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Introduction

Inverse methods are formal procedures for making
inferences about the ocean (or any other physical
system) by using observations in combination with
dynamical and kinematic models. As such, they are
a part of the general methods of statistical inference
done in the presence of known or assumed kine-
matic and dynamical constraints. Their Rrst use in
oceanography occurred in 1977 as a method for
addressing the famous so-called level-of-no-motion
problem in the oceanic general circulation, and the
determination of the general circulation remains
a major area of application. Subsequently, inverse
methods became a central element of ocean acoustic
tomography. More recently, they have begun to be
applied widely in all areas of oceanography includ-
ing biogeochemical problems.
In mathematical usage, &inverse methods' often

describe procedures directed at solving a variety of
ill-posed problems, in the absence of observational
noise. Although the terminology is much the same,
noise-free observations exist only in textbooks,
and this literature is useful, but tangential, to the
oceanographic problem.
&Inverse methods' are often used in conjunction

with, and thereby confused with, &inverse models'.
For historical reasons, and mathematical conven-
tion, one denotes many systems as being &forward'
or &direct' problems or models. A simple example
derives from a supposed theory that produces a rule
for a variable, perhaps oceanic temperature, �, as
a function of z, in the form

�(z)"a0#a1z#a2z
2#a3z
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If the theory tells us the a
�
, we can calculate � for

any value of z. The theory is often labeled a &for-
ward' or &direct model' and, more generally, may be
either an analytical or a very complex numerical
one. Equation [1] is called a &forward solution'. If,
on the other hand, �(z) were known, but one or
more of the ai were not, one would have an inverse
model, also given by eqn [1], the label &inverse'

being employed only as a matter of convention }
because there is a previously studied &forward'
version.
Another example comes from the classical advec-

tion/diffusion/decay equation for a concentration
tracer, C,

w
�C
�z

!�
�2C
�z2

#�C"q(z) [2]

where q is a source, w is the vertical advective
velocity, � is a diffusion coefRcient and � is a decay
constant. All are known constants or functions
of z. Given suitable boundary conditions, e.g.,
C(z"0)"C0,C(zPR)"0, one has a well-
understood, well-posed problem, in which eqn [2]
and its boundary conditions are labeled as &forward.'
But an equally compelling, and commonplace prob-
lem is the following: Given C(z) and �, what are
w and �? This type of problem occupies much of the
mathematical literature on inverse problems. The
oceanographers' version is, however, more likely to
be: Given observations,

yi"C(zi)#ni [3]

where ni are noise, at a Rnite number of discrete
positions zi , what are w, �? Many variations of this
problem are possible; for example, given noisy or
uncertain observations or estimates of C, w, �,
� what was the boundary condition C0? In this
context, eqn [2], along with any other available
information, would now be described as the &inverse
model,' with the formal knowns and unknowns
of the forward problem having in part, been inter-
changed.
Parameter determination from noisy observations

goes back at least to Legendre and Gauss. The
modern generalization, inverse theory, is often
traced to the pioneering work of G. Backus and F.
Gilbert in the solid-earth geophysics context. They
initiated the study of model systems in which the
number of formal unknowns greatly exceeds (per-
haps inRnitely so), the number of available data by
exploiting the existence of an underlying differential
or partial differential system. This form of inverse
theory is rooted in functional analysis and is highly
developed; see Parker (1994), or for oceano-
graphic applications, Bennett (1992), in the Further
Reading.
In oceanographic practice, even the simplest mod-

els are almost always reduced to some numerical,
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discrete form, either by expansion into a Rnite set of
modes or by Rnite differences or related methods.
The polynomial form eqn [1] is already discrete,
with four parameters. Many other forms are pos-
sible. For example eqn [2], when written in Rnite
differences, becomes

wi

Ci�1!Ci

zi�1!zi

!�i

Ci�1!2Ci#Ci�1

zi�1!2zi#zi�1
#�Ci"qi ,

14i4M [4]

which is a set of M simultaneous linear equations in
the Rnite discrete set wi, �i, �. Alternatively, if w, �
are constant, an analytic solution, subject to a Rxed
surface concentration C(z"0)"C0 is readily seen
to be

C(z)"C0 exp�z
w
2��1#�1#4��

w2 �
1�2

��, z40

[5]

which can be evaluated at z"zi to produce

C(zi)"C0 exp�zi

w
2��1#�1#4��

w2 �
1�2

�� [6]

Because eqns [4] and [6] are algebraic equations in
w, �, � the problem of determining them has been
reduced from that of an inRnite-dimensional Hilbert
or Banach space to that of an ordinary Rnite-dimen-
sional vector space. No matter how great the value
of M, the corresponding mathematical simpliRca-
tions render the methods of inverse theory much
more transparent in this case. Reduction of the
functional analysis methods of Backus and Gilbert
to that of Rnite-dimensional spaces appears to
begin with Wiggins, who used the singular value
decomposition of Eckart and Young. In practice,
almost all real inverse problems are solved on com-
puters; they are thus automatically discrete and of
Rnite dimension and this mathematical representa-
tion is the most useful one. Note that eqn [6] is
nonlinear in the parameters, showing that the same
problem can be rendered linear depending upon
exactly how it is formulated.

Example

Assuming then, that observations always have
a noise component, we can proceed to estimate
whatever is known. For the simple power law of
eqn [1], let us suppose that the &truth' is

�(z)"30!0.0005z2, !1004z40 [7]

but the theory says that it could actually be of the
general form (1) so that the correct answer would
be a0"30, a2"5�10�4, ai"0, otherwise. DeRn-
ing yi"Ci#ni , the problem has become one of
Rnding an estimate, x� , satisfying,

Ex#n"y [8]

Here the matrix vector notation x"[ai] (called
the &state vector'), n"[ni], y"[yi] is being used,
and E is the coefRcient matrix. As stated, this is now
a problem in polynomial regression theory, and
much of inverse theory overlaps that branch of
statistics.
The tracer problem (eqn [2]) can be reduced to

this same form. Suppose that wi , �i , are believed
constant, independent of i, and that we have noisy
measurements �i [3] of Ci. Then one can readily
make the substitution CiP�i in eqn [4], producing
a set of simultaneous equations for w, �i , where
the coefRcient matrix E has elements depending
upon

Ci�1!Ci

zi�1!zi

&�i�1!�i

zi�1!zi

[9]

etc. and y now involves ��i , qi , etc. n is a noise-
vector representing the errors introduced by the ob-
servational noise, and any misrepresentation of the
true full physics by eqn [2]. In practice, the structure
of n can be a complicated function of the structure
of E, because equations such as [9] render the
problem, in a rigorous sense, nonlinear, too. This
nonlinearity is often ignored and there are many
inverse problems where E is known exactly. Equa-
tion [8] can now be regarded as the &model' instead
of, or in addition to, eqn [2]. The state vector
consists of the two unknowns xT"[w, �i]T (super-
script T denotes a transpose; all vectors here are
column vectors). The form of eqns [8] obviously
generalizes to any number of unknown elements,
N, in x.
A common method for dealing with equations of

this type is to seek a least-squares solution that
renders the noise vector n as small as possible:

J"nTn"(y!Ex)T(y!Ex) [10]

By taking the derivatives of the &objective' or &cost'
function J with respect to the elements of x and
setting them to zero, one obtains the &normal equa-
tions.' Here, one Rnds, using this matrix notation,
that the so-called normal equations are

ETEx"ETy [11]
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Figure 1 (A) A hypothetical temperature, �, profile with depth, Iz, drawn as a solid line. ‘Observations' of that profile at discrete
depths contaminated with unit noise variance errors are shown as open circles. Dashed line is the ordinary least-squares fit.
(B) Same as in (A), except that the dashed line is the Gauss}Markov solution computed using a priori knowledge of the statistics
of the noise and the solution itself. The fit is less structured, and a specific error estimate is available at every point, showing the
true line to lie within the estimated uncertainty.

whose solution is

x� "(ETE)�1y [12]

and which permits an estimate of the noise un-
knowns,

n� "y!Ex� "y!E(ETE)�1y [13]

The forward model [1] was used to generate
&data' at seven observation points, and these
values were then corrupted with noise having
a standard deviation of 1. The least-squares solution
produces a state vector x� T"[31, 0.02, 0.002,
6�10�5, 4�10�7], and the corresponding estimated
�� is shown in Figure 1. It passes near the data points
but is clearly not &correct' in the sense of reproduc-
ing the known true values.
Although a very easy-to-use and common para-

meter-determining procedure, least-squares in this
form is not an inverse method (statisticians call it
&curve-Rtting'). The reasons for seeking a more
powerful method are easy to see. At least as written,
one can raise a number of questions about the
solution:

1. Why should the smallest mean-square noise, nTn,
be regarded as the correct solution to choose?

2. What would happen if the inverse of ETE failed
to exist? (E corresponding to eqn [7] is a Vander-
monde matrix, and known to be very badly con-
ditioned.)

3. Suppose one knew that some of the noise values
were likely to be much greater than others:
Could that information be used?

4. Suppose one had a reasonable idea of the magni-
tude of the ai , i.e., of x: Cannot that information
be used?

5. Just how reliable is the solution given the noisi-
ness of the data, and the particular structure of
the observations?

6. Are some observations more important than
others in determining the solution?

7. Could one require �'0 in the advection}diffu-
sion problem?

8. In general, there are M eqns in [8] and N ele-
ments of x. When M'N, the system appears to
be comfortably overdetermined. But that comfort
disappears when one recognizes that N noise
unknowns have also been determined in eqn
[13], producing a total of M#N previously
unknown values. Is it still sensible to term the
problem &overdetermined.'

9. Problems such as the advection-diffusion one in-
volve a quantity C that is necessarily positive and
that often renders the noise statistics highly non-
Gaussian. How can one understand how that
affects the best solution?

These and other issues lead one to Rnd other means
to make an estimate of x. It is possible to modify
the least-squares procedure so that it will produce
solutions obtained by other methods; this corre-
spondence has led, in the literature, to serious con-
fusion about what is going on.

Two More Solution Methods

There are a number of methods available for estima-
ting the elements of x, n that produce useful
answers to some or all of the questions listed above.
We will brieSy describe two such methods, leaving
to the references listed in Further Reading (see
Menke, 1989; Tarantola, 1987; Munk et al., 1995;
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Wunsch, 1996) both the details and discussion of
other approaches.

Gauss}Markov Method

We postulate some a priori knowledge of the ele-
ments of x, n in a common, statistical, form. In
particular, we assume that �x	"�n	"0, where
the brackets denote the expected value, and that
there is some knowledge of the second moments,
S"�xxT	,R"�nnT	.
The so-called Gauss}Markov method (sometimes

known as the &stochastic inverse') produces a solu-
tion that minimizes the variance about the true
value, i.e., it is a statistical method that minimizes
not the sum of squares but, individually, all terms of
the form �(x� i!xi)

2	 where x
�
is the true value, and

xJ i is the estimate made. The solution is

x� "SET(ESET#R)�1y [14]

with solution uncertainty (error estimate)

P"�(x� !x)(x� !x)T	"S!SET(ESET#R)�1ES

[15]

All of the available information has been used.
A solution for the simple example is shown in
Figure 1, where S"diag ([100, 1�10�10, 1�10�6,
1�10�10, 1�10�10]), R"
�ij�. One obtains,

x� T"[31$0.8,!1.4�10�10$1�10�5,!6.1�10�4

$5.1�10�4, 4.5�10�6$9.1�106, 4.9�10�8

$6.9�10�8] [16]

that is, the correct answer now lies within two
standard errors and, although it is not displayed
here, the P matrix provides a full statement of the
extent to which the noise elements in x� are corre-
lated with each other (which can be of the utmost
importance in many problems).

Least-Squares by Singular Value Decomposition

As noted, least-squares can be modiRed so that it is
more fully capable of producing answers to the
questions put above. There are at least two ways to
do this. The more interesting one is that based upon
the singular value decomposition (SVD) and the
so-called Cholesky decomposition of the covariance
matrices, S"ST�2S1�2, R"RT�2R1�2.
One takes the original eqn [18] and employs the

matrices S, R to rotate and stretch E, n, y, x into
new vector spaces in which both observations and

solution have uncorrelated structures:

R���2EST�2S���2x#R���2n"R���2y [17]

or

E�x�#n�"y� [18]

where

E�"R���2EST�2, x�"S���2x, n�"R���2n,

y�"R���2y [19]

One then computes the singular value decomposi-
tion

E�"U�VT [20]

where � is a diagonal matrix, and U, V are ortho-
gonal matrices. Let there be K nonzero values on
the diagonal of �, and let the columns of U, V be
denoted ui , vi respectively. Then it can be shown in
straightforward fashion that the uT

i uj"ij , vTi vj"ij

and that the solution to eqn. [18] is

x�"
K

�
k�1

vk

uT
ky�
�k

#
N

�
k�K�1

�kvk [21]

where the �k are completely arbitrary. The physical
solution is obtained from x� "ST�2x� �. A major ad-
vantage of this solution (and the uncertainly matrix,
P, can also be computed for it), is that it explicitly
produces the solution in orthonormal structures, v

�
,

in terms of orthonormal structures of the observa-
tions u

�
, and separates these elements from the sec-

ond sum on the right of equations [21], which
deRnes the so-called null space of the problem. The
null space represents the structures possibly present
in the true solution, about which the equations [18]
carry no information. A null space is present too, in
the Gauss}Markov solution, but the corresponding
null space vectors are given coefRcients �k so as best
to reproduce the a priori values of S. The SVD leads
naturally to a discussion of what is called &resolu-
tion' both of data and of the solution, and provides
complete information about the solution. These
issues, with examples, are discussed in Wunsch
(1996) (see Further Reading).

A Hydrographic Example

The Rrst use of inverse methods in oceanography
was the hydrographic problem. In this classical
problem, oceanographers are able to determine
the density Reld, �(z) at two nearby &hydrographic
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Figure 2 Example of the inversion for the reference level velocity in a triangular region bounded on two sides by hydrographic
sections crossing the Gulf Stream, and on the third side by the US coastline. Velocity contours are in centimeters. They are the sum
of the so-called thermal wind, which involves setting the velocity to zero at a reference depth. The actual flow at that depth (the
‘reference level velocity') is shown in the top panels as estimated, with uncertainties, from the singular value decomposition solution,
with K"30. (From Joyce et al., 1986.) The ‘columnar' structure, which is so apparent here, first appeared in inverse solutions, and
was greeted with disbelief by those who ‘knew' that oceanic flows were ‘layered' in form. Acceptance of this type of structure is now
commonplace.

stations' where temperature and salinity were mea-
sured by a ship as functions of depth. By computing
the horizontal differences in density as a function of
depth, and invoking geostrophic balance, an esti-
mate could be made of the velocity Reld, up to
an unknown constant (with depth) of integration.
Although mathematically trivial, the inability to
determine the integration constant between pairs
of stations plagued oceanography for 100 years, and
led to the employment of the ad hoc assumption
that the Sow Reld vanished at some speciRc depth
z0. This depth became known as the &level-of-no-
motion.' But by employing physical requirements
such as mass and salt conservation (or any other
constraint involving the absolute velocity), it is
straightforward to reduce the problem to one of
deducing the actual Sow Reld at the level-of-no-
motion (and which is thus better called the &refer-
ence-level'). These constraints are readily written in
the form of eqn [8], and solved with error estimates,
etc.
An example of the practical application of this

method is shown in Figure 2. In this calculation,
constraints were written for mass and salt conserva-

tion in a triangular region bounded by the US coast-
line, and a pair of hydrographic sections in which
the Gulf Stream Sowed into the region across one
section and out again in the other. Direct velocity
measurements obtained from the ship permitted ad-
ditional equations to be written for the unknown
Sow velocity at the reference level. The resulting
estimated absolute Sow at the reference level is
shown, with error estimates, in the top panels. The
lower panels show the total estimated absolute
velocity. In general, any available information can
be used to estimate the unknowns of the system as
long as one has a plausible estimate of the error
contained in the resulting constraint. For the
hydrographic problem in particular, a number of
variations on the constraints have been proposed,
under the labels of &beta-spiral,' &Bernoulli-method,'
etc., which we must leave to the references listed in
Further Reading.

Extensions

Like eqn [6], many inverse problems are nonlinear.
Tarantola (1987) provides some general background
and speciRc oceanographic applications may be seen
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in Mercier (1989), Mercier et al. (1991), and
Wunsch (1994). The use of inequality constraints
leads to the general subject of mathematical pro-
gramming, a part of the wide subject of optimiza-
tion theory (see Arthnari and Dodge, 1981).
The Gauss}Markov solution method and the SVD

version of least-squares have a ready interpretation,
as minimum variance estimates of the true Reld. If
the Relds are all normally distributed, the solutions
are also maximum-likelihood estimates, a methodo-
logy that is readily extended to non-Gaussian Relds.

Time-dependent Problems

As originally formulated by Backus and Gilbert, and
as exploited in most of the oceanographic literature
to date, the problems have been essentially static,
with time evolution not accounted for. If one has
a system that evolves in time, the observations and
state vector, x, will also be time evolving. If one
simply writes down the relationship between data
and a model in which the two are connected by
a set of equations, linear or nonlinear, one sees
immediately that, mathematically, the problem is
identical to that posed by eqn [8], in which the time
of the observation or of the model calculation is just
a bookkeeping index. The difRculty that arises is
purely a practical one: the potentially extremely
large growth in the number of equations that must
be dealt with over long time spans. With a sufR-
ciently large and fast computer, the most efRcient
way to solve such inverse problems would be the
straightforward application of the same methods
developed for static problems: Write out all of the
equations explicitly and solve them all at once. In
oceanographic practice however, one rapidly out-
strips the largest available computers and the static
methods become impractical if used naively.
Fortunately, time-evolving oceanographic models

have a very special algebraic structure, which per-
mits one to solve the corresponding normal equa-
tions [11] by methods not requiring storage of
everything in the computer at one time. Numerous
such special methods exist, and go by names such as
sequential estimators (Kalman Rlter and various
smoothers), adjoint equations (Pontryagin principle
or method of Lagrange multipliers), Monte Carlo
methods, etc. The generic terminology that has
come into use is ‘data assimilation' borrowed from
meteorological forecasting terminology. Such
methods are highly developed, if often abused or
misunderstood, and require a separate discussion.
What is important to know, however, is that they
are simply algorithmically efRcient solutions to the
inverse problem as described here.

Common Misconceptions and
Dif\culties
Some chronic misunderstandings and difRculties
arise. The most pernicious of these is the attempt to
use inverse models, which are physically inconsist-
ent with the known forward model or physics. This
blunder corresponds, for example, in the simplest
model above, to imposing a linear relationship
(model) between � and z, when it is clear or suspec-
ted that higher powers of z are likely to be present.
Some writers have gone so far as to show that such
an inversion does not reproduce a known forward
solution, and then declared inverse methods to be
failures. Another blunder is to confuse the inability
to resolve or determine a parameter of interest,
when the data are inadequate for the purpose, with
a methodological or model failure. Inverse methods
are very powerful tools. Like any powerful tool (a
chain saw, for example), when properly used they
are useful and even essential; when improperly used
they are a grave danger to the user.

See also

Data Assimilation in Models. Elemental Distribu-
tion: Overview. General Circulation Models. Tomo-
graphy. Tracer Release Experiments.
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Figure 1 Schematic diagram of the electromagnetic spectrum showing the location and interval of the infrared waveband.
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Introduction

Measurements of sea surface temperature (SST) are
most important for the investigation of the processes
underlying heat and gas exchange across the air}sea
interface, the surface energy balance, and the
general circulation of both the atmosphere and
the oceans. Complementing traditional subsurface
contact temperature measurements, there is a wide
variety of infrared radiometers, spectroradiometers,
and thermal imaging systems that can be used to
determine the SST by measuring thermal emissions
from the sea surface. However, the SST determined
from thermal emission can be signiRcantly different
from the subsurface temperature ('$1K) because
the heat Sux passing through the air}sea interface
typically results in a strong temperature gradient.
Radiometer systems deployed on satellite platforms
provide daily global maps of SSST (sea surface

temperature) at high spatial resolution (&1km)
whereas those deployed from ships and aircraft pro-
vide data at small spatial scales of centimeters to
meters. In particular, the development of satellite
radiometer systems providing a truly synoptic view
of surface ocean thermal features has been pivotal in
the description and understanding of the global
oceans.
This article reviews the infrared properties of

water and some of the instruments developed to
measure thermal emission from the sea surface. It
focuses on in situ radiometers although the general
principles described are applicable to satellite sen-
sors treated elsewhere in this volume.

Infrared Measurement Theory

Infrared (IR) radiation is heat energy that is emitted
from all objects that have a temperature above 0K
(!273.163C). It includes all wavelengths of the
electromagnetic spectrum between 0.75�m and
&100�m (Figure 1) and has the same optical
properties as visible light, being capable of
reSection, refraction, and forming interference
patterns.
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