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Preface 

With the increasing demand for multi-purpose use of coastal sea areas in recent years, 
an in-depth understanding of nearshore currents, wave dynamics, sediment transport, and 
their mutual interaction with structures is becoming increasingly necessary. In addition, 
active and energetic research and development of new types of coastal and offshore 
structures and fishery structures have been conducted with much use of numerical 
calculation methods, which have progressed remarkably, together with hydraulic model 
experiments. 

The science and technology of coastal and ocean engineering are closely related to 
harbour and fishery engineering, because they share a common basic knowledge. However, 
whereas various publications of coastal engineering, harbour engineering, and ocean 
engineering have described just the knowledge in their own respective fields, an inter- 
related and systematic presentation linking them together has yet to be attempted. This 
book is the first attempt to systematically combine the fields of coastal, ocean, harbour, 
and fishery engineering from an engineering viewpoint backed by hydrodynamics. 
Understanding the interaction of waves with structures and sediment, and predicting the 
associated responses of interest, underlie nearly every problem in coastal and ocean 
engineering. This is precisely the goal of this book. Although primarily intended for use 
as a special textbook for graduate students and senior practising engineers, it is hoped that 
this book will also serve as a useful reference and assist in the further development of this 
field. With these objectives in mind, each chapter deals with important problems to be 
solved in the near future. The references included in each chapter should aid students and 
practising engineers in further broadening their knowledge. 

The original edition of this book was published in Japanese in May, 1991 by the Gihodo 
Publishing Company, Ltd. I am pleased to say that the Japanese version was well received 
by a large number of engineers and graduate students in Japan. This book is a revised 
translation of the Japanese edition. 

The book comprises two parts. Part I is entitled "Fundamentals" and addresses very 
important areas for understanding Part II. Part I consists of Chapters 1 to 3. Chapter 1 
presents the basic formulation of regular waves and random sea waves, including a review 
of potential flow hydrodynamics, two-dimensional linear wave theory, nonlinear wave 
transformation by means of numerical calculations, and random wave spectra and wave 
statistics. Chapter 2 presents the interaction of waves with structures. Wave boundary 
problems and numerical analyses are focused on, because remarkable progress in 
numerical calculation methods has made a great contribution to solving wave-structure 
interaction problems. Chapter 3 describes wave-caused currents, and the mechanism and 
basic principles of sediment transport. 

Part II concerns Applications and comprises Chapters 4 to 8. This second part deals with 
(i) control methodology such as wave control, sand transport control, and motion control 
of moored structures, (ii) harbour tranquillity, and (iii) fishery structures. This part contains 
much important up-to-date information on structures and methodology, some of which are 
only now beginning to be developed. Chapter 4 examines the wave controlling functions 
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of various types of coastal structures. Chapter 5 develops various structures for controlling 
sediments such as groins, submerged breakwaters and sea-dykes with gentle slopes. 
Concepts of artificial beach nourishment are also described. Chapter 6 discusses structures 
for the use of ocean space. Chapter 7 investigates harbour tranquillity. It should be stressed 
that harbour tranquillity is discussed in terms of the magnitude of a ship's motion while 
the vessel is moored at a quay wall as well as disturbed wave heights correlated with the 
incident wave period and the natural period of the moored ship. Chapter 8 explores the 
hydraulic properties and fish gathering function of fishery structures such as artificial reefs, 
submerged and moored artificial habitats, a buoy-cable system for shellfish farming, and 
floating fishery cages for propagation and aquaculture facilities. These structures are 
presently attracting international attention. 

I wish to acknowledge the devoted efforts of the ten authors of the original Japanese 
edition in writing this English edition. They were once under my supervision in 
accomplishing their doctoral dissertations and are now, at present, professors and associate 
professors of universities. Although very busy in teaching and research, they have 
earnestly devoted most of their off-duty hours to writing book. The sections that they have 
contributed correspond to the research subjects that they have extended from their doctoral 
dissertations and in which they are still seeking greater knowledge. 

I am very grateful to I-ware Company, Ltd. for its great help in proofreading and editing 
the English. Mr. Akira Yoshikawa, the president of I-ware and also my nephew, is 
appreciated for his warm encouragement. In addition, I would also like to express my 
thanks to Gihodo Publishing Company, Ltd., publisher of the Japanese edition, who has 
generously allowed me to publish this English version. 

Finally, I wish to acknowledge the efforts made by the dedicated staff at Elsevier 
Science in successfully publishing this book. 

Toru Sawaragi 
Editor in Chief 
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Chapter 1 Basic Formulation of Sea Waves 

1.1 Introduction 

Elucidating and understanding the characteristics of sea waves are requisites for the 
accurate evaluation of external forces in the design of coastal and offshore structures and 
in the prediction of beach deformations, etc. It is well known that sea waves can be 
classified into capillary waves, ultragravity waves, gravity waves, infragravity waves, 
long-period waves and trans-tidal waves in terms of the wave period and that sea waves 
also can be classified into deepwater waves, shallow water waves and very shallow water 
waves from the viewpoint of the relative water depth, h/L (h; the still water depth and L; 
the wavelength). 

Research on the theoretical description of sea waves has been conducted for many years. 
The theory of permanent-type water waves was first investigated and has been developed 
from what is called a classical wave theory like that of the Airy wave, to a nonlinear wave 
theory such as a finite amplitude wave theory (e.g., Stokes wave theory). Recently, the 
theoretical treatment of non-permanent waves has been energetically investigated in order 
to bridge the gap between irregular sea waves and well-developed permanent-type wave 
theories. Owing to the rapid progress in numerical calculation using an electronic 
computer, numerical analysis based on nonlinear mathematical models is expanding, which 
enables wave kinematics of non permanent-type waves and fully-nonlinear waves to be 
evaluated even at the inception of wave breaking. This was considered almost impossible 
to pursue about two decades ago. 

Since the analyses that will be described from Chapter 2 to Chapter 8 regarding wave 
transformation, wave force, sediment transport, and motions of structures are mainly based 
on a numerical wave analysis method, the main part of this chapter is devoted to the 
description of the numerical wave analysis method dealing with non permanent-types and, 
in some cases, fully-nonlinear wave theories as well such as the Airy wave, Stokes waves 
and long waves as permanent-type wave theories. The wave theories introduced in this 
chapter are based on the assumption of perfect fluid and employ mainly Eulerian equations 
of motion. The effect of fluid viscosity to wave motions is not discussed in this chapter. 
In Chapter 3, however, adopting Navier-Stokes equation, the wave motion in the bottom 
boundary layer is discussed. 

Sea waves in the real sea are not regular, but irregular with different heights, periods, 
and propagation directions. Although theoretical approaches to the dynamical description 
of sea waves have been investigated and are being developed, we still do not have any 
reliable theory that can evaluate wave kinematics well in addition to water surface profiles 
from deepwater to near the shoreline. Accordingly, with regards to irregular sea waves, the 
spectral and statistical properties of a wave will be spotlighted in the latter part of this 
chapter. 

1.2 Regular Wave Theory 

A water wave theory is generally developed under the assumptions that the fluid is 
incompressible and inviscid, the wave motion is irrotational, and the wave is periodic and 
uniform in time and space with the period T and the wave height H. The basic hydraulic 
quantities regarding water waves are the still water depth h, the water surface profile r/, the 
wave height H, the wave amplitude a (--H/2), the wavelength L, the wave celerity c, and 



the wave period, T, as shown in Fig. 1.1. Important dimensionless quantities are the wave 
number k ( -  2re~L), the angular frequency cr (--- 2n/T), the shallowness or relative water 
depth h/L, and the wave steepness H/L. 

i L 
z I 

t o  

Mean location of water particle(x0, 7.o) 
(Small amplitude wave) 

. . . .  

I/A"~/,, ' ,O"I/ /Z  

t 
�9 - - - ~  C 

~ Still water level 

, ' v ' / A V / /  

Fig. 1.1 Spatial wave profile and illustration of symbols 

If the regular wave is periodic in time and space, then c, L and T satisfy 

L 
c = -- (1.1) 

T 

In developing a wave theory, conservation of the fluid mass provides the continuity 
equation, and the continuity equation gives rise to the basic differential equation of wave 
motion. The rectangular Cartesian coordinate system O-x-y-z is employed here, in which 
O is at the still water surface, x is positive in the direction of wave propagation, z is 
positive upwards from the still water level and y forms a right-handed system with x and 
z. Employing incompressibility of the fluid, the continuity equation can be stated in terms 
of fluid velocities as 

oau ~ o~W 
(1.2) 

in which u, v, and w are the three components of a fluid particle velocity and refer to the 
partial differentiation with respect to the arguments. 

The continuity equation in the cylindrical polar coordinate system is 

~ r  the 3W 
+ + - -  = 0  (1.3) 

c)r rcgO c3z 

where, r is the perpendicular distance from a fluid particle to the z-axis, 0 is the angle 
between the xz-plane and the plane containing the particle and the axis Oz, and ur and uo 
are the r- and 0- components of a fluid particle velocity, respectively. 



1.2.1 Velocity potential function and stream function 
The rotational component of the fluid, ~Qx, ~Qy and ~Qz with respect to the x-, y- and z- axes 

are defined 

~ ' 2 x =  & ~ , ~t'-2y = -- , a'-2z = - (1.4) 

Irrotationality of fluid motion yields 

Ox =0,  g2y =0,  g-2 z =0  (1.5) 

If we define a function r such that 

u=--~-,  v=-~--, W = 0 z  (1.6) 

equation (1.5) is always satisfied. The function is referred to as the velocity potential 
function. The existence of a velocity potential ensures that the motion is irrotational. 
Substitution of Eq. (1.6) into Eq. (1.2) yields the well-known Laplace equation 

32~ 82~ 32~ 
+ + _---z--=: 0 (1.7) 

T d z "  

In the cylindrical polar coordinates, the velocities in r, 0 and z directions 
are given by 

c9~ eg~ c9~ ( 1.8) Ur=--'~, Uo--'~, W=---~, 

and the Laplace equation becomes 

32@ 32@ 32r - 0  
Or-- T- + r2302 + ' ~  - (1.9) 

In the case of a two-dimensional incompressible flow, the function defined with 

u=---~, w= OVOx (1.10) 



is referred to as a stream function. Then, noting v - 0 and using Eq. (1.10), the continuity 
equation (Eq. (1.2)) reduces to 

& oM 32W 32~ ' 
- - + ~ =  ~ = 0  (1.11) & & && && 

Existence of a stream function implies that the continuity relationship is satisfied. A stream 
function requires no assumption of irrotationality of the fluid motion, different from the 
velocity potential function. Also, it is well known that W- const, defines a stream line. 
There can be, in general, no stream function for three-dimensional flows, with the 
exception of the axisymmetric flow. On the other hand, the velocity potential exists in any 
three-dimensional flow that is irrotational. 

1.2.2 Green's theorem 
Applying the divergence theorem of Gauss to a vector field, the vector field F and its 

divergence are defined 

f f fd ivF  dr  = ~sF.n d8 (1.12) 

in which V is a closed region bounded by S, S is a simple closed surface, n is the vector 
normal to the surface, dT: is the small quantity of volume, dS is the small quantity of area. 

Now, let the x-, y- and z- components of vector F be X, Y and Z, respectively and let 
F.n be F.n-AX+I.tY+vZ (~.---cos(n,x), /t-cos(n,y), v=cos(n,z)), then, Eq. (1.12) is 
transformed to 

Let scalar fields ~ and gr, together with V2~ and V2~f, be defined throughout a closed 
region V bounded by a simple closed surface S and assume that ~ and gr, and their first and 
second derivatives are continuous. Replacing X with ~(~/t/tgx), Y with ~th/t/o3y) and Z with 
~o~r/0z) yields 

v & & +  
+ 

in which, O/On denotes the directional derivative along the outward normal 
to S and V 2 is three-dimensional Laplacian given as 

V 2 8 2 3 2 3 2 
= (1.15) 

Interchanging ~ and gr in Eq. (1.14) 



(1.16) 

Whence, by subtraction from Eq. (1.14) 

(1.17) 

Equations (1.14) and (1.17) are three-dimensional Green's theorems. 

1.2.3 Bernoulli equation 
Based on the assumption of irrotational motion and incompressible fluid, the governing 

equations of motion in the fluid for the x-, y- and z-planes are the Euler equations 

Du 1 onp 

Dt  p tgx 

Dv 1 o~p 

Dt  19 c3y 

D w  1 cgp 

Dt  p oaz 

(1.18) 

in which, p is the density of water, g is the gravitational acceleration, p is the pressure and 
t is time. D/Dt  is the differential operator defined with 

D 3 3 3 3 
~ t --~ + u - ~  + v - ~  + W --oaz (1 .19) 

Employing the velocity potential function r in place of u, v, and w, Eq. (1.18) is 
transformed to 

g i W + ~ i ~ N j  +~ =o 

g - - + 7  § § § - -~ 

(1.2o) 



Integrating the x-, y- and z- equations (Eq. (1.20)) and summarizing the integrated 
equations yield the following equation: 

c)~ 1 c9~ ~2 + + + gz + p = Q(t) (1.21 ) 
T + 7t, t -~  - ) p 

Equation (1.21) is called the unsteady form of the Bernoulli equation, or for brevity, simply 
the unsteady Bernoulli equation. The function Q(t) is called Bernoulli term and is constant 
for steady flows. Now, if Q(t) is included into q~(t), Eq. (1.21) can be 

~ +  + -- =0  (1.22) 
Ot 2~,  OX ) p 

1.2 .4  B a s i c  e q u a t i o n  a n d  b o u n d a r y  c o n d i t i o n s  
The fluid is assumed inviscid and incompressible and the wave motion is treated to be 

irrotational. In the case that the velocity potential ~ and the pressure p are the unknown 
functions, the basic equations in the Cartesian coordinate system are the Laplace equation 
(Eq. (1.7)) and the pressure equation (Eq. (1.22)). The boundary conditions to solve the 
basic equation are those imposed on the free surface and bottom. 
(1) Boundary conditions at free surface 

The kinematic and dynamic boundary conditions are required on the free surface. The 
dynamic condition states that the pressure on the free surface is uniform along the wave 
form. This condition is given as, with the unsteady Bernoulli equation (Eq. (1.22)), 

~ + g r / +  + + =0  "z=r/ oat ~ (1.23) 

in which, the atmospheric pressure p is assumed to be zero. 
On the other hand, the kinematic condition states that there is no flow across the free 

surface. In another words, the component of the fluid velocity normal to the free surface 
is related to the local velocity of the free surface. Let the free surface be F(x,y,z;t) - 0, and 
then the kinematic condition is given as 

DF 

Dt 
= 0 �9 z = 7/ ( 1 .24 )  

Since the free surface F(x,y,z;t) - 0 is equal to rl(x,y;t) - z - 0, Eq. (1.24) becomes 

a~ ao ~ ao & = - ~  + u + v - ~  z = o  (1.25) 



(2) Boundary condition at bottom 
Under the condition that the bottom is fixed and impermeable, the bottom boundary 

condition is a kinematic one and is described with 

o~ o~ Oh OcI, Oh 
0z 0x 0x o3), 0y z h (1.26) 

In the special case that there is a body like a coastal or maritime structure in the wave field, 
the following condition should be satisfied on the surface of the body 

= V,, (1.27) 
On 

in which n is the normal direction to the structure surface and V, is the n-directed velocity 
component of the structure. 

1.2.5 Water  surface waves  
We discuss here a two-dimensional progressive wave in constant water depth. The two- 

dimensional water wave boundary value problem is given from Eq. (1.7) and Eqs. (1.23) 
- (1.26).  

governing equation: 

- h <  z < 7"/ c92q~ c92q~ 
_ 

cgx 2 -~ &2 - 0  (1.28) 
-oo < x < +oo 

boundary conditions: 

ao a~ ao ,9~ 
+ = 0 �9 z = r l  (1 �9 

at OxOx & 

+ - + + g O =  Q ( t )  "z =1/ (1.30) 
0t 2 

0 q ~ - 0  (impermeable fixed condition) "z = -  h & -  (1.31) 

(1) Small-amplitude progressive wave theory (Airy wave theory) 
Since the free surface boundary conditions (Eqs. (1.29) and (1.30)) are nonlinear, a 

general analytical solution cannot be obtained. Because of this, we assume that (i) the free 
surface variation 7/is very small, 0(7/) = 0, (ii) the wave motion is gentle and the square 
of the particle velocity is negligibly small, O(u2)<<O(u) and O(w2)<<O(w) and (iii) the 
water surface slope cgr//0x is very small, O(Orl/Ox) = 0, and the product of the particle 
velocity and 3 r / /~  is also small, O(u3rl/&) = 0. In addition, the Bemoulli constant Q(t) 
is treated to be included into the velocity potential, ~(x,y;t). Therefore, employing the 
above-cited assumptions, the nonlinear boundary conditions at free surface (Eqs. (1.29) and 
(1.30)) can be linearized as follows: 



- : Z = 0  
& ~t 

_ 

7/= gk o3t J "z=0 

(1.32) 

Eliminating 7/from the two equations in Eq. (1.32) yields 

 =-Tt ) .z=0 (1.33) 

Using Eq. (1.22), the water pressure p at the depth of z is derived as 

tg~ 
P = - P--qT - pgz (1.34) 

t T ~  

The 1st term of Eq. (1.34) is the dynamic pressure caused by the wave motion, and the 
second term is the hydrostatic pressure. 

(a) Shallow water waves (1/25<h/L<l/2) 
A progressive wave that is periodic in time and space and propagates over a horizontal 

bottom is treated in this section. With the given conditions that the wave height is H, the 
wave period is T and employing the method of separation of variables, the velocity 
potential function �9 that satisfies Eqs. (1.29), (1.30) and (1.31) is derived as 

= Htr cosh k(h+ Z ' s i nk ( x - c t ) )  (1.35) 
2k sinh kh 

02 = gk tanh kh (1.36) 

in which k(= 2~L) is the wave number, and o(=2zr/T) is the angular frequency. Equation 
(1.36) describes the relationship between k and tr for a given water depth h. The wave 
celerity c and the wavelength L are derived from Eqs. (1.1) and (1.36) 

C=~ktanh  kh , L=  gT2 tanh2n: kh (1.37) 

Equations (1.36) and (1.37) state that the wavelength L increases with the increasing of the 
wave period T and therefore the wave celerity c also becomes larger with an increment of 
wave period T. Thus, Eq. (1.36), is called the "dispersion relationship equation", since it 
describes the manner in which a field of propagating waves consisting of many different 
frequencies will separate or disperse due to the different celerities of the various frequency 
components. 



With the help of Eqs. (1.32), (1.34), (1.35) and (1.36), the water surface profile 7/and 
the wave pressure p are given as follows: 

rl:-21Hcosk(x-ct)= -~1H cos(kx - o't) (1.38) 

1 cosh k(h + z) 
p = -~ pgH cos (kx - at) (1.39) 

cosh kh 

The horizontal and vertical components of water particle velocity u and w, respectively, are 
derived as follows with the use of Eqs. (1.6) and (1.35): 

tg~ 1 H a  cos h k( h + z) = = - c o s ( ~ -  at)  
u 0x 2 sin h kh 

W =  
034 _ _ 1 H a  cosh k(h+ z) 

s in(kx-  o't) 
oax 2 sin h kh 

(1.40) 

It can be understood that the phase difference between u and w is rc/2. A water particle 
with a mean position of (Xo,Zo) will be displaced by the wave-caused pressures and the 
instantaneous water particle position ((X-Xo), (Z-Zo)) can be found by integrating the velocity 
with respect to time. The resulting water particle trajectory is 

)2 )2 (X-Xo (Z-Zo (1.41) 
+ = 0  ( ) ( / LH 1 H cos h k(h + zo ) 2 sin h k( h + zo ) 

2 sin h kh 2 sin h kh 

Equation (1.41) is the equation of an ellipse with semiaxes Hcoshk(h+zo)/2sinhkh and 
Hsinh k(h+zo)/2sinhkh in the x and z directions, respectively. Note that Hcosh k(h+zo)/ 
2sinhkh is larger than Hsinh k(h+zo)/2sinhkh. 

The total wave energy consists of potential and kinetic energies. The total wave energy 
per unit area over one wavelength E is defined within the order of a 2 (a" wave amplitude) 

1 L . 1 L o l  
(1.42) 

Substituting Eqs. (1.38) and (1.40) into Eq. (1.42) and assuming r/~_-0 yield 

1 2 1 1 
e =  ig ogI-I + ogl-i = ogH (1.43) 

Although small-amplitude waves do not transmit mass with their propagation across a 
fluid, water waves transmit energy as the trajectories of the water particles are closed. The 
rate of energy transfer is called the energy flux. The average energy flux over wave period 
W in the x-direction is defined within the order of a 2 (a; wave amplitude) 
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--  - ~  udz dt 
T o -h 

(1.44) 

Putting Eqs. (1.35) and (1.40) into Eq. (1.44) gives 

W =  pgH2c 1 + sin-~-~k h (1.45) 

Equation (1.45) can be written 

W = Eric; n =  1 + ~  

= Ec~ 

2kh ] 

s i ~ - 2 k h )  (1.46) 

in which, nc is the speed at which the energy is transmitted. This velocity is called the 
group velocity Cg. Within the small-amplitude wave theory, the total wave energy is 
transferred with the speed of Cg. 

(b) Deepwater waves (h/L>l/2)  and very shallow water waves (h/L<l/25)  
The hyperbolic functions have deepwater and very shallow water asymptotes, and it is 

helpful to utilize them in order to obtain simplified forms of the equations describing wave 
motion. 

In the case of deepwater waves (h/L> 1/2), the following simplifications are usually done 
under the condition of kh~oo: 

tanh kh ~ 1 

sinh kh --+ 1 e kh 

2 

cosh kh---) 1--ekh 
2 

(1.47) 

In the case of very shallow water waves (h/L<l/25),  the hyperbolic functions have the 
following asymptotic forms with kh~O: 

tanh kh -~ kh ] 

sinh kh-+ kh 

cosh kh ---> 1 
(1.48) 

The mathematical descriptions of the wave properties regarding deepwater and very 
shallow water waves are very simplified, compared to those of shallow water waves, as 
shown in Table 1.1. From Table 1.1, it is seen that the trajectory of the water particle is 
a circle in the deepwater wave and a very flat ellipse in the very shallow water wave, as 
shown schematically in Fig. 1.2. 
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Table 1.1 Small amplitude wave theory 

W a v e  prof i le  77 

W a v e  ce ler i ty  c 

W a v e l e n g t h  L 

G r o u p  ve loc i ty  c 

Par t ic le  ve loc i ty  
Hor i zon ta l  
c o m p o e n n t  u 
Ver t i ca l  
c o m p o n e n t  w 

Par t ic le  acce le ra -  
t ion  

Hor i zon t a l  
c o m p o n e n t  
Ver t i ca l  
c o m p o n e n t  

Par t ic le  orbi t  
Hor i zon t a l  
d i s p l a c e m e n t  
Ver t i ca l  
d i s p l a c e m e n t  

W a t e r  p re s su re  p 

Very  sha l low wa te r  w a v e  
h / L  < 1/25 

--) 

L= TN~-h 

Cg = C = " ~ / - ~  

u = - -  COS/9 

2 

w = - -  1 + s i n  0 

T h,,' 

~i = sin 0 
T ~lh 

It, 2 

h /  

~" = - - -  s in0  
4n: 

( = 1 + cos 0 

p = p g ( r / -  z) 

Sha l l ow  wa te r  w a v e  
1/25 < h / L  < 1/2  

1 1 
r / =  -- H cos (kx - a t )  = - H cos 0 

2 2 

c = - tanh 
2g  

L =  gT2 tanh ( 2 g h  ~ 

2~z k L J 

1[ 4oIL 1 
c g = - -  1 +  

2 sinh 4gh / L 

cos 0 
H gT cosh[2n:(z + h ) / L ]  

2 L cosh (2gh / L) 

H gT sinh[2rc(z + h ) / L ] s i n 0  

2 L cosh (2rr.h / L) 

gg/-/ cosh[21r(z + h ) / L ]  
sin 0 

~ = -  

L cosh (2 rr, h / L) 

grd-/ sinh[27r(z + h ) / L ]  
cos 0 

L cosh (2gh / L) 

H cosh[2n:(z + h)/L]sin0_ 

2 sinh (2 rr.h / L) 

H sinh[2n:(z + h ) / L ]  
- cos0  

2 sinh (2gh / L) 

cosh [2nr(h + z ) / L ]  

cosh (2 zr, h / L) 
- pgz 

D e e p w a t e r  w a v e  
h/ L > l /  2 

gT 

1 
Cg = - -C  

2 
2/i;Z 

u = - -  e L cos 0 
T 

2]tZ 
rd-/ 

w = - - e  L s in0  
T 

t J = 2 H  e L sin0 

~i, = - 2 / - /  e L cos0 

2/17Z 
H 

~ = - - - e  L s in0  
2 

2 7CZ 
H 

( = - - e  t. cos0  
2 

2~Z 

L p = pgrl e - pgz p = pgrl 

L = --~-g T 2 
2~ 

(.-- 

C - -  
2re 
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Fig. 1.2 Particle orbits and kinematics (small amplitude waves) 

(2) Finite-amplitude progressive wave theory 
It is known that the free surface boundary conditions cannot be linearized with the 

increasing of the wave steepness and wave height. For nonlinear boundary value problems, 
we can only derive approximate wave theories except for some special cases. 
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The methods to solve the nonlinear boundary value problem are classified into (i) 
analytical method (perturbation method, successive approximation method, etc.), (ii) 
numerical method (finite difference method, finite element method, boundary integral 
method, etc.) and (iii) graphical method (characteristics method, etc.). In this section, the 
perturbation method is first treated and the Stokes wave up to the 3rd-order will be 
described. Second, the Dean stream function method will be described. 

(a) Stokes finite-amplitude wave theory 
Stokes (1880) developed a nonlinear wave theory in order to approach the complete 

solution more closely, employing the perturbation method. Since then, higher order wave 
theories have been developed and Skjelbreia and Hendrickson (1960) derived up to the 
5th-order approximate solution of the Stokes wave. Recently, Schwartz (1974) and Cokelet 
(1977) calculated much higher order Stokes waves, utilizing a large high-speed computer 
with a large capacity of memory. 

The Stokes wave expansion method is formally carried out under the condition of H/h 
<< (kh) 2 for kh<<l and H/L <<1, and all wave properties (wave profile, velocity potential, 
wave celerity, etc.) are formulated with a power series with respect to H/L. Readers should 
refer to Skjelbreia and Hendrickson (1960) for a detailed derivation of the Stokes wave. 
In this section, the 3rd-order solution derived by Skjelbreia (1958) will be described. He 
expressed the velocity potential ~, the water surface profile 77, Bemoulli constant Q and 
the wave celerity c in the following series forms: 

kt/~ = (e.A~, + e3AI3) cosh k ( h +  z) sin ( k x -  at) 
C 

+e2A22 cosh 2k(h+ z) sin2 (kx -  at) 

+e3A33 cosh 3k(h+ z) sin3 (kx -  at) 

(1.49) 

ko = e cos( ~ - or)  + d s ~  ~os 2( ~ - or) + d B ~  cos 3 ( kx - o~) (1.50) 

kQ = e2Q3 (1.51 ) 

kc2 = Qo( 1 + e2Q, ) (1.52) 

in which, All, Al3, A22, A33, B22, B33, Qo, Q~ and Q3 are unknown functions of kh, and e is 
a perturbation parameter. Equation (1.49) satisfies the Laplace equation (Eq. (1.28)) and 
the bottom boundary condition (Eq. (1.31)). Equations (1.49) - (1.52) should satisfy the 
free surface boundary conditions (Eq. (1.29) and (1.30)). The boundary conditions at an 
unknown free surface z - 7"/are formally expanded as a Taylor series around z - 0. 

nnt~ n 

( rl, + ~xrlx - ~z ) + ( ~xrlx - ebz ) = O �9 z : 0  (1.53) 
n=l n!o~" 

gvl+ ~t + "2( C~x + fI)z ) + ,=1 n!~ ~ '  + -2 ( 0 2 +  ~z ) = Q : z = 0  

(1.54) 



14 

Substitution of Eqs. (1.49) - (1.52) into Eqs. (1.53) and (1.54) leads to two equations 
involving undetermined coefficients, powers of parameter e and powers of sin(kx-or) and 
cos(kx-or). These equations are grouped and sub-grouped according to the powers of 
sin(kx-or) and cos(kx-or). Since the equations must hold for any value of (k.x-or), the terms 
in each equation involving the same power of e and the same power of sin(kx-or) or cos(kx- 
or) are set equal. This process produces 9 equations involving 9 unknown coefficients All, 
Al3, A22, A33, B22, B33, Co, Q~ and Q3. The last unknown perturbation parameter has to be 
determined. The value of e is usually obtained using the relationship 

H = r/m~x- r/m~n (1.55) 

in which, H is the wave height, and r/max and r/m~, are the water elevation of wave crest and 
trough, respectively. Substitution of Eq. (1.50) into Eq. (1.55) yields 

kH = 2e + 2EaB33 (1.56) 

Since e(<<l) can be taken as 

e= ka (1.57) 

Equation (1.53) is written 

n__ = 1 + a2k2B33 (1.58) 
2a 

The wave height H and the wave amplitude a hold the relationship given by Eq. (1.58). 
Thus, all the unknown coefficients (AI~, Al3, A22, A33, B22, B33, ao, Q~ and Q3) are determined 
and their values are all listed in Table 1.2. 

Table 1.2 Coefficients (3rd-order) 

All = 1/sinh kh, A22 = 3/8 sinh 4 kh 

cosh 2 kh (1 + 5 cosh 2 kh ) 13 - 4 cosh 2 kh 
A . = -  , 

8 sinh5 kh 64 sinh7 kh 

2 cosh2 kh + 1 3 (8 cosh 6 kh + 1) 
B22 = cosh kh, B33 = 

4 sinh 3 kh 64 sinh 6 kh 

Qo 2 = g tanh kh, Ql = 
8 cosh 4 k h -  8 cosh2 kh + 9 

8 sinh 4 kh 

Q3 = - l / ( 4 s i n h  kh. cosh kh) 
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The 3rd-order approximate solution contains the fundamental frequency component a, 
second harmonic frequency component 2a, and third harmonic frequency component 3a. 
The water surface profile of the 3rd-order approximate solution steepens at a wave crest 
and flattens at a wave trough (see Fig. 1.5), compared to the small amplitude wave profile. 
It is known that the wavelength and the wave celerty of the 3rd-order approximation 
become larger than those of the small amplitude wave theory. The trajectory of the water 
particle of the 3rd-order Stokes wave is quite different from that of the small amplitude 
wave. That is, the trajectory of the water particle of the 3rd-order approximate theory never 
closes, as illustrated schematically in Fig. 1.3, and the water particles drift in the direction 
of the waves and move more rapidly at the surface than at the bottom. This is normally 
called "the mass transport velocity". Following the Lagrangian description, the mean mass 
transport velocity over one wave period U~ is 

U~ = ~c  a2 cosh 4zr(h + z)/L 
sinh / 2~h/L (1.59) 

i_ I x ' i  

D c T a2 

= cosh 4 zr(h+ z ) / L  

sinh 2 2 zrh/ L 

//I~'//',, '~//~9"// 

Fig. 1.3 Mass transport and mass transport velocity 

(b) Dean stream function method (Dean 1965) 
Different from the perturbation method, the stream function method proposed by Dean 

belongs to the numerical method. The Dean stream function method is computationally 
simpler than the Chappelear method (1961). 

The coordinate system is moved with celerity of the wave c, thereby rendering the 
system steady. The stream function that strictly satisfies the basic equation (Eq. (1.28)) and 
the bottom condition (Eq. (1.31)) is described, in case of Nth-order, as 

N 

1/t = cz + ~ X(n)sinh nks cos nkx (1.60) 
rt=l 

in which, ks-2n'(h+z)/L, kx-2zrh/L, and X(n) is the coefficient of the nth-order component. 
The use of Eq. (1.10) produces the equations regarding the particle velocity and the free 
surface profile. 

m ~ 
N 

U--C= = --C-- )_~ nkX(n) cosh nks cos nkx (1.61 ) 
n= l  
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w= t?l/t = - ~  nkX(n) sinh nks sin nkx (1.62) 
t~X n=l 

N 

r / :  gr(x,r/_......~)_l ~ .X(n )  sinh nks cos nkx (1.63) 
C C n=l 

The free surface boundary conditions in the coordinate system moving with the wave 
celerity c are 

0rt= w 
O~ U --  C 

1(1 12 2) go+  + =as 
z=r/ (1.64) 

in which, Q, is the Bernoulli constant. 
The free surface is one stream line. Therefore, the water surface profile strictly satisfying 

the kinematic free surface boundary condition (lst equation in Eq. (1.64)) is, first of all, 
determined, and then X(n) and L are determined so as to satisfy the dynamical free surface 
boundary condition (2nd equation in Eq. (1.64)) using the least square method. In 
numerical calculation, this condition is satisfied at i discrete points along the free surface 
profile, each point being denoted by i. According to the dynamic free surface boundary 
condition, all the Qsi should be equal to Q~ 

- -~  i + ---~ i + grli=Q~ 
2 

(1.65) 

The iterative procedure is employed to determine X(n) with use of Qsi. The measure of 
satisfaction of the dynamic free surface boundary condition is defined with El ,  which is 
the mean squared error to the boundary condition. 

2 ,L/2. )2 1 ,(-', 
El : LJo (Qsi-Qs dx _= - L,(O~i-O, 

)~ 
I i=1 

Q'=  (Q'i)dx---I i=l 

(1.66) 

For an exact solution E l must be zero. It should be noted that the wave height H, the water 
surface profile 7/and r/i, must satisfy 

rl( O) - rl ( L/2) = H 

- -  r / ~ = 0  L o O ( x ) d x -  7 ,_, 
(1.67) 
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Extension of this theory to waves near breaking has been done. In addition, this theory can 
be applied to regular measured wave profile Tim. Using the iterative method, the best-fit 
values of X(n) and L of estimated wave profile Up to the measured wave profile r/m are 
determined so as to minimize the error E* 

E* = E,+XE 2 

El:--(Qsi-Qs 

E2:  (Omi-~pi) 2 

(1.68) 

in which, ~ is the Lagrange unfixed coefficient. 
The water particle velocities on a gently sloping bottom have reportedly been evaluated 

well with the Dean stream function method (see Fig. 1.4), 'with the help of Eq. (1.68) 
(Koyama and Iwata 1988). 

(cm) 
10- Before breaking 

1 / 10 slope ,r 
05- h=29.6, tanB=14.0c 7 . . . . . .  ~ t 

~ / 1.35 see 

--5 

--10 

(cm/sec) 
40 

20 

0 

-20 

--40 

(cm/sec) 
40 

t ~ \  20 
, I 

--'- :'measured 35 s e c  

~,, ~ --- : D e a n  ,,., ..,, - 20 

--40 

35 see 

Fig. 1.4 Comparison between calculated values with the Dean 
stream function method and experimental values 

(c) Applicable range of finite amplitude wave theory 
Figure 1.5 shows one example of comparison of water surface profiles among laboratory 

experiments, the Stokes 2nd-order, 2nd-order cnoidal and small amplitude wave theories. 
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Fig. 1.5 Comparison of water surface profiles 

It can be seen from the figure that the experimental value differs from the small amplitude 
wave, and that the Stokes wave differs from the measured value at the wave trough. The 
cnoidal wave, however, best fits the laboratory experiment. This is only one example of 
comparisons and different results will be obtained in different wave conditions. Generally 
speaking, the Stokes wave theory is applicable for waves under a large value of h/L and 
the cnoidal wave theory can be applied to waves under a small value of h/L. Using the 
Goda nonlinearity parameter H (Goda 1985), Iwagaki (1987) has presented an elaborate 
graph (Fig. 1.6) that indicates the applicability range of various wave theories. 

1.0 
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) e e p w a t e r  Shallow 
w a v e  _ w a t e r  wave 

to 

I I I I 

2 4 6 10 

\ 
L o n g  wave 
(very shallow 
water  ~ 'aves )  

20 40 60 100 

Fig. 1.6 Applicability range of various wave theories (Iwagaki 1987) 
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/7 = (H/LA ) COth3(2rch/LA ) (1.69) 

in which, LA is the wavelength of small amplitudewave. The applicable range of the small 
amplitude wave i s / 7 -  0.03 for wave crest a n d / 7 -  0.1 for wave celerity and wavelength. 
It should be noted that each wave theory has its own applicability range that is limited by 
the wave steepness H/L, the relative water depth h/L and the nonlinear parameter/7.  

(3) Standing wave theory 
(a) Small amplitude wave theory 

The wave system comprised of two waves of the same period T and height H but 
propagating in the opposite direction is called the standing wave. The standing wave can 
be formed in the sea area seaward of a vertical wall by which an incident wave is perfectly 
reflected backward. 

For the linearized free surface boundary conditions (kinematic and dynamic free surface 
boundary conditions), the water surface profile of small-amplitude standing wave is 

1 H c o s ( k x -  fit) + - H  cos(kx +fit 
0 = 2  2 

= H cos fit cos kx 
(1.70) 

in which H is the incident wave and reflected wave height, k is the wave number, and s is the 
angular frequency. The amplitude of a standing wave varies with distance x and h becomes zero 
(minimum) at x - (2n+ 1)L/4 (n - 0, 1,2 .... ) which satisfies the relation of cos kx - 0. The location 
at which h becomes zero is called the node. On the other hand, h becomes a maximum (H) at x 
- (2n)L/4 (n - 0, 1, 2 .... ) which corresponds to cos kx - +1, which is called the antinode. Thus, 
the node and antinode are formed alternatively at the interval of L/4. The velocity potential, the 
horizontal and vertical velocities u and w, the horizontal and vertical displacements of the particle 
orbit from its mean position (Xo,Zo) x and z, and the water pressurep and the wave energy per unite 
area E are readily found to be 

= - H c  cosh k(h + z) sinfit cos kx 
sinh kh 

u = H a  cosh k(h + z) sin fit sin kx 
sinh kh 

w = - H a  sinh k(h + z) sinfit cos kx 
sinh kh 

cosh k(h + Zo ) 
= H sinh kh cos o't sin kx0 

( =  H coshk(h+z0)  
sinh kh cos o't cos kx0 

cosh k(h + z) 
p = pgH cosh kh cosfit cos k x - p g z  

E =  1 
m 

4 pgH2 

(1.71) 
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Inspection of Eq. (1.71) shows, as illustrated in Fig. 1.7, that w - 0 and ( -  0 at the 
antinodes (at x - (2n-1)L/4), and u - 0 and ~"- 0 at the nodes (at x - nL/2). The orbit of 
the water particle is a simple harmonic motion along a straight line, as illustrated in Fig. 
1.7. 

Antinode Antinode 

Node Node 

\ - - . -  t I \ - - -  w=0 w=0 

Node u = 0 Node 
Antinode Bottom 

i / I / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. 1.7 Particle orbit of standing waves 

(b) Finite amplitude wave theory 
The small amplitude wave theory cannot be applied to waves by increasing of the wave 

height H. The finite amplitude wave theories of the Stokes-type (1/25< h/L <1/2) have been 
developed. Penny and Price (1952) derived the 2nd-order approximate solution, 
Tadjbakhsh and Keller (1960) developed the 3rd-order solution and Goda and Kakizaki 
(1968) derived the 4th-order solution by means of the perturbation method. In this section, 
the theoretical results of the 3rd-order approximate solution derived by Tadjbaksh and 
Keller (1960) are described: 

a(g/k) 1/2 = A~ + A 2 cos trt cos kx + A 3 sin 2trt 

+ A 4 sin 2crt cos2kx + A 5 costrt cos3k.x 

+ A~ cos 3trt cos 3kx + A 6 cos 3trt cos 3kx 

1"1 
"--' = sin crt cos kx + B l cos 2kx + B z cos 2or cos 2kx 
a 

+B 3 sin ot cos kx + B 4 sin ot cos 3kx 

+B 5 sin 3trt cos kx + B 6 sin 3o't cos 3kx 

(gT 2/27r) = tanh kh(1 + Cl 

H 
- - = 1  + Dl 
a 

(1.72) 

in which all the coefficients, A~, A2, A3, A4, A5, A6, B~, B2, B3, B4, B5, B6, Cl and D~ are listed 
in Table 1.3. 
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Table 1.3 Coefficients (3rd-order standing wave) 

1 ) (ak) 2 ak 
A, = ak flo + -~(Wo - Wo3)t + 2 f12, A3 = --i--~(3Wo + Wo 3) 

Wo cosh k(h + z) 
A 2 = COS O't COS kx, 

sinh kh 

(ak) 2 3 ak(wo - Wo 7) cosh 2k(h + z) A, = ~ .  
A4 = -]--~ cosh2kh ' 2 

(ak)2 (ak)2 fl33 cosh 3k(h + z) ,46= 2 fla~coshk(h+z), A7 = 2 

(ka) 2 
B, =-~ka (w 2 + w~ 2), BE = --ff-ka (Wo2 - 3w~6), B3 = 2 b,, 

(ka) 2 (ka) 2 (ka) 2 
B4 = ~  b13, B, = b3,, 86 = b33 

2 2 2 

ill3. cosh 3k(h + z) 

(ak)2 (27Wo 12 + 27Wo 8 + 96Wo 4 - 63 + 1 lw~ + 6Wo 8) (ak)2 (9Wo 8 - 12Wo -4 - 3 -  2w 4) D~= 256 C I =  64 

3-~ 3 (9Wo 8 + 27Wo_ 4 _ 15 + w 4 + 2Wo 8 ) bll = (3Wo 8 + 6 W o 4 - 5 + 2 w 4 ) ,  b13 =1- '~  

3 (_9Wol 2 + 3Wo8 - 3W 4 + 1) b31 =1-'~1 (3Wo 8 + 18Wo --5), b33 = 1 ~  

ill3 = 1 (1 + 3w4) (3Wo 9 -  5Wo'+ 2w03) 
128 cosh 3kh 

1 (9Wo 9 + 62Wo 5 _ 31wol) 
f13~ = 128cosh 3kh 

1 (1 + 3w4) (-9Wo 13 + 22Wo 9 - 13Wo') 
fl33 = 128cosh 3kh 

w02 = tanh kh,  flo and f12 = undetermined constants 

(4) Partial standing wave 
It is often seen in nature that when waves encounter obstacles, waves are reflected from 

the obstacle and some of the wave energy is absorbed by the obstacle and some is 
transmitted past the obstacle. Let us here assume that the incident wave has a height/-/i and 
that of the reflected wave is smaller HR. The wave periods of the incident and reflected 
waves will be the same. The total wave profile r/p seaward of the obstacle is 

H, - o7)+ + = T  

1 H = -~( , -  HR)cos(kx-  o't)+ HR COSO't coskx 

(1.73) 
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Since the reflection is imperfect and the progressive wave whose height is (/-/i-HR) exists, 
there are no true nodes and antinodes in a wave profile, which differs from the standing 
wave profile (Eq. (1.70)). This is called the partial standing wave. The maximum value 
(r/p)max and the minimum value (r/p)min correspond to the quasi-node and quasi-antinode, 
respectively; 

1 H ,+H,/ 

1 H 

; quasi-antinode 

; quasi-node 
(1.74) 

The quasi-antinode and quasi-node are formed alternatively at the interval of (1/4)L. When 
the amplitude of the quasi-antinodes and quasi-nodes are measured by wave gages along 
the wave tank in laboratory experiments, the reflection coefficient KR of the obstacle is 
defined as 

H R (Op)max -- (r~p)min 
KR-"-~l  -- (OP)max-~-(Op)trfin 

(1.75) 

The velocity potential of the partial standing wave is derived readily with use of Eq. (1.73), 

1 H ,-H,)c cosh k(h + z) sin (kx-  fit) 
cosh kh 

cosh k(h + z) sin trt cos kx (1.76) -HRc 
sinh kh 

in which c is the celerity. 
The finite amplitude wave theories of the partial standing wave of the Stokes wave-type 

have been investigated and discussed. Readers are referred to the references (Carry 1953; 
Goda and Abe 1964; Iwata and Tomita 1991) 

1.2.6 Conservation of  mass, momentum and energy flux 
In the previous sections, wave motions propagating in uniform media of uniform depth 

are described. Waves propagating in a shallow water region receive various effects of 
surrounding environments such as changes in the water depth, river discharge, current and 
so on. Waves themselves bring about the change in the mean water level and wave-induced 
current. 

In general, the change in water depth of a natural beach and resulting change in wave 
characteristics are small compared with the wavelength. The time scales of the change in 
the mean water level and wave-induced current are also far longer than wave period. 
Therefore, such phenomena as the changes in wave characteristics, mean water level and 
wave-induced current are usually discussed based on the depth and time averaged 
equations of conservation of mass, momentum and energy flux. 

Longuet-Higgins and Stewart (1960) first derived the conservation of energy flux. The 
conservation of mass and momentum flux are derived by Whitham (1962) from the 
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conservation law of flux and by Phillips (1977) from the equation of continuity and 
Eulerian equation of motion. Mei (1983) also gave the expression for conservation of mass 
and momentum flux based on the Navier-Stokes equation and equation of continuity. 

Here, we derive conservation of mass and momentum flux based on Navier-Stokes 
equation and the equation of continuity after Mei (1983). In the coordinate system where 
the x and y axes are taken on the still water surface and z axis upward from the still water, 
the equation of continuity and Naiver-Stokes equation are expressed as follows: 

0 0 0 OP -~x (PU)+--~(Pv)+-~z (PW)=O 

Op+uv  u o--;(oul+Tx(OU )+ (ouv)+ (ouw)=--g;x 
03 -~x (puv) a 2 - (pv + z(pVW)= 7(ov)  + _.. + ) - g  

+ (ouw)+ (ovwl+Tz Tz+U w 

(1.77) 

(1.78) 

where p is the density of fluid, p is the pressure, (u, v, w) are the water particle velocities 
in x, y and z directions,/1 is the molecular viscosity and VE--(c92/Ox2+OZ/OyE+OE/Oz2). The 

time and depth averaged equation of conservation for mass and momentum flux are 
obtained by integrating these equations over a full depth and taking the time average. In 
the integration, the following so-called Leibnitz relation 

~O_h Ofdz : O~ ~ fdz- foOrl- f_nOh (1.79) 

and the boundary conditions at the free surface (Eqs. (1.23) and (1.25)) and at the bottom 
(Eq. (1.26)) are used. The expressions D and f in Eq. (1.79) are the linear operator (partial 
derivatives here) and the arbitrary quantity, respectively. 

Here, we assume that (i) effect of viscosity and (ii) the bottom slope (Vh) and the wave 
steepness (kH) are small. 

(1) Conservation of mass flux 
To obtain a depth averaged continuity equation, we integrate Eq. (1.77) between a free 

surface (z = 7/) and a bottom (z = -h) by using Eq. (1.79) and boundary conditions of Eqs. 
(1.23), (1.25) and (1.26). Then we obtain the following equation: 

(1.80) 
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We assume here that the quantities relating to fluid motion f such as water particle velocity, 
pressure and so on are expressed as a sum of the time averaged component f ,  wave 
component (phase-averaged component for regular waves)fp and turbulent component f '  as 

f = f + fp+ f'  (1.81) 

Further, we define the following depth and time averaged velocity: 

i f )  u i f?  U = ~ + h + ~  h pdz, V=V+h+_ff hVpdZ (1.82) 

where u and v are the depth averaged velocity of the mean (wave-induced) cu~ent and 
is the mean water level. 
Substituting the relation of Eq. (1.81) for u, v and p in Eq. (1.80) and using the definition 
of U and V given by Eq. (1.82), we have the following conservation equation of mass flux: 

-~{p(h ~9 c~ + ~)}  + -~{pU(h + ~')} + --~{pV(h + ~)} = 0 (1.83) 

(2) Conservation of momentum flux 
A vertical integration of the third equation of Eq. (1.78) by using boundary conditions 

(Eqs. (1.23), (1.25) and (1.26)) and the Leibnitz relation (Eq. (1.79)) gives the following 
relation: 

c9 ~OhPUWdZ+~9 o _   _hOVWdZ= -og(h + O) 

-P+I t -~z- IJ  c~x cgx + ~y 

- -p+l t - -~-z -/t~--~-x-~xx + o3y o3y,)J_ h 

3 17#_~xdZ o 3 ~7 
+ -~X I_ h +--~~_h#~ dz 

By substituting the relation of Eq. (1.81) and taking the time average, we have the time 
averaged pressure at the bottom in the following form: 
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-~_~ = .,,~l ,.+-~l+ ~ ;  " ,,(u.w, + ~,., ).,z+ _~ ~I~, h'~V. w, 
o5 , 

+ u - - g - - u  - - g - - g + - - ~ - ~ )  -~ 

@ 

o . O(w.+~,) o I" ~  " ~z + ~  _~ & -~ 
Y | 

+ v' w' )dz 
J 

(1.84) 

Table 1.4 is the comparison of the order of each term in the right hand side of Eq. (1.84) 
where a is the amplitude of an incident wave. 

Table 1.4 Order of each term consisting the mean pressure at the bottom 

| @ @ @ @ 
pgh pka2o2h uS<aa US, aolVhl lxkZaah 

According to the assumptions (i) and (ii) mentioned above, we can neglect 3rd to 5th terms 
in the right hand side of Eq. (1.84). The second term also becomes small compared with 
the first term and Eq. (1.84) is expressed in the following form: 

P---h = pg(h + -~) (1.85) 

By integrating the 1st and 2nd equations of Eq. (1.78) and using the relation given by 
Eqs. (1.81), (1.82) and (1.85), the following depth and time averaged conservation 
equations of the horizontal momentum flux are obtained: 

-~{pU(h + ~)} +-~x{PU (h + 

0 0 : -o~,(,, + -~1~ +-;;x(-Sxx + Rxx)+ ~(-Sxy + ~xy)- ~x 

O S ,9 _ = -pg(h Jr " ~ ) ~  Jr --~x (- yx Jr eyx)jr -'-~(-Syy Jr eyy)- "Cby 

(1.86) 

where 
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()2 
Sxx = I_~ (~.  pu.~l~z-~l~ . ~l ~ - ,,(~ * ~---3 ,L "u"~z 

l / s :  / Syy = ~_~ -~-)2-p(h-F -~-----~ hOVpdZ (1.87) 

l Is: )(s: ) Sxy -- Sy x =~_hPUpVp dz -  p( h Jr" "~) hOUp dz hOUp dz 

,gU 2 3 Rxx=I_~ . ~ - o u '  az 

S_ ~ (-u' v')dz exy : eyx = h 

(1.88) 

Sxx, Sxy, Syx and Syy given by Eq. (1.87) are the radiation stresses and Rx,, Rxy, Ryx and Ryy 
expressed by Eq. (1.88) are the lateral mixing terms resulting from turbulence. ~bx and 
r-byare the time averaged bottom shear stresses due to waves and current that will be 
discussed in detail in Chapter 3. 

In the coordinate system shown in Fig. 1.8, the radiation stress is calculated by using a 
linear wave theory as follows: 

Sxx = c c~ 0+  -1  

Syy = c sinE O+ -1 

Sxy = Sy x = E Cg cos 0 sin 0 C 

(1.89) 

where E is the wave energy density (Eq. (1.43)), Cg is the group celerity, c is the wave 
celerity and 0 is the wave direction defined in Fig. 1.8. The expression of the radiation 
stress based on the finite amplitude wave theory has also been proposed (e.g., Longuet- 
Higgins 1975). 

. o  - . ~  

�9 (.::-; ::.:-:: ~-.-.: 

�9 -..'-') i " ~  " " - -  ~ 

Fig. 1.8 Definition sketch of wave direction 
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The lateral mixing term is usually expressed by the gradient-diffusion type formula, the 
details of which will be mentioned in Chapter 3. 

(3) Conservation of energy flux 
Wave deformation due to changes in water depth in the presence of current is usually 

discussed by using conservation of wave number and energy flux. A profile of wave 
propagating in the direction of vector x is expressed by using a phase function 2'(x,t) and 
an amplitude a(x,t) as follows: 

rl(x,t) = a(x,t)exp{ix(x,t)} (1.90) 

An equi-phase line of this wave is given by the equation X(x,t) - const. Here, we define 
a wave number vector k(- (kx, ky)) and an angular frequency n by the following equations: 

k=(kx,ky)=VX , n=-OZ/Ot (1.91) 

From these equations, the following relations expressing the irrotational property of the 
wave number (Eq. (1.92)) and the conservation of the wave number (Eq. (1.93)) are 
obtained: 

V x k  =0 (1.92) 

c)k/Ot+Vn =0 (1.93) 

If the media that transmits waves is not uniform, for example, is moving at the speed 
of U(x,t), the apparent angular frequency n is given by 

n = a(k)+ k.U(x,t) (1.94) 

where o(k) is the eigen angular frequency that satisfies the dispersion relation Eq. (1.36). 
In such a case, the conservation of angular frequency becomes 

3k/3t +V (p(k)+ k.U(x,t)}=O (1.95) 

In the steady state, Eq. (1.83) is expressed as follows: 

V{p(k)+k.U(x,t)}=O or n=~r(k)+k.U(x,t)=const. (1.96) 

Longuet-Higgins and Stewart (1960) and Phillips (1977) derived the following equation 
of conservation of wave energy density E(-  pga2/2). 
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(1.97) 

at" V at" Cgy E - ._hOUpdZ q- DVp 

"q- Sxx-~x + xy Ox "F Syx--~'F S y y - - ~ = - O i  - Ob 

Bretherton (1969) derived the following conservation equation of wave action (E/a): 

Phillips (1977) showed that both Eq. (1.97) and Eq. (1.98) are perfectly the same. 
Wave deformation, wave-induced current and mean water level on a natural beach are 

calculated by using Eqs. (1.83), (1.84), (1.86) and (1.97) or (1.98), with the help of Eqs. 
(1.92) and (1.96) by adding a properly selected expression of wave energy loss caused by 
wave breaking to Eqs. (1.97) or (1.98). 

1.2.7  L o n g  w a v e s  in s h a l l o w  w a t e r  
As waves approach the shore, a wave number k and the relative water depth h/L decrease 

and the ratio of wave height to water depth H/h increases. The assumption of "small 
amplitude" does no longer hold for the waves in such a region. Propagating waves cannot 
maintain their profiles within a certain depth and they break and lose their energy. The 
conditions of wave breaking will be mentioned in 1.2.10 in detail. 

Some waves of long wave periods (low frequency) can propagate into the shallow water 
region without breaking. Some of them are reflected from the shore to form a standing 
wave (leaky mode long wave). A certain part of them cannot propagate offshore as 
reflected waves and are trapped in the shallow water region to form edge waves. Miche 
(1944) gave the critical condition of wave breaking on the sloping beach in terms of a 
incident wave steepness in deepwater Ho/Lo and a bottom slope tanfl. 

sin, 
c 900 ~: 

(1.99) 

To express wave motion in such a region, two parameters, i.e., a relative water depth 
#--kh and the ratio of wave height to water depth e-H/h or Ursell parmeter Ur defined as 

Ur-(H/h)(1/(kh)2)-~HLE/h 3 (1.100) 
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become important. According to the order of these parameters, approximate expressions of 
various degrees have been introduced (Mei 1983). For example, when O(/t)<<l and 
O(e)~l, the following equations are used (Airy theory): 

__  a(du) a(av) ~ i- + =0 (1.101) 
at & Oy 

m - l - u  + v + 0 
Ot "~" -~  g = 

ov Ov v~+ ~ = 0  
m + u ~  + o a t  g 

(1.102) 

where d is the total depth (-h+r/) 

In this case, pressure becomes hydrostatic. 

p = pg(r l -  z) (1.103) 

When O(#) - O(e)<l, the fluid motion is expressed by a nonlinear dispersive wave theory 
(Boussinesq equation) in the following form: 

m + u  + v  = + + 
oat ~ -~  - g 3 [oax~tgxoat 0yoat)J 

~ + U + V = - -  - - ~  { + oat ~ -~ g -~'[ oay ~ oaxOt oayOt J J 

(1.104) 

The pressure is no longer hydrostatic 

p-  . . l . -  z)+  (2hz +  2v) 
ayat (1.105) 

As has already been pointed out, nonlinear convection terms in Eqs. (1.102) and (1.104) 
steepen wave crests and a dispersion term in Eq. (1.104) (last term of right hand side of 
Eq. (1.104)) disperse waves into waves of different wavelengths. A so-called permanent 
wave such as a solitary wave and cnoidal wave whose profile has already shown in Fig. 
1.5 can exist under a perfect balance of nonlinear and dispersive properties. 

Equations (1.100) and (1.101) are usually solved by a method of characteristics. Carrier 
and Greenspan (1957) derived a solution of  the standing waves formed by the normal 
incident and reflected very long waves on a sloping beach. Kobayashi et al. (1987) 
proposed a numerical procedure for solving swash oscillation on a rough sloping bottom. 

The original Boussinesq equation is varied in the region of O(e) - O(//2)<1 or U,--1. 
Some modifications have been proposed to expand the applicability region of the 
Boussinesq equation toward a deeper region (Madsen et al. 1991). Recently, many 
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researchers utilize the Boussinesq equation to numerically predict regular and irregular 
wave transformations and wave-induced currents in shallow water regions. 

On the other hand, when O(e)<<l and O(/t2)<<l, both nonlinear and dispersive terms 
become negligibly small and equations of continuity and motion are the following forms: 

i90 + tg(hu) tg(hv)=0 (1.106) 
-g ax+ay 

8u ~ o3v c90 (1.107) =-gg- 

The pressure is again hydrostatic. 
Classical theories of standing waves (leaky mode) and edge waves (trapped mode) on a 

sloping beach whose slope is tanfl are derived based on Eqs. (1.106) and (1.107) assuming 
cross-shore and longshore wave profiles. Equations (1.108)-(1.112) are their surface 
profiles, water particle velocity and a dispersion relation if it exists. 
Standing waves: 

r/(x, t)= aJo(2tr,4x/gtan fl)costr, t (1.108) 

u(x, t)= a~J~(2osa/x/gtan fl)sincr, t, v(x, t )=0  (1.109) 

where trs is the angular frequency of standing waves, J0 and Jl are the Bessel functions of 
the 0th and 1st order. 
Edge waves: 

rl(x, y, t)= anLn(2kenx ) exp(-kenx)cos(k~ny- trent ) (1.110) 

u(x, y, t)= (ang/Oen)ken exp(-kenx ) {2L,(2kenx ) - Ln(2kenx)}sin(kenY- trent ) 
v(x,y,t)=(ang/tr~n)keneXp(-kenX)Ln(2k~nx)cos(k~ny-tr~nt) (1.111) 

2 =gken(2n + 1)tariff aen (1.112) 

where a,n and ken are the angular frequency and wave number of edge waves when the 
cross-shore modal number is n (= 0,1,2..) and Ln, L~' are the Laguerre polynomial and its 
derivatives with respect to x. 

If there is an obstacle in the direction of propagation of the edge waves that reflects them 
toward the opposite direction, propagated and reflected edge waves from standing edge 
waves with nodes and antinodes evenly distributed in the longshore direction. The surface 
profile and water particle velocity of standing edge waves are expressed as follows: 
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rl(x, y, t)= a.L.(2ke.x ) exp(-ke.x)coske.Y cos (re.t (1.113) 

u(x, y, t )= (a.g/Oe. )ke. exp(-ke.X ) {2L.(2ke.x ) -  L.(2ke.x)} sinke.Y sintre.t 

v(x,y, ,)= (ang/Oen)ken exp(-ke.x ) Ln(2kenx ) coskenY COSaen t 
(1.114) 

1.2.8 Fundamenta l  formulation for wave transformation 
Many commentaries and explanations have so far been given. In this section, a 

derivation and a key to the solution of a mild slope equation that comprehensively 
describes wave transformation within the limit of linear wave theory are explained. Wave 
refraction, diffraction and shoaling are also discussed based on the mild slope equation. 

(1) Conservation of energy 
Conservation of energy of incompressible fluid in an arbitrary domain D is expressed as 

V.E'dF + EdD = 0 (1.115) 

where F is the surface of D, V. is the outward relative velocity of F, E is the energy 
density, E '  is the sum of E and p/p. We assume that the domain D is a vertical column 
between the free surface (z - 7/) and the bottom (z - -h) and that a velocity potential exists. 
Then Eq. (1.115) can be written by using the divergence theorem of Gauss, the Leibnitz 
theorem and the Euler equation of motion as follows: 

~ dxdy~O_h---~ V2O + c9z2 )dz = 0 (1.116) 

where V = (~/o3x, 0/a~). 
The domain of the integration of the x-y plane in Eq. (1.116) is arbitrary. Therefore the 
integran_d in Eq. (1.116) is always zero. We further define the velocity potential of the form 
of �9 = O(x,y,t)f(z,h), h= h(x,y). Then we obtain the following expression of �9 through 
the boundary conditions Eqs. (1.25) and (1.26): 

V. ~-h f2Vf~dz - f~ dz + f--~ + ~ V. - 2 = 

(1.117) 

Equation (1.117) strictly expresses the energy conservation under the assumption of 
= f ~ .  

(2) Reduction of mild slope equation 

Variables are normalized in the following way: 
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(x*,y*,z*)=(kox, koy, koz ), t*=ot ,  h*=koh 

g" = kog / O 2 , ~* = tr~/aog 

c* = c/c o , I t. = k/k o , V* = V/k o , O* = rl/ao 

where the variables with "*" are nondimensional variables, o2-gktanhkh, Co-O/k, a is the 
wave amplitude, a is the angular frequency, k is the wave number and subscript "0" refers 
to the quantities in deepwater. 

Let the small parameter of deepwater be e (-  koa0<<l), then the integral domain becomes 
(-h*, er/*). To integrate Eq. (1.117), we divide the integral domain into (-h*, 0) and (0, err) 
and expand the later region to the Taylor expansion with respect to z*-0. The integration 
gives the following relation at the order of e ~ through the assumption of f-cosht~(h*+z*)/ 
cosh~h*: 

V* . (c'c~V*~* ) -  (1-  n)~* + ' ~  + - ~ ' V *  (V*c'2)zE = 0 

(6nl 
- - - 1 - n  

E=  ~ +  I (1.118) 
4 n -  2 2 6 4 

n=  1 + sinh(2/t,h,) , 
Cg = nc* 

Using the same normalization and the Taylor expansion, the kinematic boundary 
condition at the free surface also becomes 

~ + r / *  =0  (1.119) 
Ot 

The orders of 4th and 5th terms in Eq. (1.118) are (V*h*/bgh*) 2 in shallow water and 
(V'h*) 2 in very shallow water. These two terms are smaller than other terms whose orders 
are the unity. By neglecting these terms of small magnitude and eliminating 7/* from Eqs. 
(1.118) and (1.119), the following unsteady mild slope equation is obtained: 

V.(CCgV~)-cr2(1 - n ) ~ - ~  
t~2~ 

=0 (1.120) cgt 2 

When we further assume the periodic variation in time, e.g., ~(x ,y , t )=~(x ,y )exp( - ia t ) ,  
we finally obtain the following steady mild slope equation: 

V.(cc, c"  1.121  
C 
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In the case of a constant water depth, Eq. (1.121) becomes a well-known Helmholtz 
equation: 

VZ~+k2~=O (1.122) 

This equation contains a 2nd derivative with respect to space and is classified as an 
elliptic type equation. Under the requisite boundary conditions, the solution to Eqs. (1.121) 
or (1.122) is uniquely given in the objective domain. 

(3) Methods for solving the mild slope equation 
As mentioned before, both Eqs. (1.121) and (1.122) are elliptic type second-order partial 

differential equations. In order to solve these equations, therefore, appropriate boundary 
conditions must be given on all the boundaries of a domain of interest. The finite 
difference method (FDM) and the finite element method (FEM) are representative 
numerical methods to solve this kind of equation (e.g., Mei 1978; Yeung 1982). Although 
the FDM (e.g., Panchang et al. 1988) is a convenient and useful method, it is not suitable 
for the calculation of a wave field in the domain with a complicated configuration that 
requires a small mesh size to express the coastline. Moreover, it is sometimes difficult to 
compose an appropriate formula for a boundary condition that involves derivatives of 
unknown functions by using values at discrete points. On the other hand, the applicability 
of the FEM (e.g., Houston 1981) to the complex region is usually better than the FDM 
because we can arbitrarily take the size of each element. Furthermore, we do not have to 
pay any special attention to the boundary conditions. 

In both the FDM and the FEM, the whole region of interest is divided into small 
segments and a large set of first-order algebraic equations is solved numerically where 
solutions are obtained at the discrete points such as grid points or nodes. Thus, although 
these methods usually give a fairly good approximate solution of the mild slope equation, 
they require a lot of memory on a computer and a lot of computing time when calculating 
a wave field in a large region. Therefore, they are not suitable for practical use except for 
when the water depth is locally changed. 

Another useful method that transforms Eq. (1.121) into a set of first-order differential 
equations is proposed by Nishimura (1983). Equation (1.121) can be rewritten as 

v c, 
- -~-  &--T- = 0 (1.123/ 

by using the relation -02~e -iat- ~2~/~9t2. Applying the linearized dynamic free surface 
condition to Eq. (1.123), we get the following equations equivalent to Eq. (1.123): 

Cg Or/ 
o c (1.124) 

~ + g r / = 0  (1.125) & 

Furthermore, these equations can be expressed in terms of water particle velocities on a 
free surface in horizontal and vertical directions, u and v, and the surface displacement 7/: 
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(cc, v)  (cc, u)+Ty 

m + g  =0 & 

- - + g  =0 & 

+g-~  017=0tgt (1.126) 

(1.127) 

(1.128) 

where, in order to derive Eqs. (1.127) and (1.128), we took the gradient of Eq. (1.125). 
Equation (1.126) is an energy conservation equation and Eqs. (1.127) and (1.128) 
correspond to the linearized equations of motion on a free surface. By using staggered 
mesh discretization in the FDM, the set of equations can be solved more easily than by 
solving Eq. (1.121) directly by using the FDM or FEM. In this method, calculations are 
carried out in the time domain and must be continued until a steady periodic solution is 
obtained. Transient wave motions have no meaning and it is sometimes difficult to decide 
whether the motions are steady or not. 

(4) Approximation of the mild slope equation 
In this section, we show some approximate mild slope equations which are easier to 

solve numerically. 

(a) The WKB approximation (Elmore and Heald 1969) 
Since the velocity potential ff in Eq. (1.121) is a complex number, it can be expressed 

a s  

~(x, y ) :  A(x, y)e is'x' y) (1.129) 

where A(x,y) and S(x,y) are real functions that represent the amplitude and the phase of the 
velocity potential, respectively. The water surface displacement 7/is expressed as rl-itrA/ 
ge is. Substituting Eq. (1.129) into Eq. (1.121), the following two equations are derived 
from real and imaginary parts, respectively: 

V (cc, Va) 
(VS) 2 = k 2 + (1.130) 

ccgA 

V(a2ccgVS)=O (1.131) 

Here, we assume that the gradients of A and ccg are both small. We call this approximation 
the WKB approximation since the assumption that the inhomogeneity is gradual for the 
equation of wave propagation in inhomogeneous media is called the WKB approximation. 
By employing this approximation we can eliminate the last term of Eq. (1.130). Thus Eqs. 
(1.130) and (1.131) are reduced to 

(VS) 2 = k 2 (1.132) 
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O (1.133) 

Equation (1.132), which is called the eikonal equation in optics, means that the phase 
function S is determined by only the wave number k that is a function of water depth. 
Equation (1.133) shows that the divergence of the energy flux propagating in the direction 
of VS is zero, i.e., that the wave energy is conserved in the direction of the propagation. 
Now we take a curvilinear coordinate s as shown in Fig. 1.9 in the direction of the wave 
propagation that is same as the direction of vector VS. 

/ 
"-- X 

Fig. 1.9 Wave ray 

From Eq. (1.132), VS is expressed as 

VS = k-g (1.134) 

where 5 is a unit vector tangentto the coordinate s and given as 5-(cos0,  sin0). Defining 
the wave number vector k as k-- (kcos0, ksin0), Eq. (1.134) becomes 

VS = k (1.135) 

This equation indicates that the wave number vector k is irrotational and therefore we 
obtain 

V x k = k sin 0 ) - k cos 0 ) = 0 (1.136) 

Furthermore, substituting Eq. (1.134) into Eq. (1.133), we get the energy conservation 
equation: 

_~_ c) (A2cgsin O ) (A2Cg COS O )+-.-~ = 0  (1.137) 

By using the FDM, we can calculate 0 and A 2 at discrete grid points. Details of this method 
can be referred to in 3.5. 
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Next, let us consider the change of k~ in the direction of the wave propagation 

dk~ _ d (VS) = -~ V(VS) = VS V(VS) 
ds - d-~ T 

=Vk 

= 2-~v(vs)~ = 2-~vk~ 
(1.138) 

This equation indicates that if we know the value of k~ (-VS) at a certain point in the wave 
field, we can trace the wave propagation, the so-called wave ray, from the point as 
indicated in Fig. 1.10. Furthermore, since Eq. (1.133) can be written as 

we have 

( ~SI I (AEcgs) VAE "cgs + A2V (cgg) ~7. AEcg = V .  = 

d A  2 AE(dCg 
+ q v .  = =Cg d----~-+ \ d s  

0 
J 

1 dA2 1 dcg ( _ s i n o t g O =  _ ~__~) 
32 ds C g -~s -~-+cos 0 

(1.139) 

(1.140) 

Vkds f s 
~s( s= s) v,., ,~ . . , 

s= s V ~ ~  Vs( s= s+ ds) 

/ 
P's(s= s+ ds) 
= Vs(s= s) +~k(s= s) "ds 

Fig. 1.10 Ray tracing 

If we know a wave ray, we can compute the value of the right hand side of Eq. (1.140) 
and then the change of wave energy along the wave ray. If we omit the last two terms of 
Eq. (1.140), we get the relation, A2cg - const., which means that the first term of the right 
hand side represents the shoaling effect. On the other hand, the last two terms depend on 
the geometric pattern of wave rays and therefore represent the effect of refraction. Thus, 
by considering the energy change along the wave ray, we can split the effects of shoaling 
and refraction. The wave ray method is a method to calculate only the refraction effect 
along the wave ray taking advantage of this property. The last two terms of Eq. (1.140) are 
expressed by using the distance between adjacent rays, i.e., the separation distance b, as 
shown in Fig. 1.11: 
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80 
-sin 0-~- + cos0tg0 =~=d0 1 db 

Oy dn b ds (1.141) 

y S 

%% 

"'N " \  Wave ray 

~" ~ 0  Wave front 

n 

Fig. 1.11 Wave front and separation distance 

Substituting this equation into Eq. (1.140) and integrating it, we have 

A2Cgb = const. = A~cgob o (1.142) 

where the subscript o denotes the values in deepwater. From Eq. (1.139), A is represented 
a s  

A = ?c.olc. 4-ffoolb ao = I':,I':rao (1.143) 

where K s = ~/ gC o / cs and K r = ~ob o / b  are called the shoaling coefficient and refraction 
coefficient, respectively. Both of them represent the effects of the change of water depth. 
In particular, when the contours of water depth are all parallel to the x-axis, the wave 
properties do not change in the x-direction. Therefore, we get 

k cos 0= const. = k 0 cos 00 (1.144) 

from Eq. (1.136) or (1.138), by which the angle of wave propagation 0 can be readily 
calculated at any point. Furthermore, the refraction coefficient is given as 

K r = a/sin 00/sin 0 (1.145) 

through Eq. (1.137) or (1.140). 

(b) Parabolic approximation (Radder 1979) 
In the WKB approximation, we assume that the gradients of A and CCg are both small. 

Now let us apply this approximation only in the x-direction. Equation (1.130) would be 
reduced to 
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+ = k 2 + ~ -  1 

ccgA "~ (1.146) 

Moreover, assuming that the direction of wave propagation is nearly parallel to the x-axis, 
we can write 

0S 
-~ = k + e (1.147) 

where e represents a small value. By using this expression, (3Sfi)x) 2 is written as 

/ = k  2 + 2 k e + e  2 = k  2+2k ~ - k  + e  2=2k-~- + (1.148) 

Neglecting the last term and substituting it into Eq. (1.146), we have 

+ 2k -~- = 2k 2 + ~ - 
CCgA ~ 

(1.149) 

The function ff - Ae is, in which A and S satisfy Eq. (1.149) and (1.131) respectively, 
satisfies the following equation (Berkhoff et al. 1982): 

O~Ox = [ik 1 t9 (kccg ~)-I ccg 
2kcc~ Ox 2kc% Oy 

(1.150) 

This is a parabolic type second-order partial differential equation and can be solved by the 
FDM as an initial value problem. 

(c) Applicability of approximate equations 
The equations obtained by the WKB or parabolic approximation are suitable for the 

calculation of a wave field in a large region compared with solving the mild slope equation 
directly by using the FDM or the FEM because the WKB or parabolic approximation 
equations need much less memory and time for computing. However, if the assumptions 
used to derive these equations are not valid, the equations give us wrong results. In the 
WKB approximation, when the last term of Eq. (1.130) cannot be eliminated, i.e., when the 
effects of diffraction and reflection are as large as those of shoaling and refraction, the 
equations derived by the WKB approximation are no longer useful. The typical example 
appears in the prediction of a wave field around a submerged semi-spherical mound, where 
the wave rays cross each other behind the mound. In the parabolic approximation, the 
diffraction effect resulting from a variation of wave amplitude in the y-direction which is 
nearly perpendicular to the direction of wave propagation is taken into account as indicated 
in Eq. (1.146). However, when a variation of wave amplitude in the x-direction becomes 
large, for example, when the reflection cannot be neglected, or when the angle between the 
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x-axis and the direction of wave propagation becomes large because of refraction, the 
equations derived by parabolic approximation collapse and sometimes give us less accurate 
results than those computed by the WKB approximation. In order to counteract this 
weakness, some modified methods have been proposed. For example, transforming Eq. 
(1.150) onto a curvilinear coordinate system that consists of wave rays and wave fronts is 
one of the useful methods (Tsay and Liu 1982). 

1.2.9 Calculat ion method for nonlinear water waves 
A water wave problem has a free surface boundary that moves with the water particle 

velocity. This velocity is one of the unknown variables. Therefore, the position of the free 
surface boundary is also an unknown variable before computation. The computation 
method for the two dimensional water wave used in this section is separated into two 
mathematical parts; boundary value problem and evolution problem. In this section, the 
fluid is assumed to be a perfect fluid and the flow to be irrotational. Thus, the velocity 
potential ~=~(x,z , t )  exists and satisfies the Laplace equation. 

V2~ =0  (1.151) 

Taking the partial derivation of the above equation with respect to time, another Laplace 
equation is given, 

V2~, =0  (1.152) 

where subscript t indicates the derivation with respect to time. Equation (1.151) is the 
equation of the mass conservation and Eq. (1.152), the alternative to the Bernoulli 
equation. There are three types of boundaries; the free surface, bottom and the moving 
boundary. The moving boundary implies the incident boundary or the wave generator set 
at one end of the wave tank. 

The boundary conditions at the bottom and the moving boundary are expressed as 
follows. 

3 4  
--~- = q(t) (1.153) 

3~  t 
On = q,(t) (1.154) 

where n indicates the normal direction out of the fluid domain, and q(t) and qt(t) are zeros 
at the bottom and are given functions at the moving boundary. 

On the free surface, there are three unknown variables; the velocity potential, the partial 
derivatives of the velocity potential with respect to time qt and the coordinates of free 
surface. These unknowns are given by the solutions of the evolution problem. 

Observing the water particles on the free surface from the Lagrangian point of view, the 
kinematic free surface boundary condition gives the following equations. 

d X  _ 3cb (1 .155)  

dt Ox 
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d Y  c)~ 
d--7 = Oy (1.156) 

where (X,Y) is the coordinate of a water particle on the free surface. On the other hand, 
the dynamic free surface condition gives 

�9 t = - l ( v o ) 2  - gZ  (1.157) 

The total derivative calculated by using Eq. (1.157) as follows: 

8 O  1 . .  
= ~-{V~)  2 - gZ  (1 158) 

tgt 2 

where d/dt denotes the operator of the total derivative, which is rewritten in Eulerian form 
as; 

d o 3 o 3 o 3 
- -  = - - + u - ~ + w - -  (1.159) 
dt & & 

Derivating the Eqs. (1.155), (1.156) and (1.158), the following equations are given: 

d2X 
dt 2 
d2Z 

= ~z, + ~xq)xz + q)fl)= 

dt 2 1 
dEt~ = t/)x dEX dEZ 
dt 2 - - ~  + ~ - ~ -  g ~  

(1.160) 

The Laplace equations, Eqs. (1.151) and (1.152), are solved by means of the boundary element 
method (BEM). The unknown variables are assumed to change linearly in the element. In the 
BEM, the normal derivatives of functions ~ / o ~  and tg~ t/0n are unknowns on the free surface, 
and the �9 and ~, are unknowns on both the bottom and the moving boundary. Therefore, the 
systems of linear equations corresponding to Eqs. (1.151 ) and (1.152) have the same coefficient 
matrices. We tested the accuracy and stability of this scheme by comparing numerically with the 
third-order Taylor expansion. This scheme showed good results. 

On the first step of the computation, the second-order Taylor expansion is applied. In the 
calculation, the following condition (Longuet-Higgins and Cokelet 1976) is required. 

( v -  V + (1.161) 
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When the above condition breaks, e.g., near the wave breaking point, the time step is 
changed to a shorter one, so that Eq. (1.161) is satisfied. The computation starts from rest 
and the velocity potential is assumed to be zero at the initial condition on the free surface. 
This initial condition is physically existent. Therefore, the computation results are able to 
exist physically. In the calculation of Eqs. (1.155)-(1.160), the partial derivations of �9 with 

respect to x and z are obtained from the cp and qo solution of BEM. 
Figure 1.12 shows the sequential change of the calculated wave profiles near the wave 

breaking point. The solid line indicates the computational results with 1/80 second time 
steps each. The computational results show the development of the plunging breaker. 
Figure 1.13 shows the velocity field. 

H0/L0=0.0186 HjHo = 1.488 tan ,e= 1/10 
~ '  - ~ ~ , ,  hb/L~ ~=0"600 

_~ o.oo, ~"-\\\\ 

~.0.20. 
, . . . . .  : ' : ' , , : ' ., , 

7.00 7.20 7.40 7 60 7 80 8.00 8 20 8.40 
Distance from wave maker (m) 

( time t = 6.2see-- t = 6.89sec) 

Fig. 1.12 Change in surface profile 

Ho/Lo= O.0201 
0.150 Hb/Ho = 1.423 tan B = 1/15 

0.100 hJI~ = 0.0215 ~=  0.393 

_ 

0.050 ~ ~ ~ ~ ~ : ~  " 1.0 m/ sec  

0.000 : ~ ~ I .,, 

-o.o5o . . . . .  I ', ," 

- 0.100 

- 0 . 1 5 0  

- 0.200 
�9 �9 1 

10.5 16.6 10.7 ' 1;.8 ' 1;.9 11.0 l i . 1  11.2 

Distance from wave maker (m) 

Fig. 1.13 Velocity field of nearly breaking zone 
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1.2.10 Wave breaking 
(1) Breaking condition and limit 

It is well known that waves break when they reach a critical state. Wave breaking is an 
extreme limit of the wave motion, which is under the strong and sensitive influence of the 
bottom configuration, disturbance of water surface, shapes of structures, etc. 

So far, many mathematical models have been proposed to define wave breaking, some 
of which are, however, short of physical background. 

(a) Progressive wave 
Breaking conditions proposed for progressive waves are as follows. That is, the wave 

breaks (i) when the particle velocity at the wave crest becomes faster than the wave 
celerity, (ii) when waves peak up and the cusped crest has the angle of 120 ~ (iii) when 
the wave profile loses a symmetrical shape and the wave front becomes vertical, etc. The 
reliable and higher-order breaking limits proposed for progressive waves are 

(Ho/Lo)b = 0.142 : deepwater waves (Michell 1893) (1.162) 

(H/L)b- 0.142tanh 2rChb/Lb: shallow water waves (Miche 1944) (1.163) 

(H/h)b- 0.83 : solitary wave (Yamada 1957) (1.164) 

in which, subsuffix b indicates the wave breaking limit. On the other hand, no reliable 
formula has been proposed for progressive waves on gentle slopes. In Japan, the empirical 
formula proposed by Goda (1985): 

(Hb/Lo)= 0.17(1-exp(-1.51r(hb/L o)(1+ 15(tan fl)4/3)) (1.165) 

is popular. Here, tanfl is the bottom slope. 

(b) Standing wave 
The breaking limit of the standing wave is derived under the condition that the vertical 

acceleration of a water particle at the loop becomes larger than the gravitational 
acceleration. The higher order and reliable breaking limits of a standing wave in a constant 
water depth are as follows: 

(Ho/Lo)b=0.214 : deepwater wave (Penny and Price 1952) (1.166) 

(H/L)b = 0.218 tanh kbhb : shallow water wave (Wiegel 1964) (1.167) 

l ( cothE kbhb + O.35cosech2 kbhb - COthkbhb ) 
(H/L)b = ~ 0.296 cosech 2 kbh b 

: shallow water wave (Kishi (1959)) 
(1.168) 

Some investigations of the breaking limit of a standing wave on a gentle slope have been 
conducted. However, a reliable breaking limit has not yet been proposed. This requires 
further investigation. 
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(c) Partial standing wave 
Few investigations on the breaking limit of a partial standing wave has been conducted. 

The physical mechanism of wave breaking of the partial standing wave has not been 
clarified. The following empirical breaking limit has been proposed (Iwata and Kiyono 
1985). 

(H/L)b : (0.218 - 0.076 ll -- KR + KR) tanhkbhb) : shallow water wave (1.169) 

in which, KR is the reflection coefficient from the obstacle. Eq. (1.169) equals Eq. (1.163) 
in the case of no reflection (KR ffi 0) and Eq. (1.169) is equal to Eq. (1.167) in the case of 
perfect reflection (KR- 1). 

(2) Breaker type 
Breaker types are classified into four types: 

(i) Spilling breaker: The limiting wave shape is not so unsymmetrical as in the case of 
the plunging breaker. The spilling breaker is characterized by the appearance of " 
white water" at the crest. The wave generally breaks gradually and turbulent water 
spills down front face of the wave. 

(ii) Plunging breaker: This shows a very unsymmetrical profile with a steeper front face 
compared to the back surface. The crest curls over a large air-pocket. Air-entrained 
horizontal roller or vortex and splash usually follow. 

(iii) Surging breaker: The wave peaks up as if to break in the manner of the plunging 
breaker, but when the base of the wave surges up the beach face with the resultant 
disappearance of the collapsing wave crest. 

(iv) Collapsing breaker: This type of breaker is defined by Galvin (1968). The collapsing 
breaker occurs over the lower half of the wave. Minimal air-pockets and usually no 
splash-up follow. Bubbles and foam are formed. 

The spilling, plunging and surging breakers can be classified in terms of the wave 
steepness in deepwater Ho/Lo and the bottom slope tanfl as shown in Fig. 1.14. Battjes 
(1978) has shown that the surf similarity parameter ~b defined with 

tan fl 1 tan fl 
~b = a/Hb/L ~ = ~ ~/Hb/gT2 (1.170) 

can successfully classify the breaker type as follows: 

spilling breaker: 0.4 > ~b 
plunging breaker : 0.4 < ~'b <2.0 
surging breaker: 2.0 < ~'b 

(1.171) 

In Fig. 1.14, experimental results of breaker classification by Iverse (1952), and Patric and 
Wiegel (1955) are shown. 
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1.2.11 Wave deformation after breaking 
The theoretical methods that evaluate variations of wave characteristics such as the wave 

height, water surface profile and wave kinematics after breaking have so far been 
investigated. Regarding the estimation of wave height variation, some theoretical models 
have succeeded in evaluating the laboratory and field data well. On the other hand, 
concerning the evaluation of the water surface profile after breaking, however, no reliable 
theoretical model has been proposed, even though a numerical calculation technique has 
remarkably progressed. This is one of the important problems requiring future 
investigation. 

The theoretical approaches are mainly classified into (a) analytical method (b) energy 
method. The former directly solves the basic equation that includes a breaker-caused 
turbulence by means of a numerical calculation. The latter utilizes the law of conservation 
of energy flux, in which the energy dissipated by a wave breaking is taken into account. 
Detailed description and explanation of the energy method will be given in Chapter 3. In 
this section, one example of the analytical method is introduced. 

First calculation of the wave deformation on a sloping bottom was carried out by Stoker 
(1948). He solved numerically the nonlinear shallow water wave (Eqs. (1.101) and (1.102)) 
with the use of the method of characteristics. However, he did not include the effect of the 
breaker-caused turbulence. Sawaragi and Iwata (1974) investigated the two-dimensional 
wave deformation after breaking and they first introduced the breaker-caused turbulence 
into the nonlinear shallow water wave theory, 
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- -  + u---~ + --~ (m2 (rl + h )2 (u / h )2 } = O 

__r + _c9 ( u ( h + rl ) } = 0 (1.1 72) 

where, u is the x-component of the water particle velocity, {7 is the water surface profile, 
h is the still water_ _, _ d e p t h "  g is the ~._ _,~ravitati~ acceleration, x is the horizontal axis and t 
is time. The term (cg/cgx)~m2(h + rl)"(u/h)2~ is the breaker-caused turbulence term and m is 
the turbulence intensity 6oefficient. " 

Figure 1.15 shows one example of comparison between data of laboratory experiments 
and theoretically estimated values with the use of Eq. (1.172). The figure clearly shows that 
theoretical values are in good agreement with experimental ones for an adequate value of 
M* (-m2). The value of M* in Fig. 1.15, however, depends on the breaker type and was not 
formulated theoretically. After their investigation, extensive research concerning breaker- 
caused turbulence has been conducted from laboratory experiments and field 
measurements. Details of breaker-caused turbulence will be discussed in Chapter 3. 

Regarding the variation of the water surface profile after breaking, Sakai et al. (1986) 
tried to calculate numerically the broken wave after breaking. No theoretical model has 
succeeded in estimating the variation of the water surface profile after breaking. This 
problem also requires further investigation. 
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Fig. 1.15 Comparison of wave height variation between laboratory 
experiments and theoretically estimated values. 

1.3 Description of Random Waves 

Sea waves consist of many individual waves with different heights, periods and 
propagation directions. It is difficult, therefore, to discuss such random waves in a 
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deterministic manner on the basis of the equation of motion as used for regular waves. 
Characteristics of the random waves are usually discussed by means of either spectral 
analysis or wave-by-wave analysis. The spectral analysis provides the wave energy 
distribution in the domain of wave frequency, wave number or wave direction, assuming 
that the random waves are expressed by superimposing linearly a large number of regular 
waves with different amplitudes, frequencies and directions. In wave-by-wave analysis, the 
time series of the irregular surface elevation is first divided into a number of individual 
wave elements by either the zero-upcrossing method or the zero-downcrossing method, 
which assigns wave heights and wave periods for the individual waves. The statistical 
wave characteristics are discussed in terms of the distribution functions of these wave 
heights and wave periods. The statistics based on the wave-by-wave analysis are usually 
classified into three categories: short-term wave statistics, wave climate statistics and long- 
term wave statistics, corresponding to the time scale we are interested in. The short-term 
wave statistics deal with the waves observed over the period of several tens of minutes to 
one hour, where the wave characteristics are supposed to be stationary. The wave statistics 
over the period of about one month to one year is referred to as the wave climate statistics. 
The statistics based on the wave record over a long period such as several decades are 
termed the long-term wave statistics, which are also called the statistics for high waves or 
for extraordinary waves because the maximum value of the wave heights observed in the 
period of storm conditions are used as a variable. 

Since the spectral analysis is based on the principle of linear superposition of sinusoidal 
waves, the amplitudes of the component waves are supposed to be small, which is the basic 
assumption of the linear wave theory. For the wave-by-wave analysis, each individual 
wave sampled is assumed to behave as it would be in a regular wave train. It is therefore 
easy to trace the individual waves as long as the interaction with neighbouring waves is 
negligible. Neither spectral analysis nor wave-by-wave analysis provides us with universal 
description for the hydrodynamic internal structure of irregular waves. Thus to take 
advantage of the features of these two methods, their combined use may be the best way 
as yet, even though a new comprehensive and precise theory that enables us to discuss the 
hydrodynamic internal structure is really what is hoped for. 

1.3.1 Spect ra  of sea waves 
(1) Frequency spectra 

The water surface profile rl(x, y, t) of irregular waves, which varies both in time and in 
space, is expressed as 

oo 

rl(x,y, t ):  E a, cos[(k, cos0,)x + (k, s i n 0 , ) y -  2nf, t + e, ] 
n = l  

(1.173) 

where a is the amplitude, k is the wave number, 0 is the wave direction, f is the wave 
frequency, e is the phase lag, and the subscript n indicates the n-th component wave. 

When we observe the surface elevation at a fixed point in space, 7/yields a function of 
t. We now define the total energy density E(f), which is related to the total energy of a 
component wave whose frequency lies between f and f+A~ 

f+af l_.a 2 
E(flAf = ~ 2 " (1.174) 

f 
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The energy density spectrum E(f) is sometimes simply called the wave spectrum (one- 
dimensional spectrum) and has a dimension of (length)2 x (time). The generalized form of 
the energy spectrum density for wind waves is expressed as 

E(f)=Af-"  exp[-Bf-"] (1.175) 

There are a variety of standard spectra proposed for deepwater waves. Bretschneider- 
Mitsuyasu and Pierson-Moskowitz types are frequently used in Japan as theoretical spectra. 
Table 1.5 shows the values of the coefficients used in Eq. (1.175), A, m, B, and n, for 
several representative standard spectra. Although it is generally known that the wave 
spectra are significantly transformed in a shallow water region due to shoaling or wave 
breaking, the appropriate description for the shallow water wave spectra has not been 
established yet. 

Table 1.5 Profiles of representative spectra 

Proponent A B m n 

Neumann (1953) 0.39 (2z) -~ (H1/3)2 (T)-5 

Pierson - Moskowitz (1964) 0.0081 (2/t') -4 g2 

Bretschneider (1969) 0.430 (H) 2 (T) 4 

ITTS (1987) a~(2z)-Sg2 

JONSWAP (1973) a2(2/~) -4g2rexp[(f/fp - 
2o~ 

Mitsuyasu (1975) 0.258 (H~/3)2 (T~/3)-4 

1.767(T) -2 6 2 

-0.74(2zt'U19.5 / g)-4 5 4 

0.675(T) -4 5 4 

4 a ~ g 2 ( 2 ~ ) - 4 ( H 1 / 3 )  -2 5 4 

1) 1 1.25(fp)-4 5 4 

1.03 (TI/3) -4 5 4 

Remarks: U195: wind speed measured at 19.5m above the sea surface, cr~ 
= 0.0081 r,,  44g/n,, /3.54(2zt)} -4, a2 = 7.6 x lO-2(gF/U2o), r=0.33 

Ul0- Wind gpeed measured at 10.0in above the sea surface, F: fetch, 
fp = 3.5(g/U~o ) (gF/U2o )-333 

r 0'07(f < fp) 1 
= l~176176 > L)J' 

(2) Directional wave spectra and wave number spectra 
As seen in Eq. (1.173), wave energy scatters not only in the frequency domain but also 

in the wave direction domain. We thus define the directional wave spectrum (or two 
dimensional spectrum) E(k,O) as in the following equation: 

k+~L o+.~oL 1 2  = E (k, O) AkAO (1 176) 
k 0 2 " 

which refers to the total energy of component waves whose wave numbers and wave 
directions lie respectively between k and k+Ak and between 0 and AO. The integration of 
E(k,O) with respect to 0 
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23t 

E(k) = ~oE(k, 0) dO (1.177) 

is referred to as a wave number spectrum. Using the dispersion relation, we can also write 
the directional wave spectrum as E(f, 0), in which the wave frequency f is used instead of 
wave number k. Similar to E(k), we can obtain the frequency spectrum E(D by integrating 
EOe, O) over the range 0<0'A_27r. 

For the purpose of engineering applications, E(f,/9) is often expressed as a product of the 
frequency spectrum E(f) by the directional spreading function h(O, ./): 

E(f ,O) = E(f)h(O,f) (1.178) 

There are a variety of formulas proposed for h(0, J). We here show two formulas proposed 
by Pierson et al. (1955), which is independent of f, and by Mitsuyasu et al. (1975): 

f2cos 0.101<_ /2 
h(O)l~ 0 101> nr/2 (Pierson et al. 1955) (1.179) 

Eso ({)]' h(O, f) o~ = cos 2s dO cos 2s 

/"(2S + 1) c~ 

(Mitsuyasu et al. 1975) (1.180) 

where 0m~n- - n: and 0n~x - n:. The parameter S in Eq. (1.180) represents the degree of 
concentration and is given by Goda and Suzuki (1975) as 

~Smax(f/ fp) 5 . f <_ fp 
S=[Smx(f /  fp)-2"5 f > fp (1.181) 

in which fp denotes the peak frequency of the spectrum and S~x is the maximum value of 
S and called the spreading parameter. Goda and Suzuki (1975) suggested letting Srnax-- 10 
for wind waves, Sm~x = 25 for a swell with a short decay distance (with a relatively large 
wave steepness), and Sm~x- 75 for a swell with a long decay distance (with a relatively 
small wave steepness). Most of the formulas of the directional spectra are proposed for 
deepwater waves and have not been extended for shallow water waves. 

1.3.2 Short- term statistics 
(1) Distribution of water surface elevation 

Providing that nonlinear interactions are small enough to assume that component waves 
are statistically independent, the probability distribution of the water surface elevation is 
considered to be a Gaussian distribution: 
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1 2m 0) (1 182) P(O)'-(2~/~n0)1,2 exp(-r/a/ 

from the central limit theorem, where we let ~ - 0  and m0- 02 with indicating a time 
averaged quantity. 

Representative statistical quantities of )7 are the mean water level ~ ,  the standard 
deviation or root-mean-square value r/rms, the skewness ~ l  and the kurtosis fiE. These 
quantities are defined as 

n - z,7,,=, n,-o) 

,)':m, N ": n ' :=  N , :  

(1.183) 

where )7 is sampled at an interval of At. The skewness ~ and the kurtosis ~ are 
concerned with the shape of the probability distribution and take 0 and 3, respectively, for 
the Gaussian distribution. On the basis of field measurements at 40 locations along the 
coast of Japan, Kobune (1990) showed that these parameters take the values in the range 
0.01 < ~ l  < 0.1 and 2.89 < ~ < 3.18. With wave heights increasing, the nonlinear effects 
become significant and the wave form becomes steeper at a wave crest and flatter at a wave 
trough, which gives a positive skewness and a kurtosis larger than 3. 

(2) Distribution of Wave Heights 
Provided that the irregular waves consist of the component waves only in a narrow 

frequency band with random initial phases, the probability distribution of wave heights is 
considered to be the Rayleigh distribution (Longuet-Higgins 1952): 

p -ff dH = -~- exp dH (1.184) 

where p(H/H) is the probability density function and H denotes the mean wave height. 
The statistical representative waves that we commonly use are the highest wave, the 
highest one-tenth wave, the highest one-third wave or the significant wave, and the mean 
wave. The highest wave denoted by Hmax and /'max corresponds to the individual wave that 
has the largest wave height in a wave record. The highest one-tenth wave (H~/10, Tl/10), the 
highest one-third wave or the significant wave (Hi/3, Tl/3) and the mean wave (H,T)are 
hypo-thetical waves that have the wave heights and periods given by averaging those of 
the particular individual waves. The wave height Hi/10 of the highest one-tenth wave is 
obtained by averaging wave heights larger than and equal to the N/10-th largest wave 
height among all the individual wave heights of N in the wave record, and the wave period 
Tl/10 of the highest one-tenth wave is given by averaging the wave periods of the 
corresponding waves. The wave height HI/3 and the wave period TI/3 of the significant wave 
are calculated in a similar manner to that for the highest one-tenth wave except that the N~ 
3-th largest wave height is used instead of the N/10-th largest wave height. The mean wave 
height and the mean wave period are the mean values of the heights and periods of all the 
individual waves. 
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Assuming that the water surface elevation 7/and the wave height H in a wave record 
exhibit respectively the Gaussian distribution and the Rayleigh distribution, the 
representative quantities H~/~o, Hi/3, and r/tins are related to each other as follows: 

H/H~, 3 = 0.626 H~,,o/H~, 3 = 1.271 H/HI,~O = 0.4878 } 
H/r/~ms = 2.507 Hi/3/r/rms = 4.004 Hl/10/r/m,s = 5.090 (1.185) 

Since the maximum wave height Hmax increases as the number of individual waves N 
increases, Hma x cannot be directly related to other representative wave heights but is given 
as a function of N 

1 /2 (1 186) Hmax/H1/3 ----(In N) z +),/2a(ln N) 1/2 
a 

where a - 1.416, ],is the Euler constant (-  0.5772), and In denotes the natural logarithm. 
The standard deviation of nmax/Hl/3, O[nmax/H1/3], is given as (Longuet-Higgins 1952) 

O[Hm~x/H,/3 ]-- tr / 2-,f6a(ln N) '/z (1.187) 

which gives Hmax/nl/3 ~ 1.71 for N -  200 and 1.93 for N -  1000. 
The field observations in the coastal region of Japan says that the probability distribution 

of wave heights varies with the correlation coefficient between wave heights and wave 
periods, r(H,T) (see Fig. 1.18) 

r(H, T) = 

N D 
Z(Hi - H)(Ti - T) i=l 

Kobune (1990) showed that the Rayleigh distribution can be applied in the range 0.3 < 
r(H,T) < 0.7. As waves approach the coastline, the probability distribution of H deviates 
from the Rayleigh distribution and accordingly the relations in Eq. (1.185) become no 
longer correct. 

(3) Distribution of wave period 
Bretschneider (1959) showed that the probability distribution of the square of a wave 

period is predicted well by the Rayleigh distribution for fully-developed wind waves, 
which yields 

(T / (T)3 { /T/4t p dT = 2.7 exp -0.675 dT (1.189) 

where p(T /T ) i s  the probability density function of wave periods and T is the mean wave 
period. 

On the other hand, Longuet-Higgins (1975b) derived the theoretical probability density 
function for irregular waves having a narrow band spectrum 
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1 
p(r)  = 2(1 + "r2) 3/2 

T -  T m o m  2 - m E 
T = ~  V =  

vT m E 

(1.190) 

where v denotes the spectral width parameter. The parameters mo, ml and m2 are the 
zeroth, first and second spectral moments of the energy spectrum respectively, and given 
by 

oo 

m. = ~ f " E ( f )  d f  (1.191) 
0 



52 

Equation (1.190) says that the shape of the probability density function is significantly 
influenced by the spectral width parameter v. Goda (1978) used the new parameter, the 
period band width parameter, v,,  proposed by Longuet-Higgins (1975b) 

v= ~f3 taR(r) =- v, 1 
2 

IQR (r)=r~ - "ca 
(1.192) 

and apply it to Eq. (1.190) for v to show that Eq. (1.190) can be applied to irregular waves 
having relatively wide-band spectra, r~ and lr3 in Eq. (1.192) correspond to lr at which the 
probability of occurrence of ~, p(T<lri), is equal to 1/4 and 3/4, respectively. According to 
these field observations in the coastal region of Japan, the probability distribution of wave 
periods is influenced by the correlation coefficient r(H,T) between wave heights and wave 
periods, and the measured distribution shows good agreement with the theoretical 
distribution of Eq. (1.190) in the region 0.1 < r(H,T) < 0.7. 

The relations between the representative wave periods are approximately given as 

T~/3/T = 0.9 ~ 1.4, Tl/~o/T~/3 = 0.9 ~ 1.1 (1.193) 

by numerical simulations and field measurement (Goda and Nagai 1974). 

(4) Joint probability distribution between wave heights, periods and directions 
For the irregular waves having a narrow band spectrum, the joint probability distribution 

between wave heights, wave periods and wave directions have been discussed 
theoretically, making use of the envelope profiles of the time series of various quantities 
such as water surface elevation r/(t) and its time derivative. Longuet-Higgins (1975b) 
derived the joint probability density function p(X,~) between wave heights (X = H/H)  and 
wave periods (r = T/T)  from the joint probability distribution of the envelope functions of 
rl(t ) and rj(t) 

p(X, r)= exp - ~  1 "~" ~/2 (1.194) 

The marginal distribution given by integrating Eq. (1.194) with respect to X over the 
region 0< X< oo provides the distribution function of r shown in Eq. (1.190), while the 
integration with respect to lr over the region 0 <~ <oo gives the Rayleigh distribution for 
wave heights shown in Eq. (1.184). 

Isobe (1987) provided two kinds of joint probability distributions between wave heights 
and wave directions of individual waves using the time series of rl(t), u(t) and v(t), which 
correspond to two different definitions of wave directions. The definitions used for the 
wave direction are (i) the horizontal direction of a water particle velocity vector under a 
wave crest, and (ii) the direction in which the horizontal water particle velocity becomes 
a maximum. They showed that these two definitions bring about a considerable difference 
in the probability density functions and accordingly in the joint probability distribution 
between wave heights and wave periods. They also suggested that we should carefully 
select the definition of wave direction suitable for the phenomena being considered when 
discussing the directional random waves through the wave-by-wave analysis. 
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Kwon et al. (1988) and Akai and Mizuguchi (1988) independently obtained the 
expressions for the joint probability density function between wave heights, wave periods 
(frequencies) and wave directions based on the above-mentioned definition (i), using the 
envelope functions of r/(t), //(t), u(t) and v(t). There are two differences between Kwon's 

and Akai's. One is that the covariance between ~t) ,  u(t), and v(t) are taken into account 
in the former and are neglected in the latter. The other is that the wave period is used as 
a parameter representing the time scale in the former whereas the wave frequency is used 
in the latter to avoid theoretical problems in converting the wave frequency into a wave 
period. Here we show the Kwon expression 

' I >>1 t r  I(X I exp- rr X 2 { A l l  + A 4 4 ~ 2 (  1 - 1 / ' t ' )  2 + 2 A t 4 ~ ( 1  - 1/z p ( X, "r O ) = -~-  r \ .t: j --~ 

x + - ~  -~ exp \ 4AA X2 1 - -  P r  

where 

A - A 2 2 c 0 s 2 0  + A 3 3 s i n 2 0 / r  2 + 2 A 2 3 c o s O s i n O / r  

B' - -(A~ECOS0 + AtasinO/r + A24~(1-1/'r)cos0 + A~4~(1-1/z)sinO/r) 
-0 - 2nml/mo (mi;  the i-th moment of frequency spectrum) 

Pr(~)= 2 ~ ~ f ; e x p ( - ~ -  / dt (1.196) 

A, r and Aij (i -- 1-4, j - 1-4) are expressed as 

A - 1 + 2 r l l r l 2 r 2 1 -  r l 2 2 -  r212 - r l l  2 -  r io  2 -  2rolr~or~:r21 
+ 2 r l o r o l r l l  + rloEr212 + ro12r122 - ro12 , 

A l l  -- 1 + 2rllr12r21 - r122 - r212 - r l l  2, 

A I  2 --  r212rlo + r o l r l l  - r10 -rolrl2r21, 

A~3 - r ~ ,  + r122rol - rolr12r21 - ro l ,  

A14 - rlor12 + rolr21 - rolrllr21 - rolrl~rl2,  

A22 = 1 - r212 - rol 2, 

A23 -~ rolrlo + rl2r21 - r l l ,  

A24 "- rl~r2~ + rolErl2 - r t2 - r lorotr21,  

A33 - 1 - r~22- r~o2, 
A34 --  r l l r l2  + rlo2r21 - r21 -rlor21rl2, 

A44 --  1 + r lorolr l l  - to12 - r l l  2 - r io  2 

(1.195) 

(1.197) 

by using the following dimensionless covariances between the envelope functions (r/$,r/c), 
(ils,iL), (U, Uc) and (Vs,Vc) of rl(t), il(t), u(t) and v(t), respectively: 

r,o - m,ol4moom o "o, - mo,14moomo  r,,,- m , ,14 mo } 

=m, /4m om 2 r=4mo /m o 
(1.198) 
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where mij (i,j-O, 1,2) is the covariance between the envelope functions. 

moo =< rlcrlc >=< r/sr/s > mlo =< rlcUc >=< r/su, > 

m01 =< rlcVc >=< rlsVs > m20 = <  UcU c > = <  usu  s > 

m02 =< VcV c >=< vsv s > mll =< UcV r >=< U,V, > 

m22 =< ilcilc >=<//,f/,  > ml2 =< Ucil~ > = - <  usflc > 

m21 = < Vcil~ > = -  < v,//~ > 

(1.199) 

Equation (1.195) yields the expression of Akai et al. if we take the x-axis as a principal 
direction and let the covariance between f/(t), u(t) and v(t) be zero, and also yields Isobe's 
joint probability function between wave heights and wave directions based on the 
definition (i) for the wave direction if we integrate the equation with respect to 1: over the 
range 0 < 1: < oo. The covariances in Eq. (1.199) are related to the directional spectrum as 
follows: 

" E  moo=~:~_,~ (f,O)dOdf 

m,1 = ~: ~:~ b(f)  2 sin0 cos0 E(f,O)dOdf 

m,o = ~: ~_~ b(f )cosO E(f ,O)dOdf 

mo, = ~: ~_~ b(f  )sinO E( f  ,O)dOdf 

m20 = ~ : ~  b(f)2cos2 OE(f ,O)dOdf 

m02 = ~: ~:,~ b(f )  2 sin 2 0 E(f,O)dOdf 

m22 = f :  ~_~ (2tr) 2 ( f -  f)E(f,O)dOdf 

(1.200) 

where b(f) is the transfer function of water particle velocity from the water surface 
elevation based on the linear wave theory. 

Figure 1.17 shows the joint probability distributions between wave heights, wave periods 
and wave directions under the condition that one of these parameters takes a value in a 
particular range shown in the figures, where both the isolines and the numerals indicate the 
number of waves out of 1000 waves. The isolines are calculated by applying Eq. (1.195) 
to the surface elevation rl(t) and the horizontal water particle velocities u(t) and v(t) 
measured on the coast of Awaji Island in Japan. The numerals are obtained by analyzing 
the measured surface elevation through the zero-downcrossing method and by assigning 
the wave directions on the basis of Isobe's definition (i). The agreement is good except for 
the region of the small relative period (TIT < 0.75). 
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Fig. 1.17 Joint distribution of wave height, period and direction 

(5) Wave grouping 
It is generally known that high waves tend to be observed successively, showing 

alternate high wave groups and low wave groups. A succession of high waves whose wave 
heights exceed a specific wave height H* is called a "run of high wave heights." 

The number of waves contained in such a wave group is termed "run length" indicated 
by J, in Fig. 1.18. The "repetition of high waves" indicates the waves that lie between the 
first exceedance and the next, the number of which is termed "repetition length of high 
waves" or "total run length of high waves," shown by -/2 in the figure. Ewing (1973), Goda 
(1976) and Kimura (1980) theoretically investigated the statistical quantities such as 
probability distributions of the run length and total run length of high waves. Kimura's 
theory, which is accepted in practical use and in which the correlation between two 
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successive waves is taken into account, provides the probability distributions p(J~) and 
P(J2), the mean value J~ and J2, and the standard deviation o(J~) and o(J2), for the run 
length J~ and the repetition length of high waves J2: 

.,,,q 
0 

0 

H 
~ 

Time 

Fig. 1.18 Definition of run length and repetition length of high waves 

P(Jl)= p~j~-l (1- P22) 

P(J2)- (1- pl!)(1- P22) (pj~-, _ . , . - l )  
(P,, - P22) r22 

s; = 1/(1 - p,,) 
J~ = [1/(1- p,,)l + [1/(1- P12 )] 
(I(J, ) = ~ / ( 1 -  P22 ) 

[ 1 )2 -~1  
11)2 + a(s2)= (1- p, (1- p~ 

1 ] 
(1-PII) (1-- P22) 2 

112 

(1.201) 

where 

4H1H2 I 1 ( H~ + H2 )I [ (I _ 4p*2 )H2 s ] P(HI'H2) = (l_4p*2)H4 exp (1-4p'2)~, H2~ms xI0 4H1H2P* 
f" 

P22 = ~. I~, P(Hl'H2 )dHldH21f~, q(H~ )dHl 
E(2p* 1 - ( 1 -  4p .2 )K (2p* 1/2 - 7r/4 

FHH = (1 - ~/4) 

In these equations, I0 denotes the modified Bessel function, p* is the correlation parameter, 
K( ) and E( ) are the complete elliptic integrals of the first and second kinds, respectively, 
and rHn is the correlation coefficient between two successive wave heights, and q(H~) is the 
probability density function of H~. 
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Funke and Mansard (1980) proposed the following new parameter GF (Groupiness 
Factor) to provide additional information of the wave grouping besides the run length and 
the repetition length of high waves: 

1 r. ~.  2dt GF =-~-~0 ( E * ( t ) - )  -* 

1 ~_~r/2 (t + r)Q(z) dr E'(t) = -~-p 

Io - 
~ , =  1 r. 02 ~ E*(t)dz=m~ = 

(1.202) 

where 7', is the record length, 7"/is the water surface elevation, Tp is the peak period of the 
wave spectrum, E*(t) is the smoothed instantaneous wave energy history (abbreviated 
SIWEH), z is the time lag, and Q(z) is the data window for which they recommended using 
the following function: 

a(~) =:01-(l~l/z') "I~I-<I~I>T,TP} (1.203) 

It has been pointed out that the wave grouping significantly influences mooring problems 
of floating structures, wave run-up heights on a slope (Mase et al. 1983), stability of rubble 
mounds or wave dissipating concrete blocks (Sawaragi et al. 1983), and overflowing 
phenomena over a dike due to waves (Kimura 1981). Iwata and Itoh (1986) also 
investigated the run length and the repetition length of breakers on gentle slopes. 

1.3.3 Wave climate statistics 
(1) Distribution function 

Since there are no leading theories for the wave climate statistics, most of investigations 
have been performed on the basis of field data. Wave climate statistics deal with significant 
wave heights H~/3, significant wave periods T~/3, and wave directions�9 Although a variety 
of distribution functions have been proposed (Chakrabarti 1987), the WeibiJll distribution 
is often used as a distribution function of Hv3 and Tv3 

P(X<x)=P(x)= {1-exp[-{(X-Xco )/x~ �9 X>Xc} 
�9 X<Xc 

(1.204) 

where X indicates Hi/3 or Tl/3, X is a specific value of X, Xc denotes the minimum value of 
Hi/3 or T~/3, Xo is the scale parameter, and r is the shape parameter. 

The Weibull distribution shows good agreement with field data except for both very 
large and small wave heights�9 The Port and Harbor Research Institute of the Ministry of 
Transport, Japan obtained the values of the parameters used in Eq. (1.204), (Hv3)o, (H~/3)c, 
rn ,  (Tl/3)c, (Tl/3)o, and rr for the 22 locations along the coast of Japan through field 
measurements, where rH and rr are the shape parameters for H and T, respectively. Kobune 
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(1990) investigated the annual variation of the monthly averaged values of the significant 
wave heights and periods observed on the coast of Japan, and obtained the relation 

Hi~ 3 = aT31~3 (1.205) 

This is different from the relation H~/3 ~ T21/3, which Bretschneider (1954) proposed 
for the short-term statistics. The parameter a in Eq. (1.205) takes 0.007 on the northern 
coast of the Sea of Japan, 0.006 on the western coast of the Sea of Japan, and 0.005 on 
the coast of the East China Sea. 

(2) Duration of wave climate (Goda 1985) 
Kuwayama and Hogben (1984) derived the probability distribution for duration r of the 

wave climate during which wave heights exceed a specific significant wave height (H~/3)c 
and also obtained the mean duration ~ of such a wave climate 

P[r / H~/, > (H,/3 ). ] = I - e x p [ - C ( r / ~ ) a ] l  

' = 4 { - ' n Q [ H , / 3 > ( H , / 3 ) . ~  # 
(1.206) 

assuming the probability distribution of H~/3 to be the two-parameter Weibull distribution 
and letting Xc- 0 in Eq. (1.204). They also obtained the relations: A - 35/r ~/2, ~ -  0.6r 0.287, 
C = [F(l+l/a)] a, a = 0.267"y[(Hl/3)JHl/3] ~ from the field measurements, where , /3  
denotes the mean value of Hi~3, 1"~ ) is the Gamma function, and o[nl/3 > (H1/3)c] is the 
probability of exceedance over (H~/3)c. Furthermore, they suggested the estimation of the 
probability distribution for the duration r '  and the mean duration z', where z' is the 
duration during which wave heights show smaller values than (H1/3)c, by using the 
following parameters: 

r ' = ~ ( 1 - Q ) / Q  a':0.267r[(H,/ / n, ]0,} )c " 
(1.207) 

However, the applicability of Eqs. (1.206) and (1.207) have not been fully investigated. 

1.3.4 Long-term statistics 
The design waves (probability waves), which give the external forces for the design of 

coastal and offshore structures, are decided by means of statistical treatment of 
extraordinary waves under storm conditions. The accumulation of such wave data, 
however, is not large enough to deal with the maximum wave heights measured in one 
year. We therefore utilize the partial duration series applying extreme statistics analysis. In 
this analysis, use is made of the maximum wave height (Hl/3)peak among the significant 
wave heights, each of which corresponds to the wave record due to one typhoon or one low 
pressure. 
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(1) Probability of non-exceedance of extreme wave heights 
Gringorten (1963) and Petruaskas and Aagaard (1970) obtained the probability with 

which wave heights do not exceed the threshold Hm, assuming that the wave heights are 
independent of each other 

p(H<Hm)=I - m - a  
N + 13 (1.208) 

where Hm denotes the m-th largest value among the extreme wave heights of N. Although 
we sometimes let a - 0 and 13- 1 for convenience in calculation, it is recommended using 
the values shown in Table 1.6 to avoid the bias introduced by letting a -  0 and f l -  1. Table 
1.6 is given by using the distribution functions of extreme values shown below in Eqs. 
(1.209) and (1.210). 

Table 1.6 Values of a and 13 in Eq. (1.208) 

Distribution function a fl 
Double exponential distribution 0.44 0.12 
Weibull distribution (k - 0.75) 0.54 0.64 

(k = 0.85) 0.51 0.59 
( k -  1.00) 0.48 0.53 
(k - 1.10) 0.46 0.50 
( k -  1.25) 0.44 0.47 
( k -  1.50) 0.42 0.42 
( k -  2.00) 0.39 0.37 

(2) Distribution functions of extreme wave heights (Japan Society of Civil Engineers 1985; 
Chakrabarti 1985) 

The Gumbel distribution and the Weibull distribution are commonly used as distribution 
functions for extreme values of wave heights. The distribution functions P, the mean 
values p[X], and the variances a2[X] of these are given as follows: 
Gumbel distribution: 

p[X]=B+'yA a2[X]=(zz/6)a z 
~, = Euler's constant 

(1.209) 

Weibull distribution: 

P(H< X ) = l - e x p  - A 

u[x]= B + A r  (1 + 1/K) 
o [x] = A [ r 0  + Z/K)-F2(1 + l/K)] 

(1.210) 
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where/ ' (  ) is the Gamma function, A is the scale parameter, K is the shape parameter, B 
is the minimum value of X, and X denotes the wave height we are concerned with. Kobune 
(1990) showed a table providing the values of A, B and K in the Weibull distribution 
function for the maximum significant wave height measured in one year on the coast of 
Japan. He also showed the correlation coefficient R between the distribution of field data 
and the theoretical distribution. 

(3) Return period of extreme wave heights 
The return period of extreme wave heights is obtained by 

K 1 
Rp =~ 1-P(H<X) (1.211) 

where Rp denotes the return period in one year, K is the effective duration of wave data 
in one year, and N is the number of extreme wave heights in the period of K years. 

To calculate the probability wave height X of Rp years, i.e., the extreme value of X 
corresponding to the return period Rp, we first calculate the non-exceedance probability 
P(H<_X) from Eq. (1.211) and then determine the wave height having the non-exceedance 
probability P(H<_X) from Eq. (1.209) or Eq. (1.210). 

On the other hand, the statistics for extreme values of wave periods have not been 
investigated thoroughly. This is probably because such statistics are considered to be less 
important than those for wave heights. The wave period corresponding to the probability 
wave height of Rp years is obtained by making use of the joint distribution diagram 
between the wave heights and the corresponding wave periods, on the basis of the same 
wave data as used for the statistics of extreme wave heights. In the case available wave 
data being scarce, we are often required to correct the predicted extreme values to 
minimize the deviation from those of the real distribution functions, even if we adopt the 
most suitable distribution function. 
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Chapter 2 Wave Interactions with Structures 
and Hydrodynamic Forces 

2.1 Introduction 

2.1.1 Classification of marine structures 
Various kinds of structures are utilized in coastal and harbor regions. For instance, we 

can immediately recall massive structures, such as a breakwaters, detached breakwaters, 
sea dikes, piers and so on. On the other hand, as more recently developed marine 
structures, we can easily recall fixed or floating platforms that have been used offshore for 
exploring and developing underwater natural resources, especially undermined oil in the 
sea floor. There is another kind of marine structure which is used for fisheries and 
aquacultural development, such as an artificial reef and a floating cage. 

With respect to coastal and harbor structures, numerous comprehensive studies have 
been done on wave loading and wave deformation around these structures. Voluminous 
engineering literature about those works has already been published (e.g., Goda 1977). 

The topics of hydrodynamics of offshore and marine structures are comparatively new. 
Only for a circular cylindrical body, a number of studies, especially concerning the 
diffraction wave force originally analyzed by MacCamy and Fuchs (1954) and the 
experimental works based on the Morison equation, have been conducted. However, there 
is only limited literature regarding wave interactions with more general offshore and 
marine structures of various shapes and types. In this chapter, after having classified 
briefly the offshore structures into the following three categories, hydrodynamic interaction 
between waves and the structures is discussed. 

Fixed large body, <~ Fixed small body and | Floating body 
First, remarking on the difference between large and small bodies from hydrodynamic 

aspects, it can be stated shortly that whether the influence of a structure on waves reaches 
a much wider region or not. Therefore, for a large body, due to the generation of distinctive 
scattered waves by the structure, the disturbance propagates for a much wider area far from 
the body. On the contrary, for a small body, which is characterized by the generation of 
separated flows in the neighborhood of the body, the influence of a body is bounded to a 
comparatively narrow area. 

Isaacson (1979) has presented a comprehensive figure describing the generation 
mechanism of wave force on a circular cylindrical body, as seen in Fig. 2.1. In the figure, 
the dominant cause of wave force generation is specified as a function of the diffraction 
parameter, D/L (D: diameter of the cylinder, L: wavelength), and the Keulegan-Carpenter 
number, KC. The diffraction parameter is known as an important dimensionless variable 
relating to the intensity of scattered waves. KC is also known as an important parameter 
that is closely correlated with the wake development behind a cylinder and is defined by 
UmT/D (Urn: velocity amplitude, T:wave period). According to this figure, it is seen that, 
for larger D/L, effect of wave scattering on the wave loading becomes more important. 
Also, for higher KC, the effect of the flow separation and the resultant vortex formation 
becomes more evident. Isaacson pointed out that the critical value of D/L dividing large 
and small body regimes is about 0.2 because KC becomes 2 at the most for the range of 
D/L>0.2 due to wave breaking. Under such a condition of KC, it is well known that the 
flow separation effect may be ignored in wave force calculation. However, it is noticed that 
the criterion described above is mainly for a rounded body, especially for a circular 
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Fig. 2.1 Classification of wave force regimes (Isaacson 1979) 

cylindrical body. For an angular body like a rectangular cylinder or plate, flow separation 
inevitably occurs and this resultant effect might not be negligible. Research on this subject 
must be continued in the future. 

At present, anyhow, D/L-0.2 is used as a rough estimate of the critical boundary 
dividing the two regimes, large and small bodies, from the hydrodynamic aspect .  

On the other hand, in the case of a floating body, there appears another hydrodynamic 
force due to body motion in addition to the wave forces exerted on the body under the 
fixed condition. The generation mechanism of hydrodynamic forces due to body motion 
can also be classified briefly into two regimes in the same way as the case of a fixed body. 
For a large floating body, the effect of radiation waves due to body motion becomes more 
significant for estimating the dynamic response. 

There is another type of structure that has the features of both large and small bodies, 
like a permeable breakwater and an artificial fish reef. Hence, each member of the structure 
has small enough dimensions compared to the wavelength. However, because the spacing 
between members of the structure is comparatively small and also the whole dimension of 
the structure is a significant order of the wavelength, both effects of the wave scattering 
by the whole body and the flow separation around each member should be simultaneously 
accounted for. For such a structure, we have to deal with both wave scattering by the 
structure and wave energy dissipation caused by the flow separation for a wave force and 
wave diffraction calculation. In this chapter, in order to be able to treat such a hybrid type 
structure, a method of numerical modeling of the vortex flow around a bluff body and also 
an analytical treatment of the wave transmission and reflection by permeable structures are 
presented in different sections. Finally, a basic principle of the wave impact force on the 
structure, which is known as a very powerful wave load, is also described. 

2.1.2 Hydrodynamic force and surface stress 
As described in Fig. 2.1, a generation mechanism of wave loads on offshore structures 

is dependent upon the relative dimension of the structure to wavelength and also KC. In 
order to estimate the hydrodynamic forces on the structure, we have to know the relation 
between fluid forces and surface stresses. 
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In Fig. 2.2, distribution of the pressure p and shearing stress T on the submerged surface 
of the body is schematically shown, where a two-dimensional flow is assumed for 
simplicity. 
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Fig. 2.2 Hydrodynamic forces and surface stresses 

The fluid force and moment vectors per unit length of the body, d Fand d M 
respectively, can be calculated by the simple integration of p and v such as 

dF= Ic(-p~ +'(~)dC (2.1) 

dM= = Ic ~ x ( -p~ + "r~)dC (2.2) 

where, C is a sectional curve of the body, ~ is a unit outward normal vector on C, and 
is a unit tangential vector positive in a counterclockwise direction along C, ?c is a position 
vector extending from the origin to the submerged surface. A rotational vector d M is 
assumed to be a moment about the z-axis that passes through the origin in an upright 
direction. Unit tangential and normal vectors can be expressed by the line element dC and 
its components (dx, dy) 

-s : (Sx,Sy ) : (dx / d f ,  dy / dC ) (2.3) 

Yt=(nx,ny)=(dy/dC,-dx/dC) (2.4) 
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Using the middle expression of Eqs. (2.3) and (2.4), Eq. (2.1) can be rewritten for each 
directional component, dFx and dFy 

dF x =-~cPnxdC+~cVGdC (2.5) 

dFy = -~cPny + Sc~:SydC (2.6) 

In principle, fluid forces and moments can be obtained as the resultant vectors of local 
element force vectors, -p~ and r~, on the submerged surface. 

For the practical design of offshore structures, it is well known that the contribution of 
pressure forces to wave loading is much larger than that of shearing forces because the 
shape of the body is hydrodynamically bluff and also the order of the Reynolds number 
(-U,,D/v, v is the kinematic viscosity) may be greater than about 105. Sawaragi et al. 
(1979) reported that the ratio of the shearing force to the pressure force for a circular 
cylinder is less than about 5% in the range of an intermediate Reynolds number, 103-104 . 

In the following section, for the reason described above, it is assumed that wave loads 
on the structure can be given by the pressure force alone. 

2.2 Boundary-Value Problems on Wave Interaction with Body 

2.2.1 Governing equations and boundary conditions 
(1) Formulation of the problem for a fixed body 

It is presumed as an analytical model that an arbitrary three-dimensional body is placed 
in the wave field of constant depth h where monochromatic wave trains are propagating 
in the prescribed definite direction 0, and interacting with the body. It is also assumed that 
the fluid is incompressible and inviscid and its motion is irrotational. Under these 
assumptions, we can define a velocity potential, and then the problem determining fluid 
motion in the wave field is equivalent to seeking the velocity potential instead. A 
governing equation and boundary conditions for the velocity potential �9 around the fixed 
body, as shown in Fig. 2.3, are already prescribed in Chapter 1 and given by Eqs. (1.7), 
(1.21), and (1.24), respectively. 

The velocity potential �9 around the body can be given by the summation of the incident 
wave potential ~t and the scattered wave potential Os by the body. 

= ~t + Os (2.7) 

must satisfy the kinematic boundary condition on the submerged surface SB of a fixed 
body, that is a no-flux condition 

tgO/0n= 0 �9 on S B (2.8) 

where, O/3n is a normal derivative on SB, and can be expressed as a function of a unit 
normal vector rt---(nx,ny,nz) which is defined as positive for outward normal from the body 
surface into the fluid. 
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Fig. 2.3 Analytical model and definition sketch: the case of a fixed body 

0 0 0 0 
cg---n = --~ nx + --~ ny + ---~ n z 

(2.9) 

If the body is made of elastic or flexible material, and is allowed to change its 
geometrical shape, additional boundary conditions are necessary in order to describe the 
equilibrium condition of forces acting on the body surface, which is a dynamic boundary 
condition. Details of this condition will be given in the later section, and at present we 
assume that the body is sufficiently rigid and no deformation can be seen. 

Besides the no-flux condition on the submerged surface, ~s must satisfy another 
boundary condition that is termed the radiation condition originally introduced by 
Sommerfeld. 

This condition mathematically assures the uniqueness of the solution and physically 
means that scattered waves must be outgoing and in a progressive mode in the far field 
from the body. 

Linearized diffraction problems: The governing equations and boundary conditions 
described above can be used not only for small amplitude waves but also for finite 
amplitude waves. Here, for simplicity, it is assumed that nonlinear boundary conditions on 
the free surface can be approximated by the linearized ones and also the time dependency 
of �9 can be expressed by a simple harmonic motion with an angular frequency to (=T/2rr,, 
T:wave period). Under these simplifications, the governing equation and boundary 
conditions can be summarized as 

Governing equation: 

t~2~ t~2~ 0~2(~ = 0 (2.1 O) 
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Free surface boundary condition: 

. ~ 

or combine these 

(2.1 la) 

(2.1 lb) 

=--~'g) t~t2 [z=O (2.12) 

Impermeable condition on the sea bed: 

04] =0 (2.13) 
,gz ~=_,, 

where, �9 and r/are the linearized velocity potential and its corresponding water surface 
elevation, respectively, and g is gravitational acceleration. 

also satisfies the kinematic boundary condition on the body surface and the radiation 
condition. 

3oh 0 ~  3~ s 
= ~- - 0  "on S s (2.14) 

On On 

, ) lim k,---~-r-ik ~s =0 (2.15) 

in which r is a radial coordinate whose origin is located in the body, i - ~ and k is a 
progressive mode wave number. 

By using the latter condition, we can discard the inadequate solution included in the 
general solution of the governing equation for wave interactions with the body under 
consideration. 

In the latter equation, the physical meaning of a multiplication of - ~  is for 
compensating the decrease in wave amplitude due to the divergent nature of the scattered 
waves in circular form, which is proportional to 1/~r~ far from the body. 

First, assuming a harmonic motion of waves, the time dependency of Ot and Os is 
expressed as 

(~,, Os)= Real [(~, ~s)exp(-icrt)] (2.16) 



73 

where, Real[ ] is designated as taking a real part. ~i and Os are complex amplitudes of 
incident and scattered waves, respectively. In the following, for simplifying notations, the 
expression of Real[ ] is omitted. 

Using such a notation, the velocity potential of incoming waves with an incident angle 
a, as shown in Fig. 2.3, is represented as 

4t(x, y, z, t)) l igHt  cosh k(h + z) i~k~cosa+kysma)] = e exp(- im) 
20 cosh kh 

= q)l(x, y, z)exp(-iot) 
(2.17) 

where,/-/i is the incident wave height. 
Noting that 41 and 4s satisfy independently Eqs. (2.10)-(2.13), the governing equation 

and boundary conditions in terms of Os can be deduced by referring to Eqs. (2.10)-(2.15), 

oax---- 5- + ~ + - ~ -  = 0 (2.18) 

Oz - g dps (2.19) 
Z=0 

aCs _ o~ I t g z -  g Os (2.20) 
z=O 

ar a~ 
~- = 0 �9 o n  S B ( 2 . 2 1  ) On On 

r--,~lim ~ / - ~ ( ~  - ikqOsl=O (2.22) 

These equations are a set of governing equations and boundary conditions for a 
linearized wave boundary-value problem around a fixed body. 

(2) Extension to a floating body 
Next try to consider the more general case, in which the body is floating on the water 

surface and supported by some mooring lines as shown in Fig. 2.4. 
However, the body is still rigid and there is no deformation with the body itself. In the 

same way as a fixed body case, if it is possible to use the potential flow theory, the velocity 
potentials of disturbed waves caused by the existence of a floating body and its motion 
have to satisfy Eqs. (1.23), (1.24), and (1.27). Total velocity potential around the floating 
body can be given by a superposition of the incident wave potential 4I and the disturbed 
wave potential 4B. 

4 = 4 t + 4 8 (2.23) 
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Fig. 2.4 Analytical model and definition sketch: the case of a floating body 

~B satisfies the same conditions for q~s, i.e., the kinematic boundary condition on the 
submerged surface and the radiation condition. 

At first, try to derive the kinematic boundary condition on the submerged surface. At 
time t-t, it is assumed that the specific submerged surface is SB and its surface function 
can be given by z-f(x,y). Taking a total derivative of this surface function with time, the 
kinematic boundary condition can be derived 

o n  s .  
at = tgz 

This surface changes with time and the variation directly corresponds to the motion of 
the floating body. Therefore, in order to determine the kinematics of the submerged 
surface, it is further required to describe the balance of forces acting on the body, including 
inertial forces and restoring forces due to mooring lines etc. In order to derive the equation 
of dynamics of the floating body, dynamic properties of the body, which determine natural 
modes and their characteristic frequencies, are necessary. In the most simple case of a 
three-dimensional rigid body, the motion consists of 6 different modes which are 3 
translational and 3 rotational modes, i.e., translational motions are sway, heave and surge 
modes, and rotational motions are roll, pitch and yaw modes, respectively. Therefore, 
dynamic boundary conditions on the submerged surface can be expressed by the equations 
of motion for these 6 modes. Exciting force terms of these equations can be obtained by 
the Bernoulli equation, Eq. (1.22), after substituting q~ (- q~1 + ~s) into this equation. 

Linearized boundary-value problems for a floating body: Assuming that the small 
amplitude wave theory can be used for describing scattered and radiated waves by a 
floating body, the governing equation and boundary conditions, except for the kinematic 
condition on the submerged surface, are the same as those of a diffraction problem, i.e., 
Eqs. (2.10)-(2.12). 

On the other hand, kinematic and dynamic boundary conditions on the submerged 
surface of the body can be derived at the equilibrium position of the body, after assuming 
small amplitude oscillations of the body. Such a derivation has already been given by John 
(1949). 
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At first, in the usual way of a perturbation method, we expand the submerged surface 
z=f(x,y;t) of a floating body into a perturbation series around its equilibrium position 
z-fo(x,y) 

oo 

f (x ,  y, t)= fo(X, y)+ E e "  f,(x, y, t) 
n = l  (2.25) 

where, e is a perturbation parameter. 
Substituting both expansions of �9 and f of Eq. (2.25) into Eq. (2.24), and then taking 

only terms proportional to the order of e, 

c?---t = c)z "on z = fo(X, y) (2.26) 

where q~l is the velocity potential of the first order of e. And ~f~/~Ot included in Eq. (2.26) 
may be given by referring to the motion of the center of gravity of a floating body as 
following: 

a~at ---&-- o~ +~Os (z- za)- at tY- Yc 

cgJ~ {--~ + O~-2z ( x - x c ) -  cgl-2x cgt 

OZ at2x (y_ yc)_at2,  , 
(x  - ) 

(2.27) 

Here, X, Y, and Z are translational mode responses of a floating body in the x, y, and 
z directions, respectively, and s s and K2 z are rotational mode responses around the 
axes that pass through the center of gravity and are parallel to the x, y and z axes, 
respectively. (xG,yc,zc) is the center of gravity of a floating body. 

It is noted in Eq. (2.27) that only terms proportional to the order of e is adopted, after 
expanding each mode response into the perturbation series. 

Substituting Eq. (2.27) into Eq. (2.26), and also referring to the following relation based 
on three-dimensional geometry, 

~ _  Og O~ 1 1+ + 
& ' ay ' C c)yJ 

The linearized kinematic boundary condition on the submerged surface can be obtained 
after some manipulation 

c)CI), _ ( OX OY cgZ ) (nx ' ny, n~) 
On - c?t' Ot' c?t 

,(~ oa,)( o x 
+ \  at at at :on z = fo(X, y) 

(2.29) 
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where, R~ is the position vector directed from the center of gravity to the submerged 
surface. 

Now, noting that the left hand side of Eq. (2.29) contains only the normal derivative of 
a linear order potential and also this condition is held at the equilibrium position of the 
floating body, that means at the fixed position, the kinematic condition for a fixed body 
surface should be included in Eq. (2.29). Therefore, subtracting Eq. (2.14) from Eq. (2.29), 
we can derive the kinematic boundary condition in terms of only the velocity potential 
caused by a body motion 

- ' cgt' ny, 

+~ ~- i '  c ) t '  Ot :on z = fo(X, y) 

(2.30) 

where, OR is the difference between OB and Os, which represents a velocity potential 
caused by a body motion. In the terminology, such a potential is called a radiated wave 
potential. 

Consequently, the velocity potential around the oscillating floating body consists of 
three different potentials, i.e., 

O=O~ +O s +O R (2.31) 

In the above, the notation expressing the first order component of the perturbation series, 
"1", has already been omitted for simplification. 

Substituting Eq. (2.31) into Eqs. (2.10) to (2.12) and then subtracting the corresponding 
governing equation and boundary conditions to O~ and Os from these equations, a set of 
governing equation and boundary conditions for OR can be obtained in the following: 

C92OR C92OR C9~ 
O~X 2 ~. cgY 2 + R =0 (2.32) 

C) Z - c) t2 z--0 

~.-..-z-~ll - 0 (2.34) 
r [z=_h 

OR also satisfies the kinematic boundary condition given by Eq. (2.30). With respect to 
the dynamic boundary condition, we can derive it by considering the dynamic equilibrium 
of a floating body on which various forces are acting, such as exciting wave forces, mass 
inertia forces, hydrostatic restoring forces, mooring line forces and so on. This dynamic 
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equilibrium condition is finally reduced to a set of equations of motion for a floating body. 
In addition to the above boundary conditions, it is further required for ~R to satisfy the 
radiation condition having the same form of Eq. (2.15). 

As described above, under the assumption of the linearization, the wave boundary-value 
problem around a floating body can be decomposed into two independent problems, i.e., 
a diffraction problem and a radiation problem. 

It is noticed that the principle of linear superposition can be used to obtain ~R because 
it satisfies the linear boundary value problem. Therefore, we can further decompose ~R 
into independent potentials associated with corresponding independent dynamic modes. 
Hence ~R can be expressed by a linear summation of element potentials ~Rj(j= 1--6) caused 
by the harmonic motion with unit amplitude velocity in each dynamic mode. 

~ = + r  + r  

"~'r162 cgt )+r Ot ) 
(2.35) 

2.2.2 Possible analytical solution 
In this section, one of the available analytical solutions for linearized wave boundary- 

value problems is introduced. The well known result is based on the diffraction theory by 
MacCamy and Fuchs (1954). It is noted here that analytical solutions are available only for 
comparatively simple shaped bodies, such as a vertical circular cylinder, elliptical cylinder 
and so on. 

(1) Scattered wave potential 
The analytical model used here is specified in Fig. 2.5. 

Incident wave ~ A ~ r ,  0) 

I = 

Incident w a v e  
,Z 

X 

Fig. 2.5 Definition sketch for a vertical circular cylinder 
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A vertical circular cylinder of radius a is fixed on the sea floor with constant water depth 
h. It is assumed that waves are incident along the x axis from its negative to positive 
direction, and also the small amplitude wave theory can be used. In this case, a velocity 
potential of the incident wave train can be given by Eq. (2.17), but setting an incident 
wave angle a to 0. 

The scattered wave potential by the cylinder ~s is obtained as a solution which satisfies 
the governing equation and boundary conditions of Eqs. (2.10) - (2.15). Assuming a simple 
harmonic solution of an angular frequency to as shown by Eq. (2.15), the governing 
equation for a complex amplitude of the scattered wave potential ~s can be written by the 
use of a cylindrical coordinate system (r, 0, z) 

1 O(rOOS] 1 cgZOs t . ~  0 (2.36) 
-~ --~ i t "-~ ) + r-'T c90"----2-- = 

In order to solve Eq. (2.36) based on a separation of variables, we may assume the 
solution like the following form: 

dPs(r, O, z)=q~(r, O)II(z) (2.37) 

Substituting this into Eq. (2.36) and then doing some manipulations, we can obtain the 
following two sets of differential equations: 

d2// 
- CII = 0 (2.38) 

dz 2 

32~0 1 o3~p 1 o32~p 
oar ----5- +-r -~- ~- - ~ +  + C~p = 0 (2.39) 

where , /7  is a function of z only, q~ is a function of polar coordinates (r, 0), and C is a 
constant and not dependent upon (r, 0, z). 

At first setting C = k 2 (k = real) and then solving Eq. (2.38) with the prescribed boundary 
conditions, Eqs. (2.19) and (2.20), the function/-/(z) can be determined 

lI(z) = A o cosh k(h + z) (2.40) 
cosh kh 

where, A0 is an arbitrary constant and k is the wave number of progressive mode waves, 
which satisfies the following dispersion relation: 

o 2 = gk tanh kh (2.41) 
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On the other hand, noting that tp is a function of (r, 0) and symmetrical about the x-z 
plane, we may expand it as a Fourier cosine series 

tp (r, 0) = ~ R,, (r) cos (mO) (2.42) 
, . = 0  

where, R,. is a function of only r and a Fourier coefficient of mode m. 
Substituting Eq. (2.42) into Eq. (2.39), the ordinary equation for R,, is obtained 

dER,. 1 dR" ( m E ) 
+ . . . .  + k 2 - 

dr 2 r dr -7- R,. 
= 0 : (m = O, 1, 2,. ..... ) (2.43) 

This ordinary differential equation is known as the Bessel equation of order m with 
parameter k (e.g., Wylie 1966). The general solution of this equation is given by 

R,.(r) = C,.H~)(kr)+ D,.H~E)(kr) (2.44) 

where, C,. and D,, are integral constants, H,, (~) and 9 "  (2) are the first and second kind of 
Hankel functions, respectively. 

By using the radiation condition, Eq. (2.22), we can discard the term proportional to 
O "  (2) 

of Eq. (2.44) and then the solution is 

ign, cosh k(h + z) ~ ,  �9 (,) 
~ ( r ,  O, Z) = 1_, C~H~, (kr) (2.45) 

2a  cosh kh ,,=0 

where, C m is a newly defined constant which relates to both A0 and C". 
C m can be determined by using the kinematic boundary condition on the submerged 

surface of the vertical cylinder and may be given by 

! 

C~ = - ( 2  a,,,o) i " J " ( k a )  - 7 (2.46) 
H(~ '' (ka) 

where, J,, is the first kind of Bessel function of order m, and 6,.0 is the Kronecker delta and 
has the following property 

10 " i = j 
5 ~  " i 4 : j  

and upper prime means the derivative. 
The final form of the total velocity potential around the vertical cylinder can be derived 

a s  
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dp(r, O, z, t)= {~=o~,,(r)cos(mO) } cosh k(h + z) exp (-icrt) (2.47) 
cosh kh 

where, Om is the amplitude of the velocity potential corresponding to the Fourier mode m 
and is given by 

CPm(r)= im(2-~mo) {Jm (kr)- ~/'."J" ~ka~(h,) H'd' (kr)} (2.48) 

(2) Wave forces and wave height distributions 
Wave pressure p on the submerged surface of the cylinder can be calculated by inserting 

of Eq. (2.47) into the Bernoulli equation (ref. to Eq. (1.31)). 

pgHI coshk(h+z){~=oi~"+'(2....._-~,.._O)cos(mO)} 
Plr=a-- - '~  Gsh-kh H<m 1) (/ca) 

(2.49) 

where, p is the fluid density. On the derivation process of Eq. (2.49), the following relation 
with Bessel functions is used. 

! 

Jm(x)n(l)'(x)_Jr n (x)n(l)(x) = 2 i  

In Eq. (2.49), an infinite summation with respect to Fourier mode m appears. However, 
for practical calculation, approximation accounting only to the finite series summation 
must be used. In such an approximation, it is usual to set an adequate error criteria of 
convergence, e.g., 2 or 3%, and then to carry out the summation of the series until the 
convergence criteria is satisfied. 

Although the wave pressure calculation has some uncertainty with the convergence, 
there is no ambiguity with the wave force calculation. For the wave force calculation, we 
can take advantage of the orthogonality property of trigonometric functions that are 
included in Eq. (2.49) and the force equation, Eq. (2.5). Using such an orthogonality 
property, the horizontal wave force on the vertical cylinder Fx can be obtained with 
certainty 

Fx = 2pg Hr tanhkh (2.50) 

,~n( ~ (~)  

and also the overturning moment about the sea bed My is given by 

My = 2pgHt(khtanh kh+sech, kh-1) exp(-itrt) (2.51) 
k3~/~ l~ (ka) 
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On the other hand, wave elevation around the vertical cylinder 77 can be obtained 
through the use of a dynamic boundary condition, Eq. (2.11a). 

rl(r, O, t ) = - ~ I ~ i ' ( 2 - 6 m o ) { J , , ( k r ) - ~  
2 Lm=o 

x cos(mO)lexp(-itrt ) 

} Jm ~ka) H~'(kr) 
n(m l) (ka) (2.52) 

For the practical calculation of 7/, we have to reside to the same technique as that of the 
wave pressure calculation for the convergence problem. 

One of the typical calculation results of the horizontal wave force is shown in Fig. 2.6, 
in which the ratio of a diameter D to the water depth h is fixed to 1.0. 
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Fig. 2.6 Calculation results of wave forces on a vertical circular 
cylinder by the diffraction theory 

In the figure, the so-called Froude-Krylov force /~<F), that is obtained by ignoring the wave 
scattering effect by the cylinder, is also plotted.^ From this figure, it can be seen that the 
nondimensionalized horizontal wave force Fx* by the use of an incident wave 
amplitude(=H1/2) shows a peak at D/L----0.2, which is consistent to the critical value of D~ 
L between large and small bodies. It is also seen that the horizontal wave force cannot be 
altered by the Froude-Krylov force /~(r) except in the range of 0.6<_D/L<0.8. Therefore, for 
the practical estimation of the wave force on a vertical circular cylinder, it is necessary to 
account for the wave scattering by the cylinder. 

In Fig. 2.7, the effective inertia coefficient C M of the vertical cylinder corresponding to 
the result of Fig. 2.6 is shown. 

Effective inertia coefficients can be obtained by applying only the inertia force equation 
of the Morison formula to the calculated wave forces. However, in the calculation, phase 
relationships between incident waves and wave forces are ignored. In the frame work of 
this expression, the horizontal wave force on the vertical cylinder can be represented 
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Fig. 2.7 Effective inertia coefficients and phase lags of the wave 
force on a vertical circular cylinder 

Fx ~ CM }~ - ~  h "-~ max dz cos(trt- 6r) (2.53) 

where, (~u/Ot)max is the amplitude of the local acceleration of water particles in the x 
direction at the center of the cylinder by incident waves, 6F is the phase lag of the wave 
force from the incident wave. 

From this figure, it is seen that the effective inertia coefficient t?M decreases for larger 
D/L and becomes 0.3 at D/L--1, which is about 1/7 of the inertia coefficient of the small 
cylinder CM-2.0. Therefore if the CM value of 2.0, which is adequate for a small cylinder, 
is used for the wave force calculation of a large circular cylinder, such an estimation is 
much greater than the real wave load and results in a very uneconomical design. 

As described above, the wave force estimation based on the wave diffraction theory 
gives us an economical design of large offshore structures and it has a characteristic of 
intensifying the importance of spatial variation of the wave field around the body for the 
wave load estimation. 

2 . 3  N u m e r i c a l  A n a l y s i s  o n  t h e  W a v e  B o u n d a r y - V a l u e  P r o b l e m s  

As partly described in the preceding section, analytical solutions are available only for 
bodies having comparatively simple geometry, such as a vertical circular cylinder and an 
elliptical cylinder. In this section, basic theory of the numerical analysis on wave 
boundary-value problems, which can be applied to various shaped large bodies by 
computers, is introduced. 

Available numerical procedures until recently may be largely classified into two groups. 
One is to deal with the entire fluid domain directly and to seek an unknown velocity 
potential on each element of the fluid domain from the boundary conditions. Another one 
is to deal with the boundary values on the surrounding surface of the fluid domain, 
including the normal derivative of the velocity potential. After having obtained both the 
velocity potential and its normal derivative, the velocity potential in the fluid domain can 
be calculated from these boundary values. In the latter procedure, we cannot directly obtain 
the unknown velocity potential in the fluid domain. The well-known procedure belonging 
to the former group is the finite element method, which is familiar and frequently used in 
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the field of structural mechanics. On the other hand, numerical methods of the latter group 
are generally called the boundary integral equation method (BIEM), because a basic 
equation is deduced from an integral equation for the surrounding surface of the fluid 
domain and the submerged surface of the body. There are several variations with the latter 
procedure, such as a method based on Green's formula and its modified version, e.g., 
Green's function method. 

In this section, the latter procedure is mainly described, which is often preferred by 
coastal and ocean engineers, because in the latter procedure the number of dimensions of 
the framework can be reduced by one compared to the former procedure. For instance, we 
can solve the three-dimensional problems by a two-dimensional equation and the two- 
dimensional problems by a one-dimensional equation. Therefore it may be possible to 
solve the problem much more efficiently than the former procedure. 

2.3.1 Application of Green's formula 
Here, a more general three-dimensional flow is treated. When the governing equation is 

the Laplace equation, such as a potential flow around a three-dimensional body, Green's 
second formula becomes a powerful tool for the analysis 

SSs{ lrO,,,,  
- 

(2.54) 

where V1 and V2 are assumed to be continuous functions of (x, y, z) in the fluid domain 
V and on its surrounding surface S. Also the first and second derivatives of these functions 
are also continuous on the same domain. And 0 /0h  specifies a normal derivative in the 
outward direction on the surface S. This equation can be derived from the Gauss 
divergence theorem that is well known in the field of hydrodynamics. 

Now, consider a fluid domain VF enclosed by the outer surface So and bounded by the 
body surface SB fixed in the domain, as shown in Fig. 2.8. 

VE(.)(X, -Y, Z ) ~  y 

Fig. 2.8 Analytical model used for derivation of Green's formula 

Suppose that we wish to analyze the potential flow around the body. We can set the 
unknown velocity potential ~ as V1 and also a three-dimensional source function with unit 
strength ~w as gr 2 in Eq. (2.54). Here, a three-dimensional source function ~w is given by 
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~w(x, y, z ; X, Y, Z ) = - ~  
1 

4zr.Rs (2.55) 

In this equation, (x, y, z) is the coordinate of a field point, (X,Y,Z) is the source point 
and Rs is the distance between the two points denoted by 

Rs=4(x-7,)2+(y-Z)2+(Z-Z) 2 

If we use the above setting, Eq. (2.54) can be transformed into the following equations 
due to the reasons described later: 

(i) When the source point is inside Vr: 

+s, 0F - - ~  dS(x, y, z)= ~(X,  Y, Z) (2.56a) 

(ii) When the source point is on St or So: 

P'V'~so+s,{*t,, c7~ )-*w(~-~~)} ds(x'y'z)= ,at,(x, Y, z)  (2.56b) 

(iii) When the source point is outside Vr: 

c9~ ~ dS(x, y, z)= 0 (2.56c) 

where, P.V. denotes the Cauchy principal integration. 
The reason Eq. (2.54) is divided into three cases is that the source function ~w has a 

singular nature when the source point approaches the field point, i.e., ~w diverges. 
Let us consider the case of Eq. (2.56a), where the sour ce..point is included in the domain 

VF. Then, q~w diverges under the condition of (x, y, z)-(X,Y,Z) and Eq. (2.54) is not valid 
because ~w is not continuous. In order to avoid this difficulty, the new fluid domain VF' 
in which the singular point is excluded from Vr by a small sphere V, is used instead of Vr. 
For this new domain, Eq. (2.54) can be applied, but the surface integral about the small 
sphere V, must be newly added. Therefore, we get 

(O~w 
J-[so+s,+s,{q~, c), ) - ~ w ( ~ ) }  dS(x'y'z)=O (2.57) 

where, Se is the enclosed surface of Ve. 
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Noting that tg/a)i- on S, is equal to -O/ORs, we can carry out the surface integration about 
S, in the following way 

~s,[ it cj. )-~w(~)}dS(x,y,z) 

:~s,{(4~Rs2)~-(41s) (-~sRs))dS(x' 
= - @ ( x , r , z )  

y,z) (2.58) 

In which, however, the process taking limitation V,~0 is considered after the 
integration. 

By taking this result into account, Eq. (2.56a) is finally obtained. 
For the second case, in which the source point is placed on the enclosed surface, Eq. 

(2.56b) is derived in the same manner as of Eq. (2.56a) after excluding the source point 
from VF, but in this case by a semi-sphere. Therefore, the result of surface integration 
becomes one half of Eq. (2.58) and the final form results in Eq. (2.56b). 

The physical aspect of Eq. (2.56) is quite interesting and significant. According to these 
equations, the potential flow can be obtained by the distribution of sources and dipoles 
(normal derivative of a source function) with adequate strength on both the surrounding 
surface and the body surface. Therefore once the strength of the source and dipole 
distributions has been determined, we can easily calculate the inside flow field. This point 
is advantageous to the direct domain analysis, which needs to treat the whole fluid domain 
simultaneously. 

In the following, using Eq. (2.56), one typical example of analysis on the potential flow 
about an arbitrary three-dimensional body is shown. 

(1) In the case of a three-dimensional flow 
Unidirectional flow along the x-axis is assumed as a main flow about a three- 

dimensional fixed body. The velocity potential of this main flow ~i can be given by 

41 =Ux (2.59) 

where, U is the main flow velocity. 
An unknown potential ~s, which arises from the interaction between the main flow and 

the body, can be obtained by using Eq. (2.56). First, we shall define the fluid domain Vr 
bounded outside by a large sphere whose radius is large enough to enclose the fixed body 
and bounded inside by the body surface. Substituting ~s into �9 in Eq. (2.56b), and also 
noting the no-flux condition on the body surface, we may get 

,,,,SSso{~ 
oo,,, 

= ~ s ( X ,  Y, z )  . (~' ,g ,2 , )  on s~, So 

y, z) (2.60) 
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As the radius of an outer sphere can be expanded without loss of generosity, we can adopt 
the far field value for the normal derivative of Os on the virtual sphere surface, i.e., 
C3~s/o~i =0. Also, noting that O~w/~  diminishes on the outer sphere, Eq. (2.60) becomes 

~s(X,Y,Z) _ p.v. [. [.s, ~s Oq)w 2 -'~n dS(x'y'z) 

: [. ~s ~W ~_~ dS(x, y,z) " (X,Y,Z) on Ss 
(2.61) 

In this equation, only the unknown potential ~s on the body surface is included. In an 
analogous manner, in Eq. (2.56a), the integral surface (So+SB) can be changed to SB. 

Eq. (2.60) is an integral equation in which the unknown potential Os appears on the left- 
hand side and the known potential ~l on the right-hand side. In general, this equation is 
solved numerically after adopting adequate discretization techniques. For instance, 
decomposing the body surface Sn into small panels AS and then assuming that the strength 
of sources and potentials is constant on the small facet, we can derive the discretized 
equation of Eq. (2.61) as 

~.,~r a o cg~ t = ~g y t �9 ( i = 1, 2,  3, . . . ,  N )  (2.62) 
j=l 

where, N is the total number of panels, aij and ~ are defined by the following equations: 

~ = ~ u -[.[. dS(x,y,z) (2.63) 
as, 41r~si 2 On 

~ti : Ei=l 47r..l~si 2 -~n (x, y,z) (2.64) 

In the above equations, Rsi is given by 

Rsi :~(x-x i )e+(y-Yi i )2+(z-~. )  2 

Eq. (2.62) is a simultaneous equation of order N. Solving this equation, unknown 
potential Os can be determined. After substituting this value of ~s into Eq. (2.56a), any 
velocity potentials inside the fluid domain can be obtained. But, in this case, the 
modification described above must be done with Eq. (2.56a). Also the velocity field in the 
fluid domain can be calculated by__the equation that is derived after taking a derivative of 
Eq. (2.56a) with respect to X,Y,Z respectively. However, it is noticed that the velocity 
distribution on the body surface cannot be obtained by this equation. Other alternative 
method, e.g., taking a spatial derivative numerically from each surface value of potential, 
must be used. 

On the other hand, a time derivative of the velocity potential, which is often required to 
calculate the unsteady fluid forces on the body, can be obtained by solving the following 
equation. 
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N 

a~jq~,j = 'Yi " (i = 1,2,3,..., N) (2.65) 
j=l  

This equation is derived from Eq. (2.62) by taking a time derivative. 
There are several notices to carry out the numerical analysis by using the above 

techniques. The most noticeable point is how to deal with the singular functions, e.g., 
inverse functions included in aij. Such a numerical treatment has already been clarified by 
Hess and Smith (1964). For details, please refer to the paper. 

(2) In the case of a two-dimensional flow 
Green's formula for two-dimensional problems is given by only reducing the order of 

integration by one in Eq. (2.69), e.g., a surface integral is changed to a line integral and 
so on. A two-dimensional source function is used for tPw instead of a three-dimensional 
one. This two-dimensional source function is expressed by 

cPw(x, y ;,Y, Y)= 2-11~ (Rn) (2.66) 

where, (x, y) is a field point, (X,Y) is a source point and RH is the distance between the 
two points and is given by 

RH =~f(x-~')2+(Y-Z) 2 (2.67) 

Ijima et al. (1976) have developed the numerical procedure for water wave problems 
about both fixed and floating bodies based on the two-dimensional Green's formula. Liu 
et al. (1982) have also specified a numerical procedure for the water wave diffraction about 
a thin walled-body, using a dipole function instead of a source function. 

2.3.2 Source distribution method 
Applying Green's function to Green's formula, various extensions of numerical analysis 

may be possible. One of these extensions is a source distribution method. 
A theoretical background of this method was given by Lamb (1964). In the following, 

a brief of this method is introduced. 

(1) Derivation of the method of analysis 
First, assuming that the inside of the body is also a subsidiary fluid domain in addition 

to VF in the preceding example. We shall denote the velocity potential of this subsidiary 
fluid domain as ~ .  Applying Green's formula to the inner fluid domain and also assuming 
the source point is located outside the body, we may get 

ffsB[ ~.c)nl- ~.c)n dS(x,y,z)=O (2.68) 

where, G is Green's function of the outer fluid domain and i)/On is a normal derivative in 
the outward direction from the body surface and has an opposite positive direction to 
/)/Orr of Eq. (2.56). 
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Next, designating the velocity potential in the outer fluid domain as 4 and assuming the 
source point is located outside the body, the resulting Green's formula becomes Eq. 
(2.56a). But the integration surface should be replaced with S~ and also 4w with G. 
Subtracting this equation from Eq. (2.67) and noting that the positive direction of O/i)n and 
/)//)rr is opposite, we may deduce the following equation. 

041}0n dS (x,y,z) (2.69) 

If we set the boundary condition on the body surface that 4 is equal to 4, and also 
define So given by the following equation: 

m 

04  04  (2.70) 
f~ On On 

the basic equation of the source distribution method is finally obtained. 

4(.~, Y', Z)=  IIs, f~ X'Y'Z ;x,y,z)dS (x,y,z) (2.71) 

In this equation, the velocity potential is expressed by only the distribution of G, i.e., a 
source function. And fo corresponds to a strength of the source. Therefore, from the 
physical aspect, this method is much more understandable than the method of Green's 
formula, in which distributions of a source and dipole should be considered. 

In general, another form of Eq. (2.71), in which the roles of a field point and a source 
point are interchanged, is usually used. 

4(x,y,z): IIs= f~ ~'' P'' Z)G(x,y,z ; X, Y, Z)dS (X, Y, Z) (2.72) 

The above interchange is possible due to the fact that Green's function has a reciprocity 
nature. In the last equation, (x, y, z) and (.~,Y,Z) corresponds to a field point and a source 
point, respectively and their definitions coincide to the former ones. 

On the other hand, another different method of analysis is derived from Eq. (2.69). It is 
also based upon the distribution of singularities, but using a dipole or double source instead 
of a single source. A basic equation of this method can be obtained by setting ~)~/i)n - 
/9~/~)n on the body surface in Eq. (2.69). This method is effective especially for the 
potential flow problem about a thin-walled body. 

(2) Example of a three-dimensional flow problem 
Here, the same three-dimensional problem with the former example is considered. For 

this problem, the velocity potential 4s caused by the interaction between the unidirectional 
flow and a fixed body can be expressed by using Eq. (2.72) as follows: 

�9 s(X,y,z)- IJs, z, z)G(x,y,z; x, r, z)ds (x, r, z) (2.73) 
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In the equation, the source strength fo is unknown and has to be determined at first. The 
Green's function for this problem is a three-dimensional source function in an unbounded 
fluid, which has the same form as ~w given by Eq. (2.55). 

The source strength fo can be determined by the no-flux condition on the submerged 
surface of the body. Hence, inserting Eq. (2.73) into Eq. (2.8), we can obtain 

cgG(x,y,z ; X, Y, Z) dS (X, Y, Z) 
fo(Y,, Y, Z) o3n(x,y,z ) 

: _ cg~, (x, y,z) " (x, y,z) onSB 
cgn (x, y,z) 

(2.74) 

This equation can be solved numerically after discretizing the body surface into a 
number of small facets in the same way as described in the preceding section. Once the 
source strength fo has been determined, ~s can be obtained by Eq. (2.73) and the velocity 
field around the body is calculated by the equation derived after taking a spatial derivative 
of Eq. (2.73). In contrast to the method based on Green's formula, it is advantageous that 
the velocity distribution on the body surface can be calculated directly by the source 
distribution method. 

On the other hand, in the case of a time dependent flow, the pressure force due to the 
fluid acceleration can be obtained by the equation derived after taking a time derivative of 
Eq. (2.73). Also the time derivative of source strength dfo/dt can be obtained by solving 
the simultaneous equation that is deduced after taking a time derivative of Eq. (2.74). 

2.4 Analysis for Large Bodies 

Here, we would like to introduce the numerical procedure for calculating wave loads on 
large bodies as well as the resultant effects of the body on the wave field, for which the 
wave diffraction phenomenon is important. The method applied here is the wave source 
distribution method described in the later part of the preceding section. 

2.4.1 Wave diffraction around fixed bodies 
(1) Three-dimensional analysis by the wave source distribution method 

Available numerical procedures for the three-dimensional analysis of the water wave 
problems about large bodies can be classified briefly into the following four categories, 
depending upon the degree of restrictions to some definite configurations of the body. 

Analysis based on 0) the three-dimensional Green's function for an arbitrary body, ~ the 
plane-symmetric Green's function for a body with plane symmetry, | the axisymmetric 
Green's function for a body with vertical axisymmetry and | the vertical line source 
Green's function for a vertical and surface piercing cylinder. 

The method 0) is the most general technique, but it also requires the heaviest power of 
computer, e.g., larger memory capacity and longer CPU time. By using an up-to-date 
computer, it still may not be enough to carry out the computations based on the method 
| especially for large and complicated marine structures. In order to resolve the difficulty, 
a more efficient algorithm such as in methods ~ to | has been developed by taking 
advantage of the body geometry. 

(a) Three-dimensional analysis for an arbitrary body: Let us consider the analytical model 
shown in Fig. 2.3, in which an arbitrary body is fixed in the wave field of constant water 
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depth h and struck by plane waves. We assume that the linear wave theory can be used 
to express the wave interaction with the body. 

In this case, the incident wave potential ~t is given by Eq. (2.17). According to the 
source distribution method introduced in 2.3, the complex amplitude of a scattered wave 
potential Cs can be given by Eq. (2.73). In order to use this equation, it is necessary to find 
Green's function for the three-dimensional wave field, which satisfies the governing 
equation Eq. (2.18) and the boundary conditions from Eqs. (2.19) to (2.22), except for the 
no-flux condition on the submerged surface Eq. (2.21). 

Such a Green's function G has already been obtained by John (1949). The series form 
of G is expressed as 

i (k 2 -ko 2) 
G(x, y ,z;X,Y,Z):-~ ((k2_ko2)h+ko} 

X Ho (1) (kR H ) 

coshk(h + z) coshk(h + Z) 

(2.75) 

.o 2 § {(k: + k0 )h-k0)cosk  h + z) cosk (h § Z)Ko/k R ) 

where, ko is ~/g, Ko is the modified Bessel function of the second kind with order 0, k, 
is the evanescent mode wave number and RH is the horizontal distance between the field 
point (x, y, z) in the wave field and the source point (,Y,Y,Z) on SB. The evanescent mode 
wave number k, is given by solving the following characteristics equation: 

o . 2 h  
~ +  k~htank~h = 0 �9 (n = 1, 2, 3, ...) (2.76) 

g 

The first term of Eq. (2.75) specifies the progressive mode wave component that 
propagates in a circular form to the outward direction. On the other hand, the second term 
corresponds to the evanescent mode wave component that dampens rapidly with the 
distance from the body. Therefore, the first term is important in the wave field far from 
the body. 

Another expression of G is the integral form, which is conveniently used for the 
deepwater condition. Such an expression is given by (e.g., Wehausen and Laitone 1960), 

G(x, y,z X,Y,Z) 1 1 ; = ~ + ~  
4rd~s 4zrl~s 

~0 ~ 1 (~ + ko)exp(-koh)cosh~(h + z)cosh~(h + Z z) 
+ P . V . ~  ~ s--~nh ~ -- k0 cosh ~'h J0(.(RH)d~ (2.77) 

i (k 2 - ko 2)cosh k(h + z)coshk(h + Z) 
+ - -  J0(~,,) 

where, Rs and k s indicate the distances relating to the two points, the field point (x, y, z) 
and the source point (X,Y,Z). Definitions of these distances are as follows 
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Rs: ~/(x- "X)2+(y- y)2+(z-  Z) 2 
R s :  ~J(x- .,~)2 + (y_  ~-)2 + (z+ ~,+ 2h)Z 

As seen in Eq. (2.74), the basic three-dimensional source function for an unbounded 
fluid domain is included. Remaining terms except this basic source function express the 
influence of various boundary conditions from the sea bed, free surface and far field. 

(b) Practical evaluation offs: fs can be obtained by Eq. (2.73), after having substituted the 
three-dimensional wave source Green's function of Eq. (2.75) or (2.77) into G in Eq. 
(2.73). In which, the source strength function fo can be determined by the use of the 
impermeable condition on the submerged surface of a body, i.e., Eq. (2.74). 

For the practical computations, the above equations are discretized based on the various 
numerical algorithms. The most simple one is the method based on the mid-point 
approximation. In this approximation, the submerged surface of a body is usually 
partitioned into small facets of a quadrangle or triangle. Then, assuming the source strength 
is constant on the small facet, the mid point of the facet is used as a representative point 
in the numerical computations. 

Adopting such a discretization technique, Eq. (2.73) can be rewritten 

N 

Os(Xi'Yi'Zi) = E fo(V~j' ~' Zj)gij (2.78) 
j=l 

where, gij is defined by 

Go = ~fasj a (xi,Yi,Z i , X, Y, Z)dS (X, Y, Z) (2.79) 

The source strength function fo can be obtained by solving the discretized form of Eq. 
(2.74), which is expressed 

yi, z,) 
E L)ai;-- zil 

:(xi, Yi, zi) on SB (i = 1 ~ N) 

where, aii is defined by 

(2.80) 

c~Tr (x,,Yi,Z , ;X, Y, Z) dS (X, Y, Z) (2.81) 
OtiJ=ffasj o3n(xi,Yi,Zi ) 

In order to carry out the numerical computations based on the above equations, since 
singular functions such as inverse functions, logarithmic functions and so on are included 
in aij and gij, special numerical treatments are necessary especially for the singular 
conditions. 
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Hogben et al. (1974) and Garrison et al. (1978) have derived the numerical algorithm 
including the treatment of such singular functions in aij and gij. They used both the series 
and integral forms of G in order to avoid the difficulties arisen from the numerical 
treatment of singular functions. 

Recently, a new algorithm based on only the series form of G was developed by 
Nakamura (1990) for the shallow water condition. It is much simpler than the method 
based on both the series and integral forms of G. The central idea of the new algorithm 
is how to explicitly take out the singular functions included in G and its normal derivative 
3G/3n. We briefly describe the algorithm in the following. 

First, in order to take out singular functions included in G, let us try to calculate the 
summation of the infinite series that appears on the second term of Eq. (2.75). Suppose that 
the rigorous result of the summation is specified by Ge and the n-th term of the series is 
by (Ge)n. Then, noting that, for a sufficiently large integer n, k, can be approximated by 

K -_ nrc 

n 

(Ge), can be expressed as (GeA)n in the following: 

h ) (2.82/ 

Summation of the infinite series (GEA)n c a n  be obtained analytically (Gradshten and 
Ryzhik 1980) and is given by 

(2.83) 

I 

1( i 
Ges = ~ Yo + log + ~ + 1 (2.84) 

4Zrgs 4rd~se 

=-~h ~(Ru/h)2+(2l+(z_Z)/h} 2 

"+ ~(Rn/h)2+{21_(z_Z)/h}2 

(2.85) 
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1 

4nrh 

_ . 

= 4(Rn /h )  2 + {2/ - (z  + Z + 2h)/h} 2 

1 

+ 4(Rn/h)  2 + {2l + (z + Z + 2h)/h} 2 

l 

= 4 ( R n / h ) 2 + { 2 l - ( z + Z ) / h }  2 

+ 4(Rt_I/h) 2 + {2l + (z + Z)/h} 2 

(2.85) 

where, ~ is the Euler's constant and k,~ is defined by 

R s p : 4 ( x - 7 , ) Z + ( y - Y ) Z + ( z + Z )  z 

Upper and lower alternatives in Eqs. (2.84) and (2.85) correspond to the case for k </~sv 
and k > Rse, respectively. Although the infinite series expressions are contained in GeR of 
Eq. (2.85) in a similar manner to Ge of Eq. (2.82), the contained two sets of the series 
clearly show the well behavior even near the singular conditions, i.e., (x, y, z)---)(X,Y,Z) 
and so on. Therefore, we can say that the diverging nature of the series in Eq. (2.82) near 
the singular conditions is improved in Eq. (2.85). 

From these equations, it can be seen that several singular functions, such as a basic 
three-dimensional source function, a basic two-dimensional source function and so on, are 
contained in the evanescent mode component of G, i.e., Ge. It is also seen that, due to the 
singular nature of the wave source Green's function, the original infinite series contained 
in Eq. (2.75) diverges near the singular conditions. 

Finally, we can derive the improved equation for calculating Ge near the singular 
conditions through the use of Eq. (2.83) as follows: 

NA NA 
GE =E(GE)n--E(GEA)n+GEA (2.86) 

n = l  n = l  

where, NA is the minimum integer on which k, can be approximated by nx/h. 
The surface integration of the singular functions included in G can be carried out by the 
procedure referred to in 2.3, such as a method by Hess and Smith (1964). 

(c) Wave forces on a body: Wave pressure p on the submerged surface of a body can be 
calculated by the linearized Bernoulli equation, after having obtained q~s through the use 
of the above equations. By the use of the numerical scheme for the wave source 
distribution method, the wave pressure is expressed as follows: 
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p(xi,Yi,Zi) = ipa{dpt(xi,Yi,Zi) 

x exp (-icrt)- Pgzi 
j = l  

�9 (xi,y,,zi) on Sn 

(2.87) 

Wave forces on the body and the corresponding overturning moments about a centroid 
of the body can be calculated by carrying out a surface integration of the wave pressure 
over the submerged surface SB 

N 

F = - ~ p ( x i , Y i , Z , )  ~t (xi,Yi,zi)ASi (2.88) 
i= l  

N 

]Ql"---EP(Xi,Yi,Zi) {gG(xi,Yi,Zi)Xn(xi,Yi,Zi)) ASi ( 2 . 8 9 )  
i=1 

In Fig. 2.9, typical computed results of the horizontal wave force on a square and 
submerged cylinder in the wave propagation direction are shown. 
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Fig. 2.9 Horizontal wave forces on a submerged cylinder of square 
section (hd/h - 0.7); comparisons between the experimental result by 
Hogben et al. (1974) and the computation results by Hogben et al. 
(1974) and Nakamura (1981) 
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Experimental and computed results by Hogben et al. are also plotted. This figure shows 
the relation between the dimensionless wave force defined by the equation written in the 
figure and the dimensionless wave number kae. In the figure, ae is an equivalent radius of 
the circular cylinder that has the same cross sectional area as the square cylinder. It is 
noted that Hogben's computation result is obtained by the numerical algorithm using both 
the series and integral forms of Green's function. 

From the figure, it is seen that the wave force can be predicted by the wave source 
Green function method. The reason for the difference between the two computed results 
in the lower range of kae is not clear. It was reported by Nakamura that the numerical 
algorithm based on the series form of Green's function is superior to the one based on both 
the forms of Green's function, e.g., the necessary CPU time being reduced by a half. 

(d) Wave height distribution around a body: Water wave elevations around a body can be 
calculated by inserting the linear summation of ~ and ~s into �9 of Eq. (2.11a). The 
dimensionless wave height ratio Ko divided by the incident wave height is given by using 
the above equation for the wave elevation 

gD(Xi, y,)=lexp{i(k X/COS O~ "~" kyisin a)}  

2ia N 

z=O 

(2.90) 

(e) Another efficient algorithm taking advantage of the body geometry: As mentioned 
before, there are three alternatives to the full three-dimensional analysis described in the 
above, i.e., i) the plane-symmetric Green's function method for a body with vertical plane 
symmetry, ii) the axisymmetric Green's function method for a body with vertical 
axisymmetry and iii) the vertical line source Green's function method for a vertical and 
surface piercing cylinder. Main ideas for the efficient algorithm are to take advantage of 
the functional form of the source strength function fo(X,Y,Z). We shall introduce the brief 
features of these methods. 

A method for a plane-symmetric body: This method was derived by Nakamura and Ono 
(1988). For a vertical plane-symmetric body, fo can be decomposed into two parts, i.e., 
symmetric and anti-symmetric components for the two points Q and Q' which have a 
plane-symmetric relation with each other, as shown in Fig. 2.10. 
Hence, 

fo(Q)= fS(Q)+ fA(Q) 

fo (Q,) = f s  ~ (Q,) + fA (Q,) (2.91) 

where, fos and fo a are the symmetric and anti-symmetric components of fo, respectively. 
For the special case under which wave trains are incident to the body from the direction 

parallel to the symmetric plane, we can intuitively set fo g - 0. Therefore it is only 
necessary to solve for fo s, which can be determined by considering only a half part of the 
body surface. This analogy can be extended to the more general case of arbitrarily 
directional wave trains. For this case, both the two components of fo may not be 0. In the 
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analogous manner to fo, the scattered wave potential ~s and the three-dimensional Green's 
function G can also be decomposed into two components, i.e., symmetric and anti- 
symmetric ones. For instance, the plane-symmetric Green's function G s and the anti- 
symmetric one G a are defined by 

G s (x,y,z;X, Y, Z)-G(x,y,z;X, Y, Z)+G(x,y,z;-X, Y, Z) 
G a (x,y,z;X, Y, Z)=  G(x,y,z;X, Y, Z)-G(x,y,z;-X, Y, Z) 

O' 

I 
I 
I Incident wave j 

y 

I 
I z 
I 

x- / 'x  o 

h i/A 
/ A / A / A / A / A / A  /A/A,;'/('/A 

Fig.2.10 Analytical model of a plane-symmetric body and definition sketch 

(2.92) 

By the use of these components of fo and G, the symmetric and anti-symmetric 
components of the scattered wave potential, (ps s and Ca, respectively, can be expressed 
as follows: 

dgS(x,y,z)= f~s,,+f s (X, Y, 7.)G s (x,y,z;X, Y, Z)dS(,Y, Y, Z) 

dpa(x,y,z)= ~s, f a (X, Y, Z)G A (x,y,z;X, Y, Z)dS(.~, Y, Z v) 
(2.93) 

It is noted that the range of integration is only for a positive half plane of the x-axis, Sx+, 
which is specified in Fig. 2.10. 

For a body with double symmetries about intersecting two vertical planes, we can easily 
extend the above analogy. In this case, the range of surface integration is reduced to a 
quarter of the submerged surface. Also the number of ranks of matrix equations for solving 
unknown variables corresponding to fo is reduced to a quarter. 

A method for an axisymmetric body: For an axisymmetric body about the vertical axis 
as shown in Fig. 2.11, the cylindrical coordinate system is much more convenient to 
develop every equation. 
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Incident wave 0 ~ ~  x 

Z Incident wave~ , / / / /  / / / / / ~  _ x 

Fig. 2.11 Analytical model of an axisymmetric body and definition sketch 

Thus, at first, fn is interpreted as a function of (R,O,Z) whose framework is defined in Fig. 
2.11. Since the body is axisymmetric and also the incident wave is unidirectional, we can 
expand fo(R,O,Z) to the Fourier cosine series 

fo(R,O,Z)= ~ fom(R,Z) cos(mO) (2.94) 
m = 0  

where, fore is the Fourier amplitude of the m-th cosine mode. 
It is also possible to expand the three-dimensional Green's function G to the Fourier 

series (Black 1975, Fenton 1978), 

oo 

G(r,O,z;R,O,Z)= EGm(r,z;R, Z)cos(m(0- O)} 
m = 0  

= (~m0 + ~-'~dmn COS (m(0 -- O )} 
n = l  

(2.95) 

where, t3m0 is the Fourier amplitude of the m-th cosine mode for the progressive mode 
component of G and t3,0 is the Fourier amplitude of the m-th cosine mode for the 
evanescent mode component of G. 

Noting the relation dS(X,Y,Z) -- RdOdC (dC is a line segment on the revolving curve as 
shown in Fig. 2.11) and also using the above relations, the basic equation of the source 
distribution method, Eq. (2.73), can be integrated analytically with respect to O. The final 
form of the equation becomes 

Os(r,O,z)= ~oIIc rd~ Z)Gm(r, z, R, Z)dC(R,Z)lcos(mO ) (2.96) 
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Here, the definition of G, was given in Eq. (2.95). We can see that Eq. (2.96) consists 
of an infinite number of the one-dimensional integral equations. For wave force 
calculations, however, it can be shown that only the constant and first modes of fo,, are 
required due to the orthogonality conditions described in 2.2.2. 

Therefore, only for the purpose of the wave force calculations on an axisymmetric body, 
we can effectively reduce the computation effort by the use of the axisymmetric Green's 
function method. 

Hudspeth et al. (1980) and Isaacson (1981) extended the method to the radiation 
problems for the floating body dynamics. In the case of radiation problems, hydrodynamic 
force coefficients for an axisymmetric floating body, such as added mass coefficients and 
radiation damping coefficients, can also be obtained very efficiently by the use of the 
above algorithm. 
A method for a vertical and surface-piercing cylinder: Isaacson (1978) developed a very 
efficient algorithm for the diffraction problem about a vertical and surface-piercing 
cylinder of an arbitrary section as seen in Fig. 2.12. 

\ \x4a~ "a~ y 

C. -'~ ~ 

~.////////I 
Incident wavel~ z 

//<,/ '/~',X/,ZC'/,;/,X//v,;Z,// ' ,,//,,/,z,//,//,,//, 

Fig. 2.12 Analytical model of a surface-piercing cylinder and definition sketch 

For such a vertical cylinder, we can assume the source strength function fo has the same 
function form as that of the incident wave potential in the vertical direction 

cosh{k(h + Z)} 

cosh(kh) 
(2.97) 

where, j~o is the source strength at the still water level. Substituting this equation into Eq. 
(2.72) with use of the three-dimensional Green's function of Eq. (2.75), and then 
integrating it with respect to Z, the final equation for this method is derived 

Os(x,y,z)= ~c fo(X, Y)G(X, Y;x,y)dC(7,, Y) c~ {k(h+ z)} 
cosh(kh) (2.98) 

where, C,  is the cross-sectional curve of the cylindrical body in the horizontal plane and 
is the vertical line source Green's function, which is defined by 
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G(x, y;X, Y)= iHolk~{(x- X)2 + ( y _  ~)2}I/4 (2.99) 

In Eq. (2.99), there is no contribution from the evanescent mode term that is originally 
included in the three-dimensional Green's function. Because the evanescent mode term 
disappears due to the orthogonality nature of the eigenfunctions contained in Green's 
function. 

As seen in Eq. (2.98), we can solve the diffraction problems about a three-dimensional 
cylindrical body by a line integral equation. Therefore it is possible to reduce the 
computation effort by a great deal as compared to the full three-dimensional Green's 
function method. 

(2) Two-dimensional analysis by the wave source distribution method 
Here, we will introduce the two-dimensional analysis for a horizontal cylinder with an 

infinite length in the y-axis direction as shown in Fig. 2.13. In this case, the problem can 
be treated in a framework of the vertical plane. Such a two-dimensional analysis has often 
been applied to the three-dimensional water wave problems about a comparatively slender 
body as an approximation, because the experimental model tests as well as the numerical 
calculations can be easily carried out as compared to the full three-dimensional method. 
There are several variations with the two-dimensional analysis as mentioned in the 
previous sections. Recently, the analysis was extended to the case of obliquely incident 
waves (Nakamura and Morita 1988). In the following, the more general procedure that is 
able to deal with the case of obliquely incident waves is described. 

In Fig. 2.13, analytical model is shown. It is assumed that the horizontal cylinder with 
an infinite length is fixed in the wave field of constant water depth h and is interacted with 
the obliquely incident waves. 
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Fig. 2.13 Analytical model of a two-dimensional body and definition sketch. 
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In this case, noting that vertical cross section of the cylinder does not change in the y-axis 
direction, the complex amplitude of the scattered wave potential ~s can be expressed as 

qOs(X, y,z)= As(x,z ) exp(ikyy) (2.100) 

where, As is the amplitude of Os in the y-axis direction and ky is equal to k sina. 
Substituting Eq. (2.100) into the three-dimensional Laplace equation, the governing 

equation for As can be reduced to 

t~2 As 02As (2.101) 
- ~  ~ az ~ - k,~As = 0 

It is necessary for As to satisfy the same boundary conditions as ~s on the free surface 
and sea bed, i.e., Eqs. (2.18) and (2.19). The kinematic boundary condition on the 
submerged surface can be derived from Eq. (2.20) and is given by 

c)A s ~A s 3n = 3n "on C v (2.102) 

where, A~ is the complex amplitude of ~ in the y-axis direction and is given by Eq. (2.16) 
after having set y-O, and Cv is a cross section of the cylinder in the vertical plane. 

On the other hand, the radiation condition Eq. (2.15) must be modified to the two- 
dimensional counterpart. Noting that wave number component in the x-axis direction is kx, 
the radiation condition for this case can be expressed 

lim ~ OAs - (+) ikxAs} = O 
x-,• ax 

(2.103) 

As described above, the wave boundary-value problem for the horizontal cylinder in 
oblique waves can be treated as a two-dimensional problem in the vertical plane at y-O. 
For the special case of a-O, i.e., for normal incident waves, a number of studies have been 
carried out up to now. 

(a) Green's function: Green's function for the above wave boundary-value problem was 
derived by Nakamura and Morita (1988) and is given by 

i ( k2 - ko 2) cosh k(h + z) 
G(x,z;X,Z;a)= kx (k2_koE)h+ko 

x cosh k (h + Z') exp(ik~l x -  X" l) 

1 (k"2 + k~ cosk,(h+ z) 
-E ,,. (k:+ko )h-ko 
• cosk. (h+ Z')exp(-/~.l x -  XI) 

(2.104) 
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where, #, is the evanescent mode wave number in this wave field and is defined by 

M.,, = 4k,, 2 + ky z (2.105) 

The first and second terms in Eq. (2.104) specify the progressive mode and evanescent 
mode components, respectively. When a -0 ,  Eq. (2.104) is coincident with the two- 
dimensional Green's function in the normal incident waves derived by John (1950). 
Therefore, we can say that Green's function of Eq. (2.104) is a much more general one. 
Another form of Green's function, i.e., the integral form, is also known (Kim 1969), but 
limited to the normal incident wave condition. 

(b) Evaluation of As by the source distribution method: By use of Green's function, As can 
be expressed as 

as(X,Z) - f~, j,o(,z, z )o(x , z ;  x, z ;  a)dc(~. Z) (2.106) 

where, fo is the source strength function on the sectional curve Cv. fo can be determined 
by the boundary condition on the submerged surface, i.e., Eq. (2.102), which is rewritten 
as follows: 

fc~ fo(.z, z)  oV(x. z ; x, z ;  a) ,~a, (x, z) 
0n(x, z ) dC(X, Z ) =  o3n(x, z) : (x,z)  on C v 

(2.107) 

(c) Singularities included in Green's function: For practical computations, in the same way 
as the three-dimensional Green's function method, the treatment of singular functions 
included in the two-dimensional Green's function is important. In the following, we will 
briefly describe the singular nature of the two-dimensional Green's function. 

At first, in order to take out the singular functions included in G, we will try to 
analytically obtain the summation of the infinite series included in the second term of Eq. 
(2.104). Suppose that this infinite series summation is denoted by Ge and also the m-th 
term of the series is Ge,. Noting that, for sufficiently large n, k, and/4, are approximated 
by 

nn: nn: 
k,_= , /.t_= 

h h 

The approximation form of Ge. may be expressed by the following GA.: 

Oa i iE f {n ,z = - -  C O S  + C O S  

h 

xexp(-nz, lx-  "XI/h ) 
'}1 + Z  +2h 

h (2.108) 
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It is possible to obtain analytically the infinite series summation of GAn, which is given by 

oo 

GA --EGA  
n = l  

= [log { 1- 2 exp(-/t'Jh-"~ I)cos (/rlZh 'z 1/+ exp~ ~(-21rlx-X ]3} 

+log{ 1- 2exp(- / r Jh-"  I/cos//rlz-h Z l/+ exp(-2 / r lh-" l )  } 1/4~ 

(2.109) 

As seen in this equation, there are logarithmic singular functions in GA. Therefore, when 
the field point (x,z) approaches the source point (X,Z), the series Ge~ shows the tendency 
of divergence. In other words, we cannot approximate the infinite series summation with 
the finite one under such a singular condition. 

In order to improve the diverging nature of the series, we can use the above-mentioned 
results. Hence, the infinite series summation Ge may be approximately evaluated by 

NA NA 

GE ~ E GEn --E GAn "~ GA (2.110) 
n = l  n = l  

where, NA is the minimum number n on which kn and/~ are reasonably approximated by 
nrr./h. 

(d) Wave forces and moments: Wave pressure at the cross section y - y is obtained by use 
of the linearized Bernoulli equation, after having calculated the total wave potential 
consisting of the incident and scattered wave potentials. Hence, 

ply=y={ ipcr(A t + As)exp(ikyy)} e -i~ - pgz (2.111) 

The local wave force vector on a unit length of the cylinder at y=y, dF(y) - (dFx,dF~), 
is given by carrying out the pressure integration along the sectional curve Cv 

{~i}=[-~cvPly=~ (2.112) 

In the same manner, the local moment in the vertical plane caused by the wave pressure 
about the point (xo,zo), d Ply, is also given by 

 y:I zo nx Xo n   ]ex'li y'l (2.113) 
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On the other hand, if we assume that the cylinder has a finite length lB in the y-axis 
direction, the total wave force and moment can be expressed as 

F~ - C 1~7~ 

My dMy y=0 

(2.114) 

where, )'R is the wave force reduction factor compared to the case of uniform distribution 
of local wave forces along the y-axis, which is defined by 

y.  = sin(kylB/2) 

kylB/2 
(2.115) 

In Fig. 2.14, variation of YR with /Bsintz/L is plotted. 

o0 
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lB sin ~/L 

Fig. 2.14 Reduction factor ~'R of wave forces on a finite length of the 
cylindrical body in obliquely incident waves 

From this figure, we can see that the total wave forces decrease by increasing the incident 
wave angle a. Especially, under the condition on which the value of /Bsina/L approaches 
a whole number, the total wave forces diminish. This reduction is directly caused by the 
phase difference of wave forces along the cylinder axis. 

In Fig. 2.15, variation of the local wave force on a rectangular cylinder with the incident 
wave angle ct is shown. 

In the figure, wave number is fixed for the two different values. From this figure, it can 
be seen that the local wave force also decreases by increasing the incident wave angle ct. 
Furthermore, the dimensionless horizontal wave force becomes smaller for longer waves. 
From these figures, it is clear that the total wave force on a finite length of the cylinder 
decreases with increasing the incident wave angle a due to both reduction effects. 
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Fig. 2.15 Variation of the wave forces on a rectangular cylinder per 
unit length with the incident angle of wave 

(e) Wave transmissions and reflections: Wave height distributions about the cylinder can 
be calculated by Eq. (2.11a). When we use the dimensionless wave height ratio Ko 
normalized by the incident wave height/-/I, it is given by 

go(x,y)=l(2a/g ) {A,(x,z=O)+ as(x,z:O)}l/H, (2.116) 

From this equation, even in the obliquely incident waves, wave height distributions 
change only in the normal direction of the cylinder axis. However, on the reflection side 
of the cylinder, intersected wave field consisting of incident and reflected wave trains is 
formed and the resultant wave pattern becomes short crested. 

Wave reflection and transmission coefficients, KR and Kr, are defined by the wave height 
ratios of the reflected wave height HR and transmitted wave height Hr to the incident wave 
height HI, respectively. Hence, 

IAs xz=o,I 
K,=E-= Z(x,Z= x  . 

I z<xzO,Zs(xzo)l 
Kr =-~l = a , (x , z=O)  x~+~ 

(2.117) 

(2.118) 

In Fig. 2.16, one of the computed results on Kr is shown for a rectangular cylinder as 
mentioned before. 
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Fig. 2.16 Variation of the wave transmission and relection coefficients 
about a rectangular cylinder with the incident angle of wave. 

In the figure, variation of Kr with the incident wave angle a is plotted for the two different 
values of kB. From this figure, it is seen that Kr is almost constant for the range 0~ ~ 
but over this range it decreases drastically. 

2 . 4 . 2  F l o a t i n g  b o d y  d y n a m i c s  in  w a v e s  

(1) Motions of a three-dimensional floating body 
The representative of floating bodies in the ocean and ship motions have already been 

studied in detail in the field of ship building. Their studies are summarized in the strip 
method which has sufficient accuracy in practice (Korvin-Kroukovsky 1955, Salvesen et 
al. 1970). 

In ship hydrodynamics, as described in 2.2, the phenomenon of floating body motions 
in waves is divided into the radiation problem where the body seems to move in still water 
and the diffraction problem where the body seems to be fixed and receive wave forces. 
This method gives us the relation between the added mass and own mass, frequency- 
dependency of added mass and damping coefficient and it is also effective in dealing with 
nonlinear mooring ship problems. 

Concerning the dynamics of floating body in waves, many studies have been carried out 
since the analytical method with Green's function represented as the basic theory of the 
floating body motion in the finite water depth by John (1949, 1950). 

In case of a slender body, the strip method (Korvin-Kroukovsky 1955, Salvesen et al., 
1970) which transform the three-dimensional problem to two-dimensional one is devised. 
It will be described later. 

In this section, the numerical calculation method for an arbitrary shaped floating body 
moored in the finite depth h by the elastic lines, as seen in Fig. 2.4, is described. 
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We assume that the body is moving harmonically in six degrees of freedom as follows: 

X = ,~e -'~ = X~(sway), Y = I~e -'~ = X2(surge), Z =  Ze -'~ = X3(heave), 

g2x = ~xe -i~ = X4(pitch), s = ff2ye -iot = Xs(roll), K2z = ~-2z e-iat = X6(yaw) 

(2.119) 

Relatedly, for the simplicity of expression, we define the vector which has six 
components consisting of translation vector X (X, Y, Z) and rotation vector t2(t2x, fly, f~z) 
and express these component of the vector with the subscript 1 ~ 6 as follows: 

x-(x,v,Z, ax, 
(2.120) 

(a) Hydrostatic Stability: At first, let's see the generation mechanism of the righting 
moment FCS)55 due to static pressure when the floating body is rolling. Figure 2.17 
shows the center of gravity Co, the metacenter M c  and the centers of buoyancy C~ at 
upright and C'B at small rotation. 

~ x s  ( = a, ) 

mR9( = p9 V ) 

Fig. 2.17 Righting moments in the vertical plane of a floating body 
and definition sketch 

The gravity force mBg (ms = mass of the floating body) applies to Cc and the buoyancy 
force p g V  (V - displacement of the floating body) to C'B. These two forces are out of line, 
so they make the righting moment FCS)55 as shown in Eq. (2.121) (Bhattacharyya 1978). 

F5~5 s) = m s g G M  sin X 5 

= m B g G M  sinX 5 
(2.121) 

where, the distance G M  from the center of gravity to the metacenter is termed the 
metacentric height. Now let the keel position be K, then ~ is given by 
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G M  = ~ + B M  - K G  (2.122) 

Using the transverse second moment of area Iy (2) and displacement V, ~ is calculated 
by 

B M =  Iy(2) (2.123) 
V 

In the same manner, letting the longitudinal metacentric height be G M  L , the righting 
moment of pitch is given by 

F~ s) = m B g G M  i_. sin X4 (2.124) 

Furthermore, the restoring force in heave F(S)33 is given by 

F f f  ) = p g  A w X  3 (2.125) 

where A w  is the area of the water plane. 
As the center of rotation does not coincide with the center of floatation in general, the 

hydrostatic restoring forces in heave, pitch and roll are coupled mutually. They are 
discussed in detail in the literature (Bhattacharyya 1978). 

(b) The restoring forces by mooring line: We pay attention to one of the mooring lines and 
use ap and ~p for the position vectors of mooring points at floating body and sea bottom, 
respectively. Then, considering the geometrical relation, extension Al of the mooring line 
due to the slip motion is derived 

(2.126) 

where, l is the length of mooring line, k6aiS the position vector drawn from Cc to the 
mooring point of floating body. And the restoring force fm for the above expansion is 
obtained by 

f (M) = K(M)AI  (2.127) 

where, K (m - linearized spring constant of the mooring line and it can be obtained by the 
catenary theory. 

The above-mentioned restoring forces are applied to the mooring point of the body. And 
resolving the force vectors and composing the forces in each direction of motion, then the 
restoring forces or moments due to mooring line displacement are obtained. We define F (m 
as the vector which are composed of three restoring forces and three restoring moments. 

(c) Velocity potentials of waves around floating body and hydrodynamic forces: The 
velocity potentials of waves around the oscillating body can be divided into three kinds of 
potentials from the standpoint of the sources. Moreover, the velocity potential r of 
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radiated waves is separated into ORm(m=l~6) of each motion mode. As the calculation 
method for the velocity potential ~s of diffracted waves is already described in 2.4, the 
calculation method for ~R is explained. For the simplicity, we define the vector ~R which 
has the six components ORm(m=l~6). Using this expression, Eq. (2.35) is rewritten by 

~R = OR" "~" (2.128) 

Substituting ~R into the kinematic boundary condition Eq. (2.30) and decomposing it 
into each component of motion, the following equation is deduced. 

---~- = = = ~  (2.129) 

x~ 

In the same manner as ~s, OR,,(m=l~6) can be described by Eq. (2.72), which is the basic 
equation of the three-dimensional source distribution method. Here, the source strength 
fR/(m--l~6) for each mode is treated as the unknown function. Substituting the expression 
into Eq. (2.129), Eq. (2.130) of settling the source strength fR,,(m=l~6) is derived as 
follows: 

N 

~_,fR(Xj, ~, Zj ) aij : ~(xi, Yi, zi ), (i : 1, 2 ..... N) (2.130) 
j= l  

where fR is the vector defined by 

fR--'(fRI'fR2'' '"fR6) (2.131) 

Once we obtain the source strength of each mode from Eq. (2.130), by substituting them 
into Eq. (2.72), the velocity potential OR,,(m=l~6) of a sinusoidally oscillating body with 
unit velocity amplitude can be evaluated. 

Calculating the pressures by using ~R and integrating them over the wetted surface of 
the floating body, the hydrodynamic force due to the body motion can be obtained. In this 
stage, however, oscillating velocities of the body have not been determined yet, leaving 
them unknown, and the expression of the applying hydrodynamic forces can merely be 
derived. Solving the equations of body motion with the above derived expression of 
hydrodynamic forces, the oscillatory velocities are determined at last. 

When we consider the above and obtain the hydrodynamic forces, they can be 
represented as follows: 

F ' "  , (2.132) 

where, 
6 

F/~R'= - ~ ( M ~  a' Xm + N~',Y,) (l = 1, 2 ..... 6) (2.133) 
m=l 
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and Mira (A), Nlm (D) are the quantities given by 

IReal[#Rm ] 

= P~s,, [Imag[o~PRm 1} ~l dS (2.134) 

Here, Mr, ~A) is the added mass, and Nlm ~~ is the radiation damping coefficient. The latter is 
named after the reason that this term reduces the motions in proportion to the oscillating 
velocity and it closely related to the radiated waves. As shown in Eq. (2.133), the motion 
in the mode m induces the hydrodynamic forces not only in mode m ,  but also in other 
modes. It is very interesting when we compare this relation with Newton's second law. 

In the field of ship building, the above mentioned hydrodynamic force generated by the 
motions of floating body is called the radiation force. Also the wave force applied to the 
fixed body as introduced in 2.4 is called the wave exciting force in general. Furthermore, 
the wave exciting force is further separated into the Froude-Krylov force and the 
diffraction force caused by the scattered waves. Hereafter, following the custom of naval 
architecture, we use these terms. 

Referring to the method of wave force calculation described in 2.4, the Froude-Krylov 
force F ~F) and the diffraction force F ~~ in vector expression can be deduced as follows: 

F~F) = --iPtr~s ~1 ~dS (2.135) 
B 

F (~ = - ip t r  ~s,, ~s  ~dS (2.136) 

As shown in the above, the diffraction force is obtained by the use of @s. But using the 
next Haskind relation (Korvin-Kroukovsky 1955, Salvesen et al. 1970), it can also be 
obtained by #i and ~?R,,,. Applying r and #R to Green's theorem and considering their 
radiation conditions at infinity, the following equation can be obtained. 

( ~s, ~s - ' ~  - ~R dS = 0 (2.137) 

Substituting them into Eq. (2.190) and using Eq. (2.7), F ~~ is given by 

F '~ : iptr.,~[,.---~ OR dS (2.138) 

(d) Equation of motion of the floating body: Considering the inertial force and many other 
forces obtained in the above, next equation is derived under the balance of the forces. 

F ~I) + F ~s) + F ~ ffi F ~F) + F ~n) + F ~R) (2.139) 
(inertia) (damping) (restoring) (hydrodynamic forces) 
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Since F ~r) contains the oscillating velocity and acceleration as shown in Eq. (2.133), 
transposing them to the left side, then, they can be combined to F ~. After this operation, 
Eq. (2.139) can be rewritten in the comprehensive matrix form. 

6 
E { [ ltAF(B) IIAF(A) '~ ff r IIT(D)'(Z ) E l  (E) t.ralm dr" .r,,lm ,].tx m Jr" .Vim .,Xra dr" KlmX m = (l - 1 ,  2 ..... 6) (2.140) 
m = l  

where Mr, <B) is the mass matrix, K~m is the spring constant matrix containing the hydrostatic 
and mooring line's restoring forces, and F~ <e) is the wave-exciting force in l mode. 

The oscillating displacement of the floating body X, is obtained by solving Eq. (2.140) 
and substituting them into Eq. (2.128), the radiation potential ~R is determined lastly. 

(e) Wave height distribution around body: Substituting the sum of the velocity potentials 
(/)I, ~s and ~R into Eq. (2.11 a), then the water surface elevation 7/around the floating body 
can be obtained. The ratio Ko of the wave height around the body to the incident wave 
height is given by 

Ko 
( 6 

m = l  z=O 
(2.141) 

(2) Strip theory for three-dimensional floating body motions (Korvin-Kroukovsky 1955, 
Salvesen et al. 1970) 

Here, the body is assumed to be slender like a ship. Then the strip method is useful, 
where the three-dimensional problem is transformed into the two-dimensional one. In the 
case of a three-dimensional oscillation, there exists surge (mffi2), pitch (m=4) and yaw 
(m-6) which are not in a two-dimensional one. However, we look at the motions of a strip 
shown in Fig. 2.18, pitch and yaw are similar to two-dimensional heave and sway, 
respectively. 

v ~ - z c x 5  
_ Ca" 0 =x 

Cv ~z= _ h 

IA I x, I A  I A  ix ,  I/,, IA IA 

Y 
z 

X 
z--" ~ h  

?X /A  I / ,  t A  I/,, IA I/ ,  'IX, I N -  

Fig. 2.18 Ship motions at a strip of slender floating body 
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Surge does not have any similarity to other motions, so the hydrodynamic force for surge 
is approximated independently. For this reason, the strip method is sometimes called the 
method with five degrees of freedom. 

Based on the above background, analyzing the two-dimensional problem at first, next the 
hydrodynamic forces for pitch and yaw are given according to the two-dimensional ones. 
And, at last the hydrodynamic force for surge is also described. 

(a) Radiation force: We consider the radiation problem when the floating body of infinite 
length with a strip shown in Fig. 2.18 is oscillating in still water of depth h. The radiation 
potential and the kinematic boundary condition can be derived by referring to the above 
three dimensional cases 

q~R = CRIX'~ + q~R3X'3 + CRsX'5 (2.142) 

O~I~R1 81~3 OI~R 5 
On = ~l' - - ~  = ~3' - - ~  =~s (2.143) 

Green's functions in the vertical two-dimensional wave field can be obtained as the 
special case of Eq. (2.104) of a-0".  When we use this Green's function, OR,. over the 
wetted surface of the body can be given by solving the simultaneous equations similar to 
Eq. (2.134). Once OR,. is obtained, the added m a s s  d M l , .  (A) and the damping coefficient 
d N l , .  (D) are  given in the same manner as the three-dimensional case 

d lt4(A) -- --P~cv Real m ] ~ / d C  l 

d ~v(~ = ~cv imag [r ]~/ j "" lm - - P ~  " d C 
(2.144) 

Here Cv shows the cross sectional wetted curve at y-y. 
Now, we suppose the symmetric floating body with respect to the vertical surface of y- 

axis. In this case, the radiation potentials for sway and roll are anti-symmetric and that for 
heave is symmetric. Furthermore, ~1 and ~5 are anti-symmetric and ~3 is symmetric with 
respect to the y-axis. For the sake of these characteristics, the above integral results in the 
next relations 

dml  A) = tIM(A) = 0 3 "~"~53 

3 "'" "53 
(2.145) 

These show the coupling of sway and roll and the non-coupling of heave with them. 
Moreover, yaw and sway, and pitch and heave are coupled with each other, so the motions 
of slender body symmetric with respect to the y-axis can be divided into three groups of 
i) sway and roll, ii) heave and pitch, and iii) surge. 

Referring to Fig. 2.19, and assuming the representative position of the strip as (x, z) - 
(0, 0), the horizontal velocity uR and vertical velocity wR at (0, 0) are given by, 

u,=xz xyx6} 
w. = +yJt4 

(2.146) 
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M-3, Heave; Symmtric Radiation Waves 

Fig. 2.19 Symmetry and anti-symmetry of radiation waves and direction cosines 

Then, three-dimensional q~R and the accompanied oscillatory pressure are approximated as 
follows: 

IfI)Rl : (DRI UR, PRI = i p a ~ m  

I~)R3 -" ~R3 WR, PR3 = i p o ~ l ~ 3  

~R5 = ~R5 XR, PR5 = i p O ~R5 
(2.147) 

So, using the relations of Eqs. (2.146) and (2.147), and integrating the pressure over the 
wetted curve, the radiation force acting on the cross section is obtained. 

dfll(R) =--IC (Pro + p.5)~dC 
v 

- - d M ( : ' l g  R dN(D'UR rlllAr(A'~ r AM(D'~r 
-- -- -- ~VJtl5 "x5 -- ~ * 15 '~'x5 

dF3(R) Ic PR3e~3dC = aAAr(a>," ~.,(o> - - _  - - u z v a 3 3  vv R --01u W R 
v 

dFs'"' =-Ic  (p"' + p.5)~dC 
tt 

- -  - -  ~ a v 5 1  ~R - -  ~ ' t zvJ t55  " x 5  - -  u ' L v 5 5  " x 5  

(2.148) 

Furthermore, integrating them along the longitudinal direction, the three-dimensional 
radiation forces can be obtained. 
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Fff '=~t,  dFl~R" FE~R'=--0"lmBX2' F3<R'=~tB dF3~R' t 

~R' = ~1 ydF3 ~R', Fs<R' = ~/~dFff', F6<R' = ~1, - ydFll <R' 
(2.149) 

where lB is the length of a floating body, and the coefficient of added mass and the 
damping coefficient in surge are supposed to be 0.1 and 0, respectively. 

(b) Wave-exiting force: Since, in the strip method, not only the beam waves but also 
oblique waves are the object, the velocity potential of incident waves is given by Eq. 
(2.17). In the wave-exciting force, the Froude-Krylov force is presented by Eq. (2.135). On 
the other hand, the diffraction force is almost given by the Haskind relation (2.137). 
According to the equation, the diffraction force acting on to a strip can be calculated by 

+ --~ ~ ) r 
(2.150) 

Here, as ~/3x  is mainly affected by the side wall of the floating body, it is approximated 
by the horizontal velocity at x-0, z--d/2 and we may use u~ for this. For ~/3z, since the 
bottom is only effective, we approximate it with the vertical velocity at x-O, z--S(y)/B 
where S(y) is the cross sectional area at y-y, and we may use wt for it. Moreover, using 
the Watanabe's approximation (Watanabe et al. 1958), Eq. (2.150) is rewritten as follows: 

dEll (D) -~ i p ~ ( U l  fcvCRl~ldC"~- Wl ~cvCRl~3dC ! 

�9 r ( D )  --- dM~A)u I -~- HN~D)ul -~- dM~A)w I -~- OlV~l w ,  

(2.151) 

Substituting Eq. (2.145) into the above equation, the diffraction force applied to the strip 
can be approximated by 

dEll(D) _, �9 n(A) . . . .  (D) ] = OJVli I Ul + 01V 11 Ul 
dF3( D ) _~ �9 .( A ) �9 a 7, r( D ) u~ ~-- 02V133 W I + 01u 33 ""I (2.152) 

The relation of diffraction force between two- and three-dimensions is similar to Eq. 
(2.149) except for surge. The wave exciting force for surge may be approximated by the 
use of Froude-Krylov force. 

F2 ~~ -- -~l pgS(y)~ lx=o~cdy 

1 o ~  
1/ . . . .  , ~'c = 0.73 + 0.6 z~/d 

g o3t 

(2.153) 
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Where Yc is called the coefficient of effective wave slope. 

(3) Drift force 
When a floating body is moored and receives regular waves, the body shows not only 

the oscillatory motion, but also the slide motion to the forward direction of waves. The 
slide motion is caused by the steady drift force, which is given by considering the second 
order term of wave forces. The drift force in the infinite depth was given by Maruo (1960). 
In the following, using the same manner as Maruo, the drift force on the moored body in 
shallow water as shown in Fig. 2.20 is derived by the conservation law of momentum. 

Z 

Reflected Transmitted wave Incident wave wave 

' ' 

Control surface ~lControl surface 
i i 
I I 

Fig. 2.20 Setting of control surface for obtaining drifting force 

When we use/-/i, HR and Hr for the wave height of incident, reflected and transmitted 
waves, these corresponding velocity potentials 4~, 4R and 4 r  in the far field from the body 
are represented as follows: 

igH, cosh k(h + z) exp/'i/'kx-t, trtg,,j 4 i  
2or cos h kh 

4R = igH R cosh k(h+z) exp{_/(kx+trt_t~R) } (2.154) 
2tr cosh kh 

igH r cosh k(h+z) exp[i[kx_trt_~r] ~ 4r = t ~ /J 2tr cosh kh 

where, ~R and t~r are the phase lags of the reflected and transmitted waves from the 
incident wave, respectively. 

If we set the control surfaces at x=-oo and x=oo, the total velocity potentials at these 
positions can be denoted by 4.00 = 4I+ 4s and 400 - 4 r .  Using these relations and 
averaging the momentum difference between the both control surfaces over a wave period, 
the drift force Fo is given by 

dz + -  p_~dz - /9  
h h (2.155) 
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where, the pressure p is given by Bernoulli's equation (1.22). Substituting Eq. (2.154) into 
Eq. (2.155) and after having carried out some manipulations, the drift force is given by the 
simple relation as follows: 

2 2 
Fo :-- ~ l + ~ s i n h  2kh (H2 + HR + H~') (2.156) 

Furthermore, substituting the conservation law of energy HI2=HR 2 + Hr 2 into the above, the 
drift force can be expressed by using only the reflected wave. 

1 ( 2kh ) ~ 
Fo=-~Og 1 + ~  H~ 

sinh 2kh 
(2.157) 

The above equation coincides with Maruo's formula when h-oo. Now writing KR for the 
reflection coefficient, and defining the coefficient DR of drift force by Fo/(pgHI/8), then, 

2kh 
D R = 1 + sinh -2kh) K~ (2.158) 

This relation shows that the coefficient of drift force is proportional to the square of the 
reflection coefficient. 

2.5 Wave Forces on Small Bodies 

Up to the preceding sections, the method for estimating wave loads on large offshore 
structures has been discussed, focusing mainly on the wave diffraction and radiation 
phenomena by the structure. In this section, we will briefly describe the method of wave 
force calculation for a small body, for which the diffraction parameter D/L is small (D/ 
L<0.2) and KC is comparatively large as shown in Fig. 2.1. 

In this regime, the phenomena of flow separations and resultant vortex formations 
behind the body considerably affect the wave force. Therefore, it becomes important how 
to take such phenomena into consideration for the wave force calculation. Meanwhile, 
since the effect of wave diffraction and radiation by the body may be neglected in this 
regime, we can assume that there is little or no variation of unsteady fluid forces with D~ 
L. This assumption is assured from Fig. 2.7 in which the effective inertia coefficient CM 
for a vertical circular cylinder is almost constant in the range D/L<0.2 and is equal to the 
inertia coefficient in an oscillating fluid, i.e., CM-2.0. 

Until now, wave forces on a small body have been estimated by a semi-empirical 
formula because of its simplicity and convenience. For instance, wave forces on a vertical 
cylinder in the wave propagation direction, i.e., in-line forces, are usually calculated by the 
Morison equation. Further, the transverse forces or lift forces may be evaluated by the 
multi-component lift force equation proposed by Sawaragi et al. (1976). 

In those semi-empirical formulas, however, hydrodynamic coefficients are included, 
which have to be determined experimentally or empirically. Thus, the selection of the 
hydrodynamic coefficients has been a controversial problem for a long time. In order to 
clarify the hydrodynamic features of these coefficients, many studies have been carried out 
especially for a vertical circular cylinder from both the experimental aspect (Sarpkaya 
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1975 (a), Garrison 1990) and the theoretical aspect (Stansby 1977, Sawaragi and Nakamura 
1979). With such an accumulation of knowledge, characteristics of the hydrodynamic 
coefficients for a vertical circular cylinder have been gradually clarified (e.g., Sarpkaya 
and Isaacson 1981). Recently, the study for a sphere has been gradually advanced too (e.g., 
Iwata and Mizutani 1989). However, concerning other geometrical bodies, such as a 
rectangular cylinder, little comprehensive work has been done. Therefore, it is common to 
substitute the drag coefficients in a steady flow and the inertia coefficients in an idealized 
fluid to the wave force equation. 

There is a completely different method from the previously described one to estimate 
wave forces on a small body, especially for a cylindrical body. This method is based on 
the numerical simulation results of the vortex flow about the body (Stansby 1977, Sawaragi 
and Nakamura 1979). The details of the method will be presented in a later section. 
Because the procedure can be used for estimating not only the hydrodynamic forces but 
also the flow features about the body, it may be widely applicable to other hydrodynamic 
problems. However, there are still some difficulties in the method, which should be solved 
in the future. For instance, it is difficult to model the influence of fluid viscosity on the 
vortex flow behind the body. In addition, this method requires a great amount of 
computation effort. 

In this section, based on the Morison equation, we mainly introduce the method of wave 
force calculation on a cylindrical body. Furthermore, in the latter part of this section, 
proximity effects on the wave forces caused by placing the body near the boundary, such 
as a seabed and a water surface, are also described. 

2.5.1 Wave forces on a cylindrical body 
In-line forces on a vertical cylinder Fv are usually calculated by the Morison equation 

(Morison et al. 1950). 

F( 1 F,, -  CopO l u<z) lu<z> 
h 

+CMpAe ~ ( ; ) t  dz (2.159) 

where, Co is the drag coefficient, CM is the inertia coefficient, De is the width of the 
cylinder projected on the normal plane to the wave propagation direction, Ae is the cross 
sectional area of the cylinder, u(z) is the horizontal fluid velocity at elevation z, o~(z)/& 
is the horizontal fluid acceleration at elevation z, and 77 is the water surface elevation at 
the centroid of the cylinder. 

If we assume the linear wave theory, the horizontal velocity u and the water elevation 
7/can be expressed through the use of Eq. (2.17) as 

I u(z) = Real L o3x J a=0o 

1 F0o, ql 
0 = - -  Real 

g L-&-J  :oo 

:at (x,y)=(xa.ya) (2.160) 

: at (x,y, z) = (x~,y~, O) (2.161) 

The horizontal acceleration is obtained by taking the time derivative of Eq. (2.160). 
There are several assumptions for deriving the Morison equation, listed as follows: 
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i) Wave scattering by the fixed cylinder can be negligible and there is no change in the 
incident waves after passing by the cylinder. 

ii) Wave forces can be calculated by the linear summation of the drag and inertia forces. 
iii) Drag forces on the cylinder under the wave motion can be approximated by the drag 

force equation for the body in a steady flow, which is proportional to the square to the 
velocity vector in the normal direction of the cylindrical axis. 

iv) Inertia forces on the cylinder under the wave motion can be approximated by the 
unsteady force equation deduced from the unidirectional potential flow theory. 

In short, considering that wave forces on a small body must be given as a summation 
of the unsteady force in the potential flow and the vortex-induced force, we can say that 
the drag force term in the Morison equation as described in iii) is used to approximately 
express the vortex-induced force. 

According to the previous results, it has been known that drag and inertia coefficients 
are functions of both the Reynolds number (Re - UmD/v; v - kinematic viscosity) and KC 
number. Regarding these results on the hydrodynamic coefficients, please refer to other 
engineering literature (e.g., Sarpkaya and Isaacson 1981, Chakrabarti 1987). 

Here, we will briefly describe the method of wave force calculation on an inclined 
cylinder (Chakrabarti 1975). In Fig. 2.21, the analytical model assumed here is shown, in 
which a circular cylinder with a diameter D is obliquely fixed in a plane wave field. 

l 
,i 

z 

/ ! 

/ 
0 

>.~,,/~.// . /A/f./ t .  

Fig. 2.21 Analytical model of an inclined tubular member and definition sketch 

In this model, the wave induced velocity vector ~7 w is defined by 

Vw=(U, O, w) (2.162) 

If we denote a unit vector in the axial direction of the cylinder as ~ - (ex,ey,ez), it can 
be expressed by the use of the inclination angles 0 and to as follows: 

(e x, ey,ez)=(sin 09 cos0, sin to sin0, costo) (2.163) 
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As specified previously, it is assumed in the Morison equation that there is no 
contribution from the axial velocity and acceleration to the wave force. Therefore, it is 
convenient to decompose the velocity vector into two different directions, i.e., axial 
direction and normal to it. The velocity component in the normal direction, O N , can be 
obtained by subtracting the axial velocity component from qw, i.e., 

/-)N = lTw-(e" lTw )e  (2.164) 

Through the use of 0 N and its time derivative O ON~Or, we can specify the local wave 
force dF v on the inclined cylinder per unit length as follows: 

dFv= il CopDIONION +CMP ~ i t ) t )  (2.165) 

By decomposing the local wave force vector into the usual tri-axial components, we can 
obtain the x-, y- and z-axis components of force. 

Equation (2.165) is the most general form of the Morison equation, which can be used 
for the complex offshore structure consisting of tubular members. 

However, there are some difficulties to apply Eq. (2.165) to the other cylindrical 
members that have different sections from a circular one. Because the direction of the 
normal vector O N is changing with time, i.e., rotating around the cylindrical axis, the 
projected area of the cylinder to the normal plane to the 0 N changes with time too, and 
the hydrodynamic coefficients may vary with the 0 N direction. Those problems should be 
solved in the future for the rational design of offshore structures. 

On the other hand, it has become known that lift forces (or transverse forces) act on the 
cylinder in addition to the in-line forces simultaneously. In the previous studies, it was 
clarified that the lift force is generated by the asymmetrical vortex flow pattern behind the 
cylinder and has the same magnitude as the in-line force. In addition, as a distinctive 
feature, it has the predominant higher harmonic components compared to the in-line force 
(Sawaragi et al. 1976, Sarpkaya and Isaacson 1981). The frequency characteristics of the 
lift force will be partly introduced in Chapter 6. 

2.5.2 Wave forces on a submerged sphere 
The wave forces acting on a submerged sphere have been discussed experimentally by 

Iwata and Muzutani (1989). They reported that the wave force is closely related to the flow 
conditions around the sphere. The flow conditions around the sphere can be largely 
classified into two types; a rotating pattern and oscillating pattern. These patterns can be 
further classified into two types in connection with flow separation. Consequently, the flow 
condition can be classified into four types, such as the rotating pattern with and without 
flow separation and the oscillating pattern with and without flow separation. The rotating 
flow pattern appears under the condition that the vertical water particle motion is larger 
than half the horizontal one. Under such a condition, the horizontal and vertical wave 
forces can be evaluated with the Morison equation. On the other hand, the oscillating flow 
pattern appears when the vertical particle motion is less than one-third the horizontal one. 
The horizontal wave force can be estimated by the Morison equation under that condition 
as well. The Morison equation, however, becomes less accurate in evaluating the vertical 



119 

wave force because the lift force caused by the horizontal water particle motion dominates 
the vertical drag and inertia forces. Thus, it is very important to discuss the applicability 
of the Morison equation in advance. 

The applicable range of the Morison equation to the estimation of wave forces on a 
submerged sphere was examined by Iwata and Mizutani (1989). The drag and inertia 
coefficients in the applicable range of the Morison equation are given graphically by them 
as shown in Figs. 2.22 through 2.25. 
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Fig. 2.23 Mean value of Coz versus KCz 

It is noted that the Morison equation is also inapplicable in estimating the vertical wave 
force in the case that the sphere is located near the bottom and free surface boundaries, 
since the bottom and free surface boundary proximities have a predominant effect on the 
wave force. A detailed discussion of the boundary proximity effect is described in the 
following section. 

2.5.3 Boundary proximity effect on wave forces 
(1) Horizontal circular cylinder 

Flow around a structure located near a boundary is fluctuated by the existence of the 
boundary compared to the flow around a structure away from the boundary. Consequently, 
acting wave forces on it are also fluctuated. This proximity effect of the boundary is 
significant in designing structures, in particular undersea pipelines. Many reseraches have 
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been conducted on the proximity effect of the bottom boundary on the wave force being 
exerted on the horizontal circular cylinder located near the bottom boundary. 

5.0 

Cux 
Sarpkaya (1975a) 

1.0 
d/h-0.929 

_ S. W. L. 
0.5 ~ 0.536 

c- l 

0.11 , 1 , , , , I  i I , ! , i , , l  , 
0.3 0.5 1 5 10 

t 
l [ I i , t l l  

50 100 
KC x (umT/D) 

Fig. 2.24 Mean value of Cux versus KCx 

5.0 

C~z 

1.0 

0.5 

~ -  . . . .  - _  . . . . ~  �9 i I 

- ~ - o ~ / / , ~ _  ,, _ 

0.179 

h/gT2-0.054 

0.028 

0.1 IA  l , , l l  1 i i I , , , l l  i z i I t t , J  
0.3 0.5 l 5 10 50 100 

KC z (w.T/D) 

Fig. 2.25 Mean value of Cuz versus KC~ 

In evaluating the wave force acting on a horizontal circular cylinder with the Morison 
equation, the inertia and drag coefficients, Co and Cu, are governed by the gap ratio ~/D 
as well as the Re and KC numbers, where ~ is the gap between the cylinder and the bottom 
boundary. Yamamoto et al. (1974, 1976) discussed theoretically this gap effect and 
reported that Cu increases with decreasing ~./D in the case that ~./D is less than unity and 
it reaches 1.6 when P./D=O. They confirmed these results through laboratory experiments. 
Sarpkaya (1977) investigated the wall proximity effect through detailed experiments using 
the U-tube and graphically showed Co and Cu as functions of Re, KC and $./D as shown 
in Fig. 2.26. 
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Fig. 2.26 Proximity effects of a sea bed boundary on CM and Co of a 
circular cylinder (Sarpkaya 1977) 

The bottom boundary proximity affects not only the in-line force but also the lift force 
that arises from an asymmetric pressure distribution on the cylinder. Since the flow around 
the cylinder located near the boundary is fluctuated, the asymmetric pressure distribution 
on the cylinder causes the lift force even under the unseparated flow condition. Based on 
the potential theory (von Mfiller 1929), the lift force acts always downward on the cylinder 
when the cylinder does not attach to the boundary. But once the cylinder attaches to the 
boundary, the upward lift force acts on the cylinder. In this case, the lift coefficient 
becomes z(~+3)/9 = 4.49 (von Mtiller 1929). Sarpkaya (1977) discussed the proximity 
effect on the downward lift force and found that the effect of ~./D on the upward lift force 
is different from that on the downward lift force. Shanker et al. (1988) reported that the 
second harmonic component of the lift force grows up under the flow condition that 
5<KC<10 through their laboratory experiments. 

In the above discussion, the boundary proximity is due to the bottom boundary, like a 
sea bottom. It is confirmed that the free surface boundary proximity also affects the wave 
force. This effect has been discussed by Chakrabarti (1975) and Chaplin (1984) and 
revealed that the free surface proximity significantly affects the wave forces. 

(2) Sphere 
(a) Bottom boundary proximity: Iwata and Mizutani (1991) discussed the wave force 
acting on a submerged sphere and reported that the horizontal wave force can be evaluated 
by the Morison equation without a significant influence of the bottom boundary proximity. 
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The vertical wave force, however, has been revealed to be affected by the bottom boundary 
proximity and the Morison equation becomes less accurate in the estimation of it. Under 
the condition that dJD is less than 1.5, where dB is the distance between the center of the 
sphere and the bottom boundary, the lift force caused by the asymmetric pressure 
distribution, which consists mainly of a steady downward component and a second 
harmonic component plays an important role on the vertical wave force. Iwata and 
Mizutani proposed the equation to estimate such a vertical wave force as follows: 

Fz = _ ~1C oz p zr D 2 w x/ u 2 +w 2 + 6 C Mz P Tr D 3 3W_.~ 

-I c m p Z  D3a'u --7 -I CL2 p z  D3a'(u 2 - 7) 
6 6 

(2.166) 

where, Coz and CMZ are the drag and inertia coefficients in the z-axis direction, 
respectively. CLI and C,~2 are the lift coefficients corresponding to the steady and second 
harmonic components, respectively and a '  is 9D3/512dn 4. The upper bar in Eq. (2.166) 
indicates the time averaged value over one wave period. C,.1 and C,~2 are given 
experimentally by Iwata and Mizutani as shown in Fig. 2.27 as functions of h/gT 2 and dB/ 
D. Regarding the drag and inertia coefficients, they can be evaluated with the empirical 
formula by Iwata and Mizutani (1989), which was shown earlier in Figs. 2.23 and 2.25. 
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Fig. 2.27 Lift coefficients versus ds/D 

In the case that the flow separation takes place, the vertical wave force is governed by 
the vortex with complex behavior and its time variation becomes irregular. At the present 
stage, it is difficult to evaluate accurately such a wave force and further investigations are 
necessary. 
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(b) Free Surface Proximity Effect: Iwata and Mizutani (1991) discussed the free surface 
boundary effect on the wave force acting on a submerged sphere as well as the bottom 
boundary proximity. Their results show that the maximum vertical wave force is not 
affected by the free surface proximity. The time variation of it, however, is affected 
significantly because of the lift force with second harmonic frequency. Consequently, the 
Morison equation becomes useless. Iwata and Mizutani discussed the lift force and found 
that its amplitude is proportional to u 2 and (dF/D) -3, where dF is the distance between the 
center of the sphere and the wave trough. These results are similar to the first 
approximation obtained by Kim (1978) for the sphere in the uniform flow field. They 
proposed the equation to evaluate the vertical wave force affected by the free surface 
proximity as follows: 

1 wE 1 O~V Fz =-8 c~ + +--CMzPZD3--6 

' ( D )  ~ 
32 CF pro D2u 2 rl + d 

(2.167) 

where, CF is the lift force caused by free surface proximity and is given in Fig. 2.28. 
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Fig. 2.28 CF versus dJD 

Regarding the drag and inertia coefficients, Coz amd CMz, they can be evaluated with Fig. 
2.23 and 2.25, respectively. 
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2.6 Wave Transformation through Permeable Structures 

2.6.1 Basic equation in permeable structure 
When an incident wave encounters a permeable structure face, part of the wave is 

reflected back to the offshore-side, and some of the energy is lost to wave breaking and 
the remaining energy is transmitted to the structure interior. The wave inside the permeable 
structure decays as it propagates against the resistant force through the pores. In this 
section, wave propagation through hydraulically homogeneous porous materials is 
discussed. Although several theoretical models (e.g., Sollitt and Cross 1972, Madsen 1974) 
have been proposed to evaluate wave transformation, the model proposed by Sollitt and 
Cross (1972) is mainly employed here to discuss wave deformation. 

x-, y-, and z- components of the discharge velocity ~ - (qxy, qy, qz) are related to those 
of the water particle velocity ~s - (u, v, w) with the use of a porosity ~ of the materials, 

qx = Au, qy = ,~,V, q~ = ,,,q.w (2.168) 

Assumption of incompressibility of water yields the three-dimensional Eulerian continuity 
equation 

& & o~v ~ - + ~ + - - ~  = 0 (2.169) 

where, x and y are the horizontal axes, x coincides with the wave propagation direction and 
z is the vertical axis taken positive upward with its origin on the still water level (see Fig. 
2.29). 
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Fig. 2.29 Wave propagation in porous media and definition sketch 

The equation of motion can be derived using the conservation law of momentum flux. The 
momentum balance within the control volume of A x A y A z ,  Fig. 2.29, yields 

(2.170) 
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Where, p is the density of water, ~ is the unit normal vector to control volume surface, 
and S and V are the closed surface and control volume bounded by S, respectively. The left- 
hand side of Eq. (2.170) represents time variation of the momentum within the control 
volume, the second term corresponds to the momentum flux from the control volume and 
the term on the right-hand side of Eq. (2.170) is the total force acting on the fluid within 
the control volume. 

The total force acting on the unit mass ~f// is given with the sum of the pressure 
gradient and the resistive force to the fluid as follows: 

- D ~  
Kp VS-~p  A Dt (2.171) 

where, v is the kinematic viscosity, Kp is intrinsic permeability, C I is the dimensionless 
turbulent resistance coefficient, and CM is the inertia coefficient. The first term of the right- 
hand side of Eq. (2.171) is the pressure term, second and third terms are the linear and 
nonlinear drag forces with which solid materials act on the fluid, and the fourth term is the 
inertia force with which the solid material acts on the fluid. 

Substitution of Eqs. (2.168), (2.169) and (2.171) into Eq. (2.170) and its rearrangement 
produces 

SM D t - - - -  
1 V(p+pgz)-~pA~S- Cf 

SM = l + {O - z}c  

(2.172) 

Equation (2.172) is nonlinear. Therefore, linearization is performed here to avoid 
complicated numerical calculation. Applying the Lorentz principle of equivalent work to 
the second and third terms of the right-hand side of Eq. (2.172) yields 

J~e = 1 .I~ dV~ +r &2(q Vsl2/Kp + CyA. I V-.sl3/~p )dt  

f f f dV ff+ Zl dt 

(2.173) 

where, J~e is a nondimensional equivalent resistance coefficient and tr is the angular 
frequency. Substitution of Eq. (2.173) into Eq. (2.172) and neglecting the nonlinear 
acceleration term of D~s/Dt produces. 

SM CgVs = - l v ( p  + p g z) - fErr~s (2.174) 
Ot p 
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Equation (2.174) is a linearized equation of motion. Accurate evaluation of wave 
kinematics inside the .permeable structure depends on how accurately CM and J~e are 
formulated. 

2.6.2 Fluid force coefficient 
A resistance formula of the Dupuit-Forchheimer type for one-dimensional steady flow 

is approximately employed to evaluate the resistance that the fluid receives from the 
granular materials such as stones and concrete blocks. 

-lvp= ~s(b, + b2~s) (2.175) 
P 

The coefficients bl and b2 are mainly related to the characteristics of solid materials and 
b2= Cf / K are adopted are usually determined by laboratory experiments, b~ = v/Kp and ~ p  

in the case of stones in Eq. (2.171) (Sollitt and Cross 1972). On the other hand, Engelund 
(1953) proposed different formulations. 

The inertia coefficient CM is, in general, unknown for random and densely packed 
materials. In the case that the dimension of porous space is almost equal to the material 
size, some or all of the fluid mass in the pores can be assumed to be an added mass (Kondo 
et al. 1972), 

1 
1 < C M < ~ (2.176) 

1 - ~  

However, Eq. (2.176) has not yet been verified accurately. 

2.6.3 Analysis by means of eigenfunction expansion method 
A wave transformation problem in the case of a vertical permeable structure in a 

constant water depth of h, as shown in Fig. 2.30, is treated here. 

),"/,z~/,4~/,,, 

II 
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I I 
I 
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ST 

Fig. 2.30 Definition sketch and boundary setting about a permeable breakwater 
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Under the conditions that the wave is linear and its motion is irrotational, using the velocity 
potential 4 (x, z; t) transforms Eq. (2.174) to 

a4 )~E0. 4 0 SM --~  + p ( p  + p g z) + = (2.177) 

In addition, the wave period inside the porous structure is treated to be equal to the incident 
wave period and the velocity potential 4 (x, z; t) is described as ~ (x, z)e -i~ in which i --- 
~/s]. The fluid region is devided into three parts in accordance with the structure shape, 
as shown in Fig. 2.30. Using Eqs. (2.11), (2.12), (2.169) and (2.177), the wave boundary- 
value problem in region II is described as follows: 

c92 4 324 Basic equation" - - ~  + - ~  = 0" O < x < B  

- h <  z<O 

0 4  0.2 Boundary conditions" g-~z + I, tJe - SMJ4 = O" z - 0 

04  = 0" z = -h  
az 

(2.178) 

Employing a separation of variables method, a two-dimensional general solution of 
velocity potential 4 (II) in region II is derived as 

4~n) = Xf,____z__,{a,,, - i n  f .. ir.x + gtz,,e_ir.~x_B)~.j coshK,(h + z) e-iOt 
n=l kn • sinh K,h 

(2.179) 

where, alm and a2m are integral constants proportional to the wave amplitude in the porous 
structure, B is the width of the porous structure, and K~ is the wave number in the porous 
structure which satisfies the following relationship: 

0.2(S M - i f e ) =  gK, tanhK, h (n = 1, 2, ...) (2.180) 

Since K, is a complex number, 4~)represents a damping progressive wave. Equation 
(2.180) in the case of J~e- 0 and CM- 1 is equal to the dispersion relationship (Eq. (2.41)) 
for the progressive mode wave with a small amplitude. 

The incident and reflected waves exist in region I and the transmitted wave is included 
in region III. Using the velocity potential of the incident wave described in 2.2.1 and those 
of the evanescent mode waves in 2.4.1 the velocity potentials 4 ~I) and 4 tin) are described 
a s  
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Region I: 

Region III: 

r = [-it7___ff_. {~/eik x + fi,0e_,.~ } cOShcosk(hh kh + z) 

] + E  a , ,  cosk,(h+z) 
m a R  n e k. x e -i~ 

.=, k. sink.h 

I-io" ,, cosh k(h + Z)eik(x_B) 
(/)(m) = _ T a r o  

sinh kh 

+ ~  a ^  r e-iat 
n=l  "~n aT" sin k.h 

(2.181) 

(2.182) 

where, d, is the incident wave amplitude, dR0and dr0 are, respectively, the reflected and 
transmitted wave amplitudes, and dR, and dr, (n - 1, 2, 3 . . . .  ) are the amplitudes of the 
evanescent mode waves in regions I and III, respectively. 

Equations (2.179), (2.181) and (2.182) contain 4n unknowns of dR,, d,,, d2,and dr, (n 
- 1,2 . . . .  ). Therefore, 4n additional boundary conditions are required to solve those 
unknowns. The appropriate boundary conditions are continuity of pressure and horizontal 
mass flux at x -- 0 and x - B. The theory is evaluated using a given structure properties 
and five terms in the eigen series solution. 

Figure 2.31 shows one example of comparison between theoretical values and 
experimental data, in which de is the representative length of material and CM is assumed 
to be zero. 
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Fig. 2.31 Variations of KR and Kr with H,/L (Sollitt and Cross 1972) 
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The theoretical values correspond well, in general, to experimental data. However, the 
theory overestimates the transmission coefficient Kr (-fifo~d,,) and underestimates the 
reflection coefficient KR (-CtRo/al)" This may be much improved by accurate evaluation of 
CM. Therefore the accurate evaluation of CM is one of the important problems left to future 
investigation. 

Different theoretical methods have been developed. Madsen (1974) used a long wave 
theory. Ijima et al. (1974) employed Green's theorem, which can be extended to sloping 
permeable structures as well. 

2.7 Vortex Flow and Fluid Force 

2.7.1 Numerical modeling of a separated flow 
The discrete vortex approximation has been suggested by a number of works as a 

powerful method for simulating the flow pattern around a bluff-based body with the 
separated flow as shown in Fig. 2.32 (a). This method approaches the separated shear layers 
by means of arrays of discrete vortices as shown in Fig. 2.32 (b). 

,( 

U ~ i o n ' ~  Separated shear layer n I 

(a) Separated flow 

_-" ,, i �9 Disc re te  vor tex  

x . . . .  ,. - ~ ~ ' ~ t  o S o u r c e  p o i n t  

AG 

(b) Separted flow model 

Fig. 2.32 Separated flow around a bluff-based body and its numerical modeling 
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Accordingly, the rolling-up behaviour of the shear layer behind body and the resultant 
complex vortex flow can be treated easily. The simulation model of the separated flow in 
the two-dimensional flow is described in here. 

(1) Modeling of separated shear layers 
The separated shear layer is formed due to the separation of the boundary layer 

generated on the surface of the body from the separation point (Fig. 2.32 (a)), and can be 
regarded as the continuous distributed vorticity sheet. In the discrete vortex approximation, 
the thickness of the separated shear layer is assumed to be very thin. Then, the shear layers 
are represented by a line as shown in Fig. 2.32 (b), the plane-distributions of vorticity 
along the shear layer are replaced by the line-distributions of the equivalent circulations to 
these vorticities. Since the surface integral of vorticity is equal to the circulation in the 
closed curve around it, the circulation per unit length can be given by 

~8oS ~Osd( = y s (2.183) 

where o)s is the vorticity in the shear layer, 8s is the shear layer thickness, ~ is a coordinate 
in the direction normal to the shear layer, y~ is the circulation per the unit length along the 
shear layer, y, can be defined as the difference of velocities at the upper and lower 
positions of the shear layer (u~-Us'U ~ and u s being the respective velocities at the 
outskirts of the shear layer as shown in Fig. 2.32 (b)). 

In the discrete vortex approximation, the separated shear layer is divided into the 
segments of the infinitely short line as shown in Fig. 2.32 (b), the discrete vortex with the 
circulation along the individual segment is located at the center of it. Consequently, the 
complex velocity potential Wv of flow which is induced by these approximated shear layers 
can be represented as a set of discrete vortices, and is given by 

i ~(~ac, YsdC)l~ w , , ( z )  - = 

�9 N v 

- 'Zr,  log(z_z,) 
- -  2 - ~  k=l 

(2.184) 

where, Fk is the circulation along the k-th line segment zlC,. i=~T and z,= x,+iy,, which 
specifies the complex coordinate of a discrete vortex. The circulation with a 
counterclockwise direction is defined as positive. Nv is the total number of vortices and 
z =x+iy, which is the complex coordinate of the field point. 

Since the discrete vortex approximation disregards the thickness of the shear layer and 
depends on the potential theory as represented in Eq. (2.184), the flow of a high Reynolds 
number is assumed in the strict sense. This is similar to the boundary layer theory which 
applies the viscous flow and the potential flow to the inner and the outer region of the thin 
layer on the surface of body respectively. Namely, the discrete vortex approximation 
assumes that the vorticity concentrates in a separated shear layer whose thickness is 
sufficiently thin. Furthermore, since the discrete vortex approximation mainly concerns 
with the interactions between the separated shear flow and the body as well as the main 
flow, it may be considered that this method is the analysis which deals with macroscopic 
features of the vortex flow patterns. Because of the simplification described above, this 
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approximation can reduce the computation efforts sharply in comparison with the manner 
which analyzes the Navier-Stokes equation directly. Consequently, this model has been 
used in calculations of the vortex flow patterns around various bodies and the fluid force 
acting on those. 

(2) Complex velocity potential around a two-dimensional body 
In the case where the flow separation does not occur, the velocity potential q~ of the flow 

around a two-dimensional body can be found using the manner described in 2.3. The 
complex velocity potential which is defined by a pair of the velocity potential and the 
stream function is easily deduced by introducing the complex-number expression to the 
procedure in 2.3. 

On the other hand, when the flow separation occurs, the complex velocity potential W 
can be derived by summing the complex velocity potential Wv for the separated shear layer, 
the complex velocity potential Wv' which is necessary to maintain the boundary condition 
of zero flow across the body surface and the above described complex velocity potential 
for the flow without the separated flow. 

The appropriate complex velocity potential for the flow with vortex around the body has 
been determined using two methods; the conformal mapping method which is used in the 
case of the simple flow like uniform flow, and the boundary integral equation method 
described in 2.3. In the conformal mapping method (Clements 1973), the body is generally 
transformed to the circular or the flat plane in order to determine easily the appropriate 
complex velocity potential of the flow around the body. However, this method has a 
difficulty in the derivation of the mapping function, and accordingly this is not an entirely 
practical method. Therefore, the alternative methods based on the boundary integral 
equation method which have been efficiently used to formulate the boundary condition on 
the surface of any arbitrary body are described hereinafter. Regarding these alternative 
methods, in general there are two methods; the source distribution method focused on the 
velocity potential, and the vorticity distribution method (Lewis 1981) focused on the 
stream function. In the vorticity distribution method, the nonpermeable condition on the 
solid surface is satisfied by distributing the discrete vortices on the body surface. Since the 
vorticity distribution method deals with the stream function, this is easily applied to the 
vortex-in-cell method (Cholin 1973, Stansby and Dixon 1983) which approximates the 
separated shear layer by means of a square rotational core of the cell area. This is the 
advantage of this method. However, there is the drawback that the computation of the 
unsteady fluid force is complicated. The outline of the calculation method of the vortex 
flow based on these two methods is described below. 

The appropriate complex velocity potential W for the flow around the two dimensional 
body with bluff edge as shown in Fig. 2.32 (b) is given by summing the complex velocity 
potential WM for the main flow, Wv for the separated shear flow and WB for the formulation 
of the boundary condition on the body surface. 

W = W M + W v + W n (2.185) 

WB can be evaluated using the source distribution method described in 2.3.2. When the 
body surface C is divided into N segments of length ACj(jffil-N) as illustrated in Fig. 2.32 
(b), WB can be written as 

1 N 
Wn(z)=-~-~j=l~acjfojl~ (2.186) 
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where, Zj =Xj+iYj, which specifies the source point on the surface C, and foj is the strength 
of the source, foj can be determined by the boundary condition of zero flow across the body 
surface as described in 2.3.2. 

Now, as shown in Fig. 2.32 (b), let's assume the uniform flow with velocity U in the 
x direction as the main flow, then the complex velocity potential WM for the main flow is 
given by 

WM = UZ (2.187) 

On the other hand, in the case of the vorticity distribution method, the source points 
distributed on the body surface are replaced by the discrete vortices. Then, the complex 
velocity potential for the flow around the body is given by replacing Wn in Eq. (2.185) with 
the complex velocity potential Wsv for the discrete vortices which is expressed as follows: 

i N 
(2.188) 

where ~jis the circulation of the discrete vortices distributed on the body surface. ~j is 
determined by the boundary condition on the inner of the surface as introduced by Lewis 
(1981) (i.e., the induced velocity in the tangential direction on the surface becomes zero, 
because the body surface corresponds to the stream line). 

(3) Kinematic equations and circulation of discrete vortices 
Let u and v be the velocities in the x and y directions at any point of the fluid, then, the 

complex velocity (u-iv) is given by dW/dz. The velocity of the discrete vortex is 
determined from the kinematic condition of the discrete vortices; a marked discrete vortex 
is affected only from the main flow, the other vortices and the source points on the body 
surface. Therefore, the velocity components uk, vk of the k-th vortex are expressed as 

dgk = u k - iv k 
dt 

= .[dWM+ dW n or dWsv I dWv i F k 

L dz dz dz 2tr z -  zk 

(k = 1,2,3 ..... Nv) 

~ '1  Z=Zk 
(2.189) 

where Zk=x,--iyk. Accordingly, the positions of discrete vortices at each time-step in 
calculations are determined by numerically solving this set of Nv ordinary differential 
equations through the Runge-Kutta method. 

Regarding the presumptive method for determining the circulation Fk and the initial 
position of the nascent vortex which are consistent with the initial conditions at solving Eq. 
(2.189), there are various kinds of methods. The method which takes account of the Kutta 
condition (i.e., the velocity tangent to the body surface on the separation point becomes 
zero) is represented as the typical method (Sarpkaya 1976, Stansby 1977). For example, 
assuming that the initial position is located at a point detached outwardly from the 
separation point by the boundary layer thickness, the circulation of the nascent vortex is 
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determined through the Kutta condition. On the other hand, assuming that the circulation 
of the nascent vortex is given by Eq. (2.190) which is the equation for the vorticity flux 
of the boundary layer, the initial position of the nascent vortex is determined by means of 
the Kutta condition. 

81"lOt --_ u~12 (2.190) 

where, UB is the velocity at the outer edge of the boundary layer. 
In the above method, however, there is drawback; the circulation of the nascent vortex 

critically depends on vertices in the neighbourhood of the separation point and the time 
interval At in the computation. Further, when a number of vortices are generated from the 
plural separation points, there is another drawback; the calculations of the Kutta condition 
are complicated very much. Therefore, because the discrete vortex approximation deals 
with the gross features of vortex patterns as described above, there is a simplified method 
(Sawaragi and Nakamura 1979) that the circulation of the nascent vortex is given by Eq. 
(2.190) and its position is fixed at the distance of the boundary layer thickness from the 
separation point. 

In the case of the vorticity distribution method, the circulation of the nascent vortex is 
determined by using the Kelvin theorem concerning the constancy of circulation. Further, 
a method (Stansby et al. 1983) which takes the constancy of circulation into consideration 
has been proposed for determining the circulation of the discrete vortices distributed on the 
body surface. 

There has been no established method for estimating the initial position and the 
circulation of the nascent vortex as described above. These problems require further 
investigation. Furthermore, it seems a more important subject in future investigations to 
clarify whether the discrete vortex approximation may be applied to simulate the detailed 
features of the vortex flow or the gross features of it. From the latter viewpoint, problems 
arisen in the real calculations are described hereunder. 

(4) Considerations in numerical calculations 
Since the rotational velocity of the vortex yields an infinite velocity at the center of the 

vortex as being evident from Eq. (2.184), some vortices induce extremely large velocities 
when they approach too close to each other, and an unreasonably large circulation of the 
nascent vortex is caused by the vortices in the vicinity of the separation point. These 
unreasonable phenomena have been avoided using the following method; the coalescence 
and cancellation of vortices, the application of the viscous vortex or the Rankine vortex 
model to the rotational velocity distribution of the vortex. Further, since the computation 
time exponentially increases in proportion to a number of vortices generated from the 
separation point, there are several ways to solve such a difficulty. For instance, one 
procedure is to replace the clusters of vortcies passed off farther downstream with a single 
vortex. Another is to account for the damping effect of the vortex due to the fluid viscosity 
and eliminate the sufficiently damped vortex. In the following, these techniques are 
introduced briefly. 

(a) Coalescence and cancellation of vortices: When discrete vortices are close in nearer 
distance than that set up in the calculations, they are massed into an equivalent single 
vortex. Then, the circulation F '  and the position z' of the equivalent vortex are given using 
the circulation Fm and the position zm of the concentrated individual vortices as follows: 
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iF"  = Z / "  m 

Z ' =  "F'l"mZm (E,I" m r 0) (2.191) 
Z I "  m 

When T.,l"m-~O in Eq. (2.191), the concentrated vortices dissipate. The vortices which 
approach too close to the body can be handled in the same manner as the above described 
method, because of the presence of the image vortices in the body. Namely, the circulation 
of the equivalent vortex becomes zero, thereby the vortex is cancelled. 

(b) Velocity induced by a vortex: In order to remove the singularity of an infinite velocity 
at the center of the vortex, the viscous vortex model which takes into account the damping 
effect of the vorticity due to the fluid viscosity is used in general. Then, the velocity 
induced by the discrete vortex is calculated by the following equation (Schaefer and 
Eskinazi 1959)  r2)} 

Fk f l -  - 4 - ' ~  v o =-~--~ exp (2.192) 

where vo is the velocity in the circumferential direction at the distance r (= Iz-zkl) from the 
center of the vortex, v is the kinematic viscosity, t* is the elapsed time after the vortex is 
generated. In this model, the radius of vortex core, r0, is given by 

r o = 2.24~f~* 

Further, for other approximate modelings, Fk/(2m'0) (Kiya et al. 1982) or the induced 
velocity by the Rankine model, Fkr/(2rCro2), may be adopted in the region of r<ro instead. 

(c) Damping of circulation of vortex with time: As for the adequate approximations to the 
damping of circulation of the vortex with time in the calculations, there have been known 
the following methods. One is to use the viscous vortex model directly. Another is to adopt 
the experimentally observed result on the damping characteristics of the vortex. However, 
since the damping mechanism of the vortex has not been sufficiently clarified yet, it seems 
to be necessary that the investigation on the damping vortex model should be carried out 
under a precise theoretical background in the future. 

2.7.2 Vortex formation and fluid force in steady flow 
Focusing on vortex formation around the body in the steady flow, the calculated results 

of the flow pattern around it and the computation method of the fluid force acting on it are 
discussed in the following. 

Figure 2.33 shows the calculations (Re - U D / v  = 1000, D: cylinder diameter, v-rinematic 
viscosity) for the Kfirmfin vortex street formed behind the circular cylinder in the steady 
flow. 

In this calculation, the separation points are fixed at +90 ~ from the rear stagnation point, 
because the behaviour of separation point in the flow field with the vortex flow have not 
been sufficiently clarified yet. In these figures, the black and white circles denote the 
discrete vortex with the positive and the negative circulation, respectively. The arrays of 
discrete vortices shed from the separation points estimate the evolution of the separated 
shear layer, the rolling-up of these vortex sheets approximately simulates the large vortex 
clusters which are subsequently swept downstream. Figures (a) and (b) show the results 
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Fig. 2.33 Calculation of vortex formation behind a circular cylinder (Re - 1000) 

with and without the coalescence of discrete vortices, respectively. It is found that the 
positions of vortices in each case equally simulate the concentrated vortices of the Kfirmfin 
vortex street. In the case where the coalescence of the vortices has been carried out as 
shown in figure (b), the calculation is performed for four vortices combined and the 
vortices in the vicinity of the cylinder. Thereby, the computation time and the memory 
capacity of a computer can be drastically reduced in comparison with the case where the 
coalescence of vortices is not carried out. In these calculations, the discrete vortex model 
in which the circulation is exponentially decreased with time is adopted. 

On the other hand, the fluid force exerted on the body can be estimated from the pressure 
distribution on the body which can be calculated from the unsteady Bernoulli equation, or 
from the generalized B lasius theorem directly. The general formulas for these methods of 
fluid force calculation are outlined below. 

The surrounding pressure distribution Pr on the body surface is evaluated from the 
unsteady Bernoulli equation (i.e., Eq. (1.22) in Chapter 1) and is given using W of Eq. 
(2.185) as 

I-~-tl  dWI2//2 (on the surface) (2.193) Pr = -/9 Real -/91 dz [ 

In Eq. (2.193), OWB/3t contained in the first term ~)W/Ot of the right-hand side can be given 
by differentiating Eq. (2.186) with respect to time t as 

~gWB_ 
1 2~j~cj--~-log (z-Zj)dC (2.194) 

c~ t 2z j__, 

where Ofo/Ot is the change of the strength of the source with time, which can be determined 
from the equation that is given by differentiating the nonpermeable boundary condition on 
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the body surface with respect to time. The differentiated equation is analyzed in the same 
manner as the method described in 2.3.1. In addition, when the discrete vortex distribution 
method is used as a substitute for the source distribution method, the differentiated WBv 
with respect to time cannot be easily analyzed. Therefore, in the numerical calculation, the 
values of WBv at each time step are calculated, then, the differentiated values for WBv are 
numerically evaluated from the finite difference of those. 

The x and y components of the fluid force exerted on the body (Fx, Fy) are estimated by 
using Pr and the unit vector taken outward normal to the body ~ (nx, ny) a s  follows: 

N N 

F~ = - E prnxACj ' Fy = - E  prnyACj (2.195) 
j = l  j = l  

On the other hand, if the generalized Blasius theorem is used, Fx and Fy are given by the 
following equation (Milne-Thomson 1960): 

Fx - iFy = --~ ~c, \--~z j + t p - ~ c W  d~ (2.196) 

where the over-bar (-) denotes the conjugate complex, C' is any closed curve surrounding 
the body. In addition, it is assumed that there is no singularity of the integral in the region 
between the body and the closed curve C'. The advantage of the generalized Blasius 
theorem exists in the direct calculability of the fluid force through the Laurent theorem. 
However, since the pressure distribution around the body surface is not obtained, this 
theorem is not suitable to the investigation on the fluid force distribution around the body. 

Figure 2.34 shows the calculated fluid forces Fx and Fy acting on the circular cylinder 
in the flow pattern as shown in Fig. 2.33, in which Ut/D is the normalized time. 
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Fig. 2.34 Calculation result of fluid force acting on a circular cylinder (Re - 1000) 

This calculation is the case where the discrete vortices are coalesced. It is found that in 
the region of Ut/D>20, the fluid force Fx in the flow direction becomes constant with 
respect to time, and the alternating lift force Fy which is developed on the cylinder 
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transverse to the flow direction occurs remarkably. Therefore, it may be concluded that the 
calculation in this time region can simulate the steady state of the vortex formation around 
the cylinder. 

In this figure, the normalized fluid forces Fx* and Fy* represent the drag coefficient Co 
and the lift coefficient CL respectively. Fx* is about 0.8 and this value is less than Co-l.O 
(in the case of Re-1000) obtained from numerous experiments. On the other hand, the 
Strouhal number (--Dfv/U, fv: the frequency of the vortex shedding) can be determined from 
the fluctuation of Fy* with respect to time. The Strouhal number of this calculation is 
approximately 0.17, this value is less than 0.21 clarified in the previous experiments. The 
difference between the calculation and the experiment may be attributed to the initial 
angular position of the nascent vortex; in this calculation the two separation points of 
boundary layer on the circular cylinder are fixed at +90" from the rear stagnation point, 
respectively. Hence, for a circular body where the separation point may move from one 
position to another with change of the flow, it seems that the characteristic of the behaviour 
of separation point must be taken into account in numerical simulation technique. 

2.7.3 Vortex formation and fluid force in unsteady flow 
In the case of an unsteady flow, the complex velocity potential can be obtained by 

replacing that of the main flow in Eq. (2.187) with that for the unsteady flow. The vortex 
formation and the fluid force can be numerically analyzed in the same manner as the 
method described in 2.7.1 and 2.7.2. 

In the case where the vortex formation around the two dimensional body in the vertical 
plane or the horizontal plane of wave field is dealt with, if the wave diffraction and 
radiation around the body can be ignored, a spatially uniform oscillatory flow may be used 
to approximate a main flow. On the other hand, if the structure is hydrodynamically large 
as described in 2.1, it is necessary to clarify the complex velocity potential for the main 
flow by taking into account the wave deformation due to the structure, then the method 
described in 2.4 can be used as a powerful technique. 

The expression for the discrete vortex in Eq. (2.184) is insufficient in the case where a 
two dimensional vortex formation in the vertical plane of wave field is treated. Then, it is 
necessary to formulate the boundary conditions on the bottom and the free surface in the 
wave field. The appropriate complex velocity potential of the discrete vortex in this case 
is given as the following equation by approximating the free surface with the fixed rigid 
surface: 

Wv(z)=- ~t-----" ~Fk[log(e~k-e~Z) - log(e ~zk - e~Z)] 
~ r C  k-1 t. 

(2.197) 

where d=rc/h (h: water depth), the origin of the complex coordinate (z=x+iy) is located at 
the free surface, the y axis is taken positive upward from the still water level and the x axis 
to the wave propagation direction. 

In the case of a wave field and an oscillatory flow field, according to the reverse of the 
direction of main flow, the vortex generated in the previous half-period directly interacts 
with the vortex generated in the next half-period. In general, however, it is observed in 
experiments that the vortex generated in the 2 or 3 periods before gradually damps and 
vanishes with the elapsed time after being generated. Therefore, when the vortex formation 
in the wave field or the oscillatory flow field with the reverse of the flow direction is 
numerically simulated, the damping effect of the discrete vortex must be taken into 
account. Figure 2.35 (Nakamura 1992) shows the typical examples calculated by using the 
discrete vortex model in which the circulation exponentially decreases with time after 
generation. 
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Fig. 2.35 Comparison of the vortex position plots at the two different 
time steps but corresponding wave phases (T is 2.35 sec, H~ is 15cm, 
draft of curtain-wall d is 47.5cm, and water depth h is 78cm) 

These figures represent the distribution of the discrete vortices which approximate the 
behaviour of the separated shear layer around the curtain-wall breakwater, and show the 
comparison of the distribution of the discrete vortices before about one period (at trt=650 ~ 
with that after about one period (at trt=1014~ The symbols of + and A denote the position 
of vortices with the positive and the negative circulation, respectively. Figures (a) and (b) 
are the case without and with the damping of the vortex circulation, respectively. In the 
calculations taking the damping of the circulation into consideration (see figure (b)), the 
agreement of the respective distribution patterns of discrete vortices at trt=650 ~ and 
fft=1014 ~ is reasonably well, accordingly the vortex formation under steady state condition 
can be simulated. However, the calculations without the damping of the circulation are 
evidently different in the distribution pattern of the discrete vortices at the corresponding 
wave phase. Therefore, the damping of circulation of the discrete vortex becomes very 
important for simulation of the vortex formation under the wavy flow. 

On the other hand, the fluid force acting on the body in the unsteady flow can be 
evaluated from the pressure distribution on the body surface or by using the generalized 
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Blasius theorem as described in 2.7.2. However, it should be especially noted that the 
complex velocity potential of the main flow is defined as a function of time. 

2.8 Generation of Wave Impact Load 

There is another type of wave force acting on structures, which differs from the 
harmonically oscillating wave forces described up to the preceding section. The impact 
wave force is a representative one and is, in general, generated by breakers or breaking 
waves. Although the definition of the impact wave force has not been arrived at yet, the 
impact wave force is generally understood to have a spiked large value with a very short 
duration, compared to the incident wave period. 

The impact wave force is understood to be basically generated when the front wave face 
collides parallel to the structure face. It has been pointed out that the impact wave force 
acting on circular cylinders and the impact uplift force on the floor slab of piers are typical 
examples of the impact wave force acting on a coastal and harbor structure. 

The impact wave pressure caused by the breaking of the standing wave is attributed to 
a different mechanism, which remains a subject for the future. In this section, the 
fundamental principle of the generation mechanism of the impact wave force, which is 
caused by the normal collision of the wave from surface with a structure surface, is 
described. 

One simple yet reliable model of wave collision with structures can be derived from the 
free fall analysis of an object to the still water surface. In constructing the model, 
compression of air entrapped in between the object and the still water surface is either 
neglected or taken into consideration according to the shape of the object. In the case of 
a sphere or a cylinder, the effect of compression of air to the impact wave force can be 
neglected. The contribution of air compression to the impact wave force is taken into 
consideration in the case of a flat plate. 

When the contribution of compression of air entrapped in between the object and the still 
water surface to the impact fluid force is neglected, the object collides directly with the 
water and receives the impact fluid force at the instant that the water moves. This kind of 
impact fluid force can be expressed in terms of the added mass. That is, based on the 
conservation of momentum, the fluid force F can be expressed using the added mass of 
fluid (M (a)) a s  follows: 

d(M (A) "V) dv aM (A) 
F = = M ( A ) ~ +  V (2.198) 

dt dt dt 

where, v is the falling velocity of the object and t is time. In the case of a fully submerged 
object, the 2nd term of the right hand side of Eq. (2.198) is neglected and the 1 st term only 
defines the added mass force, since (M (a)) is unchangeable with time. The added mass is 
a function of the shape of the object. Then, the added mass changes with time after 
collision of the object with water, since the submerged portion of the object changes with 
time. Thus, the 2nd term v(dM~a)/dt) is a specific term which appears only when the object 
collides with water and it is this term that presents the impact fluid force. Relatedly, since 
the added mass can be also evaluated using the velocity potential of fluid, the fluid force 
F can be directly evaluated by integrating the acting fluid pressure over the submerged 
surface of the object, once the velocity potential of the fluid after the collision of the object 
with water is determined. 

On the other hand, in the case that the contribution of air entrapped in between the object 
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and the water surface to the fluid force cannot be neglected, the compression of air is more 
important than the motion of water. That is, the momentum of the object is transferred to 
air pressure by means of air compressibility, which generates the impact fluid force. The 
magnitude of the impact fluid force and its acting time caused by the air compressibility 
becomes relatively smaller and longer, respectively, compared to that caused by change of 
the added mass. 

2.8.1 Impact force due to added mass change 
In this section, the added mass and the impact fluid force in the cases of the free fall 

of a sphere, a circular cylinder and a triangular cylinder with a constant falling velocity of 
v into the still water are discussed. The exact evaluation of the added mass requires an 
exact evaluation of the velocity potential. Since the exact derivation of the velocity 
potential is difficult for arbitrarily shaped objects, the added mass is, in general, evaluated 
with approximation methods. The popular approximation method is the application of the 
known added mass of an object whose shape is very close to the object that is under 
consideration (K~rm~n 1922). Some representative methods are introduced here. 

(1) Sphere (Fig. 2.36) 

V 

Fig. 2.36 Concept of added mass of sphere 

The added mass M (A) in the case of the sphere is half the time of a disk that is fully 
submerged and placed normal to the flow direction. The diameter of the cross section of 
the sphere at the still water surface is equal to the diameter of the disk. The reason for 
employing the half value of the added mass of the disk is that the sphere is semi-submerged 
and one part is in the water and the rest is in the air. Employing two treatments, the added 
mass M (a) in the case of a sphere is 

M(A) 2 ( t 2 ) 3 / 2  
= - 3  ~zpr 3 2t _ (2.199) 

Applying Eq. (2.199) to the 2nd term of the right hand side of Eq. (2.198) yields the 
impact fluid force F as follows: 

F = 2Irpr3v2( -~- (2.200) 

where, 1: is the duration of the impact force, 1: is r/v, r is the radius of the sphere and t 
is the time from inception of the sphere collision with water. The detailed investigations 
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on the impact wave force were done by Trilling (1950) and Shiffman & Spencer (1945, 
1947). 

(2) Circular cylinder (Fig. 2.37) 

Fig. 2.37 Concept of added mass of circular cylinder 

The added m a s s  M (A) in the case of a circular cylinder is taken to be half of the added 
mass in the case of a motion produced by an infinitely long lamina of the breadth b moving 
"broadside on" in an infinite mass of fluid (Goda et al. 1966). The added mass M (a) per unit 
length and the impact fluid force per unit length F are 

2Pv2D 1-  

D 

2v 

(2.201) 

The concept of the added mass was first introduced into the impact fluid force of a 
circular cylinder by Kg~rmfin (1929). It is a remarkable feature in the case of the circular 
cylinder that the impact wave force becomes a maximum at the instant that the circular 
cylinder touches the water surface, i.e., t -  0. Besides this method, there are other 
treatments that deal with the impact wave force on a circular cylinder (Kaplan and Silbert 
1976, Geers 1982 and Armand and Cointe 1986). 

(3) Triangular cylinder (Fig. 2.38) 

Fig. 2.38 Concept of added mass of triangular cylinder 
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The same method that is adopted in the case of the circular cylinder can be applied to 
the case of a triangular cylinder. The added mass M (a) per unit length and the impact fluid 
force F are given as follows: 

t 2 
M(A) = IF,4 pD2 z 2 (2.202) 

F = ~r ^ .. pv2Dtan0 t (2.203) 
2 v 

D 
v = 20-vtan -" (2.204) 

where, /9 is half of the apex angle of the triangular cylinder as shown in Fig. 2.38. 
Wager (1932) evaluated the pressure acting on the triangular cylinder that collides with 

the still water by means of approximation of the velocity potential, which is different from 
the method using the added mass. The velocity potential employed is derived for the steady 
flow past a flat plate with a breadth of 2b and applying the velocity potential q~ to the 
triangular cylinder as in Fig. 2.39 can evaluate the water surface rise around the apex of 
the triangular cylinder. 

~ ~  2b - f , / ~ =  o 
_ 

Fig. 2.39 Velocity potential used in the Wagner model 

The velocity potential q~ and the pressure p estimated with �9 are given as 

= _v~[b 2 _ x 2 (2.205) 

1 
p = ~ p v K ( x ,  t) (2.206) 

tr cos/} (x / b) 2 
K (x, t) = ~/1 - (x / b) 2 - 1 - (x / b) 2 (2.207) 

where, v is the falling velocity of the triangular cylinder and x is the breadth of the 
submerged part of the cylinder at the water surface at the instant time r. The fluid pressure 
p changes according to time t and place x and the maximum fluid force Pmax is given by 
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1 _ 2["~ -2 1 Pmax =~pV LTCOS2 0 + 1 (2.208) 

2.8.2 Impact  force due to compression of air 
Bagnold (1939) thought that the impact breaking wave force is produced by the 

compression of air that is captured between the curled wave front and the structure wall 
and he developed the following analyses. He dealt with the situation that the water mass 
with the moving velocity v collides with the air-chamber whose height is d, as shown in 
Fig. 2.40. 

V 

7 

Fig. 2.40 Air compression model by Bagnold 

When the water mass collides with an air-chamber, the air is entrapped in the air-chamber, 
and is compressed. Accordingly, the air pressure enlarges and then the water mass begins 
to lose its momentum. The air pressure becomes a maximum when the water mass loses 
its momentum, and then the air begins to be expanded. The relationship between the 
maximum air pressure p in the air-chamber and the atmospheric pressure P0 is given by 

1_..1_1 1 

= ~ +2 (2.209) 

This equation is called the Bagnold equation and Pa is the absolute pressure with 0 at the 
vacuum, and Ya is the specific heat ratio. Bg is the Bagnold parameter and is defined with 

ng=Pg 
l v  2 

(2.210) 
pod 

where, K' is an added mass thickness and is given by 

K ' = ~  (2.211) 
8 

Further, b is the breadth of the air-chamber, and Ya is the specific heat ratio that is equal 
to 1.4 with the adiabatic compression process. The adiabatic compression process can be 
widely applied to most of the physical phenomena that occurs in the field of coastal and 
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harbor engineering. Therefore % -  1.4 is reasonable. Relatedly, when the isothermal 
compression process is applied instead of the adiabatic compression process, the pressure 
in the former process becomes smaller than that of the latter process. Therefore, the 
adiabatic compression process is on the safe side from an engineering standpoint. 

There is a phenomenon of "pressure-caused air squash" that relates to the action of air. 
This phenomenon is usually understood to be that when air bubbles formed in the fluid are 
forced to be squashed, they generate a high magnitude of pressure. However, the air 
bubbles are in reality not squashed, but the volume of the air bubbles changes with time. 
The time oscillation of the volume of air bubbles becomes very large when the volume of 
air bubbles becomes a minimum. This results in the generation of an elastic wave. When 
the elastic wave is generated near the structure, it produces a high pressure on the structure. 
In addition, when the air bubbles are compressed very near the structure wall and the air 
bubbles are further deformed to become doughnut-shaped, the fluid jet that is called a 
"micro-jet" suddenly acts on the structure wall through the non-air center portion of the 
doughnut-shaped air bubbles. This fluid jet produces high pressure too. However, although 
the pressure caused by the "compressed squash phenomenon of air" ranges from 10MPa 
to 100MPa and shows a high value, its acting area is less than that of the air bubbles and 
its duration is of the order of 10-7S. Therefore, it can be said that the force and the impulse 
acting on the structure caused by the "compressed squash phenomenon of air" can be 
neglected. 
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Chapter 3 Waves, Wave-Induced Currents and 
Sediment Transport 

3.1 Introduction 

One of the main purposes for studying waves and their resulting phenomena in a near- 
shore region is the prediction of beach deformations caused by sediment movement. There 
are various fluid motions in the near-shore region. Among them, water particle motion due 
to wave and wave-induced currents are the fluid motions most responsible for sediment 
movement. Waves approaching the shoreline cause secondary fluid motions such as wave 
setup, wave-induced currents and undertow that agitate the bottom sediment. 
Consequently, they transport sediment that results in beach deformation. The purpose of 
this chapter is to discuss the relation between waves, wave-induced currents and sediment 
movement. 

Wave transformation in the shallow water region has already been mentioned in detail 
in Chapter 2. In this chapter, we refer to a bottom shear stress under waves and current, 
which becomes a direct force acting on the bottom sediment, and wave-induced currents, 
that transport sediment. Then, we discuss the mode and the mechanism of sediment 
transport in the near-shore region and a procedure to estimate the sediment transport rate. 

3.2 Fluid Motion and Bottom Shear Stress in Wave-current Coexisting System 

3.2.1 Resistance law in wave (or oscillatory flow) field 
A boundary layer and a bottom shear stress have been investigated by many people who 

have an interest in wave energy dissipation and sediment movement. We can classify their 
procedures for investigations into the following three categories: 
1) Direct measurement of near bottom water particle velocity to investigate the flow 

structure in the boundary layer and resistance law, 
2) Direct measurement of bottom shear stress to formulate resistance law, 
3) Analysis of the boundary layer equation to determine the fluid motion and the boundary 

shear stress. 
Direct velocity measurement in the vicinity of the boundary layer was first carried out 

by Kalkanis (1957) by using a Pitot tube on a smooth oscillating plate. Jonsson (1963) 
measured velocity distribution on a fixed roughness by using a propeller-type velocity- 
meter. Horikawa and Watanabe (1968) developed a hydrogen bubble method to measure 
velocity near the bottom. Recently, more precise and detailed measurements of velocity 
have been conducted by virtue of hot-film and laser-Doppler anemometers. 

Among these researches, Jonsson (1963) proposed the resistance law by applying 
logarithmic distribution to velocity and using a measured water particle velocity on the 
rough bottom. He expressed the amplitude of the bottom shear stress z by Eq. (3.1) where 
a friction factor fw is given by Eq. (3.2) 

~ = (1/2 )P f wfibp2 (3.1) 
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1 ( 1  / ra ) 
4----~- w + log 4 ~  w = -0.08 + log~, ks 

where .~bp is the amplitude of water particle velocity at the bottom, ab is the water particle 
excursion at the bottom and ks is the equivalent roughness. The water particle excursion ab 
is defined in Eq. (3.3) by using the angular frequency o through a linear wave theory 

a o = flop~O, o =  2tr]T (3.3) 

Although the bottom shear stress expressed by Eq. (3.1) can not express a phase (time) 
variation and the phase difference between the water particle velocity and the bottom shear 
stress, it has often been used to investigate and explain various phenomena such as 
sediment movement and wave attenuation in the shallow water region. The expression of 
the friction factor can not be determined analytically, because Eq. (3.2) is a transcendence 
equation. Swart (1974) proposed the following approximate expression of Eq. (3.2) that is 
valid in the region of l<ab/ks <3000: 

fw = exp{-5.977 + 5.213(a b/k s )-0.194t (3.4) 

On the other hand, the friction factor corresponding to the maximum shear stress in a 
laminar flow is given by Eq. (3.5) by solving a laminar boundary layer equation 
analytically. 

f w = 5"O1Ret -1/2 (3.5) 

here, R,, is the Reynolds number defined by using the kinematic viscosity v as follows: 

Ret = ~bp2T/v (3.6) 

Most of the direct measurements of bottom shear stress were carried out by using a shear 
plate. Riedel et al. (1973) measured the bottom shear stress in the extensive range from the 
laminar to the rough turbulent flow conditions in the oscillatory flow tunnel. Kamphuis 
(1975) related the friction factor to ao/ks in rough turbulent conditions by the following 
equation based on the measured bottom shear stress that is varied in the region of ab/ks<100 

f w = 0. 4(ab /ks ) -~ (3.7) 

Many efforts have been made to close and solve the turbulent boundary layer equation 
just like a turbulent closure problem. Kajiura (1964, 1968) is the first person who analyzed 
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the turbulent boundary layer based on a 0-equation model. In his analysis Reynolds stress 
was expressed by using a Boussinesq type expression with a kinematic eddy viscosity. He 
assumed that flow in the boundary layer continued to be turbulent throughout one wave 
period and proposed a three-layer model for the kinematic eddy viscosity. 

Johns (1968) and Noda (1969) conducted analysis of the boundary layer equation 
supposing the kinematic eddy viscosity. 

According to the increase of our information about the flow in the boundary layer 
brought about by the development of the flow measuring apparatus, we became aware of 
the defect in the analysis based on the 0-equation model. A typical problem is to use a 
constant kinematic eddy viscosity without depending on a phase. To improve this point at 
issue, a so-called one- or two-equation model has been applied to the analysis of the 
boundary layer flow. In these models one or two auxiliary equation(s), transport 
equation(s) of turbulent energy and/or kinematic eddy viscosity is/are used. These 
approaches were originally developed to analyze steady turbulent flow. Therefore, we have 
to reconstruct the auxiliary equations on the basis of detailed experimental results to apply 
them to the flow inside wave boundary layer that is non-isotropic and have a large pressure 
gradient. 

As for the bottom shear stress in the wave-current coexisting system the first formulation 
was carried out in an establishing process of a theory of wave-induced current (Bowen 
1969, Longuet-Higgins 1970 and so on). The expression of time averaged bottom shear 
stress for a few waves that become a resistance force against a driving force expressed as 
a spatial gradient of radiation stress was proposed. Many researches have been carried out 
after them in various ways. 

The expressions of time averaged bottom shear stress proposed by Jonsson et al. (1974), 
Liu and Darlymple (1976), Sawaragi et al. (1978) and Nishimura (1982) tried to apply 
conventional resistance laws of waves and currents to the time averaged bottom shear 
stress under the wave-current coexisting field. The common point at issues of these 
approach are how to evaluate the friction factor and how to take into account the time 
variation of the bottom shear stress. 

Research that tries to evaluate a bottom shear stress, by solving a bottom boundary layer 
equation of wave-current coexisting system. 

On the other hand, Bijker (1966), Grant and Madsen (1979), Tanaka and Shuto (1981) 
and Asano and Iwagaki (1983) applied the 0-equation model to analyze the near bottom 
velocity and boundary shear stress assuming proper distribution of the kinematic eddy 
viscosity. In such an approach, it is slightly difficult to get a solution to the boundary layer 
equation under the wave-current coexisting system, because the vertical gradients of water 
particle velocities due to waves and current are greatly different each other. 

In the following, I will derive the boundary layer equation in the wave-current coexisting 
system and discuss the effect of the current on the wave boundary layer. I will also refer 
to the resistance law under the wave-current coexisting field. 

3.2.2 Boundary layer equation of wave and current coexisting system 
For simplicity, we consider that waves and current are in the same vertical plane as 

shown in Fig. 3.1 where waves propagate in the positive x-direction and a z-axis is taken 
upward from the bottom. 

The momentum equations in x- and z-directions and a pressure gradient in the boundary 
layer are expressed as follows: 
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Depth averaged 
z velocity 
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distribution 
caused by 
wave motion 

~ ~ Velocity distribution 
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~0 ~ ' 
o u 

Fig. 3.1 Coordinate system 

c)u cgu c)u 1 0 p  + 
~ - t -  U + W ~  = VV2U 

Tx az --dT;x 

~w ~ ~w l a p  
+ u + w-7-  = - g  - - ~  + vV 2w -gTx 0t d z  P t~z 

(3.8) 

1 cgp Du b tgu b 
p c)x = tgt + ub c)x (3.9) 

where, Ub is the water particle velocity just outside of the boundary layer due to waves (i.e., 
a potential velocity at the bottom), u and w are the water particle velocities in the boundary 
layer and p is the pressure in and outside the boundary layer. The equation of continuity 
is given by the next equation. 

~u 8w 
~ + ~  =0 (3.10) 
ax & 

The boundary conditions are given at the bottom or at z = z0 and at the outer edge of 
the boundary layer z = ~ as follows: 

u = w = 0  at z = O o r z o  

U = U  b and w = w  b at z = o o o r t 3  

(3.11) 

(3.12) 

where z0 is the height of the roughness element and d; is the thickness of the boundary 
layer. 
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Here, we decompose the variables in Eqs. (3.8) - (3.12) into steady, wave and turbulent 
components and express each component by using an over bar ( - ) ,  subscript p and '. 
Substituting these components into Eqs. (3.8) and (3.9) and taking a time average, we can 
derive the following boundary layer equations for the steady component: 

) ~ U w W w . . . . .  t- V ~  c9 ~ 2 + + - j  + ( U p W p + ) l O-fi 0 2 ~ 
~X Up2 -~Z p t~X OZ 2 

(3.13) 

1 ~ = ~ - - ( ~ +  U-~p2) (3.14) 
pox  

We further assume that all time averaged quantities are uniform in the x-direction and 
introduce a kinematic eddy viscosity ecz defined by Eq. (3.15) 

- - (  (3.15) 

Then we can obtain the boundary layer equation for the steady current as follows: 

ecz =0 (3.16) 

When we take a phase average after the substitution of three components into Eqs. (3.8) 
and (3.9), the following equations concerning the wave component are obtained: 

02 2\ 0 , . . . .  - l ~ 

p o x  Oz Oz (3.17) 

0 3 _  
p o x  

(3.18) 

0 
(if+Up)+ wp = O 

ax Tz 
(3.19) 

where, < > means the phase averaged quantity. 
By subtracting Eq. (3.13) from Eq. (3.17) and Eq. (3.14) from Eq. (3.18) and using the 
relation of Eq. (3.19), the boundary layer equations for the wave component are derived 
as follows: 

) 
at § u ~ ) - ~ +  u~ . . . .  

~2 Up ~ _ U ~ 10pp + v oaz-------- U ((u' w') upwp - w' ) (3.20) 
pOX & 
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10~pp O~Ubp t~Ubp (3.21) 
--p'-~-x = Ot + (Ub + Ubp ) cgX 

Here, we assume that ~, up 2 , u '2 and < u'2> are uniform in the x-direction. We further 
apply a linear wave theory and assume that lupl>>lwpl and the existence of the kinematic 
eddy viscosity ~ defined by 

,wz--(<u' w,>- -u, 

Then we finally obtain the following boundary layer equation for a wave component: 

O3Up CgUp= 1 Cgpp + ewz (3.23) 
c~t +~ r --p-~x -~z cgz ) 

1 ~pp CgUbp C)Ubp (3.24) 
p ~x = & + ~b ~x 

The influence of the mean flow on the wave boundary layer in Eq. (3.23) appears in the 
2nd term of the left hand side of Eq. (3.23) explicitly and in the kinematic eddy viscosity 
implicitly. Asano and Iwagaki (1983) investigated the effect of the advection term (2nd 
term) on the wave boundary layer numerically and reported that it was negligible in the 
usual shallow water region. If we omit the advection term in Eqs. (3.23) and (3.24), the 
mean flow does not affect the wave boundary layer explicitly. The effect of the wave 
component is not also included in the boundary layer equation of the mean flow (Eq. 3.16). 

Therefore, in the boundary layer under the coexisting fluid motion of current and linear 
waves, they interact indirectly through the Reynolds stress (u' w' ,UpWp) in the kinematic 
eddy viscosity that is defined by Eqs. (3.15) and (3.22). 

When we apply a Prandtl-type expression to the kinematic eddy viscosity in the 
boundary layer for the steady current, a logarithmic distribution for the steady current is 
obtained. When we neglect the advection terms in Eqs. (3.23) and (3.24), they become the 
same equations that Kajiura (1966) used in the analysis of the turbulent boundary layer. 
Grand and Madsen (1979), Tanaka and Shuto (1981) and Asano and Iwagaki (1983) also 
used the same fundamental equation to analyze the bottom boundary layer under the wave- 
current coexisting field. 

3.2.3 The bottom shear stress in wave and current coexisting field 
To derive the resistance law in the wave and current coexisting field, we have to solve 

the boundary layer equation by giving the proper kinematic eddy viscosity and thickness 
of the boundary layer. Among these, it is confirmed empirically that the kinematic eddy 
viscosity ~z and the thickness of the boundary layer 8 change with the phase (e.g., Sato 
et al. 1986 and Tanaka 1985). We can also imagine from the definition of Eq. (3.22) that 
the value of ~z depends on the phase. We have to analyze the boundary layer equations 
based on the higher closure problem to know the detailed dependency of the kinematic 
viscosity on the phase. 

We can define the thickness of the boundary layer from the definition of a displacement 
or a momentum thickness if we know the velocity profile. However, when we solve the 
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boundary layer equation as an unknown boundary value problem to determine the thickness 
on the boundary layer and the bottom shear stress and compared them with the results 
obtained by assuming a constant thickness of the boundary layer. He reported that there 
was not any significant difference between them. 

Here, we judge that we can discuss the characteristic of the bottom shear stress based 
on the results obtained by assuming a constant kinematic eddy viscosity and boundary 
layer thickness as the first order approximation. Referring to the former analytical 
approach, we will derive the resistance law under the wave-current coexisting field by 
solving the current and the wave boundary layer equations, Eqs. (3.16) and (3.23) without 
taking into account of the advection term by the steady current. 

_ J  

Generally the flow condition inside the boundary layer is classified into a laminar flow, 
a smooth turbulent and also rough turbulent flows with different resistance laws used 
individually. For the wave and current coexisting flow, there may exist some combinations 
of these conditions for waves and current. The existence of turbulence in the fluid motion 
due to waves or current causes Reynolds stress which affects both wave and current 
boundary layers through the kinematic eddy viscosity defined by Eqs. (3.15) and (3.22). 
Therefore, in the wave and current coexisting flow, both wave and current boundary layers 
must be either laminar or turbulent. 

(1) Solution in laminar flow 
First of all, we derive the solution to the boundary layer equations in the laminar flow. 

Tanaka et al. (1984) derived the distribution of steady current by applying the two- 
dimensional Poiseuille flow. Here, we will obtain the resistance law based on the mean 
velocity formula in an open channel flow. 

According to Eqs. (3.16) and (3.23) and the definition of the kinematic eddy viscosity, 
Eqs. (3.15) and (3.22), there is no room for the interaction between waves and current to 
take place when there is not any turbulence. In such a condition, we can express the mean 
velocity of steady current U by using the bottom slope S, the hydraulic radius R and 
friction factor fc as follows: 

u = 4 e e , / f  c 4 - ~  (3.25~ 

From the Moody diagram, the friction factor of the laminar steady current is approximated 
by Eq. (3.26). 

fc = 15/(4Rec) (3.26) 

where, gec is the Reynolds number (-  UR/v). 
The bottom shear stress ~:c due to the steady current of the mean velocity U is then 

expressed by using the molecular viscosity of the fluid/1 as follows: 

15 U 
r c = --~ r (3.27) 
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On the other hand, the velocity distribution of the laminar wave boundary layer Up(Z,t) 
and the bottom shear stress tw(t) are calculated from Eq. (3.23) in the following form: 

Up (Z,t) = Ubp {COS fit - exp(-ffz)cos(ot - ~ ' z ) }  (3.28) 

~Up l cos(fit  tw(t)= #-ff'ZIz:~ 42#x~;% +4) (3.29) 

where, ub, is the amplitude of the water particle velocity due to waves just outside of the 
boundary layer and ff =(o/(2v)) ~/2. 

From these results, we can derive the bottom shear stress Z<w(t) in the wave and current 
coexisting laminar flow field as follows: 

rcw(t)= Zc + Zw(t)=15 U ( 4 )  + c o s  + (3.30) 

The nondimensional friction velocity U~w*/Ubp is calculated from Eq. (3.30). 

( u~*] 2 15Ihfibpl-lIUl+.~/~r (3.31) 

Table 3.1 Expression of kinematic eddy viscosity and boundary layer thickness 

Kajiura (1968) 

Grant and Madsen 
(1979) 

Tanaka and Shuto 
(1984) 

Asano and Iwagaki 
(1983) 

ew~ ec z e ~ / &  8 w 

ku~oSo, z _> 80 

kuwoZ, 6o > z > 6L 

v, 6 , > z  

ku~z, z>__8~ 

ku'~z, zo < z < 8w 

ku'~8., z>_8~ 

ku'~z, Zo < z < 8. 

ku~z, z>_8. 
ku~z,  Zo < z < 6w 

ku~ z, z > 8 

k u ' z ,  z o < z < 8  

ku" 8 w, z > 8  w 

ku~z, Zo < Z < 8 w 

ku~ z, z > 8 

ku~ z, z o < z < 8 w 

u? 
u~ 2 
u~O-zlh) 
U .2 

e 

u~ 2 
*2 

U,.w 

8 = 2l ,,, 4l 

l = k u ~ / o  

Displacement thickness 

Unknown (unknown 
boundary value 
problem) 

uc*: the friction velocity due to steady current, Uw0*" the maximum shear velocity due to 
waves, Ucw*: the maximum shear velocities due to waves and current, 8w: the thickness of 
the wave boundary layer, 8L and 80: thicknesses of the laminar sublayer and the inner layer 
defined by Kajiura (1964) z0: height of roughness element, ~ Karman constant. 
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(2) Solution in rough turbulent flow 
To solve turbulent boundary layer equations, Eqs. (3.16) and (3.23), we have to estimate 

the kinematic eddy viscosity for steady current and waves ecz, e-wz and the thickness of the 
boundary layer 5. Some examples of the proposed expression for these values are listed in 
Table 3.1 with the notation used in the expressions. 

We can easily imagine that the Reynolds stress originated in the turbulence of wave 
motion dominates in the region of wave boundary layer (Z<Sw) and turbulence due to steady 
current dominates outside the wave boundary layer. We assume here that the turbulence of 
steady current outside the wave boundary layer has little influence on the wave motion and 
analyze the boundary layer equations by applying the expressions of the kinematic eddy 
viscosity after Grant et al. (1979) in the following forms: 

In the region of z > 8w: 

In the region of Zo < z < 5w: 
t Ccz = KU c Z, F.wz = 0 

Ecz : ,F.wz = K'Ucw Z (3.32) 

By introducing these kinematic eddy viscosities into Eq. (3.16), we obtain the vertical 
distribution of the steady current u(z): 

U(Z)  = "~c �9 Uc In " z0<z < 5w 
I~U c w 

U(Sw)= Uc , In : Z = S w  
Kl, l ~  

*l w) u(z )= Uc z �9 8w<Z 
K 

(3.33) 

The depth-averaged velocity U is calculated by integrating Eq. (3.33) between z = z0. 

U ~ ~ I  
h - Zo K \ Ucw al + uc a 2  

a 1 = h ln(Sw/Zo)- 5w + Zo 
(3.34) 

a 2 = h ln(h/5 w ) -  h + 5 w 

From these relations, the time-averaged bottom shear stress and the nondimensional 
friction velocity are expressed as follows: 



160 

~c = PUc .2 = PUcw,, 
2 [.~,'-~l.) 

 g<l zo 
\Ucw ) 31 

a2a]ltt212+4tr U,)h-zo } 
(3.35) 

u: ,I f.llu 'i+ lfo l fu 'i ' + 4K/-:~-U i/Ucw* 1 h -  z~ t 
Lu~p)Lubp ) a~ 

(3.36) 

To obtain the velocity distribution of the wave component, we eliminate the pressure 
gradient in Eq. (3.23) using Eq. (3.34). Then we get the following equation to be solved 
with respect to Up(Z,t): 

eu e( ~u,~ 
(3.37) 

The solution to Eq. (3.37) under the boundary conditions at z = z0 (up - 0) and z = 6w (up 
= ~bpcos(trt)) is given as follows: 

Up(Z,t) = Real[(l _ kerq + tl~eiq ) ^ ] kerqo + tl~eiqo ubp exp(itrt) = ~lbp(Rup 2 -I- Iup 2)7 COS(O/+ 1]/') (3.38) 

where, q = 2{z/(kucw*la) } 1/2, qo = 2{Zo/(kucw*la) } 1/2, 

Rup = 1 - kerqkerq~ + keiqkeiq~ 
(kerqo)2 + (keiqo)2 

~ = t~-'(~u~/~u~) 
, ~ =  kerqkeiqo + keiqkerqo 

(kerqo)2 + (keiqo)2 

and ker and kei are the real and imaginary parts of the modified Bessel Functions of the 
2nd kind and Real{ } signifies the real part of the quantity in { }. 

The bottom shear stress due to wave motion Vw(t) is calculated from Eq. (3.38) as 
follows: 

Zw(t)=Pewz(tgUp/CgZlz=z o 

= o~4~ozou~* (R.~ '~ +~u~ '~)l/~ co~(o,- ~') 
(3.39) 
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where, 

gup = 1-  ker'q0kerqo + kei'q0keiq0 

(kerqo)2 + (keiqo)2 

!lt' = tan-' ( l.p 'l R.p ' ) 

, iup, = ker'qokeiqo + kei'qokerqo 

(kerqo)2 + (keiqo)2 

and ker'  and kei' are the derivatives of ker and kei, respectively. 
Using these results, we can obtain the bottom shear stress Zcw(t) and the maximum shear 
velocity Ucw* under the wave and current that are expressed by Eqs. (3.40) and (3.41). 

rcw(t) = Zc + rw(t) 

~/ *( , ' )  = iOUc .2 + iOttbp #r Rup 2+ Iup 2 1/2 cos(oT-v,') 
(3.40) 

ub j t % )  ub ) 
'2+Iup'2)112 (3.41) 

Equation (3.41) is the relation between the depth averaged steady current velocity U, 
angular frequency or, the amplitude of water particle velocity due to waves at the bottom 
Ubp, the height of the roughness element z0, the shear velocity due to steady current uc* and 
the maximum shear stress due to waves and current Ucw*. We have to carry out iterative 
calculation to determine the values of u~* and Ucw* based on Eqs. (3.35) and (3.41) with 
the expression of the kinematic eddy viscosity (Eq. (3.32)). 

(3) Solution of smooth turbulent flow 
We assume here that the expression of kinematic eddy viscosity (Eq. (3.32)) is 

applicable to the smooth turbulent boundary layer higher than the laminar sublayer 
(Kajiura 1966). Then, the results obtained for the case of the rough turbulent boundary 
layer (Eqs. (3.38-3.41)) can be used by replacing the height of the roughness element z0 
by a function of the thickness of laminar sublayer t~r. as shown by Eq. (3.42). 

d;t. = 11.6 V/Ucw* (3.42) 

Zo = d;L/105 

3.2.4 Increase of  bottom shear stress in the presence of steady current 
We can discuss the effect of steady current on the bottom shear stress based on Eqs. 

(3.30) and (3.31) in the laminar case and Eqs. (3.40) and (3.41) in the turbulent case. In 
the laminar case, the parameters that affect the bottom shear stress caused by waves and 

" " " 2 T/v and the bottom shear stress under waves and current are U~ Ubp, (h and Ubp/((V) or Ubp 
current is expressed by a simple summation of the bottom shear stresses due to waves and 
current. There is not any interaction between the bottom shear stresses caused by waves 
and current. In the turbulent case, the following three parameters are predominant: U~ fibp, 



162 

ab/Zo and zo/h or ab/h. Among these, ~bp/(~V) and ab/Zo give a direct influence on the bottom 

shear stress caused by waves and (h and zo/h have very much to do with the bottom shear 
stress due to the steady current. 

In the following, effect of the steady current on the amplitude of the shear velocity due 
to waves Uw* and the maximum shear velocity due to waves and current U~w* in a turbulent 
boundary layer is examined. There is no interaction between waves and current in the 
laminar boundary layer (Eq. (3.30)). 

Figure 3.2 illustrates the relation between Uw* and U~ ~bp calculated from Eq. (3.39) with 
the relation between Ucw* and U~ ~bp calculated from Eq. (3.41) in the case of at,/Zo - 1000. 
The vertical axis is normalized by the shear velocity due to waves without any current Uwo* 
(U/~,p - 0). As can be seen from the figure, both values of Uw*/Uwo* and u~,,*/u,,~* increase 
linearly from unity with the increase in the value of U/Ctb p. When the depth becomes 
relatively shallow, i.e., h/ab becomes smaller, the shear velocity becomes more sensitive to 
the increase in the velocity of steady current. 

2.0 

o 

.~  1.5 

Q 

. ~  1.0 

0.0 

/iii  
1.0 

. - ~ _ . ~ : ~ 3 - .  o ~ -  

ab/zo=1000 
' UCW/UW 0 

. . . .  Uw//Uwo 

015 110 115 ' 2.0 

Fig. 3.2 Increase in bottom shear stress with current 

The results shown in Fig. 3.2 are those in the case of ab/Zo --- 1000. The value of at,/Zo 
does not have any significant effect on the bottom shear stress under waves and current 
coexisting field because it has very related to the wave boundary layer and has nothing to 
do with the current boundary layer (see Eq. (3.36)). 

3.2.5 Resistance law in waves and current coexisting field 
According to the method derived in the former section, we have to determine the shear 

velocity under waves and current through the iterative calculation and it is not a practical 
way. Here, an approximate relation to explicitly determine the maximum and the time- 
averaged bottom shear stresses ~cw and ~c is introduced by using the friction factor�9 

There are three conventional ways to take the effect of the steady current into account 
in the expression of the bottom shear stress due purely to waves (Eq. (3.1)). One way is 
to modify the friction factor fw defined in the wave field to the friction factor f~w in the wave 
and current coexisting field still using water particle velocity due to waves ~bp (e.g., Grant 
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and Madsen 1979, Tanaka and Shuto 1981 etc.). The second one is to use the wave and 
current combined water particle velocity U~omb. instead of fibp still using the wave friction 
factor fw (e.g., Sawaragi et al. 1978a and Nishimura 1982). The last one is to estimate the 
bottom shear stresses due to waves and current independently and sum them vectorally 
(e.g., Jonsson et al. 1974). 

Sawaragi et al. (1978a) measured cross-shore and longshore components of the bottom 
shear stress on a uniformly sloping model beach where the uniform longshore current was 
generated by obliquely incident waves. Based on the measured results, they reported that 
the contribution of the longshore current to the bottom shear stress was relatively smaller 
then that of the wave motion when the bottom shear stress was evaluated from Eq. (3.1) 
by using the resultant velocity Uco,,b. of the vertically averaged longshore current velocity 
V(x) and the water particle velocity due to waves ~bp" 

In other words, we can express the cross-shore and the longshore components of the 
resultant velocity Ubx and Uby as Eq. (3.43) in the place where the uniform longshore current 
is generated in the longshore direction with the coordinate system shown in Fig. 3.3. 

Ubx = Ubp COS 0COS at, Uby = ~bp sin O cos or + V (3.43) 

^ 

I., Ubp Coso't 

%oV ", ux ..X V" Velocity of 
= ~bp c o s t r t - ~  ~ "- \ \  " longshore current 

uy= Ubp cos ~ t .  sin 0 + V  

-__y 

Fig. 3.3 Resultant velocity due to waves and current 

When we express the maximum bottom shear stress row,, in the form of pfUco,,b.2/2 by using 
the maximum resultant velocity Uco,,b., the cross-shore and the longshore components of row,, 
are given as follows: 

T x -- Tcwm~lbp COS 0/Urn, Ty -- Tcw m (llbp sin 0 + V ) / u  m (3.44) 

The direction of this maximum bottom shear stress becomes 

ry /rx=tanO+(V/Ubp)SecO (3.45) 

When there is not any steady current, i.e., V -  0, the value vy/L is the tangent of the wave 
direction and Eq. (3.45) is rewritten as 
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= COS 0 - Tx0 (3.46) 

where (ZJZx)0 means the value where there is no current. 
Figure 3.4 shows the relations between V~ ~bp and the value of the right hand side of Eq. 

(4.46), i.e., cosO{'ry/Zx-(ry/Zx)o} based on the measurement by Sawaragi and Deguchi 
(1978b). From the figure, it is found that the relation between V~ Ubp and cosO{ry/rx-(ry/rx)o} 
is given by Eq. (3.47) rather than Eq. (3.46). 

=oscoso  / y/}u  L, 
1.0 

cz~ 
o . 8  

0 . 6  

I 0.4 

0.9. 

o Ho/Lo=O.023 

�9 H,/Lo=0.044 

N. (3.46) , ,  ~ -,,, 
- 3 ~ / ~ ~ E ~ .  (3.47) 

, , 

0 0.5 1.0 1.5 
v/a~, 

(3.47) 

Fig. 3.4 Relation between longshore current and bottom shear stress 

This means that it is necessary to reduce the depth-averaged velocity of the steady current 
when we evaluate the bottom shear stress due to waves and current by using the resultant 
velocity. 

On the other hand, Grant and Madsen (1979) and Tanaka and Shuto (1981) defined a 
new friction factor fcw to estimate the maximum bottom shear stress due to waves and 

" 2 current from the relation Zcwm = PfcwUbp /2 based on their analytical solution of the boundary 
layer equations. Equation (3.48) is the approximate expression for the modified friction 
factor few in the rough turbulent boundary layer by Tanaka and Shuto (1981). 

- - =  - - + - -  0.25+0.101 In 
2 ln(h/zol-l~bp 7r 

+21n fcw +2.42}2] -1/2 

(3.48) 

However, in the case where waves and current are not in the same vertical plane and 
they cross at an arbitrary angle, it seems convenient to evaluate the maximum bottom shear 
stress using the resultant velocity of waves and current so that we can easily determine the 
direction of the maximum shear stress. Here, the parameter P(<I) is introduced to reduce 
the effect of the vertically averaged mean current according to the experimental results of 
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Sawaragi and Deguchi (1978b) and the dependency of the P-value on various wave and 
current parameters are examined. 

We assume first that the maximum shear stress Zcwm and the amplitude of the shear stress 
due to waves ZwOm are expressed by using the friction factor defined by Jonsson (1963) as 
follows: 

( )2/2 ,2 
72cwm = Pfw flop + PU = pucw 

ZwOm = P f  w tlbp 2 / 2  =/gUwO .2  

(3.49) 

(3.50) 

Eliminating fw from Eqs. (3.49) and (3.50), we have the following expression for P: 

p = fi6p - 1 (3.51 ) 
U \ Uwo 

In the laminar case, Zcw, and ZwOm are obtained from Eqs. (3.30) and (3.29) and Eq. (3.51) 
becomes 

u l  gt JJ - 1  (3.52> 

In this case, P is a function of fibp/U and (h. 
In the same way, in the turbulent case, we have the following expression for P: 

II t"21 ^ "2 
bo U c P = U  .1+  -1  (3.53) 

u     / oZoUcw, (Ru 

This equation shows that P in the turbulent case is a function of adzo, fiop/U and h/zo (or 
h/ab). 

We can easily calculate the value of P in the laminar case because there is not any 
interaction between waves and current in the boundary layer. Figure 3.5 illustrates the 
dependency of the P-value in the rough turbulent cases where U~ (% - 0.5 (Fig. (a)) and 
1.0 (Fig. (b)) calculated based on Eq. (3.53). We can see from these figures that the value 
of P becomes large with increases in adzo and with the decrease in h/ab. However, the P- 
value does not significantly depend on the value of U~ fibp. 

Based on the calculation of Eq. (3.53), some examples of which are shown in Fig. 3.5, 
the value of P is expressed approximately by the function of aJzo, h/ab and U~ ~bpas 
follows: 
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Fig. 3.5 P-value as a function of ab/zo ((a): U~ flop - 0.5 , (b): U~ flop - 1.0) 

P=[{ log(ablzo) -b} la l  ,c 

(U I )-0.194 a = -18.2  fibp + 29.8 

b=O.167/(U/fibp)+l.8 

c=r(h/ab)-n+s 

(3.54) 

here, n - 0.685-0.305 (U/~op) and r and s are a function of U/fiop listed in Table 3.2 
provided that the value of ab/zo is in the range of 2"102-4"103 and U~ flop is less than 3.0. 

Table 3.2 Values of r and s 

u/t% <0.52 0.52 _< v/aop < 1.5 1.5 ___ U/~bp < 3 
152(u/a .)+ o.91o 
-0.704(U/fibp )+ 1.47 

6.22(U/~bp)-l.54 
-5.41 < U/Ubp <-3.91 

14.0(U/~bp)-13.2 
-13.4(U/f% )+15.9 

Finally, the procedure to estimate the time-averaged bottom shear stress in the case 
where waves and current cross at arbitrary angles is shown in the coordinate system shown 
in Fig. 3.6. Here, again the interaction between waves and current is taken into account 
through the kinematic eddy viscosity in the turbulent case. When we assume that the 
kinematic eddy viscosity in the case where waves and current cross at arbitrary angles can 
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be expressed in the same form as they are in the same vertical plane, the bottom shear 
stress due to waves and current Zcw is evaluated as the resultant of the shear stresses due 
to current and waves zc and rw. From the definition illustrated in Fig. 3.6, the components 
of the resultant bottom shear stress in the cross-shore and the longshore directions zx and 
zy become 

v x = z c c o s O  c + z w c o s O  w 

*2 *2 = pu~ cos 0r +puw cos Ow 
(3.55) 

ry = r c sin 0 c + z w sin 0 w 

= PUc .2 sin 0 c + PUw .2 sin 0 w 
(3.56) 

where zc and Zw in the laminar and the turbulent cases are given by Eqs. (3.27) and (2.39) 
and Eqs. (3.35) and (3.39), respectively. 

x ~bp c o s a  t s in  Ow 

\ (IU[sinOc,lUIcosOc) 

: Velocity vector 
.. . ~ . . .  t~S'2~x~ of mean current 

ubpcosat cos0w [ ~ c o s a t  :Water particle velocity 
just outside of boundary layer 

~bp cos at sin 8~ due to wave 
: - - y  

Fig. 3.6 Resultant velocity due to waves and current 

From Eqs. (3.55) and (3.56), it is found that the cross-shore and the longshore 
components of the time-averaged resultant bottom shear stress are expressed as follows: 

r x z c c o s O  c PUc .2 - = = COS 0 c 

Ty = r c sin 0 c = PUc .2 sin 0 c 
(3.57) 

3.3 Sediment Movement and Beach Deformation 

3.3.1 Relation between sediment movement and beach deformation 
Here, the mechanism of the topographic change caused by sediment movement in a 

shallow water region is explained. We usually use the following equation of continuity of 
sediment concentration C in the coordinate system shown in Fig. 3.7. 
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t?C cgusC o~,~yC oawsC=o (3.58) 
0--~+ ~x + + 0z 

where Vs = (us, v,, ws) is the vector of migration speed of sediment in the direction of x-, 
y- and z-axes. 

. .  �9 ~.;~ 

~1.. Aqb " " 

~ Y 

v 
I o% -~--" ~ q,+-~- ~', 
/ oq,~ ..L >q~+-~ ~ 

~ ".:. 
"..'" 

:".'\ 
Cb=l--,l 

Fig. 3.7 Definition sketch of continuity of sediment transport 

We are going to examine the relation between sediment movement and topographic change 
based on the sediment budget in a vertical water column on a unit area on the bottom 
shown in Fig. 3.7 by integrating Eq. (3.58) between rl>z>-h (suspended load layer), -h>_z>- 
(h+~b) (bed load layer) and z < -(h+Sb) (non-movement layer). 
In a suspended load layer, rl>z>-h : 

t9 ~ o 3 O~ ~rlhCdZ-I--~x ~_h+CUsdZ + "~ _ -"~~_h+CV, dz=Aq, (3.59) 

In a bed load layer, rl>z>-h: 

0 -h- 0 -h- O -h- 
--~_h CdZ +--~x~_h CUsdz +--~f_h CVsdz =-Aq, + Aqb (3.60) 

In a sand layer of no motion, z< -(h+Sb): 

•f-h• -~ j_~ Cdz = --Aqb (3.61) 

where 
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Aqs = C_ h --~ + us,_ h -~x + vs'-h + 

Aqb=C-h~[ cgt + U"-h~ CgX V"-h~ ---~ - 

(3.62) 

Aqs and Aqb are the exchange rates of sediment between the bed load and suspended load 
layers and bed load and non-movement layers, respectively. The notations -h+ and -h_ in 
the integral mean the limits of approaching z - -h from the positive and the negative 
direction of the z-axis. 
The left hand side of Eq. (3.61) shows the time change of total sand volume included into 
the non-movement sand layer. We can express the time change of the lowermost location 
of the bed load layer z - -hbd- -(h+Sb) by using the mean sediment concentration in the 
non-movement layer Cb as follows: 

O(h + t~b ) = l--~Aqb (3.63) 

Generally, the thickness of the bed load layer 6b is sufficiently small when compared with 
the water depth h. Then Eq. (3.63) is rewritten using the void ration of the non-movement 
layer ~,( = 1-Cb) in the following form: 

tgh 1 
c9---~ = 1-  & Aqb (3.64) 

On the other hand, we can derive the following expression for Aqb by using Eqs. (3.59) 
and (3.60): 

Aqb = -~ ~_hCdZ + --~x ~_h+ CU flZ + --~ ~h+ Cv flz 

) Tx -6 . cv, ez 

(3.65) 

The 2nd and 4th terms in the right hand side of Eq. (3.65) are the spatial gradients of 
suspended load flux and bed load flux, respectively and the 1st and 3rd terms are the time 
change of the sediment volumes in the suspended and bed load layer, respectively. 

Beach deformation and change in water depth that become objects of our research from 
a viewpoint of engineering includes various time scales. Beach deformation caused by a 
moving low pressure system accompanied by high waves will continue for a few days or 
a few week. Topographic change brought about by the longshore sediment transport will 
usually continue for more than a few years. However, these time scales are sufficiently 
longer than the period of incident waves and the topographic change that takes place within 
one wave period is generally disregarded. Therefore, we usually discuss the topographic 
change based on the time-averaged form of Eq. (3.65) over at least a few wave periods and 
the expression of-h_+ is replaced by -h in Eq. (3.65). 
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The cross-shore and the longshore sediment flux in Eq. (3.65) are called the cross-shore 
and the longshore sediment transport rates qx and qy are expressed as follows: 

Cusd z + Cusdz qx = qsx + qbx - h (h+8 b ) 

f "Cvsdz  + Cv f l z  
qy = qsy + ql,y = h (h+8 b) 

(3.66) 

where , -  means the time-averaged value and subscripts s and b show that the quantities 
with these subscripts concern the suspended load and bed load. 

Here, we consider the topographic change in the case where the concentration of 
suspended sediment is in a steady state so that we can neglect the 1 st and 3rd terms in Eq. 
(3.65). Such conditions appear in the following states: 
In the case where external forces such as waves and current in the objective range do not 
show any rapid temporal change, and in the case where sand supply to the objective range 
such as sand discharge from the river and so on is constant. 

Then Eqs. (3.64) and (3.65) are rewritten into Eqs. (3.67) and we can estimate the 
topographic change provided that the longshore and the cross-shore sediment transport 
rates are given 

cgh 1 
~ A q  b 

Ot 1-)~ 

Aqb = cgqx C~qy 

(3.67) 

Furthermore, if there are not any significant spatial gradients of fluid motion and bottom 
topography, a vertical distribution of suspended sediment concentration is in an 
equilibrium state. Various formulations and modeling have already been carried out to 
evaluate the longshore and the cross-shore sediment transport rates in such conditions and 
we will refer to them in 3.4. 

On the other hand, change in the water depth in the case where the vertical distribution 
of suspended sediment concentration is not in an equilibrium or steady state, we are not 
able to calculate topographic change from the usual sediment transport rate in the 
equilibrium state. These conditions may take place in the cases where the spatial gradient 
of water depth or the temporal change in wave field are large. In such cases we have to 
estimate Aqs given by Eq. (3.62) to calculate topographic change. This procedure will be 
explained in detail in 3.6. 

3.3.2 Modeling of beach deformation and procedure for predicting beach deformation 
(1) Objective beach deformations and their time scale 

As was mentioned in the former section, change in the water depth caused by successive 
attacks of constant waves is expressed by Eq. (3.67). We will examine the characteristics 
of topographic changes brought about by the cross-shore and the longshore sediment 
transports based on Eq. (3.67). A definition sketch is shown in Fig. 3.8. 
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Fig. 3.8 Definition sketch of coordinate system 

To investigate the topographic change caused by the longshore sediment transport, we 
integrate Eq. (3.67) in the cross-shore direction between x = x0 and x = Xcr where x0 and 
Xcr are the landward and the seaward limits of the topographic change whose depths 
correspond to h0 and hcr. The integration of Eq. (3.67) using the Leibnitz relation leads to 
the following equation: 

t 3 f xcr ~Xcr 3Xo ]- "~ go hdx - hcr ~ + h~ dt j (1- ) 

Xc r 
=(qx,x~r -qx,xo)+-~~Xo q y d X - q y , x . - ~  

~X 0 
"t-qY,xo ony 

In the equation, the cross-shore sediment transport at x = x0 and x = Xcr in the ( ) of the 
right hand side is zero because there is not any significant sediment movement in the 
region of x<x0 and X>Xcr. When we define the beach sectional area A and the total longshore 
sediment transport Qy by Eq. (6.68), we can finally obtain the following relation between 
A and Qy" 

~x f cr ~x 7cr A = hdx, Qy = qydx (3.68) 0 0 

OA = hcr OXcr 3X 0 aQy( 1 ) 
- 5 - - h ~  - 1 - X  (3.69) 

Equation (3.69) shows that the temporal change in the beach sectional area A is caused 
by the longshore gradient of the total longshore sediment transport ra te  Qy and the temporal 
variation of the region where the significant sediment transport takes place. The cross- 
shore sediment transport has nothing to do with the change in the sectional area. 

On the other hand, any longshore sediment transport does not take place in a movable 
bed experiment on a sloping beach in a two-dimensional wave tank. In such a case, we can 
discuss the topographic change based on Eq. (3.70). 

Oh = ~ C)qx (3.70) 
0t 1 - ~  Ox 
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When we integrate Eq. (3.70) in the same way as we did in Eq. (3.67), Eq. (3.70) becomes 
as follows: 

hdx=0 

This means that the cross-shore sediment transport causes changes in the cross-shore 
profile of the beach without any change in the sectional area. 

A deformation pattern of the cross-shore profile of the beach caused by the cross-shore 
sediment transport is usually classified into the four pattems as illustrated in Fig. 3.9 
(Sunamura and Horikawa 1974, Sawaragi and Deguchi 1980, Shimizu et al. 1985). Full 
lines in the figures are the illustration of the deformations of the cross-shore profile and 
broken lines are the rough illustrations of the distribution of the cross-shore sediment 
transport rate estimated based on Eq. (3.70). 
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(c) Trans'~on type II 
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Fig. 3.9 Changes in beach section caused by cross-shore sediment transport 

Figure (a) is the deformation of erosion type caused by the net offshore sediment 
movement through the whole section. Figure (d) is an accretion type deformation caused 
by the net onshore sediment movement through the whole section. In the topographic 
changes shown in Figs. (b) and (c), both net onshore and net offshore sediment movements 
took place at the same time. 

The upper figures of Figs. 3.10 and 3.11 show examples of topographic changes of 
erosion and accretion type beach deformations measured in the two-dimensional 
experiments. Figure (b) is the cross-shore distribution calculated from Eq. (3.70) by using 
the change in measured water depth shown in Fig. (a). 
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As we can see from these two examples, the cross-shore sediment transport rate decreases 
with the increase of elapsed time and beach profile reaches to the equilibrium. The time 
change of the natural phenomena that will reach an equilibrium state is generally expressed 
by the exponential function. We suppose here that the time variation of the maximum 
cross-shore sediment transport rate qxm decreases in the following manner: 

qxm(t)= qxo eXp(-Att/T) (3.71) 

where, q~ is the initial maximum cross-shore sediment transport rate at t/T = 0 and A, is 
the attenuation rate of q~0. 

We calculated the time variation of the maximum cross-shore sediment transport rate 
based on the existing experimental results reported by many researchers and evaluated the 
value of A,. Figure 3.12 shows the relation between calculated A, and the value of Ns(= Ho/ 
(Ttr'gdso)l/2). The parameter N~ is a kind of Shields number indicating the deformability o f  
the whole beach where H0 and T are the equivalent deepwater wave height and period, tr' 
is the submerged specific gravity and ds0 is the median grain size. 

Fig. 3.12 
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Attenuation rate of cross-shore sediment transport rate 

The value of A, increases from 2.5* 10 -6 to 2.0"10 -4 with the increase in the value of Ns 
in the range of 0.3<Ns<l.3. The decrease of the cross-shore sediment transport in the 
accretion type is faster than that in the erosion type beach deformation which means that 
the accretion type beach deformation reaches an equilibrium state faster than the erosion 
type beach deformation does. 

Beach profiles in the field are usually almost in an equilibrium state after the continuous 
attack of nearly constant waves of a certain period and little net cross-shore sediment 
transport occurs. A significant cross-shore sediment transport takes place only when the 
characteristics of incident waves change largely and beach profile approaches the new 
equilibrium condition corresponding to the new wave characteristics. 

In the laboratory case of A t -  105-10 4, it will take t/T - 3"104-3"105 for the cross-shore 
sediment transport rate to decrease 80% of its initial value. If we can apply the attenuation 
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coefficient shown in Fig. 3.12 to the beach deformation in the field of the same value of 
At under the incidence of waves of period about 5s, it will take a few days for the beach 
deformation to reach an almost equilibrium state. 

On the other hand, the beach deformation caused by the longshore sediment transport 
whose transporting agency is the longshore current continues even if an incident wave 
characteristics do not change. As a result, large-scale erosion (shoreline retreat) and 
accretion (shoreline advancement) takes place in an extensive range for a long period. 
Therefore, the time scale of the prediction of beach deformation due to the longshore 
sediment transport becomes a wide range from a few days to several years. 

There are of course topographic changes due to both longshore and cross-shore sediment 
transport in the field. We have to fully investigate the predominant mode and direction of 
sediment transport in the objective beach deformation to be predicted. The general method 
regarding this point is to utilize the so-called empirical eigenfunction analysis of the 
measured topographic change (Winant et al. 1975). Hashimoto and Uda (1979)extracted 
the patterns of topographic changes caused by cross-shore and longshore sediment 
transport by expanding the deviation of the measured water depth from the time averaged 
water depth at Ajigaura Coast to cross-shore and time functions using the empirical 
eigenfunction analysis method. Sawaragi and Deguchi (1982) and Deguchi and Sawaragi 
(1986) expanded the deviation of the measured water depth from the averaged water depth 
into cross-shore and longshore function by the empirical eigenfunction method and 
discussed the function of groins to trap longshore sediment transport in the laboratory and 
characteristics of topographic change took place around the submerged breakwater in the 
field. 

(2) Prediction model of beach (sectional) deformation due to cross-shore sediment 
transport 

Deformation process of a beach profile due to cross-shore sediment transport is 
essentially an unsteady and non-equilibrium process. When we discuss a deformation 
process, we have to know the history of the objective coast, that is, what kinds of waves 
created the beach profile? 

A change in water depth of such beach deformation is unable to be predicted by using 
the cross-shore sediment transport rate in an equilibrium state formulated in various ways. 
To predict deformation of beach profile due to cross-shore sediment transport, we must 
incorporate a nonequilibrium nature and unsteadiness of the beach process. We have to at 
least take into account the time variation of the cross-shore sediment transport rate in the 
beach deformation process. 

A direct result of this time variation of the cross-shore sediment transport rate in the 
beach deformation process is that the onshore and the offshore sediment transport rates in 
one wave cycle approach the same value and the time averaged (net) sediment transport 
rate becomes zero. The mechanism of this process may be explained as follows: 
a) Interaction between the change in water depth, wave transformation and the mean flow 

such as undertow that originates in wave motions on a sloping beach, 
b) Asymmetricity of the resistance force of bed material on the sloping bottom the beach 

deformation process. 
In the existing numerical model for the prediction of beach deformation caused by cross- 

shore sediment transport, the dependency of the cross-shore sediment transport rate on time 
is usually taken into account through the dependency of the critical shear velocity on the 
local bottom slope (Deguchi and Sawaragi 1988) or the dependency of the cross-shore 
sediment transport rate on the local bottom slope (Watanebe et al. 1986 and Nishimura and 
Sunamura 1986). However, we cannot yet evaluate these mechanisms quantitatively. 
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On the other hand, the deformation of a beach profile caused by the cross-shore sediment 
transport usually reaches the equilibrium profile under the condition of the same wave 
incidence. Some attempts have been made to formulate this equilibrium beach profile 
without using the equation of continuity of sediment transport. Eagleson et al. (1963) 
proposed a procedure to determine the equilibrium beach profile by introducing a null- 
point theory. They calculated the migration speed of bed materials on the sloping beach 
based on the equation of the motion of a single particle and defined the zero-net motion 
of the particle where the gravity effect on the particle is in balance with the time averaged 
drag force due to the mass transport velocity. 

Bowen (1980) derived another concept of the equilibrium beach profile determined from 
his cross-shore sediment transport rate based on the power model. In his concept, the time 
averaged cross-shore sediment transport rate becomes zero on the equilibrium beach. 

These beach profiles are effective only in the region where the fluid motion due to waves 
and wave-induced steady current can be predicted accurately. Generally, they cannot apply 
in the breaker zone including the swash zone. 

Swart (1974) carried out a number of two-dimension movable bed experiments 
concerning the deformation of beach profile. He formulated the equilibrium beach profile 
and the rate of cross-shore sediment transport throughout the whole active beach based on 
the results as functions of the incident wave height, period, bed materials and so on. 
However, his model was not derived from the consideration of kinematics and dynamics 
of sediment movement and includes various empirical constants with dimensions. 

(3) Prediction model of a plane beach deformation 
(a) Prediction of the change in the location of a contour line caused by longshore sediment 

transport 
i) Model based on One (Single)-line theory 

The first modeling of the beach deformation caused by longshore sediment transport was 
carried out based on Eq. (3.69) by Pernard et al. (1956). If there is a strong relation 
between the change in the sectional area surrounded by the bottom and the water surface 
in a plane perpendicular to the shoreline (zlA) and corresponding change in the location of 
the shoreline or any contour line (A/), we can express zlA as: 

zlA = ~ l  (3.72) 

Equation (3.69) is written in the following form when we can neglect the time variation 
of the value a. 

Ol 1 1 ~gQy 
Ot = 1-  Z a Oy (3.73) 

In Eq. (3.73), the whole topographic change caused by the longshore gradient of the 
longshore sediment transport rate is represented by the change in the location of the shore 
line (or contour line). A prediction of beach deformation by this model is usually called 
the prediction based on the one (single)-line theory. The total longshore sediment transport 
rate in Eq. (3.73) is usually expressed by the Savage-type equation and Eq. (3.73) is 
transformed into a diffusion type equation by assuming the small wave breaking angle, a 
small curvature of shoreline and a small displacement of shoreline to obtain the shoreline 
profile analytically. Bakker (1968) developed this model and analyzed the shoreline 
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deformations around groins, river mouth and so on. The detailed commentaries for the one- 
line theory are given by Komar (1976), Hashimoto (1981) and so on. 

Recently, prior to the construction of large coastal structures, we are obligated to predict 
the influence of them on the surrounding coast as part of the environmental assessment. 
Their long-term influences on the surrounding shoreline are usually predicted by the one- 
line theory. We also utilize the one-line theory to determine the proper plane arrangement 
for the shore protection works. Because the objective shorelines of these are usually 
arbitrary shapes and the boundary conditions are also complicated, it is difficult to 
calculate the change of the shoreline analytically. Accordingly, the calculations are carried 
out numerically by giving the longshore distribution of the total longshore sediment 
transport rate in Eq. (3.73). 

Anyway, there still remain the following problems: 
a) The physical meaning and quantitative evaluation of the value a in Eq. (3.73); 
b) Assumptions of a small incident angle of breaking waves and a small curvature of the 

shoreline that result in the small deformation of the shoreline; and 
c) Neglection of the change in the beach profile caused by the cross-shore sediment 

transport rate. 
As for the second point at issue, Rea and Komar (1972) as well as Uda (1982) proposed 

the modified one-line theory that can cope with the arbitrary shoreline configuration whose 
radius of curvature is larger than the width of the breaker zone to the required degree. 

Bakker et al. (1970) modified the one-line theory to solve the last problem where the 
location of two contour lines are predicted by taking into account the cross-shore sediment 
transport between the contours. The model is called the two-line theory and is expanded 
to the multi-line theory by Perline and Dean (1983). Figure 3.13 shows the outline of the 
two-line theory. 

I r 

' 

~ .... j 

h. 

Fig. 3.13 Definition sketch of two-line theory 

In the coordinate system shown in Fig. 3.13, time changes of the positions of two contour 
lines l, and 12 are expressed by the following equations according to the two-line model. 
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03l 1 = 1 OQyl 

Ot Ol(1-Z ) 0y +qx 

o3l 2 1 OQy2 
Ot =/92(1- Z--------~ - - - ~  - qx 

(3.74) 

where qx is the cross-shore sediment transport rate across the contour line of the depth D~. 
However, the estimation method of the cross-shore sediment transport rate is not 
established. Furthermore, any contour line must be a single-value function of the cross- 
shore distance. 

In the following, the first point at issue is discussed in detail. 
ii) Physical meaning and determination of a in the one-line theory 

The value of a in Eq. (3.73) is usually explained as the representative height of the 
topographic change or the vertical scale for the topographic change that is equivalent to hcr- 
ho in Fig. 3.9. On the other hand, from Eq. (3.72), the value of a is defined as 

a = ~AIAI  (3.75) 

According to this definition, the value of a depends on the depth of the contour line. Figure 
3.14 illustrates the example of the dependency of a on the depth of the contour line. Open, 
closed and semi-closed circles are the relation between the change in the sectional area zSA 
shown in Fig. 3.15 and the changes in the locations of the contour lines whose depths are 
0cm (shoreline), 10.0, -2.5cm (landward of the shore line), l_2.5 and 5cm, %.0, respectively. 
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Fig. 3.14 Relation between change in sectional area and shift of shoreline location 
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Fig. 3.15 Example of three-dimensional topographic change in wave basin 

The result illustrated in Fig. 3.15 is obtained in the experiment on the 1/10 model beach 
in the wave basin. The experimental conditions are illustrated in the figure. Each change 
in the location of the contour line has a high correlation to the change in the sectional area. 
However, the value corresponding to each contour line is clearly different. 

The change in the water depth Ahy caused by the longshore sediment transport qy(x,y) 
during At is expressed by the following equation: 

Ahy/At = {1/(1 - ~, )} Aqy (x, y)/Ay (3.76) 

We assume that the cross-shore distribution of the longshore sediment transport rate is 
expressed by the distribution function f(x) and the strength qyo(Y) as follows" 

qy(x,y)= qyo(Y)f(x) (3.77) 

The value of Ahy becomes 

1 At Ahy(x) = ~ ~ A q y o f ( x  ) o,: f(x) (3.78) 
1 - A A y  

While, it is natural to assume that the change in water depth Ahy k a t  x = xk whose depth 
is hk and the displacement of the contour line Alk at the depth h = hk are proportional (see 
Fig. 3.16). 
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Fig. 3.16 Definition sketch of topographic change 
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AA AA AA 
a h = ~ ~ ~ ~  (3.79) 

Al k Ahy k f ( x ) 

This means that the inverse of ah is proportional to the distribution function f(x). 
Figure 3.17 shows the cross-shore distributions of the inverse of ah, i.e., 1/ah, the cross- 

shore eigenfunction el(x) corresponding to the maximum eigenvalue obtained from the 
empirical eigenfunction analysis of the topographic change shown in Fig. 3.15. In the 
figure, the local longshore sediment transport rate qy(X) evaluated by the flux model that 
will be mentioned later is also shown. 
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Fig. 3.17 Cross-shore distribution of local longshore sediment transport rate 

All of them are normalized by their maximum value. Both distributions of ea(x) and 1/ 
ct roughly coincide with the distribution of the local longshore sediment transport rate 
estimated from the flux model. This implies that we can use both values of e~(x) and 1/a 
to estimate the cross-shore distribution of the local longshore sediment transport rate. Saito 
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et al. (1985) carried out the prediction of topographic change including the deformation of 
beach profile that came from the cross-shore distribution of the local longshore sediment 
transport rate estimated by using the value of 1/ah. 

However, in many cases, there is not enough data of the bottom profile to determine the 
value of a accurately. In such cases, a is usually determined as a sum of the critical water 
depth for sediment movement hc,. (e.g., Hallermeier 1983 and Sato and Tanaka 1965) and 
the run-up height on the beach h0 (e.g., Savage 1959). These two values depend on the 
characteristics of incident waves. Therefore, we have to carefully determine the 
representative wave during the objective period for the prediction of shoreline deformation 
that will be used for evaluation of the value of a and the total longshore sediment transport 
rate. We have to examine the reproductivity of the typical topographic change of the 
objective beach through the calibration of the model. 
iii) Representative wave in prediction of shoreline deformation based on one-line theory 

Different representative waves should be used in the prediction of shoreline deformation 
according to the purpose and the objective period of the prediction. If we know the beach 
deformation including the seasonal change of the coast where there is an obvious seasonal 
change in the characteristics of the incident wave such as on the Japanese coast, we have 
to determine more than two representative waves for each season. 

In principle, one-line theory is able to apply to the prediction of shoreline deformation 
irrespective of the duration of prediction provided that there is a clear relation between zlA 
and Al. However, there is a possibility for the cross-shore sediment transport to take place 
when the characteristics of an incident wave change significantly, which will result in the 
deformation of the beach profile. Furthermore, the shoreline deformation predicted by the 
one-line theory is not linear to the change in the wave direction and there is hysteresis in 
the shoreline deformation to the wave characteristics, especially to the wave direction. 
Therefore, the shoreline deformation predicted by using many representative waves does 
not always reproduce the actual shoreline deformation accurately. 
iv) Other problems in the prediction of shoreline deformation by the one-line theory 

One of the most remarkable feature of the one-line theory is to predict the change in the 
shoreline using only the longshore gradient of the total longshore sediment transport rate. 
The total longshore sediment transport rate on a natural beach is usually evaluated from 
wave height, water depth (or group velocity) and incident angle at wave breaking point like 
a Savage-type formula. Therefore, we can not apply such a formula to evaluate the total 
longshore sediment transport rate around the structure constructed within the surf zone, 
such as the short groin, the offshore detached breakwater and the sea dikes. The most 
popular way to cope with these situation is to use the trap rate of the longshore sediment 
transport rate based on the cross-shore distribution of the local longshore sediment 
transport rate. When we estimate the trap rate of the longshore sediment transport rate of 
the structure from the cross-shore distribution of the longshore sediment transport rate on 
a natural beach, there is a possibility for a large error to occur because the wave-induced 
current around the structure that becomes a sediment transporting flow is usually different 
from that on the natural beach. We should determine the magnitude of the total longshore 
sediment transport rate by integrating the cross-shore distribution of the local longshore 
sediment transport rate that is calculated properly. In Chapter 5, these procedures will be 
mentioned in detail. A full detail of the numerical procedure for solving Eq. (3.73) is given 
by Maruyama (1988). 
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(b) Direct prediction of change in water depth 
The change in water depth is generally expressed by using the gradient of the horizontal 

local sediment transport rate as Eq. (3.64). Furthermore, Eq. (3.64) is rewritten as Eq. 
(3.67) when the time-averaged sediment concentration is in a steady state. All the proposed 
numerical models for directly predicting topographic change are based on these two 
equations. 
i) Numerical model for predicting topographic change using local sediment transport rate 

in equilibrium state: 
In this model the change in water depth is calculated from Eq. (3.67) using the local 

longshore and cross-shore sediment transport rates in an equilibrium state that have been 
formulated in various ways and will be mentioned in a later section. The spatial gradient 
of the bottom topography is assumed to be small and the time-averaged vertical 
distribution of sediment concentration is also assumed to be in a steady and equilibrium 
state. 

Yamaguchi and Nishioka (1983) calculated topographic changes that took place around 
the groin and the offshore detached breakwater using the local sediment transport rate 
formulated based on the flux model (Eq. (3.97)). Sawaragi et al. (1985) also conducted 
numerical simulation of the topographic change around various coastal structures in the 
field using the local longshore sediment transport rate based on the flux model (Eq. (3.98)). 

Watanabe et al. (1986) performed calculations of the bottom topography around the 
offshore detached breakwater using the local longshore sediment transport rate formulated 
based on the power model where the sediment transport caused by both waves and wave- 
induced current are taken into account. The net sediment transport rate caused by waves 
decreases in the beach deformation process. They cope with this effect by using the 
following equation of continuity of sediment transport: 

07 =1 A ~ qx + r, lqxl  qy +'yslqy (3.80) 

here, ~ is the empirical constant of a positive value. 
ii) Numerical model for the prediction of topographic change using vertical sediment flux 

as a solution to the advection-diffusion equation 
The vertical distributions of suspended sediment concentration around the navigation 

channel where the water depth changes abruptly, a river mouth with the discharged 
sediment and so on are often in the non-equilibrium state where the upward and the 
downward sediment flux are not in balance. Furthermore, even on a natural beach we have 
to take into account the non-equilibrium property of sediment concentration in the 
transporting and settling process of suspended sediment near the wave breaking point. To 
cope with such a non-equilibrium property of sediment movement, we have to evaluate the 
vertical sediment flux at the bottom by solving the advection-diffusion equation. 

Sawaragi et al. (1985) and Deguchi and Sawaragi (1988) evaluated the vertical sediment 
flux at the bottom Aq, (Eq. (3.82)) by solving the advection-dispersion equation of 
vertically and temporally averaged sediment concentration ~ (Eq. (3.82)) to simulate 
topographic change around the river mouth with discharged sediment. 
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C(x, y,t)= ~rt_h C(x, y,z,t)dz/(h +-o) (3.81) 

-'-~t- OX "t" Oy ="-~X Esx'-~X -!-'--~ esy + Aqs 

Aqs= -{(1- r )CoW,(1-u*/W,)+  C-'Wf}//(h + ~) 

(3.82) 

where Co is the reference concentration and W I is the settling velocity of the sediment in 
still water and e,x and e~y are the horizontal dispersion coefficients of suspended sediment 
in x and y directions that are expressed by using the depth averaged mean velocity U, V 
and the water depth h as follows: 

(esx,e,y)= (0.15Uh, 0.15Vh) (3.83) 

The first and the second terms in { } of the right hand side of the expression of Aqs are 
the up-ward and down-ward flux, respectively. 

According to Eq. (3.81), the settling flux is apt to be underestimated because of the use 
of the vertically averaged sediment concentration. To avoid this point at issue, Irie et al. 
(1985) proposed the 3-layer model where the sediment concentration is evaluated after 
being vertically divided into three layers. Although some formulations of the vertical 
profile of non-equilibrium suspended sediment have also been carried out, they are still far 
from the universal one. 

We have to solve a three-dimensional advection-diffusion equation with respect to 
suspended sediment concentration as a function of both horizontal and vertical locations to 
strictly take the non-equilibrium property of suspended sediment into account. However, 
it requires much CPU-time and computer capacity to obtain the numerical solution to the 
three-dimensional advection-diffusion equation. Nadaoka et al. (1988) proposed a 
procedure to solve the three-dimensional advection-diffusion equation by assuming an 
exponential vertical distribution of suspended sediment concentration. They carried out 
numerical calculation of the topographic change by both their method and the existing 
model using the local sediment transport rate in equilibrium state and pointed out the 
importance of the non-equilibrium property of sediment transport. 

Komatsu et al. (1984) and Kanayama et al. (1988) conducted a detailed analysis about 
the highly accurate numerical procedure (a sprit operator approach) for solving the three- 
dimensional advection-diffusion equation. Sawaragi et al. (1990) applied this approach to 
the numerical simulation of the shoaling process of a navigation channel. 

In the above mentioned evaluation of the non-equilibrium property of suspended 
sediment, some problems such as the estimation of the diffusion coefficient and reference 
concentration are left unsolved. The effect of the non-equilibrium behavior of a bed load 
should also be investigated in detail in the future. 

Table 3.3 shows the summary of the numerical model for predicting topographic change 
together with the sediment transport rate and quantities that have to be given for the actual 
prediction. 
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Table 3.3 Sediment transport rate and hydraulic quantities required in 
the prediction model 

Objective topographic 
change 

Deformation of beach 
profile 

Shoreline change 

Shoreline 
change+deformation of 
beach profile 

Topographic change 
caused by local sediment 
transport due to mean 
current 

Topographic change 
caused by local sediment 
transport due to waves 
and mean current 

Required sediment 
transport rate 

q~(x,t) 

Qy (y,t) 

q,(x ,y , t )  

AQy,,(i = 1, N) 

q ~ , ( i - l , N - 1 )  

qx(x ,y , t ) ,q , (x ,y , t )  

qx(x ,y , t ) ,qy(x ,y , t )  

Required hydraulic 
quantities 

H (x, t) ,h(x, t) ,u(x,z , t) , . .  

h b (y,t),O b (y, t) ,H b (y,t) 
H(x,y , t ) ,  O(x,y,t), U(x,y, t), 

V (x, y,t), rl(x, y,t), 

h b (y,t),O b (y, t) ,H b (y,t) 
H (x, y,t), rl(x, y,t ) .... 
H(x,y , t ) ,  O(x,y,t), h(x,y, t), 
U(x, y, t), V (x, y,t) 

H(x,y , t ) ,  O(x,y,t), h(x,y, t), 
U(x, y, t), V (x, y,t) 

One-line theory 
Modified one-line 
theory 

Mutlti-line theory 

3.4 Formulation of Sediment Transport Rate 

3.4.1 Modes of sediment movement and their appearance region 
Here, the mode of sediment movement that may take place in each region of the beach 

profile is explained and then the formulation of sediment transport rate is reviewed. The 
mode of sediment movement in the coast is usually divided into bed load, suspended load 
and sheet flow. Figure 3.18 shows these modes of sediment movement caused by wave on 
each section of the beach profile schematically. 

Swash zone Breaker zone Breaking point 

/t,' ,' .-* 
~ .4, 

Disappearance of n p p l e s ~  2---,-.~,,-:--_-":_., 
sheet flow movement and -- , 
sediment suspension due ~ o ~ k ~  ~ 
to wave breaking G e n e r a t i o n ~ o f  ripples, Bed load Initial 

bed load and suspended transport movement 
load transport 

Fig. 3.18 Sediment movement and mode of sediment transport on beach 

(1) Critical condition for sediment movement 
The water particle velocity at the bottom due to waves increases as water depth becomes 

shallow. The bottom shear stress also increases simultaneously. When a resisting force of 
the sand particle on the bottom becomes smaller than a wave force on it, the sand begins 
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to move. The depth of this point on the beach is called a critical depth for sediment 
movement and the critical velocity is defined as the water particle velocity at this critical 
depth. 

Various critical depths and a critical velocity for sediment movement are defined by 
many researchers from various points of views. Among them the following critical depths 
are representatives: 
1) Critical depth for the movement of projected sand on the bottom (initial movement), 
2) Critical depth for the entire surface sand particle to move, 
3) Critical depth where surface sand is moved toward the wave direction, 
4) Critical depth of perfect movement where evident changes in water depth occur. 
These critical conditions for sediment movement become shallow from 1) to 4). 

There are two methods to analyze the critical condition for initial sediment movement 
theoretically (Tsuchiya 1986). One is the static analysis method and another is the dynamic 
analysis method. In the static analysis, the critical condition is determined from the balance 
between the resisting force of projected sand on the bottom and the wave force on it or the 
balance of the resisting shear of the bed surface and bottom shear stress due to waves. 
Anyway, some problems are left to be solved concerning the depth to decide the wave 
force acting on the particle and evaluation of the effective shear stress that is directly 
exerted on the bottom. 

Various empirical but practical formulas have also been proposed in addition to these 
theoretical analyses. The representative of them applies a critical condition in a uni- 
directional flow by using the Shields number ~r that indicates the ratio between the static 
resistance force of sand on the bottom and the drag force due to waves acting on it. 

(3.85) 

where u* is the shear velocity, Ps is the density of bed material and ds0 is the mean grain 
size. 

Madsen and Grant (1976) reanalyzed the existing experimental results conceming the 
critical condition for the sediment movement. Figure 3.19 shows the result. The vertical 
axis of the figure is the critical Shields number and the horizontal axis is the sediment 
Reynolds number whose representative velocity is {(ps/cr-1)gdso} 1/2. The critical condition 
for sediment movement in uni-directional flow is shown by a full line and the experimental 
results are shown by vertical sticks the length of which indicates the variance. Although 
the experimental critical values are slightly larger than those of the uni-directional flow, 
they are expressed by the two parameters shown in Fig. 3.19. 

On the other hand, Tsuchiya (1986) proposed the following critical condition for 
sediment movement by using the parameter D*( - {(oJa-1)g/va}~/2dso}) introduced by 
Iwagaki based on the results of experiments and dynamic analysis. 

I 
0.2 -D, < 1 

0.29, -2 /3  ." 1 < D, < 20 

~c = |0.01D,1/2 :20 < D, < 125 
/ 

L0.05 .125<D, 

(3.86) 
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Fig. 3.19 Critical Shields number as a function of Reynolds number 

(2) Modes of sediment movement and their appearance region 
When a shearing force larger than the critical condition for sediment movement acts on 

the sea bed a sediment movement of traction mode (bed load transport) takes place. This 
mode of sediment movement occurs within a thickness of a few diameters of the grain size 
at the maximum. As the shear stress increases further, sand ripples are formed on the bed. 
Suspended sediment occurs by the advection of the trapped sediment in the vortex formed 
periodically around the sand ripple. In the shallow water region where incident waves 
break, a great deal of sediment is brought into suspension by the turbulence caused by 
breaking waves. Breaking waves of the plunging type suspend more sediment than 
breaking waves of the spilling type do. 

On the rippled bed, bed load sediment becomes a boundary condition of the suspended 
sediment and diffusion plays an important role. On the other hand, sediment near the wave 
breaking point is directly lifted up by the turbulent fluid motion and advection plays an 
important role. Accordingly, at some time, a time averaged concentration of suspended 
sediment in the upper layer becomes larger than that in the lower layer (Kana 1977 and 
Deguchi and Sawaragi 1984). 

When the bottom shear stress increases beyond a certain limit, ripples disappear and the 
so-called sheet flow in which sediment in high concentration is transported within a thin 
layer appears. Because a great deal of sand particles are transported in the thin layer in this 
range, fluid turbulence near the bottom is repressed and any systematic turbulence, such 
as the vortex on the ripple does not occur there. Accordingly, any obvious suspension of 
sediment does not occur in the upper region. The momentum for keeping sediment in 
motion is transferred by the violent collision between sand grains. A detailed explanation 
of sediment transport in the sheet flow is given by Sawamoto (1985) and Shibayama 
(1988). 

In the swash zone, fluid motion becomes entirely different from that in the shallow water 
region and sand movement also differs from the other part on the beach. Ogawa and Shuto 
(1982) and Sunamura (1984) investigated sediment transport in such a region through field 
measurements and two-dimensional experiments. 

The critical conditions for the occurrence of suspension or sheet flow have been 
investigated based on the experimental results. It is said that suspension begins to appear 
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when the value of u * / W i i s  greater than 1.0-1.2 (Engelund 1965 and Sawaragi and Deguchi 
1978(b)) and sheet flow appears when the value of the Shields number is greater than 0.4- 
1.5 (Nielsen 1979, Shibayama and Horikawa 1982 and Sakakiyama et al. 1984). The 
critical condition for the appearance of the sheet flow varies widely depending on the 
researchers. We have to carry out a detailed survey for these values through field 
measurements. 

3.4.2 Modeling of sediment transport 
The sediment transport rate has been formulated in various ways. Some of them are 

derived through the modeling of the transport process and others are formulated purely 
empirically. The model uses in the formulation of the sediment transport rate are roughly 
classified into a power model, a stochastic model and a flux model. 

(1) Power model 
Bagnold (1956) carried out detailed experiments and a theoretical analysis regarding the 

characteristic of shear resistance of sand particles and their motions in a uni-directional 
flow. He proposed the following expression for the rate of sediment transport considering 
that a part of fluid energy lost by the bottom friction Dloss is used to transport bottom 
material. 

i = e Dloss /U s (3.87) 

where i is the immersed weight sediment transport rate, e is the transport efficiency and 
Us is the transporting velocity. This model is very simple and clear. If we are able to 
precisely estimate the efficiency and dissipation rate of fluid energy, we can apply this 
model to both suspended and bed load sediment transport. As will be mentioned afterward, 
many sediment transport rate formulas have been proposed on the basis of this model. 

(2) Stochastic model 
Einstein (1950) expressed the transport rate of a bed load in the uni-directional flow by 

using the probability of transition from rest to move of bed material (pick-up rate) and the 
step length that is also a probabilistic variable. This model is effective to estimate the 
sediment transport rate of the bed load where only the sediment on the surface layer moves. 

(3) Flux model 
As shown by Eq. (3.66), the sediment transport rate should be expressed as flux. The 

volumetric sediment transport rate q is expressed as the product of the sediment 
concentration C and transporting velocity Us as follows: 

q = Cu  s (3.88) 

This is the most universal expression for the evaluation of the sediment transport rate, 
provided that we can estimate the concentration and the transporting velocity of sediment 
including the bed load precisely. 

The flux model is effective when the suspended sediment transport is predominant and 
the power model is effective to express the bed load sediment transport. However, both 
models include an empirical constant that should be decided based on experiments or field 
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measurements. We have to determine the values of these constants by considering the 
kinematics of the sediment transport phenomena. 

Recently many researchers have been carrying out analyses on the motion of sand grains 
near the bottom from this viewpoint. For example, Kobayashi (1982), Hino et al. (1982) 
and Kawata (1989) analyzed the motion of sand grain(s) on the bottom. Deguchi and 
Sawaragi (1984) and Nadaoka and Yagi (1990) calculated the motion of the bed layer 
assuming that the sand layer is a Newtonian fluid with a hypothetical viscosity. 
Asano (1990) analyzed and calculated the motions of fluid and sediment in it by using a 
two-phase flow theory. 

The local sediment transport rate that we have to evaluate for the prediction of the 
topographic change as shown in Table 3.3 consists of two parts. One is the purely wave 
induced sediment transport and the other is the sediment transport by the mean current. The 
deformation of a beach profile took place in a two-dimensional wave tank is caused by the 
former type of sediment transport. A large part of the so-called cross-shore sediment 
transport belongs to this category. The longshore sediment transport transported by the 
longshore current and the offshore sediment transport due to the rip current are the 
representatives of latter. Katori (1988) gave a detailed commentary on the existing 
formulas for evaluating the sediment transport rate. 

In the following, the results of the previous studies concerning the evaluation of the 
sediment transport rate are reviewed. As was mentioned before, the wave-induced cross- 
shore sediment transport, e.g., the sediment transport on the sloping beach in the two- 
dimensional wave tank decreases in the beach deformation process. Therefore, in the 
following review of the cross-shore sediment transport, some results obtained on the 
horizontal bottom are shown. As for the longshore sediment transport, the representative 
results obtained under the steady and equilibrium condition are reviewed. 

3.4.3 Cross-shore sediment transport rate 
The most widely referred sediment transport rate formula for the cross-shore sediment 

transport rate averaged over a half wave period qx is the one proposed by Madsen and 
Grant (1976). They proposed the following expression for qx based on the existing 
experimental results: 

qx/(W fdso ) =12.511t3 (3.89) 

This expression gives an average sediment transport rate for a wide range of a Shields 
number (0.04< ~f <0.6). 

Sawamoto (1985)showed that the following equation gives a more precise estimation 
of the value of qx including sheet flow: 

qx = 2.2(u*/W f ) 3 

= 
lp ,1.5 

(3.90) 

Watanabe et al. (19.80) proposed the net cross-shore sediment transport formula on the 
sloping beach based on the power model. Equation (3.91) is the proposed formulation by 
Watanabe et al. 
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qnet = a' ( llt -- lltc )llr 0"5 (3.91) 

where Vc is the critical Shields number for sediment movement and a '  is the empirical 
constant. According to Watanabe et al., the value of a '  is 7 in the region of 0.08< V <0.5 
and Kajima et al. obtained the value of 3 for a '  in the region of 0.2< V <1.3 using a two- 
dimensional model beach experiment in a large wave tank. However, as has already been 
mentioned, the net sediment transport rate evaluated from Eq. (3.91) depends on a wave 
running time. 

Bowen (1980) expressed the suspended and bed load sediment transport rate as a 
function of time in the following way on the basis of the power model: 

i~x = e, CaPlul u 3 / ( w  f - u tan 13) (3.92) 

ibx = ebCdP U3/(tan dp- u tan fl/lu[) (3.93) 

where isx and ibx are the immersed weight suspended and bed load sediment transport rate, 
es and eb are the transport efficiencies of suspended and bed load, Cd is the drag coefficient, 
tanfl is the bottom slope and r is the angle of repose of the bed material. 
He investigated the effects of mean current, water particle velocity due to subharmonic 
wave motion and the velocity of the turbulent component in wave motion on the net 
sediment transport rate based on Eqs. (3.92) and (3.93). 

Kawata (1990) solved an equation of motion of a sand particle on the sloping bottom and 
derived the net sediment transport rate in equilibrium state by applying the conservation 
of momentum of sand grains. He obtained the expression for evaluating sediment transport 
on a sloping beach. 

3.4.4 Longshore sediment transport rate 
Various formulas for estimating the longshore sediment transport rate have been 

proposed. Many of them are based on the power model or the flux model. 

(1) Longshore sediment transport rate based on the power model 
Komar (1977) proposed the following expression for the local longshore sediment 

transport rate using the bottom shear stress under waves and current derived by Bijker: 

qy = a l ( C f V  2 +0.5 fwCtbp 2 ) (3.94) 

where Cf and fw are the friction factors due to mean current (longshore current) of the 
velocity V and waves and al is the constant. The value of constant a~ is determined by 
equating the integrated value of Eq. (3.94) in the cross-shore direction and the total 
longshore sediment transport rate calculated from the formula proposed by Komar and 
Inman (1970)that will be mentioned later. 

Walton and Chiu (1979) applied the power model of Bagnold to the longshore sediment 
transport rates and derived the following expression for the suspended and bed load 
transport rate: 
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ebsin20 a QE2V2{25n: ~ , (1-K) tanf l tP  l 1 
qby = 2 tan ~ 16 fw xb (Ps - p)g(1 - ~) 

es ~ cos O o i,~3/2{25n: ~ ' (1-K)tanf l}P l 1 

qsy = Wf  16 f w Xb (Ps - P ) g ( 1 -  A') 

(3.95) 

where I2( = V/Vo) is the nondimensional velocity of longshore current normalized by the 
longshore current velocity at the breaking point without the lateral mixing Vb, X ( = X/Xb) 
is the nondimensional distance from the mean shoreline normalized by the width of breaker 
zone Xb, K is the quantity concerning the gradient of the mean water depth and PI is the 
breaking wave energy flux in the longshore direction. The values of Vb, K and PI are 
expressed as 

V a = (5rc/16)(~,/f w)(1 - K)tanfls in20 b 

K =  ~,2 (3-2sin2 00)/{8 + ),2(3-2sin2 0o) } 

Pt = (pg/16)H62 4gD6 sin206 

(3.96) 

where % is the ratio of wave height and water depth at the breaking point, Do is the total 
water depth at the wave breaking point and Ob is the breaking wave angle. 

Watanabe et al. (1980) derived the sediment transport rate formula by using the effective 
shear force that is defined by the excess shear stress due to waves and current from the 
critical shear stress based on the power model. The following expression is the longshore 
component of the sediment transport rate: 

qy = a2FcV 

qy = a3Fwu*sinO 

: transport rate by mean current 

�9 transport rate by wave orbital motion 
(3.97) 

where F~ = A(fwV2+u*E-u*cr2)/g, u .2 = fw~bp 2 , Cta and a3 are the empirical constants( - 1 and 
-5), U*~r is the critical shear velocity Fw - (u*E-u*cr2)(1 +ct'lrl)/g, a' is the empirical constant 
and r is the local second derivative of the beach profile. 

(2) Longshore sediment transport rate based on flux model 
Tsuchiya and Yasuda (1978) expressed the local longshore sediment transport rate using 

the time and depth averaged sediment concentration C and the longshore current velocity. 

qy = CVD 

C = 0 . 2 ( p , / p ) ( 1 - ~ c / ~ )  
(3.98) 

where ~c is the critical Shields number and D is the total depth. 
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The author et al. proposed formulas to estimate the local longshore sediment transport 
rate by the bed load and suspended load separately based on the flux model. The migration 
speed of the bed load was estimated by solving the motion of the bed load layer (Deguchi 
and Sawaragi 1984) and the concentration of the bed load was determined from the bed 
load transport rate proposed by Sleath (1978). Concentration of suspended sediment was 
determined using the reference concentration Co and diffusion coefficient Kz obtained from 
the experiments. 

qsyqby : 47Irad~o (lltm - lltc )3' 2 (Vlubp ) ~ CVdz 

_ {Co(K.iw,)v 
- Comin{KziWi,D} V 

�9 outside breaker zone 

�9 in breaker zone 

(3.99) 

where ~m is the Shields number defined as (fw/2)Ffl{(aJa-1)gdso} and min{ ,  } means the 
minimum value of the quantities in { }. The value of Fb, the diffusion coefficient and the 
reference concentration are given by the following equations: 

F b = fibp 2/2 + (2/~)fibpVsin 0 + V2/4 

2 1/2 Kz/Wy=O.O21exp{O.5(fwFb/2) } 'cgsuni t  

C o = 0.347, 
0"688fibp2 } 

1.13(Ps/P-1)gWfT 

(3.100) 

(3.101) 

(3.102) 

(3) Other formulation 
Bijker (1971) proposed the following local longshore sediment transport rate for bed 

load and suspended load based on his own formulation of the bottom shear stress due to 
waves and current: 

G 
-0" 27(Ps/P - 1)gds~ i 

qby = 5d5~ V--~-eXPce ~c "rcu{1 + (~ab/V) 2 } J 
qsy = 1.83qby {11 log(33 D/k s ) + 12 } 

�9 MKS unit (3.103) 

where Ce is the Chezy coefficient ( - 181og(12R/ks), R:hydraulic radius), ~ = Ce(f32g), rc, 
- pg(V/Ce) 2 and/1c - {log(12R/ks)/log(12R/3dgo)} 3/2. 11 and 12 that appear in the expression 
of suspended sediment transport rate are given by the following integration: 
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i1 0"216(ks~D) z'-' ' (1- y)Z'dy 
= (l_ks/O) z• ~ks/O~, y ) 

0.216(ks/D)Z,_l ( ~ ) z "  
12= (l_ks/D) z* ~ks/O 1ogydy 

(4) Total longshore sediment transport rate 
Total longshore sediment transport rate should be calculated by integrating the local 

longshore sediment transport rate in the cross-shore direction. To do so, we have to 
estimate many hydraulic quantities for the estimation of local longshore sediment transport 
rate. We are not always required to evaluate the local longshore sediment transport rate 
when we carry out the prediction of topographic change that will take place for a long time. 
In such cases, it is usually sufficient to evaluate the total longshore sediment transport rate 
as a function of less variables. A great number of formulations of the total longshore 
sediment transport rate have been proposed. Among them, two representative formulas are 
introduced here. 

Komar et al. (1970) measured longshore sediment transport rate by using tracers at two 
coasts of different characteristics. Based on the measured results, they proposed the 
following formula for evaluating the volumetric total longshore sediment transport ra te  Qy: 

Qy = o.7vpl/{(o,/o-1)8(1- )} (3.104) 

In their original formulation, Qy is expressed as the immersed transport rate Iy. 
Equation (3.104) is rewritten using the relation ly = Qy{(OJtr-1)g(1-A)}. A value 0.77 in 
Eq. (3.104) is a nondimensional empirical constant and PI is given by Eq. (3.96). 

The empirical formula that has been used for a long time is as follows: 

ay- a3Pl (3.105) 

The value of constant a3 varies from place to place. 
Iwagaki and Sawaragi (1962) applied the Kalinsk-Brown type formula in the uni- 

directional flow to the longshore sediment transport rate and proposed the following 
expression: 

QY =31"7gl/2 '16(p s -1 )  ds~ 

l (_~)2/3 ( LbHb2 ) 3/2 
* " MKS unit COS0b (2/[)2/3 L 0 

(3.106) 

where L0 is the wavelength in deepwater and L b is the wavelength at the wave breaking 
point. 
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A characteristic of this expression is that the effect of the bottom slope, sediment size and 
characteristics of the incident wave on the total longshore sediment transport rate are taken 
into account. 

It is worthwhile to compare the evaluated results from the various formula listed above 
under the same conditions. Figure 3.20 illustrates the example of such a comparison. The 
total longshore sediment transport rate shown in Fig. 3.20 was calculated on the long 
straight beach of the uniform slope ( tanf l -  1/10-1/50) under the conditions of deepwater 
wave height lm, deepwater wave steepness 0.01-0.08 and incident wave angle 10~ ~ The 
mean size of the bed material is also changed between 0.01cm-0.5cm. 
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Fig. 3.20 Comparison of calculated total longshore sediment transport rate 

Wave transformation on the beach was simulated numerically by solving the difference 
equation of conservation of wave energy at the grid point. The wave-induced current 
(longshore current) was also obtained numerically by solving the time and depth averaged 
momentum and mass flux conservation using the ADI method. In the numerical 
simulations, wave transformation and wave-induced current were calculated iteractively to 
take the interaction into account. The details of the procedure will be mentioned in the 
following section. 

In Fig. 3.20, the total longshore sediment transport ra te  Qy, except for the values of Qy 
of Eqs. (3.104) and (3.106), is evaluated by integrating the local longshore sediment 
transport rate in the cross-shore direction. A horizontal axis of the figure is a value of PI 
calculated from Eq. (3.96). The difference between the maximum and the minimum 
estimations for the same value of PI is quite large. Therefore, when we apply the various 
formulas listed above, sufficient attention must be paid as to the applicability condition of 
each formula. 
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3.4.5 Reference concentration as a boundary condition for suspended sediment 
Here, the reference concentration of suspended sediment that is required to determine the 

vertical sediment flux in the prediction of topographic change under non-equilibrium 
conditions and to fix the vertical profile of time averaged suspended sediment 
concentration is explained. Extensive research has already been carried out concerning the 
reference concentration of suspended sediment and some expressions for estimating the 
reference concentration have already been proposed. 

Fredsoe (1985) expressed the reference concentration at the bottom (at the crest level on 
the rippled bottom) as a function of the Shields number on the basis of the experimental 
results. The proposed relation between the reference concentration Co and the Shields 
number is shown by a solid line in Fig. 3.21. 
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Fig. 3.21 Relation between reference concentration and Shields number 

Sawaragi et al. (1985) also proposed an expression for the reference concentration at 
the same reference level as defined by Fredsoe in the form of Eq. (3.102). We can rewrite 
Eq. (3.102) using the Shields number in the following form: 

C O =0.4911tl'77{dsol(WfTfw)} ''77 
(3.107) 

Values of Co for various values of {dso/(W:Tfw)} are also shown by broken lines in Fig. 
3.21. 

According to the expression of Fredsoe, the value of Co is uniquely determined by the 
Shields number. However, the expression of Sawaragi et al. indicates that the reference 
concentration depends on the Shields number and the value of {dso/(W/Tfw)}. In the field, 
the size of bottom material is relatively small and the period of incident waves is long. 
Therefore, the value of the latter parameter becomes small compared with that in the 
laboratories. It is generally recognized that the suspended sediment concentration in the 
field is somewhat smaller than that measured in the laboratory. The expression of Sawaragi 
et al. coincides well with this recognition. 
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Skafel and Krishnappan (1984) also proposed Eq. (3.108) based on the assumption that 
the thickness of the bed load layer is 3 times larger than the mean grain size and their 
expression for the bed load transport rate qb. 

C o = qb/(3dsofi6p)= 3.33v2(fw/2) 1/2 (3.108) 

3.5 Predict ion of  Wave  Transformation and Wave- induced Current  

Various information is required in the prediction of beach deformation depending on the 
type of prediction model. We can predict changes in the shoreline position from the 
longshore distribution of the total longshore sediment transport rate that is evaluated from 
the wave conditions at the wave breaking point. We can also calculate the change in water 
depth from the gradient of local sediment transport rate or the vertical sediment flux at the 
bottom for predicting nonequilibrium suspended sediment flux. To evaluate these 
quantities, we have to know the local condition of waves and mean currents such as wave- 
induced currents, tidal currents and so on. 

Required quantities for each prediction model were listed in Table 3.3. In this section 
some representative numerical procedures for predicting wave transformation and wave- 
induced currents are reviewed. 

3.5.1 Predict ion of  wave transformation 
Wave transformation is usually calculated based on the concept of conservation of wave 

energy (wave action) or momentum. 

(1) Wave transformation based on conservation of wave energy (or wave action) 
As was already shown in Chapter 1, when we neglect the mass transport due to waves, 

wave energy conservation is expressed as follows: 

0E 

Ot 

3{E(cg cosO + U)} 3{E(cg sinO + V)} 
I + 

& Oy 
3U 8V OU 8V 

+ Sx --g + Sxy-g + Sy, - g  + Syy-g - -oi  

(3.109) 

where E = pgH2/8, 0 is the wave direction, c~ is the group velocity, Di is the energy 
dissipation rate, S=, Sxy, Syx, Syy are the radiation stress and U = (U, V) is the depth averaged 
mean current velocity vector. 
A wave number vector k( = kcos0, ksin0) and the wave direction 0 are evaluated from the 
conservation of wave number and the irrotational condition of the wave number 

3k 
o t  + v(ack) + k. v ) :  o (3.110) 

V •  (3.111) 
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In the steady state, Eq. (3.110) is rewritten as 

tro = tr + kxU + kyV, tr 2 = gk tanh kh (3.112) 

where tr0( = 2~T)  is the angular frequency in still water. 
On the other hand, the conservation of wave action E/cr is expressed as follows 

(Bretherton 1969). 

0 
5 i ( e / o )  + v { (v + = 0 (3.113) 

There are two numerical procedures for evaluating wave transformation from these 
equations. One is the so-called wave ray method where Eq. (3.109) (or Eq. (3.113)) is 
solved along the characteristic curve (wave ray) determined by the following equation: 

dX dY 
d-7 = Cg cos 0 + U, ~ = Cg sin 0 + V (3.114) 

The wave direction 0 and the wave number k (group velocity cg) are evaluated from Eqs. 
(3.111) and (3.112). In another method, Eq. (3.109) (or Eq. (3.113)) is solved on grid 
points that cover the whole objective region to avoid the problem caused by ray crossing. 

We often use a breaker index proposed by Goda (1975) to determine the wave breaking 
point. Various formulations have been proposed for estimating the energy dissipation rate. 
Some of them are listed in Table 3.4. 

Table 3.4 Example of expression of energy dissipation rate 

Battjes 
(1979) 

Mizuguchi et al. 
(1978) 

Izumiya et al. 
(1983) 

Sawaragi et al. 
(1984) 

Expression of dissipation Model 

4to ~ L 
Yb = 0.7 + 5tanfl 

pgH28 4k2Veb I l'k (-~ - ~r ) } ~b 
5 g tan flb 

v,~ : 8 K : ~ / 1 - r , / r b ( 1  + 3,:/2) 

flo(M~_M2j/2~ E 3'2 (2__~__1)'/2 
pl/2D3'~ 

:(c, 

O.18Fp-I'2D-3/2E 3/2 

F = 5.3 - 3.3 ~o - 0.07/tan fl 

Bore model, 
D: total depth (= h + ~), 7~ = H b / Db 
B: constant. Iwagaki et al. (1981) proposed 
the empirical expression for the value of B. 

Eddy viscosity model, 
v~: eddy viscosity, Z: ratio of wave height 
to depth in reformation region, fib and k~: 
bottom slope and wave number at breaking 
point. 

Turbulent model, 
M~ : value of M" in the reformation 
region, 
flo: constant, 

Turbulent model, 
~o: surf similarity parameter, 
tanfl > 1/60 
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These procedures were originally developed for predicting wave transformation due to 
shoaling and refraction. We can predict wave transformation in a wide region economically 
by the wave ray method. However, we cannot calculate wave transformation including the 
effect of wave diffraction. Some attempts have been done to modify these procedures for 
predicting wave transformation including wave diffraction (e.g., Southgate 1982). 

(2) Prediction of wave transformation based on conservation of momentum 
- time-dependent mild-slope equat ion-  

As was shown in Chapter 1, numerical procedures for predicting wave transformation 
including shoaling, refraction and diffraction have also been developing based on the 
conservation of mass and momentum flux the fundamental equation of which is referred 
to as an unsteady mild slope equation. This procedure possesses the same accuracy as a 
mild slop equation of Berkoff (1972) and the same applicability to the arbitrary boundary 
as the numerical wave analysis method proposed by Ito and Tanimoto (1971). The 
fundamental equations of the unsteady mild slope equation expanded to the wave and 
current coexisting field are of the following form (Ohnaka et al. 1988): 

' +oc2V -fdQ =0 
Ot (3.115) 

a(Orlloat)+ V(Ur/) + V. (nQ)= 0 

a = 1 + (,r0/,r)(n- 1) 
(3.116) 

where Q is the vector of flow rate per unit width, n = Cg/C and fd is the coefficient 
concerning the momentum dissipation due to wave breaking expressed as follows: 

fd =adtanhfl{ (g/h)(IQI/ar -1)} 1'2 "within the breaker zone of I Q I/Qr>l 

fd = 0 �9 outside the breaker zone and within the breaker zone of I QI/Q~<I (3.117) 

where Qr ( = "Yd(gh3) 1/2) is the critical flow rate per unit width in the reforming region, ad 
and )'d are the nondimensional coefficients of about 2.5 and 0.25. 

3 . 5 . 2  C a l c u l a t i o n  o f  w a v e - i n d u c e d  c u r r e n t  
Wave-induced current is usually calculated based on the time and depth averaged 

equations of mass and momentum flux as shown in Chapter 1. These equations are the 
following forms: 

tgU(h + ~) OV(h + ~) 
o~ -~ + =0  (3.118) 
0t 0x 0x 

~ + U  +V . . . . .  + +~x +Rx (3.119) & - ~  --~-goax p(h+~) - ~  
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~ + v  + v =-gay p ( h + ~ )  + - - ~ + ~ y  +Ry (3.120) 

where (lrx, lry) and (Rx, Ry) are the time averaged bottom shear stresses and lateral mixing 
terms in x and y directions. 

Under the steady condition of oblique wave incidence on a long straight beach with 
parallel contours, the time derivatives and gradient in the longshore direction disappears 
and consequently the cross-shore mean current becomes 0. In such a condition, gOg/oax and 
tgs~x / oax/{p(h + ~)} are in balance in the cross-shore direction and 3Syx/oax / {p(h + ~)}, "ry/ 
{p(h + ~)} and Ry/{p(h + ~)} are in balance in the longshore direction. 

Wave-induced current as a sediment transport flow is predicted by solving Eqs. (3.118)- 
(3.120) numerically. An ADI method is usually applied for solving these equations in a 
time domain. To find the numerical solution of steady state wave-induced current, an 
implicit scheme, that has the great advantage of stability and convergence, is usually used. 
In these calculations, it is not practicable to evaluate the time averaged bottom shear stress 
in the strict sense according to the method mentioned in 3.2. Approximate expressions of 
the time averaged bottom shear stress with a friction factor, mean current velocity and 
water particle velocity due to waves (e.g., Longuet-Higgins 1970) are usually used in the 
calculation of wave-induced current in a wide region. 

Various expressions of the lateral mixing term have also been proposed. Most of them 
are diffusion type expressions and some of them are listed in Table 3.5. 

Table 3.5 Various expressions of lateral mixing terms and a lateral mixing coefficient 

Expression of lateral mixing terms 

Bowen (1969) R = ed2V/dx 2 

Longuet-Higgins d (  ~ )  
(1970) R ph = --~ peh 

 o ton 
(1970) R dx ~. 8n: 2 ~ c~ 0 -  

James (1974) Rph = --~ 

Jonsson et al. ~ (  ~ ]  
(1974) R ph = phe m 

Battjes (1975) 

Kim et al. 
(1986) 

Rt2V/dx 

R = ] 0  :O<h<hb 

L :h~ <h 

Lateral mixing coefficient 

e - const. 

e = Nxa/-gh 

H 2 gT 
2 E = ~ ~ C O S  0 

8~: 2 h 

[Na/--~ h/tan fl 

,=j 
[ N ~  h~2/(htanfl) 

L :h,<h 

4a2 2 

E= 7 b COS /9 

e=M(57r~/16) '/3 

e = AFI/3),S* x~fgD 

t = 5.3 - 3.3~ - 0.07/tan fl 

S* = (-0.413~o + 0.98) xtanfl 

Remarks 

0<N <0.016 

0: Wave direction 

tan fl: Bottom slope 

ab: Water particle 
excursion at bottom 

M : const, 

~, = H/(h + ~) 

A: constant, S*: modi- 
fied bottom slope 
where the mean 
water level is taken 
into account, 
tanfl > 1/60 



199 

3.6 Prediction of Topographic Change Caused by Non-equilibrium Suspended 
Sediment Transport 

In this section, two examples of the prediction of topographic change caused by non- 
equilibrium suspended sediment transport are shown. One is the deposition pattern of 
discharged sediment along a coast from a river and the other is the topographic change 
around a navigation channel. In such cases, topographic change takes place according to 
the non-uniformity of sediment transport which is brought about by the abrupt changes in 
current velocity and wave characteristics due to the geometry. Especially, when suspended 
sediment is included, the non-equilibrium state of suspended sediment has to be analyzed 
accurately. 

(1) Numerical simulation for predicting deposition pattem of discharged sediment from a 
river mouth 

Deguchi and Sawaragi (1988) proposed the numerical procedure for predicting the 
deposition pattern of discharged sediment and examined the applicability of the procedure 
using the experimental results that will be shown in 5.8 (Figs. 5.31 and 5.32). They 
assumed that discharged sediment is composed of wash load and bed material load in an 
equilibrium state that was expressed by the local sediment transport rate proposed by Rijin 
(1985). Then, the deposition of discharged sediment takes place by the spatial gradient of 
the local sediment transport rate and settling of wash load AQs and the rate of topographic 
change is expressed as follows: 

 ii qx qy i ~ =  + +AQs (3.121) 
o3t 1-& o~x o33, 

The value of AQs is estimated by using the fall velocity W I and the depth averaged 
concentration C in the following way: 

AQ s = - W f C  (3.122) 

The value of C is calculated by solving the following depth and time averaged advection- 
dispersion equation (Eq. (3.82)): 

3C u 3C 3C 32C 32C 
-'~" -[- ~ '[ V - -~  = ~-,sx - ~  -[- ~-,sy o~y 2 (3.123) 

A boundary condition of Eq. (3.123) is given by the concentration at the upstream end 
of the calculation region Cor. The depth averaged velocity (U, V) of discharged flow is 
obtained by solving fundamental equations for the wave-induced current mentioned in 
3.5.2 (Eqs. (3.118 -3.120)) with the boundary condition given at the upstream side of the 
river numerically. Figure 3.22 illustrates an example of the calculated flow pattern around 
the model river mouth shown in the same figure. 
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Fig. 3.22 Calculated flow pattern around a model river mouth 

Figure 3.23 shows the comparison of measured and calculated deposition patterns of 
discharged sediment in the case of fine sand (ds0 = 0.015cm). Figures (a) and (b) are 
the measured and calculated deposition patterns. Figure(c) is the calculated deposition 
pattern caused by the wash load and bed load. Fig. (d) is the calculated topographic 
change caused by a suspended load. 

x(m) 
3.0 

2.0 

1.0 

(a) 

Unit , 
c m  ~ 

-~ I . . . . .  

(a) Measured 
deposition pattern 

(b) 

I J 

(b) Calculated 
deposition pattern 

_ BWca; lhla~ ad, _Sus pen de d load 

(e) [ (~1-  (d) 

/ / - 

' o.1 - 

Unit / ~ 1 ~  

eU--mnii5 /0 [0.5y(ml cm,_0.51 i)fl~.~0.~y(m: 
(c) Deposition of wash load (d) Deposition of 

and bed load suspended load 

Fig. 3.23 Comparison of measured and calculated deposition patterns of discharged 
sediment ((a): measured deposition pattern, (b): calculated deposition pattern, 
(c): calculated deposition pattern caused by a wash load and bed load, (d): calculated 
deposition pattern caused by a suspended load) 
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On the other hand, Fig. 3.24 illustrates the comparisons of measured and calculated 
topographic change along the center line of the river in the case of fine sand (dso - 
0.015cm, Fig. (a)) and coarse sand (dso - 0.035cm, Fig. (b)). 

- - 1 0  

~-~ 0 
r 

- - 1 0  - 

- - 2 0  - -  

- 1 0 0  

___v_ 

R i v e r - m o u t h  
( a )  d s 0 = 0 . 1 5 m m  

R i v e r - m o u t h  

C a l .  

�9 M e a .  

(b )  d 5 o = O . 3 5 m m  

i i t i i i i i I i 

0 100 2 0 0  3 0 0  4 0 0  

Fig. 3.24 Comparison of measured and calculated topographic change 
along the center line of the river ((a): fine sand, (b): coarse sand) 

From these figures, it is judged that the proposed numerical procedure can reproduce the 
measured deposition pattern fairly well. 

(2) Topographic change around a navigation channel 
The shoaling process of the channel caused by waves and currents is discussed in a two- 

dimensional problem where waves and currents cross the channel at a right angle. In such 
a case, vertical distribution of nonequilibrium suspended sediment concentration plays an 
important role in the topographic change. Sawaragi et al. (1991) proposed the numerical 
procedure for predicting topographic change where the two-dimensional advection- 
diffusion equation is solved to estimate settling flux of suspended sediment accurately by 
applying a split operator approach. 

Vertical sediment flux that causes topographic change around the channel is 
schematically illustrated in Fig. 3.25 and the change in water depth is expressed by Eq. 
(3.124) in the coordinate system shown in Fig. 3.25. 

f-W'~ves Region V 

Fig. 3.25 Coordinate system and vertical sediment flux around the channel 
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Oh=I- '~AQ = 1 (Qu-Qa) (3.124) 
oat ( l - Z )  ( l -X)  

where Qu and Qa are the upward and downward sediment flux at the bottom and are 
estimated from the suspended sediment concentration in nonequilibrium state C(x,z). The 
nonequilibrium suspended sediment concentration is estimated by solving the following 
two-dimensional advection-diffusion equation with the split-operator approach: 

3C o~' o~' O2C O2C 
--~ + u'--~ + w---~= K x ' - ~  + Kz oaz 2 (3.125) 

where Kx and K~ are the diffusion coefficient. 
The proposed numerical procedure consists of the following three parts: 

1) Calculation of flow fields; A time averaged current velocity is calculated based on the 
usual time and depth averaged equations of wave-induced currents. Driving forces of 
the currents are the gravity (slope of mean water surface) and radiation stresses. Wave 
height distribution is calculated from the equation of energy conservation in a steady 
state. These two groups of equations are calculated iteratively until the current 
velocity, mean water displacement and wave height reach the steady state. 

2) Calculation of sediment flux; Flux of suspended sediment is estimated from the 
concentration of suspended sediment obtained numerically by the above-mentioned 
procedure. In the calculation of concentration, the vertical distribution of the mean 
current is estimated from the vertically averaged mean current velocity by assuming a 
logarithmic distribution. The rate of bed load sediment transport is calculated from the 
modified Rijn formula which was originally proposed for the prediction of the rate of 
bed load in the unidirectional flow. 

3) The rate of topographic change; The topographic change is evaluated from the spatial 
gradient of the bed load and the difference between upward and downward fluxes of 
suspended sediment. 

The applicability of these procedures were verified through two-dimensional movable 
bed experiments with the bed material of ds0 - 0.012cm. Experimental conditions were as 
follows: the mean current velocity U and the depth at the channel approach were 19.4cm/ 
s and 20cm respectively; the height and period of incident waves were 8cm and 1.4s 
respectively; and the depth, the width and the side slope of the channel were 30cm, 2m and 
1/5. It is confirmed that the measured concentration of suspended sediment along the 
channel section can be predicted well by the proposed procedure. 

Figure 3.26 is the comparison of measured and calculated topographic changes of the 
channel section. "SOA" shown by a broken line in the figure is the result of the present 
numerical model. The result shown in Fig. 3.26 is obtained by using the depth and time 
averaged suspended sediment concentration (a solution to Eq. (3.82)) instead of the local 
concentration (Eq. (3.125)). The result illustrated by Fig. 3.26 is obtained by using the 
local sediment transport rate in an equilibrium state where the vertical distribution of 
suspended sediment concentration is estimated by solving the so-called vertical one- 
dimensional diffusion equation in a steady and equilibrium state. 

We can judge that the measured topographic change is most closely simulated by the 
procedure using the split operator approach. 
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Fig. 3.26 Comparison of measured and calculated topographic change in 
water depth around the channel 
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Chapter 4 Structures for Wave Control 

4.1 Wave Control Mechanism 

The water surface profile of a progressive monochromatic wave is generally described 

1 Hcos{(kcosO)x + (ksinO)y-crt +e} (4.1) 

in which, r/ is the water surface profile, H is the wave height, k ( -2~L)  is the wave 
number, L is the wavelength, 0 is the wave direction, cr (-2~/T) is the angular frequency, 
T is the wave period, e is the phase lag, t is the time, x and y are horizontal axes 
perpendicular to each other, k and or satisfy the dispersion relationship (Eq. 1.33). 

Since the water surface profile comprises the four physical quantities (1) wave height, 
(2) wave direction, (3) wave period, and (4) phase lag, wave control implies controlling 
these four basic physical quantities. Hitherto, we have optimized the use of such physical 
phenomena as (1) refraction, (2) diffraction, (3) reflection, (4) shoaling and breaking, and 
(5) friction and large-scale vortex formation and shedding in order to control waves from 
an engineering viewpoint. At present, we have reached a stage of being able to control the 
wave height, wave direction and wave phase to some degree. However, wave period 
control has yet to be achieved. This is one of the important problems facing us in the 
future. 

Coastal engineers have chiefly devoted themselves to investigating and developing 
coastal and offshore structures from the viewpoint of "how to efficiently attenuate the 
incident wave height". Very recently, however, owing to the increased social concern 
regarding the utilization of clean ocean energy, multi-purpose utilization of controlled sea 
areas, and the increasing need for marine recreational activities, new policies on "how to 
effectively utilize sea waves" and "how to converge waves to some specific location and 
break them" have been stressed. 

4.1.1 Wave control by wave energy dissipation 
Since wave energy is proportional to the square of the wave height, wave height can be 

attenuated by converting wave energy into another type of energy. Some parts of wave 
energy can be transformed into heat and sound energy through the viscosity of water and 
air using the mechanisms of friction, vortex formation and shedding around structures, jet 
mixing and wave breaking. Maximum energy decay is achieved by wave breaking. 
Utilizing these mechanisms, we have succeeded in decaying the height of an incoming 
wave. 

Most coastal and harbor structures are furnished with a wave energy dissipation function. 
It is well known that large-scale vortex formation and shedding around the leading wall 
edge of a curtain-type breakwater, jet mixing with the pipe-type breakwater, friction and 
wave breaking with the sloping rubble-mounted breakwater, and friction and permeability 
of the submerged breakwater with a wide crown all play an important part in attenuating 
incoming waves vis-a-vis their respective breakwater types. 
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4.1.2 Wave control by phase interaction 
Waves can be controlled by utilizing the phase lag among the incident, reflected, and 

transmitted waves. Valembois (1953) first attempted to decay waves using the "resonance" 
phenomenon. Valembois (1955) attempted to decay a transmitted wave height to zero by 
arranging a resonant basin in a wave propagating channel, as shown in Fig. 4.1. The 
resonant basin had a width and depth of L/2 and L/4, respectively, and these dimensions 
were determined in order that the reflected wave at the resonant basin should be 180 ~ out 
of phase against the incident wave phase, resulting in no waves being transmitted due to 
phase interaction. 

~ \ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x  

Wave 

Fig. 4.1 Wave control method by arranging a resonant basin 

In the case of a structure with multi-reflection sources, reflected waves caused by the 
multi-reflection sources, in general, have mutually different phase lags and propagate in a 
uniform direction. Assuming that two linear monochromatic waves r/, and 02 with the same 
wave period propagate in the same direction and the linear super-imposition principle is 
applied, the combined profile r/c of the two waves is given by 

1 n 1 (kx trt+ e2) r L :  771 + 02 = -~ , cos(kx- a t  + el)+-~ H 2 cos - (4.2) 

When the two waves are in phase (el-e2) 

r/~ = 1 (H~ +//2) cos(kx- trt+ el) (4.3) 

On the other hand, when the phases are shifted 180* (e,-e 2- ,r) 

1 
r/c = T (HI-  H2) cos(kx - a t  + el) 

2 
(4.4) 

Figure 4.2 clearly shows that r/c in the case of "in phase (el - ea)" is larger than in the case 
of "re out of phase (el - e2 = n: )" (Ippen 1966). This would suggest that the wave height 
can be attenuated by devising a structure in such a way as to generate two progressive 
waves whose phase lag is n. The low reflection quaywall with air-chambers (Sawaragi et 
al. 1973) and the multi-slotted wall-type structure are cited as typical wave energy- 
dissipating structures utilizing phase interaction. 
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4.1.3 Wave control by reflection 
Wave direction and height can be controlled by utilizing wave reflection. The control of 

the propagation direction of sea waves is based on the same principle as for ray reflection. 
When a wave advances toward a structure with angle 0 to the normal structure surface, as 
shown in Fig. 4.3, the wave is reflected back with the same angle 0. Therefore, utilizing 
this principle, the wave propagation direction can be changed by varying the angle of the 
structure's front face against the incident wave angle 0. 

. T 
0 ~ 2~z 3~z 4~r 

//////////////////////////////////)'2 
Structure 

Fig. 4.2 Linear super-imposed profile of the 
two progressive waves with the same period 

Fig. 4.3 Direction of reflected waves 

The wave height can be controlled by changing the reflection coefficient KR (ffireflected 
wave height/incident wave height) of the structure. Wave height control of a partially 
standing wave and transmitted wave through porous structures has usually been done by 
adjusting the reflection coefficient KR of the structures. The reflection coefficient KR is 
generally dominated by surface slope, roughness and porosity, and geometrical slope of the 
structure as well as by the still water depth and incident wave conditions. An outline of 
the reflection coefficient KR for various structures is given in Table 4.1 (Goda 1985). 

Table 4.1 Reflection coefficients for various structures 

Type of Structure Reflection Coefficient 

Vertical wall with crown above water 
Vertical wall with submerged crown 
Slope of rubble stones (slope of 1 on 2 to 3) 
Slope of energy dissipating concrete blocks 
Vertical structure of energy dissipating type 
Natural beach 

0.7~1.0 
0.5~0.7 
0.3~0.6 
0.3~0.5 
0.3~0.8 

0.05~0.2 

4.1.4 Wave control by wave direction change 
The wave direction and wave height can be controlled by utilizing the principles of the 

wave refraction and diffraction phenomena. A wave obliquely advancing to the current or 
depth contour has the nature of changing its propagation direction, following the 
"refraction principle". 
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It is well known within linear wave theory that when a wave propagates obliquely to the 
coast with parallel depth contour, the wave experiences refraction. When the wave with an 
incident angle 01 at the depth hi encounters a change of water depth, its propagation 
direction is changed from 0~ to 02 at the depth h2, based on the Snell law, as shown in Fig. 
4.4. 0~ and 02 satisfy 

sin 01  _ sin 02 
---~---~ - ---~2 (4.5) 

in which Cl and c2are the wave celerities at depths hi and h2, respectively. 

. . . .  8 9 - - - ~ - - -  

,///.-,N,/,-/.!/,/,,H;~J V 
/ , P T / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. 4.4 Direction of refracted waves 

The wave height is also controlled by wave refraction, since the wave height increases 
in sea areas where the wave ray converges and decreases in areas where the wave ray 
diverges. However it should be noted that the structure should be submerged and its 
representative length should be at least several times the length of the incoming wave, in 
order to make the best use of the refraction phenomenon. Hitherto a semi-spherical shoal 
and a curved shoal have been investigated from the viewpoint of utilizing wave power. 
Very recently, research and development of technology using a submerged sloping plate 
type breakwater has become an exciting topic in relation to new waterfront development. 

Wave direction and wave height can also be controlled by utilizing the wave diffraction 
phenomenon. It is well known that waves propagate to the shadow area behind an island 
or a long breakwater, like a ray, following the Huygen principle. The diffracted wave 
propagates in all directions like a concentric circle, and the magnitude of the wave 
direction change and wave height decay in the shadow area becomes remarkable. The 
offshore breakwater, successfully employed as a countermeasure against beach erosion, the 
shape of which is a tombolo, owes its function to wave diffraction. 

The diffracted wave height decays with wave propagation. The wave height distribution 
of the diffracted wave around the structure is theoretically calculated using the potential 
theories (Penny et al. 1952), (Putnam et al. 1948). They require, however, complicated 
numerical calculation, since the potential theories include the Fresnel integral. To avoid 
this complicated calculation, the diffraction diagrams are well prepared, enabling easy 
estimation of the diffracted wave height. 



215 

The finite amplitude wave usually generates the wave-induced current. The wave- 
induced current is also closely connected with the wave propagation direction, and 
therefore the velocity and the flow direction of the wave-induced current can be controlled 
by control of wave direction. Since a wave-induced current is closely connected to 
sediment transport, convection and diffusion of materials, marine products and ecological 
systems, and wave direction control technology would have a high possibility of being able 
to develop a "mezzo-scale engineering" that systemizes marine physics, chemistry and 
biology. 

4.1.5 W a v e  control  by frequency  change  
Shorter period waves can be easily controlled, since they are more easily refracted, 

diffracted, reflected and broken, compared to longer period waves. In addition, wave 
energy dissipation, due to vortex and turbulence, is inversely proportional to the wave 
period. Therefore, technology converting longer period waves into shorter period waves is 
extremely useful for wave control. 

Sawaragi and Iwata (1976) revealed that the incident monochromatic wave is broken into 
many high frequency component waves by wave breaking as shown in Fig. 4.5. However, 
as seen in Fig. 4.5, the fundamental frequency component before wave breaking is still the 
dominant component even after wave breaking. This would show that the wave period is 
not shortened by wave breaking. The resonant interaction (MacGoldrick et al. 1966), which 
is the third order wave-wave interaction among different period waves, is revealed to 
generate a shorter period free wave. However, even in this case, fundamental frequency 
waves are still predominant, and the resonant interaction cannot be utilized to shorten the 
incident wave period. 

Thus, it seems impossible to technologically control the wave period to our will even 
with the help of modem science. In other words, developing the technology to convert 
longer period waves into shorter period waves is an important task challenging modem 
science. Research and development of a new super-technology is required to over come the 
difficulty of changing wave period. 
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Fig. 4.5 Wave height spectrum before and after breaking 
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4.2 Rubble Mound Breakwaters 

Rubble mound breakwaters, the most common coastal structure from the past, have been 
constructed to protect harbors and beaches from strong waves. The oldest type of rubble 
mound breakwaters consisted only of sloped layers of stone, however, recently breakwaters 
have been covered with concrete blocks. Rubble mound breakwaters have the advantage of 
being economical and easy to construct under severe wave conditions. They also show a 
smaller wave reflection than the vertical type breakwaters and require less maintenance. 

4.2.1 Wave controlling function of rubble mound breakwaters 
(1) Rubble mound breakwaters with a uniform slope 

As mentioned in 4.1.1, the wave controlling function of rubble mound breakwaters 
depends on energy dissipation by wave breaking and friction on the rough mound. 
Reflection and transmission of the breaking or nonbreaking wave by the rubble mound 
breakwater have been experimentally investigated by many researchers. The general theory 
of wave transformation around a permeable structure in a nonbreaking state is described 
in 2.7. 

Losada and Gimenez-Curto (1981) proposed the following empirical formula for the 
reflection coefficient of a permeable structure with a uniform slope in regular waves 

K R - 1.35 [1-exp(-0.071 ~)] (4.6) 

Here ~ is the surf similarity parameter defined as tan a/a/H/Lo,  in which a denotes the 
slope angle of the rubble mound. The empirical formula for wave run-up R~ on a uniform 
permeable slope in regular waves is proposed by Aherns and McCarney (1975): 

1.13~ (4.7) 
R~ = 1 + 0.506~" 

For wave run-down Rd, Losada and Gimenez-Curto (1981) also proposed the empirical 
formula 

R d - -6.22[ 1-exp(-0.0398~)] (4.8) 

On the other hand, Kobayashi and Wurjanto (1990) proposed a numerical model for wave run- 
up, run-down and reflection due to regular and irregular waves on a rough permeable slope. 

(2) Rubble mound breakwaters of a composite slope 
After high waves attack themselves to a rubble mound breakwater, the rubble mound 

breakwater tends to finally show a S-shaped equilibrium profile in its section as indicated 
by the solid line in Fig. 4.6, which suggests that we can make use of this characteristic and 
design a rubble mound breakwater that has an initial section with such a composite slope. 
Ryu and Sawaragi (1986) studied wave reflection and run-up through model tests and 
theoretical considerations. 

Figure 4.7 shows the comparison of the reflection coefficient KR between the uniform 
and the composite slope for regular waves. The reflection coefficients of the composite 
slope are half to a quarter of those of the uniform slope and they are strongly dependent 
on the length lB of the horizontal part of the slope. To explain this low-reflection effect of 
the composite slope, we here develop a theory based on a simple summation of repeatedly 
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reflected waves on the berm of a composite slope. It is similar to that of a perforated 
quaywall with an air chamber as described in 4.4. A schematic diagram of the incident and 
of the repeatedly reflected waves is shown in Fig. 4.8. 
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Fig. 4.7 Comparison of the reflection coefficient 
between the uniform and the composite slope for 
regular waves 

The surface dispalcements O ( x , t )  of the incident and reflected waves indicated by (~, (~), 
and (~) in Fig. 4.8 are expressed as 

r/| = ~--t cos(o't- kx) (4.9) 

r/| t) = ~ KR, cos (trt + kx + eRl ) (4.10) 

r/| = ~--~ K2rlgR2 ~-2 COS (Or + kx + 4nrl B / L + 2erl + eR2) (4.11) 
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Fig. 4.8 Schematic diagram of the incident and reflected waves 



218 

Here ,~,~ and Kn are the reflection and transmission coefficients, respectively, at 
boundary 1, KR2 is the reflection coefficient at boundary 2, ~ is the energy dissipation rate 
on the berm, eR~ and en are the phase lags between the reflected and the transmitted waves, 
respectively, at boundary 1, and eR2 is the phase lag due to reflection at boundary 2. 

The distribution of nondimensional surface evaluation 2rh(x,t)/% is then obtained by 
summing up the Eqs. (4.11), (4.12), and (4.13) as 

Here 

2r/c(x,t) 

n ,  
.................... = A cos tr t-  B sin at= ~/'A 2 + B 2 cos (o't + e*) 

A =coskx+K~ l cos (~  + eR~)+KZr~KR2 ~2 cos(k.x + 4rcln/L + 2erl + eR2) 

K 2 K ~2 sin (kx + 4zr./B / L + 2e n + eR2) B =sinkx+KR~sin(kx + eRl)+ rl R2t~ 

B e* = tan-~ ~ 

(4.12) 

(4.13) 

Figure 4.9 shows the comparison between predicted and experimental results of the 
wave height distribution. In the numerical calculation, experimental results of the 
reflection and transmission coefficients of a submerged breakwater with an infinite width 
were used a s  KRI and Kn in Eq. (4.13). For KR2, we used the reflection coefficient of a 
uniformed slope. The phase lags and the energy dissipation in Eq. (4.12) were ignored in 
the calculation. Calculated and experimental results show fairly good agreement, and the 
small difference between them may be ascribed to the ignored phase lag terms and to 
energy dissipation. It is very interesting that the berm of a composite slope has a similar 
wave absorbing function as an air chamber of a perforated quaywall. When we design the 
optimal composite slope for the reduction of wave reflection, the main factors to be 
considered are the reflection and the transmission at boundary 1, which may be the 
function of the depth and width of the berm. 
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Fig. 4.9 Comparison between predicted and experimental results of the wave 
height distribution for the composite slope 
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Fig. 4.10 Reflected wave characteristics for irregular waves on uniform and 
composite slopes 

Theoretical considerations suggest the optimal berm length to be la/Lo--0.2 to minimize 
the reflection of the composite slope. Figure 4.10 shows examples of incident and reflected 
wave spectra for irregular waves on the uniform and composite slopes, where the 
equivalent slope is defined by the Saville method for the composite slope. Also seen in 
these figures, reflection coefficients of the composite slope are smaller than those of the 
uniform slope. 

4.2.2 Des truct ion  m e c h a n i s m  of  rubble  m o u n d  breakwaters  
Rubble mound breakwaters have been designed using empirical formulas such as the 

Hudson formula 

1 3 H;ps 
W = ~  (4.14) Kocota ( p s / p -  1) 3 

where W is the weight of the rubble stone, Ps the density of the rubble stone, p the density 
of the sea water, a the seaward slope angle of the rubble mound, H, the incident wave 
height, and Ko the stability coefficient. 

Recently, however, these formulas have been reconsidered by taking the following 
effects into account: 

(i) Interaction effect of successive waves on' the slope 
(ii) Effect of the spectrum shape and grouping characteristics of incoming waves. 

(1) Definition of failure ratio 
Definition of the failure ratio is very important in discussing stability of the rubble 

mound breakwaters. The failure ratio has been defined as 



220 

o r  

number of stones moved from their former position 
' xl00 

D~'~ (%)= total number of stones 
(4.15) 

number of stones moved from their former position in the reference section 
D~'2 (%)= xl00 

total number of stones 
(4.16) 

In these definitions, the number of stones is usually counted over the region between 
S.W.L. +_H or S.W.L. +2H on the slope. To express the degree of failure more accurately, 
Ryu et al. (1986) proposed a new definition for the failure ratio Da 

D,(%)=(A~ / Ao)xl00 (4.17) 

where A~ is the destroyed volume of the cover layer or reventment and A0 is the destroyed 
volume of the cover layer when the destruction reaches the core layer as shown in Fig. 
4.11. 

. . ~  Cover layer 

"" , ~ .  

Core layer ~ A ~ - ~ H  

Fig. 4.11 Definition of the failure ratio 

A 100% failure therefore means that the failure line penetrates the core layer. D~'~ and Da' 2 
are related to D a a s  

Da'l =0.2Da 1 
(D'a2)~=O.5Da forthe region of S.W.L+ H 

(Da'2)j =0.4Da for the region of S.W.L. + 2HJ 

(4.18) 

The allowable failure ratio in Da has yet to be clarified. 10% damage in D a m e a n s  2% 
damage in D~'~ and 20% corresponds to 4%. Since the allowable critical failure ratio in D~'~ 
is recognized to be 2% to 4%, the allowable critical ratio in D a is roughly estimated to be 
10% to 20%. On the other hand, the failure ratio S used in Holland (1987) is defined as 

s_a; ,----T (4.19) 
a0 
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where a~ 3 = W/p,, A~ is the area of the cross section where rubble stones have moved, as 
shown in Fig. 4.11, a~ is a representative diameter of a stone, W is the weight of a stone 
in air, and p, is the density of the stone. The failure ratio defined by Eq. (4.19) implies that 
the number of cubic stones as S with the side length of a~ are moved over the width of 
a~. The condition under which S takes the value between 1 and 3 is referred to as a no 
damage condition. 

(2) Resonance on a slope 
Bruun et al. (1976) pointed out that the wave resonance phenomenon occurring on the 

slope of a rubble mound has a significant influence on its destruction. The resonance is 
defined as "the situation that occurs when run-down is in a low position and collapsing- 
plunging wave breaking takes place simultaneously and repeatedly at or close to the 
location." When the resonance occurs on the slope, the maximum water particle velocity 
on the slope, Umax, increases rapidly as shown in Fig. 4.12, where g is the acceleration of 
gravity, HI the incident wave height, ~" the surf similarity parameter (= tan a/.x/H1/L 0 ), a 
slope angle and Lo wavelength in deepwater. Such a large velocity on the slope causes a 
large drag force on the stones. 

As shown in Fig. 4.12, the water particle velocity on the slope is expressed as a function 
of the surf similarity parameter and the resonance occurs in the region 2<~<3. This fact, 
which is not considered in the Hudson formula, suggests that the effect of the wave period 
must be taken into account in a design formula for rubble mound breakwaters. Figure 4.13 
is an example that indicates the critical state of destruction for several failure ratios in the 
~'-Ns plane. N, is the stability number of rubble stones defined as 

Psl/3HD wl/3 =(Ko c o t ~ )  1/3 (4.20) 
N ' = p , / p - 1  

where Hn is the design wave height, p density of water and Kn the constant in the Hudson 
formula, Eq. (4.14). In Fig. (4.13), the lowest value of N, for the same failure ratio lies in 
the region of resonance occurrence, 2<~<3. Since N, still depends on the slope angle and 
the friction factor between rubble stones, Ryu et al. (1986) proposed an alternate stability 
number N" 

N'~ = Ns tan a / tan dp (4.21) 

where tan# is the angle of repose of the rubble stones. 

(3) Critical destruction state for irregular waves 
When designing rubble mound break waters using conventional design formulas, the 

selection of a statistical design wave height for irregular waves is one of the most 
important and difficult problems. Design engineers are often puzzled about which 
representative wave height should be used as the design wave height, H1/3 or  HI/m0. Figure 
4.14 shows the correlation between the failure ratio D a and the stability number Ns in the 
case of a 1"2 mound slope, where NsR denotes the minimum N, in the experiments for 
regular waves, and Nsl/3 and Nsl/1 o indicate N, calculated by using Hi~ 3 and H1/10 , 
respectively. 
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Judging from this figure, the following problems can be pointed out, if H1/3 is used as the 
design wave height for irregular waves: 
(i) In the region D a < 40%,  the rubble mound would be more unstable if we apply the 

results obtained for regular waves to irregular wave conditions. 
(ii) In the region D a > 40%,  the weight of the rubble stone would be overestimated if we 

apply the results for regular waves to irregular wave conditions. 
Looking at the destruction process on rubble mound breakwaters in irregular waves, we 
notice that the rubble stones are moved by successive high waves instead of by a single 
high wave. The importance of such an interaction among successive high waves was 
mentioned above as a resonance. The properties of wave grouping should therefore be 
considered in a design formula for irregular waves. 

(4) Influence of the wave action duration time on the destruction of rubble mound 
breakwaters 

The effect of the wave action duration time has been investigated by various researchers. 
Van der Meer and Pilarczyk (1984) proposed the following equation for irregular waves: 

S(N) / S(5000) = 1.3[ 1 - exp (-3.10 -4 N)]= 0.014~fN (4.22) 

where S(N) is the failure ratio and N is the number of waves. They pointed out that the 
equilibrium state of a rubble mound deformation is established after the action of 5000 
waves. 

4.2.3 New design formula for rubble mound breakwaters 
(1) New design formula 

As shown in Fig. 4.13, the ~tability of rubble mound breakwaters strongly depends on 
the surf similarity parameters ~. A run of irregular waves may also influence destruction, 
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as was mentioned in 4.2.2 (3). Furthermore, destruction occurs under the conditions where 
the wave height is larger than the critical wave height He, and may be effected by the run- 
sum of wave energy. In order to consider these factors, the following various definitions 
of run-length and run-sum are used in constructing a new design formula: 
(i) Conventional concept for a run of high waves 
(ii) Run of ~* that satisfies the resonance condition (2< ~'<3) 
(iii) Conditional run of ~under the condition that the incident wave height HI is larger 

than the critical wave height He 
(iv) Run of ~ that corresl?onds to the breaking condition on the steep slopes (1.5< ~<2.5) 
(v) Conditional run of ~ under the condition Hc<Ht 
Here, .~=~/~o, ~=tana/a/H~/Lo, ~0 =2.65 tan a (breaking condition) and a is the angle 
of the slope. We here define the mean run-sum E~.m as the mean energy-sum of an irregular 
wave train 

Z og EM, N, 
E~m = "= i-l (4.23) 

EN, 
j=l 

where Nj is the run number of the run length j (j-1,2 .... ) (see 1.3.2) and Hi denotes the 
i-th wave height in a run of run-length j. The relation between the mean run sum and the 
mean run length j was investigated by experiments for the various definitions of run, and 
the following relation was obtained by Ryu et al. (1986). 

Esm j(.~lm,3) 
1 
8 pgH21/3 

=l.78j(~ln,,3)-0.44 (4.24) 

Esum in Eq. (4.24) and the mean run length j are closely related to the spectrum peakedness 
parameter Qp regardless of the value of tana. From the experimental results, these 
relationships are expressed as follows: 

Esmj(~lH~/3)=pgH2~/3(O.O4Qp +0.13) for Hc=HI/3 (4.25) 

J(~l,,,,,) =~Q~+O.8a (4.26) 

Qp =~~of E2(f)df (4.27) 

Here f denotes frequency, E(f) is energy spectrum density, and m0 is the 0th order moment 
of the spectrum defined as J~ E(f)df. The relation between the failure ratio Da and Esum is 
obtained through experiments 
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1538[ um'/ lH3/ s /a2 t O] 301to0 
r ) tana'] 

Da = 136.4/ _-'7"/ ' - 36.3 p, gl a tanr 

for uniform slope 

for composite slope 

(4.28) 

Here la is a representative diameter of rubble stones, ~ is the repose angle of rubble stones 
in water, a '  is the equivalent slope angle for the composite slope estimated by the Saville 
method, and ps is the density of rubble stones. If the rubble stones are spherical, the weight 
of a rubble stone W is expressed as 

W=p,  gla ~. 

Using Eqs. (4.24) - (4.28), the weight of a rubble stone W is expressed as follows: 

I 13/2 W= pg(6.15Qp +20.0) tana H31, 3 
(psg)l/3(Da +30.1) tan~ 

for uniform slope (4.29) 

I pg(5.46Qp +17.73) tana ' ]  3/2 H31/3 W= 
" "~/3(Da +36.3) tanq~ ~Psg) 

for composite slope (4.30) 

Equation (4.30) is obtained for the composite slope under the condition that the length of 
the horizontal part ls in Fig. 4.6 is equal to LJ4 and the water depth of the horizontal part 
h2 is in the region of 0.4H1/3 < h2 < 0.7 Hl/3 where Lp is the wavelength corresponding to 
the peak frequency of the wave spectrum. 

The relation between W and Qp calculated from Eqs. (4.29) and (4.30) is shown in Fig. 
4.15. The weight of a rubble stone depends not only on the wave height but also on the 
peakedness of the wave spectrum. Furthermore, we should notice that the composite slope 
is more than the uniformed slope. If we let E(f) in Eq. (4.27) be the Bretschneider type 
spectrum, Qp becomes 2.0. According to field observations in Japan, Qp shows nearly 2.0 
for the ordinary wave condition in the off shore region, whereas it shows 1.0 to 1.5 near 
the breaking point. Thus the estimation of Qp at the construction site is important for 
designing rubble mound breakwaters. 

(2) Comparison of the new design formula with the Hudson formula 
Figure 4.16 shows the comparison of the weight of a rubble stone calculated from both 

the new design formula and the Hudson formula. Predicted results using the new formula 
give the relation between W and D a in the case where Qp=2.5, HI/3 - 7 m and the slope of 
the rubble mound is 1:2.3. Calculated results using the Hudson formula are also plotted as 
a function of Da, since the value of Ko in Eq. (4.14) is supposed to vary with D a. It is 
obvious from this figure that the Hudson formula predicts a smaller weight for a rubble 
stone than the proposed formula, which means that the rubble mound breakwater designed 
using the Hudson formula may not be stable under this wave condition. However, since the 
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Hudson formula is usually used with D a - 0, the estimation using the new formula with D a 

- 20% gives a similar stone weight as that derived from the Hudson formula. The failure 
ratio for the practical design must therefore be discussed further. Figure 4.16 also suggests 
that the composite section be useful to reduce the weight of the rubble stone. 
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Fig. 4.15 Relation between W and Qp 
for various values of D a 

Fig. 4.16 Comparison between the new 
design formula and the Hudson formula 

The percolation effect of the filter layer under the revetment was discussed by various 
researchers regarding the stability of rubble mound breakwaters. They reported that rubble 
mound breakwaters became more stable when the filter layer is constructed of a 
homogeneous material. Furthermore, the research of the stability of rubble mound 
breakwaters is being advanced making use of the probabilistic design for the construction 
of structures (Nielsen et al. 1983; Le Mehaute et al. 1985; Van der Meer et al. 1987). 
However, the destruction mechanism must first be fully investigated to apply a reliability 
design to rubble mound breakwaters, since the reliability design requires a certain 
destruction standard function for a structure. 

4.3 Composite Breakwaters 

As construction of breakwaters extends into deepwater, the breakwaters must become 
larger to withstand probable high waves, which means that the rubble mound breakwaters 
mentioned in 4.2 require a huge amount of large rubble stones. Composite breakwaters, 
which consist of a rubble mound foundation and an upright section such as a concrete 
caisson placed on the foundation, can reduce the size and the number of rubble stones and 
have the advantages of both the vertical and the rubble mound breakwaters. Since the end 
of the 19th century, this type of breakwater has been commonly used along the coast of 
Japan for geological reasons. 

4.3.1 Wave pressure formulas for the composite breakwaters 
Wave pressure formulas for the vertical breakwater have been proposed by many 

researchers such as Sainflou, Minikin and Hiroi. These are classified as formulas for 
breaking waves and for non-breaking waves, and it is pointed out that the wave pressure 
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abruptly changes at the boundary point of the two pressure formula categories. 
Furthermore, in an actual random wave condition we cannot determine if the waves are 
in a breaking or non-breaking state because an irregular wave train has various 
combinations of wave height and period. Therefore, a universal formula covering both 
breaking and non-breaking wave pressures must be established for the practical design. 

Goda (1974) proposed a new wave pressure formula for the composite breakwater 
resolving the above mentioned problems through a large number of hydraulic model tests. 
The Goda formula assumes that the trapezoidal pressure distribution as shown in Fig. 4.17 
and the representative pressures are given as 

Pl =1 (  1 + c~ + f12 c~ (4.31) 

el 
P2 - cos h 2nrh / L (4.32) 

P3 =fl3Pl (4.33) 

i =- ; ~ ","/Z z/IlIA I 
J d ! , , ~ _ ~  Y////,~,Buoyancy , 

Fig. 4.17 Distribution of wave pressure on an upright section of 
a vertical breakwater (after Goda 1974) 

in which 

  06+1[ 
sinh 47rh / L 

fl2=min{h~ 2 3 h  0 d ,//max2d } 

h' I 1 ] ~3 =1--~-- 1 -  cosh 2~h/L 

(4.34) 
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where min (a,b} gives the smaller of a or b, and ho is the water depth at the location a 
distance 5H~/3 seaward of the breakwater. As shown in these equations, this formula takes 
into account the effect of the angle of wave incidence 0, the angle between the normal line 
to a breakwater and the wave direction. In Fig. 4.17, h is the water depth in front of the 
breakwater, d the depth above the rubble mound, D the height of the rubble mound, l the 
distance between the foot of the mound and the front upright section, and h' the height 
from the design water level to the bottom of the upright section. The elevation to which 
the wave pressure, r/*, is given as 

r/* =0.75(1 + cos 0)Hm~ x (4.35) 

As shown in Eqs. (4.31) - (4.35), the highest wave height Hn~x is used as a design wave 
height. Hm~x is estimated either by the relation H,~x-I.8H~/3 in the region outside the surf 
zone or by the following equations within the surf zone: 

r ! 1.8Ks(H~/3)o 
l {(. mln ~0 (Hl/3)o ) , '} t + ~ h  ,~x(H~,3)0 ,1.8Ks(Hi/3) o for h~ L 0 < 0.2 (4.36) 

in which 

~0=0.052{ (H~/3):/Lo}-~ 

/~ ?=0.63 exp[3.8 tan/~] 

  -max 1.65,0.53 (HI,3)s exp(2.4t  ) 
(4.37) 

where Hm~x is estimated at the location a distance 5H1/3 seaward of the surf zone. (H~/3) o 
the equivalent deepwater significant wave height, Ks the shoaling coefficient, ~ the slope 
angle between the sea bottom and the horizontal plane and max {a,b,c} indicates the 
largest among a, b and c. (HI/3) ~ is a hypothetical wave height that may have undergone 
reflection, diffraction and is given by 

! 
(H~/3) ~ =KaKR(HI/3) ~ (4.38) 

where KR and Kd denote the coefficients of irregular wave refraction and diffraction, 
respectively. L 0 in Eq. (4.37) is the deepwater wavelength corresponding to the significant 
wave period T~/3. 

4.3.2 Effect of the rubble mound foundation 
Using the rubble mound foundation gives the following advantages in constructing 

vertical breakwaters: 
(i) easy construction on an uneven sea bottom 
(ii) decreasing the incident wave height to the upright section by virtue of the wave 

breaking on the mound. 
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(iii) protecting the foot of the breakwater from scouring 
In the following section, the second item mentioned above will be discussed further. 

(1) Attenuation of the reflected coefficient 
Observing the wave height distribution in front of a composite breakwater, attenuation 

of the wave height and phase lag between incident and reflected waves are indicated. 
Figure 4.18 shows the influence of the mound height D and the mound length l on the 
reflection coefficient of the composite breakwater KR (Sawaragi et al. (1986)). This figure 
shows that the effect of D/h on the attenuation of KR is remarkable especially in the region 
D/h>2/4, where the reflection coefficient approaches to that of a rubble mound breakwater, 
0.2. On the other hand, the effect of l/L is not as much as that of D/h, but the effect of l~ 
L is also clear in the region D/h>2/4. 
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Fig. 4.18 Effect of D/h on the attenuation of KR 

In the case of non-breaking waves, the wave profile of standing waves in front of the 
composite breakwater is calculated by a similar method to that used for the rubble mound 
breakwater by using Eq. (4.12). In the calculation, the reflection coefficient KR2 and the 
transmission coefficient Kr2 of the upright section can be assumed to be 1 and 0 
respectively, and the phase lags due to reflection and transmission, eR2 and erE, may be 0. 
For KR~ and Kn in Eq. (4.12), as mentioned in 4.2.1, we can use the experimental results 
for a submerged breakwater with a semi-infinite crown width or the theoretical solution for 
the wave transformation over the discontinuous bottom profile based on the potential 
theory. On the other hand, err can be estimated by calculating the travelling time At of the 
incident and reflected waves over the mound width 

A t = { 2 x l x ( h - d ) / 2 } / c  } 

eR1 = 2rcAt/T 
(4.39) 

Here s is the slope of the mound foundation. The phase lag due to transmission er~ can be 
assumed to be 0. Furthermore, the estimation of the damping coefficient due to percolation 
can be referred to in 4.4. 
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(2) Stability of the rubble mound foundation 
The weight of a rubble stone from the mound foundation is often estimated through the 

experimental results of Brebner and Donnely (1962). Japanese harbor engineers have also 
used the following formula based on many field observations. 

W=WoX5 -d/"} 
W 0 = 0 . 0 8 H  3 

(4.40) 

4.4 Submerged Breakwaters with a Wide Crown Width (Artificial Reef) 

In Japan, offshore detached breakwaters have been widely used to provide protection 
against natural disasters such as beach erosion, wave overtopping and so on, since they 
effectively reduce and absorb incident wave energy. The powerful effects of detached 
breakwaters on wave transformation, especially the effect of diffraction greatly affects the 
surrounding coast. It has also been pointed out that the breakwaters reduce the exchange 
of sea water behind them and that they often detract from the natural coastal landscape. 

Recently, with the increasing concern for the preservation of coastal environments and 
easier access to the shoreline and with demands for improved waterfront, new forms of 
coastal protection works have been devised. To cope with these demands, detached 
breakwaters are being replaced by submerged breakwaters, which are often referred to as 
artificial reefs. 

The reasons why submerged breakwaters were not widely used before are as follows: 1) 
the crown width of the breakwater must be wide enough to reduce incident wave height 
significantly, which makes the breakwaters more expensive, 2) the efficiency of the 
breakwater to reduce wave height in the region of a large tidal range depends on the tidal 
level because the function of the breakwater is limited by the crown height, and 3) the 
submerged breakwaters themselves become an obstacle for small vessels, such as fishing 
boats. 

The submerged breakwaters mentioned above are usually constructed to reduce incident 
wave energy so that they can control sediment movement in a shallow water region. There 
are two kinds of energy displacement mechanisms that attenuate wave height. First, energy 
is dissipated when waves break due to an abrupt change in the water depth when they meet 
the submerged breakwaters. Secondly, energy dissipation takes place on the surface of and 
in the permeable layer of the submerged breakwater. 

The rate of the second energy dissipation is estimated by applying the Darcy non-linear 
unsteady law for fluid motion in the permeable layer. In the following, an analytical 
expression for the attenuation of wave height is derived based on a wave theory for the 
permeable layer (Deguchi et al. 1988). The applicability of the procedures is also discussed 
through experiments. 

4.4.1 Wave attenuation on a permeable layer 
(1) Unsteady fluid in a permeable layer 

Fluid motion in a permeable layer of the large permeability Kp, whose dimension is 
(length) 2 and void ratio ~., is expressed as follows: 

( ~  1 -A  )Bu  d 1 V u aC: (4.41) 
at 
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where ud is the macroscopic velocity, Cm is the added mass coefficient of the rubble stones, 
VPd is the pressure gradient in the permeable layer, C/is the turbulent drag coefficient in 
a steady flow, p and v are the density and kinematic viscosity of the fluid, and a is the 
coefficient that indicates the difference of the turbulent drag coefficients between steady 
and unsteady flows. The values of Kp, Cm, C:, and a are determined by conducting 
permeability tests under steady and unsteady conditions. 

Equation (4.41) contains a nonlinear term. In the analysis of wave motion on and 
through the permeable layer, Eq. (4.41) is usually linearized by using the Lorentz law of 
equivalent work in the following form (Sollitt et al., 1972): 

3u d 1 ~ v 
- -  _ _ ~ U d SM 3t Kpe p d (4.42) 

where SM=(1 +(1-&)Cm)&l and gpe is the equivalent linear permeability. 
Another procedure to linearize Eq. (4.41) is to use an equivalent linear drag coefficient 

f (Deguchi, et al., 1988), which is defined as 

v ac :  
" - - ~ - ' [ -  U d fo" Kp ~ (4.43) 

where a is the angular frequency (=2n:/T). The value of f can be determined from the 
permeability test by applying the law of equivalent work. 

Deguchi et al. (1988) obtained the following empirical expression for f from the 
unsteady permeability tests for the crashed stones of the mean diameters D-1.3cm and 
3.3cm: 

f - - ( g p e  a / V ) - '  =[10.5 + 50.0 (a 8 / ds0)]R~ '/2 (4.44) 

where a8/d5o is the KC number (-[Ud[/crdso), a8 is the excursion length of the water 
oarticle, ds0 is the diameter of rubble stone, Rd is the Reynolds number (lUd[dso/V) and 

Ud[ is the amplitude of the water particle velocity in the permeable layer. 
By introducing Eq. (4.43), Eq (4.41) is written as 

SM c9 u d =-  1 p,pa _ faUd (4.45) 
c)t p 

Eq. (4.42) or Eq. (4.45) becomes a fundamental equation for the fluid motion in the 
permeable layer. 

(2) Governing equation for waves on the permeable layer 
Deguchi et al. (1988) have already derived a nonlinear wave theory which corresponds 

to the Stokes 2nd order waves on the permeable layer. Here, only the first order wave 
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theory is introduced with respect the coordinate system shown in Fig. 4.19 where h is the 
depth at the permeable layer, da is the thickness of the permeable layer and 7/is the surface 
displacement. 

Z - " ~ h  

Fig. 4.19 Co-ordinate system 

Fluid motion on the permeable layer is fundamentally irrotational and is expressed by 
the Laplace equation. 

V2r (4.46) 

Water particle velocities u, w, and pressure on the permeable layer p are expressed using 
as follows: 

u = tg ~? / t)x, c94?/& (4.47) 

p / p = -  c)dp/c)t + gz (4.48) 

Fluid motion in the permeable layer is expressed by the linearized non-linear, unsteady 
Darcy law and an equation of continuity in the following forms: 

S M cg u a 1 ~g P a V 
= ~ U d 

c)t p c)x Kp, 

S .  tg w d 1 tg P d v 
= . . . .  W d 

p 

(4.49) 

s U d s W d 
~ +  =0 
& - & z  " 

(4.50) 
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Fluid motion in the permeable layer is also assumed to be irrotational. Therefore, the 
water particle velocity in the permeable layer is expressed as follows: 

trKpe c? ~ a trKpe c) r a 
ua= and w d = ~  (4.51) 

v Ox v Oz 

Substituting Eq. (4.51) with Eqs. (4.49) and (4.50), the following fundamental equation for 
water particle motion in the permeable layer is obtained. 

V2#=0 (4.52) 

_ =  crK.  0r  
Pd _ trO__ Su (4.53) 
p v c?t 

These equations are solved analytically under the boundary conditions at the free water 
surface, z - 77 ( -  0), on the surface of the permeable layer, z - -h, and at the bottom, z - 
-(h + da). These conditions are expressed as follows: 

On the free water surface, z - 7/(as far as the linear wave theory is concerned, these 
conditions are applied at z - 0): 

: kinematic condition (4.54) 
8z 8t  

7/=-g- -~  �9 dynamic condition (4.55) 

Here g is the acceleration of gravity. 
On the surface of the permeable layer, z - -h: 

P = Pd : continuity of pressure (4.56) 

u = u d , w = wd/A : continuity of velocity (4.57) 

cgu 1 DUd Ow 1 CgWd 
- -  , ---- " continuity of velocity gradient (4.58) 

8 z  Z Oz Oz ~. Oz 

At the bottom, z =-(h+da): 

w d =0 (4.59) 

(3) Waves on the permeable layer 
When the surface displacement is given by the sinusoidal function with an amplitude 

expressed by Eq. (4.60), the velocity potential r is given by Eq. (4.61). 
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~7=aReallexp{i(k*x- at)}] (4.60) 

I{ z  sin ,z) ] ~ = ~ R e a l  i coshk* - exp{i(k*z-fit)} z=- 

= g-"~a Real [{ i C r  ~i+YSM coshk*(h+z)(cosh k*h + ~r. sin h k'h) 

! 1 )} (i(k*x f i t ) l ] : - z  da) - sinhk*(h+z)sinhk*h+-ffcoshk*h exp - - h >  > - ( h +  

(4.61) 

where Real [ ] means a real part in a complex quantity in [ ], i - ~fL-i, a is the amplitude 
of the incident wave and y is the nondimensional permeability (-Kpe cr/v). 
The complex wave number k* satisfies the following dispersion relation: 

o.2=gk, (ySu+ i)sinh k*hcoshk*da + ycoshk*hsinhk* da 
(y Su+ i)coshk*hcoshk* d,, +ysinhk*hsinhk*da (4.62) 

4.4.2 Effects of  the permeable layer on wave attenuation 
Let a and fl be the real and imaginary parts of k*, then waves on the permeable layer 

are expressed by 

r/=aReal[exp{ i(a + fli)x-at} ]-'aexp(-j~k)cos(ax-at) (4.63) 

This means that the non-negative imaginary part fl of the wave number k* becomes a 
wave attenuation factor. The following quantities will affect the wave attenuation factor; 
density of the fluid p, kinematic viscosity of the fluid v, gravity acceleration g, amplitude 
of incident waves a, wave period T, depth of the permeable layer h, thickness of the 
permeable layer da, mean diameter and density of the rubble stone from the permeable 
layer ds0, and Ps, and the void ratio of the permeable layer Z. Here, the equivalent linear 
permeability kp (or equivalent linear drag coefficient f) instead of ds0 and Ps are used to 
express the properties of the permeable layer. The value of fl is expressed by the following 
nondimensional parameter using dimensional analysis 

~= f (o'2a/g, a2h/g, d,,/(h + do), y(= kp~ o/v) or f, Z) 

If one will evaluate wave attenuation based on Eq. (4.41) by applying the Lorentz law of 
equivalent work, the turbulent drag coefficient C z must be added. Among these 6 variables, 
the value a has nothing to do with the property of the permeable layer and the void ratio 
is almost constant. 
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Figures 4.20 and 4.21 illustrate how the values of 0 -2 h/g, da/(h+da) and ~, affect the 
nondimensional wave attenuation rate fl'(= f l / (g /o2) )  calculated from Eq. (4.41) in the 
cases of C/=0.0, 0.1 and 0.2. 
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Fig. 4.20 Relation between fl' and a2h/g 
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Fig. 4.21 Relation between fl' and ), 

From these figures, it is found that the value of fl' is less influenced by C:. The value 
of da/(da + h ) has little influence on fl' in the region of 0.8<da/(da + h). It is also seen 
that the value fl' becomes the maximum at a certain value of y implying that there exists 
the optimum value of permeability to attenuate wave height effectively. 

4.4.3 Wave controlling function of submerged breakwaters 
(1) Calculation of wave transformation through a submerged breakwater based on energy 
conservation 

In this section, wave theory on the permeable layer derived in 4.4.2 is applied to the 
calculation of wave transformation through the submerged breakwater. Some numerical 
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Fig. 4.22 Relation between fl' and da/h 

procedures for predicting wave transformation using the unsteady mild slope equations 
which have been proposed (by Izumiya et al. 1989 and others). In this section, a numerical 
procedure is proposed based on an equation of energy conservation to effectively predict 
wave field around the submerged breakwater, where the effects of wave shoaling, 
refraction and breaking are taken into account. The wave energy loss on the submerged 
breakwater is estimated from the wave attenuation rate on the permeable layer which is 
derived in the previous section. 

Wave energy loss caused by the permeability of the submerged breakwater and a 
boundary friction per unit length and unit time, Dp andD/a re  expressed as follows: 

Dp =- l ~r (wp)z=-h dt (4.64) 

2 ,2 
Dy=-~ "t'oUz=_ h dt (4.65) 

where w is the vertical water particle velocity and r0 is the boundary shear stress on the 
surface of the submerged breakwater which is roughly estimated from the Jonsson's 
expression. 

Substituting w and p calculated from the velocity potential Eq. (4.48), Dp becomes 

Dp = pgH2 cgfl/4 (4.66) 

where cg is the group velocity. When the horizontal water particle velocity on the 
submerged breakwater u is approximated by that of a linear wave at the bottom of the 
same depth as the crown depth, D/is expressed using a friction factor fw as follows: 

n ) 3 
D: = ~ zc2pf~( T sinh k h (4.67) 
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The total energy loss for incident waves D is the sum of this energy loss. Furthermore, 
when the incident waves break on the submerged breakwater, energy loss by wave 
breaking Db must be added to D. Using this expression of energy loss, the equation of 
energy conservation in a steady state is expressed as 

~g e(cgcosO+U)+ ~g E(%sinO+V)+Sx~gU+SxyI ~ ~y ) 
Ox -g-;x + 

+ Syy-~y =- D (4.68) 

where Sx, S~y, and Syy are the radiation stresses expressed by Eq. (1.73), (U,V) are the depth 
averaged mean current velocities in x and y directions, and 0 is the angle of wave 
incidence. 

(2) Critical depth on the submerged breakwater for wave breaking 
Figure 4.23 shows the critical condition for the occurrence of the forced wave breaking 

on the submerged breakwater plotted by using experimental results. The vertical axis is the 
non-dimensional crown depth of the submerged breakwater R/H, and the horizontal axis is 
the nondimensional depth at the foot of the submerged breakwater h/L~. The steepness of 
the experimental waves ranged from 0.004 to 0.051 and the ratio for the crown depth and 
height of the submerged breakwater R/da ranged between 0.55 and 0.7. The forced wave 
breaking took place in the region of R/H, < 1.6 regardless of the values for the steepness 
and for R/do. 

(3) Two-dimensional wave transformation on a permeable layer and submerged 
breakwater 

Figure 4.24 illustrates the calculated wave height distribution on the permeable layer 
from Eq. (4.68) together with the measured wave height in the experiment. The incident 
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Fig. 4.23 Critical condition on the submerged breakwater for wave breaking 
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Fig. 4.24 Effect of wave attenuation due to the permeable layer 

wave height decreased by approximately 60% on the permeable layer with the length 2.5L1 
in the experiment, where/_,I is the incident wavelength and the calculated wave height 
coincides well with the measured wave height. 

Figures 4.25 and 4.26 show the comparisons of measured wave height and calculated 
wave height with and without the boundary shear stress on the submerged breakwaters. 
Incident waves did not break in the case of Fig. 4.25 and forced wave breaking took place 
on the submerged breakwater in the case of Fig. 4.26. The energy loss after wave breaking 
in the case of Fig. 4.26 was evaluated by the expression proposed by Sawaragi et al. (1989) 
(see 1.2.6). It was found through these figures that wave transformation through submerged 
breakwaters can be predicted by Eq. (4.68) as a whole even in the case where the forced 
wave breaking takes place on the breakwater. 
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Fig. 4.25 Wave height attenuation on the submerged breakwater (in the case of non-breaking) 
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Fig. 4.26 Wave height attenuation on the submerged breakwater (in the case of breaking) 

Next the effect of a submerged breakwater on wave shoaling, refraction, breaking in a 
shallow water region and the resulting wave set-up and wave-induced current are 
discussed. As mentioned in 4.3.2, wavelength changes on the permeable layer and as a 
result, wave refraction takes place. 

In Fig. 4.27, cross-shore distribution of wave height and mean water level on the natural 
beach without the submerged breakwater are also shown. Wave height on the submerged 
breakwater decreased significantly and mean water level on the submerged breakwater 
corresponds to the distribution of wave height. Although wave height decreased 
significantly on the submerged breakwater when compared with that of the natural beach, 
wave set-up at the shoreline for both cases became almost the same. 

4.4.4 Reduction of  wave overtopping by the use of  an artificial reef 
To cope with wave overtopping from existing seawalls and sea dikes, various kinds of 

wave energy dissipating structures such as an offshore detached breakwater, wave energy 
absorbing blocks and so on have been constructed. The highest priority has been given to 
the wave energy dissipating function of these structures and utilizing the natural coastal 
view has been left out of the considerations. Recently, the artificial reef has been widely 
used as a multi-purpose coastal structure for controlling incident wave energy and coastal 
erosion and for utilizing coastal zones to their best advantage. It is needless to say that the 
artificial reef serves the function of reducing wave overtopping from the existing seawalls 
and sea dikes. 

In this section, the effect of the artificial reef, which consists of the submerged 
breakwater and an artificial nourishment on the shoreward side, to reduce wave 
overtopping from the existing seawalls and sea dikes, is discussed. However, in this 
section, the effect of the permeability of the artificial reef is not taken into account. 
Therefore, the wave controlling function of the artificial reef comes only from the forced 
breaking of incident waves. 

(1) Effect of the artificial reef on wave overtopping 
The wave overtopping rate from the seawalls and sea dikes on uniformly sloping beaches 

has been studied by many researchers under various conditions. Most of these results are 
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Fig. 4.27 Cross-shore distribution of wave height and mean water 
level on the submerged breakwater 

analysed using wave conditions in deepwater regions. A crest elevation of a surface 
displacement and the crown height of the seawall are also measured from the still water 
(for example, Goda (1985) and CERC (1984)). Therefore, the effect of the artificial reef 
cannot be discussed based on their results because incident waves in front of the seawalls 
are greatly changed by the reefs. 

Let q be the wave overtopping rate from the seawall shown in Fig. 4.28. The non- 
dimensional wave overtopping rate q* (= q/( a/gLl 1-11)) is expressed by the following 
expression through dimensional analysis: 

(H c HI H~,i,a,f~ ) 
q*=f H ,hi,L, (4.69) 

where HI and L~ are the incident wave height and wavelength in front of the seawall, hi and 
Hc are the depths at the foot of seawalls and the crown height of the seawalls measured 
from the mean water level, i is the slope of the artificial reef in front of the seawalls, a 
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is the slope of the seawall and f~ is the parameter indicating the condition at the location 
of the seawall. 

Artificial reef 
Sea wall~ [ S.W.L. V 

h i  "~" X / . . . . . .  

I- 

Fig. 4.28 Sketch of the artificial reef 

Figure 4.29 illustrates reanalyzed results of the existing data of the wave overtopping 
from seawalls on natural beaches without artificial reefs, based on Eq. (4.69). In the cases 
where the values of HI, hi and He in Eq. (4.69) were not given, these values were estimated 
using the procedure for predicting two-dimensional wave transformation and mean water 
level which is introduced in Chapter 1. In this figure, the wave overtopping rate from the 
seawalls with the artificial reefs are also indicated using a different symbol. 

It was discovered that the wave overtopping rate from the seawalls within the breaker 
zone qb is larger than that from the seawalls outside the breaker zone qc, where clapotis 
was formed in front of the seawall regardless of the steepness.of the incident waves. All 
incident waves in front of the seawall with the artificial reef q, were less than that in the 
breaker zone. 

Figure 4.30 shows the effect of the distance from the breaking point to the seawall xi 
measured positive shoreward from the breaking point on the wave overtopping rate in the 
breaker region (Sawaragi et al., (1988)). The values for xi in the case of the wave 
overtopping rate from the seawall with the artificial reef correspond to the length of the 
reef because incident waves break just at the offshore edge of the reef. Mean wave 
overtopping rates in the clapotis region are indicated in the figure for comparison. In the 
region of x/Lb < 0.4 the value of q~ is almost the same as that of qb" The value of qr 
becomes less than that of qb as the value of x/Lb increases from 0.4 which means that the 
length of the artificial reef must be longer than 0.4Lb. 

(2) Evaluation of the wave overtopping rate 
To predict the wave overtopping rate from the seawall with the artificial reef, a weir 

model is applied. The weir model was originally developed by Kikkawa et al. (1967) to 
calculate the wave overtopping rate in the clapotis region based on the weir discharge in 
the unidirectional flow. The wave overtopping rate q is evaluated from the following 
equation by the weir model: 

4 -4~  K3/2H],2 / r {F( t /T )_Hc~  3'2 
= m ~2 r - ~ i  J d(t/T) (4.70) q 3 l/ 
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where m is the discharge coefficient, K-Omax/nl, F(t/T) is the nondimensional time 
variation of the surface displacement in front of the seawall defined by F(t/T) - 0 ( t ) / 0 m a x  

a n d  0max is the maximum surface displacement. The time when the surface displacement 
becomes He within one wave period is expressed by t~ and t2 (h< t2). Here the value of m 
is assumed to be 0.5 by Kikkawa et al. (1967). If we can find a universal expression for 
the value of K and F(t/T), we can estimate the wave overtopping rate based on Eq. (4.70) 
provided that the incident wave height and the mean water level in front of the seawall are 
given. 

In Fig. 4.29, the nondimensional wave overtopping rate calculated from Eq. (4.70) is 
shown for three different values of K. In the calculation, F(t/T) is assumed to be sinusoidal. 
It seems that q*, in the region where HJHI is small, corresponds to the small value of K 
and q*, in the region where Hc/HI is large, corresponds to the large value of K. 

Figure 4.31 illustrates the dependency of K on Hc/H~ (Sawaragi et al., (1988)). The 
values of K in the figure are calculated from Eq. (4.70) by giving the measured wave 
overtopping rate and other parameters which are necessary to determine the wave 
overtopping rate assuming that F(t/T) is expressed by the sinusoidal function. The value of 
K in the clapotis region is uniquely determined by Hc/H~ and does not depend on the 
steepness of incident waves. The value of K in the breaker region also increases with the 
increase of Hd/HI and indicates little dependency on HI/LI. However, some scatter comes 
from the difference in the position of the seawall within the breaker zone. The value of K, 
in the region where xi/Lb is greater than 0.5, indicates less scatter. 
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Fig. 4.31 Relation between K and HJHI 

From these results, the following two expressions are derived for the clapotis region Kc 
and the breaker region of xi/Lb > 0.5 Kb (Sawaragi et al. 1988) 
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Kc =0.59Hc/H, +0.59 �9 xi/Lb <O 

Kb=O.62H~/H~ +0.88 �9 xi/Lb <0.5 (4.71) 

In the region of O<xi/Lb<0.5, Kb can be determined by linear interpolation. 
Figure 4.32 shows the comparison of the measured and the calculated wave overtopping 

rate from the vertical seawall on the artificial reef (Sawaragi et al. 1988). Calculations were 
carried out by using Eqs. (4.70) and (4.71) and experiments were conducted on the 
uniformly sloping beach with the slope 1/30. 

4.5 Low Reflection Structures 

4.5.1 Low reflection structures and the wave-dissipating principle 
The structure with a low reflection coefficient which has the function of energy 

dissipation or absorption by means of its porosity, roughness or other specific mechanism 
is generally referred to as a low reflection structure. This structural type is classified into 
two groups: (1) permeable structures permitting the wave energy transmission and (2) 
impermeable structures permitting no wave energy transmission behind the structure. There 
is no rigorous upper value for the reflection coefficient which defines the low reflection 
structure. Generally, a structure whose reflection coefficient is less than 0.5 -0.4 is usually 
called a low reflection structure. 
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Fig. 4.32 Comparison of measured and calculated wave overtopping rate for the artificial reef 

The low reflection structure has several wave-absorbing functions as described in 4.1. 
Phase-interaction, friction, large-scale turbulence, jet mixing, and wave breaking are the 
main factors used to dissipate the wave energy. The rubble mound breakwater is a typical 
example of the permeable structure with a low reflection coefficient and the vertical wave- 
absorbing is one example of the permeable of the impermeable structure with a low 
reflection coefficient. The rubble mound structure has been described in 4.2, and some 
important permeable structures are described in 4.5- 4.7. In this section, an impermeable 
structure with a low reflection coefficient is described. 
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4.5.2 Vertical  seawall  with wave-absorbing  a ir-chamber 
This kind of vertical seawall or dike has a high wave energy dissipating function, and 

its great merit lies in that its body mass is less than that of the sloping dike. The perforated- 
type caisson dike proposed by Jarlan (1961) is an outstanding upright wave-absorbing 
structure and was first constructed at Commo Port in Canada in 1964. The slit-type caisson 
dike was constructed at the Oinao fishery harbor and the table-type block dike was 
constructed at the Kagoshima New Port in Japan. Since then, research and development of 
vertical wave absorbing dikes and quaywalls have been conducted and a large number of 
dikes of this kind and quaywalls have been constructed throughout Japan. 

So far, wave energy dissipating efficiency and wave reflection of vertical dikes having 
a wave-dissipating air-chamber have been investigated theoretically and experimentally. 
Theoretical models have been developed by Sawaragi and Iwata (1973, 1978, 1979), and 
Kondo (1977). In this section, the theoretical model proposed by Sawaragi and Iwata is 
described. 

The incident wave H~, the reflection coefficient KRj, the transmission coefficient Krj, the 
phase lags e~, eRj, erj, and the wave attenuation coefficient ~ are expressed using complex 
variables 

H1=t~lexp(ie,) 
KRj =g'lcj exp(iERj) 

Kr, =Kr, exp (ier,) 

~=ap exp(-2mq/L), ap=eXp(-A,tx/L ) 

(4.72) 

in which ^ indicates the amplitude, x is the horizontal distance taken positive onshore with 
its origin on the offshore face of the structure, A, is the wave damping coefficient, L is the 
incident wavelength, e is the phase lag, i - ~s]-. The subscripts I, R, and T represent the 
quantity regarding the incident, reflected and transmitted waves, respectively. Exp (-21r ix/ 
L) included in ~- corresponds to the phase lag against the initial phase of the incident wave 
at x=0. 

The vertical dike with two wave-absorbing air-chambers, as shown in Fig. 4.33, is 
discussed here. The incident wave/-/i is assumed to repeatedly reflect and transmit between 
the first perforated wall and the impermeable wall as indicated in Fig. 4.33. Summing up 
linearly all the waves produced by an infinite repetition of reflection and transmission, the 
reflection coefficient KR and the nondimensional wave height R*H/HI are given as follows 
with the help of Eq. (4.72). 

KR~- 
2 ( 1 --2 d- ~'21 --2 2 2 

KR3 + a  IKREKr3 1 - Ct IKREKR3 a 2 KmKr2 K r 3  

( ! ( !  1 1 1 
1 --2 --2 - - O~ IKR2KR3 t~ 2KRIKR2 

--2 --2 2 
1 -  a l K,,l K,,, 1 -  1 -  al K,, r,,3 

(4.73) 
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H ~  

/4, i i ! (  , ) a'la2Kr2 Kr3(l+ KRI) 1_~21K~EKR" 1 - ~ K m K ~ _  

1 1 1 
1 - ~ ~ KRIK.3 K2r2 1 - a]K.EKR3 - d~K~lKlc2 

(4.74) 

In Eqs. (4.73) and (4.74), the subscripts j=l ,  2 and 3 with regard to KRj and K v show, 
respectively, the quantity at the impermeable wall, and at the onshore and offshore 
perforated walls, and the subscripts p = 1 and 2 regarding ap indicate the quantity between 
the two perforated walls and between the impermeable and onshore perforated walls. 

The first term on the right-hand side of Eq. (4.73) is the reflection from the offshore 
perforated wall, the second term shows the reflection from the two perforated walls. 

K~ and R* H ~Il l .  in the case of a Jarlan-type dike with one air-chamber, are easily derived 
with the help of Kr2 = 1.0, /~R2 = 0, ere = eR2- 0 and by ignoring a2, 

I �9 [ n 2  2 
KR = KR 3 ~ a IKR1Kr3 

I 1 - - 9  -- a lKRIKR3 

n = ~-lKr3(1 +Km ) -2 
1 - a  IK.1K.  

(4.75) 

(4.76) 

I I 
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Fig. 4.33 Sketch of the vertical dike with two wave absorbing air-chambers 
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In the case of a Jarlan-type dike with a thin perforated wall which permits no phase lag 
among the incident, reflected and transmitted waves, K~ becomes minimum at l /L-1/4 and 
becomes maximum at l/L-1/2. The reflection coefficient of the vertical dike with two air- 
chambers is, in general, smaller than that of a Jarlan-type dike (Sawaragi et al., 1979) with 
a wider range of the non-dimensional incident wavelength l/L. 

Sawaragi and Iwata (1978) showed that their theoretical values are in strong agreement 
with experimental values. An example of this is shown in Fig. 4.34. Sawaragi and Iwata 
(1979) also revealed that the wave energy-dissipation of the Jarlan-type dike for irregular 
waves can be accurately estimated with the significant wave. 

Recently, a curved slit breakwater, as shown in Fig. 4.35, has been designed and it has 
been pointed out that this type of breakwater has a higher wave dissipation function than 
other types used in laboratory experiments, as shown in Fig. 4.35 (Tanimoto et al. 1987). 

The doubly-placed perforated and cylindrical breakwater has been constructed in this 
field very recently. Thus, construction of new types of wave energy-dissipating 
breakwaters and dikes has been encouraged, from the viewpoint of seascaping, sea water 
exchange, and ecological systems. However it should be noted that the breakwaters or 
dikes with air-chambers have one weak point in that the high wave-dissipating function is 
limited to some specific frequency range. This has continuously encouraged the 
development of a new type of breakwater or dike with air-chambers, whose wave- 
dissipation function is high for a wider range of the wave period. 
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Fig. 4.34 Comparison between the experimental results and theoritical 
values for the absorbing dike with and air-chamber 
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The vertical wave absorbing dike or quaywall constructed with specially designed 
concrete blocks has been placed in a small harbor and an inner gulf area. The wave energy 
dissipating function of this type of structure is inferior to that of the vertical structure with 
air-chambers, although the former's crown width is shorter than the latter's one. Thus, 
research and development of vertical structures with a wave-dissipating function are still 
being carried out, and some will be introduced in 7.5.3. 

In developing the wave-dissipating structures, they must be equipped with the following 
functions: (1) high wave-dissipation function for a wider range of wave period, (2) good 
seascaping, (3) simple maintenance accommodating a future rise in the sea level, (4) better 
harmony with the ecological system, and (5) high ability to exchange sea water. In order 
to attain the above mentioned functions, new technological devices to encourage rapid 
wave energy dissipation and a flexible structure as a floating body will be required. 
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Fig. 4.35 Reflection characteristics of a curved slit breakwater (after Tanimoto et al. 1987) 

4.6 Curtain-wall Type Breakwater 

A curtain-wall type breakwater has a cross section that intercepts fluid motion near the 
free surface with a vertically supported wall, as shown in Fig. 4.36. However, it allows the 
fluid to move through the gap between the lower end of the wall and the ocean bottom. 
A major function of this breakwater, which reduces the transmitted wave height, is to 
reflect incident waves offshore by means of the wall. Some of the wave energy may be 
dissipated by the flow separation near the lower edge of the wall. 
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Fig. 4.36 Sketch of a curtain-wall type breakwater 

A curtain-wall type breakwater has several advantages compared to conventional 
gravity-type breakwaters. For instance, it is possible to intercept only incoming waves 
without stopping steady currents, which is sometimes preferable near a river mouth and in 
a tidal region. In addition, it can be economically constructed on comparatively soft 
ground because the weight of the breakwater is light and can usually be supported by piles. 

On the other hand, effectiveness of the curtain-wall type breakwater is limited only to 
comparatively short waves. For long waves, the fluid motion under the curtain wall cannot 
be neglected because it significantly contributes to wave energy transmission. Therefore 
the construction of curtain-wall type breakwaters has been limited to inlets or bay areas 
where wave conditions are comparatively mild. 

It has been known that the function of a curtain-wall type breakwater is heavily 
dependent upon the ratio of the draft of a curtain wall d to wavelength L. Therefore, 
selection of the draft depth of the curtain wall is very important for practical design. 

In the last two decades, numerous studies have been done in order to clarify the wave 
transmission and reflection characteristics of the curtain-wall type breakwater and also the 
hydrodynamic forces on this type of breakwater. Haskind (1959) and Ursell (1974) have 
derived an analytical solution for the transmission and reflection coefficients of a vertically 
supported thin plate extending from the water surface into deepwater. Because of the 
difficulty of extending the solution to intermediate and shallow water conditions, Wiegel 
(1960) proposed the semi-empirical solution for the transmission coefficient of a vertically 
supported plate placed in intermediate and shallow water based on the theory of wave 
energy flux, usually called the "power transmission theory" (PTT). 

Morihira et al. (1964) conducted a series of model experiments in order to clarify the 
wave transmission and wave force characteristics of the curtain-wall type breakwater, and 
also proposed a method for estimating the wave force on the breakwater, which is partly 
based on the Sainflou formula. On the other hand, Liu et al. (1982) and Nakamura et al. 
(1983, 1984) have developed numerical approaches that can accomodate wave boundary- 
value problems around a thin-walled body such as a curtain-wall type breakwater, based 
on the integral equation method shown in Chapter 2. Although their methods are similar 
in principle, there are nevertheless some differences between the two. For example, Liu et 
al. used a double source, while Nakamura et al., on the other hand, used a wave source 
using Green's function based on a single source. They have shown numerical results on 
the transmission and reflection coefficients and also the wave forces on a plate placed in 
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intermediate and shallow water regions. Nakamura (1992) has also analyzed the effect of 
separated flow from the lower edge of the plate on the wave transmission and wave forces 
by the use of the combined wave diffraction and discrete vortex model. 

In this section, referring mainly to the theoretical results based on the wave boundary- 
value analysis, wave transmission and reflection characteristics and hydrodynamic forces 
of the curtain-wall type breakwater are briefly discussed. 

4.6.1 Wave transmission and reflection by a curtain-wall type breakwater 
In the following, a curtain-wall type breakwater is idealized as a single vertical plate 

without support piles, as shown in Fig. 4.36. Also the length of the breakwater in the 
longshore direction is assumed to be infinite; i.e. a two-dimensional model in a vertical 
plane. 

Transmission and reflection coefficients of such an idealized curtain-wall type 
breakwater, designated as Kr and KR, respectively, can be obtained by the two-dimensional 
wave source Green's function, which has already been presented in Chapter 2. Considering 
a much more general case where wave trains are obliquely incident to the breakwater with 
an inclination angle 0 measured from the normal direction of the breakwater line, Kr and 
KRcan be calculated by Eqs. (2.118) and (2.117) respectively. The complex amplitude of 
the scattered wave potential Cs is given by Eq. (2.100) through the use of As defined by Eq. 
(2.106). 

(1) In the case of normal incident waves 
Typical experimental and computed results of the transmission and reflection 

coefficients, Kr and KR, are shown in Figs. 4.37 (a)-(c). In each figure, variations of Kr and 
KR with respect to the ratio of the draft to the equivalent deepwater wavelength d/Lo are 
specified under the conditions of the constant ratio of draft to depth and the ratio of the 
incident wave height to depth. In addition, the transmission coefficient by the power 
transmission theory, denoted as PTT, is shown in these figures. 

From these figures, it is apparent that Kr decreases as d/Lo increases, i.e.; KR has an 
inverse relation to Kr for shorter waves. Also the variation of Kr and KR with d/Lo becomes 
milder in cases of deeper draft, i.e. for larger d/h. This trend is much more apparent in Fig. 
4.38, in which the variation of Kr with d/h for different d/Lo is specified. From this figure, 
it is seen that Kr is mainly dependent upon d/Lo under the condition d/h<0.8. 

If we set the criterion for the effective reduction of a transmitted wave height as Kr< 
50%, it is recommended for practical design that the draft "d" should be deeper than about 
15% of the equivalent deepwater wavelength L0, provided that the condition of d/h<0.8 is 
satisfied. 

As seen in Fig. 4.37, the transmission and reflection coefficients may be practically 
estimated by numerical analysis based on the potential flow theory. However for a larger 
wave height and deeper draft conditions, the difference between the experimental and 
computed results becomes larger because the effect of flow separation near the lower edge 
of the wall might be important. The transmission coefficients given by the power 
transmission theory are consistent with the experimental results especially in the range of 
a small d/Lo, where the wave reflection from the wall can be practically neglected. It is 
noted that the power transmission theory cannot predict the reflection coefficient and wave 
forces on the wall. 

Liu et al. (1982) have examined theoretically the effect of the inclination angle of the 
curtain wall in a vertical plane on Kr and KR, in addition to the case of a vertical wall, by 
numerical analysis based on the double source method. They pointed out that under 
identical definite wave conditions, the inclined curtain wall is more effective than the 
vertical one. 
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(2) In the case of obliquely incident waves 
In Fig. 4.39, a typical example regarding the effect of incident wave angle 0 on Kr and 

KR is given, where 0 is defined as the subtended angle from the normal direction of the 
breakwater axis to the incident wave direction. In the figure, the conditions of d/Lo and d~ 
h are fixed, in other words, a fixed wave period and draft depth for the curtain. The 
computed result is obtained by the numerical analysis shown in Chapter 2. 

From the figure, it is seen that Kr increases with 0, also KR shows an inverse trend to 
that of Kr. For different conditions of d/Lo, Nakamura et al. also examined the variation of 
Kr and KR with 0 ,  and concluded that the effect of the wave angle on Kr and KR is not 
very significant in the range of 0 < 40 ~ and therefore the values of Kr and KR in that range 
can be approximately given by the result of the normal incident wave. 
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(3) In the case of double rowed curtain walls 
As mentioned above, the effectiveness of the curtain-wall type breakwater is limited to 

the range of comparatively short waves. In order to improve the function of a breakwater, 
especially for long waves, doubly arranged curtain-wall type breakwaters may be used 
instead of the single curtain-wall type by Stiassnie et al. (1981), and Nakamura et al. 
(1985). The doubly arranged curtain-walls may cause more wave reflection from the 
breakwater to offshore and also effect the wave resonance between the two walls, where 
incident wave energy is partly trapped and finally dissipated by the flow separation near 
the lower edge of the wall. Nakamura et al. (1985) reported that the amount of energy 
dissipation from the double-wall, due to the flow separation, becomes almost double 
compared to that of the single wall. They also pointed out that numerical analysis based 
on the potential flow theory cannot be used to predict the wave transmission coefficient of 
the double curtain-walls because of the predominant flow separation effect. In this case 
they suggested that a modified analysis, in which the water region between the two walls 
is assumed to be dead water, i.e., replaced with the rigid body, can be used to give a 
reasonable estimation of the transmission coefficient. 

4.6.2 Wave forces on the curtain-wall type breakwater 
In Figs. 4.40 (a)-(c), horizontal wave forces on the curtain-wall per unit length of the 

transverse direction, dF x, are specified, in which both the experimental results and 
computed results by Green's function based on the potential flow theory are plotted. The 
numerical method adopted here has already been described in Chapter 2. In these figures, 
a dimensionless wave force defined as the following is shown. 

= xl(ogMa/2) 
With respect to the experimental results, positive and negative peak wave forces are 

distinguished in the figure by adding the sign +, in which the + refers to a peak wave force 
acting in the direction of wave propagation. 

From these figures, it can be seen that the measured wave forces are roughly less than 
the computed figures for almost all ranges of d/Lo regardless of the depth of the draft. 
However, it is noted that in the case of larger wave height and longer wavelength 
conditions, the measured wave force may become greater than the computed one. The main 
reason for this might be due to the increasing effect of flow separation from the edge of 
the curtain-wall. 

On the other hand, focusing on the magnitude of dF~', which is equivalent to the transfer 
coefficient from the wave height to the peak wave force for the definite wave period, we 

, ^ ,  

can see the maximum value of dF x always appears at the same condition of d/Lo without 
being relevant to the draft condition, d/Lo-O.12. This fact means that the maximum 
horizontal wave force is not necessarily caused by the design wave, which is usually 
represented by the significant or maximum wave based on the wave statistics. Because the 
design wave would have the same wave condition with the possible maximum wave height, 
which often has a comparatively longer wave period and wavelength. Consequently, the 
ratio, d/Lo, for the design wave becomes comparatively small and the corresponding 
transfer coefficient, dF;, may be small according to the above results. Therefore when we 
estimate wave forces on the curtain-wall type breakwater based on the design wave 
concept, it is noticed that there may be some possibility of not predicting the possible 
maximum wave forces. In order to avoid this ambiguity, it is necessary to check the 
variation of the wave force transfer coefficient, clF~', with the wave period as a preliminary 
design step. 
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Nakamura (1992) has also examined the overturning moment and wave pressure 
distribution on the curtain-wall type breakwater and confirmed that a trend similar to the 
horizontal wave force described above is observed. They also reported that the normal 
incidence condition of the incoming wave is more critical for wave force calculation than 
any other incident angle of waves. 
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Fig. 4.40 Horizontal wave forces on the curtain-walled breakwater 

4.7 Floating Breakwater 

A floating breakwater is one type of structure used for wave control. The wooden 
floating breakwater constructed at Plymouth Port in England in 1811 appears to be the first 
such breakwater of the modern era. Since then, research and development of the floating 
breakwater have been mainly conducted in European countries such as England, France 
and the Soviet Union. It is well known that Bombardon floating breakwaters, with unit 
dimensions of length 60m, width 7.5m and height 7.5m, were placed over a distance of 
1.6km along the Normandy coast during World War II. In Japan, the first floating 
breakwater was placed in Aomori Port in 1930, to test its resistiveness against waves and 
the wave dissipation function. 

A floating breakwater is moored to prevent free movement under wave action, which 
differs from fixed-type breakwaters. The floating breakwater has the following advantages: 
(i) The floating breakwater can prevent sea water pollution, since it has a high sea water 

exchange function. 
(ii) The construction cost of the floating breakwater becomes cheaper than the fixed-type 

breakwater as the water depth of the construction site becomes deeper. 
(iii) The floating breakwater can be easily placed on soft ground without soil 

improvement. 
(iv) The placement location of the floating breakwater can be easily changed. 
(v) The floating breakwater can be used for many purposes. 
(vi) The construction period in the field is much shorter compared to the fixed-type 

breakwater 
(vii) The floating body, mooring lines and anchors are usually manufactured in a factory, 

which assures a high level of maintenance, management and reliability. 
The disadvantages of the floating breakwater are as follows: 

(i) Several technological devices are required to attain the designed wave dissipation. 
(ii) The mooring line and anchorage are apt to be broken by the wave action. 



254 

(iii) If the mooring line breaks, the body freely floats, which poses a danger to ships, 
coastal and offshore structures. 

(iv) Field repairs of a damaged floating structure are more difficult than for a fixed-type 
structure. 

Due to the above mentioned disadvantages, at present, the floating breakwater has been 
mainly constructed for limited purposes such as a simple portable breakwater, aquacultural 
facilities and as a floating wharf for yachts and ships. 

4.7.1 Types of floating breakwaters and the principle of wave dissipation 
The structure of a floating breakwater is, in general, skilfully designed to be equipped 

with some wave-dissipation mechanisms such as reflection, wave breaking, friction, vortex 
formation and shedding, jet mixing and resonance. From the view point of wave dissipation 
mechanisms, the structural types of floating breakwaters can be classified into (a) 
reflection-type structures, (b) reflection and wave breaking-type structures and (c) friction- 
type structures. 

(a) Reflection-type structures 
This type of structure reflects some of the incident wave energy to the offshore side and 

decays the transmitted wave. A typical example is the pontoon-type breakwater, which will 
be discussed later. 

(b) Reflection and wave breaking-type structure 
This structure encourages wave breaking and attenuates both the reflected and 

transmitted waves. The barrier-type floating breakwater and the pontoon-barrier-type 
floating breakwater are typical examples of this type. 

(c) Friction-type structure 
Incident wave energy is attenuated by friction and the transmitted wave decays 

according to the magnitude of energy loss through the breakwater. The mattress-type and 
sheet-type floating breakwaters are examples of this kind of structure. 

On the other hand, from the point of view of structural flexibility, the floating 
breakwater can be classified into flexible-type and rigid-type structures. The flexible-type 
breakwater changes its shape according to the wave action. On the contrary, the rigid-type 
breakwater does not change its shape under wave action. Sheet-type, membrane type and 
mattress-type floating breakwaters and floating breakwaters with revolving joints are 
examples of flexible-type structures. The main mechanism of wave dissipation of these 
flexible-type breakwaters exhibit is friction and it is because of this basic characteristic that 
the transmitted wave height decreases exponentially as the crown width of the breakwater 
increases. The hydraulic properties of the membrane-type structure, which belongs to the 
flexible-type breakwater, will be described in 4.8. The rigid-type floating breakwater is 
discussed in detail in the following section. 

4.7.2 Transmission coefficient of the rigid-type floating breakwater 
The rigid-type floating breakwater is not deformed by wave action and is largely 

classified into the pontoon-type, barrier-type, and pontoon-barrier-type floating break- 
waters. 

The pontoon-type floating breakwater is basically a reflection-type structure, and 
attenuates the transmitted wave height mainly by reflection. The rectangular-, trapezoidal- 
, and circular-shaped floating breakwaters are popular. The barrier-type floating breakwater 
has the reflection-wave breaking-structure and the transmitted wave is decayed by 
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reflection, resonance and wave breaking. The perforated caisson-type, the vertical two- 
wall-type and the horizontal two-plate type floating breakwaters are popular barrier-type 
floating breakwaters. The pontoon-barrier-type floating breakwater comprises pontoon- 
type and barrier-type structures. 

The characteristics of the transmission coefficient of the rigid-type floating breakwater 
differ from those of the flexible-type. The transmission coefficient in the case of the rigid- 
type floating breakwater becomes alternatively maximum and minimum. One example is 
shown in Fig. 4.42. Thus, the rigid-type floating breakwater can sufficiently attenuate the 
transmitted wave height to match the design value even when its crown width is much 
shorter than the flexible-type. Thus, if the disadvantages of the rigid-type breakwater can 
be overcome, it can possibly be used as a long-life structure in the same way as a fixed- 
type breakwater. 

The transmission coefficient varies according to the geometrical shape of the structure, 
mooring system, wave conditions and still water depth. The transmission coefficient of the 
non-breaking regular wave in the case of the pontoon-type and barrier-type breakwaters 
can be numerically evaluated by means of a boundary element method, the eigenfunction 
expansion method, etc., which have been discussed in Chapter 2. 

In addition, sea waves are irregular and therefore field engineers require knowledge of 
the transmission coefficient for irregular sea waves. Laboratory experiments by Yamamoto 
(1981), have revealed that the transmission coefficient for irregular waves can be 
accurately evaluated by using the results of the regular waves, as long as the incident wave 
does not break. 

4.7.3 Floating breakwaters with a pressurized air-chamber 
The basic equations for motions of a floating breakwater whose cross-section is 

rectangular or circular, and the resulting wave deformation are introduced in detail in 2.5. 
Therefore, in this section, the floating breakwater utilizing pressurized air, which has 
recently received much attention, will be discussed here. This floating structure is of the 
barrier-type and its major advantage is that the control of its natural frequency is facilitated 
simply by adjusting the air pressure in the air-chamber. 

The analytical situation for a tauntly moored semi-submerged structure with a pressured 
air chamber is shown in Fig. 4.41. The structure is a rectangular body anchored to the 
seafloor, having an outer width 212, inner width 2ll, draft qlh, initial pressurized air depth 
d+q2h and a center of gravity G(0, 50). In the theoretical model, the following 
assumptions are taken into account; (1) the fluid is incompressible, (2) the wave motion 
is irrotational, (3) the linear theory is valid, (4) the floating body displays a small harmonic 
motion, and (5) the Hook law is obeyed regarding the mooring lines. 

The fluid field is vertically divided into five regions in accordance with the sectional 
shape of the structure. Region I includes the incident and reflected waves, while the 
transmitted wave is in region V. 

(1) Displacement of the floating body 
The dynamic motions are given by 

X='rSei~ i~ and  K2 = ff2~ i~ (4.77) 

in which X, Z and I2 are the x- and z- directional and the rotational displacements, 
respectively, where O is positive counter-clockwise. X e, Ze, and O~ are the complex 
amplitudes of the swaying, heaving, and rolling motions, respectively, at the center of 
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Fig. 4.41 Cross section of the floating breakwater with a pressurized air-chamber 

gravity, o is the angular frequency, i = -~-, t is time, x is the horizontal axis taken negative 
in the direction of incident wave propagation and z is the vertical axis taken upwardly 
positive with its origin on the still water level. 

(2) General solution for the velocity potential 
The general solutions for the velocity potentials 4j (x,z,t) = Oj ei~ = 1-5) which satisfy 

the Laplace equation and boundary conditions in the fluid region are given as follows: 

41=[ (A~176176 k,h 

,,=1 cosh k,,h 
42= Cox+D o +~_~ C, sinh(l_q ' 

n=l ) h  

snx l szr(h+z) 
+O, cosh (1-q,)hjC~ (1-ql)h 

ioZ {-zlx2 +~(h+z)Z (1-ql)Zh 2 } _  
+(1-q, )h  2 6 

i~ { x2 (h+z)2 (1-q,)2h2} ] _ _ _ + ~ _  e io~ 
+ (1- ql)h 6 2 6 

V{Eoeik, x + Foe_i,, x } cosh k'(h + z) 43 
L cosh k'h 
+~(Eme*;'x,.__, + Fme-*;'x)c~ poP~ i]eiO, 

[ t = + H s cosh x ~4 G~176 _ Gssinh(1-q~)h (1-q~)h 

s~(h+z)  ioZ { f~ (h+z) z (1-q,)2h 2} 
cos (l_ql)-----------~+ (1-qt)h - + ~ -  2 6 

(4.78) 
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. . I_xE + ( h + z )  2 (1-ql)2h2)]  
_ e iort 

+(1-ql)h [ 6 2 6 

E " 1 
45 = Joe,.k(x+~) cosh k(h + z) + ~_j.e~,(~§ cosh k.(h + z) e~O, 

cosh kh ._~ cosh k.h 

(4.78) 
cont. 

in which h is the still water depth, p is the fluid density, Po is the amplitude of the air 
pressure in the chamber, A0, B0, Co, Do, E0, F0, Go, Ho, Jo, B., J., Era, F,., C,, D,, Gs, and 
H, (m, n, s -1, 2 .... oo) are complex coefficients, and k, k', k. and k" are the eigenvalues 
determined from 

~2 
- -  = ktanh kh =k'tanh k'(1 - q 2 ) h  
g 

= -k .  tank.h = -k"  tank~. (1 - q2)h 
(4.79) 

(3) Air compressed model 
Assuming the adiabatic process of an ideal gas, the amplitude of the air pressure 

fluctuation Po in 43 is given as a function of the heave motion of the floating structure and 
the mean water level in the air-chamber is defined by 

Po =-YPo (~e -I/o)Vo It = 1.4 (4.80) 

where V0 is the initial air volume, and r/0 is the amplitude of the mean water level 
fluctuation and is defined by 

1 t , {  Fe_ik, x = _iff_(Ee ik'x + ) 
OO "~l ~-l, g 

cosh k'(1 - q2)h ~dx 

J cosh k'h 
(4.81) 

(4) Equation of motion for a floating structure 
The motion of the structure is expressed as 

M c92X = -JsiPa~pje i~nxds - 2K,~X - 2Kxog2 (swaying motion) 
t' 

Ot 2 

32Z 
-~siPO~pje g~' nxds - 2K=Z (heaving motion) M-j= 

02~ 
- ~ i p o ,  ie i~ {Xn z - ( Z  - Zo )nx }ds - 2KoxX 

- 2Koo~2 + M v + MGM (rolling motion) 

(4.82) 

in which M and I are the mass and the inertia moments of a floating structure, nx and nz 
are the directional cosines to the x- and z- axis, gpq i s  the q-component of the resistance 
force of the mooring lines due to motion in direction p, My is the moment of the viscous 
damping force, Mou is the restoring moment and S denotes the surface area of the floating 
structure. Expressions for Kpq, McM and My are given as 
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Kxx : K cos 2 5, Kxo : Kox = K cos 2 5{(q,h + Zo)- l: tan 5} 
K= = K sin: 5, K00 : K cos 2 5{(q~h + z0)- 12 tan 5}2 

(4.83) 

MGM =- MgGM fi  

=-pgOo[2(l~ - 131)-(/2 - ll)(qlh) 2 -  ll(qEhf MZ~ 

-I 2NO COS~ {/2 -I-(ql h + ZO )tan ~} (qlh + ~ )2 
pg L, 

= = (1 +z z) aa 

(4.84) 

where K is the spring constant of the mooring line, 6 is the angle between the bottom and 
the mooring line, GM is the metacentric height, L, is the length of the mooring line, V, is 
the viscous resistance coefficient in the rolling motion, F0 is the initial tensile force of the 
mooring line, ~ is the damping modulus due to wave-making resistance and fie is the 
damping modulus in the free rolling of the floating structure, fir- fie represents the damping 
modulus due to eddy generation, Td is the damping period of the free rolling and A/is  the 
added inertia moment. 

The complex coefficients of the velocity potentials and the amplitudes of the motions 
of the structure can be solved with help of the conditions that the water pressure and the 
horizontal velocity should be continuous at the interface between the adjacent two fluid 
regions and between the fluid and the structure, with a given complex coefficient of 
incident wave Ao, 

A o = iage ikll'/a (4.85) 

in which a is the incident wave amplitude. 
The transmission coefficient Kr calculated with the proposed theory is shown to be in 

strong agreement with the experimental values, as shown Fig. 4.42. In theoretical 
calculations, the evanescent modes up to n - m - s - 10 were taken into account. The 
motion of the structure and the tensile force of the mooring line are also in strong 
agreement with calculations and hydraulic experiments. The dynamic behaviours of this 
floating structure and the resulting wave deformation under both a semi-submerged state 
with a catenary mooring system and under a fully submerged state with a taunt mooring 
system have been investigated by Iwata et al. (1990) and Kim et al. (1992). 

As previously stated, the floating breakwater is not as popular as the fixed type 
breakwater. In order to establish the floating breakwater as a reliable and popular structure, 
the following investigations have to be conducted: 
(i) Accurate evaluation of the breaking wave force and the snap tensile force of the 

mooring line. 
(ii) Elucidation of a mechanism for fatigue failure of the mooring line by repeat loading, 

and development of technology as a countermeasure against fatigue failure. 
(iii) Development of new technologies that reduce the shock tensile force acting on the 

mooring line. 
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(iv) Accurate evaluation of the pulling resistance force of the anchorage, and development 
of new anchoring works, to counter destruction by wave action. 

(v) Elucidation of mechanisms for mooring line corrosion, and development of new 
mooring line materials highly resistant against corrosion as well as fatigue. 

(vi) Establishment of an accurate analytical method for the dynamic response of a floating 
structure and its resulting wave deformation which considers foundation-structure- 
wave interaction. 

The subject (iii) above will be discussed in detail in 8.4.5. 
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Fig. 4.42 Transmission and reflection coefficients of the floating breakwater 
with a pressurized air-chamber 

4.8 Membrane Structures 

"Membrane structure" is a general term referring to a structure that mainly consists of 
a membrane made of a synthetic fiber or rubber, etc. Oil boom and silt curtains shown in 
6.4 are examples of membrane structures in practical use and serving a specific function 
in the sea. However, we do not know of any membrane structures yet devised for 
controlling waves. The idea of using membranes to control waves originated a long time 
ago: floating a sheet on a sea surface is one example of this primitive idea. Recently, some 
new types of membrane structures that actively utilize wave-induced motions have been 
proposed. 

When we require membrane structures to have such functions as dissipating or reflecting 
wave energy as utilized in ordinary structures such as breakwaters, membrane structures 
show less effect than rigid structures since the flexibility of the membrane makes them 
easily deformed and affected by wave motion. However, we can easily fabricate a large 
structure by using membranes, which enable us to control waves in a wide region. If we 
intend to make use of membrane motions, we can take advantage of the multi-mode 
motions of the membrane and possibly widen the effective frequency range for wave 
attenuation, which can improve the effectiveness on irregular waves. In general, however, 
the more effectively structures can reduce wave height, the larger the wave forces acting 
on the structure will be, and thus stability sometimes becomes a problem for flexible 
structures such as membrane structures. We must therefore pay special attention to the 
similarity between models and prototypes when investigating the stability of the flexible 
structures by performing physical experiments. 
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Although possibilities exist for membrane structures to become new types of structures 
for wave attenuation in the future, we have to solve many problems in order to put them 
into practical use. In the following section, we will first show how membrane structures 
reduce wave height and then we will introduce some membrane structures that have been 
previously mentioned. 

4.8.1 Wave attenuation mechanism for membrane structures 
(1) Wave energy dissipation on the membrane 

Suppose a sheet of a membrane is extended over several times the wavelength on a water 
surface. If the moment of the membrane does not completely follow the water particle 
motion due to waves, the friction between the membrane and the water surface causes 
energy dissipation. This energy dissipation mechanism is similar to that of bottom friction, 
and wave transformation can be described by the following energy conservation equation: 

d_.d_(cgE)=_E/ (4.86) 
dx 

where the direction of the x-axis coincides with that of the wave propagation and cg, E and 
E/denote the group velocity, time averaged wave energy per unit length, and energy 
dissipating ratio; i.e., energy dissipating per unit length and unit time due to friction. If we 
can express the dissipating energy ratio as E:= mE, where m is constant, Eq (4.86) can be 
integrated into an equation which indicates that the wave height exponentially decreases 
with wave propagation. Estimation of Ey, however, is not straightforward because it may 
be difficult to estimate the friction coefficient and relative velocity between the membrane 
and water. 

Friction is not the only factor involved in the dissipation of wave energy. Some other 
methods have been proposed to dissipate the wave energy more effectively (Jones 1971). 
For example, turbulent energy dissipation can be increased by pleating the membrane, or 
viscous energy dissipation due to fluid motion can be utilized by filling an impermeable 
membrane with high a viscosity fluid and floating it on the water surface. 

(2) Wave attenuation by making use of radiated waves due to membrane motion 
The wave attenuation method that makes use of radiation waves due to the structure's 

motion is one of the methods that utilize phase interaction between waves (see 4.1.2). Let 
us consider a wave field as a combination of diffraction and radiation wave fields. If the 
radiation waves generated by the structure's motion have almost the same propagation 
direction and amplitude as those of diffraction waves and if these waves are out of phase, 
the wave height of the combination waves becomes very small. As mentioned in 4.7, one 
of the most important wave attenuation mechanisms of a floating breakwater is this phase 
interaction effect. In order to make this interaction strong, high radiation waves must be 
generated by large motions of the structure. However, the rigid floating breakwater has 
only 6 modes of motion, therefore the frequencies at which generated wave heights become 
large, i.e., effective frequencies, are at most only 6, even if high waves are generated at the 
natural frequencies for every mode of motion. On the other hand, membrane structures 
have an infinite number of modes of motion, which suggests the possibility of having many 
effective frequencies. 

In order to investigate the magnitude of radiation waves due to membrane motions with 
several modes, let us take a two-dimensional wave maker as a simple example. The 
solution for radiation waves generated by the wave maker is analytically obtained from the 
linear wave maker theory. Assuming that the movement of the wave maker is expressed as 
X = ~" (z) e i "  as shown in Fig. 4.43, the amplitude of radiation waves "a" is given by 
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4ksinh kh I;- f f(z)c~ + h)dzl (4.87) 
a = sinh 2kh+2kh h 

As shown in Fig. 4.44, we now choose the forms of ,~ (z) the seven types of motion: (A) z 
piston.type:. X(z)=l~, (B) flap type: ~'(z) = ld(-~+ 1), (C) cosine function type: ,~'(z) -- 
l c o s ( - t ' ~ ) ~ - ~ )  (n~l, 2, 3, 4, 5). The ratio of the wave amplitude "a" to the amplitude d Z tl 
of the wave maker stroke at a free surface, l d, is a function of the product of the wave 
number k and the water depth h. Figure 4.45 shows the relation between a/l d and kh. As 
clearly seen in this figure, the amplitudes of generated waves due to the motion with the 
higher modes of the cosine function (n=2, 3, 4, 5) are much smaller than those for other 
modes of motion. For sufficiently large kh, however, the amplitude becomes large, so that 
the higher mode motion may be effective only for large kh. 
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Fig. 4.43 A flexible wave maker Fig. 4.44 Oscillation modes of the wave maker 
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Fig. 4.45 Wave amplitude to stroke amplitude ratios 

In Fig. 4.45 we should notice that there is a particular kh at which no radiation waves 
are generated for even numbers of n. The no wave condition is expressed as 

kh sinh kh= (2n -  1)z 2 (n=2,4,6, ..-) (4.88) 
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This fact indicates that if waves propagate from the region of the negative x in Fig 4.43 
and a vertical membrane located at x - 0 moves in the way that generates no radiation 
waves under the condition of Eq. (4.88), we cannot see any transmitted waves in the region 
of a positive x. 

Sawaragi et al. (1989) calculated wave reflection and transmission by a submerged 
vertical membrane lifted by floats shown in Fig. 4.46. The linear wave maker theory is 
used in their calculation, assuming that displacement of the membrane is very small. Fig 
4.47 shows the reflection coefficient KR against buoyancy of the float Bu for three different 
wave frequencies cr, where 7w and 7 are the densities of the membrane in water and in air, 
respectively, A, represents the damping coefficient due to membrane motion, and R 
denotes the distance between the top of the membrane and the still water surface. As seen 
in this figure, for a certain wave frequency, there exists a particular buoyancy that makes 
KR- 1, i.e., there is no wave transmission. At this particular buoyancy the membrane 
oscillates in a mode similar to (C),., in Fig. 4.44 and in a different phase from the wave 
motion. Both wave forces acting on the float and wave transformation by the float are 
neglected in this calculation, and the float becomes so large that these factors cannot be 
neglected so that we give it the buoyancy that realizes no transmission. Actually, 
experimental results did not show such a large reflection coefficient as shown in Fig. 4.47. 
Thus, this attempt was not successful but implies the possibility of controlling waves by 
utilizing the motion of the membrane. 
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Fig. 4.47 Reflection coefficient versus 
buoyancy of the float 

4.8.2 Some membrane structures for wave attenuation 
(1) Sheet breakwaters 

Weigel (1962) investigated wave transmission through a sheet floating on a water 
surface in model tests. According to his experiments, where the length of the sheet is 
varied, the sheet must be five to ten times as long as the wavelength in order to make the 
transmission coefficient, (transmitted wave amplitude)/(incident wave amplitude), less than 
0.5. Kato (1969) carried out experiments under several different mooring conditions, where 
it was shown that a sheet with the length of only two times the wavelength can sufficiently 
reduce transmitted wave amplitudes by improving the mooring system. This is because the 
sheet motion is controlled by the mooring system and then generates turbulence such as 
wave breaking. Watarai (1987) carried out experiments on a submerged sheet horizontally 
supported by poles, and reported that this sheet showed equivalent efficiently or sometimes 
higher efficiently than a fixed horizontal plate because of the radiation waves due to the 
sheet motion. 
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Many other types of sheet breakwaters have been proposed and tested in experiments 
(Jones 1971). In general, the shorter the wavelength, the more effectively sheet 
breakwaters can reduce wave height, thus, sheet breakwaters are suitable for attenuating 
short periodic waves. We should, however, remember that the similarity between models 
and prototypes must be considered further when applying these sheet breakwaters to an 
actual sea site. 

(2) The submerged air balloon breakwater 
Ijima et al. (1985) devised a pair of submerged balloons filled with air and connected 

by a duct as shown in Fig. 4.48 (a). The wave attenuation mechanism of this device is such 
that the balloons periodically deform, as shown by the solid and broken lines in Fig. 4.48 
(b), in correspondence to wave forms with the some types of lines. The radiation waves 
due to this oscillatory deformation become out of phase with incident waves in the onshore 
side, which can reduce the amplitude of transmitted waves. In order to generate the 
radiation waves effectively, the balloons should be placed at intervals of about half a 
wavelength. In addition to the phase interaction effect, energy dissipation caused by air 
flow in the duct also contributes to wave attenuation. 

Submerged 
air balloon f -  N "'~ 

~ ~ A i r  ~ ~ l t ~  

f Duct J ~ . J 

(a) (b) 

Fig. 4.48 Submerged air balloon breakwater 
(after Ijima et al. 1985) 

Ijima et al. (1986) have investigated the effect of a submerged air balloon breakwater 
through model tests and numerical calculations. In order to put the above-mentioned 
balloons into practical use, where the irregularity of waves should be considered, they put 
a group of balloons protected by cylinders on a horizontal plate anchored to the bottom as 
shown in Fig. 4.49. Figure 4.50 shows an example of the transmission coefficient Kr 
obtained by the experiments for the submerged air balloon breakwater. 
The closed and open circles represent the cases with and without the horizontal plate, 
respectively. The balloons with cylinders are effective in the region where B/L (B: length 
of the row of balloons, L: wavelength) is large, while the transmission coefficients are 
almost constant for the cases with the plate. In this figure, we can see that the wave 
attenuation mechanism of the breakwater becomes different from that of a simple pair of 
balloons mentioned above, and the turbulence caused by the horizontal plate may influence 
the wave transformation. The submerged air balloon breakwater is considered to be a 
breakwater against low waves such as a tentative breakwater for a maritime construction 
project or as a breakwater for marine product facilities, and field tests have already been 
performed. 
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Fig. 4.50 Transmission coefficients 
for submerged balloon breakwater 
(after Ijima et al. 1986) 

(3) The flexible mound 
Tanaka et al. (1990) proposed a rubber-made submerged breakwater filled with water to 

a slightly higher pressure than the surrounding water as shown in Fig. 4.51, and named it 
a "flexible mound". Figure 4.52 shows transmission and reflection coefficients for the 
flexible mound, Kr and KR, respectively, compared with those for a rigid submerged 
breakwater with the same shape, where Ap denotes additional pressure of the enclosed 
water. In flexible mound cases, the transmission coefficients show smaller values than 
those for the rigid breakwater in all the tested ranges of B/L, while the reflection 
coefficients become much larger. Other characteristics of the transformation by the flexible 
mound different from those of the rigid breakwater are such that the ratio of the water 
depth at the top of the mound to the incident wave height, R / H I -  which is the most 
important factor for rigid submerged breakwaters - hardly influences the wave 
transformation, and also that the transmission coefficients show smaller values even for the 
large water depth at the top of the mound, for example K r -  0.5 for R/h - 0.5. It is 
considered that these differences exist because the main wave attenuation mechanism of 
the flexible mound is the phase interaction between radiation waves due to the motions of 
the mound and diffraction waves that correspond to the transmitted waves over the rigid 
breakwater. 

Oyama et al. (1989) explained the wave attenuation mechanism through numerical 
analyses by using linear and nonlinear potential theories, which clearly show the effect of 
radiation waves in reducing transmitted wave amplitudes. Their numerical simulations also 
show wave attenuation in a wide wave frequency range because of the multi-mode motion 
of the flexible mound. The flexible mound thus has practical potential if some problems 
such as anchoring are solved. 
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Fig. 4.51 Sketch of the flexible mound 
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Chapter 5 Structure for Controlling Sediment Movement 

5.1 Basic Concept and Structure for Controlling Sediment Movement 
Up until now, many devices have been concentrated to control and also to prevent 

various phenomena such as beach erosion, blockage of river mouths, shoaling of harbors 
and navigation channels caused by sediment movement. Deformations of bottom 
topography in coastal areas have various time and spatial scales. There are also 
topographic changes on a global scale that may continue for a century. Deformation of 
ripples on the bottom may be the smallest scale. 

The time scale of topographic changes, e.g., beach erosion, is classified into the 
following from the engineering point of view: 
(1) Beach erosion that continues for at least several years; a decrease in the sand supply 

from rivers, and the artificial destruction of the natural balance of sediment movement 
in coastal areas due to the construction of structure, bring about such beach erosion 
where longshore sediment transport plays an important role. Erosion of this type 
usually occurs on a large scale. 

(2) Beach erosion that continues for only a week or so; an attack of high waves generated 
by a low pressure system to the almost equilibrium beach causes beach erosion. 
Sediment movement in a cross-shore direction, especially a sediment movement 
offshore, plays an important role. 

There are various modes of sediment movement such as a bed load, suspended load and 
sheet flow. Therefore, when we try to reduce beach erosion, we have to know the mode 
and direction of sediment transport that causes erosion. In this chapter, our basic concept 
for controlling sediment movement and beach deformation is explained. Then the function 
of structures that have been used for controlling sediment transport and beach deformation 
are reviewed briefly. Finally, the hydraulic and beach erosion controlling function of some 
representative structures are discussed based on the results of recent research. 

5.1.1 Basic concept for controlling sediment movement and existing structures used 
for erosion control 

The beach deformations to be controlled are the erosion type and accretion type. 
Schematic examples of these are shown in Fig. 5.1. Beach deformations of the erosion type 
are caused by an imbalance of longshore sediment transport in the longshore direction 
brought about by a decrease of discharged sediment from the source, due to the artificial 
destruction of sediment transport brought about by the construction of coastal structures 
etc. When extremely high waves attack the beach that nearly in an equilibrium state, net 
offshore sediment transport will also cause beach erosion. At this time, eroded sediment 
in the shallow water region usually deposited offshore and decreases the water depth there. 
At the toe of coastal structures, such as sea walls and breakwaters, local scouring may 
occur by a return flow or mass transport velocity in front of them. 

On the other hand, a topographic change of the accretion type to be controlled are the 
blockage of river mouths, the shoaling of navigation channels and harbors and so on. 
Because such beach deformations become obstacles for our social and economic activities 
various structure have been constructed to reduce and control them. Recently, various 
coastal structures have also been constructed not only from the viewpoint of disaster 
prevention but also from the viewpoint of effective utilization of the seashore. 
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Fig. 5.1 Topographic change to be controlled 

In Table 5.1, existing coastal structures that have been constructed in coastal areas are 
listed together with their hydraulic function and function to control sediment movement. 
Other structures such as "L-shape" or "T-shape" jetties, which exhibit the characteristics 
of both jetties and offshore detached breakwaters have also been used. The artificial reef 
in Table 5.1 includes submerged breakwaters with a wide crown width and a perched 
beach-type artificial beach. 

5.1.2 Procedure for determining beach deformation controlling works 
The procedure to determine which method should be adopted from various works, some 

examples of which are listed in Table 5.1, has not established yet. Figure 5.2 is the general 
procedure for determining the work to control beach deformation. 
(i) Past and present characteristics of beach deformation and sediment movement of the 

objective beach: 
First of all, we have to analyze the cause of beach deformation and the predominant 
sediment movement (direction and mode) to be controlled on the basis of sounding 
data, bed material characteristics, river run-off, and weather and sea conditions of the 
objective beach. We also have to fix various input conditions, such as characteristics 
of beach and incoming waves, that will be used in the assessment of the effect of the 
structures on the surrounding coast. 

(ii) Selection of various methods: 
Based on the analysis carried out in (i), some candidates are chosen from various types 
of structures. To do so, functions of structures to control fluid motion and sediment 
movement have to be fully investigated. 
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Table 5.1 Hydraulic function of various coastal structures 

Structures 

Groins 

Offshore 
detached 
breakwaters 

Headland 

Artificial 
beach 

Sea dike 

Hydraulic function 

Spur dike for longshore 
current 

Reduction and control of 
wave height and direction 
by diffraction 

Control of wave height 
and direction by diffrac- 
tion and reflaction 

Reduction of wave energy 
by breaking and energy 
loss in permeable layer 

Control of land ward 
limit of wave penetration 

Function to control 
sediment movement 

Direct trapping of 
longshore current 

Control of longshore 
and cross-shore 
sediment transport 

Re-distribution of 
incident wave energy 
evenly 

Control of longshore 
and cross-shore sedi- 
ment transport 

Prevention of shore- 
line to retreat, control 
of longshore sediment 
transport 

Saw-tooth shape 
shoreline 

Concabo-convex 
shoreline, obstacle 
to natural coastal 
view 

Local scouring, loss 
of foreshore due to 
return flow or re- 
flected waves 

(iii) 

(iv) 

Evaluation of the effects of the candidates on the surrounding coast: 
At this stage, we have to evaluate the effects of each candidate and assess the 
influence of them on the surrounding coast. This is usually done by numerical 
simulation (numerical model) or by hydraulic model experiments (physical model). 
The detail of the numerical model has already been described in Chapter 3. 
Although many studies of this kind have been conducted, unsolved problems still 
remain, especially in the movable bed experiments, related to the similitude law and 
reproducibility of the phenomena in the field in the laboratory. Furthermore, we 
cannot always predict fluid motion close to the structures with sufficient accuracy by 
the numerical method. Hybrid method (for example, Irie and Kuriyama, 1985) where 
topographic change is predicted numerically by using waves and current fields 
obtained in the hydraulic experiments might be an effective tool. 
Other evaluations and (v) Determination of evaluation criteria: 
The cost of construction, view, durable years, water quality environment, and relation 
to fishing industry are raised in these items. However, the standard evaluation criteria 
are not established. They are determined case-by-case. 
Here a general procedure to determine the beach deformation controlling work is 
explained. Whichever procedure we use to determine the proper structure, it is 
needless to say that we have to quantitatively evaluate the effect and the influence of 
them. In the following, functions of representative structures (offshore detached 
breakwaters, groins, artificial reefs, gentle slope seadikes and beach nourishment) to 
control fluid motion (waves and current) and the resulting sediment transport are 
reviewed. 
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Construction 

Fig. 5.2 Flow chart for determining countermeasures 

5.2 Beach Deformation Control by Offshore Detached Breakwaters 

5.2.1 Dimensions of  existing offshore detached breakwaters and occurrence limit of  
salient and tombolo 

Offshore detached breakwaters have been constructed as coastal disaster prevention 
works all over Japan. The reason for this is that they have an effective function to reduce 
wave energy and trap sediment shoreward of them and that their construction and 
maintenance are also not so difficult. Tong shaped topographic features called salient and 
tombolo are usually formed along the shoreline shoreward of them. Many studies have 
been carried out about the wave transformation and topographic change around offshore 
detached breakwaters. 

Offshore detached breakwaters control waves mainly by diffracting waves. We can 
predict the wave-height distribution around offshore detached breakwaters caused purely 
by diffraction including the effect of an opening between them (see Chapter 2). Offshore 
detached breakwaters in the field are usually constructed on the coasts that have a certain 
bottom slope. Waves diffracted by an offshore detached breakwater experience various 
changes in water depth such as shoaling, refraction and breaking. We can also predict such 
wave transformation by using the so-called unsteady mild slope equations (see Chapter 1). 
However, all existing offshore detached breakwaters were not always constructed after 
investigating their wave controlling functions by such a method. 

Figure 5.3 shows the relation between the water depth at the toe at HWL. hi, the offshore 
distance from the shoreline Xoff and the length l of the offshore detached breakwaters that 
were constructed along various coasts of Japan for the purpose of controlling beach 
erosion. Where they were constructed as a group, average values are shown. 
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Fig. 5.3 Length and locations of existing offshore detached breakwaters 

The length and offshore distance of the offshore detached breakwaters range between 
30m to 320m and 10m to 370m. The toe depth at HWL. of more than 90% of the 
breakwaters is shallower than 5m. The crown height of the breakwater is usually higher 
than the HWL. by one half of the design wave height. 

The opening width B when they were executed with a group is distributed widely 
between 6m to 100m. Figure 5.4 shows the relation between the non-dimensional opening 
width B/l and the non-dimensional offshore distance Xoef/1. Most groups of offshore 
detached breakwaters were constructed in the range of Xoff/l<l.O and Xoff/l > B/I. Only one 
case is reported where there is no significant effect to reduce erosion that is illustrated by 
a closed circle in the figure. 
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It is needless to say that we must discuss the effect of the offshore detached breakwater 
on deposition of sediment with respect to incident wave characteristics. Savage (1954) 
examined the occurrence limit of salient and tombolo behind the offshore detached 
breakwater through simplified movable bed experiments in the case where the length of the 
breakwater was equal to the length of incident waves Lo. The results showed that a salient 
occurred in the region of Xoff/Lo<5/4, in other words, Xofe/l<5/4. However, according to the 
experimental results of Shinohara and Tsubaki (1966) salient was generated even in the 
case of xoJLo-2.0 (xo~l -1.76) when l/Lo--1.13. Furthermore, Figs. 5.3 and 5.4 show that 
existing offshore detached breakwaters whose dimensions and locations are beyond the 
limit of Savage have enough function to reduce beach erosion. 

This means that we cannot discuss the occurrence limit of salient and the effect of 
offshore detached breakwaters based on the experimental results under limited conditions. 
In the following, the function of offshore detached breakwaters to control sediment 
transport around them are discussed from the view point of external forces of sediment 
transport such as waves, and wave-induced current around them. 

5.2.2 Function of offshore detached breakwater to control wave and wave-induced 
current 

The function of offshore detached breakwaters to control incident waves depends largely 
on their diffraction effect. Wave deformation caused by diffraction becomes a function of 
the distance from the body of the breakwater. In shoreward region of the offshore detached 
breakwater executed on a sloping beach, diffracted waves refract, shoal and break and 
finally loose their energy on the sloping beach. For controlling wave-induced current and 
sediment movement, it becomes very important to know how the offshore detached 
breakwater affects the waves in the surf zone. 

Figure 5.5 is an example of the experimental result showing the effect of the length and 
the location of an offshore detached breakwater on the wave height distribution along the 
shoreline at x/xb =0.28, where Xb is the width of the breaker zone (Sawaragi and Deguchi, 
1990). Figures (a), (b) and (c) correspond to the cases of the location of the breakwater of 
Xoff/xb-0.57, 0.86 and 1.70, respectively. The vertical axis of each figure is the wave height 
measured along the line of x/xb-0.28 normalized by the measured wave height H~ at the 
same point on a natural beach without breakwaters. The values of tanfl, Ho, T and 0 are 
the beach slope, the equivalent deepwater wave height, period and angle of wave incidence 
at deepwater. 

As is naturally expected, wave attenuation is large when the location of the breakwater 
is close to the measuring line (x/xb-0.28). When the breakwater was constructed in the surf 
zone, the maximum wave attenuation rate in two cases of I/Lo>0.75 are almost the same but 
the maximum wave attenuation rate in the case of I/Lo-0.5 is smaller than other longer 
cases (Figs. 5.5 (a) and (b)). The interaction of diffracted waves from both ends of the 
breakwater causes this difference. As the distance between the line x/x~,-0.28 and the 
breakwater increases, that is, in the case where the breakwater was constructed outside the 
breaker zone, the longshore distribution of wave height approaches uniform due also to the 
interaction of diffracted waves from both ends of the breakwater (Fig. 5.5 (c)). 

As for the effect of the interaction of two breakwaters, wave height distribution in the 
shoreward side of the breakwater is almost the same as that behind the single breakwater 
up to X/Xb--0.67. However, the wave height distribution along the line of x/xb-0.33 no 
longer coincides with that behind the single breakwater. 

It is well known that wave-induced current behind the breakwater caused by normal 
incident waves is characterized by the formation of a pair of circulation cells. It is also 
shown that such wave-induced current patterns can be reproduced by numerical simulation 
(e.g., Sawaragi et al., 1981 and Ohnaka et al., 1988). 
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However, under conditions of oblique wave incidence, longshore current flowed behind 
the breakwater smoothly. Figure 5.6 shows the flow patterns of wave-induced current 
around breakwaters of various lengths. Arrows in the figures are the velocity vectors 
obtained by tracing floats in the experiments. Although wave heights decrease to a great 
extent behind the breakwater, these wave fields have little influence on the longshore 
current behind the breakwater. 
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5.2.3 Longshore  sediment t ranspor t  and topographic change around the offshore 
detached breakwater 

Shoreward of the offshore detached breakwater, under the condition of an almost normal 
wave incidence, diffracted waves and a pair of wave-induced circulation cells generate 
tongue shaped sand bars called salient and tombolo. The probability of occurrence of net 
offshore sediment movement decreases behind the offshore detached breakwater because 
of the wave attenuation. It is also pointed out that they exhibit a function to trap suspended 
sediment transported from the offshore of the breakwater. 

On the other hand, an offshore detached breakwater constructed on a sloping beach 
where longshore sediment transport is established by obliquely incident waves traps a 
larger amount of sediment than in the case of normal wave incidence. In such a case, 
salient becomes easy to form. As a result, sand supply at the down stream side of the 
breakwater decreases significantly and erosion occurs there. 

Figure 5.7 shows three examples of the topographic changes that took place around the 
breakwaters lhr after wave generation measured in the movable beach model experiment 
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with the mean diameter bed material ds0-0.05cm. Figures 5.7 (a) and (b) are the cases of 
a single breakwater constructed inside and outside of the breaker zone. Figure 5.7 (c) is 
the case of a pair of breakwaters constructed outside the breaker zone. 
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In the figure, accreted regions are shown by the hatched area. A significant deposition 
took place behind the breakwater in every case. To discuss the function of the offshore 
detached breakwater of controlling sediment transport, it is necessary to examine where did 
the deposited sand come from; i.e., from the upstream side, downstream side or from 
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offshore region. The authors investigated this point by analyzing the topographic change 
Ah(x,y) at a measuring grid point (x,y) in two different ways. One was to examine the 
distribution of the total longshore sediment transport rate Qye(y) and the other was using 
empirical eigenfunction analysis. 

(1) Function of the offshore detached breakwater to trap sediment with respect to the total 
longshore sediment transport rate 

The total longshore sediment transport rate is calculated using measured change in the 
water depth Ah(x,y) during the time interval At in the following equation: . 

AA(j)/At = {Qy,(j + 1)- Qy,(j)}/Ay/(1- A, ) 
zL4(j)= f Ah(x, jAy)dx 

(5.1) 

where j is the number of the measuring line set at the distance of Ay in the longshore 
direction, ~ is the void ratio of the bed material. 

Solid lines with closed circles in Fig. 5.8 shows some examples of calculated longshore 
distribution of the total longshore sediment transport rate Qy,(y) from Eq. (5.1) using 
topographic change took place during t/T-O and 1800. 
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When a single breakwater was constructed within the breaker zone, the value of Qye 
becomes negative in the lee-side of the breakwater which means that sediment was 
transported in the opposite direction of the longshore current in this region (Fig. (a)). On 
the other hand, when a pair of breakwaters was constructed, although the value of Qye 
almost approaches zero, no significant negative value of Qye appears regardless of its 
position (Figs. (c) and (d)). This means that most of the sediment transported from the 
upstream side is trapped behind the breakwater. 

(2) Function of the offshore detached breakwater evaluated from empirical eigenfunction 
In this section, the pattern of sediment movement and function of trapping sediment of 

an offshore detached breakwater are investigated based on the cross-shore and the 
longshore eigenfunction of the measured topographic changes around the breakwaters. 

Figures 5.9 illustrates examples of the longshore and cross-shore eigenfunctions of the 
maximum eigenvalue (el(x) and cl(y)). The ratio of the maximum eigenvalue to the trace 
is more than 60%. 
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Fig. 5.9 Cross-shore and long-shore eigenfunction corresponding to the largest 
eigenvalue (Xo~Xb--l.7) ((a):l/Lo-l.O, (b):l/Lo-l.O, B/l-l.O) 
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Figure (a) is the case where the single breakwater was set at xojxb--l.7. Figure (b) is the 
result of the case where a pair of breakwaters was constructed at the same location. As can 
be seen from these figures, el(x) is positive throughout the whole region and c~(y) indicates 
both positive and negative values along the longshore direction. Especially, behind the 
breakwater, the value of q(y) is negative. Therefore, it can be judged that the pattern of 
the topographic change represented by the product cl(y)*e~(x) was caused by the longshore 
sediment transport. Therefore, we can evaluate the eroded and deposited volume caused by 
the longshore sediment transport from the longshore distribution of the longshore 
eigenfunction ct(y); that is, the ratio of the volume of deposited sediment behind the 
breakwater and the volume of eroded sediment in the upstream side of the breakwater is 
estimated by the ratio of the area of hatched region A, and the area of dotted region A a. If 
A, is greater than A,, more sediment transported from the upstream side of the breakwater 
was deposited behind the breakwater. This means that the sediment in the downstream side 
of the breakwater was transported in the opposite direction of longshore current by the 
diffracted waves. If A, is smaller than A~, a part of the sediment transported from the 
upstream side of the breakwater in the longshore direction was transported to the lee-side 
behind the breakwater. 

Figure 5.10 shows the ratio of Aa/A~ of all the cases carried out in the experiments. Open 
circles are the cases of a single breakwater and the breakwater of the up-stream side. 
Closed circles are the results of the leeward breakwater. 
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Fig. 5.10 Ratio of Aa/Ae 

In the case of Xoff/Xb--0.86 and l/Lo=l.O, the ratio of Aa/Ae becomes almost 1.5. In this case, 
the sediment in both the upstream-side and lee-side of the breakwater was transported 
behind the breakwater and settled there. The same conclusion has already been derived 
from the analysis of the distribution of Q, (see Fig. 5.8). 

When the length of the breakwater is 1/2 of the incident wavelength, 50 to 60% of the 
amount of the sediment transported in the longshore direction is trapped behind the 
breakwater and the rest flows leeward behind the breakwater. Furthermore, a group of 
breakwaters has a high efficiency to trap sediment behind them when compared with the 
single breakwater of the same dimensions regardless of the opening width. 
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5.2.4 Estimation of total longshore sediment transport rate around offshore detached 
breakwater 

As explained in the foregoing sections, a beach deformation in the shore side of the 
offshore detached breakwater is mainly caused by littoral sand drift. There also exists a 
strong correlation between a change in the sectional area A4 and the shift of the location 
of shoreline AI. A correlation coefficient is larger than 0.8 regardless of the location and 
length of the breakwaters. Accordingly, the so-called one-line theory (see 3.3.2) can be 
applied for estimating the shoreline configuration around the offshore detached breakwater 
if we can predict the longshore distribution of the total longshore sediment transport rate 
Qy. 

The value of Qy is usually estimated by using the wave characteristics at breaking point 
and the direction of the longshore sediment transport is uniquely determined by the wave 
breaking angle. However, there is possibility that the direction of longshore sediment 
transport shoreward of the offshore detached breakwater under the oblique wave incidence 
where strong wave-induce current is generated, an example of which is shown in Figure 
5.6, does not coincide with the wave breaking angle. 

Furthermore, the longshore sediment transport rate cannot be calculated from the wave 
characteristics at the breakingpoint when the breakwater is constructed within the breaker 
zone. In such cases, the value of Qy must be determined through the integration of the 
cross-shore distribution of the local longshore sediment transport rate that will be estimated 
by using the wave field and wave-induced current around the breakwater. 

The wave field around the breakwater is estimated by solving the unsteady mild slope 
equations where the effect of momentum dissipation due to wave breaking is included 
numerically (Eqs. (3.114) and (3.115)). Wave-induced current around the breakwater is 
also calculated by using a depth and time averaged fundamental equation of a wave- 
induced current (Eqs. (3.117) to (3.119)) by applying the ADI method. 

The local longshore sediment transport rate qy(x,y) is then evaluated by using wave 
characteristics, and the wave-induced current velocity at an arbitrary location by the proper 
method that has been mentioned in Chapter 3 (3.4.4). Finally, the total longshore sediment 
transport rate Qy(y) is finally obtained by integrating qy(x,y) in the cross-shore direction. 

A longshore distribution of the total longshore sediment transport rate Qy: where the 
local longshore sediment transport is evaluated from a flux model (Eq. (3.99)) is shown in 
Fig. 5.8. The wave field was calculated at a homogeneous grid point set at a distance of 
As-2.5cm and a time step At-0.01s. Wave-induced current was calculated at a 
homogeneous grid point of As-2Ocm and a time step At=O.O5s. 

The total longshore sediment transport rate Q, evaluated from the Savage-type 
expression (Eq. (3.105) where a3-1.0) by using wave characteristics at the breaking point 
is also shown by solid lines in Fig. 5.8. In the case where a breakwater was constructed 
outside the breaker zone (Figs. (b) and (d)) the total longshore sediment transport rate 
estimated from the measured topographic change Qy~ gives a closer value to Qy: than Q, 
does. This means that the total longshore sediment transport rate around the breakwater 
predicted by using wave characteristics at breaking point has less accuracy than that 
obtained from integrating the local longshore sediment transport rate even when the 
breakwater was constructed outside the breaker zone. 

When the breakwater was constructed in the surf zone (Figs. (a) and (c)), the rough 
figure of the longshore distribution of Qy~ is reproduced by Qy:. However, it required a great 
deal of computation time to obtain the value of QyI. 
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5.3 Control of Beach Deformation Using Groin 

5.3.1 Characteristic function of groins 
A groin and a training jetty are the structures that are constructed along a coast usually 

sticking out from the normal direction of the shoreline to fix the shoreline by controlling 
longshore sediment transport. We have been utilizing such structures to prevent coastal 
regions including river mouths from both erosion and accretion of sand. In this section, the 
hydraulic function of the groin is discussed. The detail of the training jetty is referred to 
in 5.8. 

Groins are usually constructed as a group and they have a longer history than the 
offshore detached breakwater does. Many studies have been carried out about the function 
of groin for controlling waves, current and sediment transport. Recently, a group of groins 
are also constructed to control longshore movement of replenished sand through a sand-by- 
passing system. 

A fundamental methodology of reducing and controlling beach erosion by using a group 
of groins is as follows: A retreat of the shoreline is caused by the longshore gradient of 
the total longshore sediment transport. We can control the movement of the longshore 
sediment transport by constructing a group of groins so that the longshore gradient of the 
total longshore sediment transport may become small. We can also enclose a part of the 
beach by constructing a pair of groins from the surrounding beach to make a pocket beach 
where the longshore sediment transport rate is closed. 

However, the groin does not have the function to control sediment movement in the 
cross-shore direction. A T-type groin and a L-type groin are also constructed for 
controlling the cross-shore sediment transport. 

The trap rate of the longshore sediment transport rate of a groin is a function of the 
dimensions and plane arrangement of groins (length of the groin, spacing and so on) and 
the characteristic of incident wave and the beach (bottom slope, bed material and so on). 
It is needless to say that the trap rate increases with the increasing length of the groins. 
When the length of a groin is short, the groin may lose its function to trap sediment. 

According to research conducted by Toyoshima (1972) the lengths of 60% of the groins 
are in the range of 10-30m in Japan. Many of them are reported to have enough function 
to reduce beach erosion. Some researchers have pointed out through the experiments that 
the effective length l and the spacing B of a groin to trap longshore sediment transport are 
(0.4-0.6)xb and (1-3)l, respectively (Nagai et al., 1955 and Shimano et al., 1956). On the 
other hand, procedures to determine the plane arrangement of the groins have also been 
proposed based on the final shape of the shoreline (Bruun, 1952) or the trap rate of the 
each groin in a group (Ishihara et al., 1963). In this section, the procedure for determining 
the longshore sediment trap rate of the groin is discussed based on the hydraulic function 
of a groin. 

5.3.2 Hydraulic function of groins 
The main hydraulic function of groins is to control the longshore current. They have 

little influence of the incident waves, especially on normally incident waves. In the 
upstream coast of the groins constructed on the beach where longshore current develops, 
it does not exert a significant influence on the current. In the case where the length of a 
groin is shorter than the width of the breaker zone, the longshore current is accelerated 
when it passes the edge of the groin. When the length of the groin is longer than the width 
of the breaker zone, no significant flow in the longshore direction passes through the top 
of the groin. Anyway, strong offshore current develops along the upstream side of the groin 
in both cases. However, the groin gives a strong influence on the wide leeward coast. 
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Figure 5.11 illustrates the flow patterns obtained by float-tracing around a pair of groins 
of the length l that is a half of the width of the breaker zone Xb/2 in laboratory experiments. 
The spacing B of the groins of each figure is B/l-2 and 3, respectively. The length of the 
arrow corresponds to the vector of advection speed of the tracer within Is. 
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Fig. 5.11 Wave-induced current around groins 
((a):l/Xb--0.5, B/l-2.0, (b):l/xb-O.5,B/l--3.0) 

In the case of narrow spacing (Fig. 5.11 (a)), a clear circulation cell is generated between 
the groins. On the other hand, although the flow between the groins becomes slightly 
complex and the flow velocity decreases, there is no significant circulation and tracers flow 
downward in the case of wider spacing (Fig. 5.11 (b)). 

We have to discuss the effect of the interaction of groins with respect to the direction 
of incident waves. But we can judge from the experimental results, examples of which are 
shown in Fig. 5.11, that when the distance of the groins B is shorter than 2l, a strong 
interaction will take place and when the value of B is greater than 31, the interaction 
becomes less significant. 

The quantity that governs the cross-shore scale of the longshore current is the width of 
the breaker zone. The length of the wavelength as well as the wave height and the bottom 
slope are the quantities that determine the width and the cross-shore profile of the 
longshore current. However, it does not have a direct influence on the with of the breaker 
zone and the length of the incident waves have little influence on the above-mentioned 
interaction of the groins. 
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5.3.3 Longshore sediment transport and topographic change around groins 
The function of the groin set at the beach where the longshore sediment transport 

develops is to trap a part of the sediment transported in the longshore direction to settle 
it in the upstream side of the groins. The rest of the sand is transported through the groins 
downward. When the length of the groin is long enough to trap the whole longshore 
sediment transport, severe erosion takes place in the downstream side of the groin. The 
groin reduces its function to trap sediment after the amount of deposited sand in the 
upstream side of it exceeds its capacity. 

Figure 5.12 shows such an example. In the figure, the measured topographic change took 
place around the groin of the relative length measured from the still water shoreline l/xb 
- 0.5 in the laboratory experiment. Figures 5.12 (a) and (b) are the results of the 
topographic changes during (0 - 900)Ts. and (900 - 3600)Ts after wave generation, 
respectively. 
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We can see from Fig. (a) that accretion takes place in the upstream side of the groin and 
some sediment is transported through the top of the groin. While, Fig. (b) shows that the 
groin does not have any function to trap sediment anymore at this stage of the beach 
deformation process. Figure 5.13 is the topographic change measured around the pair of 
groins of the same dimension as shown in Fig. 5.12 which took place during the same 
period as shown in Fig. 5.12 (b). This result implies that groins constructed as a group still 
have a function to settle sediment between them after a single groin lost its function. 

5.3.4 Trap rate of longshore sediment transport 
To predict beach deformation around the groin using the one-line theory, we have to 

give the trap rate of the longshore sediment transport of the groin. In this section, the 
procedure to determine the trap rate of the longshore sediment transport is discussed based 
on the existing studies. 

The longshore sediment transport occurs in the region between the run-up point of 
incident waves and the critical water depth for sediment movement in the offshore. 
Therefore, when we discuss the function of the groin for trapping longshore sediment 
transport, we have to measure the length of the groin from the wave run-up point rather 
than from the still water shoreline. We define this length as the effective length le that is 
expressed by the sum of the wave run-up length xr and the length of the groin measured 
from the still water shoreline 1. 

Sawaragi et al., (1982) carried out experimental studies regarding the trap rate of the 
longshore sediment transport of the groin. They defined the trap rate Tr of the groins of 
various effective lengths in the following way: 

Tr = (Qye(Jg)-Qye(Jg + 1)}/Qye(Jg) (5.2) 

where Qye(Jg) and Qye(.jg+ 1) are the total longshore sediment transport rate calculated from 
Eq. (5.1) using the measured topographic change and (jg, jg+l) are the cross-shore 
measuring lines just upstream and downstream sides of the groins. Figure 5.14 is the 
topographic change that took place around the groin of the non-dimensional length/e*-I 
during (0 to 240)Ts after wave generation where the non-dimensional effective length is 
defined by Eq. (5.3). 

le=te/(Xr+Xb) (5.3) 

Figure 5.14 (b) is the longshore distributions of the total longshore sediment transport 
rate at various stages of topographic change shown in Fig. 5.14 (a) calculated from Eq. 
(5.1). 
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Fig. 5.14 Topographic change and total longshore sediment 
transport rate around groin 

The trap rate of the groin Tr estimated from Eq. (5.2) using the longshore distribution 
of the total longshore sediment transport rate as shown in Fig. 5.14 is illustrated in Fig. 
5.15. 
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Fig. 5.15 Trap rate of longshore sediment transport rate of groin 

Two scales are shown on the horizontal axis. One is the non-dimensional length of the 
groin l/Xb and the other is the non-dimensional effective length of the groin l,*/Xb. The 
result shown in Fig. 5.15 indicates that the trap rate Tr does not increases linearly with the 
increase in the length of the groin. When the groin covers the whole breaker zone, it traps 
about 80% of the total longshore sediment transport rate and the trap rate increases a little 
beyond that region. 
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A solid line in the figure is the cumulative longshore sediment transport rate calculated 
by integrating the local longshore sediment transport rate between the land ward limit of 
the sediment transport and the location of the offshore end of the groin. The local 
longshore sediment transport rate is estimated from the cross-shore distribution of the 
cross-shore eigenfunction. The integrated value corresponds to the longshore sediment 
transport rate in the shaded region of the groin. The calculated trap rate from Eq. (5.2) 
roughly coincides with the solid line implying that the trap rate is estimated by integrating 
the local longshore sediment transport rate over the length of the groin. 

As was already shown in Fig. 5.14, the total longshore sediment transport rate around 
the groin changes with the increase in the wave running time. Therefore, the trap rate also 
changes according to the changes in the longshore sediment transport. Even under such a 
condition, we can evaluate the trap rate by assuming that the effective length is a function 
of the wave running time. 

A comparatively high correlation (a correlation coefficient in the range of 0.5 to 0.6) 
exists between the change in the cross-shore sectional area and the shift of the shoreline 
location. However, the correlation coefficient is lower than that in the topographic change 
around the offshore detached breakwater. This difference comes from the fact that the 
trapped sediment in the upstream side of the groin does not always contribute to the 
advance of the shoreline due to the strong offshore current there. 

5.4 Control  o f  Beach Deformat ion  by Submerged  Breakwater  and Artificial  Ree f  

5.4.1 Def init ion of  an artificial reef  
Recently, the number of coasts where artificial reefs are constructed is increasing. The 

object of the construction is the reduction of coastal disasters and the effective utilization 
of the coastal area by reproducing the function of the natural reef in the south sea 
artificially. At present, there are two different shapes of an artificial reef. One is the 
submerged breakwater with a wide crown width that is already mentioned in 4.3 and the 
other is the so-called perched beach-type artificial reef. 

The artificial beach of a perched beach-type usually consists of the submerged offshore 
breakwater and sand replenishment at the shoreward of it as schematically shown in Fig. 
5.16. In this system, the width of the breaker zone becomes wider than that of the native 
beach and the potential for preventing disaster increases. 

Breaker zone on Breaker zone on artificial reef I 

/ "  natural beach ~ t 

Fig. 5.16 Definiction of perched beach type artificial beach 
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The submerged breakwater in the perched beach-type artificial reef is required to be 
able to reduce the energy of high incident waves that may become dangerous to the beach 
behind it and to keep replenished sand. 

The effect of the submerged breakwater on the two-dimensional beach deformation has 
been examined by Tanaka (1976) through movable bed experiments. Various 
investigations about the effect of the submerged breakwater on the cross-shore sediment 
transport and two-dimensional beach deformation have also been carried out before the 
construction of the submerged breakwaters in the field. However, the two-dimensional 
beach deformation of artificially nourished beach of the perched beach-type artificial reef 
seems to be different from that of the natural beach. 

Here, we investigate the sediment movement in the cross-shore direction on an 
artificially nourished beach based on two-dimensional experiments. The movement of 
replenished sand on an artificial beach is also examined through three-dimensional model 
beach experiments. 

5.4.2 Two-dimensional beach deformation of artificial reef of perched beach-type and 
its control by submerged breakwater 

The problem that is technically comprehended in the perched beach-type artificial reef 
is the loss of replenished sand of the artificial reef in the offshore direction. In this section, 
the influence of the toe depth h, the height of the reef hs and the width B of the submerged 
breakwater on the deformation of the artificially nourished beach are examined based on 
the two-dimensional experiments (Sawaragi et al., 1988). 

Figure 5.17 shows the experimental results of the two-dimensional beach deformations 
of the artificial reefs constructed by using sand of mean grain size ds0-0.03cm at various 
depths on the fixed beach of the slope 1/10. The slope of the artificial reef is 1/30 and the 
height of the reef hs/h is 0.7. The condition of the experimental wave (H0=l 3.1cm, T-I.1 s) 
was determined so that the beach deformation of a natural beach with a slope of 1/10 
became the erosion type and this wave broke at the offshore of the reef or at the offshore 
edge of the reef. 

Figures 5.17 (a), (b) and (c) correspond to the cases of h/Lo-O.053, 0.085 and 0.111. In 
the case shown in Fig. 5.17 (a), the incident waves broke offshore of the reef. From these 
figures, we can find that the eroded region on the reef increases with the increase in the 
value of h]h. Such erosion is mainly caused by the fluid motion including strong 
turbulence associated with breaking waves. We can easily imagine that if the width of the 
submerged breakwater is larger than the length beyond which the turbulence due to 
breaking waves decreases, significant erosion does not occur on the reef. 

In the figures, calculated distributions of the wave height and the ratio of the bottom 
shear velocity and the settling velocity of the bottom sediment u*/W.f are also illustrated. 
Wave height was calculated by the method mentioned in 1.2 and the shear velocity was 
estimated by using the calculated wave height and the Jonsson expression of the bottom 
shear stress. 

Figure 5.18 illustrates the relation between the minimum value of u*/W I of the place 
where significant erosion took place on the reef and the non-dimensional toe depth of the 
reel  The figure indicates that the height of the reef has little influence on the critical value 
of u*/W I corresponding to a limit of erosion. In the case where h/Lo<0.7, significant erosion 
took place in the region where u*/Wi>0.6 and when h/Lo is in the range of 0.8 to 0.85, 
erosion of the reef begun in the region where u*/Wi>0.5. 
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Figure 5.19 shows the two-dimensional beach deformations of the artificial reefs where 
the offshore part of the reef in the case of h/Lo-O.111, hJh-0.55 was covered with rubble 
stones. The relative length of the covered region B/xe, where xe is the length of the eroded 
region in the case of no cover stone, of Figs. 5.19 (a), (b), (c), (d), and (e) correspond to 
0.0, 1.0,0.75,0.5 and 0.3 respectively. The results shown in Fig. 5.19 indicate that we can 
reduce the erosion on the reef by covering 3/4 of the expected eroded region in the case 
of no cover stone. In the following, the procedure for determining the width to effectively 
reduce the erosion on the reef is discussed. 
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Fig. 5.19 Change in the eroded section of perched beach with 
various length of covered region ((a):B/x,-O, (b):B/xe-l.O, 
(c):B/x,-0.75, (d):B/x,-0.5 and (e):B/x,-0.3) 
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As mentioned before, the erosion on the artificial reef is mainly caused by the turbulent 
fluid motion due to breaking waves. Therefore, detailed information of the water-particle 
motion under breaking waves is required to discuss sediment movement in such a region. 
However, at present, there is no sufficient information of fluid motion associated with 
breaking waves to quantitatively discuss the sediment movement in the breaker zone. 

Here, we apply the result of Galvin (1969) to estimate the distance where the turbulent 
energy generated by wave breaking continues. He defined the length of the breaker travel 
on a sloping beach x, as the distance between the breaking point and the place where the 
splash touches the surface using the breaking wave height Hb and the bottom slope tanfl 
as follows: 

x t " -  2(4 - 9.52 tan f l )H b (5.4) 

In Fig. 5.19, the value of x, calculated from Eq. (5.4) using the measured breaking wave 
height and the bottom slope of the reef is also shown. It is found that when we cover the 
reef over the length of at least the same length as x,, we can reduce the erosion on the reef 
to a significant extent. 

5.4.3 Three-dimensional deformation of perched beach-type artificial reef 
In this section, three-dimensional deformation of the perched beach-type artificial reef 

where the width of the submerged offshore breakwater is determined through the procedure 
mentioned in the former section is investigated through experiments. 

Figure 5.20 illustrates the examples of topographic changes measured around artificial 
reef(s) of the slope 1/20 constructed on the model beach of the uniform slope of 1/10 took 
place during 2670Ts after wave generation. The median grain size of the model beach and 
artificial reef is 0.05cm. The non-dimensional toe depth and height of the of the submerged 
breakwater h/Lo, hJh are 0.059 and 0.55, respectively. The width of the submerged 
breakwater B is determined to be 40cm (B/Lo-O.14) from the procedure mentioned in the 
former section. The condition of the experimental wave is shown in the figure. The non- 
dimensional length of the reef l/Lo in Fig. 5.20 (a) is 0.7 and Fig. 5.20 (b) is the result 
where two reefs of the non-dimensional length 1/Lo--0.35 are set at the distance of 0.5"/. 

Although incident waves broke at the offshore edge of the reef, any offshore sediment 
movement did not take place because of the incidence of the accretion type waves. In the 
case shown in Fig. 5.20 (a), any significant longshore transport of the sediment from the 
reef did not take place and the deposited sediment around the shoreline behind the reef 
remained even 2670Ts after wave generation. On the other hand, a large part of sediment 
is eroded from the upstream side reef and is transported downstream in Fig. (b). This 
means that we can keep replenished sand on the reef effectively by constructing a longer 
reef rather than by constructing a group of shorter reefs with an opening. 

The correlation between the changes in the sectional area and the shift of the shoreline 
location around the artificial reef is not so high (less than 0.5) as measured around offshore 
detached breakwaters and groins. The relative importance of the maximum eigenvalue 
obtained from the empirical eigen function analysis is also low (40-50%). This reason is 
explained that at the early stage of the topographic change, the onshore sediment transport 
dominated on the reef until the bottom slope of the reef reached about 1/20 and then the 
longshore sediment transport became predominate. 

These characteristics of the topographic change around the artificial reef found in the 
experiment are also observed around the artificial reef in the field (Deguchi and Sawaragi, 
1986). 
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Fig. 5.20 Topographic changes around perched beach type artificial reef(s) 

5.5 Control of Beach Deformation by Sea Dike of Gentle Slope 

5.5.1 Influence of sea dike on beach deformation 
A seawall and a sea dike have been constructed for the purpose of preventing waves 

from overtopping and inundation caused by a storm surge and a tsunami. They also have 
the function to prevent the shoreline from setback physically. Accordingly, they have 
demonstrated an effect to prevent beach erosion, especially cliff erosion. 

Conventional sea dikes were classified into two groups according to slope: a nearly 
vertical sea wall with the slope tana steeper than 1 and the gentle slope sea dike with the 
slope tana smaller than 1. The goal to prevent inundation and wave overtopping is 
achieved by constructing seawalls and sea dikes of any slope. However, it is often reported 
that the foreshore in front of nearly vertical seawalls and sea dikes disappeared by the 
attack of high waves. Many were destroyed by sand drawing from the inner part of the sea 
dikes and seawalls. It is also reported that the disappeared foreshore recovered after the 
destruction of the seawalls and sea dikes. 

The conceivable causes for the disappearance of the foreshore are as follows: 
(i) The net offshore sediment transport caused by the high waves (change in the beach 

deformation process from accretion type to erosion type), 
(ii) The local offshore sediment transport caused by the down-rush flow on the slope and 

the increase of the reflected waves from the sea dike, and 
(iii) The increase in the longshore sediment transport in front of the sea walls due to the 

acceleration of the longshore current there. 
In the field, these phenomena act together to cause the disappearance of the foreshore 

and local scouring at the toe of the sea dikes. Among them, we can control the two- 
dimensional local scouring and longshore current in front of the sea dike. According to 
numerous studies about the two-dimensional local scouring in front of the sea dike, the 
maximum scouring depth increases with the increases in the reflection from the sea dikes 
and the increases in the velocity of the down-rush flow on the slope. Both reflections from 
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the sea dike and the velocity of down-rush flow decrease with the decrease of the slope 
of the sea dike. Furthermore, the damaged foreshore due to high waves is more easily 
recovered in front of the gently sloping sea dike. 

Toyoshima (1984) proposed a sea dike of gentle slope covered with blocks having 
permeability. This type of sea dike was tested for its effectiveness in the field and proved 
successful. Recently, the number of coasts protected by sea dikes of gentle slope are 
increasing in Japan. 

5.5.2 Longshore current and longshore sediment transport in front of sea dike 
When we predict shoreline change by the one-line theory or plan the plane arrangement 

of the sea dike, we have to know the effect of the sea dike on the longshore current and 
longshore sediment transport on the natural beach. In this section, the effect of sea dikes 
on the longshore current and resulting longshore sediment transport is discussed through 
experiments (Deguchi, 1984). 

Figure 5.21 shows a cross-shore distribution of the longshore current velocity in front 
of vertical and gently sloping sea dikes measured in a wave basin by tracer tracing. The 
sea dikes were constructed on a uniformly sloping beach of tan/~l /10 and the location of 
the toe of sea dikes xi were on the still water shoreline and just half of the width of the 
breaker zone (xi/xb-O.O and 0.5). The slope of the gentle slope sea dike tana was 1/2.7. The 
condition of the experimental waves and the cross-shore distribution of the longshore 
current measured on the natural beach are also shown in the figure. 
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Fig. 5.21 Cross-shore distribution of longshore current in front of sea dikes 

The velocity of longshore current in front of a sea dike is accelerated in the region of 
0.1*L0 from the sea dike. The velocity becomes several times larger than that at the same 
location on a natural beach. Longshore currents occur especially in front of gently sloping 
sea dikes. 

According to the experimental results concerning the wave field in front of a vertical sea 
dike (Sawaragi et al., 1986) constructed on the sloping beach, reflected waves from the sea 
dike have little influence on the wave breaking of incident waves when the sea dike is 
constructed in the region shallower than x/x~,<0.5. When the breakwater is set in the region 
deeper than XVXb>I.2, wave breaking does not take place. Breaking of composite waves 
occurs and the characteristics of incident progressive waves are totally lost when it is 
constructed in the region of 0.5_<_XvXb<I.0. Even in the case of the oblique wave incidence, 
incident waves break in front of the sea dike at the same point as the natural beach when 
the sea dike is constructed in the region of xvx~,<0.5. Therefore, the acceleration of the 
longshore current may take place in the local area just close to the sea dikes. 
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Figure 5.22 shows the total longshore sediment transport rate Qye,,, measured in front of 
the vertical and gentle slope sea dikes set on the uniformly sloping bottom of 1/10. The 
mean grain size is 0.03cm. The vertical axis is normalized by the total longshore sediment 
transport r a t e  Qyeo on the natural beach. Both values of Oyem and Qyeo are calculated from 
Eq. (5.1) using the topographic change measured in the accretion type and erosion type 
beach deformation processes. Wave heights at deepwater were 6cm (accretion type) and 
12cm (erosion type) and the period was 1.28s. 
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Fig. 5.22 Total longshore sediment transport rate in front of various sea dikes 

From Fig. 5.22, it is found that more than 80% of the total longshore sediment transport 
on the natural beach occurs in front of the sea dikes except in the case of the gently sloped 
sea dike under the incidence of erosion type waves. The thick solid and broken lines in the 
figure are the calculated total longshore sediment transport rate by integrating the local 
longshore sediment transport rate (Eq. (3.99)) in front of the sea dikes assuming that the 
existence of the sea dike does not influence the local longshore sediment transport rate on 
the natural beach. The calculated longshore sediment transport rate does not coincide with 
the measured longshore sediment transport rate. This means that we have to take into 
account the effect of the acceleration of the longshore current and reflected waves in front 
of the sea dike to precisely evaluate the longshore sediment transport rate. 

5.6 Artificial Beach Nourishment 
In the former sections, various functions of coastal structures that have been used to 

control and reduce beach deformation have been discussed. However, the actual 
phenomena in the field such as beach erosion, filling-up of navigation channels and harbors 
and so on are not always controlled by these structures. Artificial sand replenishment in the 
eroded region and dredging of the deposited sand are effective and in some cases unique 
countermeasures against unexpected topographic change. 

There are two kinds of beach nourishment: dynamic and static. In dynamic beach 
nourishment, sands are replenished temporally at the upstream side of the eroded region so 
that they are transported downstream to feed the eroded area. The so-called sand-bypass 
is representative method of dynamic beach nourishment. We have to carefully select the 
place for the temporal replenishment and a plane arrangement of structures to effectively 
catch the transported sediment in the eroded area. In static nourishment, the artificial beach 
is constructed by direct sand replenishment to reduce incident wave energy and to reduce 
coastal disasters such as wave overtopping and so on. In the latter nourishment, 
deformation of the artificial beach has to be minimized to keep its function of controlling 
incident wave energy. The artificial reef referred to in 5.4 is representative of static beach 
nourishment. 
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On the other hand, "beach" provides us with various opportunities for pleasure such as 
swimming, fishing, camping and so on. There are some artificial beaches constructed as a 
means of mitigation for the development of the coastal area. 

The Ministry of Transport of Japan prepared a technology manual (Ministry of 
Transport, 1979) for constructing artificial beaches in this category. According to the 
manual, it is suggested that the height of the back shore defined in Fig. 5.23 should be 
higher than the run-up height of the incident waves of the return period of 0.4-0.5 years. 
The foreshore slope is also suggested to be a little steeper than the equilibrium slope for 
the incident waves. In the manual, empirical expressions for estimating the run-up height 
and the foreshore slope are given from the analysis of 12 existing artificial beaches in 
Japan as follows: 

g / n  o = (52H0 / Z0) -z7 

R / H  o = (8.25H0 / L0) 

Ho/Lo>-O'O133} 
Ho/Lo _< 0.01 

(5.5) 

tanfl  : {(dso/Ho )/1.37} ~ 

tan fl = (376.6dso/Ho ) ~ 

ds0 / H 0 > 2.4 x 10-4 l 

d,o / H o < 2.4 x l O-4j (5.6) 

Equations (5.5) and (5.6) are expressed using wave characteristics in deepwater. As 
mentioned in the former sections, various coastal structures have been constructed around 
artificial beaches to prevent replenished sand from being transported offshore. In such 
cases, characteristics of incident waves become different from those on a natural beach. 
We have to estimate wave characteristics in deepwater from the wave characteristics in the 
near shore region that are deformed by structures and are actually related to beach 
deformation by a proper procedure. 

It is needless to say that a large deformation of an artificial beach of this kind also has 
to be controlled from the view point of maintenance and management. 
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Fig. 5.23 Definition sketch of a section of artificial beach 

5.7 Protection Works Against Shoaling in Harbors and Navigation Channels 

5.7.1 Shoaling process in harbors and navigation channels 
Sedimentation at a harbor entrance or inside a harbor prevents ships from navigating and 

sometimes spoils the harbor. Figure 5.24 shows an example of the topographic change 
around a harbor in Japan. Sedimentation at the harbor entrance due to sand transport 
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coming around the east breakwater can be seen in the figure Q,  which finally blocked up 
the harbor with the shoreline being advanced because of the west breakwater as seen in the 
figures (~) and (~). 
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Sept. 12 '78 

I | 

Nov. 16 '78 

( ~  . 

Nov. 10 '78 

Dec. 27 '78 

Fig. 5.24 Topographic change around Ichiburi Harbor in Japan 

Shoaling in navigation channels in rivers or estuaries is also an important problem in 
Japan as well as in China and several countries in Southeast Asia. Such sedimentation is 
usually caused by fine sediments such as silt or silty sand carried by waves or currents. 
This kind of sedimentation is referred to as siltation and has recently been investigated as 
a new sedimentation problem. Shoaling due to siltation is rather difficult to predict because 
its behavior is different from that of sand in some phases of sedimentation such as 
suspension by current, interaction between waves and sediments, process of advection and 
deposition, and flocculation in a mixing region of salt and fresh water. In the following 
sections, we will separately discuss sedimentation on two types of coasts: sandy and silty. 

5.7.2 Procedure of protection works against sedimentation in harbors on a sandy 
coast 

(1) Sediment transport causing shoaling in harbors and navigation channels 
Various kinds of sediment transport that may cause shoaling in harbors and navigation 

channels have been pointed out: 
(i) Sediment transport entering through a harbor entrance 
(ii) Sediment transport due to wave overtopping into a harbor 
(iii) Sediment transport through rubble mound breakwaters 
(iv) Entertainment of suspended sediment into the harbor by low frequency fluid motion 

such as harbor seiche 
(v) Sand transport as wind-blown sand from neighboring beaches 

Sediment transport (i) is the main cause in most harbors, but others have also been 
reported to be important causes in some harbors. The most important cause of shoaling in 
navigation channels has the similar mechanism to (i); sediments suspended by waves or 
currents in a shallow water region are carried and deposited in the channel where the 
current velocity is slower. 
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(2) Procedure of protection works 
As for the protection works corresponding to cause (ii), construction of higher 

breakwaters is obviously effective. For cause (iii), it is effective to reduce the permeability 
of the rubble mound breakwaters by inserting impermeable core or Sheet-piles inside the 
breakwaters or by covering the mounds with sheets. Wind-blown sand can be protected by 
planting grass on the neighboring beach or by constructing windbreaks. However, effective 
countermeasures against cause (i) have not been well established and protection works 
have sometimes been done by trial and error. Here, we first show the necessary basic 
surveys to establish countermeasures against cause (i) and then discuss the procedure of 
protection works. 

a. Oceanographic survey 
The main driving force in sediment transport into a harbor may be waves and thus we 

should first investigate the statistics of wave heights, wave periods and wave directions by 
using wave data or by means of wave hind casting from wind data. Regarding cause (iv), 
we should also investigate the characteristics of long period waves in a harbor by field 
measurements or numerical simulations. Figure 5.25 shows the results of spectral analysis 
of the water surface elevation measured at points a and c in the harbor indicated in the 
figure, where a record over a period of 300s is used and the tidal deviation is eliminated 
from it. Long period components with a period between 25 and 30 minutes are clearly 
observed in the wave record. 

b. Topography survey 
The survey of topography around a harbor can be utilized in selecting a location or a 

type of structure for protection against littoral drift. We can sometimes stop littoral drift 
by constructing structures making use of the topography such as a cape or a rock reef. 

c. Survey of nearshore currents 
As mentioned in 3.4, the littoral drift is strongly influenced by nearshore currents, 

especially by longshore current. Thus we should survey the actual condition of the 
nearshore currents and also predict the change of the currents due to the construction of 
structures. 

d. Survey of littoral drift 
The survey of littoral drift is classified into two kinds of surveys: transport pattern and 

transport rate surveys. We should first figure out the predominant transport pattern, 
suspended load or bed load, using the results of the investigation on the sediment transport 
pattern. The survey of the sediment transport rate provides the quantities of sediment in 
both forms of longshore and cross shore sediment transport. The change in such transport 
patterns and transport rates after the construction of structures should also be examined by 
numerical predictions. 

e. Survey of topographic change 
The sediment transport finally causes topographic change. We should therefore carry out 

the prediction of the seasonal topographic change before and after the construction of 
structures. 

As stated above, it is necessary to examine the effect of structures using physical or 
numerical models in the planning countermeasures against shoaling. Both physical and 
numerical models however have their own problems. A similarity law has not been 
established in the physical model with movable beds and thus a quantitative estimation is 
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Fig. 5.25 Spectrum of water surface elevation measured around a harbor 

rather difficult. In the numerical models, there are still some uncertainties in the calculation 
of wave transformation including wave breaking. The hybrid method, the method 
combining the physical and numerical methods, has recently been proposed and used to 
discuss the effect of shoaling protection structures. A representative flowchart of the hybrid 
method is shown in Fig. 5.26. 

The quantities regarding the driving forces in sediment transport; e.g., current velocity, 
current direction, wave height, and wave direction are first measured in the physical model 
experiments, and then they are used as data in the numerical models. We have shown the 
details of the numerical models on sediment transport and associated topographic change 
in Chapter 3. Different countermeasures may be taken corresponding to the two 
representative sediment transport patterns, suspended load and bed load, and therefore the 
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amount of suspended and bed loads must be individually evaluated using the formulas for 
sediment transport rate shown in 3.4. 
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Fig. 5.26 Flow chart of hybrid method 

5.7 .3  P r o c e d u r e  o f  pro tec t ion  w o r k s  against  s e d i m e n t a t i o n  in a h a r b o r  on a si l ty coas t  
As shown above, important problems regarding siltation may be the mechanism of 

sediment suspension, the process of advection and deposition, and the flocculation of fine 
particles. Here, we show methods to study these problems on the basis of Tsuruya's work 
(1990). 

(1) Quantitative estimation of suspended sediments 
We first need to estimate the shear stress due to wave-induced current or tidal current. 

This provides the amount of suspended sediments Qs that will be used as a boundary 
condition in solving the equations of advection and diffusion. Partheniades (1965) shows 
the formula for Q,: 

Q~=M(~:b-k'cc 1) (5.7) 

where M is a constant given as a function of material and water content of sediments, Zb 
is the bottom shear stress, and rc denotes the critical shear stress of sediment suspension. 
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General expressions for M and rc have not been established. The value of 1re is usually 
obtained by the experiments using real materials. As for the value of M, Van Leussen and 
Dronkers (1988) propose to use the values between 0.06 and 0.24 kg/m2/min, whereas 
Tsuruya (1990) uses 1.2 kg/m2/min in his calculation. 

(2) Calculation of advection and diffusion 
We can calculate the advection and diffusion of the sediments by first estimating the 

tidal and wave-induced currents and then by solving the advection-diffusion equation (see 
3.6). Since the sediment concentration varies in the vertical direction; a higher 
concentration near the bottom and lower near the water surface, the calculation should be 
carried out by dividing the water into multiple layers. In particular, such a subdivision is 
important for studying the effect of submerged breakwaters such as shoaling protection 
structures. 

(3) Estimation of deposition and sedimentation 
The amount of sedimentation D is generally expressed as a product of the setting 

velocity W: and the sediment concentration at the bottom C~d: 

D - Pr WfCbed ( 5 . 8 )  

where Pr denotes the probability that suspended sediment is deposited and this is expressed 
as pr = 1 - ( Tb / rd ) using the critical shear stress rd against the deposition. Tsuruya (1990) 
however let Pr be 1 in his calculation. 

The settling velocity W: is usually given as a function of the Reynolds number with 
respect to the particle diameter (e.g., Rubey's table). However, fine particles sometimes 
form a flock that contains water. As the sediment concentration increases the frequency of 
collision between the particles increases and then the flocculation develops, which makes 
the setting velocity larger. However, if the concentration exceeds a certain critical value 
the setting velocity decreases due to the interaction between flocks and due to the dropping 
of pore water and associated ascending current. Figure 5.27 shows the relationship between 
the sediment concentration C and the settling velocity W:. 
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Fig. 5.27 Relationship between sediment concentration and settling velocity 
(after Tsuruya (1990)) 
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(4) Sediment transport due to waves 
We have mainly discussed the mechanism of sediment transport and deposition by tidal 

or wave-induced currents. Sediment transport associated with mass transport due to waves 
is another factor of the siltation, which can be recognized as a mud flow. The total amount 
of sedimentation can be estimated as the sum of currents and waves. According to 
Tsuruya's prediction for the navigation channel in Kumamoto harbor, the ratio of 
sedimentation volume due to currents is about 85% near the harbor entrance and 75% 
inside the harbor. 

5.7.4 Examples of protection works against shoaling in harbors on a sandy coast 
Construction of longer breakwaters has been the most popular countermeasure to protect 

harbors on a sandy coast from sedimentation through the harbor entrance, which is due to 
the fact that the driving force in sediment transport is smaller in deeper water. In the case 
that the suspended load transport is dominant, however, the extension of breakwaters is not 
always effective. Not only that, in the case of longshore sediment transport being 
dominant, the bed load transport coming into the harbor around a breakwater end 
sometimes increases because of the topographic change of the neighboring beach, which 
consequently makes the situation worse. Thus the protection works must be carefully 
designed considering the behavior of sediment transport. 

(1) Bed load dominant case 
Bed load transport is usually dominant on the coast that consists of larger size sediments 

relative to the incoming wave height. In such a case, as shown in Fig. 5.28, the 
construction of sand groins outside the harbor is often effective as well as the extension 
of breakwaters. 
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Fig. 5.28 Countermeasures at a harbor on a sandy coast 

(2) Suspended load dominant case 
Under storm conditions, the suspended load transport may be predominant around a 

harbor on a sandy coast facing the ocean. In such a case, the construction of offshore 
breakwaters, which interrupt the suspended load and deposit it outside the harbor, may be 
as effective as the extension of breakwaters (see Fig. 5.28). 
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If there is a cape or a rock reef near the harbor, it is also effective constructing a groin 
at such places to change the magnitudes and directions of currents and waves. Such a 
countermeasure was adopted at a harbor in Sri Lanka, where the sediment transport coming 
around a cape was significant. 

As mentioned in 5.7.2 (2), the suspended load may be carried into a harbor by the 
current associated with a long period harbor oscillation. In this case, as taken at Gumizaki 
harbor in Fig. 5.29, it may be effective to decrease harbor oscillation by constructing 
slopes instead of existing quay walls or to change the natural period of harbor oscillation 
by changing the harbor configuration or dredging in the harbor. 

Newly constructed part 
Original quay wall 

_/ 
~ Slope 

Fig. 5.29 Countermeasures at Gumizaki fish harbor 

We have shown various countermeasures using coastal structures against shoaling in 
harbors. It is however difficult to completely interrupt sediment transport into a harbor by 
the structures. Maintenance dredging must therefore be taken into account and a dredging 
plan should be scheduled at the same time the construction plan is organized. We can 
estimate the amount of maintenance dredging by using the methods shown in 5.7.2 (2). 

5.7.5 An example of protection works in a harbor on a silty coast 
Siltation is one of the most difficult coastal problems and so too is the countermeasure 

against sedimentation due to siltation. Here we show the protection work being planned at 
Kumamoto harbor. As shown in Fig. 5.30, a set of submerged breakwaters on both sides 
of the navigation channel is considered. The submerged breakwaters are l m high and 
2000m long. According to Tsuruya's simulation results, the submerged breakwaters will be 
able to decrease the amount of sedimentation by up to 53% - 80% of that without the 
breakwaters, although the effect of the breakwaters varies over the location in the channel. 

H= 1/1000 
V=1/200 

111~11 
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Fig. 5.30 Submerged breakwater as protection works against 
shoaling in navigation channel (Tsuruya et al., 1990) 

5.8 Structure for Processing River Mouth 

5.8.1 Classification of river mouth topographic features with respect to sediment 
movement 

The flow field around a river mouth becomes extremely complicated due to various fluid 
motions such as discharged flow from a river, waves, wave-induced current and tidal 
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current of different densities. There are large rivers from which always flow more than tens 
of thousands of liters of water per hour. There also exist small rivers where there is usually 
no water. The hydrological regime of a river discharge also changes variously from place 
to place by the difference of the scale of the river. Furthermore, even in the same river, 
the flow field around the river mouth after the run-off of rainfall differs from that in the 
dry season. The density difference of fresh water and sea water mainly comes from a 
difference in the salt concentration and water temperature between both of them and exerts 
a significant influence on vertical structure of the flow around the river mouth. 

On the other hand, fluid motions caused by waves and wave-induced current also give 
a great influence on the flow field and topographic features around river mouth. When a 
river flow enters the coastal region from the river mouth the velocity of the flow decreases, 
resulting in discharged sediment from upstream being deposited. 

There are some numerical models for analyzing the behavior of discharged fresh water 
in a coastal region where the density difference between fresh water and coastal water are 
taken into account (e.g., Nakatsuji et al., 1992). 

However, because the sediment transport phenomenon in the fluid motions of different 
densities becomes extremely complex, most of the existing experimental studies 
concerning the sediment transport around a river mouth were carried out without 
considering density difference. Here, the depositional pattern of the discharged sediment 
from a river mouth is discussed based on experimental results without taking into account 
the effect of the density difference because of the difficulty of the similitude of sediment 
movements in the river and in the coast. 

From the point of view of fluid motion that controls the sectional area of a river mouth, 
river mouths are classified into the following three types: 
(1) River flow dominating type : The discharge of the river of this type is large and the 

bottom slope is steep. The opening of the river mouth depends only on the discharge 
of the river. 

(2) Wave dominating type : The river mouth of a river whose discharge is small and the 
tidal difference is not so large. The topography around the river mouth depends on the 
waves and wave-induced current. 

(3) Tidal current dominating type : The section of the river mouth is maintained by the 
tidal current in the river mouth. 

Numerous studies have been carried out concerning topographic change around a 
river mouth. According to these results, topographic change around a river mouth is 
classified as shown in Table 5.2 in terms of the relative magnitude of the discharged 
sediment from the river and the sediment movement in the coastal region, mode of 
sediment movement around the river mouth and so on. 

When there is enough flow at a river mouth, as is the case in the river flow and tidal 
current dominating types, discharged sediment from the river is deposited in front of the 
river mouth to form a terrace of a half moon shape (Type I and II; Suga et al., 1986 and 
Deguchi and Sawaragi, 1988). If the depth at the river mouth decreases by the accretion 
of discharged sediment, the velocity of the discharged flow and bottom shear stress 
increase to transport deposited sediment into a deeper region. As a result, a terrace 
develops offshore. In such a case, there is interaction between the changes in water depth 
and discharged flow and a perfect blockage of the river mouth hardly occurs. 

On the other hand, a river mouth of the wave dominating type is easily blocked when 
waves of the accretion type attack and a river mouth bar is formed (Type X and XI). Even 
in the case of the incidence of erosion type waves, continuity of longshore sediment 
transport is broken at the river mouth. There is a possibility for the occurrence of the 
blockage of a river mouth by the deposition of sediment caused by the discontinuity of 
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Table 5.2 Classif ication of river mouth topography 

Type Transport Wave 
agency climate 

I River Calm 
flow 

River Characteristic Source 
discharge topography 

Bed load from Mean Formation of river 
river mouth bar 

II River Calm 
flow 

Bed load and Rich Formation of delta 
suspended load and terrace 
from fiver 

III River High Discharged 
flow waves sediment from 
and and river and onshore 
waves high sediment transport 

tide by waves 

IV River Normal Bed load from 
flow waves rive and onshore 
and (normal sediment transport 
waves inci- by waves 

dence) 

V River Normal Bed load from 
! 

flow waves river and 
and (ob- longshore 
waves liquely sediment transport 

inci- by waves 
dence) 

VI River Normal Bed load and 
flow waves suspended load 
>waves (normal from fiver and 

inci- onshore transport 
dence) by waves 

VII River Normal Bed and 
flow i waves suspended load 
>waves (oblique from river and 

inci- longshore 
dence) sediment transport 

VIII i Waves> High 
river waves 
flow (normal 

inci- 
dence) 

Formation of bar 
in river 

Mean Discontinuous 
longshore bar 

Mean Asymmetrical bars 
with opening 

Rich 

Rich 

Formations of 
terrace and horn 
shape bar 

Formation of 
terrace and 
asymmetric bars 

Offshore sediment Low Formation of 
transport longshore bar 

Shape of 
sand bar 

11111 
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Table 5.2 (continued) 

Transport Wave 
Type agency climate 

IX Waves> High 
river waves 
f low (oblique 

inci- 
dence) 

Source 

Longshore 
sediment transport 

Waves> Normal River mouth bar 
rive waves 
f low (normal 

inci- 
dence) 

XI Waves> Normal Cross-shore and 
river w a v e s  longshore 
f low (oblique sediment transport 

inci- 
dence) 

River Characteristic 
discharge topography 

Low Formation of 
longshore and 
river mouth bars 

Drough Formation of river 
mouth bars 

Drough Formation of 
asymmetric river 
mouth bars 

Shape of 
sand bar References 

longshore sediment transport (Type IX). When the waves propagate and break in the river, 
discharged sediment from the river cannot flow out of the river mouth. Discharged 
sediment is deposited in the river and reduces the area of the river mouth. (Type III). 

As shown in Table 5.2, river mouth topographic features deeply depend on a 
characteristics of incident waves, existence of tide, river discharge and so on. 

5.8.2 Conventional procedure of river mouth processing and its problem 
A blockage of a river mouth deeply influences the drainage of flood water, navigation 

and the ecosystem. Although continuous observations have been carried out about the 
flashing mechanism of a river mouth bar at a few river mouths, a large part of the 
mechanism of sedimentation around a river mouth remains unsolved. A training jetty, a 
gate, a culvert and artificial dredging are popular countermeasure works against river 
mouth closure. 

Training jetties are constructed to flow river water downward smoothly and to prevent 
sedimentation in the river mouth and the invasion of waves into the river. The length of 
jetties must be long enough to prevent sedimentation of littoral sand movement around the 
river mouth. However, such long jetties break the continuity of longshore sediment 
transport around them and bring about a secondary influence on the coast around them. 
They also increase the resistance of the river flow that may result in an increase in the 
water level of the river. 

A culvert is usually constructed as a countermeasure against the closure of a small river 
with a design flood discharge smaller than 200m3/s and whose river mouth is located at the 
beach where a backshore develops. A culvert is effective at the river mouth where there 
is the possibility of sedimentation due to aeolian sand. A characteristic of this method is 
to utilize local scouring caused by waves and current at the opening of the culvert to 
prevent closure by sedimentation. However, the culvert may more or less bring 
discontinuity of longshore sediment transport. 
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A gate is also constructed at the river mouth of a small discharge. It also utilizes the 
local scouring caused by waves and current. We can also operate a gate to flash deposited 
sediment in front of it. However, artificial dredging is required when the amount of the 
deposited sediment becomes greater than the amount that can be flashed by the discharged 
flow from the gate. 

As was mentioned above, the fluid motion around the river mouth shows a complicated 
aspect with the combined effects of river discharge, tidal current, waves and wave-induced 
current. A topographic change around a river mouth becomes more complicated than the 
fluid motion because one more independent variable, characteristics of the bed material, 
plays an important part in the phenomena. Therefore, it is generally impossible to 
determine the dimensions of countermeasure work against closure in a universal way. At 
present, the type and dimensions of countermeasures are decided by carrying out numerical 
or physical case studies or purely empirical knowledge. 

Countermeasure works against river mouth closure have to possess the following 
functions: 
(i) to prevent and reduce sedimentation in the river and to preserve the river mouth cross- 

section for river discharge and 
(ii) to prevent the invasion of waves into the river and to reduce wave set-up in the river. 

These demands come from the point of view of preventing flood disaster due to 
drainage failure. However, the beach erosion originating in a decrease of discharged 
sediment from a river becomes significant. Therefore, in terms of beach erosion 
control, it is desired that the following two conditions is satisfied: 

(iii) not to disturb continuity of longshore sediment transport around the river mouth and 
(iv) to redistribute discharged sediment from the river effectively to the surrounding coast 

to feed the beach. 
These demands may be better satisfied by other coastal structures; e.g., by an offshore 

detached breakwater, than by the three types of countermeasure works mentioned above. 
In the following, we will discuss the functions of a training jetty and an offshore detached 
breakwater as countermeasure works for river mouth closure based on the experimental 
results. 

5.8.3 Effect of countermeasure works on the river discharge and deposition pattern 
of discharged sediment. 

It is not so difficult to prevent and reduce accretion of sediment around a river mouth 
through controlling the sediment movement around the river mouth by constructing 
countermeasure works such as a training jetty and an offshore detached breakwater. We 
have to be sure that such structures do not disturb the flow of sediment to the coast. 
However, when the discharged sediment is transported in the deeper region, it cannot be 
fed to the shoreline around the river mouth. In the dry season, when there is little river 
discharge, the river mouth has to keep its cross-section even under the attack of accretion 
type waves. From these points of view, the effect of waves and structures on the discharged 
flow and the deposition pattern of discharged sediment from a river is investigated based 
on experimental results. 

Figures 5.31 and 5.32 show measured deposition patterns of coarse and fine sands 
discharged from the river in the experiments. The width and the depth of the river are 50cm 
and about 6.7cm respectively and the bottom slopes in the river and the coast are 1/100 and 
1/20. Figure (a) is the result where there are no waves and Figs. (b) and (c) are the results 
where there are waves. The wave period in both cases is Is. The mean discharged velocity 
at the river mouth is about 45cm/s. In the case of coarse sand (Fig. 5.31), discharged 
sediment is mainly transported as bed load. A large part of sediment is transported in 
suspension in the case of fine sand (Fig. 5.32). 
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Fig. 5.31 Deposition pattern of discharged sediment from river mouth (dso=O.035cm). 
((a): without waves, (b): with waves of Ho-4Cm, (c): with waves of Ho-8cm) 
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Fig. 5.32 Deposition pattern of discharged sediment from river mouth (dso-0.O15cm). 
((a): without waves, (b): with waves of Ho-l.5cm, (c): with waves of Ho-4.0cm) 

Predominant modes of sediment transport in the river and in the coast (by waves) in 
these experiments are listed in Table 5.3. 
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Table 5.3 Predominant mode of sediment transport 
/ 

in river in coast 
Figure No. H 0 (cm) ds0 (cm) (by current) (by waves) 

Fig. 5.31 (b) 4 0.035 bed load bed load 
Fig. 5.31 (c) 8 0.035 bed load suspension 
Fig. 5.32 (b) 1.5 0.015 suspension bed load 
Fig. 5.32 (c) 4 0.015 suspension suspension 

When there are no waves, coarse sediment discharged from the river mouth is deposited 
in a comparatively narrow region without spreading in the longshore direction (Fig. 5.31 
(a)). Fine sediment discharged from the river mouth is widely distributed in the downward 
direction but again it does not spread in the longshore direction (Fig. 5.32 (a)). 

On the other hand, when there are waves, the deposited region moves offshore and 
discharged sediment spreads widely in the longshore direction. These tendencies increase 
as the wave height increases and the size of the bed material decreases (Figs. 5.31 (c) and 
5.32 (c)). 

In Fig. (a), the place where the velocity of the discharged flow in the centerline of the 
river decreases until the critical velocity for each sediment movement is reached is shown 
by an arrow. Most of the discharged sediment is deposited in the shallower region of this 
critical point when there are no waves. However, sediment discharged in waves spreads 
and settles beyond the critical point. This means that the bottom shear stress increases and 
critical water depth for sediment movement moves offshore when waves exist. 

Figure 5.33 illustrates the influence of the waves on the mean water level (Fig. (a)) and 
velocity of discharged flow (Fig. (b)) along the center line of the river measured on the 
fixed bottom. 
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Fig. 5.33 Effect of waves on discharged flow and mean water level 
((a): mean water level, (b): velocity of discharged flow) 
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Experimental conditions of these results are the same as those shown in Figs. 5.31 and 
5.32. When the height of incident waves is large and they break offshore of the river 
mouth, the momentum of the discharged flow is weakened by the large gradient of 
radiation stress in the breaker zone. As a result, velocity of discharged flow decreases and 
a large wave set-up occurs that continues upstream of the river. In the case that the height 
of incident waves is 4cm, they break in the shallower region than waves of 8cm height do 
and they have little influence on the discharged flow and the mean water level. 

From the viewpoint of maintaining the river mouth cross-section, an undesirable 
topographic change in the coastal region is the accretion type beach deformation associated 
with the net on-shore sediment transport caused by accretion type waves. 

Figure 5.34 shows the influence of training jetties and offshore detached breakwaters on 
the deposition pattern of discharged sediment. The lengths of jetties and offshore detached 
breakwaters are l m and the opening of the breakwater is the same as the river width 
(50cm). Other experimental conditions are the same as shown in Fig. 5.31 (a). It is found 
that the deposition pattern of the case of training jetties (Fig. 5.34 (a)) is almost the same 
as shown in Fig. (5.31 (a)). In the case where offshore detachments are constructed, a small 
portion of the discharged sediment is trapped shoreward region of the breakwaters (Fig. 
5.34 (b)). However, the breakwaters have little influence on the deposition pattern near the 
river mouth. 
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Fig. 5.34 Effect of training jetties and offshore detached breakwaters on 
the deposition pattern of discharged sediment from the river 

Through these experiments, it is found that these structures have little influence on 
discharged flows in the coast and mean water level within the river. It is waves that break 
in front of the river mouth that exert a great influence on these quantities. It is also 
recognized that these structures do not have significant influence on the deposition pattern 
of discharged sediment in the presence of waves. Based on these results, properly arranged 
offshore detached breakwaters may become an alternative to training jetties. 
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Chapter 6 Marine Structures for Ocean 
Space Utilization 

6.1 Introduction 

Marine structures discussed in this chapter are mainly for utilizing ocean space, not for 
providing a sheltered water area. Therefore, functions of marine structures differ somewhat 
from those for wave control described in Chapter 4. By using the term "ocean space 
utilization," we can quickly imagine an offshore development. Thus it is adequate to focus 
on offshore structures as the main subject of this chapter. There is another type of marine 
structure for ocean space utilization, such as a piled pier for berthing ships, an oil boom 
for preventing the spilt oil from spreading and so on. In this chapter, hydrodynamic aspects 
of these marine structures are presented, focusing on engineering design matters. 
Conceming an aqua-cultural structure, which should be classified as a marine structure, we 
would like to describe it later in Chapter 8, because it would be desirable to discuss it from 
not only engineering aspects but also ecological aspects. 

6.2 Offshore Structures 

6.2.1 Classification of the structures 
Offshore structures for exploring and developing natural resources under the sea, 

especially undersea oil mines, can be largely classified into the threetypes as shown in Fig. 
6.1; i.e.; a fixed gravity platform made of steel or concrete, a fixed jacket platform 
consisting of cylindrical members with a relatively small diameter and a floating platform 
with tensioned tethers (tension-leg platform). 
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(a) Gravity platform 
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platform (tension leg platform) 

Fig. 6.1 Classification of offshore platforms 

From the hydrodynamic point of view, these offshore structures have their own distinctive 
features. These features can be summarized as follows. 

(1) Gravity platforms 
This kind of structure usually has a significant fraction of the wavelength L in the 

horizontal dimension. Therefore, wave diffraction phenomena by the structure become 
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important to estimate the wave loads on it. In this category, effects of the separated flow 
around the body on wave loads may be neglected, especially for a rounded body like a 
circular cylinder. Consequently, we can use the potential flow theory to analyze the 
ambient flow about the body. 

(2) Jacket platforms 
A whole dimension of the structure reaches a significant fraction of the wavelength L. 

However, individual members of the structure are very small compared to the wavelength 
L. Since the effects of wave diffraction by the structure may be negligible here, we can 
approximate the local flow about each member as an oscillatory flow. The most important 
feature of the flow about the body is the generation of distinctive flow separations and 
resultant vortex formations. It is largely contributed by the fact that the excursion length 
of a water particle becomes large compared to the representative length of the structure. 
Therefore, we have to account for the effect of vortex flow on the wave force calculation, 
in addition to the unsteady fluid forces that can be estimated by the potential flow theory. 

(3) Floating platforms 
Additional fluid forces act on the floating structure due to motion in the fluid. For the 

estimation of hydrodynamic forces due to motion, the distinction between large and small 
bodies, similar to the case of fixed bodies, must be taken into consideration. For a body 
that is large compared to the wavelength L, generation of radiation waves caused by the 
body motion becomes distinctive. On the other hand, for the motion of the small body, 
fluid forces caused by the flow separation and resultant vortex formation must be 
considered in the fluid force calculation, where the generation of the radiation waves may 
be negligible. 

As have been mentioned above, offshore structures can be largely classified by the use 
of the criteria: "whether or not the effect of a structure on the wave field reaches a far 
distance from the structure." For instance, for a large body, since scattered waves by the 
fixed body or radiated waves by the oscillating body become distinctive, these effects 
propagate far from the body. On the contrary, for a small body, flow separations and 
resultant vortex formations become predominant. However, these effects may remain in the 
vicinity of the body because of the little or weak propagating nature of the vortex flow in 
the wave field. 

Analytical procedures for wave loading on the large body as well as wave diffraction 
and radiation about it have already been presented in 2.3 and 2.4. A method of  the wave 
boundary-value problem, mainly based on the potential flow theory, has been used. 

For the small body, on the contrary, the Morison equation (Morison et al. 1950) is 
usually applied to estimate the wave load, which is a semi-empirical formula accounting 
for the fluid force caused by the flow separation and resultant vortex formation. In the 
Morison equation, it is assumed that the wave force can be given by the linear summation 
of the inertia force and the drag force. The drag force term is added to account for the 
vortex-induced force that is very hard to treat analytically. The Morison equation is very 
convenient to use because of its simplicity. However, there are still controversial problems 
in selecting the hydrodynamic coefficients included in the equation, i.e.; drag and inertia 
coefficients. 

For a circular cylindrical pile, many studies have been carried out to examine the 
hydrodynamic features of these coefficients. It has been known that these coefficients have 
a close relation to the vortex flow pattern about a cylinder (Sawaragi et al. 1976; Sawaragi 
and Nakamura 1979; Sarpkaya and Isaacson 1981). Recently, various numerical simulation 
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methods of the vortex flow about the cylinder have been developed. In 2.7, one of the 
simulation techniques based on the discrete vortex model has already been presented. In 
this section, practical calculation methods of the wave force on offshore structures are 
mainly discussed. 

6.2.2 Gravity platforms 
Wave forces on large offshore structures as shown in Fig. 6.1 (a) can be evaluated by 

the analysis described in 2.4. In the analysis, the effect of wave diffraction by the structure 
is considered to have a major role in wave force calculation. If we adopt the Green's 
function method as a numerical procedure, which was introduced in 2.4, the scattered wave 
potential Cscan be obtained by Eq. (2.78) for an arbitrary three-dimensional body. Also, 
wave force vectors F (Fx, Fy, Fz) and overturning moment vectors M (Mx, My, Mz) on the 
body can be calculated by Eqs. (2.88) and (2.89), through the use of the wave pressure 
equation Eq. (2.87). In order to carry out the calculation described in the above, we have 
to deal with the discretized equations, after having divided the submerged surface of the 
body SB into a finite number of small facets AS. First, we would like to examine the effect 
of the division number of facets on the accuracy of numerical calculation results. 

(1) Discretization of a submerged surface 
In Fig. 6.2, typical examples of the numerical error caused by the relative size of a facet 

to a wavelength, ~fA-S/L (L-wavelength), are shown, where dimensionless horizontal wave 
forces Fx and overturning moments about the sea bed ~ on the vertical circular cylinder 
are plotted for various values of kD (k - wave number, D - diameter of the cylinder) as 
well as the corresponding relative size of a facet ~-S/L.  e is defined as the relative error 
of the numerical result to the analytical one, which is given by the diffraction theory by 
MacCamy and Fuchs. 
The numerical procedure adopted here is the plane-symmetrical three-dimensional Green's 
function method described in 2.4.1. At the top of the figure, a schematic view of the 
discretization of a quarter of the cylinder surface into facets is specified. From the figures, 
it is seen that the numerical error becomes less than 2 or 3% if we divide the submerged 
surface into facets so that its equivalent side length ~ is less than 10% of the 
wavelength. In the figures, we can see a tendency that e increases again for the smaller 
value of .~/A-S/L. However, this is because the numerical solution is gradually approaching 
the analytical solution with some oscillation. Note that the calculation based on the smaller 
facets takes longer computational time, probably increasing by a rate proportional to the 
square of the number of facets. It may be advisable to use the facet whose equivalent side 
length ~ is about 10% of the wavelength L. Hogben et al. (1974) recommended the 
discretization of the submerged surface into facets so that its equivalent side length 
(-.v/A-S) is less than 1/8 of the wavelength. In the above, paying attention to only the 
parameter .~-S/L, the criterion on the discretization error has been discussed. However, 
for an angular body such as a rectangular cylinder, it is easily estimated that the fluid 
velocity near the edge is larger than the other flat part. Because of the large velocity 
gradient near the edge, the source strength varies drastically near the comer. Therefore, it 
may be necessary to use smaller facets near the comer. But, such a proof has not been 
given. This kind of examination must be carried out in the future, including the effect of 
the inevitable flow separation from the edge on the wave load. 

(2) Calculation examples for a gravity platform 
Here, the Condeep, which is under operation in the North Sea to produce the undersea 

oil, is taken as an example of the gravity platform. The model test for the Condeep has 
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already been carried out by Garrison et al. (1974). Figure 6.3 shows the brief dimensions 
of the Condeep, which has six cylindrical tanks on its base and three columns for 
supporting a platform. 

u2. 

Wave 

// , ,  // , ,// , ,// , ,  //,, / A  //,,//,,  //, ,//, ,//, ,  //,, 

Wave 

(Unit: m) 

20 

Fig. 6.3 Schematic view of the Condeep 

The partitioning of the submerged surface of the structure into small panels used in the 
numerical calculation is given in Fig. 6.4. Only half of the structure is specified because 
it is symmetrical about a vertical plane as seen in Fig. 6.3. 

2rn=lO0 (Unit: m) 

Fig. 6.4 Representation of a half of the submerged surface of the Condeep facets 
(Number of facets - 382) 

The discretization criterion, .vTA--S/L < 0.1, is satisfied in the calculation for the wave 
conditions used. In Figs. 6.5 to 6.7, results of the horizontal wave force Fx, vertical wave 
force Pz and overturning moment ~y by the plane-symmetrical Green's function method 
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are shown, respectively. These numerical results were given by Nakamura (1990). The 
model test results by Garrison et al. (1974) are also plotted for the comparison, where the 
incident wave height/-/i is fixed at 20m on a prototype scale. Garrison et al. also conducted 
the numerical computation, but limited it to only the model test conditions. Such 
calculation results are also shown in the figures. 
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From these figures, we can see the tendency that the wave forces and overturning 
moment increase with decreasing h/L; i.e., for longer waves. It is also seen that the 
calculation results agree well with the model test results. It is noted that the calculation 
results by Garrison et al. were given by taking the three steps as follows. First, using the 
three-dimensional Green's  function method, wave forces on the base structure were 
computed, where the existence of column structures was ignored. At the same time, the 
velocity distribution above the base structure was calculated. Second, applying the Morison 
equation with the substitution of the calculated fluid velocity above the base structure, 
wave forces on the column structures were calculated. Finally, a summation of the two 
wave forces was carried out to obtain the total wave force. It is seen that the calculated 
results obtained by the hybrid method described above agree well with those based on only 
the potential flow theory by Nakamura et al. The reason for the consistency is that the 
inertia force is predominant over the drag force for the columns. However, in order to use 
the hybrid method, it is noticed that we have to apply the ambient fluid velocity above the 
base structure to the Morison equation. 

In Figs. 6.8 and 6.9, the nonlinearity effect caused by the difference in wave height on 
the wave loads Fx and .r is examined. 
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Fig. 6.8 Variation of horizontal wave forces on the Condeep with incident wave heights 

According to the linear wave theory, the wave load is proportional to the incident wave 
height if the wave period is fixed. Therefore, we can check the nonlinearity effect on the 
wave loads by examining the linear relation between the wave height and wave load as 
shown in these figures. From the figures, we can see a linear relation between the wave 
height and wave loads for various conditions of the wave period; i.e., for different values 
of h/L. Therefore, it may be pointed out that the wave loads on the large body, especially 
like the Condeep that has a massive base structure near the sea bed, can be estimated by 
the linear diffraction theory. 

The important aspect for a practical design, which we can suggest from the previous 
examination, is the fact that there is a significant variation in wave loads with the wave 
period. If we use the conventional design method; i.e., the deterministic design, a design 
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Fig. 6.9 Variation of overturning moments on the Condeep with incident wave heights 

wave must be selected based on the wave forecasting or observations. In this occasion, it 
is very likely to select the wave condition with the possible maximum wave height as a 
design wave without paying special attention to the selection of the wave period. However, 
for the engineering design, the maximum wave load is necessary rather than the maximum 
wave height. In order to estimate the possible maximum wave loads on the structure, it is 
strongly recommended to take the following design process, especially for large structures. 
First, check the variation of the transfer coefficient from waves to wave loads with the 
wave period. The transfer coefficient is defined by the dimensionless wave load as shown 
in Figs. 6.5 to 6.7. Second, examine the possible band width of the wave period. If there 
is a significant variation in the transfer coefficient within the band, carry out the wave 
force calculation using every wave period condition with the corresponding wave height. 
Finally, choose the possible maximum wave load from these comparisons. 

In Fig. 6.10, the effect of the incident angle of incoming waves on the wave loads for 
the Condeep is examined, where the absolute value of the horizontal wave force vector 
IF, I is shown for various conditions of the wave period. From this figure, we can see that 
there is little effect of the incident angle on the horizontal wave force, since the Condeep 
is almost axisymmetrical about the vertical axis. However, for another offshore platform 
such as a rectangular-shaped platform, dependency of the wave force on the incident wave 
angle cannot be ignored and must be examined first in the practical design. 

A critical condition for the sliding of a gravity platform in the horizontal direction can 
be estimated by 

,61, 

where F/is the bottom frictional force of the structure. If we define the weight of the 
structure in the water as Bw' and the vertical wave force Fz at the time phase when F ,  
shows a maximum, F/is given by 

<6.2) 
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Fig. 6.10 Effect of the incident wave angle on the horizontal wave force vector 

where / t  is the frictional coefficient between the sea bed and the structure. 
Also we can estimate a critical condition for the overturning of a gravity platform by 

considering the balance between the wave exciting moment Me and the resisting moment 
MR due to the weight around the rear toe of the structure 

MR > Mr (6.3) 

6.2.3 Jacket platforms 
In this section, an estimation method of wave forces on a fixed jacket platform is 

discussed. A jacket platform consists of comparatively slender members. Since the radius 
of the member is sufficiently small compared to the wavelength, the Morison equation is 
usually used to predict the wave force on the cylindrical member in the direction of the 
wave propagation. Recently, it has been known that transverse or lift forces act on the 
slender member in directions normal to the wave propagation directions (Sawaragi et al. 
1976; Sarpkaya and Isaacson 1981) in addition to the in-line forces expressed by the 
Morison equation. In the following, taking both directional forces into consideration, the 
estimation method of the wave forces is described. A jacket platform consists of tubular 
members interconnecting with each other and has comparatively large column members 
from the sea floor to the upper platform. Wave forces on such tubular members with 
various inclinations can be calculated by the generalized Morison equation described in 
2.6. However, we have to add the effect of transverse forces to the in-line forces given by 
the Morison equation. 

(1) In-line forces 
In-line forces on tubular members of the jacket platform can be estimated by Eq. (2.165) 

in 2.5.1. Let's derive the equation for the total in-line force on these members by taking 
an example of the jacket platform specified in Fig. 6.11. Here, we assume that incoming 
waves are incident to the jacket platform in the direction parallel to the x axis as shown 
in Fig. 6.11. 
First, define the unit vector in the tubular axis direction of the member m as ~'m (emx, emy, 
emz) and also the coordinates of upper and lower nodes of this member as O"(X",~m. m Y,,,"' Zm)" and 
Q~n(Xm,Ym,Zm), respectively. Referring to Eq. (2.165), the in-line force vector on this 
member can be given by 
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Fvm =Je'.12 ~ m + 4 ~df(xm, Ym,Zm) (6 .4)  

where Co is the drag coefficient, CM is the inertia coefficient, Dm is the diameter of the 
member m, C is the line segment parallel to the tubular axis extending from point Qm to 
Qm', (Xm, Ym, Zm) is the coordinate along the line C, ONto is the fluid velocity in the normal 
direction to the tubular axis, and ;9 ON,,/;)t is the fluid acceleration in the normal direction 
of the tubular axis. By referring to Eq. (2.164), we can express ONm in terms of the wave 
induced velocity (Urn, Wm) at the position (Xm, Ym, Zm) on C 

UNto =(Uxm,Uym,Uzm ) (6.5a) 

Ux, n = Um (1-- exm2 ) -- Wmexmezm 1 

Uym -Umexmeym -- Wmeymezm 

Uzm W m (1 - ezm 2 )  - U, exmez, . J 

(6.5b) 

The wave induced velocity (Um, WIn) can be obtained with the use of an adequate wave 
theory. For instance, if we use the linear wave theory, these velocity components are 

u,. = Real [a(~,i~=0)/& ] x-x. = gkH~ cosh k(h + z,)  cos(kx, - a t )  (6.6a) 
z--z. 20" cosh kh 

Wm = Real [a (*, l ~ =0 )/& ] x=x. = gkH, sinh k(h+ z,) sin(kxm - a t )  (6.6b) 
z--z. 2o" cosh kh 
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where the term kxz expresses the phase effect due to the location of the member. This 
phase effect is important for calculating the total wave force on the structure. 

On the other hand, the moment My,, caused by the in-line force acting on the member 
m about the position (Xc, y~, z~) can be given as 

A'lvm =~o~215 (6.7) 

where rz is the position vector extending from the center of moment to the line segment 
dC along the member m: 

rm =(Xra--Xc' Ym-Yc'Zz-Zc) (6.8) 

The total in-line force vector Fv and the total moment My around (xc, Yc, Zc) can be 
obtained by summing up the local wave force Fvz and moment ~tvz on each member, 
respectively: 

/~v =ZFw (6.9) 
m 

iVlv = ~_ ll.tv,,, (6.10) 
m 

Maximum values of the total in-line force and the total moment are usually estimated by 
the time-step analysis because of the complicated phase relations among the local wave 
forces. 

Next, we briefly review the problem for the selection of hydrodynamic coefficients Co 
and CM included in the above equations. As described in 2.5, a comparatively large number 
of studies have been carried out to examine the characteristic of these hydrodynamic 
coefficients, especially for a vertical circular cylinder. It has become known that Co and 
CM are functions of both the Reynolds number (Re) and the Keulegan-Carpenter number 
(KC) (Sawaragi and Nakamura 1979; Sarpkaya and Isaacson 1981; Chakrabarti 1987). 
However, for inclined cylinders, there has not been enough data to estimate the 
hydrodynamic coefficients. Chakrabarti et al. (1975) conducted a series of experiments 
with the in-line force on an inclined circular cylinder, but the range of Re is comparatively 
small. Also, the estimation of lift forces on an inclined cylinder has not been clarified. 

Sarpkaya et al. (1982) proposed the approximate method for the estimation of force 
coefficients of the inclined cylinder based on the result of the vertical cylinder. The central 
idea of this method is to adopt the normal velocity to the cylinder axis Uuz as the 
representative velocity, which is used to define Re and KC. The theoretical background of 
this method is in Eq. (6.4), in which an in-line force is represented to be proportional to 
the normal velocity and its corresponding acceleration. Thus we can use the results for the 
vertical cylinder to estimate the force coefficients for the inclined cylinder, simply after 
replacing the horizontal velocity with the normal velocity of the cylinder axis. Chakrabarti 
(1975) confirmed the validity of this method by the experiment. However, for a large angle 
of inclination of the cylinder, it is also known that this approximation is not always 
adequate (Garrison 1985). Anyhow, much more extensive work on the inclined cylinder 
must be done in the future for definite results. 
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Another problem concerning the wave force on cylindrical members is an interference 
effect among them. This problem is related to the proximity effect of a cylindrical member 
near the sea bed or the free surface, which was presented in 2.5.3. Chakrabarti (1982) have 
examined the interference effect of both a row and a column of vertical circular cylinders 
on wave forces, varying the number of the cylinders and the spacing between the cylinders. 
According to these results, if the center to center distance between the cylinders is two or 
three times greater than the diameter of the cylinder, we can practically neglect the 
interference effect. 

(2) Lift forces (transverse forces) 
There are mainly two different methods to estimate a lift force on a vertical circular 

cylinder. One is to give only a peak value of the lift force. Another one is to evaluate the 
time variation of the lift force during one wave period, considering the time phase relation 
between the in-line force and the lift force. Sawaragi et al. (1976 and 1978) presented an 
empirical formula that belongs to the latter, considering the contribution from the higher 
harmonics of the lift force. According to their results, the lift force (FL) s on a vertical 
circular cylinder fixed in the wave field with water depth h is given by 

(/~L)s = [ ~-Oh (--+) 3 l(ct,)rm, PD{u(z)}2~Pt,*(na)cos(not-(~L,,)dz]j,,=, (6.11) 

where (CL)rms is the lift coefficient concerning to the RMS (root mean square) value of the 
peak lift forces. The sign + accounts for the indefinite of positive direction of the lift force. 
Since the lift force shows an irregular nature even in the regular waves, such a statistical 
treatment is necessary. PL*(ntr) is the dimensionless spectral density of the n-th higher 
harmonics of the lift force, 6,, is the phase lag of the n-th higher harmonics of the lift force 
from the water elevation at the center of the cylinder, a is the amplitude of the horizontal 
fluid velocity in the wave propagation direction, r/is the water elevation at the center of 
the cylinder, j is the unit vector in the y-axis direction. 

Properties of (CI) .... Pz.*(no) and t~L, are specified as a function of KC based on the 
experimental results by Sawaragi et al. (1978). Also, it was pointed out that the probability 
distribution of the peak lift forces is approximately like the Rayleigh distribution. 
Consequently, there is a definite relation between (CL)rms and the 1/10 maximum significant 
lift coefficient (CL),Io as follows: 

(Ct.)r,ns ---- (C1)1/10/1.8 

In Fig. 6.12, as one of the typical results, PL*(no) is shown as a function of (KC), where 
(KC)r is the RMS value of KC along the vertical axis (z-axis) of the cylinder. 
From the figure, it is seen that the lift force on the cylinder has several higher harmonic 
components and the ratio of the higher harmonics increases with KC. In the previous work 
(Sarpkaya 1976; Sawaragi and Nakamura 1980), it was also reported that the magnitude of 
the peak lift force reaches the same order of the in-line force at the condition (KC)r being 
about 10. Simultaneously, under such a condition, the second higher harmonic component 
of the lift force overwhelms the others as seen in the figure. From these facts, we can say 
that the lift force is very important when the dynamics of the structure due to wave actions 
are examined because the natural frequency of a fixed jacket platform is usually higher 
than the wave frequency encountered in the ocean. 
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Fig. 6.12 Frequency characteristics of lift forces on a vertical circular cylinder 

Now, let us try to evaluate the total lift force on the fixed jacket platform shown in Fig. 
6.11, where it is assumed that the total lift force is given by considering the lift forces only 
on the principal members like the jacket columns because no definite result is available for 
lift forces on horizontal members and interconnecting members such as bracing. Taking the 
column member m in Fig. 6.11 as an example, we can evaluate the lift force on this 
member through the use of Eq. (6.11) by 

- z;; p 
Fzm = ~z. d Lm 

[ 'f:im 1 4 1 : (___) (c~),,,0pDla, l~E eL* (no)cos{n(k-Xm - ot)+ ~L,}dz j 
n = l  

(6.12) 

where (CL)I/lo is used instead of (CL)rm s in order to evaluate the more critical value of the 
lift force for the practical design. Also, the moment Mo. about the position (Xc, Yc, Zc) by 
FLm is given by 

- Sz: 
ML" = z' ?m • (6.13) 

m 
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It is noted that one of the signs + should be used so that the total lift force on the 
structure shows the larger value. The validity of such a selection of the sign + was 
confirmed experimentally by Sawaragi and Nakamura (1981). The total lift force on the 
structure P~ and the total moment ~ ,  due to FL about the position (Xc, Yc, Zc) are  calculated 
by summing up local forces and moments, respectively: 

Fr = ZPt . .  (6.14) 
m 

/14L = Z/14rm (6.15) 
m 

Finally, the total wave force and moment can be obtained by combining both the effects 
of the in-line force and lift force on the structure: 

F r = F v + F r (6.16) 

M r = M v + Mr. (6.17) 

Sawaragi and Nakamura (1981) confirmed the validity of the above equations that includes 
both the in-line and lift forces, performing the experiments on dynamic behavior of a four- 
pile supported platform in waves. 

6.2.4 Dynamic response of offshore structures 
In Fig. 6.13, the natural period of horizontal oscillation 7", of the various offshore 

structures, such as a fixed jacket platform, a tension leg platform (TLP) and so on, are 
specified with the wave conditions encountered in the real ocean (Leonard et al. 1990), 
where the wave condition is given by the use of the wave spectrum with the parameter of 
a significant wave height Hs. 
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Fig. 6.13 The natural period of oscillation for various offshore platforms 
and the wave energy spectrum (Leonard et al. 1990) 
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It is seen from the figure that the natural period in the horizontal mode of a fixed jacket 
platform is less than the wave period corresponding to the peak frequency of the wave 
spectrum. On the contrary, the natural period of a TLP ranges far above the wave period 
of wind waves. If we use the same analogy with the seismic response of the land structure, 
i.e., a rigid structure and a flexible structure, the jacket platform is classified to the group 
of a rigid structure and a TLP is a flexible structure. However, for offshore structures, the 
assumption that the period of the wave exciting force is equal to the wave period is not 
always valid. This is because there is a generation of higher harmonic components due to 
the lift force as described above. Therefore, there is a great possibility that the resonant 
response appears by the lift force if the natural period of the structure ranges from 1/3 to 
1/2 of the wave period. 

Since a TLP can be classified to a flexible structure from the viewpoint of the horizontal 
motion, we have to account for the body motion in the engineering design. Concerning the 
motion of the large body like a TLP, a method of the analysis was given in 2.4, including 
a theoretical treatment of the wave boundary-value problem around the floating body. In 
this section, dynamic analysis of a multiple-pile supported platform is mainly discussed, 
where the pile diameter is sufficiently small compared to the wavelength, as with the 
tubular members of a jacket platform. 

(1) Equations of motion for a small body 
For a small body, although the effect of radiation waves due to the body motion can be 

neglected, we have to newly take the effect of flow separations and the resultant vortex 
motions into consideration. Considering the added mass force due to the body motion and 
the wave force by the Morison equation, we can derive the following dynamic equilibrium 
relation among various forces: 

F ~) + F <s) + F (M) = F (P) + F (A) @ F (A) + F (~ + F CL) 
�9 v -  �9 �9 J ~' J 

Mass inertia force Restoring force Hydrodynamic force (6.18) 

where F a) is the mass inertia force, U s) is the hydrostatic restoring force, F ~M) is the 
restoring force by mooring lines or structural stiffness, F ~e) is the force due to the pressure 
gradient in the wave field, Fs r is the added mass force proportional to the fluid 
acceleration, FJ A) is the added mass force proportional to the body acceleration, U ~ is the 
drag force proportional to the square of the relative velocity between the body and the 
fluid, and F ~L~ is the lift force. Under the assumption of small motions of the body, the 
terms U e) and Fs ~a) are combined and expressed as an inertia force term that is equivalent 
to the inertia force in the Morison equation. In general, a structural damping term is added 
to the above equation. As Eq. (6.18) is the most general equation of motion for a small 
body, we can apply it to both the floating body and the fixed body consisting of tubular 
members. 

(2) Dynamic analysis of a pile supported platform 
In order to derive the equation of motion by referring to Eq. (6.18), we have to further 

construct an analytical model for the real structure. For instance, we have to model a real 
structure to a spring-mass system according to dynamic similarity. Harleman et al. (1963) 
have presented the simple modeling of a pile supported platform in waves, as shown in 
Figs. 6.14 (a), where the platform is idealized as a vibration system with a single degree 
of freedom as seen in Fig. 6.14 (b). 
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Fig. 6.14 A multi-pile supported platform and its equivalent spring-mass system 

Sawaragi and Nakamura (1981) extended the model by Harleman et al. to a two 
dimensional model that is able to treat the displacements in both the in-line force direction 
and the lift force direction simultaneously. There are several other ways for modeling the 
pile supported structure to the vibration system, such as modeling to a system with 
multi-degrees of freedom. Here, we introduce the simplest modeling used by Harleman et 
al. (1963) and Sawaragi et al. (1983). 

(a) Equivalent spring-mass system: According to the previous work (Harleman et al. 
1963), the following relationships exist between the model structure and equivalent spring- 
mass system. 
i) Equivalent mass ~e 

rhe  = m o + m(13 / 35)rh e (6.19) 

in which, mn is the mass of the deck, me is the mass of a support pile and m is the number 
of the support piles. 
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ii) Spring constant Ks 

K s = m(12El //e 3) (6.20) 

in which, E1 is the flexural rigidity of the support piles and le is the length of the support 
piles. 
iii) Influence fraction f~ 

y, = 3{(z  + + h)/l,} (6.21) 

f~ is used as a transform coefficient which translates the wave force acting on the pile at 
elevation z into the equivalent exciting force acting on the deck. It is noted that the 
modeling described in the above is based on the assumption that both the weight and 
rigidity of the deck are sufficiently large compared to those of the support piles. 

(b) Equation of motion: Using the above quantities and the force equations developed in 
the preceding section, the equation of motion for a four-pile supported platform can be 
expressed as follows. 
i) Equation of motion in the X-direction (wave propagation direction) 

(rn g + M (A) )f~ + Cdf~ + KsX = F x (6.22) 

where, X is the displacement of the deck in the X-direction, Ca is the structural damping, 
M(A)is the added mass proportional to the oscillatory acceleration of the structure, Fx is the 
equivalent in-line force acting on the deck. M TM is given by 

M(A) = E CAP o~ f"~ f,~dz (6.23) 
4 ,I-h 

m 

Here, 77,, is the water surface elevation at the location of the support pile m, CA is the added 
mass coefficient and expressed as (CM- 1) using the inertia coefficient CM. Considering to 
U ~ in Eq. (6.18), Fx may be expressed as 

1 CDDDf:; (um _ Xfl )lUre -- XfllfldZ 4- CMP T ~-h fldZ Fx - E 
m 

(6.24) 

where Um and Ou~/~t indicate the horizontal fluid velocity and acceleration, respectively, at 
the location of the support pile m. They are given by Eq. (6.6a). 
ii) Equation of motion in the Y-direction (normal to the wave propagation direction) 

(fil e + M (A) )Y + Ca ~z + KsY = Fy (6.25) 
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Here, Y is the displacement in the Y-direction and Fy is the equivalent lift force acting on 
the deck. Fy is given by 

F~ =E{F,. 
m 

=;='~" 1 j.:: } , =h-TCo.D (6.26) 

In this equation, F~.I is expressed by Eq. (6.12), where (Ct.)l/1o must be replaced by (C),,s 
because a steady state response is needed. The second term in Eq. (6.26) represents the 
contribution from the drag force due to the oscillation in the Y-direction. 

(c) Results for a four-pile supported platform: Sawaragi and Nakamura (1981) carried out 
comprehensive work on the validity of the above estimation method of the dynamic 
displacements of the platform. In the experiment, the model structure shown in Fig. 6.15 
was used. Dynamic properties of the model structure are summarized in Table 6.1, where 
Cc indicates the critical damping. 
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Fig. 6.15 Schematic diagram of the model platform (Sawaragi and Nakamura 1980) 

In Fig. 6.16, the ratio of the Y-displacement to the X-displacement is shown as a function 
of T/T,, where T, is the natural period of oscillation of the platform. In the figure, a dotted 
line indicates the mean value of the measured results. 
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Table 6.1 Dynamic properties of the model platform for each mass of deck 

Case 

rho(g) 
Mode 

17.62 18.64 27.82 

x y x y x y 

K s (N/cm) 17.66 20.63 17.66 20.63 15.99 17.79 

Ca/C c 0.025 0.023 0.022 0.021 0.023 0.023 

T. (sec) 0.67 0.63 0.69 0.65 0.86 0.83 

I 

4 

~o., / 

(KC)~ 

0~3 
. . . . .  

3~6 0 
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I0~15 �9 
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o 
o 1 2 3 4 
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Fig. 6.16 Variation of the ratio of Y-displacement to X-displacement with T/T, 

It can be seen that the Y-displacement caused by the lift force predominates over the X- 
displacement by the in-line force when T/T, > 1.5. Especially, when the T/T, ratio 
approaches a whole number; i.e., 2, 3, or 4, the Y-displacement exceeds the X- 
displacement. This tendency is caused by the fact that the lift force has several higher 
harmonic components as shown in Fig. 6.12. It is clear that the lift force exerts a dominant 
influence on the structural motion when actual conditions are considered, under which the 
value of T/T, is usually greater than 2 or 3. 

Figures 6.17(a), (b) and (c) specify some typical calculated results (right-hand side of 
the figure) along with measured results (left-hand side of the figure), which correspond to 
the dynamic responses at T/T,-- 1.75, 1.94 and 2.85, respectively. 
In each figure, the dynamic locus during a one wave cycle is shown. A spacing parameter 
ls/L ( ls-  center to center distance between adjacent piles in the wave propagation 
direction) is also specified in order to examine the phase effect of the local force of each 
pile on the total force. Concerning the calculated results, two different loci are plotted. One 
is obtained by taking the effect of the uncertainty on the sign + in Eq. (6.12) into 
consideration; i.e., adopting the + o r -  sign on each pile in such a way that the larger 
possible lift force as a total occurs. This result is shown by a solid line. Another one is 
obtained by using only the + sign in Eq. (6.12) for each pile. This result is shown by a 
broken line. It can be seen that the former calculated results show good agreements with 
the measured results in their major features, i.e., in terms of the maximum resultant 
displacement and the geometrical configuration of the loci. These comparisons show that 
the equations described above can be effectively used to predict the dynamic behavior of 
a four-pile supported platform in response to both in-line and lift forces in waves. 
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Fig. 6.17 Calculated dynamic loci versus measured dynamic loci of a four-pile 
supported platform during one wave cycle 

Sawaragi and Nochino (1985) have developed a more sophisticated model than the one 
described above. They included the effect of torsional motions of a multi-pile supported 
platform about its vertical axis due to in-line and lift forces in the model. Nath et al. (1967) 
examined the spacing effect of the support piles on the dynamic behavior of a two-pile 
supported platform in the wave propagation direction. According to this result, the dynamic 
displacement caused by the in-line force can be effectively decreased by using the 
canceling effect of the in-line forces between the front and rear piles, in particular, under 
the spacing condition, ls/L=l/2, 3/2, 5/2,...-. 
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In the above analysis, it is assumed that the wave forces on the oscillating piles are given 
by those on the rigidly fixed pile. Recently, however, it has become known that wave 
forces, especially lift forces, on the elastically supported piles are larger than those on 
rigidly fixed piles (e.g., Sarpkaya and Isaacson 1981). Also, the synchronization 
phenomenon between the dynamic oscillation and vortex shedding occurs when a pile is 
supported elastically. A detailed examination on these hydro-elastic phenomena must be 
carried out in the future. 

6.3 Piled Pier Structures 

Piled piers are usually constructed as one of the mooring facilities on soft ground and 
are classified into open-type wharfs and piers. An open-type wharf is, in general, defined 
as a piled pier whose longshore length is much larger than its on-offshore length. An open- 
type wharf is usually constructed in order to provide an apron space for the front part of 
a marine terminal and the front area of a vertical quay. On the other hand, a pier is the 
structure jutting out from land in the sea, the on-offshore length of which is much larger 
than the longshore length. A pier is usually utilized as one of the handling facilities on a 
shallow beach. 

6.3.1 Open-type wharf 
The significant wave force acting on an open-type wharf is the uplift force on the floor 

slab, which is generated by the standing wave formed in front of a vertical quay wall 
located behind the floor slab. As was already described in Chapter 2, the fluid force caused 
by the collision of the standing wave with the floor slab is impulsive and different from 
the ordinary wave force generated by a non-breaking wave. In this section, the 
characteristics of the impact uplift force acting on an open-type wharf located in front of 
a vertical quay wall under a normal wave incidence are discussed. 

Figure 6.18 shows experimental results of variation of the dimensionless uplift pressure 
p/pgH, acting on the floor slab with x/L, in which x is the distance from the quay wall, p 
is the density of water, g is the gravitational acceleration, H, is the incident wave height, 
L is the incident wavelength, p is the uplift pressure, dc is the clearance between the floor 
slab and the still water surface, I is the on-offshore length of wharf, and h is the still water 
depth. 
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Fig. 6.18 Spatial distribution of uplift pressure 
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Ribs are attached to the back side of the floor slab of the experimental model, like the 
prototype wharf. The box formed by the ribs and slab is called a "rib-block". The 
experimental values of p/pgHt shown in Fig. 6.18 are the uplift pressures measured in the 
rib-block and it is seen that the maximum value of p/pgHt occurs at the loop of a standing 
wave in front of a vertical quay wall (x/L=O) and p/pgHt decreases as x/L increases. 

Figure 6.19 shows one comparison of p/pgHt between a flat floor slab without ribs and 
the floor slab with ribs attached, p/pgHt in the case of the flat floor slab tends to increase 
as HI increases and dc decreases. On the other hand, in the case of the floor slab with ribs 
attached, p/pgHt becomes a maximum around dJHt=l. Thus, the effect of ribs on the uplift 
pressure is significant. 

l/z.=0.37  ,/L=0.025 

! ~ ,,Q ~ Flat floor 
- /  ~ / ' ~  ~ slab 
I ~ r(  \ O--O Ribs-attached 

lOzt \ y ~ floor slab ",,, 
: J v 

0 , I I I 
0 0.5 1.0 1.5 

dc/Ht 

Fig. 6.19 Uplift pressure on flat floor slab and floor slab with ribs attached 

The impact uplift pressure in the rib-block generated at the loop of a standing wave is 
revealed to be attributed to the combined action of the compression of air and the collision 
of water mass by experimental investigation of uplift pressure in the rib-block in front of 
a vertical quay wall (Sawaragi and Nochino 1987). Sawaragi and Nochino measured the 
uplift pressure and the colliding time of a water mass with the floor slab at several 
locations in the single rib-block shown in Fig. 6.20. In Fig. 6.20, Rh and Rb are the height 
and breadth of the rib, respectively and Rw is the length of the rib-block. Figure 6.21 shows 
one example of experimental results, in which ti (i=1-3) is the colliding time of the water 
mass with the pressure gages 1, 2 and 3, respectively. 
The pressures p~, P2 and P3 were measured with the pressure gages 1, 2 and 3, respectively, 
and to is the colliding time of the water mass with the offshore rib. Since the water surface 
of the standing wave is inclined offshore, as shown in Fig. 6.21, air in the rib-block is 
enclosed at t=to and then compressed. Accordingly, all the measured pressures, p~, P2 and 
P3 simultaneously present almost the same large magnitude of impact uplift pressure and 
the colliding times tt, t2 and t3 of the water mass after the air-enclosure in the rib-block (t 
= to). Then, Sawaragi and Nochino (1987) concluded that the impact and large uplift force 
is generated by the compression of air in the rib-block. They further discussed the effect 
of the compression of the air mass on the pressure in the rib-block. They calculated a 
relationship between the variation of compressed air mass and the pressure variation in the 
rib-block and pointed out that the air must be leaked from the rib-block, otherwise the 
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impact force will be much larger than the measured one. The leakage of air from the rib- 
block was observed in their experiments to take place by means of a leakage of air bubbles 
formed in the rib-block passing through the bottom of the offshore rib, which is also 
confirmed by their numerical calculation. Thus, the leakage of air bubbles from the rib- 
block is understood to decrease the impact uplift force in the rib-block. 
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Fig. 6.20 Experimental setup of single rib-block 
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Fig. 6.21 Time histories of air-compression-type 

Figure 6.22 shows the experimental results in the case where the water mass collides 
with pressure gages in the floor slab before air is completely trapped and compressed in 
the rib-block (ti,/'2, t3 < to). 
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Fig. 6.22 Added-mass-type impact uplift pressure 

It is clear in this case that the impact uplift pressure is produced not by the compression 
of air, but by the added mass which is described in 2.8.1. Tanimoto et al. (1978) confirmed 
the propriety of Wagner theory, which is based on the added mass concept, in their 
investigation on the impact force acting on a flat floor slab. Sawaragi and Nochino (1987) 
also applied Wagner theory to evaluate the impact wave pressure acting on the floor slab 
with ribs attached. They calculated numerically the water surface profile in the rib-block 
by developing their theory which takes into account the air compression and the leakage 
of air as well. They showed good agreement between the theoretically estimated values and 
experimental ones. 

Thus, as described above, the uplift force acting on the rib-attached floor slab of an 
open-type wharf is understood to be produced by a complex combined action of air- 
compression, air-leakage and the collision of water mass with the floor slab. Therefore, a 
reliable and practical formula to evaluate accurately the impact uplift force acting on an 
open-type wharf has not yet been established. Since the magnitude of the impact uplift 
force is generally several times the ordinary wave force, it should be noted that a strong 
and large uplift force would act on the floor slab when the incident wave height is more 
than lm. In order to avoid the impact uplift force, taking dc as a sufficient clearance 
between the floor slab and the still water level is recommended in designing an open-type 
wharf. It can be said from Fig. 6.19 that it is recommended for the clearance dc to be more 
than 1.5 times the incident wave height HI. In the case where sufficient clearance is not 
allowed, the following countermeasures are recommended: (i) separation of the floor slab 
from the vertical quay wall or (ii) placing a wave absorber in front of the vertical quay wall 
to decrease the standing wave height as low as possible. When the floor slab of the open- 
type wharf is separated from the vertical quay, bridging plates should be placed over the 
gap. The bridging plates are allowed to be destroyed by an extraordinary large uplift force 
and require constant maintenance. In the case where the impact uplift force is inevitably 
expected to act, the hydraulic model experiment under the adequate similitude law is 
recommend to fully evaluate the uplift force. 

6.3.2 Pier 
The wave force acting on piles is of great significance in the case of a pier. Since the 

pier juts out from land to the sea, the piles are located in a wide range which covers the 
offshore zone as well as the surf zone. The wave force acting on piles in the offshore zone 
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can be evaluated with the Morison equation introduced in 2.5. The breaking wave force Fi 
has to be added to the wave force Fv calculated with the Morison equation in order to 
evaluate the wave force on piles located in the surf zone, especially near the breaking 
point. The breaking wave force Fi is an impact force described in Chapter 2 and has a 
different character from the Morison-type wave force Fv. In this section, characteristics of 
the breaking wave force exerted on a circular cylinder and its estimation method are 
discussed. 

Goda et al. (1966) presented the following equation to evaluate the wave force F on the 
circular cylinder under a breaking wave action. 

F -  Fv + Fi (6.27) 

They proposed a wave profile model of a breaker as shown in Fig. 6.23 and they assumed 
that the vertical wave front ZriB produces the breaking wave force when it collides with the 
circular cylinder. 

cB 

M.W.L. 

~,,'/////////////////////////// 

Fig. 6.23 Breaker profile model of Goda et al. (Goda et al. 1966) 

They applied Eq. (2.201) to the breaking wave force, in which the falling velocity v is 
replaced by the wave celerity c8 and they proposed Eq. (6.28) as the maximum value of 
Fi 

(F/)max = 2 pcn2DZriB (6.28) 

Here, D is the diameter of the circular cylinder, rib is the wave crest height of breaker from 
the mean water level (see Fig. 6.23), p is the density of fluid, and Z is the curling factor 
of breaker which is regarded to be constant. The important point is the accurate evaluation 
of ~, since Z controls the magnitude of breaking wave force on the cylinder. The value of 

has not yet been formulated in relation to incident wave characteristics and its 
formulation is still under investigation. 

Figure 6.24 shows time histories of the local wave force on the unit length (lcm) of the 
circular cylinder measured at five different locations under a breaking wave action, in 
which z is the acting height of wave force from the still water level. 
It is seen from Fig. 6.24 that the wave forces display a sudden rise followed by a gradual 
decrease, which is a typical feature of the impact force, and that the peak value and the 
acting time of the impact force change according to the relative acting height z/riB. 
Although the time histories of the wave force are impulsive, the peak value does not occur 
at the instant the wave front touches the cylinder, different from the impact fluid force 
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exerted on a circular cylinder described in 2.8.1. It is also seen from Fig. 6.24 that there 
is a rising time before the wave force reaches the peak value in the wave force - time 
curves. The wave front shape of a breaker is not always the same as the model of Goda 
et al. (1966) in Fig. 6.23, and the inclined wave front, instead of the vertical wave front, 
usually hits the cylinder. The reason for the rising time appearance can be explained well 
by taking the inclined wave front of a breaker into consideration (Sawaragi and Nochino 
1982). 
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Fig. 6.24 Local force-time curv e of breaking wave 

Let us consider an inclined front of a breaker with angle Ow passing through the cylinder 
at the velocity cB as shown in Fig. 6.25. 

z=8 

z=0 
/ 

/ 
/ 
r 

/ 
S 

Fig. 6.25 Collision model of inclined wave-front with cylinder 

The angle Ow and the velocity cB are assumed to be constant until the wave front passes 
through the cylinder with the diameter D. Consider the segment [0, ~] of the cylinder in 
the vertical direction z, and define the origin of time as the instant when the inclined wave 
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front collides with the cylinder front at z - 0. Then, the colliding time t of the wave front 
with the cylinder front at any location z is given by 

t = ! c o t  0 w (6.29) 
cB 

When the theory of Goda et al. (1966) is applied to the small segment dz in the vertical 
direction, the impact wave force dFi on the small segment [z, z+dz] is written as 

dF~ = 2 P c ~ O  1 - ~  t - -~z  cot0w eflz 
c u 

(6.30) 

in which 

~ 
(z/cB)cOtOw < t < (z/cB)cotOw + r 

t < (z/c~)cotOw or t > (z/cB)cotOw + z (6.31) 

r in Eqs. (6.30) and (6.31) is given by r = D/2v.  Employing the following nondimensional 
forms: 

F* -- F/(tcpcB 2DS/2) (6.32) 

t* = t/r (6.33) 

and utilizing Eqs. (6.30), (6.31) and (6.32), F* acting on the small segment S of the vertical 
circular cylinder is given as follows: 

where 

F" rlCl :+ m Z *  / fl )et dz* 
do~ 

(6.34) 

z* = z~ S (6.35) 

fl = (cB't- / ~) tan 0 w (6.36) 

I~ t" . "z'/t3<./t3 < 1+ Iz" / t~) 
~ t  "-- * * 

t <Z or >l+lz*/IJl:"' 
\ - - 1  

(6.37) 

The integrand in Eq. (6.34) is non-zero in the range of 

z'/B<_t" <_1+(:/#) (6.38) 
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Thus the integration range of z* is governed by fl and z*. Performing integration of Eq. 
(6.34) with the help of Eqs. (6.35) - (6.38) yields the following formulas in terms of 13 and 
t*. 

(i) In the case of fl > 1 

(a) O_<t* <_l/fl 

F* = fl( t* - ~ t ) 1 ,2"~ (6.39a) 

(b) 1/fl<t* <1 

F* 1 t* 1 = -  (6.39b) 

(c) l< t*_< l+ l / f l  

( F*= --fl l - t * +  
2 

(6.39c) 

(ii) In the case of fl <1 

(a) O<t* <1 

F * = fl ( t * - -~ t ) 1 ,2"~ (6.39d) 

(b) l_<t* <_l/fl 

R 
F* = _We (6.39e) 

2 

(c) 1/fl<t* < l + l / f l  

( F*= --fl l - t * +  
2 

(6.39f) 

The dimensionless parameter fl is a ratio of the slope of the wave front to a slope 8/(D/ 
2), which is shown by the broken lines in Fig. 6.26. fl > 1 implies that the slope of wave 
front is steeper than the slope d/(D/2), and fl < 1 corresponds to the gentler slope of wave 
front than d/(D/2). 
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(a) B>I (b) ,8<1 

Fig. 6.26 Relationship between/3 and wave front slope 

The schematic illustration of time histories of the impact breaking wave force, which are 
evaluated with Eqs. (6.39a) - (6.39f), is shown in Fig. 6.27. 

1 1 

1/2/~ 

t* 0 0 t 
0 1/,8 1 1+1//~ 0 1 1/,8 
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I 

(a) : Z>z  (b): Z<Z 

Fig. 6.27 Force-time curve by the theory of inclined wave front 

F*-1 and t*-I indicate respectively the nondimensional maximum force and acting time of 
the impact force proposed by Goda et al. (1966) (see Eqs. (6.32) and (6.33)). The 
maximum impact breaking wave force estimated with Eqs. (6.39a) - (6.39f) is 1 - (/3/2) in 
the case of fl > 1 and fl/2 in the case fl < 1, which are smaller than that evaluated with 
the theory of Goda et al. (1966). 

Figure 6.28 shows several examples of the vertical distribution of the nondimensional 
maximum impact force F ' ,  in which F" is the maximum value of F* defined by Eq. (6.32), 

P 

xB is the distance measured from the breaking point to the offshore surface of the cylinder 
taken onshore positive. It is found from Fig. 6.28 that F 7 becomes a maximum around z~ 
r/p--- 0.6 - 0.7 and that F" becomes a minimum near the wave crest and near the still water 

P 

level. Also, the distribution of the local breaking wave force is recognized to be 
significantly varied with the location of the cylinder and breaker types. 

The integration of F" over the domain from the still water level to the wave crest with 
the help of Eq. (6.32) and comparing with Eq. (6.28) yields the curling factor of breaker 
~. proposed by Goda et al. (1966) as follows: 

~.- ~"o F. dz 
zpc~Drln / 2 (6.40) 
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Figure 6.29 shows the relationship between the curling factor A of the breaker and the 
relative distance XB/L, in which ~" is the surf similarity parameter, and the spilling breaker 
occurs when ~" < 0.3 and the intermediate breaker and the plunging breaker occur, 
respectively, at 0.3 < ~" < 0.5 and ~ > 0.5. The figure shows that the maximum valu of A 
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Fig. 6.28 Vertical distribution of peak values of F" 
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Fig. 6.29 Relation between A and XB/L 

is possibly 0.9, although A changes with XB/L. The values of A shown in Fig. 6.29 are 
experimental results with regular waves. On the other hand, ocean waves are irregular and 
their breaking points are wider than the those of regular waves, and therefore a change of 
A with XB/L may not be so significant from an engineering viewpoint. The relationship 
between A and ~" is much more important (Tanimoto et al. 1986). 

The breaking wave forces acting on the inclined circular cylinder has been investigated 
(Tanimoto et al. 1986; Sawaragi et al. 1989), since the inclined circular cylinders have been 
constructed as members of the piled piers. Figure 6.30 shows the relationship between A 
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and ~, in which 0 is the inclined angle of the cylinder to the vertical line, and 0 - 0 ~ 
corresponds to the vertical cylinder�9 Since the surf similarity parameter ~ is determined for 
a given incident wave, the curling factor ~ of the breaker is obtained from Fig. 6.30, and 
then the breaking wave force Fi acting on the inclined circular cylinder can be evaluated 
by means of substitution of known values of ~ and ~. into Eq. (6.28). 

1.0 

0.5 
A 

�9 t o 

�9 �9 0 

0 
0 0.5 1.0 

8 

zx 

o ' 0 =  0* 
~ o  Sawaragi et al. zx 0-- 15 O 

(1989) [] "8 = 30* 

Tanim0t0 et al �9 "O-- 0* 
(1986) �9 "0 = 15" 

�9 �9 0=30" 
I I 

Fig. 6.30 Relationship between ~ and 

6.4 Oil Booms and Silt Curtains 

In 4.8, we showed several types of membrane structures designed for attenuating wave 
height. Here, we first give outlines of oil booms and silt curtains that are both membrane 
structures in practical use for their specific functions, and then we consider the 
hydrodynamic forces acting on such flexible structures taking silt curtains as an example. 

6.4.1 Oil booms 
Oil booms are used to prevent spilt oil on a sea surface from diffusing into neighboring 

water and to collect it easily. In many countries, oil spills are one of the most serious types 
of pollution in the sea and are regulated by laws and acts. In Japan, oil booms are 
standardized in size by law as shown in Table 6.2, while many types of oil booms, which 
differ mainly in terms of floatation members, are used. The representative structure of an 
oil boom is shown in Fig. 6.31. 

Table 6.2 Standard sizes of oil booms in Japan 

Category Main part Connection part 
Freeboad height cm Draft cm Total height cm 

Oil boom A > 20 > 30 60 

Oil boom B > 30 > 40 80 
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Fig. 6.31 Sructure of oil boom 

Since the most important function of an oil boom is of course to prevent spilt oil from 
diffusing, it must be designed not to leak any oil. Leakage of oil is induced not only by 
natural forces such as winds, currents and waves but also by the towing of oil booms. 
There is extensive research available on the oil containment ability of oil booms. Ueda et 
al. (1985) show that, in a steady current, fluctuations on a boundary surface between oil 
and water gradually increase with time at the up-stream end of a slick and finally oil 
droplets split and slip away passing under the oil boom as shown in Fig. 6.32, when the 
Froude number Fr defined as 

F~ = V / 4g(1 - P * ) ~ o  (6.41) 

becomes larger than 0.7 or 0.8, where V and qo are the current velocity and the oil quantity 
per unit width, respectively, and p* denotes the ratio of the oil density Pl to the water 
density p, PI/P. 

~ F I  --gv uctuati~n 
I - ,:"'_ Generation of ee �9 �9 . ' "  l od droplets 

�9 ..,~ . . . .  ""-  <~ Current 
Leakage 

Fig. 6.32 Oil leakage due to current 

As to the influence of the wave action on the oil containment ability, they report that the 
leakages both over and under the oil boom can be seen when the relative motion of the 
boom to the wave motion, i.e., the phase difference between these motions, becomes large, 
whereas the oil containment ability is rather improved by the coexistence of waves with 
currents when the boom oscillates completely in phase with the waves. 

The external forces acting on oil booms produce tension in a tension cable and are 
transmitted to anchors or ships. When the oil boom is used under rough sea conditions, the 
safety of the cable against tearing by its own tension must be considered. Milgram (1971) 
and Nielsen (1980) studied theoretical behaviors of oil booms and hydrodynamic forces 
due to currents and waves. Cross and Hoult (1970) and Ueda et al. (1985) carried out the 
model tests in currents and obtained drag force coefficients. 
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6.4.2 Silt curtains 
It is said that turbidity generated by maritime construction, such as reclamation or 

dredging, influences ecology in the neighboring sea and as a result adversely affects marine 
products. In contrast to oil contamination, however, there are as yet neither any legislation 
nor any environmental quality standards governing turbidity. When performing such 
construction, therefore, generation and diffusion of turbidity should be minimized as much 
as possible by improving construction methods and equipment. Furthermore, it is much 
better to extend silt curtains surrounding the construction site as shown in Fig. 6.33 and 
prevent the turbidity from spreading into the neighboring water when even a little turbidity 
diffusion may possibly cause a serious problem. 

Fig. 6.33 Extension of silt curtains 
(by courtesy of Taiyo Kogyo 
Corporation) 

In that there are no regulations governing turbidity, there are no standards for the design 
of silt curtains such as those for oil booms, so the silt curtains are usually designed in a 
manner similar to oil booms. The differences between silt curtains and oil booms are 
considered to be 
(i) The draft of a curtain is usually larger than that of an oil boom because turbidity is 

often distributed from the water surface to the sea bottom, while spilt oil initially stays 
near the surface. 

(ii) Silt curtains are much more likely to be exposed to high waves than oil booms because 
they must always be extended during construction. 

(iii) Since silt curtains are anchored to a sea bottom at close intervals so that they can be 
kept at the desired location, the restriction forces on the silt curtains are usually larger 
than those on oil booms. 

Considering these differences in external forces, the safety of a silt curtain should be more 
carefully investigated than would be necessary for oil booms. Figures 6.34 (a) and (b) 
represent floating and submerged silt curtains, respectively, which are typical of those 
presently used in Japan. The floating silt curtain is similar to the oil boom shown in Fig. 
6.31 and the submerged silt curtain is a canvas lifted up by floats from a sea bottom. 

Silt curtains function not only to impound the turbid water but also to accelerate 
sedimentation by reducing current velocity or by changing current direction. Floating silt 
curtains are designed to settle suspended solids floating near the water surface by the 
deflection of currents down the curtain, and the submerged silt curtains are placed to block 
the horizontal spreading of turbidity generated near the bottom. We show here the results 
of the field experiments on turbidity diffusion carried out at the construction site of Kansai 
International Airport in Japan. In Fig. 6.35, we show the locations of floating and 
submerged silt curtains, in which sand was dropped from a barge into the water, and the 
three lines, A, B and C, under which the turbidity distribution was measured. 
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Fig. 6.35 Field measurement of turbidity near floating and submerged silt curtains 

The two contour diagrams in the figure show the distributions of the concentration of 
suspended solids (SS) under line B, at five and thirty minutes after the dropping of sand. 
As shown in these figures, the turbidity impounded by the submerged curtain five minutes 
after the sand was dropped passed through the curtains in thirty minutes. Thus, although 
the diffusion of the turbidity cannot be completely blocked, rapid diffusion up to the water 
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surface is prevented by the curtains. Since only a few studies have been carried out on the 
function of silt curtains in preventing turbidity diffusion, further investigations are required 
in order to determine the most effective depth/height or disposition of the curtains. 

6.4.3 Hydrodynamic forces acting on a membrane structure and deformation of the 
structure 

(1) Relations between hydrodynamic forces and internal forces of a structure 
In designing rigid fixed structures such as breakwaters, we first estimate the 

hydrodynamic forces acting on the structures and then consider the stability by calculating 
the total forces and the internal forces in the structural members. As for floating structures, 
however, since the hydrodynamic forces strongly depend on the motions of those 
structures, the hydrodynamic forces can be estimated only when the motions of the 
structures are known. On the other hand, since the motions of the floating structures are 
in turn determined by hydrodynamic forces, both the hydrodynamic forces and the motions 
of the structures must be determined at the same time by solving the equations of motion. 
Nevertheless, the internal forces in the members of the floating structures can still be 
calculated independently from the external forces in which the motions are taken into 
account. 

For a flexible structure such as a membrane, which is not only shifted and rotated but 
also deformed by external forces, the hydrodynamic forces vary with the deformation of 
the structure as well as its motion as a rigid body. Since such deformation is determined 
by solving equilibrium equations between external forces on and internal forces in the 
structure, the internal forces in the structural members are also determined simultaneously 
with the hydrodynamic forces. Thus, for flexible structures, we must take into account the 
internal forces in the structure to estimate the hydrodynamic forces. 

Now let us take an oil boom in a steady current as a simple example. As shown in Fig. 
6.36 (a), if the oil boom is rigid and fixed at the water surface, the horizontal 
hydrodynamic force F due to the current with velocity V will be simply expressed as 
F = 1 /2CopV2d ,  where/9 and d are the density of water and the depth of the oil boom, 
respectively. For a flexible oil boom, however, the curtain canvas will be rolled up as 
shown in Fig. 6.36 (b) and the hydrodynamic force will be expressed as F = 1/2CopV2d ' ,  
where d' is the effective depth of the oil boom shown in the figure. 

Float Float 

rtain 
igid d' 

F ~ elate ~ allast weight 

Current (V) Current (V) 

(a) Rigid oil boom (b) Flexible oil boom 

Fig. 6.36 Oil booms in a current 

The effective depth d' is determined by how the oil boom deforms in the current, and the 
deformation is also determined by the hydrodynamic forces, the buoyancy of the float, the 
weight of the ballast, and the material characteristics of the canvas etc. The hydrodynamic 
forces acting on the flexible oil boom, therefore, strongly depend on the composition of the 
oil boom and the materials of the members. 
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Thus, in order to estimate the hydrodynamic forces acting on flexible structures, we must 
not leave the deformation of the structure out of consideration but pay careful attention to 
it, which indicates that we must make a model similar to its prototype not only in size but 
also showing the characteristics of the deformation. We must, therefore, carefully choose 
the materials of the model when estimating the hydrodynamic forces through physical 
experiments. 

(2) Hydrodynamic forces due to currents and the deformation of a silt curtain 
As mentioned above, since the hydrodynamic forces acting on flexible structures depend 

on the composition and materials of the structure, it is difficult to discuss them unless we 
take a particular structure as an example. Consequently, it is difficult to establish a general 
method for predicting the hydrodynamic forces acting on flexible structures. Here we 
consider the floating silt curtain shown in Fig. 6.34 (a) of which the tension cables are 
extended both at the top and at the bottom. 

Figure 6.37 shows the external and internal forces relating to a portion of the curtain 
between the mooring chains. 

r, s 

Fig. 6.37 External forces and tensions in a curtain 

Hydrodynamic forces ors acting on the curtain canvas causes tension Ts in the canvas, and 
then the tensions in the upper and lower cables, Tc" and Tc l, are determined by Ts, the 
buoyancy B~ and the weight of the cable Wc. Therefore, providing that both the deformation 
of the curtain and the distribution of tr, on the canvas are known, we can in principle 
calculate the tensions T, and To. 

Now let us derive an equation for calculating the tension of the cable Tc on some 
assumptions. We first assume that the vertical displacement of the cable is much smaller 
than the horizontal one and therefore T~ is determined by only the horizontal component 
of the tension of the canvas F~. Furthermore, we assume that F~ perpendicularly acts on 
every portion of the cable, which indicates that T~ is constant everywhere in the cable. 
Suppose that a cable with the initial length l (the length of a stretched cable is denoted by 
l') is extended in a current with the velocity V as shown in Fig. 6.38, where B represents 
the extension width. The origin of the coordinate system is taken as the mid-point of the 
cable and the x and y axes are determined as shown in the figure. 
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Fig. 3.38 Forces on tension cable and coordinate system 

If we express the plan form of the cable as y -f(x) ,  we obtain the following equation from 
the equilibrium of the forces acting on a small segment of the cable in the normal direction: 

f " ( x )  
Fc(X) = Tc {1 + f ' ( x )  2 }3/2 

Additionally, the length of the stretched cable l' is given by 

(6.42) 

= o 8/2 -1 + f ' (x)2 dx (6.43) 

and Tc is expressed as 

T c = EcA - 1 (6.44) 

by Hook's law, where Ee4 is the axial stiffness of the cable. Equations (6.42), (6.43) and 
(6,44) give the relations among To fix) and Fc(x). 

Next, let us assume that Fc(x) is expressed as 

1 1 
Fc (X) = -~CDPdV 2 cos 20 = -CDpdV22 

1 + f ' ( x )  2 
(6.45) 

where 0 is the angle between x-axis and the cable, Co is the drag force coefficient, and d 
is the draft of the curtain. This equation indicates that Fc is a drag force described by the 
velocity component normal to the cable Vcos0. Substituting Eq. (6.45) into Eq. (6.42) and 
solving this equation, we have 

(6.46) 
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where we let tr~ ffi CopdV2/2. Substituting Eq. (6.46) into Eq. (6.43) and eliminating l' by 
using Eq. (6.44), we obtain 

1 =sinh(Rgr l 
2R e ~,2~ ) 2-r~ 

(6.47) 

where 1re - TfftrJ, R E - E~A/trJ and Rg~ ffi B/l. This equation was derived by Sawaragi et 
al. (1989) by modifying Milgram's equation (1971) to take the elasticity of a cable into 
account. Milgram referred to lr~ and Rgc as a tension parameter and a gap ratio, respectively. 

In Fig. 6.39, the dependencies of the tension parameter lr~, the deflection at the middle 
of the cable 5~, and the y-component of the tension at the end of the cable V~ are plotted 
as functions of the gap ratio Rg~ with RE taken as a parameter. 
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Fig. 6.39 Influence of gap ratio 

The tension of the cable increases as the gap ratio increases, and the rate of increase 
becomes large as Rgc approaches 1.0; i.e., as the length of the curtain approaches the 
extension width. The influence of the elasticity of the cable appears only for small RE and 
large R g  c. 

Sawaragi et al. (1989) investigated the characteristics of the nondimensional tension Cr 
defined as Cr = Tc/~pV2Bd through experiments where they changed the curtain length, 
curtain depth, water depth and current velocity. According to their results, Cr increases as 
the relative curtain depth d/h (hffiwater depth) increases and the influence of the gap ratio 
appears only in the region of small d/h. 

(3) Wave-induced oscillations and wave forces 
Here we show experimental results of the behavior of floating and submerged silt 

curtains in waves and the characteristics of wave-induced tension observed in a cable or 
canvas. 
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(a) The floating silt curtain 
Figure 6.40 shows an example of the time history of tension in a cable of a floating 

curtain extended by both upper and lower cables, compared with that of water surface 
displacement. 
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Fig. 6.40 Time histories of water surface displacement and tension in a cable 

When the silt curtain is anchored slack in regular waves, it oscillates periodically in such 
a way that it is pushed forward and tightened up by waves in a half period of the motion 
and in tum is drawn back and tightened up again in the other half period. Large impulsive 
forces are observed in the tension cable at the moment when the curtain is tightened up. 
If the curtain is extended so slack that the curtain is not tightened up by waves, the forces 
become very small. 

Sawaragi et al. (1992) proposed the parameter P, that describes the limit of occurrence 
of such an impulsive tension as 

e H I cothkh (6.48) 

e,=7= 4l~_8~ 

where/-/i and k are the incident wave height and wave number, respectively. P, is a ratio 
of the maximal horizontal displacement of a water particle at the surface e, to that of the 
middle point of the curtain f, shown in Fig. 6.41. 
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Fig. 6.41 Assumed deformation of a curtain 
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In Fig. 6.42, the maximal tension in the upper cable TUmax is plotted against P,, which 
shows that large tension tends to occur in the region of P, > 0.8. According to the 
experimental results, however, the magnitude of the tension is not just the function of P, 
but still depends on the curtain length and on the phase of the wave motion at the moment 
of tightening. 
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Fig. 6.42 Maximal tension versus P, ( l -  57cm, B - 54cm) 

Sawaragi et al. (1992) investigated the impulsive tension through experiments in a steady 
current and proposed numerical models for the prediction of the impulsive tension based 
on the concept of added mass. 

(b) The submerged silt curtain 
Sawaragi et al. (1989) measured the tension in a canvas of a submerged silt curtain in the 
two-dimensional model tests where the water depth and curtain height were 1.13m and 
0.47m, respectively. They show that the amplitudes of both horizontal and vertical 
components of the tension are proportional to the incident wave height /-/i. Their 
nondimensional values are approximately expressed as 

X a sinhkd 
pgdH-----~ = ax 2kd cosh kh 

Ya sinhkd 

pgdH-----~ = ~ 2kd cosh kh 

(6.49) 

where d is the curtain height, and ax and ar are coefficients determined by fitting the 
curves expressed by these equations to the experimental results. Equation (6.49) indicates 
that Xa and Ya are proportional to the integrated force of the hydrodynamic pressure from 
the bottom to the top of the curtain. Figure 6.43 is an example that shows the applicability 
of Eq. (6.49). It is also reported that the values of ax and ar increase with the increase of 
the buoyancy of the float. 

Aoki et al. (1994) calculated the tension in the submerged curtain by employing the 
same numerical method as mentioned in 4.8. Figure 6.44 shows the comparison between 
experiments and computations, where R denotes the distance between the water surface and 
the top of the curtain, and Co is the equivalent linear damping coefficient that represents 
structural damping due to membrane motions and hydraulic damping due to fluid viscosity. 



355 

XlO -a 
20.0 

lo.o 

0 0 110 210 

�9 �9 Exp. 
- -  �9 Eq. (6.49) 

~ ~ex--3.8• -z 

j , .  
~.o ,.o ~'.o d.o +'.o +'.o 9'.0 

Fig. 6.43 Horizontal component of tension versus wave period 

XlO-Z 

3 

 lj!, 
Exp. 

o 

Cal .  

____} Xo 
y. C~ O'03 g /cmZ/sec 

] 
I i 

A \Co=O.O3 ,1 

I i  .L.. .V~__ ,' I 

t 't 
, ' 

l 4 6 

i 

8 

f C o = 0  

/ /  
~. k' . l  

I ,  / I  I - v , : g r  
10 12 

Fig. 6.44 Comparison of tension between experiments and computations 

In this figure, the broken line corresponds to the case where the damping alone is 
considered, and the two dashed-and-dotted lines correspond to the cases where finite 
displacement of the curtain as well as the damping are taken into account in calculating the 
tension. As seen in the figure, both damping and finite displacement must be considered 
to apply the numerical method to the estimation of the tension. 
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Chapter 7 Harbor Tranquility 

7.1. Workable Limit of a Harbor 

7.1.1 Harbor workability 
Ship activities within a harbor consist of entering the harbor, mooring, and cargo 

handling. In cases where cargo handling is not possible, the shipping expenditure (as 
shown in Table 7.1) becomes a large waste of money (Kubo and Barthel 1993). Therefore, 
shipping companies desire to use harbors where cargo handling is always possible, in turn 
requiring individual harbors to improve their workability in order to attract more ships. 

Table 7.1 Approximate ship costs according to ship type 

Ship Type Ship Cost (US$ per day) 

Pure Car Carrier 16,000 - 32,000 (US$) 
LPG Ship 40,000 (US$) 
LNG Ship 137,000 - 145,000 (US$) 
Container vessels 21,800 - 24,200 (US$) 
Bulk carrier: VLCC *~ 32,000 (US$) 

130,000DWT 24,200 (US$) 
Panamax .2 16,000 (US$) 

*1 very large crude oil carrier 
*2 maximum size of ship that passes through the Panama Canal 

Research on the reasons behind cargo handling interruptions, the duration of 
interruptions and the related weather conditions, has produced the following results. 

Based on the frequency distribution of the interruption time, over 50% of cargo handling 
interruptions are caused by rain and 20% - 30% are caused by swells. The average duration 
of a cargo interruption is 5 - 6 hours. It has been pointed out by cargo handling traders that 
even during fine weather, ships can be moved and cargo handling interrupted due to swells 
caused by typhoons and other long period waves, especially in harbors facing the Pacific 
Ocean. 

7.1.2 Critical condition of cargo handling 
The critical condition of cargo handling depends on (1) cargo packaging, (2) type of 

ship, and (3) cargo handling machinery. According to research regarding the relationship 
between the state of cargo and the reasons for cargo handling interruptions, it is seen that 
interruptions due to cargo falling from a sling occur with box and bag cargo, and 
interruptions due to breakage of cargo lots or due to difficulty in passing cargo through a 
hatch is a problem common among all types of packaged cargo. Cargo that has become wet 
is the most frequent reason for handling interruptions. In addition, interruptions due to the 
cargo being dispersed by wind often occur with bulk cargo. 
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However, the acceptable limits of ship motion for cargo handling vary depending on the 
type of ship (Sawaragi and Kubo 1983). Table 7.2 shows the acceptable motion mode 
limits for each type of ship (refer to Chapter 2) (Brunn et al. 1981). The limit is smaller 
for container carriers compared to general cargo carriers. Cargo handling is sometimes 
interrupted by cargo swing. When a ship is moving, the swing of the cargo suspended by 
the ship's crane is amplified. Even when using a shore crane, the cargo moves relative to 
the hold. The limits of ship motion during crane operation will be discussed in the 
following section. 

Table 7.2 Allowable ship movements 

Ship Type Surge Sway Heave Roll Yaw 
(m) (m) (m) (deg) (deg) 

Tankers +2.3 +1 _+0.5 +4 +3 
Ore carriers +1.5 _+0.5 _+0.5 +4 +_2 
(Crane operation using clamshell) 
Grain Carriers _+0.5 _+0.5 _+0.5 +1 +1 
(Elevator or suction) 
Container _+0.5 _+0.3 _+0.3 +3 +2 
Lo/Lo (normal locks) 
Container _+0.2 _+0.2 _+0.1 nil nil 
Ro/Ro (side) 
Container _+0.1 nil _+0.1 nil nil 
Ro/Ro (bow or stem) 
General cargo +1 _+0.5 _+0.5 +3 +2 
LNG _+0.1 _+0.1 nil nil nil 

after Per Brunn 1981 

(1) Limit of ship motion when using a deck crane 
We assume that cargo is unloaded by a deck crane under sway and roll conditions. In 

this case, as the cargo swings in a plane, it is possible to analyse the swing using the two- 
dimensional notations defined in Fig. 7.1. 

m c  

e V 

Fig. 7.1 Cargo swing 
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Here O' is the center of ship rotation, d~ is the distance from O' to a plane for cargo 
handling and lc is the distance from the plane for cargo handling to the tip of the crane. 
Using Oc as the swinging angle of the cargo, m~ for the cargo mass, l for the length of cargo 
fall, g for gravitational acceleration, and assuming the winding up speed V -  l to be 
constant, then a displacement of cargo swing X~ is given as follows by solving the equation 
for cargo motion under the assumption of infinitesimal movement 

X~=IO~ = P~ ~'OJl(~'o) + P2 ~oY~(~o) 
~V t t 
4g { ~~176176176176176176176176176 

(7.1) 

F~={g +(1r + d~ - 0 0  .2 } I & [ sin(  + I & Icos(or + I I,: sin (o't +Ssw) 

~o=2~gl /V  z 

where I,Y I, I~yl are sway and roll amplitudes, respectively, tr is the angular frequency of 
the motion, Ssw and 5R are phase delays, J~ is the Bessel function of first order, and YI is 
the Neumann function of first order. P~ and P2 are integral constants that are decided by 
initial conditions of Xc and -~c. 

Figure 7.2 is obtained by calculating Eq. 7.1 for various sway periods T,w. The figure 
shows the normalized locus of a swinging cargo by the sway amplitude IXI. We use Tr for 
the natural period when l -- lo (/0: length of rope at the initial winding up stage). When T,w 
< Tr, the swing becomes a maximum at the initial winding up stage. Attention should be 
paid to this phenomenon in regards to safe cargo handling in the hold. When T,w = Tr, a 
resonance occurs and the swing becomes larger due to the winding up, and when Tsw > Tr, 
the swing becomes smaller. 
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Fig. 7.2 Effect of sway period Tsw on cargo swing 
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Fig. 7.3 shows the swing due to roll movements of the ship. Figures 7.2 and 7.3 show 
that the natural period of the cargo suspended by the deck crane is approximately 8s, while 
the natural period of the rolling motion TR, is given as 

0.8B 
TR. = 4~_. ~ (7.2) 

where GM is the metacentric height and B is the breadth of the ship. GM depends on the 
length and draft of the ship. Setting G M -  3m in light conditions and B - 20m, then TR, 
- 9s. Thus the natural period of roll in light conditions for a general cargo carrier is nearly 
equal to the natural period of pendulum for suspended cargo. Accordingly, we can see that 
ship movements, especially roll, affect the cargo handling performed by the crane. 
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i I 1 I i 
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Xc/ls (m/deg.) 

Fig. 7.3 Effect of roll period T R on cargo swing 

Using the relation between ship movements and cargo swing clarified above, we can 
obtain an acceptable limitation of ship movements for cargo handling. 

Table 7.3 shows acceptable limitations of cargo swing that were obtained from field 
observations of crane operations (Sekita and Taniyama 1976). Although these limitations 
depend on various kinds of operations, we have chosen l m as the horizontal limitation 
amplitude of cargo swing, from which the limitation amplitude do for sway and roll can be 
obtained. 
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Table 7.3 Limit of ship movement from the standpoint of crane operation 

Kinds of Operation Horizontal Movement Vertical Movement 
pitching of pile 

82m pile _+0.5~1.5m +10~15cm 
50m pile +1.0~l.5m +10~20cm 
22m pile +l.0~2.0m +10~25cm 

setting of pile driving _+0.5~ 1.0m +10~20cm 
driving pile operation _+0.5~ 1.5m +15~25cm 
valuable cargo (deck) ~0.20m +5~6cm 
small cargo (valuable) ~0.25m +5~ 10cm 
small cargo (general) +l.0~2.0m +lm 

after Sekita and Taniyama 1976 

As shown in Figs. 7.4 and 7.5, which give the relations between the period of motions and 
the limitation of motions for some kinds of l0 and winding up distances Al, the limitations 
of motion are very small. Furthermore, the limitations depend on the cargo fall length 10. 
So it is useful, for the safety of cargo handling, to not only decrease the wave height inside 
the harbor but to also consider the length of cargo fall. 
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Fig. 7.4 Limit value of sway from 
the standpoint of cargo swing 

Fig. 7.5 Limit value of roll from the 
standpoint of cargo swing 

(2) Limit of ship motions when using a shore crane 
In the case of a shore crane, even if a ship moves, the ship and the suspended cargo are 

not directly connected, so the cargo does not swing resonantly, but the cargo does swing 
relative to the ship's movements. In this case, the safety of the workers in the hold 
becomes a problem. 
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Roll motions also cause horizontal movement, so we must consider both sway and roll 
for cargo handling. Using I Oyl for roll amplitude, dc for the distance from the center of 
rotation to a c~go handling plane, then the horizontal movement at the plane by roll is 
given by 2.drI.Oyl. Let us consider the distance d~ for the general cargo carrier. In light 
conditions such as when cargo is handled near the bottom of the hold, d~ is obtained by 
subtracting the height of the double bottom (approx. lm) from the height of the center of 
gravity. We express d~, as d~ in light conditions. In a full load condition, as cargo is 
handled near the upper deck, dc is obtained by subtracting the height of the center of 
gravity in a full load condition from the depth of the ship. We express dc, as d~ in a full 
load condition. Figure 7.6 shows the relation between dcL, dc~ and Lpp. In light conditions, 
roll motions are apt to resonate to swells and d~L is also large, so the roll motions strongly 
affect cargo handling. 

In general, during the loading stage, cargo is suspended l m above the already loaded 
cargo and workers try to move the cargo by adjusting the setting position. Therefore, if the 
position moves with the amplitudeIXI and period Tsw, as shown in Fig. 7.7, then the 
workers must also move the cargo simultaneously to set it on a fixed position. The force 
F that the workers need to move the cargo is given using the following equations for cargo 
motion. 
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Fig. 7.6 Distance between the center of rotation and the cargo handling plane 

m t cosot F=m~X + m~gO~ = l 

= 

l 

(7.3) 
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Fig. 7.7 Force acting to workers in the hold 
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Fig. 7.8 Frequency characteristics of force F acting to workers in the hold 

Figure 7.8 shows a comparison between theoretical and experimental values for IFI. 
From this figure, when the period of the ship's horizontal movement Tsu is equal to the 
natural period of a pendulum, the workers scarcely require the force, but when the periods 
are different from each other, the workers need a large force. A limit force pushing 
horizontally in the hold is approximately 20 kgf because of bad footing. Thus, the limit 
amplitude of the horizontal ship movement is given by 
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0.02l I,r luM-me{l_ (r./~sw ?}, T,,=2sr~le> (7 .4 )  

(3) Operational conditions for cargo handling 
So far, a limit of harbor tranquility has been given as 0.5m of the wave height. However, 

as mentioned above, harbor tranquility should be defined by a limit of ship motion. As an 
example, we obtained the limit of incident wave height for cargo handling in the case of 
a ship (length 175m, breadth 27.6m and depth 8.4m) moored along a vertical quay wall. 

The limit of wave height when the limit of heave is 0.5m is shown in Fig. 7.9 by using 
a theory of ship motions, where 0 is the angle of the incident wave, in other words, 0 is 
zero for beam waves. Hv is the limit only for heave motions, and it becomes smaller when 
0 becomes 90". Namely, when the ship receives head waves, the limit of the wave height 
becomes large and the influence on cargo handling becomes small. 
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Fig. 7.9 Limit of incident wave height 
when the acceptable vertical motion for 
cargo handling is assumed to be 0.5m 
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when the acceptable horizontal motion for 
cargo handling is assumed to be 0.5m 
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Roll motions include a vertical motion on the ship side. So if we take into account the 
roll and heave motions, the limit of incident wave height is given by HB. When 0 - 0 ~ 
HB becomes very small near the resonance which is shown as an up arrow (Sawaragi and 
Kubo 1983). 

Pitch motions induce a vertical motion at the bow and stem. So if we take into account 
the pitch and heave motions, the limit is given by HI. In this case, as the natural period 
of pitch is 13s the limit of wave height becomes 0.2 ~ 0.3m at the wave period larger than 
10s. Thus the limit of the wave height when the heave limit is 0.5m depends on the wave 
period and the incident wave angle. On the whole, the whole, tranquility from the 
standpoint of ship motion can be improved by arranging the quay at 0 -  90 ~ rather than 
0 -  0 ~ 

Figure 7.10 shows the limit of wave height when the whole horizontal amplitude of ship 
movement is 0.5m. In this case, a beam wave arrangement (0--  0 ~ is not as suitable as 
a head wave arrangement ( 0 -  0~ Especially at the long-wave period of more than 10s, 
the limit of wave height becomes 0.2m in the case of a beam wave arrangement. 

From the above, we can understand that the limit of wave height depends upon the wave 
period and the incident wave angle and we should take notice of the mooring direction to 
improve the limit of wave height. 

7.1.3 Survival conditions for mooring 
As ship motions increase, mooring accidents sometimes occur and may require 

immediate departure. If we consider these situations as the limit of mooring, the 
corresponding limit of the wave height is usually larger than that which is needed for safe 
cargo handling (Kubo and Barthel 1993). Therefore, it is necessary to consider the relation 
between an external force and the mooring limit. 

At first, the external force is divided into a wave force and a wind force. The external 
force of waves is composed of two kinds of wave forces, the first being a wind wave or 
swell whose period is about 10s (these will be referred to as "short waves" hereafter), and 
an infragravity wave whose period is about one minute (these will be referred to as "long 
waves" hereafter). When a ship receives these waves, short-period ship motions are 
induced by short-period waves and long-period ship motions are induced by long period 
waves. Besides this, extreme asymmetrical mooring where, for example, a fender's spring 
constant is 100 times that of a mooring line's spring constant (Sawaragi and Kubo 1983) 
and grouping waves also cause long-period ship motions even if the incident wave period 
belongs to a short period range (Sawaragi et al. 1978). These phenomena will be described 
in detail in 7.4. The large amplitude of ship motions usually happens in long-period ship 
motions, so long-period ship motions are more important than short-period ship motions 
when considering the limit of mooring. In fact, it is reported that the mooring ship 
sometimes runs due to a swell in a harbor facing the ocean. According to these reports, the 
ship's movements attain to 10~20m and sway movement is usually smaller than the surge 
movement. 

Because of the large surge movement of 10~20m in storm conditions, we should think 
about these phenomena when we decide the clearance of ships moored along a quay, and 
the distance from the ship end to the slip end. 

On the other hand, when sway motions increase, ship collisions with fenders can become 
severe, and breakage of fenders (the limit of fender deflection is 50-60%) and a ship's hull 
cause a limit to ship moorings. 

Once a mooring line is broken, the remaining mooring lines receive a stronger force, so 
the remaining lines are also likely to break. Meanwhile, the ship must correspond to the 
urgent situation by changing the broken line with a new line. If this can not be preformed, 
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it must quickly depart from the berth. If the ship is unable to depart, it may drift inside the 
harbor, land on the quay or become shipwrecked. Typhoon "Muroto" in 1934, and "Jean" 
in 1950, were valuable learning experiences regarding mooring accidents. 

7.2 Numerical Methods for the Prediction of a Wave Field in a Harbor 

7.2.1 Governing equations and boundary conditions 
In this section, we will show some numerical methods based on the linear potential 

theory. Although most of these methods are described for regular waves, it is possible to 
predict an irregular wave field by superposing the solutions for regular waves with 
different frequencies. As mentioned in 1.2.8, if we assume the velocity potential �9 as in 
Eq. (7.5), the governing equation of the function ~(x,y) reduces the mild slope equation 
(7.6) 

�9 (x, y, z, t) =~(x,y) cosh k(z + h) e_iO t (7.5) 
cosh kh 

I7 (ccgV~) + k2ccg~ = 0 (7.6) 

where c, Cg and k are the phase velocity, the group velocity, and the wave number, 
respectively. In particular, when the water depth is constant in the whole region of interest, 
Eq. (7.6) becomes 

V2~+k2~=0 (7.7) 

Let us now think about a harbor as shown in Fig. 7.11. Since Eqs. (7.6) and (7.7) are 
elliptic type second-order partial differential equations, boundary conditions must be given 
on all the boundaries of the semi-finite region. Boundary conditions of partial absorption 
are given on both the harbor boundary/"1 and the coastline/"3. At infinity, the radiation 
condition is imposed on the scattered waves by the harbor. 

t t f t t t D2(~) 

/ ,1 Oa ( ~ ) Z  R/ \, 

F1 

n 

Fig. 7.11 Calculation region and 
coordinate system 

Wave 

$ 
. . . .  

Fig. 7.12 Wave reflection by a 
partially absorbing boundary 
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(1) Boundary condition of partial absorption 
Let us consider the partial reflection of oblique incident waves on a straight boundary 

with a reflection coefficient KR, as shown in Fig. 7.12. If we call the velocity potential of 
the partial standing waves ff(s,~), we have the following equations satisfied on the 
boundary (Engquist and Majda 1977) 

O~ = ik 1 -  KR sinOp .~ �9 ~ = 0 (7.8) 
tgK I + KR 

where the reflection coefficient KR is a complex number defined as KR = IKRle ie, by using 
the phase difference e between incident and reflected waves. This equation, however, is not 
suitable for a boundary condition because it can be used only as long as the angle of 
incidence Op is known beforehand. It is usually difficult to determine Op especially for 
multidirectional waves commonly seen inside a harbor. 

Let us give an approximate expression for Eq. (7.8) that is linear to the angle of 
incidence (Engquist and Majda 1977; Behredent 1985). If we let k, = k sin0p and ks = k 
cOS0p, then k, is expressed as 

l (_~)2 ( 1 (ks ~2 1 (~_/4 } 
k ,=k 1 -  =k 1 - - ~ \ - - ~ ) - - ~  . . . .  (7.9) 

Assuming kJk~<l and neglecting the order terms higher than (ks/k) 2, Eq. (7.8) is rewritten 
as an equation of the second-order partial absorption condition 

ik O~ tt 02~ 
2 0 s  2 

=0 (7.10) 

by using Eq. (7.9) and the relations: sin0p 
absorption coefficient defined as 

= k./k and 3 2 ~/Os 2 = -ks 2~, where a is the 

1-K  
I + K  R 

(7.11) 

The rate of energy loss due to reflection KL 2 is given a s  KL 2 -~ 1- KR 2 ---- a (1 +KR) 2 when KR 
is a real number. If we omit the third term of the left hand side of Eq. (7.10), we obtain 
the first-order partial absorption condition 

~ 2  
~,v, = i k a  ~ (7 12) 
0F 

which has been commonly used in numerical calculations. 
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The influence of using Eq. (7.10) or Eq. (7.12) instead of Eq. (7.8) can be estimated as 
a change of the reflection coefficient (Behrendt 1985). Figure 7.13 shows the apparent 
reflection coefficients, KR~ and KR2, that correspond to the first- and second-order partial 
absorption conditions, respectively, where the real reflection coefficient is 0 (i.e., perfect 
absorption: c t -  1). A negative reflection coefficient means that the phase difference e 
between incident and reflected waves is 7r. As seen in this figure, the absolute values of 
the apparent reflection coefficients are increasing with decreases in Op. In order to satisfy 
the condition IKRI < 0.1, Op must be larger than 55" for Eq. (7.12) and larger than 30" for 
Eq. (7.10). 
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- \ 

- \ 

. \ 

t t I i i J j J I I t I I i I ~ ~ 1 1  

15" 30 ~ 45* 60 ~ 75* 90 ~ 
90~ 

Fig. 7.13 Apparent reflection coefficient 

(2) Radiation condition 
Let us divide the velocity potential if2 in the outside region of the harbor, D2, into two 

components 

~2=~o +~s (7.13) 

where if0 represents the combination of incident waves and their reflected waves by the 
coastline, and Os represents the scattered waves by the harbor. The following radiation 
condition is imposed on Cs at infinity 

lim~/-R ~ OR - i k ~s : 0  (7.14) 

where R represents the horizontal distance from the origin of the coordinates,i.e. 
R= ~x 2 + y2. The radiation condition implies that only the outgoing scattered waves can 
exist on the boundary distant from the harbor. 
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7.2.2 Strict methods 
We here use the term "strict method" to indicate the numerical method which does not 

employ any approximation except for the discretizing a calculated field or time. The finite 
difference method (FDM), the finite element method (FEM) and the boundary integral 
equation method (BIEM) are representative strict methods. A method which combines two 
or more of these methods is called a hybrid method. In this section, we will explain the 
FEM and the BIEM that are very applicable to a harbor with complex configurations. 

(1) The finite element method (FEM) 
As mentioned in 1.2.7, the calculation region is divided into small elements in the FEM. 

However, it is impossible to divide the whole of the semi-infinite region shown in Fig. 
7.11. Assuming that the water depth outside the boundary F2 shown in Fig. 7.11 is constant 
or sufficiently deep, the following methods are proposed to satisfy the infinity condition 
(Zienkiewicz et al. 1978): 

(i) Applying the radiation condition Eq. (7.14) on F2 at finite distance, 
(ii) Matching the inner solution to the outer solution on F2, where the scattered wave 

potential ~s in the outer region is expressed as a series of analytical solutions of Eq. 
(7.7) that satisfy Eq. (7.14) (Mei 1983), 

(iii) Same as (ii) except that ~s in the outer region is expressed by sources or doublets 
distributed on the F2 (Berkhoff 1972), and 

(iv) Using the "infinte" elements with an exponential shape function (Bettes and 
Zienkiewicz 1977). 

We now adopt the method (ii) and assume that the boundary F3 is on the x-axis and 
fully reflective. The scattered wave potential Cs can be expressed as 

eo 

~s : E / 4 ,  ~)(kR) "ft, cos(n0) (7.15) 
n = O  

where ft, is an unknown complex coefficient, H, ~) is the n-th order Hankel function of the 
first kind, and R and 0 are indicated in Fig. 7.11. According to the variational~ principle, 
the solution that satisfies Eq. (7.6) in D~, Eq. (7.10) on /-'1, and also ~1 - ~00_ + ..~s and 
~9~/ ~ -  ~)/~9~ (~0 + q~s) on /"2 is obtained by minimizing the functional F(r Cs) 

~ ~ II ~ 2 1 [ 1 ia (O~12]ds F(~, Cs)=~D15 ccg(V(~)) -Cga2~12c dS -~r, iatrc'a2 +-4-kCCg I cgs ) 

[.1 1 lccg~sCg~?~ +fr2CCg ~s-(~-~o)-~~(~o+~s) ds-fr2~ '~ndS (7.16) 

Behrendt (1985) fully studied the accuracy of this method and the influence of the 
absorption coefficient. Sawaragi et al. (1988) investigated the applicability of the method 
by comparing model tests and pointed out that the computation predicts much larger wave 
heights in a harbor than those in the experiments when the boundaries in a harbor are fully 
reflecting. These differences, however, can be reduced by adding a small absorption 
coefficient such as r - 0.03 (KR - 0.94) to the boundaries in a harbor, which indicates the 
importance of energy loss estimation. Since the FEM can be easily used for the complex 
region and since the treatment of boundary conditions is also straightforward, it is usually 
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more applicable than the FDM. When calculating a wave field in a large region or for short 
periodic waves, however, the FEM requires a lot of work in preparing input data, a lot of 
memory on a computer as well as a lot of computing time. 

(2) The boundary integral equation method (BIEM) 
We here take Eq. (7.7) as a governing equation and take Eqs. (7.12) and (7.14) as 

boundary conditions. We choose the 0th-order Hankel function of the first kind, Ho ~11, as 
Green's function, which is a solution of Eq. (7.7) and satisfies Eq. (7.14). Applying 
Green's formula to the region D~ and by using the relation: lim Ho(1)(kr)=(2i/rc)ln(kr), we 
obtain the boundary integral equation k~--,0 

~, (x, y)=e~r,+r~ [~, (X,P)~ {11o ('' (kr)} - 1to (') (kr) (7171 
8n J 

where a point (,~,Y) is on the boundary F~ or F2, and r is a distance between (x, y) and 
(X,Y). The coefficient e takes -i/4 when the point (x, y) is inside the region and takes - 
i/2 when on the boundary. Furthermore, applying Green's formula to the region D2 with 
respect to ~s, we have 

O= (x,y)=e(~r3+r dS- ~r~)[O=(X, Y)-~~(Ho~')(kr)} 

_Ho(,)(kr) cg~=(X,oF Y)] (7.18) 

where F~ indicates the boundary at infinity. By using Eqs. (7.12) and (7.14), Eqs. (7.17) 
and (7.18) yield 

~l(x,y)=e~r ' "~n{Ho(~'(kr)}-ikaHo(~'(kr) Ol(X,Y)ds(X,g)+e~r ~ O~(X,Y) _{Ho(~'(kr)} 

&(x, -1 

-Ho("(kr ) Y)lds(X Y) " (x,y) eD, (7.19) 
8~ j 

O= (x, y)=e ~r 3 "~n {Ho(l'(kr)}- ika Ho(l'(kr) O=(X, Y)ds(X, Y)-  e~r ~ O= (,~, Y) _{Ho(l'(kr)} 

_Ho(l)(kr) cg~=(X,tgn Yl]ds(X, Y) " (x, y) eD 2 (7.20/ 

If we put (x, 2') on F~, F2 and/"3 in Eqs. (7.19) and (7.20) and use the matching conditions 
on/"2: r ~o + ~s and ~)~/On - b//)n (.~0 + ffs_), Eqs. (7.19) and (7.20) reduce to the 
integral equations with respect to ~ on F~, Os and O~s/O n on /"2, and ~s on/"3. Dividing 
the boundaries F~, F2 and/"3 into small segments and rewriting these integral equations to 
a set of linear algebraic equations, we can obtain the solutions as a discrete point on the 
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boundaries. By using the solutions on the boundaries, the velocity potentials inside and 
outside the harbor are readily calculated from Eqs. (7.19) and (7.20), respectively. 

Lee (1971) investigated harbor oscillation problems by using equations similar to Eqs. 
(7.19) and (7.20). He assumed a straight coastline and fully reflecting boundaries, and put 
the boundary F2 at the harbor mouth. In this case, we do not need to divide/"3 as long as 
we calculate only the solution inside the harbor. Ijima and Chou (1975) treated a case 
where a part of FI or/"3 is fully absorbing, but their absorption condition is different from 
Eq. (7.12). Kusaka (1983) shows the numerical method in which Eq. (7.15) is used instead 
of Eq. (7.20). 

Since Ho<l)(kr) and i)/i)~Ho")(kr) represent a two-dimensional source and a doublet, 
respectively, when kr~O, Eqs. (7.19) and (7.20) indicate that the velocity potentials inside 
the boundaries are expressed by the sources and the doublets distributed on the boundaries. 
According to the source distribution method shown in 2.3.2, the potential r in the region 
D~ and D2 can be expressed only by the sources distributed on F~ and F2 (Mei 1978) 

~(x, y)=~?o (x, y)+ fr,§ fo(X, Z)Ho~l)(kr)ds(X,, Y) (7.21) 

where fo(X,Y) represents a strength of source. Hwang and Tuck (1970) solved a harbor 
oscillation problem by applying Eq. (7.21) to the boundary conditions on/"1 and F3. 
The BIEM, the method that transforms the governing equation to the boundary integral 
equation by applying Green's formula, has the advantage that the number of unknowns is 
much less than for the FEM, because the unknowns are restricted to those on the 
boundaries. As we take Eq. (7.7) as a governing equation, however, it is complicated to 
extend the BIEM for the varying depth region. Ijima and Chou (1975) and Kusaka (1983) 
dealt with this problem by dividing the harbor region into portions of constant depth. 
Mattioli (1978) proposed a method that numerically composes Green's function in which 
the variance of the water depth is taken into account. 

Some other useful methods that employ the FDM and calculate in the time domain have 
been proposed (Tanimoto and Kobune 1975; Warren et al. 1985). These methods, however, 
sometimes require particular attention to the treatment of boundary conditions, and 
moreover it is sometimes difficult to find a steady-state solution in such a region 
surrounded by fully reflecting boundaries. 

7.2.3 Approximate methods 
Although the strict methods give us accurate solutions of the governing equations under 

the boundary conditions, they are not suitable for calculating for a large harbor compared 
with the wavelength or for multidirectional irregular waves, even if we use the BIEM. 
Furthermore, as mentioned above, additional energy loss should sometimes be required in 
the strict methods to explain experimental results. Thus we here show some methods that 
can be readily used and provide a fairly good approximate solution. These methods are 
useful for practical design although their applicable range is not clear. 

(1) SOGREAH method 
Biesel and Ranson (1961) proposed a practical method by employing Kirchhoff's 

diffraction theory in optics. Take the case of a harbor with a convex configuration as 
shown in Fig. 7.14, where a harbor boundary is FI has a reflection coefficient KR. Water 
depth is assumed to be constant in the whole harbor region, which indicates that the 
governing equation reduces to Eq. (7.7). Let us consider expressing the velocity potential 
~(x, y) at a point in the harbor as 
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~(x,y)=-efr,+r2G(x, y; "Z,z)c?~(7"'()ds(Y,,Z) ( 7 . 2 2 )  
0~ 

where boundary /"2 denotes the harbor mouth as shown in Fig. 7.14. If the function G 
satisfies the condition: OG/~)~ - 0 on F~ and /"2, we can easily obtain Eq. (7.22) by 
applying Green's theorem to the harbor region. However, it is difficult to obtain such a 
function for an arbitrary configuration of a harbor. 

\ 

/ ~ V  

Fig. 7.14 Harbor with a convex configuration 

A semi-infinite region bounded by an infinite straight boundary C is a particular case 
where we can compose the function G which satisfies ~)G/b~- 0 on C 

�9 - (~) r G(x, y, X, Y)=H0 (k 1+ Ho~"(kr ') (7.23) 

~f( --2 --2 
where r '=  x ' - X )  + ( y ' - Y )  the represents distance between the mirror image point of 
P(x',y'), which is P'(x',y'), and (,~,Y'). Thus the potential ~(x, y) in the semi-infinite 
region is expressed by applying Green's theorem as 

(b(x, y) e~c2Ho 'n (kr) c?(b(X, Y) = -  ds(,Y, Y) (7.24) 

This equation implies that the wave field is expressed by sources distributed on the 
boundary, the strength of which is proportional to normal velocity i)~/i)n on the 
boundary. Since the source H(oU(kr) represents a cylindrical wave, this expression 
corresponds to Huygens' principle of superposition optics. 

For a harbor with a convex configuration as shown in Fig. 7.14, cylindrical waves 
originating from the boundary/"2 propagate directly onto the boundary F1, and the incident 
waves to Fl can be calculated from Eq. (7.24) by assuming /"2 as a part of the infinite 
boundary C shown in Fig. 7.15. 
The incident waves to F~ are reflected by the boundary and scattered inward again. Such 
reflected waves can also be computed from Eq. (7.24) by dividing Fl into several straight 
lines and by assuming each line as a part of the infinite boundary. Thus, in the SOGREAH 
method, the velocity potential in a harbor is expressed by cylindrical waves originating 
from all surrounding boundaries as: 
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Fig. 7.15 Composition of Green's function in a semi-infinte region 

~(x, y ) = - e l f  l 2Ho(1)(kr)O~(.,Y, Y) +r~ Off ds (.g, Y) (7.25) 

where ~ (X,Y)/i)g represents a velocity component only in the inward direction. In an 
actual computation, we first put the following initial boundary conditions: 

0r  =0 "on F~ (7.26) 
O~ 

m 

c9~ On �9 on F 2 (7.27) 

where ~i represents the velocity potential of incident waves. After differentiating Eq. 
(7.25) with respect to ~(x, y), we substitute Eqs. (7.26) and (7.27) into this equation and 
compute the value of/)~/~)~ on/"l. If we let this value be (/)~//)~)', the velocity due to 
the reflected waves from F1 is expressed as 

! 

On=-K,, (7.28) 

In the next step, we again calculate ~ and /)~//9~ on Fl from Eq. (7.25) by substituting 
Eqs. (7.27) and (7.28) into it. In the following step, we repeat this process until we obtain 
a steady-state wave field in a harbor, i.e., until /)# and /)~//)~ converge to certain values 
on the boundary. For a harbor with concave configuration, we can still apply this method 
by dividing the harbor region into several convex regions and regarding the imaginary 
boundaries between these sub-regions as harbor mouths. 

As shown above, in the SOGREAH method, a wave field in a harbor is calculated by 
taking harbor boundaries for wave source lines on the infinite straight boundary of a semi- 
infinite region. Since the method requires much less memory on a computer than the strict 
methods such as the FEM and the BIM do, it can be applied to a large harbor compared 
with the wavelength. However, there remain some problems such as the validity of Eq. 
(7.25) and an occasional divergence of a solution. Barailler and Gaillard (1967) modified 
this method so as to take the variance of water depth into account. 
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(2) Takayama's method 
Takayama (1985) proposed a practical method that can be applied to multidirectional 

irregular waves. In this method, wave transformation in a harbor is classified into 
diffraction and reflection by breakwaters and quays. The analytical solutions of diffraction 
by a semi-infinite breakwater and of reflection by a breakwater of finite length are used 
to calculate diffraction and reflection coefficients, which are superposed on an energy 
basis. Wave directions in a harbor are determined geometrically as shown in Fig. 7.16. 
Takayama's method is commonly used in Japan in designing harbors and its applicability 
has been investigated by comparing many model tests and field measurements. Prediction 
error of this method is said to be within 30%. 

(3) Wave ray method 
Larsen (1978) calculated a wave field by tracing wave rays in a harbor, where wave 

transformation is classified into diffraction and reflection as used in Takayama's method. 
As shown in Fig. 7.17, wave rays reaching a certain point P consist of incident (if), 
reflected (r/R) and diffracted (r/~ rays. The incident and reflected waves are determined 
geometrically and the diffracted rays are originated from the breakwater tips or 
discontinuity points of harbor boundaries. The wave field is calculated as a sum of the 
contribution of these rays 

r/ (P) = r/t (P) + E r/~(P) + E r/~ (7.29) 
i i 

Larsen used the analytical solutions for wedge diffraction derived by Kouyoumjian and 
Pathak (1971) when calculating diffraction coefficients. 

~.~" _ . . . . .  "X.-~ Breakw~}~r gap 

I 

"$! 

'-'5" / 

Fig. 7.16 Diffraction and reflection in 
a harbor 

Fig. 7.17 Wave rays reaching point P 

The wave ray method was originally developed for regular waves but can easily be 
extended for irregular waves. Moreover, this method is suitable for the calculation of wave 
direction in a harbor. However, it is difficult to account for refraction due to depth variance 
in contrast with the "wave ray method" shown in 1.2. 

In this section we have shown approximate methods, the basic ideas of which are similar 
to those in optics. The accuracies of these methods, therefore, generally increase as the 
relative wavelength to a representative dimension of a harbor becomes shorter. Remember 
that strict methods are not suitable for short relative wavelength, and we know that a 
method that stands between strict and approximate methods should be developed. 
Combined use of strict and approximate methods, however, seems to be the best way at 
present. 
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7.3 Numerical Methods for the Prediction of Ship Motions in a Harbor 

As mentioned in 2.4.2, ship motions under the excitation of regular waves are obtained 
by solving the equation of motion, Eq. (2.194). In order to solve this equation, we need 
to calculate the wave forces, i.e. the Froude-Krylov force F ~r~, the diffraction force F ~~ and 
the radiation force F ~R) represented by the added m a s s  Mlm (A) and the damping coefficient 
Nlm (D). We now consider a ship located in a harbor as shown in Fig. 7.18. The Froude- 
Krylov force is a hypothetical force calculated by integrating the pressure corresponding 
to the velocity potential of incident waves which are not influenced by the presence of a 
ship. For a ship in a harbor, however,  the incident wave potential must be calculated by 
numerical methods as shown in 7.2. Since both diffraction and radiation forces correspond 
to the waves radiating from the ship, these forces are strongly influenced by harbor 
boundaries located in the vicinity of the ship. In the following sections, we show numerical 
methods for calculating wave forces, which take harbor boundaries into account, and the 
influence of harbor boundaries on wave forces. 

7.3.1 Calculation of wave forces under consideration of harbor boundaries 
Oortmerssen (1976) and Sawaragi et al. (1982, 1983, 1989, 1991) investigated the 

influence of harbor boundaries on wave forces. Here we show the numerical method by 
Sawaragi et al. (1989, 1992), which can be applied to a ship and a harbor with arbitrary 
configurations. This method is based on the source-doublet distribution method in the 
BIEM. We show only the equations for the radiation problem, i.e., for the radiation 
potential CR, because the diffraction problem is its straightforward extension. 

We use coordinate systems as shown in Fig. 7.19 and define the six components of ship 
motion with respect to the coordinates G~xsyszs, where Gs is the center of gravity of the ship. 
Motions parallel to the x~, y, and z, axes are termed sway (X), surge (Y) and heave (Z), and 
angular motions about these axes are termed pitch (Ox), roll (Or) and yaw (O~), 
respectively. These motions are expressed as 

^ .~ -lot = (7.30) X = X e  -iot, Y = r e  , . . . ,  O~ ~z e -i ' '  

Ys 

,~ Incident waves 
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(b) Diffraction or D 
radiation force 

(a) Froude-Krylov force 
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Fig. 7.18 Wave forces and corresponding 
wave patterns 

Fig. 7.19 Definition sketch for ship 
and coordinate systems 



378 

by means of complex amplitude ,~,I ~ ..... I)~, respectively. If we let normalized radiation 
potentials be OR - (OR~, q~R2 .... OR6) (see Eq. (2.182)), and assume that water depth is constant 
and no other boundaries exist except for the ship, governing equations and boundary 
conditions are as follows: 

VE~Ri =0 "in D (7.31) 

~)Ri a2 
& g dPRi = 0 "at z = 0 (7.32) 

Oq~Ri = 0 �9 at z = -h  (7.33) 
oaz 

o3~i - 
tgK = ~i "on S (7.34) 

( ,9 ~,,,i I ~f-R k OR - i k qORi =0 when R ---) oo (7.35) 

where R denotes the radial distance from the origin O and ~. represents the normalized_ 
velocity due to the ship motion in the normal direction to wetted surface S (N.B" ~. is 
different from ~'i in Eq. (2.129) in its sign). If we let the components of the unit normal 

B 

vector f on S be (fix, ny, f~), with respect to the coordinate system G~xsyszs, ~. is given as 

~,=~x, ~=~,  ~=nz } ~4 = ysn,. - zs ~y,  ~ =  z~n,, - X, nz ,  ~6 = x ,n~  - Z, nx 
(7.36) 

By using John's Green's function G(P,Q), the velocity potential at point P is expressed by 
surface integration over the wetted surface of the ship as follows, because G satisfies 
similar equations to Eqs. (7.31) through (7.34) 

dPRi(P)=e'SS,{ dPRi(Q)~G(P,Q)- ~.(Q)G(P,Q)}dS(Q) (7.37) 

where e' takes -1/4re when the point P is inside the region D and takes -1/2re when P is 
on S. This integral equation can be transformed to a set of algebraic equations by discre- 
tizing the surface S into small facets. 

When any reflective boundary is placed around the ship, another boundary condition is 
added to Eqs. (7.32) through (7.35). If Green's function G also satisfies this condition, we 
can still use Eq. (7.37). In the following subsections, we first show the case where such 
a Green's function can be easily composed and then show a numerical method for a ship 
in a basin of an arbitrary configuration. 
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(1) The mirror image method 
For a ship near a wedge-shaped, fully-reflecting boundary as shown in Fig. 7.20, the 

following boundary condition is added: 

BOrn = 0" on ~ 1-" z (7.38) 
0F 

In order to let Green's function G satisfy the condition ~)G/~9ff - 0 on/"1 and/"2, we employ 
the method of images and put singular points at a mirror image point P/ with respect to 
the boundary. This method can be applied only when the number of mirror image points 
is finite and no mirror image points appear in the fluid region. The wedge angle that 
satisfies these conditions is only n:/n (n  - 1,2 .... ). For example, five mirror image points 
Pt', P2' . . . . .  Ps' are necessary as shown in Fig. 7.20 when the angle is n:/3, and the 
modified Green's function G' that satisfies the boundary condition of impermeability on 
/"1 and F 2 is expressed as 

c,(e, Q)=G(P, 0)+ G(e,; 0)+... + G (e,', Q) (7.39) 

As shown above, although the method of images is very useful, it has the weakness that 
boundary the shapes are very restricted and partial reflection on the boundary cannot be 
taken into account. 

, ~ '  ? ' g )  

i i  . . . .  

P4 \ 

Fig. 7.20 Arrangement of mirror image points 

(2) Analysis for a ship in a basin of arbitrary configuration 
Consider a ship in a basin of arbitrary configuration with straight coastlines and constant 

depth as shown in Fig. 7.21. All the boundaries of the basin are assumed vertical and have 
an arbitrary reflection coefficient, KR. Two coordinate systems Oxyz and G,xsyszs  a re  used 
as shown in the figure. The system Oxyz is fixed with its origin at the still water level and 
at the entrance of the basin. The system G;csy ,  z~ is fixed at the center of gravity of the ship 
in its mean position. As mentioned above, if we can develop Green's function to satisfy 
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in its mean position. As mentioned above, if we can develop Green's function to satisfy 
the boundary conditions on the harbor boundaries, the numerical procedure becomes the 
same as that for the ship in open sea by using Eq. (7.37). However, the numerical method 
to compose such a Green's function has not been developed. Thus, in order to solve the 
whole region of the basin, the domain of interest is divided into three regions as shown in 
Fig. 7.21: the semi-infinite ocean (region I), the basin excluding the vicinity of the ship 
(region II), and the region around the ship (region III). B~ and B2 are imaginary vertical 
boundaries between the regions, and the direction of the normal vector ~ for each region 
is defined as shown in Fig. 7.21. 

Incident wave 
y /( '0I 

/ 
I (~11) l 

/i{ B1 _I x 

Fig. 7.21 Definition sketch for ship in basin of arbitrary configuration 

We let the velocity potentials in each region be fRli, fR2i and fR3i (i=1, 2 . . . . .  6), 
respectively, and express fR~i and fR2i as a series of eigenfunctions 

~Rli fi<O)(x, Y)cosh k(z + h) ~-, r y) cosk,(z + h) 
= + , Z _ , J l i  

cosh kh ._~ cosknh 
(l = 1,2) 

where k and kn are derived by solving the equations 

(7.40) 

k h tanh kh=- k, h tan k, h = o2 h / g (7.41) 

From Eq. (7.31), f/}0), f/},)and r satisfy the following equations: 

a~ f~i ~~ F- fl, ~~ ke f~o~ 
~?x2 + + . =0  Oy2 (7.42) 

a2~n~ ae~n~ 
i k.~fi ("~ =0 

Ox ~ 8y~- 
(7.43) 

Ox ~ + Oy~ + &,  
=0  (7.44) 
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In region III, the boundary conditions Eqs. (7.32), (7.33) and (7.34), are imposed on OR3i. 
In the regions I and II the following conditions apply: 

o~r o3s 
JI___L_~ = -,~__L_~ = 0 " o n  F~ (7.45) 

a l l  ~ a f t . ,  = -ika f2i (~ J2._._~ = 0 �9 on F 2 (7.46) O~ O~ 

where El and /'2are shown in Fig. 7.21. The first equation in Eq. (7.46) corresponds to 
Eq. (7.12) and indicates the condition of partial absorption. For the function fff), which 
represents the evanescent mode waves, the boundary condition of full reflection was 
imposed since the absorption condition for the evanescent mode waves is not clear. 
Furthermore, the following continuity conditions are given at the imaginary boundaries: 

= ~  "~I---L-~ = tgJJ-~) (7.47) 

f ,,(o) = f~,(o), f ,,(.) = j~,~.) : on Bl 

o~OR2.......~ = tg#R3.......~ OR2i = OR3i" on BE (7.48) 
O~ cgn ' 

In order to solve the Eqs. (7.42), (7.43) and (7.44) under the conditions of Eqs. (7.45) 
through (7.48), we employ the boundary integral equation method. For regions I and II, we 
choose the Hankel function of the first kind and the 0th order Ho")(kr) and the modified 
Bessel function of the second kind and the 0th order Ko(k.r) as Green's functions of Eq. 
(7.25) and Eq. (7.25) respectively, where r is the distance between the points P and Q in 
the regions. By applying Green's formula to the regions I and II and using the boundary 
conditions Eqs. (7.45) and (7.46), we obtain the functions fi (~ and fi (") at the point P in 
each region through boundary integration. For example, fEi(~ and fEi(")(P) are given as 

3'ii(~ = e~r2+s,+s 2 [fEi(~176176 - Hl(~176 

f2i(n)(e) = e~r,+n,+s 2 [f2i(")(Q) ff~{Ko(k,r)} - Ko(k,r) ff~nf2/"'(Q)]ds(Q) (7.50) 

where e is the same as Eq. (7.17). For the region III, John's Green's function G(P,Q) is 
used and CR3i(e) o n  the boundaries is expressed as 

~0R3i(P) = e~s+n, [OR3i(Q) ff~nG(P, Q)-G(P, Q) ff~nOR3i(Q)] ds(Q) (7.51) 
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The unknown functions, 3~i (~ f/if) and ~R3i, are obtained by solving these integral equations 
together under the continuity conditions, Eqs. (7.47) and (7.48). 

To solve these integral equations, the boundaries B~, /'2 and B2 are divided into line 
segments numbered N~, N2, and N3, respectively. Moreover, the surface boundaries B2 and 
S are divided into rectangular facets of the number N c  - N3 x N o  and N s ,  respectively. In 
order to make the number of the unknowns coincide with that of equations, the number of 
facets in the vertical direction on B2, N o ,  must be equal to 1 + Nr, where Nr represents the 
number of components of evanescent mode waves. 

7.3.2 Inf luences  of  harbor  boundaries  on wave forces 
(1) Wave forces on a ship near wedge-shaped boundaries 

We first show the added mass and damping coefficient of a rectangular ship located near 
four types of quays with angles of 180 ~ 90 ~ 60 ~ and 45 ~ as shown in Fig. 7.22, compared 
with those for a ship in open sea. Figures 7.23 (a) - (c) show the frequency responses of 
added mass, damping coefficient and wave exciting force in the surge mode, where L s  and 
~'0 denote the ship length and the amplitude of incident waves, respectively. As seen from 
these figures, the response curves in the case of the existence of a quay are considerably 
different from those in the open sea and highly dependent on the configuration of the quay 
as well as the frequencies. 

180 ~ 
//////0" 

900 1600 45* ~l~,l 

: 115m 

i ," 

: N " : x z 
~ria . ( ' , ( / / / /  / / /  , , ,." , , , / / / / / / / /  " : . , /  / / /  " . . \ . . \  = lOOm ~-I "~l -~\\\\\"\\ ~-------I~// 

2m 

Fig. 7.22 Dimensions and location of the tested ship 

Moreover, in order to investigate how far the influence of the quays extends, calculations 
were carried out in the case of a 90 ~ quay by changing the distance dw between the ship 
and the quay parallel to the y-axis. These results are compared with those in the case of 
180 ~ quay in Fig. 7.24 for the sway and surge modes. In these figures, M i f f ) 9 ~  )~g~ and 
Nii~~176 ~~176 are the ratios of added mass and damping coefficient in the case of a 90 ~ 
quay to those of a 180 ~ quay and L is wavelength. These figures show that the values of 
these ratios asymptotically approach 1.0 in the region D / L >  1.0. It means that the quay 
located within a one-wavelength distance from the ship does influence the added mass and 
the damping coefficients of the ship. 
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Fig.  7.23 D e p e n d e n c e  o f  wave  forces  on bounda ry  conf igura t ion  
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Fig. 7.24 Dependence of added mass and damping coefficients on dis- 
tance between ship and quay 

(2) Wave forces on a ship in a slip 
The solid and broken lines in Fig. 7.25 show the frequency response of the added mass 

M~ (a) and the damping coefficient N~ (~ in the sway mode, respectively, for a rectangular 
ship in a rectangular slip shown in this figure. The dotted lines in the figure show those 
for the same ship in the open sea. The added mass and the damping coefficient 
corresponding to the slip show some large peaks in their response curves compared with 
those of the open sea. The frequencies o'~JLs/g=0.7 and 1.6, where the large peaks 
appear, correspond to the resonance frequencies of transverse oscillation in the ship, which 
indicates that characteristics of fluid oscillation in a basin strongly influence the added 
mass and damping coefficient. 

(3) Influence of partial reflection on a boundary 
Figure 7.26 shows the dependence of the added mass and the dampin~ coefficient on the 

absorption coefficient a of all the boundaries of the slip at t r~Ls/g= 0.7 where the 
damping coefficient shows a large peak in its response curve as shown in Fig. 7.25. In this 
figure, the added mass and the damping coefficient strongly depend on (t in the region 0< 
a <0.2 (0.67~R<1) and asymptotically approach to the value for open sea represented by 
dotted lines in Fig. 7.25. The damping coefficient, in general, increases with increasing a 
since the damping energy consists of the energy radiating outward from the harbor and the 
energy absorbed in a harbor. However, as shown in Fig. 7.26, the damping coefficient may 
decrease at a particular frequency where the damping coefficient shows a large value. In 
7.5.1, we show the effects of partially-reflecting quays on ship motions, where the 
condition of the boundary absorption is treated more precisely. 
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Fig. 7.25 Added mass and damping coefficient for a ship in a rectangular slip 

7 . 3 . 3  S o l u t i o n  o f  e q u a t i o n  o f  m o t i o n  

If we let Xm = ~fme-i~ E (e) = E(e)e -i~ in the equation of motion (2.140) in Chapter 2 
and let, ,~=(21,22,. . . ,~6) and pr (pr162 the equation reduces to 

: [_O.2(M(B) + M(A))_iaNW)+ K] -I/~,(e) : HS(a)~(e) (7.52) 

where M (B), M (A), N ~~ and K represents the mass, added mass, damping coefficient and 
restoring force coefficient matrices. This equation indicates that ship motions are expressed 
by the frequency response function of motion HS(a) and the wave exciting force ~(E). 
Furthermore, /~(E) can be expressed as 

/~(e, = He(o, 0,)~, (7.53) 
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Fig. 7.26 Dependence of added mass and damping coefficient on 
absorption coefficient 

by using the complex amplitude of incident waves entering the harbor, ~i, where He(tr,01) 
represents the response function of the wave exciting force and 01 is the angle of incidence. 
Substituting Eq. (7.53) into Eq. (7.52), the ship motions are given by 

X= HS(cr)He(cr, O,)~, (7.54) 

This equation indicates that the ship motions in a harbor are expressed by two response 
functions H s and H e', which represent the oscillation systems of a ship and water, 
respectively. As mentioned in 2.4.2, the ship motions cannot be simply expressed in terms 
of such frequency response functions when the equation of motion is nonlinear. In this 
case, we must solve the equation by integrating it in the time domain. 

7.3.4 Strip method in presence of a quay wall 
In Chapter 2, as the practical calculation method, we described the strip method for the 

floating body moored in waters of a constant depth and without a quay wall. In the case 
of ship motions in a harbor, however, there are quay walls and slopes as mentioned above, 
so the treatment of the strip method is different from that of the open waters. Of course, 
even if there is the quay wall, ship motions can be estimated approximately by using the 
radiation force and the diffraction forces (which are given by the total forces due to the 
incident waves and the reflected waves) in the open waters (Ueda 1984). We do not use 
this approximation method. In the following, a different part of the treatment with and 
without the quay wall is mainly described (Kubo et al. 1990). 

Ships in a harbor are moored along such various berths as an open jetty, solid jetty and 
slope. In this case, since the depth is sometimes not constant, we use the most basic 
function G(r)-(1/27r) ln(r) as Green's function shown in 2.4.1. Here r shows the distance 
between two points in the fluid. The motions of the floating body are explained with the 
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coordinate system in Fig. 7.27. This Green's function does not satisfy a free surface 
condition and a bottom condition, so we must set the calculation points on the free surface 
and the bottom beside the wetted surface of the body, and set an imaginary boundary at 
x = lo far from the origin. If we set the boundary at the position where the evanescent 
waves of the first mode decrease to the one-hundredth, lo is given by 

In 1 O0 
- ~ + a ( 7 . 5 5 )  1,,- k, 

where kl is the eigenvalue of n = 1 in Eq. (7.41) and a is a half breadth shown in Fig. 7.27. 

-< 
_ Region (I) 

x=lo 
1 
I 
I 
~l Region (0) 

C5 ~-~ ~ 
I 
I . . . .  

Fig. 7.27 Notation for two-dimensional analysis and coordinate system 

Because the evanescent waves can be neglected outside of the imaginary boundary, the 
radiation potential is given as follows: 

ORi(o) = _~  KRiei, x cOShcosk(hh kh + z) (7.56) 

Here KRi is equivalent to the coefficient of a progressive wave and is the unknown complex 
coefficient of radiated waves caused by the i-th mode body motion. Then, the radiation 
velocity potential on the boundary is given by solving the simultaneous equations 
composed by the boundary conditions and Green's formulas 

0r 0"2 3~" i  = ~/ �9 o n  C= 
- " ~ R i  " o n  < C 3 OK Oh g ' ' 

8 ~ R i = o  " on C 4 a ~ R i : 8 ~ ( ~ i )  th(~ 
On ' On On ' ~Ri : "?'Ri " on C s 

(7.57) 

~Ri(P) = 21 (~Ri(Q)~ C1+C2+C3+C4+C5 
ar oqG(P, Q ) - G ( P ,  Q) dC (Q) (7.58) 

o~ o~ 

w 

Here ~i is given by Eq. (7.36) and we should take care that its direction is opposite to that 
of the source distribution method in Chapter 2. P and Q are the points on the boundary. 
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When CRi (i = 1,3,5) is obtained, the pressure PRi (i = 1, 3, 5) is also obtained. In the case 
of a quay wall, the symmetry and anti-symmetry of the velocity potential and boundary 
condition as shown in Fig. 2.19 disappear by the reflected wave from the wall, and the 
body motions of all modes are coupled with one another. Figure 7.29 shows the added 
mass and the damping coefficients for three kinds of walls shown in Fig. 7.28. Here Ls is 
the length of the body and B is the breadth. The figure shows us that Ml3 (a) and Nl3 (A) are  
zero for the open jetty, but not zero for the slope and the solid jetty. Moreover, the other 
hydrodynamic coefficients are considerably different by the structure of the wall. 

, 66.0 

_1 
l- -'71.4 
I 96.3 

(a) Slope 

u ~ 
�9 (b) Solid jetty (vertical wall) 

I V ,, 

(c) Open jetty (transmitted wall) unit;cm 

Fig. 7.28 Three kinds of quay walls and floating bodies 

Considering the above, in the same manner as Eq. (2.202), the radiation force is obtained as 
follows: 

dFi(R' = Ics (PRI + PR3 + PR5 )~dC, (i = 1,3,5) 

(7.59) 
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Fig. 7.29 Effect of form difference of quay wall on hydrodynamic coefficient 

As M~A)= .v.53/IA[(A)=0, N ( D )  = . . 5 3 m ( ~  0 for the open sea, the right hand side was simplified, 
but in the case of the solid jetty and slope, all of these terms do not disappear. Furthermore, 
this relationship is still kept in case of diffraction force calculation with the Haskind 
relation. From Eq. (2.151) 

dF/~ = dM~a)ti, + dN~~ + dMCa)~i,, + dNr176 (i = 1, 3, 5) 

U I = 
Ox 

, W !  = 

x = O , z = - d / 2  OZ x=O, z=-~(y)/ B, 

(7.60) 
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Here @~ and @R are the velocity potentials of incident waves and reflected waves, 
respectively. Being different from Fig. 2.19, u~ and wl must contain the incident and 
reflected waves as shown above. Three-dimensional radiation and diffraction forces can be 
obtained by integrating the forces using Eq. (2.149). 

7.4 Long-Period Ship Motions 

When a ship is moored in stormy weather, large amplitude ship motions with a period 
of one to two minutes occur, and when not moored it does not have the restoring forces 
of sway, surge, and yaw, but has a natural period of one to two minutes when moored. 
Figure 7.30 shows the relation between the ship displacement and the natural periods of 
surge and sway (Sawaragi and Kubo 1982; Wilson 1951). From this figure, we can 
understand that the natural period is about 1-2 minutes and is not so much related to the 
displacement. As the natural period is long enough not to make the radiated waves by the 
ship motions, the wave making damping coefficient becomes zero. For this reason, small 
exciting forces make large ship movement, which prevents shipping activities in a harbor 
such as safe ship mooring and efficient cargo handling. In the following, we describe the 
causes of long-period ship motions from four standpoints. 

o 10 z 

t Surge { * by Wilson 
o by Kubo et al. 

- r �9 by Wilson 

Sway I r by Mimura 
o by Kubo et al. Ib  �9 
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t 
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Displacement tonnage (ton) 

Fig. 7.30 Relation between natural period of surge and sway and displacement tonnage 

7.4.1 Asymmetrical mooring 
In the case of a moored ship in the field, the restoring force F cm for sway is composed 

of the mooring line force and the repelling fender force. Figure 7.31 shows the 
characteristics between extension and load of various ropes. From this, we understand that 
the loads are proportional to the extension to the second power. 
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On the other hand, two kinds of fenders, namely, the pneumatic type and buckling type, 
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Fig. 7.32 Characteristics of deflection 
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are used as shown in Fig. 7.32. For the pneumatic type, there are pneumatic fenders and 
cylinder type fenders. For the buckling type, there are V and H shaped rubber fenders that 
produce constant repelling forces by buckling deformation. In the case of the buckling 
fender, approximating the characteristics of the restoring forces near the origin, the relation 
between load and sway motions is shown in Fig. 7.33. Here CL and CF are the spring 
constants of mooring lines and fenders, respectively. In the prototype mooring, the ratio of 
both spring constants amounts from 1:100 to 1:1000, and we call them asymmetrical 
mooring. Ignoring the coupling terms according to Eq. (2.140), the equation of sway 
motion of a ship moored along the vertical wall is represented by 

(m B + 31(1A>)X + mll tX + Ell (m> = (m a + M~ A> )I) + mll tV (7.61) 

Here 0 is the average acceleration of the wet body and is given by the following equation 
in case of beam sea: 

(1_ Htg sin2(kB/2) sinh k h - s i n h k ( h - d )  

d kB/2 cosh kh 

cos k(r w - B~ 2 ) - cos k(r w + B~ 2) 
x sin a t 

2 sin2(kB/2) 

(7.61a) 
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! 

where ms is the mass of the ship, M[i 4) is the added mass of sway, N,, is the total damping 
coefficient, which contains viscous damping, and it is obtained by a free oscillation test. 
HI is the amplitude of the incident wave, d is the draft, B is the breadth of ship and rw is 
the distance from the center of ship to the quay wall (Lean 1971). In the case of Eq. (7.61), 
by obtaining the individual solutions for the linear equations in each region I and II of Fig, 
7.33, and determining the constants in free oscillation terms with the initial conditions X-0 
and X of the former region, the solution can be determined (Sawaragi and Kubo 1983). 
Figure 7.34 shows the wave profile at the wall and the sway motions of a model ship with 
a ship length 2.4m, breadth 0.455m, draft 0.098m in a water depth of 0.21 lm. The lower 
figure shows flat peaks, which mean that the ship makes contact with the fender. As one 
contact occurs for md waves, we call them the motions of md mode. As shown above, the 
sway motions at the asymmetrical mooring consist of the short- and long-period ship 
motions. The long-period motions are named subharmomic motions (Lean 1971). 
Accordingly, at the asymmetrical mooring, even if the wave period is around 10s, the long- 
period ship motion of around one minute occurs. 
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Fig. 7.33 Restoring force for sway 
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Fig. 7.34 Profile of:Sway motion at asymmetrical mooring (model test) 
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7.4.2 Slow drift oscillations 
We assume that the floating body is moored by equal spring constants from both sides. 

We refer to this as a symmetrical mooring. Applying the beating waves shown in Fig. 7.35 
to the body, it moves not only with the wave period but also with the long period of the 
beat. The external force causing such motions is called drift force (Hsu and Blenkarn 
1970). The drif force working per unit length of the body moored along the wall in the 
finite depth of Fig. 7.36 can be obtained with the conservation of momentum in the same 
manner as in Chapter 2. 
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Fig. 7.35 An example of long-period sway motion due to two-component waves 
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Fig. 7.36 Notation for drift force of a ship moored along a quay wall 
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The velocity potentials of incident waves, reflected waves and waves between the ship 
and quay namely, ~ ,  q~R and q~j (Sawaragi et al. 1980) are given as follows: 

ig~o " cosh k(h + z) , e - i h - i o t  41 
a cosh kh 

~R = ig(R cosh k(h + z).e_i~,_io,, 
a cos h kh 

~J = {G O COScos k(rwk (, r w +- aX)~, cOShcosk(hh kh + z) 

" cosh k n (r w + x) cos kn(h + z)} e_ia, +SLG  
n=l  cosh k n (r w - a) cos knh 

(7.62) 

where k and k, are given by Eq. (7.63) and if0 is the amplitude of incident waves. The 
unknown values ~'R, G, (n - 0, 1, 2 .... ) in the velocity potentials are determined by solving 
the simultaneous equations relating the boundary conditions and the equation of motions, 
after that, all velocity potentials are decided. 

Setting the control surfaces at the origin of incoming waves x - oo and at the quay wall 
x - -rw and averaging the change of momentum over a period, then we can get the drifting 
force. The positive direction of the force is the same as the propogating direction of 
incident waves 

[z~ = T P ?Ix oo- az oo -[- k o3z )_rw dz 

{{ _prl.(o~,+Ro3t ) _ ~l~-rwk'~T)-rw(O~JJ~ z=o "2 pg(Oo~ 
(7.63) 

where the subscript shows the x axis. The velocity, pressure and surface elevation shown 
in Eq. (7.63) are given using the decided velocity potential in Eq. (7.62). Furthermore, we 
have already used the boundary condition (3q~j/o2lf) ~ - 0 in Eq. (7.63). Thus, by 
rearranging them with q~, q~R, and qJj, the drift force is igresented as follows: 

F~ = ~ 1 + sin'h 2kh ) 1 + -~o 

p ~ 1 .1 1+ -IG0 
4 cos 2 k(rw - a) 2 sinh 2kh)  

+ 2  1 .1. 1 + ~  "]Go 
~=~ cos 2 k~(rw - a )  2 sin 2k~h 

(7.64) 
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Now, we take the coefficient of drift force DR as 

=~. 1 
DR dx/~Pg(02 (7.65) 

The relationship between DR and L/B is obtained as illustrated in Fig. 7.37. The solid line 
shows the theoretical results and the small circles are the experimental results. We find the 
negative drift force according to the wavelength. It is a different point compared with the 
case of the open jetty. 
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Fig. 7.37 Coefficient of drift force when the spring constant of the mooring 
system is small and clearance between the ship and the wall is wide 

When the wave height gradually varies wave by wave, the drift force also varies slowly 
and generates the long-period ship motions. Now, for simplicity, supposing two-component 
waves beating as shown in Fig. 7.35, the slowly-varying drift force F~ 2; is given by 

Fd~ ~e' = pgDR~o (''. ~'0 '2'. L s �9 cos(Art, t + 5) (7.66) 

Here (0 (~>, ~'0 (2) are the amplitudes of the component waves, respectively, Ls is the ship 
length, Ak and Act represent the difference of wave numbers and periods of two-component 
waves. Supposing the symmetrical linear mooring and the uncoupled equation of motion, 
then the equation of motion is the same as Eq. (7.61) 

f: + 2e,,.g + n~X = F(~Z'/(m, + M(a') (7.67) 
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where 2e~ - N[~I(rnB+M~r n~  2 - C~I(mB+M~r and C~ is the coefficient of restoring 
force due to mooring lines. Substituting pt2~ of Eq. (7.66) into the above, we can get the Adx A 
long-period ship motions shown in Fig. 7.35. The force amplitude F of the rnooring line 
due to the slow drift oscillations is obtained by solving Eq. (7.67) and using F = Qt" X , 
then we get the next equation: 

/ ~  n l  2 1 

~<'2' - a](nl21- Acr e)2+ 4El21Ao. 2 (7.68) 

where /~2) is the amplitude of "d~Pt2)" The solid line in Fig. 7.38 is the theoretical curve of 
Eq. (7.68) for the above model ship. Tsw,, in the abscissa is the natural period of sway of 
the moored ship, Tg is the period of the envelope of a wave group as shown in Fig. 7.35. 
The solid small circles are the experimental values which are obtained by the wave groups 
resulting from the superposition of a 1.5 Hz fixed wave frequency and 1.6Hz - 1.8 Hz 
varying wave frequency. And the open small circles are also experimental ones that are 
given by the wave group by 1.0 Hz fixed wave frequency and 1.08 Hz - 1.25 Hz varying 
wave frequency. The coefficient of drift force for the two-component waves is given by 
the corresponding value for the average frequency according to Hsu's assumption (Hsu et 
al. 1970). These experimental values agree fairly well with the theoretical values, so the 
long-period ship motions by the varying drift force can be explained by the above method. 
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Fig. 7.38 Resonant characteristics of force acting to mooring lines by drift force 

7.4.3 Long-period ship motions by harbor oscillations 
As the natural period of a moored ship motion is around one minute, such motions as 

sway, surge and yaw resonate and become large when the long-period waves of about one 
minute apply to the ship. Since heave, pitch and roll have rather short natural periods, these 
ship motions are not so large under the long-period waves. So we will not deal with them 
here. When long-period 
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waves enter a harbor, the waves sometimes resonate inside the harbor and the height 
becomes large depending on the size of the harbor (Lee 1971). The Froude-Krylov force 
in this case can be obtained by integrating the pressure given by the velocity potential in 
7.2 over the wetted surface of the ship. Because ship motions hardly make any waves in 
the long-period motions, the damping force by wave making can be neglected for long- 
period ship motions. For a rectangul~ ship, average acceleration in x and y directions 01 
and 0 ,  angular acceleration O are represented using the Froude-Krylov forces 
Fir), Fir ) and ,F6 tr) as follows: 

/71 (r) F2 (r) 3. F6 (r) 
0 1 - "  , 0 2 " - -  ,O=ms((B/2)2+ (7.69) 

ms mn ( ) 

Assuming linear and symmetrical mooring, and neglecting the wave making damping 
coefficient in Eq. (7.61), namely N(I = N~2 = N~ = 0, then the equations of motions are 
given by: 

(ms + M( A))X + N~ X + CllX = (ms + M~ A)) 01 (7.70) 

/IAr'A') 0 2 (mn+M(A))y+N~2}"+C22Y=(mn+"-22"-22 (7.71) 

(i66 + M~, )& + N~ a= + C66a~ = (166 + ~,,.a, ) 0 (7.72) 

Here 166 is the inertial moment of yaw, M[ a) ,~,,f(A) and j~f(A) ' " ' 2 2  ""66  are the added masses and 
moment of inertia of sway, surge and yaw, respectively, superscript L shows the factors by 
the mooring lines. In the above equations, letting 

2e~{ = N~} 2e2~ = N~ 2e6~ = N6~ 
AAr(A) ' 166 + M~ )' ms + M( r ms "+ "*22 

n? - -q: c ~  c66 
1 - -  /I~(A) , , ms + M( a)' nz~ = n~ = M~ ) ms + ""22 /66 + 

(7.73) 

then, solving Eqs. (7.70) - (7.72), the amplitudes of sway, surge and yaw are given by the 
following: 

IOll , i 1= Io21 
+ (2e220) 

(7.74) 
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As an example, Fig. 7.39 shows the amplification factor I ~/~'0 of surge when the ship is 
moored at the position | Here ds is the length of the ship and L is the wavelength. Though 
the damping coefficient obtained by the free oscillation test is e~2 - 0.094(sec~), the 
amplification factors near the resonance show nearly the same results as e~2 - 0. Thus we 
still have the problem of the damping coefficient, but we can approximately explain the 
floating body motion in the long-period range using the natural period obtained by the free 
oscillation test. 
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Fig. 7.39 Surge of ship moored at berth 1 

7.4.4 Free oscillation as transient phenomenon 
In the same way as when we carry out the free oscillation in the experimental basin, 

when a steady force is suddenly removed from a ship in the field, long-period free 
oscillations occur. On the contrary, from the state where the steady force does not apply, 
when the forces suddenly act, the free oscillations also occur (Sawaragi et al. 1978). As 
an example, the equation of free oscillation is obtained by setting the external forces to 
zero in the right hand side of Eq. (7.71). By solving this equation under the initial 
conditions, Y -  Y0, I;" - 0 for t -  0, the following free oscillations can be obtained. 

_c  L 
Y = Yo e 22t sin(a22 t + 5), 

(7.75) 
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where Yo and d; are the constants determined by the initial conditions. The free oscillations 
in the above decrease exponentially as shown in Fig. 7.40 and the time Td when the tangent 
at t -  0 crosses the time axis is given by 

L (7.76) T d = 1 / e22 

We need a time longer than Td to decrease perfectly. Even if we consider Td the time for 
extinction, the wave making damping force for the long-period motion is very small and 
the damping force by the mooring system is also small, and thus it takes a long time to 
extinguish the long-period free oscillations. 

Yo 

0 t 

Fig. 7.40 Curve of damping 

7.5 Countermeasures for Harbor Tranquility 

7.5.1 Reduction of ship motions by harbor improvement 
(I) Reduction method by perforated quay wall (Sawaragi et al. 1980) 

In 7.3, we show the calculation method of a wave force considering the reflection 
coefficient of the harbor boundary, but it was not enough to treat the evanescent mode 
waves. Here, even through two-dimensional treatment, we calculate the motions of the ship 
moored along a perforated quay wall by using the strict analytical method and discussed 
the effect of such a wall on the reduction of ship motions. There are two kinds of low 
reflection quay walls from the standpoint of hydraulic resistance. One is proportional to the 
velocity and the other is proportional to the velocity squared. Figure 7.41 shows the ship 
motions where the hydraulic resistance is proportional to the velocity. Here T is wave 
period, TR, is the natural period for roll, lw is the half breadth of the perforated wall, a is 
the half breadth of the ship, A is the ratio of porosity, r2 - lw is the breadth of the free water 
region and we set the resistance coefficient through the wall # d -  4rdT. The body motions 
before the low-reflection wall are expressed using the following potentials for the five 
regions: 

�9 , (x, Z, t)= ~ (x, z)e -i~ : (n = I~  V) (7.77) 
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[Aoeik(xi+a) + noe_ik(xi+a) ~ f cosh k (h  + z )  
cosh kh 

I . . nI~xl 
x~ ~ sin n #7_ 

= Co--+Do + ~, Cn. nrca +Dn. 
a n--~ sin h h - d 

( h + z )  iorZ {xi 2 (h+z) 2 
�9 cos nzrh_ d - h - d  2 2 

ia~'2yXl Xl 2 (h + z).______~ 2 + 
h - d  2 2 6 

"l.S E~ -rl ) -I- F~ )~'S cosh k( h + z) 
cosh kh 

+ E Anek"(x' +a) COS k n (h + z) 
cos knh 

n = l  

. nTrx~ I cos nh - d 

nxa 
cos h h - d 

( h - d )  2 } 

~ +  6 

o o  

+E{Ene-kn(x,-n) +F.ek.(x,-n)}c~ 
cosknh 

n = l  

~-~ cos k.x2 sin knx2 cosh kn(h + z) 
= - + n n  " - 

n--0 cosknlw slnknlw coshknh 

r =/0 cosk(r~ - x~) 
cosh k(h + z) 

cosh kh 

tm 

+ E  I. cosh kn (r2 - x2) cos kn(h + Z) 
cosknh 

n = l  

(7.78) 

whereA0, An, B0, B ...... I0, and In are the complex constants, k and kn are given by Eq. (7.41) 
and k n is the complex eigenvalue determined by the following equation: 

k~h tan h k~h = (1- i ~ - l  trE h 
g (7.79) 

Furthermore, there are two coordinate systems, that is, the origin of the (x~, z) system is 
at the center of the body of the still water line, and the origin of the (x2, z) system is at 
the center of the perforated wall. Considering the velocity potential in the perforated wall, 
we assume Darcy flow. Then the boundary conditions at the free surface and sea bottom 
are given by 

tg~rC=r 0"2r . z = O ,  tgCn'=O. Z=-- h (7.80) 
~z k. ) tr g tgz 

The other boundary conditions are given in the same manner as those in Chapter 2. 
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Fig. 7.41 Reduction of ship motion by the structure of the quay wall 

Letting horizontal wave forces be P~, P3, vertical wave force P2 and horizontal, vertical, 
and rotational restoring forces RH, Rv, RM, then the equations of motion are expressed as 

m . 2  = PI - 1"3 + R .  

m B Z  = P2 - pgBLsZ + Rv 

I55by = Mpl + Mp2 + Mp3 - bogBdLsGM ~~y Jr R M 

(7.81) 

Here Mei is the moment by Pi. By solving the simultaneous equations composed by the 
above boundary conditions and equations of motions, the unknown constants of ship 
motions and velocity potentials are decided. As an example, the motions of a ship under 
the conditions of B = 0.45m, d = 0.09m and h = 0.211m, are shown in Fig. 7.41. In the 
same figure, the ship motions before an impermeable wall are also shown for the sake of 
comparison. From Fig. 7.41, we can see that roll and sway for a low-reflection wall 
become smaller than those for an impermeable wall around the wave period less than 1.5 
times of the roll natural period, but these relations are reversed at the longer wave periods, 
while heave is nearly the same at the wave period less than 1.2 TRn, but over this period, 
heave becomes very small. 

From these results, we can understand that the low-reflection quay wall is more effective 
than the impermeable quay wall from the standpoint of moored ship motions. But in the 
case of a ship moored a breadth off the quay wall (equivalent to mooring to a shore 
bridge), it is impossible to attenuate all ship motions, different from the low-reflection 
quay wall as shown in Fig. 7.41. 
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Figure 7.42 shows the response of ship motions in which the permeable resistance of the 
perforated wall is proportional to the velocity squared. In this case, the water body is 
divided into four regions. In the perforated wall, the velocity potential does not exist, but 
for the other domain, the velocity potentials are the same as above. The following relations 
are obtained as the condition of continuity of velocity and pressure at x2 - + l w :  

/ ~ / = ( ~ / 
OX2 x2 =-lw OX2 x2 =lw 

(7.82) 

- + =2lw + IVI'V 
tgt )x~=-lw Ot x2=lw ~h  (7.83) 

= t I , . . . . . . . . . . . . . .  
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Fig. 7.42 Ship motion moored along a low-reflection quay wall where 
the permeable resistance is proportional to the velocity squared 
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Here f is the coefficient of energy loss, Dh is the diameter of the hole, V is the velocity 
through the perforated wall. V is decided by the velocity potential and Eq. (7.83) contains 
V squared, so the simultaneous equations become nonlinear. Accordingly, we must find out 
the solution satisfying the continuity condition of pressure by the iteration method, then the 
ship motions can be obtained. Comparing the ship motions with those of the impermeable 
quay wall, roll and sway become smaller at the range of wave period less than 1.2 TR, but 
heave becomes larger. When the wave period becomes larger than 1.2 TR,, then the 
relations become the reverse. 
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Fig. 7.43 Effect of incident wave height on ship motions 



404 

Figure 7.43 shows the nonlinearity of the ship motions for the two incident wave heights, 
l cm and 3.5cm. The bigger the incident wave height becomes, the larger nonlinear 
resistance becomes. So the response of roll and heave normalized by the incident wave 
height becomes small near the resonance of roll. In other words, the efficiency of reduction 
of ship motions by the perforated low-reflection wall is small when the incident wave 
height is small. 

In the above, we discussed the reduction of ship motions by two kinds of low-reflection walls. 
Assuming the wave height in a harbor to be rather small, the quay wall whose resistance is 
proportional to the velocity is preferable because the efficiency is still high even at the small wave 
height. 

(2) Reduction method by berth selection (Sawaragi and Kubo 1982) 
Since the long-period wave has the long wavelength, ship motions are changed by the 

mooring position. Moreover, the period of long-period ship motions is sometimes similar 
to that of harbor oscillations, so we consider the reduction method by the different berths 
in the slip. The mooring positions are shown in Fig. 7.44, namely, berths 0), ~ and | 
When the incident waves enter normally, it is clarified from the experiment that surge 
predominates and sway and yaw are very small at berths | and ~), while at berth | sway 
predominates and other motions hardly occur. So we show the surge for berths | and ~ ,  
and sway for berth | in Fig. 7.45. Here we assume symmetrical moorings for all ships. 
In the figure, ds is the ship length, L is the wavelength, IYI IXI and ~0 are the amplitudes 
of surge, sway, and the incident waves, respectively. From this figure, we can see that the 
surge at berth | is larger than at berth ~,  while sway at berth | is very small. Judging 
from the results, the most suitable berth in the slip is berth | 
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Fig. 7.44 Arrangement of the moored ship inside the slip 



60 

50 

10 

4O 

~ 1 ~  30 

20 

0 
0 

50 

40 

0 

3O 

2O 

10 

! 

405 

01 
0 

!! 
O~lo g22L (sec "l) 

F ! , ~ - . _  o.o | 

It' 
~ o ' 'o / / / / / / / /  

y ~ 
0.5 1.0 

ds/L 

l[ r ~,L (sec-,) 
- ! I ' 0.94 ~ [ 7  

Ii---o.o ~ ~, - 
. o l  , / 1 1 1 1 I / ,  

ol ~' 
oO!nk 

- O O 

O Y  ~ 0 0 0 0  ^ _  O0 . 

0.5 1.0 

ds/L 

i~ i e 11 L (sec l) 
o.166 ~ 

~ ?  - - - -  o.o ~ 

M 

, 0 0 

0.5 1.0 
ds/L 

Fig. 7.45 Reduction of long-period ship motions by berth selection inside the slip 

(3) Attenuation of ship motions by breakwaters 
Sawaragi and Aoki (1992) numerically investigated the effects of narrowing the harbor 

mouth and constructing inner breakwaters for a rectangular ship (60m x 15m) in an L- 
shaped harbor as shown in Fig. 7.46, where the water depth and the draft of the ship are 
21m and 4.9m, respectively, and the ship is assumed to be moored 19m distant from the 
nearest quay by four linear springs with spring constants of 9.35 tf/m. 
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Fig. 7.46 Harbor used in numerical simulation 

Figures 7.47 and 7.48 show the absolute values of the response functions in the sway 
mode in two cases with different widths of harbor entrance BH, where L/Ls represents the 
ratio of wavelength (L) to the ship length (Ls) and H e and H s are nondimensionalized by 
multiplying and dividing by pgh 2 respectively. The peaks of the response function of the 
wave exciting force H e is reduced by narrowing the harbor entrance, although the 
response functions of motion H s in both cases are almost the same. This tendency is also 
found in other modes of motion, and thus the construction of a longer breakwater at the 
entrance has the effect of reducing the response function of the wave exciting force H e , 
because the change at the harbor entrance, located far from the ship, has less influence on 
the added mass and damping than on the wave exciting force. 
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Fig. 7.47 Dependence of H E on harbor width (sway) 
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Fig. 7.48 Dependence of H s on harbor width (sway) 

Figures 7.49 and 7.50 show H e and H s for the cases both with and without the inner 
breakwaters represented by the broken lines in Fig. 7.46. A little change can be seen in 
H s,  but it is not particularly significant, while the curve for H~ e changes its form and does 
not show an overall reduction. This means that, in considering the construction of inner 
breakwaters near the ship, careful attention must be given to the frequency range of 
incoming waves, and to the effect on other modes of ship motion. 
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Fig. 7.49 Influence of inner breakwaters on H e (sway) 
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7.5.2 Reduction of ship motion by the mooring system 
(1) Reduction of short-period ship motions 
(a) Reduction method by the spring characteristics of the mooring systems (Sawaragi and 

Kubo, 1983) 
It is clarified in 7.4.1 that an asymmetrical mooring ship receives waves, then it produces 

subharmonic motions. Figure 7.51 shows the response of sway over the wide range of wave 
periods. The experimental results (solid circles) and numerical results (solid line) are 
shown in the figure. Ts, in the abscissa obtained by the free oscillation test is the ship 
colliding interval against the fenders, and Xmax in the ordinate is the maximum value of 
distance off the quay wall. The response curve shows many peaks and these peaks occur 
at the wave period which satisfies the relation ma • T = Tsn. These are the above mentioned 
subharmonic motions. When the mode number ma becomes larger than 10 in Fig. 7.51, then 
the amplification factor of sway suddenly becomes small and the mode number also 
decreases to 1. From this fact, we can see that the mode number is limited within certain 
finite numbers. Now, we assume that the ship is moored symmetrically with only fenders 
or only mooring lines, then their natural periods of sway,  TSF and Ts, are given: 

2~[m,, + g#:' Ts~ = = 10 see (field scale) 
G 

2~lm,, + M}: ~ = = 156 see = 2T~. (field scale) 
c,~ 

(7.84) 

Using these periods, the maximum mode number can be established approximately by the 
next equation: 

max (md) = ( Ts' + Tsr ) /Tsr  TMI 
+0.5 (7.85) 

rs~ 
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Fig. 7.51 Reduction of subharmonic motions of sway by symmetrizing 
the spring constants of the mooring system 

It is clear from the above that sway in asymmetrical mooring occurs when the subharmonic 
motions are over the wide range between Tse and Ts,. So the bigger the ratio of Cr to C,~ 
is, the wider the range is. On the contrary, CF and CL become close, then the subharmonic 
motions in the short-period range disappear and the amplification factor also becomes 
smaller. The small circles and the interrupted line in Fig. 7.51 express the amplification 
factor of sway in the symmetrical mooring, which are one-order smaller than the 
asymmetrical one. 

(b) Reduction method by dash-pot (Sawaragi and Kubo 1982) 
Including dash-pots in the mooring system can be very useful for damping ship motions. 

Figure 7.52 shows the dash-pot used in our experiment and the set up of the model ship. 
Giving each velocity potential for the region in the same manner as the above low- 
reflection quay wall and matching these potentials at the boundaries, the ship motions can 
be obtained. Figure 7.53 shows the comparison of ship motions with and without dash- 
pots. Also from this figure we can understand that all ship motions can be decreased 
throughout the wave period by applying the dash-pots. These results suggest to us that the 
dash-pots system is more useful than the low-reflection quay wall from the stand point of 
the ship motion reduction described in 7.5.1. 



410 

z 

�9 0 d  - 

^ v G 

~///..-//.,",,-//.,,7//~//,~/////.,,'//7"~ 

55mm P v l / M a c h i n e  oil 

/ C y l i n d e r  I~ 

11 !  00mm i Strain gauge ,~_ --, 

Fig. 7.52 Model dash-pot and installation to a moored ship 

(2) Reduction of long-period ship motions 
(a) Reduction method by changing mooring system from asymmetrical to symmetrical 

(Sawaragi and Kubo et al. 1984, 1992) 
We described above (1) that the subharmonic sway motions happened in the 

asymmetrical mooring system and the motions could be removed by changing to 
symmetrical mooring. If we wish to realize the symmetrical mooring, we have two 
different methods. At first, we should reduce the stiffness of the fender. By using an 
ordinary pneumatic fender, we can realize the symmetrical mooring considerably. 
Secondly, the stiffness of the mooring line should be strengthened. According to this idea, 
nylon tail rope which combines a piece of nylon rope with wire rope is presented to make 
the spring constant large. These two methods are useful for the reduction of subharmonic 
motions. 

(b) Reduction method by changing the spring constants of mooring lines (Kubo and 
Barthel, 1993) 

Here we consider the effect of the spring constant of the symmetrical mooring upon the 
long-period ship motions. Now for an example, we calculate the sway motions of a 
rectangular ship, length 144m, breadth 27m and draught 6.6m, and two kinds of spring 
constants are set 6.5 tonf/m and 108.4 tonf/m. The results are shown in Fig. 7.54, T,w, is 
the natural period of sway. From this, by changing the spring constants, we can 
surprisingly change the sways corresponding to the wave periods 30 ~ 120s. 

In the same figure, the ship motions moored along shore bridge (where the ship is 
moored 30m off the vertical wall) are also shown. It can be pointed out that the ship 
motions become larger than those close along the vertical quay wall, in other words, a 
shore bridge is not so desirable for moored ship motion. 

Figure 7.55 expresses the short-period ship motions under the above spring constant of 
the mooring lines. Even if we change the spring constants, it is clear that it is very difficult 
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Fig. 7.53 Reduction of ship motion by dash pot 

to reduce the short-period ship motions. So if we strengthen the spring constant to avoid 
matching the natural period of sway with the period of seiche in a basin and to decrease 
the long-period ship motions, we must also pay enough attention to the mooring line 
strength. As the mooring lines receive a force which is equal to the spring constant 
multiplied by the line extension due to short-period ship motions, the force will become 
strong under the stiff mooring lines. 

(c) Reduction method by the damping force (Kubo 1975) 
Next ,  we will consider the motions of moored ships that become large in around one 

minute, such as surge and sway. 
As an example, we investigate surge motions. In the same manner as Eq. (7.67), the 

uncoupled surge equation of motion can be expressed as 

2 
); + 2 e22 I;" + n22 Y = H I A22 sin rr t (7.86) 
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Fig. 7.54 Resonant characteristics of sway at the range of long-period 

where ~--22 is the damping coefficient, n22 is the natural angular frequency, A22 is the 
amplitude of external force normalized by the incident wave height HI and ~ is  the angular 
frequency of external force. Then the amplitude of stationary ship motions I YI is given by 

- + (2e22o-) 

Now, using c~2 for the damping coefficient without dash-pots, e~ for the one with dash- 
pots and ea2 for the total, we can get the equation 

(7.88) 

Here the subscripts d and 0 correspond to with and without dash-pots, fl22 shows the ratio 
of e22 to e~2. The ship's own damping coefficient can be estimated by the free oscillation 
test of real ship as 

2 
2e~2 = T~un (7.89) 

where Tsu, is the natural period of surge. 
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As shown in Fig'. 7.56, bow and stem lines and spring lines are supposed to be moored 
with angle 6m to the water line. Using kd ( -  damping force / velocity ) for the damping 
coefficient of the dash-pot equipped to the lines, the damping force for surge is given by 
(2 k d COS 2 ~m ) ~'' From this, the additional damping coefficient e22 by dash-pots is given 
as 

2e~'2 = 2 kd cos 2 6. (7.90) 
AAr(A) MB + ,.. 22 

Then, using kd for the coefficient which decreases the surge to 1/b22 and F22 for the 
maximum tension on the mooring line, these are presented 

_ )I/f(A) (~22 1)(rob +.,.22 ) 
k~= 

T~ cos 2 ~,~ 

F22 : kdn22 lEo Imax /~: COS6m 
(7.91) 

In the same manner, kd and F,, for sway are given by 

k d  ~ 
(fll, --1)(mB + M~ a') 

Tsw. sin 2 t~,n 

IX~ Imax sin6m 
F1, = kan,, ill, 

(7.92) 

Now setting fl22 -~ j~ll ~-" 5, ""22}1/'[(A) "-- 0.1mB, M~A'=mB, Ts,,,, = Tsw,, = 60 sec, 6,, = 30 ~ , I,Y0 Ima ~ 
- I I~olm~x = lm, mB - full load displacement, the relation between the gross tonnage and the 
maximum tension of the line is shown in Fig. 7.57. In the same figure, the mooring line 
strength by the Japan Maritime Association, and the strength of the bitt by the [Technical 
Standard of Harbor Structure] are shown. It can be seen that possibilities for improving 
safety and efficiency of cargo handling exist by applying the dash-pot mooring lines to the 
mooring system. 

. . . . . .  ~.~ j Stem line 

Head line / 
Spring line 

Fig. 7.56 Arrangement of mooring lines 
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7.6 Problems Associated with Relative Motions of Two Adjacently-Moored 
Floating Bodies 

It is not rare that two or more floating bodies are moored adjacently in a harbor. Ships 
moored along a floating pier, ships handling cargoes with a barge, fishing boats in a 
fishery harbor, and pleasure boats in a marina, are examples of floating bodies moored 
adjacently. When considering the motions of two floating bodies, it is important to know 
the hydrodynamic interaction between them. However only a few investigations have been 
done on the interactive motions of two floating bodies. Ohkusu (1976), and Kim and Fang 
(1985) discussed the relative motions between two ships by means of the strip theory. 
Kubo and Saito (1990) investigated the motions between two floating bodies by the 
boundary integral equation method, which can deal with arbitrary shapes of the floating 
body, the sea bottom and also the quay wall. In this section, the analysis by Kubo and Saito 
(1990) is introduced. 

100 

10 

. . . .  Design strength of bitt 
Design strength of 

mooring line 
r"-  ~ / .  

F . . . .  - . . J  ~. 

o 

1.0 

200 500 t 000 5 000 10 000 50 000 
Gross tonnage 

Fig. 7.57 Relation between the strength of bitt and mooring line force 
when the long-period ship motions are decreased by one-fifth. 

7.6.1 Calculation method of the interactive motions of two floating bodies 
Two floating bodies are assumed to be oscillating harmonically in regular waves with 

angular frequency or. Then, the motions can be expressed by Eq. (7.30) for each body. The 
two- and three-dimensional calculation methods are explained below. 
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(1) Two-dimensional calculation method 
Let us consider the situation that two floating bodies, "a" and "b", are moored in linear 

mooring systems, as shown in Fig. 7.58. The fluid is assumed to be incompressible and 
inviscid, and the fluid motion is treated to be irrotational. The cross section of floating 
bodies, the sea bottom or quay wall are arbitrary. The velocity potential �9 in the region 
(I) around the two floating bodies (see Fig. 7.58) is given by 

�9 (x, z; t)= -~#?(x, z)e -i~ 

l ~  A Incident wave  

- I  cs x , r ~  /--X%(=~176 c, ~"v-=  
(o') l ~/:,o,,,o)' " \ ] ! 

4, 
,' C+ 'I'P 

+=-h'l ([) l ' 

(7.93) 

Fig. 7.58 Two-dimensional definition sketch for two floating bodies 

where g is the gravitational acceleration and ~ is the nondimensional potential function that 
must satisfy the Laplace equation. 

In the regions (O) and (O') which are set far away from two floating bodies, 
nondimensional potential functions ~ and ~' are given by 

,/,(x, z)=(e,,x + k,e, )cosh k(h+ z) 
cosh kh (7.94) 

r z)-  k , e  i 'x cosh k'(h' + z) 
cos h k'h' (7.95) 

where k R and /~r are the reflection and transmission coefficients of waves, k and k' are 
the wave numbers corresponding to the region (O) and (O'), respectively. 

On the boundary C that covers the region (I), the potential function ~ (x, z) can be 
expressed by using Green's formula: 

+[ :n,( l lt l lr l+'x z 'l dp(x, z)-  1 fc ~(x', z') l, -~ o~ ds (7.96) 

where, l,,(r/ho) is the fundamental solution of two-dimensional Laplace equation, (x', z') is 
the coordinate of a source point, r denotes the distance between (x', z') and (x, z), h0 is 
the representative length, E is the outward normal on the boundary C. 
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In Eq. (7.96), the free surface condition is applied on C~, C3, and C5, the fixed solid boundary 
condition on C6, the kinematical boundary condition of the floating bodies on C2 and C4. The 
continuity conditions of fluid particle velocity and pressure are applied at the points P and Q. 

Solving the simultaneous equation composed of the equations of motions of two floating 
bodies, Eq. (7.96) and the boundary conditions, the potential function ~ (x, z) on C, K R, 
K r,  and the amplitude of motions of the two floating are obtained in a complex form. 
(2) Three-dimensional calculation method 

The motions are calculated by the three-dimensional boundary integral method using 
Green's function. In the case of a single floating body, the calculation method has been 
described in 7.3.1. The following is a simple extension to the case of two floating bodies. 

As shown in Fig. 7.59, the normalized radiation potential around the two floating bodies 
can be separated as ~Ra and ORb, where subscripts a and b indicate the quantities caused by 
of the floating bodies "a" and "b", respectively. The basic equations and the boundary 
conditions are Eqs. (7.31), (7.32), (7.33), (7.35) and (7.38), and both era and #Rb have to 
satisfy them. The kinematic boundary conditions of the two floating bodies are given as 
follows: 

O~Ria = ~a O~Ri'b = 0 " on S a (7.97) 

3OR~ ~-- O, O~Ri'b = ~'b " on S b (7.98) 
3~ c7~ 

m 
where ~/, and ~/'b a re  normalized velocities of the /-mode of floating body "a" and i '- 
mode of floating body "b," respectively. 

The radiation potentials at point P corresponding to Eq. (7.37) are shown as follows: 

~-IIs~{+Ria(Q)~G(P , Q)ds (Q)} (7.99) 

-t-II (+Ri,b(Q)~G(P,Q)-~,b(Q)G(P,Q)}ds(Q)] 
s b 

(7.100) 

7.6.2 Characteristics of the relative motions of two floating bodies 
(1) The influence of an adjacent floating body on hydrodynamic force 
(a) The relations of the hydrodynamic coefficients between two floating bodies 

We discuss here the situation that the floating bodies "a" and "b" oscillate under the l- 
mode and m-mode respectively. Using the similar manner to that for a single body, the 
relations between hydrodynamic coefficients of two floating bodies are given as follows, 
in spite of the existence of the quay wall and the adjacent floating body 
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Fig. 7.59 Three-dimensional definition sketch of two floating bodies 

Mlama = Mmala' Nlama = N~la t 

J Mlbmb = Mmblb, Nlbmb = Nmblb 
(7.101) 

Mlamb = Mmbla, glamb = Nmbla (7.102) 

where M is the added mass, N is the damping coefficient and the subscript ~,,b indicates 
the effect of the m-mode motion of floating body "b" on the/-mode of floating body "a". 
(b) The influence of adjacent floating body on hydrodynamic coefficients 

Figure 7.60 shows the hydrodynamic coefficients of sway. The hydrodynamic interaction 
between a floating body and a quay wall is not negligible. The interaction between two 
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Fig. 7.60 The influence of an adjacent floating body on hydrodynamic coefficients 
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floating bodies is not also negligible as shown in Fig. 7.60. In some special cases, the 
influence of a quay wall on the hydrodynamic coefficients can be neglected as shown by 
the dotted lines and dashed-and-dotted lines. 

(2) The influence of mooring systems on relative motions between two floating bodies 
It is considered that the relative motions between two floating bodies are influenced by 

the mooring systems. Figures 7.61 ( a ) - (d )  show the relative horizontal and vertical 
motions I X/~'01 and I Z/~'0 1 calculated by using the two-dimensional method with varying 
R, S, and K shown in Fig. 7.61 (a), where R is the clearance between two floating bodies, 
S is the distance from the quay wall, K is the spring constant of the mooring line between 
two floating bodies, and M is the weight of the floating body. Figure 7.61 shows that (i) 
the influence of clearance R on the relative motions is small, (ii) the relative vertical 
motions I Z / ~  o I are affected significantly by the distance S, and (iii) the stronger spring can 
effectively reduce the relative horizontal motions, because it forces the two floating bodies 
to move in phase. 
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Fig. 7.61 (a) Calculation conditions to clear the characteristics of relative motions 
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Fig. 7.61 (d) The influence of the spring constant of the mooring line 

Figure 7.62 shows the relative motions between two floating bodies calculated by the 
three-dimensional method with varying the mooring angle 0 when the incident wavelength 
/10 and the angle fl between the wave direction and a quay wall face are constant. The 
relative motions are significantly affected by the mooring angle 0 as shown in Fig. 7.62. 
This indicates that the mooring angle 0 should be carefully determined in relation to the 
angle of the incident wave. 
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Fig. 7.62 The influence of mooring angle on relative motions 

7.6.3 Harbor tranquility problem from the standpoint of  the relative motions 
between two floating bodies 

(1) Ability of cargo handling on floating pier 
When the cargo is handled in a harbor by using a crane on the floating pier, the 

operation may be interrupted by large motions of the floating pier or the moored ship. The 
critical condition of a cargo handling depends on the relative motions between the ship 
deck and the swinging cargo caused by the motions of the floating pier. 

Here, the motions of two floating bodies moored along a slope are investigated by using 
the two-dimensional method. A floating container terminal, as shown in Fig. 7.63, is 
treated as an example. The cargo swing and relative motions between ship and cargo are 
calculated. The cargo swing becomes large when the natural periods of roll of the floating 
pier and cargo swing are close to the wave period as shown in Fig. 7.64. Therefore, we 
must carefully decide the breadth and center of gravity for the floating pier, and the length 
of the cargo fall, which depend on the height of the crane on the floating pier, by taking 
the predominant waves in the harbor. Figure 7.65 shows the relative motions between 
swinging cargo and the ship deck varying the distance S from the slope to the floating pier. 
The cargo handling ability can be significantly improved by selecting the best location of 
the floating pier. 
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Fig. 7.65 The relative motions between swinging cargo and the ships deck 

(2) Evaluat ion of the clearance of yachts moored in a marina 
It is necessary to keep the proper clearance so that hulls and masts of two adjacent 

yachts do not make contact, in order to attain safe mooring of yachts in the marina. 
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Fig. 7.66 The mean arrangement  for mooring yachts 
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Here, considering the relative motions between the two floating bodies, a method to 
evaluate the minimal clearance is proposed. Figure 7.66 shows the representative arrange- 
ment of mooring yachts. The calculations of the motions of the two floating bodies in a 
beam sea (see Fig. 7.66) by the two-dimensional method are shown in Fig. 7.67. It can be 
judged whether or not the hulls and masts make contact with each from Fig. 7.67. For an 
example, as the most dangerous condition is when two ships oscillate out of phase with 
each other, the sum of the amplitudes of sway motions of two ships should be less than 
the clearance between the two ships. And the critical condition of the mast contact can be 
also estimated in the same manner using the horizontal movements of the top of the mast. 
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Fig. 7.67 The calculation results of two floating body motions 



425 

References 

Barailler, L. and P. Gaillard (1967): Evolution recente des models mathematiques 
d'agitation due a la houle, Calcul de la diffraction en profondeur non uniforme, La Houille 
Blanche, No.8, pp.861-869. 

Behrendt, L. (1985): Finite element model for water wave diffraction including boundary 
absorption and bottom friction, Paper 37, Inst. of Hydrodynamics and Hydraulic Eng., 
Technical Univ. of Denmark, 188p. 

Berkhoff, J.C.W. (1972): Computation of combined refraction-diffraction, Proc. 13th Int. 
Conf. on Coastal, ASCE, Vol.1, pp.471-490. 

Bettes, P. and O.C. Zienkiewicz (1977): Diffraction and refraction of surface waves using 
finite and infinite elements, Int. J. for Numerical Methods in Engineering, Vol. 11, pp.1271- 
1290. 

Biesel, F. and B. Ranson (1961): Calcul de la diffraction de la houle, Proc. 9th Cong. 
IAHR, Dubrovnik, pp.688-699. 

Bruun, P. (1981): Breakwater of Mooring System, Dock and Harbor Authority, pp.126- 
129. 

Engquist, B. and A. Majda (1985)" Absorbing boundary conditions for the numerical 
simulation of waves, Mathematics of Computation, Vol.31, No. 139, pp.629-651. 

Hsu, F.A. and K.A. Blenkarn (1970): Analysis of peak mooring forces by slow drift 
oscillation in random seas, Proc. Offshore Tech. Conf., Paper OTC 1159, pp.135-146. 

Hwang, L.S. and E.O. Tuck (1970): On the oscillations of harbours of arbitrary shape, J. 
Fluid Mech., Vol.42, Part 3, pp.447-464. 

Ijima, T. and C.R. Chou (1975): Wave-induced oscillation in harbors with various 
boundary conditions, 1st and 2nd reports, Tech. Rept. of Kyushu Univ., Vol.48, No.5, 
pp.587-602 (in Japanese). 

Kim, C.H. and M.C. Fang (1985): Vertical relative motion between two adjacent platforms 
in oblique waves, J. Energy Resources Tech., Vol.107, pp.455-460. 

Kouyoumjian, R.G. and P.H. Pathak (1974): A uniform geometrical theory of diffraction 
for an edge in a perfectly conducting surface, Proc. of IEEE, Vol.62, No. 11, pp. 1448-1461. 

Kubo, M. (1975): Basic research of applicational feasibility of dash-pots in the ship's 
mooring system, J. Japan Inst. of Navigation, No.73, pp.163-172 (in Japanese). 

Kubo, M. and K. Saito (1990): Relative motions between two floating bodies moored along 
quay wall, Proc. Techno-Ocean '90, pp.442-447. 



426 

Kubo, M., K. Saito and S. Sakakibara (1990): Analytical method of ship motions moored 
along quay walls using a singularity-distribution method, Proc. Techno-Ocean '90, pp.434- 
441. 

Kubo, M., and S. Sakakibara (1992): Advance in safety mooring and operation efficiency 
at exposed piers, Proc. Techno-Ocean '92, pp.547-552. 

Kubo, M. and V. Barthel (1993): Enlarged Concept of Harbor Tranquility, Advances in 
Hydro-Science and Engineering, Vol.1, Univ. of Mississippi Press, pp.1608-1611. 

Kusaka, T., M. Tatsumoto and A. Iwasaki (1983): Wave-induced oscillations in harbours 
with arbitrary interior reflectivity and variable depth, Proc. of the 30th Japanese Conf. 
Coastal Eng., JSCE, pp.128-132. (in Japanese) 

Larsen, J. (1978) Harbour theory for wind-generated waves based on ray methods, J. Fluid 
Mech., Vol.87, Part 1, pp. 143-158. 

Lean, G.H. (1971): Subharmonic motions of a moored ship subjected to wave action, 
Trans. Roy. Inst. Naval Architects, London, 113, pp.387-399. 

Lee, J.J. (1971): Wave-induced oscillations in harbors of arbitrary geometry, J. Fluid 
Mech., Vol.45, No.2, pp.375-394. 

Mattioli, F. (1978): Wave-induced oscillations in harbours of variable depth, Computers 
and Fluids, Vol.6, pp.161-172. 

Mei, C.C. (1978): Numerical methods in water-wave diffraction and radiation, Ann. Rev. 
Fluid Mech., pp.393-416. 

Mei, C.C. (1983): The Applied Dynamics of Ocean Surface Waves, John Wiley & Sons, 
pp.168-182. 

Ohkusu, M. (1976): Ship motions in vicinity of a structure, Proc. Int. Conf. on Behaviour 
of Offshore Structures, The Norwegian Inst. of Tech., Vol.1, pp.284-306. 

Oortmerssen, G. van (1976): The motions of a moored ship in waves, Netherland Ship 
Model Basin, Publication No.510, 138p. 

Sawaragi, T., M. Kubo and T. Kyotani (1978): Study on the long period motions of moored 
ship, Navigation, No.58, Japan Inst. of Navigation, pp.l-8. (in Japanese) 

Sawaragi, T. and M. Kubo (1980): Short and long-period motions of a moored ship in a 
harbor basin, Proc. of 27th Japanese Conference on Coastal Engineering, JSCE, pp.307- 
311. (in Japanese) 

Sawaragi, T., M. Kubo and T. Kyotani (1980): Motions of a moored ship along the 
perforated quay wall, Coastal Engineering in Japan, JSCE, Vol.23, pp.277-288. 

Sawaragi, T. and M. Kubo (1982): Long-period motions of a moored ship induced by 
harbor oscillations, Coastal Engineering in Japan, JSCE, Vol.25, pp.261-275. 



427 

Sawaragi, T. and M. Kubo (1982): The motions of a moored ship in a harbor basin, Proc. 
of 18th Int. Conf. on Coastal, ASCE, pp.2753-2762. 

Sawaragi, T. and M. Kubo (1983): Some considerations on port planning for security of 
ships in a harbor basin, Proc. 8th Int. Harbor Cong., pp.2.21-2.28. 

Sawaragi, T., M. Kubo and S. Aoki (1984): New mooring system to reduce ship motions 
and berthing energy, Coastal Engineering in Japan, JSCE, Vol.27, pp.303-313. 

Sawaragi, T., S. Aoki and A. Yamamoto (1988): Applicability of a finite element model 
for the prediction of harbor agitation, Proc. Civil Eng. in the Ocean, Vol.4, JSCE, pp.153- 
158. (in Japanese) 

Sawaragi, T., S. Aoki and A. Yamamoto (1989): Analyses of hydrodynamic forces due to 
waves acting on a ship in a harbor of arbitrary geometry, Proc. 8th Int. Conf. on Offshore 
Mech. and Arctic Eng., pp. 117-123. 

Sawaragi, T. and S. Aoki (1991): Prediction and attenuation of wave-induced ship motion 
in a harbor, Coastal Eng. in Japan, JSCE, Vol.34, No.2, pp.243-265. 

Sakakibara, S. and M. Kubo (1992): Influence of fender type on operational efficiency of 
cargo handling, Proc. 10th Int. Harbor Cong., pp.4.19-4.23. 

Sekita, K. and M. Taniyama (1976): Operational limit of derrick barge on construction of 
large scale marine structure, Proc. 23rd Japanese Conf. on Coastal Eng., JSCE, pp.45-48. 
(in Japanese) 

Takayama, T. (1985): Computation of wave height distribution inside a harbour, Proc. Int. 
Conf. of Numerical and Hydraulic Modelling of Ports and Harbours, pp.295-302. 

Tanimoto, K., K. Kobune and K. Komatsu (1975): Numerical analysis of wave propagation 
in harbours of arbitrary shape, Rept. Port and Harbour Res. Inst., Vol.14, No.3. (in 
Japanese) 

Ueda, S. (1984): Analytical method of ahip moored to quay walls and the applications, 
Note of Port and Harbour Res. Inst., No.504, pp.90-95. (in Japanese) 

Warren, R., J. Larsen and P.A. Madsen (1985): Application of short wave numerical 
methods to harbor design and future development of the model, Proc. Int. Conf. on 
Numerical and Hydraulic Modelling of Ports and Harbours, pp.303-308. 

Wilson, B.W. (1951): Ship response to range action in harbor basins, Trans., ASCE, 
Vol.116, pp.1129-1157. 

Zienkiewicz, O.C., P. Bettes and D.W. Kelly (1978): The finite element method for 
determining fluid loadings on rigid structures two- and three-dimensional formulations, 
Numerical Methods in Offshore Engineering, John Wiley & Sons, pp.141-193. 



This Page Intentionally Left Blank



429 

Chapter 8 Fishery Structures 

8.1 Classification and Function of Aquaculturai Propagation Facilities 

8.1.1 Artificial fish reef 
An artificial fish reef (AFR) is one of the aquacultural propagation facilities to improve 

the productivity of coastal fisheries. An AFR is usually placed on the sea floor at a depth 
of about 10m to 200m in order to gather fish. 

Although the reasons why and how an AFR can gather fish have not been adequately 
clarified yet, Japanese fishery researchers have built up the following hypothesis: the 
thigmotaxis of fish to an object is stimulated by extrinsic factors (i.e., emitted sound of 
attached epiphytes on an AFR, the sound generated by vortices formed at the AFR, the 
change of flow, the image of an AFR) and fish gather around the AFR. As the habitat of 
fish (i.e., feeding behavior, spawning behavior, escaping behavior) is satisfied, the fish live 
in that place. It is hard to judge under the above mentioned hypothesis whether the change 
of flow around an AFR is an important factor to the aggregate of fish. Hence, referring to 
a Japanese study report on not only the relation between the gathering behavior of fish and 
a current but also the feeding behavior of fish around an AFR, the effect of vortices formed 
at an AFR and their shedding behind the AFR on gathering fish are discussed in this 
section. 

The gathering behavior of fish to an AFR in various current velocities was 
experimentally investigated by using a small circulation tank. As a result of this 
investigation, it has been concluded that fish swim selectively in a low velocity zone 
formed behind an AFR during an increasing velocity of current and avoid the high velocity 
zone above an AFR. The averted velocity is larger than the ordinary swimming speed at 
which fish can swim continuously for long time. Furthermore, from field observations on 
the relation between the moving behavior of fish and the direction of coastal currents, it 
has been reported that fish are inclined to move in the direction of the current and approach 
an AFR. Therefore, it may be found from these studies that changes in the direction and 
velocity of currents are closely related to the gathering behavior of fish. 

The feeding behavior of fish around an AFR consists of a predator-prey relationship; i.e., 
fish of larger size catch fish of a smaller size, with the latter fish feeding on oceanic 
microorganisms such as algae attached to an AFR and plankton. The distribution of 
plankton trapped behind an AFR has been clarified through a diving survey as shown in 
Fig. 8.1. The distribution shape of plankton is found to be remarkably similar in 
appearance to the wake region formed behind an AFR, which is described in 8.2. 
Therefore, it is considered that the vortex formation behind an AFR significantly affects 
the prehension of plankton. Recently, it has been indicated that the upwelling generated in 
front of an AFR has an effect on the improvement of the productive capacity of plankton, 
because such upwelling flings up highly nutritious salt water from the bottom layer. 

From the above mentioned ecological investigations on the gathering behaviors of fish 
to an AFR, it can be concluded that changes in the fluid flow around an AFR have been 
pointed out to be one of the important factors on the gathering behavior of fish. Therefore, 
in order to clarify the effect of the shape of an AFR and the gaps on its surface on the 
spatial expansion of the wake region formed by vortices, the hydraulic characteristics of 
an AFR should be investigated. Furthermore, it is necessary to study the interval of an AFR 
that optimizes its effect on gathering fish. 
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Fig. 8.1 Distribution of plankton around reefs 

8.1.2 Moored artificial habitat for fish enhancement 
In many field observations, an artificial habitat for fisheries has been found to have 

functions for the convergence of dispersed fish and the promotion of secondary production. 
They not only grow fish, shellfish and seaweed, but also help them to survive in the ocean 
environment. Various kinds of artificial structures have been constructed as marine fish 
aquacultures along the coast of Japan. They have been anchored to the ocean floor for 
fishery resources enhancement and management, environmental mitigation and restoration. 
Generally they are grouped into two categories: 
(1) submerged mooring habitats, 
(2) floating habitats on the sea surface. 
The following sections provide the fundamental concepts on several moored fish cultures. 

(1) Submerged habitats for fish 
Submerged artificial habitats: 

Early floating artificial habitats were made from low cost and readily available materials 
such as bamboo and wood to gather Yellowtail or Dolphins in the ocean. However, such 
structures had not sufficient durability in the ocean environment, and as a result many 
artificial habitats were destroyed or disappeared shortly after deployment. In the last two 
decades, submerged artificial habitats have improved and some new types consisting of 
fiber-reinforced plastic members, nets, buoys and mooring facilities, have been moored in 
deepwater areas for extended periods. Figure 8.2 shows typical examples of moored 
artificial habitats that have been submerged along the coast of Japan in the Sea of Japan 
and the Pacific ocean. 
Submerged buoy-cable system for shellfish farming: 

This structure aims at proliferating shellfish by using baskets suspended from a main 
cable. About forty baskets are suspended at 5m intervals from the main cable that is 200m 
long as shown in Fig. 8.3. For buoyancy, a few buoys are attached to each basket. 

Figure 8.4 shows the cylindrical shellfish baskets made of plastic nets that are used to 
breed shellfish. The baskets are 2m in length and 0.5m in diameter and are hung from the 
main cable 15m deep. 
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(2) Floating habitats for fish 
(i) Floating fishery cages: 

This aims to breed fish, such as Yellowtail, Seabream and Flatfish, in floating cages that 
consist of an upper steel frame, a bottom, four side wall nets, floats, mooring wires and 
anchors. The cage resembles a cube and measures about 10m wide and deep. Usually 
several units of cages are coupled and moored in a bay area. Recently bigger cages have 
been developed and moored for testing in an offshore area. 
(ii) Floating fishery rafts: 

In bay areas and inland sea zones of Japan, a large number of fishery rafts have been 
constructed to breed shellfish such as oysters, pearl oysters or other kinds of bivalves for 
commercial management. It consists of a raft made of wood or steel pipe, baskets to 
contain the shellfish suspended from the rafts, floats, mooring lines and anchors. Over one 
hundred of the baskets are hung down from a raft. Shellfish cultures utilizing floating rafts 
have been one of the major fishery industries in Japan. 

8.2 Artificial Fish Reef (AFR) 

8.2.1 Layout of AFR for coastal fishing ground 
(1) Hydraulic investigation on the interval of AFRs in a multi-AFR system 

A multi-AFR system in which AFRs are usually arrayed with a constant interval along 
in the direction of the dominant flow in a planned sea area has been adopted to activate 
the properties of the AFR as mentioned in 8.1. In Japan, the distance between separately 
arrayed AFRs has been designed in conformity with the following basic construction 
scheme; the space formed between the AFRs is related to the gathering behavior of fish 
from the point of view of biology and hydraulics. If the AFR is quite densely accumulated, 
work of the system on gathering fish may not be demonstrated sufficiently and the AFR 
produces no economic effect. If the AFRs are arrayed in a long interval, individual AFRs 
are almost independent and the anticipated effect of the multi system may not be realized 
fully. Although the basic construction scheme for coastal fishing grounds seems to take 
into account the relation between the flow pattern around a multi-AFR system and the 
gathering behavior of fish, the concrete interval between AFRs has been empirically 
determined mainly by such conventional methods as biological investigation. Hence, while 
referring to conventional information on the gathering behavior of fish and the above 
mentioned basic construction scheme for fishing grounds, the approach with an emphasis 
on the hydraulic point of view for obtaining the optimum interval of the AFR in the multi 
system will be the focus of this section. 

Based on the AFR arrangement procedure in Japan, a rational project for planning the 
fishing grounds with an AFR must be established by extracting the fundamental factor 
through investigation on both the natural environmental conditions in the planned sea area 
and the economic conditions of fish produced in its area. The flowchart of this planning 
process is shown in Fig. 8.5. Firstly, after individual items in the investigations on the 
natural environmental conditions (i.e., the sea and weather conditions, the sea bottom 
condition and biological condition) and the fishery condition (i.e., the fishery method and 
fish catches) are clarified, the size of the fishing ground in the planned sea area and the 
shape of the AFR are determined under consideration of the administrative condition (i.e., 
budget). Secondly, the optimum arrangement of AFRs which activate the system most has 
to be surveyed and investigated on the basis of the above mentioned conditions, and the 
stability of the system against wave actions is evaluated simultaneously. Lastly, the project 
of the fishing ground is put into practice. The conditions of determining the optimum 
interval of the AFR consist of four factors that prescribe the rational arrangement of the 
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Fig. 8.5 Flowchart of the planning for the fishing ground with AFR 

AFR as shown in Fig. 8.6. By sufficiently clarifying these factors, the optimum interval 
may be determined. Figure 8.6 shows the flowchart to clarify the optimum arrangement of 
the AFRs mainly with hydraulic validity. Accordingly, the factors of No.2 and No.3 in this 
flowchart have been linked to the science of fisheries, since it seems that these factors 
should be investigated from the viewpoint of the science of fisheries. The factor of No.1 
involves the function of the AFR in gathering fish. This factor should be clarified by 
relating the ecology of fish to both hydraulic and biological environments around the AFR. 
However, since these relations have not been sufficiently clarified yet, the factor of No.1 
is divided into two parts; i.e., the hydraulic environment and the biological environment. 

The substance of studies on the biological environment mainly involves the investigation 
of the effect of feeds induced by an AFR (i.e., the epiphytes on it, the plankton trapped 
behind it and the prey-predator relationship between larger and smaller fish) and the 
relation between the instincts of fish (i.e., thigmotactic and rheotaxitic behaviors) and a 
change of flow around it. On the other hand, in the study on the hydraulic environment 
around an AFR, firstly the characteristics of the flow pattern around a single AFR (i.e., the 
effect of the shape and porosity of the AFR on the spatial expansion of the wake region 
formed behind it and the intensity of vortices) must be clarified from viewpoint of 
gathering plankton and the rheotaxis of small fish. Secondly, the effect of an AFR interval 
in a multi-AFR system on the change of the flow pattem around the multi-AFR system is 
evaluated from research on the systematic change of the interval and the relationship 
between the AFR interval and the size of the wake region behind the individual AFR is 
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put into the form of a graph. Lastly, by using this graph, the optimum interval of the AFR 
that activates the multi-system most is decided. The above mentioned optimal interval 
between AFRs is derived from hydraulic studies. The true optimum arrangement of AFRs 
should be clarified through coupling each investigation on the biological and hydraulic 
environment around an AFR. 

I Factors of rational arrangement of AFR I 
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for fishes [ i fishes ; ~ work i! construction ! 
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Fig. 8.6 Flowchart of the optimum arrangement of AFR 

(2) Characteristics of flow pattern behind a single AFR 
Based on experiments and numerical analysis (Sawaragi et al. 1984) on the flow pattern 

around a single AFR, the hydraulic characteristics of vortices generated behind the single 
AFR are discussed in this paragraph. The AFR model treated in this study consisted of four 
rectangular pieces, and the experiments were carried out by using a U-shaped oscillatory 
flow tank. 
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(a) Characteristics of vortices behind a single AFR 
Figure 8.7 shows the schematic flow patterns that are visualized by using the hydrogen 

bubble method and taking photographs with a 16mm camera. A large single vortex and a 
counter flow region (called a wake region) induced by this vortex are generated behind the 
AFR. The wake region formed behind the AFR is defined as the region where the direction 
of the horizontal velocity component is reverse to that of the main flow as shown in Fig. 
8.7. The area and length of the wake region have been considered as the indices that 
quantitatively evaluate the wake. The length of the wake region is defined by the distance 
from the downstream side of the AFR model to the downstream edge of the wake region. 

Flow . ~ x V  !'~ _ ortex W 

(a) 

Flow 

. . . . i  

\\ 
(b) 

Fig. 8.7 Schematic flow patterns behind AFR 

The wake region changes with a change in the main flow velocity in the oscillatory flow, 
and the angular frequency changes when the wake region becomes a maximum 
considerably later than that ( a t -  zr/2) which the main flow velocity becomes a maximum, 
and it is in the range of the angular frequency a t -  5zr/6 to a t -  17~'18. 

From the results of the experiments, it is found that the wake region formed behind the 
AFR model may be classified into two patterns by the void ratio of the AFR models (see 
Fig. 8.7). There is a single wake region in the case of a small void ratio, while the wake 
is separated into two regions in the case of a large void ratio, due to the efflux of water 
through the gap that is similar to a jet stream with the same velocity as the main flow. The 
two kinds of flow patterns depend not only on the void ratio of the AFR but also depend 
very much on the KC number (Keulengan-Carpenter number). D of the KC number ( - UT/ 
D) is the typical length of an AFR model, twice the length of one side of the AFR model 
is adopted as the value of D. In the case of a split of the wake region, the size of the upper 
region becomes so large that it can be disregarded when compared to the lower region with 
an increase of the KC number. 

It may be considered that the intensity of the vortex formed behind the AFR is a very 
important hydraulic amount for the purpose of trapping the plankton behind the AFR and 
relieving the strong flow around it, thereby providing a habitable environment to small 
fish. Then, through experimental investigation of the circulation of vortices behind the 
AFR model, it has been clarified that the circulation of vortices changes with the void ratio 
of the AFR and the values of the circulation become a minimum at the void ratio of about 
60%. 
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Considering a cubic shaped concrete AFR with a void ratio of about 60% has been most 
frequently used in the present, so now let us discuss the optimum void ratio of an AFR 
from the mentioned characteristics of the flow pattern around a single model. The 
circulation of vortices generated behind the AFR with the void ratio of the order of about 
60% is less affected by the change of the void ratio in the range of this order. However, 
when the spatial expansion of the wake region is affected by the change of the void ratio, 
its value area begins to decrease very quickly at the void ratio above 60%. Although it has 
not yet been sufficiently clear whether the effect of a vortex on gathering fish is evaluated 
by the spatial expansion of the wake region or its intensity, if the circulation of the vortices 
is weak, the small fish with a slow swimming speed may easily catch the plankton trapped 
behind the AFR. Also, for the sake of an abundant catch of plankton, the large expansion 
of the wake region may be necessary. As a result of these considerations, it can be 
concluded that the optimum void ratio of the AFR is in the order of about 60%. 

(b) Numerical flow simulation technique around AFR 
In the near future, the relationship between the change of the flow pattern around the 

AFR and the gathering behavior of fish to it will be clarified from a biological standpoint. 
In order to evaluate the optimum void ratio of the AFR which creates the most suitable 
flow pattern for the habitable condition of fish, a numerical flow simulation technique 
including the vortex effect around the AFR must be developed. This paragraph explains the 
outline of the numerical simulation model developed by Sawaragi and Matsumi (1984). In 
this model the discrete vortex approximation (explained in detail in 2.7) has been used for 
the simulation of the vortex formation behind the AFR. 

This simulation technique approximates the influx and the efflux of water through gaps 
in the hollow AFR with the sink and the source points respectively. Then, the appropriate 
complex velocity potential for the flow around the AFR can be determined by using the 
Schwartz-Christoffel transformation to project the exterior region in the z-plane into the 
upper half of the o)-plane with the boundary along the real axis (see Fig. 8.8). The at-plane 
is transformed into the physical z-plane by the function 
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Fig. 8.8 Explanation of Schwartz-Christoffel transformation 
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+ ~ E(b, to) + c (8.1) 

where t o -  ~" + irl, i = .,~-f, lu and b are the constants that are determined by the height 
and shape of the AFR respectively, F(b,to) and E(b,to) are the elliptic integrals of the first 
and second kinds with the modulus b respectively, and c is the integral constant. Making 
a the length of one side of the AFR model proposed here, the constants in Eq. (8.1) b, lu 
and c are determined by the following boundary conditions. 

z - i a  �9 t o = O  
z -  a/2 + ia �9 t o - 1  
z - a ~ 2  : toffi l/b 

(8.2) 

When the flow model in the transformed to-plane consists of an oscillatory main flow 
with spatially uniform velocity U, N vortices with some circulation created from P 
separation points, and n sink points and n source points, the complex velocity potential W~, 
is given by 

i P N 

j = l  k=l 

n 

+~_~ ms {log(to - as) -  log(to + as)} 
s=l 

(8.3) 

where Fjk and tojk are the circulation and complex coordinates of the k-th vortex created 
from the j-th separation point respectively. The circulation is defined as positive clockwise, 
and ms and as are the strength and the position of the sink and source points, and the over 
bar denotes the complex conjugate. U is given by U -  Umsin(crt) in which Um is the 
amplitude of the main flow velocity. In Eq. (8.3), the first term of the right-hand side 
indicates the complex velocity potential for the irrotational flow around the AFR model, 
the second term shows the discrete vortices in the main flow and the imaginary discrete 
vortices which are necessary in order to maintain the boundary condition of zero flow 
across the real axis in the to-plane and the third term presents the influence of the influx 
and the efflux of water through the gaps in the AFR model. 

Figure 8.9 shows an example of the calculated flow pattern around the AFR model with 
gaps (the void ratio ~ -  63%) in which the arrows and the symbols indicate the velocity 
vectors and the positions of the discrete vortices. The solid line shows the circulated wake 
region and the dotted line represents the wake region measured at the experiments. It is 
found that the calculated result can simulate the characteristics where the wake region 
becomes split between upper and lower regions. As a result of these investigations 
(Sawaragi et al. 1984), it may be concluded that in the case of KC number-  10-20 the flow 
pattern around a cubic model with a void ratio less than 63% can be estimated by the 
mentioned numerical simulation method. 
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Fig. 8.9 Example of calculated flow patterns around AFR (KC number - 11.86) 

(3) Characteristics of flow pattern around multi-AFR system 
The multi-AFR system in which the AFRs are usually arrayed with a constant interval 

along a direction of the dominant flow in the planned sea area has been adopted in order 
to fully activate the effect of the AFR in gathering fish. The AFR supplies fish not only 
a hiding place but also nourishing materials which are flung up from the sea bed by the 
vortex induced. Therefore, the larger an area of the vortex shedding becomes the more the 
effectiveness of the AFR may be improved. As for the optimum interval of AFRs at which 
the system is activated most, individual AFRs must be arrayed so that the total wake region 
of the multi-AFR system is larger than the simple sum of the wake regions of single AFRs 
in the system. Therefore, based on the numerical simulation method (developed by 
Matsumi) on the flow pattern around three equally spaced AFRs arrayed in the direction 
of the flow, the major subjects in this paragraph are to clarify the interaction effect on the 
flow pattern around the system from the neighboring AFR and the optimum interval of the 
AFR in the multi system which makes the wake region formed behind an individual AFR 
become a maximum. 

(a) Interaction effect of neighboring AFR on flow pattern 
When the flow around the multi-AFR system consists of a periodic incident wave, N 

discrete vortices with some circulations generated from P separation points and the flow 
from the source points distributed on the AFR surface for the formulation of a boundary 
condition on the AFR surface, the complex velocity potential Wz is given by using the 
Schwartz-Christoffel transformation and the imaginary method as the following equation. 

~ N  iFjk{log(e~Z~' e~Z "- )} 
W~ -- 2k sinh~ kh sin {k(ih + z ) -  fit} + = Ek__l ~ - ) -  l~ - e~z 

(8.4) 
+-~~sfo(Zs){log(e ~z" -e~Z)+ log(e ~' -e~Z)} ds 

where ~ = rdh, and h, H and k are the water depth, wave height and wave number 
respectively, fo(z,) is a strength of the source point at the point z, on the AFR surface. In 
the numerical calculation of Eq. (8.4), the surface of the AFR is divided into many sections 
of length, and the source point is set on the center of the individual section. 

Figure 8.10(a) shows an example of the simulated flow pattern around three AFR models 
(the void ratio 2. = 63%, KC number = 7.5), in which the solid line shows the calculated 
wake region. The flow pattern induced by the discrete vortices clustered around each AFR 
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model simulates the dominant features of the flow around the system in the experiments 
as shown in Fig. 8.10(b). Also, from the investigations on the change of the flow velocity 
between AFR models concerning the change of the AFR interval, it is found that when the 
AFR interval is about twice the length of one side of the AFR, the interaction effect of the 
neighboring AFR on the expansion of the wake region around the multi-system becomes 
a maximum. 

w ~ ul 4, ~n : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  
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(b) 

Fig. 8.10 Example of calculated flow pattems around three AFR models 
(KC number - 7.13) 

(b) Optimum arrangement of AFRs 
It seems to be possible from a hydraulic standpoint that the area of the wake region 

formed behind the AFR is used as an important parameter to determine the optimum 
interval between AFRs, because the gathering of plankton, which has been pointed out to 
be one of factors of an AFR that the gathering of fish depends on in the wake region. 
Figure 8.11 shows a comparison between the area of calculated wake region (Ac) behind 
the center the AFR model of a multi system and that of the single AFR model (As), in 
which l//a is the normalized interval between individual AFRs. It can be found that the 
AFR interval which makes the wake region behind individual AFRs a maximum is twice 
the side length of the AFR in the region of KC number > 7. When the KC number < 5, 
however, the optimum interval between the AFRs is the side length of the AFR. In the case 
of the uniform flow shown in this figure, the area of the wake region formed behind 
individual AFRs is less affected by these intervals. 

8.2.2 Stability design of AFR 
(1) Summary of stability design of AFR 

In general, the service life of an AFR is estimated to be 30 years. An AFR must be 
designed to fulfill the intended function during its service life. The ordinary stability 
design procedure is carried out in conformity with the design criteria of structures for the 
arrangement and development of projects of coastal fish grounds in Japan. The subject 
matter of the design is to evaluate the durability of the AFR against the impulsive force 
at landing on the sea bottom when setting it on a fishing ground, the stability of it against 
the wave force and the local scour of the sandy bottom around the AFR. This section will 
introduce the summary of the stability design of an AFR in consideration of problems of 
the above mentioned design criteria. 
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Fig. 8.11 Relation between AG/As, ly/a and KC number 

The items evaluated in the stability design of the AFR are classified into the following 
three parts. 
1) strength of the AFR (before setting up) 

external forces: force at lifting the AFR with a deck crane to throw from a ship, 
impulsive force at landing on the sea bottom, 

2) stability of the AFR (after setting up) 
external forces: fluid force induced by waves and current, local scour around the AFR, 

3) accurate setting method (at settling up) 
external force: drift force exerted on the settling AFR. 

The investigation on 1) and 3) is carried out according to the flowchart shown in Fig. 
8.12. As for the strength of members of the AFR which must be considered at designing, 
there are the two following kinds of strength: the strength given by treating the sum of two 
external forces (i.e., the additional force exerted when lifting it with the deck crane by the 
motion of ship and the dead load of the AFR) as the concentrated load and the strength 
given from the impulsive force at landing on the sea bottom. The larger value of these 
strengths is adopted in the calculation of the strength of the AFR members. The method 
that reduces the settled area of the AFR on the sea floor when thrown down from a ship 
will be described in 8.2.3. 

The stability of an AFR of 2) is investigated by using the flowchart shown in Fig. 8.13. 
The stability of an AFR against sliding and overturning is examined by the comparison 
between the resistance force of the AFR to these motions and the fluid force (i.e., the 
resultant force composed of the fluid force in the horizontal direction calculated with the 
Morison formula which is mentioned in 2.5.1 and the fluid force in the vertical direction). 
When the stability of the AFR is not verified, the dead load of the AFR and the its strength 
are reinvestigated according to the flowchart shown in Fig. 8.12. In order to evaluate the 
fluid force exerted on an AFR, when the Morison formula is applied to an AFR that is 
hollow inside and having a gap, the interaction effects of the AFR members, the 
neighboring AFR in the multi system and the affect of the bottom on the drag and inertia 
coefficients should be taken into account. This problem and the vertical component of the 
fluid force which is not contained in the above mentioned design criteria will be discussed 
next in (2). 
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Fig. 8.12 Flowchart of the design of AFR in Japan 

Local scour around the AFR is expected since the fish ground is generally a sandy 
bottom and the AFR causes the flow velocities around it to be accelerated considerably. 
In the investigation on the stability design of the AFR against the local scour around it, 
first of all, it must be examined whether or not the sediment transport is generated in 
designed sea area by using conditions of the incident wave and characteristics of the sea 
bed material in the designed sea area, because a dynamic scour defined as the scour under 
condition with sediment transport and a static scour without sediment transport are 
extremely different in the mechanisms of scour. If the occurrence of sediment transport is 
verified from this investigation, an examination on the embedding induced by sediment 
transport must be carried out. On the other hand, in the case of no sediment transport, the 
local scour is mainly a direct object of the stability design of the AFR. 

Figure 8.13 shows the process of the investigation on the stability of the AFR against 
local scour. The first investigation in this flowchart is to clarify whether or not the local 
scour occurs by using a criterion for the occurrence of local scour. This criterion is 
explained in (3) (a) of this section. Secondly, when the scouring hole occurs, the necessity 
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Fig. 8.13 Flowchart on the stability of an AFR 

of the protection works against the local scour is investigated by comparing the estimated 
size of the scour hole (i.e., the depth and the lateral extent of hole) with the allowable 
criteria. The allowable criteria have not been clarified yet, but it seems that this criteria 
should be determined by considering the affection of the AFR on gathering fish. Lastly, 
scour protection methods for the AFR are considered. In this flowchart, two kinds of 
protection methods are shown. The purpose of the rubber sheet device is to intercept the 
sediments from the vertices which cause the scour by making a bond from a circular rubber 
sheet to the base of the AFR, and the purpose of the rubble mound method is to increase 
the resistant force of sediments to the fluid shear stress by placing rubble around the AFR. 
The efficiency of these protection methods is clarified in (3) (c) of this section. 

(2) Fluid force 
(a) Drag and inertia coefficients of AFR 

Figures 8.14 and 8.15 show the drag coefficients (Co) and the inertia coefficients (CM) 
of the single AFR in our experiments respectively, the solid lines indicate the mean curves 
for Co and CM from these data. Re in Fig. 8.14 is the Reynolds number defined by UD/ 
v ;  D is the representative length of the AFR. As shown in these figures, it is found that 
the mean curves for Co and CM are respectively greater than Co - 2 and CM - 2 in which 
the values of Co and CM are adopted as a design condition of the cubic AFR in the above 
mentioned design criteria, and the design criteria may underestimate the fluid force exerted 
on the AFR. 
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Fig. 8.14 Change of the drag coefficient of the AFR with KC 
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Fig. 8.15 Change of the inertia coefficient of the AFR with 
the KC number by experiments (,t .-  64%) 

In order to evaluate the bottom effect on the inertia coefficient, the inertia coefficient is 
analyzed by using the potential theory as the following procedure. It is clear from the 
potential theory that a flow pattern around an AFR placed on the bottom in a uniform flow 
becomes equivalent to an irrotational motion of fluid induced by its own movement along 
the bottom with the velocity of the flow, therefore the analysis is carried out in the latter 
flow field. The inertia coefficient is composed of the sum of two coefficients of the fluid 
force. One is the coefficient for the pressure gradient which is induced by the unsteady 
motion of the fluid and the other is the added mass coefficient. The added mass coefficient 
of the AFR is evaluated as a coefficient such that the kinetic energy of the fluid induced 
by the sinusoidal moving AFR in still water becomes equivalent to the kinetic energy of 
the fluid replaced by the AFR. The inertia coefficient for different values of the void ratio 

of the AFR is shown in Fig. 8.16. The solid line indicates CM of an AFR, the broken line 
represents the value of CM for an infinite fluid field. The difference between the two lines 
may be caused by the bottom effect. It is seen that CM decreases with increasing values of 
A for A < 50% whereas CM is less effected by ~ for ~ > 50% and the value of CM 
approaches 2.67 in this region. 
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Fig. 8.16 Effects of sea bottom on the inertia coefficient of the AFR 

Figure 8.17 shows the change of the inertia coefficient CM' calculated from the above 
mentioned technique for the multi-AFR system with respect to the relative interval of the 
AFR ly/a. The broken line in the figure represents the values of the single AFR. It is found 
that the inertia coefficients of the multi system depend on ly/a and in general the effect of 
the neighboring AFR on the coefficient is to decrease dramatically the value of the 
coefficients for the smaller void ratio. 
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Fig. 8.17 Effect of interaction of the multi-AFR system for the inertia coefficient 

Figure 8.18 shows the drag coefficients Co' obtained in experiments for four kinds of 
AFR interval l/of the multi system, in which the solid lines in these figures are the mean 
curve for Co of the single AFR and the symbols are equal to these in Fig. 8.14. It is found 
that Co' becomes less than Co of the single case, and the magnitude of this decrease 
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appears remarkably in the smaller interval. It can be concluded from the data presented 
here that the values of Co and CM which consider the interaction effect of the neighboring 
AFR and the bottom effect must be adopted as a design condition of the stability design. 
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Fig. 8.18 Drag coefficient for the multi-AFR system (A - 64%) 

(b) Fluid force in vertical direction 
When the maximum value of the fluid force in the vertical direction is so much that it 

can be disregarded compared to the weight of the AFR, it is not necessary to consider the 
vertical fluid force in the design condition. Also, even if the maximum force in the vertical 
direction is approximately equivalent to that in the horizontal direction, when the stability 
of the AFR against these forces is discussed with static equilibrium equations, the vertical 
force can be ignored in the design except when there is little difference between both 
phases when each fluid force becomes a maximum. In this paragraph, in order to clarify 
the necessity of introducing the vertical force into stability design, the magnitude of the 
maximum vertical forces taken upward to the bottom and the relation between the phase 
of these and that of the maximum horizontal forces are investigated from the measurements 
of the fluid force acting on the AFR in a laboratory wave tank. 

The maximum vertical and maximum horizontal forces (Fv,,, Fnm) are shown in Fig. 8.19 
while their phases (0vm, Ohm) are given in Fig. 8.20. As clearly seen in Fig. 8.19, the 
magnitude of vertical forces is 0.6 times above that of the horizontal forces. Also, it is 
found from Fig. 8.20 that the phase difference between both forces is smaller than z/3, the 
maximum vertical and horizontal forces are generated at the near phase respectively. 

The vertical force exerted on the AFR is pointed out to be important force in stability 
design calculations. However, the convenient equation to calculate the vertical force and 
the resultant force combined with the vertical and horizontal forces has yet to be 
elucidated. 
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(3) Local scour and scour protection 
Based on the results of the laboratory model experiments in the oscillatory flow, this 

paragraph considers the following points; the criteria on conditions at which the local scour 
begins occurring due to the accelerated flow and the vortices generated around the AFR, 
the mechanisms of the scour by associating the flow pattern around the AFR and the 
sediment movements, and the effects of the scour protection. 

(a) Criteria condition on scour occurrence 
Figure 8.21 shows the nondimensional stress obtained by the above mentioned 

experiments to investigate the relationship between the main flow velocity (u~) at which 
the sand around the AFR moves and the critical velocity (u~) is defined as the main flow 
velocity at the incipient motion of sand under the condition without the AFR (described as 
the flat bed under here). In the figure, the abscissa shows the ratio lw/d in which lw is the 
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Fig. 8.21 Nondimensional stress of critical velocity at the incipient 
motion of bed material 

orbital diameter and d is the sand diameter, the numerical values indicate the values of the 
nondimensional stress. The nondimensional stress of the main flow with the AFR is found 
to become remarkably smaller than the values in the flat bed. Therefore, even if the main 
flow velocity is smaller than the critical velocity, this result confirms that scour will occur 
due to placing the AFR. As clearly seen in this figure, the characteristic of change of the 
nondimensional stress in the flat bed is very similar to those in each void ratio of the AFR. 
Therefore, it can be assumed that a linear relationship given by the following equation is 
established between u~c and uf. 

U c  - -  

where K~ is the ratio of the critical velocity of the main flow for the case with the AFR 
to that without it. The values of K~ obtained in the experiments are shown versus the KC 
number in Fig. 8.22. The region above each curve indicates that the local scour around the 
AFR occurs. It is found that the main flow velocity which induces the sediment movement 
around the AFR decreases with increasing KC and approaches about 0.4 times the critical 
velocity of that without the AFR. 

(b) Mechanisms of local scour 
It is found from the flow visualization that the local scour around the AFR is 

characterized by two kinds of sand movements; one is the movement of sand washed 
downstream by the interaction between flows directed downward along the upstream 
surface of the AFR and contraction flow (i.e., accelerated flow adjacent to the AFR), the 
other is the movement of sand suspended and transported downstream by the vortices with 
the vertical rotation axis to the bottom which are formed at comers of the AFR. The shape 
of the scour hole is that of an inverted cone at the comers of the AFR, and the depositions 
of sand suspended by the vortices occur in both sides of the AFR. The bottom profiles 
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around the AFR induced by these sand movements are illustrated schematically in Fig. 
8.23. The pattern of bottom profile is classified into two patterns by void ratio of the AFR 
(see Fig. 8.23). In the case of the AFR with a large void ratio, the sands transported from 
the scour hole enter in the hollow inside of the AFR through a gap in the base of it with 
a developing scour in the comers, and these sand movements produce the clearance 
between the comers of the AFR and the bottom. 

The magnitudes of maximum settlement of the AFR (Ahm) and the values of  the 
maximum scour depth (hsm) are found to depend on the KC number and void ratio of the 
AFR (~) as shown in Fig. 8.24. In the case of AFR with ~ = 60% in which this void ratio 
has been most frequently used in the present, the maximum settlement of the AFR and the 
maximum scour depth are respectively estimated to be about 10 per cent and 15 per cent 
of the one side length of the AFR. 

(c) Protection works against scour 
Since the scour around the AFR is caused by the contraction flow and the vortices as 

mentioned above, in order to prevent the occurrence of these flows, an improvement of the 
AFR shape is imagined as scour protection. However, this method will result in an adverse 
effect from the viewpoint of the gathering effect of fish. Thus, the rubble mound method 
and the rubber sheet device are developed as scour protection to intercept the sand around 
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the AFR from the above mentioned flows, and the laboratory model experiments are 
performed to investigate the efficiency of the following protection method. 

method I : covering area under the AFR with rubble 
method II : I + placing rubble around the AFR 
method III : bonding circular rubber sheet to base of the AFR 

The purpose of methods I and II is to increase of the resistance force of sediments to 
the fluid shear stress by placing the rubbles around the AFR. The settlement of the AFR 
caused by the compaction of rubbles with the rocking motion of the AFR can be predicted 
in method I. In method II, therefore, rubbles around the AFR are added to method I in 
order to reduce the rocking of the AFR. On the other hand, the purpose of method III is 
to intercept the sand from the flows which cause the scour by bonding the rubber sheet to 
the base of the AFR. Flexible rubber is chosen as the rubber material because the 
attachment of rigid rubber may cause a second scour. 
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Figure 8.25 shows the comparison between the settlement of the AFR with the scour 
protection (Ah,) and that without these (Ahm) in order to clarify the efficiency of the scour 
protection methods. Both experiments are carried out under conditions of same sand size. 
The values of Ahe/Ahm in every protection method are less than unity and the efficiency of 
the protection is distinctly confirmed. The protection method of scour with the rubber sheet 
in particular is highly efficient. Also, by comparing method I and method II, it is found 
that the settlement of the AFR caused by the compaction of rubbles can be prevented to 
some degree by reducing the rocking motion of the AFR. 
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Fig. 8.25 Experimental results on the scour protection works 

8.2.3 Accuracy of setting arrangement and impulsive force at landing on sea bottom 
(1) Behavior of settling AFR and reducing method of setting position errors 

In general, an AFR is constructed by throwing it down from a ship to lay out on the fish 
ground. Since the settling motion of an AFR consists of three complex motions (i.e., an 
oscillatory motion in a horizontal direction, a rotational motion and vertical drop), it is 
difficult to set up an AFR in the right position. As a result of position errors induced in 
the set up, the work of the multi-AFR system on gathering fish may not be demonstrated 
sufficiently. The position errors are the important problem in this construction method. The 
oscillatory motion of a settling AFR in a periodic wave is induced by the instantaneous 
fluctuations of the pressure distribution around it, which is induced by the vortices 
generated around it and the wave motion. 

It can be estimated that the behavior of a settling AFR is closely related to the initial 
condition of posture of the AFR at throwing, because the change of the initial angle from 
the still water surface at throwing may cause a change in the pattern of vortice formations 
around it and this change directly effects the settling behavior. Hence, to investigate the 
effective initial posture of an AFR at throwing to reduce the settled area on the sea floor 
most, systematic calculations for changing the initial angle at throwing were carried out by 
using the simulation technique (Matsumi et al. 1988) which was developed to analyze the 
behavior of a settling AFR in consideration of the oscillatory motion in horizontal direction 
and the rotational motion. 

(a) Summary of simulation technique for settling behavior of AFR 
In the numerical simulation of the settling AFR, the fluid resistance exerted on the 

settling AFR is estimated firstly by the integrating the pressure distribution around its 
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surface. This surrounding pressure distribution is numerically analyzed with both the 
discrete vortex approximation method for the simulation of the vortex formation behind the 
AFR and the source distribution method for the formulation of the boundary condition on 
the surface of it. Secondly, the oscillatory motion of the settling AFR at every moment is 
numerically calculated from the equations of motions for settling. Referring to Fig. 8.26, 
the equations of horizontal, vertical and rotational motion for the settling AFR are given 
a s  

duo 4 
= ~.,Fx, M a T  ,__, 

dwo 4 
Ma-- Z -  ,~, 

dtO r 4 
Ir --~-- = E (X;Fzi - Zi'Fxi ) 

i=1 

(8.6) 

where Mo and Mw are the mass of an AFR per unit thickness and the fluid replaced by the 
unit thickness of the AFR, Ir is an inertia moment of an AFR around the gravitational 
center axis of the AFR, uo and wo are the x and z components of the speed of the settling 
AFR, (.o r is an angular velocity defined as positive anti-clockwise. Fxi and Fzi are the x and 
z components of the fluid resistance exerted on an i-th piece (i - 1-4) as illustrated in Fig. 
8.26, x; and z; are the distance from the center axis of the AFR cross section to the center 
of the i-th piece in the x and z direction, and g is the gravitational acceleration. 

0 

WT u 

p 

M~= 4m., Mw=4mw 

Fig. 8.26 Sketch of the settling AFR 

Figure 8.27 shows the calculated behaviors of the settling AFR with the void ratio/l  --- 
64% for three kinds of the initial angles, 00 - 0 ~ 22.5 ~ 45 ~ Dx/Dz indicates the ratio of 
a horizontal fluctuation of the settling AFR to a settling distance between each simulated 
position. From these figures, it is found that the direction of horizontal fluctuation which 
is recognized from the values of Dx/Dz corresponds to the change of its rotational direction, 
and the simulation method can successfully simulate the fluctuation of a settling AFR in 
the horizontal direction with rotational motion. 
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Fig. 8.27 Calculated results of the settling AFR 

(b) Relation between initial posture of AFR at throwing and settling behavior 
In the case of initial angle 00 = 0 ~ and 22.5 ~ as shown in Fig. 8.27(a) and (b), the 

rotational direction takes the same direction for the major part of the water depth, the 
horizontal fluctuation on one side direction becomes very large. When 0o ffi 45 ~ the period 
of the change in the rotational direction is shortest among these three cases, and the 
horizontal fluctuation becomes very small. This situation for the settling AFR becomes the 
most stable; i.e., less oscillation may take place. From these investigations on the 
systematic calculations for the change of the initial angle at throwing, it can be concluded 
that the posture of the AFR at throwing with the angle of 45 ~ from the still water surface 
reduces the settling area on the sea floor most. 
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(2) Impulsive force at landing on sea bottom 
The design criteria of structures for arrangement and development projects of coastal 

fish grounds in Japan gives an equation to evaluate the impulsive force exerted on an AFR 
at landing on the sea bottom. That equation involves the added mass coefficient and the 
drag coefficient of the AFR, the effect of the bottom on these coefficients is not considered 
yet. In general, the added mass coefficient of the settling body is affected by the distance 
between the body and the bottom. Therefore, in order to evaluate the stability of the AFR 
at landing, the effect of the sea bottom on the added mass coefficient should be taken into 
account when we determine the design impulsive force of the AFR. Hence, this paragraph 
discusses the bottom effect on these hydraulic coefficients and the impulsive force of the 
AFR which is calculated by using these coefficients with the effect of the bottom. 

(a) Effect of bottom on added mass and drag coefficient 
In general, the added mass coefficient of a moving body in the fluid field has been 

calculated by utilizing the fluid force exerted on the moving body calculated on the base 
of the potential theory or by using the kinetic energy of the fluid induced by the moving 
body. Based on the latter method, the added mass coefficient of the settling AFR in the still 
water filled bottom were calculated. In the numerical techniques, the source distribution 
method and the mirror image method are applied to the formulation of the boundary 
condition on the AFR surface and the bottom respectively. 

Figure 8.28 shows the change of the added mass coefficient of the settling AFR with 
respect to the relative distance hq/a from the sea bottom. The value of CA of ~. = 0% in 
the infinite fluid field (hq/a --  c o )  is 1.19, and this value is equal to a certain value of the 
added mass coefficient of a rectangular cylinder. From this result, it is confirmed that the 
added mass coefficient of the AFR may be evaluated by this analysis technique with 
sufficient accuracy. As is clearly seen in Fig. 8.28, the shorter the relative distance 
becomes, CA is affected by the bottom effect, CA starts to increase very quickly in the order 
of increasing the void ratio of the AFR. Furthermore, from the table, it can be found that 
CA at landing on the sea bottom (hq/a - 0 . 5 )  reaches about 1.4 to 2.3 times of that in the 
infinite fluid field (hq/a = co). 

On the other hand, the drag coefficient of the settling AFR was calculated by applying 
the values of the added mass coefficient mentioned above and the Morison formula to the 
vertical component of its fluid resistance obtained from the results of its settling behavior 
mentioned in (1). The bottom effect on the drag coefficient has not been quantitatively 
clarified yet, because of the wide scatter in the calculations of the drag coefficient. 
However, the bottom effect involved in the drag coefficient on the impulsive force at 
landing will be clarified next (2). 

(b) Evaluation of impulsive force at landing 
Figure 8.29 shows the influence of sea bottom effect on the impulsive force at landing. 

In this figure, R' indicates the impulsive force at landing under consideration of the bottom 
effect on CA and Co, R is the impulsive force which is calculated by putting CA = 1 and 
Co = 2. K is the modulus of sea-bed reaction and 0 l is the angle between the AFR surface 
and the bottom. Co was varied from 0.1 to 4 in these calculations. It is found form this 
figure that all values of R'/R are more than unity in spite of the values of Co, and the design 
criteria may underestimate the impulsive force exerted on the AFR at landing on the sea 
bottom. Furthermore, the values of R'/R in each 0 I decrease with the increase of Co and 
the magnitudes of decrease (i.e., about 0.02 to 0.03) are not so much. Therefore, it is 
reasonable that the value of the drag coefficient described in the design criteria is used as 
that in the calculation of the impulsive force. In the case of coefficient of the added mass, 
however, the added mass coefficient which considers the bottom effect should be used. 
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8.3 Submerged Moored Artificial habitat 

8.3.1 History of the submerged habitat 
In this decade so many artificial habitats have been constructed in the deepwater area to 

concentrate migratory fish. The depth of the submersion sites ranges from 50m to over 
1000m. In the earliest submersion of artificial habitats in 1981, most of the constructed 
structures had been carried away or broken down by storm waves or currents in the 
offshore areas. 
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Table 8.1 Number of disappeared artificial habitats in 1981-1985, Japan 

Construction Year 
Deployment Depth (m) 
Total Number of the Deployed AH 
Number of Breakdown AH in 60 Days 
Number of Breakdown AH in 150 Days 

(AH: Artificial Habitat) 

1981 1983 1984 1985 
500-1000 300-1000 300-1000 300-1000 

31 6 7 10 
25 5 2 0 
31 5 2 2 

Table 8.1 (Ikemoto and Kuroiwa 1987) lists examples of a number of the disappeared 
artificial habitats in 1981 - 1985. From such field tests, it was found that the rate of 
breakdown of the structures increased as the submergence was shallower. In order to brace 
such structures at the submersion location in the long term, it is important to assess 
correctly their dynamic response to ocean waves. Some theoretical studies have been done 
relating the dynamic response of submerged mooring structures or cables to surface waves, 
but there has been almost no verification of the results through comparisons with 
laboratory or field observations. In the following sections, the dynamic behavior of 
artificial habitat caused by waves will be discussed. 

8.3.2 Dynamic response of a submerged artificial habitat due to waves 
In general, a submerged fish culture is installed into the sea bottom by single point 

mooring. Figure 8.30 shows the notation with respect to a moored cylindrical habitat 
anchored to the bottom by a tension line. It is assumed that the buoy motions are respected 
to a vertical plane parallel to the direction of wave propagation, and the mooring line is 
always straight under the wave action. Therefore, the displacements (xl, zl) of the 
infinitesimal element dM are expressed as follows: 

x~ =/sinO~ + ssin(O~ +02) (8.7) 

z~ =/cosO~ + scos(O~ +02) (8.8) 

where l is the mooring line length, s is the arm length of the element, 01 and 02 are the 
mooring line and buoy rotation angle respectively. If it is assumed that both angles are 
small, then the kinetic energy of the element dE is given by 

l+Zl)  (8.9) 

By integrating Eq. (8.9) with respect to the arm lengths from 0 to La, then total energy is 
obtained as follows: 

 =lll'fl3r 2 +3r+llo2+ 3r+2 o o2 +o t 
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Fig. 8.30 Coordinate of a moored cylindrical habitat 

in which L a is the buoy length, I is the moment of inertia about point P~ and r is the ratio 
of the mooring line length to buoy length l/La. By substituting Eq. (8.10) into the Lagrange 
equation, the equations of motion are given by 

I(3r 2 + 3r + 1)01 + I(1.5r + 1)02 = Q1 (8.11) 

I (1.5r + 1)01 + IO 2 = (22 (8.12) 

in which QI and Q2 represent the generalized forces related to 01 and 02 respectively. QI 
and Q2 are considered the moments by the pressure gradient forces, imaginary mass forces, 
drag forces and gravitational forces act to the mass element. Finally, the equations of 
motion of the submerged reef for 01 and 02 are expressed as follows: 

(I+CA1J)RIOI + IRz02 +Cl(1/3+r2)L2aOl +(p-po)VgL~(r+l)O, 

= 0(1+ CAI )A s ~o~l+ s)du/dtds+ (O/2)CoD~o?l+ s) u ]u [(is 

IR20I +(l +Ca2J)02 +C2(1/2 + r)LaO 22" + ( P - p o ) V g L a 0 2 / 2  

= p(l + Ca2)As~osdu/dtds + (P/2)CoO~oSUlulds 

J = pVL 2/3, R~ = 3r(r + 1)+ 1, R2 = 3r/2 + 1 

(8.13) 

(8.14) 
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in which Co, CAi and C i (i--1,2) are the drag, the added mass and the damping coefficients 
of the submerged reef, respectively, V and As are the volume and cross sectional area of 
it, p and/90 are the mass density of water and reef, g is the gravitational acceleration. From 
the solutions of the above simultaneous equations, the mooring line force is determined by 
the equilibrium equation. 

Figure 8.31 shows the relationship between the oscillatory amplitude of moored habitat 
in the case of C~= 0.014 and C 2 - 0 . 0 4 5 .  In this figure, the maximum values of 01 and 02 
appear near the values of t o -  2 in both theoretical and experimental results in which solid 
and chain lines demonstrate the numerical values of 01 and 02 respectively. In  the 
resonance frequency, the displacements of the reef are found to increase sharply. 

0.3 

0.2 

gt0 

O . ,u  

o 0.1 

�9 Measured Compute d 

c -o.o14 
_ 0 45 

"\ o 

l I l I i .,T--'T-"I---'r'- 
0 2 4 6 8 

to (rad./s) 

Fig. 8.31 Response characteristics of moored habitats 

Figure 8.32 represents the time history of the wave surface, mooring line angle, buoy 
rotating angle and mooring line force. The experimental values of 01 and 02 show some 
fluctuation and the experimental results depart from the numerical results, but the 
computed mooring line tension agrees with the experimental results. 

Figure 8.33 shows the variation of maximum mooring line forces with wave steepness 
for various values of the ratio of depth to the wavelength. It appears that line forces 
increase with the increase of the wave steepness and they also increase with the decrease 
of the ratio of h/L for constant values of wave steepness. Comparison between estimated 
results and experimental values show good agreement. 

Since artificial reefs are composed of fishery nets, pipes and buoys, many kinds of reefs 
with arbitrary and complex shapes have been developed. In analyzing the dynamic 
movement of such structures, another sophisticated analytical procedure must be 
introduced. 
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Fig. 8.34 Submerged reef anchored at bottom 

Figure 8.34 shows an artificial reef with arbitrary shape anchored to the bottom. Suppose 
that the maximum line angle of a buoy gtm is related to the ratio of horizontal wave forces 
Fn to net buoyancy N, that is, 

gt m " F n / N  (8.15) 

Then, the maximum displacement of the center of the gravity of the buoy is expressed 
in a nondimensional form as follows: 

= CM -D -~, dt---~ +co l u'l 1-p/po) (8.16) 

where CM is the added mass coefficient, T is the wave period, U0 is the maximum 
horizontal velocity at the depth of center of the gravity, u* - Um/Uo, t*--t/T, um is the 
maximum velocity of a water particle. 

The maximum line force Tim in Eq. (8.16) is rewritten in a nondimensional form by 

+CM~m2 D u ff (8.17) 



460 

where S - ( 19 -/90 ), Wm is a vertical component of the water particle velocity. 
Equations (8.16) and (8.17) suggest that the maximum displacement of the reef and 

mooring line force are related to the three parameters SgD/Uo 2, D / L  a and UoT/D as follows: 

~,,,l' = f~(D/La, UoT/D) Ti,,, SgO , ~ Uo---" 7" = f2(D/La, UoT/D) (8.18) 

SgD/Uo 2 is a parameter of the cylinder Froude number (Emori and Churing 1981). The term 
UoT/D is a parameter as well known as the Keulegan-Carpenter number and the ratio of 
reef length to the buoy diameter D / L  a is a parameter which defines the shape factor of the 
buoy; slenderness ratio. 

Figure 8.35 shows an example of results of a model test for the variation of the 
maximum displacements of pillar models. There exits an obscure relationship between 
maximum displacements and UoT/D. 
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Fig. 8.35 Maximum displacement of reef 

Figure 8.36 demonstrates the relationship between nondimensional maximum mooring 
line forces and UoT/D. It is found that the nondimensional maximum line forces decrease 
linearly with an increase of UoT/D in logarithmic plots. It is clear that the maximum 
mooring line force is expressed as a function of UoT/D and D / Z  a. Silvester (1974) showed 
that UoT/D and D / L  a a r e  important parameters in estimating the wave force for a 
submerged rigid structure. Those parameters are also predominant in evaluating the wave 
force acting on submerged artificial habitats. 

8.4 Submerged Buoy-Cable System for Shellfish Farming 

8.4.1 Response of the buoy-cable system to ocean waves 
A great number of buoy-cable structures have been constructed to cultivate and 

proliferate the shellfish resources in deepwater areas. In order to stabilize such structures 
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in the long term, it is very important to assess correctly their dynamic response to ocean 
waves. Some theoretical studies have been done relating the dynamic response of 
submerged cables to ocean currents or waves, but there has been almost no verification of 
the results through comparisons with laboratory or field tests. 

Figure 8.37 presents example data of the dynamic response of the buoy-cable system to 
waves which was obtained by field observations on Jan. 26 1987 in the Sea of Japan 
(Matsubara and Noda 1989). Time variations of the acceleration data, the power spectrum 
and the displacements converted by numerical integration are presented. The significant 
wave height and wave period at that time were 5.4m and 7.5s, respectively. The 
accelerations of the movement of the structure are found to vary irregularly but the 
spectrum shows that the predominant period of acceleration was about 8s. It may be 
noticed that the predominant period is very close to the significant wave period. The 
amplitude of the oscillation of the structure is about 1.5m. 

While Fig. 8.38 shows an example of the wave data obtained from the field observations, 
vertical acceleration of the buoy-cable structure and the simulation results were computed 
using wave data at each interval. The acceleration of the system enlarges sharply in the 
earlier stages of the storm and decreases gradually in its decaying stage. It should be noted 
that the numerical results are overestimated slightly but still show quite a similar tendency 
to the measured results. 
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8.4.2 Equation of motion for the system 
Figure 8.39 illustrates the numerical model of the artificial buoy-cable structure moored 

in the Sea of Japan. The following restrictions are introduced to simplify the mathematical 
treatment in obtaining equations of motions of the structure under the wave action. 
(i) The motions of the buoys and the cable are restricted to the vertical plane. 
(ii) The buoys at both ends of the main cable are treated as fixed. 
(iii) Interconnected cables are always straight and not extendible. 

/ -  m l  ~ m  n . ,  

Fig. 8.39 Numerical model of the buoy-cable system 
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Fig. 8.40 Forces acting on masses 

If the baskets and buoys can be considered as discrete lumped masses connected with 
straight cables, then the structure can be converted to a simple lumped mass model. Similar 
numerical models have been used by Nath and Felix (1970), Rupe and Thresher (1974) to 
compute the movement of submerged cables. A similar and simpler model to estimate the 
dynamics of a submerged buoy-cable structure has been proposed in this decade. 

Figure 8.40 depicts the forces acting on mass elements. Summation of forces yields the 
following equations of mass motion. 

miJ?, , = FHi + T i cos Oi - Ti-, cos  r (8.19) 

mis , = Fvi + T i sin Oi - T~_, sin r -- W/ (8.20) 

in which x and z are the horizontal and vertical distances to be described by cartesian 
coordinates, respectively, with z positive upward and x positive shoreward, m i and Wi are  
the mass and the volume of the i-th mass element respectively. Ti and r a re  the cable 
tension and the cable angle with horizontal axis. 
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Wave forces on the i-th mass element, F m and Fvi are expressed as follows: 

FH, = CM~PViu~ - CAiPV~i + ( ~ ]  CDxiPAxi l  ui - x i [ (u i  - x i ) (8.21) 

Fvi -- CgiPVil~i - CAiDViT, i "F ( 1 )  CDziPAzil Wi - Zi l(wi - zi ) (8.22) 

where CMi is the inertia coefficient of the i-th mass element, Axi and Azi are the cross 
sectional areas of the i-th element projected in x and z directions, respectively. Water 
particle kinematics are determined by small amplitude wave theory. As the length of the 
cable segment Si is taken to be a constant from the foregoing assumption (3), 

2 )2 2 
(Xi+  1 - -  Xi "]-(Zi+ 1 - -  Zi -- l i (8.23) 

Equations (8.19) and (8.20), together with Eq. (8.23), consist of a set of nonlinear 
ordinary differential equations which must be solved simultaneously and numerically in an 
implicit manner to obtain the displacements of the elements and the cable tension. The 
boundary condition is such that buoys at both ends are always fixed under the wave 
actions. The initial state of the system for the numerical calculation is the static equilibrium 
configuration and the initial velocity of all elements is zero at time t=0. Wave-induced 
movement of the buoy-cable system may be solved as initial value problems.  

Figure 8.41 demonstrates the relationship between the nondimensional displacement of 
the center buoy Z/H and the relative wavelength L/ls for various wave steepnesses H/L in 
which H, L and ls are the wave height, wavelength and the span length of the main cable, 
respectively. It is found that the experimental results of the vertical buoy motions show 
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great variations with an increase in L/l, and have a tendency to reach a maximum at L/l, 
- 0.7. The large amplification of the displacement of the structure can be explained as a 
resonance phenomenon, occurring when the natural frequency of free vibration of the 
buoy-cable system corresponds to the frequency of the wave. The numerical results are in 
good agreement with the experimental results. 

Figure 8.42 depicts the variations of the movement of the main cable at each phase 
within a wave period. It is clear that the response of the main cable is similar to that of 
a string fixed at both ends. The pattern of the curve varies with the wave conditions and 
the nodes and loops appear in the movement of the cable. Computational results coincide 
with the experimental results. 
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Fig. 8.42 Movement of the main cable 

8.4.3 Countermeasure works against motion of longlines 
As mentioned above, the submerged buoy-cable system is oscillated by surface waves. 

Especially under the resonance condition, the displacement increases rapidly. Such 
movement of the structure extended over a long time has been considered the cause of dead 
and deformed shellfish in the baskets. Thus, some artificial gadget to diminish the 
movement of the buoy-cable system by the wave is required from commercial 
management. Figure 8.43 shows the experimental results of the stabilizing system by using 
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resisting plates, which are attached to the bottom of the baskets, where Zp is the ratio of 
the movement of the main cable with resisting plates to that without these, D and dr are 
the diameter of the plate and buoys, respectively. The effect becomes more and more 
noticeable when the diameter of the stabilizing plate D increases. 

1.5- 
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0.5- 

0.0 L , 
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dr: Diameter of buoy 
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1.0 2.0 3.0 4.0 

2UL 

Fig. 8.43 Change of the vertical displacements by stabilizing plates 

8.5 Floating Fishery Cages 

8.5.1 Drag coefficient of a wire net 
Since the fishery cage floats on the surface of the ocean, it pitches and rolls as the waves 

progress. For derivation of the motion of a cage in waves, the most important point is to 
estimate the fluid force acting on the wire net that surrounds the whole cage. The inertia 
force acting on the net may be neglected because the total mass of wire net of the fish cage 
is not so large, while the drag force should be considered because the cross sectional area 
of the mesh net amounts to a certain quantity. The drag coefficient may be evaluated by 
the towing tests of the plain net in sill water. Figure 8.44 shows the relationship between 
drag force coefficients of a plain wire net and the Reynolds number (UD/v, U and D are 
the towing velocity and diameter of the net, respectively, and v is the kinematic viscosity) 
obtained from laboratory tests. The drag coefficients of the net decreases linearly with the 
increment of the wire net Reynolds number, and its empirical equation is expressed by 

C o = 9.84 Re-~ (8.24) 
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Fig. 8.44 Relationship between drag force coefficients and Reynolds number 

8.5.2 Dynamic response of the floating cage to waves 
The equations of two-dimensional motion for a cage in regular waves are derived in the 

same manner as already discussed in Chapter 2 as follows: 

m:~= F,, + T, ,c-  T,, 

m~, = Fv - Tvc- Tv - ( p -  po) gV 

IO = M, - M2 +1143 
(8.25) 

where m and V are the mass and the volume of the cage, and FH and Fv are wave forces 
in horizontal and vertical directions respectively. TH and Tv are vertical and horizontal 
components of the shoreward mooring line forces. THc and Tvc are also horizontal and 
vertical components of the seaward mooring line forces, respectively. I is the inertia 
moment about the center of gravity of the cage, MI and M2 are the moments by the seaward 
and shoreward mooring line forces, M3 is the moment by the wave forces about the center 
of gravity. If wave forces acting on the mooring lines are evaluated in Eq. (8.25), some 
numerical methods such as a lumped mass model have to be applied to compute the 
mooring line forces. 

Figure 8.45 shows the relationship between experimental results and numerical results 
of the horizontal and vertical displacements by waves. There are some discrepancies 
between the computed and measured profiles, and computational results underestimate the 
heaving and swaying displacements of a cage. However, the phases of simulated 
displacements are in good agreement with the experimental results. 

Figure 8.46 demonstrates the comparison of numerical results of pitching movement 
with the experimental results within one wave period. There is good agreement between 
the computed and experimental displacements. These simulation results provide a fair 
verification of the evaluation of wave-induced loads on the plain net and numerical model 
of a floating fishery cage. 
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