resonance

2

!_f._= 0.833

2 " 2x0.19

um frequency corr

Oax = 0,V 1 - 267
=155v1-2x0.19x0.19
=1.49 units

Magnification factor,

A 1. L1 - i
¥ "o, ~“Tunig- 263 units

=219

o,

ding to maximum amplitude

¥

201
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Error relation
25=(1L-f)x 100

1
e e

1 2
625:[“ A0 +1 Nr- 04+l

Solving it we find r=0/0,= 0.5

limiting frequency, ©=.50x 80 = 40 Hz. ]

Exavprs 4.21. The point of suspension of a simple pendulum
performs ¢ harmonic motion as exprcswd_ by xo= f‘r“ sin f _along a
horizontal line, as shown in figure 4.26. Derive equation of mo’l:zm fr:::
the given coordinates. Find the salution for x/X and prove that w;
=12 w,, there is vibration at mid point of I

)x (100y*

|

!

ez~
Fig. 4.26.

SoLuTioN. Let any moment the pendulum makes an angle 8 with

ertical, then s 2
the vertical T where F = tension in string
and mx=~Fsin®

- - Xg)
- FE ’xo)__,,,‘!?‘__‘_._

[!"oranm!]ﬁ.oos@-l]

Z+gx-g%=0

L mn ale e
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This is th i i i
P l:mqmred equation of motion. The general forced vibra-
mx +kx = F gin ot
So the solution of the above equation

X 1 e
b 2 —7—_~“’ . NODE
ri [
Lz 1™ s
A B-m 1]
whene=0 .

R Sin@- X =Xo

P L |
X (r = @/w,, ®,=g/) (b} X=X,
g
o, Fig.4.27
h _~X_ 1
L2 S A g
i o
or x—l=-1+z
k=l (@,/0)
K k=2 (@/n)=2
©0=vV2 @,

Exampre 4.28. The motion of a vib ? recorded
XAMPL. ¢ ratory system is to be
bya{atmwuu:tmmmt‘ ng natural frequency 3 rad l sec. What is the
reading of the instrument if the motion is given by the equation
Z=23in2t+3sin 3t

Takee=0.5
Sorurron. We know that

Z_ ”

B Va - s oy
From the above equation, we have

oy = 2 rad/sec

@y =3 rad/sec
Natural frequency o, = 3 rad/sec (given)
2

m=2_2_ o7
@,

3
r,n%:%al.o
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Resonant speed, N = %@

=:IOx(SO
2n

=668.8 rp.m,

B A (e
!'rlnz Vi1 - (/0,047 + [2e070,)

We have to find A
My _ 24

m 320

0.15

e="y"= 075 m

=0.075

480 ¥
w=2nx B0 = 50.24 rad/sec
/e, = %ﬁ -0717
C 490/0.3

E=z——na-

“Zme, - 2x320 x 70 - 003646
Substitut g the values in the above equation

— 4 0.717)°
. 717
0.075x 0.075 ~ \fj1 — (717)%)% » [2 x .03645 x 177

It gives, A=604x10" m,

iz MB::::LB 4.24.. The_sprmgif ofan autlomnhile trailer are compressed

7 or its own weight, Find the critical speed when the trailer
ﬁ?;x over 1; road ugfh a profile of sinewave whose amplitude 1s 80 m::
b kmu;z:e ngth is 14 m. Find the amplitude of vibration at a speed
; (M.D.U,, 94 ; P.U., Aero91)

SoL PR, ’Q _4/9.81
HUTION. 0, = 5Ny =9.9 rad/sec

@ 99
fu= 5x = 9 = 1-576 cycles/sec

Let us assume the critical speed of the trailer as V m/sec.
8
Wavelength =Frequancy
i/
14 fw=1576

V=1576 x 14 = 22 m/sec
or V=792 km/hr

FORCED VIBRATION oo

The response of instrument to first part of motion ie. 28in 2 i
given as

[é] PG -
B Na-r+ Qe
; (0.67)°
(1- 679 + @ x 5% 067

2z
- (067 T35 = 0517 units

¥.303 + 0.

Phase angle
g 2ne 22x5%x2/3
=tan” ——=tan" = A
e i 1-2/3)
=tan”' 1.2, ¢ =50.19"
Similarly for the second part of the motion

z ri
=&li= =10 its
("l o remy

= &7‘2 —l‘
zml__.-sm -
L) 1-1) 0

0,=90°
The instrument will show the reading as the combination of both
the motions L.e.
Z =z, sin (2t - 50.19°) + z; sin (3t —90%
where 2, = 0.517 and 23 = 1.0,
ExampLe 4.23. A single cylinder vertical petrol engine of total mass
320 kg is mounted upon a steel chassis and causes a vertical static
deflection of 2 mm. The reciprocating parts of the engine have a mass of
24 kg and move through a vertical stroke of 150 mm with simple
harmonic motion. A dashpot hed to the system offers a resi
490 N at a velocity of 0.3 m/sec. Determine :
(@) The speed of the driving shaft at resonance ; and
(b) The amplitude of steady state vibration when the driving
shaf? of the engine rotates at 480 r.p.m. (M.D.U., 94, 95)

SOLUTION. m =320 kg

Static deflection § = 0.002 m
., \]t i ‘\I 981
w, H 0,002 70 rad/sec
w, =2x N/60

FORCED VIBRATION
The value of forced frequency © at speed of 60 km/hr is

60x1000 2= .Y
m=.607<80 x14 (m ).]

=7.47 rad/sec
G "_é‘_; =0.755

Using equation (4.4.1.5), we get

Takinge =0
- O
B 1-(w/0,)

A
A=0186 m.

ExampLe 4.25. A seismic instrament with a natural frequency of
6 Hz is used to measure the vibration of @ machine operating at 120
r.p.m. The relative di Dl it of the seismic mass as read from the
instrument is 0.05 mm. Determine the amplitude of vibration of the
machine. Neglect damping. (M.D.U, 94

Sorurron. The conteolling equation i3

o r? (wheu £=00)

and =50

Z = 0,05 m = reading of instrument

Using the above equation, we get

2
05 _ (33 o199
B 1-(33)
B = 0.409 mm.

ExAMPLE 4.26. An industrial machine weighing 445 kg is sup-
ported on a spring witha statical deflection of 0.5 cm. If the machfne has
a rotating imbalance of 25 kg-em, determine the force tra

1200 rpm and the dynamic amplitude at that speed. (P.U., 93)
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Sorurion. = 981
0 =VE =V _ 4429 rad/oec
where § = static Geflect;
Porwdfreqnencymnespondingtolmmm.
= 2N 1200
0= 60 -&x—e—a—=125_3nd/m
Frequency ratio rgiﬁg.z,s.
The dynamic amplitude A is given as
S, R
me " \q_ 2 (neglecting ¢ )
m
AT P 2% 84)?
m TG Vi asT
A=062cm

Soknmz.m *(44-29)’X§

=909.82 kg/cm
Dynamic force transmitted
F = kA = 909.82 x .062
=56.41 kef.,
Exaurix 4.27, A machine of mass .
utemalfamofusoNu.f,‘;or 2ne Jonne is ected wpon by an

of vibration, isolator of rubber ‘mﬂtz:f;mr‘.pr:. Tt?reducctheemcu

the machine load and an estimated da; ping ofMZ’ L
m £e=02
Determine : o
(@) the force tr itted to the foundati
(B) the amplitude of vibration of machine
(c) the phase lag.
o i (P.U,, 89, 91)
LUTION, Static deflection = 2 x 107 m
Given m=1000 kg, F=2450 N
Forcing frequency, o = 2V « 22 1500
60 60
=157 rad/sec
€=02,
— MECHANICAL VIBRATIONS
Given m=1200x-%=125.6nd/-ec=401!
B=032¢cm
Frequency ratio, r=0/w,= %5§§
r=2.83
We know that
A l . 3
B2 {neglecting damping)
.
-7 -G 0.0457 em
The motion is harmonic
x=Asin ot

=~ 0457 sin 40rt

The negative sign indicates that motions of support and weight are
180° out of phase.

The relative motion between support and weight
=0.0457 +0.32
= 0.3657 em
Finally, the equation of motion can be written as
x = 0.3657 sin 40xz.

Exampris 4.29. A mass weighing 1.93 kg is suspended in a box by
vertical spring whose constant k = 10 kg/em. The box is placed on the
top of a shake table producing a vibration x =0.09 sin 8. Find the
absolute amplitude of mass.

Assume no damping.

Sorurson. We know that ife=0

z_ ¢
BT 1-7
Given o =8 rad/sec

_'\’L _‘\’wx%l
and @, = Nss =71.29 rad/sec

=0.112

(P.U,94)

u
=712
2 =0.01259
B=0.0%cm

Z___001259
ana~ 1001959

(from given equation)

FORCED VIBRATION aue

(%

of mass of hi
mg=1000x9.8 N

Koo B 1000X98
Static deflection ™ 2x 107

‘\’ E :\/ﬂ’fﬂ’f
O Ny = 1000 70 rad/sec

- —‘.—;"57 =2.2428

Force

=49% 10°N/m

¥ =5.0304
Fr_ \'1»2@);‘__‘ V1+@2x 2%2.247
F -+ o) VIL- (5.097 + (2 x 2% 2.24)°
Fr = 795.8 N
Using equation (4.2.10) for steady state vibrations

A 1
X, 3 d(l _",2)2 022:;)?
X, = External force/k
=240 _gi10'm
49 x 107
A_ 1 _
X, TN1-5037+@x.2x224°
A=1207x10"m
Using equation {4.2.8), we have
260/w,
’1‘; Em/(n")2
_2x.2x224
T1-@20°
o=-125" or 167°25".
ExaMpLE 4.28. A weight of 2 kg is suspended by means of a spring
having a stiffness of 4 kg/cm. The pointof support (top of spring) is given
a vertical periodic displacement (S.H.M.) at 1200 cycles per minute of

moximum amplitude 0.32 em. Determine (a) the absolute motion of the
weight, and (b) the relative motion between the weight and the support.

0.241

tan ¢ =

-.223

(Roorkee, 68)
Sorvrion. The natural frequency, ©, = V :; = \l 45?1
o, = 44.3 rad/sec
FORCED VIBRATION —
Z=114Tx 107 em
Thus absolute amplitude of massa
Z+B=1147x107+ 09 em
=0.0911 em.

Examprs 4.30. A vehicle weighs 490 kg. and total spring constant
ofiuwpum?onaymx‘ssomlcm. The profile of the road may be
appminw“dtualimcumdwnplitudtlﬂanmdwamkngthoﬂ.a
metres. Determine -

(@) the critical speed of the vehicle

) Meamp(ﬂudeofmumdymmoﬂhemwwlwnthe
Mudﬁmuaﬂwm‘dwmmwu
0.5;and

(©) thewﬁtudcofthesmdymmiondmmwm the
vehicle is driven at 57 km/hr and the damping factor same
as in (b). (P.U., 85)

SoruTion. (a) W= 490 kg

k =60 kg/cm
Amplitude =4em=8
Wavelength =40m
General relation applicable

Aw____AL 1+ @er?
BT 1~ + @)

Natural fr cy of the syst

e )

g»\’ k =‘\’60x98!
Oa W/g 490

=10.96 rad/sec
The critical speed will be at resonance i.e. @, = ®
Let us represent it in km/hr.

s 60 x 60  (Wavelength)
So V=o:*500 X 2=

_10.96 x 3600 x 4
T 1000 x2x
=25.1 km/hr

® % s (at resonance r =1)
A
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(¢) Time Wﬁd =
- in km/hr o 2%
60 %80 Wavelength
ST g e
_2486 _
i e T
7=5.144
Using general relation

A,.J,‘!l;@’ N1
B Na-Av@e) Va-siuy+aer

VI+4x.5x.5x5.144

= =.5246
V(1-5.144) + 4 x 25x5.144
A=Bx 5246
= 4 x 5246 = 2.098 cm.
Exaurre 4.31. The damped al fr y of a sy

freq as

obtained from a free vibration test is 9.8 c.p.s. During the forced vibra-

tien test, with constant exciting force, on the same system, the maximum

amplitude of vibration is found to be at 9.6 c.p.s. Find the damping

factor for the system and its natural frequency. (P.U., 92)
Sorurion. We know that

%:‘:41-2:’

(equation 4.3.13)
We also know
X &
o,
From the above two equations, we find
gy _N1-28
@ V1-¢
Given O = 9.6 X 2% rad/sec
@y = 9.8 x 2x rad/sec
So Q.th_\‘l—zt’
98x2x " V1 ¢
o.osse=(_1'_9¢:_)

1-¢
which yields, £=0.196.

a2 MECHANICAL VIBRATIONS

-\’7.84 x 10°
w, =Vk/m = Too = 88.59 rad/sec

r=0/w, =354
r*=1256
z 1.7 [

A 7 e

Putting the value of various terms
Z=429%x10°m

(b) and transmissibility

e ~ F
"B ‘J(I-F’)’ﬂzu)’"hx] k

F
F =0.148

© F_ 11;(@’ . V1+(@2x.2%354)7
FoNg-rY+ e V1-(854%° +(2x2x 3.54)

g8 ¥(1 + 2.005
= V13363 +2005 - 0148
F,=0.148 x392=583N.

ExAupLE 4.34. A machine 100 kg mass has a 20 kg rotor with 0.5 mm

icity. The ting springs have k =85 % 10° N/m, ¢ = 0.02. The
‘operating speed of machine is 600 rpm and the unit is constrained to
move vertically. Find

(i) thedy ic amplitude of machi

(iz) the force transmitted to the supports. (P.U., Aero 93, 92)
SoLuTion. my = 20 kg, m = 100 kg

e=05%x10"m

me _20%05x10° 0 o
m [

o= = = e2 B radee

Natural frequency of the system, @,

@, = Vk/m = ;.5_1%_.}! =29.1 rad/sec

« 628
e 291 2108
=465

£=0.02

FORCED VIBKATIUN
Wu‘.ﬂAninsuumenCofSOh‘mm_i{locawdinan
airplane cabin which uibmmuzooocpmwithanwhtudzofo.l mm.
Determine the stiffness of the four steel springs required as supports for
the instrument to reduce its amplitude to 0.005 mm. Also calculate the
max. total load for which each spring must be designed. (P.U., 83)

SoLurion. m=50kg, A=.0005cm, F/k=.0lcm
A

1 S
— g (neglecting damping)
Frk~ 11-7)

2
Fe (.255602@] = 43820.44 (rad/sec)’
08 k

g:—"xg=4
e 50

So using general relation
0.0005 _ 1
01 1-7
which gives, k=26100 N/m
Max. dynamic load on the springs
= mw’A = max. inertia force on the instrument
= 50 x 43820.44 x 0005 x 10°*
=1096 N

Hence, each spring is subjected to load

10.96
4
MLRL”.AMMMhm?gamwoﬂookgand”:uppw:ua
1 ] 7.84 x 10° N/m has an unbalanced rotating
m:ﬂmhzmmmmmquaumoﬁm
rpmAnumeadompi:wfadoro/e=0.20.Mm
(a) the amplitude of motion due to unbal
(b) the transmissibility, and
(c) the transmitted force.
SoruTioN. m = 100 kg, k = 7.84 x 10° N/m,
F=392N,e=020
2nN _ 2=m x 3000
©="g0 = 60
=314 rad/sec

=274 N.

(P.U.,87,88)

FORCED VIBRATION 13

L%
me N1 -r) + ()
m
L .. __4.65 .
10x 107 V(1 - 4.65) + (2 x .02 x 2.158)
A=127x10"m
Unbalanced force (force because of unbalance mass)
=mg e
=20 x (62.8)° x 5x 107
=39.44N )
The force transmitted to the foundation is given by the expression
F, Vis

3.4V - P + 2o’
= (1 - 4.65) + (2% .02 x 2.158)°
Fr=1084N.
MumAwrﬁcaln'ngleMairme'havmea
mucafsoouicmuntaionxprimhavmgmﬂnmof
1.96% 10° N/mand €=0.20. The rotating parts are completely
bal d and the equival ‘ncipmcaﬁngparﬁwagh20h¢:mmh
iso.zmmuimthdymkmp&mdcaﬂ‘nnwdnfmnandw
phase difference b the motion and excit force if the compres-
sor is operated at 200 rpm. (P.U., 90)
SoruTion. m =500 kg, k = 1.96 x 10° N/m, £=0.20
mg =20 kg, m=500kg e=01m

1’& ‘\’1.96)(10'_ S————
Bu= N = 500 1%

2nN _ 25% 200
w= 60

60
r=/0,=1.057

A=111

L;%gl
me N1 - + e’

= 20,93 rad/sec
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A - 1.11
20x.1 N - 111+ (2% 2% 1.057)°
500
A=001m
Phase difference
af 2er -2 x.2x1.057
¢=tan™ = tan Y £ X2 X S997
(1 ,1) ( 1-111 ]
$=105.9°.
Examrrr 4.36. A 1000 kg hine is 2 di
cprmgsoﬂotalapnng ¢ k and negligible d M fo;‘:\re hi,

is subjected to a harmonic external fome ofampluudc F=49N and

frequency 180 rpm. Determine :

The amplitude of moti hi ;
mitted to the foundati ff andl SRS fomet‘r:::.
k=1.96x 10° N/m. a,’U ’.,'8. 5

SoLurion. Natural frequency @, = \' ‘\’ 1.96 x 10°

-44.27rsd/lec

o 2N _ 2z x 180 .
©="e0 60 = 18.84 rad/sec
3 _18384

r=e/o,= “2,,=0425
=181

F 4%
F=4%N, = -
T 25x10%m
We know the relation
A
F/k (1__'))3
S/ Ve |
25x10* (1-.181)
A=305x10"m
Force transmitted

o o

F 4(1_")1

Fp= 490 —
=490 G T

F.=50RaAN

HE MECHANICAL VIBRATIONS

Whenthemhrnmounudm
tidks in given by ay on the shaft, the static deflec-
we 39.24 x (.25)°
CARET T 48x1.96x 10" x 4.9 % 100
5=133x10%m

PR AT
& 3 133x 107 271.5 rad/sec.

ExAMPLE 4.38. A shaft of 2.5 cm diameter, freel: ported

/ . n ly s
be?nm%cmapad,wﬁaaninglzmmmbdb::ofzoz
midway between the bearings. Determine the first critical speed. Assume
thatahcﬁmc:midhuadcudtyofapn/cm’andxia
2.1x 10° kg/cm®. (Roorkee Uni., 66-67)

Sorurron. If a concentrated load is acting at the centre ,

:’honweighthwbehkeninhmum,then:ﬁtdeﬂnmn' ‘:m

-7’8—lx4x(?.5)’ =0.04 gm
=.04X104k‘
1-_-3"_,(.1‘-%3((2.6)‘:1.9!6@‘

- .
(ﬁ+%x.uxlo*x15]1s’

_ (020 +1.457 x 10 (75) _ 02145 x 75°
Bx21x10°x1916  193.13x10°

5=.0468x10"cm

FORCED VIBRATION 2

ExamrLE 4.37. A rotor of mass 4 kg is ted on 1 cm dis
shaft at a point 10 cm from one end. The 25 cm long shaft is supported
by bearings. Calculate the critical speed. Ifthtwunaf‘mvuyofﬂu
wcuowmmmyﬁwnmmmmmdmm.ﬁndu‘e
deflection oflhc:haﬂwhm its speed of rotation is 5000 r.p.m. Take

E=196x10" N/m’.
Find the critical speed when the rotor is mounted midway on the

shaft.
SorurtoN. The critical speed is given as
w-\E
Wbx

and 8-wn(f-x‘—b’)

W=mg=4x981kg=3924 N
[=25em=.25m

x=0,10m

5=25-.10=015m
d=10cm

1=3‘id‘=—"-x(o‘ou‘ =49%x10m*
53924 15 % .10 (0.25% - 0,107 - 0.15%

6x1.96x10" x49x107°x025
=12257x10* m

o,

Critical speed @, = \j J 2251x10“
@, = 282.7 rad/sec
282.7 x 60 _

= 2% =2701 rpm.

We can find m-gN——-ztxe:ow =523.33 rad/sec

Given, ¢=0.03 mm
523.33 _
r=o/i= 2827 185
=342

__er® _03x342
x-r, ———3‘2 1 =0.042 mm

FORCED VIBRATION 2

_Alg _A[f981x10° _
m,_\ja_‘\l : 4578 rad/sec

‘(&3
fo=go=T29Ha.

ExampLE 4.39. The rotor of a turbo super charger weighing 9 kg is
keyed to the centre of a 25 mm diameter steel shaft 40 cm between
bearings. Determine :

(@) the critical speed of shaft,
(b) the amplitude of vibration of the rotorata speed of 3200 rpm,
if the eccentricity is 0.015 mm. and

(e) the vibratory force transmitted to the bearings at this speed.

Assume the shaft to be simply supported and that the shaft
material has a density of 8 gm/cm”.

Take E = 2.1 x 10° kg/cm®. (Roorkee Uni., 69)
Sorution. The total weight of rotor and shaft

1 %
’9“‘“1000"35"4‘“‘“

=(9+8x 10"x.486xzx2‘5’x40)kg

=9.763 kg
Static deflection & = WI°/48E]

I—-—d‘-—x(zs) =1.916 cm*

_,9.26_8_’_‘.92)__. 323524)(10"
8= B x21x10°% 1.916

_1/g ' 981 x 107 10°
@, = 393504 = 550.6 rad/sec

=5261 r.p.m.
2eN 22 x 3200 _
W= =60 = 334.9 rad/sec
® £ 0608
o
The amplitude of vibration

0.016 x 608 =879 % 10" mm

A 1-r’= 1- (.608)
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{¢) The force transmitted to the bearings
F=m(x+e)w®

= oo (879 % 107 +0.015) (3349

=244 kg.

EXAMPLE 4.40. A disc of mass 4 kg is d midway b
bearings which may be assumed to be simple supports. The bearing span
is 50 em. The steel shaft is of 10 mm di ter and is horizontal. The
centre of gravity of the disc is displaced 2 mm from the geometric centre.
The equival i lamping at the centre of the disc-shaft may be
assumed as 50 N-sec/m. If the shaft rotates at 250 rpm, determine the
maximum stress in the shaft. Also find the power required to derive the
shaft, at this speed.

Take E = 1.96 x 10" N/m?.

Sorution. Given m = 4 kg

The static deflection, § = Z:Lg

e=2mm
I=50em=.50m
E =196 x 10" N/m*
d=10mm= 1.0 cm
:%d‘:&x(lxlO")‘:th 10 m*
48ET = 48 x 1.96 x 10" x 4.9 % 107" = 4609.9
oMl 4x98x(5)
48E[

4609.9

__49 -3

= 36099 1.0629x 107 m
Critical spoed, m.,=\/5 AJ—”— =96 rad/sec

8 1.0629 x 107
Angular speed of shaft, 0= 2N = 25 % 250 = 26.16 rad/sec
60 60
The frequency ratio p=w/o.= 2%&!-6— =0.2725
. ¢ ___ ¢ 80

The damping factor, c-m-m_—2x4x96

MECHANICAL VIBRATIONS
The maximum stress under dead load conditions
Omax = (Fraax)dend ioad X 1.278 x 10°
= (4 x 9.8) x 1.273 x 10°
= 4.993 x 10" N/m?
The power required to drive the shaft
2rNT

P==—

60
where T = damping torque
= damping force x x
= ot x x = cax® = 50 x 26.16 x (.16 x 1074?
T=3348x10° N-m
P_mexG%wx 10°

= 87.6 x 10™° watt.

Examrre 4.41. A rotor of mass 12 kg is mounted in the middle
%mdmmshaﬁwppomdbammbwﬁmwz
Mmﬁmmhaher.mmbrhllminga@mmmwicay.lfﬂu
system rotates at 3000 rpm, determine the amplitude of steady state
vibrations and. the dynamic force on the bearings. Take
E =2x10° N/mm® (P.U., 95)

SoruTron. Let us assume the shaf? si i
is given by R simply supported, its stiffness
4 ABEI 48x@2x 10“)&::(.025)‘
P (0.9)°
= 2523 x 10° N/m

k
3
Natural frequency o, = Q; - vwﬁ’.‘.&

=145 rad/sec

2rN  2x x 3000
e 0=0 =g =100%rad/sec

Using equation (4.10.1), we have
Il o 12m
e -
o) . (145 Y_
(u]l : [100:]. 1

x=-02x10°x1.271 = - 2.542x10° m

(Roorkee Uni., 90-91)

FORCED VIBRATION 219
We can use equation (4.11.8) for finding x

2
x_
e “Va-py + @by
. %—E’—” =0.080
2" 11 - (27265)1" + [2 x .065 x .2725)°

x=016mm=,16x10"m
Thedymmicloedonmeburinpcnnbedemminedn

F.=(Spring force)’ + (Damping force)’
=Yk (cam)?
=z VR + 0

bo=0l.m=96x96x4=36864 N/m
2 =1.3589 x 10°

So Fy =.16 % 10° \(36864)" + (50)° x (26.16)"
=590N.

The dead load on the shaft W =mg
=4x98=392N

Total maximum load on the shaft under the above conditions
=590+392=451N

We know that stress relation is expressed as

o M

- —

y I

gince M ==~

Fid___8F1 [ u)

oM,
1 x
&)
=
I-ﬁd‘
y=d/2
Themnimumatrmundcrdymmicconﬂiﬁonsilgivmu
.Blfl‘ 8F x .60
Omax = O T Ex (X 10
= Fe X 1.273 x 10°
=5.745 x 10 N/m"

FORCED VIBRATION P
Mnegaﬁvedgnindiuunbatmdinplmntiswtofpbm
with centrifugal force.
Dynamic load on bearings
Fp=k.x
=2523%10°x2.542x10° =641 N

%mthalodouudlbearingwillbes—’;l=8.206bl

MGAMairmpnmrdﬁo.k‘opf'lumat?wmt‘a.m
speedofl?ﬁﬂr.p.m.wuparumwdl‘ The recipr
panhlokandcmnkmdiusi:wo"lm WMMMWsa

i lamping of dampi factorO.IE.Specifythf:pwforthe
mounting such that only 20% of the unbolanudf.nmn transmitted to
the foundation. Find out the amplitude of transmitted force.

(AMILE., 1993)

SoLuTION. Mass of enmpnm=450kg.tpnd = 1750 r.p.m.

Mass of reciprocating parts = 10 kg

Crank radius =100 mm =10cm =ry

Damping factor § = 0.15, T.R. = 20%

The transmissibility ratio (T.R.) is given by

1+@57 D)
(= +(2%r)

®
r=—
where

TR.=

Putting the values in equation (1), we get
Vit @x015xn® | N1+0097
"‘2'=~—J(1-Fg+(2x.ns»(r)E Ja-rr+0.097
Squaring both sides, we get :

140097°
o'o"1+r'—5’+0.097

147/4-27+00977=25+2257"
r*-4167-24=0

A= 416 £Y(4.16) +96 “"21 EM =17.4022

- - = = 67,3 d/sec
But =r, 0,=7 ) 67.375 ral

(Fruax=45.1N)
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Weknowt.hatu_;\,;k:

or k=wl.m

= (67.375)" x 450 = 2042.73 kN/m
The amplitude of unbal d force b of recipr ing parts
=my ry w®=10x.10 x (183.26)*
= 33-“‘ m
The amplitude of force transmitted
=T.R. x 33,584
=0.20 x33.584 = 6,7168 kN
EXAMPLE 4.43. A trailer has 1000 kg mass when fully loaded
d
250 kg when empty. The spring of the suspension is 35(.; AN/m. ;"l‘w
damping factor is 0.5 when the trailer is fully loaded. The speed is 100
Im}/ hr. The road varies sinusoidally with a wave length of 5 m. Deter-
mine the amplitude ratio of the trailer when fully loaded and empty.
(AM.ILE,, 93)
SoLuT10N. Mass of empty trailer = 250 kg, £=050
Mass of loaded trailer = 1000 kg, k=350 kN/m

of trailer = 1 - 100 x 1000
Speed er = 100 km/hr T30

v _Wave !mh_ 5
Time period » =g oty = 5777 %

=27.77T m/sec

. 2%
Forcing frequency, o = T —5—/—2—2;—-7-7’- = 34.896 rad/sec
Natural frequency of empty trailer

='\,i _w’ssoxm'
@, m = Y 250  =37416rad/sec

: 34.896
T T
Frequency ratio r = w/wm, 27416 0.933

The ratio of amplitude of vibration of i
Sieite 6 aiveti as on of empty trailer to that of road

A:jﬁ%ﬂ%a YL+ (205 x0.983)"
B ya- +(2%r {1 - (0:933)°) + (2 x .50 x .933)
.%—"%:11-:;51.4513

m:mmmumummmm&equmymump
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When damper is fitted, the amplitude of resonant vibration is
2 mm.

For resonance 0/, =1

2207.25
Frk  1226.25 a
So z-2§r- %x1 (r=1&Z=2mm)
£=045
Damping coefficient

C=EC.=(2m w,) & =2x 1000 x 35.017 x 45
=31515.3 N . sec/m

ExampLr 4.45. A shaft 1.5 cm dia and 1 m long is held in long
bearings. The weight of the disc at the centre of the shaft if 15 kg. The
eccentricity of the centre of gravity of the disc from centre of rotor is 0.03
em. The modulus of elasticity of the material of shaft is 2 x 10° kglcm’,

The permissible stress in the shaft material is 700 kg /cm®.
Find : (i) The critical speed of the shaft;

(i) The range of speed over which it is unsafe to run the shaft.
(AMLE,, 1995)

Neglect the weight of the shaft.
Soutrion. Given : W=15kg, [=100cm, E =2 x 10° kg/cm®,
f=700kg/cm®, e=0.03cm, d=15cm

For a shaft supported in long bearings, it may be taken as a case
with fixed ends and with point load W, the deflection 8 may be written

as
t]
5:1:'2";- Y100 =0.157 em
192x2x10‘xj:—‘-(l.6)‘
We know that natural frequency of transverse vibration is given
by

_\’1 ,\’ﬂ_
o = 3 0.157 = 79.05 rad/sec

The critical speed can be written as
N waq_eoxm.w
B 2n 2x
We know the bending relation
M f
Iy

= 754.87 r.p.m.

FORCED VIBRATION —

1,& _‘\,350:(10’ =
o=\ - = 7000 18.708 rad/gec

34.896
Frequency ratio r = J27rg = 1.8653

Amplitude ratic in this case

A 1+ (@287 V1 + (2 x 0.5 x 1.8653)°
B~ 1- 7;; + @by Vi1 - (1.8653)F + (2 x .50 x 1.8653)"
_ 2118
~ 3.1026
EXAMPLE 4.44. A machine of mass 1000 kg is supported on s'pn’ngs
which deflect 8 mm under the static load. With negligible damping the
machine vibrates with an amplitude of 5 mm when subjected to a
vertical harmonic force at 80 percent of the resonant frequency whgz a
dampericﬁndilhfnundthauhermm:ampﬁludcic2mm. Find :

(i) The amplitude of the damping force, and

=0.6819

(ii) The damping coefficient.
SoLurion. Deflection =8 mm =8x 107 m
The spring stiffness is given by
___mg __1000x981 _
k-deﬂ s 8 1226.26 N/mm
Natural frequency of vibration
_\I g2 _[ 981
9= N Geflection = Y8x10°°
= 35.017 rad/sec
Excitation frequency
= 50 x @, = 0.8 % 35.017 = 28.0136 rad/sec
quuencynﬁor-&ao.s
Thempﬁtudodvibuﬁonduhudﬁncmlhgimby
z= £ o)
Va-rpvan
Assuming damping factor § = 0, equation (i) can be written as
F=Z.kQ-7
=5x(1-08%x122625 (' Z=5mm)
F=220125N
FORCED VIBRATION s
lnthilasnll=FT"-lndy=d/2
where F = dynamic force causing bending in the shaft
=
Bx—d*
Fi_f ~p 8 f "X8% 2x700
So a!‘y or F T°y 100 x=Z
F-g-x'lsxx!—f-:x'l (" d=15acm)
F=1855 kgf :

Additional deflection due to dynamic force F, can be determined by
proportion as
18.55

x=f =2 x0.157=0194 cm

‘When the shaft is vertical

In this case the dead weight of the disc is 15 kgf may be neglected.
We know that

2£--——'1 < Mu/n;zr:ﬂ
¢ (a N,
w
x 1 ~
+== =
e -7
r
014~ A
£ 50 '1-:"*“’“ M =r*or r=093, 10876

‘Thus these are two values of gpeed. Let N, and N; be the speeds

%l-r or N;=N¢.r=T5487x093 =702.03 r.p.m.
.

and %-rcN,:N..r:?Mxl.oe‘lcamlr.p.m.
When the shaft is horizontal

In this case, the tota! deflection will be
x=8+8;=0.157 +0.194 = 0.351 ecm.
" . s
Unngtbcldabon,t;--l—_?

40851 _ ”
003 1--2
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There are two values of r i.e. r; =0.9598 or
ry = 1.04568
Thus there will be two values of speed.
Ni=N_.r;=754.87 x 0.9598 = 724.52 r.p.m.
and, N3 =N, .ry="T5487 x 1.04568 = 789.35 r.p.m.

Problems

L. A mass of 200 kg is suspended on a spring having a scale of 30000 N/m
and is acted upon by a harmenic force of 80 N at the undamped natural
frequency. The damping may be considered to be viscous with a coefficient
of 200 N sec/m. Calculate.

(a) the undamped natural fr
(b)lhmphmdoofv&ntmcﬁhomn.ud
(c) the phase difference between the force and the displacement.

2. A reciprocating pump 300 kg is driven through a belt by an electric motor
at 4000 r.p.m. The pump iz mounted on isolators with total stiffness

15 M N/m and d ing 6 k Ns/m. Dy ine the vib y amplitude of
tbematdumnmmdduwwmmhnmmd
ion 2 KN. Dy ine the amplitude at resonance also.

S. A small motor driving a compressor weighs 35 kg and causes each of the
rubber isolators to deflect by 4 mm. The motor runs st a constant speed
of 2000 rpm. The compressor piston has a 80 mm stroke. The piston and
reciprocating parts weigh 1 kg and perform gimple harmonic motion. The
amplitude of vertical motion at the operating speed is 0.50 cm. Find
damping factor for rubber.

4. Aspring mass system has a natural frequency of 5 Hz. When the mass is
at rest, the support is made to move up with displacement
x=24sin 4x ¢ (¢ in seconds and x in milimeters) measured from the
beginning of the motion. Determine the distance through which the mass
moven in the first 0.15 second.

5. An engine is mounted on 4 rubber pads such that the static deflection is
5 mm. If the engine and coupling weigh 400 kg above, what speed must
the motor run for 90% isolation.

6. An aircraft instrument of mass 15 kg is to be isolated from the engine
vibrations. The engine runs at speeds ranging from 1600 rpm to
2400 rpm. Detarmine the rubber stiffness for 95% isolation. Negilect
damping.

7. Design a vibrometer to measurs amplitudes at a lowest frequency of
10 Hz with an accuracy of at least 1.5 percent. The seismic mass is to be
about 1 kg. What is the stiffnesa of the spring ? How much should be the
damping in the system 7

8. An accelerometer is having its natural frequency as 15 x 10° Hz. Find the
amplitude and phase distortion of a signal of frequency 7 x 10° Hz Damp-

ing ratin iz 075
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18. Consider the engine valve system shown in the figure 4.1 P. Assume the
spmgwbemhu;ndthapuhmdhﬁumﬁmwymﬁndlht
equation of motion of the temn and the i 1
frequency m, and m,mthmnofpuhmdnndnhomdh.hme
stiffness of the spring.

FigAiP.

(b) The idling speed of the engine iz 550 r.p.m. The push rod is operated
bynnnwhehnmrhh-wiodnhuuﬁu&mwﬂnhw

the mechanism is lower that half the engine idling speed. Assume mass
of the valve, m, = 0.25 kg, mass of the piston, m, = 0.3 kg, /= 10~ 5 kg-
m’,a=35cmandb=25cm

ey ]

T+me b+ mpa®)
20. In an i on forced vibrati d’lqhmd
mmu-mmmmmku
and 44 Hx. Find the damping factor of the system. (UPSC, ss)
21. A machine of mass 100 kg is mountod on isolators having stiffoess of

1.2x m'w--.a.mwm A piston of mass 2 kg within the

hasa mmumdanﬂnwd
lBQ)qduhmn Au-nwlh- motion of piston to be simple harmonic,
determine.

(#) the amplitude of motion of the machine,
(#4) force tr itted to the foundati
~ ohase ancles of the transmitted force and machine motion with
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8. An ) eter is used to the motion of a structure which
vibrates &t 15 cpm. The static deflection of the sgismic mass of the
accelerometer is 1,30 cm. Determine the amplitude of the structure if the
reading of instrument is 0.6 cm.

10. Determine the error in an accel ding if, the natural fr
dhwahrmusmmmﬁ‘quenqufm-obuﬂodmm
11, Resonance test on a large structure is carried out with a constant force
excitation of 150 N. The test reveals that the maximum amplitude of
.01 mum occurs at 10 Hz which is halved st an excitation frequency of 7.3

Hz. Find the damping ratio and identify the system.

12. Show that maxi locity of vibration of spring dashpot syst
occurs Bt and independent of dampi

18, Asn ins for ing 1! i ds 35 oscillationa/!
The natural freq of the i is 750 cycles/s Find the

leration of the machine part attached with the instrument if the
recorded amplitude is 0.03 mm. Find the amplitude of vibration of the
machine part.

14. A reed techometer having 14 reeds has a frequency range of 6 to 15 Hz.
Reeds are made of steel and have dimensions as 1 mm thick, 5 mm wide
and 70 mm long. Calculate the end mass for the reeds corresponding to
the two extreme frequencies.

15. A vertical spring-mass-dashpot system works with the following data

m=25kg

k= 1500 N/m

e=02
A constant force 40 N acts on the mass and the system is in equilibrium.
Solve the equation of motion.

18 A hi ighting 75 kg is d on springs and is fitted with a
deshpot to damp out vibrations. There are three springs each of stiffness
10 kg. per cm and it is found that the amplitude of vibration diminishes
from 3.84 ¢m to 0.64 em in two complete oscillations. Assuming that the

damping force varies as velocity, find the resi of the deshpot at unit
velocity and compare the freq of damped vibration with the frequen-
cy when deshpot is not in operation. (KU, 99)

17. An electric motor of mass 30 kg is running at 500 rp.m. The motor is
supported on a spring of 7 kN/m and a dashpot which offers a resistance
of 600 N at 0.25 m/sec. The unbalance of the rotor is equivalent to a mass
doaumuﬁmmmmdmxmummm

d to move ically, d ine (i) the damping factor, (i)
uuphhuhotv{bnthnndph-ende lnd(m)m:wdnnd
resonant amplitude. (AMLE, 98)

18. A 15 mm diameter shaft rotates in long fixed bearing 60 cm apart and &
dise of mass 20 kg is secured at mid-span. The mass centre of disc is 0.5
mm from the shaft axis. If the bending stress in the shaft is not to exceed
120 MPs3, find the range of speeds over which the shaft must not run.

E=2x10" N/m*® (AM.LE.,, 94)
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22. A vertical shaft of 0.5 cm diameter is 20 cm long and is supported in long
bearings at its ends. A disc weighing 50 kgf is attached at the ceatre of
MNagkdlwnymtnmﬂumMmmun:hmtnf
the disc to the shaft, find the critical speed of rotation and the
bending stress when the shaft is rotating at 75% of the critical speed. The
centre of the disc is 0.25 mm from the geometric axis of the shaft.
E =20 x 10° kgtlem®. (UPSC,89)
23. A ghaft 12 mm in diameter and 600 mm long between long bearings
carries a central Joad of 4 kgf. l!".htecamdgnvityofmnluduOme
from the axis of the shafl, te the 1 stress in the
vauntnmmat’%d:umwmimvaluenfs
(Young’s modulus) of the material of the shaft is 2 x 10* kgf/mm®.
(U.PS.C.,86)
24. A mass weighing 10 kgf is supported by a spring of stiffness 20 kgf/em
and a viscous damper. D;mn‘ﬁ'unbnhm.thcnmphtudaofwbnhm
decreases to one-tenth of its initial value in two complete oscillations.
Find the value of damping coefficient of the damper.

If a si idal force of litude 15 kgf and freg y 600 cycles/;
acts on the mass, fmdthanmpbtndzmdybuedth-(n)mtmoﬂhe
mass and (b) foree transmitted to the support. (UPSC, 82)

25. (o) Explain the term whirling or critical speed of a shalt. Prove that the
whirling speed for a rotating shaft is same as the frequency of natural
transverse vibration.

(5) The following data refer to a shaft held in long bearing :

Diameter of shaft = 1.5 cm ; length of shaft = 1 m ; weight of a disc at the

centre of the shaft = 15 kgf; eccentricity of the centre of gravity of the disc

from the centre of the rotor =0.03 cm; modulus of elasticity for shaft

material = 2 x 10° kgf/em®. Find the whirling speed of the shaft in r.p.m.
(U.P.S.C;81)

26. An engine is mounted on a concrete block which is isolated from the floor
s shown in figure 4.2 P. The unbalanced force of the engine in Newton

Y

l Concrete block I
:’ 'l' ()
< 2

ARNAALARE AN LR LR LR SRR Y
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i rubber
§ . i Jinder air compressor of mass 100 kg is mounted on
atn r.p.m. is given by : " A“""m'f,hmhwmmn..m eas and dgmping constants of
r(o.loo(——“ ]’u—”"“ the rubber mounts are given by 10° N/m and 2000 Na/m respectively. If
1000 80
At 1000 r.p.m., it is found that the force transmitted to the floor has an
amplitude of 100 Newtons. Determine the amplitude of the itted (
force at 1500 r.p.m. when the damper is disconnectad, (LAS. 92) = I T
27, Ashsaft 75 mm dia. and 2 m long is fixed at both the ends vertically. A ~

flywheel of mass one tonne is provided on the shaft at a distance of 1.5m
from its upper end. Find the natural longitudinal frequency of vibration

of the system.
E =3 x10° N/mm®. (KU)
28, A periodic torque having a8 maximum value of 0.5 Nm at a frequency A
corresponding to 4 rad/s is imp i ona flywheel suspended from a wire. Belt
The wheel has moment of inertia of 0.12 kg.m” and wire has stiffness of
1 Nm/rad A vi dashpot applies a damping couple of 0.4 Nm at an
angular velocity of 1 rad/s. Find the maximum couplo an dashpot. Q Mo
(KU)
29. A spring damp stem is subjected to a harmonic force. The Rutber mount
amplitude is found to be 20 mm at resonance and 10 mm at & frequency ey
0.75 times the r frequency, Find the damping ratio of the system. ETIRTTT I 77777
(b) The landing gear of an airplane can be idealized as the spring-mass- Fig4AP.
damper system shown in figure 4.3 P. If the runway surface is described o saibial of the is equival t to & mass of 0.1 kg located
at the end of the crank, determine the response of the compreasor 8" &
crank speed of 3000 r.p.m. Assume r = 10 cm. @197
31. An industrisl machi ighi 500 kg, is on springs with a static
" deflection of 5 mm. If machi L bal “‘”g)::'f
Housing with (0 m(a)ﬂnhmtmsniuedumnm_rn 1200 r.p.m. oy
M e S dynamic amplitude at this speed. Assume damping factor equal to 0.
Mass ot NicoNe Sy m 1f the machine is d on a large te block weighing 1300 kg.
°""'"'"] | What will be dynamic amplitude at the above speed. @Y, 90
l 32. w.mdeulymem:ﬁdmd?nmmm‘}“
Wheel k is desired to study the vibration of the foundati ofum:yhl?dﬂm
s mmwammmor.p-nhmﬁ‘"m
yin : that the vi jon consists of two harmonics,
Rurwoy It ia krl;vzﬂmq inertia forces in the engine. Find the maximum
]. S that the vib et myhrv!inorderwk&pﬁ_\!
/ \_/ \/ amplitude distortion below 5%. . Mﬁu?l.)
3. Determine the torsional stiffness of a spring for a Torsiograph with a ring

inerti ¢ ? sothat the difference in
ha amnlofmcmoﬂ&(ixlo‘.u-m.n
m:‘r:fmvemouumauudmmm-mmuwmm
ﬂwhanlhelhmmmﬁmn&vqmdlmqnw'm.

Neglect damping. If the shaft amplitude is 0.01 radian, determine the
Fig43P. corresponding dynamic torque on the spring. )
¥ () =yo coe o . determine the values of stiffness and'damping coefficient Determine the cﬂtkal lpe:d dl. 1000 kg lmﬂ";&&"‘:h:
““.;;"".".'."" m&hjnd. d_ﬁbrl_t:?o{t!:elhﬂm(z)too,lnm = .__,‘v "”i?’&:.—'_...-_:-m-m (Roorkee Uni. 1999-2000)
e MECHANICAL VIBRATIONS FORCED VIBRATION w3
34. Asingle rotor of mass 7 kg is mounted midway between bearings (each of 87. An aircraft instrument of mass 10 kg is to be isolated from the engine
gmmh)mummxom&.mm.mhmnn vibrations. The engine runs at speeds ranging from 1800 r.p.m. to 2600
is known that CG of the rotor is 0.025 mm from its geometric axis. If the r.pnmmmmmmmmmmm
ny:tamr::dmnlmr.p.n,ﬂndmﬂnamo!vibnﬁm.m mine the rubber stiffness for 80% isolation.
dynand itted to the bearings and the maximum stress in the 38. The hand vibrameter is a simple seismic device used in field work for
shaft, when (a) the shaft is vertically supported (5) the shaft is horizon- approximat 8. The peismic mass A i ded on a spring
v Buahovninﬂgunlﬂ?.mmwnlﬁoqumydlh.'mmﬁ:‘dz.g
Nﬂamewmdwmmmmmhm cps. If the indicated amplitude is 0.95 mm for & known frequency of 2
(Roorkee Uni., 94-95) cps, what is the troe amplitude ? (Roorkee Uni.)
35. (a) A piston of mass 5 kg is travelling inside a cylinder with a velocity of A

15 m/s and engages a spring and damper as shown in figure 4.5 P.
Det'erniutha maximum displacerent of the piston after engaging the
spring-damper. How many seconds does it take ?

k230000 N/m Bm/aee m=Skg

]

m

= * .

\-c= 175N sec /m

FigdsP,

(b‘)lfwthnylbulhwnh&m&skd'hnﬂneﬂumﬁdmtaf
friction if a tensile force P (= mg) elongates the spring by 6 mm. The initial
amplitude of zo = 600 mm reduces to 0.8 of its value after 20 cycles.

]
7

Fig4.7P.

—

ARRAN

*
F—wmwn—

N\

77 P77 7T77
Fig4s P,
{c) Write equival i damping coefficient for (i) Coulomb damping
and (ii) material damping. (Roorkee Uni. 94-95)
&Anntnndikwhewddnilsorlh d on four identical

(springs & shock absorb Due to its weight, it sags 0.23 m.
MWMAMMJOANm-Mdean
md.hemhpln-dunph&dmwhid:mumnyac

speed, having an amplitude of 1 em. Find the amplitude of the
car. Assume CG of the car at the centre of the wheel base. What is the
dynamic load on each isolater due to vibration ?  (Roorkee Uni. 94-95)
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Two Degrees of Freedom System

5.1. INTRODUCTION
The system which requires two coordinates independently to describe
its motion completely, is called a two degree of freedom system. In such
a system there are two masses which will have two natural frequencies.
So the system will be having two equations of motion which may be
treated as coupled differential equations. Sometimes, non-harmonic
tion of the kes the system more complicated for analysis.
The system at its lowest or first natural frequency is called its first
mode, at its next second higher it is called the second mode, and so on,
If the two masses vibrate at the same frequency and in phase, it is
called a principal mode of vibration. If at the principal mode of vibra-
tion, the amplitude of one of the masses is unity, it is known as normal
mode of vibration.

Fig- 5.1. Two degrees of freedom system.

In figure 5.1 two of a simple pendul are coupled
together by means of a spring. Similarly, a shaft of torsional stiffness &
is having two rotors which can have angular displacements 8, and 8,
independent of each other. Thus it is a two degree of freedom system.

This chapter deals with the very useful mechanical and mathe-
matical applications of two degrees of freedom systems besides making
a link between the single and multidegree of freedom systems.

5.2. TORSIONAL VIBRATIONS

Consider figure 5.1 where 2 shaft AB is carrying two rotors having
moment of inertias as I, and I;. Let 8, and 8, be the angular displace-

o MECHANICAL VIBRATIONS
a - I I
a 1 1; +l=- 7|-
a_ I
& s wul .
a; I, (5.2.6)

Theucﬁmoﬂheshaﬁwhmtboamhrdhphmmentilum,h
known a8 node. The angular displacements of the rotors are inversely
proportional to their inertias (equation 5.2.6). In figure 5.2 the first and

the second mode shapes are shown.
4
I
L3
g [} —J,
ol War0 j@n

First mode shape

N |
[ Nede

o W n { K(i,+ 1)
% shope hiz

Fig. .2 Torsional vibration.

§3. VIBRATIONS OF UNDAMPED TWO DEGREES OF FREEDOM
SYSTEMS

Iatmmﬁdutwodepaespﬁngmnylﬁunulhwninﬁm
5.3. The two masses m, and m, are defined by their positions x, and
x3 respectively at any time ¢.
The equations of motion for the two masses can.be written as
myEy + (Ry + Rix; —key =0 «(6.3.1)
My + (k + ka)es ~ kxy =0 ..(5.3.2)

TWO DEGREES OF FREEDOM SYSTEM pes
ments of the rotors at any instant from the mean position, The equation
of motion for each rotor can be written as

I.%u(o,-e,)-o
I % +h(8;—6)=0
The solution may be assumed of the form
04 =a, sin ¢, B, =a;ysin o
So #, =~ 0, =— 0ty (522
Substituting these values in equation (5.2.1), we get
- @ha; + kiay - ap) =0
- 0*lag + klaz - ay) =0
(- &’y + k)ay ~ kay =0 .5.2.3)
(- 0’y + k)ag - kay = 0 A5.2.4)
Equating the determinant of the above equation equal to zero, we
get

~(6.2.1)

'+ k) (L k) -k =0
'l ly - 0Lk - @kl + K - K =0
¥y - Ik - Ik) =0

w’[m’-ﬁ-;(lnlg)]:O

So =0

- ,&(I‘ +1I3) .(5.2.5)
and @ = Ll

Consider equation (5.2.3) and putting the value of @, from equa-
tion (5.2.5) in it, we get

= Y
L]
Similarly, putting the value of w, from equation (5.2.5) in equation
(5.2.4), we get

a_-o'hrk_-o'l
ay k k
kD) L
Ly k
TWO DEGREES OF FREEDOM SYSTEM 37
Xy x
l‘ ' * *y ;
7 L} " 7
Fig. 5.3. Two degrees of fresdom system.

Assume that the motion is periodic and is composed of harmonic

motions of various amplitudes and fnquenas These above equations

can be solved for the natural freq: corresponding mode
pes by assuming a solution of the form

x=A; sin (0% +¢) ..{5.3.3)

Xy = Ay sin (@t +9) ..{6.3.4)

where A, nndA,mmpﬁtuduolvibnﬁmoﬁhstwowmdmis

one of the natural of the system. Substituting these equa-
tions into equations (5.3.1) and (5.3.2)
~ myA @ sin (@ + ) + (ky + K)A; 8in (0 +¢)
- kA, sin (@t +¢) =0
Aslk +ky —mye”) ~ Ak =0 ..(5.3.5)
Similarly, — Ak +Aglhy +k - mga) =0 .{5.3.6)

These mWﬁmMWhA, and A,

mdnﬁmhqumﬁuummmtdﬂn

coefficients of Ay and Ay, ie.,
ky+ k—my’ -k _
-k Ryt k- maa®
Expending and solving it, we get
(k.-»h—m;.’)(lu»t-n,u’)-k’ﬂ) -{5.3.7)

@ - u_*;,b;é]g’ﬁégtﬁ‘_*z,o
my m mymy

This is the frequency equation and is a quadratic in «' and gives

two values of @*.

lfwemumoh=kg=kandm,=m,=m.&oqncnqeqmﬁmm

? 2k !
u‘-[%’;—]u'+’—n;=o

be written ag
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« 4k o 3k
ﬂ)-mﬂ) 0?-0

2,\/&’ 12
W

o L SERRET A
2
‘\/L \’35 .(538
o= Ny, o= Voo )

vhere m,e]an::, are the frequencies of the first and second modes
‘espectively. Amplitude ratios can be written wi
5.3.5) and (5.3.6) as AIERSERE Maguaton

A, = k &
Ak ky~m@® 2k - ma? ~53.9)
Ay kyvk- 2
nd G P | maw” 2k ~ may’
A, r i .{5.3.10)

Amplitude ratio for the first mode can be written as
AT . -\/h
77 Iy =1 puttige= Y, ..(53.11)
e

3k
2%-m.=
A, . . ‘\l 3k
nd [z;l s——_ M __; puttinge= m (53.12)

So it can be seen from the above two i
?k:himm in the same ph?r:.m:m?;mf;:
s e the two masses move out of phase with equal

The frequency of the first and d modes can be written as

@ =2xf;

ﬁ-%-% V% Hz

\, 3
ad et N2 g, ~(5.3.13)

[atrix Form
The solutions from equations (5.3.3) and (5.3.4) can also be written as

xn|_|A A .
[h]-[A;:]nn(mh 0.)+[A:]nn (0 +¢) ..(53.14)
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Mm%y + Ryxy + k(xy = %) + 4%y + oF; ~ F) = Fy(t)
MigZy + Ryxg + R(xz — X1) + Ca%g + o(X3 = Xy) = Fi(t)

which can be written as
Mgy +(cq + g + (Ry + R)xy - cxg - kxp = Fy(0) .(5.4.1)
mg¥y + (g + C)xg + (Ry + R)xy — X, ~ kx; = Fy(f) .(5.4.2)
£l Falt)

e

,';:
k(xg-x) Ky %,
clrz -k Ca%y

Fig. 5.4. Two degrees of freadom system.

‘l'b?lbwom.quﬁmmdwdutuuchm.l'au-
ample, in equation (5.4.1) the motion of m; has x; and x; terms.
Similarly, the motion of mass m; in equation (5.4.2) has x, and x, terms.
These terms are known as coupling terms. So the motion of mass m, is
dependent on the motion of mass m, and vice-versa is also true. The
equations so formed are called coupled equations. I in the equations
(5.4.1) and (5.4.2) ¢ and k are zero, the equations are called uncoupled
&mmﬁcmm.ndn,mmwofd

iy
(b)

The equations (5.4.1 and 5.4.2) can be written in matrix form as

[m. LD Jera —e |[# REAL IR B Fy®
0 my|li|*| —c cra|[n]|T| -k Ktk =: || Pi0)
Then it is of the form '

M z+iClx+[Klx=F (543
where [M], [C] and [K] are 2 x 2 types matrices known as the mass
matrix, damping matrix and stiffness matrix, respectively. ¥, £, x and
F are the acceleration vector, velocity vector, displacement vector and

fnvnn vartne wasmastivale Thasa ama 3w 1 fona swatsisas
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where A, = amplitude of x, at frequency @ =,
Ay = amplitude of x; at frequency @ =
Ajyq = amplitude of x; at @ =y
Agy = amplitude of x; at © = w; and so on.
So it is clear from equation (5.3.14) that the double subscripts are

applied to the amplitudes, out of this the first subscript stands for
coordinate and the second to the frequency.

From equations (5.3.5) and (6.3.6), relative amplitudes can be
written by substituting the values of @; and u in place of .

Ay _ k _kakyom’ 1 ..(5.3.15)
An h+k-mop 3 o
Ay k_ _ktky-me' 1 .(6.3.16)
Ap k+th -mor k T

where «; and o, are tants which define the relative
amplitudes of x, and x; at both ; and ;.
Thus equation (5.3.14) can be written as

[2].["‘:;'11]&::(».:»o.)+[A‘:";']-inwm)
Ay 1
Ay o
So Ay =Apm
and A =Agsta

[::]:[:l]Anoin(m.t+0.)+[:.]A,,dn(w+m
(63.17)
In the above equation A;;, A;s, ¢, and ¢, are the constants which
can be determined from initial conditions and @, and @, are the modal
ratios. The total motion of each harmenic function x; and x; can be
expressed as

n|_| 1 1] Ansin(of+e)
[q]'[u, “l][“u'hl(ﬂl*-w ..{5.3.18)

In the above equaticn if Ay =0, the first mode will exist.

54, FORCED VIBRATIONS

A viscously damped two degrees of freedom system is shown in

ﬁms.tmsymhﬁngtvommlmdm,hputhudhﬁm
formF.mdF,mvnﬁomfm.cﬁnzmthesymmMnin
fisure 5_4(b). The eauations of motion for the system can be written as
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5.5. DAMPED FREE VIBRATIONS

Again consider figure 5.4(a) for convenience and forces F\(t) and
Fy(t) are not supposed to act on m; and m; respectively. Rest of
the things are as usual, Writing the differential equations of motion for
the two masses, we get

gy + oy + )y + (ky + k)xy — ok ~ kxg =0 .{5.5.1)
Mgy + (Cg + €Yoy + (kg + Bty — 0xy — kx; =0 (552
The solutions to the above equations may be of the form
xy=A e’
2= Age™

Substituting the values of x; and x; in the above two equations, we
get
{m,n2 +(cy+e)e+(hy+R)A - (cs + R)A, =0
[mas? + (e3 + s + (kg + B)Ag — (cs + K)A, =0 A55.3)

The above equations have a non-trivial solution only if the deter-
minants of coefficients of A, and A, are zero ; i.e,

mys® + ey + o+ (B + R) ~(es + k) 2
~(es+ k) mas” 4 (cg + )8 + (Ry+ k)
Expanding the deter ts, we get

(st + (1 +€)s + (y +B)) [mias® + (g +C)s + (kg + k)] — les + kY = 0

cp+c €+ ky+k k+ks ccytegcstec
W L L g | St g Cateycptecs | 2
m, my my my mymy

*[k,(c#cg)+k(cl+c,)&hg(q+c) ]‘+[ hyk+ kky + kyky }=0

mymy mymy
.(5.5.4)

This is called the characteristic equation. This may be solved for
the roots of s which will give its four values. The roots may be real or

plex. The g 1 solution may be written as
Xy =Ape™ + Ayl + Aye™ + Aye'é .5.5.5)
xy=Agne™ + Ape'¥ + Agge™ + Ape™t ..{5.5.6)
Matrix Form

Equations (5.5.1) and (5.5.2) can be written in matrix form as

(% mEMe B SR
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This equation ¢an be written like equation (5.4.3) as
M z+lclx+lklx=0 L85

The characteristic equation for an undamped system can be writ-
ten as

Mx+klx=0
[~ o*M + kJA=0
where A 15 the displacement vector,
Thus k-w'Mi=0 .15.5.8)

This is also known as frequency equation which can be solved very
easily.
56. FORCED HARMONIC VIBRATION

A harmonic force F sin ¢ is acting on the system as shown in
figure 5.5. The differential equations of motion can be wnitten as

myxy + (ky + R)xy — kxy = F sin ot .(56.6.1)
myxg + (k + ky)y - kxy =0 .£5.6.2)
Fsinwt
«-——

ey

NN

>

Fig. 5.5. Forced harmonic vibration.
Let us assume the solution of the form
x) = A, sin{wt + ¢) ..(5.6.3)
and xy = Ay sin(et + ¢) (5.6.4)

Equaticns (5.6.1) and (5.6.2) can be written with the help of
equations (5.6.3) and (5.6.4) as

ky + k- meY)A; -kA;=F .{5.6.5)
~hA;+(k+kg= m,m")Ai =0 ..(5.6.6)
Solving the above equations for A, and A,, we get
& Fiks + & - mys') A567)
(Chy+ b — mg) (hy + k- myw') — &
and Ay L ..(56.8)

T s b —mad (k. + k- mao - A
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Substituting the above terms in equations (5.7.1) and (5.7.2}, we
get
(k_ml(”z“l -kA=0
—kA; + (kR - maw A, =0 -.45.7.6)
The determinant from the above equations can be written as

2
ot - Y BT
-k k — myw
Expansion gives
mymae* - kimy + mpw’ <0 .(5.18)
or w’immae® - k(my + mz)} =0
k(rm, - A5.1.9)
So =0, @= N7 g
From equation (5.7.9) it can be seen that one of the natural
freq ies of the sy is equal to zero, the system is not oscillating.

There is no relative motion between m| and m, and it can move as a
rigid body.
5.8. CO-ORDINATE COUPLING

When we suddenly apply brakes on a moving car or automobile,
two motions of car body occur simultaneously, one the translatory (x)
and the other angular (6). This type of unbalance in the system occurs
because centre of gravity (G) of car and centre of rotation do not
coincide. The uneven road surface may cause unwanted excessive
excitation frequency but this whole is not transmitted to the car body
though the front and rear wheels move up and down very frequently.
This is because of springs and isolators. This type of system is shown
in figure 5.7. G is the centre of gravity of car body, m the mass and I the
moment of inertia. The dotted line represents the deflected form of the
car body. The following coordinates are defined as : x; (£), x, (¢) and
2 (t) are the deflections of ends B, A and C.G, respectively. The compres-
sion of springs on left and right hand sides of the system are
kalx — 1:8) and ky(x + 1,0) respectively for very small value of 8. In the
figure 5.7(b) and (c) the applied forces and moments are shown.

From these diagrams, the equations of motion can be written as
mx = - Ry (x— 158) - ky(x + 116)
18 = kafx —159)l5 - kyx + 1,60,
Thus m% + (kg + kolx — (hydy — kyly)0 = 0 .(5.81)
M_ bl b+ (a2 4 R =0 -.{5.8.2)

TWO DEGREES OF FREEDOM SYSTEM

Thed inators of equations (5.6.7) and (5.6.8) are the same as
the equation {5.3.7) itself. Thus the denominator of the said equations
is the frequency equation itself. The denominator becomes zero when

exciting frequency s equal to the nat

1 fr
1’& -\/313
w= N or o= N

of the syst

It is evident that the amplitudes of vibration A; and A are infinite
when denominators in equations (5.6.7) and (5.6.8} are zero. It means
when exciting frequency is equal to any of the two natural frequencies,
resonance in the system will occur. A, becomes zere when
k + ky = mys® which is taken with the help of equation (5.6.7), thus it
makes m, stationary. While this type of expression is not possible for
mass m,. A little consideration shows that mass m, has been initially
excited by the force and under certain assumptions it is motionless

while mass my has some motion,
The equations of motion in matrix form can be written as

m; 0 |[% k+k -k 5 F 6in ot
[° ”'ﬂ]{ifa}*[ —k k,+k]{,.‘ '={ p }...(5.6.9)

5.7. SEMI-DEFINITE SYSTEMS

The systems having one of their natural frequencies equal to zero
t The ple of this type of system
is shown in figure 5.6 where two masses m; and m; are connected by a

Py

are known as sy

spring k. The equations of motion can be written as

mXy + ki, - x5) =0 LA5.7.1)
mgts + k{xg~x;)=0 . 5.7.2)
xy -
x
my my
Fig. 5.6. Sami-definite system.
For free vibration, let us assume the motion to be harmonic
x;=A, sin{ex + ¢) .{5.7.3)
23 = Ag sinot + ¢) .45.7.4)
and 50 ¥ = - a'ry
¥y = - 'xy .(5.7.5)
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Foeco ond
mements ms
{3
Fig. 5.7. Co-ordinate coupling.

Abave both equations have x and 0 terms, so they are the coupled
equations. The above equations show that the system has rotary as well
as translatory motion.

If kyly = koly, the above equations can be written as
mx +(ky+ h)x=0 .{5.8.3)
and IS+ (kd? + k9 =0 . A58.4)

It can be seen from the above equations that translatory and
wmmoﬂnwnﬂy.ﬁmmuwmwpkd
differential mﬁou.'l‘hhhqaned dynamic coupling.

‘The natural frequencies of such a system are

ky+ky
m

2 2z
and - ’ii?_;ﬂl (585)

If the coupling term (&, - kyl;) is non-zero, the coupling so formed
is known as static or elastic coupling.

‘D.ae solutions of equations (5.8.1) and (5.8.2) can be found by
assuming
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x=A;sinw
and 0 =¢, sino¥ ..{5.8.6)

Substituting the values of %, B, x and 8 with the help of equation
(5.8.6) in equations (5.8.1) and (5.8.2), we get

— A’ + (ky + kAy — (kaly ~ Kyl3)0, =0 -{5.8.7)
— 0% - (kg — l DAy + (kid + Ryl 90, =0 ~5.8.8)
o A) bkl
r 0] —mw’ ek ky
A b bl 16?
o kely - koly

which gives us it in determinant form as
\ By vka-me’  —(-kadp+hily) | b
(= kada 4 ) Rl s ki Tt
Expanding the sbove determinant, we get
Gy + kg~ m@P) (Rl + kol ~ 10" = (kyly — ki, "= 0 589
This is the characteristic equation.
The reots of the equation can be written as

: 1[51:'«_:)-130211t\/[k.u,,klthu-}]‘
m 1 m I

Wy a=
2 i

s 5.’5;51_(‘Lt£.2’_’] (58,10
m’ »

59. VIBRATION ABSORBER

When a structure externally excited has undesirable vibrations, it
b y to eli te them by coupling some vibrating sys-
tem to it. The vibrating system is known as vibration absorber or
dynamic vibration absorber. In such cases the exaitation frequency is
nearly equal to the natural frequency of the structure or machine. The
mass (machine or structure) which is excited can have zero amplitude
of vibration and the spring mass system (absorber) which is coupled to
it vibratos freely, Vibration absorbers are used to control structural
resonance.

For le, if the excitation freq y @ is nearly close to the

natural frequency m=m.=\|‘k./m of the system, the amplitude of

vibration would be very large because of resonance {refer fig. 5.8(a)).
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Solving the above equations for A; and A,
(ky —m " )F .{5.8.7)
A =2
8
ind e kaF A59.8)
B

¢here f=mymye' - tmky + math; ko)l + kakg)

In order to have the amplitude of mass m, as zero, let us consider
quation 15.9.7)

< 2
A= ﬁ‘z_ai"t",’ =0
‘\’ kg
w= ;'i-z =w; (say) +.(5.9.9)

Thu.s if the mass and spring constant of absorber system are
elected in such a way that equation (5.9.9) is satisfied, it becomes a
lynamic absorber system.

Let us assume
A, = F/k, = static deflection or zero frequency deflection
@ = \mz natural frequency of m, - k; system
oy = k,/r;:- natural frequency of m; - k; system
nd W =my/m, = mass ratio

Equations (5.9.7) and (5.9.8) can be written in nen-dimensional
orm by dividing them k&,

(b, o')\F
3 [k, ™ ks |y
=1 =
mymge' _[miky moky s k)| o kiky
kR, kyksy kyky kyky
2
(l ) .97]
VA o . 5.9.10)
A ot o o ]
T+ 3+ 31+l
ool ol of
Similarly, we get
Ay 1
e 7 T .{5.9.11)
CIeT o T U
P +u)(»|’+(ozz +1
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“v’zjg éhiz
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o e

") B
A}
.,r" ™2
(#) main system (b) vibration absorber attached to

main system.
Fig. 5.8. Vibration absorber

in figure 5.8 ‘b). This spring mass system acts as vibration absorber and
reduces the amplitude of m to zero if its natural frequency is equal to

. k
the excitation frequency te. @ = ;"'- ;
2
Thus ﬂ = -h—’-
my; my

When this condition is fulfilled, the absorber is called tuned absor-
ber. Figure 5.8(a) is a single degree of freedom and after coupling the
spring mass-system, it becomes two degrees of freedom system. The
equations of motion can be written as

myZy + kxy+ kyxy = x3) = F sinwe wi5.9.1)
Mty + kfxy - x) =0 +15.9.2)
Let us assume the solution of the form
x; =A;sin o
x; = A, sin Wt 4593
So X, =~ A, sin o
and Xy=- u)"Az sin o .45.9.4)

Substitutig the values of ¥, and ¥, from equation (5.9 4} inta
equations (5 9.1) and {5.9.2), we get

(ky & ky - 0HA, - kA, = F .-45.9.5)
- kpAy + (kg - mpw A, =0 (5986}
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Again from equation (5.9.10), we get A; = O when © = w0, Let us see
what happens to A, when A, is zero under the same conditions.

(Putting © = 0!

F=- Ak, -45.9.12)

where ka4, is the spring force of absorber system and it is equal and
opposite to exciting force when the main system is stationary i.e.
A, =0 when mass m, is moving downwards, mass m, moves upwards.
The energy of the main system is absorbed by the absorber system
which is ti known as auxiliary system.

When the exciting force is constant the amplitude of the auxiliary
system is inversely proportional to its spring constant k, as can be seen
from equation (5.9.12). This equation is useful in the desigm of absorber.
Two resonant frequencies can be determined by putting &y = @, the
denominators of equations (5.9.10) and (5.9.11) and equating them to zero.

.
SRS
A\ ’ o (5.9.13)
or (;E)z:(lag]t (u'f%)

On the basis of above equation a plot has been shown in figure 5.9.
The figure shows the effect of mass ratio on the natural frequencies of
the system. For each mass ratio there are two natural frequencies
which are above and below the natural frequency of the main system.
For example, for mass ratio (p) 0.25, resonance occurs at a frequency
0.78 and 1.28 times that of the main system. But when mass ratio is
0.5, resonance will occur at a frequency 0.707 and 1.414 times that of
main system. So it is clear that for small value of mass ratio (my/m,)
the two values of frequency are found cloger to unity ie. o, = @y
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oS o

Fig. 5.9. Effect of mass ratio on natural frequency.

It means that resonance can occur if the mass m; of the absorber
is very small. So this equation and curve help in the design of absorber.

fh=__‘ 2 : 15.9.14)  (at @y =oy)

The amplitude ratio A;/A,, will be infinite if the denominator of
the above equation (5.9.10) is zero i.e.
¢ 2
% o -(5,9.15)
E); -2+ p) & +1=0

Let us find the solution of the above equation for t=0.2.

() -aeafe] o
(3] 4] -

;‘;-"- =11:420

=1.11 458
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ey
So [21-1248 and 0.80
\w"J

The twe infinite amplitudes correspond to the two natural fre-
quencies of the composite system. The two natural frequencies of the
composite system are 0.80 and 1,248 times the natural frequency of the
main system.

With the help of eqn. (5.9.11), we get the ratio A,/A,,
Ay 1

Ay

o = lat o, = ol -.{5.9.16)
S-2ep 41
ay w;

The dimensionless frequency response curves for the mam and the
absorber system given by egn. (5.9.14) and egn. (5.9.18) are shown in
Fig. 5.10 («) and Fig. 5.10 (b} respectively for a value of i =02, the
negative part of these curves correspond to the situation when phase
difference of these amplitudes with the exciting foree s 180" or they are
out of phase. Comparing Fig. (5.10) {a) and Fig. (5.10) (b), we can see
that for &/t < 1, the phase difference between the two masses or their
amplitudes 1.e. A and 4, is zero and for w/wg > 1 the phase difference
between them is 180° (as in this range A;/A,, is negative and Ay/A, IS
positive).

For the main system above without absorber we only have one
resonant frequency at @/wy = 1. This can be seen from Fig. 4.4 for
damping ratio § = 0. If a case arises when the exciting frequency is very
close to the natural frequency of main system; then to overcome this
resonant condition we attach an absorber system such that w; = oy to
main system reducing its vibration to zero,

1f the exciting force frequency remains constant, the system will
work perfectly, if on the other hand, the exciting frequency which is
dependent on the speed of machine, is not constant but varies some-
what with changes in load, then any change in the exciting frequency
will shift the operating points from the optimum point and the vibra-
tions of main system will no longer be zero.

From Fig. (5.10) {a} and Fig. (5.10) (&) we se¢ that by adding the
vibration absorber we here introduced two resonant points {i.e.
@/t,=08and 1.248, A & B points) instead of one in the original
system. These two resonant points are spread on zither side of eriginal
resonant point (/e = 1, point C) corresponding to main system.

If there is variation of exciting frequency such that the operating
point shifts near one of the new resonant points, then the system does

L is i3 dkn mnsanmant nanditiang we trv
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to decide the spread b the two r t frequenci P s
on variation of exciting frequency. This gives the operating range of the
frequency ratio (/o). By loeating these two values of the frequency
ratio corresponding to the operating range, we can find suitable value
ofufmmFiz.s.Q.Thmthemmofthe;burbasymmmbe
determined.

Referring to Fig. 5.10 (a) and 5.10 (b) it can be seen that to obtain
different curves, two parameters can be varied. The first parameter
which can be varied is the mass ratio p. But a large mass ratio
represents a practical problem of handling. An absorber system that
matches the original system in size is not & good solution to any
vibration problem. A smaller mass ratio on the other hand will give a
narrower operating band of the absorber as can be seen from Fig. 5.9.

The dp ter is the freq ratio @, /0. The natural
frequency of the absorber system o, is the frequency at which A, =0. It
unotnmuﬁlyemulm“,alwthomohvihmﬁwahorbor
is most wanted when the forcing frequency ‘o’ is close to the natural
frequency of the main system ‘wy". The operating restrictions make it
impossible to vary either the forcing frequency @ or the natural fre-
quency of the main system ().

From Fig. 5.9 we see that as the mass ratio increases, the separa-
tion of the two natural freq; ies incr

If damping is added to the absorber system, the gmplitudes A, and
A, will both get diminished atr The lower natural frequency
is diminished less than the higher natural frequency, and it is the lower
natural frequency which must be passed through in order to reach the
operating speed (Refer Fig. 5.9). To equalize the maximum amplitudes
at resonance, the damped absorber is tuned to a frequency slightly
lower than the natural frequency of the main system.

Optimum tuning is defined as the ratio /ey, when the resonant
amplimdu are equal. It is sufficient here to state the result that at
optimum tuning,

A A

O 1
o Tap .(5.9.17)
[The derivation of eqn. (5.9.17) is beyond the scope of this book.
The students can seek the derivation in books of S. Timoshenko and
J.P. Den Hartogl
pamping can also be optimized. If no damping is present, the
amplitude of the main system will be zero at the tuning frequency
@ = 0. With damping, the resonant amplitudes of combined system are
diminished but the minimum amplitude of the main system is no longer
zero at the tuning frequency.
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Optimum damping is thus defined as the amount of damping
which will make the response curve nearly flat between the two natural
frequencies w, and &y, The resonant amplitudes are decreased and the
amplitudes at the tuning frequency is increased.

[Note. If vibration absorbers are used, they are more often used
without damping, Damping defeats the very purpose of an absorber, which
1s to elimi ted vibration, and is only warranted if the frequency
band in which an absorber is effective is too narrow for operation. Thus the
damped dynamic vibration absorbers are not suitable for practical purposes
because for them to be effective, they have to be operated in a very narrow
range of natural frequencies as given in Fig. 5.9, Greater the range of
natural frequency {in which the absorber can be operated), more is the
practical utility of the absorber.}

5.10 TORSIONAL VIBRATION ABSORBER

As in the case of rectilinear vibrations; a torsional vibration absor-
ber can be used to reduce or completely eliminate torsional oscillations
of a system.

From Fig.5.11 it can be seen that the main system is represented
by &, and J and is subjected to a periodic torque Tsin wt. The
torsional vibration absorber is represented by &, and J;. The analysis
for dynamic vibration absorber holds good in this case also,

VIIIIIP)

L L
kty
Disc | Tsmw?

Disc 2 ki,
- JZ

e

Flig. 5,11, Torsional Absorber System.
Considering the ar t, we see that a harmonic torque
T sin w¢ is impressed on the disk. The natural frequency of the main
system is given by

ke,
@, = 7" -.(5.10.1)

When this natural frequency of the system coincides with the
impressed torque frequency, r occurs and the system needs
some correction. One of the methods is to change the stiffness of the
shaft k; or the inertia of the disk J; to change the natural frequency of
the system.
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potential energy and thus they absorb the energy of vibration of the
main system, Thus the vibrations of main system are reduced or
completely eliminated. Thus coil springs replace the length of shafting.

A four spring torsional vibration absorber is also shown in
Fig. 5.13.

Ring attoched to
main system

R
4
R
Fig. 5.13. Torsional tion absorb
From this Fig. 5.13, it can be seen that
k,=4xkxR* (6.10.3)
ky, .
or k= T .(5.10.4)

Eqn. (5.10.3) is derived as follows :

The 4 springs are in parallel with each other. Thus their
equivalent stiffness is sum of their individual stiffnegs.

kosk+vh+k+k=4k

The spring force on them is given by

F=k xx=4kxx
= 4k x RO [ x=R8] ..(5.10.5)

where x = rectilinear displacement of equivalent system

A = anoular disnl ¢ of annivalent ar the abaarber svst
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1f the above method is how not possible to imp t due to
operating condition restrictions such as limited space etec., then an
abgorber disc J; and shaft with stiffness &, are added to o, to absorb
the impressed torque so that the disc 1 does not vibrate.

This absorber should be tuned to the impressed frequency ‘o’ such

that
k,
@, = 0= J -3 .45.10.2)

Ja

The absorber shaft should be strong enough to earry the impressed
torque applied to the absorber disc.

Ideally any value of k,, and J3 will meet the requirement as long
as their ratio is equal to . A shaft to be added to a system may require
too much axial length which may not be possible. A number of devices
are used to replace it. The Ring Torsional absorber is one of them and
is shown in Fig. 5,12.

Fig. 5.12. Ring torsional absorber.

This 1 absorber ists of a ring attached to one of the
discs of the original system. A mass is connected to this ring by means
of springs, If no vibration is present, the entire unit rotates at a
constant speed. When torsional vibrations oceur in the system, the
mass tends to continue to rotate at constant speed, so that the springs
are deflected and it acts as an absorber. When the springs are deflected
Aua ta vihratione in the main svstem. there is a change in their
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. Torque exerted on the absorber
T,=FxR=4kxR8xR
=4kxR'0 ..{5.10.8)
~ Torque exerted per unit twist on absorber i.e.
k,=Ty/0 =4 kR* «{6.10.7)

The amplitude of vibration of the torsional absorber at the exciting
frequency ‘e’ is given by eqn. (5.9.12) based on a similar analysis after
changing translational quantities into torsional quantities.

Thus T==Bky, ..{5.10.8)
where T = maximum value of applied torque

B, = amplitude of vibration of torsional absorber.

5.11 DEMERIT OF DYNAMIC VIBRATION ABSORBER

The dynamic vibration absorber, whether for a torsional or rec-
tilinear system, is only fully effective at a particular impressed frequen-
¢y for which it is designed. This means that the main mass or disc is
stationary (no vibration) only for this particular frequency. Thus
dynamic vibration gbsorbers are extremely effective for constant speed
machines but lose their effecti with any ch in speed of the
machines. However, it may be made reasonably effective over a fairly
wide range of frequency by using a large mass ratio (4 = M;/M,) value
[ =J,/J in case of torsional absorbers). The dynamic vibration absor-
ber can also be employed for a small range between the two natural
frequencies if conditions on the allowable amplitude of the main rotor
or main system are relaxed. However, most rotors having vibration
problems are likely to run through a wide range of speeds so that if
dynamic vibration absorber is employed, the situation deterioates in-
stead of improving.

Two resonance peok

Magnification factor —

“@wp —
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When we plat the frequency response curve of an undamped
lynamic vibratiun absorber, we see that it has two resonance peaks
orresponding to damming € = 0 and damping € = «. So its use is limited
aly to the fixed-speed machines. The frequency response curve is given
n Fig. 5.14.

Repreducing Fig. 5.10 ta) in Fig. 5,15, with the dotted curve
epresenting the relation between A,/A,, and /65, when the absorber
5 not used, whereas the full line curve shows the relation with the

« a—Without gbscrber

P=02
W, = Wy

With cbsorber

Fig. 5.15.

bsorber in place. It can be seen that in latter case that there are two
esonant frequencies in place of one. This is the demerit of dynamic
ibration absorber that it adds an additional degree of freedom.

112 CENTRIFUGAL PENDULUM ABSORBER

As discussed earlier, the und d dy ic vibration absorber is
ully effective only at a particular froque'ncy for which it has been
‘esigned. In case of torsional system, it is possible to use n dynamic
1bration absorber of the pendulum type that is effective at all speeds
frotation of the system. This is the pendulum or centrifugal pendulum
ype of absorber shown in Fig. 5.16 (a).

A pendulum PB of length ‘L’ is attached to a rotating member at
wint P, which is at a radius 'R’ from the centre of rotation O. The mass
fthe pendulum bob is ‘m” and the string is assumed to have negligible
nass. This pendulum is subjected to a centrifugal force which is much
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Let us assume that at any instant, the pendulum is displaced from
the radial line by a small amount 8. The bob or mass at the tip of the
pendulum is then at a distance 'r' from the centre of rotation ‘O’ and is
subjected to a centrifugal force of

F = mro® LA5.12.1)

This centrifugal force is directed outwards along OB. This force

has one comp t along the pendulum line and other perpendicular to

it. The latter mrw” sin «, is the restoring force and has to be taken into

account in the differential equation of motion for the oscillation of the

pendulum. Here a is the angle between the pendulum and the radial
line OB.

The differential eqn. of motion for oscillation of pendulum is given
as;

I8=-FsinaxlL ..(5.12.2)
mL* 8=~ (mro’sinayx L (5.12.3)
[ I=mL¥
[Note, If mass of string is also considered then J = [ m+ b—;—‘ ]L’,
where M, = mass of string]
From eqn. (5.12.3), we get
B+ im’ sina=0 .(5.12.4)

Applying the law of sines to the triangle AOPB, we get

R
sinx  sn (180° ()]
or rsina=Rsin® ..{5.12.5)

Substituting the value of r . sin « from equation (5.12.5) in eqn.
(5.12.4), we get,

G+%m’ain6=b (5.12.6)
For small values of 8; sin 8 = 8
Thus eqn. (5.12.6) becomes

8.k R 2e=0 5127

Eqgn. (5.12.7) for the penduhn-n is that of simple harmonic motion
and its natural frequency is given by

_\’.l!og? - ‘\/R.
W, = L ™ L ..(5.12.8)
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greater as compared to the gravitational force so that the latter is
congidered negligible. The rotating body rotates with a angular velocity
of ‘@' and due to this rotation a centrifugal force mw'r is experienced by
the pendulum.
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Or the natural frequency in cycles per second is given by

='2; ”" q =N q .45.12.9)

g @
where N = revolutions per d of rot: ,body=£

From eqn. (5.12.9) the principle of working of the centrifugal
pendulum absorber can be seen. It is stated as the natural frequency of
the pendulum absorber is always proportionai to the speed of the
rotating body.

Thus fa=<N .{5.12.10)

The usual torsional system receives a certain number of disturb-
ing torques per revolution. The no. of these torques per revolution is
known as ORDER NO. of the system. A two cylinder engine working on
a four stroke cycle has one disturbing torque per revolution and its
order no. is one. A four and six-cylinder engines working on four stroke
cycle have order number of two and three respectively.

A pendulum absorber is designed to eliminate or reduce the tor-

sional disturb of a particular order ber. If several order
numbers are present in a sy e 1 pendul absorbers are
required.
DESIGN

For the pendulum absorber to be eftective, its natural frequency
£, should be equal to the excitation frequency or frequency of disturbing
torque. The most important application of this type of absorber is in 1.C,
engines where the freq of torg ins the har ics of speed

D
w.

In such a case, let T sin (n © ¢) be the torque on the 1.C. engine,
where n = ORDER NO. Therefore, from the above principle, the vibra-
tmn absorber must be designed for the condition that the natural
y of the pendul hould equal the excitation frequency.

. From eqn. (5.12.9) we get

=N\j =-"9 .{8.12.11)
or © \J % = nw ..(5.12.12)

or s \j% -~ ORDER No. (5.12.13)

. |
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From eqn. (5.12.11) and egn. (5.12.13), we get
R _f _Di ing torque impulse/sec

n= eSS

L N Revolutions/second
From eqn. (5.12.14)

Thus q% = order no.

= Disturbing torque impulses/revolution.

Equation (5.12.14) provides one design criterion.

The procedure for design is to equate the order no. to VR/L and
solve for length (L) of pendulum required by choosing a value for ‘R’

The size of the pendulum mass is a function of the magnitude of
disturbing torque. For a certain disturbing torque amplitude, larger the
mass of the pendulum, smaller is its amplitude of vibration. Thus the
pendulum mass is made as large as possible since it will then absorb
the greatest amount of energy with the minimum amplitude 8. So the
amplitudes of vibrations are kept small.

When used on an I.C. engine, the pendulum is usuaily attached to
a crank web, so that R is usually about equal to the crank throw r. In
such cases, the point P is never kept on the boundary of the machine
and the length of the pendulum (PB) is kept small.

5.13 UNTUNED VIBRATION DAMPERS

5,13.1 Untuned Dry Fricuon Damper (I..nchnm Damper)

This type of a damper is very ad to use for torsional
vibrations near resonance conditions. It effectively reduces the
amplitudes of torsional vibrations near resonance conditions.

Construction

It consists of two flywheels mounted freely over a hub. The hub is
rigidly fixed to the shaft undergoing vibrations. There are friction
plates attached to the of the hub. These friction plates apply
pressure on the flywheels and are responsible for the driving of the
fiywheels. The pressure between the friction plates and the flywheels
can be adjusted through the spring loaded bolts which hold both the
flywheels together.

Refer figure 5.17,

Working

If there is a large frictional torque than the pressure between the
friction plates and the flywheels is very large. Under such circumstan-
ces the flywheels become rigid with the shaft and possess the same
oscillations as that of the shaft. Thus no energy is dissipated during
vibrations since there is no relative rubbing. ‘l'he energy dx.sslpat.ed is

______ ERUEOS e Wi K2 PR U PO 1

-(5.12.14)
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13.2 Untuned Viscous Damper (Houdallle Damper)

This type of a damper is similar in principle to the Lanchest:
amper except that instead of using friction plates for dry friction
imping, this system uses a viscous damping. Refer figure 5.19.

Closs Titing
case

% Vi e
iR
7/ Kers
DTS AT et

Fig. 5.19, 7 Damper (Houdailis Damper).

It is added to a dynamic system to alter its vibrational response.
consists essentially of a freely rotating disc enclosed in a close-fitting
se which is keyed to the shaft. Normally the disc rotates at the shaft
eed owing to viscous drag of the oil between the disc and the case.
wever, if the shaft vibrates torsionally, viscous action of the oil
tween the disc and casing gives a damping action.

There are two cases which arise. They are :

(1) When the damping is zero in the damper, it is ineffective and
the system oorruponds to a single degree of freedom.

(2) Ifthed ing is infinite, the damper mass becomes integral
with the shaft or the main mass. It still remains a single
degree of freedom system when the main system rotates at
such a speed that torsional vibrations are produced, then the
energy is dissipated due to the viscous drag of the viscous
material filled between the disc and the casing. 'l‘hus the
energy of the main system is reduced thereby red the

_ amplitude of torsional vibrations of the main system.

15

Magnification foclor ——e

TWO DEGREES OF FREEDOM SYSTEM 263
Flywheels
A Spring logded
{ bolt Main system
B r— s fly wheel
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Friction
material
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Fig. 5.17, Dry Friction Torsional vibration absorber.

When the pressure between the friction plates and flywheels
becomes zero, the relative velocity is maximum but the frictional torque
is zero. Again there is no energy dissipation. When the speed of the
main system is such that torsional vibrations are present in the system,
then the pressure between the friction matenal and the flywheel is such
that both the frictional torque and the relative rubbiny (between the
friction material and the flywheels) are present. Thus there is energy
dissipation in the absorber which leads to reduction in the energy of
torsionally vibrating maimn system. Thus energy reduction causes a
consequent reduction in the amplitude of vibrations of the main system.

The amplitude reduction will be greater i greater amount of
energy is dissipated,

The variation of energy dissipated against the frictional torque is
shown in figure 5.18.

TWO DEGREES OF FREEDOM SYSTEM o

Optimum damping is introduced in the sy so that the maxi-

mum mpmnofthedamperovuthzentmfnqumcy range does not
go beyond a certain permissible level.

Houdaille damper can be used with variable speed machines,

maximum resp being controlled by the ratio of damper inertia to

I
the main system inertia i.e. J—: 3

The frequency response curve for an untuned viscous damper is

ghown in figure 5.20.

Fig. 5.20. F curve for P
Itanbomnﬁwnthuﬁgunthattlmfnquencympomewrve

is of the same nature for the above two cases except that the peak shifts
towards the left in the d case. The t of shift depends on the
ratio of damper inertia to the main system inertia.

The point of intersection of the two curves, for the above two cases
ing to € =0 and € =4, is the point through which response

correspondi .
curves of different damping values pass through it.

A system having optimum damping has its resp curve with A

as its highest point.

5.14. TORSIONALLY EQUIVALENT SHAFT
Consider a shaft AB of varying diameter as shown in figure 5.21.
It is shown that d, dy, d3 and d, are the diameters of shaft of length
iy, I3, Is and I, respectively. Let the torque applied at the ends is T and
total twist of the shaft is 6. Say 6, 8, 8; and 0, are the twists of lengths
1y, s, Is and I, respectively.
Go

So 0=0;+6,+8;+86, weknowthat'%xvr
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Fig. 5.21. Equivaient shaft.

If d=d,
4 1
‘d d
I= I,ﬁl )*l{d]'l{d.]
Thusnshaﬂof\'arylng ter has been replaced by a tor i

ly equivalent shaft. [ and d = ¢, are known as the length and diameter
of torsionally equivalent shaft. Natural frequency of the shaft can be
determined by the relation

kI + 1y ~(5.14.1)

where k, = stiffness of the shaft
Iy, I = polar moment of inertia of the shaft ends

®
=55 a'
5.15. LAGRANGE'S EQUATIONS

The equations of motion of a vibrating systens are written in terms
of generalised coordinates by making use of Lagrange’s equations.
Generalised coordinates are independent parameters which specify the
system completely. I energy expressions are available, the equations
af matian can ha ahtainad with the haln af Lasranes's sanation Tha
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SOLVED EXAMPLES iR
Exawrre 5.1, Figure 5.22 shows a ;-,
sibrating system having two degrees of
reedom. Determine the two natural fre- T |
juencies of vibrations end the ratio of N
wmplitudes of the motion of m, and my for ",
he two modes of vibration.
Given: m;=1.5kg, my=0.80hg '1
ky=ky=40N/m Fig. 5.22.

SOLUTION. let at any instant masses m, and my are having
lispl ts x, and x; respectively.
Equations of motion can be written as
myx; =~ kyxy + kalxg - x))
Mgy = = ko(xg - x3)
Assuming the solution of the form
x;=A, sin ox
nd X3 = Ay sin o
So above two equations can be written as
(ky + kg~ @*m A, - koA, = 0
(ks ~ 'y — koA =
Ay ky
A kv k-mat

A,=&g—mgm’
2 [
The frequency equation can be written as
(ky + ky - my0®) (kg - mps®) - A2=0
r @ - (‘lfh kg\a, kky

=0
mgy mymsa

Putting k, =k; =40 N/m and m; =15kg; my=.80 kg
" 80 40 s 40 x40
158
©'-103.33 * + 1333.33=0
@y =9.39 rad/sec
s = 3.88 rad/sec
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general form of this equation in terms of generalised coordinates is
written as

--+— Qy .(6.15.1)

where T = total kinetic energy of tho system
V = total potential energy of the system

n = degree of freedom of the system
Q; = generalised external force
For a conservative system generalised force @; acting on the
system is zero, so equation (5.15.1) for such a system can be written as
dfaT) _ g oV _
dt Ax ax; ax
For example, if the kinetic and potential enerjies of the system are
given as

=0 ..{5:15.2)

TB 5 m.x, +%m,x2 ..{5.15.3)
and V--iklxl e-ikz(x,-xl)’ ..(5.154)

Lagrange’s equation can be used to obtain the equations of motion
from the above two equations.

gx—vl=*|‘| ~ kalxg — xy)

First equation of motion can be written as
myxy +kixy - kgl =x1) =0
For second equation
d (aT w
d@ [ae,]“ maty
oT
o
%E = ka(xz - xy)

Second equation of motion can be written as
Ma¥a + kofxe —x:) = 0
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The amplitude ratio = - 40
e Tt hi-m 40+4-15 (9397
=-0.765
and A =——‘o——'—'=0.896

Az 40+ 40 - 1.5(3.88)°
ExampLz 5.2. Solve the problem shown in figure 5.23 m; = 10 kg,
mgy =15 kg and k = 320 N/m.

Xy xy

Fig. 5.23.
Sorutron. The equations of motion can be written as
Mgy + k= %) = 0 mg¥y+k(xz-xy) =0
Assuming the solution of the form
xy=A, gin o ; xp = Ay sin o
—m0*Ay + k(A -Ap) =0
-m,w’A,-bi(A,—A.)-O

h
Amplitude ratio Z— h-m.w
ﬂ_h—m,«)’
Ay ok
The frequency equation is obtained as
k__k-mpo'
k-mo' Rk
m‘_m’km.o
mymy
ot Rmirmg) o
mymsy
8o =0
k(my + mg) -\jmmuq
and \] myms 10x15 =7-30 rad/sec.
4
(A, 1o

(ﬁl _320-15(130)° .o
Az 320 ’
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ExampLe 5.3. Use Lagrange’s equation to find ions of moti
r a system shown in figure 5.23. >

SoLurion. There are two generalised co-ordinates xy and x; and
sth masses are connected by a spring of stiffness &.

Kinetic energy T'= % myx? »% magxi
Potential energy V= %h(x, -x)?

Lagrange's equation is
d(or) aT 3

de @ |~ 3,

d

dt

0

FIS wi

N

myx

I

=0

¥ ¥

o k(xg - xy)

First equation of motion is
myEy + k(xy - x9) = 0

Similarly,
ary
a*!} = myxs,
oT
o
v
Ay kixz = x;)

al

Second tion of
mg¥y + kixz - 2,) = 0

EXAMPLE 5.4. A vibratory system performs the motions as expressed
the following equations :

X+ 800z +900=0
§+8006+90x=0

If the system is turned through 1.5 radians and released, find the
Fuencies and mode shapes.

SoLuTioN. Adding both the equations, we get
(x +8) + (800 + 90) (x +6) =0

beco
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SoLuTioN. The natural frequency of the system at 5000 rpm.

Assuming o = 63, we can find two resonant frequencies irom equa-
tion (5.9.13) as

2
(& -eg)e Voo
The resonant frequencies are at least 20% away from the forced
frequency of the main system. So, we have
/o, = 0.80
or /oy =120
When o/, = 0.8, the value of .
N ’ ¢
0.8)°= [1 + %]- (u + l:—]
nu=02
and for /e, = 1.2, the value of
n=013
The larger value of i is taken for design purpose.

u=0.2-%=mmraﬁo

m=0.2x30=6.0kg
\/k,
o= N3y wm=0,

k
aleh
ky =M = (523.33)" x 30
=8216.22 KN/m
\/ﬁ
and o= N Wy =0,
ks =wim = (523.33)* x 6
=1643.24 KN/m.
ExAMPLE 5.6. Find the frequencies of the system shown in figure 5.24.
k=90N/m, 1=25m
m,:Zkg, m,=0.5kg
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Assuming y, = x + 0 and substituting it in the above equation, we
get
¥y + 890y, =0
From this equation, the frequency can be determined as
wy = V890 = 29.83 rad/sec.
Subtraction of the given equations is written as
(x - 8) +(BOD - 90) (x-08)=0
Let us assume y; = x - 9 and putting in the above equation
Yo+ T10y,=0
Thus frequency, ; = V710 = 26.64 rad/sec
Assuming the motion to be harmonic tvpe as
x = xg 8in W
6 =8, sin o
¥ =~ @ xo Sin ot
8=~ 0’ 8, sin w

Again rewriting the given equations and substituting the values
of ¥ and §

— w'xy + 800xy + 908y = 0
(- w* + B00)x, = - 908,

[a"!;l == w:,ﬁm == 89})?800 =1 (Substituting o = 890)

and 6y = 1.5 (given)
So {(xo)1 = 1.5x1=15 (first mode)
Similarly for the second mode shape
~ '8y + 8008, + 90x9 = 0
(= &* + 800)8, = - 90x,
%) _-®3+800 -710+800
0, - 90 -90
So (xoy=~15

ExAMPLE 5.5. A machine runs at 5000 rpm. Its forcing frequency is
very near toits natural frequency. If the nearest frequency of the machine
is to be at least 20% from the forced frequency, design a suitable
vibration absorber for the system. Assume the mass of the machine as
30 kg.

TWO DEGRELD UT PRGNS 3 1 s aa

l.—: x ke
{1 y
] v 0]

B . b E ,' /g

”
my (3+18)

™9
@ (b).
Fig. 524,

i i i it is displaced
SoruTion. Initially the pendulum rod is vemcnl_-nd itis 4

bymanglo&udwwninﬁzure(a)mdﬁeebody.dugrundfomuu
shown in figure (b). Let us assume that T'is the tension in the pendulum

e Resolving the forces vertically for mz
mag=Trcos8
i i ,TsinOwillbeknownumboring
;:;v:‘i:h;::“mﬁlymd brings m, to its original state.
Horizontal displacement of my is x + [ &in 8
when @ is very small, sin 8 = fandcos B=1.
So horizontal displacement = x + 10
and acceleration =% + I8
Horizontal force myE +18) =~ T8
So mag =T and my@E +18) =-Te
or my@ +18) +TO=0
ma(E + 18) + mag8 =0, put T=mx¥
(&+18)+g8=0
or B+gd=-%

Consider forces for mass m,. All the forces are acting horizontally,

myk=—hke+Tgin8®
=-kx+TO
mx+hke-To=0
mex + kx - mgd=0
or myx + kx =mgd

putting T'=mag
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Let us assume the solution of the form
x=Asin ot and 8=¢sin ot
Substituting these solutions in the above two equations, we get
-l0*p+ g6 - WA =0
and  ~mwA+ kA -mygé=0
A_-lofrg__mg
37 & k-mo
The frequency equation can be written as
(- 10 +8) (k - m0°) - 0'myg =0
- klo* + mlo' + gk - m; go* - o'myg =0

@t (k! +my g +my gy’ ‘_ =0
myl * ol

So i=Tutmig+ Al t \{lgm, +malg + ki) ~ dm kg

2myl
Substituting the ical values in the above equation
(2 +0.50)9.81 + 90 x 0.25
e +V[(2+0.5)9.81 + 90 x 2.5]° - 4 x 2 x 25 x 90 x 9.81
2x2x.25

=245+225+ V(245 + 225/ - 1764
=47 £ V2209 + 1764 =47  21.095
o, = 8.25 rad/sec, w;=5.08 rad/sec,

ExampLg 5.7. Solve the problem of example 5.6 using Lagrange’s
equation,

SoLuTion.
KE. —-m,?-»%m,(l’é’+i’¢2il@ms9)

P.E.x%kx’d-mgl(l-me)

Applying Lagrange's equation
a@~mﬁ+m#+m45m0~mﬂesine
X(KE.)=0
2 PE)=ks
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ot -t 9812+ 5)+90x 25) 90x981 _,
2x.25 2x.25

@' - ©'(94.05) + 17658 =0
@, =825rad/sec and =508 rad/sec

Exanrrr 5.8. Find the natural fre-
quencies of the system shown in figure
5.26. Assume that there is no slip between
the cord and cylinder. (M.D.U., 85)

Given
k;=40N/m
ky=60N/m
m;=2kg
my=10 kg
Sovrurion. Let us give x vertical dis-
placement to mass m, as shown. Since
there is no slip between the cord and
cylinder, so vertical displacement x
causes the cylinder to rotate by angle 0.
Writing the equations
myx=—ky(x - ré)
and I8 = kofx - r)r - kyr™®
where I =1 my* = moment of inertia of cylinder
Above equation becomes
myx + kgx — k0 =0
I+ (kyr* + ke — hyxr =0
Let us assume the solution of the form
r=Asin@, ¥=-0'Asino
9=¢sinw, O=-co’Psinae
Substituting these values in the above equations
- @'Amy + koA — kyr =0
- @lp + (kyr* + har" Yo~ ksAr =0

A_ b
(kg - &'mpA - kore =0, 73 m
A kP skl -0
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~cos 8)

-ls;._—

V=010 + ¥ +2x10 050
Fig. 5.25.

So equation of motion can be written as
Mm%+ mgx +mylBcos 8- mylBsnO+kx=0
when 0is very smallsin8=6and cos 6=1.
Then above equation can be written as
(my+ mgx + mdB + kx =0

Similarly,
T
%(K.E.):Oand%(?ﬂ.):mm
So the d equation of motion can be written as
mad®® + maxl + molg =0
or B+gh=-x
w:;:t:‘izz} for principal modes
Salving the equations
[k — (my + m)a'JA = mide’e
€ - lotw =o’A
The amplitude ratio is given as
midw®  g-le?
k-(mrme o
m,lm‘-(g 10*) (k — (my + ma)’]
or e ,k(m,+m1)+kll —‘£-=0

myl

- ’r’+(b:-0’m|)(bv’+bf' ©'n=0
AlsoI=1/2my”
Mk 4 P - by S mre? - alhmy® - o' mokar?

+ @ m,lm"; myt =0

o 1‘11’2‘—”- - m’[";’” +k.u,,’m.h,r’]uln,r’ =0

g | 2hgmy? miky”| 2k’
- “‘_wx[m,mf’"mlmf*mww’ N
‘ ﬂ’ ig ?*; 2&,) ”1‘3 -0
my m, mz mymg
s ,,-[_J_Eﬂ ..z] '_n_l%':
Substituting the values ofvsmupmmten

s 2| 2A40+ 2:40)(60
.= 10 T2x10

‘-u’(zo+3o)+z40-o
0 - 500’ + 240 =0
ot = 5022500 - 960 ¥2500 - 960 _ 50 £39.24

o = V44,62 rad/sec = 6.68 rad/sec
o = ¥5.38 rad/sec = 2.32 rad/sec
ExAMPLE 5.9. Solve example 5.8 using Lagrange’s equation.
SOLUTION. K&-%Ia’o%m,&’
Because the K.E. of a rotating body is given as 1/2 Jo®
1 2.1 -
Fmre g m
and P.s.uik,u-m'»,%k,h’
Lagrange’s Equation can be written

d XKE) _ 2!___1“ Qﬂ-’-—l
di ax
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L)y

So first equation of motion can be written as
mx + kalx - r0) =0

Now
d XKE) 25
dat” %
gxnz_o
% =
%Qaklr’o+k,r’0—kﬂ
Second equation of motion
my B+ (kR + kr?)0 - kyrx =0
Now solve like previous example.
ExamrLx 5.10. Consider two penduli of length L as shown in
ﬁgurz5.27l)¢ternun¢lhena!wul,, wy of each pendul, If

k=100N/m m;=2kg,my=5kg, L=20m,a=.10m.

(P.U.,,78)
SoLuTion. Let us say 0, and 6, are very small.
Taking moments about points A and B, we have
m L% =— mgL8, - ka®(8, - 8y)
maL ™8y =~ mgLb; - ka'(8; - 8;)
Let us assume the solution of the form
0, =¢, sin w2, 0;=¢, sin w
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g; '%1;) = m.L’B.
HKE) _ 0
% =
Q(STE‘) =m gL sin B; - ka(ay - afy)
First equation of motion is

my L8, + mgL sin 8, - ka*(8; - 8)) =0
0, being very small sin 8, = 8,
m L, + mgL9, - ka’(8; - 0y) = 0
Similarly, second equation of motion can be written as
maL 8 + magLB, + ka’(8; — 6:)=0
ExAmpLE 5.12. An aerofod wing in its first bending and torsional
modes can be repr hematically as sh in figure 5.28 con-

nected through a translational spring of stiffness k and a torsional
spring of stiffness kyp Write the equatwm of motion for the system and

obtain the two natural freq A the following data :
m=5kg, 1=0.12 kg m’*,
k=5x10°N/m,  kr=04x10" Nm/rad,
a=01m
POFIIIIPII I
3k
m.l 1
G Xy
Fig. 5.28.

SoLuTION. Let us assume that the wing is displaced by an angle
9, the eguation of motions can be written as
mx =~ kix +aB)

or mx + k(x +aB) =0
I8 = - ak(x + ab) — k0
M. _ti. ... BN

R S

TWO DEGREES OF FREEDUM 3T>IEM 7
Putting these values in the above equations
— m@'L %, + mgle +ka’, —9) =0
- mo@'L?; + magLay + ka'(9, - 9 =0
(~m@'L? + mugl + ka9, - ka9, =0
(- mz@*L? + magL + ka*Y; — ka'$ =0

b ka®
&
[ mim,L’+m,gL+ka!

& -m’m,LﬂngL‘-ka’
R
The frequency equation can be written as
(- @'myL? + mugL + ka®) (- 0'mal? + magL + ka®) - Ka’
w'mymaLt - o'mmagl? - o'm,L7ka® - *mimagL’® + mymog’L?
+ mglka® - @*myLka® + ka’magL + ke’ - k" =0
@'mymaLt - ofmmagL® + myL%ka® + maLka” + mymygL’)
+mymag®L? + miglka® + ka’magL =0

2, &’ | ka' 12 &, g ka'g
it 3 3t 5=0
L qu mL L maL? mL
o' ot 2x981 100 x .10 x.10  100x.1x.1
5x2x.2 2x.2%x.2
9.81x981’100x.1x.1x9.81+100x.1x.1x9.81=°
2x.2 Fx2x.2x.2 2x2x.2x.2
o' - 0*(98.1 + 5 + 12.5) + 2405.9 + 245.25 + 613.125
- w?(116.6) + 3264.275 =0

o 115.6 + V13363.96 — 13057.1
2

o < 11562175
2

@y = 8.15 rad/sec, @y =7 rad/sec
Exampiz 8.11. Solve example 5.10 by using Lagrange’s equation.

SoLuTIoN. KE-%m.L’é.’w;-m,L’é,’
P.E. =m; gI(1 - cos 8) + my gL{1 ~ cos 8;)
+3 haty -ady*
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Let us assume the solution of the form
x=Asin, %=-0'Asine
p=¢sinw, 0=-a'psinwt
Suhﬁtuﬁngrheuvalwintbeabweoquam
—o'mA + k(A +a9) =0
A__ ak
¢ (-k+o'm)
and - @16 + ak(A + ad) + k=0
(~w'T+a’k + kp)p+akA=0
A_-oT+a’k+kr
¢ -ak
Frequencyeqmﬁmmnbewrimu
ok & (- k + o'm) (- 0T +a’R + k) =0
— o3k — R + a7k + kkp + 0'Fm- oa’mk - @'mkr=0
Al kI + u',l.: + mky) +(2¢’k”:kkf) <o

Substituting the values of various terms
o 2(5x10° .1x. 1x5x10° 4x10°) 5x10°x.4
[l 3 P ———r

12 a2 )T azxs
@' - 4749.990" + 3333333.33 =0
4749.99 +3037.9
o= 3

@, = 62,40 rad/sec, 9.9 Hz
oy = 29.25 rad/sec, 4.6 Hz.
ExaspLg 5.13. Solve example 5.12 by using Lagrange's equation.

SomwKa=—nu’+‘Ie’
P.E.=§k€x+ﬂ°) *;‘110’
1,2,1 1
=gk +§ba’e'+mo+2m’

Lagrange’s equation
d ¥KE) XKE) XP.E)
< - =14 S =0
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9%51=u+hae

= k(x +ab)
So first equation of motion
mi+k(x +ad)=0
And
d AKE)
dt %

AKE) .
%

2‘?:&'@4&#&8
Second equation of motion is
I8 +%a’0 + kax +k8=0
w I8 + k8 + ka(ad +x) =0

Exampre 5.14. An electric train made of two cars each of mass 2000

\g is connected by couplings of stiffness equal to 40 x 10° N/m, as shown
n figure 5.29. Determine the natural frequency of the system.

S =%
=== H T

2% 2% -

RO X01== Bl = fo X N

Fig. 5.29.
Sorurion. Equations of motion can be written as
m¥y = kiz; -x;) (Newton's second law of motion)
miy = k(xy ~ x9)
Considering the solution of the form
x ‘A] 8in ¢
x29=Ag gin ¢

o MEATAELAL YOI TS

where I = mass moment of inertia, J;, Jy and J; are polar moment of
inertias.

The equivalent stiffness of the shaft is given by
1.1 1.1
I = ;-.- + I; + E
parts of shaft are connected in series
i (1.2:)57 v x.sa‘xsoj 107
=(0.829 +.2265 + .51776)107"
k =6.356 x 10° N-m/rad

1 i =
“”‘\IMII,;,') ='\’_2l_ﬁ_ ifly=1I

3
6.356 3
= _%Tﬂoj =1.534 x 10° rad/sec

Exawrrs 5.16. In figure 5.31 find the natural frequencies of car
with the following conditions :

total mass of car = 300 kg

wheel base =3.0m

C.G. is 1.50 m from front axle

radius of gyration is 1.0 m.

Spring constants of front and rear springs are 70 x 10° N/m each.

ky=ky

3@
e 3m—]
Fig. 531,
Sorurion. Given ky = kg, Ly =L,
Writing equations of motion for the system
m + (hy + ke ~ Ghyly— )6 =0
I8 - (holy - kyLy)x + (kolg' + kL8 =0

IV AR TN M & E———

Ak - mo") - kA, =0,
kA; - Ay(k - mas®) =0,
Ay _k-ma’ Kk
ATk kemo
Frequency equation can be written as
B-k-mo=0
K - (k% + mPw* - 2kma’) =0
B -k - mio'+ 2%kme’ = 0
o*'m(- mo* +2k) =0
@ =0

-\’zla_ ‘\’2)(40)(10‘
and ®= VYm = Y2000

= 200 rad/sec.

Exampis §.15. Two bodies having equal masses as 60 kg each and
mdiusofgyrutiouﬂ..’!mmhqﬁwbothmdsofcchqﬁ.wmlong.7'he
shaft is 0.08 m in diameter for 0.30 m length, .10 m diameter for 0.20 m
length and .09 m diameter for rest of the length. Find the frequency of
torsional vibrations.

Take C =9 x 10" N/m* (P.U, 99)

SoLuTion.

KiTa
Ky Ty

e—03m —ofet2m -fe—03m —f

Fig. 5.30.
I=mk*=60x.3%.3=54kgm’
4
k;=GTJl=m°“x————LK£2)—X—(&=l.2067x10’N—m/nd
1 o

4
i ,% L9x10%x &/5%) x Q10 . 4415 10" N-m/rad
7 .

4
;,,:%A!‘_"'-'-"J—‘E’M)—xl.mmxxo’n-wm
: 3

TWO DEGREES OF FREEDOM SYSTEM 285
Since k,L; = koL;, the above equations become
mx + (ky + Rx =0
and I8 + (koL + by LHB =0
or T84+ 2k, L10=0
Assuming the solution of the form
x=Aginwt ; O=¢sinax
%=- A sin @t ; B=-¢w’sin ot
Subﬂitutinathovaluuintheaboveequaﬁmn,wege@

—mwA+(ky +k)A=0
ki+vky 2k 2%
mz‘__l;b_g_'; o= N0

~ 0’1o+ 2, L¢=0

\,%L.’
= N
- \jz—"%ﬁ =216 rad/sec

1=mk® =300 x 1* = 300 kg-m®
‘\’2x70x10’x(1.5)f =892.4 rad/sec
Op = 300 e

ExampLg 5.17. Two pendulums of different lengths are fme to
mhleabouly-yubandcoupbdtogﬂhabyambbcrhouoﬁonwnal
stiffness 7.35 % 10° Nm/rad s shown in figure 5.32. Determine the
natural freq ies of the sy if m

m;=3kg, my=4hg,L;=.30m, Ly=.35m

L3
ol
' A=l o v \
JAV: Y
i B
L2 " N\
\

5O

O—

Fig. 532
mmlnendulumm,mdm,mdisplmdbys,mdq
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) ML By = —mygLy®; - ke{6) —8;)
and maL 8=~ k(8- 8) — mogLsB,
Let us assume the solution of the form
0 = ¢; sin @, 0, =- 09, sin et
8, = ¢, sin @, 0; = - W', sin o
- amL i) + miglid: + hy(d - ) =0
G__ Rk
0 - o'mLi+mgl, +kp
- 0'L70mg + kr{6; — 9,) + maglaty = 0
& _ = 0'Limy + magly + kr
(] kr
Frequency equation can be written as
(- ©'Limy + magLy + ky) (- 0'Limy + mgLy + kr) ~ kE =0
o'mymaL L - w'(LimamgLy + Limokr + mgloLim,
+krlimy) + "'1’"1”-1’4 + "lilﬂﬁ‘r* mglyks =0
m4_mz[1+x. . 2 .
Ly Ly mLf it m,L,’ L m,L, L, m,L,L,’
w' - 0¥(4282.92) + 126266.53 = 0
@, = 65.21 rad/sec, w, =5.44 rad/sec
EXAMPLE 5.18. Determine the nat-
ural frequencies of the system as shown
in the figure 5.33 if ky =40 x 10° N/m,
kg =50 % 10° N/m, ky=60x 10°,

m,=10kg, my=12kg, r;=.10m and
ry=.11m.

=0

Ky

SoLurion. The torque equation is
IT'=16.

The equations of motion can be
written as

1,61 = = ky(r180) ry = ky (14 - ro) 1y
1,8, + (kyrit + kyr()0) - koryrs8y = 0
Similarly,

Iafiy =~ RyirBirs - kalrgy ~ r181)ry = 0

Li.stbr?ibr?a _breon —n
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Putting the values of various terms in the above equation, weget
m._m,[zxeoxm’ 2x50x10° 2x40x10° 2x50x10’]

12 1z ¢ 10 T 10

wxu(wxsoxwﬂsoxsono‘uoxsox1o‘;=o

o' - 36.3333 x 10%0* + 246.66664 X 10°=0
",=36.333xlo’t‘i(ss.sa_afxlo‘-um.sssaxlo‘
2

wy = 165.2 rad/sec
w, = 95.06 rad/sec
EXAMPLE 5.19. Derive the equations of motion for the sy h
in figure 5.34 by using Lagrange's Equation.
t'flz,ek,:k,:Iandc,=c,-c,=laadm,=m,=l.

ke ky

- ks
: ,,_ﬁ_o.:gj

FATTIIT & TIIIIYTIIIIT o
L...n, X

Fig. 5.34
Sovrurion. The kinetic energy of the system

. :
KE.=}mif +gmaf=T
The potential energy
P.B.=%&,x,'+%k,(x,-x¢)’+-;-k,r¢’-v
The dissipation energy of the system
DE =1cil+detin -+ jowi=D
Lagrange’s equation for the system may be written as
- 2EE)IEE) 208,

1

|

4
dt

Re @
LS

A

)

“‘l%
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Assuming the solutions of the form
0, = ¢, sin o2, §; =~ %, sin ax
03 = ¢, 8in ¥, By =- &%, sin o
Substituting these values in the above equations, we get
=Ny + (i + kariYy - kararsy =0
= L0’y + (hyrg + hord Wy — ka7, = 0

L kiriry .
’l kf; *k,ﬁ -hm’ kl'l'l

thars + korg — L") (kyrf + kori! — 10" - kirird =0
kakorird + Rakarird - Lo'kyd + kikorird + kirird
- o' lkyrd ~ Lwhyrf - Lw"hyrl + o' = 0
- h,’r,’r,’ =0
@'lly - @*(lykyrs + Likars + Lokyr + Lar)
+hikorird + kohgr{rd + kikar{rd =0
o [*fl hz’z kl"l by !il’.]
I

P R Pk 0 71
kikgrlrd | kakyrlrd | hikarird
Ik iy oL

Slmh:%m.r,’andl,:%m,r,’

Rikyrirs  dhyky

% myri . 3 myrd T2
kakyriry £ kekyrirs Ulz‘a
Ly %mlrl x ; myrd ~mama

‘1‘:’1”'; iz Akyky
hiz  ~mmg

o' - o [2&, zh’+&'~r&]+

e a ks + koks + kiks) = 0

This is the frequency equation.

TWO DEGREES OF FREEDOM SYSTEM 2% ‘
%‘!l = hyxy + kalxy —xg) = (kg + ko, —Ryxy
gf—l: oy + Cality — %)
= (cy +€2) Xy~ CaXz
Substituting the values of above terms in Lagrange's equation, we
obtain the equations of motion as
My + €y +C)Xy - Caxg + (By + Rz — kyty =0
or ¥+ 2% - Xp+ 20 —x3=0
1t is a two degrees of freedom system, 50 there will be two equa-
tions of motion.
Similarly,
d Q—T— = my v
&t F 22
a7 _
e 0
av
o kg — kalxy - xa)
%% = ey%y — Cgly ~ %3)
The second equation may be obtained by substituting the above
values in Lagrange’s equation as
Mgy + (eg + C)ty + (ky + kgl = 5%y — kgt = 0
T+ 2y + 2y - % - x =0
ExanpLs 5.20. In figure 5.35 an electrical motor-generator set is

shown. Find the natural frequencies and amplitude ratios of the prin-
cipal modes.

il 2%

Fig. 5.35
Sorurion. In the figure 8 shaft of torsional stiffness &, carries two
discs of moment of inertia /; and I;. At any moment the angular
displacements of discs is @, and 8, from a certain point.
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The differential equations of motion can be written as
1,8 = k8, - 8,)
I, =~ k(8; - 8y
Rearranging the equations
1,8, + &,6, = k.0,
18, + k8, = k.8,
Let us assume the solution for principal mede of vibration as
6, =9, sin w¢
8, =0, sin @t
8, =~ w', sin w¢
#; = — w’¢; sin ¢
The equations of motion can be written as
~ 1,0%, sin ot + k¢, sin @t = &, §, sin ot
— L"), sin ot + k4, sin ¢ = k, §, sin o
(= Lo + k)b, = kit
(- Lo’ +he: =k
6__k_k-o'l
& (k-o'l) ki
kP = (ke - 0'T)) (b~ 0) k2 - k2 = ko®ly - 0PIk, + @' 11, = 0
ot Ml @t

L 0
o it kily + 13) _
[u’ e 0
=0
kdly +1)
and Wy = ’J]

The torsional stiffness of the shaff &, can be calculated from
Strength of Material formula

T_Ge

I 2
or h,.z Gl

[]

@
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LAURE \/6402666 ¢
W, = N2 _ "\ 6.402666 x 10° x (9.56 + 45.87)
Iy 9.56 % 45.87
W, = 284.48 rad/sec
r fo=n 28448
2r 2r
=453 Hzor c.p.s.

EXAMPLE 5.22. A reciprocating machine weighi 25 ]
W rpm ofter installation has natural frequin:’y.e unykgclon::n::‘tz
oreing frequency of vibrating system. Design a dynami: absorber of the
:ea‘mst- frequency of the system which is to be at least 20% from the
xcitation frequency. (P.U,, 94)

SoruTioN. Since the natural frequency is very close to the forcing

;q':;ncy, 80 6000 rpm. may be treated as the natural frequency of the

wy = 2253200 _ 626 rad/sec = oy

Buthere @;=uw,

(&t Vb5)

here p = mass ratio

The resonant frequencies are at least 20%
equency of the main system. e

So, we have
©/w, =0.80
@/ = 1,20
hen @/w,; = 0.8, the value of u=02
id for m/@, = 1.2, the value ofu=0.13
The larger value of  is taken for design purpose.
n=02=m/M
So m =.2 x 25 =5 kg (weight)

; \/h:
Using &y = Y 7 and finding &, = o} g
w 25
ky= ’;=(628)’X§H=10050.5k¢/cm

d kzzm,‘xs%fzoxo.: kg/cm

TWO DEGREES OF FREEDOM SYSTEM 1

[;:), +1 (when @; = 0)
0 _h Ly
(@,] 7 (‘“ Il

Exawrrs 5.21. Calculate the natural frequency of a shaft of
diameter 10 cm and length 300 cm carrying two discs of diameters 125
cmand200cmntptcuwlyutilaendscndwcighina460kgand900bg
respectively. Modulus of rigidity of the shaft may be taken as
2 x 10° kgf/em’. (P.U.93)

42
9y

E._F‘_._

[

Fig. 5.36
Sorvrion. d =10 cm, I = 300 cm

d) = 125 em, d3 = 200 em
The system is shown in figure 5.26

Wy =480 kg, Wy =900 kg

W,ri 480 (1.25) _
'-=-,—'7'=m31[“z‘]"*“"""'

Wyry 900 (2)1 sy
l’s—‘—--z—--m 2 2-45.87““

Gl
k"l

I=%/32d" =x/32 % (.10)' =9.81x 10° m"*
1 =300 cm
G =2 x 10° kgf/em® = 2 x 10" kgf/m®
=2x%9.81 x 10® N/m? = 1.96 x 10" N/m*
GI
A=

1.96x 10" x9.81x 10°*
k= 30

= 6.402666 x 10° N-m/rad
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ExampLe 5.23. The flywheel of an engine dynamo weighs 150 kg
and has a radius of gyration of 25 cm. The shaft at the flywheel end has
an effective length of 22 ¢cm and is 4.5 em in diameter. The armature
weighs 90 kg and has a radius of gyration of 20 em. The dynamao shaft
has a diameter of 4 cm and an effective length of 18 cm. Neglecting the
inertia of the shaft and the coupling, calculate the frequency of torsional
vibrations and position of the node,

Take G = 0.84 x 10° kgs/cm®. (Roorkee Uni. several times)

Socvrron. Let us say suffix 1 and 2 represent flywheel and
dynamo respectively.

150

W0 3 _ em?
Il_—E—k, -mx% = 95.56 kg-cm

_W! 2_ 90 2 _ o
12_Tk,_§8-1-x20 =36.7 kg-cm

GIp
(%)
where Ip = Polar ML = x/32 x (4.5)*
G = 0.84 x 10° kg/cm?
1=22cm
So k= 084x10°x (x/32) x (4.5)"
) i 22

=1.536 x 10° kg-em/rad
Similarly,
5 —[Glr) _084x 10° x (1/32) x (4)*
B e P
! 18
=1.1722 x 10° kg-em/rad
The frequency @, is given by the expression

kl‘hll(ll + IZ)

&= N Tt 75y

4 \/ 1.536 x 10° x 1.1722 x 10%(95.96 +36.7)
95.96 x 36.7 x (1.536 + 1.1722)10°
= 158.3 rad/sec
The distance of node from dvname
Loy, + k),

A, e
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ExampLE 5.24. Two equal masses of weight 400 kg each and radius
f gyration 40 cm are keyed to the opposite ends of a shaft 60 cm long.
“he shaft is 7.5 cm diameter for the first 25 cm of its length, 12,5 cm
liameter for the next 10 cm and 8.5 cm di ter for the r ining of its
ength. Find the frequency of free torsional vibrations of the system and
wosition of node.

Assume G = 0.84 x 10° kg/cm®. (Roorkee Uni, AMIE)

SoruTion. The system is shown in figure 5.37.

Fig. 537,

k, =[—Q‘I-‘-’l - &z’;—m—‘ X 8/32 X (7.5)" = 10.43 x 10° kg~cm/rad

k,.=&l’(;—l°—‘ x £/32 % (12.5)* = 10° x 201.2 kg-cm/rad

o 9—':'-‘;;—@ x %/82 x (8.5)" = 17.2 x 10° kg-cm/rad
ky by, andk,,mennnededin:erieu, 80 equivalent stiffness of shaft

r_1.1
L T A %

= e | 65 (NN S %
et (10.43*201‘2’17.2]

ke = 8.29 x 10° kg~em/rad

The expression for frequency is
‘\’h.(lnla)
O = Ll
For the system [, =1, =1 (say)
So 1=§k’= o2 x (40"
=652.4 kg—cm sec’

MECHANICAL VIBRATIONS

From these two equations frequency equation can be written as

ky+ k-mw’ -k
;=0
~k k¥ ky - mow

After the expansion of determinant, we get frequency equation
o _[5,2‘54}2}” Ryk + kky + kiky

m; my .

k+ k.

Lk i,
kiky = 40 x 40 = 1600
kyk = 40 x 60 = 2400
kky =60 x 40 = 2400

myms =10 x 10 = 100

Substituting the values of various terms in the frequency equa-
tion, we get

_(10,10,4”’,&*214_0(’.%‘_24@:0

w'-200*+84=0
; = 4 rad/sec
w; = 2 rad/sec,

ExAmPLE 5.26. Derive the equation of motion of the vibratory
system shown in figure 5.39.

Determine the natural frequencies for given data
k;=98000N/m, m;=196kg

ky= 19600 N/m, my=49 kg (P.U. 85, 89, 94)
% — 2
1w we] ™
b ™
Fig. 5.39.

‘\’629)(10‘)(2)(6524
o, = 652.2 x 652.4
=138.88rad/sec

Since I, = Iy, s0 the node will lie in the middle of the equivalent

shaft.
Let us find the length of equivalent shaft

.
L:lldlg[%) *l:(:;]
75
-25+10[125) *25( ]

=41.45 cm
The middle of equivalent shaft is 20.72 cm from the left hand side.

ExampLE 5.25. Determine the [re-
quency of the system shown in figure 5.38.

s
Given g %
ky=hky=40N/m |
k=60 N/m, m;=my=10 kg "‘_}—;,,
(P.U. Aero, 94) -]h
Sovvrion. The equations of motion 1
can be written as m\a—‘
myx =— kxg — k(x) - %g) 1
iy =— koxy + k(x, - X9) k2
Rearranging the above equations, we
get Fig. 5.38.

myxy + Ry + Ryx —kxy =0
Mty ~ kxy + (k + k) =0
Let us assume the motion of the form
xy =A; sin (@t +¢)
x3 =Ag sin (0X + §)
where A,, A; and ¢ are arbitrary constants. Putting these terms in the
above equations, we get
(kg + k—my0HA; - kA =0
- kA, + (k4 kg = ma')Ag = 0
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SoruTion. The equations of motion for the system shown in figure
5.39 can be written as
myEy + kyxy + kylxy - xg) =0
ma¥y = ka(xy - %) =0
Rearranging the above equations, we can write them as
my+kyxy + koxy — kyrp =0

Mgty + kaxy — kaxy =0
Let us assume the solution of the form
x=A, gin ¢
and 22=A; 8in ¢
So % == A, sin @

Zp=— 0'A, sin @t
The above equations can be written as
- my@°A; + kyAy + koAy - koA =0

~myn'Ag + kaAy - koA, =0

or (=m0 + Ry + k) (- maw”® + kg) — ki =0

@'mymg — Mk’ - kyma0® + kiky - kamow® =0

So - w(hz h'«rb—]*-———k'" =0
mz My my | mymg

Substituting the values of various terms, we get
o' - 10000° +2x10°=0
Thus @, = 26.9 rad/sec
w, = 16.6 rad/sec.
ExAMPLE 5.27. Determine the two natural frequencies and mode

hapes for the sy hown in figure 5.40. The string is stretched with
i (P.U., 91)

Fia. 5.40.




Sorurion. Assume the tension in the string as T and it does not
‘hange for small values of oscillation.
Equation of motion for left ball (mass)
mi, =~ T sin 8, - T gin 6,
u—T%#T(ﬂ;_xQ

rn::'IQ-’—-—'-so (1)

Similarly, equation of motion for right mass can be written as
2mx; =+ T sin 8; — T sin 6;

. Teg-x) Ty
= i ]

ETIIE—T—;‘!:O (2)
Assuming the solution of equation (1) and (2) of the form

x, = A, sin ¢

x3 =Ajg Bin 0¥

2mip +

We get,

(—mm’a»—lzI]A,-%.A,ﬂ)

[—W+¥]A,-§A,-o
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Putting the value of friction force Fyinto equation (1), we get

m,i:-kz«»m.ge--'-"-zé
%m,i«rh—mge:O 3
myfx + 18) + mogh =0 {4)
Let us say
x=Asin w, 0 =B sin o
¥ = w*A sin w¢ =—w'B sin at

Then equations (3) and (4) can be written as
-gm,m'A +kA ~magB=0

[- gm.m‘ +k]A-mgB=0
—m,(o’A —m,le)’B +mgB =0
- ma*A + (mag ~ miwhB = 0

A_ maE g -lo*
TR, T e
B _32mo'+k o

m”!g—mgfkh»mg,
@'- +——-‘-k' =0

'2"")1 gm,l
Q 7
2mag + 3 N@mag + Smg + 201"
P i sttt T "
i

ExaMPLE 5.29. An automobile weighs 2000 kg and has a wheel
base of 3.0 metres. Its centre of gravity is located 1.4 metre behind the
front wheelaxfs and has a radius of gyration about its C.G. as 1.1 metre.
Th’. front springs have a combined stiffness of 6000 kg/cm and rear
springs 6500 kglem. Find the principle mode of vibration of the
1utomobile, and locate the nodal points for each mode. (P.U., 87)

Sorurion. Radius of gyration k = 110 em

W, = 2000 kg

W,
m=—1
&

&y =6000 kg/cm
kg = 6500 kg/cm

TWO DEGREES OF FRELUM DT 15m

Similarly, [‘;:—:]:- 1-43

Exanpir 5.28. Find out the two natural frequencies of vibration for
the system shown in figure 5.41.

- Fig.5.41.
; ; ided . The
The light pendulum rod is pr at the centre of the roller.
spring act?thmugh the centre of the roller. What happens to the two
natural frequencies when (i k=0 Gi) I = 0.
SoLuTION. Let us assume the friction force as F;between the roller
and the rough surface.
The equations of motion can be written as
myk =—kx + mag8 + Fy
=-kzx+mogein®+Fy
{sin @ = 8 for small oscillation]
=—kx+mqg8 +F (1)
where F, = friction force
For the rotler motion )
molE +18) =—mqg sin .{2)
B=-Fr (sin6= )
1
Em,r’ﬂ __myd

Fp=-m="
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1y + 1= 300 cm
or 1, =140 cm, {3 =160 cm
T=mi*=¥ 3t
&

2000

;| me— 11 = 7
X (110)" = 24668.
Usmg equation (5.8.10)

2 2
%.’=%[k.+k,+k,l.+ki,

m 1

2
*'\/ kythy (el + RgD))  Ahaky (O + 1Y ]
m I ml

Biths _ (8000 +6500)981 oo oe
= 5 :

m 2

k¥ v kodf 6000 x 1407 + 6500 x 1607

T 2000 1
agy X (110X 110) |

=11512.56
4kskaly + 197 4% 6000 x 6500 x (140 + 160)*
MI = 2000 _ 2000
o981 * ogy X 110%110
=2.79164 x 10°
Putting the values of various terms in the above frequency equa-

tion, we get I

1 V(6131.25 + 11512.56)° I

==|6131.25 + 1151256 + ———————————"ue
- 2[ = —2.79164 x 10° ] 1

= % [17643.8 + 5669.2)

@, = 107.96 rad/sec

;= 77.37 rad/sec
The amplitude ratios for the two modes of vibration
A l= kola—kily 6500 x 160 — 6000 x 140

' A.*h,-m."mwsoo_%uome)’ '

=~=0.177 m/rad
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and
(A,l hodd + kyl? - Ty}

L kola - kily
ssoonsoheooouw’- xlw'x1737’
= 6500 x 160 — sooox 140
=6.8 m/rad

;= 77.39 rad/sec (@, ~ 107.96 rad/sec
Fig. 5.42
The two principal modes of vibration as shown in figure 5.42.

For the first mode, the amplitude ratio is [%‘l =~ 0177 m/rad
')

This indicates that when A, is positive ¢, is negative from any

d directi of rotati This happ at frequency
n).:lm.sﬁrnd/m.ﬁhmﬂnnodeho.lﬂmﬁvmlbeC.G.of
the car body. The second nodal point in 6.8 m to the right of the C.G. of

the car body.

543 (P.U,, 89)
Sorumion. Let us assume the ™5
whole system is moved to the right by x.
The ball m, is displaced by 0 as sb Q_
in figure 5.44. The total movement of o
bell my isx + 0.
The equations of motion are O"'
For pendulum,
myz +0)=—TO® (gino= 6
(T = m2) Fo- 3%
304 MECHANICAL VIBRATIONS

SorutioN. The equations of motion for two masses are given as
118y == mygh By = magl 8, - ma(liB; + 1,8,),
myd {8y == mugh 8y ~ magl 8y - malyBy + LB), (D)
(when angie 8; i3 small sin 8, = 8,)
and

md 0y = - magl8; — maylylaby

Bl + 81,8, + 1i1B, =
9-,# "l’ 3 0+ El—’ol =0
B,,+—16,¢lo,=o A2)
Iy Iy
Equation (1) can be written in simplified form as
My b iBes
St et Bt 1 0120 (3
Let us assume the solution of the form
0; = A, sin ot
8, = A, sin o
So 8, = - w*A, sin w¢

8, =~ Ay sin wt
Putting these terms in equations (2) and (3), we get

-0ty - wiAp +E
2 2
—wf+ B A,-m’ﬁAﬁo
I I

_ g
- A _ g 44
Ay :‘1

A

and —w'A; + (- m’Az)-o‘-A, =

gy -
(my + my)ly

SO0 T
( o ‘Ix}‘l (my +maly =g
A malg” A85)

Ay (my +mg) ly -m’+f:|
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mylx +18) + magd =0 —*
i+lB+g0=0 1) ™y
For mass m,, mx =78 v\“

mx-mgd=0 =g
or =" .2 i
my e |
Putting the value of ¥ from equa- ®
ton (2) in equation (1), we get W
2 06+ 104g8=0
my
Fig. 5.44,
lh(,.l‘—’!]o-o
my
g, mE
0+['+m‘l)0=0
Qoﬁ(m.+m,)o=0

So W= N‘—‘;(mﬁm:)

Examrie5.31. Determine the natural frequency of oscillation of the
double pendulum as shown in figure 5.45. Find its value when
my=my=5kg,l;=1l3=25cm.

Given
m,=m,=m
Li=l=1 (P.U., Aera 76)
Bl £ ax
TWO DEGREES OF FREEDOM SYSTEM .

The frequency equation can be written with the help of equations
(4) and (5) as

-G),'bl 2
—h :
u’;-i (my+maly ‘“’*ﬁ

" my+my) mitmg oo 1.1 Mn“"xf_ -0
m(l- ™ ] _~_mz mﬂ[ ‘lg]( s [

L (mnm,)m,(l,«tl,) (m"’"j!i.o

. my my Iy mz

, mam)e’ G+l mm’
@ ms iz malily
This is the frequency equation.

my =my=5kg, L=l;=25cm

ot - 20 g _’”?_mi o
»‘—4&’?4%:0

Given{=025m
e 4xd‘x98 2x9.8" <0
35 ' (257
' - 156.8 w® +3073.28 =0

oo 15682 ‘1(156.8)’ — 4% 3073.28
2

156.8 £ 110.87
ela= =g

©; = 11.56 rad/sec
wy = 4.8 rad/sec




ExanrLe 5.32. Findlllemm'dfrrquenqandamplitudc ratio
the system shown in figure 5.46. (P.U,, Aero 9;{

Fig. 5.46.

Sorvrion. The equation of motion can be obtained usi
Lagrange's equation. e
Lagrange’s equation is :

d 9
;Emz.)-gmnnémm-o

]
KE =T=2mid+1om ;2
Lt 2 1 2 x2
1 . .
=§rm{omx§
PE=Valpi,l LI
-, 3 Rei+ 5k (xy - 2 tg ke
d (aT o
Now I('jx—l}:mx.
oT

-0

4
%‘hx*ﬂn'h)

The first equation of motion is
miy +kxy + h(xy ~x9) = 0
mx, + 2kx; - kxy =0 A1)
In the same way,

d [T A
i[E)ma

E:

=0

S =key ke 2 - )

= Zk:, - h;
The equation of motion can be written as
2miy + 2kxy - kg =0 .42)
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2
k
-2m|B8 Y- | +2k
> k

==2x82 009

ExameLe 5.33. Find the natural freq ies and mode sh for

the torsional system shown in figure 5.47.

By

v

n;! ( i | § Kty 1 Kt A

E r

A -

4 5 A
Fig. 5.47
Given J;=dp Jy=2J,

and ke, =k, =k, =k (P.U, 77)

SoLurion. The equations of motion for the two discs may be
written as

Ii8 =k, 0 + £, (68, - 0,
JiBy + k8, + R (8; - 8) =0
and JoB) + 26,8, - k,0,=0 A1)
J!“S s kl.(ei -8)- ktlei
IoBy + k(8 - 0) + k83 =0
Iobly + k8s + ROy — k8, =0
Jobly + 2k,8, - k8, =0
28z + 24,8y - k8, =0 (2)
Let us the solution of equations (1) and (2) in the form
8 =A; sinax, 8;=A, sin e
Then equations (1) and (2) can be written as
- ' oAy + 2k, A -k, Ay =0
(- 0™+ 2k) Ay -k, Ay =0
(= 200" + 2k) Ay~ k, Ay = 0
Ak 268 + 2k))
x;--azlo+2k,= k.

1V UDAUREGD U SR EEANST O 39 85

Let us assume the motion is periodic and is composed of harmonic
motion of various amplitudes and frequencies.

Say xy=Aysin ¢
xg3=A, Bin ¢
So equation (1) can be written as

- myA, + 2kA; - kA, =0
(- mw® + 2k) A, = kA,
A B - 2mo’® + 2k

- Ay Cmotr2k) k
2(- mo® + 2k) (- ma® + k) - k' =0
2Am*e* — mkw® - 2mke” +2k%) - &7 =0
2m’e* - 6mho® + 4k - k* =0

TWO DEGREES OF FREEDUM >Y31EMm
The frequency equation can be written a5

2(- @'+ 2h) (- 0o+ k) — k' =0

20*T2 - aohy - 2o + 2] - =0
203 - 6k, Jow' + 3k =0

Sk o K7,
i
2 2
3k, \li’ﬂ 5. 38
3 -J—Ot [JJ . 2J3
o= 2
_15k 3k
= 2 d
So m,zl.-"#k,/-’o
oy = 80Nk Jy
The amplitude ratios are given by
CH N - b
Az -oldy+2k &
-5 Y, [Je+ 2k
=4
s'ﬁl + 2k,
A -2»,’Jo+?l¢.__z(' 7
=== :
,;&i-lﬁt!.:,o.n

. p s
Examr mmmmwmqwmcm
ﬂuuofcnh.:ﬂwakmdrulardbaofuiﬁmthwhmauhmds

D" 190¢em 0, :123em
0N 4 M =10001kg

S— L —

f———300cm ——}
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The masses of the discs are M, =500 kg and M, = 1000 kg and their
outer diameters are D, = 125 cm and Dy =190 cm. The length of the
shaft is | = 300 cm and its diameter d = 10 cm. G = 0.83 x 10" N/m®.
(M.D.U,, 95)
Soruricn. The system is shown in figure 5.48.
25m

2

For smaller disc, ry = 2252 0,625 m

%M,d:%xsoox(o.szs)’

=97.65 kg-m*

L=

For bigger disc, ry =% =095 m

I, =%u, A= % x 1000 x (0.95)° = 451.25 kg.m®

11
K= 9{_" 22X xw/32x (10)
=2.71 % 10° N.m/rad
We know that
§ \lx. i +1) 4 [2.71x10° (97.65 + 451.25)
o = L, - 97.65 x 451,25
=58.1 rad/sec
o, 581
bl =% 2x
=9.25 Hz.

ExamrirB5.35. A reciprocating engine has a mass of 40 kg and runs
at a constant speed of 3000 rpm. After it was installed it vibrated with
a large amplitude at operating speed. What dynamic vibration absorber

hould be coupled to the system if the nearest resonant frequency of the
combined system has to be at least 25% away from the operating speed.

(P.U., 88)
X , 2
sowrwu{g]-:lqﬁt e s
Wy 2

T d
_2xf _2xx3000
=0 =220 = 31415 rad/sec

s = 0.750 = 0.75 x 314.15 = 2356 rad/sce
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an equivalent two degrees of freedom system and determine, the natural
frequencies.

Assume EI=21x10° Nm®
my = 3000 kg
L;=5m
EA=8247x10°N
my =700 kg
Iy =6m (U.O.R, Roorkee 84, 85)

Sorution. Let us say k, is the stiffness of beam I, and k, the
stiffness of beam /;. Then the equivalent system becomes as shown in

figure 5.50.
k.
ky
. T
1
k' %2 2%y
.2
5 Ry

Fig. 5.50.

The stiffoess %, is given by the expression as (for a simply sup-
ported beam)
k= -‘*';—f—z!=~‘§—’—‘-;‘;,"—l°s=s.os4x 10° N/m
i

Cables are subjected to axial loads, the stiffness of each cable is
given as

ky - AE _ 8247x 10°
L 6
The total stiffness of the two parallel cables is 2k, i.e.,
2k, =2 % 13.745 x 10°
=27.490 x 10°N/m

The equations of motion can be written as

maFy =~ kyxy ~ 2ka(xy - x5)

mg¥y = 2ka(x) — x3)

=13.745 x 10° N/m

TWO DEGREES OF FREEDOM SYSTEM wn

Using the above relation
1
31415) _, B q B
[zss.e], 1egx Vit s

2

- 177=1+5+ Jwﬂ‘-
2
“lus B
[.n-%j-[w ‘)

1.77 p = 6049
p=.3417

and we know that mass ratio
ma
“‘m"'l
m,=40kg
mg=.3417x 40 =13.67 kg
For vibration absorber, we have
Wy =0y
ky Ry
my  my

a_ kb
@IS} =t

ky=1.34 x 10° N/m.

ExAMPLE 5.36. Figure 5.49 shows an overhead crane schematically.
The cabin is at the centre of the beam of length l;. Reduce the system to
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My + kyxy + 2ty - 2kyx, =0
Mgy + 2hyty - 2hyey =0
Finally, we get the frequency equation as
o - of (Bhamy ks + 2hgmg)  2hoky

mymg mymy
2kum, = 2 x 13.745 x 10° x 3000 = 8.247 x 10"
magk; = T00 x 8.064 x 10° = 5644 x 10"
2kymy = 2 % 13.745 x 700 x 10° = 1,9243 x 10"
mymy = 3000 x 700 = 21 x 10°
2kiky _ 2 % 8.084 x 10° x 13.745 x 10°

myma 3000 x 700
= 1.0556 x 10*
Putting these values in frequency equation, we get

o' - o 1—8'2‘7—2’2";’6‘: 0’; L.9243),5%0 , 1.0556 x 10°=0
x

'~ 5112 % 10° o® + 1.0556 x 10° = 0
ot S112x10° £ V(5119 x 10°) - 4% 1.0556 x 10°
2

_5112x10° + 4681 x 10°
= 2

@y = 221.28 rad/sec
=35.23 Hz
and ©, = 46.42 rad/sec
=7.39 Hz
Exampre 5.37. For the harmonically

excited two degrees of freedom system
shown in figure 551, set up differential

equations of motions. (P.U.92)
Sorurion. The equations of mo-
tions can be written as

myxy == kyxy - Re(xy — 23) + Fo sin «t
Mgy == Ra(xs = Xy) = ho¥y

or myxy + (ky + ka)xy - koxy = Fy sin w¢
may¥y + (ke + ks)ey - kaxy =0
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Let us assume the motion of the form
X =A, gin o
X3 =A;8in @@
¥ =~ w'A, sin
¥3 =~ @Ay sin o
Substituting these values in the above equations, we get
(ky + By~ myA,; - kyd, = F,
~kay + (kg + k3~ maa™)4, = 0
Solving for A, and A, ﬁ’omthenbwehvoequldom,wsget
Az (kg + ks ~ mao"F,
Imymaes® ~ (miky + ks) + motky + k)
+ {kaky + koks + kiks) |
A kaFy
Iy’ ~ (my(k + ks) + mghy + ko)jo®
+ Ukikg + koks + kiks) }
The steady state vibration can be written as
X =A,; 5in @t
X3 =Aj 8in ¢
where A and A, can be substituted from the above equations.

bcrtobeﬁudtothcmaincy:temi/iﬂsdtsiredtokec the
tural
frequency atleast 20% away from the l'mpresxdfnquem:y‘.’ e
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When (w/w,) = 0.8, the value of u

(o.sr.(ug)- we
p=02
and for w/w; = 1.20, the value of
p=013
The larger value of i (i.e. p = 0.20) is taken for the design purpose.
Now u-#
1
Jy=pJ;=02x15=03kg-m’
= (g, we get

oy
VE K
J] Jg
J2
or Kt.‘;r;xa'"x«.

or K, =0.2x 4.36 x 10° = 8.72 x 10* N-m/rad

Examprirr 5.39. A torque T sin ot is applied to J) of the torsional
system shown in Fig. 5.52, If the moment of inertia of the main system
Jy =136 Kg-m®, the torsional stiffness of the main system

Since

T sineat

e T
o

SoLuTion. The natural frequency of the main system is

‘\/K- ."436x10’
= — — e
oy i 15 =53.95rad/s=0

For the undamped vibration absorber here, the excitation
2y is equal to the main system natural frequency of 54 rad/s, P

Assuming w; = @,, we can find the two resonant frequencies from

:qn. (5.9.13) as

o) (i1 '\l Iy
(m,]’ (l+2)i (n+‘
Now the resonant frequencies are atleast 20%
ixcitation frequency. So we have, -
«w/wy = 0.80

K, = 9.826 x 10° N-m/rad, T = 300 N-m and o = 850 rad/s, specify the
minimum size J; and K, of the absorber. Also calculate the stiffness K
of each of the 4 absorber springs such that the resonant frequencies are
at least 20% from excitation frequency. What will be the amplitude of
vibration of this absorber. The distance of the springs from the centre of
the ring is 15 cm on both sides of the centre. Refer Fig. 5.52.
SoruTioNn. The natural frequency of the main system is

w; = q% = Vﬁ-?ia;—ws- =850 rad/s =

For the undamped vibration absorber here, the excitation frequen-
cy is equal to the main system natural frequency of 850 rad/s.

@y = @, we can find the two resonant frequencies from

/ P
[%I:(ld»%)t p+‘i—
Now the resonant frequencies are atleast 20% away from the
excitation frequency. So, we here
/= 0.80
or w/wy; =1.20
When @/, = 0.8, the value of u

2
ow-(11) (%)
u=02

and for o/, = 0.2, the value of
u=0.13
The larger value of it (i.e. p = 0.20) is taken for the design purpose.

J;
Now p-f (for a torsional system])

Assuming
eqn. (5.9.13) as

Jy=pd; =0.2 x 1.36 = 0.272 kg-m*
Since o =y, we get

or K= K, =uK,

K, =02x9.828x10°
=1.9652 x 10° N-m/rad

‘!'halnbuorberlprinpminpcnnelnndwthoirequinlent
stiffness is sum of stiffness of individual springs.
Applying eqn. (5.10.7), we get

K, =4KxR*
1.9652 x 10°
- = mDODEX 2D 21835 x 10° N/
or K R = i 0aB 038 X W R/

*  The amplitude of vibration of the absorber at an exciting frequen-
¢y of 850 rad/s is given by eqn. (5.9.12) after changing the translational
quantities into torsional quantities.

T=-B:K,
e L300 ____153%10°% radians
o Pk =" Tseszx 10°
ExaspLy 5.40. For a four-cylinder engine working on four-stroke
cycle, the crank throw is 100 mm. What should be the length of the
ivalent dull P "“atamdiusof&Ommloaemt_ua
centrifugal absorber. If the disturbing torque on the main system is 150

N-m, what size of the pendulum should be taken so that its amplitude is’

limited to 15° # Consider the angul locity of the hine as 60
rad/s. Refer Fig. 5.16 (a).
SorutioN. Referring Fig. 5.16 (a), we get
r=100 mm
R =80 mm
For a four cylinder engine working on four-stroke cycle, the order
no.is 2
From eqn. (5.12,13), we get

or L =20 mm
Disturbing torque = 150 N-m
Restaring torque = Mro® gin ax L
The amplitude ‘O’ of pendulum is limited to 15°
From equ. (5.12.5), we get

s Bavee B
nna-rnnoaloonnls

or a=12°




But the disturbing torque equals the restoring torque in mag-
nitude,

150 = Mr o* x sin ax L

=M x 0.1 x (60)* x sin 12° x 0.02

or M=100.2kg

ExanrLe5.41. MMnAandamamchcdtothundofa shaft
50 cm long. Weight of the rotor A is 300 kg and its radius of gyration is
30mand¢k¢cwmapondiumlmof3an500hgand45mpecﬁw&
The shaft is 7 em in diameter for the first 25 cm, 12 em diameter for the
next 10 cm and 10 em diameter for the r inder of its length. Modulus
of rigidity for the shaft material is 8 x 10° kg /cm?.

Find (i) the position of the node and (ii) the frequency of torsional
vibration, (AMIE, 1994)

SoLutioN. The configuration diagram is shown in Fig. 5.53.

Wx=300kg, Wz=>500kg

or m ﬂ 300

and m,-ﬂaﬁk‘,

KA =30 cm, K.=45cm

8
G=8x10°® kg /em?
Tecme 12em ‘Dcm
25em 10em 1S5cm l
——y
Fig. 5.53.

m-hnnmybeeonvmdintouomiomllyemﬂmkntshaﬁtbo
length o(whichiagivenby(Ammingd=7an)

4
1=1.+1,(;";) +1,(‘%].-29.78cm

Let N be the position ofnodeforthetwonbrlynemand the
length of two parts of equivalent shaft bel, and Ip as shown in Fig. 5.54.

e warEney EIEND

Problems

1. Ammitlhwmhﬁgunﬁ.l?ldumnﬁcdly.ﬁemﬁnhwm

mrqthabalhdmmmu:hmmby-mh(ohﬁﬁmubw

has a natural length of 2%, Find out the xpreasion for the inclination of
uumwmmmmmmmmmwn

Fig.5ap
2, ﬁgunS.ﬁPnhoanigbtmd!igidnanntpdnhOxlndoﬁ

respectively, and both are horizental under the action of three springs as
chown, Obtain the frequency equation.

L,

K o
mi

Fig.52p
Find two natural frequencies when
azb=c=d=e={; f=21
my=mzem ;ky=ka=hky=h
8. Derivean ion for the freq tion of the syst.

J &q

P as shown
in figure 5.3 P,

K
@__

—Liflade
Fig.53p

A 8
Node
IA £a L 1 ,I.
Fig. 5.54.
So, I=ly+lg
K, K,
We know that, 0, =wg= JTA‘ = JT:
T _GJ
and K,=-a=—[—
{where J = Polar Moment of inertia of shaft)
J=n/32d*

G (xa)l. G (n 4
or I—“‘:[md‘) I.I.(SZ ]
l‘.I.-mlx:
I; ’; MAEA
500 (0.45)* x 9.81
“9.81x 300 x (.30)"
l .Aig)
A_
& [o=378
From equations (i) and (ii), we get
‘A=zs'5m l‘.—.s.mm

Now o= J_G_ d

Talg 32

‘d 8x10° XLU)‘
) 26 22
981(45)’)16.
= 540.24 rad/sec
Since oy = oy =540.24 rad/sec

@ f.;/A.“gf‘-M.wcycwl&
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e tion of the rod'in the vertical plane, find the frequencies
€ mummwmn

G)...__l_‘
xx% <
j 2K

Fig.SAP
small i i constant speed of
iprocating machine of 30 kg mass runs at &
s ;er:n:mrmmhmhwfmwfweah:oo

close 1 fre of the system, Design a
ifthewd‘::atﬁmeuc;ofthe:ym;hhbenmmmme
6. F‘Mthctwonamnlfnqunduuﬂhnyﬂndmnﬁgmssl
mj = 50 tonne
mz = 90 tonne
ms = 250 tonne
ky =12 MN/m
kg =15 MN/m Fig.S5P
7 D ine the natural freq

cies of vibration of the system shown in figure 5.6 P

Fig.56P Fig. S.7P
8. Derive the fi jon of the system shown in figure 5.7 P. The
weightleas. .
9. T::v,:\::&ﬁeunhd equation of motion for the system shown in figure
5.8.P. — ]
4 K: v
1 M ww—f
—E 1
n S; ) s;; n

I{'I
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10. M%ﬂofmmndmumtdhnﬁakmmommmh

C is put for testing in a wind tunnel. Derive erential tions
motion. Refer figure 5.9 P. - . "

R

Fig.59p

11. Two rotors A and B are attached to the ends of a sha.

2 ft 600 mm long. Th
nunoftbo_rvaungandiundiusnfgymtionist'ﬂl:
xnufondmupudmﬂmmhmdswmmmp«ﬁwly.m

aft is 80 mm diameter for the first 250 mm, 120 mm for next 150 mm
length and 100 mm for the ining length. Medulus of rigidity of the
shaft material is 0.8 x 10° MN/m?. Find :

(a) The position of the node,
(6) The frequency of torsional vib (KU.,98)
12. Two rotors of mass moment of inertia J1, Jz are connected 4

" s to the ends of
-lhaﬂ?flennhl.dummrdmdmmmwdgidityum;:nb
n?pwpnmlyluppon«! to permit the rotation of the shaft about its axis.
Find the natural frequency of the free torsional vibration of the syst

(UPSC., 85
18. Ammndelﬁgmﬁ.lol’.lippliﬁedbymﬁdeﬁminrigidbod‘ylup-
poned' .onrnrand front springs, is considered to study vertical linear
:::’ram?‘nnd 'lmhroaullanm' . Write equation of motion for the car
tural  frequenci Car
Wa150N,Li=135m, Ly=165m, Ki=360N/m, K= 970 N/m and
Je=2Tm*.

Fig.5.10P
(b) A jig contains a screen that recip with a fr

nejumgpszsonmm.fmmmdéoﬁfm
_n'horborwalghh;gSONialobo' lled to elimi the vibration of the
png:nu}oddfnninemwmniﬂm.m'mbcmulﬁu

1 iex of tha cvatam ? (Dnnclonn Tlai a4 nmy
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The general expression can be written as
=8y Fy+a Fy ¥ ... a,F, .(6.2.2)

For any principal mode of vibration i vario
masses my, my.....m, eanbeoupnn;u RERUROUESAR u'

x=4A; sin o
xg = Ay sin o

%, =A, sin ot .(62.3)
But the inertia force F, at any point can be written as

Fy=-mi, =m, 0 A, sin ot

Fy=m; @’ A, sin «f and so on ..(6.2.4)

Substituting the val i i
PR !‘\:t values of forces from equation (6.2.4) into equa-

A; sin o = aym, @® A, sin of + ayym, oF A, sin o -

. +a1m, w* A, sin o
A,oma:a,,m,mzA,linuénmzw’A,dnu-

+aym, M’A,, 8in ¢
Ay 3in 0t = agym, o' A, sin @ + azmy o° A, sin ot — ...
+aym, w’ A, sin @ ..(6.2.

Rearranging and cancelling out the common tar:: sin ¥, w(os:us)
(@nm, 0"~ DA, +a,mg 0 Ag + ....aym, @A, =0
agmy 04, + (agm, o - 1A, + iy, WA, =0

General expression can be written as
Gpymy Ay +Gamg 0°Ag+ ..... (G, 6P — 14,=0 (626

If the determinant of the above equations i i
ives the frequency equation. b e

Equation (6.2.2) may be written in matrix form as

n Gy Gy @y .. ay |[F
2 Oz G Gx .. ag, (| F,
3.9 =|0n G Ay .. Gy, ({ Fy

x, @y G v Gp || F,

In short form, the above equation may be written as
Iz} = [a] (A .(6.27)

hor: Had thn Eacihiiie Se_a v

o

6

Several Degrees of Freedom Systein

6.1. INTRODUCTION
The systems having more than one degree of freedom are known
as several or multi degrees of freedom systems. We have already
dis d two deg of freedom sy A system must have as
many equations of motion and as many natural frequencies as tae
number of degroes of freedom. In principle, the vibration analysisof two
degrees of freedom system is not much different to that of multi degree:
of freedom systems except that the latter requires much more mathe-
tical lysis. As the ber of degrees of freedom increases, it
becomes very tedious solving the equations of motion and to determine
the natural frequencies and mode shapes. The natural frequencies and
mode shapes can be determined easily and quickly with the help of
computers. It will be quite relevant here to discuss some approximate
methods like Rayleigh’s method, Holzer's method, Dunkerley’s method,
Stodola method, Matrix method, Rayleigh-Ritz method, etc. In this
chapter, the use of different methods to determine the natural frequen-
cies has been made,

8.2. INFLUENCE COEFFICIENT

The equations of motion of several degrees of freedom system can
be expressed in terms of influence coeflicients. The influence coefficient
ayis defined as the static deflection at point i because of unit load acting
at point j. Similarly, a;; is the deflection at point j due to unit load at
point i.

According to Maxwell's Reciprocal Theorem

a;=ay .(6.2.1)

For example,
Gz =an
ay3 =ag; and so oa.
If a system made of several points is acted by several forces
Fy, Fy, Fy...F, ing respective deflecti X1, X3, X3 ...X,, it can be
expressed mathematically as
xy=ayFy +apFy +apf+ .aF,
23 = agiFy +02F + apF3+ 8 Fy

(323)
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The forces can also be written as
Fy = Ruxy + Rygxg + Ryges
Fy=hayxy + kowxs + kagxy
Fy=kgyx) + kgaxz + kgyxs and so on. ...{6.2.8)
The above equation may be written as
{Fl} ky ki Ry {n] ..(6.2.9)
Fyy=| ky Ryp ky x3
F3 kyy ky Ry X3
or (F} = (k){x)
where [&] = stiffness matrix
Then equation (8.2.7) can be written as
(x) = [a] (k) x ) 6.2.10)
or [a) = k1™
Thus  [ajlkl =111
where {7} = unit matrix.

Fig. 6.1. Double pendulum.

Exanrre Prove Maxwell's reciprocal theorem a; =ay; for the
simply supported beam with concentrated loads acting as shown in
figure 6.1(A). (M.D.U., 90)

Wy

|

50

ol %

Fig. 6.1(A)
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Sorurion. The work done will be obtained when the system is
deformed by the application of force. First of all, force W, is applied at
poix‘;; 1 gradually from zero to its full value. The deflection at point 1is
LITALT

The work done at point 1 = %W}(ﬁllwl)
1
=3Wiay
Similarly, when force W, is gradually applied at point 2, the work
done will be
=1/2Wiay
But when force W, is applied the additional deflection at point 1
due to force Wy is a3 W,. But already a force W, is acting at point 1. The

work done by force W, corresponding to deflecti a;,W, at point 1 will
be WyW; a;,. Se total work done in the first mode
WD)y =3 Wiay + 3 Whag + WWsas

Similarly, the work done in the second mode can be written as
(WD), = % Wiag +% Wiay + WyWaay,

From the above two equations, it is clear that ayy=ag.

5.3. GENERALIZED COORDINATES

The configuration of a system is completely specified by certain
ndependent parameters or coordinates which are known as general-
zed coordinates. These parameters specify the motion of a system
ompletely. If a system has n degrees of freedom it will have general-
2ed coordinates. The generalized coordinates are generally denoted by
' 92, 93 G-

We ider double pendulum in figure 6.1 where

x =l 8in 0y x;=1, 8in O + I 8in 6,
y1=lcos & yy=1Ic080, +l5c088,

Here x;, y;, ; and y; are not the generalized coordinates. Only 8,
.ndB,mthoindopmdenteoordinamwhicblpaci&themmcom-
letely. These are the generalized coordinates.

So 8y =q;and 6;=g,.

4. MATRIX METHOD

This method is very convenient way to solve the equations of
otion. The | natural fir of tha evetam son ha dntaceminnd

The solution of equation (6.4.5) may be obtained by
|IM~cl=0
For simplicity of expression, Jet us say that
My =my=my=m
ky=ky=ky=k
Again equation (6.4.2) may be written as

m 0 0 l‘: 2 -k 0 ]|x
0O m 0 el -k 2k -k |{xg)=0 -..(6.4.6)
0 0 m||x 0 -k k ||x

Im)=m’

co

m_l.ddim= 1
lm| —m

m® 0
0 m?
0 0 m?

3

fel = im)™'(k) (Using equation 6.4.6 for [k])

i1/l o0 2k -k 0
=’*n-010 -k 2& -k
001 0 -k &

2 -1 0
lc1=-'£[-1 2 -1J

m

0 -1 1
{M-¢el=0
A-2k/m) +k/m 0
+k/m  A-2%/m +k/m | =0
0 +hk/m  A-k/m
Solving it, we get
2 ;3
x’-u’;‘;mx:?-%:o
From the above equation, we cbtain
M =0.198k/m = o
r m=m=.“'\/%—nd/aec

= VI555 F/m = 1.24 ‘\j% rad/sec

@3 =V3.247T k/m =180 V -;nh— rad/sec
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very quickly by this method. Matrix method is
very important to analyse as it is the basis of
many computer solutions.

The procedure is explained with the help
of following solved example. Consider figure
8.2 for analysis.

Xy
[ ]
The equations of motion can be written as 25
myxy == kyxy - Re(xy - 23) [ ]
s

[ ]

%
Mgy = Relxy = g) - Ryl =~ %)
Mty = ky(xy — xg)
Rearranging the above equations, we get xs
myEy+ (ky + ka)xy - kyxa =0
mg¥y = kaxy + (Ry + Re)ey — Ry 25 =0 Fig. 6.2 Spring-mass
Mm%y - Ryt + kyxy=0 ..(64.1) system.

Equation (6.4.1) may be written in matrix form as

my 0 0O EN (Ry+h) ~ky 0 xy
0 my O ;’ + 4[ k; + k’ = k’ x31=0..{642)
% *3

0 0 my 0 ~ky kg
The above equations can be written in matrix form as
[ml(z) + (kléx} = 0 . (6.4.3)

where [m] = mass matrix
and [A] = stiffness matrix

or G+ [m] ' kllx) = 0
%) + lelixi =0 . {6.4.4)
where [c] = [m] ' [k) = Dynamic matrix
-1 _adjm
and [m] iml

For harmonic oscillations at frequency @, (¥} = - w’{x}, 50 equation
(6.4.4) reduces to  fcllx) ~ 0’lx} =0
If " = A say, then the above equation may be written as
fcliz) - A (x} =0
or =-clx}=0 ..(6.4.5)
where [/] = identity matrix
[1 0 o]
I=|0 10
001
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6.5. ORTHOGONALITY PRINCIPLE
For a system with three-degree of freadom the orthogonality prin-
ciple may be written as
mAA; + maBBy + myC\Ca=0
miAgAy + maB;Bs + myCCy =0
mAA; + maB By + myCiC3=0
where my, my, mj are masses.

Ay, Az, Ay, B, By, By, Cy, C; and C; are the amplitudes of vibration
of the system. We will make use of equation (6.5.1) in matrix iteration
methed to find the natural frequencies and mode shapes of the system.
§.8. MATRIX ITERATION METHOD

With the help of this method the natural
frequencies and corresponding mode shap fase
are determined. Use of influence coefficients is
made in the analysis. The method can best be 3
understood by solving the problem of figure
8.3 by matrix iteration method. (P.U. 85)

SoLurion. The equations for the above
system in terms of influence coefficients can be k
written as

2y =aydmz, 0 +ap2me; o +aggmxs ©°
X3 = Ay dmx, ©° + ap2me; @ + agynx; o K
Xy = Gy dm)e* + ag2mz, o + agme o

Influence coefficients are ht]

..(6.5.1)

1
Gy =8)3 =033 =0y =Gy = 3k Fig. 6.3,

Substituting these terms into above equasions, we get
m

3% X3 m’

x,:%z,w’+%x,o)’ 4«%—:,&’

x,z%:,m’+%x,m’+%x,m’
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This can be written in matrix form as

Xy om |4 21 x1
== |48 4
{2] % [4 s v] ’1’1}

To start with the iteration process, let us assume
1 1
X =42
Xg 3
First iteration
421 1
x, ‘”v 484|({2
4 817 3
=3k [82]:92—'!(11) [2.91]
41

e 13.55 o 1
=0 422 [= 2 (1355) (3.1
% [ 3 3.94

53.39
Third iteration
4 21 14.16
4 8 4 3!1 =%"—‘ 4464
4 817 56.46
1
=‘—“—‘(“.IG) 3.15
% 3.98
Fourth iteration
Xy 2 4 21 1
%)= %{1 48 4/|{315
s 4 87| |3
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7.3
“ms%{ “7J=ﬁnsz) [ l}
4.67 64

Second iteration
-1.0 0 -432 -37[-10
{ 0.23 ] = L':‘!T 0 167 0 -%
0.64 0 167 3 64
2|~ 0.3036
=] 03841
2.3041
2 -0.132
= 23) l o.m]
1.0

-0.132 0 -432 -3
s 32 -3 [-0132
l ?.(1)67’ =3%]0 167 o ! ole7
. 0 167 3| 10

-3.72
mw? - 10
T A ‘——mz) 0.07
3.28 0.58
Fourth iteration
-10 0 -432 -3] [-10
{ o.o7‘ = % 0 167 0 { oo7
0.88 0 167 3 0.88
mo? | ~294 2 ~-10
=3 | 012 (=% @96 | o004
276 | %
0.94

The value is converging to { -é ’

Hen“s‘ X294=1 or w,= V rad/sec

To obtain the third mode, let us use orth:
Mg + m3B,B; + myCyCy =0
mAsAg + moBi By + myCyCy =0

Ay xy 1
B} =ix}={315 }
x;

ogonality principle as

Substituting

(o 3.99
A1=1,B,=3.150,=399
Lo A;=-10,B,=0,C,=1.0
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4.28 1
-n 4512 --"”—’ﬂ (14.28)|3.15
ERE 3.99
Theratioobtaimdintheﬁouﬂhlurauonlue:yclontothainiﬁnl
value, 80
1
{315 s-— (1428) 315
- 14.28 -1
o

“1428m 1438;..

N2, ND
@y = 1428 m 4568 ml’&d/m

To find the second principal mode, the orthogonality principle is

ma(Xg) _MalXa)|(y
% w'm 421110 -mu[ﬁ] ml(’l] x'
== 42 2l]o 1 0'[a
5 48 7|0 5 1 | L=
3.15) 1399

ofu{d 2 L 0‘%{_1'] '4(1) o
=SM4 84, . o /=
487 0 ° 1 x3

2 1}{0o -158 -1} X
8 440 1 0}{x
8 7/l0 0 JSRES

4
4
4
n 0 -432 -30][=
X3 =m0 167 0 |im
w| *|lo 167 80 ||n

Now assume
xy 1
x3=11
X3 1
Fimimatian
0 -432 -3
167 0 l
0 167 3|11
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So dm(~1)Ag + 2m(0)By + m(1)C3 =0
4m(1)Ay + 2m(3.15)B, + m(3.99)C; = 0
Solving for By and C;
2x3.15B3 +4.99C5=0 }
6.3By+4.99C;=0

Ba —‘”c;=- 79C3

Solving for As and Cy |
44, +2x3.15x~.79C; = -3.99C, !
A;=.246C,

e é

So, using sweeping matrix, we have
X 0 -432 -30||0 0 246 | |21
x ="'“" 167 0|00 -79}{x
X3 0 0

167 s0||o0 10 | |y ,
00 .413](x
= 00 -132|{x
3100 168||x
First iteration,
x 1
Assuming{ x; } ={ 2
x3 3 ’
00 .413][1 l
% 00 -132|{2 ;
00 1683
413x3
=% -1.32x3 =%(1m 419
1.68x3 4.06
Second iteration
[0 0 .413 1
=l’—'“3)‘; 0 0 -1.32|{-3.19
00 168|406
2
3k
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1
Hence the third mode is f —‘30169 ] and the natural frequency of it

m
I-um’l.S'IG
2.3k '\’ 3k k
O Tetem @ 1.s'zsm'=w4‘\}; rad/sec.

Thus
First mod - k
modeis{3.15 |, =0458 Y~
399 @ = rad/sec
-1 F
Secondmodeis{ o J, oy = k& rad/sec
1 m

~ 1 ’
Third modeis{ - 8.19 , @3 =1.34 3 rad/sec
4.06 n

6.7. DUNKERLEY'S METHOD

Natural frequencies of struct are evaluat i
) : str d by th
This method is used to find the natural frequency of cra{lsve’isl: 3::::-

tions, The load of the system is unj istribu
el be'ﬁmns:l uniformly distributed. Dunkerley’s

1 1 + 1 ¥ 1
h P i S A . (6.7.1)
where © = natural frequency of transverse vibration of sha
1 ft for man,
point loads. w;, w,, @y, etc = natural frequency of individual point load:
= natural ibrati
we,‘g:tof al frequency of transverse vibration because of the

e * 2
’5\” jC ID 1(

b e 25 e 25 —fe =25

3
e
—

Fig.-6.4.

This approach can best be understood wif
I ith the help of
shown in figure 6.4, Let us neglect the weight of the heam :BOSaﬁf:l;;:

ystem is @ and corresponding to three loads
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_Px05x05 . .2
=—gmIx1 0-5-85

_ P(.020833)
But here P = 4 times of it
- P(.08333)
So Iy = EI
Similarly, deflection at E

y3= E’% (.0234375) m

or y = b =
o B of & o &
1 _Oi+yatys)
o' g

P
=gl (.0117187 + 0234375 + .08333)

ad
=257 01180

e ‘\’IFJ
or 0=291 P

6.8. RAYLEIGH METHOD

This is the energy method to find the frequency. This method is
used to find the natural frequency of the system when t se point
loads are acting on the beam or shaft. Good estimate of fundamental
frequency can be made by assuming the suitable deflection curve for the
fundamental mode. The maximum kinetic energy is equated to maximum
potential energy of the system to determine the natural frequency.

Let us consider a shaft AB of negligible weight as shown in figure
6.6 (a). Several point loads P,, Py, Py, Py, etc. are acting transversely.
Suppose y,, ¥3, ¥3. ¥4, €tc., be the maximum deflections under the in-
fluence of point loads.

SEVERAL DEGREES OF FREEDOM SYSTEM 22

P

e
e
LY Ry
Fig. 6.5.
1 1 1 1
—_— = + +
S Felte
chabenmhhadedushowninﬁgureS.S,then
Pb Pa
Ry="Re="7"

To determine the deflection of the beam at a distance x from left
end, A,
B]%-_—-EIQ:+P@;~¢) (from strength of materials)

3
- &
or EIy:-!é‘i#Cll‘*CgQ&?)—

Applying boundary conditions as
y=0at x=0
and y=0 at x=1
So Cy=0
pbl _Pie-a)
o e

1 Pbxg P_P_l Ll-a_).z =
So y=§,[“‘€‘“‘[s T sxea)

:%({’-x’—b’) (O<x<a)
Deflection at point C, y;

Px.75x.25 2 ¥ b=T5m
ylnw[l—.% -.75] x=25m

- &%‘l@ (1 - 0625 - .5625)
. ﬂAOH'lan -

- El
Deflection at point D, y3

Pb. ?
y,--s—t;;?(l’-}'bz
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The maximum potential energy of the system can be written as

1 1 1
PE.= —% Py +5Pra+ P+ P

1 .(6.8.1
P.E.=§2P’ (6.8.1)

The maximum kinetic energy of the system can be written as
1 1 g 1 2
KE.= % Pyaryy)’ + % Pafeya)” + % Pyleaya)” + % P(ays)
m’ 2
=z
% Py
where @ = natural frequency of vibration. '
Equating the maximum kinetic energy to maximum potential
energy, we have

.{6.8.2)

ﬂzzPy’r;;zPy

E
A ’1 Py (68.3)
® Py

The above equation can be written in a more ggnenlised way by
including the distributed mass of the beams. Ifmis t.hz mass of the
beam per unit length and y is the assumeq deflection curve, the
maximum potential energy of beam of length [ is expressed as

1
1 .68.4)
PE.=1|Mds
2 0

where M = bending moment
d 0 = change in slope over a distance dx
From beam theory, we know that

M = % where R is the radius of curvature and EI is the flexural

1
rigidity.
1 _de _dYy
Also R—fa’;—‘-t;q
_El_p.dy .{685)
Thus M="g =Bl 5
0 _dy _[d A6.8.6)
and £=I§, or do= ;ix, dx (

So from equations (6.8.5 and 6.8 6) equation (6.8.4) can be written as
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]
-1
PE. 2 : EI[%).& .(6.8.7)
'momnmumhnahcmmofmmmbe 5 -
i
KE. a%!m(wf > -.(6.8.8)
0
. :quaﬁnzmanmm kinetic energy to maximum potential energy,
! ]
1 I 3 1
3 J miay) d:s;jﬂ[%]‘dt
0 0
]
dy
[y
So wt=2 ;
I my'dx
[
{
a
[ [;j}'dx
Efo
s ..(6.8.9)
[
1]

EXAMPLE. Find the lower natural uency of vibratio)
mshwuinﬁgunas(b)byﬂnyldg’;l?mako;, " for the

E =1.96 x 10" N/m?*
I=4x107 m* (®.U.91)

My 100 kg

H MyaS0 ﬁ
a+8em

s e 9 |

AN
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Fig. 6.7.

L0 + ky(6, -8 = 0 .6.9.1)
1582 + ky(8 - 8)) + k(B — B) = 0 ..(6.9.2)
TBy + kyfO3 - 8;) + ks(By - 8,) = 0 .16.9.3)

LB, + ky(0, - 83) = 0 .{6.9.4)

“l‘he rnotion_s are harmonic at a principal mode of vibration. As-
suming 6, = ¢, . sin w! and substituting it in the above equations, we get

W7, ¢y = ky(®) - by, ..(69.5)
@y ¢z = ky(02 - 9)) + k(8 — b ..{6.9.6)
s s = Ralbs ~ 02) + k(83 - 00) .A6.9.7)
o7, b0 = hy(9 - 89 .(69.8)
Summing the various terms of the above aquations, we get
4
Y o' Le=0 ..(6.9.9)
i=1
For a set of n discs equation (6.9.9) can be written as
n
2 o, 4= 0 ..{6.9.10)
i=1

In the above equation it is explained that the sum of the inertia
orques k(9 — 02), A2(6s — &), ete., must be zero and the assumed trial
requency @ must satisfy this equation.

Procedure

1. Assume a trial frequency ©

2. Take ¢, as unity arbitrarily.

3. Calculate ¢, from equation (6.9.5) as

Loy
2

G- .A6.9.11)
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SoLuTtoN, With the help of equation (6.8.3), we can find the natural

frequency as
e

The static deflections at two points are given as
yi=Mgoy + Myga,,
and y2=Mgoy + Mygay
(18

3
a =
= .7
OB T T 196 x 10 K Ax 107 - S AT9x 10

5=y = _ o3P =1.147x 107
3EI 3x1.96x10" x4x107

a’(@l - a) (.18)%(3 x .30 - .18)
YT | P |
6x196x10" x4x10

@12 =0a2y=

=4.959% 107
8o y;=Mgaey +Mgay,
=100 x 9.8 % 2.479 x 10 + 50 x 9.8 x 4,959 x 10°*
=486x10"*m
ya=Mgoy + Mgay
=100 x 9.8 x 4,959 x 10™° + 50 x 9.8 x 1.147 x 10”7
=1048x10°m
Thus

e ’9.8[?,:, + Pyl
(Pyi' + Py

9.8 [100 x 4.86 x 10 + 50 x 10.48 x 10°%]
100 x (4.86 x 107 + 50 x (10.48 x 10°%)?
@ = 354.96 rad/sec

§9. HOLZER'S METHOD

This ia trial and error method used to find the natural frequency
and mode shape of multimass lumped parameter system. This can be
applied to both free and forced vibrations. This method can be used for
the analysis of damped, undamped, semidefinite systems with fixed ends
having linear and angular motions. First of all, a trial frequency of the
systam s assumed, A solution is found when the trial frequency satis-
fies the constrainta of the system. Figure 6.7 shows a four-disc semi-
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I o'
or =1~ * ]0,

Similarly, ¢ and ¢ can be computed from equations (6.9.6) and
(6.9.7) as

PR 52 ) (69.12)
]Ea
b ug- D thnt *”’:*__’4‘3) o' (69.13)
3

4. The values of ¢y, ¢, ¢; and ¢, are put in equation (6.9.9) to check
whether the equation is satisfied or not. If equation (6.9.9) is not satisfied,
a new trial value of @ is assumed and the whole process is repeatrd.

5. Prepare a table showing various terms as :

Row I 3 l1ea’ tl¢e’ k é T160t
L L A Lo L
2. Iy ¢  I¢«' Summation %k  Summation
3. I & Lo ky
and so on.

6.10. STODOLA METHOD
It is an iterative process for the calculation of the fund tal
natural frequency of the system. The steps of the method are :

) A a suitable deflection curve. Say for a three degree of
freed ystem it is d as
n=Ly;=lLy=1 .{6.10.1)

(if) Find out inertia loading of the system for the deflection as
assumed in section (). This will be in terms of o” as
Fy=m, (!):yl - Illlﬂ)z
F,=m,u)’y,=m,¢n’
Fy=mjy a)’y, -m,m‘ +46.10.2)
(iii) From the inertia loading as obtained in section (if), find the
corresponding new deflection curve. This will be in terms of &,
Yi=Fiay +Fyay + Fytyy
Yy=Fian +Fan + Fan
Y3=Fian+Fan+Fay ..{6.10.3)

whasa a.. A.. A.. a.. ote avainfluances snofficionta
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Gv) If the assumed deflection curve y,, yg and y, of section (i) is
equal to the derived deflection curve of secti (2 y'y, ¥’ and y's, then

the shape of d curve of section (i) is correct. Then with the help
of equations (6.10.1 and 6.10.3) we can find &',

() Ify; # ¥y, 2 # ¥'3 and y3 # ¥'3, then the derived deflection curve
¥'u¥'2 and y’y may be used as new starting points in place of
¥1,¥2 and yy in the process.

Repeat the process till the assumed and derived deflection curves
are equal.

6.11. EIGENVALUES AND EIGENVECTORS

Let us again consider the system shown in figure 6.2. The equa-
tions of motion can be written as

myxy + (kg + kaey ~ kaxy =0
My~ kyxy + (ky + ko - koxs <0
mayEs — kyxy +kyty =0

In matrix form the equations of motion can be written as

IM)ix) + [k)ix) =0 .{6.11.1)
Multiplying equation (6.11.1) by [M]™, we get
MY A + MY () =0
&) + [Clix) =0 .{6.11.2)

where [M} (M) = [], a unit matrix
[k] M1 = [C], a dynamic matrix
Let us assume the solution of the form
x=A gin wt
So F=-w'Asina
== A sin ¢
where o’ = 4, eigen value
Sinea.wemmaideringtho!hmdegmof&sedmlynem,n

‘here will be three values of w*. Hence, there will be three eigenvalues
‘or a three degree of freedom system.

Equation (6.11.2) can be written as
~ w?lM(A} + [C1IA) = 0 .{6.11.8)

Here, the column A bas three values which are known as eigen-
rectors. In general, we can say that a n degree of freedom system has
t eigenvalues which are real and corresponding n eigenvectors. In the
tbove expression @ is known as the natural frequency of the system and

Mode shapes for first mode :
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100 2 -1 o]}lAa
%010-1-12-1 Ayl=
0o ™ o0-1 1f||la

0

(1

0
& | —1802 1 0 Ay 0
"—' 1 -1.802 1 Aj =10
0 1 -802||la,| lo

We can have three homogeneous linear equations in three un-
10Wns A;, AQ and A

- 1.802A, +Ay=0
Ay~ 18024, 4+ Ag=0
Ay- 802A,=0

The mode shape will be { =%

Az A _
We get A =1802 and =224

1.0
1.802
2.247

Now the first mode shape is given by

An=A}

Second mode shape :
A2 =1.555 k/m
(aln - [Ny =o (Using equation 6.11.4)

k|1 00} T 2-1 o A 0
1555—=10 1 0|-H-1 2 -1 At =1{0
™o o1 0-~1 1 Ay 0
1555 0 0 -2 1 0 Ay 0
0 155 0 |+ 1 -2 1 Azt =10
0 0 1555 0 1 -1 As 0

They can be put in equations as
-~ 445A,+A;=0
Ay~ 4454, + Ay =0
Az + 5554,=0

A;

Z:ASS
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its lowest value is called the fundamental or first natural frequency.
Equation (6.11.3) can be written as
o'MNiA)= [CIA}
AlNA) = [ClIA)
A -ICHAl =0 .{6.11.4)
The solution of the above equation is obtained by putting its
determinant equal to zero e,
IM-cl=0 {6.11.5)
This equation gives the valuea of natural freq: Qneowe
know the values of natural frequencies, the n}ode shapes or eigenvec-
tors can be determined with the help of equation (6.11.4).
i i the
Now let us put some numerical problem for solution. Suppnoe_
problem in figure 8.2 is considered. See article (6.4) for the determina-
tion of natural frequencies.

&

We get 1,-0.198;

.3

= 1.556;

and =327
The natural freq can be determined by many methods. One

of&bcmemwﬁndthemtudﬁequmde’whidlmwbun
used in two degrees of freedom system is again presented here.
The equation of motion can be put in determinant form as

-mo*+ 2 -k 0
-k -mw’ + 2k -k =0
0 -k -mat+k

The frequency equation is obtained by expanding the above deter-
minant as
- m0® + 5mka’ - 6mk’e’ +4° =0
2 3
L m’-—k—'ao

LY. =
u'-smm ¢6m, e
This is the same equation as obtained is section 6.4. Anyway, now
try to find the mode shapes. Mede shapes or eigenvectors can be
caleulated with the help of equation (6.11.4) as

N -Cnial=0
BEVERAL DEGREES OF FREEDOM SYSTEM 345
and A - 445x 455 A, =~ A,
A
A 8019
Thus the second mode shape can be expressed as
1.0
Ay=A71{0.445
- 0.8019)
Third mode shape :
Wel:ake).-3.247£-
m
P 100 & 2 -1 0 Ay 0
3.247 010(-—4~-1 2 ~1 Az p={0
™Moo1| ™ o-1 1|||a] lo
3247-2 1 0 Al (o
1 3247-2 1 Az} =10
0 1 3.247-1 || A 0
1.247A, +A; =0
A +1247TA; +Ay=0
Ag+2.247 Ay =0
From the above equations, we get
A,
Al--l.241

A
g A
no Ay '
............. W el
First moge
Second mode _\-:
"
|
Third mode
Fln ETh




4a_
2 =0855

Thus the third mode shape can be expressed as
1.0
- 1.247
0.555
The values of A, A and A{ are usually taken as unity,
The mode shapes are shewn in figure 6.7 ().

6.12 TORSIONAL VIBRATIONS OF TWO ROTOR SYSTEM

R;efer Fig. 6.8. If the shaft is of varying diameter it can be con-
verted into a torsionally equivalent shaft of length [. The shaft carries
two rotors A and B at its ends. The two rotors rotate in the opposite
direction but their frequency is equal. A particular section of the shaft
between A and B ie. C remains unaffected. This section is termed as
node. At node athe amplitude of vibration is zero. '

o

|

Ag=A}

el j

%};KC Q
Pt S R
Fig. 6.8,

Let 1= Length of shaft
d = Diameter of shaft
1, = PC, distance of node from rotor B
1, = CQ,distance of node from rotor A
J = Palar moment of inertia of shaft
C = Modulus of rigidity of shaft material
13, I, = Mass moment of inertia of rotors B and A respectively.
Natural frequency of rotor A

= d cd
2% VI,.1, 1)
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and C. The vibrations are torsi i
e il i onal in nature, There are four pos-
Case

Let rotors A and C rotate in the same direction and rotor B i
;;.ypo:;o direction. The node points N, and N, will occurm as lfo::.nt?:
ig. 6.9 (i),

Let I, = Distance between rotors A and B
I3 = Distance between rotors B and C
I, = Distance between rotor A and node N,
I, = Distance between rotor C and node N,
J = Polar moment of inertia of shaft
C = Modulus of rigidity for shaft material
I, = Mass moment of inertia of rotor A
I, = Mass moment of inertia of rotor B
I, = Mass moment of inertia of rotor C
The natural frequencies of rotors are torsional,
Natural frequency of rotor A is given by

=LAl G
=50 A .(6.13.1)
Natural frequency of rotor B is given by
0 N 17T
faa 2= VI, [ L + ok ] .46.13.2)

and natural frequency of torsional vibrations of rotor C is given by
foed \/_C'i
2 VI

But the natural frequency of all the rotors are equal, thus

fua=fis=fuc
From equations (6.13.2) & (6.13.3), we get

.{6.13.3)

1 1 4 1 )1
¢ 4 Py ey —Zz ..(6.13.4)
and from equations (6.13.1) & (6.13.3)
L.ly=I.1
o
b g lo= T ..(6,13.5)
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Natural frequency of rotor B
_lalCd 7
fua= 2x Vi, .0, (i)
But f,4 = fus, 80 from equations () & (ii)
U0y

L. I=l.0 or I,=

We know that I, +1, =1

Thus we can locate the position of node with the help of above
equations,

6.13 TORSIONAL VIBRATIONS OF THREE ROTOR SYSTEM

A three rotor system is shown in Fig. 6.9. The rotors A and C are
attached to the ends of the shaft while rotor B is attached in between A

o
o

oty b —
(ii)A. A
] m 2 | (@ =wa)
e | tils L 13

I

DS

i |

) -
i)

b to—s

tv) Ra Ap Ac
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Substituting the value of £, from (6.13.5) into eqn. (6.13.4), we get

[ (D ) e A I
T l_lpl_*l;—l, 1.1
1 l,,
1. l -
| Tehi=Lk =l |'1"°
1. }
i Y R S O N
T Ll,,.l,-l,‘l,rl..(lz' g)] 1=0

Lol Ll -8+l bil=1 8 |- Ua - L1 La e 10 Ty =0

This is a quadratic eqn in ..
There are two values of /. and two values of [, (from eqn.
(6.13.5)). Thus there will be two values of nodes and two values of node
frequency. Two node frequencies can be computed with the help of
equations (6.13.1) and (6.13.3).
Case

When rotors A and B rotate in the same direction and rotor Cin
the opposite direction, there will be single node for torsional vibrations.
It lies between roters B and €. Refer Fig. 6.9 (zi1). It does not give the
actual position of node. In this case [, > L.

Case TI1

Again there will be single node of vibration, when rotors B and C
rotate in the same direction and the rotor A in the opposite direction.

It is shown in Fig. 6.9 (iv) where [, > L,. Actual position of node is
indicated by N,.

For an analysis of the vibrations executed by the three rotor
system, we assume that the torsional stiffness of shaft between A and
B and between B and C are K, and K, respectively. Then, let at any
instant, 8,, 0y, 0, be the displacements (angular} of rotors A, B and C
from their equilibrium positions when the system executes torsional
vibrations. It is assumed that all the rotors rotate in the same direction.

This means that the twists of the respective shafts at this instant
arc (8, — 6;) and (6; - 83).

From Newton's Second law of motion the equations of motion can
be written as Y

1,8,=-K, (6, - 6)
I8, =+K, (8, - 6;) —K; (6, -8)

re LW Ay

..{6.13.6)
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Assuming the motion of the form 6, = A, cos w?
Soweget, B =-0’0,=-0’A cosmt

where x=a,b,ore
A, = amplitude of torsional vibrations at any of the rotors A, B or

-.(6.13.7)

So for three rotor system we have,
8, =— 0" A, cos a2
B =—w® Ay cos @
B, =— @* A, cos wt
Substituting these values in the above equation and cancelling
08 W, we get
I, 0’ A~ K, (A -A)) =0
Lo* A+ K, (A~ A) - K, (A, -A) =0
Lo"A +K, (A, -A)=0
On rearranging above equations (6.13.8), we get
a0 -K)A +K, As=0
K A+ o' - K, K ) Ay +K A =0
E A+ (. o' -K)A =0
Thisisah set of equations in A,, A, A, and can here

»e a solution only -if the determinant formed with their coefficient
ranishes.

E‘_ '-‘ha FH ot
ve get
0~ K, 0
X K.,K") ho'-K -K) K,
0 K, d.w*-K,)
This is the frequency equation.
On rearranging the (6.13.6) we get,
LB+ (+K,) 0~ (K,)0=0
5L -(K,)0,+ K, +K)0~-(K)8 =0 =0 _(81311)
1.8, -(K)8+(K, )0, =8

From equation (6.13.11) the determinant form of the nroblem can

...(6.13.8)

...(6.13.9)

ts of A,, Ay, A, in determinant form to zero,

=0..(6.13.10)
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The two definite frequencies in this three rotor system can be
obtained from equation (6.13.14) as

: d=l[[£“4+ﬁ%ﬁ+§l]

b 2(| 7, A
\l K, K +K K} 4K, x,l(l,u,,u,)J
—l 1 - 1
+ ( L. + A + I LLL ..{6.13.15)
The mode shapes can be obtained from equations (6.13.9), as
A K
% '5" . (6.13.16)
AL (613,
A K, -1of

When w =0, both the above ratios are unity, indicating that the
whole system rotates rigidly. For value of @ = @, (the smaller frequen-
cy), one of the ratios in eqn. (6.13.16) is positive while other is negative,
And for @ = my, both the ratios are negative. The mode shapes can be
referred from Fig. 6.9.

6.14 TORSIONAL VIBRATION OF MULTI-ROTOR SYSTEMS
(A GENERALIZATION)
Torsional vibrations are most ly ed in almost all
the hinery. The ples are the internal combustion
engines. .

I

1, I Iy Tne Tn

Fig. 6.10.

We consider a ‘a’ rotor system. The ‘n’ rotors are connected by
(n - 1) shafts whose torsional stiffnesses are X, , K, , .... K, | respective-
ly. The moment of inertia of the rotors are given by Iy, Ip, [ ...... I
respectively. We assume that at any instant, 8,, 8,,.... 8, are the
displacements of various rotors from their equilibrium positions.

This means that the twists of the respective shafts at this instant
are (8; - 6), (8; - 03) .... (8, . ; - 6,) when all the rotors rotate in same

SEVERAL DEGREES OF FREEDOM SYSTEM 5

8 0 0
M=0 &L O
0 o Iﬁ

K, -K, 0
Stiffness Matrix K] =| -K, (K, +K) -K,
0 - K, K,

From equation (6.4.4), we get
Dynamic matrix [C] = [M])* [K]

wvi, O 0
™M=l o 1/1, 0 .(6.13.12)
0 0 VI,
vi, 0 01| &, -k, 0
Thus [C) =] 0 /1 0 -K, (K,+K) -K,
0 0 I, 0 -K, K,
This reduces to,
x &
=4 I -K,
I‘ x"n +K’l I
IC‘ == ’(4. <
L A K
I, f
a - K, -
0 —t I,
I
The solution of equations (6.13.11) can thus be given by
| -C|=0
Thus |AI-C | =
AL -K, +K, 0
+K, AL-K, -K, K, |=0 .(61313)
0 +Kf‘ AL~ Y

The above equation is the frequency equation similar to (6.13.10),
where

A=w'
Expanding the above determinant and putting A = ', we get
O L Lo U I+ L LD K + (s L+ L L) Ky | o
+K, K, T+ L +1)1=0 ..(6.13.14)

The above equation is cubic in w® with one of the roots of ®* =0,
This should have been expected as we are dealing with what is known

AT e S
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From Newton's Second Law of motion, the equations of motion can
be written a8
1,8y =~ K (0 - 6;)

Ly 85+ K, (80— 8) - K; (82— 69
1,8, =+ K, (6, - B3) - K, (83~ 64}
............................ 6141
Io1 B, =+ K (B 2= 0 D-Ki_ (8,18
LB, =+K, 8, 1~ 8.)
Two cases anse from new one :
CASE A : (FREE VIBRATIONS)
Adding all the above equations (6.14.1), we get
; 1 6,=0 A6.142)
i=1 )

The LHS of the above eqn. (6.14.2) represents f.he sum ufﬁthe
inertia torgues on all the rotors and is equal to zero since there 15 no
external exciting torque on the system.

Assuming the motion of the form, 6, = A, cos o, we get

H=-0'0,=-0 Acos ot .{6.14.3)
where i=1,2,3.... n ‘
A, = Amplitude of torsional vibrations at any of the ‘n’ rotors
(=
depending on the value of 7.

So for a multi rotor system, we have
B, =-w’ A, cos ot
B, = — 0 Ay cos @t
= - ' Ay cos ¥

B,.,=- A,y co8 ¢

¥, =~w'A, cos ot

Substituting these values in the above equations (6.14.1), and

cancelling cos we, we get
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LA -K, (A -A)=0

I 6" Ay + K, (A - Ay - K, (A, - Ag) =0

L0 A3 + K, (A - A5) - K, (As - A =0 . (6.14.4)

Lo'A+K, (A -A)=0

On rearranging above equations (6.14.4), we get
@' -K,) A +K, A=0

K, A+ (30" - K, - K) Ay + K, As =0

K, A+ Uy’ - K, - K) Ay + K, Ay =0 (6.145)

K, Ay o+, =K, )=0

This is a homog! set of equations in A), Ay, Ay .... A, and can
ave a solution only if the determinant formed with their coefficient
anishes, Eliminating A, A3 Ag...A, from the above ‘n’
omogeneous set of equations inA;, A; Ay, .... A, and the resulting nth
egree equation in o would then give ' natural frequencies of the
ystem. This would be the frequency equation.

On rearranging the equations (6.14.1), we get

58 +(K,)8,-(K,)8;=0
Lt~ (K,) 6 + (K, +K)8;-(K,)08:=0

.(6.14.6)

I,G.-(K,'_')e.., "(xx,_,)en"o

From the equations (6.14.6) the determinant form of the problem
an be derived. Thus the matrix expressions for the system are

I 0 OV ovrssvreses 0
0k euanshn 0
aq<® 0 B 0
e s 2
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t tl_\e rotor I an the second shaft. This system may be replaced by an
eguwa]ent system of uniform diameter shown at Fig. 6.11 (i) and 6.11
(i2i) by assuming that (a) the inertia of hoth the shafts and pinion B and
gear C are negligible, () the drive is positive i.e. there is no slip, and
(c) the teeth are loaded within clastic limit. With the above assump-
tions, the system can be treated as a two rotor system, It is 2 case of
free vibration, the total energy at any instant is constant.

. N is the position of the node, A, and A, being the amplitudes of
vibration of rotors A and D respectively A, is the amplitude of the
equivalent retor D",

_ The kinetic energy of the original system is equal to the K.E. of the
equivalent system. Also the strain energy of the oviginal system is
equal to the strain energy of the equivalent system,

Equating the kinetic energies

Kinetic energy of the original system = KE of the equivalent
system

K.E. of [; section + K.E. of I, section = K.E. ofI; section + K.E. of
I, section
or KE. of {y’ seetion = K.E. of , section

1,,.2_1
gld ol =510

2
’ @y V8

or I =L;(& ]:I,./o‘ (6.15.1)

where ©,; = @y « anguiar speed of equivalent rotor 1’

@ . :

;‘; = G = Gear ratio
Equating the strain energies (S.E.)
S.E. of I, section = S.E. of I, section

Lpios 1
g Ti 0 =5 T8, .(6.15.2)

We know from Strength of Materials
r_ce - C6J
T =y =Ty
So equation (6.15.2) can be written as
8/ dy , Coydy

SSNE
[P A

By
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Stiffness matrix [K] = -
K, -K, 0/'us esmnasans o o
~-K, (&, +K) =Ky iieeieaanes 0 1]
L= e e
o T o T P veecilicy By

From equation (6.4.4), we get Dynamic Matrix [C] =M IR
The solutions of equations (6.14.6) are given by
| *I-C | =0 ; where A=o".

CASE B : (FORCED VIBRATIONS)

If there is an external excitation torque acting on the system at

different points along the system, then under such conditions we have

n
E I5=T, .(6.14.7)

where T, is the sum of all the ext 1 tarques on the sy

6.15 TORSIONAL VIBRATIONS OF A GEARED SYSTEM

Fig. 6.11 shows diagrammatically a geared system in which rotor

A on one shaft is connected through the pinion B and the gear wheel C

A 8
m[] S Mowion 3
i I ' Rotor
(i) Ldl
| Gear | y ;
c s
b Oy ———

=0,
a

Equivalent system

'
+ Elosic ne of

(m) ACN ongng! sys:em
=

isystem

L I

BV ERAL LT W § TNSAarTe a7 8 s

8y T ;Y >
== | | =~ ..£6.15.3)
(5] ()
(" 8 =0,)
where d,’ = diameter of equivalent shaft
dy = diameter of section [z =ds
Assuming the diameter of the equivalent shaft to be equal to that
of shaft 1 ie,
dy =d;
Then eqn. (6.15.3) can be written as

4 s
[ & 4 _g (4 e
lz—(adTlm[dz]'G Iy A (=)

0 »
where G=_" (77 oy =ay)
8,

So length of equivalent shaft
=4+l

v \J 4
0/ ), (i) _, o2y [
"'+[6, ,12{(12]-1,+b 1y ds
If the inertia of the gearing is to be considered, it is assumed that
w rotor is acting at a distance I; from rotor A,

The mass moment of inertia of that rotor is given by

I
I'=1; "&%

where I; and I are the mass moment of inertia of gear and pinion
respoctively and then the system will be three rotor system which have
already been treated.

For vibration analysis of the geared torsional systems we refer
Fig. 6.12. We assume that the gear ratio is given by G. The gear ratio
i the ratio of the speed of the second shaft to the speed of first shaft i.e.
the ratio of driven shaft speed to driving shaft speed.

The first step in the analysis is to convert the original geared
systemn into an equivalent system. The original geared system can be
converted into an equivalent system with respect to any of the shafts.
In this analysis, we convert the original geared system to an equivalent
system with respect to the first shaft (the driving shaft)
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The basis for the above conversion is that the sium of the kineti
kinetic i :
nergy and the strain energy (Potential ) of L The kinetic energy and the potential energy of the original system
guivalent system are equal. ke gl 't are given as

KE)o=31, @ + 5 1 6

(PE)or SE)=3Ta00+3 T4 (®)

Y
SRotor. g 1 s 1 . . 46.15.4)
Ky, . P inion =5K,©) +3 K, 0
b
D " T.=K:,-°-
:'J = Ky T4=K, .0
. Zj The Gear ratio G is given as
Gear Vi oy 6
c o G—V:'E"ﬁ: ..(6.15.5)
[Note. (Here it is assumed that rotor D is on the driven shaft while
k o' 0 rotor A is on the driving shaft. The students should not confuse this
[_ ; with the earlier case when it was just the reverse).]
kyy y kiz - ki From equation (6.15.5), we get
1 - 0,=G.8, ..(6.15.6)
(i) lg T4 Substituting the value of 8, from (6.15.6) in expressions given by
o (6.15.4), we get . )
A 1 i 3
kty 1A REJo=5 1 00" +314(G0)
(PEJoor SEN =5 K, @) +3 K, G0)*
ml)-c = or KEJo=3 L0 +5 @ 1) 0
..16.15.7)
(P.E)or(SE)= % K, 6+ % G K) 6
Fig. €12. (4 Original goared system The above i igl
equations show that the original system can be con-
((.. w‘ m“' "‘::;:(m-w verted into an equivalent system with respect to the first shaft. This
The s in two _ coneidering gear inertie). system is shown in Fig. (if). This is achieved by multiplying the inertia
CASEA : una X oftbooccondrotornndtha-tiﬁwnofthnnemnduhaﬁby(?’and
v : (Neglecting gear inertia) koeping this part of the system in series with the first part. Thus the
_ We can neglect the inertia of the connecting gears so that the quivalent expressions b
Tmmmm&vm—;mnm (KE), 1, @ 1(1')(&)’
8, and 6, be the angular di ) == + 2> (U 6,
- dloplocement of the reters A and B BSEE -(6.15.8)
(PE), =SB, =} K, 00"+ 3K, @)
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From the above Equatio:u (6.15.8), it applies that Here the inertia of the intermediate equivalent rotor is given by ‘
17 =G, 1'sc.
K, =G'K, nI159) The principle to get Igc or the intermediate equivalent rotor
’From Fig. 6.12 (&) it can be seen that the two torsional stiffnesses inertia is to add the inertia of the gear (driving gear) connected to the
&, and K, are in series. Thus the equivalent torsional stiffness is reference shaft (driving shaft) to G* times the inertia of gear (driven
1by gear) connected to the geared shaft (driven shaft)
7‘1_ - Kt_ Thus Ijc =L +G*I, ..(6.15.15)
Y , » The two definite frequencies in this three rotor equivalent system
K, = K', K-_\_ can be obtained from eqns. (6.13.14) and is given by equation {6.13.15).
K, +K,)) ..(6.15.10) Thus
Substituting the value of K,’ from eqn. (6.15.9) in equation g 3_ ll K Ki.+K K Y
.10), we get 0, 02 5 L L Ige L g )_
K,=GzK‘-K‘- -\[K K + K’ K'% AK K, (,+Iic +1) 2
“KTGK, 61811 [-,—'u—'l,—éc RN ]‘_J_— et 110 ] . (61516) |
A 4 a '
The system now reduces to a two-rotor system. Therefore the A
ral freq 'y can be obtained using the equation (5.2.5). There- where K, = G* K,
Wegot Iic =1, + G2,
‘\’Kc,uu*la') ‘oGP
W, = I_Id‘ ..(6.15.12) ls L
Substituting the val < X 6.16 TORSIONAL VIBRATIONS OF BRANCHED GEARED SYSTEMS
stituting the value of X, from eqn. 6.15,10 in 6.15.12, we get (A SPECIAL CASE OF GEARED SYSTEMS)
’ K.'K, (I,+1) Branched geared systems are frequently encountered in dual
0= N .46.15.13) propeller system of a marine installation and the drive shaft and

LI K +K)
Substituting the value of I, from eqn. (6.15.9) in eqn. {6.15.12), we

differential of the automobile. Such systems can be reduced to an
equivalent form with one-to-one gear, by multiplying all the inertias
and stiffnesses of the branches by the squares of their speed ratios.

[We assume that at any instant, 8;, 8;, 0, 8,, 87 are the displace-

2
o= ‘\} K., (’; +G 1) (6.15.14) ments of various rotors from their equilibrium positions. This means
G'L1; o that the twists of the respective shafts are (9, - 8,), (8. = 8,), (82 - 6.
NCIPLE OF CONVERSION and (85 - 6,7.] |
The pri ‘ for geared sy is thus quite simple and states From Newton's second law of motion, the equations of motion for
by multiplying all the stiffness and inertias of the geared shaft by l the equivalent system can be written as
e get the equivalent system, where G is the speed rati I
«d shaft to the reference shaft. S xoho of e : 1, B, = - Kty (8, - 84)
CASE B : (Considering the gear inertia) " Ta B m 4200 =k 2, o= R0 e 1)
148y =+ Ktz (8. — 8g) - Ko, (84— 9) {.{6.16.1)
|

This case 1s illustrated in Fig. 6,12 (iii). The equivalent system
respect to the first shaft can be cbtained in the same way and 1.9, =+ Kta (8- 8)
.y we have a three rotor system which can be analysed by using 178/ =+ K, (8p — 6f)

a2 AWy
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Further analysis can be carried out by using article 6.14 for
orsional vibrations of multi-rotor systems. To reach the matrix form of
he equations various steps need to be followed :

c F
— Ic Ir
2 ktg Rotor
A
Rotor
- —‘RM" Rotor
Kty kiz Kty
< Ib L1, Ie
To (i) D E
(A Original system ,
F
!
_—‘ K. = G2k 1 1Sy
14 4
A
- )
Kt ktz ki3
L
BC Ld Id ¢ Te
Is / X D
= I+ G°1
i b bt e )
(il) Equivalent systom considering Gear inertia,
Fig.6.13.
Assuming the motion of the form
8, =A,cos i
B, =~ '8, =-’ A, cos ot ..(6.16.2)
So for this multi rotor branched system, we have
B, =—w'A, cos wt
Yy = - @® Ay, co8 o
Stiffness matrix [K] =
K, -k, 0 0 0
-K, K, +K, +K) -K, 0 -k
K= o -K, K, +K) -K, ¢
0 0 -K, +K, 0
0 = Kl.’ 0 0 Kx"
where I}=GI,
K.'=G"K,
[k = 15 + Gz 1,
= 0 = Speed of rotor F
i = o Speed of rotor A
The solution of the matrix form is given by
|1AI-C|=0
where A=w?
and [C1 = [M] " [K] = Dynamic matrix
SOLVED EXAMPLES

ExampLe 6.1. Determine the value of influence coefficients for the
system shown in figure 6.14.

;l‘ . ‘»i—--l x ‘i}]
4 3k PR ] " = = K’ =

Fig. 6.14,

SoLuTion, (i) Here x), x3 and x3 denote the displ ts of the
masses 4m , 2m and m respectively. The influence coefficients of the
system can be determined in terms of the stiffnesses of the spring. If we
apply unit force at mass 4m and no force on the other masses i.e.
Fy =1, Fy=0=F;=0,the deflection of the mass 4 m is given by

ay, = force/stiffness = %

Since the other two masses mave by the same amount of deflec-
tion, so by definition a,; = a;; = 8,3 = a3, = 1/3%
(&z) Now we apply a unit force at mass 2m and no force on other
masses. Now two springs 3k and % are put to extension,
Both are connected in series, so equivalent stiffness is
; TS W W |

‘_’=ﬁ+;=§
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b, =- @’ A, cos o
B/ = - w® A/ cos wt
Substituting these values in the above equations (6.16.1) and
cancelling cos o, we get

I o' A~ K, (A~ A) =0
Ine 6 Ag + Kty (A —Asd) - Kty (Ase - AD - K,/ (A~ A =0
L& Ag+ K, (Ag - AD - K, (A4—A) =01 ..(6.16.3)
Lu*A +K, (Ag-A)=0
I o Af + K, Ay AN =0
On rearranging above equations, we get,

oo - K) Ay + (K ) Ay =0
(K,) Ay + s 0 — Kty — Kty = Ki)) Ase + (Ke) A + (K, A7 =0
(K.) A +(Is ' - K, - K ) As+ (K )A, =0 [ ..(6.16.4)
K)Ag+ U o' -K)A =0
(K Aw+Uf 0’ ~-K DA/ =0

This is a set of equations in A,, A, Ay, A. and A/
On rearranging the equations (6.16.1) further, we get
1,8, + (K, ) 0, ~ (K,) 8 =0
Ty By~ () 0, + (K, + K,y + K1) B3 = (K,)) 84~ (K, 6/ =0
Ty By — (K,) O + (K, + Kt3) 8, - (K,) 8,0 | ..(6.16.5)
L8, - (Kty) 0y + (Kt3) 6, = 0
1} 8- (K,) 0 + (K, 87 = 0
From the equations (6.16.5) the determinant form of the problem

cun be derived. Thus the matrix expressions for the system are

I, 0 0 0 0
11] ’“ 0 0 0
Mi=| O 0 I o o
0 0 0 I, 0'
o 0 0 0 b
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-
£
So an=3p

(iif) The mass m covers the same displacement ag.

4
So an=ap=3p
(iv) At iast, we apply a unit force at mass m and no force on other
masses,

=

-

s

&=

So an=3p

ExamptE 6.2. Determine the flexibility inﬂuzcuce coefficient for the
system shown in figure 6.15. E = 2.1% 10" N/m’.

m,=
mys'0kg a=20kg

i. = W?‘Q:—f:.——‘ﬂ
o0t —do 025}
Fig. 6.15,

= x . 7 4

Sorurion. Let us find f = 3—44‘ =& (.05)* = 3.066 x 107" m
EI=21%10" x 3.066 x 10 = 6.4 x 10* Nm*
wy
4 }

* —h

— BT

L

1=20+25=45m
s 2 .
o1 = 35T " 3% 2.1 % 107 x 3,066 x 107
=41x10° m/N
Hal-x)  2H45%x3~-.2)

9 =@n=TgET  §x6.4x10°
=1.19x 107 m/N
IS 45°

T2 3ET " 3x6.4x% 10"

ane AT /N




MECHANICAL VIBRATIONS
ExAMPLE 6.3. Determi : X
Foetmiep i Ayrorks rmine the influence coefficient of the system

25kg 30kg

@-?j -

b——"f?"—.-.‘k_‘“!'ﬂ_,’, _oiom

— h———— ¥ =

-

Fig. 6.16.
Take E=2x 10" N/m? I =4x 107" m?.
Sorvrion. ayy = "’l'z = 1x 2*
3EId, +1y) 3x2x10" x4x107(.3)
=555x10° m/N

3
@y =ay, _t.l,(l‘i—xln,’—ls")z .1ox.10é:l’-;oo’- 103
x

__-10%.10(09 - .01 - 01
6x2x10" x 4107 x 30

=486 % 10" m/N
aunl +1* U4 . (210
xR 3x2x10% x4 x 107 x 30
=555x 107 m/N
EXAMPLE 6.4. Determine the i i .
S ipasgip influence coefficient of the spring-mass
SoLvrion. ay =au=¢“=%
agy -a"-% Ix
0.-%4»5*1—.% - x
(springs in series) *
9 =0n=ay 22},
ayy -%&%4}% X
_2+3+8 11
=gt Ed ™
Bl & aw
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2(x) 1
i EIT MEPTE D)
m y(3/2-4/x)
_ET__ o«
T m 2815 - 4/3.14)
= f—:: (13.4)
2x10" x.02
"6 x 10° x (30)°
w®=1.1028
®= 1.05 rad/sec
f=w/2n=0.167 Hz.

ExamrLE 6.6. Determine the natural frequency of vibration for the
system shown in figure 6.15.

(13.4)

2
gy my

SOLUTION. W= Jz_'l
z mi]tz
i=1

We know ay =41x10"° (From Example 6.2)

ap=ay=119x 107 m/N
a3 =476 107 m/N
m;=10kg, my=20 kg
Y3 = mgayy + Magdy,
Y2 = mgay + Moz
y1=10x9.81x4.1x10%+20x981x1.19% 107
=2737x10%m
y3=10x9.81x1.19% 107 +20 x 9.81 x 4.75 x 107
=10486x10° m
Now
£(myyy + may) = 9.81(10 X 2,737 x 10°™° + 20 x 10.486 x 107)
=2.3258x 107
myyE+myyd =10 % (2737 ¥ 10°%? + 20 x (10.486 x 107%)*

—aansnn L oantl0
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Examprr 6.5. The vibrations of a cantilever are given by
y =y{1 - coc%) Calculate the frequency with following data for the
cantilever using Rayleigh’s method. Modulus of elasticity of the material
2x 10" N/m?

Second moment of area cbout bending axis 0.02 m*

Mass =6x10* kg, Length =30 m.

SorvTion. According to Rayleigh’s method, we have

DEVEKAL VEUREED UT FREGAAAT 339 71am
3 _ Rimyy + mays)
L, ghulizce ey §
myyy tmazyz

_ 2.3258x 107

T 227402% 107

=1.02277x 10°
©-3.198 x 10°

=319.8 rad/sec
f=50.92 Hz.

Exampii 6.7. Determine the natural frequency of the system shown
in figure 6.16 with the data as given in example 6.3,

Sorvrion.  ay, ~5.56 % 107 m/N
ay=ay = 4.86x 107 m/N
a3y =5.55% 107 m/N
Given m, =25 kg, my =~ 30 kg
Yy =(man + apms) g
¥a = (myag; + mAz) B
So y;=(25x556x 107+ 486 x 10 30) g
~28455x10°% ¢
yo=(25x4.86%x10° +30x555x 10" g
-288x10"g
3 _ KMy +maya)
myf + mays

oY

2(myys + Mayg) = 9.51(25 X ZB 455 x 107+ 30 x 2386 %16
- 15454 %107 . g
mayd +moy? = 25 x (28.455 x 104 + 3028 8 x 107
=4.5126x107 ¢

, 15454107
- - — "'_T
(45125x 10" g

o =1869.4 rad/sec

f=297.52 Hz.
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ExAmrLE 6.8. Determine the
natural frequencies of multi degree of
freedomn spring-mass system shown in
figure 6.18.

Soruvrion. Equations of motion
can be written as

mxy == kx, - kix, - x3) — k(x; ~ x3)
miy + 8kxy - kxp - kxg =

miy = = kxy ~ k(xy = x1) = k (x3 - xg)
M;z‘:’*lg‘ha-k.h:o

and rr&a:—!x;-k/Zx,

2
- kixs - %3) - kxg - x) v
miy + 3kxy - kxg - kx; =0 IPIE RV T
Assuming the motion to be har-
monic, we get Fig. 6.18,

xy=A; 5in (@ + §), Ty =~ 00" A, sin (¥ + ¢)
xz=Azsin (0 +9), ¥3=~ 0" Agsin (¢ + ¢)
Xy = Ay 5in (€ 4 @), 3= Aj sin (¢ + ¢)
Substituting the above values in the equations of motion, we get
(3k - mwhHA, - kA, — kA, =0
~ kA +(3k - ma*A; - kA, = 0
- kA; - kA; + 3k - ma Ay = 0
The frequency equation is obtained as

(3k - mo®) -k <%
-k (3k - mw) . =0
-k -k 3k - mw?)

Expanding the above determinant, we get
of - (Gk/mys’ + (248%/m®) w* - (164%/m*) =0
Solving it, we get three values of natural frequencies as

)= \J -:; rad/sec

W=y = 2\1h/m rad/sec.

MECHANICAL VIBRATIONS

fo=fc=513Hz
fe=77Hz
According to Dunkerhy'l relation, we know
1
0- ‘ e
f fx f2 ‘f: G
1 1 1 1

= + + +
?' an' 61y’ G113t @’
=.03373 + 07599
f£=9113
f=3.01 Hz.

Exawpre 6.10. Using matrix method,
termine the natural frequencies of the system
»wn in figure 6.20.

Sorurion. The equations of motion are

2mz, + 2kxy + kx; —
2mis + k(xs - x;) + k(xa - x5) =0
mi, +h{xg=-x)=0
2m 0 0 ]

Mass matrix (m]=} 0 2m 0
0 O00m

1_adjm

Im|
|m|=2m x 2m xm = 4m®

2m* 0 0
m'=5!?n—l""z;, 0 2m* o

0 0 4m*

We knew that [C) = [m]™ . (k]

111003k -k 0
l=ﬁ010 & 2k -k
002|[0 & &

3k _k
2m 2m
At K
C=l-2m m 2m
0o -k k
m m
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ExAampLE 6.9. A shaft of negligible weight 6 cm diameter und 5
metres long is simply supported at the ends and carries four weights 50
kg each at equal distance over the length of the skaft. Find the fl?qu"r v
of vibration by Dunkerley’s method. Take E = 2 % 10° kg/cn?’

so-, 50kq  S0kg 50 kg
de o ek

=T
= i

Sm —— -

Fig. 6.19.
SoruTion. The system is shown in figure 6.19.
x L0 4
l.é«ﬁd‘ & % 6" = 63.585 cm
The general expression for static deflection because of point load
W is given by
wild
Y=3En
So static deflection at point B
50 x 100° x 400*

3 % 2 x 10° x 63.585 x 500
50 x 200° x 300°
3x2x 10" x 63.585 x 500
50x300x‘300x200x200 - 0.843 em
2% 2x10°x63 585 » 500

B 2
—Box 410" _g4190m
3A2! 10" x 63.585 x 500
Genersi expression for natural frequency is given by

o= '\lg_xad/sec

Y= =0419¢cm

Yo= =0943 cm

Yo =

Y=

f:m/2nﬂz
9.81
— = T.7H
fo=an N dioxio® - O
fm% i =s
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Let us assume @° = A
IM-C1=0
f, 3k k
2w tim °
K Y, 1 i 1
Y5 *r == *2m =0
0 *i 1-5—
m m

Expanding it, we get

B3
.

2 3
Boasligont st
m m m

Solving it for A, we have

x‘=.2[i). w,:‘\J.zi =.44\Ji rad/sec
}..,_187[ ] Wy = 136V rad/sec

—ak = \”L

»3-2[’"], = 1.414 o rad/sec

ExamrrE 6.11. Determine the natural frequencies and mode shapes

of the system shown in figure 6.20, by matrix iteration method.
SoLurroN. The influence coefficients are determined as

1
@11 =A== 033 =0 =03 = 5p

3
Aos = Qy3 = Qg =
22 23 » " op

5
a3y = 2%
The equations for the above system in terms of influence coeffi-
cients can be written as

xy = 2may, 10" + 2may, x0° + maysso®

X3 = 2mag 1,07 + 2mags 220" + magen’

X3 =2mag x,w’ +2magy x,(nz + ma,,t,m’
The equation can be written in matrix form as

X 2ay 2ay3 O3 || X
X = ma’ ?m 2‘2’ Qg |{ X2
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11 14y
k k 2k
et 13 3
=melly ok o2k (|
135
Bk 2k |78
x 2f1 1 172] =
x =”'i“i» 13 32|{x
x4 13 5/72||x
First iteration
Xy 1
Let us assume{ x3 }=1{ 2
X3 3
1+l+%
i1 2 2( 1
2{=PE 10340 =257 {22
3 = 26
1+3+3
2
Second iteration
1 211 1721 1
2.2 x-”% 13 3/2){22
26 |13 5/2]26
1
=4.s¥ 2.555
3.133

Third iteration

1
=(5.12) - { 261
322
Fourth iteration
1 :f1 1 1/2 1
2.61 ="% 1 3 3/2 (1261
3.22 13 572|822
1 3| 1
2.61 ='5.22>"~‘%l2-61]
3.22 3.23
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Third iteration

7.65 0 -161 -111](7.65
1 1!=£'7.9"[° 39 -.u“ xl
~14.0

0 .39 189||-14
2 72
=(1.93)% 1
-135
Fourth iteration
7.2 2[0 ~161 -111 72
1 =—”‘k£ 0 39 -.11 1.0
-135 0 39 189/ -135
2| 7.13
=1375% 1
-13.4
Fifth iteration
7.13 :[0 -161 -111]] 713
1}=ﬂ“’— 0 .39 -.11 1
-13.4 0 39 189 /|-134
2 7.11
=(1.ss4)"‘—:’- 1
-13.37
2
So 1=1.ss4ﬂ§'—

wy=.73 Vk/m rad/sec
Similarly using orthogonality relation, we can find @y which is

found to be @, = 1.41 VE/m

Exauprr 6.12. Determine the natural frequencies of the spring

mass system shown in figure 6.3 by matrix method. (P.U., 85)

SoLurion. The equations of motion can be written as
4mz, + 3kx; + ki, —x3) =0
2mzy + k(%3 - 2;) + k(3a - x3) =0
mxy + k(xy - x3) =0

Rearranging the above equations, we have

Amz; + dkx) - kxg =0
2m¥, ~ kx; + 2key — kxy =0
mz; - key + kxg =0
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2
So 1=522 &:’--, @ =

Thus o, = 437 dﬁ- rad/sec

To find the second principal mode, the orthogonality relation is

used as

o :_’!'z[ﬁ) ﬂa[ﬁ] &
x 1112 il O R b
1 mmz

[z’lzT[l 3 3/2] 0 1 0 Xz
x5 13 52

0 0 1 Xy

‘: "

) 0 -1(%] -1@29 |[=
e | 11172

=ml13 3200 1 0 23
13 52

- 0 0 1 x3

2[0 161 -1.11][ =
<2%0g 39 -d1f{m
0 39 189 ||x

First iteration

1 1
Letussay{xzst=1{ 0

X3

1 [0 -161 -211][ 1
0 =’i‘f’— 0 39 -a1l{o
-1 0 39 1.89 || -1

o L11] 2\ 108
K =g T
e -.u{ 3 ][ 1]

-1.89 -17.18
Second iteration

108 2[0 -161 -1.11 10.9
1 ‘MT 0 39 -.11 1
-17.18 0 .39 1.89||-17.18

o 17.48 65

="“'~;¥ 2.28 =(218)1‘f3 1

-32.08 ~14.00

SEVERAL DEGREES OF FREEDOM SYSTEM m

The above equations can be put in matrix form as

am 0 o][%]| [4& % 0]|=
0 2m O % |+| % 2 -k ||[x:|=0
0 0 milz| |0 -k k||x

It is of the form
Mz} + (k] (x) =0
@+ ) M7 ) =0
%} + [Clix) =0

# X
) = ;1 and Kl={x
Xy x3

For harmonic oscillation at frequency @ (¥} =-0’(x}
The mass matrix [M] and the stiffness matrix [k] can be written as
an 0 0
M=l 0 2mn O
0 00m
4 -k 0
[k)=| & 2k -k
0 -k &
The dynamic matrix (C] = (M) [4]
1-ngu
M=
| M |=4m % 2m x m =8m®
2m* 0 O
adjM=| 0 4m* 0O
0 8m*

5 8
1] "
£l

OO OO

gl
oNO ONS ©

O AOO
—e )
r—

&

Jrpl, © ©
d EN P
»Lo

£} I-s'{,,

g
1l
=] gll.ah-

—

|
3>
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-a’ ] + (C) (=) = 0
Let us assume ©° = A

IM-C}=0
Then
k k
% m  4m 9
_k Lk k|
2m A m  2m =8
o -k . &
m m
Expanding it, we have
19, £ 34

i s e ke
Solving the equation for A, we get three val i
values of natural frequencies sl which give three

o, =0.46 VL rad/sec
m
wy = V% rad/sec
and wy=1.32 q'-:; rad/sec.

, ExAMPLE 6.13. Three rail bogies are connected by two springs of
stiffness 40 x 10° N/m each. The mass of each bogey is 20 x 10" kg.

Determine the frequencies of vibration. Ne icti
ook f vibration. Neglect friction between the

SovrutioN. Refer figure 6.21.

_[:‘:‘ . >
i-’ .m b m ° _m
> -

Fig. 8.21.
The equations of motion can be written as
mxy + kix, - ) = 0
mig + kixs — xy) + kixs —x5) =0
mity +kzs~x3 =0

e

SoLuTIoN. The equations of motion can be written as
) myEy + kg + bylxy - x5) =0
Mgy + Rz = 21) + ks(xa = x3) + ky(xs - x)
+k5(xg~l.=0
ma¥y + ka(xg ~xg) = 0
M+ kixy-x2) =0
mgiis + kgles — x2) =0
Relrmgingabov‘equntion;,wegut
3%y + (ky + Rakey = Ryxy = 0
mgiy + (kg + ks + kg + kgley
=haxs = kyxy = hoxy ~ kyxe =0
mgEy + kyxg — kyxy =0
Mg+ kg =k, =0
mgky + kgt — kgxs = 0
o e e o, 3 B o s i 4 9
(k1 + kg - mwhA, - kA, =0
~RaAy+ (et Ry + kg + By~ maw)A, - koA
=Ry~ kA5 =0
(ks = my ')A - kyAy = 0
Ry~ my @A, - kAy =0
e (ks - mg @")Ag - ksAy = 0
A;.Ag,&:mmd&wumi;.d;;mhx:. e

Exauriz 6.15. Fi
PR sz&ﬂnd the lowest natural frequency of the system

MECHANICAL VIBRATIONS
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Let us assume the oscillation of the form x; = A, sin w¢ and sub-
stituting this value in the above equations, we have
(k- mu’)A; - kA, =0
~ kA, + (2k - mw") Ay — kAg =0
-kAg+ (R —moY) Az =0
The frequency equation is obtained by putting the determinant of
coefficients of A's equal to zero,

k- mo’ -k 0
-k (@k-mohy -k (=0
0 —k &-mo’

(k - ma®) (n’w' - 3kme®) =0

which yields
q’k 1‘3&
=0, o= N

Substituting the numerical values, we get

_1\J400x 10*
O 20 x 10°
f=225Hz

5
ok \J %@- = 24,49 rad/sec

20x1

= 14.14 rad/sec

B
fi= 5 =39 Hz,

ExanpLE 6.14. A five spring mass branched sysiem is shown in
figure 6.22. The masses are moving in the vertical direction only, derive
the frequency equation of the system.

SEVERAL DEUKEDD UT FECEIAM 3 5316

Assume k; =7k, ky=5k, ky=5k
m;=4m, my=3m, m;=2m.
SouTion. The equations of motion can be

myEy = = ky xq ~ Ralxy = X2) = ks (¥1 - %3)

m,;,:-ka(’i"l)

maZy == ky (x3-%1)
Rearranging the above, we get

My + (ky + ko + ko) Xy~ hoxy ~ Rexa=0

mgts — kgxy + Raxa =0
maxs - kaxy + kaxa =0
Putting in the determinant form
By kg by—mw)  —ka —ks
—ky kg~ ma® 0 =0
ks 0 ks =m0’
Substiwﬁngkﬁ'u. ky =5k, ky=5k
and m;=4m,my=3 mandmy=2m
(1Th-4me®) -5k -5k
~5k 5k - 3ma* 0 =0
-5k 0 5k - 2ma’
Expanding the determinant, we get
1758° - 400mk® @ + 202km”? o - 24m” 0° =0
Solving the equation for ©

0=0.178 \j A rad/sec
m '

ExaurLs 6.16. Determine the lowest natural frequency of the sys-
tem shown in figure 6.23 by matriz method.
SoruTion. The differential equations can be written as
mEy + Gy + g+ ka)es = koty = Ryxa =0

mg¥y - kot + Raxa =0
Mty - katy + hyz3 =0

Substituting the values of and stiffn we get
4m3, + 1Tkx; - 5kx, - Bhxg =0
s'ni‘—ml*ml”o

2miy - bkxy + 5hxy =0
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Putting the above equations in matrix form, we get

im 0 0] (% 17Tk -5k -5k] [=
[0 3m 0 Hp+| -5k 5k 0 X3 4=0
0 0 2m Xy -5k 0 5k

X3
Dynamic matrix [C) can be written as

(C) =M1 (k)
i 6m?
f -i_adjM 1 0 8::’ 4
1M " 24m° 0
0 0 123t
1 |6m" 0 0 |[17k -5k -5k
ICI=24m o 8m* o -5k 5k 0
0 0 12m*||-5% 0 5k
1Tk 5k 54k
4dm 4m 4 m
S5k 5k i
=T 55 O (- ¥ = - ')
Sk o, 5k
2m Zm

—0* ) +[Clx) =0 or |M-Ci=0

where o’ =2

Z= 1Tk 5k Sk
4m 4 m 4m
-5k 5k
am "_Sm 0 =0
. 54
an 1 Rege
\ 5k

ss 101,k 210, &' 175 &°
L TRt T Sy e L

A= 6084 %
m

S E\} X _ \/_k_
o © .608‘”l =.78 e rad/sec.

MECHANICAL VIBRATIONS
Sow =0
According to strength of materials we know

I_Ge

11

T GI

l-—e---l—-Stiﬂ'ne- of shaft

ax10° x

= e ‘.
k=220 25 x.10 1.2616 x 10* N-m/rad

L= 3 mikf = 1x5x 2*= 10 kg m sec

I,=%m,k,’=%x7.5x.3’=0.3375 kg- m sec?

l,=—;-m;k;’=-%x 14 x 4% = 1.12 kg - m sec’
. m{usmx 10 2x1.2616x 10! 1.2818)

¥ 112 03375 ' 10

L (12616 x 10%? L (12616 % 10H* L (12616 % 10%*
.1x.3375 Ax 1,12 3375 x1.12

o* - o x 1.2616 x 10%(.8928 + 5.9259 + 10) + 65.581121 x 10° =0
' -21.2184 x 10* «® + 65581121 x 10° =0
o 212184 % 10* £ V(21.2184 x 104" - 4x 65.5811 x 10°
2

_21.2184x 10" £13.7075 10*
2

0 =0
@y = 417.88 rad sec
@y = 183,78 rad/sec.

Examrig 6.18. Find tiie natural fquencies and mode shapes of
the system shown in figure 6.2 for k; = ky = kg and my = mq = my using
the matrix iteration method. {P.U,, 93, ME)

Sovrurion. The differential equations in terms of influence coeffi-
cients can be written as

1 =aymy; ©F + aramyn o + aymre’
23 = Gz + Goamats ©° + Gaymana0’
X3 =y x,0" + 839mane” + agmarye®

SEVERAL DEGREES OF FREEDOM SYSTEM T

ExaMpLE 6.17. A steel shaft of diameter 10 cm is carrying three
masses 5 kg, 7.5 kg and 14 kg respectively as shown in figure 6.24.

Fig. 6.24.

The distances between the rotors are 0.70 m. Determine the natural
frequencies of torsional vibrations. The radii of gyration of three rotors
are 0.20, 0.30 and 0.40 m respectively.

Take G =9x 10° N/m*.

SoLUTION. Let us assume that 8y, 6; and 8 are the angular dis-
placements of the three rotors having moment of inertias as
I, J,and Iy,

The equations of motion can be written as
Lt =— k(0 - 6y)
1,8, = k(B ~ 82) ~ k(82 - 0s)
185 = + k(By - 65)
Assuming the motion of the form 6, = A, cos ¢
So B, = - ©*A; and g0 on.
Substituting these values in the above equations, we get
(k- TLwha, - k4, =0
— kA, +(2k -1, ") Ay - kAy=0
- kAy + 1 - LwhA=0
Equating the coefficionte of A), Az and A, in determinant form to
zero.

|k-t.w’ -k 0
-k k-l -k =0
‘ 0 -k kLot

Expanding the determinant, we get

s 2
o (R 20 B)a B B k|,
¢ [“’ B (3000 Lo Tp T g =2

SEVERAL DEUKEDD U FREGAAI 2 7w sams

The influence coefficients are

aus%=au=au=an =amn

du=%+%=%=‘ﬂiﬂa
s U P
Sa=* it A"k
Substituting the values of infl coefficients in the above equa-

tions, we get
m m

‘3
P : 0+ 7 530

[
2m 2m
x,-%x,m'o-‘—x,u’*—‘—hw’

:;-%‘-!xw‘*&:-xﬁm.*“a::‘s“l

This can be written in matrix form as

-

To start with the iteration process, let us assume

3

5.056 2|1
-l o1z | = (5.508) %
11.362

3
So 1=5506 -
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@ =0.426 -:; rad/sec

To find the second mode, the orthogonality relation is written as
mAAg +maB By + myCiCy=0
m{1)As + m(1.8)B, + m(2.24)Cs = 0
Az + 1.8B; +2.24C, =0
A;=-1.8B; - 2.24C,

By=By, C;=C;
and in matrix form

Az 0 -18 -224] [As
By} =10 1 0 B,
C, 0o 0 1 G

Combining it with the matrnix equation for the first mode, it gives
convergence to second mode.

X 111 o -18 -z24
x 122 1
X3 123 0
0 -08 -1.24
=’":‘ 0 020 -0.24 x,
0 020 076 |x
First iteration

x 1
Assume 237 = {1
xg 1

1 [0 -08 -124] (1
1 =”‘—:’— 0 020 -024 ({1
0 020 0761

2 204 o —51
2201 o4 |= (oo‘)__.
24

k| 096
Second iteration
-51 -4.86
-1 = T -5.96){-1.0
24 3.
Third iteration
- 4.86 0 -08 -124 —4.86
-10 -ﬂ:‘;[o 0.20 —.24”-1‘0 }
3.02 0 020 078 3.02
8 MECHANICAL VIBRATIONS

2x.41+.24%x.79
2% .41-.76x.79

el

So, 1=.6516 T

'\fi
@ =123 "\ - rad/sec

Similarly, we can determine third natural frequency and mode
shapes.

Exampre6.19. Determine the natural frequency of the spring-mass
system shown in figure 6.2, Take m;=mp;=mg=m and
ky=hy=ky=h.

Use Stodola’s method..

Sorurion. Influence coefficients are

mw,[-.sx.numx.'m]
k

1
Gy =06)3=0)y =8y =00 =4

a”-an:a”-*

an=]
First trial
Let us assume the deflections as
x,=1,23= l.sall

So ==1

X

The inertia forces are given by
Fi=m @' = mo’
Fy = mo'sy = mo*
Fy=me'n=mo’

The corresponding deflections are given by
Sme?
=Fay +Fn +Fo= hm

BEVERAL DEGREES OF FREEDOM SYSTEM 87
80-1.24%x3.02 2 [ 294
=B 90 24x302 [=72-| 9
- .2+.76 % 3.02 -2.09
] 1.0
=@99™> | 031
-0.71
Fourth iteration
1.0 0 -8 -124]f 10
{ 0.311—% 0 20 -.24|{031
-0.71 0 20 076
1.0
=—"‘:—"(.532) 0.36
-6
Fifth iteration
1.0 0 -8 -124](10
‘om z-"l‘-"- 0 020 -.24|{036
0 020 076|[-.76

3

Sixth iteration

1.0 0 -8 -124](10
[.33}=1-';"- 0 20 -.24 38
- 77 0 .20 0.76

2 1.0
= 6508 1';“1’— 0.40
-.18

Seventh iteration

10 il 0 -8 -124
0.40} = & 0 20 -.24
- .78] 0 20 076
1.0

= 647 ——-—h 41

.40
- .78
-.719
l:ichth iteration

)=t 2] 18]

SBVERAL DEGREES OF FREEDUM 37¥dicm

2
:’¢=F|a,,+F,a,,+FM=—m%’-¢mm’ _+mw

sma’

k

*’a"ﬂu"ﬁa*’aﬂa

20 | it 24 ma. 3_ma’
'!‘herahocm

xy:¥y:xy, 3:5 :86

or 1:166:2

The ratios are much different from the starting values of ratios.
Second trial

F',=m|m’{,=mw'

Fy = maoey = 1.66 mo’

F'.=m,u’x’,=brun’

¥ =Flay + P','an - F,’al,

mu' 166mm‘

xg" =F1¢:|*Pl°u+raﬂu
o +l.66»;m’x2‘b7ng’__2=§%2'mg
xy"=F Vag + Fyag + Fyag
"“T“’n.ss-"‘f’—xz+”';"'xa=1o.3zﬁ,—;"—’
Sox’y:x";:x"y=466:832: 10.32
1:1.78:2.21

The ratios are again different from the starting ratios.
Third trial
The inertia forces are

F."-mﬂ’x{'=m&'

Fy =ma's’y=ma’ x 1.78

Py’ = ma's"s =221 mo*
The deflections are

2" =F\"ay + Fy'oyp + Fy"ay
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2 2 2 2
L S b
x" = Fy"ag + Fy"ag + Fy"ay

2 3
mw ma?
e 1.78 R

23" = F\"ay; + Fy'ay + Fy"ay

2 2
x2+2.21ﬂ;°—x2=8.98£;£-

2 2 2
o mw 22 me” 3 moy
e + 178 mw k +221 e .k=11.19 s

The ratios are 4.99 : 8.98: 11,19
or 1:1.79:2.24

The values of ratios are approximately close to the starting values
of ratios for this trial. The assumed and derived values of deflections
are approximately equal.

Thus =2
2
L mu
or 1=499 e

0=044"\ X rad/sec
m

This is the same value of frequency which we got in article 6.4 by
matrix method.

ExamrLE 6.26. Use Stodola’s method to find the natural frequency
of the system shown in figure 6.25.

ms .
o |
k - 018m —-I
———030m
Fig. 6.25
E=196x10" N/m*, 1=4%10"m® my=100kg, my=50kg,
(P.U., M.E. 93)

Sorurron. We find influence coefficients as

die g, =2.4795 x 10

2 MECHANICAL VIBRATIONS
The ratio of deflections is
%o-221:1
x
This ratio is equal to the starting value for this trial. Thus the
d and calculated values of ratio are equal.
So =1 {assumed)
x" =7959 % 10 o* (calculated)
r 1=795.9x 10% *
@ = 354.5 rad/sec

-0
f= 5y =56.45 Ha.

ExAspLE 6.21. Using Holzer method to find the natural frequency
of the system shown in figure 6.2. Assume m;=my=m;=1kg and
by=hky=hy=IN/m.

SoruTion. Assuming the initial displacement x; = 1 and natural
‘requency = .30 rad/sec.

w'=.3%x.3=.09
myxy o
Ry

X=X =

-1--}x.09=.91

myxy +m
fy=xp - * (myxy + maxs)
[
¥ twy e Gk radisec
w124 r0d/ sec
0 Wes 80 rad/sec
10r
W,

=
-

w
-0
-20f

-390

SEVERAL DEGREES OF FREEDOM SYSTEM L
—— ;‘i‘%}is-’ =4.959 %10
3x3x.3 (3 11478 x 10°®
9n= TRl T 3x106x107x4x107
First trial
Inertia forces are
Fy=m 0’:1‘100(0’ (Assumingz; =1and x; = 1)
Fy=my w'xy= 500"
Deflections are calculated as

xy' = Fiay + Fion
= 100c? x 2.4795 x 10°* + 506" x 4.959 x 10™
=4959x10°% o'
x'y=Fiaq + Fan
- 10067 x 4.959 x 10°° + 500% x 11.479 x 10
=1069.85 x 10 o’
The ratios of calculated deflections are

This ratio is much different from the assumed ratio,
Second trial
F=m,; W% = 100 o*
Fi = mg o'z’ =50 0* x 2.15=107.5 &'
"y =Flan+Faan
= 1000 x 2.4795 x 107 + 107.5 «° x 4.959 x 107
=781x10% o’
xg" = Fy'ay + Fyan
~100 & x 4.959 % 10+ 1075 0 x 11.479x 10
=1729.89 x 10° o*
So 'y :x"=221:1
The ratio is quite different from the assumed ratio in the start of
this trial.
Third trial
We get " =7959x10" o
and " = 176432 x 107 o°

SEVERAL DEGREES OF FREEDOM SYSTEM 72

=91-.09(1 +.91)=0.74
o (myxy + mgXy + Mata)
X=Xy~ =
=0.74-.09 (1+.91+.74) =051
Similarly, other deflections can be calculated and are directly put
in the table 1 for different d freq y- The rest Its for frequency
are obtained by drawing a curve between @ and displacement x as
ghown in figure 6,26.
The natural frequencies are
@, = 0.44 rad/sec
©; = 1.24 rad/sec
and wy = 180 rad/sec.
ExanpLy 6.28. Using Holzer method find the natural frequency of
thesystemahowuinﬁgms.a.mwk=1bg/cmandm-lhg.
Sorurion. Assuming ©n=1 and w=.10

s0 =01
- _m,mm
bl A T
=1-.01=099

simEye o (myxy + mgTy)

=0.99 - .01(1 + 2 x 0.99)=0.96

- m,(m.x, + Mgty + mXs)
4 =X3~

3
=096 - Q1(1+2x 99+4x39) _ 563

ro GEORE w0 wy=135

e i R
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Sorurion. dy=.16m
1;,20.18+0.08=026m
l=08m
1=042m
ay = _._I'Z{FI_ = -.;M_
BEINy +12)  3x1.96% 10" x 107 x 0.42
=7.007x 10"
eusman < A== 1

_ .16 x.08(.42° - 26" - 08%)
6x1.96x10" x10°x .42

=7.556 x 10°°
0+ 1) (G~ 1) % 26 - .08)°
e gl—’s)ﬁ:(?zz I LS [ t;08).(~_.__2<i .08)”
3x1.96x 10" x 42
=1.959 x 107
@~ \JEMD1+ M)
My + My?

¥y = Mgay, + Magay, = 3477.4x10° m
Yo=Mgay + Mygay, = 29478 x 10" m
Putting these values in the above frequency cquation, we get

w= '\19_&(1_0}}11477,4 x 10+ 20 x 2047.8 x 107%)
40 x (3477.4 x 10 %) + 20(2047.8 x 107%)*
= 1718 rad/sec.

ExAMPLE 6.25, For a taut string having tension T und three concen-
rated masses as shown in figure 6.31, find the three natural frequencies.

(M.D.U,, 93)
Sorution.
% m m m f
O W S F
Fig. 6.31
04 MECHANICAL VIBRATIONS

Putting the determinants of coefficients A;, A; and A, equal to
zero, we have

-mu’+Tﬂ —%‘ 0
T 2, 2T T i
7 %w+l -7 =0
T 2, 2T
0 =3 —mmtl

Expanding the determinant, the frequency equation is obtained.
- met+ 2L\ (- 2 mas? + 2~ mast + 22 )- T
{ i 1 #

+%[%[—mm’¢2l—7')]=0

14mT* 4T
——’2 w’ + 73—- =0

5T 7 27
m‘-;ﬂ-?m“\m"lu mﬂ_m’l’

—?.m’m6+—l—?—q-'m2m‘-

=0

Solving it, we get
27 38T 26T
Of =it 9= W=Tr
ExampLE 6.26. A three rotor system shown in figure has the follow-
ing physical constants :

J; =50 kgcm-sec®

Jy = 100 kgcm-sec”

Jy =70 kg - em - sec*

k,, = 2.2 x 10° kg-cm/rad
k, = 0.8 x 10° kgem/rad

Find the natura! freq y of the sy and corresponding mode
shapes. (P.U., 88)

Jy
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SoLuTION.

Tension T in the string remains unchanged for small deflectiens.
Lot us assume the deflections as shown in figure. The equations of
motions can be written as

s Tim-x) Tx
e T TR

Fig.6.32

Let us assume the motion of the form

x) = A sin o,

¥ =~ ' A, sin o

x3 = Ay sin o,

¥p=— @' Ay sin @t

23 =Aj 8in @,

¥y=—’ Ay sin «f
Rearranging the sbove equations, we get

[—%m’o——-]A,-%A.-%AFo

miys 208 T2

] !
(—mw’oz—f-.]A;.——ltA,-o
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SorurioN. The equations of motien can be written as
JyB + ky (8, - By) =0
Sy + k(82— 8y) + k«,(ez -8)=0
JyBy+ by (8- 8) =0
Let us assume
8, =A, sin @
8, =A, sin @t
9; =A, sin ¢
Using these relations in the above equations, we get
~ Sy @Ay + R Ay -k Ay =0
(=1 + ke JAy =~ ke Ay =0
(= dg® + by + k) Ar = ke Ay = by, Ay=0
(~Js 0’ + kA -k Ay =0
The determinant of coefficients of A;, Az and Ay is equal to zero to
got the frequency equation.

(hh = 1'”’) b kh 0
-k, ke + Ry~ J2 of -k, =0
0 ~k, ke~ o

Expanding the determinant, we get
(g = 0% Gk, + by, = T 'Yk, =S 0%~ k)
+ Ry (— ke Wk, — I3 w)=0
& Widads 0 - (g + Jidky, + Wl + k) x @
+ ke, k(S +da+ Ja)l=0
Substituting the values of various terms
JyJ Ty =50 x 100 % 70 =35 X 10
Ji+Jp+Jy=50+ 100 + 70 =220
Jyofy = 50 x 100 = 5000
JyJs =50 x 70 = 3500
JyJs = 100 x 70 = 7000
kb, =2.2% 8x10%=176x 107
136 x 10° &' - (5000 + 3500).8 x 10° + (7000 + 3500) x 2.2 X 10°)
+1.76 x 10 x 220} =0
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35 x 10* o - 20900 x 10° + 387.2 x 10" =0

o' -854.28 x10° + 11.062x 10°=0
w; = 182.4 rad/sec

w;=0
Amplitude ratios
-Ja'+
(ZA-, '—h"'t 1.0
th.a ke,
Ay
or [A,}' 1.0
4) .
(Az ,,--Jzﬂ’vb“‘.l'o
1.0
First mode | 1.0
1.0

For o, = 182 4 rad/sec, we can find the other mode shapes.
From equations of motion, we have Second Mode :
All k‘n
A o' +k,
Putting o = 182.4, k, =2.2 x 10°and
J; = 50, we get the amplitude ratio
22x10° =
~50x(182.4)* +22x10°
As _ ke, o Bx10°
Ay ky—Jyo  Bx10°-70x (182.4)°
=~ 52 and so on.

Examrix 6.27. Find the frequencies of the system shown in figure
(P.U., ME, 89)

6.34.

Ee r..
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E

ding the determi we get

O S0 S e
e o o RO

;= \Jﬁ rad/sec
m

o = 8k rad/sec
m
2
AN
- [";]-;w

2
1’*24;5‘5—101'2/:11:0

So Wy = \JQ‘- and & = \ji‘.nd_
m m

ExampLe 6.28. For the system shown in figure 6.35
J,; = 10 kgem sec*
J3 =20 kgom sec®
Iy, = 0.5 kgcm sec®

Jy=2.0kgem sec®

BEVERAL DEGREES OF FREEDOM SYSTEM —or

Soummmequniomd‘mnﬁmforﬁwsmmmbewﬂthenas

m¥, + 5kx; — ke, =0  (For horizontal movement)
m§,+5lr.:z-h.:,=0

myy +4ky,=0] . .
A vert t
m’+“y,:°} For ical movemen
The above equations can be put in matrix form
M)z} + [k){x} =0
{M] = mass or inertia matrix and [] = stiffness matrix
m 0 0 0
0OomO0 O
) = 0 0m2O
00 0m
6k -k 0 O
-k 5% 0 O
W=l 6 o a o
0 0 0 6k
The dynamic matrix [C] can be written as
1= 'k
1000
4 _1/]0100
ond M =2loo10
0001
1000]|[5% - 0 O
_1lo100(j-& 5 0 O
- CG=zloo10||l0 o 4 o
0001 0 0 0 6k
By
m m
* 5 4 o
% m m
0o 0o %
m
o 0 0O L
m
Let us find the freq quation by putting the determinant
equal to zero i.e.
|u-cl=0 (equation 6.11.5)
where A= o’,
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Diameter of gear 2=twice the diameter of gear 1.
ke, =3.2%10° kg . cm rad
k,,= 0.8 x 10° kg cm rad
Find the natural frequency of torsional oscillations taking into
account the inertias of gears. (P.U.,87)

SoruTioN. Let us assume that 8, and 8, are the angular displace-
ments of goars J, and J; and n is the velocity ratio.

Thus g!=n
1
or 9; =nb,
The total kinetic and potential energy of the system remains
constant.

KE.= %J,é,’ N %J,é,’

A1)
1 1
P.E.=-§k.‘0;’+§h‘,9,’
KE. =178} + 1 (5n")6}
ol ) 2("‘)‘ D)

1
PE. =} kof + 3k’ 0]

Soitis clear from the above expression that the geared system can
be converted into an equivalent system by multiplying its stiffness and
inertia by n i.e,

So J; becomes J3' = n*Jy
and  k, becomes & = n? ki,

Now the equivalont system can be shown in figure 6.36. The shafts

are connected in series, so their equivalent stiffness kl_ = ,‘1 .+ _,l_
t, y, R k,.
n’k, e,
-t
ky +n ky,
5 “:“
o Kegy ﬂ
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The relation for frequency is
4 ,k +
-
- f&,,u, +n'y)
PAA
_a , n’k, k. (Jy + niJ,)
" Vi, +n? k) Ion?
A kb, i+ %y
ke, + nk W
But in the fheinem‘.udgeanaregiwn.lothmwillbo
a third inertia (J, + n’./,,)in between J; and n® Jj,
Nwﬂwmbrmmhwwdummwcm.
We are given
oIy wdy +al dy, Jy=n'iy k, and n'k,
We get equation (example 6.26)
o Wyl 0 - (Jy; +J, 1Wainky, + (Jly + . sk} o
+h %k, Ty + Iy + Iyl =0
J1=10
Iy =y, + 0%, ) = J; (say)
=(5+4x2)=85=J,

Jy=20

n'k,=4x 8x10°=3.2x 10°

JJ2Js = 10 X 8.5 x 20 = 1700
JiJ2=85
J1J3 =200

» = JuJs=1T0
nkj, = 4x3.2% .8 x 10"
=10.24 x 10"

Ji+Jde+Jdy=10+8.5+20=385
@*{1700 o - (85 + 2003.2 x 10° + (170 + 200)3.2 x 10%e*

+10.24 x 10*° x 38.5]
o'~ 1.2329 x 10° 0* + 23.2x 10° = 0

e MECHANICAL VIBRATIONS
-
y X Xy
™ ] [™]
K
" 2% $
™ [ma]
L e
* 3K "3
[ B [“g
Fig. 6.4 P, Fig.6.5P. Fig. 66 P,
5. Find the | frequency of the system shown in figure 6.5 P by matrix
method. (P.U, 93)
m=1lkg, k=100N/m
6. Use Stodola method to determine the I freq of the syst
shown in figure 6.6 P. {PU,, 93)

k1 =300 N/mm, kz = 200 N/mm, k3 = 100 N/mm
my=4kg ma=2kg ma=1kg

7. Using Holzer's method, d ine the 1 frequency of the sy
shown in figure 6.7 P. (P.U., 93)
J) = 10 kg- cm- see®
Jr=Jdy= 2kg-cm- soct
J3=15 kg. em_ sec?

key = kry = 10 x 10° kg- cm/rad
ey =20 x 10° kg- cm/rad.

o ) J2 I3 Jay
e B B

Fig.6.7P,

8, (n)DemmineLhemunl&equencyomeu:ispringvihntinguyatem
by matrix method. Assume mi=4dmme=2m,mi=m ki =3k,
ky=ka=hk,

(b) Explain the coupling of co-ordi in a multi degree freedom system.
How will you obtain the type of coupling present by the help of matrices
and energy expressions ? (Roorkes Uni,)

9. D ine the fund: 1 1 freq v of ibration of
the system shown in Fig. 6.8P by both.

(a) Dunkerley’s method (b) Rayleigh's method
'l‘bevaluuoﬂheiuﬂuemmfﬁdenufwﬂgwu&ﬂ?ungivmbtlaw:
(Roorkee Uni. 199920000

SEVEKAL UDUREED UT IMECCLAM 9§ 985w

12329 x 10° £ V(1.2329 x 10%? - 4 x 23.2 x 10°
W= 2

_(l.2329:t.76)xmg
= 2
@, = 316.4 rad/sec
and @, = 151.4 rad/sec
Problems
1. Determine the frequency of the system shown in figure 6.1 P by Matrix
iteration method. .U

-

(3]
K
]
L3
[2m)
Fig. 6.1 P, Fig.62P, -
¥ Sk MR Mo e e e, o e R 20
T —

my = 100 kg, mg = 200 kg, m3 =300 kg,
ki=2kN/m kz=15% N/m, k3=2k N/m

K3 L] Ky
my my my
Fig.63P.
4 Use ixi g ethod to find the 1 frequency of the sy e
shown in figure 6.4 P. ®.U.,

mi=10kg, me=15kg, ma=20kg
ki=1kN/mm ky=ks=.5kN/mm

SEVERAL DEGREES OF FREEDOM SYSTEM 93

usg

ort oy ¢ Gt = au= g gy

w I
e 7Y 7 A T ¥ 7|

2m

JAY
va | Ya Ya !

® ®

Fig.68P.

10. Define Flexibility Influence Coefficients. ) . )
For a three degree of freedom synu?:bmnme)gmvalm and eigen
when the parameters are as
my=8m, me=6m, mg=ém 4
ki1=3k, ka=2k, ka=k (Roorkee Uni. 1999-200?)
i n i
Write equation of motion for the framed :trnchxre.nhw
1 (l:,g 6.;!’(«). The equivalent model for the framed structure is shown by
spring-mass system Fig. 6.9 Pib).

Va

L

L
T

o[ T
L

-

2%

kg ub
'm"m

e o mode shape for this framed
(®)D d : mh O =l (Ranviran 1Ini 94.95)
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12. The turbine shown in
epoed of 3600 1 pim. ael e apaDYing figure (6.1

1= 4800 kg.m* (generature armature)
dn:lﬂ)m(dhmetao(mrbh.m)
f1=3.5 m (length of turbine shaft)
2= 200 mm (diameter of generator shaft)
h-a.Om(l.p‘u.dwm
Usi; 3

o i pomeno sy arioeth fundamental naare requeacy of

$= 3Im

Iy

1 gmmm.
= mat
T; A130mm (1800 rpm)
Tirbne (3600 rom) Geors
_ Fig. 6.10P.
i —
51 ‘w. 1 ik o L '? syst
13. Estimate the Jowest 2 (Roorkee Uni., 94-95)

Jowe quency of tr vibrations
mun-ammh,.s.mb,a)n.,u@'.n«wmswmum
Take E=20x1011 N/m? 7= 10-% m* and g = 10 m/s? .

40 kg

% B 2’_.ékg
§ PAN

. 8em _ gem |
~ , x

16 cm

7

Continuous Systems

7.1. INTRODUCTION

In the previous chapters mass, stiffness and damping of vibrating
systems were assumed to be acting only at certain discrete points. (It
was assumed that shafts, rotors and springs had no mass and stiffness,
though practically they had. It was an ideal approach to analyse the
vibrating systems). There are systems such as beams, cables, rods, ete.,
which have their mass and elasticity distributed continuously
throughout the length. Such systems are known as continuous systems.
Since such systems are supposed to be made of infinite number of
particles, so they have infinit ber of deg of freedom and hence
infinite natural frequencies of the system. The vibratery motions of
such systems are described by space and time and partial differential
equations are formulated for analysis of the systems. Partial differen-
tial equations ist of many which can be determined from
boundary conditions and initial conditions as well. Thus the problems
are boundary value based. In this chapter, we study only bodies of
uniform cross-section having homogeneous and isotropic material.

Boundary conditions

The value of unknown constants in the partial differential equa-
tions can be determined by applying either geometric or natural or both
boundary conditions. Geometric boundary conditions are caused be-
cause of geometric compatibility. For example, if the bar is fixed at both
ends, the displacement and slope will be zero.

Natural boundary conditions are caused due to force and mo-
ments. For example, if the bar is hinged at one end, the bending
moment at the hinged end will be zero and so on so forth. Initial
conditions are related to time.

7.2. LATERAL VIBRATIONS OF A STRING

Consider a vibrating string of mass p per unit length having
transverse vibrations under tension T as shown in figure 7.1

It is assumed that for a very small amplitude of string vibration
the tension T i throughout.

For very small displacements, tan®, = 8,

(A
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14. The AngH t of the P rbine and g in ath 1
power plant is shown in Fig. 6.12P. Find the natural ies and
mode shapes of the system. ——
1
Kty Ktz
Te ) =1 l
~
Compressor Turbine Generator
Fig.8.12P.
Stiffness Ky = 6 MN-m/rad
Stiffness Ki; = 3 MN-m/rad

Campressor moment of Inertia, I, = 18 kg-m*
Turbine moment of Inertia, I; = 14 kg-m”
Generator moment of Inertia, I, = 9 kg-m®

LAY RIS e

—x —f x

String in lateral vibration
Figure 7.1

tan 8; ==

PCYRSIEREYEY

and 8=

g,= 0. +-—Vl dx (7.2
2 1 x J
Resolving the tension alongy-axis

T sin IQ; + % dx L Tsin 6, = mass x acceleration
\ /

2%y
=pdx—;
e
a8 3 a3y
1{0.-0' 'a‘ dIJ ~-TO =pdx ;RZ
80y , oy
T e dx=pdx 3
o _ 3y
> PR
T(36,\_&Yy
plex | af
T3 !Iﬁ\z 'fl Substituting 8y « "#
pox ax| o : %
T(ay|_ &y 72,
plad) o R
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Assuming o* g the above equation can be written as
2
(P22
| ot
dy_1dy
= £7.2.3)
ot
This is one-di ional wave equation for lateral vibrations of
string.
Solution of wave equation

The lateral deflection y along the string is a function of the
variables x and ¢. So it can be written as
y=y{x,t) .(7.2.4)
Equation (7.2.3) has four arbitrary oonshnts it can be solved by
boundary and initial conditions.

Let us assume the harmonic mode of vibration as the system is
damped. Thus solution of equation (7.2.3) can be written as

y(x, t) = X(x)T(2) «{7.2.5)
Substituting the above solution in equation (7.2,3)
o?
* f"{ % T .(1.26)

In this equation L.H.S. is a function of x alone and RHS. a
function of ¢ alone. So we put it equal to some constant - p°.

&, ( ]x 0
and ‘:’g +Tp’=0 {1.2.7)

The solutions of the above two equations are
= 2 (e
X (x)=A cos a)x-ﬁBsm(a}x

Tit) = C cos pt + D sin pt
The general solution can be written as

Yt n):_ {A.ws[ Jx+a,.in(§]x]

IC, cos pt + D, sinpt] ..(7.2.8)

In this equation p is the frequency of vibration. The values of
arbitrary parameters A, B,, C, and D, in the above equation can be

MECHANICAL VIBRATIONS

and Vix) = zp. D, sin % ..{(7.2.16)
n=1l

Equations (7.2.15) and (7.2.16) each are multiplied by
sin L""IE, m=1,23..

and integrated fromx =0tol.

Thus J. S(x) sin “*—dx j C. [am A% gin @lE)dx

. nmx . mRx

sa = and sin = are orthogenal functions and the value of
above integral will be zero except when m = n

Putting m = n for non-zero value of C,, we get

IS(x)sm dx= Icmn’ﬂ—"i
Ism:m L P cf [1 cos—]d_z

SoC, =—IS(:)mn ——dx

LA7.217)
Similarly, ennndenng equation (7.2. 16)
}.V(:)un—-dx =p, D, Jsm—— sin ™ 7 X gy
For non-zerc value of D, putting m = n
JV(:)&in%dx=p.D,,Jsm’g—Igdz
0 o
..(7.2.18)

_2_j i A
D, lpuon)nn i dx

@atermined by assuming boundary and initial conditions, e.g.,
Buundary conditions - Let us assume the string i5 fixed at both
ohidn,
|e ¥0,t)=0and ¥, 1) =0 .A7.2.9)
Initial conditions - Assuming the initial displacement and velocity
-
at t=0, yix, 0) = 8(x)
at t=0, yix, 03 = V(x) .(7.210)
Making use of equations (7.2.9) and (7.2.10) in equation (7.2.8)
(Using boundary conditions)
w0, t) = A,(C, cos pt + D, sin pt)

gives A, =0
¥, t) =B, sin {5 }1 (C, cos pt + D, sin pt)
If B, # 0 which gives .
sin| 2 l7=sinnr=0 (7.211
This equation is called Frequency Equation.
L3 g
a
Pa= %” e % )
So frequency = % \[g_rad/se.c «(7:2.12)
Normal mode shape can be written as

X(x) = sin ﬁ;‘—‘ n=1,23.. (7,218

Each n represents a mode of vibration e.g. for n =1 first mode,
n = 2 second mode and so on.
Equation (7.2.8) can be written as

yir,ty= Y sin 7 (C, cos pt + Dy sinp)  -.(7:2.14)
n=1
The values of constants C, and D, can be determined from initial
conditions i.¢., displacement is S(x) at ¢ = 0 and velecity is Vix) at ¢ = 0
Applying initial conditions for above equation.

S =Y C, sin M .(7.2.15)

i

CONTINUOUS SYSTEMS

7.3. LONGITUDINAL VIBRATIONS OF BARS

Let us consider thin and uniform bar for Jongitudinal vibrations as
shown in figure 7.2. The bar is subjected to axial forces. An element dx
of the bar is considered here for analysis,

oz | O —

v

u.?r':ax
Fig. 7.2
If u is displacement at a distance x from left and it become:

g4 D); dx at a distance x +dx. It is clear that the element dx has
L}

du
changed its position by an amount (dx + gﬁ- dx - d‘]’ % ax

Sa strain of the element is given by

du
_S',E:dx K" 731
S5 Tdx T

Let A = cross sectional area of the bar
p = density of the material
E = modulus of elasticity of the material
F = force acting axially on the bar
Net force acting on the element

[F-ﬁ%dx) F = (mass) % (acceleration of the el t)
d au
- mx~al§
F &u A1.3.2)
axdx—(ptb:A)(at,]
Weknowthati ., where o is the stress, §0
F=cA
F _do
-a‘A

£
¢={3£]¢,A (7.3.3)
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Equation (7.3.2) can be written with the help of above equation as

[%]d.xA=(pdxA)(%:%] T34

According to Hooke's law

do _{%e
, &:}k -[ax]dxAE ..(7.3.5)
With the help of equation (7.3.4) and (7.3.5),
We have

e
Ede du
pax at

Beers k)
P

E(du) u
o) o
Fu_13 é
a}u - i &..'; (7.3.6)
wherea’ = E/p

This is the wave equation which is identical to equation (7.2.3),
The general solution will be same as in the previous case of lateral
vibrations.

A solution of the form as in equation (7.2.5)
u(x, t) = X(x) T(t)

SoXix)=A sin%*Bm?. Ti(t) = C sin pt + D cos pt will resuit

into the general solution as

u{x,t)= E (Asinﬁx+Bcos§x){Csinpt+Dcospl)

n=1

{731

MECHANICAL VIBRATIONS
From equation (7.4.1) and (7.4.2), we get

3 (de d*g ?
GJE:-(dx}dz_ld(? A74.3)
For a shaft of constant cross section G is constant, and
ST,
o 33 d
X
l:ﬁd‘pdx {74.4)

) Putting the values of / and J from the above cquation in equation
7.4.3), we get

c#_o
o o
2% 1 3 DTS
-a:i(x,l) G (x, ) AT.4.5)

where a® =G/p
This is wave equation identical to equations (7.2.3} and (7.3.6)
The general solution of equation (7.4.5) can be written as

Oex, t)= (A sin p;x +Bcos R’;x (C sin p,t +D cos p,t)
(74,6}
5. TRANSVERSE VIBRATION OF BEAMS
If the cross-sectional dimensionals of beam are small compared to
ts length, the system is known ag Euler-Bernoulli beam. Only the thin
»eams are treated under it.

L=l

“ax

fo— <

Fig. 74

The differential equation for transverse vibration of thin uniform
ream is obtained with the help of strength of materials. The beam has
ross-sectional area A, flexural rigidity EI and density of material p.

Slement dx of beam is subjected to shear force @ and bending moment
d.

AT B BN = e e

7.4. TORSIONAL VIBRATION OF A UNIFORM SHAFT

An element of length dx of uniform shaft is put to tofsioml
vibrations and it is assumed that the distortion of the shaft is very

small.
T n%':n
2 - \
@ ay__)
—
(@ e
—~ dxfe
Fig. 7.3,
Refer Figure 7.3

Lot 0 = twist at a distance x from left side due to a moment, T

9+ggdx=twislntadistaneex+dxﬁ'omlcﬁsidedueton

moment?\%dx

G = modulus of rigidity of material,
p = density (massivolume) of the material
J = polar second moment of area
1= mass moment of inertia.
According to Newton's second law of rotation,
T=I.a (inertia x angular acceleration)

Net torque can be written as
; 2,
[T-«» —aId.x)- T=Ié—e‘

a0 ATAD

From Strength of Materials, we know that
T .d6
a= g dx

de
- T=GJ Y

o Y 4

CONTINUOUS SYSTEMS 25

While deriving mathematical expression for transverse vibrations
it is assumed that there are no axial forces acting on the beam and
effects of shear deflection are neglected. The deformation of beam is
assumed due to moment and shear force.

Net forces acting on the element
-Q- [Q . §dx)=dm . acceleration
>
-3 e padn 2
%:,,.A%:)g:o A15.1)

Considering the moments about A, we get
L4 K .
M—(M+azdx}+(Q¢axdx]dx 0

M@+ Rax=0

d
So@= %’;—l higher order derivatives are neglected (Tg dx = 0}
Q_IM A15.2)
i ¥ at
From the above two equations (7.5.1) and (7.5.2), we get

M &
e 3‘; .(15.3)
We know from beam theory that
&y
M=-El >

M 2 {15.4)
So Sre-E &4
Comparing equation (7.5.3) and (7.5.4), we get
i
EI %:-E +pA ;} =0
Ay ()3 _, A155)
' \EI |as
This is the general equation for transverse vibration which is
different from wave equation.
Let us assume the solution of the forni
¥ =y(x) sin (¢ + 9) .{75.6)
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where y(x) is the shape of the beam for the principal mode of vibrations.

Equation (7.5.5) can be written with the help of the above equation
as

%-et,go 157

4= pA
where < =Fr ot

This is fourth-order differential equation. To find its solution, let
us assume

y=e

d' .4
Seo —g= &~
dx .

Equation (7.5.7) can be written as
A et =0
AM-c'=0 -{(15.8)
A+c)h-e) A%+ H=0
Ayg=te
Asq =tic whero i=V-1
€” =cosh cx + sinh cx
¢ “ =cosh ex - sinh ex
¢ = cos cx + i sin ex
¢ = coscx — i sincx
So the solution of the differential equation can be written as
y = ¢y(cosh cx + sinh ex) + cy{cosh cx - sinh ex)
+ C(c08 cx + { 8in ex) + c4(cos ex ~ £ sin cx)
=(c; +cz) cosh cx + (0; - ¢g) ginh cx
+(ca+€y) OB X+ (C3 ~ ¢4) i Binex
yix,8)= A coshex+ Bsinher
+Ccosecx+Dsinex (759
and A=c, +cg, B=c, 05 C=cy+cyand D = ieq -¢,) where A, B, C

and D are constants and their values can be determined from boundary
conditions,

7.6. EFFECTS OF SHEAR DEFORMATION AND ROTARY INERTIA
The beams having large tions are treated under thick

beam theory and the effects of shear deformation and rotary inertia are

taken into account. It is sometimes known as Timoshenko beam.

MECHANICAL VIBRATIONS

B M
ax "Bl -7.6.2)
From the above equations
(. dy)
Q=KAG(6- dfj AT8.3)
and MuprdB . pr(de_dy)
M B P |9 @-’J

where G is the shear medulus and X shape factor of the cross-section
Constdering the forces in y-direction, we get

@+ )= oa Ty
Q [Q e |« pa 2 ax

9 o= an 1Y [..2Q

3 dx=pA o dx ax dx:dQJ
_0Q é]ly
& -M at

Using equation (7.6.3) in the above equation, we get

L PR
~KAG{5- -S31-pg 0¥

[ s :] A » 764

Taking moments about point K, wo have

am
[M+§; dx}—M»-(Qa %?dx]dx.—.p[%f,dr

o /
%i,:—ldi‘de=pldx%2?9 lNegiecting %dt]
d"’“""""f?‘q

where 1 is moment of inertia and p is density. Making use of i
(7.6.3)in the above equation, we get v e of equation

¥e 3’
EI = KAG {e - %): pl ¥ ..47.6.5)
We can eliminate 6 from equations (7.6.4) and (7.6.5) to obtain
Ay At E\ 3 %
EI° Yy £ pl a:l’ =
Demi pz(nm]&w RGO 168
It is the general beam equation taking into account the
shear deformation and rotary mertia. y : SE—

Boundary conditions. (i) Free end : KAG(% - e] -El gi =0

CONTINUOUS SYSTEMS szt
We know that the frequency of a system depends upon its mass

and stiffiness as
- ’b
o= =
m

Bytheinclusionofsbeudel‘omaﬁonmd rotary inertia, the mass
of the system increases and so the nat 1 freq y of the sy
decreases.

A

Normal to the
toce CB
Py
u

Tangent to the
deformed
_ .tenlre line

Fig7.s
An element dx of the beam shown in figure ;.5 is discussed for
nnalysi&’mealopeuﬂhacenmlinaoﬂbobumila‘;vhich means the

rotary inertia effect is due to this % rotation of the beam. Under the

action of shear force @ and bending moment M the beam element dx is
deformed. If shear force is neglected, OU will coincide with OV, where
OV is normal to the face CB and OU tangent to the deformed centre l'n_ae
of the beam element dx. If the effects of shear force @ are included in
the analysis the rectangular el t will b ap :",.mand
the tangent to the deformed centre line of the beam OU will make angle
B with OV. This angle § is known as shear angle. Due to shear force
deformation takes place without the rotation of the face. If 8 is the slope

’ d: :
due to bending, so net slope due to shear force is (0 - 7"} because % is
the slope due to bending and shear.

dy (shear angle)
So 6~ ™ ]
According to elastic equations
p=o-2-_2_ T (18
dx ~ KAG
%2y

CONTINUOUS SYSTEMS

(iz) Fixedend : 0=y =0

(i) Simply supported y = EI 22 = 0
SOLVED PROBLEMS

ExamprLg 7.1. Derive the frequency equation of longitudinal vibra-
tions for a free-free beam with zero initial displacement,

Sorurion. The general solution for longitudinal vibration can be
written as

u(x, t)=[A sin %x +B me:x](c sin pat + D cos pat)

wherea =VE/p and p, = natural frequencies
Boundary conditions are :

(‘?—5] =0 (Strains zero at both ends)
9 x=0

du U
(&)

Applying the above two conditions, we get
%;" = A%"cos%x-B%”sin%x](Csinp,t+Dcosp,.:)
(%]‘“:A%'-(Csin%ﬁ! 4»Dcosp,,r]
= A=0

{au = - B2 in 2 C sinp,t + D cos p2)
la; ol a a

The values of constants C and D can be determined from initial
conditions (equations 7.2.17 and 7.2.18}

P

So sin == {=0=sinnx
a
Pu ="_l'£_ n=1,23..
We know that Pr=28fy
nxa
=TT

n n E
Natural frequency fu= 27%=% J s

where n represents the order of the mode.
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. Exampis 7.2. Derive suitable expression for longitudinal vibra- SoLuioN. The general expression for the bar fixed at one end and
tions for a rectangular unifarm cross-section bar of length I fixed at froe at the other can be written directly (as in example 2)
end and free at the other end.

= . nna nna
Sorurron. The general solution can be written as uiz, )= Z Wi % . {C " i ] ']

B » . n=1375 ..
u(x,t)wAnn:‘x«meo—a‘lzJ(Clmp.HDmp.t) l V‘h‘“'ep';’!glg}
Boundary conditions are : iti : \
(#)2.0=0 (displacement is zero at fixed end) Boundar();;ondl:’ gns o
du -
(5;)", =0 (strain is zero at free end) AE % (,ty=kutl, t) (Tensile force = spring force}
Applying these conditions to the general solution, we get Applying the second boundary condition, we get
0=B AEElcospflCSl“m“Dmsﬁ;le”
Q.[A&m&x-n&unﬂx (C sin p,t +D cos p, £) v ! ( !
ax a a a " a P #a —'ksi"qul‘lc“i“";!a“Dmﬂ%‘]
a
0=Ai=ou';41(c-inp.t+bowp.t) Pl _AE p,
or cosPrf=0=cos P here ol
= =cos 3 W n=1235.. This is the required equation. - 7
nna ExampLe 7.4. Find the natural frequencies of a bar shown in Fig. 7.7.
pa=tae —x

f——

4 =

B8 (27, = 4

fos2y 28f2 =pa) F—_—:::{:j E
7.7.

,-A\’E i

n-“ p

SorutioN. The general expression for longitudinal vibrations is

The general solution of the equation can be written as Wk Py ) y
- u(x.t)=[Gsin%x+}leosfx)(CsmPn‘*D’mP""
= in REX nxa axg
u(x,t)= Y sin 2 (C sin o t+Dcos o t) Boundary conditions are :
n=13.5, .. (@)s0=0 (As the bar is fixed at one end,
-\/— $ed o displacement is zero}
where a= VE u Fu (Tensils foree 1s ecpinl \a Ineckia
[ AE—.&;(I.tF‘M 07‘1»“ force in the bar due to mass M)
Examrrr 7.3 Abcroflmgthlﬁxeduoumdandmnmda(
llui other end by a spring of stiffness & as shown in figure 7.6. Derive AE Su (L, ty=Ku{l.ty (Tensile force = spring force)
suitable expression of moti: for longitudinal vibratid &
!- Applying the first boundary condition, we get
Dk — H=0
2‘"’*—% Applying the second boundary condition, we get
X .-
- AEGP® cos 22 1(C sinpat + D cos p,t)
MECHANICAL VIBRATIONS CONTINUOUS SYSTEMS o
=MGp,! sin '%'i L(C sinp,t +D cos p, ) Since the bar is fixed at both ends, so with the help of two
AE boundary conditions, we get
akip, =t S
) " ulx, ty= sin —5— (C sin pt + D cos p,t)
Applying third boundary condition n= lzz S ¥ .
AEG L:"lu,s%lll(.‘smp,! + D cas p,t) g ﬁrs:lB,C.and
i second B.C. sin £ =0
=KG sin ‘-’-'IiCsinp,J‘Doosp,‘n =8in nx
AEp, _  p. nna
K a -mn;', Pn=—l')
i :; omparing the results of second and third boundary conditions, Applying first initial condition, we get
a5 _Akp, - 0s X aafE.D
aMp, = aK = 3 ’
2 n=123,..
§2 2 _ K \/? = k=9
M Pt Ny Then expression is
ExAmpLe 7.5. A bar of uniform cross section havin, ) .
/ -secty ing length [ is fixed . .
ét both ends as shown tn figure 7.8. The bar is subjected to longitudinal u, f) = Z ps L‘,£ bttt
vibrations having a constant velocity Vy at ol points. Derive suitable n=123.
mathemetical expression of longitudinal vibration in the bar. L Applying second boundary condition
————— | —— : =
alx, )= Y sini"g.Cp.mp.l
C n=1,23..
2 .
Fig. 7.8 0= 3, Cpysin™FaV,
SoLvrioN. The genera

s = 3.
| expression for governing 1 it i e
brations can be written as " NG

1
/ . = =2 [ Vosin™™ds  (Soe Equation7.218)
alx, )= 3 ’Gb'm %’xdIcoa%’xi(Cmnﬂ,.h[)oosp.l) §
/

2Vl
Boundary conditions are : i n*’a =l
wo, ty=0 So C= 4ve when n=1,3,5....
ull ty=0 n*a :
Initial conditions are - and C=0 When au 34 8.
aix Gy Finally, required expression can be written as
@(x, 0) =V, Ve v
0 u(x,l)-% bR 'liﬁnn—,u“liﬂ,"?e'
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ExampLE 7.6. Derive the frequency equation of torsio ? 7
for a free-free shaft of length [, . W R

SovruTion. The general solution for i i i i
! i equation of tors
can be written as equation (7.4.6) -

Bz, t)= Asin?x + B cos Z—"xJ(C sin p,t + D cos p,t)
Boundary conditions are
%g 0,9=0 (strains zero at both ends)
o0
ar
Applying the above two conditions, we get

% _p.
&« a

=0

Pa in 2 ;
A cos = x - B sin ;"x}(Csmp,,t +D cos p,t)

a0
d;:()at x=0
= A=0

and gg=o at x=/

Pa . .
0=8 7 sin % I(C sin p,t + D cos p.2)

Be) s
a =SSN RK

" e = A

wherea = \}% and n=1,2 3.

The geaeral solution can be expressed as

sin

Bix, t) = Z cos _n[n.: {C sin MT“ + D cos MEAE
n=12,3 ..

Bx.ua'u' 7.7. Derive frequency equation for a beam with both ends
free and having transverse vibration. {Roorkee Uni., 84-85)

) SoruTion. The general solution for transverse vibrations can be
written as (refer equation 7.5.9)

yix, t) = A cosh cx + B sinh ¢x + C cos ex + D sin ex

where ¢*=p, \J oA

MECHANICAL VIBRATIONS
The boundary conditions for such & case are :

dy(o. n=0 (zero deflection at fixed end)
i 04 =0 (zero slope)
2
g:g a.0=0 (zero bending moment)
d-!
o @n=0
{zero shear force)

Applying boundary conditions, we get
0=A+C, A=-C

ay
4> % 1) =c (A sinh cx¢8mahcx-Cainn::¢Dcosa)=0

2(0.l)=0»-8+b
and B--D

&y i =
it J-eM(mhclfeood)«B(sinhdfﬁncl)l:O

dy 2, 1) = M{A(sinh i
an sin cl-nncll+B(oubd+coad)]=0

or lcnshcloeoccl]’-(sinh'd—sin’d)‘o
cosh® ¢l i o o
dein&wc;:on’do 2cosh cf cos el - sinh® of + sin ol = 0
= coshelcoscl +1=0
e equation
P ol mhﬂmﬁdhﬁﬂ&mﬁm
mummwmﬁrﬁnmﬁu

vibration bai ; i
e ia/ixn‘;,;dt;:,:g;;:.d uniform cross-section. One el;duo[g

.
1-‘-—.;*4

Fig. 79,
mmmhﬁnnhﬁcm‘l.&

p menlexpmforhwﬁu&mlvihnﬁudhrhm

u(x,t) =(Aﬁn€x+3m§x\|(Clinp¢¢Dmm

CONTINUOUS SYSTEMS
The boundary conditions for a free-free beam are :

2
d“; 0.=0 (Zero bending moment)

2,
ay.4 =0 (Zero bending moment)

dy’
d
~< 0,0=0 (Zero shear force)
dx’

3,
31.;(!.0:0 (Zero shear force)
(X

Applying the boundary conditions to tha general solution, we get

21

"L%(z. t} = c*lA cosh cx + B sinh cx - C ¢os ex ~ D sin cx]
3, o

3%(x.t1»c‘*].45inh cx + B cosh cx + C sin cx — D cos ex]
£9

2 .
if,(o.:)u‘m—(?wo
2 A=C

3
dy 0,6y=¢"B-Dy=0

3

= B=D
2
:;\; () =c*{Alcosh ¢l - cosel) + Blsinhel —sinel] =0
‘f{* I, t) = *[Asinh o] + sin cl) + Bicosh ¢l - cos cl)] = 0
X

Afcosh cl — cos ) + B(sinh ¢l ~sinel) =0
Agsinh ¢! + sin ¢f) + B{cosh ¢l — cos ¢l) =0
or (cosh ¢l - cos ¢l)* - (sinh? el - sin® ¢f) =0
cosh? ¢l + cos? ¢l - 2 cosh cl cos cl - sinh® ¢l +sin” ¢l =0
cosh? el - sinh®cl =1 and cos’cl + sin” el =1
So coshelcoscl=1
ExampLE 7.8. Find frequency equation of a uniform beam fixed at

one end and free at the other for transverse vibrations.
{Roorkee Uni., 83-84)
Sorution. The general solution for transverse vibrations can be

seen as

N Aol s Datak me s M anc nv = DV oin s

CONTINUOUS SYSTEMS

The boundary conditions are :
(at x =0, the fixed end}

(3] u(0,6)=0
() [v)g] =0
ol

Application of boundary condition (i) gives
u(0,¢)=B(Csmpt+Dcospt)=0
So B=0
Application of boundary condition (&) gives
2=} -0=AZc0s®L
3 ) LA
Thus cwﬁL:cos% wheren=1,3,5......
Ly "%
a L=%
nna

“eL
uix, t)= z sin EZ% (C sin pt + D cos pt)
n=1370
Exampre 7.10. A uniform beam fixed at one end and simpily
supported at the other is having transverse vibrations. Derive suiiable
expression for frequency.
Sovurion. The general solution for transverse vibration is given
a8
y(x,fi=Acoshcx + Bsinhex + Ceosex + D gincx
The boundary conditions for this case are :
y(0,8)=0
dy for fixed end
ty=
de 0,6=0
y,y=0
d*y of for simply supported end

2d.0=

Applying the boundary conditions, we get
y(0,6)=A+C=0

g%(x,l)-c lAsinhcx*Bcoshu-Csinc:+Dcmcx]

dy o b=t Bsinhex-C -Dsinezl
JaEmn=c |A coshex + B sinhex ~ Ceosex - Dsncx
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dy

dx

¥, 6)=A{coshel — coscl) + B (sinh ¢l —sin el) = 0

0.6=B+D=0

2,
and %%(I.t):c"lAcnsth+Bsinhd-Ccoud-Dsincl]=0
¢

= A(umhcl+ooscl)oB(sinhcl-(-mncl):O
A (cosh ¢l ~ cos el) + B (sinh ¢l ~ sin cl) = 0
A (cosh ¢l +cos el) + B (sinh ol + sincl) = 0
Eliminating A and B from the above two equations, we get
feosh cf ~ cos cl) (sinh ¢l + sin o)
- (sinh ¢/ — sin ¢) (cosh ¢f + cos cl) =0
Solving it, we get frequency equation as
cos ¢l sinh el - sin ¢l cosh ¢f = 0
tan ¢l = tanh cl.

ExampLE 7.11. A bar fixed at one end is pulled at the other end with
a force P. The force is suddenly reeased, Investigate the vibration of the
bar. [P.U., 92}
SoiruTioN.

Fig. 7.10.

The system is shown in figure 7.10.

One end of the bar is fixed and the other is free. The general
solution for longitudinal vibrations of bar as given by equation (7.3.7)
s

4

ux, t)= Atin‘;.u-Beosfz (C sin pt + D cos pt)

Boundary conditions
(i) At the fixed end u (x, £) =0, atx =0

(£2) At the free end (%—J =0 (assuming no force)
x=L

First of all, we derive the expression for longitudinal vibrations for
the par.

Using first boundary condition
0=B(C sin pt + D cos pt)
which sivac R =0

e TioRAATIUND

x L
ID'“"”ER"“%LE*=I&M"—?Z"~¢:
o 0

Solving it
L
i
0
_8el . nuxf®
o

Finally, the expression for longitudinal vibration is

8L <
Ul =52 N (-l RRc cos LR
n=123,5,.. “Z 2L
Kx;mu 7.12. A uniform string
tension S, stretched hetween two supports, is displaced late
i 3 raily th
a dulaftce g at the centre as shown in figure 7.11, and is r:lea::duea,:
¢ =0. Find the equation of motion for the string. [P.U, 87, 88)

V!_’.

of length | and a large initial

Fig. 7.11.
SoLuTioN. The general equation (7.2.8) can be written as

vt {A' m(f}t i (EJxJ IC, cos (pt) + D, sin @n]

n=aj
The boundary conditions are -
Dy ©0,0)=0, atx=p
Wy, 0)=0, atx=1
Applying the first boundary condition, we have
A,=0
The above equation can be written as

Y=Y -in[f}uc,m,,“p_m,,,,
n=l

CONTINUUUD D ¥arsmys

So u(x.t):Asin%:(CsiﬂP‘*DMpt)

Using second boundary condition, We get
) _0=A.2cosPx(Csinpt+Deospt)
-a;t-l. @ a
In the above expression, A cannot be equal to zero, s0
=1,39,8...
e =0=mﬂ wheren =1,
EcoaaL 2

x
C“EL-%

nza
B3
expression for longitudinal vibrations can be

Thus the general
s nnx . _nnat nnat
u )= z uin-ﬂ—[C.nnTL +D, cos 2L)
n=13"5
_AE
where i &

1 tion 18

Let us assume that when force P is applied the unit
exattimet=0. A
The boundary conditions are :
(u(x,t)=6x att=0
(ii)%'u-(x,t)=|'t=0 att=0
Applying second boundary copdition, we get
nRat nra
ﬁ:o:m%c,m—f.a
which gives C, =0
N nrat
Now u(t)= 2 sm—-zi:-D.eu—zL
n=13"5
Using first boundary condition, We have
L L
_ nRx
j exdx:j Dy sin 57 dx
0
’ B

Multiplying both sides by $in 5
0 to L, we get

and integrating in the limit
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Neow we apply second boundary condition to the above equation
y@,t)=0=sin (B)t

a

Thus sin (2)1 =sin nx

Again the equation can be modified as

G . (nra

Y@, 0= sin QIE[C. cos [n—;g-)t +D, sin (ET-}!]
Aa=1

The initial conditions for the system can be described as

(i)y(x.O)-#. 0<x<is2

ity (x,0)=2a,5(1 -’7‘], 172<x<l
... (d
(i) |22 =0
(@)
Applying the initial condition (ii1), we get

dy : uu[mc 0. AFa D]

=gin =—|==C,.0+ :

[au]“n |1 e
=sin ™% D, =0

So D,=0
Now the equation remains
< . amx nna
y(=, t)=zllln£rC,mTt
ne=
Initial conditions (i) and (i) can be applied now as

< . nmx  200x Osxst/2
ik o
n=1
=2a4(1 - x/1) l/2<x<l

If we find C,,, we can find the solution,

Multiply both sides by sin # and integrate in the limit from
x=0tox=1l
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- 172
g 2a0x
C.Zsm‘g-lgdx= '—lf—nnﬂ?-'dz
n=1 0

Solving the above terms, we get
C, =0, when n is even

-1
=T (ng% , when n is odd
nw

Now the equation of motion for the string can be written as

=1
D N = T
=188 B
JSdof omx oma, 1. 3mx 3mat
"x“‘“[“",‘ § 80 =~ cos =
1 . 5rx Sma
+ % sin 7 cos 7 l]
ExampLg 7.13. Determine the normal functions in transverse vibra-
tion for a simply supported beam of length | and uniform cross section.
{P.U., 88, 94, Roorkee 90-91)
SorurioN. The equation of motion for transverse vibrations of
beams of uniform cross-section is given by equation (7.5.9)
¥ (x,8)=A cosh cx + B sinh cx + C cos ex + D sin ex
When the beam is simply supported, the displacement and bend-
ing moment are zero at both ends,

The boundary conditions are :
Dy©,6=0, atx=0 @yd,t)=0, atx=l
ol (&)
(ei) =0 Gv) =0
[d!, x=0 dt, el
444 MECHANICAL VIBRATIONS

The normal functions can be written as

Xz

¥1=D;sin 7

. 2mx
¥2=Dysin ==

3= Dy sin %"1

and so on.

The mode shapes for a simply supported beam will be as shown in
figure 7.12.

ExampLE 7.14. Determine the equation for the natural frequencies
of a uniform rod in torsional oscillation with one end fixed and the other
end free. [P.U., ME 89]

SoLurion. The general solution for an equation of torsional vibra-
tion can be written as

O(x.t):[Asinsxd-BmeE:)(Csinpt#Dcocpt)

The boundary conditions are :
@80,=0 atx=0

(x'n‘%g =0 ate=l
Application of condition (i} gives
0=B
Application of boundary condition (ii) gives
a0 ) N "
3 =0=;[Alm§;(Csmpt+Dmsp¢)}
0=48cos2
a a
Here A#0
So cos21=0=cos 2X
a 2
Thus P"E;'F wheren=1,3,5

The torsional vibration of the shaft can be written as

6= 3 sinﬂyﬂ[c.ml‘-,’;ﬂuo.mfﬂ"ﬂ:]
n=13,06

EXAMPLE 7.15. A bar is free at both ends and is initially stretched
¥ static force P acting at the ends. The forces are released instan.

CONTINUOUS SYSTEMS 6

There are four unknowns A, B, C and D with four boundary
conditions, so they can be determined.
Application of boundary condition (¢) gives
0=A+C
Application of boundary condition (iii) gives
0=-A+C
So both the constants A and C are zero.
Now the equation of motion remains
y (x, £y = B sinh ex + D sin cx
Application of boundary condition (i) gives
0=Bsichel + Dsinel
Application of boundary condition (iv) gives

[‘i‘ly} =0 = - Dc? sin el + Be? sinh o
o
R

=~ D sincl + B sinh o

Thus B =0 and sin¢l = 0 =sin nx wheren=1,2,3.....

nx
=3

e ' )

R

First mege

N

Secone mode

Third mode
Fig. 7.12.
Thus equation of motion can be

yE =Y D.uin#

-l
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taneously. Derive the frequency equation/expression for natuml fre-
i ymwmA:xl function and general series for free vibratiodP.U., 92]

SorurioN. Let us assume that € is the unit extension at time

Y

t=0.
The initial conditions are

u(x.0)=§2£"’

and %:—-&:0 at 2=0
No—f—ex
P — e p———p
—
Fig. 7.13.
Refer Fig. 7.13.

For longitudinal vibration of uniform bar, the general expression

is given as
ulx, )=y (AsinE:+BmEx](Csinpt¢Dmp¢)
a=1

The bar is free at both ends, so the expression for that can be

written by noting the boundary conditions as
. (2u)_ "

o)[b)-o at x=0
(h)(%)-o at x=1

N Pl BEunk
8o &"o”l’ l.ﬁ.s

Applying boundary condition (i), we get
0=A
Applying boundary condition (ii), we get
E
0=BEunk;
Thus ﬁflaﬁm
So ’.% wheren=1,23.....
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The general expression may be written as

uEt=Y cos ﬁl!x(Csinpt¢Dmspt)
n=1
The initial conditions are
(Ui u (x,0) = 5 —€x
(Wle=0 attw0
Applying condition (iii), we get

u(x.0)=e—l-ex =Dcos 2= x

2 i
and applying condition (iv), we get
0 =Cp cos pt - Dp sin pt
at £=0
gives C=0

! 1
ThUSJ.Dcou¥xcoa '—'f—xd::_[ [%l-ex]cos "T‘xdx
0 0

[Multiplying both sides of the above equation by
nx

cos T x and integrating from zero to (]

{
! !
D-§=J-[%-—ex]eosﬂl5xdt
0
¢ {
r Dzjsmlzlx&-%‘[xmﬂxdx
] 0 !
=%(l-mnt)
13
4e!
So D=;§‘-§, for n 0dd values

=0, forn even values
Finally, we have the general expression as
. nxx nrat
- €08 [~ vt
4el )
uix, ty=—- =
¥ n=13,5 »
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11. Mention the conditions of Euler beam. Derive Euler’ i i
for beam vibration. De! ine the natural fre 'qn:::::m
for end conditions
(e) simply supported
(b) cantilever. P.U, 941
12. ﬁ@mm@w&limﬂyswm j toan
axial compressive force. P.U, 951

13. Determine the effects of rotary ¥ ormation
umlﬁwmduolulhnplym:;‘r::::i;::b:rm. o
14. Derive the differential equation of motion for the flexural vibration of a
beunofun‘i(wmmsnﬁmmdnhcwmtlhohqumqequﬁond
such a cantilever beam of length L is given by
cos k; L . cosh k; L =~ 1 where

ki=(w/a)”? and a=(El/pa)'? (Roorkee Uni, 1998-2000)
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1. Derive the freq q for longitudinal vibration of & rod of twe

different cross-sectional areas A) and Az. Refer figure 7.1 P.

I

Fig. TAP.

2. Auniform bnroﬂengthlillhednonemdmdthefmaendiumuhed
uniformly to lo and released at ¢=0. Find the resulting longitudinal
vibration.

3. Derivethe orthogonality principle of normal modes for longitudinal vibra-
tion of uniform bars.

4. Determine the steady state vibration of a simply supported beam of
fength L acted upon by a ted foreing funetion Fo sin ¢ . Refer
figure 7.2 P.

Fig.7.2P.

4

Show that the term :—' 5;8-,‘;? represents the effect of rotary inertia of the

beam in the differential equation of motion for the transverse vibrations

of beam.

6. C the fund | natural freq: of a round bar of steel of
%O;nmmlengthhaving&nmmrim. Assume the bar to be free at
both ends.

7. A uniform string of length [ fixed at its ends has a large initial tension. It

is plucked at x = 1/3 through x distance ao and released. Determine the

o

subsequent motion.
8. Atneh‘rnfunifomucﬁm-ndleuthliscunpnwedonthamosides
50 as Lo give & total pression €. pressive forces are rel d
ddenly, simult ly. Derive an expression for the ltant free
vibrations.

9. Show that the differential equation of motion for the torsional vibration
of & circular shaft with variable diameter is

Ps_of, #e %
where p(x) is the mass velocity of the shaft material.
10. Compare the freq oflengitudinal vibrations and of tr vibra-

dimmm Al & snnnar tuhs

8

Transient Vibration

8.1 INTRODUCTION

When some external excitation is applied to a system, two types of
motion, namely, the steady state and t i tion are g ted
The steady state motion is not dependent on time and so it persists. The
transient motion is temporary and time dependent so it vanishes soon.

In many cases, we only consider steady state motion. However, the
transient vibration or motion is important in both the cases when the
excitation is sudden and unexpected or conti The syst
vibrates with its natural frequency and the amplitude is purely depend
ent on the magnitude, time and nature of the excitation,

The examples of transient vibrations are : the air pressure pulse
created by gunfire, the dropping of package on hard floors, punching
operations, moving of automobile on uneven surface or curbs on the
road, etc,

In this chapter use of Laplace transform method is made which
solves the linear differential equations and finally gives the desired
form of solution,

82 THE LAPLACE TRANSFORM

The Laplace transform is used in solving vibration problems, It is
applicable to both, the transient and dy state conditions of the
system, having any number of degree of freedom. It is applied to
differential equations without going through a derivation or integra-
tion, Tables are readily available to sce the transform or reverse
transform directly without much difficulty. This method is useful for
the analysis and synthesis of dynamic systems. This method does not
require the evaluation of constants of integration separately as in other
methods.

The Laplace transform converts a given function f (¢) of real variable
¢ into a function F (s) of the complex variable s by the operation given

Fe=[foe* d=Life)
0
The application of Laplace transform to a simple spring mass
system is shown here,




450 MECHANICAL VIBRATIONS
The equation of motion for simple spring-mass system with an
excitation f (£) can be written as
mi+ex+hke=f(t) .(8.2.1)
Let x(0)=xy
S . | initial conditions
x(0)=x
The application of Laplace transform to left side of equation (8.2.1)
can be written as
L(mx+cx+kx)=mLx (t)+cL (%) + kL x (t)
=m (s X(s) - 89~ %) + ¢ (5 X(5) = %) + kX (s)
=(ms”+cs + k) X () - (ms + ¢) xo - mxg
IfF (s} is the transform of excitation f (¢, then equation (8.2.1) can
be written as
(ms® +cs + k) X(s) - (ms +¢) X9 - mxp=F (s)
[F (s) + (ms + ¢) %o + mxy)
(ms® +cs + k)
Equation (8.2.2) is called the subsidiary equation of equati
18.2.1).
Step Input
The transient excitation acting on the system is constant in mag-
nitude. If any how the excitation is not tant it can be broken into
small sections of constant force. Then this constant excitation is sup-
ppsed Lo act on the system to analyse the vibration for that particular
:ime. The response of the system can be obtained till this force is over
and the next force starts acting on the system. Thus the end conditions
of the first force are the starting conditions of the second force.
The term X(s) is known as the response transform and

ms* +cs + k) as the characteristic function. The inverse transform of
X (s) gives the function x (£). Table 8.1 gives various anlace transform

or X(@s)= -.(8.2.2)

sairs though detailed pairs are p d in App
Table 8.1. Laplace 'l‘ruufor- Pairs
Fis) fio
1 u(t)
5
1 t
e
-~
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If one unit step function is subtracted from the other, we get a gate
function. Mathematically, it can be written as

) ult) . u(t)~uft-a)
S I oj.___.

1 a t

(@) Unit step function u (n (b) Unit step function u(t— a)
(1~a) F ;
i uli~a Flutn-u(r-o)]
(o] a 1 [ a t
(¢) Gate function (o) Rectangular pulse.

. Fig. 8.1,
Gate function = u(t) —u (£ — a)
The Laplace transform, can be written ns
L u(t) - Lu (¢ -u)
I &%
e =‘ (1-e™
Refer Fig. 8.1 (¢)
Rectangular Pulse
A rectangular pulse of magnitude F and duration a is shown in
Fig. 8.1 (d).
Here f(t) = F u(t) - Fu {t -a)
The Laplace transform gives
LiFug)y-Fut-a) :
F F .u_F b
i °'=;'(l-¢ L]

Thus rectangular pulse can be constructed from the difference of
two step functions.
Unit Impulse

We have seen in case of rectangular pulse that the magnitude of
the pulse was F and its duration was a. The impulse of force would be
F.a. We can consider the impulse of forcesuch that F.a =1,

-

TRANSIENT VIBRATION 451
= e
s+a

s cos o
Sra
) sin ax
Sre
a sin h at
s'-a
s cos h at
S
T Ean uf(t-a)
&
- 5(t~a)

8.3 TRANSFORMS OF PARTICULAR FUNCTIONS

Certain type of functions which are quite useful and are obtained
by the combination of other functions, are discussed here.
Unit Step Function

The unit step function may be written mathematically as

0, whent<0
1, whent>0 .(8.3.1)

If£(t) = A, its Laplace transform can be written as

n(t)-—-{

Lu(t):F(s):LA=] Az"'dt=~‘%e“‘ ls
)

@ |

If A=1, the unit step function can be as defined by equation
(8.3.1). Thus Lu(t) = % . Refer Fig. 8.1 (a)

If this function is shifted to the right along axis ¢, as shown in Fig.

8.1 (b), the shifted unit step function can be defined mathematically as
0, whent<a

u(t-a) ={ 1. whent>a -(8.3.2)

Thus Lu(t—a):ju(t-a)e"‘dt:] e

If the duration of the pulse is decreased, the magnitude of the
pulse would increase to maintain the unit area.
In the limit, when a tends to zero, the impulse can be defined as

%)= lim. lum u(t - a))

The Laplace tranﬂform to umt impulse will be

Lix@l= lim "—:—'3 1
S

SOLVED EXAMPLES
ExAMPLE 8.1. A force F (1) is suddenly applied to a mass m which
is supported by a spring with a constant stiffness k. After a short period
of time T, the force is suddenly removed., During the time the force is
active, it is a constant, F. Determine the response of the system if t > T.
The spring and mass are initially at rest before the force F(t) is applied.
SoruTion. Refer Fig. 8.2

F
Fit) Flum - otr-7))
T t
Fig. 8.2,
The equation of motion can be written as
mE+kx=Flut)-u-T) W)

Applying Laplace transform to the differential equation
L [m¥) =m [s* X(s) — s — g}
Likx] =k X(s)

LF lu (@)} =

LF(u(t-T))-

Initial conditions : x (0) =0, x (0)=0
Substituting the values in equation (i), we get

~oT
z)((s)+k)((s)-£-1“-‘:—:g(l -y
F

(ms* + ) X@©) =5 (1 -

or X(s>=§u-¢"’p(mhn




Mmiuﬁ=£inﬂwabweequaﬁon
Fl 1-¢T
X(s)=—| ————s-
() ’"['(t'ﬂﬁ)
From the table of Laplace transforms, the inverse

L“[m]-é—u-mqn

T
d ! _"___ =l - e i
an [t("wﬁ) ﬂ&'.“ s, (t-Du(e-T
for 0 <t < T, the solution is
x({)=—5(1-cosw, ¢
mﬁ w, 1)
and for ¢ > T, the solution is given by
x(t)=Ld((l-cosm.¢)—l-mw.t(t—?)l

L if t<T 0, ift<0
Nota.xg=Tl= {x if t>T ‘"“’““"{1. ife>T
ExamrLg 8.2. An apparatus of mass m is shipped in a container as
shown in Fig. 8.3. In the process of unioading, the container is dropped
from a height h to a hard floor. Find the response of the system.
Solution. When the container
hits the hard floor, its velocity is

*=V2%h
The equation of motion when the
container is in contact with the hard

floor
mx+kx=0 h
The initial conditions are el
x(0)=0 Fig. 8.3. Dropping of package on
% (0) = V2gh o

Applying the Laplace transform to the differential equation of
motion

L{mz+kx]=0
m Is® X(s) ~ 5. xg — #o) + k X(s) =0

[s’)f(s)-‘/?c—hli»ﬁxmxo

("' x(0) =0 and x (0) = V2gk)

B e e s

(s’+2§u,a+mf)X(s)=&,%

r Xis) = J[ 1

(" x(0)=0; x(0)=0)

s (: +25w, 5+ m,,
The right hand side of the above equation can be broken into
artial fractions

Xis)= Fo [l_ s+ o, ]

m.wp |8 s*+28Ew,5+ 08
The inverse transform of the above equation still be obtained
+1s assumed that £ < 1 and the above equation can be written as
1 s+Ewm,
Xs)=
oY m:[m +50) +(1-E.0)°

Jl—ﬁ?ﬁf?m.

T s+t +(1-8 o)
The inverse Laplace transform of the above equation can easily be
stained as

et cos V1 - EF gt

-vl—é-g—,e'{"'m'nql-gimll]
F, o .
=T°[1_, L, (mil—ﬁim,t‘v;s-?-mwh-gim.g]

‘When the system is undamped i.e. £ = 0, the response equation can
» written as

x(t):L[l =
mayy

x(f):ﬂll-eouq,!]

The first term of the above equatmn represents steady state
brationg and the d term t

ExXAMPLE 8.4. A spring mass-system
shown in Fig. 8.5 which is subjected to
harmonic force F cos w¢. Determine the
sponse of the system.

Given: 2(0)=.0lm

% (0)=.04 m/sec

IF coswr

-~

=30 rad/sec K22 32
F=1000 N

TITTTTIITITYY rr
m=10kg
k=500N/m Fig. 8.5, Single degree freedom-

spring mass system,

B

(s® X(s) -~ V2gh)] + @} X (s) =0

X () "+ o=
V2gh
or X(s)-;,-?;g
Taking the Laplace transform, inverse
% o1 V2gh 1.0, a1 Oy
-t -
(@)=L X(s)=L g =\ogh L dea

x(:)sE“h 8in @, t
Maximum acceleration of the mass
b=,

Examprs 8.3. A spring-mass system is shown in Fig. 8.4. If the
system is initially relaxed and a step-function excitation is applied to the

mass, find the response of the system. £Lult)
SorutioN. F, is constant when l
£ 20 and it is zero when t < 0.
The boundary conditions are : m _l
x(0)=0 l x
x(0)=0 K/2 3&/2
The differential equation of mo- * |C
tion for this system can be written as
777777777777 77777

mx + cx + kx = Fp u(f)

i Rk F. Fig. 8.4. Mechanical system with
or 4+ 200 L@ step function excitation.
m m m
“efining < = 2% 0,, @} = & and substituting these values in equa-
tion (i), we get )
i+2§w.£#m,’.x=%u(¢) g

Taking the Laplace transform of the above equation, we have
LE+2§Q.§+«§:]=%L0(&) ¢t>0)

5% X(5) - sx(0) — % (0) + 2§ wa, {5 X(s) - x(0))
1

Fy
+(o,,X(ﬂ-— T

ERCINORRSY 8 Y e 2 aray

Solution. The differential equation of motion of the system, can
be written as
mx + kx = F cos ot
Applying Laplace transform, we get
mL (z) + kL (x) = FL cos wt

m [s* X(s) - 5 2(0) - % (O} ”X(‘)'F,’:u'
Substituting the values of various terms in the above equation, we

1000 s
2 -— - =
10 [s* X (s) - 0.01 s - 0.04] + 500 X(s) W
Solving the above equation for X (s), we get
_0.15°+0.45"+10905s +360 ®
&)= (10:’+500)(:‘0900)
hmnbesohedbyinnemnguﬁainmmuA,B,CmdD.
As+B +Cs4>D )
105%+500 &° +900
(A:+B)(s +900)+(C:+D)(10: + 500)
(lOs 4»500)(3 +900)
_As+900As +Bs* +900 B + 10 Cs* + 500 Cs + 10 Ds* + 500 D
(10 ¢* +500)(n +900)
(A+lOC)s +(B+10D)s +(900A+5000)3+9003+50()D
(10 5% + 500) (s* + 900)
Equating the like powers of s both sides of eqn. (i)
A+10C=01,
B+10D =04, )
900 A + 500 C = 1090,
900 B + 500 D = 360
By solving equation (ii7), we have
21.7

X@s)=

A-~l—7--1.276
B=040
Cﬂ—ﬁ'=—0117
D=0

i e e — s




Equation i) can be written as

1276 040 01175
X(s) = o
O 047+500 T 105+ 500 24900
12765 04 01174

“1067+50) ' 107+50) 5%+ (307
X 6)=0.1276 s 0.045v2 0.117s
o) [s’ +(5v2) J+ 5V (52 + (5V2)] 52+ (3a)?
Taking inverse of the Laplace transform, we have

;(e)=o.mseu5~li:+‘;7“’2iﬁnsﬁc-o.mao.sor

= 0.1276 cos 5v2 ¢ +0.0056 sin 5 V2 ¢ - 0.117 cos 30 ¢
This is the required response of the mass.
&m&ﬁ.Determinelhcequaﬁonofwionoﬂhcmmfwﬁn
vibrations as shown in Fig. 8.6.
Given : m=10kg, k=1000 N/m,
C=100N.sec/m m
x(0)=0.001 m,
x(0) =0.10 m/sec Kk
Solution. The differential equation
for the system shown can be written as
mi+cx+vhkx=0
Applying the Laplace transform to the Po. 88
above equation, we get
m [s* X (s) - & (0) % (0)) + C fs X(5) - x(0)) + hX(s) =0
Substituting the values of the given terms in the above equation,
we get
10 [s” X(s) — 5 X .001 — 0.10] + 100 (s X (s) - .001} + 1000 X(s) = 0
5" X ()~ 0015~ 0.10 + 10 s X (s) - .01 + 100 X (8)=0 ..0)
The equation (i) for X{(s) can be written as
Xm_o’.ooxuo‘zoa . 0.001s + 0.20
$°+105+100 s°+105+100 s*+10s+100
First term of the above ion can be ipulated as

0.001s =1000(.001:«#.0051-5“ s+6)-5
5°+105+100 1000 (s° + 10 s + 100) 1000 [(s + 5)* + (5 ¥3)*]

Let us have first term R O e
sl 1000 [(s + 5)° + (5 V3)®

i)

incr t in the impulse is F (¢) .dt'. This impulse causes instan-
taneous change in the velocity of mass.

We know that F(¢) = 2%
or di= ﬂ‘-"l;"—’ A8A)

It shows that there is change in momentum and mass is constant.
So it is the only velocity (dx) which is changing. Thus the change in
displacement at any time, ¢ due to the change in momentum at some
sther time ¢’ depends on the time interval (¢ - ¢). The change in dis-
pl t due to the impulse F (£) df’ can be written as

di= %gn o, (E~1) .(84.2)

(Taken from eqn. (i) as the initial displacement x4 = 0)

The change in the velocity & displ t will be d. and dx in
ime interval (¢ - ') respectively.
Substituting the value of dx in eqn. (8.4.2) from eqn. (8.4.1), we get

F@)dt sne, . F) . =
dx= -y (¢ t’)-mm.nnm,,(l ydt’ .(843)

This is the change in displacement due to one small impulse of
nagnitude F (¢) dt’. For total change in displacement, equation (8.4.3)
:an be integrated in the time limit from £ = 0 to ¢ = ¢ which will be the
ram of all individual impulses, so

2
1 . .
N ‘{ F () sin o, (¢ - ') dt’ (B.4.49)

The above equation is known as Duhamel's integral. This method
1eeds integration, so it cannot be applied for mathematically compli-
:ated forcing functions. It is very useful method for simple expressions
wnd permits the use of Laplace transform for solving transient
sroblems.

EXAMPLE 8.6. A spring-mass sy isting of two and
t coupling spring are sh in Fig. 8.8. If the system is initially at rest
i a frictionless horizontal surface and F (8(t) is the applied impact on
nass m;,, find the motions of the masses.

X2

The second term -
0.195 x 5v3
uo'x%oo 0.195 T ov8
F4105+100 +105+100 (5457 +(5v3)
0195.5V8 __ _ (ooe 53 ]
“BV8 (s +5) + 53] [(.+5)’¢(sﬁ)‘
Equation (ii) can be written in the manipulated form as

53 2
x(‘) - _L._gl——f 4.0_0225[ m] D)

1000 {(s + 5)° + (5 ¥3) (s

Taking inverse transform of eqn. (iif), we get
X(r)uﬁe"'msﬁc+0.0226¢'"dn5¢3_t

= ¢ ¥ (,001 cos 5V3¢ + 0.0226 sin 5V3 1)

8.4 DUHAMEL'S INTEGRAL METHOD

Equation (2.2.3A) repr ts the motion of undamped freevnbn
tions of single degree of freedom system. The equation (2.2.3A) is
rewritten as

s-zoeotm,l+£':linm.l @)

In the above equation x (0) =x, and the initial velocity x (0) = ve.
This is the general expression of simple harmonit motion. Let us
consider a forcing function F (¢') for the spring mass system as shown
in Fig. 8.7. The function F (t'} can be considered to be made up of series
of infinitesimally small impulses, each of duration dt’. Each and every
impulse influences the motion of the system. At any instant ¢/, the

F(t)
Fl1her'
'l
—e] po—at’ t
Fig.a.7.
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Sorution. The differential equations of motion can be written as
my %y + kxy - kxy=F 3 (1) )
—kxy+meXa+ kxy=0 .{i2)

1t is given that the system is initially at rest, so
2(0)=0,2(0)=0
Applying the Laplace transform to the above equations, we get
my L (%) + kL (xy) - kL (x5} = FL 8 ()
my (52 Xy (5) - 9 2(0) = % (O)] + kX, (5) - kXp () =F

o myst + k) Xy () - kXa () =F Aidd)
and ~RL (%)) + ma L ¥, + kL (x2) =0
— kX, (5) + my [s* X3 (8) - sx(0) - 2 (O)] + kX () = 0
(& +my %) Xy (5)) - kX (5)=0 wdiv)

From equations (i) & (iv) X, (s) and X; (s) can be determined by
applying Cramer’s rule
F -k
0 mys’tk F(mys® +k)
X1 ) = Y 1ue of doterminant A
ms+k F
-k (1]
X2 = alue of determinant
Value of determinant,
Sk -k
m‘- k myst+k

|2

-

=[my mgs® +(mg +my) &l s
F.(mas" +k) )
[my mgs +(my + mg) K1 &
Fk (0i)

(mymas +(my+mp) k) s

Now X;(s)=

X ()=

'ak(ﬂl-fﬂlg)

Defining that, @' =—=m=

Solving equation (v)

ity F(k+mys™) Aoid)

. mo I8} +?i OI
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Similarly, solving equation (i)
Fk
X;(8)= 7]
2 =y S < {vitD)

Taking the inverse Laplace transform of equations (vii) & (viii), we

get the response of the masses x, (£) and x, (£).

PHASE PLANE METHOD
The phase plane method is a graphical method to solve transient

vibntiol_x problems. We know that displacement and velocity describe
u.n motion of a single degree of freedom system completely. If the
dnsplagement and velocity are taken as coordinate axes, the resulting
grgpbu:'ﬂ representation is known as phase plane representation. Any
point P in this coordinate plane which is known as the phase plane of
mf:uon, indicates the dynamic state of the system. The locus traced b

Pis known as phase traj y. The motion of the syst
3y the motion of point P in the phase plane. The state of the system
iepends on time, As the time varies the solution of the system changes.

A

is repr

We know that general expression for simple harmonic motion is

fiven by

x=Asin (w,t+9¢) i)
Differentiating the above equation for velocity, we get
z=A W, co8 (Wt + )
x
u—;. =Acos(w, t+9¢) A1)

Squaring and adding equations (i) and (1), we have

x"+(i— )’=A’ T

The above equation is a circle with coordinate z and & and radius

.and centre at the origin, Ref. figure B.9. There is any point P, initially

flvi.ng the displacement x (0) and velocity v (0). After time ¢, the

P t and vel ‘,oftholynemmrepm-nudbypcint!’,_
'P; makes an angle w,t; with OP,. OP, and OP; are the rotating

ectors. The d.isplacement of the system at an instant is given by the
nr.uor?ul projection of the rotating vector on the y-axis. The herizontal
rojections of the rotating vector on a time base gives the displacement-
me plot of the motion of the system as shown in Fig. 8.9 (b). The
ertical projection oni the time base, gives the velocity-time plot. The
sntre of the rotating vector ‘O’ moves up and down on the y-axis, The

mtre ‘0’ of the rotatine vartar will ha chiftad vom e ston o2 &
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The ramp force is approximated as a constant force at time 0.12,
0.14,..........0.22. The time interval is equal i.e. .14 - .12 = .02 sec each.
There are six intervals. At these intervals the value of constant forces
will be 300 N, 240 N, 180 N, 120 N, 80 N and zero. With the help of
Table 8.2 phase plane diagram a5 shown in Fig. 8.11 can be drawn. Let
O be the origin.

OO =3 om
OPr=3cem
S 2518
=0.60cm FPaOy = PoOx

OOy = 00cm ] ) PsOs = P50
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x= £
P. E _0 N 9
w\'? .
1
g % x(0)
N 0 i t ' t
X/
Fig. 8.9.
When -:: is negative, the centre will be shifted downward by the
amount & . In the present case, the static equilibrium displacement is

k
zero and so the centre of circle is located at origin. The angle of the
vector depends on time (as 6 = w, . f). The end conditions of one era
(interval) must be the starting conditions of the next era.

Exampre B.7. A spring-mass system initially at rest is subjected to
excitation as shown in Fig. 8.10.

300N
F
- <3
o 012 0 016 018 020 .22
tec) —
Fig. 8.10.

Given : m = 10 kg, k = 10000 N/m

-w,i ‘,’wooo #
SoLvrion. ©, = o= 10 31.62 rad/sec

The angle of the starting point

= t=3l.62x-!-§9-x 12=217.4°

The time interval from 0.12 to 0.22 sec is divided into five equal

— inc e R /7 AN
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Table 8.2,

Interval 1 2 3 4 l 5 6
Time [nterval 0.12 0.02 0.02 0.02 0.02 0.02
(A, sec) | I
Change of angle 217 435 435 4315 r 435 435

(48, degrees)
Force (N) 300 240 180 120 60 0
Force (F 300

k'l k 10000 | 0.024 | 0.018 | 0.012 | 0.006 0
inm, whichis |=003m
the shift of ongan
Corresponding 0, 0, 0, 0, 0, 0.
origins 00, | 00, 00, 00, 00, 004

=3em |[=24cem|=18cm|=12cm{=06cm| =10
1
Since the value of g goes on decreasing, so the origin shifts

downwards as can be seen from the table.

The phase trajectory for the first interval is the arc of a circle with
included angle 217.4%. 00, is the radius of this circle. The centre of the
arc for trajectory in the second era (interval) is located at O, and the
radius of this arc is O; P,. The motion conditions represented by point
P, for the end conditions of first era (i.e. P, Oy) are the starting
conditions for the d era as can be seen from the figure.

ExampLE 8.8. A system having a natural frequency of 15 Hz is
allowed to explosive type of input which has been changed to equivalent
approximate steps shown in Fig. 8.12. Determine the phase plane plot

x
0.50
UL LY SR S
w|x I
- o ——-
0.045 004 1{sec)
~0.30 f—---
0.03
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and displacement-time plot. Find the : i
b maximum displacement of the
SoLvrion, f= 15 Hz

we know that @, = 2rf=2x x 15 =30 x rad/sec
Angle for the firstera = w, . %xomsﬁ«r

Angle for the second era = o, . -1-2—2 x0.03 = 162°
Angle for the third era = w, . % % 0.04 = 216°

Angle for the third era= o, . % x 0.04 = 216°

The relevant values are presented in Table 8.3.

Table 8.3.
Era 1 2 3 ]
Time interval (A2, sec) 0.045 0.03 0.04
Angular difference 243 162 216

148, degree)

-:"(in cm) shift of origin 0.50 = 00, - 0.30 = 00, 0.25 = 00,

Origin 0y 0, 0,
Refer Fig, 8.13.
- /,'mra ro.echory
] S iy A
Wt KT !
\ il Ve
2N | |
- 3 - 3 - | —
0 1% om /‘ ,"\".:{:\\Z‘V e

f
- | |
Secsng | !
troeciaey |
. s\
—— — z
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(b) Also find the resp of this system for a rect lar pulse of
itude, Fo, and duration, 7" (Roorkee Uni.)

4. Find the transform of the single pulse shown in Fig. 8.3P.

3 - -—
1 1

F i
o H

a 3. t 0 T/z

Fig. 8.3P. Flg. 8.4P. Hall-sine wave.

5. Determine the Laplace transform of the single half-sine wave as shown

in Fig. 8.4P.

6. Determine the Laplace transform of the saw tooth periodic function as
shown mn Fig. 8.5P.

1

o 2T t
Fig. 8.5 P. Saw tooth function.

7. An arbitrary force fit) is applied to an oscillator without damping having
non-zero initial conditions, prove that the solution of the problem is of the
form

x(t)-mmlm.tvflinnht

b | r@snme-E0

D S—
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Initially origin is taken as ‘0’. The maximum displacement is
0Q, = 1.9 cm. 00, =0.50 cm is the radi of first traj y and the
ZOQP) = 243°. O is the centre of second trajectory which is below the
origin by 0.30 cm distance. Join O, to P,. Now O,P, is the radius of
second trajectory with angle P, MP, = 162°. O the centre of third
trajectory is above origin O by 0.25 cm. Join Oy to P,

Now O, P; is the radius of third trajectory and the included angle
Py 0, Py = 216°.

Problems

1. A spring mass system has weight 40 kg and spring constant
= 100 kg/em. It is subjected to excitation as shown in Fig. 8.1P.

bl
/7 =
Fkg) i Fi
L
CT\ sec
BN s
N\
N
Fig.8.1 P,
Determine the response for ¢ > 0.1 second. Solve by Duhamel's integral

(P.U., 98)
2. Analyse problem 1 by Laplace transform.

Hint. m+bu£‘i +Fy
3. (o) Using Laplace transform method, obtain the response of a second.

order damped system, Fig, 8.2P (a), toa step impulsive force, Fig. 8. 2P(b).
Where U(¢) is the unit function.

F

9

Non-Linear Vibrations

8.1  INTRODUCTION

In the preceding chapters, the equations of motion were linear. By
the term linear we mean that the equation of motion contained dis-
placement or its derivative only to the first degree, And no squares of
higher powers of displacement or velocity are involved. Linear analysis
of a system explains much about the oscillatory systems, But there are
a ber of ph which be predicted by Linear analysis.

Linear analysis of problems in vibration can be justified only in
case of small displacements. For the purpcse of convenience, we model
most of the systems as linear, but in actual practice real systems are
more often linear. The li analysis becomes necessary

wh finite amplitudes of motion are encountered. One of the main
T for modelling a physical system as a non-li i8 that, totally
pected ph occur times in non-linear systems. These
ph are not predicted or even hinted by linear theory.
Several methods are available for the solution of non-linear vibra-
tion probl Some el v methods for the analysis of non-linear

vibratiens are presented in this chapter.

9.2 DIFFERENCE BETWEEN LINEAR AND NON-LINEAR
VIBRATIONS

In the linear systems, the cause and effect are linearly related i.e.
the cause and effect change in such a that their relation with
respect to each other is the same and is given by a linear plot. In the
non-linear sy , this relationship b cause and effect is no
longer proportional. The properties of a non-li system depend on
dependent variables.

The so called linear systems tend to become non-linear with larger
vibration amplitudes. The analysis of non-linear systems is however
comparatively difficult. Sometimes there is no exact solution available.
One major difference between the linear and non-linear gystems is that
the superposition principle does not hold good for non-linear systems.

Another characteristic of non-linear vibrations is that the
P of the sy tains Sub-Har ics. By Sub-Harmonics we
mean that when the system is acted upon by a forcing frequency ‘o, the

(469)
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espanse may contain components of frequency lower than ‘e, Stability
roblems are also encountered with non-linear systems, Analytical
rocedures for the treatment of non-linear systems are difficult and
equire extensive mathematical study.
A genceral equation of the non-linear system is given by
mx + B)+ f(x) = F (1) .49.2.1)
1 which the second and third terms on the LH.S. of the equation are

ot linear functions of (2) and (x) as used to be the case in linear
ystems.

A general equation of the linear system as in earlier chaptors is
iven as

ma +ex +hx =F () .(9292)

1+ which all thc three terms on the LHS of the equation are linear
mcetions of x, x and x respectively

3 APPLICATION OF SUPERPOSITION PRINCIPLE TO LINEAR
AND NON-LINEAR SYSTEMS

As already discussed, one of the major difficulties of the non-linear
salysis arises because superposition principle which is so useful in
rear analysis does not hold true here. We can prove this.

Lel us first assume a linear system whose general equation of
oticn is given by equation (9.2.2) as

mx +ex + kx = F {t) .(93.1)

Let x; be the solution to the above equation
This means

mi; +exy +kxy = Fy (1) -19.3.2)
Let x; also be a solution to the equation (9.3.1). By substituting

is value in equation (9.3.1), we get

mxy +exg + kxy = Fy (t) -(93.3)

Now adding cquation (9.3.2) and (9.3.3)
m(E) X)Xy X)) + k(X v xp) = [F) () + Fatt)) .9.3.4)

From equation (9.3.4) it can be deciphered that (x; +x,) is also a

lution to equation (9.3,1), Thus superposition principle holds good for
inear system.

Let us now consider a non.linear system for which the general
uation of motion is given as

mx + ket =0 .(9.3.5)
2 MECHANICAL VIBRATIONS
This reduces to
Bsa’6=0 . A9.41.3)

where w= v’f w(9.4.1.4)

The solution of equation (9.4.1.3) is expressed as
G(t)~Awin(wt+ ) .(9.4.1.5)

where A is the amplitude of oscillation, ¢ is the phase angle, and ® is
angular frequency

The values of ‘A’ and ‘¢’ are determined by the initial conditions
and the angular frequency “w’ is independent of the amplitude ‘A",

Equation (9.4.1.5) denotes an approximate solution of the simple
sendulum problem.

A better approximate solution can be obtained by expanding

7in @ to a two term equivalent approximation. Thus for sin 0 near
3= 0° we can have

sinf=98- %—J ..(9.4.1.6)

Substituting the value of sin 8 from the above equation in equation
9.4.1.1), we get

m126+mgl(0-%:]=0

p o
2 ——— -
w 8 +m (0 ry }»-0 «49.4.1.7}

It can be scen that the above equation is non-linear because it
:ontzins a term invelving 8°, Thus a pendulum with large amplitude is
onsidered as a system with non-linearity.

The equation of moetion for a simple pendulum is similar to a
spring-mass system with a non-linear spring. The pendulum thus
»ossesses soft spring characteristics i.e. stiffness decreases with in-
rease in displ . If displ t 8 is taken small, then the term
wontaining 8” can be neglected and the system reduces to a linear one.

The frequency in case of a non-linear system is not constant where
12 10 a linear system it always remains constant. Thus depending on
ke variation of freq: 'y (@) with displ nt(x), there are two types
»f spring mass systems showing non-linear vibration characteristics,
Jne of them is the soft spring system in which the frequency decreases
with the displacement PI %.xg
\

0 the fact that in a soft spring system the equivalent stiffness of the
ipring-mass svstem decreases with increase of freavency.

is a decreasing function of x | This is due
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Let x; = ¢, (t) and x3 = ¢; (¢) be the solutions satisfying the equa-
tion (9.3.5). Substituting these values in equation (9.3.5), we obtain

mé, + ko] =0 ..{9.3.6)

még + ko3 =0 L4937
Adding the above two equations (9.3.6) and (9.3.7), we get

m @+ 8+ k(8] + 9D =0 .{9.38)

Now we assume that x = ¢, + ¢, is a solution to equation (9.3.5) and

substituting its value in equation (9.3.5), we get
m @ +8)+ k(0 +4)°=0 .(939)

Comparing equations (9.3.8) and (9.3.9) we can see that they are
different thereby showing that the principle of super-position does not
apply to non-linear vibrations.
94 EXAMPLES OF NON-LINEAR VIBRATION SYSTEM

The following examples of non-linear vibration systems are given
to illustrate the nature of non-linearity in some physical systems.
9.4.1 SIMPLE PENDULUM

Consider a simple pendulum of length " having a bob of mass ‘m’ I
as shown in Fig. 9.1. The differential equation governing the free |
vibration of the pendulum can be derived as

Ii=-mgsin®xl .{(9.41.1)

Ll

1

1 52
Voo +8,0

!

Inestia Mycue
moment mg Mg Sing

Fig. 9.1,

We know that I=mi* and for small angles sin & may be ap-
proximated by 6. Thus equation (9.4.1.1) reduces to

mlYsmglo=0 L4941
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9.4.2 VIBRATION OF A STRING

A point mass m is attached to the mid point of a nt.reu:hgd string
having an initial tension 7. A and E are the area of cross-section of the

o §%__ o=~ Trs
g 3~ ol
4. .- a T T R
pgesB J . 9
- } -
{ = %7
Fig. 9.2.

string and modulus of elasticity respectively. At any inst ! t when the
mass is displaced through a distance'y’, each half of the string has been
extended through a distance &, such that

[ 8=(+&)-L; &=PQ-FR)

1
R
a:di’q*-l::[ul— !

I

’ &
=L .(9.42.1) b
21 1

The increase in tension 87" of the string at this instant due to i
extension 8 is given by substituting the value of 8 from eqn. (9.4.2.1)

_ag bl _AEY 9.422)
ST—AET— 2" 9.
i Stress _

Since Strai —E)

Tensile force in the string which is the total tension in the string
at this instant is 7'+ 87 and is given by
T+8T= 1‘+‘;—Ef ¥ (9423
Tddkmmgmwhi&hdwmofﬂwmwmam
on each half of the string along QR, on the mass m is then given by :
F=2(T+80)sin®

=2(T+8D) ‘Ty—;l’rﬁf .(9.42.4)

(o 5)
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Substituting for 87" from equation (9.4.2.2) in equation 9.4.24),

We get
( 2 )Qy +1!

2 2 ¥}
.2(1&%—)-’; 14

2
=2(r+%~ ]%[x » ;5; ....}By Binomial expansion)
1 2
s%‘i[nimz-nlt,....]

Now ‘T"" is very small as compared to ‘AE ' and so it is neglected.
Also we neglect higher powers of . So we get

F,.,z%[T-bA—';,ﬁ]

2 3
,% *A'%L A9.4.2.5)

From equation (9.4.2.5) it can be seen that if y is small y°
t " can be
ieglected reducing the restoring force to a linear expression. If y is
arge, however, the higher powers t be neglected. So the ti
?.4.?.5) sho_wn the hardening spring non-linearity. The spring s;iﬂ‘nesa
1 this case increases with increase in displacement since the effective
titfness increases,

72

Equation (9.4.2.5) becomes
= AE;
my + 202, —-ﬁf =0 (9426

4.3 HARD AND SOFT SPRING
It can be seen from equation (9.4.1.7) that it is similar to the

]uaﬁo‘n ot‘ motion of a spring-mass system with a non-linear spring. If

\e spring is non-linear (due to non-linearity of material), the restoring

r;e cmt‘; be :x:ressed as a function of ¥’ i.e. f(x) where ' is the

Hormation of the spring and the ion of moti ing-

it equati motion of the spring-mass
mx +fix)=0 ..(9.4.3.1)

d
If “d‘Lm =k = a constant, the spring is linear. If égx@ is strictly

creasing function of z, the spring is called a hard spring, and if Q%)
a strictly decreasing function of x, the spring is called a soft spring.

motion. The body remains static because the force of dry friction is
greater than the force which is trying to bring the body into motion.
When this force exceeds the force of dry friction, the bady comes into
motion and possesses the kinetic coefficient of friction. This kinetic
coefficient of friction remains in action as long as the body is in motion
and it always acts in a reverse direction to that of motion.

In the belt mass system under study, the motion of the system
with the variation in the velocity of mass, is shown in figure 9.4 (5).
Initially, the mass is at rest on the belt and when the belt starts moving,
the mass is under static conditions of friction.

As kinetic friction takes over and the mass starts moving along
with the belt, the spring attached to the mass starts elongating. The
force on the spring trying to restore it to its normal position also goes
on increasing with the elongation of spring. Thus a point comes when
this restoring force overcomes the effect of the force of static friction. At
this point, the mass slides rapidly towards left. Thus the restoring force
18 relieved up to the point where kinetic friction takes over and stops
the further relieving of the spring force. Then the spring again tries to
build up the spring force and the above sequence of motion is repeated
which is shown in figure 9.4, (b).

For large values of the displacement and thus for large values of
%, the damping force is positive. Thus the curve has a positive slope and
removes energy from the system. For smaller values of displacement
and x the damping force is negative. Thus the curve has a negative slope
and puts energy into the system. Although there is no external
stimulus, the system can have an oscillatory motion corresponding to a
non-linear self-excited sy . This ph of self-excited vibra-
tion is called Mechanical Chatter,

9.4.5 VARIABLE MASS SYSTEM

In the earlier examples, it was seen that a system possessed
non-linear characteristics due to its variable frequency, The same
system may exhibit non-linear behaviour due to variation in mass. In
figure 9.5, the mass on the spring varies with the displacement x of the

I —— —
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Due to similarity of equation (9.4.1.7) and (9.4.3.1), a pendulum with a
large amplitude is considered as a system with non-linear elastic
component. A sketch of equation (9.4.2.5) i.e hard spring and a sketch
of equation (9.4.1.7) i.e. soft spring are shown in Fig. 9.3. The dotted
lines in Fig. 9.3 represent the behaviour of a linear spring mass-system.

), , ) .
-
T /{ :
(8) Hard Spring (b} Soft Spring
Fig. 9.3.

9.44 BELT FRICTION SYSTEM

For the system shown in figure 9.4, where the belt moves with a
constant velocity V, the equa*ion of motion is

mi+f(x)+kx=0 .{9.44.1)
1{x) Friction force
- W, Vggt«\
foker “hen velocity (P)Relisr I\-/ .

Ben 4 o Velocity of
' mass
!

(=) (o)

Fig. 9.4.

In case of linear systems, it is assumed that the friction existing
between two bodies moving relative to each other, is negligible. In case
of a system having non-linear characteristics, this friction can not be
neglected. Thus due to the dry friction existing between the block of
mass ‘m’ and the moving belt, the system shown in figure 9.4 {a)
behaves non-linearly. This system possesses two coefficients of friction
namely, the static and the kinetic coefficients of friction. The static
coefficient of friction comes into action when the body (block of mass m)
is static and a certain amount of force is required to bring the body into

an
NON-LINEAR VIBRATIONS

piston connected to the spring. The mass of the liquid eolu'mn acting on
the spfﬁng shows a significant variation with large deflections and thus
possesses non-linear characteristics. ) o

The equation of motion for the system shown in figure 9.5 is given
as

% (mi) +hx=0 .(9.451)

Here the first term showing variable mass, is non-linear which
imparts non-linearity to the differential equation.
9.4.5 ABRUPT NON-LINEARITY » .
In the previous examples, it was seen th t a system pOssess:
non-linear characteristics due to variation in either ftequem,jy or mw
Abrupt non-linearity presents the case wherein non-linearity is
possessed due to variation in amplitude of vibration.
i -linearity in
Figure 9.6 () shows a system with an abrupt non
spring. As long as the amplitude of vibration of the mass is less than or

4
; k2 '—ww::w-—]’
3 1 Ky

¢ . - 7
heosEn " K2 3
i '—-AMMN—
dm
Fig. 9.6, (s)

i When the

ual to ‘d’, the system behaves in a lmea_r manner.
:qmplitude exceeds d, there is an abrupt change in spring shﬁ'nus. :!'he
spring force versus displacement characteristic of the system is given

i . 9.6 (b).
nreh b(x)

- d

b
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The system differential equation is m¥ +f(x)=0
where restoring force f (x) = 2k, x for |x|<d
=2(ky+kg)x -2k, d for
|x|>d
or =2ky x + 2k (x - d) for

|x|>d .{9.46.1)

. In the system shown in Fig, 9.6 (a), it is seen that when the mass
vibrates on either side (left or right) with an amplitude which is less
than or equal to the distance between the mass and the springs &, in
aormal position i.e. d, only spring k; comes into action and is com-
dressed on one side equal to the amount of elongation of the same
ipring k; on the other side. Thus the system behaves in a linear
nanner. When the amplitude of vibration is large enough such that it
sxceeds the distance d, then the springs k; also come into action. As the
itiffness of springs &, and kg is different, thus their rate of change with
ny displacement x (x > d) is also different. As a result there is an
ibrupt change in stiffness of the two springs giving rise to variation in
he amplitude of vibration, This causes non-linearity.in the system.
4.7 OTHER EXAMPLES

{a) A rotating shaft carrying rotors when the shaft is not circular
ut elliptical in section.

) (6) A cantilever with curved guide is an example of variable
tiffness. Larger the deflection of the cantilever, shorter is the effective
:pgth. Due to the decrease in effective length of the cantilever, the
‘iffness of the cantilever increases as the stiffness is inversely propor-
onal to I* (For a cantilever having a load on the tip, stiffness & = %—1)
. {c} A pendulum of variable length, It can be obtained if the chord

simple pendulum it wrapped round a fixed cylinder so that its length
iries during vibrations,

5 ESTIMATION AND DETERMINATION OF NON-LINEAR
VIBRATIONS

There are many methods which may be employed to deal with
m-linear vibration. Some of them are discussed below -

5.1 PHASE PLANE TRAJECTORIES (GRAPHICAL METHOD)

. One.of t_he methods to study non-linear vibrations is to construct
?fpnes' i.e. graphs between velocity and displacement of vibrating

ak2 MECHANICAL VIBRATIONS

.

Potental
Energy

x| Tolol energy curve

TR
/r—:::-_,__/“\'?;“_/\
Fig.9.8.

9.5.2 DIRECT INTEGRATION METHOD (ANALYTICAL METHOD)
Consider the conservative system defined by the equation

Fif@=0 (9.52.1)
Now acceleration 5=V % .(9.5.22)
Substituting (9.5.2.2) in (9.5.2.1) we get

Vdv=-f(x)dx

where x = V. If x = X when V = 0, its integral is
dx
Vi =| & I - \I! f) di .495.2.4)

The second integral yields
X
totyn ] —e (9.525)

: \h fnyd
i

where t, is the time corresponding to x = 0 the eqn. (9.5.2.5) expresses
time as a function of displ t, and its in is the displ
ment—time relationship.
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PHASE PLANE o

For a single degree of freedom system, two parameters are usua
taken as theg;:splaoemem and velocity of the system. “Ihe? these
parameters are used as co-ordinate axes, the resulting grap cal repre-
sentation of the motion is called the Phase Plane Representation. Ear.h
point in the phase plane represents a possible state of system. As time
changes, the state of the system changes.

A typical or representative point in the phase plane (such as a
point representing the state of system at time £ = 0) moves and traces a
curve known as trajectory. The variation of the solution of the system
with time is d rated by these trajectories
CHARACTERISTICS OF TRAJECTORIES

For autonomous systems, the phase plane rcpresenlauot} offers
one usefu! approach for the study of the non-linear system (A differen-
tial equation is said to be out autonomous ifthe propgrba of the system
are not affected by the independent variable, For vibration problems,
the system is aut if the independent variable ‘¢’ appears only
ag a differential in motion equations. The behaviour of @e system can
be represented graphically without any change by changing !,he origin
of time or the scale on which time is measured because time is an
ind: dent variable. Consider a single degree of freedom non-linear
olcillrawry system whose governing equation is of the form

F+fn=0 (9511
2y (8.5.1.2)
Now P
dy . ..(9.5.1.3)
and at
From equation (8.5.1.2), we get
- . (9.5.1.4)
x
Substituting the value of df from (9.5.1.4}in (9.5.1.1), we get
X Y
24 rEn=0 [smce i=5 (x)) .(9.5.15)
9= _ o (9.5.1.6)
bt AL %)

Thus if we use £ and x as coordinates, it can be seen that for any
point (x, x), the slope is given by % This can be represented by a short

line. With a sufficient number of points, the entiré plane can be filled
by such short lines as shown in figure 9.7 (¢) which represents a family

TWUN-LUVEAR VIDRA §IUND axs
If the motion is periedic with period T, the time corresponding to

the motion from x = 0 (¢ = #y) tox = X (v = 0) represents a quarter period.
Hence we have

X
T=4] xd {95.2.6)
0
| royan
n
Thus the period becomes a function of the amplitude X.
The application of the method can be seen in the solved example
at the end of this chapter.
9.5.3 METHOD OF PERTURBATION

This method is used for obtaining solutions of non-linear systems
to any degree of accuracy by ive approximati

Let us consider the non-linear system consisting of spring and
mass. The equation of motion is given by
I+ix+A’=0 .(9.5.3.1)

where non linear parameter A can have any arbitrary value and w, is

natural frequency of the system. The factor A is also called PERTUR-
BATION PARAMETER. Writing the solution in the form of a Taylor
series in terms of parameter i, we get

=g+ A + A xp . .(953.2)
where all x's are functions of time ¢. Here A is a small quantity.

Since frequency of vibrations w which is dependent on the
amplitude of vibration is also unknown, we have

o=l # i + 2% 4 (9.53.3)
where all u’s are function of x (amplitude of vibration)
Substituting Eqns. (9.5.3.2) and (9.5.3.3) in eqn. (9.5.3.1) we get
(Fo+ AEy + AT %4 )+ (0F - Mty - A%, .0
o+ Axy + M+ )+ A (xp + Axy + A% 2,4+ ..)" = 0..(9.5.3.4)
The above eqn. after expanding and neglecting higher power of
A, can be written as

G + & o) + (¥ + 0" 2y~ Py 2o +2H A
+Ea 0 X~y Xy - P+ 3 x) A 4 .. =0  ..(9.535)
Since A is arbitrary, each turn in the parentheses must individual-
ly be zero, therefore,
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Fo+ 0 x9=0
B +otn =iy 2 -2

Xa 4 0lrg =i 3+ Py Xo— 3ra 3y ~49.5.3.6)

Lat the nitial conditions be
x=X
=0 } at t=0
Substituting above in eqn. (9.5.3.2) and its derivative, we get
X=x5(0)+ A%y (0)+ A% x5 (0} +....
0 = %0 (0) + A %; (0) + A% &3 (0) + ....

Again, since A is arbitrary, these
any value of A, we have

~.{9.5.3.7)

must be satisfied for

%O =X % (0)=0
x (0)=0 % (0)=0
23(0)=0 £200)=0 ...(9.5.3.8)

With the first set of initial conditions substituted in eqn. (9.5.3.8),
the solution of first differential equation in eqn. (9.5.3.6) is
xg=X cos ¥ ..(9.5.3.9)

Substituting the above in the right side of the second differential
equation in eqn. (9.5.3.6), we get

%+ @ %y = iy X cos ot - X" cos®

Since cos® wt = 3/4 cos @t + 1/4 cos wt
becomes

g+ 0%y ={u,X— %X" )eo-m- %fcmsu .(8.5.3.11)

In above equation, thefordngﬁmeﬁon[mx%x‘]mwum

.{9.5.3.10)
+{9.5.3.10)

resonance since the left hand side shows the natural frequency of
system as ® which is same as that of first part of excitation. To aveid
this, we have

.

mx- %x‘ =0 (95.3.12)
S 4P =-2 X con 3 e (8.53.13)
6 MECHANICAL VIBRATIONS
t
Thus x; (0 =-| ? flxo ), M dA b dn ..(9.5.4.3)

t 0
here x, (¢ ") =0. Since x; (0)=A, the abeve equation leads to the
Nowing relationship :

g
A= | ?f[x., M) A ) bdn (95.4.4)
0|0
The procedure is now repeated with x, (¢) to obtain
(9545

t |0
Putting the initial conditions again result in the equation

=
=)= {] rk.m.udx}dr\

¢
a1 ] rearnanban 95.46)
of|o

[Note. If the free vibrations take place with initial displacement
., ¢ will correspond to one-fourth of the time period.]

From eqn. (9.5.4.6), ¢’ may be obtained. The time period T of the
ibration may then be obtained as

T=4t . 49.5.4.7)

5.5 FOURIER SERIES METHOD

We can solve non-linear equations by assuming the solution to be
a the form of Fourier series.

Let us consider a non-linear motion given by eq

2

Frpr+dx®=0 .(9.56.5.1)
With initial conditions as
::‘(‘;} at t=0

Let the solution be

z=ap+ Y A.sinw+ Y B,cosot .{9.6.5.2)

n=1 n=1

Using initial conditions leads to result that

x= Y B,osnat ..(95.5.3)

|

‘

:J
i
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The solution of above equation b

9

x,=A,ooaﬂ+Agsinm¢+;§-;cos3u .i95.3.14}
w

Applying initial conditions from eqn. (9.5.3.8), we get the constants
as

X
A1=-'3?;§ and A;=0

Eqn. (9.5.3.14) then becomes

% =..3;‘;, [cos ax ~ cos 3 ox] .195315)

Substituting eqn. (9.5.3.9) and (9.5.3.15) in the first two terms of
eqn. (9.5.3.2), the solution upto first order is given by
x =29+ A%y
Axt
32
With w’ given by eqn. (9.5.3.3) upto first order
as o= «ﬁ +

=mz+x(%a’] [From eqn. (9.6.3.12)] ..(9.5.3.17)

=acoswt- [cost @ ¢ - cos 3ux] ..19.5.3.16)

Final solution having higher accuracy can be osbtained by continu-
ing the above procedure of successive approximations.
9.5.4 METHOD OF ITERATION

The method of iteration as the name suggests is one of the obtain-
‘ng solutions with improved accuracy by repeatedly substituting it into
the differential equation till the solution having desired accuracy is
achieved.

An assumed solution x; (f) is substituted into the differential
equation to obtain a solution of improved accuracy.
Let us consider an equation
+f(x,)=0
It can be written in terms of assumed solution
X=—flxo (). 1]
Let the initial conditions be
z{0)=A
z(0)=0

Eqn. (9.5.4.2) can be integrated to cbtain the improved solution
x (1)

.(9.54.1)

.(9.5.4.2)

at t=0
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Further analysis leads to the result that the displacement in each
quarter period is identical except in sign. This leads to conclusion that

x= Y Ba.jcos(2n+ 0t

L 19554
n=0
As a first appr tion let us id
x = B cos wt + By cos 3¢ . (9.5.5.5}

Substituting eqn. (9.5.5.5) in eqn. (9.5.5.1), we get
- w* (B, cos wt + 9B, cos 3a¢) + p (B, cos wt + By cos Jux)

+%|B?(Seosmc+ooe3u)*68}8,cas3u

+3 B? B (cos ot + cos 5 o) + 6 B, Bj cos wt
+ 3B, Bf (cos 5 wt + co8 7 )
+ B3 (3 cos 3 axt +cos 9 wi)) = 0 . 19.5.56)

We now assume that | By | << < | B; |. We also neglect coeffi-
cient of cos 5ax, cos Twe, cos 9 a¥ in the above eqn. Comparing (9.5.5.6)
with (9.5.5.5), we can equate coefficients of cos u¢ to zero. Thus

2
-’ By +uB, +(3—?ﬁ ](B. +B)=0 .49.65.7)
or of=p+ 3kf = ..{9.5.5.8)
as X=B;+By

From above analysis it becomes clear that the frequency is a
function of the amplitude of vibration. It increases with X,
By equating the coefficients of cos 3wt to zero, we can determine
B[ and B;g, as
- 90° By + uB; + B} (B, + 6By)/4 =0 ..{9.5.5.9)
Omitting B2 and substituting w* from eqn. (9.5.5.8), we get
By 1

B, 32
21+ =y
A B}

=p<<<]l .195.5.10)
This proves that our assumption
| By | <<<| B, | istrue
Now egn. (8.5.5.10) and the fact that X = B; + B, can be used to get
different values of B. and B..
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5.6 LINEARIZATION METHOD
The expression for energy dissipated in a system with viscous
amping is given by eq. (3.2.5) i.e.
AE =Cox A* .49.56.1)
Let's assume that AE’ is energy dissipated due to non-viscous
amping, then
AE’
Cim
" amA®
The assumption made is that steady state of actual system is
armonic in case of harmonic excitation.
Now Damping force = Cx
Now as damping coefficient is proportional to velocity, we get

..(8.5.6.2)

Damping force F = ax® .(9.5.6.3)
is proportionality constant in the above equation
T/4
AE=2 | @HSidt Fromeqn 324  .0564)
-T/4
o
here T = Time period = o

Letx = A sin oX and . x = @A cos o
After substituting the above assumptions in eqn. (9.5.6.4) we get
3 .3
agr =824 (9563)
Substitating eqn. (9.5.6.3) in eqn. (9.5.6.2), we get
Cc. = 8anA
- 3n
Hence equation of motion of the system becomes
mx + Coq x + hx = F gin ox .(958.7)
The solution for above equation is provided by eqn. (4.2.9) as
F/k

..(9.5.6.8)

A= v ..(9.5.6.8)
V -] 2 + Cyo
W, k
as tzgz
and 2c£=~c-'—9
@, k
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function (the right side of the equation) and hence seek the solution for
the equation given below :

;mi“w:u{gg} .(973)

From eqn. (9.5.7.2), we get x in a series of successively increasing
powers of A

x=xg+Axy + A x, .9.7.4)
We consider the equation,
Z+whx - hx' = AF cos @t .(9.75)

‘or investigation corresponding to softening spring.

l:low. mk.ing the series of eqn. (9.7.2) and (9.7.4) upto two terms and
substituting in eqn. (9.7.5), we get

Fg+ iy + (07 - Ay (2 + Axy)
“Axd+ A xixy +...) =A F cos ot ..(8.7.6)
_ The equations obtained from the coefficients of 1° and A are then
fiven as
o+ 0t xy=0
Xy + @ 3 =y %9+ 23 + F cos ue
Let initial conditions be
% (0)=X
io(O)=0} at t=0
The generating solution is therefore given by
20=X cos ux 9.7.8)
Substituting this into the second eqn. of (9.7.7) for x,, leads to

~(9.7.7)

% +m’x,=(ul +%X‘ +§]Xen-ax + %Xm’&m .{9.7.9)
‘We must again impose the condition
(9.7.10)

suppress the secular term in solution for x, since it causes resonance.
t can be seen seen from eqn. (9.7.9) that the secular term causes
esonance in the system which is undesirable. This term is unbounded
nd approaches infinity a5 time £ — «. Thus to cbtain an exact bounded
olution, this term should be equated to zero.

Thus the solution of equation (9.7.9) b

™ #%X'-r% ):0

% rats, =%X°cm3¢¢ A9.7.11)

NUN-LINEAR VIBRA 1TONY any

Putting @/@, =r and substituting for C, from eqn. (8.5.6.6) in
eqn. (9.5.6.6) and solving for A, we get

zm‘\, 1- 74 1-74 [8ar’F
:E;;,; - 2 + ;4)—4» 'Erh;! ..(9.569)

[Note. The derivation of eqn. (9.5.6.9) from above conditions is left
to the students as an exercise}

The above expression is the amplitude of steady forced vibration
with damping proportional to square of velocity

Also from eqn. (4.2.7), we get

= Cyy 0
“k-ma®

Substituting for C,, in above expression, we get

tan2¢=—%+ d%+(~-£’z—£—~}] .49.5.6.10)

3nkm (1-r?)*
Thus the amplitude and the phase angle for a non-linear system
can be conveniently found by using the above equation, similar to that
of the method for th.e linear systems.

9.7 FORCED VIBRATIONS WITH NON-LINEAR SPRING
(DUFFING'S EQUATION)
G. Duffing made an exhaustive study of the equation
F

lv+mfx:k’=;{::;$} L497.1)

The above equation shows the harmonic excitation of the mass
placed on a non-linear cubic spring. The spring may be hardening or
softening spring and accordingly the +ve or —ve sign iz considered in the
above equation. The condition for ebtaining the steady state solution is
that the sum of the frequencies of excitation and harmonics must be
equal to that of the oscillations.

The perturbation method can be used ever here as the frequency
of excitation plus harmonics always lies in close proximity of natural
frequency of oscllations i.e. @’ = k/m. Thus the perturbation method
gives the frequency of oscillation in terms of w, by a relation given
below :

o = o+ duy + Ay .£9.7.2)
[From eqn. (9.5.33)]

The usage of perturbation method to find the solution near the
conditions of r nce d ds the bination of & with forcing
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The solution for initial conditions x, (0) =%, (0)=01is
x; = A, cos ¢ + Az sin ot + Ay cos 3 X

= —X-L, (cos et - cos 3 @) ..49.7.12)
32 o

Substituting this eqn. into eqn. (9.7.11), the first order solution to

the forced vibration problem in the vicinity of resonance is
x=Xoo:ul+3i2—x;—,(wuﬂ—m3d) .A(9.7.13)

The variation of amplitude of vibration against frequency as
governed by eqn. (9.7.13) is shown in figure 9.9(a, b, c) fora linear, hard
and soft spring systems respectively. This equation is cubic in X and
therefore for any value of @, there are in general three values of X, one
is always real, the other two may be real or imaginary (complex
conjugate). This is shown in figure (b) and (c) for non-linear systems.

Tl .‘ A=0 T"‘)o 1Xt% omahituge
: t
t H !
Xt
'
X L
(8) Linear (b) Herd (¢) Soft

Fig. 9.9,

There is no resonance in non-linear systems like there is in linear
systems i.e., the amplitude never becomes infinite. The natural fre-
quency of & hard spring system increases with the amplitude and for a
soft spring system the natural frequency decreases with increase in
amplitude. Since the natural frequency is different at different
amplitudes, o the resonance cannot built up in non-linear systems
(hard and soft springs). It can be seen from figure 9.9 that in a linear
system, the peak of the curve represents the amplitude tending towards
infinity whereas in non-linear systems, the peak_ of the curves get




3.8 AMPLITUDE FREQUENCY CURVES

It was shown in section 9.5 that frequen i
g ) 2 cy in case of non-li
systems is a function of amplitude. Let us consider the equation near

i‘-d-ﬂ!ﬂxtlx'-i’m(w‘.”
Let us assume the solution to be

MIEATIANIUAL VIBRATIONS

..(9.8.1)

x= B, sin @t + By sin ¢ [From eqn. 9.5.5.5]
The solution to eqn. (9.5.5.8) has been plotted in figure 9.10.

*
~Stebie bronches r
Un .
A>0 \ e 7 Feq keo

- 3

A<0

I8
I

c¥

() Hard Spring

(b) Soft Spring
Fig. 8.10.

When frequency is increased slowly, the response follows the
arve along 1, 2, 3, 4. There is a jump from 2 to 3. This is called the
ump Phenomenon. On slowly decreasing the frequency the response
Mlows the curve along 4, 5, 6, 1 Jjumping from 6 to 6,

The shaded regions of the curves show two ampli i

: ions mplitudes of vibra-
ons for a given excitation u . This
R freq ency. phenomenon is a charac-

It is worthwhile to note that the portion of the
) response curve 2, 3,
is never trated when frequency of excitation is gradually increased
ﬂthgpo.rhonofcums,l.eilmrtmcedwhen the frequency of
teitation is gradually decreased from a large value.

A stability analysis shows the middle branch
y to be stable. Th
\aded region is unstable, its width being dependent on a number oef

ctors, such as t of dampi h
equency; etc. 0 Rneof chasge of the exclling

AN A T TDRA EPUTTD

Non-linear systems also exhibit su 1
 No ; : perharmonic response
sscillations have frequencies which are multiples of excitation ﬁeqz:zec;e
0., = ;
©, =no +£9.10.2)
where n=234..

In the above expressions, the value of i
18 unity to avoid the oocumnce' of mv:omme“e Of{ntegnr o et e hakan

Example 1. A non-linear spri i

am pring for a single degree of freedom

:ysjem is given by k (x) = 10 x + 2000 x”. ¢ for viscous damping i’:';.s kg

;: cm. A harmonwfom5_kgamplitud¢ acts on the mass = I kg. Find
steady state response using the Direct Integration Method.

Solution. The differential equation of motion is of the form
Mz + ex + k(x) x = Fo cos ox

Here m=1; c=15kgsec/em
k (x) = 10x + 2000 x°, Fy =5
¥4152+(10c+2000x") x =5 cos ¢

Let x; = A cos wt be the first approximate steady state solution.

Then

Xy =~ 1.5 Ao sin o — 10 A? cos® e ~ 2000 A* cos® ¢ + 5 cos a¢

Nowweknowthatcu’nl-_—&'g;_ﬂ

nd m‘m:(‘*”‘;‘zw‘](hmzm]

2
I ¥ 1+ 2 008 2 4 LH.c08 4o
4 2
1
=§(4m2al¢m-6u¢3)
Substituting this result, we get
§g=-15mmu-ma’[‘“+z“]
~ 2000 A" {4 cos 2 + cos 4 ¢ + 3] + 5 cos ¢
=5 cos @ ~ 1.5 Aw sin o - (54% + 8000 A*) cos 20x

~ 2000 A* cos 4 wt ~ (5 A + 6000 A%)
Integrating the above we get,

ipe28in@ 15Awcosw _(5A” 5 8000 A") sin 2a¢
® « 2w

2000 A* sin 4 @t
“_Tm——--(&'+6000.a\‘)t+c,

- |
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9.9 EXCITATION PROPORTIONAL TO VELOCITY
The equation of motion of a single degree of freedom system which
is considered here for analysis is given as
mx +cx + kx=Fx .{99.1)

or X+ o x+£x=0 ..{9.9.2)
m m

If ¥ > ¢, damping will be negative
Assuming the solution to be x = ¢™, we get

§ +[“F ]s +X=0 A9.93)
m m
c=F\,AJ2_(e=F )
. -[ =B iya-(e (9.9.4)

When F > ¢, diverging oscillation is obtained with frequency

A _(c=FY

o m-[ )
k_(c-F
i ;,(._-)’

..(9.9.5)

Non-oscillating diverging motion results from
k c-F

m- | 2m
Negative Damping results in unstability of systems,
From eqn. (9.9.5), it can be seen that the velocity o is always
proportional to the excitation F. As we go on incr ing the excitation

the term (‘._Z:n!: T goes on decreasing and hence the velocity also

increases.
9.10 SUBHARMONIC AND SUPERHARMONIC RESONANCE

There is a possibility of resonance occurring at a frequency which
is some multiple of excitation force frequency in case of linear systems,
Converse to this can happen in Non-linear systems i.e., resonance can
occur at a frequency which is a fraction of excitation frequency. This is
called Subharmonic Resonance.

In subharmenic response, oscillations have frequency () which
is related to forcing or excitation frequency as

o
@ =2 .9.10.1)

where n = integger i, 2,3, 4
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Integrating once again, we get
Seos@ 1.5Asinw  (5A°+8000 A%) cos 20t
+ -
o’ © aw

X =

4
+i"ﬂ°-%%'—‘—‘5-(w+sooo,4‘)§+c.ncz

If the constants of integration C; and C; = 0 8o that the motion x
and x; are periodic,

-6 154
x,=';,'msu!+ @

sinwt+

2 s
(254 ;‘:ZNOA ) cos 20

4
WABA o st - 2544300049
w

This is the second approximate steady state vibration.
Problems

1. Anm-ﬁnmcprb\afornsindcdegtuofﬁndammumi-(imby
£ (x)= 100 x + 1000 £
C for viscous damping is 3 kg sec/em. Ah ic force of 16 kg amplitude
acts on the mass. Find the steady state response.
2. thm-in‘uhrpdbufnmwmdimmﬁdeqmummdu-
pl-inwlm.luﬂhcymﬂabhormuuhb:
mi+Az4pt=0 A<O,p<0
3. The supporting end of a simple p dulum is given a motion as shown in
ﬁg.s.lP.Shwmnuhoequlﬁmofmﬁonis

B+[“-_ﬁ:-”cu2u]sin0=0

¥y Cos2w!
ie\
!
|
Fig- 8.1 P.
4. Apply the perturbati hod to the hod simple pendulum with

sin @ replaced by 6 - & 87, Use culy the first two terms ofthe series for
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8. Tbcmdoltsimphpendnlum‘nmppedlmdnﬁudqﬁmkrof
ndullilmhthanuleugthhlwlnninthnnrﬁmlpuiﬁmulhm
inﬁgnns.zl’.?indﬂudiﬁmﬁdmﬁmofm

Fig.9.2P.

8. Ulingthaihuﬁmmthod,uheforthep«iﬂdoﬁhcﬁuurmlxiou
iw:x-owsmmkhleundiﬁnnu«))-unds(o)-o.
1. ﬁnd&mmluﬁudﬂum-ﬁnmpenhhnnquﬁm
hd(o-%’]:o
where 8 = 0 when 8 = 8,
St 2 3
8. Mmcm'eamiudﬂnmgimbyuuqmﬁou:
im2z4y and y=-3x-2y
9. Hndtheoqmthnolmoﬁmn(ﬂum:hminﬁam’ﬂ?.

10

F Snot
A ;-(!)
2
4 ® ‘,2., oy
= m
K J K
4
Fig.93p,
10. Mmmmmd-mmo{&mm&m
Frafz=0
I1, Find the traj of a simple h ic oacillator.
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Fixed fixed beam with a centre
i

wr w
Ya=
19281 fee. oo
Fixed beam with an eccentric b
it load 4 3 -
== Wa'b® ¥ A f
Ya wx’ /"_‘7__1_ 2
Fixed beam with a uniformly dis- e
uted load
ol —

YA S84 ET

APPENDIX - A
Deflection Formulae

Cantilever with a point load at
the free end

wli
=38

Cantilever with uniformly dis-
tributed load
ya=ol'/8E1

= Wi'/8El
Cantilever partially loaded with
a uniformly distributed load
Ya= % ata=b/2

wa'

”5="gEr
‘ 3

[nb‘] [w(b-a)‘
s 7 i

Cantilever with a gradually
varying load
Y
Ya mx]

Simply supported beam with a
central point load (a = b)
_ Wa*p?
YA="3En

Simply supported beam with a
uniformly distributed load

-5 o
YA=3a1 EI

APPENDICES
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APPENDIX - B

Natural Frequencies of Some Standard Systems

Spring mass system
w, = NE/m

B ’k (my + my)
e = mymy

Resultant Stiffness of Springs
kyky

h=E+h

k,nh;#kg

z

"y
K

- (ky + kg) by

L vy ey

499

Ky
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P, ’k,{ll +Iz)
" B K

__ Moment of inertia of shaft is
included
7 K In
i k,l ":.D
I+32
3
Ky
I == E )
ke, ke, (1) + n7T,) = 5
LIy (n%ky + ky) % s 1
DL o5 ; e
o speed ratio
TRAIIAYLAL YIDKA | RIS
It is & unit matrix of order 4.
Diagonal Matrix

It is a square matrix having only the iagonal
remaining all other elementsbemn: . * St s

Example
100
030
L 2J
Column Matrix

It is matrix which has single column. It is (mx1
2 ) matrix.
Example
a
az

[A] = ag

3
r lg}isaco}umnmab'ixoforder(lixl)

Row Matrix
It is a (1 x n) matrix. It has single row.
Al =1[ay, 8, a3.....3,)
r [136 4] is a row matrix of order (1 x 4)
Addition of Matrices

LetAmdeetwomlnmonhecametypemxu Then thejr

misdeﬁmdwbethemnmxo(thetypemxnobtaihod dding
srresponding elements of A and B, i the

Example
0
3
i lx!

3
1
1
123
Bl=|3 2 3
145 =
1
3
1

1+1 3+2 0+3
Ml +[Bl=2+3 1+2 3+3
1+1 144 1+5 >
253
=536
2586

RET——

e |
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APPENDIX - C
Matrices
Matrix Definition

A set of bers (real or plex) pr ted in the form of a
rectangular array having m rows and n columns is called an m x n matrix.

Generally m X n matrix is usually written as

ag Gy 853 .. G
A= Gy Gz Gy . Gy
Ayl Guz .:. e Gan
In the compact form it can be shown that
Al=lay

wherei=1,2,3..m
and j=1,2,3.n

The suffix i represents the number of rows and suffix j represents
the number of column in the matrix.

Matrix m x n has m rows and »n columns,
[npotﬁcullr[; : g]maxs)mm

Square Matrix
A matrix in which number of rows is equal to number of columns
is called a square matrix.
(Al = (@]
In the above matrixi =j.
Also if m x n type matrix shows that m = n, it is a square matrix.
Example. The matrix

134
=01 3
210},

is a square matrix of order 3. The elements 1, 1, 0 form the diagonal of
the matrix.

Unit Matrix

A square matrix whose diagonal elements are 1 is called a unit
matrix or identity matrix. It is denoted by I.

Example.
1000
1|0100
0010
0001
AR ——
Subtraction of Matrices

Let A and B be two matrices of the same type m x n. Then their
nuhstrac’aon is defined tobothe matrix of the type m x n obtained by

g the corresponding el ts of A and B,
Evamp >
130
U=213
[acaan Lo,
(123
Bj=|3 2 3
|14 5 Los
1-1 3-2 0-3
Al-[Bl=|2-3 1-2 3-3
[1-1 1-4 1-58 |,
[0 1 -3
=-1-1 0
| 0 -3 -4 L.
Matrix Multiplication
The product of two matrices [A] and [B] gives another matrix [C].
[AllB] = [C]
o -
12 010
[Bl=|3 0 Wi=(0 2 1
41 230
010 12
AlBl=|0 2 1 =(3 0
230 41

Ox1+2x3+4x1 Ox240x2+1x1
2x1+3x3+0x4 2x2+3x0+0x1

30
1= 10 1
|14},

1Al (B] = (B} [A]
Transpose of a Matrix
A matrix (n x m)is obtained by changing its columns into rows and
its rows into columns. It is denoted by A’ or A™.

fOx1+3x140x4 0x2¢1x0+0x1]

I

[135]
Example [Al=| 2 4 6
789




12
=3 4
56
Cofactor
E:mtﬁxh]isﬁvm.&w&cmmbedeuminedn
1 -2 -1

Say =2 3 1
0 5 -2

Cofactors of the elements of the first row of j4)
Ia 1|_lz 1”2 3'
5 -2 0 -2 05
3x-2-5 2x2, 2x5
-11, 4, 10
Cofactor:oﬂheelemonhnfﬂmnecondmofmm
-2 -1’ 'x -1'_,1 —2,
5 -2|'10 -2 0 5
-9, -2 -5
Tlncoﬁ!ctouoﬁbeolemenuufﬂxelhirdmome
l-z -1,_ l-—ll ’1—2
3 1 2 11'|2 3
1, -3, 7

0w

Adjoint Matrix

The adjoint of a matrix A is the transpose of the matrix formed by
ifactors of A. It is indicated by adj.[A].

[nverse Matrix
The inverse of matrix A can be obtained from the following relation
1_adj (4]

“ur'= WAl
4 should be non-zero,
ligenvalues and Eigenvectors
@t A = (@], .. be a square matrix of order n. The characteristic
ionis |4 - Al =0.
'hiuqutimwillboofdegmeninLSoizwillhvenmh.Thue
# will give us the eigenvalues of the matrix A. If &, is an

ralue of A, then the corresponding eigenvalues-of A will be given
non-zero vectors

X=[x), xp.... 3]
atisfying the equation
AX=MX or (A-MDX=0

U0 MO NANILAL VIDKA I RN
APPENDIX - E
Mass Moment of Inertia of Some Typical Solid bodies.
pre—ti—s p—t —

(d)

=1Epi_
m..g‘(D &L

g 16

]LD‘ Jc=1i(D’-d’)[%3+Dz’d’

APPENDICES s08
APPENDIX-D
I‘,.d:-;’_”+c
n+l )
1.
dew-lopuc
| éde=ersc
Ilin:dsx-wcxﬁc
lexd:-u'nx-rc
[ setzdx=tanz+C
Imc’xdts-euhwc
1 =tan-!
Il-rx'd‘ tan" x+C
Ixmxdx:-xdnx-eoaz
Ixmudxu-f--hux-a‘{!
n n
Jx-innxdxn-imux+'i“,“"
n n
fuudx=u]vdx-]%(!udt)d:
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APPENDIX - F
ITeEM RECTILINEAR SYSTEM ROTATIONAL SYSTEM
System
3 K
W\ Tsinet
J
(]
Equation of mx +cx + kx = F gin et Ared+k 0=Tainax
motion
Response Xmx 42, 6=6.+8,
Initial x(0)=x0, % (0)=x, 0(0)=8,0(0)=6,
it
Transient | .y «Aesin(@g+y) | 6,=Ac ™ gin (gt + )
response
0 =VI-C o, w0y =V1-C w,
Steady-state x, = X sin (¢ - ¢) 8, = © sin (! - 6)
response F =
X-*b e "l
—tan~ ! 2% -ftan-l_2
ot v T
ra& 7-2

T e o ———
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APPENDIX - G
3. Beam and Loading Slope | Deflection |
fo.
w
1. HA A )
}—“—J B %‘7 atB g-‘— «B |
Z 3EI
o |
b @/unit length
% wl? wL'
%nénxr_:oaxng oer B agr 8 |
: H ML ML
L . A : £l atB 'ﬁiats
(——L
wL? wL'
16ET atA B 18ET atC

,:i—m.:

Wab(L+b)

6EIL
A lc 8 | wa
= (L+b) Wa' b’
Lodey—d |Tomur, Bhus
.__L_—.l »————lw"ggl‘ic atC

“unit length wl® Swl*
A&mxéumﬁe 247 24 B 382kt C

L/z*}.—l./z

ML
" E‘@MA.B
A B ML . 0atC
L/z——r-t/z—-} 12EI
M M ML 2
ML ML
\2 i 1 2E,’m.A,B ié'i“‘c
i
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Inverse Lapiace Transforms
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Amplitude ratio 151 Gear inertia 358
Amplitude 4 Gun barrel 134
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Angular displacement 46 Houdaille damper 264
Band width 175 Holzer's method 339
Beats phenomena 18 Hysteresis loop 102
Bifilar suspension 52 Lanchester 262
Centrifugal force 179 Lagrange’s equation 266
Coordinate coupling 244 Logarithmic Decrement 112
Continuous system 416 Magnetic effects 146
Complex stiffness 168 Magnification factor 148, 150
Critical damping 106 Matrix form 238, 241
Damping coeffcient 110 Matrix method 326
Damped frequency 110 Multi rotor system 352
D’Alembert 42 Newton 43
Damping - ! Non 166
Coulomb, non-linear 96, 170 Oscillation 3
Damping factor 167 Over damped system 106
Damper 262 Phase difference 5
Degree of freedom 4 Phase Trajectory 462
Den Hartog 164 Principle of conversion 307
Demerit 257 Quality factor 174
Discrete system 5 Rayleigh’s method 336
Double pendulum 325 Resonance 3
Dry friction 263 Response curve 154
Dunkerley's method 334 Reciprocal theorem 323
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Dynamic absorber 257

Relative motion 159

Eddy dissipation 99 Rotating ucbalance 153
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Electric signal 171 Semi-definite 243
Energy dissipated 167 Shear deformation 426
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Excitation 145 Springs in parallel 47
Frequency response 150 Spring in series 48
Frequency ratio 151 Static Equilibrium 6

Fuadamental mode 4

Steady state 149, 163
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Under damped system 109
Unit step function 451
Vibrational energy 113
Vibration isclation 160
Vibrometer 171
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Whirling speed 178

Wave equation 418
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