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Introduction

Data assimilation is a novel, versatile methodology
for estimating oceanic variables. The estimation of
a quantity of interest via data assimilation involves
the combination of observational data with the
underlying dynamical principles governing the sys-
tem under observation. The melding of data and
dynamics is a powerful methodology which makes
possible efRcient, accurate, and realistic estimations
otherwise not feasible. It is providing rapid ad-
vances in important aspects of both basic ocean
science and applied marine technology and opera-
tions.

The following sections introduce concepts, de-
scribe purposes, present applications to regional
dynamics and forecasting, overview formalism and
methods, and provide a selected range of examples.

Field and Parameter Estimation

Ocean science, and marine technology and opera-
tions, require a knowledge of the distribution and
evolution in space and time of the properties of the
sea. The functions of space and time, or state vari-
ables, which characterize the state of the sea under
observation are classically designated as Relds. The
determination of state variables poses problems of
state estimation or Reld estimation in three or four
dimensions. The fundamental problem of ocean
science may be simply stated as follows: given the
state of the ocean at one time, what is the state of
the ocean at a later time? It is the dynamics, i.e., the
basic laws and principles of oceanic physics, biol-
ogy, and chemistry, that evolve the state variables
forward in time. Thus, predicting the present and
future state of oceanic variables for practical ap-
plications is intimately linked to fundamental ocean
science.

A dynamical model to approximate nature con-
sists of a set of coupled nonlinear prognostic Reld
equations for each state variable of interest. The
fundamental properties of the system appear in the
Reld equations as parameters (e.g., viscosities, dif-
fusivities, representations of body forces, rates of

earth rotation, grazing, mortality, etc.). The initial
and boundary conditions necessary for integration
of the equations may also be regarded as parameters
by data assimilation methods. In principle the para-
meters of the system can be estimated directly from
measurements. In practice, directly measuring the
parameters of the interdisciplinary (physical-acousti-
cal-optical-biological-chemical-sedimentological)
ocean system is difRcult because of sampling, tech-
nical, and resource requirements. However, data as-
similation provides a powerful methodology for
parameter estimation via the melding of data and
dynamics.

The physical state variables are usually the velo-
city components, pressure, density, temperature, and
salinity. Examples of biological and chemical state
variables are concentration Relds of nutrients,
plankton, dissolved and particulate matter, etc. Im-
portant complexities are associated with the vast
range of phenomena, the multitude of concurrent
and interactive scales in space and time, and the
very large number of possible biological state
variables. This complexity has two essential conse-
quences. First, state variable deRnitions relevant to
phenomena and scales of interest need to be de-
veloped from the basic deRnitions. Second, approx-
imate dynamics which govern the evolution of the
scale-restricted state variables, and their interaction
with other scales, must be developed from the basic
dynamical model equations. A familiar example
consists of decomposing the basic ocean Relds into
slower and faster time scales, and shorter and longer
space scales, and averaging over the faster and shor-
ter scales. The resulting equations can be adapted to
govern synoptic/mesoscale resolution state variables
over a large-scale oceanic domain, with faster and
smaller scale phenomena represented as para-
meterized Suctuation correlations (Reynolds stres-
ses). There is, of course, a great variety of other
scale-restricted state variables and approximate
dynamics of vital interest in ocean science. We refer
to scale-restricted state variables and approximate
dynamics simply as ‘state variables’ and ‘dynamics’.

The use of dynamics is of fundamental import-
ance for efRcient and accurate Reld and parameter
estimation. Today and in the foreseeable future,
data acquisition in the ocean is sufRciently difRcult
and costly so as to make Reld and parameter esti-
mates by direct measurements, on a substantial and
sustained basis, essentially prohibitive. However,
data acquisition for Reld and parameter estimates
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Figure 1 Data assimilation system schematic. Arrows repres-
ent the most common direction for the flows of information. The
arrows between the measurement models and dynamical
models are double because measurement models can include
operators that map state variables and parameters to the sensor
data (e.g. interpolations, derivatives or integrals of state vari-
ables/parameters) and operators that transform sensor data into
data appropriate for the model scales and processes (e.g. filter-
ing, extrapolations or integrals of sensor data). The legend at
the bottom explains abbreviations.

via data assimilation is feasible, but substantial re-
sources must be applied to obtain adequate observa-
tions.

The general process of state and parameter es-
timation is schematized in Figure 1. Measurement
models link the state variables of the dynamical
model to the sensor data. Dynamics interpolates and
extrapolates the data. Dynamical linkages among
state variables and parameters allow all of them to
be estimated from measurements of some of them,
i.e., those more accessible to existing techniques and
prevailing conditions. Error estimation and error
models play a crucial role. The data and dynamics
are melded with weights inversely related to their

relative errors. The Rnal estimates should agree with
the observations and measurements within data
error bounds and should satisfy the dynamical
model within model error bounds. Thus the melded
estimate does not degrade the reliable information
of the observational data, but rather enhances that
information content. There are many important
feedbacks in the generally nonlinear data assimila-
tion system or ocean observing and prediction
system (OOPS) schematized in Figure 1, which illus-
trates the system concept and two feedbacks. Predic-
tion provides the opportunity for efRcient sampling
adapted to real time structures, events, and errors.
Data collected for assimilation also used for ongo-
ing veriRcation can identify model deRciencies and
lead to model improvements.

A data assimilation system consists of three com-
ponents: a set of observations, a dynamical model,
and a data assimilation scheme or melding scheme.
Modern interdisciplinary OOPS generally have com-
patible nested grids for both models and sampling.
An efRcient mix of platforms and sensors is selected
for speciRc purposes.

Central to the concept of data assimilation is the
concept of errors, error estimation, and error
modeling. The observations have errors arising from
various sources: e.g., instrumental noise, environ-
mental noise, sampling, and the interpretation of
sensor measurements. All oceanic dynamical models
are imperfect, with errors arising from the approx-
imate explicit and parameterized dynamics and the
discretization of continuum dynamics into a com-
putational model.

A rigorous quantitative establishment of the accu-
racy of the melded Reld and parameter estimates, or
veriRcation, is highly desirable but may be difRcult
to achieve because of the quantity and quality of the
data required. Such veriRcation involves all subcom-
ponents: the dynamical model, the observational
network, the associated error models, and the meld-
ing scheme. The concept of validation is the estab-
lishment of the general adequacy of the system and
its components to deal with the phenomena of inter-
est. As simple examples, a barotropic model should
not be used to describe baroclinic phenomena, and
data from an instrument whose threshold is higher
than the accuracy of the required measurement are
not suitable. In reality, validation issues can be
much more subtle. Calibration involves the tuning
of system parameters to the phenomena and re-
gional characteristics of interest. Final veriRcation
requires dedicated experiments with oversampling.

At this point it is useful to classify types of esti-
mates with respect to the time interval of the data
input to the estimate for time t. If only past and
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present data are utilized, the estimation is a Rltering
process. After the entire time series of data is avail-
able for (0,T), the estimate for any time 04t4T is
best based on the whole data set and the estimation
is a smoothing process.

Goals and Purposes

The speciRc uses of data assimilation depend upon
the relative quality of data sets and models, and the
desired purposes of the Reld and parameter esti-
mates. These uses include the control of errors for
state estimates, the estimation of parameters, the
elucidation of real ocean dynamical processes,
the design of experimental networks, and ocean
monitoring and prediction.

First consider ocean prediction for scientiRc and
practical purposes, which is the analog of numerical
weather prediction. In the best case scenario, the
dynamical model correctly represents both the
internal dynamical processes and the responses to
external forcings. Also, the observational network
provides initialization data of desired accuracy. The
phenomenon of loss of predictability nonetheless
inhibits accurate forecasts beyond the predictability
limit for the region and system. This limit for the
global atmosphere is 1}2 weeks and for the mid-
ocean eddy Reld of the north-west Atlantic on the
order of weeks to months. The phenomenon is asso-
ciated with the nonlinear scale transfer and growth
of initial errors. The early forecasts will accurately
track the state of the real ocean, but longer fore-
casts, although representing plausible and realistic
synoptical dynamical events, will not agree with
contemporary nature. However, this predictability
error can be controlled by the continual assimilation
of data, and this is a major use of data assimilation
today.

Next, consider the case of a Reld estimate with
adequate data but a somewhat deRcient dynamical
model. Assimilated data can compensate for the
imperfect physics so as to provide estimates in
agreement with nature. This is possible if dynamical
model errors are treated adequately. For instance, if
a barotropic model is considered perfect, and baro-
clinic real ocean data are assimilated, the Reld esti-
mate will remain barotropic. Even though melded
estimates with deRcient models can be useful, it is of
course important to attempt to correct the model
dynamics.

Parameter estimation via data assimilation is
making an increasingly signiRcant impact on ocean
science via the determination of both internal and
external parameter values. Regional Reld estimates
can be substantially improved by boundary condi-

tion estimation. Biological modelers have been ham-
pered by the inability to directly measure in situ
rates, e.g., grazing and mortality. Thus, for inter-
disciplinary studies, internal parameter estimation is
particularly promising. For example, measurements
of concentration Relds of plankton together with
a realistic interdisciplinary model can be used for
in situ rate estimation.

Data-driven simulations can provide four-dimen-
sional time series of dynamically adjusted Relds
which are realistic. These Relds, regarded as (numer-
ical) experimental data, can thus serve as high
resolution and complete data sets for dynamical
studies. Balance of terms in dynamical equations
and overall budgets can be carried out to determine
Suxes and rates for energy, vorticity, productivity,
grazing, carbon Sux, etc. Case studies can be carried
out, and statistics and general processes can be
inferred for simulations of sufRcient duration. Of
particular importance are observation system simu-
lation experiments (OSSEs), which Rrst entered
meteorology almost 30 years ago. By subsampling
the simulated ‘true’ ocean, future experimental net-
works and monitoring arrays can be designed to
provide efRcient Reld estimates of requisite accu-
racies. Data assimilation and OSSEs develop the
concepts of data, theory, and their relationship be-
yond those of the classical scientiRc methodology.
For a period of almost 300 years, scientiRc method-
ology was powerfully established on the basis of
two essential elements: experiments/observations
and theory/models. Today, due to powerful com-
puters, science is based on three fundamental con-
cepts: experiment, theory, and simulation. Since our
best Reld and parameter estimates today are based
on data assimilation, our very perception and con-
ceptions of nature and reality require philosophical
development.

It is apparent from the above discussion that mar-
ine operations and ocean management must depend
on data assimilation methods. Data-driven simula-
tions should be coupled to multipurpose manage-
ment models for risk assessments and for the design
of operational procedures. Regional multiscale
ocean prediction and monitoring systems, designed
by OSSEs, are being established to provide ongoing
nowcasts and forecasts with predictability error con-
trolled by updating. Both simple and sophisticated
versions of such systems are possible and relevant.

Regional Forecasting and Dynamics

In this section, the issues and concepts introduced in
the preceding sections are illustrated in the context
of real-time predictions carried out in 1996 for
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NATO naval operations in the Strait of Sicily and
for interdisciplinary multiscale research in 1998 in
Massachusetts Bay. The Harvard Ocean Prediction
System (HOPS) with its primitive equation dynam-
ical model was utilized in both cases. In the Strait of
Sicily (Figure 2), the observational network with
platforms consisting of satellites, ships, aircraft, and
Lagrangian drifters, was managed by the NATO
SACLANT Undersea Research Centre. In Mass-
achusetts Bay (Figure 3), the observational network
with platforms consisting of ships, satellites, and
autonomous underwater vehicles, was provided by
the Littoral Ocean Observing and Prediction System
(LOOPS) project within the US National Ocean
Partnership Program. The data assimilation methods
used in both cases were the HOPS OI and ESSE
schemes (see Estimation Theory below). In both
cases the purposes of data assimilation were to pro-
vide a predictive capability, to control loss of pre-
dictability, and to infer basic underlying dynamical
processes.

The dominant regional variabilities determined
from these exercises and studies are schematized in
Figures 2A and 3A. The dominant near surface Sow
in the strait is the Atlantic Ionian Stream, AIS (black
lines for the stream; smooth and meandering dashed
lines for the common locations of fronts and wave
patterns, respectively) and dominant variabilities
include the location and shapes of the Adventure
Bank Vortex (ABV), Maltese Channel Crest (MCC),
Ionian Shelfbreak Vortex (ISV), and Messian Rise
Vortex (MRV), with shifts and deformations
0(10}100km) occurring in 0(3}5 days). The varia-
bility of the Massachusetts Bay circulation is more
dramatic. The buoyancy Sow-through current which
enters the Bay in the north from the Gulf of Maine
may have one, two or three branches, and together
with associated vortices (which may or may not be
present), can reverse directions within the bay.
Storm events shift the pattern of the features which
persist inertially between storms. Actual real-time
forecast Relds are depicted in Figures 2B and 3B.

The existence of forecasts allows adaptive samp-
ling, i.e., sampling efRciently related to existing
structures and events. Adaptive sampling can be
determined subjectively by experience or objectively
by a quantitative metric. The sampling pattern asso-
ciated with the temperature objective analysis error
map (Figure 2C) reSects the Sight pattern of an
aircraft dropping subsurface temperature probes
(AXBTs). The data were assimilated into a forecast
in support of naval operations centered near the ISV
(Figure 2A). The sampling extends to the surround-
ing meanders of the AIS, which will affect the
current’s thermal front in the operational region.

The multiscale sampling of the Massachusetts Bay
experiment is exempliRed in Figure 3C, D by ship
tracks adapted to the interactive submesoscales,
mesoscales, bay scales, and large-scales. Note that
the tracks of Figure 3D are superimposed on a fore-
cast of the total temperature forecast error standard
deviation. The shorter track is objectively located
around an error maximum. The longer track is for
reduction of velocity error (not shown). Eigen-
decomposition of variability Relds helps dynamical
interpretations. This eigen-decomposition estimates
and orders the directions of largest variability vari-
ance (eigenmodes) and the corresponding ampli-
tudes (eigenvalues). The Rrst temperature variability
eigenmodes for the strait and the bay are depicted in
Figures 2D and 3E respectively. The former is asso-
ciated with the dominant ABV variability and the
latter with the location, direction, and strength of
the inSow to the bay of the buoyancy current from
the Gulf of Maine.

A qualitative skill score for the prediction of
dominant variations of the ABV, MCC, and ISV
indicated correct 2- to 3-day predictions of surface
temperature 75% of the time. The scores were
obtained by validation against new data for
assimilation and independent satellite sea surface
temperature data as shown in Figure 2E for the
forecast of Figure 2B. An important kinematical and
dynamical interconnection between the eastern and
western Mediterranean is the deep Sow of salty
Levantine Intermediate Water (LIW), which was
not directly measured but was inferred from data
assimilative simulations (Figure 2F). The scientiRc
focus of the Massachusetts Bay experiment was
planktonpatchiness, in particular the spatial varia-
bility of zooplankton and its relationship to physical
and phytoplankton variabilities (Figure 3B, G). The
smallest scale measurements in the bay were turbu-
lence measurements from an AUV (Figure 3F),
which were also used to research the assimilation
in real time of subgridscale data in the primitive
equation model.

Concepts and Methods

By deRnition (see Introduction), data assimilation
in ocean sciences is an estimation problem for
the ocean state, model parameters, or both. The
schemes for solving this problem often relate to
estimation or control theories (see below), but some
approaches like direct minimization, stochastic, and
hybrid methods (see below) can be used in both
frameworks. Several schemes are theoretically opti-
mal, while others are approximate or suboptimal.
Although optimal schemes are preferred, suboptimal
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methods are generally the ones in operational use
today. Most schemes are related in some fashion to
least-squares criteria which have had great success.
Other criteria, such as the maximum likelihood,
minimax criterion or associated variations might be
more appropriate when data are very noisy and
sparse, and when probability density functions are
multimodal (see Stochastic and hybrid models be-
low). Parameters are assumed from here on to be
included in the vector of state variables. For more
detailed discussions, the reader is referred to the
article published by Robinson et al. in 1998 (see
Further Reading section).

Estimation Theory

Estimation theory computes the state of a system by
combining all available reliable knowledge of the
system including measurements and theoretical
models. The a priori hypotheses and melding or
estimation criterion are crucial since they determine
the inSuence of dynamics and data onto the state
estimate.

At the heart of estimation theory is the Kalman
Rlter, derived in 1960. It is the sequential, unbiased,
minimum error variance estimate based upon a lin-
ear combination of all past measurements and dy-
namics. Its two steps are: (1) the forecast of the state
vector and of its error covariance, and (2) the data-
forecast melding and error update, which include
the linear combination of the dynamical forecast
with the difference between the data and model
predicted values for those data (i.e., data residuals).

The Kalman smoother uses the data available
before and after the time of interest. The smoothing
is often carried out by propagating the future data
information backward in time, correcting an initial
Kalman Rlter estimate using the error covariances
and adjoint dynamical transition matrices, which is
usually demanding on computational resources.

In a large part because of the linear hypothesis
and costs of these two optimal approaches, a series
of approximate or suboptimal schemes have been
employed for ocean applications. They are now
described, from simple to complex.

Direct insertion consists of replacing forecast
values at all data points by the observed data which
are assumed to be exact. The blending estimate is
a scalar linear combination, with user-assigned
weights, of the forecast and data values at all data
points. The nudging or Newtonian relaxation
scheme ‘relaxes’ the dynamical model towards the
observations. The coefRcients in the relaxation can
vary in time but, to avoid disruptions, cannot be too
large. They should be related to dynamical scales
and a priori estimates of model and data errors.

In optimal interpolation (OI), the matrix weight-
ing the data residuals, or gain matrix, is empirically
assigned. If the assigned OI gain is diagonal, OI and
nudging schemes can be equivalent. However, the
OI gain is usually not diagonal, but a function of
empirical correlation and error matrices.

The method of successive corrections performs
multiple but simpliRed linear combination of the
data and forecast. Conditions for convergence to
the Kalman Rlter have been derived, but in practice
only a few iterations are usually performed. Fre-
quently, the scales or processes of interest are
corrected one after the other, e.g., large-scale Rrst,
then mesoscale.

Control Theory

All control theory or variational approaches per-
form a global time-space adjustment of the model
solution to all observations and thus solve
a smoothing problem. The goal is to minimize a cost
function penalizing misRts between the data and
ocean Relds, with the constraints of the model equa-
tions and their parameters. The misRts are inter-
preted as part of the unknown controls of the ocean
system. Similar to estimation theory, control theory
results depend on a priori assumptions for the con-
trol weights. The dynamical model can be either
considered as a strong or weak constraint. Strong
constraints correspond to the choice of inRnite
weights for the model equations; the only free vari-
ables are the initial conditions, boundary conditions
and/or model parameters. A rational choice for
the cost function is important. A logical selection
corresponds to dynamical model (data) weights
inversely proportional to a priori speciRed model
(data) errors.

In an ‘adjoint method’, the dynamical model is
a strong constraint. One penalty in the cost function
weights the uncertainties in the initial conditions,
boundary conditions, and parameters with their
respective a priori error covariances. The other is
the sum over time of data-model misRts, weighted
by measurement error covariances. A classical ap-
proach to solve this constrained optimization is to
use Lagrange multipliers. This yields Euler-Lagrange
equations, one of which is the so-called adjoint
equation. An iterative algorithm for solving these
equations has often been termed the adjoint method.
It consists of integrating the forward and adjoint
equations successively. Minimization of the gradient
of the cost function at the end of each iteration
leads to new initial, boundary, and parameter
values. Another iteration can then be started, and so
on, until the gradient is small enough.
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Expanding classic inverse problems to the weak
constraint Rt of both data and dynamics leads to
generalized inverse problems. The cost function is
usually as in adjoint methods, except that a third
term now consists of dynamical model uncertainties
weighted by a priori model error covariances. In the
Euler-Lagrange equations, the dynamical model
uncertainties thus couple the state evolution with
the adjoint evolution. The representer method is an
algorithm for solving such problems.

Direct Minimization Methods

Such methods directly minimize cost functions sim-
ilar to those of generalized inverse problems, but
often without using the Euler-Lagrange equations.
Descent methods iteratively determine directions lo-
cally ‘descending’ along the cost function surface. At
each iteration, a minimization is performed along
the current direction and a new direction is found.
Classic methods to do so are the steepest descent,
conjugate-gradient, Newton, and quasi-Newton
methods. A drawback for descent methods is that
they are initialization sensitive. For sufRciently non-
linear cost functions, they are restarted to avoid
local minima.

Simulated annealing schemes are based on an
analogy to the way slowly cooling solids arrange
themselves into a perfect crystal, with a minimum
global energy. To simulate this relatively random
process, a sequence of states is generated such that
new states with lower energy (lower cost) are al-
ways accepted, while new states with higher energy
(higher cost) are accepted with a certain probability.

Genetic algorithms are based upon searches gen-
erated in analogy to the genetic evolution of natural
organisms. They evolve a population of solutions
mimicking genetic transformations such that the
likelihood of producing better data-Rtted genera-
tions increases. Genetic algorithms allow nonlocal
searches, but convergence to the global minimum is
not assured due to the lack of theoretical base.

Stochastic and Hybrid Methods

Stochastic methods are based on nonlinear stochas-
tic dynamical models and stochastic optimal
control. Instead of using brute force like descent
algorithms, they try to solve the conditional prob-
ability density equation associated with ocean mod-
els. Minimum error variance, maximum likelihood
or minimax estimates can then be determined
from this probability density. No assumptions are
required, but for large systems, parallel machines
are usually employed to carry out Monte Carlo
ensemble calculations.

Hybrid methods are combinations of previously
discussed schemes, for both state and parameter
estimation; for example, error subspace statistical
estimation (ESSE) schemes. The main assumption of
such schemes is that the error space in most ocean
applications can be efRciently reduced to its essen-
tial components. Smoothing problems based on Kal-
man ideas, but with nonlinear stochastic models and
using Monte Carlo calculations, can then be solved.
Combinations of variational and direct minimiz-
ation methods are other examples of hybrid
schemes.

Examples

This section presents a series of recent results that
serve as a small but representative sample of the
wide range of research carried out as data assimila-
tion was established in physical oceanography.

General Circulation from Inverse Methods

The central idea is to combine the equations govern-
ing the oceanic motion and relevant oceanic tracers
with all available noisy observations, so as to esti-
mate the large-scale steady-state total velocities and
related internal properties and their respective er-
rors. The work of Martel and Wunsch in 1993
exempliRes the problem. The three-dimensional
circulation of the North Atlantic (Figure 4A) was
studied for the period 1980}85. The observations
available consisted of objective analyses of temper-
ature, salinity, oxygen, and nutrients data; clima-
tological ocean}atmosphere Suxes of heat, water
vapor, and momentum; climatological river runoffs;
and current meter and Soat records. These data
were obtained with various sensors and platforms,
on various resolutions, as illustrated by Figure 4B.
A set of steady-state equations were assumed to
hold a priori, up to small unknown noise terms. The
tracers were advected and diffused. The advection
velocities were assumed in geostrophic thermal}
wind balance, except in the top layer where Ekman
transport was added. Hydrostatic balance and mass
continuity were assumed. The problem is inverse
because the tracers and thermal wind velocities are
known; the unknowns are the Relds of reference
level velocities, vertical velocity, and tracer mixing
coefRcients.

Discrete Rnite-difference equations were integ-
rated over a set of nested grids of increasing resolu-
tions (Figure 4A). The Sows and Suxes at the
boundaries of these ocean subdivisions were com-
puted from the data (at 13 resolution). The resulting
discrete system contained c. 29 000 unknowns
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Figure 4 (A) Domain of the model used in the inverse computations. Weak dynamical constraints were imposed on the flow and
tracers, and integrated over a set of nested grids, from the full domain (heavy solid lines) to an ensemble of successive divisions
(e.g., dashed lines) reaching at the smallest scales the size of the boxes labeled by numbers. (B) Locations of the stations where
the hydrographic and chemical component of the data set were collected (model grid superposed). (C) Inverse estimate of the
absolute sea surface topography in centimeters (contour interval is 10 cm). (D) Inverse estimate of the standard error deviation
(in cm) of the sea surface topography shown in (C). (Reproduced with permission from Martel and Wunsch, 1993.).

and 9000 equations. It was solved using a tapered
(normalized) least-squares method with a sparse
conjugate-gradient algorithm. The estimates of
the total Sow Reld and of its standard error are
plotted on Figure 1C and D. The Gulf Stream,
several recirculation cells and the Labrador current
are present. In 1993, such a rigorous large-scale,
dense, and eclectic inversion was an important
achievement.

Global versus Local Data Assimilation via Nudging

Malanotte-Rizzoli and Young in 1994 investigated
the effectiveness of various data sets to correct and
control errors. They used two data sets of different
types and resolutions in time and space in the Gulf
Stream region, at mesoscale resolution and for peri-
ods of the order of 3 months, over a large-scale
domain referred to as global scale.
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One objective was to assimilate data of high
quality, but collected at localized mooring arrays,
and to investigate the effectiveness of such data
in improving the realistic attributes of the simulated
ocean Relds. If successful, such estimates allow
for dynamical and process studies. The global
data consisted of biweekly Relds of sea surface
dynamic height, and of temperature and salinity
in three dimensions, over the entire region, as
provided by the Optimal Thermal Interpolation
Scheme (OTIS) of the US Navy Fleet Numerical
Oceanography Center. The local data were daily
current velocities from two mooring arrays. The
dynamical model consisted of primitive equations
(Rutgers), with a suboptimal nudging scheme for the
assimilation.

The global and local data were Rrst assimilated
alone, and then together. The ‘gentle’ assimilation
of the spatially dense global OTIS data was
necessary for the model to remain on track
during the 3-month period. The ‘strong’ assimilation
of the daily but local data from the Synoptic
Ocean Prediction SYNOP was required to achieve
local dynamical accuracies, especially for the
velocities.

Small-scale Convection and Data Assimilation

In 1994, Miller et al. addressed the use of varia-
tional or control theory approaches (see earlier) to
assimilate data into dynamical models with highly
nonlinear convection. Because of limited data and
computer requirements, most practical ocean
models cannot resolve motions that result from
static instabilities of the water column; these
motions and effects are therefore parameterized.
A common parameterization is the so-called convec-
tive adjustment. This consists of assigning inRnite
mixing coefRcients (e.g., heat and salt conductivi-
ties) to the water at a given level that has higher
density than the water just below. This is carried
out by setting the densities of the two parcels to
a unique value in such a way that heat and mass are
conserved. In a numerical model, at every time step,
water points are checked and all statically unstable
proRles replaced by stable ones.

The main issues of using such convective schemes
with variational data assimilation are that: (1) the
dynamics is no longer governed by smooth equa-
tions, which often prevents the simple deRnition of
adjoint equations; (2) the optimal ocean Relds
may evolve through ‘nonphysical’ states of static
instability; and (3), the optimization is nonlinear,
even if the dynamics are linear. Ideally, the
optimal Relds should be statically stable. This intro-

duces a set of inequality constraints to satisfy. An
idealized problem was studied so as to provide guid-
ance for realistic situations. A simple variational
formulation had several minima and at times pro-
duced evolutions with unphysical behavior. ModiR-
cations that led to more meaningful solutions and
suggestions for algorithms for realistic models were
discussed. One option is the ‘weak’ static stability
constraint: a penalty that ensures approximate static
stability is added to the cost function with a very
small error or large weight. In that case, static stab-
ility can be violated, but in a limited fashion. An-
other option is the ‘strong constraint’ form of static
stability which can be enforced via Lagrange multi-
pliers. Convex programming methods which ex-
plicitly account for inequality constraints could also
be utilized.

Global Ocean Tides Estimated from Generalized
Inverse Methods

In 1994, Egbert et al. estimated global ocean tides
using a generalized inverse scheme with the intent of
removing these tides from the data collected by the
TOPEX/POSEIDON satellite and thus allowing the
study of subtidal ocean dynamics.

A scheme for the inversion of the satellite cross-
over data for multiple tidal constituents was applied
to 38 cycles of the data, leading to global estimates
of the four principal tidal constituents (M2, S2,
K1 and O1) at about 13 resolution. The dynamical
model was the linearized, barotropic shallow water
equations, corrected for the effects of ocean self-
attraction and tidal loading, the state variables be-
ing the horizontal velocity and sea surface height
Relds. The data sets were linked to measurement
models and comprehensive error models were de-
rived.

The generalized inverse tidal problem was solved
by the representer method. Representer functions
are related to Green’s functions: they link a given
datum to all values of the state variables over the
period considered. These representers were com-
puted by solving the Euler-Lagrange equations in
parallel. The size of the problem was reduced by
winnowing out the full set of 6350 crossovers to an
evenly spaced subset of 986 points (see Figure 5A).
The resulting representer matrix was then reduced
by singular value decomposition.

The amplitude and phase estimates for the
M2 constituent are shown in Figure 5B. The
M2 Relds are qualitatively similar to previous
results and amphidromes are consistent. However,
when compared with previous tidal model esti-
mates, the inversion result is noticeably smoother
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and in better agreement with altimetric and ground
truth data.

Conclusions

The melding of data and dynamics is a powerful,
novel, and versatile methodology for parameter and
Reld estimation. Data assimilation must be anticip-
ated both to accelerate research progress in complex,
modern multiscale interdisciplinary ocean science,
and to enable marine technology and maritime op-
erations that would otherwise not be possible.
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Introduction

Density of ocean water generally increases with
depth except at the surface where stirring by waves
and convection creates a well-mixed homogeneous
layer. Breaking waves alone can mix the upper
5}10m, but convection, forced by an increase in

density at the surface via heat loss or evaporation,
can greatly increase the mixed layer depth. During
winter, heat loss from the surface of the ocean is
high and convectively mixed surface layers are the
norm in the extratropical oceans. The deepest
('1500m) are found in the Labrador Sea, the
Greenland Sea, and the Golfe du Lion in the Medi-
terranean Sea, because of two special features. First,
they are near land where cold continental air Sows
over the water to create the necessary high heat loss.
Second, the circulation in each is weakly cyclonic
which helps to maintain the convecting water where
the high heat loss occurs. The combination of these
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