Stratification The formation of distinct layers with different densities (see 'pycnocline' above); stratification inhibits mixing or exchange between the nutrient-rich deeper water and the sunlit surface layer. Subpolar gyres Large cyclonic water masses in the Northern Hemisphere between the subtropical front and the polar front.

Tropical Pertaining to the regions that, under the influence of the Trade Winds, are permanently stratified.

Upwelling Upward vertical movement of water into the surface mixed layer produced by divergence of the surface waters.

Zooplankton Animals that float or drift with ocean currents; microzooplankton are protozoan plankton that graze on small phytoplankton; mesozooplankton are crustaceans that graze on larger phytoplankton such as diatoms.

See also

Antarctic Circumpolar Current. California and Alaska Currents. Canary and Portugal Currents. Ekman Transport and Pumping. El Niño Southern Oscillation (ENSO). El Niño Southern Oscillation (ENSO) Models. Fisheries and Climate. Iron Fertilization. Microbial Loops. Network Analysis of Food Webs. Nitrogen Cycle. Ocean Color from Satellites. Ocean Gyre Ecosystems. Pacific Ocean Equatorial Currents. Pelagic Biogeography. Pelagic Fishes. Plankton. Plankton and Climate.

Polar Ecosystems. Primary Production Distribution. Primary Production Processes. Redfield Ratio. Small Pelagic Species Fisheries. Somali Current.

Further Reading

- Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. *Science* 247: 198–201.
- Barber RT and Chavez FP (1983) Biological consequences of El Niño. *Science* 222: 1203–1210.
- Barber RT and Smith RL (1981) Coastal upwelling ecosystems. In: Longhurst A (ed.) Analysis of Marine Ecosystems, pp. 31–68. New York: Academic Press.
- Longhurst A (1998) *Ecological Geography of the Sea*. San Diego: Academic Press.
- Pauly D and Christensen V (1995) Primary production required to sustain global fisheries. *Nature* 374: 255-257.
- Richards FA (ed.) (1981) Coastal Upwelling. Washington, DC: American Geophysical Union.
- Ryther JH (1969) Photosynthesis and fish production in the sea. *Science* 166: 72-76.
- Smith RL (1992) Coastal upwelling in the modern ocean. In: Summerhayes CP, Prell WL and Emeis K-C (eds) Upwelling Systems: Evolution Since the Early Miocene, Geological Society Special Publication 64, pp. 9–28. London: The Geological Society.
- Summerhayes CP, Emeis, K-C, Angel MV, Smith RL and Zeitschel B (eds) Upwelling in the Ocean Modern Processes and Ancient Records. Chichester: Wiley.
- Sverdrup HU (1955) The place of physical oceanography in oceanographic research. *Journal of Marine Research* 14: 287.

URANIUM-THORIUM DECAY SERIES IN THE OCEANS OVERVIEW

M. M. R. van der Loeff, Alfred-Wegener-Institut für Polar und Meeresforschung, Bremerhaven, Germany

Copyright © 2001 Academic Press

doi:10.1006/rwos.2001.0168

Introduction

Natural radioactivity provides tracers in a wide range of characteristic timescales and reactivities, which can be used as tools to study the rate of reaction and transport processes in the ocean. Apart from cosmogenic nuclides and the long-lived radioisotope K-40, the natural radioactivity in the ocean is primarily derived from the decay series of three radionuclides that were produced in the period of nucleosynthesis preceding the birth of our solar system: Uranium-238, Thorium-232, and Uranium-235 (a fourth series, including Uranium-233, has already decayed away). The remaining activity of these so-called primordial nuclides in the Earth's crust, and the range of half-lives and reactivities of the elements in their decay schemes, control the present distribution of U-series nuclides in the ocean.

The Distribution of Radionuclides of the Uranium Thorium Series in the Ocean

Distribution of ²³⁸U, ²³⁵U, ²³⁴U, and ²³²Th (*see* Uranium–Thorium Series Isotopes in Ocean Profiles)

Uranium is supplied to the ocean by rivers. In sea water it is stabilized by a strong complexation as

uranyl carbonate UO₂(CO₃)₃⁴⁻, causing its long residence time in the ocean. U follows closely the distribution of salinity with 238 U (in dpml⁻¹) = 0.0704^* salinity. (Note: dpm = disintegrations per minute. The SI Unit Bq, 60 dpm = 1 Bq, is not used in the literature on natural radioactivity in the ocean.) Under anoxic conditions, U is reduced from the soluble (VI) to the insoluble (IV) oxidation state and rapidly removed from sea water. Reductive removal occurs especially in sediments underlying high productivity or low-oxygen bottom waters. Locally this may influence the U-salinity relationship. Salinity-corrected U contents have a variation of 3.8% in the world ocean and are about 1% higher in the Pacific than in the Atlantic Ocean. At lower salinities in estuaries, salinity-corrected U contents are much more variable as a result of removal and release processes and of interaction with organic complexants and colloids.

 235 U is chemically equivalent to 238 U and occurs with a 235 U/ 238 U activity ratio of 0.046. As a result of the preferential mobilization of 234 U during chemical weathering, the river supply of 234 U activity exceeds the supply of 238 U, causing a 234 U/ 238 U ratio in the ocean greater than unity. The isotopic composition of uranium in sea water with salinity 35 is shown in **Table 1**.

Like U, ²³²Th is a component of the Earth's crust and is present in the lithogenic fraction of every marine sediment. As a result of its high particle reactivity, Th is rapidly removed from the water column. The ²³²Th activity in the ocean is very low (around 3×10^{-5} dpm l⁻¹ or 0.1 ng/kg) and its distribution can be compared to that of other particlereactive elements like Al or Fe.

Distribution of Isotopes from the Three Decay Series

In all three decay series, isotopes of relatively soluble elements like U, Ra, and Rn, decay to isotopes of highly particle-reactive elements (Th, Pa, Po, Pb), and vice versa (Figure 1), resulting in widely different distributions in the water column (Table 2) (see

 $\label{eq:composition} \begin{array}{c} \textbf{Table 1} & \text{Average isotopic uranium composition of sea water} \\ \text{with salinity 35} \end{array}$

Parameter	Value	
$\begin{array}{l} {}^{235}U + {}^{238}U \text{ concentration} \\ {}^{235}U/{}^{238}U \text{ activity ratio} \\ {}^{234}U/{}^{238}U \text{ activity ratio} \\ {}^{130}Lope activity \\ {}^{238}U \\ {}^{234}U \end{array}$	3.238 ng g^{-1} 0.0460 1.144 ± 0.002 2.46 dpm I^{-1} 2.82 dpm I^{-1}	
²³⁵ U	0.113 dpm l ⁻¹	

Uranium-Thorium Series Isotopes in Ocean Profiles).

In a closed system, given enough time, all nuclides in a decay series reach secular equilibrium. This means that growth is balanced by decay, and that all intermediate nuclides have the same activity. In a natural open system, however, reaction and transport cause a separation between parent and daughter nuclides. The resulting disequilibria between parent and daughter nuclide can be used to calculate the rate of the responsible processes.

Disequilibrium: The Basis for Flux Calculations (Figure 2)

Mobile Parent with Particle-reactive Daughter (Table 3)

Tracers in this group are produced in the water column and removed on sinking particles, a process called scavenging. They allow us to determine particle transport rates in the ocean.

In a simple box model the total daughter activity (A_D^t) is determined by decay (decay constant $\lambda = \ln(2)/t_{1/2}$), ingrowth from the parent nuclide (activity A_p , production rate of daughter nuclide $P_D = \lambda A_p$) and removal on sinking particles J (Figure 3):

$$\frac{dA_{D}^{t}}{dt} = P_{D} - \lambda A_{D}^{t} - J = \lambda (A_{P} - A_{D}^{t}) - J \qquad [1]$$

In steady-state the flux is directly related to the depletion of the daughter with respect to the parent:

$$\mathbf{J} = \lambda (\mathbf{A}_{\mathbf{P}} - \mathbf{A}_{\mathbf{D}}^{\mathrm{t}})$$
 [2]

and the residence time of the daughter nuclide with respect to scavenging, τ_{sc} , is given by the quotient of activity and removal rate:

$$\tau_{\rm sc} = \frac{A_{\rm D}^{\rm t}}{J} = \frac{A_{\rm D}^{\rm t}}{\lambda (A_{\rm P} - A_{\rm D}^{\rm t})}$$
[3]

Elements in this group are described below.

Thorium ²³⁰Th is produced at a known rate from ²³⁴U in sea water. The highly reactive element is rapidly adsorbed onto particles and transported down in the water column when these particles sink out. As the adsorption is reversible, a steady-state distribution is achieved, in which both particulate and dissolved activities increase linearly with depth

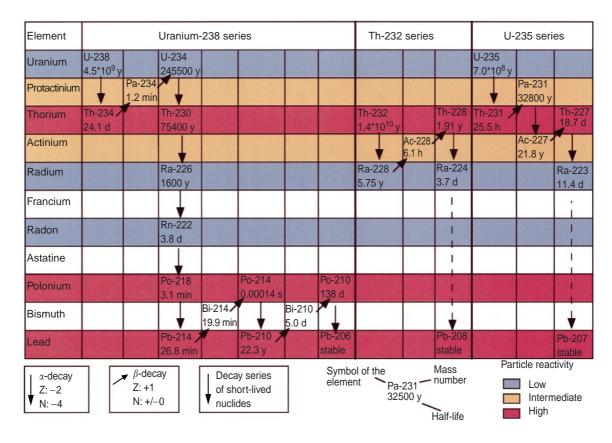
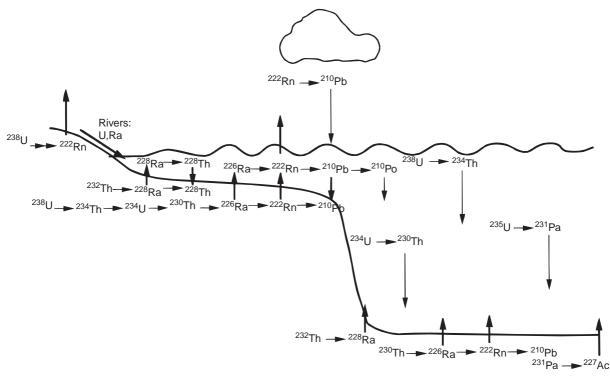


Figure 1 The natural uranium-thorium decay series, colored according to particle reactivity. The arrows represent decay with the changes in atomic number (Z) and number of nucleons (N) indicated. All three series end with a stable lead isotope.

(see Uranium–Thorium Series Isotopes in Ocean Profiles). At any depth, disregarding horizontal advection, the vertical flux of 230 Th_{xs} ('xs' meaning in excess of the activity supported by the parent nuclide, in this case the small amount of 234 U on the sinking particles) must equal its production from

Element	Scavenging	$K_{\rm d}~({\rm cm}^3{\rm g}^{-1})$	
	Deep sea	Surface ocean	
U	450 000		500
Pa	130	< 1	1 × 10 ⁶
Th	30	< 1	1 × 10 ⁷
Ac	decays (> 30)		$0.4-2 \times 10^5$
Ra	10	000	$0.2 – 3 \times 10^4$
Rn	decays	gas exchange with atmosphere	0
Pb	50-100	2	1×10^{7}
Po	decays (> 2)	0.6	2×10^7

 234 U in the overlying water column (depth z in meters), which amounts to:


$$P_{230} = \lambda_{230} A_{234} z = 9.19 \times 10^{-6} (y^{-1})$$

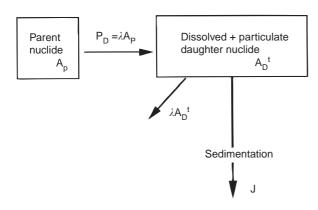
$$2820 (dpm m^{-3}) z(m) \qquad [4]$$

$$= 0.0259 z (dpm m^{-2} y^{-1})$$

This known, constant ²³⁰Th flux, depending only on water depth, is a powerful tool to quantify errors in the determination of rain rates of other components of the particle flux, either by sediment traps or through the accumulation rate of a marine sediment. The collection efficiency of sediment traps, known to be highly variable and dependent on trap design, turbulence, and flow rates, can be derived from a comparison of the intercepted ²³⁰Th flux F_{230} with the theoretical flux P_{230} (see below for a refinement of this procedure using ²³¹Pa). The vertical rain rate R_i of any component i of the particle flux can be derived from the ratio of the concentration C_i to the ²³⁰Th activity in the particles A_{230} , using:

$$R_{i} = \frac{C_{i}}{A_{230}} P_{230}$$
[5]

Figure 2 Schematic diagram of radioactive decay (horizontal arrows) and typical transport processes in ocean and atmosphere that can be traced by the nuclides described here (vertical arrows). (Adapted with permission from Ernst WG and Morin JG (eds) 1980 *The Environment of the Deep Sea.* Englewood Cliffs, NJ: Prentice Hall.)


In a similar way, the past flux of ²³⁰Th_{xs} to the sea floor, ⁰F₂₃₀, derived from decay-corrected ²³⁰Th activities (⁰A₂₃₀) in dated sediment core sections, can be compared to the theoretical rain rate. The ratio $\Psi = {}^{0}F_{230}/P_{230}$, the focusing factor, is used to determine to what extent the sediment core location has been subject to focusing or winnowing during certain geological periods. The preserved vertical rain rate of sediment components corrected for such redistribution effects follows in analogy to eqn [5]:

$$R_{i} = \frac{C_{i}}{{}^{0}A_{230}}P_{230}$$
 [6]

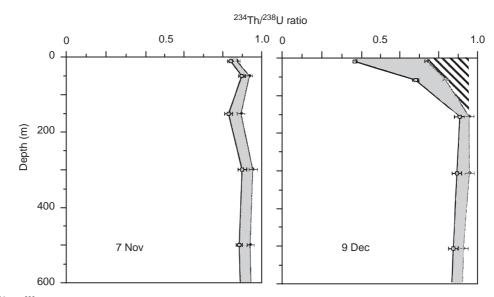
²³⁴Th is produced from the decay of ²³⁸U in sea water. In the deep ocean, approximately 3% of its activity is on particles and removal is so slow compared with its half-life (24.1 days) that total (dissolved + particulate) ²³⁴Th is in secular equilibrium with ²³⁸U. In coastal and productive surface waters, however, scavenging (**Figure 3**) causes a strong depletion of ²³⁴Th (**Figure 4**). Following eqn [2], the depth-integrated depletion in the surface water yields the export flux of ²³⁴Th. If required, the calculation can be refined to include advection and nonsteady-state situations. The resulting flux of ²³⁴Th out of the surface layer of the ocean is the most

Table 3 Isotope pairs with mobile parents and particle-reactive daughters

Mother	Daughter	Half-life	Source	Oceanographic applications
²³⁴ U	²³⁰ Th	75200 y	water column	sediment trap calibration, reconstruction of past vertical rain, sediment focusing
²³⁸ U	²³⁴ Th	24.1 d	water column	export production, calibration of shallow sediment trap resuspension budgets, bioturbation
²²⁸ Ra	²²⁸ Th	1.9 y	water column, in deep sea and continental shelf	scavenging in coastal waters, bioturbation
²³⁵ U	²³¹ Pa	32500 y	water column	boundary scavenging, paleoproductivity, refined sediment trap calibration
²²⁶ Ra ²¹⁰ Pb	²¹⁰ Pb ²¹⁰ Po	22.3 y 138 d	water column, atmosphere water column	boundary scavenging, bioturbation scavenging in surface ocean

Figure 3 Schematic diagram of the scavenging of a particlereactive daughter nuclide (decay constant λ) produced in the water column from a soluble parent.

suitable way to calibrate shallow sediment traps. The export flux of other constituents, like organic carbon or biogenic silica, can be derived from the export flux of ²³⁴Th if the ratio of these constituents to particulate ²³⁴Th in the vertical flux is known. This ratio is variable and depends, for example, on particle size, and the uncertainty in the determination of this ratio limits the quality of ²³⁴Th-based estimates of export production from the upper ocean.


A very similar situation exists near the seafloor, where resuspended sediment particles scavenge ²³⁴Th from the bottom water. The resulting depletion of ²³⁴Th in the benthic nepheloid layer (BNL) is a measure of the intensity of the resuspension-sedimentation cycle on a timescale of weeks. The tracer thus shows whether a nepheloid layer is advected over large distances or sustained by local resuspension.

Mass balance requires that the activity removed from surface waters and from the BNL is balanced by excess activities below (i.e. activities in excess of the activities supported by ²³⁸U). Excess activities have sometimes been observed in mineralization horizons in the water column below the euphotic zone and are common in the surface sediment. The distribution of excess ²³⁴Th in the sediment is used to calculate bioturbation rates on short timescales.

The half-life of 1.9 years makes ²²⁸Th useful as a tracer for particle flux on a seasonal or interannual timescale. However, due to the highly inhomogeneous distribution of its parent ²²⁸Ra, the interpretation is much more complicated than in the case of ²³⁴Th, for example.

As regards multiple Th isotopes as an in situ coagulometer, it has been shown that Th isotopes in the ocean are in reversible exchange between the particulate and dissolved form (Figure 5) and in steady-state, including radioactive decay we have:

$$\frac{A^{\text{part}}}{A^{\text{diss}}} = \frac{k_1}{\lambda + k_{-1}}$$
[7]

Figure 4 ²³⁴Th : ²³⁸U ratio before (left) and during (right) a plankton bloom in the Bransfield Strait, Antarctic Peninsula. The left profile in each diagram represents dissolved, the right profile total ²³⁴Th activities. More ²³⁴Th was adsorbed to particles (shaded) in the bloom. Total ²³⁴Th was probably in equilibrium with ²³⁸U in November, but became depleted in the surface water in December (hatched) due to particle export. (Adapted from Scavenging and particle flux: seasonal and regional variations in the Southern Ocean (Atlandic sector). *Marine Chemistry* 35, Rutgers van der Loeff and Berger, 553–567, Copyright (1991) with permission from Elsevier.)

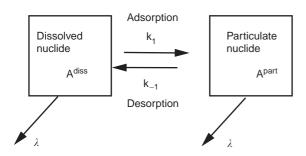
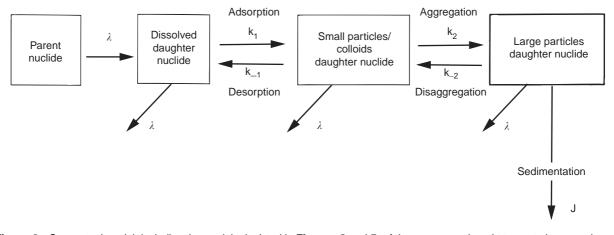


Figure 5 Box model of the reversible exchange between the dissolved and particulate form of a nuclide with adsorption and desorption rate constants k_1 and k_{-1} .

where A^{part} and A^{diss} are the particulate and dissolved activities, k_1 is the desorption rate constants. If the distribution of two or more isotopes (usually ²³⁴Th and ²³⁰Th or ²²⁸Th and ²³⁴Th) between dissolved and particulate forms is known, k1 and k_{-1} can be calculated. Values for $1/k_1$ derived for thorium are on the order of a month in bloom situations and >1 year in clear deep water, much longer than expected from adsorption theory. This is explained when thorium adsorbs to colloidal-sized particules and the rate limiting steps, which determine the distribution of the tracers over dissolved and filterable form, are the coagulation and disaggregation with rate constants k_2 and k_{-2} respectively (Figure 6). Thus, when aggregation is clearly slower than adsorption $(k_2 \ll k_1)$ thorium isotopes provide a way to derive particle aggregation rates in situ.

Protactinium ²³¹Pa is produced from the decay of ²³⁵U in sea water. The behavior of ²³¹Pa is very similar to that of ²³⁰Th, and these two uranium daughters are produced throughout the water


column in a constant activity ratio, given by the production rate of ²³¹Pa divided by the production rate of ²³⁰Th or $A_{235}\lambda_{231}/A_{234}\lambda_{230} = 0.093$. The major application of ²³¹Pa lies in the combined use of these two tracers, whose exact production ratio is known. The approximately 10 times lower reactivity of ²³¹Pa allows it to be transported laterally over larger distances than ²³⁰Th before being scavenged. The resulting basin-wide fractionation between ²³¹Pa and 230 Th is the basis for the use of the 231 Pa/ 230 Th ratio as a tracer of productivity. In areas of high particle flux the particles have a 231 Pa/ 230 Th ratio > 0.093, whereas particles sinking in low productivity gyres have a ratio < 0.093. The ²³¹Pa/²³⁰Th ratio stored in the sediment, after proper correction for decay since deposition, is a powerful tool for the reconstruction of paleoproductivity. The fractionation between Th and Pa depends on particle composition and has been found to be much lower when opal is abundant. The tracer loses much of its value in a diatom-dominated system like the Southern Ocean.

A related application of the ${}^{231}\text{Pa}/{}^{230}\text{Th}$ ratio is a correction to the ${}^{230}\text{Th}$ -based calibration of sediment trap efficiency. The removal of both nuclides from sea water can be divided into a vertically scavenged component (V₂₃₀; V₂₃₁) and a component transported horizontally by eddy mixing or advection (H₂₃₀; H₂₃₁) (Figure 7).

$$P_{230} = V_{230} + H_{230}$$
 [8]

$$P_{231} = V_{231} + H_{231}$$
 [9]

The calibration of sediment traps is based on the comparison of the intercepted 230 Th flux F_{230} with the predicted vertical flux V_{230} . In the original 230 Th-based calibration procedure (eqn [4]), H_{230} is

Figure 6 Conceptual model, including the models depicted in **Figures 3** and **5**, of the processes thought to control scavenging of radionuclides. (Adapted from Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. *Deep-Sea Research* 32, Bacon MP *et al.*, 273–286, Copyright 1985 with permission from Elsevier Science.)

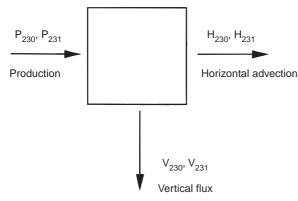


Figure 7 Box model used to derive the vertical flux of ²³⁰Th.

neglected and F_{230} is compared directly to the production rate P_{230} . Since P_{230} (eqn [4]) and P_{231} are known and the V_{230}/V_{231} ratio can be measured as the ²³⁰Th_{xs}/²³¹Pa_{xs} ratio in the sediment trap material, it is sufficient to estimate the H_{230}/H_{231} ratio from water column distributions to solve eqns [8] and [9] for V_{230} and obtain a refined estimate of trapping efficiency.

Lead ²¹⁰Pb (half-life 22.3 years) is produced from ²²²Rn, the immediate daughter of ²²⁶Ra. ²²²Rn emanation from land is the major source of ²¹⁰Pb deposition from the atmosphere (Figure 2). ²²²Rn emanation from surface sea water accounts for only 2% of ²²²Rn in the atmosphere, but is a significant source in remote areas like the Antarctic Ocean. Below the surface water, seawater ²²⁶Ra becomes the most important source.

The high particle reactivity makes ²¹⁰Pb a tracer for particle flux. This is shown most clearly by the good correlation between the fluxes of ²¹⁰Pb and of biogenic material in sediment traps. Thus, low ²¹⁰Pb activities (or ²¹⁰Pb/²²⁶Ra ratios) in surface and deep water, high ²¹⁰Pb fluxes in traps, and high inventories in the sediment all point to high particle fluxes and consequently high productivity. (Note, however, that in hemipelagic sediments in productive ocean areas the redox cycling of Mn can cause additional near-bottom scavenging of Pb.) Due to this removal on biogenic particles, ²¹⁰Pb shows strong boundary scavenging similar to ²³¹Pa, with accumulation rates in the sediments of productive (especially eastern) ocean boundaries that are far above local production and atmospheric deposition, whereas the flux to deep-sea sediments in oligotrophic central gyre regions can be very low. Consequently, the flux of ²¹⁰Pb into and its inventory in surface sediments is highly variable in space. But as long as the (yearly averaged) scavenging conditions do not change with time, the ²¹⁰Pb flux to the sediment at a certain location can be considered constant, a prerequisite for the interpretation of ²¹⁰Pb profiles to derive sedimentation and bioturbation rates.

Due to the relatively well-known production and input rates of ²¹⁰Pb, the scavenging residence time τ_{sc} can be derived from the distribution of ²¹⁰Pb in the ocean (compare eqn [3]). τ_{sc} was found to increase from about 2 years in the surface ocean to about 35 years in the deep Atlantic and 150 years in the deep Pacific, a result that is used to understand the behavior of stable lead. This illustrates how ²¹⁰Pb is a useful analog for stable lead, the study of which is complicated by the extreme risk of contamination (*see* Anthropogenic Trace Elements in the Ocean).

Polonium ²¹⁰Po, the immediate daughter of ²¹⁰Pb, is highly particle-reactive. The 138-day half-life of ²¹⁰Po makes the ²¹⁰Po/²¹⁰Pb tracer pair a suitable extension to ²³⁴Th as tracer for seasonal particle flux from the surface ocean. The non-homogeneous distribution and reactivity of the parent ²¹⁰Pb implies that ²¹⁰Po can only be used if concurrent accurate measurements are made of ²¹⁰Pb.

As a result of the strong affinity for organic material and cytoplasm, ²¹⁰Po accumulates in the food chain and ²¹⁰Po/²¹⁰Pb activity ratios from around 3 in phytoplankton to around 12 in zooplankton have been reported. A high excess ²¹⁰Po activity is therefore indicative of a pathway including zooplankton. The preference of Po for organic material in comparison with Pb and Th, which may adsorb on any surface, can be exploited to distinguish between the fluxes of organic carbon and other components of the particle flux.

Reactive Parent with Mobile Daughter (Table 4)

This type of tracer is used to quantify diffusion, advection, and mixing rates of water masses, for example, the distribution of 222 Rn near the seafloor. The parent, 226 Ra, has a far higher activity in marine sediments (222 Rn emanation rate A^{s}_{226} of order 100 dpm l⁻¹ wet sediment) than in the bottom water (A^{w}_{226} of order 0.2 dpm l⁻¹). This gradient causes a diffusion of the daughter 222 Rn from the sediment into the water column, and a typical vertical distribution as shown in **Figure 8**.

The distribution of 222 Rn, A₂₂₂, can be described by the diffusion-reaction equation:

$$\frac{dA_{222}}{dt} = \lambda (A_{226} - A_{222}) + D \frac{d^2 A_{222}}{dz^2}$$
[12]


Mother	Daughter	Half-life	Source	Oceanographic application
²³¹ Pa	²²⁷ Ac	22 y	deep-sea sediments	ocean circulation, upwelling
²³² Th	²²⁸ Ra	5.8 y	all terrigenous sediments	tracing of shelf water sources, mixing in deep-sea and surface water
²³⁰ Th	²²⁶ Ra	1600 y	deep-sea sediments	ocean circulation, ground-water inputs
²²⁸ Th	²²⁴ Ra	3.6 d	 ²³²Th (sediment) ²²⁸Ra (sediment + water column) 	mixing in shelf waters and estuaries
²²⁷ Th	²²³ Ra	11.4 d	 ²³⁵U (sediment) ²³¹Pa (sediment + water column) 	mixing in shelf waters and estuaries
²²⁶ Ra	²²² Rn	3.8 d	(deep-sea) sediments	mixing in bottom water, air-sea gas exchange, ground- water inputs

Table 4 Isotope pairs with a particle-reactive parent and a mobile daughter

where D is the diffusion coefficient. This yields in steady state:

$$A_{222} = A_{226} - (A_{222}^{\circ} - A_{226})e^{-\sqrt{(\lambda/D)}}z$$
[13]

A solution valid for the sediment and the water column (if z is defined positive as the distance to the interface), where A_{222}° signifies the ²²²Rn activity at

Figure 8 Generalized distribution of ²²⁶Ra and ²²²Rn in surface sediments and bottom water (note change in horizontal and vertical scales). The cumulative ²²²Rn depletion in the sediment (I_s, shaded) is balanced by the ²²²Rn excess in the bottom water (I_w, hatched). The vertical extent of the disequilibrium is 3 orders of magnitude larger in the water column than in the sediment, corresponding to the 6 orders of magnitude difference in diffusion coefficient (on the order of 10 cm² s⁻¹ in the bottom water as opposed to 10⁻⁵ cm² s⁻¹ in the sediment).

the interface (Figure 8). In the sediment, this corresponds to an integrated depletion of:

$$I_{s} = (A_{226}^{s} - A_{222}^{0}) \sqrt{\frac{D}{\lambda}}$$
 [14]

maintained by a ²²²Rn release rate of:

$$\mathbf{F}_{\mathrm{s}} = \lambda \mathbf{I}_{\mathrm{s}}$$
 [15]

In the water column, this flux causes an excess activity which is transported upwards by turbulent diffusion (coefficient K). The integrated ²²²Rn excess in the bottom water is given by:

$$I_{w} = (A_{222}^{0} - A_{226}^{w}) \sqrt{\frac{K}{\lambda}}$$
 [16]

maintained by a supply from the sediment

$$F_{\rm w} = \lambda I_{\rm w}$$
 [17]

Note that mass balance requires that $F_s = F_w$ and that the depletion in the sediment equals the excess in the water column ($I_s = I_w$). The example shows how the diffusion coefficient in the sediment and the vertical eddy diffusion coefficient in the bottom water can be derived from measurements of the vertical distribution of this tracer using eqn [13].

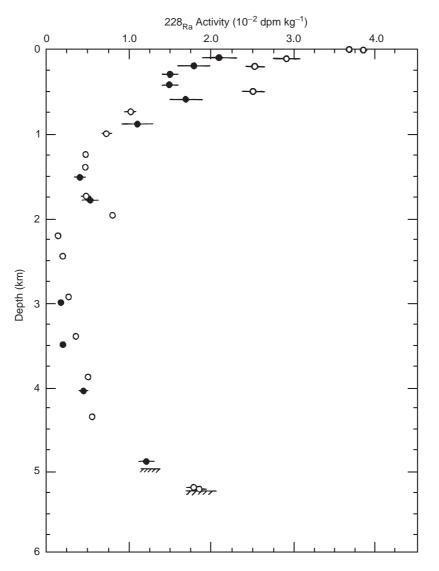
Elements in this group are described below.

Actinium ²²⁷Ac is produced by the decay of ²³¹Pa. Over 99% of ²³¹Pa produced in the water column resides in the sediment, with highest specific activities in slowly accumulating deep-sea sediments. As actinium is relatively mobile, it is released to the pore water and from there to the overlying water, very similar to the behavior of ²²⁶Ra and ²²⁸Ra. This

results in a strong signal from the deep seafloor on top of a background concentration, which is given by the distribution of ²³¹Pa in the ocean. The nuclide is therefore a potential tracer for vertical mixing and advection (e.g. upwelling) on a decennium timescale.

Radium Radium is relatively mobile and the major source of the isotope ²²⁶Ra is the production from the ²³⁰Th in the upper layer of sediments. Just like ²²⁷Ac, this source is strongest over deep-sea sediments with a slow accumulation rate. The intermediate reactivity of radium (Table 2) and its halflife (1600 years) in the order of the ocean mixing time (around 1000 years) explain its distribution as a 'biointermediate' element: ²²⁶Ra activities are low in surface waters but never become depleted. They increase with depth and with the age of water masses in the conveyor-belt circulation to reach highest values in the deep north Pacific around $340 \, \text{dpm m}^{-3}$. Extensive attempts in the GEOSECS program to use the isotope as a tracer of ocean circulation and water mass age proved unsuccessful as a result of the diffuse nature of the source. Even a normalization with barium, an element that can to a certain extent be regarded as a stable analog of radium, could not sufficiently account for this variation.

Ground waters sometimes have high ²²⁶Ra activities. The isotope can then be used to trace groundwater inputs to the coastal ocean.


²²⁸Ra is also produced in marine sediments, but in contrast to ²²⁶Ra and ²²⁷Ac, its parent ²³²Th is present in the terrigenous fraction of all sediments irrespective of water depth. In combination with the relatively short half-life (5.8 years), this results in a distribution in the open ocean with enhanced concentrations near the seafloor of the deep ocean and near the continental slope, while the activities can accumulate to highest values over extensive continental shelf areas. The vertical distribution in the deep sea (Figure 9) resembles the exponential decay that would be expected in a one-dimensional (1-D) model with the source in the seafloor, vertical mixing, and radioactive decay (eqn [13]). This would allow the tracer to be used to derive the vertical mixing rate in the deep ocean. However, it has been shown that even in a large ocean basin like the north-east Atlantic, horizontal mixing is so strong that the vertical distribution is influenced by inputs from slope sediments, making the 1-D model inadequate.

The inputs of shelf waters to the open ocean cause the high activities in the surface waters, illustrated by a typical profile in **Figure 9**. This surface water signal has a strong gradient from the continental shelf to the inner ocean, which has been used to derive horizontal eddy diffusion coefficients in a way analogous to eqn [13]. As the distribution of ²²⁸Ra has been shown to vary with time, a steady-state distribution can usually not be assumed, and a repeated sampling is required. Moreover, the horizontal distribution is affected by advection and vertical diffusion, making the interpretation rather complicated. The combination of various radium isotopes (see below), can alleviate some of these problems.

In surface current systems away from the continents, ²²⁸Ra becomes a powerful tracer for waters that have been in contact with the continental shelf. The ²²⁸Ra enrichment in surface waters in the equatorial Pacific point to shelf sources off New Guinea, from where the isotope is carried eastward in the North Equatorial Counter Current. In this plume, the vertical distribution of the isotope has been used to derive vertical mixing rates. A very high accumulation of ²²⁸Ra is observed in the transpolar drift in the central Arctic Ocean, a signal derived from the extensive Siberian shelves.

Due to their short half lives, ²²⁴Ra (3.4 days) and ²²³Ra (11.4 days) are interesting only in the immediate vicinity of their sources. In the open ocean they are close to secular equilibrium with their parents ²²⁸Th and ²²⁷Ac, but in coastal waters these tracers are being developed to study mixing rates. Their distribution is controlled here by sources in the estuary and on the shelf, mixing and decay. Horizontal mixing rates have been obtained from the distribution of ²²³Ra and ²²⁴Ra across the shelf using eqn [13]. As with ²²⁸Ra, this procedure is limited to cases where the mixing can be considered to be one-dimensional, but the steadystate requirement is more easily met at these short timescales. The ²²³Ra/²²⁴Ra activity ratio, which decays with a half-life of 5.4 days, yields the age of a water mass since its contact with the source, irrespective of the nature of the mixing process with offshore waters.

Radon With its half-life of 3.8 days, the readily soluble gas ²²²Rn is in secular equilibrium with its parent ²²⁶Ra in the interior ocean. At the boundaries of the ocean, however, inputs from sediments and release to the atmosphere create concentration gradients carrying useful kinetic information. The distribution of excess ²²²Rn near the seafloor is used to quantify vertical diffusion (see above, **Figure 8**) and ground-water inputs; the depletion of ²²²Rn in surface waters has been used to quantify the air-sea gas exchange rate.

Figure 9 Typical ²²⁸Ra activity profiles in the water column in the North Atlantic, showing the enrichment near the seafloor and in the surface water. (Adapted with permission from Ivanovich M and Harmon RS (eds) 1992 *Uranium-series Disequilibrium*, 2nd edn).

Summary

The accurate clocks provided by the uraniumthorium decay series enable us to extract rate information from the measurement of radioactive disequilibria in the ocean. Among the wide spectrum of available tracers, a mother-daughter pair with appropriate reactivities and half-lives can be found for a multitude of processes related to particle transport, water mass transport and mixing, and gas exchange (**Table 5**).

Glossary

Adiss	dissolved activity
Ap	parent activity

A^{part} particulate activity

 A_{222} $\overline{}^{\overline{2}22}$ Rn activity

- A^o₂₂₂ ²²²Rn activity at sediment-water interface
- A₂₂₆ ²²⁶Ra activity
- A^w₂₂₆ ²²⁶Ra activity in the bottom water
- A^s₂₂₆ radon emanation rate in sediment
- A₂₃₀ ²³⁰Th activity in the particles
- A_{234} activity of ²³⁴U
- ⁰A₂₃₀ decay-corrected ²³⁰Th activities
- A₂₃₅ ²³⁵U activity
- A_D^t total daughter activity
- C_i concentration of component i
- D diffusion coefficient
- F_s ²²²Rn release rate
- F_w ²²²Rn input rate

F ₂₃₀	intercepted ²³⁰ Th flux
${}^{0}F_{230}$	past flux of 230 Th _{xs} to the seafloor
H_{230}	horizontal flux of ²³⁰ Th
H_{230} H_{231}	horizontal flux of ²³¹ Pa
I_{s}	²²² Rn depletion in the sediment
I _s I _w	²²² Rn excess in the bottom water
J	sedimentaion rate
J K	turbulent diffusion coefficient
K K _d	particle-water partition coefficient
λ	decay constant
\mathbf{k}_1	adsorption rate constant
k_{-1}	desorption rate constant
k_2	coagulation rate constant
$\tilde{k_{-2}}$	disaggregation rate constant
N	number of nucleons
P _D	production rate
P ₂₃₀	production rate of ²³⁰ Th
²³¹ Pa _{xs}	excess activity of ²³¹ Pa
P ₂₃₁	production rate of ²³¹ Pa
t	time
$t_{1/2}$	half-life
230 Th _{xs}	excess activity of ²³⁰ Th
R_i	rain rate of component i
V_{230}	vertical flux of ²³⁰ Th
V ₂₃₁	vertical flux of ²³¹ Pa
Z	depth
Ζ	atomic number
λ_{230}	decay constant of ²³⁰ Th
λ_{231}	decay constant of ²³¹ Pa
$ au_{ m sc}$	scavenging residence time
Ψ	focusing factor

See also

Air–Sea Gas Exchange. Anthropogenic Trace Elements in the Ocean. Dispersion and Diffusion in the Deep Ocean. Hydrothermal Vent Fluids, Chemistry of. Nepheloid Layers. Ocean Margin Sediments. Sediment Chronologies. Sedimentary Record, Reconstruction of Productivity from the. Tracers of Ocean Productivity. Uranium–Thorium Series Isotopes in Ocean Profiles. **Table 5**Summary of the processes that can be investigatedusing the natural uranium-thorium decay series

Processes	Tracers
Particle fluxes	
Boundary scavenging	²³¹ Pa/ ²³⁰ Th, ²¹⁰ Pb
(Paleo) productivity	²³¹ Pa/ ²³⁰ Th, ²¹⁰ Pb
Export production	²³⁴ Th
Scavenging, trace metal behavior	²³⁴ Th, ²³⁰ Th, ²¹⁰ Pb, ²¹⁰ Po
Sediment trap efficiencies	²³⁴ Th, ²³⁰ Th, ²³¹ Pa
Aggregation rates of particles and colloids	Joint Th isotopes
Sediment redistribution in bottom water	²³⁰ Th
Resuspension near seafloor	²³⁴ Th, ²¹⁰ Pb
Water masses	
Shelf interaction/horizontal mixing rates	²²⁸ Ra, ²²⁴ Ra, ²²³ Ra
Vertical mixing rates	²²² Rn, ²²⁸ Ra, ²²⁷ Ac
Upwelling	²²⁷ Ac
Ground-water inputs	²²⁶ Ra, ²²² Rn
Gas exchange	
Exchange with atmosphere	²²² Rn

Further Reading

- Bacon MP and Anderson RF (1982) Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. *Journal of Geophysical Research* 87: 2045–2056.
- Broecker WS and Peng T-H (1982) *Tracers in the Sea*. Columbia University, New York: Lamont-Doherty Geological Observatory. Eldigio Press.
- Cochran JK (1992) The oceanic chemistry of the Uranium and Thorium-series nuclides. In: Ivanovich M and Harmon RS (eds) Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd edn, pp. 334–395. Oxford: Clarendon Press.
- Firestone RB (1998) *Table of Isotopes*, 8th edn. In: Baglin CM (ed) and Chu SYF (CD-ROM ed) New York: Wiley.
- Grasshoff K, Kremling K and Ehrhardt M (1999) Methods of Seawater Analysis, 3rd edn, pp. 365-397. Weinheim: Wiley-VCH.
- Santschi PH and Honeyman BD (1991) Radioisotopes as tracers for the interactions between trace elements, colloids and particles in natural waters. In: Vernet J-P (ed.) *Trace Metals in the Environment 1. Heavy Metals in the Environment*, pp. 229–246. Amsterdam: Elsevier.