
Preface 

Numerous books have been written on data analysis methods in the physical sciences 
over the past several decades. Most of these books lean heavily toward the theoretical 
aspects of data processing and few have been updated to include more modern 
techniques such as fractal analysis and rotary spectral decomposition. In writing this 
book we saw a clear need for a practical reference volume for earth and ocean sciences 
that brings established and modern techniques together under a single cover. The text 
is intended for students and established scientists alike. For the most part, graduate 
programs in oceanography have some form of methods course in which students learn 
about the measurement, calibration, processing and interpretation of geophysical 
data. The classes are intended to give the students needed experience in both the 
logistics of data collection and the practical problems of data processing and analysis. 
Because the class material generally is based on the experience of the faculty members 
giving the course, each class emphasizes different aspects of data collection and 
analysis. Formalism and presentation can differ widely. While it is valuable to learn 
from the first-hand experiences of the class instructor, it seemed to us important to 
have available a central reference text that could be used to provide some uniformity 
in the material being covered within the oceanographic community. 

Many of the data analysis techniques most useful to oceanographers can be found in 
books and journals covering a wide variety of topics ranging from elementary statistics 
to wavelet transforms. Much of the technical information on these techniques is 
detailed in texts on numerical methods, time series analysis, and statistical tech- 
niques. In this book, we attempt to bring together many of the key data processing 
methods found in the literature, as well as add new information on data analysis 
techniques not readily available in older texts. We also provide, in Chapter 1, a 
description of most of the instruments used today in physical oceanography. Our hope 
is that the book will provide instructional material for students in the oceanographic 
sciences and serve as a general reference volume for those directly involved with 
oceanographic research. 

The broad scope and rapidly evolving nature of oceanographic sciences has meant 
that it has not been possible for us to cover all existing or emerging data analysis 
methods. However, we trust that many of the methods and procedures outlined in the 
book will provide a basic understanding of the kinds of options available to the user 
for interpretation of data sets. Our intention is to describe general statistical and 
analytical methods that will be sufficiently fundamental to maintain a high level of 
utility over the years. 
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Finally, we believe that the analysis procedures discussed in this book apply to a 
wide readership in the geophysical sciences. As with oceanographers, this wider 
community of scientists would likely benefit from a central source of information that 
encompasses not only a description of the mathematical methods but also considers 
some of the practical aspects of data analyses. It is this synthesis between theoretical 
insight and the logistical limitations of real data measurement that is a primarily goal 
of this text. 

William J. Emery and Richard E. Thomson 
Boulder, Colorado and Sidney, BC 
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Data Acquisition and Recording 

1.1 I N T R O D U C T I O N  

Physical oceanography is an evolving science in which the instruments, types of 
observations and methods of analysis have undergone considerable change over the 
last few decades. With most advances in oceanographic theory, instrumentation, and 
software, there have been significant advances in marine science. The advent of digital 
computers has revolutionized data collection procedures and the way that data are 
reduced and analyzed. No longer is the individual scientist personally familiar with 
each data point and its contribution to his or her study. Instrumentation and data 
collection are moving out of direct application by the scientist and into the hands of 
skilled technicians who are becoming increasingly more specialized in the operation 
and maintenance of equipment. New electronic instruments operate at data rates not 
possible with earlier mechanical devices and produce volumes of information that can 
only be handled by high-speed computers. Most modern data collection systems 
transmit sensor data directly to computer-based data acquisition systems where they 
are stored in digital format on some type of electronic medium such as a tape, hard- 
drive, or optical disk. High-speed analog-to-digital (AD) converters and digital-signal- 
processors (DSPs) are now used to convert voltage or current signals from sensors to 
digital values. 

With the many technological advances taking place, it is important for oceano- 
graphers to be aware of both the capabilities and limitations of their sampling 
equipment. This requires a basic understanding of the sensors, the recording systems 
and the data-processing tools. If these are known and the experiment carefully 
planned, many problems commonly encountered during the processing stage can be 
avoided. We cannot overemphasize the need for thoughtful experimental planning 
and proper calibration of all oceanographic sensors. If instruments are not in near- 
optimal locations or the researcher is unsure of the values coming out of the machines, 
then it will be difficult to believe the results gathered in the field. To be truly reliable, 
instruments should be calibrated on a regular basis at intervals determined by use and 
the susceptibility of the sensor to drift. More specifically, the output from some 
instruments such as the piezoelectric pressure sensors and fixed pathlength trans- 
missometers drift with time and need to be calibrated before and after each field 
deployment. For example, the zero point for the Paroscientific Digiquartz (0- 
10,000 psi) pressure sensors used in the Hawaii Ocean Time-series (HOT) at station 
"Aloha" 100 km north of Honolulu drifts about 4 dbar in three years. As a con- 
sequef~ce, the sensors are calibrated about every six months against a Paroscientific 
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laboratory standard, which is recalibrated periodically at special calibration facilities 
in the United States (Lukas, 1994). Our experience also shows that over-the-side field 
calibrations during oceanic surveys can be highly valuable. As we discuss in the 
following chapters, there are a number  of fundamental requirements to be considered 
when planning the collection of field records, including such basic considerations as 
the sampling interval, sampling duration and sampling location. 

It is the purpose of this chapter to review many of the standard instruments and 
measurement  techniques used in physical oceanography in order to provide the reader 
with a common understanding of both the utility and limitations of the resulting 
measurements.  The discussion is not intended to serve as a detailed "user's manual"  
nor as an "observer's handbook". Rather, our purpose is to describe the fundamentals 
of the instruments in order to give some insight into the data they collect. An under- 
standing of the basic observational concepts, and their limitations, is a prerequisite for 
the development of methods, techniques and procedures used to analyze and interpret 
the data that are collected. 

Rather than treat each measurement tool individually, we have attempted to group 
them into generic classes and to limit our discussion to common features of the 
particular instruments and associated techniques. Specific references to particular 
company products and the quotation of manufacturer 's  engineering specifications 
have been avoided whenever possible. Instead, we refer to published material 
addressing the measurement systems or the data recorded by them. Those studies 
which compare measurements made by similar instruments are particularly valuable. 

The emphasis of the instrument review section is to give the reader a background in 
the collection of data in physical oceanography. For those readers interested in more 
complete information regarding a specific instrument or measurement technique, we 
refer to the references at the end of the book where we list the sources of the material 
quoted. We realize that, in terms of specific measurement systems, and their review, 
this text will be quickly dated as new and better systems evolve. Still, we hope that the 
general outline we present for accuracy, precision and data coverage will serve as a 
useful guide to the employment of newer instruments and methods. 

1.2 BASIC S A M P L I N G  R E Q U I R E M E N T S  

A primary concern in most observational work is the accuracy of the measurement 
device, a common performance statistic for the instrument. Absolute accuracy 
requires frequent instrument calibration to detect and correct for any shifts in 
behavior. The inconvenience of frequent calibration often causes the scientist to 
substitute instrument precision as the measurement capability of an instrument. 
Unlike absolute accuracy, precision is a relative term and simply represents the ability 
of the instrument  to repeat the observation without deviation. Absolute accuracy 
further requires that the observation be consistent in magnitude with some absolute 
reference standard. In most cases, the user must be satisfied with having good 
precision and repeatability of the measurement rather than having absolute 
measurement  accuracy. Any instrument that fails to maintain its precision, fails to 
provide data that can be handled in any meaningful statistical fashion. The best 
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instruments are those that provide both high precision and defensible absolute 
accuracy. 

Digital instrument resolution is measured in bits, where a resolution of N bits 
means that the full range of the sensor is partitioned into 2 N equal segments (N = 1, 2, 
...). For example, eight-bit resolution means that the specified full-scale range of the 
sensor, say V = 10 volts, is divided into 28 = 256 increments, with a bit-resolution of 
V/256 = 0.039 volts. Whether  the instrument can actually measure to a resolution or 
accuracy of V/2 N units is another matter. The sensor range can always be divided into 
an increasing number  of smaller increments but eventually one reaches a point where 
the value of each bit is buried in the noise level of the sensor. 

1.2.1 Sampling interval 

Assuming the instrument selected can produce reliable and useful data, the next 
highest priority sampling requirement is that the measurements be collected often 
enough in space and time to resolve the phenomena of interest. For example, in the 
days when oceanographers were only interested in the mean stratification of the world 
ocean, water property profiles from discrete-level hydrographic (bottle) casts were 
adequate to resolve the general vertical density structure. On the other hand, these 
same discrete-level profiles failed to resolve the detailed structure associated with 
interleaving and mixing processes that now are resolved by the rapid vertical sampling 
of modern conduct ivi ty- temperature-depth (CTD) profilers. The need for higher 
resolution assumes that the oceanographer has some prior knowledge of the process of 
interest. Often this prior knowledge has been collected with instruments incapable of 
resolving the true variability and may only be suggested by highly aliased (distorted) 
data collected using earlier techniques. In addition, theoretical studies may provide 
information on the scales that must be resolved by the measurement system. 

For discrete digital data x(ti) measured at times ti, the choice of the sampling 
increment At (or Zk~c in the case of spatial measurements) is the quantity of import- 
ance. In essence, we want to sample often enough that we can pick out the highest 
frequency component of interest in the time-series but not oversample so that we fill 
up the data storage file, use up all the battery power, or become swamped with a lot of 
unnecessary data. We might also want to sample at irregular intervals to avoid built-in 
bias in our sampling scheme. If the sampling interval is too large to resolve higher 
frequency components, it becomes necessary to suppress these components during 
sampling using a sensor whose response is limited to frequencies equal to that of the 
sampling frequency. As we discuss in our section on processing satellite-tracked 
drifter data, these lessons are often learned too latemafter the buoys have been cast 
adrift in the sea. 

The important aspect to keep in mind is that, for a given sampling interval At, the 
highest frequency we can hope to resolve is the Nyquist (or folding)frequency, fx, 
defined as 

fN = 1/(2At) (1.2.1) 

We cannot resolve any higher frequencies than this. For example, if we sample every 
10 h, the highest frequency we can hope to see in the data isfN = 0.05 cph (cycles per 
hour). Equation (1.2.1) states the obvious--that  it takes at least two sampling intervals 
(or three data points) to resolve a sinusoidal-type oscillation with period 1/fN (Figure 
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1.2.1). In practice, we need to contend with noise and sampling errors so that it takes 
something like three or more sampling increments (i.e. _>four data points) to 
accurately determine the highest observable frequency. Thus,fx is an upper limit. The 
highest frequency we can resolve for a sampling of At - 10 h in Figure 1.2.1 is closer 
to 1~3At ~ 0.033 cph. 

An important consequence of (1.2.1) is the problem ofaliasing. In particular, if there 
is considerable energy at frequencies f > fN--Which we obviously cannot resolve 
because of the At we pickedmthis energy gets folded back into the range of frequen- 
cies, f < fN, which we are attempting to resolve. This unresolved energy doesn't 
disappear but gets redistributed within the frequency range of interest. What is worse 
is that the folded-back energy is disguised (or aliased) within frequency components 
different from those of its origin. We cannot distinguish this folded-back energy from 
that which actually belongs to the lower frequencies. Thus, we end up with erroneous 
(aliased) estimates of the spectral energy variance over the resolvable range of fre- 
quencies. An example of highly aliased data would be 13-h sampling of currents in a 
region having strong semidiurnal tidal currents. More will be said on this topic in 
Chapter 5. 

As a general rule, one should plan a measurement program based on the frequencies 
and wavenumbers (estimated from the corresponding periods and wavelengths) of the 
parameters of interest over the study domain. This requirement then dictates the 
selection of the measurement tool or technique. If the instrument cannot sample 
rapidly enough to resolve the frequencies of concern it should not be used. It should be 
emphasized that the Nyquist frequency concept applies to both time and space and 
the Nyquist wavenumber is a valid means of determining the fundamental wavelength 
that must be sampled. 

1.2.2 Sampling duration 

The next concern is that one samples long-enough to establish a statistically 
significant picture of the process being studied. For time-series measurements, this 
amounts to a requirement that the data be collected over a period sufficiently long that 
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repeated cycles of the phenomenon are observed. This also applies to spatial sampling 
where statistical considerations require a large enough sample to define multiple 
cycles of the process being studied. Again, the requirement places basic limitations on 
the instrument selected for use. If the equipment cannot continuously collect the data 
needed for the length of time required to resolve repeated cycles of the process, it is 
not well suited to the measurement required. 

Consider the duration of the sampling at time step At. The longer we make the 
record the better we are to resolve different frequency components in the data. In the 
case of spatially separated data, AJc, resolution increases with increased spatial 
coverage of the data. It is the total record length T = NAt  obtained for N data samples 
that: (1) determines the lowest frequency (the fundamental frequency) 

fo = 1 / (NAt )  = 1/T (1.2.2) 

that can be extracted from the time-series record; (2) determines the frequency 
resolution or minimum difference in frequency Af = If2-f l l  = 1~NAt that can be 
resolved between adjoining frequency components, fl and f2 (Figure 1.2.2); and (3) 
determines the amount of band averaging (averaging of adjacent frequency bands) 
that can be applied to enhance the statistical significance of individual spectral esti- 
mates. In Figure 1.2.2, the two separate waveforms of equal amplitude but different 
frequency produce a single spectrum. The two frequencies are well resolved for 
A f  = 2~NAt and 3~2NAt, just resolved for Af - -1~NAt ,  and not resolved for 
A f  = 1 ~2NAt. 

In theory, we should be able to resolve all frequency components,f, in the frequency 
rangefo <_f <_fN, wherefx andfo are defined by (1.2.1) and (1.2.2), respectively. Herein 
lies a classic sampling problem. In order to resolve the frequencies of interest in a 
time-series, we need to sample for a long time (T large) so that fo covers the low end of 
the frequency spectrum and Af is small (frequency resolution is high). At the same 
time, we would like to sample sufficiently rapidly (At small) so thatfN extends beyond 
all frequency components with significant spectral energy. Unfortunately, the longer 
and more rapidly we want to sample the more data we need to collect and store, the 
more time, effort and money we need to put into the sampling and the better 
resolution we require from our sensors. 

Our ability to resolve frequency components follows from Rayleigh's criterion for 
the resolution of adjacent spectral peaks in light shone onto a diffraction grating. It 
states that two adjacent frequency components are just resolved when the peaks of the 
spectra are separated by frequency difference Af =fo = 1~NAt (Figure 1.2.2). For 
example, to separate the spectral peak associated with the lunar-solar semidiurnal 
tidal component M2 (frequency - 0.08051 cph) from that of the solar semidiurnal 
tidal component $2 (0.08333 cph), for which Af - 0.00282 cph, requires N - 355 data 
points at a sampling interval At - 1 h or N = 71 data points at At = 5 h. Similarly, a 
total of 328 data values at 1-h sampling are needed to separate the two main diurnal 
constituents Kl and O1 (Af - 0.00305 cph). Note that iffN is the highest frequency we 
can measure and fo is the limit of frequency resolution, then 

fX/fo = (1 /2A t ) / (1 /NAt )  = N/2  (1.2.3) 

is the maximum number of Fourier components we can hope to estimate in any 
analysis. 
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Figure 1.2.2. Spectral peaks of two separate waveforms of equal amplitude and frequencies f z and f2 
(dashed and thin line) together with the calculated spectrum (solid line). (a) and (b) are well-resolved 
spectra; (c) just resolved spectra; and (d) not resolved. Thick solid line is total spectrum for two 

underlying signals with slightly different peak frequencies. 

1.2.3 Sampl ing  accuracy 

According to the two previous sections, we need to sample long and often if we hope to 
resolve the range of scales of interest in the variables we are measuring. It is 
intuitively obvious that we also need tolsample as accurately as possible--with the 
degree of recording accuracy determined by the response characteristics of the 
sensors, the number  of bits per data record (or parameter value) needed to raise 
measurement  values above background noise, and the volume of data we can live ~ith. 
There is no use attempting to sample the high or low ends of the spectrum if the 
instrument cannot respond rapidly or accurately enough to resolve changes in the 
parameter being measured. In addition, there are several approaches to this aspect of 
data sampling including the brute-force approach in which we measure as often as we 
can at the degree of accuracy available and then improve the statistical reliability of 
each data record through post-survey averaging, smoothing, and other manipulation. 

1.2.4 Burst sampl ing  versus cont inuous  sampling 

Regularly-spaced, digital time-series can be obtained in two different ways. The most 
common approach is to use a continuous sampling mode, in which the data are sampled 
at equally spaced intervals tk -- to + k A t  from the start time to. Here, k is a positive 
integer. Regardless of whether the equally spaced data have undergone internal 
averaging or decimation using algorithms built into the machine, the output to the 
data storage file is a series of individual samples at times tk. (Here, "decimation" is 
used in the loose sense of removing every nth data point, where n is any positive 
integer, and not in the sense of the ancient Roman technique of putting to death one 
in ten soldiers in a legion guilty of mutiny or other crime.) Alternatively, we can use a 
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burst sampling mode, in which rapid sampling is undertaken over a relatively short time 
interval AtB or "burst" embedded within each regularly spaced time interval, At. That 
is, the data are sampled at high frequency for a short duration starting (or ending) at 
times tk for which the burst duration Atn << At. The instrument "rests" between bursts. 

There are advantages to the burst sampling scheme, especially in noisy (high fre- 
quency) environments where it may be necessary to average-out the noise to get at the 
frequencies of interest. Burst sampling works especially well when there is a "spectral 
gap" between fluctuations at the high and low ends of the spectrum. As an example, 
there is typically a spectral gap between surface gravity waves in the open ocean 
(periods of 1-20 s) and the 12-hourly motions that characterize semidiurnal tidal cur- 
rents. Thus, if we wanted to measure surface tidal currents using the burst-mode option 
for our current meter, we could set the sampling to a 2-min burst every hour; this option 
would smooth out the high-frequency wave effects but provide sufficient numbers of 
velocity measurements to resolve the tidal motions. Burst sampling enables us to filter 
out the high-frequency noise and obtain an improved estimate of the variability hidden 
underneath the high-frequency fluctuations. In addition, we can examine the high- 
frequency variability by scrutinizing the burst sampled data. If we were to sample 
rapidly enough, we could estimate the surface gravity wave energy spectrum. Many 
oceanographic instruments use (or have provision for) a burst-sampling data collection 
mode. The "duty cycle" often used to collect positional data from satellite-tracked 
drifters is a cost-saving form of burst sampling in which all positional data within a 24-h 
period (about 10 satellite fixes) are collected only every third day. Tracking costs paid to 
Service Argos are reduced by a factor of three using the duty cycle. Problems arise when 
the length of each burst is too short to resolve energetic motions with periods 
comparable to the burst sample length. In the case of satellite-tracked drifters poleward 
of tropical latitudes, these problems are associated with highly energetic inertial 
motions whose periods T = 1/(2f~ sin 0) are comparable to the 24-h duration of the 
burst sample (here, f~ = 0.1161 • 10 -4 cycles per second is the earth's rate of rotation 
and 0 =_ latitude). Since 1992, it has been possible to improve resolution of high- 
frequency motions using a 1/3 duty cycle of 8 h "on" followed by 16 h "off". According 
to Bograd et al. (1999), even better resolution of high-frequency mid-latitude motions 
could be obtained using a duty cycle of 16 h "on" followed by 32 h "off". 

1.2.5 Regularly versus irregularly sampled data 

In certain respects, an irregular sampling in time or nonequidistant placement of 
instruments can be more effective than a more esthetically appealing uniform samp- 
ling. For example, unequal spacing permits a more statistically reliable resolution of 
oceanic spatial variability by increasing the number of quasi-independent estimates of 
the dominant wavelengths (wavenumbers). Since oceanographers are almost always 
faced with having fewer instruments than they require to resolve oceanic features, 
irregular spacing can also be used to increase the overall spatial coverage (funda- 
mental wavenumber) while maintaining the small-scale instrument separation for 
Nyquist wavenumber estimates. The main concern is the lack of redundancy should 
certain key instruments fail, as often seems to happen. In this case, a quasi-regular 
spacing between locations is better. Prior knowledge of the scales of variability to 
expect is a definite plus in any experimental array design. 

In a sense, the quasi-logarithmic vertical spacing adopted by oceanographers for 
bottle cast (hydrographic) sampling of 0, 10, 20, 30, 50, 75, 100, 125, 150 m, etc. 
represents a "spectral window" adaptation to the known physical-chemical structure 
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of the ocean. Highest resolution is required near the surface where vertical changes 
are most rapid. Similarly, an uneven spatial arrangement of observations increases the 
number of quasi-independent estimates of the wavenumber spectrum. Digital data are 
most often sampled (or subsampled) at regularly-spaced time increments. Aside from 
the usual human propensity for order, the need for regularly-spaced data derives from 
the fact that most analysis methods have been developed for regular-spaced data. 
However, digital data do not necessarily need to be sampled at regularly-spaced time 
increments to give meaningful results, although some form of interpolation between 
values may eventually be required. 

1.2.6 Independent realizations 

As we review the different instruments and methods, the reader should keep in mind 
the three basic concerns of accuracy/precision, resolution (spatial and temporal), and 
statistical significance (statistical sampling theory). A fundamental consideration in 
ensuring the statistical significance of a set of measurements is the need for inde- 
pendent realizations. If repeat measurements of a process are strongly correlated, they 
provide no new information and do not contribute to the statistical significance of the 
measurements. Often a subjective decision must be made on the question of statistical 
independence. While this concept has a formal definition, in practice it is often 
difficult to judge. A simple guide suggested here is that any suite of measurements 
that is highly correlated (in time or space) cannot be independent. At the same time, a 
group of measurements that is totally uncorrelated, must be independent. In the case 
of no correlation, the number of "degrees of freedom" is defined by the total number 
of measurements; for the case of perfect correlation, the redundancy of the data values 
reduces the degrees of freedom to one for scalar quantity and to two for a vector 
quantity. The degree of correlation in the data set provides a way of roughly 
estimating the number of degrees of freedom within a given suite of observations. 
While more precise methods will be presented later in this text, a simple linear 
relation between degrees of freedom and correlation often gives the practitioner a way 
to proceed without developing complex mathematical constructs. 

As will be discussed in detail later, all of these sampling recommendations have 
statistical foundations and the guiding rules of probability and estimation can be 
carefully applied to determine the sampling requirements and dictate the appropriate 
measurement system. At the same time, these same statistical methods can be applied 
to existing data in order to better evaluate their ability to measure phenomena of 
interest. These comments are made to assist the reader in evaluating the potential of a 
particular instrument (or method) for the measurement of some desired variable. 

1.3 T E M P E R A T U R E  

The measurement of temperature in the ocean uses conventional techniques except 
for deep observations where hydrostatic pressures are high and there is a need to 
protect the sensing system from ambient depth/temperature changes higher in the 
water column as the sensor is returned to the ship. Temperature is the ocean property 
that is easiest to measure accurately. Some of the ways in which ocean temperature 
can be measured are: 
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(a) Expansion of a liquid or a metal. 
(b) Differential expansion of two metals (bimetallic strip). 
(c) Vapor pressure of a liquid. 
(d) Thermocouples. 
(e) Change in electrical resistance. 
(f) Infrared radiation from the sea surface. 

In most of these sensing techniques, the temperature effect is very small and some form 
of amplification is necessary to make the temperature measurement detectable. Usually, 
the response is nearly linear with temperature so that only the first-order term is needed 
when converting the sensor measurement to temperature. However, in order to achieve 
high precision over large temperature ranges, second, third and even fourth order terms 
must sometimes be used to convert the measured variable to temperature. 

1.3.1 Mercury thermometers 

Of the above methods, (a), (e), and (f) have been the most widely used in physical 
oceanography. The most common type of the liquid expansion sensor is the mercury- 
in-glass thermometer.  In their earliest oceanographic application, simple mercury 
thermometers were lowered into the ocean with hopes of measuring the temperature at 
great depths in the ocean. Two effects were soon noticed. First, thermometer housings 
with insufficient strength succumbed to the greater pressure in the ocean and were 
crushed. Second, the process of bringing an active thermometer through the oceanic 
vertical temperature gradient sufficiently altered the deeper readings that it was not 
possible to accurately measure the deeper temperatures. An early solution to this 
problem was the development of min-max thermometers that were capable of 
retaining the min imum and maximum temperatures encountered over the descent 
and ascent of the thermometer. This type of thermometer was widely used on the 
Challenger expedition of 1873-1876. 

The real breakthrough in thermometry was the development of reversing thermo- 
meters, first introduced in London by Negretti and Zambra in 1874 (Sverdrup et al., 
1942, p. 349). The reversing thermometer contains a mechanism such that, when the 
thermometer is inverted, the mercury in the thermometer stem separates from the 
bulb reservoir and captures the temperature at the time of inversion. Subsequent 
temperature changes experienced by the thermometer have limited effects on the 
amount of mercury in the thermometer stem and can be accounted for when the 
temperature is read on board the observing ship. This "break-off '  mechanism is based 
on the fact that more energy is required to create a gas-mercury interface (i.e. to break 
the mercury) than is needed to expand an interface that already exists. Thus, within 
the "pigtail" section of the reversing thermometer is a narrow region called the 
"break-off point", located near appendix C in Figure 1.3.1, where the mercury will 
break when the thermometer  is inverted. 

The accuracy of the reversing thermometer depends on the precision with which 
this break occurs. In good reversing thermometers this precision is better than 0.01 ~ 
In standard mercury-in-glass thermometers, as well as in reversing thermometers, 
there are concerns other than the break point which affect the precision of the temp- 
erature measurement. These are: 

(a) Linearity in the expansion coefficient of the liquid. 
(b) The constancy of the bulb volume. 
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Figure 1.3.1. Details of a reversing mercury thermometer showing the"pigtail appendix". 

(c) The uniformity of the capillary bore. 
(d) The exposure of the thermometer stem to temperatures other than the bulb 

temperature. 

Mercury expands in a near-linear manner with temperature. As a consequence, it 
has been the liquid used in most high precision, liquid-glass thermometers. Other 
liquids such as alcohol and toluene are used in precision thermometers only for very 
low temperature applications where the higher viscosity of mercury is a limitation. 
Expansion linearity is critical in the construction of the thermometer scale which 
would be difficult to engrave precisely if expansion were nonlinear. 

In a mercury thermometer,  the volume of the bulb is equivalent to about 6000 stem- 
degrees Celsius. This is known as the "degree volume" and usually is considered to 
comprise the bulb plus the portion of the stem below the mark. If the thermometer is 
to retain its calibration, this volume must remain constant with a precision not 
commonly realized by the casual user. For a thermometer precision within +0.01~ 
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the bulb volume must remain constant within one part in 600,000. Glass does not have 
ideal mechanical properties and it is known to exhibit some plastic behavior and 
deform under sustained stress. Repeated exposure to high pressures may produce 
permanent  deformation and a consequent shift in bulb volume. Therefore, precision 
can only be maintained by frequent laboratory calibration. Such shifts in bulb volume 
can be detected and corrected by the determination of the "ice point" (a slurry of 
water plus ice) which should be checked frequently if high accuracy is required. The 
procedure is more or less obvious but a few points should be considered. First the ice 
should be made from distilled water and the water-ice mixture should also be made 
from distilled water. The container should be insulated and at least 70% of the bath in 
contact with the thermometer  should be chopped ice. The thermometer should be 
immersed for five or more minutes during which time the ice-water mixture should be 
stirred continuously. The control temperature of the bath can be taken by an accurate 
thermometer of known reliability. Comparison with the temperature of the reversing 
thermometer,  after the known calibration characteristics have been accounted for, will 
give an estimate of any offsets inherent in the use of the reversing thermometer in 
question. 

The uniformity of the capillary bore is critical to the accuracy of the mercury 
thermometer. In order to maintain the linearity of the temperature scale it is necessary 
to have a uniform capillary as well as a linear response liquid element. Small 
variations in the capillary can occur as a result of small differences in cooling during 
its construction or to inhomogeneities in the glass. Errors resulting from the variations 
in capillary bore can be corrected through calibration at known temperatures. The 
resulting corrections, including any effect of the change in bulb volume, are known as 
"index corrections". These remain constant relative to the ice point and, once 
determined, can be corrected for a shift in the ice point by addition or subtraction of a 
constant amount. With proper calibration and maintenance, most of the mechanical 
defects in the thermometer  can be accounted for. Reversing thermometers are then 
capable of accuracies of _+0.01~ as given earlier for the precision of the mercury 
break-point. This accuracy, of course, depends on the resolution of the temperature 
scale etched on the thermometer.  For high accuracy in the typically weak vertical 
temperature gradients of the deep ocean, thermometers are etched with scale intervals 
between 0.1 and 0.2~ Most reversing thermometers have scale intervals of 0.1~ 

The reliability and calibrated absolute accuracy of reversing thermometers continue 
to provide a standard temperature measurement against which all forms of electronic 
sensors are compared and evaluated. In this role as a calibration standard, reversing 
thermometers continue to be widely used. In addition, many oceanographers still 
believe that standard hydrographic stations made with sample bottles and reversing 
thermometers, provide the only reliable data. For these reasons, we briefly describe 
some of the fundamental problems that occur when using reversing thermometers. An 
understanding of these errors may also prove helpful in evaluating the accuracy of 
reversing thermometer data that are archived in the historical data file. The primary 
malfunction that occurs with a reversing thermometer is a failure of the mercury to 
break at the correct position. This failure is caused by the presence of gas (a bubble) 
somewhere within the mercury column. Normally all thermometers contain some gas 
within the mercury. As long as the gas bubble has sufficient mercury compressing it, 
the bubble volume is negligible, but if the bubble gets into the upper part of the 
capillary tube it expands and causes the mercury to break at the bubble rather than at 
the break-off point. The proper place for this resident gas is at the bulb end of the 
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mercury; for this reason it is recommended that reversing thermometers always be 
stored and transported in the bulb-up (reservoir-down) position. Rough handling can 
be the cause of bubble formation higher up in the capillary tube. Bubbles lead to 
consistently offset temperatures and a record of the thermometer history can clearly 
indicate when such a malfunction has occurred. Again the practice of renewing, or at 
least checking, the thermometer calibration is essential to ensuring accurate tempera- 
ture measurements.  As with most oceanographic equipment, a thermometer with a 
detailed history is much more valuable than a new one without some prior use. 

There are two basic types of reversing thermometers: (1) protected thermometers 
which are encased completely in a glass jacket and not exposed to the pressure of the 
water column; and (2) unprotected thermometers for which the glass jacket is open at 
one end so that the reservoir experiences the increase of pressure with ocean depth, 
leading to an apparent increase in the measured temperature. The increase in 
temperature with depth is due to the compression of the glass bulb, so that if the 
compressibility of the glass is known from the manufacturer, the pressure and hence 
the depth can be inferred from the temperature difference, AT = T u n p r o t e c t e  d - 

T p r o t e c t e  d. The difference in thermometer readings, collected at the same depth, can be 
used to compute the depth to an accuracy of about 1% of the depth. This subject will 
be treated more completely in the section on depth/pressure measurement. We note 
here that the 1% accuracy for reversing thermometers exceeds the accuracy of 2-3% 
one normally expects from modern depth sounders. 

Unless collected for a specific observational program or taken as calibrations for 
electronic measurement  systems, reversing thermometer data are most commonly 
found in historical data archives. In such cases, the user is often unfamiliar with the 
precise history of the temperature data and thus cannot reconstruct the conditions 
under which the data were collected and edited. Under these conditions one generally 
assumes that the errors are of two types; either they are large offsets (such as errors in 
reading the thermometer)  which are readily identifiable by comparison with other 
regional historical data, or they are small random errors due to a variety of sources and 
difficult to identify or separate from real physical oceanicvariability. Parallax errors, 
which are one of the main causes of reading errors, are greatly reduced through use of 
an eye-piece magnifier. Identification and editing of these errors depends on the 
problem being studied and will be discussed in a later section on data processing. 

1.3.2. The mechanical bathythermograph (MBT) 

The MBT uses a liquid-in-metal thermometer to register temperature and a Bourdon 
tube sensor to measure pressure. The temperature sensing element is a fine copper 
tube nearly 17 m long filled with toluene (Figure 1.3.2). Temperature readings are 
recorded by a mechanical stylus which scratches a thin line on a coated glass slide. 
Although this instrument has largely been replaced by the expendable bathy- 
thermograph (XBT), the historical archives contain numerous temperature profiles 
collected using this device. It is, therefore, worthwhile to describe the instrument and 
the data it measures. Only the temperature measurement aspect of this device will be 
considered; the pressure/depth recording capability will be addressed in a latter 
section. 

There are numerous limitations to the MBT. To begin with, it is restricted to depths 
less than 300 m. While the MBT was intended to be used with the ship underway, it is 
only really possible to use it successfully when the ship is traveling at no more than a 
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Figure 1.3.2. A bathythermograph showing its internal construction and sample BT slides. 

few knots. At higher speeds, it becomes impossible to retrieve the MBT without the 
risk of hitting the instrument against the ship. Higher speeds also make it difficult to 
properly estimate the depth of the probe from the amount of wire out. The 
temperature accuracy of the MBT is restricted by the inherent lower accuracy of the 
liquid-in-metal thermometer. Metal thermometers are also subject to permanent 
deformation. Since metal is more subject to changes at high temperatures than is glass 
it is possible to alter the performance of the MBT by continued exposure to higher 
temperatures (i.e. by leaving the probe out in the sun). The metal return spring of the 
temperature stylus is also a source of potential problems in that it is subject to 
hysteresis and creep. Hysteresis, in which the up-trace does not coincide with the 
down-trace, is especially prevalent when the temperature differences are small. Creep 
occurs when the metal is subjected to a constant loading for long periods. Thus, an 
MBT continuously used in the heat of the tropics may be found later to have a slight 
positive temperature error. 

Most of the above errors can be detected and corrected for by frequent calibration of 
the MBT. Even with regular calibration it is doubtful that the stated precision of 0.1 ~ 
(0.06~ can be attained. Here, the value is given in ~ since most of the MBTs were 
produced with these temperature scales. When considering MBT data from the 
historical data files, it should be realized that these data were entered into the files by 
hand. The usual method was to produce an enlarged black-and-white photograph of 
the temperature trace using the nonlinear calibration grid unique to each instrument. 
Temperature values were then read off of these photographs and entered into the data 
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file at the corresponding depths. The usual procedure was to record temperatures for a 
fixed depth interval (i.e. 5 or 10 m) rather than to select out inflection points that best 
described the temperature profile. The primary weakness of this procedure is the ease 
with which incorrect values can enter the data file through misreading the tempera- 
ture trace or incorrectly entering the measured value. Usually these types of errors 
result in large differences with the neighboring values and can be easily identified. 
Care should be taken, however, to remove such values before applying objective 
methods to search for smaller random errors. It is also possible that data entry errors 
can occur in the entry of date, time and position of the temperature profile and tests 
should be made to detect these errors. 

1.3.3. Resistance thermometers (expendable bathythermograph" XBT) 

Since the electrical resistance of metals, and other materials, changes with 
temperature, these materials can be used as temperature sensors. The resistance (R) 
of most metals depends on temperature (T) and can be expressed as a polynomial 

R - R ( 1  + a T + b T  2 + c T  3 4- ...) (1.2.4) 

where a, b, and c are constants. In practice, it is usually assumed that the response is 
linear over some limited temperature range and the proportionality can be given by 
the value of the coefficient a (called the temperature resistance coefficient). The most 
commonly used metals are copper, platinum, and nickel which have temperature 
coefficients of 0.0043, 0.0039, and 0.0066 (~ respectively. Of these, copper has the 
most linear response but its resistance is low so that a thermal element would require 
many turns of fine wire and would consequently be expensive to produce. Nickel has a 
very high resistance but deviates sharply from linearity. Platinum has a relatively high 
resistance level, is very stable and has a relatively linear behavior. For these reasons, 
plat inum resistance thermometers have become a standard by which the international 
scale of temperature is defined. Platinum thermometers are also widely used as 
laboratory calibration standards and have accuracies of _+0.001~ 

The semiconductors form another class of resistive materials used for temperature 
measurements. These are mixtures of oxides of metals such as nickel, cobalt, and 
manganese which are molded at high pressure followed by sintering (i.e. heating to 
incipient fusion). The types of semiconductors used for oceanographic measurements 
are commonly called thermistors. These thermistors have the advantages that: (1) the 
temperature resistance coefficient of-0.05(~ -1 is about ten times as great as that for 
copper; and (2) the thermistors may be made with high resistance for a very small 
physical size. 

The temperature coefficient of thermistors is negative which means that the 
resistance decreases as temperature increases. This temperature coefficient is not a 
constant except over very small temperature ranges; hence the change of resistance 
with temperature is not linear. Instead, the relationship between resistance and 
temperature is given by 

R ( T )  - Ro exp [/3(T - 1 -  To1)] (1.2.5) 

where R,, = /3/T 2 is the conventional temperature coefficient of resistance, and T and 
T,, are two absolute temperatures (K) with the respective resistance values of R(T) and 
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Ro. Thus, we have a relationship whereby temperature T can be computed from the 
measurement of resistance R(T). 

One of the most common uses of thermistors in oceanography is in expendable 
bathythermographs (XBTs). The XBT was developed to provide an upper ocean 
temperature profiling device that operated while the ship was underway. The crucial 
development was the concept of depth measurement using the elapsed time for the 
known fall rate of a "freely-falling" probe. To achieve "free-fall", independent of the 
ship's motion, the data transfer cable is constructed from fine copper wire with feed- 
spools in both the sensor probe and in the launching canister (Figure 1.3.3). The 
details of the depth measurement capability of the XBT will be discussed and 
evaluated in the section on depth/pressure measurements. 

The XBT probes employ a thermistor placed in the nose of the probe as the 
temperature sensing element. According to the manufacturer (Sippican Corp.; 
Marion, Massachusetts, U.S.A.), the accuracy of this system is _+0.1~ This figure 
is determined from the characteristics of a batch of semiconductor material which has 
known resistance-temperature (R-T) properties. To yield a given resistance at a 
standard temperature, the individual thermistors are precision-ground, with the XBT 
probe thermistors ground to yield 5000 Ft (~ is the symbol for the unit of ohms) at 
25~ (Georgi et al., 1980). If the major source of XBT probe-to-probe variability can be 
attributed to imprecise grinding, then a single-point calibration should suffice to 
reduce this variability in the resultant temperatures. Such a calibration was carried 
out by Georgi et al. (1980) both at sea and in the laboratory. 

To evaluate the effects of random errors on the calibration procedure, twelve probes 
were calibrated repeatedly. The mean differences between the measured and bath 
temperatures was +_0.045~ with a standard deviation of 0.01~ For the overall 
calibration comparison, 18 cases of probes (12 probes per case) were examined. Six 
cases of T7s (good to 800 m and up to 30 knots) and two cases of T6s (good to 500 m 
and at less than 15 knots) were purchased new from Sippican while the remaining 10 
cases of T4s (good to 500 m up to 30 knots) were acquired from a large pool of XBT 
probes manufactured in 1970 for the U.S. Naw. The over.~i~ average standard 
deviation for the probes was 0.023~ which then reduces t~, ~,.021~ when con- 
sideration is made for the inherent variability of the calibration procedure. 

A separate investigation was made of the R - T  relationship by studying the response 
characteristics for nine probes. The conclusion was that the R - T  differences ranged 
from +0.011~ to -0.014~ which then means that the measured relationships were 
within __.0.014~ of the published relationship and that the calculation of new coeffi- 
cients, following Steinhart and Hart (1968), is not warranted. Moreover the final con- 
clusions of Georgi et al. (1980) suggest an overall accuracy for XBT thermistors of 
+0.06~ at the 95% confidence level and that the consistency between thermistors is 
sufficiently high that individual probe calibration is not needed for this accuracy level. 

Another method of evaluating the performance of the XBT system is to compare 
XBT temperature profiles with those taken at the same time with an higher accuracy 
profiler such as a CTD system. Such comparisons are discussed by Heinmiller et al. 
(1983) for data collected in both the Atlantic and the Pacific using calibrated CTD 
systems. In these comparisons, it is always a problem to achieve true synopticity in the 
data collection since the XBT probe falls much faster than the recommended drop rate 
for a CTD probe. Most of the earlier comparisons between XBT and CTD profiles 
(Flierl and Robinson, 1977; Seaver and Kuleshov, 1982) were carried out using XBT 
temperature profiles collected between CTD stations separated by 30 km. For the 
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Figure 1.3.3. Exploded view of a Sippican Oceanographic Inc. XBT showing spool and canister. 

purposes of intercomparison, it is better for the XBT and CTD profiles to be collected 
as simultaneously as possible. 

The primary error discussed by Heinmiller et al. (1983) is that in the measurement 
of depth rather than temperature. There were, however, significant differences 
between temperatures measured at depths where the vertical temperature gradient 
was small and the depth error should make little or no contribution. Here, the XBT 
temperatures were found to be systematically higher than those recorded by the CTD. 
Sample comparisons were divided by probe type and experiment. The T4 probes (as 
defined above) yielded a mean XBT-CTD difference of about 0.19~ while the T7s 
(defined above) had a lower mean temperature difference of 0.13~ Corresponding 
standard deviations of the temperature differences were 0.23~ for the T4s, and 
0.11~ for the T7s. Taken together, these statistics suggest an XBT accuracy less than 
the +_0.1 ~ given by the manufacturer and far less than the 0.06~ reported by Georgi 
et al. (1980) from their calibrations. 
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From these divergent results, it is difficult to decide where the true XBT 
temperature accuracy lies. Since the Heinmiller et al. (1983) comparisons were made 
in situ there are many sources of error that could contribute to the larger temperature 
differences. Even though most of the CTD casts were made with calibrated instru- 
ments, errors in operational procedures during collection and archival could add 
significant errors to the resultant data. Also, it is not easy to find segments of temp- 
erature profiles with no vertical temperature gradient and therefore it is difficult to 
ignore the effect of the depth measurement error on the temperature trace. It seems 
fair to conclude that the laboratory calibrations represent the ideal accuracy possible 
with the XBT system (i.e. better than •176 In the field, however, one must expect 
other influences that will reduce the accuracy of the XBT measurements and an 
overall accuracy slightly more than _0.1 ~ is perhaps realistic. Some of the sources of 
these errors can be easily detected, such as an insulation failure in the copper wire 
which results in single step offsets in the resulting temperature profile. Other possible 
temperature error sources are interference due to shipboard radio transmission (which 
shows up as high frequency noise in the vertical temperature profile) or problems with 
the recording system. Hopefully, these problems are detected before the data are 
archived in historical data files. 

In closing this section we comment that, until recently, most XBT data were 
digitized by hand. The disadvantage of this procedure is that chart paper recording 
doesn't fully realize the potential digital accuracy of the sensing system and that the 
opportunities for operator recording errors are considerable. Again, some care should 
be exercised in editing out these large errors which usually result from the incorrect 
hand recording of temperature, date, time or position. It is becoming increasingly 
popular to use digital XBT recording systems which improve the accuracy of the 
recording and eliminate the possibility of incorrectly entering the temperature trace. 
Such systems are described, for example, in Stegen et al. (1975) and Emery et al. 
(1986). Today, essentially all research XBT data are collected with digital systems, 
while the analog systems are predominantly used by various international navies. 

1.3.4 Salinity/conductivity-temperature-depth profilers 

Resistance thermometers are widely used on continuous profilers designed to replace 
the earlier hydrographic profiles collected using a series of sampling bottles. The new in 
situ electronic instruments continuously sample the water temperature, providing much 
higher resolution information on the ocean's vertical and horizontal temperature 
structure. Since density also depends on salinity, electronic sensors were developed to 
measure salinity in situ and were incorporated into the profiling system. As discussed by 
Baker (1981), an early electronic profiling system for temperature and salinity was 
described by Jacobsen (1948). The system was limited to 400 m and used separate 
supporting and data transfer cables. Next, a system called the STD (salinity-temp- 
erature-depth) profiler was developed by Hamon and Brown in the mid-1950s (Hamon, 
1955; Hamon and Brown, 1958). The evolution of the conductivity measurement, used 
to derive salinity, will be discussed in the section on salinity. This evolution led to the 
introduction of the conductivity-temperature-depth (CTD) profiling system (Brown, 
1974). This name change identified improvements not only in the conductivity sensor 
but also in the temperature sensing system designed to overcome the mismatch in the 
response times of the temperature and conductivity sensors. This mismatch often 
resulted in erroneous salinity spikes in the earlier STD systems (Dantzler, 1974). 
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Most STD/CTD systems use a plat inum resistance thermometer  as one leg of an 
impedance bridge from which the temperature is determined. An important 
development was made by Hamon and Brown (1958) where the sensing elements 
were all connected to oscillators that converted the measured variables to audio 
frequencies which could then be sent to the surface via a single conducting element in 
the profiler support cable. The outer cable sheath acted as both mechanical support 
and the return conductor. This data transfer method has subsequently been used on 
most electronic profiling systems. The early STDs were designed to operate to 1000 m 
and had a temperature range of 0-30~ with an accuracy of _+0.15~ Later STDs, 
such as the widely used Plessey Model 9040, had accuracies of m0.05~ with 
temperature ranges o f - 2  to +18~ or +15 to +35~ (range was switched auto- 
matically during a cast). Modern CTDs, such as the Sea Bird Electronics SBE 25 and 
the General Oceanics MK3C (modified after the EG&G Mark V) (Figure 1.3.4) have 
accuracies of m0.002~ over a range of - 3  to +32~ and a stability of 0.001~ 
(Brown and Morrison, 1978; Hendry, 1993). To avoid the problem of sensor response 
mismatch the MK3C CTD combines the accuracy and stability of a platinum 
resistance thermometer  with the speed of a thermistor. The response time of the 
plat inum thermometer  is typically 250 ms while the response time of the conductivity 
cell (for a fall rate of 1 m/s) is typically 25 ms. The miniature thermistor probe 
matches the faster response of the conductivity cell with a response time of 25 ms. 
These two temperature measurements are combined to yield a rapid and highly 
accurate temperature.  The response of the combined system to a step input is shown 
in Figure 1.3.5 taken from Brown and Morrison (1978). Later modifications have senl 
the plat inum resistance temperature up the cable along with the fast response 
thermistor temperature for later combination. It is also possible to separate the 
thermometer from the conductivity cell so that the spatial separation acts as a time 
delay as the unit falls through the water (Topham and Perkins, 1988). 

1.3.5 Dynamic response of temperature sensors 

Before considering more closely the problem of sensor response time for STD/CTD 
systems, it is worthwhile to review the general dynamic characteristics of temperature 
measuring systems. For example, no temperature sensor responds instantaneously tc 
changes in the environment which it is measuring. If the environment temperature is 
changing, the sensor element lags in its response. A simple example is a reversing 
thermometer which, lowered through the water column, would at no time read the 
correct environment temperature until it had been stopped and allowed to equilibrate 
for some time. The time (K) that it takes the thermometer to respond to the 
temperature of a new environment is known as the response time or "time constant" oJ 
the sensor. 

The time constant K is best defined by writing the heat transfer equation for oui 
temperature sensor as 

dT 1 
dt = -k ( T -  Tw) (1.3.5.1', 

where Tw and T are the temperatures of the medium (water) and thermometer and l 
refers to the elapsed time. If we assume that the temperature change occurs rapidly as 
the sensor descends, the temperature response can be described by the integration oJ 
equation (1.3.5.1) from which: 



Data Acquisit ion and Recording 19 

Figure 1.3.4. (a) Schematic of the Sea-Bird SBE 25 CTD and optional sensor modules (courtesy, Doug 
Bennett, Sea-Bird Electronics). 

( T -  Tw)/(To - Tw) = A T / A T o  = e -t/K (1.3.5.2) 

In this solution, To refers to the temperature of the sensor before the temperature change 
and K is defined so that the ratio A T / A T o  becomes e -1 ( = 0.368) when 63% of the 
temperature change, AT, has taken place. The time for the temperature sensor to reach 
90% of the final temperature value can be calculated using e -t/k = 0.1. A more complex 
case is when the temperature of the environment is changing at a constant rate; i.e. 
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Figure 1.3.4. (b) schematic of General Oceanics MK3C/WOCE CTD and optional sensors; (c) schematic 
of electronics and sensors of Generhl Oceanics MK3C/WOCE CTD (courtesy, Dan Schaas and Mabel 

Gracia, General Oceanics). 
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Figure 1.3.5. Combined output and response times of the resistance thermometer of a CTD. 

Tw - T1 + ct (1.3.5.3) 

where T1 and c are constants. The temperature sensor then follows the same temp- 
erature change but lags behind so that 

T - Tw - - c K  (1.3.5.4) 

The response times, as defined above, are given in Table 1.3.1 for various tempera- 
ture sensing systems. Values refer to the time in seconds for the sensor to reach the 

specified percentage of its final value. 
The ability of the sensor to attain its response level depends strongly on the speed at 

which the sensor moves through the medium. An example of the application of these 
response times is an estimate for the period of time a reversing thermometer is allowed 
to "soak" to register the appropriate temperature. Suppose we desired an accuracy of 
_+0.01~ and that our reversing thermometer is initially 10~ warmer than the water. 
From equation (1.3.5.2), 0.01/10.0 - exp ( - t / K ) ,  so that t - 550 s or 9.2 min. Thus, 
the usually recommended soak period of 5 min (for a hydrographic cast) is set by 
thermometer limitations rather than by the imperfect flushing of the water sample 
bottles. Another application is the estimation of the descent rate for a STD/CTD. 

Table 1.3.1 Response times (in s)for various temperature sensors 

Device K63% K90% K99% 

Mechanical bathythermograph 0.13 0.30 0.60 
STD 0.30 0.60 1.20 
Thermistor 0.04 0.08 0.16 
Reversing thermometer 17.40 40.00 80.00 
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Assuming that the critical temperature change is in the thermocline where the 
temperature change is about 2~ then to sense this change, with an accuracy of 
0.1~ the STD/CTD response requires that exp(- t /0 .6)  = 0.1/2.0 from which t = 
1.8 s. Thus, we have the usual recommendation for a lowering rate of about 1 m/s. 
Today sensors, such as those used in the SBE 25 CTD (Figure 1.3.4a), General 
Oceanics MK3C CTD (Figure 1.3.4b, c) and the Guildline 8737 CTD have response 
times closer to 1.0 s. 

1.3.6 Response times of CTD systems 

As with any thermometer, the temperature sensor on the CTD profiler does not 
respond instantaneously to a change in temperature. Heat must first diffuse through 
the viscous boundary layer set up around the probe and through the protective 
coatings of the sensor (Lueck et al., 1977). In addition, the actual temperature head 
must respond before the temperature is recorded. These effects lead to the finite 
response time of the profiler and introduce noise into the observed temperature data 
(Horne and Toole, 1980). A correction is needed to achieve accurate temperature, 
salinity and density data. Fofonoffet al. (1974) discuss how the single-pole filter model 
(1.3.5.2) may be used to correct the temperature data. In this lag-correction procedure, 
the true temperature at a point is estimated from (1.3.5.1) by calculating the time rate- 
of-change of temperature from the measured record using a least-square linear 
estimation over several neighboring points. 

Horne and Toole (1980) argue that data corrected with this method may still be in 
error due to errors arising in the estimation of terms in the differential equation or the 
approximation of the equation to the actual response of the sensor. As an alternative, 
they suggest using the measured data to estimate a correction filter directly. This 
procedure assumes that the observed temperature data may be written as a 
convolution of the true temperature with the response function of the sensor such that 

T(t) = H[T*(t)] (1.3.6.1) 

where T is the observed temperature at time t, T* is the true temperature and H is the 
transfer or response function of the sensor. The filter g is sought so that 

g.  H = (5(t) (1.3.6.2) 

where (5 is the Dirac delta function. The filter g can be found by fitting, in a least- 
squares sense, its Fourier transform to the known Fourier transform of the function H. 
This method is fully described in the appendix to Horne and Toole (1980). The major 
advantage of this filter technique is only realized in the computation of salinity from 
conductivity and temperature. 

In addition to the physical response time problem of the temperature sensor there is 
the problem of the nonuniform descent of the CTD probe due to the effects of a ship's 
roll or pitch (Trump, 1983). From a study of profiles collected with a Neil-Brown 
CTD, the effects of ship's roll were clearly evident at the 5-s period when the data were 
treated as a time-series and spectra were computed. High coherence between temp- 
erature and conductivity effects suggest that the mechanisms leading to these roll- 
induced features are not related to the sensors themselves but rather reflect an 
interaction between the environment and the sensor motion. Two likely candidates 
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are: (a) the modification of the temperature by water carried along in the wake of the 
CTD probe from another depth; and (b) the effects of a turbulent wake overtaking the 
probe as it decelerates bringing with it a false temperature. 

Trump (1983) concludes by saying that, while some editing procedure may yet be 
discovered to remove roll-related temperature variations, none is presently available. 
He, therefore, recommends that CTD data taken from a rolling ship not be used to 
compute statistics on vertical fine-structure and suggests that the best way to remove 
such contamination is to employ a roll-compensation support system for the CTD 
probe. Trump also recommends a series of editing procedures to remove roll effects 
from present CTD data and argues that of the 30,000 raw input data points in a 300 m 
cast that up to one-half will be removed by these procedures. A standard procedure is 
to remove any data for which there is a negative depth change between successive 
values on the way down and vice versa on the way up. 

1.3.7 Temperature calibration of STD/CTD profilers 

Although STD/CTD profilers were supposed to replace bottle casts, it was soon found 
that, due to problems with electronic drift and other subtle instrument changes, it was 
necessary to conduct in situ calibrations using one or more bottle samples. For this 
reason, and also to collect water samples for chemical analyses, most CTDs are used in 
conjunction with Rosette bottle samplers which can be commanded to sample at 
desired depths. A Rosette sampler consists of an aluminum cage at the end of the CTD 
conducting cable to which are fixed six, 12, or more water bottles that can be 
individually triggered electronically from the surface. Larger cages can accommodate 
larger volume bottles, typically up to 30 litres. While such in situ calibrations are more 
important for conductivity measurements, it is good practice to compare temperatures 
from the reversing thermometers with the CTD values. This comparison must be done 
in waters with near-uniform temperature and salinity profiles so that the errors 
between the CTD values and water sample are minimized. One must pick the time of 
the CTD values that coincide exactly with the tripping of the bottle. As reported by 
Scarlet (1975), in situ calibration usually confirms the manufacturer's laboratory 
calibration of the profiling instrument. Generally, this in situ calibration consists of 
comparisons between four and six temperature profiles, collected with reversing 
thermometers. Taken together with the laboratory calibration data these data are used 
to construct a "correction" curve for each temperature sensor as a function of 
pressure. Fofonoffet al. (1974) present a laboratory calibratiorl curve obtained over an 
18-month period for an early Neil-Brown CTD (the Niel-Brown CTD was the 
forerunner of the General Oceanics MK3C CTD). A comparison of 175 temperatures 
measured in situ with this profiler and those measured by reversing mercury 
thermometers is presented in Figure 1.3.6. In the work reported by Scarlet (1975), 
these calibration curves were used in tabular, rather than functional, form and 
intermediate values were derived using linear interpolation. This procedure was likely 
adequate for the study region (Scarlet, 1975) but may not be generally applicable. 
Other calibration procedures fit a polynomial to the reference temperature data to 
define a calibration curve. 
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Figure 1.3.6. Histogram of temperature differences. Values used are the differences in temperature 
between deep-sea reversing mercury thermometers (DSRT) and the temperature recorded by an early 

Niel-Brown CTD. (From Fofonoff et al., 1974.) 

1.3.8 Sea surface temperature 

Sea surface temperature (SST) was one of the first oceanographic variables to be 
measured and continues to be one of the most widely made routine oceanographic 
measurements. Benjamin Franklin mapped the position of the Gulf Stream by sus- 
pending a simple mercury-in-glass thermometer from his ship while traveling between 
the U.S. and Europe. 

1.3.8.1 Ship measurements 

The introduction of routine SST measurements did away with the technique of 
suspending a thermometer from the ship. In its place, SST was measured in a sample 
of surface water collected in a bucket. When SST measurements were fairly approxi- 
mate, this method was adequate. However, as the temperature sensors improved, 
problems with on-deck heating/cooling, conduction between bucket and thermometer, 
spillage, and other sources of error, led to modifications of the bucket system. New 
buckets were built that contained the thermometer and captured only a small volume 
of near-surface water. Due to its accessibility and location at the thermal boundary 
between the ocean and the atmosphere, the SST has become the most widely observed 
oceanic parameter. As in the past, the measurement of SST continues to be part of the 
routine marine weather observations made by ships at sea. 

There are many possible sources of error with the bucket method including changes 
of the water sample temperature on the ship's deck, heat conduction through contact 
of the container with the thermometer, and the temperature change of the thermo- 
meter while it is being read (Tabata, 1978a). In order to avoid these difficulties, special 
sample buckets have been designed (Crawford, 1969) which shield both the container 
and the thermometer mounted in it from the heating/cooling effects of sun and wind. 
Comparisons between temperature samples collected with these special bucket 
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samplers and reversing thermometers near the sea surface have yielded temperature 
differences of •176 (Tauber, 1969; Tabata, 1978a). 

Seawater cooling for ship's engines makes it possible to measure SST from the 
temperature of the engine intake cooling system sensed by some type of thermometer 
imbedded in the cooling stream. Called "injection temperatures" these temperature 
values are reported by Saur (1963) to be on the average 0.7•176 higher than 
corresponding bucket temperatures. For his study, Saur used SST data from 12 
military ships transiting the North Pacific. Earlier similar studies by Roll (1951) and 
by Brooks (1926) found smaller temperature differences, with the intake-temperatures 
being only 0.1~ higher than the bucket values. Brooks found, however, that the 
engine-room crew usually recorded values that were 0.3~ too high. More recent 
studies by Walden (1966), James and Fox (1972) and Collins et al. (1975) have given 
temperature differences of 0.3, 0.3• 1.3, and 0.3+_0.7~ respectively. Tabata (1978b) 
compared three-day average SSTs from the Canadian weather ships at Station "P" 
(which used a special bucket sampler) with ship injection temperatures from merch- 
ant ships passing close by. He found an average difference of 0.2• 1.5~ (Figure 1.3.7). 
Again, the mean differences were all positive suggesting the heating effect of the 
engine room environment on the injection temperature. 

The above comparisons between ship injection and ship bucket SSTs were made 
with carefully recorded values on ships that were collecting both types of measure- 
ments. Most routine ship-injection temperature reports are sent via radio by the ship's 
officers and have no corresponding bucket sample. As might be expected, the largest 
errors in these SST values are usually caused by errors in the radio transmission or in 
the incorrect reporting or receiving of ship's position and/or temperature value 
(Miyakoda and Rosati, 1982). The resulting large deviations in SST can normally be 
detected by using a comparison with monthly climatological means and applying 
some range of allowable variation such as 5~ 

This brings us to the problem of selecting the appropriate SST climatology--the 
characteristic SST temperature structure to be used for the global ocean. Until 
recently, there was little agreement as to which SST climatology was most appropriate. 
In an effort to establish a guide as to which climatology was the best, Reynolds (1983) 
compared the available SST climatologies with one he had produced (Reynolds, 1982). 
It was this work that led to the selection of Reynolds (1982) climatology for use in the 
Tropical Ocean Global Atmosphere (TOGA) research program. 
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Figure 1.3.7. Frequency of occurrence of standard deviations associated with the 3.5-day mean sea 
surface temperature at Ocean Station"P"(50~ 145~ Difference between bucket temperature and 

ship intake surface temperature. (Modified after Tabata, 1978a.) 
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1.3.8.2 Satellite-sensed sea surface temperature (radiation temperature) 

In contrast to ship and buoy measurements that sample localized areas on a quasi- 
synoptic basis, earth-orbiting satellites offer an opportunity to uniformly sample the 
surface of the globe on a nearly synoptic basis. Infrared sensors flown on satellites 
retrieve information that can be used to estimate SST, with certain limitations. Clouds 
are one of the major limitations in that they prevent long-wave, sea-surface radiation 
from reaching the satellite sensor. Fortunately, clouds are rarely stationary and all 
areas of the earth's surface are eventually observed by the satellite. In general, 
researchers wishing to produce "cloud-free" images of SST are required to construct 
composites over time using repeat satellite infrared data. These composites may 
require images spanning a couple of days to a whole week. Even with the need for 
composite images, satellites provide almost global coverage on a fairly short time scale 
compared with a collection of ship SST observations. The main problem with satellite 
SST estimates is that their level of accuracy is a function of satellite sensor calibration 
and specified corrections for the effects of the intervening atmosphere, even under 
apparently cloud-free conditions (Figure 1.3.8). 

One of the first satellites capable of viewing the whole earth with an infrared sensor 
was ITOS 1 launched January 23, 1970. This satellite carried a scanning radiometer 
(SR) with an infrared channel in the 10.5-12.5 #m spectral band. The scanner viewed 
the earth in a swath with a nadir (sub-satellite) spatial resolution of 7.4 km as the 
satellite travelled in its near-polar orbit. A method that uses these data to map global 
SST is described in Rao et al. (1972). This program uses the histogram method of 
Smith et al. (1970) to determine the mean SST over a number of pixels (picture 
elements), including those with some cloud. A polar-stereographic grid of 2.5 ~ of 
latitude by 2.5 ~ of longitude, encompassing about 1024 pixels per grid point per day, 
was selected. In order to evaluate the calculated SST retrievals from the infrared 
measurements, the calibrated temperature values were compared with SST maps 
made from ship radio reports. The resulting root-mean-square (RMS) difference for 
the northern hemisphere was 2.6~ for three days in September 1970. When only the 
northern hemisphere ocean weather ship SST observations were used, this RMS value 
dropped to 1.98~ a reflection of the improved ship SST observations. A comparison 
for all ships from the southern hemisphere, for the same three days, resulted in an 
RMS difference of 2.45~ As has been discussed earlier in this chapter, one of the 

3 

CJ 

v 

0m I 

~ 

Q 

o -I 

~'~ -2 m 

-3 

_ O 

0 ~ 0 O 0 

-o~ n80 on 

-- o 8 

, I 

0 500 

[D 

OID 0 0 0 
0 O0 O 

I ..... I I 

1000 1500 2000 

No. of cloud free pixels 

I 
2500 

Figure 1.3.8. Sea surface temperature differences, satellite minus ship, plotted as a function of the number 
of cloud-free pixels in a 50 x 50 pixel array. (From LleweUyn-Jones et al., 1984.) 



Data  Acquisit ion and Recording 27 

reasons for the magnitude of this difference is the uncertainty of the ship-sensed SST 
measurements. 

The histogram method of Smith et al. (1970) was the basis for an operational SST 
product known as GOSSTCOMP (Brower et al., 1976). Barnett et al. (1979) examined 
the usefulness of these data in the tropical Pacific and found that the satellite SST 
values were negatively biased by 1-4~ and so were, by themselves, not very useful. 
The authors concluded that the systematically cooler satellite temperatures were due 
to the effects of undetected cloud and atmospheric water vapor. As reported in 
Miyakoda and Rosati (1982), the satellite SST retrieval procedure was evolving at that 
time and retrieval techniques had improved (Strong and Pritchard, 1980). These 
changes included new methods to detect clouds and remove the effects of atmospheric 
water vapor contamination. 

More recently, a new satellite sensor system, the Advanced Very High Resolution 
Radiometer (AVHRR) has become the standard for infrared SST retrievals. In terms 
of SST the main benefits of the new sensor system are: (a) improved spatial resolution 
of about 1 km at nadir; and (b) the addition of other spectral channels which improve 
the detection of water vapor by computing the differences between various channel 
radiometric properties. The AVHRR is a four- or five-channel radiometer with 
channels in the visible (0.6-0.7 #m), near-infrared (0.7-1.1 #m), and thermal infrared 
(3.5-3.9, 10.5-11.5, and 11.5-12.5 #m). The channel centered at 3.7 #m was intended 
as a nighttime cloud discriminator but is more useful when combined with the 11 and 
12 #m channels to correct for the variable amounts of atmospheric water vapor 
(Bernstein, 1982). While there are many versions of this "two-channel" or "dual- 
channel" correction procedure (also called the "split-window" method), the most 
widely used was developed by McClain (1981). 

The above channel correction methods have been developed in an empirical manner 
using some sets of in situ SST measurements as a reference to which the AVHRR 
radiance data are adjusted to yield SST. This requires selecting a set of satellite and in 
situ SST data collected over coincident intervals of time and space. Bernstein (1982) 
chose intervals of several tens of kilometers and several days (Figure 1.3.9) while 
McClain et al. (1983) used a period of one day and a spatial grid of 25 km. In a recent 
evaluation of both of these methods, Lynn and Svejkovsky (1984) found the Bernstein 
method yielded a mean bias of +0.5~ and the McClain equation a bias of -0 .4~  
relative to in situ SST measurements. In each case, the difference from in situ values 
was smaller than the RMS errors suggested by the authors of the two methods. 
Bernstein (1982) compared mean maps made from 10 days of AVHRR retrievals with 
similar maps made from routine ship reports. He found the maps to agree to within 
_0.8~ (one standard deviation) and concluded that this level of agreement was 
limited by the poor accuracy of the ship reports. He suggested that properly handled, 
the radiometer data can be used to study climate variations with an accuracy of 0.5- 
1.0~ This is consistent with the results of Lynn and Svejkovsky (1984) for a similar 
type of data analysis. 

Another possible source of satellite SST estimates is the Visible Infrared Spin Scan 
Radiometer (VISSR) carried by the Geostationary Orbiting Earth Satellite (GOES). 
Unfortunately, the VISSR has a spatial resolution of about 8 km at the sub-satellite 
point for the infrared channel. Another disadvantage of the VISSR is the lack of 
onboard infrared calibration similar to that available from the AVHRR (Maul and 
Bravo, 1983). While the VISSR does provide a hemispherical scan every half hour its 
shortcomings have discouraged its application to the general estimation of SST. In 
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Figure 1.3.9. Grid point by grid point cross plot of the mapped values of sea surface temperature from 
ship-based and A VHRR-based maps. (Bernstein, 1982.) 

some cases, VISSR data have been examined where there is a lack of suitable AVHRR 
data. In one such study, Maul and Bravo (1983) found that a regression between 
VISSR infrared and in situ SST data, using the radiative transfer equations, yielded 
satellite SST estimates that were no better than _0.9~ The conclusion was that, in 
general, GOES VISSR SST estimates are accurate to within _ 1.3~ only. The primary 
problem with improving this accuracy is the presence of sub-pixel size clouds which 
contaminate the SST regression. 

Efforts are underway to improve the accuracy of retrievals from AVHRR through a 
better understanding of the on-board satellite calibration of the radiometer and by the 
development of regional and seasonal "dual-channel" atmospheric correction proce- 
dures. Evaluation of these correction procedures, compared with collections of 
atmospheric radiosonde measurements, has demonstrated the robust character of the 
"dual-channel" correction and improvements only require a better estimate of the 
local versus global effects in deriving the appropriate algorithm (Llewellyn-Jones et 
al., 1984). Thus, it appears safe to suggest that AVHRR SST estimates can be made 
with accuracies of about 0.5~ assuming that appropriate atmospheric corrections are 
performed. 

Three workshops were held at the Jet Propulsion Laboratory UPL) to compare the 
many different techniques of SST retrievals from existing satellite systems. The first 
workshop (January 27-28, 1983) examined only the microwave data from the scanning 
multichannel microwave radiometer (SMMR) while the second workshop (June 22-24, 
1983) considered SMMR, HIRS (high resolution infrared sounder) and AVHRR for 
two time periods, November 1979 and December, 1981. The third workshop (February 
22-24, 1984) examined SST products derived from SMMR, HIRS, AVHRR, and VAS 
(atmospheric sounder on the GOES satellites) for an additional two months (March 
and July, 1982). A series of workshop reports is available from JPL and the results are 
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summarized in journal articles in the November 1985 issue of the Journal of Geo- 
physical Research. 

In their review of workshop-3 results, Hilland et al. (1985) reported that the overall 
RMS satellite SST errors range from 0.5 to 1.0~ In a discussion of the same 
workshop results, Bernstein and Chelton (1985) were more specific, reporting RMS 
differences between satellite and SST anomalies ranging from 0.58 to 1.37~ Mean 
differences for this same comparison ranged from -0.48 to 0.72~ and varied 
substantially from month to month and season to season. They also reported that the 
SMMR SSTs had the largest RMS differences and time-dependent biases. Differences 
for the AVHRR and HIRS computed SSTs were smaller. When the monthly ship SST 
data were smoothed spatially to represent 600 km averages, the standard deviations of 
the monthly ship averages from climatology varied from 0.35 to 0.63~ Using these 
smoothed ship SST anomalies as a reference, the signal-to-noise variance ratios were 
0.25 for SMMR and 1.0 for both the AVHRR and HIRS. 

The workshop review by McClain et al. (1985) of the AVHRR based multichannel 
SST (MCSST) retrieval method found biases of 0.3-0.4~ (with MCSST lower than 
ship), standard deviations of 0.5-0.6~ and correlations of +0.3 to +0.7 (see also 
Bates and Diaz, 1991). They also discussed a refined MCSST technique being used 
with more recent NOAA-9 AVHRR data which yielded consistent biases o f - 0 . 1 ~  
and RMS differences (from ship SSTs) of 0.5~ In an application of AVHRR data to 
the study of warm Gulf Stream rings, Brown et al. (1985) discuss a calibration 
procedure which provides SST estimates accurate to _+0.2~ This new calibration 
method is the result of thermal vacuum tests which revealed instrument specific 
changes in the relative emittance between internal (to the satellite) and external (deep 
space) calibration targets. By reviewing satellite prelaunch calibration data they found 
that there was an instrument-specific, nonlinear departure from a two-point linear 
calibration for higher temperatures. In addition, it was found that the calibration 
relationship between the reference PRT (platinum resistance thermocouples) and the 
sensor systems changed in the thermal vacuum tests; hence a limited instrument 
retest, as part of the calibration cycle, is recommended as a way to improve AVHRR 
SST accuracy. Such higher accuracy absolute SST values are of importance for future 
climate studies where small, long-term temperature changes are significant. 

The workshop results for the geostationary sounder unit (VAS) (Bates and Smith, 
1985) revealed a warm bias of 0.5~ with an RMS scatter of 0.8-1.0~ The positive 
bias was attributed to a diurnal sampling bias and a bias in the original set of 
empirical VAS/buoy matchups. Use of a second set of VAS/buoy matches reduced this 
warm bias making VAS SSTs more attractive due to the increased temporal coverage 
(every half hour) over that of the AVHRR (one to four images per day). 

All of these satellite SST intercomparisons were evaluated against either ship or 
buoy measurements of the near surface bulk temperature. As is often acknowledged in 
these evaluations, the bulk temperature is not generally equal to the sea surface skin 
temperature measured by the satellite. Studies directed at a comparison between skin 
and bulk temperatures by Grassl (1976), as well as Paulson and Simpson (1981), 
demonstrate marked (about 0.5~ differences between the surface skin and 
subsurface temperatures. In an effort to better evaluate the atmospheric attenuation 
of infrared radiance, Schluessel et al. (1987) compare precision radiometric 
measurements made from a ship with SST calculated using a variety of techniques 
from coincident NOAA-7 AVHRR imagery. In addition, subsurface temperatures were 
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continuously monitored with thermistors in the upper 10 m for comparison with the 
ship and satellite radiometric SST estimates. 

As part of this study, Schluessel et al. (1987) examined the effects of radiometer scan 
angle on the AVHRR attenuation and concluded that differences in scan angle, 
resulting in different atmospheric paths, resulted in significant changes in the 
computed SST. To correct for atmospheric water vapor attenuation, HIRS radiances 
were used to correct the multichannel computation of SST from the AVHRR. The 
correspondence between the HIRS radiances and atmospheric water vapor content 
was found by numerical simulation of 182 different atmospheres. With the HIRS 
correction, AVHRR-derived SST was found to have a bias of +0.03~ and an RMS 
error of 0.42~ when compared with the ship radiometer measurements. Comparison 
between ship radiometric and in situ temperatures yielded a mean offset of 0.2~ and a 
range o f - 0 . 5  to +0.9~ about this value (Figure 1.3.10). According to Weinreb et al. 
(1990), even if the nonlinearity corrections for the sensor remained valid after satellite 
launch, the error in AVHRR data is still 0.55~ of which 0.35~ is traceable to 
calibration of the laboratory blackbody. 

From all these various studies, it appears that the infrared satellite SST, when 
computed using a multichannel algorithm corrected by HIRS, is capable of yielding 
reliable estimates of SST in the absence of visible cloud. Microwave satellite SST 
sensing shows promise for future all weather sensing but present systems have a poor a 
signal-to-noise ratio and a consequent low spatial resolution. Future microwave 
systems will be designed to specifically measure atmospheric water vapor (in a 
separate channel) thus making the correction of the infrared SST estimates more 
straightforward. The frequent global coverage of satellite systems makes them 
attractive for the global, long-term studies required for an understanding of the 
world's climate. 

1.3.9 The modem digital thermometer 

In many oceanographic institutions, the mercury thermometer has been replaced by a 
digital deep-sea reversing thermometer built by Sensoren-Instrutmente-System (SIS) 
of Kiel that uses a highly stable platinum thermistor to measure temperature. The SIS 
RTM 4002 digital reversing thermometer has the outer dimensions of mercury 
instruments so that it fits into existing thermometer racks. Instead of the lighted 
magnifying glass needed to read most mercury thermometers, the user simply touches 
a small permanent magnet to the sensor "trigger" spot on the glass face of the 
thermometer to obtain a bright digital readout of the temperature to three decimal 
places. Since the instrument displays the actual temperature at the sample depth, 
there is no need to read an auxiliary thermometer to correct the main reading, as is the 
case for reversing mercury thermometers. This makes life much more pleasant on a 
rolling ship in the middle of the night. Because the response time of the platinum 
thermometer is rapid compared with the "soaking" time of several minutes required 
for mercury thermometers, less ship time is wasted at oceanographic stations. 

The RTM 4002 has a range o f - 2  to 40~ and a stability of 0.00025~ per month. 
According to the manufacturer, the instrument has a resolution of 0.001~ and an 
accuracy of 0.005~ over the temperature range - 2  to 20~ Both resolution and 
accuracy are considerably lower for temperatures in the range 20-40~ A magnet is 
used to reset the instrument and to activate the light-emitting diode (LED). Sampling 
can be performed in the three sequential modes. The "Hold" mode displays the last 
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Figure 1.3.10. Difference between uncorrected (a) and corrected (b, c) satellite-sensed sea surface 
temperatures and ship radiometric in situ temperatures. H I R S  - high-resolution infrared sounder; PRT 

- platinum resistance thermocouples. 

temperature stored in memory; the "Cont" mode allows for continuous sampling for 
use in the laboratory while the "Samp" mode is used for reversing thermometer 
applications.  The instrument allows for a m i n i m u m  of  2700 samples on two smal l  

l i thium batteries. 

1 .3.10 P o t e n t i a l  t e m p e r a t u r e  a n d  d e n s i t y  

The deeper one goes into the ocean, the greater the heating of the water caused by the 
compressive effect of hydrostatic pressure. The ambient temperature for a parcel of 
water at depth is significantly higher than it would be in the absence of pressure 
effects. Potential temperature is the in situ temperature corrected for this internal 
heating caused by adiabatic compression as the parcel is transported to depth in the 
ocean. To a high degree of approximation, the potential temperature defined as 0(p), 
or To, is given in terms of the measured in situ temperature T(p) as 0(p) - T(p) - F ( R ) ,  
where F(R) ~ 0.1~ km -1 is a function of the adiabatic temperature gradient R. The 
results can have important consequences for oceanographers studying water mass 



32 Data Analysis Methods in Physical Oceanography 

characteristics in the deep ocean. The difference between the ambient temperature 
and 0 increases slowly from zero at the ocean surface to about 0.5~ at 5000 m depth. 
At a depth of approximately 100 m and temperatures less than 5~ the difference 
between the two forms of temperature reaches the absolute resolution (•176 of 
most thermistors (Figure 1.3.11). Such differences are significant in studies of deep 
ocean heating from hydrothermal venting or other heat sources where temperature 
anomalies of ten millidegrees (0.010~ are considered large. In fact, if the observed 
temperatures are not converted to potential temperature, it is impossible to calculate 
the anomalies correctly. 

We remark here that the use of potential temperature in the calculation of density 
leads to the definition of potential density, po = p(S, 0, 0) in kg m - 3 ,  a s  the value of p 
for a given salinity and potential temperature at surface pressure, p = 0. The 
corresponding counterpart to 0.t(= 103[p(S,T,O)- 1000]), is then called "sigma- 
theta" where 0.0 - 1 0 3 [ p ( S ,  0,  0 )  - 1000]. Since density surfaces (as well as isotherms) 
can be displaced vertically hundreds of meters by internal oscillations in the deep 
ocean, it is crucial that we compare temperatures correctly by taking into consider- 
ation the thermal compression effect. Readers familiar with the oceanographic liter- 
ature will also note the use of 0.2,0.4, and similar sigma expressions for density surfaces 
in the deep ocean. These expressions are used as reference levels for the calculation of 
density at depths where the effect of hydrostatic compression on density becomes 
important. For example, 0.4 = 103[p(S, 0,4)- 1000] refers to density at the observed 
salinity and potential temperature referred to a pressure of 4000 dbar (40,000 kPa) or 
about 4000 m depth. Use of 0.o in the deep Atlantic suggests a vertically unstable water 
mass below 4000 m whereas the profiles of 0"4 correctly increase toward the bottom 
(Pickard and Emery, 1992). As indicated by Table 1.3.2, the different sigma values 
differ significantly. 

Potential temperature: Marathon II May 17, 1984 
In situ t e m p e r a t u r e  - Potential temperature: Stn 40 (35N,  152W)  

0.6 

0.5 

0.4 

'l 0.3 

~ o.2 

0.1 

0 ~ 

0 1000 2000 3000 4000 5000 6000 

Pressure (db) 

Figure 1.3.11. Difference between in situ temperature (T) recorded by a CTD versus the calculated 
potential temperature (0)for a deep station in the North Pacific Ocean (35~ 152~ Below about 

500 m, this curve is applicable to any region of the world ocean. (Data from Martin et al., 1987.) 
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Table 1.3.2 Comparison of different forms of sigma for the western Pacific Ocean near Japan (39~ 
147~ (From Talley et al., 1988.) Columns 2 and 3 give the in situ and potential temperatures, 
respectively. Sigma units are kg m -s 

Depth In situ T Pot. T (0) Salinity 
(m) (~ (~ (psu) 

0-0 0"2 O'4 

0 18.909 18.909 32.574 23.192 31.706 39.852 
100 1.160 1.156 33.158 26.555 35.830 44.689 
500 3.338 3.305 34.108 27.145 36.286 45.020 

1000 2.697 2.632 34.410 27.447 36.619 45.382 
2000 1.868 1.734 34.600 27.672 36.890 45.696 
3000 1.528 1.311 34.661 27.752 36.993 45.820 
4000 1.456 1.138 34.679 27.778 37.029 45.865 
5000 1.503 1.069 34.686 27.788 37.043 45.883 
5460 1.547 1.054 34.688 27.791 37.046 45.886 

1.4 S A L I N I T Y  

It is the salt in the ocean that separates physical oceanography from other branches of 
fluid dynamics. Most oceanographers are familiar with the term "salinity" but many 
are not aware of its precise definition. Physical oceanographers often forget that 
salinity is a nonobservable quantity and was traditionally defined by its relationship to 
another measured parameter, "chlorinity". For the first half of this century, chlorinity 
was measured by the chemical titration of a seawater sample. In 1899 the International 
Council for the Exploration of the Sea (ICES) established a commission, presided over 
by Professor M. Knudsen, to study the problems of determining salinity and density 
from seawater samples. In its report (Forch et al., 1902), the commission recom- 
mended that salinity be defined as follows: "The total amount of solid material in 
grams contained in one kilogram of seawater when all the carbonate has been con- 
verted to oxide, all the bromine and iodine replaced by chlorine and all the organic 
material oxidized." 

Using this definition, and available measurements of salinity, chlorinity and density 
for a relatively small number of samples (a few hundred), the commission produced 
the empirical relationship 

S (%0) = 1.805C1 (%0) + 0.03 (1.4.1) 

known as Knudsen's equation and a set of tables referred to as Knudsen's tables. The 
symbol %o indicates "parts per thousand" (ppt) in analogy to percent (%) which is 
parts per hundred. In the more modern Practical Salinity Scale, salinity is a unitless 
quantity written as "psu" for practical salinity units. It is interesting to note that 
Knudsen himself considered using electrical conductivity (Knudsen, 1901) to measure 
salinity. However, due to the inadequacy of the apparatus available, or similar 
problems at the time, he decided that the chemical method was superior. 

There are many different titration methods used to determine salinity but that most 
widely applied is the colorimetric titration of halides with silver nitrate (AgNO3) 
using the visual end-point provided by potassium chromate (K2CrO4), as described in 
Strickland and Parsons (1972). With a trained operator, this method is capable of an 
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accuracy of 0.02%o in salinity using the empirical Knudsen relationship. For precise 
laboratory work Cox (1963) reported on more sensitive techniques for determining the 
titration end-point which yield a precision of 0.002%0 in chlorinity. Cox also describes 
an even more complex technique, used by the Standard Sea-water Service, which is 
capable of a precision of about 0.0005%0 in chlorinity. It is fairly safe to say that these 
levels of precision are not typically obtained by the traditional titration method and 
that preconductivity salinities are generally no better than _+0.02%0. 

1.4.1 Salinity and electrical conductivity 

In the early 1950s, technical improvements in the measurement of the electrical 
conductivity of seawater turned attention to using conductivity as a measure of 
salinity rather than the titration of chlorinity. Seawater conductivity depends on the 
ion content of the water and is therefore directly proportional to the salt content. The 
primary reason for getting away from titration methods was the development of 
reliable methods of making routine, accurate measurements of conductivity. As noted 
earlier, the potential for using seawater conductivity as a measurement of salinity was 
first recognized by Knudsen (1901). Later papers explored further the relationship 
between conductivity, chlorinity and salinity. A paper by Wenner et al. (1930) sug- 
gested that electrical conductivity was a more accurate measure of total salt content 
than of chlorinity alone. The authors' conclusion was based on data from the first 
conductivity salinometer developed for the International Ice Patrol. This instrument 
used a set of six conductivity cells, controlled the sample temperature thermostatically 
and was capable of measurements with a precision of better than 0.01%o. With an 
experienced operator the precision may be as high as 0.003%0 (Cox, 1963). The latter is 
a typical value for most modern conductive and inductive laboratory salinometers and 
is an order of magnitude improvement in the precision of salinity measurements over 
the older titration methods. 

It is worth noting that the conductivity measured by either inductive or conductive 
laboratory salinometers, such as the widely-use d Guildline 8410 Portable Salinometer, 
are relative measurements which are standardized by comparison with "gtandard 
seawater". As an outgrowth of the ICES commission on salinity, the reference or 
standard seawater was referred to as "Copenhagen Water" due to its earliest production 
by a group in Denmark. This standard water is produced by diluting a large sample of 
seawater until it has a precise salinity of 35%0 (Cox, 1963). Standard UNESCO seawater 
is now being produced by the "Standard Seawater Service" in Wormley, England as well 
as at other locations in the U.S.A. (i.e. Woods Hole Oceanographic Institution). 

Standard seawater is used as a comparison standard for each "run" of a set of 
salinity samples. To conserve standard water, it is customary to prepare a "secondary 
standard" with a constant salinity measured in reference to the standard seawater. A 
common procedure is to check the salinometer every 10-20 samples with the 
secondary standard and to use the primary standard every 50 or 100 samples. In all of 
these operations, it is essential to use proper procedures in "drawing the salinity 
sample" from the hydrographic water bottle into the sample bottle. Assuming that the 
hydrographic bottle remains well sealed on the upcast, two effects must be avoided: 
first, contamination by previous salinity samples (that have since evaporated leaving a 
salt residue that will increase salinity in the sample bottle); and second, the possibility 
of evaporation of the present sample. The first problem is avoided by "rinsing" the 
salinity bottle and its cap two to three times with the sample water. Evaporation is 
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avoided by using a screw cap with a gasket seal. A leaky bottle will give sample values 
that are distorted by upper ocean values. For example, if salinity increases and dis- 
solved oxygen decreases with depth, deep samples drawn from a leaky bottle will have 
anomalously low salinities and high oxygens. 

Salinity samples are usually allowed to come to room temperature before being run 
on a laboratory bench salinometer. In running the salinity samples one must be careful 
to avoid air bubbles and insure the proper flushing of the salinity sample through the 
conductivity cell. Some bench salinometers correct for the marked influence of 
ambient temperature on the conductivity of the sample by controlling the sample 
temperature while other salinometers merely measure the sample temperature in order 
to be able to compute the salinity from the conductivity and coincident temperature. 

Another reason for the shift to conductivity measurements was the potential for in 
situ profiling of salinity. The development history of the salinity/conductivity- 
temperature-depth (STD/CTD) profilers has been sketched out in Section 1.3.4 in 
terms of the development of continuous temperature profilers. The salinity sensing 
aspects of the instrument played an important role in the evolution of these profilers. 
The first STD (Hamon, 1955) used an electrode-type conductivity cell in which the 
resistance or conductivity of the seawater sample is measured and compared with that 
of a sample of standard seawater in the same cell. Fouling of the electrodes can be a 
problem with this type of sensor. Later designs (Hamon and Brown, 1958) used an 
inductive cell to sense conductivity. The inductive cell salinometer consists of two 
coaxial torodoial coils immersed in the seawater sample in a cell of fixed dimensions. 
An alternating current is passed through the primary coil which then induces an EMF 
(electromagnetic force) and hence a current within the secondary coil. The EMF and 
current in the secondary coil are proportional to the conductivity (salinity) of the 
seawater sample. Again, the instrument is calibrated by measuring the conductivity of 
standard seawater in the same cell. The advantage of this type of cell is that there are 
no electrodes to become fouled. A widely used inductive type STD was the Plessey 
model 9040 which claimed an accuracy of m0.03%o. Precision was somewhat better 
being between 0.01 and 0.02%0 depending on the resolution selected. Modern elect- 
rode-type cells measure the difference in voltage between conductivity elements at 
each end of the seawater passageway. With the conducting elements potted into the 
same material this type of salinity sensor is less prone to contamination by biological 
fouling. At the same time, the response time of the conductive cell is much greater 
than that of an inductive sensor leading to the problem of salinity spiking due to a 
mismatch with temperature response. 

The mismatch between the response times of the temperature and conductivity 
sensors is the primary problem with STD profilers. Spiking in the salinity record 
occurs because the salinity is computed from a temperature measured at a slightly 
different time than the conductivity measurement. Modern CTD systems record 
conductivity directly, rather than the salinity computed by the system's hardware, and 
have faster response thermal sensors. In addition, most modern CTD systems use 
electrodes rather than inductive salinity sensors. As shown in Figure 1.4.1, this sensor 
has a set of four parallel conductive elements that constitute a bridge circuit for the 
measurement of the current passed by the connecting seawater in the glass tube 
containing the conductivity elements. The voltage difference is measured between the 
conducting elements in the bridge circuit of the conductivity cell. The primary 
advantage of the conductive sensor is its greater accuracy and faster time response. In 
their discussion of the predecessor of the modern CTD, Fofonoff et al. (1974) give an 
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Figure 1.4.1. Guildline conductivity (salinity) sensor showing the location o f f  our parallel conductive 
elements inserted into the hollow glass tube. Conductivity is measured as the water flows through the 

glass tube. Cable plugs into the top of the CTD end plate on the pressure case. 

overall salinity accuracy for this instrument of _+0.003%o. This accuracy estimate was 
based on comparisons with in situ reference samples whose salinities were determined 
with a laboratory salinometer also accurate to this level (Figure 1.4.2). This accuracy 
value is the same as the standard deviation of duplicate salinity samples run in the lab, 
demonstrating the high level of accuracy of CTD profilers. 

1.4.1.1 A comparison of  two modern CTDs 

In recent sea trials in the North Atlantic, scientists at the Bedford Institute of 
Oceanography (Bedford, Nova Scotia) examined in situ temperature and salinity 
records from a EG&G Mark V CTD and a Sea-Bird Electronics SBE 9 CTD (Hendry, 
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from a Rosette sampler. A S  is the mean salinity difference and as is the standard deviation. (Modified 

after Fofonoff et al., 1974.) 

1993). The standards used for the comparisons were temperatures measured by 
Sensoren Instrumente Systeme (SIS) digital-reading reversing thermometers and 
salinity samples drawn from 10-1itre bottles on a Rosette sampler and analyzed using a 
Guildline Instruments Ltd Autosal 8400A salinometer standardized with IAPSO 
Standard Water. 

The Mark V samples at 15.625 Hz and used two thermometers and a Standard 
inductive salinity cell. The fast response (250 ms time-constant) platinum thermo- 
meter is used to record the water temperature while the slower resistance thermo- 
meter, whose response time is more closely tuned to that of the conductivity cell, is 
used in the conversion of conductivity to salinity. Plots of the differences in temp- 
erature and salinity between the bottle samples and the CTD are presented in Figure 
1.4.3. Using only the manufacturer's calibrations for all instruments, the Mark V CTD 
temperatures were lower than the reversing thermometer values by 0.0034_+0.0023~ 
with no obvious dependence on depth (Figure 1.4.3a). In contrast, the Mark V salinity 
differences (Figure 1.4.3c) showed a significant trend with pressure, which may be 
related to the instrument used or a peculiarity of the cell. With pressure in dbar, 
regression of the data yields 

Salinity Diff (bottle - CTD) - 0.00483 + 6.25910 -4 Pressure (CTD) (1.4.2.1) 

with a correlation coefficient r 2= 0.84. Removal of the trend gives salinity values 
accurate to about _+0.003 psu. Pressure errors of several dbars (several meters in 
depth) were noted. 

The SBE 9 and SBE 25 sample at 24 Hz and use a high-capacity pumping system 
and TC-duct to flush the conductivity cell at a known rate (e.g. 2.5 m/s pumping 
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speed for a rate of 0.6-1.2 I/s). When on deck, the conductivity cell must be kept filled 
with distilled water. To allow for the proper alignment of the temperature and con- 
ductivity records (so that the computed salinity is related to the same parcel of water 
as the temperature), the instrument allows for a time shift of the conductivity channel 
relative to the temperature channel in the deck unit or in the system software 
SEASOFT (module AlignCTD). In the study, the conductivity was shifted by 0.072 s 
earlier to align with temperature. (The deck unit was programed to shift conductivity by 
one integral scan of 0.042 s and the software the remaining 0.030 s.) Using the manu- 
facturer's calibrations for all instruments, the SBE 9 CTD temperatures for the nine 
samples were higher than the reversing thermometer values by 0.0002+_0.0024~ with 
only a moderate dependence on depth (Figure 1.4.3b). Salinity data from 30 samples 
collected over a 3000 db depth range (Figure 1.4.3d) gave CTD salinities that were lower 
(fresher) than Autosal salinities by 0.005+0.002 psu, with no depth dependence. By 
comparison, the precision of a single bottle salinity measurement is 0.0007 psu. Pressure 
errors were less than 1 dbar. Due to geometry changes and the slow degradation of the 
platinum black on the electrode surfaces, the thermometer calibration is expected to drift 
by 2 m~ and the electronic circuitry by 3 m~ 

Based on the Bedford report, modern CTDs are accurate to approximately 0.002~ 
in temperature, 0.005 psu in salinity and <0.5% of full-scale pressure in depth. The 
report provides some additional interesting reading on oceanic technology. To begin 
with, the investigators had considerable difficulty with erroneous triggering 
(misfiring) of bottles on the Rosette. Those of us who have endured this notorious 
"grounding" problem appreciate the difficulty of trying to decide if the bottle did or 
didn't misfire and if the misfire registered on the shipboard deck unit. If the operator 
triggers the unit again after a misfire, the question arises as whether the new pulse 
fired the correct bottle or the next bottle in the sequence. Several of these misfires can 
lead to confusing data, especially in well-mixed regions of the ocean. It is good policy 
to keep track of the misfires for sorting out the data later. 

Another interesting observation was that variations in lowering speed had a 
noticeable influence on the temperature and conductivity measurements. Since most 
modern CTDs dissipate 5-10 watts, the CTD slightly heats the water through which it 
passes. At a 1 m/s nominal fall rate, surface swell can cause the actual fall rate to 
oscillate over an approximate range of + 1 m/s with periodic reversals in fall direction 
at the swell period. (Heave compensation is needed to prevent the CTD from being 
pulled up and down.) As a result, the CTD sensors are momentarily yanked up 
through an approximately 1 m ~ thermal wake which is shed from boundary layers 
of the package as it decelerates. Hendry (1993) claims that conditional editing based 
on package speed and acceleration is reasonably successful in removing these artifacts. 
Since turbulent drag varies with speed squared, mechanical turbulence was found to 
cause package vibration that affected the electrical connection from the platinum 
thermometer to the Mark V CTD. Mixing, entrainment and thermal contamination 
caused differences in down versus up casts in both instruments. The correction for 
thermal inertia of the conductivity cell in the SBE CTD resulted in salinity changes of 
0.005 psu with negative downcast corrections when the cell was cooling and positive 
upcast corrections when the cell was warming (Lueck, 1990). 

1.4.2 The practical salinity scale 

In using either chlorinity titration or the measurement of conductivity to compute 
salinity, one employs an empirical definition relating the observed variable to salinity. 
In light of the increased use of conductivity to measure salinity, and its more direct 
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relationship to total salt content, a new definition of salinity has been developed. As a 
first step in establishing the relationship between conductivity and salinity Cox et al. 
(1967) examined this relationship in a variety of water samples from various geo- 
graphical regions. These results were used in formulating new salinity tables 
(UNESCO, 1966) from which Wooster et al. (1969) derived a polynomial fit giving a 
new formula for salinity in terms of the conductivity ratio (R) at 15~ The RMS 
deviation of this fit from the tabulated values was 0.002%o in chlorinity for values 
greater than 15%o and 0.005%0 for smaller values. It is worth noting that Cox et al. 
(1967) found that deep samples (>2000 m depth) had a mean salinity, computed from 
chlorinity, that was 0.003%0 lower than that for conductivity. This was not true for the 
surface samples. 

As noted earlier, a new salinity definition has been adopted called the "practical 
salinity scale" or PSS 78 (Lewis, 1980). This scale has been accepted by major 
oceanographic organizations and has been recommended as the scale in which to 
report future salinity data (Lewis and Perkin, 1981). The primary objections to the 
earlier salinity definition of Wooster et al. (1969) were: 

(a) With salinity defined in terms of chlorinity it was independent of the different 
ionic ratios of seawater. 

(b) The mixtures of reference seawaters used to derive the relationship between 
chlorinity and conductivity ratio were nonreproducible. 

(c) The corresponding International Tables do not go below 10~ which makes them 
unsuitable for many in situ salinity measurements. 

In the practical salinity scale, it is suggested that standard seawater should be a 
conductivity standard corresponding to, and having the same ionic content as, 
Copenhagen Water. The salinity of all other waters will be defined in terms of the 
conductivity ratio (R15 or C15 in the nomenclature of Lewis and Perkins) derived from 
a study of dilutions of standard seawater. This becomes then a practical salinity scale 
as distinct from an absolute salinity defined in terms of the total mass of salts per 
kilogram of solution. 

A major problem in applying this new salinity scale is its application to archived 
hydrographic data. As discussed by Lewis and Perkins (1981), the correction 
procedure for such data depends not only on the reduction formula used but also 
on the calibration procedure used previously for the salinity instrument. Essentially, 
the correction procedure amounts to performing this calibration a second time using 
the differences, provided by Lewis and Perkins (1981) between the older salinity scale 
and PSS 78. Another alternative would be to return to the original raw data, if they 
have been saved, and to recompute the salinity according to PSS 78. From the 
discussion of Lewis and Perkins it is clear, however, that for salinities in the range of 
33-37%o differences of about • can be anticipated between archived salinities 
and the corresponding values computed using PSS 78. This is about the same overall 
accuracy of modern CTD profilers. 

It is interesting that the primary motivation for the development of PSS 78 came 
from people working in low salinity polar waters where the UNESCO tables did not 
apply. In areas such as estuarine environments which have very low salinities, and 
mid-ocean ridge regions with strong hydrothermal fluid venting, even PSS 78 is not 
adequate and there are still serious limitations to computing accurate salinities from 
conductivity measurements. There are several reasons for these limitations. First of 
all, the approach of relating specific conductance to salinity of total dissolved solids 
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requires that the proportions of all the major ions in the natural electolyte remain 
constant in time and space, and second, that the salinity expression represents all the 
dissolved solids in the fluid. Another factor to keep in mind is that the density 
calculated from the conductivity values is based on conducting ions in the fluid. If 
there are chemical components that contribute to the density of the fluid but not to 
the conductivity (i.e. nonconductive ions) then the density will be wrong. This is 
exactly the problem faced by McMannus et al. (1992) for deep CTD data from Crater 
Lake in Oregon. Here, silicic acid from hydrothermal venting in the south basin of the 
lake below 450 m depth did not contribute to the conductance but did alter the 
density. Without accounting for silicic acid the water column was weakly stratified; 
after accounting for it, the bottom waters became stratified. The different combina- 
tions of ions in hydrothermal fluids from mid-ocean ridges can seriously alter the 
salinity structure observed at the source during a normal deep CTD measurement. 
However, because of rapid entrainment of ambient bottom water, the ion mix becomes 
similar to that of normal seawater a few meters above the vent orifice. Typical ratios of 
ambient to hydrothermal fluid volumes are 7000:1. Vertical structure such as that in 
Figure 1.4.4 taken a few meters above venting fields on Juan de Fuca Ridge in the 
northeast Pacific, presumably results from unstable conditions arising from turbulent 
mixing in the rising plume, not from sensor response problems. 

Density (0  2 ) 

36.77 36.81 36.85 36.89 36.93 

Salinity (%~) 

34.54 34.58 34.62 34.66 

I I I I 
Temperature  (~  
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~" 2000--  
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2400 L T S ~2 
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Figure 1.4.4. Vertical profiles of temperature, salinity (%o) and potential density collected from a CTD 
mounted on the submersible Alvin. Data collected during ascent away from the main hydrothemal vent 
field at Endeavour Ridge in the northeast Pacific (48~ 129~ Density is unstable over the depth 

range of the buoyant portion of the plume. (From Lupton et al., 1985.) 
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1.4.3 Nonconductive methods 

Efforts have been made to infer salinity directly from measurements of refractive 
index and density. Since the refractive index (n) varies with the temperature (7) and 
salinity (S) of a water sample (and with the wavelength of the illumination), 
measurements  of n and T can be used to obtain in situ estimate of salinity. In order to 
achieve a salinity accuracy of 0.01 psu, it is necessary to measure n to within 20 x 10 -7 
and to control temperature to within 0.005~ Some refractometers are capable of 
measuring n to 100 • 10 -7, leading to a salinity precision of 0.06 psu. Handheld 
refractometers are simple and easy to use but yield salinity measurements no better 
than _+0.2 psu. For higher sensitivity, interference methods can be used giving a 
precision in n of 5 • 10 -7 corresponding to a salinity precision of 0.003 psu. This is a 
comparative interference technique and requires a reference seawater sample. Since it 
is a comparative method, knowledge of the exact temperature is not critical as long as 
both samples are observed at the same temperature. Direct measurements of seawater 
density can yield a precision of _+0.008 in sigma-t (Kremling, 1972) which can be used 
to calculate salinities to within 0.02 psu. Since the measurement  of density is much 
more complicated than those of temperature and electrical conductivity, these latter 
quantities are usually observed and used to compute the in situ density. 

1.5. D E P T H  OR P R E S S U R E  

1.5.1 Hydrostatic pressure 

The depths of profiling instruments are mainly derived from measured hydrostatic 
pressure, p. This is possible because of the almost linear relationship between 
hydrostatic pressure, p = p(z), and geometric depth, z. The relationship is such that 
the "pressure expressed in decibars is nearly the same as the numerical value of the 
depth expressed in meters" (Sverdrup et al., 1942). The validity of this approximatioh 
can be seen in Table 1.5.1 in which we have compared values of hydrostatic pressure 

Table 1.5.1 Comparison of pressure (dbar) and depth (m) at standard oceanographic depths using the 
UNESCO algorithms. Percent difference = (pressure - depth)/pressure • 100% 

, 

Pressure (dbar) Depth (m) Difference (%) 

0 0 0 
100 99 1 
200 198 1 
300 297 1 
500 495 1 

1000 990 1 
1500 1483 1.1 
2000 1975 1.3 
3000 2956 1.5 
4000 3932 1.7 
5000 4904 1.9 
6000 5872 2.1 
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and geometric depth for a standard ocean. At depths shallower than 4000 m, the 
difference is within 2%. For most applications, this error is sufficiently small that it 
can be neglected and hydrostatic pressure values can be converted directly into 
geometric depth. The cause for the slight difference between pressure in decibars and 
depth in meters is found in the familiar hydrostatic relation, 

0 

p(z) - -g  f p(z) dz 
Z 

where g = 9.81 m s -2 is the acceleration due to gravity and p ~ 1.025 x 103 kg/m 3 is 
the mean water density. Units o fp  are [kg/m3][m/s2][m] = [kg/m][1/s2]. Also, p - 
force/area has units [N/m 2] = [Pa] = [10 -5 bar]. A newton (N) = kg m/s 2, so that p 
~1.025 • 103(9.81)z = 1.005525z (m). A different value of density gives a slightly 
different p versus z relation. 

Certain techniques allow for continuous measurement of hydrostatic pressure while 
others can be carried out at discrete depths only. An example of the latter is the 
computation of " thermometr ic  depth" using a combination of protected and un- 
protected reversing thermometers to sense the effects of pressure on the temperature 
reading. This is still considered one of the most accurate methods of determining 
hydrostatic pressure and is often used as an in situ calibration procedure for CTD 
profilers. Specifically, the pressure, p (in decibars), obtained from a CTD is related to 
the temperature difference, AT, between the protected and unprotected thermometers 
by p ~ gAT/k ,  where k ~ 0.1~ The details of this procedure are well 
described in Sverdrup et al. (1942, p. 350) but with a significant printing error (a 
missing plus sign in the second bracket) which is not corrected in Defant (1961, Vol. 1, 
p. 35). When correctly applied (see LaFond, 1951; Keyte, 1965), the thermometer 
technique is capable of yielding pressure measurements accurate to _+0.5% (Sverdrup, 
1947). Most modern CTD systems claim a similar accuracy using strain-gauge sensors 
to directly measure pressure. The accuracy of early CTD pressure sensors was a 
function of the depth (pressure) itself and varied from 1.5 db in the upper 1500 db to 
over 3.5 db below 3500 db (Brown and Morrison, 1978). A recent test of a Sea Bird 
SBE 9 CTD (Hendry, 1993) found pre- and postcruise pressure calibration offsets of 
less than 1 dbar. Nonlinearity and hysteresis were less than 0.5 dbar over the full 
range of the sensor. 

The mechanical bathythermograph introduced earlier in this chapter measures 
pressure with a Bourdon tube sensor. The problem with this sensor is that the 
response of the tube to volume change is nonlinear and any alteration in tube shape or 
diameter will lead to abrupt changes in the pressure response. As a result of the 
nonlinear scaling of the MBT pressure readout and special optical reader needed to 
read the scales, this reading error, added to the inaccuracies of the Bourdon tube, 
results in limited accuracy of the MBT. 

1.5.2 Free-fall velocity 

Unlike the MBT, the more commonly used XBT, does not measure depth directly but 
rather infers it from the elapsed time of a "freely-falling" probe. While this is a key 
element that makes such an expendable system feasible it is also a possible source of 
error. In their study, Heinmiller et al. (1983) first corrected XBT profiles for 
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systematic temperature errors and then compared the XBT profiles with corres- 
ponding CTD temperature profiles. In all cases, the XBT isotherm depths were less 
than the corresponding CTD isotherm depths for observations deeper than an 
intermediate depth (150 m for T4s and 400 m for T7s) with the largest differences at 
the bottom of each trace. Near the bottom of the XBT temperature profile, the 
difference errors exceeded the accepted limit of 2% error, with the deviation being far 
greater for the shallower T4 probes (Figure 1.5.1a). Added to this systematic error is 
an RMS depth error of approximately 10 m regardless of probe type (Figure 1.5.1b). 
Based on the data they analyzed, Heinmiller et al. (1983) provide a formula to correct 
for the systematic depth error. There are two primary sources of this depth error: first, 
the fal l ing probe loses weight  as the wire runs out of  the probe supply  spool,  thus 
changing the fall rate and second, frictional forces increase as the probe enters more 
dense waters. 
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Figure 1.5.1. Vertical profiles of XBToCTD depth differences for To4 and T-7 XBTs for different data 
sets. (a) Mean values, ~Sz (m). 
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The issue of XBT depth error, first reported by Flierl and Robinson (1977) has been 
extensively investigated by many groups (Georgi et al., 1980; Seaver and Kuleshov, 
1982; Heinmiller et al., 1983; Green, 1984; Hanawa and Yoritaka, 1987; Roemmich and 
Cornuelle, 1987; Hanawa and Yoshikawa, 1991; Hanawa and Yasuda, 1991; Rual, 
1991) with varying results There is general agreement that the XBT probes fall faster 
than specified by the manufacturers and that some corrections are needed. Most of 
these assessments have been performed as a comparison with nearly coincident CTD 
profiles. The concentration assessments in the western Pacific shows the interest in 
this problem in Japan, Australia and Noum~a, New Caledonia. 
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A sample comparison between XBT and CTD temperature profiles (Figure 1.5.2a) 
shows the differences between the XBT and CTD temperature profiles as a function of 
depth. These profiles have not been corrected using the standard depth equation. The 
sample in Figure 1.5.2(b) has been depth corrected using the formulation given by 
Hanawa and Yoritaka (1987). Note the substantial changes in the shape of the 
difference profile and how the depth correction eliminates apparent minima in the 
differences. The overall magnitude of the differences has also been sharply reduced, 
demonstrating that many of the apparent temperature errors are, in reality, depth 
errors. 

These XBT depth errors are known to be functions of depth since they depend on an 
incorrect fall-rate equation. This is clearly demonstrated in Figure 1.5.3 which gives 
the mean depth difference of a collection of 126 simultaneous temperature profiles, 
along with the standard deviation (shown as bars that represent the standard deviation 
on either side of the mean line) at the various depths. Also shown are the m2% or 
m5 m limits which are given as depth error bounds by the manufacturer. From this 
figure it is clear that there is a bias with the XBT falling faster than specified by the 
fall-rate equation, resulting in negative differences with the CTD profiles. The mean 
depth error of 26 m at 750 m depth translates into 3.5%, which obviously exceeds the 
manufacturer's specification. 

When various investigators reduced these comparisons to new fall rate equations, 
where the depth (z) is given by 

z - at - bt 2 (1.5.1) 
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Figure 1.5.2. Average temperature error profiles (TXBT-TCTD) for XBT/CTD comparisons on 
FR0487 using the SEAS H X B T  system; center line gives the mean value. (a) Depth uncorrected; (b) 
depth corrected using the formulation given by Hanawa and Yoritaka (1987). (From IOC-888, Annex 

rv, p. 6.) 
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mean line) at the various depths. (From IOC/INF-888, p. 13). 

the coefficients were not very different (Figure 1.5.4). Along with the coefficients, this 
figure also shows contours of maximum deviations in depth relative to the revised 
equation of Hanawa and Yoshikawa (1991) for these different combinations of 
constants a and b in the fall rate equation (1.5.1). Most of the errors lie within the 
110 m envelope of depth deviations, suggesting that it might be possible to develop a 
new fall-rate equation (i.e. new coefficients) that represents a universal solution to the 
fall-rate problem for XBT probes. An effort was made to develop this universal 
equation be reanalyzing existing XBT-CTD comparison profiles. This revised 
equation is 

z = 6.733t - 0.00254t 2 ( 1 . 5 . 2 )  

This revised fall-rate equation only applies to the T7 (roughly 700 m depth) XBT 
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Figure 1.5.4. Fall-rate equation coefficients for different XBTstudies listed in the key. (From IOC/INF- 
888.) 

probes that were used in the comparisons. It was concluded that similar comparisons 
must be carried out for the other types of XBT probesl 

1.5.3 Echo sounding 

Acoustic depth sounders are now standard equipment on all classes and sizes of 
vessels. Marketed under a variety of names including echo sounder, fish finder, or 
depth indicator, the instruments all work on the same basic principle: The time it 
takes for an acoustic signal to make the round-trip from a source to an acoustic 
reflector such as the seafloor is directly proportional to the distance traveled. Water 
supports the propagation of acoustic pressure waves because it is an elastic medium. 
The acoustic waves radiate spherically and travel with a speed c(E, p) which depends 
on the elasticity (E) and density [p - p(S, T, P)] of the water. If the speed of the sound 
is known at each time t along the sound path, then the distance d from the sound 
source to the seafloor is given in terms of the two-way travel time by 

tr 

1 

tt 

c(t)dt (1.5.3.1) 



where 
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tr 

At = tr - tt -- 2 f [1/c(S, T,P; t)] dz(t) 

tt 

(1.5.3.2) 

is the time between transmission time (tt) of the sound pulse and reception time (tr) of 
the reflected pulse or echo. In practice, the values of c along the sound paths are not 
known and equation (1.5.3.1) must be approximated by 

1 
d - ~ (c)At (1.5.3.3) 

where (c) is a mean sound speed over the path length, a value normally entered into 
the echo sounder during its calibration. The depth determined using the time delay is 
called a "sounding". In hydrography, a "reduced" sounding is one that is referenced 
to a particular datum. As noted by Watts and Rossby (1977), equation (1.5.3.2) is 
similar in form to the equation for dynamic height (geopotential anomaly), suggesting 
that travel time measurements from an inverted echo sounder can be used to measure 
geostrophic currents (cf. Section 1.6.3). 

Since the bulk properties of the medium depend on temperature, salinity and 
pressure, sound speed also depends on these parameters through the relation 

C = C0,35,0 q-  ACT n t- ACs -Jr A c p  -+- ACS,T, P (1.5.3.4) 

in which Co,35,o = 1449.22 m/s (= the speed of sound at 0~ 35 psu, and pressure p = 
0, at depth z = 0). The remaining terms are the first-order Taylor expansion 
corrections for temperature (T), salinity (S), and hydrostatic pressure (P); the final 
term, Acs, T,p, is a nonlinear corrective term for simultaneous variation of all three 
properties. A well known set of values for this equation, having stated experimental 
standard deviation of 0.29 m/s, is attributed to W. Wilson (Hill, 1962; p. 478). To a 
good approximation (Calder, 1975; MacPhee, 1976) 

c (m/s) - 1449.2 + 4.6T - 0.055T 2 + 0.00029T 3 

+ (1 .34 -  0 .010T) (S -  3 5 ) +  0.016z 
(1.5.3.5) 

or (Mackenzie, 1981) 

c (m/s) = 1448.96 + 4.591T - 5.304 x 10-2T 2 + 2.374 x 10-4T 3 

+ 1.340(S - 35) + 1.630 x 10-2z + 1.675 x 10-7z 2 

- 1.025 x 1 0 - 2 T ( S -  35) - 7.139 x 10-13Tz 3 

(1.5.3.6) 

where T is the temperature (~ and S is the salinity (psu) measured at depth z (m). 
Accurate profiles of sound speed clearly require accurate measurement of temperature 
which may not be available in advance. A commonly used oceanic approximation is 
the mean calibration speed {c) = 1490 m/s that is generally applied to ship's sounders. 
Note that the speed of sound increases with increasing temperature, salinity and 
pressure, with temperature having by far the greatest effect (Figure 1.5.5). For exam- 
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Figure 1.5.5. Speed of sound as a function of temperature for different mean salinities (32.5, 34.5, and 
35.5 psu) and fixed depth, z = 1500 m. 

pie, c increases by 1.3 m/s per 1 psu in salinity (range 34-35 psu); increases by 4.5 m/s 
per 1.0~ for temperature (range 0-10~ and increases by 1.6 m/s per 100 m depth. 

The depth capability of any sounder is limited by the power output of the 
transducer transmitting the sound pulses, by the sensitivity of the receiver listening 
for the echo returns and by the capability of the instrument electronics and software to 
resolve signal from noise. In modern sounders, pulse lengths typically range from 0.1 
to 50 ms and a single transducer with a transmit/receive (T/R) switching arrangement 
is used to both generate and receive the acoustic signals. The depth capability of an 
echo sounder is limited also by a number of important environmental factors. Sound 
waves are attenuated rapidly in water according to the relation 

propagation loss (dB) - 201ogz + crz/1000 

where the propagation loss is measured in decibels (dB), z is the depth range in meters 
and c~ (Figure 1.5.6) is the attenuation coefficient (dB/km) in seawater as a function of 
frequency, temperature and salinity (Urick, 1967). The first term in the equation 
accounts for geometrical spreading of the transmitted and received signal while the 
second encompasses scattering and absorption. Diffraction and refraction arising 
from density gradients have a minor effect on the attenuation compared with these 
other factors. The higher the frequency of the source the greater the attenuation due to 
absorption and the more limited the depth range (Figure 1.5.7). It is for this reason 
that most deep-sea sounders operate in the 1.0-50 kHz range. Even though high- 
frequency sounders can provide more precise depth resolution through shorter 
wavelengths and narrower beam widths, they cannot penetrate deeply enough to be of 
use for general soundings. They do have other important applications in bioacoustical 
studies of zooplankton and fish. 

The output transducer converts electrical energy to sound energy and the receiving 
transducer converts sound vibrations to electrical energy. Loss of the acoustic signal 
through geometrical spreading is independent of frequency and results from the 
spherical spreading of wave fronts, while frequency-dependent absorption leads to the 
conversion of sound into heat through viscosity, thermal conductivity, and 
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inframolecular processes. Scattering is caused by suspended particles and living 
organisms. In the upper 25 m of the water column, air bubbles from breaking waves 
and gas exchange processes are major acoustic scatterers. If Io is the intensity (e.g. 
power in watts) of the transducer and Ia is some reference intensity (nominally the 
output intensity in watts measured at 1-m distance from the transducer head) then the 
measured backscatter Ir is given by 

[r/Ia = b exp ( -Tz) /z  2 + An (1.5.3.8) 

where b = Io/Ia is the gain of the transducer, 7 is the inverse scale length for 
absorption of sound in water, l /z  2 gives the effect of geometric spreading over the 
distance z from which the sound is being returned, and a n is a noise level. A return 
signal intensity reduction by a factor of 2 corresponds to a loss o f - 3  dB [= 10 log (1/ 
2)] while a reduction by a factor of 100 corresponds to a loss o f - 2 0  dB [ -  10 log (1/ 
100)]. Echo sounders are generally limited to depths of 10 km. The low (1-15 kHz) 
frequencies needed for these depths result in poor resolutions of only tens of meters. 
Since it takes roughly 13 s for a transducer "ping" to travel to 10 km and back, the 
recorded depth in deep water is not always an accurate measure of the depth beneath 
the ship. Better resolution is provided for depths less than 5 km using frequencies of 
20-50 kHz. High resolution sounders operate in a few hundred meters of water using 
frequencies of 30-300 kHz. Transducer beam width, side-lobe contamination and side 
echos ultimately reduce the resolution of any sounder. 

1.5.3.1 Height above the bottom 

In many oceanographic applications, the investigator is interested in real-time, highly 
accurate measurements of the altitude of his or-her instrument package above the 
bottom. A real-time reporting echo sounder on the package will serve as an altimeter. 
Alternatively, the investigator can choose a cheaper route and attach a high-power 
omnidirectional "pinger" to the package. Rather than trying to measure the total 
depth of water, one uses the pinger on the package together with ship's transducer (or 
hydrophone lowered over the side of the ship) to obtain the difference in depth (i.e. 
difference in time) between the signal which has taken a direct route from the pinger 
and one which has been reflected from the bottom at an angle 0, where 0 is roughly the 
angle the tow line makes with the bottom (Figure 1.5.8). The direct path PC takes a 
time ta while the path reflected from the bottom (PBC) takes a total time tr. The 
height, d, of the package above the bottom is 

1 1 
d -- -~ (cAt) sin 0 - -~c(t~ - ta) sin 0 (1.5.3.9) 

where At is the time delay between the direct and reflected pings and c is the speed of 
sound in water. As the instrument package approaches the bottom, the two strongest 
analog traces on the depth recorder can be seen converging toward a "crossover" 
point. When the time taken to cover the direct and reflected paths are equal (At = 0), 
the package has hit the bottom. The novice operator will be confused by the number of 
"false" bottom crossovers or wrap-around points when working in water that is deeper 
than integer multiples of the chosen sounder range. To avoid high levels of stress as 
each crossover is approached, the operator must know in advance how many false 
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Figure 1.5.8. Schematic of how acoustic pinger and ship's sounder in the receive mode can be used to 
accurately determine proximity of a probe to the bottom, c is the speed of sound and t is time. 

crossovers or wrap-arounds to expect before the instrument is truly in proximity to the 
bottom. For example, in water of depth 3230 m, a recorder chart set for a full-scale 
depth range of 0-750 m will register false bottoms when the pinger reaches water 
depths of 230, 980, and 1730 m (i.e. 3230 - n x 750 m, where n = 4, 3, 2). To the depth 
recorder, 3 2 3 0 -  4 x 750 m is the same as 230 m. 

Analog devices such as the PDR are the only real choice for this application since 
the analog trace provides a continuous visual record of how many crossovers have 
passed and how rapidly the final crossover is being approached. (The depth is first 
obtained from the ship's sounder which can then turned to "receive mode" only.) The 
two traces give a history of what has been happening so that it is easier to project in 
one's mind what to expect as the instrument nears the bottom. Problems arise if the 
package gets too far behind the vessel and the return echos become lost in the ambient 
noise or if the bottom topography is very rugged and numerous spurious side echos 
and shadows begin to appear. We recommend omnidirectional rather than strongly 
directional pingers so that if the package streams away from the ship or twists with the 
current and cable there is still some acoustic energy making its way to the ships hull. 
To help avoid hitting the bottom, it is best to have the ship's sounder output turned off 
so that only receive mode is working and the background noise is reduced; the 
operator can check on the total depth every once in a while by reconnecting the 
"transmit  pulse". The ships echo sounder correctly measures the height above bottom 
since it is programmed to divide any measured time delay by a factor of 2 to account 
for two-way travel times. The depth accuracy of the method improves as the package 
approaches the bottom because both the direct and reflected paths experience the 
same sound speed c. A value of c more closely tuned to deep water is applicable here 
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since all that really counts is c near the seafloor in the region of study. With a little 
experience and a good clean signal, one can get accuracies of several meters above the 
bottom using 8-12 kHz sounders in several kilometers of water. 

Note that the depth errors using this method are negligible while the actual 
sounding depths from a depth sounder can be quite large. For example, if spatial 
differences in sound speed vary from 1470 to 1520 m/s over the sounding depth, then 
the percentage depth errors are Ac/c = 50/1500 = 0.033 - 3.3%. In 4000 m of water, 
this amounts to an error of 0.033 • 4000 m ~ 133 m. 

1.5.4 Other depth sounding methods 

For sake of completeness, several lesser-known, remote-sensing, depth-sounding 
methods are introduced in the following sections. 

1.5.4.1 Laser induced detection and ranging (LIDAR) 

Lidar is an active electro-optical (LASER) remote-sounding method using a pulsed 
laser system as a radiation source flown from an aircraft. An airborne sensor measures 
the distance to the surface of the ocean and to the seafloor along the appropriate light 
path by measuring the time interval between emission of the pulse and the reception 
of its reflection from the surface and the bottom. A typical LIDAR unit consists of a 
pulsed laser transmitter, a receiver, and a signal analyzer-recorder. The technique is 
good to depths of a few tens of meters in coastal waters where extinction coefficients 
are typically around 0.4-1.6 m -1. The rapid spatial sampling capability of this 
technique makes it highly useful to hydrographers wanting to map shoals, rocks and 
other navigational hazards. 

1.5.4.2 Synthetic aperture radar (SAR) 

One of the surprising aspects of SAR is its ability to "see" shallow banks, ridges and 
shoals in the coastal ocean. In this case, SAR does not measure the bottom topography 
directly but, instead, detects the distortion of the wave ripplet field over the feature 
caused by deflection and/or acceleration of the ocean currents. For a discussion of this 
effect, the reader is referred to Robinson (1985). 

1.5.4.3 Satellite altimetry 

The suggestion that there is a close connection between oceanic gravity anomalies and 
water depth was postulated as early as 1859 (Pratt, 1859, 1871). The idea of using 
measured gravity anomalies to estimate water depth began with Siemens (1876) who 
designed a gravity meter that obviated the need to spend hours for a single sounding 
(Vogt and Jung, 1991). It was not until the launching of the Seasat radar altimeter in 
1978 that this concept could be used as alternative to large-scale sounding line 
measurements. Indeed, the first Seasat-derived gravity map of the world oceans 
(Haxby, 1985) closely resembles a bathymetric map with a resolution of about 50 km 
(Vogt and Jung, 1991). The idea of using satellite radar altimetry as a "bathymeter" is 
based on the good correlation observed between gravity anomalies and bathymetry in 
the 25-150 km wavelength radar band. Satellite bathymetry is especially valuable for 
sparsely sounded regions of the world ocean such as the South Pacific, and in regions 
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where depths are based on older soundings in which navigation errors are 10 km or 
more. As pointed out by Vogt and Jung, however, one-dimensional predictions cannot 
be accurately ground-truthed with a single ship survey track since the geoid measured 
along the track is partly a function of the off-track density distribution. (Geoid refers 
to a constant geopotential reference surface, such as long-term mean sea-level, which 
is everywhere normal to the earth's graviational field.) A broad swath of shipborne 
data is needed to overlap the satellite track swath. 

Satellites presently carrying radar altimeters to map sea-surface topography include 
GEOS-3, SEASAT, GEOSAT, ERS-1, and TOPEX/POSEIDON. Of these, only data 
from the U.S. Navy's GEOSAT have been processed to the accuracy and density of 
coverage needed to clearly resolve tectonic features in the marine gravity field on a 
global basis (Marks et al., 1993; EOS). This mission was designed to map the marine 
geoid to a spatial resolution of 15 km. Detailed maps of the seafloor topography south 
of 30~ from the GEOSAT Geodetic Mission were declassified in 1992. These maps 
have a vertical RMS resolution of about 10-20 cm and, together with Seasat data, have 
been used to delineate fracture zones, active and extinct mid-ocean ridges, and 
propagating rifts. Satellite altimetry from ERS-1 has been used to map the marine 
gravity field over the permanently ice-covered Arctic Ocean (Laxon and McAdoo, 
1994). Future declassification of military satellite data will lead to further analysis of 
the seafloor structure over the remaining portions of the world ocean. 

As we discuss later in more detail, satellite altimetry shows much promise for 
interpreting large-scale circulation previously deduced from dynamic height data. 
Satellite altimetry is particularly well suited to examination of temporal variability of 
meso-scale features in the ocean, such as the propagation of Rossby waves. 

1.6 S E A - L E V E L  M E A S U R E M E N T  

The measurement of sea-level is one of the oldest forms of oceanic observation. 
Pytheus of Marseilles, who is reported to have circumnavigated Britain around 320BC, 
was one of the first to actually record the existence of tides and to note the close 
relationship between the time of high water and the transit of the moon. Nineteenth- 
century sea-level studies were related to vertical movements of the coastal boundaries 
in the belief that, averaged over time, the height of the mean sea-level was related to 
movements of the land. More recent applications of sea-level measurements include 
the resolution of tidal constituents for coastal tide height predictions and assisting in 
the prediction of E1 Nifio/La Nifia events in the Pacific. Tide gauge data are essential 
to studies of wind-generated storm surges which can lead to devastating flooding of 
highly populated low-lying areas such as Bangladesh. Tide gauges located along the 
perimeter of the Pacific Ocean and on Pacific islands form an important component of 
the tsunami warning system that alerts coastal residents to possible seismically- 
generated waves associated with major underwater earthquakes and crustal 
displacements. 

In addition to measuring the vertical movement of the coastal land mass, long-term 
sea-level observations reflect variations in large-scale ocean circulation, surface wind 
stress, and oceanic volume. Because they provide a global-scale integrated measure of 
oceanic variability, long-term (> 50 years) sea-level records from the global tide-gauge 
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network provide some of the best information available on global climate change. 
Long-term trends in mean sea-level are called secular changes while changes in mean 
sea-level that occur throughout the world ocean are known as eustatic changes. As 
described later in this section, eustasy is associated with land-based glaciation, the 
accumulation of oceanic sediments, and tectonic activity, such as the change in ocean 
volume and the shape of the ocean basins. Since coastal stations really measure the 
movement of the ocean relative to the land, land-based sea-level measurements are 
referred to as relative sea-level (RSL) measurements. Mean sea-level is the long-term 
average sea-level taken over a periods of months or years. Datum levels used in 
hydrographic charts can be defined in many ways and generally differ from country to 
country (Thomson, 1981; Woodworth, 1991). For geodetic purposes, mean sea-level 
needs to be measured over several years. 

Specifics of sea-level variability 

As the previous discussion indicates, observed sea-level variations about some mean 
equilibrium "datum" level can arise from four principal components: (1) short-term 
temporal fluctuations in the height of the sea surface include those associated with 
wind waves and oceanic tides forced by the changing alignment of the sun, moon, and 
earth. In addition, there are changes due to atmospheric pressure (the inverse 
barometer effect), to wind-induced current set-up/set-down along the coast, to changes 
in river runoff, and to changes in the large-scale ocean circulation caused by 
fluctuations in the oceanic wind field. (2) Long-term temporal changes result from 
changes in the mass of the ocean due to melting or accumulation of land-based ice in 
the major ice sheets in Antarctica and Greenland, and in the smaller ice sheets and 
mountain glaciers. Steric sea-level changes arising from changes in ocean volume-- 
without a change in mass--involve the heating (expansion) and cooling (contraction) 
of the ocean. Addition or removal of salt has the same steric effect as do cooling and 
heating. (3) Coastal subsidence involves the lowering of the land brought about by 
reduction in the thickness of unconsolidated coastal sediments, erosion, sediment 
deposition and with the withdrawal of fluids (water, oil, etc.) from the sediments. (4) 
Large-scale crustal movements produce sea-level change through tectonic processes 
(mountain building) and glacio-isostatic rebound (continued viscoelastic response of the 
earth to melting of glaciers during the last ice age). 

The principal semidiurnal (M2) and diurnal (K1) tidal constituents with respective 
periods of 12.42 and 23.93 h can be accurately resolved using a 15.3-day tidal record o! 
hourly values. Further  resolution of the important spring-neap cycle of the tides (the 
15-day fortnightly cycle) requires a record length of 29 days (0.98 lunar months: 
1 lunar day = 25 h). For most practical purposes, this is the minimum length oi 
record that is acceptable for construction of local tide tables. In fact, many countries 
maintain primary tide-gauge stations as reference locations for secondary (short-term) 
tide-gauge stations. Differences in the tide heights and times of high/low water are 
tabulated relative to the primary location. Accurate resolution of all 56 principal tidal 
constituents requires a record length of 365 days while an accurate measure of all 
components for long-term tidal applications requires a record of 18.6 years. The 18.6- 
year "Metonic" cycle or nuation is linked to the 5 ~ tilt of the plane of the moon's orbit 
with respect to the plane of the earth's orbit and is the time it takes the line of 
intersection of these two planes to make one complete revolution (Thomson, 1981). 
Other tidal constituents include: The centimeter-scale Pole Tide (Chandler Effect) 
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Figure 1.6.1. Annual mean sea-level values for the longest records for each continent. Data are Revised 
Local Reference (RLR) records from the Permanent Service for Mean Sea-level at the Bidston 
Observatory in Merseyside. Each record has been given an arbitrary offset for presentation purposes. The 
Takoradi record was truncated in 1965 when major problems with the gauge were reported. (From 

Woodworth, 1991.) 

1.6.1 T i d e  and  pressure  gauges  

Although pressure and acoustic gauges are becoming increasingly more popular 
around the world, most sea-level measurements are still made using a float gauge, in 
which the float rises and falls with the water level (Figure 1.6.2a). Modern recording 
systems replace the analog pen with a digital recording system that records on 
punched paper, magnetic tape, or hard-drive. Many of the digital recording systems 
have been equipped with telemetering systems that send sea-level heights and time via 
satellite, direct radio link or meteor-burst communication. The most important aspect 
of this type of sea-level measurement is the installation of the float stilling well. The 
nature of this installation will determine the frequency response of the float system 
and will help damp out unwanted high-frequency oscillations due to surface gravity 
waves. Stilling wells can have their inlet at the bottom of the well or use a pipe inlet 
connected to the lower part of the well. Both designs damp out the high-frequency sea- 
level changes. Maintenance of the sea-level gauge insures that the water inlet orifice is 
kept clear of obstructions from silt, sand, or marine organisms. Also, in areas of strong 
stratification such as rivers or estuaries, the water in the stilling well can be of a 
different density than the water surrounding it. When installing such a measurement 
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Figure 1.6.2. (a) A basic float stilling-well gauge used to measure water levels on the coast; (b) Schematic 
of tide-gauge station with the gauge, network of benchmarks and advanced geodetic link. TGBM - tide 

gauge bench mark. (After Woodworth, I991.) 

system, it is important to provide adequate protection from contamination of the 
stilling well and from damage to the recorder. A potential hazard in all harbor gauge 
installations is damage from ship traffic or contamination of the float response from 
ship wakes. 

Proper installation of coastal sea-level gauges requires that they be surveyed into a 
legal bench mark so that measured changes will be known relative to a known land 
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elevation (Figure 1.6.2b). When properly tied to a bench mark height, changes in 
gauge height relative to land can be taken into account when computing the mean sea- 
level. This tie-in with the local benchmark datum is done by running the level back to 
the nearest available geodetic datum. Modern three-dimensional satellite-based global 
positioning systems (GPS) and long-baseline telemetry systems will soon make it 
possible to accurately determine the vertical movement of a tide gauge relative to the 
geoid. Future accurate satellite altimeter measurements may also provide global 
measurements of the relative sea surface which can then be compared with the 
conventional sea-level measurements. 

The usual test of a sea-level instrument (called the Van de Casteele test) involves 
operating the instrument over a full tidal cycle and comparing the results against 
simultaneous measurements made with a manual procedure. This procedure only 
shows if the recording device is operating properly so that a separate test of the stilling 
well is needed to accurately measure the response of the float. Other than mechanical 
problems, timing errors are one of the major sources of error in sea-level records. Sea- 
level gauges have either mechanical or electronic clocks which must be periodically 
checked to insure that there is no significant drift in the timing of the mechanism. 
When possible these checks should be made weekly. Depending on the specific 
instrument,  well-maintained sea-level recorders are capable of measurements accurate 
to within a several millimeters. 

Another type of sea-level measuring device is the pneumatic or bubbler gauge 
(Figure 1.6.3). This system links changes in the hydrostatic pressure at the outlet 

Basic pneumatic bubbling system 

Pressure 
measuring and 

recording system 
Pressure reduction Volume = v m 

and f low control II . . . .  

V . / I  N a r r o w  tube  for  time constant 
f ~ '-' ~ controlmaybeinsertedhere 

Compressed[ [ 
air cylinder] ] ~ 

/ ~176  

internal diameter 4 m m  ~ "  ~ 1 7 6  Pm = pghm + Pa 
Land-base " "~ " -  o o o 
component , ~ -~176 I 
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Figure 1.6.3. The pneumatic or bubbler gauge. This system links changes in the hydrostatic pressure, pro, 
at the outlet point of the bubbles to variations in sea-level, hm, water density and atmospheric pressure, 
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point of the bubbles to variations in sea-level. Like other pressure sensing gauges, this 
gauge measures the combined sea-level height and atmospheric pressure. As a con- 
sequence, most bubbler gauges operate in the differential mode whereby the recorded 
value is the difference between the measured pressure and the atmospheric pressure. 
While these instruments are somewhat less accurate than float gauges, they are useful 
in installations where a float gauge would be subject to either damage from ship traffic 
or strongly influenced by wave motion. In a study in Tasmania in the 1970s, the plastic 
pressure tubes leading from the electronics package to the ocean were constantly being 
destroyed by curious wombats. 

Sea-level heights are recorded in a variety of formats. Graphical records must be 
digitized and care taken to record only values properly resolved by the instrument. 
Differences in recording scale will lead to variations in the resolution of the gauge 
thereby limiting the accuracy of the digitized data. Modern gauges eliminate this 
possible problem by recording digital data. During digitization of the data, it is 
important to edit out any of the obvious errors due to pen-ink problems or mechanical 
failures in the advance mechanism. Also, when long-term sea-level variations are of 
interest, one must be careful to filter out high-frequency fluctuations due to waves and 
seiches. The choice of time reference is important in creating a sea-level time series. 
The usual convention is to use the local time at the location of the tide gauge which 
can then be referenced to Greenwich Mean Time (GMT, now called Universal Temps 
Coordin~e, UTC). The sea-level record should also contain some information about 
the reference height datum on which the sea-level heights are based. Digital recording 
systems are subject to clock errors and care should be taken to correct for these errors 
when the digital records are examined. 

In recent years, sensitive and accurate pressure sensors have been developed for 
measurement of deep sea tides where fluctuations of the order of 1 mm need to be 
detected in depths of thousands of meters. At first, these sensors were largely based on 
the "Vibraton" built by United Control Corporation which measured pressure by 
changes in the frequency of oscillation of a wire under tension. This frequency change 
was measured to an accuracy of 6 x 10 -4 Hz and led to a sea-level accuracy of 0.8 mm 
(Snodgrass, 1968). To maintain this high level of accuracy, it was necessary to correct 
for temperature effects to a resolution of 0.001 ~ When Vibraton sensors ceased to be 
commercially available they were replaced by resonating quartz crystal transducers 
(Wimbush, 1977), which are the standard for measurement in both deep sea and 
coastal pressure gauge recorders. Produced by Parosscientific (Paros, 1976), these 
sensors have a sensitivity of 1 x 10 -4 dbars for shallow applications (<500 m depth) 
and a sensitivity of 1 x 10 -3 dbars for deep sea measurements. Most modern pressure 
gauges used in coastal and deep sea tidal measurements make use of these sensors. 
(Pressure gauges used in coastal waters are often known as water level gauges.) 
Temperature correction is required to maintain accurate depth measurements. Wearn 
and Baker (1980) report measurements made by such quartz sensors from year-long 
moorings in the Southern Ocean. Unfortunately, instabilities in the quartz sensors 
lead to sensor drifts which limit the use of the sensors in long-term, deep pressure 
measurements. The use of dual pressure sensors helps to correct for drift since each 
pressure sensor will have somewhat different drift characteristics but will produce 
similar responses to higher frequency oceanic variability. 
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1.6.2 Satellite altimetry 

Conventional sea-level measurement systems are limited by the need for a fixed 
platform installation. As a result, they are only possible from coastal or island stations 
where they can be referenced to the land boundary. Unfortunately, there are large 
segments of the world's ocean without islands, so that the only hope for long-term sea- 
level measurements lies with satellite-borne radar altimetry. Early studies (Huang et 
al., 1978) using GEOS-3 altimeter data with its fairly low precision of 20-30 cm, 
demonstrated the value of such data for estimating the variability of the sea surface 
from repeated passes of the satellite radar. In this case, the difference between 
repeated collinear satellite passes eliminates the unknown contribution of the earth's 
geoid to the radar altimeter measurement. This same technique was employed by 
Cheney et al. (1983) using 1000 orbits of high-quality SEASAT radar altimeter data. 

With a known precision of 5-8 cm, the early radar data provided some of the first 
large-scale maps of mesoscale variability in the world's ocean. Satellite altimetry is 
one of the future monitoring capabilities now being actively pursued by physical 
oceanographers interested in ocean circulation problems. While the experience with 
GEOS-3 and SEASAT altimeter data demonstrated the great potential of these 
systems, it is not yet entirely clear if planned altimetry satellites will provide sufficient 
accuracy to allow the specification of the mean ocean circulation related to the ocean 
surface topography. The primary concern is for the contribution of the earth's geoid to 
the satellite altimeter measurements. The geoid is known to have variations with space 
scales similar to the scales of sea-level fluctuations associated with the mean and 
mesoscale ocean circulation. In addition, satellite altimetry data must be corrected for 
atmospheric effects which requires knowledge of the intervening atmospheric 
temperature and water vapor profiles. It is hoped that present research efforts will 
better specify these constituents of the altimeter signal so that future satellite 
altimeter measurements can be used to monitor both the mean and time variable 
(using crossovers or colinear satellite tracks) ocean circulation. 

Considerable headway has been made recently in the area of satellite altimetry due 
to the successful deployment of a number of space-borne altimeters. The first to 
generate a lot of new data was the GEOSAT satellite first launched in 1985 by the U.S. 
Navy in an effort to more precisely map the influences of the geoid on missile tracks. 
After an 18-month "geodetic mission" the Navy was convinced by Dr Jim Mitchell and 
others to put the satellite into an "exact repeat orbit" in November, 1986, using the 
same orbit as the previous SEASAT satellite (Tapley et al., 1982). The altimeter data 
from this orbit had already been made public data and thus the classified altimeter 
data from the geodetic mapping mission were already compromised for this orbit. By 
having the satellite operate in this orbit, scientists would be able to collect and analyze 
data on the ocean's height variability. Fortunately, the GEOSAT altimeter continued 
to function into 1989 providing almost three full years of repeat altimetry measure- 
ments. In addition, the navy has released the "crossover" data from the geodetic 
mission. In this mission, the track did not repeat but the crossovers between ascending 
and descending tracks provided valuable information on ocean height variability. 
Thus, it is possible to combine data from the earlier cross overs and repeat orbits from 
the "exact repeat mission" (ERM) to form a nearly five-year time-series of sea surface 
height variations. It should be stressed that without a detailed knowledge of the earth's 
geoid it is not possible to compute absolute currents and the main area of investigation 
provided by the GEOSAT data was in studying the ocean's height variability. 
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Considerable experience was gained in computing the various corrections that are 
needed to correct satellite altimeter data (Chelton, 1988). These include the iono- 
spheric correction, the dry tropospheric correction, the wet tropospheric correction. 
Added to these are the errors due to EM (electromagnetic) bias, antenna mispointing, 
antenna gain calibration, the inverse barometer effect, ocean/earth tides and precise 
orbit determination. Since the GEOSAT satellite did not carry a radiometer to 
compute tropospheric water vapor other operational satellite sensors were used to 
compute the atmospheric moisture to correct the altimeter path length (Emery et al., 
1989a). Many experiments were conducted to better understand the EM-bias 
correction (Born et al., 1982; Hayne and Hancock, 1982). Other corrections can be 
routinely computed from available sources, including the dry troposphere correction 
which requires knowledge of the atmospheric pressure (Chelton, 1988). 

GEOSAT data have been used to map both the large-scale and smaller scale regional 
circulations of the ocean. Miller and Cheney (1990) used GEOSAT data to monitor the 
meridional transport of warm surface water in the tropical Pacific during an E1 Nifio 
event. Combining crossover and colinear data, the authors constructed a continuous 
time-series of sea-level changes on a 2 ~ x 1 o grid in the Pacific between 20~ and 20~ 
for the four-year period from 1985 to 1989. They concluded that the 1986-1987 E1 
Nifio was a low-frequency modulation of the normal seasonal sea-level cycle and that a 
build-up of sea-level in the western Pacific was not required as a precursor to an E1 
Nifio event. A similar analysis of colinear GEOSAT data for the tropical Atlantic 
(Arnault et al., 1990) showed good agreement between the satellite sensed sea-level 
changes and those measured in situ using dynamic height methods. Using GEOSAT 
sea-level residuals computed from a two-year mean Vazquez et al. (1990) examined the 
behavior of the Gulf Stream downstream of Cape Hatteras. Comparisons with NOAA 
infrared satellite imagery show a fair agreement in Gulf Stream path with some sea- 
level deviation maps not showing a clear location of the main stream. In the same 
geographic region Born et al. (1987) used a combination of GEOSAT altimetry and 
airborne expendable bathythermograph data, to map geoid profiles as the difference 
between the altimetric sea-level and the baroclinic dynamic height. Many other 
oceanographers have used GEOSAT data to study a great variety of oceanographic 
circulation systems (e.g. Figure 1.6.4). 

In the summer of 1992, the long awaited TOPEX-POSEIDON alti~metric satellite 
was launched. Carrying two altimeters (one French and one U.S.) with a single 
antenna, TOPEX/POSEIDON marked a significant step forward in altimetric remote 
sensing. The NASA altimeter is a dual-frequency altimeter which will be able to 
compensate for the influence of ionospheric changes. The French altimeter is the first 
solid-state instrument to be deployed in space. In addition, there is a boresight 
microwave radiometer (TOPEX Microwave Radiometer, TMR) to provide real time 
atmospheric water vapor measurements for the computation of wet troposphere 
corrections for the onboard altimeters. The resulting combination of data provides 
altimeter heights accurate to _+10 cm. A truly joint project, the satellite was built in 
the U.S. and launched by the French Ariane launch vehicle. A large group of French 
and U.S. science teams have been working to prepare for this mission and will 
continue to work on the analysis of these important data. 

1.6.3 Inverted echo sounder (IES) 

As noted in Section 1.5, accurate depth measurements using acoustic sounders 
requires corrections on the order of _+ 1% for variations in sound speed introduced by 
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Figure 1.6.4. Average eddy kinetic energy maps from two years of G eosat altimeter data (November 1986 
to November 1988)for ascending and descending passes (after Shr~m et al., 1990). 

changes in oceanic density. Rossby (1969) suggested that this effect could be used to 
advantage since it provided a way to measure variations in travel times of acoustic 
pulses from the sea floor due to changes in the depth of the thermocline. Moreover, 
the fact that travel times are integrated measurements means that they effectively 
filter out all but the fundamental mode of any vertical oscillations. This idea led to the 
development of the inverted echo sounder (IES) in which the round-trip travel time of 
regularly-spaced 10 kHz acoustic pulses from the seafloor are now used to determine 
temporal variability in the integrated density structure of the ocean. The IES has been 
widely used in studies of the Gulf Stream where its records are interpreted in terms of 
thermocline depth, heat content and dynamic height (Rossby, 1969; Watts and Rossby, 
1977). It has also been used in the equatorial Pacific and  Atlantic although inter- 
pretation of the data is more uncertain because of a lack of repeated deep CTD casts to 
determine density variability (Chiswell et al., 1988). 

Tidal period variability and large changes caused by El Nifio-Southern Oscillation 
(ENSO) events are potentially serious problems in the interpretation of echo sounding 
data. In particular, the CTD data are needed to convert time-series of acoustic travel- 
time At between two depth levels (z~, z2) to a time-series of dynamic height L2xD 
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integrated over the pressure range Pl to P2 with an accuracy of 0.01-0.04 dynamic 
meters. The obvious similarity between these two parameters (Watts and Rossby, 
1977) can be seen from the relations 

~2 

Atzl/z2 -- 2 / [1/c(S, T, p)] dz 

zl 

(1.6.3.1) 

and 

P2 

zikDp2/p, - / [1/p(S, T,p) - 1/p(35, 0,p)] dp 

Pl 

P2 

= 103 / ~Sdp 

Pl 

(1.6.3.2) 

where c is the speed of sound (at specified salinity S, temperature T, and pressure p), z 
= depth (positive downward), and p is density. Finally, ~5, defined as 

-c~(S, T, p ) -  ~(35, 0, p ) -  1/p(S, T, p ) -  1/p(35, 0, p) (1.6.3.3) 

is the specific volume anomaly. In these expressions, we use SI units with depth in 
meters, density in kg/m 3, pressure in decibars, and dynamic height in dynamic meters 
(1 dyn m - 10 m 2 s-2). 

Chiswell et al. (1988) compare time-series of dynamic height from an inverted echo 
sounder with sea-level height (zl - -~7) from a pressure sensor located 70 km away on 
Palmyra Island in the central equatorial Pacific. The spectra for the dynamic height 
variations determined from the ISE closely resembled those from the pressure gauge. 
Significant coherences were found between the two signals at the 99.9% level of 
significance. Although, in principle, varying mixtures of vertical internal modes could 
produce a frequency dependence in the conversion of ISE to dynamic height, the effect 
was not significant over the year-long data series. Wimbush et al. (1990) discussed moor- 
ings in 4325 m of water 72 km west of the subsurface pressure gauge in the Palmyra 
Lagoon (5~ 162~ The IES was set to 1/2-hour sampling, each sample 
consisting of 20 pulses 10 s apart. Outliers are eliminated and the median value taken as 
representative of the acoustic travel time. According to Wimbush et al., a conventional 
IES without a pressure sensor adequately records synoptic-scale dynamic height 
oscillations with 20-100-day periods. Chiswell (1992) discussed 14-month records from 
five inverted echo sounders deployed in February 1991 in a 50-km array in 4780 m of 
water near 23~ 158tW north of Hawaii. The CTD and ADCP (acoustic Doppler current 
profiler) data collected during monthly surveys at the array site provided sufficient 
density data to calibrate the IES data in terms of dynamic height and geostrophic 
currents. 

Wimbush et al. (1990) used the response method of Munk and Cartwright (1966) to 
get the daily and semidiurnal tides and filtered with a 40-h Gaussian low-pass filter 
while Chiswell has attempted to resolve the tidal motions through 36-h burst sampling 
of the density structure from three-hourly CTD profiles. IES deployments show that 
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there is a linear relationship between dynamic height and travel time (Figure 1.6.5), 
with the calibration slope dependent on the particular T-S properties of the region. In 
this case, we can link variations in AD (for depths shallower than the reference level 
Pref used in the dynamic height calculation) to the acoustic travel time Atref 

A D  - mAtref (1.6.3.4) 

where total acoustic travel time to the bottom is 

A t  --/ktref  + ")'H2 (1.6.3.5) 

in which 7 = 2/Cb and C b is the average sound speed (assumed constant) between Pref 
and the bottom. The depth H2 is the depth range between the seafloor (pressure = Pb) 
and the reference pressure level, Pref-Solving yields, 

A D  - m[At  - (7/P'bg')Pb] (1.6.3.6) 

where gravity and bottom density are scaled as g' - 0.1g and p~ - 10-3pb, respectively. 
For oscillations in density having periods longer than about 20 days, the second term 
on the right-hand side of equation (1.6.3.6) may be dropped, whereby 

z~xD - - m A t  (1.6.3.7) 

Wimbush et al. find m = -70  dyn m s -1 to convert At to zkD, while Chiswell (1992) 
finds m = - 5 7 . 8 d y n m s  -1 for At defined for z = 0-4500 m and AD at 100 m 
referenced to 1000 m. The high correlation coefficient, r 2 - 0.93, is based on 186 
shallow (1000 m) and 17 deep (4500 m) CTD casts. The error in the slope using the 
deep casts is 4 dyn m s -1 with an RMS deviation 0f0.017 dyn m; for the shallow casts 
the mean is 0.1 dyn m s -l with a deviation of 0.029 dyn m. The travel times for the 
subtropical Pacific moorings of Chiswell  correlate bette-r with dynamic height 
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Figure 1.6.5. Dynamic height at 100 m relative to 1000 m (AD~oo/moo) from 186 shallow CTD casts 
plotted against corresponding travel time measured by IESs (open circles). Thin line is the least squares 
fit. Thick line and solid circles give ADloo/looo calculated from 17 deep casts plotted against the 
corresponding travel time from 4500 m to the surface, To/45oo ( r2 = 0.93 and slope = -57.8 dyn m/s). 

(From Chiswell, 1992.) 
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measured below 100 m than with surface dynamic heights. This is because large 
variations in the temperature and salinity relation in the upper 100 m affect dynamic 
height more than they affect acoustic travel time (Chiswell et al., 1988). The tidal 
range of 8 dyn cm is relatively large compared with the seasonal range of 25 dyn cm 
and illustrates the need for detailed CTD sampling. Geostrophic currents have been 
derived from the array using the time-series of dynamic height created from the 
multiple IES moorings. Aliasing of the records by high frequency motions and a lack 
of CTD data to the depth of the IES remain problems for this method. 

1.6.4. Wave height and direction 

Any discussion of sea-level would be incomplete without some mention of surface 
gravity wave measurement. Methods include: a capacitance staff which measures the 
change in capacitance of a conductor as the air-water interface moves up and down 
with passage of the waves; an upward-looking, high-frequency acoustic sounder or 
acoustic Doppler current profiler with a vertical-pointing transducer which can be 
used to examine both the surface elevation and the associated orbital currents; a fixed 
graduated-staff attached to a drill platform, stuck in the sand or otherwise attached to 
the seafloor; satellite altimetry; a bottom-mounted pressure gauge with rapid sampling 
time; a shipborne Tucker wave-recorder system; and the waverider and directional 
waverider buoys. For brevity, we limit our presentation to the directional waverider 
since it represents reliable off-the-shelf technology. 

Built by the Datawell company of The Netherlands, the directional waverider is a 
spherical, 0.9-m diameter buoy for measuring wave height and wave direction. The 
buoy contains a heave-pitch-roll sensor, a three-axis fluxgate compass and two fixed 
"x" and "y" accelerometers. The directional (x,y, z) displacements in the buoy frame 
of reference are based on digitial integration of the horizontal (x, y) and vertical (z) 
accelerations. Horizontal motions rather than wave slope are measured by this system. 
Vertical motions are measured by an accelerometer placed on a gravity-stabilized 
platform. The platform consists of a disk which is suspended in a fluid within a plastic 
sphere placed at the bottom of the buoy. Accelerations are derived from the electrical 
coupling between a fixed coil on the sphere and a coil on the platform. A fluxgate 
compass is used to convert displacements from the buoy frame of reference to true 
earth coordinates. 

Displacement records are internally filtered at a high-frequency cut-off of 0.6 Hz. 
Onboard data reduction computes energy density, the prevailing wave direction, and 
the directional spread of the waves. Frequency resolution is around 0.01 Hz for waves 
in the range 0.025-0.59 Hz. Transmission of data is to Argos satellite or through 
standard 27-40 MHz radio-link to shore. The buoy will measure heave in the range 
_+20 m with 1 cm resolution for wave periods of 1.6-20 s in the moored configuration. 
The direction range is 0-360 ~ with a resolution of 1.5 ~ 

A crucial aspect of collecting reliable, long-term wave data is the mooring con- 
figuration. If not designed and moored correctly, there is little chance the mooring 
will survive the constant stresses of the wave motions. As illustrated in Figure 1.6.6, 
the recommended configuration consists of a single-point vertical mooring with two 
standard rubber shock cords and heavy bottom chain. This arrangement ensures 
sufficient symmetrical horizontal buoy response for small motions at low frequencies 
while the low stiffness of the rubber cords allows the waverider to follow waves up to 
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Not to scale 
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Figure 1.6.6. Mooring configuration for a DataweU Directional Waverider buoy on a shallow continental 
shelf. (Modified after Datawell bv, 1992; Courtesy T. Juhasz and R. Kashino.) 

40 m high. Current  velocities can be up to 2.5 m/s, depending on water depth 
(Datawell bv, 1992). 

1.7 E U L E R I A N  C U R R E N T S  

The development of reliable, self-recording current meters is one of the major 
technological advances of modern oceanography. These sturdy, comparatively light- 
weight instruments  are, in part, a byproduct  of the rapid improvement  in electronic 
recording systems which make it possible to record large volumes of digital data at 
high sampling rates (Baker, 1981). Although they can be used in either moored or 
profiling modes, most current meters are used in time-series measurement  of current 
speed and direction at fixed locations. [Such fixed-location measurements  are called 
Eulerian measurements  after the Swiss mathematic ian Leonhard Euler (1707-1783) 
who first formulated the equations for fluid motion in a fixed frame of reference.] The 
development of reliable mooring technology and procedures also has played a major 
role in advancing the use of moored current meters and associated instrumentation.  
Acoustic release technology, which has proven so critical to oceanic research, will be 
discussed at the end of this section. 

Most commercially available current meters have sufficient internal power and data 
storage to be moored for several months to a year. The instrument 's  duration depends 
on the selected sampling rate, the data storage capacity, the battery life and the 
ambient  water temperature.  Greater power can be obtained from lithium batteries 
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than from more conventional batteries but the user sometimes faces numerous 
transportation regulations and operational concerns with lithium batteries. Operating 
time for all types of batteries decreases with water temperature. Despite their 
sophistication, most current meters are made to withstand a fair amount of abuse 
during deployment and recovery operations. Typical "off-the-shelf" current meters 
(and releases) can be deployed to depths of 1000-2000 m, and many manufacturers 
fabricate deep versions of their products with heavy-duty pressure cases and 
connectors for deployments to depths of 6000 m. Most modern current meters also 
allow for the addition of ancillary sensors for concurrent measurement of temperature, 
conductivity (salinity), water clarity (light attenuation and turbidity), pressure, and 
other scalars. 

Current  meters differ in their type of speed and direction sensors, and in the way 
they internally process and record data. Although most oceanographers would prefer 
to work with the scalar components u, v of the horizontal current velocity vector, u = 
(u, v), it is a fact of life that current meters can directly measure only the speed (]u [) 
and direction (0) of the horizontal flow. (For now, we ignore the vertical velocity 
component, w.) It is because of this constraint that most current meter editing and 
analysis programs historically work with speed and direction. From a practical point 
of view, both the (u, v) and the (] u I, ~) representations have their advantages, despite 
the difficulties with the discontinuity in direction at the ends of the interval of 0-360 ~ . 

Speed sensors can be of two types: mechanical sensors which measure the current- 
induced spin of a rotor or paddle wheel; and nonmechanical sensors which measure the 
current-induced change in a known electromagnetic field or the differences in 
acoustic transmission times along an acoustic path. Despite these fundamental 
differences, all current meters have certain basic components that include speed 
sensors, a compass to determine orientation relative to the earth, built-in data avera- 
ging algorithms, and a digital storage device. Possible speed sensors include: 

(a) Propellers (with or without ducts). 
(b) Savonious rotors. 
(c) Acoustic detectors (sound propagation or Doppler shift). 
(d) Electromagnetic sensors (induced magnetic field). 
(e) Platinum resistors (flow-induced cooling). 

Flow direction relative to the axes of the current meter is usually sensed using a 
separate vane or by configuring the speed sensors along two or three orthogonal axes. 
In all current meters, the absolute orientation of the instrument relative to the earth's 
magnetic field is determined by an internal compass. At polar latitudes where the 
horizontal component of the earth's magnetic field is weak, measurement of absolute 
current requires that the meter be positioned rigidly in a known orientation. Direction 
resolution depends on the type of compass used in the measurement; e.g. clamped 
potentiometer for Aanderaa RCMs, optical disk for Marsh-McBirney electromagnetic 
current meters, and flux gate (Hall effect) compass for the EG&G Vector Measuring 
Current Meter, InterOcean $4 current meter and SimTronix Ultrasonic Current 
Meter UCM 40. For each deployment, compass direction must be corrected for the 
local deviation of the earth's magnetic field before the velocity data are converted to 
north-south and east-west components. The accuracy, precision, and reliability of a 
particular current meter are functions of the specific sensor configuration and the 
kind of processing applied to the data. Rather than comment on all the many possible 
variations, we will discuss a few of the more generic and successful configurations. 
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The problems and procedures associated with the use of these instruments, and the 
analysis of the resultant data, are sufficiently similar that the discussion should be 
instructive in the use of instruments not specifically mentioned. 

1.7.1 Early current meter technology 

One of the earliest forms of current measurement was the tilt of a weighted line 
lowered from a ship. The time it took an object to travel the length of the ship also 
provided a measure of the surface flow. [The term "knot" is from the use by Dutch 
sailors of a knotted line to measure the speed of their sailing vessel.] Although we like 
to think of the current meter as a recent innovation, the Ekman current meter was in 
use as early as the 1930s (Ekman, 1932). Although many different mechanical current 
meters built in those days (see Sverdrup et al., 1942), few worked and most scientists 
went back to the Ekman meter. To measure the current, the instrument was lowered 
over the side of the ship to a specific depth, started by a messenger, and then allowed 
several minutes before being stopped by a second messenger. The current speed for 
each time increment was determined by reading a dial that recorded the number of 
revolutions of an impeller turned by the current. A table was used to convert impeller 
revolutions to current speed. Current direction was determined from the distribution 
of copper balls that fell into a compass box below the meter. A profile from 10 to 
100 m typically took about 30 min. Obvious problems with this instrument included 
low accuracy in speed and direction, limited endurance, and the need to work from a 
ship or other stationary platform. One of the first commercial current meters was the 
self-contained Geodyne 850 current meter built in the United States in the 1960s. The 
Geodyne was a large and bulky, vertically-standing unit with a small direction vane 
and four-cup Savonious rotor. Burst sampling was permissible in the range of 60- 
660 s. The Nerpic CMDR current meter built in France in the 1960s was a torpedo- 
like device that oriented itself with the current flow and used an impellor-type rotor to 
measure current speed. In the original versions, data were recorded on punched paper 
tape. The Kaijo Denki current meter built in Japan in the 1970s was one of the earliest 
types of acoustic current meter. 

Although some oceanographers might disagree, the age of the modern current meter 
appears to have started with the Aanderaa Recording Current Meter (RCM) developed 
by Ivar Aanderaa in Norway in the early 1960s under sponsorship of the North 
Atlantic Treaty Organizaton (NATO). The fact that many thousands of these 
internally recording current meters remain in operation attests to the instrument 's  
durability. Many oceanographers still consider the Aanderaa RCM4 (Figure 1.7.1) and 
its deep (>2000 m) counterpart,  the RCM5, the "workhorses" of physical oceano- 
graphy. It certainly is the most common and reliable current meter used to measure 
ocean currents. For this reason, there have been more studies, intercomparisons and 
soul-searching with this instrument than with any other type of meter. 

1.7.2 Rotor-type current meters 

The R C M  series of current meters 

The Geodyne and RCM4 current meters were the first current meters to use a 
Savonious rotor to measure current speed. This rotor consists of six axisymmetric, 
curved blades enclosed in a vertical housing which is oriented normally to the 
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direction of flow (Figure 1.7.1). Data in the RCM4 are recorded on a small 1/4 inch 
reel-to-reel magnetic tape. Allowable sampling rate settings are 3.75 • 2 N min (e.g. 
3.75, 7.5, 15, 30, 60 min) where N (= 0, 1, 2, ...) is an integer. Although shorter 
sampling periods are possible, they are not practical given the mechanical limitations 
of the rotor. Speed is obtained from the number of rotor revolutions for the entire 
sample interval while direction is the single direction recorded at the end of the 
sample period. Thus, speed is based on the average value for the recording interval 
while direction involves a single measurement. In the past, the number of revolutions 
per recorded data "count" was varied by changing the entire rotor counter module. 
More recent RCMs allow the investigator to set the number of revolutions per count 
(e.g. 2 M revolutions per count, where M = 1, 2, 3, ...) so that the speed range of the 
instrument can be adjusted for the flow conditions. For example, in the coastal tidal 
passes of British Columbia and Alaska, the common upper range of 3 m/s for standard 
rotor settings is not always sufficient to measure peak tidal speeds; the peak speed of 
7.5 m/s that occurs in Nakwakto Rapids in coastal British Columbia is beyond the 
design of most modern current meters. The direction vane of the RCM4 is rigidly 
affixed to the pressure case containing the data logger. The unit is then inserted in the 
mooring line and the entire current meter allowed to orient in the direction of the 
current. Although the RCM does not average internally, vector-averaged currents can 
be obtained through post-processing of the data (Thomson et al., 1985). A meteoro- 
logical package for surface applications also is available with the same data logging 
system (Pillsbury et al., 1974). 

Figure 1.7.1. Caption overleaf. 
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Figure 1.7.1. Exploded view of the encoder side of the Aanderaa RCM4 current meter. The reverse side 
contains a reel-to-reel 1~4-in tape system for recording the data from the different channels. The recorder 

unit is attached to a directional vane. (Courtesy G. Gabel, G. S. Gabel Corp.) 

Part of the reason for the popularity of the RCM series of current meters has been 
their reliability, comparatively low cost, and relatively simple operation. Both 
calibration and maintenance of the instruments can be performed by individuals with 
fairly limited electronics expertise. In more recent years, many of the other types of 
current meters, such as electromagnetic current meter (ECM) and the acoustic current 
meter (ACM), have advanced to the point that they require electronics expertise due to 
the advanced computer diagnostics available from the manufacturers of these 
instruments. Another attractive feature of the RCM is the easy addition of sensors 
for measuring temperature, conductivity and pressure (depth) on the same data 
logger. The Aanderaa RCM7 introduced in the late 1980s can be purchased with 
standard temperature ( -2  to +35~ expanded temperature (i.e. over a narrower 
range such as 0-10~ conductivity (for salinity), and total pressure. The 0-5 volt 
output from a Sea Tech transmissometer for measuring water clarity can be readily 
incorporated in the instrument package. Thus, there is the potential to collect a wide 
range of parameters other than just currents alone. 

The profiling Cyclesonde (van Leer et al., 1974; Baker, 1981) consists of a RCM4 
current meter affixed to a buoyancy-driven platform which makes repeated automatic 
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round trips between the surface and some specified depth (<500 m) along a taut-wire 
mooring. The vertical cycling of the instrument is controlled by changing the density 
of the instrument package by a few percent using an inflatable bladder. Depending on 
the prescribed sampling interval and the duration of each round-trip (or depth of 
water sampled), the instrument can provide time-series of currents, temperature and 
salinity over periods of weeks to months at depths of every 10 m or so through the 
water column. 

Processing of RCM4 data includes four major steps: (1) tape transcription (quarter- 
inch tape to computer format); (2) calibration, or conversion to physical units; (3) 
error detection, spike removal and interpolation; and (4) data analysis. The last point 
will be discussed in detail in later chapters of this book. The first three steps provide 
an example of the procedure required in producing useful data from moored current 
meters. The data in an RCM4 are recorded as 10-bit binary words (numbers from 0 to 
1023) on 1/4-inch magnetic tape. For each cycle, six binary words are written on the 
tape. For the temperature channnel, a near-linear calibration curve is applied to the 
measured value to convert it to temperature. Current speed for earlier versions is 
handled somewhat differently since speeds must be calculated as the difference 
between consecutive integers recorded on the appropriate data channel. The relation- 
ship between speed in physical units (e.g. cm/s) and rotor count (X) is nearly linear so 
that speed also can be calculated from a linear calibration. 

Tape translation is carried out by connecting a 1/4-inch tape recorder to a digital 
computer. With this set-up, the digital data are transferred from the 1/4-inch tape to 
computer compatible format for further editing and analysis. To these raw character 
data must be added "header" information such as the start and stop times of the 
particular mooring. As a check one calculates the number of instrument cycles that 
should have occurred during the mooring period and this should equal the number of 
records in the raw data file. If this is not the case, then the data have timing errors 
which must be corrected before processing can continue. Timing errors will be more 
closely addressed in a later section. 

To convert the dated raw data to physical units (i.e. speed, direction) calibration 
constants are needed for the individual sensors. For most parameters the calibration 
values are found for each meter separately as quadratic fits to the calibration data. As 
has been mentioned above, this is not the case for the speed parameter for which a 
general curve can be used for all rotors if currents are typically greater than 10 cm/s. 
Directions also are handled somewhat differently in that no formula is derived from 
the calibration data but rather a simple look-up table is developed for the calibration 
data from which the compass readings can be converted directly into degrees from 
true or magnetic north. 

1.7.2.1 The vector averaging current meter (VACM) 

As discussed by Baker (1981), one of the important data reduction techniques in 
oceanography was the introduction of the "burst sampling" scheme of Richardson et 
al. (1963) whereby short samples of densely packed data are interspersed with longer 
periods of no data. In continuous mode, the average current speed and instantaneous 
direction are recorded once per sampling interval. In burst mode, a rapid series of 
speed and direction measurements are averaged over a short segment of the sampling 
interval. In vector-average mode, the instrument uses speed and direction to calculate 
the horizontal and vertical components of the absolute velocity during the burst. It 
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then separately averages each component internally to provide a single value of 
velocity vector for each burst. If enough is known about the spectra of the flow 
variability, the burst samples can be used to adequately estimate the total energy in 
the various frequency bands. This procedure greatly reduces the amount of recording 
space needed to sample the currents. The vector-averaging current meter (VACM) 
introduced in the 1970s uses both burst sampling and internal processing to compute 
the vector-average components of the current for each sampling period. Current speed 
is obtained using a Savonious rotor similar to that on the RCMs but direction is from a 
small vane that is free to rotate relative to the chassis of the current meter. Vectors are 
computed for every eight revolutions of the rotor and averaged over periods of from 4 
to 15 min, depending on the selected sampling interval. 

Problems wi th  the Savonious rotor 

Because of its widespread use in oceanography, the Savonious rotor sensor needs to be 
covered in some detail. We begin by noting that a principal shortcoming of the RCM4/ 
5 is its inability to record currents accurately in regions affected by surface wave 
motions. The problem with the Savonius rotor response is that it is omnidirectional 
and therefore responds excessively to oscillatory wave action. An intercomparison 
experiment using a mooring array shown schematically in Figure 1.7.2(a) demon- 
strated the differences between Savonius rotor measurements and those made with an 
EM current meter (Woodward et al., 1990). Even under moderate wave conditions, the 
near-surface moored RCM4 can have its speeds increased by a factor of two through 
wave pumping (Figure 1.7.2b). The effect of wave pumping on the Savonius rotor 
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Figure I. 7.2. (a) Mooring arrangement for comparison of current speed and direction from Aanderaa 
RCM4 (Savonious rotor) and RCM7 (paddle wheel) current meters and Marsh-McBirney 
(Electromagnetic) current meters moored at 10 m depth during September 1983 in an oceanic wave 

zone (Hecate Strait, British Columbia). 
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pressure gauges. Winds were measured using a J-Tec vortex-shedding anemometer. In moderate wind- 
wave conditions, a surface or near-surface moored RCM4 with Savonius rotor can have its speeds 
increased by a factor of 2 through wave pumping. The paddle wheel RCM7 behaves somewhat better. 

significantly increases the spectral energy at both low and high frequencies (Figure 
1.7.2c). Hence, the instrument is best suited to moorings supported with subsurface 
floats but is not suitable for mooring beneath surface buoys or in the upper ocean wave 
regime. Unlike the earlier Aanderaa current meters, VACMs provide accurate 
measurements when deployed in near-surface wave fields and from surface-following 
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Figure 1.7.2. (c) Power spectra for current measurements in (a). (Adapted from Woodward et al., 1990.) 

moorings (Halpern, 1978). In a comparison between Aanderaa and VACM measure- 
ments, Saunders (1976) concluded that "the Aanderaa instrument,  excellent though it 
is on subsurface moorings, is not designed, nor should it be used, where wave 
frequency fluctuations are a significant fraction of the signal." In this, and a later 
paper, Saunders (1980) pointed out that the contamination of the Aanderaa measure- 
ments in near-surface applications is due also to a lag in the response of the direction 
vane to oscillatory flow. 

Since 1991, Aanderaa has gone to a vector-averaging RCM7 current meter with a 
paddle-wheel rotor (Fig. 1.7.1a) and internal solid state, E-prom modular memory. In 
earlier versions of the RCM7, the paddle-wheel rotor was partially shielded by a 
semicircle baffle which was intended to reduce wave induced "pumping".  This has 
now been abandoned since the baffle sheds small-scale eddies which interfere with the 
response of the paddle-wheel in other operations. Field tests indicate that the vector- 
averaging RCM7 has only slightly better wave-region performance than the earlier 
RCMs (Figure 1.7.2c) and the overall improvements are marginal for most appli- 
cations. During the selected recording interval, the number  of rotor revolutions and 
compass direction are sampled 50 times per recording interval; e.g. every 12 s for a 10- 
min sampling interval. As with other vector-averaging current meters, the speed and 
direction are then resolved internally into east-west and north-south components and 
successive components are added and temporarily stored. When the selected recording 
interval has elapsed, the resulting average vector and its angle are calculated and 
stored. A problem with the electronic memory is that data are lost if the instrument 
floods, as it often does when the instrument is hit by fishnet or tug lines. This was not 
the case for the 1/4-inch magnetic tapes used in the RCM4. Thomson (1977) reports 
finding an old RCM that had lain on the bottom of Johnstone Strait for over three 
years. Although the metal components and circuit boards had turned to mush, the 
salt-encrusted tape contained a full record of error-free data. 

Another problem common to all Savonius rotor current meters is that bearing 
friction results in fairly high threshold of the rotor and an improper response of the 
rotor to low current speeds. For the Aanderaa RCM4/5, this threshold level is about 
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2 cm/s and current measurements taken in quiescent portions of the ocean will have 
many missing values where the currents were too slow to turn the rotors during the 
sampling interval. According to manufacturer specifications, the response is linear for 
current speeds between 2.5 and 250 cm/s so that once the rotor is turning it has 
acceptable response characteristics. In this range, accuracy is given as _ 1 cm/s or 2% 
of the speed, whichever is greater. Accuracies for the other associated sensors are 1% 
for pressure, _0.3~ for temperature and ___0.05 psu for salinity. All of these ac- 
curacies are really "relative" values and regular calibration is required to insure 
reliable measurements. Such a calibration procedure is discussed in detail in Pillsbury 
et al. (1974) for RCM4s. We will only highlight some of the more important aspects of 
this calibration in order to suggest problem areas where data from Aanderra current 
meters may be subject to error. 

As described by Pillsbury et al. (1974), calibration of the RCM4 compass is import- 
ant because more compass failures occurred for a set of instruments than all other 
sensor failures combined. Careful calibration will reveal the several different kinds of 
compass failure. The compass calibration is performed for selected compass bearings 
by rotating the instrument through 360 ~ on a pivoted stand. This operation is repeated 
10 times. A reliable compass is one which repeats its calibration curve within 3 ~ From 
calibration work reported by Gould (1973), it is clear that there is a significant 
departure from linearity in most RCM4 compasses. The magnitude of the nonlinearity 
errors (approximately 1% of the scalar mean speed per degree of compass non- 
linearity) means that many of the residual velocity values observed in the ocean could 
be introduced by a nonlinearity of 1 ~ or 2 ~ in the direction sensor. If such residual 
values are to be trusted, care must be taken to "calibrate out" instrument non- 
linearities in the data analysis procedure. Such precautions are particularly important 
if the current meter records are to be used to deduce shears from pairs of instruments 
or circulation patterns from horizontal current meter arrays. 

Turning to the rotor, it was found that for speeds several centimeters per second 
above the threshold, the calibration of all rotors of a given type can be considered as 
equal. For calibration, this threshold was found to be roughly 10 cm/s, below which 
each rotor should be calibrated with its corresponding current meter. For mean speeds 
greater than 10 cm/s, a general calibration curve can be  used for all instruments 
(Figure 1.7.3). This calibration curve is fitted by a line and used for all calibrations. 
Deviations from this line varied from 19% at 2 cm/s to less than 1% at 30 cm/s, with a 
mean value of 4%. 

1.7.2.2 Vector measuring current meter (VMCM) 

To circumvent the nonlinear response problems of the RCM4, Weller and Davis 
(1980) developed the vector measuring current meter (VMCM) which uses two ortho- 
gonal propeller current sensors with an accurate cosine response. This instrument 
produces negligible rectification and therefore should accurately measure mean flow 
in the presence of unsteady oscillating flow. In laboratory tests, the VMCM performed 
well in the presence of combined mean plus oscillatory flow as compared with poorer 
performances by Savonius rotor/vane systems and by electromagnetic and acoustic 
sensors. The open fan-type rotors of the VMCM are highly susceptable to fouling by 
small filaments of weed and other debris. 



78 D a t a  Analys is  Me thods  in Physical  Oceanography 

60 - -  

50 

4O 

r~ 

30 

r 

,/ 
/ 

0 

2O 

10 

# I 
0 0.5 

. . . . .  J 

1.0 1.5 

Rotor: revolutions/second 
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1.7.3 N o n m e c h a n i c a l  c u r r e n t  m e t e r s  

1.7.3.1 Acoust ic  current  meters ( A C M )  

Nonmechanical current meters determine current speed and direction by measuring 
speed along two or three orthogonal sensor axes. Once the flow direction relative to the 
current meter is determined, absolute direction is found using a built in magnetic 
compass. Acoustic current meters (ACMs) measure the difference in the time delay of 
short, high frequency (megahertz) sound pulses transmitted between an acoustic 
source and receiver separated by a fixed distance, L. In all cases, the transducer and 
receiver are combined into one source-receiver unit. The greater the speed of the 
current component in the direction of sound propagation, the shorter the pulse travel 
time and vice versa. For instance, suppose that the speed of sound in the absence of 
any current has a value c. The times for sound to travel simultaneously in opposite 
directions from two combined transducer-receiver pairs in the presence of an along- 
axis current of speed v is: tl = L/(c § v) for transducer-receiver pair No. 1 and t2 = L~ 
( c - v )  for transducer-receiver pair No. 2. The velocity component along the 
transducer axis is therefore 

v = L(t2 - t1)/(2tlt2) (1.7.1) 

A three-axis current meter determines the three-dimensional velocity by simultan- 
eously measuring time differences along three orthogonal axes. 
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Examples of commercial acoustic current meters include the SimTronix UCM 40 
and the Niel Brown ACM current meters. Because of the rapid (~1500 m/s) propa- 
gation of sound in water, these current meters are capable of high frequency sampling 
and processing, with typical data rates of 10-20 Hz. The instruments also can provide 
estimates of the sound velocity along the two paths of length L between the sensors. 
More specifically, c = 2L/t ,  where t - tlt2/(tl + t2) is the effective time of propagation. 
Manufacturer specifications vary but may be characterized as follows: 

�9 Speed accuracy: on the order • 1 cm/s at flow speeds of 10 cm/s. 
�9 Speed resolution: approximately • 1 mm/s 
�9 Threshold speed: 1 mm/s. 
�9 Speed range: 0-5 m/s 
�9 Compass direction: accuracy •176 resolution 0.1% of the range. 
�9 Sampling rate: 20 Hz. 
�9 Acoustic frequency: 4 mHz. 
�9 Allowable tilt: a true cosine tilt response up to ___20 ~ 
�9 Sound speed: range of 1350-1600 m/s and accuracy of ___5 m/s. 

Because of their sophisticated technology, acoustic current meters are often difficult 
to operate and maintain without dedicated technical support. For example, biofouling 
of the transducers can be a problem on any long-term mooring in the euphotic (near- 
surface light influenced) zone. The instruments also must undergo frequent 
recalibration due to problems with sensor misalignment and changes in the physical 
dimensions of the transducer-receiver pairs. As discussed by Weller and Davis (1980), 
this is a particular weakness of the ACM which has proved difficult to calibrate due to 
drifts in the zero level and in the amplifier gain. In one comparison, they found that 
the background electrical noise of the ACM had the same level as the signal. As they 
point out, these problems are with the system electronics and should be solvable. 
Similar problems were encountered by Kuhn et al. (1980) in their intercomparison test 
but they were quick to point out that their ACM was an early prototype model and 
many of the problems that they encountered have since been solved by the 
manufacturer (Gytre, Norway). 

1.7.3.2 Electromagnetic  current meters ( E C M )  

Electromagnetic current meters such as the Marsh-McBirney 512 and the Inter-Ocean 
$4 use the fact that an oceanic current behaves as a moving electrical conductor. As a 
result, when an ocean current moves through a magnetic field generated within the 
instrument, an electromotive force is induced which is directly proportional to the speed 
of the ocean current and at right angles to both the magnetic field and the direction of 
the current (Faraday's law of electromagnetic induction). In general, the magnetic field 
may be that of the earth or the one generated by an electric current flowing through 
appropriately shaped coils (Figure 1.7.4). Faraday tried to measure the flow of the 
Thames River using electrodes on either side but was unsuccessful because his 
galvanometers were not sensitive enough. Following the Second World War, the 
principle was used successfully to estimate the flow along the English Channel by 
measuring the potential difference between electrodes on either side using a telegraph 
cable for the distant electrode and the vertical component of the earth's magnetic field. 

A two-axis electromagnetic current meter with an internal compass is used to 
produce horizontal components referenced to earth coordinates. The induced elect- 
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rical current gives the oceanic flow components relative to the instrument axes while 
the internal compass determines the orientation of the axes relative to the horizontal 
component of the earth's magnetic field. Electromagnetic current meters such as the 
$4 measure the electrical potential generated across two pairs of exposed metal 
(titanium) electrodes located on opposite sides of the equatorial plane on the surface 
of a plastic sphere (Figure 1.7.5). The electrodes form orthogonal (x,y) axes that detect 
changes in the induced electrical potential associated with the ocean current. The 
induced voltage potential (or electromagnetic force, EMF) E is found by Faraday's 
Law through the cross-product 

E=/v• 
o 

(1.7.2) 

where v is the velocity of the flow past the electrodes, B is the strength of the applied 
magnetic field supplied by a battery-driven coil oriented along the vertical axis of the 
instrument, and L is the distance from the center of the coil. The magnetic field is 
directed vertically past the electrodes so that current flow parallel to the x-axis 
generates a voltage along they-axis that is directly proportional to the strength of the 
current. The electric current induced by the voltage potential can be measured 
directly and converted to components of the flow velocity using laboratory calibration 
factors. Alternatively, a gain-controlled amplifier can be used to maintain a constant 
DC voltage at the logical output. The feedback current needed to maintain that 
electric current is directly proportional to the flow speed. As with the acoustic current 
meters, manufacturer's specifications vary but may be characterized as follows: 

�9 Speed accuracy" roughly ___2% of reading (with a minimum of 1 cm/s). 
�9 Speed resolution" about • 1-2 mm/s for a standard velocity range of 0-3.5 m/s (high- 

er accuracies for narrower ranges). 
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Figure 1.7.5. Inter-Ocean $4 electromagnetic current meter. (a) View of the instrument showing 
electrodes. (Courtesy, Mark Geneau, Inter-Ocean.) 

�9 Threshold speed: 1 mm/s; limited by noise. 
�9 Speed range: 0-3.5 m/s, but can expanded to 0-5 m/s or reduced for higher 

resolution. 
�9 Compass direction: accuracy of _+2 ~ and resolution of 0.5 ~ 
�9 Allowable tilt: cosine tilt response to up to +25 ~ 

Most electromagnetic current meters allow for measurement of temperature, 
conductivity and pressure. Data can be averaged over regular intervals of a few 
seconds to tens of minutes, or set to burst sampling with a specified number  of 
samples per burst at a given sampling interval. For example, one can set the number  
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Figure 1.7.5. Inter-Ocean $4 electromagnetic current meter. (b) Cut-away view of the electronics. The 
spherical hull has a diameter of 25 cm and the instrument weighs 1.5 kg in water. (Courtesy, Mark 

Geneau, Inter-Ocean.) 

of samples per burst (say continuous sampling for 2 min every hour) and set the 
number of times velocity is sampled compared with conductivity and temperature. 
The limitations are the storage capacity of the instrument (thousands of kilobytes) and 
the amount of power consumption. In the case of the $4, the surface of the housing is 
grooved to maintain a turbulent boundary layer and prevent flow separation at higher 
speeds. 
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1.7.4 Profiling acoustic Doppler current meters (ADCM) 

83 

Acoustic Doppler current meters (ADCMs) measure current speed and direction by 
transmitting high frequency sound waves and then determining the Doppler fre- 
quency shift of the return signal scattered from assemblages of "drifters" in the water 
column. In a sense, the instrument "whistles" at a known frequency and listens for 
changes in the frequency of the echo. The technique relies on the fact that: (1) sound is 
reflected and/or scattered when it encounters marked changes in density; and (2) the 
frequency of the reflected sound is increased (decreased) in direct proportion to the 
rate at which the reflectors are approaching (or receding from) the instrument. 
Principle (2) is used by astronomers to measure the rate at which stars and galaxies 
are moving relative to the earth. The commonly observed "red shift" of starlight 
suggests that most distant objects in the universe are receding from the earth. 
Reflectors ensonified by ADCMs include "clouds" of planktonic organisms such as 
euphausiids, copepods and gellies, fish (with and without swim bladders), suspended 
particles, and discontinuities in water density. Buoyant wastewater plumes from 
coastal sewage outfalls and hydrothermal plumes from seafloor spreading regions are 
two common examples of density discontinuities that can be detected acoustically. 

Unlike the current meters discussed in the previous sections, which measure 
current time-series at a fixed depth, ADCMs provide time-series profiles of the flow 
averaged over a suite of depth bins. The ADCM is like having a stack of current 
meters. Commercial acoustic Doppler current meters are built by Amatak-Straza, 
Aanderaa Instruments and RD Instruments. Of the instruments available, the 
recently-commercialized Aanderaa Doppler current meter (DCM 12) and the better- 
known RD Instruments acoustic Doppler current profiler (ADCP) are specifically 
designed for oceanographic research. The ADCP, in particular, has been the focus of 
numerous comparisons and analyses (e.g. Pettigrew and Irish, 1983; Pettigrew et al., 
1986; Flagg and Smith, 1989; Schott and Leaman, 1991). RD Instruments makes a 
self-contained (SC) internally-recording unit (Figure 1.7.6), a direct reading (DR) 
unit, and a vessel-mounted (VM) unit. The standard instruments are available at 
frequencies of 75, 150, 300, 600, and 1200 kHz; the more newly developed Broad- 
band T M  ADCP also includes a 2400 kHz unit. The choice of frequency is dependent 
on the particular application. Because the ADCP is geared to oceanographic 
applications, we will consider this instrument in some detail. The standard ADCP 
measures current by first estimating the relative frequency change, Af, of back- 
scattered echos from a single transmit pulse (Gordon, 1996). The newer Broadband 
ADCP measures the current by determining the phase shifts ("time dilation") A~b of 
backscattered echos from a series of multiple transmitted pulses. The Aanderaa DCM, 
which was in development at the time this book was being written, operates at 
607 kHz, has fewer vertical bins than the ADCP and considerably greater speed 
uncertainty (>3 cm s-l). A report on an intercomparison between a 614 kHz 
Broadband ADCP and two 607 kHz DCMs moored in 11.5 m of water in r 
Denmark has been prepared by the Danish Hydraulic Institute (R0rbaek, 1994). 

Aside from some custom-built units, the standard narrow-band ADCPs employ four 
separate transducers oriented in a Janus configuration with beams pointing at an 
angle of 30 ~ to the plane of the transducers (Janus was the Roman god who looked 
both forward and backward at the same time). In the newer broadband unit, the angle 
has been reduced to 20 ~ . We assume that the small drifters reflecting the transmitted 
sound pulse are being carried passively by the current and that their drift velocity has 
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Figure 1.7.6. A direct reading 150 kHz acoustic Doppler current meter with external RS-232 link 
manufactured by RD Instruments. Side view shows three of the four ceramic transducers. Each 
transducer is oriented at 30 ~ to the axis of the instrument. The pressure case holds the system electronics 

and echo sounder power boards. 

a near-uniform distribution over the horizontal area ensonified by the ADCP. For a 
narrow-band ADCP with a transmit pulse having a fixed length of a few milliseconds, 
the frequency shift, Af, of the backscattered signal is proportional to the component 
of relative velocity, v cos0, along the axis of the acoustic beam between the 
backscatterers and the transducer head (Figure 1.7.7a). For a given source frequency, 
f, and bin k (depth range = Dk) we find 

! ( afk / f  )c 
Vk 2 (1.7.3) 

COS 0 k 

where Vk is the relative current velocity for bin k at depth Db Ok is the angle between 
the relative velocity vector and the line between the scatters and the ADCP beam, c is 
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Figure 1.7.7. Principles of ADCP measurement. (a) Relative velocity, v.  cos 0, along the axis of the 
acoustic beam between the backscatterers and the transducer head; (b) auto-spectrum of returned acoustic 

signal showing the Doppler frequency shift for a given bin. (RD Instruments, 1989.) 

the speed of sound at the transducer and Af is the frequency shift measured by the 
instrument. The ADCP first determines current velocity relative to the instrument by 
combining the observed values of frequency change along the axes of each of the 
acoustic beams (the instrument can only "see" along the axis of a given tran'sducer, 
not across it). Absolute velocity components in east-west and north-south coordinates, 
called "earth" coordinates, are obtained using measurements from an internal 
magnetic compass. 

The relative frequency shift, Afk/ f  for bin Dk is derived from the observed frequency 
of the returning echo (Figure 1.7.7b). To calculate the Doppler frequency shift, the 
ADCP first estimates the autocovariance function, C(T), of the echo using an internal 
hardware processing module. The slope of C(~-) as a function of time lag, ~r, is then 
related to the frequency change due to the movement of the scatterer during the time 
that it was .ensonified by the transmit pulse. Because of inherent noise in the 
instrumentation and the environment, as well as distortion of the backscattered signal 
due to differences in acoustic responses of the possible targets, the returned signal will 
have a finite spectral shape centered about the mean Doppler shifted frequency 
(Figure 1.7.7b). The spectral width SW of this signal has the form SW = 500/D, where 
D is the bin thickness in meters, and is a direct measure of the uncertainty of the 
velocity estimate due to the finite pulse length, turbulence and nonuniformity in 
scattering velocity. In the case of the standard RD Instruments ADCP, depth cell 
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lengths, D, can range from 1 to 32 m but are usually set at 4-8 m. For the Broadband 
ADCP, depth cell size ranges from 0.12 m for the higher frequencies to 32 m for the 
lower frequencies. Each acoustic beam of the ADCP has a width of 2-4 ~ (at the - 3  dB 
or half-power point of the transducer beam pattern) so that the "footprint" over which 
the acoustic averaging is performed is fairly small. At a distance of 300 m, the 
footprint has a radius of 5-10 m. However, the horizontal separation between beams is 
roughly equal to the distance to the depth-cell so that the assumption of horizontal 
uniformity of the current velocity is not always valid, especially for those cells furthest 
from the transducers. 

Sidelobes of the transducer acoustic pattern can limit the reliability of the data. For 
the standard 30 ~ ADCP, measurements taken over the last 15% [~ (1 - cos 30~ of the 
full-scale depth range are not valid if the ocean surface (or seafloor) are within the 
range of an upward (or downward) looking instrument. In general, the range Rmax of 
acceptable data for a vertically-oriented ADCP within proximity to a "hard" reflecting 
surface such as the sea surface or sea floor is given by Rmax m Hcos~, where H is the 
distance from the ADCP to the reflecting surface and ~ is the angle the transducers 
make with the instrument axis (for a 20 ~ instrument, only 6% of the range is lost near 
the sea surface or seafloor). For vessel-mounted systems working in areas of rough or 
rapidly sloping bottom topography, a more practical estimate is Rmax ~ H(cos~ - oe), 
where c~ m 0.05 is a correction factor that accounts for differences in water depth 
during short (< 10 min) ensemble averaging periods. 

The higher the frequency, the shorter the distance an acoustic sounder can 
penetrate the water, but the greater the instruments ability to resolve velocity 
structure (Table 1.7.1). The 75 and 150 kHz units are mainly used for surveys over 
depth ranges of 0-500 m while higher frequencies such as the 600 and 1200 kHz units 
are favored for examining flow velocity in shallow water of 25-50 m depth. As noted 
above, ADCPs employ four separate transducers each pointing at an angle of 20 ~ or 
30 ~ to the plane of the transducers. Since only the current speeds along each of the 
beam axes can be estimated, trigonometric functions must be applied to the velocities 
to transform them into horizontal and vertical velocity components. Tile instr.ument 
provides one estimate of the horizontal velocity and two independent estimates of the 

Table 1.7.1. RD Instruments acoustic wavelengths (A) and depth ranges (m) for different transducer 
frequencies for the low power and high power settings (low power is for self-contained units while high 
power is for either self-contained or externally powered units). Standard deviation for velocity of given 
frequency are for ensemble averages of N pings per ensemble, a depth cell size (bin length and length of 
transmit pulse) of 8 m and 30 ~ beam angle orientation. For 20 ~ angle multiply values by 1.5; for other 
depth cell sizes D (m) multiply values by 8/D. The values el and e~ are different t~ublished estimate.~ of 
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vertical velocity. The ADCP senses the Doppler frequency shift in each 1-s acoustic 
"ping" by looking at the time-delayed gated signal returning from distinct "bins" 
(depth or distance ranges) from the transducer along each of the four-beam axes. The 
resultant speed estimates are then converted within the instrument to common bin 
positions centered at p2 x meters (N = 1, 2, ..., 8 to a maximum of 128 bins) along the 
central axes normal to the plane of the transducers. Since the different time delays tk 
of each pulse correspond to different distances Dk from the transducers, the instru- 
ment provides estimates of the horizontal (u, v) and vertical (w) components of 
velocity averaged over adjoining depth ranges (or depth bins). As illustrated by Figure 
1.7.8, the averaging consists of a linear weighting over twice the bin length, D = 
Zk+l - -  Z k  = c(tk+l -- tk), where c is the sound speed. For the 4-m bin length selected in 
Figure 1.7.8, the triangular weighted average is over 8 m. The depth range of a 
particular bin covers the distance: 

from: blank depth + (bin number) x (bin length) - (bin length)/2 

to: blank depth + (bin number) x (bin length) + (bin length)/2 

A 4-m blanking is applied to the beginning of the beam to eliminate nonlinear effects 
near the transducer. The minimum length of the blank is frequency dependent but a 
larger value can be selected by the user. For the particular setup shown, there are 15 1- 
s pings for each 20-s ensemble; bottom-tracking is turned on every four pings. This 
option, together with machine processing "overhead" and time for transmission up 
the tow cable, uses up a segment of the total time available for each ensemble 
averaging period. 

The maximum range of the standard (single transmit pulse) ADCP depends on the 
depth at which the strength of the return signal drops to the noise level. Depending on 
the rate of energy loss and heat dissipation, the instrument is generally capable of 
measuring current velocity to a range R(m) - 250(300/f), where f is the frequency in 
kilohertz. The velocities (and backscatter intensity which we discuss later in the 
section) from a series of pings are averaged to form an "ensemble" record. This saves 
on storage space in memory, reduces the amount of processing and improves the error 
estimate for the velocity record. Each acoustic ping lasts about 1-10 ms and 10 or 
more separate pings, together with an equal number of compass readings, are typically 
used to calculate an ensemble-averaged velocity estimate for each recorded increment 
of time in the time-series. The random error of the horizontal velocity for each 
ensemble is given as 

or(m/s) = (1.6 x 102)/(]'DN 1/2) 

where N is the number of individual 1-s pings per ensemble and D is the bin length 
(--2 m, m - 1, 2, ...) in meters. For example, a 30-s ensemble averaging period chosen 
during the instrument set-up procedure, generally allows for about 20 pings plus 10 s 
of processing time. This overhead time is inherent to the system and must be taken 
into account when determining the error estimates. As indicated in Table 1.7.2, the 
standard deviation of the vertical and horizontal velocity estimates for this case is 
about 3 cm/s for D = 8 m and a 150 kHz transducer. The greater the number of pings 
used in a given ensemble, the greater the accuracy of the velocity estimate, with 

~ N -~/2. Tilt sensors are used to calculate changes in the orientation of the trans- 
ducer axis and to ensure that data are binned into correct depth ranges. These sensors 



88 Data Analysis Methods in Physical Oceanography 

ii Ping no. 

V _ 

1.07 sec  I--- 

""  "~ oe 
o~o o 
I ~  ~  ~ 

o ~ . "  
E] i .  ' 

~g 

w a  

• 2[ 
wrl 

"7" 
5 

6 

m 

7 

8 

9 

BT3 
m 

10 

11 

12 

BT4 
m 

13 

14 

15 
m 

B'r5 

Bottom 
tracking 
Ping (BT) 

Ping origin 
, 

4 m blank 
on transmit 

- - ' 0 "  m e t e r s  

Assigned 4 m blank 
after transmit 

A 

Velocity average 
weighting function 

Snapshot ot 
amplitude 
here 

of 

~ 36 bins 

Expanded 
view 

Figure 1.7.8. Allocation of depth bins and machine overhead for a narrow band (standard) 150 kH. 
ADCP having a bin length of 4 m, a blanking range of 4 m and a depth range of 36 bins. The instrumen 
obtained 15 1-s pings for each 20-s ensemble and used the remaining time for internal processing and dat, 
transmission up an electrical cable. The information on the right is an expansion of the bin allocation fo 
the first ping. A triangular weighting is used to determine the velocity for each bin. Similar results appl' 
to the remaining pings for each of ensemble. A 4-m blanking is applied to the beginning of the beam t, 

eliminate nonlinear effects near the transducer. (Courtesy, George Chase.) 
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Table i. 7.2. Comparison of hourly time-series of longshore currents over 90 day period from 308 kHz 
ADCP and conventional current meters off northern California (adapted from Pettigrew and Irish, 
1986). Results are found using the two-beam solution for the ADCP 

Depth Moored current Correlation Speed difference (cm/s) 
(m) meter coefficient, r Mean RMS 

10 VACM 0.94 -3.7 8.1 
20 VMCM 0.97 0.8 4.6 
35 VMCM 0.98 0.2 2.7 
55 VMCM 0.98 0.0 2.4 
70 VMCM 0.98 0.3 2.2 
90 VMCM 0.98 1.0 2.2 

110 VMCM 0.98 0.5 1.9 
120 VACM 0.97 -0.1 2.0 

are limited to _+20 ~ so that for greater tilts, the velocity components can not be 
determined accurately. Only three of the beams are needed for each three-dimensional 
velocity calculation. The built-in redundancy provides for an "error velocity" estimate 
for each ensemble velocity which involves subtracting the two independent estimates 
of the vertical velocity component for each ping. When the two vertical velocity 
estimates agree closely, the horizontal velocity components are most likely correct. In 
addition to the reliability check, the fourth beam serves as a backup should one of the 
transducers fails. Another measure provided by the ADCP is the "percent good" 
which is the percentage of pings that exceed the signal-to-noise threshold. Normally, 
the percent good rapidly falls below 50% at some depth and stays below that level. In 
practical terms, there usually is little difference in the data for assigned values of 25, 
50, or 75 percent-good. 

Since Doppler current meters were originally designed for measuring currents from 
a moving platform, the ADCP records instrument heading, pitch, roll and yaw. These 
data are then used to correct the measured velocities. In order to determine the true 
current velocity in "earth coordinates" from a moving vessel, the ADCP is capable of 
measuring the velocity of the instrument over the seafloor, providing the bottom is 
within range of the transducer and the bottom reflection exceeds the background 
noise level. A separate bin is used for this bottom-tracking. The bottom tracking mode 
is usually turned on for a fraction of the total sampling time, uses a longer pulse 
length and provides a more accurate estimate of relative velocity than other bins. 
Unfortunately, modern shipboard GPS systems in the standard (nondifferential) mode 
are only accurate to about + 100 m. This means that estimates of the ship speed taken 
at time increments of seconds to minutes will have errors of the order of 10- 
100 cm s -1 which usually are comparable to the kinds of current speeds we are trying 
to measure. Differential GPS, which relies on error corrections transmitted from a 
land-based reference station for which satellite positioning and timing errors have 
been calculated, is accurate to better than 10 m. Shipboard systems working in this 
mode can be used to determine absolute currents by subtracting the accurately 
determined ship's velocity over-the-ground from relative currents measured by the 
ADCP (see note at the end of this section). 

There are several factors that limit the accuracy of the ADCP: (1) The accuracy of 
the frequency shift measurement used to obtain the relative velocity. This estimate is 
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conducted by software within the instrument and strongly depends on the signal/noise 
ratio and the velocity distribution among the scatters; (2) the size of the foot-print and 
the homogeneity of the flow field. At a distance of 300 m from the transducer, the 
spatial separation between sampling volumes for opposite beams is 300 m so that they 
are seeing different parts of the water column, which may have different velocities; (3) 
The actual passiveness of the drifters (i.e. how representative are they of the in situ 
current?). In the shipboard system, the ADCP can track the bottom and obtain 
absolute velocity, provided the acoustic beam ranges to the bottom. Once out of range 
of the bottom, only the velocity relative to the ship or some level-of-no-motion can be 
measured. As noted above, standard GPS positioning without the highly accurate 
(+_ 10 m) differential mode cannot be used to obtain ship velocity since the accuracy of 
the standard mode (_+ 100 m) yields ship speed accuracies that are, at best, comparable 
to the current we are trying to measure. Erroneous velocity and backscatter data are 
commonly obtained from shipboard ADCP measurements due to vessel motions in 
moderate to heavy seas. In addition to exposure of the transducer head, the acoustic 
signal is strongly attenuated by air bubbles under the ship's hull or through the upper 
portion of the water column. Much better data are collected from a ship "running" 
with the seas than one lying in the trough or hove-to in heavy seas. Our experience is 
that data collected in moderate to heavy seas is often unreliable and needs to be 
carefully scrutinized. In deep water, zooplankton aggregations can lead to the 
formation of "false bottoms" in which the instrument mistakes the high reflectivity 
from the scattering layer as the seafloor. 

The only way to improve velocity measurement accuracy with the standard single- 
pulse narrow-band ADCP is to lengthen the transmit pulse. A longer transmit pulse 
extends the length of the autocorrelation function and increases the number of lag 
values that can be used in the calculation of velocity. Since bin length is proportional 
to pulse length, this results in improved uncertainty in the velocity estimates. The 
tradeoff is reduced depth resolution. By transmitting a series of short pulses, the 
newer Broadband T M  ADCP circumvents these problems. Because of the multiple 
transmit pulses, the Broadband ADCP is capable of much better velocity resolution 
and higher vertical resolution. The time between pulses sets the co~relation lags 
available for velocity computation while pulse length governs the size of the depth 
cells, as in the standard unit. Moreover, velocity is determined from differences in the 
arrival times of successive pulses. By increasing the effective bandwidth of the 
received signal by two orders of magnitude, the Broadband ADCP can reduce the 
variance of the velocity measurement by as much as two orders of magnitude. Figure 
1.7.9 is an example of alongshore currents obtained using a shipboard Broadband 
ADCP during a cross-shelf transect of the inner continental shelf east of Sydney, 
Australia. The new ADCP system offers "real-time" computer screen display for at-sea 
operations. The standard narrow-band ADCP uses a data acquisition system, that is 
no longer supported by RD Instruments, to display output of velocity components, 
beam-averaged backscatter intensity, percent good, and other ship related parameters 
such as heading and pitch and roll. 

A further note on GPS measurements. There are currently a variety of chart datums 
that are used in the setup menu of a GPS and one must be sure to select that datum 
which matches the chart being used for navigation. The general default datum is 
WGS-84 (World Geodetic Survey 1984) which applies to any region of the world. A 
commonly used datum in the eastern North Pacific and western North Atlantic is 
NAD-27 (North American Datum 1927) which has recently been replaced by NAD-83 



Figure 1.7.9. Alongshore currents measured by a Broadband RD Instruments Vessel-Mounted 300 kHz system along an eastward transect to the south of the Base 
Point headland near Sydney, Australia (see Middleton et al., 1993). (a) Cross-section of the flow for all depth bins, with red corresponding to northward flow and 

blue to southward flow. (Courtesy, Jason Middleton and Greg Nippard.) 
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Figure 1.7.9. Alongshore currents measured by a Broadband RD Instruments Vessel-Mounted 300 kHz 
system along an eastward transect to the south of the Bass Point headland near Sydney, Australia (see 
MiddIeton et al., 1993). (b) Ensemble-average velocity at 5 m depth for the cross-section in (a). Flow was 
northward in the wake of the headland and southward seaward of the point. (Courtesy, Jason Middleton 

and Greg Nippard.) 

(North American Datum 1983). Other datums are WGS-72, Australian, Tokyo, 
European and Alaska/Canada. Selective Availability is the name given by the United 
States Department of Defense for degradation of the GPS satellite constellation 
accuracy for civilian use. When disabled (as it was during the Gulf War with Iraq), 
GPS accuracy increases by about a factor of 10. 

1.7.4.1 Acoustic backscatter 

Although it was originally designed to measure currents, the ADCP has become a 
highly useful tool for investigating the distribution and abundance of zooplankton in 
the ocean. In particular, the intensity of backscattered sound waves for each depth 
bin--actually a "snapshot" of the intensity at a distance of two-thirds the way along 
the bin (Figure 1.7.8)ncan be used to estimate the integrated mass of the backscatters 
over the "footprint" volume (width and thickness) of the original acoustic beams 
(Flagg and Smith, 1989). As with velocity, the instrument compensates for apparent 
changes in bin depth due to instrument tilt and roll. Calculation of the backscatter 
anomaly caused by plankton or other elements in the water column requires an 
understanding of the various factors causing dispersion and attenuation of the sound 
waves in water. Proper calibration of the acoustic signal as a function of acoustic range 
is essential for correct interpretation of the ADCP backscatter data. The measured 
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backscatter intensity (also energy or amplitude squared) Ir is given by 

93 

L/ Ia  = b exp ( - 2 e i z ) / z  2 + An (1.7.5) 

where b - Io/Ia is the transducer gain, Io is the intensity of the ADCP transducer 
output, I~ is a reference intensity, e; is the absorption coefficient for water (cf. Table 
1.7.1; i = 1, 2), l / z  2 is the effect of geometric beam spreading over the range z, and A,, 
is the relative noise level. The factor b arises because the ADCP does not record output 
intensity from the transducers, only relative intensity. The target strength TS of the 
ADCP is then given by the logarithm of (1.7.5) as 

TS -- 10 log (L./Io) - 10 log (b) (1.7.6) 

where the first term is the absolute target strength of the ADCP and the second term is 
an unknown additive constant. Since the later term is unknown, a relative measure of 
the target strength TSc to some standard calibration region can be determined as 
TS' = TS - TSc (Thomson et aI., 1991, 1992; Burd and Thomson, 1994). Thomson et al. 
(1992) use a vertically towed vehicle and are therefore able to calibrate their data 
relative to the near-uniform backscatter layer at intermediate depths (1000-1500 m) 
in the northeast Pacific. 

The ADCP does not measure directly the input or output of the acoustic backscatter 
intensity but rather the voltage from the so-called Automatic Gain Control (AGC) 
which is an internal adjustment, positive feedback circuit in the output device which 
attempts to keep the transducer output power constant. The average compensation 
voltage in the AGC is recorded and can be used to estimate the relative backscatter 
intensity. By incorporating a user exit program, the ensemble average AGC for each of 
the four beams for each bin can also be recorded. As we will discuss later, this is 
proportional to the biomass (density x cross-section) of the scatterers. The instrument 
also measures temperature--which it needs to calculate response correctly--and 
percent-good, which is a measure of the number of reasonable pings per ensemble. 

The speed of sound in water varies with temperature, salinity and depth but is 
generally around 1500 m/s. Therefore, sound oscillations of 153 kHz (a common 
frequency used on shipboard systems and moored systems) have a wavelength.of about 
1 cm. Using the standard rule of thumb that the acoustic wave detects objects of about 
one-quarter wavelength, objects greater than 2.5 mm will reflect sound while objects 
less than this scatter the sound. The proportion of the sound beam transmitted, 
reflected or scattered by the object is influenced by small contrasts in compressibility 
and density between the water and the features of the object. Organisms with a bony 
skeleton, scaly integument and air bladder reflect/scatter more sound than an organ- 
ism made up mostly of protoplasm such as salps and jellyfish (Flagg and Smith, 1989). 
Similarly, organisms which are aggregated into patches or layers return more 
scattered sound energy per unit volume (i.e. have a greater effective scattering 
volume) than uniform distributions of the same organisms. 

A major problem with using the ADCP for plankton studies is common to all bio- 
acoustical measurements; namely, determining the species composition and size 
distribution of the animals contributing to the acoustic backscatter. Invariably, in situ 
sampling using net tows is needed to calibrate the acoustic signal. If the ADCP is 
incorporated in the net system, the package has the advantage that the volume flow 
through each net can be determined accurately using the ADCP-measured velocity 
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(Burd and Thomson, 1993). An attempt to calibrate the ADCP against net samples was 
conducted by Flagg and Smith (1989) who also pointed out problems with the res- 
ponse of the shipboard system to temperature fluctuations in the ADCP electronics. 

1.7.5 Comparisons of current meters 

As noted earlier, a major problem with the Savonius rotor is contamination of speed 
measurements by mooring motions (Gould and Sambuco, 1975). The contamination of 
the rotor speed is caused primarily by vertical motion or "rotor pumping" as the 
mooring moves up and down under wave action. In effect, the speed overestimates of 
the rotor result from its ability to accelerate about three times faster than it 
decelerates. Pettigrew et al. (1986) summarize studies on the ability of VMCMs and 
VACMs in laboratory tests to accurately measure horizontal flow in the presence of 
surface waves. For wave orbital velocities, W, of the same magnitude as the steady 
towing speed, U, of the current meter through the water (i.e. W/U ~ 1), the accuracy of 
the VACM depends on the ratio W/U. The percentage error increases as the ratio W/U 
increases and substantial over-estimation of the true speed occurs for W / U  > 0.5. The 
results for the VMCM differ significantly from those of the VACM. In particular, the 
VMCM underestimates the true velocity by as much as 30% for W/U ~ 1, while for W~ 
U > 2, speed errors do not appear to be strongly dependent on either W / U  or on the 
relative orientation of the mean and wave current motions. For W/U < 1/3, the 
VMCM was within 2% of the actual speed. While vector averaging can reduce the 
effect of vertical motion on the recorded currents by smoothing out the short-term 
oscillatory flow, the basic sensor response is not well tuned to conditions in the wave 
zone or those for surface moorings. Intercomparisons of conventional current meters 
(Quadfasel and Schott, 1979; Halpern et al., 1981; Beardsley et al., 1981) have shown 
that VACM speeds are only slightly higher on surface moorings than on subsurface 
moorings and that contamination by mooring motion was~only important for higher 
frequencies (> 1 cph). At freciuencies above 3-4 cph ocean current spectra computed 
from VACM current meters did not flatten (i.e. not decrease, with frequency) a s much 
as spectra from other rotor equipped current meters. Near the surface this is due to 
horizontal motion of the mooring (Zenk et al., 1980) which is rectified by the Savonius 
rotor while at greater depths the surface float motion translates into vertical motion 
which aliases the rotor speed due to rotor pumping. Further details can be found in 
Weller and Davis (1980), Mero et al. (1983), and Beardsely (1987). 

Another problem with the Savonius rotor is that it does not have a cosine response to 
variations in the angle of attack of the flow due to interference of the support posts. In a 
study of rotor contamination, Pearson et al. (1981) conclude that Savonius rotor measure- 
ments, made from a mooring with a float 18 m below the sea surface, were not seriously 
contaminated by surface wave-induced mooring motion. In sharp contrast, Woodward et 
al. (1984) compared a standard Savonius rotor with a paddle-wheel (PW) rotor designed 
for wave-field applications, and an electromagnetic (EM) current meter. The EM speed 
sensors appeared to perform well in the near-surface wave field while the standard 
Savonius rotor was severely contaminated by wave induced currents (Figure 1.7.2). 

Field comparisons (Halpern et al., 1981) demonstrated that above the thermocline 
(5-27 m depth) the VMCM, the VACM and acoustic current meters (ACMs) all 
produced similar results for frequencies below 0.3 cph, regardless of mooring type. 
Above 4 cph, it was recommended that the VACM be used with a spar buoy surface 
float while both the VMCM and the ACM could be used with surface following floats 



Data Acquisition and Recording 95 

such as a donut buoy. In general, better quality measurements were made at depths 
from subsurface moorings than from surface moorings, indicating that even the 
VMCM data were contaminated somewhat by mooring motion. 

The processing of current meter data is specific to the type of meter being used. It is 
interesting to read in current meter comparisons such as Beardsley et al. (1981) or 
Kuhn et al. (1980) the variety of processing procedures required to produce compatible 
data for the intercomparison of observations from different current meters. An 
important part of the data processing is the application of the instrument specific 
calibration values to render measurements in terms of engineering units. In this 
regard, it is also important to have both a pre- and post-experiment calibration of the 
instrument to detect any serious changes in the equipment that might have occurred 
during the measurement period. 

One of the earliest comparisons between a bottom-mounted ADCP and convention- 
al mechanical current meters was conducted in 133 m of water near the shelf-break off 
northern California in 1982 (Pettigrew and Irish, 1983; Pettigrew et al., 1986). The 90- 
day time-series of horizontal currents from a prototype upward-looking 308 kHz 
ADCP with 4 m bin length was compared with currents from a nearby (~300 m) 
string of VACMs and VMCMs. Despite the fact that only two of the beams could be 
used and the instrument had a 10 ~ list, results show striking agreement between the 
two sets of data (Table 1.7.2). Mean differences between corresponding acoustic and 
mechanical current meters were typically less than 0.5 cm/s while RMS differences 
were about 2 cm/s. Since acoustic currents were based on two beams tilted at 20 ~ to 
the vertical, the relatively poor correlation at 10 m depth probably resulted from 
rotor-pumping and over-speeding of the VACM rather than side-lobe contamination 
of the ADCP which would occur in the upper 6% of the depth range. Similar results 
were obtained by Schott (1986). 

1.7.6 Electromagnetic methods 

The dynamo interaction of moving, conducting seawater with the earth's stationary 
magnetic field induces electric currents in the ocean. These "motional" electric fields, 
whose existence in the ocean was first postulated by Faraday in 1832, produce a 
spatially-smoothed measure of the water velocity at subinertial periods [periods longer 
than l / f -  11.964 h/sin(latitude)]. For a given point on the seafloor, the electric fields 
are proportional to the vertically-averaged, seawater-conductivity weighted water 
velocity averaged over a horizontal radius of a few water depths (Chave and Luther, 
1990). Technologies that measure the horizontal electric field (HEF) yield direct 
observations of the barotropic transport in the overlying water column. Electric field 
measurements of transport are obtained from abandoned submarine communication 
cables or from self-contained bottom recorders. For a submarine cable, the motional 
HEF is integrated along the cable length. 

According to theory (Sanford, 1971; Chave and Luther, 1990; Chave et al., 1992), the 
horizontal velocity vector field v* is related to the horizontal electric field Eh, by 

E~, -- F~k • v* (1.7.7a) 

(sensor in a reference flame fixed to the seafloor) 
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= -F~k  • ( V -  v*) (1.7.7b 

(sensor moving relative to seafloor), where Fz is the local vertical component of th, 
geomagnetic field, k is a unit vector in the upward vertical direction, V is the vecto 
sum of the horizontal velocities of the ocean relative to the earth and the senso 
relative to the ocean, and 

o o 

- H  - H  

(1.7.8 

is the scaled (by the constant C), horizontal water velocity. The water velocity i 
averaged vertically over the water column of thickness H and weighted by the seawate 
conductivity, or(z). Equation (1.7.8) reduces to the scaled barotropic velocity Cv whel 
either the conductivity profile or the horizontal velocity is depth-independent. In th. 
northern hemisphere, where F points into the earth, the north electric field i 
proportional to the west component of velocity while the east electric field i 
proportional to its north component. Neglecting the noise, we can solve (1.7.7a) t~ 
obtain 

v* - - k  • Eh /Fz (1.7.9 

Since F is known to one part in 104 for the entire globe, measurement of Eh yields th, 
horizontal flow field. 

Measurement of the HEF is entirely passive, being based on naturally occurrinl 
fields, and hence has low power requirements and is nonintrusive. Motional EM ma 
be used in an Eulerian configuration (bottom recorders or submarine cables) or 
Lagrangian configuration (surface drifter, subsurface float, or towed fish). EquatioJ 
(1.7.7b) shows that a relative velocity estimate is possible by measuring the HEF fron 
a moving platform. On many instances, lack of a specific knowledge of v* is n o t  
critical limitation since it is independent of depth by (1.7.8). The moving frame o 
reference equation (1.7.7b) is exploited by vertical profilers such as the electro 
magnetic velocity profiler "(EMVP) and the expendable current profiler (XCP 
produced by Sippican. Horizontal profiles of the HEF can be obtained from a towe, 
instrument and used with precise navigation to yield estimates of v* and the surfac 
water velocity. The original form of such a towed instrument is the geomagneti 
electrokinetograph (GEK) of von Arx (1950). 

1.7.7 Other methods of current measurement  

There are numerous other ways to measure currents though not all have bee1 
successfully commercialized. For example, prior to the ADCP, scientists in JapaJ 
used towed electrodes at the ocean surface (the GEK) to routinely monitor the cur 
rents off the east coast of Japan. Coastal Ocean Doppler Radar (CODAR) determine 
surface current velocity by using shore-based microwave radar with frequencies o 
around 12 MHz to sense the backscatter from wind-generated capillary waves. Thes. 
waves ride on the ocean currents so that the Doppler shift of the radar signal can b. 
used to estimate the current speed in the direction of the shore-based rada 
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illumination. Two independent radar transmitters provide maps of the two-dimen- 
sional flow over the area covered by the radar signals. Goldstein et al. (1989) report on 
the use of synthetic aperture radar (SAR) to measure surface currents from the phase- 
delay maps of aircraft-borne radar. Other recent techniques, such as the correlation 
sonar and acoustic "scintillation" flow measurements use pattern recognition and 
cross-correlation methods, respectively, to determine the current over a volume of 
ensonified water (Farmer et al., 1987; Lemon and Farmer, 1990). The acoustic scinti- 
llation method determines the flow in a turbulent medium by comparing the com- 
bined spatial and temporal variability of forward-scattered sound along two closely- 
spaced parallel acoustic paths separated by a distance, Zkx. Assuming that the 
turbulent field does not change significantly during the time it takes the fluid to travel 
between the two paths, the pattern of amplitude and phase fluctuations at the 
downstream receiver will, for some time lag At, closely resemble that of the upstream 
receiver. Examination of the time delay in the peak of the covariance function for the 
two signals gives At which then determines the mean velocity v = ~ x / A t  normal to 
the two acoustic paths. The technique has been used successfully to measure the 
horizontal flow in tidal channels and rivers, as well as the vertical velocity of a 
buoyant-plume rising from a deep-sea hydrothermal vent in the northeast Pacific 
(Lemon et al., 1996). 

Numerous papers have discussed the computation of surface currents from the 
displacements of patterns of sea surface temperature (SST) in thermal AVHRR 
imagery. In the maximum cross-correlation (MCC) method, the cross-correlation 
between successive satellite images is used to map the displacements due to the 
advection of the SST pattern (Emery et al., 1986). More recently, Wu (1991, 1993) has 
advanced a "relaxation labeling method" for computing sea surface velocity from 
sequential time-lapsed images. The method attempts to address two major deficiencies 
with the maximum cross-correlation method, namely: (1) the MCC approach is 
strictly statistical and does not exploit a priori knowledge of the physical problem; and 
(2) pattern deformation and rotation, as well as image noise, can introduce significant 
error into MCC vector estimates. The latter problem was addressed by Emery et al. 
(1992) who sh6wed that rotation can be resolved using large search windows. 

1.7.8 Mooring logistics 

In terms of accuracy and reliability, current meter data from surface and subsurface 
moorings cannot be divorced from the mooring itself. While many common mooring 
procedures are available, there is no single accepted technique nor is there agreement 
on the subsequent behavior of the mooring while in the water. Surface moorings with 
their flotation on the wavy surface of the ocean will behave differently than subsurface 
moorings in which the buoyancy is distributed vertically along the mooring line. For 
the case of subsurface moorings, the addition of pressure sensors to most current 
meters has helped to characterize mooring motion and determine its effect on the 
measured currents. Variations in the depth of the sensor can be calculated from the 
pressure fluctuations and used to estimate the depth and position of the moored 
instruments as a function of time. Also, models of mooring behavior have been 
developed which enable the user to predetermine line tensions and mooring motions 
based on the cross-sectional areas of the mooring components and estimates of the 
horizontal current profile. For example, the program SSMOOR distributed by Cable 
Dynamics and Mooring Systems in Woods Hole (Berteaux, 1990), uses a finite 
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element technique to integrate the differential equilibrium equations for cables 
subjected to steady state currents. Factors taken into consideration include: the 
mooring wire (or rope) diameter, weight in water, and modulus of elasticity; and the 
shapes, cross-sections, drag coefficients, weights, and centers of buoyancy of the 
recording instruments. Up to 10 current speeds can be specified for the current profile 
and as many as 20 instruments inserted in the anchoring line. 

Mooring motions are largest when surface floats are used. For surface moorings in 
deep water, the length of the mooring line creates a relatively large "watch circle" that 
the surface float can occupy. This will add apparent horizontal motion to the attached 
current meters while, at depth, the surface wave and wind driven fluctuations 
translate into mainly vertical oscillations of the mooring elements. Some inter- 
comparison experiments have tried to use a variety of mooring types to test the effects 
of moorings alone. Zenk et al. (1980) compare VACM measurements from a taut-line 
surface mooring with a single line spar buoy float and a more rigid two-line, H-shaped 
mooring. As expected, the H-shaped mooring was more stable and the other two 
exhibited much stronger oscillations. The current meters on the rigid H-mooring 
registered the greater current oscillations since the meters on the other, less restricted, 
moorings moved with the flow rather than measuring it. 

In their current meter comparison, Halpern et al. (1981) discuss four different types 
of mooring buoyancy; three surface and one subsurface. The surface floats were: a 
toroid, a spar-buoy and a torpedo-shaped float. They found that rotor-pumping was 
much greater under the toroid than under the spar buoy and that the effect of rotor- 
pumping on the resulting current spectra was significant at frequencies above 4 cph. 
While this was true for near-surface current meters, they also found that for deeper 
instruments the spar buoy float transmitted larger variations to the deeper meters 
making it a poor candidate for flotation in deep water current measurements. They 
found that both the VMCM and the ACM are less affected by the surface motions of a 
toroidal buoy. In a different comparison, Beardsley et al. (1981) tested an Aanderaa 
current meter suspended from a surface spar buoy, and found a significant reduction 
in the contamination of the measured signal by.wave effects due to-both c~rrents and 
orbital motion with the spar buoy. Even with this flotation system, however, the 
Aanderaa continued to register high current speeds compared with other sensors. 

In an overall review of the recent history of current meter measurement, Boicourt 
(1982) makes the interesting observation that "results from current measurement 
studies are independent of the quality of the data". In making this claim, he remarks 
that often the required results are only qualitative, placing less rigorous demands on 
the accuracy of the measurements. He also points out that present knowledge of the 
high-frequency performance of most flow sensors is inadequate to allow definitive 
analysis of the current measuring system. In this regard, he states that acoustic and 
electromagnetic current meters, with their fast velocity response sensors, hold great 
promise for overcoming the fundamental problems with mechanical current sensing 
systems. Finally, he calls for added research in defining the high-frequency behavior 
of common current meters. 

Field work by the Bedford Institute of Oceanography on Georges Bank in the 
western Atlantic has revealed another unwelcome problem with moored rotor-type 
current meters. Comparisons between currents measured by a sub-surface array of 
Aanderaa current meters on the bank and a ship-board acoustic Doppler current 
profiler indicated that current speeds from the moored array were 20-30% lower than 
concurrent speeds from the profiler. To test the notion that the under-speeding was 
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due to high-frequency mooring vibration caused by vortex shedding from the 
spherical floatation elements, an accelerometer was built into one of the sub-surface 
moorings. Accelerations measured by this device confirmed that the current meters 
were being subjected to high-frequency side-to-side motions. Under certain flow 
conditions, the amplitudes of the horizontal excursions were as large as 0.5 m at 
periods of 3 s. Tests confirmed that the spherical buoyancy packages were the source 
of the motions. By enclosing the spherically-shaped buoyancy elements in more 
streamlined torpedo-shaped packages, the mooring line displacements were reduced 
to about 10% of what they were for the original configuration. Excellent agreement 
was found between the current meter and vessel-mounted ADCP current records. 

In certain areas of the world (e.g. Georges Bank), the survivability of a mooring can 
have more to do with fishing activity than to environmental conditions. Also, in the 
early days of deep-sea moorings, the Scripps Institution of Oceanography lost 
equipment on surface moorings to theft and vandalism. Preventing mooring and data 
loss in such regions can be difficult and expensive. For fishery oceanography studies 
the dilemma is that, to be of use, the measurements must be obtained in areas where 
they are most vulnerable to fish-net fouling and fish-line entanglement. Damage to 
nets equates to lost fishing time and damaged or lost instrumentation. Aside from 
providing detailed information on the mooring locations in printed material handed 
out to commercial fishermen, fish processing companies and coastguard, the scientist 
may need to resort to closely-spaced "guard buoys" in an attempt to keep fishermen 
and shipping traffic from subsurface moorings. Our experience is that a limited array 
of only three or so coastguard-approved buoys more than 0.5 km from the mooring is 
inadequate, and that certain operators will even use the buoys to guide their 
operations, thereby increasing the chance of damage. 

1.7.9 Acoustic releases 

An acoustic release is a remotely-controlled motorized linkage device that connects 
the expendable bottom anchor (often a set of train wheels) to the recoverable elements 
of a mooring (Figure 1.7.10). Modern acoustic releases are critical for free-fall 
deployment of moorings from ships and for reliable recovery of equipment on acoustic 
demand (Heinmiller, 1968). Operation of the release requires a deck unit specially 
built for the particular type of release and a transducer for acoustic interrogation of 
the release. A ship's sounder can be used in place of the hand-held transducer 
provided it is of compatible frequency and has a wide beam. This is useful since it 
allows the technician to talk to the release from the ship's laboratory rather than by 
lowering a transducer over the side of the ship. However, for "acoustically noisy" 
ships, lowering a transducer over the side is often the only way to talk to the release. 
More advanced releases enable the user to measure the slant range from the ship to the 
release based on the two-way time delay. By taking into account the slant of the 
acoustic path, the user can determine the coordinates of the release. Long-life (three- 
year) acoustic "pingers" built into the releases also are used to locate the depth and 
position of moorings using triangulation procedures. This is particulary useful for 
those moorings that fail to surface on command and must be dredged from the ship 
using a long line and hook. In some acoustic releases, a rough estimate of the 
orientation of the release can be obtained remotely through changes in ping-rate. For 
example, in the case of the Inter-Ocean release, a doubled ping-rate means that it is 
lying on its side rather being upright in the water column. 
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Figure 1.7. I O. (a) Inter-Ocean acoustic release and attached anchor being lowered over the side of a ship. 
(Courtesy, Mark Geneau, Inter-Ocean.) 



Figure 1.7.10. (b) Exploded view of the Inter-Ocean acoustic release. (Courtesy, Mark Geneau, Inter-Ocean.) 

t ~  
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Most modern releases use separate "load" and "release" codes so that the release 
can be remotely opened and closed. Some releases also provide a release code that 
signals the oceanographer on the ship that the mooring has released and should be 
expected to surface in a time appropriate for the depth and net buoyancy of the 
mooring elements. This is always a tense time in mooring operations as it is sometimes 
difficult to predict precisely where the mooring will surface. Spotting the mooring 
from the ship can be a real challenge, especially in rough weather. Attachment of a 
pressure-rated radio beacon and flashing light to the top float of the mooring can aide 
considerably with the recovery operation. If the mooring fails to surface after an 
appropriate time, a search can initiated assuming that the mooring has surfaced and 
has not been spotted. 

Past experience has demonstrated the wisdom of having a dual release system with 
two acoustic releases side-by-side in a parallel harness. A triangular bridle at the top 
connects the releases to a single point in the mooring line while a spreader bar 
connects the package to a single attachment point on the anchor chain. The extra cost 
can help avoid the need to dredge for the mooring if one of the releases should fail. 
Dredging is a last resort since in can be extremely harmful to the mooring hardware, 
leading to severe damage to the current meters and other instruments on the mooring 
line. In addition, there is a correct dredging procedure and oceanographers new to the 
field should talk to more experienced colleagues for guidance. 

1.8 L A G R A N G I A N  C U R R E N T  M E A S U R E M E N T S  

A fundamental goal of physical oceanography is to provide a first-order description of 
the global ocean circulation. The idea of following individual parcels of water (the 
Lagrangian perspective) is attractive since it permits investigation of a range of 
processes taking place within a tagged volume of  water. Named after Joseph L. 
Lagrange (1736-1811), the French mathematician noted for his early work on fluid 
dynamics and tides, Lagrangian descriptions of flow can be used to investigate a range 
of processes from the dispersion of substances discharged into the ocean from a point 
source to the productivity of a semi-enclosed biological ecosystem as it drifts across 
the ocean. Early Lagrangian measurements consisted of tracking some form of tracer 
such as a surface float or dye patch. While giving vivid displays of water motions over 
short periods of time, these techniques demanded considerable onsite effort on the 
part of the investigator. Initial technical advances were made more rapidly in the 
development of moored current meters which yielded a strictly Eulerian picture of the 
current. However, improvements in tracking systems and buoy technology since the 
1970s have made it possible to follow unattended surface and subsurface drifters for 
periods of many months to several years. Satellite-tracked surface buoys and 
acoustically-tracked, neutrally-buoyant SOFAR (SOund Fixing And Ranging or 
"Swallow") floats have been able to provide reliable, long-term, quasi-Lagrangian 
trajectories for many different parts of the world. (The trajectories are called quasi- 
Lagrangian since the drifters have a small "slip" of the order of 1-3 cm/s relative to 
the advective flow and because they do not move on true density surfaces. Surface 
drifters, for example, move on a two-dimensional plane rather than a three-dimen- 
sional density surface.) 
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Remotely-tracked drifters provide a convenient and relatively inexpensive tool for 
investigating ocean variability without continued direct involvement by the invest- 
igator. In the case of the satellite-tracked buoys, the scientist can now dial-up the 
position of drifters or collect data from ancillary sensors on the buoys. The number of 
possible satellite positional fixes varies with latitude (Table 1.8.1). Time delays 
between the time the data are collected by the spacecraft and the time they are 
available to the user is typically less than a few hours (Table 1.8.2). This feature makes 
the drifters useful for tracking floating objects or oil spills. Oceanic platforms and 
satellite data transmission systems have become so reliable that both moored and 
drifting platforms are now used for the collection of a variety of oceanic and 
meteorological data, including sea surface temperature, sea surface pressure, wind 
velocity and mixed layer temperature. A new era of oceanographic data collection is in 
progress with less direct dependence on ships and more emphasis on data collection 
from autonomous platforms. 

Table 1.8.1. The mean number of sateUite passes 
over a 24-h period for the Service Argos two- 
satellite system 

Latitude (~ Mean number of 
passes 

Table 1.8.2. Data availability (global through- 
put times in hours)for June 1994. Percentage of 
the time that the delay between the satellite 
observation and the time that the data are 
processed and available from Service Argos. 
Service Argos Bulletin, July, 1994 

0 7 Data avail- June (%) December (%) 
15 8 ability 
30 9 
45 11 DA < 1 h 19.72 23.98 
55 16 DA < 2 h 41.15 47.61 
65 22 DA < 3 h 61.99 67.78 
75 28 DA < 4 h 72.59 71.89 
90 28 DA < 5 h 80.45 78.55 

DA < 6 h 85.71 83.75 
DA < 8 h 100.00 100.00 

1.8.1 Drift cards and bottles 

Until the advent of modern tracking techniques, estimates of Lagrangian currents 
were obtained by seeding the ocean surface with marked waterproof cards or sealed 
bottles and determining where these "drifters" came ashore. The card or bottle 
contained a note requesting that the finder notify the appropriate addressee of the 
time and location of recovery. To improve the chances of notification, a small token 
reward was usually offered (one Australian group gave out boomerangs). Although 
drift cards and bottles provide a relatively low-cost approach to Lagrangian 
measurements, they have major limitations. Because they float near the surface of 
the ocean, the movements of the cards and bottles are strongly affected by wind drag 
and wave-induced motions. In fact, much of what these type of drifters measure is 
wave-induced drift rather than underlying ocean currents. Moreover, even if the 
recovery rate was fairly high (1% is considered excellent for most drift card studies), 
the drifters provide, at best, an estimate of the lower bound of the mean current 
averaged over the time from deployment to recovery. Unless the card/bottle was 
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recovered at sea, the scientist could never know if the drifter had recently washed 
ashore or had been laying on the beach for some time. In addition, the drifter provided 
no information on the current patterns between the deployment and recovery points. 

1.8.2 Modem drifters 

Quasi-Lagrangian drifters can be separated into two basic types: (1) Surface drifters 
having a surface buoy which is tethered to a subsurface drogue at some specified depth 
(typically less than 300 m); and (2) Subsurface, neutrally-buoyant floats which are 
designed to remain on fixed subsurface density surfaces. Modern surface drifters have 
a radio frequency transmitter (called a platform transmit terminal or PTT) for 
communication to a listening device while subsurface drifters may act either as a 
source or receiver of acoustic signals. Examples of the possible drogue configurations 
for modern satellite-tracked drifters are presented in Figure 1.8.1(a) along with the 
design for the standard holey sock WOCE/TOGA near-surface velocity drifter (Figure 
1.8.1b). The purpose of the drogue is to reduce "slippage" between the drifter package 
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Figure 1.8.1. (a) Examples of the basic drogue designs for sateUite-tracked drifters: holey-sock drogue; 
parachute drogue; window-shade drogue; and Tristar drogue (Niiler et al., 1987). 
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Figure 1.8.1. (b) Schematic of the standard WOCE/TOGA holey-sock surface-drifter showing pattern of 
holes in cloth panels. (From Sybrandy and Niiler, 1990.) 

and the water. The surface float contains the PTT, temperature, and pressure sensors 
and other electronics (Figure 1.8.1c); the purpose of the subsurface buoy is reduce the 
"snap loading" on the drogue and cable by absorbing some of the shock from surface 
wave motion. In the case of the WOCE/TOGA holey sock drifter, the ratio of the 
drogue cross-sectional area to the cross-sectional area of the other drifter components 
(such as the wire tether and subsurface float) is about 45:1, a relatively high drag-area 
ratio for typical drogues. 

Trajectories from an early type of drifter deployed in the NORPAX experiment are 
found in McNally et al. (1983). Similar tracks from more modern drifters are 
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Figure 1.8.1. (c) Cut-away view of foam-filled Plexiglass shell and PTT (satellite transmitter) used for 
the surface buoy. When complete, the surface float has an excess buoyancy greater than 7 kg. (From 

Sybrandy and Niiler, 1990.) 

presented in Figure 1.8.2. As examples, we have chosen trajectories from the North 
Atlantic near the Azores convergence zone (Figure 1.8.2a) and from the TOGA/ 
WOCE equatorial Pacific (Figure 1.8.2b). Note that, despite the extensive buoy 
coverages in these two cases, there are still "regions uhvisited by the drifters. Our f~nal 
example (Figure 1.8.2c) is a unique point-source deployment from the 106-mile site 
southeast of New York city. This site was the only ocean disposal site in the U.S.A. 
designated for dumping sewage sludge during the 1980s. 

The essential technology for the above type of tracking was the development of a 
random access positioning system for polar orbiting satellites that could simult- 
aneously fix the positions of many platforms using the Doppler-shift of the radio 
signals transmitted at regular intervals from the buoy. Early versions of the satellite 
tracking system were flown on the NIMBUS 6 (Kirwan et al., 1975) and the French 
EOLE (Cresswell, 1976) satellites. Cresswell (1976) tested the accuracy of this system 
by examining the time-series from a moored buoy and from an antenna mounted on 
top of a laboratory. For both sites, the uncertainties were less than 1.0 km. Similar 
RMS position fix errors were reported for the NIMBUS 6 systems by Kirwan et al. 
(1975) and by Richardson et al. (1981). 

The early satellite tracking systems have been replaced by the French ARGOS 
system (Collecte Localisation Satellite, CLS) carried onboard U.S. NOAA polar- 
orbiting weather satellites. As reported by Krauss and Kiise (1984), this twin satellite 
system is capable of positional accuracies better than 0.2 km. Location quality 
depends on a number of factors such as the quality of the ephemeris data (orbital 
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Figure 1.8.2. Trajectories from modern surface drifters with shallow (10-15 m) drogue depths. (a) 
Trajectories of 103 WOCE holey-sock drifters deployed near the Azores in the eastern North Atlantic 

from July 6, 1991 to October 25, 1993 (courtesy, Mayra Pazos, NOAA). 

parameters), the stability of the receiver oscillator and temperature control, the 
duration of the satellite pass and the number of messages it receives from the drifter. 
Statistical information processed by Service ARGOS from thousands of fixed or slow- 
drifting platforms (Service ARGOS, 1992) indicates that quality locational fixes have 
68% (= +lcr) accuracies of 150 m while standard fixes have 68% accuracies of 350 m. 
As indicated by Table 1.8.1, the number of fixes per day is a function of latitude and 
higher accuracy is possible when the platform is fixed over periods longer than 7 min 
during two successive satellite passes. The drifters themselves cost a few thousand 
dollars and are considered expendable. Typical tracking costs are of the order of $5000 
per year for full tracking (no positional fixes omitted) and one-third of this for the 
one-third duty cycle permitted by Service ARGOS (i.e. full-time tracking for 8 or 24 h 
followed by no tracking for 16 or 48 h, respectively). 

1.8.3 Processing satellite-tracked drifter data 

Position data obtained through satellite tracking need to be carefully examined for 
erroneous locations and loss of drogue. In fact, one of the main problems with surface 
drifters, aside from the need for accurate positioning, is knowing if and when the 
drogue has fallen off. Strain sensors are often installed to sense drogue attachment, 
but they have proven unreliable. The tether linkage between the surface buoy and the 
drogue is the major engineering problem in designing robust and long-life drifters. 
Because of this problem, drifters often have a subsurface float to help absorb the snap 
loading on the drogue caused by surface waves and also ensure that the surface 
element isn't constantly submerged in rough weather. An abrupt and sustained order- 
of-magnitude increase in the velocity variance derived from first differences of the 
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Figure 1.8.2. Trajectories from modern surface drifters with shallow (10-15 m) drogue depths. (c) Tracks 
of 66 holey sock drifters centered at 10 m depth released from 106-mile site southeast of New York 
between October 1989 and June 1991 (courtesy Paul Dragos, Battelle Ocean Sciences; Service Argos 

Newsletter 46, May 1993). 

edited positional data can be considered as evidence for drogue loss. The cubic spline 
routine in most software analysis packages works well for positional data provided the 
sampling interval is only a few hours. Although it is not recommended, the user can 
obtain the velocity components (u, v) directly from spline coefficients for the 
positional data. 

1.8.4 Drifter response 

As with all Lagrangian tracers, it is difficult to know how accurately a drifter is 
coupled to the water and what effects external forces on the drifter's hull might have 
on its performance. In most applications, the coupling between the buoy and the water 
is greatly improved by the drogue. For shallow drifters with drogue depth centers less 
than 30 m, typical drogue-to-tether drag ratios are around 40:1. For deeper drogues 
(> 100 m) the ratio decreases due to the added length of the tether. A smaller diameter 
wire can help offset the increased drag but at the expense of durability. There are as 
many different drogue designs as there are buoy hull shapes and it is difficult to get a 
consensus on the efficiencies of these drifter system elements. In a theoretical and 
experimental study, Kirwan et al. (1975) examined the effects of wind and currents on 
various hull and drogue types. They found that parachute drogues were more efficient 
than the common window-shade drogues, in strong contrast to the finding by Vachon 
(1973) that a bottom-ballasted window blind drogue was the most effective. 
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Subsequent studies by Dahlen and Chhabra (1983) have determined that a holy-sock 
drogue is more efficient than either the window shade or the parachute. This shape is 
easy to deploy and was selected for the standard drifter used in the WOCE program 
(Sybrandy and Niiler, 1990). Another innovative drogue called the Tristar developed 
by Niiler et al. (1987) uses a cross-pattern of window-shades with an additional 
horizontal plane (Figure 1.8.1a). The idea behind this drogue design is to reduce 
"sailing" of the drogue as is often occurs with a single window shade. Although easy to 
deploy (it goes into the water in a soluble box), this type of drifter is difficult to 
recover. For compatibility reasons, the standard drifter used in the WOCE Surface 
Velocity Program (WOCE-SVP) uses a holey-sock drogue. 

In addition to the disagreements about which type of drogue is best, the field studies 
of Kirwan et al. (1978) reported that the wind drag correction formula, given by 
Kirwan et al. (1975), is much too large for periods of high wind. The subsequent 
conclusion was that drifter velocities uncorrected for wind drag are better indicators of 
the true prevailing surface currents than are those corrected for the influence of wind 
drag on the buoy hull. In this context, it should be recognized that Lagrangian drifting 
buoys respond to the integrated drag forces including the forces on the drogue and the 
direct forcing on the hull. The driving forces in the water column consist of a 
superposition of geostrophic currents plus wind- and tide-generated currents. To 
evaluate the role of wind forcing on drifter trajectories, McNally (1981) compared 
monthly mean drifter trajectories with the flow lines for mean monthly winds 
computed from Fleet Numerical Weather Central's (now the Fleet Numerical Ocean 
Center, FNOC) synoptic wind analysis. He found that the large-scale, coherent 
surface flow followed isobars of sea-level pressure and was 20-30 ~ to the right of the 
surface wind in the North Pacific (Figure 1.8.3). Overall buoy speeds were 1.5 of the 
geostrophic wind speed during periods of strong atmospheric forcing (fall, winter, and 
spring). In the summer, mesoscale ocean circulation features, unrelated to the local 
wind, tended to determine the buoy trajectories. 

McNally (1981) also compared trajectories among buoys with drogues at 30 m 
depth, buoys with drogues at 120 m, and buoys without drogues. He found that 
drifters drogued below 100 m depth behaved very differently from ones drogued at 
30 m, but that those drogued at 30 m and those without drogues behaved similarly. 
Using the record from a drogue tension sensor (drogue on-off sensor), McNally found 
that it was not possible to detect from the trajectory alone when a buoy had lost its 
drogue. This result suggests a lack of vertical current shear in the upper 30 m where 
the flow apparently responds more directly to wind-driven currents than to baroclinic 
geostrophic flow. The result was supported by the poor correlation between mean 
seasonal dynamic height maps and the tracks of near-surface drifters reported by 
McNally et al. (1983). McNally (1981) also described an annual increase by a factor of 
5 of the wind speed in the North Pacific while the drifter speeds increased by a factor 
of 3.5, somewhat surprising considering that the wind stress that drives the currents is 
proportional to the square of the wind speed. During this same time the mean seasonal 
dynamic height amplitude changed only slightly. 

Emery et al. (1985) confirmed the lack of agreement between drifter tracks and the 
synoptic geostrophic current estimates, as well as the high correlation between drifter 
displacements and the geostrophic wind speed and direction (Figure 1.8.4). In a rather 
complex analysis of the wind driven current derived from drifter trajectories, Kirwan 
et al. (1979) concluded that, while the drifter response is best described by a two- 
parameter linear system (consistent with the driving of the buoy by wave-driven 
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Figure 1.8.3. Monthly average wind and buoy speeds over the ADS North Pacific region from June 1976 
through July 1977. (a) Monthly average drifter speeds; (b) monthly average wind speeds; (c) monthly 
average difference angle between wind direction and drifter direction. Vertical bars denote +1 standard 
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Stokes drift), a combination of Ekman current plus Stokes drift also adequately des- 
cribed the resulting trajectories. Calculations by Emery et al. (1985), based on the 
nominal hull size, suggest that the Stokes drift component is relatively small and that 
the current in the surface Ekman layer is the primary driving mechanism for the mean 
drifter motion. That the angle this current makes to the wind is less than the 45 ~ 
predicted by Ekman (1905), is expected since in the real ocean conditions never seem 
to meet the conditions for Ekman's derivation. McNally (1981) found an average angle 
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Figure 1.8.4. (a) Comparison between monthly mean buoy and geostrophic wind directions. 
(b) Comparison between monthly mean buoy and geostrophic wind speeds. (From Emery et al., 1985.) 

of 30 ~ while Kirwan et al. (1979) reported an angle of 15 ~ both to the right of the wind 
for the northern hemisphere. 

A search for the elusive Ekman spiral was conducted from November 20, 1991 to 
February 29, 1992 by Krauss (1993) using ten satellite drifters drogued at five 
different levels within well-mixed homogeneous water of 80 m depth in the North Sea 
midway between England and Norway. The holey-sock drogues used in the study were 
10 m long and centered at 5 m depth intervals from 7.5 to 27.5 m (Figure 1.8.5a). 
Results for the first four weeks of drift when the drifters were relatively close together 
revealed a clockwise turning and decay of the apparent wind stress with depth as 
required by Ekman-layer theory (Figure 1.8.5b). Here, the apparent wind stress is 
derived from the fluctuations in current velocity shear measured by the satellite- 
tracked drifters. Sea surface slopes needed to complete the calculations are from a 
numerical model. The observed amplitude decay of 0.90 and deflection of 10 ~ near the 
surface are in close agreement with theory (apparent wind increases from 0 ~ at the 
surface and is associated with an Ekman current that should be 45 ~ to the right of the 



Data Acquisition and Recording 113 

(a) 

Drifters 

0 �9 " 

- 4  

�9 v7. 5 

I0  

�9 v12.5 

20 --  

30 . . . .  

D r o g u e  

Wind stress 

"' ' ~ 0 ~  

- 4  

�9 v17.5 

- 4  

@ v22.5 

- 4  

@ v27.5 

~10 

- 4  

x15 

- 4  

' x20 

- 4  

x25 

- 4  

~30 - - " - - "  

Mean velocities,  current stress 

Figure 1.8.5. Test of Ekman's theory. The clockwise turning and decay of the apparent wind stress "rD at 
depth D (m) relative to the observed surface wind stress. The apparent wind stress is derived from the 
current velocity shear dvD/dZ measured by satellite-tracked drifters (a) drogued at different depths during 

homogeneous winter conditions. (Courtesy W. Krauss, 1994.) 

apparent wind). The angle increases to 41.6 ~ in 25 m depth. The total current field is a 
superposition of barotropic currents due to sea-level variations and Ekman currents. 
The classical Ekman theory is unable to fully describe the observed deflection of the 
apparent wind (and Ekman current) to the right of the wind and its decay with depth. 
To be consistent with Ekman's theory, an eddy viscosity of 103 cgs units would be 
needed, which is well beyond the norm. However, as noted by Krauss, "... the 
deflections are a strong indication that some type of Ekman spiral dominates within 
the upper 30 m. '~' 

In an older study McNally and White (1985) examined wind-drix~en flow in the 
upper 90 m using a set of buoys drogued at different depths. They found a sharp 
change in buoy behavior when the drogue entered the deepening surface mixed layer. 
This response was characterized by a sudden increase in the amplitude of near-inertial 
motions with a downwind drifter velocity component three times that of the crosswind 
component. They also found that 80-90% of the observed crosswind component could 
be explained by an Ekman slab model. The large downwind response leads to surface 
currents, calculated from the buoy displacements, that are greater than 0 ~ but less 
than 45 ~ (about 30 ~ ) to the right of the wind. This behavior was true for all buoys with 
drogues above the upper mixed layer; once in the mixed layer all buoys behaved the 
same regardless of drogue depth. 

In summary, it seems that the question of the relative coupling of drogued and 
undrogued drifting buoys to the water is still not completely resolved. Drifters 
measure currents, but which components of the flow dominate the buoy trajectories is 
still a topic of debate. Based on the recent literature, it appears that shallow drifters 
with drogue depths less than about 50 m are driven mainly by the wind-forced surface 
frictional Ekman layer whereas deep drifters with drogue depths exceeding 100 m are 
more related to geostrophic currents. The likely percentage of contribution by these 
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Figure 1.8.5. Test of Ekman's theory. The clockwise turning and decay of the apparent wind stress 7D at 
depth D (m) relative to the observed surface wind stress. The apparent wind stress is derived from the 
current velocity shear dv19/dz measured by satellite-tracked drifters (b) Histogram of the relative anne 
(in degrees) between the surface wind-stress vector and the calculated apparent wind-stress as a function 
of depth (surface wind minus apparent wind). Linear regression values (c~, /3) give apparent wind-stress 
as a function of surface wind-stress. Offset results from the different time scales of the winds and the 

currents. Mean values given in upper right corner of figure. (Courtesy W. Krauss, 1994.) 

two current types depends on the type of drogue system that is used. A problem with 
trying to measure the deeper currents is that deeper drogue systems tend to fail sooner 
and it is difficult to access quantitatively the role of the drogue in the buoy 
trajectories. Drogue loss due to wave loading and mechanical decoupling of the sur- 
face buoy and the drogue is still the main technical problem to extending drifter life. 
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There are other problems with drifters worth noting. In addition to drogue loss and 
errors in positioning and data transmission, the transmitters submerge in heavy 
weather and loose contact with the passing satellite. Low drag ratios lead to poor flow 
response characteristics and, because of the time between satellite passes, there is 
generally inadequate sampling of tidal and near-inertial motions (especially at low 
latitudes or for the one day on-two days off duty cycles) leading to aliasing errors. 
Drifters also have an uncanny tendency to go aground and to concentrate in areas of 
surface convergence. 

1.8.5 Other types of surface drifters 

Before leaving this topic, it is appropriate to mention that while the satellite-tracked 
buoys are perhaps the most widely used type of surface follower for open waters, there 
are other buoy tracking methods being used in more confined coastal waters. A 
common method is to follow the surface buoy using ship's radar or radar from a 
nearby land-based station. More expensive buoys are instrumented with both radar 
reflectors and transponders to improve the tracking. The accuracies of such systems 
all depend on the ability of the radar to locate the platform and also on the navi- 
gational accuracy of the ship. Fixes at several near-simultaneous locations are needed 
to triangulate the position of the drifter accurately. Data recording techniques vary 
from hand plotting on the radar screen to photographing the screen continuously for 
subsequent digital analysis. These techniques are manpower intensive when compared 
with the satellite data transmission which provides direct digital data output. 

In addition to radar, several other types of buoy tracking systems have been 
developed. Most rely on existing radio-wave navigation techniques such as LORAN or 
NAVSTAR (satellite navigation). For example, the subsurface drogued NAVocean and 
Candel Industries Sea Rover-3 Loran-C drifters have built-in Loran-C tracking 
systems that can both store and transmit the positional data to a nearby ship within a 
range of 25-50 km. Absolute positional accuracy in coastal regions is around 200 m 
but diminishes offshore with decreased Loran-C accuracy. However, relative 
positional errors are considerably smaller. Based on time-delay transmission data 
from three regional Loran-C transmitters, Woodward and Crawford (1992) estimated 
relative position errors of a few tens of meters and drift speed uncertainty of 2 cm s -1 
for drifters deployed off the west coast of Canada. Once it is out of range of the ship, 
the Loran-C drifter can be lost unless it is also equipped with a satellite transmission 
system. Meteor-burst communication is a well-known technique that makes use of the 
high degree of ionization of the troposphere by the continuous meteor bombardment 
of the earth. A signal sent from a coastal master station skips from the ionosphere and 
is received and then retransmitted by the buoy up to several thousand kilometers from 
the source. Since the return signal is highly directional, it gives the distance and 
direction oPthe buoy from the master station. Buoys can also be positioned using VHF 
via direction and range. The introduction of small, low-cost GPS receivers makes it 
possible for buoy platforms to position themselves continuously to within 110 m. 
Provision for differential GPS (using a surveyed land-based shore station) has 
improved the accuracy to order of 10 m. Data are then relayed via satellite to provide a 
higher resolution buoy trajectory than is presently possible with ARGOS tracking 
buoys. Given the high positioning rate possible for GPS systems, it is the spatial 
accuracy of the fixes that limits the accuracy of the velocity measurements. 



116 Data Analysis Methods in Physical Oceanography 

1.8.6 Subsurface floats 

New technological advances in subsurface, neutrally-buoyant float design have 
improved interpretation and understanding of deep ocean circulation in the same way 
that surface drifters have improved research in the shallow ocean. In their earliest 
form (Swallow, 1955), subsurface quasi-Lagrangian drifters took advantage of the 
small absorption of low-frequency sound emitted in the sound channel (the sound 
velocity minimum layer) located at intermediate depths in the ocean. The sound- 
emitting drifters were tracked acoustically over a relatively short range from an 
attending ship. The development of the autonomous SOFAR (SOund Fixing And 
Ranging) float, which is tracked from listening stations moored in the sound channel 
(Rossby and Webb, 1970) has removed the burden of ship tracking and made the 
SOFAR float a practical tool for the tracking of subsurface water movements. 
Although positional accuracies of SOFAR floats depend on both the tracking and 
float-transponder systems, the location accuracy of 1 km given by Rossby and Webb 
(1970) is a representative value. In this case, neutrally-buoyant SOFAR floats have a 
positional accuracy that is comparable in magnitude to the satellite-tracked drifting 
buoys. Using high-power 250-Hz sound sources, the early SOFAR floats are credited 
with the discovery of mesoscale variability in the ocean and for pioneering our 
understanding of Lagrangian eddy statistics (Freeland et al., 1975). The now familiar 
"spaghetti-diagram" (Figure 1.8.6) is characteristic of the type of eddy-like variability 
measured by SOFAR floats deployed in the upper ocean sound channel (Richardson, 
1993). 

SOFAR floats transmit low-frequency sound pulses which are tracked from shore 
listening positions or from specially moored "autonomous" listening stations. The 
need to generate low-frequency sound means that the floats are long (8 m) and heavy 
(430 kg), making them expensive to build and difficult to hand.le. Since greater 
expense is involved in sending sound signals than receiving them, a new type of float 
called the RAFOS (SOFAR spelled backwards) float has been developed in which the 
buoys listen for, rather than transmit, the sound pulse~ (Figure 1.8~7). I 'nthis" 
configuration, the float acts as a drifting acoustic listening station that senses signals 
emanating from moored sound sources (Rossby et al., 1986). The positions of RAFOS 
floats in a particular area are then determined through triangulation from the known 
positions of the moored source stations. A typical moored sound source, which 
broadcasts for 80 s every two days at a frequency of 260 Hz, has a range of 2000 km 
and an average lifetime of three years (WOCE Notes, June 3, 1991) 

Since RAFOS floats are much less expensive to construct than SOFAR floats and 
more difficult to locate (since they are not a sound source), RAFOS floats are 
considered expendable. The data processed and stored by each RAFOS buoy as it 
drifts within the moored listening array must eventually be transmitted to shore via 
the ARGOS satellite link. To do this, the RAFOS float must come to the surface 
periodically to transmit its trajectory information. After "uplinking" its data, the buoy 
again descends to its programmed depth and continues to collect trajectory data. The 
cycle is repeated until the batteries run out. 

The need for deep ocean drifters that are independent of acoustic tracking networks 
has led to the development of the "pop-up" float. The float is primarily a satellite PTT 
and a ballast device that periodically comes to the surface and transmits its location 
data and "health" status (an update on its battery voltage and other parameters) to the 
ARGOS system (Davis et al., 1992). The only known points on the buoy trajectory are 
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Figure 1.8.6. "Spaghetti-diagram" of all SOFAR float tracks from 1972 to 1989, excluding data from 
the POLYMODE Local Dynamics Experiment. Ticks on tracks denote daily fixes. Short gaps have been 
filled by linear interpretation. Plots are characteristic of the type of eddy-like variability measured by 

SOFAR floats deployed in the upper ocean sound channel. (Courtesy, Phillip Richardson, 1994.) 

those obtained when the buoy is on the surface. As with the RAFOS buoys, the pop-up 
float sinks to its prescribed depth level after transmitting its data to the ARGOS 
system and continues its advection with the deep currents. The advantage of such a 
system is that it can be designed to survive for a considerable time using limited power 
consumption. Assuming that deep mean currents are relatively weak, the pop-up float 
is an effective tool for delineating the spatial pattern of the deep flow, which up to now 
has not been possible over large areas. The Autonomous Lagrangian Circulation 
Explorer (ALACE) described by Davis et al. (1992) drifts at a preset depth (typically 
less than 1000 m) for a set period of 25 days, then rises to the surface for about a day to 
transmit it position to the satellite. The drifter then returns to a prescribed depth 
which is maintained by pumping fluid to an external bladder which changes its 
volume and hence its buoyancy. Modern ALACE floats built by Webb Research Corp. 
are capable of making about 100 round-trips to depths of less than 1 km over a 
lifetime of about five years. Errors are introduced by surface currents when the device 
is on the surface. The floats also provide temperature and salinity profiles during 
ascent or descent. 

As with the surface drifter data, the real problem in interpreting SOFAR float data 
is their fundamental "quasi-Lagrangian" nature (Riser, 1982). From a comparison of 
the theoretical displacements of true Lagrangian particles in simple periodic ocean 
current regimes with the displacements of real quasi-Lagrangian floats, Riser 
concludes that the planetary scale (Rossby wave) flows in his model contribute 
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Figure 1.8.7. Schematic of a RAFOS float. (Courtesy, Thomas Rossby.) 

more significantly to the dispersion of 700 m depth SOFAR floats than do motions 
associated with near-inertial oscillations or internal waves of tidal period. Based on 
these model speculations, he suggests that while a quasi-Lagrangian drifter will not 
always behave as a Lagrangian particle it nevertheless will provide a representative 
trajectory for periods of weeks to months. For his Rossby wave plus internal wave 
model, Riser derived a correlation time scale of about 100 days. He also suggests that 
the residence of some floats in the small scale (25 km) features, in which they were 
deployed, provides some justification for his conclusions. 

For pop-up floats, problems in the interpretation of the positional data arise from: 
(1) interruptions in the deep trajectory every time the drifter surfaces; (2) uncertaint~y 
in the actual float position between satellite fixes; and (3) contamination of the deelz 
velocity record by motions of the float on the surface or during ascent and descent. An 
essential requirement in the accurate determination of the subsurface drift is to find 
the exact latitude/longitude coordinates of the buoy when it first breaks the ocean 
surface and when first begins to re-sink. The ability to interpolate ARGOS fixes tc 
these times is determined by the nature of the surface flow and the number satellite 
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fixes. ALACE ascends more rapidly than it descends and spends little time at the 
surface. In a trial to 1 km, the drifter spent 0.3 h in the upper 150 m, and 4 h between 
150 and 950 m depth. Thus, according to Davis et al. (1992), most of the error comes 
from vertical velocity shear at depths of 150 m and deeper, below the surface wind- 
driven layer (see Thomson and Freeland (1999) for further details). 

1.8.7 Surface displacements in satellite imagery 

As noted briefly at the end of Section 1.7.6, well-navigated (geographically-located) 
sequential satellite images can be used as "pseudo-drifters" to infer surface currents. 
The assumption is that the entire displacement of surface features seen in the imagery 
is caused by surface current advection. This displacement estimate method (called the 
maximum cross-correlation or MCC) was applied successfully to sea ice displacements 
by Ninnis et al. (1986). Later, the same approach was applied to infrared images of sea- 
surface temperature (SST) by Emery et al. (1986). The patterns and velocities of the 
SST-inferred currents were confirmed by the drifts of shallow (5 m drogue) drifters 
and by a CTD survey. Later studies (Tokamamkian et al., 1990; Kelly and Strub, 1992) 
have confirmed the utility of this method in tracking the surface displacements in 
different current regimes. When applied to the Gulf Stream (Emery et al., 1992), the 
MCC method reveals both the prevailing flow and meanders. A numerical model of 
the Gulf Stream, used to evaluate the reliability of the MCC currents found that, for 
images more than 24 h apart, noise in this strong flow regime begins to severely distort 
the surface advection pattern. 

The MCC method can also be applied to other surface features such as chlorophyll 
and sediment patterns mapped by ocean color sensors. In the future, it may be 
possible to combine ocean color tracking with infrared image tracking. Infrared 
features are influenced by heating and cooling, in addition to surface advection, while 
surface chlorophyll patterns respond to in situ biological activity. Since these two 
features should reflect the same advective patterns (assuming similar advective 
characteristics for temperature and color), the differences in calculated surface vectors 
should reflect differences in surface responses. Thus, by combining both color and 
SST it should be possible to produce a unique surface flow pattern that corrects for 
heating/cooling and primary biological production. 

1.9 W I N D  

Although it might be surprising to find a section on wind data in an oceanographic 
text, we can state with some confidence that most of the scientific assessment of wind 
data over the ocean has been done by oceanographers searching for the best way to 
define the meteorological forcing field for oceanic processes. This is especially true of 
observationalists working on upper ocean dynamics and numerical modelers who 
require climatological winds to drive their circulation models. It is not the intent of 
this book to discuss in detail the many types of available wind sensors and to evaluate 
their performance, as is done with the oceanographic sensors. Instead, we will briefly 
review the types of wind data available for ocean regions and make some general 
statements about the usefulness and reliability of these data. 



120 Data Analysis Methods in Physical Oceanography 

Open-ocean wind data are of three types: (1) six-hourly geostrophic wind data 
computed from measured distributions of atmospheric sea surface pressure over the 
ocean; (2) directly measured wind data from ships and moored platforms (typically at 
hourly intervals); and (3) inferred six-hourly wind data derived from satellite sensors. 
Atmospheric pressure maps are prepared from combinations of data recorded by ships 
at sea, from moored or drifting platforms such as buoys, and from ocean island 
stations. Analysis procedures have changed over the years with early efforts depending 
on the subjective hand contouring of the available data. More recently, there has been 
a shift to computer-generated "objective analysis" of the atmospheric pressure data. 
Since they are derived from synoptic weather networks, the pressure data are 
originally computed at six-hourly intervals (00, 06, 12, and 18 UTC). While some work 
has been done to correct barometer readings from ships to compensate for installation 
position relative to sea-level, no systematic study has been undertaken to test or edit 
these data or analyses. However, in general, sea-level pressure patterns appear to be 
quite smooth, suggesting that the data are generally reliable. Objective analysis 
smooths the data and suppresses any noise that might be present. 

It is not a simple process to conformally map a given atmospheric pressure 
distribution into a surface wind field. While the computation of the geostrophic wind 
velocity from the spatial gradients of atmospheric pressure is fairly straightforward, it 
is more difficult to extrapolate the geostrophic wind field through the sea-surface 
boundary layer. The primary problem is our imperfect knowledge of the oceanic 
boundary layer and the manner in which it transfers momentum from the wind to the 
ocean surface. While most scientists have agreed on the drag coefficient for low wind 
speeds (<5 m/s), there continues to be some disagreement on the appropriate 
coefficient for higher wind speeds. Added to this is a lack of understanding of 
boundary layer dynamics and how planetary vorticity affects this layer. This leads to a 
lack of agreement on the backing effect and the resulting angle one needs to apply 
between the geostrophic wind vector and the surface wind vector. Thus, wind stress 
computations have required the a priori selection o~f the wind stress f6rmula~ for the 
transformation of geostrophic winds into surface wind stresses. The application of 
these stress calculations will therefore always depend on the selected wind stress 
relation and any derived oceanographic inferences are always subject to this 
limitation. 

Anemometers installed on ships, buoys or island stations provide another source of 
open-ocean wind data. The ship and buoy records are subject to problems arising from 
measuring the wind around structures and relative to a moving platform, which is 
itself being affected by the wind. These effects are difficult to estimate and even more 
difficult to detect once the data have been recorded or transmitted. Many of the earlier 
ship-wind data in climatological archives are based on wind estimates made by the 
ship's officers from their evaluation of the local sea state. (The Beaufort Scale was 
designed for the days of sailing vessels and uses the observed wave field to estimate the 
wind speed.) Analysis of the ship-reported winds from the Pacific (Wyrtki and Meyers, 
1975a, b) has demonstrated that, with some editing and smoothing, these subjective 
data can yield useful estimates of the distribution of wind over the equatorial Pacific. 
Barnett (1983) has used objective analysis on these same data to produce an even more 
filtered set of wind observations for this region. Following a slightly different 
approach, Busalacchi and O'Brien (1981) reanalyzed the ship wind-data to fill in 
spatial gaps before applying the wind fields to oceanographic model studies. 
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Included in other widely used sets of wind data are the synoptic wind fields 
produced by the U.S. Fleet Numerical Ocean Center (FNOC) in Monterey, California. 
These analyses use not only ship, buoy and island reports but also winds inferred from 
the tracking of clouds in sequences of visible and infrared satellite imagery. In this 
technique, one uses the infrared image to estimate the temperature and, therefore, 
infer the elevation of the cloud mass being followed. By examining sequences of 
satellite images, specific cloud forms can be followed and the corresponding wind 
speed and direction computed for the altitude of the cloud temperature. Naturally, 
this procedure is dependent not only on the accuracies of the satellite sensors but also 
on the interpretive skills of the operator. As a consequence, no real quantitative levels 
of accuracy can be attached to these data. Comparison between the FNOC winds and 
coincident winds measured from an open-ocean buoy (Friehe and Pazan, 1978) 
showed excellent agreement in speed and direction over a period of 60 days. Although 
this single-point comparison is too limited to establish any uncertainty values for the 
FNOC wind fields, the comparison provides some confirmation of the validity of 
techniques used to derive the FNOC winds. 

A wind product for the Pacific Ocean similar to the FNOC winds is generated by 
the National Marine Fisheries Service (NMFS) in Monterey, California (Holl and 
Mendenhall, 1972; Bakun, 1973). In this product, the geostrophic "gradient" winds are 
first computed at a 3 ~ x 3 ~ latitude-longitude grid spacing from spatial gradients in 
the six-hourly synoptic atmospheric pressure fields at the 500 or 800 mb surfaces. To 
obtain the surface-wind vectors in the frictional atmospheric boundary layer, the 
magnitudes of the calculated geostrophic wind vectors are reduced by a factor of 0.7 
and the wind vectors rotated (backed) by 15~ here, "backed" refers to a counter- 
clockwise motion in the northern hemisphere and a clockwise rotation in the southern 
hemisphere. (Some of the original work on this method can be traced to Fofonoff, 
1960.) 

Thomson (1983) compared winds computed by the NMFS with winds measured 
from moored bu~oys off the coast of British Columbia during the summers of 1979 and 
1980 (Figure 1.9.1). In this comparison, it was concluded that winds computed from 
atmospheric pressure provided an accurate representation of the oceanic winds for 
time scales longer than several days but failed to accurately resolve short-term wind 
reversals associated with transient weather systems. Computed winds also tended to 
underestimate percentages of low and high wind speed. Similar results were reported 
by Marsden (1987) for the northeast Pacific (including Ocean Weather Station P) and 
by Macklin et al. (1993) for the rugged coast of western Alaska. The poor correlation of 
observed and computed winds at short time scales is thought to be due to the large (3 ~ 
x 3 ~ spacing, the coarse six-hour sampling of the pressure field and the strong 
influence of orographic effects in mountainous coastal regimes. In Thomson's study, 
peak computed winds were roughly 20 ~ to the right of the observed peak inner-shelf 
winds, suggesting that the computed winds were representative of more offshore 
conditions or that the 15 ~ correction for frictional effects was too small. Spectra of 
observed winds were found to be dominated by motions at much larger wavelengths 
than were found in the computed values. The NMFS winds were found to contain a 
significant 24-h sea-breeze component in the inner shelf observed winds but not in the 
records farther offshore. Based on spectral comparisons it was concluded that the 
NMFS winds closely represented the actual winds for periods longer than two days 
(frequencies less than 0.02 cph) and only marginally matched actual winds for periods 
shorter than two days. 
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Figure 1.9.1. Comparison of observed and calculated oceanic winds for the period May to September 
1980 on the west coast of Vancouver Island. Insert shows location of the moored bouys for 1979 and 1980 
(triangles) and location of grid point (49~ 127~ the geostrophic winds. Observed winds are from 
anemometers on moored buoys; calculated winds are the six-hourly geostrophic winds provided by the 

National Marine Fisheries Service (NMFS) in Monterey, California. (From Thomson, 1983.) 

Oceanographers often use winds measured at coastal stations when studying 
problems of the nearshore marine environment. The primary caution with these data 
is that winds should be corrected for local orographic effects especially along 
mountainous coasts (Macklin et al., 1993). If the wind data are to be considered 
representative of the coastal ocean region, the wind sensor must be unobstructed along 



Data  Acquisit ion and Recording 123 

the direction of the wind. If not ideally situated, the measured wind data can still be 
used if the directional data are weighted to account for the bias due to local wind- 
channeling by the topography. Marsden (1987) found good agreement between 
measured and calculated winds at the rugged but exposed anemometer site at Cape St. 
James on the British Columbia coast, but relatively poor agreement for these winds at 
the protected coastal station at Tofino Airport 300 km to the south of the Cape. 

Finally some comments about future wind measurements are appropriate. As new in 
situ sensing methods evolve, emphasis is being placed on the ability to measure wind 
over the ocean. An attractive new method is to detect changes in the ambient acoustic 
noise level due to wind-driven surface effects. The exact mechanisms causing these 
acoustic noise variations are still being investigated but empirical data clearly suggest 
a linear relationship to wind-stress fluctuations. Even more attractive is the future 
possibility of monitoring the wind over the ocean from polar orbiting satellites using a 
microwave scatterometer. The usefulness of such data was clearly demonstrated 
during the SEASAT mission (Brown, 1983) which confirmed scatterometer accuracies 
of 1-2 m/s (speed) and 1-20 ~ (direction). A study of SEASAT data (Thompson et al., 
1983) has shown that radar backscatter from the ocean depends on surface wind stress 
for a wide range of transmitted wavelengths. These authors found that SEASAT 
synthetic aperture radar (SAR) data, combined with simultaneous SEASAT scattero- 
meter data, provided a good estimate of the coefficient of wind speed to wind stress. 
Hence, in the future, it may be possible to measure wind stress directly rather than 
infer it from wind or pressure measurements. In the past decade, a number of new 
systems have been deployed that are capable of measuring wind speed over the ocean. 
The GEOSAT altimeter discussed earlier is able to observe wind speed from the 
change in the shape of the altimeter waveform. While direction sensing is not possible, 
the altimeter is able to provide relatively accurate wind speeds along the satellite 
subtracks every few kilometers (Witter and Chelton, 1991). This capability has been 
used by the U.S. Navy to routinely map the global wind field over the ocean. 
Comparisons of these winds with moored buoys and operational numerical model 
analyses have demonstrated the relative accuracy of these satellite winds. 

In addition, the passive microwave sensor on the Defense Meteorological Satellite 
Program (DMSP) satellites, called the Special Sensor Microwave Imager (SSM/I), is 
able to sense wind speed but not direction (Figure 1.9.2; color plate). The SSMI is a 
seven-channel four-frequency, linearly-polarized microwave radar operating in a sun- 
synchronous orbit at an altitude of 860 km. Three of the four channels (19.3, 37.0, and 
85.5 GHz) are dual-polarized while the 22.2 GHz channel is only vertically polarized, 
for a total of seven channels. The nearly 1400 km swathe of the conically scanned 
SSM/I produces complete coverage between 87~ to 87~ every three days per 
satellite (Halpern et al., 1993). There are now at least two SSM/I operating. While the 
spatial resolution is poor due to the sensing capabilities at the microwave frequencies, 
algorithms have been developed that appear to produce reliable estimates of wind 
speed over the open ocean (Wentz et al., 1986; Gooberlet et al., 1990; Halpern et al., 
1993). Wind speed accuracies are about _+2 m/s for the range of speeds between 3 and 
25 m/s under rain-free conditions. Since the emissivity of land is very different from 
that of water, the SSM/I cannot be used to estimate wind speed within 100 km of land. 
Similarly, surface wind speed within 200 km of the ice edge cannot be computed from 
SSM/I data. However, wind speeds computed from the SSM/I compare reasonably 
well with open-ocean winds (Emery et al., 1994). Waliser and Gautier (1993) find that 
in the central and eastern equatorial Pacific, SSM/I wind-speed comparisons were well 
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Figure 1.9.2. Global annual mean of the SSMI (Special Sensor Microwave Imager) surface wind speed for I991. Courtesy of David Halpern (from Halpern et al., 
July 1993). JPL Publication 93- I O. 
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within the accuracies specified for the SSM/I. Biases (buoy-SSM/I) were generally less 
than 1 m/s and RMS differences were less than 2 m/s. However, in the western 
equatorial Pacific, biases were generally greater than 1-3 m/s and RMS differences 
closer to 2-3 m/s. According to Waliser and Gautier, "... there are still some 
difficulties to overcome in understanding the influences that local synoptic conditions 
(e.g. clouds/rainfall), and even background atmospheric and oceanic climatology 
effects, have on the retrieval of ocean-surface wind speeds from spaceborne sensors." 

The most comprehensive space-borne measurement of the wind field is made using 
a microwave scatterometer which measures the radar scattering cross-section of the 
sea surface at different incidence and azimuthal angles. The SEASAT scatterometer 
demonstrated the applicability of this instrument for the measurement of open-ocean 
wind speed and direction. Using a combination of fan-beam antennas, the 
scatterometer is able to compute both the wind speed and direction. As with many 
other satellite borne systems, the scatterometer uses the Doppler shift of the received 
signal to compute the speed component while multiple fan-beam antennas (called 
sticks) are required to unambiguously resolve the wind direction. Since scattering 
cross-section at radar frequencies is mostly related to the small wavelets that form 
when the wind acts on the sea surface, the scatterometer signal is actually related to 
the wind stress rather than to the wind speed. Unlike anemometers and other like 
instruments, no additional conversion from wind speed to wind stress is needed. The 
problem is that all historical calibration information is based on wind speed and 
direction, rather than wind stress. As a consequence, all present algorithms still con- 
vert the scatterometer measurements to wind speed and direction. Studies of SEASAT 
scatterometer data (Pierson, 1981; Guymer et al., 1981) have demonstrated the ability 
of the satellite scatterometer to reliably measure wind speed and direction relative to 
ship and buoy observations. New scatterometers are flying on the European ERS-1 
satellite and on the NASA-Japan ADEOS missions and other ERS satellites. 

Trenworth and Olson (1988) consider the surface wind field computed by the 
European Centre for Medium-range Weather Forecasting (ECMWF) to be the best 
winds for general operational global analyses. ECMWF forecast-analyses of surface 
wind components at 10 m height are issued twice a day at 00 and 12 UTC. Numerical 
modelers examining large-scale circulation in the Pacific Ocean typically make use of 
the monthly mean and annual wind stress climatology provided by the Hellerman and 
Rosenstein (1983) wind fields. These data have problems near the equator where they 
tend to underestimate wind strength. 

1.10 P R E C I P I T A T I O N  

Precipitation is one of the most difficult and challenging measurements to make over 
the ocean. Simple rain gauges installed on ships are invariably affected by salt spray 
and wind flow over the ship's hull and superstructure, and the short space and time 
scales of precipitation make it difficult to interpret point measurements. Rain gauges 
have two conflicting requirements that make use on shipboard difficult. First the 
gauge needs to be installed away from the ship influences, such as salt spray, which 
calls for positioning as high as possible on a mast. However, this conflicts directly with 
the second requirement, which calls for the regular maintenance of the gauge by ship's 
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personnel. Few systematic studies have been made of precipitation measurements 
taken from ships, and little effort is made today to instrument ships to routinely 
observe rainfall over the ocean. A 25-year time-series from Ocean Station P (Figure 
1.10.1) in the northeast Pacific is one of a few in the open ocean (most others were 
taken at Ocean Weather Stations similar to Station P). Unless some entirely new 
sampling procedure is developed, this situation is unlikely to change for the 
foreseeable future. 

One new technique is to infer rainfall from variations in the upper-ocean acoustic 
noise. While it may seem a bit confusing to interpret ocean upper-layer acoustic noise 
both in terms of rainfall and wind, the frequency signatures of the two noise- 
generating mechanisms are sufficiently different to be distinguishable. Research is 
needed to define the accuracy of such a procedure and make at-sea precipitation 
measurements possible from moorings. These will still only provide point measure- 
ments and will not yield an improved spatial picture of the rainfall distribution. There 
are indications that future microwave satellite sensors, both active and passive, might 
be used to infer spatial variations in precipitation activity. SEASAT results were again 
encouraging in this regard but the validity of such measurements was not yet 
established. At any rate, it is presently impossible to attach any accuracy limits to 
what few ocean rain data are available. These data are so lacking that their relatively 
large uncertainty is not important. Any improvement in the analysis of precipitation 
measurements awaits the technical progress required to produce reliable at-sea rain 
data. 

The 1987 launch of the Special Sensor Microwave Imager (SSM/I) on one of the 
Defense Meteorological Satellite Program satellites provided a new opportunity tc 
infer precipitation from microwave satellite measurements. While a precipitation 
algorithm was developed prior to the launch (Hollinger, 1989) later studies have 
improved upon this algorithm to formulate better retrievals of precipitation over both 

Figure 1.I0.1. A 25-year time-series (1956-1981) of precipitation collected from Canadian Weathe~ 
Ships at Ocean Station PAPA (50~ 145~ in the northeast Pacific. Solid line is from use of a 

Savitsky-Golay smoother (order -- 13 months). (Data courtesy, Sus Tabata.) 
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land and ocean. In the list of "environmental products" for the SSM/I the "preci- 
pitation over water" field shows a 25 km resolution, a range of 0-80 mm/h, an absol- 
ute accuracy of 5 mm/h for quantization levels of 0, 5, 10, 15, 20, and _>25 mm/h. This 
algorithm utilized both the 85.5 and 37 GHz SSM/I channels, thus limiting the spatial 
resolution to the 25 km spot sizes of the 37 GHz channel. 

A study by Spencer et al. (1989) employed only the two different polarizations of the 
85.5 GHz channel, thus allowing the resolution to improve to the 12.5 km per spot size 
of this channel. This algorithm was compared with 15-min rain gauge data from a 
squall system in the southeast United States (Spencer et al., 1989). The 0.01 inch 
(0.039 mm) rain gauge data were found to correlate well (r 2 -- 0.7) with the SSM/I 
polarization corrected 85.5 GHz brightness temperatures. This correlation is sur- 
prisingly high considering the difference in the sampling characteristics of the SSM/I 
versus the rain gauge data. Portions of a rain system adjacent to the squall line were 
found to have little or no scattering signature in either the 85.5 or the 37 GHz SSM/I 
data due likely to the lack of an ice phase presence in the target area. This appears to 
be a limitation of the passive microwave methods to discern warm rain over land. 

1.11 C H E M I C A L  T R A C E R S  

Oceanographers use a variety of chemical substances to track diffusive and advective 
processes in the ocean. These chemical tracers can be divided into two primary cate- 
gories: conservative tracers such as salt and helium whose concentrations are affected 
only by mixing and diffusion processes in the marine environment; and 
nonconservative tracers such as dissolved oxygen, silicate, iron, and manganese 
whose concentrations are modified by chemical and biological processes, as well as by 
mixing and diffusion. The conventional tracers, temperature, salinity, dissolved oxygen 
and nutrients (nitrate, phosphate and silicate), have been used since the days of Wrist 
(1935) and Defant (1936) to study ocean circulation. More recently, radioactive tracers 
such as radiocarbon (14C) and tritium (3H) are being used to study oceanic motions. 
The observed concentrations of those substances which enter from the atmosphere 
must first be corrected for natural radioactive decay and estimates made of these 
substance's atmospheric distribution prior to their entering the ocean. If these 
radioactive materials decay to a stable daughter isotope, the ratio of the radioactive 
element to the stable product can be used to determine the time that the tracer was last 
exposed to the atmosphere. Transient tracers, which we will consider separately, are 
chemicals added to the ocean by anthropogenic sources in a short time span over a 
limited spatial region. Most transient tracers presently in use are radioactive. What is 
important to the physical oceanographer is that chemical substances that enter the 
ocean from the atmosphere or through the seafloor provide valuable information on a 
wide spectrum of oceanographic processes ranging from the ventilation of the bottom 
water masses, to the rate of isopycnal and diapycnal (cross-isopycnal) mixing and 
diffusion, to the downstream evolution of effluent plumes emanating from hydro- 
thermal vent sites. 

Until recently, many of these parameters required the collection and post-cast 
analysis of water bottle samples using some which are then subsampled and analyzed 
by various types of chemical procedures. There are excellent reference books presently 
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Updated atlases for the Atlantic were presented in Fuglister (1960) and Worthington 
(1976). Similar maps for the Pacific Ocean were produced by Reid (1965) and Barkley 
(1968). Reid's atlas included distributions of dissolved oxygen and inorganic phos- 
phate/phosphorous. An atlas of water properties for the North Pacific was presented 
by Dodimead et al. (1963) and Favorite et aI. (1976). Wyrtki (1971) provided con- 
ventional tracer data for the Indian Ocean obtained from the International Indian 
Ocean Expedition. An atlas of the Bering Sea is provided by Sayles et al. (1979). A 
summary of the global water mass distribution can be found in Emery and Meincke 
(1985). Surveys conducted during the World Ocean Circulation Experiment (1991- 
1997) will provide updated maps of conventional tracer distributions in the global 
ocean. 

1.11.1.2 Dissolved oxygen 

Along with temperature and salinity, dissolved oxygen concentration is considered 
one of the primary scalar properties needed to characterize the physical attributes of 
marine and freshwater environments. Although it is not usually a conservative quan- 
tity, dissolved oxygen serves as a valuable tracer for mixing and ventilation through- 
out the water column and is a key index of water quality in regions of strong biological 
oxygen demand (BOD). This demand may arise from animal respiration, bacteria- 
driven decay, or nonorganic chemical processes (the discharge of pulp-mill effluent 
into the marine environment places a heavy burden on oxygen levels). Dissolved 
oxygen is widely used by physical oceanographers to delineate water-mass distri- 
butions, to estimate the timing and intensity of coastal upwelling processes and to 
establish the occurrence of deep water renewal events in coastal fjords. In a study of 
the North Pacific, Reid and Mantyla (1978) found that dissolved oxygen gives the 
clearest signal of the subarctic cyclonic gyre in the deep ocean. 

The apparent oxygen utilization (AOU) is the difference between the possible 
saturated oxygen content at a given pressure and temperature, and the actually ob- 
served oxygen content (Figure 1.11.1). Below the euphotic zone, this parameter 
provides an approximate measure of biological demand due to respiration and decay. 
It also is commonly used to trace water-mass movement and to determine the "age" 
(defined as the time away from exposure to the surface source) of oceanic water 
masses. Use of AOU suggests that the intermediate waters of the northeast Pacific 
have an age of several thousand years and are among the oldest (last to be ventilated) 
waters of the world ocean. Mantyla and Reid (1983) arrived at similar conclusions 
based on global distributions of potential temperature, salinity, oxygen and silicate. A 
more complete discussion of this parameter can found in Chapter 3 of Broecker and 
Peng (1982). 

The "core-layer" method introduced by W/Jst (1935) identified water masses, and 
their boundaries, on the basis of maxima or minima in temperature, salinity and 
dissolved oxygen content. In the ocean, dissolved oxygen levels are high near the 
surface where they contact the atmosphere but rapidly diminish to a minimum near 
500-1000 m due to the decay of upper-ocean detritus. Oxygen values again increase 
with depth toward the bottom. Wyrtki (1962) discusses the relationship between the 
observed subsurface oxygen minimum in the North Pacific and the general circulation 
of the ocean, suggesting that it is to be a balance between upward advection, down- 
ward diffusion and in situ biological/chemical consumption. Miyake and Saruhashi 
(1967) argued that the effect of horizontal advection has a much greater effect on 
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Figure 1.11.1. Vertical section of Apparent Oxygen Utilization (AOU) in mol/kg for the western basin of 
the Atlantic Ocean. (Figure 3.9 from GEOSECS program, Broecker and Peng, 1982.) The section is 

broken at 1500 m depth. 

dissolved oxygen distributions than horizontal diffusion and biological consumption. 
In certain deep regions of the ocean, such as t, he Weddell Enderby Basin off 
Antarctica, the consumption of oxygen is below the detectable limit of the data so that 
oxygen may serve as a conservative chemical tracer (Edmond et al., 1979). 

When water bottle sampling was the only" method for o'cean6gi'aph]c7 profiling, the 
measurement of dissolved oxygen was only slightly more cumbersome and time- 
consuming than the measurement of temperature and salinity. The advent of the 
modern CTD with its rapid temperature and conductivity responses has left oxygen 
sampling behind. Thus, despite the importance of dissolved oxygen distributions to 
our understanding of chemical processes and biological consumption in the ocean, 
dissolved oxygen is far less widely observed than temperature or salinity. At present, 
there are two principal methods for measurement of dissolved oxygen: (1) water bottle 
sampling followed by chemical "pickling" and endpoint titration using the Winkler 
method (Strickland and Parsons, 1968; Hichman, 1978); and (2) electronic sampling 
using a membrane covered polarographic "Clark" cell (Langdon, 1984). The primary 
problems with standard water-bottle sampling of dissolved oxygen are the potential 
for sample contamination by the ambient air when the subsampling is carried out on 
deck, poor sampling procedure (such as inadequate rinsing of the sample bottles), and 
the oxidization effects caused by sunlight on the sample. Thus, laboratory procedures 
call for the immediate fixing of the solution after it is drawn from the water bottle by 
the addition of manganese chloride and alkaline iodide. During the pickling stage of 
the Winkler method, the dissolved oxygen in the sample oxidizes Mn(II) to Mn(III) in 
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alkaline solution to form a precipitate MnO2. This is followed by oxidation of added I- 
by the Mn(III) in acidic solution. The resultant I2 is titrated with thiosulfate solution 
using starch as an endpoint indicator. After the sample is chemically "fixed", the 
precipitate that forms can be allowed to settle for 10-20 min. At this stage, samples 
may be stored in a dark environment for up to 12 h before they need to be titrated. 
Parsons et al. (1984) give the precision of their recommended spectrophotometric 
method as +0.064/N (mg/1), where N is the number of replicate subsamples processed. 
The Winkler method is accurate to 1% provided the chemical analysis methods are 
rigorously applied. Another measure is the percentage saturation, which is the ratio of 
dissolved oxygen in the water to the amount of oxygen the water could hold at that 
temperature, salinity and pressure. Saturation curves closely follow those for dissolved 
oxygen. 

In situ electronic dissolved oxygen sensors have been developed for use with pro- 
filing systems such as the CTD. All existing sensors use a version of the Clark cell 
which operates on the basis of electro-reduction of molecular oxygen at a cathode. 
When used in a polarographic mode, the electric current supplied by the cathode is 
proportional to the oxygen concentration in the surrounding fluid. To lessen the 
sensitivity of the device to turbulent fluctuations in the fluid, the electrode is covered 
with an electrolyte and membrane. Oxygen must diffuse down-gradient through the 
membrane into the electrolyte before it can be reduced at the surface of the cathode. 
There are a number of drawbacks with the present systems. First of all, the diffusion 
of oxygen through the boundary layer near the surface of the probe is slow, limiting 
the response time of the cell to several minutes. Also, the electrochemical reaction 
within the cell consumes oxygen and stirring may be required to maintain the correct 
external oxygen concentration. Changes in the structure of the cell--due to alterations 
in the diffusion characteristics of the membrane as a result of temperature, mech- 
anical stress and biofouling and to deterioration of the electrolyte and surfaces-- 
require that the cell be recalibrated every several hours. The need for frequent re- 
calibration limits the use of the polarographic technique for profiling and mooring 
applicatiolas. Langdon (1984) uses a pulse technique to reduce the calibration drift. 
This improves long-term stability but time constants are still the order of minutes. 

The YSI (Yellow Springs Instruments) and Beckman (Beckman part No. 147737) 
polaragraphic dissolved oxygen sensors (Brown and Morrison, 1978) sense the oxygen 
content by the current in an electrode membrane combined with a thermistor for 
membrane temperature correction. The current through this membrane depends on 
the dissolved oxygen in the water and the temperature of the membrane. Samples of 
both membrane current and temperature are averaged every 1.024s giving a resolution 
of 0.5 #A (microamps) with an accuracy of • #A over a range of 0-25 #A. These in 
situ sensors have yet to be critically evaluated with reference to well tested and 
approved methods. There are concerns with changes in the membrane over the period 
of operations and problems with calibration. Nevertheless, as measurement technol- 
ogy improves, an in situ oxygen sensor will be a high priority in that it saves con- 
siderable processing time and avoids errors possible with shipboard processing. 

Fluorescence quenching is a promising technique that may make it possible to 
couple the modern CTD with a rapid and stable dissolved oxygen sensor. Although 
the use of fluorescence quenching for oxygen determination has been known since the 
1930s (Kautsky, 1939) and widely used for in vivo measurement of the partial pressure 
of oxygen in blood (Peterson et al., 1984), the first application in oceanography was not 
reported until 1988 (Thomson et al., 1988). This fluorescence-based dissolved oxygen 
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sensor operates on the principle that the fluorescence intensity of an externally light- 
excited fluorophore will be attenuated or "quenched" in direct relation to the 
concentration of dissolved oxygen in an ambient fluid (Figure 1.11.2a). Optimum 
results are obtained using high-intensity blue-light source (wavelength of 450- 
500 nm) since this is the wavelength that most readily excites the known fluorophores. 
Results from a six-day time-series record of dissolved oxygen concentration from a 
moored instrument in Saanich Inlet in 1987 suggests that the technique can be used to 
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Figure 1.11.2. (a) Schematic of the first solid-state dissolved oxygen sensor. System uses blue-light from 
(1) to excite a fluorophore in the sensor tip (9). The concentration of dissolved oxygen in the ambient fluid 
sensed by (6) is proportional to the degree of quenching of blue light fluoresed by the chemical-dopped 
sensor. (b) Simultaneous profiles of oxygen in Saanich Inlet. YSI = YSI dissolved oxygen sensor. (From 

Thomson et al., 1988.) 
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build a rapid (<1 s) response profiling sensor (Figure 1.11.2b) with long-term 
stability and high (<0.1 ml/1) sensitivity. The fact that the oxygen spectra closely 
resemble the temperature spectra for the entire frequency band up to a period of 2 h 
suggests that the oxygen data are at least as stable as the thermistor on the Aanderaa 
RCM4 current meter that was used in the moored study. Since no blue-light source 
was available, the prototype device relied on a high-power white-light source and a car 
battery to drive the system. The present technological problem is to fabricate a blue- 
light source and a chemically-stable, fiber-optic, fluorescence-quenching probe 
capable of withstanding the rigors of shipboard operations and high hydrostatic 
pressures. Until now, lack of a commercial blue-light source with sufficient power 
(~1 mW) to produce a strong fluorescence response appears to be the main impedi- 
ment the development of the new dissolved oxygen sensor. The recent fabrication of 
blue-light light-emitting diodes (LED) and lasers will make it possible to rapidly 
sample dissolved oxygen as well as other dissolved gases such as carbon dioxide. 

1.11.1.3 Nutrients 

Nutrients such as nitrate, nitrite, phosphate and silicate are among the "old guard" of 
oceanic properties obtained on standard oceanographic cruises. One need only 
examine the early technical reports published by oceanographic institutions to appre- 
ciate the considerable effort that went into collection of these data on a routine basis. 
Oceanographers are again beginning to use these data on a routine basis to understand 
the distribution and evolution of water masses. However, there are a number of 
problems with nutrient collection that need to be heeded. To begin with, the data must 
be collected in duplicate (preferably triplicate) in small 10 mm vials and frozen 
immediately after the samples are drawn using a "quick freeze" device or alcohol bath. 
This is to prevent chemical and biological transformations of the sample while it is 
waiting to be processed. Careful rinsing of the nutrient vials is required as the samples 
are being drawn. Silicate must be collected using plastic rather than glass vials to 
pre~ent contamination by the glass silicate. Plastic caps must not be placed on too 
tightly and some space must be left in the vials for expansion of the fluid during 
freezing. Nutrient sample analysis is labour-intensive, time-consuming work. Al- 
though storage time can be extended to several weeks, we strong)y recommend that 
nutrients be processed as soon as possible after collection, preferably on board the 
research ship using an autoanalyzer. With individual parameter techniques this is less 
likely to be possible than with more recent automated methods which have been 
developed to handle most nutrients (Grasshof et al., 1983). These automated systems, 
which use colorimetric detection for the final measurement, need to be carefully 
standardized and maintained. Under these conditions, they are capable of providing 
high quality nutrient measurements on a rapid throughput basis. 

Profiles of nutrients and dissolved oxygen for the North Pacific are presented in 
Figure 1.11.3. As first reported by Redfield (1958), the concentrations of nitrate, 
phosphate, and oxygen are closely linked except near source or sink regions of the 
water column. A weaker relationship exists between these variables and silicate. 
Nitrite only occurs in significant amounts near the sea surface where it is associated 
with phytoplankton activity in the photic zone and in the detritus layer just below the 
seasonal depth of the mixed layer. Although the linear relationships between these 
parameters varies from region to region, the reason for the strong correlations is 
readily explained. Within the photic zone, phytoplankton fix nitrogen, carbon and 
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other materials using sunlight as an energy source and chlorophyll as a catalyst. In 
regions of high phytoplankton activity such as mid-latitudes in summer, the upper 
layers of the ocean are supersaturated in oxygen and depleted in nutrients. That is, 
there are sources and sinks for oxygen and nutrients. However, below the photic zone, 
bacterial decay and dissolution of detritus raining downward from the upper ocean 
leads to chemical transformations of oxidized products. This, in turn, leads to a 
reduction of oxygen compounds and corresponding one-to-one release of nitrate, 
phosphate and silicate. This linear relation would prevail throughout the ocean below 
the photic zone if weren't for other sources and sinks for these chemicals. For 
example, we now know that silicate enters the ocean through resuspension of bottom 
sediments and from hydrothermal fluids vents from mid-ocean ridge systems (Talley 
and Joyce, 1992). Chemosynthetic production by bacteria in hydrothermal plumes is 
also a source/sink region as the analog to photosynthetic processes in the upper ocean. 

It is generally thought that limitations in upper ocean nutrients, especially nitrates, 
combined with zooplankton predation (grazing) and turbulent mixing processes 
control primary (phytoplankton) productivity in the ocean. More recently, it has been 
proposed that other nutrients such as the aeolian supply of iron compounds might 
ultimately control productivity in areas such as the equatorial and subarctic Pacific 
and the Southern Ocean where nitrate concentrations are high year-round but spring 
and fall blooms do not occur (Chisholm and Morel, 1991). These high nutrient, low 
chlorophyll (HNLP) regions have become the focus of increasing numbers of multi- 
disciplinary studies. 

In a classic paper, Redfield (1958) suggested that organisms both respond to and 
modify their external environments. His premise was that the nitrate of the ocean and 
the oxygen of the atmosphere are determined by the biochemical cycle and not 
conditions imposed on the organisms through factors beyond their control. Support 
for his thesis was derived from the fact that the well-defined nitrogen, phosphorous, 
carbon, and oxygen compositions of plankton in the upper ocean were almost identical 
to the concentrations of these elements regenerated from chemical processes in the 
95% of the ocean that lies below the autotrophic zone. As pointed out by Redfield, the 
synthesis of organic material by phytoplankton leads to oceanic changes in con- 
centration of phosphorous, nitrogen, and carbon in the ratio 1:15:106. During 
heterotrophic oxidation and remineralization of this biogenic material (i.e. 
decomposition of these organisms), the observed ratios are 1:15:105. Thus, for every 
phosphorous atom that is used by phytoplankton during photosynthesis in the 
euphotic zone, exactly 15 nitrogen atoms and 106 carbon atoms are used up. Alter- 
natively, for every phosphorous atom that is liberated during decomposition in the 
deep ocean, exactly 15 nitrogen and 105 carbon atoms are liberated. The oxidation of 
these atoms during photosynthesis requires about 276 oxygen atoms while during 
decomposition 235 oxygen atoms are withdrawn from the water column for each atom 
of phosphorous that is added. If this process were simply one way, the primary 
nutrients would soon be completely depleted from the upper ocean. That is why life 
supporting replenishment of depleted nutrients to the upper ocean through upwelling 
and vertical diffusion of deeper nutrient rich waters is such an important process to 
the planet. [Bruland et al. (1991) give a modern version of the Redfield ratios based on 
phytoplankton collected under bloom conditions as: C:N:P:Fe:Zn:Cu,Mn,Ni,Cd = 
106:16:1:0.005:0.002:0.0004 (see also Martin and Knauer, 1973).] 

According to the above ratios, the formation of organic matter by phytoplankton in 
the surface autotrophic zone leads to the withdrawal of carbonate, nitrate, and phos- 
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phate from the water column. Oxygen is released as part of photosynthesis and the 
upper few meters of the ocean can be supersaturated in oxygen at highly productive 
times of the year. When the plants die and sink into the deeper ocean, decomposition 
by oxidation returns these compounds back to the seawater. Thus, increases in carb- 
onate, nitrate, and phosphate concentrations below the euphotic zone are accomp- 
anied by a corresponding decrease in oxygen levels. This process leads to a rapid 
increase in nitrate and phosphate and a corresponding rapid decrease in oxygen 
within the upper kilometer or so of the ocean (Figure 1.11.3). Nitrate and phosphate 
reach subsurface maximums at intermediate depths and then begin to decrease slowly 
with depth to the seafloor. Oxygen, on the other hand, falls to a mid-depth minimum 
(the oxygen minimum layer) before starting to increase slowly with depth toward the 
seafloor. In the upper zone, the balance of chemicals is altered considerably by 
biological activity while near the coast, the balance is altered by runoff which provides 
a different ratio of nutrients. However, below the surface layer, the changes occur in 
the manner suggested by the Redfield ratios (Redfield et al., 1963). Note that the 
concentration of silicate is almost like that of the other nutrients, except that it doesn't 
reach a maximum at mid depth and becomes more decoupled from the accompanying 
oxygen curve. This suggests a source function for silicate in the deep ocean. Indeed, 
there are two sources; resuspension and dissolution of siliceous material from rocks 
and other inorganic material on the seafloor and the injection of silicates into the 
ocean from hydrothermal venting along mid-ocean ridges and other magmatic source 
regions in the deep ocean. 

The fact that carbon and oxygen concentrations greatly exceed the levels required 
by plankton while those of phosphorous and nitrogen were identical to those observed 
on average in the ocean (carbon is at least 10 times that needed for photosynthesis), 
prompted Redfield to suggest that phosphate and nitrate are limiting factors to 
oceanic primary productivity. It is thought that nitrate (NO3) is the primary limiting 
factor although phosphorous limitation is still important in certain coastal areas. 
Airborne iron is also thought to be a limiting nutrient for primary productivity in the 
open ocean. Evidence for this is based on the year-round absence of phytoplankton 
blooms in the subarctic Pacific, equatorial Pacific and Southern Ocean despite the 
high near-surface concentrations of nitrate and phosphate. In these areas, autotrophic 
processes fail to exploit NO3 and PO4. The idea is that iron, or some other mineral, 
limits growth, which is not the case in areas served by aeolion transport from the land. 
Unfortunately, it not yet possible to sort out the effects of iron limitations from 
grazing by herbivorous zooplankton or from physical mixing in the surface layer 
which prevents stratification from confining the animals to a thin upper layer. A 
recent experiment conducted over an 8 km square area of the equatorial Pacific 
500 km south of the Gal~ipagos Islands showed that iron enrichment can dramatically 
increase surface productivity. Using sulfur hexafluoride to track the 480 kg of iron 
sulfate solution added to the ocean, scientists found that the rate of growth and total 
mass of phytoplankton doubled over a period of three days. However, the iron soon 
precipitated out of solution as ultra-fine particles and sank, causing a sharp decrease 
in productivity levels. The question of iron enrichment and ocean productivity 
remains unresolved. 
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Figure 1.I 1.4. The meridional distribution of silica (micromoles per liter) in the North Pacific along 
approximately 152~ (Hawaiian region to Kodiak Island, Alaska). Mid-depth maximum values in 

excess of 180 #mol/I are emphasized. (From Talley et al., 1991; TaUey and Joyce, 1992.) 

then freezing is a simple method for storing a wide range of samples. However, 
samples should be analyzed as soon as practicable". 

1.11.2 Light attenuation and scattering 

The light energy in a fluid is attenuated by the combined effects of absorption and 
scattering. In the ocean, absorption involves a conversion of light into other forms of 
energy such as heat; scattering involves the redirection of light by water molecules, 
dissolved solids and suspended material without the loss of total energy. Trans- 
missometers are optical instruments that measure the clarity of water by measuring 
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the fraction of light energy lost from a collimated light beam as it passes along a 
known pathlength (Figure 1.11.5). Attenuation results from the combined effects of 
absorption and shallow-angle Rayleigh (forward) scattering of the light beam by 
impurities and fine particles in the water. Water that is completely free of impurities 
is optically pure. Nephelometers (or turbidity meters) measure scattered light and 
respond primarily to the first-order effects of particle concentrations and size. 
Depending on manufacturer, commercially available nephelometers examine scatter- 
ed light in the range from 90 ~ to 165 ~ to the axis of the light beam. Most instruments 
use infrared light with a wavelength of 660 nm. Because light at this wavelength is 
rapidly absorbed in water (63% attenuation every 5 cm), there is little contamination 
of the source beam due to sunlight except within the top meter or so of the water 
column. 

The intensity I(r) of a light beam of wavelength A traveling a distance r through a 
fluid suspension attenuates as 

I(r)  = Io exp ( -cr )  (1.11.1) 

where Io is the initial intensity at r - 0 and c = c(A) is the rate of attenuation per unit 
distance. Attenuation of the light source occurs through removal or redirection of light 
beam energy by scattering and absorption. In the ocean, visible long-wave radiation 
(red) is absorbed more than visible short-wave radiation (blue and green) and what 
energy is left at long wavelengths undergoes less scattering than at short wavelengths. 
As a consequence, the ocean appears blue to blue-green when viewed from above. The 
exact color response depends on the scattering and absorption characteristics of the 
materials in the water including the dissolved versus the suspended phase--factors 
that are used to advantage in remote sensing techniques. For a fixed monochromatic 
light source, the clarity of the water, measured relative to distilled uncontaminated 
water, provides a quantitative estimate of the mass or volume concentration of sus- 
pended particles. Such material can originate from a variety of sources including 
terrigenuus sediment carried into the coastal ocean by runoff, from current-induced 
resuspension of material in the benthic layer, or from detectable concentrations of 
plankton. 

The "Secchi disk" is one of the simplest and earliest methods for measuring light 
attenuation in the upper layer of the ocean. A typical Secchi disk consists of a flat, 30- 
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Figure 1.I 1.5. Exploded view of a Sea-Tech transmissometer. Red light of wavelength 690 nm passes 
from the light-emitting diode (LED) to the sensor over a fixed path length of 0.25 m. 
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cm diameter white plate that is lowered on a marked line (suspended from the disk 
center) over the side of the ship. The depth at which the disk can no longer be seen 
from the ship is a measure of the amount of surface light that reaches a given depth 
and can be used to obtain a single integrated estimate of the extinction coefficient, 
c(A). The disk is still in use today. For example, Dodson (1990) used Secchi disk data 
from a series of lakes in Europe and the U.S.A. that suggest a direct relationship 
between the depth of day-night (diel) migration of zooplankton and the amount of 
light penetrating the epihelion. In this case, the zooplankton minimize mortality from 
visually feeding fish and maximize grazing rate. Despite its simplicity, there are a 
number of problems with this technique, notwithstanding the fact that it fails to give a 
measure of the water clarity as a function of depth and is limited to near-surface 
waters. In addition, the visibility of the disk will depend on the amount of light at the 
ocean surface (and type of light through cloud cover), on the roughness of the ocean 
surface, and the eyesight of the observer. Today, oceanographers rely on trans- 
missometers and nephelometers to determine the clarity of the water as a function of 
depth. 

A typical transmissometer consists of a constant intensity, single frequency light 
source and receiving lens separated by a fixed pathlength, ro. The attenuation 
coefficient in units of m -1 is then found from the relation 

c - - ( 1 / ro ) In  (I/Io) (1.11.2) 

in which ro is measured in meters, and I/Io is the ratio of the light intensity at the 
receiver versus that transmitted by the red (660 nm) LED. This choice of light 
wavelength is useful because it eliminates attenuation from dissolved organic sub- 
stances consisting mainly of humic acids or "yellow matter" (also called "gelbstoff"; 
Jerlov, 1976). The Sea Tech transmissometer (Bal:tz et al., 1978) has an accuracy of 
+0.5% and a small (<1.03 ~ or 0.018 radians) receiver acceptance angle that minimizes 
the complication of the collector receiving specious forward-scattering light. To obtain 
absolute values, the source and lens must be calibrated in distilled water and air since 
scatter can effect the results. As an example, a 0.25 m pathlength transmissometer 
which has a calibration value of Io = 94.6% in clean water and reading of 89.1% in the 
ocean corresponds to a light attenuation coefficient 

c - - 4  In (I/Io) - - 4  In (0.891/0.946) = 0.240 m -x (1.11.3) 

Values ofc in the ocean range from around 0.15 m -1 for relatively clear offshore water 
for concentrations of particles as low as 100 #g/l to around 21 m -~ for turbid coastal 
water with particle concentrations of 140 mg/1 (Sea Tech user's manual). In studies of 
hydrothermal venting, measurement of water clarity is often one of the best methods 
to determine the location and intensity of the plume (Baker and Massoth, 1987; 
Thomson et al., 1992; Figure 1.11.6). 

Problems with the transmissometer technique are: (1) drift in the intensity of the 
light source with time; (2) clouding of the lens by organic and inorganic material 
which affect the in situ calibration of the instrument; and (3) scattering, rather than 
absorption, of the light. If we ignore the influence of dissolved substances, the 
attenuation coefficient, c, depends on the concentration of the suspended material but 
also on the size, shape, and index of refraction of the material (Baker and Lavelle, 
1984). Thus, a linear relationship between c and particle concentration C such that 
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Figure 1.11.6. Cross-sections of temperature anomaly (~ and light attenuation coefficient (m -1) for the 
"megaplume"observed near the hydrothermal main site on the Cleft Segment of Juan de Fuca Ridge in 
the northeast Pacific in September 1986. Temperature anomaly gives temperature over the plume depth 
relative to the observed background temperature. Dotted line shows ao surfaces and solid line the saw- 

tooth track of the towed CTD path. (From Baker et al., 1989.) 
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c - c~C § ao (1.11.4) 

only occurs when the effects of size, shape and index of refraction are negligible or 
mutually compensating. After concentration, particle size is the next most important 
variable effecting clarity. Accurate estimates of concentration therefore require 
calibration in terms of the distribution of particle sizes and shapes in suspension as for 
example in Baker and Lavelle (1984). Laboratory results demonstrate that calibrations 
of beam transmissometer data in terms of particle mass or volume concentration are 
acutely sensitive to the size distribution of the particle population under study. There 
is also a trend of decreasing calibration slopes from environments where large 
particles are rare (deep ocean) to those where they are common (shallow estuaries and 
coastal waters). Theoretical attenuation curves agree more with observation when the 
natural particles are treated as disks rather than as spheres as in Mie scattering theory. 
The need for field calibration is stressed. 

The results of Baker and Lavelle (1984) can be summarized as follows: 
(1) calibration of beam transmissometers is acutely sensitive to the size distribution 
of the particle population under study; (2) theoretical calculations based on Mie 
scattering theory and size distributions measured by a Coulter counter-agree when 
attenuation for glass spheres is observed but underestimate the attenuation of natural 
particles when these particles are assigned an effective optical diameter equal to their 
equivalent spherical diameter deduced from particle volume measurements; 
(3) treating particles as disks expands their effective optical diameter and increases 
the theoretical attenuation slope close to the observed values; (4) there is a need to 
collect samples along with the transmissometer measurements, especially where the 
particle environment is nonhomogeneous. 

Transmissometers are best used for measuring the optical clarity of relatively clear 
water whereas nephelometers are most suitable for measuring suspended particles in 
highly turbid waters. In murky waters, nephelometers have superior linearity over 
transmissometers while transmissometers are more sensitive at low concentrations. 
"Turbidity" or cloudiness of the water is a relative, not an" absolute term. It is an 
apparent optical property depending on characteristics of the scattering particles, 
external lighting conditions and the instrument used. Turbidity is measured in 
nephelometer units (NTUs) referenced to a turbidity standard or in Formazin 
Turbidity Units (FTUs) derived from diluted concentrations of 4000-FTU formazin, a 
murky white suspension that can be purchased commercially. Since turbidity is a 
relative measure, manufacturers recommend that calibration involve the use of 
suspended matter from the waters to be monitored. This is not an easy task if one is 
working in a deep or highly variable regime. 

1.11.3 Oxygen isotope" 5180 

The ratio of oxygen isotope 18 to oxygen isotope 16 in water is fractionated by 
differences in weight. The lighter element 160 is more easily evaporated than ISO and 
is therefore a measure of temperature; the higher the temperature the greater the 
H2180/H2160 ratio. In contrast to the variability in the surface ocean, average H2180/ 
H2160 ratios for the deep ocean (>500 m depth) vary by less than 1%. This ratio (in 
percent) is expressed in conventional delta "~5" notation as 
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~5180(%) -- (Rstd/Rsample- 1) • 1010 

where R = H2180/H2160 is the ratio of the two main isotopes of oxygen and the 
subscript "std" refers to Standard Mean Ocean Water (SMOW). The low variability in 
~5180 values in waters in the deep sea has led to widespread use of oxygen isotopes as a 
paleothermometric indicator. These methods assume relatively little variation (about 
1%) in the ~5180 values of deep-ocean water over geological time. The ~5180 values of 
carbonate, silica, and phosphate precipitated by both living and fossil marine organ- 
isms, such as foramininferans, radiolarians, coccolithophorids, diatoms, and barnacles, 
have been used to estimate temperatures of the water in which the organism lived 
based on temperature-dependent equilibria between the oxygen in the water and the 
biomineralized phase of interest. The ~5180 values vary in space and time in different 
regions of the ocean. For example, shallow continental shelves are influenced by 
freshwater input, particularly at high latitudes. Thus, oxygen removed from seawater 
by organisms should reflect oceanic conditions at the time. Salinity and 180 content are 
related in most ocean waters with similar processes influencing both in tandem. 

According to Kipphut (1990), the H2180/H2160 ratio in seawater in the Gulf of 
Alaska shows only slight variation except near those coastal margins where there is 
significant input of freshwater from melting of large glaciers (6180 ~ - 2 3 % )  and 
runoff from coastal precipitation (6180 ~ -10%). Precipitation is generally depleted 
in the heavier isotopes of oxygen because of isotopic fractionation processes which 
occur during evaporation and condensation. Since the fractionation processes are 
temperature dependent, precipitation at higher latitudes and elevations shows pro- 
gressively lower H2180/H2160 ratios. The ratio is a conservative property of water and 
when combined with salinity may be useful in determining distinct components of 
water masses. The isotope data south of Alaska suggest that the coastal waters in 
southwestern Alaska are derived from a combination of glacier melt and runoff from 
as far east as south-central Alaska. If we add the freshwater added by runoff from the 
large rivers of northern British Columbia, the Alaska Coastal Current (Royer, 1981; 
Schun~acher and Reed, 1986) is continuous feature flowing more than 1500 km from 
the southern Alaska Panhandle to Unimak Pass at the beginning of the Aleutian 
Island chain. 

1.11.4 Helium-3; helium/heat ratio 

Helium-3 (3He) is an inert and stable isotope of helium whose residence time of about 
4000 years in the ocean makes it a useful tracer for oceanic mixing times and deepsea 
circulation. There are two main sources in the ocean. In the upper mixed layer and 
thermocline, 3He is produced by the/3-decay of anthropogenic tritium; in the deep 
ocean, 3He originates with mantle degassing of primordial helium from mid-ocean 
ridge hydrothermal vents. Anderson (1993) also argues that 3He and neon from 
hotspot magmas and gases may reflect an extraterrestrial origin; specifically, 
subduction of ancient pelagic sediments rich in solar 3He and neon originate with 
interplanetary dust particles now being recycled at oceanic hotspots. [For counter- 
arguments see Hiyagon (1994) and Craig (1994)]. The distinct isotopic ratio of mantle 
helium (3He/4He = 10 -5) versus a ratio of 10 -6 for atmospheric helium makes 
3He/4He a useful tracer in the ocean. In a classic paper, Lupton and Craig (1981) 
showed that the 3He/4He ratio in the 2500 m deep core of the hydrothermal plume 
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emanating from the East Pacific Rise at 15~ in the Pacific Ocean was 50 higher than 
the ratio of atmospheric helium. The helium plume could be traced more than 
2000 km westward from the venting region on the crest of the mid-ocean ridge (Figure 
1.11.7). To quote the authors, "In magnitude, scale, and striking asymmetry, this 
plume is one of the most remarkable features of the deep ocean, resembling a volcanic 
cloud injected into a steady east wind". Helium-3 is now used extensively as tracer for 
hydrothermal plumes in active spreading regions such as the Juan de Fuca Ridge in 
the northeast Pacific and the East Pacific Rise in the South Pacific. 

Data collected during GEOSECS indicates that the deep Pacific is the oceanic 
region most enriched in 3He with a mean ratio concentration ~53He value of 17% 
compared with 10% in the Indian Ocean, 7% in the Southern Ocean and 2% in the 
Atlantic (Jamous et al., 1992). The core of the plume at the East Pacific Rise has a 
value of 50%. [Here, 83He(%) = (R/Ra - 1 ) x  100, where R = 3He/2He is the isotopic 
ratio of the sample and Ra is the atmospheric ratio.] The differences in concentration 
relate directly to the differences in hydrothermal input and inversely to the degree of 
deep-water ventilation. For example, there is a considerably greater hydrothermal 
activity in the Pacific than in the Atlantic while the Atlantic deep water is highly 
ventilated compared with the Pacific. Similarly, the values of 83He (~ 28) at the 
bottom of the Black Sea reflect the presence of a strong source at the seafloor. In 
contrast, the strong correlation between dissolved oxygen concentration and 3He in 
the Southern Ocean (Figure 1.11.8) indicates that the distributions of these tracers in 
this region of the world ocean are mainly determined by ventilation processes. 

Early vent-fluid samples taken from hydrothermal systems on the Galapagos Rift 
and at 21~ on the East Pacific Rise were found to have nearly equal ratios of 3He to 
heat despite the considerable geographical separation of the sites and widely different 
fluid exit temperatures (,-~20 and 350~ respectively). Here, "heat" is the excess 

Figure 1.11.7. Cross-section of b(~He) over the East Pacific Rise at 15~ The level of neutral plume 
bouyancy, as determined by the core depth of the tHe plume, is about 400 m above the ridge crest. The 
ratio is defined as (5(~He) = (R/R:j.I:~1 - 1) x lO0 where R = ~He/4He and R~17:~1 = 1.40x lO -6. (From 

Lupton and Craig, 1981.) 
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Figure 1.11.8. Correlation between dissolved oxygen concentration 02 and 3He in the Southern Ocean 
indicates that the distributions of these tracers in the region of the world ocean are mainly determined by 
ventilation processes. Combination of GEOSECS and INDIGO-3 data. (From Jamous et al., 1992.) 

amount of heat (in calories or joules) added to the ambient water by geothermal 
processes. By combining independent estimates of the mantle flux of 3He within the 
ocean with the observed ratio 3He/Heat ,~ 0.5 x 10 -12 cm 3 STP ca1-1, Jenkins et al. 

(1978) calculated a global oceanic hydrothermal heat flux of 4.9 x 1019 cal/year. An 
examination of the 3He/Heat ratios in the 20-km wide megaplume observed in August 
1986 on Juan de Fuca Ridge (Lupton et al., 1989) has shown that the ratios can vary by 
as much as an order of magnitude and that heat fluxes based on 3He measurements 
must be taken with caution. Specifically, the ratio 3He/Heat was found to vary with 
height within the megaplume formed during the hydrothermal event. The megaplume 
had lower helium values and five times the temperature anomaly as the near-bottom 
chronic venting regime. Since helium is extracted from the magma by the circulating 
fluids in the hydrothermal system, the relatively low ratios of 3He/Heat in the 
megaplume presumably resulted from relatively high water-to-rock ratios and the 
youth of the hydrothermal fluid prior to its injection into the overlying ocean. Lupton 
et al. (1989) suggest that a value o f ~  2 x 10 -12 cm 3 STP He cal -l may be a reasonable 
estimate for the average 3He/Heat signature of fluids vented into the oceans by mid- 
ocean ridge hydrothermal systems. 

1.12 T R A N S I E N T  C H E M I C A L  T R A C E R S  

"Transient tracers" are anthropogenic compounds that are injected into the ocean 
over spatially limited regions within well-defined periods of time. The time "window" 
makes these compounds especially well suited to studies of upper-ocean mixing and 
deep-sea ventilation. Transient tracers are commonly used to constrain solutions of 
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global "box" models used to investigate climate-scale carbon dioxide fluxes within 
coupled atmosphere-ocean systems (Broecker and Peng, 1982; Sarmiento et al., 1988), 
and in generalized inverse models incorporating both data and ocean dynamics to 
determine oceanic flow structure (see Bennett, 1992). The timed release into the ocean 
may take place over a few hours, as in the case of rhodamine dye, or last longer than a 
century, as in the case of chlorofluorocarbons (CFCs). Injection of certain tracers, 
such as radiocarbon (~4C) greatly augments the natural distributions of these 
chemicals while for others, such as CFCs and tritium (3H), the tracer is superimposed 
on an almost nonexistent background concentration. Because of the slow advection 
and mixing processes in the ocean, as well as the extensive research needed to measure 
the tracer distributions, most tracers are used in the study of seasonal to decadal scale 
oceanic variability. For all transient tracers, studies are limited by imperfect 
knowledge of the surface boundary conditions during water-mass formation. This is 
especially true of tracers entering from the atmosphere. Tritium and radiocarbon are 
radioactive isotopes whose observed concentrations must first be corrected for natural 
radioactive decay. Both tracers have widespread use in descriptive studies and large- 
scale numerical modeling of ventilation of the deep ocean and the transformation of 
water masses over periods of decades. Our main purpose in this section is to provide a 
brief outline of the types of studies possible with transient tracers. Only results for the 
main tracers will be presented; secondary tracers such as krypton-85 and argon-39 are 
not discussed. 

1.12.1 Tritium 

During the late 1950s and early 1960s, large amounts of bomb-produced radiocarbon 
(14C), strontium (9~ and tritium (3H) were released into the stratosphere during 
above-ground testing of thermonuclear weapons (Figure 1.12.1a, b). Of these, "bomb" 
tritium (the heaviest isotope of hydrogen) has an extensive database and is measurable 
to high precision and sensitivity. Tritium is incorporated directly in water molecules 
as HTO so that it is a true water-mass trace~. Most of the ~ritiu.mwas.produced by tests 
conducted in the northern hemisphere and was eventually deposited onto the earth's 
surface north of 15~ (Weiss and Roether, 1980; Broecker et al., 1986). Deposition into 
the oceans is through vapor diffusion and rainfall at a ratio of roughly 2:1 according to 
observational data. A study by Lipps and Hemler (1992) suggests that the ratio varies 
according to the type of rainfall. The large fronts across the Pacific and Atlantic 
oceans at subtropical latitudes impede lateral mixing and the southward transport of 
tritium. As a result, tritium with a half-life of 12.43 years serves as a useful tracer for 
water motions on time-scales of decades. It is most useful when combined with 
measurements of its stable, inert daughter product 3He. This combination helps 
determine the age of tritium entering the ocean and provides additional information 
on the distribution of tritium in the atmosphere before it entered the ocean (Jenkins, 
1988). Most large-scale studies are based on the extensive tritium data collected in the 
North Pacific during the Geochemical Ocean Sections Study (GEOSECS: 1972-1974) 
and Long Lines (1983-1985). Roughly 0.3 litres of seawater are required for the 
measurement of tritium by beta-decay counting. 

Tritium in natural waters is expressed in "tritium units" (TU), which is the 
abundance ratio 3H/1H x 10 TM. The ratio abundance corresponds to 7.09 
disintegrations per min per kg of water. To remove the effect of normal radioactive 
decay from a data series, the tritium concentrations are corrected to a common 
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Figure 1.12.1. Time-series of bomb-produced elements released into the stratosphere during above-ground 
testing of thermonuclear weapons during the late 1950s and early 1960s: (a). radiocarbon (4C) and (b). 
strontium (9~ from measurements of atmospheric carbon dioxide and tritium (3H) based on rain at 

Valencia Ireland. (Adapted from Quay et al., 1983; Broecker and Peng, 1982.) 

reference of January 1, 1981. Thus, TU81N is the ratio of 3H/1H a sample would have 
as of 1981/01/01. The measurement error for "decay-corrected". data is 0.05TU or 
3.5%, whichever is greater (Van Scoy et al., 1991). Water having values less than 
0.2TU81 are considered to reflect cosmogenic background levels or arise from dilution 
by mixing of bomb tritium. The fact that decay-corrected tritium is a conservative 
quantity that was added to a selected area of the world ocean in a relatively short 
period of time (Figure 1.12.2) makes it attractive as an oceanic tracer. Changes in the 
spatial distribution of tritium with time provide a measure of horizontal advection 
while depth penetration on isopycnals that do not outcrop to the atmosphere are 
indicative of cross-isopycnal (diapycnal) mixing. Fine (1985) uses upper ocean tritium 
data from the GEOSECS program to show that there is a net transport of 5 x 106 m3/s 
in the upper 300 m from the Pacific to the Indian Ocean through the Indonesian 
Archipelago. This contrasts with values of 1.7 x 106 m3/s obtained using hydrographic 
data (Wyrtki, 1961) and 5-14 x 106 m3/s from salt and mass balances (Godfrey and 
Golding, 1981; Piola and Gordon, 1984; Gordon, 1986). Gargett et al. (1986) have 
examined the nine-year record of tritium from Ocean Station P (50~ 145~ in the 
northeast Pacific. Results suggest that the observed vertical distribution of tritium in 
this region is determined mainly through advection along isopycnals rather than by 
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Figure 1.12.2. Decay-corrected tritium (TU81) water column inventories over the world oceans based on results obtained as part of the GEOSECS program and 
NAGS expedition. (Adapted from Broecker et al., 1986.) 
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isopycnal or diapycnal diffusion in the density range of maximum vertical tritium 
gradient. Tri t ium data studied by Van Scoy et al. (1991) show evidence for wind-driven 
circulation to the depth of the dissolved oxygen minimum near 1000 m depth (at - 
27.40) in subpolar regions of the North Pacific. The authors conclude that, after two 
decades of mixing, advection along isopycnal surfaces appears to be the dominant 
process influencing the distribution of tritium in the North Pacific and that cross- 
isopycnal mixing in the subpolar region is important for ventilating the nonout- 
cropping isopycnals. According to Van Scoy et al. (1991), tritium has penetrated on 
average 100 m deeper into the ocean during the 10 years between the GEOSECS and 
Long Lines surveys. Depletions of tritium in the upper ocean are seen in the tropics 
and at high southern latitudes. Moreover, the above-background tritium levels 
observed on nonoutcropping isopycnals surfaces in the North Pacific indicate that 
ventilation is still taking place despite the absence of deep convective mixing in this 
region. In the Atlantic Ocean, deep convection is the dominant mechanism for the 
invasion of surface waters into the deep ocean (Figure 1.12.3). 

Tritium data are used to constrain circulation models for the world ocean. For 
example, tritium records combined with a three-box model of the Japan Seama 
comparatively isolated oceanic region with a mean depth of 1350 m--have yielded 
overturn times for the deep water of 100 years and overall residence times of 1000 
years (Watanabe et al., 1991). Similar estimates for this region based on the same box- 
model constrained by 226Ra and ~4C data yielded a turnover time of 300-500 years for 
deep water and 600-1300 years for the residence time (Harada and Tsunogai, 1986). 
Applications to larger oceanic basins are generally less successful. Memery and 
Wunsch (1990) found that the tritium data did not strongly constrain their circulation 
model for the North Atlantic and that large errors (~20%) in the input of tritium at 
the surface can be accommodated by relatively minor changes in the model circ- 
ulation. According to Wunsch (1988), "Any uncertainty in the transient tracer bound- 
ary conditions and sparse interior ocean temporal coverage greatly weakens the ability 
of such tracers to constrain the ocean circulation". Although the authors still believe 
in the ugefulness of tritium records, they suggest that chlorofluorocarbons will 
improve modeling capability since the atmospheric concentration of these compounds 
remains relatively high despite the 1988 Montreal Accord and are better known than 
for tritium. 

Jenkins (1988) describes the use of the tritium-3He age, which takes advantage of 
the radioactive clock of 3He and the long time-scale of tritium to measure the elapsed 
time since the Helium gas was in equilibrium with the atmosphere. Time scales for 
which this combined tracer is useful are 0.1-10 years. 

1.12.2 Radiocarbon 

Carbon-14 (14C) dating requires prior knowledge of long-term variations in the 
14C/12C ratio in the atmosphere. Because of the difficulties in separating radiocarbon 
produced from thermonuclear devices and cosmic rays, bomb-generated radiocarbon 
is a less useful tracer of upper ocean processes than is tritium. The problem of using 
radiocarbon data collected prior to 1958 together with tritium measurements to 
establish the prenuclear levels of radiocarbon is discussed by Broecker and Peng 
(1982). Once the prenuclear surface-water cosmic radiocarbon concentration is known 
for each locality, water column inventories for bomb-radiocarbon can be obtained 
from the depth profiles of 14C/C,3 H, and ~ CO2 concentration obtained as part of 
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the GEOSECS, NORPAX and TTO programs (Broecker et al., 1985). Bomb-produced 
radiocarbon is delivered through a nearly irreversible process from the atmosphere to 
the ocean so that it is possible to estimate the amount of this isotope that has entered 
any given region of the ocean. As a result of this production, levels of 14CO2 increased 
by about a factor of two in the northern hemisphere during the late 1950s and early 
1960s. Measurement of radiocarbon by beta decay requires 200-250 litres of seawater 
to give the desired accuracy of 3-4 ppt. Age resolution is 25-30 years for abyssal 
oceanic conditions for which the introduction of bomb-radiocarbon effects remain 
negligible. Radiocarbon has a half-life of 5680 years and decays at a fixed rate of 1% 
every 83 years. A rapid onboard technique for measuring radiocarbon using an 
accelerator mass spectrometer is described by Bard et al. (1988). This technique 
decreases the sample size by 2000 compared with that using the standard 3-counting 
method. 

By convention, radiocarbon assays are expressed as A14C, which is the deviation in 
parts per thousand (ppt) of the 14C/12C ratio from that of a hypothetical wood 
standard with ~513C = 13C/12C = - 2 5  ppt and corrected from the actual (513C values 
(around 0 ppt for seawater to exactly -25  ppt to compare with the wood standard). 
The standard is a way to compare the observed ratio of carbon isotopes to the 
atmospheric value prior to the industrial revolution of about 1850. The quantity of 14C 
in a sample of seawater is proportional to the actual uncorrected 14C/12C ratio (1 + 
0.001~514C). More precisely 

where 

A14C -- ~514C - 2(~513 q- 25)(1 + ~514C/1000) (1.12.1) 

(514C = 1000[(14C/C) sample 

-- (14C/C) standard]/(14C/C) standard] 
(1.12.2) 

Pre-bomb A14C values from corals collected in the early 1950s average around -50  
(-t-5) ppt (Druffel, 1989). Thus, any A14C value above -50  ppt will indicate the 
presence of anthropogenic radiocarbon, mainly produced by the atmospheric nuclear 
testing in the early 1960s. The determination of inventories for I~omb-produced 
radiocarbon in the ocean is much more complex than for bomb tritium. The reason is 
that the amount of natural tritium in the sea is negligible compared with the amount 
of bomb-produced tritium. In the case of radiocarbon, the delivery of isotopes to the 
ocean requires a better knowledge of wind speeds over the ocean and of the wind speed 
dependence of the CO2 exchange rate. 

The concentration of 14C in the ocean is influenced by several processes. For 
example, bottom water formation in the Weddell Sea and the North Atlantic provides 
a direct input of surface water  14C (Figure 1.12.4). Additional input of 14C to the deep 
sea can occur by transport along isopycnals, by vertical mixing in the main oceanic 
thermocline, by lateral mixing of water masses and by upwelling in coastal and 
equatorial regions. Addition of CO2 and 14C comes from the dissolution of carbonate 
skeletons and the oxidation of organic materials from sinking particles. Stuiver et al. 
(1982) use radiocarbon data from GEOSECS to estimate abyssal (> 1500 m) waters 
replacement times for the Pacific, Atlantic and Indian Oceans of 510, 275, and 250 
years, respectively. The deep waters of the entire world ocean are replaced on average 
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every 500 years. Ostlund and Rooth (1990) found a relative decrease in the difference 
in AI4c between the surface and the northerly abyssal layers of the North Atlantic of 
25-30%. If this were due to vertical diffusivity a high value of 10 cmZ/s would be 
required based on a scale depth of 1 km and 10 years between surveys. This is a factor 
of 10 too large so that high latitude injection processes must be responsible for the 
observed evolution below 1000 m depth. Measurements of A~4C from seawater and 
organisms from the Pacific coast of Baja California (Druffel and Williams, 1991) 
revealed the effects of coastal upwelling and bottom-feeding habits. Dilution of 
nearshore waters by upwelling accounts for reduced radioactive carbon levels observed 
near the coast while feeding on sediment-derived carbon explains the reduced levels of 
14C in sampled organisms relative to dissolved inorganic carbon in the water column. 
Broecker et al. (1991) have addressed the concerns about the accuracy of ventilation 
flux estimates for the deep Atlantic due temporal changes in the 14C/C ratio for 
atmospheric CO2. Despite the fact that A14C values have declined from about 10 to 
-20  ppt over the past 300 years due to changes in the solar wind and the addition of 
A14C-free CO2 to the atmosphere from fossil fuel burning, temporal effects have been 
considerably buffered in the ocean and errors in radiocarbon ages are too low by only 
10-15%. The reason is that the northern and southern source waters for the Atlantic 
deep water have A14C ratios, and hence relative time variabilities, considerably lower 
than the atmospheric ratio. 

1.12.3 Chlorofluorocarbons 

Chlorofluorocarbons (CFCs) are a group of volatile anthropogenic compounds that 
until the 1988 Montreal Protocol found increasingly widespread use in aerosol 
propellants, plastic foam blowing agents, refrigerants and solvents. Also known as 
chlorofluoromethanes (CFMs) and "Freons" (a Dupont tradename), most of these 
chemicals eventually find their way into the atmosphere where they play a primary 
role in the destruction of stratospheric ozone. The two primary compounds CFC-12 or 
F-12 (CF2C12) and CFC-11 or F-11 (CFC13) have respective lifetimes in the 
troposphere of 111 and 74 years. Although more than 90% of production and release 
of F-11 and F-12 takes place in the northern hemisphere, the meridional distributions 
of these compounds in the global troposphere are relatively uniform due to the high 
stability of the compounds and the rapid mixing that occurs in the lower atmosphere. 
The source function at the ocean surface differs by only about 7% from the northern 
hemisphere to the southern hemisphere (Bullister, 1989). During the period 1930- 
1975 the ratio F-11/F-12 in the atmosphere and ocean surface increased with 
increasing uses of these chemicals (Figure 1.12.5). The regulation of CFC use in spray 
cans in the U.S.A. during the late 1970s decreased the rate of CFC-11 increase so that 
the ratio F-11/F-12 ratio in the atmosphere has remained nearly constant. As a 
consequence, measurements of the ratio provide information on when a particular 
water mass was last in contact with the atmosphere. In shelf waters the CFCs 
concentration is determined by rates of mixed layer entrainment, gas exchange and 
mixing with source water. At a removal rate of about 1% per year from the atmosphere 
by stratospheric photolysis, CFCs will serve as ocean tracers well into the next 
century. 

Since they are chemically inert in seawater, chlorofluorocarbons are used to 
examine gas exchange between the atmosphere and ocean, ocean ventilation and 
mixing on decadal scales. The limit of detection of F-11 and F-12 in seawater volumes 
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Figure 1.12.5. CFC-12 and CFC-11 concentrations in the upper ocean for T -- - I ~  and S - 34.3 psu 
as function of time. (From Trumbore et al., 1991.) 

as small as 30 ml is better than 5 • 10 -15 mole/kg seawater (Bullister and Weiss, 
1988), or roughly three orders of magnitude higher than near-surface concentrations 
in the ocean. Modern techniques allow for processing of CFCs at sea with processing 
times of the order of hours. Gammon et al. (1982) examined the vertical distribution of 
CFCs at two offshore sites in the northeast Pacific. Using a one-dimensional vertical 
diffusion/advection model driven by an exponential surface source term, they obtain- 
ed a characteristic depth penetration of 120-140 m. For the Gulf of Alaska station at 
50~ 140~ vertical profiles ofF-11 and F-12 gave consistent vertical diffusivities of 
order 1 cmZ/s and an upwelling velocity of 12-14 m/year:Woods (f985~ used CFC~ to 
estimate the transit time and mixing of Labrador seawater from its northern source 
region to the equator along the western Atlantic Ocean boundary. In a related study, 
Wallace and Lazier (1988) used CFCs and a simple convection model to examine 
recently renewed Labrador seawater formed by deep convection to depths greater than 
1500 m following a severe winter in the North Atlantic. Their observed CFC levels of 
60% saturation with respect to contemporary atmospheric concentrations suggest that 
deep convection took place too rapidly for air-sea gas exchange to bring CFC levels to 
equilibrium. Trumbore et al. (1991) have used CFCs collected in 1984 to examine 
recent deep water ventilation and bottom water formation near the continental shelf in 
the Ross Sea in the Antarctic Ocean. Using CFC data combined with conventional 
(temperature, salinity, dissolved oxygen and nutrient) tracer data in a time-dependent 
convection model they estimate shelf-water resident times of about three years for the 
Ross Sea. At the other end of the globe, Schlosser et al. (1991) use hydrographic and 
CFC data to suggest that formation of Greenland Sea Deep Water decreased in the 
1980s. The dissolved F-12 concentration in Figure 1.12.6 illustrates several aspects of 
the circulation in the North Atlantic. In particular, we note the core of the Labrador 
Seawater mentioned earlier in this section, the presence of a lense of Mediterranean 
outflow water ("Meddy") at 22~ and the core of high CFC over the equator which is 



2 

f ~  

f~ 4 

Data  Acquisi t ion and Recording 155 

1 2 0  4 0  6 0  80  100  120  

I 1 . 0 - ~ ~ ' - ~ "  

0.01 

0.01 

6 0 ~  5 0  ~ 4 0  ~ 3 0  ~ 20  ~ 10 ~ 0 ~ 

Figure 1.12.6. Dissolved CFC-I2 concentrations (x]O -12 mole/kg) along a North Atlantic section. 
(From BuUister, 1989.) 

thought to be a longitudinal extension of flow from the western boundary near Brazil 
(Bullister, 1989). 

1.12.4 Radon-222 

Radon (222Rn) is a chemically inert gas with a radioactive half-life of 3.825 days. It 
occurs naturally as a radionuclide of the 238U series and is injected into the atmo- 
sphere by volcanic eruptions. The gas has proven particularly useful at time-scales of a 
few days to weeks for examining the rate of gas transfer between the atmosphere and 
the ocean surface (Peng et al., 1979), in studies of water column mixing rates 
(Sarmiento et al., 1976), and for estimating the heat and chemical fluxes from hydro- 
thermal venting at mid-ocean ridges (Rosenberg et al., 1988; Kadko et al., 1990). 

The new application of 222Rn studies to hydrothermal venting regions has been 
especially successful (Rosenberg et al., 1988). In this case, it is assumed that there is a 
constant flux of radon into the effluent plume that typically rises several hundred 
meters above the venting region at depths of 2-3 km on the ridge axis. Typical venting 
regions have scales of 100 m and are spaced at several kilometers along the ridge axis. 
Waters exiting from black smokers can be up to 400~ At steady state, the amount of 
radon lost to radioactive decay at some point in the laterally spreading nonbuoyant 
plume is balanced by a supply of radon from the venting region. To obtain the total 
heat (or chemical species) issuing from the venting region, the observer first uses a 
submersible or towed sensor package to measure the ratio of radon to heat (or species) 
anomaly, 222Rn/AT, in the plume near the vent orificembefore the radon in the plume 
has a chance to disperse or age. The observer then uses a towed sensor package to map 
the total inventory of radon in the spreading plume (Figure 1.12.7). Taking into 
account the effect of cold water entrainment on the rising plume at Endeavour Ridge 
in the northeast Pacific (47~ 129~ Rosenberg et al. (1988) found an initial 
radon/AT value of 0.03 dpm (disintegrations per minutemthe standard unit of 
measurement for radioactive materials) or 55 atoms per joule. They then used 
hydocast bottle data to estimate the standing crop of radon above 2100 m depth as 
222Rn(Total) = 8x 1012 dpm. At steady-state, hydrothermal venting must be adding 
this much radon to the system so that the total heat emanating from the vents is 
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222Rn ( T o t a l ) / ( 2 2 2 R n / A T )  - 3(-I-2) x 109 watts (1.12.3) 

which compares with estimates based on direct measurements of the total heat content 
anomaly of the plume in combination with local currents (Baker and Massoth, 1986, 
1987; Baker et al., 1995). Gendron et al. (1993) have used 222Rn to examine time 
variability in hydrothermal venting on the Cleft Segment of Juan de Fuca Ridge and 
to estimate the age of the plume as a function of location relative to the known vent 
sites. They found that the hydrothermal flux decreased from 2.2+0.3 GW in 1990 to 
1.2+0.2 GW in 1991 (1 GW = 109 watts). 

The estimates using radon-222 in the ocean are complicated by the fact that radon 
concentration is a function of both radioactive decay and dilution with ambient 
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seawater. Similar estimates can be made using 3He to heat ratios combined with the 
total inventory of 3He in the ocean. The result (Jenkins, 1978) is a global hydrothermal 
heat flux of 4.9 x 1019 cal/year. Baker and Lupton (1990) have used the 3He/heat ratio 
as a possible indicator of magmatic/tectonic activity at ridge segments. The change 
from a ratio of 4.4 x 10 -12 cm 3 STP ca1-1 immediately following the megaplume 
eruption at Cleft segment to 1.3 x 10 -12 cm 3 STP cal -~ two years later suggests that 
high ratios may be indicative of venting created or profoundly perturbed by a mag- 
matic-tectonic event, while lower values may typify systems at equilibrium. 

1.12.5 Sulfur hexafluoride 

In certain instances, there is a distinct advantage to a controlled and localized release 
of a chemical into the environment. Prefluorinated tracers such as sulfur hexachloride 
(SF6) and perfluorodeclin (PFD) are among the new generation of deliberately 
released tracers used to measure mixing and diffusion rates in the ocean. These 
substances are particularly good at examining vertical mixing. Their appeal is that 
they are a readily detectable conservative tracers that have no significant effect on the 
environment and no toxicity. A thorough description of the use of these tracers as well 
as rhodamine dyes can be found in Watson and Ledwell (1988). In the case of 
rhodamine dyes, the detection limit by fluorometers is set by the background 
fluorescence of natural substances in water which is about 1 part in 1012 in the deep 
ocean. For SF6 the background limit is set by dissolution from the atmosphere where 
the compound is present at 1-2 parts in 1012 by volume. Surface values in the ocean 
are roughly 5 x 10 -17 and diminish to zero in deep water. The instrumental detection 
for SF6 is limited to about 1/10 of the near-surface value (Watson and Liddicoat, 
1985). PFD has no measurable background level in the ocean and is limited by 
instrumental detection to about 1 part in 1016. For a release of 1 metric ton (_= 1 tonne) 
at a given density level in an experiment, these detection limits translate to maximum 
horizontal scales of 100 km for rhodamine dye, 1000 km for PFDs and basin scales for 
SF6. Lifetimes for the tracers range from months to about a year. Despite their 
usefulness, the long-term prognosis for SF6 and PFDs is limited as industrial injection 
of SF6 into the atmosphere and medical use of PFDs will eventually increase back- 
ground levels and take away from their ability to serve as tracers. 

Rhodamine dye is used mainly in coastal studies. SF6 has been used successfully in 
WOCE. The North Atlantic Tracer Release Experiment (NATRE) was a large-scale 
WOCE-related study using SF6 to examine the stirring and diapycnal mixing in the 
pycnocline of the North Atlantic. In May 1992, 139 kg of sulfur hexafluoride was 
released on the isopycnal surface 26.75 kg /m 3 (310 dbar) along with eight SOFAR 
floats and six pop-up drifters in the eastern subtropical Atlantic near 25.7~ 28.3~ 
To sample the tracer, investigators towed a vertical array of 20 integrating sample at 
0.5 m/s through the patch. A prototype 18-chamber sampler at the center of the array 
obtained a lateral resolution of about 360 m. The average profile increased from a 
RMS thickness of 6.8 m after 14 days to a RMS thickness of about 45 m by April 1993, 
yielding a diapycnal eddy diffusivity of 0.1-0.2 cm 2 s -1. To be successful, experiments 
like NATRE require the tracer to be injected on a constant density surface rather than 
a constant depth. Internal wave oscillations and other vertical motions would broaden 
the tracer concentration more than necessary if it were released at a constant depth. 
Care must be taken during injection to ensure the tracer's buoyancy is correct and that 
the turbulent wake of the injection apparatus is not excessive. 
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1.12.6 Strontium-90 

The distribution of bomb-produced 9~ in the ocean is quite similar to that of tritium. 
However as pointed out by Toggweiler and Trumbore (1985), 9~ has the virtue that 
the ratio 9~ incorporated into coral skeletons has the same value as this ratio in 
seawater. Corals average out seasonal variations in the 9~ content of seawater so that 
annual bands provide a time-averaged measure of the amount of strontium in the 
water. The results of Toggweiler and Trumbore (1985) suggest that waters move into 
the Indian Ocean via passages through the Indonesian Archipelago. In addition, the 
data suggest that there is a large-scale transport of water between the temperate and 
tropical North Pacific. 



C H A P T E R  2 

Data Processing and Presentation 

2.1 I N T R O D U C T I O N  

Most instruments do not measure oceanographic properties directly nor do they store 
the related engineering or geophysical parameters that the investigator eventually wants 
from the recorded data. Added to this is the fact that all measurement systems alter 
their characteristics with time and therefore require repeated calibration to define the 
relationship between the measured and/or stored values and the geophysical quantities 
of interest. The usefulness of any observations depends strongly on the care with which 
the calibration and subsequent data processing are carried out. Data processing consists 
of using calibration information to convert instrument values to engineering units and 
then using specific formulae to produce the geophysical data. For example, calibration 
coefficients are used to convert voltages collected in the different channels of a CTD to 
temperature, pressure, and salinity (a function mainly of conductivity, temperature, and 
pressure). These can then be used to derive such quantities as potential temperature 
(the compression-corrected temperature) and steric height (the vertically integrated 
specific volume anomaly derived from the density structure). 

Once the data are collected, further processing is required to cht.L.k for errors and to 
remove erroneous values. In the case of temporal measurem,,,ts, for example, a 
necessary first step is to check for timing errors. Such errors arise because of problems 
with the recorder's clock which cause changes in the sampling interval (At), or 
because digital samples are missed during the recording stage. If N is the number of 
samples collected, then NAt should equal the total length of the record, T. This points 
to the obvious need to keep accurate records of the exact start and end times of the 
data record. When T r NAt, the investigator needs to conduct an initial search for 
possible missing records. Simultaneous, abrupt changes in recorded values on all 
channels often point to times of missing data. Changes in the clock sampling rate 
(clock "speed") are more of a problem and one has often to assume some sort of linear 
change in At over the recording period. When either the start or end time is in doubt, 
the investigator must rely on other techniques to determine the reliability of the 
sampling clock and sampling rate. For example, in regions with reasonable tidal 
motions, one can check that the amplitude ratios among the normally dominant K], Ol 
(diurnal) and M2, $2 (semidiurnal) tidal constituents (Table 2.1) are consistent with 
previous observations. If they aren't, there may be problems with the clock (or 
calibration of amplitude). If the phases of the constituents are known from previous 
observations in the region, these can be compared with phases from the suspect 
instrument. For diurnal motions, each one hour error in timing corresponds to a phase 
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Table 2.1. Frequencies (cycles per hour) for the major diurnal (01, Kj) and semidiurnal (M2, $2) tidal 
constitutents 

Tidal constituent O~ K1 M2 $2 
Frequency (cph) 0 .03873065  0 . 0 4 1 7 8 0 7 5  0 . 0 8 0 5 1 1 4 0  0.08333333 

. . . . . . . .  

change of 15~ for semidiurnal motions, the change is 30 ~ per hour. Large discrep- 
ancies suggest timing problems with the data. 

Two types of errors must be considered in the editing stage: (1) large "accidental" 
errors or "spikes" that result from equipment failure, power surges, or other major 
data flow disruptions (including some planktors such as salps and small jellyfish 
which squeeze through the conductivity cell of a CTD); and (2) small random errors or 
"noise" that arise from changes in the sensor configuration, electrical and environ- 
mental noise, and unresolved environmental variability. The noise can be treated 
using statistical methods while elimination of the larger errors generally requires the 
use of some subjective evaluation procedure. Data summary diagrams or distributions 
are useful in identifying the large errors as sharp deviations from the general 
population, while the treatment of the smaller random errors requires a knowledge of 
the population density function for the data. It is often assumed that random errors 
are statistically independent and have a normal (Gaussian) probability distribution. A 
summary diagram can help the investigator evaluate editing programs that "auto- 
matically" remove data points whose magnitudes exceed the record mean value by 
some integer multiple of the record standard deviation. For example, the editing 
procedure might be asked to eliminate data values I x -  X I > 3~r, where X and a are 
the mean and standard deviation of x, respectively. This is wrought with pitfalls, 
especially if one is dealing with highly variable or episodic systems. By not directly 
examining the data points in conjunction with adjacent values, one can never be 
certain that he/she is not throwing away reliable values. For example, during the 
strong 1983-1984 E1Nifio, water temperatures at intermediate depths along Line P in 
the northeast Pacific exceeded the mean temperature by 10 standard deviations (10q). 
Had there not been other evidence for basin-wide oceaniC~heating during this period, 
there would have been a tendency to dispense with these "abnormal" values. 

2.2 C A L I B R A T I O N  

Before data records can be examined for errors and further reduced for analysis, they 
must first be converted to meaningful physical units. The integer format generally 
used to save storage space and to conduct onboard instrument data processing is not 
amenable to simple visual examination. Binary and ASCII formats are the two most 
common ways to store the raw data, with the storage space required for the more basic 
Binary format about 20% of that for the integer values of ASCII format. Conversion of 
the raw data requires the appropriate calibration coefficients for each sensor. These 
constants relate recorded values to known values of the measurement parameter. The 
accuracy of the data then depends on the reliability of the calibration procedure as 
well as on the performance of the instrument itself. Very precise instruments with 
poor calibrations will produce incorrect, error-prone data. Common practice is to fit 
the set of calibration values by least-squares quadratic expressions, yielding either 
functional (mathematical) or empirical relations between the recorded values and the 
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appropriate physical values. This simplifies the post-processing since the raw data can 
readily be passed through the calibration formula to yield observations in the correct 
units. We emphasize that the editing and calibration work should always be per- 
formed on copies of the original data; never work directly on the raw, unedited data. 

In some cases the calibration data do not lend themselves to description in terms of 
polynomial expressions. An example is the direction channel in Aanderaa current 
meter data for which the calibration data consists of a table relating the recorded 
direction in raw 10-byte integer format (0-1024) to the corresponding direction in 
degrees from the compass calibration (Pillsbury et al., 1974). Some thought should be 
given to producing calibration "functions" that best represent the calibration data. 
With the availability of modern computing facilities, it is no more burdensome to 
build the calibration into a table than it is to convert it to a mathematical expression. 
Most important, however, is the need to ensure that the calibration accurately 
represents the performance range and characteristics of the instrument. Unquestioned 
acceptance of the manufacturer's calibration values is not recommended for the 
processing of newly collected data. Instead, individual laboratory and/or field cali- 
bration may be needed for each instrument. In some cases this is not possible (for 
example, in the case of XBT probes which come prepackaged and ready for deploy- 
ment) and some overall average calibration relation must be developed for the 
measurement system regardless of individual sensor. 

Some instruments are individually calibrated before and after each experiment to 
determine if changes in the sensor unit had occurred ~ during i~s operat-ion. T h e  
conversion to geophysical units must take both pre- and postcalibrations into account. 
Often the pre- and postcalibration are averaged together or used to define a calibration 
trend, line which can then be used to transform the instrument engineering units to 
the appropriate geophysical units. Sometimes a postcalibration reveals a serious 
instrument malfunction and the data record must be examined to find the place where 
the failure occurred. Data after this point are eliminated (or modified to account for 
the instrumental problems) and the postcalibration information is not used in the 
conversion to geophysical values. Even if the instrument continues~.to function in a 
reasolaable manner, the calibration history of the instrument is important to 
producing accurate geophysical measurements from the instrument. 

Since each instrument may use a somewhat different procedure to encode and 
record data it is not possible to discuss all of the techniques employed. We therefore 
have outlined a general procedure only. Appendix A provides a list of the many 
physical units used today in physical oceanography. Although there have been many 
efforts to standardize these units one must still be prepared to work with data in 
nonstandard units. This may be particularly true in the case of older historical data 
collected before the introduction of acceptable international units. These standard 
units also are included in Appendix A. 

2.3 I N T E R P O L A T I O N  

Data gaps or "holes" are a problem fundamental to many geophysical data records. 
Gappy data are frequently the consequence of uneven or irregular sampling (in time 
and/or space), or they may result from the removal of erroneous values during editing 
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and from sporadic recording system failures. Infrequent data gaps, having limited 
duration relative to strongly energetic periods of interest, are generally of minor 
concern, unless one is interested in short-term episodic events rather than stationary 
periodic phenomena. Major difficulties arise if the length of the holes exceeds a 
significant fraction (1/3-1/2) of the signal of interest and the overall data loss rises 
beyond 20-30% (Sturges, 1983). Gaps have a greater effect on weak signals than on 
strong signals and the adverse effects of the gaps increases most rapidly for the 
smallest percentages of data lost. While some useful computational techniques have 
been developed for unevenly spaced data (Meisel, 1978, 1979) and even some advant- 
ages to having a range of Nyquist frequencies within a given data set (Press et al., 
1992), most analysis methods require data values that are regularly spaced in time or 
space. As a consequence, it is generally necessary to use an interpolation procedure to 
create the required regular set of data values as part of the data processing. The 
problem of interpolation and smoothing is discussed in more detail in Chapter 3. 

2.4  D A T A  P R E S E N T A T I O N  

2.4.1 Introduction 

The analysis of most oceanographic records necessitates some form of "first-look" 
visual display. Even the editing and processing of data typically requires a display 
stage, as for example in the exact determination of the start and end of a time series, or 
in the interactive removal and interpolation of data spikes and other erroneous values. 
A useful axiom is, "when in doubt, look at the data". In order to look at the data, we 
need specific display procedures. A single set of display procedures for all applications 
is not possible since different oceanographic data sets require different displays. 
Often, the development of a new display method may be the substance of a 15arti~cular" 
research project. For instance, the advent of satellite oceanography has greatly 
increased the need for interactive graphics display and digital image analysis. 

Our discussion begins with traditional types of data and analysis product present- 
ations. These have been developed as oceanographers sought ways to depict the ocean 
they were observing. The earliest shipboard measurements consisted of temperatures 
taken at the sea surface and soundings of the ocean bottom. These data were most 
appropriately plotted on maps to represent their geographical variability. The data 
were then contoured by hand to provide a smooth picture of the variable's distribution 
over the survey region. Examples of historical interest are the meridional sections of 
salinity from the eastern and western basins of the North Atlantic based on data 
collected during the German Meteor Expedition of 1925-1927 (Figure 2.1; Spiess, 
1928). The water property maps from this expedition were among the first to indicate 
the north-south movements of water masses in the Atlantic basin. 

As long as measurements were limited to the sea surface or sea floor, the question of 
horizontal level for display was never raised. As oceanographic sampling became more 
sophisticated and the vertical profiling of water properties became possible, new data 
displays were required. Of immediate interest were simple vertical profiles of 
temperature and salinity such as those shown in Figure 2.2. These property profiles, 
based on a limited number of sample bottles suspended from the hydrographic wire at 
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Figure 2.1. Longitudinal section of salinity in the western basin of the Atlantic Ocean (after Spiess, 
1928). 

standard hydrographic depths, originally served to both depict the vertical stratifi- 
cation of the measured parameter and to detect any sampling bottles that had not 
functioned properly. The data points could then either be corrected or discarded from 
the data set. Leakage of the watertight seals, failure of the bottle to trip, and damage 
against the side of the ship are the major causes of sample loss. Leakage problems can 
be especially difficult to detect. 

The data collected from a research vessel at a series of hydrographic stations may be 
represented as vertical section plots. Here, the discretely sampled data are entered into 
a two-dimensional vertical section at the sample depths and then contoured to 
produce the vertical structure along the section (Figure 2.3). Two things need to be 
considered in this presentation. First, the depth of the ocean, relative to the horizontal 
distances, is very small and vertical exaggeration is required to form readable sections. 
Second, the stratification can be separated roughly into two near-uniform layers with a 
strong density-gradient layer (the pycnocline) sandwiched between. This two-layer 
system led early German oceanographers to introduce the terms "troposphere" and 
"stratosphere" (W~st, 1935; Defant, 1936) which they described as the warm and cold 
water spheres of the ocean. Introduced by analogy to the atmospheric vertical 
structure, this nomenclature has not been widely used in oceanography. The 
consequence of this natural vertical stratification, however, is that vertical sections 
are often best displayed in two parts, a shallow upper layer, with an expanded scale, 
and a deep layer with a much more compressed vertical resolution. 

Vertical profiling capability makes it possible to map quantities on different types 
of horizontal surface. Usually, specific depth levels are chosen to characterize spatial 
variability within certain layers. The near-vertical homogeneity of the deeper layers 
means that fewer surfaces need to be mapped to describe the lower part of the water 
column. Closer to the ocean surface, additional layers may be required to properly 
represent the strong horizontal gradients. 

The realization by oceanographers of the importance of both along- and cross- 
isopycnal processes has led to the practice of displaying water properties.on specific 
isopycnal surfaces. Since these surfaces do not usually coincide with constant depth 
levels, the depth of the isopycnal (equal density) surface also is sometimes plotted. 
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Figure 2.2. Vertical profiles. (a) Temperature profiles for tropical (low) latitudes, mid-latitudes, and 
polar (high) latitudes in the Pacific Ocean. (b) Salinity profiles for the Atlantic, Pacific and tropical 
oceans for different latitudes. The dicothermal layer in (a) is formed from intense winter cooling followed 
by summer warming to shallower depths. Both salinity (solid line) and temperature (dashed line) are 

plotted for the tropics in (b). (From Pickard and Emery, 1992.) 

Isopycnal surfaces are chosen to characterize the upper and lower layers separately. 
Often, processes not obvious in a horizontal depth plot are clearly shown on selected 
isopycnal (sigma) surfaces. This practice is especially useful in tracking the lateral 
distribution of tracer properties such as the deep and intermediate depth silicate 
maxima in the Nor th  Pacific (Talley and Joyce, 1992) or the spreading of hydro- 
thermal plumes that have risen to a density surface corresponding to their level of 
neutral buoyancy (Feely et al., 1994). 
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Figure 2.3. Longitudinal cross-sections of (a) in situ temperature and (b) salinity for the Atlantic Ocean�9 
Arrows denote direction of water mass movement based on the distribution of properties. Ant. Bott. = 
Atlantic Bottom Water; Ant. Int. = Antarctic Intermediate Water. (From Pickard and Emery, 1992.) 

Another challenge to the graphical presentation of oceanographic data is the 
generation of time series at specific locations. Initially, measured scalar quantities 
were simply displayed as time-series plots. Vector quantities, however, require a plot 
of two parameters against time. A common solution is the use of the "stick plot" 
(Figure 2.4) where each stick (vector) corresponds to a measured speed and direction 
at the specified time. The only caution here is that current vectors are plotted as the 
direction the current is toward (oceanographic convention) whereas winds are 
sometimes plotted as the direction the wind is from (meteorological convention). The 
progressive vector diagram (PVD) also is used to plot vector velocity time series 
(Figure 2.5). In this case, the time-integrated displacements along each of two 
orthogonal directions (x ,y)  are calculated from the corresponding velocity components 
(x, y)  = (Xo, yo) + ~-~(ui, v i )At i ,  ( i--  1, 2, ...) to give "pseudo" downstream displace- 
ments of a parcel of water from its origin (Xo, Yo). 

A plot relating one property to another is of considerable value in oceanography. 
Known as a "characteristic diagram" the most common is that relating temperature 
and salinity called the TS diagram. Originally defined with temperature and salinity 
values obtained from the same sample bottles, the TS relationship was used to detect 
incorrect bottle samples and to define oceanic water masses. TS plots have been shown 
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Figure 2.4. Vector (stick) plots of low-pass filtered wind stress and subtidal currents at different depths 
measured along the East Coast of the United States about 100 km west of Nantucket Shoals. East (up) is 
alongshore and north is cross-shore. Brackets give the current meter depth (m). (Figure 7.11 from 

Beardsley and Boicourt, 1981.) 

to provide consistent relationships over large horizontal areas (Helland-Hansen, 1918) 
and have recently been the focus of studies into the formation of water masses 
(McDougal, 1985a, b). Plots of potential temperature versus salinity (the O-S relation- 
ship) or versus potential density (the 0-o0 relationship) have proven particularly 
useful in defining the maximum height of rise of hydrothermal plumes formed over 
venting sites along mid-ocean ridges (Figure 2.6; Thomson et al., 1992). 

Except for some minor changes, vertical profiles, vertical sections, horizontal maps, 
and time series continue to serve as the primary display techniques for physical 
oceanographers. The development of electronic instruments, with their rapid sampling 
capabilities and the growing use of high-volume satellite data, may have changed how we 
display certain data but most of the basic display formats remain the same. Today, a 
computer is programmed to carry out both the required computations and to plot the 
results. Image formats, which are common with satellite data, require further sophis- 
ticated interactive processing to produce images with accurate geographical corres- 
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Figure 2.5. Progressive vector diagram (PVD) constructed from the east-west and north-south 
components of velocity for currents measured every 10 rain for a period of 50 days at a depth of 200 m in 
the Strait of Georgia, British Columbia. Plotted positions correspond to horizontal displacements of the 
water that would occur if the flow near the mooring location was the same as that at this location. (From 

Tabata and Stickland, 1972.) 

pondence. Despite this, the combination of vertical sections and horizontal maps 
continues to provide most investigators with the requisite geometrical display capability. 

2.4.2 V e r t i c a l  prof i les  

Vertical profiles obtained from ships, buoys, aircraft or other platforms provide a 
convenient way to display oceanic structure (Figure 2.2). One must be careful in 
selecting the appropriate scales for the vertical and the horizontal property axes. The 
vertical axis may change scale or vary nonlinearly to account for the marked changes 
in the upper ocean compared with the relative homogeneity of the lower layers. The 
property axis needs to have a fine enough scale so as to define the small vertical 
gradients in the deeper layer without the upper layer going off-scale. When 
considering a variety of different vertical profiles together (Figures 2.7 and 2.8), a 
common property scale is an advantage although consideration must be given to the 
strong dependence of vertical property profiles on latitude and season. 
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Figure 2.6. Plot of mean potential temperature (0) versus mean salinity (S) for depths of 1500-2200 m 
over Endeavour Ridge in the northeast Pacific. The least squares linear fit covers the depth range 1500- 
1900 m, where 0 - -6.563S + 228.795~ The abrupt change in the O--S relationship at a depth of 
1900 m marks the maximum height of rise of the hydrothermal plume. (From Thomson et al., 1992.) 

A dramatic change has taken place recently in the detailed inform/atiorr contained in 
vertical profiles. The development and regular use of continuous, high-resolution, 
electronic profiling systems have provided fine-structure information previously not 
possible with standard hydrographic casts. Profiles from standard bottle casts required 
smooth interpolation between observed depths so that structures finer in scale than the 
smallest vertical sampling separation were missed. Vertical profiles from modern CTD 
systems are of such high resolution that they are generally either vertically averaged or 
subsampled to reduce the large volume of data to a manageable level for display. For 
example, with the rapid (~10 Hz) sampling rates of modern CTD systems, parameters 
such as temperature and salinity, which are generated approximately every 0.01 m, are 
not presentable in a plot of reasonable size. Thus data are either averaged or sub- 
sampled to create files with sampling increments of 1 m or larger. 

Studies of fine-scale (centimeter scale) variability require the display of full CTD 
resolution and will generally be limited to selected portions of the vertical profile. 
These portions are chosen to reflect that part of the water column of greatest concern 
for the study. Full-resolution CTD profiles reveal fine-scale structure in both T and S, 
and can be used to study mixing processes such as interleaving and double-diffusion. 
Expressions of these processes are also apparent in full-resolution TS diagrams using 
CTD data. One must be careful, however, not to confuse instrument noise (e.g. those 
due to vibrations or "strumming" of the support cable caused by vortex shedding) 
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Figure 2.8. Time series of monthly mean profiles of upper ocean temperature at Ocean Weather Station 
"P", northeast Pacific (50~ 145~ Numbers denote the months of the year. (From Pickard and 

Emery, 1992.) 

with fine-scale oceanic structure. Processing should be used where possible to separate 
the instrument noise from the wave number, band-limited signal of mixing processes. 

Often, computer programs for processing CTD data contain a series of different 
display options that can be used to manipulate the stored high-resolution digital data. 
The abundance of raw CTD digital data, and the variety of in situ calibration proce- 
dures, make it difficult to interpret and analyze CTD records using a universal format. 
This is a fundamental problem in assembling a historical file of CTD observations. 
Hopefully, the statistics of CTD data that have been smoothed to a resolution 
comparable to that of traditional bottle casts are sufficiently homogeneous to be 
treated as updates to the hydrographic station data file. The increasingly wide use of 
combined CTD and rosette profiling systems has led to a dramatic decrease in the 
number of standard bottle casts. (A rosette system consists of a carrousel holding 12 or 
so hydro bottles that can be "tripped" from the ship by ~sending an electric~ulse down 
the conducting CTD support cable. The CTD is generally placed in the center of the 
carrousel.) 

2 . 4 . 3  V e r t i c a l  s e c t i o n s  

Vertical sections are a way to display vertically profiled data collected regionally along 
the track of a research vessel or taken from more extended crossings of an ocean basin 
(usually, meridionally or zonally). Marked vertical exaggeration is necessary to make 
oceanic structure visible in these sections. A basic assumption in any vertical section 
is that the structure being mapped has a persistence scale longer than the time 
required to collect the section data. Depending on the type of data collected at each 
station, and on the length of the section, shipboard collection times can run from a few 
days to a few weeks. Thus, only phenomena with time scales longer than these periods 
are properly resolved by the vertical sections. Recognizing this fact leads to a trade-off 
between spatial resolution (between-station spacing) and the time to complete the 
section. Sampling time decreases as the number of profiles decreases and the samples 
taken approach a true synoptic representation (samples collected at the same time). 
Airborne surveys using expendable probes such as AXBTs (airborne XBTs) from 
fixed-wing aircraft and helicopters yield much more synoptic information but are 
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limited in the type of measurement that can be made and by the depth range of a given 
measurement. Although aircraft often have hourly charge-out rates that are similar to 
ships and generally are more cost-effective than ships on a per datum basis, operation 
of aircraft is usually the domain of the military or coastguard. 

Fewer sample profiles means wider spacing between stations and reduced 
resolution of smaller, shorter-term variability. There is a real danger of short time- 
scale or space-scale variability aliasing quasi-synoptic, low-resolution vertical sections. 
Thus, the data collection scheme must be designed to either resolve or eliminate (by 
filtering) scales of oceanic variability shorter than those being studied. With the ever- 
increasing interest in ocean climate, and at a time when the importance of mesoscale 
oceanic circulation features has been recognized, investigators should give serious 
consideration to their intended sampling program to optimize the future usefulness of 
the data collected. 

Traditional bottle hydrographic casts were intended to resolve the slowly changing 
background patterns of the property distributions associated with the mean "steady- 
state" circulation. As a result, station spacings were usually too large to adequately 
resolve mesoscale features. In addition, bottle casts require long station times leading 
to relatively long total elapsed times for each section. The fact that these data have 
provided a meaningful picture of the ocean suggests that there is a strong component 
of the oceanic property distributions related to the steady-state circulation. For these 
reasons, vertical sections based on traditional bottle-cast station data provide useful 
definitions of the meridional and zonal distributions of individual water masses 
(Figure 2.1). 

The importance of mesoscale oceanic variability has prompted many oceano- 
graphers to decrease their sample spacing. Electronic profiling systems, such as the 
CTD and CTD-rosette, require less time per profile than standard bottle casts so that 
the total elapsed time per section has been reduced over the years despite the need for 
greater spatial resolution. Still, most oceanographic sections are far from being 
synoptic owing to thee low speeds of ships and some consideration must be given to the 
~lefinition of which time/space scales are actually being resolved by the measure- 
ments. For example, suppose we wish to survey a 1000 km oceanic section and col!ect 
a meagre 20 salinity-temperature profiles to 2000 m depth along the way. At an 
average speed of 12 knots, steaming time alone will amount to about two days. Each 
bottle cast would take about two hours and each CTD cast about one hour. Our survey 
time would range from three to four days, which is just marginally synoptic by most 
oceanographers' standards. 

Expendable profiling systems such as the XBT make it possible to reduce sampling 
time by allowing profile collection from a moving ship. Ships also can be fitted with an 
acoustic current profiling system which allows for the measurement of ocean currents 
in the upper few hundred meters of the water column while the ship is underway. The 
depth of measurement is determined by frequency and is about 500 m for the 
commonly used 150 kHz transducers. Most modern oceanographic vessels also have 
SAIL (Shipboard ASCII Interrogation Loop) systems for rapid (~1 min) sampling of 
the near-surface temperature and salinity at the intake for the ship's engine cooling 
system. SAIL data are typically collected a few meters below the ship's waterline. 
Oceanographic sensor arrays towed in a saw-tooth pattern behind the ship provide 
another technique for detailed sampling of the water column. This method has wide 
application in studying near-surface fronts, turbulent microstructure, and hydro- 
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thermal venting (Figure 1.11.6). These technological improvements have lowered the 
sample time and increased the vertical resolution. 

As referred to earlier, it is common practice when plotting sections to divide the 
vertical axis into two parts, with the upper portion greatly expanded to display the 
larger changes of the upper layer. The contour interval used in the upper part may be 
larger than that used for the weaker vertical gradients of the deeper layer. It is 
important, however, to maintain a constant interval within each layer to faithfully 
represent the gradients. In regions with particularly weak vertical gradients, addi- 
tional contours may be added but a change in line weight, or type, is customary to 
distinguish the added line from the other contours. All contours must be clearly 
labeled. Color is often very effective in distinguishing gradients represented by the 
contours. While it is common practice to use shades of red to indicate warm regions, 
and shades of blue for cold, there is no recommended color coding for properties such 
as salinity, dissolved oxygen or nutrients. The color atlas of water properties for the 
Pacific Ocean published by Reid (1965) provides a useful color scheme. 

In sections derived from bottle samples, individual data points are usually indicated 
by a dot or by the actual data value. In addition, the station number is indicated in the 
margin above or below the profile. Stations collected with CTDs usually have the 
station position indicated but no longer have dots or sample values for individual data 
points. Because of the high vertical resolution, only the contours are plotted. 

The horizontal axis usually represents distance along the section and many sections 
have a small inset map showing the section location. Alternatively, the reader is 
referred to another map which shows all section locations. Since many sections are 
taken along parallels of latitude or meridians of longitude, it is customary to include 
the appropriate latitude or longitude scale at the top or bottom of each section (Figure 
2.3). Even when a section only approximates zonal or meridional lines, estimates of 
the latitude or longitude are frequently included in the axis label to help orient the 
reader. Station labels should also be added to the axis. 

A unique problem encountered when plotting deep vertical sections of density is the 
need to have different pressure reference levels for the density determination to account 
for the dependence of sea-water compressibility on temperature. Since water 
temperature generally decreases with pressure (greater depths), artificially low 
densities will be calculated at the greatest depths when using the surface pressure as 
a reference (Lynn and Reid, 1968, Reid and Lynn, 1971). When one wants to resolve the 
deep density structure, and at the same time display the upper layer, different reference 
levels are used for different depth intervals. As shown in Figure 2.9, the resulting 
section has discontinuities in the density contours as the reference level changes. 

A final comment about vertical sections concerns the representation of bottom 
topography. The required vertical exaggeration makes it necessary to represent the 
bottom topography on an exaggerated scale. This often produces steep-looking islands 
and bottom relief. There is a temptation to ignore bottom structure, but as oceano- 
graphers become more aware of the importance of bottom topography in dictating 
certain aspects of the circulation, it is useful to include some representation of the 
bottom structure in the sections. 

2.4.4 Horizontal maps 

In the introduction, we mentioned the early mapping of ocean surface properties and 
bottom depths. Following established traditions in map making, these early maps 
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Figure 2.9. Cross-section of density (crt) (kg/m 3) across Drake Passage in 1976. (From Nowlin et al., 
1986.) 

were as much works of art as they were representations of oceanographic information. 
The collection of hydrographic profiles later made it possible to depict property 
distributions at different levels of the water column (Figure 2.10). As with vertical 
sections, the question of sample time versus horizontal resolution needs to be 
addressed, especially where maps cover large portions of an ocean basin. Instead of the 
days to weeks needed to collect data along a single short section, it may take weeks, 
months and even years to obtain the required data covering large geographical 
regions. Often, horizontal maps consist of a collection of sections designed to define 
either the zonal/meridional structure or cross-shore structure for near-coastal regions. 
In most cases, the data presented on a map are contoured with the assumption that the 
map corresponds to a stationary property distribution. For continental shelf regions, 
data used in a single map should cover a time period that is less than the ap- 
proximately 10 day e-folding time scale of mesoscale eddies. In this context, the "e- 
folding time" is the time for the mesoscale currents to decay to 1/e I = 0.368 of their 
peak values. 
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Figure 2.10. Horizontal maps of annual mean~potential temperature in the world ocean at (a) 500 m. (From Levitus, 1982.) 
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Figure 2.10. Horizontal maps of annual mean potential temperature in the world ocean at (b) I000 m depth. (From Levitus, 1982.) 
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Much of what we know about the overall structure of the ocean, particularly the 
deep ocean, has been inferred from large-scale maps of water properties. A 
presentation developed by W~st (1935) to better display the horizontal variations of 
particular water masses is based on the core-layer method. Using vertical property 
profiles, vertical sections, and characteristic (one property versus another property) 
diagrams, Wrist defined a core-layer as a property extremum and then traced the 
distribution of properties along the surface defined by this extremum. Since each core 
layer is not strictly horizontal, it is first necessary to present a map showing the depth 
of the core-layer in question. Properties such as temperature, salinity, oxygen, and 
nutrients also can be plotted along these layers in addition to the percentage of the 
appropriate water mass defined from the characteristic diagrams. A similar 
presentation is the plotting of properties on selected density surfaces. This practice 
originated with Montgomery (1938) who argued that advection and mixing would 
occur most easily along surfaces of constant entropy. Since these isentropic surfaces 
are difficult to determine, Montgomery suggested that surfaces of constant potential 
density would be close approximations in the lower layers and that sigma-t would be 
appropriate for the upper layers. Known as isentropic analysis because of its 
thermodynamic reasoning, this technique led to the practice of presenting horizontal 
maps on sigma-t or sigma-0 (potential density) surfaces. While it may be difficult to 
visualize the shape of the density surfaces, this type of format is often better at 
revealing property gradients. As with the core-layer method, preparing maps on 
density surfaces includes the plotting of characteristic property diagrams to identify 
the best set of density surfaces. Inherent in this type of presentation is the assumption 
that diapycnal (cross-isopycnal) mixing does not occur. Sometimes steric surfaces or 
surfaces of thermosteric anomaly are chosen for plotting rather than density. 

The definition and construction of contour lines on horizontal maps has evolved in 
recent years from a subjective hand-drawn procedure to a more objective procedure 
carried out by a computer. Hand analyses usually appear quite smooth but it is 
impossible to adequately define the smoothing process applied to the data since it 
varies with user experience and prejudice. Only if the same person contoured ali of the 
data, is it possible to compare map results directly. Differences produced by subjective 
contouring are less severe for many long-term and stationary processes, which are 
likely to be well represented regardless of subjective preference. Shorter-term and 
smaller space-scale variations, however, will be treated differently by each analyst and 
it will be impossible to compare results. In this regard, we note that weather maps 
used in six-hourly weather forecasts are still drawn by hand since this allows for 
needed subjective decisions based on the accumulated experience of the meteorologist. 

Objective analysis and other computer-based mapping procedures have been 
developed to carry out the horizontal mapping and contouring. Some of these methods 
are presented individually in later sections of this text. Since there is such a wide 
selection of mapping methods, it is not possible to discuss each individually. However, 
the reader is cautioned in applying any specific mapping routine to ensure that any 
implicit assumptions are satisfied by the data being mapped. The character of the 
result needs to be anticipated so that the consequences of the mapping procedure can 
be evaluated. For example, the mapping procedure called objective analysis or 
optimum interpolation, is inherently a smoothing operation. As a consequence, the 
output gridded data may be smoothed over a horizontal length scale greater than the 
scale of interest in the study. One must decide how best to retain the variability of 
interest and still have a definable mapping procedure for irregularly spaced data. 
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2.4.5 M a p  projections 

One neglected aspect of mapping oceanographic variables is the selection of an 
appropriate map projection. A wide variety of projections has been used in the past. 
The nature of the analysis, its scale and geographic region of interest dictate the type 
of map projection to use (Bowditch, 1977). Polar studies generally use a conic or other 
polar projection to avoid distortion of zonal variations near the poles. An example of a 
simple conic projection for the northern hemisphere is given in Figure 2.11. In this 
case, the cone is tangent at a single latitude (called a standard parallel) which can be 
selected by changing the angle of the cone (Figure 2.11a). The resulting latitude- 
longitude scales are different around each point and the projection is said to be 
nonconformal (Figure 2.11b). A conformal (=orthomorphic; conserves shape and 
angular relationships) conic projection is the Lambert conformal projection which 
cuts the earth at two latitudes. In this projection, the spacing of latitude lines is 
altered so that the distortion is the same as along meridians. This is the most widely 
used conic projection for navigation since straight lines nearly correspond to great 
circle routes. A variation of this mapping is called the "modified Lambert conformal 
projection". This projection amounts to selecting the top standard parallel very near 
the pole, thus closing off the top of the map. Such a conic projection is conformal over 
most of its domain. Mention should also be made of the "polar stereographic 
projection" that is favored by meteorologists. Presumably, the advantages of this 
projection is its ability to cover an entire hemisphere, and its low distortion at 
temperate latitudes. 

At mid- and low-latitudes, it is common to use some form of Mercator projection 
which accounts for the meridional change in earth radius by a change in the length of 
the zonal axis. Mercator maps are conformal in the sense that distortions in latitude 
and longitude are similar. The most common of these is the transverse Mercator or 
cylindrical projection (Figure 2.12). As the name implies it amounts to projecting the 
earth's surface onto a cylinder which is tangent at the equator (equatorial cylindrical). 
This type of projection, by definition, cannot include the poles. A variant of this is 
called the oblique Mercator projection, corresponding to a cylinder which is tangent to 
the earth along a line tilted with respect to the equator. Unlike the equatorial 
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Figure 2.11. An example of a simple conic projection for the northern hemisphere. The single tangent 
cone in (a) is used to create the map in (b). (From Bowditch, 1977.) 
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Figure 2.11. An example of a simple conic projection for the northern hemisphere. The single tangent 
cone in (a) is used to create the map in (b). (From Bowditch, 1977.) 

Figure 2.12. The transverse Mercator or cylindrical projection. (From Bowditch, 1977.) 
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Figure 2.13. An oblique Mercator or oblique c/ylindrical projection that includes the poles. The cylinder in 
(a) is used to generat~the transverse Mercator map of the western hemisphere in (b). (From Bowditch, 

1977.) 

cylindrical this oblique projection can represent the poles (Figure 2.13a). This form of 
Mercator projection also has a conformal character, with equal distortions in lines of 
latitude and longitude (Figure 2.13b). The most familiar Mercator mapping is the 
universal transverse Mercator (UTM) grid which is a military grid using the 
equatorial cylindrical projection. Another popular mid-latitude projection is the 
rectangular or equal-area projection which is a cylindrical projection with uniform 
spacing between lines of latitude and lines of longitude. In applications where actual 
earth distortion is not important, this type of equal area projection is often used. 
Whereas Mercator projections are useful for plotting vectors, equal-area projections 
are useful for representing scalar properties. For studies of limited areas, special 
projections may be developed such as the azimuthal projection, which consists of a 
projection onto a flat plane tangent to the earth at a single point. This is also called a 
gnomonic projection. Stereographic projects perform similar projections; however, 
where gnomonic projections use the center of the earth as the origin, stereographic 
projections use a point on the surface of the earth. 

The effects of map projection on mapped oceanographic properties should always 
be considered. Often the distortion is unimportant since only the distribution relative 
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(b) 

Figure 2.13. An oblique Mercator or oblique cylindrical projection that includes the poles. The cylinder in 
(a) is used to generate the transverse Mercator map of the western hemisphere in (b). (From Bowditch, 

1977.) 
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to the provided geography (land boundaries) is important. In other cases, such as plots 
of Lagrangian trajectories, it is important to compare maps using the same projection 
from which it should be possible to roughly estimate velocities along the trajectories. 
Variations in map projections can also introduce unwanted variations in the displays 
of properties. 

2 . 4 . 6  C h a r a c t e r i s t i c  o r  p r o p e r t y  v e r s u s  p r o p e r t y  d i a g r a m s  

In many oceanographic applications, it is useful to relate two simultaneously observed 
variables. Helland-Hansen (1918) first suggested the utility of plotting temperature 
(T) against salinity (S). He found that TS diagrams were similar over large areas of the 
ocean and remained constant in time at many locations. An early application of the TS 
diagram was the testing and editing of newly acquired hydrographic bottle data. When 
compared with existing TS curves for a particular region, TS curves from newly 
collected data quickly highlighted erroneous samples which could then be corrected or 
eliminated. Similar characteristic diagrams were developed for other ocean properties. 
Many of these, however, were not conservative and could not be expected to exhibit 
the constancy of the TS relationship (we will use TS as representative of all char- 
acteristic diagrams.) 

As originally conceived, characteristic diagrams such as the TS plots were straight- 
forward to construct. Pairs of property values from the same water bottle sample 
constituted a point on the characteristic plot. The connected points formed the TS 
curve for the station (Figure 2.14). Each TS curve represented an individual 
oceanographic station and similarities between stations were judged by comparing 
their TS curves. These traditional TS curves exhibit a unique relationship between T, 
S, and Z (the depth of the sample). What stays constant is the TS relationship, not its 
correspondence with Z. As internal waves, eddies, and other unresolved dynamical 
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Figure 2.14. Temperature-salinity curve for the western basin of the South Atlantic at 41~ latitude. 
Depths are marked in hundreds of meters. (Adapted from Tchernia, 1980.) 
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features move through a region, the depth of the density structure changes. In 
response, the paired TS value moves up and down along the TS curve, thus main- 
taining the water mass structure. This argument does not hold in frontal zones where 
the water mass itself is being modified by mixing and interleaving. 

Temporal oceanic variability has important consequences for the calculation of 
mean TS diagrams where TS pairs, from a number of different bottle or CTD casts, 
are averaged together to define the TS relationship for a given area or lapsed time 
interval. Perhaps the easiest way to present this information is in the form of a scatter 
plot (Figure 2.15) where the dots represent individual TS pairs. The mean TS 
relationship is formulated as the average of S over intervals of T. Depth values have 
been included in Figure 2.15 and represent a range of Z values spanning the many 
possible depths at which a single TS pair is observed. Thus, it is not possible to define 
a unique mean T, S, Z relationship for a collection of different hydrographic profiles. 

The traditional TS curve presented in Figure 2.15 is part of a family of curves 
relating measured variables such as temperature and salinity to density (sigma-t) or 
thermosteric anomaly (As,7-). The curvature of these lines is due to the nonlinear 
nature of the ocean's equation of state. In a traditional single-cast TS diagram, the 
stability of the water column, represented by the TS curve, can be easily evaluated. 
Unless one is in an unstable region, density should always increase with depth along 
the TS curve. Furthermore the analysis of TS curves can shed important light on the 
advective and mixing processes generating these characteristic diagrams. We note that 
the thermosteric anomaly, As,T, is used for TS curves rather than specific volume 
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Figure 2.16. Monthly mean temperature-salinity pairs for surface water samples over a year in the 
lagoon waters of the Great Barrier Reef (From Pickard and Emery, 1992.) 

anomaly, ~Ss,T, since the pressure term in included in ~Ss, T has been found to be 
negligible for hydrostatic computation and can be approximated by As,T, which lacks 
the pressure term. 

The time variability of the TS relation is also a useful quantity. A simple extension 
of this characteristic diagram shown in Figure 2.16 reveals the monthly mean TS pairs 
for surface water samples over a year in the vicinity of the Great Barrier Reef. The 
dominant seasonal cycle of the physical system is clearly displayed with this format. 

Another more widely used variation of the TS diagram is known as the volumetric 
TS curve. Introduced by Montgomery (1958), this diagram presents a volumetric 
census of the water mass with the corresponding TS properties. The analyst must 
decide the vertical and horizontal extent of a given water mass and assign to it certain 
TS properties. From this information, the volume of the water mass can be estimated 
and entered on the TS diagram (Figure 2.17). The border values correspond to sums 
across T and S values. Worthington (1981) used this procedure, and a three- 
dimensional plotting routine, to produce a volumetric TS diagram for the deep waters 
of the world ocean (Figure 2.18). The distinct peak in Figure 2.18 corresponds to a 
common deep water which fills most of the deeper parts of the Pacific. Sayles et al. 
(1979) used the method to produce a good descriptive analysis of Bering Sea water. 
This type of diagram has been made possible with the development of computer 
graphics techniques which greatly enhance our ability to display and visualize data. 



184 Data Analysis Methods in Physical Oceanography 

35 
. N  

-2  0 
30 

% 

40 

Temperature (~ 

10 20 30 

I I 4 
2 

Black Sea 
4.~ World 3 

~' "* ~ " qo,~ Ocean  

-- % 
\ -- 

N O  118 79% ~ x x'X q q~ %~',,,,~q' ~b ~ \ 
of  total  o ~  ~ 

\ \ 7 

~ ~ ~o ~ \ 36 

-200 ~ \ \ R e d  \ .  x~ - Sea (41%) ~- (1) 
I L , .J I 1 I ~ l ~  I I i 1 \  I I I " ~ \ 1  

~ t"-. ~ ~ t"'q ~ It"-- ",a" 0'~ ~ ~ ~ t',,,I r ,-v r.,,- 

Figure 2.17. Volumetric temperature-salinity (T-S) curve in which the number of T-S pairs in each 
segment of the plot can be calculated. (From Pickard and Emery, 1992.) 

Figure 2.18. Three-dimensional volumetric TS diagram for the deep waters of the world ocean. The 
distinct peak corresponds to common deep water which fills most of the deeper parts of the Pacific. (From 

Pickard and Emery, 1992.) 
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In a highly site-specific application of TS curves, McDuff (1988) has examined the 
effects of different source salinities on the thermal anomalies produced by buoyant 
hydrothermal plumes rising from mid-ocean ridges. In potential temperature-salinity 
(0 - S) space, the shapes of the 0 - S curves are strongly dependent on the salinity of 
the source waters and lead to markedly different thermal anomalies as a function of 
height above the vent site. 

2 .4 .7  T i m e - s e r i e s  p r e s e n t a t i o n  

In oceanography, as with other environmental sciences, there is a need to present 
time-series information. Early requirements were generated by shore-based measure- 
ments of sea-level heights, sea surface temperature and other relevant parameters. As 
ship traffic increased, the need for offshore beacons led to the establishment of light- 
or pilot-ships which also served as platforms for offshore data collection. Some of the 
early studies, made by geographers in the emerging field of physical oceanography, 
were carried out from light-ships. The time series of wind, waves, surface currents, 
and surface temperature collected from these vessels needed to be displayed as a 
function of time. Later, dedicated research vessels such as weather ships were used as 
"anchored" platforms to observe currents and water properties as time series. Today, 
many time-series data are collected by moored instruments which record internally or 
telemeter data back to a shore station. The need for real-time data acquisition for 
operational oceanography and meteorology has created an increased interest in new 
methods of telemetering data. The development of bottom-mounted acoustical modem 
systems and satellite data collection systems such as Service Argos have opened new 
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Figure 2.19. Time series of the low-pass filtered u (cross-shelf, x) and v (longshelf, y) components of 
velocity together with the simultaneously collected values of temperature (T) for the east coast of 
Australia immediately south of Sydney, 31 August, 1983 to 18 March, 1984. The axes for the stick 
vectors are rotated by -26  ~ from North so that "up" is in the alongshore direction. The current meter 
was at 137 m depth in a total water depth of 212 m. Time in Julian days as well as calendar days. 

(Freeland et al., 1985.) 
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possibilities for the transmission of oceanographic data to shore stations and for the 
transmission of operational commands back to the offshore modules. 

The simplest way to present time-series information is to plot a scalar variable (or 
scalar components of a vector series) against time. The time scale depends on the data 
series to be plotted and may range in intervals from seconds to years. Scalar time 
series of the u (cross-shore, x) and v (alongshore, y) components of velocity are 
presented in Figure 2.19 along with the simultaneously collected values of temp- 
erature. Note that it is common practice in oceanography to rotate the x, y velocity 
axes to align them with the dominant geographic or topographic orientation of the 
study region. The horizontal orthogonal axes can be along- and cross-shore or along- 
and across-isobath. Sometimes the terms cross-shelf and long-shelf are used in place of 
cross-shore and longshore. Since current meters and anemometers actually measure 
speed and direction, it is also customary to display time series of speed and direction 
as well as components of velocity. Keep in mind that oceanographic convention has 
vectors of current (and wind) pointing in the direction that the flow is toward whereas 
meteorological convention has wind vectors pointing in the direction the wind is from. 

As noted in section 2.4.1, two common methods of displaying the actual vector 
character of velocity as a function of time are stick-plots and progressive vector 
diagrams (PVDs). A stick-plot (Figures 2.4 and 2.19) represents the current vector for 
a specific time interval with the length of the stick (or "vector") scaled to the current 
speed and the stick orientation representing the direction. Direction may be relative 
to true north (pointed upward on the page) or the coordinate system may be rotated to 
align the axes with the dominant geographic or topographic boundaries. The stick- 
plot presentation is ideal for displaying directional variations of the measured 
currents. Rotational oscillations, due to the tides and inertial currents, are clearly 
represented. The PVD (Figure 2.5) presents the vector sum of the individual current 
vectors plotting them head to tail for the period of interest. Residual or long-term 
vector-mean currents are readily apparent in the PVD and rotational behavior also is 
well represented. The signature of inertial and tidal currents can be easily 
distinguished in this type of diagram. The main problem with P V D s  is thaf theS? 
have the appearance of a Lagrangian drift with time, as if measurements at one 
location could tell us the downstream trajectory of water parcels once they had crossed 
the recording location. Only if the flow is uniform in space and constant in time does 
the PVD give a true representation of the Lagrangian motion downstream. In that 
regard, we note that Lagrangian data are presented either as trajectories, in which the 
position of the drifting object is traced out on a chart or as time series of latitude x(t) 
and longitude y(t). Distance in kilometers may be used in place of earth coordinates 
although there are distinct advantages to sticking with Mercator projections. 

Another type of time series plot consists of a series of vertical profiles at the same 
locations as functions of time (Figure 2.20a). The vertical time-series plot has a 
vertical axis much like a vertical section with time replacing the horizontal distance 
axis. Similarly, a time series of horizontal transects along a repeated survey line is like 
a horizontal map but with time replacing one of the spatial axes. Property values from 
different depth-t ime (z, t) or distance-time (x, t) pairs are then contoured to produce 
time-series plots (Figure 2.20b) which look very similar to vertical sections and 
horizontal maps, respectively. This type of presentation is useful in depicting 
temporal signals that have a pronounced vertical structure such as seasonal heating 
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Figure 2.20. Time-series plots for: (a) Repeated vertical profiles at Ocean Weather Station "P" (50~ 
145~ in the northeast Pacific)for the period 1960-69. (From Fofonoff and Tabata, 1966.) 

and cooling. Other temporal changes due to vertical layering (e.g. from river a plume) 
are well represented by this type of plot. 

2.4.8 Histograms 

As oceanographic sampling matured, the concept of a stationary ocean has given way 
to the ~otion of a highly variable system requiring repeated sampling. Data display 
has graduated from a purely pictorial presentation to statistical representations. A plot 
format, related to fundamental statistical concepts of sampling and probability, is the 
histogram or frequency-of-occurrence diagram. This diagram presents information on 
how often a certain value occurred in any set of sample values. As we discuss in the 
section on basic statistics, there is no set rule for the construction of histograms and 
the selection of a sample variable interval (called "bin size") is completely arbitrary. 
This choice of bin size will dictate the smoothness of the presentation but an 
appropriately wide enough interval must be used to generate statistically meaningful 
frequency-of-occurrence values. 

2.4.9 New directions in graphical presentation 

Plotting oceanographic data has gone from a manpower-intensive process to one 
primarily carried out by computers. Computer graphics have provided oceano- 
graphers with a variety of new presentation formats. For example, all of the data 
display formats previously discussed can now be carried out by computer systems. 
Much of the investigator's time is spent ensuring that computer programs are 
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Figure 2.20. Time-series plots for: (b) salinity (psu) and density (cyt) at 10 m depth from repeated 
transects along Line P between Station P and the coast of North America for the period January 1959 to 

December 1961. (From Fofonoff and Tabata, 1966.) 

developed, not only for the analysis of the data, but also for the presentation of results. 
These steps are often combined, as in the case of objective mapping of irregularly 
spaced data. In this case, an objective interpolation scheme is used to map a horizontal 
flow or property field. Contouring of the output objective map is then done by the 
computer. Frequently, both the smoothing provided by objective analysis and the 
computer contouring can be performed by existing software routines. Sometimes 
problems with these programs arise, such as continuing to contour over land or the 
restriction to certain contour intervals. These problems must either be overcome in 
the computer routine or the data altered in some way to avoid the problems. 

In addition to computer mapping, the computer makes it possible to explore other 
presentations not possible in hand analyses. Three-dimensional plotting is one of the 
more obvious examples of improved data display possible with computers. For 
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Figure 2.21. Three-dimensional plot of water depth at 20 m contour interval off the southwest coast of 
Vancouver Island. The bottom plot is the two-dimensional projection of the topography. (Courtesy Gary 

Hamilton, Intelex Research.) 

example, Figure 2.21 shows a three-dimensional plot of coastal bottom topography 
and a two-dimensional projection (contour map) of the same field. One main 
advantage of the three-dimensional plot is the geometrical interpretation given to the 
plot. We can more clearly see both the sign and the relative magnitudes of the 
dominant features. A further benefit of this form of presentation is the ability to 
present views of the data display from different angles and perspectives. For example, 
the topography in Figure 2.21 can be rotated to emphasize the different canyons that 
cut across the continental slope. Any analysis which outputs a variable as a function of 
two others can benefit from a three-dimensional display. A well-known oceanic 
example is the Garrett-Munk spectrum for internal wave variability in the ocean 
(Figure 2.22) in which spectral amplitude based on observational data is plotted as a 
function of vertical wavenumber (m) and wave frequency (~). The diagram tells the 
observer what kind of spectral shape to expect from a specific type of profiling method. 
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Figure 2.22. Garrett-Munk energy spectrum for oceanic internal waves based on different types of 
observations. Spectral amplitude (arbitrary units) is plotted against m (the vertical wavenumber in cycles 
per meter) and ,~ (the wave frequency in cycles per hour). Here, m* is the wavenumber bandwidth, ~ is 
the horizontal wavenumber, N the buoyancy frequency, f the Coriolis parameter, and 7 = 
( 1 - - f 2 / o 2 )  1/2. MVC = moored vertical coherence and DLC - dropped lag coherence between 

vertically separated measurements. (From Garrett and Munk, 1979.) 

The introduction of color into journal papers represents another important change 
in presentation method. As mentioned in the discussion ~of vertical sections, color 
shading has been used traditionally to better visually resolve horizontal and vertical 
gradients. Most of these color presentations have been restricted to atlas and report 
presentations and were not available in journal articles. New printing procedures have 
made color more affordable and much wider use is being made of color displays. One 
area of recent study where color display has played a major role, is in the presentation 
of satellite images. Here, the use of false color enables the investigator to expand the 
dynamic range of the usual gray shades so that they are more easily recognizable by 
eye. False color is also used to enhance certain features such as sea surface temp- 
erature patterns inferred from infrared satellite images. The enhancements, and 
pseudo-color images, may be produced using a strictly defined function or may be 
developed in the interactive mode in which the analyst can produce a pleasing display. 
One important consideration in any manipulation of satellite images is to have each 
image registered to a ground map which is generally called "image navigation" in 
oceanographic jargon. This navigation procedure (Emery et al., 1989b) can be carried 
out using satellite ephemeris data (orbital parameters) to correct for earth curvature 
and rotation. Timing and spacecraft attitude errors often require the image to be 
"nudged" to fit the map projection exactly. An alternative method of image correction 
is to use a series of ground-control-points (GCPs) to navigate the image. GCPs are 
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usually features such as bays or promontories that stand out in both the satellite image 
and the base map. In using GCP navigation a primary correction is made assuming a 
circular orbit and applying the mean satellite orbital parameters. 

Access to digital image processing has greatly increased the investigator's capability 
to present and display data. Conventional data may be plotted in map form and 
overlain on a satellite image to show correspondence. This is possible since most 
image systems have one or more graphics overlay planes. Another form of present- 
ation, partly motivated by satellite imagery, is the time-sequence presentation of maps 
or images. Called "scene animation", this format produces a movie-style output which 
can be conveniently recorded on video tape. With widespread home use of video 
recorder systems, this form of data visualization is readily accessible to most people. A 
problem with this type of display is the present inability to publish video tapes or film 
loops. This greatly restricts the communication of results which show the time 
evolution of a spatial field such as that shown by a series of geographically coincident 
satellite images. 

Digital image manipulation also has changed the way oceanographers approach 
data display. Using an interactive system the scientist-operator can change not only 
the brightness scale assignment (enhancement) but can also alter the orientation, the 
size (zoom in, zoom out) and the overall location of the output scene using a joystick, 
trackball or mouse (digital tablet and cursor). With an interactive system, the three- 
dimensional display can be shifted and rotated to view all sides of the output. This 
allows the user to visualize areas hidden behind prominent features. 

As more oceanographers become involved with digital image processing and 
pseudo-color displays, there should be an increase in the variety of data and results 
presentations. These will not only add new information to each plot but will also make 
the presentation of the information more interesting and "colorful". The old adage of 
a picture being worth a thousand words is often true in oceanography and the interests 
of the investigators are best served when their results can be displayed in some 
interesting graphical or image form. 
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Statistical Methods and Error Handling 

3.1 I N T R O D U C T I O N  

This chapter provides a review of some of the basic statistical concepts and term- 
inology used in processing data. We need this information if we are to deal properly 
with the specific techniques used to edit and analyze oceanographic data. Our review 
is intended to establish a common level of understanding by the readers, not to 
provide a summary of all available procedures. 

In the past, all collected data were processed and reduced by hand so that the 
individual scientist had an opportunity to become personally familiar with each data 
value. During this manual reduction of data, the investigator took into account 
important information regarding the particular instrument used and was able to 
determine which data were "better" in the sense that they had been collected and 
processed correctly. Within the limits of the observing systems, an accurate des- 
cription of the data could be achieved without the application of statistical procedures. 
Individual intuition and familiarity with shipboard procedures took precedence in 
this type of data processing and analyses were made on comparatively few data. In 
such investigations, the question of statistical reliability was seldom raised and it was 
assumed that individual data points were correct. 

For the most part, the advent of the computer and electronic data collection meth- 
ods has meant that a knowledge of statistical methods has become essential to any 
reliable interpretation of results. Circumstances still exist, however, for which physi- 
cal oceanographers still assign considerable weight to the quality of individual 
measurements. This is certainly true of water sample data such as dissolved oxygen, 
nutrients, and chemical tracers collected from bottle casts. In these cases, the est- 
ablished methods of data reduction, including familiarity with the data and 
knowledge of previous work in a particular region, still produce valuable descriptions 
of oceanic features and phenomena with a spatial resolution not possible with 
statistical techniques. However, for those more accustomed to having data collected 
and/or delivered on high density storage media such as magnetic tape, CD-ROM, or 
floppy disk, statistical methods are essential to determining the value of the data and 
to decide how much of it can be considered useful for the intended analysis. This 
statistical approach arises from the fundamental complexity of the ocean, a 
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multivariate system with many degrees of freedom in which nonlinear dynamics and 
sampling limitations make it difficult to separate scales of variability. 

A fundamental  problem with a statistical approach to data reduction is the fact that 
the ocean is not a stationary environment in which we can make repeated measure- 
ments. By "stationary" we mean a physical system whose statistical properties remain 
unchanged with time. In order to make sense of our observations, we are forced to 
make some rather strong assumptions about our data and the processes we are trying 
to investigate. Basic to these assumptions is the concept of randomness and the 
consequent laws of probability. Since each oceanographic measurement can be con- 
sidered a superposition of the desired signal plus unwanted noise (due to measure- 
ment errors and unresolved geophysical variability), the assumption of random 
behavior often is applied to both the signal and the noise. We must consider not only 
the statistical character of the signal and noise contributions individually but also the 
fact that the signal and the noise can interact with each other. Only through the 
application of the concept of probability can we make the assumptions required to 
reduce this complex set of variables to a workable subset. Our brief summary of 
statistics will emphasize concepts pertinent to the analysis of random variables such as 
probability density functions and statistical moments (mean, variance, etc.). A brief 
glossary of statistical terms can be found in Appendix B. 

3.2 S A M P L E  D I S T R I B U T I O N S  

Fundamental  to any form of data analysis is the realization that we are usually 
working with a limited set (or sample) of random events drawn from a much larger 
population. We use our sample to make estimates of the true statistical properties of 
the population. Historically, studies in physical oceanography were dependent on too 
few data points to allow for statistical inference ~ and individual samples were 
considered representative of the true ocean. Often, an estimate of the population 
distribution is made from the sample set by using the relative frequency distribution, 
or histogram, of the measured data points. There is no fixed rule on how such a 
histogram is constructed in terms of ideal bin interval or number of bins. Generally, 
the more data there are, the greater the number of bins used in the histogram. Bins 
should be selected so that the majority of the measurements do not fall on the bin 
boundaries. Since the area of a histogram bin is proportional to the fraction of the 
total number of measurements in that interval, it represents the probability that an 
individual sample value will lie within that interval (Figure 3.1). 

The most basic descriptive parameter for any set of measurements is the sample 
mean. The mean is generally taken over the duration of a time series (time average) or 
over an ensemble of measurements (ensemble mean) collected under similar 
conditions (Table 3.1). If the sample has N data values, Xl, x2, ... , Xx, the sample 
mean is calculated as 

1 N X-=-~ZXi. (3.2.1) 
1=1 

The sample mean is an unbiased estimate of the true population mean,/~. Here, an 
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Figure 3.1. Histogram giving the percentage occurrences for the times of satellite position fixes during a 
24-h day. Data are for satellite-tracked surface drifter #4851 deployed in the northeast Pacific Ocean 
from 10 December 1992 to 28 February 1993. During this 90-day period, the satellite receiver on the 

drifter was in the continuous receive mode. 

Table 3.1. Statistical values for the data set x - { x i ,  i - 1 . . . . .  9} = {-3, -1, O, 2, 5, 7, 11, 12, 12} 

Standard 
Mean ~ Variance s ~2 Variance s 2 deviation, s Range Median Mode 

5.00 30.22 34.00 5.83 15 5 12 

"unbiased" estimator is one for which the expected value, E[x], of the estimator is 
equal to the parameter  being estimated. In this case, E[x] = #  for which ~ is an 
"unbiased estimator. The sample mean locates the center of mass of the data 
distribution such that 

N 

(.X" i - - .~)  -- 0 
i=1 

that is, the sample mean splits the data so that there is an equal weighting of negative 
and positive values of the fluctuation, x ~-- x i -  ~, about the mean value, ~. The 
weighted sample mean is the general case of (3.2.1) and is defined as 

_ 1 ~-~fixi (3 .2 .2 )  X - - ~ .  
l = l  

where f i / N  is the relative frequency of occurrence of the ith value for the particular 
experiment or observational data set. In (3.2.1), fi - 1 for all i. 

The sample mean values give us the center of mass of a data distribution but not its 
width. To determine how the data are spread about the mean, we need a measure of 
the sample variability or variance. For the data used in (3.2.1), the sample variance is the 
average of the square of the sample deviations from the sample mean, expressed as 
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S t 2  1 N ~ (X i __ ~)2 (3.2.3) 
i=l 

The sample standard deviation s ~ = v / ~  the positive square root of (3.2.3), is a measure 
of the typical difference of a data value from the mean value of all the data points. In 
general, these differ from the corresponding true population variance, a2, and the 
population standard deviation, ~. As defined by (3.2.3), the sample variance is a biased 
estimate of the true population variance. An unbiased estimator of the population 
variance is obtained from 

s2 - 1 N 
- N----Z-T_ 1 ~. (Xi- ~-)2 (3.2.4a) 

1=1 

N -  1 (xil2 1 = ~ _ ( ).~.?.ah... _ _~, 
i=1 N i=1 

where the denominator  N -  1 expresses the fact that we need at least two values to 
define a sample variance and standard deviation, s. The use of the estimators s versus s' 
is often a matter  of debate among oceanographers, although it should be noted that the 
difference between the two values decreases as the sample size increases. Only for 
relatively small samples (N < 30) is the difference significant. Because s' has a smaller 
mean square error than s and is an unbiased estimator when the population mean is 
known a priori, we recommend the use of (3.2.4). However, a word of caution: if your 
hypothesis depends on the difference between s and s t, then you have ventured onto 
shaky statistical ground supported by questionable data. We further note that the 
expanded relation (3.2.4b) is a more efficient computational formulation than (3.2.4a) 
in that it allows one to obtain s 2 from a single pass through the data. If the sample mean 
must be calculated first, two passes through the same data set are required rather than 
one, which is computationally less efficient when dealing with large data sets. " 

Other statistical values of importance are the range, mode, and median of a data 
distr ibution (Table 3.1). The range is the spread or absolute difference between the 
end-point values of the data set while the mode is the value of the distribution that 
occurs most often. For example, the data sequence 2, 4, 4, 6, 4, 7 has a range of 
12 -  7] = 5 and a mode of 4. The median is the middle value in a set of numbers  
arranged according to magni tude (the data sequence - 1 ,  0, 2, 3, 5, 6, 7 has a median of 
3). If there is an even number  of data points, the median value is chosen mid-way 
between the two candidates for the central value. Two other measures, skewness (the 
third moment  of the distribution and degree of asymmetry of the data about the mean) 
and kurtosis (a nondimensional  number  measuring the flatness or peakedness of a 
distribution) are less used in oceanography. 

As we discuss more thoroughly later in this chapter, the shapes of many sample 
distr ibutions can be approximated by a normal (also called a bell or Gaussian) distri- 
bution. A convenient aspect of a normal population distr ibution is that we can apply 
the following empirical "rule of thumb"  to the data: 

# _+ cr spans approximately 68% of the measurements;  
# _ 2a spans approximately 95% of the measurements;  
# _ 3~ spans most (99%) of the measurements .  
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The percentages are represented by the areas under the normal distribution curve 
spanned by each of the limits (Figure 3.2). We emphasize that the above limits apply 
only to normal distributions of random variables. 

Figure 3.2. Normal distribution f(x) for mean # and standard deviation a of the random variable X. 
(From Harnett and Murphy, 1975.) 

3.3 P R O B A B I L I T Y  

Most data collected by oceanographers are made up of samples taken from a larger 
unknown population. If we view these samples as random events of a statistical 
process, then we are faced with an element of uncertainty: "What are the chances that 
a certain event occurred or will occur based on our sample?" or "How likely is it that a 
given sample is truly representative of a certain population distribution? " (The last 
question might be asked of political pollsters who use small sample sizes to make 
sweeping statements about the opinions of the populace as a whole.) We need to find 
the best procedures for inferring the population distribution from the sample 
distribution and to have measures that specify the goodness of the inference. 
Probability theory provides the foundation for this type of analysis. In effect, it 
enables us to find a value between 0 and 1 which tells us just how likely is a particular 
event or sequence of events. A probability is a proportional measure of the occurrence 
of an event. If the event has a probability of zero, then it is impossible; if it has a 
probability of unity, then it is certain to occur. Probability theory as we know it today 
was initiated by Pascal and Fermat in the seventeenth century through their interest 
in games of chance. In the eighteenth century, Gauss and Laplace extended the theory 
to social sciences and actuarial mathematics. Well-known names like R. A. Fisher, J. 
Neyman, and E. S. Pearson are associated with the proliferation of statistical 
techniques developed in the twentieth century. 

The probability mass function, P(x), gives the relative frequency of occurrence of each 
possible value of a discrete random variable, X. Put another way, the function 
specifies the point probabilities P ( x i )  = P(X  - xi) and assumes nonzero values only at 
points X = xi, i = 1, 2, .... One of the most common examples of a probability mass 
function is the sum of the dots obtained from the roll of a pair of dice (Table 3.2). 
According to probability theory, the dice player is most likely to roll a 7 (highest 
probability mass function) and least likely to roll a 2 or 12 (lowest probability mass 
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Table 3.2. The discrete probability mass function and cumulative probability functions for the sum of the 
dots (variable X) obtained by tossing a pair of dice 

Sum of 
dots Frequency of Relative Probability mass 
(X) occurrence frequency function, P(x) 

Cumulative probability 
function F(x) = P(X <_ x) 

2 1 1/36 P(x = 2 ) =  1/36 
3 2 2/36 P(x = 3 ) =  2/36 
4 3 3/36 P(x = 4) = 3/36 
5 4 4/36 P(x = 5) = 4/36 
6 5 5/36 P(x = 6) = 5/36 
7 6 6/36 P(x = 7) = 6/36 
8 5 5/36 P(x = 8) = 5/36 
9 4 4/36 P(x = 9) = 4/36 

10 3 3/36 P(x - 10) = 3/36 
11 2 2/36 P(x = 11) = 2/36 
12 1 1/36 P(x = 12)  = 1/36 

SUM 36 1.00 

F(2) = P(X <_ 2) = 1/36 
F(3) = P(X <_ 3) = 3/36 
F(4) = P(X <_ 4) = 6/36 

F(5) - P(X <_ 5) = 10/36 
F(6) = P(X <_ 6) = 15/36 
F(7) = P(X <_ 7) = 21/36 
F(8) = P(X <_ 8) - 26/36 
F(9) = P(X <_ 9) = 30/36 

F(IO) =P(X_< 10) = 33/36 
Fll) =P(X_< 11) = 35/36 

F(12) = P(X <_ 12) = 1 
1 . 0 0  

function).  The  dice example  reveals two of the fundamenta l  propert ies  of all discrete 
probabi l i ty  functions: (1) 0 _< P(X = x); and (2) ~ P(x) = 1, where the summat ion  is 
over all possible values of x. The counterpar t  to P(x) for the case of a cont inuous  

r andom variable X is the probability density function (abbreviated,  PDF) , f (x ) ,  which we 
discuss more  fully later in the chapter .  For the cont inuous  case, the above 
fundamen ta l  propert ies  become: (1) 0_<f(x) ;  and ( 2 ) f f ( x ) d x =  1 where the 
in tegra t ion  is over all x in the range ( - ~ ,  ~ ) .  

To fur ther  i l lustrate the concept  of probabili ty,  consider  N independen t  trials, each 
of which has the same probabi l i ty  of "success" p and probabil i ty  of " fa i lure"  
q = 1 - p .  The  probabil i ty  of success or failure is unity; p + q = 1. Such trials involve 

b inomial  d is t r ibut ions  for which the outcomes can be only one of two events: for 
example ,  a tossed coin will produce a head or a tail; an XBT will work or it won't  work. 
If  X represents  the n u m b e r  of successes that occur in the N trials, then X is said to be 
a discrete r andom variable having parameters  (N, p). The  term "Bernoul l i  t r ial"  is 

somet imes  used for X. The probabi l i ty  mass function which gives the relative 
f requency of occurrence of each value of the random variable X having parameters  (N, 
p) is the b inomial  d is t r ibut ion 

p(x)_ (N) )N-x x p x ( 1 - P  ' x = 0, 1, ..., N (3.3.1a) 

where the expression 

(3.3.1b) 

is the n u m b e r  of different  combinations of groups ofx  objects that  can be chosen from a 

total set of N objects without  regard to order. The n u m b e r  of different  combinat ions  of 
x objects is always fewer than the number  of permutations, NPx, of x objects 
[NPx =--N!/(N-x)!].  In the case of permuta t ions ,  dif ferent  order ing of the same 
objects counts  for a different  pe rmuta t ion  (i.e. ab is different  than ba). As an example,  
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the number of possible different batting orders (permutations) a coach can create 
among the first four hitters on a nine-person baseball team is 9!/(9 - 4)! = 9!/5! = 
3024. In contrast, the number of different groups of ball-players a coach can put in the 
first four lead-off batting positions without regard to batting order is 9!/[(9 - 4)!4!] = 
9!/5!4! = 126. The numbers 

(N) 
x 

often are called binomial coefficients since they appear as coefficients in the expansion 
of the binomial expression (a + b) N given by the binomial theorem: 

N() (a + b)n _ ~-~ N akbn_ k 
k-o k 

(3.3.2) 

The summed probability mass function 

b 

P(a <_ x <_ b) - ~ P(x) 
(l 

for variable X over a specified range of values (a, b) can be demonstrated by a simple 
oceanographic example. Suppose there is a probability 1 - p  that a current meter will 
fail when moored in the ocean and that the failure is independent from current meter 
to current meter. Assume that a particular string of meters will successfully measure 
the expected flow structure if at least 50% of the meters on the string remain 
operative. For example, a two-instrument string used to measure the barotropic flow 
will be successful if one current meter remains operative while a four-instrument 
string used to resolve the baroclinic flow will be successful if at least two meters 
remain operative. We then ask: "For what values ofp is a four-meter array preferable 
to a, two-meter  array?" Since each current meter is assumed to fail or function 
independently of the other meters, it follows that the number of functioning current 
meters is a binomial random variable. The probability that a four-meter mooring is 
successful is then 

4 (  4 ) 4-~ 
P(2 _< x _< 4 ) =  ~ p k ( 1 - p )  

k=2 k 

( 4 )  )2 ( 4 )  ( 4 )  )0 
= 2 p 2 ( 1 - P  + 3 p 3 ( 1 - p ) I +  4 p 4 ( 1 - P  

__ 6p2(1 _p)2 _+_ 4p3(1 _p ) l  _+_p4 

Similarly, the probability that a two-meter array is successful is 

2 (  2 ) )2-k 
P ( I _ < x < _ 2 ) - Z  k pk(1 - p  

k=l  

=2p(1 _p )  +p2 

From these two relations, we find that the four-meter string is more likely to succeed 
when 
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6p2(1 _p)2 + 4p3(1 _p) l  q_p4 ~ 2p(1 - p ) + p 2  

or, after some factoring and simplification, when 

( p -  1)2 + ( 3 p -  2) >_ 0 

for which we find 3 p -  2 > 0, or p > 2/3. When compared to the two-meter array, the 
four-meter array is more likely to do its intended job when the probability, p, that the 
instrument works is p > 2/3. The two-meter array is more likely to succeed when 
p<_2/3. 

As the previous example illustrates, we often make the fundamental assumption 
that each sample in our set of observations is an independent realization drawn from a 
random distribution. Individual events in this distribution cannot be predicted with 
certainty but their relative frequency of occurrence, for a long series of repeated trials 
(samples), is often remarkably stable. We further remark that the binomial distri- 
bution is only one type of probability density function. Other distribution functions 
will be discussed later in the chapter. 

3.3.1 Cumulative probability functions 

The probability mass function yields the probability of a specific event or probability 
of a range of events. From this function we can derive the cumulative probability 
function, F(x)--also called the cumulative distribution function, cumulative mass 
function, and probability distribution functionmdefined as that fraction of the 
total number of possible outcomes X (a random variable) which .are less than a 
specific value x (a number). Thus, the distribution function is the probability that 
X<_x, or 

F(x) = P ( X  < x) 

= ~ P(x),-oo < x < oc (discrete random variable, X) (3.3.3a) 
allX_<x 

Y 

- / f(x) dx (continuous random variable, X) (3.3.3b) 
I J, 

- - O O  

The discrete cumulative distribution function for tossing a pair of fair dice (Table 3.2) 
is plotted in Figure 3.3. Since the probabilities P and fare  limited to the range 0 and 1, 
we have F ( - o c ) =  0 and F ( o c ) =  1. In addition, the distribution function F(x) is a 
nondecreasing function of x, such that F (Xl )<  F(x2) for xl < x2, where F(x) is 
continuous from the right (Table 3.2). 

It follows that, for the case of a continuous function, the derivative of the 
distribution function F with respect to the sample parameter, x 

dF(x) (3.3.4) 
f ( x ) =  dx 

recovers the probability density function (PDF),f. As noted earlier, the PDF has the 
property that its integral over all values is unity 
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p ( x  = x) = f(x) 

6/36 

5/36 
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Figure 3.3. The discrete mass function P(x) and cumulative distribution function F(x) from tossing a pair 
of dice (see Table 3.2). (From Harnett and Murphy, 1975.) 

OO 

f (x) dx - F ( ~ )  - F ( - ~ )  - 1 

- -  ( X )  

In the limit dx-- ,  0, the fraction of outcomes for which x lies in the interval 
x < x'  < x + dx is equal to f ( x ' ) d x ,  the probability for this interval. The random 
variables being considered here are continuous so that the PDF can be defined by 
(3.3.4). Variables with distribution functions that contain discontinuities, such as the 
steps in Figure 3.3, are considered discrete variables. A random variable is considered 
discrete if it assumes only a countable number of values. In most oceanographic 
sampling, measurements can take on an infinity of values along a given scale and the 
measurements are best considered as continuous random variables. The function F(x) 
for a continuous random variable X is itself continuous and appears as a smooth 
curve. Similarly, the PDF for a continuous random variable X is continuous and can 
be used to evaluate the probability that X falls within some interval [a, b] as 

b 

P(a <_ X <_ b) - f f(x) 
a 

(3.3.5) 

3.4 M O M E N T S  A N D  E X P E C T E D  V A L U E S  

The discussion in the previous section allows us to determine the probability of a 
single event or experiment, or describe the probability of a set of outcomes for a 
specific random variable. However, our discussion is not concise enough to describe 
fully the probability distributions of our data sets. The situation is similar to section 
3.2 in which we started with a set of observed values. In addition to presenting the 
individual values, we seek properties of the data such as the sample mean and variance 
to help us characterize the structure of our observations. In the case of probability 



202 Data Analysis Methods in Physical Oceanography 

distributions, we speak not of observed mean and variance but of the expected mean and 
variance obtained from an infinite number of realizations of the random variable 
under consideration. 

Before discussing some common PDFs, we need to review the computation of the 
parameters used to describe these functions. These parameters are, in general, called 
"moments" by analogy to mechanical systems where moments describe the distri- 
bution of forces relative to some reference point. The statistical concept of degrees-of- 
freedom is also inherited from the terminology of physical-mechanical systems where 
the number of degrees-of-freedom specifies the motion possible within the physical 
constraints of the mechanical system and its distribution of forces. As noted earlier, 
the population mean, #, and standard deviation, 0., define the first and second 
moments which describe the center and spread of the probability function. In general, 
these parameters do not uniquely define the PDF since many different PDFs can have 
the same mean and standard deviation. However, in the case of the Gaussian 
distribution, the PDF is completely described by # and 0.. In defining moments we 
must be careful to distinguish between moments taken about the origin and moments 
taken about the mean (central moments). 

When discussing moments it is useful to introduce the concept of expected value. 
This concept is analogous to the notion of weighted functions. For a discrete random 
variable, X, with a probability function P(x) (the discrete analogue to the continuous 
PDF), the expected value of X is written as E[X] and is equivalent to the arithmetic 
mean, #, of the probability distribution. In particular, we can write the expected value 
for a discrete PDF as 

N 

E[x] = ~ yiP(xi) - -  # (3.4.1) 
i=1 

where # is the population mean introduced in Section 3.2. The probability function 
P(x) serves as a weighting function similar to the functionf-v/N in equation .(3.2.2). The 
difference is thatf.JN is the relative frequency for a single set of experimental Sampl~s 
whereas P(x) is the expected relative frequency for an infinite number of samples from 
repeated trials of the experiment. The expected value, E[X], for the sample which 
includes X, is the sample mean, ~. Similarly, the variance of the random variable X is 
the expected value of ( X -  #)2, or 

N 
V{X] -- E [ ( X -  # ) 2 ]  _ ~ (x - #)2p(xi) - 0 .2 ( 3 . 4 . 2 )  

i=1 

In the case of a continuous random variable, X, with PDF f(x), the expected value is 

O(3 

E[X] = J xf (x) dx (3.4.3) 
- -  ( X 3  

while for any function g(X) with a PDF f(x), the expected value can be written as 

E[X] = / g(x)f (x) dx (continuous variable) (3.4.4a) 
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N 
= ~-~g(xi)P(xi) (discrete case) (3.4.4b) 

i=1 

Some useful properties of expected values for random variables are: 

(1) For c = constant; E[c] = c, V[c] =0; 
(2) E[cg(X)] = cE[g(X)], V[cg(X)] = c2V[g(X')]; 
(3) E[gl (X) 4- g2(X)  4- ... ] : E[gl (X)] •  4- ... ]; 
(4) V[g(X)] = E[(g(X) tL) 2] = E[g(X) 2] - t f l ,  (variance about the mean); 

(5) E[glg2] -- E[gl ]E[g2] ;  
(6) V[gl 4-g2] - Vigil + V[g2] 4- 2C[gl, g2]. 

Property (6) introduces the covariance function of two variables, C, defined as 

C[gl, g2] = E[glg2] - E[gl]E[g2] (3.4.5) 

where C = 0 when gl and g2 are independent random variances. Using properties (1) to 
(3), we find that E[Y] for the linear relation Y - a + bX can be expanded to 

E[Y] - E[a + bX] - a + bE[X] 

while from (1) and (6)we find 

V[Y] = V[a + bX] -- b2V[X] 

At this point, we remark that averages, expressed as expected values, E[X], apply to 
ensemble averages of many (read, infinite) repeated samples. This means that each 
sample is considered to be drawn from an infinite ensemble of identical statistical 
processes varying under exactly the same conditions. In practice, we do not have 
repeated samples taken under identical conditions but rather time (or space) records. 
In using time or space averages as representative of ensemble averages, we are 
assuming ~ a t  our records are ergodic. This implies that averages over an infinite 
ensemble can be replaced by an average over a single, infinitely long time series. An 
ergodic process is not to be confused with a stationary process for which the PDF of 
X(t)  is independent of time. In reality, time/space series can be considered stationary 
if major shifts in the statistical characteristics of the series occur over intervals that 
are long compared to the averaging interval so that the space/time records remain 
homogeneous (exhibit the same general behavior) throughout the selected averaging 
interval. A data record that is quiescent during the first half of the record and then 
exhibits large irregular oscillations during the second half of the record is not 

stationary. 

3.4.1 Unbiased estimators and moments 

As we stated earlier, ~ and s 2 defined by (3.2.2) and (3.2.4) are unbiased estimators of 
the true population mean, #, and variance, a 2. That is, the expected values of ~ and 
( x -  ~)2 are equal to # and a 2, respectively. To illustrate the nature of the expected 
value, we will first prove that E(~) = #. We write the expected value as the normalized 

sum of all 2 values 
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I N ~  ] 1~-~ 1~-~ E[X]  - -  E Xi - ~ - ~  E[x i ]  = ~ l~ - -  t-Z 
i=1 i=1 i=1 

as required. Next, we demonstrate that E[s 2] = 0-2. We again use the appropriate 
definitions and write 

1 - 1 - 1 Z (Xi- ~)2 
i=1 

=E[NI_I {~__I [(xi-#)2-N(x-#)2]} ] 

= N----2~ Z ( ~  - ( N -  1) - o .2 
i=1 N - 1  

where we have used the relations Xi --  :~ - -  (Xi -- ].Z) 2 (2  -- ~ ) ,  E [ ( x i  - # ) 2 ]  _ V[x i ]  - 0 -2 

(the variance of an individual trial) and E [ ( ~ -  #) ] - V[~] - o2/N (the variance of 
the sample mean relative to the population mean). The last expression derives from 
the central limit theorem discussed in Section 3.6. 

Returning to our discussion of statistical moments, we define the ith moment of the 
random variable X, taken about the origin, as 

E [  Xz]  - fl, i ( 3 . 4 . 6 )  

Thus, the first moment about the origin (i=1) is the population mean, # - # 1 .  
Similarly, we can define the ith moment of X taken about the mean (called the ith 
central moment of X) as 

E [ ( X -  ~) i ]  - -  ~ i  ( 3 . 4 . 7 )  

The population variance, a~ 2, is the second (i - 2) central moment, #2. 

3.4.2 Moment  generating functions 

Up to this point, we have computed the various characteristics of the random variable 
X using the probability functions directly. Now, suppose we look for a "generating" 
function that enables us to find all of the expected properties of the variable X using 
just this one function. For a discrete or continuous random variable X we define a 
moment generating function as m(t) = E[e tx] for the real variable, t. The moment 
generating function m(t) serves two purposes. First, if we can find E[etX], we can find 
any of the moments of X; second, ifm(t) exists it is unique and can be used to establish 
that both random variables have the same probability distributions. In other words, it 
is not possible for random variables with different probability distributions to have 
the same moment generating functions. Likewise, if the moment generating functions 
for two random variables are the same, then both variables must have the same 
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probability distribution. For a single-valued function X with a probability function, 
P ( X  = xk), k = 1, 2, ... in the discrete case, andf(x) in the continuous case, the moment 
generating function, m(t), is 

OO 

m(t) = E[e tx] = E et~'iP(xi) (3.4.7a) 
i=1 

OG 

= f etXf(x)dx (3.4.7b) 

- -OO 

The advantages of the moment  generating function become more apparent if we 
expand e tx in the usual way to get 

e tx = 1 + tX  + (tX)2/2! + ... + (tX) n/n! + ... 

and apply this to m(t) so that 

m(t) = E[e tx] - El1 + tX  + (tX)2/2! + ... + (tX)n/n! + ... ] 

= 1 + tE[X] + t2E[X2]/2! + ... + tnE[X~]/n!+ ... 
(3.4.8) 

Taking the derivatives of (3.4.8), we find 

m'(t) = E[X] + tE[X 2] + ... + tn-lE[X~]/(n - 1)! + ... 

m"(t) = E[X 2] + tE[X 3] + ... + tn-2E[Xn]/(n - 2)! + ... 

(3.4.9a) 
(3.4.9b) 

and so on (here, m' = dm/dt). Setting t = 0 in (3.4.9) and continuing in the same way, 
we obtain 

m' (0) = E[X]; m" (0) = E[X2]; ... ; m (n) (0) = E[X"] (3.4.10) 

In other words, we can easily obtain all the moments of the generating function m(t) 
from the derivatives evaluated at t = 0. Specifically, we note that 

E[X] = m'(0) (3.4.1 la) 

V[X] = E [ X  2] - ( E [ X ] )  2 = m" (0) - [m'(0)] 2 (3.4.1 lb) 

As a first example, suppose that the discrete variable X is binomially distributed 
with parameters N and p as in (3.3.1a). Then 

m(t) = E etk (1 - p  
k-0 k pk 

N (  N ) )k p)N-k e t = E  k (pe t ( 1 -  - [ p  + ( 1 - - p ) l N  
k=0 

where we have used the binomial expansion 
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from (3.3.2). Taking the derivatives of this function and evaluating the results at t - 0, 
as per (3.4.11), yields the mean and variance for the binomial probability function, 

E[X] - m' (0) - Np 

V[X] - m"(O) - {m'(O)}2= Np(1 - p )  - Npq 

As a further example, consider the density of a continuous random variable x given by 

f ( x ) - a 2 x e  -~x, if x > 0  

= 0, otherwise 

Using (3.4.7b), we first write the moment generating function m(t) as 

Oo OO 

m ( t ) -  / e t X f ( x ) d x - o ~ 2 / x e - ( ~ - t ) X d x  

--OC, 0 

For a - t  > 0, and hence t < a 

OC 

m(t) = a 2 / x e-(~-tlXdx 

o 

[ - t) o - t )  ( a - t )  2 ( a - t )  2' 
fo r t  < a  

For t >_ a, m(t) is not defined. Using (3.4.11), we find 

E[X] - m'(t = O) = # = 
2a 2 

(o~ - t) 3 t = 0  

2 

cr 

Similarly, we find the second moment V [ X ] -  m" as 

V[X] - m"(t - O) - #2 = 6a2 I - - / 2 2  - -  6/a2 - 4/a2 -- 2/a2 
(a --t) 4 t-0 

Several properties of moment generating functions (MGFs) are worth mentioning 
since they may be used to simplify more complicated functions. These are: (1) if the 
random variable X has a moment generating function m(t), then the MGF of the 
random variable Y -  a X  + b is m(t) - ebtm(at); (2) if X and Y are random variables 
with respective MGFs m(t; X)  and m(t: Y), and if m(t: X)  - m(t: Y) for all t, then X and 
Y have the same probability distribution; (3) If Xk, k - 1, . . . ,  n, are independent 
random variables with MGFs defined by m(t: Xk), then the MGF of the random 
variable Y - X~ + X2 + ... § X,, is given by the product, m(t: Y) - m(t: X~)m(t: X2) ... 
m(t: X,,). 

For convenience, the probability density functions, means, variances, and moment 
generating functions for several common continuous variables are presented in 
Appendix C. Moments allow us to describe the data in terms of their PDFs. 
Comparisons between moments from two random variables will establish whether or 
not they have the same PDF. 
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3.5 C O M M O N  P R O B A B I L I T Y  D E N S I T Y  F U N C T I O N S  

207 

The purpose of this section is to provide examples of three common PDFs. The first is 
the uniform PDF given by 

1 
f ( x )  - ~ ,  Xl ~ x ~ x2 

x2 -X l  (3.5.1) 
= 0, otherwise 

(Figure 3.4) which is the intended PDF of random numbers generated by most 
computers and handheld calculators. The function is usually scaled between 0 and 1. 
The cumulative density function F(x) given by (3.3.3b) has the form 

F(x) - 0, x ~ x 1  
x - x 1  

x2 -- Xl 
~ ,  xl <_x <_x2 

--1,  x>x2  

while the mean and standard deviation of (3.5.1) are given by ~ = (x2 +xl)/2 and 
~r -- (xz - xl  ) /2V/3.  

f(x) 

I 

(b-~) 

(a) 

a b x 

F(x) 

I.O 

o.$ 

(b) 

1 

a b X 

Figure 3.4. Uniform probability density distribution functions. (a) The probability density function, f(x); 
and (b) the corresponding cumulative probability distribution function, F(x). (From Bendat and Piersol, 

1986.) 
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Perhaps the most familiar and widely used PDF is the normal (or Gaussian) density 
function: 

e[-(x-i~)2/2~] 
f (x )= , a > 0 , - ~ < # < ~ , - e ~ < x < e ~  (3.5.2) 

crv/(27r) 

where the parameter ~ represents the standard deviation (or spread) of the random 
variable X about its mean value # (Figure 3.2). For convenience, (3.5.2) is often 
written in shorthand notion as N(#,  r The height of the density function at 
x = # is 0.399/~. The cumulative probability distribution of a normally distributed 
random variable, X, lying in the interval a to b is given by the integral (3.3.5) 

~a b e [-(x-~)2/2~z] 
P(a <_ X <_ b) - ~v/(2~ ) dx (3.5.3) 

which is the area under the normal curve between a and b. Since a closed form of this 
integral does not exist, it must be evaluated by approximate methods, often involving 
the use of tables of areas. We have included a table of curve areas in Appendix D 
(Table D.1). The normal distribution is symmetric with respect to # so that areas need 
to be tabulated only on one side of the mean. For example, P(#  _< x _< # + 1~) = 
0.3413 so by symmetry P(#  - 1 cr < x < # + 1~) = 2(0.3413) = 0.6826. The latter is the 
value used in the rule of thumb estimates for the range of the standard deviation, ~. 
For the normal distribution, the tabulated values represent the area between the mean 
and a point z, where z is the distance from the mean measured in standard deviations. 
This leads to the familiar transform for a normal random variable X given by 

X - #  
Z - ~ (3.5.4) 

called the standardized normal variable. The variable Z gives the distances of points 
measured from the mean of the normal random variable in terms of the standard 
deviation of the normal random variable, X (Figure 3.5). The standard normal 
variable Z is normally distributed with a mean of zero (0) and a standard deviation of 
unity (1). Thus, if X is described by the function N(#, eft), then Z is described by the 
function N(0, 1). 

Our third continuous PDF is the gamma density function which applies to random 
variables which are always nonnegative thus producing distributions that are skewed 
to the right. The gamma PDF is given by 

xr~- l e-x / /3 
f(x) - a, fl > 0; 0 _< x _< c~ (3.5.5) 

- O, elsewhere 

where a and 3 are parameters of the distribution and F(c~) is the gamma function 

OC 

r(a)= f x'~-le-Xdx (3.5.6) 

0 

For any integer n 
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Figure 3.5. Distribution f(z) for the standardized normal random variable, Z = ( X -  # ) /a  (cf. Figure 
3.2). (From Harnett and Murphy, 1975.) 

F(n)  - (n - 1) (3.5.7) 

while for a continuous variable c~ 

F(r = ( ~ -  1 ) F ( ~ -  1), for c~ _> 1 (3.5.8) 

where F(1)  = 1. Plots of  the g a m m a  P D F  for fl = 1 and three values of  the parameter r 
are presented in Figure 3.6. Since it is again impossible to define a closed form of the 
integral of the PDF in (3.5.5), tables are used to evaluate probabilities from the PDF. 

One particularly important gamma density function has a PDF with ~ = v /2  and 
/3 = 2. This is the chi-square random distribution (written as ~r and pronounced "ki 
square") with u degrees of freedom (Appendix D, Table D.2). The chi-square distri- 
bution gets its name from the fact that it involves the square of  normally  distributed 
random variables, as we will explain shortly. Up to this point, we have dealt with a 

- 2  

a = 4  

0 X 

Figure 3.6. Plots of the gamma function for various values of the parameter c~ (~ = 1). 
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single random variable X and its standard normalized equivalent, Z = ( X -  #)/~r. We 
now wish to investigate the combined properties of more than one standardized 
independent normal variable. For example, we might want to investigate the 
distributions of temperature differences between reversing thermometers and a 
CTD thermistor for a suite of CTD versus reversing thermometer intercomparisons 
taken at the same location. Each cast is considered to produce a temperature dif- 
ference distribution Xk with a mean #k and a variance a~. The set of standardized 
independent normal variables Zk formed from the casts is assumed to yield u 
independent standardized normal variables Z1, Z2, ..., Z~. The new random variable 
formed from the sum of the squares of the variables Z1, Z2, ... , Z~ is the chi-square 
variable X 2 where 

X2t, - -  a ~  q- g~  n t- ... --t- 2 2  (3.5.9) 

has ~, degrees of freedom. For the case of our temperature comparison, this represents 
the square of the deviations for each cast about the mean. Properties of the distri- 
bution are 

Mean - E[X2~] - 
(3.5.10a) 

Variance - E[(X2~, - r,) 2] - 2r, (3.5.10b) 

We will make considerable use of the function k: 2 in our discussion concerning 
confidence intervals for spectral estimates. 

It bears repeating that probability density functions are really just models for real 
populations whose distributions we do not know. In many applications, it is not 
important that our PDF be a precise description of the true population since we are 
mainly concerned with the statistics of the distributions as provided by the probability 
statements from the model. It is not, in general, a simple problem to select the right 
PDF for a given data set. Two suggestions are worth mentioning: (D Use available 
theoretical considerations regarding the process that generated the data; and (2) use 
the data sample to compute a frequency histogram and select the PDF that best fits 
the histogram. Once the PDF is selected, it can be used to compute statistical 
estimates of the true population parameters. 

We also keep in mind that our statistics are computed from, and thus are functions 
of, other random variables and are, therefore, themselves random variables. For 
example, consider sample variables XI, X2, ..., XN from a normal population with 
mean # and variance G2, then 

- -  1 N 
X = ~ Z X i  (3.5.11) 

i=1 

is normally distributed with mean # and variance o2/N. From this it follows that 

Z - ~ - # - ~ - # -  - = x/N ~ - / z  (3.5.12) 
o/v  

has a standard normal distribution N(0, 1) with zero mean and variance of unity. 
Using the same sample, XI, X2, ..., XN, we find that 
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1 N (N 1)s 2 2 (3.5.13) 
0.2 ~ (gi - ~ ) 2  - 

- -  0 .  2 - -  Xu i=1 

has a chi-square distribution (X 2) with L, - ( N -  1) degrees of freedom. (Only N -  1 
degrees of freedom are available since the estimator requires use of the mean which 
reduces the degrees of freedom by one.) Here, the sample standard deviation, s, is an 
unbiased estimate of 0.. We also can use ( X - X ) / ( s / v / N )  as an estimate of the 
standard normal statistic, (X-#) / (0 . /v /N) .  The continuous sample statistic 
( X - X ) / ( s / v / N )  has a PDF known as the Student's t-distribution (Appendix D, 
Table D.3) with ( N -  1) degrees of freedom. The name derives from an Irish statistic- 
ian named W. S. Gossett who was one of the first to work on the statistic. Because his 
employer would not allow employees to publish their research, Gossett published his 
results under the name "Student" in 1908. Mathematically, the random variable t is 
defined as a standardized normal variable divided by the square root of an independ- 
ently distributed chi-square variable divided by its degrees of freedom; viz. 
t -  z/  v/(xz /L,), where z is the standard normal distribution. Thus, one can safely 
use the normal distribution for samples ~, > 30, but for smaller samples one must use 
the t-distribution. In other words, the normal distribution gives a good approximation 
to the t-distribution only for L, > 30. 

The above relations for statistics computed from a normal population are important 
for two reasons: 

(a) often, the data or the measurement errors can be assumed to have population 
distributions with normal probability density functions; 

(b) one is working with averages that themselves are normally distributed regardless 
of the probability density function of the original data. This statement is a version 
of the well-known central limit theorem. 

3.6 C E N T R A L  L I M I T  T H E O R E M  

Let X1, X2, ... , X i ,  ... be a sequence of independent random variables with 
E [ X i ]  - -  ~ i  and V[Xi] = ~ .  Define a new random variable X = X1 + X2+ ... + XN. 
Then, as N becomes large, the standard normalized variable (N)  

X -  ~~ ~i 
ZN : i=1 (3.6.1) 

(i=~1 0.~)1/2 

takes on a normal distribution regardless of the distribution of the original population 
variable from which the sample was drawn. The fact that the Xi values may have any 
kind of distribution, and yet the sum X may be approximated by a normally 
distributed random variable, is the basic reason for the importance of the normal 
distribution in probability theory. For example, X might represent the summation of 
fresh water added to an estuary from a large number of rivers and streams, each with 
its own particular form of variability. In this case, the sum of the rivers and stream 
input would result in a normal distribution of the input of fresh water. Alternatively, 
the variable X, representing the success or failure of an AXBT launch, may be 
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represented as the sum of the following independent binomially-distributed random 
variables (a variable that can only take on one of two possible values) 

X i -  1 if the ith cast is a success 

= 0 if the ith cast is a failure 

with X = X1 + X2+ ... ~ - X N .  For this random variable, E[X] - Np and V[X] = 
Np(1 -p ) .  For large N, it can be shown that the variable ( X -  E[X])/v/V[X] closely 
resembles the normal distribution, N(0, 1). 

A special form of the central limit theorem may be stated as: the distribution of 
mean values calculated from a suite of random samples Xi (Xi, l, Xi,2, ...) taken from a 
discrete or continuous population having the same mean # and variance 0.2 ap- 
proaches the normal distribution with mean # and variance 02/N as N goes to infinity. 
Consequently, the distribution of the arithmetic mean 

- -  1 N 
X - - ~ Z X  i ( 3 . 6 . 2 )  

i=1 

is asymptotically normal with mean # and variance 0 "2/N when N is large. Ideally, we 
would like N ~ c~ but, for practical purposes, N _> 30 will generally ensure that the 
population of X is normally distributed. When N is small, the shape of the sample 
distribution will depend mainly on the shape of the parent population. However, as N 
becomes larger, the shape of the sampling distribution becomes increasingly more like 
that of a normal distribution no matter what the shape of the parent population 
(Figure 3.7). In many instances, the normality assumption for the sampling distrib- 
ution for X is reasonably accurate for N > 4 and quite accurate for N > 10 (Bendat 
and Piersol, 1986). 

The central limit theorem has important  implications for we often deal with average 
values in time or space. For example, current meter systems average over some time 
interval, allowing us to invoke the central limit theorem and assume normal~-statistics 
for the resulting data values. Similarly, data from high-resolution CTD systems are 
generally vertically averaged (or averaged over some set of cycles in time), thus 
approaching a normal PDF for the data averages, via the central limit theorem. An 
added benefit of this theorem is that the variance of the averages is reduced by the 
factor N, the number of samples averaged. The theorem essentially states that 
individual terms in the sum contribute a negligible amount to the variation of the 
sum, and that it is not likely that any one value makes a large contribution to the sum. 
Errors of measurements  certainly have this characteristic. The final error is the sum of 
many small contributions none of which contributes very much to the total error. Note 
that the sample standard error is an unbiased estimate (again in the sense that the 
expected value is equal to the population parameter being estimated) even though the 
component sample standard deviation is not. 

To further illustrate the use of the central limit theorem, consider a set of independ- 
ent measurements of a process whose probability distribution is unknown. Through 
previous experimentation, the distribution of this process was estimated to have a mean 
of 7 and a variance of 120. I f~  denotes the mean of the sample measurements, we want 
to find the number of measurements, N, required to a give a probability 

P(4 < ~ _< 10) - 0.866 
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Figure 3.7. Sampling distribution of the mean -~ for different types of population distributions for 
increasing sample size, N = 2, 5, and 30. The shape of the sampling distribution becomes increasingly 

more like that of a normal distribution regardless of the shape of the parent population. 

where  4 and  10 are the chosen  p rob lem limits.  Here ,  we use the centra l  l imi t  t h e o r e m  

to a rgue  that,  while  we don ' t  know the exact d i s t r ibu t ion  of our  var iable ,  we do know 

tha t  m e a n s  are n o r m a l l y  d is t r ibu ted .  Using  the s t anda rd  variable ,  z = ( x - # ) /  

( e / v / N ) ,  subs t i tu t ing  ~ for x, and  us ing the fact that  ~ = v/120 = 2v/30, we can then  

wri te  our  probabi l i ty  func t ion  as 
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P(4 < ~ < 1 0 ) - P [  (4-#)x/NeT < z <  (10-#)x/N]cr 

= p[.(4 - 7)x/N < z < (10 -- 7!_v/N] 
2x/'30 2v/30 ] 

[ - 3 v / N  3x/N] 
= P L 2 v/30 < z < 2 x/30] 

[z 3v/N] 
- 2P < 2v/30] - 1 - 0 . 8 6 6  

from which we find 

Iz 3v/N] 
P < 2x/,30 j - 0.933 

Assuming that we are dealing with a normal distribution, we can look up the value 
0.933 in a table to find the value of the integrand to which this cumulative probability 
corresponds. In this case, 3/2x/(N/30 ) = 1.5, so that N = 30. 

3.7 E S T I M A T I O N  

In most oceanographic applications, the population parameters are unknown and 
must be estimated from a sample. Faced with this estimation problem, the objective of 
statistical analysis is twofold" To present criteria that allow us to determine how well a 
given sample represents the population parameter; and to provide methods for 
estimating these parameters. An estimator is a rando m variable used to~ esti- 
mates of population parameters. "Good" estimators are those that satisfy a number of 
important  criteria: (1) Have average values that equal the parameter being estimated 
(unbiasedness property); (2) have relatively small variance (efficiency property); and (3) 
approach asymptotically the value of the population parameter as the sample size 
increases (consistency property). We have already introduced the concept of estimator 
bias in discussing variance and standard deviation. Formally, an estimate 0 of a 
parameter 8 (here, the hat symbol (^) indicates an estimate), is an unbiased estimate 
provided that E[~J] = 8; otherwise, it is a biased estimate with a bias B = E[0] - 8. An 
unbiased estimator is any estimate whose average value over all possible random 
samples is equal to the population parameter being estimated. An example of an 
unbiased estimator is the mean of the noise in an acoustic current meter record 
created by turbulent fluctuations in the velocity of sound speed in water; an example 
of a biased estimator is the linear slope of a sea-level record in the presence of a long- 
term trend (a slow change in average value). Other examples of unbiased estimators 

- ^ 2 The mean square error of our estimate 6J is are x for ~J, # for E[8], and c~ 2/N for %. 

E[(~J - 8) 2] = VIii] + B 2 (3.7.1) 

The most efficient estimator (property 2) is the estimator with the smallest mean 
square error. Since it is possible to obtain more than one unbiased estimator for the 
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same target parameter ,  0, we define the efficiency of an estimator as the ratio of the 
variances of the two estimators. For example, if we have two unbiased estimates 
01 and 02, we can compute the relative efficiency of these two estimates as 

e f f i c i e n c y -  V[~z]/V[~l] (3.7.2) 
L J L J 

where V[01] and V[02~ are the variances of the estimators. A low value of the ratio 
would suggest that V[02] is more efficient while a high value would indicate that V[01] 
is more efficient. As an example, consider the efficiency of two familiar estimators of 
the mean of a normal distribution. In particular,  let 01 be the median value and 02 be 
the sample mean. The variance of the sample median is V[01] - (1.2533cr)Z/N while 
the sample mean has a variance V[02] - ~ y Z / N .  Thus, the efficiency is 

e f f i c i e n c y -  V[~2]/V[~I] 
= (cr2/N)/(1.25332o-2/N) 

= 0.6366 

Therefore, the variabili ty of the sample mean is 63% of the variability of the sample 
median,  which indicates that the sample mean is a more efficient est imator than the 
sample median. 

As a second example,  consider the sample variances s '2 and s z given by (3.2.3) and 
(3.2.4), respectively. The efficiency of these two sample variances is the ratio ofs '2 to s 2 

N 
l / N  ~ (xi - ~)2 

i=1 N - 1  
= < 1  

:v N 
1 / ( N  - 1) ~ (xi - -  ~)2 

i=1 

which indicates that s '2 is a more efficient statistic than s 2. 
We can view the difference 0 -  0 as the distance between the population "target"  

value and our estimate. Since this difference is also a random variable, we can ask 
probabili ty-related questions, such as: "Wha t  is the probability 

P ( - b  < ( 0 - O )  < b) 

for some range ( -  b, b)?" It is common practice to express b as some multiple of the 
sample standard deviation of 0 (e.g. b = kao, k > 1). A widely used value is k = 2, 
corresponding to two standard deviations. Here, we can apply an important  result 
known as Tshebysheff's theorem which states that for any random variable Y, for k > 0: 

P ( l Y - # l  <ka)  >_ l k 2 
(3.7.3a) 

or  

1 
P ( I Y -  #l >- kcr) <_ ~ (3.7.3b) 

where ~ - E[~] and cr 2 - V[~']. Applying this to the problem at hand, we find that for 
k = 2, P(IO-  01 < 2~0) _> 1 - 1/(2) 2 - 0.75. Therefore, most random variables 
occurring in nature can be found within two standard deviations (+2~) of the mean 
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with a probability of 0.75. Note that the probability statement (3.7.3a) indicates that 
the probability is greater than or equal to the value of 1 -  1/k 2 for any type of 
distribution. We can, therefore, expect somewhat more than 75% of the values to lie 
with the range (-2~r, 2~). In fact, this is generally a conservative estimate. If we 
assume that oceanographic measurements are typically normally distributed, we find 
P ( [ Y -  #[ < 2~r)= 0.95, so that 95% of the observations lie within -l-2cr. This is an 
important conclusion in terms of editing methods which use criteria designed to select 
erroneous values from data samples based on probabilities. 

3.8 C O N F I D E N C E  I N T E R V A L S  

An important application of interval estimates for probability distribution functions is 
the formulation of confidence intervals for parameter estimates. These intervals define 
the degree of certainty that a given quantity 0 will fall between specified lower and 
upper bounds OL, OU, respectively, of the parameter estimates. The confidence interval 
(OL, OU) associated with a particular confidence statement is usually written as 

P ( O L < O < O u ) = l - a ,  O < a <  1 (3.8.1) 

where a is called the level of significance (or confidence coefficient) for the confidence 
statement and ( 1 -  a)100 is the percent significance level for the variable 0. (The 
terms confidence coefficient, significance level, confidence level and confidence are 
commonly used interchangeably). A typical value for a is 0.05, which means that 95% 
of the cumulative area under the probability curve (3.8.1) is contained between the 
points OL and Ou (Figure 3.8). For both symmetric and nonsymmetric probability 
distributions, each of the two points cuts off a /2  of the total area under the 
distribution curve, leaving a total area under the curve of 1 - c~; OL cuts off the left- 
hand part of the distribution tail and Ou cuts off the right-hand part of the tail. 

If OL, OU are derived from the true value of the variable 0 (such as the l~opulafion 
mean, #), then the probability interval is fixed. However, where we are using sample 
estimates (for example, the mean, X) to determine the variable value, 0, the 
probability interval will vary from sample to sample because of changes in the sample 
mean and standard deviation. Thus, we must inquire about the probability that the 
true value of 0 will fall within the intervals generated by each of the given sample 
estimates. The statement P(Oz, < 0 < Ou) does not mean that the population variable 0 
has a probability of P -  1 - a  of falling in the sample interval (OL, 0~), in the sense 
that 0 was behaving like a sample. The population variable is a fixed quantity. Once 

-Z~2 0 z'an 

Figure 3.8. Location of the limits (0~,, 0~1) = (-Z<~l~, +Z<,lZ) for a normal probability distribution. For 
a = 0.05, the cumulative area 1 - a corresponds to the 95% interval for the distribution. 
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the interval is picked, the population variable 0 is either in the interval or it isn't 
(probability 1 or 0). For the sample data, the interval may shift depending on the 
mean and variance of the particular sample we select from the population. We should, 
therefore, interpret (3.8.1) to mean that there is a probability P that the specified 
random sample interval (Or., 0or) contains the true population variable 0 a total of 
( 1 -  c~) 100% of the time. That is, ( 1 -  c~) is the fraction of the time that the true 
variable value 0 is contained by the sample interval (Or., 0or). 

In general, we need a quantity, called a pivotal quantity, that is a function of the 
sample estimator 0 and the unknown variable 0, where 0 is the only unknown. The 
pivotal quantity must have a PDF that does not depend on 0. For large samples 
(N_> 30) of unbiased point estimators, the standard normal distribution 
Z = ( 0 -  0) /% is a pivotal quantity. In fact, it is common to express the confidence 
interval in terms of Z. For example, consider the statistic 0 with E[tJ]-  0 and 
V[0] = or~; find the 100(1 - c~)% confidence interval. To do this, we first define 

P(-Za/2 < Z < Zc~/2) - 1 - oe (3.8.2) 

and then use the above relation Z -  (t~- 0) /% to get 

P(O - Za/2or ~ < 0 < 0 q-- Za/2orO) - 1 - c~ (3.8.3) 

This formula can be used for large samples to compute the confidence interval for 0 
once c~ is selected. Again, the significance level, 1 - c~, refers to the probability that the 
population parameter 0 will be bracketed by the given confidence interval. The 
meaning of these limits is shown graphically in Figure 3.8 for a normal population. 
We remark that if the population standard deviation or is known it should be used in 
(3.8.3) so that orO = r if not, the sample standard deviation s can be used with little 
loss in accuracy if the sample size is sufficiently large (i.e. N > 30). 

The three types of confidence intervals commonly used in oceanography are listed 
below. Specific usage depends on whether we are interested in the mean or the vari- 
ance of the quantity being estimated. 
t 

3.8.1 Confidence interval for # (or known) 
When the population standard deviation, or, is known and the parent population is 
normal (or N > 30), the 100 (1 -  c~) percent confidence interval for the population 
mean is given by the symmetrical distribution for the standardized normal distri- 
bution, z 

o r O" 
--  Za/2  ~ - ~  < # "( X q- ga /2  v/N (3.8.4) 

As an example, we wish to find the 95% confidence interval (c~ = 0.05) for/_t given the 
sample mean ~ and known normally distributed population variance, or2. Suppose that 
a thermister installed at the entrance to the ship's engine cooling water intake samples 
every second for N = 20 s and yields a mean ensemble temperature ~ = 12.7~ for the 
particular burst. Further,  suppose that the water is isothermal and that the only 
source of variability is instrument noise, which we know from previous calibration in 
the lab has a known noise level or = 0.5~ Since we want the 95% confidence interval, 
the appropriate values of z for the normal distribution are z,~/2 = 1.96 and 
-z,~/2 -- -1.96 (Appendix D, Table D.1). Substituting these values into (3.8.4) along 
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with N = 20, o- = 0.5~ and 2 - 12.7~ we find 

[12.7 - (1 .96)0.5/x/20]~ < # < [12.7 + (1.96)0.5/x/20]~ 

12.48~ < # < 12.92~ 

Based on our 20 data values, there is a 95% probability that the true mean temperature 
of the water will be bracketed by the interval (12.48~ 12.92~ derived from the 
random interval 

(2 -- Zc , /20 /x /N,  ~ + zc~/2o/v/N) 

3.8.2 Confidence interval for # (or unknown) 

In most real circumstances, ~r is not known and we must resort to the use of the sample 
standard deviation, s. Similarly, for small samples (N < 30), we cannot use the above 
technique but must introduce a formalism that works for any sample size and distri- 
bution, as long as the departures from normality are not excessive. Under these con- 
ditions, we resort to the variable t =  ( 2 - # ) / ( S / v / N ) ,  which has a Student 's t- 
distribution with u = ( N - 1 )  degrees of freedom. Derivation of the 1 0 0 ( 1 -  c~)% 
confidence interval follows the same procedure used for the symmetrically distr ibuted 
normal distribution, except that we must modify the limits. In this case 

[ /s ] 
P -t,~/2,~,< ( 2 - # )  -~<t,~/2,~,  - 1 -c~  (3.8.5) 

This is easily arranged to give the 100(1 -c~)% confidence interval for # 

s S 
2 -- t a / 2 , . - ~  < # < x + tc~/2,u x~ N (3.8.6) 

Note the similarity between (3.8.6) and the form (3.8.3) obtained for # when o- is 
known. We return to our previous example of ship injection temperature and this time 
assume that s = 0.5~ is a measured quantity obtained by subtracting the mean value 
2 -  12.7~ from the series of 20 measurements. Turning to Appendix D (Table D.3) 
for the cumulative t-distribution, we look for values of F(t) under the column for the 
95% confidence interval (c~ = 0.05) for which F(t) = 1 - c~/2 = 0.975. Using the fact 
that u - (N - 1) - 19, we find tc~/2,~, - t0.025,19 = 2.093. Substituting these values into 
(3.8.6), yields 

[12 .7 -  2.093(0.5/v/20)]~ < # < [12.7 + 2.093(0.5/v/20)]~ 

12.47~ < # < 12.93~ 

There is a 95% chance that the interval (12.47~ 12.93~ will bracket the true mean 
temperature.  Because of the large sample size, this result is only slightly different than 
the result obtained for the normal distribution in the previous example when a was 
known a priori. 
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3.8.3 Confidence interval for 0 .2 

Under certain circumstances, we are more interested in the confidence interval for the 
signal variance than the signal mean. For example, to determine the reliability of a 
spectral peak in a spectral density distribution (or spectrum), we need to know the 
confidence intervals for the population variance, a 2, based on our sample variance, s 2. 
To do this, we seek a new pivotal quantity. Recall from (3.5.13) that for N samples of a 
variable xi from a normal population, the expression 

1 N ( N -  1)Is 2 (3.8.7) 
0.'--~ Z (Xi -- ~ ) 2  __ 0 .2 

i=1 

is a X z variable with ( N -  1) degrees of freedom. Using this as a pivotal quantity, we 
can find upper and lower bounds X~ and X 2 for which 

[ N - 1  ~] 
P X 2 < a 2 1 s  2 < X  - 1 - a  (3.8.8) 

or, upon rearranging terms, 

- 1 ) s  2 
P ['(N X2 

(N - 1 )S 2] 
< 0"2 < X~r --- 1 - a  (3.8.9) 

Note that X 2 is a skewed function (Figure 3.9), which means that the upper and lower 
bounds in (3.8.9) are asymmetric; the point 1 -c~/2 rather than - a / 2  determines the 
point that cuts off a /2  of the area at the lower end of the chi-square distribution. 

From expression (3.8.9) we obtain the well-known 100(1 - a)% confidence interval 
for the variance rr 2 when sampled from a normal population 

(N - 1)8 2 (N --  1)S 2 
< o -2 < (3.8.10) 

xG, x -oi , 
where the subscripts a /2  and 1 - a / 2  characterize the endpoint values of the confi- 
dence interval and u - ( N - 1 )  gives the degrees of freedom of the chi-square 
distribution. The larger value of X2(= X2.. ~,) appears in the denominator of the lower 
endpoint for cr '~ while the smaller value of (= X~-<,I2,~,) is in the denominator of the 

a/2 

l.-a 

O ~jll .iw 
1 1 

X L Xu 

Figure 3.9. Location of the limts (9L, Ou)= (X~, X'~j) for a chi-square probability distribution. For 
c~ = 0.05, the cumulative area 1 - c~ corresponds to the 95% interval for the distribution. X 2 is a skewed 

function so that the upper and lower bounds are asymmetric. 
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upper endpoint for 0.2. As an example, suppose that we have u = 9 in our spectral 
estimate of the eastward component of current velocity and that the background 
variance of our spectra near a distinct spectral peak is s 2 = 10 cm2/s 2. What  is the 95% 
confidence interval for the variance? How big would the peak have to be to stand out 
statistically from the background level? (Details on spectral estimation can be found 
in Chapter  5.) In this case, c~/2 = 0.025 and 1 - ~ / 2  =0.975.  Turning to the 
cumulative distribution F(X 2) for 9 degrees of freedom in Appendix D (Table D.2), we 
find that X 2 - 2.70 for a cumulative integral F(c~/2 - 0.025) and that X 2 - 19.02 for a 

2 cumulative integral F(1 - c~/2 = 0.975). Thus, P(2.70 < ~L,=9 < 19.02)= 1 - c~ - 
0.95. Substituting N 1 - 9,s 2 10cm2/s 2 2 - - , X(~/2,~- 19.02 for the value that cuts 

2 - 2.70 for the value that off c~/2 of the upper end area under the curve and X1-~/2:~ - 
cuts off 1 - c~ /2  of the lower end area of the curve, (3.8.10) yields 

9(10 cmZ/s2)/19.02 < 0.2 < 9(10 cm2/s2)/2.70 

4.7 cm2/s 2 < 0 .2 < 33.3 cm 2/S 2 

Thus,  the true background variance will lie between 4.7 and 33.3 cm2/s 2. If a spectral 
peak has a greater range than these limits then it represents a statistically significant 
departure from background energy levels. 

In most instances, spectral densities are presented in terms of the log of the spectral 
density function versus frequency or log-frequency (see Chapter 5). Dividing through 
by s 2 in (3.8.10) and taking the log, yields 

log (~2/2, v ) <  log ((72/82) "( log ( N -  1 ) -  log (~-~ /2 ,~)  log (m 1) 

or, upon subtracting log ( N -  1) and rearranging the inequality 

log log (or2/s 2 ) [ < log X 2 log  1Xl-(~/2,~,/ ( ( N -  1 ) -  / a./2,1.,I \ - ] \ / J 

The range R of the variance is then 

X 2 ( 1-off2, v) R - l o g ( ~ / 2 , ~ ) - l o g  X 2 (3.8.11) 

while the pivot point po of the interval is 

Po = log(N - 1) - log (0.2/$2) (3.8.12) 

If we assume that the measured background value of  s 2 is a good approximation to 0 "2, SO 
that o 2/s 2 -- 1, then Po = l o g ( N -  1). The ranges between the maximum value and Po, 

and the minimal value and Po, are log (X2/2,~) - Po and Po - log (X~-(~/2. ~), respectively. 
Returning to our previous example for the 95% confidence interval, we find that 

log (2.70) < log (9) < log (19.02), 0.43 < 0.95 < 1.28 

giving a range R - 0.848 with the pivot point at Po - 0.95. 

3 . 8 . 4  G o o d n e s s - o f - f i t  t e s t  

When the set of outcomes for an experiment is limited to two outcomes (such as 
success or failure, on or off, and so on), the appropriate test statistic for the 
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distribution is the binomial variable. However, when more than two outcomes are 
possible, the preferred statistic is the chi-square variable. In addition to providing 
confidence intervals for spectral estimates and other measurement parameters, the 
chi-square variable is used to test how closely the observed frequency distribution of a 
given parameter corresponds to the expected frequency distribution for the parameter. 
The expected frequencies represent the average number of values expected to fall in 
each frequency interval based on some theoretical probability distribution, such as a 
normal distribution. The observed frequency distribution represents a sample of 
values drawn from some probability distribution. What we want to know is whether 
the observed and expected frequencies are similar enough for us to conclude that they 
are drawn from the same probability function (the "null hypothesis"). The test for this 
similarity using the chi-square variable is called a "goodness-of-fit" test. 

Consider a sample of N observations from a random variable X with observed 
probability density function po(X). Let the N observations be grouped into K intervals 
(or categories) called class intervals, whose graphical distribution forms a frequency 
histogram (Bendat and Piersol, 1986). The actual number of observed values that fall 
within the ith class interval is denoted by fi, and is called the observed frequency in the 
ith class. The number of observed values that we would expect to fall within the ith 
class interval if the observations really followed the theoretical probability distri- 
bution, p(X), is denoted Fi, and is called the expected frequency in the ith class interval. 
The difference between the observed frequency and the expected frequency for each 
class interval is given byJ~ - F i .  The total discrepancy for all class intervals between 
the expected and observed distributions is measured by the sample statistic 

K 
X2 _ ~ (ft -- Fi)  2 (3.8 13) 

i=1 f i  " 

where division by Fi transforms the sum of the squares into the chi-square-type 
variable, X 2. 

The number of degrees of freedom, u, for the variable X 2 is equal to K minus the 
number of different independent linear restrictions imposed on the observations. As 
discussed by Bendat and Piersol (1986), one degree of freedom is lost through the 
restriction that, if K -  1 class intervals are determined, the Kth class inte'rval follows 
automatically. If the expected theoretical density function is normally distributed 
then the mean and variance must be computed to allow comparison of the observed 
and expected distributions. This results in the loss of two additional degrees of 
freedom. Consequently, if the chi-square goodness-of-fit test is used to test for 
normality of the data, the true number of degrees of freedom for X 2 is u = K -  3. 

Formula (3.8.13) measures the goodness-of-fit betweenfi and Fi as follows: when the 
fit is good (that is, J} and Fi are generally close), then the numerator of (3.8.13) will be 
small and the hence the value of X 2 will be low. On the other hand, iffi and Fi are not 
close, the numerator of (3.8.13) will be comparatively large and the value o f X  2 will be 
large. Thus, the critical region for the test statistic X 2 will always be in the upper tail 
of the chi-square function because we wish to reject the null hypothesis whenever the 
difference between fi and Fi is large. More specifically, the region of acceptance of the 
null hypothesis (see Section 3.14) is 

X 2 <_ X,2:v (3.8.14) 
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where the value of X2.~, is available from Appendix D (Table D.2). If the sample value 
X 2 is greater than X~;~, the hypothesis that p(X) - P o ( X )  is rejected at the level of 
significance. If X 2 is less than or equal to X2; ~,, the hypothesis is accepted at the o~ level 
of significance (i.e. there is a 100~% chance that we are wrong in accepting the null 
hypothesis that our data are drawn from a normal distribution). For example, suppose 
our analysis involves 15 class intervals and that the fit between the 15 estimates of J~ 
and Fi (where Fi is normally distributed) yields X 2 - 23.1. From tables for the 
cumulative chi-square distribution, F ( X )  - p (x  > X2~;~,), we find that p ( X  2 > 21.03) - 
0.05 for r, = K - 3 = 12 degrees of freedom. Thus, at the ~ - 0.05 level of significance 
(95% certainty level) we cannot accept the null hypothesis that the observed values 
came from the same distribution as the expected values. 

Chi-square tests for normality are typically performed using a constant interval 
width. Unless one is dealing with a uniform distribution, this will yield different 
expected frequency distributions from one class interval to the next. Bendat and 
Piersol recommend a class interval width of zkx ~ 0.4s, where s is the standard 
deviation of the sample data. A further requirement  is that the expected frequencies in 
all class intervals be sufficiently large that X 2 in (3.8.13) is an acceptable ap- 
proximation to X2;~,. A common recommendat ion is that Fi > 3 in all class intervals. 
When testing for normality, where the expected frequencies diminish on the tails of 
the distribution, this requirement  is attained by letting the first and last intervals 
extend to - ~  to + e~, respectively, so that F~, FK > 3. 

As an example of a goodness-of-fit test, we consider a sample of N = 200 surface 
gravity wave heights measured every 0.78 s by a Datawell waverider buoy deployed off 
the west coast of Canada during the winter of 1993-1994 (Table 3.8.1). The wave 
record spans a period of 2.59 min and corresponds to a time of extreme (5 m high) 
storm-generated waves. According to one school of thought (e.g. Phillips et al., 1993), 

Table 3.8.1. Wave heights (mm) during a period of anomalously high waves as measured by a Datawell 
waverider buoy deployed in 30 m depth on the inner continental shelf of Vancouver Island, British 
Columbia. The original N - 200 time-series values have been rank ordered. The upper bounds of the K- 
class intervals have been underlined. (Courtesy, Diane Masson) . . . . .  

4636 4840 4901 4950 4980 5014 5034 5060 5095 5130 
4698 4842 4904 4954 4986 5014 5037 5066 5095 5135 
4702 4848 4907 4955 4991 5015 5037 5066 5096 5135 
4731 4854 4907 4956 4994 5017 5038 5069 5102 5145 
4743 4856 4908 4956 4996 5020 5039 5069 5103 5155 
4745 4867 4914 4956 4996 5020 5040 5071 5104 5157 
4747 4867 4916 4959 4996 5021 5040 5072 5104 5164 
4749 4870 4917 4960 4997 5023 5044 5073 5104 5165 
4773 4870 4923 4961 4998 5024 5045 5074 5106 5166 
4785 4874 4925 4963 5003 5025 5045 5074 5110 5171 
4793 4876 4934 4964 5006 5025 5047 5074 5111 5175 
4814 4877 4935 4964 5006 5025 5048 5078 5115 5176 
4817 4883 4937 4966 5006 5025 5050 5079 5119 5177 
4818 4885 4939 4966 5006 5028 5051 5080 5119 5181 
4823 4886 4940 4970 5006 5029 5052 5081 5120 5196 
4824 4892 4941 4971 5010 5029 5053 5086 5121 5198 
4828 4896 4942 4972 5011 5029 5057 5089 5122 5201 
4829 4897 4942 4974 5011 5030 5058 5091 5123 5210 
4830 4898 4943 4977 5012 5031 5059 5093 5125 5252 
4840 4899 4944 4979 5012 5032 5059 5094 5127 5299 
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extreme wave events in the ocean are part of a Gaussian process and the occurrence of 
max imum wave heights is related in a linear manner  to the statistical distr ibution of 
the sur rounding  wave field. If this is true, then the heights of high-wave events relative 
to the background seas should follow a normal frequency distribution. To test this at 
the c~ = 0.05 significance level, K = 10 class intervals for the observed wave heights 
were fitted to a Gaussian probabil i ty distribution. The steps in the goodness-of-fit test 
are as follows: 

(1) Specify the class interval width Ax and list the upper  limit of the standardized 
values, z~, of the normal dis tr ibut ion that correspond to these values (as in Table 
3.8.2). Commonly  Ax is assumed to span 0.4 standard deviations, s, such that 
Ax ~, 0.4s; here we use Ax ~ 0.5s. For Ax = 0.4s, the values ofz~ we want are (..., 
-2 .4 ,  -2 .0 ,  . . . ,  2.0, 2.4, ...) while for Ax = 0.5s, the values are (..., -2 .5 ,  -2 .0 ,  ..., 
2.0, 2.5, ...). 

(2) De te rmine  the finite upper  and lower bounds for z,~ from the requirement  that Fi 

> 3. Since Fi = N P i  (where N - 200 and Pi is the normal probabili ty distr ibution 
for the ith interval), we require P > 3 / N  = 0.015. From tables of the s tandardized 
normal  density function, we find that P > 0.015 implies a lower bound z~ = -2 .0 ,  
and an upper  bound z~ = +2.0. Note that for a larger sample, say N = 2000, we 
have P > 3/2000 = 0.0015 and the bounds become +2.8 for the interval 
Ax = 0.4s and + 2.5 for the interval Ax = 0.5s. 

(3) Calculate the expected upper  limit, x = sz~ + ~ (mm), for the class intervals and 
mark  this limit on the data table (Table 3.8.1). For each upper  bound, z~, in Table 
3.8.2, find the corresponding probabili ty density value. Note that these values 
apply to intervals so, for example,  P ( - 2 . 0  < x  < - 1 . 5 )  = 0 . 0 6 6 8 - 0 . 0 2 2 8  = 
0.044; P(2.0 < x < ~ )  = 0.0228. 

(4) Using the value of P, find the expected frequency values Fi - NPi .  The observed 
frequency fi is found from Table 3.8.1 by counting the actual number  of wave 
heights lying between the marks made in step 3. Complete  th," ,able and calculate 
X 2. Compare  to X2;~. 

Table 3.8.2. Calculation table for goodness-of-fit test for the data in Table 3.8.1. The number of intervals 
has been determined using an interval width A x  = 0.55, with z~ in units of 0.5 and requiring that Fi > 
3. N = 200, -~ (mean) = 4997.6 mm, s (standard deviation) = 115.1 mm, and u (degrees of freedom) = 
K - 3 = 7  

Class Upper limit of data interval ( F i - f i )  2 
interval z,, x = sz,, 4- ~ Pi Fi - NPi f, Fi - f, Fi 

1 -2.0 4767.4 0.0228 4.6 8 3.4 2.51 
2 -1.5 4825.0 0.0440 8.8 8 0.8 0.07 
3 - 1.0 4882.5 0.0919 18.4 16 2.4 0.31 
4 -0.5 4940.1 0.1498 30.0 23 7.0 1.63 
5 0 4997.6 0.1915 38.3 33 5.3 0.73 
6 0.5 5055.2 0.1915 38.3 48 9.7 2.46 
7 1.0 5112.7 0.1498 30.0 35 5.0 0.83 
8 1.5 5170.2 0.0919 18.4 18 0.4 0.01 
9 2.0 5227.8 0.0440 8.8 9 0.2 0.00 

10 ~ ~ 0.0228 4.6 2 2.6 1.47 
Totals 1.0000 200 200 10.02 
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In the above example, X 2 - 10.02 and there are u - 7 degrees of freedom. From 
Table A.3, we find P(X 2 > X2;v) -  P(X 2 > )(.2 0.05-7) = 14.07. Thus, at the a = 0.05 
level of significance (95% significance level), we can accept the null hypothesis that 
the large wave heights measured by the waverider buoy had a Gaussian (normal) 
distribution in time and space. 

3.9 S E L E C T I N G  T H E  S A M P L E  SIZE 

It is not possible to determine the required sample size N for a given confidence 
interval until a measure of the data variability, the population standard deviation, or, is 
known. This is because the variability of X depends on the variability of X. Since we 
do not usually know a priori the population standard deviation (the value for the true 
population), we use the best estimate available, the sample standard deviation, s. We 
also need to know the frequency content of the data variable so that we can ensure that 
the N values we use in our calculations are statistically independent samples. As a 
simple example, consider a normally distributed, continuous random variable, Y, with 
the units of meters. We wish to find the average of the sample and want it to be 
accurate to within +5 m. Since we know that approximately 95% of the sample means 
will lie within +2ay  of the true mean #, we require that 2ay - 5 m. Using the central 
limit theorem for the mean, we can estimate ay by 

O" ~ y -  
v/N 

so that 2a/v/N = 5, or N = 4a2/25 (assuming that the N observations are statistically 
independent). If a is known, we can easily find N. 

When we don't know cr, we are forced to use an estimate from an earlier sample 
within the range of measurements. If we know the sample range, we can apply the 
empirical rule for normal distributions that the range is approximately 4a and take 
one-fourth the range as our estimate of a. Suppose our rangeAn the above example is 
84 m. Then, a = 21 m and 

N = 4a2/25 = (4)(21 m)2/'(25 m 2) = 70.56 ,~ 71 

This means that, for a sample of N = 71 statistically independent values, we would be 
95% sure (probability - 0.95) that our estimate of the mean value would lie within 
+2ay = +5 m of the true mean. 

One method for selecting the sample size for relatively large samples is based on 
Chebyshev's theorem known as the "weak law of large numbers". Letf(x) be a density 
function with mean # and variance a 2, and let ~N be the sample mean of a random 
sample of size N from f(x). Let e and 5 be any two specified numbers satisfying 
r > 0 and 0 < 5 < 1. If N is any integer greater than (o2/e2)5 then 

P[-e < XN--~Z < e] ~ 1 - 6  (3.9.1) 

To show the validity of condition (3.9.1), we use Thebyshev's inequality 

Pig(x) > k] > E[g(x)] (3.9.2) 
- - k 

for every k > 0, random variable x, and nonnegative function g(x). An equivalent 
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Pig(x) < k] > 1 E[g(x)] - k (3.9.3) 

Let g(x)  - (XN -- # < c) 2 

P [ - e  < -xJ -- # < e] = P[[s -- #l < e] 

and k = e 2, then 

- P[I~N - #12< C 2] > 1 - -  

0.2 
= 1 - ~ - j >  1 - 6  

C 2 
(3.9.4) 

For 8 > cr2/Nc 2 or N > cr2/6c 2, the latter expression becomes 

P[[~N--#I  < e] > I - 6  (3.9.5) 

We illustrate the use of the above relations by considering a distribution with an 
unknown mean and variance cr 2 = 1. How large a sample must be taken in order that 
the probability will be at least 0.95 that the sample mean, XN, will lie within 0.5 of the 
true population mean? Given are: 0.2_ 1 and e -  0.5. Rearranging the inequality 
(3.9.5) 

8 > 1 --P[[~N -- #l < 0.5] = 1 -- 0.95 -- 0.05 

Substituting into the relation N > (0.2/&2)= 1/(0.05)(0.5)2 tells us that N > 80 
independent samples. 

3 . 1 0  C O N F I D E N C E  I N T E R V A L S  F O R  A L T I M E T E R  B I A S  
E S T I M A T E S  

As an example of how to estimate confidence limits and sample size, consider an 
oceanographic altimetric satellite where the altimeter is to be calibrated by repeated 
passes over a spot on the earth where surface-based measurements provide a precise, 
independent measure of the sea surface elevation. A typical reference site is an off- 
shore oil platform having sea-level gauges and a location system, such as the multi- 
satellite global positioning system (GPS). For the TOPEX/POSEIDON satellite one 
reference site was an oil platform in the Santa Barbara channel off southern California 
(Christensen et al., 1994). Each pass over the reference site provides a measurement of 
the satellite altimeter bias which is used to compute an average bias after repeated 
calibration observations. This bias is just the difference between the height measured 
by the altimeter and the height measured independently by the in situ measurements 
at the reference site. If we assume that our measurement errors are normally 
distributed with a mean of zero, then the uncertainty of the true mean bias, ab, is 

0.b - Z Sb / x/'N 

where z is the standard normal distribution, sb is the estimated standard deviation of 
the measurements,  and N is the number  of measurements (i.e. the number of 
calibration passes over the reference site). 
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Suppose we are required to know the true mean of the alt imeter bias to within 2 cm, 
and that we estimate the uncertainty of the individual  measurements  to be 3 cm. We 
then ask: "Wha t  is the number  of independent  measurements  required to give a bias 
of 2 cm at the 90%, 95%, and 99% confidence intervals?" Using the above formulation 
for the s tandard error  we find 

N - (z~/2Sb/ab) 2 (3.10.1) 

from which we can compute  the required sample size. As before, the parameter  a 
refers to the chosen significance level. Now orb = 2 cm (required) and sb - 3 cm 
(estimated), so that we can use the s tandard normal  table for z,~/2 = N(O, 1) in the 
appendix  to obtain the values shown in Table 3.10.1. If we require the true mean to be 
1.5 cm instead of 2.0 cm, the values in Table 3.10.1 become those in Table 3.10.2. 

Finally, suppose the satellite is in a 10-day repeat orbit so that we can only collect a 
reference measuremen t  every 10 days at our ground site; we are given 240 days to 
collect reference observations. What  confidence intervals can be achieved for both of 
the above cases if we assume that only 50% of the calibration measurements  are 
successful and that the 10-day observations are statistically independent?  We can, in 
general,  write the confidence intervals as 

P ( - c  < z < c) = a,  a n d P ( z < c ) = ( a + l ) / 2  

Now, since we have only one calibration measurement  every 10 days for 50% of 240 
days we have 

c - (0.5)(240 days)(1 measu remen t /10  days) 

= 12 measurements /year  

Referring to the above tables, we see that for the first case (Table 3.10.1), where the 
mean bias was required to be 2.0 cm we can achieve the 95% interval; for the case 
where the mean bias is restricted to 1.5 cm (Table 3.10.2), only the 90% confidence 
interval is possible. 

Table 3.10.1. Calculation of the number of satellite altimeter observations required to attain a given level 
of confidence in elevation using the relation (3.10.1)for ~b = 2 cm and Sb = 3 cm 

Confidence Standard normal Exact number Actual number 
level (a) value (z~) of observations (N) of observations 

90% 1.645 6.089 7 
95% 1.960 8.644 9 
99% 2.576 14.931 15 

. . . . . . . .  , ,  . . . . . . .  

Table 3.10.2. Calculation of the number of satellite altimeter observations needed for a given level of 
confidence in sea level elevation using the equation (3.10.1)for ~ = 1.5 cm and sb = 3 cm 

Confidence Standard normal Exact number Actual number 
level (a) value (z~) of observations (N) of observations 

90% 1.645 10.82 11 
95% 1.960 15.37 16 
99% 2.576 26.54 27 
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Now that we have introduced methods to calculate confidence intervals for our 
estimates of # and 0.2, we need procedures to estimate these quantities themselves. 
There are many different methods we could use but space does not allow us to discuss 
them all. We first introduce a very general technique, known as min imum variance 
unbiased est imation (MVUE), and then later discuss a popular  method called the 
max imum likelihood method which leads to MVUE estimators. We will also discuss 
one of the oldest methods for finding point estimates, the method of moments. 

Before introducing the MVUE procedure, we need to define two terms: sufficiency 
and likelihood. Let Xl, x2, .. . ,  XN be a random sample from a probability distribution 
with an unknown statistical parameter ,  6/(mean, variance, etc.). The statistic U - g(x~, 
x2, . . . ,  Xx) is said to be sufficient for 6/if the conditional distribution Xl, x2, . . . ,  XN, 
given U, does not depend on ~/. In other words, once U is known, no other combination 
of Xl, x2, . . . ,  XN provides additional information about ~. This tells us how to check if 
our statistic is sufficient but does not tell how to compute the statistic. 

To define likelihood, letyl,Y2, ... ,YN be sample observations of random variables Y1, 
Y2, . . . ,  YN. For continuous variables, the likelihood L(yl, Y2, . . . ,  YN) is the joint 
probabili ty densityf(yl ,Y2, ... ,YN) evaluated at the observations, y/. Assuming that the 
Yi are statistically independent  

L(Yl,Y2, ...,YN) =f(Yl,Y2, ...,YN) =f(Yl)f(Y2).. . f(YN) (3.11.1) 

where f(Yi), i = 1, 2, . . . ,  N, is the probabil i ty density function (PDF) for the random 
variable Yi. 

As an oceanographic example, consider a record of daily-average current velocities 
obtained using a single current meter  moored for a period of one month (N = 30 
days). Show that the monthly  mean velocity, V, is a sufficient statistic for the popu- 
lation mean if the variance is known (in this case, estimated from the range of current 
values). Since the daily velocities are average values of shorter-term current velocity 
measurements  (e.g. 30 min values), we can invoke the central limit theorem to con- 
clude that the daily velocities are normally distributed. Hence the probability density 
function can be written as 

f ( V ) -  1 [ 1 (V_#)2 ] 
0.(2rr) 1/2 exp - 

We can write the likelihood L of our sample as 

L-f(V1, V2, ..., V30)=f(V1)f(V2)...f(V30) 
1 [ 1 2j 
- ~(2~_)1/2 exp ~ ( V 1  ~) 

1 I 1 1 x exp - (V2 _ # ) 2  
o.(271_)1/2 ~2 

1 [ 1 2] 
"'" 0.(2rr)1/2 exp - ~ (1730 - #) 

1 1 ] 
- [~(2~r)]15 exp 23ocr6 o . (Vi - #)2 
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Because a is known from our range of current velocities then L is a function of V and # 
only. Hence, V is a sufficient statistic for # the population mean. 

3.11.1 Minimum variance unbiased estimation 

For random variables Y1, Y2, . . . ,  YN, with probability density function, f(y), and 
unknown parameter 0, let one set of sample observations be (x~, x2, . . . ,  XN) and 
another be (Yl,Y2, ... ,YN).  The ratio of the likelihoods of these two sets of observations 
can be written as 

L(x l ,  x2, ..., xN) 

L(yl ,  y2, ... , YN) 
(3.11.2) 

In general, this ratio will not be a function of 0 if, and only if, there is a function g(xl, 
x2, ... ,XN) such that g(xl, x2, ... ,XN) = g(Yl,Y2, ... ,YN) for all choices ofx andy.  If such 
a function can be found, it is the minimum sufficient statistic for 0. Any unbiased 
estimator that is a function of a minimal sufficient statistic will be an MVUE; this 
means that it will possess the smallest  possible variance among the unbiased 
estimators. 

We illustrate what we mean with an example. Let x~, x2, ..., xn be a random sample 
from a normal population with the unknown parameters # and cr 2. We want to find the 
MVUE of # and ~2. Writing the likelihood ratio we have 

L(x l ,  x2, ..., xn) f ( x l ,  x2, ..., xn) 

Z(yl,Y2, ...,Yn) f(Yl,Y2, ...,Yn) 
1 [ 1N j 

~x/,2~reXp - ~ ~ ( X i  - -  ~)2 
i=1 1 [ ] 

av/2~.exp - ~ ~ (Yi - #)2 
i=1 

= exp -~7~2 ( x i -  #)2 _ ~_, ( Y i -  , )2  
i=1 i=1 

=exp{--~--~[(i=~lX2--~=lY2 ) --2#(i=~lxi--~=lYi)] } 

(3.11.3) 

For this ratio to be independent of #, we must have 

N N 

Xi ~- ~-~Yi (3.11.4) 
i=1 i=1 

for the ratio to be independent of a2, requires both (3.11.4) as well as 

N N 

~--~x~ = ~-'~y~ (3.11.5) 
i=1 i=1 

Thus, both ~ xi and Y~ x~ are minimum sufficient statistics for # and a 2. Since 2 is an 
unbiased estimate of # 
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s 2 1  N 1 ( Z - N 2 2 )  (3.11.6) 
- -  N - 1 Z ( X i  - 2) 2= N---Z- ~ 

i=1 

is an unbiased estimate of 0 "2. Since both ~ and s z are functions of the minimal 
sufficient statistics 

N N 

ZXi a n d  E x ~  
i=1 i=1 

as expressed by (3.11.4) and (3.11.5), they also are MVUEs for # and a 2. 

3.11.2 Method of moments  

As suggested earlier, the method of moments is one of the oldest methods for 
parameter estimation. It is simple and straightforward to apply. Recall that the kth 
moment of a random variable Y, taken about the origin, is 

#'k - E[ Yk] (3.11.7) 

and the corresponding sample moment is 

, 1 N 
mh = ~ Z Y ~  

i=1 

(3.11.8) 

The method of moments is based on the assumption that sample moments should 
provide good estimates of the corresponding population moments (i.e. m~ is a good 
estimate of #~). Thus we choose our estimates as those parameter values which are 
solutions of the equations # ~ -  m~, k = 1, 2, ..., r where r is the number of para- 
meters. 

We again illustrate with an example. A random sampley~,y2, ... ,YN is selected from 
a population with a uniform PDF over the interval (0, 0), where 0 is unknown. We use 
the method of moments to estimate 0. The first moment of the population is 
~1 = /.Z _ _ . t  0/2 (see Appendix C). The corresponding first sample moment is 

m' - 1 ~ y i  = ~ 
i=1 

If we equate the moments and solve for 0 

0/2 = y ,  or t~ = 2y 

Thus, 0 has a moment estimate of 2.~. 
We remark, that while the method of moments is straightforward to apply, the 

resulting estimates are not minimal sufficient statistics. In addition, these estimates 
may not even be unbiased. The primary advantage of this procedure is that it often 
yields results when others do not. 
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3.11.3 Maximum likelihood 

The procedure introduced earlier to compute the MVUE is complicated by the fact 
that one must find some function of the minimal sufficient statistic that gives the 
sought-after target parameter. Finding this function is, in general, a matter of trial 
and error. We then introduced the method of moments which, while it is easy to apply, 
yields estimates which may not be optimal. A more sophisticated procedure, the 
maximum likelihood method, often leads to the MVUE. 

The formal statement of this method is quite simple. Choose as estimates those 
parameter values that maximize the likelihood L0'I, Y2, . . . ,  YN). A simple example 
using discrete variables helps to illustrate the logic in the maximum likelihood 
method. Assume we have a bag containing three marbles. The marbles can be black or 
white. We randomly sample two of the three and find that they are both black. What is 
the best estimate of the total number of black marbles in the bag? If there are actually 
two black and one white in the bag, the probability of sampling two black marbles is 

= 1 / 3  (32) 
where, as in Section 3.3, the binomial expression is 

r - NPr/ !- N ! / [ r t ( N -  r)!] (3.11.9) 

and NPr is the number of permutations of N discrete variables sampled r at a time. In 
the above expression 

indicates the first sample of two marbles, with both being black. The next term is the 
remaining unsampled marble (hence the 0 in the denominator) if it were white. Now if 
there are three black marbles in the bag the probability of sampling two blacks is 

( ~ ) ( 0 0 )  = 1 

On this basis, it seems reasonable to choose three as the estimate of the number of 
black marbles in the bag in order to maximize the probability of the observed sample. 

A more complex example can be used to illustrate the application of this method to 
our estimates of the mean, #, and variance, ~2, for a normal population. Again, let y~, 
Y2, ... ,YN be a random sample from a normal population with parameters # and cr 2. We 
want to find the maximum likelihood estimators of # and cr 2. Note we used this same 
example for our discussion of the method of moments. To find the maximum 
likelihood, we need to write the joint PDF of the independent observationsyl,Y2, ... ,Yx 
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s2 - 1 N 
- X - 1 ~ (Yi _.~)2 (3 .11.15)  

i=1 

Since the Maximum Likelihood Method has widespread application, we present 
another simple example to illustrate its use. Let Yl, Y2, . . . ,  YN, be a random sample 
taken from a uniform distribution withf(yi)  = 1/0 = constant, 0 <_Yi <_ 8, and i - 1, 
2, ..., N. We want to find the maximum likelihood estimate of 8. Again, we write the 
likelihood, L, as the joint probability function 

L =f(Yl ,y2 ,  ...,YN) =f(Yl)f(Y2)...f(YN) = (1/8)(1/0). . .  (1/8) 

= (1/0) N 
(3.11.16) 

In this case, L is a monotonically decreasing function of O and nowhere is dL/dO = 0. 
Instead, L increases monotonically as 0 decreases and must be greater than or equal to 
the largest sample value, YN.L is, therefore, not an unbiased estimate of ft. It can be 
adjusted to 

0 = (  f + l  N )YN (3.11.17) 

which is unbiased. We note that if any statistic U can be shown to be a sufficient 
statistic for estimating 0 then the maximum likelihood estimator is always some 
function of U. If this maximum likelihood estimate can be found, and then adjusted to 
be unbiased, the result will generally be an MVUE. 

To demonstrate the application of the maximum likelihood approach, assume that a 
random sample of size N is selected from the normal distribution (equation (3.5.2)) 
with # and cr 2 as the mean and variance for each xi (where we assume that the xi values 
are independent). We ask: If 0 = (01, 02)=  (#, o 2) is the parameter space for the 
probability density function f (xl ,  x2, . . . ,  Xx), then what is the. likelihood function? 
Also, find the maximum likelihood estimator 01 of 01 which maximizes the likelihood 
function and find the maximum likelihood estimator ~J2 which maximizes the likeli- 
hood function 81. We first write the PDF as 

f (~, -0) = (�89 rra2) x/2 = exp 1 ~ (xi - #)2 
i -1  

} = H v/(27ro.)exp[-(xi- #)2/a2] : L(~,-0) 
i=1 

which is the likelihood function written in terms of the product, H, of the exponential. 
Taking the natural log of the above expression with respect to our estimated para- 
meter, 01, and setting it equal to zero to find the maximum, we get 

N N 1 N 
In (L) = - ~-In (27r) - ~-In (o a) - ~-fla 2 ~ (xi - -  ~ ) 2  

i=1 

where a > 0 and - c ~  < # < oo. The derivative of this function with respect to 81 
(which is #) is 
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OL 

O~ 

1 n 1 N 

20-2 Z (xi - #) ( -2 )  - ~  Z (Xi - I,Z) -- 0 
i=1 i=1 

so that our estimate of # is 1 N 

Furthermore, the maximum likelihood estimator of 02 (which is 0-2) is given by 

OL N 
00-2 20-2 

(-1)~--~ ( X i -  ~)2 - - ~ 2  Z ( X i -  ~)2 _ N - 0 
2~ i=1 i=1 

which yields the estimator 

1 N 
o 2 ( x ; -  

i-1 

For a normally distributed oceanographic data set, we can readily obtain maximum 
likelihood estimates of the mean and variance of the data. However, the real value of 
this technique is for variables that are not normally distributed. For example, if we 
examine spectral energy computed from current velocities, the spectral values have a 
chi-square distribution rather than a normal distribution. If we follow the maximum 
likelihood procedure, we find that the spectral values have a mean of 1,,, the number of 
degrees of freedom, and a variance of 21,,. These are the maximum likelihood 
estimators for the mean and variance. This example can be used as a pattern for 
applying the maximum likelihood method to a particular sample. In particular, we 
first determine the appropriate PDF for the sample values. We then find the joint 
likelihood function, take the natural logs and then differentiate with respect to the 
parameter of interest. Setting this derivative equal to zero to find the maximum 
subsequently yields the value of the parameter being sought. 

3 . 1 2  L I N E A R  E S T I M A T I O N  ( R E G R E S S I O N )  

Linear regression is one of a number of statistical procedures that fall under the general 
heading of linear estimation. Since linear regression is widely treated in the literature 
and is available in many software packages, our primary purpose here is to establish a 
common vocabulary for all readers. In our previous discussion and examples, we 
assumed that the random variables Y~, Y2, ..., YN were independent (in a probabilistic 
sense) and identically distributed, which implies that E[Yi] = # is a constant. Often 
this is not the case and the expected value E[Yi] of the variable is a function of some 
other parameter. We now consider the values y of a random variable, Y, called the 
dependent variable, whose values are a function of one or more nonrandom variables 
xl, x2, ... , XN, called independent variables (in a mathematical, rather than proba- 
bilistic sense). 
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If we model our random variable as 

y = ElY] + ~ = bo + b l x  + e (3.12.1) 

we invariably find that the points y are scattered about the regression line E[y] = bo + 
blX. The random variable e in the right-hand term of (3.12.1) gives the departure from 
linearity and has a specific PDF with a mean value #~ = 0. In other words, we can 
think ofy as having a deterministic part, E[,v], and a random part, e, that is randomly 
distributed about the regression line. By definition, simple linear regression is limited 
to finding the coefficients bo and bl. If N independent variables (x l, x2, . . . ,  XN) are 
involved in the variability of each value y, we must deal with multiple linear regression. 
In this case, (3.12.1) becomes 

y = bo + blx~ + b2x2 + ... -+- bNXN + C (3.12.2) 

3 . 1 2 . 1  M e t h o d  o f  l e a s t  s q u a r e s  

One of the most powerful techniques for fitting a dependent model parameter y to 
independent (observed input) variables xi (i - 1, 2, ..., N) is the method of  least squares. 
We apply the method in terms of linear estimation and will later readdress the topic in 
terms of more general statistical models. (Note: by "linear" we mean linear in the 
parameters bo, bl, . . . ,  bN. Thus,y  = bo + blx~ + e is linear but y - bo + sin (blXl) + c is 
not.) We begin with the simplest case, that of fitting a straight line to a set of points 
using the "best" coefficients bo, b~ (Figure 3.10). In a sense, the least squares 
procedure does what we do by eye--i t  minimizes the vertical deviations (residuals) of 
data points from the fitted line. Let 

1 4 - -  

12 

10 

Y 

8 

R e g r e s s i o n  o f  y on x 
y = 5 . 0 3 3 3  + 0 . 8 5 9 4 x  r = 0 .87  

_ (a )  

13 

I . I  i I I 
0 2 4 6 8 10 

x 

Yi = .~i -~ Ei 

Z -2 

-4 

- 6  

I -8  
12 

(3.12.3) 
Regress ion  o f  z o n  x 

z = 4 ~ - 0 . 9 4 3 6 x  r = - 0 . 9 2  

._ [] 

I . . . . .  I ! I I ,I 
0 2 4 6 8 10 12 

x 

Figure 3.10. Straight line (linear regression)fits to the sets of points in Table 3.12.1 using the "best'" 
coefficients bo, bl. (a) Regression of y on x, for which (bo, bl) - (5.0333, 0.8594); and (b) regression of z 

on x, for which (bo, bl) = (4.0, -0.9436). r is the correlation coefficient. 
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where 

.Yi -- bo + bl)Ci (3.12.4) 

is our estimator for the deterministic portion of the data and r is the residual or error. 
To find the coefficients bo, bl we need to minimize the sum of the squared errors (SSE) 
where SSE is the total variance that is not explained (accounted for) by our linear 
regression model given by (3.12.3) and (3.12.4) 

N N N 

SSE - y ]  e~ - y ~  (Yi - - .~ i )  2 - -  ~ [Yi - (bo + blxi)] 2 (3.12.5a) 
i=1 i=1 i=1 

: S S T -  SSR (3.12.5b) 

in which 

N N 

S S T  - Z (Yi _ y ) 2  a n d  SSR- ~ C~ i _..~)2 (3.12.5c) 
i=1 i -I  

Here, SST (sum of squares total) is the variance in the data and SSR (sum of squares 
regression) is the amount of variance explained by our regression model. Mini- 
mization amounts to finding those coefficients that minimize the unexplained 
variance (SSE). Taking the partial derivatives of (3.12.5a) with respect to bo and bl and 
setting the resultant values equal to zero, the minimization conditions are 

0SSE 0SSE 
~ = 0 ;  ~ = 0  (3.12.6) 

0b0 0hi 

Substituting (3.12.5a) into (3.12.6), we have for bo 

OSSE O { N } N 
~Obo = Ob---~ ~ [Yi - (bo + blxi)] 2 -- -2  ~ [Yi - (bo + blxi)] 

i=1 i=1 

: -2  yi - Nbo - bl xi - 0 
\ i = 1  i=1 

(3.12.6a) 

Now for bl 

0SSE 
Obl 

{N } N 
__ ~0 Z [Yi -- (bo -[- blxi)] 2 - - 2  ~ [Yi (bo -[- blxi] 

Obl i=l /=1 

= -2  x i Y i -  bo ~ x i -  b l Z x2 - 0 
i=1 i=1 i=1 

(3.12.6b) 

Once the mean values of y and x are calculated, these least squares equations can be 
solved simultaneously to find an estimate of the coefficient bl (the slope of the 
regression line); this is then used to obtain an estimate of the second coefficient, bo 
(the intercept of the regression line). In particular 
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N [N N N N ]  
(Xi -- X)(Yi -- Y)  ~_. xiYi -- ~_, xi ~"]Yi 

Vf'l = i=1 __ i=1 i=1 i=1 

2 (Xi -- X) 2 E X~ -- Xi 
i=1 i=1 i=1 

(3.12.7a) 

/~0 =.g -/~1~ (3.12.7b) 

Several features of the regression values are worth noting. First, if we substitute the 
intercept b0 = Y - blX into the line.9 = bo + blx, we obtain 

.9 =.~ + bl (x - ~) 

As a result, whenever x = ~, we have 39 =.g. This means: (1) That  the regression line 
always passes through the point (~,y); and (2) that because the operation 
OSSE/Obo -- 0 minimizes the error ~[~ Ci - -  0 ,  the regression line not only goes through 
the point of averages (~, y) but it also splits the scatter of the observed points so that 
the positive residuals (where the regression line passes below the true point) always 
cancel exactly the negative residuals (where the line passed above the true point). The 
sample regression line is therefore an unbiased estimate of the population regression 
line. 

To summarize  the linear regression procedure, we note that: 

(1) For each selected x ( independent  variable) there is a distribution ofy from which 
the sample (dependent variable) is drawn at random. 

(2) The population ofy  corresponding to a selected x has a mean # that lies on the 
straight line lz = bo + blx, where bo and bl are regression parameters. 

(3) In each population, the standard deviation of y about its mean, bo + blX, has the 
same value (Sxy = s~,y = bo + blX + e). Note that e is a random variable drawn 
from a normal population w i t h / ~ -  0 and s - Sxy. 

Table 3.12.1. Values for dependent variables Yi, zi as functions of xi. The estimated values ~j and i are 
derived from the linear regression analysis. Formulae at the bottom of the table are the total sum of 
squares (SST), sum of squares for the regression (SSR) and the sum of squares of the errors (SSE) to be 
derived in our regression analysis for N = I0 
. . . . . .  , . . . .  

Xi Yi fli Zi .Yi 

1.0 6.7 5.9 3.9 3.1 
2.0 4.7 6.8 1.5 2.1 
3.0 8.1 7.6 -0 .2  1.2 
4.0 7.1 8.5 1.0 0.2 
5.0 11.3 9.4 0.6 -0 .7  
6.0 10.5 10.2 -3.1 -1 .7  
7.0 11.8 11.1 -2 .8  -2 .6  
8.0 13.7 11.9 -1 .8  -3 .6  
9.0 10.6 12.8 -6 .0  -4 .5  

10.0 13.3 13.7 -5 .0  -5 .4  

SST(v) = 80.64; SSE(y) = 19.53 
SST(z) = 86.39; SSE(z) = 12.93 

,, , , ,  , , ,  , ,  , , , 

SSR(y) = 61.11; 
SSR(z) = 73.46; 
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Thus ,y  is the sum of a random part r and a fixed part x; the fixed part determines the 
mean values of the y population samples, with one distribution ofy for each x that we 
pick. The mean values o fy  lie on the straight line, # = bo + blx, which is the popu- 
lation regression line. The regression parameter bo is they mean for x = 0 and bl is the 
slope of the regression line. The random part, E, is independent ofx andy. To compute 
the regression parameters, we need values of N, ~, y, ~ x 2, ~-~y2, and ~ xy. Earlier, we 
discussed the computational shortcuts to compute ~ x  2 a n d ~ y  2 without first 
computing the means of x and y. The same can be accomplished for xy using, 

(x - ~) (y - y) - Z xy - Z x ~ - ~ y / N  

As examples of linear regression, consider the data sets in Table 3.12.1 for dependent 
variables Yi and zi which are both functions of the same independent variable xi (for 
example, Yi could be the eastward and zi the northward component of velocity as 
functions of time xi). We will compute the regression coefficients bo, bl plus the sample 
variance s 2 and percent of explained variance (100 SSR/SST) for each data set. 

To estimate the regression parameters, we must first compute the means of the 
three series 

~ '=5.50;  .~=9.78;  ~ = - 1 . 1 9  

We then use the means to calculate the sums in (3.12.6) 

10 10 

(Xi - -  ~-)2 _ 82.50; ~ (Xi - -  X) (Yi - - .~ )  - -  71.00; 
i=1 i=1 

10 

Z (x'i - -  "~) (Zi --  ;~) - -  -77.85 
i=1 

10 

SST(y)  - ~ (Yi _.~)2= 80.64 
i=1 

I0 

SST(z )  - ~ (g i --~)2 86.36 
i=1 

For the regression ofy  on x (9 - bo + blx), we find 

b0 - 5.05; bl = 0.861; s 2 - 2.44 

100. S S R ( y ) / S S T ( y )  - (100)61.11/80.64 = 75.8% 

while for the regression of z on x (~ = b0 + blx), we have 

b0 = 4.00; bl = -0.94; s 2 = 1.62 

100. S S R ( z ) / S S T ( z ) =  (100)73.46/86.36-  85.0% 

The ratio SSR/SST (variance explained/total variance) is a meaure of the goodness 
of fit of the regression curves called the correlation of determination, r 2. If the regression 
line fits perfectly all the sample values, all residuals would be zero. In turn, SSE - 0 
and SSR/SST = r E = 1. As the fit becomes increasingly less representative of the data 
points, r E decreases towards a possible minimum of zero. 
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3.12.2 Standard error of the est imate 

The measure of the absolute magnitude of the goodness of fit is the standard error of 
the estimate, sc, defined as 

sc - - [SSE/ (N-2)]  1/2 

~--- 2 .  (Y --"9)2 
(3.12.8) 

The number of degrees of freedom, N - 2 ,  for s~ is based on the fact that two para- 
meters, bo and bl are needed for any linear regression estimate. If st is from a normal 
distribution and has a mean of zero, then, in analogy with our discussion of the 
standard deviation of values about their mean, approximately 68.3% of the 
observations will fall within +ls~ units of the regression line, 95.4% will fall within 
+2s~ units of the line and 99.7% will fall within +3s~ units of this line. For the 
examples of Table 3.12.1 

Variable y: s~ - [ S S E ( y ) / ( N -  2)] 1/2 - (19.53/8) 1/2 - 1.56 

Variable z: s~ = [SSE(z) / (N-  2)] 1/2 - (12.93/8) 1/2 - 1.27 

As a result, the +2s~ ranges are +2(1.56) and +2(1.27), respectively. 
We next turn to our estimate of the slope, bl. Recalling that bl -- ~~x/~-~x 2, we find 

2 2 
Sxy _ s~ (3 12.9) 

- Z - E 

2 where Sb~ is the sample variance for our estimate,/~1, for the slope of the regression 
line. For small samples (N < 30), we can write the 95% confidence interval as 

[~1 -- to.OSSbl <_ bl <~ bl + to.oSSbl (3.12.10) 

Turning to the regression line itself, we wish to say something about the standard 
deviation about y (i.e. the regression line). First we note that g has variance 
Cr2xy/N and/~1 has variance crZy/~x 2. Since the errors, E, are assumed independent, the 
variance of the sums is the sum of the variances 

O2y __Cr2y[1 / (N_2)+x2 /Zx2  ] (3.12.11) 

which leads to the standard error given above. These confidence limits would appear 
as hyperbolae in regression diagrams such as Figure 3.10. The hyperbolae are the 
confidence belts for the different significance levels. Note the increasing hazard of 
making predictions for values ofx far removed from the mean value ~. Since the lines 
indicate that y must be within the confidence belt, higher signifance levels have 
narrower belts. Thus, estimates ofy  get worse as we move away from x, y. Remember 
that these confidence belts are for the regression line itself and not for the individual 
points. Hence, if repeated samples ofyi are taken of the same size and the same fixed 
value of x, the 95% of the confidence intervals, constructed for the mean value ofy and x, 
will contain the true value of the mean of y and x. If only one prediction is made of x, 
then the probability that the calculated interval of this will contain the true value is 95 %. 
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N N 

Nbo + bl Z X i  - Z y i  
i=1 i=1 

N N N 

boExi+blZx~-ZxiYi 
i=1 i= l  i--1 

(3.12.17) 

which we can solve for b0 and bl. We can generalize the procedure further by realizing 
that for Xo = 1 we have 

( 1  . . . . . . . . .  1 ) ( 1  x i ) ( N  EXi) 
x ' .  x . . . . . . . . . . . . . . . . .  - . . . . . .  (3.12.18) 

Xl . . . . . .  XN 1 XN E Xi E X2 

where X' is the transpose of the matrix X and, the sums are from 1 to N, and 

X t . y m 

N 

Y']Yi 
i=1 
N 

~ xiYi 
i= l  

(3.12.19) 

Our least squares equations can then be expressed as 

(X'X)-B = X ' .  Y (3.12.20) 

where 

(3.12.21) 

Solving the above equations for B, we obtain 

B - ( X ' - X ) - l X  '. Y (3.12.22) 

3.12.4 A computational  example of matrix regression 

Since linear regression is widely used in oceanography, we will illustrate its use by a 
simple example. Suppose we want to fit a line to the data pairs consisting of the 
independent variable xi and the dependent variable Yi given in Table 3.12.2. 

From these we find 

N N N N 

ZXi--O, ZYi--5, ZxiYi=7, Z X f - - 1 0  
i - 1  i=1 i - 1  i=1 

Substituting into equation (3.12.14), we have 
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Table 3.12.2. Data values used in least squares linear fit of a two-coefficient regression model, Yi  = F ( x i )  

_ ,  

Data Solution values 
Xi Yi (Xi)(Yi) Xi 2 

- 2  0 0 4 
- 1  0 0 1 

0 1 0 0 
1 1 1 1 
2 3 6 4 

b l -  
xiYi-- ~ Xi Yi 

i=1 i=1 

[Ni~=lX2- li=~lXi)21 

[(5)(7) - (0)(5)] = 0.7 
[ (5)(10)-  102] 

bo =Y - blX - 5/5 - (0.7)(0) = 1 

This same problem can be put in matrix form 

0 1 - 2  

0 1 -1  

Y =  1 , X =  1 0 

1 1 1 

3 1 2 

( 5  0 ) ,  X , . y = ( 5 )  
X ' .  X -  0 10 7 ' 

B - - ( X ' .  x ) - i x  ' .  Y -  ( 1/50 

( X ' - X )  - 1 -  (1/50 

0 5 1 

1 / 1 0 )  ( 7 ) ( 0 . 7 )  

0) 
1)10 

so that by (3.12.21), bo = 1 and b~ = 0.7. 
An important property of the simple straight line least-square estimators we have 

just derived is that bo and b~ are unbiased estimates of their true parameter values. We 
have assumed that E[e] - 0 and that VIe] = a2; thus the error variance is independent 
of x and V[Y] = V[e] = a 2. Since a 2 is usually unknown we estimate it using the 
sample variance (3.2.4) given by 

s2 - 1 U 
-- N----7]- Z .  (Yi _y)2  (3.12.23) 

z=l 

However, if we use the output values, 39i, from the least squares, to estimate 
ci(Y) - y i - . 9 i ,  we must write (3.12.23) as 
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$2 _ 1 N )2__ 1 SSE (3.12.24) 
- N -  2 ~ ( Y i - - Y i  N------Z~ 

i=1 

where SSE, given by (3.12.23), represents the sum of the squares of the errors and the 
N -  2 corresponds to the fact that two parameters, bo and b~, are needed in the model. 

In matrix notation we can write the SSE as 

SSE - Y ' .  Y -  (B' .  X ' ) .Y (3.12.25) 

Using this with our previous numerical example we write (3.12.25) as 

0 
0 

( 0  0 1 1 3 )  1 - ( 1  0 7 )  / ~ 1 1 1 1 1 )  \ 
1 " - 2  -1  0 1 2 

3 

0 
0 
1 
1 
3 

= 1 1 - ( 1  5 )  _ 1 1 _ 9 . 9 _ 1  1 0.7) 7 

Since S 2 --" S S E / ( N -  2), we have s 2 = 1.1/(3) - 0.367 as our estimator of ~r 2. 

3.12.5 Polynomial  curve fitting with least squares 

The use of least-squares fitting is not limited to the straight line regression model 
discussed thus far. In general, we can write our linear model as any polynomial of the 
form 

Y - bo + blx + b2 X2 + ... +bN XN + C (3.12.26) 

The procedure is the same as with the straight line case except that now the X matrix 
has N +  1 columns. Thus, our least-squares fit will have N +  1 linear equations with 
N +  1 unknowns, bo, bl, .. . ,  bN. These equations are called the normal equations. 

3.12.6 Relat ionship  be tween  least-squares and m a x i m u m  l ikel ihood 

As discussed earlier, the maximum likelihood estimator is one that maximizes the 
likelihood of sampling a given parameter. In general, if we have a sample xi from a 
population with the PDF f(Xi, 0), where 0 is the parameter of interest, the maximum 
likelihood estimator L(O) is the product of the individual independent probabilities 

L(O) -- f (xl, O)f (x2, O). . . f (xN, O) (3.12.27) 

If the errors all come from a normal distribution, this becomes from equation (3.11.10) 
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L ( O )  - 

N 
exp - ~ (Xi  - -  0) 2/2cr 2 

i=1 

o.N (27r) N/2 
(3.12.28) 

When this is maximized, it leads to the least-squares estimate 

1 x 

1=1 

In other words, the least-squares estimate of the mean of 0 can be derived from a 
normal distribution using the maximum likelihood criterion. This value is found to be 
the average of the independent variable x. 

3 . 1 3  R E L A T I O N S H I P  B E T W E E N  R E G R E S S I O N  A N D  
C O R R E L A T I O N  

The subject of correlation will be considered in more detail when we examine time- 
series analysis methods. Our intension, here, is simply to introduce the concept in 
general statistical terms and relate it to the simple regression model just discussed. As 
with regression, correlation relates two variables but unlike regression it is measured 
without estimation of the population regression line. 

The correlation coefficient, r, is a way of determining how well two (or more) variables 
co-vary in time or space. For two random variables x ( x 1 ,  x 2 ,  . . . ,  XN) andy  ( Y l , Y 2 ,  . . . ,  

YN) the correlation coefficient can be written 

t" --- 
1 ~-,  (Xi - -  "X)(Yi - -  Y) 

N -  1 Z..,i=l SxSy (3.13.1a) 

- C x y / S x S y  

where 

1 N 
Cxy = N - 1 Z. (X i  - -  x)(Yi --Y) (3.13.1b) 

t= l  

is the covariance of x and y, and Sx and Sy are the standard deviations for the two data 
records as defined by equation (3.2.4). We note two important properties of r: 

(1) r is a dimensionless quantity since the units of the numerator and the denomi- 
nator are the same; 

(2) the value of r lies between - 1 and + 1 since it is normalized by the product of the 
standard deviations of both variables. 

For r = +1, the data points ( x i , Y i )  cluster along a straight line and the samples are said 
to have a perfect correlation (+ for "in-phase" fluctuations and minus ( - )  for 180 ~ 
"out-of-phase" fluctuations). For r ~ 0, the points are scattered randomly on the graph 
and there is little or no relationship between the variables. The variables xi, Yi in 
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equation (3.13.1a, b) could be samples from two different, independent  random vari- 
ables or they could represent the independent  (input) and dependent  (output) 
variables of an est imation model. Alternatively, they could be samples from the same 
variable. Known as an auto-correlation, the later is usually computed for increasing lag 
or shifts in the starting value for one of the time series. A lag of "m" means that the 
first m values of one of the series, say the x series, are removed so that Xm+~ becomes 
the new x a and so on. 

Some authors prefer to use r 2 (the coefficient of determinat ion discussed in Section 
3.12.1 in the context of straight-line regression) rather than r (the correlation coeffi- 
cient) since the squared value can be used to construct a significance level for r 2 in 
terms of a hypothesis test that the true correlation squared is zero. Writ ing 

C 2 x y / ( $ x S y )  2 - S S R / S S T  - r 2 (3.13.2) 

we see that r 2 = variance explained/total  variance, as stated earlier. A value r = 0.75 
means that a linear regression o f y  on x explains r 2 = 56.25% of the total sample 
variance. Our approach is to use r to get the sign of the correlation and r 2 to estimate 
the joint variances. 

3.13.1 T h e  effects of  random errors on correlation 

Before discussing the relationship between r and our simple regression model, it is 
impor tant  to realize that sampling errors in xi andyi can only cause r to decrease. This 
can be shown by writing our two variables as a combination of true values (ai, 13i) and 
random e r r o r s  (~i, ei) .  In part icular  

x i  - ozi + r (3.13.3) 
Yi = 13i + ff i 

a s  

Using equations (3.13.2) and (3.13.3), we can write the correlation between X i andyi  

s~s~r~3 + s3s6r/~6 + s~s~r~ + s6ser6e 
rxy  - -  SxSy (3.13.4) 

where for convenience we have dropped the index i. Since the random errors 6 and 
are assumed to be independent  of each other and of the variables c~ and,/3 we know 
that 

r/36 = r ~  = r6e = 0 

so that (3.13.4) becomes 

S~Sf3 
rxy  = ~ r ~  (3.13.5) 

SxSy 

This result  means that the ratio between the product of the true standard deviations 
(s~, s/3) to the product of the measured variable (sx, Sy) determines  the magnitude of the 
computed  correlation coefficient (rxy) relative to the true value (r,~t~). 
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To determine (3.13.5), we expand the variances of x and y as 

1 ~-~ [ ( x i -  ~.)2 (yi _.y)2 ] ( 
k s " ' : / - N - 1  /=1 

245 

where, as usual, x, y are the average values for samples xi, Yi respectively. Expanding 
the numerator into its component terms through (3.13.3), and using the fact that the 
errors are independent of one another, and of x and y, yields 

N N 
Z (Xi --X)2~- Z [(Oq ---~)2q-r 2] 
i=1 i=1 
N N 2 2 Z (Yi--.,v)Z--Z [(fli--~) q-Ei] 
i=1 i=l 

Dividing through by ( N -  1) and using the definitions for standard devation, we find 

N N 

2 82 i=1 . 2 i=1 (3.13.6) s x = ~ +N---Z-- f ,  Sy -s2~ +N----Z- ~ 

Since the second terms in each of the above expressions can never be negative (N > 1), 
the observed variances Sx 2 and Sy 2 are always greater than the corresponding true 
variances. Applying this result to equation (3.13.5), we see that the calculated correl- 
ation, rxy, derived from the observations is always smaller than the true correlation, 
r,~. Because of random errors, the correlation coefficient computed from the obser- 
vations will be smaller than (or, at best, equal to) the true correlation coefficient. 

3.13.2 The maximum likelihood correlation estimator 

Returning to the relationship between correlation and regression, we note the maxi- 
mum likelihood estimator of the correlation coefficient is, by (3.13.1a) 

r - Z ( x i -  x ) (y i -Y)  / ( x i -  ~)2~--~ (Yi _~)2 (3.13.7) 
i-1 i=1 i=1 

for a bivariate normal population (xi, Yi). We can expand this using (3.13.1b) to get 

~ xiYi -- ~ Xi Yi 
i=1 i=1 r ~  

{ [ N N ( )2] [ N N /i__~l )21)1/2 Z X 2 -- ~-~Xi ~,y2_ Yi 
i=1 i=1 i=1 

(3.13.8) 

Note that the numerator in equation (3.13.8) is similar to the numerator of the esti- 
mator for bl in equation (3.12.7a). For the case where the regression line passes 
through the origin in (3.12.7b), we have bl - 0 and our model is 

Yi ~ blxi 

and we can rewrite (3.12.7a) as 
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/91 - -  

1/2 

[i=~lX2i~=lY2]l/2[i=~lX~ ] 
---- rSy/Sx; or, r = blSx/$y 

1/2 ( 3 . 1 3 . 9 )  

Thus, r can be computed from/~1 and vice versa if the standard deviations of the 
sample values x andy are known. Also, using the relationship between/~1 and r we can 
write the variance of the parameter estimate in equation (3.13.9) as 

s2 = 1 N 1 SSE (3 13 10) 
N -  2 Z (Yi _ y ) 2 =  N----C-2 . . 

i=1 

We can use this result to better understand the relationship between correlation and 
regression by writing the ratio of the regression variance in equation (3.13.10) to the 
sample variance in y alone; for large N, this becomes 

S 2_  __ ( N - 1 ) ( 1 - r 2 ) m  (1 - r 2) (3.13.11) 
s 2 N - 2  

Thus, for N large, r 2 is that portion of the variance ofy  that can be attributed to its 
regression on x while (1 - r  2) is that portion ofy's  variance that is independent of x. 

Earlier it was noted that a computationally efficient way to calculate the variance 
was to use equation (3.2.4b) which required only a single pass through the data 
sample. A similar saving can be gained in computing the covariance by expanding the 
product 

N N (i'._-~l Xi) (~=1 yi) 
Z (Xi- ~)(Yi--Y) -=- Z (xiYi)- N (3.13.12) 
I=1 i=1 

3.13.3 Correlation and regression: cause and effect 

A point worth stressing is that a high correlation coefficient or a "good" fit of a 
regression curvey = y(x) to a set of observations x, does not imply that x is "causing" 
y. Nor does it imply that x will provide a good predictor for y in the future. For 
example, the number of sockeye salmon returning to the Fraser River of British 
Columbia each fall from the North Pacific Ocean is often highly correlated with the 
mean fall surface water temperature at Amphitrite Point on the southwest coast of 
Vancouver Island. No one believes that the fish are responding directly to the 
temperature,  but rather that temperature is a proxy variable for the real factor (or 
combination of factors) influencing the homeward migration of the fish. Of course, we 
are not saying that one should not draw inferences or conclusions from correlation or 
regression analysis, but only that caution is advised when seeking cause-and-effect 
relationships between variables. We further remark that there is little point in 
drawing any type of line through the data unless the scatter about the line is 
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appreciably less than the overall spread of the observations. There is a tendency to fit 
trend lines to data with large variability and scatter even if a trend is not justified on 
statistical grounds. If I r] < 0.5, it hardly seems reasonable to fit a line for predictive 
purposes. 

There is another important aspect of regression-correlation analysis that is worth 
stressing: Although the value of the correlation coefficient or coefficient of 
determination does not depend on which variable (x or y) is designated as the 
independent variable and which is designated as the dependent variable, this 
distinction is very important when it comes to regression analysis. The regression 
coefficients a, b for the conditional distribution ofy given x (y = al + blx) are different 
than those for the conditional distribution ofx giveny (x = a2 + b2y). In general, al 
-a2/b2 and bl r 1/b2 so that the regression lines are different. In the first case, we are 
solving for the line shown in Figure 3.11 (a), while in the second case we are solving for 
the line in Figure 3.11 (b). 

As an example, consider the broken lines in Figure 3.11(c) which show the two 
different linear regression lines for the regression of the observed cross-channel sea- 
level differencesy = At/c, as measured by coastal tide gauges, and the calculated cross- 
channel sea-level difference x = A~/m obtained using concurrent current meter data 
from cross-channel moorings. The term A~c is simply the difference in the mean sea- 
level from one side of the 25-km-wide channel to the other, while Aqm is calculated 
from the current meter records assuming that the time-averaged along-channel flow is 
in geostrophic balance (Labrecque et al., 1994). The dotted line is the regression 
Ark = a l  +b]/k~Tm while the dashed line is the regression Aqm = a 2  +b2Arlc,  with 
bl ~ b2. The correlation coefficient r - 0.69 is the same for the two regressions. The 
solid line in Figure 3.11(c) is the so-called neutral regression line for the two para- 
meters (Garrett and Petrie, 1981) and might seem the line of choice since it is not 
obvious which parameter should be the independent parameter and which should be 
the dependent parameter. Neutral regression is equivalent to minimizing the sum of 
the square distances from the regression line (Figure 3.11d). 

In fisheries research, neutral regression is known as geometeric mean functional 
regression (GMFR) and is commonly used to relate fish body proportions when there is 
no clear basis to select dependent and independent variables (Sprent and Dolby, 
1980). For two variables with zero means, the slope estimator, b, is given by the square 
roots of the variance ratios 
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Figure 3.11. Straight line regressions (a) y on x, and (b) x on y showing the "direction" along which the 
variance is minimized. 
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Figure 3.11. (c) Scatter plot of Zlrl,: versus At/,,,. for a cross-section of the 22-km-wide Juan de Fuca 
Strait separating Vancouver Island from Washington State. Plots give the regression of the observed 
cross-channel sea level differences y = Arl,., as measured by coastal tide gauges, and the calculated cross- 
channel sea level difference, x = A~? ..... obtained using concurrent current meter data from cross-channel 
moorings. The solid line gives the bisector regression fit to the data (slope and 95% confidence level - 
0.96 4- 0.37); the dotted line (slope = 0.66 4- 0.14) and the dashed line (slope - 1.40 + 0.32) are the 
standard slopes for Ark versus A~Tm and AT]m versus AT/c , respectively, r - 0.69. (From Labrecque et 
al., 1994.) (d) The "direction" along which the variance for the data points in (a) and (b) is minimized. 

N 
~ (yi _ y ) 2  
/_-1 

byx - sgn ($xy ) N 1/2 '  

( x i  - 

bxy = sgn (Sxy) 

N 

i=1 
1/2; 

r e g r e s s i o n  .Yi - -  byxxi  

^ 

regression X i  - -  bxyYi 

(3.13.13) 

where sgn (Sxy) is the sign of the covariance function Sxy = ~ (Xi- x)(yi--Y) and byx = 

1/bxy, as required. Note that the slope byx lies midway between the slopes bl and b2 

bl -- 

b2 = 

N 
(Xi -- X)  (Yi -- Y )  

i=1 
N 

i=1 
N 

(Xi -- X) (Yi --.Y) 
i=1 

N 

i=1 

; regression line.gi - al + b lx i  

(3.13.14) 

; regression line YC i - -  a2 q-b2Y i  

given by (3.12.7a) for standard regression analyses (Figure 3.11a). The GMFR is then 
the geometric mean slope of the least-squares regression coefficient for the regression 
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slope ofy on x and the regression ofx ony; byx = [bl"(b2) - 111/2. Since the slope from the 
GMFR is simply a ratio of variances, it is "transparent" to the determination of 
correlation coefficients or coefficients of determination. It is these correlations, not 
the slope of the line, that test the strength of the linear relationship between the two 
variables. Moreover, none of the standard linear regression models reduces to the 
GMFR slope estimate except under unlikely circumstances. According to Sprent and 
Dolby (1980), ad hoc use of the GMFR is not recommended when there are errors in 
both variables. The GMFR model, though appealing, rests on shaky statistical ground 
and its use remains controversial. 

3.14 H Y P O T H E S I S  T E S T I N G  

Statistical inference takes one of two forms. Either we make estimates of population 
variables, as we have done thus far, or we test hypotheses about the implications of 
these variables. Statistical inference in which we choose between two conflicting 
hypotheses about the value of a particular population variable is known as hypothesis 
testing. 

Hypothesis testing follows scientific methodology from whose nomenclature the 
terms are borrowed. The investigator forms a "hypothesis," collects some sample data 
and uses a statistical construct to either reject or accept the original hypothesis. The 
basic elements of a statistical test are: (1) the null hypothesis, Ho (the hypothesis to be 
tested); (2) the alternate hypothesis, Ha; (3) the test statistic to be used; and (4) the 
region of rejection of the hypothesis. The active components of a statistical test are the 
test statistic and the associated rejection region, with the latter specifying the values of 
the test statistic for which the null hypothesis is rejected. We emphasize the point that 
"pure" hypothesis testing originated from early work in which the null hypothesis 
correspon~ded to an idea or theory about a population variable that the scientist hoped 
would be rejected. "Null" in this case means incorrect and invalid so that we could call 
it the "invalid hypothesis". In other words, the null hypotheis specified those values of 
the population variable which it was thought did not represent the true value of the 
variable. This is a form of negative thinking and is the reason that many of us would 
rather think in terms of the alternate hypothesis in which we specify those values of the 
variable that we hope will hold true (the "valid" hypothesis). Regardless of which 
hypothesis is chosen, it is important to remember that the true population value under 
consideration must either lie in the test set covered by Ho or in the set covered by Ha. 
There are no other choices. 

We restrict consideration of hypothesis testing to large samples (N > 30). In 
hypothesis testing, two types of errors are possible. In a type-1 error, the null 
hypothesis Ho is rejected when it is true. The probability of this type of error is 
denoted by c~. Type-2 errors occur when Ho is accepted when it is false (Ha is true). 
The probability of type-2 errors is written as/3. In Table 13.14.1, the probability P 
(accept Ho]Ho is true) - 1 -c~ corresponds to the 100(1 - ~ ) %  confidence interval. 
Alternatively, the probability P(reject Ho]Ho is false) - 1 - / 3  is the power of the 
statistical test since it indicates the ability of the test to determine when the null 
hypothesis is false and Ho should be rejected. 
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Table 13.14.1. The four possible decision outcomes in hypothesis testing and the probability of each 
decision outcome in a test hypothesis 

Action 

Accept Ho 

Possible situation 
Ho is true Ho is false 
Correct decision; Incorrect decision; 
confidence level 1 - a  (Type-2 error); 13 

Reject Ho Incorrect decision Correct decision; power 
(Type-1 error); a of the test 1 - 13 

Sum 1.00 1.00 

For a parameter  0 based on a random sample Xl, . . .  , XN, we want to test various 
values of 0 using the estimate 0 as a test statistic. This estimator is assumed to have an 
approximately normal sampling distribution. For a specified value of 0 ( - 0 o ) ,  we 
want to test the hypothesis, Ho, that ~J = 0o (written Ho: 0 -  0o) with the alternate 
hypothesis, Ha, that 0 > 0o (written Ha" 0 > 0o). An efficient test statistic for our 
assumed normal distribution is the standard normal Z defined as 

Z =  ( ~ - 0 )  (3.14.1) 

where 90 is the standard deviation of the approximately normal sampling distribution 
of 0, which can then be computed from the sample. For this test statistic, the null 
hypothesis (Ho: 0 = 0o) is rejected for Z > Z~ where a is the probability of a type-1 
error. Graphically, this rejection region is depicted as the shaded portion in Figure 
3.12(a), which is called an "upper-tail" test. Similarly, a "lower-tail" test would have 
the shaded rejection region starting at - Z ~  and corresponds to Z < - Z ~  and 0 < 0o 
(Figure 3.12b). A two-tailed test (Figure 3.12c) is one for which the null hypothesis 
rejection region is IZ[ > Za/2 and 0 r 0o. The decision of which test alternative to use 
should be based on the form of the alternate hypothesis. If one is interested in 
parameter values greater than 0o, an upper-tail test is used; for values less than 0o, a 
lower-tail test is appropriate. If one is interested in any change from 0o, it is best to use 
a two-tailed test. The following is an example for which a two-tailed test is 
appropriate. 

Suppose that daily averaged currents for some mooring locations are available for 
the same month from two different years (e.g. January 1984 and January 1985). We 
wish to test the hypothesis that the monthly means of the longshore component of the 
flow, V, for these two different years are the same. If the daily averages are computed 
from hourly observations, we invoke the central limit theorem and conclude that our 
sampling distributions are normally distributed. Taking each month as having 31 
days, we satisfy the condition of a large sample (N > 30) and can use the procedure 
outlined above. Suppose we observe that for January 1984 the mean and standard 
deviation of the observed current is V 8 4  = 23 • 3 cm/s while for January 1985 we find 
a monthly mean speed 1/'85 = 20 + 2 cm/s (here, the standard deviations are obtained 
from the signal variances). We now wish to test the null hypothesis that the true (as 
opposed to our sampled) monthly mean current speeds were statistically the same for 
the two separate years. We use the two-tailed test to detect any deviations from 
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Figure 3.12. Large-sample rejection regions (shaded areas) for the null hypothesis Ho : 0 = 0o, for the 
normally distributed function f(O). (a) Upper-tail test for H, : 6 - 0o, Ha : 0 > 0o; (b) lower-tail test 
with the rejection region for H,:O = 0,, Ha:O < 0o; and (c) two-tailed test for which the null 

hypothesis rejection region is Izl > z,,/~ and H,:O ~ 0,. 

equality. In this example, the point estimator used to detect any difference between the 
monthly mean records calculated from daily observed values is the sample mean 
difference, 0 -  (90 = V 8 4 -  V85. Our test statistic (3.14.1) is 
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Z .__ 
(v84- Vss) 

[s~4/N84 Jr- s~5/N85] 1/2 

which yields 

Z = (23 - 20) = 4.63 
[9/31 + 4//31] 1/2 

To determine if the above result falls in the rejection region, Z > Z~, we need to 
select the significance level c~ for type-1 errors. For the 95% significance level, c~ = 
0.05 and c~/2 - 0.025. From the standard normal table (Appendix D, Table D.1) Zo.025 
- 1.2. Our  test value Z = 4.63 is greater than 1.2 so that it falls within the rejection 
region, and we must  reject the hypothesis that the monthly mean current speeds are 
the same for both years. In most oceanographic applications hypothesis testing is 
l imited to the null hypothesis and thus type-1 errors are most appropriate. We will not 
consider here the implementat ion of type-2 errors which lead to the acceptance of an 
alternate hypothesis as described in Table 3.14.1. 

Turn ing  again to satellite al t imetry for an example, we note that the alt imeter 
height bias discussed earlier is one of the error sources that contributes to the overall 
error "budget"  of altimetric height measurements.  Suppose that we wish to know if 
the overall height error HT is less than some specified amount ,  H~. We first set up the 
null hypothesis (Ho: HT < H~) that the true mean is less than H~. At this point, we 
must  also select a significance level for our test. A significance level of 1 - c~ means 
that we do not want to make a mistake and reject the null hypothesis more than 
c~(100)% of the time. We begin by defining our hypothesis limit, HT, as 

Z ofl b 
H T - -  H ~ + - -  (3.14.2) 

v'N 

where the s tandard normal distribution Z~ is given by eqtiation (3.14.1) and Sb is the 
standard error (uncertainty) in our measurements.  If the mean of our measurements  is 
greater than HT, then we reject Ho and conclude that the mean is greater than H~ with 
a probabili ty c~ of being wrong. 

Suppose we set H~ = 13 cm and consider N = 9 consecutive statistically indepen- 
dent satellite measurements  in which each measurement  is assumed to have an 
uncertainty of so = 3 cm. If the mean height error is 15 cm, do we accept or reject the 
null hypothesis for the probability level c~ = 0.10? What  about the cases for c~ = 0.05 
and c~ = 0.01? Given our hypothesis limit H~ = 13 cm and the fact that N - 9 and Sb = 
3 cm, we can write equation (3.14.2) as H r  = 13 + Z ,  cm. According to the results of 

Table 3.14.2. Testing the null hypothesis that the overall bias error HT of satellite altimetry data is less 
than 13 cm. Assumes normal error distributions 

Significance Standard normal Total error 
level, a distribution, Z,~ height, Hr Decision 

0.10 2.326 15.326 cm reject Ho 
0.05 1.645 14.645 cm accept Ho 
0.01 1.280 14.280 cm accept Ho 
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Table 3.14.2, this means that we accept the null hypothesis that the overall error is less 
than 13 cm at the 5 and 10% probability levels but not at the 1% probability level 
(these are referred to as the 95%, 90%, and 99% significance levels, respectively). 

3.14.1 Significance levels and confidence intervals for correlation 

One useful application of null hypothesis testing is the development of significance 
levels for the correlation coefficient, r. If we take the null hypothesis as r = ro, where ro 
is some estimate of the correlation coefficient, we can determine the rejection region 
in terms of r at a chosen significance level c~ for different degrees of freedom ( N -  2). A 
list of such values is given in Appendix E. In that table, the correlation coefficient r for 
the 95 and 99% significance levels (also called the 5 and 1% levels depending on 
whether or not one is judging a population parameter or testing a hypothesis) are 
presented as functions of the number of degrees of freedom. 

For example, a sample of 20 pairs of (x,y) values with a correlation coefficient less 
than 0.444 and N - 2  = 18 degrees of freedom would not be significantly different 
from zero at the 95% confidence level. It is interesting to note that, because of the 
close relationship between r and the regression coefficient b~ of these pairs of values, 
we could have developed the table for r values using a test of the null hypothesis for bl. 

The procedure for finding confidence intervals for the correlation coefficient r is to 
first transform it into the standard normal variable Zr as 

l[ln (1 + r) - In (1 - r)] (3.14.3) Z r - ~  

which has the standard error 

1 
r = ( N -  3.1/2) (3.14.4) 

independent of the value of the correlation. The appropriate confidence interval is 
then 

Zr - Zc~/20z < Z < Zr q- Zc~/20"z (3.14.5) 

which can be transformed back into values of r using equation (3.14.3). 
Before leaving the subject of correlations we want to stress that correlations are 

merely statistical constructs and, while we have some mathematical guidelines as to 
the statistical reliability of these values, we cannot replace common sense and physical 
insight with our statistical calculations. It is entirely possible that our statistics will 
deceive us if we do not apply them carefully. We again emphasize that a high correl- 
ation can reveal either a close relationship between two variables or their simult- 
aneous dependence on a third variable. It is also possible that a high correlation may 
be due to complete coincidence and have no causal relationship behind it. A classic 
example (Snedecor and Cochran, 1967) is the high negative correlation ( -0 .98 )  
between the annual birthrate in Great Britain and the annual production of pig iron in 
the United States for the years 1875-1920. This high correlation is statistically 
significant for the available N - 2  - 43 degrees of freedom, but the likelihood of a 
direct relationship between these two variables, is very low. 
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3.14.2 Analysis of variance and the F-distribution 

Most of the statistical tests we have presented to this point are designed to test for 
differences between two populations. In certain circumstances, we may wish to 
investigate the differences among three or more populations simultaneously rather 
than attempt the arduous task of examining all possible pairs. For example, we might 
want to compare the mean lifetimes of drifters sold by several different manufacturers 
to see if there is a difference in survivability for similar environmental conditions; or, 
we might want to look for significant differences among temperature or salinity data 
measured simultaneously during an intercomparison of several different com- 
mercially available CTDs. The analysis of variance (ANOVA) is a method for per- 
forming simultaneous tests on data sets drawn from different populations. In essence, 
ANOVA is a test between the amount of variation in the data that can be attributed to 
chance and that which can be attributed to specific causes and effects. If the amount of 
variability between samples is small relative to the variability within samples, then the 
null hypothesis Ho-- that  the variability occurred by chance--cannot  be rejected. If, 
on the other hand, the ratio of these variations is sufficiently large, we can reject Ho. 
"Sufficiently large", in this case, is determined by the ratio of two continuous ~2 
probability distributions. This ratio is known as the F-distribution. 

To examine this subject further, we need several definitions. Suppose we have 
samples from a total of J populations and that a given sample consists of Nj- values. In 
ANOVA, the J samples are called J "treatments",  a term that stems from early 
applications of the method to agricultural problems where soils were "treated" with 
different kinds of fertilizer and the statistical results compared. In the one-factor 
ANOVA model, the values YO for a particular treatment (input), xj, differ from some 
common background value, #, because of random effects; that is 

Yij - # + Xj + Cij; j - 1, 2, ..., J (3.14.6) 
i = l , 2 , . . . , N y  . . . .  

where the outcome YO is made up of a common (grand average) effect (#), plus a 
treatment effect (xj) and a random effect, cij. The grand mean, #, and the treatment 
effects, xj, are assumed to be constants while the errors, eij, are independent, normally 
distributed, variables with zero mean and a common variance, a 2, for all populations. 
The null hypothesis for this one-factor model is that the treatments have zero effect. 
That is, Ho: xj = 0 (j= 1, 2, ... , J)  or, equivalently, Ho: #1 = #2 = ... = ~y (i.e. there is no 
difference between the populations aside from that due to random errors). The 
alternative hypothesis is that some of the treatments have a nonzero effect. Note that 
" t reatment"  can refer to any basic parameter we wish to compare such as buoy design, 
power supply, or CTD manufacturer. To test the null hypotheses, we consider samples 
of size Nj from each of the J populations. For each of these samples, we calculate the 
mean value.~j (1 = 1, 2, . . . ,  J) .  The grand mean for all the data is denoted as.~. 

As an example, suppose we want to intercompare the temperature records from 
three types of CTDs placed in the same temperature bath under identical sampling 
conditions. Four countries take part in the intercomparison and each brings the same 
three types of CTD. The results of the test are reproduced in Table 3.14.3. 

If Ho is true, #1 = #2 = #3, and the measured differences between,~,,v2, and.~3 in 
Table 3.14.3 can be attributed to random processes. 



Statistical Methods and Error Handling 255 

Table 3.14.3. Temperatures in ~ measured by three makes of CTD in the same calibration tank. Four 
instruments of each type are used in the test. The grand mean for the data from all three instruments is -~ 
= 15.002~ 

Measurement (i) 
CTD Type 1 CTD Type 2 CTD Type 3 
Sample j - 1 Sample j = 2 Sample j = 3 

1 15.001 15.004 15.002 
2 14.999 15.002 15.003 
3 15.000 15.001 15.000 
4 14.998 15.004 15.002 

Mean _~ ~ 15.000 = _vl 15.003 = .v2 15.002 - ..Y3 

The treatment effects for the CTD example are given by 

Xl -_Yl -.Y - -0.002~ 

x2 =_v2 - _ V -  + 0-001~ 

x3 =-Y3 - Y  - O.O~ 

where .~ - Cvl + Y2 + .y3)/3. The ANOVA test involves determining whether the 
estimated values of x i are large enough to convince us that Ho is not true. Whenever 
Ho is true, we can expect that the variability between the J means is the same as the 
variability within each sample (the only source of variability is the random effects, eo). 
However, if the treatment effects are not all zero, then the variability between samples 
should be larger than the variability within the samples. 

The variation within the J samples is found by first summing the squared devia- 
tions of y0 about the mean value yj for each sample, namely 

Nj 
(yij _yj)2 

i=1 

If we then sum this variation over all J samples, we obtain the sum of squares within 
(ssw) 

y 
Sum of squares within: S S W -  Z Z (yij _.~j)2 

j = l  i=1 

(3.14.7) 

Note that the sample lengths, Nj, need not be the same since the summation for each 
sample uses only the mean for that particular sample. Next, we will need the amount 
of variation between the samples (SSB). This is obtained by taking the squared 
deviation of the mean of the J t h  sample, yj, and the grand mean,.~. This deviation 
must then be weighted by the number of observations in the J th  sample. The overall 
sum is given by 

y 
Sum of squares between: S S B -  Z Nj(fj  _~)2 (3.14.8) 

j = l  

To compare the variability within samples to the variability between samples, we need 
to divide each sum by its respective number of degrees of freedom, just as we did with 
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other variance expressions such as s 2. For SSB, the degrees of freedom (DOF) = J - 1 
while for SSW 

The mean square values are then: 

SSB 
Mean square between: MSB = j _  1 (3.14.9a) 

Mean square within: MSW = 
S S W  

(3.14.9b) 

In the above example, J - 1 = 2 and ~Y=l Nj - J  = 9. The calculated values of MSB 
and MSW for our CTD example are given in Table 3.14.4. Specifically 

4 4 4 
s a w  -- Z (..vii -..v1) 2 q- Z (Yi2 - .~2)  2 Jr- Z (Yi3 -..v3) 2 

i=1 i=1 i=1 

SSB - N1Cv1 - ~)2ff-N2(372 - .y)Z+N3(Y3 - . y )2+N4(Y4  _.~)2 

where N] = 4 ( j  = 1, ..., 4). To determine if the ratio of MSB to MSW is large enough 
to reject the null hypothesis, we use the F-distribution f o r J  - 1 and 

degrees of freedom. 
Named after R. A. Fisher who first studied it in 1924, the F-distribution is defined 

in terms of the ratio of two independent X2 variables divided by their respective 
degrees of freedom. If X1 is a X 2 variable with Ul degrees of freedom and X2 is another 
X 2 variable with u2 degrees of freedom, then the random variable 

gl/l"l (3.14.10) 
F(ul, /-'2) -- X2/1./2 

is a nonnegative chi-square variable with u~ degrees of freedom in the numerator and 
/-/2 degrees of freedom in the denominator. I f J  = 2, in the CTD example above, the F- 

Table 3.14.4. Calculated values of sum of squares and mean square values for the CTD temperature 
intercomparison. DOF = number of degrees of freedom 

Type of variation Sum of squares (~ z) DOF Mean square (~ 2) 

Between samples (type 20 x 10- 6 
of CTD) 
Within samples (all CTDs) 18 x 10 -6  
Total 38 x 10- 6 

, ,  , . . . . . . . . . . . . . . .  , ,  

2 10 • 10 -6  

9 2 • 10 -6 
11 (ratio = 5.0) 
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2 test is equivalent to a one-sided t-test. There is no upper limit to F, which like the 
distribution is skewed to the right. Tables are used to list the critical values of P (F > 
F~) for selected degrees of freedom //1 and /J2 for the two most commonly used 
significance levels, ~ - 0.05 and c~ - 0.01. In ANOVA, the values of SSB and SSW 
follow ~2-distributions. Therefore, if we let X1 - SSB and X2 - SSW, then 

( j  ) [ S S B / ( J - 1 ) ]  MSB (314.11) 
F - 1 ,  ~ ' N j - g  - - S S W ( ~ N j - y )  = MSW 

When MSB is large relative to MSW, F will be large and we can justifiably reject the 
null hypothesis that the different CTDs (different treatment effects) measure the same 
temperature within the accuracy of the instruments. For our CTD intercomparison 
(Table 3.14.4), we have MSB/MSW - 5.0, ~,1=2 and ~'2 = 9. Using the values for the F- 
distribution for 2 and 9 degrees of freedom from Appendix D, Table D.4a, we find 
F,~(2,9) - 4.26 for ~ - 0.05 (95% confidence level) and F~(2,9) = 8.02 for o~ - 0.01 
(99% confidence level). Since, F - 5.0 in our example, we conclude that a difference 
exists among the different makes of CTD at the 95% confidence level, but not at the 
99% confidence level. 

3 . 1 5  E F F E C T I V E  D E G R E E S  O F  F R E E D O M  

To this point, we have assumed that we are dealing with random variables and each of 
the N values in a given sample are statistically independent. For example, in 
calculating the unbiased standard deviation for N data points, we assume there are N 
- 1 degrees of freedom. (We use N - 1 rather than N since we need a minimum of 
two values to calculate the standard deviaton of a sample.) Similarly, in Sections 3.8 
and 3.10, we specify confidence limits in terms of the number of samples rather than 
the "true" number of degrees of freedom of the sample. In reality, consecutive data 
values may not be independent. Contributions from low-frequency components and 
narrow band oscillations such as in inertial motions may lead to a high degree of 
correlation between values separated by large times or distances. The most common 
example of highly coherent narrow band signals are the tides and tidal currents which 
possess a strong temporal and spatial coherence. If we want our statistics to have any 
real meaning, we are forced to find the effective number of degrees of freedom using 
information on the coherence and autocorrelation of our data. 

The effects of coherent nonrandom processes on data series lead us into the 
question of data redundancy in multivariate linear regression. Our general model is 

M 

Y(ti) = ~-'~bkxk(ti); i=  1, ..., N (3.15.1) 
k=l 

where the Xk represents M observed parameters or quantities at times ti. The bk are M 
linear-regression coefficients relating the independent variables Xk(ti) tO the N model 
estimates,.9(ti). Here, the Xk observations can be measurements of different physical 
quantities or of the same quantity measured at different times or locations. 

The estimate33 differs from the true parameter by an error Ci =33(ti) - y ( t i )  =Yi --Yi. 
Following our earlier discussion, we assume that this error is randomly distributed 



258 Data Analysis Methods in Physical Oceanography 

and is therefore uncorrelated with the input data Xk(ti). To find the best estimate, w~ 
apply the method of least squares to minimize the mean square error 

M M M 

e-'-i -- Z Z bibjx-~ -- 2 Z bj2-~ + y-7 (3.15.21 
i=1 j= l  j= l  

In this case, the overbars represent ensemble averages. To assist us in our mini. 
mization, we invoke the Gauss-Markov theorem which says that the estimator, giver 
by equation (3.15.1), with the smallest mean square error is that with coefficients 

M 

(3.15.31 
j -1  

where { ~ } - 1  is the i , j  element of the inverse of the M x M cross covariance matrb 
of the input variables (note: {x-~Tj}-lr 1 / ~ ) .  This mean-square product matrix i~ 
always positive definite unless one of the input variables xk can be expressed as ar 
exact combination of the other input values. The presence of random measuremen 
errors in all input data make this "degeneracy" highly unlikely. It should be noted 
however, that it is the partial correlation between inputs that increases the uncertaint3 
in our estimator by lowering the degrees of freedom through a reduction in th~ 
independence of our input parameters. 

2 We can write the minimum least-square error e o as 

M M 

e~-y--2 Z Z~-7 {X-~j } -1 - yxj (3.15.41 
i=1 j= l  

At this point, we introduce a measure of the reliability of our estimate called the skil. 
(S) of the model. This skill is defined as the fraction of the true parameter varianc~ 
explained by our linear statistical estimator; thus 

i=1 j= l  

The skill value ranges from no skill (S = 0) to perfect skill (S = 1). We note that fo~ 
the case (M = 1), S is the square of the correlation between xl and y. 

The fundamental trade-off for any linear estimation model is that, while one want~ 
to use as many independent input variables as possible to avoid interdependenc~ 
among the estimates of the dependent variable, each new input contributes randorr 
measurement  errors that degrade the overall estimate. As pointed out by Davis (1977) 
the best criterion for selecting the input data parameters is to use a priori theoretica 
considerations. If this is not possible, some effort should be made to select thos~ 
inputs which contribute most to the estimation skill. 

The conflicting requirements of limiting M (the observed parameters) and includ. 
ing all candidate input parameters is a dilemma. In considering this dilemma 
Chelton (1983) concludes that the only way to reduce the error limits on the estimatec 
regression coefficients is to increase what are called the "effective degrees of freedom 
N*." This can be done only by increasing the sample size of the input variable (i.e 
using a longer time series) or by high-passing the data to eliminate contributions frorr 
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unresolved, and generally coherent, low-frequency components. Since we are forced to 
deal with relatively short data records in which ensemble averages are replaced by 
sample averages over time or space, we need a procedure to evaluate N*, the effective 
degrees of freedom. 

In the case of real data, ensemble averages are generally replaced with sample 
averages over time or space so that the resultant values become estimates. Thus, the 
skill can be written as S given by (3.15.5). If we assume for a moment that the xk input 
data are serially uncorrelated (i.e. we expand the data series into orthogonal func- 
tions), we can write the sample estimate of the skill as 

 :EEx2y,  i=1 j--1 

Following Davis (1978) we can expand this skill estimate into a true skill plus an 
artificial skill 

S - S + S A  (3.15.7) 

The artificial skill, SA, arises from errors in the estimates and can be calculated by 
evaluating the skill in equation (3.15.6) at a very long time (or space lag) where no real 
skill is expected. At this point, there is no true estimation skill and S = SA. 

Davis (1976) derived an appropriate expression for the expected (mean) value of 
this artificial skill which relates it to the effective degrees of freedom N* 

M 
SA - ~ (N~) -I (3.15.8) 

k=l 

where N~ is the effective degrees of freedom associated with the sample estimate of the 
covariance between the outputy  and and input xk of the model. Under the conditions 
that S (the true skill) is not large, that the record length N is long compared to the 

autocovariance scales ofy and x, and that the N~are the same for all N, we can write N* 
as 

N* - N (3.15.9a) 

['r=-< Cxx(T)Cyy(T)] / [Cxx(O)Cyy(O)] 
N 

= (3.15.9b) 

[ ~ Pxx(T)PyY(T) 
T----O0 

where p<<(r)- C<<(r)/Q<(O)- Q<(r)/s{ is the normalized autocovariance function 
for any variable < (with variance s~), and 

C<<(T) - E[(r - ~)(<(T + ti) -- ~)] 

1 N' (3.15.10) 
N--TZ{(<(ti) - ~)(~(T + ti) - ~)} 

i=1 

where N' is the number of data values used in the summation for the particular lag, r. 
A more complete form of this expression was given by Chelton (1983) as 
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N* = N (3.15.1 la' 

E Cxx(T)%(T) -t- Cxy(T)Cyx('T) /[Cxx(O)Cyy(O)] 
T - - - - O 0  

N 
= (3.15.11b I 

[ s Pxx(T)pyy(T) "-[- Pxy(T)pyx('T')] 

This expression now includes the cross-covariances betweeny and x [e.g. Cxy(r) ant 
pry(r)] and is not limited to cases where S is small. 

In general, the true auto- and cross-covariances are not known and the computatior 
of N* requires the substitution of sample estimates over finite lags for the correlation: 
in equation (3.15.11). The resulting effective degrees of freedom, N*, can be used witt 
standard tables to find the selected significance levels for ,~. In the ideal case, when al 
input variables are neither cross- nor serially correlated (and therefore independent) 
the effective number of degrees of freedom is N, the sample size. In general, however 
input data series are serially correlated and N* << N. The larger the time/spac~ 
correlation scales in equation (3.15.11), the smaller the value of N*. This means that i 
is the large scale, low-frequency components of the input data that lead to a decreas~ 
in the number of independent values in the data series. 

The limitations of estimating regression characteristics for real data can b~ 
summarized as follows: 

(1) Accurate statistical results require the use of the effective number of degrees o 
freedom, N*, with N* generally much less than the total number of observations 
N. 

(2) The accuracy of the estimated regression coefficients increases as N* increases. 
(3) The accuracy of the regression coefficient decreases as the number of inputs 

increases (measurement error is added). 
(4) The accuracy increases as the model skill increases and decreases as the inpu 

parameters become more correlated. 

The above considerations emphasize the need for careful selection of the input dau 
and the careful evaluation of the characteristics of these data. As pointed out by Davi: 
(1977), a fundamental part of this selection process is the determination of the spac~ 
and time scales to be studied. The methods used to extract this fundamental scah 
information from the input data can range from cross-spectral analysis (see Chapter 5 
to a filtering of the data using preselected windows. Performing this filtering in th~ 
time domain rather than the frequency domain is often less complicated. The filterin~ 
process has the goal of eliminating scales that are not expected to contribute to th~ 
true correlation but which will add artificial correlation due to instrument and sam 
pling errors. 

Once the space and/or time scales are determined, selected or set by filtering, the 
next step is the selection of the input series to use in the estimate. At this stage, th~ 
dilemma arises between limiting the effects of errors and at the same time including a: 
many as possible uncorrelated input variables to increase the degrees of freedom 
Davis (1977) recommends using dynamical considerations to make this selection anr 
shows how the data required for proper statistical estimation are generally thos~ 
required to make the dynamical system well posed. However, he also mentions that, ir 
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general, the dynamics of most processes are not well enough understood and that 
specification data are not known with certainty. Nevertheless, some quantitative 
understanding of the physical system can serve as a useful guide to the selection of 
estimation data. 

3.15.1 Trend estimates and the integral time scale 

Most oceanographic variability arises through a combination of random and non- 
random processes. The presence of tidal and low-frequency components means that 
data points in time or space series are not independent of one another. The data that 
we collect are not truly random samples drawn from random populations. There is 
invariably a nonzero correlation between values in the series which must be taken into 
account when we tally-up the true number of independent samples or degrees of 
freedom we think we have in our system. This number is important when it comes to 
determining the confidence limits of linear regression slopes and parameter estimates. 

As an example, consider the confidence limits on the slope of the least squares 
linear regression)  = bo + blx (where, again, ^ denotes an estimator for the function y). 
From equation (3.8.6), the limits are 

+(scG/z,u)/[(N - l )sx] 1/2 (3.15.12a) 

or, in terms of the estimator 31 for b~ 

b l -  (s~G/2,,) 
[(N - 1)Sx] 1/2 

< t31 < hi  + ( S e t a / 2 ' u )  (3.15.12b) 
[(N - 1)Sx] 1/2 

where u = N - 2 is the number of degrees of freedom for the Student's t-distribution 
at the (1 - c0100% confidence level, and the standard error of the estimate, s~, is given 
by 

(Yi -33i) 2 - 1 1/2 
s~ = - 2 i=~ - 2 SSE (3.15.13) 

The standard deviation for the x variable, Sx, is given by 

INI 
Sx = --  I i= 1 (Xi --  X )2  (3.15.14a) 

or 

v/N - 1 Sx = (x i  - ~)2 
i=1 

(3.15.14b) 

The question is: what do we use for the number of degrees of freedom if the N 
samples in our series are not statistically independent? The reason we ask this 
question is that the characteristic amplitudes of the fluctuations s~ and Sx are 
calculated using all N values in our data series when we really should be using some 
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sort of effective number of degrees of freedom N*(< N) which takes into account the 
degree of correlation that exists between data points (as discussed in the previous 
section). 

Suppose we decide to err on the conservative side by agreeing to work with that 
value of N* which makes the confidence limits -+-(sct,~/z.~)/[(N- 1)Sx] 1/2 as small as 
justifiably possible. This means that when we estimate the confidence limits for a 
regression slope for a given confidence coefficient, c~, we know that we have probably 
been too cautious and that the confidence limits on the slope probably bracket those 
that we derive. 

We begin by keeping s~ as it is. If there are high frequency (possibly random) 
fluctuations superimposed on coherent low-frequency motions, retaining the high- 
frequency variability adds to the magnitude of s~. Had we low-pass filtered the data 
first and recomputed s~ based on the true number of data points in our low-pass 
filtered record, we would expect s~ to be somewhat smaller. By using s~ as it is we are 
assuming that it is a fixed quantity no matter how we subsample or filter the data (s~ = 
constant). We do the same with sx but now replace N - 1 with N* - 1, where N* < N. 
This increases the magnitude of the confidence limits. All that remains is to assume 
that the number of degrees of freedom for the t-distribution are given by the effective 
number of degrees of freedom u = N* - 2. This statistic has a larger value than for 
v = N - 2  so that, again, we are overestimating the magnitude of the confidence 
interval. This confidence interval is then given by 

4-(s~t(~/2;~,)/[(N*- l)sx] 1/2 (3.15.15a) 

i . e .  

(s~t~/2, ,) (set,~/2, ~,) 
bl - </31 < bl + (3.15.15b) 

[(N* - 1)Sx] 1/2 [(N* - 1)Sx] 1/2 

with u = N* - 2. 
Our final task is define the effective number of degrees of freedom, N*, based on a 

knowledge of the autocovariance function C(r) (3.15.10) as a function of lag 7. To do 
this, we must first find the integral time scale T for the data record 

1 ~ A 7  
T - C(0-----) k=o - ~  [C(rk + AT) + C(Tk)](discrete case) (3.15.16a) 

~X5 

_- ~ 1  / C(T)dT continuous case (3.15.16b) 
c(o) 

0 

where m is the number of lag values to be incorporated in the integral, AT is the time 
increment between data values and �89 [C(rk + AT) + C(rk)] is the mean value of C for 
the midpoint of the lag interval (rk, rk + A-r). Once the integral time scale is known, 
the effective degrees of freedom are found by 

NAt  
N * =  (3 15 17) 

T " " 

where At is the sampling increment and NAt is the total length (duration or distance) 
of the record. If, for example, N = 120, At = 1 h, and T = 10 h, then N* - 12 (<< N). 
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To find the autocovariance function, we let ~-~ - kAT be the kth lag (k = 0, 1,... ), 
then 

1 N - k  

C ( T k ) - N _  l _ k E ( Y i - Y i z ) ( y i + k - Y i + k ) ; k - O ,  ..., X , , , a x  (3.15.18a) 
i=1 

1 N 
C(0) - N - 1 Z (Yi - S )  2 -  Sy 2 (3.15.18b) 

t=l  

where C(0) is the just the variance Sy 2 of the full data series. In both equations 
(3.15.18a) and (3.15.18b), the data start with the first value f o r /  - 1; Nmax is the 
m a x i m u m  number  of reasonable lag values (starting at zero lag and going to << N/2)  
that can be calculated before the summation becomes erratic. In theory, we would like 
C(T) ~ 0 as T ~ N. In reality, however, the data series will contain low-frequency 
components  which will cause the autocovariance function to oscillate about zero or 
asymptote towards a nonzero value. It should also be obvious that the statistical 
significance of the summat ion becomes meaningless at large lag due to the fact that 
the statistic is based on fewer and fewer values as the lag becomes large. For example, 
at a lag k = (N - 3) there are only four values that go into the summation and these 
are derived from neighboring points that are likely highly correlated. 

We can picture the integral time scale using equation (3.15.16b). Wri t ing 

f 
T .C(O)  - ] C(T)d'r 

o ,  

all ~- 

we see that the area under the curve C(T) has been equated to the rectangular region 
T .  C(0) (Figure 13.13). In essence, we take a reasonable portion of the curve C(T), 
obtain its area and divide the integral (sum) by its value at zero lag, C(0). An example 
of the autocovariance function and the integral time scale derived from it are shown in 
Figure 13.14 for satellite-tracked drifter data in the North Pacific. 

(a) 
C(~) 

1 c(o) 

(b) 

I" 

C(O) l 

t 
Integral 

time scale 
T 

,r 

Figure 3.13. Definition of the integral time scale. The area under the curve C(T) versus ~- in (a) is 
equated to the rectangular region TC(O) in (b). In practice, only a reasonable portion of the curve C(7-) is 

used to obtain the area in (a). 
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3.16 E D I T I N G  A N D  D E S P I K I N G  T E C H N I Q U E S :  T H E  
N A T U R E  OF E R R O R S  

A major concern in processing oceanographic data is how to distinguish the true 
oceanic signal from measurement "errors" or other erroneous values. There are two 
very different types of measurement errors that can affect data. Random errors, usually 
equated with "noise",  have random probability distributions and are generally small 
compared to the signal. Random errors are associated with inaccuracies in the 
measurement  system or with real variability that is not resolved by the measurement 
system. The well-accepted statistical techniques for estimating the effects of such 
random errors are based largely on the statistics of a random population (see previous 
sections on statistics). Other errors which strongly influence data analysis are 
accidental errors. These errors are not representative of the true population and occur 
as a result of undetected instrument failures, misreading of scales, incorrect recording 
of data, and other human failings. In the following discussion, we will handle these 
two error types in reverse order since the large accidental errors must be removed first 
before techniques can be applied to treat the "statistical" (random) errors. 

One example of a large accidental error would be assigning an incorrect geographic 
location to an oceanographic measurement which then transfers the observations to a 

( a )  
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Figure 3.14. Autocovariance functions and corresponding integral time scales for zonal (u) and 
meridional (v) velocities of satellite-tracked drifter deployed to the south of the Aleutian Islands in the 
northeast Pacific (see insert) and covering the period I3 November 1991 to 30 July 1993 based on six- 

hourly sampling interval. (Courtesy of Adrian Dolling.) 
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Figure 3.14..dutocovariance functions and corresponding integral time scales for zonal (u) and 
meridional (v) velocities of satellite-tracked drifter deployed to the south of the Aleutian Islands in the 
northeast Pacific (see insert) and covering the period 13 November 1991 to 30 July 1993 based on six- 

hourly sampling interval. (Courtesy of Adrian Dolling.) 

region with which they have no direct relationship. Some of these errors, such as 
oceanographic stations on land, are easily detected, while others are less obvious. 
Another example of such errors would be biases in a group of measurements due to the 
application of incorrect sensor calibrations or undetected instrument malfunctions. 
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Again, the new data would be inconsistent with other existing measurements of the 
same phenomenon. Our goal is to remove or correct such errors in order to make the 
data set as self consistent as possible. If we know the history of the data, meaning the 
details of its collection and reduction, we may be in a better position to understand the 
sources of these errors. If we have received the data from another source, or are 
looking at archived data, we may not have available the necessary details on the 
"petigree" of the data and may have to come to some rather arbitrary decisions 
regarding its reliability. Considering the widespread use of computer-linked data 
banks, this is not a trivial problem. The question is how to ensure the necessary 
quality control yet ensure rapid dissemination and accessibility to data files. 

3.16.1 Identifying and removing errors 

There are two important axioms to follow when dealing with large erroneous values or 
"spikes": 

(1) To identify the large errors, it is necessary to examine all of the data in visual form 
and to get a "feel" for the data; 

(2) When large errors are encountered, it is usually best to eliminate them all 
together rather than try to "correct" them and incorporate them back into the 
data set. 

Of course, care must be taken not to reject important data points just because they 
don't fit either the previous data structure or our preconceived notion of the process. A 
good example is the determination of heat transport in the South Atlantic. Bennett 
(1976) suggested that the oceanic heat transport in this ocean is directed toward the 
equator, contrary to the widely accepted notion that oceanic heat transports are 
generally poleward. Stommel (personal communication) noted that, in his tabulation 
of property fluxes for the South Atlantic, W~st (1957) conspicuously left out the flux 
of heat while treating other less easily computed transports such as those of nutrients 
and oxygen. Through an exchange of letters with a former student of W~st's, Stommel 
learned that the heat content calculation indeed showed that heat is transported 
equatorward. W~st considered this to be the wrong direction and the results were not 
published along with the other flux values. The point of this story is to illustrate the 
way in which our prejudice can lead us to reject significant results. In such cases, 
there is no hard rule as to how this decision is made and a great deal of subjectivity 
will always be inherent in this level of data interpretion. 

The need to examine all the data to detect errors presents a difficult task because of 
the large numbers of values and the difficulty of looking at unprocessed data. In this 
case, it is more important to think of ways in which we can present the data so as to 
ask and answer the questions regarding consistency of the measurements. A compact 
over-view of all the data is the best solution. This presentation may be as simple as a 
scatter diagram of the observations versus some independent variable, or a scatter 
diagram relating two concurrently measured parameters. While scatter diagrams 
cannot be used to to resolve visually individual points, they do reveal groupings of 
points which relate to the physical processes expressed by the data. As an example, 
consider a temperature-sal ini ty scatter diagram (Figure 3.15) computed using a large 
number  of hydrographic data collected from bottle casts. Here, the groups of dots 
labelled "a", "b" refer to different water masses present in the 5 ~ square 35-40~ 15- 
20~ where the data were collected. The data labelled "c" clearly represent a distinct 
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water mass since the points lie along a line divergent from the rest of the scatter 
values. If we look at other similar TS scatter plots, we recognize that this line is 
consistent with the TS relationship from a corresponding square at this same 
longitude but south of the equator. Thus, it is likely that the latitude recorded was 
incorrect and that these data are simply misplaced. We correct this by eliminating the 
points "c" from our square. However, we can't be sufficiently confident of our 
assumption to add the points to the other square even though the data coverage there 
is not very good. 

Often it is not possible to develop a simple summary presentation of all the data. In 
the case of current meter data, a time-series presentation is the most appropriate way of 
looking at the data. As noted by Pillbury et al. (1974), error detection using this 
technique is very time consuming. They note that this procedure can be used 
successfully for speed, pressure, salinity, and temperature but not for direction, which 
varies widely. This is due to the fact that direction is limited to the range 0-360 ~ and 
shows no extreme values. Because of the wrap-around (27r discontinuity) problem, in 
which 0 ~ - 360 ~ (or - 1 8 0  ~ = +180~ direction records tend to be very "spiky", 
especially in regions of strong tidal flow. A scatter diagram of speed versus direction can 
be used to detect systematic errors between the speed and direction sensors and to pin- 
point those times when the current speed is below the threshold recording level of the 
instrument. This would be displayed by the direction readings at speeds below 
threshold and would be easier to identify on the scatter plot than in the individual time 
series. The only way around the problem with the direction channel is to transform the 
recorded time series of speed and direction (U, ~9) to orthogonal components of velocity 
(u, v). In particular, separate plots of the east-west (u) and the north-south (v) velocity 
components (or alongshore and cross-shore components for data collected near the 
coast) quickly reveal any erroneous values in the data (Figure 3.16). 

Pillsbury et al. (1974) report that, for Aanderaa RCM4 and RCM5 current meters, 
there are several sources of large errors. We will discuss these as typical of the errors 
inherent in moored current meter data since many of these instruments remain in use. 
One source of error is the current meter's encoder which might encounter a small 
electrical resistance. The probability of this occurring is considered small. A more 
likely error is due to nonuniformity in the 1/4-in magnetic tape which may have 
variations in the coating or carry residual magnetism. The tape transcriber is also a 
possible error source since it occasionally drops a bit. An error particular to the speed 
parameter where the speed is seen to abnormally increase, may be caused by non- 
uniformities in the speed potentiometer winding. A less frequent error type is that 
associated with clock and trigger malfunctions. Instances have been observed where a 
meter has cycled several times in rapid succession or conversely missed one or more 
cycles. These problems are addressed here under the section on timing errors. 
Direction errors are due to mechanical failures in the compass itself. In some cases the 
compass needle failed to contact the resistance ring around the compass while in 
others direction readings in one range all were recorded in a different range. Many of 
these compass problems were apparent in the raw data while others were only 
discovered later by looking at the direction histograms. 

Other problems with Aanderaa RCM4/5 current meters have been noted over the 
years. These can be minimized if the following protocol is observed (assuming that the 
instrument is operational and calibrated): 
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the points lie along a line divergent from the rest of the scatter values. 

(1) 

(2) 

(3) 

(4) 

(5) 

Use a new nonmagnetic battery and load test with a 100 ohm resistor to ensure 
that it meets the manufacturer 's specification. Keep in mind that battery amp- 
hours decrease with decreasing water temperature. 
Do not overfill the supply spool with magnetic tape. Leave a 2 mm space so that 
the tape will not spill off the spool and jam the mechanical mechanism when the 
instrument is tilted or laid on its side. 
Check the tape take-up spool clearance between pinch-rollers spring, circlip, and 
frame. Spin spool by hand. Check for space between the feed spool and pressure 
sensor (if installed). Wrap 20 turns of leader on the take-up spool and check the 
clutch tension. 
Check that both spool nuts are in place and do not over-tighten. Do not over- 
tighten the nylon rotor pivot screw. 
Ensure that no ferrous metal screws are used near the compass. Replace these 
with stainless steel or brass. Also, do not use a ferrous bar to balance the direction 
vane-- i t  may be close enough to cause the compass to "stick" and ruin the 
directional data. 



Stat is t ical  Methods  and Error  H a n d l i n g  269 

35 

" l 
1"4 
a l  

3O 

0.5 

- t 
o 

-0.5 

( a )  
Pressure (db) 

(b)  EW Component(u)  ] ~ S p i k e  

0.5 

- t 
-~ o 

-0.5 

(c) NS Component (v) 

Spike . - - '~  I 

0.5 

- t 
0 

-0.5 

8 

(d) Current velocity (m/s) 

I " I I . . . . .  I .... I '  'I I '  - I 

9 10 11 12 13 14 15 16 

Time (days) 

May (1993) 

Figure 3.16. A plot of hourly data obtained from an Aanderra RCM4 current meter moored at 30 m 
depth data in 250 m of water near the entrance to Juan de Fuca Strait (48 ~ 3.3'N, 125 ~ 18.8'W) during 
the period 8-16 May 1993. (a) Ambient pressure (~ instrument depth in meters); (b) East-west (u) 
component of velocity (m/s); (c) North-south (v) component of velocity (m/s); (d) Velocity stick vector 
(m/s). Erroneous current velocity values ("spikes") stand out in the (u, v) records. Flow consisted of 
moderate tidal currents superimposed on a surface estuarine outflow that weakened around May 13. 

(6) Inspect the O-ring for cuts or nicks and do not trap loose wiring under the ring 
seat when closing the case. Leakage of small amounts of water to the bottom of the 
instrument case can cause electrical malfunctions when instrument tilts. 

(7) Do not jam a spinning rotor with tissue paper or other material prior to 
deployment. It is better to shield rotor from wind while on deck. Too often the 
instrument is recovered with the material still jammed in place. 

(8) It is essential to hand-record accurate times for the first and last data records. 
Make sure the time zone is recorded. Record the time the instrument enters the 
water on deployment and leaves the water on recovery. More problems can be 
linked to poor bookkeeping than any other cause. 

(9) Spin the rotor in multiples of 24 times (or some multiple of four) to ensure that 
sampling interval and rotor counter switch (if applicable) are correct. 

Another standard method for isolating large errors is to compute a histogram of the 
sample values. This amounts to completing step 1 in a goodness of fit calculation since 
a histogram is nothing more than a diagram showing the frequencies of occurrence of 
sample values. While this is a very straightforward procedure some care must be taken 
in selecting the parameter intervals, or bins, over which the sample frequencies are 
calculated. If the bins are too large, the histogram will not resolve the character of the 
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sample PDF and the effects of large error values will be suppressed by being grouped 
with more commonly occurring values. On the other hand, if the bins are too narrow, 
individual values take on more influence and the resulting distribution will not 
appear smooth. This makes it difficult to "see" the real shape of the distribution. 

The use of a histogram in locating large errors is that it readily identifies the 
number of widely differing values that occur and shows whether these divergent 
values fit into the assumed PDF for the assumed variable. In other words, we can not 
only see how many values ("outliers") differ widely from the mean values, but also 
determine if the number  of large values in the sample is consistent with the expected 
distribution of large values for the population. Thus, we have an added guideline for 
deciding whether the sample values should be retained or eliminated for subsequent 
analysis. Both PDFs and histograms use visual means of detecting large error values. 
It is possible to use more automated and objective techniques, such as eliminating all 
values that exceed a specified standard deviation (e.g. +3a). However, these approach- 
es have the weakness that they must first consider all data points, including the 
extreme values, as valid in order to determine decision levels for selecting or rejecting 
data. Here, we could use an iterative process in which the values outside the accepted 
range are omitted from each subsequent recalculation of the mean and standard 
deviation, until the remaining data have near constant statistics with each new 
iteration. Large errors, which are usually easy to spot using visual editing techniques, 
should be removed before proceeding to a more objective step involving the detection 
of less obvious random deviations. An objective technique for identifying outlier 
values is to compute a function which selects extremes of the population such as the 
first derivative of the measured variable with respect to an independent parameter. An 
example would be a time series of temperature measured from a line in a satellite 
image. After the extreme gradients are identified in the first derivative calculation, 
there is still the question of how widely the extremes should be allowed to differ from 
the rest of the population and whether a value should be considered as an error value 
or as simply as a maximum (or minimum) of the process being observed. 

In making such a decision, it is necessary to have an estimate of the variability of the 
process. As discussed above, the dispersion of the population dis t r ibut ion is best 
represented by the variance or the standard deviation. If we are dealing with a normal 
population, we know that the standard deviation specifies the spread of the distribution 
and that 66% of the population values lie within # + cr while 95% of these values are in 
the interval # + 2~. Beyond # + 3~ lie only 0.26% of the total frequency of occurrence, 
leaving 99.74% within this interval. Thus, it is again a matter of probabilities and 
significance level; and we must choose at what level we will reject deviations from the 
mean as errors. If we choose to discard all measurements beyond 2or, we will have 
retained 95% of the sample population as our new sample population for which we will 
repeat out estimation of the statistics. This suggests that we will make our statistical 
estimate twice; first to decide what data to retain, and second to make statistical 
inferences about the behavior exhibited by the revised sample data. It is customary to 
use a much coarser sub-sampling interval, or to use broadly smoothed data, to compute 
the initial sample standard deviations for the purposes of editing the data. For our TS 
curve example (Figure 3.15), we might initially have used a computational interval of 1 
or 2~ to compute a standard deviation for the first-stage editing and then have used 
the newly defined sample population (original sample minus large deviations > 2~ 
to recalculate the mean and standard deviation with a resolution of 0.1~ closer to the 
measurement accuracy for reversing thermometers. In statistical analysis we should 
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not expect to exceed the inherent accuracy and resolution of our data. Modern 
computing facilities, and even pocket calculators, make it tempting to work with many 
decimal places despite the fact that higher place values are not at all representative of 
the ability of the instrument to make the oceanic measurement. 

A form of two-step editing is used in the routine processing of CTD data which is 
typically sampled at ~ 25 samples/s per channel (~ 25 Hz/channel). Since these instru- 
ments produce many more data than we are capable of examining, both smoothing and 
editing procedures are often built into the routine processing programs. The steps involved 
with processing calibrated CTD data at the Institute of Ocean Sciences are as follows: 

(1) Write the data to a file for display on a computer screen using an interactive 
editing program written for the particular data set. 

(2) Examine all data for a given set of parameters by displaying the data 
simultaneously on a computer monitor; as a consistency check, it is important 
to know if large errors in one paramater such as temperature, are associated with 
some real feature in another parameter, such as salinity. 

(3) With the cursor, eliminate erroneous values collected near the ocean surface 
where the probe rises in and out of the water with the roll of the ship. 

(4) Using the file in (3), calculate the pressure gradient versus depth for the data and 
eliminate those data values for which the depth is decreasing with time for a 
downcast and increasing with time for an upcast (wave action eliminator). 

(5) Using the file of (4), produce a hardcopy plot of the entire profile plus an 
expanded version for the upper ocean (say 0 to 300 m depth). 

(6) On the hardcopy, "flag" erroneous values and irregularities in all data channels. 
(7) Use the interactive screen display to eliminate "bad" data identified in (5). If gaps 

between data points are small, linearly interpolate between adjacent values. 
(8) Smooth the edited file by averaging values over a specified depth range. Typically, 

1-m averaged files are generated for profile data and 1-s averaged files for time- 
series data. 

Because of improved CTD technology in recent years, step (8) is often conducted 
first. Thi~step is then eliminated or replaced with a larger averaging interval such as 
5m.  

Fofonoff et al. (1974) used a 1/2~ average (15 scans) to smooth the measured 
pressure series. From this smoothed set, a 10th decibar pressure series was generated. 
Even with the smoothing, the pressure was oversampled, with roughly two 
observations for each pressure interval. The goal of this computation was to produce 
a uniform pressure series that could be used to generate profiles of T and S with depth. 
Processing routines could be added that first sorted out spurious extreme T and S 
values, based on a running mean standard deviation, and which ensured that the 
pressure series was monotonically increasing. This would correct for small variations 
in the depth of the probe due to ship motion or strong current shear. Also, in making 
these editing decisions we should always keep in mind the instrument characteristics 
and not discard data well within the noise level of the measurement system. 

When editing newly collected data, we should always consider what is already known 
from similar, or related measurements in order to detect obvious errors. A typical example 
is the use of TS curves to evaluate the performance of sample bottles in a hydrocast. Since 
TS curves are known to remain relatively stationary for many areas, previously sampled 
TS curves for an area can be used to locate data points that may have been caused by the 
erroneous performance of a water sampler; these are generally due to inadvertant bottle 
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"trips" in which the sampler likely closed before or after the desired depth was achieved. 
Prior TS curves also have served as a means of interpolating a particular hydrocast or 
perhaps providing salinities to match measured temperatures. This approach is limited, 
however, to those areas and those parameters for which a sufficient number of existing 
observations are available to define the mean state and variability. In many areas, and for 
many parameters, information is too limited for existing data to be of any real use in 
evaluating the quality of new measurements. As a matter of curiosity, it would be 
interesting to determine the numbers of deep hydrocast data that were unknowingly 
collected at hydrothermal venting sites and discarded because they were "erroneous". 
Anomalously high temperatures would be difficult to justify if one did not know about 
hydrothermal circulation and associated buoyant plumes. 

In contrast to large accidental errors, which lead to large offsets or systematic biases, 
random errors are generally small and normally distributed. These errors often are the 
result of inaccuracies in the instrumentation or data collection procedures and 
therefore represent the limit of our ability to measure the desired variable. Added to 
this is our inability to completely resolve the inherent variability in a particular 
parameter. This too may be a limitation of our instrument or of our sampling scheme. 
In either case, when we cannot directly measure a scale of oceanic variability that 
contributes to the alias of our measurement, the variability will form part of the 
uncertainty in the final calculated value. 

The theory of random errors is well established (Scarborough, 1966). The funda- 
mental approach is to treat the errors as random numbers with a normal PDF. Basic to 
this assumption is that positive and negative errors of the same size occur in about 
equal number and tend to cancel each other. This suggests that the appropriate way to 
treat data containing random errors is in terms of mean-square (MS) and root-mean- 
square (RMS) values. Another fundamental assumption is that the probability of an 
error occurring depends inversely on its magnitude; thus, small errors are more 
frequent than large ones. Following the first of these two assumptions, the PDF of the 
random errors might be written as 

P(~x) =f(~x 2) (3.16.1) 

where p is the PDF of the errors cx. The second characteristic requires that the 
probability decreases with increasing Cx so we can write for any real constant, k 

P(r Cexp ( 2 2 = - k  Cx) (3.16.2) 

Using the fact that the integral under the curve of any PDF is unity, we solve for C 
and get 

k 
P(~x) = - ~ e x p  (-k2cx 2) (3.16.3) 

This expression is known as the probability equation or the error equation. A graph of 
the function gives the normal or Gaussian probability curve. The term k is a constant 
called the index of precision and sets both the amplitude and the width of the normal 
curve. As k increases, the normal curve becomes narrower and the errors get smaller, 
making the measurement more precise. (This description applies only for small 
random errors and not to systematic errors.) 
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3.16.2 Propagation of error 

Suppose we have a quantity, F, which is calculated from a combination of a number 
(n) of independently observed variables. For example, F might be oceanic heat 
transport computed from independent velocity and temperature profiles, x. We can 
estimate the combined random error of F as the sum of squared errors of the indivi- 
dual variables provided that the errors are independent of the variables and that they 
are all normally distributed. As a simple example, let F be a linear combination of our 
measurement variables, x 

F - alXl + a2x2 + ... + aNXN (3.16.4) 

where al, ..., aN are constants. The inverse of the squared error or index ofprecision (H) 
of F can be written 

1 _a~  ~_a22 + ... + a  2 ~ a ~  (3 16.5) 

= , = 1  

where hi is the error for the ith measurement, xi. 
A more generalized formula for error calculations for arbitary F for which the 

contibuting variables are uncorrelated is 

1 (OF/Oxl) 2 (aF/Ox2) 2 (OF/OxN) 2 
-- + + . . . +  

m h2 

N (OF/Oxi)2 

i=1 

(3.16.6) 

where partial derivatives OF/Oxi a r e  obtained from Taylor expansions of the function 
F in terms of the independent variables xi. To convert this expression to one in terms 
of relative errors, we use the fact chat 

1 re 2 (3 16.7) 
h 2 p 2 

where re is the corresponding relative error and p = 0.4769 is a constant obtained from 
the error equation (3.16.3). Using this definition we can write our final error as 

Re -- [(OFIoqxl)2r~ + (OFlOx2)2r~ + ... + (OFlOxN)2r2]  1/2 (3.16.8) 

In this form, Re is really only the RMS error that describes the equivalent combined 
error in the equation of interest. This Taylor expansion of the contributing error terms 
is known as the propagation of errors formula. It is limited to small errors and un- 
correlated independent variables. Since these principles apply only to small random 
errors, it is necessary to use some data editing procedure to remove any large errors or 
biases in the measurements before using this formula. By using a mean-square 
formulation, we take advantage of the fact that small random errors can be expected to 
often cancel each other resulting in a far smaller mean-square error than would result 
if the measurement errors were simply added regardless of sign to yield a maximum 
"worst case error". The primary application of equation (3.16.8) is in determining the 
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overall error in a quantity derived from a number  of component variables all with 
measurement  errors. This is a situation common to many oceanographic problems. 

A more complicated propagation of error formula is needed if there is a nonzero 
correlation between the independent variables, x. In this case, we must also retain the 
covariance terms in any Taylor expansion of the small error terms. For example, the 
density p is a function of both temperature T and salinity S so that the errors 
(variances) in density O-2p can be related to the measurement errors in temperature cr 2 
and salinity cr~ by 

~p2 _ (Op/OT)2cr2 T + (0p/c9S)2~2 + 2[(Op/OT) . (Op/OS)]C(T,S) (3.16.9) 

where C(T, S) is the covariance between temperature and salinity fluctuations. Only 
when C(T, S) - 0 do we get the result (3.16.8). An example of a detailed error 
calculation is the measurement  of flow through trawl nets towed at various angles 
through the water column is given in Burd and Thomson (1993). 

3.16.3 Dealing with numbers: the statistics of roundoff 

Since we must represent all measurements in discrete digital form, we are forced to 
deal with the consequences of numerical roundoff, or truncation. The problem results 
from the limitations of digital computing machines. For example, the irrational 
fraction 1/3 is represented in the computer as the decimal equivalent 0.3333 ... 3 with 
an obvious roundoff effect. This may not seem to be a problem for most applications 
since most computers carry a minimum of eight decimal places at single precision. 
The large number of arithmetic operations carried out in a problem lasting for only a 
few seconds of computer processing time can, however, lead to large errors in due to 
roundoff and truncation errors. The case of greatest concern is when two nearly 
identical numbers are subtracted, requiring proper representation to the smallest 
possible digit. Such differences can easily occur unknowingly in a complicated 
computational problem. Rather than discuss procedures for estimating this roundoff 
error, we will discuss the nature of the problem and emphasize the need to avoid 
roundoff. 

General floating-point values (decimal numbers) in a computer follow closely the" 
so-called "scientific notation" and are represented as a mantissa (to the right of the 
decimal point) and an exponent (the associated power of 10). For example, in a three- 
digit system, the number  64.282 would be represented as 0.643 • 102 where the 
roundoff is accomplished by adding five in the thousands' decimal place and then 
truncating after the third digit. This process of rounding off results in a slight bias 
because it always rounds up when there is a 5 in the least significant digit. A way to 
overcome this bias is to use the last digit retained to determine whether to round up or 
down when the next digit is exactly 5. This rule, which leads to the least possible error, 
is to round-up if the next to the last digit retained is odd and to round down when it is 
even. This procedure can be summarized as follows. When rounding a number to k 
decimals: 

(1) if the k + 1 decimal is 0, 2, 4, 6, 8 then the k decimal is unchanged; 
(2) if the k + 1 decimal is 1, 3, 5, 7, 9 then the k decimal is increased by 1. 

This system of rounding-off will result in errors that are generally less than 0.5 • 10 -k 
and maximum roundoff errors of 0.6 • 10 -k. In most applications, the effect of this 
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roundoff bias is too small to justify the added numerical manipulation required to 
implement this even-odd roundoff scheme. 

In computing systems, floating-point numbers are handled in a binary 
representation having 24 bits (wordlength is 32 bits but eight bits are used for the 
exponent) which results in seven significant decimal digits. Called single precision, this 
level of accuracy is adequate for many computations. For those problems with 
repeated calculations, and the subsequent high probability of differencing two nearly 
identical numbers, a double-precision representation is used which has 56 binary bits 
leading to 16 significant decimal digits. Roundoff, in the case of double precision, 
results in very small biases which can be completely ignored for most applications. 
Another approach to the problem of roundoff errors is to consider them to be random 
variables. In this way, statistical methods can be applied to better understand the 
effects of roundoff errors. Consider the roundoff of a single number x; for this number, 
all numbers occurring in the interval Xo- 1/2 < x < Xo + 1/2 (measured in units of the 
last digit) become that number. Thus, the roundoff has a uniform probability 
distribution in the last digit. We can write the corresponding probability density 
function f(x) for x as 

1 (Xo- 1/2, Xo +�89 (3 16.10) 
f (x) - O, elsewhere 

and note that 

OG 

f f (x)  d x -  1 
- - 0 0  

(3.16.11) 

The most common measures of a PDF are its first two moments, the mean and 
variance. The mean off(x) in equation (3.16.10) is Xo and the variance is 

xo+l/2 +1/2 

V [ f ( x ) ] - o  2 =  / [X-Xo]f(x) d x - - /  xt2dxt=L12 (31612). . 

xo-1/2 -1/2 

Experimental tests have verified the uniform distribution of roundoff in computer 
systems. In fact, computers generate random numbers by using the overflow value of 
the mantissa. 

We can represent roundoff as an additive random error (e) superimposed on the 
true variable (x). In this case, we can write the computer representation of our variable 
(which we assume is free from measurement and sampling errors) as x + c. For a 
floating-point number system, it is better to use 

x(1 + e); It] < �89 -2 ) (3.16.13) 

for the variable with roundoff error e. This formulation has the effect of focusing 
attention on the consequences of roundoff for every application in which it appears. 
For example, the product 

Xl(l -+- C1)X2(1 -k- Q) = XlX2(l -+- E'I -+" E'2 + E'IE2) (3.16.14) 

demonstrates how roundoff propagates during multiplication. Generally, the product 
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6`16`2 is sufficiently small to be ignored. However, in the above multiplication we must 
include the roundoff for this operation, whereby (3.16.14) becomes 

x3(1 + 6`3) - XlX2(1 + 6̀ 1 + C2 + 6`) (3.16.15) 

16̀ 1 < �89  6"3 -- 6`1 + 6`2 + c 

Similar error propagation results are found for other arithmetical operations. 
We can extend this to a generalized product 

yl(1 + 6`1)Y2(1 + e 2 ) . . . y N ( 1  + eN) (3.16.16) 

which becomes 

YlY2 ...yN[1 + (6`1 + 6̀2 -+- ... -+- CN)] (3.16.17) 

By the central limit theorem, the sum of n independent random numbers (the 
roundoff errors) approaches a normal distribution. The effect for the other operations 
is much the same; therefore, while individual roundoffs are from a uniform 
distribution, the result of many arithmetic roundoff operations tends toward a normal 
distribution. This also can be demonstrated experimentally. 

As stated earlier, we will generally ignore roundoff as a source of error in the 
processing and analysis of oceanographic data. The above discussion has been 
presented here to make the reader aware of potential problems and provide some 
familiarity with the problems of using computing systems. In most data applications, 
the effects of roundoff error are small enough to be ignored. Only in the case of 
recursive calculations, where each computation depends on the previous one, do we 
anticipate large roundoff errors. This is usually a problem for numerical modelers 
who must deal with the repeated manipulation of computer-generated "data". In cases 
where roundoff errors are of some consequence, statistical methods can be used in 
which the errors can be treated as variables from a normal population. 

3.16.4 Gauss-Markov theorem 

The term Gauss-Markov process is often used to model certain kinds of random 
variability in oceanography. To understand the assumptions behind this process, 
consider the standard linear regression model, y = a +/3x + 6̀ , developed in the 
previous sections. As before, a , /3  are regression coefficients, x is a deterministic 
variable and 6̀  a random variable. According to the Gauss-Markov theorem, the 
estimators c~,/3 found from least squares analysis are the best linear unbiased estimators 
for the model for the following conditions on 6̀ : 

(1) The random variable e is independent of the independent variable, x; 
(2) e has a mean of zero; that is E[e] = 0; 
(3) Errors 6̀ j and 6̀k associated with any two points in the population are independent 

of one another; the covariance between any two errors is zero; C[ej, 6`k] = 0,j =/= k; 
(4) 6̀  has a finite variance ~ # 0. 

The estimators are unbiased since their expected value equals the population values 
(given 1 and 2) and they are best in that they are efficient (if 3 and 4 hold true), the 
variance of the least-squares estimators being smaller than any other linear unbiased 
estimator. A further assumption that is often made is that the errors, 6̀ , are normally 
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distributed. In this case, the estimators of a,/3, and # using the least-squares 
requirements are identical to the estimators resulting from the use of maximum- 
likelihood estimation. This assumption, combined with the four previous assump- 
tions, provide the rationale for the least-square procedure. 

3.17 I N T E R P O L A T I O N :  F I L L I N G  T H E  D A T A  GAPS 

Most analysis procedures used in the physical sciences are designed for comparatively 
long and densely sampled series with equally spaced measurements in time or space. 
The wealth of information on time-series analysis primarily applies to regularly 
spaced and abundant observations. There are two main reasons for this: (1) the 
mathematical necessity for long, equally-spaced data for the derivation of statistically 
reliable estimates from modern analytical techniques; and (2) the fact that most 
modern measurement systems both collect and store data in digital format. Spectral 
estimates, for example, improve with increased duration of the data series in the sense 
that one is able to cover an increasing range of the dominant frequency constitutents 
that make up the record. Digital sampling systems are considerably more economical 
than analog recording systems in that they cut down on storage space, power 
consumption and postprocessing effort. 

3.17.1 Equally and unequally spaced data 

Electronic systems now provide data at regularly spaced sampling increments. 
Unfortunately, such systems usually operate autonomously and any type of equipment 
failure generally leads to either data gaps or a premature termination of the record. 
The failure of electronic data logging systems is but one source of gappy records in 
physical oceanography. Because of their very nature, shipborne measurements are a 
source of gappy records. Oceanographic research vessels are expensive platforms to 
operate and must be used. in an optimal fashion. As a consequence, it is often 
impossible to collect observations in time or space of sufficient regularity and spacing 
to resolve the phenomenon of interest. Efforts are usually made to space measure- 
ments as evenly as possible but, for a variety of reasons, station spacings are often 
considerably greater than desired. Weather conditions, as well as ship and equipment 
problems, almost invariably lead to unwanted gaps in the data set. Sometimes 
equipment failures are not detected until the data are examined in the laboratory. In 
addition, editing out errors produces unwanted gaps in the data record. 

The gap problem is even more severe when one is analyzing historical data or data 
collected from "platforms of opportunity." Historical data are a collection of many 
different sampling programs all of which had different goals and therefore very 
different sampling requirements. By its very nature, such collections of data will 
necessarily be irregularly spaced and variable in terms of accuracy and reliability. 
Further editing, dictated by the goals of the historical data analysis project, will add 
new gaps to the set of existing data series. 

Monitoring stations, ships of opportunity, and satellite measurements frequently 
produce data series that are unevenly spaced. The geographic distribution of 
monitoring stations (e.g. Pacific island sea-level stations) is far from uniform in 
terms of the spacing between stations. Thus, while the data series collected at each 
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station, may themselves consist of evenly and densely spaced measurements in time, 
the space intervals between stations will be highly irregular. Open ocean buoys and 
current meter moorings also fit this classification of densely and evenly spaced 
temporal observations at widely and often irregularly spaced locations. Here again, 
any failure in the recording system, whether minor or catastrophic, will lead to gaps in 
the time-series record. Often these gaps are quite large since unplanned recovery 
efforts are required to correct the problem. Such a correction effort assumes the 
telemetering of data which is at present not widely done. Failures of on-board 
recording systems must wait until the scheduled servicing of the instrument which 
may then result in relatively large data gaps. 

At the other end of the sampling spectrum satellite observing systems provide dense 
and evenly spaced measurements that are often very irregular in time. A familiar 
source of temporal gaps, in infrared image series, is cloud cover. Both occasional and 
persistent cloud cover can interrupt a sequence of images collected to study changes of 
sea surface temperature. The effects of cloud cover apply also to satellite remote 
sensing in the optical bands. In addition to the cloud-cover problem, there are often 
problems with the on-board satellite sensing systems or associated with the ground 
receiving station that lead to gaps in time series of image data. Microwave sensing of 
the surface is not as sensitive to cloud attenuation but it is subject to sensor and 
ground-recording failure problems. 

Platforms of opportunity (usually merchant ships) produce uniquely irregular sets 
of measurements. Most merchant ships repeat the same course with minor 
adjustments for local weather conditions and season. A seasonal shift in course is 
generally seen at higher latitudes to take advantage of great circle routes during times 
of better weather. A return to lower latitudes is seen in winter data as the ships avoid 
problems with strong storms. Added to the seasonal track changes is the nature of the 
daily sampling procedure. Usually the ship takes measurements at some specified 
time interval which, due to variations in ship track, ship speed and weather 
conditions, may be at very different positions from sailing to sailing. Thus, the 
merchant ship data will be irregular in both space and time. Systems that operate 
continuously from ships of opportunity (e.g. injection SST) overcome this problem. 
These continuous measurements, however, are still subject to variations in ship track. 

The net result of all these measurement problems is that oceanographers are often 
faced with short records of unequally spaced data. Even if the records are long they are 
often gappy in time or space. It is, therefore, necessary to interpolate these data to 
produce series of evenly spaced measurements. While some analysis procedures, such 
as least-squares harmonic analysis, apply directly to uneven or gappy data, it is more 
often the case that irregularly spaced data are interpolated to yield evenly spaced, 
regular data. These interpolated records can then be analyzed with familiar methods 
of time-series analysis. 

Interpolation also may be required with evenly spaced data if the subject dynamics 
apply to smaller space/time scales than are resolved by the measurements. Thus, the 
data points that are interpolated produce another set of regularly spaced points with a 
finer resolution. Many interpolation procedures have been developed that only apply 
to evenly spaced data. 
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3.17.2 Interpolation methods 

Interpolation techniques are needed for both irregularly spaced and evenly spaced 
data series. Before deciding which interpolation method is most effective, we need to 
consider the particular application. A series of appropriate questions regarding the 
selection of the best interpolation procedures are: 

(1) What samples (original data series, derivatives, etc.) should we use? 
(2) What class of interpolation function (linear, higher-order polynomial, cubic- 

spline, etc.) best satisifies the dynamical restrictions of the analysis? 
(3) What mathematical criteria (exact data-point matching, least-squares fit, conti- 

nuity of slopes, etc.) do we use to derive the interpolated values? 
(4) Where do we apply these criteria? 

Answers to these questions serve as guides to the selection of a unique interpolation 
procedure. 

3.17.2.1 Linear interpolation 

The type of interpolation scheme to be employed depends on how many data points we 
want our interpolation curve (polynomial) to pass through. Increasing the number of 
points we want our curve to fit, increases the order of the polynomial we need to do the 
fitting. The most straightforward and widely used interpolation procedure is that of 
linear interpolation. This consists of fitting a straight line between two data points and 
choosing interpolated values at the appropriate positions along that line. For a data 
series y(x),  this linear procedure can be written as 

x - a [y(b) - y(a)] 
y(x)  - y ( a )  + b a 

(b - x)y(a) + (x - a)y(b) 

b - a  

(3.17.1) 

where Xstar t - "  a and Xen d = b are the times (positions) of the data collection at the start 
end end of the sampling increment being interploated, and x represents the 
corresponding time (position) of the desired interpolated value within the interval 
[a, b]. This is the customary procedure for interpolating between values in most tables. 
The same formula can be applied to extrapolation (extending the data beyond the 
domain of the observations) where the point x lies beyond the interval [a, b]. Equation 
(3.17.1) is a special case of the Lagrange polynomial interpolation formula discussed 
in the next section. 

3.17.2.2 Polynomial  interpolation 

If we wish to interpolate between more than two points simultaneously, we need to use 
higher-order polynomials than the first-order polynomal (straight line) used in the 
previous section. For example, through three points we can find an unique polynomial 
of degree 2 (a quadratic); through four points, an unique polynomial of degree 3 (a 
cubic), and so on. The two methods described below are computationally robust in the 
sense that they yield reasonable results at most points. Polynomial interpolation 
techniques such as Vandermonde's method and Newton's method are awkward to 
program and suffer from problems with roundoff error. 
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3.17.2.2.1 Lagrange's method 

The Lagrange polynomial interpolation formula is a method for finding an 
interpolating polynomial y(x) of degree N which passes through all of the available 
data points (xi, Yi); i = 1, 2, ..., N 4- 1. The general form for this polynomial, of which 
linear interploation is a special case, is given as 

N 
y ( x )  - ao + a l X  -Jr- a2 x2 -]- ... --]- aN  x N  --  ~ ~lk xk  

k=0 

/NI~ (3.17.2) 
X -- X k 

- -  i x i  Xk 
i=1 ~ k = l  

k#i 

where H is the product function. Note that in the product function, the ith termm 
corresponding to the particular data point, xi, in the denominatorDis not included 
when calculating the product for the term involving xi. Even though k ranges from 1 to 
N + 1, II uses only N terms and the final polynomial is of order N, as required. 

The goal of the Lagrange interpolation method is to find an Nth degree polynomial 
which is constrained to pass through the original N + 1 data points and which yields a 
"reasonable" interpolated value for any position x located anywhere between the 
original data points. To see that the polynomial passes through the original data 
points, note that the ith product function, H i ,  defined for the data point xi in the 
denominator is constructed in such a way that IIi(xj; xi) - ~50 whenever x = x i is one of 
the data values (~5ij is the Kronecker delta function). This means that lIi(xj; xi) = 0 for 
all xj except for the specific value x = xi found in the original data series which 
matches the term in the denominator. In that case, Hi(xj; xi) = 1 andyilIi(xj; xi) =yj  

The general polynomial we seek is constructed as a sumof  the product functions in 
equation (3.17.2) which can be expanded to give 

N+I 

y(x) -- ~--~yi[Qi(x)/Qi(xi)] (3.17.3) 
i=1 

in which 

Q i ( x )  - ( x  - Xl) (X - x 2 ) . . .  (x - Xi_ l ) (X - X i + l ) . . .  (x  - XN+I)  (3.17.4) 

is the product of all the factors except the ith one. For any x, (3.17.3) can be expanded 
to give the interpolating polynomial 

( X - - X z ) ( X - - X 3 ) . . . ( X - - X N + I )  ( X - - X l ) ( X - - X 3 ) . . . ( X - - X N + I )  

y ( x )  = Y l  (Xl -- X2)(Xl -- X3) . . . (Xl  -- XN+I)  -FY2 (X2 -- XI)(X2 -- X3).. .(X2 -- XN+I)  

(x -xl)(x -x2)...(x -XN) 
-F ... - F Y N  (XN+I -- X l ) (XN+I  -- X3) . . .  (XN+I -- XN) 

(3.17.5) 
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Note that, for the original data points, x = xi, the polynomial yields the correct output 
value y(xi) = Yi, as required. 

In the Lagrange interpolation method, the calculation is based on all the known 
data values. If the user wants to add new data to the series, the whole calculation must 
be repeated from the start. Although the above formula can be applied directly, 
programing improvements exist that should be taken into account (Press et al., 1992). 
Use of Neville's algorithm for contructing the interpolating polynomial is more 
efficient and allows for an estimate of the errors resulting from the curve fit. 

As an example of this interpolation method, consider four points (xi, Yi), i = 1, ... ,  4 
given as (0, 2), (1, 2), (2, 0) and (3, 0) through which we wish to fit a (cubic) poly- 
nomial. Substituting these values into equation (3.17.5), we obtain 

y(x)  = 2 (x - 1)(x - 2)(x - 3) 
( 0 - 1 ) ( 0 - 2 ) ( 0 - 3 )  

2 3 7 = ~x - 3x 2 + ~x + 2 

+ 2 ( x - O ) ( x - 2 ) ( x - 3 )  
( 1 - 0 ) ( 1 - 2 ) ( 1 - 3 )  

+ 0 + 0  

The resulting third-order curve is plotted in Figure 3.17. 

3.17.2.3  Spline interpolation 

In recent years, the method that has received the widest general acceptance is the 
spline interpolation method. Splines, unlike other polynomial interpolations such as 
the Lagrange polynomial interpolation formula, apply to a series of segments of the 
data record rather than the entire data series. This leads to the obvious question to ask 
in selecting the proper interpolation procedure: Do we want a single, high-order 
polynomial for the interpolation over the entire domain, or would it be better to use a 
sequence of lower-order polynomials for short segments and sum them over the 
domain of interest? This integration is inherently a smoothing operation but one must 
b~-careful of discontinuities, or sharp corners, where the segments join together. 
Spline functions are designed to overcome such discontinuities, at least for the lower- 
order derivatives. It is because discontinuities are allowed in higher-order derivatives 
that splines are so effective locally. Constraints placed on the interpolated series in 
one region have only very small effects on regions far removed. As a result, splines are 
more effective at fitting nonanalytic distributions characteristic of real data. The term 
"spline" derives from the flexible drafting tool used by naval architects to draw 
piecewise continuous curves. 

Splines have other favorable properties such as good convergence, highly accurate 
derivative approximation, and good stability in the presence of roundoff errors. 
Splines represent a middle ground between a purely analytical description and 
numerical finite difference methods which break the domain into the smallest pos- 
sible intervals. The piecewise approximation philosophy represented by splines has 
given rise to finite element numerical methods. 

With spline interpolation, we approximate the interpolation function y(x)  over the 
interval [a, b] by dividing the interval into subregions with the requirement that there 
be continuity of the function at the joints. We can define a spline function, y(x),  of 
degree N with values at the joints 
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Figure 3.17. Use of Lagrange's method to fit a third-order (cubic) polynomial through the data points (x, 
Yi) given by (0, 2), (I, 2), (2, 0), and (3, 0). 

a = u o  ~Ul  ~ u 2 . . .  < _ u N = b  (3.17.6) 

and having the properties: 

(1) In each interval ui-1 <_ x <_ u i ( i - - 1 ,  m), the function y(x) is a polynomial of 
degree not greater than N. 

(2) At each interior joint, y(x) and its first N -  1 derivatives are continuous. 

The spline function in widest use is the cubic spline (N = 3). To give the reader 
familiarity with the spline interpolation technique, we will develop the cubic spline 
equations and work through a simple example. Consider a data series with elements 
(xi, Yi), i - 1,..., N. Since we are working with a cubic spline interpolation, the first 
two dervivatives y'(x)  and y"(x)  of the interpolation function, y(x),  can be defined for 
each of the points xi while the third derivative y'"(x) will be a constant for all x."Here, 
the prime symbol denotes differentiation with respect to the independent variable x. 
We write the spline function in the form 

y(x)  =)~(x); Xi <_ X < Xi+l, i = I, ..., N -  1 (3.17.7) 

and specify the following conditions at the junctions of the segments: 

(1) Continuity of the spline function: 

fi(xi) = y(xi) = yi, i = 1, 2, ..., N -  1; 

j~_l(Xi) =y(x/)  =Yi, i =  2, 3, ..., N; 
(3.17.8a) 

(2) continuity of the slope: 

fi'_l(xi) =fi'(x/), i =  1, 2, ..., N -  1; (3.17.8b) 

(3) continuity of second derivative: 

f/'_l (Xi)--fitt(Xi), i -  1, 2, ..., N -  1; (3.17.8c) 
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Since y ' " ( x )  =cons tan t ,  yP'(x) must be linear, so that 

fitt(xi) _ y ; ,  (Xi+I -- X) 
Xi+l -- Xi 

_ y ,  (x - -  Xi) 
i+1 

Xi+l -- Xi 

283 

(3.17.9) 

Integrating twice and selecting integration constants to satisfy the conditions (3.17.8a, 
b) on fi(xi) and Jr,- l(Xi) gives 

(Xi+I - - X )  (X - - X i )  

f ( X )  = Y i  (Xi+I -- Xi)  q -Y i+l  (Xi+I -- Xi) 2{ 13} (Xi+I - -  Xi) .y;, (Xi+I - x) r (xi+, - x) 
-- 6 (X~'+; X/i -- L(~--/-/~i+/ ; i ) '  xi,>{  ,x_xi, 3} 
_ (xi+  - ( x  - x i )  _ ( x - L  x i )  

6 ,+1 (Xi+l - x i )  1 - 

(3.17.10) 

which uniquely satisfies the continuity condition for the second derivative but not, in 
general, for the first derivative (slope). To ensure continuity of the slope at the seams, 
we expand (3.17.9) by differentiation to get 

~. t (Xi)_ ( Y i + I - - Y i )  (Xi+I--Xi) (2y I, +YI+I) (3 17.11a) 
Xi+I -- Xi 6 

f[_l (xi) : (Yi - Yi-1 ) (Xi+l - xi) (YI'- 2y!') (3 17 11 b) 
X i + l  - -  X i  - -  6 ~ + ' j " " 

We then set (3.17.11a) and (3.17.11b) equal in order to satisfy slope continuity 
(3.17.8b), whereby 

)y" (xi - Xi-l~. i-1 + 2[(Xi+l - xi-1)lyl ~ + (xi+l - xi)Yi+l 

= 6 (Yi+I - y i )  ( Y i - y i - 1 )  
- , i = 2 ,  . . . ,  N -  1 ( 3 . 1 7 . 1 2 )  

Xi+l - - X i  Xi ~ X i - 1  

which must be satisfied at N - 2 points by the N unknown quantities, y~'. We require 
two more conditions on the YI' which we get by specifying conditions at the end points 
xl and XN of the data sequence. After specifying these end values, we have N -  2 
unknowns which we find by solving the N -  2 equations. There are two main ways of 

H specifying the end points: (1) we set one or both of the second derivates, y~' andy  N at 
the end points to be zero (this is termed the natural cubic spline) so that the inter~ 

l# polating function has zero curvature at one or both boundaries; or (2) we set e i thery 1 
I! and y N to values derived from equation (3.17.11) in order that the first derivatives of 

the interpolating function, Yl, take on specified values at one or both of the 
termination boundaries. 

As a general example, we consider the spline solution for six evenly spaced points 
with the data interval h = x i . i  - x i  and function d/defined in terms of yi as 

di - - (yi+l - 2 y i - ~ - y i - 1 )  (3.17 13) 
2h 2 
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We can write the equations (3.17.10) for these six equally spaced points in matrix form 
as 

4 1 1 0 Y"2 12d2-y'~/h 
1 4 1 0 y~ _ 12d3 
0 1 4 1 y~ 12d4 
0 0 1 4 y~' 12ds -y~ /h  

(3.17.14) 

i I I  If we want to specify Yi rather than Yi, we need an equation relating both. If the end 
conditions are not known, the simplest choice isy'~ = 0 (the natural spline noted above). 
Another, and smoother choice (in the sense of less inflection or curvature at the 
interpolated point) is yJ~ - 0.05y~'. Although spline interpolation is a global, rather 
than a local, curve (altering a YI' or an end condition affects the overall spline), the 
dominant diagonal terms in equation (3.17.14) cause the effects to rapidly decrease as 
the distance from the altered point increases. 

We should point out the method of splines offers no advantage over polynomial 
interpolation when applied to either the approximation of well-behaved mathematical 
functions or to curve fitting when the experimental data are dense. "Dense" means 
that the number  of data points in a subregion is more than an order of magnitude 
larger than the number of inflection points in the fitted curve and that there are no 
abrupt changes in the second derivative. The advantage of splines is their inherent 
smoothness when dealing with sparse data. 

As a numerical example of spline fitting, we consider the six-point fitting of the 
points represented in equation (3.17.14) for the 11 data points in Table 3.17.1. Using a 
general polynomial fit yields the curve in Figure 3.18. Here, all but one of the first six 
points lie on a straight line. Due to this single point, the polynomial curve oscillates 
with an amplitude that does not decrease. In contrast, the spline amplitude (Figure 
3.19) for the same 11 values reduces each cycle by a factor of 3. 

Often the first or second derivatives of the interpolated function are important. In 
Figure 3.18, we see that fitting a polynomial to sparse data can result in large, 
unrealistic changes in the second derivatives. The spline fit to the same points (Figure 
3.19) using the end-point conditionsy'~ = y ~  - 0  demonstrates the smoothness of the 
spline interpolation. In essence, the spline method sacrifices higher-order continuity 
to achieve second derivative smoothness. 

Spline interpolation is generally accomplished by computer routines that operate 
on the dataset in question. Computer routines solve for the spline functions by solving 
the equation 

N 
[(g(xi) -- yi)/tSyi] 2 -  S (3 .17 .15)  

i=1 

where g(xi) is composed of cubic parabolas 

g(x) = ai + bi(x - xi) + ci(x - xi)  2 +di(x - -X i )  3 (3.17.16) 

for the interval xi ~ X ~ Xi + 1. The terms ~Syi are positive numbers that control the 
amount of smoothing at each point; the larger ~Yi is the more closely the spline fits at 
each data point. A good choice of ~Yi is the standard deviation of the data values. 

The S term also controls smoothing, resulting in more smoothing when S increases. 
As S gets smaller, smoothing decreases and the splines fit the data points more closely. 
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Figure 3.19. Cubic spline fit to the data values in Table 3.17.1. Amplitude of each cycle is reduced by a 
factor of three compared to Figure 3.18. 

When S = 0 the data points are fitted exactly by the interpolating spline functions. A 
recommended value of S is N/2 ,  where N is the number of data points. An even 
smoother interpolation can be achieved using splines under tension. Tension is 
introduced into the spline procedure to eliminate extraneous inflection points. An 
iterative procedure is usually used to select the best level for the tension parameter. 

3.17.3 Interpolat ing  gappy records: pract ical  e x a m p l e s  

Gaps or "holes" occur frequently in geophysical data series. Gaps in a stationary time 
series are, of course, analogous to gaps in a homogeneous spatial distribution. Small 
gaps are of little concern and linear interpolation is recommended for filling the gaps. 
If the gaps are large (of the size of the integral time or space scale), it is generally 
better to work with the existing short data segments than to "make up" data by 
pushing interpolation schemes beyond their accepted limitations. For the gray area 
between these two extremes, one wants to know how large the data loss can be and still 
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Table 3.17.1. Data pairs (x, Yi) used for interpolation schemes in 
Figures 3.18 and 3.19 

i xi Yi 

1 0 16 
2 14 19 
3 27 36 
4 33 48 
5 41 53 
6 48 90 
7 62 119 
8 74 120 
9 89 96 

10 99 71 
11 114 36 

permit reasonable use of standard interpolation techniques and processing methods. The 
problem of gappy data in oceanography was addressed by Thompson (1971) who 
suggested that a random sampling of data points might be an optimally efficient ap- 
proach. Further insight into the problem of missing data can found in Davis and Regier 
(1977) and Bretherton and McWilliams (1980). In this section, we present two examples of 
how to deal with gappy data. One is a straightforward analysis by Sturges (1983) who used 
monthly tide gauge data to investigate what happens to spectral estimates when one 
punches holes in the data set. The other is a practical guide to the interpolation of 
satellite-tracked Lagrangian drifter data with its inherently irregular time steps. 

3.17.3.1 Interpolating gappy records for time-series analysis 

Sturges (1983) used a Monte Carlo technique to poke holes at random in a known time 
series of monthly mean sea-level. The original record had a "red" spectrum which fell 
off as f - 3  at high frequencies and contained a single major spectral peak at a period of 
12 months. A total of 120 months of data were used in the analysis. The idea was to 
reconstruct the gappy series using a cubic spline interpolation method and see how 
closely the spectrum from the interpolated time series resembled that of the original 
time series. Data loss was limited to less than 30% of the record length and, for any 
individual experiment,  the holes were all the same length. However, different hole 
lengths were used in successive runs. The only stipulation was that the length of the 
data segment before the next gap be at least as long as the gap itself. The program was 
not allowed to eliminate the first and last data points. 

Cross-spectra were computed between the original time series and the interpolated 
gappy series. For a specified hole size, holes were generated randomly in the data 
series, the cross-spectra computed and the entire process repeated 1000 times. The 
magnitudes of the resulting cross-spectra provided estimates of how much power was 
lost or gained during the interpolation while the corresponding phases was interpreted 
as the error introduced by the interpolation process (Figure 3.20). Several important 
conclusions arise from Sturges' analysis: 

(1) Gaps have a more adverse effect on weak spectral components (spectral peaks) 
than on strong ones embedded in the same background spectrum. 

(2) The phase can be estimated to roughly 10 ~ at the 90% confidence level for data 
losses of over 30% for a strong spectral signal; the requirement is that the gaps are 
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Figure 3.20. Absolute phase errors (~ expressed as a function of percent (%) data lost between the 
original sea level time series and the series with random holes filled in with a cubic spline fit. On each 
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value 0.5 means that the holes were four units (months) long and the period 8 units long. Results are 
shown for the 90 and 99% confidence limits (lower and upper lines for each case). (From Sturges, 1983.) 

kept to about 1/3 of the period of the signal being examined. If the gaps are 1/2 of 
the period, the data loss can still be about 20%. 

(3) Although correlation functions can be computed for gappy data, it is much more 
difficult to compute the cross-correlation function for these data. 

According to Sturges' analysis, the adverse effects of gaps der, ,xds on the length of 
gaps relative to the length of data set and on the magnitudes of~ dominant spectral 
components in the signal. 

3 .17 .3 .2  In terpola t ing  satel l i te- tracked posi t ional  da ta  

The analysis of positional (latitude, longitude) time series collected through the 
Service Argos satellite-tracking system illustrates some of the problems that may arise 
with standard interpolation procedures. Because the times that polar orbiting 
satellites pass over an oceanic region change through the day and because drifters 
move relative to the orbits of the satellite, the times between satellite fixes are ir- 
regular. At mid-latitudes, times between locational fixes can range from less than an 
hour to as long as 10 h. Typical average times between fixes are around 2-3 h 
(Thomson et al. 1997). The challenge is to generate regularly spaced time series of 
latitude (x) and longitude (y) from which one can derive regularly spaced time series 
of drifter zonal velocity (u -- ~Xx//Xt) and meridional velocity (v = A y / A t ) .  This 
challenge is especially problematic where a "duty cycle" has been programmed into 
the drifter transmitter to reduce the number (and cost) of transmissions to the passing 
NOAA satellites. A commonly used duty cycle, consisting of one day continuous 
transmission followed by two days of no transmission, results in large data gaps that 
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make calculation of mean currents difficult in regions having strong currents in the 
inertial and tidal frequency bands. The duty cycle of 8 h continuous transmission 
followed by 16 h of silence is superior for mid-latitude regions with strong inertial or 
tidal frequency variability. 

Because of strong inertial motions in the upper layer of the open ocean and strong 
tidal motions over continental margins, sampling intervals of 3-4 h, or less, are 
preferable. A typical time step of 6 h used in many analyses of satellite-tracked 
drifters is inadequate to resolve inertial motions except in regions equatorward of 30 ~ 
latitude where the inertial period T = l / / J~ner t ia l  exceeds 24 h. (At 50 ~ latitude, T 
16.5 h; see Coriolis frequency.) To generate time series at a reasonably short time step, 
say 3 h, we need to interpolate between irregularly spaced data points. To do this, we 
use a cubic spline interpolation for each of the positional records. After the correct 
start and end times for the oceanic portion of the record have been determined, the 
first step in the process is to remove any erroneous points from the "raw" data by 
calculating speeds over adjacent time steps, ti; e.g. ui = ( X i + l  - X i ) / / ( t i + l  - -  t i ) .  One then 
omits any unrealistic velocity values that exceed some threshold value (say 5 m/s). 
This "edited" record needs to undergo further editing by averaging successive data 
positions for which the time step At is less than an hour. The reason for this is quite 
simple: Because positional accuracies z~c and Ay are about 350 m roughly 63% of the 
time, velocity errors are roughly ~x/At  > 0.1 m/s when At < 1 h. Such error values 
are comparable to mean ocean currents and need to be eliminated from the records. 
Drifters located using GPS transmitters have smaller position errors and better 
velocity resolution. The time series also need to be examined for drogue-on, drogue- 
off. If a reliable strain sensor is built into the drogue system, it can be used to 
determine if and when the drogue fell off. Otherwise, one needs to calculate the speed- 
squared from the raw data and look for sudden major "jumps" in speed that signal loss 
of the drogue (Figure 3.21). We recommend this approach for all modern-day drifters 
since strain gauge sensors appear to be unreliable. At the time this book was being 
written, drogue loss and not battery or transmitter failure, was the primary cause of 
drifter "failure" in the open ocean. 

Provided there are more than about six accurate satellite fixes per day, the edited 
positional records can be interpolated to regularly spaced 3-h time series using a cubic 
spline interpolation algorithm. In general, the spline curve will be well behaved and 
the fit will resemble the kind of curve one would draw through the data by eye. Inertial 
and tidal loops in the trajectory will be fairly well resolved. Spurious results will occur 
where data gaps are too large to properly condition the spline interpolation algorithm. 
Assuming that the spline interpolation of positions looks reasonable, the next step is 
to calculate the velocity components from the rate of change of position. It is tempting 
to equate the coefficient for the linear term in the cubic spline interpolation to the 
"instantaneous" velocity at any location along the drifter trajectory. That would be a 
mistake. Although trajectories can look quite smooth, curvatures can be large and 
resulting velocities unrealistic. In fact, use of the spline coefficients to calculate 
instantaneous velocity components leads to an increase in the kinetic energy of the 
motions. The reader can verify this by artifically generating a continuous time series 
of position consisting of a linear trend and time varying inertial motions. The artifical 
position record is then decimated to 3-hourly values and a cubic spline interpolation 
scheme applied. Using instantaneous velocity values at the 3-hourly time steps derived 
from the interpolation, one finds that the kinetic energy in most frequency bands is 
increased relative to the original record. The recommended procedure is to calculate 
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the two horizontal velocity components (u, v) from the central differences between 
three consecutive values of the 3-hourly positional data. From first differences, the 
velocity components at each point "i" are then: ui = ( x i + l - x i ) / ( t i + l - t i )  and 
Vi = (Y/+I --Yi)/(t i+! - t i )  for simple two-point differences or for the recommended cen- 
tered values, U i = (Xi+I -- Xi-l) / ( t i+l  -- ti-1) and vi = (Yi+I -Y i -1 ) / ( t i+ l  - ti-1). In sum- 
mary, for those oceanic regions subject to pronounced inertial and tidal frequency 
motions, we have recommended the use of cubic spline interpolation to generate 2-4- 
hourly time series for position but simple linear interpolation of positional data to 
generate the corresponding time series for velocity. The interpolation requires more 
than 6-8 satellite fixes through the day to be successful. 

Trajectories with data gaps that are long relative to the local inertial period require 
special consideration. For gaps associated with a transmitter duty cycle of 8 h "on" 
followed by 16 h "off", we can obtain accurate daily mean positional values by least- 
squares fittl*ng a time-varying continuous function to successive segments of the 
irregular data and then averaging the resulting function over successive 24-h periods. 
This filtering processes is as follows (see Bograd et al., 1999): 

(1) 

(2) 

Use least squares to fit a specified function, ~(t), to several (N) successive 8-h days 
of zonal (or meridional) trajectory data. The general model has the form 
~(t) = a + bt + ct 2 + dt 3 + al sin (2~rft + ~1) ~'- a2 sin (27rw2t + r where a, b, c, d, 
al, q~l, a2 and ~2 a r e  the unknown coefficients,f is the local Coriolis frequency and 
&2 the semidiurnal frequency (0.081 cph). The phases 4~1, r for the two 
frequencies will vary from segment to segment. We suggest that four to five days 
(N = 4 or 5) of data be used for each segment fit. Shorter segments will have too 
few data for an accurate least-squares fit; longer segments will result in too much 
smoothing of the intermittant inertial and tidal motions; 
Repeat the least-squares operation for each segment of length N days, shifting 
forward in time by one day after each set of coefficients is determined. This yields one 
estimate for the first day ~l = ~(t = tl), two estimates for the second day, ~2, three 
estimates for the third day and four estimates for all other days until near the end of 
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the record when the number of estimates again falls to unity for the last record. 
Average all the values in each daily segment for each of the multiple curves r ( i -  1. 
..., up to N) to get the average daily latitude ~x(t) and longitude ~y(t); 

(3) The pairs of coefficients al, ~bl and a2, ~2 can be used to give rough reconstructions 
of the inertial and semidiurnal tidal motions, respectively. Expect the phases tc 
fluctuate considerably from segment to segment due to natural variability in the 
phases of the motions and from contamination by adjacent frequency bands. 

For the duty cycle consisting of one day "on" followed by two days "off", the model 
is less useful (except at equatorial latitudes) and requires a much longer data segmenl 
(say 12 days instead of four) for each least-squares analysis. 

3.17.3.3 Interpolation records from nearby stations 

Provided that the spatial scales of the processes being examined are large compared to 
the separation between sampling sites, short gaps in the time series at one location can 
be filled using an identical type of time series from a nearby location. For example. 
missing hourly tide heights at one coastal tide gauge station can be filled using hourly 
tide heights from an adjacent station further along the coast. To do this, we first use 
coincident data segments to determine the relative amplitudes and phases of the time 
series at the two locations. A simple cross-correlation analysis can be used to 
determine the peak time lag between the series while the relative amplitudes can be 
obtained from the ratio of the standard deviations of the two series. Gaps in one time 
series (series 1) are then filled by applying the appropriate time lag and amplitude 
factor to the uninterupted data series (series 2). A more sophisticated approach would 
be to first obtain the complex transfer function H12(~) = IH12(~)]exp [i~bl2(~)] as a 
function of frequency w for the two coincident time series. The missing time series 
values at site 1 could then be filled using the amplitudes [H12(~)I and phase differ- 
ences 4)12(~) of the transfer function applied to the uninterupted data series. 

3.18  C O V A R I A N C E  A N D  T H E  C O V A R I A N C E  
M A T R I X  

Covariance, like variance, is a measure of variability. For two variables, the covariance 
is a measure of the joint variation about a common mean. When extended to a 
multivariate population, the relevant statistic is the covariance matrix. As we shall see, 
it is equivalent to what will be introduced later as the "mean product matrix." The 
covariance and covariance matrix are the fundamental concepts behind the spatial 
analysis techniques discussed in the next chapter. 

3.18.1 Covariance and structure functions 

The covariance C(Y1, Y2), also written as cov[Y1, Y2], between variables Y1, Y2 is 

C(Y1, Y2) -- El(Y1 - #l)(Y2 - #2)] (3.18.1) 

where #1 = E[Y1] and #2 = E[Y2]. A positive covariance indicates that Y2 and Y1 
increase and decrease together while a negative covariance has Y2 decreasing as Y1 
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increases, and vice versa. We can expand equation (3.18.1) into a more convenient 
computational form 

C(Ya, Y2) = E[Y1Y2] - E[Y1]E[Y2] (3.18.2) 

Note, that if Y1, Y2 are independent random variables, then C[Y1, Y2] = O. 
For a two-dimensional isotropic velocity field, ui(y), the covariance tensor C(r), also 

called the structure function from earlier studies of turbulence, takes the form 

Co(r ) = (ui(y)uj(y + r)) 

__ ~2 If(r) -g(r)]rirj 
r 2 + g(r)6ij 

(3.18.3) 

where (.) denotes an ensemble average, r = ]r I, y = (Yl,Y2) is the position vector, f(r) 
and g(r) are, respectively, the one-dimensional longitudinal and transverse correlation 
functions, and 0 2 - -  (ui(y)2). The longitudinal and transverse correlation functions are 

(3.18.4a) 

(3.18.4b) 

f ( r )  : (uL (y)UL (y + r)) 

g(r) = (up(y)up(y + r)) 

where uL(y) and up(y) are the velocity fluctuations parallel and perpendicular to r - 
(rl, r2). The velocity fluctuations are normalized so that the correlations equal unity at 
r = 0. If the two-dimensional flow field is horizontally nondivergent, homogenous and 
isotropic, then Cij(r)= 0 and 

d 
g(r) - ~ [rf (r)] (3.18.5) 

Freeland et al. (1975) have used (3.18.5) to test for two-dimensional, nondivergent, 
homogenous, and isotropic low-frequency velocity structure in SOFAR float data 
collected in the North Atlantic. Stacey et al. (1988) used this relation to test for similar 
flow structure in the Strait of Georgia. Although close to the error limits in certain 
cases, the observed structure is generally consistent with horizontal, nondivergent, 
homogeneous and isotropic fl6w (Figure 3.22). The dotted lines in Figure 3.22 are the 
analytical functions 

f (r) = (1 + br) e -br (3.18.6a) 

g(r) -- (1 + br -b2r2))e -br (3.18.6b) 

3.18.2 A computational example 

If YI, Y2 have a joint probability density function 

2yl, 0_<yl _< 1; 0_<y2 _< 1 
f(Yl,Y2) -- 0, elsewhere 

(3.18.7) 

what is the covariance of Y1, Y2? We first write the expected value of Y1, Y2 as 
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V[,~ry] _ E[Ar (y  _ # ) ( y  _ ~)rA] - ArIW [ 

which will always be nonnegative for any A. 

(3.18.12) 

3.19 T H E  B O O T S T R A P  A N D  J A C K K N I F E  M E T H O D S  

Many data series in the natural sciences are nonreproducible and the researcher is left 
with only one set of observations with which to work. With only one realization of a 
series, it is impossible to compare it with a related series to determine if they are 
drawn from the same, or from different, populations. There are numerous oceano- 
graphic examples, including tsunami oscillations recorded by a coastal tide gauge, a 
single seasonal cycle of monthly mean currents at a mooring location, and a trend in 
long-term temperature data from a climate monitoring station. Marine biologists face 
similar limitations when analyzing groups of animal species caught in nets or bottom 
grab samples. The problem is that empirical observations are prone to error and any 
interpretation of an event must be devised based on statistical measures of the 
probability of the event. A fundamental measure for testing the validity of any 
property of a data set is its variance. Parametric statistical models have been 
developed which help the investigator decide the degree of faith to be placed in a given 
statistic. However, data and model are often nonlinear so that it is not usually possible 
to find an analytical expression for model variance in terms of the data variance. 

The parametric statistical methods presented in the previous sections were 
institutionalized long before the time of modern digital computers when use of 
analytical expressions greatly simplified the laborious hand calculation of statistical 
properties. During the past few decades, nonparametric statistical methods have been 
developed to take advantage of the increasing computational efficiencies of 
computers. An advantage of the new methods is that they permit investigations of 
the statistical properties of a sample which do not conform to a specific analytical 
model. Equally importantly, they can be applied to small data sets while still 
providing a reliable estimation of confidence limits on the statistic of interest. 
"Bootstrapping" and "jackknifing" are two of the more commonly used methods that 
could not be used effectively until the invention of the digital computer. Both are 
resampling techniques in which artificial data sets are generated by selection of points 
from an original set of data. Specifically, we start with a single realization of an 
"experiment" and from that one set of experimental data we create a multitude of new 
artificial realizations of the experiment without having to repeat the observations. 
These realizations are then used to estimate the reliability of the particular statistic of 
interest, with the underlying assumption that the sample data are representative of the 
entire population. 

In the bootstrapping method, random samples selected during the resampling 
process are replaced before each new sample is created. As a consequence, any data 
value can be drawn many times, or not at all. The name bootstrap arises from the 
expression "to lift oneself up by one's bootstraps". In jackknifing, artificial data sets 
are created by selectively and systematically removing samples from the original data 
set. The statistics of interest are recalculated for each resulting truncated data set and 
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the variability among the artificial samples used to describe the variability of these 
statistics. "Cross-validation" is an older technique. The idea is to split the data into 
two parts and set one part aside. Curves are fitted to the first part and then tested 
against values in the second part. Cross-validation consists of seeing how well the 
fitted curves predict the values in the portion of data set aside. The data can be 
randomly split in many ways and many times in order to obtain the needed statistical 
reliability. For additional information on this technique, the reader is referred to 
Efron and Gong (1983). 

3.19.1 Bootstrap method 

Introduced by Efron in 1977 (Diaconis and Efron, 1983), bootstrapping provides freedom 
from two limiting factors that have constrained statistical theory since its beginning: (1) 
the assumption of normal (Gaussian) data distributions; and (2) the focus on statistical 
measures whose theoretical properties can be analyzed mathematically. As with other 
nonparametric methods, bootstrapping is insensitive to assumptions made with respect to 
the statistical properties of the data and does not need an analytical expression for the 
connection between model and data statistical properties. Resampling techniques are 
based on the idea that we can repeat a particular experiment by constructing multiple 
data sets from the one measured data set. Application of the resampling procedure must 
be modeled on a testable hypothesis so that the resulting probability can be used to accept 
or reject the null hypothesis. The methods can be applied just as well to any statistic, 
simple or complicated. A bootstrap sample is a "copy" of the original data that may contain 
a certain value (datum, Xn) more than once, once, or not at all (i.e. the number of 
occurrences of x,, lies between 0 and N, where N is the number of independent data 
points). Introductions into the bootstrapping procedure can be found in Efron and Gong 
(1983), Diaconis and Efron (1983), and Tichelaar and Ruff (1989). Nemec and Brinkhurst 
(1988) apply the method to testing the statistical significance of biological species cluster 
analysis for which there are duplicate or triplicate samples for each location. 

Suppose that we have N values of a scalar or vector variable, xn (1 _< n _< N), whose 
statistical properties we wish~ to investigate in relation to another variable. This could 
be a univ~riate variable such as sea-level height xn - r / ( tn)  at a single location over a 
period of N time steps, tn, or the structure of the first mode empirical orthogonal 
function r (xn) as a function of location, xn. Alternatively, we could be dealing with a 
bivariate variable (Xln, x2,,) such as water temperature versus dissolved oxygen content 
from a series of vertical profiles. Results apply to any other set of measurements whose 
statistics we wish to determine. We may want to compare means and standard 
deviations (variances) of different records to see if they are significantly different. 
Alternatively, we might want to place confidence limits on the slope of a line derived 
using a standard least-squares fit to our bivariate data (Xln, x2n), or, determine how 
much confidence we can have in the coefficients we obtained from the least-squares fit 
of an annual cycle to a single set of 12 monthly mean current records from a mooring 
location. Note that if there is a high degree of correlation among the N data values, the 
N are not statistically independent samples and we are faced with the usual problem 
of dealing with an effective number  of degrees of freedom N* for the data set. 

The procedure is to equate each of our N independent data points with a number 
produced by a random number generator. We can do this by assigning each of the data 
values to separate uniform-width bins lying along the line ( -1 ,  +1), or (0, 1), 
depending on the random number generator being used. For N values, there will be N 
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Figure 3.19.1. The assignment (binning) of observed data values Xn (n -- 1 .... ,1 O) to I 0 range values of 
the random number, rk (k - 1, ..., 10). For each bootstrap sample of 10 values, 10 random numbers are 
selected and located according bin range. The datum values x,, assigned to each range are then used to 

form the bootstrap sample. 

uniform-width bins on the line and each bin will be equated with one of the N data 
values (Figure 3.19.1). The bin width is 2 / N  if the line -1  to + 1 is used. A random 
number generator such as a Monte Carlo scheme is used to randomly select sequences 
of N bins corresponding to the multiple bootstrap samples. Suppose that the random 
number generator picks a number, r, from the range-1 <_ r _< 1. If this number falls 
into the range of bin k, corresponding to the range [ 2 ( k - 1 ) / N ] - 1  < 
rk <_ ( 2 k / N )  - 1, for k = 1, ... , N, then the data value xh assigned to bin k is taken 
to be one of the samples we need to make up our bootstrap data set. In Figure 3.19.1, 
there are 10 data values and 10 corresponding random number segments of length 0.2, 
with datum value xl assigned to the range -1 .0  t o -  0.8, x2 assigned to -0.8 t o -  0.6, 
and so on. Since bootstrapping works with replacement, it is quite possible to get the 
same bin several times, or not at all. The first N data values from our resampling 
constitute the first bootstrap sample. The process is then repeated again and again 
until hundreds or thousands of bootstrap samples have been generated. Diaconis and 
Efron (1983) discuss making a billion bootstrap samples. They also take another 
approach. Instead of generating one bootstrap sample at a time by equating bins along 
the real line ( -1 ,  1) with N samples, they generate all the needed multiple copies of all 
the N data values (say one million copies of each of the original data values or data 
points) and place them all in a rotating "lotto" bin. They then reach in and pull out all 
the requisite number of N-value bootstrap samples from the shuffled points, being 
careful to throw each data point back into the bin before selecting the next value. This 
requires some sort of label for each value in the bin based on a random selection 
process that can identify a data point that has been selected. 

Although bootstrapping has yet to find widespread application in the marine 
sciences, there are several noteworthy examples in the literature. Enfield and Cid 
(1990) examined the stationarity of different groupings of El Nifio recurrence rates 
based on the chronology of Quinn et al. (1987). For example, group 1 consisted of all 
strong (S) and very strong (VS) events for the period 1525-1983, while groups 4 and 5 
consisted of S / V S  events for times of high and low solar activity for this period. 
Groups 6-10 contained different samples of intensities for the modern period of 1803- 
1987. Maximum likelihood estimation was used to fit a two-parameter Weibull 
distribution f ( t )  to each sample group, 

f (t) = (13t/~-l / r  ~) exp [-(t/r)/~] (3.19.1) 

where/3 and r are, respectively, the shape (peakedness) and time scale (RMS return 
interval) parameters, and t is the random variable for the return interval. For each 
group, only a single distribution could be fitted. To derive estimates of the mean and 
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Figure 3.19.2. Estimation of the population mean distribution parameters (mean return time in years) 
using the bootstrap method for El Ni~o events taking place during times of low solar activity for the 

period 1525-1983. 7 is the return time and aT its standard deviation. (Enfield and Cid, 1990.) 

standard deviations of the parameters for each group, 500 bootstrap samples were 
generated and the Weibull parameters obtained for each sample. As indicated by 
Figure 3.19.2, this number of samples provides good convergence to the mean value 
for the Weibull distribution fit for each group. The distribution of E1 Nifio return 
events for bootstrap samples for all intensities for the "early modern" period 1803- 
1891 is shown in Figure 3.19.3 along with its corresponding Weibull distribution. 
Enfield and Luis use the resampling analysis to show that, for the groups associated 
with times of low solar activity and those associated with times of high solar activity, 
there is comparatively little overlap between the bootstrap-derived frequency 
histograms and mean return time scales, 7- (years) (Figure 3.19.4). These results sug- 
gest that there is a statistical difference in the return times for the two groups and that 
return times are nonstationary. 
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Figure 3.19.3. Histogram of El Ni~o return times for all events between 1803 and 1987 (group #7) 
derived using the bootstrapping resampling technique. The solid curve is the Weibull distribution fitted to 
the histogram. The modal and mean return intervals (3.3 and 3.8 years, respectively) are the derived 

from the MLE-estimated population parameters. (From Enfield and Cid, 1990.) 
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Much of the present evidence for possible global warming is based on Northern 
Hemispheric annual surface air temperature records over the past 100 years (Jones et 
al., 1986; Hansen and Lebedeff, 1987; Gruza et al., 1988). Imerest in the reliability of 
the means and trends of these records (labeled H, J, and G) prompted Eisner and 
Tsonis (1991) to examine differences in means and trends of pairs of these records for 
the three global mean temperature curves. The data sets have been constructed using 
different averaging methods and different observational data bases. Data set H 
contains only observations from land stations whereas data set J uses both land and 
ship-based observations. Averages for set H are derived using equal-area boxes over 
the globe whereas data set G is constructed by visual inspection of anomalies from sea- 
level temperature analyses. The usual assumption is that these time series are 
representative of the same population, a result that appears to be supported by the 
statistically significant correlation r > 0.79 among the different curves. As pointed out 
by Eisner and Tsonis, however, the presence of trends in these data means that the 
linear cross-correlation coefficient may not be a reliable measure of the covariability 
of the records. Two questions can be addressed using the bootstrapping method: (1) 
are the three versions of the temperature records significantly different that we can 
say they are not drawn from the same population? (The null hypothesis is false.); and 
(2) are the trends in the three records sufficiently alike that they are measuring a true 
rise in global temperature? 
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Figure 3.19.5. Bootstrap-generated histograms of global air temperature difference records obtained by 
subtracting the temperature records of Jones et al. (1986) (J), Hansen and Lebedeff (1987) (H), and 
Gruza et al. (1988) (G). (a) Frequency distributions of the mean differences plotted for 104 bootstrap 
samples. The x-axis (ordinate) gives the number of times the bootstrap mean fell into a given interval. All 
three distributions are located to the left of a zero mean difference. (From Elsner and Tsonis, 1991.) 
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Because of the strong linear correlation in the records, the authors work with 
difference records. A difference record is constructed by subtracting the annual (mean 
removed) departure record of one data set from the annual departure record of another 
data set. Although not zero, the cross-correlation for the difference records is 
considerably less than those for the original departure records, showing that 
differencing is a form of high-pass filtering that effectively reduces biasing from the 
trends. The average difference for all 97 years of data used in the analyses (the 
difference record H-J relative to the years 1951-1980) is -0.05~ indicating that the 
hemispheric temperatures of Jones et al. (1986) are slightly warmer than those of 
Hansen and Lebedeff (1987). Similar results were obtained for H-G and J-G. To see if 
these differences are statistically significant, 10,000 bootstrap samples of the difference 
records were generated. The results (Figure 13.9.5a) suggest that all three hemispheric 
temperature records exhibit significantly different nonzero means. The overlap in the 
distributions is quite minimal. The same process was then used to examine the trends 
in the difference records. For the H-J record, the trend is +0.15~ so that the 
trend of Hansen and Lebedeff is greater than that of Jones et al. As indicated in Figure 
13.9.5(b), the long-term trends were distinct. On the basis of these results, the authors 
were forced to conclude that at least two of the data sets do not represent the true 
population (i.e. the truth). More generally, the results bring into question the 
confidence one can have that the long-term temperature trends obtained from these 
data are representative of trends over hemispheric or global scales. 

Biological oceanographers often have difficult sampling problems that can be 
addressed by bootstrap methods. For example, the biologist may want to use cluster 
analyses of animal abundance for different locations to see if species distributions 
differ statistically from one sampling location (or time) to the next. Cluster analyses of 
ecological data use dendrograms--linkage rules which group samples according to the 
relative similarity of total species composition--to determine if the organisms in one 
group of samples have been drawn from the same or different statistical assemblages 
of those of another group of samples. Provided there are, at least, replicates for most 
samples, bootstrapping~can be used to derive tests for statistical significance of 
similarity linkages in cluster analyses (Burd and Thomson, 1994). For further 
information on this aspect of bootstrapping, the reader is referred to Nemec and 
Brinkhurst (1988). Finally, in this section, we note that it is possible to vary the 
bootstrap size by selecting samples smaller than N, the original size of the data set, to 
compare various estimator distributions obtained from different sample sizes. This 
allows one to observe the effects of varying sample size on sample estimator 
distributions and statistical power. 

3.19.2 Jackknife method 

Several other methods are similar in concept to bootstrapping but differ significantly 
in detail. The idea, in each case, is to generate artificial data sets and assess the 
variability of a statistic from its variability over all the sets of artificial data. The 
methods differ in the way they generate the artificial data. Jackknifing differs from 
bootstrapping in that data points are not replaced prior to each resampling. This 
technique was first proposed by Maurice Quenouille in 1949 and developed by John 
Tukey in the 1950s. The name "jackknife" was used by Tukey to suggest an all- 
purpose statistical tool. 
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A jackknife resample is obtained by deleting a fixed number of data points (j) from 
the original set of N data points. For each resample, a different group of j values is 
removed so that each resample consists of a distinct collection of data values. In the 
"deleteoj" jackknife sample, there will be k = N - j  samples in each new truncated 
data set. The total number of new artificial data that can be generated is 

which the reader will recognize as NPj = N ! / ( N - j ) ! ,  the number of permutations of 
N objects taken j at a time. Consider the simple delete-1 jackknife. In this case, there 
are N -  1 samples per artificial data set and a total of NPj = N new data sets that can 
be created by systematically removing one value at a time. As illustrated by Figure 
3.19.6, an original data set of four data values will yield a total of four distinct delete-1 
jackknife samples, each of size three (3), which can then be used to examine various 
statistics of the original data set. The sample average of the data derived by deleting 
the ith datum, denoted by the subscript (i), is 

N x  - x i _ 1 N 

X ( i )  ~ N--------Z~ - N - 1 ~ xj (3.19.2) 
j ~  

where 

1 N 

i=1 

DATA 

X J / 
MULTIPLE MODEL ESTIMATES 

l m~ I rm~ [model, I [m~ 

Figure 3.19.6. Schematic representation of the jackknife. The original data vector has four components 
(samples), labeled d l to d4. The data are resampled by deleting a fixed number of components (here, one) 
from the original data to form multiple jackknife resamples (in case, four). Each resample defines a model 
estimate. The multiple model estimates are then combined to a best model and its standard deviation. 

(From Tichelaar and Ruff, 1989.) 
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is the mean found using all the original data. The average of the N jackknife averages, 
X(i), is 

~, 1 N 
- - ~  ZX(i)--X" (3.19.3) 

i=1 

The last result, namely that the mean of all the jackknife samples is identical to the 
mean of the original data set, is easily obtained using equation (3.19.2). The estimator 
for the standard deviation, o-j, of the delete-1 jackknife is 

N 211/2 crj- Z [(~'(i)--X*) (3.19.4a) 
i=1 

l ~ [(xi - x)2] l/2 (3.19.4b) 
N - l i =  1 

where (3.19.4b) is the usual expression for the standard deviation of N data values. 
Our expression differs slightly from that of Efron and Gong (1983) who use a de- 
nominator of 1 / [ ( N -  1)N] instead of 1/(N- 1) 2 in their definition of variance. The 
advantage of (3.19.4a) is that it can be generalized for finding the standard deviation 
of any estimator 0 that can be derived for the original data. In particular, if 0 is a 
scalar, we simply replace x~i) with O(i) and x* with 0* where O(i) is an estimator for 0 
obtained for the data set with the ith value removed. Although the jackknife requires 
fewer calculations than the bootstrap, it is less flexible and at times less dependable 
(Efron and Gong, 1983). In general, there are N jackknife samples for the delete-1 
jackknife as compared with 

2 N - 1 P N  --  ( 2NN 1 

bootstrap points. 
Our example of jackknifing is from Tichelaar and Ruff (1989) who generated N - 

20 unequally spaced data values Yi that follow the relation y i -  cxi + ci (c = 1.5, 

exactly), where Ci is a noise component drawn from a "white" spectral distribution 
with a normalized standard deviation of 1.5 and mean of zero. The least squares 
estimator for the standard deviation of the slope is 

2 /E O" -- Z [(Yi -- CXi) (N - 1) x~ (3.19.5) 
i=l 

where ~ ~-~yixi/~-']~X2i Two jackknife estimators were used: (1) The delete-1 jackknife, 
for which the artificial sample sizes are N -  1 = 19; and (2) The delete-half (N/2) 
jackknife for which the sample sizes are N -  N/2 = 10. In both cases, the jackknife 
resamples had equal weighting in the analysis. For the delete-half jackknife, a Monte 
Carlo determination of 100 subsamples was used since the total samples 20P~0 - 20!/ 
10! is very large. The results are presented in Figure 3.19.7. The last panel gives the 
corresponding result for the bootstrap estimate of the slope using 100 bootstrap 
samples. Results showed that the bootstrap standard error of the slope was slightly 
lower than those for both jackknifing estimates. 
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Figure 3.19. 7. Use of the bootstrapping technique to estimate the reliability of a linear regression line. (a) 
A least-squares fit through the noisy data, for which the estimated slope d = 1.518 + 0.0138 (• 
standard error); (b) The normalized frequency of occurrence distribution, f, for the delete-1 jackknife 
which yields d =  1.518 • 0.0136; (c) As in (b) but for the delete-half jackknife for which 
d --- 1.517 + 0.0141; (d) The corresponding bootstrapping estimate, for which d = 1.517 + 0.0132. 
Note the scale difference between (b) and (c). The dashed line is the analytical distribution of ~. (From 

Tichelaar and Ruff, 1989.) 



C H A P T E R  4 

The Spatial Analyses of Data Fields 

A fundamental problem in oceanography is how best to represent spatially distributed 
data (or statistical products computed from these data) in such a way that dynamical 
processes or their effects can best be visualized. As in most aspects of observational 
analysis, there has been a dramatic change in the approach to this problem due to the 
increased abundance of digital data and our ability to process them. Prior to the use of 
digital computers, data displays were constructed by hand and "contouring" was an 
acquired skill of the descriptive analyst. Hand contouring is still practiced today 
although, more frequently, the data points being contoured are averaged values 
produced by a computer. In other applications, the computer not only performs the 
averaging but also uses objective statistical techniques to produce both the gridded 
values and the associated contours. 

The purpose of this section is to review data techniques and procedures designed to 
reduce spatially distributed data to a level that can be visualized easily by the analyst. 
We will discuss methods that address both spatial fields and time series of spatial 
fields since these are the primary modes of data distribution encountered by the 
oceanographer. Our focus is on the more widely used techniques which we present in a 
practical fashion, stressing the application of the method for interpretive applications. 

4.1 T R A D I T I O N A L  B L O C K  A N D  B U L K  A V E R A G I N G  

A common method for deriving a gridded set of data is simply to average the available 
data over an arbitrarily selected rectangular grid. This averaging grid can lie along any 
chosen surface but is most often constructed in the horizontal or vertical plane. 
Because the grid is often chosen for convenience, without any consideration to the 
sampling coverage, it can lead to an unequal distribution of samples per grid "box". 
For example, because distance in longitude varies as the cosine of the latitude, the 
practice of gridding data by 5 or 10 ~ squares in latitude and longitude may lead to 
increasingly greater spatial coverage at low latitudes. Although this can be overcome 
somewhat by converting to distances using the central latitude of the box (Poulain and 
Niiler, 1989), it is easy to see that inhomogeneity in the sampling coverage can quickly 
nullify any of the useful assumptions made earlier about the Gaussian nature of 
sample populations or, at least, about the set of means computed from these samples. 
This is less of a problem with satellite-tracked drifter data since satellite ground tracks 
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converge with increasing latitude, allowing the data density in boxes of fixed 
longitude length to remain nearly constant. 

With markedly different data coverage between sample regions, we cannot always 
fairly compare the values computed in these squares. At best, one must be careful to 
consider properly the amount of data being included in such averages and be able to 
evaluate possible effects of the variable data coverage on the mapped results. Each 
value should be associated with a sample size indicating how many data points, N, 
went into the computed mean. This will not dictate the spatial or temporal distri- 
butions of the sample data field but will at least provide a sample size parameter 
which can be used to evaluate the mean and standard deviation at each point. While 
the standard deviation of each grid sample is composed of both spatial and temporal 
fluctuations (within the time period of the grid sample), it does give an estimate of the 
inherent variability associated with the computed mean value. 

Despite the problems with nonuniform data coverage, it has proven worthwhile to 
produce maps or cross-sections with simple grid-averaging methods since they 
frequently represent the best spatial resolution possible with the existing data 
coverage. The approach is certainly simple and straightforward. Besides, the data 
coverage often does not justify more complex and computer-intensive data reduction 
techniques. Specialized block-averaging techniques have been designed to improve 
the resolution of the corresponding data by taking into account the nature of the 
overall observed global variability and by trying to maximize the coverage 
appropriately. For example, averaging areas are frequently selected which have 
narrow meridional extent and wide zonal extent, taking advantage of the stronger 
meridional gradients observed in the ocean. Thus, an averaging area covering 2 ~ 
latitude by 10 ~ longitude may be used to better resolve the meridional gradients which 
dominate the open ocean (Wyrtki and Meyers, 1975). This same idea may be adapted 
to more limited regions if the general oceanographic conditions are known. If so, the 
data can be averaged accordingly, providing improved resolution perpendicular to 
strong frontal features. A further extension of this type of grid selection would be to 
base the entire averaging area selection on the data coverage. This is difficult to 
formalize objectively since it requires the subjective selection of the averaging scheme 
by an individual. However, it is possible in this way to improve resolution without a 
substantial increase in sampling (Emery, 1983). 

All of these bulk or block-averaging techniques make the assumption that the data 
being considered in each grid box are statistically homogeneous and isotropic over the 
region of study. Under these assumptions, area sample size can be based strictly on the 
amount of data coverage (number of data values) rather than having to know details 
about processes represented by the data. Statistical homogeneity does not require that 
all the data were collected by the same instrument having the same sampling 
characteristics. Thus, our grid-square averaging can include data from many different 
instruments which generally have the same error limits. 

One must be careful when averaging different kinds of measurements, even if they 
are of the same parameter. It is very tempting, for example, to average mechanical 
bathythermograph (MBT) temperatures with newer expendable bathythermograph 
(XBT) temperatures to produce temperature maps at specific depths. Before doing so, 
it is worth remembering that XBT data are likely to be accurate to 0.1~ as reported 
earlier, while MBT data are decidedly less accurate and less reliable. Another marked 
difference between the two instruments is their relative vertical coverage. While most 
MBTs stopped at 250 m depth, XBTs are good to 500-1800 m, depending on probe 
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type. Thus, temperature profiles from MBTs can be expected to be different from 
those collected with XBTs. Any mix of the two will necessarily degrade the average to 
the quality of the MBT data and bias averages to shallow (< 300 m) depths. In some 
applications, the level of degraded accuracy will be more than adequate and it is only 
necessary to state clearly and be aware of the intended application when mixing the 
data from these instruments. Also, one can expect distinct discontinuities as the data 
make the transition from a mix of measurements at shallower levels to strictly XBT 
data at greater depth. 

Other important practical concerns in forming block averages have to do with the 
usual geographic location of oceanographic measurements. Consider the global 
distribution of all autumn measurements up to 1970 of the most common oceano- 
graphic observation, temperature profiles (Figure 4.1.1). It is surprising how 
frequently these observations lie along meridians of latitude or parallels of longitude. 
This makes it difficult to assign the data to any particular 5 or 10 ~ square when the 
border of the square coincides with integer values of latitude or longitude. When the 
latter occurs, one must decide to which square the borders will be assigned and be 
consistent in carrying this definition through the calculation of the mean values. 

As illustrated by Figure 4.1.1, data coverage can be highly nonuniform. In this 
example, some areas were frequently sampled while others were seldom (or never) 
occupied. Such nonuniformity in data coverage is a primary factor in considering the 
representativeness of simple block averages. It certainly brings into question the 
assumptions of homogeneity (spatially uniform sampling distribution) and isotropy 
(uniform sampling regardless of direction) since the sample distribution varies greatly 
with location and may often have a preferred orientation. The situation becomes even 
more severe when one examines the quality of the data in the individual casts 
represented by the dots in Figure 4.1.1. In order to establish a truly consistent data set 
in terms of the quality of the observations (i.e. the depth of the cast, the number of 
samples, the availability of oxygen and nutrients, and so on), it is generally necessary 
to reject many of the available hydrographic casts. 

The question of data coverage depends on the kind of scientific questions the data 
set is being asked to address. For problems not requiring high-quality hydrographic 
stations, a greater number of observations are available, while for more restrictive 
studies requiring a higher accuracy, far fewer casts would match the qualifications. 
This is also true for other types of historical data but is less true of newly collected 
data. However, even now, one must ensure that all observations have a similar level of 
accuracy and reliability. Variations in equipment performance, such as sensor 
response or failure, must be compensated for in order to keep the observations 
consistent. Also, changes in instrument calibration need to be taken into account over 
the duration of a sampling program. For example, transmissometer lenses frequently 
become matted with a biotic film that reduces the amount of light passing between the 
source and receiver lenses. A nonlinear, time-dependent calibration is needed to 
correct for this effect. 

Despite the potential problems with the block-averaging approach to data 
presentation, much information can be provided by careful consideration of the 
data rather than the use of more objective statistical methods to judge data quality. 
The shift to statistical methods represents a transition from the traditional 
oceanographic efforts of the early part of the twentieth century when considerable 
importance was given to every measurement value. In those days, individual scientists 
were personally responsible for the collection, processing and quality of their data. 
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Figure 4.1.1. The global distribution of all temperature profiles collected during oceanographic surveys in the fall up to 1970. Sampling is most dense along major 
shipping routes. 
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Then, it was a simple task to differentiate between "correct" and "incorrect" samples 
without having to resort to statistical methods to indicate how well the environment 
had been observed. In addition, earlier investigations were primarily concerned with 
defining the mean state of the ocean. Temporal variability was sometimes estimated 
but was otherwise ignored in order to emphasize the mean spatial field. With today's 
large volumes of data, it is no longer possible to "hand check" each data value. A good 
example is provided by satellite-sensed information which generally consists of large 
groupings of data that are usually treated as individual data values. 

In anticipation of our discussion of filtering in Chapter 5, we should point out that 
block averaging corresponds to the application of a box-car-shaped filter to the data 
series. This type of filter has several negative characteristics such as a slow filter roll 
off and large side lobes which distort the information in the original data series. 

4.2 OBJECTIVE ANALYSIS 

In a general sense, objective analysis is an estimation procedure which can be specified 
mathematically. The form of objective analysis most widely used in physical 
oceanography is that of least squares optimal interpolation, more appropriately 
referred to as Gauss-Markov smoothing, which is essentially an application of the linear 
estimation (smoothing) techniques discussed in Chapter 3. Since it is generally used 
to map spatially nonuniform data to a regularly spaced set of gridded values, Gauss- 
Markov smoothing might best be called "Gauss-Markov mapping". The basis for the 
technique is the Gauss-Markov theorem which was first introduced by Gandin (1965) 
to provide a systematic procedure for the production of gridded maps of 
meteorological parameters. If the covariance function used in the Gauss-Markov 
mapping is the covariance of the data field (as opposed to a more ad hoc covariance 
function, as is usually.the case), then Gauss-Markov smoothing is optimal in the sense 
that it minimizes the mean square error of the objective estimates. A similar 
technique, called Kriging after a South African engineer H. G. Krige, was developed in 
mining engineering. Oceanographic applications of this method are provided by 
Bretherton et al. (1976), Freeland and Gould (1976), Bretherton and McWilliams 
(1980), Hiller and K~se (1983), Bennett (1992), and others. 

The two fundamental assumptions in optimal interpolation are that the statistics of 
the subject data field are stationary (unchanging over the sample period of each map) 
and homogeneous (the same characteristics over the entire data field). A further 
assumption often made to simplify the analysis is that the statistics of the second 
moment, or covariance function, are isotropic (the same structure in all directions). 
Bretherton et al. (1976) point out that if these statistical characteristics are known, or 
can be estimated for some existing data field (such as a climatology based on historical 
data), they can be used to design optimum measurement arrays to sample the field. 
Since the optimal estimator is linear and consists of a weighted sum of all the 
observations within a specified range of each grid point, the objective mapping 
procedure produces a smoothed version of the original data field that will tend to 
underestimate the true field. In other words, if an observation point happens to 
coincide with an optimally interpolated grid point, the observed value and 
interpolated value will probably not be equal due to the presence of noise in the 
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data. The degree of smoothing is determined by the characteristics of the signal and 
error covariance functions used in the mapping and increases with increasing spatial 
scales for a specified covariance function. 

The general problem is to compute an est imate/)(x,  t) of the scalar variable D(x, t) 
at a position x = (x,y) from irregularly spaced and inexact observations d(x,, t) at a 
limited number of data positions Xn (n = 1, 2, ..., N). Implementation of the procedure 
requires a priori knowledge of the variable's covariance function, C(r), and 
uncorrelated error variance, e, where r is the spatial separation between positions. 
For isotropic processes, C(r) ~ C(r), where r = I rl. Although specification of the 
covariance matrix should be founded on the observed structure of oceanic variables, 
selection of the mathematical form of the covariance matrix is hardly an "objective" 
process even with reliable data (cf. Denman and Freeland, 1985). In addition to the 
assumptions of stationarity, homogeneity, and isotropy, an important constraint on 
the chosen covariance matrix is that it must be positive definite (no negative 
eigenvalues). Bretherton et al. (1976) report that objective estimates computed from 
nonpositive definite matrices are not optimal and the mapping results are poor. In 
fact, nonpositive definite covariance functions can yield objective estimates with 
negative expected square error. One way to ensure that the covariance matrix is 
positive definite is to fit a function which results in a positive definite covariance 
matrix to the sample covariance matrix calculated from the data (Hiller and K~se, 
1983). This results in a continuous mathematical expression to be used in the data 
weighting procedure. In attempting to specify a covariance function for data collected 
in continental shelf waters, Denman and Freeland (1985) further required that 
02C/02x and 02C/02y be continuous at r - 0 (to ensure a continuously differentiable 
process) and that the variance spectrum, S(k), derived from the transform of C(r) be 
integrable and nonnegative for all wavenumbers, k (to ensure a realizable stochastic 
random process). 

Calculation of the covariance matrix requires that the mean and "trend" be 
removed from the data (the trend is not necessarily linear). In three-dimensional 
space, this amounts to the removal of a planar or curvilinear surface. For example, the 
mean density structure in an upwelling domain is a curved surface which is shallow 
over the outer shelf and deepens seaward. Calculation of the density covariance matrix 
for such a region first involves removal of the curved mean density surface (Denman 
and Freeland, 1985). Failure to remove the mean and trend would not alter the fact 
that our estimates are optimal but it would redistribute variability from unresolved 
larger scales throughout the wavenumber space occupied by the data. We would then 
map features that have been influenced by the trend and mean. 

As discussed later in the section on time series, there are many ways to estimate the 
trend. If ample good-quality historical data exist, the trend can be estimated from 
these data and then subtracted from the data being investigated. If historical data are 
not available, or the historical coverage is inadequate, then the trend must be 
computed from the sample data set itself. Numerous methods exist for calculating the 
trend and all require some type of functional fit to the existing data using a least- 
squares method. These functions can range from straight lines to complex higher- 
order polynomials and associated nonlinear functions. We note that, although many 
candidate oceanographic data fields do not satisfy the conditions of stationarity, 
homogeneity, and isotropy, their anomaly fields do. In the case of anomaly fields, the 
trend and mean have already been removed. Gandin (1965) reports that it may be 
possible to estimate the covariance matrix from existing historical data. This is more 



The Spatial  Analyses o f  Data  Fields 311 

often the case in meteorology than in oceanography. In most oceanographic appli- 
cations, the analyst must estimate the covariance matrix from the data set being 
studied. 

In the following, we present a brief outline of objective mapping procedures. The 
interested reader is referred to Gandin (1965) and Bretherton et al. (1976) for further 
details. As noted previously, we consider the problem of constructing a gridded map of 
the scalar variable D(x, t) from an irregularly spaced set of scalar measurements d(x, t) 
at positions x and times t. The notation x refers to a suite of measurement sites, xn (n 
= 1, 2, ...), each with distinct (x, y) coordinates. We use the term variable to mean 
directly measured oceanic variables as well as calculated variables such as the density 
or streamfunction derived from the observations. Thus, the data d(x, t) may consist of 
measurements  of the particular variable we are trying to map or they may consist of 
some other variables that are related to D in a linear way. The former case gives 

d(x, t) - D(x, t) + c(x) (4.2.1) 

where the c are zero-mean measurement  errors which are not correlated with the 
measurement  D. In the latter case 

d(x, t) - F[D(x, t)] + e(x) (4.2.2) 

in which F is a linear functional which acts on the function D in a linear fashion to 
give a scalar (Bennett 1992). For example, if D(x, t) - tI,(x, t) is the streamfunction, 
then the data could be current meter measurements of the zonal velocity field, 
u(x, t) = F[tI,(x, t)], where 

O~(x) 
d(x, t) - u ( x ,  t) + e(x) - +~ c(x) (4.2.3) 

Oy 

and 0 $ / 0 y  is the gradient of the streamfunction in the meridional direction. 
To generalize the objective mapping problem, we assume that mean values have not 

been removed from the original data prior to the analysis. If we consider the objective 
mapping for a single "snap shot" in time (thereby dropping the time index, t), we can 
write linear estimates /D(x) of D(x) as the summation over a weighted set of the 
measurements  di (i = 1, . . . ,  N) 

N 

/])(x) - D(x) + ~ b i (d i -  -d) (4.2.4) 
i=1 

where the overbar denotes an expected value (mean), di = d(x) = d(xi), 1 <_ i <_ N is 
shorthand notation for the data values, and the bi = b(x) = b(xi) are, as yet unspecified, 
weighting coefficients at the data points xi. The selection of the N data values is made 
by restricting these values to some finite area about the grid point. The estimates of 
the parameters b; in equation (4.2.4) are found in the usual way by minimizing the 
mean square variance of the error e(x) 2 between the measured variable, D, and the 
linear estimate, D, at the data location. In particular, 

e(x) 2 -  [D(x) -/D(x)] 2 (4.2.5) 

which on substitution of (4.2.4) yields 
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e(x) 2 - [D(x) - D(x)] 2 
N N N 

+ ~ ~ bibj(di - -d)(dj - -d) - 2 Z bi(di - d)(D - -D) (4.2.6) 
i=1 j=l i=1 

Note, that if the mean has been removed, we can set D(x) = d(x) - 0 in (4.2.6). The 
mean square difference in equation (4.2.6) is minimized when 

N 
bi --  ~ ( { (d i  - d ) ( d j  - ~)3-1 (dj - d ) ( O  - D ) }  (4.2.7) 

j=l  

To calculate the weighting coefficients in (4.2.7), and therefore the grid-value 
estimates in (4.2.4), we need to compute the covariance matrix by averaging over all 
possible pairs of data taken at points xi, x3; the covariance matrix is 

(di - -d) (dj - d )  - ( d ( x i )  - -d) (d  (x j )  - d )  (4.2.8) 

We do the same for the interpolated value 

(di - -d) (Oj  - -D) - ( d ( x i )  - -d) ( d ( x k  ) - -D) (4.2.9) 

where xk is the location vector for the grid point estimate/)(xk).  
In general, we need a series of measurements at each location so that we can obtain 

statistically reliable expected values for the elements of the covariance matrices in 
(4.2.8) and (4.2.9). The expected values in the above relations could be computed as 
ensemble averages over spatially distributed sets of measurements. Typically, 
however, we have only one set of measurements for the specified locations xi, xy. As 
a consequence, we need to assume that, for the region of study, the data statistics are 
homogeneous, stationary and isotropic. If these conditions are met, the covariance 
matrix for the data distribution (for example, sea surface temperature) depends only 
on the distance r between data values, where r - Ixj - xi]. Thus, we have elements i , j ,  
of the covariance matrix given by 

(d  i - d )  (dj - -d) - C ( [xj - x i  [ ) + 6--2 
(4.2.10) 

where C(]r l )  = d(x)d(x + r) is the covariance matrix and the mean square e r r o r  c (x)  2 

implies that this estimate is not exact and there is some error in the estimation of the 
correlation function from the data. We note that this is not the same error in (4.2.6) 
that we minimize to solve for the weights in (4.2.7). The matrix can now be calculated 
by forming pairs of observed data values separated into bins according to the distance 
between sample sites, xi. These are then averaged over the number of pairs that have 
the same separation distance to yield the product matrix 

m 

(di - d)  (dj - d )  

This computation requires us to define some "bin interval" for the separation 
distances so that we can group the product values together. To ensure that the 
resulting covariance matrix meets the condition of being positive definite, a smooth 
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function satisfying this requirement can be fitted to the computed raw covariance 
function. This fitted covariance function is used for 

n 

(di - d ) ( D  - D )  

and to calculate 

[ (di - -d) (di - d) ] - 

The weights bi are then computed from (4.2.7). It is a simple process to then compute 
the optimal grid value estimates from (4.2.4). Note that, where the data provide no 
help in the estimate of D (that is, c(x) ~ ~ ) ,  then bi = 0 and the only reasonable 
estimate i s / ) (x)  - D, the mean value. Similarly, if the data are error free (such that 
c(x) 2 ~ 0), then D(xi) - D(xi) for all xi (i = 1, ..., N). In other words, the estimated 
value and the measured data are identical at the measurement sites (within the limits 
of the noise in the data) and the estimator interpolates between the observations. 

The critical step in the objective mapping procedure is the computation of the 
covariance matrix. We have described a straightforward procedure to estimate the 
covariance matrix from the sample data. As with the estimate of the mean or overall 
trend, it is often possible to use an existing set of historical data to compute the 
covariance matrix. This is frequently the case in meteorological applications where 
long series of historical data are available. In oceanography, however, the covariance 
matrix typically must be computed from the sample data. Where historical data are 
available, it is important  to recognize that using these data to estimate the covariance 
matrix for use with more recently collected data is tantamount to assuming that the 
statistics have remained stationary since the time that the historical data were 
collected. 

Bretherton et al. (1976) suggest that objective analysis can be used to compute the 
covariance matrix. In this case, they start with an assumed covariance function, F, 
which is then compared with a covariance function computed from data with a fixed 
distance Xo. The difference between the model P and the real F computed from the 
data is minimized by repeated iteration. 

To this point, we have presented objective analysis as it applies to scalar fields. We 
can also apply optimal (Gauss-Markov) interpolation to vector fields. One approach is 
to examine each scalar velocity component separately so that for n velocity vectors we 
have 2n velocity components 

dr - Ul  (Xr); dr+n ~ U2(Xr) (4.2.11) 

where U 1 and u2 are the x, y velocity components at x,. If the velocity field is 
nondivergefft, we can introduce a scalar streamfunction tI,(x) such that 

0tI/ 0~  
; ul - Oy u2 Ox (4 2 12) 

and apply scalar methods to ~. 
Once the optimal interpolation has been executed, there is a need to return to 

equation (4.2.6) to compute the actual error associated with each optimal inter- 
polation. To this end, we note that we now have the interpolated data from (4.2.4). 
Thus, we can use / )  computed from (4.2.4) as the value for D in (4.2.6). The product in 
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the last term of (4.2.6) is computed from the covariance in (4.2.9). In this way, it is 
possible to compute the error associated with each optimally interpolated value. 
Frequently, this error field is plotted for a specific threshold level, typically 50% of the 
interpolated values in the mapped field (see following examples). It is important to 
retain this error estimate as part of the optimal interpolation since it enables us to 
assess the statistical significance of individual gridded values. 

4 . 2 . 1  O b j e c t i v e  m a p p i n g :  e x a m p l e s  

An example of objective mapping applied to a single oceanographic survey is provided 
by the results of Hiller and K~ise (1983). The data are from a CTD survey grid 
occupied in the North Atlantic about midway between the Azores and the Canary 
Islands (Figure 4.2.1). At each CTD station, the geopotential anomaly at 25 db (dBar) 
relative to the anomaly at 1500 db (written 25/1500 db) was calculated and selected as 
the variable to be mapped. The two-dimensional correlation function for these data is 
shown in three-dimensional perspective in Figure 4.2.2(a). A series of different 
correlation functions were examined and an isotropic, Gaussian function that was 
positive definite was selected as the best fit (Figure 4.2.2b). Using this covariance 
function, the authors obtained the objectively mapped 25/1500 db geopotential 
anomaly shown in Figure 4.2.3(a). Removal of a linear trend gives the objective map 
shown in Figure 4.2.3(b) and the associated RMS error field shown in Figure 4.2.3(c). 
Only near the outside boundaries of the data domain does the RMS error increase to 
around 50% of the geopotential anomaly field (Figure 4.2.3b). 
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Figure 4.2.1. Locations of CTD stations taken in the North Atlantic between the Azores and the Canary 
Islands in spring 1982 (experiment POSEIDON 86, Hiller and K~e, 1983). Also shown are locations of 

current profile (P) and hydrocast (W) stations. 
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Figure 4.2.2. The two-dimensional correlation function C(r) for the geopotential anomaly field at 25 db 
referenced to 1500 db (25/1500 dBar) for the data collected at stations shown in Figure 4.2.1 (I db = 
1 dBar - I m2/s2). Here, r = (x, y), where x, y are the eastward and northward coordinates, 
respectively. Distances are in nautical miles. (a) The "raw" values of C(r) based on the observations; (b) 

A model of the correlation function fitted to (a). (From Hiller and K~e,  1983). 
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Figure 4.2.3. Objective analysis of the geopotential anomaly field 25/1500 db (~2/$2) using the 
correlation function in equation (4.2.2b). (a) The approximate center of the frontal band in this region of 
the ocean is marked by the 13.5 db isoline; (b) Same as (a) but after subtraction of the linear spatial 
trend; (c) Objective analysis of the residual mesoscale perturbation field 25/1500 dBar after removal of 

the composite mean field. (After Hiller and K~se, 1983.) 
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Figure 4.2.4. Analysis of the velocity fieldfor the current profile collected on the grid in Figure 4.2.1. (a) 
The input velocity field; (b) Objective analysis of the input velocity field with correlation scale A = 
200 km and assumed noise variance of 30% of the total variance of the field. This approach treats 
mesoscale variability on scales less than 200 km as noise, which is smoothed out. In the shaded area, the 

error variance exceeds 50% of the total variance. 
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As an example of objective mapping applied to a vector field, Hiller and K~ise (1983) 
examined a limited number of satellite-tracked drifter trajectories that coincided with 
the CTD survey in space and time. Velocity vectors based on daily averages of low- 
passed finite difference velocities are shown in Figure 4.2.4(a). Rather than compute a 
covariance function for this relatively small sample, the covariance function from the 
analysis of the 25/1500 db geopotential anomaly was used. Also, an assumed error 
level, c 2, was used rather than a computed estimate from the small sample. With the 
isotropic correlation scale estimated to be 75 km, the objective mapping produces the 
vector field in Figure 4.2.4(b). The stippled area in this figure corresponds to the 
region where the error variance exceeds 50% of the total variance. Due to the paucity 
of data, the area of statistically significant vector mapping is quite limited. 
Nevertheless, the resulting vectors are consistent with the geopotential height map 
in Figure 4.2.3(a). 

Another example is provided by McWilliams (1976) who used dynamic height 
relative to 1500 m depth plus deep float velocities at 1500 m to estimate the stream- 
function field. The isotropic covariance function for the random fluctuations in 
streamfunction t I , '=  ~ -  ~ at 1500 m depth was 

C(r) =~' (x ,z ,  t )~ ' (x  + r, z, t) 

=9,2(1 _ c2)(1 - 72r2)exp (-162/,2) 
(4.2.13) 

where r is a horizontal separation vector, r = I r I, e is an estimate of relative 
measurement noise (0 < c _< 1), and 7 -1, ~5 -1 are decorrelation length scales found by 
fitting equation (4.2.13) to prior data. Denman and Freeland (1985) discuss the merits 
of five different covariance functions fitted to geopotential height data collected over a 
period of three years off the west coast of Vancouver Island. For other examples, the 
reader is referred to Bennett (1992). 

As a final point, we remark that the requirement of isotropy is easily relaxed by 
using direction-dependent covariance matrices, C(r~, r2) whose spatial structure 
depends on two orthogonal spatial coordinates, rl and r2 (with r2 > rl). For example, 
the map of light attenuation coefficient at 20 m depth obtained from transmissometer 
profiles off the west coast of Vancouver Island (Figure 4.2.5) uses an exponentially 
decaying, elliptically shaped covariance matrix 

C(rl, r2) = exp[-aZXx 2 - b a y  2 - r  (4.2.14a) 

where 

a - 1{[cos(Tr4)/180)/rl]2+[ sin (Tr4)/180)/r2] 2 } 

b - �89 2 } 

c = cos(~rO/180)sin(TrO/180)[r~ - r~]/(rlr2)2 

(4.2.14b) 

Here, zX~c and Ay are, respectively, the eastward and northward distances from the grid 
point to the data point, and ~ is the orientation angle (in degrees) of the coastline 
measured counterclockwise from north. In this case, it is assumed that the alongshore 
correlation scale, r2, is twice the across-shore correlation scale, rl. The idea here is 
that, like water-depth changes, alongshore variations in coastal water properties such 
as temperature, salinity, geopotential height, and log-transformed phytoplankton 
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chlorophyll-a pigment concentration occur over longer length scales than across-shore 
variations. 
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Figure 4.2.5. Objective analysis map of light attenuation coefficient (per meter) at 20 m depth on the 
west coast of Vancouver Island obtained from transmissometer profiles. The covariance function C(r l, r2) 
given by the ellipse is assumed to decay exponentially with distance with the longshore correlation scale r2 

= 50 km and cross-shore correlation scale r l = 25 km. 

4.3 E M P I R I C A L  O R T H O G O N A L  F U N C T I O N S  

The previous section dealt with the optimal smoothing of irregu, .... ly spaced data onto 
a gridded map. In other studies of oceanic variability, we may be presented with a 
large data set from a grid of time-series stations which we wis h to compress into a 
smaller number of independent p~eces of information. For example, in studies of 
climate change, it is necessary to deal with time series of spatial maps, such as surface 
temperature. A useful obvious choice would involve a linear combination of 
orthogonal spatial "predictors", or modes, whose net response as a function of time 
would account for the combined variance in all of the observations. The signals we 
wish to examine may all consist of the same variable, such as temperature, or they may 
be a mixture of variables such as temperature and wind velocity, or current and sea 
level. The data may be in the form of concurrent time-series records from a grid 
(regular or irregular) of stations xi(t) ,yi( t)  on a horizontal plane or time-series records 
at a selection of depths on an xi(t), zi(t) cross-section. Examples of time series from 
cross-sectional data include those from a single current meter string or from along- 
channel moorings of thermistor chains. 

A useful technique for compressing the variability in this type of time-series data is 
principal component analysis (PCA). In oceanography, the method is commonly known 
as empirical orthogonalfunction (EOF) analysis. The EOF procedure is one of a larger 
class of inverse techniques and is equivalent to a data reduction method widely used in 
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the social sciences known as factor analysis. The first reference we could find to the 
application of EOF analysis to geophysical fluid dynamics is a report by Edward 
Lorenz (1956) in which he develops the technique for statistical weather prediction 
and coins the term "EOF". 

The advantage of EOF analysis is that it provides a compact description of the 
spatial and temporal variability of data series in terms of orthogonal functions, or 
statistical "modes." Usually, most of the variance of a spatially distributed series is in 
the first few orthogonal functions whose patterns may then be linked to possible 
dynamical mechanisms. It should be emphasized that no direct physical or mathe- 
matical relationship necessarily exists between the statistical EOFs and any related 
dynamical modes. Dynamical modes conform to physical constraints through the 
governing equations and associated boundary conditions (LeBlond and Mysak, 1979); 
empirical orthogonal functions are simply a method for partitioning the variance of a 
spatially distributed group of concurrent time series. They are called "empirical" to 
reflect the fact that they are defined by the covariance structure of the specific data set 
being analyzed (as shown below). 

In oceanography and meteorology, EOF analysis has found wide application in both 
the time and frequency domains. Conventional EOF analysis can be used to detect 
standing oscillations only. To study propagating wave phenomena, we need to use 
lagged covariance matrix (Weare and Nasstrom, 1982), or complex principal compon- 
ent analysis in the frequency domain (Wallace and Dickinson, 1972; Horel, 1984). Our 
discussion, in this section, will focus on space/time domain applications. Readers 
seeking more detailed descriptions of both the procedural aspects and their appli- 
cations are referred to Lorenz (1956), Davis (1976), and Preisendorfer (1988). 

The best analogy to describe the advantages of EOF analysis is the classical 
vibrating drum problem. Using mathematical concepts presented in most under- 
graduate texts, we know that we can describe the eigenmodes of drumhead oscillations 
through a series of two-dimensional orthogonal patterns. These modes are defined by 
the eigenvectors and eigenfunctions of the drumhead. Generally, the lowest modes 
have the largest spatial scales and represent the most dominant (most prevalent) 
modes of variability. Typically, the drumhead has as its largest mode an oscillation in 
which the whole drumhead moves up and down, with the greatest amplitude in the 
center and zero motion at the rim where the drum is clamped. The next highest mode 
has the drumhead separated in the center with one side 180 ~ out of phase with other 
side (one side is up when the other is down). Higher modes have more complex 
patterns with additional maxima and minima. Now, suppose we had no mathematical 
theory, and were required to describe the drumhead oscillations in terms of a set of 
observations. We would look for the kinds of eigenvalues in our data that we obtain 
from our mathematical analysis. Instead of the analytical or dynamical solutions that 
can be derived for the drum, we wish to examine "empirical" solutions based strictly 
on a measured data set. Since we are ignorant of the actual dynamical analysis, we call 
the resulting modes of oscillation, empirical orthogonal functions. 

EOFs can be used in both the time and frequency domains. For now, we will restrict 
ourselves to the time domain application and consider a series of N maps at times t - 
ti (1 < i <_ N), each map consisting of scalar variables ~m(t) collected at M locations, 
Xm(1 < m <_ M). One could think of N weather maps available every 6 h over a total 
period of 6N h, with each map showing the sea surface pressure 
~m(t)--Pro(t)(1 <_ m <_ M) recorded at M weather buoys located at mooring sites X m 

= (Xm, ym). Clearly, the subscript m refers to the spatial grid locations in each map. 
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Alternatively, the N maps might consist of pressure data P(t) from M -  K weather 
buoys plus velocity component records u(t), v(t) from K/2 current meter sites. Or, 
again the time series could be from M/2 current meters on a moored string. Any 
combination of scalars is permitted (remember, this is a statistical analysis not a 
dynamical analysis). The goal of this procedure is to write the data series ~m(t) at any 
given location Xm as the sum of M orthogonal spatial functions (/)i(Xm) = ~im such that 

M 

~(xm, t) - ~m(t) -- Z [ai(t)dPiml (4.3.1) 
i=1 

where ai(t) is the amplitude of the ith orthogonal mode at time t - tn (1 <_ n _< N). 
Simply put, equation (4.3.1) says that the time variation of the dependent scalar 
variable ~(x,,,, t) at each location Xm results from the linear combination of M spatial 
functions, 4~i, whose amplitudes are weighted by M time-dependent coefficients, ai(t), 
(1 _< i _< M). The weights ai(t) tell us how the spatial modes Oim vary with time. There 
are as many (M) basis functions as there are stations for which we have data. Put 
another way, we need as many modes as we have time-series stations so that we can 
account for the combined variance in the original time series at each time, t. We can 
also formulate the problem as M temporal functions whose amplitudes are weighted 
by M spatially variable coefficients. Whether  we partition the data as spatial or 
temporal orthogonal functions the results are identical. 

Since we want the ~i(Xm) tO be orthogonal, so that they form a set of basis functions, 
we require 

M 
Z [Oim~jm] -- ~ij (orthogonality condition) (4.3.2) 
m---- 1 

where the summation is over all observation locations and 6ij is the Kronecker delta 

1, j = i (4.3.3) 
6~j- O, j r  

It is worth remarking that two functions are said to be orthogonal when the sum (or 
integral) of their product over a certain defined space (or time) is zero. Orthogonality 
in equation (4.3.2) does not m e a n  Oim~)jm = 0 for each m. For example, in the case of 
continuous sines and cosines, f sin 0 cos 0 dO = 0 when the integral is over a complete 
phase cycle, 0 < 0 < 27r. By itself, the product sin 0. cos0 - 0  only if the sine or 
cosine term happens to be zero. 

There is a multi tude of basis functions, 4~i, that can satisfy equations (4.3.1) and 
(4.3.2). Sine, cosine, and Bessel functions come to mind. The EOFs are determined 
uniquely among the many possible choices by the constraint that the time amplitudes 
ai(t) are uncorrelated over the sample data. This requirement means that the time- 
averaged covariance of the amplitudes satisfies 

ai(t)aj(t) = Ai6ij (uncorrelated time variability) (4.3.4) 

in which the overbar denotes the time-averaged value and 

1~-~ [ai(tn)2 ] /~i -- ai(t) 2 - N n = l  (4.3.5) 

is the variance in each orthogonal mode. If we then form the covariance matrix 



322 Data  Analysis  Me thods  in Physical Oceanography 

~bm(t)~pk(t) for the known data and use (4.3.4), we find 

M M 

~m(t)~k(t) = ~ ~ [ai(t)aj(t)dpimdpjk] 
i=1 j=l  

M 

~ [)kidPimdPik] 
i=1 

(4.3.6) 

Multiplying both sides of (4.3.6) by dPik, summing over all k and using the ortho- 
gonality condition (4.3.2), yields 

M 
~bm(t)~bk(t)Chik = .~i~im (ith mode at the ruth location; i, m - 1,..., M) 

k=l 
(4.3.7) 

Equation (4.3.7) is the canonical form for the eigenvalue problem. Here, the EOFs, dPim, 
are the ith eigenvectors at locations Xm, and the mean-square time amplitudes 

)ki--ai(t) 2 

are the corresponding eigenvalues of the mean product, R, which has elements 

R,nk -- ~bm(t)~bk(t) 

This is equal to the covariance matrix, C, if the mean values of the time series ~m(t) 
have been removed at each site Xm. The total of M empirical orthogonal functions 
corresponding to the M eigenvalues of (4.3.7) forms a complete basis set of linearly 
independent (orthogonal) functions such that the EOFs are uncorrelated modes of 
variability. Assuming that the record means ~m(t) have been removed from each of the 
M time series, equation (4.3.7) can be written more concisely in matrix notation as 

C $  - AI$ = 0 (4.3.8) 

where the covariance matrix, C, consists of M data series of length N with elements 

Cmk = ~m(t)~bh(t) 

I is the unity matrix, and ~ are the EOFs. Expanding (4.3.8) yields the eigenvalue 
problem 

if31 ( l )@l (t)  if31 (t)~P2 (t) 
~b2-(t~l (t) ~2(t)~P2(t) 

~M(t)~l (t) ~M(t)~z(t)  

�9 .. ~Pi (t)~M(t) c~1 A 0 ... 0 ~1 
... ~bz(t)~M(t) ~b2 _ 0 A 0 4~2 (4.3.9a 
. . . . . .  �9 . . . . . . .  

�9 .. ~M(t)~M(t) CbM 0 A C~M 

corresponding to the series of linear system of equations 

[~bl (t)~Pl (t) - A] 4~1 + ~l (t)~P2(t) 02 + ... + ~l (t)~M(t) C~M = 0 

[~2(t)~2(t) -- A] 0 2  -a t- . . .  ~ ~b2(t)~M(t)OM ~ 2 ( t ) ~ l  (t) r + 0 

, , .  

~M(t)~l (t) c~l + ~M(t)~z(t) r + ... + [~M(t)~PM(t) -- A] 0M -- 0 
k J 

(4.3.9b) 
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The eigenvalue problem involves diagonalization of a matrix, which in turn amounts 
to finding an axis orientation in M-space for which there are no off-diagonal terms in 
the matrix. When this occurs, the different modes of the system are orthogonal. Since 
each C is a real symmetric matrix, the eigenvalues Ai are real. Similarly, the eigen- 
vectors (EOFs) of a real symmetric matrix are real. Because C(xm, xk) is positive, the 
real eigenvalues are all positive. 

If equation (4.3.8) is to have a nontrivial solution, the determinant of the coef- 
ficients must vanish; that is 

det 

C l l - A  C12 

C21 C 2 2 - A  

Cml . . . . . .  

C1M 
~ 1 7 6 1 7 6  

~ 1 7 6 1 7 6  

CMM--A 

= 0  (4.3.10) 

which yields an Mth order polynomial, A M + c~A M-1 + ..., whose M eigenvalues satisfy 

AI > A2 > ... > AM (4.3.11) 

Thus, the "energy" (variance) associated with each statistical mode is ordered accord- 
ing to its corresponding eigenvector. The first mode contains the highest percentage of 
the total variance, A~; of the remaining variance, the greatest percentage is in the 
second mode, A2, and so on. If we add up the total variance in all the time series, we get 

Z Z[ffgm(tn)] 2 = Aj 
m=l n=l j=l 

Sum of variances in data - s u m  of variance in eigenvalues (4.3.12) 

The total variance in the M time series equals the total variance contained in the M 
statistical modes. The final piece of the puzzle is to derive the time-dependent 
amplitudes of the ith statistical mode 

M 

ai(t) = Z ~bm(t)Cbim (4.3.13) 
m=l 

Equation (4.3.7) provides a computational procedure for finding the EOFs. By 
computing the mean product matrix, ~Pm(t)~bk(t) (m,k = 1, ...,M) or "scatter matrix" S 
in the terminology of Preisendorfer (1988), the eigenvalues and eigenvectors can be 
determined using standard computer algorithms. From these, we obtain the variance 
associated with each mode, Aj, and its time-dependent variability, ai(t). 

As outlined by Davis (1976), two advantages of a statistical EOF description of the 
data are: (1) the EOFs provide the most efficient method of compressing the data; and 
(2) the EOFs may be regarded as uncorrelated (i.e. orthogonal) modes of variability of 
the data field. The EOFs are the most efficient data representation in the sense that, 
for a fixed number of functions (trigonometric or other), no other approximate 
expansion of the data field in terms of K < M functions 

K 
~m(t) - Z ai(t)~im (4.3.14) 

m=l 
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can produce a lower total mean-square error 

K 

Z [ ~ m ( t ) - ~ m ( t ) ]  2 (4.3.15) 
m=l 

than would be obtained when the q~i are the EOFs. A proof of this is given in Davis 
(1976). Also, as we will discuss later in this section, we could just as easily have written 
our data ~(xm, t) as a combination of orthogonal temporal modes Oi(t) whose ampli- 
tudes vary spatially as ai(x~). Since this is a statistical technique, it doesn't matter 
whether we use time or space to form the basis functions. However, it might be easier 
to think in terms of spatial orthogonal modes that oscillate with time. 

As noted above, EOFs are ordered by decreasing eigenvalue so that, among the 
EOFs, the first mode, having the largest eigenvalue, accounts for most of the variance 
of the data. Thus, with the inherent efficiency of this statistical description a very few 
empirical modes generally can be used to describe the fundamental variability in a very 
large data set. Often it may prove useful to employ the EOFs as a filter to eliminate 
unwanted scales of variability. A limited number of the first few EOFs (those with the 
largest eigenvalues) can be used to reconstruct the data field, thereby eliminating those 
scales of variability not coherent over the data grid and therefore less energetic in their 
contribution to the data variance. An EOF analysis can then be made of the filtered 
data set to provide a new apportionment of the variance for those scales associated with 
most of the variability in the original data set. In this application, EOF analysis is 
much like standard Fourier analysis used to filter out scales of unwanted variability. In 
fact, for homogeneous time series sampled at evenly spaced increments, it can be 
shown that the EOFs are Fourier trigonometric functions. 

The computation of the eigenfunctions ai(t) in equation (4.3.13) requires the data 
values ~m(t) for all of the time series. Often these time series contain gaps which make 
it impossible to compute ai(t) at those times for which the data are missing. One 
solution to this problem is to fill the gaps in the original data records using one of the 
procedures discussed in the previous chapter on interpolation. Most consistent with 
the present approach is to use objective analysis as discussed in the preceding section. 
While this will provide an interpolation consistent with the covariance of the subject 
data set, these optimally estimated values of ~m (t) often result in large expected errors 
if the gaps are large or the scales of coherent variability are small. 

An alternative method, suggested by Davis (1976), that can lead to a smaller 
expected error is to estimate the EOF amplitude at time, t, directly from the existing 
values of ~m(t) thus eliminating the need for the interpolation of the original data. 
Conditions for this procedure are that the available number of sample data pairs is 
reasonably large (gaps do not dominate) and that the data time series are stationary. 
Under these conditions, the mean product matrix ~m(t)~k(t) (m, k - 1, ..., M) will be 
approximately the same as it would have been for a data set without gaps. For times 
when none of the ~m(t) values are missing, the coefficients ai(t) can be computed from 
equation (4.3.13). For times t when data values are missing, ai(t) can be estimated from 
the available values of ~ ( t )  

M ! 

cti(t) -- bi(t) Z ~j(t)Oij (4.3.16) 
j= l  

where the summation over j includes only the available data points, M' < M. From 



The Spatial Analyses of Data Fields 325 

equations (4.3.8), (4.3.14), and (4.3.16), the expected square error of this estimate is 

M ! 

[ai(t)- a(t)] 2 -  b ~ ( t ) Z  (AjT){) + Ai[1 + bi(t)(Tii-1)] 2 (4.3.17) 
j=l 

where 

~ji -- Z ~pj(k)~i(k) (4.3.18) 
k 

and the summation over k applies only to those variables with missing data. Taking 
the derivative of the right-hand side of (4.3.17) with respect to bi, we find that the 
expected square error is minimized when 

bi(t) - (1-'),ii)/~j/I(1-"fii)2)~j-+-~j ,~j'y 2] (4.3.19) 

Applications of this procedure (Davis, 1976, 1978; Chelton and Davis, 1982, Chelton et 
al., 1982), have shown that the expected errors are surprisingly small even when the 
number of missing data is relatively large. This is because the dominant EOFs in 
geophysical systems generally exhibit large spatial scales of variability, leading to a 
high coherence between grid values. As a consequence, contributions to the spatial 
pattern from the most dominant EOFs at any particular time, t, can be reliably 
estimated using a relatively small number of sample grid points. 

4.3.1 Principal axes of a single vector time series (scatter plot) 

A common technique for improving the EOF analysis for a set of vector time series is 
to first rotate each data series along its own customized principal axes. In this new 
coordinate system, most of the variance is associated with a major axis and the 
remaining variance with a minor axis. The technique also provides a useful appli- 
cation of principal component analysis. The problem consists of finding the principal 
axes of variance along which the variance in the observed velocity fluctuations 
u'(t) = [u'l(t ), u~(t)] is maximized for a given location; here u' 1 and u~ are the 
respective east-west and north-south components of the wind or current velocity 
obtained by removing the respective means ~ and fi5 from each record; i.e. 
u' 1 - u l -  ~ ,  u' 2 = u2-  ~ .  The amount of data "scatter" is a maximum along the 
major axis and a minimum along the minor axis (Figure 4.3.1). We also note that 
principal axes are defined in such a way that the velocity components along the 
principal axes are uncorrelated. 

The eigenvalue problem (4.3.8) for a two-dimensional scatter plot has the form 

CII C21 
C12 C22 

qS1 
~2 

A 0 
0 A 

qS1 
~2 

(4.3.20) 

where the C o are components of the covariance matrix, C, and (4~x, q)2) are the 
eigenvectors associated with the two possible values of the eigenvalues, A. To find the 

! ! principal axes for the scatter plot of u 2 versus u 1, we set the determinant of the co- 
variance matrix equation (4.3.20) to zero 
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Figure 4.3.1. The principal component axes for daily averaged velocity components u, v measured by a 
current meter moored at 175 m depth on the west coast of Canada. Here, the north-south component oJ 
velocity, v(t), is plotted as a scatter diagram against the east-west component of current velocity, u(t). 
Data cover the period 21 October 1992 to 25 May 1993. The major axis along 340~ can be used to 

define the longshore direction, v'. 

det{ C - A I [  - det 

= det 

C I ~ - A  C12 

C21 C22-)k  

'2 t t 
U 1 -- A UlU 2 

t t '2 
u2u ~ u 2 - A 

= 0  

(4.3.21a) 

where (for i - 1, 2) the elements of the determinant are given by 

,2 1~-~ 2 
Cii - u i ~ [ui(tn) ] 

n=l 

1 L [  t I(tn)] t t __ bliblj 
C i j  - -  U ibl ) N n = l  

(4.3.21b) 

(4.3.21c) 

Solution of (4.3.21) yields the quadratic equation 

-- [~12 7 7 2 ] A +  '2 '2 ..-JTT..~2_ 0 A 2 -b-U 2 U 1 bl 2 - - U l U  2 (4.3.22) 

whose two roots A1 > A2 are the eigenvalues, corresponding to the variances of the 
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velocity fluctuations along the major and minor principal axes. The orientations of the 
two axes differ by 90 ~ and the principal angles Op (those along which the sum of the 

l I squares of the normal distances to the data points u~, u 2 are extremum) are found from 
the transcendental relation 

tan (20p) - 2__ -u'lu-~ (4.3.23a) uf _u 2 

or 

. .-?7-ST..t 
1 -1 [ 2UlU2 ] (4.3.23b) 

Op - ~tan Lu72_u722 J 

where the principal angle is defined for the range - r r /2  _< Op _< rr/2 (Freeland et al., 
1975; Kundu and Allen, 1976; Preisendorfer, 1988). As usual, the multiple nrr/2 
ambiguities in the angle that one obtains from the arctangent function must be 
addressed by considering the quantrants of the numerator and denominator in 
equation (4.3.23). Preisendorfer (1988; Figure 2.3) outlines the nine different possible 
cases. Proof of (4.3.23) is given in Section 4.3.5. 

The principal variances (A1, A2) of the data set are found from the determinant 
relations (4.3.21a) and (4.3.22) as 

A] 1 (~12 + ~22) -4- (~12 -- ~22) +4(UlU"7"'~) 2 
A2 - - 2  

(4.3.24) 

in which the + sign is used for A1 and the - sign for A2. In the case of current velocity 
records, A1 gives the variance of the flow along the major axis and A2 the variance 
along the minor axis. The slope, s l -  g52/~51, of the eigenvector associated with the 
variance A1 is found from the matrix relation 

' 2  t t 
U 1 -- A //1/12 ~1 -- 0 (4.3 25a) 

t 2 U~Utl U2 -- A ~52 

Solving (4.3.25a) for A -  A1, gives 

[d12-  ,~1]~1 q-UtlU~ ~52--0 

..-7-7?..t [gzUl (~11 + [U'--~2 2 -- "~1] ~2---0 
(4.3.25b) 

so that 

[ ' '  S1 = A1 -- /UlU 2 (4.3.25c) 

with a similar expression ~f~ __the slope s2__ associated with the variance 
,2/.., ~., The usefulness of principal A -  A2. If A1 >> A2, then A1 ~ u '2 + u'22, and sl ~ ,  2/UlU 2- 

c o m p o n e n t  analysis is that it can be used to find the main orientation of fluid flow at 
any current meter or anemometer site, or within a "box" containing velocity variances 
derived from Lagrangian drifter trajectories (Figure 4.3.2). Since the mean and low 
frequency currents in relatively shallow waters are generally "steered" parallel to the 
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Figure 4.3.2. Principal axes of current velocity variance (kinetic energy) obtained from surface satellite- 
tracked drifter measurements off the coast of southern California during 1985-86. For this analysis, data 
have been binned into 200 • 200 km 2 boxes Solid border denotes the region for which there were more 

than 50 drifter-days and more than two different drifter tracks. (From Poulain and Niiler, 1989). 

coastline or local bottom contours, the major principal axis is often used to define the 
"longshore" direction while the minor axis defines the "cross-shore" direction of the 
flow. It is this type of information that is vital to estimates of cross-shore flux 
estimates. In the case of prevailing coastal winds, the major axis usually parallels the 
mean orientation of the coastline or coastal mountain range that steers the surface 
winds. 

4 . 3 . 2  E O F  c o m p u t a t i o n  u s i n g  t h e  s c a t t e r  m a t r i x  m e t h o d  

There are two primary methods for computing the EOFs for a grid of time series of 
observations. These are: (1) The scatter matrix method which uses a "brute force" 
computational technique to obtain a symmetric covariance matrix C which is then 
decomposed into eigenvalues and eigenvectors using standard computer algorithms 
(Preisendorfer, 1988); and (2) the computationally efficient singular value 
decomposition (SVD) method which derives all the components of the EOF analysis 
(eigenvectors, eigenvalues, and time-varying amplitudes) without computation of the 
covariance matrix (Kelly, 1988). The EOFs determined by the two methods are 
identical. The differences are mainly the greater degree of sophistication, compu- 
tational speed, and computational stability of the SVD approach. 

Details of the covariance matrix approach can be found in Preisendorfer (1988). 
This recipe, which is only one of several possible procedures that can be applied, 
involves the preparation of the data and the solution of equation (4.3.8) as follows: 
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(1) Ensure that the start and end times for all M time series of length N are identical. 
Typically, N > M. 

(2) Remove the record mean and linear trend from each time-series record 
~m(t), I <_m <_M, such that the fluctuations of ~m(t) are given by 
~m(t) = ~m( t ) -  [~m (t) + bin (t - -{)] where bm is the slope of the least-squares 
regression line for each location. Other types of trend can also be removed. 

(3) Normalize each de-meaned, de-trended time series by dividing each data series by 
its standard deviation s - [1/(N - 1) ~'~(~m,)2] 1/2 where  the summation is over all 
time, t (tn" 1 <_ n <_ N). This ensures that the variance from no one station 
dominates the analysis (all stations get an equal chance to contribute). The M 
normalized time-series fluctuations, ~'m, are the data series we use for the EOF 
analysis. The total variance for each of the M eigenvalues = 1; thus, the total 
variance for all modes, ~ A i -  M. 

(4) Rotate any vector time series to its principal axes. Although this operation is not 
imperative, it helps maximize the signal-to-noise ratio for the preferred direction. 
For future reference, keep track of the means, trends and standard deviations 
derived from the M time series records. 

(5) Construct the M • N data matrix, D, using the M rows (locations Xm) and N 
columns (times tn) of the normalized data series 

D 

Time -~ 

~ll (t l)  if/1 ( t 2 ) . . .  ~tl(tN ) 
~ ( t l )  ~b I 2(t2) "'" ~t2(tN) Location 

~ ( t l )  ~ ( t 2 ) . . .  ~M(tN) 

(4.3.26) 

and from this derive the symmetric covariance matrix, C, by multiplying D by its 
transpose D T 

C = 1 D D  T (4.3.27) 
N4~4~- 1 

where S = ( N - 1 ) C  is the scatter matrix defined by Preisendorfer (1988), and 

C m 

Cll C12 ... C1M 

C21 C22 ... C2M 

CM1 . . . . . .  CMM 

The elements of the real symmetric matrix C are 

l ~ [~ i ( t , )~ ( tn ) ]  
Cij - Cji = N - 1 n=l 

The eigenvalue problem then becomes 

c ~ , -  ~ ,  

where A are the eigenvalues and ~ the eigenvectors. 

(4.3.28) 

(4.3.29) 

(4.3.30) 
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At this point, we remark that we have formulated the EOF decomposition in terms 
of an M • M "spatial" covariance matrix whose time-averaged elements are given by 
the product (N - 1)-  1 DD r (4.3.27). We could just as easily have formed an N • N 
"temporal" covariance matrix whose spatially averaged elements are given by the 
product (M - 1)- 1 DTD. The mean values we remove in preparing the two data sets 
are slightly different since preparation of D involves time averages while preparation 
of D T involves spatial averages. However, in principle, the two problems are identical, 
and the percentage of the total time-series variance in each mode depends on whether 
one computes the spatial EOFs or temporal EOFs. As we further point out in the 
following section, another difference between the two problems is how the singular 
values are grouped and which is identified with the spatial function and which with 
the temporal function (Kelly, 1988). The designation of one set of orthogonal vectors 
as EOFs and the other as amplitudes is quite arbitrary. 

Once the matrix C has been calculated from the data, the problem can be solved 
using "canned" programs from one of the standard statistical or mathematical 
computer libraries for the eigenvalues and eigenvectors of a real symmetric matrix. In 
deriving the values listed in Tables 4.3.1-4.3.6, we have used the double-precision 
program DEVLSF of the International Math and Science Library (IMSL). The 
program outputs the eigenvalues A in increasing order. To obtain A in decreasing 
order of importance, we have had to invert the eigenvalue output. For each eigen- 
vector or mode, the program normalizes all values to the maximum value for that 
mode. The amplitude of the maximum value is unity (= 1). Since there are M eigen- 
values, the data normalization process gives a total EOF variance of M(~--~ A i -  M). 
The canned programs also allow for calculation of a "performance index" (PI) which 
measures the error of the eigenvalue problem (4.3.30) relative to the various 
components of the problem and the machine precision. The performance of the 
eigenvalue routine is considered "excellent" if PI < 1, "good" if 1 <_ PI <_ 100, and 
"poor" if PI > 100. As a final analysis, we can conduct an orthogonality check on the 
EOFs by using the relation (4.3.2). Here we look for significant departures from zero 
in the products of different modes; if any of the products 

M 

Z [~im~Pjm] 
m=l 

Table 4.3.1. Data matrix D r. Components of velocity (cm/s) at three different sites at 1700 m depth in 
the northeast Pacific. Records start 29 September 1985 and are located near 48~ 129~ For each of 
the three stations we list the east-west (u) and north-south component (v). The means and trends have 
not yet been removed 

, , . . . . . . .  

Time Site 1 Site 1 Site 2 Site 2 Site 3 Site 3 
(days) (u 1) (v l) (u 2) (v2) (u 3) (v 3) 

1 - 0 . 3  0.0 0.4 - 0 . 4  - 0 . 8  - 1 . 4  
2 -0.1 0.3 0.4 -0.3 -1.1 0.0 
3 -0.1 -0.4 0.0 -0.5 0.0 -2.5 
4 0.2 0.6 0.0 -0.6 -0.7 0.4 
5 0.3 -0.1 -0.6 -0.3 0.0 -0.3 
6 0.5 0.0 0.9 -0.6 0.6 0.3 
7 0.2 0.2 -0.1 -0.7 1.2 -2.8 
8 -0.5 -0.9 0.0 -0.6 0.0 -1.8 

. . . . . . . . . . . . .  , . . . . .  L 
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Table 4.3.2. Means, standard deviations and trends for each of the time-series components for each of the 
three current meter sites listed in Table 4.3.1. Means and trends have been removed from the time series 
prior to calculation of the standard deviations 

Mean Standard deviation Trend 
Component  (cm/s) (cm/s) (cm/s/day) 

ul (east-west) 0.025 0.328 0.024 
vl (north-south)  - 0.037 0.418 - 0.075 
u2 (east-west) 0.125 0.433 - 0.038 
v2 (north-south)  - 0.500 0.114 - 0.040 
u3 (east-west) - 0.100 0.503 0.233 
v3 (north-south)  - 1.012 1.250 - 0.108 

Table 4.3.3. Principal axes for the current velocity at each site in Table 4.3.1. The angle ~ is measured 
counterclockwise from east. Axes (half) lengths are in cm/s 

Station ID Angle 0 (~ Major axis Minor axis 

Site 1 54.7 0.461 0.185 
Site 2 - 6.2 0.408 0.098 
Site 3 - 77.7 1.193 0.406 

Table 4.3.4. Eigenvalues and percentage of variance in each statistical mode derived from the data in 
Table 4.3.1 

Eigenvalue No. Eigenvalue Percentage 

1 2.2218 37.O 
2 1.7495 29.2 
3 1.1787 19.6 
4 O.6953 11.6 
5 0.1498 2.5 
6 0.0048 0.1 

Total 6.0000 100.0 

Table 4.3.5. Eigenvectors (EOFs) qSi for the data matrix in Table 4.3.1. Modes are normalized to the 
maximum value for each mode 

Station Mode Mode Mode Mode Mode Mode 
ID 1 2 3 4 5 6 

Site 1 u l 1.000 - 0.032 - 0.430 0.479 - 0.599 - 0.969 
Site 1 v~ 0.958 -0 .078  - 0 . 1 6 2  - 0 . 9 6 6  1.000 0.085 
Site 2 u2 0.405 0.230 1.000 0.910 0.517 -0 .295  
Site 2 v2 - 0.329 - 0.898 - 0.525 1.000 0.784 - 0.111 
Site 3 u3 0.349 1.000 - 0 . 4 7 4  0.812 0.124 0.907 
Site 3 v3 0.654 - 0 . 9 6 4  0.263 0.190 -0 .5 3 9  1.000 

are s i g n i f i c a n t l y  d i f f e ren t  f rom zero for i ~ j ,  t hen  the  E O F s  are not  o r t h o g o n a l  and 
the re  are  e r ro r s  in the  c o m p u t a t i o n .  A c o m p u t a t i o n a l  e x a m p l e  is g iven  in Sec t ion  

4.3.4. 
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Table 4.3.6. Time series of the amplitudes, ai(t), for each of the statistical modes 

Mode Mode Mode Mode Mode Mode 
Time 1 2 3 4 5 6 

Day 1 0 .798 -0.773 0.488 0.089 0.091 0.124 
Day 2 - 0.076 1.258 0.402 0.126 0.595 - 0.089 
Day 3 1.153 - 1.582 -- 0.458 0.275 - 0.492 - 0.094 
Day 4 - 1.531 0.759 0.363 - 1.585 -0.382 0.000 
Day 5 0.097 1.647 - 2.099 0.509 - 0.128 0.039 
Day 6 - 2 .169  -0.142 1.084 1.296 -0.171 0.008 
Day 7 -0.721 - 1.921 -0.866 -0.534 0.503 0.004 
Day 8 2.450 0.754 1.085 -0.176 -0.017 0.008 

4.3.3 EOF computation using singular value decomposition 

The above method of computing EOFs requires use of covariance matrix, C. This 
becomes computationally impractical for large, regularly spaced data fields such as a 
sequence of infrared satellite images (Kelly, 1988). In this case, for a data matrix D 
over N time periods (N satellite images, for example), the covariance or mean product 
matrix is given by (4.3.27) 

1 D D  T (4.3.31) 
C = N ~ - I  

where D T is the transpose of the data matrix D. If we assume that all of the spatial 
data fields (i.e. satellite images) are independent samples, then the mean product 
matrix is the covariance matrix and the EOFs are again found by solving the 
eigenvalue problem 

C ~  = ~ A  (4.3.32) 

where + is the square matrix whose columns are eigenvectors and A is the diagonal 
matrix of eigenvalues. For satellite images, there may be M = 5000 spatial points 
sampled N = 50 times, making the covariance matrix a 5000 x 5000 matrix. Solving 
the eigenvalue problem for + would take max{O(M3), O(MN2)) operations. As 
pointed out by Kelly (1988), the operation count for the SVD method is O(MN 2) which 
represents a considerable savings in computations over the traditional EOF approach 
if M is large. This is primarily true for those cases where M, the number of locations in 
the spatial data matrix, D, are far greater than the number of temporal samples (i.e. 
images). 

There are two computational reasons for using the singular value decomposition 
method instead of the covariance matrix approach (Kelly, 1988): (1) The SVD 
formulation provides a one-step method for computing the various components of the 
eigenvalue problem; and (2) it is not necessary to compute or store a covariance matrix 
or other intermediate quantities. This greatly simplifies the computational require- 
ments and provides for the use of canned analysis programs for the EOFs. Our 
analysis is based on the double-precision program DLSVRR in the IMSL. The SVD 
method is based on the concept in linear algebra (Press et al., 1992) that any M x N 
matrix, D, whose number  of rows M is greater than or equal to its number of columns, 
N, can be written as the product of three matrices: an M x N column-orthogonal 
matrix, U, an N x N diagonal matrix, S, with positive or zero elements, and the 
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transpose (V T) of an N • N orthogonal matrix, V. In matrix notation, the SVD 
becomes: 

Sl 

D -  U s2 V r (4.3.33) 
~  

$N 

For oceanographic applications, the data matrix, D, consists of M rows (spatial points) 
and N columns (temporal samples). The scalars Sl _> s2 >_ ... >_ sN >_ 0 of the matrix S, 
called the singular values of D, appear in descending order of magnitude in the first N 
positions of the matrix. The columns of the matrix V are called the left singular 
vectors of D and the columns of the matrix U are called the right singular vectors of 
D. The matrix S has a diagonal upper N • N part, S', and a lower part of all zeros in 
the case when M > N. We can express these aspects of D in matrix notation by 
rewriting equation (4.3.33) in the form 

D -  [U]0] V r (4.3.34) 

where [UI0] denotes a left singular matrix and S' denotes the nonzero part of S which 
has zeros in the lower part of the matrix (Kelly, 1988). 

The matrix U is orthogonal, and the matrix V has only N significant columns which 
are mutually orthogonal such that, 

v T v -  I 
(4.3.35) 

u T u -  I 

Returning to equation (4.3.33), we can compute the eigenvectors, eigenvalues and 
eigenfunctions of the principal component analysis in one single step. To do this, we 
prepare the data as before following steps 1-5 in Section 4.3.2. We then use com- 
mercially available programs such as the double-precision program DLSVRR in the 
IMSL. The elements of matrix U are the eigenvectors while those of matrix S are 
related to the eigenvalues Sl >_ s2 > ... >_ sN >_ O. To obtain the time-dependent 
amplitudes (eigenfunctions), we require a matrix A such that 

D - UA T (4.3.36) 

which, by comparison with equation (4.3.33), requires 

A = VS (4.3.37) 

Hence, the amplitudes are simply the eigenvectors of the transposed problem 
multiplied by the singular values, S. Solutions of (4.3.33) are identical (within round- 
off errors) to those obtained using the covariance matrix of the data, C. We again 
remark that the only difference between the matrices U and V is how the singular 
values are grouped and which is identified with the spatial function and which with 
the temporal function. The designation of U as EOFs and V as amplitudes is quite 
arbitrary. 

The decomposition of the data matrix D through singular value decomposition is 
possible since we can write it as a linear combination of functions Fi(x), i - 1, M so 
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D = Fc~ (4.3.38a) 

or 

D(Xl, tj) 
D(x2, tj) 

. . .  

D(x~, tj) 

F1 (Xl). . .FN(x1) Oil (tj) 
F~(x2) ...FN(x2) ~2(ti) 

FI (xN) .'.'. FN(xN) ~N(tj) 

(4.3.38b) 

where the Oli are functions of time only. The functions F are chosen to satisfy the 
orthogonality relationship 

F F  T = I (4.3.39) 

so that the data matrix D is divided into orthogonal modes 

D D  T - F a a r F  T - F L F  T (4.3.40) 

where L = aa T is a diagonal matrix. The separation of the modes arises from the 
diagonality of the L matrix, which occurs because DD T is a real and symmetric matrix 
and F a unitary matrix. To reduce sampling noise in the data matrix D, one would like 
to describe it with fewer than M functions. If D is approximated by D, which uses only 
K functions (K < M), then the K functions which best describe the D matrix in the 
sense that 

(D - D)T(D - D) 

is a minimum are the empirical orthogonal functions which correspond to the largest 
valued elements of the traditional EOFs found earlier. 

4.3.4 An example: deep currents near a mid-ocean ridge 

As an example of the different concepts presented in this section, we again consider 
the eight days of daily averaged currents (N = 8) at three deep current meter sites in 
the northeast Pacific near the Juan de Fuca Ridge (Table 4.3.1). Since each site has 
two components of velocity, M - 6. The data all start on the same day and have the 
same number of records. Following the five steps outlined in Section 4.3.2, we first 
removed the average value from each time series. We then calculated the standard 
deviation for each time series and used this to normalize the time series so that each 
normalized series has a variance of unity. For convenience, we write the transpose of 
the data matrix, DT, where columns are the pairs of components of velocity (u, v) and 
rows are the time in days. 

Time-series plots of the first three eigenmodes are presented in Figure 4.3.3. The 
performance index (PI) for the scatter matrix method was 0.026, which suggests that 
the matrix inversion in the eigenvalue solutions was well defined. A check on the 
orthogonality of the eigenvectors suggests that the singular value decomposition gave 
vectors which were slightly more orthogonal than the scatter matrix approach. For 
each combination ( i , ) )  of the orthogonality condition (4.3.2), the products 
Ei,j[t~imt~jm] were typically of order 10 -7 for the SVD method and 10 -6 for the 
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Figure 4.3.3. Eight-day time series for the first three EOFs for current meter data collected 
simultaneously at three sites at 1700 m depth in the northeast Pacific in the vicinity of Juan de Fuca 

Ridge, 1985. Modes 1, 2, 3 account for 37.0, 29.2, and 19.6 % of the variance, respectively. 
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scatter matrix method. Similar results apply to the orthogonality of the eigenmodes 
given by equation (4.3.4). 

Before closing this section, we remark that we also could have performed the above 
analysis using complex EOFs of the form 

~ ( t )  -urn( t )+ iVm(t) 

(where i - v/Z-l) in which case M = 3. This formulation not only allows the EOF 
vectors to change amplitude with time, as in our previous decomposition using 2M 
real EOFs, but also to rotate in time. 

4.3.5 Interpretation of EOFs 
In interpreting the meaning of EOFs, we need to keep in mind that, while EOFs offer 
the most efficient statistical compression of the data field, empirical modes do not 
necessarily correspond to true dynamical modes or modes of physical behavior. Often, 
a single physical process may be spread over more than one EOF. In other cases, more 
than one physical process may be contributing to the variance contained in a single 
EOF. The statistical construct derived from this procedure must be considered in light 
of accepted physical mechanisms rather than as physical modes themselves. It often is 
likely that the strong variability associated with the dominant modes is attributable to 
several identifiable physical mechanisms. Another possible clue to the physical 
mechanisms associated with the EOF patterns can be found in the time-series 
coefficients ai(t). Something may be known about the temporal variability of a process 
that might resemble the time series of the EOF coefficients, which would then suggest 
a causal relationship not readily apparent in the spatial structure of the EOF. 

One way to interpret EOFs is to imagine that we have displayed the data as a scatter 
diagram in an effort to discover if there is any inherent correlation among the values. 
For example, consider two parameters such as sea surface temperature (SST) and sea- 
level pressure (SLP) measured at a number  of points over the North Pacific. This is 
the problem studied by Davis (1976) where he analyzed sets of monthly SST and SLP 
over a period of 30 years for a grid in the North Pacific. If we plot x = SST against y - 
SLP in a scatter diagram, any correlation between the two would appear as an 
elliptical cluster of points. A more common example is that of Figure 4.3.1 where we 
plotted the north-south (y) component of daily mean current against the corres- 
ponding east-west (x) component for a continental shelf region. Here, the mean flow 
tends to parallel the coastline, so that the scatter plot again has an elliptical 
distribution. To take advantage of this correlation, we want to redefine our coordinate 
system by rotating x and y through the angle 0 to the principal axes representation 
x', y' discussed in Section 4.3.2. This transformation is given by 

x' = x cos 0 + y  sin 0 

y~ = - x  sin 0 + y  cos 0 
(4.3.41) 

What we have done in this rotation is to formulate a new set of axes that explains most 
of the variance, subject to the assumption that the variance does not change with time. 
Since the axes are orthogonal, the total variance will not change with rotation. Let 
V -  x '2 - N  -I ~ x  ~2 be the particular variance we want to maximize (as usual, the 
summation is over all time). Note that we have focused on x' whereas the total 
variance is actually determined by r 2, where r is the distance of each point from the 
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origin. However, we can expand r 2 = x 2 + y2 and associate the variance with a given 
coordinate. In other words, if we maximize the variance associated with x', we will 
minimize the variance associated with y'. Using our summation convention, we can 
write 

i 

V - x '2 - x --7 cos 20 + 2~-fly sin 0 cos 0 +y2 sin 2 0 (4.3.42) 

and 

OV _ 2(y- ~ ~ ) s i n 0 c o s 0  + 2~-ycos20 (4.3.43) 
O0 

We maximize (4.3.43) by setting O V / O 0 - O ,  giving (4.3.24), which we previously 
quoted without proof 

2 ~  
tan (20p) x2 _y2 (4.3.44) 

From (4.3.44), we see that if 

~-y << m a x ( ; , ; )  

then tan(20p) --, 0 and Op - 0 ,  or + 90 ~ and we are left with the original axes. If 
x 2 _y2 and x-fly r 0, then tan ( 2 0 p ) ~  +c~ and the new axes are rotated +45 ~ from 
the original axes. 

We now find the expression for V. Since sec2(20) - 1 + tan 2 (20) 

c o s 2 0 -  ( ; - v - 2 ~ / + D  \ --/ 
(4.3.45) 

sin 20 - [1 - cos 2 (20)] 1/2_ 2~-y/• D 

where 

O -  [ (x-2- - ~ )  2 +4x-yy2 
1/2 

(4.3.46) 

Then, using the identities 

COS 2t9 -- 1(1 + COS 20), sin 20 - 1(1 - cos 20) (4.3.47) 

we can write the variance as 

( 1 + cos 20p) + ~-7 ( 1 - cos 20p) x--- ~- V + sin 20i, 
2 " 2 

-- ~ { (x2 +y-2) • I (~- -- y-2) 2 +4~-~y21 1/2 } 
(4.3.48) 

The two roots of this equation correspond to a maximum and a minimum of V. For a 
new axis for which x '--7 is a maximum, we will find y,2 a minimum. This follows 
automatically from the fact that the total variance is conserved. However, we can 
confirm this mathematically by computing 02V/O02 - O .  From equation (4.3.43) we 
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02V/0{92 - -  2 ( y  ~- - ~ )  cos ( 2 0 p )  - 4~--yy sin (2Op) 

= - 2  [ (} -7 -y  7)  + 4k-fly] / + D  - +2D 
(4.3.49) 

The positive sign in equation (4.3.49) corresponds to a maximum (since (4.3.48) is 
negative); the negative sign corresponds to a minimum. It so happens that the 
variance solutions given by (4.3.49) are also the eigenvalues of the covariance matrix. 
Thus, we can return to our previous methods where we used the covariance matrix to 
compute the EOFs. 

A published example of EOF analysis is presented by Davis (1976) who examined 
monthly maps of SST and SLP for the years 1947-74. The SLP data were originally 
obtained from the Long-Range Prediction Group of the U.S. National Meteorological 
Center (NMC) as one-month averages on a 5 ~ diamond-shaped grid (i.e. 20~176 
20~176 . . . ,  25~176 25~176 etc.). The data were transferred to a 
regular 5~ grid using linear interpolation from the four nearest diamond grid 
points to fill in the square grid. The SST data were obtained from the U.S. National 
Marine Fisheries Service in the form of monthly averages over 2 ~ squares. Because 
this grid spacing is not a submultiple of 5 ~ and because sometimes data were missing, 
the following data analysis scheme was employed. The 2 ~ data were subjectively 
analyzed to produce maps contoured with a I~ contour interval. During this stage, 
missing values were filled in where feasible. The corrected values were then linearly 
interpolated onto a 1 ~ grid and 25 values were averaged to formulate area averages on 
the chosen 5 ~ grid coincident with the SLP data. The ship data originated as ship 
injection temperatures and are subject to all of the problems discussed earlier in the 
section on SST. 

Before carrying out the EOF analysis, the SST and SLP data sets were further 
averaged onto a grid with a 5 ~ latitude spacing and a 10 ~ longitude spacing (Figure 
4.3.4). In those cases where some SST values were missing, the available observations 
were used to compute the grid average. Even then there were some 5 ~ • 10 ~ regions 
with missing data in the SST fields. Both fields were then converted to anomalies 
using the mean of the 28oyear data set as the reference field. Thus, each of the 
individual monthly maps were transformed into anomaly maps, corresponding to the 
deviation of local values from the long-term mean. 

60 ~ 

4 0  ~ 

2 0  ~ 
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B ~ _ ~ ~ / - ~ ~ ~ I - ~ ~ ~ , ~ / Y ~  I ! 
~ / . / Z J / _ _ / ~ / ~ / ~ " / ~ / / x , ' ~ / ~ ' / / / / ~ / ~ , ' / / J ~  ! 

140 ~ 1600 180  e 160  ~ 140 ~ 1200 I O 0 ~  

Figure 4.3.4. The grid of sea surface temperature (SST) and sea-level pressure (SLP). The 10 ~ longitude 
by 5 ~ latitude SLP  averages are centered at grid intersections and S S T  averages are centered at crosses. 

(From Davis, 1976.) 
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Figure 4.3.5. Standard deviation of." (a) Sea level pressure anomaly (rob); and (b) Sea surface 
temperature anomaly (~ for the North Pacific. The anomalies are departures from monthly normal 
values. Variances are averaged over all months of the 28-year record (1947-1974). (From Davis, 1976.) 
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Figure 4.3.6. The fraction of total sea surface temperature (circles, o) and sea-level pressure (triangles, 
/X) anomaly variance accounted for by the first M empirical orthogonal functions. (From Davis, 1976.) 

The standard deviations of both the SLP and SST anomaly fields are shown in 
Figure 4.3.5. It is interesting to note some of the basic differences between the 
variability of these two fields. The SLP field has its primary variability in the central 
northern part of the field just off the tip of the Aleutian Islands. Here, the Aleutian 
Low dominates the pressure field in winter and becomes the source of the main 
variability in the SLP data. In contrast, the SST field has near-uniform variance levels 
except in the Kuroshio Extension region off of northeast Japan where a maximum 
associated with advection from the Kuroshio is clearly evident. 
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To compute the EOFs from the anomaly fields, Davis (1976) used the covariance 
(scatter) matrix method presented in Section 4.3.2. The fraction of total variance 
accounted for by the EOFs for both the SST and SLP data is presented in Figure 4.3.6 
as a function of the number of EOFs. The steep slope of the SLP curve means that 
fewer SLP EOFs are needed to express the variance. The SST EOF level is consistently 
below that for the SLP EOF series. As a consequence, Davis presented only the first 
six SLP EOFs (labeled PI-P6 in Figure 4.3.7) but presented the first eight SST EOFs 
(labeled T1-T8 in Figure 4.3.8). The SLP EOFs exhibited fairly simple, large-scale 
patterns with P1 having the same basic shape as the SLP standard deviation (Figure 
4.3.5). The structural sequence for the first three SLP EOFs was: For P~, a single 
maximum; for P2, two meridionally separated maxima; and for P3, two zonally 
separated maxima. Higher modes appear to be combinations of these first three with 
an increasing number of smaller maxima. 

The SST maps obtained by Davis were considerably more complicated than the SLP 
maps, with large-scale patterns dominating only the first three modes of the 
temperature field. As with the SLP modes, the sequence seems to be from a central 
maximum (T1), to meridionally separated maxima (T2), and then to zonally separated 
maxima (T3). The higher-order EOFs have a number of smaller maxima with no 
simple structures. The overall scales are much shorter than those for the SLP EOFs. 
This turns out to be true for the time scales of the EOFs, with the SLP time scales 
being much shorter than those computed for the SST EOFs. 

The goal of the EOF analysis by Davis (1976) was to determine if there is some 
direct statistical connection between the SLP and SST anomaly fields. By using the 
EOF procedure he was able to present the primary modes of variability for both fields 
in the most compact form possible. This is the real advantage of the EOF procedure. 
In terms of the two anomaly fields, Davis found that there were connections between 
the variables. First, he found that SST anomalies could be predicted from earlier SST 
anomaly fields. This is a consequence of the persistence of individual SST patterns as 
well as the fact that some patterns appear to evolve from earlier patterns through 
advective processes. Davis also concluded that it was possible to specify the SLP 
anomaly on the basis of the coincident SST anomaly field. Finally, it was not possible 
to statistically predict the SST field from the simultaneous SLP field. These 
conclusions would have been difficult to arrive at without using the EOF procedure. 

4.3.6 Variations on conventional  EOF analysis 

Conventional principal component (EOF) analysis is limited by a number of factors 
including the dependence of the solution on the domain of analysis, the requirement 
for orthogonal spatial modes, and the lumping together of variability over all 
frequency bands. In addition, the method can detect standing waves but not 
progressive waves. Over the years, several authors have developed what might be 
called "variations" on the standard EOF theme. For the most part, the methods differ 
in the types of variances they insert into the algorithms used to determine the 
empirical orthogonal functions (principal components). Given that EOF analysis is a 
strictly statistical method, it is irrelevant how the variance is derived, provided that 
the type of variance used in the analysis is the same for all spatial locations. All that is 
required is that the matrix D, derived from statistical averages (such as the covariance, 
correlation and cross-covariance functions) of the gridded time series is a Hermitian 
matrix. 
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Departure from standard EOF analysis can have numerous forms. For example, one 
may choose to work in the frequency domain instead of the time domain by using 
spectral analysis to calculate the spectral "energy" density for specific frequency 
bands. In this case, the matrix D is complex, consisting of the cross-spectra between 
the gridded time series over a specific frequency band. The spectral densities 
represent the data variances which are used to determine the empirical orthogonal 
functions. Thus, the method is equally at home with variances obtained in the time or 
frequency domains. Regardless of variance-type, principal component methods are 
simply techniques for compressing the variability of the data set into the fewest 
possible number of modes. 

Returning to the time domain, suppose that we are examining the statistical 
structure of longshore wind and current fluctuations over the continental shelf and 
that we have reason to believe that current response to wind forcing is delayed by one 
or more time steps in the combined data series. A delay of half a pendulum day (~12 h 
at mid-latitudes) is not unreasonable. From a causal point of view, the best way to 
examine the EOF modes for the combined wind and current data is to first create new 
time series in which the wind records are lagged (shifted forward in time) relative to 
the current records. Suppose we want a delay of one time step. Then, longshore wind 
velocity values Vk(t~) at site k at times tj (/ - 2, 3, ...) get replaced with the earlier 
records at times tj_l. That is, Vk(tj)--~ Vk(tj-1)~-V~(tj), while the current record 
remains unchanged, vk(tj) -- v~(tj). The asterisk (*) denotes the new time series. 
Optimal empirical modes are those for which the wind and current records are 
properly "tuned" with the correct time lags. For large spatial regions with variable 
wind response times, this can get a little tricky so caution is advised. 

A departure from conventional EOF analysis was presented by Kundu and Allen 
(1976) who combined the zonal (u) and meridional (v) time series of currents into 
complex time series w = u + iv, where each scalar series is defined for times tj and 
locations Xk. The method was applied to current data collected during the Coastal 
Upwelling Experiment (CUE-II) off the Oregon coast in the summer of 1973. The 
complex covariance matrix obtained from these time series were then decomposed 
into complex eigenvectors by solving a standard complex eigenvalue problem. Unlike 
the scalar approach to the problem, this complex EOF technique can be used to 
describe rotary current variability within selected frequency bands. A further 
variation on conventional EOF analysis, which is related to complex EOF analysis, 
was provided by Denbo and Allen (1984). Using a technique we describe in Chapter 5, 
the current fluctuations in each of the time series (u, v) records collected during CUE- 
II were decomposed into clockwise (S +) and counterclockwise (S-) rotary spectra. The 
spectra (or variance per unit frequency range) for the dominant spectral components, 
which is typically S -  in the ocean, were then decomposed into empirical orthogonal 
functions by solving the standard complex eigenvalue problem. This rotary empirical 
orthogonal function analysis is best suited to flows with strong rotary signals such as 
continental shelf waves and near-inertial motions, but is not well suited to highly 
rectilinear flows such as those in tidal channels for which S + and S-  are of 
comparable amplitude (see Hsieh, 1986; Denbo and Allen, 1986). 

The first use of complex empirical orthogonal functions in the frequency domain was 
described by Wallace and Dickinson (1972) and subsequently used by Wallace (1972) 
to study long-wave propagation in the tropical atmosphere. Early oceanographic 
applications are provided by Hogg (1977) for long waves trapped along a continental 
rise and by Wang and Mooers (1977) for long, coastal trapped waves along a 
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continental margin. In this approach, complex eigenvectors are computed from the 
cross-spectral matrices for specified frequency bands. This is the most general 
technique for studying propagating wave phenomena. As noted by Horel (1984), 
however, EOF analysis in the frequency domain can be cumbersome if applied to time 
series in which the power of a principal component is spread over a wide range of 
frequencies as a result of nonstationarity in the data. Horel presents a version of 
complex EOF analysis in the time domain in which complex time series of a scalar 
variable are formed from the original time series and their Hilbert transforms. The 
complex eigenvectors are then determined from the cross-correlation or cross- 
covariance matrices derived from the complex time series. The Hilbert transform 

n(t) of the original time series Um(t) represents a filtering operation in which the U m 

amplitude of each spectral component remains unchanged but the phase of each 
component is shifted by 7r/2. Expanding the scalar time series 

urn(t) - ~ [am(co)cos (cot) + bm(co)sin (~t)] (4.3.50) 
O3 

n (t) is as a Fourier series over all frequencies, co, the Hilbert transform u m 

H u m (t) - ~ Ibm (co)cos (cot) - am(co)sin (a~t)] 
co 

(4.3.51) 

In practice, the Hilbert transform can be derived directly from the coefficients of the 
Fourier transform of u,~(t), although with the usual problems caused by aliasing and 
truncations effects. The complex covariance matrix rrnk = Um(t)U~(t)* obtained for the 
series Urn(t) = Urn(t) + iVm(t) and its complex conjugate, Uk(t)*, are shown to be useful 
for identifying traveling and standing wave modes; here, (u, v) are the zonal and 
meridional components of velocity. In the extreme case where the data set is 
dominated by a single frequency, the frequency domain EOF technique and complex 
time domain EOF technique are identical. According to Merrifield and Guza (1990), 
the Hilbert transform complex EOF only makes sense if the frequency distribution in 
the original time series u(t) is narrow band. 

In summary, conventional EOF analysis in the time domain works best when the 
variance is dominated by standing waves and spread over a wide range of frequencies 
and wavenumbers. Frequency domain EOF analysis should be used when the 
dominant variability within the data set is concentrated into narrow frequency bands. 
Rotary spectral EOF analysis is best used for data sets in which the variance is in 
narrow frequency bands and dominated by either the clockwise or counterclockwise 
rotating component of velocity. Complex time domain principal component analysis 
allows for the detection of propagating wave features (if the process has a narrow 
frequency band) and the identification of these motions in terms of their spatial and 
temporal behavior. However, regardless of which method is applied, the best test of a 
method's validity is whether the results make sense physically and whether the 
variability is readily visible in the raw time series. 
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4.4  N O R M A L  M O D E  A N A L Y S I S  

In the previous sections, we were concerned with the partition of data variance into an 
ordered set of spatial and temporal statistical modes. The eigenvalue problem 
associated with these EOF modes was solved without any consideration given to the 
underlying physics of the oceanic system. In contrast, normal mode decomposition 
takes into account the physics and associated boundary conditions of the fluid motion. 
A common approach is to separate the vertical and horizontal components of the 
motion and to isolate the forced component of the response from the freely 
propagating response. As illustrations of these techniques, we consider two basic types 
of normal mode, eigenvalue problem: 

(1) The calculation of vertical normal modes (eigenfunctions), ~k(Z), for a stratified, 
hydrostatic fluid with specified top and bottom boundary conditions; and 

(2) the derivation of the cross-shore orthogonal modes (eigenfunctions), Ck(X, z), for 
coastal-trapped waves over a variable depth, stratified ocean with or without a 
coastal boundary. 

The first problem can be solved without including the earth's rotation, f, while the 
second problem requires specification off. Both eigenvalue problems yield solutions 
only for certain eigenvalues, Ak, of the parameter, A. 

4.4.1 Vertical normal modes 

A common oceanographic problem is to find the amplitudes (ak) and phases (Ok) of a 
set o fK orthogonal basis functions, or modes, by fitting them to a profile of M (> K) 
observed values of amplitude and phase. For instance, one might have observations 
from M - 5 depths and want to find the modal parameters (ak, Ok) for the first three 
theoretical modes, k = 1, 2, 3, derived from an analysis of the equations of motion. 
Once the set of theoretical modes are derived, they can be fitted using a least-squares 
technique to observations of the along-channel current amplitude and phase. This 
yields the required estimates, (ak, Ok), for k = 1, 2, 3. 

To obtain the vertical normal modes for a nonrotating fluid ( f -  0), we assume that 
the pressure, p, density, p ,  and horizontal and vertical components of velocity (u, v) 
and w, respectively, can be separated into vertical and horizontal components. This 
separation of variables has the form 

O~ 

[u(x, t),v(x, t),p(x, t)/po] = ~Pk(X,Y ,  t)~k(Z) 
k=O 

(4.4.1a) 

w =  k(z) dz  

k=0 
- H  

(4.4.1b) 

d~k(Z) (4.4.1c) 
p= ~-~ Pk dz 

k=O 

where k = 0, 1, 2, ... is the vertical mode number and the variables without subscripts 
are functions of (x, t) - (x, y, t). Substituting these expressions into the usual 
equations of motion (see LeBlond and Mysak, 1979; Kundu, 1990), we obtain 
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d ( 1  ~__k) 1 
= 0 (4.4.2) 

where N(z)  - I - ( g / P )  dp/dz] 1/2 is the Brunt-V~iis~il~i frequency, r 2 is the separation 
constant and l/Ck 2 the eigenvalues, Ak. For a rotating fluid (f #- 0), we assume N(z) is 
uniform with depth and replace N Z / c k  2 in equation (4.4.2) as follows: 

N 2 / c  2 ~ (N 2 _ ~2)/ghk,  k - 1, 2, ... (4.4.3a) 

where hk is an "equivalent depth", w is the wave frequency 

ghk - -  (w 2 - f2) /(12 + q2) __ c~ -f2/12 (4.4.3b) 

and (l, q) are the wavenumbers in the horizontal (x,y) directions. Wave-like solutions 
are possible provided that f2 < w2 < N 2. For a rectangular channel of width L, the 
cross-channel wavenumber q ---+ qm -- mTT/L and solutions must be considered for both 
k, m = 1, 2, ... (Thomson and Huggett, 1980). For both the rotating and nonrotating 
case, solutions to the eigenvalue problem (4.4.2) are subject to specified boundary 
conditions at the seafloor (z = - H )  and the upper free surface (z - 0) of the fluid. 
These end-point boundary conditions are: 

dg'k 
dz 

--- 0 ( i . e .  w - 0 )  at  z - - H  (4.4.4a) 

d ~ k  N 2 0 p  
+ ~~kg -- 0 (i.e. ~ -- pgw) at z -- 0 (4.4.4b) 

Modal analysis of the type described by (4.4.2)-(4.4.4) is valid only for an inviscid 
hydrostatic fluid in which oscillations occur at frequencies much lower than the local 
buoyancy frequency, N, and for which the vertical length scale is much smaller than 
the horizontal length scale. In addition, the ocean must be of uniform depth and have 
no mean current shear. (For sloping bottoms, the horizontal cross-slope velocity 
component, u, is linked to the vertical boundary, w, through the bottom boundary 
condition u = - w  dH/dx  and separation of variables is not possible.) The method can 
be applied to an ocean with zero rotation or with rotation that changes linearly with 
latitude, y. Solutions to (4.4.2) are obtained for specified values of N(z) subject to the 
surface and bottom boundary conditions. Although the individual orthogonal modes 
propagate horizontally, the sum of a group of modes can propagate vertically if some 
of the modes are out of phase. 

Analytical solutions" Simple analytical solutions to the Sturm-Liouville equation are 
obtained with and without rotation when N = constant (density gradient constant 
with depth). Assuming the rigid lid condition (i.e. no surface gravity waves so that w 
- 0 at z - 0), the vertical shapes of the orthogonal eigenfunctions ~k(Z) in (4.4.2) are 
given by 

~k(Z) = cos (kTrz/H), k - 0, 1, 2, ... (4.4.5) 

where k - 0 is the depth-independent barotropic mode, and k - 1, 2, ... are the depth- 
dependent baroclinic modes. The kth mode has k zero crossings over the depth range 
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- H  _< z <_ 0 and satisfies the boundary conditions w - 0 (cf. 4.4.1b). Phase speeds 
(eigenvalues) of the modes are given by 

Co-  (gH) 1/2, k = 0 (barotropic mode) (4.4.6a) 

Ck -- NH/kTr, k - 1, 2, ... (baroclinic modes) (4.4.6b) 

In general, N(z) is nonuniform with depth and, for a given k, the solutions will have 
the form 

Ck --(ghk) 1/2 (4.4.7) 

where the "equivalent depth" hk is used in analogy with H in (4.4.6a). For an ocean of 
depth H ~ 2500 m and buoyancy frequency N ~ 2 • 10-3/s, the eigenvalue for the 
first baroclinic mode has a phase speed cl ~ 1.6 m/s and the equivalent depth 
h k -  c2/g ,~ 0.26m. For the 400-m deep tidal channel, we find N ~ 5 • 10 -3 m/s,  
cl ~ 0.8 m/s and hk ,~ 0.06 m. 

General solutions: To solve the general eigenvalue problem (4.4.2)-(4.4.4) for variable 
buoyancy frequency, N(z), we resort to numerical integration techniques for ordinary 
differential equations with two-point boundary conditions. That is, given the start and 
end values of the function ~/k(Z), and variable coefficient N(z) we seek values at all 
points within the domain ( - H  _< z _< 0). Fortunately, there exist numerous packaged 
programs for finding the eigenvectors and eigenvalues of the Sturm-Liouville 
equation for specified boundary conditions. The NAG routine D02KEF (Nag Library 
Routines, 1986) finds the eigenvalues and eigenfunctions (and their derivatives) of a 
regular singular second-order Sturm-Liouville system of the form 

(z) + G(z;  - 0 (4.4.8) 

together with boundary conditions 

ga2~flk(Za) -- ZalF(Za) d~k(Za) /dz  

Zb2~k(Zb) -- ZblF(Zb) dCk(Zb)/dz 

(4.4.9a) 
(4.4.9b) 

for real-valued functional coefficients F and G on a finite or infinite range, Z a < Z < Z b. 
Provision is made for discontinuities in F and G and their derivatives. The following 
conditions hold on the function coefficients: 

(1) The function F(z), which equals 1/N2(z) in the case of (4.4.2), must be nonzero 
and of one sign throughout the closed interval Za < z < Zb. This is certainly true in 
a stable oceanic environment where N 2 > 0, for N 2 < 0, the fluid is gravitationally 
unstable and vertical modes are not possible; 

(2) OG/OA must be of constant sign and nonzero throughout the interval Za < z < Zb 
and for all relevant values A, and must not be identically zero as z varies for any 
relevant value of A. 

Numerical  solutions to the Sturm-Liouville equation are obtained through a 
Pruefer transformation of the differential equations and a shooting method. (The 
shooting method and relaxation methods for the solution of two-point boundary value 
problems are described in Numerical Methods (Press et al., 1992)). The computed 
eigenvalues are correct to a certain error tolerance specified by the user. Eigen- 
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functions ~k(z) for the problem have increasing numbers of inflection points and zero 
crossings within the domain Za < Z < Zb as the eigenvalue increases. When the final 
estimate of Ak is found by the shooting method, the routine D02KEF integrates the 
differential equation once more using that value of Ak and with initial conditions 
chosen such that the integral 

Zb 

Za 
(4.4.10) 

is roughly unity. When G(z; A) is of the form Aw(z) + ~k(z), which is the most common 
case, Ik represents the square of the norm of ~kk induced by the inner product 

Zb 

ff2k(Z)~m(Z ) "-- / "  ~3k(Z)~flm(Z)W(Z) dg 
Za 

(4.4.11) 

with respect to which the eigenfunctions are mutually orthogonal if k -r m. This 
normalization of ~ for k = m is only approximate but typically differs from unity by 
only a few percent. 

If one is working with observed density (at) profiles for the region of interest, a 
useful approach is to solve the Sturm-Liouville equation using an analytical ex- 
pression for N(z) by fitting a curve of the type ot(z) = [p(z) - 11103 = Cro exp[a/(z + b)] 
or other exponential form, to the data. The eigen (modal) analysis is fairly insensitive 
to small changes in density so that, even though changes in N(z) are large in the upper 
oceanic layer, we usually can get away with a simple analytical curve fit. Alternatively, 
we can specify the actual density on a numerical grid for which modes are to be 
calculated. Once N(z) is available, we can use numerical methods to solve (4.4.2) 
subject to the boundary conditions (4.4.4), allowing for specified error bounds or 
degree of convergence on the final boundary estimate. Based on the analytical solu- 
tions (4.4.5), we can expect solutions ~kk to resemble cosine functions whose vertical 
structure has.been distorted by the nonuniform distribution of density along the 
vertical profile. There is a direct analogy here with the modes of oscillation of a taut 
string clamped at either end and having a nonuniform mass distribution along its 
length. 

The normal modes are normalized relative to their maximum value and then fitted 
to the data in a least-squares sense (Table 4.4.1). If there are M current meters on a 
mooring string, the maximum possible number of normal baroclinic modes is M -  1. 
By comparing the normal modes with the data, we can derive the absolute values of 
the barotropic mode and a maximum of M -  1 baroclinic modes. Solutions to the 
least-squares fitting are described in (Press et al., 1992). 

4.4.2 An example: normal modes of semidiurnal frequency 

Suppose that the along-axis semidiurnal currents, u, in a tidal channel have the form 
Um = am cos (wt + Om ), where am, Om (m = 1, . . . ,  M) are the observed current amplitude 
and phase, respectively. In terms of tidal current ellipses, we can think of u as the 
major axis of the current ellipse for each current meter on the mooring line. The 
oscillations have frequency w = wM2 corresponding to M2 semidiurnal tidal currents 
and the phase 0 is referenced to some time zone or meridian of longitude so that we 
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can intercompare values for different current meters and the surface tides. The values 
am, ~m for the different current  meter records can be determined using harmonic 
analysis techniques (Foreman, 1976) provided the measured data are at hourly 
intervals over a period of seven days or longer so that the M2 and K1 constituents are 
separable. We next rewrite the above expression for u in the usual way as 

2 2 2 Um -- Am COS (~ t )  + B m  sin (wt), where tan tgm -- A m / B i n  and a m - (A m + Bm). This 
allows us to examine the sine and cosine components separately. The observed 
magnitudes Am and Bm at each current meter depth Zm, m - 1, . . . ,  M are then used to 
compute the amplitudes and phases of the basis functions ~bk(zm), for a maximum of K 
different modes (K < M). At best, we can obtain the amplitudes and phases of the 
barotropic mode (k - 0) and up to M -  1 baroclinic modes. 

Details of the modal analysis at semidiurnal frequency using current meter data 
from a tidal channel are presented by Thomson and Huggett  (1980). The first step is to 
obtain an exponential functional fit (Figure 4.4.1a) to the observed mean density 
structure, N(z) .  This structure is then used with the local water depth H (assuming a 
flat bottom), the Coriolis parameter,  f, and the wave frequency, co, to calculate the 
theoretical dynamic modes (Figure 4.4.1b). A finite sum of these theoretical modes 
~Z) ~bk(z) is then least-squares fitted to the observed cosine component A m ( z  ) t o  obtain 
estimates of the contributions Ak from each mode, k. This operation is repeated for the 
sine component  B~. (Recall that the maximum total of barotropic plus baroclinic 
modes allowed in the summation is fewer than the number  of current meter records 
per mooring string and that the vertical structure of each mode is found through the 
products (Ak, Bk)~b~(z) where the coefficients are constant.) Using the relationships 
tan~k - A h / B k  and a~ - (A~ + B~), we get the amplitudes and phases of the various 
modes. In their analysis, Thomson and Huggett (1980) typically had only three 
reliable current  meter records per mooring string. Normally,  this would be enough to 
obtain the first two baroclinic modes. However, the bottom current meter in most 
instances was within a few meters of the bottom and therefore strongly affected by 
benthic boundary layer effects. To include a mode-2 solution in the estimates, the 
observed phase and amplitude of the bottom current meter record had to be adjusted 
for frictional effects via the added term e x p ( - z ' ) c o s ( w t + ~ - z ' ) ,  where 

Table 4.4.1. Modal amplitudes (cm/s) and phases (degrees relative to 120~ longitude)for Johnstone 
Strait M2 tidal currents computed from nine-day current meter records. Column 2 gives the number of 
current meters (M) on the string. The first column for the barotropic mode (ao, ~o) and each of the two 
baroclinic modes (a~, ~k), k = 1, 2, gives the amplitude and phase (a, ~) before and after the bottom 
current meter is included in the analysis. The bottom current is included after its amplitude and phase are 
corrected for bottom boundary layer friction. The vertical eddy viscosity Kv is that value which gives the 
minimum ratio between the first and second baroclinic modes when the frictionally corrected bottom 
current meter is included. NC means "no change", implying perfect modal fit for all depths with and 
without the bottom current meter record. At CM04, no near-surface current meter was deployed and the 
records were only five days long and therefore suspect 

K, Before After Before After Before After 
Site M (cm~' /s)  (ao,6~0) (ao, ~0) (al, ~91) (al, ~1) (a2, ~2) (a2, ~2) 

CM13 
CM14 
CM15 
CM02 
CM04 

3 15 42, 55 ~ 42, 55 ~ 12, 172 ~ 25, 171 ~ - 19, - 10 ~ 
3 8 35, 51 ~ 35, 51 ~ 11, 169 ~ 15, 171 ~ - 8, - 4  ~ 
3 13 32, 35 ~ 32, 36 ~ 18, 175 ~ 12, 166 ~ - 7, -31  ~ 
5 0 36, 42 ~ NC 21,220 ~ NC 9, 13 ~ NC 
4 7 29, 45 ~ 50, 24 ~ 13, 215 ~ 79, 174 ~ 2, - 3 4  ~ 70, 0 ~ 



The Spatial Analyses of Data Fields 3 4 9  

A 

(a)  

22-00 
0 

5 0 - -  

i 0 0 - -  

150 - -  

2 0 0 - -  

2 5 0  -- 

3OO 

350 

4O0 

0 

23-50 

I 
24-00 

'I 

O' t 

24-50 

I 

25-00 25-50 

I 

qF t 

a 0 = 24.66 
a = - 4 . 1 2  m 
b = 117.92 m 

O" t 

(b) 

- I . 0  
! 

,. I I ! I 
4 6 $ lO 

Frequency (x  I 0  -3 s -1) 

Normalized amplitude 

-0 .5  0 0.5 1.0 

J .oO~ 
i~ ooOe 
%% oO*~ 

~176176176176176 "~ %% 

I~, i I  U 
~ s J 

p ~ 
! 

Figure 4.4.1. Baroclinic modes for semidiurnal frequency (~M2) in a uniformly rotating, uniform depth 
channel. (a) The mean density structure (o't) and corresponding buoyancy frequency N(z) used to 
calculate the eigenvalues; (b) Eigenvectors for the first three baroclinic modes. The barotropic mode (not 
plotted) has a magnitude of unity at all depths. Phase speeds for the modes fitted to the current meter 

data are cl ~ 34 cm/s; c2 ~ 20 cm/s. (From Thomson and Huggett, 1980.) 
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z' - (z + H)/g, and ~5 ~ (2Kv/~) 1/2 is the boundary layer thickness for eddy viscosity 
Kv. Since Kv is not known a priori, the final solution required finding that value of Kv 
which minimized the ratio formed by the first mode calculated with and without the 
bottom current meter included in the analysis (Table 4.4.1). In the case where five 
current meters were available, Thomson and Huggett found that there was no 
difference in the value of the second mode estimate with and without inclusion of the 
bottom current meter record in the analysis, suggesting that the three-mode 
decomposition was representative of the actual current variability with depth. 

4.4.3 Coastal-trapped waves (CTWs) 

Stratified or nonstratified oceanic regions characterized by abrupt bottom topography 
adjacent to deeper regions of uniform depth support the propagation of trapped ocean 
waves with frequencies, ~, which are lower than the local inertial frequency, f. 
Trapped sub-inertial motions (~o < f )  typically are found along continental margins 
where the coastal boundary is bordered by a marked change in water depth consisting 
of a shallow (< 200 m) continental shelf, a steep continental slope, and a deep (> 
2000 m) weakly sloping continental rise. The longshore wavelengths vary from tens to 
thousands of kilometers while the cross-shore trapping scale is determined by the 
density structure and length scale of the topography. For baroclinic waves, the internal 
deformation radius r = N H / f  provides an estimate of the cross-shelf trapping scale while 
the stratification parameter S - ( N 2 m a x  H2max)/f2L 2 measures the importance of 
stratification for a shelf-slope region of width L. For a mid-latitude ocean of depth 
H ,~ 2500m and buoyancy frequency N ~ 2 x 10-3/s, we find r ~ 50 km. For wide 
shelves (L > 100 km), the motions are confined mainly to the continental slope, while 
for narrower shelf regions the motions extend to the coast where they "lean" up 
against the coastal boundary. For S >> 1 the CTWs are strongly baroclinic, while for 
S << I, they are mainly barotropic (Chapman, 1983). The case S ~ 1 corresponds to 
barotropic shelf waves modified by stratification. 

In addition to continental shelf regions, coastal-trapped waves can occur along mid- 
ocean ridges and in oceanic trenches (where they are known as trench waves), as well as 
around isolated seamounts. Phase propagation, in all cases, is with the coastal 
boundary to the right of the direction of propagation in the Northern Hemisphere and 
to the left of the direction of propagation in the Southern Hemisphere. For strongly 
baroclinic waves, energy propagation is always in the direction of phase propagation; 
for barotropic motions, short waves can propagate energy in the opposite direction to 
phase propagation. 

The general coastal-trapped wave solution consists of a Kelvin wave mode (k = 0), 
for which the cross-shore velocity component is identically zero at the coast (U - 0 at 
x - 0), together with a hierarchy of higher mode shelf waves (k - 1, 2, ... ) whose cross- 
shore velocity structures have increasing numbers of zero crossings (sign changes) 
normal to coast. The first shelf wave mode will have one zero crossing in elevation 
over the continental margin, the second mode will have two crossings, and so on. For 
the current component, U, the first mode shelf wave will have no zero crossing, the 
second mode will have one crossing, and so on. The condition of no normal flow 
through the coastal boundary requires U = 0 at x - 0. 

Computer programs that calculate the frequencies and cross-shore modal structure 
of coastal-trapped waves of specified wavelength are available in reports written by 
Brink and Chapman (1987) and Wilkin (1987). We confine ourselves to a general 
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outline of the programs for the interested reader. Practical difficulties with the 
numerical solutions to the equations are provided in these comprehensive reports. The 
programs of Brink and Chapman use linear wave dynamics in which the water depth, 
h(x), is assumed to be a function of the cross-shore coordinate, x, alone. Similarly, the 
buoyancy frequency, N(z), is a function of depth alone. The one profile that can be 
used in the analysis is best obtained by least-squares fitting a function (such as a 
polynomial or exponential) to a series of observed profiles. The wave parameters such 
as velocity, pressure and density are assumed to be sinusoidal in time (t) and 
longshore direction (y) such that for any particular wave parameter, ~, we have 

~(x, y, t) = ~o(x)exp[i(wt + ly)] (4.4.12) 

where ~ is the wave frequency and l is the alongshore wavenumber. This gives rise to a 
two-dimensional eigenvalue problem in (~, l) of the form 

Lifo(X; ~,/)] - 0 (4.4.13) 

where L is a linear operator. The problem is solved for arbitrary forcing and a fixed l. 
In particular, for a given wavenumer, k, the frequency w is varied until the algorithm 
finds the free-wave mode resonance. Resonance is defined as the frequency at which 
the square of the spatially integrated wave variable 

vc ~ 0 

o.,,- i 1,2 
0 0 - h  

(4.4.14) 

is at a maximum. The suite of programs tackle the following problems for which the 
user provides the bottom profile h (x), a mean flow profile (if needed) and a selection of 
boundary conditions" 

(1) The program BTCSW yields the dispersion curves ~ -  ~(l) (the frequency as a 
function ofwavenumber),  the cross-shore modal structure fo" ~elocity U(x) and/or 
surface elevation ~(x), and wind coupling coefficients fo, oarotropic coastal- 
trapped waves--including continental shelf waves and trench waves--for 
arbitrary topography and mean longshore current. Options for the long-wave 
and rigid-lid approximations are included in the program. The user can specify 
one of two geometries corresponding to topography with and without a coastal 
boundary. The outer boundary x = Xma,, is set as -2L,  where L is the width of the 
typographically varying domain in the cross-shore direction. Thus, about half the 
domain has a flat bottom. The outer boundary condition is specified as 
OU/Ox --0.  To obtain solutions for both ~ and U, the depth at the coast should 
be given a nonzero value h(0) > 1 m. 

(2) For wave frequencies ,~ _< 0.9f, the program BIGLOAD2 yields dispersion curves 
,J = ~o(l), the horizontal modal structure, and wind-coupling coefficients for an 
ocean with continuous, horizontally uniform stratification and arbitrary 
topography. Density in the model has the form p*(x, y, z, t) = po(Z)+ 
p(x,y, z, t), where po is background density and p is the density perturbation. 
Since p << po, the Boussinesq approximation is assumed throughout (i.e. density 
perturbations are ignored except where they multiply gravity, g, the acceleration 
due to gravity). The program allows for the component of the 13-effect normal to 
the coast and for both the free surface and rigid lid boundary conditions at the 
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(3) 

(4) 
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ocean surface. Solutions are obtained using the coordinate transformation 
0 - z / h ( x )  and assuming a linear bottom friction drag. A total of 17 vertical 
and 25 horizontal grids (rectangles) are generated so that the vertical resolution is 
much better near shore than in deep water. Problems with singularities are 
avoided by setting h(x) > 1 m at the coast, x - 0. The program does not work well 
when the shelf-slope width (or width of a trench at the base of the shelf) is small 
relative to the internal deformation radius for the first mode in the deep ocean. 
Spurious features appear in unexpected places and force the user to increase the 
density of horizontal grids over regions of rapidly varying topography. In 
addition, a spurious mode occurs in the pressure equation f o r / 3 -  0 at the local 
inertial frequency w - f ,  making the overall solution suspect. As noted by the 
authors, the user will have difficulty finding the barotropic Kelvin wave 
parameters. 
The program CROSS is used to find baroclinic coastal-trapped modes for w <_f 
for arbitrary stratification and uniform depth. 
The program BIGDRV2 is used to obtain the velocity, pressure, and density 
fluctuations over a continental shelf-slope region of arbitrary depth, stratification, 
and bottom friction and is driven by a longshore wind stress of the form 
r(x) - To exp [i(wt + ly)]. Specification of a linear friction coefficient of zero (r = 
0) results in a divide by zero error. As a result, inviscid solutions should not be 
attempted. As with (2), solutions are obtained on a 25 • 17 stretched grid. In 
practice, it is generally best to start a study of coastally trapped waves using 
BTCSW since it gives first-order insight into the type of modal structure one can 
expect. However, if the barotropic dispersion curves do not fit the data (e.g. 
observations reveal strong diurnal-period shelf waves but the first-mode 
dispersion curves consistently remain below the diurnal frequency band for 
realistic topography), then density and mean currents should be introduced using 
BIGLOAD2 and CROSS. 

The Brink and Chapman programs have been used by Crawford and Thomson 
(1984) to examine free wave propagation along the west coast of Canada and by 
Church et al. (1986) and Freeland et al. (1986) to examine wind-forced coastal-trapped 
waves along the southeast coast of Australia (Figure 4.4.2). In all cases, model results 
are compared with longshore sea-level records and current meter observations from 
cross-shore mooring lines. The cross-shore depth profiles h(x) and associated 
buoyancy frequencies N2(z) used in the Australian model are presented in Figures 
4.4.3(a, b). From these input parameters, the program was used to generate 
eigenvalues and eigenfunctions for the first three CTW wave modes (Figure 4.4.4) 
and the theoretical dispersion curves (Figure 4.4.5) relating wave frequency, w, to 
longshore wavenumber, I. The slopes of the (w, l) curves give the phase speeds ck for 
the given modes (k - 1, 2, 3) listed on the figure. 

Wilkin (1987) presents a series of FORTRAN programs for computing the fre- 
quencies and cross-shore modal structure of free coastal-trapped waves in a stratified, 
rotating channel with arbitrary bottom topography. The programs solve the linearized, 
inviscid, hydrostatic equations of motion using the Boussinesq approximation. The 
Brunt-V~is~l~ frequency N(z) is a function of the vertical coordinate only. As with 
Brink and Chapman (1987), the eigenvalue problem is solved using resonance iter- 
ation and finite difference equations. The cross-shore perturbation fields returned by 
the model include velocity, pressure, and density. The difference with Wilkin's model 
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Figure 4.4.2. Southwest coast of Australia showing the locations of the tide gauge stations (m) and 
current meter lines (0, 1, 2, 3) occupied during the Australian Coastal ~ Experiment (ACE). (From 

Freeland et al., 1986.) 

is that it uses a staggered horizontal (Arakawa "C") grid for which the usual hori- 
zontal Cartesian coordinates (x, y) have been mapped to orthogonal curvilinear co- 
o~ ina t e s  (~, 7/). Instead of using finite differencing, the vertical structures of the 
modes are determined through modified sigma coordinates with expansion of the field 
variables in terms of Chebyshev polynomials of the first kind. The program has the 
option of specifying wavenumber, l, and searching for the corresponding free wave 
frequency, w(l), as in Brink and Chapman, or specifying ~ and searching for l. For 
reasons explained by Wilkin, the model is designed to be compatible with the 
primitive equation ocean circulation model developed by Haidvogel et al. (1988). 

In the curvilinear coordinate system, a line element of length ds in the Wilkin 
model satisfies 

ds 2 - -  d x  2 + dy  2 = d(2 /dm 2 + dTlZ/dn 2 (4.4.15) 

and the metric coefficients m, n are defined by 

m - [(Ox/O~) 2 + (Oy/O~) 2] -1/2 

n - [(Ox/071) 2 + (Oy/OT/) 2] -1/2 

(4.4.16a) 

(4.4.16b) 
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Figure 4.4.4. The eigenfunctions U(x; z ) for  the first three baroclinic longshore current modes for the 
three lines in Figures 4.4.2 and parameters in Figure 4.4.3. The contouring is in arbitrary units. Phase 
speeds ck (eigenvalues) of each mode for each of the three lines also are shown. (From Church et al., 

1986.) 
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The velocity perturbations for time-dependent solutions of the form exp(-iwt) are 
then 

1( 
u --f2 _ 032  iwm -ff~ - f n  ~ (4.4.17a) 

1 ( O0 O0) 
V - - f 2  w 2 iwn-~q-fm--~ (4.4.17b) 

iw O0 
w - N20z  (4.4.17c) 

where (u, v, w) are the usual velocity components and 0 = P/po is the perturbation 
pressure. Solutions are then sought for the resulting pressure equation 

mn-~ ~ + - ) Oz -NZ-ffzz + mn-~ -~  - 0  (4.4.18) 

For a straight coastline, mO/O~ -- O/Ox and we arrive at the usual solutions for long- 
shore (x-direction) propagation of progressive waves of the form F(y)exp[i(Ix -wt)]. 

The Wilkin model is less general than the Brink and Chapman model in that 
application of the rigid-lid approximation does not allow for the barotropic (long- 
wave) Kelvin wave solution and a "slippery" solid wall is placed at the offshore 
boundary. The new vertical coordinate variable, ~ ,  is defined by 

cr = 1 + 2z/h(~7) (4.4.19) 

so that the ocean surface is located at cr = 1 and the (now flattened) seafloor at cr - -1 .  
Application of this model to the west coast of New Zealand (South Island) is presented 
by Cahill et al. (1991). Modes 1 and 2 of the longshore current for the northern portion 
of this region based on Wilkin's program CTWEIG are reproduced in Figure 4.4.6. 
Similar results for the southern region are presented in Figure 4.4.7. Notice that the 
coastal-trapped waves are nearly barotropic over the shallow shelf immediately 
seaward of the coast in both sections but are more baroclinic in the offshore region off 
the southwest coast. 

4.5 I N V E R S E  M E T H O D S  

4.5.1 General inverse theory 

General inverse methods have become a sophisticated analysis tool in the earth 
sciences. For example, in the field of geophysics, a goal of this technique is to infer the 
internal structure of the earth from the measurement of seismic waves. The essence of 
the geophysical inverse problem is to find an earth structure model which could have 
generated the observed acoustic travel-time data. This is in contrast to the forward 
problem which uses a known input and an understood physical system to predict the 
output. In the inverse problem, the input and output are known and the result is the 
model required to translate one set of data into the other. 

In oceanography, inverse methods are used for a variety of applications, including 
the inference of absolute ocean currents using known tracer distributions and 
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Figure 4.4.6. The longshore velocity structure of coastal-trapped waves for the northwestern shelf-slope 
region of South Island, New Zealand. (a) Mode 1; (b) Mode 2. Contour lines when multiplied by 10 -7 
correspond to the longshore velocities in m/s for unit energy flux in watts. Negative values are dashed. 

Current meter locations are given by the dots. (From Cahill et al., 1991.) 

geostrophic flow dynamics (Wunsch, 1978, 1988). Another application uses under- 
water acoustic travel times to determine the average temperature of the global ocean 
for long-term climate studies (Worchester et al., 1988). A study by Mackas et al. (1987) 
used inverse techniques to determine the origins and mixing of water masses off the 
coast of British Columbia. In these oceanographic applications, the "solutions" are 
what we previously called the "models" in the geophysical problem. The kernel 
functions are formulated from the physics of the problem in question and the result is 
found by matching the "solution" to the input data. A cursory look at the problem is 
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Figure 4.4.7. As for Figure 4.4.6 but for the shelf-slope region off the southwestern tip of South Island. 
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provided in this section. The interested reader is referred to Bennett (1992) for 
detailed insight into the theory and application of inverse methods in oceanography. 

In general, the inverse problem takes the form 

b 

e(t) = / C ( t ,  ()m(~) d~ 

a 

(4.5.1) 

where e(t) are the input data, m(~) is the model and C(t, ~) is the kernel function for 
the variable ~. The kernel functions are determined from the relevant physical 
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equations for the problem and are assumed to be known (Oldenburg, 1984). It is the 
judicious selection of these kernel functions that makes the inverse problem a comp- 
lex exercise requiring physical insight from the oceanographer. In order to extract 
information about the model, m({), we will restrict our consideration of inverse theory 
to linear inverse methods applied to a set of observations. This is referred to as "finite 
dimensional inverse theory" by Bennett (1992). In his discussion of this form of 
inverse theory, Bennett suggests that it applies to: 

(1) An incomplete ocean model, based on physical laws but possessing multiple 
solutions. 

(2) Measurements of quantities not included in the original model but related to the 
model by additional physical laws. 

(3) Inequality constraints on the model fields or the data. 
(4) Prior estimates of errors in the physical laws and the data. 
(5) Analysis of the level of information in the system of physical laws, measurements, 

and inequalities. 

Equation (4.5.1) is a Fredholm equation of the first kind. Inverse theory is centered 
around solving this equation in such a way as to extract information about the model, 
m({), when information is available for the data, e(t). It is important to realize that the 
inverse problem cannot be solved unless the physics and the geometry of the problem 
are known (i.e. equation (4.5.1) has been set up). It is, therefore, impossible to consider 
a solution to the inverse problem unless the forward problem can be solved. The 
physics of the forward problem may be ill-posed, in which case not all of the solutions 
will match or, if they do, it is a coincidence and not a solution to (4.5.1). Thus, the 
basic questions to ask regarding a solution of the inverse problem are: (1) Does a 
solution exist? In other words, is there an m({) which produces e(t)?; (2) How does one 
construct a solution?; (3) Is the solution unique?; and (4) How is the nonuniqueness 
appraised? 

The answers to the above questions will depend on the data, e(t). In theory, there 
exist three types of data: 

(1) An infinite amount of accurate data; 
(2) a finite amount of accurate data; 
(3) a finite amount of inaccurate data. 

In reality, only option (3) occurs as we are forced to work with observations which 
contain a variety of measurement and sampling errors. While perfect data are limited 
to the realm of the mathematical, it is often instructive to consider analytic "inverses". 
For example, the analytical inverse to 

xO r) - / x(t)e -i2~ft dt (4.5.2) 
j - i  

- - O C  

1 / ei2~r~ x(t)  = x(f )  dt (4.5.3) 

Similarly, the inverse of 
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~b(x)- 2 / A J  [re(r)/(r 2 --X2) 1/2] dr 
X 

(4.5.4) 

is 
a 

IId JdxlJlxi - r21 
r 

1/2] dx (4.5.5) 

In the second case, we require knowledge of d~b/dx to find e(r), which is easy to do for 
ideal continuous data (Figure 4.5.1a), or even for a finite sample of accurate data 
(Figure 4.5.1b). If, however, we have a finite sample of inaccurate data (Figure 4.5.1c), 
we have difficulty estimating d~b/dx. 

(a) 
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X 
(b) 

6(x) 

(c) 

~ x ~" x ~  x""~x ~ (  Interpolated 
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r 

Figure 4.5.1. Three examples of the function r required for the inverse solution, c(r), of equation 
(4.5.5). Analytical (a) and digital (b) versions of r for which inversion is readily possible. (c) A typical 
"observed" version of r consisting of four mean values (plus standard deviations) for which inversion 

is considerably less accurate. 
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The problem of dealing with a limited sample of inaccurate measurements is the 
most common obstacle to the application of inverse methods. Usually, these 
inaccuracies can be treated as additive noise superimposed on the true data and, 
therefore, can be handled with statistical techniques. These additive errors have the 
effect of "blurring" or distorting our picture of the solution (model). Unfortunately, 
one cannot conclude that if the error noise is small that the model distortions also will 
be small. The reason for this is that most geophysical kernel functions act to smooth 
the model, thus changing the length scale of the response for both the forward and 
inverse problems. In other words, the solution obtained with inaccurate data using the 
inverse procedure may be very different from the model which actually generated the 
data. In addition, particular solutions to the model are not unique and a wide variety 
of solutions is equally possible. 

In most oceanographic applications of inverse methods, we are primarily interested 
in finding a model which reproduces the observations. Here, the fundamental problem 
is the nonuniqueness of any inverse solution which is one of infinitely many functions 
that can reproduce a finite number of observations. This nonuniqueness becomes 
more severe when the data are inaccurate, as they must be in any practical oceano- 
graphic application. The key to the application of inverse methods in oceanography is 
to select the "correct" (by which we mean the most probable or the most reasonable) 
inverse model-solution. 

Inverse construction in oceanography may take the form of parametric modeling. In 
this case, we write our model as m = f(al, a2, ..., aN) and a numerical scheme is sought 
to find appropriate values of the parameters, ai (i - 1, ... , N). Parameterization is 
justified when the physical system actually has this form and depends on a number of 
input parameters. The model is solved by collecting more than N data points and 
finding the parameters through a least-squares minimization of 

N 

dp -- ~ (ei -- eil) 2 (4.5.6) 
i=1 

where 

ei I = f  (al, a2, . . . ,  aN; ~i) (4.5.7) 

In (4.5.7) Ci is the ith kernel function. 

4.5.2 Inverse theory and absolute currents 

As reviewed by Bennett (1992), an important application of inverse theory to ocean 
processes was the computation of absolute currents for large-scale ocean circulation. 
In the 1970s, two different approaches to this problem were proposed. The first by 
Stommel and Schott (1977) was called the "beta spiral" technique, which demon- 
strated that the vertical structure of large-scale, open-ocean velocity fields could be 
explained using simple equations expressing geostrophy and continuity (conservation 
of mass). The second method, introduced by Wunsch (1977), showed that reference 
velocities could be estimated simultaneously around a closed path in the ocean. The 
resultant absolute velocities were consistent with geostrophy and the conservation of 
heat and salt at various levels. As a guide to oceanographic applications of inverse 
techniques, we provide succinct reviews of both applications. 
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4.5.2.1 The beta spiral method 

Good reviews of the Stommel and Schott (1977) beta spiral method are provided by 
Olbers et al. (1985) and Bennett (1992). The basic equations for this application are the 
usual linearized beta (/3)-plane equations for horizontal geostrophic flow (u, v) in a 
Boussinesq fluid 

--pofV = --Op/Ox (4.5.8a) 

pofu = --Op/Oy (4.5.8b) 

the hydrostatic equation 

0 = - O p / O z -  pg (4.5.9) 

which relate pressure perturbations, p(x, t), to density fluctuations, p(z, t), and the 
conservation of mass (or continuity) relation 

V. u + Ow/Oz - O (4.5.10) 

In these equations, f is the Coriolis parameter, u, v, and w are, respectively, the 
eastward (x), northward (y) and upward (z) components of current velocity, and 
p = p(x, y, z) is the density perturbation about the mean density po = po(Z). Following 
Bennett (1992), we will reserve vector notation for horizontal fields and operators (x = 
(x, y), u = (u, v), etc.). 

Using the above equations, we can derive the well-known "thermal wind" relation, 
whose vertically integrated velocity components are 

u(x, z) - Uo(X) + (e/fpo) I py(X, ~) d~ (4.5.11a) 

Zo 

z 

v(x, z) -Vo(X) - (g/fpo) / px(X, ~) dff (4.5.1 lb) 

Zo 

where subscripts x, y refer to partial differentiation and Uo(X), Vo(X) are the velocity 
components at some reference depth. Equations (4.5.8-4.5.10) also give rise to the 
well-known Sverdrup interior vorticity balance 

wz = ~v/ f  (4.5.12) 

where/3 is the northward (y) gradient of the Coriolis parameter, a n d f  = f (y )  =fo + flY 
in the beta-plane approximation. 

These equations cannot be used alone to determine the full absolute velocity field 
(u, w), even if the density field p were known. However, to resolve this indeterminacy, 
all we need is the velocity field at a particular depth where u = u(x, Zo) and w = w(x, 
Zo). Stommel and Schott (1977) demonstrated that these unknown reference values 
may be estimated by assuming the availability of measurements of some conservative 
tracer r which satisfy the steady-state conservation law 

u . V r  = 0  (4.5.13) 

This tracer might be salinity (S) or potential temperature (0), or some function of both 



The Spatial  Analyses o f  Data Fields 363 

S and O. Combining the vertical derivative of equation (4.5.13) with equations (4.5.11) 
and (4.5.12), yields 

( o) 
u .  V + W-~z (fChz) - (g/po)J (4.5.14) 

where J is the Jacobian J(p,  ok) - pxChy - pyqSx. In equation (4.5.14),fG represents the 
potential vorticity which would be conserved if density p were itself conserved. The 
tracer equation can be used again to eliminate the vertical velocity w 

u. a - (g/po)J(p, 4~) (4.5.15) 

where the vector a is given by 

a(x, z) = 27 (fqSz) ~ f  Chzz (4.5.16) 

Using the integrated thermal wind equations (4.5.11) yields 

Uo. a = c (4.5.17) 

where Uo is the horizontal velocity at depth Zo and c is given by 

c ( x ,  Z) - -  - - u ' .  a + (g/po)Y(p, qh) (4.5.18) 

In equation (4.5.18), the u' is that part of the horizontal velocity in the thermal wind 
relation that depends on the density field. 

Since a and c depend on g, p, f ,  27p, 27f, gS~ and Chzz, they can be determined using 
closely spaced hydrographic stations through measurements of T(z) and S(z). Thus, 
from (4.5.17), we can calculate Uo using the hydrographic data. Equation (4.5.17) holds 
at all levels so that two different levels can be used to specify Uo and Vo. We can then 
calculate the vertical velocity w from (4.5.14). The full velocity solution should be 
independent of the levels chosen for these computations. In reality, (4.5.17) is not an 
exact relation as it was derived from approximate dynamical laws and computed from 
data that contain measurement and sampling errors. As a consequence, our estimate of 
Uo from"(4.5.17) should be done as a best fit to the data from the two levels chosen. 

Suppose that N levels are chosen from the hydrographic data 
(N >_ 2). Let cn = x(x, zn) and an = a(x, zn) for 1 _< n _< N. The simple least-squares 
best fit minimizes 

N N 

R2 = Z R~ - Z (Cn - -  no"  an) 2 (4.5.19) 
n= l  n= l  

where Rn is the residual at level n and R is the root-mean-square (RMS) total error. R 2 
is a min imum if Uo satisfies a simple linear system 

Muo = d (4.5.20) 

where the 2 z 2 systematic, nonnegative matrix M depends on the components of an, 
while d depends on an and c. If a or c varies with depth, equation (4.5.15) implies that 
the total velocity vector u must also depend on depth. For the fl-spiral problem, we 
find that the large-scale ocean currents constitute a spiral with depth at each station. 
The fl-spiral in Figure 4.5.2 is from the study by Stommel and Schott (1977) who used 
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Figure 4.5.2. The ~-spiral in horizontal velocity u = (u(z), v(z)) at 28~ 36~ with depths in 
hundreds of meters. Error bars for the two components of velocity are given at the origin. (After Stommel 

and Schott, 1977.) 

hydrographic data from the North Atlantic to estimate Uo for a reference level of Zo = 
1000 m depth. In this application they found, Uo = 0.0034 +0.00030 m/s and 
Vo = 0.0060 • 0.00013 m/s at 28~ 36~ 

The 13-spiral problem includes two of the basic concepts common to inverse 
methods. First, we deal with an incomplete set of physical laws (4.5.8-4.5.10), or their 
rearrangement, as in the case of the thermal wind equations (4.5.11a, b) which 
includes the unknown reference velocity. Second, we often resort to the indirect 
measurement of an additional quantity which, in the case of the present example, is a 
conservative tracer. This application could have benefited from the inclusion of prior 
estimates of the errors in the dynamical equations and in the hydrographic data. 

4.5.2.2 Wunsch 's  me thod  

In a parallel development to the ~-spiral technique, Wunsch (1977) used inverse 
methods to estimate reference velocities simultaneously around a closed path in the 
ocean (Bennett, 1992). As discussed by Davis (1978), both Wunsch's method and the 
fl-spiral method are closely related. Both approaches assume the vertically integrated 
thermal wind equations (4.5.11) and both provide estimates for the reference velocity 
Uo. In Wunsch's method, the thermal wind velocity, u', is assumed to be zero at the 
reference level Zo, which in general may be a function of position IZo - Zo(X)]. Wunsch 
chose the reference level to be the ocean bottom at Zo(X) - H(x), with Uo(X) defined to 
be the bottom velocity. He then divided the water column into a number of layers 
defined by temperature ranges. This is consistent with the general water mass 
structure of the North Atlantic as defined by Worthington (1976). These layers need 
not be uniform in depth at each hydrographic station. Together with the coastline of 
the U.S., the hydrographic stations formed a closed path in the western North Atlantic 
(Figure 4.5.3). 
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Figure 4.5.3. The locations of hydrographic stations in the North Atlantic used by Wunsch to obtain 
absolute current estimates using inverse theory. (After Wunsch, 1977.) 

We now let v denote the outward component of velocity across the closed triangle 
formed by the lines of hydrographic stations in Figure 4.5.3. That is, v = u. n where n 
is the outward unit normal to the sections. We can further let v' = u ' - n  be the outward 
thermal wind velocity and b = Uo. n be the outward horizontal velocity at the seafloor. 
Let v'n(z) and bn denote the thermal wind velocity estimate and unknown bottom 
velocity midway between the nth station pair, where 1 _< n _< N, and let Vmn' denote the 

' in the mth layer of the water column, where 1 _< m < M. Wunsch average value of v,, 
chose the Mth layer to be the total water column, thus the Mth tracer is the total mass 
of the water column. The assumption of tracer conservation within each layer can be 
written as 

N 

Z (Vtmn q- bn)z~mnZ~kXn : O, 1 ~ m < M (4.5.21) 
n=l  

where AZmn is the thickness of the mth layer at the nth station pair, and Z~mn is the 
separation distance between the nth station pair. This system of M equations for N 
unknowns b,, 1 _< n < N, may be written in matrix notation as 

A b  = c (4.5.22) 

where A is an M • N matrix and c is a column vector of length M with elements 

A mn -- Z~k2;mn Z~OC n (4.5.23a) 

! 
Cm = -- Z vmnAmn 

n=l 

(4.5.23b) 

Wunsch used M = 5 layers as defined by the ranges 12-17~ 4-7~ 2.5-4~ and the 
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entire water column (total mass). The hydrographic data were from N = 43 station 
pairs. For this problem, the matrix equation (4.5.23) represents five equations for 43 
unknown velocities, so that the system is underdetermined and has many different 
solutions. 

As reported by Bennett (1992), Wunsch (1977) somewhat arbitrarily selected the 
vector b with the shortest length. This was found by minimizing 

tl -- bTb + 2I T(Ab - c) (4.5.24) 

where the superscript T denotes the transpose of the matrix and I is an unknown 
Lagrange multiplier consisting of a column vector of length M. It can be shown that t~ 
is a minimum when 

b + A r I  - 0 (4.5.25) 

which gives the minimum solution 

b = A T(AAT)-lc  (4.5.26) 

which satisfies (4.5.22). The symmetric matrix AA T has dimensions M • M and is 
nonnegative (Bennett, 1992). However, AA r may be singular. These singularities may 
be overcome by allowing errors in the hydrographic data and conservation laws; that 
is, by not seeking exact solutions of (4.5.22). We can instead write (4.5.22) in a 
quadratic form adding weights to each term. It can be shown that for positive weights, 
we are able to define an exact solution of the problem. This transfers the problem to 
the selection of these weights. 

This cursory presentation of Wunsch's method for computing reference velocities 
demonstrates, once again, some of the basic elements of inverse methods: A system of 
incomplete physical laws and inexact measurements of related fields. It is necessary to 
admit errors into the equations and data values in order to stabilize the solution and to 
derive a unique solution. In his review, Davis (1978) concluded that both the 
underdetermined problem of Wunsch's method and the overdetermined problem of 
the/3-spiral method are consequences of tacit assumptions made about noise levels 
and fundamental scales of motion. Davis suggested that a more orderly approach 
would be based on Gauss-Markov smoothing (Bennett, 1992) which should be an 
improvement, assuming explicit and quantitative estimates of the noise and its 
structure. 

4.5.3 The IWEX internal wave problem 

Another oceanographic example of the inverse method is found in Olbers et al. (1976) 
and Willebrand et al. (1977). Here, inverse theory is used to determine the three- 
dimensional internal wave spectrum from an array of moored current meters (Figure 
4.5.4). In this example, the Fredholm equation (4.5.1) is written in matrix form and 
becomes 

yi -Aijxj;  1 < i < N; 1 <_j <_ K (4.5.27) 

where Yi are N observed velocity cross-spectra (the data), A 0 are the kernel functions 
(for matrix A) representing the physical relations from internal wave theory and xj are 
the K internal wave parameters to be determined by the inverse method. The inverse 
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Figure 4.5.4. Location of the IWEX study area showing the positions of the three current meter moorings 
on the Hatteras Plain in the western North Atlantic. (From Briscoe, 1975.) 

problem is to find the K parameters of the theoretical internal wave energy density 
cross-spectra using the N observed cross-spectra from the current meter array. We 
achieve this by using the least-squares method to minimize 

c 2 ( a ) -  ~ - y ( a ) ] W [ 9 - y ( a ) ] *  (4.5.28) 

where a represents a set of trial values used to find the minimum and the asterisk (*) 
denotes the complex conjugate. In equation (4.5.28), W is a weighting matrix used to 
scale,the problem and to produce statistical independence (Jackson, 1972). 

It is common to expand the kernel function matrix A into eigenvectors (Jackson, 
1972). Thus, we write 

AVj -- )~juj, A T u j -  ,~iVi (4.5.29) 

Following the singular value decomposition we conducted in the EOF analysis 
(Section 4.3.2), we can factor the matrix A as 

A -  U B V  v (4.5.30) 

where U is an N x P matrix whose columns are the eigenvectors ui, i = 1, ..., P; V is 
the M • P matrix whose columns are the eigenvectors vi, i = 1, . . . ,  P, and B is the 
diagonal matrix of eigenvalues. After U and V are formed from the eigenvectors 
corresponding to the P nonzero eigenvalues of A, there remain (N - P) eigenvectors 
Uj and ( K -  P) eigenvectors Vj which correspond to zero eigenvalues. If we assemble 
these into columns of matrices, we have Uo (an N • ( N -  P) matrix) and Vo (a K 
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x ( K - P )  matrix). This is called annihilator space and reveals that our model is 
composed of both real model space (which corresponds to the data) and annihilator 
space which is linked to zeros in the data field. When we perform an inverse 
calculation, we usually recover a solution which lies in real model space. We must 
remember, however, that any function in space a can be added to the solution and still 
produce a solution that fits the data. With the kernel functions transformed into an 
orthogonal framework (expanded into eigenvectors) we construct the "smallest" or 
minimum energy model-solution. 

When P = N, there is a solution to (4.5.28) and P - M guarantees that a solution, if 
it exists, is unique. For P < N, the system is said to be overconstrained, while if P < 
M, the system is both overconstrained and underdetermined. In the latter case, an 
exact solution may not exist but there will be an infinite number of solutions 
satisfying the least squares criterion. This is the case for the present internal wave 
example, which is both overconstrained and underdetermined. 

Returning to our internal wave problem, we find W in equation (4.5.28) using the 
least-squares method which produces the maximum likelihood estimator for a Gaussian 
distribution. This estimator is defined to be the inverse of the data covariance matrix. 
From the current meter array, 60 time series were divided into 25 overlapping segments. 
For each segment, cross-spectral estimates were computed for each of 600 equidistant 
frequencies. Averaging over segments and frequency bands to increase statistical 
significance, resulted in 3660 cross-spectra. The resultant 3660 x 3660 covariance 
matrix is difficult to invert. The diagonal of the weight matrix was selected to be 

W = diag[1/var(yi)] (4.5.31) 

which reproduces the main features of the maximum likelihood weight matrix (Olbers 
et al., 1976). We note that, again for this problem, there are many more data points 
than parameters so that the system is overconstrained. 

The least-squares solution procedure for this internal wave example is as follows: 

(a) first find a parameter estimate ~ (the best guess); 
(b) linearize at the value a - ~, such that 

b)(a) = . 9 ( a ) +  D ( a -  ~) + . . .  (4.5.32) 

where 

D -  ( ~fJi/~aj } la=~ (4.5.33) 

(c) improve the parameter estimate by using 

a - ~ = H[9(a) - 9(~)] (4.5.34) 

where the N x K matrix H is the generalized inverse of D derived from the linear 
terms of (4.5.32). If the matrix D < T W D  is nonsingular and well conditioned 
then 

H = ( D r W D ) - I D r W  (4.5.35) 

and equation (4.5.11) becomes the least-squares solution of (4.5.29). Since DTWD 
is an K x K matrix, it can be easily inverted using standard diagonalization 
routines. 
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Having now arrived at a solution, A = {A o} of our problem in (4.5.27), we are left 
with two additional questions: (1) How well are the data reproduced by our solution? 
and (2) How accurately do we know our parameters amin? Since our data are subject to 
random errors, we can treaty as a statistical quantity and test the hypothesis thaty and 
the model estimate)(amin) are the same with a 95% probability (inverse estimate must 
be within the 95% confidence interval of our data point). Using the central limit 
theorem for our segment and frequency-averaged spectral values, we can approximate 
the 95% confidence interval on y as 

2 _ ~ y W ~ y  [1 + O(Z -1 )] - -  jr_., 
C 9 5 %  (4.5.36) 

where/Sy - - y - ~ ,  and O(.) indicates the order of magnitude. Now if 

E 2 (amin) ~ E'2 
- -  9 5 %  

(4.5.37) 

the model is a statistically consistent representation of the data. The consistency of the 
IWEX model is provided by the results in Figure 4.5.5, where we have plotted the 
measured, ~2(a), and expected, ~2, values of the parameter c 2. In this case, all values 
have been normalized so that magnitudes provide some indication of the percentage to 
which the observed and estimated (modeled) values of the data, y, coincide. For the 
most part, the measured values of c 2 are scattered about the expected values of this 
parameter.  Except at the M2 tidal frequency and for frequencies greater than 1 cph, 
the hybrid IWEX model gives a consistent description of the IWEX data set to the 
95 % level. 

Our second question regarding the accuracy of the parameter solution amin, can be 
answered by calculating the covariance matrix of the parameters. Using equation 
(4.5.30), we obtain the K x K covariance matrix of the parameters, 

6ar = H~Sy~SyH T (4.5.38) 
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Figure 4.5.5. Consistency for the IWEX study. The error estimate C 2 is the squared difference between 
the observed data and the modeled data obtained by inverse methods. Except for motions in the M2 tidal 
band and at frequencies greater than about 1 cph, the results are within the 95% confidence level. Nmax 
and Naw are the maximum Nyquist frequency and the Nyquist frequency for the deep water, respectively 

(Briscoe, 1975). 
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from the data covariance matrix ~y~y. As usual, there is a reciprocal relation between 
the variance and the resolution of the parameters. Statistically uncorrelated para- 
meters can be found by diagonalizing the matrix in (4.5.38). 

4.4.4 Summary of inverse methods 

In this section we have presented the basic concepts of the general inverse problem 
and have set up the solution system for two different applications in physical oceano- 
graphy. Our treatment is by no means comprehensive and is intended to serve only as 
a guide to understanding the process of forming linear inverse solutions to fit observed 
oceanographic data. 

The first example we treated is the computation of absolute geostrophic velocity by 
specifying an unknown reference velocity. Both the ~-spiral (Stommel and Schott, 
1977) and Wunsch's method are discussed. The dynamics are restricted to geostrophy 
and the conservation of mass. The second example was the specification of parameters 
in theoretical internal wave cross-spectra to reproduce the velocity cross-spectra of an 
array of moored current meters. The statistical nature of both the data and the model 
are considered and the accuracy of the results are expressed in probabilistic terms. 
Readers interested in further discussion of these and other related applications of 
inverse methods are referred to Bennett (1992). This book contains a complete review 
of inverse methods along with discussion of most of the popular applications of 
inverse techniques in physical oceanography. We also direct the interested reader to a 
recent paper by Egbert et al. (1994) in which a generalized inverse method is used to 
determine the four principal tidal constituents (M2, $2, K1, O1) for open ocean tides. 
The tides are constrained (in a least squares sense) by the hydrodynamic equations 
and by observational data. In the first example, solutions are obtained using inversion 
of the harmonic constants from a set of 80 open ocean tide gauges. The second 
example uses cross-over data from TOPEX/POSEIDON satellite altimetry. According 
to the authors, "The inverse solution yields tidal fields which are simultaneously 
smoother, and in better agreement with altimetric and ground truth data, than 
previously proposed tidal models." 
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Time-series Analysis Methods 

The advent of high-density storage devices and long-term mooring capability has 
enabled oceanographers to collect long time series of oceanic and meteorological data. 
Similarly, the use of rapid-response sensors on moving platforms has made it possible 
to generate snapshots of spatial variability over extensive distances. Time-series data 
are collected from moored instrument arrays or by repeated measurements at the same 
location using ships, satellites, or other instrumented packages. Quasi-synoptic spatial 
data are obtained from ships, manned-submersibles, remotely operated vehicles 
(ROVs), autonomous underwater vehicles (AUVs), satellites, and satellite-tracked 
drifters. 

As discussed in Chapters 3 and 4, the first stage of data analysis following data 
verification and editing usually involves estimates of arithmetic means, variances, 
correlation coefficients, and other sample-derived statistical quantities. These quanti- 
ties tell us how well our sensors are performing and help characterize the observed 
oceanographic variability. However, general statistical quantities provide little insight 
into the different types of signals that are blended together to make the recorded data. 
The purpose of this chapter is to present methodologies that examine data series in 
terms of their frequency content. With the availability of modern high-speed 
computers, frequency-domain analysis has become much more central to our ability to 
decipher the cause and effect of oceanic change. The introduction of fast Fourier 
transform (FFT) techniques in the 1960s further aided the application of frequency- 
domain~analysis methods in oceanography. 

5.1 B A S I C  C O N C E P T S  

For historical reasons, the analysis of sequential data is known as time series analysis. As 
a form of data manipulation, it has been richly developed for a wide assortment of 
applications. While we present some of the latest techniques, the emphasis of this 
chapter will be on those "tried and proven" methods most widely accepted by the 
general oceanographic community. Even these established methods are commonly 
misunderstood and incorrectly applied. Where appropriate, references to other texts 
will be given for those interested in a more thorough description of analysis tech- 
niques. As with previous texts, the term "time series" will be applied to both temporal 
and spatial data series; methods which apply in the time domain also apply in the 
space domain. Similarly, the terms frequency domain and wavenumber domain (the 
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formal transforms of the time and spatial series, respectively) are used inter- 
changeably. 

A basic purpose of time series analysis methods is to define the variability of a data 
series in terms of dominant periodic functions. We also want to know the "shape" of 
the spectra. Of all oceanic phenomena, the barotropic astronomically forced tides most 
closely exhibit deterministic and stationary periodic behavior, making them the most 
readily predictable motions in the sea. In coastal waters, tidal observations over a 
period as short as one month can be used to predict local tidal elevations with a high 
degree of accuracy. Where accurate specification of the boundary conditions is 
possible, a reasonably good hydrodynamic numerical model that has been calibrated 
against observations can reproduce the regional tide heights to an accuracy of a few 
centimeters. Tidal currents are less easily predicted because of the complexities 
introduced by stratification, nonlinear interactions, and basin topography. Although 
baroclinic (internal) tides generated over abrupt topography in a stratified ocean have 
little impact on surface elevations, they can lead to strong baroclinic currents. These 
currents are generally stochastic (i.e. nondeterministic) and hence only predictable in 
a statistical sense. 

Surface gravity waves are periodic and quasi-linear oceanic features but are 
generally stochastic due to inadequate knowledge of the surface wind fields, the air- 
sea momentum transfer, and oceanic boundary conditions. Refraction induced by 
wave-current interactions can be important but difficult to determine. Other oceanic 
phenomena such as coastal-trapped waves and near-inertial oscillations have marked 
periodic signatures but are intermittent because of the vagaries of the forcing 
mechanisms and changes in oceanic conditions along the direction of propagation. 
Other less obvious regular behavior can be found in observed time and space records. 
For instance, oceanic variability at the low-frequency end of the spectrum is 
dominated by fluctuations at the annual to decadal periods, consistent with baroclinic 
Rossby waves and short-term climate change, while that at the ultra-low frequencies is 
dominated by ice-age climate scale variations associated with Milankovitch-type 
processes (changes in the caloric summer insolation at the top of the atmosphere 
arising from changes in the earth's orbital eccentricity, and tilt and precision of its 
rotation axis). 

Common sense should always be a key element in any time-series analysis. 
Attempts to use analytical techniques to find "hidden" signals in a time series often 
are not very convincing, especially if the expected signal is buried in the measurement 
noise. Because noise is always present in real data, it should be clear that, for accurate 
resolution of periodic behavior, data series should span at least a few repeat cycles of 
the time scale of interest, even for stationary processes. Thus, a day-long record of 
hourly values will not fully describe the diurnal cycle in the tide nor will a 12-month 
series of monthly values fully define the annual cycle of sea surface temperature. For 
these short records, modern spectral analysis methods can help us pin-point the peak 
frequencies. As we noted in Chapter 1, a fundamental limitation to resolving time- 
series fluctuations is given by the "sampling theorem" which states that the highest 
detectable frequency or wavenumber (the Nyquist frequency or wavenumber) is 
determined by the interval between the data points. For example, the highest fre- 
quency that we can resolve by an hourly time series is one cycle per 2 h, or one cycle 
per 2At, where At is the interval of time between points in the series. 

For the most part, we fit series of well-known functions to the data in order to 
transform from the time domain to the frequency domain. As with the coefficients of 
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the sine and cosine functions used in Fourier analysis, we generally assume that the 
functions have slowly varying amplitudes and phases, where "slowly" means that 
coefficients change little over the length of the record. Other linear combinations of 
orthogonal functions with similar limitations on the coefficients can be used to 
describe the series. However, the trigonometric functions are unique in that uniformly 
spaced samples covering an integer number of periods of the function form orthogonal 
sequences. Arbitrary orthogonal functions, with a similar sampling scheme, do not 
necessarily form orthogonal sequences. Another advantage of using common functions 
in any analysis is that the behavior of these functions is well understood and can be 
used to simplify the description of the data series in the frequency or wavenumber 
domain. In this chapter, we consider time series to consist of periodic and aperiodic 
components superimposed on a secular (long-term) trend and uncorrelated random 
noise. Fourier analysis and spectral analysis are among the tools used to characterize 
oceanic processes. Determination of the Fourier components of a time series can be 
used to determine a periodogram which can then be used to define the spectral density 
(spectrum) of the time series. However, the periodogram is not the only way to get at 
the spectral energy density. For example, prior to the introduction of the fast Fourier 
transform (FFT), the common method for calculating spectra was through the Fourier 
transform of the autocorrelation function. More modern spectral analysis methods 
involve autoregressive spectral analysis (including use of maximum entropy 
techniques), wavelet transforms, and fractal analysis. 

5.2 S T O C H A S T I C  P R O C E S S E S  A N D  S T A T I O N A R I T Y  

A common goal of most time-series analysis is to separate deterministic periodic 
oscillations in the data from random and aperiodic fluctuations associated with 
unresolved background noise (unwanted geophysical variability) or with instrument 
error. It is worth recalling that time-series analyses are typically statistical procedures 
in which data series are regarded as subsets of a stochastic process. A simple example 
of a stochastic process is one generated by a linear operation on a purely random 
v~iable.  For example, the function x(ti) -- 0.5x(ti_l) + c(ti), i = 1, 2, ..., for which 
X(to) = 0, say, is a linear random process provided that the fluctuations e(ti) are 
statistically independent. Stochastic processes are classified as either discrete or 
continuous. A continuous ("analog") process is defined for all time steps while a 
discrete ("digital") process is defined only at a finite number of points. The data series 
can be scalar (univariate series) or a series of vectors (multivariate series). While we 
will deal with discrete data, we assume that the underlying process is continuous. 

If we regard each data series as a realization of a stochastic process, each series 
contains an infinite ensemble of data having the same basic physical properties. Since 
a particular data series is a sample of a stochastic process, we can apply the same kind 
of statistical arguments to our data series as we did to individual random variables. 
Thus, we will be making statistical probability statements about the results of 
frequency transformations of our data series. This fact is important to remember since 
there is a great temptation to regard transformed values as inherently independent 
data points. Since many data collected in time or space are highly correlated because 
of the presence of low-frequency, nearly deterministic components, such as long- 
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period tides and the seasonal cycle, standard statistical methods do not really apply. 
Contrary to the requirements of stochastic theory, the values are not statistically 
independent. "What  constitutes the ensemble of a possible time series in any given 
situation is dictated by good scientific judgment and not by purely statistical matters" 
(Jenkins and Watts, 1968). A good example of this problem is presented by Chelton 
(1982) who showed that the high correlation between the integrated transport through 
Drake Passage in the Southern Ocean and the circumpolar-averaged zonal wind stress 
"may largely be due to the presence of a strong semi-annual signal in both time 
series." A strong statistical correlation does not necessarily mean there is a cause and 
effect relationship between the variables. 

As implied by the previous section, the properties of a stochastic process generally 
are time dependent and the valuey(t) at any time, t, depends on the time elapsed since 
the process started. A simplifying assumption is that the series has reached a steady 
state or equil ibrium in the sense that the statistical properties of the series are 
independent of absolute time. A minimum requirement for this condition is that the 
probability density function (PDF) is independent of time. Therefore, a stationary 
time series has constant mean, #, and variance, ~r 2. Another consequence of this 
equilibrium state is that.the joint PDF depends only on the time difference tl - t2 = 7- 
and not on absolute times, t~ and t2. The term ergodic is commonly used in association 
with stochastic processes for which time averages can be used in place of ensemble 
averages (see Chapter  3). That is, we can average over "chunks" of a time series to get 
the mean, standard deviation, and other statistical quantities rather than having to 
produce repeated realizations of the time series. Any formalism involving ensemble 
averaging is of little value as the analyst rarely has an ensemble at his disposal and 
typically must deal with a single realization. We need the ergodic theorem to enable us 
to use time averages in place of ensemble averages. 

5.3 C O R R E L A T I O N  F U N C T I O N S  

Discrete or continuous random time series, y(t), have a number of fundamental 
statistical properties that help characterize the variability of the series and make it 
easily possible to compare one time series against another. However, these statistical 
measures also contain less information than the original time series and, except in 
special cases, knowledge of the these properties is insufficient to reconstruct the time 
series. 

(1) Mean and variance. I fy  is a stochastic time series consisting of N values y(ti) = Yi 
measured at discrete times ti {tl, t2, ..., tN}, the true mean value # for the series can be 
estimated by 

1 ~-~Yi (5.3 1) # -  E l y ( t ) ] - ~  
i=1 

where E[y(t)] is the expected value and E[[v(t)l ] < ~ for all t. The estimated mean 
value is not necessarily constant in time; different segments of a time series can have 
different mean values if the series is nonstationary. If E[y2(t)] < ~ for all t, an 
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estimate of the true variance function is given by 

1 N 
0 -2 = E[{y(t)  - #}2] _ N ~ .  [Yi _ ~ ] 2  (5.3.2) 

z--1 

The positive square root of the variance is the standard deviation, 0-, or root-mean- 
square (RMS) value. See Chapter 3 for further discussion on the mean and variance. 

(2) Covariance and correlation functions" These terms are used to describe the 
covariability of given time series as functions of two different times, tl = t and t2 = 
t + T, where 7- is the lag time. If the process is stationary (unchanging statistically with 
time) as we normally assume, then absolute time is irrelevant and the covariance 
functions depend only on 7-. 

Although the terms "covariance function" and "correlation function" are often used 
interchangeably in the literature, there is a fundamental difference between them. 
Specifically, covariance functions are derived from data series following removal of 
the true mean value, #, which we typically approximate using the sample mean, y(t). 
Correlation functions use the "raw" data series before removal of the mean. The 
confusion arises because most analysts automatically remove the mean from any time 
series with which they are dealing. To further add to the confusion, many 
oceanographers define correlation as the covariance normalized by the variance. 

For a stationary process, the autocovariance function, Cyy, which is based on lagged 
correlation of a function with itself, is estimated by 

Cyy(7) - E[{y(t)  - #}{y(t + T) -- #}] 

1 N-k 
- -  N - k E. ~ i  - Y] bli+k - fy] 

z=l 

(5.3.3) 

where 7- - 7k - k A t  (k - O, . . . ,  M)  is the lag time for k sampling time increments, At, 
and M << N. The corresponding expression for the autocorrelation function Ryy is 

Ryy(T) --E[y(t)y(t + 7)] 

N - k  1 (5.3.4) 
- N - k ~. (YiYi+k)  

t=l 

At zero lag (T = 0) 

Cyy(O)  - 0-2 _ R y y ( O ) - / z  2 (5.3.5) 

where we must be careful to define 0-2 in equation (5.3.2) in terms of the normalization 
factor 1 /N  rather than 1 / (N  - 1) (see Chapter 3). From the above definitions, we find 

Cyy(T) = Cyy(-Z);  Ryy(T) = Ryy(--T) (5.3.6) 

indicating that the autocovariance and autocorrelation functions are symmetric with 
respect to the time lag r. 

The autocovariance function can be normalized using the variance (5.3.2) to yield 
the normalized autocovariance function 
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pyy( ) = a2 (5.3.7) 

(Note: some oceanographers call (5.3.7) the autocorrelation function.) 
The basic properties of the normalized autocovariance function are: 

(a) p y y ( T )  --- 1, for T = 0; 
(b) pyy(T) = pyy(-T), for all ~-; 
(c) I Pyy (7-)1 _ 1, for all 7-; 
(d) If the stochastic process is continuous, then pyy(T), must be a continuous function 

o f  T. 

If we now replace one of they(t) in the above relations with another function x(t), we 
obtain the cross-covariance function 

Cxy(T) -- E[{y(t) - ~ }{x(t + T) - #x }] 

1 N-k 
= N ~ - k  ~ k i  - -Y]  [Xi+k -- Y'] 

i=1 

(5.3.8) 

and the cross-correlation function 

Rxy(T) =--E[y(t)x(t + 7-)] 

N - k  
- 

N - k .  
z=l 

(5.3.9) 

The normalized cross-covariance function (or correlation coefficient function) for a 
stationary process is 

_ 

Pxy --  ( 5 . 3 . 1 0 )  
Crxay 

Here, y(t) could be the longshore component of daily mean wind stress and x(t) the 
daily mean sea level elevation at the coast. Typically, sea level lags the longshore wind 
stress by one to two days. 

One should be careful interpreting covariance and correlation estimates made for 
large lags. Problems arise if low-frequency components are present in the data since 
the averaging inherent in these functions becomes based on fewer and fewer samples 
and loses its statistical reliability as the lag increases. For example, at lag 7-= 0.1T 
(i.e. 10% of the length of the time series) there are roughly 10 independent cycles of 
any variability on a time scale, To.1 = 0.1 T, while at lags of 0.5T there are only about 
two independent estimates of the time scale T0.5. In many cases, low-frequency 
components in geophysical time series make it pointless to push the lag times much 
beyond 10-20% of the data series. Some authors argue that division by N rather than 
by N - k reduces the bias at large lags. Although this is certainly true (N >> N - k at 
large lags), it doesn't mean that the result has anything to do with reality. In essence, 
neither of these estimators are optimal. Ideally one should write down the likelihood 
function of the observed time series, if it exists. Differentiation of this likelihood 
function would then give a set of equations for the maximum likelihood estimates of 
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the autocovariance function. Unfortunately, the derivatives are in general untraceable 
and one must work with estimators given above. Results for this section are 
summarized as follows: 

(a) Estimators with divisors T = NAt  usually have smaller mean square errors than 
those based on T -  7-; also, those based on 1/T are positive definite while those 
based on 1 / ( T -  7-) may not be. 

(b) Some form of correction for low-frequency trends is required. In simple cases, one 
can simply remove a mean value while in others the trend can be removed. Trend 
removal must be done carefully so that erroneous data are not introduced into the 
time series during the subtraction of the trend. 

(c) There will be strong correlations between values in the autocorrelation function if 
the correlation in the original series was moderately strong; the autocorrelation 
function, which can be regarded as a new time series derived from y(t), will, in 
general, be more strongly correlated than the original series. 

(d) Due to the correlation in (c), the autocorrelation function may fail to dampen 
according to expectations; this will increase the basic length scale in the function. 

(e) Correlation is a relative measure only. 

In addition to its direct application to time-series analysis, the autocorrelation 
function was critical to the development of early spectral analysis techniques. 
Although modern methods typically calculate spectral density distributions directly 
from the Fourier transforms of the data series, earlier methods determined spectral 
estimates from the Fourier transform of the autocorrelation function. An important 
milestone in time-series analysis was the proof by N. Wiener and A. Khinchin in the 
1930s that the correlation functions are related to the spectral density functions 
function through Fourier transform relationships. According to the Wiener-Khinchin 
relations, the autospectrum of a time series is the Fourier transform of its 
autocorrelation function. 

(3) Analytical correlation/covariance functions: The autocorrelation function of a zero- 
mean random process c(t) ("white noise") can be written as 

R~(~-) - 2 26(T) (5 3.11) c ~ . ~ ( ~ - )  - ~ 

where 6(7-) is the Dirac delta function. In this example, ~ is the variance of the data 
series. Another useful function is the cross-correlation between the time-lagged 
stationary signal y(t) = a x ( t -  T )+  c and the original signal x(t). For constant c~ 

Rxy( -) = - To) + (5.3.12a) 

which, for low noise, has a peak value 

Rxy ( To ) - (zRxx ( O ) - ctO.2x (5.3.12b) 

Functions of the type (5.3.12) have direct use in ocean acoustics where the time lag, To, 
at the peak of the zero-mean autocorrelation function can be related to the phase 
speed c and distance of travel d of the transmitted signal x(t) through the relation 
To = d/c. It is through calculations of this type that modern acoustic Doppler current 
meters (ADCMs) and scintillation flow meters determine oceanic currents. In the case 
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of ADCMs, knowing To and d gives the speed c and hence the change of the acoustic 
signal by the currents during the two-way travel time of the signal. Scintillation 
meters measure the delay To for acoustic signals sent between a transmitter-receiver 
pair along two parallel acoustic paths separated by a distance d. The relation 7-o - d /v  
then gives the mean flow speed, v, normal to the direction of the acoustic path. 
Sending the signals both ways in the transmitter-receiver pairs gets around the 
problem of knowing the sound speed c in detail. 

Although the calculation of autocorrelation and autocovariance functions is fairly 
straightforward, one must be very careful in interpreting the resulting values. For 
example, a stochastic process is said to be Gaussian (or normal) if the multivariate 
probability density function is normal. Then the process is completely described by its 
mean, variance, and autocovariance function. However, there is a class of nonGaussian 
processes which have the same normalized autocovariance function, p, as a given 
normal process. Consider the linear system 

ay 
~o -~ + y( t )  - z(t)  (5.3.13) 

where z(t) is white-noise input andy(t) is the output. Here, y(t) is called a "first-order 
autoregressive process" which has the normalized autocorrelation function 

pyy(T) - e -ITI/To (5.3.14) 

Thus, if the input to the first-order system has a normal distribution then by an 
extension of the central limit theorem it may be shown that the output is normal and 
is completely specified by the autocorrelation function. 

Another process with an exponential autocorrelation function which differs greatly 
from the normal process is called the random telegraph signal (Figure 5.3.1). Alpha 
particles from a radioactive source are used to trigger a flip-flop between + 1 and -1 .  
Assuming the process was started at t = - ~  we can derive the normalized 
autocorrelation function as 

pyy(T) - e  -2AITI (5.3.15) 

If A -- 1/2To then this is the same as the autocorrelation function of a normal process, 
which is characteristically different from the flip-flop time series. Again, one must be 
careful when interpreting autocorrelation functions. 

, Pill. 
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Figure 5.3.1. A realization of a random telegraph signal with digital amplitudes of • as a function of 
time. 
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Table 5.1. Acoustic backscatter anomaly (decibels) measured in bin # 1 from two adjacent transducers on 
a towed 150 kHz ADCP. The data cover a depth range of 75-230 m at increments of 5 m (32 values). 
The two vertical profiles are separated horizontally by a distance of 3.5 m. The means have not been 
removed from the data 

Beam 75 m 80 
1 11.56 
2 14.67 

85 90 95 100 105 110 115 120 
0.67 -8.33 -9.82 -13.91 -18.00 3.67 -2.00 -12.29 -13.71 
3.00 -5.67 -9.64 -12.82 -16.00 -8.50 -11.00 -15.29 -16.71 

125 m 130 135 
-11.33 -8.00 24.14 
-10.33 -2.00 23.71 

140 145 150 155 160 165 170 175 
38.13 40.00 35.00 29.63 24.00 26.50 28.75 30.63 
36.63 41.00 33.14 24.38 15.00 20.63 26.25 31.88 

180 m 185 190 195 200 205 
30.50 31.00 36.00 31.63 21.00 12.25 
31.00 29.13 29.75 24.75 16.00 7.25 

210 215 220 225 230 
3.00 -7.00 -4.43 -0.50 0.75 
3.25 6.38 11.57 12.25 5.38 

(4) Observed covariance functions: To see what autocorrelation functions look like in 
practice, consider the data in Table 5.1. Here, we have tabulated the calibrated 
acoustic backscatter anomaly measured at 5-m depth increments in the upper  ocean 
using a towed 150 kHz acoustic Doppler  current profiler (ADCP). These "t ime series" 
data are from the first bin of adjacent beams 1 and 2 of a four-beam ADCP, and 
represent  the backscatter intensity from zooplankton located at a distance of 5 m from 
the instrument .  Since the t ransducers  are tilted at an angle of 30 ~ to the vertical, the 
two profiles are separated horizontally by only 3.5 m and the autocorrelations should 
be nearly identical at all lags. In this case, we use the normalized covariance (5.3.7) 
derived from equation (5.3.3) in which the sum is divided by the number  of lag values, 
N -  k, for lag 7-= k A t .  

As indicated by the autocorrelation functions in Figure 5.3.2, the functions are 
similar at small lags where statistical reliability is large but diverge significantly at 
higher lags with the decrease in the number  of independent  covariance estimates. 

(5) Imegral  time scales: The integral time scale, T ~, is defined as the sum of the 
normalized autocorrelation function (5.3.7) over the length L -  NA~- of the time 
series for N lag steps, AT. Specifically, the estimate 
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Figure 5.3.2. Autocorrelation functions of the acoustic backscatter data in Table 5.1. 
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T ~  z 
AT N' 

2 ~ [p(ri)+ p(Ti+l)] 
i=0 

AT N' 

2o-2 Z [C(Ti) + C(Ti+I)] 
i=0 

(5.3.16) 

for N '  <_ N -  1 gives a measure of the dominant correlation time scale within a data 
series--for times longer than T*, the data become decorrelated. There are roughly 
ArN/T* actual degrees of freedom within the time series. In reality, the summation 
typically is limited to N' << N since low frequency components within the time series 
prevent the summation from converging to a constant value over the finite length of 
the record. In general, one should continue the summation until it reaches a near- 
constant value which we take as the value for T*. If no plateau is reached within a 
reasonable number of lags, no integral time scale exists. In that case, the integral time 
scale can be approximated by integrating only to the first zero crossing of the 
autocorrelation function (cf. Poulain and Niiler, 1989). 

(6) Correlation analysis versus linear regression: Geophysical data are typically obtained 
from random temporal sequences or spatial fields that cannot be regarded as mutually 
independent.  Because the data series depend on time and/or spatial coordinates, the 
use of linear regression to study relationships between data series may lead to 
incomplete or erroneous conclusions. As an example, consider two time series: A 
white-noise series, consisting of identically distributed and mutually independent 
random variables, and the same series but with a time shift. As the values of the time 
series are statistically independent, the cross-correlation coefficient will be zero at 
zero lag, even though the time series are strictly linearly related. Regression analysis 
would show no relationship between the two series. However, cross-correlation 
analysis would reveal the linear relationship (a coefficient of unity) for a lag equal to 
the time shift. Correlation analysis is often a better way to study relations among time 
series than traditional regression analysis. 

5.4 F O U R I E R  A N A L Y S I S  

For many applications, we can view time series as linear combinations of periodic or 
quasi-periodic components that are superimposed on a long-term trend and random 
high-frequency noise. The periodic components are assumed to have fixed, or slowly 
varying amplitudes and phases over the length of the record. The trends might include 
a slow drift in the sensor characteristics or a long-term component of variability that 
cannot be resolved by the data series. "Noise" includes random contributions from the 
instrument  sensors and electronics, as well as frequency components that are outside 
the immediate range of interest (e.g. small-scale turbulence). A goal of time-series 
analysis in the frequency domain is to reliably separate periodic oscillations from the 
random and aperiodic fluctuations. Fourier analysis is one of the most commonly used 
methods for identifying periodic components in near-stationary time-series oceano- 
graphic data. (If the time series are strongly nonstationary, more localized transforms 
such as the Hilbert and Wavelet transforms should be used.) 
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The fundamentals of Fourier analysis were formalized in 1807 by the French 
mathematician Joseph Fourier (1768-1830) during his service as an administrator 
under Napoleon. Fourier  developed his technique to solve the problem of heat 
conduction in a solid with specific application to heat dissipation in blocks of metal 
being turned into cannons. Fourier 's basic premise was that any finite length, 
infinitely repeated time series, y(t), defined over the principal interval [0, T] can be 
reproduced using a linear summation of cosines and sines, or Fourier series, of the form 

y(t) = y(t) + ~ [Av cos (wpt) + Bp sin (wpt)] (5.4.1) 
P 

in which .9 is the mean value of the record, Ap, Bp are constants (the Fourier 
coefficients), and the specified angular frequencies, wp, are integer (p = 1, 2, ...) 
multiples of the fundamental frequency, wl = 2~fl = 27r/T, where T is the total length 
of the time series. Provided enough of these Fourier components are used, each value 
of the series can be accurately reconstructed over the principal interval. By the same 
token, the relative contribution a given component makes to the total variance of the 
time series is a measure of the importance of that particular frequency component in 
the observed signal. This concept is central to spectral analysis techniques. 
Specifically, the collection of Fourier coefficients having amplitudes Ap, Bp form a 
periodogram which then defines the contribution that each oscillatory component wp 
makes to the total "energy" of the observed oceanic signal. Thus, we can use the 
Fourier components to estimate the power spectrum (energy per unit frequency 
bandwidth) of a time series. Since both At,, Bp must be specified, there are two degrees 
of freedom per spectral estimate derived from the "raw" or unsmoothed periodogram. 

5.4.1 Mathematical formulation 

Let y(t) denote a continuous, finite-amplitude time series of finite duration. Examples 
include hourly sea-level records from a coastal tide gauge station or temperature 
records from a moored thermistor chain. If y is periodic, there is a period T such that 
y(t) = y(t + 7") for all t. In the language of Fourier analysis, the periodic functions are 
sines and cosines, which have the important properties that: 

(1) A finite number of Fourier coefficients achieves the minimum mean square error 
between the original data and a functional fit to the data series; 

(2) the functions are orthogonal so that coefficients for a given frequency can be 
determined independently. 

Suppose that the time series is specified only at discrete times by subsampling the 
continuous series y(t) at a sample spacing of At (Figure 5.4.1). Since the series has a 
duration T, there are a total of N = T/At  sample intervals and N + 1 sample points 
located at times y ( tn )=y(nAt ) - yn (n  = 0 ,  1, ..., N). Using Fourier analysis, it is 
possible to reproduce the original signal as a sum of sine or cosine waves of different 
amplitudes and phases. In Figure 5.4.1, we show a time seriesy(nAt) of 41 data points 
followed by plots of the first, second, and sixth harmonics that were summed to create 
the time series. The frequencies of these harmonics are f = 1/T, 2/T, and 6/T, 
respectively, and each harmonic has the form yk(nAt) = Ck cos [(27rkn/N + ~k] where 
(Ck, 4~h) are the amplitudes and phases of the harmonics for k - 1, 2, 6. Here, 
T = 40At and we have arbitrarily chosen (C1, 4~1) = (2, ~-/4), (C2, ~2) = (0.75, 7r/2), 
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Figure 5.4.1. Discrete subsampling of a continuous signal y(t). The sampling interval is At - 1 time unit 
and the fundamental frequency is f s = 1 /T  where T = NAt  is the total record length and N = 40. The 
signal y(t)  is the sum of the first, second, and sixth harmonics which have the form 

yk(nAt) = Ckcos[(27rkn/N) + cpk]; k = 1, 2, 6; n = O, 1, ..., ~0. 

and (C6, ~6)= (1.0, 7r/6). The N / 2  harmonic, which is the highest frequency 
component that can be resolved by this sampling, has a frequency 

f N -  ( N / 2 ) / N A t  = 1/2At cycles per unit time and a period of 2At. Called the 
sampling or Nyquist  frequency, this represents the highest frequency resolved by the 
sample series in question. (In Chapter 5, we have used the subscript N to denote the 
Nyquist frequency and there is no confusion between this property and the integer N, 
as in n = 1, 2 ,  ..., N, or the buoyancy frequency N(z ) . )  (In this chapter, we have used 
the subscript N to denote the Nyquist frequency fN, and there should be no confusion 
between this property and the integer N, as in n = 1, 2, ..., N, or the buoyancy 
frequency, N ( z ) . )  

The fundamental frequency, fl - 1/T, is used to construct y (t) through the infinite 
Fourier series 

9C 

y( t )  - ~Ao + ~ lap cos (apt) + Bp sin (~pt)] (5.4.2) 
p=l 
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in which 

% = 27rfp = 27vpf~ = 27rp/T; p = 1, 2, ... (5.4.3) 

is the frequency of the pth constituent in radians per unit time (fp is the corresponding 
frequency in cycles per unit time) and Ao/2 is the mean, or "DC" offset, of the time 
series. The factor of 1/2 multiplying A0 is for mathematical convenience. Note that the 
mean value is synonymous with the zero-frequency component obtained in the limit 
w ~ 0. Also, the length of the data record, T, defines both the lowest frequency, fl, 
resolvable by the data series and the maximum frequency resolution, Af = l /T ,  one 
can obtain from discretely sampled data. 

To obtain the coefficients Ap, we simply multiply equation (5.4.2) by cos (wpt) then 
integrate over all possible frequencies. The coefficients Bp, are obtained in the same 
way by multiplying by sin (wpt). Using the orthogonality condition for the product of 
trigonometric functions (which requires that the trigonometric arguments cover an 
exact integer number of 27r cycles over the interval (0, 7")), we find 

T 2/ 
Ap = ~ y(t)  cos (%t) dt, p = 0, 1, 2, ... (5.4.4a) 

0 

T 2/ 
Bp - - ~  y ( t ) s in  (%t) dt, p - 1, 2, ... (5.4.4b) 

0 

where the integral for p = 0 in (5.4.4a) yields A0 - 2~, twice the mean value ofy(t) for 
the entire record. Since each pair of coefficients (Ap, Bp) is associated with a frequency 
~p (or fp), the amplitudes of the coefficients provide a measure of the relative 
importance of each frequency component to the overall signal variability. For 

2 1/2 1/2 example, if (A 6 -4- B62) >> (/122 + B22) we expect there is much more "spectral 
energy" at frequency w6 than at frequency w2. Here, spectral . ~lcrgy refers to the 
amplitudes squared of the Fourier coefficients which repres(r,  the variance, and 
therefore the energy, for that portion of the time series. 

We can also express our Fourier series as amplitude and phase functions in the 
--compact Fourier series form 

OG 

y(t) - �89 + Z Cp cos (wpt - Op) (5.4.5) 
p=l  

in which the amplitude of the pth component is 

2 1/2 Cp - (A2 + Bp) , p - O ,  1,2, . . .  (5.4.6) 

where Co = Ao (Bo = 0) is twice the mean value and 

0p - tan-1 [Bp/Ap], p - 1, 2, ... (5.4.7) 

is the phase angle of the constituent at time t = 0. The phase angle gives the relative 
"lag" of the component in radians (or degrees) measured counterclockwise from the 
real axis (Bp = 0, Ap > 0). The corresponding time lag for the pth component is then 
tp = Op/27vfp in which Op is measured in radians. 
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The discrimination of signal amplitude as a function of frequency given by 
equations (5.4.2) and (5.4.5) provides us with the beginnings of spectral analysis. 
Notice that neither of these expressions allows for a trend in the data. If any trend is 
not first removed from the record, the analysis will erroneously blend the variance 
from the trend into the lower frequency components of the Fourier expansion. 
Moreover, we now see the need for the factor of 1/2 in the leading terms of (5.4.2) and 
(5.4.5). Without  it, the p = 0 components would equal twice the mean component, 

= 1A0 =  Co. 
Up to now we have assumed that y(t) is a scalar quantity. We can also expand the 

time series of a vector property, u(t). Included in this category are time series of 
current velocity from moored current meter arrays and wind velocity from moored 
weather buoys. Expressing vector time series in complex notation, we can write 

u(t) = u(t)+ iv(t) (5.4.8) 

where, for example, u and v might be the north-south and east-west components of 
current velocity in Cartesian coordinates. An individual vector can be expressed as 

oO 

u(t) - u(t) + Z [tip cos (wpt + at, ) + iBp sin (wpt +/3p)] 
p=l 

(5.4.9) 

Here, u(t) is the mean (time averaged) vector, ~ = ~ + iF, and (ap,/3p) are phase lags 
or relative phase differences for the separate velocity components. 

Vector quantities also can be defined through expressions of the form 

OO 

u(t) -- ~ + Z { e x p  [i(s~- + ep-)/2][(A~- +A~)cos[wpt + (s~ - e~,-)/2] 
p-l (5.4.10) 

+ i(A~- - A~) sin [wpt + (s~ - s~)/2]} 

in which A~- and A~- are, respectively, the lengths of the counterclockwise (+) and 
clockwise ( - )  rotary components of the velocity vector, and s~- and stT are the angles 
that these vectors make with the real axis at t = 0. The resultant time series is an 
ellipse with major axis of length L M - A ~  +A~ and minor axis of length 
Lm = ~ - A ~  I" The major axis is oriented at angle 0p - �89 (s~- + st;- ) from the u-axis 
and the current rotates counterclockwise when A~->A~- and clockwise when 
A~-<Ap-. The velocity vector is aligned with the major axis direction 0p when 

- ~ (st; - ~,-). Motions are said to be linearly polarized (rectilinear) if the two wt, t = 1 + 
oppositely rotating components are of the same magnitude and circularly polarized if 
one of the two components is zero. In the northern (southern) hemisphere, motions 
are predominantly clockwise (counterclockwise) rotary. Further details on rotary 
decomposition are presented in Sections 5.6 and 5.8. 

5.4 .2  D i s c r e t e  t i m e  s e r i e s  

Most oceanographic time or space series, whether they were collected in analog or 
digital form, are eventually converted to digital data which may then be expressed as 
series expansions of the form (5.4.2) or (5.4.5). These expansions are then used to 
compute the Fourier transform (or periodogram) of the data series. The basis for this 
transform is Parseval's theorem which states that the mean square (or average) energy 
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of a time series y(t)  can be separated into contributions from individual harmonic 
components to make up the time series. For example, if9 is the sample mean value of 
the time series, yp is the contribution from the nth data value and N is the total 
number  of data values in the time series, then the mean square value of the series 
about its mean (i.e. the variance of the time series) 

cy2_ 1 N 
- N - 1 E [Yn --.9] 2 (5 .4 .11 )  

n--1 

provides a measure of the total energy in the time series. The variance (5.4.11) also can 
be obtained by summing the contributions from the individual Fourier harmonics. 
This kind of decomposition of discrete time series into specific harmonics leads to the 
concept of a Fourier line spectrum (Figure 5.4.2). 

To determine the energy distribution within a time series, y(t) ,  we need to find its 
Fourier  transform. That  is, we need to determine the coefficients Ap, Bp in the Fourier 
series (5.4.2) or, equivalently, the amplitudes and phase lags, Cp, 0p in the Fourier 
series (5.4.5). Suppose that we have first removed any trend from the data record. For 
any time t,, the Fourier series for a finite length, de-trended digital record having N 
(even) values at times tn = t], t2, ... , tN, is 

N/2 

y(t~) : ~ o  + Z 
p = l  

lap cos (wpt.) + Bp sin (wpt.) ] (5.4.12) 

where the angular frequency co,, - 2rrf; = 2rrp/T. Using tn - n. A t  together with (5.4.6) 
and (5.4.7), the final form for the discrete, finite Fourier series becomes �9 

s. 100 

o 

U 

~ 8 0  
U 

U 

a 
= 60 

m 
U 

o 40 

o ~ 

~ 20 L 

o 

,I , 

0 1/12 1/6 I/4 1/3 
J I 

5/12 1/2 

f (Cycles per hour) 

Figure 5.4.2. An example of a Fourier line spectrum with power at discrete frequencies, f, for a 24-h 
duration record with l-h sampling increment. 
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N/2 

y(tn) - ~Ao + ~-~[A~ cos (27rpn/N)+Bp sin (27rpn/N)] 
p=l  

N/2 

- �89 + ~ Cp cos [(27rpn/N) - Op] 
p=l  

(5.4.13) 

where the leading terms, ~Ao and �89 are the mean values of the record. The 
coefficients are again determined using the orthogonality condition for the trigono- 
metric functions. In fact, the main difference between the discrete case and the 
continuous case formulated in the last section (aside from the fact we can no longer 
have an infinite number of Fourier components) is that coefficients are now defined 
through the summations rather than through integrals 

~y~cos (27 rpn /N) ,  p - O 1 2 N / 2  
2 

A p - - ~  , , ,..., 
n=l 
~ y  

2 
~ y ~ ,  B0 - 0 A0 
n=l 

1 
~ y n  cos (nTr), BN/2 = 0 AN~2 = -~ 
n=l 

Bp -N2  ~ y ,  sin (27rpn/N), p - 1, 2, ..., (N/2) - 1 (5.4.14) 
n=l 

Notice that the summations in equations (5.4.14) consist of multiplying the data 
record by sine and cosine functions which "pick out" from the record those frequency 
components specific to their trigonometric arguments. Remember, the orthogonality 
condition requires that the arguments in the trigonometric functions be integer 
multiples of the total record length, T = NAt ,  as they are in equation (5.4.14). If they 
are not, the sines and cosines do not form an orthonormal set of basis functions for the 
Fourier expansion and the original signal cannot be correctly replicated. 

The arguments 27rpn/N in the above equations are based on a hierarchy of equally 
spaced frequencies wp = 27rp/(NAt) and time increment "n". The summation goes to 
N/2 which is the limit of coefficients we can determine; for p > N/2 the trigonometric 
functions simply begin to cause repetition of coefficients already obtained for the 
interval p <_ N/2 .  Furthermore, it should be obvious that because there are as many 
coefficients as data points and because the trigonometric functions form an orthogonal 
basis set, the summation over the 2(N/2) = N discrete coefficients provides an exact 
replication of the time series, y(t). Small differences between the original data and the 
Fourier series representation arise because of roundoff errors accumulated during the 
arithmetic calculations (see Chapter 3). 

The steps in computing the Fourier coefficients are as follows. Step 1: calculate the 
arguments ~pn = 27rpn/N for each integer p and n. Step 2: for each n = 1, 2, . . . ,  N, 
evaluate the corresponding values of cos~pnand sin'bpn, and collect sums of 
Yn" cos ~I, pn and Yn" sin ~I,p,. Step 3: Increment p and repeat steps 1 and 2. The proce- 
dure requires roughly N 2 real multiply-add operations. For any real data sequence, 
roundoff errors plus errors associated with truncation of the total allowable number of 
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desired Fourier components (maximum fp < fN/2) will give rise to a less than perfect 
fit to the data. The residual Ay(t) =y( t )  - yps ( t )  between the observationsy(t) and the 
calculated Fourier series yps(t) will diminish with increased computational precision 
and increased numbers of allowable terms used in the series expansion. When 
computing the phases 0p = tan-l[Bp/Ap] in the formulation (5.4.13), one must take 
care to examine in which quadrants Ap and Bp are situated. For example, 
tan -I (0.2/0.7) differs from tan -1 ( - 0 . 2 / -  0.7) by 180 ~ The familiar ATAN2 function 
in FORTRAN is especially designed to take care of this problem. 

5.4.3 A computational example 

The best way to demonstrate the computational procedure for Fourier analysis is with 
an example. Consider the two-year segment of monthly mean sea surface temperatures 
measured at the Amphitr i te  light station off the southwest coast of Vancouver Island 
(Table 5.2). Each monthly value is calculated from the average of daily surface 
thermometer  observations collected around noon local time and tabulated to the 
nearest 0.1~ These data are known to contain a strong seasonal cycle of warming and 
cooling which is modified by local effects of runoff, tidal stirring and wind mixing. 

The data in Table 5.2 are in the form y(tn), where n - 1, 2, ... , N (N - 24). To 
calculate the coefficients Ap and B v for these data, we use the summations (5.4.14) for 
each successive integer p, up to p - N/2. These coefficients are then used in (5.4.6) to 
calculate the magnitude Cp - (Ap 2 + Bp2) 1/2 for each frequency component, fp = p/T. 
Since  Cp 2 is proportional to the variance at the specified frequency, the Cp enable us to 
rate the order of importance of each frequency component in the data series. 

The mean value y(t) - �89 and the 12 pairs of Fourier coefficients obtainable from 
the temperature record are listed in Table 5.3 together with the magnitude Cp. Values 
have been rounded to the nearest 0.01 ~ The Nyquist frequency, f N, is 0.50 cycles per 
month (cpmo, p = 12) and the fundamental frequency, fl, is 0.042 cpmo (p = 1). As we 
would anticipate from a visual inspection of the time series, the record is dominated 
by the annual cycle (period = 12 months) followed by weaker contributions from the 
bi-annual cycle (24 months) and semi-annual cycle (six months). For periods shorter 
than six months, the coefficients C v have similar amplitudes and likely represent the 
roundoff errors and background "noise" in the data series. This suggests that we can 
reconstruct the original time series to a high degree of accuracy using only the mean 
value (p = 0) and the first three Fourier coefficients (p = 1, 2, 3). 

Figure 5.4.3 is a plot of the original sea surface temperature (SST) time series and 
the reconstructed Fourier fit to this series using only the first three Fourier 
components from Table 5.3. Comparison of these two time series, shows that the 
reconstructed series does not adequately reproduce the skewed crest of the first year 
nor the high-frequency "ripples" in the second year of the data record. There also is a 

Table 5.2. Monthly mean sea surface temperatures SST (~ at Amphitrite Point (48~ 
125~ on the west coast of Canada for January 1982 through December 1983 

Year 1982 
n 1 2 3 4 5 6 7 8 9 10 11 12 
SST 7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 9.0 

Year 1983 
n 13 14 15 16 17 18 19 20 21 22 23 24 
SST 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1 
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Table 5.3. Fourier coefficients and frequencies for the Amphitrite Point monthly mean temperature data. 
Frequency is in cycles per month (cpmo). Ao/2 is the mean temperature and Op is the phase lag for the pth 
component taken counterclockwise from the positive Ap axis 

Freq. Period Coeff. Coeff. Coeff. Phase 0p 
p (cpmo) (month) Ap (~ Bp (~ Cp (~ (degrees) 

0 0 - 21.89 0 21.89 0 
1 0.042 24 -0.55 -0.90 1 .05 -121.4 
2 0.083 12 - 1.77 - 1.99 2.67 - 131.7 
3 0.125 8 0.22 -0.04 0.23 -10.3 
4 0.167 6 -0.44 -0.06 0.45 - 172.2 
5 0.208 4.8 0.09 -0.07 0.11 -37.9 
6 0.250 4 0.08 -0.04 0.09 -26.6 
7 0.292 3.4 0.01 -0.16 0.16 -58.0 
8 0.333 3 -0.03 -0.16 0.16 -100.6 
9 0.375 2.7 -0.14 0.05 0.15 160.3 

10 0.417 2.4 -0.09 -0.07 0 .11  -142.1 
11 0.458 2.2 -0.08 -0.12 0.14 -123.7 
12 0.500 2 -0.15 0 0.15 0 

15 

r~  14 i t 

/ t '  ' I0 ~. 

~ 8 ~ 9 ~ J  " ~ ' ~ ~  SST observe d 

r~ 7 [-- - - - SST FFT Fit 

b r~ 6 

S [ -  1 I 1 I I ! I I ! , , I  I I 
0 2 4 6 8 10 12 14 16 18 20 22 24 

Time (months) 

Figure 5.4.3. Monthly mean sea surface temperature (SST) record for Amphitrite Point on the west coast 
of Vancouver Island (see Table 5.1). The bold line is the original 24-month series; the dashed line is the 
S S T  time series generated using the first three Fourier components, fp, p - O, 1, 2, corresponding to the 

mean, 24-month, and 12-month cycles (Fourier components appear in Table 5.2). 

slight mismatch in the maxima and minima between the series. Differences between 
the two curves are typically a round a few tenths of a degree. In contrast, if we use all 
12 components  in Table 5.3, corresponding to 24 degrees of freedom, we get an exact 
replica of the original time series to within machine accuracy. 

5.4.4 Fourier analysis for specified frequencies 

Analysis of t ime series for specific frequencies is a special case of Fourier  analysis that 
involves adjus tment  of the record length to match the periods of the desired Four ier  
components .  As we illustrate in the following sections, analysis for specific frequency 
components  is best conducted using least-squares fitting methods rather than Four ier  
analysis. Least-squares analysis requires that there be many fewer consti tuents  than 
data values, which is usually the case for tidal analysis at the well-defined frequencies 
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of the tide-generating potential. Problems arise if there are too few data values. For 
example, suppose that we have a few days of hourly water level measurements and we 
want to use Fourier analysis to determine the amplitudes and phases of the daily tidal 
constituents, fk. To do this, we need to satisfy the orthogonality condition for the 
trigonometric basis functions for which terms like f cos (27rfjt)cos (2~fkt)dt are zero 
except where fj = fk (the integral is over the entire length of the record, 7). The 
approach is only acceptable when the length of the data set is an integer multiple of all 
the harmonic frequencies we are seeking. That is, the specified tidal frequencies fk 
must be integer multiples of the fundamental frequency, f~ - 1/T, such that 
fk" T = 1, 2, ..., If this holds, we can use Fourier analysis to find the constituent 
amplitudes and phases at the specified frequencies. In fact, this integer constraint on 
fk" T is a principal reason why oceanographers prefer to use record lengths of 14, 29, 
180, or 355 days when performing analyses of tides. Since the periods of most of the 
major tidal constituents (K~, M2, etc.) are integer multiples of the fundamental tidal 
periods (one lunar day, one lunar month ~ 29 days, one year, 8.8 years, 18.6 years, etc.) 
of the above record lengths, the analysis is aided by the orthogonality of the trigono- 
metric functions. 

A note for those unfamiliar with tidal analysis terminology: Letters of tidal 
harmonics identify the different types ("species") of tide in each frequency band. 
Harmonic components of the tide-producing force that undergo one cycle per lunar 
day (~ 25 h) have a subscript 1 (e.g. K1), those with two cycles per lunar day have 
subscript 2 (e.g. M2), and so on. Constituents having one cycle per day are called 
diurnal constituents, those with two cycles per day, semidiurnal constituents. The 
main daily tidal component, the K~ constituent, has a frequency of 0.0418 cph 
(corresponding to an angular speed of 15.041 ~ per mean solar hour) and is associated 
with the cyclic changes in the luni-solar declination. The main semidiurnal tidal 
constituent, the M2 constituent, has a frequency of 0.0805 cph (corresponding to an 
angular speed of 28.984 ~ per mean solar hour) and is associated with cyclic changes in 
the lunar position relative to the earth. Other major daily constituents are the O1, P1, 
$2, N2, and K2 constituents. In terms of the tidal potential, the hierarchy of tidal 
constituents is M2, K1, $2, 01, P1, N2, K2, .... Other important tidal harmonics are the 
lunar fortnightly constituent, Mf, the lunar monthly constituent, Mm, and the solar 
annual constituent, Sa. For further details the reader is referred to Thomson (1981) 
and Foreman (1977). 

Returning to our discussion concerning Fourier analysis at specified tYequencies, 
consider the 32-h tide gauge record for Tofino, British Columbia presented in Figure 
5.4.4. As we show in Section 5.5, least-squares analysis can be used to reproduce this 
short record quite accurately using only the K~ tidal constituent and the M2 
constituent. These are the dominant tidal constituents in all regions of the ocean 
except near amphidromic points. Because the record is 32 h long, the diurnal and 
semidiurnal frequencies are not integer multiples of the fundamental frequency fl = 
1/T = 0.031 cph and are not among the sequence of 16 possible frequencies generated 
from the Fourier analysis. In order to have frequency components centered more 
exactly at the K1 and M2 frequencies, we would need to shorten the record to 24 h or 
pad the existing record to 48 h using zeros. In either case, thefk. T for the tides would 
then be close to integers and a standard Fourier analysis would give an accurate fit to 
the observed time series. If we stick with the 32-h series, we find that the tidal energy 
in the diurnal and semidiurnal bands is partitioned among the first three Fourier 
components at frequencies fl - 0.031, f2 = 0.062, and f3 = 0.093 cph. These 
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Figure 5.4.4. Hourly sea-level height (SLH) recorded at Tofino on the west coast of Vancouver Island 
(see Table 5. 7). The bold line is the original 32-h series; the dotted line is the SLH series generated using 
the mean (p = O) plus the next three Fourier components, fp, p = 1, 2, 3 having nontidal periods Tp of 

32, 16, and 8 h, respectively. 

frequencies are only vaguely close to those of the diurnal and semidiurnal constituents 
but do span the energy-containing frequency bands. As a result, the time series 
generated from the record mean combined with the first three Fourier components (p 
= 1, 2, 3) closely approximates the time series obtained using the true tidal fre- 
quencies (see Figure 5.5.2). 

5.4.5 The fast Fourier transform 

One of the main problems with both the autocovariance and the direct Fourier 
methods of spectral estimation is low computational speed. The Fourier method 
requires the expansion into series of sine and cosine terms--a ~ time-consuming 
procedure. The fast Fourier transform (FFT) is a way to speed up this computation 
while retaining the accuracy of the direct Fourier method. This makes the Fourier 
method computationally more attractive than the autocovariance approach. 

To illustrate the improved efficiency of the FFT method, consider a series of N 
values for which N - 2 p (p is a positive integer). The discrete Fourier transform of this 
series would require N 2 operations whereas the FFT method requires only 8Nlog2N 
operations. The savings in computer time can be substantial. For example, if N = 
8192, N 2 = 67,108,864 while 8Nlog2N = 851,968. Computers are much faster now than 
when the FFT method was introduced but the relative savings in computational 
efficiency remains the same. Bendat and Piersol (1986) define the speed ratio between 
the F F T  and discrete Fourier method as N/4p.  This becomes increasingly more 
important as the number of terms increases since the direct method computational 
time is O ( N  2) while for the FFT method it is O(N). If one is seeking a smoothed power 
spectrum, it is often more efficient to compute the spectrum using the FFT technique 
and then smooth in spectral space by averaging over adjoining frequency bands rather 
than smoothing with an autocovariance lag window in the time domain. 
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a power of 2, it should be padded with zeros up to the next power of two. For a series of 
length N - 2p (p a positive integer), the procedure is followed until partitions consist 
of only one term whose Fourier transform equals itself, or the procedure is followed 
until N becomes a prime number, i.e. N = 3. The Fourier transform is then found 
directly for the remaining short series. 

5.5 H A R M O N I C  A N A L Y S I S  

Standard Fourier analysis involves the computation of Fourier amplitudes at equally 
spaced frequency intervals determined as integer multiples of the fundamental 
frequency, fl. That is, for frequencies fl, 2fl, 3fl, . . . ,  fN (fN -- Nyquist frequency). 
However, as we have shown in the previous section, standard Fourier analysis is not 
much use when it comes to the analysis of data series in terms of predetermined 
frequencies. In the case of tidal motions, for example, it would be silly to use any 
frequencies except those of the astronomical tidal forces. Equally important, we want to 
determine the amplitudes and phases of as many frequency components as possible by 
using as short a time series as possible. Since there are typically many more data values 
than there are prescribed frequencies, we have to deal with an overdetermined problem. 
This leads to a form of signal demodulation known as harmonic analysis in which the user 
specifies the frequencies to be examined and applies least-squares techniques to solve 
for the constituents. Harmonic analysis was originally designed for the analysis of tidal 
variability but applies equally to analysis at the annual and semi-annual periods or any 
other well-defined cyclic oscillation. The familiar hierarchy of "harmonic" tidal consti- 
tuents is dominated by diurnal and semidiurnal motions, followed by fortnightly, 
monthly, semi-annual, and annual variability. In this section, we present a general 
discussion of harmonic analysis. The important subject of harmonic analysis of tides 
and tidal currents is treated separately in Section 5.5.3. 

The harmonic analysis approach yields the required amplitudes and phase lags of 
the harmonic tidal coefficients or any other constituents we may wish to specify. Once 
these coefficients have been determined, we can use them to reconstruct the original 
time series. In the case of tidal motions, subtraction of the reconstructed tidal signal 
from the original record yields a time series of the nontidal or residual component of 
the time series. In many cases, it is the residual or "de-tided" signal that is of primary 
interest. If we break the original time series into adjoining or overlapping segments, 
we can apply harmonic analysis to the segments to obtain a sequence of estimates for 
the amplitudes and phase lags of the various frequencies of interest. This leads to the 
notion of signal demodulation. 

5.5.1 A least-squares method 

Suppose we wish to determine the harmonic constituents Aq and Bq for M specified 
frequencies which, in general, will differ from the Fourier frequencies defined by 
(5.4.3). In this case, q = 0, 1, ... ,  M and B0 = 0 so that there are a total of 2M + 1 
harmonic coefficients. Assume that there are many more observations, N, than 
specified coefficients (i.e. that 2M + 1 << N). The problem of fitting M harmonic 
curves to the digital time series is then overdetermined and must be solved using an 
optimization technique. Specifically, we estimate the amplitudes and phases of the 
various components by minimizing the squared difference (i.e. the least squares) 
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between the original data series and our fit to that series. The coefficients for each of 
the M resolvable constituents are found through solution of a (M + 1) • (M + 1) 
matrix equation. 

For M possible harmonic constituents, the time series x(tn), n = 1, ... , N can be 
expanded as 

M 

x( t , )  - ~ + ~ Cq cos (27rfqt, - Cbq) + Xr(tn) (5.5.1) 
q=l 

in which x(t) is the mean value of the record, xr is the residual portion of the time 
series (which may contain other kinds of harmonic constituents), tn -- nAt ,  and where 
Cq, fq and 4~q are respectively the constant amplitude, frequency and phase of the qth 
constituent that we have specified. In the present configuration, we assume that the 
specified frequencies have the form fq = q / N A t  so that the argument 
27rfqtn = 27rqn/N. Reformulation of equation (5.5.1) as 

M 

x( t , )  = ~ + ~ [Aq cos (27rfqtn) + Bq sin (27rfqt,)] + Xr(tn) 
q=l 

(5.5.2) 

yields a representation in terms of the unknown coefficients Aq, Bq where 

2 {__ 2 1/2 Cq - (Aq Bq) , ( f r e q u e n c y  c o m p o n e n t  a m p l i t u d e )  

c~q - t an - l (Bq /Aq) ,  (frequency component phase lag) 
(5.5.3) 

for q = 0, ..., M. To reduce roundoff errors (Section 3.17.3), the mean value, 2, should 
be subtracted from the record prior to the computation of the Fourier coefficients. 

The objective of the least-squares analysis is to minimize the variance, e 2, of  the 
residual time series Xr(tn) in equation (5.5.2), where 

e 2 - ~ x r (t~) = ~ X(tn) -- + ~ M ( t . )  (5.5.4) 
n=l n=l q=l 

and where for convenience we define ~ M  as 

M M 

M(tn) - ~ [Aq cos (27rfqtn) + Bq s in  (27rfqtn)] 
q=l q=l 

M 

= Z [Aq cos (27rqn/N) + Bq s in  (27rqn/N)] 
q=l 

(5.5.5) 

Taking the partial derivatives of (5.5.4) with respect to the unknown coefficients Aq 
and Bq, and setting the results to zero, yields 2M + 1 simultaneous equations for the 
M + 1 constituents 

( )] } OAq = O = 2 ~ n-- x + Z M [-cos(27rqn/N)]  , k = O, ..., M 
n--1 (5 .5 .6)  

0e  2 N 
= 0 = 2  Z { [ x n -  ( 2 + Z M ) ] [ - s i n ( 2 7 r q n / N ) ] } ,  k - 1 , . . . , M  

n=l OBq 
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and from (5.5.9) and (5.5.11) 

yco 262.70 

ycl -25330 
y - yc2 - - . (5.5.14) 

ysl -23.87 
ys2 -0 .69 

where the elements of y have units of ~ The solution z = D - l y  is the vector 

A0 10.95 
A1 -1 .77  

z -- A2 - -0 .44  (5.5.15) 
B1 - 1.99 
B2 -0 .06  

with units of ~ The results are summarized in Table 5.4. As required, the ampli tudes 
and phases of the annual and semi-annual constituents are identical to those obtained 
using Fourier  analysis (see Table 5.3). A plot of the original temperature record and 
the least-squares fitted curve using the annual and semi-annual constituents is 
presented in Figure 5.5.1. The standard deviation for the original record is 2.08~ 

Table 5.4. Coefficients for the annual and semi-annual frequencies from a least-squares analysis of the 
Amphitrite Point monthly mean temperature series (Table 5.2). Frequency units are cycles per month 
(cpmo). q - 0 gives the mean value for the 24-month record. Other coefficients are defined through 
equation (5.5.3) 

Frequency Period 
q (cpmo) (month) Aq (~ Bq (~ Cq (~ 

0 - - 10.95 0.0 10.95 
2 0.083 12 -1.77 -1.99 2.67 
4 0.167 6 -0.44 -0.06 0.45 

o 13 

7' X, x > "  ,,., 11 l i  / /  
=' !- / \ / , '  ' 10 ## 

~ V / 
o 
el 8 I - - 7 /  

/ ~ /  Observed data t.1 
7 I-- 

/ - - - Fitted data 
a 6 P 

5 1 - -  L.. I ! I . . I  I ! I 1__  I I I 
O 2 4 6 8 10 12 14 16 18 20 22 24 

T i m e  ( m o n t h s )  

Figure 5.5.1. Monthly mean sea surface temperature (SST) record for Amphitrite Point on the west coast 
of Vancouver Island (see Table 5.2). The bold line is the original 24-month series. The dashed line is the 
S S T  time series obtained from a least-squares fit of the annual (12 month) and semi-annual (six month) 

cycles to the mean-removed data (see Table 5.3). 
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while that for the fitted record is 1.91~ For this short segment of the data record, the 
two constituents account for 91.7% of the total variance. 

5.5.3 Harmonic analysis of tides 

Harmonic analysis is most useful for the analysis and prediction of tide heights and 
tidal currents. The use of this technique for tides appears to have originated with Lord 
Kelvin (1824-1907)around 1867. Lord Kelvin (Sir William Thomson) is also credited 
with inventing the first tide-predicting machine, although the first practical use of 
such a device was not made until several years later. A discussion of tidal harmonic 
analysis can be found in the Admiralty Manual of Tides (Doodson and Warburg, 1941) 
and Godin (1972). Definitive reports on the least-squares analysis of current and tide- 
height data were presented by Foreman (1977, 1978). 

The least-squares harmonic analysis method has a variety of attractive features. It 
permits resolution of several hundred tidal constituents of which 45 are typically 
astronomical in origin and identified with a specific frequency in the tidal potential. 
The remaining constituents include shallow water constituents associated with bottom 
frictional effects and nonlinear terms in the equations of motion as well as radiational 
constituents originating with atmospheric effects. Both scalar and vector time series 
can be analyzed, with processing of vector series such as current velocity considerably 
more complex than processing of scalar time series such as sea level and water 
temperature. If the record is not sufficiently long to permit the direct resolution of 
neighboring components in the diurnal and semidiurnal frequency bands, the analysis 
makes provision for the "inference" and subsequent inclusion of these components in 
the analysis. For example, in the case of the diurnal constituent, P~, associated with 
the sun's declination, the phase and amplitude are obtained by lowering the resolution 
criterion (called the Rayleigh criterion) for the separation of frequencies until P1 is just 
resolved. The amplitude ratio (amp P1/amp K1) and phase difference (phase Pl-phase 
K1) relative to the readily resolved diurnal constituent K1 can then be calculated and 
used to calculate the P1 constituent for the original record. Equally importantly, the 
method allows for gaps in the time series by ignoring those times for which there are 
no data. Major features of the least-squares optimization procedure for tidal analysis 
are outlined below. 

The aim of least-squares analysis is to estimate the tidal harmonic constituent 
amplitudes and phases which can then be used for long-term tidal predictions. The 
commonly used sampling interval for tidal analysis is 1 h, so that even data collected 
at shorter time intervals are usually averaged to 1 h intervals for standard analysis 
packages. Records must have a minimum length of 13 h in order that they incorporate 
at least one cycle of the M2 tidal frequency (period, 12.42 h). The mean component Zo 
is also included. As the length of the record is increased, additional constituents can 
be added to the analysis. (As noted in Chapter 1, our ability to resolve adjacent 
frequencies improves with the length of the time series. Aside from the degree of noise 
in the data, the main factor limiting the number of derived tidal constituents is the 
length of the record.) For example, the K1 constituent (period, 23.93 h) can be 
adequately determined once the record length exceeds 24 h, although less reliable 
estimates can be made for shorter record lengths. The criteria for deciding which 
constituents can be included is discussed in the next section. In essence, inclusion 
requires that the difference in frequency, Af, between a given constituent and its so- 
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called Rayleigh reference constituent be greater than the fundamental frequency for the 
record; i.e. Af >_fl - 1/T(see following discussion). 

5.5.4 Choice of constituents 

The least-squares method can be applied to any combination of tidal frequencies. 
However, the rational approach is to pick the allowable frequencies on the basis of two 
factors: (1) their relative contribution to the tide-generating potential; and (2) their 
resolvability in relation to a neighboring principal tidal constituent. In other words, 
the constituent should be one that makes a significant contribution to the tide- 
generating force and the record should be of sufficient duration to permit accurate 
separation of neighboring frequencies. Consideration should also be given to the 
required computational time, which increases roughly as the square of the number of 
constituents used in the analysis. Due to noise limitations, the amplitudes of many 
constituents are too small to be adequately resolved by most oceanic data sets. 

To determine whether a specific constituent should be included in the tidal analysis, 
the frequency fm of the constituent is compared to the frequency of the neighboring 
Rayleigh comparison constituent, fR. The constituent can be included provided 

[f~ - f R I T -  t~flT > e (5.5.16) 

where T is the record length and R is typically equal to unity (depending on 
background noise). In effect, equation (5.5.16) states that f,,, should be included iffR is 
an included frequency and the ratio of the frequency difference Af to the fundamental 
frequencyfl - 1/T is greater than unity. This implies that the fundamental frequency, 
which corresponds to the best resolution (separation) achievable on the frequency 
axis, is less than the frequency separation between constituents. Values of R < 1 are 
permitted in the least-squares program to allow for approximate estimates of 
neighboring tidal frequencies for record lengths T shorter than 1/Af. Obviously, the 
longer the record, the more constituents are permitted. 

The choice offR is determined by the hierarchy of constituents within the tidal band 
of interest and level of noise in the observations. The hierarchy is in turn based on the 
contribution a particular constituent makes to the equilibrium tide, with the largest 
contribution usually coming from the M2 tidal constituent (Cartwright and Edden, 
1973). For the major contributors to the equilibrium tide, the magnitude ratios 
relative to M2 in descending order are: K1/M2 = 0.584, $2/M2 = 0.465, and O1/M2 = 
0.415. Depending on the level of noise in the observations, the principal semidiurnal 
constituent M2 (0.0805 cph) and the record mean Zo can be determined for records 
longer than about 13 h duration, while the principal diurnal component K1 
(0.0418 cph) can be determined for records longer than about 24 h. As a rough 
guide, separation of the next most significant semidiurnal constituent $2 (0.0833 cph) 
from the principal component M2 requires a record length T > l /Lf(M2)-f($2)]--  
355 h (14.7 days). Similarly, separation of the next most significant diurnal 
constituent, O1 (0.0387 cph), from the principal component, K1, requires an 
approximate record length T > 1/f(K1) -f(O1)l = 328 h (13.7 days). The frequencies 
f(Ki) and f(O1) then become the Rayleigh comparison frequencies for other 
neighboring tidal constituents in the diurnal band while the frequencies f(M2) and 
f(S2) become the comparison frequencies for neighboring frequencies in the 
semidiurnal band. Extension of this procedure to longer and longer records eventually 
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Table 5.5. Record lengths to resolve main tidal constituents in the semidiurnal tidal band assuming a 
Rayleigh coefficient R - 1. Also listed are the comparison constituents and ratios of tidal potential to 
that of the principal semidiurnal constituent M2 

. . . . . . .  

Tidal Frequency Comparison Magnitude Record 
constituent (cph) constituent ratio length (h) 

M2 (principal 0.0805 
lunar) 
$2 (principal 0.0833 
solar) 
N2 (larger 0.0790 
lunar elliptic) 
K2 (luni-solar) 0.0836 

M2 

M2 

$2 

1 13 

0.465 355 

0.192 662 

0.029 4383 

Table 5.6. Record lengths to resolve main tidal constituents in the diurnal tidal band assuming a Rayleigh 
coefficient R - 1. Also listed are the comparison constituents and ratios of tidal potential to that of the 
principal semidiurnal constituent, M2 

. . . . . . . . . . . . . .  

Tidal Frequency Comparison Magnitude Record 
constituent (cph) constituent ratio length (h) 

KI (luni-solar) 0.0418 - 0.584 24 
O1 (principal 0.0387 K1 0.415 328 
lunar) 
P1 (principal 0.0416 K~ 0.193 4383 
solar) 
Q1 0.0372 O1 0.079 662 

Table 5.7. Record lengths to resolve main tidal constituents in the long-period tidal band assuming a 
Rayleigh coefficient R - 1. Also listed are the comparison constituents and ratios of tidal potential to 
that of the principal semidiurnal constituent, M2 
. . . . . .  . . . . . . . . . . . . . . . . .  

Tidal Frequency Comparison Magnitude Record 
constituent (cph) constituent ratio length (h) 

Msf (mixed 0.002822 Mf 0.015 
solar fortnightly) 
Mf (lunar 0.003050 - 0.172 
fortnightly) 
Mm (lunar 0.001512 Msm 0.091 
monthly) 
Msm (solar 0.001310 - 0.017 
monthly) 
Ssa (solar 0.000228 Sa 0.080 
semi-annual) 
S~ (solar 0.000114 - 0.013 
annual) 

. . . . . .  , , , ,, 

355 

4383 

764 

4942 

4383 

8766 
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Table 5.8. Hourly values of sea-level height (SLH) measured at Tofino, British Columbia (49~ 
125~ ' W) on the west coast of Canada starting 10 September 1986. Heights are in meters above the 
local datum 

n 1 2 3 4 2 6 7 8 9 10 11 
SLH 1.97 1.46 0.98 0.73 0.67 0.82 1.15 1.58 2.00 2.33 2.48 

n 12 13 14 15 16 17 18 19 20 21 22 
SLH 2.43 2.25 2.02 1.82 1.72 1.75 1.91 2.22 2.54 2.87 3.10 

n 23 24 25 26 27 28 29 30 31 32 
SLH 3.15 2.94 2.57 2.06 1.56 1.13 0.84 0.73 0.79 1.07 

where the elements  of D and y have units of meters. The solution z -  D - l y  is the 

vector 

A0 1.992m 
Al 0.186m 

z = A2 - 0.523 m (5.5.20) 
B1 - 0 . 5 7 4 m  
B2 -0 .604  m 

The results are summar ized  in Table 5.9. A plot of the original sea-level data and the 

fitted sea-level curve are presented in Figure 5.5.2. The s tandard deviation for the 
original record is 0.741 m while that for the fitted record is 0.736 m. For this short 
segment  of the data record, the sum of the two tidal consti tuents accounts for over 99% 
of the total variance in the record. As a comparison, we have used the full analysis 
package wi thout  inference to analyze 29 days of the Tofino sea-level record beginning 
at 2000 on 10 September  1986. The program finds a total of 30 constituents,  including 
the mean,  Zo, with the sum of the tidal constituents accounting for 98% of the original 
variance in the signal. The record mean for the month is 2.05 m, and the K~ and M2 

const i tuents  have ampli tudes of 0.286 and 0.986 m, respectively. As expected, these 
are quite different to the values derived on only 32 h of data (Table 5.9). Phases for the 

two const i tuents  for the 29-day records are 122.0 ~ and 12.5 ~ compared with 107.9 ~ and 
130.9 ~ for the same two consti tuents  based on the 32-h records (angles in both cases 
are measured  counterclockwise from the positive x axis). 

Table 5.9. Least-squares estimates of the amplitude and phase of the K1 and M2 tidal constituents for the 
32-h Tofino sea level starting at 2000, 10 September 1986. The mean is ~Ao. The last column, C'q, gives 
the constituent amplitudes for a more extensive analysis that used a 29-day (685 h) data segment that 
had the same start time as the 32-h segment used to derive Cq 

Frequency Period A q B q Cq C a 
q (cph) (h) (m) (m) (m) (m) 

0 - - 3.984 0 3.984 4.100 
1 0.042 24 0.186 -0.574 0.365 0.286 
2 0.081 12 0.523 -0.604 0.638 0.986 
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Figure 5.5.2. ttourly sea-level height (SLH) recorded at Tofino on the west coast of Vancouver Island 
(see Table 5. 7). The solid line is the original 32-h series; the dotted line is the S L H  series obtained from a 
least-squares fit of the main diurnal (K1, 0.042 cph) and main semidiurnal (M2, 0.081 cph) tidal 

frequencies to the mean-removed data (see Table 5.8). 

5.5.6 C o m p l e x  d e m o d u l a t i o n  

In many applications, we seek to determine how the signal characteristics at a specific 
frequency, co, change throughout the duration of a time series. For example, we might 
ask how the amplitude, phase, and orientation of the semidiurnal tidal current ellipses 
at different depths at a mooring location change with time. Wave packets associated 
with passing internal tides would be revealed through rapid changes in ellipse 
parameters at the M2 and/or $2 frequencies. The method for determining the temporal 
change of a particular frequency component for a velocity or scalar time series is 
called complex demodulation. 

A common technique for finding the demodulated signal is to fit the desired 
parameters to sequential segments of the data series using least-squares algorithms. 
The analysis requires that there be many more data points than frequency components 
and each segment must span at least one cycle of the frequency of interest. As with any 
least-squares analysis, the observations do not have to be at regular time intervals. 
Inputs to complex demodulation algorithms require specification of the start time of 
the first segment, the length of each segment, and the time between computation 
interval start times. Computation intervals may overlap, be end-to-end, or be inter- 
spersed with unused data. Following the least-squares analysis described under the 
section on harmonic analysis, the time increment between each estimate can be as 
short as one time step, At, thereby providing the maximum number of estimates for a 
given segment length, or as long as the entire record, thereby yielding a single 
estimate of the signal parameters. 

For each segment of current velocity data, the fluctuating component of velocity at 
frequency co can be expressed as 

u ( t ) - u ( t ) -  [ u ( t ) -  u(t)] + i [ v ( t ) -  v(t)] (5.5.21) 

= A + exp [i(cot + e+)] + A -  exp [-i(cot + e-)] 
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Figure 5.5.3. Complex demodulation at the inertial period of 12.73 h for the trajectory of a satellite- 
tracked drifter deployed in the Beaufort Sea in August 1988. (a) Original (solid line) and demodulated 

version (dashed line) of the drifter track. (Courtesy of Humfrey Melling.) 

component of rotation, and the roughly -6 .4  ~ per day drift in phase of the clockwise 
component of the current due to the changing latitude of the drifter relative to the 
reference latitude of 70~ 

5 . 6  S P E C T R A L  A N A L Y S I S  

Spectral analysis is used to partition the variance of a time series as a function of 
frequency. For stochastic time series such as wind waves, contributions from the 
different frequency components are measured in terms of the power spectral density 
(PSD). For deterministic waveforms such as surface tides, either the PSD or the energy 
spectral density (ESD) can be used. Here, power is defined as energy per unit time. The 
need for two different spectral definitions lies in the boundedness of the integral of 
signal variance for increasing record length. In practice, the term spectrum is applied 
to all spectral functions including commonly used terms such as autospectrum and 
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Figure 5.5.3.  Complex demodulation at the inertial period of 12.73 h for the trajectory of a satellite- 
tracked drifter deployed in the Beaufort Sea in August 1988. (b) Parameters of the demodulation over a 
20-day period of strong inertial motions. Top panel: phase of the clockwise (CW) rotary component 
(degrees). Remaining panels: amplitudes of the CW rotary, CCW rotary, and speed of the demodulated 

current. (Courtesy of Humfrey Metling.) 

power spectrum. The term cross-spectrum is reserved for the "shared" power between 
two coincident time series. We also distinguish between nonparametric and parametric 
spectral methods..Nonparametric methods, which are based on conventional Fourier 
transforms, are not data-specific while parametric techniques are data-specific and 
assign a predetermined model to the time series. In general, we use parametric 
methods for short time series (few cycles of the oscillations of interest) and non- 
parametric methods for long time series (many cycles of oscillations of interest). 

The word spectrum is a carry-over from optics. The colors red, white, and blue of 
the electromagnetic spectrum are often used to describe the frequency distribution of 
oceanographic spectra. A spectrum whose spectral density decreases with increasing 
frequency is called a "red" spectrum, by analogy to visible light where red corresponds 
to longer wavelengths (lower frequencies). Similarly, a spectrum whose magnitude 
increases with frequency is called a "blue" spectrum. A "white" spectrum is one in 
which the spectral constituents have near-equal amplitude throughout the frequency 
range. In the ocean, long-period variability (periods greater than several days) tend to 
have red spectra while instrument noise tends to have white spectra. Blue spectra are 
confined to certain frequency bands such as the low-frequency portion of wind-wave 
spectra and within the weather band (2 < period < 10 days) for deep wind-generated 
currents. 

In the days before modern computers it was customary to compute the spectrum of 
discrete oceanic data from the Fourier transform of the autocorrelation function using 
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a small number of lag intervals, or "lags". First formalized by Blackman and Tukey 
(1958), the autocorrelation method lacks the wide range of optional improvements to 
the computations and generalized "tinkering" permitted by more modern techniques. 
From a historical perspective, the autocorrelation approach has importance for the 
direct mathematical link it provides through the Wiener-Khinchin relations that link 
variance functions in the time domain to those in the frequency domain. Today, it is 
the spectral periodogram generated using the fast Fourier transform (FFT) or the 
Singleton Fourier transform that is most commonly used to estimate oceanic spectra. 

Other methods have been developed over the years as a result of fundamental 
performance limitations with the periodogram method. These limitations are: (1) 
restricted frequency resolution when distinguishing between two or more signals, with 
frequency resolution dictated by the available record length independent of the 
characteristics of the data or its signal-to-noise ratio (SNR); (2) energy "leakage" 
between the main lobe of a spectral estimate and adjacent side-lobes, with a resulting 
distortion and smearing of the spectral estimates, suppression of weak signals, and the 
need to use smoothing windows; (3) an inability to adequately determine the spectral 
content of short time series; and (4) an inability to adjust to rapid changes in signal 
amplitude or phase. Other techniques, such as the maximum entropy method (best 
suited to short time series) and the wavelet transform (best suited to event-like 
signals), are addressed in this chapter. 

Fundamental concepts: Several basic concepts are woven into the fabric of this 
chapter. First of all, the sample data we collect are subsets of either stochastic or 
deterministic processes. Deterministic processes are predictable, stochastic ones are 
not. Secondly, the very act of sampling to generate a time series of finite duration is 
analogous to viewing an infinitely long time series through a narrow "window" in the 
shape of a rectangular box-car function (Figure 5.6.1a). The characteristics of this 
window in the frequency domain can severely distort the frequency content of the 
original data series from which the sample has been drawn. As illustrated by Figure 
5.6.1(b), the sampling process results in spectral energy being "rippled" away from 
one frequency (the central lobe of the response function) to a wide number range of 
adjacent frequencies. The large side-lobes of the rectangular window are responsible 
for the leakage of spectral energy from the central frequency to nearby frequencies. 

A third point is that the spectra of random processes are themselves random 
processes. Therefore, if we are to determine the frequency content of a data series with 
some degree of statistical reliability (i.e. to be able to put confidence intervals on 
spectral peaks), we need to precondition the time series and average the raw periodo- 
gram estimates. Averaging can be done in the time domain by using specially designed 
windows or in the frequency domain by averaging together adjacent spectral 
estimates. Windows (which are discussed in detail in Section 5.6.6) suppress Gibbs' 
phenomenon associated with finite length data series and enable us to increase the 
number of degrees offreedom used in each spectral estimate. (Here, the term "degrees of 
freedom" refers to the number of statistically independent variables or values used in 
a particular estimate.) We can also improve spectral estimates by partitioning a time 
series into a series of segments and then conducting spectral analysis on the separate 
pieces. Spectral values in each frequency band for each piece are then averaged as a 
block to improve statistical reliability. The penalty for doing this is a loss in frequency 
resolution. The alternative--calculating a single periodogram and then smoothing in 
the frequency domain--suffers the same loss of frequency resolution for a smoothing 
that gives the same degrees of freedom. 
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Regardless of which averaging approach we choose, the results will be tantamount 
to viewing the data through another window in the frequency domain. Any smoothing 
window used to improve the reliability of the spectral estimates will again distort the 
results and impose structure on the data, such as periodic behavior, when no such 
structure may exist in the original time series. In addition, conventional methods 
make the implicit assumption that the unobserved data or correlation lag-values 
situated outside the measurement interval are zero, which is generally not the case. 
The smoothing window results in smeared spectral estimates. The more modern 
parametric methods allow us to make more realistic assumptions about the nature of 
the process outside the measurement interval, other than to assume it is zero or cyclic. 
This eliminates the need for window functions. The improvement over conventional 
F F T  spectral estimates can be quite dramatic, especially for short records. However, 
even then, there remain pitfalls which have tended to detract from the usefulness of 
these methods to oceanography. Each new method has its own advantages and 
disadvantages that must be weighed in context of the particular data set and the way it 
has been collected. For time series with low signal-to-noise ratio (SNR), most of the 
modern methods are no better than the conventional FFT approach. 

Means and trends: Prior to spectral analysis, the record mean and trend are generally 
removed from any time series (Figure 5.6.2). Unless stated otherwise, we will assume 
that the time series y( t )  we wish to process has the form y ' ( t ) = y ( / ) - y ( t )  where 

y ( t )  =Yo + c~t is the mean value and c~t is the linear trend (Yo and c~ are constants). If 
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c~ = 0.025 and the fluctuating component, y', was obtained using a uniformly distributed random 
number generator. (a) Original time series, showing the linear trend; (b) Time series with the mean and 

linear trend removed. 

the mean and trend are not removed prior to spectral analysis, they can distort the 
low-frequency components of the spectrum. Packaged spectral programs often include 
record mean and linear trend removal as part of the data preconditioning. Nonlinear 
trends are more difficult to remove, especially since a single function may not be 
appropriate for the entire data domain. The latter may apply also to linear trends. 

The mean value removed from a record is not always the average for the entire 
record. For example, to examine interannual variability in the monthly time series of 
sea-level height, r/(tm), at Cristobal on the Caribbean end of the Panama Canal, 
Thomson et al. (1985) first calculated mean-monthly values ~7(tm)m for each month 
(e.g. the individual means for January, February, etc.). These mean monthly values, 
rather than the average value for the entire record, were then subtracted from the 
original data for the appropriate month to obtain monthly anomalies of sea level, 
~7/(tm) -- ~7(tm) -- ~7(tm)m. Trend removal was then applied to the monthly anomalies to 
obtain the final sea-level anomaly record. As a final comment, we note that certain 
records, such as those from moored near-surface transmissometers, will contain 
nonlinear trends that should be removed from the data record prior to spectral 
analysis. This must be done with care. Unless one has a justified physical model for a 
particular trend (including a linear trend), removal of the trend may itself add 
spurious frequency components to the de-trended signal. 
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5.6.1 Spectra of deterministic and stochastic processes 
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Time-series data can originate with deterministic or stochastic processes, or a mixture 
of the two. Turbulence arising from eddy-like motions generated by strong tidal 
currents in a narrow coastal channel provides an example of mixed deterministic and 
stochastic processes. To see the difference between the two types of processes in terms 
of conventional spectral estimation, consider the case of a continuous deterministic 
signal, y(t). If the total signal energy, E, is finite 

CK) 

E -  / b(t)l 2 dt < 

--CK) 

(5.6.1) 

theny(t) is absolute-integrable over the entire domain and the Fourier transform Y(f) 
ofy(t) exists. This leads to the standard transform pair 

0(3 

Y ( / ) -  / y(t)e -i2~ dt (5.6.2a) 

OG 0 0  / 1/ 
y ( t ) -  Y( f )e  i2~ft df =Z-~ Y( f )e  i'~t dw 

- -  O C  - - f i X 3  

(5.6.2b) 

where e i i 27 r f i  ---- COS (27rft) + i s i n  (27rft), f is the frequency in cycles per unit time, and 
w = 27rf is the angular frequency in radians per unit time. The square of the modulus 
of the Fourier transform for all frequencies 

SE(f) - Y(f)Y*(f) - [Y(f)l 2 (5.6.3) 

is then the energy spectral density (ESD), SE0c), ofy(t). (As usual, the asterisk denotes 
the complex conjugate.) To see equation (5.6.3) that is an energy density, we use 
Parseval's theorem 

~X) OG 

at  / (5.6.4) 

which states that the total energy, E, of the signal in the time domain is equal to the 
total energy, f S E ( f ) d f ,  of the signal in the frequency domain. Thus, SE(f), is an 
energy density (energy per unit frequency) which, when multiplied by df, yields a 
measure of the total signal energy in the frequency band centered near frequency f. 
The "power" of a deterministic signal, E/T,  is zero in the limit of very long time series 
(T ~ ~ ) .  

Now, suppose that y(t) is a stationary random process rather than a deterministic 
waveform. Unlike the case for the finite energy deterministic signal, the total energy 
in the stochastic process is unbounded (the characteristics of the process remain 
unchanged over time) and functions of the form (5.6.2) do not exist. In other words, 
the Fourier transform method introduced earlier fails in the sense that the total 
energy, as defined by equation (5.6.1), does not decrease as the length of the time 
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series increases without bound. To get around this problem, we must deal with the 
frequency distribution of the signal power (the time average of energy or energy per 
unit time, E/T) which is a bounded function. The basis for spectral analysis of 
random processes is the autocorrelation function Ryy(r)= E[y(t)y(t + r)]. Using the 
Wiener-Khinchin  relation, the power spectral density, S(/), becomes 

CX3 

S ( f ) -  / Ryy(T)e -i2~fr dy 
- -  O C  

(5.6.5a) 

For an ergodic random process, for which ensemble averages can be replaced by time 
averages, Ryy has the form 

T/2 

Ryy(r) = lim 1 f r ~  -T [y(t)y* (t + r)] at 

-T/2 

(5.6.5b) 

By definition, the energy and power spectral density functions quantify the signal 
variance per unit frequency. For example, in the case of a stationary random process, 
integration of S(f) gives the relation 

f +Af /2 

s 2 -  f S(f) df (5.6.6) 
J 

f -A l l2  

where s 2 is the integrated signal variance in the narrow frequency range Af = 
I f -  1/2Af, f + 1/2Af]. If we assume that the spectrum is nearly uniform over this 
frequency range, we find 

S 2 

S(f) ~ ~ (5.6.7) 
/V 

which defines the spectrum for a stochastic processes in terms of a power density, or 
variance per unit frequency. The product SOr)Af is the total signal variance within the 
frequency band Af centered at frequency f. 

At this point, there are several other basic concepts worth mentioning. First of all, a 
waveform whose autocorrelation function R(T) attenuates slowly with time lag, r, will 
have a narrow spectral distribution (Figure 5.6.3a) indicating that there are relatively 
few frequency components to destructively interfere with one another as r increases 
from zero. In the limiting case of only one frequency component, fa, we find 
R( r )  ,~ cos (2rrfaAt) and Fourier line spectra appear at frequencies +fa (Figure 5.6.3b). 
Because they consist of near monotone signals, tidal motions are highly autocorrelated 
and produce sharp spectral lines. In contrast, a rapidly decaying autocorrelation 
function implies a broad spectral distribution (Figure 5.6.4a) and a large number of 
frequency components in the original waveform. In the limit R(r)--+ 6(r) (Figure 
5.6.4b), there is an infinite number  of equal-amplitude frequency components in the 
waveform and the spectrum S(f) ---+ constant (white spectrum). 

Figure 5.6.5 provides an example of time-series data generated by the relation 
y(k) =A. cos(2rrnk/N)+c(k), where k - 0, ... , N is time in units of At = 1, 
n/NAt = 0.25 is the frequency in units of At -1 , and c(k) is a random number between 
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Figure 5.6.3. Examples of slowly decaying autocorrelation functions, R(T), as a function of time lag, T. 
Functions are normalized by their peak values. (a) The correlation function for a highly correlated signal 
leads to a relatively narrow power spectra density distribution, S(f); (b) the case for autocorrelation 
R(r) ,~ cos( 2rrf, A t) for a single frequency component, f~, and corresponding line spectra at frequencies 

+fa. (From Konyaev, 1990.) 
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Figure 5.6.4. As for Figure 5.6.3 but for rapidly decaying autocorrelation functions, R(T). (a) 
Correlation function for a weakly correlated signal leading to a broad power spectra density distribution. 
(b) The limiting case R(T) ~ 6(T) and the related spectrum S(f) = constant (a white spectrum). (From 

Konyaev, 1990.) 

-1  and +1. (We will often use this type of generic example rather than a specific 
example from the oceanographic literature. That way, readers can directly compare 
their computational results with ours. In the present case, if we set At = 1 day, then 
the time seriesy(k) could represent east-west current velocity oscillations of a synoptic 
(three to 10-day) period associated with wind-forced motions (cf. Cannon and Thom- 
son, 1996). Here, we setA = 1 and c(k) ~ 0 for mostly deterministic data (Figure 5.6.5a) 
and A = 0 for random data (Figure 5.6.5b). In the analysis, the record has been padded 
with zeros up to time k - 2N. For the mostly deterministic case, the noise causes 
partial decorrelation of the signal with lag, but the spectral peak remains prominent. 
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k = 2N - 32. 
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For the purely random case, the spectrum resembles white noise but with isolated 
spectral peaks that one might mistake as originating with some physical process. The 
latter result is a good example of why we need to attach confidence limits to the peaks 
of spectral estimates (see Section 5.6.8). 

5.6.2 S p e c t r a  o f  d i s c r e t e  s er i e s  

Consider an infinitely long time series y(t~) = Yn sampled at equally spaced time 
increments tn = n A t ,  where At is the sampling interval and n is an integer, 
-cx~ < n < ~ .  From sampling theory, we know that a continuous representation of 
the discrete times seriesys(t), can be represented as the product of the continuous time 
series y(t) with an infinite set of delta functions, ~5(t), such that 

O c  

y,(t) = y(t) ~ ~5(t - nAt) 

= y ( t ) = ( t / A t )  
At 

where = is the "sampling function" and for which the Fourier transform is 

Y(f )  - / y(t)~(t - nAt )At  e -i2~ji dt 
l l - - - -OC  

- -  OC  

CX3 

- -  At ~ yne -i2rrfi 
n = - - C X 3  

(5.6.8b) 

In effect, the original time series is multiplied by a "picket fence" of delta functions 
E(t//Xt) ~ ~_~n~=_~ ~5(t- nat )  which are zero everywhere except for the infinitesimal 
rectangular region occupied by each delta function (Figures 5.6.6a, b). Comparison of 
the above expression with equation (5.6.2) shows that retention of the time step At 
ensures conservation of the rectangular area in the two expressions as At-- ,  0. 
Provided that the time series y(t) has a limited number of frequencies (i.e. is band- 
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Figure 5.6.6. (a) A "'picket fence" of delta functions ~5(t - nat) used to generate a discrete data series 
from a continuous time series. (b) The Fourier transform (schematic only) of the different functions. 
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limited), whereby all frequencies are contained in the Nyquist interval 

--fN < fh < fN (5.6.9) 

in which f N -  1/(2At) is the Nyquist frequency, the energy spectral density 

B E ( f ) -  iF(f)[2 (5.6.10) 

is identical to that for a continuous function. Conversely, if Y(f) -r 0 for Jf] > fN then the 
sampled and original times series do not have the same spectrum for If[ <fN. The 
spectrum (5.6.10) obtained by Fourier analysis of discrete time series is called a periodo- 
gram spectral estimate, a term first coined by Schuster (1898) in a study of sunspot cycles. 

Real oceanographic time-series data are discrete and have finite duration, T = NAt .  
Returning to (5.6.8), this means that the summation is over a limited range n - 1 to N ,  
and the spectral amplitude for the sample must be defined in terms of the discrete 
Fourier transform 

N 

Yk - At ~ y n e  -i27rs 

n= l  (5.6.11) 
N 

= At ~yne-i27rkn/N; fk -- k /NAt ,  k - 0 .... , N 
n = l  

The frequencies fk are confined to the Nyquist interval, with positive frequencies, 
0 <_fh <_fN, corresponding to the range k - 0, ... , N/2 and negative frequencies, 
--fN <_ fk <_ 0, to the range k - N/2, ..., N. Since fN-k --fk, only the first N/2 Fourier 
transform values are unique. Specifically, Yk - YN-h so that we will generally confine 
our attention to the positive interval only. 

The inverse Fourier transform is defined as 
N - 1  1 Yk ei2~rkn/N, n 1 N (5.6.12) 

Yn N A t  k--0 

As indicated by equation (5.6.11), the Fourier transforms, Yk, are specified for the 
discretized frequenciesfk, wherefk = kfl and fl = 1/NAt = 1/T characterizes both the 
fundamental frequency and the bandwidth, Af, for the time series. The energy 
spectral density for a discrete, finite-duration time series is then 

SE(fk)--IYkl 2, k -  0, ..., N -  1 (5.6.13) 

and Parseval's energy conservation theorem (5.6.4) becomes 
N N - 1  

At ~ ~yn l  2 - -  Af  ~ IYkl 2 
n = l  k=0 

where we have used Af = 1~(NAt). A plot of jYkj 2 versus frequency, f~, gives the 
discrete form of the periodogram spectral estimate. 

Any geophysical data set we collect is subject to discrete sampling and windowing. 
As noted earlier, a time series of geophysical data, y(tn), sampled at time steps At can 
be considered the product of an infinitely long time series with a rectangular window 
which spans the duration (T = N A t )  of the measured data. The discrete spectrum 
S(fk) is the then the convolution of the true spectrum, S(f), with the Fourier transform 
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of the rectangular window (Figure 5.6.1b). Since the window allows us to see only a 
segment of the infinite time series, the spectrum S(fk) provides a distorted picture of 
the actual underlying spectrum. This distortion, created during the Fourier transform 
of the rectangular window, consists of a broadening of the central lobe and leakage of 
power from the central lobe into the side-lobes. (The "ripples" on either side of the 
central lobe in Figure 5.6.1(b) are side lobes.) A further problem is that the function 
Yk and its Fourier transform now become periodic with period N, although the 
original infinite time series y(t), of which our sample data are a subset, may have been 
nonperiodic. 

As noted in the previous section, the convergence of ]Y(f)12 to S(f) is smooth for 
deterministic functions in that the function iy1(f)]2, obtained by increasing the 
sample record length from T to T', would be a smoother version of IY(f)12 For 
stochastic signals, the function ]y,(,f)[2 obtained from the longer time series (T') is just 
as erratic as the function for the shorter series. The sample spectra of a stochastic 
process do not converge in any statistical sense to a limiting value as T tends to 
infinity. Thus, the sample spectrum is not a consistent estimator in the sense that its 
PDF does not tend to cluster more closely about the true spectrum as the sample size 
increases. To show what we mean, consider the spectrum of a process consisting of N 
= 400 random, normally distributed deviates (Gaussian white noise) sampled at 1-s 
intervals. (True white noise is a mathematical construct and is as physically 
impossible as the spike of an impulse function.) The highest frequency we can hope to 
measure with these data is the Nyquist frequency, fN = 0.5 cps. The spectra computed 
from 50 and then from 100 values of the fully white noise signal are presented in 
Figure 5.6.7(a). Also shown is the theoretical sample spectrum, corresponding to a 
uniform amplitude of 1.0. The shorter the sample used for the discrete spectral 
estimates, the greater the amplitude spikes in the power spectrum. This same 
tendency also is apparent in Table 5.6.1 which lists the means, variances, and mean 
square errors computed from various subsamples of the white noise signal. Here, 
mean square error (MSE) is defined as the variance plus bias of a,' ,timator.9(t)of the 
true signal y(t); that is 

MSE = El(9 _y)2] _ VIii + B 2 (5.6.14) 

where B - E[9] - y  is the bias of the estimator. The mean is lower in both the N - 50 
and N - 400 cases while it is greater in the case where N - 100 and is exactly 1.0 for N 
= 200. The variance increases as N increases, as does the MSE. However, if this were a 
purely random discrete process (discrete white noise), the sample spectral estimator of 
the variance would be independent of the number of observations. 

Now consider the spectrum of a second-order autoregressive process for a sample of 
N - 400 measured at 1-s increments (Figure 5.6.7b). (An autoregressive process of 
order p is one in which the present value ofy depends on a linear combination of the 

Table 5.6.1. Behavior of sample spectra of white noise as the record length is increased.(After Jenkins 
and Watts, 1968) 

Record length (N) 50 100 200 400 

Mean 0.85 1.07 1.00 0.95 
Variance 0.630 0.777 0.886 0.826 
Mean square error 0.652 0.782 0.886 0.828 
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Figure 5.6. 7. Power spectra of discrete signals and their theoretical values. Frequency in cycles per second 
(cps); spectra are in units of amplitude-squared/cps. (a) Power spectrum for the first half (N - 50) and 
full (N - 100) realization of a discrete normal white-noise process measured at 1-s intervals. (b) Power 
spectrum for one realization of a second-order autoregressive process of N - 400 values measured at 1-s 
increments, f N = 0.5 cps is the Nyquist frequency and the maximum bandwidth of the spectral resolution 

A f  = I / N A t  = 0.0025/s. (From Jenkins and Watts, 1968.) 
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previous p values of y. See Section 5.7.2.) The Nyquist frequency is again 0.5 cps and 
the maximum bandwidth of the spectral resolution, Af = l /NAt,  is equal to 
0.0025 cps. At the higher frequencies, the sample spectrum appears to be a good 
estimator of the theoretical spectrum (the smooth solid line), while for the lower 
frequencies there are large spikes in the sample spectrum which are not characteristic 
of the true spectrum. This misleading appearance is largely a consequence of the fact 
that the theoretical spectrum has most of its energy at the lower frequencies. In reality, 
the computed raw spectrum (i.e. with no smoothing) can fluctuate by 100% about the 
mean spectrum. The fluctuations are much smaller at higher frequencies simply 
because the actual spectral level is correspondingly smaller. 

The basic reason why Fourier analysis breaks down when applied to real time series 
is that it is based on the assumption of fixed (stationary) amplitudes, frequencies, and 
phases. Stochastic series are instead characterized by random changes in frequency, 
amplitude, and phase. Thus, our treatment must be a statistical approach that makes 
it possible to accommodate these types of changes in our computation of the power 
spectrum. 

5.6.3 Conventional spectral methods 

The two spectral estimation techniques founded on Fourier transform operations are 
the indirect autocorrelation approach popularized by Blackman and Tukey in the 
1950s and the direct periodogram approach presently favored by the oceanographic 
community. The fast Fourier transform (FFT) is the most common algorithm for 
determining the periodogram. The autocorrelation approach is mainly included for 
completeness. These methods fall into the category of nonparametric techniques 
which are defined independently of any specific time series. Parametric techniques, 
described later in this chapter, make assumptions about the variability of the time 
series and rely on the series for parameter determination. 

The following sections first describe the two conventional spectral analysis methods 
without providing details on how to improve spectral estimates. We wish to first 
outline the procedures for calculating spectra before describing how to improve the 
statistical reliability of the spectral estimates. Once this is done, we give a thorough 
description of windowing, frequency-band averaging, and other spectral improvement 
techniques. 

5.6.3.1 The autocorrelation method 

In the Blackman-Tukey method, the autocovariance function, Cyy(7) (which equals 
the autocorrelation function, Ryy(r), if the record mean has been removed), is first 
computed as a function of lag, 7, and the Fourier transform of Cyy(7) used to obtain 
the PSD as a function of frequency. An unbiased estimator for the autocovariance 
function for a data set consisting of N equally spaced values {Yl, Y2, ..., YN} is 

N - m  

l ~YnYn+m (5.6.15a) Cyy(Tm; N -  m) - N  - m n--l 

where m - 0, ... , M is the number of lags (Tin = mat) and M < N. In place of this 
estimator, some authors (cf. Kay and Marple, 1981) argue for the use of 
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1 N - m  

= Zynyn+m Cyy(~-m; N) Nn=l (5.6.15b) 

which typically has a lower mean square error than Cyy(Tm; N - m) for most finite data 
sets. Because E[Cyy(Tm; N ) ] - - [ ( N -  m)/N]Cyy(7-m; N -  m), the function Cyy(T; N) is a 
biased estimator for the autocovariance function. Despite this, we will often use the 
relation (5.6.15b) for the autocovariance function since it yields a power spectral 
density (PSD) that is equivalent to the PSD obtained from the direct application of 
the FFT,  as discussed in the next section. The weighting (N - m)/N acts like a 
triangular (Bartlett) smoothing window to help reduce spectral leakage. We will use 
equation (5.6.15a) when we want a "stand-alone" unbiased estimator of the covariance 
function. 

The one-sided power spectral density, G~, for an autocovariance function with a 
total of M lags is found from the Fourier transform of the autocovariance function 

M 

Gk - 2At Z CyY(7-m)e-i27rkm/M' k - O, ..., (M/2) (5.6.16a) 
m--0  

where Tm- mat  and 2 A t -  1/fN. Since Cyy(Tm) is an even function, the spectrum of 
{Yn} can be calculated from the cosine transform I 2 m] 

Gk - 2At Cyy(O) -Jr- 2 Z Cyy(7"m)COS , k - 0, ..., (M/2) (5.6.16b) 
m--1 

where Gk = 2Sk is centered at positive frequencies fh = k /NAt  and the Nyquist 
interval 0 <fk <fu  is divided into N/2 segments (N is even). For the two-sided 
spectrum, Sk, the first (N/2) + 1 frequencies are identical to those for the one-sided 
spectrum and correspond to positive frequencies in the range 0 <_fk <fN. The last 
( N / 2 ) - I  spectral values for the two-sided spectral density, defined for 
k = (N/2) + 1, (N/2) + 2, ..., N -  1, correspond to spectral density estimates for 
negative frequencies in the range -fN <fk < 0. 

The solid line in Figure 5.6.8 shows spectra of monthly mean sea surface 
temperatures derived from the cosine transform using the Blackman-Tukey auto- 
correlation method for the version (5.6.15b) of the autocovariance function. The 
temperature data span the 36-month period from January 1982 to December 1984 for 
Amphitrite Point (Table 5.6.2). Since, in the next section, we wish to compare these 
spectra directly with those derived from the data series using a packaged FFT routine 
(the dashed curve in Figure 5.6.8), the lags were computed for the first 32 (25) points 
only, four fewer points than used in the Blackman-Tukey approach. In this case, 
extending the lag correlation beyond 10-20% of the data, as recommended earlier, is a 
necessity if we are to obtain reasonable estimates of the spectra. As expected, results 
reveal a strong spectral peak centered near, but not at, the annual frequency ( f -  1.0 
cycles per year = 0.083 cpmonth). There are too few data to enable us to accurately 
resolve the location of the frequency peak. In the present example, all spectral 
estimates are positive. However, the autocorrelation method can yield erroneous 
negative spectra for weak frequency components when there are gaps in the data 
record. 
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Figure 5.6.8. Spectra (~ (cpm - cycles per month) versus frequency (per month) for monthly 
mean sea surface temperatures collected at a coastal station in the northeast Pacific for the period 
January 1982 to December 1984 (cf. Table 5.6.2). (a) The solid line is the unsmoothed spectrum from the 
Blackman-Tukey autocorrelation method (the cosine transform of the autocovariance function 
(5.6.15b)); dashed line is the unsmoothed spectrum from the FFT method based on the first 25 (= 

32) data values. Spectral peaks span the annual period (f - 0.083/month). 

Table 5.6.2. Monthly mean sea surface temperatures SST  (~ at Amphitrite Point (48~ , N, 
125~ ' W) on the west coast of Canada for January 1982 through December 1984 

Year 1982 
n 1 2 3 4 5 6 7 8 9 10 11 12 
SST 7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 9.0 

Year 1983 
n 13 14 15 16 17 18 19 20 21 22 23 24 
SST 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1 

Year 1984 
n *~ 25 26 27 28 29 30 31 32 33 34 35 36 
SST 7.9 8.4 9.3 9.9 11.0 11.1 12.6 14.0 13.0 11.7 9.8 8.0 

We emphasize  that the spectra in Figure 5.6.8 have been constructed without  any 
averaging or windowing. This means that each spectral estimate has the min imu m 
possible two degrees of f reedom so that the error in each estimate is equal to the value 
of the estimate itself. Some form of averaging is needed if we are to place confidence 
limits on our spectra (see Sections 5.6.6 and 5.6.7). The two spectra are slightly 
different because the record used for the F F T  method is shorter than that used for the 

autocovariance method. 

5.6.3.2 The periodogram method  

The preferred method for est imating the power spectral density of a discrete sample 
{Yl, Y2, . . . ,  YN} is the direct or per iodogram method. Instead of first calculating the 
autocorrelat ion function, the data are t ransformed directly to obtain the Four ier  
components  Y(f) using (5.6.11). To help avoid end effects (Gibbs' phenomenon)  and 
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wrap-around problems, the original time series can be padded with K <_ N zeros after 
the mean has been removed from the time series. The padding will also increase the 
frequency resolution of the periodogram (see Section 5.6.9). Although use of K - N 
zeros is not recommended for computational reasons, it has one advantage: The N-lag 
covariance function obtained from the inverse Fourier transform of the 2N-point 
power spectral density is identical to the N-lag covariance function (5.6.15b). As with 
the autocorrelation method, improvements in the statistical reliability of the spectral 
estimates would be provided by "windowing" the time series prior to spectral 
estimation or by averaging over the raw periodogram estimates over adjacent 
frequency bands (see Sections 5.6.6 and 5.6.7). 

The two-sided power spectral (or autospectral) density for frequency f in the 
Nyquist interval -1 / (2At )  _<f _< 1/(2At) and a padding of K zeros is 

Syy( f )  - 
1 N + K -  1 

At ~ yne 
(N + K)At  

n=O 

1 j2 
(N + g ) A t  IY(f) 

2 

- i2 7rfn At 

(5.6.17a) 

while the one-sided power spectral density for the positive frequency interval only, 
0 < f  <_ 1/(2At), is 

2 12 Gyy(f) - 2SyyO c) - (N + K)At  IY(f) (5.6.17b) 

Division by At transforms the energy spectral density of (5.6.13) into a power spectral 
density, Syyq). 

Evaluation of (5.6.17a) using the fast Fourier transform defines Y([) in terms of the 
discrete Fourier transform estimates, Y(fk) = Yk, where the f~ form a discrete set of 
(N+K)/2 equally spaced frequencies s~ = +k/[(N +K)At],  k = 0, 1, ..., 
[ ( N + K ) / 2 ] -  1 in the Nyquist interval, - 1 / 2 A t  <_s~ <_ 1/2At. The case k - 0 
represents the mean component. The two-sided PSD is then 

1 111012 k - 0  Syy(O) - (N + K)At  ' 

Syy (fi ) - 

1 [ 2  2] 
(N + K)At  IYkl + IYN+K-kl , k -- 1, ..., 

(N + K) 
- 1  (5.6.18a) 

Syy OVN ) - -  Syy  Of(N+K) /2_k  ) - -  
1 2 

(N + K)At  IY(N+K)/21 

and the one-sided PSD is 

G y y ( O )  --- 
1 2 

(N + K)At  ]Y~ k = 0  

k - (N + K) 
2 
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2 12 (N + K) 
Gyy(fk) -- (N + K)At  IYk ' k - 1, ..., 2 - 1 (5.6.18b) 

1 12 
Gyy ( f J )  -~- Gyy OV(N+K)/2_k) - -  (N + K)At  IY(N+K)/2 ' 

k = (N + K) 
2 

Multiplication of SyyO c) =--Sk (or Gk) by the bandwidth of the signal Af = 
1/(N + K)A t  gives the estimated signal variance, cry, in the kth frequency band; i.e. 
a~ = S' k - SkAf  . The summation 

N + K -  1 N + K -  1 

Z Sk'--  Z SkAf  (5.6.19) 
n = 0  n = 0  

gives the variance and total power of the signal. The quantity 

, 1 [lgk[2 
Sk = [(N + K)At] 2 +IYN+K-kl2] 

_ 1 N+K-1 
- - ( N  + K) 2 Z Lyne-iZ~rfnAtl 2 

n = 0  

(5.6.20) 

is often computed as the periodogram. However, this is not correctly scaled as a power 
spectral density but represents the "peak" in the spectral plot rather than the "area" 
under the plot of Sk versus Af. The representation (5.6.20) is sometimes useful 
although most oceanographers are more familiar with the power spectral density form 
of the periodogram. It bears repeating that the use of Fourier transforms assumes a 
periodic structure to the sampled data when no periodic structure may actually exist 
in the time series. That is, the FFT of a finite length data record is equivalent to 
assuming that the record is periodic. We again note that autospectral functions are 
always real so that Syy(fk) -- Syy(2fN --fk), and the one-sided autospectral periodogram 
estimate becomes 

Gyy ( f k ) - 2S~ = 2 2 [(N + K)At] 2 IY(fk)l (5.6.21) 

Until the 1960s, the direct transform method first used by Schuster (1898) to study 
"hidden periodicities" in measured sun-spot numbers was seldom used due to 
difficulties with statistical reliability and extensive computational time. The intro- 
duction of the first practical FFT algorithms for spectral analysis (Cooley and Tukey, 
1965) greatly reduced the computational time by taking advantage of patterns in 
discrete Fourier transform functions. Problems with the statistical reliability of the 
spectral estimates are resolved through appropriate windowing and averaging 
techniques which we discuss in Sections 5.6.6 and 5.6.7. Figure 5.6.8 compares the 
unsmoothed periodogram spectral estimate for the monthly mean sea surface 
temperature data at Amphitrite Point (Table 5.6.2) with the corresponding spectrum 
obtained from the Blackman-Tukey method. As mentioned earlier, the FFT requires 
data lengths equal to powers of 2 so that we have shortened the series to 25 = 32 
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rectangular segment of the spectral curve is equal to a pseudo-variance 

L+af /2 

02, (fc) --  / log [Syyr df (5.6.25) 
f~-Af /2 

Although log spectra plots have an appealing shape, the integral (5.6.25) is certainly 
not variance-preserving. To preserve the signal variance, cr2~), under the spectral 
curve, we need to  plotfSyy(f) versus log(f) (Figure 5.6.9b). Replacing dfin (5.6.25) with 
d[log(f)], the true variance-preserving form of the spectrum becomes 

fc+Af /2 f +Af /2 

O'2 (fc) -- S SSyy(f)d[ log 0c)] - / S y y r  i (5.6.26) 
fc-Af /2 f< -Af /2 

where we have used the fact that d[log(f)] - diff. Equation (5.6.26) gives the true 
signal variance within the band Af. In particular, ifSyy(f) ~. Sc is nearly constant over 
the frequency increment Af, then c r2~)~  ScAf is the signal variance in band Af 
centered at frequencyf~. In this format, there is a clear spectral peak a t f  = 0.25 cycles 
per unit time that is associated with the term cos (2wnk/N) in the original analytical 
expression. 
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Figure 5.6.9. Two common types of spectral plot derived for the time series y(k) = A cos(~Trnk/N) 
+c( k) (see Figure 5.6.5). (a) A plot of log power spectral density, log[Soy60], versus frequency, f," (b) A 

variance-preselz, ing plot, f. (I5',/:/(f)] versus log(f). 
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5.6.3.5 The chi-squared property of spectral estimators 

Throughout this chapter, we have claimed that each spectral estimate for maximum 
frequency resolution, l/T, obtained from Fourier transforms of stochastic time series 
have two degrees of freedom. We now present a more formal justification for that 
claim for discrete spectral estimators by showing that each estimate is a stochastic chi- 
square variable with two degrees of freedom (i.e. there are two independent squares 
entering the expression for the chi-square variable). Consider any stochastic white 
noise process r/(t), for which E[r/(t)] = 0. The Fourier components are 

N - 1  

A(f) = ~ ~7(nAt) cos (2rrfnAt) 
n = - N  

N - 1  

BOc)- Z ri(nAt) sin (2rcfnAt) 
n = - N  

(5.6.27) 

where as usual, - 1 / ( 2 A t )  _<f _< 1/(2At), and it follows that E[A(I)] = 0 = E[B(f)]. 
Thus, at the harmonic frequencies fk - k / N A t ,  the variance is 

N - 1  

2 2 (2rrj~n At) V[A(/~)] = E[A20~)] = % Z cos 
n = - N  

1 2 -~N%, k -  +l,  +2, ..., + ( N - 1 )  

-- No'2r/, k - 0, - N  

(5.6.28a) 

Similarly 

V [ B ( j ~ ) ]  1 2 -~N%, k =  +l, +2, ..., + ( N - 1 )  

= 0, k - 0, - N  
(5.6.28b) 

When k # j ,  the covariance is 

N-1  

2 (2rrj~nAt) cos (2rrfynAt) -- 0 - Z cos 
n- '--N 

(5.6.29a) 

and 

C[A(fk), B(f j ) ] -  0 (orthogonality condition) (5.6.29b) 

Because A(fk) and B(fk) are linear functions of normal random variables, AOCk) and 
B(fk) are also distributed normally. Hence, the random variables 

A(s 2 Za(s 2 

B(fk) 2 2B(fk) 2 
(5.6.30) 

are each distributed as X~, which is a chi-square variable with one degree of freedom. 
Since the normal distributions A05~) and B(fk) are independent random variables, 

the sum of their squares 
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2 2 )2__ 2 
a2 [AOCk) + B(fk ] Atcr2Syy(fk) (5.6.31) 

is distributed as X22, which is chi-square variable with two degrees of freedom. Here, 
Syy~k) is the sample spectrum. Thus 

E[2Syy(fk)] 
Ata 2 

= 2 (5.6.32) 

and 

2At (5.6.33) 

which is the spectrum. At the harmonic frequencies (set by the record length), the 
sample spectrum is an unbiased estimator of the white-noise spectrum of r/(t). Also, at 
these frequencies, the variance of the estimate is constant and independent of sample 
size. This explains the failure of the sample estimates of the variance to decrease with 
increasing sample size. We remark further that, even if r/(t) is not normally 
distributed, the random variables A OCk) and B(fk) are very nearly normally distributed 
by the central limit theorem. Hence, the distribution of the Syy(f) will be very nearly 
distributed as X~ regardless of the PDF of the ~7(t) process. 

5.6.4 Spectra of vector series 

To calculate the spectra of vector time series such as current and wind, we first need to 
resolve the data into orthogonal components. Spectral analysis is then applied to the 
combined series of components and the results stored as a complex quantity in the 
computer. Raw data are recorded as speed and direction by rotor-type meters and as 
orthogonal components by acoustic and electromagnetic meters. The usual procedure 
is to convert recorded time series to an earth-referenced Cartesian coordinate system 
consi~ing of two orthogonal horizontal components and a vertical component. In the 
open ocean, horizontal velocities typically are resolved into components of eastward 
(zonal; u) and northward (meridional; v) time series, whereas in the coastal ocean it is 
preferable to resolve the vector components into cross-shore (u') and longshore (v') 
components through the rotation 

( u ' ) (  cos0 s i n 0 )  ( u )  (5 6.34a) 
v' - s i n 0  cos0 v 

or 

u' = u cos 0 + v sin 0 

v' -- -u  sin 0 + v cos O 
(5.6.34b) 

where the angle 0 is the orientation of the coastline (or the local bottom contours) 
measured counterclockwise from the eastward direction (Figure 5.6.10). Alternatively, 
one can let the current data define O as the direction of the major axis obtained from 
principal component analysis; that is, the axis which maximizes the variance in a 
scatter plot of u versus v (see Figure 4.3.1). 
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Figure 5.6.10. Cross-shore (u') and longshore (v') velocity components in a Cartesian coordinate system 
rotated through a positive (counterclockwise) angle from the eastward (u) and northward (v) directions. 

In coastal regions, the principal axis is usually closely parallel to the coastline. For 
studies of highly circularly polarized motions, such as inertial waves and tidal currents, 
resolution into clockwise and counterclockwise rotary components is often more useful. 
The choice of representation depends on the preference of the investigator and the type 
of process being investigated. More will be said on this subject in Section 5.6.4.2. 

5.6.4.1 Cartesian component rotary spectra 

The horizontal velocity vector can be represented in Cartesian coordinates as a 
complex function w(t) whose real part, u(t), is the projection of the vector on the zonal 
(or cross-shelf) axis and whose imaginary part, v(t), is the projection of the vector on 
the meridional (or longshelf) axis (Figure 5.6.11) 

w(t) = u(t) + iv(t) (5.6.35) 

(The use of vector w(t) follows the convention of Gonella (1972), Mooers (1973) and 
others in their discussion of rotary spectral analysis and is not to be confused with the 
weights w(t) used in the sections on data windowing or the vertical component of 
velocity. Gonella (1972) used Ul and u2 for the two velocity components.) A complete 
description of the time variability of a three-dimensional vector at a single point 
consists of six functions of frequency: Three autospectra for the three velocity 
components and three cross-spectra. For the two-dimensional vectors considered in 
this section, there are two autospectra and one cross-spectrum. The discrete Fourier 
transform, W ( f k )  --  U ( f k )  + iVOCk), (fk --  k /NAt ,  k = 1, ..., N; k = 0 is the mean flow) 
is 

N - 1  

W(fk) -- At ~ w(t)e -i27rkn/N 
n = 0  
:v-I (5.6.36) 

= At ~ [u(t) + iv(t)]e -i2~kn/N 
n : 0  
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Figure 5.6.11. Horizontal velocity, w, represented as a complex vector w = u + iv with components 
(u, v) along the real and imaginary axis, respectively. 

where U(fk) and V(fh) are the Fourier transforms of u(t) and v(t), respectively. If the 
original record is separated into M blocks of length N', where N = M N '  is the total 
record length if no overlapping of segments is used, the spectral density function is 
given in terms of the number of segments used to form the block-averaged, one-sided 
autospectrum (0 _<f~ < ~ )  

2 M 

Gww ~ )  - N A t  ~ ]Wm (fk)l 2 
m=l 

2 k =g,/k----- ~ {[gRm(fk)]2 + [glm~)] 2 } 
m=l 

--2--~~-~{[eRm(f~ ) - VIm(f~)]2+[elm(f~)+ VRm(fk)] 2 } 
N A t  ,~= 1 

(5.6.37) 

wheref~ - k / N ' A t ,  k = 0, 1, ..., N ' / 2  (k = 0 is the mean flow) and for FFT analysis, 
N' = 2p (positive integer p), and where the subscripts R and I stand for the real and 
imaginary parts of the given Fourier components. 

5.6 .4 .2  R o t a r y  componen t  spectra 

Rotary analysis of currents involves the separation of the velocity vector for a specified 
frequency, ~, into clockwise and counterclockwise rotating circular components with 
amplitudes A-,  A + and relative phases 0-, 0 +, respectively. Thus, instead of dealing 
with two Cartesian components (u, v) we deal with two circular components 
(A-, 0 - ;A +, 0+). Several reasons can be given for using this approach: (1) the 
separation of a velocity vector into oppositely rotating components can reveal 
important aspects of the wave field at the specified frequencies. The method has 
proven especially useful for investigating currents over abrupt topography, wind- 
generated inertial motions, diurnal frequency continental shelf waves, and other forms 
of narrow-band oscillatory flow; (2) in many cases, one of the rotary components 
(typically, the clockwise component in the northern hemisphere and counterclockwise 
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component in the southern hemisphere) dominates the currents so that we need only 
deal with one scalar quantity rather than two. Inertial motions, for example, are 
almost entirely clockwise rotary in the northern hemisphere so that the counter- 
clockwise component can be ignored for most applications; (3) many of the rotary 
properties, such as spectral energy S- (~)  and S +(~o) and rotary coefficient, r(~), are 
invariant under coordinate rotation so that local steering of the currents by bottom 
topography or the coastline are not factors in the analysis. 

The vector addition of the two oppositely rotating circular vectors (Figure 5.6.12a, b) 
causes the tip of the combined vector (Figure 5.6.12c) to trace out an ellipse over one 
complete cycle. The eccentricity, e, of the ellipse is determined by the relative 
amplitudes of the two components. Motions at frequency w are circularly polarized if 
one of the two components is zero; motions are rectilinear (back-and-forth along the 
same line) if both circularly polarized components have the same magnitude. In rotary 
spectral format, the current vector w(t) can be written as the Fourier series 

J w(t) = u(t) + ~ Uk cos (~kt - ~k) + i + ~ Vk cos (,~kt - 0k) 
k=l k=l 

(5.6.38) N 
= [u(t) + iv(t)] + ~-~[Uk cos (~okt -- cbk) + iVk cos (~okt - 0k)] 

k=l 

in which u(t)+ iv(t)is the mean velocity, wk = 27rfk = 27rk/NAt is the angular fre- 
quency, t (= nat) is the time and (Uk, l/k) and (~k, 0k) are the amplitudes and phases, 
respectively, of the Fourier constituents for each frequency for the real and imaginary 
components. Subtracting the mean velocity and expanding the trigonometric 
functions, we find 

(a) 
~§ (b) 

/ -  

V 

Semi-major 
Sense of rotation ~ - -  axis 

(c) 

I Semi-minor 
axis 

Figure 5.6.12. Current ellipses formed by the vector addition of two oppositely rotating vectors. (a) 
Clockwise component (.J-) and (b) counterclockwise component (~o+) with amplitudes A - a n d  A +, 
respectively. (c) General case of elliptical motion with major axis tilted at an angle ~ counterclockwise 

from east. c- and ~+ (not shown) are the angles of the two circular components at time t = O. 
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Station SS2 (40 M) 
Beaufort sea (depth 170 m) 
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Figure 5.6.13. Rotary current spectra for hourly currents measured at 40-m depth in the Beaufort Sea, 
Arctic Ocean (water depth - 170 m). Peaks are at the diurnal (D) and semidiurnal (SD) tidal 
frequencies. Frequency resolution is 0.0005 cph and there are 112 degrees of freedom per spectral band. 
Vertical bar gives the 99% level of confidence. (a) One-sided rotary spectra, S-(f) and S+(J), versus f 

for positive frequency, f," (b) two-sided rotary spectra, S(f~ + ) - S  + and S(f~-)=S- versus logf for positive 
and negative frequencies, f~. (Courtesy E. Carmack, A. Rabinovich, and E. Kolikov.) 
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Plots of rotary spectra are generally presented in two ways. In Figure 5.6.13(a), both 
S -  and S § are plotted as functions of frequency magnitude, ~l >- 0, with solid and 
dashed lines used for the clockwise and counterclockwise spectra, respectively. In 
Figure 5.6.13(b), we use the fact that clockwise spectra are defined for negative 
frequencies and counterclockwise spectra for positive frequencies. The spectra 
S0C~ +) and S0Ch -)  used in Figure 5.6.13(a) are then plotted on opposite sides of zero 
frequency. In these spectra, peak energy occurs at the diurnal and semidiurnal 
periods. The predominantly clockwise rotary motions at semidiurnal periods suggest a 
combination of tidal and near-inertial motions (at this latitude the inertial period is 
close to the semidiurnal tidal period). 

Another useful property is the rotary coefficient 

r(o3) - S~- - S~- (5.6.45) 
s;  + s;  

which ranges from r = -1  for clockwise motion, to r = 0 for unidirectional flow, to r = 
+1 for counterclockwise motion. The rotary nature of the flow can change con- 
siderably with position, depth and time. As indicated by Figure 5.6.14, the observed 
diurnal tidal currents over Endeavour Ridge in the northeast Pacific change from 
moderately positive to strongly negative rotation with depth. In contrast, the 
semidiurnal currents change from strongly negative near the surface to strongly 
rectilinear at depth. (Data, in this case, are from a string of current meters moored for 
a period of nine months in the northeast Pacific.) We remark that the definition 
(5.6.45) differs in sign from that of Gonella (1972) who used S ~ -  S~- rather than 
S~- -  Sk- in the numerator. Because many types of oceanic flow are predominantly 
clockwise rotary in the northern hemisphere, Gonella's definition has the advantage 
that clockwise rotating currents have positive rotary coefficients. However, we find 
Gonella's definition confusing since clockwise motions, which are linked to negative 
frequencies, then have positive rotary coefficients. 
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Figure 5.6.14. Rotary coefficient, r(~), as a function of depth for current oscillations in (a) the diurnal 
frequency band (~/27r .~ 0.04 cph) and (b) the semidiurnal band (oJ/2~ ~ 0.08 cph). (From Allen and 

Thomson, 1993.) 
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5.6.4.3 Rotary spectra (via Cartesian components) 

Gonella (1972) and Mooers (1973) present the rotary spectra in terms of their 
Cartesian counterparts and provide a number of rotational invariants for analyzing 
current and wind vectors at specified frequencies. Specifically, the one-side auto- 
spectra for the counterclock~vise (CCW) and clockwise (CW) rotary components of the 
vector w(t) = u(t) + iv(t) are, in terms of their Cartesian components 

G(f~-) - �89 + GvvOCk) + QuvCfk)], fk >_ 0 (CCW component) (5.6.46a) 

G(fff ) - �89 + Gvv(fk) --Quv(fk)], fk <_ 0 (CW component) (5.6.46b) 

where Guu(fk)and Gvv(fk) are the one-sided autospectra of the u and v Cartesian 
components of velocity and Quv(fk) is the quadrature spectrum between the two 
components, where 

Quv(fk) = -Quv(-f~) = (UlkV2k- Vlke2k) (5.6.47) 

As defined in Section 5.8, the spectrum can be written in terms of co-spectrum (real 
part) and quadrature spectrum (imaginary part) 

Guv(fk) = Cuv(fk) -- iQuv(fk) (5.6.48) 

5.6.5 Effect of sampling on spectral estimates 

Spectral estimates derived by conventional techniques are limited by two fundamental 
problems: (1) the finite length, T, of the time series; and (2) the discretization using 
the sampling interval, At. The first problem is inherent to all real datasets while the 
second is associated with finite instrument response times and/or the need to digitize 
the time series for purposes of analysis. 

Irrespective of the method used to calculate the power spectrum of a waveform, the 
record duration T = N A t  and sampling increment At impose severe limitations on the 
information that can be extracted. Ideally, we would like to sample rapidly enough 
(small At) that no significant frequency component goes unresolved. Th i s  also 
eliminates aliasing problems in which unresolved spectral energy at frequencies higher 
than the Nyquist frequency is folded back into lower frequencies. At the same time we 
wish to record for a sufficiently long period (large N) that we capture many cycles of 
the lowest frequency of interest. Long-term sampling also enables us to better resolve 
frequencies that are close together and to improve the statistics (confidence intervals) 
for spectral estimates. In reality, most data series are a compromise based on the 
frequencies of interest, the response limitations of the sensor, and cost. The choices of 
the sampling rate and the record duration are tailored to best meet the task at hand. 

5.6.5.1 Effect of  finite record length 

As noted earlier, we can think of a data sample {y(t)} of duration T = N A t  as the 
output from an infinite physical process {y'(t)} viewed through a finite length window 
(Figure 5.6.1). The window has the shape of a "box-car" function W(tn)=Wn = 
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w(nAt) which has unit amplitude and zero phase lag over the duration of the data 
sequence but is zero elsewhere. That is y(t,) -W(tn)f(t ,)  where 

w, -1.O, n - 0 , . . . , N - 1  
wn-O, f o r n > _ N , n < 0  (5.6.49) 

Since it is truncated, the dataset has endpoint discontinuities which lead to Gibbs' 
phenomena "ringing" and the ripple effects in the frequency domain. The discrete 
Fourier transform Y(D of the truncated seriesyn =y(nAt) is 

O O  

Y(f) = Z WnY'ne-i2~rfnZXt (5.6.50) 
R - - -  ~ ( X )  

In frequency space, Y(J) is the convolution (written as ,) of the Fourier transform of 
the infinite data set, yt(f), with the Fourier transform W(/) of the function w(t). That 
is 

O C  

Y(f)=  / Y' ( f ' )W' ( f - f ' )d f  
[ b  

(5.6.51) ~ J  

= v ' l f ) ,  w ( f )  

where for a box-car function 

sin (TrfN A t) 
W(f) - T exp (i~-f/') (TrfNAt) 

= T exp (iTrfT) sinc (TrfNAt) 
(5.6.52) 

and sinc (x)=  sin (x)/x. It is the large side-lobes or ripples of the sinc function 
(Figure 5.6.15) which are responsible for the leakage of spectral power from the main 
frequency components into neighboring frequency bands (and vice versa). In parti- 
cular, Y00 for a specific frequency f = fo is spread to other frequencies, f, according to 
the phase and amplitude weighting of the window function. Leakage has the effect of 

t 

both reducing the spectral power in the central frequency component and conta- 
minating it with spectral energy from adjacent frequency bands. Those familiar with 
the various mathematical forms for the Dirac delta function, ~5(f), will recognize the 
formulation 

r lir~ [,sinTrfAt(~-fAt)]j 

Thus, as the frequency resolution increases (i.e. f ~ 0), Y0 c) ~ Y'0C). 
In addition to distorting the spectrum, the box-car window limits the frequency 

resolution of the periodogram, independently of the data. The convolution 
Y' ( f ) ,  W(f) means that the narrowest spectral response of the resultant transform 
is confined to the main-lobe width of the window transform. For a given window, the 
main-lobe width (the width between the -3  dB levels of the main lobe) determines the 
frequency resolution, Af, of a particular window. For most windows, including the 
box-car window, this resolution is roughly the inverse of the observation time; 
Af ,~ 1/ T = 1~NAt. 
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Figure 5.6.15. The function sinc (x) = sin (x)/x showing the large side-lobes which are responsible for 
leakage of  spectral power from a given frequency to adjacent frequencies. 

5.6.5.2 Aliasing 

Poor discretization of time-series data due to limitations in the response time of the 
sensor, limitations in the recording and data storage rates, or through post-processing 
methods may cause aliasing of certain frequency components in the original waveform 
(Figure 5.6.16a). An aliased frequency is one that masquerades as another frequency. 
In Figure 5.6.16(b), for example, the considerable tidal energy at diurnal and 
semidiurnal periods (1 and 2 cpd) is folded back to lower frequencies of 0.07 and 
0.10 cpd that are nowhere near the original frequencies. For a specific sampling 
interval, it becomes impossible to tell with certainty which frequency out of a large 
number of possible aliases is actually contributing to the signal variability. This leads 
to differences in the spectra between the continuous and discrete time series. Since we 
use the spectra of the discrete series to estimate the spectrum of the continuous series, 
the sampling interval must be properly selected to minimize the effect of the aliasing. 
If we know from previous analysis that there is little likelihood of significant energy at 
the disguised frequencies, then aliasing is not a problem. Otherwise, a degree of 
smoothing may be required to ensure that higher frequencies do not contaminate the 
lower frequencies. This smoothing must be performed prior to sampling or digitizing 
since aliased contributions cannot be recognized once they are present in the discrete 
data series. 

The aliasing problem can be illustrated in a number of ways. To begin with, we note 
that for discrete data at equally spaced intervals At, we can measure only those 
frequency components lying within the principal frequency range, 

-,JN _< ,~ _< -~o, ,~o _< ~ _< ,~N, ~o2v > 0 (5.6.53a) 

-f2v _<f _< -fo, fo _<f _<fN, fN > 0 (5.6.53b) 

in which ~lv = ~r/At andfN = 1/(2At) are the usual Nyquist frequencies in radians 
and cycles per unit time, respectively, and ,~o = 2Tr/T and fo = 1/T are corresponding 
fundamental frequencies for a time series of duration T. The Nyquist frequency is the 
highest frequency that can be extracted from a time series having a sampling rate of 
1~At. Clearly, if the original time series has spectral power at frequencies for which 
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Figure 5.6.16. The origin of alaising. (a) The solid line is the tide height recorded at Victoria, British 
Columbia over a 60-day period from 29July to 27 September 1975 (time in Julian days). The diamonds 
are the sea-level values one would obtain by only sampling once per day.(b) The power spectrum obtained 
from the two data series in (a). In this case, the high frequency energy (dashed curve) gets folded back into 

the spectrum at lower (aliased) frequencies (solid curve). 

if[ >_fN, these spectral contributions are unresolved and will contaminate power 
associated with frequencies within the principal range (Figure 5.6.17). The unresolved 
variance becomes lumped together with other frequency components. Familiar 
examples of aliasing are the slow reverse rotation of stage-coach wheels in classic 
western movies due to the under-sampling by the frame-rate of the movie camera. 
Even in modern film, distinguishable features on moving automobile tires often can 
be seen to rotate rapidly backwards, slow to a stop, then turn forward at the correct 
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rotation speed as the vehicle gradually comes to a stop. Automobile commercials avoid 
this problem by equipping the wheels with featureless hubcaps. 

If co, f _> 0 are frequencies inside the principal intervals (5.6.53), the frequencies 
outside the interval which form aliases with these frequencies are 

2CON • cO, 4CON • co, ..., 2pcoN • co (5.6.54a) 

2fN • f , 4fN + f , ..., 2pfN • f (5.6.54b) 

where p is a positive integer. These results lead to the alternate term folding frequency 
for the Nyquist frequency since spectral power outside the principal range is folded 
back, accordion-style, into the principal interval. As illustrated by Figure 5.6.17, 
folding the power spectrum about fN produces aliasing of frequencies 2 f N - - f  with 
frequenciesJ~ folding the spectrum at 2fN produces aliasing of frequencies 2fN + f w i t h  
frequencies 2fN - f w h i c h  are then folded back about fN into frequency f, and so forth. 
For example, if fN = 5 rad/h, the observations at 2 rad/h are aliased with spectral 
contributions having frequencies of 8 and 12 rad/h, 18 and 22 rad/h, and so on. 

We can verify that oscillations of frequency 2 P c o N • 1 7 7  are 
indistinguishable from frequency co (or f) by considering the data series x~(t) created 
by the single frequency component x~o(t)= cos(cot). Using the transformation 
co ~ (2pcoN • co), together with t, = nAt  and ~3 u = x / A t ,  yields 

x~(tn) -- cos [(2pcoN + co)tn] -- Re {exp [i(2PcoN • co)tn]} 

= Re {exp [i2pcoNtn] exp [• 

= (+l)PnRe[ exp (• - cos (wt,,) - x~(tn) 

(5.6.55) 

In other words, the spectrum of x(t) at frequency co will be a superposition of spectral 
contributions from frequencies co, 2pcoN + co, 4pcou • co, and so forth. More specifically, 
it can be shown that the aliased spectrum Sa(co) for discrete data is given by 

OO 

Sa(co) - ~ S(co + 2ncoN) 
n - - - - o o  

= S(~) + ~ [S(2n~N - -  ,~) + S(2nwN + co)] 
n=l 

(5.6.56a) 

(5.6.56b) 

I ] .... 
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I I I I I I 
I I I i I i 
I 3 f  N [ 5 f  N I 7 f  N 
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Figure 5.6.17. The spectral energies of all frequencies f = ~ /  27r at the nodes (,) located along the dotted 
line are folded back, accordion style, into the spectral estimate for the spectrum S(f) for the primary range 

0 <_ f <_ f~ (0 <_ w <_ w N). (Adapted from Bendat and Piersol, 1986.) 
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The true spectrum, S, gives the distorted spectrum, Sa, caused by the summation of 
overlapping copies of measured spectra in the principal interval. Only if the original 
record is devoid of spectral power at frequencies outside the principal frequency range 
will the spectrum of the observed record equal that of the actual oceanic variability. 
To avoid aliasing problems, one has no choice but to sample the data as frequently as 
justifiably possible (i.e. up to frequencies beyond which energy levels become small) 
or to filter the sampled data before they are recorded (as in the case of a stilling well 
used to eliminate gravity waves from a tidal record). A further example of spectral 
contamination by aliased frequencies is illustrated in Figure 5.6.18(a, b). In Figure 
5.6.18(b), we have assumed that the wave recorder was inadvertently programmed to 
record at 0.15 Hz, corresponding to a limiting wave period of 6.67 s. The energy from 
the shorter period waves were not measured but contaminate the energy of the longer 
period waves when folded back about the Nyquist frequency. 

5.6.5.3 Nyquist frequency sampling 

Sampling time series that have significant variability at the Nyquist frequency affords 
its own set of problems. Suppose we wish to represent y(t) through the usual Fourier 
relation 

CON 

y ( t ) -  / Y(w)e i"~t dw (5.6.57) 

where we have assumed that Y(,~) = 0 for [w[ > WN. In this case, there is no aliasing 
problem since there is no power at frequencies greater than WN. The function y(t) can 
be constructed from frequency components strictly in the interval (-wN, WN). In 
discrete form for infinite length data 

1 ~ n e i~ ( t -nA t )  d 
y(t) - 2WN n=-oc 

--03 N 

(5.6.58a) 

where the integral has the form of a sinc function such that 

sin [wN(t -- nat)] (5.6 58b) 
y(t) = ~ yn t - n A t  

n - - - - O C  

Given the data {Yn}, we can construct y(t). However, suppose that y(t) fluctuates with 
the Nyquist frequency WN such that 

y(t) -Yo cos (wNt + O) (5.6.59) 

where, for the sake of generality, the phase angle is arbitrary, 0 <_ 0 _ 2~-. Then, using 
sin (nTr) - 0  for all n (an integer) 

Yn = y(nAt) --Yo cos (nTr + O) =Yo[ cos (nzr)cosO] 
(5.6.60) 

= Yo ( -  1 )n cos 0 

This leads to a component with amplitude yn = y o ( - 1 )  n cos0 which fluctuates in sign 
because of the term (-1)n, - o c  _< n <_ e~. If 0 is unknown, the function y(t) cannot be 
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Figure 5.6.18. An aliased autospectrum. (a) The true spectrum, S(f) (m2//cps), of wind-generated waves 
as a function of frequency (Hz = cycles per second); (b) Aliased spectrum, S,,(f), that would arise from 

folding about a hypothetical Nyquist frequency fN = 0.13 Hz. 

constructed. If 0 = krr/2, so that cos (wNt § 0) = sin (wNt), the observer will find no 
signal at all. In general, 0 _< [cos01 < 1 and the magnitude will always be less thanyo, 
resulting in biased data. 

According to the above analysis, we should sample slightly more frequently than At 
if we are to fully resolve oscillations at the maximum frequency of interest (assumed to 
be the Nyquist frequency). A sampling rate of 2.5 samples per cycle of the frequency of 
interest appears to be acceptable whereby At = 1/(2.5f,~) = (2/5)(1if:v) = (4/5)TrfivN. 

5.6.5.4 Frequency resolution 

The need to resolve spectral estimates in neighboring frequency bands is an important 
requirement of time series analysis. Without sufficient resolution, it is not possible to 
determine whether a given spectral peak is associated with a single frequency, or is a 
smeared response containing a number of separate spectral peaks. A good example of 
this for tides is presented by Munk and Cartwright (1966) who show that for long 
records the main constituents in the diurnal and semidiurnal frequency bands can be 
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resolved into a multitude of other tidal frequencies. How well the peaks can be resolved 
depends on the frequency differences, Af, between the peaks and the length, T, of 
the data set used in the analysis. For an unsmoothed periodogram, the frequency 
resolution in hertz is roughly the reciprocal of the time duration in seconds of the 
data. 

The distinction between well-resolved and poorly resolved spectral estimates is 
somewhat subjective and depends on how we wish to define "resolution". As with 
diffraction patterns in classical optics, we can follow the "Rayleigh criterion" for the 
separation of spectral peaks (Jenkins and White, 1957). Recall that the diffraction 
pattern for a given frequency, f, of light varies as s inc(0)= s i n [ ( 0 - O f ) ] / ( O -  (Pf), 
where 0 is the angle of the incident light beam to the grating. This also is the functional 
form for the spectral peak of a truncated time series (see windowing in the next section). 
Two spectral lines are said to be "well resolved" if the separation between peaks exceeds 
the difference in frequency between the center frequency to the maximum at the first 
side-lobe and "just resolved" if the spectral peak of one pattern coincides with the first 
zero of the second pattern (Figure 5.6.19a-c). Here, the separation in frequency is equal 
to the difference in frequency between the peak of one spectrum and the first zero of the 
function s in(0) /0  of the second (where O=coT/2). The spectral peaks are "not 
resolved" if this separation is less than the separation between the center frequency and 
the first zero of the sin (0) /0  functions (Figure 5.6.19d). 

Consider an oceanic record consisting of two sinusoidal components, both having 
amplitude Yo and constant phase lags such that 

y(t) -yo[COS(Wlt + 0 1 ) +  cos (co2t +02)], - T / 2  <_ t <_ T/2 (5.6.61) 

where as usual co -  2rrf. The one-sided, unsmoothed power spectral density, S(co), for 
these data are then found from the Fourier transform 

S(~) ___1 2{ sin [�89 co~)] 
2TY~ [�89 - co, )] 

sin w2)]} 
I�89 

The power spectrum consists of two terms of the form s in(0) /0  centered at 
frequencies wl and w2. Using the Rayleigh criterion, we can just resolve the two peaks 
(i.e.-determine if there is one or two sinusoids contributing to the spectrum) provided 
that the frequency separation Aco = lcol - co2[ (Af = [/1 - - f 2 [ )  is equal to the frequency 
difference for the peak of one frequency and the first zero of sin (0)/0 for the other 
frequency. Since zeros of sin (0) /0  occur at frequencies f equal to +l /T ,  +2/T, 
..., •  the frequencies are just resolved when 

2rr 1 
A c o - - f - ;  A f - ~  (5.6.63a) 

and well-resolved for 

3rr 3 
Aw > -m-; Af > (5.6.63b) 

1 

In summary, resolution of two frequenciesfk and fk+l (= fk + Af) using an unsmooth- 
ed periodogram or equivalently a rectangular window, requires a record of length T, 
where Af = l IT  frequency units. Note also that 1/T is equal to the fundamental 
frequency, fx, which is the lowest frequency that we can calculate for the record. For 
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Figure 5.6.19. Resolution of spectral lines. (a, b) Well resolved; (c) just resolved; and (d) not resolved. 
(From Jenkins and White, 1957.) 

some nonrectangular windows, the length of the data set must be increased to about 
2T = 2 / A f  to achieve the same frequency separation. 

In a related study, Munk and Hasselman (1964) discuss the "super-resolution" of 
tidal frequency variability. The fact that time series of tidal heights vary at precise 
frequencies and have relatively large signal-to-noise ratios suggests that the traditional 
requirement (that a minimum record length T is required to separate tidal con- 
stituents separated by frequency difference Af = 1/T)  is "grossly incomplete". The 
modified resolvable frequency difference is 

1 27r 
A f  - rT A~o rT (5.6.64) 

in which r ~ (signal level/noise level) 1/2. On this basis, the Rayleigh criterion must be 
considered a conservative measure of the resolution requirement for deterministic 
processes. 

5.6.6 Smoothing spectral estimates (windowing) 

The need for statistical reliability of spectral estimates brings us to the topic of 
spectral averaging or smoothing. As we have seen, discrete Fourier transforms provide 
an elegant method for decomposing a data sequence into a set of discrete spectral 
estimates. For a data sequence of N values, the periodogram estimate of the spectrum 
can have a maximum of N/2  Fourier components. If we use all N/2 components to 
generate the periodogram, there are only two degrees of freedom per spectral estimate, 
corresponding to the coefficients An, Bn of the sine and cosine functions for each 
Fourier component (see Section 5.6.3.5). Based on the assumption that data are drawn 
from a normally distributed random sample, we can define the confidence limits for 
the spectrum in terms of a chi-squared distribution, ~2, where for n degrees of freedom 
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E[X~]  - -  i,.t 2 = n ,  E[(X 2 - , 2 ) ]  = 0.2 _ 2n (5.6.65) 

Substituting n = 2 into these expressions, we find that the standard deviation, or, is 
equal to the mean, #, of the estimate, indicating that results based on two degrees of 
freedom are not statistically reliable. It is for this reason that some sort of ensemble 
averaging or smoothing of spectral estimates is required. The smoothing can be ap- 
plied directly to the time series through convolution with a sliding averaging function 
or by averaging adjacent spectral estimates. A one-shot smoothing applied to the 
entire record increases only slightly the number of degrees of freedom per spectral 
estimate. In most practical applications, the full time series is broken into a series of 
short overlapping segments and smoothing applied to each of the overlapping seg- 
ments. We then ensemble average the smoothed spectra from each segment to increase 
the number of degrees of freedom per spectral estimate. The more smoothing we do, 
the narrower the confidence limits and the greater the reliability of any observed 
spectral peaks. The trade-off is a loss of spectral resolution and longer processing time. 

A window is a smoothing function applied to finite observations or their Fourier 
transforms to minimize "leakage" in the spectral domain. Convolution in the time 
domain and multiplication in the frequency domain are adjoint Fourier functions (see 
Appendix G regarding convolution). A practical window is one which allows little of 
the energy in the main spectral lobe to leak into the side-lobes where it can obscure 
and distort other spectral estimates that are present. In fact, weak signal spectral 
responses can be masked by higher side-lobes from stronger spectral responses. 
Skillful selection of tapered data windows can reduce the side-lobe leakage, although 
always at the expense of reduced resolution. Thus, we want a window that minimizes 
the side-lobes and maximizes (concentrates) the energy near the frequency of interest 
in the main lobe. These two performance limitations are rather troublesome when 
analyzing short data records. Short data occur in practice because many measured 
processes are of short duration or have slowly time-varying spectra that may be 
considered constant over only short record segments. The window is applied to data to 
reduce the order of the discontinuity of the boundary of the periodic extension since 
few harmonics will fit exactly into the length of the time series. 

Signals with frequencies other than those of the basis set are not periodic in the 
observation window. The periodic extension of a signal, not commensurate with its 
natural period, exhibits discontinuities at the boundaries of the observational period. 
Such discontinuities are responsible for spectral contributions or leakage over the 
entire basis set. In the time domain, the windows are applied to the data as a 
multiplicative weighting (convolution) to reduce the order of the discontinuities at the 
boundary of the periodic extensions. The windowed data are brought to zero smoothly 
at the boundaries so that the periodic extensions of the data are continuous in many 
orders of the derivatives. The value of Y(f) at a particular frequency f, sayfo, is the sum 
of all the spectral contributions at each f weighted by the window centered at fo and 

measured at f 

y( f )  = y 'o  r) , WOC) (5.6.66) 

There exist a multitude of data windows or tapers with different shapes and 
characteristics ranging from the rectangular (box-car) window discussed in the pre- 
vious section, to the classic Hanning and Hamming windows, to more sophisticated 
windows such as the Dolph-Chebyshev window. The type of window used for a given 
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application depends on the required degree of side-lobe suppression, the allowable 
widening of the central lobe, and the amount of computing one is willing to endure. 
We will briefly discuss several of the conventional windows plus the Kaiser-Bessel 
window recommended by Harris (1978). 

5. 6.6.1 Desired window qualities 

Windows affect the attributes of a given spectral analysis method, including its ability 
to detect and resolve periodic waveforms, its dynamic range, confidence intervals, and 
ease of implementation. Spectral estimates are affected not only by the broadband 
noise spectrum of the data but also by narrow-band signals that fall within the 
bandwidth of the window. Leakage of spectral power from a narrow-band spectral 
component, fo, to another frequency component, fa, produces a bias in the amplitude 
and position of a spectral estimate. This bias is especially disruptive for the detection 
of weak signals in the presence of nearby strong signals. To reduce the bias, we need a 
"good" window. Although there are no universal standards for a good window, we 
would like it to possess the following characteristics in Fourier transform space: 

(1) 

(2) 

(3) 

The central main lobe of the window (which is centered on the frequency of 
interest) should be as narrow as possible to improve the frequency resolution of 
adjacent spectral peaks in the dataset, and the first side-lobes should be greatly 
attenuated relative to the main lobe to avoid contamination from other frequency 
components. Here, the narrowness of the central lobe is measured by the positions 
of the - 3  dB (half power points) on either side of the lobe. Retention of a narrow 
central lobe, while suppressing the side-lobes, is not as easy as it sounds since 
suppression of the side-lobes invariably leads to a broadening of the central lobe; 
The window should suppress the amplitudes of side-lobes at frequencies far 
removed from the central lobe. That is, the side-lobes should have a rapid 
asymptotic fall-off rate with frequency so that they leak relatively little energy 
into the spectral estimate at the central lobe (i.e. into the frequency of interest); 
The coefficients of the window should be easy to generate for multiplication in the 
time domain and convolution in the Fourier transform domain. 

A good performance indicator (PI) for the time domain window w(t) can be defined as 
the difference between the equivalent noise bandwidth, ENBW, and the bandwidth, 
BW, located between the -3  dB levels of the central lobe (Harris, 1978) 

1 ~ w2 (nAt) 
E N B W -  BW BW n 

P I -  = - 1 (5.6.67~ 
BW 2 \ ! 

where we have normalized by the bandwidth. The windows that perform well have 
values for this ratio (x 100%) of between 4.0 and 5.5%. A summary of the figures of 
merit for several well-known windows is presented in Table 5.6.3. PI values are 
obtained using columns 4 and 5. The choice of window can be daunting; Harris lists 
more than 44 windows for smoothing spectral estimates. 
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Table 5.6.3. Windows and figures of merit. The last column gives the correlation between adjacent data 
segments for the specified percentage segment overlap. For completeness, we include the Tukey and 
Parzen windows. (From Harris, 1978) 

Window 

Highest Side-lobe Equiv. 3.0 dB Overlap 
side-lobe attenuation noise BW corr. 
level (dB)  (dB/octave) BW (BINS) (BINS) 75% 50% 

Rectangle -13 -6  1.00 0.89 0.750 0.500 
Triangle -27 -12 1.33 1.28 0.719 0.250 
Hanning -32 -18 1.50 1.44 0.659 0.167 
Hamming -43 -6  1.36 1.30 0 .707 0.235 
Parzen -21 -12 1.20 1.16 0.765 0.344 
Tukey o~ - 0.5 -15 -18 1.22 1.15 0.727 0.364 
Kaiser o~ = 2.0 -46 -6  1.50 1.43 0.657 0.169 
Bessel 
c~ = 2.5 -57 -6  1.65 1.57 0.595 0.112 
c~ - 3.0 -69 -6  1.80 1.71 0.539 0.074 
c~ = 3.5 -82 -6  1.93 1.83 0.488 0.048 

5.6.6.2 Rectangular (box-car) and triangular windows 

As discussed in Section (5.6.4), a rectangular window has an ampli tude of unity 
throughout  the observation interval of duration T = NAt ,  with the weighting given by 

w ( n A t ) - - l ,  n - - 0 ,  1 , . . . , N - 1  ( o r - N / 2 < _ n < _ N / 2 )  
(5.6.68) 

= 0, elsewhere 

(Figure 5.6.20a). Using the relation coT = NO, where ~9 - coat and T - NAt ,  the 
spectral window from the discrete Fourier transform (DFT) is 

W(O) - Te -i(N-1)e/2 sin (N0/2) 
NO~2 (5.6.69a) 

]W(0)] 2 - T2l[sin(NO/2)]2 
NO~2 (5.6.69b) 

(Figure 5.6.20b) where the exponential term in equation (5.6.69a) gives the phase shift 
of the window as a function of the frequency oa = 6~At. The function W, the Dirichlet 
kernal,  has strong side-lobes, with the first side-lobe down only 13 dB from the main 
lobe. The remaining side-lobes fall off weakly at 6 dB per octave, which is the 
functional rate for a discontinuity (an "octave" corresponds to a factor of two in 
change frequency). Zeros of W(0) occur at integer multiples of the frequency 
resolution, fl - 1/T, for which NO~2 =coT~2 = • That  is, where 
f = + p / T ( + I / T ,  +2/T,  ... ). 

The tr iangular  (Bartlett) window 

n 

w(nAt) -- ( N / 2 ) '  n = 0, 1, . . . ,  N/2 
N - n  
( N / 2 ) '  rz=  N / 2 , . . . , N - 1  

(5.6.70a) 

N/2  -]n] 

(N/2) 
o < Inl <_ N/2 (5.6.70b) 
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Figure 5.6.20. A box-car window for N = 41 weights. (a) Weights, w(n) = 1.0 in the time domain 
( -20  < n <_ 20). (b) Fourier transform of the weights, ]W(0)], plotted as 20 log lW(O)l where 

0 = w A t / N  = 407r/N is the frequency span of the window. 

(Figure 5.6.21a) has the DFT 

W(O) = ~2Te-i(N-')~ [sin. NO/2(NO/2)] 2 (5.6.71a) 

[W(0) 2 _ 4T 2 [ sin (NO/2)] 4 
- ~  NO/2 J 

(5.6.71b) 

(Figure 5.6.21b) which we recognize as the square of the sinc function for the 
rectangular window. The main lobe between zero crossings is twice that of the 
rectangular window but the level of the first side-lobe is down by 26 dB, twice that of 
the rectangular window. Despite the improvement over the box-car window, the side- 
lobes of the triangular window are still extensive and use of this window is not 
recommended if other windows are available. 

The Parzen window 

w(nAt )  -- 1 .0 -  ]n/(N/2)l 2 0 _< In] _< N / 2  (5.6.72) 

is the squared counterpart to the Bartlett window. This is the simplest of the 
continuous polynomial windows and has first side-lobes down by -22 dB and falls off 
as 1 / J .  
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5.6.6.3 Hanning and Hamming windows (50% overlap) 

445 

The Hann  window, or Hanning window as it is most commonly  known, is named after 
the Aust r ian  meteorologis t  Julius von Hann  and is part  of a family of t r igonometr ic  
windows having the generic form cos'~(n), where the exponent ,  c~, is typically an 
integer  from 1 through 4. The case ~ - 1 leads to the Tukey (or cosine-tapered) window 
(Harris ,  1978). As ~ becomes larger, the window becomes smoother ,  the side-lobes fall 
off faster and the main  lobe widens. The  Hann ing  window (~ - 2), also known as the 
raised cosine and sine-squared window, is defined in the t ime domain  as 

w(nAt )  - - s in  2(Trn/N) - �89 - cos (2~n/N)],  n = 0, 1, ..., N - 1 (5.6.73a) 

= sin2 [~(n + N / 2 ) / N ]  

- ![1.0 - cos[27r(n + N/2) /N]]  n - - N / 2  N / 2  (5.6.73b) 
- -  2 ' ' " ' "  

(Figure  5.6.22a) which is a cont inuous function with a cont inuous  first derivative. The  
D F T  of this weight ing  function is 

W(O) - ~D(O) + ~[D(O - 0]) + D(O + 0] )] (5.6.74) 
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Figure 5.6.21. The triangular (Bartlett) window for N = 51 weights. (a) Weights, w(n) in the time 
domain ( -20  <_ n <_ 20). (b) Fourier transform of the weights, [ W(0)[, plotted as 20 log lW(O)[ (cf. 

Figure 5.6.20). 
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D(O) - Te i~ sin (NO~2) 
NO~2 (5.6.75) 

is the standard function (Dirichlet kernal) obtained for the rectangular and triangular 
windows. Thus, the window consists of the summation of three sinc functions (Figure 
5.6.22c), one centered at the origin, 0 = 0, and two other translated Dirichlet kernals 
having half the amplitude of the main kernal and offset by 0 = +27r/N from the 
central lobe. There are several important features of the window response W(O). First 
of all, the functions D are discrete and defined only at points which are multiples of 
27r/N, which also correspond to the zero crossings of the central function, D(O). 
Secondly, for all of zero crossings except those at 0• = +27r/N, the translated 
functions also have zero crossings at multiples of 27r/N. As a result, only values at 
-27v/N, O, and + 27v/N contribute to the window response. It is the widening of the 
main lobes of the translated functions that causes them to be nonzero at the first zero- 
crossings of the central function. Lastly, because the translated functions are out of 
phase with the central function, they tend to cancel the side-lobe structure. The first 
side-lobe is down by 32 dB from the main lobe. The remaining side-lobes diminish as 
1/~3 or at about -18  dB per octave. 

An attractive aspect of the Hanning window is that smoothing in the frequency 
domain can be accomplished using only three convolution terms corresponding to 
0o, 0-~1. The Hanning-windowed Fourier transform YH for the spectral frequency, f k, is 
then obtained from the raw spectra Y for the frequencies fk and the two adjoining 
frequencies fk- l, fk+ 1; that is 

YH(fk) -- �89 l[Y(fk-l) + Y~+I)]  } (5.6.76) 

The transform YOCk) has been rectangular-windowed by the act of collecting the data 
but is "raw" in the sense that no additional smoothing has been applied. Other 
processing advantages of the Hanning window are discussed by Harris (1978). Since 
the squares of the weighting terms (1/2) 2 + (1/4) 2 + (1/4) 2 = 3/8, thetotal  energy Will 
be reduced following the application of the Hanning window. To compensate, the 
amplitudes of the Fourier transforms YH(f) should be multiplied by v/(8/3) prior to 
computation of the spectra. Specifically 

N - 1  

YHOCk) -- /kt(8/3) 1/2 Zyn[1  -- COS (2wn/N)]e -i2~rkn/n (5.6.77) 
n=0 

where ~ = k/(NAt) .  
The Hamming window is a variation on the Hanning window designed to cancel the 

first side-lobes. To accomplish this, the relative sizes of the three Dirichlet kernels are 
adjusted through a parameter, 7 where 

w(nAt) = 7 + (1 - 7)cos (27rn/N)], n = -N /2 ,  ...,N/2 (5.6.78a) 

W(O) = 71)(0) + 1(1 - 7)[/)(0 - 27r/N) + D(O + 27r/N)] (5.6.78b) 

Perfect cancellation of the first side-lobes (located at 01 = 2.57r/N) occurs when 
7 = 2 5 / 4 6 , ~ 0 . 5 4 3 4 7 8 .  Taking 7),=0.54 leads to near-perfect cancellation at 
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Figure 5.6.22. The Hanning and Hamming windows for N - 41 weights. (a) Weights, w(n), 
( - 2 0  <_ n <_ 20). (b) Fourier transform of the weights, J W(0)J, plotted as 20 log lW(O)J (cf. Figure 

5.6.20). The response functions have not been re-scaled. 
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01 - 2.67r/N and a marked improvement in side-lobe level. The Hamming window is 
defined as 

w(nAt) = 0.54 + 0.46cos (27rn/N), n = - N / 2 ,  ..., N/2  (5.6.79) 

and has a spectral distribution similar to that of the Hanning window with more 
"efficient" side-lobe attenuation. The highest side-lobe levels of the Hanning window 
occur at the first side-lobes and are down by 32 dB from the main lobe. For the 
Hamming window, the first side-lobe is highly attenuated and the highest side-lobe 
level (the third side-lobe) is down by 43 dB. To compensate for the filter, the amp- 
litudes of the Fourier transforms YHam(f)  should be multiplied by v/(5/2) prior to 
computation of the spectra. On a similar note, if you are going to use any of the 
windows in this section to calculate running mean time series, make sure each esti- 
mated value is divided by the sum of the weights used, ~-~N W,. 

5. 6.6.4 Kaiser-Bessel window (75% overlap) 

Harris (1978) identifies the Kaiser-Bessel window as the "top performer" among the 
many different types of windows he considered. Among other factors, the coefficients 
of the window are easy to generate and it has a high equivalent noise bandwidth, one 
of the criteria used to separate good and bad windows. The trade-off is increased main- 
lobe width for reduced side-lobe levels. In the time domain the filter is defined in 
terms of the zeroth-order modified Bessel functions of the first kind. 

w(nAt) = Io(Traf~) 0 < [nt < N/2  (5.6.80) 
I o ( ~ )  ' - - 

where the argument 9t - [1 .0 -  (2n/N)2] 1/2 and 

Oc [o(X)=Z[(X/2)k]2 
k=0 L k!  J (5.6.81) 

The parameter ~-a is half of the time-bandwidth product, with a typically having 
values 2.0, 2.5, 3.0, and 3.5. The transform is approximated by 

sinh {[7r2o~ 2 -- (N0/2)2] 1/2} 
(5.6.82) g(o)  [N/Io(rCa)] {[ 7t'2ct2 _ (N0/2)2]1/2} 

Plots of the weighting function w and the DFT for W are presented in Figure 5.6.23 
for two values of the parameter c~(= 2.0,3.0). The modified Bessel function Io is 
defined as follows. 

For Ix] <_ 3.75 

Io(x) = {[{[(4.5813 x 10-3Z + 3.60768 x 10-2)Z 

+ 2.659732 x 10-1]Z + 1.2067492}Z + 3.0899424]Z + 3.5156229}Z + 1.0 

(5.6.83a) 

where for real x 

Z -  (x/3.75) 2 (5.6.83b) 

For Ixl > 3.75 
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I o ( x ) - e x p ( l x ] ) / q x ] l / 2 { [ ( { [ { [ ( 3 . 9 2 3 7 7  • 10-3Z - 1.647633 x 10-2)2 

+ 2.635537 • 10-2]Z- 2.057706 • 10-2)Z-F 9.16281 • 10-3]Z 

- 1.57565 • 10-3)Z + 2.25319 • 10-3)Z + 1.328592 • 10-2)Z 

+ 3.9894228 • 10 -] ) 

(5.6.83c) 

where 

Z -  3.75/]xl (5.6.83d) 

The usefulness of the Kaiser-Bessel window is nicely illustrated by Figure 5.6.24. 
Here, we compare the average spectra (in cm2/cpd) obtained from a year-long record 
of hourly coastal sea level following application of a rectangular window (the worst 
possible window) and a Kaiser-Bessel window (the best possible window) to a series of 
overlapping data segments. In each case, the window length is 42.7 days and there are 
K - 32 degrees of freedom per spectral estimate, corresponding to roughly 16 separate 
spectral estimates for 50% window overlaps. Both windows preserve the strong spectra 
peaks within the tidal frequency bands centered at 1, 2, and 3 cpd. However, unlike 
the rectangular window, the Kaiser-Bessel window results in little energy leakage 
from the tidal bands to adjacent frequency bands. The high spectral levels at periods 
shorter than about two days O F > 0.5 cpd) in the nontidal portion of the rectangularly 
windowed spectra is an artifact of the window. The slightly better ability of the 
rectangular window to resolve frequency components within the various tidal bands is 
outweighed by the high contamination of the spectrum at nontidal frequencies. 
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Figure 5.6.23. The Kaiser-Bessel window for N - 51 weights and ~ = 2.0 and 3.0. (a) Weights, w(n), 
( - 2 0  < n < 20). (b) Fourier transform of the weights, I W(0)], plotted as 20 log ] W(O)] (cf. Figure 

5.6.20). (From Harris, 1978.) 
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5.6.7 S m o o t h i n g  spectra  in the f requency  d o m a i n  

As we noted earlier, each spectral estimator for a random process is a chi-squared 
function with only two degrees of freedom (DOF). Because of this minimal number of 
degrees of freedom, some sort of smoothing or filtering is needed to increase the 
statistical significance of a given spectral estimate. The windowing approach des- 
cribed in the previous section, in which we partitioned the time series into a series of 
shorter overlapping segments, is one of a number of computational methods used to 
smooth (average) spectral estimates. 

5. 6. 7.1 B a n d  averaging 

For a time series consisting of N data points, one of the simplest forms of smoothing is 
to use the discrete Fourier  transform or fast Fourier transform to calculate individual 
spectral estimates for the maximum number of frequency bands (N/2) and then 
average together adjacent spectral estimates. The resultant spectral estimate is 
assigned to the mid-point of the average. Thus, we could average bands 1, 2, and 3, to 
form a single spectral estimate centered at band 2, then bands 4, 5, and 6 to form an 
estimate centered at band 5, and so on. It is often useful in this type of frequency band 
averaging to use an odd-numbered smoother so that the center point is easily defined. 
In particular, if we were to average groups of three adjacent (and different) bands to 
form each estimate, the number of degrees of freedom per estimate would increase 
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Figure 5.6.24. Spectra (cm2/cpd) of the hourly coastal sea-level height recorded at Victoria, British 
Columbia during 1975 following windowing (number of hourly samples, N - 8750). Linear frequency. 
Solid line: Rectangular window. Dashed line: Kaiser-Bessel window with c~ : 3. Both windows have a 
length of 1024 h ( = 42.67 days) and there are DOF = 32, using a total of 16 50% overlapping data 
segments. The tidal peak centered at 3 cpd results from nonlinear interactions within the semidiurnal 

frequency band. Vertical line is the 95% level of confidence. (Courtesy, A. Rabinovich.) 
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from 2 to 6. In the case of the Blackman-Tukey procedure, an alternative method is to 
use bigger lag steps in the computation of the autocovariance function before its 
transform is taken. This is functionally equivalent to smoothing by averaging together 
the individual spectral estimates. 

5.6.7.2 Block averaging 

As noted earlier, a common smoothing technique is to segment the time series (of 
length N) into a series of short, equal-length segments of length Ns (where N = KNs, 
and K is a positive integer). Spectra are then computed for each of the K segments and 
the spectral values for each frequency band then block averaged to form the final 
spectral estimates for each frequency band. If there is no overlap between segments, 
the resulting degrees of freedom for the composite spectrum will be 2K. This assumes 
that the individual sample spectra have not been windowed and that each spectral 
estimate is a chi-squared variable with 2 degrees of freedom. Since the frequency 
resolution of a time series is inversely proportional to its length, the major difficulty 
with this approach is that the shorter time series have fewer spectral values than the 
original record over the same Nyquist frequency range. In other words, the maximum 
resolvable frequency 1~2At remains the same since At is unchanged, but the 
frequency spacing between adjacent spectral estimates is increased for the short 
segments because of the reduced record lengths. 

However, by not overlapping adjacent segments, we could be overly conservative in 
our estimate of the number of degrees of freedom. For that reason, most analysts 
overlap adjacent segments by 30-50% so that more uniform weighting is given to 
individual data points. The need for overlapping segments is necessary when a 
window is applied to each individual segment prior to calculation of the spectra. The 
effect of the window is to reduce the effective length of each segment in the time 
domain so that, for some sharply defined windows such as the Kaiser-Bessel window, 
even adjoining segments with 50% overlap can be considered independent time series 
for spectral analysis. As in Figure 5.6.24, The degrees of freedom of the periodograms 
averaged" together is 4K, rather than 2K for the nonoverlapping segments. 
Consideration must be given to the correlation among individual estimates (the 
greater the overlap the higher the correlation). Nuttall and Carter (1980) report that 
92% of the maximum number of equivalent degrees of freedom can be achieved for a 
Hanning window which uses 50% overlap. Clearly, we must sacrifice something to 
gain improved statistical reliability. That "something" is a loss of frequency resolution 
due to the broad central lobe that accompanies windows with negligible side-lobes. 

As an example, consider the spectrum of a 1-min sampled time series 
y(t)-Acos(27rft)+c(t)  of length 512 rain composed of Gaussian white noise 
c(t)(Ic I _< 1) and a single cosine component of amplitude, A, and frequency f = 
0.23 cpmin (period T = 1/f = 4.3 min). The magnitude of the deterministic 
component, A, is five times the standard deviation of the white noise signal and 
V[c] - (1/v/2) cm 2. The raw periodogram (Figure 5.6.25a) reveals a large narrow peak 
at the frequency (0.23 cpmin) of the single cosine term plus a large number of smaller 
peaks associated with the white noise oscillations. In this case, there has been no 
spectral smoothing and the resultant spectral estimates are chi-squared functions with 
2 degrees of freedom. The variances of the spectral peaks are as large as the peaks 
themselves. If we average together three adjacent spectral components (Figure 
5.6.25b), we obtain a much smoother spectrum, S(f). Here, Si - S~)  is defined by Si - 
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1/3[S~._1) + S(fi) + S O ~ i + I ) ] , S i + 3  --  1/3[S~+2) + S(/~i+3) + S(/~+4)], and so on. Each of 
the new spectral estimates now has six degrees of freedom instead of only two. The 
bottom two panels in this figure show what happens if we increase the number of 
frequency bands averaged together to seven (Figure 5.6.25c) and then to 15 (Figure 
5.6.25d). Note that, with increasing degrees of freedom (DOF), our confidence in the 
existence of a spectral peak increases but delineation of the peak frequency decreases. 
With increasing DOF, there is increased smoothing of all spectral peaks (see also 
Figure 5.6.24). The same effect can be achieved by operating on the autocovariance 
function rather than on the Fourier spectral estimates. In particular, a spectrum 
similar to Figure 5.6.25(a) is obtained using the autocovariance transform method on 
the time seriesy(t) for a time lag of 1 min (the sampling interval). If we apply a lag of 
3 min in computing the autocovariance transform, we obtain a spectrum similar to 
Figure 5.6.25(b), and so on. Any differences between the two methods will be due to 
computational uncertainties. 

To determine the number of degrees of freedom for any block averaging, we define 
the normalized standard error r of the one-sided spectrum, Gyy(f), of the time 
series y(t) of length T = NAt,  as 

c[Gyy (f)] V[Gyy(f)]I/2 
- Gyy(f) (5.6.84) 

where V[(~] is the variance of (~, the tilde (~) denotes the raw estimate of the time 
series, and 

G y y ( f ) / G y y ( f )  - X~/2 (5.6.85) 

is a chi-square variable with n - 2 degrees of freedom. For the narrowest possible 
resolution Af = 1/T, we have 

~[Oyy (f)] (2n) 1/2 - =(2/n)  1/2 (5.6.86) 
n 

For maximum resolution, n = 2 and so ~((~) = l, giving the not-so-useful result that 
the standard deviation of the estimate is as large as the estimate itself. If, on the other 
hand, we average the spectral estimates for each frequency for the maximum 
resolution spectra using a total of Ns separate and independent record segments of 
length Ts (where T = Ns. Ts) we find 

2 x, 
GyYOC) - N~Ts ~ IYi~' Ts)12 (5.6.87) 

i-1 

so that 

c[Gyy(f)]- (2n/2Ns) 1/2 - (l/Ns) 1/2 (5.6.88) 

The resolution (effective) bandwidth is be - Ns/T = 1/Ts. Since the first estimate gives 
two degrees of freedom per spectral band, this gives 2N~ degrees of freedom per 
frequency band. 
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Figure 5.6.25. Periodogram power spectral estimates for a time series composed of Gaussian white noise 
and a single cosine constituent with a frequency of 0.23 cpmin and amplitude five times that of the white 
noise component. N - number of spectral bands and vertical lines are the 95% confidence intervals. (a) 
Raw (unsmoothed) periodogram, with DOF - 2; (b) smoothed periodogram, by averaging three 
adjacent spectral estimates such that DOF =6; (c) as with (b) but for seven frequency bands, and DOF 

*= 14; as with (b) but for I5 frequency bands, DOF = 30. 

5.6.8 Confidence intervals on spectra 

We can generalize equation (5.6.85) by noting that the ratio of the estimated spectrum 
and the expected values of the spectrum 

b'Gyy(f) X2 u (5.6.89) 
Gyy(f) 

is distributed as a chi-square variable with v degrees of freedom. It then follows that 

p 2 z"GyyO V) 
< X~-~/2,~,] = 1 - a (5.6.90) 

where 

P[X2~, -< X~/2,v] - -  a /2  (5.6.91) 
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Thus, the true spectrum, Gyy(f), is expected to fall into the interval 

z,,Gyy(f_______~) < Gyy(f) < (5.6.92) 

with (1 - a ) 1 0 0 %  confidence. In this form, the confidence limit applies only to the 
frequency f and not to other spectral estimates. We further point out that the degrees 
of freedom, u, in the above expressions are different for windowed and nonwindowed 
time series. For windowed time series, we need to use the "equivalent" degrees of 
freedom, as presented in Table 5.6.4 for some of the more commonly used windows. 

Another way to view these arguments is to equate GyyO c) with the measured 
standard deviation, s2(/), of the spectrum and Gyy(D with the true variance, o'2 (f). Then 

(u - 1 )s 2 0 c) (u - 1 )s 2 (f) 
< o-2(f) < (5.6.93) 

~-c~/2,u ~2/2,u 

If spectral peaks fall outside the range (5.6.92) then to the ( 1 -  c~)100% confidence 
level they cannot have occurred by chance. The confidence levels are found by looking 
up the values for X~-~/2,~ an d X2/2~ in a chi-square table, then calculating the 
intervals based on the observed standard deviation, s. (Confidence limits on spectral 
coherency functions are given in Section 5.8.6.1.) 

5.6.8.1 Confidence intervals on a logarithmic scale 

The confidence intervals derived above apply only to individual frequencies, f. This 
results from the fact that the confidence interval is determined by the value Gyy(/) of the 
spectral estimate and will be different for each spectral estimate. It would be convenient 
if we could have a single confidence interval that applies to all of the spectral values at all 
frequencies. To obtain such a confidence interval, we transform the spectrum using the 
loglo function. Transforming the above confidence limits we have 

log [Gyy(f)] + log [tl/)(.~_c~/2,u ] ~ log [Gyy(f)] ~ log [Gyy(f)] + log [~/~2/2,u ] (5.6.94) 

or 

log <_ log [Cyy0")] - log _< log (5.6.95) 

When the estimated spectrum is plotted on a log scale, a single vertical confidence 

Table 5.6.4. Equivalent degrees of freedom for spectra calculated using different windows. N is the 
number of data points in the time series and M is the half-width of the window in the time domain. 
(From Priestley, 1981). N r M for the truncated periodogram 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Type of window Equivalent degrees of freedom 

Truncated periodogram N/M 
Bartlett window 3N/M 
Daniell window 2N/M 
Parzen window 3.708614(N/M) 

Hanning window (8/3)(N/M) 
Hamming window 2.5164 (N/M) 
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interval is determined for all frequencies by the upper and lower bounds in the above 
expression (Figure 5.6.26a). The spectral estimate Gyy(f) itself is no longer a part of the 
confidence interval. This aspect, together with the fact that most spectral amplitudes 
span many orders of magnitude, is a principal reason for presenting spectra as log 
values. If larger numbers of spectral estimates are averaged together at higher 
frequencies (i.e. u is increased), the confidence interval narrows with increasing 
frequency (Figure 5.6.26b). Note that the length of the confidence interval is longer 
above the central point than below. 

5.6.8.2 Fidelity and stability 

The general objective of all spectral analysis is to estimate the function Gvy0 r) as 
accurately as possible. This involves two basic requirements: 

(1) That the mean smoothed spectrum, Gyy(f), be as close as possible to the actual 
spectrum Gyy(f). That is, the bias 

B ( f )  - Gyy(f)  - OyyO c) (5.6.96) 

should be small. If this is true for all frequencies, then Gyy(f) is said to reproduce 
Gyy~ with high fidelity. 

(2) For a time series of length T that has been segmented into M pieces for spectral 
estimation, the variance of the smoothed spectral estimator for bandwidth b~ is 

(M/bl ) [Gyy(f)] 2 (5.6.97) 
VIOyY(f)] ~ T 

and should be small. If this is true, the spectral estimator is said to have high 
stability. 

5.6.9 Zero-padding and prewhitening 

For logistical reasons, many of the time series that oceanographers collect are too short 
for accurate definition of certain spectral peaks. The frequency resolution Af = 1/T for 
a record of length T may not be sufficient to resolve closely spaced spectral components. 
Also, discrete points in the computed spectrum may be too widely spaced to adequately 
delineate the actual frequency of the spectral peaks. Unfortunately, the first problem-- 
that of trying to distinguish waveforms with nearly the same frequencymcan only be 
solved by collecting a longer time series; i.e. by increasing T to sharpen up the frequency 
resolution f of the periodogram. However, the second problemmthat of locating the 
frequency of a spectral peak more precisely--can be addressed by padding (extending) 
the time series with zeros prior to Fourier transforming. Transforming the data with 
zeros serves to refine the frequency scale through interpolation between power spectral 
density estimates within the Nyquist interval --fN <_f <_fN. That is, additional fre- 
quency components are added between those that would be obtained with a nonzero- 
padded transform. Adding zeros helps fill in the shape of the spectrum but in no case is 
there an improvement in the fundamental frequency resolution. Zero-padding is useful 
for: (1) smoothing the appearance of the periodogram estimates via interpolation; (2) 
resolving potential ambiguities where the frequency difference between line spectra is 
greater than the fundamental frequency resolution; (3) helping define the exact 
frequency of spectral peaks by reducing the "quantization" accuracy error; and (4) 
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extend the number of samples to an integer power of 2 for FFT analysis. An example of 
how zero-padding improves the spectral resolution of a simple digitized data set is 
provided in Figure 5.6.27. We again emphasize that increased zero-padding helps locate 
the frequency of discernible spectral peaks, in this case the peaks of the sin x/x function, 
but cannot help distinguish closely spaced frequency components that were unresolved 
by the original time series prior to padding. 

Prewhitening is a filtering or smoothing technique used to improve the statistical 
reliability of spectral estimates by reducing the leakage from the most intense spectral 
components and low-frequency components of the time series that are poorly resolved. 
To reduce the biasing of these components, the data are smoothed by a window whose 
spectrum is inversely proportional to the unknown spectrum being considered. 
Within certain frequency bands, the spectrum becomes more uniformly distributed 
and approaches that of white noise. Information on the form of the window necessary 
to construct the white spectrum must be available prior to the application of the 
smoothing. In effect, the time series y(nAt) is filtered with the weighting function 
h(nAt) such that the output is 

y'(nAt) = h(nAt). (nAt) (5.6.98) 

has a nearly white spectrum. Once the spectrum Sy(w) is determined, the desired 
spectrum is derived directly as 

iH(co)]2 (5.6.99) 

The best aspects of the parametric and nonparametric spectral techniques can be 
combined if a parametric model is used to prewhiten the time series prior to the 
application of a smoothed periodogram analysis. In most prewhitening situations, one 
is limited to using the first-difference filter in which the current data value is 
subtracted from the next value multiplied by some weighting coefficient, 0 _< a <_ 1. 
That isy'(t) - y ( t )  - ay(t + At). The weighting coefficient can be taken as equal to the 
correlation coefficient of the initial data series with a shift of one time step, At. The 
filter suppresses low frequencies and stresses high frequencies and has a transform 

H(f) = [1 - a e - i 2 r r f A t ]  2 = 1 - 2a cos (2rrfAt) + O~ 2 (5.6.100) 

Prewhitening reduces leakage and increases the effectiveness of frequency averaging 
of the spectral estimate (reduces the random error). The reduced leakage gives rise to 
a greater dynamic range of the analysis and allows us to examine weak spectral 
components. Notice that, if Y0 c) is the Fourier transform ofy(t), then the Fourier 
transform ofy'(t) is 

y'(,~) - / y ' ( t ) e - i ~ t d t  ~ ,~. Y(~) (5.6.101) 

t 

so that first differencing is like a linear high-pass filter with amplitude IH(w)[ = ]w I. 
This effect shows up quite well in the processing of satellite-tracked drifter data. 
Spectra of the drifter positions (longitude, x(t); latitude, y(t)) as functions of time, t, 
are generally "red" whereas the spectra of the corresponding drifter velocities (zonal, 
u = ~x /A t ;  meridional, v = Ay/At)  are considerably "whiter" (Figure 5.6.28). 
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Figure 5.6.27. Use of zero padding to improve the delineation of spectral peaks. (a) A continuous box-car 
window of length T and its continuous Fourier transform; (b) a discrete sample of (a) at equally spaced 
sampling intervals and its discrete Fourier transform; (c) same as (b) but with zero padding of 2T data 

points. (From Henry and Graefe, 1971.) 

5.6.10 Spectra l  ana lys i s  of  u n e v e n l y  s p a c e d  t ime  ser ies  

Most discrete oceanographic time-series data are recorded at equally spaced time 
increments. However, some situations arise where the recorded data are spaced 
unevenly in time or space. For example, positional data obtained from satellite-tracked 
drifters are sampled at irregular time intervals due to the eastward progression in the 
swaths of polar-orbiting satellites and to the advection of the drifters by surface 
currents. Repeated time-series oceanic transects are typically spaced at irregular 
intervals due to the vagaries of ship scheduling and weather. In addition, instrument 
failure and data drop-outs generally lead to "gappy", irregularly spaced time series. 

As noted in Section 3.17, a common technique for dealing with irregularly sampled 
or gappy data is to interpolate data values to a regular grid. This works well as long as 
there are not too many gaps and the gaps are of short duration relative to the signals of 
interest. Long data gaps can lead to the creation of erroneous low-frequency 
oscillations in the data at periods comparable to the gap lengths. Only for the least- 
squares method for harmonic analysis described in Section 5.5 is unevenly sampled 
data perfectly acceptable. Vani~ek (1971), Lomb (1976) and others have devised a 
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least-squares spectral analysis method for unevenly spaced time series. The Lomb 
method described by Press et al. (1992) evaluates data, and associated sines and 
cosines, at the times t,, that the data are measured. For the N data values X(tn) = Xn, i = 
1, . . . ,  N, the Lomb-normalized periodogram is defined as 

+ 
[ /xn  /cosi /t   /11 

1 n - 1  

N 
P(w) ~ ~ cos 2[W(tn - 7")] 

n = l  

[n= /Xn /sinI /tn T/I] 2 

N 

sin 2[w(tn - 7-)] 
n = l  

(5.6.102) 

where as usual 

1 N N 

~ _ r E X  n 0 . 2  1 , - N-------Z~ ~-'~ (x,, - ~)2 (5.6.103) 
n = l  n = l  

are the mean and standard deviation of the time series, and the time offset, 7, is 
defined by 

N 

sin (2wtn) 
tan(2wT) -- ,,=1 

N 

cos (Zwtn ) 
n = l  

(5.6.104) 

The offset ~- renders equation (5.6.102) identical to the equation we would derive if we 
attempted to estimate the harmonic content of a data set at frequency w using the 
linear least-squares model 

x(t) - A cos~t + B sinwt (5.6.105) 

In fact, Vani(zek's founding paper on the technique refers to it as a least-squares 
spectral analysis method. The method, which gives superior results to FFT methods, 
weights the data on a per point basis rather than on a time-interval basis. By not using 
weights that span a constant time interval, the method reduces errors introduced by 
unevenly sampled data. For further details on the Lomb periodogram, including the 
introduction of significance testing of spectral peaks, the reader is referred to Press et 
al. (1992; pp. 569-577). 

5.6.11 General spectral bandwidth and Q of the system 

Once the power spectral density, S(w), has been computed, the general spectral 
bandwidth BW may be determined from the three moments, mk, of the spectra 

C)G 

mk -- / ~ S ( w )  dw, 

0 
N/2 
E ~iS(~176 
i=0 

k - 0 ,  1,2 

(5.6.106) 
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where N/2  is the number of spectral estimates and Aw is the frequency resolution of 
the spectral estimates (cf. Masson, 1996). In particular 

B W  - (m2mo/m~ - 1) 1/2 (5.6.107) 

The bandwidth, AwB~V, of a particular spectral peak within an oscillatory system 
can be used to estimate the dissipation of the system at the peak (resonant) frequency, 
Wr. Specifically, the "Q" or Quality factor of the system measures the amount of energy 
stored in a linear oscillator compared to the amount of energy lost per cycle through 
frictional dissipation. The Q-factor characterizes the sharpness of the resonant 
frequency and is commonly used as a direct measure of tidal dissipation in the ocean. 
Suppose that the energy of a simple linear system passes through a maximum at 
resonance frequency and that the energy of the system falls to 50% of its maximum 
value at frequencies w ,~ w,. + ,'XWB~V/2. The Q of the system is then given by 

Q = w r / A w B ~  (5.6.108) 

For example, Wunsch (1972) finds Q ,~ 3.3 for an apparent resonant period of 14.8 h 
for the North Atlantic Ocean while Garrett and Munk (1971) obtain an global-wide 
lower bound of 25 for normal modes near the semidiurnal frequency. 

5.6.12 Summary of the standard spectral analysis approach 

In summary, PSD estimates for time series y(t) can be obtained as follows using the 
standard autocorrelation and periodogram approaches: 

(1) Remove the mean and trend from the time series. If block averaging is to be used 
to improve the statistical reliability of the spectral estimates (i.e. to increase the 
number of degrees of freedom), divide the data series into M sequential blocks of 
N'  data values each, where N ~ -  N / M  (see Section 5.6.7). 

(2) ~I'o partially reduce end effects (Gibbs' phenomenon) or to increase the series 
length to a power of two for FFT analysis, pad the data with K _< N zeros. Also 
pad the record with zeros if you wish to increase the frequency resolution or 
center spectral estimates in specific frequency bands. To further reduce end 
effects and side-lobe leakage, taper the time series using a Hanning (raised cosine) 
window, Kaiser-Bessel window, or other appropriate window (see Section 5.6.6). 

(3) Compute the Fourier transforms, YOCk),k = O, 1, 2, ..., N -  1, for the time series 
(for convenience, we have taken K - 0). For block-segmented data, calculate the 
Fourier transforms YmOrk) for each of the M blocks (m - 1, . . . ,  M) where 
k -  0, 1, ..., N ' - 1  and N ' <  N. To reduce the variance associated with the 
tapering in step 2, the transforms can be computed for overlapping segments. 

(4) Re-scale the spectra to account for the loss of "energy" during application of the 
window. That is, adjust the scale factor of Y(fk) (or YmOrk) in the case of smaller 
block size partitioning) to account for the reduction in spectral energy due to the 
tapering in step 2. For the Hanning window, multiply the amplitudes of the 
Fourier transforms by V/(8/3). The rescaling factors for other windows are listed 
in the right-hand column of Table 5.6.4. 
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(5) Compute the raw power spectral density for the time series (or for each block) 
where for the two-sided spectral density estimates 

1 
SyyOCk)--NAE[Y*(fk)Y~k)], k - 0 ,  1, 2, ..., N -  1 

(no block averaging) 

1 
SyyOCk;m) -- N A t  [Ym(fk)Ym(fk))' k = 0 ,  1, 2, ..., N / - 1  (5.6.109a) 

(block averaging) 

and for the one-sided spectral density estimates 

2 
G yy Ck ) --~--~[Y*(fk)y(]ck)], k --0, 1, 2, ..., N / 2 

(no block averaging) 

2 
Gyy (fk ; m ) -- - N ~  [Ym OCk ) Ym (fk ) ] , k = 0, 1, 2, ..., Nt/2 (5.6.109b) 

(block averaging) 

(6) In the case of the block-segmented data, average the raw spectral density estimates 
from the m blocks of data, frequency-band by frequency-band, to obtain the 
smoothed periodogram for Syy(fk) or GyyOrk). Remember, the trade-off for increased 
smoothing (more degrees of freedom) is a decrease in frequency resolution. 

(7) Incorporate 80, 90, and/or 95% confidence limits in spectral plots to indicate the 
statistical reliability of spectral peaks. Most authors use the 95% confidence 
intervals. 

We can illustrate some of the points in the above summary using the log-log spectra 
of sea-level oscillations (Figure 5.6.29) recorded over 14 days (20,160 min) in 1991 at 
Malokurilsk Bay on the west coast of Shikotan Island in the western Pacific. The main 
spectral peak is centered at a period of 18.6 min and corresponds to a wind-generated 
seiche amplitude of about 25 cm (Rabinovich and Levyant, 1992). All spectra have 
been obtained using segmented versions of the 14-day time series. Each time-series 
segment has been smoothed using a Kaiser-Bessel window with 50% overlap between 
segments and each segment has been treated as an independent time series. An FFT 
algorithm was used to calculate the spectrum for each segment. The smoothest 
spectrum (Figure 5.6.29a) is based on block averaged spectral estimates from roughly 
157 overlapping segments (,-,,20,160 min/128 min), the moderately smooth spectrum 
(Figure 5.6.29b) from the average of 39 overlapping segments, and the noisiest 
spectrum (Figure 5.6.29c) from the average of 10 overlapping segments. Taking into 
account the 50% overlap between segments and the fact that there are two degrees of 
freedom (DOF) per raw spectral estimate, there are 628 (= 157 x 4), 154, and 36 DOF 
for the three spectra, respectively. The smoothed spectrum in Figure 5.6.29(d) is 
derived using a slightly different approach. Although the segment lengths are the 
same as those in Figure 5.6.29(c) (i.e. 2048 min), the number of DOF is increased with 
increasing frequency, ~. In this sliding scale, the lowest frequency range uses 36 DOF 
(as with Figure 5.6.29c), the next frequency band averages together the spectra for 
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Figure 5.6.29. Spectra of sea-level oscillations recorded by a bottom-pressure gauge in Malokurilsk Bay 
on the west coast of Shikotan Island. Time-series length T = NAt ,  where N - 20,160 and 
A t  = 1 rain. Segment lengths are T+ = MAt ,  M << N. Each time-series segment has been smoothed 
with a Kaiser-Bessel window with 50% overlap between segments. Block averaging has been used to 
smooth the spectral estimates. (a) Highly smoothed spectrum with M = 128 (27), DOF = 628; (b) 
moderately smoothed spectrum with M = 512 (29), DOF = 154; (c) weakly smoothed spectrum with M 
= 2048 (211), DOF = 36; (d) same as (c) except that DOF = 36 applies to the lowest frequency range 
only. For f >_ 6 • 10 -2 cycles/min, the number of spectral estimates averaged together increases as 
3 • 36, 5 • 36, and 7 • 36, for each of the next three frequency ranges. (Courtesy ofA. Rabinovich.) 

three adjacent frequencies to give 108 DOF, the next averages together the spectra for 
five adjacent frequencies to give 180 DOF, and so on. 

As indicated by Figure 5.6.29, increasing the number of frequency bands averaged 
in each spectral estimate enhances the overall smoothness of the spectrum and 
improves the statistical reliability for specific spectral peaks. The number of DOFs 
increases and the confidence interval narrows. The penalty we pay for improved 
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statistical confidence is reduced resolution of the spectral peaks. As in Figure 
5.6.29(a), too much smoothing diminishes our ability to specify the frequency of 
spectral peaks and washes out peaks linked to some of the weaker seiches. Because 
each time-series segment is so short, we also lose definition at the low-frequency end 
of the spectrum. As indicated by Figure 5.6.29(c), too little smoothing leads to a noisy 
spectrum for which few spectral peaks are associated with any physical processes. The 
sliding DOF scale in Figure 5.6.29(d) is a useful compromise. 

Covariance function: Since the covariance function, Cyy(~), and the autospectrum are 
Fourier transform pairs, the above analysis can be used to obtain a smoothed or 
unsmoothed estimate of the covariance function. To do this, first calculate the Fourier 
transform Y(f) of the time series, and determine the product SyyOf)  = 

N-1At[Y*(f)Y(f)]. Then take the inverse Fourier transform (IFT) of the auto- 
spectrum, Syy(/), to obtain the covariance function, Cyy(T). If the spectrum is un- 
smoothed prior to the IFT (or IFFT if the FFT was used), we obtain the raw 
covariance function. If, on the other hand, the autospectrum is smoothed prior to the 
above integral using one of the spectral windows, such as the Hanning window, the 
covariance function also will be a smoothed function. 

A word of caution: Although everyone agrees on the basic formulation for the discrete 
Fourier transform (DFT) and the inverse discrete Fourier transform (IDFT), there are 
several ways to normalize the relations using the number of records, N. In our defini- 
tions, (5.6.10) and (5.6.12), N appears in the denominator of the inverse discrete Fourier 
transform. Some authors normalize using 1/N in the DFT only while others insist on 
symmetry by using 1/v/N in both DFT and its inverse. User alert: When using 
"canned" programs to obtain DFTs and IDFTs, ensure that you know how the trans- 
forms are defined and adapt your analysis to fit the appropriate processing routines. 

5.7 SPECTRAL ANALYSIS (PARAMETRIC METHODS)  

If the analytical model for a time series was known exactly, a sensible spectral 
estimation method would be to fit the model spectrum to the observed spectrum and 
determine any unknown parameters. In general, however, oceanic variability is too 
complex to admit simple analytical models and parametric spectral estimates over the 
full frequency range of the data series. In addition, the imposition of an overly 
simplified spectral model could seriously degrade any estimation. On the other hand, 
it is reasonable that relatively simple spectral models might adequately reflect the 
system dynamics over limited frequency bands. Under some very general conditions, 
any stationary series can be represented in closed form by a statistical model in which 
the corresponding spectrum is a rational function of frequency (i.e. a ratio of two 
polynomials in w). 

If the time series under investigation is long relative to the time scales of interest, 
and if the spectrum is not overly complicated and does not have too large a dynamic 
range, the simple smoothed periodogram technique will probably yield adequate 
results. At a minimum, it will identify the major features in the spectrum. For shorter 
time series or in studies of fine spectral structure, other techniques may be more 
applicable. One such spectral analysis technique was developed by Burg (1967, 1972) 
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who showed that it was possible to obtain the power spectrum by requiring the 
spectral estimate to be the most random or have the maximum entropy of any power 
spectrum which is consistent with the measured data. This leads to a spectral estimate 
with a high frequency resolution since the method uses the available lags in the 
autocovariance function without modification and makes a nonzero estimate (pred- 
iction) of the autocorrelation function beyond those which are routinely calculated 
from the data. Because the spectral values are computed using a maximum entropy 
condition, the resulting spectral estimates are not accurate in terms of spectral 
amplitude. 

The most popular of the "modern" parametric techniques is the Autoregressive power 
spectral density (AR PSD) model whose origins are in economic time series forecasting 
and statistical estimation. Autoregressive estimation was introduced to the earth 
sciences in the 1960s where it was originally applied to geophysical time-series data 
under the name maximum entropy method (MEM). The duality between AR and MEM 
estimation has been thoroughly explored by Ulrych and Bishop (1975). Autoregressive 
spectral estimation is attractive because it has superior frequency resolution compared 
to conventional FFT techniques. As an example of the frequency resolution capability, 
consider the 14-year time series of average monthly air temperature for New York city 
(Figure 5.7.1a). The unsmoothed periodogram and three smoothed periodograms 
reveal a broad spectral peak centered at a period of one year (Figure 5.7.1b). This 
compares to the much sharper annual peak obtained via AR estimation (Figure 
5.7.1c). The results reveal another important difference between the two methods. 
With the nonparametric periodogram approach, we can determine confidence limits 
for the spectral peaks while for the parametric method the significance of the peaks is 
unknown. For example, the maximum entropy method is good for finding the location 
of spectral peaks but is not reliable for computing the correct spectral energy at those 
peaks. (The periodogram smoothing in Figure 5.7.1(b) was performed using a Parzen 
window with truncation values N - 16, 32, and 64; the weights for these windows are 
w(n) = 1.0 - [2n/N[ 2, with 0 _< In] _< �89 

In general, autoregressive and maximum entropy PSD estimation are not as widely 
used in oceanography as traditional spectral analysis methods. The former find their 
great~st application in analytical climate modeling and in wavenumber spectral 
estimation. Modern parametric techniques are good so long as the model is good. On 
the other hand, if the model is false, the resulting spectrum estimate can be highly 
misleading. It follows that if you have no reason for believing a specific model you are 
better served using a nonparametric model. For this reason, we limit our presentation 
to the essential elements of the two methods. The reader is directed to Marple (1987) 
for a thorough discussion of the topic, including an introduction to Fourier transform 
methods of spectral analysis. 

5.7.1 Some basic concepts 

Many deterministic and stochastic discrete-time series processes encountered in 
oceanography are closely approximated by a rational transfer model in which the 
input sequence {xn} and the output sequence {Yn}, which is meant to model the input 
data, are related by the linear difference relation 

q P 

Yn - ~ bkxn-k - ~ amYn-m (5.7.1) 
k - 0  m-1 
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Here,yn is shorthand notation fory(nAt),  also written asy(n). In its most general form, 
the linear model (5.7.1) is termed an autoregressive moving average (ARMA) model.  The 
power spectral density (PSD) of the ARMA output process is 

PARMA(f) = 0"2 At[A (f) /B( f )]  2 (5.7.2) 

where o -2 is the variance of the applied white-noise driving mechanism and 0.2 At is the 
PSD of the noise for the Nyquist interval - 1 / ( 2 A t )  _<f _< 1/(2At). Here 

A(f) = c~[ exp (i2rrfAt)], B(f) =/3[ exp (i2rrfAt)] (5.7.3) 

where the coefficients c~,/3 are defined in terms of the z-transform, X(z), of the variable 
z = exp (i27rfAt)[= exp (i2~-nk/N) in discrete form] where k, n = 0, 1, . . . ,  N -  1 

N - 1  

X(z)  - ~ XnZ -n (5.7.4) 
n=0 

which maps a real-valued sequence into a complex plane. Note that equation (5.7.4) is 
defined through negative powers of z, the convention used in electrical engineering. 
Geophysicists expand in positive powers ofz (z +n) but define z - exp(-izTrfAt) so the 
results are the same. The z-transform of the autoregressive branch is 

c~(z) - ~ anz -n (5.7.5a) 
n 

while that of the moving average branch is 

/~(Z) -- ~ bn z-n 
n 

(5.7.5b) 

Specification of the parameters {ak}, termed the autoregressive coefficients, the 
parameters {bk}, termed the moving-average coefficients, and the variance 0.2 is 
equivalent to specifying the spectrum of the process {Yn}. Without loss of generality, 
one can assume ao = 1 and bo = 1 since any gain of the system (5.7.1) can be 
incorporated into 0"2. If all the {ak} terms except ao - 1  vanish then 

q 

y~ - ~-~bkxn-k (5.7.6) 
k=0 

and the process is simply a moving average of order q, and 

P MA (f ) -- 0"2 At ~4 (f )12 (5.7.7) 

This model is sometimes called an all-zero model since spectral peaks and valleys are 
formed through zeros of the function A(/). If all the {bk} terms except bo = 1 vanish 
then 

p 

Yn - ~ amXn--m -}-Cn (5.7.8) 
m=l  

and the process is strictly an autoregressive model of order p. The process is called AR 
in the sense that the sequence Xn is a linear regression on itself with en representing 
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the error. With this model, the present valueyn is expressed as a weighted sum of past 
values plus a noise term. The PSD is 

0 .2 At 
PAR(f) = ,B...-------- (])1 (5.7.9) 

In the engineering literature, this model is sometimes called an all-pole model since 
narrow spectral peaks can be sharply delineated through zeros in the denominator. 

5.7.2 Autoregressive power spectral estimation 

The discrete form of an autoregressive model y(t) of order p is represented by the 
relationship 

y(n) - aty(n - 1) +a2y(n - 2) + ... +apy(n - p )  + ~(n) (5.7.10) 

where time t = nAt ,  the a~ (k - 1, ..., p) are constant coefficients, and e(t) is a white- 
noise series (usually called the innovation of the AR process) with zero mean and 
variance o 2. Another interpretation of the AR process links y(t) with a value that is 
predicted from the previous p - 1 values of the process with a prediction error equal to 
e(t). Thus, the ak (k = 1, .. . ,  p) represent a p-point prediction filter. If Y(z) is the z- 
transform ofy(n) then 

p 

Y(z) - Z y ( n ) z n  (5.7.11) 
n=0 

and 

Y(z) - Y(z)(alz  + a 2 z  2 + . . .  + a p Z  p )  - -  D(z) (5.7.12) 

so that 

Iy(z) 12 - -  ID(z)l 2 
I1 - a l z  - a 2 z  2 . . .  - apzP] 2 ( 5 . 7 . 1 3 )  

Substituting z - -  exp (-i27rfAt) we obtain half of the true power spectrum. If the 
autoregression is a reasonable model for the data, then the autoregressive power 
spectral density estimate based on (5.7.9) is 

o2At 
PAR(f) = (5.7.14) 

1 + ~ ak exp (-i27rfkAt) 
k=l  

To find the PSD we need only estimate three things: (1) the autoregressive parameters 
{al, a2, ... , a/,}; (2) the variance, a 2, of the white-noise process that is assumed to be 
driving the system; and (3) the order, p, of the process. The limitations of the AR model 
are the degrading effect of observational noise, spurious peaks, and some anomalous 
effects which occur when the data are dominated by sinusoidal components. Unlike 
conventional Fourier spectral estimates, the peak amplitudes in AR spectral estimates 
are not linearly proportional to the power when the input process consists of sinusoids in 
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noise. For high signal-to-noise ratios, the peak is proportional to the square of the power 
with the area under the peak proportional to power. 

5. 7.2.1 Autoregressive parameter  estimation 

Yule-Walker equations: If the autocorrelation function, Ryy(k), is known exactly, we can 
find the {ak} by the Yule-Walker equations. This method relates the AR parameters to 
the known (or estimated) autocorrelation function of y(n) 

N-k N 1 1 
Ryy(k) = ~ Z  [[x(n + k) - 2]Ix(n) - 21; 2 = x(n) (5.7.15) 

n=l n-1 

There are other methods of estimating Ryy but this estimator has the attractive 
property that its mean-squared error is generally smaller than that of other estimators 
(Jenkins and Watts, 1968). Since it is generally assumed that the mean ~ has been 
removed from the data, the autocovariance and autocorrelation functions are 
identical. To get the AR parameters, one need only choose p equations from the 
Yule-Walker equations for k > 0, solve for {al, a2, ... ,ap}, and then find cr 2 from (2.39) 
for k - 0. The matrix equation to find the ais and o 2 is 

R ~  ( O ) Ryy ( - 1 )  ... Ryy ( - p  ) 
R~(1) Ryy(O) ... Ryy[-(p - 1)] 

Ryy (p ) Ryy (p - 1) ... Ryy(0) 

1 

a l  
~ 1 7 6 1 7 6  

% 

o~ 
0 

~  

"0' 

(5.7.16) 

Thus, to determine the AR parameters and the variance ~ one must solve (5.7.16) 
using the p + 1 autocorrelation lags, Ryy(O), ... , Ryy(p), where Ryy( -k )  = Ryy(k). 

Solutions to the Yule-Walker matrix equation can be found via the computationally 
efficient Levinson-Durbin algorithm which proceeds recursively to compute the 
parameter sets {a11, O~l},{a21, a22, o~2 }, ..., {apl,ap2, ..., app, a~}. The final set at order 
p (th~first  subscript) is the desired solution. The algorithm requires p2 operations as 
opposed to the O(p 3) operations of Gaussian elimination. More specifically, the 
recursion algorithm gives 

-Ryy (1) 
all = Ryy(O) (5.7.17a) 

a~ = (1 -lallj2)Ryy(O) (5.7.17b) 

with the recursion for k - 2, 3, ..., p given by 

.R(k-J) akk = 0"~ (k) + ak_ld yy 
j=I 

(5.7.18a) 

aki = -ak-l , i  + akk(ah-l,h-i)* (5.7.18b) 

o-~ - ( 1 -  ]ahk[2)o-~_l (5.7.18c) 

Burg algorithm: Box and Jenkins (1970) point out that the Yule-Walker estimates of 
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the AR coefficients are very sensitive to rounding errors, particularly when the AR 
process is close to becoming nonstationary. The assumption that y (k ) -  0, for [kl > p 
leads to a discontinuity in the autocorrelation function and a smearing of the 
estimated PSD. For this reason, the most popular method for determining the AR 
parameters (prediction error filter coefficients) is the Burg algorithm. This algorithm 
works directly on the data rather than on the autocorrelation function and is subject to 
the Levinson recursion (5.7.18b). As an illustration of the differences in the YW and 
the Burg estimates, the respective values of al~ for the series y(tk) = y(k) are 

a l l  - -  

a l l  = 

P 

~_,y(k)y(k - 1) 
k---2 

P 
~'~ y (k) 2 
k = l  

P 
~-~y(k)y(k - l) 
k=2 

P 
1 2 2 l 2 ~x 1 + ~~y(k) +~x~ 

k = l  

, for the Yule-Walker estimate 

, for the Burg estimate 

(5.7.19) 

Detailed formulation of the Burg algorithm is provided by Kay and Marple (1981; 
p. 1392). Again, there are limitations to the Burg algorithm, including spectral line 
splitting and biases in the frequency estimate due to contamination by rounding 
errors. Spectral line splitting occurs when the spectral estimate exhibits two closely 
spaced peaks, falsely indicating a second sinusoid in the data. 

Least squares estimators: Several least squares estimation procedures exist that 
operate directly on the data to yield improved AR parameter estimates and spectra 
than the Yule-Walker or Burg approaches. The two most common methods use 
forward linear prediction for the estimate, while a second employs a combination of 
forward and backward linear prediction. Ulrych and Bishop (1975) and Nuttall (1926) 
independently suggested this least squares procedure for forward and backward 
prediction in which the Levison recursion constraint imposed by Burg is removed. 
The least squares algorithm is almost as computationally efficient as the Burg al- 
gorithm requiring about 20 more computations. The improvement by the LS approach 
over the Burg algorithm is well worth the added computation time. Improvements 
include less bias in the frequency estimates, and absence of observed spectral line 
splitting for short sample sinusoidal data. 

Barrodale and Erickson (1978) provide a FORTRAN program for an "optimal" 
least-squares solution to the linear prediction problem. The algorithm solves the 
underlying least-squares problem directly without forcing a Toeplitz structure on the 
model. Their algorithm can be used to determine the parameters of the AR model 
associated with the maximum entropy method and for estimating the order of the 
model to be used. As illustrated by the spectra in Figure 5.7.2, this approach leads to a 
more accurate frequency resolution for short sample harmonic processes. In this case, 
the test data were formed by summing 0.03 and 0.2 Hz sine waves generated in single 
precision and sampled 10 times per second. The reader is also referred to Kay and 
Marple (1981; p. 1393) for additional details. 
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Figure 5. 7.2. Maximum entropy method spectra obtained using (a) the Burg and (b) the Barrodale and 
Erickson algorithms. Signal consists of a combined 0.2 and 0.03 Hz (cps) sine wave. Spectra are plotted 

for increasing numbers of coefficients, p. (From Barrodale and Erickson, 1978.) 

5. 7.2.2 Order o f  the autoregressive process 

The order p of the autoregressive filter is generally not known a priori and is 
acknowledged as one of the most difficult tasks in time series modeling by parametric 
methods. The choice is to postulate several model orders then compute some error 
criterion that indicates which model order to pick. Too low a guess for the model order 
results in a highly smoothed spectral estimate. Too high an order introduces spurious 
detail into the spectrum. One intuitive approach would be to construct AR models 
with increasing order until the computed prediction error power ~ reaches a 
minimum. Thus, if a process is actually an AR process of order p, then ap. 1, k = apk for 
k = 1, 2, . . . ,  p. The point at which apk does not change would appear to be a good 
indicator of the correct model order. Unfortunately, both the Yule-Walker equations 
and Burg algorithm involve prediction error powers 

~k - -  O'k2-1 [1 --  akk] 2] (5.7.20a) 

that decrease monotonically with increasing order p, so that as long as lakh] 2 is 
nonzero (it must be <_ 1) the prediction error power decreases. Thus, the prediction 
error power is not sufficient to indicate when to terminate the search. Alternative 
approaches (Kay and Marple, 1981) have been proposed by Akaike (termed the final 
prediction error, FPE, and the Akaike information criterion, AIC), and by Parzen 
(termed the criterion autoregressive transfer function). The Akaike information 
criterion determines the model order by minimizing an information theoretic 
function. If the process has Gaussian statistics, the AIC is 
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Summary of algorithms 

, m  

Method Model applied Advantages Disadvantages 

Periodogram method Sum of harmonics 
using FFT or direct (sines and cosines). 
Fourier transform No specific model 

needed. 

Autoregressive, Autoregressive 
Yule-Walker (all-pole) process. 
algorithm. Specific model. 

Autoregressive, Autoregressive 
Burg algorithm. (all-pole) process. 

Specific model. 

Autoregressive, least- Autoregressive 
squares method. (all-pole) process. 

Specific model. 

1. Uses harmonic least 
squares fit to the data; 
2. output S(f) directly 
proportional to power; 
3. most computationally 
efficient; 
4. well-established 
methodology; 

1. Frequency resolution 
A f ~. l I T  dependent only on 
record length, T; 
2. poor performance for short 
data records; 
3. side-lobe leakage distorts 
spectra if appropriate 
windowing not done; 

5. confidence intervals easily windowing reduces frequency 
computed; resolution, A f;  
6. integral of SO') over 4. must average spectral 
frequency band Af is equal estimates to improve statistical 
to the variance of the reliability. 
signal in that band. 
7. easily generalized to cross- 
spectra and rotary spectra 
analysis. 
1. Improved spectral 
resolution over Fourier 
transform methods; 
2. sharp spectral peaks; 
3. no side-lobe leakage 
problems; 
4. minimum phase (stable) 
linear prediction filter 
guaranteed if biased lag 
estimates computed; 
5. related to linear prediction 
analysis and adaptive filtering. 
1. Improved resolution over 1. Model order, p, must be 
Fourier transform methods, specified; 
Uses a constrained recursive 2. spectral line splitting can 
least squares approach 
2. no side-lobe leakage 
problems; 
3. high resolution for low 
noise signals; 
4. good spectral fidelity for 
short data series; 
5. no windowing implied; 
6. Stable linear prediction 
filter guaranteed. 
1. Sharper spectra than for 
other AR methods 
2. no side-lobes; 
3. good spectral fidelity for 
short data series; 
4. no windowing; 
5. no line splitting; 
6. uses exact recursive least 
squares solution with no 
constraint. 

, , ,  , , ,  

1. Model order, p, must be 
specified; 
2. spectral line splitting 
occurs; 
3. implied windowing distorts 
spectra; 
4. confidence intervals not 
readily computed. 

1. Model order must be 
specified; 
2. stable linear prediction 
filter not guaranteed, though 
stable filter results in most 
cases. 

occur; 
3. confidence intervals not 
readily computed. 
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AIC(p) - In (e~) + 2(p + 1)/N (5.720b) 

where ~ is the prediction error power and N is the number of data samples. The 
second term represents the penalty for the use of extra autoregressive coefficients that 
do not result in a substantial reduction in the prediction error power. The order p is 
the one that minimizes the AIC. 

5. 7.2.3 Maximum entropy method (MEM) 

The only constraint on the AR method is that the data yield the known autocorrelation 
function Ryy(k) for the interval 0 < k < p. The assumption that y(k) - 0, for ]kl > P 
leads to a discontinuity in the autocorrelation function and a smearing of the estimated 
power spectral density. The MEM was designed, independently of autoregressive 
estimation, to eliminate the distortion of the spectrum caused by the truncated Ryy(k). 
By adding a second constraint to improve the spectral estimation, the method gets away 
from the problems with the Yule-Walker algorithm. In essence, the MEM is a way of 
extrapolating the known autocorrelation function to lags k > p, which are not known. In 
words, we assume that {Ryy(O), ..., Ryy(p)} are known and find a logical way to extend to 
lags {Ryy(p + 1), ...}. As it turns out, the power spectral estimate for the MEM approach 
is equivalent to the power spectral estimate for the AR process. 

In general, there exist an infinite number  of possible extrapolations. Burg (1968) 
argued that preferred extrapolation should do two things: (1) Yield the known Ryy for 
0 < k _< p; and (2) generate an extrapolated Ryy for k > p that causes the time series to 
have maximum entropy under the constraint (1). The time series that results is the 
most random one which adheres to the known Ryy for the first p + 1 lags. Altern- 
atively, we can say that PSD is the one with whitest noise (flattest spectrum) of all 
possible spectra for which {Ryy(O), ..., Ryy(p)} is known. The reason for choosing the 
maximum entropy criterion is that it imposes the fewest constraints on the unknown 
time series by maximizing its randomness thereby causing minimum bias and opera- 
tor intervention. For a Gaussian process, the entropy per sample is proportional to 

1~2At 

/ 
-1~2At 

ln[Py(f)] df (5.7.21) 

where Py(f) is the PSD ofy,,. The spectrum is found by maximizing (5.7.21) subject to 
the constraint that the p + 1 known lags satisfy the Wiener-Khinchin relation 

1~2At 

/ 
-1~2At 

Py (f)e-i2rrfnAt d f  = Ryy (n), n - 0, 1, . . . ,p  (5.7.22) 

The solution is found using the Lagrange multiplier technique (see Ulrych and 
Bishop, 1975) as 

er2At (5.7.23) 
Py( f )  - p 2 

1 + ~ aph exp (-i2rrfkAt) 
k=l 
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where {apl, ..., app} and o~ are just the order-p predictor parameters and prediction 
error power, respectively. With knowledge of {Ryy(O), Ryy(1), ..., Ryy(p)} the power 
spectral density (PSD) of the maximum entropy method (MEM) is equivalent to the 
PSD of the autoregressive method. That is, the MEM spectral analysis is equivalent to 
fitting an AR model to the random process. It is indeed interesting that the represent- 
ation of a stochastic process by an AR model is that representation that exhibits 
maximum entropy. The duality of the AR model and MEM has enabled workers to 
apply the large body of literature on AR time-series analysis to overcome short- 
comings of the MEM. 

The estimation of the MEM spectral density requires a knowledge of the order of 
the AR process that we use to model the data. The importance of correctly estimating 
the order p is illustrated using the AR process Yn -y( t~)  at times tn = nat  

Yn = 0.75Yn-~ - 0.5yn-2 + Cn (5.7.24) 

2 b u t  E[~(t)e'(t)] - 0 with noise variance ~ - 1 (Figure 5.7.3a). Here E[y(t)e(t)]- ~ ,  
for any other additive noise, d. As indicated by Figure 5.7.3(b), which compares the 
theoretical power of a specified second-order AR process with the power spectral 
density computed from a realization of this process using p = 2 and p - 11 (Ulrych 
and Bishop, 1975), the correct choice ofp is vital in obtaining a meaningful estimate of 
the power spectrum of the process. The peak value and the width of the spectral line of 
the MEM power spectral density estimate also may have considerable variance in the 
MEM estimates. 

Although the MEM has numerous advantages over traditional nonparametric 
spectral techniques, especially for short data series, the usefulness of the approach is 
diminished by the lack of a straightforward criterion for choosing the length (order) of 
the prediction model. Too short a length results in a highly smoothed spectrum 
obviating the resolution advantages of the MEM, whereas an excessive length intro- 
duces spurious detail into the spectrum. 

Confidence intervals: A major shortcoming of MEM is the lack of a mathematically 
consistent variance estimator (confidence interval) for the spectral density. One 
approach is to approximate the confidence bounds in the same way that we compute 
the bounds in traditional multivariate spectral analysis (i.e. using a chi-square 
variable with u degrees of freedom) under the assumption that the equivalent number 
of degrees of freedom is given by u = N/p, where N the number of data points in the 
time series and p is the order of the model (Privalsky and Jensen, 1993, 1994). The 
order p should be chosen on the basis of objective criteria such as Akaike's 
information criterion, Parzen's criterion and so on (see L~tkepohl, 1985). 

5. 7.2.4 An autoregressive model of global temperatures 

One way to determine the effect of initial conditions and random noise on the global 
temperature predictions of computer-simulated general circulation models (GCMs) is 
to obtain a control realization, modify the initial conditions and noise, obtain a second 
realization and compare results. Since this could take several months of super- 
computing time, a more practical approach is to employ a model of the global air 
temperature series, T(t), derived by Jones (1988) (Figure 5.7.4). If we assume that the 
sensitivity of GCMs to changing conditions is similar to that of a stationary 
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and Bishop, 1975.) 

autoregressive model, then marked changes in the AR model that result from slight 
changes in the initial conditions or inherent noise are evidence that GCMs are too 

sensitive to these parameters to be reliable. 
If Zn - Z(tn) represents the temperature deviation (departure from the long-term 

mean) at year t,, then the maximum likelihood fourth order AR model for the 

temperature data in Figure 5.7.4 is 

Zn = 0.669Zn-1 - 0.095Zn-2 + 0.104Zn-3 + 0.247Zn-4 + Cn (5.7.25) 
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where Zn = T,, - T, and Cn is an uncorrelated white-noise series with zero mean and 
variance equal to 0.0115~ 2 (Tsonis, 1991; Gray and Woodward, 1992). In general, we 
can state that for any AR process, the initial values will have little effect on forecasts if 
the sample size is large relative to the order of the process. For this reason, AR 
processes are often known as "short memory" processes. In the above model, the 
correlation between Z(t) and Z(t + mat )  is 0.9(0.96)', for values of m greater than 
about five. For example, the correlation between Z(t) and Z(t + 30At) is 0.27, while 
that between Z(t) and Z(t + 50At) is 0.14. These correlations imply that, even if we 
started the model with the same initial values Z1, ..., Z4, different realizations of the 
model would typically have low cross-correlation after 30 years and possess very little 
similarity beyond 50 years (Figure 5.7.5a). The dissimilarity is associated with the 
stochastic nature of the noise c(t) which quickly decorrelates the present value of the 
model from its past values. The fact that the two series converge to a similar level near 
t = 100 years is not an indication that they are merging since extending these 
realizations causes them to depart from one another. 

To show the importance of the noise, rather than the initial conditions, Gray and 
Woodward generated two samples with different starting values but with the same 
noise sequence. This was intended to mimic a specified set of random conditions 
driving the weather but having different starting values. As revealed by Figure 
5.7.5(b), the realizations begin to merge by year 30, demonstrating their insensitivity 
to the initial conditions. A further point is that for stationary AR processes, the 
forecast function is only a function of the sample mean and the last four observations. 
Since the starting values are independent of the last four observations and small 
changes in the starting conditions have little effect on the sample mean for a long time 
series, the forecasts from such a model will be insensitive to changes. In closing their 
article, Gray and Woodward note that conventional autoregressive moving average 
(ARMA) modeling methodology indicates that the temperature time series should first 
be differentiated. Application of a variety of techniques suggests an order 10 (AR(10)) 
model as the "optimum" model for the differentiated data which gives rise to an 
AR(l l)  model for the original time series, not an AR(4) model used in the analysis. 
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Figure 5. 7.4. The annual global mean air temperatures from 1881 to 1988 as deviations (~ from the 
1951-1970 average. (From Gray and Woodward, 1992.) 
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Lastly, Tsonis (1992) replies that it is not appropriate to change the noise of the signal 
without also changing the initial conditions. 

5.7.3 M a x i m u m  l i k e l i h o o d  s p e c t r a l  e s t i m a t i o n  

As first demonstrated by Capon (1969), spectra can be defined using the maximum 
likelihood procedure. Instead of using a fixed window to operate on the autocorrel- 
ation function, the window shape is changed as a function of wavenumber or 
frequency. The window is designed to reject all frequency components in an optimal 
way, except for the one frequency component which is desired. 

Rather than go through the details of defining the procedure for the maximum 
likelihood spectrum, we offer here comparisons between the traditional method (in 
this case, represented by a spectrum computed using a Bartlett window), a maximum 
likelihood spectrum, and a spectrum computing using the maximum entropy 
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Figure 5.7.5. Two simulated realizations from the AR(4) model given by equation (5.7.25). (a) Same 
starting values but different and independently derived noise sequence; (b) different starting values but 

the same noise sequence. (From Gray and Woodward, 1992.) 



478 Data  Analysis  Methods in Physical Oceanography 

procedure (Figure 5.7.6). As the figure illustrates, the maximum entropy spectrum has 
narrow peaks while both the Bartlett window and maximum likelihood method yield 
much broader spectral peaks. Note also that, except for the maximum spectral values, 
the maximum entropy spectrum significantly underestimates the spectral estimates 
for the 0.15 Hz signal and white noise. The maximum entropy spectrum also has small 
side-lobe energy that is dramatically less than the off-peak energy in either of these 
two spectra. The maximum likelihood spectral values are also systematically lower 
than those using the standard method with a Bartlett window. A similar comparison is 
shown in Figure 5.7.7, which first shows a time series of a 1 Hz (1 cps) sinusoid with 
10% white noise added to it (Figure 5.7.7a). The power spectrum computed as the 
square of the Fourier coefficients is displayed in Figure 5.7.7(b). This can be 
compared with the narrow-peaked maximum entropy spectrum in Figure 5.7.7(c). The 
peaks are located at the same frequency representative of the 1 Hz, but the maximum 
entropy spectrum is extremely narrow while the Fourier power spectrum has a very 
wide peak. It is easy to see that the maximum entropy method seriously 
underestimates the spectral values at frequencies other than the main peak. 

5.8 C R O S S - S P E C T R A L  A N A L Y S I S  

Estimation of autospectral density functions deals only with the frequency character- 
istics of a single scalar or vector time series, x(t). Estimation of cross-spectral density 
functions performs a similar analysis but for two time series, Xl(t) and x2(t), spanning 
concurrent times, 0 _< t _< T. Although we often use time series from similar distri- 
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Figure 5.7.6. Power spectral estimates for a signal consisting of white noise plus two sine waves with 
frequencies O. 15 and 0.2 Hz (cps). Solid line: spectrum using the autocovariance method with a Bartlett 
smoothing window. Dashed line: Maximum likelihood spectral estimate. Dash-dot line: maximum 

entropy spectrum. (From Lacoss, 1971.) 
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butions, such as the velocity records from nearby moorings, cross-spectra may also be 
computed for two completely different quantities. In that sense, we can mix apples and 
oranges. For example, the cross-spectrum formed from the time-varying velocity 
fluctuations, Xl( t )= u'(t), and the temperature fluctuations, x2(t)= T'(t), measured 
over the same time span at the same location gives an estimate of the local eddy heat 
flux, q' = pCpu'T'(t), as a function of frequency (p is the density and Cp the specific 
heat of seawater). Because autospectra involve terms like xlx~, where the asterisk 
denotes complex conjugate, the spectra are real-valued and all phase information in 
the original signal is lost. Cross-spectra, on the other hand, involve terms like XlX~ and 
are generally complex quantities whose real and imaginary parts take into account the 
correlated portions of both the amplitudes and relative phases of the two signals. 

There are two ways to quantify the real and imaginary parts of cross-spectra. One 
approach is to write the cross-spectrum as the product of an amplitude function, 
called the cross-amplitude spectrum, and a phase function called the phase spectrum. The 
sample cross-amplitude spectrum gives the distribution of co-amplitudes with fre- 
quency while the sample phase spectrum indicates the angle (or time) by which one 
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series leads or lags the other series as a function of frequency. Alternatively, the cross- 
spectrum can be decomposed into a coincident spectral density function (or co-spectrum), 
which defines the degree of co-oscillation for those frequency constituents of the two 
time series that fluctuate in-phase, and a quadrature spectral density function (or quad- 
spectrum), which defines the degree of co-oscillation for frequency constituents of the 
two series that co-oscillate but are out-of-phase by +90 ~ Statistical confidence 
intervals can be provided for normalized versions of the cross-spectral estimates. 

5.8.1 Cross-correlation functions 

In Section 5.6.3.1, we showed that the autocovariance function, Cxx(r), and the 
autospectrum, Sxx(f), are Fourier transform pairs. Similarly, for separate time series 
Xl(t) and xz(t), the cross-covariance function, CxlxZ(r), and the cross-spectrum, 
Sxlx2(f), are transform pairs. Thus, we can take the Fourier transform of the lagged 
cross-covariance function to obtain the cross-spectrum or we can take the inverse 
Fourier transform of the cross-spectrum to obtain the cross-covariance function. As a 
prelude to cross-spectral analysis, it is worth presenting a brief summary of cross- 
correlation functions commonly used in oceanography for scalar and vector time 
series. The cross-correlation functions tell us how closely two records are "related" in 
the time domain, whereas the cross-spectrum tells us how oscillations within specific 
frequency bands are related in the frequency domain. 

Using the abbreviation C12(r) for Cxlx2(7-), the cross-covariancefunction is defined as 

N-B'/ 

1 ~ xl (nAt)x2(nAt + "r) C12-7--( ) --N--raN=0 (5.8.1) 

where r = mat is the lag time for m = 0, 1, ..., M, M << N. Division of (5.8.1) by the 
product Cl1(0)C22(0), corresponding to the autocovariance functions for each series at 
zero lag, gives the cross-correlation coefficient function for the data samples 

P12 (7-) -- C12 (7) (5.8.2) 
[Cll (0)C22 (0)] 1/2 

The time series Xl(t) and x2(t) represent any two quantities we wish to compare. They 
also may represent quantities measured at different depths or locations for the same 
time period. For example, Kundu and Allen (1976) used the lagged covariance 
function 

Vl(Xl,t)vl(x2,t + 7-) 

p(X1,X2,'/-)- [(Vt(Xl,t))2(Vt(XZ,t))2]l/2 
N-m 

1 ~v1(x l ,n)v l (x2 ,n+m ) 
N - m , =  1 

L (V' (X 1, rt)) 2 (7.)' (X2, rt)) 2 
N n=l 

m = 0 ,  1 , . . . , M < < N  

(5.8.3) 

to examine the correlation between the longshore (v) components of current for 
different coastal sites separated by a distance d = ]Xl - x2]. Moreover, if "/'max is the 
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lag which gives the maximum correlation, then the speed of propagation, c, of the 
coherent signal in the direction d = x l - x 2  is c =  [d[/rrnax, the direction of 
propagation determined from the sign of Tma x (Figure 5.8.1). In Figure 5.8.1, the 
lagged correlations between time series of low-pass filtered longshore currents, v(x, t), 
at different sites along the continental shelf are used to examine the poleward 
propagation of low-frequency coastal-trapped waves. Results in the figure are based on 
currents at 60-m depth. Letters refer to pairs of stations used; e.g. C - P is the lag 
between the Carnation and Poinsettia stations. 

A generalization of (5.8.3) is given by Kundu (1976). If w = u + iv is the complex 
velocity, then the correlation between the rotating velocity vectors is given by the 
complex correlation coefficient 

p(X1, X2, T) = w~(t)w2(t + T) 
[W~ (t)Wl (t)l/2w~ (t)W2 (t) 1/21 (5.8.4) 

where subscripts denote locations 1 and 2, and the overbars denote the time or 
ensemble average. The correlation, p, which is independent of the choice of coordinate 
systems, is a complex quantity whose magnitude gives the overall measure of correl- 
ation and whose phase gives the average counterclockwise angle of the second vector 
with respect to the first. 

5.8.2 Cross-covariance method 
Following the Blackman-Tukey procedure for autospectral density estimation, the 
Fourier transform of the cross-covariance function, C12(7), can be used to find the 
cross-spectrum, S~2(f). Although the cross-covariance method is straightforward to 
apply, the sample cross-covariance function, C]2(T), suffers from the same dis- 
advantage as the sample autocovariance function, Cll (T), in that neighboring values 
tend to be highly correlated, thereby reducing the effective number of degrees of 
freedom. Moreover, the statistical significance falls off rapidly with increasing lag, T, 
SO that the number of lags, M, is much shorter than the record length (M << N). 
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versus the distance of separation for the Oregon coast for 1973. Results indicate a mean northward signal 

propagation of 120 km/day. (From Kundu and Allen, 1976.) 
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Calculation of cross-spectra is best performed using the direct Fourier transform 
method. In fact, it is common practice these days to use the inverse Fourier transform 
of the cross-spectrum to get the cross-covariance function. 

5.8.3 F o u r i e r  t r a n s f o r m  m e t h o d  

As with autospectral analysis, estimates of cross-spectral density functions are most 
commonly derived using Fourier  transforms. The steps in calculating the cross- 
spectrum using standard Fourier transforms or FFTs  are as follows (see also Bendat 
and Piersol, 1986): 

(1) Ensure that the two time series Xl(t) and x2(t) span the same period of time, tn, 
where n - 0, 1, ..., N - 1, and T = N A t  is the length of each record. Remove the 
means and trends from each of the two time series. If block averaging is to be used 
to improve the statistical reliability of the spectral estimates, divide the available 
data for each pair of time series into m sequential blocks of N'  data values each, 
where N' = N / m  

(2) To reduce side-lobe leakage, taper the time series xl(t) and Xz(t) using a Hanning 
(raised-cosine) window, Kaiser-Bessel window, or other appropriate taper. Re- 
scale the spectra calculated in step 4 to account for the loss of "energy" during 
application of the window (see Table 5.6.4). 

(3) Compute the Fourier transforms, X1 (fk), X2OCk), k = 0, 1, 2, ..., N - 1, for the two 
time series Xl(t) and x2(t). For block-segmented data, calculate the Fourier 
transforms Xlm(fk) and X2m~k) for each of the m blocks, where 
k = 0, 1, ..., N ' -  1. To reduce the variance associated with the tapering in step 
2, the transforms can be computed for overlapping segments. 

(4) Adjust the scale factor of Xl(fk) and Xz(fk) [or Xlm(fk), X2,,,(fh)] for the reduction in 
spectral energy due to the tapering in step 2. For the Hanning window, multiply 
the amplitudes of the Fourier transforms by V/(8/3). 

(5) Compute the raw cross-spectral power density estimates for each pair of time 
series (or each pair of blocks) where for the two-sided spectral density estimate 

1 
Sl2(fk) - - "  -~tt[X~(fk)Xz(fk)], k - O, 1, 2, ..., N - 1 

(no block averaging) 

1 , 
Sl20Ck; m) -- N A t  [Xlm(fk)X2mOfk)]' k = 0 ,  1, 2, . . . ,  N ' -  1 (5.8.5a) 

(to be used for block averaging) 

and for the one-sided spectral density estimates 

2 
G120ck) = N A t  [X;~)X2(fk)], k - 0, 1, 2, ..., N/2  

(no block averaging) 

2 , 
G12(fk;m) = N A t  [Xlm(fk)X2m(fk)]' k = O, 1, 2, ..., N ' /2  (5.8.5b) 

(for block averaging) 
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(6) In the case of the block-segmented data, average the raw cross-spectral density 
estimates from the m blocks of data to obtain the smoothed periodogram for 
Sl2(fk) , the two-sided cross-spectrum, o r  G12Ofk), the one-sided cross-spectrum. 

Cross-covariance function" Since the cross-covariance function, C12(T) [= R12(7-), the 
cross-correlation function, if the mean is removed from the record], and the cross- 
spectrum are Fourier transform pairs, equation (5.8.5) can be used to obtain a smoothed 
or unsmoothed estimate of the cross-covariance function. To do this, we first calculate the 
Fourier transforms Xl(J) and X2(/) of the individual time series, and determine the 
product S 1 2 ( f ) -  (NAt)-I[x~(f)X2(f)]. We then take the inverse Fourier transform 
(IFT) of the cross-spectrum, S~2(/), to obtain the cross-covariance function 

OG 

C12(7")-- / Sl2(,f)e i27rf~ df (5.8.6) 
i t J  

- - O C  

If the spectrum is unsmoothed prior to the IFT (or IFFT if the number of spectral 
estimates is a power of 2), we obtain the raw cross-covariance function. If, on the other 
hand, the cross-spectrum is smoothed prior to (5.8.6) using one of the spectral 
windows, such as the Hanning window, the cross-covariance function also will be a 
smoothed function. 

We can use the acoustic backscatter data in Table 5.1(a) to illustrate the direct and 
indirect methods for calculating the cross-covariance function. In Table 5.8.1, we 
present the normalized, unsmoothed cross-covariance function, P 1 2 ( 7 " )  - -  

C12(T)/[CI1(0)C22(0)] 1/2, obtained directly from the definition (5.8.1). In this case, 
the lag ~- is in 5-m depth increments. The indirect approach is based on the Fourier 
estimates presented in Table 5.8.2. Here, we first give the Fourier transforms, X~(f) 
and X2(/), of the two profile series as a function of wavenumber, f (Table 5.8.2a). We 
next calculate the cross-spectrum, $12(f)-  (NAt)-I[X~(f)X2(f)], and then take the 
inverse transform of Slz(f) to obtain the cross-covariance function C12(T) as a function 
of lag (Table 5.8.2b). No smoothing was applied to either data set, and the results 
obtained from the i~nverse Fourier transform method are identical to those listed in 
Table 5.8.1, within roundoff error. The advantage of the transform approach is that it 
is straightforward to derive a smoothed cross-covariance function by windowing the 
cross-spectral estimate prior to Fourier inversion. 

5.8.4 Phase and cross-amplitude functions 

Suppose that the constituents of the bivariate time series {xl(t), x2(t)} have the same 
frequency, fo, but different amplitudes (A1, A2) and different phases (4~1, r 
respectively. In particular, let 

xk(t) = Ak cos (27rf0t + Ck), k - 1, 2 

The Fourier transform of Xk(t), over - T / 2  <_ t <_ T/2 is 

A~ <['ei,~ {sin [Tr(f -f0)T]} + e_ir ~ {sin [Tr(f +f0)T]} ~ 
X h ( f ) - - 2 -  [ 7r(f - fo)  ~(f +fo) J '  

Hence, the sample cross-spectra of the two series is 

(5.8.7) 

i =  1, 2 (5.8.8) 
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S12(f) - -~-[X 1 (f)X2 (f)] 

where X~' is the complex conjugate of X1. From this expression, we obtain 

S12 (f) -- 
A1A2 f -i~, sin [7r0C - fo)T]  sin [r~(f +fo)T] ' [  

4T I,e rr(f fo) +ei~' - 7r0C +fo) J 
• {elSe sin [rr(f - /o )T]  sin [Tr(f +/o)T] } 

rr0f - f o )  + e-ir rr(f +fo) 

where 

(5.8.9) 

(5.8.10) 

Table 5.8.1. Unsmoothed, normalized cross-covariance function, p12(7-) given by (5.8.2), as a function of 
lag r in increments of 5 m for bin 1 of beams 1 and 2 of the acoustic backscatter spatial series (profiles) 
listed in Table 5.1(a) 

Lag 7- (m) 0 5 10 15 20 25 30 35 
0.96 0.94 0.85 0.71 0.57 0.48 0.40 0.31 

Lag 7. (m) 40 45 50 55 60 65 70 75 
0.23 0.14 0.02 -0.19 -0.24 -0.37 -0.46 -0.48 

Table 5.8.2(a) Complex Fourier transforms of X~(fk) and X2(fk ) for the profiles of acoustic backscatter 
listed in Table 5.1(a). For each wavenumber, fh, the table lists the real part of the transform (top) 
followed by the imaginary part (bottom), where Xj(fk) = ReXj(fk) + ilmXj(fk), j - I, 2. The vertical 
wavenumber fk = kf', k = O, 1, ..., 16, where the fundamental vertical wavenumber, f '  = i /155 m 
- 0.00645 cpm (cycles per meter) 

FFT k = 0  1 2 3 4 5 6 
Xl(fh) 348.13 -289.32 71.17 15.52 55.16 97.59 -28.66 

0.00 214 .96  -16.35 -117.25 105 .57  -16.98 -21.37 
X2(fk) 339.02 -226.53 119.54 55.84 -5.24 59.55 -36.39 

0.00 227.88 38.22 -93.12 122 .33  -24.13 -6.57 

k = 8 9 10 11 12 13 14 15 
1.13 -6.16 41.11 24.03 -1.79 4.63 3.74 4.09 
6.87 21.29 -2.96 -36.43 -4.60 1.08 3.54 18.45 

11.90 5.68 23.89 13.85 3.96 7.37 11.27 2.34 
-5.35 -4.63 -5.13 -18.72 -1.67 -4.93 -4.47 9.00 

7 
5.07 
4.28 
4.22 

-19.09 

16 
27.13 
0.00 

27.79 
0.00 

Table 5.8.2(b) The inverse fast Fourier transform (IFFT) of the cross-spectrum SI2( J~ :  ) - -  
(NAt)-1[X~(fk)X2(fk)] using the values in Table 5.8.2(a). The values represent the raw (un- 
normalized) estimates of the cross-covariance function, C1~(7-), as a function of lag 7-(0 <_ r <_ 16) in 
increments of 5 m for bin 1 of beams 1 and 2 of the acoustic backscatter spatial series (profiles) listed in 
Table 5.1(a) 

7 . = 0  1 2 3 4 5 6 7 
C:2(7) 13483.7 12752.4 11151.5 9087.4 6992 .3  5436 .5  4589 .9  3411.7 

7 -=8  9 
2382.5 1393.8 

10 11 12 13 14 15 16 
160.6 -1103.6 -2096.0 -3103.5 -3610.5 -3623.8 -3222.1 
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S 12 (f)T+~ ---+ ala2~ [ e -i(r ) ~50c +f0)  -4- e i(r r )~5(f - fo)] (5 .8 .11) 

The phase difference, (~2 - qS1), in the above expressions determines the lead (or lag) 
of one cosine oscillation relative to the other for given frequency, f. The cross 
amplitude, A1A2, gives the geometric mean amplitude of the co-oscillation for 
frequency f. From equation (5.8.2), the sample cross-spectrum is 

S 1 2 ( f ) - A 1 0 f ) A 2 ( f )  [e i[q520c)-~'0r)]] (5 8 12) 
T " ' 

or 

S120 c) -- A12(f) [e i0~'2(f)] 

where the sample phase spectrum, ~12(f)= q52(f) -  qSl(f), is an odd function of fre- 
quency, and the sample cross-amplitude spectrum, A120 r) =Al(f)Ae(f)/T, is a 
positive even function off. 

5.8.5 Coincident and quadrature spectra 

An alternative description of this same information is to describe cross-spectra in 
terms of coincident (C) and quadrature (Q) spectra. In this case, we can write 

S12(f) -- C120 r) - i Q 1 2 ( f )  (5.8.14) 

where 

C12(f) = A120 c) cos [q512 (f)]; QlzO r) = -A12 ( f ) s in  [q)12 Q")] (5.8.15) 

and 

A~z(f) _ C~2(f) + Q2 1[ -Q120c)] (5.8.16) 12(f); 4~12(f)- tan- L Cl2(f) 

Here C12(/) is an even function of frequency and Qlz(f) is an odd function. (The co- 
spectral density function C~2(f) for frequency f is not to be confused with the 
covariance function C12(T) at time lag r. Where confusion may arise, we use the cross- 
correlation R12(7-) in place of C12(z).) If we consider the bivariate cosine example that 
we used in (5.8.7), we have 

A1A2 
C12(f) - 4 cos (~52 - ~l)[~5(f + fo)  + (5(f - f0 ) ]  

[ 'al  cosqSia2 cos~2 a l  sin qS1A2 sin 052"1 (5.8.17) 
= ~ 4 + 4 f [6(f +f0) + 6(f -fo)] 

The sample co-spectrum, C12(f), measures the covariance between the two cosine 
components and the two sine components. That is, the contributions to the cross- 
spectrum from those components of the two time series that are "in phase" (phase 
differences of 0 or 180~ The sample quadrature spectrum, Q]z(f), determines the 
contributions from those components of the time series that are coherent but "out of 
phase" (phase difference +90~ 
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5.8.5.1 Relationship of co- and quad-spectra to cross-covariance 

The inverse transform of the cross-spectrum gives the cross-covariance (cross-correlation) 

OC 

R12(T) -- / [C12(f) - iQ]2(f) le  i2~f~ df  
- - O G  

ClG (X] 

= / C120 c) cos (2~rf 'r)df+ / Q12(f)sin (27rf'r)df 

--(]X] - - 0 0  

0 0  

Since C1200 is an even function, R12(0) -- f C120 c) df. If we define 

T 

C12r - / Rt2(T ) cos (27rfr)dT 
-T 

T 

Q120 c) -- / R12(7- ) sin (27rfT)dr 
-T 

~2(5.8.18) 

(5.8.19) 

then 

Rit-2(T) -- �89 n t- RI2(-T)] (the even part) 

R~2('r) - �89 - Rl2(- ' r)]  (the odd part) 
(5.8.20) 

5.8.6 Coherence spectrum (coherency) 
The squared coherency, coherence-squared function, or coherence spectrum between two 
time series Xl(t) and Xz(t) is defined for frequencies fk, k - 0, 1, . . . ,  N - 1, as 

IGI2 (fk)l 2 
')'~2 (fk)--GllOfk)G22(fk) 

]Sl20fk)] 2 - (5.8.21) 
Sl l (fk )Szz (fk ) 

[C~2(fk) + Q~2(fk)] 
Sl l ffk )S22 (fk ) 

where Gll0Ck) is the one-sided spectrum (confined to fk >_ 0), Sll(fk) = IG11Ork) is the 
two-sided spectrum defined for all frequencies and G12(fk) is the one-sided cross- 
spectrum. Here 

0 < [')'~20Ck)l < 1 (5.8.22) 

and 

71e~) - lTf2(fk)l 1/2e-i4)'2f~ (5.8.23) 

where [")'220Vk)[ 1/2 is the modulus of the coherence function and C~120fk) the phase lag 
between the two signals at frequency fk (Figure 5.8.2). In the literature, both the 
squared coherency, 712,2 and its square root are termed "the coherence" so that there is 
often a confusion in meaning (Julian, 1975). To avoid any ambiguity, it is best to use 
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squared-coherency when conducting coherence analyses once the sign of the 
coherence function is determined. This has the added advantage that squared coher- 
ency represents the fraction of the variance in x] ascribable to x2 through a linear 
relationship between x] and x2. Two signals of frequency fk are considered highly 
coherent and in phase if 1722~)1 ~ 1 and 012(fk) ~ O, respectively (Figure 5.8.2). The 
addition of random noise to the functions x] and x2 of a linear system decreases the 
coherence-squared estimate and increases the noisiness of the phase associated with 
the system parameters. Estimation of 72 ]2(fk) is one of the most difficult problems in 
time-series analysis since it is so highly noise dependent. We also point out that phase 
estimates generally become unreliable where coherency amplitudes fall below the 90- 
95% confidence levels for a given frequency. 

The real part of the coherence function, '712(fk), lies between -1  and § 1 while the 
squared-coherency is between 0 and § 1. If the noise spectrum, S~c(fk), is equal to the 
output spectrum, then the coherence function is zero. This says that white noise is 
incoherent, as required. Also, when S~c(fk) -- 0, we h a v e  " ) / ~ 2 0 f k ) -  1; that is the 
coherence is perfect if there is no spectral noise in the input signal. It is important to 
note that, if no spectral smoothing is applied, we are assuming that we have no 
spectral noise. In this case, the coherency spectrum will be unity for all frequencies, 
which is clearly not physically realistic. Noise can be introduced to the system by 
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Figure 5.8.2. Coherence between current vector time series at sites Hook and Bell on the northeast coast 
of Australia (separation distance ~ 300 km). (a) Coherence squared; (B) phase lag. Solid line: Inner 
rotary coherence (rotary current components rotating in the same sense). Dashed line: Outer rotary 
coherence (rotary current components rotating in the opposite sense). The increase in inner phase with 
frequency indicates equatorward phase propagation. Positive phase means that Hook leads Bell. (From 

Middleton and Cunningham, 1984.) 
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smoothing over adjacent frequencies. We also can overcome this problem by a 
prewhitening step that introduces some acceptable noise into the spectra. 

5.8.6.1 Confidence levels 

The final step in any coherence analysis is to specify the confidence limits for the 
coherence-square estimates. If 1 - a  is the (1 - a ) 1 0 0 %  confidence interval we wish 
to specify for a particular coherence function, then, for all frequencies, the limiting 
value for the coherence-square (i.e. the level up to which coherence-square values can 
occur by chance) is given by 

7~_,, - 1 - ~ [1 / (EDOF-1) ]  

= 1 - 0~ [2/(DOF-2)] 
(5.8.24) 

where EDOF = DOF/2 (called the equivalent degrees of freedom) is the number of 
independent cross-spectral realizations in each frequency band (Thompson, 1979). 
The commonly used confidence intervals of 90, 95, and 99% correspond to a - 0.10, 
0.05, and 0.01, respectively. As an example, suppose that each of our coherence 
estimates is computed from an average over three adjacent cross-spectral Fourier 
components, then EDOF = 3 (DOF = 6). The 95% confidence level for the squared 
coherence would then be 7925- I -  (0.05) 0.5 - 0 . 7 8 .  Alternatively, if the cross- 
spectrum and spectra were first smoothed using a Hamming window spanning the 
entire width of the data series, the equivalent degrees of freedom are EDOF - 2.5164 
• 2 - 5.0328 (Table 5.6.4) and the 95% confidence interval 7925- 1 -  (0.05) 0.6595 
= 0.86. For EDOF = 2, 7~-~ = 1 - a  so that the confidence level is equal to itself. 

A useful reference for coherence significance levels is Thompson (1979). In this 
paper, the author tests the reliability of significance levels 7~_~, estimated from 
(5.8.24) with the coherence-square values obtained through the summations ]2 

(f)x k 0 c) 
k=l  

7 z ( f ) -  K K (5.8.25) 
~[~ ]Xlk (f)]2 ~[[] ]X2h 0 c) ]2 
k=l  k=l  

In this expression, Xlk and X2k a r e  the Fourier transforms of the respective random 
time series Xlk(t) and Xzk(t) generated by a Monte Carlo approach, and the asterisk 
denotes the complex conjugate. The upper limit K corresponds to the value of EDOF 
in (5.8.24a). Because ,),2 0r is generated using random data, it should reflect the level of 
squared coherency that can occur by chance. For each value of K, 7 2 (f) was calculated 
1000 times and the resultant values sorted as 90th, 95th, and 99th percentiles. The 
operation was repeated 10 times and the means and standard deviations calculated. 
This amounts to a total of 20,000 Fourier transforms for each K ( - E D O F ) .  There is 
excellent agreement between the significance level derived from (5.8.24) and the 
coherence-square values for a white-noise Monte Carlo process (Table 5.8.3), lending 
considerable credibility to the use of (5.8.24) for computing coherence significance 
levels. The comparisons in Table 5.8.3 are limited to the 90 and 95% confidence 
intervals for 4 <_ K _< 30. Thompson (1979) includes the 99% interval and a wider 
range of K (EDOF) values. 
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Confidence intervals for coherence amplitudes, as well as for coherence phase, 
admittance, and other signal properties (see next section), can be derived using the data 
itself (Bendat and Piersol, 1986). Let ~ be an estimator for 9~, a continuous, stationary 
random process, and define the standard error or random error of sample values as 

random error = a[~] - ( E [ ~  2] - E2[~] )  1/2 (5.8.26a) 

and the root mean square (RMS) error as 

RMS e r r o r -  ( E [ ( ~ -  9~)2]) 1/2 - (o'2[~] + B2[~])  1/2 (5.8.26b) 

where B is the bias term B[#] = El#] - 9~ and E[x] is the expected value of x. If we now 
divide each error term by the quantity 9~ being estimated, we obtain the normalized 
random error 

Er --  O'[~] ( g [ ~  2] - g 2 [ ~ ] )  1/2 
--  ( 5 . 8 . 2 7 a )  

9~ 9~ 

and the normalized RMS error 

(E[(9~ - 99)2]) 1/2 
C--- 

99 

(o'2 [991 + B2 [q~]) 1/2 
(5.8.27b) 

where it is assumed that 9~ # 0. Provided Cr is small, the relation 

~2 __ qD2(1 _4_ E'r) (5.8.28) 

yields 

- 99(1 �9 Cr) 1/2 ~ 9~(1 + Or~2) (5.8.29) 

so that 

Er[~ 2] ~ 2Cr[q~] (5 .8 .30)  

Fhus, for small Cr the normalized error for squared estimates #2 is roughly twice the 
normalized error for unsquared estimates. 

Table 5.8.3 Monte Carlo estimates, 7~(f), of the significant coherence-squared and prediction of this 
value using (5.8.24)for intervals c~ - 0.05 and 0.I0 for EDOF = 4, 5, 6, 8, 10, 20, and 30. (After 
Thompson, 1979) 

EDOF EDOF EDOF EDOF EDOF EDOF EDOF 
= 4 = 5 = 6 = 8 = 1 0  = 2 0  = 30 

o~ =0.10 
q2(f) 0.539 0.437 0.371 0.288 0.230 0.114 0.076 
,y2 0.536 0.438 0.369 0.280 0.226 0.114 0.076 0.90 

c~ =0.05 
,32(f) 0.629 0.531 0.452 0.354 0.288 0.144 0.099 

2 %.,a5 0.632 0.527 0.451 0.348 0.283 0.146 0.098 



490 Data Analysis Methods in Physical Oceanography 

When the estimates 0 have a small bias error, BI~ ] ,~ 0, and a small normalized 
error, e.g. e _< 0.2, the probability density for the estimates can be approximated by a 
Gaussian distribution. The confidence intervals for the unknown true parameter 9~ 
based on a single estimate ~ are then 

~(1 - e) _< 9~ _< ~(1 + e) with 68% confidence (5.8.31a) 

9~(1 - 2e) _< 9~ <_ ~(1 + 2e) with 95% confidence (5.8.31b) 

~(1 - 3c) _< 9~ _< ~(1 + 3c) with 99% confidence (5.8.31c) 

5.8.7 Frequency response of a linear system 

We define the admittance (or transfer) function of a linear system as 

Sl2(fk) G12(fk) fk -- k / T  k - 1 ... N 
H l z ( f k )  - -  S l l ( f k )  ~ G l l ( f k )  ' ' ' ' 

-i012 (fk) --Ill12 ~k) [e 

(5.8.32) 

where S l l ( f k )  and Gll(fk) are, respectively, the two-sided and one-sided autospectrum 
estimates for the time series Xl(t) selected here as the input time series. The gain (or 
admittance amplitude) function H~k) behaves like a spectral regression coefficient at 
each frequency fk. Using the definition G12(fk) --  C l2 ( fk )  -- iQ120Ck), we obtain 

G12 (fk) 
IH12 0 f k ) I -  G l l  (fk) 

]C~20 oh) + Q~z(fk)[1/2 (5.8.33) 

Gl10ck) 

and where Ol2(fk) = tan-l[--Q12OCk)/Cl2(fk)] by (5.8.16). Figure 5.8.3 shows the complex 
admittance for the observed longshore component of oceanic wind velocity (time series 
1) and the longshore component of wind velocity derived from pressure-derived 
geostrophic winds (time series 2). The geostrophic winds closely approximate the 
amplitude and phase of the actual winds up to a frequency of about 0.05 cph (period = 
20 h) after which the two signals no longer resemble one another. It is also at this 
frequency that the coherence consistently begins to fall below the 90% confidence level. 

5.8.7.1 Multi-input systems cross-spectral analysis 

Many oceanographic time series are generated through the combined effects of several 
mutually coherent inputs. For example, low-frequency fluctuations in coastal sea level 
typically arise through the combined forcing of atmospheric pressure, along- and 
cross-shore wind stress, and surface buoyancy flux. Coherences between the forcing 
variables (e.g. pressure, longshore wind stress, and runoff) are generally quite high. 
Because of this, it would be physically incorrect to use ordinary cross-spectral analysis 
which simply examines the correlation functions, 2 7y:x, between the output, y(t), and 
each of the inputs, x(t), individually without taking into account the mutual 
correlation among all the inputs. If this is not done, the sum of the individual 
correlation functions can exceed unity. Provided that long-term sea-level fluctuations 
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Figure 5.8.3. Complex admittance for observed (series I) and calculated (series 2) longshore components 
of oceanic wind velocity. (a) Phase; (b) amplitude. Positive phase means that series 1 leads series 2. 

(From Thomson, 1983.) 

(the output time series) are linearly related to the individual forcing functions (the 
input time series), we can use multi-input systems cross-spectral analysis to calculate the 
relative contribution each of the input terms makes to the output. The effective 
correlation function for the total system will then be less than unity, as required. This 
concept was pioneered in oceanography by Cartwright (1968), Groves and Hannan 
(1968), and Wunsch (1972). All three studies were concerned with sea-level variations. 

The purpose of this section is to provide a brief overview of multiple systems 
analysis. For a thorough generalized presentation, the reader is directed to Bendat and 
Piersol (1986). Consider K constant-parameter linear systems associated with K 
stationary and ergodic input time series, Xk(t), k = 1, 2, ..., K, a noise function, e(t), 
and a single output, y(t), such that 

K 

y(t)  = E y k ( t )  + c(t) (5.8.34) 
k=l 

where theyk(t)  are the outputs generated by each of the measured inputs Xk(t). We can 
only measure the accumulated responsey(t), not the individual responses, yk(t). In the 
present context, y(t) represents the measured time series of coastal sea level, Xk(t) the 
corresponding weather variables, and e(t) the deviations from the ideal response due 
to instrument noise, remotely generated subinertial waves, and other physical proces- 
ses not correlated with the input functions. The Fourier transform of the outputy(t) is 

K 

Y (r) --- Z Yk + 
k=l 
K 

: Hk (f)x  (f) + eCf) 
k=l 

(5.8.35) 
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Yk(f)  k =  1 2 ... K ( 5 . 8 . 3 6 )  H h ( f )  - X h ( f ) '  ' ' ' 

is the admittance (or transfer) function relating the kth input with the kth output at 
frequency f. The frequency-domain spectral variables Xk(f) and Y(f) can be computed 
from the measured time series Xk(t) and y(t). Using these variables, we can then 
determine the functions Hk(f) and other properties of the system. 

Multiplication of both sides of (5.8.35) by Xfl(D, the complex conjugate of Xj(J), for 
any fixed j = 1, 2, ..., K, yields the power spectral relation 

K 
Sjy(f) - E Hk(f)SJ kOc) + sjcoc)' j = 1, 2, ..., K (5.8.37) 

k=l 

in which 

Sjy (f) = x ;  ( f ) Y e t ) ,  

sjk (f) - x ;  ( f )x~  Or), 

j -  1, 2, ..., K 
j, k - 1, 2, ..., K (5.8.38) 

Here, the overbar denotes the average value, the Sjy(f) are the cross-spectra between 
the K inputs and the single output, Sjk(f) are the cross-spectra (j 4 k) and spectra (j -- 
k) among the input variables, and SjE(f) is the cross-spectrum between the input 
variables and the noise function. If the noise function 6(t) is uncorrelated with each 
input xk (as is normally assumed), the cross-spectral terms Sj~(f) will be zero and 
(5.8.37) becomes 

K 
Sjy(f) = E Hk(f)Sjk(f), j = 1, 2, ..., K (5.8.39) 

k=l 

This expression is a set of K equations in K unknownsmthe Hk(f) for k = 1, 2, ..., K - -  
where all spectral terms can be computed from the measured records ofy(t) and xk(t). 
If the model is well defined, matrix techniques can be used to find the Hk(l). Bendat 
and Piersol (1986) also define the problem in terms of the multiple and partial coherence 
functions for the system. The multiple coherence function is given by 

_ = S ~ ( f )  ,~2 SvvO f) 1 (5.8.40) 
y:x Syyf f )  Syyf f )  

where Svv(f) is the multiple coherent output spectrum, Syy(f) is the output spectrum 
and S~(f) is the noise spectrum. As with any squared coherence function, 
0 < 17y2~] < 1 For any problem with multiple inputs, 72 takes the form of a matrix 

~ " y:x 
whose off-diagonal elements take into account the coherent interactions among the 
different input terms. Expressions (5.8.39) and (5.8.40) simplify even further if the 
inputs themselves are mutually uncorrelated. In that case 

Sjy( f )  2 
-- , , ..., ~'fySyy . 8 . 4 )  I-Isif) ~jj-~ j = 1 2, K; II- I j ( f )]2Sj j ( f )= (f) (5 1 

Hence, the contribution of the input variable, xj(t), to the output variable, y(t), occurs 
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only through the transfer (admittance) function/-/j(D of that particular input variable. 
No leakage ofxi(t) takes place through any of the other transfer functions since xj(t) is 
uncorrelated with xk(t) for k :/: j. 

In general, the outputy(t) is forced not only by the mutually coherent parts of the 
various inputs but also by the noncoherent portions of the inputs which go directly to 
the output through their own transfer functions without being affected by other 
transfer functions. This leads to the need for partial coherence functions. If part of one 
record causes part or all of a second record, then turning off the first record will 
eliminate the correlated parts from the second record and leave only that part of the 
second record that is not due to the first record. Because we do not want to incorporate 
the coherent portions of given forcing terms in the partial coherence functions, the 
partial coherences are found by first subtracting out the coherent parts of the various 
input signals. Bendat and Piersol (1986) state that, if any correlation between Xl(t) and 
x2(t) is due to Xl(/), then the optimum linear effects of Xl(t) to xe(t) should be found. 
Denoting this mutual effect as xz:l(t), this should be subtracted from x2(t) to yield the 
conditioned (or residual) record, xz:l(t) representing that part ofxz(t) not due to Xl(t). 

Multi-input systems cross-spectral analysis takes into account the fact that any 
input record xk(t) with nonzero correlations between other inputs will contribute to 
variations in the outputy(t) by passage through any of the K linear systems, Hk(f). The 
conditioned portion of xh(t) will contribute directly to the output through its own 
response function only. The problem is to determine what percentage contribution 
each input function makes to the total variance ofy(t) for a specified frequency band. 
The simplest case is a two-input system consisting of inputs Xl(t) and XE(t) for which 

Y(f) = H1 (f)X1 (f) -1- H2Oc)X2(f) + E(f) (5.8.42) 

and, provided ")'f2 ~ 0 

s 2(f)Szy(f)l Sly(f) 1-S22(f)Sly- ~ 
HI(f) = (5.8.43a) 

Sll Of)[1 - 7212 (f)] 

I S21(f)Sly(f)l 
S2y(f) 1 - Sll (f)S2y-~)) (5.8.43b) 

Hz0r) = $22(f) [1 - 7~2(f)] 

What is important to note here is the nonzero coupling between the different input 
variables when the cross-coherence, 7~2(f), is nonzero. The product HI(DSll(f) in 
(5.8.43a) still represents the ordinary coherent spectrum between the input Xl and the 
outputy. However, when 1")'12] r 0, xl(t) influences y(t) through the transfer function 
H2(f) as well as through its own transfer function HI(D. Similarly, xz(t) influences y (t) 
through the transfer function HI(J) as well as through its transfer function //2(/) 
(5.8.43b). In general, the sum of ~,~y (f) and 7~y (f) can be greater than unity when the 
outputs are correlated. The contributions from the conditioned records of x~(t) and 
x2(t) must also be taken into account when estimating the output response, y(t). Once 
this is done, it becomes possible to construct reliable forecasting models for y. 

Cartwright (1968) used the multiple input method to study tides and storm surges 
around east and north Britain. He expanded the tide height, ~, at each of the ports 
studied as a Taylor series of the atmospheric pressure, p, about the port location (x = 



494 Data  Analysis Methods in Physical Oceanography 

O,y = O) 

r t) = Poo(t) + XPlo(t) +YPol (t) § xZP2o(t) + 2xyp11(t) + yZPo2(t) + ... (5.8.44) 

in which the pressure gradient terms (Plo, Pol) = (Op/Ox, Op/Oy) are proportional to 
the geostrophic wind stress, the second derivatives (P2o, P02) = (02P/02x, 02p/OY 2) are 
related to wind stress gradients, and so on. As indicated by Table 5.8.4, the variances 
in different frequency bands for the sea level at Aberdeen, Scotland are significantly 
reduced relative to the original values as the pressure, first derivatives, and second 
derivatives are successively included. Consequently, all of the mutually correlated 
weather variables are considered relevant to the predictability of sea level. In a more 
recent study, Sokolova et al. (1992) used the multiple spectral analysis technique to 
study sea-level oscillations measured from July to September 1986 at different 
locations around the perimeter of the Sea of Japan. According to their analysis for 
both the multiple and partial coherences, 46-77% of the sea-level variance was 
coherent with atmospheric pressure and 5-37% was coherent with the wind stress. 

5.8.8 Rotary cross-spectral analysis 

As outlined in Section 5.6.4, the decomposition of a complex horizontal velocity 
vector, w(t) = u(t) + iv(t), into counter-rotating circularly polarized components can 
aid in the analysis and interpretation of oceanographic time series. (Here, u and v 
typically represent the eastward and northward components of the current or wind.) 
Many of the fundamentals of this approach can be found in Fofonoff (1969), Gonella 
(1972), Mooers (1973), Caiman (1978), and Hayashi (1979). In rotary spectral analysis, 
the different frequency components of the vector w(t) are represented in terms of 
clockwise and counterclockwise rotating vectors (Figure 5.6.12). The counterclockwise 
component is considered to be rotating with positive angular frequency (~ _> 0) and 
the clockwise component with negative angular frequency (~ _< 0). Depending on 
which of the two components has the largest magnitude, the vector rotates clockwise 
or counterclockwise with time, with the tip of the vector tracing out an ellipse. If, for a 
given frequency, both components are of equal magnitude, the ellipse flattens to a line 
and the motions are rectilinear (back and forth along a straight line). Two one-sided 
autospectra and two one-sided cross-spectra can be computed for the rotary compo- 
nents. Mooers (1973) formulated these as two two-sided rotary autospectra called, 
respectively, the inner and outer rotary autospectra, the terminology originating from 
the resemblance of the inner and outer rotary autocovariance functions derived from 
the autospectra to the inner (dot) and outer (cross) products in mathematics. (A note 

Table 5.8.4 Residual variances (cm 2) for different frequency bands for Aberdeen, Scotland sea-level 
oscillations. The predictive model explains increasingly more of the variance as additional weather 
variables are incorporated in the analysis. (Modified after Cartwright, 1968) 

0-0.5 cpd 0.5-0.8 cpd 1.1-1.8 cpd 2.1-2.8 cpd 

Variables included 
Original  variance 181 
Poo 88 
Poo, Plo, Pox 49 
Poo, Plo, Pol, .-. Po2 38 

16 9.6 4.1 
13 9.1 3.9 
9 7.1 3.6 
6 5.3 3.3 



Time-series Analysis Methods 495 

on terminology: Mooers (1973) uses A and C for counterclockwise (+) and clockwise 
components ( - )  while Gonella (1972) uses + / -  subscripts for these components of the 
form u+ and u_. In this text, we use + / -  superscripts where, for example, the ampli- 
tude of the two vector components is written as A + and A-.) 

To simplify the mathematics, we assume that u and v are continuous, stationary 
processes with zero means and Fourier integral representations. The velocity vector 
w(t) can then be written in terms of its Fourier transform 

w(t) = u(t) + iv(t) = Z Wl'ei~"t 
p 

= ~ {~pcos(wpt)+B~psin(copt)]  + i[d2p cos(%t)+B2p sin(wpt)]} (5.8.45) 
p 

in which the Fourier transform component, Wp, is a complex quantity, the A and B are 
constants, and cop is the frequency of the pth Fourier component. As outlined in 
Section 5.6.4, each Fourier component of frequency co =cop can be expressed as a 
combination of two circularly polarized components having counterclockwise (03 _> 0) 
and clockwise (03 _< 0) rotation. Each of two components has its own amplitude and 
phase, and the tip of the vector formed by the combination of the two oppositely 
rotating components traces out an ellipse over a period, T = 2r~/03. The semi-major 
axis of the ellipse has length LM = A + (co) + A-(03) and the semi-minor axis has length 
Lm--~+(03)-A-(03)].  The angle, 0, of the major axis measured counterclockwise 
from the eastward direction gives the ellipse orientation. 

If we specify A1(03) and B l (03) to be the amplitudes of the cosine and sine terms for 
the eastward (u) component in equation (5.8.45) and A2(03)and B2(03) to be the 
corresponding amplitudes for the northward (v) component, the amplitudes of the two 
counter-rotating vectors for a given frequency are 

A+ (03) _ 1{ [B2 (03) § A1 (03)] 2 
112 

+ [A2(~) - B1 (~)]2 } ' (5.8.46a) 

A-(03) -- 1{ [B2 (~) - a l  (~)]2 § [32(03) § B1 (03)]2 } 1/2 

and their phases are 

tan(0 +) = [A1 (03) -- B1(03)]/[A1 (03) + B2(03)] 

(5.8.46b) 

(5.8.47a) 

tan(0-) = [B1 (co)+A2(03)]/[B2(w)-A1(03)] (5.8.47b) 

The eccentricity of the ellipse is 

C(03) -- 2 [d + (03)a- (03) ] l /2 / ~ + (03) -+- a -  (w) ] (5.8.48) 

where the ellipse traces out an area rr[(A+) 2 -  (A-) 2] during one complete cycle of 
duration 2rr/03. The use of rotary components leads to two-sided spectra; i.e. defined 
for both negative and positive frequencies. If S+(03) and S-(03) are the rotary spectra 
for the two components, then A+(03) <x [S+(03)] 1/2 can be used to determine the ellipse 
eccentricity. The sense of rotation of the vector about the ellipse is given by the rotary 



496 Data Analysis Methods in Physical Oceanography 

coefficient (see Section 5.6.4.2) 

r(w) = IS + (w) - S -  (w)]/[S + (w) + S-(co)] (5.8.49) 

where -1  < r < 1. Values for which r > 0 indicate counterclockwise rotation while 
values of r < 0 indicate clockwise rotation; r = 0 is rectilinear motion. 

If u, v are orthogonal Cartesian components of the velocity vector, w = (u, v), then 
the rotary spectra can be expressed as 

s _ > o 
- (5.8.50a) 

= �89 + Svv + 2Quv] 

= H-( o)12, _< 0 

= �89 + Svv - 2Quv] 
(5 .8 .50b)  

where Suu and Svv are the autospectra for the u and v components, and Q~v is the 
quadrature spectrum between the two components. The stability of the ellipse is given 
by 

#(w) [<(A-(w)A+(w)exp [i(O+ - 0-)]}[2 
= , ~___0 

((A_)2} ((A+)2) (5.8.51) 

IYI 

where 

r - �89 -S~v + i2S,v] (5.8.52) 

and the ellipse has a mean orientation 

= �89 - S~)] (5.8.53) 

where ~ is measured counterclockwise from east (the function ~ is not coordinate 
invariant). The brackets (-) denote an ensemble average or a band average in 
frequency space. The ellipse stability, #(co), resembles the magnitude of a correlation 
function and is a measure of the confidence one might place in the estimate of the 
ellipse orientation (Gonella, 1972). 

5.8.8.1 Rotary analysis for a pair of  time series 

Having summarized the rotary vector analysis for a single location, we now want to 
consider the coherence and cross-spectral properties for two time series measured 
simultaneously at two spatial locations. The object of the rotary spectral analysis is to 
determine the "similarity" between the two time series in terms of their circularly 
polarized rotary components. For two vector time series, the inner and outer rotary 
cross-spectra can be computed. As the spectra are complex, they have both amplitude 
and phase. Hence, coherence and phase spectra can be computed, just as with the 
cross-spectra of two scalar time series. Inner functions describe co-rotating compon- 
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ents and outer functions describe counter-rotating components. We could, of course, 
use standard Cartesian components for this task. Unfortunately, the Cartesian vectors 
and their derived relationships generally are dependent on the selected orientation of 
the coordinate system. The advantages of the rotary type of analysis are: (1) The 
coherence analysis is independent of the coordinate system (i.e. is coordinate 
invariant); and (2) the results encompass the coherence and phase of oppositely 
rotating, as well as like-rotating components, for motions that may be highly 
nonrectilinear. Because the counter-rotating components have circular symmetry, 
invariance under coordinate rotation follows for coherence. 

We consider two vector time series defined by the relations 

Wl(E) -- (Ul, 7-)1); W2(t)- (u2, V2) (5.8.54) 

where, as before, (u, v ) -  u + iv are complex quantities. If WI(a~)and W2(oJ) are 
components of the Fourier transforms of these time series, then the transforms can be 
expressed in the form 

A exp (-i0+),  co > 0 8 
W(co)= A - e x p ( - i 0 - ) ,  co<_0 (5 . .  55) 

with the same definitions for amplitudes and phases as in the previous subsection. 
These expressions equate the negative frequency components from the Fourier 
transform with the clockwise rotary components and the positive frequency comp- 
onents from the transform with the counterclockwise components. 

Inner-cross spectrum: The inner cross-spectrum, Swjwk(co), provides an estimate of the 
joint energy content of two time series for rotary components rotating in the same 
direction (e.g. the clockwise component of series 1 with the clockwise component of 
series 2; Figure 5.8.4). For all frequencies, --con < co < ~on 

Swjwk(co) - (Wj*(co)Wh(co)), j , k - 1 ,  2 

_ { ~If (~o)A~-(co) exp I - i ( 0 / -  0~-)], a~ >_ 0 

- ~If (co)A~-(~o) exp [i(0f - 0k-)], co _< 0 

(5.8.56) 

where, as before, (.) denotes an ensemble average or a band average in frequency 
space, and the asterisk denotes the complex conjugate. It follows that the inner- 
autospectrum for each time series is 

_ j, [4 >_ 0 
Swjwi [Af (co)]2', co _< 0 (5.8.57) 

Thus, Sw, w,(co) (j - 1 ,  2) is the power spectrum of the counterclockwise component of 
the series j for co >_ 0, and the power spectrum for the clockwise component for co <_ 0. 
The area under the curve of Swjw~ (co) versus frequency equals the sum of the variance 
of the eastward (u) and northward (v) components. For co > 0, Sw,w2 (co) is the cross- 
spectrum for the counterclockwise component of series 1 and 2, while for 
co <_ O, Sw,w2(co) represents the cross-spectrum for the clockwise rotary component. 

Inner-coherence squared: The two-sided inner-coherence squared, 7~2 (co), between the 
two time series at frequency co is defined in the usual manner. Specifically, using the 
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previous definitions for the rotary components, we find 

O+2~ _ 7~2(~o ) _ { (A-{A-~cos(O-[  - -O~))  2 -1- (A~A]sin(O-~ - -O~-) )2}/ (A~ -2) "*2 /, a3 > 0 

{(A~A[ cos(O i- - 0 2 ) )  2 + (A{A 2 sin(O 1 -02))2} / (A~2)(A22) ,  w < 0 

(5.8.58) 

where 0 _< 1~22{ ~ 1. A coherence of near zero indicates a negligible relationship 
between the two like-rotating series while a coherence near unity indicates a high 
degree of variability between the series. The inner-phase lag, r between the two 
vectors is 

q~12(&) = t an  - l [ - Im(Sw~w2) /Re (Sw,w2) ]  (5.8.59) 

or, in terms of the clockwise and counterclockwise components 

{IA -{A-~ sin (0~- - O-~))/(A-(A-~ cos (0~- - 0~-)) 
tan(qS12) 

(-A-{A 2 sin (0 i- - O~))/(AIA 2 cos (0 i- - 02j/,~'\ 
~ > 0  
co< 0 (5.8.60) 

The phase, which is the same for both the inner cross-spectrum and the inner 
coherence, is a measure of the phase lead of the rotary component of time series 1 with 
respect to that of time series 2. Figure 5.8.4(a) shows the inner rotary coherence and 
phase for five years of monthly winter (November through February) wind data 
measured off Alaska at Middleton Island (59.4~ 146.3~ and Environmental 
Weather Buoy EB03 (56.0~ 148.0~ Co-rotating wind vectors were generally 

(a) Inner (b) Outer 

~176 t , ~ I 
0 ~ 0.4 
0 o 90% 

0 

180' 1 
+,oA II 
,o fi~l 

~-90 

~"-180 { 

i I / 
1_ (~ ,, i I " i , 

a - -~ i l -~ -2 o = 4 
Frequency (cpd) Frequency (cpd) 

Figure 5.8.4. Rotary coherence and phase for five-year time series of monthly mean winter (November 
through February) wind velocity from two sites off Alaska. (a) Co-rotating (inner) coherence and phase 
with 90% confidence level; Co) counter-rotating (outer) coherence and phase. (From Livingstone and 

Royer, 1980.) 
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coherent above the 90% confidence level for frequencies -1  < f < 1 cpd, with greater 
coherence at positive frequencies (Livingstone and Royer, 1980). The inner phase was 
nearly a straight line in the frequency range -1  < f < 0 cpd, increasing by 120 ~ over 
this range. 

Outer-cross spectrum" The outer cross-spectrum, Ywjwh (w), provides an estimate of the 
joint energy content between rotary components rotating in opposite directions (e.g. 
between the clockwise component  of time series 1 and the counterclockwise comp- 
onent of time series 2). For frequencies in the Nyquist frequency range,--coN < co < coN 

Ywjwk(co) - (Wj(-co)Wk(co)), j, k -  1, 2 

_ IAf(co)A-~(w)exp[i(g~ -Of ) ] ,  co _> 0 (5.8.61) 

/ A + (co)A-~ (co) exp [i(O + - O~-)], co _< 0 

(Middleton, 1982). These relations resemble those for the inner-cross spectra but 
involve a combination of oppositely rotating vector amplitudes and phases. For the 
case of a single series, j, the outer rotary autospectrum is then 

Ywjwj(co) - A f  (co)A + (co) exp [i(0] - 0f)], co > 0 (5.8.62) 

and is symmetric about c o -  0, and so is defined for only co >_ 0. Hence, Yw, wj (ca) is an 
even function of frequency; i.e. Ywjwj (co) - Ywjw, (-co). As noted by Mooers, Yw~wj (co) is 
not a power spectrum in the ordinary physical sense because it is complex valued. 
Rather it is related to the spectrum of the uv-Reynolds stress. 

Outer-coherence squared: After first performing the ensemble or band averages in the 
brackets (.), the outer-rotary coherence squared between series j and k is expressed in 
terms of the Fourier coefficients as 

k ) ( A 7 2  ) (AfA-~)2[(cos(O-~- Of))2 + (sin (0~-- {9;))2]]/(a+2 , 
A~k(co) -- (AfAr)2[(  cos (Off - ~gk)) 2 --k (sin (O + - 6~-)) /(A/2)(A-~2), 

w > O  

~o<o}  

(5.8.63) 

The phase lag, ~bjk(co) between the two oppositely rotating components of the two time 
series is then the same for the coherence and the cross-spectrum and is given by 

{(AfA -~ sin (Of - g~))/(AfA-~ cos (Oi - O~-)), co _> 0 
tan(~,2) - (A+A; sin (eft - ~f))/(A]A-~ cos (Ok- - ~+)), co < 0 

(5.8.64) 

If the values of 

A f  A-~ and A+A; 

change little over the averaging interval covered by the angular brackets, then 

~bjk(co) -- { Of - O-~, co>_O (5.8.65) 
e;  - 

Figure 5.8.4(b) shows the outer rotary coherence and phase for five-year records of 
winter winds off Alaska. Counter-rotating vectors were coherent at negative fre- 
quencies in the range - 1  < f < 0 cpd and exhibited little coherence at positive 
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frequencies. In this portion of the frequency band, the linear phase gradient was 
similar to that for the co-rotating vectors (Figure 5.8.4a). 

Complex admittance function: If we think of the wind vector at location 1 as the source 
(or input) function and the current at location 2 as the response (or output) function, 
we can compute the complex inner admittance, Z12, between two co-rotating vectors as 

Z 1 2 ( c 0 )  = Swlw2(~)lgwiw, ( ~ ) ,  --(a3N <( ~ <( ~ N  (5.8.66) 

The amplitude and phase of this function are 

[ Z 1 2 ( ~ ) l  - -  ISwiw2 (~3)[/Swiwi (~) (5.8.67a) 

~12 (~) = tan -1 {Im[Sw,w2 (~)]/Re[Swlw: (w)]} (5.8.67b) 

For frequency ,J, the absolute value of Zl2(~) determines the amplitude of the clock- 
wise (counterclockwise) rotating response one can expect at location 2 to a given 
clockwise (counterclockwise) rotating input at location I. The phase, ~'12(~), 
determines the lag of the response vector to the input vector. 

The corresponding expressions for the complex outer admittance, Z~2, between two 
opposite-rotating vectors are 

Z I 2 ( ~ J )  ~ -  Y w  l w 2 ( (.a.fl ) / g W  l W l ((.Aft), -(.aft N < o.y < (~ N (5.8.68) 

with amplitude and phase 

IZ12(~)l = IYw,w2 (ov)llgw,w, (~) (5.8.69a) 

(~)12 (C0) - -  tan-a {Im[Yw,w2(W)]/Re[Yw,w2 (w)]} (5.8.69b) 

For frequency ~, the absolute value of Z12(~3) yields the amplitude of the clockwise 
(counterclockwise) rotating response one can expect at location 2 to a given counter- 
clockwise (clockwise) rotating input at location 1. The phase, ~12(,~), determines the 
lag of the response vector to the input vector. 

5.9 W A V E L E T  A N A L Y S I S  

The terms "wavelet transform" and "wavelet analysis" are two recent additions to the 
lexicon of time-series analysis. First introduced in the 1980s for processing seismic 
data (cf. Goupillaud et al., 1984), the technique has begun to attract attention in 
meteorology and oceanography where it has been applied to time-series measurements 
of turbulence (Farge, 1992; Shen and Mei, 1993), surface gravity waves (Shen et al., 
1994), low-level cold fronts (Gamage and Blumen, 1993), and equatorial Yanai waves 
(Meyers et al., 1993). 

As frequently noted in the literature, Fourier analysis does a poor job of dealing 
with signals of the form 4~(t) = A(7-)cos (~ot), where the amplitude, A, varies on the 
slow time scale, 7-. Wavelet analysis has a number of advantages over Fourier analysis 
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that are particularly attractive. Unlike the Fourier transform, which generates record- 
averaged values of amplitude and phase for each frequency component or harmonic, 
co, the wavelet transform yields a localized, "instantaneous" estimate for the amplitude 
and phase of each spectral component in the data set. This gives wavelet analysis an 
advantage in the analysis of nonstationary data series in which the amplitudes and 
phases of the harmonic constituents may be changing rapidly in time or space. Where 
a Fourier transform of the nonstationary time series would smear-out any detailed 
information on the changing processes, the wavelet analysis attempts to track the 
evolution of the signal characteristics through the data set. As with other transform 
techniques, problems can develop at the ends of the time series, and steps must be 
taken to mitigate these effects. Similar to other transform techniques involving finite 
length data, steps also must be taken to minimize the distortion of the transformed 
data caused by the nonperiodic behavior at the ends of the time series. Lastly, we note 
that increasing the temporal resolution, At, of the wavelet analysis decreases the 
frequency resolution, Af, and vice versa, such that A t A f  < �88 reminiscent of the 
Heisenberg uncertainty relation. The more accurately we want to resolve the frequen- 
cy components of a time series, the less accurately we can resolve the changes in these 
frequency components with time. 

5.9.1 The wavelet transform 

Wavelet analysis involves the convolution of a real time-series, x(t), with a set of 
functions ga~(t)= g(t: z, a) that are derived from a "mother wavelet" or analyzing 
wavelet, g(t), which is generally complex. In particular 

- 1-~g[a-l(t--T)] (5.9.1) ga (t) V/a 

where r (real) is the translation parameter corresponding to the central point of the 
wavelet in the time series and a (real and positive) is the scale dilation parameter 
corresponding to the width of the wavelet. For the Gaussian-shaped Morlet wavelet 
(Figure 5.9.1) described in detail later in this section, the dilation parameter can be 
related to a corresponding Fourier frequency (or wavenumber). 

The continuous wavelet transform, X(t), of the time series with respect to the 
analyzing wavelet, g(t), is defined through the convolution integral 

OO 

1 /g*[a- 
al - T a  

m O C  

l(t - T)]X(t) dt (5.9.2) 

in which g* denotes the complex conjugate of g and variables 7, a are allowed to vary 
continuously through the domain (-oo,  oo). Wavelet analysis provides a two- 
dimensional unraveling of a one-dimensional time series into position, 7, and amplitude 
scale, a, as new independent variables. The wavelet transformation (5.9.2) is a sort of 
mathematical microscope, with magnification 1/a, position z, and optics given by the 
choice of the specific wavelet, g(t) (Shen et al., 1994). Whereas Fourier analysis provides 
an average amplitude over the entire time series, wavelet analysis yields a measure of the 
localized amplitudes a as the wavelet moves through the time series with increasing 
values of T. Although wavelets have a definite scale, they typically do not bear any 
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resemblance to the sines and cosines of Fourier modes. Nevertheless, a correspondence 
between wavelength and scale a can sometimes be achieved. 

To qualify for mother wavelet status, the function g(t) must satisfy several 
properties (Meyers et al., 1993): 

(1) Its amplitude [g(t)] must decay rapidly to zero in the limit It I -+ ec. It is this 
feature that produces the localized aspect of wavelet analysis since the 
transformed values, Xg[r, a] are generated only by the signal in the cone of 
influence about t =  r. In most instances, the wavelet g[( t -  r)/a] is assumed to 
have an insignificant effect at some time ] t f -  re. 

(2) g(t) must have zero mean. Known as the admissibility condition, this ensures the 
invertability of the wavelet transform. The original signal can then be obtained 
from the wavelet coefficients th rough the  inverse transform 

OC OC 

1 / / {Xg[r.,a]a_2ga,_}drda x(t) - -~ 
- -  C X )  - -  O C  

where 
CKP, �84 

C -1- / (co-1]G(co)[2)dco (5.9.4) 
--(2<7) 

in which G(co) is the Fourier transform ofg(t). For 1/C to remain finite, G(0) - 0. 
(3) Wavelets are often regular functions, such that G(co < 0 ) =  0. These are also 

called progressive wavelets. Elimination of negative frequencies means that 
wavelets need only be described in terms of positive frequencies. 

(4) Higher-order moments (such as variance and skewness) should vanish allowing 
the investigation of higher-order variations in the data. This requirement can be 
relaxed, depending on the application. 

One of most extensively used wavelets is the standard (admissible and progressive) 
Morlet wavelet 

g(t) - e-t2/2e +ict (5.9.5) 

consisting of a plane wave of frequency c = co (or wavenumber c = k in the spatial 
domain) which is modulated by a Gaussian envelope of unit width. Another possible 
wavelet which is applicable to a signal with two frequencies Cl and c2 is 

-t2/2eiC teiC2t g(t) - e ' (5.9.6) 

while the wavelet 

g(t) - e-t2/2eiCte ikt2/2 (5.9.7) 

is applicable to short data segments with linearly increasing frequency ("chirps"). 

5.9.2 Wavelet algorithms 
The choice of g(t) is dictated by the analytical requirements. More specifically, the 
wavelet should have the same pattern or signal characteristic as the pattern being 
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sought in the time series. Large values of the transform Xg(r, a) will then indicate 
where the time series x(t) has the desired form. The simplest--and most time- 
consuming--method for obtaining the wavelet transform is to compute the transform 
at arbitrary points in parameter (7-, a) space using the discrete form of equation (5.9.2) 
for known values ofx(t) and g(t). If one integrates from 0 < a _< M and 0 < 7- _< N, the 
integration time goes as M N  2. An alternate method is to use the convolution theorem 
and then obtain the wavelet transform in spectral space 

OC 

1 / eiT~G, (aw)X(w) d~ (5.9.8) 

where G(~) and X(,~) are the Fourier transforms of g(t) and x(t), respectively. Since 
FFT transforms can now be exploited, the analysis time drops to MNlog2N. To use this 
method, G(~) should be known analytically and the data must be preprocessed to avoid 
errors from the FFT algorithms. For example, if x(t) is aperiodic, the discrete form of 
(5.9.7) will generate an artificial periodicity in the wavelet transform that greatly 
distorts the results for the end regions. Methods have been devised to work around this 
problem. Aliasing and bias in FFT routines must also be taken into account. 

Meyers et al. (1993) used the standard Morlet wavelet (5.9.5), for which 
g(t) = e-t2/2e ict, to examine a signal that changes frequency halfway through the 
measurement. Here, we have followed tradition and used c for frequency ~. After con- 
siderable attempts (including use of raw data, cosine weighted data and other varia- 
tions), the authors decided that the best approach was to taper or buffer the original 
time series with added data points that attenuate smoothly to zero past the ends of the 
time series. "The region of the transform corresponding to these points is then discard- 
ed after the transform. Without this buffering, a signal whose properties are different 
near its ends will result in a wavelet transform that has been forced to periodicity at all 
scales through a distortion (in some cases severe) of the end regions. The greater the 
aperiodicity of the signal, the greater the distortion." 

For the Morlet wavelet, the dilation parameter a giving the maximum correlation 
between the wavelet and a plane Fourier component of frequency ~o (i.e. a wave of the 
form e i''~ is 

[c + (2 + c2) 1/2] 
ao = To (5.9.10) 

47r 

where To--27r/wo is the Fourier period. (In wavenumber space, To is replaced by 
wavelength Ao and Wo by ko.) We note that any linear superposition of periodic comp- 
onents results in separate local maxima. Consequently, the wavelet transform of any 
function x(t) - ~ A j e  ikit will have modulus maxima at aj - [ c  + (2 + c2)1/2]/(2kj). 

5.9.3 Oceanographic examples 
In this section, we will consider two oceanographic wavelet examples (surface gravity 
wave heights and zonal velocity from a satellite-tracked drifter) using the standard 
Morlet wavelet 

1 e_�89 sin [c(t - ,)/a] g(t) ~ g [ ( t -  7-)/a] - - ~  (5.9.11) 

In this real expression, the Gaussian function determines the envelope of the wavelet 
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while the sine function determines the wavelengths that will be preferentially 
weighted by the wavelet. The wavelet function progresses through the time series with 
increasing ~-, its cone of influence centered at times t = 7-. As a increases, the width of 
the Gaussian spreads in time from its center value (Figure 5.9.1a-c). Increasing c 
increases the number of oscillations over the span of the function. The processing 
procedure is as follows: (1) read in the time series x(n) (n = O, . . . ,  N - 1) to be 
analyzed, where N = 2 m (rn is an integer). To reduce ringing, extend each end of the 
time series by adding a trigonometric taper, tap = 1 - sin ~, where tap = 1.0 at the 
end values x(0) and x ( N -  1). The total length of the buffered time series must remain 
a power of two; (2) remove the mean of the new record and then take the FFT of the 
time series to obtain X(~); (3) take the Fourier transform of the wavelet g(t) at given 
length scales, a, to obtain G(a~); (4) calculate the integral (5.9.8) by convolving the 
product G* (a~)X(~)  in Fourier space; (5) take the inverse FFT of the result to obtain 
v/aXg[T, a] as a function of time dilation T and amplitude, a. 

In Figure 5.9.2(a) we have plotted a 300 s record of surface gravity wave heights 
measured off the west coast of Vancouver Island in the winter of 1993. Maximum wave 
amplitudes of around 3 m occurred mid-way through the time series. The Morlet 
wavelet transform of the record yields an estimate of the wave amplitude (Figure 
5.9.2b) and phase (Figure 5.9.2c) as functions of the wave period (T) and time (t). Also 
plotted is the value of the wave period (T - scale a) at peak energy (Figure 5.9.2d). 
Comparison of Figures 5.9.2(b) and 5.9.2(d) reveals that the larger peaks near times of 
75, 150, and 210 s all have about the same wavelet scale, a, corresponding to a peak 
wave period of around 8 s. Also, as one would expect, the 27r changes in phase between 
crests (Figure 5.9.2c) increases with increasing wave period (scale, a). 

In our second example, we have applied a standard Morlet wavelet transform to a 
90-day segment of 3-hourly sampled east-west (u) current velocity (Figure 5.9.3a) 
obtained from a satellite-tracked drifter launched in the northeast Pacific in August 
1990 as part of the World Ocean Circulation Experiment (WOCE). The drifter was 
drogued at 15-m depth and its motion indicative of currents in the surface Ekman 
layer. The 90-day velocity record has been generated from positional data using a 
cubic spline interpolation algorithm. We focus our attention on the high-frequency 
end of the spectrum, 0 < a < 1.5 days. As indicated by Figures 5.9.3(b) and (c), the 
first 30 days of the record, from Julian day (JD) 240 to 270, were dominated by weak 
semidiurnal tidal currents with periods of 0.5 days. Beginning on JD 270, strong wind- 
generated inertial motions with periods around 16 h (jr ~ 1.5 cpd) dominated the 
spectrum. These energetic motions persisted through the record, except for a short 
hiatus near JD 295. A blow-up of the segment from JD 240 to 270 shows a rapid 
change in signal phase associated with the shift from semidiurnal tidal currents to 
near-inertial motions. The contribution from the beat frequency between the M2 tidal 
signal and the inertial oscillations, fM2 = 0.0805 + 0.0621 cph - 0.1426 cph can also 
be seen in the transformed data at period T ~ 0.29 days. Examination of the longer 
period motions (2 < a < 30 days) suggests the presence of a long-period modulation of 
the high-frequency motions associated with the near-inertial wave events. 

5.9.4 The S-transformation 

Wavelet transforms are not the only method for dealing with nonstationary oscil- 
lations with time-varying amplitudes and phases. The S-transformation (Stockwell et 
al., 1994) is an extension of the wavelet transform that has been used by Chu (1994) to 
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Figure 5.9.2. Morlet wavelet transform of surface gravity waves measured from a waverider buoy 
moored off the west coast of Vancouver Island. (a) Original five-minute time series of significant wave 
height for the winter of 1993. (b) Wave amplitude (m) and (c) phase (deg.) as a functions of time; (d) the 

value of a (wave period) at peak wave amplitude. (Courtesy, D. Masson.) 

examine the localized spectrum of sea level in the TOGA data sets. For this particular 
transform, the relationship between the S-transform, S(co, r), and the data, x(t), is 
given by 

o o  

S(co, 7") = / H(co + c~)e-(2~2a2/W2)ei2uardc~ 

- -  O C  

(5.9.12) 

where 

OC OCo 

- -  O C  - - 0 0  

(5.9.13) 

~X3 

H(co + o~) = / x(t)e -i2'~(~~ dt (5.9.14a) 

- - O C  

OC 

= / S ( w +  ~, r ) d r  (5.9.14b) 
- -0 (3  
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Figure 5. 9.3. The Morlet wavelet transform of a 90-day record of the east-west velocity component from 
the trajectory of a satellite-tracked drifter in the northeast Pacific, September 1990. (a) Original 3- 
hourly time series; (b) amplitude (cm/s) versus time as a function of period, T, in the range 0 < T < 2.0 

days; (c) period (days) of the current oscillations at peak amplitude. (Courtesy, J. Eert.) 

is the standard Fourier transform of the input time series data. As indicated by 
(5.9.14b), the Fourier transform is the time average of the S-transform, such that 
[H(w)l 2 provides a record-averaged value of the localized spectra IS(~)] 2 derived from 
the S-transform. Equation (5.9.13) can also be viewed as the decomposition of a time 
series x(t) into sinusoidal oscillations which have time-varying amplitudes S(w, 7-). 

The discrete version of the S-transformation can be obtained as follows. As usual, let 
x ( t n ) - - x ( n A t ) , n - - O ,  1 , . . . , N - 1  be a discrete time series of total duration 
T -  N A t .  The discrete version of (5.9.12) is then 

1 ~ x(m/T), S(O, Tq) -Nm=0 p - 0  (5.9.15a) 

N-I  
S(wp, "rq) - E {H[(m +p)/T]e-(2~em2/p2)ei2mq/N}, p :/: 0 (5.9.15b) 

m = 0  

where S(0, 7.q) is the mean value for the time series, u p - p / N A t  is the discrete 
frequency of the signal, and 7.q - qAt  is the time lag. The discrete Fourier transform is 
given by 

I N - 1  
H ( p / T )  - ~ E x(k/T)e-i2~pk/N (5.9.16) 

k=0 
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The S-transform is a complex function of frequency wp and time rq, with amplitude 
and phase defined by 

A ( o3p , Tq ) - ]S ( &p , "rq ) ] ( 5 . 9 . 1 7 a )  

�9 (wp, r q ) -  tan- '  {Im[S(wp, rq)]/Re[S(%, rq)]} (5.9.17b) 

For a sinusoidal function of the form 

X(wp, r) = A(wp, r)cos [27rwpr + ~(wp, r)] (5.9.18) 

the function X at frequency cop is called the "voice". 
Chu (1994) applied the S-transform to the nondimensionalized sea-level records, 

x(t), collected at Nauru (0~ 166~ in the western equatorial Pacific and La 
Libertad (2~ 80~ in the eastern equatorial Pacific. Here 

x(t) = [r/(t)_- ~] (5.9.19) 
77 

and #(t) represents the mean value of the sea level, rl(t). A Fourier spectral analysis of 
the time series revealed a strong annual sea-level oscillation in the western Pacific and 
a weak annual oscillation in the eastern Pacific. Both stations had strong quasi- 
biennial oscillations with periods of 24-30 months. The S-transformation was then 
used to examine the temporal variability in these components throughout the 16 and 
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18-year time series. For example, the voices for the annual oscillation (Wl6 = 16/T; 
T = 192 months) were similar at the two locations with higher amplitudes in the late 
1970s than in the late 1980s (Figure 5.9.5). At La Libertad, the annual cycle became 
weak after 1979. The temporally varying quasi-biennial oscillations (w8 = 8/T) were 
out-of-phase between the western and eastern Pacific (Figure 5.9.6). 

5.9.5 The multiple filter technique 

The multiple filter technique is a form of signal demodulation that uses a set of narrow- 
band digital filters (windows) to examine variations in the amplitude and phase of 
dispersive signals as functions of time, t, and frequency, w (or J). Originally designed to 
resolve complex transient seismic signals composed of several dominant frequencies 
(Dziewonski et al., 1969), the technique has recently been modified for the analysis of 
clockwise and counterclockwise rotary velocity components (Thomson et al., 1997) and 
in investigations of tsunami wave dispersion (Gonzalez and Kulikov, 1993). 

The multiple filter technique relies on a series of band-pass filters centered on a 
range of narrow frequency bands to calculate the instantaneous signal amplitude or 
phase. Dziewonski et al. (1969) filter in the frequency domain rather than the time 
domain, although the results are equivalent to within small processing errors. The 
filtering algorithm generates a matrix (grid) of amplitudes or phases with columns 
representing time and rows representing frequency (or period). The gridded values 
can then be contoured to give a three-dimensional plot of the demodulated signal 
amplitude (or phase) as a function of time and frequency. Gonzalez and Kulikov 
(1993) used the technique to examine the evolution of tsunami waves generated by an 
undersea earthquake in the Gulf of Alaska on 6 March 1987 (Figure 5.9.7). Sea-level 
heights measured by two bottom-pressure recorders deployed in the deep ocean to the 
south of Kodiak Island show that the tsunami waves were highly dispersive (low 
frequencies propagated faster than high frequencies) and that the arrival times of the 
waves closely followed the theoretical predictions for shallow-water wave motions. 
Peak spectral amplitudes were centered around a period of roughly 5 min and the 
signal duration was about 40 min. 

5. 9.5.1 Theoretical considerations 

Since the technique is used to examine signal energy as a function of time and 
frequency, it is desirable that the filtering function has good resolution in the 
immediate vicinity of each center frequency and time value of the f - t  diagram. The 
Gaussian function was chosen to meet these requirements since the frequency-time 
resolution is greater for this function than any other type of nonband-limited func- 
tion. A system of Gaussian filters with constant relative response leads to a constant 
resolution on a log(w) scale. If wn = 27rfn denotes the center frequency of the nth row, 
the Gaussian window function can be written 

Hn(w) - exp {-&[(w - w~)/w~] 2 } (5.9.20) 

The Fourier transform of Hn, which bears a close resemblance to the Morlet wavelet 
(5.9.11), is 
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Figure 5. 9.5. The "voices" for the annual oscillation (co16 -- 1 6 /  T ;  T = 192 months) for (a) Nauru; 
and (b) La Libertad. Higher amplitudes were recorded in the late 1970s than in the late 1980s. (Chu, 

1994.) 

/7F 
hn (t) = -~--~con exp [--(co~t2/4ct)] cos (cont) (5.9.21) 

The resolution is controlled by the parameter,  o~. The value of a that we choose 
depends on the dispersion characteristics in the original signal and, as the user of this 
method will soon discover, improved resolution in time means reduced resolution in 
frequency, and vice versa. We also need to truncate the filtering process. Dziewonski 
et al. (1969) used a filter cut-off where the filter ampli tude was down 30 dB from the 
max imum.  

If we let BAND be the relative bandwidth,  then the respective lower and upper  
l imits of the symmetrical  filter, denoted coL, n and coU, n, are 

COL,,, = (1 -- BAND)con (5.9.22a) 

wu, n = (1 + BAND)w, (5.9.22b) 
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Figure 5.9. 7. Multiple filter technique applied to sea-level heights measured in 5 km of water near 53~ 
156~ the Gulf of Alaska on 6 March 1988. Amplitude contours in the f - t  diagram are normalized by 
the maximum value and drawn with a step of 1 dB. Solid curve denotes the theoretical arrival time for 

these highly dispersive waves. (From Gonzalez and Kulikov, 1993.) 

In their analysis of seismic waves, Dziewonski et al. (1969) used BAND = 0.25, 
/3 = 3.15, and ~ = 3 /BAND 2 = 50.3. 

T h e f - t  diagram for the Alaska tsunamis (Figure 5.9.7) was obtained by windowing 
in the frequency domain with the truncated Gaussian function (5.9.25). In the time 
domain, the traces represent the convolution of the original data series with the 
Gaussian weighting function. The authors first set c~ = 25 and chose/3 = 1, so that 
BAND = 0.20. The choice of 3 in (5.9.24) is arbitrary and can be set to unity, 
whereupon the bandwidth is determined by the e -1 values of the Gaussian function. 
For c~ = 25 but/3 = 2, we have BAND = 0.28, and so on. 

The flow chart for the analysis (Figure 5.9.8) is as follows: 

(1) Remove the mean and trend (linear or other obvious functional trend) from the 
digital time series, y(t).  

(2) Fourier transform the time series. If an FFT algorithm is to used for this purpose, 
augment  the time series with zeros to the nearest power of 2. 

(3) Evaluate the center frequencies, ,:n = a:n__I/BAND, for the array of narrow-band 
filters. The filters have a constant relative bandwidth, BAND, with the total width 
of each filter occupying the same number of rows in the log (frequency) scale. As 
noted on numerous occasions in the text, it is the length of the time series and the 
sampling rate which determine the frequency of the Fourier components. Since it 
often is difficult to get the frequencies obtained from the Fourier analysis to line 
up exactly with the center frequencies of the filters, select those components of the 
Fourier analysis which are closest to each member of the array and use these as 
the center frequencies. 

(4) Select equally spaced times (columns) for calculation of amplitude or phase, 
focusing mainly on the times following the arrival of the waves. 

(5) Filter the wave spectrum (sine and cosine functions of the Fourier transform) in 
the frequency domain with the Gaussian filter Hn(~:). This filter is symmetric 
about the center frequencies, ~:n. 
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Time series v(t) 
(remove mean 

and trend) 

Fourier transform 
y(t)-,,- Y(o)) 

Select center 
frequencies, e.g. 

rows of Fig. 5.9.7 

! 

Select times, e.g. 
columns of 
Fig. 5.9.7 

i 
Take the inverse 

Fourier transform 

Window the 
spectrum using 

H(co) 

Obtain amplitudes 
and phases 

Determine the 
quadrature 
spectrum 

I 

I 

Figure 5.9.8. Flow chart for application of the multiple-filter technique. (Adapted from Dziewonski et 
al., 1969.) 

(6) Take the inverse Fourier transform of the spectra using the same Fourier trans- 
form used in step 2. Since the inverse Fourier transform for the wave spectrum as 
windowed by the function Hn(w) yields only the in-phase component of the 
filtered signal for each wn, knowledge of the quadrature spectrum is also required 
for evaluation of the instantaneous spectral amplitudes and phases. The 
quadrature spectrum is found from the in-phase spectrum using 

Qn(oz) - Hn(a~)e i7~/2 (5.9.26) 

The amplitude and phase of the signal for each center frequency for each time are 
derived from the inverse Fourier transforms of the spectra and quadrature spectra. 

~7) Instantaneous spectral amplitudes and phases are computed for each time step. 
The procedure (5)-(7) is repeated for each center frequency. 

The multiple filter technique can be used to examine rotary components of current 
velocity fields. In this case, the input is not a real variable, as it is for scalar time 
series, but a complex input, w(t) = u(t) +iv(t). Figure 5.9.9 is obtained from the 
analysis of a 90-day time series of surface currents measured by a 15 m drogued 
satellite-tracked drifter launched off the Kuril Islands in the western North Pacific on 
4 September 1993 (Thomson et al., 1997). The 3-hourly sampling interval used for this 
time series was made possible by the roughly eight position fixes per day by the 
satellite-tracking system. Plots show the variation in spectral amplitude of the clock- 
wise and counterclockwise rotary velocity components as functions of time and fre- 
quency. For illustrative purposes, we have focused separately on the high and low 
frequency ends of the spectrum (periods shorter and longer than two days). Several 
interesting features quickly emerge from thesef-t  diagrams. For example, the motions 
are entirely dominated by the clockwise rotary component except within the narrow 
channel (Friza Strait) between the southern Kuril Islands where the motions become 
more rectilinear. The burst of clockwise rotary flow encountered by the drifter over 
the Kuril-Kamchatka Trench starting on day 28 was associated with wind-generated 
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Figure 5.9.9. Multiple-filter technique applied to the velocuy of a near-surface (15 m drogued) satellite- 
tracked drifter launched off the KuriI Island in 1993. S -  denotes the spectral amplitude (cm/s) of the 
clockwise rotary component versus frequency (cpd) and time (day); S § denotes the spectral amplitude of 

the counterclockwise component. (From Thomson et al., I997.) 

inertial waves whereas the strong clockwise rotary diurnal currents first encountered 
on day 40 and then again on day 55 were associated with diurnal-period continental 
shelf waves propagating along the steep continental slope of the Kuril Islands. 

5.10  D I G I T A L  F I L T E R S  

5.10.1 In troduc t ion  

Digital filtering is often an important step in the processing of digital oceanographic 
data. Applications include smoothing and decimation of time series, removal of 
fluctuations in selected frequency bands, and the alteration of signal phase. The term 
"decimation" originally meant the removal of every tenth point but is now commonly 
used for values other than 10. Digital filtering facilitates data processing by pre- 
conditioning the frequency content of the record. For example, filters are commonly 
used in studies of inertial waves to isolate current variability centered near the local 
Coriolis frequency, to remove background sea-level fluctuations in investigations of 
tsunamis, and to eliminate tidal frequency fluctuations in studies of low-frequency 
current oscillations (Figure 5.10.1). The terms "detided" or "residual" time series are 
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removed; (2) a comparatively flat pass-band that leaves the low-frequency components 
unchanged; (3) a clean transient response, so that rapid changes in the signal do not 
result in spurious oscillations or "ringing" within the filtered record; (4) zero phase 
shift; and (5) acceptable computation time. As a rule, many of these desirable features 
are mutually exclusive and there are severe limitations to achieving the desired filter. 
We are invariably faced with a trade-off between the ability of the filter to produce the 
required results and the amount of filter-induced data loss we can afford to tolerate. 
For example, improved statistical reliability (increased degrees of freedom) for 
specified frequency bands decreases the frequency resolution of a filter while more 
sharply defined frequency cut-offs lead to greater ringing and associated data loss. 

Suppose we have a time series consisting of the sequence 

X(tn)--Xn, n--O, 1, . . . , N -  1 (5.10.1) 

with observations at discrete times tn - to + nat  in which to marks the start time of the 
record and At is the sampling increment. A digital filter is an algebraic process by which a 
sequential combination of the input {Xn} is systematically converted into a sequential 
output (y,,}. In the case of linear filters, for which the output is linearly related to the input, 
the time domain transformation is accomplished through convolution (or "blending") of 
the input with the weighting function of the filter. Filters having the general form 

M L 

Yn - ~ hkxn-k + Z gjYn-j, n -- 0, 1, ...,N - 1 (5.10.2) 
k=-M j - - L  

(in which M, L are integers and hk, gi are nonzero weighting functions) are classified as 
recursive filters since they generate the output by making use of a feed-back loop specified 
by the second summation term. Such filters "remember" the past in the sense that all past 
output values contribute to all future output values. Filters based on the input data only 
% = 0), are classified as nonrecursive filters. Any filter for which - M  _< k _< M is said to 
be physically unrealizable (in the sense of any real-time output) because both past and 
future data are needed to calculate the output. Filters of this type have widespread 
application in the analysis of pre-recorded data for which all digital values are available 
beforehand. Filters for which 0 _< k _< M are said to be physically realizable or causal, and 
are used in real-time data acquisition and in forecasting procedures. 

Impulse response: The output {Yn} of a nonrecursive linear filter is obtained through 
the convolution 

M M 

Y" = Z hkXn-k -- Z hn-kXk' n -- 0, 1, ..., N -  1 (5.10.3) 
k=-M k=-M 

where hk are the time invariant weights and there are N data values Xo, x~, ..., XN_ 1. 
For a symmetric filter, the time domain convolution becomes 

M 

Y" = Z hk(x,-k + Xn+k), n -  0, 1, ..., N -  1 (5.10.4) 
k=0 

in which hk = h_h. The set of weights {hk} is known as the impulse response function 
and is the response of the filter to a spike-like impulse. To see this, we set x, = ~50., 



where 6m,n is the Kronecher delta function 

6m,n - O, 

- 1 ,  
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m # n  

m - n  
(5.10.5) 

Equation (5.10.1) then becomes 

M 

Yn - Z hk60.n-k -- hn 
k=-M 

(5.10.6) 

The summations in equations (5.10.3) and (5.10.4) are based on a total of 2M + 1 
specified weights with individual values of hk labeled by subscripts k = - M ,  - M  + 1, ..., 
M. To make practical sense, the number of weights is limited to M << N / 2  where N A t  is 
the record length. In reality, it is not possible to use equation (5.10.3) to calculate an 
output valueyn for each time tn. Because the response function spans a finite time (equal 
to 2MAt),  difficulties arise near the ends of the data record and we are forced to accept 
the fact that there are always fewer output data values than input values. There are three 
options: (1) We can make do with 2M fewer estimates ofyn (resulting from time losses of 
M A t  at each end of the record); (2) we can create values of X(tn) for times outside the 
observed range 0 _< t < (N - 1)At of the time series; or (3) we can progressively decrease 
the filter length, M, in accordance with the number of remaining input values. In the 
first approach, Xn is defined for n - 0, 1, ..., N - 1 whereasyn is defined for the shortened 
range n = M, M + 1, ..., N - (M + 1). In the second approach, the appendaged estimates 
of x,, should qualitatively resemble the data at either end of the record. For example, we 
could use the "mirror images" of the data reflected at the end points of the original time 
series. In the third approach, the valuesyM_l andYN-(M-1) are based on (M - 1) weights, 
the values YM-2 andYN_(M_2) on (M - 2) weights, and so on. 

Frequency response: The Fourier  transform ofy(t , )  in (5.10.3) is 

M 

Y(~) = Z yne-iw"/xt 
n=-M 

M M 
-- Z hke-iWh/xt E Xn-ke-iW("-~)/xt 

k=-M n=-M 

: H(w)X(w) 

(5.10.7) 

so that convolution in the time domain corresponds to multiplication in the frequency 
domain. The function 

y ( ~ )  M 
H(w) - X ( w )  Z hke-iwkAt' ~ -  ~n - 2 n n / N A t  (5.10.8) 

k=-M 

n - O, . . . ,  N/2 is known as the frequency response (or admittance function; see Section 
5.8.7) since it determines how a specific Fourier component  X(~) is modified as it is 
t ransformed from input to output.  For the symmetric filter (5.10.4), the transfer 
function reduces to 
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transition has a finite width. In the latter case, coc is defined as the frequency at which 
the mean filter amplitude in the pass-band is decreased by a factor of v/2 and should 
roughly coincide with spectral minima in the time series being analyzed; the power of 
the filter is down by a factor of 2 ( -3  dB) at the cut-off frequency. As its name implies, 
a low-pass filter lets through (or is "transparent" to) low-frequency signals but 
strongly attenuates high-frequency signals (cf. Figures. 5.10.3a, b). High-pass filters 
let through the high-frequency components and strongly attenuate the low-frequency 
components (cf. Figures. 5.10.3a, c). Band-pass filters permit only frequencies in a 
limited range (or band) to pass unattenuated. 

Low-pass filters are the most common filters used in oceanographic data analysis. It 
is through these filters that low-frequency, long-term variability of oceanographic 
signals is determined. The running-mean filter, which involves a moving average over 
an.odd number of values, is the simplest form of low-pass filter. More complex filters 
with better frequency responses, such as the low-pass Kaiser-Bessel window used in 
Figure 5.10.3(b), also are commonly used. High-pass filtered data are readily obtained 
by subtracting the low-pass filtered data from the original record from which the low- 
pass data were derived. One does not need to create a separate high-pass filter. 
Similarly, band-pass filters can be formed by an appropriate combination of low-pass 
and high-pass filters. In the ocean, seawater acts as a form of natural low-pass filter, 
attenuating high-frequency wave or acoustic energy at a much more rapid rate than 
low-frequency energy. Acoustic waves of a few hertz (cycles per second) can propagate 
thousands of kilometers in the ocean whereas acoustic waves of hundreds of kilohertz 
are strongly attenuated over a few hundred meters. 

High-pass filters are less frequently used than low-pass filters. Applications include 
the delineation of high-frequency, high-wavenumber fluctuations in the internal wave 
band (roughly 2f < co < N, where N is the Brunt-Vfiisfil/i frequency) and the isolation 
of seiche or tsunami motions in closed or semi-enclosed basins. Band-pass filters are 
used to isolate variability in relatively narrow frequency ranges such as the near- 
inertial frequency band or, in North America, the electronic-induced 60-cycle noise in 
high-frequency oceanic data caused by AC power supplies. 

The maximum range of frequencies that can be covered by a digital filter is 
determined at the high-frequency end by the Nyquist frequency, con = 7fiAt (radians/ 
unit time), and at the low-frequency end b~; the fundamental frequency, col --- 27r/T, 
where T = NAt  is the length of the record. The corresponding range in cycles/unit 
time are determined by fN = 1/(2At) and fl = 1/T. Provided that the cut-off 
frequencies are sufficiently far removed from the ends of the intervals, digital filters 
can be applied throughout the range, col <l co l< CON (fl < I f  I< fN). 

5.10.3.1 Bandwidth 

The difference in frequency between the two ends of a pass-band defines an important 
property known as the bandwidth of the filter. To illustrate the relevance of this 
property, we consider an ideal band-pass filter with constant gain, linear phase, and 
cut-off frequencies COcl, COc2 such that 

H(co) - Ho exp (-icoto), cocl <_ I co I< coc2 
(5.10.13) 

= 0, otherwise 

From (5.10.12c), the impulse response is 
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(a) Low-pass filter 

Pass band 
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Stop band 

fN 

(b) High-pass filter 
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f~ 
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o fr fr 
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t 
fN 

Figure 5.10.2. Frequency response functions, [H(f) ], for ideal filters. (a) Low pass; (b) high pass; and (c) 
band pass�9 The band-pass filter has been constructed from the combined low-pass and high-pass filters, fN 

and f~ are the Nyquist and cut-off frequencies, respectively. 

1 i~t,, ei~kAt ei~t,, iwkAt hk -- ~-~ Ho e- dw+ e- d 

~cl 

2tlo sin [/X~(kAt -to)] 
= 7r Awcos[f~(kAt- to)]  A ~ ( k A t - t o )  

(5.10.14) 

in which Q--l(~cl-~~c2) is the center frequency and /~-~c2--~cl is the 
bandwidth. For high or low-pass filters, the bandwidth is equal to the cut-off 
frequency. 

Using the fact that sinp/p ~ 1 as p ~ 0, we find that the peak amplitude response 
of the filter (5.10.14) is directly proportional to the bandwidth A,~ as 
A w ( k A t -  to) -~ O. Note also that a narrow-band filter (one for which AM ~ 0) will 
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Figure 5.10.3. Filtering of a tide gauge record for Ulsan, Korea using low and high-pass Kaiser-Bessel 
filters (windows) with length T/27 = 3 h; T = 81 h is the record length and At = 0.5 min the sampling 
increment. (a) Original record; (b) low-pass filtered record; (c) high-pass filtered record. (Courtesy, A. 

Rabinovich.) 

oscillate longer (i.e. persist to higher values of k) than a broad-band filter when 
subjected to a transient loading. Put another way, the persistence of the ringing that 
follows the application of the filter to a data set increases as the bandwidth decreases. 
From a practical point of view, this means that the ability of a filter to resolve 
sequential transient events is inversely proportional to the bandwidth. The narrower 
the bandwidth (i.e. the finer the resolution in frequency), the longer the time series 
needed to resolve individual events. For example, if we use a band-pass filter to isolate 
inertial frequency motions in the range 0.050-0.070 cph, the bandwidth 
Af = Aw/27T = 0.020 cph and the filter could accurately resolve inertial events that 
occurred about 1 / A f  = 50 h apart. If we now reduce the bandwidth to 0.010 cph, the 
filter is only capable of resolving transient motions that occur more than 100 h apart. 
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12[ 
H(w) - -~ +-re sin (coAt) + 

sin (5wAt) ] sin (3~At) + + (5 10 19) 
3 5 . . . . .  

which must be truncated after a finite number of terms. 
Successive approximations to the series (5.10.19), and hence to the function 

(5.10.15), are not convergent near discontinuities such as that for the step-like 
transition region of the ideal high-pass filter shown in Figure 5.10.4. In this example, 
the filter amplitude I H(w) ] is zero for w < Wc (the stop band) and unity for 
Wc < w < WN (the pass band). The succession of overshoot ripples, or ringing, is 
known as Gibbs'phenomenon. The ripple period, T = pTrt (p is an integer), is fixed but 
increasing the number of terms in the Fourier series for H(w) decreases the distortion 
due to the overshoot effects. However, even in the limit of infinitely many terms, 
Gibbs' phenomenon persists as the amplitude of the first overshoot diminishes 
asymptotically to about 0.18 or about 9% of the pass-band amplitude. The first 
minimum decreases asymptotically to about 5% of the pass-band amplitude. In the 
limit of large N --, oc, it can be shown (Godin, 1972; Hamming, 1977) that 

1/ 
H~(O) ~ -  s inu /u  du 

7"C 

o 

(5.10.20) 

The values of H ~  (0) can be found in tables of the sine integral function. In the case of 
Figure 5.10.4, the value for the first maximum is 1.08949 ( - 1.0 + 0.08949) while that 
for the first undershoot is 0.9514 ( = 1.0 - 0.04858). 

Gibbs' phenomenon has considerable importance in that it occurs whenever a 
function has a discontinuity. For example, suppose that we want to use equation 
(5.10.19) to remove spectral components near a cut-off frequency, Wc. Unless the 
spectral components in the stop and pass-bands are well separated relative to the 
width of the transition zone, the finite ripples will cause leakage of unwanted energy 
into the filtered record. Noise from the stop-band will not be completely removed and 
certain frequencies in the pass-band will be distorted. A critical aspect of filter design 
is the attenuation of the overshoot ripples using smoothing or tapering functions 
(windows). As discussed in Section 5.6.6, windows are important in reducing side-lobe 
leakage in spectral estimates. 

Further  difficulties arise when we apply the weights {hk} of an ideal filter in the 
time domain. Consider the nonrecursive, low-pass filter (positive frequency only) 

H(w) - 1, 0 <_ w 5_ Wc (5.10.21) 
= 0 otherwise 

for which the impulse function is, for k = - N ,  ..., N 

1 ~c 
= 2 - ,  c o s  h (tk ) = hk wN ~=o ( kAt)A  

sin (wckAt) 

wmkAt 

fc sin (27rfckAt) 

fN 2rrf~kAt 

(5.10.22) 
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in which ho - f J f N .  The weights hk attenuate slowly, as 1/k, so that a large number of 
terms are needed if the filter response H(w)  is to be effectively carried over to the time 
domain. In addition to being computationally inefficient, filters constructed from a 
large number of weights lead to considerable loss of information at the ends of the 
data sequence. Practical considerations force us to truncate the set of weights thereby 
enhancing the overshoot problem associated with Gibbs' phenomenon in the 
frequency domain. Moreover, if we truncate the length of the data set (5.10.1), we 
are unable to accurately replicate (5.10.21) in the frequency domain. This leads to a 
finite slope between the stop and pass-bands of the filter. 

The situation is similar for high-pass filters 

H(w)  - O, 0 < w < wc (5.10.23a) 
= 1, otherwise 

In this case 

CO N 

= ~ cos (wk/Xt)Aw 
hk WN ~o=~ 

= fc sin (2rrfckAt) k - - N ,  ..., N 
fN 27rfckAt ' 

(5.10.23b) 

where ho = 1 -f~/fo. Notice that, except for the central term ho, the weights hk of the 
high-pass filter (5.10.23b) are equal to minus the weights hk of the low-pass filter 

Figure 5.10.4. Gibbs'phenomenon (overshoot ripples) arising from successive approximations to the step- 
like function IH(w)l = 1, w, < ,a < CJN, and zero otherwise, w,. = 27rf, is the cut-off frequency. Curves 

are derived from (5.10.19) using M = 3, 7, and 11 terms. 
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passed through H2(w); the output from H2(~) is then passed through H3(~), and so 
on until the last filter, Hq(w). The final output from Hq(w) corresponds to the sought- 
after output from H(w). Although the technique is straightforward and helps to 
minimize roundoff error, it has a number of major drawbacks, including the need for 
extended computations and the possibility of repeated ringing as one filter after 
another is applied in succession. 

A high-pass filter HH(~) is obtained from its low-pass counterpart HL(~) by the 
relation HH(aJ)= 1-HL(w)  where, in theory, the combined output from the two 
filters simply recreates the original data, since HL(W)+HH(w)= 1. This has 
advantages in situations where He(w) is easily derived or is already available. In 
the time domain, the high-pass filtered record {Y'n) is obtained by subtracting the 
output {yn} from the low-pass filter form the input time series {xn}. Care is needed to 

/ ensure that the times of yn and Xn are properly aligned so that Y n -  x n - y n , n -  M, 
M + I , . . . , N - 2 M .  

A band-pass filter can be constructed from an appropriate high and low-pass filter 
using the method illustrated in Figure 5.10.2(c). Here, the cut-off frequency of the 
low-pass filter becomes the high-frequency cut-off of the band-pass filter; similarly, 
the cut-off frequency of the high-pass filter becomes the low-frequency cut-off of the 
band-pass filter. The cascade then has the form HB(~)= HL(~) x HH(,~). 

Because nonrecursive filters are symmetric (H(,~) is a real function), there is no 
shift in phase between the input and output signals. This feature of the filters, as well 
as their general mathematical simplicity, has contributed to their popularity in 
oceanography. Recursive filters, on the other hand, are typically nonsymmetric. This 
introduces a frequency-dependent phase shift between the input and output variables 
and adds to the complexity of these filters for oceanic applications. Despite these 
difficulties, recursive filters are useful additions to any processing repertoire. The 
good news is that we can remove phase shifts introduced through the "forward" 
application of the filter by reversing the process and passing the data "backward" 

I01 

10  0 

i 0  -! 

10  .2 

10  -3 
o 

10 -4 

10-5 

10-6 

!!!. 'l: 
!f ,i 

10 .7  i l I . I , l i i l : •  
0 . 0 4 0  0 . 0 4 4  0 , 0 4 8  0 . 0 5 2  

Frequency (cph) 

Figure 5.10.5. Frequency-response functions for low-pass filters with different transition bands. Solid 
line: A step-like transition band. Long-dashed line: A nine-point cosine-tapered transition band. Short- 
dashed line: A three-point optimally designed transition band. The cut-off associated with each filter 

causes ringing through the entire data set. (From Elgar, 1988.) 
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through the filter. In performing the latter step, we must be careful to invert the order 
of the record values between the forward and backward passes. Specifically, if the 
recursive filter introduces a phase shift ~,b(co) at frequency co (or equivalently, a time 
shift ~5/co = qS/2rrf), it will introduce a compensating shift -qS(co) when passed in the 
reverse order through the filter. To show this sequence let x l ,  x2, . . . ,  x~ be the original 
data sequence used as input  to a given filter with nonzero phase characteristics, and 

Yl ,Y2 ,  ... ,Yn the output from the filter (Figure 5.10.6). If we now invert the order of the 
output  and pass the inverted signal through the filter again, we obtain a new output z~, 
z2, . . . ,  zn. The order of the z-output is then inverted to form zn, z,,_ ~, ..., Zl, which returns 
us to the proper time sequence. For simplicity we can rewrite this later sequence as 
Y'I ,Y~, -.-, Y'n" The act of applying the filter a second time cancels any phase change from 
the first pass through the filter. Note that this corresponds to squaring the transfer 
function so that the final transfer function for the recursive filter is I H(cc) ]2. 

As an example of a phase-dependent  recursive filter, consider the high-pass quasi- 

difference f i l ter 

y ( n A t )  - x ( n A t )  - c~x[(n - 1)At] (5.10.27a) 

where c~ is a parameter  in the range 0 < o~ _< 1 ; o ~ - 1  corresponds to the simple 
difference filter (Koopmans, 1974). The transfer function for this filter is 

H(co) - 1 - cte -i~~ (5.10.27b) 

and the phase function is 

~5(co) - tan-l[oe sin (coAt)/(1 - o~cos (coAt))] (5.10.27c) 

Reversing the order of the output  from the first pass of the data through the filter and 
then running the t ime-inverted record through the filter again is tan tamount  to 
passing the data through a second filter H(co)*. This introduces a phase change -~,b(co) 
which cancels the phase change ~b(co) from the first filter (Figure 5.10.7). The 
symmetr ic  filter obtained from this cascade is then 

[ H(co)12 = H(co) x H(co)* 

= (1 - o~e-i~~ - cte +i~at) - [1 - 2ol cos (coAt) + 012] 1/2 
(5.10.27d) 

5.10.5 Running -mean  filters 

The running-mean or moving-average fi l ter is the simplest and one of the most 
commonly used low-pass filters in physical oceanography. In a typical application, the 
filter (which is simply a moving rectangular window) consists of an odd number  of 2M 
+ 1 equal weights, hk, k = 0, +1, . . . ,  i M ,  having constant values 

1 
hk = 2M + 1 (5.10.28a) 

where hk resembles a uniform probability density function in which all occurrences 
are equally likely. The running-mean filter produces zero phase alteration since it is 
symmetric  about k = 0, it satisfies the normalization requirement 
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Input data 

X I ~ . . . . .  , X n  

Recursive 
filter H(to) 

Output data 

Yl . . . . . . .  Yn 

Output data 

Z l , -  . . . .  ,Zn 

Recursive 
filter H(to) 

Input data 

Yn . . . . . . .  Y 1 

order of the ) Final output series has been 
, , " filtered by the net filter H(to)l 2 

- y l  ....... Y n  

Figure 5.10.6. The processing sequence for a nonsymmetric recursive filter H(~) which removes phase 
changes ~(~v) introduced to the data sequence xi (i = 1 . . . .  , n) by the filter. This cascade produces a 

symmetric squared-filter response [H(~)12. 

M 

Z h k -  1 (5.10.28b) 
k = - M  

and is straightforward to apply. To obtain the output sequence {Ym} for input sequence 
{x,,}, the first 2M + 1 values ofxn (namely Xo, Xl, . . . ,  X2M) are summed and then divided 
by 2M § 1, yielding the first filtered valueyM = y ( 2 M A t / 2 ) .  The subscript M reminds 
us that the filtered value replaces the original data record xM at the appropriate location 
in the time series. The next value, yM + 1, is obtained by advancing the filter weights 
one time step At and repeating the process over the data sequence xl, x2, ..., x2M+l and 
so on up to N - 2M output values. The {Ym} consist of a "smoothed" data sequence with 
the degree of smoothing, and associated loss of information from the ends of the input, 
dependent on the number of filter weights. Mathematically .... 

1 2M 

YM+i -- 2 M  + 1 . xi+j , i -  0, ..., N -  2M (5.10.29) 

A high-pass running-mean filter can be generated by subtracting the output {Ym } from 
the original data. The output {y'} for the high-pass filter is 

! 

Ym -- Xm --Ym, m -- M ,  M + 1, ..., N - 2M (5.10.30) 

where we make certain we subtract data values for the correct times. This technique of 
obtaining a high-pass filtered record from a low-pass filtered record will also be 
applied to other types of filters. 

The transfer function H(~) for the running-mean filter is given by equation 
(5.10.8). Using equation (5.10.27) and the fact that At -7r /~N,  we find that 

1 ~ 1 + 2 sin I (Tr /2M)(w/~N)]  cos [Tr/2(M + 1)(,~/WN)] ~ 
H(~) - 2M + 1 ~, sin (7r/2 ~/~N) ) 

1 sin [Tr/2(2M + 1)(~/~N)] 

2M + 1 sin [(Tr/2)(~/~N)] 

(5.10.31a) 

(5.10.31b) 
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Figure 5.10.7. The phase change O(a;) for a quasi-difference filter (with c~ = 0.5 as a function of 
frequency, ~). 

where H( , ; ) -~  1 as , ; / ~X- - '  O. As M increases, the central lobe of the transfer 
function narrows (Figure 5.10.8) and the cut-off frequency (at which I H ( ~ ) I -  
e-llH(0)l) moves closer to zero frequency. The filter increasingly isolates the true 
mean of the signal. Unfortunately, the filter has considerable contamination in the 
stop-band due to the large, slowly attenuating side-lobes. Reduction of these side-lobe 
effects requires a long filter which means severe loss of data at either end of the time 
series. The running-mean filter should therefore only be used with long data sets 
("long" compared with the length of the filter). Accurate filtering requires use of more 
sophisticated filters. 

For the three-point weighted average, hk - 1/3 and equation (5.10.31) yields 

1 [1 + 2 cos (Trw/~n)] H(,;; 3) - ~  

1 sin [(37r/2)(~/wn)] 
- . . -  _ 

3 sin [(Tr/2)(a;/~n)] 

(5.10.32) 

while for five-point weighted average, hk = 1/5 and 

1 sin [(57r/2)(~/WN)] 
H(~; 5) = ~ sin [(Tr/2)(u;/wn)] 

(5.10.33) 

(Figure 5.10.8). Numerous examples of running-mean filters appear in the oceano- 
graphic literature. A common use of running-mean filters is to convert data sampled 
at times t to an integer multiple of this time increment for use in standard analysis 
packages. Data collected at intervals At of 5, 10, 15, 20, or 30 min are usually con- 
verted to hourly data for use in tidal harmonic programs, although the least-squares 
algorithms used in these programs also work with unequally spaced time-series data 
(e.g. Foreman, 1977, 1978). Running-mean filters also are commonly used to create 
weekly, monthly, or annual time series (Figure 5.10.9). 
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5.10.6 Godin-type  filters 
For the low-pass filtering of sub-hourly sampled tidal records prior to decimation to 
"s tandard" hourly values, Godin (1972) recommends the use of cascaded running- 
mean filters with response functions of the form 

2 A 2 
A,,A,,§ ~A~+ 1 (5.10.34) 

n2(n + 1)' n(n + 1) 2 

Here, A, and An+l a r e  the average values of n and n + 1 consecutive data points, 
respectively. Each filter smoothes the data three times. In the first version in (5.10.34), 
the smoothing is performed twice using the n-point average and once using the {n + 
1 }-point average. The alternative version uses the {n + 1 }-point average twice and the 
n-point average once. Following the filter operation, the smoothed records can then be 
sub-sampled at hourly intervals without concern for aliasing by higher-frequency 
components. For the second version in (5.10.34), the response function is 

1 sin2[(rr/2)(nco/WN)] sin [(rc/2)(n + 1)cJ/CJN] 
H(co) - n2(n + 1) sin 3[(rr/2)(co/coN)] (5.10.35) 

Godin filters (A 2ed14)/(12214) are used routinely to smooth oceanographic time series 
sampled at multiples of 5-min increments prior to their use in tidal analysis programs. 
On the other hand, 30-min data would first be smoothed using the filter (A2A3)/(223) 
(Figure 5.10.10) and then decimated to hourly data. Conversion of 30-min data from 
Aanderaa RCM4 current meters to hourly data requires such a three-stage running- 
average filter. The filter is needed to convert the instantaneous directions and average 
speeds from the current meter to quantities more closely resembling vector-averaged 
currents. Application of the moving low-pass filter (5.10.34) removes high-frequency 
components and helps avoid the aliasing errors that would occur if the raw data were 
simply decimated to hourly values without any form of prior smoothing. Simply picking 
out a value each hour is, of course, akin to not having recorded the higher frequency 
variability in the first place. Some care is required in that the smoothing process reduces 
the amplitude of various Fourier components outside the tidal band. As a result, amp- 
litudes of Fourier components derived after application of the filter must be corrected 
(recolored) in inverse proportion to the amplitude of the filter at the particular 
frequency. Phases of the Fourier components are unaltered by this symmetric filter. 

The formulation (5.10.34) also can be used to generate low-pass filters to remove 
diurnal, semidiurnal, and shorter period fluctuations from the hourly records. Although 
these filters have been criticized in recent years because of their slow transition through 
the high-frequency end of the "weather band" (periods longer than two days), they are 
easy to apply, have good response in the daily tidal band and consume relatively little 
data from the ends of the time series. The most commonly used version of the low-pass 
Godin filter is (A~4A25)/(24225) in which the hourly data are smoothed twice using the 
24-point (24-h) average and once using the 25-point average. The filter response is 

1 sin 2124(rr/2)(co/~oN)] sin [25(rr/2)(co/coN)] 
H(,a) = 2422 5 sin [(rr/2)(co/coN)] 

(5.10.36) 
_ ~ 1  sin 2(24rrfAt) sin (25rrfAt) 

24225 sin 3 (rrfAt) 

where as before ~ = 27rf (/is in cycles per hour), ~N = 7r/At and At = 1 h. Note that a 
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Figure 5.10.8. The frequency response functions, ]H(,~)I, for running-mean (weighted average) filters for 
M = 3, 5, 9. ~N = Nyquist frequency. 

total of 35 data points (i.e. 35 h) are lost from each end of the time series and that the 
filter has a half-amplitude point near 67 h (Figure 5.10.11). The weights of this 
symmetric 71-h-length filter are (Thompson, 1983) 

1/2 
h k - 2 4 2 2 5 [ 1 2 0 0 - ( 1 2 - k ) ( 1 3 - k ) - ( 1 2 + k ) ( 1 3 + k ) ] ,  O<_k <_ 11 

(5.10.37) 
1/2 

-24225 (36 - k) (37 - k), 12_<k___35 

The Godin low-pass filter (5.10.37) effectively removes all daily tidal period energy 
except for slight leakage in the diurnal frequency band. More precisely, the filter 
eliminates variability due to the principal mixed diurnal constituent, K1, for which 
the amplitude is down by 3.2 • 10 -:-3, and is only slightly less effective in removing 
variability due to the declinational diurnal constituent, O1. The filter represents a 
marked improvement over the simple A24 and A25 running-mean filters and Doodson 
filter commonly used earlier for tidal analysis (cf. Groves, 1955). The principal failing 
of the Godin filter is its relatively slow transition between the pass and stop-bands 
which leads to significant attenuation of nontidal variability in the range of two to 
three days. This shortcoming of the filter has inspired a number of authors to 
investigate more efficient techniques for removing the high-frequency portion of 
oceanographic signals. The cosine-Lanczos filter, the transform filter, and the Butter- 
worth filter are often preferred to the Godin filter, or earlier Doodson filter, because of 
their superior ability to remove tidal period variability from oceanic signals. 

5.10.7 Lanczos-window cosine filters 

As mentioned in Section 5.10.3.2, transfer functions for ideal (rectangular) filters are 
formulated in terms of truncated Fourier series. This leads to overshoot ripples 
(Gibbs' phenomenon) near the cut-off frequency with subsequent leakage of unwanted 
signal energy into the pass band. Lanczos-window cosine filters are reformulated 
rectangular filters which incorporate a multiplicative factor (the Lanczos window) to 
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Figure 5.10.9. Daily mean time series of cross-shelf (top) and longshelf (bottom) near-surface currents off 
Cape Romain in the South Atlantic Bight for the period lOJanuary 1979 to 11 April 1979. Thin line: 

Daily average data. Thick line: 30-day running-mean values. (From McClain et al., 1988.) 
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Figure 5.10.10. The frequency-response function, [H(f)[,for the Godin-type filter A~2,d3/(223) used to 
smooth 30-min data to hourly values. The horizontal axis has units fat ,  with f:v At = 0.5;f, is the cut- 

off frequency. (From Godin, 1972.) 
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rectangular filters which incorporate a multiplicative factor (the Lanczos window) to 
ensure more rapid attenuation of the overshoot ripples. A variety of other windows can 
also be used. The terms Lanczos-cosine filter and cosine-Lanczos filter are commonly 
used names for a family of filters using windows to reduce the side-lobe ripples. Owing 
to their simplicity and favorable characteristics, these filters have gained considerable 
popularity among physical oceanographers over the years (Mooers and Smith, 1967; 
Bryden, 1979; Freeland et al., 1986). 

5.10. 7.1 Cosine filters 

We start with an ideal, low-pass filter with transfer function 

H ( a ) - i  0__ [ a ] _ < a ~  

-- 0 elsewhere 
(5.10.38) 

and assume that the function H(a)  is periodic over multiples of the Nyquist frequency 
domain ( - aN,  aN). Written as Fourier series, the response function is 

M 
H(a) ao -- -}- + ~ [a~ cos (akAt) + bk sin (oAAt)] (5.10.39) 

k=l 

where we have truncated the series at M << N; as usual, N is the number of data points 
to be processed by the filter. To eliminate any frequency-dependent phase shift, we 
insist that H(~)  - H ( - a ) ,  whereby b~ = O. The resulting cosine filter has the transfer 
function 

M 

H(w) -- ho + ~ hk cos (Trka/wN) (5.10.40) 
k=l 

where coefficients hk (= 21ak) given by 

o.) N 

1 / H(a)cos(Trka/aN)da (5.10.41) hk - a:v 
O 

with k = 0, 1, . . . ,  M. The weighting terms hk are those which determine the output 
series {Yn) for given {Xn}. We assume that M is sufficiently large that H(a)  is close to 
unity in the pass-band and near zero in the stop-band. 

I 
-0.2 

1 

-f~ L ~ _ . J  f< J 
.o., I o V - o . ,  ' - - H  o', 0.2 

fat 

Figure 5.10.11. Same as Figure 5.10.10 but for the Godin-type low-pass filter A~sA24/(25224) used to 
eliminate tidal oscillations in hourly data. (From Godin, 1972.) 
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For a low-pass cosine filter, 0 _< [w] _< w~ defines the bounds of the integral (5.10.41) 
and the weights are given by 

w~ sin(Trkw~/coN) 
hk = , k -  0, +1, ..., MY/ (5.10.42) 

CON 7rk&c /CON 

for which ho - COc/CON. The corresponding weights for a high-pass filter, ]w] > Wc, are 

ho - 1 - wc/WN, k - 0 (5.10.43) 

-Wc sin(zrkWc/WN) 
hk -- , k -  4-1, ..., + M  (5.10.44) 

CON 7rk~c /WN 

That is, ho (high pass) = 1 - ho (low pass) while for k -r 0, the coefficients hk are simply 
of opposite sign. The functions (5.10.42) and (5.10.44) are identical to those discussed 
in context of Gibbs' phenomenon. Thus, the cosine filter is a poor choice for 
accurately modifying the frequency content of a given record based on preselected 
stop and pass-bands. As an example of the response of this filter, Figure 5.10.12 
presents the transfer function 

9 

H(w)  - 0.4 + 2 Z [sin(O.4kTc)/k~r] cos (kco) 
k=l  

for a low-pass cosine filter with Wc/CON - -  0.4 and M = 10 terms. This filter response is 
compared to the ideal low-pass filter response and to the modified cosine filter using 
the Lanczos window (with sigma factors) discussed in the next section. 

5.10. 7.2 The Lanczos  w i n d o w  

Lanczos (1956) showed that the unwanted side-lobe oscillations of the form sin(p)/p in 
equations (5.10.42) and (5.10.44) could be made to attenuate more rapidly through use 
of a smoothing function or window. The window consists of a set of weights that 
successively average the (constant period) side-lobe fluctuations over one cycle, with 
the averaging period determined by the last term kept or the first term ignored in the 
Fourier expansion (5.10.44). In essence, the window acts as a low-pass filter of the 
weights of the cosine filter. The Lanczos window is defined in terms of the so-called 
sigma-factors (cf. Hamming, 1977) 

sin(Trk/M) 
cy(M,k) - (5.10.45) 

;rk/M 

in which M is the number of distinct filter coefficients, hk, k - 1 ,  ..., M and 
WM -- ( M -  1 ) /M is the frequency of the last term kept in the Fourier expansion. 
Multiplication of the weights of the cosine filter by the sigma factors yields the desired 
weights of the Lanczos-window cosine filter. Thus, the weights of the low-pass cosine- 
Lanczos filter become, using or(M, 0 ) -  1 

ho - We/WN, for k = 0 (5.10.46a) 



Time-series Ana lys i s  M e t h o d s  537 

sin ( r&coc /coN ) 
hk --(Wc/WN) rrkwc/coN a(M,k )  (5.10.46b) 

for k - + l ,  ..., z~4 and M <<N. The corresponding weights for the high-pass 
Lanczos-cosine filter are 

ho - 1 - C o c / C o N ,  for k - 0 (5.10.47a) 

s in ( rrkwc / coN ) 
hk----(coc/coN) 7rkcoc/coN a (M,k )  (5.10.47b) 

The transfer function (5.10.39) for a low-pass cosine-Lanczos filter is then 

M-1 sin(rrkcoc/coN) ] 
HL(co) -- Wc 1 + 2 Z a (M,k )  rrkWc/cou cos (Trkw/wu) 

C~ k=l 
(5.10.48) 

while for the high-pass cosine-Lanczos filter 

HH(w)  -- 1 - HL(W) (5.10.49) 

Examination of the transfer functions in Figure 5.10.12 reveals that the side-lobe 
ripples are considerably reduced by the sigma factors of the Lanczos window. Again, 
the tradeoff is a broadened central lobe, so that, although there is much less contam- 
ination from frequencies within the stop-band, the transition of the filter amplitude at 
the pass-band is less steep than that for the cosine filter. The effect of this smoothing, 
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Figure 5.10.12. Approximations to the frequency response of an ideal low-pass filter (dashed line). Solid 
curves give: The frequency response for an unwindowed cosine filter, a Lanczos-cosine filter that uses 
sigma factors, and the response after double application of the Lanczos-cosine filter. Filters use M = 10 
Fourier terms and w,. = 0.4~N ; WN = Nyquist frequency. Gibbs' effect is reduced by the sigma factors of 

the Lanczos window. (From Hamming, 1977.) 
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which represents a long period modulation of the weighting terms hk in (5.10.42), can 
be illustrated numerically by taking a record length N = 25 and calculating the filter 
response H(co/coN) with and without the sigma factors. This exercise is instructive in 
other ways in that it emphasizes the effect of truncation errors during the calculations 
and indicates what happens if coo~coN is too near to the ends of the principal interval 
0 < co/coN _< 1. Consider the case coc/coN --0.022, N -  25, and filter truncation at the 
fourth decimal place. For a high-pass cosine-type filter with no Lanczos window 
(which we want to have zero amplitude near zero frequency), we find H(0) = 0.0740 
whereas use of the sigma factors (Lanczos window) yields H(0) = 0.4015. With the cut- 
off frequency so close to the end of the frequency range, the sigma factors clearly 
degrade the usefulness of the filter. Increasing the record length to N = 50 Ibr the 
same cut-off frequency improves matters considerably; in this case, H(0) - 0.0527 and 
H(1) = 0.9997 using the sigma factors. 

5.10. 7.3 Practical filter design 

Design of a low or high-pass cosine-Lanczos filter begins with specification of: (1) The 
cut-off frequency; and (2) the number M of weighting terms required to achieve the 
desired roll-off between the stop and pass-bands. The cut-off frequency is then 
normalized by the Nyquist frequency, coN, obtained from the sampling interval At of 
the time series. As with other types of filters, it is advantageous to keep the normalized 
cut-off frequency away from the ends of the principal interval 

0 <_ co~coN _< 1 (5.10.50) 

The weights hk are then derived via (5.10.46) and (5.10.47). 
Using (5.10.4) and (5.10.8), and assuming an input {Xn}, n -  0, 1, ..., N -  1, the 

output for a low-pass cosine-Lanczos filter with M + 1 weights is 

2coc[ x a 4  ] 
Y" -- ~WN n + ~F(k)(xn-kk=, + x,+k) (5.10.51a) 

in which 

k sin(Trk/M) sin(Trkcoc/coN) F(k) _ 2  
7rk /M 7rkcoc /coN 

(5.10.51b) 

The output time series begins with yM -y (MAt)  corresponding to the first calculable 
value for the given filter length, M, and the assumption that the input data begin at xn 
- Xo. That is 

2coc 
Ix 1F(1)(xM_l + YM -- CON M +-~ XM+I) 
h,.  

1 + -jF(2)(xM_2 + xM+2) + ... (5.10.52) 

1 
F(m)(xo + x2M)] . . . §  

J 

The chosen number of filter coefficients, M, is always a compromise between the 
desired roll-off of the filter at the cut-off frequency and the acceptable number of data 
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Let w = w(co) be a monotonically increasing rational function of sines and cosines 
in the frequency, co. The monotonic function 

HL(co)t 2 -  1/[1 + (w/w,)2q I (5.10.58) 

(Figure 5.10.14) generates a particularly useful approximation to the squared gain of 
an ideal low-pass recursive filter with frequency cut-off ,4. (Our filter design will 
eventually require w(0) - 0 so that the final version of HL(co) will closely resemble 
(5.10.58).) 

Butterworth filters of the form (5.10.58) have a number of desirable features (Roberts 
and Roberts, 1978). Unlike the transfer function of a linear nonrecursive filter 
constructed from a truncated Fourier series, the transfer function of a Butterworth 
filter is monotonically flat within the pass and stop-bands, and has high tangency at 
both the origin (co = 0) and the Nyquist frequency, coN. The attenuation rate of HL(co) 
can be increased by increasing the filter order, q. However, too steep a transition from 
the stop-band to the pass-band can lead to ringing effects in the output due to Gibbs' 
phenomenon. Since it has a squared response, the Butterworth filter produces zero 
phase shift and its amplitude is attenuated by a factor of two at the cut-off frequency, 
for which w/wc = 1 for all q. In contrast to nonrecursive filters, such as the Lanczos- 
cosine filter discussed in the previous section, there is no loss of output data from the 
ends of the record; N input values yield N output values. However, we do not expect to 
get something for nothing. The problem is that ringing distorts the data at the ends of 
the filtered output. As a consequence, we are forced to ignore output values near the 
ends of the filtered record, in analogy with the loss of data associated with nonrecursive 
filters. In effect, the loss is comparable to that from a nonrecursive filter of similar 
smoothing performance. A subjective decision is usually needed to determine where, at 
the two ends of the filtered record, the "bad" data end and the "good" data begin. 

Butterworth filters fall into the category of physically realizeable recursive filters 
having the time-domain formulation (5.10.2) with k = 0, . . . ,  M. They may also be 
classified as infinite impulse response filters since the effects of a single impulse input 
can be predicted to an arbitrary time into the future. To see why we expect w(co) to be 
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Figure 5.10.13. Expanded views of the filter responses for two tide-elimination filters for the diurnal 
frequency band. The Lancz6 and Lancz7 filters are low-pass Lanczos-cosine filters. 15~ - 1.0 cpd. 

(Modified from Thompson, 1983). 
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a rational function in sines and cosines, we use (5.10.2) and the fact that H(w) is the 
ratio of the output to the input. We can then write 

M 
hke -i~'k/xt 

H(w) - o u t p u t _  _ k=0 
input L (5.10.59) 

1 -- ~ gje -i"JkAt 
j=l 

where the summations in the numerator and denominator involve polynomials in 
powers of e x p ( - i w k A t )  which can in turn be expressed through the variable w. The 
substitution z = exp(iwkt) leads to expression of the filter response H(w) in terms of 
the z-transform and zeros of poles. 

5.10. 8.1 High-pass and band-pass filters 

High-pass and band-pass Butterworth filters can be constructed from the low-pass 
filter (5.10.58). For example, to construct a high-pass filter with cut-off, we, we use the 
transformation w/wc ~ - ( w / w c )  -1 in (5.10.58). The square transfer function of the 
high-pass filter is then 

Figure 5.10.14. The frequency response functions IHz(w)[ ~ for an ideal squared, low-pass Butterworth 
filter for filter orders q = 4, 6, 8. Bottom panel gives response in decibels (dB). Power = 0.5 at the cut-off 

frequency, ~c. 
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]HH(W)I 2 -- (W/Wc)2q / [ l  + (W/Wc)  2q] (5 .10 .60)  

where, as required 

[HH(W)I 2 -- 1 - - [HL(W)I  2 (5.10.61) 

Band-pass Butterworth filters (and their counterparts, stop-band Butterworth filters) 
are constructed from a combination of low-pass and high-pass filters. For instance, the 
appropriate substitution in (5.10.58) for a band-pass filter is w / w c -  w , / w c -  
(w,/Wc) -1 which leads to the quadratic equation 

(w,/Wc) 2 - (W/Wc)(W,/Wc) - 1 = 0 (5.10.62a) 

with roots 

W,l .2 /Wc -- (W/Wc)/2 + [(W/Wc)2/4-4-  1] 1/2 (5.10.62b) 

Substitution of w/wc -- +1 (the cut-off points of the low-pass filter) yields the norm- 
alized cut-off functions w,1/wc =0.618 and w,2/Wc = 1.618 of the band-pass filter 
based on the cut-off frequency +~c of the associated low-pass filter. The corres- 
ponding band-pass cut-off functions for the cut-off frequency -~c  of the low-pass 
filter are w,1/Wc = -1.618 and w,2/Wc = -0.618. Specification of the low-pass cut-off 
determines w,1/w,2 of the band-pass filter. The bandwidth Aw/wc=--(W, l - -  
w,2)/Wc = 1 and the product (w,l/wc)(w,2/Wc)= 1. Note that specification of 
w,1 and w,2 gives the associated function We of the low-pass filter 

2 (5 .10 .63)  W , I B , 2  -- W c 

5.10.8.2 Digital formulation 

The transfer functions (5.10.58)-(5.10.61) involve the continuous variable w whose 
structure is determined by sines and cosines of the frequency, ~. To determine a form 
for w(w) applicable to digital data, we seek a rational expression with constant 
coefficients a to d such that the component exp(iwAt) in (5.10.59) takes the form 

aw +b 
exp(iwAt) - ~ (5.10.64) 

cw +d 

(Here, we have replaced - i ~ A t  with +i~oAt without loss of generality.) As discussed 
by Hamming  (1977), the constants are obtained by requiring that w = 0 corresponds to 
w = 0 and that ~ ~ 7r/At corresponds to w ~ -t-~. Constants b and d (one of which is 
arbitrary) are set equal to unity. The final "scale" of the transformation is determined 
by setting (~/27r)At = 1/4 for w = 1. This yields 

1 + i w  
exp(i~At) -- 1 - iw (5.10.65) 

or, equating real and imaginary parts 
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2 [tan(�89 ~At)] 

2 
= At [tan(rcw/a~s)], --O3N < o3 '< ~ N  

(5.10.66) 

where .~s/(27r) - f~ is the sampling frequency ~ = 1~At). We note that the derivation 
of (5.10.66) is equivalent to the conformal mapping 

2 1 - z  
w - i ~  ~ (5.10.67a) 

At l + z  

where 

Z - -  e 2~rifAt - -  e i"Hxt (5.10.67b) 

is the standard z-transform. 
The transfer function of the (discrete) low-pass Butterworth filter is then (Rabiner 

and Gold, 1975) 

] H L  ( w )  [2 __ 1 
1 + [tan(TrW/Ws)/tan(Tr~c/~s)] 2q (5.10.68a) 

and that of the high-pass Butterworth filter 

IHH(~)[2 = [ tan(Tr~/~s)/tan(Tr~c/~s)]2q 
1 + [tan(Tr~/OZs)/tan(Tr~oc/~s)] 2q 

(5.10.68b) 

The sampling and cut-off frequencies in these expressions are given by 
~Os- 27r/At and ~c = 27r/Tc in which Tc - 1/fc is the period of the cyclic cut-off 
frequency f~. Plots of (5.10.68a) for various cut-off frequencies and filter order q are 
presented in Figure 5.10.15. 

Use of the bilinear z-transform, i(1 - z ) / ( 1  + z), in (5.10.67a) eliminates aliasing 
errors that arise when the standard z-transform is used to derive the transfer function; 
these errors being large if the digitizing interval is large. Mathematically, the bilinear 
z-transform maps the inside of the unit circle (]z] < 1, for stability) into the upper half 
plane. A thorough discussion of the derivation of pole and zeros of Butterworth filters 
is presented in Kanasewich (1975) and Rabiner and Gold (1975). 

We note that the above relationships define the square of the response of the filter 
H(~) formed by multiplying the transfer function by its complex conjugate, H(w)* = 
H ( - ~ ) .  (In this instance, H(~)* and H ( - ~ )  are equivalent since i =  v / - 1) always 
occurs in conjunction with ~. The product H(w)H(-w)  eliminates any frequency- 
dependent phase shift caused by the individual filters and produces a squared, and 
therefore sharper, frequency response than produced H(w) alone. The sharpness of the 
filter (as determined by the parameter q) is limited by filter ringing and stability 
problems. When q becomes too large, the filter begins to act like a step and Gibbs' 
phenomenon rapidly ensues. 

Equations (5.10.68a, b) are used to design the filter in the frequency domain. In the 
time domain, we first determine the filter coefficients h~ and gj for the low-pass filter 
(5.10.2) and then manipulate the output from the transfer function H(w) to generate 
the output [H(~)[ 2. To obtain the output for a high-pass Butterworth filter, [HH(~)[ 2, 
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the output from the corresponding low-pass filter, tHL(co)l 2, is first obtained and the 
resulting data values subtracted from the original input values on a data point-by-data 
point basis. 

5.10.8.3 Tangent  versus sine filters 

Equations (5.10.68a, b) define the transfer functions of tangent Butterworth low-pass 
filters. Corresponding transfer functions for sine Butterworth low-pass filters are given 
by 

IHL(~)I2 = 1 (5 10.69) 
1 + [sin(Trco/COs)/sin(rrCOc/COs)] 2q 

where we have simply replaced tanx with sinx in (5.10.68). Although this book deals 
only with the tangent version of the filter, there are situations where the sine-version 
may be preferable (Otnes and Enochson, 1972). The tangent filter has "superior" 
attenuation within the stop-band but at a cost of doubled algebraic computation (the 
sine version has only recursive terms while the tangent version has both recursive and 
nonrecursive terms). 

Figure 5.10.15. Same as Figure 5.10.14 but for discrete, low-pass squared Butterworth filters. (After 
Rabiner and Gold, 1975.) 
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5.10. 8.4 Filter design 

The design of Butterworth filters is discussed in Hamming (1977). Our approach is 
slightly different but uses the same general concepts. We begin by specifying the 
sampling frequency ws = 27:f~ = 27r/At based on the sampling interval At for which 

0 < W/as < 0.5 (5.10.70) 

and where the upper limit denotes the normalized Nyquist frequency, WN/Ws. We next 
specify the desired cut-off frequency w~ at the half-power point of the filter. For best 
results, the normalized cut-off frequency of the filter, Wc/Ws, should be such that the 
transition band of the filter does not overlap to any significant degree with the ends of 
the sampling domain (5.10.70). Once the normalized cut-off frequency (or fre- 
quencies) is known, specification of the filter order q fully determines the character- 
istics of the filter response. Our experience suggests that the parameter q should be 
less than 10 and probably not larger than eight. Despite the use of double precision 
throughout the calculations, runoff errors and ringing effects can distort the filter 
response for large q and render the filter impractical. 

There are two approaches for Butterworth filter design once the cut-off frequency is 
specified. The first is to specify q so that the attenuation levels in the pass and stop- 
bands are automatically determined. The second is to calculate q based on a required 
attenuation at a given frequency, taking advantage of the fact that we are working with 
strictly monotonic functions. Suppose we want an attenuation o f - D  decibels at 
frequency Wa in the stop-band of a low-pass filter having a cut-off frequency Wc < wa. 
Using the definition for decibels and (5.10.48), we find that 

log (10 D/l~ - 1) 
q - 0 . 5  

log (Wa/Wc ) 

D/20 for D > 10 
log (Wa /wc ) ' 

(5.10.71) 

where D is a positive number measuring the decrease in filter amplitude in decibels 
(dB) and w is defined by (5.10.66). The nearest integer value can then be taken for the 
filter order provided that the various parameters (wa,D) have been correctly specified 
and q is less than 10. If the latter is not followed, the imposed constraints are too 
severe and new parameters need to be specified. The above calculations apply equally 
to specification of q based on the attenuation - D  at frequency wa < wc in the stop- 
band of a high-pass filter, except that log(wJWc) in (5.10.71) is replaced by log(wc/Wa). 
Since log(x) - - log( l /x) ,  we can simply apply (5.10.71) to the high-pass filter, ignoring 
the minus sign in front of log(l/x). 

5.10. 8. 5 Filter coefficients 

Once the characteristics of a transfer response have been specified, we need to derive 
the filter coefficients to be applied to the data in the time domain. We assume that the 
transfer function HL(w;q) of the low-pass filter can be constructed as a product, or 
cascade, of second-order (q - 2) Butterworth filters HL(w; 2) and, if necessary, one 
first-order (q - 1) Butterworth filter HL(W; 1). For example, suppose we required a 
filter of order q = 5. The transfer function would then be constructed via the cascade 
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HL(co; 5) -- HL(co; 1) x HL,l(co; 2) x HL,2(co;2) (5.10.72) 

in which the two second-order filters, HL, 1 and HL,2, have different algebraic structure. 
Use of the cascade technique allows for variable order in the computer code for Butter- 
worth filter programs without the necessity of computing a separate transfer function 
HL(co; q) each time. This eliminates a considerable amount of algebra and reduces the 
roundoff error that would arise in the "brute-force calculation" of HL for each order. 

The second-order transfer functions for a specified filter order q are given by 

[W2(Z 2 + 2z + 1)] (5.10.73a) 
HL(co; 2) - -akz2  + 2z(w 2 _ 1)+  {1 - 2Wcsin[Tr(2k + 1)/2q] + w  2} 

where w and z are defined by (5.10.66) and (5.10.67b) 

2 ak = 1 + 2Wcsin[Tr(2k + 1)/2q] + w c (5.10.73b) 

and k is an integer that takes on values in the range 

0 <_ k < 0 .5 (q -  1) (5.10.73c) 

When q is an odd number, the first-order filter HL(co; 1) must also be used where 

_ (  w~ ) z + l  (5.10.74) 

(I - 

HL(~; 1) 1 +Wc z -  +Wc 

Again, suppose that q = 5. The transfer function HL is then composed of the lead 
filter HL(~; 1) given by (5.10.74) and two second-order filters, for which k takes the 
values k = 0 and 1 in (5.10.73). Note that we have strictly adhered to the inequality in 
(5.10.73c). The first second-order filter is obtained by setting k = 0 in (5.10.73); the 
second second-order filter is obtained by setting k = 1. For q = 7, a third second-order 
for k = 2 would be required, and so on. 

The next step is to recognize that the first-order function (5.10.74) has the general 
form 

doz +d l  
HL(~) = (5.10.75) 

z - e l  

and that the second-order function (5.10.73a) has the general form 

Co Z2 -n t- C IZ --t- C 2 

HL (~) = z2 _ blZ - b2 
(5.10.76) 

where the sine terms in the coefficients of (5.10.73a) change with filter order q. The 
coefficients d, e in (5.10.74) are obtained by direct comparison with (5.10.73) while the 
coefficients b, c in (5.10.76) are obtained through comparison with (5.10.73a). 

The recursive digital filters (5.10.2), whose time-domain algorithms have the 
transfer functions (5.10.75) and (5.10.76) are, respectively 

Yn = doxn + d lXn- I  + elYn-1 (5.10.77) 

and 
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( 
Input l Low-pass Butterworth 

L 
filter, with response 

Yn (n = 1, 2 ...... N) function, H09 

Output -I 
ly:<" =N, ..... ~) 

Invert the 
chronological 
order of Yn" 

Repeat application of / 
the low-pass Butterworth 

J filter, HO e ) 
. ,  

Output --~ 

J Yn'(.=I,2 N) I ...... 
Invert the 

chronological 
order of y,,' 

Input [ 

yn'(n=N,N- 1 ..... 1) 

" Low-pa'ss r, heled record ) 
(Yn)L = Yn", n = 1 ...... N 

__ 

, . ,  

~ High-passfilteredrecord ~ , 
(Yn)tt = Yn - (Yn)L 

" I l l  

Subtract from 
original y,, 

, I '  

Figure 5.10.16. The procedure for obtaining low and high-pass Butterworth filters. 

yn--~W,.Xn-r--~-~Wn-rx,. (5.10.83) 
i ' =  - - S  Y---= - - S  

is shorter than the original series by 2s values. The effect of the convolution is to smear 
the signal x(t) according to the weighting imposed by the impulse response function 
(IRF), w(t). The frequency response function (FRF) 

x(t) I iFFT(af terpaddingthe lx ( l ) - - -~ i  2 u values) J . . . . . .  put x(t) with zeros to make | - . 
Input 

I Nlultipl) X~) b)the "~ 
X'(J) response function H(f) | 

of hiell, low or bandpass | 
". filter_ . ) 

Selected 
frequencies 
removed 

.. I lnverse FFT of X'(D ) x'(t) 
.... Output 

Fourier 
coefficients 

Figure 5.10.17. The procedure for obtaining discrete Fourier transform filters for application in the 
frequency domain. 
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(Gibbs' phenomenon) occurs throughout the entire time series and becomes evident 
when the filtered FFT data are inverted to recover the desired filtered time-series 
data. The effects of Gibbs' phenomenon are mitigated by tapering the frequency- 
domain filter using a linear or cosine function. 

According to Thompson (1983), careful construction of weighting functions in the 
time domain can more effectively remove tidal components than Fourier transform 
filtering. This is because tidal frequencies do not generally coincide with Fourier 
frequencies of the record length. Design of IRF weights to minimize the squared 
deviation from some specified norm (least squares filter design) offers more control 
over the FRF at particular nonFourier frequencies. On the other hand, broad-band 
signals are best served by the FRF approach. Evans (1985) suggests that the ratio of 
convolution cost to windowing cost is E = S/[2 log 2(N)], where S is the filter span. If 
E > 1, then windowing in the frequency domain is more efficient method. Forbes 
(1988) addressed the problem of removing tidal signals from the data while retaining 
the near-inertial signal and argues that Fourier transform filtering is effective 
provided that careful consideration is given to the filter bandwidth and the amount of 
tapering of the sides of the filter. Note that, in trying to remove strong tidal signals 
from a data series, it is sometimes beneficial to first calculate the tidal constituents and 
then subtract the harmonically predicted tidal signal from the data prior to filtering. 
This is time consuming and not an advantage if the filter is properly designed. 

Figure 5.10.18(a) shows the energy-preserving power spectrum for a mid-depth 
current meter record from a Cape Howe mooring site (37~ 150~ off the coast 
of New South Wales. To remove the strong tidal motions from this record, Forbes first 
used an untapered discrete Fourier transform (DFT) with 12 and 17 adjacent Fourier 
coefficients set to zero in the diurnal and semidiurnal bands, respectively (Figure 
5.10.18b). The greatest improvement in the Fourier transform filtering came from 
setting only three Fourier terms to zero but tapering the filter with a nine-point cosine 
taper in the frequency domain at the diurnal and semidiurnal frequencies (Figure 
5.10.18c). Thus, tapering the time series, not widening the filter by using more zero 
frequencies, is a better way to improve filter characteristics. Perhaps, the most 
important conclusion from Forbes' work is that DFT filters are effective if the number 
of Fourier coefficients set to zero is sufficient to cover the unwanted frequency band 
and if the filter is cosine-tapered in the frequency domain to ensure a smooth 
transition to nonzero Fourier coefficients. In the nonintegral single-frequency case 
presented here (Forbes was looking at near-inertial motions) this amounted to a three- 
point filter with a nine-point cosine taper. The widths of the filter and taper must be 
determined for each application by a careful examination of the spectrum for leakage 
into adjacent frequencies, but once this is done, the technique is fast and simple to 
apply. 

To summarize the use of Fourier transform filtering: 

(1) Remove any linear trend (or nonlinear trend if it is well defined) from the data 
prior to filtering but do not be too concerned with cosine tapering the first and last 
10% of the data. Fast Fourier-transform the data. 

(2) Define the Fourier transform filter H(~) for both positive and negative 
frequencies with the extreme frequencies given by ~l/2At. 

(3) If the measured data are real, and the filtered output is to be real, the filter should 
obey H ( - ~ )  = H(~)*, where the asterisk denotes complex conjugate. The easiest 
way to satisfy this condition is to pick H(~) real and symmetric in frequency. 
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(4) If H(co) has sharp vertical edges then the impulse response of the filter (the 
response arising from a short impulse as input) will have damped ringing at 
frequencies corresponding to these edges. If this occurs, pick a smoother H(co). 
You can take the FFT inverse of H(co) to see the impulse response of the filter. 
The more points used in the smoothing the more rapid the fall of the impulse 
response. 

(5) Multiply the transformed data series X(co) by H(co) and invert the resultant data 
series, Y(co), to obtain the filtered data in the time domain. To eliminate ringing 
effects, discard T/2 data points from either end of the filtered time series, where T 
is the span of the IRF for the transform filter. 

(a) (b) 
40 20  .. . . . .  

q 

E 
v 

L. 

s 
0.01 

~p 

r 

l 0 
0.02 .I0 0. 0.I0 

KI M2 KI M2 

Frequency (cph) Frequency (cph) 

(c) 
2O 

4" 

c 1 oo, o'o  'CoCo 
KI M2 

Frequency ( c p h )  

Figure 5.10.18. Energy-preserving spectra for a 4000-h current meter record at 720-m depth off Cape 
Howe, Australia. (a) Raw hourly data; (b) after applying a discrete Fourier transform (DFT) filter with 
12 and 17 adjacent Fourier coefficients set to zero in the diurnal and semidiurnal bands (no tapering); (c) 
after applying a DFT filter with three Fourier coefficients set to zero and nine Fourier coefficients cosine- 

tapered on each side of the zero coefficients. (From Forbes, 1988.) 
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(a) 
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Figure 5.10.19. Ringing effects following application of different discrete Fourier transform filters to an 
artificial time series with frequency f - 0.05 cph and then inverting the transform. (a) Single Fourier 
coefficient at 0.05 cph set to zero; (b) three Fourier coefficients set to zero; (c) five Fourier coefficients set 

to zero; (d) 21 coefficients set to zero. (From Forbes, I988.) 

( d )  

1 . 6 ,  

- 2  ,. 

0 150 "- 3(30 " 4 5 0  6~)0 ~ 7 ~ -  9()0 1050 

T i m e  ( h o u r s )  



556 Data  Analysis Methods  in Physical Oceanography 

The study of fractal geometry is related to the problem of predictability and 
propagation of order in nonequilibrium, frictionally dependent dynamical systems, 
such as turbulent flow in real fluids. In fluid systems, predictability is related to the 
rate at which initially close fluid particles diverge and the sensitivity of this diver- 
gence to initial conditions. Since low predictability implies a highly irregular dynami- 
cal system with sensitive dependence on initial conditions, the dispersion of tagged 
fluid parcels is related to the ultimate skill that can be achieved by deterministic 
numerical prediction models. 

The fractal (or Hausdorff) dimension, D, provides a measure of the roughness of a 
geometrical object. For example, drifter trajectories confined to a horizontal plane can 
have a fractal dimension somewhere between that of a topological curve (D = 1) and 
that of random Brownian motion (D = 2). The case D = 1 is for a smooth differen- 
tiable curve whose length remains constant regardless of how the measurements are 
made. For fractal curves (D > 1), the length of the curve increases without bound for 
decreasing segment length. In the absence of a stationary mean flow, the track of a 
fluid parcel undergoing Brownian (random-walk) motion will eventually occupy the 

(b) 

~ 1 7 6 1 7 6  

Figure 5.11.1. Examples of common fractals. (a) Generation of the Koch curve fractal by successive 
attachment of equilateral triangles; D = 1.262; (b) generation of the Sierpinski gasket fractal by 

successive removal of smaller triangles; D = 1.585. 
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scaling exponents also can be found using the absolute value of the above functions 
(Osborne et al., 1989) 

[y(t + a/Xt) - y ( t ) l  - ct2H" [Y(t 4- A t ) - Y ( t ) l  (5.11.2c) 

Ix(t + a/Xt) - x(t)l = c~ 2H~ Ix(t + At) - x(t)l (5.11.2d) 

Figure 5.11.2 provides examples of the scaling exponents, Hy, derived from (5.11.2b) 
using one-year time series of 6-hourly meridional displacements of 120-m-drogued 
satellite-tracked drifters launched in the northeast Pacific in 1987. Part (a) of the 
figure is the log of the structure function 

1/2 
{[y(t + o~At) -y( t ) ]  2 } 

versus log (a). The slopes of these curves, Hy, are presented in part (b). Figure 5.11.3 
is the same as Figure 5.11.2 except that it uses artificial drifter tracks generated from a 
Brownian motion (random-walk) algorithm. For the real drifter data, all four tracks 
had a constant fractal dimension Dy = l /Hy ,~ 1.18 • 0.07 over time scales of about 
0.5-10 days. At longer time scales, motions were strongly affected by mesoscale eddies 
(cf. Thomson et al., 1990) and fractal analysis is no longer valid. For the pseudo- 
drifters, Dy ~ 2, which is what we would expect for a random-walk regime in which 
the drifters can occupy the entire two-dimensional space available to them. 

Although confined to monofractal functions, the scaling dimension approach is 
attractive because it is computationally fast and defined in terms of simple scaling 
properties. The principal drawback is that irregularly sampled particle trajectories, 
such as those of satellite-tracked drifters, must be converted to equally spaced data 
using a spline or other interpolation scheme. For isotropic monofractal trajectories, a 
single fractal dimension is sufficient to define the overall scaling properties of the 
motions including scaling properties of the mean, variance, and higher moments. 
Anisotropy in the drifter motions may lead to significantly different values for the 
scaling exponents H~, Hy, and associated fractal dimensions. Where these differences 
are small, fractal dimensions can be expressed through a mean Scaling exponent, 
H - � 8 9  +Hy).  

5.11.2 The yardstick method 

The fractal dimension of a drifter trajectory of length L(A) can be measured in the 
usual sense using a ruler (or yardstick) with variable length, A. As the length of the 
ruler is decreased and the yardstick estimation of the total length becomes more 
precise, the length of the trajectory will follow a power-law dependence 

L(A) ~ A1-D~-; lim A ~ 0 (5.11.3) 

The divider dimension DL, which closely approximates the fractal dimension D, is 
found from the slope of log-transformed L(A) for small length scales A (Figure 
5.11.4). The case Dc = 1 is the topological dimension for a smooth differential curve. 
For fractal dimensions, D > 1 and the length of the curve increases without bound for 
decreasing segment length. 
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A problem with applying equation (5.11.3) to irregularly sampled drifter records is 
that the data are unequally sampled both in time and space. Although it makes sense 
to use a spline-interpolation scheme to generate scalar coordinate data with equally 
spaced time increments, it is less meaningful to generate coordinate series with 
equally sampled positional increments. The reason is simple enough: Time is single- 
valued whereas location is not. Drifters often loop back on themselves. If the data are 
not equally spaced, we cannot define a sequence of fixed-length yardsticks but must 
measure the curve L(A) as a function of the average yardstick length, Aav. This 
averaging is valid provided the errors introduced by the averaging process are no 
worse than those arising from other sources (cf. Osborne et al., 1989). Another problem 
with the yardstick method is that it is based on the slope of (5.11.3) for small spatial 
scales. The measurement  of these scales is often difficult in practice due to limitations 
in the response and/or positioning of the drifters, cyclone, or other Lagrangian 
particle. 

5.11.3 Box counting method 

In this method, one counts the number  Nm(L) of boxes of length L in m-dimensional 
space that are needed to cover a "cloud" or set of points in the space. The Hausdorff-  
Besicovich dimension, D, of this set can be estimated by determining the number of 
cubes needed to cover the set in the limit as L ~ 0. For a fractal curve, the number of 
boxes increases without bound as L ~ 0. That is . . . . . . . .  

Nm(L) ~ L -D, L ~ 0 (5.11.4) 

If the original series is random, then D - n for any dimension n (a random process 
embedded in an n-dimensional space always fills that space). If, however, the value of 
D becomes independent ofn (i.e. reaches a saturation value, Do, say), it means that the 
system rep re sen t edby  the time series has some structure and should possess an 
attractor whose Hausdorff-Besicovitch dimension is equal to Do. Once saturation is 
reached, extra dimensions are not needed to explain thedynamics  of the system. 

As an example, if we were to measure the area of surfaces embedded in three- 
dimensional space, wewould count the number N3(L) of cubic boxes of size L required 
to cover the surface. The area S is then of order 

S ~ N 3 ( L ) L  2 (5.11.5) 

For a nonfractal surface, the area asymptotes to a constant value independent of L, 
which is the true area of the surface. In general 

N3(L) ~ L  -D, S ~ L 2-D (5.11.6) 

5.11.4 Correlation dimension 

An important  method for determining the self-similarity of monofractal curves has 
been proposed by Grassberger and Procaccia (1983). The technique also has found 
widespread use in studies of chaos and the dimensionality of strange attractors. 
Specifically, one determines the number  of times that the computed distances d 0 
between points in a time series x(ti) (or pair of time series xi(t) and xj(t)) are less than a 
prescribed length scale, c. That is, one finds what fraction of the total number of 
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Figure 5.11.4. Yardstick length L(/1) measured using a ruler with variable average yardstick length,/1,,, 
(in degrees of latitude), for three drifters launched in the Kuroshio Extension in 1977. (a) Linear 
coordinates; and (b) log-log coordinates. Note the divergence of the lengths for small A. (bu Osborne 

et al., 1989.) 

possible estimates of the distance dij - Ix(ti) - x(tj)] that are less than r For a single 
discrete vector time series, the Grassberger-Procaccia correlation function is defined 
as  

1 M 

C(e) - M ( M  - 1) E .  H[e - Ix(ti) - x(tj) ], 
td 

M ~ o e  (5.11.7) 

where H(c, r0) is the Heavyside step function (= 0 for r < r; = 1 for e > r) and M is 
the number of points in the time series. In (5.11.7), the vertical bars denote the norm 
of the vector d i j -  [ ( x ( t i ) -  xj)2+ (y( t i )_yj)2]l /2 .  The fractal dimension for a self- 
affine curve is then obtained as the correlation dimension defined by 

C(e)~r ~', e--+0 (5.11.8) 

The fractal dimension is obtained from the log-transformed version of this equation 
(Figure 5.11.5). According to Osborne et al. (1989), the correlation method gives the 
least uncertainty in the estimate of the fractal dimension whereas largest errors are 
associated with the exponent scaling method. 
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5.11.5 D i m e n s i o n s  of multifractal functions 

The various techniques discussed above will (within statistical error) give the same 
fractal dimension provided that the series being investigated exhibits self-similar 
monofractal behavior. However, because the techniques rely on different assumptions 
and measure different scaling properties of the series, the calculated dimensions will 
be different if the series has a multifractal structure. Multifractal properties are 
related to multiplicative random processes and are associated with different scaling 
properties at different scales. 

A form of box-counting can be used to study the multifractal properties of ocean 
drifters (Osborne et al., 1989). Given a fractal curve on a plane, the plane is covered 
with adjacent square boxes of size A and the probability, pi(A),  is computed that the 
ith box contains a piece of the fractal curve 

ni(A) ( 5 . 1 1 . 9 )  
p i ( A )  = N 

where ni is the number  of data points falling in the ith box and N is the total number 
of points in the time series. For fractal curves for small A 

[ p i ( A ) ]  q ~,  A (q-1)D (5.11.10) 
i 

where the sum is extended over all nonempty boxes. The quantities D = Dq are the 
generalized fractal dimensions. A fundamental difference between monofractals and 
multifractals is that for monofractals Dq is the same for all q while for multifractals the 
different generalized dimensions are not equal. In general, Dq < Dq, for q > q'. 
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Figure 5.11.5. Correlation functions C(c) for three drifters launched in the Kuroshio Extension in 1977. 
The slope of the function in log-log coordinates is a measure of the correlation dimension of the signal. 
The two vertical lines indicate the approximate limits of the scaling range. (From Osborne et al., 1989.) 
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5.11.6 Predictability 

A box-counting method can be used to investigate the degree of chaotic behavior 
associated with the Lagrangian motions such as those of drifters and tropical cyclones. 
In this method, one counts the number Nn(A) of boxes of dimension A in n- 
dimensional space needed to cover a "cloud" or set of points in the space in the limit 
A ---, 0. In practice, the box-counting method is difficult to apply. Estimates of the 
predictability of drifter trajectories are more readily obtained using the correlation 
integral technique of Grassberger and Pocaccia (1983). In this case, the degree of 
predictability is found from the dimension of the attractor derived from an embedded 
phase space created from all possible pairs of "drifters". The phase space serves, in 
turn, as a substitute for the state space needed to study the dynamics of a system 
(Tsonis and Eisner, 1990). 

The analysis takes the following steps: (1) we first consider a pair of independent 
tracks of length mAt, where m is the embedding dimension and At the sampling 
increment. Specifically, consider the cyclone tracks for Australia for July 1982 and 
1983 (Figure 5.11.6a) examined by Fraedrich et al. (1990). For convenience, the start 
times and positions of the tracks are reinitialized so that they begin at the same time 
and location. Fraedrich and Leslie (1989) found that the errors introduced by 
reinitializing are less than those from other sources; (2) we next examine the 
divergence of the paths by calculating the multiple track correlation function (or 
correlation integral) Cm(e) for the particular embedding dimension m and path 
separation scale, c. To this end, we count the number tracks Nm (e) of length mat  for 
which the track length remains less than the great circle distance e for all the segments 
in the track. For m = 1, each individual data point forms a unit-length segment of the 
drifter track. One then counts the number of times, N1 (c), that the distance between 
the drifter positions is less than e for the N = m possible drifter tracks. The distance 
between each drifter pair is considered; hence, for 10 drifters or cyclone tracks there 
would be 10 • 10 --- 100 pairs. This process is repeated for all values of m to create a 
cloud of points in m-dimensional space which then approximate the dynamics of the 
system from which the observations x(t) are drawn. The correlation integral is defined 
by 

Nm(~) 
C m ( e )  - I N t o  - 1] 2 (5.11.11) 

where N,,,(e) is the number of pairs of trajectories of dimension m that remain less 
than a distance c from one another. Note that the numerator in the above expression is 
a squared quantity since it is based on the number of drifter pairs; (3) we then plot 
log [Cm(e)] versus In(e) to find the slope D2 of the curve 

Cm(e) ~ e De, e ---+ 0 (5.11.12) 

The subscript "2" indicates that pairs of points are used to create the phase space. 
If both original time series are random, then D2 = 2m. A random process embedded 

in a 2m-dimensional space always fills that space. On the other hand, if D2 becomes 
independent of m at some saturation value, Do, it means that the system represented 
by the time series has some structure (i.e. predictability) and should possess an 
attractor whose Hausdorff-Besicovitch dimension is equal to Do (Figure 5.11.6b). The 
need to calculate Do from the observations arises because we do not know the value of 
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