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INTRODUCTION. 

THE object of this Analytical View is two-fold; 
first, to assist those who are desirous of under
standing the truths unfolded in the Principia, and 
of knowing upon what foundation rests the claim 
of that work to be regarded as the greatest monu
ment of human genius - secondly, to explain the 
connexion of its various parts with each other, and 
with the preceding and the subsequent progress 
of the science. 

1. It cannot be denied that fully to comprehend 
~he propositions, to follow the demonstrations 
throughout, requires the reader to be well ac
quainted with the Mathematics; and even one so 
prepared, will find the task far from easy in conse
quence of the synthetical method almost every
w here adopted, the geometrical form of the inves
tigation in many cases where the algebraical would 
be more convenient, and the extreme conciseness 
very generally studied, often to the omission of 
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many steps in the process. - But it is equally un
deniable that with very moderate mathematical 
acquirements, a distinct and accurate knowledge 
may be obtained of the fundamental truths un
folded, of the reasoning by which some of them, 
and these the most important, are sustained, and 
of the nature of the proof on which the others rest. 
There is not much difficulty, indeed, in learning 
those truths, in comprehending the propositions 
without going further. But this is in every way 
a most imperfect knowledge, and neither can give 
satisfaction though retained, nor is likely to be re
tained without a knowledge also of the demonstra
tions. A great advantage, however, is gained, if 
the learner can not only follow the demonstration of 
the more important propositions, so as to be satis
fied of their truth, but can comprehend the nature 
of the proof in the other instances. He has both 
made solid progress in mastering the principles of 
the science, and has become able to judge for 
himself the merits of the great work which first 
taught it to the world. 

Thus two classes of readers may benefit by this 
Analytical View; those who only desire to become 

• No one needs scruple to confess how difficult he has found the relUling 
of the PrillCipilJ, when 80 consummate a geomctrician 118 Clairant has made 
a like observation, (~fem. Acad. 1745, p. 329.), though somewhat qualifle(l. 
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acquainted with the discoveries of Newton, and the 
history of the science, but without examining the 
reasoning, and those who would follow the reasoning 
to a certain extent, and so far as a knowledge of 
the most elementary parts of geometrical and ana.
lytical science may enable them to go. It has 
been found upon trial that readers of both descrip
tions have been able to peruse the work with 
advantage, even readers of the second description. 
These have easily followed, not only the commen
tary upon the gradual progress of discovery, and 
the state of the science before Newton·, but passing 
over the exposition of the differential calculus t 
have pursued the demonstration of the fundamental 
law of gravitation t, and even apprehended the 
proof of its universal action according to the inverse 
proportion of the squares of the distances.§ Pass
ing over the detailed discussion of central forces /I, 
the illustration of its application to planets and 
comets is involved in little difficulty~; and the 
manner of finding the place of these bodies at 
given periods of their revolution may be under
stood without entering into the details of the in
vestigation.·· The ascertainment of the force 

• First 20 pages. 
f P. 31. to 41. 
n P. 50. to 64. 

• • P. 69. to 76. 
1\3 

t P. 20. to p. 31. 
§ P. 41. to 50. 
, P. 64. to 69. 
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answering to a given orbit is much easier than 
the converse of finding the orbit from knowing 
the force; accordingly the subject of the inverse 
problem may be passed over.· So may the great 

head of disturbing forces t, but the interesting his
tory of the problem of three bodies may without 
difficulty be comprehended.: The investigation, 
however, of Lagrange and Laplace of the prin
ciple upon which the stability of the system 
depends, must be taken upon the results without 
entering into the steps of the process.§ But 
the wonderful anticipation by Newton of sub
sequent discoveries may be generally understood 
and appreciated. II The subject of the attraction 
of masses, spherical and others, may be regarded 
as not coming within this elementary view of the 
work. ~ The application of dynamical principles 
to the rays of light •• , and the general statement 
respecting the Newtonian discoveries, and the con
stitution of the universe, may easily be followed.tt 
N or can there be great difficulty in understanding 
the explanation given under the Third Book, of 
the effects of attractive forces upon the figures of 
the heavenly bodies, the motions of comets, 80 far 

• P. 76. to 87. 
::: P. 93, 114. 108. to 112. 
II P. 132. to 134. 

• • P. 150. to 153. 

t P. 87. to 108. 

§ P. 112. to 124. 
, P. 134. to 150. 

tt P. 158. to 160. 
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as that subject has not already been dealt with, 
and the doctrine of the tides, and in tracing the 
course of reasoning by which these important 
subjects are investigated.-

The theory of motion in resisting media, and 
generally whatever relates to :fluids, whether their 
pressure or their movements, forms the next sub
ject of inquiry; but in the elementary view with 
which we are now occupied, it may be properly 
passed over, with only this remark, that the 
matters contained in the Second Book are con
veniently described at the end of the account 
given of the First, although it has been found 
expedient to follow a different plan of arrange
ment in the Analytical View of the Second from 
that originally laid down. The great progress 
which has been made in hydrodynamics since the 
time of Newton, has rendered it necessary to enter 
more minutely into the investigations connected 
with the Second Book, than into those of the First 
and the corresponding port.ions of the Third. 
Hence this portion of the present work cannot 
fail to be found less elementary than the former. 
An acquaintance with the subject, too, is less 
indispensable towards obtaining a knowledge of 
the Newtonian philosophy as exposing the system 

• P. 285. ,t req. 
at 
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of the universe, its structure and motions, al
though it must be sedulously studied by all who 
would become acquainted with physical science, 
and all who desire to understand the whole of 
the Principia. 

It has been deemed expedient in giving the pro
positions of the First Book, to anticipate in some de

gree their application to the motions of the heavenly 
bodies, which form the subject of the Third. This 

course was naturally suggested by the circumstance 
that the greater part of these propositions bear a dis
tinct reference to the heavenly motions. But it is 
truly gratifying to find, as we now do, from Sir D. 
Brewster's valuable Life of Sir Isaac Newton (one 
of the most precious gifts ever made both to 
scientific history and physical science), that the 
illustrious author himself considered this the best 
method of teaching the Principia to those not 

. thoroughly conversant with mathematics. Applied 
to by the celebrated Dr. Bentley, who was desirous 
of so far understanding the book that he might be 
able to lecture upon its uses in behalf of Natural 
Religion, he laid down a plan of reading closely 
resembling that sketched in the beginning of this 
Introduction; recommending that after the earlier 
propositions of the First Book, the Third should be 
taken so far as to perceive its scope, and then such 
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parts of the First as " he should have a desire to 
know, or the whole, in order, if he should think 
fit." Newton also requires in his correspondent a 

much more moderate provision of geometrical and 
algebraical knowledge than another mathematician 
laid down as requisite, to whom application had 
been made for advice, and who gave Dr. Bentley 
so formidable a list of books as necessary to be read, 

that he at once appealed to Sir Isaac Newton him
self, who prescribed three or four instead of above 
thirty. (Vol. i. p. 464.) 

If it has been made manifest that a very limited 
acquaintance with mathematics may suffice for 
attaining a competent notion of the general scope of 
Newton's discoveries and of the great work which 
revealed them to the world, it is no less certain that 
the knowledge thus acquired must be superficial, 
except as regards the fundamental doctrine of gra
vitation, the foundation of the system ; and that 
in order well to understand the dynamical researches 

which have exercised so mighty an influence upo.n 
the whole of Natural Science, a much more full 
and minute study of the Principia is required. It 
is to be hoped, therefore, that readers of the two 

classes referred to, those of the second especially, 
may be encouraged to pass into the third, for whose 
use this Analytical View is designed; may make 
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themselves, in BOme measure, masters of the Cal
culus, the help of which is required in most of the 
investigations; and may follow these so as to under
stand the whole of the propositions, by satisfying 
themselves of their demonstrated truth. That this 
also can be done with only a previous knowledge of 
elementary geometry and algebra, has been proved 
upon trial, that knowledge sufficing to attain an 

acquaintance with the rules explained in those 
parts of this treatise above recommended to be 
passed over by the more general reader. It is by 
no means intended to affirm that a complete know
ledge of the Principia can be attained without much 
further study. An intimate familiarity with the 
Calculus, or with the analogous method of 
Limits, is required by those who desire to follow 

the whole of the demonstrations, and to perceive 
the connexion between the different steps as 
clearly as they can trace those of any elementary 
process in geometry or algebra. Other helps than 
this work are required, and are not wanting, to 
facilitate the entire mastery of the subject by such 
as would thoroughly understand the Principia in 
all its parts. The present treatise is not designed 
for their use, further than as it may aid them in 
the earliest part of their studies. It is intended for 
those who may not be able, or may not be disposed, 
to go beyond acquiring such a knowledge of the 
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subject and of the Book, as can be attained by a 
moderate degree of labour, and an acquaintance 
with only elementary mathematics. 

ll. The accomplishment of the other object of 
this Treatise, examining the connexion of the dif
ferent parts of the Principia with each other, and 
with former and subsequent discoveries, showing its 
transcendent merits, and removing the objections, 
or rather the criticisms, that have sometimes been 
offered upon a few compa1'8.tively unimportant por
tions of the great work, will, beside performing 
that service, also afford additional help to the study 
of it, and tend to promote the taste for understand
ing it, so as to judge of its unparalleled excellence. 
It is satisfactory to find that many of the propo
sitions are capable of demonstration by a process 
different from that employed by Newton, especially 
when this process is more easily followed. In 
many cases the analytical substituted for the syn
thetical method, is interesting as a matter of curi
osity, independently of its more didactic character. 
This may also be predicated of the occasional pre
ference of algebraical to geometrical reasoning. 
The greatest interest, however, belongs to observ
ing the mutual bearings of the propositions, per
ceiving sometimes how one arises out of another, 
sometimes how the two are so connected that toge
ther they exhaust the subject, sometimes how the 
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establishment of one mere general truth furnishes 
the proof of others less general which had been pre
viously reached by a different route; often to mark 
the diversities as well as resemblances of propo
sitions, and the particular circumstances upon 
which these severally depend; not rarely to note 
in what way others had imperfectly obtained the 
knowledge of these truths, or altogether had failed 
to observe them; frequently to find them deriving 
new support from things afterwards brought to 
light, and to see· them explain phenomena subse
quently for the first time observed; above all, to 

see, and as we see to marvel how, beside those doc
trines, the teaching of which forms the main object of 
the work, which are expounded with an exhaustive 
fulness, and are at their first discovery established 
in absolute perfection, so that scarce any addition 

has, in the vast majority of instances, been found 
either possible or required, there are also the 
foundations laid of new discovery in other direc
tions, the rudiments provided of other systems, and 
the very course plainly pointed out by which these 
unthought of truths should in remote ages be 

cxplored. 
On some few points differences of opinion having 

arisen as to other men's claims to the discovery, 
all controversial matters arc purposely avoided. 
But although it must be cOJlfcsscd that philoso. 
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phers, as well in foreign countries as among our
selves, have shown no reluctance to allow N ew
ton's title to the first place, there have occa
sionally been criticisms hazarded rather than 
objections made, touching several parts of his 
great work; and these in most cases have origi
nated rather in inadvertence than in any unworthy 
prejudice. It became necessary to correct such 
errors, in justice to the illustrious author, who 
could not have been aware of the statements, 
except perhaps in one instance. It is possible he 
might have known the groundless remarks of J. 
Bernouilli in that particular; the equally erro
neous statements of Bailly and Laplace of course 
he could not have been aware of, and we may 
confidently add, never could have foreseen; in
deed they could only be ascribed to oversight in 
those eminent authors. The error detected by 
F. Boscovich respecting the comet's path belongs 
to another class, and arose entirely from a ne
glect of that careful examination of the limits of 
a problem peculiar to the ancient analysis, that 
exhaustive process by which the prolixity some

times complained of finds ample compensation in 
its precluding the possibility of mistake. 

Thus it is hoped that, partly by the account of 
the work and partly by discussions connected 
with the subjects of which it treats, the study 
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of it may be both promoted and facilitated; and 
this kind of service towards the progress of science 
is not to be altogether contemned. They who 
are incapable themselves of advancing it by the 
discovery of new truths, may usefully employ 
themselves in helping others to a knowledge of 
what the great masters have done; and they may 
best do this if they shall not disdain the office 
of elementary explanation and discussion. The 
wisest of the ancients was said to have brought 
Philosophy down from heaven to earth; he cer
tainly valued himself chiefly on his unceasing ef
forts to stir up in men's minds the desire of 
knowledge. What he found necessary with regard 
to the nature of the subject, we in our day may 
perceive to be equally necessary because of the 
clouds in which writers of vast and original ge
nius almost unavoidably involve the records of 
their inquiries after unknown truths. 

But whatever brings men acquainted with those 
profound researches, raises their minds to con
templations far more sublime than any which are 
connected merely with worldly science. To survey 
the most wonderful works of creation, to compre
hend the laws by which the system of the universe 
is governed, the principles which everywhere per
vade it, and bear irrefragable testimony to t.he unity 
as well as the power of the divine Author and Dis-
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poser of all, is the most impressive lesson that un
assisted reason can teach our species. It is an ob
servation of Paley, marked with his wonted sagacity, 
that though Physical Astronomy, until well under
stood, presents less striking proofs of design to the 
mind than the other branches of science, yet when 
fully apprehended, it very far exceeds all the other 
evidences of Natural Religion. We must recollect, 
too, that Newton himself regarded this as the most 
precious part of his philosophy; declared that in 
framing it he had been moved by a desire to in
culcate religious belief, expressed his gratification 
in finding that his efforts had not been vain, and 
closed the exposition of its principles with a ~om
mentary upon the nature and attributes of God. 
His followers may be permitted to indulge the 
hope that he would have prized their humble at
tempts at diffusing a knowledge of his immortal 
labours, rather as falling in with his pious wishes 
for the happiness of others, than as contributing 
to the illustration of a fame which is imperishable, 
1101' admits of any increase. 
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NEWTON'S PRINCIPIA. 

ANALYTICAL VIEW. 

THIS work is justly considered by all men as the greatest 
of the monuments of human genius. It contains the 
exposition of the laws of motion in all ita varieties, whether 
in free space or in resisting media, and of the action 
exerted by the mR88e8 or the particles of matter upon 
each other, those laws demonstrated by synthetic reason
ing; and it unfolds the most magni1icent discovery that 
was ever made by man - the Principle of U niveraal 
Gravitation, by which the system of the universe is go
verned under the superintendence of ita Divine Maker. 
Two of the three Books into which the treatise is divided 
are chiefly composed of mathematical investigations, con
ducted by the most refined and profound, but at the 8lUDe 
time the most elegant application of geometry, and of a 
calculus which is only a particular form of the fiuxionary 
method invented by the illustrious author in his early 
years. The Third Book contains an explanation of the 
motions of the heavenly bodies, deduced chiefly from the 
first portion of the former part, and grounded upon the 

. ; B 
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phenomena obserNed by astronomers. This concluding 
portion, however, of the great work, is also interspersed 
with geometrical reasoning of the same admirable descrip
tion as characterized the former, and applied to the s0-

lution of problems respecting the heavenly motions. 
Before Sir Isaac Newton appeared to enlighten man

kind, and to found a new era in the history of physical 
science, the eminent men who had preceded him had made, 
during the century immediately preceding his birth, very 
important steps in furthering the advancement of our 
knowledge; and they had approached exceedingly near 
that point which forms the moet important of all his dis
coveries, according to a kind of law which seems to 
regulate the progress of human improvement-a law of 
continuity, which apparently prevents any sudden, and, 
as it were, violent change, from being made in the in
tellectual condition of the species, and prescribes the 
unfolding of all great truths by slow degrees. each 
mighty discovery being preceded by others only less 
considerable than itself, and conducting towards it. The 
great discoveries in pure mathematics afford striking 
examples of this truth. That of Logarithms by Napier 
is, perhaps, the instance in which the most considerable 
deviation has been made from the rule; but even here 
there had been some curious methods of mechanical 
calculation invented hefore, and the discoverer of lo
garithms himself had reached the point very nearly by 
other most ingenious contrivances, before he actually 
made his great step. 

But the Fluxionary or Differential Calculus gives a 
remarkable exemplification of the general principle; and 
its subsequent most important extension, the Calculus of 
Variations, furnishes another not less striking. Ever since 
Descartes's happy application of Algebra to Geometry had 
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opened the way to the grand discovery of Newton and 
Leibnitz, the foundatiou of modern science, mathematicians 
had been intent upon the resolution of problems connected 
with the rectification and quadrature of curves, aud the 
determination of points that possess properties of maxima 
and minima, as well as the finding of normals, tangents, 
and osculating circles. These inquiries had led them to 
consider the laws by which the relations between the or
dinates and abscissm referred to any given axis are go
verned at different points of that axis; for in truth that 
implies the nature of the cunature itself, and includes 
the manner in which the length of the curve line increases 
or diminishes, as well as the space which it incloses. They 
were thus led to examine the generation of those curve 
liues and curvilinear spaces, whether that is conceived 
to be effected by the movement in the one case of points, 
and in the other of straight lines, or is supposed to be 
produced by the constant juxtaposition of indefinitely 
small straight lines inclined to each other according to 
a given law, in the one case, and indefinitely small rect
angles in the other. The latter is perhaps the more 
natural supposition of the two, and not the less easy. 
For if anyone is set to measure the area of a field 
bounded by a curvilinear outline, as- he can at once 
measure a space inclosed within straight lines, his course 
will be to divide the given space into rectangles, and 
then to divide each of the amaller cunilinear spaces 
into other rectangles, and 80 on till he has exhausted 
the whole by a series of rectangles, always decreasing in 
size as they increase in number, and the last of which 
~m to coincide nearly or sensibly with the area of the 
outer or curved line of boundary. Thus he would proceed 
hy trial and actual measurement of the space; and thus 
do land-measurers (the lineal descendants of the first 
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geml1eterl+ as their D.lUIlriTake£?) still procerd. Pltut 
speculative mathematicians being aware of the general 
prop<;rtilr of h£ive tit rvd thl4Se 
being regularly formed, which the boundary of the field 
is vvuld thr relatiuns each othrr of 
""e sides of the rectangles into which they divided the 

ootdd thus fihmes 
diminishing in size, and which series might be carried to 

any lrngth so ultimately to the rTll'Viliu£3IU' 'i£?ea. 
Tht,,£? ABC being a semicircle, it was e.asy to find the area 

of the semihexagon <.>r thrre 4i11 uilatrral AD F, 
F D DEC, uud then of the trianhles F B E x 3, 
and again of the triangles F x h, anP 10 ou; so nhat 
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- - 3rl -
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(2 .v3 - 2 - -V2) +. &c.: And thus we have also the 

approximation to the length of the cirvle. 
extv<c;me vumbc;vusuV8S of this calcuhne, which 

is still more unmanageable in other curves where the 
radii are uot, in tbe of the £;,ilcley vqualy mvbr it 
necessary to find some other method; and geometricians 

6XJ1illin<::d the luw8 wbirh &ref4c4c inc1f;ase 
in each curve, 80 that by adding all those innumerable 
inc1umeixt1 tOb1ther their 1um might bive the IUfiCt 1buce 

• hhe fim ;<,rms hi4ce 3.41582 ; <hi> &a4cf:f: first come very near the 
ordinary approximation, £4c159,forth4c£? gh'e h.141444. 
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required. The same process was attempted with the 
lengths of the curves, considering them as polygons whose 
sides diminished while their nombers increased indefinitely. 
In this way Cavalieri, Fermat, and Wallis, and still more 
Harriot and Robena], appear to have come exceedingly 
near the discovery of the general rule for performing these 
operations before Newton and Leibnitz, unknown to each 
other, made the great step. Roberval especially had 
solved many problems of quadrature and of drawing 
tangents, by methode extremely similar to the Newtonian. 
Nor were the ancient methods of Exhaustion and Indi
visibles so far distant 88 to let us doubt that, had the 
old geometers been po88e88ed of the great instrument of 
algebra, and bethought them of its truly felicitous ap
plication according to the idea of Descartes, long before 
our times they would have anticipated the discoveries 
which form the great glory of modem science.· 

The discovery of the Calculus of Variations afFords 
a similar example of gradual progress. When the 
differential calculus had enabled us to ascertain the 
maxima and minima of quantities, for example the value 
of one co-ordinate to a curve, at which the other becomes 
a maximum or a minimum, or, which is the same thing, 
the point of greatest and least distance between the 
curve and a given right line, or, which is the same 
thing, when the general relation of the co-ordinatee 
being given we were enabled by means of the calculus to 
examine what that particular value was at which a 
maximum property belonged to one of them - then 
geometricians next inquired into the maxima and minima 
of different cunes, that is to say, into the general re
lation between the co-ordinates which gave to every 

• .Among other marvell. in Galileo's history he seems to have made 
a near approach to &he ealCalUL - See M. Libri's most able and learned 
work, UuL de MGtIa. ell IttJlu, tom iv. 
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portion of the cu"e a maximum or a minimum value in 
some respect. Thus, instead of inquiring at what value 
of z (the abscissa) in a known equation between z and 
the ordinate !I, !I became a minimum, or the cu"e ap
proached the nearest to its axis, the question was what 
relation z must have to !I (or what must be the equation 
as yet unknown) in order to make the whole c~e, for 
example, of the shortest length between two given points, 
or inclose with two given lines the largest space, or 
(having some property given) inclose within itself the 
13rgest space, or be traversed in the shortest possible time 
by a body impelled by a given force between two given 
points. Here the ordinary resources of the differential 
calculus failed us, because that calculus only enabled us, 
Ly substituting in the differential equation the value of one 
co-ordinate in terms of the other, to make the whole equal 
to nothing, as it must be at the maximum or minimum 
point where there is no further increase or decrease. But 
here no means were afforded of making this substitution, 
and the problem seemed, as far as this method went, 
indeterminate. Various very ingenious resources were 
employed by Sir Isaac Newton, who in the Principia 
seems to have first solved a problem of the Isoperimetrical 
class-that is, finding the solid of least resistance; and 
soon after by the Bernouillis and other continental ma
thematicians, who worked by skilful constructions and 
suppositions consistent with the data. The calculus called 
that of Variations has since been invented for the general 
solution of these and other similar problems. It con
sists in treating the relations of quantities, or of their 
functions, as themselves varying, but varying according 
to prescribed rules, just as the differential calculus regards 
thc quantities themselves, or their functions, as varying 
RccorJing to prescribed rules. It bears to the differential 
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calculus somewhat of the relation which that bears to 
the calculus of fixed and finite or unvarying quantities. 

It is wonderful how very near Bernouilli, when he 
solved the problem of finding the line of swiftest 
descent, came to finding out this calculus; if, indeed, he 
may not be said to have actually employed it when he 
supposed, not as in the case of the differential calculus, 
two ordinates of a known curve infinitely near one an
other, but three ordinates infinitely near, including two 
branches of an unknown curve, each infinitely small; 
for he certainly made the relation of these ordinates to 
the abscissa vary. Euler used the calculus more sye
tematically in the solution of various problems; but he 
was much impeded for want of an algorithm. This 
important defect was supplied by Lagrange, who reduced 
the method to a. system and laid down its general prin
ciples; but had Euler gone on a little step further, or 
had Bernouilli been bent on finding out a general method 
instead of solving particular problems, or had Emerson, 
who has one or two similar investigations in his book 
on Fluxions, reduced the method by which he worked 
them to a system by giving one general rule (which, writing 
a book on the subject, he was very likely to have done), 
the fame of that discovery would have been theirs, which 
now redounds so greatly and so justly to the glory of 
Lagrange. 

The discovery of Gravitation as. the governing prin
ciple of the heavenly motions, is no exception to the rule 
which we have stated of continuity or gradual progress. 
When Copernicus had first clearly stated the truth to 
which near approaches had been made by his pre
decessors, from Pythagoras downwards, that the planets 
move round the sun, and that the earth also moves on 
its axis while the moon revolves round the eartb, be yet 

B 4 
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accompanied his statement with so little proof beyond the 
agreement with the phenomena, which the Ptolemaic 
hypothesis could equally boast of-, that for more than 
half a century afterwards it bad no general acceptance, 
Bacon himself rejecting it; when Galileo, by his telescopic 
discoveries, especially of the phases of VenDS and the sa .. 
tellites of Jupiter, and by his yet more important dis
coveries in the laws of motion, may be said first to have 
proved the truth of the Copernican system. Afterwards 
the satellites of Satum, added to Kepler's observation of 
Mercury's transit over the SUD, afforded most important 
confirmation. The great discoveries of this eminent man 
followed close after those of Galileo: First, the motion8 
of the planets were found to be in ellipses with the SUD in 
one focus; secondty, lines drawn to the SUD from them were 
found to describe areas proportional to the times of their 
revolution; and, thirdly, the relation was established be
tween the squares of those times and the cubes of the 
distances of the bodies from the focus. 

How near this brought scientific men to the canse 
or law of the whole is manifest, especially when we 
regard the connenon thDS established between the re
volving bodies and the great luminary in the centre. 
Although Kepler himself erroneously mingled with the 
influence which this law of motion led him to ascribe to 
the sun, a transverse force which he deemed neoeseary to 
maintain the projectile motion of the planets round the 
centre; yet others formed more correct ideas of the maUer. 
- It seems to have been Huygens, who, fourteen years 
before the "Principia" was published, first showed the 
true nature of centrifugal forces. - Several years earlier, 
however, Borelli, in treating of the motion of Jupiter's 

• It iI certain that its greater simplici&7 was, before Galileo'. time, 
the only argument in favour of the Copernican theory against the Ptolemalllll. 
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satellites, considers the planets as having a tendency to 
resile from the sun and the satellites from the planets, 
but as being "drawn towards and held by those central 
bodies, and so compelled to follow them in continued 
revolutions." He also most accurately compares the re
ceding (or centrifugal) force with the tendency of a stone 
whirled in a sling to lIy oft' at every instant of its motion.
Hooke, a man of unquestionable genius, and whose partial 
anticipations of many great discoveries are truly remarkable, 
about the same time with Borelli, asserted that the at
traction of the sun draws away the planets from moving 
in straight lines, and that the force of the attraction varies 
with the distance. He had, as early as 1666, read to the 
Royal Society a paper explaining the curvilinear motion 
of the planets by attraction.- Halley, as well as others, had 
even bit upon the inverse duplicate ratio, by supposing 
that the inftuence from the sun was diffused in a circle, or 
rather a sphere, and that therefore the areas proportioned 
to that inlluence were as the squares of the radii, and 
that consequently the intensit~es, being inversely as those 
areas, were inversely as the squares of the radii or dis
tances. - Finally, Hooke had foretold, that whoever set 
himself to investigate the subject experimentally would 
discover the true cause of all the heavenly motions. 

Such were the near approaches which had been made 
to the law of Gravitation before its final and complete 
discovery. But although in this ~ual progress it re
sembles almost all the other great improvements in 
science, in one material respect it differs from them all. 
The theory was perfect which Newton delivered, and the 
whole subject was at once thoroughly investigated. It was 
not merely that the general principle hitherto anxiously 
sought fOf, and of which others had caught many glimpses, 
was now unfolded and established upon appropriate founda-
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tions; but almost every consequence and application of it 
was either traced, or plainly sketched out; it was pursued 
into all the details; a systematic account of its operation 
was given, symmetrical, and in its main branches complete; 
so that, however nearly former inquirers had approached 
the general law , the distance was prodigious between their 
conjectures, how learned and happy soever, and the ma.:,ani
ficent work which the genius of Newton had accomplished.· 

It must be observed, too, that, beside this grand achieve
ment, the Principia performed three other most important 
services to physical and mathematical science. Fir8t. It 
laid a deep and solid foundation for subsequent discoveries 
in the science of physical astronomy, both by the general 
principles of dynamics which it unfolded, and by the ap
plication which it made of these to the heavenly bodies 
and their motions. Secondly. It gave a complete system 
of dynamics applicable to all subjects connected with 
motion and force and statics - a system throughout abound
ing in the most important original mathematical truths, 
expounded and proved with singular beauty, though with ex
treme conciseness. Thirdly. It propounded and showed the 
application of a new calculus, or method of mathematical 
investigation, that method by the help of which those truths 
had been discovered; and by which others, before resting 
upon an empirical foundation, were demonstrated. Thus 
it is no exaggeration to say that, even if the great dis-

• The subsequent discoveries of mathematicians by means of the improve
ments in the calculus, have added new illustrations, and traced further 
consequenccs of the theory. Bnt there is only one of their impl'OTements 
which can justly be said to have advanced the evidencc of the fundamental 
principle further than Sir L Newton had earried it, by supplying any de
fect which he had left ; we allude to the reconcilement by CIairaut of the 
moon'a apogcal motion according to the tJleory with the obaervations. 
This is fully explllined in the sequel. It forms one of the most interesting 
)lRSSagcs in the whole history of science. 
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covery of the law which governs the universe were taken 
away from the Principia, it would still retain its rank at 
the head of all the works of mathematicians, as the most 
wonderful series of discoveries in geometrical science, and 
its application to the principles of dynamics. 

That the reception of this work was not such as might 
have been expected has frequently been alleged; and al
though an ingenious and well-meant attempt has lately 
been made by an eminent author- to relieve this country 
from its share of the imputation, chiefly by showing the 
estimation the author was held in immediately after its 
publication; it is, on the one hand, certain that Newton's 
previous fame was great by former discoveries, and that 
after its appearance the Principia was more admired than 
studied. There is no getting over the inference on this 
head which arises from the dates of the two first editions. 
There elapsed an interval of no less thlm twenty-seven 
years between them; and although Cotes speaks of the 
copies having become scarce and in very great demand 
when the second edition appeared in 1713, yet had this 
urgent demand been of many years' continuance, the re
printing could never have been 80 long delayed; nor was 
the next edition required for thirteen years after the se
cond. So that in forty years the greatest work ever com
posed by man reached only a third edition; and that third 
has, during the· succeeding hundred years, been the one 
generally in use; although translations and excerpts have 
been published from time to time, and two editions were 
printed on the Continent, one at Amsterdam and one 
at Cologne. The doctrines of the work were, however, 
much more readily embraced and more generally diffused 
in this country, which had the benefit of Maclaurin's ad-

• Whcwcll'~ History of the Inductive Sdcnccs. vol. ii. 
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mirable view of the more general principles of the system, 
published about the middle of the last century. On the 
Continent they made their way far more slowly; nor was 
it until Voltaire employed his great powers of clear ap
prehension and lucid statement to give them currency, 
that the Cartesian prejudices of our neighbours gave 
way, and the true doctrine found a general and a willing 
acceptance. 

It must be admitted that the mauner in which the truths 
of the Principia were unfolded, not only added somewhat to 
the slowne88 of the world at large in embracing them, but 
has also contributed to the reluctance with which men 
have generally undertaken the task of reading that great 
work, and satisfying themselves of the proofs upon which 
its doctrines rest. Conciseness is everywhere rigorously 
studied. Not only does the author avoid all needless pro
lixity and repetition in uofolding his discoveries, but he 
leaves out so many of the steps of his demonstration, and 
a88umes his reader to be so expert a geometrician, that 
the labour of following him is often sulicient to deter 
ordinary students from making the effort. If mathe
matical reading is never the same pa88ive kind of operation 
with other studies, the perusal of the Principia is emphati
cally an active exercise of the mind. For what, to the 
intuitive glance of him who could discover the theorem 
or solve the problem, appeared too plain to require any 
proof, may well stop common minds in their progress 
towards the point whither he is guiding them; the dis
tances which he can stride at once over this difficult 
path must, by weaker persons, be divided into many 
portions, and travelled by succe88ive steps. Add to which, 
that, as the method of proof is throughout synthetical, 
and as it is geometrical, the helps of modern analysis are 
thus withheld. Upon the whole, therefore, a most valuable 
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service was rendered to students by the able and learned 
commentary of the Fathers, Le Seur and Jacquier, who, 
in 1739 and 1742, published the Principia, with very 
copious illustrations, although it is to be regretted that 
they resort far less frequently to analysis than was de
sirable. It is remarkable enough, and affords an addi. 
tional proof of the slow progress which truth had then 
made in some parts of Europe, that these excellent authors 
deemed it necessary to accompany their publication of 
the Third Book, which treats of the heavenly motions, 
with a declaration in these words: "N ewtonus in hoc 
tertio libro Telluris motile hypothesim asserit. Autoris 
propositiones aliter explicari non poterant, nisi eadem 
quoque facta hypothesi. Hinc alienam coacti sum us 
gerere personam; caeterum latis a summis Pontificibus 
contra Telluria motum Decretis nos obsequi profitemur." 
This edition is dated, as might be supposed, at Rome.· 

The Principia begins with a definition of terms, and 
a compendious statement of the science of dynamics as it 
existed previous to Newton's discoveries. The definitions, 
eight in number, comprise that of quantity of matter, 
which is in the proportion of its bulk and density, the 
density being the proportion of its mass to its bulk-the 
quantity of motion, which is in proportion to the velocity 
and quantity of matter jointly-the vis inertitB, which is 

• It must, however, be observed, that such bigotry and intolerance 
WAI not confined to Rome. M late AI 1769, Buft"on was compelled, 
bv the interference of the Sorbonne, to publish a recantation of some 
~on of his fantastical theory of the earth, comprehending, as it happened, 
the very few things in it which had any reasonable fonndation. We ought 
also to mention, for the credit of the Papal Government, that a late pontiif' 
(Pia VII.) procured a repeal of the decree agaiust the Copernican system. 
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14 NEWTON'S PRINCIPIA. 

the force or power of matter to persist in any given 
state, whether of rest or of motion in a straight line, and 
to resist any external force impressed upon it to change 
that state-centripetal force, which is the power that 
draws towards a given point or centre bodies at a distance 
from it-finally, the three kinds of amount of centripetal 
force; the absolute amount, in proportion to the intensity 
of the power exerted in drawing towards the centre; the 
accelerating, in proportion to the velocity generated in a 
given time; and the moving, in proportion to the motion 
generated in a given time towards the centre.· 

Two things are worthy of remark in these definitions: 
first, that, as if foreseeing the cavils to which his doc
trines would give rise, he guards, in a scholium, against 
the supposition that he means to give any opinion respect
ing the nature or cause of centripetal force, much less 
that he ascribes any virtue of attraction to mere centres 
or mathematical points; whereas he only means to express 
certain known and observed facts: secondly, that, in 
illustrating his definition of centripetal forces, he really 
anticipates his grea~ discovery; for, after giving the 
examples of magnetic action, and of a stone whirled in 
a sling, he proceeds to the motion of projectiles, and shows 
how, by increasing the centrifugal force, they may be made 
to move round the earth, as may also, he says, the moon, 
if she be a heavy body, or in any other way be deflected 
towards the earth, and retained in her orbit. That force, 
he adds, must be of a certain amount, neither more nor 
less; and the business of mathematicians is to find this 
necessary amount; or, conversely, having the amount 

• There are eight definitions in the book, thongh we have only given 
them nnder seven heads, not having made a separate definition of tbe 
f~e imprultd, which is here mentioned under the important head of the 
via i"erti~ 
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given, to find the curve in which it makes the body mo,·e. 
The connexion between the inquiries which form the 
main subject of the two first books of the Principia and 
Physical Astronomy, the subject of the third, is thus 
explicitly stated; but a plain indication is also here 
aft'orded of the great discovery in which the whole inves
tigation is to end. 

The doctrines of dynamics, known previously to his 
discoveries, are then given in the form of corollaries to 
the three general Laws of Motion. The first law is 
that of the vis inertice, already explained; and it is 
to be observed here that a steady and clear conception 
of the tendency of all moving bodies to proceed in a 
straight line uole88 deflected from it, is, perhaps, more 
than anything elee, that which distinguished the Newtonian 
from the immediately preceding doctrines, mixing up as 
these did more influences than one proceeding from the 
centre with a view to explain the composite motion of 
the planets. 

The second law is, that all changes in the motion of any 
body, or all changes from rest to motion, are in proportion 
to the moving force impressed, and are in the straight 
line of that force's direction. 

The third law is, that reaction is always equal and 
opposite to action; or that the mutual actions of any 
two bodies are always equal to one another, and in opposite 
directions. 

From these laws the aix corollaries which are added 
deduce the fundamental principles of dynamics; and 
there is a scholium to the whole, which states the applica
tion of those principles to the descent of heavy bodies, 
and the parabolic motion of projectiles. Of all the prin
ciples, the most important is that of the Composition and 
Resolution offorces. As by the first law a body always 
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perseveres in the straight line it moves in, unless in 80 

far 88 some other force alters its direction; and as by the 
IleCOnd law any new force impressed tends to move it in its 
own direction,-it follows that, if two forces, not in the 
same nor in directly opposite directions, act at one time, 
and by an instantaneous impnlse, on any body at rest, it 
must move in such a direction 88 that it shall be found both 
in a line parallel to the direction of the one force, and in 
a line parallel to the direction of the other; that is to say, 
in the diagonal of a parallelogram whose two contiguous 
sides are in the directions of the two forces, and are respec
tively equal to the space each force would carry it through 
iu its own direction. Moreover, 88 each force separately 
would have carried it to the end of the line of its direc
tion in the given time, it must move through the diagonal 
in the same time which it would have taken to move 
through either side if either force had acted alone. 
Thus the direction of every motion occasioned by any two 
forces acting at an angle to each other, may always be 
found by completing the parallelogram of which the direc
tions of those forces are the contiguous sides; and 80 of 
any motion occasioned by any number of forces whatever 
acting angularly. And, conversely, every motion of a 
moving body may be resolved into two, of which the one 
is in any given direction whatever, and the other is found 
by completing the parallelogram, whereof that given direc
tion is one of the sides, and the direction the body moves 
in is the diagonal. 

From this resolution of forces it is easily shown, that 
if any weights or other powers acting in parallel lines 
are applied to the opposite ends of a lever moving on a 
centre or fulcrum, the effect of each will be directly 88 its 
distance from that centre, in other words, as the length of 
the contiguous arm of the lever; consequently, that if the 
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weights or powers are made inversely as those lengths, the 
whole will be in equilibrio or balanced. This is the well 
known and fundamental principle of the lever, the founda
tion of mechanics; and it applies aleo to the wheel and 
axle and the pulley. The fundamental propeniee of the 
screw, the wedge, and the inclined plane are deduced in 
like manner from this important proposition. So may 
all the properties of the centre of gravity, and the method 
of finding it; for, in fact, the fulcrum of the lever is the 
common centre of gravity of two bodies equal to the 
two weights, and placed at the opposite ends of the 
lever; and the line joining the bodies is divided in the 
invene proportion of those bodies. It aleo is easily shown 
that the common centre of gravity of two or more bodies 
is not moved, nor in any way affected, by their mutual 
actions on each other, but it either remains at reet, or 
moves forward in a straight line. So are the relative mo
tione of any system of bodies, whether the space they 
occupy is at rest, or moves uniformly in a straight line. 

The Scholium to the Laws of Motion first considers 
very brie8y the motion of falling bodies which descend 
with a velocity uniformly accelerated, that velocity which 
is giveD to them by the attraction of the earth during 
the first instant continuing and having at each succeeding 
instant a new impulse added. The acceleratioD, therefore, 
is 88 the time; and they move through a space propor
tional to the velocity and the time jointly, coDsequently 
proportional to the square of the time, since the velocity is 
itself proportional to the time.· 

• VelocUy is as time, L e., " is as WI t; space is as velocity)( time, 
or 6 as" )( t; therefore space is as time lC time, or as square of time, that 
is, • is as ,. t lC t. or ,. t'.-The proportion of the space fallen through 
by the force of gravity (or moved through by any body uniformly acce
Jera&ed) 10 the square of the timea, is also demollltratod thUl. Let tho 

C 
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The Scholium next, with equal brevity, states the 
projectile motion of heavy bodies. If a body be impelled 
in one direction by a force producing a uniform motion, 
and in another direction at any angle with the former 
by a force not uniform but accelerated, the diagonals 
which it will move through will at every instant change 
their direction towards the quarter to which the acce

lerating force tends. But a series of such diagonals is 
a polygon of an in6nite number of sides, in6nitely 
small: in other words, a curve line. Now in the case of 
a projectile, this continued or accelerating force is such 
as to make the body, if no other force acted on it, fall 
through spaces proportional to the square of the ~es. 

velocity acquired at any moment P of the time A P be P M, and because 
the velocity uniformly increases, or as the time, P 11 : A P :: B C : A B, 

A 

l'r---~ 

'L 
B -----.!C 

and therefore the line A C Sa a straight line, and the triangles A P M, 
ABC, are similar. But if q N is infinitely near P M. or P q represents the 
smallest conceivable time, the motion during that time may be conceived 
to be uniform and not accelerated. Now the space through which any 
body moves is as the velocity multiplied by the time ('=lIt), therefore the 
space moved through in the time P q is as P q x q N. So the space moved 
through in the time A B will be as the sum of all the small rectangles 
P q x N q, or as the triangle ABC. But the triangle ABC is to aily other 
of the triangles A P M as A Bt : A PO; therefore the spaces are as the 
squares of the times. The great general importance of this proposition 
which Galileo first proved, make. it necessary to have the demonstration 
clearly fixed in the reader'. recollection. 
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The other force acting once for all would make it, were 
there no gravity acting, move in spaces proportioned to the 
times simply. The latter or projecting force would make 
it move through A B uniformly, or in spaces proportional 
to the times; the force of gravity would make it move 

B 
A 1.-----.--

J.I----'-!.~ 

through AP with a motion proportioned to the square 
of the times; therefore it will move in a curve passing 
through M, if P M is equal, and parallel to AB; and 
AP will be as the square of AB or PM, which is the 
property of the conic parabola m. AP=PM2, m being 
the parameter to the point A. 

The Scholium concludes by stating some consequences 
of the equality of action and reaction, the third Law 
of Motion, with respect to oscillation and impact, and 
also with respect to mutual attractions; of which conse
quences the most important is that the attraction or weight 
of heavy bodies in respect of the earth, and of the earth 
in respect of them, is equal. 

The great work itself, after these preliminary though 
essential matters, proceeds to its proper subject. But 
in order to show how the demonstrations are conducted, 
a short treatise is prefixed upon the method of Prime and 
IDtimate Ratios, in eleven Lemmas, with their corollaries. 

This method consists in considering all quantities as 
c 2 
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generated by the uniform progression or motion of other 
quantities, and examining the relations which the amallest 
conceivable spaces thus generated by this motion bear to 
one another, and to the spaces generated at the moment of 
their inception, or when they are nascent, which is termed 
their prime ratio, and at the moment of their vanishing, 
or when they are evanescent, which is termed their tlltimate 
ratio. Thus a point moving along in a straightforward 
direction generates a straight line; a line moving parallel 
to itself, or two lines moving at right angles to one another, 
generate a rectangle: one line moving, while a point in it 
moves along it so that its progre88 on the moving line 
always bears a given ratio to the progress the line bas 
made (m .AP=PM), describes a triangle; the same 
motion, if the progrese of the point bears a variable 

relation to that of the line (x. A P = P M' ; x. x A P 
being some function of A P), describes a curve line IIond 
curvilinear area; and so of solide, which are generated by 
the motion of planes. 

It follows from this mode of generatiob that if the length 
of any curve line be divided into an infinite number of 
lines, the sum of these will not differ from the curve 
line by any assignable quantity, nor will each differ from 
0. straight line; and if ita area be divided into an infinite 
number of smaller areas by lines drawn parallel to the 

Digitized by Coogle 



NEWTON'S PRINCIPIA. 21 

line whose progressive 'motion generated the curvilinear 
area, the sum of these infinitely narrow areas will differ 
from the area of the curve by a difference less than any 
assignable quantity, nor will each differ from a rectangle; 
in other words, the ratio of the nascent curve line and 
nascent curvilinear area will be that of equality with the 
small lines and small rectangles, and the ultimate ratio of 
the sums of the lines and rectangles to the whole curve 
line and curvilinear area, respectively, will be that of 
equality: - Or to put it otherwise, if the axis of the curve 
be divided into parts PP, &c., and the area fbto spaces 
PMRP, &c., by ordinates PM, PR, &c., and the num
ber of these spaces be increased, and their breadth P P 
be diminisbed indefinitely, which is the operation of the 

.. 0 

N 0 
I< 
!i R 

~ 

0 

p p 

generative motion of PM, the size of each of the small 
spaces MNRO (by which the curvilinear areas differ from 
the rectangles) diminishes indefinitely, and the ultimate 
ratio of all the curve areas PM R P, and all the rectangles 
PNRP, becomes that of equality, and therefore the sum 
of evanescent differences NMOR, NROR, &c., whereby 
the whole curvilinear area differs from the whole amount 
of the rectangles P NRP, becomes less than any assignable 
quantity, or the curvilinear area coincides with the sum 
of the rectangles. And so of the sum of all the diagonals 
MR, RR, &c., which becomes the curve line MR A. 

Hence we infer that the amount of these small spaces 
c 3 
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or quantities N M 0 R, formed by multiplying together 
two evanescent quantities, is as nothing in comparison with 
the reotangles P MOP formed by only one evanescent 
quantity multiplied into a finite quantity, and may be 
negleoted in any equation that expresses the relations of 
those reotangles with each other. But if some other 
quantities be found which are, in comparison with these 
small ones, themselves infinitely small, the areas formed by 
multiplying this second set of small quantities may be 
rejeoted in any equation expressing the relations of those 
first small-quantities. 

Thus we have the origin and constitution of quantities 
which in the Newtonian scheme are called jluzions of 
different orders, because conoeived to express the manner 
of the generation of quantities by the motion of others, 
and in Leibnitz's language are called infinitesimals or 
differences, because conceived to express the constant addi
tion of one indefinitely small quantity to another. Ob
taining -the fluxions, or the differences, from the quantity 
generated by the motion or by the addition, is called the 
direct metl'od; obtaining the quantity generated from the 
fluxions, or finding the sum of all the differences, is called 
the indirect method. The one theory calls the direct 
method that of finding jlu.xion., the indirect that of finding 
jluents; the other theory calls the former differentiation, 
or finding differentials, the latter integration, or finding 
integral.. The two systems; therefore, in no one respect 
whatever differ except in their origin and language; 
their rules, principles, applications, and results, are the 
same. 

A different symbol has been used in the two systems; 
Newton expressing a fluxion by a point or dot, and the 
fluxion of that fluxion, or a second fluxion, by two dots, 
and so on. Leibnitz prefixes the letter d, nnd its powers 

Digitized by Coogle 



NEWTON'S PRINCIPIA. 23 

tl', cP, &0., instead, to express the differentiala. In like 
manner f for sum is used by the latter to exprees the 
integral, and f by the former for the fluent. Although 
the continental method of notation is now generally used, 
and is on the whole most convenient, yet it has its inconve
nience, as the d is sometimes confounded with co-efficients 
of the variable quantities; it is in some respects. too, not 
very consistent with itself; as by making d :r;'J mean the 
square of the fluxion, or differential of z; whereas it, 
strictly speaking, appears to denote the differential of Z2. 

There can be no doubt, however, which notation is the most 
convenient in the extension of the system to the calculus of 
variations, where the symbol is·S; for, although the varia
tion of a fluxion or differential may perhaps even more 
conveniently be expressed by S z than by S d z. yet the 
fluxion of a variation can with no convenience be expressed 

by S ~. or otherwise than by d S z. The expression of 

second fluxions undeveloped is also far less convenient 

by the Newtonian notation. Thus the fluxion of ~~ is 

sometimes required to be expressed without developement. 
as in the expression for the radius of curvature, where 
it is often expedient not to develope it in the general 

equation, but to find ~! in terms of z or !I before taking 

its fluxion; yet nothing can be more clumsy than to place 

a dot over the fraction, whereas d (~~) is perfectly con

venient. 
Several important considerations arise out' of the nature 

and origin of these infinitesimal quantities as we have 
described them; and to these considerations we must now 
shortly advert, as they give the rules for finding the 

c 4. 
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fluxions or dHFerentials of all quantities, and, conversely, 
lead to those for investigating or finding the fluents or 
integrals of fluxional or difFerential expressions. 

A rectangle A M being generated by the side P M 
moving along A P while the side N M moves along AN, 
the movement or fluxion or differential of A M, or of 
A P x P M, is P 8 + M 0, part of the gnomon P S 

o R V 

+ 8 0, because the rectangle M V is evanescent compared 
with the other two, and is to be rejected. Therefore the 
difFerential of A P x PM = PM x P T + N M 
x N 0, or PM x P T + A P x MR. Calling A P 
= x, and PM = y, and P T = d x, and M R = d y, 
we have the difFerential of x y = x d y + y d x. But if 
the· figure be a square, and A P = P M, or x = y, then 
the difFerential is 2 x d x. 80 if we would find the difFe
rential of a parallelopiped whose sides are x, y, and x, 
we shall in like manner find that it is x y d x + x x d y 
+ y x d x; if x = x, then it is 2 Y x d x + Xl d y; and 
if x = y = x, or the figure be a cube, it is 3 Xl d x. 
From hence, although the geometrical analogy serves us 
no further (as there are only three dimensions in figures), 
we derive by analogy the rule that the difFerential of 
x" is mx-1 d x. Also there is no dimension of figure less 
than unity; but by the same analogy we obtain the dU-

o 1 mdx 
ferentlal of x-"', or xm' namely,-nu·-m-Jdx, or- zm+J' 
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tJ!" • 
and of -, or:J!" x y--= mz"'-I y--dz-n z'" y-_-I d y, 

!i 
or 

m z""-I!I'd z-n z"'y_-I d Y 
y- . 

Consistently with the same principles, we may deduce 
this rule otherwise and more strictly. Let z+d z be 
the quantity when increased by the dift'erential. This 
multiplied by itself, or its square when completed, is zI 
+2 zdz+(dz)'lj but to have the mere increment or dif
ferential we must deduct z'l, and we must also reject (d z)'l 
as evanescent compared with the function 2 z d z, which 
leaves 2 z d z for the differentiaL So the cube is 3fl + 
3 z'l d z+3z(dr)+(dz)3, and rejecting, in like manner, 
we have 3z'l dz j and by the binomial theorem (z+d z)- is 
z"'+mz"'-l dz,+&c.+(dz)-, of which only the second 
term can upon the same principles be retained; that is 
m z"'-1 d z: And the same rules apply to the differentials 

or surds; 80 that the differential of (z + y)l is ~ z + d Y • 
.v z+ y 

It also follows that the fluent or integral is a quan
tity such that, by taking its fluxion or differential 
according to the foregoing principles, you obtain the 
given fluxional or differential expression. Thus if we 
have to integrate any quantity as :J!" d z, we divide by 
m + 1, and increase the exponent by unity, and erase 

_+1 
the differential quantity; 80 that ~1 is the integral m+ 
required. But as every multiplication of any two quan
tities whatever gives a finite product, and every involution 
a finite power, while we can only divide 80 as to obtain a 
finite quotient, or extract so as to obtain a finite root, 
where the dividend or the power operated upon happens 
to be a perfect product or a perfect power; 80 in like 
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manner we can only obtain the exact integral where the 
expression submitted to us is a complete differentiaL Thus, 

h h h . zdz.. bl ch t oug suc an expreSSIon as --:-;--= IS lDtegra e, su 
'V 1 +Z2 

• dz. • bl ~ an expresslOn as . /- ==-0. IS not lDtegra e, .lor want 
'V 1 +Z2 

of the z in the numerator; and various approximations 
and other contrivances are resorted to in order to ac~ 

complitlh or, at least, approach this object, of which the 
methods of series, of logarithms, and circular ares are the 
most frequently used. The simplest case of integration 
by series may be understood in examples like the last; 
for if the square root be extracted by a series, we may be 
able to integrate each term, and so by the sum of the 
integrals to approach the real value of the whole. 

From the doctrine as now explained, and the original 
foundations of the method as traced above, it follows that a 
variety of the most important problems may be solved with 
ease and certainty, which by the ancient geometry could 
only in certain cases, or bya happy accident, be investigated. 
Thus the tangents of curves may be found. For as the 

Pl\IxMN 
subtangent S P : P 1\1:: M N : TN, S P= ~T--

II A P Q R 

=.VddyZ: And so the perpendicular may always be draw~ ; 
. P M~ 1/2 d Y Y d Y 

for the subnormal R P = S-p- ='y d z-= d z--· Ther~ 

fore we have only to insert the one of these quantities in 
terms of the other from the equation between :r and y (the 
cquation to the curve), and we get the expressions for the 
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aubtangent and subnormal. Thus in the common parabola, 

whose equation is !/= a z, the subtangent !Lddi = 2 !/ad!l 

x I!/ = 2:2 or 2 z; and in the hyperbola, whose equa-

tion is z !/=a'l, the subtangent is -z. So in the circle 

!/ll = 2 r z - zi, !!d~!L (the subnormal) = r-z (r being 

the radius); all which we know from geometrical demon
stration to be true. 

Next, it is evident that when a quantity increasing has 
attained its maximum, it can have no further increment; 
or when decreasing it has attained its minimum, it can 
have no further decrement; consequently in such cases 
the differential of the quantity is equal to nothing.· Hence 
a ready solution is afforded of problems of maxima and 
mlDlma. Thus would we know the proportion which two 
sides of a rectangle must have to each other, in order 
that, their sum being given, they may form a rectangle con
taining the greatest space possible; the differential of the 
rectangle must be put equal to nothing. Thus their sum 
being = a, the quantities are z and a -z, and their rectangle 
is a z-z'l, its differential ad z-2 z d z, and this being 

a 
put = 0, we have adz = 2 z d z, or z = ~; therefore the 

figure must be a square. So would we know the point of 
the parabola (h -z rl = a (!/-c) where the curve comes 
nearest the line h, the ordinate !I most be a minimum, and 

(h - z)lI ' 2 (h-z) 
d !/ =0. Now!/ = +c, and dy = x a a 

• Sir I. Newton's own statement of the method is here followed. Me
t/aod". Fluzionum - OPU8Cllia, tom. i. p. 86. edit. Geneva, 1744. It hB.!!, 
howeyer, been since universally admitted that the more accnrate view is 
to regard the change of tho sign liS the criterion, both B.!! to mllximum aud 
minimum value., and as to points of contrary flexure. 
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-d z, which being put = 0 gives us z=h; or, at the 
extremity of the line h, the curve approaches the nearest; 
and that whatenr be ita parameter; for a has vanished 
from the equation. 

Again, we have seen that the ultimate ratio of the 
sum of all the rectangles M P x P Q, contained by the 
ordinates and the increments of the abscissa to the curve's 
area A P M is that of equality; or, in other words, that 
the differential of a curvilinear area being the rectangle con
tained by the ordinate and the differential of the abscissa, 
or !I d z, the integral of this, or the sum of all those small 
rectangles, is equal to the area. In this expreBSion, then, 
let !I be inserted in terms of z, and the integral gives the 
area. Thus in the parabola !I= .v a Z; therefore d z..fa z 

is the differential of the area, and its integral, or which is 

th thi th · tegra1 f2!1 td !l . 2 !I 2 !It eaame ng, eln 0 ,18-3 x -,or"x-a a., a 

x!l, that is, ; z!l, or two-thirds of the rectangle of the 

co-ordinates; as we also know from conic sections. 
Next, we have seen that the ratio of the infinitely small 

rectilinear sides into which a curve line may be divided 
(each of those small lines being the hypothenuse of a 
right-angled triangle, the sides of which are the differentials 
NT, M N of the co-ordinates), to the infinitely small 
portions of the curve itself is that of equality; therefore 
the differential of the curve is equal to the square root of 
the sum of the squares of the differentials of the ordinate 
and abscissa, and that differential is equal to ..f d Zl + d !It. 

Hence in the circle, an arc whose cosine is z and radius 

r is equal to the integral of ;.d z • And an arc whose 
r2_z2 

.. • altoth· gral f rdz cosme IS r-z, 18 equ e mte o. / - • 
.,... 2rz-z2 
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Again, because solids may in like manner be "con
sidered as composed of infinitely thin solids or plates, 
one placed upon the other, their differe~tial is the area of 
the surface multiplied by the differential of the axis. Thus 
the base of any solid generated by the revolution of a 
surface rectilinear or curved must be a circle, and the 
proportion of the radius to the circumference being taken 
88 r: c, y being the ordinate to the line bounding the 

1I 

vertical section, the surface will be c2~ and the differential 

of the axis z being d z, the differential of the eolid will be 

cy"dz. h' h • f be' • ed fi tho ~, ID W lC yID terms 0 z 109 IDSert rom e 

boundary line's equation, the integral gives the solid con
tent. Thus if the line which bounds is straight and 
parallel to the axis, or the solid is a cylinder, its content 
is the circle multiplied by the axis; and if the line is drawn 
to a point in the axis, or the solid is a cone, then its content 
is one-third of the same prodnct, or one-third of the cy
linder-well-knoWD properties of thOle two figures, proved 
by ordinary geometry. So in like manner we find the 
sphere to be two-thirds of the circumscribing cylinder, 
the celebrated discovery of Archimedes, of which he caused 
the diagram to be inscribed on his tomb. 

Lastly, it may in like manner be ShOWD that the radius 
of the osculating circle at any point of any curve, that 
ie, the circle touching it at such point, and having 
the same curvature with it at that point, is equal to 

5 

(dz'+dyj;, where d y being found in terms of 

±dzlxd(dz) 

z, the differential of ~ ~ is to be taken, so that there 

will in the result in each case be no differential at all. 
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Thus in the parabola !I"= 2 a x, the radius of curvature is 

=,v2r:a)( (2r+a). 

In all these operations, however, it must be observed, 
that as constant or invariable quantities have no dif
ferentials, 80 when we reverse the operation and find in
tegrals from given differential expressions, we never can 
tell whether a constant must not be added in order to com
plete that quantity, by taking whose differential the given 
expression was originally obtained. The determining of 
this constant qnantity, and the finding whether there be 
any or not, depends upon the particular conditione of each 
problem. It is always added as 1L matter of course. 
Thus when we integrate d r + d!l, we cannot tell whether 
this quantity arose from taking the differentials of x and !I 
only, or from taking the differential of x + !I + c; and it 
must depend upon the nature of the question whether c is 
to be added to the integral or no; and if to be added, how 
it shall be ascertained. 

Having explained this important method of investigation, 
by the help of which Newton was enabled to make his 
greatest mathematical discoveries, and by the principles 
of which he demonstrates them in the Principia, it only 
remains, before proce~ding to the analysis of those dis
coveries, that we should remark the preference whic~ he 
gives to the geometrical methods, improved and adapted 
to his purpose by the doctrine of Prime and IDtimate ratios. 
He uses this doctrine similar in principle to, and the foun
dation of, the noble and refined calculus which we have 
been considering; but he does not at all employ that 
calculus. 

The First book treats of the motion of bodies with-
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out regard to the resistauce of the medium that fills the 
space in which they move; and it is principally devoted 
to the consideration of motions in orbits determined by 
centripetal forces, and to examining the attraction of bodies. 
The Second book treats of the resistance of fluids chiefly 
88 affecting the motions of bodies that move in them. 
The Third book contains the application of the principles 
thus established to the motions, attractions, and figures 
of the heavenly bodies. 

I. 
The fundamental proposition, 88 it may justly be termed, 

of the whole system, is one which Newton's predecessors 
may be said to have nearly reached; which Kepler, had 
he been more inclined to trust demonstration than em
pirical observation, probably would have attained; and 
which Galileo would certainly have discovered had he con
templated the facts discovered by Kepler, particularly his 
second law·: The proposition is this. If a body is driven 
by any single impulse or force of projection, and is also 
drawn continually by another force so 88 to revolve round 
a fixed centre, the radius vector, or line drawn from the 
body to that centre, describes areas which are in the same 
fixed plane, and are always proportional to the times of the 
body's motion; ·and conversely, if any body which moves 
in any curve described in a plane so that the radius vector 
to a point either fixed or moving uniformly in a straight 
line, describes areas proportional to the times of the body's 
motion, that body is acted on by a centripetal force tending 
towards and drawing it to the point. 

To prove this, we have to consider that if a body 
moves equably on in a straight line, the areas or triangles 

• See the historical notice above respecting this second law, viz., that the 
planets d4l6Cribe IIlU8 proportional to the times by their radii vcctores. 
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which are described by a line drawn from it to any 
point are proportional to the portions of the straight line 
through which the body moves, (that is to the time, since, 
moving equably, it moves through equal spaces., in equal 
times,) because those triangles, having the same altitude, 
are to one another in the proportions of their b~. S 
being the point and A 0 the line of motion, S.A,.B is to 
SB e as AB to Be. If then at B a force acts in the line 
S B, drawing the body towards S, it will move in the 
diagonal B C of a parallelogram of which the sides are 
Be and B V, the line through which the deflecting force 

o 

S A 

would make it move if the motion caused by the other 
force ceased. Ce therefore is parallel to VB, and the 
triangle SB C is equal to the triangle S Be; consequently 
the motion through A B and B C, or the times, are as the 
two triangles SAB and SBC: and 80 it may be proved if 
the force acting towards S again dellects the body at C. 
making it move in the diagonal CD. If, now, instead of 
this deflecting force acting at intervals A, B, C, it acts at 
every instant, the intervals of time become less than any 
assignable time, and then the spaces AB, B C, C D will 
become also indefinitely small and numerous, and they will 
form a curve line; and the straight lines drawn from any 
part of that curve to S will describe curvilinear areas, as 
~e body moves in the curve ABCD, those areas being 

to ~e times.-So conversely, if the trianglee 
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S Be and S B C are equal, they are between the same 
parallels, and cC is parallel to SB, and Dd to se; 
coD8equently the force.·which deflects acta in the lines SB 
and SC, o~f;Qw~s the point S.-It is equally manifest 
that the .direction of the lines B c, C d, from which the 
centri~ force deflects the body, is that of tangents to 
the curve. which the body describes, and that consequently 
the velocity of the body is in any given point inversely 
proportional to the. perpendicular drawn from the centre to 
the tangent; the areas of the triangles whose bases are 
equal, being in the proportion of their altitude, that is, 
of thoee perpendiculars, and those areas being by the pro
position, proportional to the times. 

There are several other corollaries to this important 
proposition which deserve particular attention. B c and 
De are tangents to the curve at B and D respectively; 

s 

B C and D E the arcs described in a given time; C c 
and E e lines parallel to the radii vectores S Band S D 
respectively; and C V, Ed parallel to the tangents. The 
centripetal forces at B and D must be in the proportion of 
V Band d D (being the other sides of the parallelograms 
of forces) irthe arcs are evanescent, so as to coincide with 
the diagonals of the parallelograms V c and de. Hence 
the centripetal forces in Band D are as the versed sines 

D 
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of the evanescent arcs; and the same holds true if instead 
of two arcs in the same cu"e, we take two arcs in dif
ferent but similar curves.· 

From these propositions another follows plainly, and its 
consequences are most extensive and important. If two 
or more bodies move in circular orbits (or trajectories) 
with an equable motion, they are retained in those paths 
by forces tending towards the centres of the circles; and 
those forces are in the direct proportion of the squares of 
the arcs described in a given time, and in the inverse pro
portion of the radii of the circles. 

First of all it is plain, by the fundamental proposition, 
that the forces tcnd to the centres S, 8, because the sectors 
AS B .and PBS being as the arcs A B, B P, and the 
sectors a 8 b, p h 8, as the arcs a h, b p, which arcs being 
all as the times, the areas are proportional to those times 
of describing them, and therefore Sand 8 are the centres 
of the deflecting forces. Then, drawing the tangents A C, 
a c, and completing the parallelograms D C, dc, the dil\:,O'O
naIs of which coincide with the evanescent arcs A B, a h, 
we have the centripetal forces in A and a, as the versed 
sines A D, a d. But because A B P and a h p are right 
angles (by the property of the circle), the triangles AD B, 
A P B, and a db, a p b, are respectively similar to one 
another. Wherefore AD: A B:: A B : A P and AD 

ABt a hi = A p; and in like manner a d = a p' or, as the evan-

escent arcs coincide with the chords, A D = arc ~ ~1 and 

a b2 
ad = arc -. Now these are the properties of any arcs deap 
scribed in equal times; and the diameters are in the pro-

• If Be, DE, are bisected, the proportion is found with the halves 
of V B, D d; and that is the same proportion with the whole vCl'S(:d sines. 
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portion of the radii; therefore the centripetal furrcs arc ui
rectly as the squares of the arcs, and invcr:,dy a~ the radii. 

A 

It is difficult to imagine a propo~ltlOn more fruitful 
in consequences than this; and therefore it has been Ile
monstrated with adequate fulness. 

In thefirst place, the arcs ue:5eriheu being as thc "cloritier;, 
if F,fare the centripetal forcc:", amI V, I.' thc YC'lllcitic,:, and 
R, r the radii, F :.f:: Vl : v~; anlla150 :: r : R; orF : 

.. V2 , v2 
f" R·-- , -. }low as in the circle V and n. t' and r 

l' 

are both constant quantities, the ccntripetal fu\'cc i" it"clf 
const.'mt, which retains a body by deflecting it towards 
the centre of the eirclc. 

Secondl!!. The timcs in which thc wholc circlci! arc 
described (called the pcriouic timcs) arc as the total cir
cumferences or peripheries; T : t :: P : /,: But the pe
ripheries are as the radii or :: R : r, Therefore T: 

t :: R : r; also V : I) :: ~I' : P, thcrcfure ill\'er~ely as 
t 

R 
the radii, or T : t :: V 

R" /,2 
r, and y~, t,"" - t .,' nut v c: '" rr~' _ 
v~ 

the centripetal forces F :/:: H 
,,2 
.. , ~lIl,tititutillg for the 
l' 
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ratio of VI : Vi, its equal the ratio of ~: : ~, F : f :: 

~i : ;; or the centripetal forces are directly as the 

distances and inversely as the squares of the periodic 
times; the forces being as the distances if the times 
are equal j and the times being equal if the forces are 
as the distances. - It also follows that if the periodic 

times are as the distances, then F : f :: R :!:.; that is, . Ri "s 

:: i : ~, or inversely as the distances. - In like man

ner if the periodic times are in proportion to any power 
n, of the distance, or T : t :: R" : r", we shall have 

R r 
~ : (J :: Rh : r"" and F : f :: W- : "s" j that is 

:: R~"-' : "s!-I j and conversely if the centripetal force 

is in the inverse ratio of the (2n-l)th power of the dis
tance, the periodic time is as the nth power of that dis
tance.-Likewise, as the velocities of the bodies in their 

orbits or V : v :: ~ : i, if we make T t:: R" : r", 

R r 1 1 
then V : v :: R" :;:a' or:: R,,-I : r"-I' Thus, sup-

pose n is equal to ; we have for the velocities V : v 

11th 'h' bdli :: -_ : ~t or ey are 10 t e 10verse 8U up cate pro-
""R ""r 

portion of the distances; and for the centripetal forces we 
.1 1 1 1 h ' 

have F: f :: R3-1 : r3-1 :: R,2 : r'; or t e attractIon 

to the centre is inversely as the square of the distance • 

. ~ 
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3 1J S 
Now if n=2' T : t:: B.~ : T~. or Tli : (J:: R3 : 1"); in 

other words the sqnares of the periodic times are as the 
cubes of the distances from the centre, which is the law 
discovered by Kepler from observation actually to prevail 
in the case of the planets. And as he also showed from ob
servation that they describe equal areas in equal times by 
their radii vectores drawn to the sun, it follows from the 
fundamental proposition,jiTst, that they are deflected from 
the tangents of their orbits by a power tending towards the 
lIun; and then it follows, secondly, from the last deduction re-

IIpecting it, (namely, the proportion ofF: f:: ~11 : ~,) that 

this central force acts inversely as the squares of the 
distances, always supposing tbe bodies to move in cir
cular orbits, to which our demonstration has hitherto 
been confined.· 

The extension, however, of the same important pro
position to the motion of bodies in other curves is easily 
made, that is to the motion of bodies in different parts 
of the same curve or in curves which are similar. For 
in evanescent portions of the same curve, the osculating 
circle, or circle which has the same curvature at any point, 
coincides with the curve at that point; and if a line is 
drawn to the extremity of that circle's diameter, A M B 
and a m b may be considered as triangles; and as they are 
right angled at M and m, A Mll is equal to A P x A Band 
a mll to a p x a b; and where the curvature is the same 
as in corresponding points of similar curves, those squares 
are proportional to the lines A P, or a p; or those versed 

• We IIhall afterwa1'ds show, from other considerations, that this seaqlli
plica&e proportion only holds true on the supposition of the bodies all 
moving without exerting any action on each other, when we como to con
sider Laplace's theorems on elliptical motion. 

D 3 
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sines of the arcs A M and a m are proportional to the 
squares of the small arcs. Hence if the distances of two 

bodies from their respective centres of force be D, d, the 
deflecting force in any points A and a being as the versed 
sines, those forces are as A M2 : a m'l; and from hence 
follows generally in all curves, that which has been demon
strated respecting mot~on in circular orbits. 

The planets then and their satellites being known by Kep
ler's laws to move in elliptical orbits, and to describe round 
the sun in one focus areas proportional to the times by their 
radii vectores drawn to that focus, And it being further 
found by those laws that the squares of their periodic times 
are as the cubes of the mesn distances from the focus, 
they are by these propositions of Sir Isaac Newton which 
we have been considering, shown to be deflected from the 
tAngent of their orbit, and retained in their paths, by a 
force acting inversely as the squares of the distances from 
the centre of motion. 

But another important eorollary is also derived from 
the same proposition. If the projectile or tangential force 
in the direction A T ceases (next figure), the body, 
instead of moving in any arc A N, is drawn by the 
same centripetal force in the straight line A S. Let A n 
be the part of A S, through which the body falls by the 
force of gravity, in the same time that it would take to 
describe thc arc AN. Let A M be the infinitely slllall 
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arc described in an instant j and A P its versed sine. 
It was before shown, in the corollaries to the first pro
position, that the centripetal force in A is as A P, and 
the body would move by that force through A P, in the 
same time in which it describes the arc A M. Now the 
force of gravity being one which operates like the centri
petal force at every instant, and uniformly accelerates the 
descending body, the spaces fallen through will be as the 
squares of the times. Therefore, if A n is the space 
through which the body falls in the same time that it 

Ar-~----------__ T 

B 

would describe A N, A P is to A n as the square of the 
time taken to describe A M to the square of the time of 
describing A N, or as A M!1 : A N!1, the motion being 
uniform in the circular arc. But A M, the nascent arc, 
is equal to its chord, and.A M B being a right angled 
triangle as well as A P 1I, A B : AM:: AM: A P and 

AM' A P = A B . Substituting this in the former proportion, 

AMI 
we have AB : A n:: A Mt : A Nt, or An: A N2 

AM' :: A B : A M t, that is :: ] : A B. Therefore A N!1 

= A n x A B, or the arc described, is a mean propor
tional between the diameter of the orbit, and the space 
through which the body would fall by gravity alone, in 
the same time in which it describes the arc. D. 
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Now let A M N B represent the orbit of the moon; 
A N the arc described by her in a minute. Her whole 
periodic time is found to be 27 days 7 hours and 43 mi
nutes, or 39,343 minutes j consequently AN: 2 AN B 
:: 1 : 39,343. 

But the mean distance of the moon from the earth 
is about 30 diameters of the earth, and the diameter of 
her orbit, 60 of those diameters; and a great circle of the 
earth being about 131,630,572 feet, the circumference of 
the moon's orbit must be 60 times that length, or 
7,897,834,320, which being divided by 39,343 (the num
ber of minutes in her periodic time), gives for the arc 
A N described in one minute 200,743, of which the 
square is 40,297,752,049, or A NI, which (by the propo
sition last demonstrated) being divided by the diameter 
A B gives A no But the diameter being to the orbit 
as 1 : 3.14159 nearly, it is equal to about 2,513,960,866. 
Therefore A n = 16.02958, or 16 feet, and about the 
third of an inch. But the force which deflects the moon 
from the tangent of her orbit, has been shown to act 
inversely as the square of the distance j therefore she would 
move 60 )( 60 times the same space in a minute at the 
surface of the earth. But if she moved through so much 
in a minute, she would in a second move through so much 
less in the proportion of the squares of those two times, 
as has been before shown. Wherefore she would in a 
second move through a space equal to 161~ nearly 
(16.02958). But it is found by experiments frequently 
made, and among othel"8 by that of the pendulum -, that a 

• It is fouud that a peudulum, vibrating seconds, is about the length 
of 3 (eet 31 inches in this latitude; and the space through which a bod,. 
fal1! in a secoud is to half this length as the square of the circumference of 
& circle to that o( the diameter, or as 9.S695 : I, and that is the proportion 
of the half of 3 feet 3} inches to somewhat more than 16 feet. 
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body falls about this space in one second upon the surface 
of the earth. Therefore the force which deflects the moon 
from the tangent of her orbit, is of the same amount, and 
acts in the same direction, and follows the same proportions 
to the time that gravity does. But if the moon is drawn 
by any other force, she must also be drawn by gravity; and 
as that other force makes her move towards the earth 16 
feet t inch, and gravity would make her move as much, 
her motion would therefore be 32 feet 4 inch in a second 
at the earth's surface, or as much in a minute in her orbit; 
and her velocity in her orbit would therefore be double of 
what it is, or the lunar month would be less than 13 days 
and 16 hours. It is, therefore, impossible that she can 
be drawn by any other force, except her gravity, towards 
the earth.-

Such is the important conclusion to which we are 
led from this proposition, that the centripetal forces are 
as the squares of the arcs described directly, and as the 
distances inversely. The great discovery of the law of 
the universe, therefore .• is unfolded in the very beginning 
of the Principia. But the rest of the work is occupied 
with tracing the various consequences of that law, and 
first of all in treating generally of the laws of curvilinear 
motion. The demonstration of the moon's deflection has 
been now anticipated and expounded from the Third 
Book, where it is treated with even more than the author's 
accustomed conciseness. But there seemed good ground 
for this anticipation, inasmuch as the Scholium to the 
Fourth Proposition refers in general terms to the con-

• The propoeicion may be demonatrated by meana of the Prop. XXXVL 
of Book L, .. well .. by means of the proposition of which,we have now 
been tracing the conseqaences (Prop. lV). But in truth the latter theorem 
gives a construction of the former problem (Prop. XXXVI.), and from it 
may be deduced both that and Prop. XXXV. 
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nexion between its corollaries, and the Theory of Gravi
tation. 

The versed sine of the half of any evanescent arc (or 
sagitta of the arc) of a curve in which a body revolves, 
was proved to be as the centripetal force, and as the 
square of the times; or as F x T'I. Therefore the 
force F is directly as the versed sine, and inversely as the 
square of the time. From this it follows that the central 
force may be measured in several ways. The arc being 
Q C, we are to measure the centrnl force in its middle 
point P. Then the areas being as the times; twice 
the triangle 8 P Q, or Q L x 8 P is as T in 

the last expression; and, therefore, Q R being parnllel 

to L P, the central force at P is as ~ Pll~ ~ QlI' 

80 if 8 Y be the perpendicular upon the tangent P Y, 
because P R and the arc P Q. evanescent, coincide, twice 
the triangle 8 P Q is equal to 8 Y x Q P; and the 
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central force in P is as S y~ ~ pl' ·Lastly, if the revo

lution be in a circle, or in a curve having at P the same 
curvature with a circle whose chord passes from that point 
through S to V, then the measure of the central force 

will be S y2 ~ P V·-By finding the value of those solids 

in any given CU"e, we can determine the centripetal force 
in terms of the radius vector S P; that is, we can find 
the proportion which the force must bear to the distance, 
in order to retain the body in the given orbit or trajectory ; 
and conversely, the force being given, we can determine 
the trajectory's form. 

This proposition, then, with its corollaries, is the foun
dation of all the doctrine of centripetal forces, whether 
direct or inverse; that is, whether we regard the method of 
finding, from the given orbit, the force and its proportion 
to the distance, or the method of finding the orbit from 
the given force. We must, therefore, state it more in 
detail, and in the .analytical manner, Sir Isaac Newton 
having delivered it synthetically, geometrically, and with 
the utmost brevity. 

It may be reduced to five kinds of formulae. 
1. If the central force iu two similar orbits be called 

F and f, the times T and I, the versed sines of half the 

area S and s,~then F : f :: :1 : ~; and generally F is as 

S 
Tt' 

2. But draw S P to any given point of the orbit 
in the middle of an infinitely small arc Q C. Let T P 
touch the curve in P, draw the perpendicular S Y from 
the centre of forces S to P T produced, draw S Q infi
nitely near S P, and Q R parallel to S P, Q 0 and R 0 
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parallel to the co-ordinates S M, M P. Then P being 
the middle of the arc, twice the triangle S P Q is propor
tional to the time in which C Q is described. Therefore 
Q P x S Y or Q L x PSis proportional to the 

time; and Q R is the v~rsed sine of C2Q, therefore 

F as ~ becomes F as: L Q~ ?'SPI; and if S M = x, 

M P = !I, and because the similar triangles Q R ° and 

S M P give Q R = QoSx:P, and because A M being 

the first differential of S M, ° Q is its second differential 

. -d' x x '" x2 +!l2 (negatIvely), therefore Q R = (taken 
x 

with reference to d t constant), and F is as 
-d'z '" x2 +!I' But L QI = Q pI - L pi and 

x x L Q2 X (Xl + !I')" 
L P is the differential of S P or '" rei + !II. Therefore 

!I (d~)1 
L Q2 _ (xd.,! - ydx)' - .'1 d .... ' . 

- I + 2 - -2-+ I ,an S! III as X!l X!l 

d' -- x .; Z;I + .'12 

z!l (d~r .. 
But as the differential of the time (L Q x P S) may 

be made constant, Q R will represent the centt'ipetal 
force; and that force itself will therefore be as 

d 2 z "';2 + !I' - ,. taken with reference to d t constant. 
:r 

• or these expl'ell8.ions. although I have sometimes found this, which 
waa firs' given by Herrman, serviceable, I generally prefer the two, 
lI'hich are in truth one, given under the next heads. But the expl'HSion 

Ii . d' z .! z' +!I'. . h' . __ ....... rat gIven - - -( - - 18 WIt out mtegratJon an WlWW oue. 
z!I' d ~), , 
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3. The rectangle S Y x Q P being eqnal to Q L x S P 

and SY = y1 z - zdJt, we have F as 
'V d:r+dyi 

QR QR QR 
SYiXQPI=(ydz-zdy)1 (Z)i' !I d y 

QR QPI. 
4. Because F = S yl X Q pi and Q R IS equal to the 

chord P V of the circle, which has the same curvature 
with Q P 0 in.P, and whose centre is K (and because 
Q pi = Q R x P V by the nature of the circle and 
the equality of the evanescent arc Q P with its sine, and 

QPI Q R 1). 
thus Py = QR' -therefore QPI = 'PV ,F18as 

1 
Syl X PV' 

is inversely as 

In like manner if the velocity, which 

I 

S Y, be caned v, F is as ;v Now the 

chord of the osculating oircle is to twice the perpendicular 
S Y as the differential of S P to the differential of the 
perpendicular; and calling S P the radius vector r, and 

SY 2pdr. dp 
=p, we have PV = dP' and F 18 as 2 p3 d r; and 

also F is as V21::. In these formulas, substituting for p 

and r their values in terms of z and y, we obtain a mean 
of estimating the force as proportioned to r, which is 
'II Zl+yi. 

5. The last artiole affords, perhaps, the most obvious 
methods of arriving at central forces, both directly and 
inversely. Althongh the quantities become involved and 
embarrassing in the above general expressions for all 
curves, yet in any given curve the substitutions can more 
easily be made. A chief recommendation of these expres-
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sions is, that they involve no second differentials, nor any 
but the first powers of any differentials. But it may be 
proper to add other formulas which have been given, and 
one of which, at least, i8 more convenient than any of the 
rest. 

One expression for the centrifugal force (and one some-

times erroneoU8ly given for the centripetal)· is : ~t s be

ing the length of the curve and R the radius of curvature. 
This give8 the'ready means of working if that radius i8 
known. But its general expression involves second dift'e-

d,3 
rentials, the usual formula for it being Cdy) 

dz'xd -d z ; 

consequently we must first find ~~ = . X (a fu~ction of 

x), and then there are only first differentials. 
Another for this radius of curvature i8 

ds' 
-v'(d2 y)2+(d' z)" and this is used by Laplace; and ano

ther is rd~' which, with other valuable formulas, is 

to be obtained from Maclaurin's Fluxions. But the for
mula generally ascribed to John Bernouilli (Mem. Acad. 
des Sciences, 1710), is, perhaps, the most elegant of 

any, F = 2 ar R; and this results from substituting 
.p x 

R P • al 2rdr. h . F d d d 2 . lor Its v ue?p, 1n t e equation to , e oce 

above from Newton's formula, namely, F = 2;!dr" 

• This error appears to have arisen from taking the ease where the 
radius of curvature and radius vector coincide, that is, the ease of the 
circle, in which the centrifugal and centripetal forces are the same. - See 
Mrs. Somcrville's truly admirable work on thc Mec. Cel., where the error 
manifestly arises from this circnmstance. 
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But the proposition is 80 important, that it may be 
well to prove it, and to show that it is almost in terms 
involved in the third corollary to Prop. VI. Book I. of 

the Principia. - By that corollary F = 21 C (C being 
p. 

the osculating circle's chord which paBBeS through the 
centre of forces). But drawing S Y, the perpendicular 
to the tangent, and P C F through the centre of the 

circle, and joining V F, which is, therefore, parallel to 
Y P, we have V P : P F :: S Y : S P or C : 2 R :: p : r 

and C = 2 R . P, which substituted for C in the above 
r 

. . F r 
equation, gIves = 2 P3. R· 

It is remarkable that the circumstance of this formula 
being thus involved in that of Sir Isaac Newton seems never 
to have been observed by Keill, who, in the Philosophical 
TransactioDB, xxvi. 74, gives a demonstration of it much 
more roundabont, and as of a theorem which Demoivre had 
communicated to him, ad~g, that Demoivre also informed 
him of Sir Isaac Newton having invented a similar 
method before. In fact, he had, above 20 years before, 
given it in substance, though not in express terms, in the 
Sixth Proposition, the addition of two lines to which would 
at once have led to this formula. But, again, when John 
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Bemouilli, two years afterwards, wrote his letter to He~ 
man (Mem. Acad. des Sciences, 1710), he gives it as his 
own discovery, and as such it has generally been treated, 
with what reason we have just seen. He is at much 
pains to state, p. 529., that he had sent it in a letter to 
Demoivre in February, 1706; but the Principia had been 
published nineteen years before. Herrman, in his Phoro
nomia, erroneously considers the expression as discovered 
by Demoivre, Grandi, and Bernouilli. (Lib. I. Prop. 
XXII.) 

In all these Cases p is to be found first, and the expres
sion for it (because, pp. 42, 43., T P: PM:: T S: S Y 

ydz-zdy Y ) and T S= d ,and PT =d ./dyl+dzl is p . y y 
z 

d d Y' dy-=SY=y _z-z Y 
.,Idyl + dz l .,I dy2+d:x:2' Also r = S P 

= ..; Z2+yl, Then the radius of curvature R = 
Cd Zl + dyl)5 (X be' dy, f d h ' 
d z' x d X mg d z In terms 0 z, an avmg no 

differential in it when the substitution for d y is made), 
Therefore, the expression for the centripetal force becomes 
./z'+y1xdz'xdX, , --=-----.1..---' 10 which, when y and d y are put 

2.rt(d ;) 
in terms of z, as both numerator and denominator will be 
multiplied by d zI, there will be no differential, and the 
force may be found in terms of the radical - that is, of 
r, though often complicated with z also. It is generally 
advisable, having the equation of the curve, to find p,r, 
and R, firlt by some of the above formulas, and then sub
stitute those values, or d p and d r, in either of the 

, fi F dp r 
expressions or '2 pa d r or 2 pI R' 

Digitized by Coogle 



NEWTON'S PIU~CIPIA. -19 

To takc an example in the pal"abola, whel'c S being 

the focus, amI 0 S = fl, !/ = -1 a ,r, aIllI T)[ = 2 ,I', 

and p = y S = .; (ll + .1') a; r = S P = a + ,f, alll) 

r d r ) Va --t-- I' , It = -d = 2 (a +.1' ---' ;weltavethercful'el! as 
p u 

r 
J~3~R = 

a + ,I' 

(n (a + .r»)ri 

I 
or, ),ce:lII>5e 0 S (t Ite pal':l

:2 a (a + .r)2 -2.0~. ~ l'~' 

mcter) is cCHl:stant, inversely as the 5q narc of the dis-

tanee: And the other formula F ill' as !rIves the 
p't! r ~ 

I 
samc result for the law of force, 01' :f:-; 1 )~." 

Again, in the ellipst', if (( be half the tralh\'Cr:ie axi~, 

and b half the conjugate, and r the radill~ vector, we ha\'c 

V r fll,rll' 
P = b ---, and d]l = --------0 ; therefore 

:2 II - r \/;~(2 a-I'); 

dp 
the formula ~l become'> P"( r 

II I, d I' a 
1,.- ; Il" = I,~ -,,~' or ,I,: x r~ X 

tIle force is ill\'el'scly as the square of the di"tance. 

• This rC:o'ult eoillcille~ with the "'yntltetical ~qltltioll of Sir I~aa,' ;\1'\\ fOIl 

in Prop, XIII. 

E 
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Lastly, as the equations are the same for the hyper
bola, with only the difference of the signs, the value 
of the force is also inversely as rl, or the square of the 
distance. In the circle a = the radius = r = p; hence 

p: R becomes ; , which, being constant, the force is every

where the same. But if the centre of forces is not that 
of the circle, but a point in the circumference, the force is 

1 
as ra' 

Respecting centrifugal forces it ma.y be enough to 
add, that if v is the velocity and r the radius, the 

II 

centrifugal force f, in a circle, is as !.. Also if R be 
r 

2 

the radius of curvature, f for any curve is = R. 
When a body moves in a circle by a centripetal force 
directed to the centre, the centrifugal force is equal 
and opposite to the centripetal Also the velocity in 

uniform motion, like that in a circle, being as 1, the 

space divided by the time, and the erc being as the 
• • 8' r 

radiUS r, f 18 as --2 or as -tl' If two bodies moving in r.t 
different circles have the same centrifugal force, then the 

times are as v;:, -It is to the justly celebrated Huygens 
that we owe the first investigation of ceutrifugal forces. 
The above propositions, except the second, are abridged 
from his treatise.· 

The rest of the investigation of centripetal forces is an 
expansion of the formulas above given, and their appli
cation to various cases, but chiefly to the conic sections. 
It may be divided into four branches. First, the rules 

• Horologium Oscillatorinm, cd. 1673, p. 159, App. 
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are given for determining the central force required to 
make the body move in a given orbit of one of the four 
conic sections. Secondly, the inquiry becomes material 
how curves of a given kind, namely, the conic sections, 
may severally be found by merely ascertaining certain 
points in them, or certain lines which they touch, because 
this enables us to ascertain, among other things, the 
whole of a planet's orbit, from ascertaining certain points 
by actual observation. This branch of the subject is 
purely mat.hematical, consistiug of the rules for drawing 
those curves through given points, or between, or touching 
given straight lines; and it is subdivided into two heads 
according as one or neither focus hi given. The third 
object is to ascertain the motion, place, and times of bodies 
moving in given trajectories generally; and, among others, 
also of bodics descending, or retarded in ascending, by 
gravity. Thefourth branch treats of the converse inquiry 
into the figures of the trajectories, and the places, times, 
and motion, when the nature of the centripetal force is 
known. 

It is thus manifest tbnt the great importance of motion 
in the Conic Sections made Sir Isaac Newton consider 
those curves in particular, before discussing the general 
subject of trajectories. 

i. In exemplifying the use of the formulas we have 
E 2 

/" 
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shown the proportion of the force to the distance in the 
conic sections generally, their foci being the centres of 
forces. Let us now see more in detail what the pro
portion is. for the circle. Let S. be the centre of forces 
and K of the circle, PTa tangent, S Y a perpendicu
lar to it, K M and M P co-ordinates, S K=b, KO=a, 
P M=y, and M K=,x. Then, by similar triangles, T K P 

STxKP 
and T S Y, we have S Y = TK ,or (because the 

y' a' + b,x sub-tangent M T = -, and a2=.1:lI+yt) or 
,x a 

( 2 a~+2 boX) 
~ a ; also S P = ...; a"l + 2 b ,x + b', and because 

by the property of the circle 0 S x SB or (a + b) 
(a-b)=a'-bt = P S x S V; therefore 

at-b' d PV _ 2at +2 boX SV= an - • .v at + 2 h ,x + bl .v at + 2 b ,x + hI 

Now by the formula already stated as BemouiIli's, 
but really Sir Isaac Newton's, the centripetal force in 

P is as S Y~ ~ R' R being the radius of curvature, 

and in the circle that is constant being = a, the semi

diameter; therefore the force is as .v at + 2 h ,x + h' , 
a (2a 2 + 2 h,x)3 

8a3 

8 x all .v at + 2b,x + h2 

or as (2 at + 2 h Z )3 

BOllX spa 

• BOt x SP 
that IS (2 a2+2 h.x)3; 

or as (2a2+2 h,x)3 x 8 pt' 
BOt 

or as (2 at + 2 h ,x )3 X P St· 
spa 

- PV. 

But 2 a~ + 2 IJX 
l:iP 

Therefore the central 
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force is as P V~ ~~ PI; or (because 0 B3 is constant) the 

central force is inversely as the square of the distance and 
the cube of the chord jointly. Of consequence, where S 
is in the centre of the circle and b = 0, the force is con
stant, S P becoming the radius and P V the diameter; and 
if S is in the circumference of the circle as at B, or a=b, 
then the chord and radius vector coinciding, the force is 
inversely as the fifth power of the distance, and is also 
inversely as the fifth power of the cosine of the angle 
PSO. 

By a similar process it is shown that in an ellipse the 
force directed to the centre is as the distance. Indeed, a 
property of the ellipse renders this proof very easy. For 
if S Y is the perpendicular to the tangent T P, and N P 
(the normal) parallel to SY, and S A the semi-conjugate 

~ 
B S N III 0 T 

axis; S A is a mean proportional between S Y and PN, 

AS2 
and therefore S Y = P N-; also the radius of curva-

ture of the ellipse is (like that of all conic sections) 

4PN3 
equal to -p2" - J P being the parameter. Therefore 

we have to substitute these values for S Y and the 
radius of curvature, R, in the expression for the central 

E 3 

Digitized by Coogle 



54 

SP 
fosce, U. X ::; yat 

NEWTON'S PRINCIPIA. 

SP 
and we have -:-"--;-....-;;:;----A-:-':""m'6 -4. P N 0 

X PN3 

pi pi 
4 A 86 X S P; 80 that, neglecting the constant 4 AS6' 

the centripetal force is as the distance directly 
From hence it follows, conversely, that if the centripetal 

force is as the distance, the orbit is elliptical or circular, 
for by reversing the steps of the last demonstration we 
arrive at an equation to the ellipse; or, in case of the two 
axes being equal, to the circle. It alSo follows that if 
bodies revolve in circular or elliptical orbits round the 
same centr<.', the centre of the figures being the centre 
of forces, and the force being as the distance, the periodic 
time of all the bodies will be the same, and the spaces 
through which they move, however differing in length 
from each other, will all be <lescribeu in the same time. 
This propo~ition, which sometimes has appeareu paradoxical 
to those who did not sufficiently reflect on the subject, is 
(Iuite evident from considering that the force and velocity 
bcing increased in proportion to the distance, and the 
lengths of similar curvilinear and concentric figures being 
in some proportion, and that al ways the same, to the mdii, 
the lengths are to each other as those radii, and conse
quently the velocity of the whole movement is increased 
in the same proportion with the space moved through. 
Hence the times taken for performing the whole motion 
must be the same. Thus, if V an,l v are the velocities, 
Rand r the radii, Sand 8 the lines described in the 
times T and t, by. two such bodies round a common 
centre, V: v:: R : r, and S: s:: R: r; and because 

S 8 S S 
V = T and v = T' T : t:; R : r, and S : 8:: TR : 
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t T i or R : r:: T R : t T ; and therefore T = t. Hence 
if gravity were the same towards the sun that it 'is 
between the surface and centre of each planet, or if the 
sun were moved but a very little to one side, so as to be 
in the centre of the ellipse, the whole planets would 
revolve round him in the same time, and Saturn and Uranus 
would, like Mercury, complete their vast courses in about 
three of our lunar months instead of 30 and 80 years,-a 
velocity in the case of Uranus equal to 75,000 miles in a 
second, or nearly one-thinl that of light. 

It also follows from this proposition that, if such a law 
of attraction prevailed, all bodies descending in a straight 
line to the centre would reach it in the same time from 
whatever distance they fell, because the elliptic orbit 
being indefinitely stretched out in length and narrowed 
till it became a straight line, bodies would move or vibrate 
in equal times through that line. This is the law of 
gravity at aU points within the earth's surface, and Sir 
I. Newton has adapted one of his investigations to it, 
when treating of the pendulum. 

Another consequence of this proposition is, that if the 
centre of the ellipse be supposed to be removed to an 
infinite distance, and the figure to become a parabola, 
the centripetal force being directed to a point infinitely 
remote, becomes constant and equable i a proposition dis
covered first by Galileo. 

Sir Isaac N e\vton having treated of the centripetal force 
in conic sections, where the centre of forces is the centre 
of the figure (and generally whatever be the centre in 
the case of the circle), proceeds to treat of that force where 
it is directed towards the focus of one or other of those 
cnrves, and not to the centre. It is easy to demonstrate 
a compendious theorem, that which forms the subject of 
his three firllt propositions, in which he determines the 

E" 
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law of the force for the three curves (parabola, hyper
bola, and ellipse) severally. For this purpose a simple 
reference to the formulas already stated will suffice; 
indeed our illustration of those formulas has already anti
cipated this. 

HOP A be a conic section whose parameter is D, 
S Y the perpendicular to the tangent T P, P R 
the radius of curvature at P; then S Y : S P :: l D 

: P N (the normal), and S Y = ~: ~ ~; also P R = 
4 P N3 

DI • S~bstitute theBe values of S Y andP R (p 

and R) in the expression formerly given for the central 

!' 

SP r 
force 3 H' and we have D3 . spa 

p X 8 .P .oN 3 X ---;1)-:-:1;:-- or 

)) x 28 pI' which is (D being inva?able) as the inverse 

square of the distance. Therefore any body moving in 
any of the conic sections by a force directed to the 
focus, is attracted oy a centripetal force inversely as the 
square of the distance from that focus. This demon-
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stration, therefore. is quite general in its application to all 
the conic sections. 

It follows that if a body is impelled in a straight line 
with any velocity whatever, from an instantaneous force, 
and is at the same time constantly acted upon by a cen
tripetal force which is inversely as the square of the distnnce 
from the centre. the path which the body describes will 
be one or other of the conic sections. For if we take the 

expression D • ~ pt and work backwards, multiplying the 

numerator and denominator both by S P, and then mul-

. I' b d . b 8 D' . P N3 b' h tiP ylOg t e enoIDlDator y 8 D2. P !'t3' we 0 tam t e 

expressions for the value of' S Y, the perpendicular, and 
for R, the radius of curvature. But no curves can have 
the same value of' S Y and R, except the conic sections; 
because there are no other curves of the second order, 
and those values give quadratic equations between the 
co-ordinates. 

By pursuing another course of the same kind alge
braically, we obtain an equation to the conic sections 
generally, according as certain constants in it bear one 
or other proportion to one another. The perpendicular 
S Y and the radius of' curvature are given in terms of' the 
normal; and either one or the other will give the equation. 

3 

(dz2 +d t)~ 4PN3 43 3 

ThusR = ---(I Y)=--DIl-=DIl~-xaX(d:X:2+dy2)~ 
dz'xd -' 

dz 
which gives D2 d z3 = 4 y3 x (d' Y d z - d' z d y) an 
equation to the co-ordinntes. Now whether this be resol
vable or not, it proves that only one description of curves, 
of one order, can be such as to have the property in 
question. The former operation of going back from the 
expression of the central force. proves that the conic sec-
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tions answer this condition. Therefore no other curves 
can be the trnjectories of bodies moving by a centripetal 
force inversely as the square of the distance.-

It may be remarked that J. Bernouilli objects (Mem. 
Acad. des Sciences, 1710) to Sir Isaac Newton that he 
had as:!umed the truth of this important proposition 
without any demonstratidn. But this is not correct. He 
certainly gives a very concise anu compenilious one; but 
he states uistinctly that the focus and point of contact 
being given, and the tangent given in position, a conic 
section may be described which shall at that point of 
contact have a given curvature; that the curvature is 
given from the velocity and central force being given; 
and that two orbits touching each other with the same 
centripetal force and velocity cannot he uescribed. This 
is in substance what we have expounded in the above 
demonstration. But it must also be observed, as Laplace 
has remarked, that Newton has in a subsequent problem 
shown how to find the curve in which a body must move 
with a given velocity, initial ilirection, and position; and 
since, when the centripetal force is inversely as the square 
of the c1istance, the curve is shown to be one or other of 
the conic sections, he has thus demonstrated the proposition 
in question; so that if he had not donc so in the corollary 
to one prohlem, he has in the solution of another. t 

J. Bernouilli objects also to a very concise and elegant 

• The equation may be resolved and integrated; there results, in the first 

instance, the equation d :z ~ ; d!l : and therefore the integral is this 
2 c!f-D" 

quadratic, c' z2-2 c!l-2 cC:z+C·+D·~O.-Anotherdemonstration is 
given in the Appendix, No.2. 

t Sy8~me dn Monde, liv. v. chap. II. It is to be observed, that the 
Seventeenth Prop. Dook I., is exactly the some in the first as in the subse
quent editions, except tile immaterial addition of Ii. few lines to tile demon
stration. Consequently, Dcmouilli must have been aware of it when he 
wrote in 1710. 
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8Olution of the inverse problem given by Herrman in the 
same volume of the M6moires, and which had been com
municated to him before it was presented to the Academy. 
This solution proceeds upon his general expression for the 

centripetal force, - ,p:r -\1 z2 + yll; and the objection made 
:r 

is that he works the problem (as he does in a few lines) 
by multiplications and divisions which show that he was 
previously aware of the solution in the case of the conic 
sections. But this is no objection to a solution which being 
of a problem already known, can only be regarded as a 
demonstration that the former solution was exact. It is 
an objection which, if valid, applies certainly to the de
monstration which we have just given of the proposition; 
but 80' it does to all the demonstrations of the ancient 
geometrical analysis. It is a more suhstantial objection 
that Herrman omittoo a c(lnstant in his integration; but 
by adding it, Dernouilli shows dlat the equation which 
Herrman found, when thus corrected, expresses the conic 
sections generally. 

This truth, therefore, of the necessary connexion be
tween motion in a conic section and a centripetal force 
inversely as the square of the c.listance from the focus, is 
fully establislu!d by rigorous demonstration of various kinds. 

If we now compare the motion of different bodies in 
concentric orbi ts of the same conic sections, we shall find 
that the areas which, in a given time, their radii vectores 
describe round the same focus, are to one another in the 
subduplicate ratio of the parameters of those curves. From 
this it follows, that in the ellipse wholle conjugate axis 
is a mean proportional between its transveri!e axis and 
parameter, the whole time taken to revolve (or the periodic 
time) being in the proportion of the area (that is in the 
proportion of the rectangle of the axes) directly, and-in 
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the subduplicate ratio of the parameter inversely, is in the 
sesquipJicate ratio of the transverse axis, and equal to the 
periodic time in a circle whose diameter is that axis. It 
is also easy to show from the formula already given re
specting the perpendicular to the tangent, that the velocities 
of bodies moving in similar conic sections round the same 
focus, are in the compound ratio of the perpendiculars in
versely and the square roots of the parameters· directly. 
Hence in the parabola a very simple expression obtains for 
the velocity. For the square of the perpendicular being 
as the distance from the focus by the nature of the curve 
(the former being at + a z, and the latter a + z), the 
velocity is inversely as the square root of that distance. In 
the ellipse and hyperbola where the square of the per
pendicular varies differently in proportion to the distance, 
the law of the velocity varies differently also. The square 
of the perpendicular in the ellipse (A being the transverse 
axis and B the conjugate, and r the radius vector) is 

B2 xr . HI xr 
A -r; m the hyperbola, A +r' or those squares of 

the perpendicular vary as A rand A r , in those 
-r +r 

curves respectively, B'I being constant. Hence the ve
locities of bodies moving in the former curve vary in a 
greater ratio than that of the inverse subduplicate of the 

distance, or ~_, and in a smaller ratio in the latter curve, vr 

while in the parabola ;;: is their exact measure. 

To these useful propositions, Demoivre added a theorem 
of great beauty and simplicity respecting motion in the 

• By parameter is always to be understood. unless otherwise mentioned, 
o:he principal parameter, or the panuncter to the principal diameter. 
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ellipse. The velocity in any point P i8 to the velocity in 
T, the point where the conjugate axi8 cuts the curve, as 
the 8quare root of the line joining the former point P 
and the more di8tant focu8, is to the 8quare root of 
the line joining P and the nearer focu8. It follow8 from 
these proposition8 that in the ellip8e, the conjugate axis 
being a mean proportional between the tran8verse and 
the parameter, and the periodic time being as the area, 
that i8 a8 the rectangle of the axe8 directly, and the 
squlll'e root of the parameter inversely, t being that time, 

ab 
a and b the axes, and p the parameter, t = lijl and 

b"=ap; therefore ab=a ..!ap= ..!alx ..!p; and t= 

..! aI, and t2 =a3 ; or the square8 of the periodic times 
are as the cubes of the mean di8tances. So that all 
Kepler's three laW8 have now been demon8trated, a priori, 
as mathematical truth8; first, the area8 proportional to the 
times if the force is centripetal-second, the elliptical orbit, 
-and third, the se8quiplicate ratio of the times and dis
tances, if the force is inversely as the square8 of the dis
tance8, or in other words if the force i8 gravity. 

Again, if we have the velocity in a given point, the 
law of the centripetal force, the ab80lute quantity of 
that force in the point, and the direction of the projectile 
or centrifugal force, we can find the orbit. The velocity 
in the conic section being to that in a circle at the given 
di8tance D as m to n, and the perpendicular to the tangent 

being p, the lesser axi8 

2Dn'J 
greater axi8 2 2 2' the sign8 being reversed in the 

n -m 

denominator of each quantity for the ca8e of the hyperbola. 
Hence the very important conclusion that the length of 
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the greater axis does not depend at all upon the direction 
of the tangential or projectile force, but only upon its 
quantity, the direction influencing the length of the lesser 
axis alone. 

Lastly, it may be observed, that as these latter pro
positions give a measure of the velocity in terms of the 
radius vector and perpendicular to the tangent for each of 
the conic sections, we are enabled by knowing that ve
locity in any given case where the centripetal force is 
inversely as the square of the distance, and the absolute 
amount of. that force is given, as well as the ilirection of 
the projectile force and the puint of the projection, to 
determine the parameters and foci of the curve, and also 
which of the conic sections is the one described with that 
force. For it will be a parabola, an hyperbola, or an ellipse, 
according as the expression obtained for p'l (the square of the 
perpendicular to the tangent.) is as the radius vector, or in 
a greater proportion, or in a less proportion. This is the 
problem above referred to, which John Bernouilli had en
tirely overlooked, when he charged Sir Isaac Newton with 
having left unproved the important theorem respecting 
motion in a conic section, which is clearly involved in its 
solution. 

Defore leaving this proposition, it is right to observe 
that the two last of its corollaries give one of those sa
gacious anticipations of future discovery which it is in 
vain to look for anywhere but in the writings of this great 
man.· He says, that by pursuing the methods indicated 
in the investigation, we may determine the variations im
pressed upon curvilinear motion hy the action of disturbing, 
or, what he terms, foreign forces; for the changes intro-

• See a singular anticipation respecting dynamics, by Lord Bacon, in De 
.. bg. Lib. m, nuder the head Translation of Experiments. It was pointed 
out to me by my learned friond B. Montague. 
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duced by these in some places, he says, may be found, and 
those in the intermediate places supplied, by the analogy 
of the series. This was reserved for Lagrange anel La
place, whose immortallahours have reduced the theory of 
disturbed motion to almost as great certainty as that of 
DDtroubled motion round a point by virtue of forces di
rected thither.· 

We have thns seen how important in determining all the 
qnestions, both direct and inverse, relating to the centri
petal force, are the perpendicular to the tangent and the 
radius of curvature. Indeed it must evidently be so, when 
we consider, first, that the curvature of any orbit depends 
upon the action of the central force, and that the circle 
coinciding with the curve at each point, beside being of 
well-known properties, is the curve in which at all its points 
the central force must be the same; and, secondly, that the 
perpendicular to the tangent forms one side of a triangle 
similar to the triangle of which the differential of the radius 
vector is a side; the other side of the former triangle being 
the radius vector, the proportion of which to the force it
self is the material point in all such inquiries. The difficulty 
of solving all these problems arises from the difficulty of 
obtaining simple expressions for those two lines, the l>er
pendicular p and tbe radius of curvature R. The radius 

vector r being always ..t z'1. + y'l interposes little em
barrassment; but the other two lines can seldom be con
cisely and simply expressed. In some eases the value of 
F, the force, by d rand d p may be more convenient than 
in others; because p may involve the investigation in less 
difficulty than R; besides that pi enters into the expression 
which has no difFerentials. But in the greater numher of 

• Laplace (Mec. eel. lib. xv. ch. L) refers to this remarkable passage 
as the germ of Lagrange's investigations in the Berlin Memoires for 1786. 
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instances, especially where the curve is given, the for

mula p:R will be found most easily dealt with. 

ii. The next branch of the inquiry relates to the de
scribing the conic sections severally, where certain points 
are given through which they are to pass, or certain lines 
which they are to touch. The subject is handled in two 
sections, (the fourth and fifth,) the first of which treats the 
case where one of the foci is given; the second the case 
where neither focus is given. This whole subject is purely 
geometrical; and exhibits a fertility of resources in treating 
these difficult problems, as well as an elegance in the manner 
of their solution, which has few parallels in the history of 
ancient or modem geometry. This portion of the Prin
cipia, however, is incapable of abridgment; and there is no 
advantage whatever in resolving the problems analytically, 
but rather the contrary; for with the exception of one of 
the lemmas, in demonstrating which Sir Isaac Newton 
himself has recourse to algebraical reasoning in order to 
shorten the proofs, the geometrical process is in almost 
every instance extremely concise, in all cases much more 
beautiful, and less encumbered than the algebraical. The 
superiority of the former to the latter method of in
vestigation in such solutions is apparent on trying al
gebraically some simple case, as that of describing a circle 
through three points, or through two points and touching a 
lin~ given in position; no little embarrassment results from 
the number and entanglement of the quantities in the solu
tion. Even so great a master of analysis as Sir Isaac Newton, 
in solving the problem of describing a circle through two 
points, and touching a given line, could find no better ex-

• - e'l b ./ e2 b2 + e2 a2 - cP a 
pre8810n than {JJ = tP \I ,although 

-a 
geometrically the construction is easy by drawing a circle 
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on one segment of the line joining the given points, and 
another on the given line.- These are comparatively 
simple problems; in the more difficult cases of the conic 
sections this embarrassment is often inextricable. t 

To illastrate the application of these important pro
blems~ let us suppose that by observation we obtain three 
points in the orbit of any plane~ and would ascertain from 
those points the position of the greater uia, and the focus 
in which the sun is plac~ the eccentricity of the orbit or 
distance of the focus from the centre of the ellipse, and the 
aphelion~ or greatest distance to which in its course the 
planet ever is removed from the sun; this is easily done by 
means of Prop. XVIII. (Book L), for that enables ns to 
find the elliptical and hyperbolical trajectories, which pass 
through given points, when one focus and the transverse 
axis are given; and thus to find the other focus, and the 
centre of the curve, and the distance from the given focus 
to the further extremity of the axis, which is the aphelion. 

In like mant;ter the problem which Sir Isaac Newton 
calle by far the most di1Iicult of any, and says that he 
had tried to solve in various wayst, that of Bnding the tra
jectory of a comet from three observations, supposing it 
to move in a parabolic orbit, is reduced by an elaborate 
and di1Iicult process of reasoning to describing a parabola 
through two given points, which are found in its own orbit 
from the observations. Now Prop. XIX. of Book I. 
gives an easy solution of this problem.§ It is only to 

• The above algcbraical solution is that of Prop. 43. of the Arith. Univ .. 
"here Props. 59, 60, and 61. are also solutions of the three first problems 
of Sect. V. of the Principia, B. I. 

t Maria Agneai's Instituzioni Analitiche abounds in elegant a1gc
braical investigations of geometrical problema, but atrords no grounds 
for modifying the above remark. 

t Problema hocce longe difficillimum multimode aggrcssna (Lib. m 
Prop. 41.). 

§ Several other propositions are given in the tlrst book for the p11I1lOIIe 

F 
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describe from each of the given poin ts a circle, with the di&
tance of that point from the given focus as a radius, and the 
straight line touching these two circles will be the directrix 
of the parabola, and the perpendicular to it from the focus, 
ita axis; the principal vertex being the middle point of 
that perpendicular. The coincidence of the very eccentric 
elliptical orbits of the comets with the parabola, makes this 
parabolic hypothesis anewer for determining their placea 
and times in the general ease. 

The correction of the orbit thus found is reduced to 
finding the orbit of an ellipse which shall paaa through 
three given points, and this is done by the 21st propo
sition of Book L, or rather by the 16th lemma, to which 
it is a corollary, for inflecting three straight lines from three 
given points, the differences, if any, between the lines, being 
given. 

Sir Isaac Newton tried the accuracy of the methods 
thus found upon several comets, and particularly on the 
celebrated one of 1680, called Halley's comet, from the 
great labour which that mathematician, in aid of hie illus
trious friend and master, bestowed upon the calculation of 
ita orbit. The following is a short statement of the general 
result of a comparison between the placea computed from 
the theory, and the places found by actual observation, 
in the cases tried. 

of facilitating the solution of this difficult problem "1 another method; 
but the author informs us that he subsequently fell upon the method which 
he has given in the third book, and which he prefers for its greater sim
plicity. - It is, however, very remarkable that he overlooked the importaDt 
circumstance of there being a porism connected with his solution, or a 
case in which the problem becomes indeterminate and has an infinite number 
of solutious; and what is still more singular that the case of the comet ill 
that of the porism, - so that the solution is wholly inapplicable. Thia 
was fint discovered by F. Boscovich in 1749; it being found that the solution 
had thrown the comet upon the wrong side of the sun. (See Life of Su.-, 
Appx.) 
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First, as regard. the comet of 1680, or Halley's comet. 
In comparing four observations with the geometrical com

putation, Sir Ieaac N ewWn found an error of 5' 3" on 
an average in the latitude, and about l' in the longitude. 
But Halley, having afterwards made the computations 
with greater accuracy by arithmetical operations, found 
the average error, on sixteen observations, in the latitude 
only about 52", and in the longitude l' 28". The average 
error found on a comparison of the theory with twenty
one observations made abroad, was found by Halley only 
to be 50" in the latitnde, and 57" in the longitude.-

Secondly, as regards other comets. 
In the computations of the comet 1665, the error was, 

on an aTerage of eighteen observations, 8" in the latitude, 
and in the longitude l' 26". In the latitude the errors 
by excess nearly balance those by defect, the one being to 
the other as 40 to 49. In the longitude, supposing the 
observation of December 7 accurately stated (which, from 
the error amounting to 7' 33", seems very doubtful), the 
errors by exce&l are sixteen times more considerable than 
those by defect. In the comets of 1682 and 1683, on 
comparing the observations of Flamstead with the theory, 
the error was l' 31" in latitude, and 45" in longitude, for 
eleven observations of the former comet, and for seventeen 
of the latter comet, l' 10" in latitude, and l' 29" in lon
gitude. But the comet of 1723 came nearer its computed 
place; the average error of latitude on fifteen observations 
of Bradley, compared with the same number by Halley 
himself, and Pound (bis uncle), was only 21"i in the la
titude, and somewhat under 25" in the longitude. It is to 
be remarked that this is apparently the case in which the 

• This omits the observation made 26th December, 88 there is mani
feed, an error in the figures of that obienaDon. 

.. 2 
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observations were the most accurate, three eminent obser
vers checking each other, and no one observation differing 
from the computation much more than by the average of 
the rest, while great differences occur in all the other cues, 
and give rise to a snspicion of error. For in the comet of 
1683, there was one day (Ang. 15) in which the latitude 
differed between three and four times, and the longitude 
three times more than the average; and in the observations 
of the comet of 1665 there are several errors in longitude 
of twice, and one error of no le88 than five times, above 
the average. These particular observations, and not the 
theory, then, were probably at fault in those instances; but 
they affect the general average materially. 

The intimate connection between the purely geometrical 
parts of the Principia, the Fifth and Sixth Sections of the 
First Book, and the most sublime inquiries into the motions 
of the heavenly bodies, those motions, too, which are the 
most rapid, and performed in spaces the most prodigious, 
may suffice to show the student how well worthy these 
mathematical investigations are of being minutely followed. 
Were they wholly unconnected with such important spe
culations in Physical Astronomy, and only to be regarded 
as a branch of the Higher Geometry, they would deserve 
the deepest attention, for their interesting development of 
general relations between figures so well known 88 the 
conic sections, for the marvellous felicity of the expedients 
by which the solutions are obtained, and for the inimita.ble 
elegance with which the reasoning is conducted. As a 
mere matter of mathematical contemplation, beginning and 
ending in the discovery of the relations which subsist be
tween different quantities and figures, they afford matter 
of ,lasting interest to the geometrician. But it certainly 
heIghtens that interest to reflect that the same skilful and 
simple construction which enables us to describe a para-
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bola through given points, or touching given lines, be
side gratifying a curiosity purely geometrical, leads us 
to calculate within 20" of the truth the place of bodies 
revolving round the sun in orbits 80 eccentric that the el
lipse which they describe coincides with a parabolic line, 
instead of being nearly circular like the path of our globe, 
although our own distance from that IUmlnary is near a 
hun<uoo millions of miles. 

iii. We are next to consider the motion of bodies in 
conic sections which are given, and ascending or de
scending in straight lines under the influence of gravity; 
that is, the velocities and the times of their reaching given 
points, or their places at given times. This branch of the 
subject, therefore, divides itself into two parts, the one 
relating to motion in the conic sections, the other to the 
motion of bodies ascending or descending under the in
fluence of gravitation. The Sixth Section treats of the 
former, the Seventh of the latter. 

(1.) In order to find the place of a revolving body in its 
trajectory at any given time, we have to find a point such 
that the area cut oft' by the radius vector to that point 
shall be of a given amount; for that area is proportional 
to the time. Thus, suppose the body moves in a parabola, 
and that its radius vector completes in any time a certain 
space, eay in half a year moves through a space making 
an area equal to the square of D; in order to ascertain 
its position in any given day of that half year, we have 
to cut oft', by a line drawn from the centre of forces, an 
area which shall bear to D2 the same proportion that 
the given time bears to the half year, say S to m2, or we 

have to cut oft' a section ASP = 32 DI, AP being the 
m 

parabola and S the focus. This will be done if A B 
.3 
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be taken equal to three times A S, and B 0 being drawn 
perpen~cu1ar to A B, between B 0, B A aaymptotes, a 

o 

Lr----------+--~~----

D 

B 

rectangular hyperbola is drawn, H P, whose semi-axis or 
semi-parameter is to D in the proportion . of 6 to m; 
it will cut the parabolic tl'I\iectory in the point P, 
required. For calling AM = Z and P M = Y and A S 
= a; then A B = 3 a and Y x (z + 3 a) = half the 
square of the hyperbola's semi-axis, which axis being 

6 D 36 Dl 18 D' ( Z ) 
equalto m ,y(z+3a)= 2m'=mr,org 3+ a 

=6D',andy(!+~)= 3~~ or 'I x (~z-!z+!a) ml 6 2 mll ., 3 2 2 

3 D' 2 1 3 Dt 
="""f1i2' Therefore 3 z 9 - 2 (z - a) Y = mt' 

2 2 1 1 
and '3 ' A M x P M = 3 z Y; and 2 (z - a) Y = 2 

3 DI 
SM. P M = S M P; therefore the sector A S P= -1- : 

m 

10 that the radius from the focus S cuts oft' the given area, 
and therefore P is the point where the comet or other 

body will be found in 32 parts of the time. 
m 

If the point is to be found by computation, we can 
easily find the value of Y by a cubic equation, y3 + 3 a2 
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18 a l Dl 
!I = m'l ,and making B L = !I, L P parallel to 

A M, cuts A P in the point P required. Sir Isaac 
Newton gives a very elegant solution geometrically by 
bisecting A SinG, and taking the perpendicular G R 
to the given area as 3 to 4 A S, or to S B, and then 
describing a circle with the radius R S; it cuts the para
bola in p. the point required.- This solution is infinitely 
preferable to ours by the hyperbola, except that the 
demonstration is not so easy, and the algebraical de
monstration far from simple. 

It is further to be observed, that the place being given, 
either of these solutions enables us to find the time. 

Thus, in the cubic equation, we have only to find 3 ~2. 
m 

I • I!I + 3 all !I d D2' h . . t IS equa to 6 a2 ; an as IS t e gtven lDteger, 

or period of e. 9. half a year, the body comes to the point 
P in a time which bears to Dl the proportion of unity to 

6all DI 
'!I+ 3a2 !! 

Sir Isaac Newton proceeds to the solution of the same 
important problem in the case of the ellipse, which is 
that of the planetary system, and is termed Kepler's 
problem from having been proposed by him when he had 
discovered by observation that the planetary motions were 
performed in this curve, and that the areas described by 
the radii were proportional to the times. In the parabola 
which is quadrable and easily so, the area being two
thirds of the rectangle under the co-ordinates, the solution 
of this problem is extremely easy. But the ellipse not 

• The most singular relation subsists between the hyperbolas and pa
rabolic areas, giving rise to very curious Porisms connected with Quadra. 
turcs.-Sce Phil. Tram. 1798, part ii. 

F .. 

Digitized by Coogle 



72 NEWTON'S PRINCIPIA. 

admitting of an expression for its area, or the area of 
its sectors, in finite terms of any product of straight lines, 
the problem becomes incapable of a definite solution. 
Newton accordingly begins his investigation by a lemma, 
in which he endeavours to demonstrate that no figure of 
an oval form, no cu"e returning into itself and without 
touching any infinite arch, is capable of definite quadrature. 
It is rarely, indeed, that the expre88ion" endeavour," can 
be applied to Sir wac Newton. But some have ques
tioned the conclueivene88 of his reasoning in this instance. 
The demonstration consists in supposing a straight line to 
revolve rounel a point within the oval, while another point 
moves along it with a velocity as the square of the portion 
of the revolving line between the given centre and the 
oval, that is, as the radius vector of the oval from the· 
given centre. It is certainly shown, that the moving 
point describes a spiral of infinite revolutions; and, also, 
that its radius is always as the area of the oval at the 
point where that radius meets the oval. If then the relation 
between the area and any two ordinates from the oval to 
any axis is such as can be expreseed by a finite equation, 
80 can the relation between the radius of the spiral and 
co-ordinates drawn parallel to the former, or the c0-

ordinates to the same axis. Therefore it will follow, 
that the spiral can be cut only in a finite number of points 
by a straight line, contrary to the nature of that CU"e. 
Indeed, its co-ordinates being related to each other by an 
algebraical equation is equally contrary to its nature; 
consequently the po88ibility of expre88ing the relation be
tween the area of the oval and the C<H>rdinates leads to 
this absurd conclusion, and therefore that possibility cannot 
exist; and hence it is inferred that the oval is not quadrable. 

Sir Isaac Newton himself observes that this demon
stration does not apply to ovals which form parts of curves, 
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being touched by branches of infinite extent. But it does 
not even apply to all cases of ovals returning into them
selves, and unconnected with any infinite branches. There 
is, for example, a large cla88 of curves of many orders, 
those whose equation is !I'" = n'" Z<--l)'" x (a- - z".); and 
when m is even these curves are quadrable; and in 
every case where m and n are whole positive even num
bere, it is the equation to a curve returning into itself. 
This is manifest upon inspection: forJ y d x =J n z"-l 

1 
(a- - z"). d x is integrable because the power of x with-
out is one le88 than that of x within the radical sign; and 
because there is no divisor there can be no asymptote; 

while it is plain that the .!. root of at' - z" is impoeeible 
m 

when either +x or -x is greater than a, n and m being 
both whole even numbers. Wherefore the curve re
turns into itself; and ILS y = 0, both when x = 0, and 
when x = + a, or - a, therefore the figure consists of two 
ovals meeting or touching in the origin of the abscieea 
These two ovals admit of a perfect quadrature; the in-

m '" + 1 
tesn-al being C - (a- - :r!' ) ",' Thus if 
~ n(m+l} 

m = n = 2 the area is C -! (a' - Xl) ~, the latter 
quantity being one-half of an area that has to one-third the 
rectangle of the co-ordinates the same proportion which the 
difference of the squares of the diameter and abecieea has 

:oJ 

to the square of the abecieea; for ~ (at - Xl) Y = ! x y x 

a'-xlI 
--zr-' 

The particular inquiry respecting motion in the ellipse 
did not perhaps require the proposition to be proved in 
the very general form in which Sir Isaac Newton hILS 
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given it. That the ellipse cannot be squared might per
haps be sufficiently proved from this consideration, founded 
upon a reasoning analogous to that on which the lemma 
in question proceeds.- If a curve be described such that 
its co-ordinatea, or the rectangle contained by the co-or
dinatea, shall always bear a given proportion to the areas 
of the ellipse on the same axis, this curve cannot be aJge
braical, not merely beeanse of its equation involving quan
tities not integrable (for that may be said to be the ques
tion), but because it will stop short at a given line, which 
no algebraiea1 curve can do. it will have no branch ex
tending beyond the perpendicular at the end of the axis: 
and moreover its equation is known to be that of a tran
scendental curve. This reason cannot be applied to all 
curves returning into themselves; because, as we have seen 
in one class, the equation to the cur\"e, whose co-ordinates 
should express their areas, is algebraiea1; and also because, 
in that class, the secondary curve is found to have two 
branches which meet in cusps, and so do not stop short. 
If described by the proportion of areas they would seem 
to stop short, that property only belonging to one of their 
branches; but their equation discloses the second branch. 
It is one of many instances of a truth perhaps not suf
ficiently remarked by geometricians, that curves sometimes 
have particular portions to which certain properties belong 
exclusively, no other part of the cune having them. 

As the area of the ellipse cannot be found by alga
braiea1 quantities, or by the description of algebraieal 
curves, the problem of Kepler cannot be solved otherwise 
than by transcendental curves, logarithms, circular arcs, 
or approximation. Sir Isaac Newton gives a solution by 
means of the cycloid described on an axis at right angles 
to the transverse axis of the ellipse, at a distance from 
its vertex which is a fourth proportional to half the trans-
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vene axis, the focal distance, and the eccentricity, and 
with a generating circle whose radius is the distance of 
this perpendicular from the centre. A parallel to the cy
cloid's axis, at the point whose abscissa is to the periphery 
of the generating circle in the proportion of the given 
time to the periodic time, cuts the ellipse at the place 
required. This 8Olution requires a cODBtruction beside that 
or the curve described; but a cycloid may be described 
which shall cut the ellipse directly at the point required. 
If a circle is described on A B the transvene axis, and its 
quadrant A A is cut in 0, in the given ratio of the times 
in which the elliptical area is to be cut; and then a cycloid 
is described, whose ordinate PM is always a fourth pro
portional to the arch 0 Q, the rectangle of the two axes 
and the distance between the foci; or to 0 Q, A B x 
2. C F, and 2 • C B,-this cycloid cuts the ellipse in the 
point required, P. The equation to this curve G P is simple 

enough, and the coDBtruction easy; for the ordinate is in a 
given proportion to the arc Q 0 of the quadrant. As, 
however, an arithmetical approximation by means of seriel 
is required in practice, Bir Isaac Newton gives two me
thods, both of great elegance and efficiency. 

It may be proper here to note the names given by astro
nomen to the lines and angles in the ellipse connected 
mainly with the investigation of this problem. The sun • 
being in the focus B, and P the planet's place, the aphelion 
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of the planet is B; the perihelion A; the arch BP, or 
angle BSP is the true anomaly; BO being to the whole 
circumference as the time in B P to the whole periodic 
time, B 0, or 0 S B, is the mean anomaly, and Q B, or 
Q C B, is the eccentric anomaly, C being the centre of the 
ellipse: A and B are likewise called the apsides (or apses), 

and A B, the transverse axis, is called the line of the ap-

·d SC rall SC. h .. Sl es; , or more gene y A C IS t e eccentnmty. 

(2.) The next subject of inquiry is the comparison of 
bodies moving in a straight line towards the centre of 
forces, with those moving by the same centripetal force in 
the conic sections whose axis is that straight line. If the 
projectile force by which a body revolves in any of those 
cw-ves round the focus as a centre, suddenly ceases, and 
the body falls towards the centre of the cu"e, it is shown 
that its place at any given time, will be the point at which 
the line of descent is cut by a perpendicular from the 
point of the curve where the radius from the vertex makes 
its area proportional to the time consumed in the fall. 
For take the parabola whose area is J II: y, and let the 
distance of the point where the body begins to descend in 
a straight line be C; the parabolic sectors, which are as the 

• ___ .:I b (Z + 3 C) (_!l + times, are expre-=u y y x 6 - 'J Z Y 

Y) ,,/0:%. . b (C-z) 2 or -6 - x (z + 3 C) ; and If another para ola 
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with the same vertex, and with a smaller parameter, lJ, is 

drawn nearer the straight line, its sectors are .v: z (z + 3C). 

Now the times in the first parabola, or the areas, at 
any two points referred to the abscise z and z, being 

,.1;;:;- .v a z . 
-6- (z + 3 C), and -6- (z + 3 C), the times orareas 

in the second parabola will be .v: z (z + 3 C), and .v: z 

(z + 3 C), respectively; and thereCore it is evident that 
the areas _t the distances z and z, in the one curve are 
in the same proportion to one another with the arena in 
the other purve at those distances. If the parameter be 
continually diminished of the second curve, until that curve 
coincides with the axis, the same proportion holds; and 
the times, therefore, in falling through the axis, will be as 
the areas of the first curve, corresponding to the points of 
that axis. - And 80 it may be shown in the ellipse and 
hyperbola. 

Hence it follows, that in the case of the parabola, the 
velocity of the falling body in any given point is equal to 
that with which the body would, moving uniformly, de
scribe a circle having for its centre, the centre to which 
the body is falling, and for its diameter the distance of 
the given point from that centre. In the circle, the ve
locity at the given point is to tM velocity in the circle 
described from the centre, with the distance of the given 
point for the radius, as the square root of the distance fallen 
through to that of the whole distance of the point where the 
fall begins. Thus let d be the distance of the given point 
to which the body has fallen, D the distance of the point 
at which it began to fall; the velocity in the case of a para
bola is equal to that oC the body moving in a circle, whose 
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radius is t d; in the case of a circle, it is to that of a body 

moving in a circle whose radius is d, as 'II D - d: 

-.I D.-And the like proportion subsists in the case of the 
hyperbola. 

Further, a rule is thus deduced for determining, con
versely, the time of descent, the place being given. A 
circle is to be described on A S = D, as the diameter, 
and another from S the centre, towards which the body 

falls, with the radius ~. P being the point to which it 

has fallen, if the area S X B be taken equal to SeA, 
the time taken to fall through A P is equal to the time 

in which the body would move uniformly from B to :x. 
Hence the periodic times being in the sesquiplicate ratio 

of the distances (t = dJ-) and because 2 i = 2 'II~ the 

time taken to fall through the whole distance to the centre 
is to the periodic time of a body revolving at twice that 
distance round the same centre as 1 to 4 -.12; and thus 
we can calculate the time (supposing the planetary orbits 
to be circular) which anyone would take to fall in a 
straight line to the sun, or any satellite to its principal 
planet, if the projectile motion were suddenly to cease. 
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The moon in this way would fall to the earth in about foUl' 
hours less than five days.· 

The inquiry is closed with a solution of the general pro
blem, of which the preceding solutions for the conic seo
tions, and for the force inversely as the squares of the 
distances, are only particular cases; and the times and 
velocities are found from the places, or the places from the 
times and velocities, where a body ascends from or de
scends to the centre, influenced by a centripetal force of 
whatever kind. On the given straight line of ascent or 
descent a cone is to be described whose co-ordinates are 
the centripetal force at each point of the axis, or whose 
equation is y=X, X being a function of x, the distance 
from the beginning of the motion. The area of the cune 
at each point is f y d x = f X d x; and if that integral is 
equal to Z2, Z is as the velocity at the distance a-x, from 
the centre. Another cune described on the same axis, 

d h .. 1. b' fd x an w ose equation 18 U = Z, gIves y Its areas Z 

= ~, the time taken to move through the distance a -:r ; 

it is equal to~. This is easily demonstrated; for, first, 
if the velocity be v, and the time d t, the space being 

dv dx 
d x, we have the force y = -d ; and as d t= -, there-t v 

vdv ~ 
fore!J = d x ' and y d x = v d v, and J !J d x= "2; but 

Z2=J!J d Xj therefore Z = :2' and the velocity is as 

the area Z. - Again; for the time in the other curve; 

• It is comparing the greatest with the smallest things, to observe that the 
time or the revolution of a planet round the sun, or the planetary year, 
bears the &&me proportion to the time in which the planet would fall to the 
sun, which the square of the side of a bee's cell does to one of the six tri
angles, or to the sixth part of the rhomboidal plate. (See Appendix to vol. 
L, Paley IDustrakId.) 
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1 - dx dx 
u = Z' and v = '\1'2. Z j also d t = ~ =,.., . '" 2.Z 

_fd x .r 
Therefore t = ""2 Z = v 2.~, or the time is as 

the area~. In these expre88ions, therefore, to find Z and 
~ we have to substitute the values of X and Z in terms 
of x, and integrate. 

It is hardly necessary to add, that if, instead of the 
velocity and the time being BOught (Z and l)' these are 
given, and the place reached by the body be BOught, we 
find it by the same construction; and ascertaining what 
value of z gives the value of Z, the square root of the 
area. But it may be well to note here, that if 0 M be 
the curve, whose ordinate P M or '!I = X, the centripetal 

A.--.., 

p 

s 

force at P in terms of A P or x, or the gravitation of 
any particle of a homogeneous fluid towards S at the point 
P j then the column of that fluid whose altitude is A P 
will pre88 at P, as the area A P M 0, or as Vi, the square 
of the velocity acquired by a body falling through A P. 

iv. The next object of research is to generalise the pre
ceding investigations of trajectories from given forces, and 
of motion in given trajectories, applying the inquiry to all 
kinds of centripetal force, and all trajectories, instead of 
confining it to the conic sections, and to a force inversely 
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as the IIquare of the distance. This formll the subject of 
the Eighth Section, which therefore bears to the Third, 
Fourth, Fifth, and Sixth, the same relation that the con
cluding investigation of the Seventh Section (on rectili
near motion influenced by centripetal force) bears to tbe 
rest of that section. 

The length at which we ~fore went into the solution 
of the problem of central forces (inverting somewbat the 
order purllUed in tbe Principia) makes it less necessary to 
enter fully into the general solution in tbis place. We 
formerly gave the manner of finding the force from the 
trajectorY in general terms, and showed how, by meanll 
of various di1rerential expressions, this proce88 Wall faci
litated. It must, however, be remarked, that the inverse 
problem of finding the trajectory from the force, is not 
80 satisfactorily solved by means of those expressionll. 
For example. the most general one at which we arrived of 

.vyl+(z-aYlxdzl.dX be• t- C 
2C!Jdz-(z-a)dy)1 mgpu -yl+(z_a)",or 

the force inversely as tbe square of the distance, presentll 
an eqnation in which it may be pronounced impossible to 
separate the variables so all to integrate, at least while 

d X, the diiFerentialof ~;, remains in so unmanageable a 

• . tPydz - tPzdy 
form; for tben thewholeequabon18 2 (ydz-(z-a) dy't 

<? 5' and thull from hence no equation to 
(y'l. + (z - a)l) • 

the cone could be found. It cannot be doubted tbat Sir 
Isaac Newton, the discoverer of the calculus, had applied 
all ita resourcell to thelle solutions, and as the expreBBionll 

~ h tl~ wbether r dp lor t e cen ra 10rce, 2 pI • R' or pI d r' or 

G 
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tPX'l.IX2+'!l (. h • 1 t r 11 b· - - m some respects t e S1mp es 0 a, emg 
x 

taken in respect of d t constant, and which is integrable 
in the case of the inverse squares of the distances, and 
gives the general equation to the conic sections with sin-· 
gular elegance), are all derivable from the Sixth Propo
sition of the First Book, it is eminently probable that he 
had first tried for a general solution by those means, and 
only had recourse to the one which he has given in the 
Forty-first Proposition when he found those methods un
manageable. This would naturally confirm him in his plan 
of preferring geometrical methods; though it is to be ob
served that this investigation, as well as the inverse pro
blem for the case of rectilinear motion in the preceding 
section, is conducted more analytically than the ·greater 
part of the Principia, the reasoning of the demoD8tration 
conducting to the solution and not following it synthe
tically. 

A is the height from which a body must fall to acquire 
the velocity at any point D, which the given body moving 
in the trajectory V I K (sought by the investigation) has 
at the corresponding point I; D I, E K, being circular 
arcs from the centre C, and C I=C D and C K=C E. 
It is shown previously that, if two bodies whose masses are 
as their weights descend with equal velocity from A, and 
being acted on by the same centripetal force, one moves 
in V I K and the other in A V C, they will at any cor
responding points have the same velocity, that is at equal 
distances from the centre C. So that, if at any point D, 
D h or D F be as the velocity at D of the body moviBg 
in A V C, D h or D F will also represent the velocity at 
I of the body moving in V I K. Then take D F = '!I as 
the centripetal force in D or I (that is, as any power of 
the distance D CJ or a-x, V C being a, and CD, x) 
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V D F L will be f!l d.c. Describe the circle V X Y with 
C V as radius. Let V X=z, and Y X will be d z, and N K 

A B 

L __ --~----_r------------~Q 

\ 

\ 

c 

%dz 
Then I C K being as the time, and d t being ---. a 

h . 1 Ie x KN . d constant, t at tnang e. or 2 ' 18 constant, an 

K N is as a constant quantity divided by I C, or as g. 
% 

If we take g to ..! A V L B (proportioned to the force at 
% 

anyone point V and therefore given), as K N to I K, 
therefore this will in all points be the proportion; and the 

sqUare8 will be proportional, or f!l d % : Q::: I KI. or 
% 

K NI + I NI. to K Nt; and therefore f !I d %-

QI • Qt.. N2, 2 • %2 d Z2 % d Z 
~. 2" I or d % • --,-. Therefore -- = 
~ % a a 

02 
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Qdx x'dz 
.--;-~~ ~ and multiplying by x, a (twic.e 

~~ ... I r!fdx~:-
~JV - v x' 

O.dx 
the sector I C K)= ji ...... ~ 0-" Again adz: ;1;": 

1\ f'l/dx- ~ '! . ~ x' 

a~ x~ and d 
x~ d z at a~ .. ; a -=- x x' -

x~ 
X 

a 

-_Q d x == twice the sector Y C x. , ........ ···QCk 
,V fydI--;Ti 

Hence results this construction. Describe the curve a 0 Z, 

such that CD b = u) its equation shall be u Q~ . 

~,A Ir .11 d x- 9:, 
~ \i - - ~ 

and tIle CUCAVC ex €luch that (0 C=~) its equation may 
Q n' 

be ~ = :2 x~Aj ; y d x-}' Tbeil the difi''!rentiabL o( 

the a:r4'..aE! these curne15~ or u d x and ~ d x, being re.spoo-
Q .. ._ Q iX' d 

tivelY-~-/rtf ~ ;~-g: and ~,,,, / rud z- g,~: and 
2 'V " OF x' 2 x·V ~. v .1'2 

tho!!e being equal to I~ ~ and a ;I, or the sectors which 

aIe the differentials of'the areas V I C and V X C, the areas 
themselves aIe equrJ to those nreaI; and therefore from 
V :x. C being given (if the area C D be fi?u:tt:td), 4.nzl 
the radius C Y being given in position and magnitude, the 
angle V C X is giIen; '!nd from C X being given in 
position, and C V in magnitude aId positi(?n, lmd £TIs?) 
the area C I V, (if V D h a be found), the point I 
found, and the CIrve V I K is known. This, however, 
dE3ps;nds upon the qnantiticE5 made eqIal to u E3nd , 
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severally being expressed in terms of z, for this is necessary 
in order to eliminate y from the equations to these curves; 
and then it is necessary to integrate these expre88ions; for 
else the angle V C X, and the curve V I K, are only ob
tained in differential equations. Hence Sir Isaac Newton 
makes the quadrature of curves, that is, first the inte
gration off y d x, to eliminate y, and then the integration 
of the equations resulting in terms of u and z, ~ and z 
respectively, the 888umptions or conditions of his enun
ciation.-Tbe inconvenience of this method of solving the 
problem gave rise to the investigations of Hermann and 
Bemouilli. The equation of the former, involving, how
ever, the second differential of the co-ordinate, is to the 
rectangular co-ordinates; that of the latter is a polar 
equation, in terms of the radius vector and angle at the 
centre of forces. 

To illustrate the difficulty with which this method of 
quadratures is applied, in practice - take the case of 
the centripetal force being inversely as the cube of 

the distance; then y = :-a and the curve B L F is 

qnadrable. If we seek the circle V X Y by rectangular 
co-ordinates X 0, 0 V, we find the equation to obtain 
o V = D in terms of z, is of the form 

1 at d D Q at d z 

2' .v2 aD _D2 = 2 zI V I y d z _ ~'l 

\ 

Qa2 d z 
-"""":"'--=='==;;====;:=:=;:~ 

v2-z.v2cz2-I'--2 QS 

(c being the constant introduced by integrating f y d z). 
Now there is no possibility of integrating these two quan
tities otherwise than by Bines, and we thus obtain, nor 
can we do more, the following equation to D in terms of z; 

• G 3 
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C • a"-D 
- a'l arc SlD. --= 

a 

""2. Q. a l ""p. + 2 QI 
./ X arc cos../ • 
'V P. + 2 Qi 'V 2 c • z 

And if we get D from this, in terms of cos. z, we have 
then to obtain P C by similar triangles, and from I P C 
being right-angled and I C = z, to obtain P I, in order to 
have the curve V I K. 

But if we proceed otherwise, and instead of working 
by quadratures, take v the velocity of the body at I, or 

in the straight line at D, and make i the area described 

in a second, and 0 the angle V C I, we obtain as a 

polar equation to V I K, dO = "" c d z (z being 
z 4ZIlVIl _CIl 

in this case both C D and the radius vector). Then, 
to apply this general equation to the case of the centri-

petal force being as ~, let the force at the distance 1 be 

put equal to unity, and supposing the velocity of pro
jection to be that acquired in falling from an infinite 
height, the equation to the trajectory becomes 

dO 
cdz c 

--===, and integrating, 0 =-. ,=== 
Z""4-c2 v4-cll 

Z 
x log. -. 

a 

The whole subject of centripetal forces, inverse and 
direct, under the four heads which we began by stating, 
has therefore been discussed, but always upon the assump
tion that the bodies acted upon move in orbits which 
remain at rest, and thus that the axis of the curve which 
they describe remains constantly in the same position. 
Another subject of inquiry is presented to U8 if that uia 
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itself moves, revolving round the centre of forces, and 
we are required to ascertain the line in which the body 
moves in this moving orbit, as related to the line described 
by a body moving in a fixed orbit; or conversely to 
ascertain the motion in the two orbits. This snbject 
divides itself into two branches, according as the planes 
in which the motions are performed pass through the 
centre of forces or not. Motions in the planes of the 
centre form the snbject of the Ninth Section; the Tenth 
treats of motions in eccentric planes. Under the former 
division, a principal object of investigation is that which 
indeed measnres the orbit's motion, and is identieal. with 
it, the motion of the apsides; in other words, the positions 
successively taken by the two points of the revolving 
orbit, where the tangents are perpendicular to the axis, 
and where, consequently, the moving body begins to 
come back towards the centre from its greatest distance 
in that direction of the axis; while, under the latter 
\livision of the SUbject, a main point of discussion is the 
vibration of pendulums. 

i. If a body, revolving round a centre of forces, is acted 
upon laterally by any other force beside the centripetal and 
the centrifugal (or tangential), though the centre may re
main fixed, the orbit will not remain 80. The axis of the 
curve described will move forward or backward, according 
to the direction of the disturbing force. This motion of the 
axis is considered as a revolving motion of the orbit, and is 
the subject of our present consideration. The great prac
tical importance of the inquiry will presently be shown.
Suppose a body moves in an ellipse that is very nearly a 
circle, the centripetal force being inversely as the square of 
the distance; the centrifugal force is in the direct proportion 
of the square of the velocity and the inverse proportion 
of the distance, jointly; that is, (a bcing the distance" 

0' 
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and v the velocity in a circle,) as ~; and 17 being as!, 
a a 

the centrifugal force is as \. or inversely as the cubes 
a 

of the distances. A C B is the fixed ellipse; a C 6, the 
one described by the body under the influence of a 
disturbing force, or in any other way made to move 
in an orbit whose Dis, 6 S, or line joining the apsides a, 
h. is revolving round S. Suppoae the angular motion 

B 

.\ 

of the second ellipse to be in a given proportion to 
the motion of the body in the first, or that • p being 

equal to S P, the angle B S P is ~ of the angle b S p. 
n 

The difference of the centrifugal forces of the two bodies 
must be equal to the difference of their centripetal 
forces. Calling T and t the centrifugal forces in the 
fixed and moveable orbits respectively; C and c the 
centripetal forces; T - t = C - c, and c = C + t 
- T. But T : t in the proportion of the squares of the 
velocities, or of the angular motions, that is as mll : 711 

and T - t : t:: mll - 71' : 712 ; and because the centri
fugal forces are at different distances, inversely as the 
cubes of those distances, therefore the difference of those 
forces in the two orbits, being in a given ratio to either 
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of them, must be inversely as the cube of their common 
distance from the centre, or of the altitude of the revolv
ing body in its orbit. Hence it follows that d being the 
common altitude or distance, and P the parameter, the 
force required to move the body in the moveable ellipse 

m' P (n2_m2) 
is as ({i x -2~; and, conversely, if such is the force, 

the motion will be in a moveable ellipse: And again, 
if a be the transverse axis of the ellipse, the forces in 
the fixed and in the moveable orbit will be to each other as 
m2 d m2 d (n'-m2) aa and (iT + P 2 d a' Hence, in order that 

a body may move in a moveable ellipse, or an arc which 
advances or moves round in the direction of the body's 
motion, the centripetal force must vary in a higher propor
tion than the inverse square of the distance, but less than 
the cube; and that the body may move in a retiring 
ellipse, or an arc which moves round in a direction 
contrary to that of the body's motion, the centripetal force 
must vary in a le88 proportion than the inverse square of the 
distance. 

From these propositions, Sir Isaac Newton is enabled 
to ascertain the proportion of the centripetal force to 
the distance, when the motion of the elliptical axis, that 
is of the apsides, or extreme points of it, shall be given; 
and conversely to ascertain the motion of the apsides 
when the proportion of the centripetal force to the dis
tance is given. Let ~ : 9 be the proportion of the angular 
motion by which the body in the moveable orbit comes 
round to the same lines of apsides, to the angular motion 
of one revolution, or 3600 ; then the centripetal force will 
be as the power of the distance d, which is represented 

,2 
by ji - 3. Thus, if ~ = 9, or the axis of the move-
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able orbit moves only through the same space with the 
axis of the fixed orbit, that is if the moveable orbit coin
cides with the fixed, then the centripetal force is 88 

d \-3 = d -2 = ~ 2; and conversely, if the central force is 

'as ~ 2' the line of the apsides has no motion whatever. 

Hence the important proposition, that the inverse square 
of the distance, the actual law of gravitation, is the only 
proportion which prevents the line of the apsides from 
moving at all.-Again, if ~ : 9:: 363 : 360, or the line of 
the apsides advances three degrees in each revolution, 
then the centripetal force is between the inverse square and 
inverse cube of the distance, but much nearer the for-

9' mer; for "2-3 becomes nearly equal to 2y t!', or about 
~ 

2(j"\ ' But suppose the excess of the angle between the 
axes in one orbit over that angle in the other orbit to 

92 
be only 11" 53"',· then -2 -3 becomes equal to-2;rv~!'if' 

~ 

or say - 2n hlf' and the force 88 ~. In like man-d 26001IO 

ner, if some extraneous force is impressed upon the revolv
ing body, from knowing the amount of that force we 
can find the motion of the apsides, and conversely. It 
is found by following the method of Sir Isaac Newton, 
that the advance in a single revolution on the suppo
sition of the disturbing force being to the centripetal force 
as 1 to 357'45, is equal to 1° 31' 28". 

Now it is found that iu the planetary motions these 

• The amount of 12" is ofteu given for the advance of the axis of the 
cl\rth's orbit; but we have followed Laplace's number of 36" 7"', which 
011 the IICxagcsimal sca1cis II"S9"', or II" 53· ... Thissmalldiffercncemakea 
1\ IUffcrence of 1000 years in the total revolution. 
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variations of the centripetal force actually take plaCf!. The 
action of the eUD, for example, upon the moon, while 
ehe i8 acted upon by the earth, coincides with that of 
the earth in some parte of her orbit, and in BOme part8 
oppoaee this action, thus alternately adding to and taking 
away from the force of her gravitation towards the earth; 
and this increase and diminution is greater at the greater 
di8tance8 of the moon from the earth. Hence the pro
portion of the centripetal force which keeps her in her 
orbit, is somewhat different from the exact ratio of the 
inverse square of the distance. There is more taken 
away from this centripetal force by the sun's action 
while the bodies are placed towards each other in one 
direction, than there is added when in the other position; 
and therefore there is a total diminution of the moon'8 
gravitation, or the centripetal force decreases in a somewhat 
higher ratio than as the square of the distance increases; 

in other words, the den?minator of the expreeaion ~ i8 

greater than this exact power of d, which we have seen 
keeps the orbit and ita axis fixed with respect to the 
centre, which in this case is the centre of the earth. 
Hence this axis of the moon's orbit revolves in the 
direction of the moon's motion, and in a certain period 
makes a complete revolution. So that at one time, 
half this period, the moon's greatest and lea:t distances 
from the earth (her apogee and perigee) have changed 
places, and at the end of the period they resume their 
former position. The amount of this motion of her 
apsides is about 3° in each revolution, or 39° in a year j 
80 that the axis of her ellipse revolves in nine years; 

and the centripetal force is not 88 ~ but ~, nearly 
,p. . 
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the proportion above shown to belong to a progression 
of the apsides, equal to 3° in a revolution. In like 
manner the orbit :of the earth is not immoveable, owing 
to the disturbing forces of the larger planets, Jupiter, 
Saturn, Mars, and Venus. But the disturbance here is, 
of course, incomparably more minute. The apsides of 
the earth's orbit only move 11" 53'" in the year, instead. 
of 39°; and the expression for the centripetal force is there
fore, as we have seen above, the inverse not of t/tr, but 

of ~. The axis of the earth's orbit thus revolves in a 
period of about)09,060 years. 

It is, however, to be observed that, although this motion 
of the axis of the earth's orbit is the result of the theory 
of gravitation, and indeed affords a new proof of it, Sir 
Isaac Newton did not himself consider it as worthy of 
attention. He regarded it as indicating so very minute 
a deviation from the law of the inverse square of the 
distance, as not to alter sensibly the form and position 
of the orbits resulting from thence. He therefore did 
not give any calculation respecting it. To say that he 
was ignorant of it, or that he affirmed the absolute 
quiescence of the planetary apsides, as some have done·, 
is wholly erroneous. The statements and methods in 
the Forty-fifth proposition and its corollaries are quite 
general, applying to all bodies acted on by disturbing 
forces; so is the Sixty-seventh, with the Sixth, Seventh, 
and Eighth corollaries, of general application; and even 
in the proposition (the Fourteenth of the Third book) in 
which he affirms that the aphelia and nodes of the orbits 
are at rest, he refers to inequalities arising from dis
turbing forces, while in the scholium that immediately 
follows he expressly states the motion of the aphelion of 

• Bailly. Hist • .Ast. tom. ii. 
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Mars, and collects from thence that of the Earth, Venus, 
and Mercury, by the law which regulates the motion of 
the apsides, namely, the sesquiplicate proportion to the 
distances. By this he makes the motion of the Earth's 
aphelion 17' 40" in a century, or 10" 36'" yearly, being 
not a second and a half different from what it is now 
understood tQ be. 

The calculation of the motion of the moon's apsides, 
however, which he deduced from these propositions, differed 
widely from the truth. He made it, as we have seen, 
amount to little more than a degree and a half each revo
lution·, 01' about one-half of the truth; and for the dis
crepancy between the theory and the phenomena he seems 
to have failed in accounting. Others, in the earlier part 
of the eighteenth century, having applied to the subject 
a different investigation, but founded upon his principles, 
obtained a different result, but erring by excess; for they 
made the motion 3° 27' each revolution, or nearly 45° in 
the year instead of 39°. About the year 1745 the three 
great mathematicians of that age, Clairaut, Euler, and 
D'Alembert, investigated the subject j and applying the 
whole resources of analysis to its discussion as a case of 
the problem of three bodies, obtained general solutions of 
great beauty. However, they still found the theory differ 
with the fact nearly as much as Newton himself had done; 
and Clairaut was even driven by this to devise a new law 
for the purpose of explaining the apparent discrepancy. He 

supposed the centripetal force to be not as it but as 

1 1 
d 2 + d " In a very short time, however, he candidly 

gave up tbis theory, and announced the important fact 
that he had found the whole error to arise from his hav-

• 1° 31' 2S". 
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ing in his approximation neglected some quantities as 
extremely minute, and supposing they could not aft'ect the 
result, whereas one of the quantities upon which the 
result mainly depends, having a small numerator, is nearly 
doubled by the introduction of the quantities o~itted. 
Upon again going through the investigation without thoee 
omissions, this great geometrician had the satisfaction of 
finding that the result made the motion of the moon's 
apsides agree with the fact; and both Euler and D' Alem
bert now found that in their solutions they had, by a 
singular coincidence, fallen into the same error. Laplace 
has since in his great work· given a complete investi
gation of the problem, and the results to which he is 
conducted by the theory are also most satisfactory. He 
finds the amount to differ oo1y one four hundred and 
forty-fourth part from that given by observation, which, 
reduced to our sexagesimal degrees, is only a dUFerence 
of 24" 12'" from the observed amount. His solution 
in the ease of the nodes does not come so near the 
observation; it is only correct within the 350th part; 
and yet the success of the theory in the ease of the nodes 
was always reckoned its great victory in the hands of its 
author, while the case of the apogee cast some doubt 
upon it. Laplace made a discovery in the course of this 
inquiry of a similar variation in the apogeal movement, 
and that it becomes slower at the rate of 15" in 100 
years, which the reCent observations confirm. 

It was certainly impossible for the Newtonian theory 
to obtain a more brilliant triumph. t But it deserves to 

• Mec. Cel. liv. vii s. 16. 
t For Clairaut's papers. see MelD. de I·Acad. des Sciences, 17.5 and 

17 'S. But there is an admirable paper of the same illustrious mathema
ticiAn on the motions of the orbits in the Mem. for 175.. The first cited 
volume contains ,both Clairaut And D' Alembcrt's famous investiglWon 
of the problem of the three bodies, to which reference is made in the text 
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be mentioned, that the statement made by Bailly is even 
more incorrect npon this subject of the moon's apsides than 
upon the motion of the planetary uis. He asserts that 
Newton represented the theory as "giving the quantity 
of the moon's apogeal motion with exactness;" and that 
this having been a mere dictum' of his without a demon
stration, philosophers waited to find it proved by subse
quent inquiry, as the theory had been on 80 many other 
points. The great inaccuracy of the substance is assuredly 
Dot rendered the less distasteful by the manner of this 
statement. "n avait 80uvent parM a. la maniere des pro
phetes qui disent ce qu'on ne peut voir: alors c'est II' foi 
qui croit, il faut que III raison se 8Oumette." (Hut. de 
r A,tron. iii. 150.) Newton never asserts anything which 
may not, from what he himself lays down, be strictly 
demonstrated. He certainly leaves much to be supplied; 
but he never leaves the reader who would, with due know
ledge of the mathematics, follow his reasoning, to trust 
his word. Even .the scholium at the close of the Lunar 
theory (after Proposition xxxv. B. iii.), where more of 
the investigation is omitted than perhaps in all the rest of 
the Principia together, may be followed argumentatively 
by a leamed and diligent reader, as the Jesuits have shown 
in their inimitable commentary upon it. But touching 
the particular instance referred to by Bailly, nothing can 
be more contrary to the fact than his statement. Sir 
Isaac Newton in the general proposition which we have ana
lysed above, after finding that any body acted upon by a 
disturbing force in the given proportion to the centripetal, 
will have by the theory a progressive motion of its apsides 
equal to 1° 31' 28", although he had not in the whole 

88 having been nndertaken by them and Euler at the same time. - See 
Life of D' Alember&, p, 427" where the history of this celebrated investigation 
is given at length. 
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corollary made any particular application to the moon's 
motion, adds, "the apsis of the moon has a velocity twice 
as great nearly" (apsis lunm est duplo velocior circiter), 
(Cor. 2. to Prop. xlv. B. i.) ;. and though in the propo
sition in which he applies his theory to find the disturbing 
force of the sun, (xxv. B. iii.) he finds it to be to the cen
tripetal force as 1 to 1781 nearly (or double what he 
had argued upon in the former proposition), he is 80 far 
from deducing from thence any inference that the apsides 
hy the theory move 3° in each revolution, that he makes 
no application at all of the proposition to finding their 
motion. But in the celebrated scholium . where he sumB 
up all the disturbances, he treats of this motion, and he 
expressly shows that it only comes out to be anything 
like the true motion of 3° by an assumption contrary to 
the theory; that is, by taking not the true equation to the 
SUD'S mean motion, but the equation on the hypothesis of 
its following the inverse triplicate ratio. The words above 
quoted from the general proposition upon the apsides in 
the first book, are quite sufficient to protect Newton's 
memory from any such aspersion as that now under con
sideration. 

It may further be remarked, that Bailly's general 
criticism on Newton's whole investigation of the moon's 
motion is singularly unfortunate. He represents him 
as having only given a rough sketch of the subject, 
leaving others to fill up. He says, that this is the 
part of Newton's work most involved in obscurity; that, 
concealing the route he purilued, be plainly has not 
taken the problem in its full extent, but only shown ge
nerally, and by a few examples, that those irregularitiee 
could be deduced from the theory; though be renders 

• It is remarkable that these worda are not in the 61'1& edition of the 
Principia. 
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ample justice to Newton's transcendent merits in other 
respects. But here Bailly has a far higher authority than 
his own against him, justly as ·his own name ie held in 
respect. Laplace, in hie earlier writings-, had seemed 
not sufficiently impressed with the inestimable value of 
&11ft part of the Principia; and had, while he distinctly 
gave the work at large the cc pre-eminence over all other 
productions of the human understanding," yet appeared 
to 1'e(Prd f.htl. theory of disturbed planetary motion, and 
especia1ly of-t1ae moon's motion, as a sketch left for others 
to complete when the calculus should be more improved. 
Yet in his .last work, the concluding part of the Me
canique Celeste, published the year before hie death, he 
distinctly declares thie very portion of the Principia to 
be among the greatest monuments of the author's genius. 
" J e n'Msite point a les regarder t recherches sur 10. thoorie 
de 10. lune) comme une des parties les plus profondes 
de cet admirable ouvrage. "t 

It remains, however, that we mention an unaccountable 
etatement of the truly great geometrician whom we have 
last cited. In treating of the hietory of the lunar theory, 
he says that Newton, when seeking the correction of the 
sun's disturbance of the moon's gravitation towards the 
earth, cc supposes that disturbance to be ~h of the moon's 
gravity, or that which results from the observed amount of 
the lunar apogee." (Mec. eeL lib. xv. chap.!.) For this 
he refers to Book iii. Prop. iv. of the Principia, which is 
evidently a wrong reference, that proposition, and indeed 
that part of the book, treating of other subjects. Nor can 
any place be found that Laplace could have had in his 
view, except the Twenty-first proposition of the Third 

• Sy8~me du Mondc, liv. v. chap. 5. 
t Mec. eel. liv. xvi. chap. 1.; published in 1825. 

II 
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book, in which the sun's disturbing force on the moon's 
mot.ion is investigated. But respecting that proposition, 
it is wholly inaccurate to say that he there makes aDY 
hypothesis or assumption of the proportion between the 
disturbing force and the moon's gravity; for he deduces the 
proportion of 1 to 178U, (or which is nearly the same thing, 
2 to 357,) from the duplicate ratio of the periodic times, and 
deduces it as a consequence of the Seventeenth corollary to 
the Sixty-sixth proposition of the First book, which corol
lary comes easily from the Second corollary of the Fourth 
proposition of the First book. It is, therefore, wholly 
impossible to represent that position as a mere assumption 
to suit the observation of the moon's actual variation&. 

ii. The next subject of consideration is the motion of b0-
dies along given surfaces, not in planes passing through the 
centre of forces, to which case our inquiries have hi
therto been confined. 

Let a body move in any plane. in a trajectory, by a force 

I' 
~-----:::~ 

F. 

directed towards a centre out of that plane, and we are 
to examine its motion under two heads, as we did the mo
tion of a body when the centre was in the plane of the tra
jectory; that is, first, the curve described by the given force; 
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and next the force, with the velocity, when the curve is 
given. 

For this purpose, let P be the perpendicular 8 C to the 
plane from 8 the given centre, this being the shortest 
line from the point to the plane; D the distance 8 P from 
the centre to any point P of the curve; the distance C P=d 
of that point P to the centre in the plane, that is, to the 
point C where p falls on the plane; and let F, the- central 
force, be represented by R S. It is evident that the force 
R S, acting in the line P 8 (without the plane), is com
pounded of two, R K and 8 K, of which R K only can 
have any effect on the motion in the plane, the other 8 K 
which tends to draw the body out of the plane being by the 
supposition nothing, because the body moves wholly in the 

plane C P B E. But by similar triangles, R K 8 R pX sC P 

= ~; therefore if the proportion of the centripetal force 

to the distance be known, that is, if F = D·, RK = d. 
D--I. But DI = dI + pI, and D = -Vdl+p2; therefore 
R K, the force acting at P towards the centre C, is d x 

(fl2 + p2) _;1, which gives it in terms of the distance C P, 
and the given line 8 C. Thus if the central force is as 
the distance S P, the force acting towards the centre 
becomes equal to d, or as the distance on the plane. 80 if 
the central force is inversely as the distance, then n= -1, 

and the force to the centre on the plane is ;2 or 

A~' and if it is inversely as the square of the dis
CI- + p, 

tanoo, the force on the plane is {f12 d 5' But the 
+ p2)T 

central force being given in the plane, the investigation 
B 2 
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is reduced to that formerly explained, for finding motions 
and trajectories when the centre is in the same plane with 
the motion. Hence in the case first put, of the force to
wards S being as D. and the force towards C being. con
sequently, as d, it follows from what was formerly shown 
respecting motion in the same plane, that the curve de
scribed on the plane of the centre C, or P B, in this case is 
an ellipl!le; that the times in which the ellipse is described 
will be the same in whatever plane the bodies move; and 
that if the ellipse, by lengthening its axis indefinitely, 
becomcs a straight line, the vibrations of the body in that 
line will be performed in equal times to and from the centre 
on both sides of it. 

By a somewhat similar process, we find the motion and 
trajectory of a body moving on a curve surface, by a force 
directed towards a given centre in the axis of the solid of 
revolution which forms that curve surface. It is first 
shown, that if from any point of the trajectory P 9 H on 
the curve surface (which being a curve of double curvature 
we shall call the double curve), a perpendicular 9 0 be 
drawn to the axis C S, and from any other point of the 
axis there be drawn a line equal and parallel to 9 0, as C p, 
C p will describe areas proportional to the times. By 
means of this proposition and the former ones respecting 
motion in the same plane, we are enabled to find the curve 
P phon the plane P B E, the points of which curve are, 
as it were, a projection on that plane of the trajectory, or 
double curve, P 9 H; and having found P p h, the double 
curve is found by drawing perpendiculars to the plane 
P B E, from the curve P p h to the curve surface P G E, 
whose form is given. Thus suppose thc solid to be a cy
linder, in which case the curve P ph will be the circle which 
is the scction of the cylinder; then if the central force 
acis (by S being removed to an infinite distance) in lines 
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parallel to the axis, and we suppose the body to begin its 
motion in the double curve P !I H, with the same velocity 
as that given or central velocity, with which it would 
describe P ph, the double curve is found by taking the 
ordinates P !I in a given proportion to the square of 

Pp!l 
the circular arch P p, or as -; and consequently P!I II 

m 

is a species of quadratrix described on a cylinder. 
The motion of pendulums is evidently a case of motiOll 

in a curve surface by a force directed towards a point in 
the axis of the solid, of which solid the curve described 
by the pendulous body is a section; and Sir Isaac Newton 
discusses this suhject fully. As subservient to this in
quiry, he gives some important properties of the cycloid, 
or rather of the hypocycloid and hypercycloid: For he is 
not satisfied with the investigation, which is sufficiently 
easy, of the ordinary cycloid's properties, the curve de
scribed by a point in a circle or wheel running along 
a straight line, but examines what is more difficult, the 
properties of the hypercycloid and hypocycloid, or the 
curves described by a wheel moving on the convex, and 
the concave great circle of a sphere respectively. Of these 
properties the most important is this. If D be the dia
meter of the sphere, and d that of the wheel, the length 

of the hypercycloid is equal to four times ~ x (O+d), 

or four times the length of a fourth proportional to the sum 
of the two diameters, the wheel's diameter and the sphere's. 
It is then shown how a pendulum may be made to vi
brate in a given cycloid, or rather hypocycloid, namely, by 
taking a distance, which is a third proportional to the 
part of 0, which the hypocycloid cuts oft' (that is, the 
distance of the hypercycloid from the centre of the 

u 3 
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sphere) and ~; and from that distance S so found, drawing 

two cycloids touching the sphere, or ita great circle, and 
s 

meeting in the point so found. If to that point S, a flexible 
line or thread be attached and bent round one of the 
cycloids S P, it will unrol itself and then bind itself 
round the other cycloid S pI, and ita extremity will de
scribe the cycloidal curve P pI required, one of whose 
properties is, that all the vibrations in ita arches are per
formed in equal times, however unequal the lengths of 
these arcs may be, provided that the centripetal force is in 
each part of the curve directly as the distance from the 
centre, and that no other force acta on the moving body. 

But the 8IUIle solution may be generalised and applied 
to any given curve whatever; for the curves found, and 
along which the flexible line is traced and from which it is 
then unrolled, are the evolutes of the given curve; and are 
found in each case by means of the radius of curvature, 
being the curve formed by ita extremity, or the locus of the 
centres of the osculating circles to all the given curve's 
points. If the curve in which the body is to move be a 
circle, the evolute is, of course, a point, the centre of 
that circle, the radius of curvature being that of the circle. 
If the curve is a conic parabola, it will be found that the 
evolutes, or the linea from which the pendulum's thread 
must wind off, are cubic parabolas, whose equation is 
yl=(JX)3, the length of the pendulum being unity. The 
only case of the problem investigated by Sir Isaac Newton 
is that of the cycloid, whieh haa the remarkable Ilroperty, 
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that its evolute is an equal and similar cycloid,-a property 
which it has in common with another curve, the logarithmic 
spiral, whose tangent makes with the radius vector a con
stant angle. He investigated the case of hypocycloids and 
bypercycloids, rather than the common cycloids, because 
it is that of the earth's gravity, which above the surface de
creases inversely as the square of the distance from the 
centre, but within the sphere increases as the distance 
simply. 

It follows, from the propositions respecting the vibration 
of pendulums, that the times of the descent of falling bodies 
may be compared together and with the times of vibrations 
of the pendulum: So that the time of II. vibration round a 
giveu centre ~eing given, as II. second, the time of the 
falling body's descent to the centre of forces can be found, 
or the equal time of vibration in the circular arch of 
90° with any radiUs. The time is to the given time ns 

1 to .v~, L being the length of the pendulum, and D 

the distance from the point of suspension to the centre 
of fQrces; and since D becomes infinite and the lines in 
which the central force acts parallel, and since half the 
length of the pendulum is to the line fallen through iu the 
time of one vibration ItS 1 to 9,869 nearly (the proportion 
of the square of the diameter to that of the circumference), 
we can easily ascertain the force of gl'avity at any point 
by the length of the pendulum vibrating seconds. It is 
tound to be in these latitudes about 34'44; consequently 
a body falls in a second through about 16 feet 9 inchet'. 

Hitherto we have only considered the motions and tra
jectories of bodies acted upon by forces directed towards 
a fixed centre whether in the plane of their motion or out 
of that plane, nnd supposing that plane either to be fixed 
or to be moved round the centre of forces. But as nction 

II 4 
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and reaction are equal and opposite, by the third of the 
Laws of Motion originally stated, it is evident that the 
case of a fixed centre cannot exist when the attraction, 
which we call the centripetal force, proceeds from a body 
placed in the centre, unless, indeed, some counteracting 
force shall fix this body to one point; for if no force exists 
but the mntual action of the two bodies, the central body 
must be acted npon by the one which moves round it, and 
its position must be affected by this action. Hence, for 
example, if there were only two heavenly bodies, M and 
E, and the one, M, moved round the other, E, by a pro
jectile force originally impressed upon it, the other, E, 
would also move round M, unless the mass of the latter 
body was infinitely small, and its attraction, proportional 
to this mass, could not sensibly affect the larger body. 
Again, if two bodies, the one moving round the other, 
both together move round a third, S, the action of this 
third will affect the motions of the other two relatively 
to each other. Thus each smaller system will be affected, 
both as to the motions and orbits of the bodies composing 
it, by the action of the body in the common centre of the 
whole; and they will also be affected by the action of 
the bodies in the other systems, having the same com
mon centre. The inquiry, therefore, divides itself into two 
branches; first, the difference between the motions which 
we have hitherto been considering when the centre was 
fixed, and the actual motions of the system, as that of 
the mcon and earth ,revolving round each other with a 
moveable centre; secondly, the still more important dif
ference between the motions already considered, and the 
actual motions, which difference is caused by the mutual 
actioDs of the whole bodies on each, and yaries both the 
motions and the orbits of all. 

i. SUl)}>Ol5e two bodies mutually attracting each other 
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and impelled by a single original force of projection, as E 
and M, their centre of gravity being G; it is clear that 

/~-:..-:.-:..~.... ........... .. .•...... •........ . 
(/'~I __ • . ..... . 
B~ ------=-- ." ---'A 

\. .... ______ u K./ 
~- .... ". .... ........ ~.-,-. --:.: ............ ~-.... ...:-::-::::::: .................... . 

if M moves a very small space to m by the attraction of 
E, so will E move to e by the attraction of M, and the 
two triangles E G e and M G m will be similar in all 
respects; for the lines 1\1 G. m G and E G, e G are 
proportional, because the segments of the lines E M and 
em are always in the same proportion, G being the centre 
of gravity, and those segments, therefore, inversely as the 
masses of E and M. Therefore the curves which the 
bodies describe round the centre of gravity will be entirely 
eimilar. In like manner they will deecribe similar curves 
each round the other, and the radius vector of each from 
the other, as wellas from the centre of gravity, willdeecribe 
areas proportional to the times. It follows from this and 
from what was before shown respecting centripetal forces, 
that the two bodies will move in concenuic ellipses round 
one another and round their common centre of gravity, if 
the centripetal force is as the distance, and that each 
will describe one or other of the conic sections, having 
the other, or the common centre of gravity, in the focus, 
if the centripetal force is inversely as the square of the 
distance. In like manner, because of the ratio b~tween 
the squares of the periodic times and the cubes of the dis
tances, it may be shown that if T be the periodic time of 
thc bodies moving round their cC':!tres of gravity, and t 
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the periodic time of M moving in a similar figure round 
E at rest, T : t :: .; E : .vM + E. Further if these bo
dies move with forces inversely as the squares of the 
distances round their centres of gravity, and A be the 
greater axis of the ellipse described by M round E, a 

the greater axis of the ellipse it would describe round 
E at rest in the same time, and if M + E : m:: n : E, 
then A : a:: M + E : m. Hence, if we have the periodic 
times of the planets, we can find the greater axes of their 
orbits by taking A 3 to a3 in the proportion of Tl to t2 

(the ellipse being supposed described round the sun), and 

multiplying it by R. So the masses may, likewise, be 

found from the distances. 
The motions and paths of bodies thus mutually acting 

are now to be considered. - And first our author shows, 
that if two bodies act on each other, and move without any 
other, or foreign, influence whatever, their motion will 
be the same as if, instead of acting on one another, some 
third body placed in their centre of gravity acted upon 
each of them with the same force with which each acts 
on the other; and the same law will prevail (but referred 
to the distances from the centre) which prevailed in their 
mutual actions when referred to their distances from 
each other. Suppose the bodies M and E to attract 
with forces directly I1S their masses M and E, and in
versely as any power n of their distances, that is, suppose 

h . . b M d E d h h d· t eIr attractIon to e as DIa' an D.' an t at t e IS-

tances of the centre from M and E are C and c re
spectively; then because C : c :: E : M, and C : C + c 

(or D):: E : E+M, a body in the centre will attract 

~,r ·tl fi E l·f ·It b I}~ x C· h . 1'~ WI 1 a orce as n'" e cqua to - Jj_ -, t at 18 
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al to Ea+l d· 1ik • will 
equ (E + M)'" an , In e manner, It attract 

• M . . Ma+! 
E wlth a force equal to n a ' if It be equal to(E + M) •. 

If n=2, or the force be as the inverse square of the 
distance, the body placed in the centre will be equal to 

(E !~)I; if n= -1, or the attraction be directly as the 

distance, the body will be in both the case of M and 
E equal to E + M; and if the attraction be as the square 
of the distance directly, the central body will be in the 

two cases of the two bodies, (M ~ E)ll and (M ~ E)2 

respectively. 
Next as to the absolute trajectory of the bodies thus 

acting on one another, or their path in space, we have 
an investigation analogous to those inquiries formerly in
stituted where the centre of forces was fixed. For the 
body or bodies being known (by what we have last shown) 
whose mass gives at the centre the same attractions as the 
two bodies exercise on each other, we can determine for 
each of these bodies the path in which it will move, pro
vided we know the initial direction and velocity. Thus 
let m = 2 in the last expressions, we have for the mass by 
which M is attracted towards the common centre of gravity 

(M ! E)ll; and proceeding as was formerly shown in the 

case of immoveable centres, we find that if the curve de
scribed round the centre at rest be a circle, if that centre 
moves in a straight line, the orbit in space will be of the 
cycloidal kind; if the centre moves in a circle, it will he 
an epicyc10id or hypercycloid; and if the curve be a conic 
parabola, the motion of the centre will change this into a 
cubic parabola, which will thus be the path arising from 
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its parabolio motion combined with the advance of the 
centre of gravity. The moon in this way describes thirteen 
cycloidal curves in a year, and all of them concave towards 
the SUD. 

It appears then, that the orbits of the system composed 
of our earth and its satellite, must be considered as traced, 
not by either of these bodies but by their centre of gravity. 
While neither body describes an ellipse round the sun, but 
both revolve round each other and round their centre of 
gravity J that centre itself describes an elliptical line - a line 
which would be a perfect ellipse if no disturbances of an
other kind than those which we have been considering in
terfered to alter the form of the orbit. To these disturbances 
we now proceed. 

ii. While the primary planets and their satellites are 
influencing each other and while the whole motion of each 
subordinate system round the sun, the common centre, is 
the elliptical orbit described by the centre of gravity of 
each such system, there are disturbing forces exerted on 
each planet by the rest, and on the motions of satellites by 
the action of the sun also; so that many sensible deviations 
take place from the motions, and from the orbits, which 
those bodies, both primary planets and satellites, would 
have, if they moved round the common centre undisturbed ; 
that is, if they described elliptical orbits round the sun 
by his attraction, without any other force acting on them, 
except that attraction of the sun on each planet, and 
the attraction of each planet on its satellites. If no such 
disturbances existed, and the only forces that acted were 
the mutual actions of the primary and satellites on each 
other, and of the sun on the common centre of gravity of 
the primary and satellites, the centre would describe an 
ellipse round the sun, and the primary and satellites 
would describe elliptles round each other and round that 
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centre of gravity. Such, however, is not the case j and we 
are now to consider the effects of the disturbance 0cca

sioned by the sun's action upon the satellites, and the 
disturbance occasioned by the action of the planets on one 
another.-This forms the subject of Sir Isaac Newton's 
investigations in the second branch of that section which 
we have been considering; an inquiry regarded by some 
as the moet extraordinary portion of the great work 
which forms the principal monument of his genius. From 
this opinion it is difficult to withhold our concurrence; but 
it may be admitted that here, as in the operations for find
ing orbits from given forces and conversely, the great 
improvements of modern analysis have afforded easier and 
more manageable methode of investigation. That this 
muet be true as regards the planetary disturbances, will 
be apparent upon a little reflection. 

The grand problem in every case is to find the precise 
effect of a disturbing force upon the path of II. given body 
moving by a combined centripetal and projectile force; 
and what has been called the Problem of Three Bodies 
presents the simplest caee of the question, being the deter
mination of the motions of two bodies acted upon by one 
another and by a third body. But though this is the 
simplest case of the general question, it has been found 
to present difficulties of the highest order; and a general 
and rigorous solution of it has been found to exceed the 
powers of the moet improved analysis. In the time of Sir 
Isaac Newton, that analysis of which he was the inventor 
had not attained I\ny thing like its greatest perfection. 
Hence, in grappling with the subject, he had much of 
the difficulty to contend with, which made him give' Ieee 
convenient formulas than we now poeseee for the solution 
of the other problems relating to orbits and ~otions. The 
mere improvement of the integral calculus by the advan-
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tageous approximations through aeries, logarithms, and 
the arithmetic of sines, would have afforded important faci
lities for these inquiries; because the solution must come 
always to an integration. Accordingly Euler, D'Alem
bert, and Clairaut, availed themselves of that improve-, 
ment to investigate the problem, as we have already seen. 
But soon after their researches had led to the important 
result formerly described, a great refinement was intro
duced into the calculus, which bore directly upon the sub
ject of these inquiries; and this exceedingly facilitated 
the solution of the problem in its more extended application. 
We allude to the invention of the Calculation of Varia
tions by Euler and Lagrange. 

We have in the introductory part of this Analytical 
View explained that this calculus enables us to examine 
the transition of one curve into another in certain circum
stances, by showing how those lines may be found which 
have certain properties in relation to other lines of a 
different kind, and thus to investigate problems with 
respect to curves whose nature changes under the inves
tigation, because the relation between their co-ordinates 
is variable, and is indeed the thing sought for. It is 
evident, therefore, that this calculus has its immediate 
application to the subject in question. For the effect of 
the disturbing force is to change at each moment the 
nature of the path, which, but for that force, would be 
described; or the inclination of orbits to one another, 
which, but for such disturbances, would subsist; or the 
position in space, which, but for the disturbance, these 
orbits would have. Now, those changes produced by 
mutual disturbances, really comprise all the effects of the 
disturbances on the planetary system. Thus, beside the 
precession of the equinoxes and the motion of the apsides 
and nodes, which we have just now generally stated, 
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the alteration in the form of the curve includes also the 
change of its eccentricity, and the acceleration or retar
dation of the motion itself. Hence, we have at once 
proved that the determination of those effects which arise 
from disturbing forces, is in a peculiar manner the pro-

• vince of this new and refined analysis, the Calculus of 
Variations. Therefore, beside the facilities afforded by 
the improvement of older methods of investigation, the 
addition of this new instrument to our means of solving 
the problem has established an entirely novel method, 
and opened an almost unknown field of inquiry, from 
which the original author of aU these discoveries was 
necessarily shut out. Instead, therefore, of minutely going 
over the steps of his solution, as applied to the celestial 
motions, we shall show the course which he pursued by 
demonstrating its fundamental principles; but we shall 
begin by stating concisely the results of the more recent 
investigations as affecting the science of physical astro
nomy. and shall reBe"e the fuller discuBBion of this subject 
for the account of Laplace's work. 

In considering the motions of the planets and their 
satellites round the sun, we may first regard him as from 
his magnitude and distance so little affected by their 
attractions, that his motion is trifling, and cannot sen
sibly affect that of the other bodies; so that he may be 
viewed as at rest; and then the smaller bodies will both 
move round one another, and round the larger and more 
distant body as if he were fixed. But not only will the 
movement of these bodies be thus affected by their mu
tual actions; they will also be affected in their motions round 
one another by the action of the third body, the sun; and 
this action will disturb and alter their relative motions, as 
regards both their velocities, the forms, and the .positions 
of their orbits. Thu8 the position of the moon's path 
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round the earth is aft'ected by the BUD'S attractioD, that 
is, by her gravitation towards the SUD, which combines 
with her gravitation towards the earth to determine ber 
absolute motion; and both the position of the axis of her 
orbit (the line of apeides), and the position of the line 
joining the intersectioD8 of her orbit's plane with the· 
plane of the earth's orbit (the line of nodes), are continu
ally changing; and we have seen in a particular manner 
how the apeides revolve in one period of time (about nine 
years), and the nodes in another, (about nineteen' years). 

But there is a variation in the rate at which both the 
line of the apeides and the line of the nodes revolve. 
The quantity by which both of these lines advance in 
each year sensibly decreases; so that the period in which 
each effects a complete revolution becomes longer and 
longer. It appears that the former line revolves now 8' 2" 
slower than in the earliest ages of astronomical obser
vation, about 251- centuries ago; the latter line only 
l' 42" 14'" -the former motion dimjnishing each century 
by 36" 41"'; the latter by 7" 51"'. 

It is equally found that the disturbing forces accelerate 
the moon's motion by a very emall quantity; or that 
she revolves round the earth in a period of about 11" 7'" 
shorter than she did a century ago; her angular velocity 
being increased between the 12 and 13,000 millionth part 
of her total velocity in the period of 100 years. This 
makes the yearly acceleration wholly insensible; and the 
total acceleration, or shortening of her periodic time since 
th.c creation of our species 60 centuries ago, only 11 
~lDutee and 7 seconds, supposing it to go on as the 
tUDes' b t't' . , u 1 lDCreases m a lower proportion (probably 88 

the ~~be of the times); so that its total amount is· more 
COhDSI crable, and Laplace reckons it at about 7' 30" for 
t c lust 25~ t· . 

.. cen unes. ThIS acceleration had not been 
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Uilobeerved in Halley's time, and it WB8 discuesed acutely 
by Mayer; but ita cause WB8 fint discovered by Laplace : 
it is the sun's aeUon upon the moon, combined with the 
variation in the orbit or the earth, the eccentricity or 
.which hae been dUniniehing regularly, though by an 
extremely small quantity (only .v.OOO0007667 of the 
greater axis of our orbit); 80 that the orbit hae been 
slowly approaching more and more to the circular form. 

It is a great proof of the usefulness of the calculus in 
these investigations, that this great geometrician appears 
to have discovered the connexion between the earth's 
diminishing eccentricity and the acceleration of the moon's 
mean motion, by the careful examination of the mere 
equation or algebraical expression. For the reciprocal 

of the eemi-uia of the moon's orbit !, B8 influenced by 
a 

the sun's attraction combined with the earth's, is found 
to be represented by an expression, which, among other 

•• 3 a'lm'e''I.·. • 
terms, containe this : -"4 a'll 111 which a' 18 the 

semi-axis or the earth's orbit, m' the mB88 or the sun. 
and e' the eccentricity of the earth's orbit. Consequently, 

as e' decreases,.!. increaees, the term being negative i 
a 

and thererore a itself' decreases B8 e' decreaeee; in other 
words, the moon's orbit is diminished, and her velocity 
augmented, in conaequenC8 of the earth's' eccentricity 
decreasing. But if the diminution or the greater axis is 
not admitted as necessarily lessening the orbit, we may 
recollect the relation between the times and the mean 
distances, the squares or the former being B8 the cubes 
o£ the latter i and the mean motion is, of course, in
versely B8 the periodic time. - However Laplace fur
nishes U8 with a still closer reB8On, and illustrates the 

I 
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use of the calculus, 88 it were, by a new triumph, ia 
another part of the MlcaaitJus Cllate.- For the equation 

f h . gular • • h t "'-'; o t e mean an motion l8 s own to be n = --s-' 
a~ 

t being the time, a the transverse axis, and 1£ the sum of 
the maseee of the two bodies, in this case the moon and 
the earth. Therefore n, the mean motion, mnst neces
eariIy be accelerated 88 a, the axis, is diminished. 

And here in passing, we also observe how Kepler's law 
of the sesquiplicate ratio may be anew proved, but only if 
we make 1£ = S (the sun), and neglect the mass of the 
planet. For take two planets whose mean motions are n 

and n' round a third body, and their mean motions be-
t'; t';~ . 

ing 88 --!= and ,,,11-, and because (2 '11" being 360j, 
a~ a 

2.". 2 ... 
n t = 2 '11", therefore t = -, and t'= -" or t = n n 
2 .... al 2 ... a'i t1 . 

'" ,and t' = . ~_ ; coneequen y t' : t" :: r : a'S 
1£ . 'V 1£' 

- being Kepler's law, which is thns demonstrated. But 
it is-()nly demonstrated and is only ~e if ,;p: is the same 
to both planets, that is, if p.=S in each case. Now, this 
may be 888Umed in the case of those bodies revolving round 
the sun, or of the satellites of Jupiter and Saturn revolving 
round those primary planets, because of the great dispro
portion between the central body and the othen, (the largest 
of them, Jupiter, being lees than a thousandth part of the 
aun.) But the law would not hold true if II- were taken, 
which in strictness it ought to be, as S+P, the sum of 
the masses of the central and the revolving body; for then 
1£ would differ in each instance, and the 8esquiplicate pro-

• LiT. iL cb. 3. 

Digitized by Coogle 



NEWTON'S PRINCIPIA. 115 

portion would be destroyed. Hence, we anive through 
the calculus at this important conclusion, that the law only 
bolds, if the mutual actions of the planets on each other 
are neglected, and that, therefore, the law is not rigorously 
true where, as in the case of the earth and others, the 
actions of the other planets are sensible. 

A.gain, the inspection of the a!gebraical expressions shows 
that the variation in the eccentricity of the earth's orbit 
produces, likewise, the retardation of the apsides and 
DOdes; and this discovery was . also made, apparently, by 
Uae mere inspection of the expressions which the calculus 
h8d furnished. Thus the expression for the motion of the 
perigee (or apaides) involves the integral f ef'J d v (v being 
the true anomaly);- and thia quantity is positive. There
lore the decrease of the eccentricity of the earth's orbit, 
causes a decrease, also, of the perigea! motion of the moon. 
And one of the terms of the equation to the motion of the 
nodes contains the same integral f ef'J d v; consequently 
the same eccentricity is likewise the cause of the variation 
in the period of their revolution. t 

Now we have seen how extremely small these irregu
larities in the moon's motion are which the theory gives 
by this analytical process, and that they are hardly sensible 
ia • whole century; yet it is found that the deductions 
01 the ca1culus are in a remarkable manner confirmed by 
aoa.I observation. Practical astronomers, for eumple, 
wholly ignorant of Laplace's discoveries, have ascertained 
that the secular variation in the motion of the moon's 
apMee, ascertained by comparing the eclipses in the Greek, 
Arabian, and Chaldean astronomy, with those of the last 

• Angle of the radius vector with the axis of the orbit. 
t Mec. 00 liv. vii. ch. 1. Thia wonderful chapter is a mere aeries 

or integrations, and contains, from the iDBpeCtion of the equations, thOle 
euraordinary diseoveriea respecting the laws of the nniverae. 

I \I 

Digitized by Coogle 



. 116 NEWTON'S PRINCIPIA • 

century, is ·about 3.3, or 33 tenths of the moon's mean 
motion; and this is the exact result of the calculus. Laplace 
-also discovered, chiefly by similar means, a very small 
secular inequality in the moon's motion never before S118-

pected, and produced by the sun's attraction.· It was 
found by observing, that the divisor of some of the frac
tional terms of the equation which shows the inequality 
is extremely small, and that, consequently, the irregu
larity may become sensible. A correction of the tables 
"YaH thus introduced by this great geometrician, in which 
the theory approaches, on an average, to within vh of 
the actual observation. The sign of this inequality being 
1legative, it is a retardation of the mean motion, and is to be 
set against the secular acceleration. It must be obsened, 
,moreover, that the errors of the theory, as compared with 
the obsenation, are half of. them by excess and half by 
defect; so that they may be said to balance each other. 
The maximum of this inequality is little more than 15", 
and its period is 184 years. 

Hitherto of the moon; but we are, in like manner, con
ducted by the same refined, though complicated, analysis 
to the variations in the orbits, and consequently in the 
motions of the earth and of the other planets, as well as of 
the satellites of Jupiter and of Saturn. The m08tremark
-able variations produced upon these orbits are the cbangee 
in their eccentricity and in their aphelion; the former 
being constantly, though slowly, shortened -the latter 
moving round in slow revolutions, as the line of the 
moon's apsides revolves, but revolves much more swiftly. 

The expressions obtained in the case of anyone planet 
for the eccentricity and perihelion longitude (revolving 
motion of the axis), are mainly composed of the masses, 

~. M(-e. eel. liT. vii. 00. 5, 
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distanCes, eccentricities, and perihelion longitude of the 
disturbing bodies, with the known eccentricity and longi
tude of the planet in question at a given epoch. Hence 
we perceive that on these circumstances depends the varia
tion of the eccentricity and the revolution of the axis of 
the planet. Thus the secular variation of the eccentricity 
of' the earth's orbit is 0.000045572 of e, the eccentricity 
which at the epoch (1750) was 0.016814 or the semi· axis 
major of its orbit; and it has the negative sine in the 
expression; consequently the eccentricity is on the decrease, 
88 we before observed. This diminution of the eccentricity 
amounts to about 18" '19''' yearly (or ·about 3900 miles). 
We have already observed that the annual revolving mo
tion of the axis of the earth's orbit is 11" 53"', and its 
period 109,060 years. The examination of the expres
.ions for these irregularities shows, as might be expected, 
that Mars, Venus, and Jupiter bear the most considerable 
ahare in producing the variations.- But it is a truly re
markable circumstance that the direct action of those 
planet. upon the moon's motion is hardly sensible com
pared with their indirect, or, as it is sometimes called, 
reSected action upon the same body, through the medium 
of the sun and the earth. For these planets, Mars, Venus, 
aud Jupiter, by altering the eccentricity of the earth's 
orbit, very sensibly affect the motions of the moon, as we 
have seen, while directly their action is incomparably less 
perceptible. 
. The perihelion longitudes of all the other planets are 

inereasing, or their orbits advancing, except Venus, 
whose aPsides are retrograde; and the eccentricities of 
Venus, Saturn, and Uranus, are decreasing, like that 
of the earth, whilst those of the other planets are on the 

,. Mec. eel. liv. ii, ch. 6, 7, 8.; Ih', vi. ch. 7. 
1 3 -
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increase. These variations are greater in Saturn than in 
any of the others,-considerably greater than the varia
tions of Mars, which comes the nearest to them. The 
variation in the eccentricity of Jupiter's orbit iB nearly three 
times as great as in the Earth's; that of Saturn between 
five and aU times greater than the Earth's; while the 
variation in the perihelion longitude of the former is 
about five-ninths of the Earth's variation; and Saturn's 
exceeds the Earth's in the ratio of about 25 to 18, and 
exceeds that of Mara only 80mewhat more than as 49 
to 48. 

When the attention of mathematiciaDs and aatronomen 
was first directed closely to eumine the diBturbanoea of 
these planets, it appeared hardly pouible to reconcile such 
vaat and numeroUB irregularities, as were found to exist, 
with the theory of gravitation, or indeed to reduce them 
under any fixed rule whatever. The case seemed to be
come the more hopeleea when 80 conaummate an analy81 
as Euler, the great improver of the calculUB, failed in 
repeated attempts at investigating the subject, committing 
several important errors which for a time were not de-
tected, but which showed, or seemed to show, a wide dis
crepancy between the theory and the observationL By 
one discovery, indeed, to which his researches led him, he 
may be said to have laid the foundation of the moat ex
traordinary step which has been made in the knowledge 
of the planetary system. We allude to hiB theorem on the 
periodicity of the eccentricities and aphelia of Jupiter and 
Saturn. But in most other respects his attempts signally 
failed. D' Alembert made little progreBB in this inquiry; 
but at length Lagrange, and still more Laplace, by apply
ing all the resources of the calculus, in its last stage of 
improvement, and after the method of Variations had been 
systematised, succeeded in reducing the whole to order, 
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and diaeovered, while investigating these motioDB, the 
great law of the stability of the universe. 

The circumstance which mainly contributes to render 
the irregularities in the motions of two planets great, and 
which especially augments the disturbance of Jupiter's 
satellites, is that their mean motions should be commen
surable, which those of Jupiter and Saturn are after a v~ 
remarkable manner. Five times the mean motion of 
Saturn are equal to nearly twice that of Jupiter; and the 
three first satellites of Jupiter are 80 related to each other, 
that the mean motion of the first, added to twice the mean 
motion of the third, is equal to three times that of the 
eecond; while the longitude of the first added to twice that 
of the third, and subtracted from three times that of the 
aeoond, makes up exactly 180°. Laplace showed, that this 
proportion, if it was not originally fixed between those 
satellites, must have been established by the action of the 
attractive and disturbing forces .; and it is a truly remark-· 
able thing, that when the theory had given a value for the 
three mean motions, M - 3 m + 2 p. = 0, the comparison 
of the eclipses for a century was found to make the expres
sion only 9", and consequently to tally with the theory 
within that very 8lDall difference. The observation of the 
efFects which were produced upon the equations which 
reenlted from the analysis, by the proportions above stated 
between the mean motions of Jupiter and Saturn, induced 
Laplace to BUBpect that this made quantities become of 
importance, which from the high powers of the denomi
uaton might otherwise have been insignificant. For one 
of the terms in the equation to S T (variation of the radius 
vector of the first satellite), for example, had for its deno-

• MCc. eel. liv. vi. ch. I. 2. 12. 13.; also for the analytical investiga
tion, ICC liv. viii. throughout, and liv. ii. ch. 8. s. 65. 
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minator 4 (rt _n)9 Nll in which n and rt are the mean 
motions of the liret and second satellite, and N a composite 
quantity not materially differing from rI, which differs 

hardly at all from~, inasmuch as n=2 rI, while n'= 

2 n" (n" being the mean motion of the third satellite); and 
hence the above denominator becoming little 01' nothing, 
the term is of large amount; and 10 of 3 ", the variatiou of 
the anomaly.- He accordingly undertook the laborious 
task of examining this complicated subject by considering 
all these quantities; and he arrived at the discovery of, 
among other inequalities" a retardation of Saturn's motion 
of about 3" 6'" yearly" and an acceleration in Jupiter'" 
motion of about I" 18"'. Another irregularity in Saturn's 
motion with respect to the vernal and autumnal equinox 
had been observed by astronomere in the last century, and 
could not be explained. Laplace found this, like all the· 
rest, to follow from the Newtonian theory. In short ... 
when summing up the subject in one of his -concluding 
boob, he naturally and justly exclaims, "Tel a ~te Ie 
sort de cette brillaute decouverte, que chaque difticult& 
qui s'eet 6levee, est devenue pour elle un nouveau sujet 
de triomphe; ce qui est Ie vrai caractere du vrai systeme 
de 180 nature." t 

There is uo sensible disturbance produced by any 
of the satellites, except the moon, upon the motion of 
their primaries" from the extreme smallness of their 
masses compared with those of the sun and of their" 
primaries; for a r is equal to a series in which 
m ml mW 
)1' M' M' &c., are factors of eRCh term t, m, m', &c.,· 

• Mce. eel. liv. viii. eh. 1. 4. 
f Ibid. liv. xv. eh. I.-Syllt. du Mowle, liv. v. ell. 3. 
:: Ibid. liv. vi. ch. 4. 
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being the JDaS8es of the satellites, and 1\1 that 'of the 

Ian N · th fJ' m 1 mU 
p eta. ow, In e case 0 uplter 1\1 = 57'l10; 1\1 

JW.Y 
and 1\1 are somewhat greater; but the greatest of the 

mUl 1 
four factors 1\1 = 11302 only. But in the case of the 

earth this factor amounts to about 8~; so that 8 r and 

8 " become sensible; and will be so, even if, in

stead of ii, we take the factor 1\1 : m' which is more 

correct.-
When Laplace began his celebrated investigations of 

the orbits of Jupiter and Saturn, he found that, on substi
tuting numerical values for the quantities in the expres
sion of the mean movement of the one body as influenced 
by the action of the other, the sums destroyed one ano
ther, and left the whole effect of this disturbing force equal 
to nothing, or the mean motion of neither planet at all 
affected· by the other. The formulas could be in each case 
reduced to terms only involving two co-efficients; and these 
destroyed one another. t He soon found that the same 
principle applies to all the heavenly bodies; that their 
mean motions and mean distances (the great axis of their 
orbits) are not affected by any changes other than those 
which occur within limited periods of time; that conse
quently the length of the solar year is precisely the same 
at anyone period of time, as it was at a period so far 
distant as to enable 'the changes which are produced 
within those moderate limits to be ~ffected. This impor-

• taut proposition he demonstrated upon the supposition, 

• Mec. eel. iv. vi. ch. 10.30. 
t Ibid. liv. n. ch. 7.; liv. xv. ch. 1. 
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that the squares of the maeses, and the fourth powen of 
the eccentricities, and the angles of the orbits, are neg
lected in the calculus.· But Lagrange afterwards showed, 
that the theorem holds true, even if these quantities be 
taken into the account. The examination of the mOOD's 
motion demonstrates the same important fact, with respect 
to the permanency of the greater axis and mean motion 
of the planets; for if the solar day were now ~lnr of a 
second longer than it was in the age ~f Hipparchus, the 
moon's secular equation would be augmented above 42 per 
cent. or would be in that large proportion greater than it 
now is known to be. Therefore there has not even 
been the smallest change of the mean movement of the 
planets. 

The other changes which take place in the orbits and 
motions of the heavenly bodies, were found by these great 
geometricians to follow a law of periodicity which secures 
the eternal stability of the system. The motion of the 
earth's orbit we have already seen is so slow, that its axis 
takes above 109,060 years to perform a complete revolution; 
but after that time it occupies precisely the same position 
in space as it did when this vast period of time began to 
run. So the eccentricity of the earth's orbit has been for 
ages slowly decreasing, and the decrease will go on, or 
the orbit will approach nearer and nearer to a circle, until 
it reaches a limit which it never can pass. The eccen
tricity will then begin slowly to increase until it again 
reaches its greatest point, beyond which the orbit never 
can depart from the circular ~orm. The same principle 
extends itself to all the planets. Thus, the time of the 
secular variation of Jupiter's eccentricity is 70,400 years. 

All these deductions are the strict analytical couse-' 

• Mce. Cd.1iv. ii. o:h. i.lUlIl 8. (beeLs. dol and 63.) 
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quences of the equations to the eccentricity of the pla
Detary orbits, obtained by the investigation of the total 
effect of the mutual actions of the heavenly bodies. There 
results from that analysis this remarkable theorem. That 
if the eccentricities of the different planets be called e, e', 
e", &0., their ma886S m, m', m', &0., and their transverse 
axes a, a, ai, &0., and if the integration be made of the dif
ferential expreeeion for the relation between the differentials 
of the eccentricities multiplied by the sines of the longitude 
and the differentials of the time, and for the relation be
tween the differentials of the eccentricities multiplied by 
the cosines of the longitudes and the differentials of the 

• (d e sin. 'If d d e' sin. 'If' de cos. 'If d de'cos.-,) 
time, dt ,an dt,&'c.' dt ,an dt 

&0., we obtain the equation e'J • m. ,./0, + e''J, m '. ,./~ + e" 29 

mi. -.la', &0. = C·; C being a constant quantity. Now, 
88 all the motions are in the same direction, -.I a, ,./ a, &0., 
are all positive. Hence, it follows that each of the quanti-

ties e. m. "/a, e'. m'. -.I a" &0., is le88 than C; and sup
poee at anyone period the whole eccentrioities e, e', e", &0., 
to be very BlDaD, which is known to be true, C, which at 
that period was the sum of their squares, must be very 
small, the other quantities m, m', &0., being wholly con-

stant, and -.I a, -.I a, &0., being invariable in considerable 

periods of time. Therefore, it is clear that tbe varia
tion in anyone of those eccentricities, as e, never can 
exceed a very small quantity, namely, a quantity propor
tional to ,./C-e'2-e"2, &0. The whole possible amount 
of the eccentricity is confined within very Darrow limits. 
It never can for any body, whose eccentrieity is e, exceed 
a quantity equal to 

• Mec. ca liv. ii. cb. 6, 7. (sects 53. 55. 5~, 58). 
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..;' ,,; c - e''' • m . ,,; " - e"". m" . ,,; el' - &c. 

,,; m. -.I Q. 

So that' the eccentricities _ ~ever can exceed a very small 
quantity. 

Thus the changes which are constantly taking place in 
the planetary orbits are confined within narrow limits; 
and the other changes which are the consequences of this 
alteration of the orbits, as, for instance, the acceleration 
of the moon which we before showed arose from the varia
tion of the eccentricity of the earth's orbit, are equally con
fined within narrow limits. Those changes in the heavenly 
paths and motions oscillate, as it were, round a given 
middle point, 'from which they never depart on either 
hand, beyond a certain small distance; so that at the end 
of thousands of years the whole system in each separate 
case (each body having its own secular periods) returns to 

the exact position in which it was when these vast succes
sions of ages began to roll. For similar theorems are 
deduced with respect to other revolutions of the system, 
whose general destiny is slow and constant change, but 
according to fixed rules, regulated in its rate, confined 
in its quantity, limited within bounds, and maintaining 
during countless ages the stability of the whole universe 
by appointed and immutable laWs. 

Laplace examined in the last place the possible effects 
upon the celestial motions of the resistance of a subtle 
ethereal medium, and of the transmission of gravity or 
attraction not being instantaneous, but accomplished in 
a small period of time. The result of his analysis led 
him to disbelieve in both these disturbing causes. He 
found that in order to produce its known cffccts, the trans
mission of gravity, if effected in time, must be seven 
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Plillionsoftimes IIwifter than that of light, or 147 thou
sand millions of miles in a second.· 

iii. The great system of moat interesting truths which 
we have now been contemplating is the work of those who 
diligently studied the doctrines unfolded by Sir Isaac N ew
ton, respecting the motions of bodies which act upon each 
other, 'while they are moving around common centres of 
attraction. He laid down the principles upon which the 
investigations were to be conducted; he showed how they 
must lead to a solution of the questions proposed .. touching 
the operation of disturbing forces; and he exemplified the 
application of his methods by giving solutions of these 
questions in certain cases. Although his successors, tread· 
ing in his steps, have reaped the great rewards of their 
learning and industry, and are well entitled to all praise 
for the skill with which they both worked and improved 
the machinery that he had put into their hands,--a.t once 
improU1g the calculus invented by him, and felicitously ap
plyiDg it -to advance and perfect his discoveries, - yet the 
diatanoe at which his fame leaves theirs is at least equal to 
that by which a Worcester and a Watt outstripped thoae 
who, in later times, have used their mechanism as the means 
of travelling on land and on water, in a way never foreseen 
by thoae great inventors. Strict justice requires that we 
ahould never lose sight of the truth repeatedly confessed by 
Euler.. Clairaut, De1ambre, Lagrange, Laplace, that aU 
the advances made by them in the use of analysis, and in 
its application to physical astronomy, are but the conse~ 
-quences of the Newtonian discoveries; so that we are guilty 
of no exaggeration, if we regard the moat brilliant achieve
ments of those great men only as corollaries from the pro
positions of their illustrious master. Let us briefly see 

• Irlec. eeL liv. vii. ch. 6 i liv. L 00.7. 
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bow he laid the deep and solid fOUDdatiou of the t'abrio 
which we have been surveying. 

After examining the motions of a system of two bodiea 
with respect to one another, and their common centre of 
gravity, and in space, aa those motion. are aft'ected by ·the 
mutual attractions of the two bodies themselves (in the 
manner which we have already described), Newton pro-
eeeda to the great problem of the Three Bodies, aa it has 
been termed, because the solution is so difficult, that gea8-
rally the attempt haa been confiDed to the case of three only, 
this also being sufficient for determining the more impor
tant disturbances of the moon's motions. The inquiry, 
however, is general in the Principia; and its subject is, 
the motion, produced by the mutual actions upon one an0-

ther of the bodies in a eystem. Thus, f'or example, the 
inquiry already analysed regards the effect produced upon 
their motion in space, by the mutual attractiolll of the 
earth and moon; that to which we now are proceeding 
regatda their motion, aa a1eo influenced by the disturbing 
force of' the 8'DJl, and indeed, even by the smaller 1tui 
not evanescent disturbing forces of the other planet& So 
as the former inquiry may be extended on the same prin
ciples to the motions of Jupiter and Saturn, and their 
satellites; this new inquiry applies also to the disturbanoea 
of their systems by ours, and of our system by tbei1'8. 
• Newton begins by showing that if'the attracting force 
mcreaaea 88 the distance of the bodies from each other, 
any two, M and E, will revolve round their common 
ce~t~ of gravity, G, in an ellipse having G for ita centre. :rus IS plain from what was formerly proved when treat-
mg of the • • 

CODle sections, and also more lately reapectiDg 
:: centre of gravi~. If, then, each of these is attracted, 

he same manner, by a third bod S this ~ b • resol ed • Y, lorce, emg 
v mto two, one parallel to the line joining M and 

Digitized by Coogle 



NEWTON'S l"RINCIl"IA. 127 

E, the other parallel to the line joining E and G, the 
former force will only accelerate the motion of M and 
E roUDd G by an addition to the mutual attraction of M 
and E; the latter force will draw the centre G towards S 
or towards G/, the common centre of gravity of the three 
bodies, and combined with the action of M and E upon 
their centre G will make G revolve in an ellipse round 
0', the common centre of the three, round which also, in 
like manner, S will describe an ellipse, 0' being the centre 
of those two ellipses. Thus the bodies M and E will de
scribe an ellipse round the centre G, and the centre G 
and body S will describe ellipses round the centre 0', 
both G and 0' being the centres of these ellipses; and 
so of any greater number of bodies.-Moreover, the ab
solute amount of the attractive force in each centre will be 
as the distance of the centre from the bodies or centres of 
gravity severally, multiplied by the masses of the bodies. 
So that E and S are attracted to G by a force as (M + E 
+ S) multiplied by their respective distances from G.
Lastly, the times in which these ellipses are described by 
the bodies and the centres, are all equal by what was 
before proved respecting motion when the force varies as 
the distances. 

This law of the centripetal force is the only one which 
preserves the entire ellipticity of the orbits, notwithstand
ing any mutual disturbances; but it produces, at great 
distances, motions of enormous velocity. Thus we have 
seen that Saturn would move at the rate of 75,000 miles 
in a second (or a third of the velocity of light itseli), were 
there no disturbance from the other bodies; but the dis
turbance might greatly accelerate this rapid motion. If 
the law be the inverse square of the distance, there will be 
a departure from the elliptical form of the orbits and 
from the proportion of the areas to the times, indicating 
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that the several resulting forces are not directed towarcle 
the several centres. But this departure will be leu con
siderable in proportion as the body in the centre of any 
system, or in the common centre of any number of By&

tems, is of a magnitude exceeding that of the revolving 
bodies, or systems of bodies, because this will prevent 
the central body ~oving far from its place, or much out of 
a straight line; and also the departure will be leu' in 
proportion as the bodies, or systems revolving, are at a 
great distance from the centres or fro~ the common centre, 
because the diminution of this distance increases the 
inclination of the lines in which the disturbing forces act. 
and thus disturbs the motions of the bodies among them
selves.-Again, if the law of the attraction varies from the 
inverse square of the distance in some, and not in others~ 
the disturbing effect will be increased. So that we may 
infer the universality of the law and also the small amount 
of the disturbing force, and its acting in nearly parallel 
lines, if we find the ellipticity of the orbits not much de. 
ranged, and the proportious of the areas to the times not 
greatly interrupted. 

Newton proceeds to eumine more minutely the disturb-

c 

anees caused in a system of Three Bodies, of which two 
smaller ones move round a third larger one, and all attract 
one another by forces inversely as the squares of the dis· 
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13nc08. Let S attract 1\1 with a force inversely as the 
!!quare of the uistance; call the mean distance = 1; the 

mean force will be b = 1. Lct the distancc from S, 

successively taken by l\I in movillg round E, 01' its true 

<futance, be S M; thence the force at 1\1 is S ~P' Take 

S L = S ~p, and drawing L N parallel to 11[ E, the 

forces at :\1 are LK + Q (Q beillg a quantity that 

varies as 1\11 E'1) aUlI 8 N. K ow L N 1\1 E :: 

8 L S '1 .1 L ,- 8 L. 1\1 E 11 E Tl l' 
: ... l; anu ... , = - 8~1- = ~ ~13' lerc!orc 

the force acting upon 1\1 towards E is as )1 E + ~I'l~; COll-:-; .. , 
sequently it will increase the attraction of E, but it will 
not be inversely as the square of the ui:;tance; and there
fore l\I will not describe an ellipsc round E, and tllC force 
N 8 does not tend towards E, nor tloes thc furce re~ulting 
from compounding L N, or 11 E, or L X + M E, with 
N S, tend to E. 80 that the areas will not be proportional 
to the times. Therefore, also, this deviation from the ellip
tical form and from the pl'oportjollal description of the areas 
will be the greater, aR the distances L:N and K 8 are smaller. 

Again, let S attract E with a force as I 

if this were equal to S :N, it would, by combining with 
S~, that is, with the attraction of S on 1\1, produce 
no alteration in the relative motion of 11 and E. There
fore, that alteration is only caused by the difference 

S 
between 8 N anu S E'i; wherefore the nearer S N is 

to the proportion of S 1~2' that is (I'CC:lU>'C of thc 

K 
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proportion of S L = S ~I)' the nearer S N is to unity, 

the mean force upon M ; and the nearer the forces exerted 
by S on M and on E approach to equality, the less will 
the elliptical orhit be disturbed, and the more nearly will 
the areas be described proportionally to the times. If the 
disturbing force of S acts in a plane different from that in 
which M and E are, M will be deflected from the plane 

of its orbit; because the force SN - ski will not pass 

through Ej consequently this deflection will be greater or 
less in proportion as this difference is greater or less, and 

will be least when S ~I is nearly equal to the mean force 

of S upon M. 
We have hitherto been supposing S, the greater body 

round which M and E revolve, to be at rest while they 
revolve round each other (the case of the earth and of 
other planets having satellites). Ifwe now suppose E to be 
the greater and central body, and that M and S both move 
round E (the case of the planets round the sun), a similar 
proposition may be demonstrated with respect to the dis
turbances: And it is further clear in this case that if S 
moves round G, the centre of gravity of M and E, the 
orbit of S will be lees drawn from the elliptical form, and 
its radius vector will describe areas more nearly proportional 
to the times than if it moved round E. This appears 
clearly from observing that the direction of the centripetal 
force towards G, that is S G, must be nearer ~ than M j 
that the attractive forces by which S is drawn are as 

_1_ _ 1 ha h· I . fi 1·· h I· S MI S EI; t t t elr reau bng orce lea In t e me 

S G; and also that S M varies, while S E remains the 
same, or nearly so. 
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In all these cases the absolute attractive forces are as the 
masaee of the attracting bodies; and if there are a num
ber of these, A, B, C, E, &0., of which A attracts all 

the rest with forces as ~I' ~, &0., (D, d, &c., being the 

distances from A,) and B also attracts A, C, E, &0., 

with forces as ~I' ~, the absolute attraction of A and 

B towards each other are as the masses A and B. Hence 
in a system, as of a planet and its satellites, if the latter 
revolve in ellipses, or nearly 80, and describe areas pro
portional, or nearly so, to the times, the forces are mutually 
as the masses of the bodies; and conversely, if the forces 
are proportional to the masses, and ellipses are described 
and the areas as the times, the mutual attractions of all 
are inversely as the squares of the distances. 

It is proved, by reasoning of the same kind, that the 
disturbing force of S is greatest when M is in the points 
C and D of the orbit (or the quadraturea), and least when 
M is in A and B (or the line of conjunction and opposition 
called the ayzygUlI). When M is moving from C to A and 
from D to B, the disturbing force accelerates the motion of 
M, which then mOTes along with the disturbing force. 
When M moves from A to D, and from B to C, its mo
tion is retarded, because the disturbing force acts against 
the direction of M's motion. 80 M moves more swiftly 
in syzygy than in quadrature, and its orbit is more curved 
in quadrature than in syzygy. But it will recede further 
from E in quadrature, unless the eccentricity of the orbit 
should be such as to counterbalance this recession: for the 
operation of the combined forces is twofold; it both makes 
the line of apsides move forward in one point of the 
body's revolution and backward in another, but more for
ward than backward, and so upon the whole makes it ad-

Itt 
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vance somewhat each revolution (as we before saw); and 
it, also increases the eccentricity of the orbit between qua
drature and syzygy, and diminishes that eccentricity be
tween syzygy and quadrature. So of the inclination of 
the orbit, which is always diminished between quadrature 
and syzygies, and increased between syzygy and qua
dmture, and is at the minimum when the nodes are in 
quadrature and the body itself in syzygy. 

ME 
We found before that the force L N was as SMa' 

The forces L Nand N E are directly as the mass S, and 
when S is very distant, the forces L N and N E vary as 

S ~3' or inversely as the squares of the periodic times; 

and if at a given distance the absolute disturbing force 
be as the magnitude of the disturbing body, whose dia-

meter is d, these forces are as S ~a; or as the cube of the 

apparent diameter of S. Also if instead of one sa
tellite, M, moving round E, we have several whose orbits 
are nearly of the same form or inclination (like the first 
three of Jupiter), the mean motion of their apsides and 
nodes each revolution are directly as the squares of their 
periodic times, and inversely as the squares of the planet's 
time, and the two motions (apsides and nodes) are to 
one another in a given ratio. 

We now have one of those extraordinary instances which 
abound in his writings, of Sir Isaac Newton's matchless 
power of generalization; of apprehending remote analogies, 
and thereby extending the scope of his discoveries. Having 
shown how the disturbing forces of bodies in a system act 
upon their motions with respect to each other, he now 
examines the effect of such forces upon the constitution 
of the bodies themselves. He supposes,- for example, 
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that a number of masses of a fluid revolve round E at 
equal distances from it by the same laws of attraction by 
which M moves round E, and that these masses are thus 
formed into a ring; then it follows that. the portions of this 
ring will move quicker in syzygy than in quadrature, that 
is, quicker at A and B than at C and D; also, that the 
nodes of the ring, or the intersections of its plane with the 
plane S E, will be at rest in syzygy, and move quickest in 
quadrature, and that the ring's axis will oscillate as it re
volves, and its inclination will vary, returning to its first 
position, unless so far as the precession of the nodes carries 
it forward. Suppose now E to be a solid body with a 
hollow channel on its surface, and that E increased in 
diameter until it meets the ring, which now fills that 
channel, and suppose E to revolve round its own axis
the motion of the fluid, alternately accelerated and re
tarded (as we have shown), will differ from the equable 
rotatory motion of the solid on its axis, being quicker than 
the globe's motion in syzygy, and slower in quadrature. 
If S exerts no force, the fluid will not have any ebbs and 
flows, but move as round a centre that is at rest; but 
if the varying attraction of S operates, being greater 
when the distance is less, the disturbing force acting in the 

direction S L, and being as I:) ~t' will raise the fluid in A 

and B, or in syzygy, and from thence to quadrature, C 
and D, while the force L N will depress it in quadrature, 
C and D, and from thence to syzygy, A and B. If we 
now suppose the ring to become solid, and the size of E 
to be again reduced, the inclination of the ring will vary, 
and oscillate; and the precession of its nodes will continue 
the same - and 80 would the globe, if, without any ring 
at all, it had an accumulation of matter in the equator, 
or had matter of greater density there than elsewhere, and 

K3 
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at the poles. If, on the other hand, there is more matter 
at the poles, or matter of a lese dense kind at the equator, 
the nodes will advance instead of receding. So that by 
knowing the motion of the nodes, we can estimate the 
constitution of the globe; and a perfectly spherical and 
homogeneous globe will move equally and with a single 
motion only round its axis. No other will. 

The Sixty-sixth Proposition, or rather its twenty-two 
corollaries, constitute perhaps the most extraordinary por
tion of the Principia. We have seen that Sir Isaac 
Newton here deduces mosi of the leading disturbances in 
the motions of three bodies, for example, the moon, 
earth, and sun, from the propositions which had been 
before demonstrated. We perceive in sucoeseion the mo
tion of longitude and latitude; the various annual equa
tions, motion of the apsides (in which, however, by omitting 
the consideration of the tangential force, he calculated 
the amount at one half its true value), the evection·, the 
alteration, and inclination; the motion of the nodes. Even 
the doctrine of the tides, and the precession of the equinoxes, 
are all handled clearly, though concisely, in this pro
position. The greater part of the Third Book is occupied 
with the application of these corollaries to the &Ctual case 
of the moon, earth, and sun; and it is not any exaggeration 
to affirm that the great investigations which have been 
undertakcn since the time of Sir Isaac N cwton, and of 
which we have just been surveying the principal results, 
are an application of the improved calculus to continue the 
inquiries which he thus hete began. 

The propositions respecting the masses of the attracting 
bodies which we considered before the corollaries to the 

• .Laplace has erroneously 8tated that Newton overlooked the Evection ; 
bllt It fonns, though not by name, the 8ubject of the ninth corollary to thi5 
lSilr.tY-8ixth Propositiun. 
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Sixty-eixth Proposition (although they come later in the 
Principia), and the latter of those corollaries, naturally lead 
to the subject of the next two sections, the one upon the 
attraction of spherical bodies, the other upon that of bodies 
not spherical. 

i. The attraction exerted by spherical surfaces and by . 

hollow spheres is first considered. If P be a particle si
tuated anywhere within A B D C, and we conceive two 
lines AD, B, C, infinitely near each other drawn through 
P to the surface, and if these lines revolve round a P b, 
which passes from the middle points a and b, of the small 
arcs DC, and A B, through P, there will two opposite 
cones be described; and the attraction of the small circles 
D C, A B upon P, will be in the lines from each point 
of those circles to P, of which lines C P, D P, are two 
from one circle, and A P, B P, two from the other circle. 
Now this attraction of the circle C D is to that of the circle 
A B, as the circle C D to the circle A B, or as C D~ to A 
Bi (the diameters), and by similar triangles C D~ : A B 
:: P Ci : P A~. But by hypothesis, the attraction ofC D 
is to that of A B 8S A p2 : P C~; therefore the attraction 
of D C is to the opposite attraction of A B as A p2, to 
P C2, and also as P ClI to A p:l, or as A p2 X P ClI to A pi 
X P C2, and therefore those attractions are equal; and 

Jt " 
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Leing opposite they destroy one another. In like manner, 
any particle of the spherical surface on one side of P, 
acting in the direction of a P, is equal as well as opposite 
to the attraction of another particle acting on the opposite 
side, and BO the whole action of every one particle is de
stroyed by the opposite action of BOme other particle j and 
P is not at all attracted by any part of the spherical sur
face; or the sum of all the attractions upon P is equal 
to nothing. So of a hollo\v sphere; for every such sphere 
may be considered as composed of innumerable concentric 
spherical surfaces, to each of which the foregoing reasoning 
applies; and consequently to their sum. 

We may here stop to observe upon a remarkable in
ference which may be drawn from this theorem. Sup
pose that in the centre of any planet, as of the earth, 
there is a large vacant spherical space, or that the globe is 
a hollow sphere; if any partidA or mass of matter is at any 
moment of time in any point of this hollow sphere, it 
must, as far as the globe is concerned, remain for ever 
at rest there, and suffer no attraction from the globe itself. 
Then the force of any other heavenly body, as the 
moon, will attract it, and so will the force of the sun. 
Suppose these two bodies in opposition, it will be drawn 
to the side of the sun with a force equal to the dif
ference of their attrar.tions, and this force will vary with 
the relative position (configuration) of the three bodies j but 
from the greater attraction of the sun, the particle, or 
body, will always be on the side of the hollow globe next 
to the sun. Now the earth's attraction will exert no in
fluence over the internal body, even when in contact with 
the internal surface of the hollow sphere; for the theorem 
which we have just demonstrated is quite general, and 
applies to particles wherever situated within the sphere. 
l.'hercforc, although the earth moves round its axis, 
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the body will always continue moving 80 as to shift its 
place every instant and retain its position towards the 
sun. In like manner, if any quantity of movable particles, 
thrown off, for example, by the rotatory motion of the 
earth, are in the hollow, they will not be attracted by the 
earth, but only towards the sun, and will all accumulate 
towards the side of the hollow sphere next the sun. So 
of any fluid, whether waier or melted matter in the hollow, 
provided it do not wholly fill up the space, the whole of it 
will be accumulated towards the sun. Suppose it only 
enough to fill half the hollow space; it will all be ac
cumulated on one side, and that side the one next the 
BUn; consequently the axis of rotation will be changed and 
will not pass through the centre, or even near it, and will 
constantly be altering its position. Hence we may be 
assured that there is no such hollow in the globe filled 
with melted matter, or any hollow at all, inasmuch as there 
could no hollow exist without such accumulations, in con
sequence of particles of the internal spherical surface 
being constantly thrown oft' by the rotatory motion of the 
earth. 

~ 
P At S B 

If A H K B be a spherical section (or. great circle), P R K 
and PIL lines from the particle P, and infinitely near 
each other, SD, S E perpendiculars from the centre, 
and I fJ perpendicular to the diameter; then, by the 
similar triangles PI R, P p D, we find that the curve 
surface bounded by I H, and formed by the revolution 

of IHKLI .. aad the diameter AB, and which ;. ~ 
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proportional.to I H x I 'I., is 8.8 P: :~S; and if the attrac

tion upon the particle P is as the surface directly, and 

the square of the distance inversely, or pll~' that ~ttrac-

tiou will be 88 P p ! p s. But if the force acting in the 

line P I is resolved into one acting in P S and another acting 

in S D; the force upon P will be 88 ~, or (because of the 

Pp 
similar triangles P I Q, P S p) as ps. The attraction, 

therefore, of the infinitely 8Jll8ll curvilinear surface formed 

by the revolution of I H is 8.8 P p ~ P s~ or 88 P I'd'}.; that 

is inversely as the square of the distance from the centre 
of the sphere. And the same may be shown of the sur
face formed by the revolution of KL, and 80 of every part 
of the spherical surface. Therefore the whole attraction 
of the spherical surface will be in the same inverse du
plicate ratio. 

In like manner, because the attraction of a homogeneous 
sphere is the attraction of all its particles, and the mass 
of these is as the cube of the sphere's diameter D, if a 
particle be placed at a distance from it in any given 
ratio to the diameter, as m. D, and the attraction be 
inversely 8.8 the square of that distance, it will be directly 

8.8 Da, and also 88 m} l>~' and therefore will be in the sim

ple proportion of D, the diameter. Hence if two similar 
solids are composed of equally dense matter, and have an 
attraction inversely as the square of the distance, their at
traction on any particle similarly placed with respect to 

them will be as their diameters. Thus, also, a particle 
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placed within a hollow spheroid, or in a solid, produced 
by the revolution of an ellipsis, will not be attracted at all 
by the portion of the solid between it and the surface, but 
will be attracted towards the centre by a force proportioned 
to its distance from that centre. 

It follows from these proposid.oDB, first, that any par
ticle placed within a sphere or spheroid, not being affected 
by the portion of the sphere or spheroid beyond it, and 
being attracted by the rest of the sphere, or spheroid in the 
ratio of the diameter, the centripetal force within the solid 
is directly as the distance from the centre ;-,econdly, that 
• homogeneous sphere, being an infinite number of hollow 
spaces taken together, its.attraction upon any particle placed 
without it is directly as the sphere, and inversely as the 
square of the distance; - thirdly, that spheres attract one 
another with forces proportional to their masses directly, 
and the squares of the distances from their centres in
versely ; -fourthly, that the attraction is in every case as 
if the whole mass were placed in the central point;
.fifthly, that though the spheres be not homogeneous, yet if 
the density of each varies so that it is the same at equal 
distances from the centre of each, the spheres will attract 
one another with forces inversely as the squares of the 
distances of their centres. The law of attraction, however, 
of the particles of the spheres being changed from the 
inverse duplicate ratio of the distances to the simple law 
of the distances directly, the attractioDB acting towards 
the centres will be as the distances, and whether the spheres 
are homogeneous or vary in density according to any law 
coonecting the force with the distance from the centre, 
the attraction on a particle without will be the same as if 
the whole mass were placed in the centre; and the 
attraction upon a particle within will be the same as if 
the whole of the body comprised within the spherical 
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surface in which the particle is situated were collected 
in the centre. 

From these theorems it follows, that where bodies move 
round a sphere and on the outside of its surface, what was 
formerly demonstrated of eccentric-motion in conic sections, 
the focus being the centre} of forces, applies to this case of 
the attraction being in the whole particles of the sphere; 
and where the bodies move within the spherical surface, 
what was demonstrated of concentric motion in those 
curves, or where the centre of the curve is that of the at
tracting forces, applies to the case of the sphere's centre 
being that of attraction. For in the former case the cen
tripetal force decreases as the square of the distance in
creases; and in the latter case that force increases as the 
distance increases. Thus it is to be observed, that in the 
two cases of attraction decreasing inversely as the squares 
of the central distance (the case of gravitation beyond the 
surface of bodies), and of attraction increasing direct! y with 
the central distance (the case of gravitation within the sur
face), the same law of attraction prevails with respect to 
the corpuscular action of the spheres as regulates the 
mutual action of those spheres and their motions in re
volution. But this identity of the law of attraction is con
fined to these two cases. 

Having thus laid down, the law of attraction for these 
more remarkable cases, instead of going through others 
where the operation of attraction is far more complicated, Sir 
Isaac Newton gives a general method for determining the 
attraction whatever be the proportions between the force 
and the distance. This method is marked by all the geo
metrical elegance of the author's other solutions; and 
though it depend. upon quadratures, it is not liable to the 
objections in practice which we before found to lie against 
a similar method applied to the finding of orbits and forces; 
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for the results are easily enough obtained, and in con
venient forms. 

If A E B is the sphere whose attraction upon the point 
P it is required to determine, whatever be the proportion 
according to which that attraction varies with the distance, 
and only supposing equal particles of A E B to have equal 
attractive forces; then from any point E describe the circle 
E F, and another e f infinitely near, and draw E D, e d 
ordinates to the diameter A B. The sphere is composed 
of small concentric hollow spheres E e f F; and its whole 
attraction is equal to the sum of their attractions. Now 
that attraction of E e f F is proportional to its surface 
multiplied by F f, and the angle D E r being equal to 
D P E (because PET is a right angle by the property 

. PExDd 
of the Cll'Cle), therefore E T = DE ' and if we 

call P E, or P F = T, E D = y, and D F = x, D d will be 

d x, and E T =!.!!.:; and the ring generated by the re-
y 

volution of T E is equal to rEx ED, or T E x y; therefore 
this ring is equal to rdx, or the attraction proportional to 
the whole ring E e will be proportional to the sum of all the 
rectangles P D x Dd, or (a-x)dx; that is, to the integral 

of this quantity, or to 2ax;x2 ; which by the property of 

2 

the circle is equal to t· Therefore the attraction of the 

solid E efF will be as y2 x F f, if the force of a particle 
F f on P be given; if not, it will be as y2 x F fx f that 
force. Now d x: F f:: T: P S, and therefore Ff= 
PSxdx . . yixPSxdxxf 
---,.and the attractJOn ofEefF 18&S ; 

r r 
or taking f = r" (as any power of the distance P E), then 
the attraction of E l' fF is as P S • ,...1 y'J dr. Take D N 

Digitized by Coogle 



142 NEWTOK'S PRIlfCIPIA. 

(=,,) equal to P S. r-- I y'J, and let B D=z, and the curve 
B N A will be described, and the differential area N D d n will 
be ndz= (by construction) P S. r-- I y'J d z; consequently 
u d z will be the attractive force of the differential solid E e 

f F; and fu d z will be that of the whole body or sphere 
A E B, therefore the area A N B = f u d z is equal to the 
whole attraction of the sphere. 

Having reduced the solution to the quadrature of 
A N B, Sir Isaac Newton proceeds to show how that 
area may be found. He confines himself to geometrical 
methods; and the solution, although extremely elegant, 
is not by any means so short and compendious as the 
algebraical process gives. Let us first then find the 
equation to the curve A N B by referring it to the rec
tangular coordinates D N, A D. Calling these y and II: 

respectively, and making P A = h, A S (the sphere's 

radius) = a and P S, or a + h, for conciseness, ={ Then 

D E'l = 2 a z - Zl; P E = .,j (h + Z)I + 2 a z _ Zll 
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= '" lJ I + 2 (a + 6) z = ,..! 6 I + f z; and D N = :'1 = (by 

• ) (a + 6) (2 a z - Zll) • 
construction 11+1' the attractive force of 

(6 1 +fz)T 

the particles being supposed as the !th power of the dis
n 

• 
tance, or inversely as <61 + f z)~. This equation to the 

curve makes it always of the order n ~ 3. If then the 

force is inversely as the distance, A N B is a conic hyper
bola; if inversely as the square, it is a curve of the fifth 
order; and if directly as the distance, it is a conic 
parabola; if inversely as the cube, the curve is a cubic 
hyperbola. 

The area may next be determinedo For this pur-

I ff(2aZ - Z2) d z pose we have fydz = ,,+\""o Let 

• 2(6 11 +/z) 2 

2 (a f + 62) = h, this integral will be found to be 
1 h 3-. 6'1. 

4(a + 6)2 x 3-n x (6'l+fz)2 - 1 _ n 

b-II 
• I-II (6 2 +/z)"""2 

X (2 a + b)'J (6'J + / z)i - '---=.-"---'-_ 
5-n 

1 ( lJ-· + C; and the constant C is 4 (a+h)1I x 5 _ n 

(2 a + 6)8l}-. h a) Tho. 0 + - 3-- b -II • IS 1D every CASe gives 
I-n -n 

an easy and a finite expression, excepting the three cases 
of n = - 1, n = 3, and n = 5, in which cases it is to be 
found by logarithms, or by hyperbolic areas. To find 
the attraction of the whole sphere, when z = 2 a, 

we have 1 x (_h_ (2 a + 6)a-1I - ~x 
4 (a + 6)3 3 - n 1 - n 
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(2 + b )5-a lJ-- b8--
(2a+b)a--- a + __ + __ X (2 a+b)9 

5 -n 5-n I-n 

hba--) - 3 _ n for the whole area AN B, or the whole attrac-

tion. If P is at the surface, or A P = b = 0, and 
n = 2, then the expression becomes as a, that is, as the 
distance fro~ the centre directly. We may also perceive 
from the form of the expreBBion, that if n is any number 
greater than 3, so that n - 3 = - m, the terms bl - a 

become inverted, and b is in their denominator thus: 
(2 a + b)~ • 

(1 _ n) b WI· Hence, if n > 3 and A P = b = 0, or the 

particle is in contact with the sphere, the expression 
involves an infinite quantity, and becomes infinite. The 
construction of Sir Isaac Newton by hyperbolic areas 
leads to the same result for the case of n = 3, being one 
of those three where the above formula fails. At the 
origin of the absciBBIB we obtain, by that construction, an 
infinite area; and this law of attraction, where the force 
decreases in any higher ratio than the square of the 
distance, is applicable to the contact of all bodies of 
whatever form, the addition of any other matter to the 
spherical bodies having manifestly no effect in lessening 
the attraction. 

By similar methods we find the attraction of any po~ 
tion or segment of a sphere upon a particle placed in the 
centre, or upon a particle placed in any other part of the 
axis. Thus in the case of the particle being in the centre 
S, and the particles of the segment R B G attracting with 

forces as the ~ power of the distance S 0 or S I, the n 
curve A N B will by its area express the attraction of 

I O~ 
the spherical segment, if D N or !I be taken = S n-
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_ (z a}2 Ct 
- (z _ a)" ' S 0 being put = c, and A D = z, and 

S = a, aE2 before; f!l d z may be 
(z - a)2 d - fel d :c 

h2tegr ating __ e(~_ aY--
I'ound as before by 

fiaE2nt 

2 C; and = ~e~e __ e -~ ; 
nf - 4 7l + 3 3-~-

2c2nd tho attn£2ctiOfY of npon the 
• ~-.. c2 ai-II 2 ~-II 

at the centre S 18 equal to I' _ n - In + n2-b n + ;~c 
(a - C)I 

Thus2 if n = 2 tho attraction is - e_ nr o 
directly, and as S B inversely; and if c = 0, or the at-
~nactk2n is at ceiYhere, is EIual a; ,md 
the attraction is as the distance, or n = 12 th<,n tha 

attractive force of the segment is 4. (a'1._c'l)'l. 

ii. Our author proceeds now to tbe attractions of 
bodieE2 not E2phadcal an nut pedyaps2 in 
greater generality, of 80 much interest in the science of 
I 2hysiezzl where the WaSS±2f3 wl'ieh faf3m tk 
subjects of consideration are either spherical, or very 

E2phedcal, to which mezr ennmination has 
been confined. But this concluding part, nevertheless, 

SO][7%e hibbly tE2uths evailuhle asbu~ 

nomical science, because it leads, among other things, to 
the %ztetraf3tion spberoibe, the true 

of the planets. 
The attredionE2 of Ri2ciO siY7nHar upon two similar 

particles similarlI situated with r<cepect to them, if thoee 

attractions are as the same power of the distances~, are 
'is 

to one another 88 the masses directly, and the nth power 
thZ::2 distances 07e the power tho domo~ 
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logous sides of the bodies; and because the lJ1a88es are as 
the cubes of these sides, Sand 8, the attractions are as 
SI. ,. : i'. S·, or as ,.-1 : s·-a. Therefore, if n = 1, 
the attraction is as S~ : 8~; if the proportion is that of 
the inverse square of the distance, the attraction is as 
S : 8; if that of the cube, the attraction is as 1 : 1, or 
equal; if as the biquadrate, the attraction is as s : S; 
and so on: and thus the law of the attractive force may 
be ascertained from finding the action of bodies upon 
particles similarly placed. 

Let us now consider the attraction of any body, of 
what form soever, attracting with force proportioned to 
the distance towards a particle situated beyond it. Any 
two of its particles A B attract P, with forces as A x A P 
and B x B P, and if G is their common centre of gravity, 
their joint attraction is as (A+ B) x G P, because B P, 
being resolved into B G and G P, and A P into A P 
and G P, and (by the property of the centre of gravity) 

r-:-=====*-§§~P 

G P x A = A P x G, therefore the forces in the line A P 
destroy each other, and there remain only P G x Band 
PG x A to draw P, that is (A + B) xPG; and the 
same may be shown of any other particles C and the 
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centre G' of gravity, of A, C, and B, the attraction of 
the three being (A + B + C) )( G' P. Therefore the 
whole body, whatever be its form, attracts P in the line 
P S, S being the body's centre of gravity J and with a 
force proportional to the whole mass of the body multi
plied by the distance P S. But as the mutual attractions 
of spherical bodies, the attraction of whose particles is 
88 their distance from one another, are as the distances 
between the centres of those bodies, the attraction of the 
whole body ABC is the same with that of a sphere of 
equal mass whose centre is in S, the body's centre of 
gravity. In like manner it may be demonstrated that the 
attraction or several bodies A, B, C, towards any particle 
P, is directed to their common centre of gravity S, and is 
equal to that of a sphere placed there, and of a mass equal 
to the sum of the whole bodies A, B, C; and the at
tracted body will revolve in an ellipse with a force 
directed towards its centre as if all the attracting bodies 
were formed into one globe and placed in that centre. 

But if we would find the attraction of bodies whose 
particles act according to any power n of the distance, we 
must, to simplify the question, suppose these to be sym
metrical, that is, formed by the revolution of some plane 
upon its axis. Let A M C H G be the solid, M G the 
diameter of its extreme circle of revolution next to the 
particle P; draw P M and p m to any part of the circle, 
and infinitely near each other, and take P D = P M, and 
Po = Pm i D d will be equal to 0 M (d n being infi
nitely near D N), and the ring formed by the revolution 
of M m round A B will be as the rectangle A M )( M m, 
or (because of the triangles A P M, moM, being similar, 
and D d = 0 M) P M x D d, or P D x D do Let D N 
be taken = y = force with which any particle attracts 
at the distance P D = P.M = z, that is as z .. i and if 

L 2 
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. 'cl f h • . "6 !I A P = "6, the force of any partI e 0 t e nng 18 as 7' 

and the attraction of the ring, described by M m, is as 

~ x D d x P D, or as "6 !I d x, and the whole attrac-
x 

.\ 
M 

o 

c 

~------~~~~h~~--------------~B 

L 

tion of the circle whose radius is A M, being the sum of 

all the ringe, will be as bJ!I d x, or the area of the curve 
L N I, which is found by substituting for !I its value in x, 

that is x". This fluent or area is therefore = bJ z" d x 
b z"+1 b"+1 . = ---1- + OJ and 0 = - 2' Also, making P II n+ n+ 

= P E in order to have the whole area of L N I, which 
measures the attraction of the whole circle whose radius is 

"6 c ,,+1 "6,,+1 
F A, we have (x being = P"6 = c) n+l - n+2 for 
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that attraction. Then taking D N' in the same proportion 
to the circle D E in which D N is to the circle A F, or as 
equal to the attraction of the circle DE, we have the 
curve R NT, whose area is equal to the attraction of the 
solid L H C F. 

To find an equation to this cu"e, then, and from 
thence to obtain its area, we must know the law by which 
D E increases, that is, the proportion of D E to AD; in 
other words, the figure of the section A FEe B, whose 
revolution generates the solid. 

Thus if the given solid be a spheroid, we find that its 
attraction for P is to that of a sphere whose diameter is 

al th h 'd' sh rt . a. AI-D.L equ to e sp erol s 0 er axiS, as 0.1 + AI-a to 

~ A and a bemg' the two semi-axes of the ellipsoid, d 
3 til' 

the distance of the particle attracted, and L a constant 
conic area which may be found in each case; the force of 
attraction being supposed inversely as the squares of the 
distances. But if the particle is with~ the spheroid, the 
attraction is as the distance from the centre, according to 
what we have already seen. 

Laplace's general formula for the attraction of a spherical 
surface, or layer, on a particle situated (as any particle 

.. •• 2 ... u d U !f d f ! d f F • must be) 10 Its &XIS, IS r x, 10 

whichfis the distance of the particle from the point where 
the ring cuts the sphere, r its distance from the centre of 
the sphere, or the distance of the ring from that centre, 
d u consequently the thickness of the ring, ... the semicircle 
whose radius is unity, and F the function off representing 
the attracting force. The whole attraction of the sphere, 
therefore, is the integral taken from f = r - u to f 

1. 3 
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= r + u, and the expression becomes 2 'If • TU d u + 

jfdf x i'dl F with (r+u)-(r-u), substituted for f, 

when I results from this integration. Then let F = ;2 
or the attraction be that of gravitation j the expression 

2'1f.ll dU J J df 2 'If. udu 
becomes r Idl x f2 = r x 

It 1 2 'If. U d lC (r + u)-(r - u) 
2x-]= r x- 2 

2'1fudu 1 
x - u = - 2 'II' u2 dux -; and the coeffi-

r r 

cient of d r, taking the differential with r as the variable, 
. 2'11'u2 du 1 th ..• 1 IS + 2 ; consequent Y e attractIon IS lDverse y 

r 

as the square of the distance of the particle from the 
centre of the sphere, and is the same as if the whole sphere 
were in the centre.· 

The First Book of the Principia concludes with some 
propositions respecting the motion of infinitely small bodies 
through media, which attract or repel them in their course, 
that is to say, of the rays of light, which, according to the 
Newtonian doctrine, are supposed to be bodies ofthis kind, 
hard and elastic, and moving with such rapidity as to 
pass through the distance of the sun from the earth, or 
95 millions of miles, in seven or eight minutes, that is, 
with a velocity of above 211,000 miles in a second. Sir 
Isa.'\c Newton shows that, if the medium through which 
they pass attracts or repels them from the perpendicular 
uniformly, they describe flo parabola, according to Galileo'l! 
law of projectiles j but if the attraction or repulsion be 

• Mec. eel. liv. ii. ch. 2. The cxpre8Bion is here developed; but i~ 
coincides with the analysis in § 11. 
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not equable, another curve will be described j yet, that in 
either CI\8e the sine of the angle of incidence (or that made 
with the plane where they enter the medium), is to the sine 
of the angle of refraction (or that made with the plane 
they emerge from) in a given ratio; that the velocities 
before incidence and after emerging are inversely as the 
sines of incidence and refraction; and that if the velocity 
after incidence is retarded, and the line of incidence inclined 
inore towards the plane of the refracting medium, the 
small bodies will be redooted back at an angle equal to 
that of incidence. 

He then remarks on the inftexion and deflexion which 
light suffers in passing, not through, but by or near b0-
dies, as discovered by Grimaldi ., and as confirmed by his 
own experiments. He shows that the rays are bent most 
probably in curve lines, the nearest rays towards the bend
ing body, the furthest rays away from it; and he infers 
that, in refraction and redexion, a similar curvilinear bend
ing takes place somewhat before the actual point of re
fraction and reflexion. He further mentions the colours 
formed by dexion, as three coloured fringes or bands, 
"tres colorum fascias." I, however, long ago showed 
(Phil. Trans. 1797, Part II.) t that tbis is not the real fact; 
having found that a much greater number of these fringes 
are formed by dexion, and that they are, like the pris
matic spectrum, images of the luminous body. This ex
periment has been repeated by Sir David Brewster and 
others; nor can any doubt be entertained tbat there are 
innumerable fringes decreasing in breadth, and in the 
breadth of the dark intervals between them, until they 
become evanescent. But as if it were the fate of all this 

• Grimaldi tenned it diffractiort. 
t In PhiL Trans., 1850, and Mem. Inst. de France, 1854, are my other 

papers on Inflexion, showing the same phamomenon, as well as the diiferent 
flexibility of the rarL 

L 4 
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great man's discoveries, that nothing should ever be added 
to them but by the use of means which he had himself 
furnished, it was only by applying a form of experiment 
which Sir Isaac Newton had used in examining the 
colours of thick and thin plates, that this important fact 
was ascertained, he not having subjected the phenomenon 
first obser\'ed by Grimaldi to that mode of investiga
tion.-

The Fourteenth Section concludes with an elegant s0-

lution of a local problem in Descartes's Geometry, fol' 
finding that form of refracting glasses which will make 
the rays converge to a gil'en focus, a problem, the de
monstration of which Descartes had not given. The 
brilliant discoveries made by Sir Isaac Newton upon the 
refrangibility and colours of light, not belonging to dy
namics, he pursues the subject no further in this place, 
having reserved the history of those inquiries for his 
other great ,vork, the Opticst, perhaps the only monument 
of human genius that merits a place by the side of the 
Pl'incipia. 

The truths which we have been contemplating respect
ing the attractions of bodies are fruitful in important 
consequences respecting the constitution of the universe. 
'We have seen that the law of attraction which makes it de
crease as the squares of the distances increase, and the law 
which makes it increase as the distances decrease, are the 

• The Undulatory Theory of light, towards which philosophers haTe of 
late years appeared to lean, is no exception to this remark; for the princi
ples of that Theory may be found in the Eighth Section of the Second 
Book of the Principia, and the Seholium which concludes that Section 
seems to anticipate the application of its principles to Optical Seience. 

t An abstract of these discoveries had been given in the Lectiones 
Opticm at Cambridge seventeen years before the pnblication of the Prin
cipiain 1687, The Ol'ticaonly appeared in 1704, 

Digitized by Coogle 



NEWTON;S PRINCIPIA. 153 

·only laws which preserve the proportions between the force 
and the distance, the same for the attraction of the particles 
of bodies, and for the attraction of the masses in which 
those particles may be distributed-the only laws which 
make the attraction of bodies the same with that of their 
mass placed in the centre of gravity. Now these two 
laws regulate the actions of bodies gravitating towards 
each other, the one being the law of gravitation beyond 
the surface of attracting bodies, the other, the law of gra
vitation between the surface and the centre. Thus, then, 
there is every reason to believe tbat this law pervades 
the material world universally, acting in precisely the 
same manner at the smallest and at the greatest distances, 
alike re~lating the action of the smalJest particles of 
matter, and the mightiest masses in which it exists. This 
action, too, is everywhere mutual; it is always in direct 
proportion to the masses of the attracted and attracting 
bodies at equal distances; where the masses are equal, 
it is inversely as the squares of the distances beyond the 
bodies, and within the bodies, as the distances from the 
centre; and where the masses and qistances vary, it is 
as the masses divided by the squares of the distances in 
the one case, and as the masses multiplied by the dis
tances in the other. This law then pervades and governs 
the whole system. 

The discoveries which astronomers have made since 
the death of Newton, upon the more remote parts of the 
univere~, by the help of improvements in optical instru
men~ have further illustrated the general prevalence of 
the law of gravitation. The double fixed stars, many 
of which had long been known to astronomers, and which 
were believed to retain at all times their relative posi
tiona, have now been found to vary in their distnnces 
from each other, and to move with a velocity sometimes 

~ 
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accelerated, sometimes retarded, but apparently round 
one another, or rather round their common centres of gra
vity. A course of observations continued for above 
twenty years, led Herschel to this important conclusion 
about the year 1803; his son has greatly added to our 
knowledge of these motions; and Professor Struve, of 
Dorpo.t, applying geometrical reasoning to the subject, cal
culated the orbits in which some of the bodies appear 
to move. One of the most remarkable is the star 'Y Vir
ginis, on which Cassini had made observations in 1720.· 
It has now been found that one of the stars of which 
it is composed is smaller than the other; that the revolv
ing motions of the two during the first 25 years had a 
mean o.nnuo.l velocity of 31' 23"; during the next 
21 years, of 29' 17"; during the next 17 years, of 
only 2' 42"; o.nd during the last two years (1822, 
23) of no less than 52' 51". The elder Herschel 
calculated the time of their whole revolution, the pe
riodic times of those distant suns, at 708 years; it is 
now supposed not to exceed 629. Another pair of stars 
o.re found to revolve round one another in between 43 
and 44 years, while a third pair take 12 centuries to 
accomplish their revolution. t Although our observations 
o.re far too scanty to lay as yet the ground of a system
o.tic theory of these motions, they appear to warmnt us in 
assuming that the law of attraction which govems our 
solo.r system extends to those remote regions, and as their 
suns revolve round one another, each probably carrying 
about with it planets that form separate systems, we shall 
probo.bly one day find that equal areas are there as here 
described in equal times, and that the orbits are ellip
ticnl; or, which would come to the same thing, that the 

• Mem. Acad. des Sciences, 1720. 
t Phil. Trans. IS03, p. 339; ih. 18~4, Part IlL 
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sesquiplicate proportion of the periodic times and mean 
distances is observed·, from whence the conclusion would 
of necessity follow, that the centripetal force followed 
the rule of the inverse square of the distance, and that 
gravitation such as we know it in our part of the uni. 
verse, likewise prevails in these barely viaible regions. 
Thus additional confirmation accrues to the first great 
deduction drawn from the theorems respecting attraction 
in the Principia. 

But other interesting corollaries are also to be deduced 
from these propositions. They enable us to ascertain, 
for example, the attractions, the masses, and the figures 
of the heavenly bodies. Sir Isaac Newton boldly and 
happily applied them to determine these important par
ticulars, apparently 80 far removed beyond the reach of 
the human faculties. 

I. The weights of bodies at the surface of the different 
planets were thus easily determined. The law' by which 
the attractive force of spherical bodies decreases as the 
square of the distance increases, whether those bodies be 
homogeneous or not, provided their densities vary in the 
same proportion, and the other law regulating the pro
portion between the periodic times and the distances of 
the planets, enabled him to compute the attraction of 
each planet, for equal bodies at given distances from their 
centres, by compariag the observed distances and periodic 
times of each; and he was thus also enabled, by knowing 
their diameters, to ascertain the weights of bodies at their 
surfaces. lie found in this manner, that the same body 
which at the surface of the Earth weighs 435 pounds, at 

• It may even 800m that already the observed axes of those remote orbits, 
when complU"Cd with their periodic times, approach the SCSIluil'licl1tll mtio, 
Thus one ha.s its axis 7"'9, all.l time 58 yllllfs; I1l1d I1llother its axis 3()"'8, 
I1nd time 452 years, 
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that of the Sun weighs 10,000, at that of Jupiter 943, 
and at that of Saturn 549. 

2. So too the masses of matter in each planet and in 
the satellites may be ascertained. The motions of the 
satellites of Jupiter and Saturn afford the easiest means 
of determining the masses of those planets; and the 
motions of the other planets round the Sun enable us to 
solve the problem, though not so accurately, as to them. 
The mass of J upiter ~ompared with that of the Earth 
may be easily supposed to be prodigious, when we find all 
his satellites revolve round him so much more rapidly than 
the Moon does round the Earth, although all of them but 
one have much larger orbits. Thus the second satellite 
revolves in a seventh of our lunar month, though its path 
is half as long again: and hence, its velocity is between 
10 and 11 times as great. Sir Isaac Newton ascertained 
the masses of Jupiter, Saturn, and the Earth to be to 
that of the Slln as ro"t..,., n~n rlnln~' to 1 respectively. 
In like manner the densities are found, being as the 
weights (first found) divided by the axes. Thus he 
determined the relative densities of Jupiter, Saturn, and 
the Earth to be as 941, 67, and 400, to 100, the density 
of the Sun. Laplace has ascertained the masses of the 
heavenly bodies by an entirely different calculus, founded 
upon the comparison of numerous observations with 
the formulm for determining the dist1.wbances. The result 
is extremely remarkable in one particular. It agrees to 
a fraction, as regards Jupiter, with the calculation of 
Newton, making the mass of the planet r~..,.. But the 
observations of Pound respecting Saturn's axis, on which 
Newton had estimated Saturn's mass, were subject to 
considerable uncertainty; so at least Laplace explains 
the difference of his own results; but he admits· that 

• Mcc. CCI. liv. vii. cb. 16, 8. 44. 
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even in his day there prevailed considerable uncertainty 
respecting this planet's mass, while that of Jupiter, being 
well ascertained, agrees perfectly with Sir Isaac Newton's 
deduction. Laplace gives the masses of the four great 
planets thus, that of the Sun being unity : Venus 8ni7rH; 
Mars u~hn; Jupiter 10617'09 (differing by TV: only 
from Newton's, who indeed did not insert decimals at all); 
and Saturn 5531",.OS'- The Moon's mass he makes ~S.~, 
that of the Earth being unity, while the greatest of 
Jupiter's satellites is only 0,0000884972, Jupiter being 
unity. This great geometrician's observations upon Sa
turn's ring are peculiarly worthy of attention. The ex
treme lightness of the matter of which the planet consists, 
has already been shown; it is six times lighter than the 
mean density of the Earth; or, if the mean specific 
gravity of the latter be taken as 5 t, that of water being 
as 1, the matter of which Saturn is composed must be 
only 31 times heavier than cork, and lighter than India 
rubber. But Laplace has satisfactorily shown that his 
rings must be composed of a fluid, and that no other con
struction can account for their permanence.t 

3. Sir Isaac Newton, lastly, by the principles which we 
have been explaining in the latter part of our Analysis, 
investigated the figures of the heavenly bodies. Thus he 
especially examined that of the Earth. This planet, in 
revolving round its axis, gives those particles the greatest 
tendency to fly off which move with the greatest velocity, 
that is, those which are furthest from their centres of ro
tation; in other words, those which are nearest the equa
tor; while those near the poles, describing much smaller 
circles, move much slower and have far less tendency to 

• yec. Cel liv. x. ch. 8, 9 ; correcting liv. vi ch. 6. 
t The mean of Maskelyne and Cavendi.h'. experiments. 
t yec. eel. liv. iii. ch. 6. 
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fly off. Hence there is an accumulation of matter towards 
the equator, which is raised, while the poles are depressed 
and flattened, and the equatorial axis is longer than the 
polar. By comparing the space through which heavy 
bodies fall in a second in our latitudes with the centrifugal 
force at the equator, he found that the gravity of bodies 
there is diminished Th at least, or that the equatorial 
axis is, at least, ~h longer than the polar. But he con
sidered this estimate as below the truth, because it does 
not make allowance for the effect produced on gravitation 
by the increase of the distance at the equator from the 
centre. Accordingly, by a skilful application of the 
method of false position, he corrected this calculation, and 
ultimately brought out the proportion to be that of 229 to 
230, making the equatorial axis about 34} miles longer 
than the polar, the whole axis being about 7870 miles. 
He also estimated· the two axes of Jupiter to be as 11* to 
lOt, supposing the density of the body to be the same 
throughout; but if it is greater towards the equator, our 
author observed that the difference between the axes 
might be decreased as low as 13 to 12, or even 14 to 13 ; 
which agreed well enough with Cassini's observations in 
those days, and still more nearly with Pound's. Bot 
more accurate observation has since shown that the dif
ference is considerably less, the disproportion being not 
more than that of 1074 to 1000; so that the planet must 
be very far from homogeneous and its equatorial density 
greatly exceed its polar. Thus, too, accurate measure
ments of a degree of latitude in the equatorial and polar 
regions, and experiments on the force of gravity, 
as tested by the length of the pendulum vibrating 
seconds in those different parts of the globe, have led to 
a similar inference respecting the Earth, its axis,being now 
ascertained to bear the relation, not of 230 to 229, as 
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Newton at last concluded, nor even that of 289 to 288, 
according to his first approximation, bnt only that of 336 
to 335·, being an excess of little more than 23! miJe& 
The calculation of Newton was formed on the supposition 
of the Earth being homogeneons; and it is worthy of 
remark, that although the later observations, by proving 
the Battening at the poles to be less than he, on this 
hypothesis, assigned it, have shown the Earth not to be 
homogeneous, no correction or improvement whatever 
has been made on his theory in this respect. We find 
Laplace, on the contrary, in the very passage to which 
we are now referring, assuming his precise fraction ~+Ii 

as the one given by the theary upon the supposition of 
the globe being homogeneous, and reasoning upon that 
fraction·t 

Now it is fit that we here pause to contemplate perhaps 
the most wonderful thing in the whole of the Newtonian 
discoveries. The subject of curvilinear motion, or mo
tion produced by centripetal forces, was certainly in a 
great measure new, and Sir Isaac Newton's treatment ~f 
it was in the highest degree original and successful. But 
the laws of attraction, the principles which govern the 
mutual actions of the planets, and generally of the masses 
of matter, on each other, was still more eminently a 
field not merely unexplored, but the very existence of 
which was unknown. Not only did he first discover this 
field, not only did he invent the calculus by means of 
which alone it could be explored, and withont which 
hardly a step could be made acr088 any portion of it (for 
the utmost resources of geometrical skill in the hands of 
the Sim80ns and the Stewarts themselves, who in other 
inquiries had performed such wonders by ancient ana-

• Mec. ca liv. iii. ch. 5. t Ibid. liv. iii. cb. 5, s. 41. 
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lysis, would have failed to do anything here), but the 
great (liecoverer actually completed the most difficult in
vestigation of this new region, and reached to its most 
inacceesible heights, with a clearnese so absolute, and a 
certainty so unerring, that all the subsequent researches 
of his followers, and all their vast improvements on his 
ealculus, have not enabled them to correct by the fraction 
of a cipher his first results. The Ninetieth and Ninety. 
first Propositions of the First Book, containing the mOllt 
refined principles of his method, are applied by him in 
the Nineteenth of the Third Book to the problem of the 
Earth's figure; his determination of the ellipticity, sup
posing the mase homogeneous, is obtained from that appli
cation. A century of study, of improvement, of dis
covery has paseed away; and we find Laplace, master of 
all the new resources of the calculus, and occupying the 
heights to which the labours of Euler, CI"iraut, D'Alem
bert, and Lagrange have enabled us to ascend, adopting 
the Newtonian fract.ion of Th, as the accurate solution 
of this speculative problem. New admeasurements have 
been undertaken upon a vast scale, patronized by the muni
ficence of rival governments; new experiments have been 
performed with improved apparatus of exquisite delicacy; 
new observations have been accumulated, with glasecs 
far exceeding any powers possessed by the resources of 
optics in the days of him to whom the science of optics, 
as well as dynamics, owes its origin; the theory and the 
fact have thus been compared and reconciled together in 
morc perfect harmony; but that theory has remained un
improved, and the great principle of gravitation, with its 
most sublime results, now stands in the attitude, and of 
the dimensions, and with the symmetry, which both the 
law nnd its application received at once from the mighty 
hand of its immortal author. 
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NOTE. 

The argument in page 136. is succinctly and po
pularly stated respecting the supposition of a hollow in 
the centre of the Earth, and several steps are omitted. 
One of these may be here mentioned in case it should 
appear to have been overlooked. Suppose a mass m de
tached from the hollow sphere M, and impelled at the 
same time with that sphere by an initial projectile force,
then its tendency would be to describe an elliptic orbit 
round the sun, the centre of forces, and if it were detached 
from the earth it would describe an ellipse, and be a small 
planet. But as the accelerating force acting upon it would 
be difFerent from that acting on the ear.th, the one being 

os S tt M, and the other as S ri'l m (D being the dis

tance Ilnd S the mass of the sun), it is manifest that, sooner 
or later, its motion being slower than that of the hollow 
sphere, if m be placed in the inside, it must come in con
tact with the interior circumference of the sphere, and 
either librate, or, if fluid, coincide with it, as assumed in 
the text. Where parts of the spherical shell come oft' by 
the centrifugal force, of course no such step in the 
reasoning is wanted; nor is it necessary to add that 
neither those parts nor any other within the hollow shell 
can have any rotatory motion. 
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II. 

HITHERTO we have considered all motion as performed 
iTt vacuo, or in a medium. which offers no resistance to the 
action of forces upon bodies moving in any direction. It 
was necessary that the subject should first be discussed 
upon this supposition; and the hypothesis agrees with 
the fact as far as the motions of the heavenly bodies are 
concerned. But all the motion of which we have any 
experience upon or near the surface of the earth, is per
formed in the atmosphere that surrounds our globe; and 
therefore, as regards all such motion, a material allow
ance must be made for the resistance of the air when we 
apply to practice our deductions from the theory. It is 
also obvious that a still greater effect will be produced 
upon moving bodies, if their motion is performed in a 
denser fluid, as water. Further, the pressure and motion 
of fluids themselves form important subjects of considera
tion, independent of any motion of bodies through. them 
and impeded by them. These several matters form the 
subject of the sciences of Hydrostatics, Hydraulics, and 
Pneumatics; the first treating of the weight and pressure 
of watery fluids, the second of their motion, the third of 
aeriform or elastic fluids. They are discussed in the 
Second Book of the Principia. It consists of Nine Sec
tions; of which the First Three treat of the motion of 
bodies to which there is a resistance in different propor
tions to the velocity of the motion; the Fourth treats of 
circular or rather spiral motion in resisting media; the 
Sixth, of the motion and resistance of pendulums; and 
part of the Seventh discusses the motion of projectiles; 
while the rest of the Seventh, and the whole of the four 

Digitized by Coogle 



NEWTON'S PRINCIPIA.. 163 

remaining sections, treat of the pressure and motion of 
fluids themselves and propagated in pulses, or otherwise, 
through fluids. We shall arrange the su bjects under these 
Five heads, instead of following the precise order of the 
work itself.· 

Two observations are applicable to this branch of the 
subject, and to the treatment of it in the Principia; and 
these observations lead to our distinguishing this portion 
of that great work from the rest. 

First. Much more had been accomplished· of discovery 
respecting the dynamics of fluids before the time of Sir 
Isaac Newton, in proportion to the whole body of the 
ecience, than in the other branches of Mechanics. The 
Newtonian discoveries, therefore, effected 1\ lese consider
able change upon this department of Physics than upon 
Physical Astronomy and the general laws of motion. As 
early as the time of Archimedes the fundamental principle 
of the general or undequAque pressure of fluids had been 
ascertained; many of the easier problems, and even some 
of the more complicated, had been investigated by its aid. 
When dynamical science was newly constructed by the 
illustrious Galileo, the progre88 which he made may almost 
be said to have formed Hydrostatics and Hydraulics into 1\ 

system; and Pascal's original and inventive genius, soon 
afterwards applied to it, enabled him clearly to perceive 
the hydrostatic paradox, and even led him to a plain an
ticipation of the hydrostatic press. t Torricelli about the 
same period reduced the atmosphere under the power of 
weight and measure, making it the subject of calculation by 
the beautiful experiment which first ascertained its gravity, 

• For the arrangement, see the Summary of Contents. 
t He calls a box of water" a new mechanical principle by which we may 

multiply force ad libit_." (Eq1Iil. of Fluids, 1653.) 
112 
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WnlCn had long been suspected but not provcd~ Paecal 
iii'S! extended the Torricelliau experiment to aU the perfec
tion, indeed. which it has e\'er attained. by showing the con
nexion between the Leight of places on the earth's surface, 
n.lId that of the lilercurial column; thus demonstrating 
M:ltisfuclorily the preesurce of the Iltmosphericnl column. 
TorriceUi had also, from. experiments on the &pouting of 
water, inferred that the velocity of the spouting column, 
or jet, i;] as the square root of the height of the reservoir 
of fluid whose pressure causes the flow. So that the fun
dnmental principles being !lScertained, consider .. Llo progrel'$ 
wns ruse made in their systematic application, when Sir 
Isnrc Newton cnme to treat the suhject as a branch of his 
gcncrn! dynamical theory, and to investigate the laws of 
fluirls by mean!! of thu&e profound principles which he had 
~8tabli8hed with respect to aU motion~ Thus more WIlS 

done beil>re his time, and le86 consequently left for him to 
do here, than in the other brtmches of the general Aubject. 

Seco1idly. It is nbo true that the work which he pro
duced upon this bml1ch of science, did not attaiu the same 

l'eifection under his hands,. ns the rest of the Principia. 
Although he t1'".::atcd it upon mathematical principles. he 
left considernbly more to be done by his SUCCe&i01'"d than he 
loft to be added by thc~ who should follow him ill the 
field of Physical Astronomy. A. great step was almost 
immediately mnde by J. Beruouilli. in asccrt§l.iDing the 
effects of the air's resiat4Jlce upon the motion of projectiles; 
Ilnd an error 80 Ilpparent was pointed out in one of the 
I'ropositioos in the Principia (BO";)k II~ Prop. 31"'), tb~t 
tbe ~rreotion coming to the :.mthor's bowledgeft be struck 
it. out. of the second editi.on, then in the press. His ori
ginal sulutioD of the problem a~ to spouting columns, 
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having differed front the rule which Torricelli had deduced 
experimentally, Newton again investigated the question by 
a different and an admirable process; but even now the 
subject remains in a very unsatisfactory state. Nor enn it 
be said that the science of hydrodynamics generally has 
attained the perfection of the other branches of Mechanic.'ll 
philosophy; while it is certain that the application to it of 
the calculus by Euler and D'Alembert-, and still more by 
Clairaut, has greatly added to the theorems left by Sir 
Isaac Newton; and the researches of Laplace upon ca
pillary attraction form a department of science· almost 
unknown before the latter part of the eighteenth century. 

The statement of these particulars was necessary in 
order to place the relative merits of the different branches 
of the Principia in their true light. That a great improve
ment was accomplished in natural knowledge by this por
tion of Sir Isaac Newton's discoveries, none can doubt. 
That the Second Book displays at every step the profound 
sngncity and matchless skill of its author, is undeniable. 
That it would have conferred lasting renown upon anyone 
but himself, had it been the only work of another man, is 
certain. Nor can we forget that in rating its importance 
as we have ventured to do, we only undervalue this portion 
of the Principia, by applying to it the severest of stand
ards, comparing it with the discovery of the laws which 
govern the system of the universe, and placing it in con
trast with the other parts of that umivalled effort of human 

genius. 

• Their invention of tbe Calculus or Partial Diffcrenccs was connected 
with this subject. (See Life of D·~lembcrt.) 
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ANAL YTICAL VIEW. 

PRINCIPIA.-BOOK SECOND. 

CHAPTER I. 

THE ELEMENTARY PRINCIPLES OF HYDROSTATICS, AND THE 

LAWS OF DENSITY OF AN ELASTIC FLUID COLLECTED ROUND 

A CENTRE OF FORCE. 

L Elnuattlrg PriJICipiu of HgclTOBf4ticB. 
1. What a fluid is, the terms viscosity, solidity, &c. 
2. What the foundation is on which the theory of Hydrostatics is built. 

Newton, XIX. 

3. The fundameutal equation by which we know the properties of a fluid 
in equilibrium. Note L 

4. Three consequences of this equation. Note L 
(I.) That there must in all eases be a certain relation among the forces. 
(2.) Level surfaces are surfaces of equal density. 
(3.) Level surfaces are surfaces of equal temperature. 

5. Newton, XlL, Fliuds under the action of gravity only. 
IL The LaID of DmBitU ill II comprusible Fluid uncler 1M Action of II central 

Force. 
1. Solation of the question- defect in the application to physical ques

tions, Newton, UI. un. &c. 
2. First application. Measurements of heights. Note II. 

Secmul applicatitm. Form of our atmosphere, the Zodiacal light not 
part of the Sun's atmosphere. Note n 

L 1. "HYDROSTATICS" is that part of statics which treats 
of the equilibrium of fluids. A.fluid is any body ,chose parts 

M4 
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yield to any force impreS6ed on it, a"d by yielding are etUily 
moved among themselves. This is Newton's definition. It 
includes gases and aeriform bodies, as well as those to 
which we, in ordinary conversation, apply the terms "fluid" 
or " Jiq uid." 

The fundamental idea of a fluid is, that of a body whOle 
particles mny be moved amongst each other Oil the appli
cation of the slightest possible force. It is tberefore 
directly opposed to a rigid body, whose definition is that 
its particles cannot be moved amongst each other, no 
matter how great a force is applied. It is evi(lent tbat 
no substance that we meet with in nature is strictly either 
a fluid or a rigid body; but they approacb more or less to 
the one or the other. When they partake more of the 
fluid than the rigid nature, they are called" viseous;" 
when the contrary, they are called" solid." These two 
are therefore indefinite terms, and no clear boundary CIlD 

be drawn between them. 
2. The seience of Hydrostatics is divided into two parts. 

In one we assume certain general principles as the grounds 
of all our reasoning. We may consider these as established 
cither by experiment, or as truths which it is the office of 
the other part of the science to demonstrate. In the other 
we make certain general assumptions as to the constitution 
of a fluid, and then we attempt to deduce from these the 
general principles on which all the rest of hydrostatics is 
founded. This division occurs in most mechanical sciences. 
Thus, in Geometrical Optics, we assume the laws of 
reflection IUld refraction; it is the part of Physical Optics 
to establish their truth. It is not here our office to enter 
into the science of Molecular Hydrostatics; we must post
pone, therefore, such consideration to a future chapter. 

The mathematical theory of Hydrostatics is founded upon 
two laws. 
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1. The pressure of the fluid upon any element of B 

8urface exposed to it is normal to that surface. 
2. Any pressure communicated to a fluid mass in 

equilibrium is equally transmitted through the whole fluid 
in every direction. 

Consider any point in a fluid, and let an indefinitely 
pmall plane pass through it; by the second law the pres-
8ure is the same, whatever be the inclination of the plane 
to the horizon; by the first it is normal, and proportional 
to the area of the plane. Let thi8 area be II; then the 
pressure may be represented by p II. This quantity p is 
therefore what we seek to find. It is what the pressure 
would be if the area were unity, and the pressure constant 
over that area. It is therefore called the "pressure referred 
to a unit of area." 

The law expressing the equality of pressures in all direc
tions is true in viscous as well as perfect fluids. The dif
ference is this, that in the latter the transmission of the 
pressure is effected in a moment, in the former it takes 
time. During this interval the law is not true; but when 
a short time has been allowed to pass, the fluid takes up its 
form of equilibrium, and the pressure becomes equal in all 
directions. 

These two laws are not independent. The first con
taios the second. For, let the fluid contained withio the 
llyramid 0 ABC in the interior (' 
of the fluid become ,solid. This 
is allowable, for, the fluid being in 
equilibrium, the pressure on the 
solidified element will be borne 
and resisted in exactly the same B A-

way that it was while still fluid. Let p be the pressure 
referred to a unit of area on the plane C 0 A at 0, 9 
that on a plane parallel to B C A_through O. Lct the 
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pyramid diminish without limit, the pressures on the two 
sides C 0 A and B C A will be normal and respectively 
equal to 

p x area C 0 A, 'I )( area B C A. 
Resolving these, parallel to 0 B, we have 

p area COA _ area COA 
'I areaBCA - areaBCA' 

because this latter ratio expresses the cosine of the incli. 
nation of the two planes; hence 

p = 'I' 
Similar equations hold by symmetry for the other sides. 
And therefore the pressure is equal in all directions. 
This includes Prop. XIX. of Section V. 

3. } Note I. 
4. 

6. Newton proceeds to consider the equilibrium of a sphe
rical mass of fluid, like our atmosphere, resting upon a 
spherical concentric hottom, and gravitating towards the 
centre of the whole. The object is to determine the pres
sure on any point A of the bottom. Divide the fluid into 
concentric orbs of equal thickness dz. Now any part of 
a fluid at rest may be supposed to become rigid; for it 
will then resist and be resisted by the remainder of the 
fluid in exactly the same manner as before. Draw, then, 
any cylindrical canal from the point A to any point B 
in the surface of the fluid, and suppose its superficies to 
become rigid. This canal will be divided into elements by 
the concentric orbs. Let d II be the length of anyone 
of these elements, and F the force of gravity; then the 
weight of that element is F d II. This acts directly to
wards the centre, that is, along d z. Resolving along the 
canal, the force with which this element tends to press 
the bottom of the canal is F d z. The same is true for 
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all the elements; hence the whole pressure on the bottom 
of the canal is 

fFdx. 
that is to say, it is equal to tho weight of a cylinder of 
fluid, whose base is the area of the part.A. of the bottom, 
nnd whose altitude is the same as that of the superincum
bent Buid. 

The bottom is not pressed by the whole weight of the 
incumbent Buid, but only tbat part which is described 
above; and it will be the same whether the Boid rises per
pendicularly above .A. in a rectilinear direction, or whether 
it be contained in crooked cavities and canals, whether 
these passages be regular or irregular, wide or narrow. 

If a body of the same specific gravity as the Buid, and 
incapable of condensation, be immersed in the Boid, it will 
neither acquire motion by the pressure of the Boid, nor 
any change of figure. Any portion of a Buid at rest may 
clearly be supposed to become solidified without affecting 
the equilibrium. Let a part of the Buid equal and similar 
to the body about to be immersed become solid; removing 
it we may replace it by this body, and the equilibrium 
will still subsist. It also follows that the resultant of all 
the pressures exerted by the Buid on the solid is a force 
equal to the weight of the Buid displaced acting upwards 
through the centre of gravity of the volume of the body. 
If, therefore, a solid be immersed in a liquid, it 1\"ill remain 
at reet if it be of the same density as the Boid. But if it 
be of greater density, it will be no longer sustained by 
the resultant pressures, and wnl sink to the bottom. If it 
be of less density, it will rise to the surface, being acted 
on upwards by a greater force than its own weight. Hence, 
Newton concludes, bodies placed in Buids have a twofold 
gravity; one true and absolute, the other apparent, vulgar, 
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and comparative. Absolute gravity is the whole force 
with which the body tends downwards. Relative gravity 
is the excess of gravity with which the body tends down
wards more than the ambient fluid. The bodies, therefore, 
which we caUli'9ht, and which appear to fall so slowly, or 
even seem to rise in the air, are light only in comparison 
with the air. If there were no air, their apparent gravity 
would be their real gravity, and .0.11 bodies are found to 
fall when placed in a vacuum. 

II. 1. Having discussed some of the fundamental proper
ties of fluids, and obtained the equations.of equilibrium, we 
can proceed to apply them to some of the great problems 
that Nature presents us with. The first case which Newton 
considers is the law of density in a compressible fluid 
which is attracted according to any law by a force tending 
towards a given centre. He does not consider this pro
blem in its most general form, nor would there be any 
advantage in doing so. The only forces which present any 
interest are those which vary according to some power of 
the distance. 

Let us assume that the attraction npon any particle 
whose mass is a unit, and distance from the centre r, is, 

.!!:. 

where II- is some constant quantity, of n + 1 dimensions. 
The fluid will manifestly arrange itself symmetrically round 
the centre of force. We may therefore consider only those 
particles that lie in the axis of r. Take therefore a small 
rectangular element at a distance z from the centre of the 
earth, and whose sides are ik dy dz. This element must 
be at rest under the action of the fluid pressures on its 
sides and its own gravity. If p be the pressure referred 
to a unit of area at this lloint, these two pressures will be 
~)enrly 
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P d!l d z and -(p+ ~~ d:r) d!l dz 

acting along the axis of:r. And the weight will be 

-po fA-•• d:r d!l d z; :r. 
and since there is equilibrium the sum of these must be 
zero. The equation of fluid equilibrium is then 

d p= -p. :,.. d:r - - - (1). 

To solve the problem we require the relation between p 
and p. In fluids generally w~ have 

p=x p - - - - - (2). 
This is the law which· Newton takes for granted in the 
t,vo cases which he has worked at length. He also states 
the results that would be arrived at if we had assumed 
other laws; and. as we shall sce, Laplace has been led to 
believe that the above is far from being true within the 
earth. 

Substituting from tbe second equation the value of p in 
the first, 

x dp= -p :. d:r. 

lIenee dividing by p and integrating, 

fA-
x 10gp=C +n_l.x"-J - (3), 

where C is some unknown constant. Hence 

-1!.-.-I_, 
P = D • \a-I)_ • a-I 

where D is the density at the centre or at an infinite dis
tance, according as " is less or greater than unity, and can 
only be determined by some of the givC¥} conditions of the 
fluid. . . 

Generally, we conclude from the above, that when the 
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reciprocals of the (n-I)th powers of the distances arc in 
arithmetical progression, the densities at thosc points will 
be in geometrical progression. 

Two cases of the abovc are worthy of notice, when 
n=2 and when n=O. In the former the force attracts 
inversely as the square of the distance, and the density at 
any point is given by 

+~ 1; 
p = D •• • ·11 

that is, if the distances be in harmonical progression, the 
densities will be in geometrieal progression. In the latter 
case the force is constant and equal to ,,", and the density 
is given by 

,.. 
-"ill. 

p=D • r ' 

that is, if the distances decrease in arithmetical progression 
the densities will decrease in geometrical progression. 
These cases we might SllPpoae to bear some analogy to the 
state of our atmosphere, the former holding when the 
changes of elevation are great, the latter when they arc 
smalL 

There is one case, especially considered by Newton, in 
which the preceding general formula fails, viz. when 
n= 1, for then log p in equation (3) appears to be always 
infinite; but this is not really the case, for C is also 
infinite and negative. The form of the integral has 
changed, and by merely repeating the proce88, we get 

x log p = C - "" log z 

The preceding· investigations are not, however, of any 
great practical utility. They are all founded on the 

that the comprcssion varies as ~he density. 
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Now this is only true when the temperature is constant. 
When it is not, we have seen that the true law is that 

p = x p (1 + tIC t). 
If, however, we attempt to use this equation, we require 
to know the law ac~ording to which t, the temperature, 
varies as we ascend into the air and descend into the 
earth. We can have but little assistance in determining 
this from observation. As Humboldt· ha.s remarked, our 
experimental knowledge of the interior of the earth is 
limited in the extreme. 'Lhe greatest depth below the 
surface of the sea that ha.s yet been obtained, is probably 
that of the salt-works of N ew-Salzwerk, near Minden, 
in Prussia; yet this wa.s only 1993 feet, or lells than 
ntnli part of earth's radius. The observations even on 
these small depths are liable to serious errors, - as the 
different periodic variations of temperature caused by the 
diurnal or annual heating of the surface, the greater 
exposure to the surface air, &c. The temperature of 
water at the bottom of the salt mine was 90'8° lfahren
heit, giving a mean decrea.se of 10 Fahrenheit for' every 
53'8 feet. If we tried to make our observations on the 
law of density instead of that of temperature, - for the 
knowledge of either would enable us to integrate the 
equations, - we can succeed no better. The dippings of 
strata beneath the surface, which rise again at known 
distances, only reach some twelve thousand feet below the 
surface of the sea; and if to this we added the height of 
the highest mountain, we have only a knowledge of 
3'hth part of earth's radius. 

We have also observations made on the temperature of 
the air at the summits of mountains, and in balloon 

• Kosmos. i. 150. 
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ascents. The former will not furnish ns with the re
quired law, because the presence of the mountain will 
affect the temperature of the air by its radiation of the 
.solar rays. Gay LUSBaC, in his celebrated aerostatic ascent 
of 3816·12 fathoms, found the temperature at the upper 
station 14·9, giving a depression of 1° for every 95'14 
fathoms. A great variety of observations have been 
made, and many empirical laws invented to suit them. 
To mention only one: Mr. Atkinson, in the second volume 
of the Trnnsactions of the Astronomical Society, asserts, 
that at an altitude of II. feet the depression in temperat.ure 
will be given by 

II. 
ft= II. 

251 + 200 

nearly. We might make use of these results, and by 
. repeating our calculation in the manner indicated, obtain 
various formul:e to determine the density at any point. 
But such results can never be very trustworthy. 

II. 2. Note II. 
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CHAPTER II. 

THE FIGURE OF THE EARTH. 

1. Newton's calculation of the ellipticity of the earth - its defects. 
2. An accurate investigation of the ellipticity on the supposition that lite 

earth is homogeneous - the form thus found proved to be stable. 
Notem. 

3. Newton's ealenlation of the law of variation of gravity. 
4. Newton's application of bis tbeory to the planet Jupiter. 
5. The figure of tbe earth considered as heterogeneous. Clairaut and 

Laplace's results. Note IV. 
a. The form of the strata. 
IJ. The law ofvariation of gravity. 

6. The law of density in the interior of tbe earth. Note IV. 
7. Whether the interior of the earth is solid or lIuid. Note IV. 
8. Measures to determine by observation the ellipticity of the earth's 

surface. Note IV. 
a. Measurement of degrees. 
IJ. Observations on the pendulum. 
.,. Aatronomieal observations. 

1. IN the eighteenth proposition of the third book, N ew
ton considers why the earth and planets are protuberant at 
their equator. He does not investigate the form of the earth, 
but merely shows that if it had been originally fluid, the 
matter, by its ascent towards the equator, would enlarge 
the diameters there, and by its descent towards the poles 
it will shorten the axis. And even if the earth had not 
been originally fluid, yet if the earth were not higher at 
the equator than at the poles, the seas would subside 
about the poles, and rising towards the equator, would 
lay all things there under water. 

Taking for granted that the true form of the earth is 
N 
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a spheroid, Newton proceeded to calculate its ellipticity. 
This he does nearly as follows:-

(1.) ~'rom Picart's and Cassini's measures of a degree, 
he finds, supposing the earth spherical, that its radius 
must be 19,615,800 Paris feet. From some observations 
on falling bodies at Paris, he calculates that the force of 
gravity at that place is such, that a body will fall 2174 
lines in the first second of its descent. Knowing the 
earth's radius, and its time of rotation, it is easy to cal
culate the centrifugal force at the equator; viz., such that 
under its action, a body would describe 7.54064 lines in 
the first I:Iecond. Since the resolved part of the centri
fugal force perpendicular to the earth varies 8S the square 
of cosine of the latitude we can calculate the centrifugal 
force at Paris, and then adding it to the force of gravity, 
cnlculate as above, we find the whole undiminished force 
of gravity at that place to be such, that a body would 
desctibe 2177.267 lines in the first second of its descent. 
The undiminishec1 force of gravity at the equator will differ 
from this by a very small quantity; hence rejecting small 
quantities of the second order, the ratio of centrifugal 
force at the equator to equatorial gravity is as 1 to 289. 
This ratio is still in use. 

(2.) If we took a spheroid, whose axes are as 101 to 
100, by a simple application of Prop. XCL Book I., 
Newton shows that the force of gravity at the pole is to 
that at the equator as 501 to 500. Take now two canals, 
from the surface to the centre; let one meet the surface at 
the pole, the other at the circumference. That there may 
be equilibrium the weights of these two canals must be 
equal. Conceive these divided by transverse parallel 
equidistant surfaces into part.s proportional to the wholes ; 
the weights of any number of parts in the one leg will 
be to the weights of the same number of parts in the 
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other 88 their magnitude and the a.cce1erative forces of 
their gravity conjunctly; that is, as 101 to 100, and 
500 to 501, or as 50l) : 501. The difference, viz., four 
parts, must be supported by the centrifugal force. Hence 
the ratio of the centrifugal force bears to gravity the ratio 
4: 505. 

(3.) Newton now brings in the rule of proportion. If 
a centrifugal force ~tf cause a difFerence of elevation of 
the two legs Th, what difFerence will a centrifugal force 
J"n make? The calculation gives a result vh, or the 
diameter of the carth at the equator is to its diameter at 
the pole as 230 to 229. The ratio of the difFerence of 
these diameters to the equatorial diameter, is called the 
ellipticity of the planet. 

This investigation of Newton is manifestly altogether 
defective. He assumes not only that the spheroid is a 

. form of equilibrium, but that the ellipticity is always 
proportional to the ratio of the centrifugal force to gravity. 
These two assertions are indeed true, but they are not 
self-evident. It was Maclaurin who first demonstrated 
their truth. It is very remarkable in how wonderful a 
manner Newton often arrives at correct results by means 
the most inadequate. Of this there are many other 
instances besides the present one. He guessed the mean 
density of the earth-he determined by analogy that the 
velocity of waves varied as the square root of'their 
length. Another analogy led him to a curious result in 
regard to the tides. 

2. NOTE III. 

3. Newton remarks that the force of gravity will not be. 
the same at all points of' ihe earth. For draw any radius 
o P = T from the centre to any point P in the circum

N2 
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ference. Then the earth, being considered homogeneous, 
the attraction of the spheroid on any point Z in 0 P, 
resolved along this radius, will be proportional to its 
distance 0 Z from the centre. The same is true for the 
centrifugal force. Hence altogether the resolved part of 
gravity at any point Z in 0 P resolved along the radius 
varies as 0 Z. Let it be represented by c:u z, where z = OZ, 
and c:u may vary with the position of P. The whole weight 
of the column is therefore 

l.rZdZ=ic:ur2; 

and this must be the same for all radii; hence c:u varies 
inversely as r~, and therefore the attraction varies as 

~ =~, when Z lies on the surface. Hence the force 

of gravity towards the centre must vary on the sur
face of the same planet reciprocally as the distance of the 
bodies from .the centre of the earth. As the earth is 
very nearly spherical, this must be also very nearly true 
for the whole force of gravity. Let G then be the force 
of gravity at the equator, !I that at the point P, whose 
latitude is A and radius r, then 

a 
!I = G;: 

, 
= G i -.ll-e~C082A 
= G {I + l8in~ A} nearly. 

We shall show in another chapter that the force of 
gravity is proportional to the length of the seconds' pen
dulum; hence if I and L be the lengths in the latitude A 
and at the equator, 

I=L {1 + f sin~A}. 
h The value of I was known in the latitude of Paris, 

w ence that of L can be found, and thence the length in 
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any latitude. Newton now refers to a number of obser
vations on the length of the seconds' pendulum in various 
latitudes, as a means of testing the truth of his theory. It 
appeared that the length of the seconds' pendulum does 
decrease as we approach the equator in the ratio of the 
square of the sine of the latitude, and so far observation 
confirms the theory. But it a~so appeared that the 
decrease of gravity was 9reater than that given by the 
theoretical expression. Whence Newton concluded that 
the value of I, as given by theory, was a little too small. 
Here, however, he was wrong; for if the earth be con
sidered as heterogeneous, an exactly opposite conclusion 
will follow from Clairaut's theorem. 

The planet Jupiter, owing to its great angular velocity, 
is very protuberant at its equator, and thus the difference 
of the lengths of its two axes could be determined with 
tolerable accuracy. This planet, therefore, furnished 
Newton with a good test of the truth of his the('ry. Since 
the centrifugal force varies as the square of the angular 
velocity, and inversely as the radius; and gravity in 
different planets varies as the radius and as the density 
conjointly, hence the ratio of the centrifugal force to 
gravity varies as the square of the angular velocity 
directly and the density inversely. The ellipticity by 
what precedes has the same proportion. On substituting 
the known numerical values of these quantities, we find for 

the ellipticity of Jupiter 911" Cassini observed in the year 
~ 

1691, that the diameter of Jupiter from east to west is 
greater by about T~th part than the other diameter. Mr. 
Pound with his 123 feet telescope and an excellent 
micrometer, measured the diameters of Jupiter in the 
year 1719, and found them on four occasions to have the 
ratios 12 to 11, 131 to 12f. 124 to 11J. 141 to 13*. 

l( 3 
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Thus Newton found a great discrepancy between the 
results of observation and theory. He accounts for this 
by remarking that there are two causes whose effects have 
not been allowed for. First, the diameters of IT upiter will 
appear in the telescope greater than they really are. The 
magnitude of the correction to be applied depends on the 
size of the telescope, 8!ld the care that has been taken in 
its construction. The greater diameter of Jupiter being 
37", the leBBer, according to the above ratio, will be 
33" ~5"', add thereto 3" for the effects of aberration, 
and the apparent diameters of the planet will be 40" and 
36" 26"', which are to each other in the ratio of 11 k to 
lOt, very nearly. Secondly, Newton remarks that the 
theory assumed Jupiter to be of uniform density. But 
this is not likely to be true. 

5.} 
6. NOTE IV. 
7. 
8. 
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CHAPTER III. 

THE MOTION OF A PARTICLE IN A RESISTING MEDIUM. 

l. The object and mode of conducting the enquiry. 
ll. When the resistance varies as the velocity. 

II. Rectilinear motion. 
fJ. Curvilinear motion. Section I. 

3. When the resistance varies as the square of the velocity. 
a. Rectilinear motion. 
IJ. Curvilinear motion. Section II. 

4. When the resistance varies partly as the velocity and partly as the 
square of the velocity, and the motion is rectilinear. Section m 

5. ,\\-l1en the resistance varies as any power of the velocity and the 
motion is rectilincar - consideration of an analytical difficulty in 
the solution - thc tcrminal velocity and instances. 

6. The motion of a particle in a resisting medium round a centre of 
forcc. 
a. The method nsed by Newton. 
fJ. The method supplied by the Planetary Theory. Section IV. 

1. PART of the theory of the motion of a body in a resist
ing medium is contained in the first four sections of the 
second book. The manner in which a medium resists the 
motion of a body moving in it is not the subject of this 
inquiry. It manifestly depends on a great many circum
stances which we shall presently consider. At present we 
shall assume that the changes of resistance throughout 
the motion depend only on the changes of velocity. Again, 
the resistance will greatly depend on the form of the body, 
and will change, therefore, as the body during its motion 
opposes different faces to the resistance of the fluid. If 
the resultant of the resistances on thc several parts of the 

.N 4, 
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body does not pass through the centre of gravity, the 
resistance itself will tend to cause rotation in the body. 
To simplify our analysis we shall consider the bodies to 
be indefinitely small particles. 

The principle on which we proceed is, that the motion 
of the particle will be the same as if the resisting medium 
were removed, and that, first, a retarding force is substi
tuted in its stead, which acts along a tangent to the mo
tion of the particle, and depends only on the density of 
the fluid and the velocity of the particle at the moment 
under consideration, and that, secondly, all the impressed 
forces are, by the buoyancy of the fluid or otber causes, 
diminished in a known ratio. 

In considering the motions of bodies in vacuo we exa
mined the effects of various laws of gravitation besides 
that which we know to exist in nature. So we may now 
examine the consequences of supposing the resistance to 
vary according to difFereut functions of the velocity. 

It is to Newton and Wallis· that we owe the first 
researches on the theory of the motion of bodies in resist
ing media. Wallis, in the same year that Newton pub
lished his fC Principia," communicated his reflections on this 
subject to the Royal Society, who published them in their 
Transactions for 1687. Wallis, however, does not go so 
deeply into the subject as Newton did. A little after 
Newton's book appeared, Leibnitz asserted that he had 
already discussed these subjects, and that he had commu
nicated his opinions twelve years previously to the Academy 
of Sciences at Paris. Huygens also considered some 
points in this theory at the end of Traite de la Pesanteur, 
which appeared in 1690. Finally, everything which had 
been either proved, or stated without proof, was demon
strated by Varignon by the aid of the modem calculus • 

• Montucla, Part IV., Lib. VII. 6. 
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The process that is now used to determine the motion 
is founded on the following reasoning. Let us suppose 
the particle moving in any curved line; let. be the arc 
described measured from any point at the time t. The 
time is supposed to be measured from any epoch anterior 
to the commencement of the motion. Then in the small 
time S t, the particle will, according to the notation of the 
differential calculus, describe a small arc S., hence the 
mean velocity of the particle during this interval will be 

: ;. N o~ let S t diminish without limit, the mean velocity 

will become the actual velocity (v) at the instant I, Rnd 
hence 

d. 
v = dt' 

Similarly, the velocity being v at the time t, that at the 
time I + S I will be v + S v; hence the acceleration is such 
that in time S I a velocity S v has been added to the motion; 
hence the mean acceleration in that interval, measured by 
the velocity that would have been added in a unit of time 

if it had remained constant during that time, will be ~. 
Now let S I diminish without limit, and the mean accelera. 
tion becomes the actual acceleration (f) at the instant, and 

f = ~~ 
fi2. 

= d I~ 

But an accelerating foree is measured by the quantity of 
velocity it would add to the body in a unit of time, if it 
remained constant during that interval, so that we have 
merely to equate the accelerating force as given by the 
question, to the acceleration as given by the preceding 
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formula, and we shall have an equation to determine the 
motion. 

H z and y be the co-ordinates of the particle at any 
time t, it will follow by similar reasoning applied to the 
second law of motion that the velocities parallel to the 
axes are 

dz dy 
lit and dt 

and the accelerations are 
d~z cPy 
d t2 and d t2 

parallel to the same axes. 

2. PROBLEl'tI. To determine the motion of u particle moving 
in a straight line in a medium; and thereby resisted in the 
ratio of its velocii?J, and acted on b!l a uniformforce. 

Let V be the velocity of the particle at any time which 
we shall take as an epoch to measure our time from, and 
the place of the body at this time, as our "origin" from 
which to measure the distance of the particle at any 
other time. T-ake as our direction of measurement the 
direction "in which the particle is moving at that epoch. 
Let z and v be the distance and velocity of the body at 
any time t. Let m he its mass, and let x v be the re
sistance when the body is moving with a velocity v; that 
is to say, let x v be the moving force which would be 
required to keep the body moving, with this velocity in 
the medium. Let f be the uniform accelerating force 
measured in the usual way. 
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Then the whole moving force on the body will clearly 
be 

m f- x 1'. 

Also we know that for any particle the accelerating force 

. dv d h I!. h . Ii . dv E . 
IS iii! an t erelore t e movlDg orce IS m d t qnatlDg 

these two 

dv 
m di = mf-" v 

d'D X 
.'. d t =1 - m' v (1.) 

This eqnation contains the whole of the motion. 

First. We know that v = ~~, substituting, we have 

~~=f- ~-~~ 
. '. integrating throughout the time t, 

x 
v-V=lt--x . m (2.) 

If x were nothing, or the medium did not resist the 
particle, we should have, 

v-V=lt (3.) 
Hence the motion lost by resistance is 

-xx 

that is, it is proportional to the space gone over. This is 
Newton's first proposition. A similar proof will apply if 
1 be not constant. 

Secondly. Suppose 1 = 0; or that the particle moves 
by its "vis insita" only. Then, 

d" x 
dt=-;n'v 

dv x 
.·,-=--dt 

v m 
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integrating throughout the motion 

v x 
log V = -;;, t 

.-. v=v. f-~' (4.) 

That is, when the times are in arithmetical progression, 
the velocities are in geometrical progression. Also, we 
have already proved that 

v-V=-~z 
m 

(5.) 

or the velocity lost in passing over any space varies as 
that space. 

As soon as the value of x is known, the above formulm 
may be submitted to accurate calculation. As its value 
depends on the form of the body, and the density of the 
medium, it can only be found by experiment in any par
ticular case. 

We may, however, learn some curious facts from these 
formulre. From the formula for v, in terms of t, we see 
that though v continuously decreases as t increases, yet 
it never vanishes. The particle will then never stop. 
though constantly retarded. A little consideration will 
show that this is just what we should expect. For the 
resistance, varying as the velocity, takes away from the 

I .. 11' d • fi • x d t f ve OClty 10 any sma bme t, a certalO raction -- 0 
m 

the velocity that the particle has left. And as by taking 
away continually the halves of any quantity no one can 
remove the whole, so neither can this resistance ever 
destroy the whole velocity. 

From the second formula we learn, that since v can 
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never be zero, it is always positive, and therefore 

z <~V. 
IC 

The resisted particle can never reach a point distant 

~ V from the origin, and it takes an infinite time to de-
le 

scribe this space. 
We may also represent the motion of the particle by the 

several parts of an hyperbola. Construct an hyperbola 
\" P A, whose asymptotes are the per· 
I pendicular straight lines, 0 X, 0 Y. 

.~. ---:N;---=---~X 

Then P being any point, and 
P N parallel to OY, we know 
that 0 N . P N is constant, and 
equal to one quarter the sum of 

the squares of the axes. Let the hyperbola be such that 
this is equal to c2• 

Then take 0 B = V, and 0 N = v. By (5), we 
have, 

BN = ~B. 
m 

Hence the velocity being represented by 0 N, the 
space described will be proportional to B N. 

Also, P N = y 
m dv 

dt= -- • -
IC V 

m 
=-lCe2 ydv 

.'. t = + mll r e y d v, 
ICC Jv 

or the time is proportional to the area P N B A. If the 
hyperbola be 80 drawn that the number of units of area 
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in <,2 is cq Hal to~, theiR numkr of units of ares 
x 

P N B A will the Dumbco of units of time ehpBed~ 
Tltirdly. 'Ve may now proC{;<'d to cm).sider the mor,~ 

general case. We have 
dv ~ x 
lIt =/ - 114 f) 

Hence by division we have, 
- d fl 

jm- -= - .!' dt 
m --v 

Integrating throughout the motion, 
fm 

1 x _ -~t 
og f_m_" _ V m 

x 

fm I V fm) 
v -- = l --"'- e 

Hence, if from the velocitiea there be [subtracted 

constant quantity 1 m, thezst) difi'rre'¥lct{;8 ak"e in 

geometrical progression, wben 
tical progression. 

are in nrithme-

, .' dx h' " . AgalD, SlOCe v =(j i' t.us equfitlOn gtoelS 

d x _1m ('V j71£') ~!± 
dt --X+ --, e III 

hztegrfitbg throughout the motion, 
" f-! = J t?&. t _:: (V _~) (' 
X \ i 

- 1 ) 

which gives x in terms of t. This equation is the samc 
Q& the mQre simple one± 

m 
x = - (ft - v + V) 

x 

already established. 

L 
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From these equations we learn by interpretation several 
facts. 

1. Let the velocity of projection be in the direction in 
which the accelerating force f acts. Hence f is here 
positive. 

CII. Since f -;t can never change sign, the quantities 
fm fm v--and V--

x x 

have always the same sign. Hence the velocity is always 

greater or always less than fm according as the velocity 
x 

of projection is greater or less than that quantity. 

~. Since e -;;1 continually diminishes as time goes on, 
but never vanishes for any finite value of t, hence the ve-

locity v continually approaches f m, but never actually 
x 

equals it. 
-y. If V the velocity at anyone point should equal 

f m, the velocity is always equal to the same quantity. 
x 

3. Since v continually approaches a finite quantity, the 
expression for :r shows that the space described continually 
increases and finally becomes infinite in an infinite time. 

f. The velocity continually approaches the limit fm, 
. x 

hence x is the mass of that body whose limiting velocity 
isf. 

2. Let the velocity of projection be in a direction op
posite to that in which the force f acts. Herefis negative, 
and our formulm become 

fm ( fm) -~'} v+7"= V+~ • m 

:r = '; ( - ft - 1) + V) 
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As time goes on, the second factor on the right hand of 
the first equation continually decreases. Hence 17 decreases, 
until a time comes when 

fm (V fm) -!, - = +- I .. 

" X 

or, 

t = ~ log ( 1 + ;.D 
then v = 0 or the body comes to rest. 

After this time, v becomes negative, or the body begins 
to move in the opposite direction. This case has been 
already considered. 

2. PROBLEM. llupponng the force of gravity to be uni
form and to tend perpendicularly to the plane of the 
horizon, to determine the motion of a projectile in a 
medium which re,id, in the ratio of the fJekcity. 

Suppose the body projected with a velocity V and in a 
direction making an angle IZ with the plane of the horizon. 
Take this also as the epoch from which we measure the 
time, and let v be the velocity and G the angle the direction 
of motion makes with the horizon and , the arc described 
at any other time t. Let the position of the p&rticle be 
defined by two co-ordinates :z and y, giving respectively its 
distance from the point of projection measured along a ho
rizontalline, and its altitude at the time t. Our first ob
ject is manifestly to find :z and !I in terms of t. 

By the second law of motion each force produces its own 
effect as if the particle were at rest and it the only acting 
force. In considering then the motions parallel to any di-
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rection, we may wholly omit those perpendicular. The 
only force acting along the axis of x is the resolved part 
of the resistance in that direction. This is 

-x v cos. 0 

B ds dx . 
ut we know thatv= d t andcos8= d s' Hence the movmg 

force is 

d .1' 
-x-

dt 

By similar reasoning that parallel to y i" 

dy 
- mg - x

dt 

Hence just as in Art. 2., the equations of motion arc 

m cl2 : = _ " cl ~'} dt dt 

cl 2 y cl7J 
m d t2 = - mg - x d t 

(1. ) 

'Ve have met with both these equations before. The mo
tion parallel to ,1' is manifestly the same as that in the 
second case of Art. 2. 'N e can therefore write down our 
results at once, viz. 

d,1: -~t } V cos 9=dt=VeoslX.f 111 

and -
m -~t 

x=-VcoslX.(l-. ,,,) 
x 

(2). 

The motion parallel to y is the same as that of the tMrd 

case of Art·. 2. Hence 
o 
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(3)' 

• ~ d Y 9 m (V' 9 m) -!-, 
V SIn II =d't= -7+ SInIl+-;- f .. 

9 m m (V . 9 m) ( -~ , y=--t+- 8lD1I+- 1- ... ) 
x x x 

When anyone of the five quantities z, y, v, 6, t, are 
given, these four equations determine the other four. It 
is therefore reduced to be a mere matter of arithmetic 
calculation to determine the position of the particle at any 
time. It may be laborious and tedious, but there is no 
dijJiculty in it. 

We shall now trace the curve the particle describes. 
Find t from the second equation and substitute in the 
fourth, we have 

Y = (tan II +!!!. _9_) z 
x V cos II 

+ (r.;Y9 . log (1 - ~. VC:sJ. - - (4.) 

Let 0 be the origin, 0 B the direction of projection, 

A. 0 C a horizontal. Take 0 C 
m =- . V cos II, and draw C B ver
x 

tical. Then from the above equa
tion it is manifest that B C is an 
asymptote to the curve. Take 

B A = (~r9' a quantity, it will 

be observed, that is independent 
C both of V and II. Join 0 A, and 
let~= L AOC 

. m 9 
.·.tan~=tanll+-. V--·-x COB II - (5.) 
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If P be any point in the curve, and N P M vertical 

MN = (tan«+~. V:OSJ . .1: 
.', N P = - (~)'!llog (1 _ !. , _.1:_) 

IC m Vcos« 

put N A = E, N P = 'I 
(m)2 eM 

,'.'1= - -; !llogeo 

(",)2 E = - -; !llogij (6.) 

where a = ~ . ~. V. 
IC cos {3 

This is a. very simple form of the equation to the curve 
and enables us to investigate many of its properties with 
ease. We learn that if the successive .values of N A are 
in geometric progreSBion those of N P will be in arithme
tical progression. This is Newton's second corollary. 

It is also manifest from the manner in which we eli
minated I, that we have 

( m!l;) !1 m g= tan«+-'-- .1:-_.,-
IC V cos IC 

- (7.) 

'NP_!lm,. ... - , 
• IC 

or the particle moves in such a manner that its distance 
from 0 A, measured parallel to any fixed straight line, 
varies as the time. This is Newton's first corollary. 

Since 0 B . cos « = 0 e, and 0 e = ~ V cos « 
IC 

m .',OB=-Vj 
IC 

and since any point may be considered as the origin of 
projection, we learn that the velocity at P is always pro-

02 
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portional to the tangent PT. This is Newton's sixth 
corollary. 

If I be the latus rectum of the parabola that would be 
described under the same circumstances of projection, if 
the medium ofFered no resistance, then 

1= 2Vllcosll/X 
9 

= (~r . 0gClIl 

3. PROBLEM. To determine the motion of a particle moving 
in a 'traight line in a medium resisting in the ratio of the 
'quare of the velocity and acted on by a uniform force. 

Let the symbols V, v, z, m, t, x, have the 8IlDle meaning 
that they had in the corresponding problem in which the 
resistance varied as the velocity. Then the whole moving 
force upon the particle will clearly be 

mf-x v· 
also we have the accelerating force on a particle moving 
. ual dv h· h .. dz _1 __ 
In any manner eq to d t; w lC , 81Dce ,,= d t' may IUIIU 

. be put under the form " ~ :. T~g both these forms, 

we have 

dv } m -= mf- XVi 
dt 
dv 

mv dz = mf- XVi 

which are identical equations. The first equation gives " 
in terms of t, the second " in terms of z. 

Fir,t. Suppose f = 0, or that the body moves by ita 
"vis inaita" only. 
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rlv x., 
tit = - m v· 

.. _~lv=!:dt 
r~ 111 

integrating throughout thc motion 

Again 

1 1 x - - = - t (I.) {' V 111 

tlv 
v dx = 

dv 
= -

I' 

x . 2 -v 
111 

~ d.1' 
11/ 

.'. intcgrating throughout thc motion 

l' 
log V 

.'. v = V 

= -

_ ! z 
m 

x 
_ .• 1' 
11/ 

197 

S' d J: I' "1 mcc l' = d--, 1118 cquatlOn II:! t Ie ::;alllo a" 
t 

=~'d.l:=Vdl 

i Iltt'grating throughout the motion 

=~'-l=~, VI 
II! 

x 
Iog(l + Ie • V I) 

111 
.· .. f = (:t) 

Fl'OIll the~c cquations wc IIIny gathcr (~\"el'y Cil'CUlllst:IIICC 
(If thc motion, From ( I) wc lenrn that if thc tilllc::; arc ill 
.Arithmctical Progres:<ion thc velocitics m'c in I1al'llIonical 

Progrc::;sion; amI that the velucity \'aric" iu\'cl'"e\y ao the 

. I I' 11/. f' II' t IIIIC W lcn COli II t Cl 11'0111 all l'ra Ie \' 11111 t~ (I t III1C Ie ore 

II .i 
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the epoch at which the velocity is V. .Aleo from (2) we 
learn that when the spaces are in Arithmetical Progression 
the velocities will be in geometrical Progression. 

A mere inspection of these equations shows that the 
particle will continue to move for ever with a continually 
decreasing velocity, and that it will pass over an infinite 
space. 

We may represent, as Newton has done, the motion by 
the several parts of an hyperbola. Construct the hyper
bola B P, whose asymptotes are the perpendicular straight 
lines 0 X, 0 Y. Then P being any point in it and P N 
an ordinate, we have 

ON. PN=c' 

Take 0 A to contain x; units of space, and A N to con

tain t units of space, then A N represents the time. 

Since ON =t+ xmV 

m .·.V = -2 • P N, 
xc 

or the ordinate represent' the velocity. 

Since z =fvdt 

••• z = m, • ""dt 
xc J ~ 

putting y for P N, hence the area A P represents the space 

de,cribed. 

Secondly. We may proceed to consider the more 
general case. We have 

dv x 
v dz =/- ;V2 

vdv 
.. ---- =/dz 

1 - ~ ,,2 
m/ 
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integrating throughout the motion, . 

1 ~ ~~a 
mf" -2~z 

m 

= (V,_mf\ 
x \ xl 

is wbtr.;ther the brdy moritrtrg the 

199 

in which f acts or the opposite, provided only we give f 
its przJper 

Again we have 

dv f 
dt = -

x .~ - v~ 

m 

---- =fdt 

I+J= v 
.'.llog mf 

I-Jmfv 
proviPedf be pGJitiv4;z but 

taG-l~ x 
tiff 

1 -
~ " V 

-Olf m; ./ xf. t 
Ix 

+v mfV 

nepGtivez i~Gy ~ f, 
1-_ - ~ xf t 

mf . m 

the fbft ieczmd beiGp aCfz(?rdiGp as the 
particle moves in the direction in which f acts or the 
Gppoiite. 

From these equations we can infer the nature of the 

(1.) Let the velocity of projection be in the direction 
~w~h ~ 

2. 
IIC~ Sinz~o f -- .. nOGz.:;r ohonge iign, 

v2 _ m f aGd V2 m f 

0" 
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have always the same'sign. Hence the velocity is always 

greater or always le88 than ~ m J. 
x 

i. 

/3, Since • -'iii. continually decreases as :z increaaea, 

v continually becomes more and more equal to ~ 
'Y' As t increases and finally becomes infinite, the 

equation connecting v and t shows that v continually 

approaches and finally becomes equal to V ~f, a fact 

which we could not infer from the first equation, This 
velocity is called the" terminal velocity," Let us repre
sent it by the letter 14, The equations may then be put 
under the simple forms 

lI/· 
vl - 141 = (VI-Ul ) • - .. 

log'u + v _ log~ = 2.[ t, 
u-v U-Y 14 

Suppose the particle to begin to fall from rest, then we 

have V = 0 andf =g. v ~ v=u, 1-.·' 

141 14" 26') 
:z = 14 t - - log 2 + - log (1 + • -. 

9 9 
(2.) Let the velocity of projection be in a direction 

opposite to that in which f acts. Here f is negative, 
write - f for it, we learn that v = 0, or the particle will 
come to rest after having described a space given by· the 
equation 
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and the time of describing this space is to be found 
from 

or, 

U IV t =- tan- -. f u 
In a preceding section Newton had determined the path 

of a projectile when the resistance varied as the velocity, 
and here was ~he place to give the solution of the cor
responding problem, when the resistance varied as the 
square of the velocity. But this is a far harder question; 
we are even now unable to find quite accurately the path 
described. Newton considered the problem in an indirect 
manner. He determined the law of density that a given 
curve may be described, but he could not thence deduce 
the curve that gave the density uniform. He even made 
several mistakes, which were corrected at the suggestion 
of John Bernoulli, in the edition of 1713.- In 1718 
Keill, in the course of the quarrel between the supporters 
of Newton and Leibnitz, dared the foreigners to attempt 
this question. Bernoulli was the first who gave a solution, 
and challenged the proposer to furnish his own solution 
within a certain time. This, however, Keill was unable 
to do. Meantime Nicholas Bernoulli, of Padua, supplied 
a solution; and seventeen days after the time fixed had 
elapsed, Taylor vindicated the honour of England by a 
tardy solution. The problem we shall now -consider is 
somewhat more general than that enunciated by Newton, 
and it is as follows:-

• Montucla, Part IV. Liv. VIL 6. 
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The ruutance of the air being ,upp08ed to vary as the 
'quare of the velocity and as the density conjointly, and the 
force, to tend to directly to the plane of the horizon, to 
determine what mwt be the law of density of the medium 
that the particle may de,crihe a given path, and to .find the 
velocity at any point. 

Let the axis of z be taken horizontal and that of y 
vertical, let z, y be the co-ordinates of the particle at any 
time t, and , the arc described. Let p be the density of 
the medium at the point (z, y), and v the velocity of the 
particle, V the velocity, and IX the angle of projection. 
Then the resistance of the medium may be taken as 

Resistance = "P Vi. 

Let Y be the force acting on the particle parallel to the 
axis of y. The equations of motion will be 

d1z "ldZ} d,s=-mpvd, 

dI'g "dy dtl=Y- mpvl d, 

which may be put in the form 

dlz " dZ} dtl = - m P"Tt 
dly Y " dy 
d,s= -m P dt 

- (1.) 

- (2.) 

Multiply these equatioDs by ~ ~ and ~ ~ and subtract, 

dzdly dy dlz dz 
dt dtl - tit· "Til = Yilt (3.) 

By the theorem in the differential calculus for changing 
the independent variable, we have, therefore, 

dzll • dly = Y 
d d d Z2 
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But from (1) we have 
d zl-1 d Z x 
d~ ddt = -m pda 

• '0 log ~ ~. = c - ;fp d 8, 

h . r' . dz ha w ence e lmmating dt' we ve 

dig y If: d , 

dzl = VlCOSICII'f 0 - (4,) 

an equation from which either p or Y may be found when 
the relation between z and g, which determines the curve 
is given. 

The "elocity at any point of the cu",e is that due to one
fourth the chord of curvature, For looking at equation 
(3), the left-hand side is the denominator of the expression 
for the mOius of curvature R, whence 

,,2 d z 
R=Yds' 

or "I = 2 y, ( l R ~:) 

Since ~ : is the cosine of the angle, the normal makes 

with the axis of !/' the quantity in brackets is one fourth 
the chord of curvature. Whence the proposition follow@, 

The equation (4) will also enable us to determine the 
equation to the path when the law of density and the 
force is given; as an instance take p constant, and Y 
- - 9 the force of gravity, Then 

dI!/ 9 lI~C' 
d r = - VI COSI CIt •• III 

an equation which can be only approximately integrated, 
Newton takes several examples to illustrate his reason

ing, For instance, if the path be a semicircle and the 
force gravity, we have 
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z2+!l=ai } 

Y =-g 

where /& is the radius of the semicircle, whence, by a 
simple substitution, we get 

3 :z 
p=- 2~a 'y' 

so that the density of the medium at any point varies 
as tangent of the angle a radius through the point makes 
with the vertical. Newton also determines the law of 
density when the particle describes an hyperbola with one 
asymptote vertical, chiefly with the view of finding an 
approximation to the curve which a particle will describe 
in a uniformly resisting medium. This was a problem 
which Newton was unable to solve, except in this imper
fect and indirect manner. We shall not therefore dwell 
on this, but will proceed at once to indicate the manner 
in which the question is now answered. 

Taking the equation 
d'!{ _ _ g.';" 
(1 z2 - Vi cos' /& • 

multiply both sides by -./ 1 + pi d z, where p = ~ ~, and 

integrate 

2 !.. 
& m -1 VI ____ = - - cos 1/& 

2 ~ 2g 
m 

+ log (p + ,,11 + p'l) + c} 
'!iUIlIUeJ:Yp is usually small, let us reject the powers of 

>her than the second, we get 

I!!. 2~ VI 
! ". = 1 + --C08 2/& (tan « - p) 

mg 
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Vi ~iil% 2 ~ -p) 

elp k ( !I ;) • '. d- - 2 - • P = - 2 k tan 1% + V2 2 
Z m . cos 

tan 1%- ~~=- 1) 

• y = z (tan 1% + m!l sect 1% ) 
• • 2k V'l 

is th4~ to 

4. PROBLEM. To determine the motion of a particle 
movi7l!J in a strai!lht line in a medium resistin!l partly in 

ratio of ~70.7Lrcity, a'iul in the of the 
the velocit!i7 acted 

Let the symbols V, v, z, m, t,f have the same meaning 
that they had in the corresponding problem in which the 
resistance varied as the velocity. Let the whole resist-

R be by formula 
It 

R = It V + - v' 
1% 

then the whole moving force will then be 

mf 

our 

av} md t It 

d v = mf - It V - - v~. 

dz . 

First. Let f = 0 or the particle move by its innate 
force only. 

Then av 
at = 

It - -. m 

• Earnshaw's Dynamics. 

( I", 
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dv x dt 
~ - -.-

(V + ;r _ ~ m« 

integrating throughout the motion 

1 + ~ 
v x 

Iog-- = + . t 
« m 

l+V 

1 1 (1 1) +.!, .. " + ;- = V +; , .. 
So that when the times are in Arithmetical Progression, 
quantities reciprocally proportional to the velocities, in
creased by a certain given quantity will be in Geome
trical ProgreBBion. This is Newton's eleventh proposition. 

Again, since 
d" 

v dz = 
dv 

x x 
--1,)- -. 

m m 
x dz 

;-+;=-;a 
integrating throughout the motion 

v+« x z 
log V + « =.- m· ~ 

• 
• II 

••• V + « = (V + II) I -iii·';· 
So that if the spaces described are taken in Arithmetical 
Progression, the velocities augmented by a certain given 
quantity will be in Geometrical ProgreBBion. This is 
Newton's twelfth proposition. And by eliminating v be
tween the two equations, we can find z in terms of t. 
But the -result is complicated and of little value. 

Secondly. Let us proceed to the more general case : 
we have 

dv x X VI 

dt=f-mv-,n « 
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Ie dt 

"'Cv+ ;y -C~2 + m~ «) = m « 

for the sake of brevity, put 

_!II _ «I + mf. 
c-- 4 A' 

and integrating, we get, after correction, 

« « 
v+ 2-+c V+-2 +c J.. 

2 ~ ~ 
log « -log« d'mt, 
"+i- c V+i-c 

this will enable us to find t in terms of v, and, by solving 
the equation, v in terms of t, 

H the particle be moving in the direction opposite to 
that in which f acts, and if, also 

Ie a 
mf> 4' 

the above integral becomes imaginary; the true expression 
will manifestly be, if 

f I 
bl=~-~ 

Ie 4 

,,+~ V + ~ 
tan-I __ 2 _ tan-I ~ = _ ~ ~ t 

b b elm 

Again, we have 

d " Ie Ie VI vd-=f- -v - -.-z m m« 

vdv Ie dz 
-;n. -;-

, ~2 C«I mf «) 1'+ - -+--2 4 Ie 

lor the sake of brevity put , 
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Gnd integrating we have 

" --Ill )" V + 2 + c 2 x 
log (v + ~ - CJ + -2 log = C - -. z 

2 c +" m" v 2 - c 

where the quantity C is obviously equal to what the left 
hand side of this equation becomes when V, the initial 
velocity, ill substituted for v. 

If the particle move in the direction opposite to that in 
which f acts. and if 

mf>~ 
4 

this expression becomes imllcoinary. It is obvious. how
ever, that if we put 

hi = mf" _ ~I 
X 4 

that the true integral will be 

" __ v+-
log (v + it' +b!l)-~ tan-I~ = C _ ~x.; 

where C is obviously equal to what the left hand side 
becomes when V is put for v. 

The quantity x in these formulte is the mass of that 
particle whose terminal velocity is 

the quantity ~, therefore, represents a numher, thus we 
m 

see that the preceding expressions are perfectly homo
geneous. 

In exactly the same manner we may proceed to de
termine the motion of a particle in a medium resisting ac
cording to Gny other function of the velocity. 

Digitized by Coogle 



NEWTON'S PRINCIPIA. 209 

If the resistance vary as v" and the particle move Ly its 
own" vis insita ,. only. Then since 

dv dv " = v . = -- nn 
d .1.' 

oth equations motion, 

= (n-

" = (II - 2) . -
111 

•• 1' 

equations which never become nugatory except when 

12=1 or n=2, both which cases have been already con
sidered. 

FronA H:Ltions we Illay k remarkable 
facti'. 

First. greater than the right 
hand t he above equations ; hence I.' 

c,'m ne\,l :Ailli the bo(ly will moving for 
eyer, with an ever diminishing velocity, and will pass over 
an infinite space. 

SI:colld~lj. Suppose 11 greater than unity but less than 2. 
Then v vanishes only when t is infinite, but then 

eyer 
Third(I/. 

vanishes, we 

that iss 

m 
= )( 2 - 1/ 

t continues 
locity, and will 

Suppose n less than 
have 

++ +i i·S with an 
Ji II ifc space. 

unity, then when v 
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and finally stops after a time given by the first equation, 
having described a space given by the second. It is ma
nifest that the particle remains at rest, until it is disturbed 
by some new force. 

But here we have a remarkable singularity in the equa
tions; for according to them, as t increases v'- does not 
remain equal to zero, but becomes negative. What is the 
explanation of this P It must be sought for in the nature 
of a differential equation. There are always two species 
of integrals. One called the "general integral," which 
contains the full number of arbitrary constants. and ano
ther, called the "singular solution," not included in the 
former, and which does not contain the full number of ar
bitrary constants. These latter in dynamical problems are 
usually of little value. because they do not agree with the 
initial conditions of motion. But, if by any chance they 
should satisfy these conditions, it is possible that they may 
be the true representatives of the subsequent motion. The 
choice between them Bnd the general integral must be 
founded on extrinsic considerations. The differential equa
tion we started with, is a mere statement of the force~ and 
must be true throughout the motion. This motion must 
therefore be represented either by the general or the sin
gula.r solution. WOe have seen that the general solution 
only represents the motion up to a certain time; a.fter that 
we must have recourse to the singular solution. If we 
proceed to find this, by the usual methods, we arrive at 
the solution 

,,=0, 
which we see represents the motion subsequently to the 
above mentioned time.· 

One of the most remarkable facts connected with motion 
in a resisting medium is the existence of a "terminal ve

• Duhamel, Coura de MCcanique. 
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locity" when the body moves in a straight line, under the 
action of a uniform force. This may be defined to be that 
velocity which makes the resistance equal to the moving 
force acting on the particle. Let 9' (v) be the law of re
sistance, and m 9 the moving force. Then if u be the ter
minal velocity, we bave 

9' (u)=m9 
an equation to find u. Suppose the resistance to vary as 
the square of the velocity and 9' (t') = Ie ,,', then 

u=¥mx9 

It is manif'est that if the body were projected with this 
velocity, it would continue to move uniformly in the me
dium. This is a consequence of the first law of motion. 
Also if th~ particle began to fan from rest, its velocity will 
continually increase under the action of the force 9, and 
approach equality with the "terminal" velocity, and only 
become equal to it when the time is infinite. All this is 
quite manifest and needs no analytical investigation. 

Though the velocity of the particle never becomes equal 
to the terminal velocity, yet it 800n becomes 80 little dif
ferent from it that, for all practical purposes, we may con
sider the particle 88 moving with an uniform velocity equal 
to the terminal velocity. In considering the motion of a 
falling body we arrive at the equation, 

,,' _m! = (v.- m!) . ,-~ .. 
Now if !!! be a very small quantity, it does not require a 

x 

very large value of z to render the second factor 80 small 
that we may without much error consider 

VI = mf. 
x 

p II 
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It is needlees to point out how different this is from 
motion in vacuo, where the velocity would have gone on 
increasing without any limit. 

One familiar instance of motion in a resisting medium 
is the descent of rain. .The drops descend then with a 
uniform motion, the larger drops going quicker than the 
smaller, and the velocity of descent increasing as the drops 
grow in size. If the rain descended with the velocity due 
simply to the action of gravity, a heavy shower of rain 
would commit serious injury. A drop of rain falling from a 
cloud a mile high would have acquired a velocity of about 
676 feet a second. The actual velocity is perhaps less than 
one five thousandth part of this. 

In the fourth section Newton discusses the motion of 
a ~icle in a resisting medium when acted on by a feebly 
resisting medium. He begins by considering the case in 
which the density of the medium varies inversely as the 
distance from the centre of force, and under peculiar con
ditions of the motion of the body extends his deductions 
to any law of distance. We have followed his method, 
with the exception that, as we have the powerful aid of 
analysis, we can treat the question with greater generality. 
But since Newton's time we have discovered much better 
methods; it has been thought not out of place to give a 
very brief view of them, so far as they depend only on 
first principles. 

6. ce • .A particle moves in an equiangular spiral under the 
action of a central force in the pole, in a medium whose 
density varies as some junction of tl,e distance from the 
pole. To determine the connezion hetween the law of density 
and the law of force that this motion may he posswle. 

The equiangular spiral, by definition, posse!'ses the 
property that the tangent at any point makes a constant 
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angle with the radius vector: let this angle be called «. 
Let r and " be the radius vector and velocity of the particle 
at any time t. Let P be the central force, and x Vi the 
resistance at any time, then P and x are functions of r. 

The equation giving the motion along the arc is clearly 
dv tit = -xv'J-Pcos«. 

But in all curves 
dr 
iit = "COB« 

d" d" 
···dt =Tr· ocos« 

Hence the above equation becomes 

d VI 2 x -+- . v= -2P dr COB« 
- (1.) 

It is to be observed that this equation is true whatever 
be the nature of the curve described. 

The equation giving the motion perpendicular to the arc 
i8 well known to be 

", it = P Sin« 

But in the equiangular spiral the radius of curvature R 

is '-1. r ,hence we have 
~1D a 

v2 = P r - . - (2.) 

If we substitute this in equation (1) we get 

! dP= -(3 + 2xr)dr 
P cos« r 

jI( 2 x r)dr .·.logP=C- 3+--cos« r 

which is the required connection. 
If the central force vary inversely as the Square of the 

distance, we have 
p 3 
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whence it follows that 

cos 1& 1 x=---.- -2 r - (3). 

or the density varies inversely as the distance. The nega
tive sign shows that the angle IX must be greater than a 
right angle, or that the particle continually approache8 the 

centre of force. Let x = ~, where D is the resistance 
r 

at a unit of distance to a nnit of -velocity, then 
- cos II 

D= 2 • 

On looking at equation (2) we see that whatever be the 
law of force, the velocity is the same as that in a circle at 
the same distance, and when the force varies inversely as 
the Square of the distance, we have 

" = v.~. 
This is Newton's first corollary. 

Again, when x or D is given, equation (3) gives us the 
means of finding II. Thus a spiral may be fitted to any 
density. This is Newton's second corollary. 

And when the IX or the spiral is given, the ratio of the 
resistance to the centripetal force is easily found. We 
observe that since cos. IX must be le88 than unity, this ratio 
must be leSB than i, otherwise the orbit described will not 
be the equianguiar spiral. When this ratio is l exactly, 
the value of IX is zero; that is, the spiral is reduced to its 
limiting case, viz., a straight line passing through the pole. 
This includes Newton's third and fourth corollaries. 

Also the time of describing any arc may be fonnd; 
for since 
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dr 
dt = "COS II 

= V~COSII 
•.• t = _1_ .~ f";rdr 

cos II '" P. 
So that the time of going from the distance r. to the dis-
tance r l is 

2 1 S I 
T = 3 ~,- - (r ~ -r ) - (4). 

'" p. cos II I • 

When II is nearly a right angle, this time becomes very long. 
If II = 0, the same formnla will ,;ve the time of descent 
T down any part of a radius vector. Hence we see 
that 

1" 
T=--, cos II 

and the nnmber of revolntions de8Cl'ibed may also be 
found: for if 9 be the angle the radius vector r makes 
with any fixed straight line, we have 

dr 
d9=-tanll 

r 

r 
••• 91 - 9. = tan 1:1 log ..:.J. 

T. 

Hence the number of revolutions will be 

N - tan II 1 r. _--00'-
2,.. Dr. (5). 

This includes Newton's fifth and sixth corollaries. 
If we neglect the eccentricities of the planetary orbits, 

the velocity at any point in vacuo is given by the usual 
formula 

"I = Pr 
Let us then assume as the velocity in a resisting medium 

VI = Pr (1 +p) P. 

Digitized by Coogle 



216 NEWTON'S PJUNCIPIA. 

where p is A very small quantity. Then since the equa
tion 

W=P R Sin. « 

is always true, we have 

R Sin. «=r (I +p). 

Substitute for R and Sin «their known values 
dB rdB 
d~· dB =r(l+p), 

where ~ is the angle the tangent makes with any fixed 
straight line, 

dB 
···d~=I+p 

• •• ~ - B = f ~ ~; + constant. 

But ~ - 9 = «, hence the variation of « is expressed by 
the above integral ~ an approximation, consider p as 
a small constant whose square may be rejected, hence 

«=«0 + PO 
Now p is 80 small that it requires a large value of ~, the 
angle described, to render the latter term sensible. Hence 
for many revolutions we may regard « as constant, that 
is, regard the orbit as an equiangular spiral. We may, 
therefore, apply our preceding conclusious. If the radius 
of a planet's orbit be r, by equations (3) (4) (5) we learn 
that the time before the radius has decreased by a r will 
be 

1 ar 
T= -- -1' 

2 "" I'- x ril' 

and the number of revolutions in that time will be 

1 ar 
N = 4 II' • X r nearly. 

The value of x is 80 small that, as these formulllB show, 
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it will require a very long time before r can be per
ceptibly changed. 

But regarding 8 r as indefinitely small, these expressions 
will be accurate. Hence the whole time which it will take 
the planet to arrive at the centre will be 

1 cdr 
T' = 2 ,./(I-'J x ri' 

and the whole number of revolutions will be 

N' 1 r dr 1 = 4 .. J-x r near y. 

These expressions cannot be integrated until the law of 
density is known as a function of the distance. 

If we 888ume that the density varies inversely as the 
distance from the centre, we have x r = D, a constant; 
performing the integrations, we have 

ri 

N' = co. 

The number of revolutions is infinite. because the time 
of a revolution becomes ultimately infinitely smalL Com
pare the first of these formulm with (4) and we learn that 
if r l be the radius at any instant, r. the radius after one 
complete revolution, the whole time of reaching the centre 
of force will be to one revolution from radius r l to radius 

s s s 
r l in the ratio of rl'S to r lY - rl or J r l to r l - r. nearly. 
In the case of the planets, r, - rll is 80 small as to be 
altogether insensible; hence the above time is indefinitely 
great. 

~. In the seventeenth proposition of the third section of 
the first book Newton remarks, that " if a body move in a 
conic section, and is forced out of its orbit by any impulse, 
we can discover the orbit in which it will afterwards pursue 
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its coune." "And if that body is continually disturbed 
by the action of !lOme foreign force, we may nearly know 
its course by collecting the changes which that force 
introduces in !lOme points, and estimating the continual 
changes it will undergo in the intermediate placea from the 
analogy that appears in the course of the series." This 
method, which Newton only applies to determine the 
general effect of any disturbing force, we can use, by the 
aid of the differential calculus, to determine its effect to any 
degree of accuracy. 

Let us conceive a planet to be describing an ellipse 
round the sun in the focus, and let it be continually dis
turbed by the resistance of the medium in which the planet 
moves. At the time t, let a, e, to be the mean distance, 
eccentricity, and longitude of the apse of the ellipse, and 
let r, 9, f7 be the distance, longitude, and velocity of the 
planet. The attraction of the sun and the resistance of 

the medium will be represented by ~ and "Vi, where 11-

and " are certain constants. 
From the sixteenth proposition of the third section of 

the first book it is easy to deduce by a known property of 
the ellipse, that 

v' = 11- (~ - !) r. a - (1). 

1 2 Vi .-.-=---. 
a r 11-

But in the time dt, f7 is decreased by the resisting me
dium by 

-d v = "V' d t 
da 2v .-.--::--dv 
a' 11-

2va" = + --dt, 
11-
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we might express v, the velocity, in terms of the time by the 
usual formul., of elliptic motion; this would not lead to 
ally lengthy calculations, but as e and x are very small, 
there is no practical advantage in investigating more than 
the principal terms in the series expressing the changes of 
the elements. We may then put 

v = an, 
where n is the mean angular velocity; and hence 
". = a'n'J, 

da 
••• dt = - 2 x at n 

and x being very small, we may reject the variations of 
the quantities on the right hand side, 

• •• Q I - ao = - 2 x at nt, 

where IlIO' ai' are the values of the mean distance at the 
beginning and end of the interval t. 

By the fourteenth proposition of the third section and 
the first of the second, we can easily see that 

". a (1- e2) = Vi r Sinllll, 

where tI is the angle between the radius vector and tan
gent. Hence 

da de. dv 
p. d t (1 - e2) - 2". a e d t = 2 V smt III rll d t 

= - 2 x vi sinl III • r 
Now as we retain only the principal terms, we have 

III = 90", 
r = a (l-e COS nt), 

substituting, we get 

de 
d t = - 2 x a n cos nt, 

••• el - eo = - 2 x a • sin n t, 

where eo el are the values of e at the beginning and end of 
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the interval t. Thus we learn that in one complete revo
lution the eccentricity is unchanged. 

By a well known property of the ellipse 

a (1 - e2
) = 1 + e cos (0 _ QI) 

r 

r. v lain2 tit 
.••• II- =l+ecos(O-Ql) 

putting sin" = 1 we get by difFerentiating 

2rvdv de • dQl 
- -;;:- d t = dt COB (9 - QI) + e 81D (0 - QI) d t' 

80 that 

dQl 2 x an. 
-=---slDnt 
dt e 

2xa 
.'. Ql l - Qlo = --. cos n I, 

e 

where alo' all are the values of l1li at the beginning and 
end of the interval t. Thus we learn that the changes in 
aI are very much greater than those in e, but that by 
the end of one revolution both have returned to their 
original values. 
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CHAPTER IV. 

THE MOTION OF PLumB, AND THE RESISTANCE TO BODIES 

MOVING IN TBDL SECTION VU. 

1. Newton's investigation of the law of resistance to similar bodies. 
t. The manner in which the resistance depends on the form of the body. 

Newton, xxxiv. & xxxv. 
3. Their resistance when the body is a BUrface of revolution. 
4. The surface of least resistance, its properties and form. Scholium, 

Prop. xxxiv. 
5. The law of resistance deduced from experiment. Prop. xl. and 

Scholium. 

1. SUPPOSE we have two systems of an equal number of 
particles similarly placed, and proportional each to each 
both in density and volume. Let them begin to move, 
the particles of one system amongst themselves, and those 
of the other amongst themselves, with like motions and in 
proportional times. If no action ever took place between 
the particles, by the first law of motion the similarity 
between the systems will always exist. It is also clear 
that any collisions or reflexions among the partioles will 
not afFect this similarity of motion; if any collision occur 
in one system an exactly similar collision will occur in the 
other; similar changes of motion will be thereby produced 
in the two systems. 

Next, suppose the particles attrRct or repel each other 
with accelerating forces, which are as the squares of the 
velocities direotly and the diameters inversely of the cor
responding particles in the two systems. Consider two 
homologous particles, one in each system, the attractions 
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of the rest OD these being each in the above ratio, the 
resultants will also be in the same ratio, and the attracting 
particles at the beginning of the motion being similarly 
placed, and the forces in each system proportional, the 
directions of the resultants will be parallel. Now we know 
that two similar particles beginning to move in parallel 
directions will describe similar orbits in proportional times, 
when at the end of those times the directions of the forces 
are parallel and proportional to the squares of the velo
cities and the reciprocals of any homologons sides of their 
orbits. Hence these two particles begin to move similarly 
under the action of such forces as tend to preserve the 
similarity of their motions. And the same is trne for all 
homologons particles in the two· systems. Hence all the 
particles of the one system at the end of any small time T, 

are placed similar to those of the other at the end of the 
,mall proportional time ." and are moving in a similar 
manner. Hence the same thing will again be true at the 
end of the next proportional inte"al&, that is, at the end 
of the proportional times 2.,. and 2"'. Therefore the 
particles will continue always to move among themselves 
with like motions and in proportional times. 

Let there be two fluids or systems such that the 
particles or the one are similar to those of the other; let 
the diameters and distances of any two particles in one 
system be d times the diameters and distances of the cor
responding particles in the other, and let the density of 
these particles in one system be p times that of the cor
responding ones in the other system. Let the particles 
begin to move from similar positions, and if we suppose 
the forces in the two systems to be always proportional to 
the squares of the velocities directly and the diameters of 
the corresponding particles inversely, the several particles 
will describe similar orbits in similar times. Let the velo-
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city of any particle in one system be v times that of the 
corresponding particle in the other when at the correspond
ing part of its orbit. Let two large bodies which are 
similar to each other in the same manner that two cor
responding particles are similar, be similarly projected 
into these two systems. They will then describe similar 
orbits in proportional times. The diameter of one body is d 
times that of the other, and the velocity of one will be v times 
that of the other. Let us consider the resistances to these 
bodies: it will arise partly from the centripetal forces with 
which the particles and the body act on each other, and 
partly from the collisions and reflexions of the particles 
and the body. The resistances of the firet kind arc, by 
hypothesis, as the squares of the velocities directly and the 
diameters of the corresponding particles inversely, and the 
ma88eB of those particles directly, that is, the ratio of the 
resistances in the two systems is 

v· ii . dB p = Vi. dI. p. 

The resistances of the second kind are as the number of 
reflexions and the forces of those reflexions. The number 

- of the reflexions in the two systems are as the velocities of 
the corresponding particles directly, and t.he spaces between 

their reflenons inversely, hence the ratio is~. The force~ 
of the two systems are as the velocities and masses of the 
corresponding particles, hence their ratio is v. d'. p; hence 
the ratio of the resistances is 

v 
tixvdBp=v'.dI.p 

joining these two ratios, the ratio of the whole resistance in 
the two systems will be 

Vi, dI. p. 

In such fluids, and under such conditions as those we 
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have just been considering, the resistances vary as the 
square of the velocity, the square of the diameter, and the 
density of the fluid. 

If we have two fluids whose particles when at a distance 
do not act with any force on each other, such fluids come 
under the description of the similar systems just considered. 
Let the particles of the two fluids be equal, then the 
resistances to equal similar bodies moving in them are 
accurately as the squares of the velocities of the bodies and 
the densities of the fluids. Next, suppose the bodies not 
equal. Because the motion of the fiuid varies continu
ously from point to point, and because the force of collision 
due to two equal particles moving in the same manner is 
equal to that of one particle of double size, the forces of 
collision will be the same if we divided the fluid into 
elements, and considered them as particles. Let the equal 
fluids be divided into elements, which are proportional 
to the volumes of the similar bodies moving in them. 
Then the resistances will vary as the square of the diameter, 
the square of the velocity of the body, and the density of 
the fluid. 

But how far are we justified in applying these conclusions
to the fluids we meet with in nature? The forces to 
which collision and reflexion are due, are those which are 
sensible only at distances which are indefinitely small com
pared with the average distances between the particles. 
Are these the only forces which exist between the par
ticles of a fluid? Incompressible fluids are the nearest 
approach to such a state of things. In elastic fluids the 
particles have a tendency to recede from each other, and 
our previous reasoning cannot therefore apply to them. 

Let tbera be three fluids A, B, C; let them consist of 
similar and equal particles regularly disposed at equal dis
tances, and let the parts of A and B have a tendency to 
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recede from each other with forces that are 88 T and V, 
and let the particles of the medium 0 be entirely destitute 
of such forces. Let four equal bodies move in these 
media, viz. 

D in the medium [A,] and E in [B] }. 
F and G in [0], ' 

and let 

vel. ofD = vel. of F = . IT; 
vel. of E vel. of G 'V" V 

then since the forces are as the squares of the velocities, 
and the diameters of the particles are equal, therefore the 
resistances in the two fluids are as the square8 of the ve
locities, that is 

Res. to D Res. to F T 
ReS: to E = Res. to G - V (1.) 

Let us suppose also that 

vel. ofD = vel. of F 
.'. vel. ofE = vel. of G 

augment the velocities of D and F in any ratio, and di
minish the force V of the particles in the medium B in the 
duplicate of that ratio, the medium B will approach to the 
form and condition of the medium 0, and therefore the 
resistances to the equal and equally swift bodie8 E and G 
moving in those media will approach equality. Hence by 
(2.) the bodies D and F, when they move with great 8Wift
ness, meet with resistances nearly equal. Hence the re
sistance to a body moving very swiftly in an elastic fluid is 
almost the same as if the parts of the fluid were destitute 
of their centrifugal force8 and did not tend to fly from 
each other. So that the resistance to similar bodies moving 
very swiftly in an elastic medium vary as the squares of 
the velocities and the squares of the diameters. 

Q 
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" This reasoning requires that the velocity should be so 
great that the forces of the particles"ill not have time 
to act. 

2. The preceding investigation has led us, on certain as
sumptions, to the law of resistance to similar bodies, but it 
now remains to discover what change in the resistance 
would be caused by a change of form in the body. A new 
&88umption becomes nece8881'Y. Let us suppose the par
ticles to be 80 rare that their distances are infinitely greater 
than their diameters, 80 that ellch particle may be able to 
give its blow to the body and then to make its escape 
without a1Fecting the particles which have not yet given 
their stroke. It is manifest that to find the resistance 
according to this principle we have to divide the surface 
into elements, find the resistance on those elementary 
planes separately, and by integration add the results. It 
is nece888ry to find the resistance on a small plane in
clined at an angle 9 to the direction of motion. Let the 
area of the plane be A, then the number of particles that 
will strike it will be proportional to A cos. , and' to the 
velocity" conjointly, and each particle will strike the 
plane with a normal velocity" cos. 6. The mass of each 
particle is supposed the same. Hence the whole normal 

resistance will be proportional to A cos. 'Ii "i, and resolving 
this along the direction of motion the resistance will be pro-

portional to A COB. 613 "i. Hence if x A v' be the resist-
• ance on the plane when perpendicular to the direction of 

motion, the resistance when inclined at an angle 9 will be 
--J 

X A v2 COB. 'I . 
It will be observed that this reasoning is true whether the 
particles be elastic or not. Any change of elasticity 
affects the resistance by changing x. 

Let n cylinder be mnde to ndvance in the direction of Its 
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axis with a uniform velocity v in a medium, and let us 
suppose that the particles of the fluid are perfectly elastic. 
They will then rebound with the same Telocity relatively 
to the cylinder as tbat with which they struck it. There
fore the cylinder, on striking each particle, gives it a Telocity 
twice its own, and in moving forwards a length half its 
axis communicates a motion to the particles which is to 
the whole motion of' the cylinder as the density of the 
medium to the density of the cylinder. Hence the cy
linder meets a resistance which is to the force by which its 
whole motion may be taken away in the time in which it 
describes half its axis as the density of the medium is to 
the density of the cylinder. If I be the length of the axis, 

the time of describing the half axis will be i~' and the ac-v 

celerating foree that would generate a velocity v in this 

• • 211' h h • ~ hiOO' th time IS T; ence t e movmg loree, w IS e re. 

sistance, is 
2 Avl p, 

where A is the area of the base, and p the density of the 
fluid. 

Nezt, let us suppose the particles perfectly inelastic; 
they will not be reBected, and thl3 cylinder will merely 
communicate its own simple velocity to the particles it 
strikes against. The resistance is therefore only half as 
great as before, that is 

Resistance = A Vi p. 
Thirdly. If the particles be imperfectly elastic, the par

ticles will rebound from the cylinder with a leaa velo~ity 
than if they were elastic, and a greater velocity than jf 
they were inelastic j hence 

Resistance = x A v'p, 
where x is some quantity lying between 1 and 2. 

Q 2 
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3. Let us now apply this to find the resistance on a sur. 
face of revolution moving in the direction of its axis. Let 
v be the velocity of the body relative to the fluid. We 
shall then suppose the fluid in front of the body to be at 
rest. Take the axis of revolution of the surface as the 
axis of z, let y be the ordinate and s the arc of the gene
rating curve. By what has been already said, the resist
ance or pressure on the annulus 2 .. Y d 8 when resolved 
along the axis will be 

( d y )' 2 .. yds.xv2 • ds' 

because this latter factor expresses the cosine of the angle 
the normal makes with the line of motion of the body. 
Hence the whole resistance will be 

2 .. x v:!y (~~)2 dy. 

Let the surface be terminated by a plane perpendicular 
to the axis of z, the section will be a circle; let r be its 
radius. Let y = IJ • r, and 8 = rr. r, then the whole resist
ance will be 

2 .. xv'. r'flJ (~:)~ d'l' 

Thus, assuming merely that the distances of the particles 
are infinitely greater than their diameters, we leam that 
in the same fluid the resistance varies as the square of the 
velocity, and in similar bodies as the square of their 
r&d •• u. 

It is not necessary that all the particles should be of 
equal size, or at exactly equal distances. It is sufficient 
that the equal particles be equally scattered in vast num
bers throughout the fluid. For as the distances of the 
particles are supposed indefinitely small, 80 vast a num
ber of particles strike the 8urface that it will be suffi. 
cient to consider only their average size and distance. 

Digitized by Coogle 



NEWTON'S PRINCIPIA.. 229 

If the particles of a faid become packed closer together, 
10 that the Said becomes deD8er in the ratio of p to 1, it 
is manifest that the nnmber of partioles striking the 81ll'

face will be increased in this ratio, and therefore the 
resistance will be increased in the ratio of p to 1. If the 
maaeea of the particles be increased in the ratio p to 1, the 
density of the Said will be inoreased in this ratio, the force 
of each impact will be increased in this ratio, and the 
resistance will be increased in the ratio of p to 1. Hence 
the resistance varies as the density of the Snid. 

To show that the remtance 011 a sphere u half that on 
O1Ie of its great circles. Let,. be the radins of the sphere, 
I the angle any radius makes with the direction of the 
motion. Then, by the general rule, the resistance on the 
annulus 2 'II' r sin. , • r d' will be 

2 S' ,..., sin. , d , cos. 'il • X "I. 
Hence the whole resistanoe will be 

2 S' X "I r fooi:'ll sin. , d' 

=2S'xf1'r·i, 

the limits of integration being from , = C to , = ~. 
But the resistance on a circle of radius r is 

which is just double the former result. 
These results were afterwards modified by Newton. A 

course of reasoning, whioh we shall consider in another 
chapter, led him to the conclusion that the resistance on a 
sphere is equal to i c P ,,'1, where c is the area of one of its 
great circles. 

4. Up01l a circular base rad. r, construct a frustrum of a 
cone of given height h, such that the resistance on it may be 

Q 3 
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leIS than that on' any other frtutrum of the same height and 
b4se, the motion being in the direction of the azis. 

Produce the frustrum to its vertex, and let 2 B be the 
angle of the cone. Then it is eVident that the radius of 
one end being 1', that of the other will be r-h tan. B. And 
the resistances on the curved and 8at ends will be respec
tively 

sin.- 9 (1'1 - r- h tan. 9/ I) 
and (r-h tan. 9)1, 
the common constant factor 'lI' X.,I being omitted. 
sum of these two is easily seen to be 

1'1_1' h sin. 2 9 + h'l SiD.I 9; 
differentiating this we have 

k sin. 9 cos. 9 = l' - 2 l' sin.' B. 
Put z for the whole height of the cone, then will 

z. r 1'2 
1t.-,--I=r-2r· r :r 

l' + z + 
.'.z"-hz=r 

h . I hi 
.'. Z = 2 + tV' 1''' + 4' 

The 

whence this construction. Let 0 and D be the given 
centres of the two ends, and C be any point in the circum
ference of the base. Bisect 0 D in Q aud produce Q D 
to S, so that Q S = Q C. S is the vertex of the required 
cone. This result Newton thought might be of use in 
the building of ships. 

To find th.e surface of revolution such that, when alto
get/l.er immersed, the resistance on it ,Dill be le88 tl.an on any 
vlher surface of the same lengtlt and breadtl,. 

Take the axis of revolution as the axis of z, and let y 
be the ordinate of the generating curve. And let p be 
the diff. co. of !I with respect to z. Then, omitting con-
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stant (acton, the resistance on the curve will be propor
tional to 

fYlrp,dZ. 

Then the general equation given by the Calculus of Varia
tiODB leads at once to 

_ (I + p')'. 
V-c. p' , 

this, therefore, is the dift'erential equation to the curve 
which generates the surface of least resistance. The con
struction which Newton gives agrees exactly with the 
above equation. 

This equation cannot be integrated; we cannot, there
fore, find the equation to the curve. If' we could, we 
should have trDo CODBtants in it, which are to be determined 
by the conditions, first, that when Z = 0, Y = a, and 
when Z = 1, Y = lJ, where 1 is the length of the solid, 
a and lJ the radii of the bounding sections. 

The equation to the surface of least resistance may be 
put under a more convenient form. Di1Ferentiating it we 
have 

P'-2P'-3 
dy=pdz=c F dp 

••• d Z = c (; - ; - ~) d p. 

Hence, 

a + ~ = log. p + .!, + 43 ,} 
c IP P. 

(1 + p')' 
Y = c • ---pa-

By eliminating P the equation to the generating curve 
may be found. 

If' we wish to find where the curve cuts the axis of z, 
we have merely to put Y = 0 j this leads to 

Q4 
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(1 + p')" 
c 11' = 0; 

we cannot have c = 0, for then!/ would be always nothing. 
The numerator of the fraction cannot be nothing, for it is 
always greater than unity. The denominator cannot ~ 
come infinite without making the whole fraction infinite. 
Hence the curve never cuts the axis of z; the BUl'face or 
least resistance bas a.flat surface exposed to the resistance 
of the fluid. The next question naturally is, what is the 
letut value of !/? To find this we must put 

t!Jl- o • dp - , 

his .,- 16 A his t gIves p = ± 'V 3 and •.• !/ = ± 3 .v3 c. tt· 

point of the curve there must manifestly be a cusp. 
As p increases from zero, !/ decreases from infinity; the 

curve approaches the axis. The tangent at the cusp lies 
between the two branches, one going oft'to p=o, the other 
to p = 00. There are no asymptotes. If!/ be positive, 
p is positive. The theory of Equations shows that the 
equation 

t 

p" _ pl!f. + 2 pi + 1 = 0, 
c 

v not having more than two changes 
of sign, cannot have more than two 
positive roots. Therefore the above 
two branches contain all that is 
above the uis of z. If we change 

~o:1------'l[ the sign of!/, we change the sign 
of p; hence the curve is the same 

~ 
on both sides of the axis of z. If 
we chauge the sign of c, we shall 
manifestly have the same curve, 
except that it is turned thc other 

way, nnd lies on the opposite side of the ws of y. 
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6 .• In o~er to investigate the resistances of iluids by ex
perimeni, Newton procured a square wooden vessel whose 
length and breadth on the inside was nine inches, English 
measure, and depth nine feet and a halt. This he filled 
with rain-water, and having provided globes made of wax, 
with lead inclosed· therein, he observed the times of the 
descents of these globes, the height through which they 
descended being 112 inches. 

The resistance being supposed to vary as the square of 
the velocity, the height z, f'allen in any time I, is given by 

ut u' _7.r ,) 
z = u I - 9' log. 2 + 9' log. (1 + f ... 

where u is the" terminal velocity," and g' the relative 
force of gravity. It is necessary to :find u. Let A be the 
weight of the globe in vacuo, B its weight in the resisting 
medium. Then the density of the medium is 

A-B 
t'ltalg' 

where a is the radius of the globe, and 9 the force of 
gravity; and therefore the resistance to the globe when 
moving with velocity u, is 

3 A-B _ •• 7. 
16' a 9 ... , 

and this is to be equal to the weight of the body, which ia 
B; therefore 

u = : • A _ B' ag • I 16 B } 

alao !I' = A . g. 

The value of B can be found by weighing the globe in 
water. To find A we must weigh it in air, suppose we 
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bave W. According to Newton the density of water 
is 860 times that of air j hence 

and 

A - B = 860 (A - W) 
W-B 

.'. A = W + 869 • 

A - B = (W - B) (1 + 8!9). 

The value of a can be found from those of A and B, 
for the weight of a globe of water one inch in diameter is 
132.646 grains in air, and therefore 132.8 grains in vacuo. 
And since the weights of globes vary 88 the cubes of 
their diameters, hence 

A-B 
8a' = 132.8' 

where A-B is measured in grains, and a in inches. 
We are now therefore able to calculate the value of z 

when t is giveD. If t be not very small, the last term 
may be neglected. For since when /I is small 

log. (1 +/&) = /I nearly, 

the value of that term is very nearly 

u' -!.l', - .. ., 
9 

and the exponent being large, this term will be insensible. 
We may therefore take 

u' z = u t - if log. 2. 

The space deduced from this formula requires a correction 
depending on the narrowness of the wooden vessel in which 
the experiments were made. Now if a globe descend in a 
cylinder, the area of whose section is L, the resistance will 
be increased in the ratio 
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L _ ~1I'all • (L ~1I'a2/ = p.t. 

Hence "2 will be decreased in the same ratio, and .'. 
" decreased in the ratio of p. : 1. In all the following ex
periments the area of the greatest circle of the sphere is 
emall compared with the section of the cylinder; the value 
of p. is therefore nearly unity. In the expression for z, 
the first term is usually a hun~d times the second; hence 
it will be sufficiently accurate to reduce the space z by 
simply multiplying it by p.. This will be evident on an 
inspection of the numbers in the following experiments. 

Ezperiment 1. A globe whose weight was 156-1 grains 
in air, and 77 grains in water, describ~d the whole height 
bf 112 inches in 4 seconds. On repeating the experiment, 
the globe again spent the very same time of 4 seconds 
in falling. 

Here A= 156H grains, 2 a=.84224 inches, 
.'. ",:::29.0311 inches per second. 

The principal term in z is 116.1245,}, 
The second "is 3.0676, 

.'. z= 113.0569, 
and p.= .9914. 

Hence the space which the globe falling in water de
scribes in four seconds is, by 

theory - 112.08, 
experiment - • 112. 

Ezperiment 2. Three equal globcs, whose weights were 
severally 76! grains in air, and 5ft grains in water, were 
let fall succe88ively. Everyone fell through the water in 
15 seconds of time, describing in its fall 112 inches. 

Here A = 761, grains, 2 a = .81296 inches, 

,'. u=7.'1l2 inches l)cr second. 
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The principal term in z is 116.678, 
The second It is 1.609, 

.'. z= 114.069, 

and fA- = .896. 
Hence the space which the globe falling in water de
scribes is, by 

theory 113.174}. 
experiment - 112. 

Ezperiment 3. Three equal globes, whose weights were 
severally 121 grains in air and 1 grain in water, were suc
cessively let fall, and they fell in water through a 
height of 112 inches in the times 46", 4 7", and SO". 
By theory these globes ought to have fallen in about 40". 
The weight of the globe in water is 80 small, that any 
errors in the weighing, or produced by the rarefaction of 
the wax, by the heat of the hand, or by the weather, or 
by bubbles of air adhering to the globes, become sensible. 
That the experiment may be certain, the weight of the 
globe in water should be several grains. 

Newton began the foregoing experiments to investigate 
the resistances of fluids, before he had discovered the 
theory laid down in the preceding sections. In order to 
examine the theory after ita discovery, he undertook 
another course of experiments. He procured a wooden 
vessel, whose breadth on the inside was 81 inches and 
depth ISl feet. He made four globes of wax with enclosed 
lead, each weighing 139.} grains in air, and 71 grains in 
water. These he let fall, measuring the times of their 
falling in the water with a pendulum oscillating half 
seconds. The globes were cold, and had remained 80 for 
some time, both when they were weighed and when they 
were let fall, because warmth rarefies the wax, and by 
rarefying it diminishes the weight of the globe in water, 
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and wax when rarefied is not instantly reduced by cold to 
its former density. Before they were let fall, they were 
totally immersed in water, les~ by the weight of any part 
of them that might chance to be above water, their descent 
should be accelerated in the beginning. Then, when after 
their immersion they were perfectly at rest, they were let 
go with the greatest caution, that they might not receive 
any impulse from the hand that let them down. At 
Newton's first experiments the weather was a little colder 
than when the globes were weighed, and therefore he 
repeated the experiments another day. On making tbe 
experiments several times over, he found that the globes 
fell mostly in the times of 491- to 50 oscillatiOIlB, the times 
varying, however, from 471 to 53 oscillations. On com
puting from the theory the time of descent, it was found 
to be 50 oscillations, very nearly. Newton tried eight 
other sets of experiments, in all of which there was a 
tolerable accordance between theory and experiment. The 
times in which the balls descended varied, sometimes 
as much as one-fifth of the whole time of descent; but the 
errors were generally as much on one side as on the other 
of the theoretical result. Whence, for such swift motions 
as these, we may conclude that the resistance on a globe 
is very nearly represented by the preceding theory. 
Those globes whicb rell with a slower motion were round 
to agree best witb the tbeory, and the reason of tbis is as 
fonows. When the globes were first let fall, it was found 
that they oscillated about the centre, that side which is 
heaviest tending to descend first. Tbe globe in conse
quence of these oscillations communicated a greater motion 
to the fluid tban it otherwise would, that is, it met with 
a greater resistance. In the heavier and larger globes this 
oscillation was not checked by the water until after several 
oscillations, and hence these were more resisted than the 
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lighter ones, which fell slower. Every care was taken to 
diminish these OBcillationB, but they could not be alto
gether prevented. 

From the top of 8t. Paul's, in June, 1710, two glass 
globes were allowed to fall through the height of 220 
English feet. One was full of quicksilver, the other con
tained air. The two globes rested on a wooden table, which 
turned round iron hinges on one side, the other side being 
Bupported by a wooden pin. The two globes were let fall 
together by pulling out the pin by means of an iron wire 
reaching from thence quite down to the ground, BO that 
the pin being removed, the table, which had then no BOp
port but the iron hinges, fell downwards, and turning 
round, the globes dropped off it. At the same instant 
with the same pull of the iron wire that took out the pin, 
a pendulum, oBCillating seconds, was set in motion. The 
wooden table was not found to turn BO quickly on its hinges 
as it ought to have done. Hence the times of descent 
were prolonged 3". This must be taken into account, as 
in that time the ball full of mercury would have described 
37 feet. The difference between theory and experiment 
was found to be very small. To mention one instance, one 
globe of air fell 220 feet in 8.2"; according to theory it 
should have fallen in that time 225 feet 5 inches. The 
resistances to the globes of mercury were found to be BO 

small in comparison with their weight, that they fell in 
nearly the same time which they would have taken to fall 
through the same height in vacuo. The differences could 
not be obsened with sufficient accuracy to furnish a test 
of the theory, the difference being sensibly the same for 
globes of all weights. 

In July, 1719, Dr. Deeaguliere made some other 
experiments of the same kind. The globes let fall were 
formed of hogs' bladders blown full of air. They were 
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let fall from the lantern at the top of the cupola of the 
same church, a height of 272 feet. The agreement be
tween theory and experiment waa even more striking than 
in the last experiments. 

The theoretical results are calculated on the supposition 
t11.'\t the resistance is proportional to the square of the 
velocity, the density of the fluid, and the surface of the 
sphere. The comparison with experiment serves to test 
all these laws. We may, therefore, conclude that for such 
velocities as those here experimented on, varying from 6 to 
30 feet per second, and for spheres of radii varying from 
i to 3 inches, and for the fluids of air and water, those 
three laws are tolerably correct. 

Newton remarks that these experiments are more accu
rate than those he made with pendulums; for the vibrations 
not being very small, the body always excited a motion of 
the fluid contrary to the motion of the pendulum on its 
return, and thus the whole resistance appeared greater 
than it really was. 

[See NOTE V.] 
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CHAPTER V. 
. 

TID MOTION OF A PENDULUM. 

1. Some general considerations. 
2. Motion in vacuo, Newton XXIV. 

3. The properties of a pendulum. 
4. Motion in a resisting medium - Modern method of considering the 

perturbations oC a pendulum, - the Newtonian method. 
5. Newton's experiments to discover the law of resistance. 

1. THE importance of the pendulum can hardly be over
rated. It ministers to our comforts in a variety of ways. 
But what is more to our present purpose, it is a powerful 
engine of discovery. It can be made to teet the laws of 
impact, it teaches us the law of resistance by which fluids 
retard the motion of bodies moving in them. It enables 
us to note the variations of gravity over the earth, and 
thus reveals to us not only the form of the world, but also 
the force with which it attracts external objects. It has 
even been applied lately to prove ocularly the rotation of 
the earth. There is no end to its applications. It is the 
great accuracy with which the time of oscillation may be 
observed that renders this instrument so useful By 
noting the time of any great number of oscillations, and 
dividing that time by the number of oscillations, we can 
find the time of anyone with great accuracy. It is, there
fore, highly necessary for us to consider carefully the pro
perties of a pendulum. 

A pendulum is any solid body which oscillates about a 
fixed horizontal axis. A 8imple pendulum consists of a 
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material particle suspended from 11 fixed point by an in
:flexible inextensible string without weight. The length 
of this string is called the length of the simple pendulum. 

A penect simple pendulum is only a mathematical idea; 
we may approximate to such an instrument, but we can
not accurately construct it. It will, therefore, in many 
cases be necessary to have the means of determining, when 
any compound pendulum is given, the length of the equi
valent simple pendulum. The first person who solved this 
generally was Huygens in his "Horologium Oscillato
rium," 1673. The principle on which he proceeded was not 
80 simple as that to which this and such like problems are 
now referred. But the result is that if h be the distance 
of the centre of gravity from the axis of suspension, and 
rm" the moment of inertia about an axis through the centre 
of gravity parallel to the axis of suspension, the length of 
the equivalent simple pendulum will be 

is + h2 

1= h . 

This is on the supposition that the body moves in vacuo 
• under the action of gravity. If it move in a medium 

resisting according to any function of the velocity, the 
above will still be the length of the equivalent simple pen
dulum. For the resistance on a unit of area being supposed 
to be xv", according to the usual theory of resistance, 
the moment of the whole resistance on the surface will be 

where A depends on the form of the surface, and not on the 
nature of the motion. Hence to make the simple pendu
lum move in the same manner, we have merely to suppose 
that the weight of the particle is equal to the weight of 
the pendulum, Ilnd that it experiences a resistance which 

R 
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follows for variations of velocity the same latD that any 
element of the pendulom experiences, but whose magni
tude is such that the whole moments of the resistance on 
the pendulum and particle about the axis of suspension 
are equal. In reasoning then on the pendulum we may 
always consider it as a simple pendulum. For when we 
have determined its motion, the preceding formube enable 
us to determine that of the compound pendulum. 

Newton does not confine himself to the case in which 
the particle describes a circle. Supposing the string 
flexible, he has given in the first book a. way of making it 
describe any given curve. or all these the cycloid is that 
which posseeses the m08timportant properties. The motion 
of a particle in a cycloid is discussed, because it gives us a 

deeper insight into the laws of pendulous movements than 
that in any other curve. The motion of a particle in a cirole 
is considered, becaUBe in practice most pendulums are 80 

constructed that any point in them describes a circle. 
[See.NoTE VI.] 

.A particle ctm8trained to move in a cyclDid wA08e azU u 
vertical is acted OR by !l"avity and remted by a coutant 
force. To determiae the motion. Newt. nv. 

Let 1 be twice the radius or the generating circle, s the 
distance of the particle at any time t from the lowest point 
(C) of the cycloid, v the velocity, and m the mass of the 
particle. Let f be the constant resistance. 

Then the moving force along the tangent is 

mg f, - 7- S + , 

supposing the particle to be descending. 
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But this is also 711 ~2t:' hence we ha~e 

This equation being of a standard form, we can write 
down ita integral, 

.= L COB - Ifl.{t _ A) + If V I mg 

where L and A are constanta depending on the initial con
ditions of motion. 

Take a point 0 in the are, 80 that CO = ~~ and let i be 

the are when meuared from this point. Then 

i = L 008 ,yf (t - A). 

Suppose the particle began ita descent from D, then A 

is clearly the time at which the particle wu at D, and 
L=are 0 D. It is manifest the greatest velocity will be 
at O. If the particle had been undisturbed by f, the same 
equation would have given the are measured from C. 

If then the particle when resisted by f be at P at any 
time, and if another particle not resisted by f be at Q at 
the aam~ time, then DP bears to PQ the constant ratio 
DO to DC. 

The eft'ect of any constant resistance is to diminish the 
arc continually in an arithmetical progression, but not to 
affect the time of oscillation. 

a2 

Digitized by Coogle 



244: NEWTON'S PB1NCIPIA. 

A particle con.trained to move in a cycloid wM.e azi8 i. 
vertical, i, acted on by gravity and resi.ud by the medium 
in which it move. in the ratio of the velocity. To dder
mine the motion. Newt. xxvi. 

Let I be twice the radius of the generating circle. Let 
, be the distance of the particle at any time t from the 
lowest point ofthecyoloid, and v be the velocity, and m the 
mass of the particle. Let" be the coefficient of resistance. 
Then the moving force along the tangent will be 

mg 
- -l- . • - l' v, 

the particle being supposed ascending its arc. But this is 
til. 

also m d ",. Hence 

d l , x d, 9 
dt· +;n. dt+l'=O 

is the equation to find, in terms of t. 
To integrate this equation, put 

,..t 
• = u. I 

where p. is some constant at our disposal; on substitution, 
the equation becomes 

d;; + (2 p. + ~) ~~ + (p.!l + p. ~ + q) u = o. 

Let us then choose p. so that 

x 2p.+-=0, m 

and the above equation is reduced to the standard form 

dt u (g xl) 
d t i + f - 4 m' u = O. 

9 9 x· 
Put nl = f' rI' = 1 - 4 m'J 
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,'. u = L cos "(t - A). 
SUpposing the time to be counted from the epoch when the 
pendulum began its first complete oecil1ation from its 
highest point, then A = O. 

_. I 

•· .• =L,iiio cosn't 

Bence we learn, 
I. That the oscillations will be isochronal, and the time 

ofoecillation 

... ... 

= 71 = v1- 4:' 
This differs from the time of oscillation in a vacuum ; if 

x be small, and T the time in vacuo, the difference will be 
very nearly 

x'l 
= 8mi g' 

If we neglect terms so small as this, the time will be 
unaltered. 

2. The arcs of each succeBSive oscillation will decrease 
in geometrical progreBSion, and if L be anyone such arc, 

-ra 
the next will be L e ;;;n' • 

A particle is con.trained to oscillate in a cycloid wI lOse am is 
vertical untie,' the action of gravity, and is resisted by the· 
medium in which it moves in the ratio of the square of the 
velocit!l' Determine the motion. Newt. xxix. 

Following the same notation as before, it is manifest 
that the equation of motion will be 

v d v = _ ,,2 S _ ~ Vi 

• d s m 
R3 
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where ,,' = If. and the particle is supposed to be moving 

in the direotion in which • is meuured. When the putic1e 
moves in the opposite direction we mUBt cbaDge the sign 
or .. 

Although the above equation cannot be completely inte
grated in finite terms 80 88 to find • in terms of t, yet we 
can always find the velocity at any point of the arc. The 
equation can be put onder the form 

dol x 
-d + 2 - • "I = - ,. .1 .• • m 

This is a standard form., and the integral will be 

v ~a'. == - ,. ,.' f .. "a'. d. 

= C - ~ • ~ ... ( , - 21,,) 

where x' has been put for'!'. We may 'find C either in 
7ft 

terms of the whole arc described, or the velocity at the 
lowest point. The latter gives when • =0. ,,= V~ 
hence 

.-. vi = 

"I 
C = VI - 2 X,I 

VI- - .-Ia',_ - , - -( "I ) "I ( 1 ) 
2 ". x' 2 " 

This finite expreseion will always give the velocity. .A. x' 
is uenally small, it may be useful to expand the above in 
powers of 11. We have 

,,2= VI _ ,,1,1 _ (VI- 2,,1,1) 2x', + (VI- 2 nl r) 
2.3 3.4 

2 x' '11 _ &c. ••• _ lr (VI- .2 n~_'~ ) 2"";T;r + .. 
1 .2 r+ 1 r+2 1. 2 ... r 
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Newton baa given a geometrical conatruction for this 
velocity. But it is very long, and in the preaent age, 
when analysis is the great mathematical weapon, such a 
complicated CODBtruction is of no value except 88 a matter 
of curiosity. 

If we wish to have the means of deducing the law of 
resistance from experiments on the pendulum, we must in
vestigate the changes produced in the time and arc of vi
bration by a resistance that varies according to any law, 
indeed by any small disturbing cause whatever. The two 
next propositions of Newton have this for their object. 
They are entirely geometrical and the investigatious too 
complicated to be inserted here. Of one of them Newton 
.ys: cc by reason of the difficulty by which the resistance 
and velocity are found by this proposition we have thought 
fit to subjoin the following. " We shall first diSCU88 the 
modern analytical method· of determining the efFect of 
any small disturbing cause, and then give an analytical 
proof of Newton's general proposition. 

Let the quantities ., t, n, &0. have the same meaning 88 

before, and let f be the small disturbing cause which acts 
along the tangent on the particle. 

The equation of motion will then be 

dl. 
dt' + nls=f. 

Iff 0, the motion will be given by 

• = a sin. (n t + 6) } 
ds 
d t = a n COB. (n t + b) 

• Camb. Phil. Trans. 1826. 

B " 
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Assume these to be the true equations of motion whenfiS 
not zero, then a and h are functions of t. 

And since the second equation is the differential of the 
first, 

• da dh 
BID. (nt + h) dt +4 COB. (nt+ h) iit=O; 

and since they satisfy the original equation of motion, 

da • dh 
n COB. (n t + h) d t - n a 81n. (n t + h) d t = f. 

Hence, solving these 

~; = { . cos. (n t + h) } 

db f . ( I.) Tt= -"sm. nt+u 

These equations, when solved, will give the changes in the 
arc and time produced by the cause f. 

Supposefto be a small force. Then the variations of 
a and h are very small, and being multiplied on the right 
hand side by the small quantity f we may neglect them. 
Hence if a, and h, be the altered values of a and II, 

a, - a = ! (f cos. (n t + b) tI t 
nO. 

h, -h = - ~ Ifsin. (n t + h) d t. naJ ~ 

Hence we learn that if / consist of two disturbing causes, 
the total disturbance will be nearly equal to the SUID of 
the separate disturbances. 

Suppose / to be the resistance of a medium varying as 
the m\b power of the velocity /= IC v"'. The velocity in 
moving from the lowest point is 
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v=an COS (nt+b) 
.·.f= xn" a'" cos'" (nt+b) 

249 

.•• substituting and performing the integration between the 

limits nt+b= -i and nt+b=i we have 

",-2 .. m (m - 2)(m - 4)&0. } 
a, - a = - x Ill. n .• a • (m+ I)(m-I) (m-3)&0. 

b, - b = 0, 

where III is ... or 2 according as m is odd or even. 
Hence when small quantities of the second order are 

neglected, the time of oscillation is unchanged and the arc 
continually decreases, and the difference between the arc 
described in the descent and that described in the sub
sequent ascent will be proportional to the same power of 
the arc that expresses the law of resistance with the ve
locity. This will enable us to find the law. Also if the 
di1Ference of the arcs be represented by a series of terms 
soch as 

AV· 
where V is the velocity at the point where it is greatest, 
the resistance at this point will be represented by a series 
of terms such as 

M 9 m(m-2) ••••• AV • . z· Ill. (m + I) (m - I) • • • • 

and the valoe of V, the maximum velocity, can be always 
found by the formula 

V=a·V1· 
Also potting R for the moving force of the resistance, and 
W for the weight of the body, it is clear that 

R 
a, - a /I W 
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the decrement of the arc varies inveraeJy as the weight 
of the pendulum. 

It will be inconvenient to constrain the particle to move 
in a cycloid: let us examine what errors would be in
troduced by making the particle vibrate in a circle. 

Here the force is 9 sin i instead of !f 8, hence we must 

put 

9 . 8- 9 -- I f = Z8 - 9 SlD. I - if [i . Ir, near y 

ga3 
• 3 ( • b) = 61"3 SlD. n t + . 

Substituting we have 

:1 - ab = 0 9 a 'It } 

"I - = - 1 6 n II 

the integrations being performed from nt + b = 0 to 'It. 

Hence the arc is unaltered and the time increased by a 
. bl -6 at 

quantlty -;-;-= 16 I" 

K Let us now consider the con-
~ struction by which Newton re
II 0 D B presented the resistance. Let a 

straight line aB be drawn equal to the arc of the cycloid 
which an oscillating body describes, and at each of ita 

t 1 
points D draw the perpendicular D K equal to "I part of 

n 
tbe resistance at D, then aD and a. being the ares de
scribed in the descent and subsequent ascent, then 

a + a (a l - aD) ~ = area of cune a K B. 
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ThiEL admits of a very ELhort prool~ for 
motion being 

v - nlls 
ds 

we havv by OliEL ;T,tegratitIli 

v· r= 

251 

equatit3li of 

and at the limits of integration ,= -tlo and s= +a l , we 
have lilltO 

which what had l"t"tove. 
We have now to consider the nature of the curve a K B. 

We have accurately true 

= (71 } 
V = an cos(nt+b) 

ca11inh the nTffit'''!I'I:A 
equal At!" 

••• y = x a'" 71",-1 cos- (nt+b). 

Let the ai:vcissa the o 
of aB, and 

au + b}. 

Fir,t, let the resistance vary as the velocity, then eli. 
minatmh t, 

xy + (z + al 2 'T,,)2 = a'k. 

H we vhhleot the eqllTtion 
to an TI;:£vpse. term'k y are the 
order xl. Secondly, let the resistance vary as the square of 
the 
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... ~ + (:&' + a l 2 ao)'= at. 

If we neglect the variations of a with t this is the equation 
to a parabola. The terms in !I thus neglected are of the 
order x'. 

N ewtDn takes these figures to be accurate enoogh for 
practical purposes, and we might now proceed to deduce 
the resistances at 0 from the difference of the arcs. But 
we have said eoough to illustrate Newton's method. It 
is not so convenient for use 88 the more modern formulm. 
But it is remarkable that the two methods are of equal 
degrees of approximation. Thus Newton arrived at 8S 

accurate a result 88 that which we now use, the only 
difference being that he expressed his result, according to 
the custom of the age, in a geometrical form. 

We must now deduce the true law of resistance from a 
combination of theory and experiment. It is clear from 
what precedes, that the observations must be made on the 
decrements of the arcs. Newton suspended a wooden ball 
weighing 57J~ ounces troy, its diameter being 6~ London 
inches, by a fine thread on a firm hook, ~ that the distance 
between the hook and the centre of oscillation of the globe 
was 10 feet. He marked on the thread a point 10 feet 
1 inch distant from the centre of suspension, and even with 
this point he placed a ruler divided into inches, by the 
help whereof he observed the lengths of the arcs described 
by the pendulum. Then he numbered the oscillations in 
which the globe would lose i part of its motion. In the 
following table the first column represents the first arc, or 
sp~ce the pendulum was drawn aside from the perpen
dicular; the second column the number of oscillations. , 
the third column the lllst arc, which is always i le88 than 
the first; and the fourth column the difierence between 
the first and last Ilrcs ; 
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2 164 Ii 1 
~ 

4 121 3 1 
II 

8 69 7 1 
16 35 14 2 
32 18 28 4 
64 91 56 8 

The difference between the arc of descent and the sub-
uquent arc of ascent will be above differences divided by 
the number of oscillations. In the greater arcs these are 
very nearly as the squares of the arcs described, and in 
lesser oscillations in a ratio somewhat greater. But theory 
taught us that if the resistance vary as the mth power of 
the velocity, the above differeuce of arcs should vary as 
the mth power of the arc. Hence the resistance when the 
globe moves very swift is in the duplicate ratio of the 
velocity nearly, and when it moves slowly, somewhat 
greater than in that ratio. 

The points to be determined by experiment are how the 
resistance depends on the veloeity, how on the surface of 
the body, and how on the density of the fluid. To deter
mine the first, we must assume some law of resistance: 
let us suppose that the resistance varies partly as the 
velocity, partly as the square of the velocity, an<\ partly 
in some intermediate ratio. This being the result sug
gested by the last-mentioned experiments j let the differ.;. 
enee of the arcs be represented by 

s t 

AV+BV~+CV, 

where V is the greatest velocity in any oscillation. Then, 
according to the notation of the preceding theory, we 
have 

v= J~aj 
hence substituting, the difference of the axes will be repre
sented by 
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_ -, -
.A!. 2 a + B'.2 afw + C'2 al'l 

a form well adapted for a comparison with the results of 
experiments. Taking the second, fourth, and sixth expe. 
riments of the set discussed above, we get three equations 
to determine the three quantities A', B', C/. 

A' = .0000916, 
B' = .0010847, 
C' = .0029588. 

But the resistance will be expressed by 

W { 1- .A! ti + 1- B' ti i + s t! a"l } I 11 10 ~ 

= v:. { .0000583 a' + .0007593 ti i + .0022169 ttl } 

where W is the weight of the body. Thus for sncb swift 
motions in air as those varying from 4 to 120 inches per 
second, the resistance varies as the square of the velocity. 
Since a in the second case represents 1, in the fourth 4, 
in the sixth 16, the resistance will be to the weight of the 
globe, in the second case, as .0030345 to 121, in the fourth 
.041748 to 121, in the sixth .61705 to 121. 

The next point to be determined is the manner in which 
the resistance depends on the surface. For this purpose 
Newton suspended a leaden ball of 2 inches diameter, 
weighing 26! ounces troy, by the same thread that he 
suspended the former ball, the length of the simple pen
dulum being 10i feet. He found the resistance to the 
ball was 7 t times that on the former balL But the ratio 
of the squares of the diameters was 11M to 1 nearly. 
" Therefore the resistance of these equally swift balls wu 
in less than a duplicate ratio of the diameters. But the 
resistance of the thread has not yet been considered, which 
was certainly considerable. This could not be accurately 
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determined, but it was found to be greater than a third 
part of the whole resistance of the lesser pendulum. 
When this third part is subtmcted, the ratio '11- to 1 be
OODlee '1 to lor 101 to 1, a ratio not very different from 
11ti to I." Since the resistance of the thread is of lees 
moment in greater globes, Newton also tried the experi
ment with a globe whose diameter was 18! inches. He 
found the resistance on this globe to be 7 times that on 
the firet globe, whose diameter was 6t inchee j but the 
squares of the diameters are in the ratio of 7.438 to 1. 
The cillFerence of these ratios is scarcely greater than 
what might arise from the resistance of tbe tbread. 
Therefore tbe parts of the resistances which are in swift 
motions when the globes are equal as the squares of the 
velocities, are also when the velocities are equal as the 
equares of the diameters of the globes. We shall find 
occasion to modify this conclusion in another chapter. 

In order to determine the manner in which the resist
ance depended on the density of the fluid, Newton calcu
lated the resistance made to a body oscillating in water 
and in air, and found that that part which is proportional 
to the square of the velocity (and which alone it is neces
sary to consider in swift motiona) is proportional to the 
density of the medium. cc This is not perfectly accurate; 
for more tenacious fluids of equal density will undoubtedly 
resist more than those that are more liquid, as cold oil 
more than warm, warm oil more than rain water, and 
water more than spirits of wine. But in liquids which 
are fluid enough to retain for some time the motion im
pressed upon them by an agitation of the vessel, and 
which being poured out are easily resolvable into drops, 
the role will be pretty accor'ate, especially for large bodies 
moving with a swift velocity. 

" Lastly, since it is the opinion of some that there is a 
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certain etherial medium extremely rare, which freely 
pervades the pores of aU bodies, and from such a medium 
some resistance must needs arise, in order to try whether 
the resistance which we experience in bodies in mo
tion be made upon their outward superficies only, or 
whether their internal parts meet with any considerable 
resistance upon their superficies, I thought of the foUow~ 
ing experiment." Newton suspended a round deal box by 
a thread 11 feet long, and compared the resistance made 
to it when empty and when filled with lead. When full 
of air its weight was 1lJtb of the weight when filled with 
metal. But since the decrement of the arc vanes in~ 

versel1 as the weight, the box when filled with lead should 
make 78 oscillations before the arc was decreased by the 
same quantity tbat when filled with air it lost in one 
oscillation. But Newton counted 77 oscillations. Assuming 
that the greater resistance of the full box arises not from 
any other latent cause, but only from the action of some 
subtile fluid on the included metal, we may suppose that 
this resistance in equally swift bodies will be as the num~ 
ber of particles that are resisted. Let A. be the resistance 
on the external and B on the internal superficies of the 
box when empty. Then A. and 78 B will be these re· 
sistances when the box is full. By the preceding ex~ 
periment the resistance on the full box A. + 78B is to the 
resistance on the empty box A. Bas 78 to 77. Solving 
this simple equation, it follows that the resistance on the 
internal parts of the empty box (B) will be Tdnfb part 
of the resistance (A) on the external superficies. 
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CHAPTER VI. 

)lOTION OF FLUiDS RUNNING OUT OF S)lALL ORIFICES. 

1. Newton's aolution of the question, without limiting the orifice. 
2. Newton's corollar,y - to deduce the resistance made by a fluid to a 

body moving iu it. 
3. The fallacy of Newton's reasouing - Bow others attempted to pursue 

the investigation. Note vii. 
4. The velocity as given by the Equations of Motion. Note vii. 
S. The efllux of an elastic fluid through a small orifice - strange conclu

sions to be deduced from the formula - St. Venant and Wantzels' 
experiments. Note vii. 

1. THE problem to determine the motion of water running 
out of any vessel through a hole is so difficult that it 
has not yet been completely solved. We cannot there
fore be surprised if Newton's solution of the question is 
not very satisfactory. He begins by considering a case 
in which he is able to give some account of the motion. 
Let us suppose that we have a circular cylinder filled with 
fluid, the surface of which is retained at a constant level 
in such a manner that the velocity of descent of all its 
parts is also uniform. In order to aid our conceptions, 
Newton supposes this effected by the descent of' a cylinder 
of ice AP QB, of the same breadth with the cavity of the 
vessel, and having the same axis. The motion is supposed 
quite uniform, and its parts, as soon as they touch the su
perficies A B, are supposed to dissolve into water and flow 
down by their weight into the vessel Let u be the uni
form velocity of descent of the cylinder, and let A be the 

S 

.. 
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height through which a body must fall to acquire this 
velocity, 

.·.u2=29 A. 

Let there be a hole E F in the centre of the bottom, and 
let the whole cavity of the vessel which encompasses the 
falling water be full of ice, so that the water may pass 
through the ice as through a funnel. The particles of 
water are supposed to cohere a little, that in falling they 
may approach each other, and thus inetead of being 
divided into several, they will form a single cataract. We 

If 
A 

~ /' 
JrI M 

c E Q F 

shall also suppose the form of the 
funnel such that the particles of 
water fall freely down. The lines of 
motion will form surfaces of re

R volotion whose axis is the axis of the 
funnel, and the forces of cohesion act
ing on any particle have a resultant 
normal to these surfaces. The velocity 
of the particle will not therefore be 
affected by this force, and if z be the 
depth of any particle below the plane 

DAB and v its velocity we have 
V2=u2+29 z ; 

each particle arrives with the same velocity at the aperture 
E F. The form of the funnel was supposed such as to 
admit of this motion; hence the area of any section must 
be inversely as the mean vertical velocity of the fluid for 
all parts of that section. ' 

Now, if the particles of water did not exert any action 
o~ the icy funnel through which it flows we might suppose 
this funnel dissolved into water without changing the cir
cumstances of the motion. But the descending fluid does 
~t on the dissolved ice, and the whole nature of the motion 
lS changed. But N ewton argues that nevertheless the 
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efBux of water, as to its velocity, will remain the same as 
before. It will not be less, because the ice now dissolved 
will endeavour to descend; it will not be greater, because 
the ice now water cannot descend without hindering that 
of other water equal to its own descent. The same force 
ought always to generate the same velocity in the efBuent 
water. Newton does not mean that the same quantity of 
water Sows out, but that the same velocity is generated. 
This is not, however, the vertical velocity at the orifice; 
" for the particles of water do not all of them pass through 
the hole perpendicularly, but Sowing down on all parts 
from the sides of the vessel and converging towards the 
hole, pass through it with oblique motions, and in tending 
downwards meet in a stream whose diameter is a little 
smaller below the hole than at the hole itself." The 
particles of water at the actual orifice are not all moving 
in the same direction. Those in the centre are descending 
vertically while those near the circumference have a lateral 
motion, but at the vena contrllcta the whole Suid is 
descending vertically. If therefore B, B' be the areas of 
the sections of the vena contracta and orifice, and v the 
velocity of the Suid at the vena contracta, the mean velocity 
of the fluid perpendicular to the orifice will be clearly 

B 
B'v 

The quantity of water that Sows past any horizontal plane 
is proportional to the product of the area by the meau 
perpendicular velocity. Thus the discharge is equal to 

q = B V2g(h + A) 

where h is the depth of the vena contracta below the sur
face of the Suid in the vessel. 

Newton found the ratio :,= ~2 nearly, whence the 

I 2 

Digitized by Coogle 



260 NEWTON'S PRINCIPIA, 

mean velocity perpendicular to the orifice is nearly 

= .; 9(h + x), 

the orifice being at the side of the vessel: thus the mean 
perpendicular velocity at the orifice is that due to half the 

depth below the surface, This ratio :', however, depends 

on the nature of the orifice and the thickness of its sides; 
accordingly different experimentalists have given different 
values. Thus for the ratio· .of the diameters (the square 

root of the above ratio), Newton found !~. Poleni !!. 
BemouiUi ;, Du Buat ;. Bossut :~ •. Michelotti ~. Ven-

, 4 B'd 33 E I ' 32 tun 5' lODe 50' yte welD 50' 

The velocity of effiux will be the same whether the hole 
be at the centre or the side of the vessel; for though a 
heavy particle of water will take a longer time in descend
ing to the same depth by an oblique curve than by a 
straight line, yet in both cases it acquires in its descent the 
same velocity. The velocity also is independent of the 
form of the hole, for it merely depends on the depth below 
the surface. And if the orifice be immersed in water the 
velocity of effiux is that due to the height of the water in 
the vessel above that of the surrounding fluid. 

2. Newton proceeds to deduce as a corollary from this 
theory the law of resistance of a fluid to the motion of a 
body in it. The case of a ducontinuou8 fluid has already 
been discussed, and it has been shown that if v be the 

• Eucye. Brit., Hydrodynamics. 
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velocity, and A the area of a great circle of a sphere 
moving in a :fluid of density p, that the resistance will be 
A Vi p. The globe and particles are supposed perfectly 
elastic, and thus endued with the utmost force of re8exion. 
But if, on the contrary, they are perfectly hard, and with
out any re:flecting force, the above expression for the 
resistance must be diminished one half. " But in continued 
mediums the cylinder as it passes through them does not 
immediately strike against all the particles of the :fluid that 
generate the resistance made to it, but preBSes only the 
particles that lie next to it, which preBS the particles be. 
yond, which press other particles, and so on, and in these 
mediums the resistance is diminished one other hal£" 

If in the centre of the hole E F a small circle P Q, of 
area C, is placed, the weight of wuter which it sustains 

1/ 
A 

(' B G F 

t:~J. 
8 T 

B 

D 

will be greater than the weight of 
a cone whose base is P Q and alti
tude H G, and less than that of a 
spheroid on the same base and of 
the same altitude. For let H P 
and H Q be the boundaries of the 
cataract. The cataract falls freely J 

and therefore there is no preBSure 
on the sides of the mass of still 

water H Q P. The pressure on the circle P Q is the 
weight of water H Q P. And this will still be equal 
to the preBSure if the ice lvhich forms the sides of the 
cataract be dissolved, and the whole water be left to :flow 
out of the orifice in any manner whatever. A little con
sideration will show that the mass of :fluid H P Q must 
have its boundaries meeting in a point at H, and being 
convex to G, they also meet the sides of P Q at an acute 
angle. Therefore these boundaries lie wit,hout the surface 

113 
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of the cone and within the surface of the spheroid described 
on the base PQ, and with an altitude HG. 

The weights of these two solids are respectively 

1 2 
"'3 C h g p, and 3 C h g p, 

where p is the density of the fluid, and h the altitude HG. 
Therefore the weight supported by the little circle lies 
between these two quantities. If the circle be very small, 
both the8e will be 8mall, and we may take the weight sup
ported as being very nearly equal to their arithmetic mean, 
that i8 

1 
. P = 2 Chgp, 

where P is the pressure on the little circle. If, however, 
C be not very small, compared with B, let us assume that 
the pressure is 

fJ P = --=--r;C. Chg p, 
l-Ill B 

where B is the area of the orifice EF. 
Then when C is very small, this must agree with the pre

vious re8ult, hence fJ = I, and when C = B the weight 
supported i8 that of a cylinder wh08e base is C and altitude 
h, hence III =!. Moreover, 80 long as C is less than half 
B, the expres8ion 

B 1 
P= 1 ·2 C6gp 

B --C 
2 

make. P lie between the limits assigned above. 
Newton next proceeds to point out the analogy between 

the pre88ure on the circle and the re8istance to a circle 
moving in l\ 8till fluid. Let the vessel touch the surface of 
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stagnant water with its bottom CD, and let the water run 
out of the cylindrical canal EFT S perpendicularly to the 
horizon, and let a small circle P Q be placed anywhere in 
the middle of the canal with ita surfaoe horizontal. Let 
U be the velocity of the fluid at the surface, V that at the 
orifice, A the area of a section of the cylinder, B and 0 
that of the orifice and little circle P Q, h the altitude of 
the cylinder. Then 

V'l = U. +2gh, 

V(B - C) = UA. 
H we suppose A to be infinitely greater than B, this last 
equation shows that U is imlefinitely small, and therefore 

V'J = 2gh, 

and the pressure on the little circle is 
1 

P = ell • 2 C It !I p, 

where ell is some quantity that becomes unity when 

~ diminishes without limit. 

C v' 
.·.P=eIl 4 P 

Now let the orifice of the canal E F S T be closed, and let 
the little circle ascend with such a velocity that the rela
tive motion of the circle and fluid which is compelled to 
rush past it may be the same as when the water fell from 
the height HG, and the circle was at rest. The pres
sure on the circle will be the same as before. The 

C 
velocity of the fluid will be B _ C V, and that of 

the plane B B C V. Let us suppose B infinitely 

greater tban C, tben the resistance on a plane moving 
with a velocity V in still water is i C v2 p. If a cylinder, 

" 4 
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a sphere, and a spheroid, of equal breadth be placed suc
cessively in the middle of a cylindric canal, 80 that their 
axes may coincide with the axis of the canal, these bodies 
will equally hinder the passage of the water through the 
canal. The resistances will then be equal. The resistance, 
therefore, on a sphere will be i C Vi p, where C is the area 
of one of its great circles. . 

3. The investigation of this question, as given by Newton 
in his first edition, was very erroneous. He" had totally neg
lected the contraction of the vein after the fluid had passed 
the orifice; hence he had deduced that the velocity of the 
efflux was that due to only half the height of the water in 
the vessel. This mistake he afterwards corrected, but the 
investigation still remains open to very serious objections. 
For it is quite certain that the first caSe considered by 
Newton in which the wa~r descends by a funnel benra no 
resemblance to the actual state of the motion. The water 
is not found to flow out in a cataraCt, leaving a mass of 
unmoved water supported by the bottom. Each particle, 
whether vertically over the hole or near the circumference 
of the cylinder, descends in a nearly vertical direction, 
acquiring or losing velocities in nearly the same ratio. 
Those particles which are once in a horizontal section 
remain very nearly in the same horizontal plane. When 
the particles approach very close to the bottom, they acquire 
a considerable horizontal motion, and, in consequence, the 
issuing stream continues to contract after it leaves the 
orifice. The manner in which Newton deduces the law 
of resistance from the velocity.of efflux is also erroneoaa. 
It is very ingenious and wonderful, but at the same time 
very uncertain. The proposition being false in principle, 
we cannot expect a corollary founded on that principle to 
be altogether correct. The reasoning by which the resis
tances to a sphere and cylinder are shown to be equal can 
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only be correct on the assumption that all the water above 
the cylinder, sphere, or spheroid, whose fluidity is not 
necessary to make the paeeage of the water the quickest 
possible, is congealed. This Newton himself admits. But 
such an aesumption is by no means a legitimate one. It 
is ~ certain, by experiment, that the amount of the 

. resistance depends very materially on the form of the 
surface of the body. 

[See NOTE VII.] 
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CHAPTER VII. 

1. General consideration on the nature of Waves. 
Waves air - "wnd. 

a. The nature of sound "educe" fmm pheno",,,a. "',k"lium. 
Prop. L. 

1J.M""miuatioo of the coUBh'&,red bd ""wtou~ 
'Y. Vd,xfity of mund ,',wton', ',rror. 
5. The manner in which sound spreads at\er entering throngh an 

,,"iEee. ,ff,wtou 
f. Tk"notes xnonded "fffereff' pipes. d,Polimn, drop. 

3. Waves in water. 
a. "notion of th" ,ibrato,p kind. 
11. N,x,,',u's "mnnuing ,his E,~'wton. 

'Y. Velocity of waves. Newton xlv. & xlvi. 
f. The nature oC the motion of waves as given by a strict hydro-

P;ruamic '''mfry. ",ote viii, 
(. Waves caused by the motion of a boat. 
".. Cause of breakers over sunken rocks. 
9. Hom the wln,l raise, wav"" 

L To one who has never considered the nature of the motion 
occasiuYks thu uppeu]:'uuce wa uif, the idea is first 

difficult. John Bernouilli the younger • declared that he 
not l,ADde]:,8IifDd NifwtOili:f'" prop<)"ition thiu sub-

ject. The best illustration is that of a field of standing 
Cu]:,fR, it dearly "hows in ,n',me wuves least, 
there is no actual transfer of a quantity of matter. ddhen 
the wind blows on the field a hollow will be soon travelling 

it. This i, wavu, Th<"Y~f can be Rf(ithing 

ii. p. 
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moving across the field, because everything is fastened to 
the ground; but there is the appearance a. if something 
were moving along. Each particle of com in tum descends 
and rises again, and, as each ear is a little later in its mo
tion than the one in rear, the state or position in which 
the &rat was, has travelled to the second. Our first idea 
of a wave is, that it is a state of motion which travels 
along, the particles themselves only oscillating. Our· 
second, that this state of motion may gradually change, 
and either increase or die away. 

Suppose we have a series of particles in a straight line, 
let them begin to move up and down, either in this straight 
line, or in any parallel straight lines, so that if one be taken 
whose mean position, measured along the straight line is 
distant z from the origin of measurement, its distance at 
the time t from its mean position is represented by the 
formula 

!I =af(n t - m z), 
wherefis any functional symbol. 
Then here, so long as 

n t - m z 

is constant, !I remains the same; that is, a "state" travels 
along in such a manner that its distance z at any time t 
is given by this formula. 

Differentiating we have 

dz 
n - m dt = 0, 

but ~ ~ is the velocity; hence the "state" travels with 

the velocity!! ; this, therefore, is the velocity of the wave. 
m 

Supp<N:18 we call this v, then we have 

!I = afm (v t - z). 
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The" length" of a wave is the distance between two par
ticles in a similar state of motion. If A be this lengtb, y 
must be tbe same for z = z and z = z + A. Now fez) 
will be a periodic function: suppose its values recur at 
intervals of c, 

and therefore, 

••• m A = c, 

c 
or m=

A 

y=af{~("t-z). } 

This is tbe type of a wave that travels in anyone direction. 
But it can also be demonstrated that it is the general 
expression for all waves propagated with a uniform velocity 
in one direction without change of form. 

There are a great variety of waves; we may have 
waves transmitted tbrough elastic fluids, where a state of 
condensation travels along. We can have them propa
gated along the surface of an inelastic fluid, as water in 
the form of an elevation. We can have them in solid 
bodies, the particles of which ore supposed to oscillate 
about their mean position, and to act on each other with 
forces different from those which would act if the body 
had been fluid. We shall briefly consider these in tum. 
These waves may not travel at all parts in the same direc
tion. They may spread themselves out from a centre. 
In all cases a surface passing through all points in a similar 
state of motion is called a front of the wave. The pka8e 

of a wave at any point is the situation of the particle of 
tbat point considered as affecting its displacement and 
motion. Thus, two particles are in the same phase when 
their displacements are equal, and motions the same. They 
are in opposite phases when the displacement and motion 
of one are equal but opposite to those of the other. 
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2. The true nature of sou~d can only be discovered by 

obeervation. We must know something about what we 
have to explain. The experimental facts divide themselves 
into three species. First, those relating to the manner in 
which the sounding body makes the sound. Secondly, 
those relating to the manner in which the sound when 
formed is conveyed to the ear. Thirdly, those relating to 
the manner in which, when the sound is thus conveyed, 
we hear it. In regard to the first, it is universally true 
that all sounding bodies are tremulous bodies. All vi
brating bodies, however, do not give BOund. In regard to 
the second, it is observed, (1.) that sound cannot be con
veyed through a vacuum. Hanksbee suspended a bell in 
the receiver of an air-pump; the sound died away gradually 
as the air was removed (Phil. Trans. 1705.) - (2.) Sound 
is not instantaneously conveyed; the report of a gun is not 
heard until after the flash has been seen. But all sounds 
travel with equal velocity. Thus the various notes of any 
piece of music played at a distance reach us in perfect 
order. The velocity is found to vary slightly with the 
temperature, and at 62° Fahrenheit travels at the rate of 
1125 feet per second.- (3.) Sound, unlike light, does not 
travel necessarily in a straight line, but on entering through 
an orifice, as a window, spreads out in all directions, but, 
nevertheless, it is heard with greatest distinctness in front of 
the orifice. Thus the sound of a carriage can be heard 
round a corner, but a change in the 10udne88 is perceptible 
the moment when the carriage goes behind the intervening 
walls.- (4.) Sound can be conveyed by solid bodies, and 
other fluids besides air, but in passing from one to another 
a considerable portion of its inteusity is lost. - (5.) The 
intensity of Bound diminishes as the distance from the 
sounding body increases. But when sound travels along a 
tube, as a speaking pipe, the gradual diminution of the sound 
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is very slow.- (6.) Sound travelling through a dusty 
atmosphere produces no perceptible motion in it.- In re
gard to the third species of facts, we know but very little; 
it is sufficient for our present purpose that we find in the 
ear vibrating bodies prepared to receive tbe sound. These 
are the more obvious phenomena. They will serve as a 
guide to the true theory. The true test of that theory 
will be in its exact explanation of more refined and less 
obvious phenomena. 

Since sound is caused by a body vibrating in air, before 
we invent any new theory we should prove that none of 
tbe natural consequences of sucb a motion will account 
for the phenomena of sound. Now we know that the 
motion of a tremulous body will disturb the air near it, 
and that moving air the air beyond it and so on. Thus a 
disturbance will be proPfleaated on all sides in the elastic 
medium which surrounds the body. Also we find tremulous 
bodies in the ear fitted to receive such vibrations. What 
is more natural than to suppose that these vibrations are 
themselves what we call sound? To verify this it is ne
cessary to examine strictly the nature of the disturbance 
in the air caused by a vibrating body. The investigation 
cannot be given here, but the general result is as follows. 
Suppose a disturbance propagated from a centre in all 
directions, then,-first, the intensity of the disturbance 
will decrease as the square of the distance increases. Thus 
as the disturbance was originally small, the motions at 
some little distance from the sounding body will be quite 
insensible to any of our senses except that one which wae 
expressly adapted to receive its impressions' - Secondly, 
the velocity with which any wave travels is independent 
of the nature of the disturbance, and agrees very closely 
with the observed rate at which sound travels. 

Thirdly, the nature of the motion of the particles is sueb 
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that at some distance from the sounding body, the directions 
of oscillation of the particles will p888 through the centre 
of disturbance supposing the propagation symmetrical in 
all directions, or more generally, whatever be the nature 
of the disturbance, the vibrations are normal to the front 
of the wave. In fluids no other vibrations are pOB8ible. 

Of course Newton could not investigate completely the 
motion of sound. That was far beyond the power of the 
mathematics of his day. Bnt, in a wonderful manner he 
solved to a certain degree the simpler case of the motion of 
the air in a tube. The principle he used, and the present 
mode of reasoning on this subject, are both illustrated in 
the following analytical view of the investigation. 

Whatever the motion of the air may be, we suppose the 
tube so small that we need not consider any motion ex
cept that which is along the length of the tube, and this 
motion will be the same for all particles in the same per
pendicuLn section of the tube. Suppose, then, that at the 
time t, the particle which when the air was at rest was at 
a distance z from the origin of measurement is at the dis
tance z + E. Then an element of air whose length bad been 
dz, is now dz + dE, and as the maB8 must remain the same, 
the density which was D is now 

D (dE) p = d ~ = D 1 - d x nearly. 
1+-dz 

The square of E may be neglected, for we know that that 
particular motion of the air which we call sound, whatever 
it may be, is very smalL Also the pressures on the two 
sides of the element are, when reduced to a unit of area, 

p andp + ~~ dx, 

Digitized by Coogle 



272 NEWTOB'S P]UBCIPIA. 

and since the pressure varies as the density we have 

p =xp, 

and therefore the moving pressure on the element is 

-x*dz. 

But the mass moved is D dz; hence on substitution for p. 
the accelerating ffYrCe on the element is 

tilE 
x dz'. 

Thus the force depends on the displacement, and the 
displacement, in ita turn, on the force. If we assume a 
form for the displacement, and then show that this dis
placement leads to a force that will produce this exact 
displacement, we have discovered a possible motion. And 
if this displacement also agree with all the other conditions 
of the question, we have discovered the actual motion. 
For it is clear that from a given disturbance under given 
circumstances, only one kind of motion can result. Newton 
assumes accordingly that 

E = Go sin (nt-mz). 

The accelerating force is then, by two di1f'erentiations, 
- xm'.asin(nt-mz) 

= - xmll• E 
that is. the force varies as the distance from a fixed point' 
and urges the particle towards that point. This force is 
well known to lead to the very form for E that we started 
with. (Prop. xxxviii. of Book I.) provided 

nll= x mi. 

or the velocity (:) with which the wave is propagated is 

.;;: This, therefore. is the velocity of sound. 
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As an example of a case in which tbe motion is actually 
represented by this law, let us take an infinite tube, and 
suppose tbe air in a small part of it to be set in motion, 80 

tbat it will begin to ~ove according to the form we bave 
assumed for E. Let tbe extremities of this part of the tube 
be A and B, the particles A and B and all the remainder 
of the nir in the tube is supposed to be at rest. Let us 
now consider the motion during a small time 8 t. The 
particles between A and B will, by the above reasoning, 
continue to move according to the law assumed for E. The 
velocity and condensation, therefore, being represented by 

~! and - ~! will be respectively 

- a Rsin (nt - mx) and a msin (11 t - mz). 
Let z be measured in the direction from A to B, which we 
shall suppose from left to right. The particle A is at rest, 
tbe condensation at that point and for all points on tbe left 
of A is zero. Take a particle a on the right of A, where 
A a = 8 z, the condensation at that point is indefinitely 
small and is decreasing. The particle A will, therefore, 
remain at rest. The particle a will come to rest, that is, 
be in the same situation that A is in, at the end of the· 
time 8 t, wbere 

n8 t = m 8 z, 

that is, the left end of the pulse travels onward with a 

velocity'!!', leaving the air behind it undisturbed. By 
m 

similar reasoning, it can be shown that the right end of 
the pulse travels onward with the same velocity. At the 
end of the time 8 t, the pulse will merely have advanced a 
space 8 z, and the circumstances of t.he motion will be the 
same as before. The same motion will, therefore, be 

T 
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repeated in the next interval, and so on throughout 
all time. 

Thus we see a single pulse can be propagated along the 
tube without any change in magnitude, form, or time of 
vibration. In order to form these pulses let us imagine a 
plate to be placed at one end of the tube, vibrating accord
ing to the law 

E = a sin nt, 
then each pulse of the plate as formed will be propagated 
unaltered along the tube, and the motion at nny distance z 
from the plate will be given by the law 

E = a sin (n t - 1R z). 

The velocity of sound is independent of the values of m 
and n. These are the only constants on which the differ
ence between two notes could depend. Whatever, then, 
is the pitch of a sound, it will travel with the same 
velocity. 

The numerical value of the velocity of sound depends on 
the constant x. This expresses the constant ratio of the 
elastic force or pressure of the air to its density. The density 

of the air Newton calculated to be about 11!90 th part of the 

density of quicksilver, and the pressure of the air is equal 
to the weight of a column of mercury about 30 inches 
high. Hence the'ratio of these two is equal to 

30 
9 x 12 x 11890, 

the units being feet and seconds of time. The square root 
of this, which is the velocity of sound, is 979. Sound, 
therefore, should travel at the rate of 979 feet per second. 
The elastic force p for a given density being increased by 
an increase of temperature, the result thus obtained should 
be too small in hot air and too great in cold. But this 
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result should be true about the temperature of spring and 
autumn. 

'When Newton completed this investigation the true 
velocity of sound was not accurately known. From some 
rough experiments, conducted by himself, he believed 
that this result was really near the truth. But subsequent 
experiments showed that it was erroneous by 163 feet. 
This was a very serious error, and Newton tried to explain 
it a\vay, by saying that no allowance had been made either 
for the crassitude of the solid particles of the air, or the 
presence of vapours. He even attempted to show that 
on taking these into account, the calculated and observed 
velocities were in close agreement. Such explanations are, 
however, unsatisfactory, and unless some other explanation 
had been found, the theory would, stand in direct opposition 
to experiment. The theory of sound continued to advance 
by the labours of the great mathematicians who followed 
Newton; the motion of BOund in a tube was investigated 
without any assumption as to the nature of the motion, but 
the discrepancy still remained unexplained. 

This was reserved for Laplace, who remarked that in 
rapid vibrations, the sudden rarefactions and condensations 
of the air must affect its temperature, and therefore its 
elasticity. The amount of this must be determined by 
experiment, and it was shown that if 8 represent the 
condensation, the form to be used must be, not as 
heretofore 

p = x D (1 + 8), 

but 
p = x (1 + ~) D. (1 + 8), 

where ~ lies between '3748 and '4. The velocity of BOund, 

therefore, is not ..; -;; but ,.; x (1 + (3). The agreement 
T 2 
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of the observed and calculated velocity was now found to 
be very close. 

The value of x depends on the general temperature of 
the air. By Amontem's law, we know that if x be the 
value at any temperature, the value at any other exceeding 
this by 9° will be 

x = Xo (1 + « 9), 
1 

where« = 490' If, therefore, the temperature of the air 

be 9° above 60°, the velocity of sound will be 1124 

(1 + 9~0) feet nearly. 

The demonstration we have given of Newton's propo
sition of the motion of sound in a tube may easily be 
extended into a vigorous demonstration. For the accele
rating force on any element having been shown to be 

diE 
x (1 + (3) d Zl' 

the equation of motion must be 

d~E ~d'lE 
d (l = «- dz" 

putting «'}. for x (1 + (3). This equation must be true for 
the motion of sound in a tube under all circumstances. 
Thus, the tube may be finite, open or closed, and the dis
turhance may be caused in any manner. The complete 
integral of this equation is known to be 

E=/(<< t - z) + ", (<< t + z), 

where f and ", are unknown functions depending on the 
nature of the disturbance and the other circumstances of 
the tube. 

This investigation of the motion of sound in the air 
depends on the assumption that the medium is a perfect 
fluid. But this is not the case. The effect of internal 
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friction is found to consist partly in a diminution of the 
velocity of propagation, and partly in 1\ more rapid dimi
nution of the intensity than would correspond to the 
increase of distance from the centre of divergence. The 
diminution of velocity is found on calculation to be so 
small, that it is less than one foot in 1,578,000 miles. The 
change of intensity, though not so utterly insignificant 
as the change of velocity, is found to be still insensible. 
Such small differences as these may be altogether neglected. 

It is well known that BOund does not always travel in 
a rectilinear direction. " Sounds," Newton remarks, 
"may be heard though a mountain be interposed; and if 
they come into a chamber through the window, dilate 
themselves into all parts of the room, and are heard in 
every corner, not as reflected from the opposite walls, but 
as directly propagated from the window, as for as our 
senses can judge." Let us imagine a series of waves to 
be advancing directly through an orifice, and let the aper
ture be divided into small elements. Each element may 
be considered as the origin of a series of disturbances. The 
disturbance in any part of the room will be made up of 
those propagated from all the several elements. Now, the 
motions being all small, it is a well known principle that 
the actual disturbance will be the Bum of all those that 
would have been propagated from each separate element 
on the supposition that there was no other motion at the 
same time in the medium. Each separate disturbance may 
be calculated by tile known rules according to which any 
motion spreads itself on all sides. The actual disturbance, 
on which the sound depends, will be represented by a 
definite integral. It is needleBB to go through the work, 
but the result is, that, provided the length of a wave be 
not very small compared with the orifice - and this is the 
case in BOund, and the waves on the surface of water-the. 

r 3 

Digitized by Coogle 



278 NEWTON'S PIUNCIPIA. 

motion will be sensible at other points of the room, as 
well as directly in front of the orifice. Thus Newton's 
expectation was confirmed, though he was ignorant of the 
condition on which it depended. But if the length of the 
waves are indefinitely small compared with the size of the 
orifice,-and this is the case in the Undulatory Theory of 
Light,- then it is found that, excepting directly in front 
of the orifice, the definite integral is altogether insensible, 
the condensations and forward motions of one wave being 
8uperimposed on the rarefactions and backward motions of 
another in such a manner that there is no sensible disturb
ance. Such waves must be considered as being propa
gated in rectilinear directions. 

The first step in the theoretical explanation of the sounds 
produced in pipes was made by Newton. He remarks tbat 
Sauveur found by experiment tbat an open pipe about five 
Paris feet in length gives a sound of the same tone with a 
viol string that vibrates a hundred times in a second. 
Therefore, he argues, there are near one hundred pulses in 
a space of one thousand and seventy Paris feet, which a 
sound runs over in a second of time; therefore one pulse 
fills up a space of about 10/11 Paris feet, that is twice the 
length of the pipe. From whence it is probable that the 
lengths of the pulses In all sounds made in open pipes are 
equal to twice the length of the pipes. Newton did not 
examine any further into the subject, but leaves it for 
others to carry out the theory. Lagrange and Bernoulli 
were the first to give more minute explanations of the 
leading facts. Since that time, Euler, Lambert, Poisson, 
have developed the subject still further. 

The theory is to a great extent included in the equatioD8 
to the motion of sound in a tube which we have already 
given. It can be shown from these that the motion is 
made up of two waves continually tmvelling along the tube 
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in opposite directions. Of these one may often be con
sidered as the reflection of the other at the open or closed 
end of the tube. These two waves will "interfere" as it 
is caUed, and there will be in consequence two sets of 
points in the tube, which possess remarkable properties. 
At any point of one set there is no motion in the air, but 
only a condensation. At any point of the other set there is 
no condensation, but only motion. The first are called 
"nodes," the other "loops." These points are placed in 
regular order, alternately a node and loop at distances one 
fourth the length of a wave. 

Suppose a tube closed at one end to be sounding a note 
in unison with a vibrating plate at the other •. Then clearly, 
since the air must remain in contact with the tube at the 
closed end, there can be no motion there. That point must 
be a node. Since the air moves in consonance with the 
vibrating plate, there must be no "action or reaction" 
between the air and plate. H there were, the sounds would 
not be in unison, and the note of both the tube and plate 
would begin to change. The pressure of the air must 
therefore be the same on each side of the plate i therefore 
there is no condensation in front of the plate. That point 
must be a loop. One end of the tube is therefore a loop, 
the other a node. Hence the length (I) of the tube must 

be an odd multiple of i, where A is the length of a wave. 

That is, 
A 

1=(2n+ 1) 4' 

That note which has the largest value of A which can be 
sounded from a given pipe is called the "fundamental" 
note of that pipe. For this note n = 0, and we have 

A= 4/. 
The pitch of a note being determined by the length of the 

T' 
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wave which fonns it, all the notes that can be BOunded 
from the same c10eed tube will form the series 

1 III 
1 3 5 7 9' &c. 

for we have merely to give n all its values from nothing to 
infinity, to get all the possible values of A. 

Suppose now the tube to be open at the end opposite to 
that by which the air is set in motion. It is assumed that 
at the open end the density of the air must be the same 88 

that of the surrounding air, a fact that is not exactly true. 
Taking it for granted, it will follow that both ends of tube 
must be loops. The length of the tube must therefore 

be an even multiple of~, that is 

A 
1= n 2. 

The fundamental note corresponds to 71 = 1 or 
A=2/, 

and all the notes that can be sounded from the same open 
tube will form the series 

1 
1 1 1 1 
2 3 4 6' &c. 

We also learn that the note of the pipe being measured 
by the value of A, it will be proportional to the length of 
the pipe, and that to get the same note from two pipes. 
one closed and the other open at the end opposite to that 
at which the air is set in motion, the second must be double 
the length of the first. 

The theory of stringed instruments is in many instances 
remarkably similar to that of wind ones. The equations of 
the oscillations of a stretched string are exactly the same all 
thosc of a sounding pipe. 

Much progress has been madc by the experimental re
senrches of Hopkins, Chaldni, Savart, Willis, and others. 
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But we have no space to do more than merely allude to 
their labours. 

There are a great many other waves prop~aated through 
the air besides those which can be heard. Our ear is a 
musical instrument that vibrates in consonance with all 
notes whose periods lie between two limits. All other 
sound waves therefore, though their theory is exactly the 
same, are not heard. 

Besides these sound waves, there are other great waves 
which traverse the air in all directions, and whose passage 
is indicated by the variat.ions of the barometer. These 
waves are very large, and pass over whole continents in 
their course, and seem to recur with some regularity. 
Their theory is different from that of sound, and as yet 
imperfectly undel'stood. The examination of t.he "facts" 
connected with them was begun by Herschel, and has been 
since continued with much success by William Birt. 

So also the waves that produce sound can travel through 
other substances besides air. The theory is in some points 
different from thlLt we have been considering. 

3. That the elevations on the surface of water which we 
call waves are not really the transmission of a body of 
water, but merely the movement of a particular state of 
motion, will be obvious on very little consideration. 
First, by experiment, a piece of cork floating on water 
agitated in this manner is found merely to oscillate, and 
does not advance as the wave moves onwards. Secondly, 
by theory, such a disturbance being supposed giveu to the 
water, as we know by experience will produce the appear
ance of waves, the principles of Hydrodynamics lead us 
to the conclusion that the motion is really of a vibmtory 
kind. 
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On this subject Newton has not many propositions. He 
has shown an analogy between the motion of waves and 
the oscillation of water in a pipe. 
Let there be a column of fluid P 

of length I in the U pipe M A' m : •....................... - ... .. 
let the water when at rest stand 0 

at the level M m. Then if it be 
raised above this level in one leg 
to the height P, it will be deprel:!sed an equal 
amount in the other, say to Q. The weight of water 
tending to pull it back again will be equal to twice the 
weight of the column PM; that is, the force varies as the 
displacement, and tends to pull the body back to its ori
ginal position. This case of motion has been investigated 
in the First Book, and the result is, that the motion is 
vibratory, the time of oscillation will be always the same, 
and equal to 2 'Ir divided by the square root of the ratio of 
the accelerating force at any distance to that distance. 
But the moving force is twice the column P M, and the 
masS moved is the colomn I. Hence the time will be 

'Ir~21, 
9 

or it varies as the square root of the length' of the column 
of water. 

Now, in waves the motion is carried on by the succes
sive ascents and descents of the water; hence the time 
that must elapse before any particle now at the top of a 
wave will again be the top is 

... ~2/, 
9 

where I must here be assimilated to half the length of a 
wave. We cannot say they are equal to it, but they will 
increase or decrease together. Newton assumes' 
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A 
1=2' 

and therefore the time of oscillation is 

... /~ 
Itt! g' 

283 

where A is the length of a wave, measuring either from 
top to top or hollow to hollow. This expression {or the 
time is the same as that for the oscillation of a simple 
pendulum whose length is A. Hence a wave whose length 
is equal to the length of a simple pendulum should advance 
a space equal to that length in the time of one vibration 
of that pendulum. The velocity of the wave will therefore 
be . 

1 _ 
- -lAg ... . 

Thus the velocity is independent of the magnitude of the 
waves, or the density of the fluid. It is greater {or long 
waves than short ones. The waves of sound in air travel 
with equal velocity, whatever be their length. The undu
latory theory of light requires us to believe that, except 
when light goes through a vacuum, the waves of different 
length travel with different velocities. 

Newton does not propose this as more than a first 
attempt. He says, "These things are true on the suppo
sition that the particles of water ascend and descend in a 
right line. But, in truth, that ascent and descent is per
formed in a circle, and therefore I propose the time defined 
by this proposition as only near the truth." In modern 
times the motions of waves have been more accurately 
investigated. If h be the uniform depth, A the length of 
the waves, v the velocity of propagation, 
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If the depth be very great we have 

v = ~ ~ ~ very nearly, 

and when the wave is very long, 

v == 'II 9 h very nearly. 
The former of these results is not the same as Newton's, 
but the general conclusion will be unaltered. The exact 
result may, however, be obtained by Newton's reasoning. 
if we slightly change the value assumed for I and take 

A 
1 = -. 

'Ir 

The second result admits of an easy demonstration, 
which we shall speak of in another place. 

[See NOTE VIII.] 
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CHAPTER VIII. 

THE THEORY OF THE TIDES. 

L New&on's inTeStigation on the Tides. 
... The tides considered as a question in the motion of fluids, de-

duced from the Lunar Theory. 
(J. General explanations of eight phenomena of the tides. 
"1. The calculation ofthe height of the lunar and solar tides. 
I. The tides iu the moon. 

IL The theories that have been proposed since Newton's time. Note IX. 
1. The Equilibrium Theory. 

... Its fundamental hypothesis. 
IJ. The results of calculation made according to this theory, - three 

kinds of tides. 
"1. Airy's opinion of this theory. 

2. The Hydrodynamic Theory. 
... Its fundamental &8SI1mption8. 
(J. The results of calculation, - three kinds of tides. 

3. The Wave Theory. 
... Consideration of ocean tides. 
IJ. River tides, results of calculation and explanation of the chief 

phenomena. 
"1. Where this theory fails. 

IlL Some results of observation. Note IX. 

THE cause of the tides in the ocean have always excited 
the curiosity and wonder of mankind. Their regulority, 
the magnitude of the scale on which they take place, the 
difficulty of conceiving what that power could be that can 
raise twice a day so vast a body of water, all render the 
question one of the most interesting in the whole range of 
science. Phi.theas, it is said, was the first who remarked 
that the tides followed the course of the moon. But the 
" why" was still as great 1\ mystery as before. Galileo 
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thought he could explain it by a combination of the rotation 
of the earth about its axis with the annual motion round 
the sun. The impossibility of deducing an explanation 
from these premises of the most ordinary phenomena of the 
tides is evident from what we have said in a previous 
chapter. Galileo, busy in establishing by new proofs the 
rotation of the earth, was naturally inclined to find in it 
the cause of a phenomenon so mysterious, which if it had 
succeeded would have furnished him with a most powerful 
argument. Descartes had another equally impossible 
theory; it was reserved for Newton to suggest the true 
cause of the motion of the sea. The discoverer of gravi
tation could not he long before he saw that whether or not 
it was the only cause of the tides, it must certainly be one 
of them. The attraction of the moon could not be the 
same in all parts of any extended sea. Motion, therefore, 
must ensue. Nor could any position of rest be ever 
assumed, because the earth and moon themselves are in 
motion. And here Newton showed his superiority over 
those philosophers who afterwards treated of the same 
subject. He saw that the motion of the tides was a 
question of Hydrodynamics, and in his First Book he con
siders it as such, and has even shown that in one particular 
case the water would be lowest in that part which is 
immediately under the moon. That he did not do more is 
no reproach. Even at the present day the theory of 
Hydrodynamics is in its infancy: how impossible then it 
must have been in Newton's time, when the simple laws 
of the motion of a single particle had only just been. 
understood, to have attempted the consideration of a fluid 
under the action of complicated forces. Newton gives, 
therefore, merely a general explanation of the tides, and 
enters into some numerical calculations merety as a first 
attempt. 
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Let us imagine that a uniform channel is cut round the 
earth at the equator and filled with water: let it be sup
posed that this fluid is disturbed by the action of the sun 
or moon; supposed for simplicity also to move in the 
equator. Newton endeavoured to discover in what man
ner the water would move in this imaginary channel, 
Book I., Prop. LXVI., Cor. 19. In considering the motion 
or a satellite supposed when undisturbed to describe a 
circle round the earth, Newton has shown that the 
disturbing force will in two different ways cause the orbit 
to become slightly oval, the earth remaining in the centre 
and the greater axis being perpendicular to the straight 
line joining the sun and the centre of the earth. This is 
somewhat parallel to the case in point. If each particle 
of water were kept in its place by its centrifugal force 
they would tend to rise at the quadratures and sink at the 
syzygies, they would be swifter at the syzygies and slower 
at the quadratures; they would ebb and flow in its 
channel after the manner of the sea. But the analogy is 
not perfect, for the water is supported, not by its ceniri
fugal force, but by the channel in which it flows. We see, . 
however, that an ebbing and flowing of the sea wiJI be 
produced, though the pointe of greatest and least height of 
water may be different. This reasoning applies whether 
the disturbing body be the sun or moon. 

Though, therefore, by this reasoning we cannot deduce 
a perfectly accurate theory of the tides, yet we are able to 
perceive that the sea ought to rise and fall twice in each day. 
The moon will form at any place two high tides and two 
low tides in the interval between leaving the meridian of 
that place and returning to it again, that is, in a lunar day. 
The sun will also at the same place form two high tides 
and two low tides in the interval between leaving the 
meridian and returning to it again, that is, in a solar dny. 
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These two will not appear separately, but 1\ mixed tide 
will result from the two. Since both are small, we may 
consider the actual tide as being the sum of the two tides 
that would have been formed had the disturbing bodies 
acted alone. The force of the moon to raise the tides is 
much greater than that of the sun, as we shall presently 
see, so that for most purposes we may altogether neglect 
the solar tide, or rather regard it as a small correction to 
be applied to results calculated on the supposition that the 
moon alone acted to raise the tide. 

First. The lunar tide follows the moon at a given in
terval, called the "establishment." Hence as the moon by 
her proper motion rises every day about forty minutes later 
than on the preceding day, the high tide will be as much 
later every successive day. But more minute investigation 
shows that the high tide does not follow the moon's pa88llge 
over the meridian by any constant interval. We must 
make a small correction for the effect of the solar tide. If 
the SUD follow the moon acr088 the meridian, the solar high 
tide will follow the lunar high tide, and the actual high 
water formed by the union of the two will lie between 
these two tides, and will therefore follow the moon's patJBage 
acr088 the meridian at an interval slightly greater than the 
" establishment." So if the sun precede the moon the 
interval will be le88. Therefore, when the moon is in the 
first and third quarters, the high water is a little later, when 
in the second and fourth a little earlier, than the establish
ment would indicate. 

Secondly. At or about new and full moon, the high tide 
formed by the sun coincides with that formed by the moon, 
hence the high tides will be higher and the low tides lower 
than when the moon is in any other position relative to the 
sun. These are called Spring Tides. At or about the half 
moon, the high tide formed by the sun coincides with the 
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low tide formed by the moon. They tend to neutralise 
each other. The high tides will be lower and the low 
tides higher than at other times. These are called Neap 
Tides. 

Thirdly. The effects of the luminaries depend on their 
~ce and vary inversely as the cubes of their distances. 
Hence the respective tides of the sun or moon are greatest 
when the luminary is in perigee and least when in apogee. 
In winter the solar tides are therefore greater than in the 
summer, and the lunar tides have like changes every fort
night. 

Fourthly. The effects of the disturbing bodies depend on 
their declinations. If the moon were at the pole, it would 
attract the water without any daily remissions of its action. 
The water would assume a position of equilibrium, and 
there would then be no daily tides. Thus as the luminaries 
decline from the equator, their effects become less and less. 

Fifthly. The river tides are formed by the propagation 
of the tidal disturbance from the seas where they were 
formed. In these therefore the greatest tides occur later 
than they should do according to the above statement. 

Sizthlyo The effects of the disturbing bodies depend on 
the latitude of the place. Suppose the attraction of the 
moon to raise a tide, one of whose highest points is in la
titude a, therefore the other is in the other hemisphere at 
the same latitude. This state of tide in one day will travel 
round the earth, the vertices always remaining at the s.'Lme 
latitude a. Then it is clear that the altitude of the tide at 
any place will depend on its distance from a vertex of 
this heap of waters. That place will have the highest 
tide over which the vertex passes, and the height at any 
other place will be less and less the greater the angular 
distance from the vertex; that is, the greater the difference 
of latitude between the place and one vertex. The tide 
will therefore be least at the equator and poles, and 

u 
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greatest in latitude a; thus the height of the tide varies 
with tbe latitude. 

Seventhly. But tbe difference between the latitude of the 
place and one vertex is not the same as that between it 
and the other vertex. Hence, though we have two tides 
every day, these two tides will be of unequal magnitude. 
Tbe moon's orbit is inclined at but a small angle to the 
ecliptic i bence, speaking generally, her orbit will have 
nearly tbe same position relative to the equatQr tbat the 
sun's orbit bas. A line drawn through the centre of the 
earth and moon is tbe axis of the tidal spheroid. The tides 
which occur on the side next the sun, when the BUll has 
north declination, will be greater than the tide on the op
posite side of the earth. Therefore in summer the day tides 
are greater than the night tides; similarly in winter the 
night tides are greater. "If tbe pole of the tidal flood 
followtbe moon, sa, at six hours, the pole will be north 
from tbe time the moon is six hours west of tbe sun to the 
time when she is six hou~s east, that is, from tbe time when 
the high tide is at noon to the time when it is at mid
night." In such a case therefore the afternoon tide is 
greater than the morning tide in summer and less in 
winter. Similar reasoning will apply when the" age of 
the tide" is twelve, thirty, &c. hours. 

Eighthly. If tbe tide be brought to any place by two un
equal channels, the two tides following the two transits oftbe 
luminary across the neighbouring oceans will meet one ano
ther at this place, and form a compound tide. Suppose one 
tide to be delayed six bours, it will be in exaet opposition to 
the ticle which arrives by the other path. If the two were 
equal, the waters would stagnate, and tbere would be no 
tide at this particular point. But if the luminary be not 
in the equator, the two tides are unequal; hence, compound
ing the two, there will be one tide every twenty-four bours. 

Newton quotes from Halley, as an example of this, the 
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port of Batsbam, in Tunquin, lat 20° 50' N. The tide 
arrives by two inlets, one from the seas of China, between 
the continent Rnd the island of LeucoDia; the other from 
the Indian Sea, between the continent and the island of 
Borneo. "The tide begins every successive day later by 
aboDt three quarters of an hour; so that in fifteen days 
the time of high water advances from one o'clock in the 
afternoon, for instance, to twelve at night; after which it 
does not advance to one in the morning, but falls back 
thirteen hours to twelve at noon, and so on perpetually. 
In this way the high water is al ways in the afternoon 
during the summer half year (March to October), aDd in 
the forenoon during the remaining half. About the time 
when the tide falls back thirteen hours .. the tides are very 
small and scarcely perceptible; at the intermediate times 
they are greatest." (Phil. Trans. 1833, page 224. Whewell.) 

Let us now follow Newton in his attempt to calculate 
numerically the forces of the sun and moon to raise the 
tides. He first refers to his L~nar Theory for 1\ calcula
tion of the force of the sun to draw the moon towards the 

earth. When in qua<lratures this force is ~~.ti g, 

where g is the force of gravity at the surface of the earth. 
'Vhen in syzygy the force is double this quantity. But 
the disturbed bodies are here the particles of water at the 
surface of the earth, which are nearer the earth than the 
moon in the ratio of 60l to 1. These foroos must, there
fore, be decreased in the same ratio. The force in q uadra-

tures is therefore 8S~ g, and that in syzygy double 

this quantity. The first depresses the water in quadra
ture, the second raises that in syzygy. Hence the two 
produce the same effect, and the whole force to raise tne 
sea will be the sum of the two, that is, t/-rice the rorce m 
quadrature. 

u 2 
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The force of the 8Un, therefore, to raiae the tide, will 
be 1':'200 g. But the centrifugal force has been 8hown 

to be! g. The latter raisee the water to a height under 
the equator exceeding that under the poles by 85,4072 Paris 

feet. Hence, the sun'8 force is 44~th part of the centri

fugal force, and will raise the water ~~ or 1 Paris foot 
and 111 inches, about two English feet. 

H the mlL88 of the moon had been known in Newton's 
time, he might have made a similar calculation to deter
mine its force to raise the tides. But he was obliged to 
deduce this mIL88 from the height of the tide itself. " Be
fore the-mouth of the river Avon, three miles below Bris
tol, the height of the ascent of the water in the vernal and 
autumnal syzygies of the luminaries (by the observations 
of Sturmy), amounts to about 45 feet; but in the quadra
tures to 25 only. The former of these forces arises from 
the sum of the forces of the SUD and moon, the latter from 
their dift'erence." 

If, therefore, L and S are supposed to represent respec
tively the forces of the sun and moon while they are in 
the equator as well as in their mean distances from the 
earth, we shall have L + S to L - S as 45 to 25, or 
L to S as 7 to 2. Newton remarks that the observations 
at Plymouth by Colepre88 gave a ratio 41 to 23, a propor
tion which agrees tolerably well with the former. He, 
however, prefers the former result, because the observa
tions were made on larger tides. This reasoning proceeds 
on the supposition that the earth is without rotation, Ilnd 
in that case there would be high water immediately under 
the luminary. But this is not the case; it does not occur 
until three "hours after the transit of the luminary. Nei
ther does the highest tide occur at the syzygy, but about 
three days after. Newton attributes this to the" force of 
reciprocation," which the water once moved retain a little 
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while by their vis iruita. The luminaries continue to act 
with great power for a little while after the moment of 
their greatest strength, and thus cOntinue to raise the tides. 
But Laplace remarks (Mec. Cel. xiii., chap. 1.) that" vrai
semblable" as this is, it is nevertheless erroneous, for an 
accurate investigation shows that, notwithstanding this 
continued action of the luminaries, the greatest full tides 
should occur exactly at the syzygies and the least exactly 
at the quadratures, and that therefore the explanation of 
the delay must be sought for in the accessory circumstances. 
It is, in fact, due to friction. 

Newton then proceeds to make several" corrections" to 
this result which he conceives to be necessary. He 
observes that the luminaries are not in the positions of 
greatest efficiency at the moments of the greatest high 
tide at the place under consideration; that therefore it 
is not the whole force of these luminaries that is employed 
to raise the tide, but this force multiplied by the cosines 
of certain angles. He corrects, therefore, for the instan
taneous angular positions of the luminaries at the moment 
of the greatest tide. He also remarks that changes in the 
distance of the moon are produced by the inequality in 
her motion called the " Variation," and he adds, therefore, 
another correction for the distance of the luminary at the 
moment of the greatest tide. But Laplace points out that 
this correction also is wrong. In fact it contradicts the 
previous reasoning, for if the tide be due to the accumu
lated action of the luminaries during a certain instant, we 
must not consider it as proportional to the force at the end 
of that interval. But when. all corrections are applied, 
he finds that the sun's force raises the tides by 1 foot 11-115 
inches, and the moon's force will therefore raise the same 
to t~e height 8 feet 7 -If inches, an d the joint nction of 
the two to the height 1 O~ feet, and when the moon is 

u 3 
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in its perigee to the height of 12~ feet, and more, especially 
if the wind sets the same WRy 118 the tide. 

Newton makes some remarks on the observed nature of 
the tides in different parts of the world. His explanations 
are not always perfectly correct. To have a full tide 
raised, an extent of sea from east to west is required of 
no less than 90 degrees. Hence, he infers, the tides 
in the Pacific are greater than those in the Atlantic, 
and those in the North Atlantic than those within the 
tropics. In some ports, where the water must be forced 
in and out through narrow channels, the flood and ebb 
must be greater than ordinary, and this force of efBux, 
being once given to the water, may, he argues, con· 
tinue until it raises the tide as much as fifty feet. But 
on such shores as lie towards the sea with a steep ascent, 
where the waters may freely rise and fall without that 
precipitation of influx or efflux, the proportion of the 
tides agrees with the forces of the sun and moon. 

The force of the moon being only 2I!7:.wth part of 
gravity at the surface of the earth, will not be sensible 
in any statical or hydrostatical experiment, or even in 
those of pendulums. It is in the tides only that this 
force shows itself. 

I have already mentioned that the mass of the moon was 
unknown in Newton's time. He makes use of the obser
vations on the tides to determine her mass and density. 
Her. force is 4.~mth part of the sun's force to raise the 
tides. And, by lunar theory, these forces vary as the 
masses of the attracting bodies directly and the cubes of 
their distances directly; that is, as their densities and 
the cubes of their apparcnt diameters. These diameters 
being 31', 16i," and 32', 12", the ratio of the densities is 
4'891 to 1. But the density of the sun was known to be 
one-fourth that of the earth. Hence the moon is denser 
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than the earth in the ratio of 11 to 9. The true diameter 
of the moon is to the true diameter of the earth (according 
t~ Newton) as 1 to 3'65, Hence the mass of the moon 
is »;l1li (or nearlyiuth) that of the earth. Itisnowknown 
that the true mass is about ~~th that of the earth. 

If the moon's body were fluid like our sea, the force of 
the earth would raise tides in it. The tide in the moon 
caused by our earth is to the tide in our sea caused by the 
earth as the mass of the earth to the mass of the moon. 
This ratio Newton imagined to be 1 to 39'788. Hence 
he concluded the lunar tide was 93 feet. Upon this ac
count the figure of the moon would be a spheroid whose 
greatest diameter produced would pass through the centre 
of the earth and exceed the diameters perpendicular by 186 
feet. It might be supposed that the tides in the moon 
must be overwhelming. But as the moon always turns the 
same face to us, the tide is stationary, and would therefore 
merely aft'ect the permanent surface of the lunar ocean. 
But no sea has ever been detected in the moon. If the 
moon had been originally fluid, or had been created in a 
form which would have no tendency to break up, her 
longest diameter must point to the earth. Hence the same 
face of the moon would always appear to us, and the body 
could not rest in any other position, but would always re
turn by a slow vibratory motion. 

[See Note IX.] 

u 4 
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CHAPTER IX. 

THE CIRCULAR MOTION OF FLUIDS. 

1. The hypothesis of the Cartesian theory. 
2. Newton's hypothesis 88 to the law of internal friction in f1nids, - the 

motion of a cylindrical vortex - Bernoulli', objections to thls re
sult. Prop. LI. 

3. Some difficultie& of the Cartesian theory which are considered by 
Newton. 
Go The Sun's rotation. Ln. Cor. 4. 
IJ. The third law of Kepler. Scholium LID. 

"1. The two first laws of Kepler. Scholium LID. 

IS. The density of the planets, LIII. 

•. The disturbance of the Sun's motion by the planetary Tortice& 
LII. Cor. 5, &c. 

1. BEFORE the time of Newton the Cartesian theory was 
believed in by almost every nation of Europe. It was 
therefore necessary that some notice should be taken of 
these opinions in a work in which a totally different system 
was proposed for the first time. Accordingly Newton has 
devoted a section to the consideration of this hypothesis. 
The philosophy of Descartes was naturally a very popular 
one. Its explanations of the general filets of astronomy 
were so exceedingly simple that it required no previous 
learning to enable anyone to understand them. Men 
were pleased to think that in a few minutes they could 
learn the cause of the motion of the planets. The sun was 
supposed to be the centre of a vast vortex or whirlpool, the 
density and angular velocity of the various parts of which 
were different. The planets being placed, each in that 
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stratum whose density was equal to its own, were thue 
dragged round the sun. Those planet! which had satellites 
were themselves the centres of smaller whirlpools in which 
their secondaries revolved according to the same laws by 
which they themselves were carried round the sun. The 
ellipticity of the orbits were accounted for by supposing 
the vortices themselves not circular. Such was the theory 
8S given by Descartes. It was open to so many ob
jections that it was greatly changed in character by his 
succeeeor8. Newton proved that the original theory could 
not be made to agree with Kepler's laWs. Bernoulli· 
imagined the vortices to be circular, and accounted for the 
elliptic path of the planet by a combination of an 0s

cillatory movement with the circular motion of the whirl
pooL Bouguer then showed that the two portions of the 
curve which the planet would describe in its oscillations 
from aphelion to perihelion would not be equal or similar. 
D'Alembert showed that an elliptic vortex was, under the 
circumstances of the case, impossible. The theory was 
always unsatisfactory: all eorts of suppositions were made 
in vain by Huygens, Perrault, Villemot, Mollieree, Ga
maches, &c. They never could explain one phenomenon 
without contradicting another. 

Newton of course considers the Cartesian theory as it 
was originally given by its author. We shall confine our
selves within the same limits. The theory has no longer 
any adherent, and there can be no advantage in attacking 
that which no one defends. 

2. If the particles of a fluid did not exert any action on 
each other, a vortex in which the velocity WIl.5 any function 
of the distance would be possible. For suppose the whole 
fluid in any cylinder to be revolving round the axis; 

• Montocla, ii. 327. 
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describe two indefinitely near cylinders with this straight 
line as their common axis. The fluid between these two 
cylinders will evidently revolve unchanged whatever 
be its velocity, and however different from that of the 
neighbouring fluid, the normal pressure being sufficient 
to counteract the centrifugal force. There is, however, 
no perfect fluid in nature: if a stream of one fluid be made 
to pass through another, it will carry the particles of the 
second along with it. A true theory of vortices must 
take account of this "internal friction" of the fluid. 
Newton starts with the hypothesis that " TM renstaRCe 
arin'1l9 from the want of lubricit!! in the parts of a jluid is, 
cmteris paribus, proportional to the velocity with which the 
parts ofthejluid are separatedfrom each other." 

This hypothesis, as Newton himself remarks, is probably 
not altogether correct, but, nevertheless, there can be no 
doubt that it will give us a general idea of the motion. 
The first problem to which we shall apply it will be 
the following: 

Two infinite C!Jlinders havin9 a common am revolve i1& 
an!! uniform manner about that o.ris. Fluid is placed be
tween them, and soon aCljuires a rotatoT!J motion; it is reljuired 
to determine what that motion will be after it has become 
settled or stead!!. 

Divide the whole fluid by concentric cylinders whose 
radii continually differ by Sr. Then we may suppose the 
fluid between any two of these to solidify, and the circum
stances of the case will not be in the least altered, provided 
we at the same time make S r diminish without limit. Let 
us then consider the friction between any two of these 
solidified cylindrical elements. Let QI and", + S QI be the 
angular velocities of two consecutive cylinders, and let the 
radius of the surface of junction be r. It is manifest that 
the relative velocity of the two cylinders is 
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drIJ 
r ;r;8r, 

and therefore the friction which is proportional both to the 
velocity and the number of particles that rub against each 
other will be proportional to 

drIJ 
r 1 d ;;8r. 

In order that the motion of any cylindrical element may 
not change, the friction on its two sides must be equal. 
Hence the expression 

must be the same for all values of T; call this value - DC ; 

hcnce, integrating, we have 

where DC and ~ are constants depending on the angular 
velocitics of the inner and outer cylinders. Supposing 
these to be rlJ1 rlJ1, respectively, and r 1 r l to be the radii, we 
have the two equations 

to find DC and ~. 
In order that this state of motion may be " stable," it 

is necessary that the centrifugal force should increase 
from the centre to the circumference, unless the fluid be 
sufficiently tenacious to resist the change of motion that 
might follow the inequality of pressure. 
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If the floid be homogeneous, this condition requires that 

should increaBe with r. Hence its dift"erential coefficient 

must be always positive; that is, 

1& 
Q > _. 
,... r' 

I 

on substituting for 1& and ~ their values, this gives 

GIlt 1 (1 rl) ->- +-. 
rill 2 r t 

If there be added or taken away from the fluid and 
cylinders any constant quantity of angular velocity, the 
mutual attraction of the particles of fluid will not be 
changed, and therefore the relative motion will remain 
the same RS before. If we impre88 on the whole system 
such a velocity as to make ~ = 0, we get 

1& 
GIl = -; 

r 

and this is the case considered by Newton. Unless the 
fluid be heterogeneous, this state of motion is unstable. 
Each particle of fluid has a greater tendency to fly from 
the centre than those beyond it, and hence if any circum
stance occurs to alter the symmetry of the motion, the 
particles of those strata which have too great a centrifugal 
force will immediately fly from the centre, and the whole 
motion will be changed. This state of motion is like the 
case of a stratum of a heavy fluid resting on the surface of 
a lighter one. 
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Bernoulli, in his di88ertation, enutled " Nouvelles 
PensOOs sur Ie Syst~me de Descartes avec la Maniere d'en 
dcduire les Orbites et les Aphelies de Planetes," has made 
two objections to these investigations. First, that 
Newton in calculating the amount of the friction between 
two layers of fluid has not considered the pressure between 
those layers; and, secondly, that in calculating the effect of 
the friction, he has not taken into account the arm of the 
lever at which it acts. Bernoulli then attempted to show 
that the density, being supposed to vary with the distance, 
the motion in the vortex will agree with that given by 
Kepler's third law. 

But D' Alembert· showed that this does not follow from 
Bernoulli's own equations, for it appears thl\t he has, in 
integrating, omitted the lower limit; thus he considered 

f ill '" ",-I Z 
Z d Z = -, 

o m 

which is true only when m is positive, whereas he after
wards assumes m = - t. The first of Bernoulli's objections 
has been anticipated by Newton himself. In the scholium 
to the fifty-second proposition, he says, " The matter by its 
circular motion endeavours to recede from the axis of the 
vortex, and therefore presses all the matter that lies be
yond. This pressure makes the attrition greater and the 
separation of the parts more difficult, and by consequence 
diminishes the fluidity of the matter." D'Alembert re
marks that Mr. Musschenbroek in some very exact expe
riments, found that when the velocity is small, the friction 
was proportional to the velocity, and not to the pressure. 
That similar results have been obtained by later experi
mentalists is evident from what has been said in a pre" 
vious chapter. 

• Traite des Fluides. p. 408. 
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Bernoulli's eeco;d objection has more force. according 
to our preceding investigation, the friction being 

d,. 
r'drBr; 

and the arm of the lever at which this acts being r, we 
have 

d,. 
r1drBr; 

to be constant for all values of r, this gives 

DC 
,. = f:i + ~. 

IT a sphere begin to rotate and communicate an angular 
velocity to the surrounding fluid, the inner parts of the 
vortex will move quicker tban those without, and these 
by friction will be continually communicating velocity to 
those outer strata. The vortex created will, therefore, 
always grow larger and larger, and the motion of the sphere 
will be continuously transferred from the centre to the 
circumference, until it is swallowed up and lost in the 
boundless extent of space. Hence there must be some 
active principle which may tend to communicate velocity 
to the cylinder, otherwise it will move slower and slower 
and finally lose all its motion. If any motion had been 
communicated to the infinite fluid also, the friction of the 
fluid and cylinder will never cease to retard or accelerate 
that body until the whole fluid and cylinder revolve round 
with the same angular velocity. This, therefore, ought to 
be the state of the Cartesian vortex. But it is well known 
that the planets do not describe their orbits in the same 
time. 

Newton next argues that even if we grant the existence 
of an active principle that will keep up the angular velo-
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city of the Sun, yet still it is impossible to explain the 
existing phenomena by a vortex. The third law of Kepler 
declares that the squares of the periodic times of the 
planets are as the cubes of their mean distances. But his 
preceding propositions have shown that this is not the case 
in a vortex. It is true that his reasoning is founded 'on 
two hypotheses; first, that the resistance arising from 
friction varies as the velocity; and. secondly, that the 
degree of fluidity is the same throughout the vortex. . Let 
us, however, suppose that the friction varies as the mth 
power of the velocity, and the frictional power of the 
several strata as the nth power of the distance. Then, 
according to Newton, we have 

( d W) .. r'l r dr' r- = constant 

III 
• •• CD = --;;'+. + (J. 

r ". 

lIence, that Kepler's law may be true, we must have 

3 
n + 2 = 2" ffl; 

-
either, then, m is greater than unity, or n is negative. But 
Newton considered that if the resistance did not vary as the 
velocity, it would vary in a less ratio, that is, m less than 
unity, and that if the parts of the fluid had various degrees 
of fluidity, those parts that had least fluidity would be 
heaviest, and would, therefore, be furthest from the centre, 
that is, n positive; hence he thinks that the theory of 
vortices cannot be made to explain tbe third Jaw of Kepler. 

The motion of the vortex cannot be made to agree with 
the two first laws of Kepler. The planets move in ellipses 
which are so placed that their major axes are not parallel. 
To account for this Descartes supposed the \'"orticcs them-

Digitized by Coogle 



304 NEWTON'S PRINCIPIA. 

selves elliptical. The Suid between two elliptic carves of 
motion must ~way8 keep between them~ and therefore 
the velocity must be greatest where the distance between 
the paths is least. But by Kepler's law the velocity is 
such that the areas described are proportional to the time. 
These two conclosioD8 can be shown not to agree. As an 
example~ let us take the three orbits of V enus~ Earth~ 
and MArs. "At the beginning of the sign of Vir~ 
where the aphelion of Mars is at present," says N ewton~ 
" the distance between the orbits of Mars and Venus is to 
the distance between the same orbits at the beginning of 
the sign of Pisces as 3 to 2. Therefore the matter of the 
vortex between those orbits ought to be swifter at the be
ginning of Pisces than at the beginning of Virgo in the 
ratio of 3 : 2. Therefore the velocity of the Earth at the 
beginning of Pisces should be to its velocity in the begin
ning of Virgo in the same ratio. But judging from the 
Sun's diurnal motion, we know that the Earth is &Wifter at 
the beginning of Virgo than at the beginning of Pisces. 
Hence the hypothesis of vortices is not reconcileable with 
astronomical phenomena." 

If a body be carried round a vortex, it must have the 
same density as the Suid along its path. In that case it 
may be regarded as a piece of solidified Suid~ and its cen
trifugal force is just balanced by the pressures on its two 
sides. But if the density be different, this balancing no 
longer takes place. The cen trifugal force will be greater 
or less than the difference of pressures, according as the 
density of the body is greater or less than that of the Suid. 
Hence the body will recede from or approach to the centre 
according as its density is greater or less than that of the 
fluid. If the strata of fluid be not placed so that their 
densities increased with the distance, not only would they 
themselves be in an unstable state, but the glo~s also, if 
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displaced, would not return to their former orbits. We 
should, therefore, expect those planets which are furthest 
from the BUD to be the denaeat j but the contrary is the 
case. -Principia, prop. viii., book iii., cor. 4. 

The planets that have satellites were supposed by Des
cartes to be the centres of smaller vortices j but it has been 
already shown, that every vortex continually grows larger 
and larger, and thus every part of the fluid will be agitated 
with a motion resulting from the action of all the globes. 
Therefore the vortices will not be confined to any certain 
limits, but by degrees will run mutually into each other, 
and by the mutual action of the vortices 011 each other the 
globes will be perpetually moved from their placet. They 
cannot possibly keep any certain positions among them
selves unless some force restrains them. Forces are ne
cessary, therefore, not only to keep the globes turning, but 
alao to keep them in their places. 

x 
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CHAPTER x. 
TBBOBY OF COJlBT8. 

1. The Comet. are planets moving in very eccentric conic aeetiona. 
II. To determine the particular orbit of a given comet. 

(1.) THE visit of a comet presents to us a great mys
tery. It comes unexpectedly, remains but a short time, 
often presenting a magnificent spectacle, and then dis
appears in a manner as wonderful as its appearance. It 
is one of those great problems that God has set before 
U8. Many of the ancients regarded them· as simple 
meteors, sent from the Supreme Being as signs of his 
anger or progoostica of future events. Others, as the 
iIlU8triOUS Seneca, bad better views on the subject - " I 
do not follow the opinion of our philosophers; I do not 
consider the comets to be passing fires, but as one of the 
eternal works of nature. "t 

Newton set about the solution of this great problem 
in his usual logical manner. The first point to be settled 
was whether they were simple meteors of our atmosphere 
or not. Their want of diurnal parallax is a convincing 
proof that they are at least further oft' than the moon. 
But how much further ? We must have some idea of 
their distance to determine to what class of forces their 

• Pingre, Comet; Bouut, Hilt. de Math. 
t Seneca, Na&. Queet. lib. vii. 
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motions are 8ubject. Comets are found to move more 
than ordinarily slow or swift according to the position of 
the earth. They have, in fact, an annual parallax. There
fore they belong to the region of the planets. This result 
Newton confirms by some considerations on the brightness 
of their heads. He pI'ove8 that they shine by reflected 
light, and then comparing their light with that of the 
planets, he show8 how much those person8 are mistaken 
who remove the comets almost as far as the fixed stars. 

Ir the comets move in the region of the planet8, they 
must be 8ubject to the attraction8 of the SUD and the 
other planets. Neglecting for a fir8t approximation these 
latter attraction8 compared with that of the 8un, we know 
that the comet, being attracted towards the SUD by a force 
which varies inversely as the 8quare of the distance, 
mrut move in a conic section with the 8un in one focus, 
and describe round it areas proportional to the time8. 
This conic section may be either an ellipse, hyperbola, or 
parabola. In the former case the squares of their periodic 
times are as the cubes of their mean distances. This will 
furnish us with a complete test of the truth of onr argu
mente. By observations made on the latitude and lon
gitude of a comet, we can calculate its orbit with an 
accuracy depending on the degree of approximation to 
which we have carried the solution. We can then deter
mine the distance and position of a comet at any moment. 
If these results agree with observation, there can be no 
doubt that our theory is cor~t. The difficulty of the 
problem is unfortunately as great as its importance. The 
comets move in' 8uch elongated ellipses, that, as a first 
approximation at least, we may consider their orbits as 
parabolas. But Newton speaks of the problem, even when 
thus simplified, as " Problema hocce longe difficiUimum." 

(2.) Newton proposed two ways of determining the 
]I: 2 
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orbit of a comit. One of 'hese may be found in his little 
treatise De S!I'ltemate Mundi, and the other in the Third 
Book of his Principia. The first is by far the simplest 
of the two. The small part of the comet's path is con
sidered as a straight line, the two parts of which are 
described by the comet with the velocity it had at the 
beginning of those parts. These velocities are assumed 
to be V times that in a circle at the same distance. Let 
a first approximation to the distance of the comet from 
the earth at the time of the middle observation be sup
posed known, and let us represent it by the letter z. 
Newton then shows how to draw a straight line which 
\vill be divided by the directions in which the comet is 
seen at the times of the three observations in the ratio of 
the intervals between those observations. If this straight 
line, thus found, can be described in the given time with 
the velocity given by our assumed value of V, the value 
of :r that corresponds to V has been found; if not, a se
cond value of :r must be assumed; and then by an applica
tion of" the rule of false, a new value may he determined, 
which is nearer the truth, and by repeating this proce88, 
we can arrive at any degree of accuracy. The value of' 
V being theref'ore supposed known, the velocity, position, 
aud direction of motion of the comet are also known at a 
given time. By the First Book we can describe the orbit 
that a body projected in a given manner from a given 
point will describe round a given centre of force. Begin, 
then, with an approximate value of V, and construct the 
orbit. Make a fourth observation on the comet when at 
a great distance from its position at the "three first obser
vations. The longitude thus found should agree with 
that in the orbit just constructed. If not, a new valne of 
V must be found, and by the rule of faltle, the true value 
may be continually approximated to. 
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The other method begins by assuming the orbit to be 
parabolic. 

Three observations of a comet are supposed to be made 
at given times; then the positions of the earth T, t, T, being 
known, we can draw the directions of the straight lines 
T A, t B, T 0, joining the comet and the earth at those 

T 

times. Suppose now that by 
some means a first approxima
tion to the distance of the 
comet at the times of the second 
observation has been dis
covered, then we can mark off 
a distance t B, and B will be 
one point in the comet's orbit. 
Suppose also that from some 

J properties of the parabola we 
can determine approximately, 
First, the length of the sagitta 
BE drawn from the point B 
of a comet's path in a known 

direction and cut off by the chord A 0 joining the positions 
of the comet at the first and last observations; Secondly, 
the ratio in which the chord A C is divided in the point 
E; Thirdl!/, the length of the chord A C. Then, by means 
of the first two properties, we can construct the chord A C, 
and if its length be the same as that given by the third 
property, our assumption as to the value of t B was correct. 
If not, by making several trials, and by applying the "rule 
of false,» we can correct our assumed distance t B, and, 
therefore, ultimately obtain three points A, B, 0 in the 
orbit. Bya simple construction given in the First Rook, a 
parabola can be described which passel! through two poinb 
and has its focus in the centre of the 8un. This will be the 
comet't! orbit. 

x 3 
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Both these methods, it will be observed, require the dis
tance of the comet at the time of the observation to be 
known at least approximately. The expedient- suggested 
was to consider'a small portion of each orbit 118 rectilinear 
and described with uniform motion. Then four observa
tions being made at moderate intervals of time, four straight 
lines IlI'e given, across which a straight line is to he urawn 
t50 as to be cut in three parts in the same ratios of the 
intervals of time. This geometrical problem had been al
ready solved by Wallis, Wren, and Newton, but its applica
tion to comets had never led to any satisfactory result. A 
little conAideration will enable us to understand why. If 
the four straight lines pass through one point, the problem 
admits of more than one solution. Geometers call this a 
porismatic case. In fact, a whole family of straight lines 
can be drawn cutting the four straight lines in the re
quired ratios. When the straight lines do not exactly 
meet in a point, only one straight line can be drawlI; 
but, as might be expected, the construction to draw this 
line is such that any small error in the data will make II. 

very great change in the cutting line. This, Boscovich 
remarkst, is exactly what occurs in the application to 
comets; the arcs of the two orbits, which are considered as 
straight lines, are necessarily small, and in this case the 
four straight lines can he shown to meet very nearly in 
one point. 

Newton was not a man to be content with merely a 
general theory of comets i he at once reduced it to practice. 
He proceeded to try his method on the comet of 1680. 
By scale and compass, in a figure in which the radius of 
the earth was 16! inches, he determined the elements of 
the orbit. Halley afterwards again calculated these with 

• Edin. Trans .• vol. iii. 
t Phil. Recellt. a Benedictu StllY eUID adnu!. Boscovicb, lib. ii. p. 3.5. 
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greater accuracy by means of an arithmetical calculus. 
Moreover, observing that a remarkable comet had ap
peared four times at equal intervals of 575 years, he tried 
to find an elliptic orbit whose greater axis should be 
138'2957 times the radius of the earth's orbit, so that a 
comet might. revolve in it in 575 years. Taking this 
ellipse as the orbit of the comet, the observations from the 
beginning to the end were found to agree as perfectly 
with the computed places of the comet as the motions of 
the planets do with the theories from whence they are 
calculated; and this agreement clearly shows that it was 
one and the same comet that appeared all that time, nnd 
also that the orbit of that comet has been rightly defined. 

x ., 
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NOTE I. 

THE reasoning by which the law of density of a com
pressible fluid under the action of a centnu force was 
found may be extended to the determination of the con
ditions of equilibrium of any fluid under the action of any 
forces. This proposition is of course the foundation of the 
modern science of Hydrostatics, and may be investigated 
88 follows-

To determiu the conditi07l8 of the equilibrium of any 
.fluid8, acted on by any forces. 

Choose any rectangular axes of reference, and take any 
small element whose edges are parallel to the axes and 
equal to dz, dy, dz respectively. Let zyz be the coordinates 
of one corner. Let X Y Z be the resolved parts of the acce
lerating forced ncting on the clement parallel to tbeaxes, 
and let p be the density of the fluid. If p be the pressure 
referred to a unit of area at the corner (zyz), the pressure 
on the side of the element parallel to the plane of y z 
will be 

P dy d z, 

which by Law I. acts perpendicular to the face. The pres
sure on the opposite face will Le 

llnd therefure the pressure tending to move the element 
parallel to the tlXid of z is 

- ddl! dz dy dz . 
.I: 
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But the moving force 

p X dxdy dz 

tends to do the same, and since the element it> in eq uili
brium, the sum of these two must be zero. 

(1). 

By Law II. the pre88ure referred to a unit of area on all 
the faces meeting at the corner (xyz) arc equal, and at; 

similar reasoning applies to all the sides of the element, we 
shall have 

dp=py 
dy 

dp= pZ 
dz 

- (2). 

(3). 

These three equations are nece88ary and sufficient for 
equilibrium. 

Theile equations may be put under a form which is very 
useful, and may sometimes be used independently of any 
axes of coordinates. For draw any curve in the fluid and 
consider an element d8 of its arc. Since no a88umption 
has been made as to the axis of x, take it as tangent to the 
arc, and if S be the resolved part of the force along the 
tangent, the equation (1) shows that 

!. dp = S. 
P d 8 

Reverting to the old position of the axed, the ret>oh'ed purta; 
of X Y Z along the tangent is 

hence 

X d x + Y ~!! + Z ~~; 
d8 ds ds 

~ d p = X d x + Y d!l + Z d z, 
p 
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an ef[11ation "hich we "hall have frPfl'lC'nt occasion to m(~ 
in illustrating Newton's propo;;itionfl, 

Let 118 now consider some of the consecluenec" of this 
proposition. 

Consl''J'/('lIce 1. In order that thcrc may he equilibriulIl, 
t he forces and den"ity of the flui(} must be such that 

p Xd:l'+pYdy+pZd:: 

i" a perfect diffet'ential, that is, we mn~t have 

dpX dpY --- =--, 
dy dx 

(;i) (Ii ), 

If we eliminate p from these eqnations, we get 

X(dY_~~) + y(tl7._(!X) + 7.(dX_dY) =0, 
d z d Y d J' €I J.' d !I " 3,' 

Hence unless this equatiou he ,.ntisfied there is no fluid 
which will be in eqlliltlwinlll under the action of the forcei', 
Bllt if the equation bc satisfied, the law of density mu~t 
:"till be :melt as to "ati~fy one of the eqmtions (;i) (6), 
The only forces we meet with in nature are those which 
tend to fixe(} ecntre", and Yflry as some function of thc 
distance from those centre", I n all such CflSCS the quantity 

X d ,I' + Y d ,'I + Z rI :; 

IS a complete (liffel'cntial. For calling r the di"tancc (If 
any poillt from Ol/C of thc centres of forcc, nnd ;(r) O/Il' of 
the laws of nttractioll, we have 

X " ,.1:- 11 .; =-;(r), 
r 

where a is the ab"cii'i'a or t h(' rentre of force, nn(1 similnr 
cxpre!'sions hold fut" Y and 7., Hence 

"., '~l 7/ ~ .1'-~",r+II-I"'Ij-t::-,.,,:: _"\.( ,2'+ I ( //+,.1 ::=~ ;:(/')~---' ----"~--
, /' 

=!;: (r)d,. 
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since z-a II +y-b II + ;=; ~ =,.., and hence the above 
quantity is a perfect differential. The criterion is there
fore eatisfied, and it is therefore always poeeible to find 
a fluid that can be kept in equilibrium by the foreee in 
nature. 

Coruequence II. Def. A surface along which the pres
sure is the eame is called a level surface. It is also some
times called a surface of equal pressure. A surface along 
which the density is the eame is called a surface of equal 
density. Let us call the perfect differential 

Xdz+Ydy+Zdz=dP, 

then we have 

dp=pdP. 

and this cannot exist, by a known theorem of the Dif
ferentinl Calculus, unless the three quantities p, p, Pare 
functions, each of each. Hence the density is always a 
function of the pressure, and therefore 

All level surfaces are also surfaces of equal density. 
The differential equation to all level surfaces is 

X dz+ Y dy+Zdz=O, 

or, which is the eame thing, 

P = constant. 

Def. The bounding surface of any liquid exposed to 
any con8tant pre8sure, as for illstance that exposed to the 
atm08phere, i8 called a free surface. All free surfaces are 
clearly level surfaces. 

Tke resultant of tke forces at any point is perpendicular 
to tke surface of tke level surface passin9 tkrou9k tkot 
point. 

Take the point as origin, and the tangellt plane to the 
surface 88 the plane of zy, so thnt dz=O, and thc axi80f 
z is normal. Along the surface we have 

X d .r + Y d Y + Z d z = 0, 
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or, 

Xdx+ l' dy=O; 

hut dr and dy are quite independent nnd can have any 
ratio 

.. X=O, 1'=0, 

that is, Z, the only force, nets along the normal. 
Consequence III. If the fluid he cln~tic, Am, Intem ha~ 

shown, by experiment, that there must be the relation 

p=kr(I+/XS) 

between p, p. and 8 the temperature, k, is a constant quan
tity depending on the nature of the gas, amI /X a numeri
cal quantity = .-h, nearly. Then we have 

dp=pdP, 

dp dP 
or - = -;---,:---;-

p Iql+cd) 

hencc, II!' helill'c, p, ~, P arc function;: each of c:1rh. !'ltl thaI 
All l('fl" .~ur.l;[{·(·.~ are .~urfllf'(·s 11( ('(jllIIl fl·/IIjlt'rllfllr/.'. 
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NOTE II. 

THE law of density of the several strata of the air, deter
mined by Newton, is not, as we have seen, sufficiently 
accurate to be of any practical utility. 

Neverthele!lS the expressions for the density in times of 
the height are not without their use. Thus they enable 
us to determine the heights of mountains by barometric 
observations. Let p, p, T be the pressure, density, and tem
perature at an attitude z. Let a be the radius of the 
earth, flo the foree of gravity at the surface. Then the 
force of gravity at an altitude z will be very nearly 

fI = flo (1 - n ~) 
where n is some constant. If the upper station be in the 
air, the law of gravity shows us that 

11 = 2; 
but if, as is usually the case, the upper station be on a 
monntain, the attraction of the elevated ground must not 
he neglected. In this case the value of n will depend on 
theform of the mountain. It is found that 

5 
n=i 

is sufficiently accurate for our present purpose. Retaining 
t~e general form of fI, we have, as before, the two equa
tIOns 
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oS.oS", ... : • .,;, by nlimmnting p 

:~ = - x (I ::. « T)' (1 - n~) cl z. 
Integrate this, on the supposition that T is constant, 

log. p = _ .. 90 
X lK + 

. 2) 
) (z - n ,: + c. 

T, = a 

321 

Let hOJ h. be the heights of the merculty in the bL'I'Ometer 
thlt lowltlt kmd HppeH lttatimklt, aliP Tot HI' th<.K lHmpit.RHktUlt68 

at those stations respectively. Therefore the above exprf'40~ 
40EOn 

h>g. ~ = -, x (1 ~ «T) • (z - n 2 a) 
The value of T being constant is taken as the mean of the 
tK+KO <bb40erV40b valuns TCl, +K.. is mRS thZ?l lhe KKHI1rAKbKbp 
of temperature is found by actual observation at every 

thu furmv.da relibers re%mlts tru<.t-
worthy. If we neglect Z2 the above leads to 

77 (' TO + TI) I ho 
z = 201 ,1 + 900 og. As , 

in yards. The logarithms are in this formula the ordinary 
tZibulri+K on%;Cl to bkU,,-K'l lind tbe ulte eup"easCld 
in degrees above 32° F. 

If liury UClsCurHk:KY bu requiCled, va:iuty smz:.11 
corrections for x, DC, 90 are necessary. The correction for 
tbe of the huight. may be found 
substituting the value of z thus found in 

n 

and this is to he added to the former result. 
(2.) Ther", is atTIfbther ",ery mteruoting oppliz;ot.ion ",f these 

y 



322 NEWTON'S PRINCIPIA. 

formulm which we find in the second volume of Laplace's 
" Mecanique Celeste!' We are enabled to determine in 
some measure the form of the atmosphere of the heavenly 
bodies. We have as yet neglected the effect of the centri
fugal force; suppose the angular velocity to be w, 9 the 
co-Iatitude of the particle of atmosphere under considera
tion. Theu including this force in our equation we have 

dp = _ p.'J dz + WI z sin. 9 d (z sin. 9), 
p z 

where the earth is considered to be a homogeneous sphere 
whose particles attract according to the law of the inverse 
square of the distance. Now along the free surface of 
the atmosphere p is constant, and ••. d P = 0; hence 

- p.,dz + w'z sin. 9d (z sin. 9) = 0 z 
P. w'l I" 

.'. const. = ;+"2' z SID. ,. 

This therefore is the equation to the surface of the atmo
sphere. Let ue compare the polar and equatorial diameter&. 
Call them 2 Rand 2 R/. When z = R we have 9, the 
co-Iatitude, a right angle; hence 

i + ~ wlR~ = couet. 

when z = R', 9 is nothing, hence 

;" = CODet. 

• J!:.. +! 'R'l-.!!:. "R 2 w -R' 
_ R'-R _ w'l R'a 
- R -2p.· • 

_ ...... -. ...... No,,: at the equator the centrifugal force is leas than _r .....graVIty, that is 
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wlR' < -~ 
R" 

R'-R I 
•. R < 2 

. R' 3R. .. < 2 

323 

Laplace deduces from this that the zodiacal light cannot 
be part of the Sun's atmosphere, for it has the form of a 
very fiat lens, in which the polar diameter is far le88 than 
two-thirds the equatorial. Another sufficient reason is, 
that an atmosphere cannot extend beyond the orbit of a 
planet which describes its revolution in a time equal to 
the rotation of the Sun. Hence, as the Sun revolves in 
twenty-five days and a half, its atmosphere cannot extend 
80 far as Mercury or Venus. We know that the zodiacal 
light extends much further. It is therefore not part of 
the Sun's atmosphere. The zodiaeallight is a lenticularly 
shaped envelope which revolves round the Sun. Her
schel (§ 897.) conjectures it to be no more than the denser 
part of that medium which retlists the motion of comets, 
loaded perhaps with the actual materials of the tails of 
millions of those bodies, of which they have been stripped 
in their IUcce88ive perihelion passages. It is an illuminated 
shower or tornado of stones. According to Professor 
Thomson, the inner parts of this tornado are always getting 
caught by the resistance of the Sun's atmosphere, and 
drawn to his maBS by gravitation. They are always 
approaching the Sun, but very gradually, and he asserts 
that the mere fall of these aerolithes on the Sun is suffi
cient to account for the permanence of the Sun's heat. 

T 2 
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NOTE III. 

THE whole calculation of Newton is founded on the 
supposition that the earth is homogeneous. Taking this 
for granted, it is poasible to investigate without any long 
analysis the form of the earth. We cannot easily prove that 
the spheroid is the only form of equilibrium, but we shall 
show that it is at least one of the forms of equilibrium. 
That therefore if the earth had been originally fluid, it 
might have a88umed a spheroidal form; or if Dot originally 
fluid, yet if created in this form that its several parts 
would have no tendency to break up. 
A 8pheroidal ma" of homogeneou, .fluid revolve, round an 

axi8 with a unifurm velocity; to determine if the equi
librium of the .fluid be p08&ible, and if '0 what i8 the 
ellipticity of the 8Urface. 
Let a, b be the axes of the surface, e and I the eccen

tricity and ellipticity of the surface, then by dt·finition 

el = 1 - (~r I = 1 - ~. 
Let the axis of revolution (h) be t~en as the axis of z, and 
let the centre be the origin. Let (II be angular velocity, 
p the density of the fluid. It is well known that the at
tractions of the spheroid on a particle whose co-ordinatea 
are z y z resolved parallel to those axes are respectively 

2'1f'p{ - } . 7 .v 1 - e'l sin-I e-e (I-e!) Z 

2 ~p { .vI _ el sin-I e-e (I-e') } y 
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21r p { - } -e- e - ""'1- (,2 siu- I e Z. 

For brevity's sake call the coefficients of .1',.'/, z, A, ..:\.,13. 
Then, according to thc notation of last chapter, we have 

X ( , '" • = - ~.". - :..,") .1' 

Y = - (A- (J;2)!J 
Z=-.B= 

The equation to the surface is 

Xd.1'+Yd!J+Zd::=O 

or (A_w 2 ) :rd.c + (A_w 2) !JeI!/ + B ::dz=O 

integrating we have 

A - w~ ( " n' " 13 ,X' -7 !/") + z· = constant, 

the equation to a ilphcroid; hence the cq uilibriulll III 

possible. The eccentricity will be given by 

A. " 
1 - e2 = ~~~-", 

or by Bubstitution 

( '> i) n' --
w2 3 (1 - ,;2) .J - - C") ,'1 - e2 • -I + ---- - --~ --- ------ sm e = O. 

2 7r P e2 (,3 

3 :.;2 
The quantity -- is the same as 

4 7r P 

w~ a centrifugal force at equator 
4-- = equatorial gr:\\:liy-~ 
37rpa 

and this we usually denote by the letter III. IItmce thl' 
equation to find e becomcs 
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3(1-e'l) (3-2et ).vl_e2 • _ 2 
- e2 + e3 8ln I e = 3 111. 

We have already Been tha.t m is nearly J'h, whence we find 

1 
e = 232" 

If a curve be constructed of which the abscissa is e and the 
ordinate the left hand side of the above equation, it will 
be found to resemble from e=O to e=l, the line OEBC 
where OC=I. Take OG=!m, and draw GEF parallel 

T I to the axis of X, then we see 
0 1 ~n.. t~at the.curve cuts this straight 
~--i line twice, and each of these 

o C x points corresponds to a value 
of e that will satisfy the above equation. It would appear 
that for the same vallue of ell there are two values of e, G .E 
and G F, which are consistent with equilibrium. But it 
does not follow that if a mass of fluid be Bet in motion 
with an angula.r velocity ell that it can take either of these 
forms. 'l'here is another condition to be satisfied. There 
is a certain principle in mechanics, called the conservation 
of areas, which teaches us that "if any number of bodies 
revolve round a centre, and are acted on only by their mu
tual attraction and by forces directed to the centre, the 8um 
of the products of the mass of each by the projection on 
a given plane of the area which it describes round that 
centre bears a constant ratio to the time." Hence the fluid 
must take up such a form that this ratio shall be the same 
as that in the fluid 118 originally Bet in motion. It requires 
but little consideration to perceive that for two forms 80 

different that one is nearly a sphere and the other ex
cessively elliptical, it is impoBBible that the same angular ve
locity could sweep out the same areas in the same time. 

This form of equilibrium of the earth is stable, for if 
the fonn were, by any chance, to become leBB spherical, 
by the principle of the conservation of areas, the angular 

Digitized by Coogle 



NEWTON'S PRINCIPIA. 327 

velocity would decrease, and therefore the earth would 
return to ita original form. So also, by similar reasoning, 
the same would occur if the earth were to become less el
liptical. 

If. be small, it is easy to see that the preceding equa
tion leads us to 

since 2e' =., when the powers of e higher than the second 
are neglected. 

y .. 
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NOTE IV. 

6. THE problem to determine the ellipticity of a planet 
considered as heterogeneous, is by no means an easy one. It 
certainly was beyond the powers of an age when the laws 
that govern the equilibrium of fluids were almost unknown. 
Newton determines the form of equiiibrium from the con
dition that the weights of all columns of fluid, from the 
centre to the surface, must be equal This, however, is 
not sufficient for equilibrium. Huygens added afterwards 
another condition, that the form of the surface must 
always cut perpendicularly the direction of the resultant 
force. But even these two conditions together are not 
sufficient. Clairaut (Figure de la Terre, Chap. III.) gave 
an instance in which, under a particular law of gravity, 
the particles of fluid could be 80 arranged that 60th these 
conditions were satisfied; yet he also showed that, 80 far 
from the fluid being in equilibrium, it was actually impos
sible for any fluid to rest in equilibrium under the action 
of these forces. It was CJairaut who first investigated 
all the necessary conditions of equilibrium, and showed 
that both the principles hitherto used were included in the 
one he proposed. His famous work, II Theorie de la 
Figure de la Terre," was published in 1743, and in it he 
applied his theory to determine the form of the earth 
~onsjdered as heterogeneous. Very little has been effected 
In this subject since his time. The form of the investi
~ation has been changed, but all the results remain essen
tially the same. The form of the earth, whatever it may 
be,. must consist of co level" strata of equal density, of 
which the surface is one. CJairaut assumes all these to be 
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spheroids, having their minor axes in the same direction, 
but not necessarily of the same ellipticity. He then shows 
that when there is a certain relation between the density of 
any stratum and its ellipticity the fluid will be in' equili
brium. Assuming that the density increases with the depth, 
it follows that the ellipticities must decrease from the surface 
to the centre, 80 that the strata are more and more nearly 
spherical the nearer they are to the centre of the earth. 
Suppose the earth to consist of a spheroidal nucleus 
formed of spheroidal strata of different densities, sur
rounded by a very thin layer of fluid (the sea). and sup
pose the laws of the density and the ellipticity of the 
strata to be any whatever, except that the ellipticity of 
the outermost stratum is the same as that of the thin 
layer of fluid upon it, then if G be the equatorial gravity, 
9 the gravity at latitude >., • the ellipticity of the outer
most stratum, m the ratio of the centrifugal force at the 
eq11ator to the equatorial gravity, 

9 = G (1 + n sin.~ >.) 

5 
n = 2 m - f. 

This is a very remarkahle proposition: the law ot' gravity 
along the surface of the earth is then quite independent 
of the law of density in the interior. It also furnishes us 
with a method of determining the ellipticity by observa
tions on the force of gravity in different parts of the earth. 
I t is usually called "Clairaut's Theorem." 

If the earth was not originally fluid the strata of equal 
density may not have been spheroidal. But merely 
assuming that they differ hut little from spheres, and 
that the surface is covered by a fluid in equilibrium, 
Laplace has shown that the changes in the force of gravity 
at the surface, and for all external points, is quite inde-
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pendent of the nature of the internal structure. There is 
a certain general connection between the form of the 
surface and t.he variation of gravity which he establishes 
on the above suppositions. This general connection has 
been lately demonstrated without making any hypothesis 
respecting the distribution of matter in the interior of the 
earth, bnt merely assuming the law of universal gravita
tion. 

The investigations of Laplace lead to the same result 
as those of Clairaut, but there is this difference between 
their modes of reasoning. Clairaut assumes that the 
forms of the strata are spheroidal, and then shows that 
the whole will be in equilibrium. Laplace merely assumes 
that they differ but slightly from spheres, and then de
duces from the condition of equilibrium that their forms 
are spheroidal. The solution of the question would in 
fact lead to a functional equation:, we cannot write down 
the condition of equilibrium without knowing the attrac
tion, and \ve cannot find the attraction without knowing 
the form of equilibrium. The analysis by which Laplace 
was enabled to prove the strata spheroidal is entirely his 
own invention. Its power is very great, and in many 
other investigations it has proved a useful engine of dis
covery. 

6. We have seen that the earth cannot be homogeneous; 
we have also learnt from the investigations of Clairaut 
and Laplace that it consists of strata of different densities 
increasing frOID the circumference to the centre: it becomes 
an interesting question to determine this law of density. 
Legendre was the first who ascertained what is very 
probably the true law. But it is the more finished results 
of Laplace that we shall now consider. They are entirely 
built upon one assumption. We know that in gases and 
fluids the ratio of the change of pressure to the change in 
density is constant. But in solids and semi-fluid bodies 
it is more natural to suppose that this ratio increases with 
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the density. The most simille 888umption is to suppose 
that it varies as the density. Supposing this to be the 
truth it is not difficult to investigate the density of the 
strata. But it is an assumption, and must stand or fall 
according as its results agree witb, or differ from, those of 
observation. Fortunately it enables us to integrate the 
equation connecting the density and ellipticity of any 
stratum, and thus the ellipticity of the external stratum 
furnishes us with a test of the truth of the law. 

Taking for granted the truth of the law, a very simple 
calculation will give us the corresponding law of density. 
Let us consider the earth as a perfect sphere, and let us 
neglect the effect of the centrifugal force. The strata 
of equal density will then all be spheres. Let p be the 
density of that stratum whose radius is x. Let p be the 
preseure at that stratum referred to a unit of area. 

We have first to find the attraction on a particle situated 
in the stratum whose radius is r. The attractions of all 
the external. strata is manifestly nothing. To find the 
attractions of the internal ones, we have merely to suppose 
them concentrated into their common centre and attracting 
according to the usual law. This will manifestly give 

4 'II" p-j"r 
-.- p x' d x, r 0 

where p- is the force of attrnction of a unit of maee at a 
unit of distanCf>. The law of fluid equilibrium will then 
give 

4'11" p-f.r 
dp=-p.-.. px2dx.dr-

r 0 

Also we have by our aeeumption 

dp=xp.dp 

w hence we get 

- - (2.) 

- (1.) 
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x dp lr 
41rp.' dr = -"it Jo P zI d z, 

or, which is the same thing, 

" ( dp,. -) r 47rp.· r dr - pr = J 0 prldr (3.) ; 

differentiating, 

x tPpr _ 
41rp.' r d rI - -prl; 

Put 4 7r II. = 'II for the sake of brevity • We have now a 
x 

differential equation to find p r. The integral is well 
known to be 

p r = A sin ('I. r + B). 

Now because the integral in equation (3.) haa r = 0 for ita 
lower limit, it will be found on substitution that this value 
of p r will not satisfy it unless B = o. Indeed, if B were 
not zero, we would have the density infinite at the centre, 
which is manifestly impossible; for, no matter how great 
the pressure may he, it must still be finite. 

We have then 

_Asinqr 
p- --. r 

This gives a density gradually decreasing from the centre, 
and therefore not contrary to what is a priori probable in 
the case of the earth. 

The values of A and 'I have yet to be determined. But 
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the experiments of Cavendish and Maskelyne have revealed 
to DB the mean density of the globe; and, supposing the 
density of the superficial stratum to be the same as that or 
granite, we have two equations to determine A and g. 
Working out these numerical calculations, we find that 

2Da . (5'11' r) 
P = -r- . SID 6'"' a ' 

where D is the density of the superficial stratum. 
There are two results which will serve to verify this 

law. 
1. We know that there is a prece88ion of the equinoxes, 

because the resultants of the attractions of the sun and 
moon do not pass through the centre of the earth. The 
position of the lines of action of these resultants mani
festly depend on the law according to which the density of 
the several strata varies. This calculation has been made, 
and it is found that, taking the above law of density, the 
precession should amount to 51"'3566. The observed 
preceBBion is 50"'1. 

2. The ellipticity of the earth is caused by its rotation, 
and depends also on the law of density of its stmta. The 
calculated result is e = ~.313' The result of geotletic 
measures is • = "!l!"' 

It is upon the remarkable agreement of our supposition 
with observation in these two cases that our belief in the 
law is founded. 

7. But though we have thus investigated the law of den
sity of the strata, it is not to be therefore concluded that 
the earth is solid throughout; on the contrary, the rate at 
which the temperature increases with the depth is such 
that if continued for 25 miles, the heat would be sufficient, 
under a pressure of one atmosphere, to melt 1\ stratum of 
granite. Is, then, the interior of the earth a vast mU88 of 
molten strata whose densities obey t.he law already inves
tigated? and if so, what is the thickne88 of the crust? 
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Mr. Hopkiua bas performed some very laborious calcula
tion8 with a view of determining thia quemon. He 
begiDe with some general remarks. There are two waye 
in which a body may cool, by coatlwctioa or f!JOt'I.J¥Ctiort. 
The earth being at met fluid, would begin to cool by 
convection. Now the temperature and pressure will both 
be greater at the _centre than near the circumference. 
Because the temperature is greater at the centre, the body 
will 80lidify first at the outer parte. and· the earth would 
become a cru8t containing a heterogeneou8 fluid. But 
because the pressure is greatest at the centre, the body 
will tend to solidify first at the centre, and thus on cooling 
it would become solid throughout. We cannot tell which 
i8 the predominating cause. and the investigation of the 
earth's refrigeration leaves the point uncertain. But 
there may be other tests whereby we can determine this 
question. 

The prece88ion of the equinoxes is caused by the attrac
tion of the heavenly bodies on the ring of mattersurrounding 
the earth's equator. One consequence of this attraction 
we have already seen to be the recession of the nodes in 
which it cuts the ecliptic. But this ring is fastened to the 
earth: its nodes cannot, therefore, recede as fast as they 
would do if the ring were left to itself. The earth is a 
heavy load which it has to pull round with it. The less 
this load the greater would be the prece88ion. If the 
interior surface of the solid crust be spherical. then neg
lecting the friction between it and the interior fluid, the 
ring of matter surrounding the equator will only have to 
pull round with it the solid crust; the fluid will not tum 
with it. Hence the prece88ion will be greater than if the 
earth were solid throughout. 

But the interior surface of the crust cannot be supposed 
epherical; it is m08t probably spheroidal. Supposing it 
eo, there will be pressures between its interior 8urface and 
the c~ntained fluid, caused partly by the motion of the 
spheroid and partly by the tidal action8 in the fluid caused 
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by the attractions of the Moon and Snn and by the centri
fugal force. These pressure8 must of coune be taken into 
account. 

It would be uninteresting to follow 8tep by 8tep the 
process of the inve8tigation: they are very long, and I8hall 
therefore confine myself to 8tating the re8ults. Mr. 
Hopkin8· fint con8itlen the earth as a homogeneous 
8pheroidal 8hell filled with a homogeneouslluid of equal 
density. The two 8urfaces of the 8hell are 8Upp08ed to 
have equal ellipticities. On these 8uppo8ition8 he cal
culates the disturbing force8, form8 the differential equa
tion8 for the motion of the pole, integrates them, and by 
interpretation arrives at the following results. 

" 1. The precession will be the same, whatever be the 
thickness of the shell as if the whole earth were homoge
neous and 80lid. 

"2. The lunar nutation will be the same as for the 
homogeneous 8pheroid to such a degree of approximation 
that the difference i8 inappreciable to observation. 

"3. The solar nutation will be sensibly the same as for 
the homogeneous spheroid, unless the thickness of the 
shell be very nearly of a certain value, something less 
than one-fourth of the earth'8 radius, in which case the nu
tation might become much greater than for the 80lid sphe
roid. 

"4. In addition to the above motions of precession and 
nutation, the pole of the earth would have a 8mall circular 
motion, depending entirely on the internal fluidity. The 
radius of the circle thus described would be greatest when 
the thickness of the 8hell wonld be least, but the inequality 
thus produced would not for the smallest thickness of the 
shell exceed a quantity of the same order as the solar 
nntation, and for any but the most inconsiderable thick
ness of the shell be entirely inappreciable to observation." 

Thus it appeal'll that the effect of these pressure8 between 

• Phil TranI. 1889, 1840, IS42. 
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the shell and the contained fluid is that the general efFect is 
the same as if the whole were solid. This method there
fore fails to tell us anything of the thickness of the crust. 
But when we proceed to consider the case in which both 
the solid shell and the inclosed fluid are of variable density, 
we arrive at a different result. The disturbing forces will 
of course depend on the law of density: taking the law 
which we have already investigated, we can calculate these 
forces and compare them with those obtained in the case 
of a homogeneous shell. The required alterations can then 
be made in dift'erential equations of the motion of the pole. 
We can thus find the precession. In order that the result 
thos found may agree with that found by observation, there 
most be a certain relation between the ellipticity of the 
internal surface of the solid part and the mean thickness of 
the crnst. This internal surface is a surface of equal soli
dity. If we knew, then, what function the solidity of a 
body is of the temperature and pressure, we should be able 
to express the ellipticity of a surface of eqnal solidity as 
a function of the depth. By equating the two values thus 
found, we should have an equation to determine the thick
ness of the crnst. But we do not know the law of the 
ellipticities of the surfaces of equal solidity. If heat did 
not aft'ect solidification, they would be the same as 
the surfaces of equal density. If density did not affect 
solidification, they would be the same as the surfaces 
of equal temperature. But both are acting causes. 
Hence the ellipticity of a surface of equal solidity passing 
through any point must lie between those of the sUlfaces 
of equal density and equal temperature passing through the 
same point. The ellipticity of the former decrease, those 
of the latter increase, from the surface to the centre. 
Hencc, in order that the numerical value of precession may 
be accounted for, it is sufficient that the thickness of the 
crust shall not be less than a certain value, found to be 
about one-fourth to one-fifth the radius. 

This reasoning fails therefore to give more than an 
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inferior limit to the thickness of the crust. We learn 
that it must exceed 1000 miles. Mr. Hopkins has lately 
undertaken a series of experiments with a view to ascer
taining the temperature at which bodies liquefy under 
great preBBUres. An account of these was given at the 
meeting of the British Association. When finally com
pleted they will throw great light on the thickneBB of the 
earth's crust. 

8. It is not to be supposed that no measures were under
taken to discover by actual observation the ellipticity of 
the globe: such measures would be an excellent test of the 
truth of the theory. There are three methods by which 
this may be eft'ected. The earliest of these is by measure
ment of the length of a degree in dift'erent.1atitudes. ,The 
length of a degree varies as the radius of curvature of the 
elliptic meridian, and therefore increases from the equator 
to the poles. Now when the ellipticity is given, we can 
express in terms of it the latitude and equatorial radius, 
the length of a degree at that place. By two measure
ments of degrees we get two equations, and therefore can 
eliminate the equatorial radius and find the ellipticity. 
Some of these measures were eft'ected before Newton's 
time, and their results, as we have seen, were used by him 
in determining the ellipticity. In 1684 Cassini measured 
an arc of eight degrees,· and found, to the astonishment of 
every one, that the length of the degree shortened as he 
approached the poles. This was in direct opposition to 
Newton's theory. It was objected that the dift'erence be
tween the measures of two consecutive degrees was 80 

emall, that it was poBBible that the errors of observation 
might make that which was really the lesser appear to be 
the greater. To settle this doubt it wns determined that 
three arcs should be measured. Godin, Bouguer and 
La Condamine were sent to Peru in 1735 to measure an 

• Encye. Met., "Figure of the Earth. .. 

Z 
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are near the equator, and in the succeeding year Mauper
tuis, Clairaut, CIUDUS and Le Mounier went to the Gulf 
of Bothnia, while the French arc was measured by the 
Cassin is and Lacaille. 

The result was decisive, that the degrees shortened from 
the poles to the equator. But the three values of the 
ellipticity thus determined were very different. The 
observations of Peru and France gave ~h. those of Peru 
and Sweden m, those of France and Sweden rh·, but on 
making some necessary corrections they gave rh. So 
great differences would seem to imply that the earth 
differed considerably from a spheroidal form. This, how
ever, may be partly accounted for, because two of the 
measures were in very mountainous countries. A great 
many measures of degrees, both along arcs of the meri
dian of a parallel of latitude, have been since undertaken. 
It would detain us too long to consider them individually. 
The most probable value of the ellipticity as deduced from 
them is e= ·003352. 

The second method has already been alluded to. By 
Clairaut's theorem we can determine the force of gravity 
at any place in terms of the latitude, the eccentricity and 
the force of gravity at the equator. Two observations of 
the force of gravity will therefore enable us to determine 
the ellipticity. The force of gravity, aa we shall show 
when we come to speak of the pendulum, may be de
termined by the use of that instrument. It may also be 
found by comparing the weight of a body with the strength 
of a spring, or indeed any force that does not vary with 
gravity. The former is the most accurate. 

By a comparison of a great number of pendulum ob
servations Airy has deduced e = ·003535. In the article, 
"Figure of the Earth," in the" Encyclopmdia Metropoli
taoa," the Astronomer Royal has formed a table of seventy
nine pendulum observations. Thirty of these he haa set 
apart as being" useless for the investigation of the earth' .. 
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form." If 9 be the force of gravity in latitude A, then by 
Clairaut'a theorem 

g=G {l +n sin~A}. 
The values of n and G that are found to auit best with the 
forty-nine "first-rate observations" are 

n=· 005133 
G=r )( 39·01677 

Now if m be the rBtio of the centrifugal force at the 
equator to equatorial gravity, 

5 
n=2 m - l , 

whence since m= -0034672, the ellipticity is easily seen to 
be • = ·003535. 

The above expression for 9 enables us to find the force 
of gravity in any latitude. From a comparison of the 
results of the forty-nine observations with those given by 
this formula Airy has deduced. 

1. That, cateri, paribu" gravity is greater on wands 
than continents. 

2. That in high north latitudes the formula gives too 
8mall, and about latitude 45° too large a value of g; near 
the equator the errors are about equally balanced. 

3. There is no reason to think gravity to be different 
in different longitudes, as the irregularities on different 
meridians do not appear greater than those at places near 
one another. Nor does it appear that there is any differ
ence between the northern and southem hemispheres. 

The observations were all reduced to the level of the 
sea by Dr. Young's rule, which makes an allowance for 
the attraction of the earth above the level of the sea. 
But it has been pointed out by Professor Stokes, in the 
Cf Transactions of the Cambridge Society" for 1849, that this 
rule does not take into account all the effects of the irre
gular distribution of land and sea. "Be,ide, the attrac
tion of the land lying immediately under" continental 

z 2 
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Btation, between it and the level of the sea, the.more dis
tant parts cauee an incrt!tUt! in gravity, since the attraction 
they exert is not wholly horizontal, on account of the 
curvature of the earth. Again the horizontal attractions 
due to the neighbourhood of a continent would cause a 
plumb line to point slightly towards it, and since a level 
surface is everywhere perpendicular to the vertical, the 
level of the sea must be higher than it would be if the 
continent did not exist. The correction therefore reduces 
the observation to a point more distant from the centre of 
the earth than if the continent were away; and therefore 
on this account gravity is less on a continent than on an 
island. The investigation shows this latter effect more 
than counterbalances the former; 80 that, on the whole, 
gravity is greater on an island than on a continent." 

It is also probable that the ellipticity deduced by Airy 
is a little too great, owing to the decided preponderance 
of oceanic stations in low latitudes among the group 
where the observations were taken. On looking at the 
expression for 9, we see that, in consequence, the calcu
lated values of gravity would be a little too small, par
ticularly for places near the pole. This will enable us to 
show that Airy's second conclusion is a mere repetition 
of the first; for that in high north latitudes, the formula 
should give too small a result is no more than what we 
should expect j while about 45°, the places of observation 
being all continental, the formula naturally gives too large 
a result. Thus we are now enabled to account, at least 
in great measure, for the anomalies that Airy has noticed. 

In considering the earth as an irregular figure, we must 
define what we mean by the ellipticity. Let II be the 
mean radius of the 6$l'th, r the raelius of any point whose 
colatitude is 9. Then since the earth is nearly a spheroid, 

r-a 
i - C08.2 9 

is very nearly constant. Its variations, as we go from 
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place to plaee, are irregular. and always very small. The 
mean of all the values of the above fraction may be de
fined to be the ellipticity. We cannot observe directly 
the value of T. In practice, therefore, we replace this 
fraction by another which contains g instead of T. If we 
could make a vast number of observations in all parts of 
the world, no further correction would be necessary than 
merely taking the mean of all the observed values of •. 
But as all our observations are made on land, and are few 
in nnmber, our errors may all tend in one direction: it is 
therefore necessary to reduce our results to the surface of 
the spheroid. 

The third method of determining the ellipticity is 
founded upon astronomical observations. If the earth 
were a perfect sphere and homogeneous, the elliptio orbit 
of the moon would only be affected by the known disturb
ances of the other heavenly bodies. But the earth is neither 
spherical nor homogeneous. Hence arise other inequa
lities in the moon's motion, and conversely, when these are 
observed, they will enable' us to discover the ellipticity of 
the earth. Without making any assumption as to the law 
of density, the theory of the" Figure of the Earth" en
ables us to find its attraction on the moon: substituting 
these in the equations of the moon's motion, we can deduce 
two inequalities. The chief of these is the inequality in 
latitude, and is about 8", hence we get e = '003370. 
The other is the inequality in longitude, and lies between 
6"'8 and 7", the former gives e = '003360, the latter 
e = -003407. 

It is not difficult to see what will be the general nature 
of the more important inequality. The consequence of 
the attraction of the ring of matter surrounding the earth 
at the equator, will manifestly be to pull the moon nearer 
the equator. The chief disturbance will therefore be that 
produced by a small force aoting on the moon perpen
dicular to the plane of her orbit, and tending towards the 
earth's equator. The effect of such a force is easily seen. 

z3 
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Let .n M be plane of the 
lunar orbit when the moon is 
at M. And suppose that in ..•......... 
the small time T the moon, if ri ...•• ••••••·•••·· 

undisturbed, would describe --:;;:$ilo::::....---- R 

·the are M M'. But if the moon were at reet at M, suppose 
that the disturbing force would pull it through half M m 
towards the plane of the equator ,Q E. Then, by the 
second law of motion, if we complete the parallelogram 
M N, the true direction of the moon's motion at the end 
of the very small time T will be M N. That ie, the orbit 
has been changed from,Q M M' to ,Q' M N; the node .a 
has receded, and the inclination of the orbit has been 
decreased. By similar reasoning it may be shown that if 
the moon had been approaching the equa.tor in the direc
tion M ,Q the node would have advanced, and the inclina
tion would have increased. 

During a quarter of a month the moon approaches the 
equator; during another quarter it recedes; and the forces 
being similar in each movement, the whole eft'ect at the 
end of a month would be zero. But, owing to other 
disturbances, the node of the moon's orbit recedes nearly 
at a uniform rate along the ecliptic, while the inclination 
to the ecliptic remains nearly the same. Hence the incli
nation of the lunar orbit to the equator has changed in 
that half month; the disturbing forces in the two quarter
months, though they still tend to counteract each other, 
will not be quite equal in magnitude, hence a small resi
dual effect will be left which soon mounts up till it becomes 
apparent. 

By a little consideration of the preceding figure it will 
become apparent that the greater the angle of inclination 
at .n the le88 will be the difference between the coneecutive 
positions .n M, ,Q' M of the lunar orbit, i, e. the less the 
inclination (i) to the equator will be changed. So that 
when by the motion of the nodes along the ecliptic i is 
decreasing, the effect of the disturbing force will be greater 
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in the second quarter-month than the first; that is, the 
effect will be greater while the moon is approaching the 
equator, than while it is receding from it, that is, by what 
precedes, the whole efFect of the disturbing force is to lessen 
the diminution of i. Similarly, when i is increasing, t.bis 
increase is lessened by the action of the disturbing force. 
This is exactly what would take place if we neglected this 
disturbing cause and supposed the obliquity of tbe ecliptic 
to be less than it really was. Hence we arrive at this 
conclusion, which we shall state in the words of Laplace :-

"The non-sphericity of the earth produces in the lati
tude ot the moon but one sensible inequality. We can 
represent its effect by supposing the orbit of the moon 
instead of moving in the plane ot the ecliptic with a con
stant inclination, to move with the same condition on a 
plane passing through the equinoxes between the ecliptic 
and equator. This inequality is well adapted for deter
mining the ellipticity of the earth." 

If. .. 
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NOTE V. 

THE RESISTANCE XA.DE TO BODIES JlOVINO IK FLUIDS DE

DUCED !'BOX THE OENEEAL PRINCIPLES OF DYKA.JI1cs. 

1. The Equation of motion. 
.. The ordinary hydrodynamics. 
/I. How changed when .. internal friction .. is taken into account. 

2. The ordinary law of resistance. 
.. How deduced from the equations of motion. 
/I. The general results of experiments made since Newton's time 

compared with the law • 
.,. The resistance should be deduced &om a rigol'OUl 101ution or the 

equations of motion adapted to the ease ander consideration,
ease of the pendulum. 

3. The J'e8is&ance to a Pendulum. 
.. Bessel's mode of expre88ing the resistB.nce. 
/I. The careful experiments of Sabine, Baily, Coulomb, .te. 
.,. Poisson deduces the nature of the motion and the resiatanee from 

the ordinary Hydrodynamic equations. 
I. On comparing the theory with experiment they are found Do& to 

agree. 
•• Professor Stokes takes into account the eft"ects of internal friction. 
" The results agree with experiment. 

4. The wesi&tance to Floating Bodies. 
.. The phenomenon of emersion. 
IJ. Waves are excited in the Fluid. 
.,. Strange variations of the resistance &8 the velocity changes. 

(1.) AFTER Newton the chief writers on Hydrodynamics 
were the Bernoullis, Maclaurin, and D' Alembert. The 
equations which the latter obtained are the foundation of 
modern Hydrodynamics. He had previously discovered 
a general principle whereby every question concerning the 
motion of bodies may be reduced to another correl!ponding 
one concerning their equilibrium. Thus then the science 
of Hydrodynamics may be reduced to that of Hydrostatics. 
The simplest case to which we can apply this principle is 
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that in which the body is a single particle. It then leads 
WI to the three laws·of motion. When Newton said that 
a particle acted on by no ezternal foree will remain at 
rest or move in a straight line with a uniform velocity, he 
implied that there was no internal tendency in the particle 
to affect its state of rest or motion. D'Alembert ex
tended this to any system of particles, and his principle 
asserts that the internal forces of a dynamical system are 
in equilibrium among themselves during the whole mo
tion. It follows from this that the effective moving 
forces upon the molecules of a dynamical system, if their 
directions be reversed, will balance the external impressed 
forces. Let us apply this to the state of any 8aid. 

Let a small element be taken in any 8uid in motion 
whose coordinates are z, y. z. Let P be the density at this 
point and p the pressure referred to a unit of area. And 
let X, Y, Z be the external impressed forces on the element. 
The effective accelerating forces will be 

Hence the foroes 

d"x tJly tJlz 
p X - P d t"' P Y - P d t"' p Z-p Tt" 

acting on the element dzdydz. will, when all the elements 
are considered, balance each other. Hence from the equa
tions of 8uid equilibrium, we have 
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These three equations are not, however,8ufficient to 
determine the motion. For we have four quantities z,y,z,p 
to determine in terms of t. A fourth equation is neceesary. 
Thie D'Alembert 8Upplied from the condition that any 
portion of the fluid, in passing from one place to another, 
preserves the same volume if incompl'e88ed, or dilates, ac
cording to a given law, if the fluid be elastic, in such a 
manner that the maee is nnchanged. It is usual at present 
to derive this equation from a principle that in reality is 
only the above in another form. 1£ U, V, tD be the velocities 
of the fluid at the point z y z in the directions of the axes ; 
then the result arrived at is 

d p U + d p v + d ptD + d P =0. 
dz dy dz dt 

It will be observed that these equations do not make any 
888woption as to the molecular constitution of the fluid. 
All that is required is that the pressure, no matter how 
transmitted, shall be equal in all directions. 

These equations are 80 complicated that hardly anything 
can be done with them. But there is one general case in 
which the equations are greatly simplified. This is when 
X, Y, Z, u, v, tD, are such that 

Xdz+Ydy+Zdz -

udz + vdy + tDdz-
- (A) " 
- (B) 

are perfect differentials, upon the supposition that the time 
is constant and the density either also constant or a func
tion of the pressure. "It becomes then of the utmost 
consequence to inquire in what cases this supposition may 
b~ made. Now L"oarange enunciated two theorems by 
virtue of which, supposin"g them true, the supposition may 
be made in a great number of important cases j in faot, in 
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nearly all those cases which it is most interesting to in
vestigate. These are :-

" 1. That (B) is approximately an exact differential when. 
the motion is 80 small that squares and products of u, v, 10, 

and their differential coefficients may be neglected. 
"2. That (B) is accurately an exact differential at all 

times when it is 80 at one instant, and in particular when 
the motion begins from reate 

"It has been pointed out by Poi880n that the first of 
these theorems is not true. In fact, the initial motion 
being arbitrary Deed not be such as to render (B) an exact 
differential. 

" Lagrange's proof of the second theorem lies open to 
some objections." But it has received two perfectly satis
factory demonstrations.-

Supposing the motioD to be such that we may put 

udz + vdy + IOdz= d¢> 

then it easily follows that 

d,d,d,d, 
d z' d!l' d a' d r' &c., 

represent the velocity parallel to axes and along the arc 
&c. of the curve that the particle in question is describing. 

At the time t draw curves such that all the particles in 
them are ot that moment moving along tangents to their 
re8pective curves. Let 8 be the arc of anyone of these 

curves. The effective accelerating force will be ~:, and 

the impressed force 

X dz yd!l Zdz 
di+ ;r;+ di 

• Report to the Britillh .AJ8ociation, 1846, on the progrcsa uf Hydroliy
nanUce by Profesaor Stokes. 
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Hence, by D' Alembert's principl~ and the formula for hy
droetatical eqn!librium, 

dp ,p 8 P = X dz + Y dy + Z d z - d tid,. 

Let V be the velocity of the fluid, then since 

d._ V 
dt-

.. . dd', 81 = V d V + d V 
d. d t 

_ dV ,p, 
- V d. + 'dBtit. 

Hence, substituting and integrating, 

f~P = f(Xdz + Ydy +Zdz) - ~ VI- ~~ + C 

an equation that will be necessary to us further on. 
This integral is obtained by summing all the elements 

along anyone curve, and C is therefore constant only 
along one curve, and may vary from curve to curve. To 
determine its variations we must have data given whereby 
we can know its value for all points along some surface 
cutting all the curves. Further it is manifest that these 
curves may change with the time; C is then a fnnction of t. 

The motion is said to be 8teady when the motion is al
ways the same at the same point. Hence in this case 
neither, nor C are functions of t. And the" equation be
comes 

fd: = f<Xdz+Ydy+Zdz)-l VI 

The equation of continuity may also be greatly mo
dified by the introduction of ,. If the fluid be incompres
sible, we have 
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d', d', d', 
d,;i + dy" + dz"=O. 

These equations are entirely founded on the principle 
that in fluids the pressure on an indefinitely small plane at 
any point is the same whatever be the position of the plane. 
This principle does not hold in viscous fluids. In Hy
drostatics· if time be allowed to elapse, the substanee 
changes until the pressure becomes equal in all directions. 
But in Hydrodynamics the motion of the fluid will have 
changed the relations of its particles before this time will 
have elapsed. If therefore we wish our equations to re
present accurately the motions of ordinary fluids some 
account must be taken of these differences of pressure in 
different directions. 

There are a variety of questions to whose solution the 
ordinary equations manifestly furnish no aid whatever. 
It will be sufficient to mention the motion of rivers in 
their beds, and the supply of water by a given pipe. 
There are few results that will not in some degree be 
affected by the viscosity of the 6uid. 

There have been many writers on this part of Hydro
dynamics. Naviert, Pois80nt, Barre de Saint Venant§, 
and Stokes II have investigated the equations of motion, 
but all on totally different principles. Two of these re
quire us to consider the fluid as made up of ultimate par
ticles; the others need no such supposition. But if the 
principles of their investigations are different, their results 
agree very well with each other. The equations arrived 
at are in the cases of a homogeneous incompreBBible fluid, 
and of an elastic fluid in which the change of density is 
small, those which would be derived from the common 

• Mem. de I'lnstitut, voL vilL p. 363. 
t Memoires de I'Academie des Sciences, vol. vL p. 389. 
! Journal de I'Eeole Polytechnique, :nil cab. 20. P. 139. 
§ Comptes Rendus, voL xvii. p. J 240. 
II Cambridge Philosophical Society, vol. viii. p. 287.; Report to British 

Aaociatiou, IS46. 
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equations by replacing ~ ~, the first by 

d p Cd' u d' u d' u) 
d z - A dzl + dy' + II 

_ B.!!. Cd u + d" + dID) 
dz dz dy dz 

and making similar changes in the second and third. The 
investigation of Professor Stokes makes A=3 B, and he 
has shown that this relation must exist even on Poisson's 
own principles. The coefficient B is some constant depend
ing on the "internal friction» of the fluid. 

Such are the equations giving the motion in the interior 
of any mass of fluid. But we have still to consider the 
equation expressiug the effect of boundaries to the fluid. 
In the case of ordinary hydrodynamics the condition is 
manifestly that along a/ree surface p is constant, whereas 
along a surface bounding the fluid, the normal motion of 
the fluid must be the same as that of the surface. But 
when we consider the fluid as possessing internal friction, 
the last condition must be changed. The motion ,of the 
fluid in contact with the surface will clearly be in every 
tDt1!f the same as that of the surface. 

(2.) The whole theory of the resistance of bodies is in
cluded in the equations of fluid motion as enunciated above. 
It is therefore both interesting and important to deduce 
from them the law of resistance. 

It is manifeatly the same thing whether we conceive the 
body to be at rest, and the fluid to impinge on it, or the 
body to move with the same velocity through the fluid. 
Conceive then the fluid to be moving in a horizontal 
direction parallel to the axis of z, and let z be the altitude 
of the surface of the water above the axis. Let a small 
plane be fixed in the axis of z, and perpendicular to it. 

Following the uSdal notation, the equation of motion 
will be 
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This gives the variations of p along any line of motion, 
and C may vary from one such line to another. By con
ceiving all these lines of motion cut by a plane perpen
dicular to the axis ai a very great distance from the small 
plane, it will be seen that C is the same for all these lines 
of motion. 

The theory supposes that the particles of the fluid as 
they approach the small plane move slower and slower, so 
that at last their velocity, when in contact with the plane, 
is 80 small that it may be disregarded. The pressure in 
front is a statical pressure. On the other hand the par
ticles in contact with the posterior part of the plane are 
supposed to move with the general velocity of the fluid in 
order to fill np the void that would be left by the retreating 
fluid. The pressure beliind is a dynamical pressure. The 
diil'erence between these two will be the resistance. 

Hence the pressure in front is given by the formula 

p=C+gpz, 

that behind by the formula 

p'=C+g p z -i P VII. 

The whole resistance will then be 

for every unit of area in the plane. 
It is manifest that this contains a great deal of assump

tion in regard to the motion of the fluid. We have been 
trying to solve a question in Hydrodynamies without 
making use of all the equations, and each omitted equation 
has been replaced by an assumption. We should have 
taken the equation of continuity, and having solved it, 
we must adapt the solution to the conditions of the 
question, viz. that the velocity resolved parallel to the 
axis of z is t", and that perpendicular is nothing at an 
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infinite distance from the smaU plane, and that the normal 
velocity of the fluid over the surface of the plane is zero. 
Having thus found the motion, we can then substitute 
for " in the equation above, and find the dift'erenC8 
of preeeure8 on the two parte of the plane. It is mani
fest that the solution in this cue must contain discon
tinuous functione. 

If the front of the plane be inclined to the direction of 
the motion of the fluid, one of the two enppoeitions on 
which the theory is built fails. We can no longer regard 
the velocity in front of the plane as zero. It is necessary 
to substitute another 888umption. The theory supposes 
that the velocity in front of the plane will be equal to the 
general velocity of the fluid resolved in the direction of the 
plane. Let fj be the angle a normal to the plane makes 
with the geueral direction of motion. Then the velocity 
of the particles of the fluid in contact with the front will 
be v .sin ~, and the normal preeeure will be given by 

p=C+.9pz-i p v'lsin'~. 

Let us regard this plane as the oblique front of a cylin
der moving in the direction of its axis. Let B be the area 
of a perpendicular section, then the area A of the front 

will be ~J and the normal preseure will therefore be 
C08~ 

P B ; resolving this along the axis, the preeeDre will be
C08~ 

come, B being supposed very small, 

p B = (C + .9 P Z -l P Vi sin'l ~) B. 

Let' be the angle a normal to the oblique posterior 
plane of the cylinder makes with the general direction of 
the motion. Then, retaining the former mppoeition in 
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regard to the motion of the fluid behind the plane, we 
shall have the normal pressure given 88 before by 

]1= C +9f z -Ip.,!1; 

by reasoning 88 above, the resolved part of the pressure 
along the axis will be . 

p' B = (C + 9 f Z - I f .,2) B. 

The difFerence of these two pressures will be 

R = 1 f .,' cos' , B 
= if.,2 cos', A; 

thuB the resistance to a cylinder moving in the direction 
of the axis is independent of the inclination of the posterior 
end, and varies as the cube of the cosine of the inclination 
of the anterior end to the perpendicular section of the 
cylinder. 

In determining the pressure on a curved surface, it is 
usual to consider each element of the front as the oblique 
end of a cylinder whose axis is parallel to the direction of 
motion; the corresponding element of the back of the 
body being the other oblique end of the cylinder. By 
integration, therefore, the whole pressure may be found. 
It also appears that the resistance depends only on the 
form of the front, and not at all on that of the back of 
the body. The suppositionB on which this result is 
founded, are 

1. That the velocity of the particles behind the body is 
the same 88 that ot the general velocity of the fluid. 

2. That the velocity along any element of the front is 
equal to the resolved part of the general velocity of the 
fluid along the plane of the element. 

Throughout these investigations the motion of the fluid 
has been supposed steady. No applications of these re
sults to any other case can be regarded otherwise than as 
an approximation. The relative velocity of the body 

4A 
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and fluid moat therefore be coDStant. or, at least, vary 
slowly. 

If the fluid also be not boundless, but contained within 
rigid or flexible surfaces, as the body moves on, these may 
have some efFect in disturbillg the steadiness of the mo
tion. 

The fluid has been supposed iIlcompressible. In apply
ing the law to the case of a cumpru.w1e fluid, we are 
omitting all consideration of the condensation ill front 
and rarefaction of the fluid behilld the body, and also 
of the m viva lost by the waves that would be propa
gated in all directions round the body. These cannot be 
said to be unimportant. 

And even if the fluid be incompressible, yet if the 
body be floating on its surface, the theory takes no ac
count of the heaping up of the fluid in front of the 
vessel, nor the partial lowering behind. nor the consequent 
waves propagated in all directions round the vessel. 

Having viewed the various considerations which haV& 
led to the ordinary law that Resistance varies as the square 
of velocity, it remains to compare this law with the re
sults of experiment. This is the Lydian touchstone by 
which the true gold of any theory is discovered. To 
consider in detail all these would be at once uninteresting 
and unprofitable. We shall proceed to sum up the 
various results arrived at, and arrange them under the 
heads of the theory. We shall only mention a few eases
to show the application of the rules. 

J. Th8 re,iltance iI only found to vary aI the 'quare of 
tAe velocity IIIAe,. tAe body i, lllholly immer,ed, eke deptA of 
tAe fluid not inconliderable, and the velocity neitker verg 

. Imall nor very large. 
Coulomb found that for very small velocities the resist

ance varied as the velocity; the part depending on the 
square being incoDsiderable. 

• For lOme 0( these references we are indebted to the uceUeIl& article 
on BelilcanCei bl Sir D. Brewster, in the Enc1C. Brit. 
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The experiments ordered to be undertaken by the 
French Academy, in the last century, with velocities not 
greater than 2l miles per hour (7'6 feet per second) showed 
that the resistance to floating bodies varied as the square 
of the velocity, 

Hutton fonnd that for low velocities in air the resist
ance varied as the square; but as the velocity increased 
to several hundred feet per second, the resistance varied 
as a power of the velocity greater than 2itr. But as 
the velocity still further increased, the error of the ordi
nary !a,v, though always very great, became slightly less. 

Beaufoy. If the velocity exceed two miles per hour, 
or 6'2 feet per second, the power of the velocity is greater 
than 2; bot this power decreases, and is less than 2, if 
the velocity be greater than eight miles per hour. 

Speaking of this law of resistance, Robins saY8-" This 
1'01e, though pretty near the truth when the velocities are 
confined within certain limits, is excessively erroneous 
when applied to military projectiles, where such resist
ances often occur as could scarcely be effected on the com
monly received principles, even by a treble augmentation 
of its density." The actual resistances were found to 
exceed prodigiously those calculated by the theory, when 
the velocity exceeded 1200 feet a second, which is the 
velocity with which air rushes into a vacuum. 

Scott Russell found that in ships, as the velocity in
creased, the resistance increased in a much higher ratio 
than the square of the velocity, and'reached a maximum, 
after which it actually decreased as the velocity increased. 

Beaufoy found that bodies are more resisted just under 
the surface than at the depth of six feet. 

Borda found a similar result. 
2. The resistance to a plane does not vary as the surface, 

!Jut increases in a quicker ratio. 
Borda found that when the surfaces were as 9, 18, 36, 

81 inches, the resistances were as 9, 17'535, 42'750, 
104'737. 

Neverthele88, the results of many experiments show that 
.A..A.1l 
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the error made by assuming the resistance to vary 88 the 
surface is not very great, unless one of the surfaces is 
many times larger than the other. Thus the French 
experimentalists found this law in tolerable accordance 
with their results. 

3. The resistance on an oblique plane does not oory Q8 

8IJUIlre of sine of angle the plane maAes tDith the direction of 
motion. 

The French Academy experiments were made with ves
sels with wedge-like prows of various angles. If % be half 
the angle at the prow, the formula 

. . 90-%)'·. 
R = p. sin' % + 3.153 (-6-

represented the resistance so enctly that the error was 
always less than Th. 

Hutton found that the formula 

R = ·84 (sin Sy-B4 cos IS 

represented the resistance. 
Vince found the resistance did not vary as any con

stant power of the sine. Various other formulm have also 
been given by Du Buat, Dr. Young, Eytelwein, &c. 

In the experiments of the French Academy, theory 
gave a result for an angle of 12° only one fortieth of the 
truth. In some experiments by Vince for an angle of 10°, 
the resolved part of the resistance in the direction of mo
tion was ten times that given by theory. 

4. The changes of resistance calculated by the theory 
caused by changes of form are erroneous. The modifica
tion of resistatlce. on any element produced by the near 
presence of others cannot btl neglected. 

If the formula of the experimentalists of the French 
Academy be employed to calculate the resistance on cur
vilinear surfaces the results are altogether erroneous. 

Robbins found that the resistance on a sphere in air was 
2·27 times the resistance on its great circle. Borda found 
2·45. Hutton found 2·4. The ordinary Jaw gives 2. 
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The second series of BOB8ut's experiments showed that 
the resistance in narrow or shallow canals was greater 
than in an indefinite fluid. 

Du Buat deduced that the ratio of the resistance R in 
a narrow canal to the resistance R' in an indefinite fluid 
was 

R 8'64 
R'- C 

B + 2 

where C is the area of a section of the canal, B the nrea 
of a section of the veB8el. 

So many nssumptions are made in the ordinary proof 
that the .resistance varies as the square of the velocity, 
that it is no wonder if the law is found to be at variance 
with experiment. We must proceed in a different man
Der if we wish to deduce the true law of resistance. The 
difficulty of such an investigation is evident. Neverthe
less, by the skill of some eminent mathematicians, some 
progress has been made. But the problem in its widest 
form has not been solved. For such particular cases as 
are most needed in practice, approximate solutions have 
been found. One of these, and the most important, is the 
pendulum. The innumerable applications of this instru
ment make its utility immense. Its very delicacy renders 
it a very efficient test of our theories of fluid motion. The 
resistance opposed to the uniform motion of bodies of cer
tain·forms have also been inves'igated. 

(3.) In the year 1826 F. W. Bessel published in the Royal 
Academy of Sciences at Berlin a new method of determin
ing the length of the seconds' pendulum. In the course of 
it he pointed out an error in the old reduction to a vacuum. 
He states· that "if we denote by m the mass of a body 
moving through a fluid, and by m' the mass displaced, the 
accelerating force acting on the body has, since the time 

• Baily on the Correction of a Pendulum • 
.l.l3 
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m-m' 
of Newton, been considered equal to ---. This for-

m 
mula is founded on the presumption that the moving force 
which the body undergoes, and which is denoted by m-m' 
is confined to the mass me But it must be distributed not 
only over th~ moving body, but on all the particles of fluid 
set in motion by that body, and consequently the denomi
nator of that expre88ion denoting the accelerating force 
must nece88arily be g ... eater than m. From some general 
mathematical considerations he concludes that a fluid of 
very small density surrounding a pendulum bas no other 
influence on the duration of the vibrations than that it 
dimi nishesits gravity and increases the moment of in
ertia. " 

The effect of the resistance of the air is then the same as if 
that air was removed and a mass of air, equal to Ie times" the 
fluid displaced" was attached to the centre of gravity of 
the fluid displaced, which increases the inertia of the whole 
without affecting its gravity. The effect of the buoyancy 
of the air is the same as if a weight of air equal to that of 
the fluid displaced were removed from the centre of gravity 
of the fluid displaced, affecting the gravity but not the 
inertia. Let I and y be the distance of the centres of gra
vity of the pendulum and air displaced from the ruDS of 
suspension, 8 the ratio of the density of the fluid to the 
mean density of the pendulum, and let i be the ~ius of 
gyration of the pendulum about an axis through its ~ntre 
of gravity parallel to the axis of suspension. Then by 
merely uniting the equation of motion of the pendulum, it 
becomes evident that a pendulum affected as above stated 
will oscillate in exactly the same manner that a simple 
pendulum whose length is >. does in vacuo, where 

>. = (l + l't + ')I' • a . x. 
1-8y 

This manner of expressing the retlult will be presently 
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found useful. The whole object of the investigation is 
the determination of x. 

This mode of viewing the resistance to the motion of a 
pendulum, was a great improvement. But Bessel was not 
the first discoverer, though he was the first who called the 
attention of the public to it. The chevalier De Buat had 
treated of this very property of the pendulum in his Prin
cipu rl Hydraulique published in 1786, fifty years before. 
"And it is not a little remarkable that these important 
and conclusive experiments of De Buat, which were made 
by the order and at the expense of the }"rench Govern
ment, which were examined at the request of the Minister 
of War hy the Royal Academy of Sciences at Paris, 
and by them favourably reported on, which were first 
published in the year 1786 and excited so much interest 
that they led to the subject for the prize essay proposed 
by the Academy in the following year, should have been 
80 completely lost sight of and forgotten that no one 
should have had the least remembrance of the additional 
correction for the pendulum pointed out by M. de Bruat, 
and until the rediscovery of this principle by Bessel no one 
should have thought of verirying the suspicion of Newton, 
that such an effect was probable. "-Baily on the Correction 
of a Pendulum, Phil. Trans. 1832. 

A variety of experiments have lately been made to de
termine the resistance experienced by the pendulum as it 
makes its small oscillations in the resisting medium. One 
obvious method is to swing a pendulum in air and vacuo, 
and note the number of oscillations made in any given 
time. Recurring to our value of A, it is easy to see that if 
N be the number of oscillations in vacuo, and Nil the num
ber in air in any given time, that 

_ / [2 + i2 + 'il h _ . / [2 + i2 
Nil - N '\I I - "t a '\I I 

N - ---------V~ ... 12~~~i2.---------
AA' 
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By experiment, the value of the left hand side could be 
found, and therefore, by the solution of an equation, that of 
x. In making these experiments, the neceBSary corrections 
to 1, 8, &c. due to heat and other causes must not be for
gotten. It is not our office at present to consider these. 

If N' be the number of oscillations made in air as ca1-

N'-N 
culated on the old theory, then the value of N may be 

found from the above by writing x = O. And thence the 

value of ~:' =~ the number of times the old correction 

must he multiplied to get the new. This ratio we shall 
call n. By regarding 8 as small, and expanding, we get 

Now usually '1 is very nearly equal to I, and i is very small; 

hence • 
Nil - N } N =(I+x)8 I . near y. 

n=l+x 

This is the method that has been adopted by Sabine and 
Baily. Their memoirs will be found in the Phil. Trans. 
for 1829 and 1832. The former experimented chiefly on 
the effects of different media and of changes in the ex
ternal circumstances; the latter on the different resistances 
experienced by different forms of bodies. 

Coulomb, in his experiments, adopted a different me
thod; be made a small plane perform small oecillations in 
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a fluid round a vertical axis, perpendicular to its plane, 
and paeeing through its centre. The force by which this 
was effected was the force of Torsion. His published 
account is in the Mem. de r lnstitut, vol. iii. The mode 
of experimenting was adapted for the measurement of the 
decrements of the arcs, but not suited to the accurate 
determination of the effect of the fluid on the time of 
vibration. 

The results of these experiments may be arranged as 
follows:-

1. That the effect of the resistance of the air is not 
inBensible.-Du Buat, Sabine, Baily. 

2. The value of n does not depend on the density of 
the body, but only on the extent and form of surface. 
The body might even be hollow.-Baily. 

3. Spheres. The value of n is a little greater for 
small than large spheres.-Du Buat, Baily. But on the 
whole, x is not subject to very great variations, and is 
nearly equal to '7 or ·S.-Baily. 

4. Cylinders. The value of n varies according to the 
face opposed to the resistance, being greatest when the Bat 
side is in front. In this case the height or thickneBB had 
considerable effect; the less this is, the greater is n.
Baily. 

5. Pendulum rod. The thinner the rod the greater is 
n.-Du Buat, Bessel, Baily. 

6. Discs. Flat sides being opposed to the motion. 
The quantity of air dragged was found to be '149 €P, 
while that by a sphere was '123 €P grains troy, where d 
is the diameter in inches. A disc, therefore, drags more 
than a sphere of equal diameter. When placed edgeways 
they dragged Bome air.-Baily. 

7. Nature of the surface. On covering Coulomb's disc 
with a thin coating of tallow. the resistance was found to 
be the same as before, and even when the tallow was 
sprinkled with powdered I!andstone by means of a sieve, 
the augmentation of resistance was·" a peine sensible." 
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8. Motion of the air next the pendulum. " On attaching 
a piece of gold leaf to the bottom of a pendulum, 80 as to 
stick out in a direction perpendicular to the surface, and 
then setting the pendulum in motion, Sir James South 
found that the gold leaf retained its perpendicular position, 
just as if the pendulum had been at rest, and it was not 
until the goB leaf carried by the pendulum had been re
moved to some distance from the surface thnt it began to 
Jag behind." -Stokes's Cam. Trans., vol. ix. 

9. When the air is reduced to half its usual density, the 
value of x was found to be nearly the same; so that only 
half as much air was dragged.-One experiment of Sa
bine. 

10. When hydrogen was substituted for air, the effects 
on the time was not proportional to the density. Air is 
thirteen times as dense as hydrogen, but the retardations 
measured by the number of vibrations were as 5j to 1. 
-Sabine. 

11. A pendulum vibrating within glasses makes nearly 
the same number of vibrations as if the glasses were ab
sent. The mean difference of three experiments of Sa
bine was '007 per (liem. 

12. The resistance to small velocities varies pa.rtly as the 
velocity and partly as the square of the velocity.-Cou
lomb. 

Poisson has calculated from theory the exact effect of 
the resistance of the air on the motion of the pendulum. 
His memoir will be found in the third volume of Mem. 
de r Innitut, 1831. He supposes the oscillations of the 
pendulum very small, and as a consequence, those a180 of 
the fluid are very small. The equations of motion of the 
air, therefore, reduce themselves to the usual equations 
for the propagation of sound. But the arbitrary func
tions are to be determined by the condition that the velo
cities of the molecules of air in contact with the pen
dulum are always the same, whf?n resolved along the 
normal to the surface, as the velocity of that part of 
pendulum resolved in the same direction. The motion of 
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the pendulum, after allowing for the buoyancy of the air, 
is affected by two causes, - the variations of pressure 
over its surface, and the friction of the air along its sur
face. This friction is assumed to be proportional to the 
difference of velocities of the air and surface resolved in 
any direction along the surface. He now forms the dif
ferential equations of the motion ·of the fluid and pendu
lum, but finds that without some further limitation they 
caDDot be solved. 

In the case, however, in which the surface of the pen
dulum is spherical, and the rod so thin that we may 
neglect the action between it and the air, the equations 
can be integrated, and the motion both of the fluid and 
sphere found. The motion is supposed to be given to the 
body by moving the pendulum very slightly from its po
sition of rest, and then leaving it to the action of gravity, 
without impressing on it any velocity. At the commence
ment of the motion the whole air is supposed to be at 
rest-homogeneous and boundless in all directions. 

The motion of the spherical pendulum is found to be 
the same as that of a simple pendulum of a certain length 
A oscillating in a medium resisting as the velocity. But it 
is to be remarked that this resistance is found to arise 
entirely from the friction of the air against the sphere. The 
assumption that this friction exists is directly contrary to 
the usual theory of Hydrodynamics. The very equations of 
motion are founded on the supposition that it does not exist, 
Bnd therefore takes no account of the equal and opposite 
friction of the sphere on the fluid. In testing the theory 
we must omit this resistance, and the motion is therefore 
the same as that of a simple pendulum oscillating in vacuo. 
Theory, therefore, gives the arc constant. The value of A 

thus found is 

[2 +;' +l '1'.8 
A= l-'Y~ ; 

cOlllparing this with our former value of A, we see that 

Digitized by Coogle 



364 NEWTON'S PRINCIPIA. 

x=i· 
The motion of the fluid is propagated in all directions 

with a velocity equal to that of sound, and consists for 
each molecule of two sorts of vibrations; one whose 

vibrations are very rapid, the time being 'If ~ sec, where 
a 

e is the radius of the sphere, and a the velocity of propa
gation of sound. This will produce a sharp note, but in
sensible to the ear, because the amplitude of the vibrations 

AI 

containing the exponential f "':'7 rapidly decrease. The 

time of vibration of the other sort is equal to that of the 
pendulum, and its magnitude decreases successively ac
cording to the same la.w that those of the pendulum follow. 
Theile also will be insensible to the ear. 

WOe have now to test the correctness of the theory by a 
brief comparison of its results with tholle of experiments. 
Recur to our list of results. 

Theory teaches us that the resistance of the air is not in
sensible; that the value of x does not depend on the interior 
structure of the body, and it explains why x does not alter 
much, being a fraction depending on the form of the body 
and the external circumstances of the fluid; it enables us 
even to approximate to its true value. But it does not ex
pJain why x is greater for small than large spheres, and the 
very principles of the theory in regard to the motion of the 
fluid in contact with the body is in opposition to certain ex
periments. Theory teaches also that the effect of the fluid is 
not a resisting force varying as some function of the velocity. 
but that its effect is simply to increase the inertia of the 
body, and thus lea,"es the arc of vibration constant, which 
is contrary to the commonest observations. Neither does 
~he theory explain the difference between the resistances in 

ydrogen and air. 
Jhe two important points of the motion are the time 

a~. the length of the arc of vibration. Thus while the 
o lOury theory of Hydrodynamics agrees in the main 
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with observation in regard to the time, it does not 
explain the minuter variations of the time, and totally 
fails to account for the successive diminutions of the arcs 
of vibration. 

It becomes necessary to consider the effect of the internal 
friction of the lluid. This has been accomplished by 
Professor Stokes. The equations, however, in this case 
become so complicated, that it requires a very long 
analysis to obtain the motion even of so simple a body as 
a sphere. We shall therefore merely state the results 
arrived at. The sphere is suspended by a fine wire, the 
length of which is much greater than the radius of the 
sphere. The resistance both to the sphere and the cylin
drical wire have to be discussed. The motions are con
sidered very small, so that by some obvious reductions the 
problem is reduced to the two following. 

The centre of a sphere performs small periodic oscil
lations . along a right line in a boundless fluid, the sphere 
itself having a motion of translation only. Find the motion 
of the fluid. 

An infinite cylinder performs small oscillations in a fluid 
in a straight line perpendicular to its axis. To find the 
motion of the fluid. 

Let E be the abscissa or the centre of the sphere at any 
time t. Let T be the time of one of its small oscillations 
from rest to rest, a its radius., m its mass. Let m be the 
mass of the lluid displaced, p its density, and p. some ~on
stant depending on the internal friction of the fluid. Then 
put 

'JI' V np n= T' ,= 
2p.' 

- 1 9 -+-, 2 4.a x/=4~a(1+ ,~). 
Then the resistance on the sphere is 
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R = - x m' d'E _ X/m',. dE. 
J.tl dt 

The motion will therefore be the same as if the sphere 
were resisted by a force x'm,. multiplied by the velocity, 
and a mass x m were added to its centre, increasing the 
inertia without affecting the weight. 

We are now enabled to account for many of our expe
rimental results, that is, such of them as relate to spheres. 
We see that neither x nor x' depend on the density of the 
sphere, but only on the volume; that both are greater for 
small than large spheres. The resistance also is independ
ent of the roughness of the surface. One experiment of 
Sabine showed that x remained the same when p was 
reduced one half; this would seem to show that for the 
,ame fluid, at the saine temperature, the value of 11-, the 
coefficient of the friction, varies as the density. But since 
the value of x was not the same as before, when hydrogen 
was substituted for air, we see that in different media II
depends on something else besides the density. 

We may apply these conclusions to the pendulum, and 
obtain results which we may test by experiments. The 
effect of the term depending on x will clearly be to alter 
the time of the vibration, but not the arc of oscillation; 
the term depending on x' (being multiplied by the small 

m' 
factor -, whose square may be neglected) will not affect 

m 

the time of the vibration, but will decrease the arc continu
ally, 80 that the successive arcs form a geometrical progres
sion. The time will be increased by a fraction of the time 
equal to 1 x 3 nearly, and the common ratio by which the __ '3 

arcs decrease is I If nearly. The less the sphere the 
greater are x and x'; the more, therefore, is the time altered 
and the quicker does the arc of vibration decrease. 

If a sphere move uniformly in a fluid with friction, we 
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may determine the resistance opposed to its motion by the 
Suid. The calculation is not brief, but the result arrived 
at for the resistance is 

R = 6 'Jr' p.' P IX V, 

where V is the velocity of the sphere and p.' the constant 
ratio of p. to p. 

The calculation is founded on the supposition that V is 
80 small that its square may be neglected. The part of 
the resistance, therefore, which depends on the simple 
power of the velocity, does not vary as the surface exposed 
to the Suid, but simply as the radius of the sphere. This 
becomes important when we apply the above formula to 
determine the terminal velocity of a very small sphere falling 
in a fluid under the action of gravity. 

Let fT be the specific gravity of the sphere, p, as before, 
that of the fluid; then, if V be the terminal velocity, we 
have 

4 
6'Jr'p.' pa V= a'Jr'g(fT-p)a8 , 

, V- 2g CfT - l)al •• - 9p.'· P . 

According to the usual theory, the terminal velocity 
would have been 

Thus V varies as at instead of .va, and therefore becomes 
very much smaller, ~hen a is small, than that given by the 
usual theory. Professor Stokes calculated that for a 
sphere one thousandth of an inch in diameter, the terminal 
velocity is 1'593 inches per second; for a sphere one ten
thousandth of an inch in diameter, the velocity is O()1593. 
Those given by the usual theory are respectively 32'07 
and 10'14 inches per second. 
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The suspension of clouds may, therefore, be explained 
according to this theory. The minute drops are really 
falling with very small velocities. 

The investigations for the motion of cylinders have also 
been effected, but it will detain us too long to consider all 
the results. One fact in conneD-on with the cylinder is 
remarkable. The motion of the fluid in immediate COiltact 
of a sphere moving in a flnid is the same 88 that of the 
sphere, and 88 we go from the surface into the depths of 
the fluid, the velocity differs more and more from that of 
the sphere, and finally ends in being zero. The sphere by 
the friction of its surface tends continually to increase 
the mass of fluid it drags with it; the friction of the fluid 
at a distance tends continually to diminish it. These two 
in the case of a sphere tend to equality, and the motion is 
ultimately uniform. Not so in the case of a cylinder: the 
increase on the quantity of fluid carried gains on the de
crease due to the friction of the fluid, and the quantity 
carried increases continually. The velocity must therefore 
decrease continually. 

Professor Stokes has also submitted his results to a 
comparison with experiment. He first proceeds to obtain 
p.', the only constant at his disposal: the results of Baily 
with cylindrical rods give 

,.,/ pi = '116. 

" It is to be remembered that 'II p.' expresses a length di
vided by the square root of a time, and the numerical 
value above given is adapted to an English inch 88 the 
unit of length, and a second of mean solar time 88 the 
unit of time." 

Let us take one instance of his series of comparisons at 
random: let them be the experiments of Baily on spheres 
attached to fine wires. Allowance is made for the wire by 
the theory of the motion of a cylinder. Allowance is 
also made for the confined space, which is estimated as 
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being nearly the Same as that given by the ordinary Hy
drodynamio theory. Thus in one of Baily's brass Ii inch 
sphere. the several parts of n were. for buoyancy I.-for 
inertia, on the common theory, '5 - additional for inertia on 
account of internal friction '202 - correction for wire '012 
- correction for confined space -032 - total 1'746. Result 
of experiment, l'755,-error n"l"' 

(4.) In the fourteenth volume of the Edinburgh Transac
tions there will be found an interesting account of some 
experiments by Scott Russell on the resistance experienced 
by floating bodies in their progress through the water. As 
the object was to determine the resistance to ships, the 
experiments were conducted on a large scale. and the 
bodies used were vessels of 31 to 75 feet long. The ve
locities varied from 3 to 15 miles an hour. Two points 
are worthy of notice in these experiments. 

1. The Emerrion of the solid body from the fluid. The 
ship does not draw as much water when it is in motion as 
when it is at rest. This is manifestly caused by the re-
80lved part of the resistance in a vertical direction. 

2. The motion of the boat does not excite currents in 
the water, but generates waves. These waves travel to 
great distances with a velocity independent of the form of 
the vessel and, when freely moving, equal to the square 
root of the product of the depth of the water and gravity. 

The position of the boat relative to these waves was 
remarkable. Calling h the depth of the water, the ve-

locity ofa "free" wave will be "/gh; let v be the velocity 

of the boat. If" be less than .vg;,. the wave will have a 

tendency to travel a little quicker than the boat, and it 
was observed that the accumulation of all the waves ge
Derated by the boat formed an elevation at the prow and 
a depression at the stern. Thus the vessel rode on the 
posterior side of a "forced wave," with its prow elevated 
above its stern. If tI be greater than .v gh, opposite phe-

B B 
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- nomena occurred, and the boat rode on the anterior sl1rface 
of a "forced wave," with ita prow depre88ed below ita stern. 
If the boat were suddenly stopped, the wave became im
mediately "free," and was propagated forwards with the 

velocity .; gh. If the velocity of the boat were equal to 
that of a free wave, the boat rode on the top, with its prow 
and stern much more out of water than its middle part. 

By making the vessel move with a velocity = .; gl&, the 
depth of water is increased by the height of the wave, and 
it is found that by this artifice boats can be carried without 
grounding over shallow parts of the canal. Professor 
Airy has oft'ered an explanation of the phenomena, to which 
we shall allude when we come to discu88 waves. 

As may be expected, these waves considerably affect 
the resistance offered to the boat. Accordingly Scott 
Russell found that the resistance does not follow the ratio 
of the square of the velocity, except when the velocity is 
small and the depth of the fluid considerable. 

The resistance was found to increase quicker than in 
the ratio of the square of the velocity, as the velocity ap
proached a certain quantity determined by the depth of 
the fluid. After this point of maximum, the resistance 
actually decreases as the velocity increases, until the ve
locity is equal to the velocity of propagation of a free 
wave, and the resistance is here leaa than that due to the 
square of the velocity. After this the resistance increases 
with the velocity, but in a ratio slower than that due to 
the square of the velocity. According to the law of pro
gression established, the resistance would reach a second 
point of maximum when the velocity shall have attained a 
certain quantity, greater than any obtained in the ex
periments. 

The best velocity for a boat to travel at in R ~al is 

therefore .; gl&. That the resistance should be le88 for thi. 
velocity than for any other is clear, for then the boat rides 
on the top of the wave, and the water is moving in the 
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same direction as the boat. Thus even on the ordinary 
theory J the resistance (calling u and v the velocities of 
the water and boat) would depend on x (fJ-u'j instead 
of xv'. 

B D i 
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NOTE VI. 

PENDULUM. 

THERE are two properties of the cycloid which enable 
us to determine, with considerable ease, the motion of a 
~ ____________ --,B 

D 

particle oscillating in a resist
ing medium, and constrained 
to describe that curve. Let 
C P B be any cycloid with 
the tangent at the cusp B 
vertical. Let C A be its 

c axis, and on it describe the 
semicircle C Q A. Now, P being any point on the 
cycloid, draw P Q N perpendicular to C A, cutting the 
circle in Q, and join C Q. Then the properties referred 
to are, 

1. The tangent at P is parallel to C Q. 
2. The arc C P is twice the chord C Q. 
A particle i, corutrailled to move in a cycloid under tM 

action of gravity, to determine the motion. 
Let m be the mass of the particle, tD its weight, and let 
be twice the diameter of the generating circle. Sup

P to be the position of the 'particle at any time t, 
thearcCPbe •• 
weight of the particle may be resolved into two, 

the normal and one along the tangent. The 
the former will depend on the manner in which 
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the particle is constrained to keep its path. If it be sus
pended in a peculiar manner by a string, it will merely 
increase the tension, and thus produce no effect on the 
motion. The force along the tangent will tend to pull the 
particle towards C. Since the tangent at P is parallel 
to C Q, this resolved force will clearly be co C08 Q C A; 
and since the angle C Q A in the semicircle C Q A is a 
right angle, and the arc C P is twice the chord C Q, we 

CQ 8 
have the above force, = co C A = co Z· 

Hence it appears that the moving force varies as '; 
that is, as the distance from C, measured along the arc. 
The motion of a particle under a force varying as the 
distance has already been investigated. The motion in 
the present case is a particular case of that theorem; viz., 
that case in which the particle always moves in the direc
tion in which the force acts. It was shown that all par
ticles describe their orbits round a force = II- r in the 

same time, viz., ~~. Hence, in our case, the time of 

oscillation is independent of the length of the . nrc de

scribed, and is equal to '11' ,vI:. Calling this time T, 

we have, 

T=w,v!!; 
When the arc of oscillation is circular, the preceding 

investigation must be somewhat modified. When the arc 
is considerable, the time of an oscillation cannot be found 
in finite terms. But in all practical cases the arc bears 
only a small ratio to the mdius, and the time of a whole 
oscillation is then found to be 

T =. V~· { 1 + :a} nearly, 

BB 3 
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where a is the radius and h the vertical height through 
which the pendulum oscillates. The time is therefore 
lonfIer than in a cycloid. The time also depends on the 
length of the arc described. When a is very great and 
h small. we may often neglect tbis term and say. 

a -. 
9 

We may learn many lessons from this important re
sult. 

I. It furnishes us with a method of comparing bodies 
as to the quantity of matter in each. For we see that 
for pendulums of the same length 

~ varies as T' ; 
III 

if then we take pendulums of the same weight. we can, 
by observations on T, determine the masses or quantities 
of matter in them. By experiments made with the 
greatest accuracy. Newton and Bessel always found this 
ratio constant; so that the weight of a body varies in 
exact proportion to the quantity of matter in it. This 
ratio we call g. And hence. 

By observing the value of T for any value of 1, we can 
deduce that of g.' giving, when the unit of time is a se
cond. 

9 = 32'18 fcet. 

II. The time of oscillation is independent of the arc. 
By the use. therefore, of a cycloid, we are enabled to pre
vent any variations of the arc described produced by any 
irregularities from affecting the rate of going of a clock. 

III. Since the time of an o8Cillation varies as the square 
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root of the length of the pendulum, we see that short 
pendulums must move much quicker than long ones. 
This is an observation that everyone must have made that 
bas entered a clock maker's shop. But the knowledge of 
the above ratio enables us to correct the clock when the 
length of its pendulum has been altered by temperature, 
or, conversely, to alter the length when we wish to change 
the rate. Suppose the pendnlum to make n oscillations in 
any given time M. Then clearly, 

n = M - /fl, ... 'Vl 
taking the logarithmic differential 

an ~ - = - t-· n 1 

This shows that a change of length equal to a frnction 
.. of the whole length corresponds in any number of oscil. 

lations to a 1088 of a fraction j- of that number of oscil

lations. 
IV. Another use of the pendulum is to determine the 

force of gravity and its variations over the surface of the 
earth. 'Vhen this has been done we have seen how the 
true figure of the earth may be deduced. We have now 
only to describe briefly how this application is made. 
It will require, of course, great accuracy of observation. 
The first requisite is to determine in the pendulum ex
perimented on the distance of the centre of oscillation 
from the axis of suspension. This is the length called 1 in 
our formula. There is a variety of practical ways of de
termining this, which we shall not enter into now. The 
second requisite is to determine the time of one oscilla
tion of this pendulum, and this is done hy noting the time 
of any large number of observations, and dividing by this 
number; thus any error made in observing the time of 
beginning or ending is rendered insensible. The results 

DB" 
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of observation may be tabulated in any form; a good 
way of exhibiting them is by deducing from them the 
length of the seconds pendulum. If A be the length, we 
have, 

9 =,..1 A; 

thus 9 is always proportional to A. 

But if we wish to ensure accuracy in our results it is 
clear that we must allow for the effects of all causes that 
may affect the time of an oscillation besides gravity. These 
corrections are called" Reductions." Let us briefly con
sider what they are. 

1. If the centre of oscillation does not describe a cycloid, 
allowance must be made for the alteration of time as de
pending on the arc described. This is called the "reduc
tion to infinitely Bmall arcs." If the arc of vibration be 
nO on each side of the vertical, then the time of an oscil· 
lation will be nearly 

,.. ,v ~(1 + ~. 8inl~) ; 

hence the time of an oscillation must be divided by this 
latter factor. If the arcs remained constant this would 
be sufficient; but it is found that the arcs continually de
crease by friction and resistance of air. Experiment 
shows- that tbis decrease is in geometrical progression. 
Taking this for granted, it is easy to deduce that the 
lDean time of one vibration will be 

,vI { nl- nil sinllO} 
'lI' - 1+1 .-- , 9 ogn-logn' 32 

where n, " are the first and last arcs described, and m 
their number. 

The time of an oscillation, as deduced from observation, 

• Borda. 
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must therefore be divided by the quantity between the 
brackets. 

'rhis expression has been deduced on the supposition 
that the point of suspension remains fixed. In the Philo
sophical Transactions for 1831, Col Sabine has pointed 
out that this is not always the case. A further correction 
in such casea is, therefore, necessary • 

• 2 The effect of the resistance of the air must be allowed 
for; this is called the " Reduction to a mzcuum." This 
will be considered in the propositions that follow relative 
to the motion of a pendulum in a resisting medium. This 
correction consists of two parts, that for the buoyancy and 
that for the inert.ia of the air. If m be the mass of the 
pendulum, m that of the fluid displaced. The effect of 
buoyancy is clearly to decrease the acting force in the 
ratio m-m' to m; and the effect of the inertia is to 
increase the mass moved by xm', where x is a quantity to 
be hereafter determined. The time is therefore increased 
in the ratio 

vm + xm ' l " , . . 
m-m 

Let % be the ratio of the specific gravity of the medium 
to that of the body, and let z be very small, then the 
above is equal to 

x + 1 
1 + -2-%; 

the observed time of an oscillation must be divided there
fore by this quantity. 

3. The time of an oscillation, thus corrected, enables us 
to find the length of the seconds pendulum at the place of 
observation. This gives the force of gravity as affected 
by the attraction of all the irregularities of the earth's 
surface near at hand. To render the l'esults obtained in 
different places comparable with each.other, we must reduce 
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them all to one given surface. For many years it was 
the custom to reduce all observations to the level of the 

• sea, taking accouut only of the height of the station. But 
in the Phil. Trans. for 1819, Dr. Young pointed out that 
this correction was too great, as it entirely neglected the 
attraction of the intervening strata. Supposing the obser
vation to have been made on table land of an altitude h 
above the level of the . sea, the attraction of this stratpm 
will clearly dift'er but little from that of an infinite plane of 
the ea.me thickness and density. Let IT be the density of 
the land, then this attraction is well known to be 2 If IT h. 
Let p be the mean density of the earth and a its radius, 

then 9, the force of gravity, will be ~ If P a = 9; hence 

the correction for the attraction of the intervening land 

will be - 2~ • ! . ~ 9. But the old correction for distance 
p a 

il5 clearly 2 h 9; hence the total correction will be 
a 

2h 9 (1 - ~ ~). 
a 4p 

The quantity !.for most rocks on the earth's surface is 
p 

nearly ::~; hence the old reduction must be multiplied by 

·66. This corrected result gives the force of gravity at 
the level of the sea, if all the land above this level were 
cut oft', and the sea constrained to keep its present level. 
As the sea would tend in such a case to change its level, it 
has been pointed out within the last three or four years 
that a further correction is necessary, if we wished to 
reduce the result the surface of that spheroid which most 
nearly represents the earth. But the above is sufficient 
for tabulating the results. . 

V. Another important use of the pendulum ill to deter
mine the law of the resistance of different fluidlS to bodies 
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moving in them. By experiment we can determine the 
motion of a pendnlum in air or water. and thus we shall 
be able to test any assumed law of resistance. Newton has • 
devoted nearly the whole of his sixth section to this ques
tion. 
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NOTE VII. 

MOTION OF FLUlDS RUNNING OUT OF SIULL OWF.lCES. 

(3.) MANY attempts were made by the mathematicians 
who followed Newton to improve and extend the theory of 
the motion of water running out of vases. But though 
the results were often correct, yet the principles on which 
their solutions were founded did not possess a character 
sufficiently elementary to entitle them to be called axioms. 
Maclaurin gave an extension of Newton's theory in his 
"Traite des Fluxions," liv. i. chap. 12. He argues that 
the weight of water must be divided into three parts: the 
first, which accelerates the motion of the surface, and is 

equal to A Ii dd~ (following the preceding notation), the 

second, which pres8Cs on the base of the vessel, and the 
third which in the little time S t communicates a velocity 
V - U to the mass VB S t of fluid that flows out of the 
vessel in that time. He assumes that these last two 
forces are always in a constant ratio, which he supposes to 
be that of the mass of solidified fluid to the mass of water 
in Newton's cataract. 

Daniel Bernoulli· gave a theory founded on the prin
ciple that the fluid may be divided into horizontal strata 
which remain horizontal throughout the motion and de
scend with a velocity reciprocally proportional to the area 

• Trai" d'Hydrodyuamique. 
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of the section of the veeeel that the stratum is passing. 
He then applied the principle of the conservation of vis 
viva to determine the velocity of efflux. Bernoulli was 
led to this hypothesis by observing the manner in which 
particles of Spanish wax immersed in the water moved 
along with the Ruid. A theory thus founded on obser
vation is nsually a great step in advance. Even now, in 
certain cases, we are obliged to have recourse to this very 
assumption. John Bernoulli (Hydraulique) gave a dif
ferent theory. Taking a stratum of the fluid, he replaced 
the force which would produce its motion by another 
supposed to act at the surface of the fluid. Then by in
tegration he obtained the whole force that acting at the 
surface would produce the whole motion of the fluid, aod 
this force he assumes to be equal to the whole weight of 
the fluid. There would now be no advantage in dwelling 
on these or any similar investigations. By the aid of 
D' Alembert's principle we have now correct equations, 
giving the motion of fluids under 811 circumstances. We 
shall therefore pass on to the more satisfactory solutions 
that PoiSBon (Traite de Mecanique, tom. ii. chap. iii.) 
gave of the question. 

(4.) In modern times, it is usual to deduce the velocity 
of emux from the equations of motions. 1'he simplest 
case is when the motion is ,teady. Let the surface of the 
fluid be always horizontal, and retained at the same level; 
let the area be A, and suppose all its parts to have the 
same velocity (U) in a direction vertically downwards. 
Let B be the area of the section of the fluid at the "ena 
coniracta, V the velocity of the fluid at that point. A 
complete solution of the question ought to determine both 
B and V in terms of the diameter of the hole and the 
other circumstances of the problem. According to the 
ordinary notation we have, 

VI 
P = - g y - 2" + c, 
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along the surface y = 0, " = U, P = ... , the pressure of 
the atmosphere; . . 

U' ...... = -"2 +C. 

At the !1e7UJ contra eta, the fluid moves with the same ve
locity throughout the section, and along its aurface we 
have 

VI ... = -gh -"2 +C, 

" being its depth below the surface of the fluid j hence 
we have 

V' = U' + 2gh. } 
But BV = AU. 

These are not Bufficient to determine all the unknown 
quantities. Sufficient equations would have been found 
if we could have integrated all the equations of motion. 
The quantity" differs but little from the depth of the 
orifice below the vena eontraeta. The quantity B alsd 
depends chiefly on the nature of the orifice, and can be 
measured. The quantity U is unknown, and must be 
such that the motion is steady; eliminating we get 

V= / 2g" • 

~ 1 - (~r 
If the orifice be very small, we may reject (~ , and we 

get 

V = .v2g'" 

When the velocity of the surface is not such as to 
render the motion steady, the equations cannot be inte
grated, except on the supposition that the orifice is exces
sively small. It that case we may assume with sufficient 
accuracy, that the particles of fluid once in a horizontal 
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section, always remain in one. This is called the hypo
thesis of parallel sections. Supposing the fluid to begin 
to move from rest, it can be shown that the motion, what
ever be the form of the vessel, soon becomes si'eady• So 
that we may in general use the preceding formula. 

If the vessel be allowed to empty itself, the solution 
can still be found on the same supposition. If % be the 
height of the surface of the water in n cylindrical vessel 
above the vena contracta, and h be the initial value of % 

when the motion is supposed to begin from rest, 

At 

V'= I~:~j' - I~:il'. ~BI -I. 
A A· 

If B be very small, this expression becomes very nearly 

V2= 2g%. 

If some time hos elapsed, so that i is a small fraction, 

we have 

V. = __ 2...,g:....%....,...,..., 

1-2(!Y· 
The velocity being then very small, the quantity of 

liquid that has run out of the vessel in the time t will be 
very nearly 

q=Bt.v2gh; 

if the orifice be an aperture in a very thin plate, the value 

of B, the area of the vena contracta is about ::0 of the 

area of the orifice. Calling this area 2, the expenditure 
will be nearly· 

• Poill8On, Hydrodynamiqoe, vol. ii. 

Digitized by Coogle 



3S! NEWTON'S PRINCIPIA. 

'1 = '62. /&. t . ."I29k. 

But the efBux is very much influenced by the nature of 
the orifice. If a small vertical cylinder, or tz4jutage, be 
applied to the exterior of the orifice, the discharge is 
greatly increased, and will be nearly 

'1 = 'S « t -.129 k ; 

if, on the contrary, the cylinder be placed on the intmor 
of the orifice, the discharge is decreased, and will be 
nearly 

'1 = '5 «t ';29 h. 

Venturi found an adjutage, consisting of two conical 
portions having their smaller ends united at the com
mencement of the vena contracta, to give a very large 
discharge. 

(5.) An attempt has also been made to determine the 
velocity of efBux of an eltJ8nc fluid rushing out of a small 
orifice. The problem is a very difficult one, and no satis
factory solution has been found. 

Let a quantity of any gas be compressed at density D 
and pressure P, in any vessel A; let it be allowed to run 
out by a small orifice in to a vessel A', filled with the same 
kind of gas at density D' and pressure Pl. It is required to 
determine the rate at which the gas runs from the first 
vessel into the second. 

Draw a line of motion from the interior of the vessel 
~ to ~he interior of A', so that at any instan(all the par
trcles In this curve are moving along tangents to the curve. 
l,!he ~otion of the particles at the two extremities of this 
IDe WIll be infinitesimal when the aperture is very small 
:omp~red with the size of the ve88els. Since the aper
~ret 18. very small, the motion may be considered for any 

s or tune 8teady; hence the equation 
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ftJp=c-~ 
p 2 

385 

will be approximately true. The quantities p, p, ", in 
this equation express the pressure, density, and velocity at 
any point of the cuneo Integrating from the extremity 
of the curve in the vessel A to the orifice, we have 

f."dP = -~. 
p P 2 

Supposing the difference between P, pI not too great, 
the fluid will rush into the receiver in a stream, and there 
will be a backward current on each side to diffuse the 
gas over the whole vessel. Taking some section where the 
fluid may be supposed to move with the same velocity 
throughout, the quantity that runs past in a unit of time, 
measured in volumes of gas at density D, is 

V = m"- V 2 {' p d P ; 
D J" p 

- (l.) 

where p and p express the pressure and density at the sec
tion, and m is a numerical coefficient depending on the 
nature of the orifice and the unit in which p is measured. 
Weare ignorant of the true values of p and p; but if the 
vessel be very large, and the difference of pressures P, pI 
small, the gas on each side of the stream will be nearly 
stagnant, and we may substitute for p, p, the values of 
pI, D', the mean pressure and density in the receiver. If 
P-P' be 80 small that we can neglect its square, this 
formula will become 

- (2.) 

an expression which is in tolerable accordance with the 
results of experiment. But if P and pi are not nearly 
equal, this is no longer even an approximation to the 
truth. 

c c 
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Suppose we reject the effect of changes of temperature, 
we have, by Boyle's law, p = x p, whence the expression 
(1.) easily gives 

P'"v P P V = m -P 2 -log -D ,p' - (3.) 

MM. Barre de Saint Venant and Wantzel • have under
taken the task of testing these expressions by actual experi
ment. They have pointed out that the formula (3.) could not 
possihly be accurate, for it gives the velocity of effiux a 

maximum when} = ·60653, 80 that the velocity would 

actually be less the smaller the quantity of air in the vessel 
.A:, provided it be less than a certain quantity. The velo
city would vanish when P' = 0, which leads to the ex
traordinary result that a gas cannot rush into a vacuum. 
If in order not to neglect the changes of temperature, we 
put p = X p'¥, we get the expression 

I (1 p)l_l 
V = m (p); . 2 ~ • - PI '¥ 

'" 1--Y 

If we knew the values of p and y this would no doubt give 
accurate results. But when we substitute p = P', we 
are led to results as absurd as those we have just mentioned. 
The troth is, that, other things being the same, the velocity 
of effiux of air by an orifice is always greater the more 
the pressure in one vessel exceeds that in the other. So 

long as ~ is not greater thau ·3 or ·4, the effiux or the 

quantity of air that has flowed out iu a unit of time is 
sensibly tIle same j that effiux diminishes slowly at first, 
more quickly afterwards, as the pressures approach 
equality, and it becomes nothing after a finite time, when 

• Comptes Rendua, vol. ix. and xvii. 
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the pressures become the same in the two vessels which 
the orifice puts in communication. These are the results 
of MM. Venant and Wantzel; they have even deduced 
an empirical law to represent the velocity. The efBux 
per metre of orifice in volume at pressure P will be 

./-P.~ 
V= m. '\I 2 jj '\l1-p 

1 pI .. '+ I 1 + _ (1 __ ). 3 

. n P 

where m, n are two numbers whjch depend on the nature 
of the orifice, and 'II a number to which we give a value 
a little greater than n, that the formula may give a nearly 
constant value to V between the limits already stated. 

cell 
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NOTE VIII. 

XonON 01' WAVES ON THE SURFACE 01' WATER. 

IT appears that it is not every form of waves which can 
be freely propagated with a uniform velocity without any 
change of form. The only case in which this is possible, 
is when the vertical section by a plane passing through the 
direction of propagation is, to a first approximation, the 
curve of sines. A solitary wave - cannot, therefore, be 
propagated without change of form; a result confirmed by 
Mr. Russell's experiments. If the form of the waves were 
accurately the curve of sines, they would be exactly si
milar above and below the undisturbed level. This com
mon experience shows not to be the case. On calTying our 
investigation to a second approximation, on the supposi
tion that the depth of the water is much greater than the 
length of the wave, it is found that the altitude of the top 
above the undisturbed level is greater than the depth of 
the hollow beneath it. The top of the ,vaves are more 
pointed than the hollows. Such a wave is propagated 
without any change in its form. If the depth were much 
less than the length of the wave, the wave will undergo 
certain changes, which we shall have occasion to refer to 
presently. 

The motion of the water during the uniform propagation 
of the wave is greatest at the surface, and decreases rapidly 
with the depth; but the rate of decrease varies very 
nearly inversely as the length of the wave. Thus if the 
depth of the water be much less than the length of a wave, 

• Carob. Phil. Trans. vol. ,"iii. 

Digitized by Coogle 



NEWTON'S PRINCIPIA. 389 

the motion is nearly the same at all depths; if much greater 
the water near the bottom is almost at rest. Each particle 
of water describes an ellipse. Those at the bottom oscillate 
in straight lines, and in very deep water those at the sur
face describe circles. 

When the channel is not uniform the question of the 
motion is much more difficult. Professor Kelland has in
vestigated one case of this kind, for which we refer our 
readers to the Edin. Trans. for 1841. 

The motion of any series of oscillatory waves will, of 
course, tend to subside from the effects of internal friction. 
The rate at which this takes place depends very much on 
the length of the wave. The magnitude of the wave is 
found to depend on the factor • 

1& r'l".', 
C = Co • II - -AI-

where A is the length of the wave, p.' a numerical quantity 
depending on the amount of internal friction in the fluid, 
Co' C the values of the factor at the times zero and t. The 

value of ""-';" for water is '0564, an inch and a second 
being the units of space and time. "Suppose, first, that A 

is two inches and t ten seconds, then 16 '11" p.' t A-' = 
1'256 and C: co:: 1 : 0'2848, so that the height of the 
waves which varies as c is only about a quarter of what 
it was; accordingly the ripples excited on a small pool by 
a puff of wind mpidly subside when the exciting cause 
ceases to act. Now suppose that A is 40 fathoms, or 2880 
inches, and that tis 86,400 seconds, or a whole day. In 
this case 16 '11" p.' t 11.-2 is equal to only 0'005232, so that 
by the end of an entire day, in which time waves of this 
length would travel 574 English miles, the height would 
be diminished by little more than one two-hundredth 
part in consequence of friction. Accordingly the long 
8wells of the ocean are but little allayed by friction, and 

• Fro!. Stokes, Camb. Phil Trans. vol. ix., part 2. 
cc 3 
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at last break on BOme shore situated at the distance of per
haps hundreds of miles from the region where they were 
first excited." 

When the wave is very long it is easy to give a short 
demonstration of its most useful properties. And this is 
the more advantageous, for, as we shall presently see, the 
tide is nothing more than an exceedingly long wave. 

Suppose we have a rectilinear ohannel of uniform section; 
let '!I be the elevation of the water above the mean level at a 
time t, and at a distance :e melUiured along the channel from 
the..origin of JDeasurement. Let It. be the greatest value of 
'!I' Let h be the depth of the channel, A the length of the 
wave travelling along the canal. Then by hypothesis A is 
very great. Suppose the particle of water which when 
undisturbed to have been at a distance :e from the origin, 
to be at the distance :e + X at the time t. First let there 
be two imaginary planes placed at the beginning and end
ing of the long wave. The mass- of water elevated above 
the mean level will be comparable with 1t.A, while the water 
which has passed the two imaginary planes will be com
parable with h X. These two quantities, then, must be of 
the same order; hence 

It. is of the order h X; 
A 

and, as 1t. is very great, this must be very much smaller than 
X. Now X is itself supposed a small quantity; hence It. 
may be altogether rejected when compared with X, and 
we must suppose the elevations performed by the horizontal 
motions of the ftuid pressing together some parts, and thus 
raising it above the general level. So far as the vertical 
m?tion is concerned, we may consider the ftuid in equili
bn~m. and hence may use the ordinary equations of hydro
statICS to find the pressure at any depth. 

We shall now show that if we assume the displacement 

• Camb. Dub. Mllthematical Journal, No'-_ 18'9. 
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X of the particle which was situated at the distance z from 
the origin to be represented by 

X=a sin{nt-71lz), 

that then all the conditions required for a possible motion 
will be satisfied. If this expression agree with the 
initial conditions and all the other circumstances of the 
motions, it will represent the actual motion. The whole 
of the reasoning is, step for step, the same as that for the 
motion of sound in a tube. 

Since this form of X is independent of the depth, the 
water will be agitated to the bottom, and the particles once 
in a vertical plane will always remain in one. If then two 
planes be taken at a distance d z when the fluid is at rest, 
the mass of water between them will always remain the 
same. But this mass before the motion was h d z, and at 
the time t it is . 

(h+,Y) (dz+dX)=hdz, 

dX dX 
... y= -h dte -y dZ; 

the last term is very small, for both y and X are small, and 
therefore may be rejected; hence 

dX 
y=-"dz 

=a mh. cos (nt-mz). 

If we consider any element dz of the fluid, the forces 
that make it move are the pressures on its two ends. These 
are, by hydrostatics, 

g(y+z) and !h+dy+z), 

where z is the depth of the element beneath the mean 
surface. Hence the moving force is 

gdy, 
c c " 
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and the Dl888 moved is dz; hence the accelerating force is 

dy 
9 az 

or -am2hg sin (nt-mz) 

or -m'JhgX; 

hence the force varies as the displacement. This is well 
known to lead to the very law assumed for X, provided 

"-'m'hg = nj 

hence the velocity of the wave, which we know is ~ , must 
m 

be "-'gil.. 

The general equation for the motion of any long wave 
may be obtained by a generalisation similar to that em
ployed in the proportion corresponding to this in sound. 
The resulting equations are even the same: we arrive at 

dX 
'1=-h

dz 

d'lX d'lX 
dt'l =gh. dz" 

and whatever be the form of the wave, provided only it be 
very long, and the height of the wave be small compared 
with the depth of the water, the velocity of transmission 
will be always the square root of the product of the depth 
and gravity. 

If each particle of the fluid be under the action of forces, 
the motion may still retain the characteristics of a wave. 
Such a wave, however, is called a "forced wave," and there 
is no necessary relation between the velocity of such a 
wave and the depth of the water. As an example, let 
each particle be acted on by a horizontal force 

F=f. sin. (it-m,r). 
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Let us assume the displacement 

X=a Bin. (it - mz) 

.'. F = Ix. 
a 

But 88 we have already seen, the water seeking to recover 
its level caUBe8 a horizontal force equal to 

-m'hgX; 

hence the whole force is 

- (m'hg-{)X. 

By the BADle reasoning as before, this coefficient must be 
equal to it, or 

m1hg-l=i'; 
a 

hence a= _ f 
i'J_ m2hg' 

or the motion in the horizontal direction will be given by 

X=-~ f'h • Bin(it-mz), 
& - m 9 

and the elevation of the water by 

!I = - ~ f m 2h COB (i t - m z). 
& - m kg 

This proposition will be required when we come to con
sider the theory of tides. It will also serve to explain in 
some degree the motion of the waves generated by a boat 
moving along the surface of a canal It is not a complete 
explanation, for the waves observed by Scott Ruesell were 
solitary waves; whereas we have supposed in the above 
reasoning that there is an infinite succeBBion of waves 
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following each other. However, we may suppose the 
grand features of the motion to be similar in the two cases. 
The above expressions show that the sign of F will be the 

same as or different from that of ~~ according as £, 
the velocity of the wave, is greater or less than 'II!I h. 

Taking the former supposition, F must be positive, or act 
in the direction of propagation where the water is rising, 
that is, along the anterior snrface of the elevation of the 
wave, and must act in the opposite direction where the 
water is falling, that is. along the posterior surface of the 
elevation. If, on the contrary. the velocity of the wave 

is less than 'II!I h. then F must act in the direction of 
propagation along the posterior slope, and in the opposite 
direction along the anterior slope. A boat can only push 
the water forwards; hence it must be on that side of the 
slope on which a forward force is required; that is, it will 
travel hehind or before the wave, according as its velocity 
is less or greater than 'II 9 h. There will he no force 
acting on the other slope of the wave; but the wave will 
undergo a trifling change of form, and thus similar effects 
will be produced whether this force does or does not act. 

If tire velocity of the boat is ..! 9 h, no force is neces
sary. If the boat ride on the crest of the wave, it acts 
on both slopes. If these actions were equal, the particles 
would have their changes of motion accelerated in front 
and retarded in rear, o.nd thus the whole change would be 
the same as if the forces did not act. But the head of 
the boat, Airy observes, presses the water more than the 
8tem; h~nce, on the whole, we have a small accelerating 
force ~tIng on the anterior slope. Hence, that the boat 
may nde evenly on the crest of the wave, the velocity 

~ust be a little greater than 'II 9 h. This is true in prac
bce. 

!ay mathematicians have investigated the effects or 
g ua changes in the depth and breadth of the canal on a 
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seriee of long wavee proPl'eaated along it. If hand b be 
the variable depth and breadth, the result arrived at is 
that the altitude of the wave variee· 

inversely as .:-'/i. 'lib. 

Professor Airy has demonstrated that waves cannot be 
propagated, strictly speaking, along a canal of variable 
depth. He shows that if it were possible, we would be 
led to an equation that cannot be satisfied. Hence," one 
at least of the two conditions on which the equations of 
Hydrodynamics are founded must fail. These are the 
continuity of the fluid and the equality of pressure in all 
directions. While the continuity holds, the equal pres
sure must exist, from the nature of the fluid. There
fore the continuity must cease, or the water become 
broken. This appears to be the explanation of the broken 
water which is usually seen on the edge of a shoal, or a 
ledge of broken rocks, although the whole is covered, 
perhaps deeply, with water." The Astronomer Royal 
mentions the instance of Newfoundland, where, when the 
waves are high, there is a surf caused by the breaking of 
the waves over the edge of a shoal 500 feet deep. A 
similar breaking is observed about the line of "no sound. 
ings" (that is, where the water suddenly becomes deeper 
than 600 feet, which at some distance borders the British 
isles (Encyc. Met., art. Tides and Waves). The wave, 
on reaching a part of its course where the depth changes 
suddenly, breaks, because the velocity of the top part for
ward and of the hollow backwards, is too great to travel 
,vith the velocity proper to the new depth. The top part 
therefore, tumbles forwards into the hollow. The degree 
of breaking is less and less the longer the wave and the le88 

/ the change of depth. If the depth alter very slowly, the 
wave may be considered as only slightly breaking, and is 
propagated as a changing wave. 

• Green on the Motion of Waves, Trans. Camb. Phil. vol. vi. 
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Professor Airy has also investigated the manner in 
which the wind acts to raise the waves. His theoretical 
conclusions are as follows: -" It is to be understood 
that either from preceding disturbances, or from the trifling 
inequalities of the wind while the water is smooth, there 
are very shallow undulations upon the water. When the 
wind begins to act, it will at first only increase the height 
of the waves in every part, and during this time the heads 
of the waves will be broken. But after a time the waves 
beginning with the windward shore will be (for a short 
distance at least) so much increased, that the power of the 
wind will merely maintain them in that state without any 
increase; but Cor all the sea in advance, the wind will 
still be raising the waves. But as the waves succeBBively 
obtain that height which corresponding, according to our 
result, with the height which the wind can just maintain, 
these waves will no longer be increased, but the waves 
in advance will still be increased. Thus a wind of given 
intensity, however long it blows, can only raise the waves 
at a given point to a certain height; which height, how
ever, will depend upon the distance of that point from 
the windward shore." 
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NOTE IX. 

THE THEORY OF THE TIDES. 

II. SINCE Newton's time many philosophers have turned 
their attention to the theory of the tides. Newton left 
it in so imperfect a state that much remained to be done. 
We shall therefore in the briefest possible manner men
tion a few of those steps that have been since made. It 
would require a treatise by itself to discuss them com
pletely. A traveller about to visit II. new country looks 
at the map first: we intend to furnish this map, and must 
refer to other works those who may desire to study so 
interesting a subject. 

There are at present three theories of the tides. They 
are usually called, the equilibrium theory, the theory of 
Laplace, and the wave theory. The differences of these 
theories will be best understood by considering them sepa-
rately. I 

(1.) In the equilibrium theory, the rotation of the earth 
is supposed to have no effect on the form of the tide, so 
that the times and heights of high water, o.nd all the 
other circumstances of the tides, at any place may be cnl
culated on the supposition that both the earth and the 
moon remain fixed in the position they are in at the mo
ment under consideration. Whether this assumption be 
legitimate, or not, is a question we shall presently have 
to consider. The whole equilibrium theory is . built on 
the assumption of its truth. 

The general explanation of the tides, according to this 
theory, is very simple. The moon attracts both the earth 
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and the water on the earth. But she attracts the water 
immediately under her with greater force than she attracts 
the centre of the earth, and she attracts the centre of the 
earth with greater force than the water on tlle opposite 
side of the earth. But the tides are formed by the position 
the water assumes relative to the earth. We must there
fore consider this as reduced to rest by a force supposed to 
be applied to every particle of the earth and water equal 
and opposite to the force with which the moon attracts the 
centre of the earth. The particles of water immediately 
under the moon will therefore be drawn towartU the moon; 
those immediately opposite will appear to be drawn from 
the moon. Thus the water will rise and form a high tide 
both on that side next the moon and also on the other. 
Let us now suppose the whole earth covered with water. 
Each particle of the fluid is under the action of, first, the 
attraction of the earth, and, secondly, the attraction of the 
stratum of liquid surrounding the earth: this will depend 
on the form its surface will assume under the action of all 
the" forces; thirdly, the disturbing force of the luminary. 
The form of the water must be determined by means of 
the equations of fluid equilibrium. The result obtained is 
that the form will be very nearly a spheroid whose longer 
axis points to the luminary. If 6 be the zenith distance of 
the moon at any place and any instant, c her distance, a 
the mean radius of the earth, tI the radius of the solid 
nucleus of the earth, E and M the masses of the earth and 
moon, p, p' the mean density of the earth and the density 
of the sea; then the height of the tide at the given place 
and at the given time will be 

5 M (a) 3 

:4 R· c Q 

211'a'3 __ 
1 + -rp-p' 

. (3 cosl 6-1). 

The gr-:ater the depth of the ocean, or the le88 Ii is, the 
greater 18 the height of the tide. 
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The values of these several ratios are as follows: 

Mia 1 E 47r '3 
E = 74' ~ = 60' ="3 p a , 

whence the coefficient is nearly 

1 . 1 57 feet. 

a-p 
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By observation p' = t p nearly, and in this case the height of 
the tide is small. But if p' be much greater, this expres
sion 800n becomes considerable, and if the density of the 
sea had been much greater than that of the earth, the 
tides would have been very high. 

We see also that the height of the tides caused by dif
ferent luminaries varies as their masses, and inversely as 
the cubes of their distances. 

The coefficient being called h, the greatest elevation of 
the tide will manifestly be 2h, and the greatest depression 
below the spherical surface will be h. The elevation is 
therefore double the depression. Bnt it must be remem
bered that this spherical surface is not the mean surface of 
the ocean at the place in question, but the surface as it 
would be if undisturbed by any luminary. 

There will be a similar expression for the tide caused by 
the sun, and the two together may be expressed by the 
formula 

(1--3 sin' A) { A .(~r(~ C08~a-l) +A'(;)'C}osta/ - 1) } 

+ i sin 2 A { A (~) 3sin2S.cos(l-y) + A'(;) 3 sin 23'cosl-r } 

+ i cos2 A { A (~)3.cos2aC082(I-Y)+A'C~)3C08l1a'C0821-i } 

where l, A, are the longitude and latitude of the place, y, a, 
the right ascensions and declinations of the moon, Co, c, her 
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mean and actual distances. A the coefficient of 3 cos' e - I 
in the preceding formula when the moon is at her mean 
distance. Accented letters apply to the sun in the same 
way as unaccented do to the moon. 

In this expression we see three kinds of terms. First. 
those of very long period, and which are not dependent on 
the hour of the day. These arise from the first line in the 
above series, and cause differences in the mean elevation 
of the water, depending on the declination and distances 
of the disturbing bodies. As the expression contains the 
factor 3 sin2 A-I there will be no such terms or inequali
ties for any place whose latitude is sin -1 "" j. 

Secondly. The terms in the second line going through 
their values in about a day, they form therefore a diurnal 
tide. This has no existence for any place on the equator 
or at the pole, and is greatest in latitude 45°. There will 
be variations in the magnitude of this tide, depending on 
the changes of declination and distance of the heavenly 
bodies. 

Tltirdl!J. The terms in the third line go through their 
values twice in about a day; they form together, therefore, 
a 8emi-diurnal tide. This has no existence at the poles. 
and is greater the nea.rer the place is to the equator. 

The value of this theory may be best stated nearly in 
the words of the Astronomer Royal :-" The most con
spicuous tide on the coasts of Europe at least is the semi
diurnaL The acceleration or retard of this tide on the 
moon's transit does not at one port in a hundred agree in 
any measure with the result of this theory." " The abso
lute elevation of the tide is great at one port and small at 
another, without any relation to the quantity calculated. 
from theory. The proportion of the elevations, however, 
at the same port in different stages of the lunation agree 
pretty well with the theory (though not equally at all 
ports), yet the critical phenomena (spring and neap tides) 
occur later than the theory gives them." " The peculiar 
phenomena of river tides are not touched on by this theory." 
"The diurnal tide ought in these latitudes to be equal, 
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or nearly equal, to t.he semi-diurnal tide. Yet in the 
Thames it is absolutely insensible, and in other ports, as 
well of England as of other ports of Europe and America, 
though discoverable, it is not notorious, and has only been 
found from the ~bservations made by men of science. It 
has been found to be very conspicuous at some places 
near the equator, and some places near the pole, where it 
ought not to be discoverable, or scarcely discoverable. The 
tides of longer period have scarcely heen observed." 

cc Altogether this is one of the most contemptible theo
ries that was ever applied to explain a collection of impor
tant physical facts. It is entirely false in its principles, 
and entirely inapplicable in its results. Yet, strange as it 
may appear, this theory has been of great use. It has 
served to show that there are forces in nature following 
laws which bear a not very distant relation to some of the 
most conspicuous phenomena of the tides; and what is 
more important, it has given an algebraic form to its own 
results, divided into separate parts analogous to the parts 
into which the tidal phenomena may be divided, admitting 
easily of calculation and of alteration, and thus at once 
suggesting the mode of separating the tidal movements, 
and affording numerical results of theory with which they 
are to be compared. The greatest mathematicians and the 
most laborious observers of the present age have agreed 
equally in rejecting the foundation of this theory, and 
comparing all their observations with its results. And till 
theories are perfect (a thing scarcely to be hoped for in 
any subject, and less in the tides than any other), this is 
one of the most important uses of theory." 

(2.) The next theory to be considered is that of Laplace. 
In this the phenomena of the tides are treated as a question 
of hydrodynamics. It is manifest that no true theoiy can 
proceed on any other supposition. We may, as usual, 
suppose the centre of the earth reduced to rest by the 
application to every particle of the earth and sea a suffi
cient force. This we can do, for we are only concerned 
with the motion of the sea relatively to the earth. The 
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two luminaries must then be 8Ilppoeed to travel round the 
earth in respectively a month and a year. Then the pro
blem is to determine what motion will take place in any 
wide expanse of ocean when acted on by these forces, the 
earth and sea being supposed to have a rotation round a 
fixed axis. 

But such is the difficulty of the investigation, that if we 
wish to get any result at all, we must make some suppo
sitions that are not quite applicable to the earth. We 
must suppose the earth to be entirely covered by water, 
whose depth is the same along any parallel of latitude, 
which may be expressed by the formula 

-y=l (1-'1 cost '), 

where 6 is the polar distance of the parallel of latitude, I 
the depth at the equator, q a constant depending on the 
rate at which the depth decreases as we approach the pole. 
The investigations of Laplace are very difficult: the same 
results have been obtained by a different but simpler pro
cess by Professor Airy in his article on Tides and Waves 
in the Encyclopredia Metropolitana. 

The result of Laplace· is that there are "trois especes 
d'oscillations." As these unite without confounding them
selves, they can be considered separately. 

Des oscillations de la premiere espece.-These are tides 
of long period, and depend on the positions of the lumi
naries, the depth of the sea as compared with the radius of 
the earth, the time of rotation of the earth, the force of 
gravity at its surface, and the latitude of the place, but 
not on the hour of the day. Formulre are found to express 
their magnitude, and these, when no allowances are made 
for friction and other causes of resistance, are not the same 
as those given by the equilibrium theory. Laplace, how
ever, supposing the resistance to vary as the velocity, and 
the tide to be exceedingly small (an assumption founded 
on observation), shows that we may calculate these oecjJla-

• Mec. Celeste, vol. ii. p. 313. 
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tions as if the fluid at each moment put. itself in equili
brium under the action of the luminary which attracts it. 
And the error is less, the slower the motion of the luminary ; 
it is therefore inseJlsible for the sun, and we may even 
assume it true for the moon. This is calculated on the 
supposition that the resistance varies as the velocity, but 
it will be, clearly, also true whatever be the law of the 
resistance. 

Des oscillations de la seconde espece. - These are oscilla
tions which go through their period in about a day, and 
constitute therefore properly a diurnal tide. It is found 
that this tide does not exist either at the equator or the 
poles, and it is greatest about latitude 45°. It will dis
appear in every latitude if the depth of the sea be uniform, 
- a result as remarkable as it was une~pected. But this 
only refers to the elevation of the water. The diurnal 
variations of the horizontal motions caused by these terms 
would still remain. The expression for the elevation of 
the water is found to change sign with q; so that if the 
water be shallower at the poles than at the equator, and 
itB depth be less than seven miles, low water occurs at the 
transit of the luminary, if deeper at the poles, high water; 
provided the transit of the luminary takes place on the 
same side of the equator as the place of observation; and 
the reverse occurs if the transit takes place on the opposite 
side. 

Des oscillations de la troisieme espece.-These oscillations 
go through their period in about half a day. They con
stitute a semi-diurnal tide, having two high waters and two 
low waters every day. If the depth vary as the square of 
the eosine of the latitude, the expression for the elevation 
of the tide shows that there will be low or high water at 
any place at the moment when the luminary crosses the 
meridian, according as the depth of the sea is less or greater 
than about seven miles. Laplace has also investigated the 
nature of these tides in a sea of uniform depth, but the 
Astronomer Royal has pointed out an error in his process, 
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the effect of which is to vitiate his results, and, therefore, 
also, all the numerical calculations founded on them. 

This theory is certainly a wonderful step in advance. 
The only defects are those that the imperfection of.. our 
mathematical knowledge renders imperative. The results 
show how false that assumption is on which the equili
brium theory is built. That theory could never lead to 
the result that there must be, under certain circumstances, 
low water directly under the luminary. The theory of 
Laplace is, indeed, founded on suppositions 8S to the depth 
of the sea; but still we may expect these results to bear 
some analogy to the phenomena we- actually meet with. 
Further, only the principal terms are considered, and thus 
the effects on the tides caused by the dfJference of the 
motions of the sun and moon are not calculated. 

(3.) The third theory may be called the wave theory. It 
is most successful exactly where all the other theories become 
so inapplicable 8S evidently to be quite useless. Its pecu
liar merit is the discussion of river tides and the expla
nation of the various phenomena produced by barriers, 
changes of depth and breadth in the various channels 
through which the tide has to pass. It is not altogether 
inadequate to the discussion of certain eases of ocean tides. 
The problems considered are of two kinds. First, the tides 
formed in very long canals, the waters of which are act.ed 
on by the forces of the sun and moon. These results will 
be afterwards found to bear some analogy to the case of 
certnin oceans as they exist in nature, bounded by their 
continenta1shores. Secondly, the tides formed in rivers 
which are so short that the action of the disturbing bodies 
on their waters may be neglected, and the tide may be 
considered to be freely propagated up the river from the 
disturbance caused at its mouth by a tidal sea. 

This theory is not to be considered as contradictory of 
that of Laplace. Two truths cannot be opposed to each 
other. On the contrary, Laplace's equations are required 
in some of the investigations of this theory. The dif-
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ference is simply this. Laplace's theory aims at deter
mining the tides as formecI in extensive sheets of water, and 
therefore a solution of the Hydrodynamic Equations is 
taken that is adapted to such a case. The wave theory 
aims at discussing the tides as formed in long canals, and 
therefore a solution of the equations is taken as suited to 
such a case. It is to the labours of Professor Airy that 
much of the progress that has been made in this subject is 
due. I may refer to his work in the Encyc. Met. for the 
demonstration of most of the theorems alluded to in the 
following sketch. 

Let us begin by $lOnsidering Newton's case of the mo
tion of water in an equatorial channel acted on by the sun, 
supposed to revolve in the equator. That part of the dis~ 
turbing force which acts perpendicular to the water, will 
produce but little effect compared with the tangential force, 
the weight of a column of fluid equal to the depth acted on 
by the central force being infinitely less than that of so long 
a column as a quarter the circumference of the globe acted 
on by the tangential force. We shall therefore neglect the 
central force. On applying Laplace's equations it can be 
proved that the motion in a canal will be the same as if the 
earth were reduced to rest, and an equal but opposite 
angular velocity impressed on the disturbing body. By 
Lunar Theory, the tangential force is known to be 

x= -:f>~. sin2(pt-ql)' 

where b is the radius of the earth, II- the sun's mass, :0 its 
distance from the earth, p the relative angular velocity of 
the sun and earth, and ~ any angle determining the position 
of the particle. Then, by the proposition demonstrated in 
the chapter on waves, the altitude will be 

8 II- k b'l 2 ) 
y= -4 Da' p2b2_g'" cos (pt-~, 

Pb2 

showing that if the depth k of the sea be less than - , 
9 
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or be leas than 14 miles, there will be low tide immediately 
under the luminary. 

In this instance there was only a semi-diurnal tide, but 
when the solar path is no longer restricted to the equator, 
and the channel is any position on the earth, we have both 
diurnal tides and tides of longer period. The diurnal tide 
does not exist when either the canal is equatorial, or the 
luminary is on the equator. When it exists, the phase at 
the instant of transit depends on whether the depth of the 
sea be less than 3l miles, and the luminary on the oppo
site side of the meridian or not. If both these hold or 
both fail, there will be low water at zenith transit; if one 
fails and the other holds, high water. 

There are also tides of long period; that is to say, the 
relative mean level in different parts of some canals is not 
the same as if the disturbing body did not act. The mean 
level thus depends on the position of the luminary. 

The state of the tide will manifestly be affected by fric
tion; it appears that if we wish to calculate the height of 
the tide, at any time t, we are to proceed as if calculating 
the height (on the supposition of no friction) at a later 
time t + /:c, with the luminaries in the position they were 
in at a preceding time t-~, where « and ~ are two quan
tities given by the theory, and depending on the amount 
of the friction. 

In considering the effects of two bodies, we see that, 
according to this theory, they do not produce effects which 
hav~ the same ratio as in the equilibrium theory. If in 
that theory, p be the ratio of the lunar to the solar high 
tide, and p' the ratio given by the wave theory, then 

p' _ n' h'-.qk 
p- n'ib2-gk 

where n, n' are the angular velocities of the sun and moon 
relative to a fixed line on the earth, h the radius of the 
earth, and II. the depth of the sea. This ratio will be 
different according to the different values of k. This 
explains the fact, that in different seas the ratio of the 
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lunar and solar tides is not constant, but varies with the 
depth of the sea. 

It would take too long to enter into all the applications 
of this theory to oceanic tides. If we could consider tbe 
Atlantic as a canal running nearly north and south, the 
tides in it would be nearly stationary. This is certainly 
not the case. The South Sea might be considered as a 
canal running east and west; in that case there would be 
a forced tide wave travelling along it. The only advan
tage of this theory in its application to oceanic tides, is 
the simplicity of its analytical processes. It is even pos
sible to consider the effect of friction. The seas to which 
we apply its results are not canals, but we only use them 
as suggestive of the general characters of the motion. 

The theory is most successful in determining the tides 
in rivers. The water at its mouth being disturbed by 
the tides formed in the open sea, that disturbance will be 
prol>&t,uated, with unaltered period, up the river with a 
velocity proper to the depth, viz., the square root of pro
duct of the mean depth and the force of gravity (32·18 ft.) 
This disturbance is a long wave; when the top part of 
the wave passes any point, it forms high water, and wben 
the lower part, low water at that place. The length of 
the wave of course depends on the distance up the river 
travelled by the front part of the wave formed at the 
mouth of the river, while the other parts are being formed. 
There may even be many high and low tides on the same 
river at once. Thus La Condamioe observed about 
twenty places on the Amazon where there was high 
water with low water at the same time at intermediate 
places. It is also possible, as this long wave is propa
gated up the river, that the low water at some place a 
considerable distance up the river may be higher than 
the high water at the sea. This occurs on the Thames 
and most rivers. 

This propagation of the tide is not the transference of 
a body of water up the river, but. the motion of a form, 
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We have seen that when a wave travels, along a uniform 
channel, that the water is moving in the direction in 
which the wave travels, 80 long as the water is above its 
mean level, and in the opposite direction 80 long a8 it is 
below its mean height. This is al80 the case with tbe 
tide, except 80 far as this circumstance may be modified 
by the varying depth, breadth, &c., of the river. It is a 
common error to suppose that the flow up the river ceases 
when the tide begins to fall. The flow in a uniform canal 
continues for three hours after tide. But if the depth 
and width be decreasing, if there be any friction among 
the particles of water, if there be any impediments to 
the progress of the wave, as a barrier or a series of 
bridges, the theory shows that this interval will be much 
less, and observation confirms the result, for the mean 
interval at which slack water follows high or low tide at 
Deptford has been shown· to be thirty-seven to forty 
minutes. 

The height of the tide wave also experiences many 
alterations due to the varying circumstances of the river. 
If the tide be stopped by a barrier, or if we are consider
ing the tides in a gulf like the Bay of Fundy, theory 
shows that there will be tide waves reflected from 
the barrier, and the height of the tide at the extremity 
may be greatly increased. If the breadth or depth de- . 
crease, the height of the tide will be increased, particularly 
by any decrease of the former. On entering any river, 
then, we may expect the tide to be greatly increased. The 
magnitude of this change depends on the breadth of the 
wave, and this again depends on whether the tide be 
formed by the sun or moon; hence the ratio of the tides 
formed by the two luminaries will not be exactly the same 
at all places. But when the tide has entered the river, the 
friction of the particles of water causes the disturbance to 
diminish in geometrical progression as it goes up the river. 
H At the entrance of the Bristol Channel the whole rise 

• Phil. Trans. 18.2. 
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at spring tides is 18 feet, at Swansea 30 feet, at Chepstow 
about 50 feet." " At N ewnham it is reduced to 18 feet, 
and it is sti1lless at Gloucester." 

The form of the wave itself is also changed in its progress 
up the river, if the channel is 80 shallow that the height of 
the wave bears a sensible proportion to the depth. It is 
in this ease necessary to carry our solution of the Hydro
dynamic Equations to a second or third approximation. 
When this is done we find that the high water travels up 
the river with a greater velocity than the phase of low 
water; the wave becomes steeper in front, and long and 
gentle in rear. Thus it takes less time for the tide to rise 
than to fall. " In the St. Lawrence at 40 leagues below 
Quebec, the rise and fall occupy equal times; at 6 leagues 
below Quebec, the rise occupies five hours and the faU 
seven hours; at twenty leagues above Quebec, the rise 
occupies three hours and the fall nine hours." The rule 
given by theory is, that the excess of the time of the water 
falling over the time of rising is six times the product of 
the time occupied by the tide wave in passing from the 
open sea to the station under consideration, and the ratio 
of the rise of the tide above the mean depth to the mean 
depth. In this change of form we find an explanation of the 
bore. Two things, says Professor Airy, are necessary for 
its formation. There must be a large tide rising with 
rapidity, and the channel of the river must be bordered 
with a great extent of fiat sands near the level of low 
water. The tide rises rapidly in the centre of the river, 
but the water is not broken. But, the rise being very 
rapid, the water is elevated above the sands faster than it 
can cover them, and therefore rushes over them with a 
great velocity and a broken front. As the tide proceeds 
up the river, a still more extraordinary change of form 
takes place; the middle of the rear becomes less and less 
steep; it is at last horizontal, and finally slopes the other 
way. Thus for every high tide at the mouth there may 
be'two unequal high tides at a distance up the river. In 
accordanoo" with this, Mr. Russell has observed a double 
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tide on the Dee. 00 going to a third .pproximation~ 
triple tides are found poesible, and this occnrs on the 
Forth. When there are barriers in the river, as the 
land at the termination of the GolC of Fundy. the reflected 
wave is snch that there is no horizontal motion at the bar
rier, and that the tidal elevation at the mouth, caused 
partly by the sea and partly by the reflected wave, ahaIl 
altogether be equal to the tide in the sea it8elf. Hence 
just as in the case of l!Ound waves in a tube, there will be 
" nodes" and " loops," if I may so call them. At some 
places there might be no tide, and at others there will be a 
rising and falling of the water, but no wave will be pro
J»e,aated along the channel. This is called a stationary 
tide. The· usual case is that which corresponds to the 
"fundamental node." There will be high water at all 
parts of the gulf at the same moment, and the tide will be 
greater the greater the distance from the mouth, and at 
the termination will be double that at the mouth. But 
when there is friction in the water, this is not exactly the 
case. It can be shown that then a tide wave does roll up 
the ri\"'er with a velocity different from that proper to the 
depth, and the end of the flow follows close upon high 
water. The height of the tide also mayor may not in
crease as it travels along, according to circumstances. 

In canals adjoining two tidal seas in which high water 
does not occur at the same moment, the motion of the 
water must be found by the same kind of reasoning. 
But as the result is complicated. we shall not consider 
this case. 

The motion of the tide in channels deeper in the middle 
than at the sides, as, for instanoo, the English Channel, 
has also been considered by Professor Airy. The velocity 
of the phase is greater in the centre than along the sides. 
The tide wave will, therefore, become slightly convex, and 
the velocity being always normal to the front, it will 
assume such a shape that the part of the normal intercepted 
between two consecutive positions shall be proportional 
to the velocity of the wave along thllt normal. Thus the 
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tide curve along the shore will assume a position nearly 
parallel to the line of CORst. The phenomena of the 
motion in mid-channel will therefore be the. same as that 
in ordinary channels, and the direction of the current will 
change only when the water is at its mean height. But 
near the COl1st there will be a reflected wave from the coast, 
and the phenomeua of motion will more resemble that of 
the tides in a short gulf i the direction of the cnrrent will 
therefore change at high and low water. At places inter
mediate, intermediate phenomena will take place. Thus 
the direction of the current will be intermediate between 
the direction of the current at the centre of the channel 
and that along the shore. A little consideration will show 
that on one side, the current at any spot will, in one com
plete period from high to low water, go round every point 
of the compass in the direction of the hands of a watch, 
anel on the other side in the opposite direction. The for
mer phenomena are found to occur on the English side of 
the Channel, the latter on the French side. 

Such are our present theories of the tides. It may be 
said that we have almost obtained a complete explanation 
of river phenomena. The great difficulty is with the 
ocean. In mathematical language we can solve the ques
tion of the motion of the tide in one dimension but not in 
two. Philosophers have been of late very assiduous in 
collecting the" facts" of oceanic tides, rightly considering 
that such knowledge will enable us greatly to advance the 
theory. Many interesting papers on this su1tiect will he 
found in the Philosophical Traneactions, and to these we 
must refer our readers. 

The first step was the construction of what is called 
"co-tidal lines." These are curves drawn through all the 
places on the globe which have high water at the same 
instant. By drawing these lines for the successive hours 
of the day we can trace the progre88 of the tide wave over 
the whole globe. A beautiful map of these will be found 
in Johnston's Physical Atlas. It appears that the tide 
wave travels east to west in the great South Seas, as a 
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forced wave following the moon. On reaching the Cape of 
Good Hope, one tide wave is aent up the Atlantic north
wards, and another continues its course into the Pacific, 
and travels westwards and northwards up the west coast 
of America in a very remarkable manner. The tide wave 
in the Atlantic travels, therefore, from the south north
wards, and arrives at England fourteen hours after it left 
the Cape. It here sends branches into the English and 
other channels that environ England, while the chief wave 
continues its progress northwards, sending other tide waves, 
travelling from north to sonth, down the same channels. 
Two tide waves arrive, therefore, at the mouth of the 
Thames, and the London tide is compounded of these two. 
One has travelled along the south coast in seven hours, 
and the other has gone all ronnd Scotland and descended 
the German Ocean in about twenty hours. The difference 
of these intervals is about twelve hours; thus the two 
semi-diurnal waves arrive in nearly the same phase and 
strengthen each other, and the two dinrnal waves in oppo
site phases and destroy each other. There is therefore at 
London no diurnal variation of the tide. These two 
tides, though they meet at the Thames, do not travel in 
exactly opposite directions. They both travel a little 
eastwards, in direct opposition to the motion of the moon. 
They are both also greatly modified by the many shoals 
found in those seas. As may be supposed there are points 
where the two tides meeting in opposite phases, even the 
semi-diurnal tide will be destroyed. Captain Hewitt has 
discovered such a point. It is situated about latitude 
52t 0 ; there is simply an alternate tidal current, but no 
elevation of the water. 

The tide wave in the Atlantic is probably partly formed 
in the Atlantic and partly derived from the South Seas. If 
it were entirely formed in the Atlantic, as the length of 
that sea from south to north is greater than its breadth, 
the tide wave wonld have a tendency to travel partly along 
its length, with a very irregular velocity, and partly along 
its breadth. If the tide were entirely derived from the 
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Southern Ocean, the tide wave would travel along its 
length with a velocity proper to its depth. This, as may 
be supposed, is very irregular. The mean velocity of the 
tide wave would indicate a mean depth of three and a 
half miles. 

Again, if we suppose that a tide wave would be re
flected from the northern coasts of America, and regard 
the Atlantic as a gigantic closed gulf leading out of the 
South Sea, the velocity of the tide wave would not merely 
depend on the depth. U ntU we know more of the nature 
of the bottom of the sea, we cannot determine theore
tically the motion of the tide wave. 

By theory, the diurnal tide wave should be very small 
near the equator and poles. But this is not the case. 
The reason is manifest. We have neglected, in our theory, 
the effect of the configuration of the coast. The importance 
of this is manifest from the slight sketch we have given of 
the progress of the tide over the ocean. 

It is impossible for us to do more than merely allude to 
the effect of wind, shoals, &c. on the tides. Neither can 
we enter on the question of aerial tides. That such tides 
must exist is evident, for the attraction of the luminaries 
will disturb the air as well as the water. The extent of 
these oscillations have even been determined by very ac
curate observations of the barometer. The variations of 
pressure, 8S indicated by the barometer, also affect the 
ocean tides in a remarkable manner. Daussy, Lubbock, 
and Birt have investigated the amount, and shown that a 
rise of one inch of barometer will cause a depression of 
the tides of 7 inches in London, 11 at Liverpool, and 13 
at Bristol. 
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No. I.-GALILEO. 

SOME uncertainty exists respecting the decree or sentence 
against Gailleo, and the Copernican Systein. The advo
cates of the Romish Church, indeed, deny that it \Vas 
pronounced against the doctrine of the earth's motion and 
the Bun's rest, and affirm that the sentence was against 
Galileo personally, on account of his breach of the pro
mise which he had made to Paul V. (Borghese), and the per
formance of which he evaded by giving the doctrine in the 
form of a dialogue. It is also alleged that the sentence 
is pronounced by the Inquisition, and not by the Holy See. 
Of this there can be no doubt; but it sets forth a previous 
"declaration of the theological qualifiers, made by de
sire of His Holiness, as well as of the Inquisition," 
that the Copernican system is "absurd and philoso
phically false and formally heretical, because expressly con
trary to the Holy Scriptures." This seems to go beyond 
the mere assertion that it is only false as being unscrip
tural. There is, however, no doubt that the alleged infal
libility of the Holy See is confined to matters of faith; 
and thus its advocates have some ground for their asser
tion, that the heretical nature of the doctrine was alone 
set forth both in the sentence on Galileo and in the previous 
proceedings. The supposition that he was subjected to 

EE 
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torture in order to obtain his recantation, appears to rest 
on no fonndation, except the use of the terms rigorous 
examination (rigoroso esame), said to be the form in 
which torture is referred to by those sentences. But 
the story is completely negatived by Galileo's own letter 
giving an account of the manner in which he had been 
treated, acknowledging the respect paid to him, and the 
lenity of his imprisonment, or rather nominal detention, 
in his friend the Archbishop of Piea's (Picolomini's) pa
lace. (Tirllboschi, Lett. ltal. tom. viii.· lib. ii. p. 147.) 
It is probable that the story of his whispering to a friend 
"E pur si muove," ("And it moves for all that,") when 
be rose from his knees, on which he had made the re
cantation, rests upon no better foundation. Nothing can 
be more unlikely, at least, than his choosing such a 
moment for this pleasantry - a moment of great though 
forced humiliation, when he had in the most solemn man
ncr called God to witness, that "he abjured, cursed, and 
detested" the positions which he entirely believed; 
nothing more unlikely than his exposing himself to the 
risk of his words being discovered by immediate examina
tion of the person whom he addressed. 

But it seems still somewhat doubtful bow far the sen
tence upon GaJileo has been reversed. His" Dialogue" 
had by decree of the" Congregation of the Index" been put 
into that list of forbidden books; and Leo XII. (Genga) 
nearly thirty years ago ordered it to be expunged from 
that list. Mr. Drinkwater (Life of Galileo, p. 64.t) 
statcs that it llUd not been erased in 1828. Mr. Lyell 
(Principles of Geology, p. 56, edition, 1853), considers that 
this assertion is inconsistent with the account which he 
received from Professor Searpellini at Rome, in 1828, 

• Viviani, who is described as devoted to Galileo more than a son to 
• father, and who attended his master for the last three years of his life 
(}{ontucla, ii. 290.),: gave not the least countenance to the exaggerated 
accounts of his treatment. 

t Published by the Useful Knowledge Society in 1829. 
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that Pius VII. (Chiaramonte) had assembled the Congre
gation "which repealed the decree fLoO"lUnst Galileo and the 
Copernican system," with only one dissentient voice. It is, 
however, possible that the Index might still retain the name 
of the book. It must also be remembered that nothing can 
be more inconsistent with the usual proceedings and policy 
of the Roman See, than making ~uch an admission of 
error as is involved in the repeal of a sentence pronounced, 
and purporting to proceed upon the ground of heresy. 
There can be no other explanation given of such a man 
as Beuedict XIV. (Lambertini), the friend and patron of 
Boacovich, the correspondent of Voltaire and other lite
rary men, himself an eminent cultivator of letters, and 
remarkable for the liberality of his opinions, suffering 
the sentence on Galileo to continue the disgrace of his 
church. 

It must, however, be borne in mind, that probably BOon 
after Galileo's condemnation, certainly for the last century 
or more, the prohibition to teach the Copernican system 
was little more than nominal; nothing else was required 
than to term it the Hyp·ot~esis, and not the doctrine, 
or theory, of the earth's motion. The declaration of the 
Fathers (Leseur and Jacquier) accordingly calls it an Hy
pothesis. They regard the proceedings in Galileo's case, 
(to which it is manifest that their words refer) as a decreo 
against the motion of the earth. But many have sus
pected that this is a covert attack on those proceedings; 
and certainly, considering the time of the declaration ap
pearing, when Benedict XIV. was in every way promo
ting science and letters, and pursuing generally the most 
liberal and enlightened policy, this supposition is not 
without plausibility.-It must be added that whenever the 
outward deference to the decree of the Consistory was 
shown, the doctrine, under the name of Hypothesis, was 
openly taught, with the utmost freedom in giving the 
proofs whereon it rested. 

BB2 
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No. IL (p. 58).-ANOTBERDEKONSTRATION. 

T AIlNG the expression ~ for the force and making it 

hi r 
= the general form pI R where h is constant, we have 

hi r fA. r. R =;t. This is a differential equation of the second 

order, and it can have but one general integral, and that can 
contain only two arbitrary constants. Such an integral has 
been found; for it has been shown that any conic section 
with the focus in the centre of force satisfies the equa
tion. The nature of the case shows that any singular solution 
is out of the question. We may also arrive at this result 

by reversing the process in p. 49. Substituting for R, h: x 
p 

dp _ fA. dp fA. dr • • 1 _ 2". 
dr - ri and pI = -hI ,-2' and lDtegrating, pi - h' 

(~+ C). This is a well known property of all conic sec

tioDs; but to show that no other curves possess it, put 

-, -
1 h' 1 t d U h fi d fl.I t ;. = U j t en smce it = U + d 9: ,t ere ore ni + U = 

fA. du 
2 he. U + C, and therefore V ~-

• 2". u 
C + -h2 - - u l 

= dl. 
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u -~-
Th • gral f tho call· , 11" I. -I /,1 e IDte 0 IS, 109 C + h4=L, 18 cos L 

--1 II' -. = 9-«, or ;. = U = hi+L cos 6-«, the general equa-

tion to a conic section. 

No. I~I.-FoRCE VARYING INVERSELY AS THE 

DISTANCE. 

IT is remarkable that what at first sight seems to be the 
most simple of all the cases, that of the central force "~ry-

inu: inversely as the distance, or of m = 1 in -'=-, should be 
~ . rm 

found so much the most difficult of solution, and that, 

whether the proportion of ~ enters into motion related to 
r 

one centre only or to more centres than one. Herman, 
in the Phoronomia, turns away from it, merely obscrving 
that his formula fails when m = 1. Clairaut, in his excel
lent commentnries on the Principia, his additions to Madame 
du Chatelet's tran!!lation, dcduccs, chiefly from thc Pro
positions of the Second and Eighth Sections (Lib. I.), a 
general differential equation for the curve described by a 
body under thc influence of a centripetal force as Y, a 
function of the radius vector; and the equation is there
fore a polar one. It involvcs the integration of ! Y d y. 

1 
Consequently, when Y = -, the case we are now con

y 

siJel"ing, the integral contains an unmanageable logarithm; 
.B .B 3 
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d!l 
for the equation becomes h".r dz = Y(2 B _ 2j~Y)~ 

dy - ------~----~1· He makes no mention of this 
y" (2 B - log !!")~ 

case, 11.8, like Herman and most others, he seems unwilling 
to approach ito; undoubtedly, however, such is the applica
tion of his formula. 

Keil, in his paper on Central Forces in Phil. Trans. 1708, 

p. 174., gives the case of the force as!. and reduces it to 
r 

finding d t = P, the perpendicular to the tan-
(h -logr) 

gent. 
By one process grounded on Prop. XLL Lib. L, this 

result is obtained for the case of; that is 1 1 

r (z" + V") T 

r r 2 d z d" z + 2 d!l ,p !I -f (z d z + y d y) 
J J d t2 - 2 iA' :r + y" , or 

f dzl + d!l2 
d t2 - 2 log (Z"+!I") -c = 0; and d t 2 being 

(v d z - z d !I)2 • ~d Zl + d Vi = 11 , the equation becomes (d d )1 C !I z-z V 

-~ log (Zl + !I") + ~= O. 

hr 
The process grounded on the formula f = 2 P a • R 

is, if possible, more hopeless; for this gives 
1 

h ('12 + (z - C)I)~ X Cd z d" !I - d Y d" z) 
2 (y d z - z d!l + cd !I)a 

1 _ -----~I' or h (v" + (z - C)2) (d Z d2 !I-
(p2 + (Z_C)2)1 
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) hdy 
d !I ,p z = 2 (y d z - z d !I + C II y)3, or d x· = 
r 2 (y d z - x d!l + C d y)3 

J d Xl <.JI + (X-C)2) • 

The difficulty follows .!. wherever that proportion en
r 

ten into the investigation. Thus in the problems con
nected with different centres, when it is found that 

forces varying as ~ and i-1.' being combined with forces 

varying as the distance directly, or as rand '1, give 
an elliptic orbit, the resultant of the latter forces passes 
through the centre, and the locus of that resultant is 
the opposite semi-ellipse, and so of a. circle. But when 

the proportion is .!. and .!, (also if the force towards 
r '1 

each centre is as the radius vector to the other centre,) the 
resultant passes through innumerable points to an opposite 
curve, sometimes of a different kind, although each result
ant differing in its direction from all the others, and in the 
case of the circle, from the diameter, is equal to the one 
passing through the middle point of the line joining the 
two centres. In this case, therefore, there is no combined 

action of the forces ~ and ;, or ~ and ~ or of their seve-
r '1 r '1 

ra1 resultants, with the resultant of .!. and.!, as there is in 
r '1 

the case of ~ and ~, but the several forces act wholly in 
m m 

the direction of the radii vectores severally. 
It evidently appears to be a more simple and natural 

combination that the two sets of forces should diminish 
BB4 
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with the distance increasing, as in ~ and ~ combined 

with.! and ..!, than that one set should decrease and ano
r q 

ther increase with the distance, as in ~ and ~ with T and 
r 9. 

q, in which case there must even be an extinction of force at 
one point, where (taking the sum of the forces instead of 

1 · I )m m r+q • . h • t lClf resu tunt -2 + ~::: --, or r IS as 10 t e equatIon 
T q m 

. (i-m' 
r3 + --- r2 = m2• Of course the value of n would be q2 ~ 

the same; and the rcsultant (more accurately taken to 
measure the increase of the force) would at one value give 
the two sets of forces as countcrbalanced. 

The younger }<;uler (J. A. Euler) has 0. paper in the 
Berlin :6-Iem. 1760, p. 250, upon tIle action of a central force 
decreasing as the distance, in the case of the attracted 
body'~ descent towards the centre, and states the reason of 
this problem being insoluble exccpt hy arcs or logarithmt'o 
He finds that t.'lking a= the height from which the descent 
begins, f = that at which the centripetal force is equal 
to the gravity of the attracted boJy, the time of descent 

If-towards the centre is = - d!J b . ,.;-;. ,!J emg 
J, _ a 

";)00' -
, 0!J 

the dis-

tance from the centre. 

No. IV. 

CENTRAL FORCES TO MORE TIlAN ONE POINT. 

1. IT is to be lamented that Sir I. Newton did nllt treat 
the problem of forces directed to more fixed points than 
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one, as to two such points, either in the same or different 
planes from the body acted on. This is the' fundamental 
point in considering disturbing forces when the centres are 
not fixed, which makes the problem more complicated and 
difficult. It is, however, sufficiently so even where the 
centres are fixed. 

2. That the subject must have attracted his attention 
there can be no doubt. He had gone so much into the 
more difficult inquiries respecting disturbing forces that he 
must have fully considered the somewhat simpler, what 
may be termed the fundamental, case of fixed centres. In
deell, a paper communicated to the Royal Society in 1769 
(PM1. Trans. p. 74.) contains a demonstration by W. 
Jones, an intimate friend of Newton, of a proposition on 
this subject, which Machin had immediately after Sir 
Isaac's death given to the translator of the Principia. 
Machin had observed on the want of some investigation of 
the motion of forces directed to two centres, as required 
to explain the motions of planet and satellite, which gravi
tate to different centres, in a word the problem of the 
Three Bodies. The proposition of Machin and Jones goes 
but a very little way to supply the defect complained of. 
It is confined to the case of the line joining the two centres 
being in different planes from the line of projection; it is 
that the triangle formed by the radii vectores and the )jne 
joining the two centres or fixed points, describes equal solids 
in equal times round' that line; and the demonstration is 
similar to tha~ of the first proposition, of equal areas in 
equal times when a. single force is directed to one centre. 
It seems reasonable to conclude, that Newton had, upon 
full consideration, found the full investigation of the subject 
beyond the powers of the calculus as it then existed. It 
is at least certain that, though he might have mastered 
it, he never could have delivered his results synthetically 
as in the Principia. 

3. The solutions on disturbing forces generally consider 
one force as acting in the one direction, that of the radius 
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vector, and another in a line perpendicu1ar to that radios 
vector. Thu8 Clairaut (Mma. J4cad. 1748, p.436.) gives 
these equation8 rd'" + 2drd" = ndzl 

rdv'-d'r 

r being the radius vector, " its angle with the axis, dz the 
differential of the time, IT the force to the centre, I the 
disturbing force. So D'Alembert (Mma. J4cad. 1745, 
p. 365.) takes the same COUl'8e, and obtains an equation 
to the orbit in question, depending on the integration or 

fn d z, IT being the disturbing force acting in a line 

perpendicular to the radius vector, and z the circular arc 
described with a radius equal to the distance between the 
ccntre of force and the vertex of the orbit. This assumes, 
however, that the orbit is itself nearly circular. 

4. If P = distance of E (Earth) from Moon (M)'s 
quadrature, s = sin. angle of rad. vee. r with the per
llendiculnr to a, the distance of E from S, the Sun; 

• rdP 3P'mnsd,. 
v = velOCity of M; then "d" = -p + a l , 

supposing the motion of M to be almost uniform. Here 
ODe of the forces acting on M is directed towards E and 

• E+M SxME h th fi •• lin 
11 = .M Ell - + ~ l\P ; teo er orca 18 mae 

• S x SE S 
parallel to S E or a, and IS = ~ Ail - ~ E:1' It was 

in consequence of this investigation that Clairaut for some 
time announced, 118 did also Euler and D'Alembert, that 
there was a matcrial error in the Newtonian theory of the 
Moon's motion. The error, which afterwards was found 
to ariso from their having omitted tile consideration of 
certain quantities, was acknowledged by Clairaut three 
ycl\l'8 ll\tcr (Mem. J4cad. 1748, pp. 421.434.), but no one 
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can read that paper without feeling that the acknowledg
ment WAS too coldly made, After he had gone 80 far as to 
suppose that the whole Newtonian doctrine WAS over-

1 1 
thrown, and to propose a new la\v of j:i + r4' the whole 

of this arising from his own error. It is to be remarked, 
however, that the investigation of 1745 was in all respects 
most accurately conducted, and must have led to the same 
result AS in 1748 but for the supposition that certain qnan
tities might wely be neglected. Even in 1745 Clairaut, 
upon Newton's assumption of the excentricity of M being 
nothing, comes to his conclusion that the proportion of the 
axes is as 69 to 70. 

4. Legendre treats the subject very fully, AS far as re
gards two centres, and 11.180 confining himself to the forces 
being inversely as the square of the distance (Exercises 
de Calcul. Integral. part iv. sect. 2.). He deduces from 
his analysis several theorems, two of which he regards as 
very remarkable. The first apparently strikes him in this 
light, because it shows the same orbit to be produced by 
the combined action of the two forces directed towards 
two foci, as either force would produce acting on the body, 
and directed to one of the foci. If V is the velocity at the 
vertex of the ellipse which would make the body de
scribe that curve when acted upon by the force directed 
to one focus, v the velocity at the same point which 
would make the body describe the ellipse when acted 
upon by the other force directed to the other focus; then 
if the t\VO forces act together upon the body, and I is the 
initial velocity, or velocity of projection, it will describe 
the same ellipse, provided II = V'J + v'. 

5. The other theorem follows from his integration which 
gives the expression for the time. It is that if two equal 
forces nct upon the body directed to the two foci, and the 
masses of the attracting bodies consequently are equal, the 
revolving body will describe the ellipse in a shorter pcri-
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odic time, will move more swiftly, than if the whole 
mnss were placed in one focus and acted from thence 
upon the revolving body. He takes the example of the 
tangent of the orbit with the axis making an angle of 30", 
and finds the periodic time shorter in the proportion of 
nearly 78 to 100 when the attracting maee is divided into 
two, one acting in each focus, than when both combined 
act from one focus. 

6. What renders this problem of more centres than ODe 

80 difficult, is that the resultants of the forces pass through 
different points, and that they vary by a law which ditrers 
in each case, ns the locus of their extremities is a ditrerent 
curve. Take the least complicated, but still full of diffi
culty, that of two fixed points as the centres of force, and 
take thc instances in nature of the forces being inversely 
118 the square of the distance; the radius vector to one 

point being r, the force ~; to the other point the radius 
r 

vector q, the force ~. Now the force which acts on 
q 

the body being the resultant of these two, and these forces 
not being 118 rand q, the diagonal does not pass through 
the middle point of the line joining the two centres; except 
in the single point of the orbit where r=q, and even then 

• t hthtl' fi" ¥2m It may no reac a IDe, or It IS -~-' • At every other 
r 

point it runs in a different direction. Let Sand 8' be the 
two fixed points; S P=r, and S' P=q. Then P a being 

taken = ~,and Pa' = -':-, the resultant at tbat point 
T q 

P bisects a a Rnd is P c, and produced, P ]\{ cutting the 
axis. From hence may be scen how complicated would be 
the analysis, how next to impossible the geometrical con
struction of thc locus of P, by referring the Jines PM to 

Digitized by Coogle 



APPENDIX. 429 

S S' as an axis. We know indeed that one of the forces -~ 
r 

or "! acting towards S or S', the locus of P is an ellipse; 
q 

_-(----"'---- 2;' 

) 
but it would not follow that if both forces acted the same 
curve would be the locus. That the force would be differ
ent is certain, because it would be as P c, and not as either 
Pa or P a'. But it may be said that the curve also would
be different. Let us, however, suppose the case of the 
curve, whatever it be, cutting the axis S S' produced at 
~ and ~/, points equnlly distant from Sand S', so that 
S~ = S' ~'; also thatthe angle and the initial velocity of 
projection from :E and I' is the same, and fnrther that the 
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attraction as the mass is the same from Sand S', or that 
the mass of the body in S and in S' is the same; then 
it seems impossible to avoid the conclusion that an ellipse, 
and the same ellipse, must be described; because one of 

the forces alone acting from S, as -;, would give the 
r 

ellipse passing through ~ and ~'; Rnd the other force alone 

acting from S, as ~, would give the ellipse passing through 
q 

the same points ~ and l:'; and the initial velocity· and angle 
of projection would prevent any difference in the length of 
the conjugate axis; and in the middle point answering to 
the centre C, the equality of rand q and of Pa and Pa' 
would make the diagonal Pc coincide with the conjugate 
axis. But a further combination of forces may be sup
posed in this case; two forces acting towards the points 

Sand S' and in the proportion of r and 9., or .!:.. and .!L. m m 

How will this addition affect the locus of P? It should 
seem, for a reason similar to that before given, that the 
curve would remain the same; for the two new forces 

~ and !l, acting in r or q or PS and PS' respectively, 
m m 

their resultant must, if there were none other acting, pass 
through the middle point C, between Sand S'; and as we 
know thnt a force acting from that point, and in proportion 
to the distance from that point, causes the body to move in 
an ellipse whose centre is that point, and r + 9. being con
stant, the ellipse must have the same axis and coincide 

• • The condition of Legendre (mentioned in page 427). that II = Y. + v' 
1~ SUppo8ed to hold; for otherwise the centrifugal force woDld not be sufli. 
ClOnt to ballLllCC the centripetal. 
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with the ellipse produced by the combination of the forces 

m and m. 
7 2 9" 

7. This had appeared to be a nece88ary consequence of 
the conditions stated, but not as at all proving the ve
locity to be the same in the ellipse, when described by 

m m 
one force 2" or 2' or when described by the combined 

7 9. 
action of both, or when described by the' combined 

action of ~ and _f[ , or of "!, m2, .!:., and !L; be-
m In 7 lj m m 

cause in all those cases the velocity will be different, and 

particularly the action of ~ + ~ with -!'! +..!i will occa-
7 m 9. m 

sion &different velocity in each point from that occasioned 

m m 
by -. + I' Thus to take the velocity at one point 

T 9 

answering to C. If IIIX and II" be taken as m. and~, the 
7 9. 

diagonal IIc' is the force of "! and "! combined, IIC isthe 
r 9. 

resultant of ~ and 1combined(supposingm=l). There-
711 m 

fore the velocity in II will be as IIe' + IIC, when nIl the 
forces act, and only as ne', when the two former act alone, 
and as IIC when the two latter act alone.- But the curves 
appear to be the same in each case. 

s. These consequences seeming to follow from Il con-

• The difference in velocity is easily obtained, in comparing the effect of 
one force and of the combined forces,.from the equation_v' ... :z (fx half chord 

osculatingcircle, tho chord being - 2 P • R, P =perpendicular to the tan
r 

gent, and R = radiu8 of curvature. 
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eideration of the conditions stated, but without a full and 
rigorous investigation, it was very satisfactory to find that 
L~arange had arrived at the same conclusion in one case 
of his sollltion of the problem el two fixed centres t Mec. 
AnaL pt.. ii. sect.. 7. ch. 3.) That solution is marked 
throughout with the stamp of his great genius. Euler had. 
in the Berlin :Memoirs for 1760, treated the case of the 
inverse square of the distance and the centres and orbit 
being in the same plane. Lagrange's solution is genernl for 
the force being as any function of the dist~ce, and of 
:E, y, z, being the coordinates. Pressed by the great 
difficulties of the problem, and the impossibility of a ge
neral solution, he first confines himself to the inverse 
square of the distance (p. 97.), and a general integration 
being still impossible, even after obtaining a differential 
equation with the variables separated, he makes a supposi
tion which enables him to obtain two particular integrals 
(p. 99.), and this gives for the orbit an ellipse in the one 
case and an hyperbola in the other, with the foci in the 
two centres of force; and it follows, he observes, from the 
investigation, that the same conic section which is described 
in virtue of a force to one focus. acting inversely as the 
square of the distance, or to the centre and acting in the 
direct ratio of the distance, may be still described in vir
tue of three such forces ( " trois forces pareilles·"). tending 
to the two foci and to the" centre." He adds: "ce qui est 
tr~s remarquable" (p. 101.). It having appeared to many 
persons that a portion of the demonstration was not 80 

rigorous as might be desired, M. Serret has very ably 
and satisfactorily supplied the defect (Mec. An. tom. ii. 
note iii. p. 329. ed. 1855), but he· arrives at the same 

• It is plain that "pareilJes" does not mean J of the same kind as ~ 
q-

IUld .. ; for he resolves the force to the centre into two acting to the foci, 

and calls the whole forces a + 2 ., r and .!.. + 2 ., q. 
;Z ql 
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result. There is also given a very important generalisa
tion of Lagrange's solution, and of Legendre's theorem 
already meniioned, by Y. Ossian Bonnet. (Ibid. note iv.) 

9. The same reason already given proves that if, instead 
or two points not in the trajectory we take two in it, as ~ 
and ~', and refer the forces to those two, and make the forces 

"! and ~ in ~II' and ~'II' respectively, and the angle of 
T 9 

projection and initial force the same, the same circle will 
be described by the body; and that if two other forces 

alao act on it, as ~n' and ~'n' (or ~ and!) the same 

circle will be described by the joint action of the forces. 
This is even a more remarkable consequence than the 
other; because the forces acting to the centre would of 
conrse give a uniform motion, and those acting to the 
points in the circumference an aceelerated motion, and the 
forces combined will give an accelerated motion. At the 
middle point II, the velocity will be, if only the forces 

m m .vm. T lJ 
rA and? act, as 2(.ii if the forces in and Wi also act, it 

will be as V ,mat + 2,:. It must, however, be added, 

that Lagrange's solution does not contain this case, of the 
circle and two points in the circumference, and there is very 
great difficulty in applying to it his analysis. Indeed, it 
appears that if the problem be worked .upon the datum 

of R = ~ + 2 "lr, and Q = ~ +2"19, there is no possi

bility of obtaining an expression freed (rom the integral sign 

(f) in the same way as Lagrange does from his equa-

tion, founded upon the datum R=; + 2"1 rand Q = ~ r . q 
F F 
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+ 2 'Y'l; m = - 2, and consequently m + 2 = 0 seems 
necessary to his proeesa. 

There seems reason to suppose that the kind of reasoning 
on which we have relied as to the identity of the trajectories 
had intluenced Legendre in confining his investigation to 
the case of curves which have not infinite branches. He 
expresaly says (Ex. de Calc. Int. 11. 372.), that he 
confines himself to curves where the orbit is restricted to 
a definite space. Certain it is;that the reasons applied 
to the identity in the case of curves returning into them
selves is wholly inapplicable to curves having infinite 
branches. 

10. The extreme complication of the problem arising 
from the resultants pasaing through innumerable points in 
the axis has been above noted, as regards the ease of two 

Ii m m orees only ., and -;. 
r 'J 

When we add the other two 

!. and !l. the complication is not considered by Lagrange 
m m ". 
to be increased (p. 99.), and probably it is not as regards 
the analytical investigation. But it certainly is increased 
as regards the geometrical construction; foJ' we then have 
to take the resultant of Pc with PC (which is the re
sultant of r and 'J), and this will carry the ultimate dia
gonal representing the whole foree applied to P beyond 
the axis S S'. Lagrange indeed does not take P C into 
his analysis, because he supposes the forces r and 'I to act 
in the same line of the radii vectores with the forces 

""! and "!. But this would cause these radii vectores 
r 'J 
to be produced, and make their resultant also fall below 
the axis. It can hardly be doubted that these considera
tions weighed with Sir Isaac Newton, in disinclining him to 
the investigation of a problem which could afford no hope 
of a geometrical, or of any synthetical solntion. That he 
had deeply considered the subject of attraction to various 
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centres, in the more difficult case of moveable centres is 
certain. The justly celebrated LXVIth proposition of 
the First Book affords ample proof of it; and indeed the 
LXIVth proposition comes so near the subject of this 
note, that it may be correctly said to contain the grounds 
both of Clairaut's and Legendre's more full investigation. 

11. In connection with this subject Lagrange expresses 
great admiration of a theorem of Lambert, which no 
donbt is remarkable, that in ellipses (the central force 

being as ~) the time taken to describe any arc depends 

only on the transverse axis, the chord of the arc, and the 
sum of the radii vectores at its extremities. We may 
observe, in passing, that the vanishing of the expression 
for the conjugate axis in some fundamental formull8 con
nected with the ellipse, for example, the subtangent, gives 
rise to other curious properties of the curve similar to the 
one noted in this theorem, which is itself related to that 
peculiarity. (See a porism arising from this circum
stance; Life of Simson, p. 154.) The same theorem had 
occurred to Lagrange himself, in examining the problem 
of deflecting forces to two centres; it is indeed derivable 
immediately from the case of that problem when one force 
vanishes and the centre connected with it is in an arc of 
the ellipse; for then the radius vector belonging to that 
centre becomes the chord. But Euler, long before either 
of them, in 1744, had given the theorem for parabolic 
arcs, which they only extended to elliptic arcs, alld had 
published it in the Berlin Mem. 1760. Yet when Lam
bert claimed it as his own in 1771, and Lagrange gave 
him the honour of it in 1780, Euler, though he lived 
three years after, never thought of reminding them of his 
prior claims. It was thus, too, with the first of analysts, 
respecting the extension of the Differential Calculus to 
that of Partial Differences (Life of D'Alembert, p. 466.), 
by far the greatest step in mathematical science which 

rJ'2 
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has been made since the age of Newton and Leibnitz, if it 
have not a rival in the calculus of variations, the honour 
of which also is shared by him with Lagrange. 

12. It must be observed that when in 1771 (Berlin 
Mem.) Lambert extended the theorem to elliptic arcs, he 
was ignorant of Euler having anticipated him as to para
bolic arcs. But Lagrange truly states (Mee. AnaL ii. 28., 
ed. 1855), what shows that all of them bad been antici
pated by Newton. For in the IV. and V. Lemmas of the 
Third Book he had very distinctly given the whole 
materials of the proposition as far as parabolic arcs are 
concerned. 

Lagrange notes the uses of the theorem, and observes 
upon the remarkable circumstauce of the time not depend
ing at all on the form of the ellipse, provided the trans
verse axis remains the same. This must have frequently 
recurred to his recollection, when engaged in those great 
investigations which show the connection that the trans
verse axis remaining unchanged, has with the permanency 
of the system. 

13. He further remarks upon another consequence of 
the conjugate axis, or the form of the orbit, not affecting 
the time; namely, that the conjugate wholly disap
pearing, and the orbit becoming rectilinear, the theorem 
applies to the time of falling to the centre, on the centri
fugal force or that of projection ceasing to act. (Berlin 
Mem.1778.) But Newton's VIth Lemma, to which he 
does not refer, in some degree anticipated this also. 

14. The great difficulty of the problem of several cen
tres, has been stated. Euler was clearly of this opinion, 
and he was the first that undertook the solution. After 
.peaking of the general problem (Berlin Mem. 1760, 
p. 228.) as alike important and difficult, he confines him
self to the case of two bodies in fixed positions, acting 
Upon a third, which moves in the plane of those disturhing 
bodies; in a word, to the motion of a body drawn towards 
two fixed centres. He says ~bat, whoever undertakes the 
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solution of this less difficult problem "will find difficulties 
almost as insunnountable as in the great fundamental 
problem of astronomy; " and adds that, after making many 
fruitless attempts, he had at last been led to a solutioq, by 
the accident of an error into which he had fallen in his in
vestigation. What he proposes is to find the cases in which 
the curve is algebraical; there being, according to the con
ditions, an infinite variety, most of them transcendental. 
He considers, however, that if this case of two bodies in 
fixed centres, and in the same plane with the body at
tracted,. should be incapable of solution, the general pro
blem must prove still more so. Nothing can exceed the 
clearness of his investigation; and the ingenious subtlety 
of the contrivances by which he facilitates the reduction 
of his differential equations to those of a lower degree. 
Of this Lagrange expresses great admiration, who, in 
giving a solution of the case in some respects more ex
tended, hut in others lcss, becall!e fully sensible of the 
difficulties of the process, and whose investigation is less 
luminous than his great predecessor's. Euler reduces his 
investigation to the integration of the equation 

p.dz 'IIdy 
= ; 

v'z+z3 "'!y+!I 

and obtaining the relation between the angles made by the 
two radii vectores with the axis. It is clear that La
grange's solution is obtained by another course altogether. 

No. V.-LEIBNITZ'S DYNAMICAL TRACTS. 

EARLY in 1689, about a year and a half after the pub
lication of the Principia, there appeared in the Acta Eru
ditorum, of Leipsic, two papers of Leibnitz, entitled, 
"G. G. L. Schediasma de Resistentia Medii et Motl1 pro
jectorum gravium in medio resistente," and "Tentamen 

PI'3 
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de Motuom Crelestium Causis." As these tracts coincide 
in their subjects and in many of their doctrines with the 
propositions of Sir I. Newton, it has been held by some, 
and apparently by Sir Isaac himself, that their author 
had obtained from those propositions the substance at 
least of his own. This is certainly a grave charge against 
Leibnitz; inasmuch as he affirms that he had not seen 
the Principia when he wrote his two papers, admits that 
he had seen an abridgment of it in general terms, and 
expresses regret at not having seen the work itself. He 
further states his inability to comprehend by what me
thods the most important of Newton's discoveries, as de
scribed in the abridgment, the elliptical motion of the 
heavenly bodies, is demonstrated mathematically from 
the data obtained by observation, and the law of attrac
tion governing that motion; a proposition which Leibnitz 
gives as deduced by himself with the aid only of the 
differential calculus. The whole statement, though not 
in direct terms, yet by manifest implication, represents that 
he had made his iuvestigation, and arrived at the result, 
without any further knowledge of the Principia than the 
fact of Sir I. Newton having obtained the same result 
by his process, whatever it might be. 

It cannot be denied, therefore, that the strongest proof 
is required to authorise the belief of his having seen the 
Principia, and borrowed his propositions from thence. But 
instead of proofs there appear to exist only certain sus
picious circumstances. His statement (Act. Erud. 1689, 
January, p. 36.) is perhaps too particular in describing 
llis absence from home on his official journey. Newton 
says that a copy of the Principia had been given imme
diately after its publication, to Facio Duiller, a young 
mathematician, a friend of Huygens and of his own, for 
the purpose of its being sent to Leibnitz; but there is no 
evidence that it reached him. (1l-Iaccleffield MS. Paper 
in Newton's handwriting. Rigaud's lli6torical EISa!!. 
App. Nos. XIX. XX.) The same paper of Newton 
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charges Leibnitz with having endeavolired to appropriate 
Mouton's discovery by denying that he had seen hia work 
before he made the discovery himself.· 

It must unfortunately be added, that Leibnitz's con
duct in the controversy relating to the invention of the 
calculus, leaves an unfavourable impression. There was 
great disingenuousness, to give it no harsher name, in 
John Bemouilli's proceedings, by the confession of his own 
family; and Leibnitz, who had encouraged him, betrayed 
the secret confided to him of his authorship, for the mere 
purpose of grasping at an advantage, by means of the autho
rity which Bemouilli's great name in the mathematical 
world gave to his decision against Newton, whom he had 
opposed by anonymous writings to please his patron. All 
this, however, we must admit, only affords ground for en
tertaining suspicions; and the proof required must be 
sought for in the internal evidence of the works compared 
together. 

The fact of the abstract having appeared in the same 
work the June preceding is admitted by him, 88 is his 
having read it. The account, however, which it contains 
of the Principia is exceedingly general; none of the inves
tigations are given of the propositions which it states that 
the work enunciates. We can only consider it as showing 
that the truths of which it gives a concise summary, are 
proved by the application of mathematical reasoning to the 
known phenomena; and a person so learned in this science 
as Leibnitz could not have read that the Principia treated 
of the descriptions of various trajectories, particularly the 
conic sections, according to various data (juzta varia data, 
p. 308.), without perceiving at once that this must refer to 
dynamical considerations. But especially must he have per
ceived in what manner Newton had conducted his investi
gations, when he found it stated (p. 310.) that the heavenly 

• This WdS probably Mouton's method of interpolation for places between 
those calculated, instead of proportional part&. 
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motions were explained by the propositions in the three 
first sections of the First Book, and still more particularly 
(p. 311.), that from the phenomena and the things contained 
in that First Book, the demonstration was given of the 
elliptical orbits, the principle of gravitation, and the law 
of the inTerse square of the distances, in the case of all 
planets and their satellites. It is manifest, therefore, that, 
without having seen the Principia, Leibnitz may have 
been so far enlightened by the view given of Newton's 
labours, as to be set upon applying the differential calcu. 
Ius to dynamical investigations, and to the motiona of the 
heavenly bodies as the most important of all. He found, 
from the account of Newton's work, that he had succeeded 
in solving the great problem by mathematical investiga.
tion. He never had made any such attempt before; he 
now made it when he found Newton had successfully 
made it ; and to a certain extent he himself succeeded. 

A great difficulty arises in examining these propositions 
of Leibnitz and comparing them with Newton's, from the 
singular. manner of using the letters in the diagrams and 
referring to them, as well as from the inaccurate printing. 
It however appears clearly enough that there are incon
sistencies between different parts of his investigations; and 
Newton, when he breaks off with the words" Newtoniana 
tantum descripsit suo more, Be describendo nonnumquam-" 
after, in partly the @lUDe terms, having charged him with 
imitating fluxions and then erring in his imitation from 
not well understanding that method, appears to have in· 
tended making a similar remark upon his copying the 
uynamicalpropositions. (Rigaud, App. XIX. XX.) No 
doubt, if taken literally, and using the words centrifugal 
force in the sense in which Newton and indeed all others 
use it, there seems the greatest inaccuracy in the poeition 
that it varies inversely as the cube of the distance or of 
the radius vector, this being only true if the curve is a 
circle. But when we find th9.t by coutu. cmtrifu9ru he 
means what would be the centrifugal force in a circle 
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whose radius is the radius vector at the given point of 
the curve, there is no error, and indeed he obtains his 
result in the same way as Newton does, nor could it well 
be obtained otherwise. His XVth proposition equally 
coincides with the equation to the centripetal force de
duced from the VIth proposition of Book L of the Prin .. 
cipia; and the resolving the forces into two, one of which 
is in the direction of the radius vector, is according to that 
propoaition.· By barmonical motion he means motion 
whereby equal curves are described by the radius vector 
in equal times; of which he gives no demonstration. 
Though we may be surprised with several other coinci
dences, it must be remembered that Leibnitz had the 
great benefit of Huygens' theorems on centrifugal forces; 
and if it be alleged that he threw his propositions into the 
form of dealing with centrifugal forces, the circumstance 
just adverted to will account for it without the suspicion 
that he did 80 to distinguish his investigations from those 
of the Principia. Still less have we a rigbt to suggest that 
the attempt at reducing the whole within the scope of the 
hypothesis of vortices was made to conceal his knowledge 
of the Principia. It without doubt originated in the 
favonr still entertained generally in that day for the Car
tesian philosophy, of which not only Huygens was a zealous 
supportert, but Euler himself a disciple, half a century 
later.* 

Upon the whole, we may affirm that the internal evi
dence is insufficient to support the c&arge.§ 

d'r ~. 
• '.l'heexact agreement of hill XVth prop. withoar equadoz1 it-r Ttl -

centripetal force, ,being the angle of the radius nctor with &be ala, II 
to be noted among other coincidences. 

t Letter to Leibnitz against the principle of gravitation, 1690. 
t Mem. Acado Faris, on the Tides, 1740. 
S It should seem tha& M. Biot has, though with some hesitation, arriml 

at the same conclnaion, from several paI8IIgeI of hill most learned and valu
able papel'll in the JolIf'IUJI du 8amll", 1852; • paper which deserves to be 
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diJigeotly Rudied by all who &ake an interest in the history of the mathe
ma&ical puts of the NeW10nian pbilOIOphy. It W88 occasioned by the 
tnai,. admirable pablieaaOll of Mr. Eddleston (nc N,1IIImI GIld Cola Cor
~); and it throws important light npon eome points th.t bad not 
been sWlicien&1y examined. No more profound admiration can be cherished 
for NeW10D than this eminent mathematician constantll and warml,. 
exprelleS; nor can any disciple find the Ie .. reason to complain, nnless, 
perbapl, he might dialent from the obeerTation (p. 275.) on the inferiority 
of the Newtonian notaUOIl and snpposiaon of generatioD compared with 
the Leibnib pIan, as if on the Iauer alone the ea1en1D1 of partial difrereneeB 
coa1d haYe been inYented. The inYestigaUODl from I'p. 458. to 476 .. and 
from 522. to 535. are of grea& importance; they Bbikingly illDBtrate the 
&ciliaes affimled by anaIyacal proeeBI in the solntion of dJll&mical pro
blems; &hey, indeed, show how the propositioDl of SeetiODl ll. and III. 
(Lib. L), are easily dednced from one general anaIyacal formnIa, and maT 
dord Dew ground for the supposition of thoae who think tha& Newton 
inYelUgued alpbraiea1ly, and demolll&ra&ed geomemcall,. JL Biot inclines 
strongly to the belief tha& the abstract of the Principia in the kill Erwli
IrIr-, referred to in the text, wu the work of NeW10n himael£ 

THE END. 

Lo"~OIf: 
rrlnltd by IiPOTT"WOODI It Co. 

. N ..... n ... I.Squaft. 
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