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Preface

Reports of extreme wave events in seas and oceans come about almost each week.
Extreme water waves investigated in this book involve mainly rogue waves, but
tsunami waves and storm waves are also considered. Several catalogues of extreme
events like rogue waves observed in the World Ocean have been recently pub-
lished.1 For instance, during 2006–2010, 106 events can be classified as anomalous
high short-lived waves. They occurred in deep and shallow waters, and also on the
coast. Perhaps, one of the last events occurred on February 17, 2014 with ship
“Marco Polo” on its route from the Azores to its home port in Tilbury, England, and
it was carrying 735 passengers and 349 crew. A large wave hit the side of the ship
between 1 and 2 p.m. local time at adverse sea conditions and killed one passenger
and injured the second one.

There are a number of physical mechanisms that focus the water wave energy
into a small area and produce the occurrence of extreme waves called freak or rogue
waves. These events may be due to wave instability (modulational or Benjamin-Feir
instability), chaotic behavior, dispersion (frequency modulation), refraction (pres-
ence of variable currents or bottom topography), soliton interactions, crossing seas,
wind–wave interaction, etc. These giant waves are a real danger to ships and
platforms, causing accidents with human losses. Tsunami waves are generally due
to seismic motion of the sea bottom and less frequently due to underwater or
subaerial landslides. Herein, the emphasis is put on tsunami waves generated by

1Liu, P.C. A chronology of freaque wave encounters. Geofizica, 2007, vol. 24, 57–70.
Didenkulova, I.I., Slunyaev, A.V., Pelinovsky, E.N., and Kharif, Ch. Freak waves in 2005. Natural
Hazards Earth Syst. Sci. 2006, vol. 6, 1007–1015.
Nikolkina, I. and Didenkulova, I. Rogue waves in 2006–2010. Natural Hazards Earth Syst. Sci.
2011. vol. 11, 2913–2924.
Baschek, B., and Imai, J. 2011. Rogue wave observations off the US West Coast. Oceanography.
2011, vol. 24, 158–165.
Nikolkina, I. and Didenkulova, I. Catalogue of rogue waves reported in media in 2006–2010.
Natural Hazards. 2012. vol. 61, 989–1006.
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subaerial collapse of granular media. These waves may cause important damages in
coastal areas and loss of life.

Extreme waves have been intensively studied during the past decades, and the
European Geophysical Union organizes each year a special section “Extreme
Waves.” This book contains invited papers written mainly on the basis of works
presented during the General Assembly of the European Geosciences Union in
Vienna, plus five new invited papers which concern more recent researches on the
present subject. In the paper “Rogue Waves in Higher Order Nonlinear Schrödinger
Models” by C.M. Schober and A. Calini, it is demonstrated that a chaotic sea state
appears to be an important mechanism for both generation and increased likelihood
of rogue waves. In the paper “Freak-Waves: Compact Equation Versus Fully
Nonlinear One” A.I. Dyachenko, D.I. Kachulin, and V.E. Zakharov derive an
approximate equation which is compared to the fully nonlinear system. The compact
equation is shown to describe correctly strongly nonlinear phenomena such as rogue
waves due to modulational instability. L. Fernandez, M. Onorato, J. Monbaliu, and
A. Toffoli in their paper “Occurrence of Extreme Waves in Finite Water Depth”
discuss laboratory experiments in a large wave basin, numerical simulations with a
truncated form of the potential Euler equations, and field experiments at the Lake
George experimental site (Australia) to assess the role of third-order nonlinearity,
namely the modulational instability, on water wave statistics. Existence of various
shapes of rogue waves in shallow water is discussed in the paper “Modeling of
Rogue Wave Shapes in Shallow Water” by T. Talipova, C. Kharif, and
J.P. Giovanangeli. They pointed out that variable-polarity shape of a rogue wave is
more probable than only one crest or one trough. The occurrence of extreme waves
in shallow water is investigated in the paper “Non-Gaussian Properties of Shallow
Water Waves in Crossing Seas” by A. Toffoli, M. Onorato, A.R. Osborne, and
J. Monbaliu. They show that the interaction of two crossing wave trains generates
steep and high amplitude peaks, thus enhancing the deviation of the surface eleva-
tion from the Gaussian statistics. The relation between observations and freak wave
theories is examined in the paper “Searching for Factors that Limit Observed
Extreme Maximum Wave Height Distributions in the North Sea” by G. Burgers,
F. Koek, H. de Vries, and M. Stam. Observations indicate that steepness is a limiting
factor for extreme wave height and at shallow water locations, extreme waves are not
more frequently observed than at deep water locations. Average wave conditions,
their variations, and extreme wave storms in the Baltic Sea are studied, based on
long-term time series in the paper “Extremes and Decadal Variations in the Baltic
Sea Wave Conditions” by T. Soomere. Significant wave heights, HS, more than 4 m
in the Baltic Sea occur with a probability of about 1 % and extreme wave conditions
with HS > 7 m approximately twice in a decade. The overall recorded maximum
significant wave height is 8.2 m. The possibility of appearance of freak waves on a
beach is analyzed in the paper “Runup of Long Irregular Waves on Plane Beach” by
I. Didenkulova, E. Pelinovsky, and A. Sergeeva. It is shown that the average runup
height of waves with a wide spectrum is higher than that of waves with a narrow
spectrum. In the paper “Numerical Study for Run-Up of Breaking Waves of
Different Polarities on a Sloping Beach” by A. Rodin, I. Didenkulova, and
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E. Pelinovsky the transformation and run-up of breaking solitary waves propagating
on a sloping bottom is investigated numerically within the framework of the non-
linear shallow water equations (St-Venant equations). For high wave amplitude they
studied how the wave transforms into a bore (shock wave). In the paper “Tsunami
Waves Generated by Cliff Collapse: Comparison Between Experiments and
Triphasic Simulations” S. Viroulet, A. Sauret, O. Kimmoun, and C. Kharif inves-
tigate tsunami waves due to subaerial or submarine landslides both experimentally
and numerically. They discuss recent experimental results on granular collapse in
water and the influence of the physical parameters on the amplitude of the tsunami
waves; such waves of landslide origin cannot be predicted. Waves of huge ampli-
tudes can appear in the deepest layers of the ocean and the possible shapes of such
waves in two-layer fluid is described in the paper “An Analytical Model of Large
Amplitude Internal Solitary Waves” by N.I. Makarenko and J.L. Maltseva. Special
analysis of nonlinear resonances between water waves is given in the paper
“Symbolic Computation for Nonlinear Wave Resonances” by E. Tobisch
(Kartashova), C. Raab, Ch. Feurer, G. Mayrhofer, and W. Schreiner. They argue the
important role of nonlinear resonances in the wave dynamics that can be used to
simplify the governing equations.

The book is written for specialists in the fields of fluid mechanics, applied
mathematics, nonlinear physics, physical oceanography, and geophysics, and also
for students learning these subjects.

Efim Pelinovsky
Christian Kharif
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Rogue Waves in Higher Order Nonlinear
Schrödinger Models

Constance M. Schober and Annalisa Calini

Abstract We discuss physical and statistical properties of rogue wave generation
in deep water from the perspective of the focusing Nonlinear Schrödinger equation
and some of its higher order generalizations. Numerical investigations and analyt-
ical arguments based on the inverse spectral theory of the underlying integrable
model, perturbation analysis, and statistical methods provide a coherent picture of
rogue waves associated with nonlinear focusing events. Homoclinic orbits of unsta-
ble solutions of the underlying integrable model are certainly candidates for extreme
waves, however, for more realistic models such as the modified Dysthe equation two
novel features emerge: (a) a chaotic sea state appears to be an important mecha-
nism for both generation and increased likelihood of rogue waves; (b) the extreme
waves intermittently emerging from the chaotic background can be correlated with
the homoclinic orbits characterized by maximal coalescence of their spatial modes.

1 Introduction

Among the various mechanisms for wave amplification under different physical
conditions, the Benjamin–Feir (BF) instability and nonlinear self-focusing are often
proposed in relation to rogue wave generation in deep water. In particular, the work
of Henderson et al. (1999) suggests that excitation of certain breather-like solutions
of the focusing nonlinear Schr̈odinger (NLS) equation

iut + uxx + 2|u|2u = 0, (1)

triggers the formation of rogue waves. Trulsen and Dysthe’s analysis (1997b) of the
sea state during the famousNewYearWave event recorded at theNorth SeaDraupner

C.M. Schober (B)
Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
e-mail: cschober@mail.ucf.edu; drschober@gmail.com
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2 C.M. Schober and A. Calini

Fig. 1 Time series of the
surface elevation of the 1995
New Year Wave Event
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Platform in 1995 (see Fig. 1) shows a weakly nonlinear wave train with a relatively
narrow frequency bandwidth, thus supporting the use of the focusing NLS equation
as a basic model for studying rogue waves in deep water.

A stability analysis of solutions of the NLS equation shows that low frequency
modes may become unstable and that the number of unstable modes increases with
the amplitude of the carrier wave. Homoclinic orbits of unstable NLS solutions,
including those of an unstable Stokes wave, exhibit many of the properties observed
in rogue waves (Osborne et al. 2000; Calini and Schober 2002; Karjanto 2006).
However, generic homoclinic orbits of unstable solutions of the NLS equation are
unlikely to be physically observable in more realistic models of deep water wave
dynamics (for example, those described by higher order generalizations of the NLS
equation). It is thus important to develop criteria for roguewave formation for general
sea states, to investigate whether proximity to unstable solutions of the integrable
model can be correlated to rogue wave generation, and to determine the robustness
of the homoclinic orbits under physically meaningful perturbations.

A more realistic description of deep water wave dynamics is provided by the
Modified Dysthe (MD) equation,

iut + uxx + 2|u|2u + iε1/2
(
1

2
uxxx − 6|u|2ux + u2u∗

x − 2ui
[

H
(
|u|2

)]
x

)

+ ε
5

16
u4x + iε3/2

7

32
u5x = 0,

introduced by Trulsen and Dysthe (1996, 1997a) by retaining higher order terms in
the asymptotic expansion of the surface wave displacement. (Here H( f ) denotes the
Hilbert transform of the function f .)

Laboratory experiments conducted in conjunction with numerical simulations by
the first author and her collaborators (Ablowitz et al. 2000, 2001), established that, for
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higher order generalizations of the NLS equations, the generic long-time dynamics
of initial data near an unstable Stokes wave with two unstable modes is chaotic.
Further numerical investigations of the MD equation revealed that for a general class
of such initial data, high amplitude coherent structures arise intermittently above the
chaotic background (Calini andSchober 2002).Remarkably, these emerging coherent
structures are structurally similar to maximal homoclinic orbits of the unperturbed
Stokes wave with coalesced spatial phases (which are also the homoclinic orbits
of maximal amplitude). Such optimally phase modulated homoclinic solutions of
the NLS equation appear to be the only homoclinic solutions which persist under
perturbations, their persistence being independent of phase selection of the initial
conditions (Calini and Schober 2002; Schober 2006). In other words, a chaotic sea
state due to proximity to unstable NLS solutions appears to increase the occurrence
of rogue waves, enhance focusing effects, and select, among homoclinic solutions,
those that are good candidates for modeling physically observable rogue waves.

In order to analyze this phenomenon in more detail, we regard the MD equation
as a perturbation of the NLS equation. A combination of tools from the integrable
theory of the NLS equation, and a formal extension of the Melnikov method for
perturbations of Hamiltonian systems with homoclinic structures are used to address
both structural and statistical properties of the observed rogue waves.

In Sect. 2 we review elements of the periodic theory for the integrable NLS equa-
tion, the analytical construction of homoclinic solutions (from low-dimensional to
maximal homoclinicmanifolds) of the unstable Stokeswave, anddiscusswave ampli-
fication due to phase coalescence, as well as the relation between phase singularities,
wave compression, and wave amplification.

In Sect. 3 we study the effects of homoclinic chaos on rogue wave generation,
and discuss numerical simulations of the MD equation (8) and its restriction to
spatially symmetric wave trains (See e.g., Fig. 5b.). “Noisy” rogue waves emerge
intermittently above a chaotic background: we discuss how the likelihood of rogue
wave occurrence as well as wave focusing are found to increase in the chaotic regime.

In Sect. 4 we present a formal Melnikov-type calculation aimed at explaining the
persistence of optimally phase modulated homoclinic orbits during the perturbed
chaotic dynamics. These persisting coherent structures are thus natural candidates
for the physically observable rogue waves.

The remaining sections use a statistical approach (in combinationwith the periodic
theory of the integrable NLS), to develop a criterion for rogue wave prediction, and
a statistical description of rogue waves associated with homoclinic chaos in both the
NLS and MD models.

In Sect. 5, we discuss rogue wave generation for random sea states characterized
by the Joint North Sea Wave Project (JONSWAP) power spectrum. The JONSWAP
spectrum was introduced to describe developing sea states with ongoing nonlinear
wave-wave interactions (Ochi 1998; Bridges and Derks 1999). A spectral quantity,
the “splitting distance” between simple periodic points of the Floquet spectrum of
an initial condition in a neighborhood of an unstable NLS solution, is proposed as
a measurement of the proximity in spectral space to unstable waves and homoclinic
data. For regimes in which few (two or three) unstable modes are present, hundreds
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of realizations of JONSWAP type initial data show that, in both the pure NLS and
the MD models, rogue waves develop for small splitting distance, and do not when
the splitting distance is large (Islas and Schober 2005).

In the final section, a statistical interpretation of rogue waves in both the NLS
and MD equations is provided. Using the third and fourth statistical moments of
the wave elevation for sea states characterized by JONSWAP spectra with random
phases, we examine dependence of skewness, kurtosis, and likelihood of roguewaves
on the proximity to unstable waves and homoclinic data. Extensive numerical studies
reveal that wave strength, skeweness, and kurtosis all increase as the spectral splitting
distance decreases, thus supporting the claim that modulational instability is not only
an important mechanism for rogue wave generation, but also a significant source of
non-Gaussianity in the water wave statistics. Finally, consistent with the numerical
and analytical studies described in the first part of this article, statistically, the NLS
equation appears to under predict, as compared to theMD equation, both the strength
and likelihood of rogue waves.

2 Background

As is well known, the nonlinear Schrödinger (NLS) equation is equivalent to the
solvability condition of the AKNS system, the pair of first-order linear systems
(Zakharov and Shabat 1972):

L(x)φ = 0, L(t)φ = 0, (2)

for a vector-valued function φ. The linear operators on the left-hand sides of (2) are

L(x) =
(

∂x + iλ −u
u∗ ∂x − iλ

)
,L(t) =

(
∂t + i(2λ2 − |u|2) −2λu − iux

2λu∗ − iu∗
x ∂t − i(2λ2 − |u|2)

)
,

and depend on x and t through the NLS potential u and on the spectral parameter λ.
The nonlinear spectral decomposition of an NLS initial condition (or in general

of an ensemble of JONSWAP initial data) is based on the inverse spectral theory
of the NLS equation. For periodic boundary conditions u(x + L , t) = u(x, t), the
Floquet spectrum associated with an NLS potential u (i.e., the spectrum of the linear
operatorL(x) at u) can be described in terms of theFloquet discriminant of u, defined
as the trace of the transfer matrix of a fundamental matrix solution Φ of (2) over the
interval [0, L] (Ablowitz and Segur 1981):

Δ(u;λ) = Trace(Φ(x, t;λ)−1Φ(x + L , t;λ)).
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Then, the Floquet spectrum is defined as the region

σ(u) = {λ ∈ IC | Δ(u;λ) ∈ IR,−2 ≤ Δ ≤ 2}.

Points of the continuous spectrum of u are those for which the eigenvalues of the
transfer matrix have unit modulus, and therefore Δ(u;λ) is real and between −2
and 2; in particular, the real line is part of the continuous spectrum. Points of the
L-periodic/antiperiodic discrete spectrum of u are those for which the eigenvalues
of the transfer matrix are ±1, equivalently Δ(u;λ) = ±2. Points of the discrete
spectrum which are embedded in a continuous band of spectrum have to be critical
points for the Floquet discriminant (i.e., dΔ/dλ must vanish at such points).

Because the transfer matrix only changes by conjugation when we shift in x or t ,
Δ is independent of those variables. An important consequence of this observation
is that the Floquet discriminant is invariant under the NLS flow, and thus encodes an
infinite family of constants of motion (parametrized by λ).

The continuous part of Floquet spectrum of a generic NLS potential consists
of the real axis and of complex bands terminating in simple points λs

j (at which
Δ = ±2,Δ′ �= 0). The N-phase potentials are those characterized by a finite number
of bands of continuous spectrum (or a finite number of simple points). Figure2 shows
the spectrum of a typical N -phase potential: complex critical points (usually double
points of the discrete spectrum for which Δ′ = 0 and Δ′′ �= 0), such as the one
appearing in the figure, are in general associated with linear instabilities of u and
label its homoclinic orbits (Ercolani et al. 1990). Figure8a shows spectrum of an
N -phase potential near the one shown in Fig. 2: the complex double point has split
into a pair of simple points; such a potential possesses no linear unstable modes
(simple points and real double points are in general associated with neutrally stable
modes).

Fig. 2 Spectrum of an
unstable N-phase solution.
The simple periodic
eigenvalues are labeled by
circles and the double points
by crosses

λ−plane
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2.1 Homoclinic Solutions of the NLS Equation as Candidates
for Rogue Waves

Modulationally unstable solutions of the NLS equation (e.g. N -phase solutions
whose Floquet spectra have complex double points) have homoclinic orbits that can
undergo large amplitude excursions away from their target solution. Such homoclinic
orbits can be used as models of rogue waves.

An important (and the simplest) example of unstable NLS solution is the plane
(or Stokes) wave potential

ua(x, t) = ae2ia2t . (3)

Elementary Fourier analysis shows that the planewave is unstablewhen its amplitude
a is sufficiently large: in fact, for 0 < πn/L < a, the solution of the linearized NLS
equation about ua has M linearly unstable modes (UMs) eσn t+2πnx/L with growth
rates σn given by

σ2
n = μ2

n(μ2
n − 4a2), μn = 2πn/L ,

where M is the largest integer satisfying 0 < M < aL/π.

One can also check (see e.g. Calini and Schober 2002) that for 0 < πn/L < 0
the Floquet spectrum of the plane wave potential ua has exactly M complex double
points, each “labeling” an associated unstable mode.

Using Bäcklund transformations (McLaughlin and Schober 1992; Matveev and
Salle 1991) one can in principle construct the family of homoclinic orbits of an
unstable NLS potential. In fact, this method gives explicit formulas for homoclinic
orbits of N -phase solutions, although their expressions become rather complicated
for N > 2. For NLS potentials with several unstable modes, iterated Bäcklund
transformations will generate their entire stable and unstable manifolds, comprised
of homoclinic orbits of increasing dimension up to the dimension of the invariant
manifolds. Such higher-dimensional homoclinic orbits associated with two or more
UMs are also known as combination homoclinic orbits.

A single (i.e., lowest dimensional) homoclinic orbit of the plane wave potential
is given by

u(x, t) = ae−2ia2t 1 + 2 cos(px)eσn t+2iφ+ρ + Ae2σn t+4iφ+2ρ

1 + 2 cos(px)eσ1t+ρ + Ae2σn t+2ρ , (4)

where A = 1/ cos2 φ, σn = ±p
√
4a2 − p2, φ = sin−1(p/2a), and p = μn =

2πn/L < a for some integer n. Each UM has an associated homoclinic orbit char-
acterized by the mode p = μn .

Figure3 shows the space-time plot of the amplitude |u(x, t)| of a homoclinic
orbit with one UM, for a = 0.5, L = 2

√
2 and p = 2π/L . As t → ±∞, solution

(4) limits to the plane wave potential; in fact, the plane wave behavior dominates
the dynamics of the homoclinic solution for most of its lifetime. As t approaches
t0 = 0, nonlinear focusing occurs due to the BF instability and the solution rises
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Fig. 3 Analytical rogue
wave solution of the NLS
corresponding to one UM
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to a maximum height of 2.4a. Thus, the homoclinic solution with one UM can be
regarded as the simplest model of rogue wave.

An almost equally dramaticwave trough occurs close to the crest of the roguewave
as a result of wave compression due towave dislocation. The amplitude amplification
factor is given by

f = maxx∈[0,L], t∈IR|u(x, t)|
limt→±∞ |u(x, t)| ≈ 2.4. (5)

In general, f depends upon the wavenumber of the modulation. As the wave number
decreases, the amplification factor increases to the limiting value

fmax = lim
κ→0+ f (κ) = 3, (6)

although the waves take longer to reach their maximum height since their growth
rate is smaller (Akhmediev et al. 1988).

2.2 Phase Modulated Rogue Waves

As the number ofUMs increases, the space-time structure of the homoclinic solutions
becomes more complex. When two or more UMs are present the initial wave train
can be phase modulated to produce additional focusing.

The family of homoclinic orbits of the plane wave potential with two UMs is
given by an expression of the form

u(x, t) = ae2ia2t g(x, t)

f (x, t)
, (7)

where f (x, t) andg(x, t)dependon the two spatialmodes cos(2nπx/L), cos(2mπx/L),
and on temporal exponential factors exp(σnt +ρn), exp(σmt +ρm), with growth rates
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Fig. 4 Rogue wave solutions of the NLS corresponding to two unstable modes a without phase
modulation (ρ = −1), and b with phase modulation (ρ = −0.65)

σl = μl

√
μ2

l − 4a2, μl = 2πl/L . (The complete formulas can be found in Calini
et al. 1996, Calini and Schober 2002.)

As in the one UM case, this combination homoclinic orbit decays to the plane
wave potential as t → ±∞, and the associated rogue wave remains hidden beneath
the background plane wave for most of its lifetime. The temporal separation of the
two spatial modes depends upon a parameter ρ related to the difference ρn − ρm in
the temporal phases (Calini et al. 1996; Calini and Schober 2002).

In turn, ρ affects the amplitude amplification factor. Figures4a, b show the com-
bination homoclinic orbit (7) obtained with all parameters set equal except for ρ.
In Fig. 4a, ρ = 0.1, the modes are well separated, and the amplitude amplification
factor is roughly three. In Fig. 4b, the value of ρ is approximately−0.65, correspond-
ing to the two UMs being simultaneously excited or coalesced. At such ρ-value the
amplitude amplification factor is maximal and the rogue wave rises to a height of 4.1
times the height of the carrier wave (whose maximum height is 2.1).

Note that Fig. 4a shows focusing due to only weak amplitude modulation of the
initial wave train; the growth in amplitude beginning at t ≈ −5 and at t ≈ 10 is due
to the BF instability. However, in Fig. 4b focusing due to both amplitude and phase
modulation occurs. The amplitude growth at t ≈ −5 is due to the BF instability,
while the additional very rapid focusing at t ≈ 3.4 is due to the phase modulation.
In general, it is possible to select the phases in a combination homoclinic orbit with
N spatial modes so that any number n (2 ≤ n ≤ N ) of modes coalesce at some fixed
time.

3 Noisy Rogue Waves

TheBroadBandwidthModifiedNLS equationwas introduced byTrulsen andDysthe
(1996) as a higher order asymptotic approximation of slowly modulated periodic
wave trains in deep water, assuming that the wave slope ka (where k is the wave
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number, and a the size of the initial displacement) is O(ε), while the bandwidth
|Δk|/k and the quantity (kh)−1 (where h is the water depth) areO(ε1/2). The result-
ing Modified Dysthe (MD) equation

iut + uxx + 2|u|2u + iε1/2
(
1

2
uxxx − 6|u|2ux + u2u∗

x − 2ui
[

H
(
|u|2

)]
x

)
+

+ ε
5

16
u4x + iε3/2

7

32
u5x = 0, (8)

is the starting point of our numerical experiments, aimed at investigating the robust-
ness of homoclinic solutions of the NLS equation, as well as the likelihood of rogue
wave generation, when higher order terms are introduced in the wave dynamics.

We choose initial data for solutions with two and three UMs; for example, in the
two-UM regime, the initial condition has the form

u(x, 0) = a

[
1 + 4i

(
ε1 sin φ1eiφ1 cos(

2πx

L
) + ε2 sin φ2eiφ2 cos(

4πx

L
)

)]
,

where the parameters φi ’s are varied to explore a neighborhood of the unstable plane
wave potential.

Figure5a illustrates a striking rogue wave solution of Eq. (8) for ε1 = 10−4 and
ε2 = 10−5. The solution rapidly becomes chaotic (around t = 31) and exhibits an
irregular dynamics for a long time afterwards. At t ≈ 471.2 a rogue wave rises from
the plane wave state, developing a crest of amplitude approximately equal to four
times the background wave height. The structure of this rogue wave is remarkably
similar to that of the combination homoclinic solution (7) with coalesced spatial
modes obtained when ρ = −0.65. (Compare Fig. 5a with Fig. 4b.)

Numerical simulations of theMD equation in the three-UM regime show a similar
phenomenon: after the onset of chaotic dynamics, rogue waves rise intermittently
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Fig. 5 Rogue waves solutions for the even MD equation when a two and b three unstable modes
are present
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above the chaotic background (see Fig. 5b). At t ≈ 208 a rogue wave develops with a
wave amplitude amplification factor of almost five. Again, the emerging rogue wave
is close to the optimally phase modulated NLS homoclinic solution in the three-UM
regime.

Extensive numerical experiments were performed for both the full MD model
and its restriction to spatially even potentials (see Sect. 4) in the two- and three-
UM regime, varying both perturbation strength ε and the values of the parameters
φi ’s in the initial data. In all cases, the coalesced homoclinic NLS solution emerges
generically as a structurally stable feature of the perturbed dynamics.

We observe how the chaotic regime produces additional focusing by effectively
selecting optimal phase modulation, and how the chaotic dynamics singles out the
maximally coalesced homoclinic solutions of the unperturbedNLS equation as phys-
ically observable rogue waves. Moreover, (see e.g. Fig. 5) larger amplitude waves,
and more of them, are obtained for the MD equation, as also supported by the diag-
nostics developed in Sect. 5, correlating wave strengths in the NLS and MD models
to proximity to homoclinic data. Thus, the underlying chaotic dynamics of the MD
equation appears to increase the likelihood of rogue wave generation and to favor
occurrence of large amplitude rogue waves, as compared to predictions obtained
from the NLS equation.

4 Melnikov Analysis

In order to better understand the emergence of the coalesced homoclinic orbit in
the chaotic dynamics described by the MD equation, we use perturbation methods
to construct appropriate measurements of the splitting distance of the stable and
unstable manifolds of a plane wave solution with two unstable modes. In this section,
we briefly describe the main ingredients of the ensuingMelnikov analysis; the reader
is referred to Calini and Schober (2002) for full details.

We consider, the following restriction of theMD equation to spatially even poten-
tials u(x, t) = u(−x, t):

iut + uxx + 2|u|2u = εuxxxx . (9)

Equation (9) can be regarded as a Hamiltonian dynamical system on an appropriate
Sobolev space of even, periodic functions, with Hamiltonian functional Hε(u) =∫ L

0
(|ux | − |u|4 − ε|uxx |2) dx, and an additional conserved functional given by the

L2-norm I (u) =
∫ L

0
|u|2 dx .

For ε = 0, we consider a plane wave potential ua with two UMs (equivalently,
with two complex double points): linear analysis shows that ua possesses two-
dimensional stable and unstable eigenspaces and an infinite number of center modes
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(characterized by complex conjugate pairs of imaginary eigenvalues). Its center-
stable and center-unstable invariant manifolds coincide and have codimension two.
(In fact, they are explicitly parametrized in terms of the homoclinic solution (7).)

When ε �= 0, the plane wave potential persists as a solution of the perturbed
equation, and its perturbed center-stable and center-unstable manifolds generically
split. In finite-dimensional situations, invariant manifolds of unstable solutions can
split under perturbation and intersect transversally. Such transversal intersections
are often associated with chaotic behavior and with persistence of homoclinic orbits
in the perturbed system. For PDEs the analogous situation is far more subtle, and
rigorous analysis has been performed only in a handful of cases (Haller andWiggins
1992; Li et al. 1996; Li 1999; Zeng 2000a, b).

If we assume that the perturbed invariant manifolds split transversally, we need
two independent measurements for their splitting distance (one for each direction
transversal to the unperturbed invariant manifold). However, the perturbation is
Hamiltonian, so the splitting occurs within the codimension one energy surface
Hε = const , thus reducing the number of measurements to one.

In order to define suitable measurements, we recall how the Floquet discriminant
Δ(u;λ) of an NLS solution u, viewed as a functional on the NLS phase space,
encodes an infinite family of constants of motion (Li and McLaughlin 1994). Given,
a solution uc with a purely imaginary critical point λc (such as, for example, an
unstable plane wave potential), regarding λc as a functional on a neighborhood U of
uc, the functional F : U → IC,

F(u) := Δ(λc(u);u), (10)

is locally smooth, provided
d2Δ

dλ2 (λ,u) �= 0 ,∀u ∈ U . Then, the sequence

Fj (u) = Δ(λc
j (u),u),

generated as λc
j varies among the critical points of the potential u, defines a natural

family of constants of motion, which identify the critical level sets of u by labeling
them in terms of the double points of its Floquet spectrum.

One of the main advantages of this representation of the constants of motion of
the NLS equation is that the gradient of Fj can be explicitly expressed in terms of
solutions of the AKNS system by means of the following remarkable formula (Li
and McLaughlin 1994):

δFj

δu
(u) = i

√
Δ2 − 4

W [ψ+,ψ−]
[

ψ+
2 ψ−

2−ψ+
1 ψ−

1

]∣∣∣∣
λ=λc

. (11)

In formula (11), u = (u,u∗), ψ±(x,λ) are the Bloch eigenfunctions (common
eigenfunctions of the operatorL(x) and the shift operator (Sψ)(x) = ψ(x + L)), and
W denotes the Wronskian.
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We observe that δFj/δu vanishes at a critical potential uc (such as the plane wave
solution), reflecting the fact that Fj is critical along the critical level set. On the other
hand, if uh is a homoclinic orbit of uc, then δFj/δu(uh) �= 0; therefore δFj/δu (uh),
j = 1, . . . M, (M being the number of complex double points in the spectrum of uc)
define directions transversal to the homoclinic manifold.

Returning to the even restriction of the MD equation (9), the components of the
splitting distance of the perturbed stable and unstable manifolds of a plane wave
potential with two UMs along directions ∇Fj , j = 1, 2 are expressed in terms of
the following Melnikov-type integrals:

d j = εM j (ρ) + O(ε2), M j (ρ) =
∫ +∞

−∞
〈∇Fj , f〉∣∣

u=uh
dt, (12)

where f(u) = (uxxxx ,u
∗
xxxx ) is the vector of the perturbation, < , > is the standard

inner product in L2([0, L], IC), and uh is the homoclinic orbit (7). Bothmeasurements
depend on parameter ρ, the same parameter that governs the temporal separation of
the spatial modes of the unperturbed homoclinic orbit (7) (see Sect. 2.2).

Consistent with the dimensional count for the splitting distance, numerical evalu-
ation of the two Melnikov integrals show that M1 and M2 are mutually proportional
functions of the parameter ρ (i.e., a single measurement is sufficient). Figure6 shows
existence of a unique nondegenerate zero of M1, suggesting that a transversal homo-
clinic structure persists under perturbation.

A truly remarkable fact, is that the nondegenerate zero of M1(ρ) coincides (up to
order ε) with the value of ρ at which the two spatial modes of the homoclinic solution
(7) coalesce, producing a homoclinic orbit of maximal amplitude. The same structure
is observed as the recurring structurally stable feature of the chaotic dynamics (See
Fig. 5).

A study of the analytical structure of single and combination homoclinic orbits,
together with the numerical experiments and the Melnikov analysis, supports the
following:

Fig. 6 Graph of the
Melnikov integral M1 as a
function of parameter ρ. A
transversal zero occurs at
ρ = −0.65.
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• Although homoclinic solutions of the NLS equation have many of the features of
rogue waves, not all can be regarded as good candidates for modeling actual rogue
waves, as not all are robust under perturbations that lead to more accurate physical
models.

• For sea states characterized by a finite number of unstable modes, the homoclinic
solutions that are robust under perturbation are the combination homoclinic orbits:
(1) with a maximal number of spatial modes excited (this should not be a surprise,
since the lower-dimensional homoclinic solutions are linear unstable); and (2) for
which the spatial modes are optimally coalesced.

• A chaotic sea state enhances the occurrence of rogue waves. One should note
that a homoclinic solution of the NLS will rise over the background wave only
once in its life time and for a relative brief time. However, in a chaotic evolution,
the maximally coalesced homoclinic orbit will occur repeatedly, although in an
unpredictable fashion.

5 Random Oceanic Sea States and the Proximity to
Homoclinic Data

To study the generation of rogue waves in a random sea state, we consider initial
data for the surface elevation to be of the form (Onorato et al. 2001)

η(x, 0) =
N∑

n=1

Cn cos (kn x − φn) , (13)

where kn = 2πn/L and the random phases φn are uniformly distributed on (0, 2π)

and the spectral amplitudes, Cn = √
2S( fn)/L , are obtained from the JONSWAP

spectrum (Ochi 1998):

S( f ) = αg2

(2π f )5
exp

[
−5

4

(
f0
f

)4
]

γr , r = exp

[
−1

2

(
f − f0
σ0 f0

)2
]

. (14)

Here f is spatial frequency, fn = kn/2π, f0 is the dominant frequency, determined
by the wind speed at a specified height above the sea surface, g is gravity, and
σ0 = 0.07 (0.9) for f ≤ f0 ( f > f0). In contrast to physical experiments, which
monitor the surface evolution at a given spatial point (probe) in time, here we take
time slices and examine the features in space.

JONSWAP spectra describe developing sea states since for γ > 1 thewave spectra
continues to evolve through nonlinear wave-wave interactions for very long times
and distances. As γ is increased, the spectrum becomes narrower about the dominant
peak (see Fig. 6). In this sense, γ is considered the “peak-shape” parameter.
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The scale parameter α is related to the amplitude and energy content of the wave-
field. Based on an “Ursell number”, the ratio of the nonlinear and dispersive terms
of the NLS equation (1) in dimensional form, the NLS equation is considered to
be applicable for 2 < γ < 8 (Onorato et al. 2001). Typical values of alpha are
0.008 < α < 0.02.

In the numerical experiments, the NLS and MD equations are integrated using a
pseudo-spectral scheme with 256 Fourier modes in space and a fourth order Runge-
Kutta discretization in time (Δt = 10−3). The nonlinear mode content of the data is
numerically computed using the direct spectral transform described above, i.e., the
system of ODEs (2) is numerically solved to obtain the discriminant Δ. The zeros
of Δ ± 2 are then determined with a root solver based on Muller’s method (Ercolani
et al. 1990). The spectrum is computed with an accuracy of O(10−6), whereas the
spectral quantities we are interested in range from O(10−2) to O(10−1) Fig. 7.

Under perturbation complex double points typically split into two simple points,
λ±, thus opening a gap in the band of spectrum (see Fig. 2). We refer to the distance
between these two simple points, δ(λ+,λ−) = |λ+ − λ−|, as the splitting distance.
As mentioned, homoclinic solutions arise as an appropriate degeneration of a finite
gap solution (Its et al. 1988), i.e., when the resulting double point, δ(λ+,λ−) → 0, is
complex. Consequently, we can use δ tomeasure the proximity in the spectral plane to
homoclinic data, i.e., to complex double points and their corresponding instabilities.
Since the NLS spectrum is symmetric with respect to the real axis and real double-
points correspond to inactive modes, in subsequent plots only the spectrum in the
upper half complex λ-plane will be displayed.

Our first step is to determine the spectrum of JONSWAP initial data given by (13)
for various combinations of α = 0.008, 0.012, 0.016, 0.02, and γ = 1, 2, 4, 6, 8.
For each such pair (γ,α), we performed 50 simulations, each with a different set of
randomly generated phases. As expected, the spectral configuration depends on the
energy α and the enhancement coefficient γ. However, the extent of the dependence
of features of the spectrum, such as the proximity to complex double points, upon
the phases in the initial data is surprising.

Fig. 7 The JONSWAP
spectrum for γ = 1 (solid
line), γ = 5 (dashed line),
and γ = 10 (dash-dot line)
with f0 = 0.1Hz and
α = 0.0081
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Fig. 8 Spectrum and evolution of Umax : a “near”, and b “far” from homoclinic data

Typical examples of the results are given in Fig. 8a, b which show the numerically
computed nonlinear spectrum of JONSWAP initial data when γ = 4 and α = 0.016
for two different realizations of the random phases.

We find that JONSWAP data correspond to “semi-stable” N -phase solutions,
i.e., JONSWAP data can be viewed as perturbations of N -phase solutions with one
or more unstable modes (compare Fig. 2 with the spectrum of an unstable N -phase
solution in Fig. 8). In Fig. 8a the splitting distance δ(λ+,λ−) ≈ 0.07, while in Fig. 8b
δ(λ+,λ−) ≈ 0.2. Thus, the JONSWAP data can be quite “near” homoclinic data as
in Fig. 8a or “far” from homoclinic data as in Fig. 8b, depending on the values of the
phases φn in the initial data. For all the examined values of α and γ we find that,
when α and γ are fixed, as the phases in the JONSWAP data are varied, the spectral
distance δ of typical JONSWAP data from homoclinic data varies.

Most importantly, irrespective of the values of the JONSWAP parameters α and
γ, in simulations of the NLS equation (1) we find that extreme waves develop for
JONSWAP initial data that is “near” NLS homoclinic data, whereas the JONSWAP
data that is “far” from NLS homoclinic data typically does not generate extreme
waves. Figure8c, d show the corresponding evolution of the maximum surface ele-
vation, Umax , obtained with the NLS equation. Umax is given by the solid curve
and as a reference, 2.2HS (the threshold for a rogue wave) is given by the dashed
curve. HS is the significant wave height and is calculated as four times the standard
deviation of the surface elevation. Figure8c shows that when the nonlinear spectrum
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is near homoclinic data, Umax exceeds 2.2HS (a rogue wave develops at t ≈ 40).
Figure8d shows that when the nonlinear spectrum is far from homoclinic data, Umax

is significantly below 2.2HS and a rogue wave does not develop. As a result we can
correlate the occurrence of rogue waves characterized by JONSWAP spectrum with
the proximity to homoclinic solutions of the NLS equation.

The results of hundreds of simulations of the NLS andMD equations consistently
show that proximity to homoclinic data is a crucial indicator of rogue wave events.
Figures9 and 10 provide a synthesis of 200 random simulations of the NLS equation
and of the MD equation for two perturbation strengths (ε = 0.005 and ε = 0.01)
for JONSWAP initial data with different (γ,α) pairs (with γ = 2, 4, 6, 8, and
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Fig. 9 Strength of Umax /Hs versus the splitting distance δ(λ+,λ−) for solutions of the NLS
equation
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Fig. 10 Strength of Umax /Hs versus the splitting distance δ(λ+,λ−) for solutions of the MD
equation when a ε = 0.005, and b ε = 0.01
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α = 0.012, 0.016). For each such pair (γ,α), we performed 25 simulations, each
with a different set of randomly generated phases. We restrict our consideration to
semi-stable N -phase solutions near unstable solutions of the NLS with one UM.
Each circle represents the strength of the maximum wave (Umax/HS) attained dur-
ing one simulation as a function of the splitting distance δ(λ+,λ−). The results for
the particular pair (γ = 4,α = 0.012) is represented with an asterisk. A horizontal
line at Umax/HS = 2.2 indicates the reference strength for rogue wave formation.
We identify two critical values δ1(ε) and δ2(ε) that clearly show that: (a) if δ < δ1
(near homoclinic data) rogue waves will occur; (b) if δ1 < δ < δ2, the likelihood of
obtaining rogue waves decreases as δ increases and, (c) if δ > δ2 the likelihood of a
rogue wave occurring is extremely small.

This behavior is robust. As α and γ are varied, the strength of the maximum wave
and the occurrence of rogue waves are well predicted by the proximity to homoclinic
solutions. The individual plots of the strength versus δ for particular pairs (γ,α)

are qualitatively the same regardless of the pair chosen. As noted in Sect. 4 on the
MD equation, enhanced focusing occurs in the chaotic regime. Figure10 shows
that as ε increases the average strength and the likelihood of rogue waves increases.
Clarification on the likelihood of rogue waves through an examination of the kurtosis
is provided in the next section. These results give strong evidence of the relevance of
homoclinic solutions of theNLS equation in investigating roguewave phenomena for
more realistic oceanic conditions and identifies the nonlinear spectral decomposition
as a simple diagnostic tool for predicting the occurrence and strength of rogue waves.

6 Non-Gaussian Statistics and the Dependence of Kurtosis
on the Proximity to Homoclinic Data

In Longuet-Higgins (1952) the probability distribution of crest-to-trough wave
heights was formulated to be given by the Rayleigh distribution when the wave spec-
trum is narrow banded and the phases in the reconstruction of the surface elevation
are uniformly distributed. Various studies using experimental and field wave data
have shown that this can be a reasonable assumption for water waves in the linear
regime.

In the nonlinear regime, the relation of the probability density function of wave
heights to the nonlinear parameters describing various sea states is not generally
known. Simply assuming a Gaussian distribution can be risky. If the kurtosis is in
fact much greater than that for the Gaussian distribution, then the probability of an
extreme event will be underpredicted.

The main questions we address in this section are whether the modulational insta-
bility and the presence of coherent structures yield non-Gaussian statistics of surface
gravitywaves in the nonlinear regime andwhether this can be captured by the spectral
parameter δ. In our earlier work with the NLS equation it appeared that homoclinic
chaos increases the likelihood of rogue waves. After a short time the waves become
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chaotic resulting in a sea state characterized by intermittent rogue waves. To more
precisely quantify roguewave events, in our current numerical experiments wemoni-
tor the evolution of the skewness,m3, and the kurtosis,m4, of the wavefield which are
related to the third and fourth statistical moments of the probability density function
of the surface elevation by

m3(η) =
N∑

j=1

(η j − η̄)3

Nσ3 , m4(η) =
N∑

j=1

(η j − η̄)4

Nσ4 ,

where σ is the standard deviation of the surface elevation, η̄ is the average surface
elevation and N is the number of data points sampled.

Skewness is a measure of the vertical asymmetry of the wavefield. Positive values
indicate the wavefield is skewed above average height, i.e., the crests are bigger than
the troughs. Negative values indicate that the wavefield is skewed below average
height.

The kurtosis is a measure of whether the distribution for the wavefield is peaked
or flat, relative to a Gaussian distribution and defines the contribution of large waves
to the wavefield. The kurtosis for a Gaussian distribution is three. Wavefields with
high kurtosis (in excess of 3) tend to have a distinct peak near the mean, decline
rapidly, and have heavy tails. That is, fewer observations or events cluster near the
average and more observations populate the extremes either far above or far below
the average compared to the bell curve of the normal distribution. For this reason,
excess kurtosis much above three indicates that the contribution of large waves is
significant and corresponds to a higher probability of a rogue wave event.

Figure11a shows the plot of the kurtosis as a function of time for the analytical two
unstable mode homoclinic solutions of the NLS (7) (the corresponding waveforms
are given in Fig. 4) in the uncoalesced case, ρ = −1, and in the coalesced case,
ρ = −0.65. Here we are using the kurtosis as a formal tool to obtain a rough estimate
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Fig. 11 For the two unstable mode homoclinic solution of NLS: a the evolution of the kurtosis for
the coalesced and uncoalesced cases and b the maximum of the kurtosis as a function of ρ
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of the peakedness of the waveform. In both cases the kurtosis starts to increase with
the onset of the BF instability and reaches a maximumwhen the instability saturates.
In the uncoalesced case there are two excursions in the kurtosis. In the coalesced
case, the increased height achieved by the waveform is reflected in a significantly
larger kurtosis. Figure11b shows the plot of the maximum of the kurtosis of the two
unstable mode homoclinic orbit, as a function of the phase parameter ρ. Interestingly,
themaximumof the kurtosis is optimized by the robust coalesced homoclinic solution
which also gives the zero of the Melnikov integrals and is persistent in the MD
equation.

Janssen (2003) formulated the relation between the kurtosis of the surface ele-
vation and the probability of rogue wave occurrence for 1D weakly non-Gaussian
waves. The PDF of the envelope A of the wave train follows from an integration of
the joint probability distribution over the phase φ. The first term gives the Rayleigh
distribution while the terms involving the skewness integrate to zero. The third term
gives a contribution depending on the kurtosis and the narrow-band approximation
of the PDF of the envelope is computed as

p(A) = Ae− 1
2 A2

[
1 + 1

3
m4

(
1 − A2 + 1

8
A4

)]
.

The probability of occurrence of a rogue wave as a function of N (the number of
waves) and the kurtosis is

Progue = 1 − exp
[
−e−8N (1 + 8m4)

]
.

In this way, as the kurtosis increases, the probability that rogue waves will occur
increases. We examine the evolution of the skewness and kurtosis for three ranges
of δ: (i) δ ≤ 0.1, (ii) 0.1 < δ < 0.2, and (iii) δ ≥ 0.2. The skewness and kurtosis
is computed at each time step, first as an average over space and then averaging
over the ensemble. As before, we begin by determining the nonlinear spectrum of
the JONSWAP initial data for various combinations of (α, γ). We used a sufficient
number of realizations of the random phases to produce 250 cases for each range of
values of δ. Figure12 provides the evolution of the skewness and kurtosis for three
different values of the nonlinear spectral gap size δ. Both the skewness and kurtosis
grows initially and then relax to their asymptotic value. The asymptotic value of the
kurtosis is approximately (i) 3.5 when δ ≤ 0.1, (ii) 3.2 when 0.1 < δ < 0.2, and
(iii) 3 when δ ≥ 0.2. It is clear in Fig. 12 the kurtosis is strongly dependent on δ and
attains larger values for JONSWAP data closer to homoclinic data. The proximity
to homoclinic data changes the wave statistics and increases the likelihood of rogue
waves.

Using the inverse spectral theory of the NLS equation, we have shown that the
development of extreme waves in random oceanic sea states characterized by JON-
SWAP power spectra is well predicted by the proximity to homoclinic data of the
NLS equation. We observe that the modulational instability generates a significant
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Fig. 12 Evolution of the a skewness and b kurtosis for Jonswap initial data

deviation from Gaussianity. In particular, we find: (i) the kurtosis and wave strength
appear to be strongly dependent on δ, the proximity to instabilities and homoclinic
structures; (ii) the likelihood of rogue waves increases for JONSWAP data near
homoclinic data of the NLS; (iii) the NLS equation underpredicts, as compared to
the MD equation, both the wave strength and likelihood of rogue waves.
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Freak-Waves: Compact Equation Versus
Fully Nonlinear One

A.I. Dyachenko, D.I. Kachulin and V.E. Zakharov

Abstract We compare applicability of the recently derived compact equation for
surface wave with the fully nonlinear equations. Strongly nonlinear phenomena,
namely modulational instability and breathers with the steepness μ ∼ 0.4 are com-
pared in numerical simulations using both models.

1 Introduction

A two-dimensional potential flow of an ideal incompressible fluid of infinite depth
with a one-dimensional free surface (boundary) in a gravity field is described by the
following well-known set of equations:

φxx + φzz = 0 (φz → 0, z → −∞),

ηt + ηxφx = φz

∣∣∣∣
z=η

φt + 1

2
(φ2

x + φ2
z ) + gη = 0

∣∣∣∣
z=η

; (1)
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here η ↼ xcψ t ↽ is the shape of a surface, φ ↼ xcψzct ↽ is a potential function
of the flow and g is a gravitational acceleration. As was shown in Zakharov (1968),

the variables η(x, t) and ψ(x, t) = φ(x, z, t)

∣∣∣∣
z=η

are canonically conjugated, and

satisfy the equations

∂ψ

∂t
= −δH

δη

∂η

∂t
= δH

δψ
.

Hamiltonian can be written as infinite series of powers of ψ and η, (see Zakharov
1968). Taking into account only three- and four-wave interactions, one can cut this
series after fourth order term:

H = 1

2

∫
gη2+ψ k̂ψdx − 1

2

∫
{(k̂ψ)2−(ψx )2}ηdx + 1

2

∫
{ψxxη2k̂ψ+ψ k̂(ηk̂(ηk̂ψ))}dx

(2)

We will study two strongly nonlinear problems numerically:

• modulational instability of the homogeneous wave train of the Stokes waves up to
the freak-wave formation

• propagation of narrow breather with the steepness μ ∼ 0.4 − −0.5

The goal is to justify the applicability of approximate equation based on truncated
Hamiltonian (2) for strongly nonlinear flows of fluid. The reference solutions (fully
nonlinear) is performed for the Eq. (1) written in conformal variables, according to
Dyachenko (2001).

2 Fully Nonlinear Conformal Equations

To study two-dimensional potential flow of fluid one can perform the conformal
transformation to map the domain, filled with fluid

−∞ < x < ∞, −∞ < y < η(x, t), Z = x + iy

in Z -plane to the lower half-plane

−∞ < u < −∞, −∞ < v < 0, W = u + iv

in W -plane like in Figs. 1 and 2. The shape of surface η(x, t) is given now by
parametric equations

y = y(u, t), x = x(u, t),
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Fig. 1 Physical plane Z

Fig. 2 Conformal plane W

As it was shown in Dyachenko (2001), Dyachenko et al. (1996a, b) the exact Eq. (1)
can be written as following:

Zt = iU Zu,

Φt = iUΦu − B + ig(Z − u). (3)

Here, Φ = ψ + i Ĥψ is complex velocity potential, and

U = P̂

(
−Ĥψu

|Zu |2
)

, B = P̂

( |Φu |2
|zu |2

)
= P̂

(
|Φz|2

)
. (4)

In (4) P̂ is the projector operator generating a function analytical in the lower half-
plane

P̂( f ) = 1

2

(
1 + i Ĥ

)
f.

Ĥ( f (u)) = P · V .
1

π

∫ ∞

−∞
f (u′)du′

u′ − u
is the Hilbert transformation.

Functions Φ and Z can be easily analytically continued to the lower half-plane, just
by changing u by w.

Introducing new variables (Dyachenko 2001)

R = 1

Zw
, and V = iΦz = i

Φw

Zw
(5)
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one can transform system (3) into the following one

Rt = i(U Rw − RUw),

Vt = i(U Vw − RBw) + g(R − 1). (6)

Now U and B are the following:

U = P̂(V R̄ + V̄ R)

B = P̂(V V̄ ).

So, these exact (fully nonlinear) Eq. (6) give us reference solutions to compare with.

3 Compact Equation

In this section,we very briefly derive compact equation based on the truncatedHamil-
tonian (2). All the details of the derivation can be found in Dyachenko and Zakharov
(2011, 2012). It based on the following property of one-dimensional gravity surface
waves: In Dyachenko and Zakharov (1994) it was shown that four-wave interaction
coefficient vanishes on the following resonant manifold

k + k1 = k2 + k3,
ωk + ωk1 = ωk2 + ωk3

with nontrivial solution:

k = a(1 + ζ )2, k1 = a(1 + ζ )2ζ 2,

k2 = −aζ 2, k3 = a(1 + ζ + ζ 2)2.

Than only trivial resonant interaction remains in force:

k = k2, k1 = k3 or k = k3, k1 = k2.

Vanishing of four-waves interaction allows us:

• to consider solutions which consist of waves propagating in the same direction
(all k in the initial condition and solution can be positive only)

• drastically simplify fourth order term in the truncated Hamiltonian (2).

To make this simplification one can apply appropriate canonical transformation to
the Hamiltonian. But first it is convenient to introduce complex normal canonical
variables in a standard way:

ηk =
√

ωk

2g
(ak + a∗−k) ψk = −i

√
g

2ωk
(ak − a∗−k) (7)



Freak-Waves: Compact Equation Versus Fully Nonlinear One 27

where ωk = √
g|k| and the Fourier transform is defined as follow:

a(x, t) = 1√
2π

∫ ∞

−∞
ak(t)e

ikx dx (8)

Using normal variable ak(t) the truncated Hamiltonian can be written as follows:

H =
∫

ωk |ak |2dk+

+
∫

V k1
k2k3

(a∗
k1ak2ak3 + ak1a∗

k2a∗
k3)δk1−k2−k3dk1dk2dk3+

+ 1

3

∫
Uk1k2k3(a

∗
k1a∗

k2a∗
k3 + ak1ak2ak3)δk1+k2+k3dk1dk2dk3+

+ 1

2

∫
W k3k4

k1k2
a∗

k1a∗
k2ak3ak4δk1+k2−k3−k4dk1dk2dk3dk4+

+ 1

3

∫
Gk4

k1k2k3
(a∗

k1a∗
k2a∗

k3ak4 + ak1ak2ak3a∗
k4δk1+k2+k3−k4dk1dk2dk3dk4+

+ 1

12

∫
Rk1k2k3k4(a

∗
k1a∗

k2a∗
k3a∗

k4 + ak1ak2ak3ak4)δk1+k2+k3+k4dk1dk2dk3dk4. (9)

Expressions for V k1
k2k3

, Uk1k2k3 , W k3k4
k1k2

, Gk4
k1k2k3

, Rk1k2k3k4 in Appendix (see 18, 19).
Then one applies transformation from variables ak to bk to exclude nonresonant

cubic terms along with non resonant fourth order terms. Following Zakharov et al.
(1992) canonical transformation from bk to ak can be written as the series:

ak = bk +
∫[

2Ṽ
k1
kk2

bk1b∗
k2

δk1−k−k2−Ṽ k
k1k2

bk1bk2δk−k1−k2−Ũkk1k2b∗
k1

b∗
k2

δk+k1+k2

]
dk1dk2

+
∫ [

Ak
k1k2k3

bk1bk2bk3 + A
kk1
k2k3

b∗
k1

bk2bk3 + A
kk1k2
k3

b∗
k1

b∗
k2

bk3 + Akk1k2k3b∗
k1

b∗
k2

b∗
k3

]
dk1dk2dk3

(10)

All coefficients in (10) are derived inAppendix (see 24, 26). After the transformation
(details of it are given in Dyachenko and Zakharov (2011, 2012)) Hamiltonian takes
the form in x-space:

H =
∫

b∗ω̂kbdx + 1

2

∫ ∣∣∣∣ ∂b

∂x

∣∣∣∣
2 [

i

2

(
b
∂b∗

∂x
− b∗ ∂b

∂x

)
− k̂|b|2

]
dx . (11)

b(x) can be analytically continued to x + iy, y > 0. Motion equation for b(x, t)
should be understood as follow:

i
∂b

∂t
= P̂+ δH

δb∗ , (12)

here P̂+ projection operator to the upper half-plane.

P̂+ = 1

2
(1 − i Ĥ). (13)
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This operator is the consequence of only positive k in the system of waves. Corre-
sponding equation of motion is the following:

i
∂b

∂t
= ω̂kb + i

4
P̂+

[
b∗ ∂

∂x
(b′2) − ∂

∂x
(b∗′ ∂

∂x
b2)

]
−

−1

2
P̂+

[
b · k̂(|b′|2) − ∂

∂x
(b′k̂(|b|2))

]
. (14)

Transformation from b(x, t) to physical variables η(x, t) and ψ(x, t) can be recov-
ered from canonical transformation. It has been derived in the Appendix. Here, we
write this transformation up to the second order:

η(x) = 1√
2g

1
4

(k̂
1
4 b(x) + k̂

1
4 b(x)∗) + k̂

4
√

g
[k̂ 1

4 b(x) − k̂
1
4 b∗(x)]2,

ψ(x) = −i
g

1
4√
2
(k̂− 1

4 b(x) − k̂− 1
4 b(x)∗) + i

2
[k̂ 1

4 b∗(x)k̂
3
4 b∗(x) − k̂

1
4 b(x)k̂

3
4 b(x)]

+ 1

2
Ĥ [k̂ 1

4 b(x)k̂
3
4 b∗(x) + k̂

1
4 b∗(x)k̂

3
4 b(x)]. (15)

Here Ĥ is Hilbert transformation with eigenvalue isign(k).

4 Modulational Instability of Wave Train

In this section, we perform numerical simulation of the modulational instability of
the homogeneous wave train in the framework of compact Eq. (14). Such awave train
has two parameters: wavelength and steepness, i.e., maximal slope of the surface, μ.
Initial steepness of the wave train was equal to μ = 0.095 and the number of waves
in the periodic domain was equal to 100. These values were chosen for comparison
with the earlier simulation in the framework of fully nonlinear simulation in the
works (Dyachenko and Zakharov 2005; Zakharov et al. 2006, 2008). One can see
in Figs. 3 and 4 that both waves coincide in details. Different time of their appearing
is due to slightly different values of perturbations. Zoomed shape of the surface is
shown in the inset to Fig. 3.

Couple of snapshots of development ofmodulational instability is shown in Fig. 5.
Dynamics of surface in fully nonlinear Eq. (6) can be found at the address http://

www.itp.ac.ru/~kachulin/MInstability/Freak-0.095-end.avi anddynamics of the sur-
face in compact equation is at the address
http://www.itp.ac.ru/~kachulin/MInstability/Surface-end.avi.

http://www.itp.ac.ru/~kachulin/MInstability/Freak-0.095-end.avi
http://www.itp.ac.ru/~kachulin/MInstability/Freak-0.095-end.avi
http://www.itp.ac.ru/~kachulin/MInstability/Surface-end.avi
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Fig. 3 Freak-wave
formation after t = 802
(fully nonlinear equation)

Fig. 4 Freak-wave
formation after t = 874
(compact equation)
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5 Breathers

Breather is the localized solution of (14) of the following type:

b(x, t) = B(x − V t)ei(k0x−ω0t), (16)

where B(x) is localized function in space, having zero asymptotic at±∞. In K space
it can be written as following:

bk(t) = e−i(Ω+V k)tφk, (17)

k0 is the wavenumber of the carrier wave, V is the group velocity,ω0 is the frequency
close toωk0 , andΩ is close to

ωk0
2 . Existence of such solutionmay indicate that equa-

tion is integrable one. However, in the paper (Dyachenko et al. 2013) nonintegrability
of the equation was proven.

In the papers (Dyachenko et al. 2013, 2014) such solutions with different group
velocities and amplitudes were found by iterative Petviashvili method. Here we
tried to get numerically very narrow breather for the compact equation with carrier
wavenumber k0 = 50. Picture of real part of b(x, 0) and modulus of b(x, 0) is
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Fig. 5 Formation of the freak wave. Free surface for different times is shown (compact equation)

shown in Fig. 6. Modulus of b corresponds in some sense to the envelope in NLSE
approximation. Profile of the surface calculated according to transformation (15) is
shown in Fig. 7. Steepness of this solution is very high, μ ∼ 0.45. Profile of the

Fig. 6 Modulus ofb(x) and real part ofb(x)withV = 1/20 andΩ = 5.2.Solid line (1) corresponds
to the real part of b(x), dashed line (2) corresponds to modulus of b(x)
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Fig. 7 Surface profile of the breather (compact equation)

steepness is shown in Fig. 8. This breather is exact solution of the compact Eq. (14)
and moves on the surface without changing (see Dyachenko et al. 2013, 2014).
Couple of snapshots of moving breather is given in Fig. 9. It is clearly seen that

Fig. 8 Steepness of the breather (compact equation)
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Fig. 9 Free surface corresponds to the breather solution at different times (compact equation)

breather moves with the group velocity which is 1
2

√
g
k ∼ 0.0707. Dynamics of

this breather in compact equation can be found at the address http://www.itp.ac.
ru/~kachulin/Breathers/k0=50/deta(x,t).avi. Breather dynamics in fully nonlinear
equations can be found at
http://www.itp.ac.ru/~kachulin/Breathers/k0=50/STEEPNESS.avi.

Fig. 10 Surface profile (fully nonlinear equations)

http://www.itp.ac.ru/~kachulin/Breathers/k0=50/deta(x,t).avi
http://www.itp.ac.ru/~kachulin/Breathers/k0=50/deta(x,t).avi
http://www.itp.ac.ru/~kachulin/Breathers/k0=50/STEEPNESS.avi
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Fig. 11 Profile of steepness (fully nonlinear equations)

In the paper (Dyachenko and Zakharov 2008) we have performed similar simula-
tions in the framework of fully nonlinear conformal equations (6). Here we present
pictures from that paper, namely surface of the fluid and its steepness (Figs. 10, 11).

Figures8 and 11 show that numerical simulation of the highly nonlinear phenom-
ena, steep breather, in the framework of compact equation is very similar to that of
fully nonlinear equation. Recent laboratory experiment (Slunyaev et al. 2013), also
confirm existence of such highly narrow breathers at the surface.

6 Conclusions

We have demonstrated that compact equation although approximate, quantita-
tively describes strongly nonlinear phenomena at the surface of potential fluid. Espe-
cially, we have studied nonlinear stage of modulational instability up to the freak-
wave formation and propagation of very steep breather.Also compact equation can be
generalized for quasi one-dimensional waves propagating at the surface of 3D fluid,
see Dyachenko et al. (2014). When considering waves slightly inhomogeneous in
transverse direction, one can think in the spirit of Kadomtsev-Petviashvili equation
for Korteveg-de-Vries equation, namely one can treat now frequency ωk depending
on both kx and ky as ωkx ,ky , while leaving coefficient T̃ kk1

k2k3
not depending on y. b

now depends on both x and y:

H =
∫

b∗ω̂kx ,ky bdxdy + 1

2

∫
|b′

x |2
[

i

2
(bb′∗

x − b∗b′
x ) − K̂x |b|2

]
dxdy.
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Fig. 12 2D surface with a freak-wave (2D compact equation)

Here, we can show picture of numerical simulation of quasi one-dimensional wave
train. One can see in Fig. 12 top view of 100 almost 1D waves with the freak wave
in some place. Profile of the surface along the white line is also shown.
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Appendix

Coefficients in the Hamiltonian (9) can be calculated plugging expressions for com-
plex canonical variables into the (2):
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Uk1k2k3 = 1

8

g
1
4√
π

[
| k1
k2k3

| 14 Lk2k3 + | k2
k1k3

| 14 Lk1k3 + | k3
k1k2

| 14 Lk1k2

]
,

V k1
k2k3

= 1

8

g
1
4√
π

[
| k1
k2k3

| 14 Lk2k3 − | k2
k1k3

| 14 L−k1k3 − | k3
k1k2

| 14 L−k1k2

]
. (18)

W k3k4
k1k2

= −1

32π

[ ∣∣∣∣ k1k2
k3k3

∣∣∣∣
1
4

Mk1k2−k3−k4
+

∣∣∣∣ k3k4
k1k2

∣∣∣∣
1
4

M−k3−k4
k1k2

−
∣∣∣∣ k1k3
k2k4

∣∣∣∣
1
4

Mk1−k3
k2−k4

−
∣∣∣∣ k2k3
k1k4

∣∣∣∣
1
4

Mk2−k3
k1−k4

−

−
∣∣∣∣ k1k4
k2k3

∣∣∣∣
1
4

Mk1−k4
k2−k3

−
∣∣∣∣ k2k4
k1k3

∣∣∣∣
1
4

Mk2−k4
k1−k3

]

Gk4
k1k2k3

= −1

32π

[ ∣∣∣∣ k3k4
k1k2

∣∣∣∣
1
4

Mk3−k4
k1k2

+
∣∣∣∣ k2k4
k1k3

∣∣∣∣
1
4

Mk2−k4
k1k3

+
∣∣∣∣ k1k4
k2k3

∣∣∣∣
1
4

Mk1−k4
k2k3

−
∣∣∣∣ k1k2
k3k4

∣∣∣∣
1
4

Mk1k2
k3−k4

−

−
∣∣∣∣ k1k3
k2k4

∣∣∣∣
1
4

Mk1k3
k2−k4

−
∣∣∣∣ k2k3
k1k4

∣∣∣∣
1
4

Mk2k3
k1−k4

]

Rk1k2k3k4 = −1

32π

[ ∣∣∣∣ k3k4
k1k2

∣∣∣∣
1
4

Mk3k4
k1k2

+
∣∣∣∣ k2k4
k1k3

∣∣∣∣
1
4

Mk2k4
k1k3

+
∣∣∣∣ k2k3
k1k4

∣∣∣∣
1
4

Mk2k3
k1k4

+
∣∣∣∣ k1k4
k2k3

∣∣∣∣
1
4

Mk1k4
k2k3

+

+
∣∣∣∣ k1k3
k2k4

∣∣∣∣
1
4

Mk1k3
k2k4

+
∣∣∣∣ k1k2
k3k4

∣∣∣∣
1
4

Mk1k2
k3k4

]
(19)

Here

Lk1k2 = |k1k2| + k1k2

Mk3k4
k1k2

= |k1k2|(|k1 + k3| + |k1 + k4| + |k2 + k3| + |k2 + k4| − 2|k1| − 2|k2|).
(20)

To construct canonical transformation of general form we follow the book
(Zakharov et al. 1992) and use auxiliary Hamiltonian:

H̃ = −i
∫

Ṽ k1
k2k3

(b∗
k1bk2bk3 − bk1b∗

k2b∗
k3)δk1−k2−k3dk1dk2dk3−

− i

3

∫
Ũk1k2k3(b

∗
k1b∗

k2b∗
k3 − bk1bk2bk3)δk1+k2+k3dk1dk2dk3,

+ 1

2

∫
(

˜̃W k3k4
k1k2

+ i W̃ k3k4
k1k2

)b∗
k1b∗

k2bk3bk4δk1+k2−k3−k4dk1dk2dk3dk4−

− i

3

∫
G̃k4

k1k2k3
(b∗

k1b∗
k2b∗

k3bk4 − bk1bk2bk3b∗
k4)δk1+k2+k3−k4dk1dk2dk3dk4−

− i

12

∫
R̃k1k2k3k4(b

∗
k1b∗

k2b∗
k3b∗

k4 − bk2bk3bk4)δk1+k2+k3+k4dk1dk2dk3dk4

(21)

with standard symmetry conditions for coefficients. Just mention that for W̃ k3k4
k1k2

this
condition is the following:

W̃ k3k4
k1k2

= W̃ k3k4
k2k1

= W̃ k4k3
k1k2

= −W̃ k1k2
k3k4

. (22)



36 A.I. Dyachenko et al.

Again, following Zakharov et al. (1992) general canonical transformation from bk
to ak can be written as the series:

ak = bk +
∫ [

2Ṽ k1
kk2

bk1b∗
k2 δk1−k−k2 − Ṽ k

k1k2bk1bk2 δk−k1−k2 − Ũkk1k2b∗
k1b∗

k2 δk+k1+k2

]
dk1dk2

+
∫ [

Ak
k1k2k3bk1bk2bk3 + Akk1

k2k3
b∗

k1bk2bk3 + Akk1k2
k3

b∗
k1b∗

k2bk3 + Akk1k2k3b∗
k1b∗

k2b∗
k3

]
dk1dk2dk3 (23)

Coefficients A with upper and lower indices are equal to:

Ak
k1k2k3

=
[
1

3
G̃k

k1k2k3
+ Ṽ k

k1k−k1
Ṽ

k2+k3
k2k3

− Ṽ
k1
kk1−kŨ−k2−k3k2k3

]
δk−k1−k2−k3 ,

A
kk1
k2k3

=
[
−i ˜̃W k2k3

kk1
+ W̃

k2k3
kk1

− 2Ṽ k
k2k−k2

Ṽ
k3
k1k3−k1

− Ṽ
k+k1
kk1

Ṽ
k2+k3
k2k3

+ 2Ṽ
k3
kk3−k Ṽ

k1
k2k1−k2

+
+ Ũ−k−k1kk1 Ũ−k2−k3k2k3

]
δk+k1−k2−k3 ,

A
kk1k2
k3

=
[
−G̃

k3
kk1k2

+ Ṽ k
k3k−k3

Ũ−k2−k1k2k1 − Ṽ
k3
kk3−k Ṽ

k1+k2
k1k2

+ 2Ṽ
k+k1
kk1

Ṽ
k3
k2k3−k2

−
− 2Ũ−k−k1kk1 Ṽ

k2
k3k2−k3

]
δk+k1+k2−k3 ,

Akk1k2k3 =
[
− 1

3
R̃kk1k2k3 − Ṽ

k+k1
kk1

Ũ−k2−k3k2k3 + Ṽ
k2+k3
k2k3

Ũ−k−k1kk1

]
δk+k1+k2+k3 . (24)

Let us now substitute transformation (23) into the Hamiltonian (9) and calculate
second, third and fourth order terms.

Collecting all cubic terms after substitution and making symmetrization one
can get:

H3 =
∫

[V k1
k2k3

− (ωk1 − ωk3 − ωk3)Ṽ k1
k2k3

]b∗
k1bk2bk3δk1−k2−k3dk1dk2dk3+

+ 1

3

∫
[Uk1k2k3 − (ωk1 + ωk3 + ωk3)Ũk1k2k3 ]b∗

k1b∗
k2b∗

k3δk1+k2+k3dk1dk2dk3 + c.c.

(25)

it is possible to cancel nonresonant both cubic and fourth order terms. If

Ṽ k
k1k2 = V k

k1k2

ωk − ωk1 − ωk2
, Ũkk1k2 = Ukk1k2

ωk + ωk1 + ωk2
. (26)

than H3 vanishes.
Counting all fourth terms, making symmetrization and calculating new H4 one

can get

H4 = 1

2

∫
[W k3k4

k1k2
+ Dk3k4

k1k2
+ (ωk1 + ωk2 − ωk3 − ωk4 )(W̃ k3k4

k1k2
− i ˜̃W k3k4

k1k2
)]b∗

k1b∗
k2bk3bk4 δk1+

k2−k3−k4dk1dk2dk3dk4+
+ 1

3

∫ [
(Gk4

k1k2k3
+ Dk4

k1k2k3
− (ωk1 + ωk2 + ωk3 − ωk4 )G̃

k4
k1k2k3

)b∗
k1b∗

k2b∗
k3bk4 + c.c.

]
δk1+

k2+k3−k4dk1dk2dk3dk4+
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+ 1

12

∫ [
(Rk1k2k3k4 +Dk1k2k3k4 − (ωk1 +ωk2 +ωk3 + ωk4 )R̃k1k2k3k4 )b

∗
k1b∗

k2b∗
k3b∗

k4 + c.c.
]
δk1+

k2+k3+k4dk1dk2dk3dk4. (27)

Here

Dk3k4
k1k2

= Ṽ k1
k3k1−k3

Ṽ k4
k2k4−k2

[
ωk1 − ωk3 − ωk1−k3 + ωk4 − ωk2 − ωk4−k2

] +
+ Ṽ k2

k3k2−k3
Ṽ k4

k1k4−k1

[
ωk2 − ωk3 − ωk2−k3 + ωk4 − ωk1 − ωk4−k1

] +
+ Ṽ k1

k4k1−k4
Ṽ k3

k2k3−k2

[
ωk1 − ωk4 − ωk1−k4 + ωk3 − ωk2 − ωk3−k2

]+
+ Ṽ k2

k4k2−k4
Ṽ k3

k1k3−k1

[
ωk2 − ωk4 − ωk2−k4 + ωk3 − ωk1 − ωk3−k1

] −
− Ṽ k1+k2

k1k2
Ṽ k3+k4

k3k4

[
ωk1+k2 − ωk1 − ωk2 + ωk3+k4 − ωk3 − ωk4

] −
− Ũ−k1−k2k1k2Ũ−k3−k4k3k4

[
ωk1+k2 + ωk1 + ωk2 + ωk3+k4 + ωk3 + ωk4

]
, (28)

Dk4
k1k2k3

= Ṽ k1+k2
k1k2

Ṽ k4
k3k4−k3

(ωk1+k2 − ωk1 − ωk2 − ωk4 + ωk3 + ωk3−k4 )+
+ Ṽ k1+k3

k1k3
Ṽ k4

k2k4−k2
(ωk1+k3 − ωk1 − ωk3 − ωk4 + ωk2 + ωk2−k4 )+

+ Ṽ k2+k3
k2k3

Ṽ k4
k1k4−k1

(ωk2+k3 − ωk2 − ωk3 − ωk4 + ωk1 + ωk1−k4 )+
+ Ũ−k1−k2k1k2 Ṽ k3

k4k3−k4
(ωk1+k2 + ωk1 + ωk2 − ωk3 + ωk4 + ωk3−k4 )+

+ Ũ−k1−k3k1k3 Ṽ k2
k4k2−k4

(ωk1+k3 + ωk1 + ωk3 − ωk2 + ωk4 + ωk2−k4 )+
+ Ũ−k2−k3k2k3 Ṽ k1

k4k1−k4
(ωk2+k3 + ωk2 + ωk3 − ωk1 + ωk4 + ωk1−k4 ), (29)

Dk1k2k3k4 = − Ũ−k1−k2k1k2 Ṽ k3+k4
k3k4

(ωk1+k2 + ωk1 + ωk2 + ωk3+k4 − ωk3 − ωk4 )−
− Ũ−k1−k3k1k3 Ṽ k2+k4

k2k4
(ωk1+k3 + ωk1 + ωk3 + ωk2+k4 − ωk2 − ωk4 )−

− Ũ−k1−k4k1k4 Ṽ k3+k2
k3k2

(ωk1+k4 + ωk1 + ωk4 + ωk3+k2 − ωk3 − ωk2 )−
− Ũ−k2−k3k2k3 Ṽ k1+k4

k1k4
(ωk2+k3 + ωk2 + ωk3 + ωk1+k4 − ωk1 − ωk4 )−

− Ũ−k2−k4k2k4 Ṽ k1+k3
k1k3

(ωk2+k4 + ωk2 + ωk4 + ωk1+k3 − ωk1 − ωk3)−
− Ũ−k3−k4k3k4 Ṽ k1+k2

k1k2
(ωk3+k4 + ωk3 + ωk4 + ωk1+k2 − ωk1 − ωk2 ). (30)

To cancel nonresonant fourth order terms in (27) relations given belowmust be valid:

G̃k4
k1k2k3

= 1

ωk1 + ωk2 + ωk3 − ωk4
(Gk4

k1k2k3
+ Dk4

k1k2k3
),

R̃k1k2k3k4 = 1

ωk1 + ωk2 + ωk3 + ωk4
(Rk1k2k3k4 + Dk1k2k3k4). (31)

Now the Hamiltonian has only resonant four-wave interaction term (2 ⇔ 2):
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H =
∫

ωk |bk |2dk+

+ 1

2

∫
[W k3k4

k1k2
+ Dk3k4

k1k2
+ (ωk1 + ωk2 − ωk3 − ωk4)(W̃ k3k4

k1k2

−i ˜̃W k3k4
k1k2

)]b∗
k1b∗

k2bk3bk4δk1+k2−k3−k4dk1dk2dk3dk4 (32)

If we put

W̃ k3k4
k1k2

− i ˜̃W k3k4
k1k2

= 0, (33)

we obtain so-called Zakharov equation with the following Hamiltonian:

H =
∫

ωk |bk |2dk + 1

2

∫
T k3k4

k1k2
b∗

k1b∗
k2bk3bk4δk1+k2−k3−k4dk1dk2dk3dk4

T k3k4
k1k2

= W k3k4
k1k2

+ Dk3k4
k1k2

(34)

At this moment the key point of the transformation takes place: we explicitly use
property of vanishing of T k3k4

k1k2
on the resonant manifold and consider waves propa-

gating in the same direction. Thenwe chose instead of (33) the following expression:

W̃ k3k4
k1k2

− i ˜̃W k3k4
k1k2

= 1

ωk1 + ωk2 − ωk3 − ωk4
(T̃ k3k4

k1k2
− W k3k4

k1k2
− Dk3k4

k1k2
), (35)

here

T̃ kk1
k2k3

= θ(k)θ(k1)θ(k2)θ(k3)

8π
[(kk1(k + k1) + k2k3(k2 + k3)) −

−(kk2|k − k2| + kk3|k − k3| + k1k2|k1 − k2| + k1k3|k1 − k3)] , (36)

This coefficient T̃ kk1
k2k3

gives us simple Hamiltonian (11).
Now we can calculate symmetrized coefficients A of the cubic part of the trans-

formation:

A
k1k2
k3k4

= 1

ωk1 + ωk2 −ωk3 −ωk4

[
T̃

k3k4
k1k2

− W
k3k4
k1k2

+ 2(U−k1−k2k1k2 Ũ−k3−k4k3k4 +V
k1+k2
k1k2

Ṽ
k3+k4
k3k4

− V
k1
k3k1−k3

Ṽ
k4
k2k4−k2

− Ṽ
k2
k3k2−k3

V
k4
k1k4−k1

− V
k1
k4k1−k4

Ṽ
k3
k2k3−k2

− Ṽ
k2
k4k2−k4

V
k3
k1k3−k1

)
]

(37)

Ak1k2k3k4 = 1

3(ωk1 + ωk2 + ωk3 + ωk4 )

[
−Rk1k2k3k4 + 2(U−k1−k2k1k2 Ṽ k3+k4

k3k4
+ U−k1−k3k1k3 Ṽ k2+k4

k2k4

+ U−k1−k4k1k4 Ṽ k2+k3
k2k3

+ Ũ−k2−k3k2k3 V k1+k4
k1k4

+ Ũ−k2−k4k2k4 V k1+k3
k1k3

+ Ũ−k3−k4k3k4 V k1+k2
k1k2

)
]

(38)
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A
k1k2k3
k4

= −1

ωk1 + ωk2 + ωk3 − ωk4

[
G

k4
k1k2k3

+ 2(V
k1+k2
k1k2

Ṽ
k4
k3k4−k3

+ V
k1+k3
k1k3

Ṽ
k4
k2k4−k2

+ U−k1−k2k1k2 Ṽ
k3
k4k3−k4

+U−k1−k3k1k3 Ṽ
k2
k4k2−k4

−Ṽ
k2+k3
k2k3

V
k4
k1k4−k1

−Ũ−k2−k3k2k3V
k1
k4k1−k4

)
]

(39)

A
k1
k2k3k4

= −1

3(ωk1 − ωk2 − ωk3 − ωk4 )

[
G

k1
k2k3k4

− 2(Ṽ
k2+k3
k2k3

V
k1
k4k1−k4

+ Ṽ
k2+k4
k2k4

V
k1
k3k1−k3

+Ṽ
k3+k4
k3k4

V
k1
k2k1−k2

+ Ũ−k2−k3k2k3V
k4
k1k4−k1

+ Ũ−k2−k4k2k4V
k3
k1k3−k1

+ Ũ−k3−k4k3k4V
k2
k1k2−k1

)
]
.

(40)

Below we calculate Ak1
k2k3k4

, Ak1k2k3k4 , Ak1k2k3
k4

and Ak3k4
k1k2

for the case when
canonical variable bk has harmonics with positive k only.

Let us start with Ak1
k2k3k4

, expression (40). According to δ-function in (24) k1 is
also positive. One can finally get:

Ak1
k2k3k4

= ωk1 + ωk2 + ωk3 + ωk4

48πg
k1(k1k2k3k4)

1
4 . (41)

Coefficient Ak1k2k3k4 has to be calculated for negative k1 (according to δ-function
in (24), so we will calculate it as A−k1k2k3k4 .

A−k1k2k3k4 = ωk1 − ωk2 − ωk3 − ωk4

48πg
k1(k1k2k3k4)

1
4 . (42)

Coefficient Ak1k2k3
k4

has to be calculated both for positive and negative k1. For
ki > 0 the following is valid:

Ak1k2k3
k4

= ωk1 + ωk2 + ωk3 + ωk4

16πg
k1(k1k2k3k4)

1
4 . (43)

For k1 < 0 we will calculate it as A−k1k2k3
k4

. Let us start with the case k4 > k2,
k3 > k1:

A−k1k2k3
k4

= ωk4 + ωk3 + ωk2 − ωk1

16πg
(k1k2k3k4)

1
4 k1

3
√

k1k4 − √
k2k3√

k1k4 + √
k2k3

(44)

In the case k2 > k1, k4 > k3:

A−k1k2k3
k4

= ωk4 + ωk3 + ωk2 − ωk1

16πg
(k1k2k3k4)

1
4 k1

√
k1k4(2k3 + k1) − √

k2k3(2k3 − k1)√
k1k4 + √

k2k3
(45)
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In the case k3 > k1, k4 > k2:

A−k1k2k3
k4

= ωk4 +ωk3 +ωk2 −ωk1
16πg

(k1k2k3k4)
1
4 k1

√
k1k4(2k2 + k1) −√

k2k3(2k2 −k1)√
k1k4 + √

k2k3
(46)

In the case k1 > k2, k3 > k4:

A−k1k2k3
k4

= ωk4 +ωk3 +ωk2 −ωk1
16πg

(k1k2k3k4)
1
4 k1

√
k1k4(2k4 + k1) − √

k2k3(2k4 − k1)√
k1k4 + √

k2k3
(47)

Coefficient Ak1k2
k3k4

has to be calculated both for positive and negative k1. Below we

calculate Ak1k2
k3k4

for the case k1, k2, k3, k4 > 0. Let us start with the case k2 > k3, k4 >

k1:

Ak1k2
k3k4

= 1

ωk1 + ωk2 − ωk3 − ωk4

[
T̃ k3k4

k1k2
− (k1k2k3k4)

1
4

8π
k1

(
3
√

k1k2 +√
k3k4

)]

(48)

In the case k1 > k3, k4 > k2:

Ak1k2
k3k4

= 1

ωk1 + ωk2 − ωk3 − ωk4
×

×
[

T̃ k3k4
k1k2

− (k1k2k3k4)
1
4

8π

(√
k1k2(2k2 + k1) + √

k3k4(2k2 − k1)
)]

(49)

In the case k4 > k1, k2 > k3:

Ak1k2
k3k4

= 1

ωk1 + ωk2 − ωk3 − ωk4
×

×
[

T̃ k3k4
k1k2

− (k1k2k3k4)
1
4

8π

(√
k1k2(2k3 + k1) + √

k3k4(2k3 − k1)
)]

(50)

In the case k3 > k1, k2 > k4:

Ak1k2
k3k4

= 1

ωk1 + ωk2 − ωk3 − ωk4
×

×
[

T̃ k3k4
k1k2

− (k1k2k3k4)
1
4

8π

(√
k1k2(2k4 + k1) + √

k3k4(2k4 − k1)
)]

(51)

For k1 < 0 we will calculate it as A−k1k2
k3k4

and k1, k2, k3, k4 > 0:
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A−k1k2
k3k4

= 1

ωk1 + ωk2 − ωk3 − ωk4

[
(k1k2k3k4)

1
4

8π
k1

(√
k1k4 + √

k1k3 − √
k3k4

)]
=

= (k1k2k3k4)
1
4

16πg
k1

(
ωk2 + ωk3 + ωk4 − ωk1

)
(52)

It appears that if spectrum of b(x) consists of harmonics with positive k only,
transformation from bk to ηk and ψk can be considerably simplified. To prove that,
let us calculate ηk andψk for positive k using transformations (23) and (7). To recover
ηk and ψk for negative k one can use the following relations:

η−k = η∗
k , ψ−k = ψ∗

k . (53)

But first let us write ηk and ψk as a power series of bk up to the third order:

ηk = η
(1)
k + η

(2)
k + η

(3)
k , ψk = ψ

(1)
k + ψ

(2)
k + ψ

(3)
k . (54)

Obviously

η
(1)
k =

√
ωk

2g
[bk + b∗−k], ψ

(1)
k = −i

√
g

2ωk
[bk − b∗−k]. (55)

Or

η(1)(x) = 1
√
2g

1
4

(k̂
1
4 b(x) + k̂

1
4 b(x)∗), ψ(1)(x) = −i

g
1
4√
2
(k̂− 1

4 b(x) − k̂− 1
4 b(x)∗).

(56)

Operators k̂α act in Fourier space as multiplication by |k|α .
Quadratic terms in (54) are the following:

η
(2)
k =

√
ωk

2g

[
2

∫
(Ṽ k2

kk1
+ Ṽ k1−kk2

)b∗
k1bk2δk+k1−k2dk1dk2 −

−
∫

(Ṽ k
k1k2 + Ũ−kk1k2)bk1bk2δk−k1−k2dk1dk2

]
,

ψ
(2)
k = −i

√
g

2ωk

[
2

∫
(Ṽ k2

kk1
−Ṽ k1−kk2

)b∗
k1bk2δk+k1−k2dk1dk2−

−
∫

(Ṽ k
k1k2 −Ũ−kk1k2)bk1bk2δk−k1−k2dk1dk2

]
. (57)

All coefficients in (57) can be easily calculated using expressions (18), (26), prop-
erties (53) and little algebra. The following formulae are valid for both positive and
negative k:
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η
(2)
k = |k|

4
√
2gπ

[∫
k

1
4
1 bk1k

1
4
2 bk2δk−k1−k2dk1dk2 +

∫
k

1
4
1 b∗

k1k
1
4
2 b∗

k2δk+k1+k2dk1dk2

− 2
∫

k
1
4
1 b∗

k1k
1
4
2 bk2δk+k1−k2dk1dk2

]
,

ψ
(2)
k = − i

4
√
2π

[∫
(
√

k1 + √
k2)k

1
4
1 bk1k

1
4
2 bk2δk−k1−k2dk1dk2−

−
∫

(
√

k1 + √
k2)k

1
4
1 b∗

k1k
1
4
2 b∗

k2δk+k1+k2dk1dk2−

−2sign(k)

∫
(
√

k1 + √
k2)k

1
4
1 b∗

k1k
1
4
2 bk2δk+k1−k2dk1dk2

]
. (58)

Applying Fourier transformation to (58) one can get

η(2)(x) = k̂

4
√

g
[k̂ 1

4 b(x) − k̂
1
4 b∗(x)]2,

ψ(2)(x) = i

2
[k̂ 1

4 b∗(x)k̂
3
4 b∗(x) − k̂

1
4 b(x)k̂

3
4 b(x)]+

+ 1

2
Ĥ [k̂ 1

4 b(x)k̂
3
4 b∗(x) + k̂

1
4 b∗(x)k̂

3
4 b(x)]. (59)

Here Ĥ—is Hilbert transformation with eigenvalue isign(k).
Cubic terms in (54) are the following (k, k1, k2 and k3 are positive):

η
(3)
k =

√
ωk

2g

[∫
(Ak

k1k2k3 + A−kk1k2k3)bk1bk2bk3δk−k1−k2−k3dk1dk2dk3 +

+
∫

(Akk1
k2k3

+ A−kk2k3
k1

)b∗
k1bk2bk3δk+k1−k2−k3dk1dk2dk3+

+
∫

(Akk1k2
k3

+ A−kk3
k1k2

)b∗
k1b∗

k2bk3δk+k1+k2−k3dk1dk2dk3

]
,

ψ
(3)
k = −i

√
g

2ωk

[∫
(Ak

k1k2k3 − A−kk1k2k3)bk1bk2bk3δk−k1−k2−k3dk1dk2dk3 +

+
∫

(Akk1
k2k3

− A−kk2k3
k1

)b∗
k1bk2bk3δk+k1−k2−k3dk1dk2dk3+

+
∫

(Akk1k2
k3

− A−kk3
k1k2

)b∗
k1b∗

k2bk3δk+k1+k2−k3dk1dk2dk3

]
(60)

Some of coefficients in (60) can be easily calculated using expressions for A and
little algebra :

Ak
k1k2k3 + A−kk1k2k3 = ωk

24πg
k(kk1k2k3)

1
4

Ak
k1k2k3 − A−kk1k2k3 = ωk1 + ωk2 + ωk3

24πg
k(kk1k2k3)

1
4 (61)
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Akk1k2
k3

+ A−kk3
k1k2

= ωk1 + ωk2 + ωk3

8πg
k(kk1k2k3)

1
4

Akk1k2
k3

− A−kk3
k1k2

= ωk

8πg
k(kk1k2k3)

1
4 (62)

For k, k1, k2, k3 > 0

Akk1
k2k3

+ A−kk2k3
k1

= T̃ k2k3
kk1

ωk + ωk1 − ωk2 − ωk3
− ωk

8πg
(kk1k2k3)

1
4 k−

− (kk1k2k3)
1
4

8πg
min(k, k1, k2, k3)×

×
[ √

kk1 +√
k2k3√

kk1 − √
k2k3

(
ωk +ωk1 +ωk2 +ωk3

) +
√

kk1 −√
k2k3√

kk1 +√
k2k3

(
ωk − ωk1 − ωk2 −ωk3

)]

Akk1
k2k3

− A−kk2k3
k1

= T̃ k2k3
kk1

ωk + ωk1 − ωk2 − ωk3
− ωk1 + ωk2 + ωk3

8πg
(kk1k2k3)

1
4 k−

− (kk1k2k3)
1
4

8πg
min(k, k1, k2, k3)×

×
[√

kk1 + √
k2k3√

kk1 −√
k2k3

(
ωk +ωk1 + ωk2 + ωk3

) −
√

kk1 −√
k2k3√

kk1 + √
k2k3

(
ωk − ωk1 −ωk2 −ωk3

)]

(63)

Using properties (53) expressions for η
(3)
k and ψ

(3)
k can be extended for negative k,

so that the following formulae are valid for both positive and negative k:

η
(3)
k = k2

24πg
3
4
√
2

∫
k

1
4
1 bk1k

1
4
2 bk2k

1
4
3 bk3δk−k1−k2−k3dk1dk2dk3+

+ k2

24πg
3
4
√
2

∫
k

1
4
1 b∗

k1k
1
4
2 b∗

k2k
1
4
3 b∗

k3δk+k1+k2+k3dk1dk2dk3+

+
∫

⎡
⎢⎢⎣

√
ωk

2g
(Akk1

k2k3
+ A−kk2k3

k1
) +

k
3
2 (k1k2k3)

1
4

(
k

1
2
1 + k

1
2
2 + k

1
2
3

)

8πg
3
4
√
2

⎤
⎥⎥⎦ ×

× b∗
k1bk2bk3δk+k1−k2−k3dk1dk2dk3+

+
∫

⎡
⎢⎢⎣

√
ωk

2g
(A−kk3

k2k1
+ Akk2k1

k3
) +

k
3
2 (k1k2k3)

1
4

(
k

1
2
1 + k

1
2
2 + k

1
2
3

)

8πg
3
4
√
2

⎤
⎥⎥⎦ ×

× b∗
k1b∗

k2bk3δk+k1+k2−k3dk1dk2dk3 (64)
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ψ
(3)
k = −i

|k|
24πg

1
4
√
2

∫ (
k

3
4
1 k

1
4
2 k

1
4
3 +k

1
4
1 k

3
4
2 k

1
4
3 +k

1
4
1 k

1
4
2 k

3
4
3

)
bk1bk2bk3δk−k1−k2−k3dk1dk2dk3+

+ i
|k|

24πg
1
4
√
2

∫ (
k

3
4
1 k

1
4
2 k

1
4
3 + k

1
4
1 k

3
4
2 k

1
4
3 + k

1
4
1 k

1
4
2 k

3
4
3

)
b∗

k1b∗
k2b∗

k3δk+k1+k2+k3dk1dk2dk3+

+
∫ [

−i

√
g

2ωk
(Akk1

k2k3
− A−kk2k3

k1
) + i

k
3
2 (k1k2k3)

1
4

8πg
1
4
√
2

]
b∗

k1bk2bk3δk+k1−k2−k3dk1dk2dk3+

+
∫ [

i

√
g

2ωk
(A−kk3

k2k1
− Akk2k1

k3
) − i

k
3
2 (k1k2k3)

1
4

8πg
1
4
√
2

]
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k1b∗
k2bk3δk+k1+k2−k3dk1dk2dk3

(65)
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Occurrence of Extreme Waves in Finite
Water Depth

Leandro Fernandez, Miguel Onorato, Jaak Monbaliu
and Alessandro Toffoli

Abstract For random unidirectional wave fields propagating on water of infinite
depths, high-order nonlinearity such as modulational instability is responsible for
strong departures from Gaussian-and second-order-based statistics. For finite water
depth, on the contrary, wave instability attenuates and eventually vanishes for rel-
ative water depths as low as kh = 1.36 (where k is the wavenumber of the domi-
nant waves and h the water depth). Experimental results, nonetheless, indicates that
oblique (directional) perturbations are capable of triggering and sustaining modula-
tional instability and possibly lead to a wave amplitude growth even if kh < 1.36.
Here a comparative analysis of the statistical properties of surface gravity waves in
water of finite depth is discussed by analyzing laboratory experiments, field mea-
surements, and numerical simulations to assess the role of modulational instability
on wave statistics and particularly on the occurrence of extremes. Despite evidence
of modulational instability in regular wave fields, results presented herein seems
to indicates that wave instability has a negligible effect on wave statistics, which
remains primarily affected by second-order contributions.

1 Introduction

Statistical properties of random wave fields and the probability of occurrence of
extremely large waves (also known as freak or rogue waves) have received much
attention during the past decade in many different fields of physics such as nonlinear
optics (Solli et al. 2007; Kibler et al. 2010), plasma physics (Bailung et al. 2011)
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and hydrodynamics (Chabchoub et al. 2011, 2012; Onorato et al. 2013a; Chalikov
2009) (see a general overview in Onorato et al. 2013b). At first order, an idealized
wave field can be approximated by a linear superposition of waves with randomly
distributed amplitudes and phases. Under these circumstances, statistical properties
of water surface elevations can be conveniently approximated by the Normal or
Gaussian distribution (Ochi 1998).

Nonlinear contributions, however, cannot be totally disregarded if the steepness
is sufficiently high. This routinely happens in the real ocean, where the most obvi-
ous manifestation of nonlinearity is a sharpening of wave crests and flattening
of troughs, which results in a weak departure from Normality as crests becomes
higher and trough shallower than linear theory would predict. In order to capture
such an effect, second-order corrections are normally applied to the linear solution
(Longuet-Higgins 1963) and theoretical (second-order based) distributions extracted
(e.g. Tayfun 1980; Forristall 2000).

Interestingly enough, if wave energy is concentrated around a dominant com-
ponent (narrow banded assumption) and confined within a rather narrow range of
directions (the wave field is approximately unidirectional), higher-order nonlinear
effects, such as modulational wave instability, take place. The instability of freely
propagating deep water wave trains to side band perturbations is a well-known phe-
nomenon (e.g., Janssen 2003) and causes particularly strong focusing of wave energy
when the Benjamin-Feir Index (BFI), a ratio of steepness to dispersion (Onorato et al.
2001; Janssen 2003) is O(1). As a consequence, a small part of a wave train grows at
the expense of the surrounding waves, which eventually turns into an extreme wave.
In a random sea state, this results in strong deviations from Gaussian-and second-
order-based statistics (Janssen 2003; Onorato et al. 2001, 2006b; Mori and Yasuda
2002; Mori et al. 2007; Socquet-Juglard et al. 2005; Trulsen and Dysthe 1997; Mori
and Janssen 2006; Toffoli et al. 2009). It should be mentioned, however, that the
strength of higher-order effects (and modulational instability in particular) reduces
with the increase of the directional spreading, attenuating deviations fromNormality
(Onorato et al. 2009a, b; Toffoli et al. 2010; Waseda et al. 2009).

These results apply for a condition of deep water, where the relative depth k0h →
∞ with k0 the wavenumber associated to the dominant wave component and h
the water depth. Many observations of extreme waves in the ocean, nonetheless,
have been reported in conditions of arbitrary water depth with k0h < 2 (Haver and
Andersen 2000; Trulsen 2007; Babanin et al. 2011; Chien et al. 2002). Under these
circumstances, waves interact with the nearby sea floor, generating a current that
subtracts energy from nonlinear focussing. Correspondingly, modulation of wave
trains to side band perturbations attenuates and eventually vanishes for k0h = 1.36.
Whereas this is valid for collinear perturbations, however, a plane wave can still
destabilize if subjected to oblique (directional) disturbances (Slunyaev et al. 2002;
Benjamin 1967; Whitham 1974; Janssen and Onorato 2007; Mori and Yasuda 2002;
Kristiansen et al. 2005; Francius and Kharif 2006; McLean 1982).

An experimental verification of the destabilization of wave trains due to oblique
perturbations in water of finite depth was recently discussed in Toffoli et al. (2013).
Experiments also corroborated that oblique perturbations lead to a notable amplitude
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growth. Therefore, it would be feasible to assume that statistical properties of sur-
face gravity waves and specifically the occurrence of extremes could be affected by
modulational instability processes in finite water depth for directional wave fields. In
this regard, some attempts to assess the effect of wave instability, directionality and
water depth on wave statistics was presented in Toffoli et al. (2007, 2009), among
others. Results, however, were not conclusive and hence it remains unclear, whether
the observed amplitude growth by oblique perturbations is sufficient to induce sub-
stantial deviations from Gaussian-and second-order-based statistical distributions in
finite water depth.

Laboratory experiments in a large wave basin are here used to discusses the
effect of high-order nonlinearity and particularly modulational instability on wave
statistics and probability of extremes. Direct numerical simulations of the potential
Euler equations and field measurements are used to support data interpretation. In
the following section, the data sets and the initial conditions for simulations and
experiments are discussed. In Sect. 3, spectral evolution in thewave basin is discussed
to asses the extent of wave dissipation (by bottom friction and/or wave breaking). In
Sect. 4, statistical properties of the water surface are presented. Concluding remarks
are reported in the last Section.

2 Data Sets

2.1 Laboratory Experiments

A set of experiments have been carried out in the ocean wave basin at MARINTEK
(Norway). The basin is 70m wide and 50m long (see Fig. 1) and is equipped with
an adjustable floor. For the present study, water depth was set equal to 0.78m. The
basin is also equipped with a directional wavemaker along the 70m side, which
consists altogether of 144 individually controlled flaps. Reflection is controlled by
two absorbing beaches at the opposite side of the wavemaker and on its right-hand
side. On the left-hand side, a second wave maker is present, which acts as a vertical
wall. Overall, reflection in the middle of the basin is negligible (cf. Onorato et al.
2009a).

Wave measurements were concentrated along the central axis of the basin (see
Fig. 1) where a total of 27 resistance wave gauges operating at a sampling frequency
of 200Hz were deployed to trace the spatial evolution of the wave field. Three 3-
probe arrays and one 8-probe array were installed to monitor the evolution of the
directional wave spectrum too.

Initial conditions at each paddle of the wavemaker were imposed in the form time
series of irregular waves. These were generated as an inverse Fast Fourier Transform
of an input directional wave spectrum E(ω, ϑ) = S(ω)D(ϑ), where S(ω) is the
frequency spectrum, D(ϑ) is the directional function, ω is the angular frequency and
ϑ is the direction. Amplitudes were randomly chosen from the Rayleigh distribution,
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Fig. 1 Experimental set up
in the ocean wave basin at
MARINTEK

while the random phases were assumed to be uniformly distributed in the interval [0,
2π ). Hence, an initial Gaussian wave field is here used as input. Note that second-
and higher-order nonlinearity (if any) develops naturally as waves start propagating
along the basin.

For convenience, S(ω) is expressed in the form of a JONSWAP spectrum (Komen
et al. 1994):

S(ω) = 2παg2

ω5
exp

[
−5

4

(
ω

ωp

)−4
]
γ exp [−(ω−ωp)2/(2σ 2ω2

p)], (1)

where α is the Phillips parameter, γ is the peak enhancement factor and ωp is the
peak frequency; the parameter σ is equal to 0.07 if ω ≤ ωp and 0.09 if ω > ωp. For
the present study, three spectral configurations were selected; spectral parameters
are detailed in Table1. For all cases, the peak enhancement factor γ is kept constant
and equal to 6. Several peak periods Tp are used. As the water depth is uniform,
this ensures that different spectral configurations operate in a different regimes of
relative water depth (k0h). Significant wave height Hs was chosen in such a way
that the wave steepness k0a, where a = Hs/2, is constantly equal to 0.13. This is a
fairly high value of wave steepness, which was often recorded during ship accidents
reported as being due to bad weather conditions (Toffoli et al. 2005). As both k0h
and k0a affect the degree of nonlinearity in the system, a general steepness parameter
μ was applied (see Table1). It can be written as follows (see e.g. Toffoli et al. 2007
and references therein):
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Table 1 Input spectral parameters

Exp. ID Tp [s] L p [m] Hs [m] kh α γ ka μ

A 1.35 2.76 0.12 1.78 0.013 6 0.13 0.19

B 1.64 3.81 0.16 1.30 0.018 6 0.13 0.25

C 1.77 4.27 0.18 1.15 0.011 6 0.13 0.28

μ = 1

2
Hs k0 coth(k0h)

[
1 + 3

a sinh2 (k0h)

]
. (2)

Note that μ tends to the wave steepness k0a for deep water conditions, while it tends
to the Ursell number for the shallow-water limit (i.e., k0h → 0).

In order to model the directional spreading, a frequency-independent D(ϑ) =
cos N (ϑ) function was applied. Two different values of the directional spreading
coefficient N were used for every JONSWAP configurations: N = 840 and N = 2,
representing unidirectional and directional sea states, respectively.

It is worth mentioning that the Benjamin-Feir Index is attenuated by both wave
directionality and water depth. For unidirectional wave fields in deep water, the
B F I associated to the selected spectra is O(1), while it drops to about 10−1 for
the shallowest and most directional condition that is considered herein (see Mori
et al. 2011; Janssen and Onorato 2007 for details on BFI calculation). Although
higher value of BFI are possible in principle, the necessary steepness and dispersion
(spectral bandwidth) would not be reasonable for ocean and coastal waves.

In order to ensure enough data to perform statistically significant analysis, four
time series of 20min were recorded during the experiment. For each set of measure-
ment, different random amplitudes and phases were applied.

2.2 Numerical Simulations

Direct numerical simulations were carried out in an attempt to replicate experimental
results. Computations consisted in solving the potential Euler equations of motion.
Assuming an irrotational, inviscid and incompressible fluid flow, a velocity potential
φ(x, y, z, t) that satisfies the Laplace’s equation everywhere in the fluid can be
defined. For the present study, a constant water depth is also assumed. At the bottom
(z = −h) the boundary condition is such that the vertical velocity is zero (i.e.,
φz |h = 0). At the free surface z = η(x, y, t), the kinematic and dynamic boundary
conditions are satisfied for the free surface elevation and the velocity potential at
the free surface ψ(x, y, t) = φ(x, y, η(x, y, t), t). Using the free surface variables
these conditions can be written as follows (see, e.g., Zakharov 1968):

ψt + gη + 1

2

(
ψ2

x + ψ2
y

)
− 1

2
W 2

(
1 + η2x + η2y

)
= 0, (3)
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ηt + ψxηx + ψyηy − W
(
1 + η2x + η2y

)
= 0, (4)

where the subscripts indicate the partial derivatives, andW (x, y, t) = φz |η represents
the vertical velocity at the free surface.

The temporal evolution of the surface elevation of an initial surface η(x, y, t = 0)
can be estimated directly from the system of equations (3) and (4) by solving the
systemof equationswith aHigher-Order SpectralMethod (HOSM)as derived inWest
et al. (1987). A substantial advantage of HOSM, compared with other methods, is
that it is able to simulate the evolution of a wave field in a large number of random
realizations of the surface elevation in a reasonable computational time, without
limitations in terms of the spectral bandwidth.

This approach is based on a pseudo-spectralmethod,which uses a series expansion
in the wave steepness (ε) of the vertical velocity W (x, y, t) about the free surface.
Here, we considered a third-order expansion. The former allows the inclusion of four
waves interactions (Tanaka 2001b), which is directly responsible for modulational
instability. It is important to mention, however, that the model is not fully nonlinear.
Therefore, effect of order higher than modulational instability are not accounted for.
After evaluating the vertical velocity at the free surface at third order, the free surface
velocity potential ψ(x, y, t) and the surface elevation η(x, y, t) can be integrated in
time from Eqs. (3) and (4). The time integration is performed by means of a fourth-
order Runge–Kutta method with a constant time step equivalent to Tp/200. All
aliasing errors generated in the nonlinear terms are removed (West et al. 1987; Tanaka
2001b). Note, however, that no additional terms were included to take into account
wave dissipation. A concise review of HOSM can be found in Tanaka (2001a).

The initial conditions for the model is a linear surface derived with a inverse Fast
Fourier Transform from an input spectrum. In this regard, spectral conditions are
identical to the ones used in the laboratory experiments (see Table1). The dimension
of the physical domain was defined by a mesh of 256× 256 points with a resolution
in both dimensions equivalent to Δx = Δy = L p/4 so that a dominant wave is
discredited by approximately 25 grid points. The model was run to ensure a temporal
evolution of the initial surface equivalent to 60 peak periods. To ensure enough data
for statistical analysis, furthermore, 100 random realizations were carried out for
each spectral configuration.

It is important to remark that numerical simulations provide a temporal evolution
of the surface elevation, while a spatial evolution is observed in the ocean basin. To
compare the results, we assume that space and time can be converted according to
the group velocity. This approach has been used to compare HOSM simulations with
laboratory experiments in Toffoli et al. (2010) with satisfactory results.

For benchmarking second-order effects, numerical simulations from a second-
order wave model were also used to derive statistical information. Second-order
simulations are identical to those used in Toffoli et al. (2007).
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2.3 Field Measurements: The Lake George Data Set

Field measurements of surface elevations gathered at the Lake George field exper-
imental site (Australia) between September 1997 and August 2000 were used to
explore statistical properties of finite water depth waves (see Young et al. 2005;
Toffoli et al. 2007 for details). Records were obtained by using an array of eight
capacitance gauges, acquiring at a sampling frequency of 25Hz. This set of probes
was located under a measurement bridge in the form of a centered pentagon
with a diameter of 15cm sufficiently far from the structure in order to avoid any
disturbances.

The lake bed in the region of the observation site was flat and the water depth
gradually changed from 1.1 to 0.4m due to a natural process of drying out. This
ensured a fairly large range of relative depths kh. Records were sorted out to ensure
that data with general steepness µ as used in the experiment were available for
analysis (see Toffoli et al. 2007).

As field measurements consist in wind generated waves, the directional spread-
ing is normally broad (Young et al. 2005; Toffoli et al. 2007). To some extent, the
wave directional spreading is consistent with experiments and simulations that were
obtained with N = 2.

3 Evolution of Significant Wave Height and Wave
Energy Spectrum

It is instructive to observe how the wave energy spectrum and the concurrent signif-
icant wave height evolve in space within the wave basin. In Figs. 2 and 3, the spatial
evolution of Hs and frequency spectrum is presented.

Initial conditions were designed to minimize breaking probability, while main-
taining a sufficiently large value of steepness (cf. Onorato et al. 2009a; Toffoli et al.
2010). For unidirectional sea states (upper panel in Fig. 2), in fact, the significant
wave height does not show any notable attenuation along the basin for any k0h. This,
apparently, excludes any substantial effects due to bottom friction. Directional sea
states, however, appear to be more prone to dissipation. Although energy loss is
limited for the deepest water depth condition (see case μ = 0.19 in the lower panel
of Fig. 2), it becomes substantial for shallower depths, where approximately 25% of
wave energy is lost along the basin. Based on visual observation, this dissipation is
primarily attributed to a more frequent occurrence of wave breaking.

As dissipation is limited for unidirectional waves, the wave spectrum does not
show any substantial changes. For the conditions of deepest water (kh = 1.7 andμ =
0.19), nonetheless, the wave spectrum undergoes an expected spectral downshifting
due to an energy redistribution from higher to lower frequencies, as a result of
modulational instability (Onorato et al. 2009a). For lower relative water depths,
modulational instability attenuates (and eventually vanishes for k0h = 1.36) with
a consequent suppression of peak downshifting (see upper panel in Fig. 3). This is
also consistent with the evolution of numerical wave fields for k0h ≈ 1.36 (Janssen
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Fig. 2 Spatial evolution of significant wave height Hs in the ocean wave basin: unidirectional wave
fields (N = 840) in the upper panel and directional wave fields (N = 2) in the lower panel

Fig. 3 Spatial evolution of significant wave height Hs in the ocean wave basin

and Onorato 2007; Toffoli et al. 2009). Similarly, the same behavior of the spectral
peak is observed for directional wave fields (see lower panels in Fig. 3). For the latter,
however, a significant energy loss around the spectral peak is detectable as a result
of wave breaking.
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4 Wave Statistics

4.1 Skewness and Kurtosis

Statistical properties of the surface elevation can be conveniently summaries by
the third-and fourth-order moments of the probability density function, namely the
skewness and the kurtosis, respectively.Whereas the former is an indicator of vertical
asymmetry in the signal and hence of the strength of second-order effects (e.g., Ochi
1998), the latter provides information on the percentage of extremes in the record
and it is conveniently used to estimate the effect of modulational instability on the
occurrence of extremes (Onorato et al. 2001). The initial linear surfaces for the
experimental and numerical tests are Normally distributed and hence, the skewness
is zero (i.e., the wave profile is vertically symmetric) and the kurtosis is equal to 3.
As waves propagate along the tank, nonlinear interactions take places, modifying the
statistical properties of the wave field. The evolution of skewness and kurtosis, in this
regard, is presented in Figs. 4, 5 and 6 for different values of the general nonlinear
parameter μ.

In a condition of fairly deep water (k0h = 1.78), development of modulational
instability and concurrent formation of very large waves is observed for long crested
wave fields (N = 840). Numerical simulations provides a good approximation of
the experimental results.

As expected, the broadening of the wave spectrum suppresses effect related
to modulational instability. While wave instability can still be active, amplitude
growth is no longer notable and the kurtosis does not diverge from expected linear
(kurtosis = 3) and second-order-based (kurtosis ≈ 3.1) statistics (cf. Onorato et al.
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Fig. 4 Temporal evolution of kurtosis (upper panel) and skewness (lower panel) for an initial wave
field characterized by kh = 1.78, ak = 0.13, and μ = 0.19
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Fig. 5 Temporal evolution of kurtosis (upper panel) and skewness (lower panel) for an initial wave
field characterized by kh = 1.30, ak = 0.13, and μ = 0.25
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Fig. 6 Temporal evolution of kurtosis (upper panel) and skewness (lower panel) for an initial wave
field characterized by kh = 1.15, ak = 0.13, and μ = 0.28

2009a; Waseda et al. 2009). It is worth mentioning that the skewness is not affected
by modulational instability. As soon as waves are generated at the wavemaker or
allowed to evolve in numerical simulations, bound (second order) waves are gener-
ated, producing a vertical deformation of the wave profile. As a result, the skewness
departs from the Gaussian value of zero and stabilizes around the second-order value
of approximately 0.2. Again, numerical simulations agrees with experimental data.
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As water depth decreases, modulational instability gradually weakens and even-
tually vanishes for kh = 1.36. Experimental and numerical unidirectional wave
fields, in this respect, no longer show a clear growing pattern for the kurtosis, which
remains only slightly above the value of 3. Despite verified effects due to oblique
perturbations, no substantial changes in the kurtosis are observed for directional
wave fields too. In terms of skewness no significant differences are observed with
respect to deeper water conditions. As the water depth is not too shallow, the strength
of second-order contributions does not intensify notably. It is important to mention,
nonetheless, that the finite extension of the basin may not allow instability to fully
develop, especially due to the very low values of BFI. Simulations of longer evolu-
tions (equivalent to about 500 wavelengths), though, does not show any significance
deviation of wave statistics from second-order-based values.

To summarize the behavior of kurtosis, the latter is presented as a function of the
relative water depth k0h in Fig. 7 (values in the proximity of the center of the basin
are considered). Numerical and field data are shown for comparison too. Whereas
kurtosis attenuates with reduction of relative water depth in unidirectional wave
fields (N = 840), a growing trend (i.e., kurtosis increases with reducing k0h) is
observed for directional sea states (N = 2). Overall, experiments agree with numer-
ical simulations qualitatively. Nevertheless, simulations underestimate the kurtosis
in directional wave fields with k0h < 1.4. In this regard, we remark that numerical
simulations account for a third-order expansion (M = 3) and hence, only modu-
lational instability is considered. Neglected higher-order effects appears to play a
significant role.

Fig. 7 Kurtosis as a function relative water depth k0h. Note the coincidence of the Lake George
experimental data with the simulation (N = 2) at k0h = 1.78
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Fig. 8 Probability density function for unidirectional sea states

Field measurements of wind generated wave fields at Lake George also indicates
a increase of kurtosis for small relative depth. In contrast with experiments and
numerical simulations, however, a deviation from Gaussianity becomes only evident
for k0h < 1.2, while random waves remains Gaussian for deeper water depth.

4.2 Probability Density Function

The probability density function of the surface elevation is presented in Figs. 8
and 9 for unidirectional and directional wave fields, respectively. Records from the
experimental tests, numerical simulations, and Lake George are reported; the
Gaussian distribution and a distribution based on second-order simulations (see Tof-
foli et al. 2007 for details) are presented for benchmarking.

For kh = 1.78 (the deepest relative depths considered herein), departures from
Gaussian and second-order distributions are visible for unidirectional sea states (N =
840) as a result of modulational instability (cf. Onorato et al. 2009a). Specifically,
crests tend to be higher than second-order theory would predict, while troughs are
deeper than linear waves. For directional sea states, deviations vanish, and all records
fits well a second-order-based probability density function (Onorato et al. 2009a;
Waseda et al. 2009). This reflects the observed value of kurtosis, which remains
close to the Gaussian reference value of 3. It is worth mentioning, in this regard, that
second-order contributions do not affect the fourth- order moment of the probability
density function (Onorato et al. 2006a).

With the decrease of relative water depth, deviations at the upper and lower tails of
the probability density function attenuates for unidirectional sea states. For kh = 1.30
and 1.15, positive elevations fits the second-order-based distribution, while negative
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Fig. 9 Probability density function for directional sea states

elevations remains slightly deeper than second-order predictions and better fit the
lower tails of the Gaussian distribution. This results in slightly larger wave heights
when compared with second-order waves, justifying values of kurtosis higher than
three (normally, kurtosis ≈ 3.2 for unidirectional random wave fields in finite water
depth). For directional wave fields, a good fits of all records with second-order-
based distributions is again observed for the upper tail of the distribution. For the
Lake George data set, also the lower tail of the distribution seems to fit relatively
well the second-order distribution. Experimental and numerical data, on the contrary,
shows a weak deviation of the lower tail from second-order distribution, indicating
that troughs become deeper. The lower tail of the Gaussian distribution offers a
better fit of experimental and numerical directional wave fields. As aforementioned,
the deepening of trough support the observed increase of kurtosis with decreasing
relative depth (from a kurtosis of about 3 for k0h = 1.78 to approximately 3.2 for
k0h < 1.78, see Fig. 7).

4.3 Wave Crest Distribution

In present section, a comparison of wave crest distributions as obtained from exper-
imental records, numerical simulations, and field measurements is discussed. Wave
crest distributions in the form of exceedance probability are shown in Figs. 10 and
11 for unidirectional and directional sea states, respectively. The Rayleigh distrib-
ution and the second-order Forristall 2D distribution (Forristall 2000) are included
for benchmarking linear and second-order statistics.

It is important to remark that numerical simulations provide a surface and not
a time series. Extraction of wave crests from a surface η(x, y, t) is not trivial. The
problem is here bypassed by recording the temporal evolution at one numerical
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Fig. 10 Wave crest distribution for unidirectional sea states
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Fig. 11 Wave crest distribution for directional sea states

probes, which is located in the middle of the physical domain. Calculation of wave
crests can then performed using a standard zero-downcrossing method.

For the deepest water depth and narrowest directional spreading, deviations from
second-order statistics are substantial, despite the fact that waves already start feeling
the sea floor for k0h = 1.78. Extreme waves with crests greater than 1.3 times Hs

have a probability of occurrence one order of magnitude higher than second-order
theory would predict. All records in directional sea states, on the contrary, show
a good agreement with second-order statistics as modulational instability does not
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have any notable effect on wave amplitude growth. Nonetheless, crests in the tail of
the exceedance probability (Hcrest/Hs > 1 and probability levels lower than 0.001)
show a weak deviation from second-order predictions.

For shallower relative water depth (k0h = 1.30 and 1.15), departure from second-
order distribution in unidirectional sea states vanishes and crests fits the Forristall
(2000) distribution. Despite the survivability of modulational instability and possible
wave amplitude growth due to oblique perturbations (Toffoli et al. 2013), wave
crest distributions for directional sea states do not deviates notably from second-
order distributions, apart from a weak departure for probability lower than 0.001.
Interestingly enough, field measurements at Lake George show a more substantial
departure from second-order statistics in the tail of the distribution: this deviation
was already discussed in Toffoli et al. (2007) and found to be statistically significant
(at least within a 95% confidence interval). In this regard, however, it is worth
mentioning that experimental data are not sufficient to assess probability levels as
low as 0.0001, where this deviation is observed. The fact that numerical simulations
are not capable of capturing such a deviation, it seems to corroborate that nonlinear
effects higher than third-order (modulational instability) are not negligible under the
present circumstances.

5 Conclusion

Laboratory experiments in a large wave basin, numerical simulations with a trun-
cated form of the potential Euler equations and field experiments at the Lake George
experimental site (Australia) have been discussed to assess the role of third-order non-
linearity, and particularlymodulational instability, onwave statistics. Specifically, the
role of oblique (directional) perturbations on the instability of wave packets and their
ability to trigger wave amplitude growth in water of finite depth was investigated.

Initial conditions for experimental tests and numerical simulations were con-
figured to replicate wave conditions at Lake George. To this end, spectral condi-
tions with a constant wave steepness k0a = 0.13 and different relative water depths
(koh = 1.78, 1.30, and 1.15) were selected. Directional spreading was modeled with
a cos N (ϑ) function. An almost unidirectional distribution (N = 840) and a broad
directional distribution typical for wind generated waves (N = 2) were applied.

Experimental and numerical records are in good agreement and confirm sub-
stantial departures from linear and second-order-based statistics, provides the wave
field is unidirectional and relative water depth is sufficiently deep (k0h = 1.78 in
the case of the present exercise). The observed deviation, however, are suppressed
by the directional spreading of the wave energy, which force wave statistics to fit
second-order-based distributions. This is consistent with previous numerical and
experimental studies (see Socquet-Juglard et al. 2005; Onorato et al. 2009a; Waseda
et al. 2009 among others).

For shallower relative depths (k0h = 1.30 and 1.15), the interaction with the sea
floor subtracts energy to modulational instability processes, inhibiting any devia-
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tions from second-order statistics. Despite the observed amplitude growth in regular
wave packets due to directional perturbations Toffoli et al. (2013), wave statistics of
directional wave fields does not deviates notably from standard second-order distrib-
utions. It should be mentioned, nonetheless, that field measurements at Lake George
indicates that the most extreme wave crests (probability levels lower than 0.001) are
slightly under estimated by numerical simulations. This is not captured by numeri-
cal simulations, which only includes third-order effects. Further investigation on the
effects of higher-order nonlinear contributions is called for to better understand the
statistical properties of waves in finite water depth.
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Modeling of Rogue Wave Shapes in Shallow
Water

T. Talipova, C. Kharif and J.P. Giovanangeli

Abstract Various shapes of rogue waves are discussed within the framework of the
mechanism of nonlinear focusing of transient frequency modulated wave groups. A
particular attention is paid to the formation of troughs in front of high crests. The
conditions of appearance of the “three sisters” are discussed too. It is important to
emphasize that this mechanism is not too sensitive to the variation of the shape of
transient frequency modulated wave groups. The variable-polarity shape of a rogue
wave is more probable than only one crest or one trough, because the generation of
the latter ones needs a specific phase relation between individual waves in the group.

1 Introduction

The interest in occurrence of abnormal huge waves on the sea surface has arisen a
long time ago and the physical mechanisms generating these giant water waves are
now well understood and documented (Kharif and Pelinovsky 2003; Slunyaev et al.
2013). Rogue waves are observed everywhere, both in deep and shallow waters and
sometimes even on beaches. The theoretical background for internal rogue waves
had been done in (Grimshaw et al. 2010a, b; Talipova et al. 2011). The shapes of
rogue waves are various. Sometimes they look like solitary waves, sometimes they
appear as a group of waves (the “three sisters”) or as a wall of water (Mallory 1974;
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Fig. 1 Rogue wave collision with the “Taganrorsky Zaliv” (from the book by Lavrenov 2003)

Fig. 2 The Draupner New
Year wave (from the paper
by Haver and Jan Andersen
2000)
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Torum and Gudmestad 1990; Olagnon and Athanassoulis 2001; Chien et al. 2002;
Rosenthal 2003). In some descriptions (see, Lavrenov 2003), a long shallow trough
occurs in front of a very high crest (Fig. 1), and such a wave can be very dangerous
for shipping.

Indeed, there is no unique representation of rogue wave shapes. In theory, until
now main attention has been paid to the possible values reached by the amplitude
or height of freak waves, but not to their shapes. One attempt to explain the shape
of the Draupner New Year wave (Fig. 2) from various nonlinear water wave theories
has been made in the paper by Walker et al. (2004).

Here, we discuss theoretical shapes of rogue waves in a basin of moderate depth
due to the focusing of transient wave groups. As it is discussed in a review paper
(Kharif and Pelinovsky 2003), various mechanisms of wave group focusing may be
suggested by using (i) water wave amplitude and frequency variations in space due
to wind action, (ii) nonlinear modulational instability, and (iii) sea current or sea
bottom inhomogeneity. The simplest explanation of rogue wave occurrence due to
transient group focusing may be described as follows (Kharif et al. 2001; Slunyaev
et al. 2002). If initially short wave groups are located in front of longer wave groups
having larger group velocities, then during the stage of evolution, longer waves will
overtake shorter waves. A huge wave can occur at some fixed time because of the
superposition ofwavesmerging at a given location. Afterwards, the longerwaveswill
be in front of the shorter waves and the amplitude of the highest wave will decrease.
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Such a mechanism has been reproduced in various laboratory tanks (Baldock and
Swan 1996; Johannessen and Swan 2001; Brown and Jensen 2001; Clauss 2002;
Shemer et al. 2006; Giovanangeli et al. 2005; Touboul et al. 2006; Kharif et al.
2008).

The elements of the nonlinear dispersive theory of wave focusing are given in
Sect. 2 and the results of the numerical model are described in Sect. 3.

2 Theoretical Model

The dynamics of nonlinear long surface water waves on constant depth may be
described by the Korteweg-de Vries equation (Dingemans 1996)

∂η

∂t
+ c

(
1 + 3η

2h

)
∂η

∂x
+ ch2

6

∂3η

∂x3
= 0, (1)

where η is the water surface elevation, h is the undisturbed water depth, c = √
gh is

the linear speed of long surface wave and g is the gravity acceleration. Equation (1)
may be reduced to dimensionless form (3) by the following transformations (2)

ζ = η

h
, τ = c

h
t, y = x − ct

h
(2)

∂ζ

∂τ
+ 3

2
ζ

∂ζ

∂y
+ 1

6

∂3ζ

∂y3
= 0. (3)

The effective process to generate transient wave group focusing into a rogue
wave was suggested in a recent paper (Pelinovsky et al. 2000). It is based on the
invariance of the Korteweg-de Vries equation (3) with respect to reversal of time
and abscissa. It means that we may choose the expected form of freak wave ζfr(x)

as the initial condition for Eq. (3) and solve it for any time t = T . Solutions found
analytically or numerically after reversal of abscissa ζ(−x) describes the wave train
which evolution may lead to the occurrence of waves of abnormal amplitude with
the chosen shape ζfr(x) and at time t = T . From Eq. (3) solved within the framework
of a deterministic approach, with zero boundary conditions when |x | goes to ∞ and
the shape of the abnormal wave described by positive pulse with amplitude A0 and
length L , we show that the process is controlled by the Ursell parameter (Kharif et al.
2000). Furthermore, it is shown in the paper by Pelinovsky et al. (2000) that for a
single rogue wave the Ursell parameter satisfies the following condition

Ur = A0L2 � 1 (4)

The very steep wave appears due to the focusing of a group of waves of moderate
amplitude. For the sake of simplicity, this wave may be approximated by the δ-
function
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ςf(y) = Qδ(y). (5)

The coefficient Q in (5) is equal to wave “mass”

Mf =
∞∫

−∞
ςf(y)dy = Q. (6)

The potential energy of this wave is infinite formally. Within the framework of
equation (3)whichmay be solved by using themethod of inverse scattering transform
(Drazin and Johnson 1993), the delta pulse (5) evolves into a solitary wave

ςs = Assech
2 [

γ (y − (1 + As/2)τ )
]
, (7)

with dimensionless amplitude As and inverse width γ

As = 3

4
Q2 γ =

√
3

4
As = 3

4
Q (8)

There is a dispersive tail spreading in space and damping in time. The solitary wave
mass Ms and its energy Es are conserved in time and equal accordingly to

Ms = As

γ

∞∫
−∞

sech2zdz = 2As

γ
= 2Q (9)

Es = A2
s

γ

∞∫
−∞

sech4zdz =4A2
s

3γ
= Q3. (10)

We emphasize that the solitary wave mass is larger than twice the rogue wave mass,
therefore incipient dispersive tail has negative mass

Mt = −Q. (11)

The energyof dispersive tail goes to infinity also as the energyof the initial delta pulse.
Hence, if the solitary wave is deleted from the wavefield, the energy of dispersive tail
is large enough to produce a wave of abnormal amplitude. Since dispersive tail mass
is negative, it is reasonable to assume that the deep negative trough prevails in the
rogue wave generation. Dispersive wave tail, especially with small amplitude, within
the framework of the Korteweg-de Vries equation, evolves like the Airy function,
and because its mass Mt , accordingly to (11), is proportional to the mass of expected
roguewave Q, thewaves in the dispersive tail contain the information about both time
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(or position) of rogue wave occurrence and rogue amplitude due to self-similarity of
the Airy function.

When the initial rogue wave disturbance has negative polarity, solitary waves are
not generated irrespective of the Ursell parameter value, and the whole energy goes
into damping dispersive wave train. Let us mention that within the framework of
an idealized problem, solitary waves prevent the formation of rogue waves whose
amplitude has to be higher not only than the amplitude of the dispersive tail but also
higher than solitary wave amplitudes, constant in time. Hence, it is reasonable to
suggest that without solitary waves into dispersive tail the formation of rogue wave
of variable-polarity is more probable. In this case the condition about the Ursell
parameter is satisfied.

3 Numerical Model

The numerical integration of the Korteweg-de Vries equation (3) is based on a fi-
nite difference scheme which satisfies the Courant criterion. The main goal of the
numerical simulations is to analyze the conditions of variable-polarity rogue wave
generation from transient wave groups without solitary waves.

FollowingPelinovsky et al. (2000),wegenerate numerically transientwavegroups
from a short Gaussian pulse given by Af exp(−y2/L2). The corresponding Ursell
parameter is sufficiently small. The transient group corresponds to a solitary wave
plus a damping dispersive wave train. After reverse of abscissa this transient wave
group focuses again into the rogue wave with the Gaussian pulse shape. This process
is shown in Fig. 3 for two values of the Gaussian pulse amplitude 0.2 and 0.4 and the
same width L = 0.55. In this case the rogue wave occurs at τ = 2000. Amplitudes
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Fig. 3 Transient wave groups (a), leading to the formation of a Gaussian pulse of positive polarity
(b) with amplitude values 0.2 (black) and 0.4 (red). The width is 0.55
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of generated rogue waves in both cases (Fig. 3b) are more than 4 times larger than
the amplitude of the corresponding solitary waves in initial wave transient groups
(Fig. 3a), and it is more than the criterion needed for the freak wave occurrence: the
amplitude of the freak wave has to be more than twice the amplitude of background
waves.

Note that amplitudes of generated solitary waves in both runs differ from one
to another by a factor 4 (0.025–0.092), whereas the amplitudes of dispersive tails
differ by a factor 2. So, this simple numerical experiment confirms our theoretical
conclusions that influence of amplitude of the dispersive tail on the amplitude of the
rogue wave is strong (practically linear when the Ursell parameter is very weak).

Additional numerical simulations were run, corresponding to truncated transient
wave groups: the solitary wave has been ignored. Hence, we consider the mechanism
of rogue wave formation directly from the dispersive tail only. Results of these runs
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Fig. 4 a Initial dispersive wave train; b rogue wave generated by dispersive focusing; c initial wave
train where one negative half-wave is deleted; d rogue wave generated by focusing of this wave
train
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are shown in Fig. 4. Due to dispersive focusing of the tail (Fig. 4a), the variable-
polarity high-amplitude wave is generated (Fig. 4b) and its height (from trough to
crest) is equal to 0.4 that is the same height than that of the rogue wave generated
from the full wave group including the solitary wave. The excess of wave height
above the initial height of dispersive tail is about 6.7, so such a wave satisfies the
amplitude criterion of rogue wave occurrence. It is evident that the negative trough of
the rogue wave is longer than the positive crest, and the negative total mass described
into Sect. 2 is conserved.

So the evolution of the dispersive tail allows us to explain the appearance of the
long trough (which has a specific shape within the framework of an idealized model)
ahead of the positive pulse as it is described in the book by Lavrenov (2003).

The amplitude of oscillations in the dispersive tail varies significantly with wave
position, and the mass distribution here is very nonuniform. So, if we delete the last
high-energy negative half-wave (Fig. 4c), themass of the tail ismodified significantly,
and the rogue wave which focuses from such a tail after reversing of abscissa consists
of one high peak and moderately deep troughs (Fig. 4d). It is interesting to note that
the wave shape in Fig. 4d is similar to the New Year wave (Fig. 2). Despite the fact
that the rogue wave height becomes smaller (0.33 against 0.4 in the previous case),
the excess of wave height above the initial height of the dispersive tail is about 6.7 as
in the previous case. Thus, the mass of dispersive wave train influences significantly
the shape of the rogue wave but in any case we obtain the variable-polarity rogue
wave. A second series of numerical simulations has been performed corresponding
to a Gaussian pulse of negative polarity. Its focusing leads to occurrence of abnormal
deep trough on the sea surface (Fig. 5). It is well known that during the evolution of
such a pulse, solitary waves do not occur and the shape of the transient wave group
is close to the Airy function profile, especially for small values of the amplitude.
The maximal wave height (from trough to crest) in the tail in Fig. 4a is 0.1, while the
pulse amplitude is 0.2. So, the amplitude criterion of rogue wave is satisfied in this
case too.
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Fig. 5 a Initial wave train, b its transformation into a Gaussian pulse of negative polarity
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The removal of back long negative half-wave from the wave train is shown in
Fig. 5a (see Fig. 6a). The generation of a trough in front of the high positive pulse
is observed (Fig. 6b). However, in this situation the trough with larger amplitude is
behind the crest and following crests also. This is close to the wave packet often
called in the literature as “three sisters.” The decrease in elevation between the first
crest and following trough is equal to 0.33 that is more than three times the height
of the initial dispersive wave train, and the amplitude criterion is satisfied. Thus,
our assumption that any dispersive wave train without solitons may generate the
variable-polarity rogue wave is confirmed by the evolution of this class of transient
wave group also.

For the third series of numerical experiments, the rogue wave generation from a
transient wave group has been chosen as a wave with a shape close to that shown
in the book by Lavrenov (2003) (see Fig. 1). For this case, the solitary wave and
dispersive wave tail used are shown in Fig. 6a. The evolution of this wavefield is the
chosen “Lavrenov’s” rogue wave (Fig. 7b). We fixed its amplitude large enough to
obtain a decrease in the elevation of the initial wave packet (Fig. 7a) more than three
times.

The main characteristic feature observed in the wavefield of the dispersive train in
comparison with cases shown above, is a nonmonotonic modulation which may be
interpreted as an almost linear interference of both wave trains generated by positive
and negative parts of initial rogue wave in the direct simulation.

Amore realistic situation has been suggested for the fourth series of runs. This sit-
uation is closed to experimental results obtained in the Hannover tank and described
by Shemer et al. 2006. A dispersive wave tail shown in Fig. 8a, has been obtained
from the wave packet given in Fig. 4a multiplied by a Gaussian envelope Agexp
(–(y–b)2/L2), where Ag = 1, b = 800, L = 200. Evolution of this packet also leads
to the generation of the “three sisters” (Fig. 8b) and the maximal wave height of this
group is ten times larger than the maximal height of the initial wave packet.
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4 Conclusions

Within the framework of nonlinear-dispersive mechanism, relevant variety of shapes
of rogue waves may be obtained, including the “Lavrenov’s” wave which consists
of a huge crest and a long trough in front of it. It is important to emphasize that
this mechanism is not too sensitive to the variation of the shape of transient wave
groups. The optimal focusing of transient wave groupswhich requires a special phase
relation gives the best conditions for rogue wave occurrence with huge amplitude.
Nevertheless, the amplitude criterion is satisfied for conditions of strongdeformations
of the wave group, initially leading to optimal focusing, as it is shown in this work. It
is clear from this simple theory that we can always get any natural form of abnormal
wave. Within the framework of this model, the generation of the “Lavrenov’s” wave
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and the “three sisters” is of equal probability. From our point of view, today in situ
data of abnormal waves does not mark out any preferable shapes of rogue waves.
The question about the more probable shapes of abnormal wave is an open question.
It seems that the shape of a rogue wave in the form of a crest and a through is more
probable than only one crest or only one trough, because the generation of the latter
ones needs a specific phase relation. In future, we will study the shapes of rogue
waves within the framework of direct numerical simulations of random wind wave
fields.
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Non-Gaussian Properties of Shallow Water
Waves in Crossing Seas

Alessandro Toffoli, Miguel Onorato, A.R. Osborne and Jaak Monbaliu

Abstract The Kadomtsev–Petviashvili equation, an extension of the Korteweg–de
Vries equation in two horizontal dimensions, is here used to study the statistical
properties of random shallow water waves in constant depth for crossing sea states.
Numerical simulations indicate that the interaction of two crossing wave trains gen-
erates steep and high-amplitude peaks, thus enhancing the deviation of the surface
elevation from the Gaussian statistics. The analysis of the skewness and the kurtosis
shows that the statistical properties depend on the angle between the two wave trains.

1 Introduction

Sea states characterized by two spectral peaks with different mean directions, also
known as mixed or crossing seas, are quite common in nature. Such conditions,
for example, can be easily observed when the wind direction suddenly changes
or a swell system coming from a distant source interferes with the local sea. A
recent study by Toffoli et al. (2005), based on data collected from January 1995 to
April 1999 by the Lloyd’s Marine Information Service (Bitner and Eknes 2001),
has also revealed that a large percentage of ship accidents, reported as being due to
bad weather conditions, has occurred in crossing sea states (see also Donelan and
Magnusson 2005; Greenslade 2001).

In that respect, mixed sea conditions are suspected to enhance the probability of
occurrence for extreme wave events (see, e.g., Lehner et al. 2005). For the case of
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deep water, theoretical studies on the influence of a second spectral peak (Onorato
et al. 2006; Shukla et al. 2006), which propagates with a mean direction that differs
from the principal wave system, showed that waves can be unstable in mixed seas.
Moreover, using second-order wave theory to simulate random time series of the
sea surface, Toffoli et al. (2006) have shown that crossing sea state conditions may
modify the form of the wave crest distribution as an excess of large waves may occur
when two wave systems coexist.

In the case of shallow water, Peterson et al. (2003) and Soomere and Engelbrecht
(2005, 2006) have studied the interaction of multi-directional wave trains by con-
sidering soliton-like solutions of the Kadomtsev–Petviashvili equation (Kadomtsev
and Petviashvili 1970), which can be thought as an extension of the Korteweg–de
Vries equation in the case of propagation in the (x, y) plane. The most interesting
feature that arises from the interaction of two non-collinear solitons results in the
formation of a steep and high peak (Miles 1977a, b). In particular, not only does its
amplitude exceed the value predicted by linear theory, but also assumes values up to
four times the amplitude of the incoming solitons.

Although directional, shallow water wave fields have recently been investigated
(see, e.g., Herbers et al. 2007; Janssen et al. 2006), the evolution of shallow water
waves in crossing sea state conditions has not yet been addressed properly. The aim
of the present study is to discuss the case of possible nonlinear interactions that may
arise in shallow water when two sea states, with a certain frequency distribution and
directional spreading, coexist. We mainly concentrate on the occurrence of extreme
wave events and hence on the form of the probability density function of the surface
elevation and its third- and fourth-order moments.

In order to accomplish this task, the Kadomtsev–Petviashvili equation has been
simulated numerically. Our choice on such equation is not due to the fact that we
believe that the Kadomtsev–Petviashvili equation is the most accurate theoretical ap-
proach to describe shallowwaterwaves (higher ordermodels based on theBoussinesq
equations are surely more appropriate to describe different effects that take place in
shallowwater, Herbers et al. 2007).We aremotivated by the fact that theKadomtsev–
Petviashvili equation is the leading order equation in the shallow water expansion of
the Euler equations where directionality is included. Our aim is to highlight a non-
linear mechanism described by the Kadomtsev–Petviashvili equation, which brings
the statistical properties of the surface elevations far from the gaussian behavior.
The numerical solution of the Kadomtsev–Petviashvili equation, moreover, is fast.
Therefore, this facilitates the performance of many numerical experiments consid-
ering different random phases, different degrees of nonlinearity, and different angles
between the incoming wave systems. It should be mentioned, furthermore, that the
bottom topography has an important role in the evolution of shallow water waves
(Janssen et al. 2006). For convenience, however, we only discuss the case of flat
bottom.

The paper is organized as follows: we first begin with a general description of
the Kadomtsev–Petviashvili equation. In the section following that we describe the
numerical experiment. In Sect. 4, the skewness and the kurtosis of the simulated
surface elevation are investigated as a function of the angle between the two wave
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systems. A direct analysis of the sea surface and the concurrent probability density
function is presented in Sect. 5. In Sect. 6, we discuss the statistical distribution of
the wave height. Some concluding remarks are presented in Sect. 7.

2 The Kadomtsev–Petviashvili Equation

The Korteweg–de Vries (KdV) equation describes nonlinear waves that propagate in
the x-direction. A periodic solution of such an equation is expressed by means of a
Jacobian elliptic function, which is known as cnoidal wave (see, e.g., Johnson 1997).
To express the degree of nonlinearity of KdV-like wave trains, the Ursell number
(Ursell 1953) is often used:

Ur = 3

16

aλ2

π2h3 = 3

4

ka

k3h3 . (1)

Small Ursell numbers indicate linear wave motion (Ur � 1); large values address
to increasing nonlinear effects (Osborne and Petti 1994).

One of the major shortcomings of cnoidal wave theory is its one-dimensional na-
ture, i.e., it describes long-crested waves. A real sea surface, however, has two hori-
zontal dimensions, and waves can be both long and short crested. The y-dependence,
for example,would not be trivial in the case of twocrossingwaves. In order to describe
the evolution of weakly directional waves in shallow water, a two-dimensional gen-
eralization of the KdV equation was derived by Kadomtsev and Petviashvili (1970);
hereafter, we shall refer to this equation as the KP equation. For an irrotational,
inviscid fluid in constant depth, the KP equation can be obtained from the Euler
equations, if the following assumptions are satisfied (see, e.g., Johnson 1997; Segur
and Finkel 1985 for a review): (I) waves are of small amplitude, i.e., δ = a/h � 1;
(II) the water is shallow, i.e., β = (kh)2 � 1; (III) the waves are weakly directional,
i.e., ζ = (ky/kx )

2 � 1, where kx and ky are the components of the wavenumber
vector k; (IV) these three small effects are comparable, i.e., ζ � O(δ) � O(β); and
(V) waves propagate only toward positive values of x . In dimensional form, the KP
equation can be written as follows:

∂
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∂η
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η
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h2C0

∂3x

∂x3

)
+ 1

2
C0

∂2η

∂y2
= 0, (2)

where C0 = √
gh is the phase velocity and h is the water depth.

Fornberg and Whitham (1978) developed a method for solving KdV-type wave
equations. The method uses a pseudo-spectral treatment of the space dependence
together with a leap-frog scheme in time. Here, we have extended this method to
the KP equation in order to perform numerical simulations. Boundary conditions
are assumed to be periodic, and derivatives are performed using the Fast Fourier
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Transform (FFT) algorithm. The number of grid points in physical space was set
to 128 × 64. The numerical method has been successfully tested against analytical
soliton solutions of the KP equation.

3 Numerical Experiment

A two-dimensional wave field is commonly described by a directional wave spec-
trum: E(ω,ϑ) = S(ω)D(ω,ϑ), where ω is the angular frequency and ϑ is the
direction. Here, we use a JONSWAP spectral formulation (Komen et al. 1994) with
dominant wavelength λp = 76.5 m, peak enhancement factor γ = 3.3, and Phillips
parameter α = 0.004 to model the wave energy in the frequency domain (S(ω));
this corresponds to a significant wave height Hs of 1.7 m (calculated as four times
the standard deviation). A cos2s(ϑ/2) spreading function (see, e.g., Hauser et al.
2005) is then applied to model the energy in the directional domain (D(ω,ϑ)). The
spreading coefficient s is expressed as a function of the angular frequency (Goda
2000):

s(ω) =
(

ω

ωp

)5

smax i f ω ≤ ωp (3)

s(ω) =
(

ω

ωp

)−2.5

smax i f ω > ωp, (4)

where ωp is the peak frequency. For the present study, we have chosen the spreading
coefficient such that at the peak frequency s(ωp) = 25, which corresponds to the
directional spreading of a short-decay swell (Goda 2000). Such a spectrum, how-
ever, is unimodal, i.e., single peaked. In order to describe crossing sea conditions,
which represent bimodal sea states, the wave field is defined using two identical,
aforementioned, single-peaked spectra with different mean directions, i.e., ϑ1 �= ϑ2.
The resulting sea state, Ẽ(ω,ϑ) = E(ω,ϑ−ϑ1)+ E(ω,ϑ−ϑ2), is characterized by
λp = 76.5 m and Hs = 2.4 m. Note that in case ϑ1 = ϑ2, such a spectrum reduces
to an unimodal energy distribution.

By means of the linear dispersion relation, the directional spectrum Ẽ(ω,ϑ) is
expressed as a function of the wavenumber vector k ≡ (kx , ky) (Tanaka 2001). For
a typical, bimodal, wavenumber spectrum Ẽ(k) used in this study, the two spectral
peaks are assumed to be symmetric with respect to the x-direction, such that ϑ1 =
−ϑ2 = ϑ∗.

The spectrum Ẽ(k) is then used to generate a random sea surface η(x, y) at an
initial time t = 0 s as a linear superposition of Fourier modes. It is straightforward
to show that a linear surface, which will be our initial condition for the simulations,
can be expressed as follows:
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η(x) =
N∑

i=1

M∑
j=1

ai j cos[(kx )i x + (ky) j y + εi j ], (5)

where x ≡ (x, y) is the position vector; εi j is the random phase, which is selected
from a uniform distribution in the interval [0, 2π]; N and M represent the number of
wavenumbers in the x- and y-direction, respectively; and ai j is the spectral amplitude,
which is calculated as follows:

ai j =
√
2 Ẽ[(kx )i , (ky) j ] Δkx Δky . (6)

Note that the use of a determinist amplitude may not include all natural variability
of waves. However, if a directional wave field is simulated, the addition of different
directional components automatically restores this variability (Forristall 2000).

The summations in Eq. (5) are performed by means of a two-dimensional in-
verse Fast Fourier Transform. The input spectrum Ẽ(k) is defined using equally
spaced wavenumbers in both x- and y-direction, i.e., Δkx and Δky are constants;
this automatically generates periodic boundaries, which are required for numerical
simulations of the KP equation. The spatial domain is chosen such that the wave field
measures 400 m in the x-direction and 200 m in the y-direction.

We now consider this linear surface in a shallow water environment at three dif-
ferent water depths. This defines three different degrees of nonlinearity as measured
by the Ursell number, Eq. (1), where a = Hs/2 and k = 2π/λp. The different wa-
ter depths and the concurrent Ursell numbers are presented in Table1. Under these
conditions, the linear surface is then used as input in the KP model; the surface is let
evolve in time according to Eq. (2) until it reaches a statistically stationary condition.
The experiment is repeated for different values of the angles ϑ∗ between a minimum
of 0◦ (unimodal spectrum) up to a maximum of 45◦ with a step size of 2.5◦. The
spectral energy is kept constant, i.e., Hs = const and λp = const, for all repetitions
of the numerical experiment.

For each time step, Δt = 0.001 s, the model produces a two-dimensional surface
as output; the skewness and the kurtosis have been computed from the space series
associated with each instant in time. For all spectral densities, the numerical exper-
iment is repeated 500 times with different random phases; this should in principle
stabilize the statistical information from the simulated samples. Furthermore, time
series have been recorded at four different grid points of the physical domain, starting
after the surface has reached a statistically stable condition.

Table 1 Water depths and degrees of nonlinearity: water depths h [m]; relative water depth kh;
and Ursell number Ur

h [m] kh Ur

7.00 0.57 0.39

6.00 0.49 0.62

5.00 0.41 1.10
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4 Skewness and Kurtosis of the Simulated Surface Elevation

When the water depth decreases, the nonlinear interaction becomes more and more
relevant. The most obvious manifestation of this nonlinearity is the sharpening of the
wave crests and the flattening of the wave troughs, which results in a departure from
the Gaussian statistics. The deviation is usually expressed in terms of the skewness,
λ3, and kurtosis, λ4, which represent the third- and fourth-order moments of the
probability density function, respectively. Whereas the first expresses the vertical
asymmetry of the wave profile, the second is an indication of extreme events. For
waves in shallow water, kh � 0, it is therefore expected that λ3 > 0 and λ4 > 3,
where 0 and 3 are the values of skewness and kurtosis for a Gaussian random process.

In Fig. 1, we show the skewness and kurtosis of the simulated surface elevation
η(x, y) as a function of time for a single-peaked sea state, i.e., ϑ∗ = 0◦ and a degree
of nonlinearityUr = 0.62. Note that, since the physical phenomenon is considered a
randomprocess, the statistical properties of thewave field are retrieved by calculating
average values at each time step over the collection of simulated samples (ensemble
average).

The input, linear, surface evolves at each instant of time according to the KP
equation; the statistical properties of the wave surface show a rapid and significant
deviation from the Gaussian statistics. After about 600 s, the values of the skewness
and kurtosis reach a stationary condition (cf. Pelinovsky and Sergeeva 2006). For
the considered degree of nonlinearity (Ur = 0.62), for example, the moments tend
to stabilize around the following values: λ3 � 0.60 and λ4 � 3.39. As one would
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Fig. 1 Skewness (upper panel) and kurtosis (lower panel) as a function of time from numerical
simulations with ϑ1 = −ϑ2 = ϑ∗ = 0◦ and Ur = 0.62
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expect, the skewness and kurtosis vary in magnitude as the nonlinearity of the system
changes: for Ur = 0.39, λ3 � 0.44 and λ4 � 3.13; and for Ur = 1.10, λ3 �
0.81 and λ4 � 3.87. The vertical asymmetry (λ3), however, assumes remarkably
high values already at relatively low nonlinearity. A similar result was also obtained
in unidirectional condition using the KdV equation by Pelinovsky and Sergeeva
(Pelinovsky and Sergeeva 2006).

We now investigate how the statistical properties of the simulated surfaces can
change when two spectral peaks with different mean directions are considered. In
Figs. 2 and 3, we show the skewness and kurtosis as a function of the angle ϑ∗. The
existence of a second spectral peak results in an increase of the skewness and kurtosis
as the angle between the spectra is increased. This enhancement, however, is almost
nil when the systems are almost collinear (ϑ∗ ≤ 5◦) and becomes more relevant as
the wave trains assume well-separated directions. The maximum magnitudes of the
third- and fourth-order moments are obtained for ϑ∗ ≈ 30◦: (1) for Ur = 0.39,
λ3 � 0.47 and λ4 � 3.33; (2) for Ur = 0.62, λ3 � 0.63 and λ4 � 3.65; (3) for
Ur = 1.10, λ3 � 0.85 and λ4 � 4.30. It is important to remark that the energy
remains constant, and hence this variation is only due to the nonlinear interaction of
intersecting wave trains. When ϑ∗ > 30◦, the increasing trend decreases. For low
and moderate nonlinearity, the kurtosis approximately conserved the values found
for ϑ∗ ≈ 30◦; the skewness, in contrast, slowly decreases as ϑ∗ approaches 45◦. For
high degrees of nonlinearity, however, both skewness and kurtosis show a decreasing
trend for large ϑ∗. Note that the angle at which the statistical moments of the surface
elevation maximize is to some extent consistent with the critical angle at which
two non-collinear solitons with wavelength equal to λp and amplitude equal to Hs/2

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

θ*  [deg]

λ 3

Fig. 2 Skewness (λ3) as a function of the mean direction (ϑ1 = −ϑ2 = ϑ∗) of the spectral peaks
from numerical simulation: Ur = 0.39 (�); Ur = 0.62 (+); and Ur = 1.10 (o)
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Fig. 3 Kurtosis (λ4) as a function of the mean direction (ϑ1 = −ϑ2 = ϑ∗) of the spectral peaks
from numerical simulation: Ur = 0.39 (�); Ur = 0.62 (+); and Ur = 1.10 (o)

produce an intersection peak with maximum height and length (Peterson et al. 2003).
Forϑ∗ > 30◦, however, the condition of weak directionality, i.e., ζ = (ky/kx )

2 � 1,
is no longer respected: ζ > 0.34 for ϑ∗ > 30◦. Therefore, the physical meaning of
this critical angle is uncertain, and further investigations using the Euler equations
as well as laboratory experiments are needed to confirm this finding.

It is now instructive to look at a normalized form of the skewness and kurtosis.
In this respect, we define two additional parameters, which describe how much the
skewness and kurtosis in bimodal systems differ from the one in unimodal conditions:
λ∗
3 = λ3/λ3, ϑ∗=0; λ∗

4 = λ4/λ4, ϑ∗=0, where λ3, ϑ∗=0 and λ4, ϑ∗=0 are the skewness
and kurtosis in unimodal condition, respectively. In Figs. 4 and 5, λ∗

3 and λ∗
4 are

presented as a function of ϑ∗. For low nonlinearity, Ur = 0.39, the bimodality of
the system produces waves which are about 8% more asymmetric than in unimodal
conditions (λ∗

3 � 1.08). However, for higher nonlinearity, Ur = 0.62 and 1.10,
the second spectral peak has a weaker effect on the skewness though the behavior
is qualitative identical; λ∗

3 reaches, in fact, smaller values than in the case of lower
nonlinearity (λ∗

3 max � 1.05).
For a small degree of nonlinearity, Ur = 0.39, the kurtosis increases up to 7%; at

suchnonlinearity, the bimodality has an identical effect of both skewness andkurtosis,
i.e., λ∗

4 ≈ λ∗
3. In contrast with the skewness, however, the effect of the second

spectral peak on the kurtosis does not diminish at higher degrees of nonlinearity:
λ∗
4 max = 1.09 for Ur = 0.62; λ∗

4 max � 1.11 for Ur = 1.10. Note, in particular,
the relevant enhancement of kurtosis at high degrees of nonlinearity, at which very
large amplitudes may be expected.
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Fig. 4 Normalized skewness (λ∗
3 = λ3/λ

(ϑ∗=0)
3 ) as a function of the mean direction (ϑ1 =

−ϑ2 = ϑ∗) of the spectral peaks from numerical simulation: Ur = 0.39 (�); Ur = 0.62 (+); and
Ur = 1.10 (o)
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Fig. 5 Normalized kurtosis (λ∗
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4 ) as a function of the mean direction (ϑ1 = −ϑ2 =

ϑ∗) of the spectral peaks from numerical simulation: Ur = 0.39 (�); Ur = 0.62 (+); and
Ur = 1.10 (o)
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5 Surface Elevation and Probability Density Function

As waves propagate into shallow water, a definite excess of steep crests and shallow
troughs can be observed due to the increasing of nonlinearity; this is also expressed by
the high values of the skewness and kurtosis observed in Figs. 2 and 3. In Figs. 6 and
7, we show, as an example, two-dimensional shallow water wave fields, which have
been simulated by unimodal (ϑ∗ = 0◦) and bimodal (ϑ∗ = 30◦) spectral conditions.
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Fig. 6 Nonlinear sea surface (η/σ) from numerical simulations: ϑ∗ = 0◦ (unimodal sea)
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Fig. 7 Nonlinear sea surface (η/σ) from numerical simulations: ϑ∗ = 30◦ (bimodal sea)
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Using the KP equation, we observed that when two wave systems coexist, beside
the sharpening of the wave crests and the flattening of the wave troughs, steep and
large amplitude peaks arise in the intersecting region of two wave fronts similar to
what observed in the case of the two-soliton solution of the KP equations (see, e.g.,
Miles 1977a, b). Considering the case of two non-collinear solitons, the geometrical
properties of these peaks have already been described in details by many authors
(Peterson et al. 2003; Segur and Finkel 1985; Soomere and Engelbrecht 2005). It
is important to note that the interaction peak of two non-collinear solitons can, in
principle, propagate unaltered for infinite distance. In a dispersive system, however,
the amplitude of the interaction peak arises and decreases within a distance of a
few wavelengths: two up to three times the dominant wavelength in the case of
not well-separated directions (e.g., ϑ∗ ≤ 20◦); one dominant wavelength in case of
well-separated directions (e.g., ϑ∗ > 20◦).

It is now instructive to investigate how the interaction peaksmodify the probability
density function for the surface elevation. In Figs. 8, 9, and 10, we present, as an a
example, the probability density function in unimodal (ϑ∗ = 0◦) and bimodal (ϑ∗ =
30◦) wave fields for different degrees of nonlinearity. Thewave elevation is expressed
in normalized form using the standard deviation σ of the surface displacements. Note
that the statistical distribution is calculated by only using the surface elevation η(x, y)

at the final time step of each random realization, because at this stage, the surface can
be assumed statistically stationary (see, e.g., Fig. 1). The distribution of the simulated
elevation is compared with the normal probability density function, which describes
linear (Gaussian) waves.
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Fig. 8 Probability density function for a degree of nonlinearity Ur = 0.39: Gaussian distribution
(dashed line); simulated unimodal sea (o); simulated bimodal sea with ϑ∗ = 30◦ (+)
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Fig. 9 Probability density function for a degree of nonlinearity Ur = 0.62: Gaussian distribution
(dashed line); simulated unimodal sea (o); simulated bimodal sea with ϑ∗ = 30◦ (+)
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Fig. 10 Probability density function for a degree of nonlinearity Ur = 1.10: Gaussian distribution
(dashed line); simulated unimodal sea (o); simulated bimodal sea with ϑ = 30◦ (+)

We first look at the unimodal case ϑ∗ = 0◦. As one would expect, the form of the
probability density function of simulated shallowwater waves strongly deviates from
the Gaussian statistics. The excess of sharp crests and shallow troughs results in a
shift toward negative values of the peak of the distribution and a remarkable deviation



Non-Gaussian Properties of Shallow Water Waves in Crossing Seas 87

of its tails. When crossing waves are considered, on the other hand, the peaks arising
at the intersection of the wave fronts produce a modification of the upper tail of the
distribution. However, a significant deviation from the probability density function
of unimodal wave fields only occurs at low probability levels (p(η) < 0.001). The
interaction between two non-collinear wave systems, moreover, seems not to have
any particular effect on the form of the lower tail of the distribution, which remains
almost unchanged.

6 Wave Height Distribution

For an empirical analysis, the wave height H is normally defined as the difference
in surface elevation between the crest and trough of an individual wave (trough-to-
crest wave height). Although it is straightforward to extract individual waves from
time series (see, e.g., Goda 2000), it is not clear how to define them from a certain
surface η(x, y). In the following, therefore, we make use of the recorded time series
to calculate the wave heights. In this respect, we assume that an individual wave is the
portion of a wave record between two consecutive zero-downcrossings. In Fig. 11,
the exceedance probability of the dimensionless wave height (the standard deviation
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Fig. 11 Exceedance probability of wave height for different degrees of nonlinearity: a Ur = 0.39;
b Ur = 062; c Ur = 1.10. The unimodal, ϑ = 0◦ (o), and bimodal, ϑ = 30◦ (+), cases are
compared with the Rayleigh distribution (dashed line)
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σ is used as normalizing factor) is presented for the unimodal and bimodal cases.
For the latter, only the case with ϑ∗ = 30◦ is shown, because the wave height is
expected to maximize for this angular condition. The statistical distribution of the
simulated wave heights is then compared with the Rayleigh density function, which
approximates the wave height distribution of Gaussian random processes (Longuet-
Higgins 1952).

We first consider the unimodal spectral conditions. The analysis shows that the
simulated wave heights are systematically overestimated by the Rayleigh density
function. Although this deviation may be attributed to the skew non-Gaussian nature
of shallow water waves, it is more likely related to the finite bandwidth of the wave
spectrum, and the difference in definition between the trough-to-crest wave height
and the envelope-based representation, which is relevant for the Rayleigh distribu-
tion (Longuet-Higgins 1952; Tayfun 1981, 1980). When two spectral peaks coexist,
however, the wave height increases. For a low degree of nonlinearity (Ur = 0.39),
nevertheless, the bimodality of the wave spectrum does not lead to any significant
deviation of the wave height distribution; as indicated in Fig. 11a, the tail of the dis-
tribution only slightly changes. When higher degrees of nonlinearity are taken into
account, the interaction between non-collinear wave trains becomes more relevant
and the wave height tends to be significantly higher than in unimodal conditions.
As a result, the deviation of the tail of the distribution becomes more evident as the
Ursell number is increased (Fig. 11b, c). For high nonlinearity (Ur = 1.10), further-
more, the tail of the distribution indicates that the wave height can overtake the value
expected from the Rayleigh distribution.

The numerical model, which is here used to describe the elevation of shallow
water waves, does not include wave breaking mechanisms. For a certain water depth
and wavelength, however, there is a maximum height above which the waves become
unstable and break. Since broken waves do not lose all of their energy, moreover, the
heights of individual randomwaves after breaking can slightlymodify the probability
density function. In order to verify whether the wave breaking may affect the results
presented herein, the limiting height for wave breaking, Hb, is compared with the
wave height expected at low probability levels (i.e., P(H) = 0.0001). To this end,
an estimation of the wave breaking height can be obtained as follows (see, e.g., Goda
2000): Hb = γbh, where the coefficient γb is typically between 0.7 and 0.9 for
spilling breakers (Battjes 1974); in this study, we assume γb = 0.78 as it is often
used for coastal applications Demirbilek and Vincent (2002).

According to the aforementioned definition, the following (dimensionless) wave
breaking heights are to be expected: for Ur = 0.39, Hb/σ = 9.10; for Ur = 0.62,
Hb/σ = 7.80; and for Ur = 1.10, Hb/σ = 6.50. The ratio of the wave height
expected at low probability levels (H0.0001) to the wave breaking height (Hb) is then
presented in Fig. 12. It is evident that, for low degrees of nonlinearity (Ur = 0.39 in
this study), the breaking limit is well above the largest wave height, which is obtained
in crossing seas. Therefore, the wave breaking should not have any significant effects
on the statistical properties of the surface elevation.

For a moderate nonlinearity (Ur = 0.62), the breaking limit approximately
matches the wave height at the probability level P(H) = 0.0001 (see Fig. 12).
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Fig. 12 Ratio of the simulated large wave height (H0.0001) to wave breaking height (Hb) as a
function of the Ursell number

However, since a very limited number of waves have been recorded to be higher than
H0.0001, we may expect that also for the case Ur = 0.62 the wave breaking does
not affect the probability density function of wave elevation and wave height signifi-
cantly. WhenUr > 0.62, nevertheless, the breaking limit is rather small. Thus, wave
heights at probability levels lower than 0.01 would break. As a result, the probability
density function and the statistical moment would be significantly different than the
ones obtained from the simulations.

7 Conclusions

The statistical properties of bimodal, shallow water wave fields have been dis-
cussed. A generalization of the Korteweg–de Vries equation in the (x, y) plane,
the Kadomtsev–Petviashvili equation, has been used to describe two-dimensional
waves in shallow water. The input spectra have been generated as a summation of
two equivalent single-peaked spectra with different mean directions. We have used
a JONSWAP spectral formulation to model the energy distribution in the frequency
domain and a cos–2s function to model the directional domain. Considering several
spectral cases with constant energy and different angles between the two peaks, many
realizations have been simulated with different random phases. Different degrees of
nonlinearity, as measured by the Ursell number, have been investigated.

Shallow water waves are characterized by an excess of high crests and shallow
troughs, which produces a deviation from the Gaussian statistics. The simulated
surface elevation, during single-peaked spectral conditions, shows a very skewed
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probability density function. When two non-collinear wave trains are considered in
the wave field, their nonlinear interaction produces steep and high-amplitude peaks.
These peaks yield a modification of the upper tail of the probability density function
for the surface elevation η(x, y), which significantly deviates from the distribution
of wave elevation in the unimodal condition. The coexistence of two spectral peaks,
therefore, enhances the nonlinearity of the wave field, which results in an increase
of the skewness and kurtosis. Whereas this enhancement is negligible for nearly
collinear waves, the skewness and kurtosis reach high values when the two spectral
peaks have well-separated directions. In particular, it has been observed that for ϑ∗ �
30◦ their magnitudesmaximize. Beyond the thresholdϑ∗ � 30◦, the increasing trend
of the skewness and kurtosis vanishes; for high degrees of nonlinearity, furthermore,
skewness and kurtosis decrease. Formally speaking, the KP equation results from
an expansion in which the directionality is a small parameter; therefore, additional
verification should be made with the Euler equations and laboratory experiments to
confirm this finding.

It is important to mention that the model does not consider wave breaking. How-
ever, for a certain water depth and wavelength, waves can actually break. In this
respect, the comparison between the wave height expected at low probability levels
(P(H) = 0.0001) and the breaking limit has shown that wave breaking may only
affect the statistical properties when large degree of nonlinearity (Ur > 0.62) and
large angle ϑ∗ are accounted for.

This work was carried out in the framework of the F.W.O. project G.0228.02 and
G.0477.04., and the E.U. project SEAMOCS (contract MRTN–CT–2005–019374).
The numerical simulations were performed using the K.U. Leuven’s High Perfor-
mance Computing (HPC) facilities.
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Searching for Factors that Limit Observed
Extreme Maximum Wave Height
Distributions in the North Sea

Gerrit Burgers, Frits Koek, Hans de Vries and Martin Stam

Abstract The probability that individual waves are much larger than the signifi-
cant wave height is studied in a large set of observations. It is investigated whether
steepness and shallow water effects are limiting factors for extreme wave heights.
The relation between observations and a model freak wave index is examined.
Measurements from two locations in the North Sea are used, one with a depth of
80 m and one with a depth of 20 m. The data consist of significant wave height,
wave period and maximum wave height of 20 min records. The total amount of the
records covers several years. The freak wave model index from the European Centre
for Medium-Range Weather Forecasts (ECMWF) wave model is collocated with the
observations. The instrumental data show Rayleigh-like distributions for the ratio of
maximum wave height to significant wave height. Our analysis is limited by uncer-
tainties in the instrumental response in measuring maximum wave height. The data
indicate that steepness is a limiting factor for extreme wave height. At the shallow
water location, extreme waves are not more frequently observed than at the deep
water location. The relation between the freak wave index of the ECMWF wave
model and enhanced extreme wave probability is studied.

1 Introduction

During the All Saints Day storm of November 2006, a waverider buoy recorded
extreme individual waves of 17 and 20 m, around twice the significant wave height
at that time (see Fig. 1). For the same storm, the ECMWF (European Centre for
Medium-Range Weather Forecasts) wave model WAM indicated an enhanced prob-
ability of extreme waves in the North Sea, see Fig. 2. For a water depth of 20 m, a
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Fig. 1 Registration of maximum wave height at Schiermonnikoog Island (SMN) at (53◦35N,6◦10E)
during the night of 1 November 2006

20 m wave would be quite exceptional. Whether the record is correct remains unclear:
analysis of the buoy by the manufacturer showed that the measurement is not reli-
able in these conditions (Datawell 2006) in the same storm damage was reported at
a platform more than 15 above sea level (Bojanowski 2007). But the buoy has been
in place for years, so in principle we can determine multi-year return times for wave
extremes.

In this paper, we study the following questions: how exceptional are extreme
waves in long records? Can the WAM model identify conditions with enhanced
extreme wave probability? More precisely, we focus on the ratio r = Hmax/Hs ,
where Hs is the significant wave height, and Hmax the maximum wave height in a
20 min record, and from the WAM model we use the BFI index (Janssen 2003). Our
study differs from the one by Holliday et al. (2006) in that we do use the 20 min record
summary information instead of individual wave records, and that we have used data
that accumulate to a much longer time. However, because various instruments and
algorithms have been used, the interpretation as one single dataset is problematic.

Standard linear wave theory (see, e.g. the textbook of Holthuijsen (2007) or the
introduction by Berg and Rhome (2005)) gives rise to a Rayleigh distribution for
wave height (see Appendix A). Freak waves are sometimes defined as waves that are
higher than twice the significant wave height. According to the Rayleigh distribution,
about one in about 3000 waves is a freak wave. For waves with a period of about
10 s, this is of the order of once every 8 h. In practice, of course, usage of the term
freak wave is often restricted to cases where the absolute value is exceptionally
high. Over the last few years, several mechanisms have been proposed that give
rise to enhanced extreme wave distribution compared to standard Rayleigh theory
(Janssen 2003; Mori and Janssen 2006). In Fig. 3, which is discussed in Appendix,
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Fig. 2 WAM enhancement factor. This factor gives the ratio of the WAM model estimate to the
standard linear model probability for waves with a height more than twice the significant wave
height
Fig. 3 Rayleigh and Janssen
distribution of Hmax/Hs of
the return time of the ratio of
Hmax/Hs of maximum wave
height over significant wave
height. Time is measured in
150-wave records. The thick
line is the Rayleigh
distribution, the dashed line
distribution according to
Janssen theory for the case
that the kurtosis of the sea
surface κ = 0.2,
corresponding to BFI = 0.33

such an enhanced extreme wave distribution is compared to the standard Rayleigh
distribution. The WAM model index is based on a non-linear effect that enhance the
extreme wave height distribution. On the other hand, for very large r , when steepness
becomes a limiting factor, non-linear effects will lead to a suppression with respect
to the Rayleigh distribution. Moreover, in shallow water behaviour might be quite
different. So it is interesting to examine the behaviour of the observed distribution.

In Sect. 2, we discuss the observational data set as well as the WAM model index.
In Sect. 3, we present and analyse maximum wave height distributions, including
a comparison between model results and observations. It is clear from the results



96 G. Burgers et al.

that the maximum wave height as measured by an instrument depends on the sensor
used. In Sect. 4 we give a discussion of the results, and in Sect. 5 we present the
conclusions.

2 Data Sources

2.1 North Sea Data

The data consist of reports of the Meetnet Noordzee (MNZ), a network of measuring
instruments at a number of platforms and buoys in the North Sea set up by the Dutch
authorities in cooperation with platform operating companies. In this paper, we use
data from the Auk platform located in the central North Sea at (56◦24N,0◦02E) and
a depth of 80 m, and from the wave buoy near the coast of Schiermonnikoog Island
(SMN) in the north of the Netherlands at (53◦35N,6◦10E) and a depth of 20 m.

A report consists of a set of wave parameters extracted from a 20 min record, the
frequency of the reports is 3 h. In this paper, in addition to significant wave height
and wave period, also the maximum wave height of the record is used. The MNZ
data for wave height and wave period have been monitored for years by the Royal
Netherlands Meteorological Institute (KNMI) and we know them to be reliable.

The measurements have been made by several types of instruments, see Table 1.
The radars operate from fixed platforms and measure surface elevation with a fre-
quency of 5.12 Hz. Wave buoys calculate wave data on the basis of acceleration
measurements. The sample frequency is 1.28 Hz. A linear time-domain filter is used
to reconstruct a wave height record, and to estimate the maximum wave height
from these accelerations. The number of waves (from the estimated zero-upcrossing

Table 1 Overview of instruments used in this study

Label Location Type Period

1 Auk Waverider 19840326–19861010

2 Auk Saab radar 19860413–19870714

A2 Auk Saab radar 19930616–19990625

A3 Auk Wavec 19901024–19991109

AUK1 Auk Saab radar 20000204–20050928

AUK2 Auk Wavec 20010718–20010925

AUK2 Auk Directional Waverider 20020621–20030731

4 Schier Wavec 19901024–19930331

W4 Schier Wavec 19931101–19991109

SMN1 Schier Wavec 19931109–20031216

SMN1 Schier Directional Waverider 20020220–20070831

At the locations of Auk at 56◦24N,0◦02E and Schiermonnikoog Island (Schier) at 53◦35N,6◦10E
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period) in a record falls typically in the range 150–200. The results of Sect. 3 show
that wave buoys give systematically lower estimates for the maximum wave height
than the radar estimates, and that there are significant differences between the various
combinations of buoys and filters that have been used over the years.

Quality control included rejection of duplicates and the rejection of gross errors.
Example for the radar altimeter, some short periods with on average unrealistically
high values were skipped. There are some features of the data set we cannot explain.
For example, there seems to be a preference for ‘nice’ values of the ratio Hmax/Hs

such as 1.5 or 2. We have not been able to trace what part of the processing is
responsible for this feature.

2.2 WAM Model BFI

The Benjamin Feir index BFI proposed by Janssen (2003) is a measure of the strength
of the effect non-linear interactions on wave height distribution. Non-linear effects are
stronger if (1) waves are steeper and (2) the wave spectrum is more narrow allowing
for waves to travel longer together. For a narrowband spectrum the definition of the
BFI is

BFI =
√

2km1/2
o

(σ/ω)
(1)

where k denotes the dominant wave number and ω the frequency of the spectrum,
σ the spectral width and m1/2

o = 0.25Hs the amplitude of the spectrum. In the
numerator km1/2

0 is the steepness, the denominator is the narrowness of the spectrum.
For general spectra, the above expression for the spectral width is rather ambiguous

and Janssen (2003) uses the following expression for the BFI:

BFI = √
2πkm1/2

o Q p, (2)

with

Q p = 2

m2
0

∫
dωωE2(ω) (3)

where E(ω) is the spectral density.
The BFI was added as an output parameter to ECMWF’s wave model in the fall

of 2003. Since then all model forecasts have been archived and from these archives
BFI and significant wave height have been extracted from 6 October 2003 until
31 December 2006 in 6-hourly steps for model grid points near platform Auk and
Schiermonnikoog.
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Fig. 4 Return times at the deep water station at Auk. Time is measured in 20 min records. The
labels refer to different instruments and periods, see Table 1

3 Results

The first quantity we consider is the return period of r = Hmax/Hs for the deep water
station at Auk. In Fig. 4, this quantity is plotted as a function of return time (in units of
20 min records), for various instruments and periods. It appears that the differences
between the instruments and periods are large. The radar altimeter values are close
to those which one would expect from a Rayleigh, the wave buoy data are generally
lower.

For situations where the average steepness (Hs/λ) is large, steepness may be a
limiting factor. First we check in Fig. 5, which gives a plot of Hmax versus T if wave
heights do not exceed the limiting steepness line of H = λ/7. This figure shows that
it is not uncommon that the steepness approaches the limiting steepness.

If steepness is a limiting factor, then one would expect that for a given significant
wave height, longer periods that go with less steep waves would lead to an enhanced
probability of high values of r . Figure 6, where the average value of r for records
with Hs ≈ 4 m is plotted as a function of T , gives some evidence for this fact.

Now we turn to the shallow water results. In Fig. 7, the return periods for the
shallow water station Schiermonnikoog (SMN) are shown. Comparing these results
to the deep water data of Auk is hampered by the fact that different stations and
periods are hard to compare. Even when matching periods and instruments there
remain problems: the SMN1 Wavec is much lower than the AUK2 Wavec, while
the SMN W4 is only slightly lower than the AUK A3. We checked that this also
holds when we restricted the comparison to periods that both instruments yielded
data (not shown). We note that period of the W4 versus A3 comparison is much
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Fig. 5 Scatter plot of maximum wave height Hmax versus mean period T in deep water for the
radar measurements at Auk

Fig. 6 The ratio r = Hmax/Hs as function of the mean period T , for radar measurements at Auk.
The histogram indicates the number of data in each bin. The solid line connects the average value
of r for bins with nine or more entries

longer (19931101–19991109) than the period of the AUK2 versus SMN1 comparison
(20010718–20010925). What we can conclude is that there is no indication that
outside the surf zone, values of r are higher in shallow water than in deep water.
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Fig. 7 Return times at the shallow water station Schiermonnikoog Island (SMN). Time is measured
in 20 min records. The labels refer to different instruments and periods, see Table 1

Fig. 8 Scatter plot of maximum wave height Hmax versus mean period T at the shallow water
station Schiermonnikoog Island (SMN)

For this shallow water location, the constant steepness line (yellow) in a H -T
diagram has a different shape than for deep water. Figure 8, which gives a plot of
Hmax versus T for SMN, shows that for this station maximum wave heights are not
as close to yellow line as for deep water waves. We checked in plots of Hs against
steepness, see Figs. 9 and 10, that while the general picture that high waves are more
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Fig. 9 Scatterplot of wave steepness versus Hs at the deep water station Auk

Fig. 10 Scatterplot of wave steepness versus Hs at the shallow water station Schiermonnikoog
Island

often steep than low waves remains valid, for waves with HS > 2 m, the limiting
steepness at the shallow water location decreases with significant wave height, while
it stays roughly constant at the deep-water location.

Finally, we checked whether there is a relation between the BFI index of WAM
of the ECMWF and the probability of high r values. To this end, average values
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Fig. 11 Model BFI versus measured Hmax/Hs in deep water at Auk. Observations have been binned
according to model BFI, the number of observations is indicated by the black number in each bar.
The length of the bar gives the average value of r for that bin, and the black line indicates the
standard deviation

Fig. 12 Model BFI versus measured Hmax/Hs in shallow water at SMN. Observations have been
binned according to model BFI, the number of observations is indicated by the black number in
each bar. The length of the bar gives the average value of r for that bin, and the black line indicates
the standard deviation
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of r have been collocated with the model BFI. The results are shown in Fig. 11 for
Auk and Fig. 12 for SMN. During the period for which the model BFI was available,
there were many more observations at the shallow water station than at the deep
water station. The data for the deep water station at Auk do not exclude a relation
between high r observations and high WAM model BFI indices. For the shallow
water location, there is hardly a correlation between high r observations and high
WAM model BFI indices.

4 Discussion

From the measurements it appears that there are systematic differences between the
various instruments. Because the radar has a higher sampling frequency, and makes a
more direct measurement than the accelerations measured by the buoys, we consider
the radar measurements to be more reliable. Additional confidence in the radar results
comes from the fact that they are close to those predicted by standard Rayleigh
theory. Apparently, the frequency of around 1 Hz of accelerations by the buoys is not
sufficient for capturing maximum wave heights well, making that the buoy results are
systematically below the radar results. That differences between various periods are
so large indicate that not only the instrument but also the processing algorithm has
a large impact on the distribution of the measurements. This makes a comparison of
the deep water station with the shallow water station far from straightforward. What
remains is a number of series of several months of data. The most obvious result is that
there is no change in behaviour for timescales ranging from hours to months. There
is neither evidence for an enhanced tail because of non-linear enhancement effects,
nor for a damped tail because of limiting steepness effects. Considering subclasses,
steepness may have an effect: there is some indication that, given the significant wave
height and the period, steeper waves are more likely in the case of long periods. In
shallow water, wave energy can converge and give rise to high waves. But our results
do not indicate a higher probability of extreme waves in shallow water than in deep
water. If any, we observe the opposite effect: extreme waves are less likely in shallow
water. We do find a clear difference in plots of steepness versus wave height between
deep water and shallow water: in deep water there is a limiting steepness that does
not depend on wave height, in shallow water this limit decreases with wave height,
probably because of bottom friction effects.

For deep water, Janssen theory expects an increase of the mean value of r of the
order of 0.1 if the BFI is varied from 0 to 0.5 (Peter Janssen, personal communication).
Such an increase is compatible with our results for the deep water station at Auk in
Fig. 11. Janssen theory does not expect a correlation between BFI and r in shallow
water, because in shallow water conditions for four-wave interactions differ from
deep water. This is confirmed by our shallow water results in Fig. 12.
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5 Conclusion

The analysis has been hampered by the fact the instruments report approximations
for maximum wave height, and that those approximations differ between different
instruments and observing periods. Our main result is that the instrumental data
are consistent with a Rayleigh-like extreme wave distributions up to return periods
of many months. There is slight indication that for long waves steepness can be a
limiting factor for maximum wave height. In shallow water, there is some evidence
that extreme waves are less common than in deep water. The distributions of wave
height versus steepness in shallow water and deep water are different, which may
be related to the overall damping effect of bottom friction that causes a reduction
of significant wave height in shallow water. As expected, in shallow water, there is
no relation between the WAM model BFI and the probability of extreme waves. For
deep water, such a relation cannot be ruled out.

Acknowledgments We wish to thank Peter Janssen for valuable and stimulating discussions.

Appendix: Rayleigh Distribution

According to linear wave theory, see e.g. Holthuijsen (2007), the probability p(r)
that an individual wave has a height H = r Hs is given by

p(r) = exp(−r2) (4)

From this expression it follows the probability P(r̄) that in a series of N waves all
waves have r < r̄ is

P(r̄) = (1 − p(r̄))N (5)

The exact number of waves in a 20 min record is not determined. In the North
Sea, periods are shorter than in the open ocean and vary from 5 to 10 s, in very
severe storms the dominant period can be higher. So a typical number of waves in a
20 minute record is about 150. In Fig. 3 return maximum wave height as a function
of the number of records is plotted as a solid line. The maximum wave height ratio
r reaches a value of 2 for about 20 records (about 6 h) and increases slowly with the
number of records. Even for 105 records, that is about 4 years, r is below 3.

For comparison, a distribution that follows from the theory of Mori and Janssen
(2006) is shown as well (dotted line). The case shown corresponds to a BFI of 0.33.
In Janssen theory, the BFI is directly related to κ, the kurtosis of the sea surface, by
κ = (π

√
3)BFI2, so the case of Fig. 3 corresponds to κ = 0.2.
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Extremes and Decadal Variations
in the Baltic Sea Wave Conditions

Tarmo Soomere

Abstract Average and extreme wave conditions, their seasonal cycle and decadal
variations, and extreme wave storms in Baltic Sea Proper and in the largest sub-
basins of this sea are studied based on long-term time instrumentally measured time
series of wave properties at Almagrundet and theDarss Sill, visual wave observations
from several coastal sites of the eastern Baltic Sea, wave statistics from the northern
Baltic Proper and Gulf of Finland, long-term reconstructions of the wave climate and
numerical modelling of an extreme wave storm. The wave climate is highly inter-
mittent and occasionally contains very strong wave storms. Significant wave heights
HS ≥ 4m occur with a probability of about 1% among all wave fields in the open
Baltic Proper. Extreme wave conditions with HS ≥ 7m occur approximately twice
in a decade. The overall recorded maximum HS is 8.2m. The estimated maximum of
HS was about 9.5m in cyclone Gudrun in January 2005. No clear trend exists in the
wave properties in the Baltic Sea. The 99%-iles of the significant wave height exhibit
a complicated spatial pattern of changes and have significantly decreased between
the islands of Öland and Gotland and to the south of these islands.

1 Introduction

The complexity of physics and dynamics of the Baltic Sea extend far beyond the
typical features of many other water bodies of comparable size (e.g. Feistel et al.
2008; Leppäranta and Myrberg 2009). The combination of a relatively small size
of this water body and vulnerability of its ecosystem makes this region extremely
susceptible with respect to climate changes and shifts. Its complex geometry, high
variability of wind patterns and extensive archipelago areas with specific wave prop-
agation properties (Tuomi et al. 2014) give rise to large spatio-temporal variability
in the wave properties. The presence of relatively shallow areas and often occur-
ring convergent wind patterns may lead to occasional wave energy concentration in
some areas (Soomere 2003, 2005; Soomere et al. 2008). This feature requires a high
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spatial resolution of wave simulations and also a careful choice of wavemeasurement
sites. The seasonal ice cover of large parts of the sea considerably affects the wave
patterns during winter and early spring. As wave measurement devices are removed
well before the ice season (Kahma et al. 2003; Tuomi et al. 2011), the wave data have
long gaps and several commonly used characteristics (e.g. annual mean wave height
or period) may becomemeaningless (Tuomi et al. 2011). The situation is additionally
complicated by specific features of wave generation by offshore winds over irregular
coastline (Kahma 1981; Kahma and Calkoen 1992) or under so-called slanting fetch
(when wind blows obliquely across the coastline; Pettersson et al. 2010).

Numerous changes in the forcing conditions and in the reaction of the water
masses of the Baltic Sea have been reported during the later decade (BACC Author
Team 2008, BACC II Author Team 2015). The apparently increasing storminess
in the Baltic Sea during the second half of the 20th century (Alexandersson et al.
1998) has caused extensive erosion of depositional coasts (Orviku et al. 2003). The
changes in the average wave climate of the entire Baltic Sea and adjacent seas have
been found marginal, at least, until the mid-1990s (WASA Group 1995; Mietus and
von Storch 1997).

Very rough seas that occurred twice in December 1999, all-time highest sig-
nificant wave height 8.2m in the Baltic Proper in December 2004 (Tuomi et al.
2011) and all-time highest single wave in the Gulf of Finland in November 2012
(9.4m, www.fmi.fi), reinforced the discussion as whether the wave conditions in the
Baltic Sea have become rougher compared with the situation a few decades ago.
The exceptional storm Erwin/Gudrun (January 2005) highlighted inadequate aware-
ness of extreme wave properties (Soomere et al. 2008) and of the height and spatial
extent of extreme water levels (Suursaar et al. 2006). Recent numerical simulations
(Soomere and Räämet 2011a, b; Tuomi et al. 2011), analysis of long-term directional
wave measurements in the Arkona Basin (Soomere et al. 2012) and reconstructions
of the nearshore wave climate back to the mid-1940s based on visual wave observa-
tions (Soomere 2013) have shed much more light on spatio-temporal variations in
the Baltic Sea wave climate.

Recognition of the wave climate changes, in particular, changes in extremes,
presumes a thorough knowledge of the typical and extreme wave conditions. The
global wave data set KNMI/ERA-40Wave Atlas (09.1957–08.2002, Sterl and Caires
2005) allows the production of a reliablewave climatology for open ocean conditions,
based on 6-hourly means of wave properties over an average of 1.5◦ × 1.5◦ areas.
This resolution is too sparse for the Baltic Sea conditions. As typical for semi-
enclosed shallow basins, wave properties are additionally modified here through
wave-bottom interaction (refraction, shoaling, breaking or reflection) and diffraction
behind obstacles.

The Baltic Sea has probably the longest history in the world of almost one and
half centuries of systematic visual observations of wave properties from fixed coastal
locations (Rosenhagen and Tinz 2013). Similar observations from lightships started
about 90years ago inDanishwaters (Hünicke et al. 2015) and slightly later in Swedish
waters (Wahl 1974). Systematic observations of wave properties from many coastal
sites were launched in the eastern Baltic Sea since the mid-1940s, and such observa-

www.fmi.fi
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tions are performed at a few sites until today (Soomere 2013). The outcome of these
historical observations combined with similar data from ships and results of various
early hindcasts has been formulated in several generations of textbooks (Davidan
et al. 1978, 1985; Lopatukhin et al. 2006b) and wave atlases for the Baltic Sea
(Rzheplinsky 1965; Russian Shipping Registry 1974; DWD 2006; Lopatukhin et al.
2006a) and its sub-basins (Druet et al. 1972; Rzheplinsky and Brekhovskikh 1967;
Schmager 1979; Sparre 1982).

The properties of wind waves primarily depend on the wind speed and duration,
and effective fetch length. The pattern of predominant winds (Mietus 1998; Soomere
and Keevallik 2001) and the geometry of the Baltic Sea suggest that the highest and
longest waves occur either at the entrance of the Gulf of Finland, off the coasts of
Saaremaa, Hiiumaa, and Latvia, or along the Polish coasts (Schmager et al. 2008).
Wave data from the northern parts of the Baltic Sea Proper thus adequately represent
both the average and the roughest wave situations in the region.

The wave properties in the Baltic Sea can be modelled with the use of local mod-
els, because the waves from the rest of the World Ocean practically do not affect this
water body. Numerical reconstruction of the Baltic Sea wave fields is still a compli-
cated task, and the results usually contain extensive uncertainties (Cieślikiewicz and
Paplińska-Swerpel 2008; Kriezi and Broman 2008; Räämet et al. 2009). The largest
source of uncertainties is the wind information (Nikolkina et al. 2014). Its quality
has considerably increased within the last decade, but this information still suffers
from substantial temporal inhomogeneity (Tuomi et al. 2011), spatial variations in its
quality (Räämet et al. 2009; Soomere and Räämet 2011b), and occasional mismatch
of modelled and actual air flow directions (Keevallik and Soomere 2010).

Several numerical wave studies are performed for the southern part of the Baltic
Sea (e.g.Gayer et al. 1995; Paplińska 1999;Blomgren et al. 2001; Siewert et al. 2015).
Early estimates of wave statistics for the entire Baltic Proper have been performed
using the second-generation spectral wave model HYPAS and wind data from a few
years (1999–2000; Jönsson et al. 2003, 2005;Danielsson et al. 2007).Although third-
generationwavemodels such asWAM(e.g. Komen et al. 1994) and SWANhave been
implemented for the northern Baltic Sea at the turn of the millennium (e.g. Tuomi
et al. 1999; Soomere 2001), wave statistics based on such models was available only
for limited areas until 2005 (Soomere 2003, 2005). Extensive simulations based on
different wind information were performed only starting from about 2005 (Schmager
et al. 2008; Soomere and Räämet 2011a, b; Tuomi et al. 2011). These simulations
together with the increasing pool of instrumental measurements (Tuomi et al. 2011;
Soomere et al. 2012) and reconstructions of wave properties from historical visual
observations (Zaitseva-Pärnaste 2013) made it possible to identify not only the basic
properties of the wave climate of the Baltic Sea (Hünicke et al. 2015) but also to
distinguish a remarkable pattern of its spatial and decadal variations (Soomere and
Räämet 2011b, 2014; Suursaar 2013).

This chapter presents a description of the basic properties of average and extreme
wave conditions and depicts their spatio-temporal variations in the Baltic Proper
based on available long-term wave measurements (both instrumental and visual),
numerical reconstructions of wave climate and wave properties in a specific event.
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The wave patterns in the Gulf of Finland (an elongated basin with a length of about
400km and a maximum width of about 135km) and Arkona Basin are frequently
connected with those in the Proper, and are addressed to some extent as well.

The analysis is mostly based on (i) instrumental measurements in 1978–2003 at
Almagrundet (located near the western coast of the northern Baltic Proper), in 1990–
2011 at the Darss Sill in the Arkona Basin, since 1996 in the northern Baltic Proper
and since 2001 in the Gulf of Finland, (ii) visual observations from 12 sites along the
eastern coast of the Baltic Sea from the vicinity of Kaliningrad to the neighbourhood
of Saint Petersburg and (iii) numerical reconstructions of the entire Baltic Sea wave
fields using geostrophic winds and the outcome of HIRLAM model. To a limited
extent, data from waveriders in the northern Baltic Proper and at Bogskär are used.
The results predominantly represent Type A statistics in terms of the classification
of Kahma et al. (2003): almost no corrections have been made to compensate for
missing values, for the uneven distribution of data (except for the use of daily mean
wave heights for certain parameters) or for ice cover. Modelled data are used in the
estimates of extreme waves in windstorm Gudrun in January 2005.

2 Long-Term Wave Measurements and Hindcasts in the
Baltic Sea

2.1 Instrumental Data Sets

Contemporary instrumentalwavemeasurementswere launched in the northernBaltic
Sea in the framework ofwave power studies at the end of the 1970s near the lighthouse
of Almagrundet and south of Öland. A waverider buoy was simultaneously deployed
near Hoburg, south of Gotland. The measurements were mostly performed during a
few years (Mårtensson and Bergdahl 1987).

The data fromAlmagrundet (1978–2003, 59◦09′N, 19◦08′ E, Fig. 1, Broman et al.
2006) form the longest instrumentallymeasuredwave time series in the region.Alma-
grundet is a 14 m deep shoaling area about 10 nautical miles south-east of Sandhamn
in the Stockholm archipelago. It is sheltered from a part of predominant winds. The
fetch length for winds from the south-west, west and north-west is quite limited. The
above-discussed anisotropy of the Baltic Sea wave fields has caused some discussion
about whether the data correctly represent the open-sea wave conditions for some
wind directions (Kahma et al. 2003).

An upward-looking echo sounder from Simrad was placed at a depth of about
30m in 1978 (Mårtensson and Bergdahl 1987) and was active until mid-September
1995. An analogous device from WHM was installed in a neighbouring location
at a depth of 29m in 1992 and produced usable data in 1993–2003 (Broman et al.
2006). The position of the water surface was sampled during 640s each hour. Wave
components with periods of less than 1.5 s as well as the data probably reflecting



Extremes and Decadal Variations in the Baltic Sea Wave Conditions 111

wave interference and breaking waves and possibly very steep waves were discarded
(Mårtensson and Bergdahl 1987).

Single waves were identified based on the classical zero-downcrossing method
(IAHR 1989). An estimate of the significant wave height H1/3 (the average height
of 1/3 of the highest waves) was found somewhat untypically, from the 10th highest
wave H10 in a record of N waves under the assumption thatwave heights areRayleigh
distributed:

H1/3 = H10√
1
2 ln

N
10

. (1)

The set of 95 458 measurements using the Simrad device in 1978–1995 reliably
describes the wave properties (Broman et al. 2006). Later 46 671 recordings using
the WHM device in 1993–2003 have certain quality problems: the data contain a
number of modest, but still evidently unrealistic peaks and the values of wave period
are unreliable. Broman et al. (2006) recommend considering the WHM data for
1993–2003 as merely indicative.

A non-directional waverider was operated in 1983–1986 near Bogskär at
59◦28.0′N, 20◦21.0′ E (Kahma et al. 2003). The wave properties were measured
hourly during total 14 630h, or about 2years of uninterrupted measurements. The
data set is concentrated in the autumn season and thus represents the wave climate
during relatively windy months.

A directional waverider was deployed in the northern Baltic Proper at a depth of
about 100m (Fig. 1, 59◦15′N, 21◦00′E) in September 1996 and operated since then
during the ice-free seasons (Kahma et al. 2003). This device as well as contemporary
spectral wave models estimate the significant wave height as HS = 4

√
m0 ≈ H1/3,

where m0 is the zero-order moment of the wave spectrum (the total variance of
the water surface displacement, e.g. Komen et al. 1994). This data set is the most
representative of the northern Baltic Sea wave fields; however, only its few sections
have been analysed in the literature.

Directional wave measurements in the Gulf of Finland in 1990–1991, 1994 and
from November 2001 (59◦57.9′N, 25◦14.1′E, water depth about 60m, Fig. 1) during
the ice-free seasons have considerably increased the awareness of wave conditions in
semi-enclosed sub-basins of the Baltic Sea (Kahma and Pettersson 1993; Pettersson
2001; Kahma et al. 2003). Similar wave measurements have been performed almost
continuously since 29 January 1991 at a 20-m-deep site on the Darss Sill (Soomere
et al. 2012; 54◦41.9′N, 12◦42.0′E). This data set together with similar measurements
since 2002 to the north-west of Cape Arkona (54◦52.9′N, 13◦51.5′E) forms the most
valuable source of the wave information in the SW Baltic. Some elements of the
wave climate in the southern and south-eastern Baltic Sea have been presented in
(Paplińska 1999; Cieślikiewicz and Paplińska-Swerpel 2008; Siewert et al. 2015).

The number of contemporary wave measurement locations has increased in the
BalticSea since2006 (Pettersson et al. 2007).Themain results are describedonannual
basis on the HELCOMwebsite http://helcom.fi/baltic-sea-trends/environment-fact-
sheets/hydrography/wave-climate-in-the-baltic-sea/. Instrumentallymeasuredwave

http://helcom.fi/baltic-sea-trends/environment-fact-sheets/hydrography/wave-climate-in-the-baltic-sea/
http://helcom.fi/baltic-sea-trends/environment-fact-sheets/hydrography/wave-climate-in-the-baltic-sea/
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Fig. 1 Location schemeof theBaltic Sea, showing the sites of instrumentalmeasurements discussed
in detail in this chapter (crossed circles), sites of directional waveriders in the southernBaltic Proper,
Gulf of Finland and Sea of Bothnia (green circles) and visual wave observation sites at the eastern
coast of the Baltic Sea (red circles) and in the Gulf of Riga (yellow circles)

data from the coastal areas of Estonia, Latvia and Lithuania have been mostly
obtained using pressure-based sensors (Soomere 2005) or ADCP-s (Suursaar 2013),
and cover only shorter sections of a few months. Satellite altimeter data for wave
properties have been used in a very few studies (Cieślikiewicz and Paplińska-Swerpel
2008; Tuomi et al. 2011).
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2.2 Visual Observations

A reasonable source of the open-sea wave information in the past formed visual
observations (Davidan et al. 1985; Hogben et al. 1986). The visually observed wave
height generally matches the significant wave height well (Gulev and Hasse 1998,
1999). The visually estimated wave periods are, on average, a few tenths of a second
shorter than the peak period (Gulev and Hasse 1998, 1999). Wave climate changes
estimated from data observed from merchant ships are consistent with those shown
by the instrumental records (Gulev and Hasse 1999; Gulev et al. 2003).

Visual observations from the coast are less frequently used for wave climate stud-
ies. Such data frequently represent only wave properties in the immediate vicinity
of the observation point (Orlenko et al. 1984; Soomere 2005). They pose intrinsic
quality and interpretation problems, contain a large fraction of subjectivity (Zaitseva-
Pärnaste et al. 2009), have a poor temporal resolution, have many gaps caused by
inappropriate weather conditions or by the presence of ice, may give a distorted
impression of extreme wave conditions, etc. The interval between subsequent obser-
vations is often much longer than the typical saturation time of rough seas in the
northern Baltic Proper (about 8h, Soomere 2001) or the duration of wave storms
(that seldom exceeds 10h, Broman et al. 2006; Lopatukhin et al. 2006b). These data
sets have, however, exceptional temporal coverage for the Baltic Sea. Regular wave
observations have been performed using a unified procedure at many locations since
the mid-1940s during up to almost 70years (Zaitseva-Pärnaste et al. 2011; Pindsoo
et al. 2012) and are thus one of the few sources for detecting the long-term alterations
of the wave climate. These observations have been carried out usually 3 times per
day using perspectometers (binocularswith a specific scaling), buoys or bottom-fixed
structures to better characterise the wave properties. The data, however, well repre-
sent the general features of the Baltic Sea wave fields: relatively low overall wave
activity, short wave periods and substantial seasonal variation of wave conditions
(Soomere and Räämet 2011b).

The observers scanned at least 4-m-deep areas about 200–400m from the water-
line. To evaluate the wave height, the observer noted the five highest waves during a
5-minute time interval and filed the highest single wave Hmax and the mean height
Hmean of these waves. The visually observed wave height, obtained using this or
similar procedure, tends to overestimate the wave heights as the observer often picks
up the largest waves and not necessarily in a single location. There have been many
efforts to link the visually observed wave heights with the instrumentally measured
ones (Massel 2013). As the typical wave periods in the coastal zone of the Baltic Sea
are 3–4s (Broman et al. 2006; Zaitseva-Pärnaste et al. 2011), Hmax is approximately
equal to the average height of 2.5–3% of the highest waves and themeanwave height
Hmean is approximately equal to the average height of 5–7% of the highest waves
(Zaitseva-Pärnaste 2013). Consequently, Hmax roughly represents the 97.5%-ile of
single wave heights and Hmean exceeds the significant wave height by 15–20%. This
conjecture matches the outcome of a comparative analysis of the visually observed
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data from lightships and instrumentally measured data. In the south-western Baltic
Sea, HS ≈ 0.94Hmean , and in the Bay of Bothnia, HS ≈ 0.81Hmean (Wahl 1974).

The mean height Hmean has usually the largest coverage in the visually observed
data sets (Zaitseva-Pärnaste et al. 2011; Pindsoo et al. 2012; Eelsalu et al. 2014). As
the routine of observations has been slightly changed over decades (Eelsalu et al.
2014), during some time, only Hmax is available in the observation diaries. In these
occasions, Hmax is used to evaluate the average wave properties over longer time
intervals. As the average difference between Hmean and Hmax is about 6% (Soomere
andZaitseva 2007), doing so apparently has a fairlyminor influence on climatological
values of wave heights.

The wave direction was visually identified with a resolution of 45◦ (so-called
eight rhumb system) as the direction from which the waves approached. The wave
period was found as an arithmetic mean from three consecutive observations of
passing time of 10 waves each time. These waves were not necessarily the highest
ones. There exist different opinions about the interrelations of visually observed
and instrumentally measured wave periods (Guedes Soares 1986; Massel 2013).
The mismatches can be often reduced to different definitions of the wave period in
different observation routines (Massel 2013). Davidan et al. (1985) found that for
periods <7s (which is the case in the Baltic Sea) the visually observed wave periods
(using the above-described routine) almost exactlymatched the averagewave periods
from the zero-crossing analysis.

The visual observation conditions vary considerably along the eastern Baltic Sea
coast. For example, at Pakri the observer was located on the top of a 20-m high cliff
and the water depth of the area over which the waves were observed was 8–11m
(Zaitseva-Pärnaste et al. 2009). Contrariwise, at Vilsandi, the observation site was
chosen from two options according to the approaching wave directions and the water
depth in the observation areas was only about 4m (Soomere and Zaitseva 2007).

All coastal sites in Fig. 1 only conditionally represent the open-sea wave condi-
tions. The largest distortions are evidently due to the sheltering effect of the main-
land and the relatively shallow water depth. It is still likely that long-term variations
and trends in the offshore wave properties are evident in the coastal observations
(Soomere and Räämet 2011b). In northern locations, only 1–2 observations per day
were possible in autumn and winter. Most of the gaps in the data sets occur from
January to March apparently owing to the presence of sea ice. To eliminate the bias
caused by a varying number of observations per day, the analysis has mostly been
performed using the set of daily mean wave heights or measurements at a single
observation time (Soomere and Zaitseva 2007; Zaitseva-Pärnaste et al. 2009, 2011;
Pindsoo et al. 2012).

2.3 Long-Term Wave Hindcasts

The relatively small size of the Baltic Sea, frequent large-scale homogeneity in the
wind fields and the short reaction and saturation time and memory of wave fields
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(Soomere 2003) allow to use greatly simplified wave hindcast schemes (Soomere
2005), high-quality wind data from a few points (Blomgren et al. 2001) or parametric
wave models (Suursaar and Kullas 2009a, b; Suursaar 2010, 2013) to reproduce the
local wave statistics. The use of such models for the identification of extreme wave
conditions is limited as they basically rely on the properties of the local wind field.
Several attempts have been made to perform long-term numerical reconstructions
of the entire Baltic Sea wave fields, but the relevant publications are scarce and
often concentrated on the used methods (Cieślikiewicz and Paplińska-Swerpel 2008;
Kriezi and Broman 2008; Alari 2013). The main features of the wave climate and
its possible changes in this water body were established using simulations for 1958–
2002 based on the output of National Centres for Environmental Prediction and for
Atmospheric Research (NCEP/NCAR) wind reconstructions (Augustin 2005) and
depicted in (Schmager et al. 2008; Weisse and von Storch 2010).

Amore detailed description of theBaltic Seawave climatewas produced for 1970–
2007 using the WAM wave model (Komen et al. 1994) Cycle 4 forced by adjusted
geostrophic winds (Räämet and Soomere 2010; Soomere and Räämet 2011b). The
bathymetry for the model run was based on the so-called Warnemünde data set of
water depths for the Baltic Sea (Seifert et al. 2001). The calculation was carried
out over a regular rectangular grid with a resolution of about 3 nautical miles. The
grid covers the area from 09◦36′E to 30◦18′E and from 53◦57′N to 65◦51′N and
contains 239 × 208 points (11 545 sea points). It was cut off in the narrowest part
of the Danish straits, and the model was run independently from the North Sea.
The entire grid was optimised for wave calculations, e.g. deeply indented bays were
omitted (Soomere 2003) and very large bottom gradients at a few locations were
smoothed. The run was performed in shallow water mode with depth refraction but
without depth-induced wave breaking. The presence of sea ice was ignored. Doing so
may substantially modify the average and extreme wave properties in the northern
sub-basins of the Baltic Sea (Tuomi et al. 2011). The energy spectrum contained
24 equally spaced directions at each sea point. The range of wave frequencies was
extended to properly resolve the wave growth under relatively low winds and short
fetch. The model accounted for 42 wave components with frequencies ranging from
0.042Hz to about 2Hz and arranged in a geometrical progression with an increment
of 1.1.

The wind data were extracted from the SwedishMeteorological and Hydrological
Institute (SMHI) geostrophic wind database. The original geostrophic wind compo-
nents were presented as gridded information with a spatial resolution of 1 × 1◦. To
derive an approximation of the 10m level wind, the geostrophic wind vector was first
rotated by 15◦ counterclockwise, and its length was multiplied by a factor of 0.6 to
mirror the effect of surface roughness. This scheme explicitly ignores many details
of the vertical structure of realistic winds (Bumke and Hasse 1989), but it is still quite
popular in studies of the Baltic Sea dynamics (Myrberg et al. 2010). The resulting
values were first externally interpolated to a grid with a step of about 6 nautical miles
(123 × 107 points) and finally into the resolution of the WAM model internally in
this model. The wind input time step was 6h before September 1977 and 3h after
that. The calculations tend to underestimate the long-term average wave heights and
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99%-iles of the significant wave height by about 10% (Tuomi et al. 2011) but almost
exactly match the measured 95%-iles of the significant wave height in the Arkona
Basin (Soomere et al. 2012).

3 Wave Climate

3.1 Statistics of Wave Heights and Periods

The above-described sources of the information about the Baltic Sea wave fields
make it possible to reliably identify the basic long-termwave properties (average and
extreme wave height, typical periods, occurrence distributions of different heights

Fig. 2 Numerically simulated average significant wave height (cm; isolines plotted after each
10cm) in the Baltic Sea in 1970–2007 based on adjusted geostrophic winds from the Swedish
Meteorological and Hydrological Institute (Räämet and Soomere 2010). A local maximum in the
Arkona Basin is evidently caused by overestimation of the 10-m wind speeds from the geostrophic
wind data for this region
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and periods, and height–period combinations) and their spatial variations in thiswater
body. The wave climate of the Baltic Sea is relatively mild. As mentioned above,
simulations of Räämet and Soomere (2010) (Fig. 2) apparently underestimate the
long-term significant wave height (around 0.9m in the Baltic Proper) by 10–15%.
The significant wave height in the open part of the Baltic Proper according to most of
reconstructions slightly exceeds 1m and is somewhat less between Gotland and the
Swedish mainland (Kahma et al. 2003; Broman et al. 2006; Schmager et al. 2008;
Tuomi et al. 2011). The differences between the various estimates of the long-term
wave heights are about ±15% and mostly stem from differences in the underlying
wind fields (Nikolkina et al. 2014).

The long-term average wave heights are 0.6–0.8m in the open parts of larger sub-
basins of the Baltic Sea such as the Gulf of Finland (Soomere et al. 2010; Suursaar
2013) or Arkona Basin (Soomere et al. 2012), around 0.5m in the open part of
the Gulf of Riga (Eelsalu et al. 2014) and well below 0.5m in semi-sheltered bays
such as Tallinn Bay (Soomere 2005; Kelpšaitė et al. 2009). These values are by 10–
20% lower in the nearshore regions (Suursaar and Kullas 2009a, b; Suursaar 2010;
Soomere 2013) and considerably lower in these nearshore areas of larger subbasins
(such as the western Gulf of Riga) that are sheltered with respect to predominant
wind directions (Eelsalu et al. 2014).

The spatial patterns of average wave heights are slightly different in different
hindcasts. They contain either an elongated maximum (Augustin 2005, Tuomi et al.
2011) or several local maxima in the eastern Baltic Proper (Jönsson et al. 2003). The
calculations of Räämet and Soomere (2010) based on geostrophic winds suggest
that another maximum may exist to the south of Gotland. This disparity may par-
tially reflect large inter-annual and decadal variability in wind patterns over the area
(Soomere and Räämet 2014) but more likely it indicates inconsistency of forcing
wind fields (Nikolkina et al. 2014).

The probability distributions of the occurrence of different wave heights at
open-sea measurement sites (Almagrundet, Bogskär, northern Baltic Proper, Arkona
Basin) resemble a Rayleigh distribution (Fig. 3) with typical values of the shape para-
meter of 1.5–1.8 (Soomere et al. 2011). The median wave heights are about 20% and
the most frequent wave heights (usually in the range of 0.5–0.75m) up to 30% lower
than the long-term average wave height (Kahma et al. 2003; Soomere et al. 2008,
2012). This distribution for visually observed data sets has a distinguished peak for
very low wave heights and calms, and resembles analogous distributions for wave
heights in semi-sheltered bays of the Baltic Sea (Soomere 2005). The excess pro-
portion of calms in the data sets of visual observations (often >30%, Soomere and
Zaitseva 2007; Zaitseva-Pärnaste et al. 2009, 2011; Pindsoo et al. 2012) evidently is
due to the absence of observable waves in many cases of easterly winds. Removing
a fraction of calms from these sets therefore is roughly equivalent to ignoring the
observations that inadequately reflect the open-sea wave fields in such wind condi-
tions. For example, if the number of calms is reduced to 6% from the total number
of recordings (which is the level typical for the northern Baltic Proper, Fig. 2), the
average wave height for wave systems propagating onshore at Vilsandi is 0.74m
(Soomere and Zaitseva 2007).
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Fig. 3 Frequency of occurrence of wave heights at Almagrundet 1978–1995 (Broman et al. 2006),
Bogskär 1982–1986 (Kahma et al. 2003), according to the hindcast for 2001–2007 in the northern
Baltic Proper and in the Gulf of Finland (Tuomi et al. 2011), and according to visual observations
at Liepaja and Ruhnu (Pindsoo et al. 2012; Eelsalu et al. 2014)

Most frequently waves with periods of 4–6s dominate in the middle of the Baltic
Proper, whereas in the more sheltered and coastal regions, waves with periods of
3–4s predominate (Fig. 4). Periods up to 7–8s are also common on the open sea.
This difference in periods apparently comes from a relatively large number of short-
fetched waves at sheltered measurement sites. A large proportion of the combina-
tions of wave heights and periods roughly correspond to saturated wave fields with
a Pierson–Moskowitz (PM) spectrum (Soomere et al. 2008; Räämet et al. 2010;
Soomere et al. 2011). Such wave systems generally occur in the Baltic Sea at wind
speeds up to about 8ms−1 (Schmager et al. 2008). The properties of the roughest
seas, however, match better a JONSWAP spectrum. These wave fields correspond
to fetch-limited seas and are characterised by shorter periods (equivalently, they are
steeper) than wave fields with a PM spectrum. Fetch-limited seas are typical in more
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Fig. 4 Frequency of occurrence of wave periods: a Almagrundet 1978–1995 (white bars, Broman
et al. 2006) andVilsandi 1954–2005 (filled bars, Soomere andZaitseva 2007),bBogskär 1982–1986
(white bars) and the northern Baltic Proper 1996–2000 (filled bars, Kahma et al. 2003)

sheltered areas such as the Darss Sill (Soomere et al. 2011). The proportion of intense
swells is very limited in all parts of the Baltic Sea.

The joint distributions of wave heights and periods (Fig. 5) suggest that the pro-
portion of relatively steep seas is quite large in the Baltic Sea. Periods of 2–3s usually
correspond towave heights well below 1m,whereaswaveswith periods of 4–5s have
a typical height of about 1m. Periods 6–7s commonly correspond to wave heights
of about 1.5–2m. In coastal areas, dominating periods are 7–8s only when wave
heights are about 3m or higher. Even longer waves are infrequent. Mean periods
Tm > 8s (peak periods Tp ≥ 10 s) dominate either in very rough seas (wave heights
>4m) or in remote low swell conditions when the wave heights are well below 1m.
For example, at Almagrundet, the mean period never exceeded 9.5 s in very rough
seas and was about 10 s in one case of rough seas with H1/3 ∼ 4m. Even in the final
stage of the January 1984 storm when H1/3 ∼ 7m, the mean period was below 10s.
The waverider in the northern Baltic Proper registered the peak period of about 12 s
about twice a year and at Bogskär roughly once in 2years (Kahma et al. 2003).

3.2 Extreme Conditions

TheBaltic Seawave climate is highly intermittent. The sea occasionally hosts furious
wave storms in certain seasons when the conditions are favourable for the generation
of high waves. The highest waves in this water body are, however, much smaller
than in the open ocean. Rough seas with the wave heights over 4m occurred with a
probability of 0.42% in 1978–1995 at Almagrundet, of 1% at Bogskär, and of 1.4%
in the northern Baltic Proper. Such seas usually occur several times a year, each
time during a few hours. The area in which the significant wave height may exceed
4m within 1% of time (equivalently, the 99%-ile of the wave height exceeds 4m)
is almost fully located to the east of the geometrical centreline of the Baltic Proper
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Fig. 5 Joint distribution of wave heights and periods: a Almagrundet 1978–1995 (Broman et al.
2006), b Vilsandi 1954–1994 (Soomere and Zaitseva 2007), c Bogskär 1982–1986, d northern
Baltic Proper (Kahma et al. 2003). The wave height step is 0.25m, and the period step is 1 s. The
range of periods is shown on the horizontal axis: 2 s stands for 1.5 ≤ Tp < 2.5s, 3 s stands for
2.5 ≤ Tp < 3.5s, etc. Isolines for the probability of occurrence of 0.0033%, 0.01%, 0.033%,
0.1% (dashed lines), 0.33%, 1%, 3.3%, and 10% (solid lines) are plotted. Wave conditions with
H1/3 > 6.5m at Almagrundet are shown as follows: circles—the January 1984 storm, diamond—a
storm in January 1988, square—a storm in August 1989. The bold line in panels c and d indicates
the relationship HS = g

√
α/5/π2 × T 2

p ≈ 0.04T 2
p between the significant wave height and peak

period for saturated wave conditions with a Pierson–Moskowitz spectrum corresponding to the
classical value α = 0.0081. Similar lines in panels a and b assume that the mean period is about
80% of the peak period

(Tuomi et al. 2011).Wave heights exceed 6mwith a probability of 0.1% (8.8 h yr−1)

almost in the same area.
Seas inwhich HS > 7m are extremely rough in the Baltic Sea basin.Waves of this

height cannot be observed from coastal observation stations because of the limited
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depth at all sites. This threshold was not reached at Bogskär in 1982–1986. The
significant wave height>7m has been recorded only five times in the northern Baltic
Proper since 1996: twice inDecember 1999, on22December 2004, on9 January 2005
during windstorm Gudrun (Soomere et al. 2008) and in December 2011 (Pettersson
et al. 2012). The peak periods during these events slightly exceeded 12s. Similar
wave heights have been recorded twice in the southern Baltic at 55◦55′N, 18◦47′E
(7.4m on 14 October 2009 and 7.2m in February 2011, Pettersson et al. 2010, 2012).

The largest instrumentallymeasured significantwave height HS = 8.2moccurred
in the northern Baltic Proper on 22 December 2004. The highest single wave reached
14m (Tuomi et al. 2011). It took thus 20years to overshoot the previous maximum.
It was set by a ferocious storm at Almagrundet on 13–14 January 1984 when H1/3
calculated using Eq. (1) reached 7.82m and the highest single wave was 12.75m
high1 (Broman et al. 2006). An alternative estimate of the significant wave height in
this storm from wave spectrum was HS = 7.28m. The wave periods remained fairly
modest (Tm = 9.1s, Tp = 10.7s, Broman et al. 2006). This was the only case during
which H1/3 ≥ 7mwas registered at Almagrundet. Instrumentally measured extreme
wave heights are generally lower in the southern Baltic Sea. This is evidently caused
by the lack of wave measurement devices in this part of the Baltic Sea that, according
to hindcasts, should host as severe extreme waves as the northern Baltic Proper. As
mentioned above, a significant wave height >7m has been measured only twice in
the southern Baltic Sea.

3.3 The Ratio of Extreme and Average Wave Heights

In many coastal engineering applications, it is implicitly assumed that the ratio of
the extreme and average wave heights is approximately constant. This assumption is
used, for example, in express estimates of the closure depth of (almost) equilibrium
beach profiles. This depth indicates the water depth until which stormwaves substan-
tially and regularly affect the shape of the coastal profile (Kraus 1992; Dean 1991).
It is a widely used concept in coastal engineering and a fundamental variable in
modelling of coastal evolution and morphology. It basically depends on the roughest
wave conditions that persist for a reasonable time at a given site (Hallermeier 1981).

1 TheAlmagrundet data set from1993–2003 contains several contradicting extremewave records. A
severe storm in March 1997 that affected nearly the whole Baltic Proper caused H1/3 = 7.83m. As
HS estimated from the wave spectrum was 5.7m and the highest single wave reached 10.24m, this
value of H1/3 evidently overestimates thewave conditions. An extremely high singlewave (12.79m)
was recorded on 25 December 1996 when H1/3 = 6.37m but the significant wave height, estimated
from the wave spectrum, was only 3.8m. The listed values are apparently doubtful although they do
represent quite severe wave fields (Broman et al. 2006), and the value of H1/3 in December 1996 is
consistent with the data from the waverider in the northern Baltic Proper. More reliable are the data
from 1978–1995. The wave height reached H1/3 = 6.9m in a relatively short but violent storm in
August 1989 and H1/3 = 6.73m in another severe storm on 30 January 1988. The significant wave
height on the open sea apparently exceeded 7m during these events. No reliable data are available
for a severe storm in January 1993.
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A convenient measure of the severest part of the wave climate in this respect is
the significant wave height H0.137 that is exceeded during 12h in a year, that is, with
a probability of 0.137% (Hallermeier 1981). The simplest approximation for the
closure depth hc as a linear function is hc ∼= q1H0.137. The commonly used values
are q1 = 1.5 (Birkemeier 1985) and q1 = 1.57 (Hallermeier 1981). Houston 1996
extended this relationship towards the use of the long-term significant wave height
Hmean as hc ∼= q1H0.137 ∼= q2Hmean and evaluated that q2 = 6.75. It is, however,
not necessarily correct for areas with a specific wave climate as it implicitly assumes
the relationship H0.137 ∼= 4.5Hmean . This relationship has been established for wave
fields with a Pierson–Moskowitz spectrum that is common for the observed wave
statistics along the US coasts (Houston 1996).

The proportions of the mean and extreme wave heights are different in semi-
enclosed seas like the Baltic Seawhere intense swells are almost absent andwindseas
carry a large part of the wave energy. As discussed above, a specific feature of
the Baltic Sea wave climate is that the average wave conditions are relatively mild
but very rough seas may episodically occur in long-lasting severe storms (Soomere
2005; Broman et al. 2006; Soomere et al. 2012). Waves in such storms are much
higher than expected from the mean wave conditions. This feature leads to a marked
difference between the factor q2 used in hc ∼= q2Hmean for the open ocean coasts
and its analogue for the Baltic Sea. The typical ratio of these two measures for the
coasts of the open Baltic Proper is H0.137/Hmean ∼= 5.5 (Soomere et al. 2013). This
result suggests that an appropriate express formula for the closure depth in the Baltic
Sea conditions is hB

c
∼= 1.5H0.137 ∼= 8.25Hmean , while the above expression with

q2 = 6.75 is valid for short relatively sheltered sections of the Baltic Sea shore
located in bayheads.

3.4 Sub-basins of the Baltic Sea

The average and, in particular, the maximumwave heights in the semi-sheltered sub-
basins of the Baltic Sea are much smaller than in the Baltic Proper. The ‘memory’ of
wave fields is relatively short, and the changes in the wind field are fast reflected in
the wave pattern. As a consequence, the wave fields in smaller sub-basins (such as
TallinnBay orNarvaBay) largelymimic the changes in the open-seawinds (Soomere
2005).

The largest wave heights among themajor sub-basins of the Baltic Sea occur in the
Sea of Bothnia where the numerically simulated maxima of HS exceed 7m (Tuomi
et al. 2011) and may reach 7.6m (Soomere and Räämet 2011b). The maximum
significant wave height 6.5m has been measured in this water body on 09 December
2011 (Pettersson et al. 2012).

Based on data from 1990–1991 to 1994, the maximum HS occurring once in
100years in the Gulf of Finland was estimated to be 3.8m and the corresponding
single wave height 7.1m. Wave conditions with HS > 4m were thought to occur
extremely seldom (Alenius et al. 1998; Pettersson 2001). The peak periods in rough
seas (with HS ∼ 4m) were 8–9s (Kahma and Pettersson 1993). Recent data show
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that considerably rougher seas may occur in this gulf. In November 2001, seas with
HS = 5.2m and Tp ≈ 11s occurred (Pettersson and Boman 2002). The same
significant wave height (Pettersson et al. 2013) and the all-time highest wave of 9.4m
(www.fmi.fi) were measured on 30 November 2012 during an easterly storm. Wave
fields with Tp ≥ 10s, however, usually correspond to a penetration of long-period
swell of moderate height into the gulf. Only a few observations reveal such long
periods: Tp ≈ 11s occurred only three times in 1990–1994 and during a short time
in another very strong storm in November 2001 (Pettersson 2001). The average wave
directions are often concentrated along the gulf axis (Pettersson et al. 2010) although
the wind directions are more evenly spread (Soomere and Keevallik 2003). This
phenomenon is attached to the slanting fetch conditions in which the wind direction
is oblique to the coastline. Shorter waves are usually aligned with the wind, while
somewhat longer and higher waves (that often dominate the wave field) propagate
along the gulf axis (Holthuijsen 1983; Kahma and Pettersson 1994; Pettersson et al.
2010).

The frequency of occurrence of waves with HS > 4m is very small for all sub-
basins except for the Sea of Bothnia (Tuomi et al. 2011), and waves with HS >

2m can be considered as very severe for many semi-sheltered areas such as the
Darss Sill (Soomere and Kurkina 2011; Soomere et al. 2012). The maximum HS

in the Darss Sill area was 4.47m (wave period 6.2 s) on 03 November 1995 during
a strong north-easterly storm (Soomere and Kurkina 2011). Numerical simulations
indicate that HS up to 6.2–6.7m may occur in the region of the Darss Sill in the
existing wave climate (Soomere et al. 2012). Other sub-basins (incl. the Gulf of
Riga) are not covered by regular wave measurements. Still, during violent storms
from unfavourable directions, even sheltered bays may experience very strong waves
(Davidan et al. 1985). For instance, HS > 4m apparently occurred in the interior of
Tallinn Bay on 15 November 2001 (Soomere 2005).

4 Extremes During Windstorm Gudrun

Earlier estimates of extreme wave conditions with the use of the WAMmodel forced
by homogeneous wind patterns suggested that the significant wave height generally
does not exceed 8–8.5m in the Baltic Proper (Soomere 2001). This estimate was
confirmed by Lopatukhin et al. (2006a). Later simulations indicated that the sig-
nificant wave height may reach 9.5–10m in the north-eastern Baltic Proper at the
entrance of the Gulf of Finland, to the north-west of the Latvian coast and in the
south-eastern part of the sea in the Gulf of Gdańsk (Schmager et al. 2008; Soomere
et al. 2008; Tuomi et al. 2011). The properties of waves in a specific region and storm
event substantially depend on the match of the geometry of the particular sea area
and the wind pattern in the storm (Augustin 2005; Soomere et al. 2008; Schmager
et al. 2008).

www.fmi.fi
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4.1 The Storm and Waves

The above estimates for extreme wave conditions turned out to be inadequate when
windstorm Gudrun, an extratropical cyclone, also known as Erwin in Ireland, the
UnitedKingdom andCentral Europe, attacked northern Europe on 7–9 January 2005.
It reached the power of a hurricane, according to the Saffir–Simpson hurricane scale
(Simpson and Riehl 1981), in the North Sea region. In the Baltic Sea, it remained
slightly below the hurricane level; yet, it was one of the strongest storms in Denmark,
Sweden, Latvia and Estonia for at least 40years. It caused widespread property dam-
age, exceptionally high coastal floods along the Western Estonian coast and in the
Gulf of Finland, and loss of 18 lives (Suursaar et al. 2006; Bengtsson and Nilsson
2007). The coastal wind data suffered from failures ofmeteorological equipment dur-
ingGudrun (Suursaar et al. 2006). Forecast winds from theGermanWeather Forecast
Service (DWD, Deutscher Wetterdienst), the Danish Meteorological Institute (DMI)
and the Finnish Institute of Marine Research (FIMR) suggest that the maximum 10-
min average wind speed on the open sea (Fig. 6) was 28–29ms−1. Forecasts released
on 6–7 January predicted the windstorm maximum to hit the entrance of the Gulf of
Finland. The significant wave height was forecast to exceed 10m in the location of
the waverider in the northern Baltic Proper, to reach 11–12m at the latitudes of the
Gulf of Finland, and to be >6m in the central part of this gulf (Soomere et al. 2008).
Such wave conditions would have been considerably rougher than during any other
storm in the northern Baltic Sea in the history of contemporary shipping (K. Kahma,
personal communication on 8 January 2005). The area with the largest wind speeds
crossed the Baltic Sea somewhat more southwards than originally forecast (Soomere
et al. 2008), and the wave conditions were not so rough.

The waverider in the northern Baltic Proper (Fig. 1) adequately reflects extreme
wave conditions in the case of south-western winds. The Gudrun’s strongest winds
were from west to west-south-west and occurred between Gotland and Saaremaa.
The waverider therefore was located much to the north of the maximum of the wave
storm. Even with these non-ideal conditions, the significant wave height reached
HS = 7.16m at 03:00 and 07:00 GMT on 9 January and was close to 7m during
about 12h. The peak period Tp exceeded 10s for nearly 24h and was about 11–12s
at the wavestorm maximum.

Very long (Tp up to 12s) and high (HS > 4m) waves also occurred in the Gulf
of Finland during Gudrun. The significant wave height was close to 4m in the early
morning of 9 January and exceeded 3m during the rest of this day according to
the directional waverider (Fig. 1). The peak periods were over 10 s during almost
the whole day and reached 11–12s at noon. The wave height was about 4m in the
morning of 9 January in the vicinity of the island of Naissaar in 14-m-deep water at
59◦37.1′N, 24◦29.1′E and reached 4.5m at the storm maximum. The peak periods
were ∼12s during about 10h (Soomere et al. 2008).

The occurrence of long and high waves in the interior of the Gulf of Finland is
an important feature of this storm. The maximum wind speed in the northernmost
part of the Baltic Proper and at the entrance of the gulf apparently was about 20–
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24ms−1 (Fig. 6) and well below 20ms−1 during a large part of the storm in the
gulf (Suursaar et al. 2006). Storms with a wind speed of about 20ms−1 may excite
peak periods about 12 s only if the fetch length is ≥600km and the wind duration
is ≥18h (Rosenthal 1986). Although growth curves of Kahma and Calkoen (1992)
suggest that somewhat shorter duration (∼15h) and fetch (∼350km) are sufficient
for the generation of such seas, it is still probable that some other factors eventu-
ally contributed to the observed wave system in the Gulf of Finland. For example,
topographic refraction caused by the coastal slopes of the entrance of the gulf may
gradually redirect a part of waves propagating from the southern parts of the Baltic
Proper.

4.2 Modelled Wave Fields

The wave conditions in the Baltic Sea during windstorm Gudrun were routinely
forecast by operational centres of Deutscher Wetterdienst (DWD), Danish Meteoro-

Fig. 6 Modelled wind speed (ms−1) and direction (arrows) 10m above water surface at 06:00
GMT on 9 January in the DMI 54-hour forecast valid at 00:00 GMT on 9 January. Courtesy of the
Danish Meteorological Institute
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Table 1 Relative errors of operational wave models and the estimated overall maximum of the
significant wave height in the Baltic Sea during windstorm Gudrun

Model Overall
maximum at
the location of
the waverider
in the northern
Baltic Proper

Over-
prediction
(m)

Relative error
(%)

Modelled
overall
maximum of
HS (m)

Estimated
overall
maximum of
HS (m)

FIMR 7.6 0.44 5.8 10.2 9.6

DMI 8.96 1.80 20 11.7 9.4

DWD 8.17 1.01 12.4 10.95 9.59

logical Institute (DMI), and Finnish Institute of Marine Research (FIMR). They all
run the wave model WAM cycle 4 (Komen et al. 1994) on a regular rectangular grid
in shallow water mode without data assimilation. The models used hourly to three-
hourly forecast winds at the standard height of 10m above the surface level from
different atmospheric models. The land–sea masks, bathymetry, computational grid,
spatial and temporal resolution, and spectral range of the wave models were different
as well (Soomere et al. 2008). The mesh size varied from 1/10◦ along latitudes and
1/6◦ along longitudes (the DWD model) down to 0.08 × 0.08◦ (the FIMR model).
The DWD and FIMR models used 24 equally spaced wave propagation directions,
whereas the DMI model used 12 directions. The DWD and DMI models employed
25 frequency bands from 0.04177 in 10% steps. The FIMR model used an extended
range of 35 bands up to 1.073Hz. The models have demonstrated reasonable perfor-
mance in both typical and extreme wave conditions. For example, the mean relative
error of the forecast of the maximumwave height in the 5 strongest storms was about
15% for 13 buoys operated by the DMI.

The models well reproduced the course of wave properties during windstorm
Gudrun. The overall maximum of HS at the location of the waverider in the northern
Baltic Proper was overestimated by about 6% by the FIMR model and 12–20% by
the models of the DWD and the DMI (Table1). The wave models mostly followed
the measured sea state (albeit they somewhat overpredicted the wave heights and
underpredicted the wave periods) also in the Gulf of Finland (Soomere et al. 2008).

4.3 Maximum of the Wave Storm

The overall maximum HS during this storm is estimated by Soomere et al. (2008)
by means of correcting the overall maximum of the modelled HS with the use of
the relative errors of the models calculated from observed data (Table1). Doing so
presumes that the wave models adequately represent the spatial patterns of wave
properties and that the relative errors of the models are roughly the same over the
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Fig. 7 Modelled significant wave heights (m) and wave propagation directions (arrows) at 06:00
GMT on 9 January in the DMI 54-h forecast valid at 00:00 GMT on 9 January. Courtesy of the
Danish Meteorological Institute

entire area of intense waves. Since a large part of properties of the wave fields during
Gudrun were located within the ‘corridors’ formed by outputs of the three models, a
reasonable estimate of this maximum eventually lies between the values defined by
these models.

The overall maximum HS ≈ 9.5m during windstorm Gudrun evidently occurred
about 200km south-eastwards of the location of the waverider in the northern Baltic
Proper, off the coast of Saaremaa (about 57◦N, 20.4◦E,Fig. 7). This estimatewas later
confirmed by Tuomi et al. (2011). Such wave conditions are much rougher than those
expected to happen once in a century (Lopatukhin et al. 2006a). Waves were also
remarkably long: peak periods up to 13s were forecast (and eventually occurred)
in the eastern part of the sea (Soomere et al. 2008). The described procedure can
be applied to the Gulf of Finland only conditionally. The significant wave height
evidently reached 5m in the gulf but most probably did not exceed the historical
maximum HS = 5.2m.
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Fig. 8 Annual variation in themonthlymeanwave height at Vilsandi 1954–2005 (white bars, based
on the daily mean wave height) and at Almagrundet 1978–95 (light grey bars) and 1993–2002 (dark
grey bars)

5 Seasonal, Interannual and Long-Term Variations

5.1 Temporal Variations in the Wave Heights, Periods and
Directions

The extensive seasonal variation in the wind speed over the entire Baltic Sea basin
(Mietus 1998) naturally causes substantial differences (by a factor of two in coastal
areas and up to three times in the offshore regions) in wave heights at monthly scales
(Schmager et al. 2008; Soomere and Räämet 2011b). This variation is impressive, for
example, at Almagrundet, from about 0.5m during summer to 1.3–1.4m in winter
(Fig. 8). It is much less pronounced in the data sets of visual wave observations from
the coastal stations and has very limited amplitude at locations such as Sõrve (Eelsalu
et al. 2014) that are sheltered from the predominant strong wind directions.

The highest monthly mean wave height occurs from October to January. Some
locations reveal another minor wave height maximum, for example, in March at
Almagrundet (Broman et al. 2006). It may be connected with easterly winds during
late winter and early spring at the latitudes of the Gulf of Finland (Mietus 1998;
Soomere and Keevallik 2003). These winds almost do not impact the wave fields in
the rest of the measurement sites. The calmest period is the late spring and summer
months from April to July–August.

The most intriguing question is whether any long-term changes in the extreme
wave heights or their spatial patterns can be identified in the Baltic Proper. The
existing visual observations reveal no long-term (∼70 yr) trend for wave heights, but
the wave fields exhibit extensive trends over a few decades and substantial decadal
variability. The overall course of wave activity (Fig. 9) is quasiperiodic. The interval
between subsequent periods of high or low wave activity is two to three decades.
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Historical visual observations suggest that there was a relatively rapid decrease
in the (annual mean) wave heights in the ‘pre-instrumental’ era from the mid-1940s
until the end of the 1970s (Soomere 2013). The further course of wave heights
was different in different parts of the sea. The wave height rapidly increased in the
northern Baltic Proper at a rate of 1.3–2.8% per annum from the mid-1980s until
the mid-1990s (Broman et al. 2006; Soomere and Zaitseva 2007). This increase was
consistent (albeit faster) with the analogous trends for the south-western Baltic Sea
and for the North Atlantic (Kushnir et al. 1997; Gulev and Hasse 1999; Vikebo
et al. 2003; Weisse and Günther 2007) and also with the increase in the storminess
(Alexandersson et al. 1998) and the wind speed over the northern Baltic Sea (Broman
et al. 2006). The increase was followed by a drastic decrease since 1997. The relevant
data from Almagrundet were even estimated as doubtful by Broman et al. (2006),
because the annual mean wind speed continued to increase and intensification of
beach processes was reported along the downwind side of the coasts (Orviku et al.
2003). The extensive similarity of changes at Almagrundet and Vilsandi suggests
that both data sets reflect certain real changes (albeit possibly overestimate their
magnitude). The timing of these variations matches an almost twofold increase in
the number of low- pressure observations below 980hPa at Härnösand over the 1990s
(Bärring and von Storch 2004).

The wave height at the south-eastern Baltic Sea (Lithuanian) coast showed the
opposite behaviour. A rapid decrease occurred until about 1996 and a rapid increase
since then (Zaitseva-Pärnaste et al. 2011). The data from Ventspils and particularly
fromLiepaja (Pindsoo et al. 2012) confirm that the wave height variations were fairly
different in different parts of the Baltic Proper. Such changes do not necessarily
become evident in all sub-basins of the Baltic Sea, for example, almost no change
occurred in the annual mean significant wave height at the Darss Sill (Soomere et al.

Fig. 9 Annual mean visually observed wave height at seven coastal observation sites and instru-
mentally measured wave height at Almagrundet (Hünicke et al. 2015). Almagrundet data from 1978
reflect only windy months November and December, and data for 1998 are missing (Broman et al.
2006). The wave heights in the mid-1990s are probably overestimated at Vilsandi
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2011). Fetch-based models using one-point coastal wind have demonstrated that the
wave intensity changed quasi-periodically and revealed no statistically significant
trend inEstonian coastalwaters (Suursaar andKullas 2009a, b; Suursaar 2010, 2013).

Although the mean wind speed does not necessarily exactly match the average
wave height, it is intuitively clear that a larger wind speed generally causes greater
wave activity. The drastic changes to the mean wave height on the background of the
gradual increase in the mean wind speed (Broman et al. 2006; Räämet et al. 2009)
suggest that the local wave generation conditions may have substantially changed
within relatively short time intervals. Quite large variations in the average wave
periods (from about 2.3 s in the mid-1970s up to 2.65 s around 1990) were hindcast
for selected sites (Suursaar and Kullas 2009a, b). This change, reconstructed using
fetch-based models, suggests that the wind direction may have changed.

The most prominent changes in the Baltic Sea wave fields became evident as a
remarkable rotation (up to 90◦ from the north-west to the south-west) of the most
frequently observed wave directions at Narva-Jõesuu during the last half century
(Räämet et al. 2010). This change mirrors substantial changes in the local wind
direction (Jaagus 2009; Jaagus and Kull 2011). Similar changes (of much smaller
amplitude) observed at the Lithuanian coast were interpreted as a possible reason
for changes in the distribution of erosion and accumulation areas (Kelpšaitė et al.
2011). Also, changes in the wave direction can explain certain specific features in
the patterns of wave-driven sediment transport (Viška and Soomere 2012; Soomere
et al. 2015).

5.2 Variations in the Wave Heights in Very Rough Seas
in the Baltic Proper

Spatial variations in extreme wave heights are usually studied based on the simulated
values of the 99%-ile or the 95%-ile of significantwave height (Schmager et al. 2008;
Soomere and Räämet 2011b; Suursaar 2013). The highest extreme waves occur in
the areas of the Baltic Sea with the highest overall wave intensity. The exact locations
of the maxima vary in different simulations (Nikolkina et al. 2014).Most simulations
agree in that the probable locations of the maxima are the south-eastern and north-
eastern Baltic Proper and the eastern Sea of Bothnia (Fig. 10), that is, the areas that
have the longest fetch.

There are considerable discrepancies between the results of studies into changes in
the maximum wave heights. A part of the discrepancies mirrors the different natures
of changes in different sea areas. Augustin (2005) identified an increase by 0.3m in
the simulated annual 99%-ile of the significant wave height in the Baltic Proper at
58◦N, 20◦E. This was mostly caused by an increase in the frequency of severe wave
events (BACC Author Team 2008).

Simulations over the period 1970–2007 using geostrophic winds (Soomere and
Räämet 2011b) confirmed the presence of an increasing trend at this location but also
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brought evidence about a complex spatio-temporal pattern of changes (with scales
down to about 100km) to the Baltic Sea wave fields (Fig. 10). The pattern of changes
in the extreme wave heights is almost identical to the similar pattern for the average
wave heights. The most drastic decrease in the hindcast wave intensity occurred in
an area between the islands of Öland and Gotland, and to the south of these islands
down to the Polish coast. A probable reason for this decrease is amajor rotation of the
geostrophic air flow over the southern Baltic Sea from the year 1988 (Soomere and
Räämet 2014; Soomere et al. 2015). The model also suggests a considerable increase
in the wave activity near the coast of Latvia, between the Åland Archipelago and
Sweden, and in the sea area between the Sea of Bothnia and the Bay of Bothnia.
Such an increase is consistent with the outcome of fetch-based wave models based
on one-point forcing (Suursaar and Kullas 2009a, b; Zaitseva-Pärnaste et al. 2009),
which indicate a pronounced increase in the 90%-ile and 99%-ile near the Western
Estonian Archipelago.

5.3 Mismatch of Trends for the Averages and Extremes
in the Gulf of Finland

An interesting feature is the possible mismatch of the changes in the average and
in the extreme wave heights (Soomere and Healy 2008) that become most contrast
in the Gulf of Finland (Soomere et al. 2010; Soomere and Räämet 2011b). The

Fig. 10 a Numerically simulated 99%-ile of significant wave height (cm; isolines plotted after
each 50cm) and (b) its linear trend in the Baltic Sea in 1970–2007 (cm; isolines plotted after each
10cm) in the Baltic Sea in 1970–2007 based on adjusted geostrophic winds from the Swedish
Meteorological and Hydrological Institute. Similar to Fig. 2, a local maximum in the Arkona Basin
in both panels is evidently caused by an overestimation of the 10-mwind speeds from the geostrophic
wind data for this region (Soomere and Räämet 2011b)
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gulf is oriented obliquely with respect to predominant wind directions, and marine
meteorological conditions are characterised here by remarkable wind anisotropy
(Soomere and Keevallik 2003). The wind field in the gulf contains strong eastern
and western winds blowing along the axis of the gulf. These winds are specific to
the Gulf of Finland. They do not become evident in other parts of the Baltic Sea and
are much weaker in the eastern part of the gulf. As discussed above, both average
and maximum wave heights in the gulf are about 60% of those in the Baltic Proper,
whereas the wave periods in typical conditions are almost the same as in the Baltic
Proper (Soomere et al. 2011).

The above-discussed changes in storminess in the northern Europe does not nec-
essarily become evident in the interior of the Gulf of Finland, where the ageostrophic
component of the surface levelwind is at times substantial (cf. Keevallik andSoomere
2010). In contrast to the gradual increase in the mean wind speed over most of the
Baltic Proper (Pryor and Barthelmie 2003; Broman et al. 2006), there is a very slow
decrease (about 0.01ms−1 yr−1) in the annual mean wind speed at Kalbådagrund
(Soomere et al. 2010). Therefore, drastic long-term variations in the average wave
properties are unlikely in this gulf. Consistently with this picture, numerical simula-
tions indicate only minor changes in the annual mean wave height in the entire gulf,
including its entrance area (Soomere et al. 2010).

Interestingly, Suursaar and Kullas (2009b) noted a decreasing trend in 99%-iles
near the north Estonian coast and a weak gradually increasing trend in the average
wave height. Simulations using the WAMmodel show that, differentl from the aver-
age wave height, the maximum wave heights exhibit a clear pattern of changes since
the 1970s (Fig. 11). There has been a substantial decrease (by about 10%) in this
threshold in question near the southern coast of the gulf (especially in the narrowest
central part of the gulf). This is accompanied by an almost equal increase to the
north of the axis of the gulf and especially in the widest sea area. The changes reach
about 0.40m, that is, up to 20% of this wave height threshold over the 38 simulated
years. Therefore, although the average wave heights have basically remained the
same, the wave heights in very strong storms show a clear decreasing trend near the
southern coast. This feature may be responsible for the enhanced coastal erosion in
certain areas in the north-east Gulf of Finland (Ryabchuk et al. 2011). It is apparently
related to the above-discussed major changes in the wind direction over the Estonian
mainland: the frequency of south-west winds has increased considerably over the
last 40 yr (Jaagus 2009; Jaagus and Kull 2011).

6 Discussion

The presented data indicate that substantial changes in several core properties ofwave
fields such as the average wave intensity (in terms of the annual mean significant
wave height), very rough wave conditions (understood as the wave height occurring
with a probability of 1–5%) andwave propagation directions have occurred in certain
regions of the Baltic Sea since the middle of the 20th century. Interestingly, there is
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Fig. 11 Spatial distribution of the long-term changes (cm) 99%-ile of significant wave height in
the Gulf of Finland (Soomere and Räämet 2011b)

a very minor change in the spatially averaged wave height and almost no temporal
changes in thewaveperiods. Thismeans that remarkable local changes and associated
substantial increase or decrease in the severity of wave-driven hazards may be often
overlooked.

An increase in the height of the hindcast extremewaves in the Arkona Basin based
on simulations forced by geostrophicwinds is not unexpected because thewind speed
in this area has grown markedly over the last decades (Pryor and Barthelmie 2003,
2010). A decrease of the same magnitude in the neighbouring sea area to the north-
east of Bornholm is counter-intuitive but substantiated well by the abrupt change in
the air flow direction over this region (Soomere and Räämet 2014; Soomere et al.
2015).

The annual mean wave height considerably increased in the 1980s and was excep-
tionally high in the mid-1990s, but quickly decreased starting from about 1997 in
the northern Baltic Proper. However, no overall increase in the average wave height
has occurred in the northern Baltic Proper within the second half of the 20th century.
Such a complicated pattern of spatio-temporal changes in various properties of wave
fields is not completely unexpected as many studies have shown that the magnitudes
of the trends inwave properties can greatly vary in different sea areas (e.g.Weisse and
von Storch 2010; Martucci et al. 2010). It is, however, notable that a steep decrease
in wave heights may occur in open-sea areas adjacent to those hosting an equally
steep increase in wave heights.

Ironically, most of the existing long-term wave observation and measurement
sites are located in areas where the simulations have revealed almost no long-term
changes in wave properties. The situation is even more complicated because of the
mismatch of the long-term behaviour of the mean wave height with the gradual
increase in the mean wind speed. A partial explanation is offered by the observation
that the wind direction has changed but this highly interesting feature still needs
further investigation.

There is now increasing evidence that extreme wave conditions with HS ≥ 7m
(first observed in January 1984 in the northern Baltic Sea) occur more or less reg-
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ularly approximately 1–2 times a decade in both northern and southern parts of the
Baltic Proper. It is very likely that the frequency of extreme storms which able to
generate such wave conditions has been largely unchanged during the last 30years.
This, however, does not exclude the presence of exceptional events. The strong reac-
tion of the water surface is the most interesting feature of windstorm Gudrun that
excited very high and long waves, although the maximum sustained wind speed was
not exceptional and the wind direction was not particularly favourable for wave gen-
eration.Wave conditions with HS ∼ 9.5m are much rougher than could be expected,
based on the existing wave statistics (Lopatukhin et al. 2006a, b). Remarkably, long
and high waves also appeared in the interior of the Gulf of Finland, in an area which
generally is sheltered from long waves. It might be speculated that a future storm of
the same strength and duration, but corresponding to more favourable wave gener-
ation conditions (e.g. a strong and large cyclone travelling to the north-north-east),
may create even higher waves. Since only a few cyclones do so (Suursaar et al. 2006),
such a ‘perfect storm’ is not likely to occur. However, if it did happen, it probably
would excite even rougher wave conditions at the entrance of the Gulf of Finland and
off the south-western coast of Finland than Gudrun did near Saaremaa. The possibil-
ity of such rough seas within the existing climatological conditions is of paramount
importance for navigational safety and design of offshore structures.

The future climate changes are likely to modify factors controlling the volume
of the water body, the mean temperature, salt water inflow conditions, the overall
transport scheme of waters, the distribution of upwelling and downwelling patterns,
the location of areas of the largest wave intensity and wave-induced mixing, and
therefore the vertical and horizontal distributions of salinity, temperature, and other
decisive constituents of the local ecosystem. In particular, the increased sea surface
temperature leads to the reduction of ice cover in the northern parts of the sea.
The potential increase in wind stress at sea surface during relatively windy winter
months may lead to further changes in the wave climate, in particular, to enhancing
the extremes in wave heights and sea levels. Timely detection of such changes is a
major challenge for scientists. Launching of adaptationmeasures is an accompanying
challenge of decision-makers.
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Runup of Long Irregular Waves
on Plane Beach

Ira Didenkulova, Efim Pelinovsky and Anna Sergeeva

Abstract Runup of irregular waves, modeled as superposition of Furrier harmonics
with random phases, is studied in frames of nonlinear shallow water theory. The
possibility of appearance of freak waves on a beach is analyzed. The distribution
functions of runup characteristics are computed. An incident wave represents an
irregular sea state with Gaussian spectrum. The asymptotic of probability functions
in the range of large amplitudes for estimation of freak wave formation in the shore
is studied. It is shown that the average runup height of waves with wide spectrum is
higher than of waves with narrow spectrum.

1 Introduction

Descriptions of unusually high waves appearing on the sea surface for a short time
(freak, rogue, or killer waves) have been considered as a part of marine folklore for
a long time. A number of instrumental registrations have appeared recently mak-
ing the community to pay more attention to this problem and to reconsider known
observations of freak waves: some of them are collected in the papers by Torum
and Gudmestad (1990), Olagnon and Athanassoulis (2001), Kharif and Pelinovsky
(2003) and Rosenthal (2003). Mechanisms of freak wave generation are described
in Dysthe et al. (2008), Kharif et al. (2009), Didenkulova and Pelinovsky (2011)
and Slunyaev et al. (2011). Such unusual waves are observed also in the coastal
zone and the probability of their appearance is rather high. One of the first works
(Sand et al. 1990) already presents data of freak wave observations in the shallow
part of the North Sea (on the depth of 20 m). Didenkulova, I. (2011) analyzes the
data of sea level elevation in the coastal zone of the Baltic Sea (2.7 m depth) and
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Fig. 1 Freak wave attacks the breakwater in Kalk Bay, South Africa on August 26, 2005

demonstrates the existence of two different families of freak waves. Chien et al.
(2002) report about 140 freak wave events in the coastal zone of Taiwan in the past
50 years (1949–1999) that caused loss of 500 people and destruction of 35 ships.
According to (Didenkulova et al. 2006a) two-third of the freak wave events occurred
in 2005 were observed onshore. A freak wave attacked the breakwater in Kalk Bay
(South Africa) on August 26, 2005 and washed off the breakwater people, some of
them were injured (Fig. 1). Two months later on October 16, 2005, two freak waves
induced panic at Maracas Beach (Trinidad Island, Lesser Antilles), when a series of
towering waves, many more than 25 feet high (maximal height of 8m), flooded the
beach, carried sea-bathers, venders, and lifeguards, running for their lives. The new
catalogue of freak waves (Nikolkina andDidenkulova 2011, 2012) has demonstrated
that the majority of freak wave accidents occurs in the shallow water and at the coast.

Thus, analysis of freak waves on a coast is an important task for practice. Here,
we will investigate distribution functions of the runup height and velocity on a beach,
assuming that distribution functions in the coastal zone are known and waves do not
break. The analytical shallow water theory, described in Spielfogel (1976), Pedersen
and Gjevik (1983), Synolakis (1987), Pelinovsky and Mazova (1992), Carrier et al.
(2003), Tinti and Tonini (2005), Kânoğlu and Synolakis (2006), Didenkulova et al.
(2006b),Didenkulova et al. (2007a, b),Didenkulova (2009) (Tadepalli andSynolakis,
1994) is used as theoretical model. The paper is organized as follows. The theoretical
model of the long wave runup is described in Sect. 2. The runup of irregular waves
on a plane beach is discussed in Sect. 3. Main results are summarized in Sect. 4.
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2 Theoretical Model of the Long Wave Runup

The dynamics of a wave climbing the beach can be described in the framework of
the shallow water equations. The simplified geometry of the coastal zone is shown
in Fig. 2.

The wave comes onshore from the left. Sketchy, the incident wave is presented as
a single crest, but then we will consider the incident wave as a continuous function
representing random crests and troughs. The basic equations for water waves in
shallow water are (η(x, t) is the vertical displacement of the sea level, u(x, t) is the
depth averaged velocity of the water flow)

∂η

∂t
+ ∂

∂x
[(h (x) + η) u] = 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, (1)

where h(x) = −αx . In this case, the nonlinear shallow water Eq. (1) can be solved
with the use of Riemann invariants and the Legendre (hodograph) transformation
(Carrier and Greenspan 1958). Let us introduce the Riemann invariants

I± = u ± 2
√

g (h + η) + gαt (2)

and rewrite system (1) in the following form

∂ I±
∂t

+ c±
∂ I±
∂x

= 0, (3)

where characteristic speeds are

c± = 3

4
I± + 1

4
I∓ − gαt. (4)

Fig. 2 Definition sketch for
the wave runup problem

x
h(x)

α
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The system (3)–(4) is still nonlinear, as characteristic speeds c± contain time t ;
however, it can be reduced to linear by excluding the coordinate x . After introducing
new variables

λ = I+ + I−
2

= u + gαt, σ = I+ − I−
2

= 2
√

g (h + η), (5)

we obtain the linear wave equation to describe the long wave runup process

∂2�

∂λ2
− ∂2�

∂σ 2 − 1

σ

∂�

∂σ
= 0, (6)

and all physical variables can be expressed through the function Φ(λ, σ )

η = 1

2g

(
∂�

∂λ
− u2

)
, u = 1

σ

∂�

∂σ
, (7)

t = 1

αg

(
λ − 1

σ

∂�

∂σ

)
, x = 1

2αg

(
∂�

∂λ
− u2 − σ 2

2

)
. (8)

The physical sense of the variable σ is the total water depth, and σ = 0 corre-
sponds to the moving shoreline. Various calculations of the wave field and runup
characteristics using the Carrier-Greenspan transformation can be found in Spielfo-
gel (1976), Pedersen and Gjevik (1983), Synolakis (1987), Pelinovsky and Mazova
(1992), Carrier et al. (2003), Tinti and Tonini (2005), Kânoğlu and Synolakis (2006),
Didenkulova et al. (2006b), Didenkulova et al. (2007a, b), Didenkulova (2009) (Tade-
palli and Synolakis, 1994). A surprising result concluded from linear equation (6) is
that the extreme runup characteristics (runup and rundown amplitudes, runup veloci-
ties) can be calculated in the framework of linear shallow water theory if the incident
wave approaches to the beach from the open sea. Particularly, the runup amplitude
Rsin of incident sine wave with amplitude A, wavelength λ, and frequency ω given
at the point x = L with the depth h is

Rsin

A
=

(
16π2ω2h

gα2

)1/4

= 2π

√
2L

λ
. (9)

Meanwhile, the water oscillation on shore will not have simple sine shape; see Fig. 3
for various values of the breaking parameter Br = Rsinω2/gα2 (condition Br = 1
corresponds to the wave breaking on shore).

The runup of waves of different types, for instance solitary waves, can be also
described by formulas (6)–(8).Water oscillations and velocities onshore for the runup
of a sine pulse and a soliton are presented in Figs. 4 and 5 for different values of the
breaking parameter Br.
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Fig. 3 Velocity and vertical displacement of the moving shoreline for incoming sine wave; the
breaking parameter Br = 0 (dotted line), 0.5 (dashed line), and 1 (solid line); time is normalized by
wave frequency ω−1, vertical displacement by Rsin , and shoreline velocity by ωRsin/α
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Fig. 4 Velocity and vertical displacement of the moving shoreline for incoming sin4(ωt) pulse; the
breaking parameter Br = 0 (dotted line), 0.5 (dashed line) and 1 (solid line); time is normalized by
wave frequency ω−1, vertical displacement by Rsin , and shoreline velocity by ωRsin /α

-1 -0.5 0 0.5 1
-12

-6

0

6

Time

S
ho

re
lin

e 
V

el
oc

ity

-1 -0.5 0 0.5 1
-1

0

1

2

Time

V
er

tic
al

 D
is

pl
ac

em
en

t

Fig. 5 Velocity and vertical displacement of the moving shoreline for incoming soliton
sech2 (4t/T0); the breaking parameter Br = 0 (dotted line), 0.5 (dashed line) and 1 (solid line);
time is normalized by the duration of the pulse T 0, vertical displacement by Rsin , and shoreline
velocity by ωRsin/α
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3 Runup of irregular waves

Formulas (6)–(8) can be applied to describe the runup of irregular long waves as
well. Due to implicity of the Carrier–Greenspan transformation it is rather difficult
to calculate wave characteristics. But for calculations of the extreme runup character-
istics, the linear approach can be applied (Synolakis 1991; Pelinovsky and Mazova
1992), and in this case we need to find extremes of the Fourier series

η (t, x = 0) =
∫ (

16π2h

gα2

)1/4

ω1/2A(ω) exp
[
i
(
ω (t − τ) + φ (ω) + π

4

)]
dω,

(10)

u (t, x = 0) = 1

α

∫ (
16π2h

gα2

)1/4

ω3/2A(ω) exp

[
i

(
ω (t − τ) + φ (ω) + 3π

4

)]
dω,

(11)

where A and φ are spectral amplitudes and phases, ω is the basic frequency of the
incident wave

η (t, x = L) =
∫

A(ω) exp [i (ωt + φ (ω))] dω, (12)

and τ is travel time to the coast. We wish to repeat that series (10)–(11) can be used
to calculate positive and negative runup amplitudes but not moments and distribution
functions of the water displacement at the shoreline. This approach has been used in
Didenkulova et al. (2007a) to study the runup of nonsinusoidal waves.

Now we will consider the transformation of irregular waves when they climb a
beach and estimate distribution functions of the water displacement at the shoreline
assuming distribution functions of the water displacement at the coastal zone to be
known and waves do not break.

The ensemble of realizations with random phases φ is taken for a numerical
simulation of irregular waves. For this purpose, we quantize Fourier series (10)–(12)
and use real functions, whereupon equations for incoming wave, displacement, and
velocity of the shoreline in nondimensional variables can be rewritten as

η̄ (t, x = L) =
N∑

n=1

An cos (ωnt + φn), (13)

η̄ (t, x = 0) =
N∑

n=1

√
ωn An cos

(
ωnt + φn + π

4

)
, (14)

ū (t, x = 0) =
N∑

n=1

ω
3/2
n An cos

(
ωnt + φn + 3π

4

)
, (15)
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where An = √
2S(ωn)ω is calculated through the frequency spectrum of incoming

wave S(ω), sampling rate ω=2π /T , the size of time calculated domain T , and
ωn= nΔω. Random spectral phases φn are distributed uniformly at the interval (0,
2π ).

First, let us consider random wave field with Gaussian statistics, where the fre-
quency spectrum of incoming wave S(ω) is

S(ω) = Q exp

[
− (ω − ω0)

2

2l2

]
, (16)

with the central frequency ω0 and the spectrum width l. Constant Q in (16) can be
found from the condition

σ 2 = 2

∞∫
0

S(ω)dω, (17)

then

Q = σ 2

√
2πlerfc(−ω0/

√
2l)

, (18)

where

er f c(z) = 2√
π

∞∫
z

exp(−t2)dt (19)

is a complementary error function.
In this case, frequency spectra for the shoreline displacement Sr (ω) and the shore-

line velocity Su(ω) are

Sr (ω) = 4π Lω

c
Q exp

[
− (ω − ω0)

2

2l2

]
, (20)

Su(ω) = 4π Lω3

cα2 Q exp

[
− (ω − ω0)

2

2l2

]
. (21)

All these spectra in nondimensional variables for l = 0.5 are shown on Fig. 6. It is
obvious that spectra for the shoreline displacement Sr (ω) and the shoreline velocity
Su(ω) are asymmetric and shifted to the high-frequency area.

Distribution functions for maximal amplitudes (positive and negative) of the wave
field, defined as maximum (minimum) between two zero points, are important for
applications. Detailed calculations of the distribution functions of the runup ampli-
tudes are given in (Sergeeva and Didenkulova 2005). The Fourier series of N= 512
harmonics and sampling rate ω = 0.01 are used. Spectrum width l is changed
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Fig. 6 Incident field, runup
and shoreline velocity
spectra for l = 0.5
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from 0.1 to 0.7. All statistical characteristics are obtained with the use of ensemble
averaging over 500 realizations.

The occurrence probability of the wave with amplitude A for a Gaussian narrow-
band process can be described by Rayleigh distribution (Massel 1996)

P(A) = exp
(
−2A2

)
, (22)

where A is wave amplitude normalized on significant amplitude As , which is defined
as As≈2σ . For the numerical estimationof positive (negative) amplitude distribution,
the statistical “frequency” F (ratio of a number of waves m with fixed amplitude a
to a general number of waves)

F = m

N
, (23)

and statistical distribution function of amplitude (occurrence frequency of waves
with amplitude A larger than a)

P(a) = F(A > a). (24)

are calculated. For the narrowband incident wave field (l = 0.1), the distribution
functions of the runup characteristics are described by the Rayleigh distribution, as
it is expected due to linearity expressions for extreme characteristics. If the spec-
trum of incident wave is wider (l = 0.7), the asymmetry of displacement and veloc-
ity spectra increases, but nevertheless distribution functions of the maximal shore-
line displacement (Figs. 7 and 8) and the maximal shoreline velocity (Fig. 9) differ
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Fig. 7 Distribution
functions of maximal
positive amplitudes for
incident wave (triangles) and
shoreline displacement
(circles) with the incident
wave spectrum width l = 0.7;
solid line corresponds to the
Rayleigh distribution

Fig. 8 Distribution
functions of maximal
negative amplitudes for
incident wave (triangles) and
shoreline displacement
(circles) with the incident
wave spectrum width l = 0.7;
solid line corresponds to the
Rayleigh distribution

from the Rayleigh low weakly. This effect has also been confirmed experimentally
(Denissenko et al. 2013).

Knowing spectral and probability distributions of the wave field runup character-
istics on a beach can be calculated. Thus the significant runup height of the wave on
a beach is

Rs =
√
4πω0L

c
As F

(ω0

l

)
= 2π

√
2L

λ
As F

(ω0

l

)
, (25)

where function F(z) describes influence of the incident wave spectrum width
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Fig. 9 Distribution
functions of maximal
velocities for incident wave
(triangles) and shoreline
displacement (circles) with
the incident wave spectrum
width l = 0.7; solid line
correspondences to the
Rayleigh distribution

Fig. 10 Function of an
influence of the incident
wave spectrum width on a
runup height of the wave
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F

F(z) =
√
1 + exp(−z2/2)√

π/2zerfc(−z/
√
2)

. (26)

The function F(z) is shown in Fig. 10. It tends to one (F = 1) for the narrowband
process (l � ω0) and the significant runup height of the wave can be described by the
formula for the runup of a sine wave (Didenkulova et al. 2007b). Significant runup
height grows with the increasing of the spectrum width, especially when l > ω0.
Thus, Gaussian approximation in a problem of the wave runup on a beach works
not only for the case of l � ω0, but also for l < ω0, when the distribution function
differs from Gaussian.
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Previous analysis used the wave field presenting as the superposition of the inde-
pendent spectral components. Such approach is very popular to describe random
water waves. Meanwhile, the wave field in shallow water contains many coherent
wave components, and an idea to present it as a random assembly of the solitary
waves is very popular, see, for instance (Brocchini and Gentile 2001). The runup
of solitary wave on a plane beach is well studied (Synolakis 1987) and the runup
amplitude can be expressed through soliton amplitude

R

h
= 2.8312

1√
α

(
A

h

)5/4

. (27)

In fact, this formula can be derived from (10) taking into account the relation between
the soliton amplitude and duration. If the wave field contains random separated soli-
tons, the runup of each individual soliton presents the independent random process
and distribution function of runup amplitude can be found analytically if the dis-
tribution function of the soliton amplitudes is known. Assuming for simplicity the
Rayleigh distribution for soliton amplitude and using (27), exceedance frequency of
the runup amplitude is

P(R) = exp

[
−0.378α4/5 (R/h)8/5

(A/h)2

]
, (28)

and the probability of appearance of big waves on the coast is high. In fact, this
formula is valid for independent solitons. More detailed computing of the statistical
runup characteristics of the realistic “soliton” wave field is performed in (Brocchini
and Gentile 2001).

So, the wave runup on a plane beach leads to increasing of the probability of the
large-amplitude waves, and a freak wave phenomenon should be taken into account
in the coastal protection.

4 Conclusion

Distribution functions of the maxima wave characteristics at the point of shoreline
(displacement and velocity), caused by a wave coming from the open sea, are ana-
lyzed in frames of nonlinear shallow water theory. Modeled (Gaussian) spectrum is
used for numerical simulations. It is shown that variations of distribution functions
for the maximal shoreline displacement and shoreline velocity are weak for l < ω0.
For this case, the significant runup height of the wave can be described by the formula
for the runup of a sine wave. For the wideband process, especially for l > ω0, the
significant runup height grows significantly.
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Numerical Study for Run-Up of Breaking
Waves of Different Polarities
on a Sloping Beach

Artem Rodin, Ira Didenkulova and Efim Pelinovsky

Abstract The transformation and run-up of long breaking bell-shaped wave pulses
of various polarities is studied numerically in the nonlinear shallow-water theory
framework using CLAWPACK software. The considered water basin contains a
section of constant depth and a section of a slopping beach. For small-amplitude inci-
dent waves regardless their polarity, the results of numerical computations usually
coincide with predictions of the nonlinear shallow-water theory for non-breaking
waves. Nonlinear effects start to be important when incident wave is located far
from the shoreline even for initially small-amplitude waves. With further increase
in incident wave amplitude, the wave transforms into the shock wave (bore) before
approaching the beach. Run-up characteristics of waves of different polarities are
compared. Nonlinear effects and induced energy dissipation caused by wave break-
ing during its run-up on a beach are more prominent for negative pulses rather than
for positive ones.

1 Introduction

Run-up of non-breaking waves on a plane beach is well studied analytically using
the solutions of the nonlinear shallow-water equations. The progress in this direction
started from the pioneer work of Carrier and Greenspan (1958) who solved non-
linear shallow-water equations for wave run-up on a plane beach using Legendre
transformation. After their work, run-up of incident waves of various shapes on a
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plane beach has been investigated by many authors (Antuono and Brocchini 2007,
2008, 2010; Carrier et al. 2003; Didenkulova 2009; Didenkulova and Pelinovsky
2008; Didenkulova et al. 2006a, 2007a, b, 2008; Dobrokhotov and Tirozzi 2010;
Kânoğlu 2004; Kânoğlu and Synolakis 2006; Madsen and Fuhrman 2008; Mad-
sen and Schaffer 2010; Mazova et al. 1991; Pedersen and Gjevik 1983; Pelinovsky
and Mazova 1992; Pritchard and Dickinson 2007; Shermeneva and Shugan 2006;
Spielvogel 1975; Synolakis 1991; Synolakis et al. 1988; Synolakis 1987; Tadepalli
and Synolakis 1994; Tinti and Tonini 2005). Recently, the same approach has been
applied to the irregular wave field (Denissenko et al. 2011, 2013; Didenkulova and
Pelinovsky 2011b; Didenkulova et al. 2010, 2011). Irregularity of the beach has
been considered in Dutykh et al. (2011), while influence of bottom friction on run-
up height has been studied in Bernatskiy and Nosov (2012). Possible resonance
effects during wave run-up have been investigated numerically and experimentally
in Ezersky et al. (2013a, b), Stefanakis et al. (2011). An attempt to include second
dimension has been made by Choi et al. (2008), Didenkulova and Pelinovsky (2009),
Didenkulova and Pelinovsky (2011a, b, c), Rybkin et al. (2014), Zahibo et al. (2006),
who studied wave run-up in long and narrow bays.

We underline that most of papers cited above consider run-up of waves of positive
polarity (crests) having in mind that these waves induce significant flooding of the
coast. However, if the leading positive wave contains a precursor in the form of a
negative pulse (trough), it leads to substantial increase in the run-up height. This
effect was discussed in papers by Tadepalli and Synolakis (1994), Soloviev and
Mazova (1994) and was entitled as N -wave effect. The N -wave effect is valid as for
waves of weak amplitude (almost linear theory), as for large-amplitude non-breaking
waves. However, it has been shown in Didenkulova et al. (2006b), Pelinovsky and
Rodin (2011, 2012), Zahibo et al. (2008) for a basin of constant depth that different
polarities of the incident wave result in different manifestations of nonlinear effects
during wave propagation. The simple explanation for it is the following. The total
water depth under the wave trough is always smaller than the one under the crest,
and therefore, the nonlinear effects at the wave trough are always stronger than at
the wave crest. This effect for the case of non-breaking wave run-up on a beach
is discussed in Didenkulova et al. (2014), and in the current study, we extend the
contrastive analysis of influence ofwave polarity on run-up characteristics performed
in Didenkulova et al. (2014) to the case of breaking waves.

The paper is organized as follows. The shallow-water mathematical model is
briefly presented in Sect. 2. Run-up characteristics for positive and negative incident
waves are described in Sects. 3 and 4, respectively. Contrastive analysis of run-up
characteristics for incident wave of different polarities is performed in Sect. 5. Main
results are summarized in Sect. 6.
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2 Mathematical Model

Nonlinear shallow-water equations with aManning bottom friction are written in the
divergence form:

∂(Hu)

∂t
+ ∂

∂x

[
Hu2 + 1

2
gH2

]
= +g H dh/dx − γ H u,

∂ H

∂t
+ ∂

∂x
[Hu] = 0,

(1)

γ = g n2/H (4/3)|u|,

where H(x, t) = h(x) + η(x, t) is a total water depth, η(x, t) is the elevation of
water surface above the mean sea level z = 0, u(x, t) is depth-averaged horizontal
velocity of the water flow, g is the gravity acceleration, h(x) is the unperturbed water
depth and n is the Manning coefficient, taken as n = 0.025 s/m(−1/3) in all our
computations which is typical for geophysical problems.

Since nonlinear shallow-water equations are averaged equations over the water
depth flow velocity u(x, t), they do not allow description of crest overturning. How-
ever, written in the divergence form, Eq. (1) allows taking into account dissipation of
wave energy at the front of the shock wave (bore). This assumption is used when the
wavelength is large enough compared to the thickness of wave-overturning zone and
often applied to the description of wave breaking in the framework of the shallow-
water theory (Stoker 1957). All analytical and numerical results cited in Introduction
have been obtained within this system of Eq. (1).

The composite geometry of the problem shown in Fig. 1 contains a 250-m-long
basin of constant (3.5m) water depth, which is matched with a plane beach of a
slope 1:6. The parameters of the basin are selected in order to match the dimensions
of the Large Wave Flume (GWK), Hannover, Germany, where the authors recently
carried out a series of experiments on long-wave run-up (Denissenko et al. 2011,
2013; Didenkulova et al. 2013).

The system of Eq. (1) is solved numerically using the CLAWPACK software
package (www.clawpack.org/) based on finite volume method (LeVeque 2004). In

Fig. 1 The composite geometry of the problem

www.clawpack.org/
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order to describe shock waves and prevent spurious oscillations in the solution which
are result of the 2nd order corrections, the simulation algorithm applies numerical
viscosity, which should not much affect run-up characteristics. The boundary con-
dition at the left boundary of the computational domain (x = 0) corresponds to free
wave propagation across the border. On the right boundary, the boundary condition
H(x, t) = 0 defines the oscillations of the moving shoreline x(t). In all calcula-
tions the spatial step of 0.1m and time step were adapted automatically to satisfy the
Courant’s criterion.

Initial conditions correspond to the wave located in a basin of constant depth
(x < 250m) propagating onshore:

ηin(x, 0) = A cosh−2[(x − x0)/L], uin(x, 0) = 2
[√

g(h + ηin(x, 0) − √
gh

]
.

(2)

It is easy to show analytically that the rigorous solution of the system (1) for initial
conditions (2) represents Riemann wave (Pelinovsky and Rodin 2011, 2012):

H(x, t) = H0 [x − V (H) t] , V = 3
√

gH − 2
√

gh, (3)

where H0(x) = h + ηin(x, 0) is an initial wave shape.
In all our computations, characteristic half-wavelength is L = 11m that corre-

sponds to a half-wave period of 2 s. Incident pulse is located in the point x0 = 50m.
Wave amplitude A is varied from 0.05 to 3.5m for wave crests and from −0.05 to
−3.49m for troughs in order to keep the water layer continuous.

3 Run-Up of Breaking Waves of Positive Polarity
on a Sloping Beach

In the first set of calculations, initial wave amplitude was rather small, so that the
wave climbed the beach and reflected from it without breaking; see Fig. 2 for wave
amplitude of 0.1m. However, even when nonlinearity is weak, the nonlinear effects
are still present and lead to wave steepening while it approaches the slope, which is
clearly seen at time t = 30 s. The wave run-up height for this case is 0.43m, which
exceeds the initial wave amplitude in more than 4 times. The travel time to the coast
is 40 s. Reflected wave has a sign-variable shape as it is predicted by the analytical
theory. Amplitude of reflected wave is less than amplitude of incident wave (0.08m
at the time moment t = 70 s, Fig. 2) due to wave transformation and spreading in
space. The reflected wave is also affected by the nonlinear effects and contains steep
front at the maximum crest. It is important that reflected wave has a weak positive
tail after the trough due to weak resonance between the coast and the point matching
the slope with the constant depth. This tail is not observed in asymptotic analytical
considerations byDidenkulova et al. (2006a, 2007b),where thementioned resonance
is neglected.
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Fig. 2 Run-up and reflection of a weakly nonlinear positive pulse (A = 0.1m) from a sloping
beach

With the growth of wave amplitude, nonlinear effects become more visible. Pulse
with amplitude A = 0.5m breaks before approaching the beach and transforms into
the shock wave (Figs. 3 and 4). Such shock wave propagates faster than linear wave;
hence, maximal run-up height is achieved at slightly earlier time t = 37.5s. Its value
is 1.44m, and run-up ratio (R/A, where R is run-up height) is 2.88, which is less than
in the previous non-breaking case. Decrease in the run-up ratio is related to the wave

Fig. 3 Run-up and reflection of a positive pulse (A = 0.5m) from a sloping beach
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Fig. 4 Run-up and reflection of a positive pulse (A = 0.5m) from a sloping beach: x-t diagram

Fig. 5 Run-up and reflection of a positive pulse (A = 1.5m) from a sloping beach

breaking, which leads to dissipation of wave energy. However, the reflected wave
does not break and its shape is similar to the one shown in Fig. 2, just the steep part
near its crest is more prominent. Its amplitude is equal to 0.31m at the time moment
t = 70 s.

Figure5 shows transformation, run-up and reflection of initial wave with ampli-
tude of 1.5m. Such wave breaks earlier and dissipates quicker compared to previous
cases. It also propagates faster than in the previous case, so that its maximal run-up
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Fig. 6 Run-up and reflection of a positive pulse (A = 3.5m) from a sloping beach

Fig. 7 Run-up and reflection of a positive pulse (A = 3.5m) from a sloping beach: x-t diagram

height of 2.83m is achieved at t = 34.5s. Dissipation reduces the run-up ratio to
1.88. Reflected wave decays rapidly. Its amplitude is 0.67m at t = 70 s, which is
almost 45% of the initial wave amplitude.

When the initial wave amplitude is extremely high and equal to the water depth
(3.5m), the wave breaks almost instantaneously, and its shape becomes triangular
and its front moves quicker than in the linear case (Figs. 6 and 7).Thewave reaches its
maximal run-up height of 4.84m in 30.5 s, and the run-up ratio decreases significantly
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Fig. 8 Vertical oscillations of the shoreline for various amplitudes of the initial positive pulse

up to 1.38. The reflected wave at t = 60 s has amplitude of 1.24m, which is approx-
imately 35% of initial wave amplitude. It is important that the length of the reflected
wave increases with an increase in its amplitude, as the shock wave approaching the
beach also has a longer wavelength than the incident wave. It also results in a smooth
shape of a reflected wave in contrast to the large-amplitude breaking incident wave.

Vertical oscillations of the shoreline for various initial wave amplitudes are shown
in Fig. 8. It can be seen that run-up of positive pulse induces significant flooding of
the coast which increases with an increase in the initial wave height. At the same
time, the ebb stage is weak compared to the flood and decreases with an increase in
the initial wave height, so that for waves of very large amplitude, such as 2.5m and
larger, practically there is no ebb stage at all. Duration of the flood is also longer than
for the ebb, and it increases with an increase in the initial wave amplitude.

Detailed analysis of run-up characteristics for both positive and negative pulses
is performed below in Sect. 5. Here, we just show the comparison between results of
numerical simulations of weakly nonlinear non-breaking wave run-up and predic-
tions of the analytical theory (see Fig. 9), where the analytical solution is obtained
following procedure described in Didenkulova et al. (2006a), Didenkulova (2009);
Didenkulova et al. (2007b). Figure9 shows a good agreement between numerical
and analytical results.
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Fig. 9 Comparison of numerical simulations with predictions of the analytical theory for a 0.05m
weakly nonlinear wave of positive polarity

4 Run-Up of breaking Waves of Negative Polarity
on a Sloping Beach

Now let us consider run-up of a wave of negative polarity (trough). Figure10 demon-
strates how the wave trough of small-amplitude (0.1m) climbs the same sloping
beach, described above. In general, this process is sign-inverted with respect to the
run-up of positive pulse. Maximum run-up height of 0.17m is approximately twice
less than run-down amplitude (0.33m), but it is higher than initial wave amplitude.
The run-down ratio is equal to 3.3 which is less than the corresponding run-up ratio
for a positive pulse of the same amplitude. The reflected wave is also inverted with

Fig. 10 Run-up and reflection of a negative pulse (A = 0.1m) from a sloping beach
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Fig. 11 Run-up and reflection of a negative pulse (A = 0.5m) from a sloping beach

respect to the positive amplitude case: it starts from the trough followed by the wave
crest. However, due to its shape with large amplitude difference at the wave front,
its steepness increases significantly as a result of nonlinear effects.

Figure11 illustrates run-up of a negative pulse with amplitude of 0.5m. Its maxi-
mum run-up and run-down heights are 0.53 and 0.83m, respectively. It is important
to mention that the time to the maximum run-up/run-down height has increased com-
pared to the previous small-amplitude case. This is explained by the nonlinear speed
of the trough, which is less than the linear speed of long-wave propagation. The
run-down ratio (1.66) is also less than in the previous case, and it is related to the
breaking effects, which are also visible in the shape of the reflected wave.

With an increase in thewave amplitude, nonlinear effects leading towave breaking
become more prominent, as it is shown in Fig. 12 for a 1m pulse of negative polarity.

The last run of computations is performed for a 3.499m deep negative pulse, when
there is only a very thin film of water between the sea bottom and the wave trough. In
this case, nonlinear effects are the largest and result in the strongwave transformation
(Fig. 13). Such wave breaks immediately with a significant decrease in its amplitude
(Fig. 14), so that maximum run-up and run-down heights in this case are 0.83 and
1.49m, respectively, and this is about 40% less than the initial wave amplitude. The
reflected wave also breaks.

Vertical oscillations of the shoreline for various amplitudes of initial negative
pulse are shown in Fig. 15. It demonstrates that run-up of a negative pulse leads to a
comparably strong ebb and flood. Ebb duration is longer than the flood duration. Both
run-up and run-down heights increase with an increase in initial wave amplitude. As
it has just been shown for pulses of positive polarity described in Sect. 3, in the
weak amplitude case, numerical results for non-breaking wave run-up are close to
the predictions of the analytical theory (see Fig. 16).
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Fig. 12 Run-up and reflection of a negative pulse (A = 1m) from a sloping beach

Fig. 13 Run-up and reflection of a negative pulse (A = 3.499m) from a sloping beach: x-t diagram

5 Contrastive Analysis of Run-up Characteristics
for Breaking Waves of Different Polarity

As it has been pointed out above, run-up and run-down heights increase with an
increase in the initial wave amplitude. Figure17 shows these values versus initial
wave amplitude. It is clearly seen that all these functions are strongly nonlinear
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Fig. 14 Run-up and reflection of a negative pulse (A = 3.499m) from a sloping beach

Fig. 15 Vertical oscillations of the shoreline for various amplitudes of the initial negative pulse
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Fig. 16 Comparison of numerical simulations with predictions of the analytical theory for a 0.05m
weakly nonlinear wave of negative polarity

in contrast to the predictions of the analytical theory, which is related to energy
dissipation due to wave breaking. For positive pulses, the run-up height (blue solid
line) increases with an increase in the wave amplitude, while the run-down height
(green dash line) behaves non-monotonically and tends to zero for large-amplitude
waves. For the run-up of wave trough, as expected, the run-down height exceeds
the run-up height, but these values are comparable. Similar effect was found also for
non-breaking waves (Didenkulova et al. 2014). It is also seen that for large-amplitude
negative waves, run-down and run-up heights tend to be constant.

Fig. 17 Run-up and run-down heights versus initial wave amplitude
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Fig. 18 Run-up and run-down ratios versus initial wave amplitude

Figure18 displays run-up amplification or run-up ratio (the ratio of run-up or run-
down heights to initial wave amplitude) versus initial amplitude. As it is expected,
all ratios decrease monotonically with an increase in initial wave amplitude due to
the wave breaking effects.

The ratio of run-down and run-up heights is demonstrated in Fig. 19. This function
is not monotonic if incident wave is negative (trough). The minimal value (1.55) is
achieved in the range of initial wave amplitudes of 0.5–1m. For positive incident
waves, the difference in run-down and run-up heights is significantly larger than for
negative ones and their ratio behaves monotonically.

As it has been pointed out above for the case of positive pulse run-up, the wave
travel time (to themoment of themaximum run-up height) decreases with an increase
in initial wave amplitude, which is explained by the formation of the shockwave, who
propagates faster than a linearwave; see Fig. 8.Alternatively, for the case of a negative
pulse, travel time increases, as the shock wave of negative polarity propagates slower
than a linear wave; see Fig. 15. For practice, it is important to know how soon the
maximal inundation occurs during the flood of the coast; this duration is shown
in Fig. 20. For positive pulses, the flood front duration initially decreases with an
increase in the initial wave amplitude, which can be explained by an increase in the
steepness of the wave climbing the beach. Then, due to strong dissipation of the
wave front, the flood is governed by the tail of the shock wave climbing the beach,
and its duration again increases. For negative pulses, the ebb front duration behaves
monotonically and grows with an increase in initial amplitude, as the shock wave
arrives later than a smooth negative part of approaching wave.
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Fig. 19 Ratio of run-down and run-up heights Rdown/Rup versus initial wave amplitude

Fig. 20 Duration of flood / ebb front versus initial wave amplitude

6 Conclusion

Run-up of long breaking waves of different polarities is studied in the framework
of the nonlinear shallow-water theory. The geometry of the basin consists of the
section of constant depth matched with a sloping beach. Initial pulses of solitary
shape are located far from the shoreline. In the case of weakly nonlinear incident
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wave of any polarity, the results of numerical computations are in a good agreement
with asymptotic analytical predictions of long non-breaking wave run-up described
in Didenkulova et al. (2006a, 2007b). Thanks to the nonlinear effects, steepness of
the wave when it approaches the coast increases with an increase in initial wave
amplitude.

Forwaves of positive polarity (crests), the run-up height increaseswith an increase
in the initial wave amplitude, but in contrast to the analytical theory, this depen-
dence is not linear. Breaking effects decrease amplitude and increase wavelength of
waves approaching the slope, which also influences the travel time to the maximum
flood and leads to its decrease. The ebb stage duration decreases with an increase in
wave amplitude and almost disappears for large waves of more than 2.5m high. The
reflected wave in this case has a smooth shape and large wavelength.

Qualitatively, for initial waves of negative polarity (troughs), the process of wave
run-up is similar to the one for positive pulses, but sign-inverted. However, there
are principal differences between these two cases, which become more prominent
for waves of large amplitude. After the breaking, negative wave propagates slower
than the linear one, and the shock wave is formed at the back slope of the wave. It
influences the maximal values of run-up and run-down heights and travel time to the
maximum flood. The reflected wave can also break if initial amplitude of the wave is
high enough. So, in general, we may conclude that nonlinear effects leading to wave
breaking and energy dissipation are more pronounced for run-up of a negative pulse
rather than for a positive one.

Of course, the discussed here results also depend on a length of the constant depth
basin, beach slope, shape and length of the initial wave. However, qualitatively, the
obtained dependence of the wave run-up height on the initial wave amplitude should
remain also for other values of these parameters.

Acknowledgments The results presented in this paper are obtained with the support of State
Contract No 2014/133 and grants RFBR (14-02-00983, 14-05-00092, 15-35-20563, 15-55-45053),
MK-1146.2014.5 and SF0140007s11. Authors also acknowledge the support from CENS through
the European Regional Development Fund (ERDF). Some aspects of the appearance of the extreme
run-up characteristics are considered in the framework of a Volkswagen grant.

References

Antuono M, Brocchini M (2007) The boundary value problem for the nonlinear shallow water
equation. Stud Appl Math 119:71–91

Antuono M, Brocchini M (2008) Maximum run-up, breaking conditions and dynamical forces in
the swash zone: a boundary value approach. Coast Eng 55:732–740

Antuono M, Brocchini M (2010) Solving the nonlinear shallow-water equations in physical space.
J Fluid Mech 643:207–232

Bernatskiy A, NosovM (2012) The role of bottom friction in models of nonbreaking Tsunami wave
runup on the shore. Izv Atmos Ocean Phys 48:427–431

Carrier GF, Greenspan HP (1958)Water waves of finite amplitude on a sloping beach. J Fluid Mech
4:97–109



Numerical Study for Run-Up of Breaking Waves … 171

Carrier GF, Wu TT, Yeh H (2003) Tsunami run-up and draw-down on a plane beach. J Fluid Mech
475:79–99

Choi BH, Pelinovsky E, Kim DC, Didenkulova I (2008) Two- and three-dimensional computation
of solitary wave runup on non-plane beach. Nonlinear Process Geophys 15:489–502

Denissenko P, Didenkulova I, Pelinovsky E, Pearson J (2011) Influence of the nonlinearity on
statistical characteristics of long wave runup. Nonlinear Process Geophys 18:967–975

Denissenko P, Didenkulova I, Rodin A, Listak M, Pelinovsky E (2013) Experimental statistics of
long wave runup on a plane beach. J Coast Res SI65:195–200

Didenkulova I (2009) New trends in the analytical theory of long sea wave runup. In: Quak E,
Soomere T (eds) Applied wave mathematics: selected topics in solids, fluids, and mathematical
methods. Springer, Berlin, pp 265–296

Didenkulova I, Pelinovsky EN (2008) Run-up of longwaves on a beach: the influence of the incident
wave form. Oceanology 48:1–6

Didenkulova I, Pelinovsky E (2009) Non-dispersive traveling waves in inclined shallow water
channels. Phys Lett A 373(42):3883–3887

Didenkulova I, Pelinovsky E (2011a) Nonlinear wave evolution and runup in an inclined channel
of a parabolic cross-section. Phys Fluids 23(8):086602

Didenkulova I, Pelinovsky E (2011b) Rogue waves in nonlinear hyperbolic systems (shallow-water
framework). Nonlinearity 24:R1–R18

Didenkulova I, Pelinovsky E (2011c) Runup of tsunami waves in U—shaped bays. Pure Appl
Geophys 168:1239–1249

Didenkulova I, Zahibo N, Kurkin AA, Levin BV, Pelinovsky EN, Soomere T (2006a) Runup of
nonlinearly deformed waves on a coast. Dokl Earth Sci 411:1241–1243

Didenkulova I, ZahiboN,KurkinA, PelinovskyEN (2006b) Steepness and spectrumof a nonlinearly
deformed wave on shallow waters. Izv Atmos Ocean Phys 42:773–776

Didenkulova I, Kurkin A, Pelinovsky E (2007a) Run-up of solitary waves on slopes with different
profiles. Izv Atmos Ocean Phys 43:384–390

Didenkulova I, Pelinovsky E, Soomere T, and Zahibo N (2007b). In: Kundu A (ed) Runup of non-
linear asymmetric waves on a plane beach. Tsunami and nonlinear waves, Springer, Heidelberg,
pp 175–190

Didenkulova I, Pelinovsky E, Soomere T (2008) Run-up characteristics of tsunami waves of
“unknown” shapes. Pure Appl Geophys 165:2249–2264

Didenkulova II, Sergeeva AV, Pelinovsky EN, Gurbatov SN (2010) Statistical estimates of charac-
teristics of long-wave run-up on a beach. Izv Atmos Ocean Phys 46:530–532

Didenkulova I, Pelinovsky E, Sergeeva A (2011) Statistical characteristics of long waves nearshore.
Coast Eng 58:94–202

Didenkulova I, Denissenko P, Rodin A, Pelinovsky E (2013) Effects of wave asymmetry on its
runup on a beach. J Coast Res SI 65:207–212

Didenkulova II, Pelinovsky EN, Didenkulov OI (2014) Run-up of long solitary waves of different
polarities on a plane beach. Izv Atmos Ocean Phys 50(5):532–538

DobrokhotovSY,TirozziB (2010)Localized solutions of one-dimensional non-linear shallow-water
equations with velocity c = (x)1/2. Russ Math Surv 65:177–179

Dutykh D, Labart C, Mitsotakis D (2011) Long wave runup on random beaches. Phys Rev Lett
107:184504

EzerskyA, Abcha N, Pelinovsky E (2013a) Physical simulation of resonant wave run-up on a beach.
Nonlinear Process Geophys 20:35–40

Ezersky A, Tiguercha D, Pelinovsky E (2013b) Resonance phenomena at the long wave run-up on
the coast. Nat Hazards Earth Syst Sci 13:2745–2752
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Tsunami Waves Generated by Cliff Collapse:
Comparison Between Experiments
and Triphasic Simulations

S. Viroulet, A. Sauret, O. Kimmoun and C. Kharif

Abstract Although many tsunamis arise from underwater earthquakes, some are
induced by submarine and subaerial landslides. For example, the collapse of an
unstable cliff into the sea can generate a tsunami wave near the coast and exhibit
extreme run-up. As a result, those tsunamis develop significant hazards to the popu-
lation. The threat caused by such tsunamis strongly depends on the topography and
location of the unstable cliff. Predicting the height of the tsunami wave generated
by a subaerial or submarine collapse requires experimental investigations, analytical
modeling, and numerical simulations. In this chapter, we discuss recent experimen-
tal results on granular collapse in water and the influence of the physical parameters
on the amplitude of the tsunami waves. We also present triphasic numerical simu-
lations based on a finite-volume method where different rheologies are considered
for the slide. We also emphasize the difficulty of such simulations and compare the
numerical results to experimental measurements.

1 Introduction

A tsunami is an ocean wave that can propagate over long distances and can lead
to considerable damage along the coast. Among all natural disasters, tsunamis can
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be one of the deadliest. Indeed, if the wave amplitude reaches 10m in height when
arriving near the coast, the subsequent flooding can devastate land over several kilo-
meters.

The most common mechanism responsible for tsunami generation is a subma-
rine earthquake (Ioualalen et al. 2007), but other geological events can also cause
tsunamis. For instance, the impact of asteroids (Gisler et al. 2004; Kharif and Peli-
novsky 2005), volcanic eruptions (Francis 1985; Choi et al. 2003), and landslides
result in tsunamis that lead to important local hazards. Because the wavelengths asso-
ciated with tsunamis generated by a landslide are significantly lower than those from
tsunamis induced by a submarine earthquake, the dispersive effects are more impor-
tant during the propagation of the former (Glimsdal et al. 2013). For this reason, it
is common to call the waves generated by a landslide “impulse waves” rather than
tsunamis. However, despite the larger dissipation, the amplitude of those impulse
waves depends directly on the volume and configuration of the landslide, and can
become much larger than tsunami wave generated by submarine earthquake (Fritz
2001).

Over the past twenty years, various studies have beenperformed to characterize the
mechanisms involved in the generation of tsunamis by landslides. In some particular
cases, the propagation of the generated waves can be described by the Saint-Venant
equations (Popinet 2011) and in amore general framework, the Boussinesq equations
are able to capture the propagation of an initial wave (Shi et al. 2011, 2012). Although
the propagation is now well described, the initial generation of the waves remains
poorly understood because of its complexity. Many experimental studies have char-
acterized waves generated by a landslide. The simplest approach used a solid block
to model the landslide (Scott 1845). The mathematical description was obtained fifty
years later by Korteweg and De Vries (1895). To obtain a more realistic situation, a
number of studies have later considered a solid triangular block, with a width equal
to that of the channel, that slides on a slope and impacts into water (Heinrich 1992;
Watts 1997, 1998, 2000). These studies quantified the amount of energy transferred
from the solid block to the waves and derived scaling laws to estimate the amplitude
of the generated waves.Walder et al. (2003) studied the tsunami generation by a solid
block sliding in air on a varying slope allowing for a smooth transition between the
slope and the bottom of the channel and avoid the impact between the solid block
and the bottom of the channel.

Large-scale experiments were carried out by Liu et al. (2005) to study the run-up
and rundown of waves generated by a 3D slide. This study showed that the run-up
is significantly larger for subaerial slides and that it is controlled by the initial size
and position of the slide. In parallel, Panizzo et al. (2005) have performed similar 3D
experiments to predict the amplitude of the generated waves for the same parameters
as Walder et al. (2003). Experiments at the 1:500 scale were performed by Sælevik
et al. (2009) to estimate the amplitude of waves generated by the collapse of a cliff in
the Akneset fjord in Norway. This study examined the influence of the length of the
slide on the generated wave train. They used several solid blocks connected to each
other, and observed that the total volume of the slide is the predominant parameter
that controls the amplitude of the first wave, whereas the total length influences



Tsunami Waves Generated by Cliff Collapse: Comparison … 175

the dispersive tail. They showed that the shorter the solid assembly, the larger the
wave train following the first wave. Other configurations have also been studied to
characterize the generation of tsunamis by a landslide. They consist in approximating
the slide by a Gaussian or elliptical shape instead of a triangular or trapezoidal block
(Grilli and Watts 2005; Enet et al. 2003, 2005, 2007). These experiments constitute
validating cases for many numerical simulations of the generation of tsunamis by
submarine landslides. Risio et al. (2009) considered the same geometry as Enet et al.
(2007), but in order to study tsunami generation by a subaerial landslide. Contrary
to previous studies, they focused on the water rise along the coast perpendicularly to
the slide. They observed that the maximum run-up does not take place near the slide
but at 2–3 times from its width.

Whereas the generation of tsunamis by a solid has been extensively studied since
the 1970s, the generation of tsunamis by a granular slide is more recent and offers
a more realistic approach. During the collapse of the slide, modeling of the interac-
tions between the granular material and the generated wave is of crucial importance
to estimate the initial amplitude of the tsunami. Various experiments using granular
materials were carried out by Fritz (2002), Fritz (2001); Fritz et al. (2003a, b, 2004,
2009). These bi-dimensional experiments were performed in a 11m × 0.5m × 1m
channel and the granular medium was initially accelerated using a pneumatic piston.
Using linear regression, the authors determined the main characteristics of the gen-
erated waves based on several dimensionless parameters such as the Froude number
Fr = V/

√
gH (where V is the velocity of the slide, H is the water depth, and g is the

gravitational acceleration). These experimental studies were followed by the exper-
iments of Zweifel et al. (2006) that studied the effects of the density of the granular
material. Heller et al. (2008) considered the scale effects of tsunamis generated by
landslides. They found that the interfacial tension and viscous effects decrease the
amplitude of the generated wave but only have a small influence on the speed of their
propagation. More recently, Mohammed (2010) and Mohammed and Fritz (2012)
performed large-scale experiments on tsunami generation by a 3D sliding granular
material. The granular mass used in this study reaches a value of 1.4 tons and the
Froude number at the impact varied between 1 and 4. They were able to obtain
the evolution of the amplitude taking into account the direction of propagation of
the wave compared to the direction of collapse.

Several analytical studies considered the influence of different parameters in
tsunami generation by landslides. Murty (1979) calculated the amplitude of the wave
generated by a submarine landslide assuming that the potential energy of the slide is
entirely transferred to the solitary wave. This assumption of total transfer of energy
was also used byMonaghan andKos (2000) to predict the elevation of the free surface
in the historical experiment of John Scott Russell. Later, Didenkulova et al. (2010)
studied the generation and propagation of tsunami induced by a deformable landslide
on a varying topography. They found that amplitude of the generated wave does not
vary monotonically with the distance. Wang et al. (2011) suggested a formulation
for the generation of tsunamis by strong submarine landslide, taking into account the
effects of the wave, the viscous friction with the fluid and the solid friction with the
bottom of the sliding solid. More recently, scaling laws predicting the evolution of a
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wave have been obtained by Viroulet et al. (2013) for a solid slide and by Heller and
Hager (2014) for a deformable slide.

Depth-averaged models have been widely used in numerical simulations of the
tsunami propagation (Tinti and Bortolucci 2000). However, because these models
neglect the vertical acceleration, they are not well suited to capture the generation of
the initial wave by a landslide. Assier-Rzadkieaicz et al. (1997) used experimental
results obtainedwith granularmaterial to develop a simulation of thewave generation
by a submarine landslide. Their code solved the Navier-Stokes equations by using a
Bingham rheology to model the flow of granular material. Using the same rheology,
Watts et al. (2003) simulated wave generated by submarine landslide and showed
that the non-linearity and dispersion of the generated waves need to be taken into
account in numerical models. These results have led to a numerical code, Geowave,
which is the combination between two open-source codes: TOPICS, Tsunami Open
and Progressive Initial Condition Systems Watts et al. (2003), that gives the initial
conditions, and FUNWAVE, that solves the nonlinear Boussinesq equations for the
propagation (Shi et al. 2011). Another numerical method particularly used to study
tsunamis relies on the potential method, known as the Boundary Elements Method
(BEM). Grilli and Watts (1999) developed a 2D code (2D-FNPF) to study the gen-
eration by a strong submarine landslide with a semi-elliptical shape. A 3D extension
of this code was also performed by Grilli et al. (2002). However, depending on the
initial depth of the submarine landslide, and in the case of a subaerial landslide, a
strong vorticity is generated during the collapse and the possible fragmentation of
the free surface can not be simulated using this method.

To take into account the interactions between the slide and the free surface, multi-
phase codes have recently been developed. Kelfoun et al. (2010)modeled the tsunami
generation on the island of “La Réunion” by solving the Saint-Venant equations for
both, the fluid and the slide with a Mohr-Coulomb friction law for the rheology of
the slide. Other numerical codes have been developed by solving the Navier-Stokes
equations for the three phases air/water/slide. Mader and Gitting (2002) used the
SAGE code that relies on an adaptive mesh to solve the Navier-Stokes equations with
a Godunov scheme. Quecedo et al. (2004) modeled the generation by a deformable
landslide using a level-set method and a viscoplastic rheology.

More recently, Abadie et al. (2010) used a finite volume method to solve the
Navier-Stokes equation and a Volume of Fluid method (VoF) to track the interfaces.
Several types of rheology can be implemented in this code (THETIS). The authors
applied this method to study the possible collapse of the Cumbre Vieja, a volcano
located in the Canary Islands (Abadie et al. 2012). They coupled the multi-phasic
tsunami generation, simulated with the code THETIS, with the propagation mech-
anism, simulated with the code FUNWAVE. This numerical study highlights the
importance of the 3D effects during both the generation and the propagation phases.
Their study showed that 2Dnumerical simulations largely overestimate the amplitude
of the wave.

These different studies illustrate that a good modeling of the couplings between
the slide and the wave is crucial to predict the hazards induced by landslide generated
tsunamis with the most realistic model involving a granular medium to reproduce the
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Fig. 1 A view of the cliff at Cap Canaille located just above the mediterranean sea in Cassis, France
(picture: S. Viroulet)

deformable slide. However, the interactions of the landslide with the slope have not
been considered, as most of the past studies considered situations at Froude number
Fr > 1, where the friction with the slope can be neglected. In particular, during the
collapse of a cliff initially located just above the water surface, the velocity of the
landslide is small compared to the speed of propagation of the generated wave and
the interactions need to be characterized. This situation is observed for instance in
Cassis (France) where the possible collapse of a cliff of more than 350 m high would
occur directly above the water as illustrated in Fig. 1 (Averbukh et al. 2013).

2 Experimental Investigations

2.1 Experimental Setup

We have performed systematic experiments to study the interactions between dry
granular collapse and water that generates impulse waves. An aquarium tank of
dimension 220cm in length, 40cm in height and 20cm in width was built so that it is
long enough to allow the propagation of the wavewhile also allowing the observation
of the interactions between granular collapse and the generated waves.

To characterize the influence of the granular medium on both the generated wave
and the granular collapse, we have used four different media of varying size, poly-
dispersity, and sphericity. We considered three sizes of spherical glass beads (1.5,
4, and 10 mm) and density ρb = 2500 kg.m−3. We also used aquarium sand with
an average diameter of 4mm and density of ρs = 2300 kg.m−3 that models a non-
spherical and polydisperse medium. The reservoir of granular material was located
on one side of the aquarium and was limited by a door that opens vertically. The
velocity of the door was fast enough, around 2m.s−1, to assume that the shape of
the granular heap was not modified before the collapse. The granular material flows
subsequently down the slope, where the same granular material has been glued to the
surface to ensure a no-slip boundary condition (Pouliquen 1999; Cassar et al. 2005).
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(a) (b)

(c) (d)

Fig. 2 Granular collapse of m = 2 kg of aquarium sand from air into water. The time step between
two pictures is 0.2 s

The evolution of the granular collapse and the generation of the wave were recorded
using a high speed camera (Vision Research Phantom V641) at a rate of 100 frames
per second. In addition, we measured the evolution of the amplitude of the waves
generated during the propagation using 4 resistive gauges placed at 0.45, 0.75, 1.05,
and 1.35 m away from the vertical door (Viroulet et al. 2013a, b). An example of
the results obtained with the high speed camera is shown in Fig. 2 for a collapse of
aquarium sand.

2.2 Evolution of Amplitude During
the Propagation of the Wave

We first focus on the propagation of the leading wave, which is followed by an
oscillatory wave train. Because the wave generation is a complex phenomenon, prior
to any systematic study, we ensured that the experiments were fully reproducible.
Figure3(a–d) report an example of the evolution of the wave amplitude at the four
resistive gauges, for m = 2 kg of 4 mm glass beads on a slope of 45o. Whereas
the free surface elevation remains relatively small (ηmax < 2 cm), the difference
in elevation between the experiments is smaller than 1mm. Therefore, the slight
difference in compaction of the initial granular media or the variation of the velocity
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(a) (b) (e)

(c) (d)

Fig. 3 Time evolution of the free surface elevation measured at the four resistive gauges placed at
a 0.45 m, b 0.75 m, c 1.05 m, and d 1.35 m from the lifting gate. The granular collapse starts at
time t = 0. The three curves (red, green, blue) correspond to replicate of the experiment performed
with m = 2 kg of 4 mm glass beads sliding on a slope of 45o. e Evolution of the rescaled amplitude
of the leading wave as a function of the rescaled distance of propagation for various masses (1, 2 or
3 kg), various slopes (35◦, 40◦, 45◦, 50◦, 55◦), and four granular materials (glass beads of diameter
1.5, 4, and 10 mm and aquarium sands). Inset: Measured dimensional amplitude of the leading
wave as a function of the distance of propagation

of the lifting gate do not significantly modify the experimental measurement. This
result confirmed that our experimental setup can reliably be used to determine the
amplitude of the wave generated by a granular collapse into water.

For each experiment, we rescale the amplitude of the wave at the probes by
the amplitude ηmax1 at the first probe (see Fig. 3e). To explain the dependence of
the tsunami amplitude on the distance from the source x , we consider the weakly
dispersive linear shallowwater approximation. In this approximation, the free surface
elevation η is described by the linearized Korteweg-de-Vries equation (Whitham
2011; Pelinovsky et al. 2000):

∂η

∂t
+ c

∂η

∂x
+ c H2

6

∂3η

∂x3
= 0. (1)

A solution to this equation is

η(x, t) = Q

(
2

ct H2

)1/3

Ai

[(
2

ct H2

)1/3

(x − ct)

]
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where Q is a constant corresponding to the cross section of the volume of displaced
water, H is the water depth, c = √

gH and Ai is the Airy function. Thus, during
the propagation, the amplitude of the leading wave decays as t−1/3, which leads to
a dependence as x−1/3. This scaling law is consistent with the experimental data
regardless of the initial mass or slope (see Fig. 3e). Note also that the viscosity and
the interfacial tension are expected to have negligible effects on the propagation of
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the wave as observed for solid body impact (Viroulet et al. 2013) or granular impact
at Fr > 1 (Heller et al. 2008; Mohammed and Fritz 2012). Thus, using a far-field
approximation, we can estimate the amplitude of the waves during propagation.

2.2.1 Amplitude of the Generated Waves

An important parameter to predict tsunamis generated by landslides is the volume of
the slide. We performed a systematic investigation by varying the initial mass of the
slide from 0.5 to 3 kg for the four granular media previously described. The other
experimental parameters, i.e. the slope angle and the water depth are kept constant at
45◦ and 15 cm, respectively.We observe that the amplitude of the first wave increases
with themass of the slide (seeFig. 4a). Fitting the experimentalmeasurements leads to
a power law ηmax1 ∝ m0.84 for the glass beads and ηmax1 ∝ m0.95 for the aquarium
sand. The experiments performed with the 4mm and 10 mm glass beads lead to
similar values. The exponent of the power law for the 1.5 mm glass beads is the
same but the prefactor is slightly lower. Surface tension effects are likely a cause of
this discrepancy. Indeed, the size of the beads should be compared with the capillary
length in the system, Lc = √

σ/ρ g � 2.7 mm (where σ and ρ are the interfacial
tension and the density of the water, respectively, g is the gravitational constant).
Therefore, unlike in the propagation phase of the wave, the effects of the interfacial
tension can be significant during the generation.We can reasonably assume that these
effects are less important with the aquarium sand or large glass beads (10mm) than
for experiments with glass beads of 1.5 mm.

Predicting the influence of the mass of the slide on the amplitude of the first wave
remains challenging. Indeed, an analysis based on the initial potential energy of the
slide transferred to the first wave is not satisfying. When the mass of the slide is large
(typically > 2 kg in our setup), the leading wave starts to propagate while some
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Fig. 4 a Evolution of themaximum amplitude at the first probe as a function of themass of granular
material. b Evolution of the amplitude of the leading wave as a function of θ − θc. ( : 1.5 mm
glass beads, : 4 mm glass beads, : 10 mm glass beads and : aquarium sand)
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Fig. 5 Image of a granular collapse into water of 3 kg of 1.5 mm glass beads on a slope of 45◦
taken at t = 0.45 s

granular media is still out of the water. Therefore, all the mass of the material does
not contribute to the generation of the first wave. This situation is illustrated in Fig. 5
where the first wave has left the region where the generation takes place while some
granular material is still flowing down the slope.

The present observation can be related to the work of Sælevik et al. (2009) on
the influence of the length of the slide which was solid in their case. Indeed, they
observed that the length influences the dispersive wave train. In our situation, for
a larger mass of granular material, the collapsing time is longer and an excess of
granular material comes into play while generating the wave train following the first
wave. The same explanation shows that the evolution of the amplitude of the first
wave with the slide mass is almost independent of the material used. Indeed, the
generation of the first wave is mainly caused by the impact into water and is roughly
the same regardless of the granular media used.

An important parameter in geophysical situations is the angle of the slope. How-
ever, comparing the results for different granular materials is not straightforward
as they flow at different angles. Therefore, we measured the angle of repose and
avalanche of the four granular media (Börzsönyi et al. 2008). We find that the critical
angles of avalanche θc differ by 17◦ between the glass beads and the aquarium sand.
The evolution of maximum elevation of the free surface as a function of θ − θc is
illustrated in 4b (for more details see Viroulet et al. (2014)). We show that the ampli-
tude of the first wave only depends on θ − θc. Again, the interfacial tension may
explain the difference of the amplitude for the 1.5 mm glass beads. In this figure,
we also observe a saturation of the amplitude of the first wave for θ − θc ≥ 30◦
for all granular media (note that for the aquarium sand these large values can not be
achieved with our experimental setup).

We calculate the energy of the wave train associated to the first three waves
(the energy contained in the following wave train can be reasonably neglected). The
evolution of this energy E as a function of θ−θc is shown in Fig. 6a. The experimental
measurements collapse on a main curve and a transition is observed at θ −θc � 10◦.
Note that these low values can not be achievedwith our device for glass beads. Again,
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(a) (b)

Fig. 6 a Evolution of the energy E in the wave train as a function of θ − θc ( : 1.5 mm glass
beads, : 4 mm glass beads, : 10 mm glass beads and : aquarium sand). b Elevation of the free
surface at the first probe for slopes of 50◦, 55◦ and 60◦, a water depth equal to 0.15 m and
2 kg of 4 mm glass beads

the evolution of the energy of the wave train generated with 1.5 mm beads is slightly
different from other granular materials, which confirms that the interfacial tension
effects are important when the typical size of the granular material is smaller than
the capillary length.

For all granular media, we observe that the total energy of the wave train increases
with the slope and remains the same for θ−θc > 30◦. This result seems contradictory
with previous results on the amplitude of the first wave but can be explained using
the measurement of the probes. Indeed, for large slope angles, the amplitude of the
second wave becomes more important. In Fig. 6b, we report the evolution of the free
surface at the first probe for three different slopes and 4 mm glass beads. Beyond a
certain angle, the amplitude of the first wave does not increase anymore while the
amplitude of the second wave increases. The energy and the amplitude of the first
wave reach a saturation. However, the rest of the energy is found in the second wave
which becomes as dangerous as the leading wave. Figure6a shows that the last point
obtained with the 4 mm glass beads becomes lower in energy for large slope angles.
This is due to the large curvature of the second wave, which in this configuration
breaks before reaching the probe, thereby decreasing the total energy of the wave
train. When the slope increases and the energy of the first wave does not increase,
the rest of the energy is transferred to the wave train and more particularly in the
second wave.
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3 Numerical Simulations

Our experiments have shown that taking into account the properties of granular
material are crucial to predict the amplitude of the generated waves. The physical
mechanisms involved in the collapse of an initially dry granular medium in water are
particularly difficult tomodel. For these reasons, the numericalmodelingof a granular
collapse from air into water remains challenging. The modeling of a submarine
collapse by solving the dynamics of each grain together with the fluid dynamics is
very recent (Topin et al. 2012), and the next digital step is to add an air/water interface
to the granular collapse. Therefore, the modeling of the impact of a dry granular
material in water and the generated wave train still requires enormous efforts. Here,
we use the software Gerris (Popinet 2003, 2009) to run numerical simulations of a
situation similar to the experiments. The granular material is modeled as a fluid with
non-Newtonian properties. The aim of these simulations is to reproduce the evolution
of the first wave using the Navier–Stokes equations for triphasic simulations.

3.1 Parameters of the Simulations

The numerical domain is divided into three subdomains corresponding to 1 m× 1 m
squares connected to each other. The slope ismodeled by a solid wedgewith a no-slip
boundary condition. The water depth is equal to 15 cm for all the simulations. The
density and viscosity of the air and water are taken for a temperature of 20 ◦C and a
pressure 1013 hPa. To simulate different rheologies for the granular media, we have
performed numerical simulations for two fluids: a Newtonian fluid (ρ = 1500 kgm3,
μ = 5 kg.m−1 · s−1) and a Bingham fluid (ρ = 1500 kg.m3, μ = 5 kg.m−1 · s−1 and
τ0 = 100 kg.m−1 · s−2).

The mesh refinement occurs at the interface between water and other fluids (air
and granular material) and a constant mesh is maintained in the water and granular
phases. The smallest mesh size is about 1.9mm for the simulations presented in this
article. The boundary conditions are a no-slip at the bottom, a symmetry condition at
the left and right ends of the domain, and an open boundary on the top of the domain.
All simulations are performed on a single processor with a computing time ranging
from 6 to 12 h.

To characterize the evolution of the waves during their propagation, we set four
probes at the same distances as in the experiments (0.45, 0.75, 1.05, and 1.35m)
from the point where the granular material enters the water.
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3.2 Comparison of Numerical and Experimental Results

We consider the particular situation of 2 kg of glass beads of 1.5 mm in diameter
sliding on a slope of 45◦ to quantitatively compare experiments and numerical sim-
ulations. Figure7 shows the experimental results and the numerical simulations for
two different rheologies of the slide.

We observe that the numerical simulations are in good agreement with the exper-
iments at early times. The amplitude of the first wave during the impact is slightly
larger when using a slide made of a fluid rather than a Bingham fluid. When the
first wave leaves the generation region and starts to propagate, the apparition of a
vortex at the edge of the slide is visible in the simulation using a Newtonian fluid.
We can also observe the counter flow which slows down the collapse (see Fig. 7e).
These observations are less visible in the simulation using a Bingham fluid, where
the flow is slower and seems to become solid after the impact. Finally, the second
wave starts to appear in a similar manner than observed in the experiments (Fig. 7g,
h, i), although the slides have moved significantly less.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Comparison between the experiments (a, d, g) and the numerical results obtained with
Gerris using a newtonian fluid (b, e, h) and a Bingham rheology (c, f, i)
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As mentioned above, numerical simulations of the granular material interacting
with the fluid are really complex. For instance, the collapse of a fluid starting from
air into water generates a huge vorticity and bubbles which are particularly difficult
to simulate and very expensive in CPU time. Therefore, the main purpose of the
present simulations is to reproduce the evolution of the amplitude of the firstwave.We
accordingly set the parameters of the different fluids used to simulate the slide. Apart
from the density, which corresponds to the equivalent density in the experiments
(ρeq = 0.6 ρg � 1500 kg.m−3), the viscosity and the yield stress of the slide are not
based on physical properties but rather fitted to the experiments.

3.3 Evolution of the Amplitude During Propagation

We compare the evolution of the wave amplitude between our experiments and
our numerical simulations using the probes. We first need to define a rheology for
the granular material and study its influence on the generated wave. We compared
the wave amplitudes obtained in the experiments and in the numerical simulations
for a mass m = 2 kg for the four types of granular materials on a slope of 45◦.
The simulation with a Newtonian rheology produces results in fair agreement with
the experiments performed with the 4 mm glass beads, while the approximation of
a Bingham fluid gives results consistent with the 1.5 mm glass beads experiments.
Three configurationswere considered by varying only the angle of the slope (35◦, 45◦
and 60◦). Figure8 shows the results at the different probes for these configurations.

The evolution of the amplitude of the first wave for a slope of 45◦ is well captured
by the numerical simulations for both the Newtonian fluid/4mm glass beads and the
Bingham fluid/1.5mm glass beads. These first results are not surprising, since, as
stated previously, the parameters of the fluids used in the numerical simulations were
chosen to best match this configuration. If we now consider the results obtained for
a slope of 60◦ we see that, once again, the numerical simulations are in relatively
good agreement with the experiments. More specifically, for the Bingham fluid and
the 1.5 mm glass beads, the evolution of the free surface obtained experimentally
(1.5 mm glass beads) and numerically (Bingham fluid) are in close agreement for
the four probes. We observe a small time offset for the second peak at the first probe
which decreases during the propagation.

The largest discrepancy is observed between the amplitude of the first trough and
the second crest when comparing the Newtonian fluid and the 4 mm glass beads.
It shows that approximating the slide by a Newtonian fluid does not successfully
reproduce the interactions between the granular material and the generated waves.
However, during the propagation, the energy of the first wave is transferred to the dis-
persive wave train and thus the difference in amplitude at the second peak decreases.
For a slope angle of 35◦, the numerical simulations overestimate the amplitude of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8 Comparison of the evolution of the free surface elevation between the experiments and the
numerical simulations for a slope of 35◦, 45◦, and 60◦ measured at (a, b, c) 0.45 m, (d, e, f) 0.75
m, (g, h, i) 1.05 m and (j, k, l) 1.35 m from the lifting gate. The blue and red dashed lines are
experiments with 4 and 1.5 mm glass beads, respectively. The blue and red continuous line are the
numerical results obtained with Gerris simulating the collapse of a Newtonian and Bingham fluid
into water, respectively

the first wave and the largest discrepancies are observed in this configuration. These
results are in agreement with the fact that the velocity of the slide is the lowest in
this configuration. Therefore, the interactions between the granular materials and the
generated waves are the most important.
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4 Conclusion

From our systematic experimental study, we were able to highlight the importance of
the internal properties of the granular material during its collapse into water at small
Froude number. We also emphasized the importance of the interplay between the
granular media and the fluid during the generation of the waves. In particular, in the
configuration studied experimentally, the friction on the slope becomes dominant.
Therefore, the amplitude of the generated waves does not only depend on the slope
angle but on the difference between the slope angle and the avalanching angle of
the granular material used. This angular dependence has also been observed for
the runout distance of the granular media, which is always smaller for a granular
collapse from air into water rather than for a collapse in a single fluid (air or water).
We also reported that the energy transferred by the slide to the generated waves
does not exceed 10% for all initial configurations. Using numerical simulations,
we then show that the approximation of a viscous fluid for the granular medium
gives satisfactory results for the prediction of the amplitude of the first wave in
some particular configurations, but does not satisfactory reproduce the wave train
generated and the evolution of the slide. For this reason, an important experimental
and numerical effort is required to understand the physical mechanisms that take
place during a subaerial collapse. For instance, a numerical study using the coupling
of a discrete method to simulate the granular flow (DEM) and a continuous method
for the air/water phases (CFD) would lead to important informations on the energy
transfer to the waves during a granular collapse into water.
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An Analytical Model of Large Amplitude
Internal Solitary Waves

Nikolay I. Makarenko and Janna L. Maltseva

Abstract The problem on steady internal waves in a weakly stratified two-layered
fluid is studied analytically. We consider the model with homogeneous fluid in the
lower layer and with exponentially stratified fluid in the upper layer. The long-wave
approximation is constructed by means of implementing a scaling procedure with a
small Boussinesq parameter. Extreme configurations of solitary waves such as broad
table-top waves are discussed.

Keywords Stratified fluid · Solitary waves

1 Introduction

It is well known at present (Helfrich and Melville 2006; Pelinovsky et al. 2007)
that ocean internal waves can exhibit huge magnitude comparable with total fluid
depth. One of the most interesting extreme forms of nonlinear internal waves is inti-
mately related with the broadening effect. Broadening occurs when the phase speed
of solitary wave is close to the propagation speed of smooth internal bore. Turner
and Vanden-Broeck (1988) found this effect numerically by calculation interfacial
table-top solitary waves in a two-fluid system.

Two-layer approximation is a standard model of sharp pycnocline in a stratified
fluid. In this description, the density is constant in each layer but has a discontinuity
at interface. At the same time, in several cases one should take into account slight
continuous stratification of fluid layer in spite of the density jump at interface. In this
paper, we consider a theoretical model of strongly nonlinear interfacial waves in a
two-layer fluid which has a constant density in lower layer, and the density depends
exponentially on the height in upper layer. The newly proposed model equation gen-
eralizes the models suggested by Ovsyannikov et al. (1985) and Miyata (1985) for
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a system with constant densities in both layers, as well as the “2.5-layer” model
considered by Voronovich (2003). We demonstrate that perturbed model is well con-
sistent with the known results about table-top waves in the perfect two-fluid system.
We have also found the range of parameters where continuous stratification in upper
layer essentially affects the shape of solitary waves. In this view, the resulting model
takes into account the influence of weak stratification outside of the pycnocline.

The method of derivation involves asymptotic analysis of the Dubreil–Jacotin—
Long equation which is equivalent to the fully nonlinear Euler equations. Long-wave
scaling procedure uses small Boussinesq parameter which characterizes small slope
of the density profile in upper layer. Our method combines approaches suggested
originally by Ovsyannikov et al. (1985) and Miyata (1985) for a two-layer fluid
with expansion procedure developed by Long (1965) and Benney and Ko (1978) in
the case of continuous stratification. Previously, this method was used in theoreti-
cal study of table-top solitary waves and internal bores in a weakly stratified fluid
without homogeneous layers (Makarenko 1999; Maltseva 2003). Lamb and Wan
(1998) investigated numerically flat-crested waves in a continuously stratified fluid,
and Grue et al. (2000) observed breaking and broadening of such solitary waves in
laboratory experiments.

2 Basic Equations

We consider a 2D motion of inviscid inhomogeneous two-layered fluid which is
weakly stratified under gravity. The Euler equations describing steady flows are

ρ(uux + vuy) + px = 0,
ρ(uvx + vvy) + py = −ρg,

ux + vy = 0, uρx + vρy = 0,
(1)

where ρ is the fluid density, u and v are the velocity components, p is the pressure and
g is the gravity acceleration. The flow is confined between the flat bottom y = −h1
and the rigid lid y = h2 (Fig. 1), and the interface y = η(x) separates the layers (the
value η = 0 gives equilibrium level of this interface).

We introduce the stream function ψ as usually by u = ψy, v = −ψx , so the mass
conservation implies the dependence ρ = ρ(ψ), and the pressure p can be found
from the Bernoulli equation

1

2
|∇ψ|2 + 1

ρ(ψ)
p + gy = b(ψ).

It is supposed that the fluid velocity (u, v) tends to the upstream velocity (c j , 0) as
x → −∞ where c j is the wave speed with respect to jth layer (j=1, 2). In this case,
boundary conditions at the bottom, at the interface, and at the lid take the forms,
respectively
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Fig. 1 Scheme of motion

ψ = −c1h1 (y = −h1), ψ = 0 (y = η), ψ = c2h2 (y = h2). (2)

It is well known (Yih 1980) that the system (1) can be reduced to the Dubreil–
Jacotin—Long (DJL) equation for a stream function

ρ(ψ)Δψ + ρ′(ψ)

(
gy + |∇ψ|2

2

)
= H ′(ψ).

Here the function H(ψ) = ρ(ψ)b(ψ) involves the Bernoulli function b(ψ) and the
density ρ(ψ) which are specified by the condition ρ(ψ) = ρ∞(ψ/c j ) in j th layer. In
this paper, we consider the upstream density profile

ρ∞(y) =
{

ρ1 (−h1 < y < 0),
ρ2 exp (−N 2y/g) (0 < y < h2),

(3)

where N = const is the Brunt—Väisälä frequency, and the constants ρ1 and ρ2
are such that ρ2 < ρ1. The special case N = 0 gives a familiar two-fluid system
with a piece-wise constant fluid density ρ and the Bernoulli function b. In general
case N �= 0, the function b(ψ) is constant in lower layer −h1 < y < η(x) only,
b(ψ) = c21/2. At the same time, we have in upper layer η(x) < y < h2

b(ψ) = 1

2
c22 + gψ

c2
+ g2

N 2

(
1 − e

N2ψ
gc2

)
.

As a consequence, we obtain the Laplace equation for a stream function in the
homogeneous layer

ψxx + ψyy = 0, (4)

and ψ should satisfy the nonlinear equation
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ψxx + ψyy = N 2

gc2

{
g

(
y − ψ

c2

)
+ 1

2

(
ψ2

x + ψ2
y − c22

)}
(5)

in the exponentially stratified layer. Note that Voronovich (2003) used the linear
Helmholtz equation

ψxx + ψyy + N 2

c2
(ψ − cy) = 0 (c = c1 = c2) (6)

which is a simplified version of (5). By this approach, the nonlinearity appears due
to interfacial boundary condition

[ρ(ψ)(|∇ψ|2 + 2gy − 2b(ψ)] = 0, y = η(x), (7)

where the square brackets mean the discontinuity jump. The condition (7) provides
continuity of the pressure p everywhere in the flow domain. As Long (1965) noted,
nonlinear inertial terms ofEq. (5) are significant in the casewhen perturbationmethod
uses several parameters in addition to small quantity Δρ/ρ. Therefore, we take into
account all the nonlinearities appearing from exact Euler equations. In addition, we
reformulate the condition (7) by taking into account conservation of total momentum
due to the flow force integral

h2∫
−h1

(p + ρψ2
y) dy = const.

Excluding the pressure p by the Bernoulli equation, we obtain the relation

ρ1

η(x)∫
−h1

(
c21 + ψ2

1y − ψ2
1x − 2gy

)
dy+ (8)

+ρ2

h2∫
η(x)

e
− N2ψ2

gc2

{
c22 + ψ2

2y − ψ2
2x − 2g2

N 2

(
e

N2ψ2
gc2 − 1

)
+ 2g

(
ψ2

c2
− y

)}
dy = C,

where the constant C depends on parameters of upstream flow as follows:

C = ρ1gh2
1 + 2ρ1c21h1 + 2ρ2c22h2 + 2ρ2g

(
c22
N 2 + g2

N 4

)(
1 − N 2h2

g
− e− N2h2

g

)
.

It is easy to check by direct calculation that the integral relation (8) is equivalent to the
boundary condition (7) which is rather simple. However, the Eq. (8) provides more
effectively the derivation of model describing solitary waves of finite amplitude.
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3 The Model Equation

In order to formulate approximate model in a dimensionless form, we introduce
now some certain scales and parameters. The density profile (3) is clarified by the
Boussinesq parameters σ and μ defined by the formulae

σ = N 2h2

g
, μ = ρ1 − ρ2

ρ2
. (9)

Here, the constant σ characterizes the slope of density profile in a continuously
stratified layer, and μ is the dimensionless density jump at interface. As usual, both
these parameters are small in the case of slight stratification. However, we expect
that the interfacial mode dominates modes of internal waves in stratified layer, when
μ � σ. Therefore, we fix the constant μ and use the parameter σ as the perturbation
parameter.

Further, we define the densimetric Froude number Fj as the scaled phase speed
c j in j th layer,

F2
j = ρj c2j

g(ρ1 − ρ2)h j
( j = 1, 2). (10)

The pair F = (F1, F2) is a distinctive mark for a two-fluid system in the presence of
a velocity jump at a sharp interface. We demand the difference between c1 and c2 to
bemoderate in order to avoid the Kelvin–Helmholtz instability, at least in accordance
with long-wave limit criteria (Ovsyannikov et al. 1985):

|c1 − c2| <

√
g(ρ1 − ρ2)(ρ1h2 + ρ2h1)

ρ1ρ2
.

In addition to the Froude numbers Fj , we use also the parameter λ given by the
formula

λ2 =
(

Nh2

c2

)2

= σgh2

c22
= σ

μF2
2

.

The constant λ characterizes the inverse densimetric Froude number defined for a
continuously stratified fluid in upper layer. Finally, the parameter r = h1/h2 is the
layer thickness ratio for the fluid at rest.

The derivation procedure involves the slow independent variable ξ = √
σ x/h2,

the dimensionless variables (ȳ, η̄) = (y, η)/h2 and the stream function ψ =
cj h j ψ̄ ( j = 1, 2), scaled separately in j th layer. We are seeking for the func-
tion ψ̄ expanded in powers on σ as

ψ̄ = ψ(0) + σ ψ(1) + O(σ2)
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where the coefficients ψ(k) are determined by the Eqs. (4) and (5) under boundary
conditions (2) transformed to appropriate dimensionless form. Thus, in lower layer
−r < y < η we obtain the coefficients

ψ(0) = y − η

r + η
, ψ(1) = −1

6

(
1

r + η

)
ξξ

{
(y + r)3 − (r + η)2(y + r)

}

(bar is omitted in notations of dimensionless variables here and later). Respectively,
in upper layer η < y < 1 the coefficients of perturbation series are

ψ(0) = y − η
sin λ(1 − y)

sin λ(1 − η)
,

ψ(1) = sin λ(1 − y)

2λ

(
η

sin λ(1 − η)

)
ξξ

{
(1 − η) cot λ(1 − η) − (1 − y) cot λ(1 − y)

}
+

+ 1

6
η2

{
sin λ(η − y) + sin λ(1 − η) − sin λ(1 − y)

sin3 λ(1 − η)
+ sin2 λ(1 − y)

sin2 λ(1 − η)
− sin λ(1 − y)

sin λ(1 − η)

}
+

+ η(η − y)

2

sin λ(1 − y)

sin λ(1 − η)
.

Finally, we use the dimensionless version of integral relation (8) in the form

μr3F2
1

η∫
−r

(
ψ2

y −σψ2
ξ

)
dy +

1∫
η

e−σψ

{
μF2

2 (1+ψ2
y −σψ2

ξ )−2σ−1
(

eσψ − 1
)
+2 (ψ − y)

}
dy =

= (1 + μ)η2 − μr F2
1 (η − r) + 2μF2

2 + 2
(
λ−2 + σ−2

) (
1 − σ − e−σ

)
.

Substituting the power expansion for ψ and truncating the terms O(σ2) we obtain
the nonlinear ordinary differential equation for the wave shape η(x) which depends
on dimensionless variables x with scale unit h2:

(
dη

dx

)2

= η2
(

A0 + A1η + A2η
2 + A3η

3
)

B0 + B1η + B2η2 + B3η3 + B4η4
. (11)

Here, the coefficients A j and B j are trigonometric polynomials depending on sn =
sin nλ(1 − η) and cn = cos nλ(1 − η) with integer or half-integer n,

A0 = 18rλ s21

{[
2(F2

1 − 1) − σF2
2

]
s21 + λF2

2 s2
}
,

A1 = 2λ F2
2

{
s21

[
λ(9 − 2σr)s2 − s21 (6rλ2 + 9σ)

]

− 2s21/2
[
rσλs1 + 3rσλ2(1 + 2c1)

]} − 36λ s41 ,

A2 = 4λ2F2
2 s21/2

{
3σλ(r − 1)(1 + 2c1) − 4

(
3λs21 + σs2

)
c21/2 − σs1

}
,
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A3 = 12λ3σF2
2 s21/2(1 + 2c1),

B0 = 12λr3F2
1 s41 + 9r F2

2 (2λ − s2)s
2
1 ,

B1 = 9F2
2

{
rλ(2λ − s2)s2 − [

2(r − 1)λ + s2
]
s21

}
,

B2 = 9λF2
2

{
λ
[
r(s21 − 3) + 2

]
s2 + 4s41 + 2rλ2 − 2(rλ2 + 3)s21

}
,

B3 = − 9λ2F2
2

{
(c21 + 2)s2 + 2λ(r − 1)c21

}
,

B4 = − 18λ3F2
2 c21.

Note that λ in the above formulas is λ = O(
√

σ) for a fixed F2 �= 0. This is the case
when continuous stratification disappears in upper layer as σ → 0. In such a way,
the Eq. (11) reduces to the equation

(
dη

dx

)2

= 3η2
[
η2 + (

F2
2 − r F2

1 − 1 + r
)
η + r

(
F2
1 + F2

2 − 1
)]

r3F2
1 (1 − η) + F2

2 (r + η)
. (12)

asλ → 0. This simplified version ofmodel equationwas earlier obtained byOvsyan-
nikov et al. (1985) and, in the case c1 = c2, by Miyata (1985) (see also Choi and
Camassa (1999)) for a two-fluid system with constant density in the both layers.
Recently, this model was thoroughly compared and validated with experimental
observations and numerical calculations of solitary waves in the framework of fully
nonlinear Euler equations (Camassa et al. 2006).

For a fixed λ �= 0 and small σ > 0 the Froude number F2 has the order F2 =
O(

√
σ), and the Eq. (11) takes the limiting form

r3F2
1 η2x = 3η2

(
r(F2

1 − 1) − η
)

(13)

as σ → 0. This is the Boussinesq—Rayleigh equation known as the model of surface
solitary waves in homogeneous fluid layer with dimensionless depth r . In the case
under consideration, the Froude number F1 = c1/

√
g1h1 is defined by the reduced

gravity acceleration g1 = (ρ1 − ρ2)g/ρ1. This curious analogy also agrees with the
Eq. (12) which results to Eq. (13) as F2 → 0.

4 Solitary Waves

The parametric range of solitary waves is obtained as the domain in (F1, F2)-plane
being supercritical with respect to the spectrum of small amplitude sinusoidal waves
determined by linearized Eqs. (2), (4), (5) and (7). The dispersion relation of linear
waves is

Δ(k; F) = 0
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where k is a dimensionlesswave-number and the functionΔ is defined by the formula

Δ = F2
1 rk

√
σ coth rk

√
σ + F2

2

⎛
⎝

√
λ2 − σ2

4
− k2σ cot

√
λ2 − σ2

4
− k2σ − σ

2

⎞
⎠ − 1.

This dispersion relation determines real wave-numbers k if and only if the Froude
point F = (F1, F2) belongs to the shaded area on the Fig. 2.

The boundary of this spectral domain is determined by the equation

F2
1 + F2

2

(√
σ

μF2
2

− σ2

4
cot

√
σ

μF2
2

− σ2

4
− σ

2

)
= 1. (14)

Note that a perfect two-fluid system with constant densities ρ1 and ρ2 in the layers
has one-modal spectrum bounded by the unit circle F2

1 + F2
2 = 1. The curve (14)

transforms to this circle in a weak-stratification limit σ → 0 by fixing μ. However,
it is clear that this transformation from a non-bounded spectral domain to compact
spectrum is not uniform in F1 as σ → 0.

Equation (11) has solitary-wave solutions when the point (F1, F2) is located
between the spectrum and the curve Bλ which gives the broadening limit of internal
waves. The line

√
r F1+F2 = √

1 + r (the dashed line on Fig. 2b) is the bore diagram
for Eq. (12), it gives a limit form of the curve Bλ as λ → 0. Small amplitude solitary
waves bifurcate from upstream flow at the spectrum boundary (14), these waves are
described by weakly nonlinear version of the Eq. (11)

(a) (b)

(c)

Fig. 2 The spectrum and supercritical domain σ = 0.00008, μ = 0.003, r = 1.2
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η2x = η2
[
γ0 + γ1η + O(η2)

]
. (15)

Here the lowest-order coefficient γ0 is positive in supercritical domain Δ(0; F) > 0
since

γ0 = 3Δ(0; F)

r2F2
1 + F2

2

+ O(σ2),

and the coefficient γ1(F,λ) depends on parameters Fj and λ in a complicated way.
The Fig. 2b presents an enlarged fragment of Fig. 2a near the positive semi-axis

OF1. This is a thin spectral layer for the perturbed problem, it has the thickness
O(

√
σ) and therefore disappears as F1 > 1 and σ → 0. Similarly, Fig. 2c illustrates

scaled fragment of Fig. 3b which is located close to the Froude point F = (1, 0).
Branches of the curve Γ1(λ) : γ1(F,λ) = 0 shown on Fig. 2a and c indicate where
the balance of nonlinearities η3 and η4 is possible in the Eq. (15). It is really true

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 3 Profiles of solitary waves
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in the vicinity of the point P1 with the coordinates F1 = r/
√

(1 + r)r + O(λ) and
F2 = 1/

√
1 + r + O(λ). This is the same effect as the balance of quadratic and

cubic nonlinearities in the KdV–mKdV model (Kakutani and Yamasaki 1978).
In contrast, the neighborhood of the point P2 with coordinates

F1 = 1 + 1

2π

√
σ

rμ
+ O(σ), F2 = 1

π

√
σ

μ
+

√
rσ

π2μ
+ O(σ3/2)

demonstrates one more case of exotic behavior of solitary waves. For example, when
the point F belongs to the curve Γ1(λ) then the fractional scaling of variables x =
σ1/4x0, η = σ1/2η0 leads from Eq. (11) to the model equation

(
dη0

dx0

)2

= η30
R2 + 3R(πη0 + R)3 − 3(πη0 + R)4

r3(πη0 + R)4 + 3r2/(2π2μ2)
(R = √

r/μ). (16)

This equation describes solitary waves with power decay as |x0| → ∞ (not expo-
nential decay because of multiplier η30 at right-hand side).

Figure3a–f presents the profiles of solitarywaves calculated for theEqs. (11), (12),
and (13). Here the solid line corresponds to the Eq. (11), the dashed line corresponds
to the Eq. (12), and the dotted line corresponds to the Eq. (13). The point (a) gives the
broad plateau-shape solitary wave which is precisely described by (11) and (12). The
point (b) demonstrates the location of Froude point (F1, F2) where all the Eqs. (11),
(12) and (13) are in good agreement. The point (c) is out of validity range of Eq. (12)
but the solitary wave solution for the Eq. (11) still exists here. The points (d), (e), and
(f) demonstrate how the Eq. (13) loses its accuracy by moving along the curve Γ1(λ).
Solitary wave for Eq. (11) seems to be broadening on the Fig. 3d–f. Indeed, it is the
lost of exponential decay near the point P2. The Fig. 3g illustrates good agreement
of Eq. (11) (solid line) and Eq. (16) (dashed line) for the point (g); here Eq. (13) fails
to approximate at all.

5 Conclusion

In this paper, we have considered the problem on permanent internal waves at
the interface between a homogeneous layer and exponentially stratified layer in a
two-fluid system. An ordinary differential equation describing large amplitude soli-
tary waves has been obtained using the long-wave scaling procedure. This equation
extends the model suggested by Ovsyannikov et al. (1985) and Miyata (1985) for a
two-layer fluid with two homogeneous layers. Parametric range of solitary waves is
characterized, including extreme regimes such as broad plateau-shape solitarywaves.
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Symbolic Computation for Nonlinear
Wave Resonances

E. Tobisch (Kartashova), C. Raab, Ch. Feurer, G. Mayrhofer and W. Schreiner

Abstract Extreme ocean waves are characterized by the energy concentration in
a few chosen waves/modes. Frequency modulation due to the nonlinear resonances
is one of the possible processes yielding the appearance of independent wave clus-
ters which keep their energy. Energetic behavior of these clusters is defined by (1)
integer solutions of the resonance conditions, and (2) coupling coefficients of the
dynamical system on the wave amplitudes. General computation algorithms are pre-
sented which can be used for arbitrary three-wave resonant system. Implementation
in Mathematica is given for planetary ocean waves. Short discussion concludes the
paper.

1 Introduction

Resonance is a common thread which runs through almost every branch of physics;
without resonance we would not have radio, television, music, etc. Resonance causes
an object to oscillate; sometimes the oscillation is easy to see (vibration in a guitar
string), but sometimes this is impossible without measuring instruments (electrons
in an electrical circuit). A well-known example with Tacoma Narrows Bridge (at the
time it opened for traffic in 1940, it was the third longest suspension bridge in the
world) shows how disastrous resonances can be: on the morning of 7 November,
1940, the four-month-old Tacoma Narrows Bridge began to oscillate dangerously up
and down, tore itself apart and collapsed. Although designed for winds of 120mph,
a wind of only 42mph caused it to collapse. The experts did agree that somehow
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the wind caused the bridge to resonate, and nowadays, wind tunnel testing of bridge
designs is mandatory.

Another famous example is the experiments of Tesla who studied in 1898 experi-
mentally vibrations of an iron column and noticed that at certain frequencies specific
pieces of equipment in the room would start to jiggle. Playing with the frequency
he was able to move the jiggle to another part of the room. Completely fascinated
with these findings, he forgot that the column ran downward into the foundation
of the building, and the vibrations were being transmitted all over Manhattan. The
experiments had started sort of a small earthquake in his neighborhood with smashed
windows, swayed buildings, and panicky people in the streets. For Tesla, the first
hint of trouble came when the walls and floor began to heave (Cheney 1989). He
stopped the experiment as soon as he saw police rushing through the door.

The difference between resonances in a human made system and in some natural
phenomena is very simple. We can change the form of a bridge and stop the exper-
iment by switching off electricity but we can not change the direction of the wind,
the form of the Earth atmosphere, or the sizes of an ocean. What we can try to do
is to predict drastic behavior of a real physical system by computing its resonances.
While linear resonances in different physical systems are comparatively well studied,
to compute characteristics of nonlinear resonances and to predict their properties is
quite a nontrivial problem, even in the one-dimensional case. Thus, the notorious
Fermi-Pasta-Ulam numerical experiments with a nonlinear 1D-string (carried out
more then 50 years ago) are still not fully understood (Berman and Israilev 2005).
On the other hand, nonlinear wave resonances in continuous 2D-media like ocean,
space, atmosphere, plasma, etc. are well studied in the frame of wave turbulence the-
ory (Zakharov et al. 1992) and provide a sound basis for qualitative and sometimes
also quantitative analysis of corresponding physical systems. The notion of nonlinear
wave interactions is crucial in the wave turbulence theory (Zakharov et al. 2004).
Excluding resonances allows to describe a nonlinear wave system statistically, by
wave kinetic equations and power-law energy spectra of turbulence (Zakharov and
Filonenko 1967), and to observe this behavior in numerical experiments (Pushkarev
and Zakharov 2000). Direct computations with Euler equations (modified for gravity
water waves, Zakharov et al. 2005) show that the existence of resonances in a wave
system yields some additional effects which are not covered by the statistical descrip-
tion. The role of resonances in the evolution of water wave turbulent systems has
been studied profoundly by a great number of researchers. One of the most important
conclusions (for gravity water waves) made recently in Tanaka (2007) is the follow-
ing: The four-wave resonant interactions control the evolution of the spectrum at
every instant of time, whereas non-resonant interactions do not make any significant
contribution even in a short-term evolution.

The behavior of a resonant wave system can be briefly described (Kartashova
1998) as follows: (1) not all waves take part in resonant interactions, (2) resonantly
interacting waves form a few independent small wave clusters, such that there is no
energy flow between these clusters, (3) including some small but non-zero resonance
width into consideration does not destroy the clusters. A model of laminated wave
turbulence (Kartashova 2006a) allows to describe statistical and resonant regimes



Symbolic Computation for Nonlinear Wave Resonances 205

simultaneously while methods to compute resonances numerically are presented
in Kartashova (2006b) (idea) and in Kartashova and Kartashov (2006, 2007a, b)
(implementation). Our main purpose here is to study the possibilities of a sym-
bolic implementation of these general algorithms using the computer algebra system
Mathematica.

The implemented software canbe executedwith local installations ofMathematica
and the corresponding method libraries; however, we have also developed a Web
interface that allows to run the methods from any computer in the Internet via a
conventional Web browser. The implementation strategy is simple and based on
generally available technologies; it can serve as a blueprint for other mathematical
software with similar features.

We take as our principal example the barotropic vorticity equation in a rectangular
domain with zero boundary conditions which describes oceanic planetary waves,
and show how (a) to compute interaction coefficients of corresponding dynamical
systems, (b) to solve resonant conditions, (c) to construct the topological structure
of the solution set, and (d) to use the software via a Web interface over the Internet.
A short discussion concludes the paper.

2 Mathematical Background

Wave turbulence takes place in physical systems with nonlinear dispersive waves
that are described by evolutionary dispersive NPDEs. The role of the evolutionary
dispersive NPDEs in the theoretical physics is so important that the notion of disper-
sion is used for a physical classification of PDEs into dispersive and non-dispersive.
The well-known mathematical classification of PDEs into elliptic, parabolic, and
hyperbolic equations is based on the form of equations and can be applied to the
second-order PDEs on an arbitrary number of variables. On the other hand, the phys-
ical classification is based on the form of solutions and can be applied to PDEs of
arbitrary order and arbitrary number of variables. In order to construct the physical
classification of PDEs, two preliminary steps are to bemade (1) to divide all variables
into two groups—time- and space-like variables (t and x correspondingly); and (2)
to check that the linear part of the PDE under consideration has a wave-like solution
in the form of Fourier harmonic

ψ(x, t) = A exp i[kx − ωt],

with amplitude A, wavenumber k, and wave frequency ω. The direct substitution of
this solution into the linear PDE shows then that ω is an explicit function on k, for
instance,

ψt + ψx + ψxxx = 0 ⇒ ω(k) = k − 5k3.
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If ω as a function on k is real-valued and such that d2ω/dk2 �= 0, it is called
a dispersion function and the corresponding PDE is called evolutionary dispersive
PDE. If the dimension of the space variable x is more that 1, i.e. �x = (x1, . . . , x p),

�k is called the wave-vector and the dispersion function ω = ω(�k) depends on
the coordinates of the wave-vector. This classification is not complementary to a
standard mathematical one. For instance, though hyperbolic PDEs normally do not
have dispersive wave solutions, the hyperbolic equation ψt t −α2ψxx −β2ψ = 0 has
them.

In the huge amount of application areas of NPDEs (classical and quantum physics,
chemistry, medicine, sociology, etc.) a nonlinear term of the corresponding NPDE
can be regarded as small. This is symbolically written as

L(ψ) = −εN (ψ) (1)

where L and N are linear and nonlinear parts of the equation correspondingly and ε is
a small parameter defined explicitly by the physical problem setting. It can be shown
that in this case the solution ψ of (1) can be constructed as a combination of the
Fourier harmonics with amplitudes A depending on the time variable and possessing
two properties formulated here for the case of quadratic nonlinearity:

• P1. The amplitudes of the Fourier harmonics satisfy the following system of non-
linear ordinary differential equations (ODEs) written for simplicity in the real
form

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3 (2)

Ȧ3 = α3A1A2

with coefficients α j being functions on wavenumbers;
• P2. The dispersion function and wavenumbers satisfy the resonance conditions

{
ω(�k1) ± ω(�k2) ± ω(�k3) = 0,
�k1 ± �k2 ± �k3 = 0.

(3)

The transition from (1) to (2) can be performed by some standard methods (for
instance, multi-scale method Nayfeh 1981) which also yields the explicit form of
resonance conditions.

Keeping in the mind our main problem—to find a solution of (1)—one has to take
care of the initial and boundary conditions. This is done in the following way: the
case of periodic or zero boundary conditions yields integer wavenumbers, otherwise
they are real. Correspondingly, one has to find all integer (or real) solutions of (3),
substitute corresponding wavenumbers into the coefficients α j and then look for
the solutions of (2) with given initial conditions.
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One can see immediately a big problem which appears as soon as one has to solve
a NPDE with periodical or zero boundary conditions. Indeed, dispersion functions
take different forms, for instance,

ω2 = k3, ω2 = k3 + αk, ω2 = k, ω = α/k, ω = m/n(n + 1) · · · , etc.

with �k = (m, n), k = √
m2 + n2, and α being a constant. This means that (3)

corresponds to a system of Diophantine equations of many variables, normally 6–9,
with cumulative degrees 10–16. Those have to be solved usually for the integers of
the order ∼103, which means that computations have to be performed with integers
of order 1048 and more. Original algorithms to solve these systems of equations
have been developed based on some profound results of number theory (Kartashova
2006b) and implemented numerically Kartashova and Kartashov (2006, 2007a, b).

Further on, an evolutionary dispersive NPDE with periodic or zero boundary
conditions is called three-term mesoscopic system if it has a solution of the form

ψ̃ =
∞∑
j=1

A j exp i[�k j �x j − ωt]

and there exists at least one triple {A j1, A j2 , A j3} ∈ {A j } such that P1 and P2 keep
true with some nonzero coefficients α j , α j �= 0 ∀ j = 1, 2, 3.

3 Equations for Wave Amplitudes

3.1 Method Description

The barotropic vorticity equation describing ocean planetary waves has the form
(Kartashova and Reznik 1992)

∂
ψ

∂t
+ β

∂ψ

∂x
= −εJ (ψ,
ψ) (4)

with boundary conditions

ψ = 0 for x = 0, Lx ; y = 0, L y .

Here β is a constant called Rossby number, ε is a small parameter and the Jacobean
has the standard form

J (a, b) = ∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
. (5)
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First we give a basic introduction on how a PDE can be turned into a system of ODEs
by a multi-scale method. Using operator notation, our problem (4) is viewed as a
perturbed version of the linear PDE L(ψ) = 0. We pick a solution of this equation,
say ψ0, which is a superposition of several waves ϕ j , i.e. ψ0 = ∑s

j=1 A jϕ j , each
being a solution itself. To construct a solution of the original problem, we make the
amplitudes time-dependent. As the size of the nonlinearity in (1) is just of order ε,
the amplitudes will vary only on time-scales 1/ε times slower than the waves. Hence
we define an additional time-variable t1 := tε called “slow time” to handle this time
scale. So we look for approximate solutions of (1) that have the following form

ψ0(t, t1, �x) =
s∑

j=1

A j (t1)ϕ j (�x, t),

which for ε = 0 is an exact solution. The exact solution of the equation is written as
power series in ε aroundψ0, i.e.,ψ = ∑∞

k=0 ψkε
k . In our computation, it is truncated

up to maximal order m which in our case is m = 1, i.e.

ψ(t, t1, �x) = ψ0(t, t1, �x) + ψ1(t, t1, �x)ε.

Plugging ψ(t, t1, �x) one has to keep in mind that, since t1 = εt , we now have
d
dt = ∂

∂t + ε ∂
∂t1

due to the chain rule. Equations are formed by comparing the

coefficients of εk . For k = 0, this gives back the linear equation, but we keep the
equation for k = 1. In particular, for (4) we arrive at

∂
ψ0

∂t
+ β

∂ψ0

∂x
= 0,

∂
ψ0

∂t1
+ ∂
ψ1

∂t
+ β

∂ψ1

∂x
= −J (ψ0,
ψ0).

In order to (2), we have to get rid of all other variables. This is done by inte-
grating against the ϕ j ’s, i.e. 〈.,ϕ j 〉L2(�), and averaging over (fast) time, i.e.

limT →∞ 1
T

∫ T
0 dt .

3.2 The Implementation

This method was implemented in Mathematica with order m = 1 in mind only.
So it will not be immediately applicable to higher orders without some (minor)
adjustments. The ODEs are constructed done by the function

ODESystem[L(ψ), N(ψ), ψ,
{x1,..,xn}, t, domain, jacobian, m, s, A, linwav,
{λ1,..,λp}, paramvalues].
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Basically, this function takes the problem together with the solution of the linear
equation as input and computes the list of ODEs for the amplitudes as output. Its
arguments are in more detail:

• L(ψ), N(ψ): Linear and nonlinear part of equation (1), each applied to a sym-
bolic function parameter. Derivatives have to be specified with Dt instead of D
and the nonlinear part has to be a polynomial in the derivatives of the function.

• ψ: symbol used for function in L(ψ), N(ψ)
• {x1,...,xn }, t: list of symbols used for space-variables, and symbol for
time-variable.

• domain: The domain on which the equation is considered has to be specified
in the form {{x1,minx1,maxx1},..., {xn,minxn,maxxn}}, where the
bounds on xi may depend on x1,...,xi−1 only.

• jacobian: For integration the (determinant of the) Jacobian must also to be
passed to the function. This is needed in case the physical domain does not coincide
with the domain of the variables above; it can be set to 1 otherwise.

• m, s: maximal power of ε and number of waves considered
• A: symbol used for amplitudes
• linwav: General wave of the linear equation is assumed to have separated vari-
ables, i.e. ϕ(�x, t) = B1(x1) . . . Bn(xn) exp(iθ(x1, . . . , xn, t)), and has to be given
in the form {B1(x1),..., Bn(xn), θ(x1,...,xn,t)}.

• { λ1,...,λp}: list of symbols of parameters the functions in linwav depend
on

• paramvalues: For each of the s waves explicit values of the parameters
{λ1,…,λp} have to be passed as a list of s vectors of parameter values.

ODESystem[linearpart_,nonlinearpart_,fun_Symbol,vars_List,
t_Symbol,domain_List,jacobian_,ord_Integer,num_Integer,
A_Symbol,linwav_List,params_List,paramvalues_List] :=

Module[{B,theta,eq,k},
eq = PerturbationEqns[linearpart,nonlinearpart,

fun,vars,t,ord];
eq = PlugInGenericWaveTuple[eq,fun,vars,t,A,B,theta,num]

/. fun[1]->(0&);
eq = Table[Resonance2[eq,linwav,vars,t,params,A,B,theta,

num,paramvalues,k],
{k,num}];

Map[Integrate[Simplify[#,And@@(Function[B,B[[2]]<B[[1]]<
B[[3]]]/@domain)]*jacobian,

Sequence@@domain]&,
eq,{2}]

]

Internally this function is divided into three subroutines briefly described below.

3.2.1 Perturbation Equations, General Form

The first of the subroutines is
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PerturbationEqns[L(ψ), N(ψ), ψ, {x1,...,xn}, t, m].
Asmentioned before,we approximate the solution of our problemby a polynomial

of degree m in ε. This subroutine works for arbitrary m. In the first step, we construct
equations by coefficient comparison. Additional time-variables will be created auto-
matically and labeled t[1],...,t[m]. The output is a list of m + 1 equations
corresponding to the powers ε0, . . . , εm . The implementation is quite straightfor-
ward. First set ψ = ∑m

k=0 ψk(t, t1, . . . , tm, x1, . . . , xn)εk in (1), where tk = εk t , i.e.
d
dt = ∂

∂t +∑m
k=1 εk ∂

∂tk
. Then extract the coefficients of ε0, . . . , εm on both sides and

assemble the equations. Finally replace εk t by tk again.

PerturbationEqns[linearpart_,nonlinearpart_,fun_Symbol,
vars_List,time_Symbol,ord_Integer] :=

Module[{i,j,e,eq},
eq = ((linearpart == -e*nonlinearpart)

/. {fun->Sum[eˆi*fun[i][time,Sequence@@Table[eˆj*
time,{j,ord}],Sequence@@
DeleteCases[vars,time]],

{i,0,ord}]});
eq = (eq /. ((Dt[#, __]->0)& /@ Join[vars,{time,e}]));
eq = (Equal@@#)& /@

Transpose[Take[CoefficientList[#,e],1+ord]& /@
(List@@eq)];

eq /. Table[eˆj*time->time[j],{j,ord}]
]

3.2.2 Perturbation Equations, Given Linear Mode

In step two, we set ψ0(t, t1, �x) = ∑s
j=1 A j (t1)ϕ j (�x, t) as described above. This is

done by the function
PlugInGenericWaveTuple[eq, ψ, {x1,...,xn}, t, A, B, θ ,

s] where the first argument is the output of the previous step. The symbols B and θ
have to be passed for labeling the shape and phase functions, respectively. The output
consists of two parts. The first part of the list formulates the assumption L(ϕ j ) = 0
explicitly for each of the waves. This is not used in subsequent computations, but is
provided as a way to check the assumption. The second part of the list is the equation
corresponding to the coefficients of ε from the previous step, with ψ0 as above. As
the task of this step is so short the implementation does not need further explanation.

PlugInGenericWaveTuple[eq_List,fun_Symbol,vars_List,
t_Symbol,A_Symbol,B_Symbol,theta_Symbol,num_Integer] :=
Module[{i,j,waves,n=Length[DeleteCases[vars,t]]},
waves = Table[A[j][Slot[2]]*

Product[B[i][j][Slot[i+2]],{i,n}]*
Exp[I*theta[j][Sequence@@Table[Slot[i+2],

{i,n}],Slot[1]]],
{j,num}];

{Table[eq[[1]] /. fun[0]->Function[Evaluate[waves[[j]]]],
{j,num}],

Expand /@
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(eq[[2]] /. fun[0]->Function[Evaluate[Total[waves]]])
}]

3.2.3 Time and Scale Averaging

Step three is the most elaborate. Under the assumption that interchange of averaging
over time and inner product is justified, an integrand

h = lim
T →∞

1

T

∫ T

0
ψ0ϕk dt

is computed that when integrated over the domain yields

∫
�

h = lim
T →∞

1

T

∫ T

0
〈ψ0,ϕk〉L2(�) dt.

Resonance conditions posed on the phase functions are explicitly used by

Resonance[eq, linwav, {x1,..,xn}, t,
{λ1,..,λp}, A, B, θ, s, cond, k]

which receives the output from the previous step ineq. Herecond specifies the reso-
nance condition in terms of the θ j , which have to be entered as θ[j][x1,..,xn,t]
respectively. The last argument is the index of the wave ϕk in the integral above.
AlternativelyResonance2 uses explicit parameter settingsparamvalues for the
waves instead of cond. This has been necessary because the general Resonance
does not give useable results (see Sect. 3.3 for more details). The main work in this
step is to find out which terms do not contribute to the result. We exploit the fact
that oscillating terms vanish when averaged over time by simply omitting those sum-
mands of 〈ψ0,ϕk〉L2(�) that have a factor exp(iθ)with some time-dependent phase θ.
The code for Resonance is not shown here, but is quite similar to Resonance2.

Resonance2[eq_List,linwav_List,vars_List,t_Symbol,params_List,
A_Symbol,B_Symbol,theta_Symbol,num_Integer,
paramvalues_List,testwave_Integer] :=

Module[{e,i,j,n=Length[DeleteCases[vars,t]]},
e = Expand[(List@@Last[eq])*

Exp[-I*theta[testwave][Sequence@@
DeleteCases[vars,t],

t]]];
e = e /.

Table[
theta[j] ->
(Evaluate[(linwav[[n+1]] /.

(Rule@@#& /@
Transpose[{params,paramvalues[[j]]}]

)
) /. Append[Table[



212 E. Tobisch (Kartashova) et al.

DeleteCases[vars,t][[i]]
-> Slot[i],

{i,n}],
t -> Slot[n+1]]

]&
),

{j,num}];
e = MapAt[

(Function[theta,If[FreeQ[theta,t],theta,0]
]

[Simplify[#]]
)&,
e,
Position[e,Exp[_]]];

e = Equal@@
(e*Conjugate[A[testwave]][t[1]]*
Product[Conjugate[B[i]

[testwave]
[DeleteCases[vars,t][[i]]]

],
{i,n}]

) /.
Flatten[
Table[B[i][j] ->

Function[
Evaluate[DeleteCases[vars,t][[i]]],
Evaluate[linwav[[i]] /.

(Rule@@#& /@
Transpose[
{params,paramvalues[[j]]
}]

)]],
{i,n},{j,num}]]

]

The integration of h is done by Mathematica and can be quite time-consuming.
So ODESystem simplifies the integrand first to make integration faster. Still the
expressions involved can be quite complicated. This is the most time-consuming
part during construction of the ODEs.

3.3 Obstacles

Mathematica sometimes does not seem to take care of special cases and consequently
has problems with evaluating expressions depending on symbolic parameters. We
give two simple examples to illustrate this issue:

• Orthogonality of sine-functions.
Indeed, it holds that
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∀m, n ∈ N :
∫ 2π

0
sin(mx) sin(nx)dx = πδm,n .

Computing this in Mathematica by

Integrate[Sin[m*x]Sin[n*x], {x,0,2π},
Assumptions → m∈Integers && n∈Integers]

yields 0 independently of m, n instead.
• Computation of a limit.
Mathematica evaluates an expression

∀n ∈ Z : lim
x→n

sin(xπ)

x
= πδn,0

and similar expressions in two different ways getting two different answers. On
the one hand
Limit[Sin[(m-n)π]/(m-n), m→n,
Assumptions → m∈Integers && n∈Integers]
gives 0. On the other hand, however, when the condition m, n ∈ Z is not used for
computing, the result Mathematica yields the correct answer π, as with
Limit[Sin[(m-n)π]/(m-n), m→n].

Unfortunately, these issues prevented us from obtaining a nice formula for the coef-
ficients in symbolic form by Resonance. So we just compute results for explicit
parameter settings using Resonance2.

3.4 Results

3.4.1 Atmospheric Planetary Waves

For the validation of our program, we consider the barotropic vorticity equation on
the sphere first. Here numerical values of the coefficients αi are available (Table1,
Kartashova and L’vov 2007). The equation looks quite similar

∂
ψ

∂t
+ 2

∂ψ

∂λ
= −εJ (ψ,
ψ).

However in spherical coordinates (φ ∈ [−π
2 , π

2 ], λ ∈ [0, 2π]) the differential opera-
tors are different:


 = ∂2

∂φ2 + 1

cos(φ)2

∂2

∂λ2 − tan(φ)
∂

∂φ
,

J (a, b) = 1

cos(φ)

(
∂a

∂λ

∂b

∂φ
− ∂a

∂φ

∂b

∂λ

)
.
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The linear modes have in this case the following form (Pedlosky 1987)

Pm
n (sin(φ)) exp

(
i(mλ + 2m

n(n + 1)
t)

)
, (6)

where Pm
n (μ) are the associated Legendre polynomials of degree n and order m ≤ n,

so again they depend on the two parameters m and n. Also resonance conditions on
the parameters look different in this case.

Now we compute the coefficient α3 in (2). In Kartashova and L’vov (2007), we
find the following equation for the amplitude A3

n3(n3 + 1)
∂ A3

∂t1
(t1) = 2i Z(n2(n2 + 1) − n1(n1 + 1))A1(t1)A2(t1),

so α3 = 2i Z n2(n2+1)−n1(n1+1)
n3(n3+1) . Parameter settings and corresponding numerical

values for Z were taken from the table below (see Kartashova and L’vov 2007). For
this equation and s = 3, results produced by our program have the form c1A3 Ȧ3 =
c2A1A2A3, so α3 = c2/c1.

Testing all resonant triads from the Table1 from Kartashova and L’vov (2007),
we see that the coefficients differ merely by a constant factor of ±√

8 which is
due to the different scalings of the Legendre polynomials. In our computation, they
were normalized s.t.

∫ 1
−1 Pm

n (μ)2dμ = 1. With three triads, however, results were
completely different. Interestingly, these were exactly those triads for which no ϕ0
appears in the table.

Furthermore, for the other coefficients in (2), our program computesα1 = α2 = 0
in all tested parameter settings. This fact can be easily understood in the following
way.We checked only resonance conditions but not the conditions for the interaction
coefficients to be non-zero which are elaborated enough:

mi ≤ ni , ni �= n j ∀i = 1, 2, 3, |n1 − n2| < n3 < n1 + n2,

and

n1 + n2 + n3 is odd.

Randomly taken parameter setting does not satisfy these conditions.

3.4.2 Ocean Planetary Waves

Returning to the original example on the domain [0, Lx ] × [0, L y], we find explicit
formulae for the coefficients inKartashova andReznik (1992). According to Sect. 3.3
we can only verify special instances and not general formulae.

Linear modes have now the form (Kartashova and Reznik 1992)
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sin

(
π

mx

Lx

)
sin

(
π

ny

L y

)
exp

(
i(

β

2ω
x + ωt)

)
, (7)

with m, n ∈ N and ω = β

2π
√

( m
Lx

)2+( n
L y

)2
.

Parameter settings solving the resonance conditions were computed as in Sect. 4.
Unfortunately results do not match and we have no explanation for that. In particular
the condition α1

ω2
1

+ α2
ω2
2

+ α3
ω2
3

= 0 stated in Kartashova and Reznik (1992) does not

hold for the results of our program since we got α1 = α2 = 0 in all tested parameter
settings, just as in the spherical case.

For example, if we try the triad {{2,4},{4,2},{1,2}}where Lx = L y = 1

our programcomputesα3 = 32
√
5

11 π
(
sin(3

√
5π) − i(1 + cos(3

√
5π))

)
,whereas the

general formula yields α3 = 19+7
√
5

11 π sin(3
√
5π). However, if we use a triad with

q = 1, e.g. {{24,18},{9,12},{8,6}}, both agree on α1 = α2 = α3 = 0.

4 Resonance Conditions

The main equation to solve is

1√(
m1
Lx

)2 +
(

n1
L y

)2 + 1√(
m2
Lx

)2 +
(

n2
L y

)2 = 1√(
m3
Lx

)2 +
(

n3
L y

)2

for all possible mi , ni ∈ Z with the scales Lx and L y (also ∈ Z ) and then to check
the condition n1 ± n2 = n3. In the following argumentation, it will be seen that Lx

and L y can be assumed to be free of common factors. Below we refer to Lx and L y

as to the scale coefficients.
The first step of the algorithm implemented in Mathematica is to rewrite the

equation to 1√
m̃1

2+ñ1
2

+ 1√
m̃2

2+ñ2
2

= 1√
m̃3

2+ñ3
2
and transform it in the following

way: we factorize the result of each m̃i
2 + ñi

2 and obtain with ρ1 · · · · · ρr being the
factors of m2

i + n2
i and α1 · · · · · αr their respective powers:

m2
i + n2

i = ρα1
1 · ρα2

2 · · · · · ραr
r .

We will now define a weight γi of the wave-vector (mi , ni ) as the product of the
ρ j ’s to the quotient of their respective α j and 2. The weight qi will be the name of
the product of the ρ j ’s which have an odd exponent:

√
m2

i + n2
i = γi

√
qi .
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Our equation then can be re-written as

1

γ1
√

q1
+ 1

γ2
√

q2
= 1

γ3
√

q3

and one easily sees that the only way for the equation to possibly hold is q1 =
q2 = q3 = q (see Kartashova 2006b for details). Further we call q an index of
the corresponding wave-vectors. The set of all wave-vectors with the same index is
called a class of index q and is denoted as Clq . Obviously, the solutions of the
resonance conditions are to be searched for with separate classes only.

At this point, one can also see that only such scales, Lx and L y , without common
factors are reasonable. If they had a common factor, it would cancel out in the
equation.

4.1 Method Description

The following five steps are the main steps of the algorithm:

• Step 1: Compute the list of all possible indexes q.
To compute the list of all indexes q, we use the fact that they have to be square-
free and each factor of q has to be different from 3 mod 4 (Lagrange theorem).
There exist 57 possible indexes in our computational domains q ≤ 300 :

{1, 2, 5, 10, 13, 17, 26, 29, 34, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89,
97, 101, 106, 109, 113, 122, 130, 137, 145, 146, 149, 157, 170, 173, 178,

181, 185, 193, 194, 197, 202, 205, 218, 221, 226, 229, 233, 241, 257,

265, 269, 274, 277, 281, 290, 293, 298}

• Step 2: Solve the weight equation 1
γ1

+ 1
γ2

= 1
γ3
.

For solving the weight equation, we transform it into the equivalent form:

γ3 = γ1 γ2

γ1 + γ2
(8)

The solution triples {γ1, γ2, γ3} can now be found by the two for-loops over γ1 and
γ2 up to a certain maximum parameter and γ3 is then being founded constructively
with formula (8).

• Step 3: Compute all possible pairs (mi , ni )—if there are any—that satisfy m2
i +

n2
i = γ2

i q.
To compute our initial variables mi , ni , we use the Mathematica standard func-
tion Sum Of Square Representation [d, x] which produces a list of all possible
representations of an integer x as a sum of d squares, i.e. we can find all possible
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pairs (a, b) with d = 2 such that they satisfy a2 +b2 = x . Therefore, checking
the condition m2

i + n2
i = γ2

i q is easy.
• Step 4: Sort out the solutions {m1, n1, m2, n2, m3, n3} that do not fulfill the con-
dition n1 ± n2 = n3.

• Step 5: Check if by dividing the mi by Lx and the ni by L y there are still exist
some solutions.
Last two steps are trivial.

4.2 The Implementation

Our implementation is quite straightforward and the main program is based on four
auxiliary functions shown in the following subsections.

4.2.1 List of Indexes

The function constructqs[max] produces the list of all possible indexes q up to the
parametermax . The first (obvious) q’s sol = {1} is given and the function checks the
conditions starting with n = 2. Every time n satisfies the conditions, it is appended
to the list sol. If one condition fails, the next n = n + 1 is considered and so on until
n reaches the parameter max . Then the list sol is returned:

Clear[constructqs];

constructqs[n_, sol_List, max_]; n>max := sol (*6*)
constructqs[n_?SquareFreeQ, sol_List, max_]
:= constructqs[n+1, Append[sol, n], max] (*5*)

constructqs[n_?SquareFreeQ, sol_List, max_];
MemberQ[Mod[PrimeFactorList[n], 4], 3]
:= constructqs[n+1, sol, max] (*4*)

constructqs[n_, sol_List, max_]; !SquareFreeQ[n]
:= constructqs[n+1, sol, max] (*3*)
constructqs[1] := {1} (*2*)

constructqs[max_] := constructqs[3, {1}, max] (*1*)

4.2.2 Weight Equation

The function findγs[γmax] solves the weight equation in the following way. For a
fixed γ1 and γ2 running between 1 and γmax , it is checked if γ3 is an integer. If
it is, the triple {γ1, γ2, γ3} is added to the list sol which is empty at the initial
moment. Once γ2 reaches γmax, it is set to 1 again and the search starts again
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with γ1 = γ1 + 1. This is done as long as both γ1 and γ2 are lower than max .

Finally the list sol is returned:

findγs[γmax_, γ1_, γ2_, sol_List];

γ1 > γmax := (Clear[γ3],sol) (*6*)

findγs[γmax_, γ1_, γ2_, sol_List]; (γ1 ≤ γmax && γ2>γmax &&
IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1+1, 1, Append[sol, {γ1, γ2, γ3}]] (*5*)

findγs[γmax_, γ1_, γ2_, sol_List];
(γ1 ≤ γmax && γ2>γmax &&
!IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1 + 1, 1, sol] (*4*)

findγs[γmax_, γ1_, γ2_, sol_List];
(γ1 ≤ γmax && γ2 ≤ γmax && IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax,γ1,γ2 + 1, Append[sol, {γ1,γ2,γ3}]] (*3*)

findγs[γmax_, γ1_, γ2_, sol_List];
(γ1 ≤ γmax && γ2 ≤ γmax && !IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1, γ2 + 1, sol] (*2*)

findγs[γmax_] := findγs[γmax, 1, 1, {}]) (*1*)

For findγs[γmax] to be executable, the iteration depth of 212 is not sufficient and
it was set to ∞.

4.2.3 Linear Condition

The third auxiliary function makemns checks whether the linear condition n1 ±
n2 = n3 is fulfilled and structures the solution set into a list of pairs
{{m1, n1}, {m2, n2}, {m3, n3}} :
Clear[makemns];
makemns[m1_, n1_, m2_, n2_, m3_, n3_] := {} (*3*)
makemns[m1_, n1_, m2_, n2_, m3_, n3_];
(n1 + n2 == n3 ‖ n1 - n2 == n3) :=
{{m1, n1}, {m2, n2}, {m3, n3}} (*2*)

makemns[mn1_List, mn2_List, mn3_List] :=
Cases[Flatten[Table[makemns[mn1[[i,1]], mn1[[i,2]],

mn2[[j,1]], mn2[[j,2]], mn3[[k,1]], mn3[[k,2]]],
{i, 1, Length[mn1]}, {j, 1, Length[mn2]},
{k, 1, Length[mn3]}], 2],
{{x1_,x2_}, {x3_,x4_}, {x5_,x6_}}] (*1*)

The function makemns is called three times:
In (*1*) from three lists of arbitrarily many pairs {mi, ni}, a three-dimensional

array is made combining entries of the three lists with each other. Each entry calls
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the same program with the parameters of the current combination of {m1, n1, m2,
n2, m3, n3}.

In (*2*) and (*3*) it is decided whether the condition n1± n2 = n3 is fulfilled.
If it is, a solution {{m1, n1},{m2, n2},{m3, n3}} is written in the array. The table
is then flattened to the level 2 in order to have a list of solutions. In the end, all empty
lists have to be sorted out, done by the function Cases which keeps only those cases
that have the shape {{x1_,x2_},{x3_,x4_},{x5_,x6_}}.

4.2.4 Scale Coefficients

Finally, the function respectL[sol, Lx, Ly] divides each component of the solution
by the pair (Lx , L y) and sorts out the result if any of the six components does not
remain an integer:

respectL[sol_List, Lx_, Ly_] :=
Map[solution[#]&,

Cases[Map[#/{Lx, Ly}&,
Map[#[[1]]]&, sol], {2}], {{_Integer, _Integer},
{_Integer, _Integer}, {_Integer, _Integer}}]]

The function respectL[sol, Lx, Ly] gets as an input the list of the form {solu-
tion[{{m1,n1},{m2,n2},{m3,n3}}],...} and returns the list of the same form.

4.3 Results

All solutions in the computation domain m, n ≤ 300 have been found in a few
minutes. Notice that computations in the domain m, n ≤ 20 by direct search,
without introducing indexes q and classes Clq took about 30min. A direct search
in the domain m, n ≤ 30 has been interrupted after 2h, since no results were
produced.

The number of solutions depends drastically on the scales Lx and L y, some
data are given below (for the domain m, n ≤ 50 : )
(Lx = 1, L y = 1) : 76 solutions;
(Lx = 3, L y = 1) : 23 solutions;
(Lx = 6, L y = 16) : 2 solutions;
(Lx = 5, L y = 21) : 2 solutions;
(Lx = 11, L y = 29) : no solutions (search up to 300, for both qmax and γmax).

Interestingly enough, in all tried possibilities, only an odd q yield solutions.
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5 Structure of the Solution Set

5.1 Method Description

The graphical way to present 2D-wave resonances suggested in Kartashova (1998)
for three-wave interactions is to regard each 2D-vector �k = (m, n) as a node (m, n)

of integer lattice in the spectral space and connect those nodes which construct one
solution (triad, quartet, etc.). Having computed already all the solutions of (3) in
Sect. 4, now we are interested in the structure of resonances in spectral space. To
each node (m, n) we can prescribe an amplitude A(m, n, t1) whose time evolution
can be computed from the dynamical equations obtained in Sect. 3. Thus, solution
set of resonance conditions (3) can be thought of as a collection of triangles, some
of them are isolated, some form small groups connected by one or two vertices.
Corresponding dynamical systems can be re-constructed from the structure of these
groups. For instance, a single isolated triangle corresponding to a solution with wave
vectors (m1, n1)(m2, n2)(m3, n3) and wave amplitudes {(A1, A2, A3)} corresponds
to the following dynamical system:

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3

Ȧ3 = α3A1A2

with αi being functions of all mi , ni (see Sect. 3).
If that two triangles share one common vertex {(A1, A2, A3), (A3, A4, A5)}, the

corresponding dynamical system is

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3

Ȧ3 = α3,1A1A2 + α3,2A4A5

Ȧ4 = α4A3A5

Ȧ5 = α5A3A4

If two triangles have two vertices in common {(A1, A2, A3), (A2, A3, A4)}, then
the dynamical system is quite different:

Ȧ1 = α1A2A3

Ȧ2 = α2,1A1A3 + α2,2A3A4

Ȧ3 = α3,1A1A2 + α3,2A2A4

Ȧ4 = α4A2A3 = α4

α1
Ȧ1

Using the fourth equation, the formulae for Ȧ2 and Ȧ3 can be simplified to
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Ȧ4 = α4

α1
Ȧ1 ⇒ A4 = α4

α1
A1 + β1

Ȧ2 = A1A3

(
α2,1 + α2,2α4

α1

)
+ α4β1

α1

Ȧ3 = A1A2

(
α3,1 + α3,2α4

α1

)
+ α4β1

α1
.

This means that qualitative dynamics of the three-term mesoscopic system
depends not on the geometrical structure of the solution set but on its topologi-
cal structure. Constructing the topological structure of the solution set, we do not
consider concrete values of the solution but only the way how triangles are con-
nected. In any finite spectral domain, we can compute all independent wave clusters
and write out corresponding dynamical systems thus obtaining complete information
about energy transfer through the spectrum. Of course, quantitative properties of the
dynamical systems depend on the specific values of mi , ni (for instance, values of
interaction coefficients αi , magnitudes of periods of the energy exchange among
the waves belonging to one cluster, etc.).

5.2 Implementation

To construct the topological structure of a given solution set we need first to find all
groups of connected triangles. This is done by the following procedure:

FindConnectedGroups[triangles_List] :=
Block[{groups = {}, tr = triangles, newgroup},
While[Length[tr] > 0,
{newgroup, tr} =

FindConnectedTriangles[{First[tr]}, Rest[tr]];
groups = Append[groups, newgroup];

];
groups

];

FindConnectedTriangles[grp_List,triangles_List]:=
Module[{points,newGrpMember,tr=triangles},
points=Flatten[Apply[List,grp,2],1];
newGrpMember=Cases[tr, _[___,#1,___]]&/@points;
(tr=DeleteCases[tr, _[___,#1,___]])&/@points;
newGrpMember=Union[Join@@newGrpMember];
If[Length[newGrpMember]==0,
{grp,tr},
newGrpMember=FindConnectedTriangles[newGrpMember,tr];
{Join[grp,First[newGrpMember]],
newGrpMember[[2]]}

]
];
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The function FindConnectedGroups expects a list of triangles as input, and
three different types for data structure can be used. The first type is just a list
of three pairs, where each pair contains the coordinates of a node, for example
{{1,2},{3,4},{5,6}}. An alternative type is like the type before just with another
head symbol instead of list, e.g. Triangle[{1,2},{3,4},{5,6}].

The function also works for vertex numbers instead of coordinates, e.g.
Triangle[1, 2, 3]. In every case, the function returns a partition of the input list
where all elements of a list are connected and elements of different lists have no
connection to each other.

The function FindConnectedTriangles is an auxiliary function which has two
parameters. The first list contains allconnected triangles. The second list contains all
other triangles which are possibly connected to one of the triangles in the first list.
The function FindConnectedTriangles returns a pair of lists: the first list contains
all triangles which are connected to the selected triangles, the second list contains
all remaining.

The input list for FindConnectedTriangles is a list of 3-element lists. Before we
can use the results produced in Sect. 4 as an input we have to transform the data. This
can be easily done by

TransformSolution[sol_List]:=
Flatten[Rest/@sol]/.solution[trs:{___List}]->trs;

Some remarks on the implementation
The function FindConnectedGroups selects a triangle, which is not yet in a group
and calls the function FindConnectedTriangles. Since the returned first list always
contains at least one triangle, the length of the list tr decreases in every loop call,
hence the FindConnectedGroups terminates. The question left is how to find all
triangles connected with a certain triangle. This has been done in the following way.
First we search for all triangles which share at least one node with this triangle. Then
we restart the search with all triangles found. For efficiency reasons, it is better to
perform the search with all triangles we found in one step together. If in one step no
further triangles are found then we are ready and return the list of connected triangles
and the remaining list. In each step, we remove all triangles we found from the list of
triangles which are not declared as connected. This increases the speed because the
search is faster if there are less elements to compare. More importantly, this prevents
us to search in loops and finds some triangles more than once. In general, search in
a loop can be the reason for a termination problem but due to shrinking the list of
triangles to search for in every step the termination can be guaranteed.

5.3 Results

In Fig. 1 the geometrical structure of the solution set is shown, for the case mi , ni ≤
50 and Lx = L y = 1.

Below we show all the topological elements of this solution set.
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Fig. 1 The geometrical structure of the result in domain D = 50

1. Twenty-one groups contain only one triangle (obviously, they have isomorphic
dynamical systems):

{{3, 18}, {36, 6}, {2, 12}} {{4, 46}, {14, 44}, {23, 2}}
{{6, 44}, {36, 26}, {13, 18}} {{6, 48}, {42, 24}, {3, 24}}
{{8, 26}, {16, 22}, {13, 4}} {{9, 24}, {48, 18}, {16, 6}}
{{14, 28}, {28, 14}, {7, 14}} {{18, 36}, {36, 18}, {9, 18}}
{{22, 16}, {26, 8}, {11, 8}} {{22, 20}, {28, 10}, {11, 10}}
{{22, 44}, {44, 22}, {11, 22}} {{22, 48}, {42, 32}, {21, 16}}
{{24, 18}, {9, 12}, {8, 6}} {{26, 28}, {28, 26}, {19, 2}}
{{28, 42}, {42, 28}, {21, 14}} {{28, 46}, {50, 20}, {7, 26}}
{{36, 22}, {42, 4}, {11, 18}} {{36, 30}, {15, 18}, {10, 12}}
{{38, 24}, {42, 16}, {21, 8}} {{44, 18}, {46, 12}, {23, 6}}
{{48, 36}, {18, 24}, {16, 12}}

2. Further nine groups contain also one triangle, but in each triangle two points
coincide (again, they have isomorphic dynamical systems):

{{8, 2}, {8, 2}, {1, 4}} {{16, 2}, {16, 2}, {7, 4}}
{{16, 4}, {16, 4}, {2, 8}} {{24, 6}, {24, 6}, {3, 12}}
{{32, 8}, {32, 8}, {4, 16}} {{34, 8}, {34, 8}, {7, 16}}
{{46, 8}, {46, 8}, {17, 16}} {{48, 6}, {48, 6}, {21, 12}}
{{48, 12}, {48, 12}, {6, 24}}

3. There exist two groups with two triangles each (by observation of the geomet-
rical pictures it is easy to determine that both have isomorphic dynamical systems):
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{ {{2, 24}, {18, 16}, {9, 8}}, {{4, 48}, {36, 32}, {18, 16}} }
{ {{12, 26}, {26, 12}, {3, 14}}, {{26, 12}, {28, 6}, {13, 6}} }

4. Two further groups consist of two triangles each, but the common point is
contained twice in one triangle (the dynamical systems are isomorphic, but different
from the two groups above):

{ {{24, 22}, {32, 6}, {3, 16}}, {{32, 6}, {32, 6}, {11, 12}} }
{ {{8, 38}, {32, 22}, {11, 16}}, {{38, 8}, {38, 8}, {11, 16}} }

5. As we can see by inspecting their geometrical structures, further seven groups
are not isomorphic to any group found above:

{ {{6, 12}, {12, 6}, {3, 6}}, {{12, 24}, {24, 12}, {6, 12}},
{{24, 48}, {48, 24}, {12, 24}} }

{ {{2, 16}, {14, 8}, {1, 8}}, {{4, 32}, {28, 16}, {2, 16}},
{{32, 4}, {32, 4}, {14, 8}} }

{ {{2, 4}, {4, 2}, {1, 2}}, {{4, 8}, {8, 4}, {2, 4}},
{{8, 16}, {16, 8}, {4, 8}}, {{16, 32}, {32, 16}, {8, 16}} }

{ {{4, 22}, {10, 20}, {11, 2}}, {{8, 44}, {20, 40}, {22, 4}},
{{10, 20}, {20, 10}, {5, 10}}, {{20, 40}, {40, 20}, {10, 20}} }

{ {{10, 40}, {26, 32}, {19, 8}}, {{26, 32}, {38, 16}, {13, 16}},
{{32, 26}, {40, 10}, {13, 16}}, {{40, 10}, {40, 10}, {5, 20}} }

{ {{4, 18}, {14, 12}, {7, 6}}, {{8, 36}, {28, 24}, {14, 12}},
{{12, 14}, {14, 12}, {9, 2}}, {{24, 28}, {28, 24}, {18, 4}},
{{36, 42}, {42, 36}, {27, 6}}, {{42, 36}, {21, 18}, {4, 18}} }

{ {{2, 36}, {20, 30}, {17, 6}}, {{4, 6}, {6, 4}, {3, 2}},
{{8, 12}, {12, 8}, {6, 4}}, {{12, 18}, {18, 12}, {9, 6}},
{{16, 24}, {24, 16}, {12, 8}}, {{18, 12}, {9, 6}, {4, 6}},
{{20, 30}, {30, 20}, {15, 10}}, {{20, 30}, {34, 12}, {1, 18}},
{{24, 36}, {36, 24}, {18, 12}}, {{30, 20}, {36, 2}, {1, 18}},
{{32, 48}, {48, 32}, {24, 16}}, {{34, 12}, {36, 2}, {15, 10}},
{{36, 24}, {18, 12}, {8, 12}}, {{45, 30}, {34, 12}, {12, 18}} }

Geometrical interpretation of all topological elements is given below. In cases
when there exist more than one element with given structure, wavenumbers are
written at the picture corresponding to the element chosen for presentation.
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5.4 Important Remark

Computing all non-isomorphic sub-graphs algorithmically is a nontrivial problem.
Indeed, all isomorphic graphs presented in previous section are described by similar
dynamical systems, only magnitudes of interaction coefficients αi vary. However, in
the general case graph structure thus defined does not present the dynamical system
unambiguously. Consider Fig. 2 below where two objects are isomorphic as graphs.
However, the first object represents four connected triads with dynamical system

(A1, A2, A3), (A1, A2, A5), (A1, A3, A4), (A2, A3, A6) (9)
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A1 A2

A3A4

A5

A6

A1 A2

A3A4 A6

A5

Fig. 2 Example of isomorphic graphs and non-isomorphic dynamical systems. The left graph
corresponds to the dynamical system (9) and the graph on the right—to the dynamical system (10).
To discern between these two cases, we set a placeholder inside the triangle not representing a
resonance

while the second—three connected triads with dynamical system

(A1, A2, A5), (A1, A3, A4), (A2, A3, A6). (10)

This problem has been solved inKartashova andMayrhofer (2007) by introducing
hyper-graphs of a special structure; the standard graph isomorphism algorithm used
by Mathematica has been modified in order to suit hyper-graphs.

6 A Web Interface to the Software

The previous sections have presented implementations of various symbolic computa-
tion methods for the analysis of nonlinear wave resonances. These implementations
are written in the language of the computer algebra system Mathematica which pro-
vides an appealing graphical user interface (GUI) for executing computations and
presenting the results. For instance, the pictures shown in Sect. 4.3 were produced
by converting the computed hyper-graphs to Mathematica plot structures that can be
displayed by the GUI of the system.

However, to run these methods, the user needs an installation of Mathematica
on the local computer with the previously described methods installed in a local
directory. These requirements make access to the software difficult and hamper its
wide-spread usage. In order to overcome this problem, we have implemented a Web
interface such that the software can be executed from any computer connected to the
Internet via a Web browser without the need for a local installation of mathematical
software.

This implementation follows a general trend in computer science which turns
away from stand alone software (that is installed on local computers and can be only
executed on these computers via a graphical user interface) and proceeds towards
service-oriented software (Gold et al. 2004) (that is installed on remove server com-
puters and wraps each method into a service that can be invoked over the Internet
via standardized Web interfaces). Various projects in computer mathematics have
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pursued middleware for mathematical web services, see for instance MathBroker
(2007), MONET (2004), Baraka and Schreiner (2006). On the long term, it is thus
envisioned that mathematical methods generally become remote services that can be
invoked by humans (or other software) without requiring local software installations.

However, even without sophisticated middleware, it is nowadays relatively sim-
ple to provide (for restricted application scenarios) web interfaces to mathematical
software by generally available technologies. The web interface presented in the
following sections is deliberately kept as simple as possible and makes only use
of such technologies; thus it should be easy to take this solution as a blueprint for
other mathematical software with similar features. In particular, the web interface is
quite independent of Mathematica as the system underlying the implementation of
the mathematical methods; the same strategy can be applied to other mathematical
software systems such as Maple, MATLAB, etc.

6.1 The Interface

Figure3 shows the web interface to some of the methods presented in the previous
sections. Its functionality is as follows:

Fig. 3 Web interface to the implementation



228 E. Tobisch (Kartashova) et al.

Create Solution Set: The user may enter a parameter D in the first (small) text
field and then press the button “Create Solution Set.” This invokes the method
CreateSolutionSet which computes the set of all solutions whose values
are smaller than or equal to D. This set is written into the second (large) text field
in the form

{Solution[x1,y1,z1],...,Solution[xn ,yn ,zn]}.

Plot Topology: The user may enter into the second (large) text field a specific
solution set (or, as show above, compute one), and then press the button “Plot
Topology.” This first invokes the method Topology which computes the topo-
logical structure of the solution set as a list of hyper-graphs and then calls the
method PlotTopologywhich computes a plot of each hyper-graph. The results
are displayed in the right frame of the browser window.

The web interface is available at the URL

http://www.risc.uni-linz.ac.at/projects/alisa
(Button “Discrete Wave Turbulence”)

To run the computations, an account and a password are needed.

6.2 The Implementation

Theweb interface is implemented inPHP, a scripting language for producingdynamic
web pages (The PHP Group 2007). PHP scripts can be embedded into conventional
HTML pages within tags of form <php?...?>; when aWeb browser requests such
a page, theWeb server executes the scripts with the help of an embedded PHP engine,
replaces the tags by the generated output, and returns the resulting HTML page to the
browser. With the use of PHP, thus programs can be implemented that run on a web
server and deliver their results to a client computer which displays them in a web
browser. The web interface to the discrete wave turbulence package is implemented
in PHP as sketched in Fig. 4 and described below (the parenthesized numbers in the
text refer to the corresponding numbers in the figure).

Create Solution Set: The browser frame input on the left side contains essentially
the following HTML input form:

<form target="textarea"
action="https://apache2.../CreateSolutionSet.php"
method="post">

<input name="domain" size="3">
<input type="submit" value="Create Solution Set">

</form>

This form consists of an input fielddomain to receive a domain value and a button
to trigger the creation of the solution set. When the button is pressed, (1) a request
is sent to the web server which carries the value of domain; this request asks the
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resultinput
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resultinput
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(1)

S
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(3) Export["image-1.png",...]

(4)

<html><img src="image-1.png">...

(6) GET image-1.png

N

(5)

Fig. 4 Implementation of the web interface

server to deliver the PHP-enhanced web page CreateSolutionSet.php into
the target frame textarea which is displayed internally to input.

The file CreateSolutionSet.php has essentially the content

<?php
$math="/.../math";
$cwd="/.../DiscreteWaveTurbulence";
$domain = $_POST[’domain’];
$mcmd =

"SetDirectory[\"". $cwd ."\"];" .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"];" .
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"sol=DiscreteWaveTurbulence‘SolutionSet‘CreateSolutionSet[" .
$domain . "];";

$command="$math -noprompt -run’" . $mcmd .
"Print[StandardForm[sol]]; Quit[];’";

$result = shell_exec("$command");
echo

...
"<textarea name=\"sol\"cols=\"60\"rows=\"20\">" .
htmlspecialchars($result) .
"</textarea>" .

...;
?>

After setting the paths $math of the Mathematica binary and $cwd of the direc-
tory where the DiscreteWaveTurbulence package is installed, the script sets
the local variable $domain to the value of the input field domain. Then the Math-
ematica command $mcmd is constructed in order to load the file SolutionSet.m
and execute the command CreateSolutionSet to compute the solution set.
Now the system command $command is constructed to (2) invoke Mathematica
which calls the previously constructed command and (3) prints its result to the stan-
dard output stream which is captured in the variable $result. From this, the script
constructs the HTML code of the result document which is (4) delivered to the Web
browser.

Plot Topology: The browser frame textarea contains essentially the following
HTML input form:

<form target="result"
action="https://apache2..../PlotTopology.php"
method="post">

<textarea name="sol" cols="60" rows="20">...</textarea>
<input type="submit" value="Plot Topology">
</center>

</form>

This form consists of the textarea field sol to receive the solution set and a button
to trigger the plotting of the topology of this set. When the button is pressed, (1) a
request is sent to the web server which carries the value of sol; this request asks
the server to deliver the PHP-enhanced web page PlotTopology.php into the
target frame result on the right side of the browser.

The file CreateSolutionSet.php has essentially the content

<?php
$math="/.../math";
$basedir ="/.../DiscreteWaveTurbulence";
$baseurl ="http://apache2/.../DiscreteWaveTurbulence";
$sol = $_POST[’sol’];
... // create under $basedir a unique subdirectory $dir
$mcmd =

"SetDirectory[\"$basedir/$dir\"];" .
"Needs[\"DiscreteWaveTurbulence‘Topology‘\"];" .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"];" .
"top=DiscreteWaveTurbulence‘Topology‘Topology[$sol];" .
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"plots=DiscreteWaveTurbulence‘Topology‘PlotTopology1[top];";
$command="/usr/bin/Xvnc :20 & export DISPLAY=:20;" .

"export MATHEMATICA_USERBASE=$basedir/.Mathematica;" .
"$math -run’" . $mcmd .
"Print[ExportList[plots,\"$image\"]]; Quit[];’";

$result = shell_exec("$command | tail -n 1");
for ($i=0;$i<$result;$i++)

echo "<img src=\"$baseurl/$dir/image-$i.png\"/>";
?>

For holding the images to be generated later, the script creates a unique directory
$basedir/$dir which is served by the web server under the url $baseurl/
$dir. The script extracts the solution set $sol from the request and sets up the
Mathematica command to compute its topological structure and generate the plots
from which ultimately the image files will be produced.

For this purpose, however, Mathematica needs an X11 display server running;
since a Web server has not access to an X11 server, we start the virtual X11
server Xvnc (RealVNC Remote Control Software 2007) as a replacement and set
the environment variable DISPLAY to the display number on which the number
listens; Mathematica will subsequently send X11 requests to that display which
will be handled by the virtual server. Likewise, Mathematica needs access to a
.Mathematica configuration directory; the script sets the environment variable
MATHEMATICA_USERBASE correspondingly.

With these provisions, we can (2) invoke first the command to compute the plots
and then the (self-defined) command ExportList to generate for every plot an
image in the previously created directory. For this purpose, the command uses (3) the
Mathematica command EXPORT[file,plot,"PNG"]which converts plot to an
image in PNG format and writes the image to file. ExportList returns the number
of images generated which is (4) written to the standard output stream which in turn
is captured in the variable $result. From this information, the script generates
an HTML document which contains a sequence of img elements referencing these
images. After this document has been (5) returned to the client browser, the browser
(6) requests the referenced images with GET messages from the web server.

6.3 Extensions

As an alternative to the display of static images, the Web interface also provides an
option “Applet Viewer” with somewhat more flexibility. If this option is selected,
Mathematica is instructed to save all generated plots as files in the standard repre-
sentation. The generated HTML document then embeds (rather than img elements)
a sequence of applet elements that load instances of the “JavaView” applet (The
JavaView Project 2007). These applets run in the Java Virtual Machine of the Web
browser on the client computer, load the plot files from the web, and visualize them
in the browser. Rather than just displaying static images, the viewer allows to per-
form certain manipulations and transformations of the plots such as scaling, rotating,
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etc. While this additional flexibility is not of particular importance for the presented
methods, they may in the future become useful for others.

To limit access to the software respectively to the computing power of the server
computer, it may be protected by authentication mechanisms. For example, on the
Apache Web server, it suffices to provide in the installation directory of the software
a file .htaccess with content

<Files"*.php">
SSLRequireSSL
AuthName "your account"
AuthType Basic
Require valid-user

</Files>

With this configuration, the user is asked for the data of a valid account on the
computer running the Web server; other authentication mechanisms based e.g. on
password files may be provided in a similar fashion.

7 Discussion

Summing up all the results obtained, we would like to make some concluding
remarks.

• In general, coefficients αi can be computed symbolically by hand and only numer-
ically byMathematica (see Sect. 3.3); at present we are not aware of the possibility
to overcome this problem.

• For the known case of spherical barotropic vorticity equation, values of coefficients
αi coincidewith known form the literature for all triads but three. These thee triads,
though satisfying resonant conditions, are known to be special from the physical
point of view in the following sense (see Kartashova and L’vov 2007 for details).
Although resonance conditions are fulfilled for the waves of these triads, they, so
to say, do not have a place in the physical space to interact and their influence
(if any) on the dynamics of the wave system has to be studied separately from
all other waves. Our results might indicate that also the coefficients αi of these
triads have to be defined in some other way compare to other resonant triads. For
instance, another way of space-averaging has to be chosen.

• The results of Sect. 3.4.2 show that analytical formulae given in Kartashova and
Reznik (1992) for α j are not correct.

• The results of Sect. 4.3 show a crucial dependence of the number of solutions on
the form of the boundary conditions. In particular, some boundary conditions (for
example, (Lx , L y) = (11, 29)) yield no solutions which is of most importance
for physical applications. From the mathematical point of view, an interesting
result has been observed: in all our computations (i.e. for m, n ≤ 300) indexes
corresponding to non-empty classes turned out to be odd. It would be interesting to
prove this fact analytically because if it keeps true,we can reduce the computational
time.
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• The algorithm presented in Sect. 4 has been implemented before numerically in
Visual Basic, and our purpose here was to show that it works fast enough also in
Mathematica. The algorithms presented in Sects. 3 and 5 have never been imple-
mented before, the whole work is usually done by hand and some mistakes as
in Kartashova and Reznik (1992) are almost unavoidable: it takes sometimes a
few weeks of skillful researchers to compute interaction coefficients of dynamical
systems for one specific wave system.

• All the algorithms presented above can easily be modified for the case of a four-
termmesoscopic system. The only problem left is a procedure to establish all non-
isomorphic topological elements for a quadruple graphs, similar to the procedure
given in Kartashova and Mayrhofer (2007) for a triangle graphs. The structure of
quadruple graphs is much more complicated while some mechanisms of energy
transfer in the spectral space do exist (Kartashova 2007) that are absent in three-
term mesoscopic systems. A complete classification of quadruple graphs is still
an open question but in a given spectral domain it can be done directly (a very
time-consuming operation).

• We have developed a Web interface for the presented methods, which turns the
implementations from only locally available software to Web-based services that
can be accessed from any computer in the Internet that is equipped with a Web
browser. The presented implementation strategy is simple and based on generally
available technologies; it can be applied as a blueprint for a large variety of mathe-
matical softwares. In particular, the results are not bound to the current Mathemat-
ica implementation but can be adapted to any other computer algebra system (e.g.
Maple) or numerical software system (e.g. MATLAB) of similar expressiveness.

• At present, an explicit form of eigen-modes (6), (7) is used as one of the input
parameters for our program package. Theoretically, at least for some classes of
linear partial differential operators and boundary conditions, computing eigen-
modes can also be performed symbolically basing on the results in Rosenkranz
(2005). If this were done, not an eigen-mode but boundary conditions would play
role of input parameter.
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