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Series Preface 

When C. S. Clay and H. Medwin published their first book, Acoustical 

Oceanography, twenty years ago, who could have predicted that it would have 

eleven printings and be translated into Russian? Who could have predicted that 

it would be used both as a text for college-level courses and as a handbook for 

practicing scientists and engineers throughout the world? However, much can 

happen in twenty years, and no matter how valuable their first book became to 

the acoustical oceanography community, books and their content eventually 

become less useful. 

The unqualified success of their first book, the new and exciting material that 

has evolved over the past twenty years, and the new generation of scientists and 

engineers demanded that a second book be written. This is Medwin and Clay's 

response to that demand. Once again they have brought their knowledge, 

experience, and insight to the acoustical oceanography community. Further, they 

have provided an extensive bibliography for those researchers who need to reach 

deeper and broader into the material covered by the authors. In the opinion of the 

Editors, Medwin and Clay have written another classic. 

The Editors and Publisher are very proud that Medwin and Clay brought their 

second book, Fundamentals of Acoustical Oceanography, to Academic Press. It 

is also the second book published in the series, "Modem Applications of 

Acoustics." 

Richard Stern 

Moises Levy 

xvii 



Author Preface 

This book has been written to encourage a new generation of scientists, 

engineers, and entrepreneurs to break the constraints of traditional disciplines 

and to apply the modem methods of acoustical physics to probe the mysterious 

sea. In order to assist the reader, we have included a large number of references 

that are of either historical or immediate importance. The inspired reader will 

keep up to date in applied ocean acoustics by referring to the most prominent, 

appropriate technical periodicals such as The Journal of the Acoustical Society 

of America and The Journal of Geophysical Research." Oceans and 

Atmospheres. 

We are both applied physicists---one originally a physical acoustician, the 

other a geophysicist. We use the tools of applied mathematics, physical acoustics, 

noise control, seismology, signal theory, and wave propagation to learn about the 

sea. The reader will find on these pages various techniques to solve the direct 

problem--that is, to predict the propagation of sound from an essential 

knowledge of the physical and biological characteristics along the ocean 

propagation path. He or she will also find examples of inverse problem solutions, 

in which the vagaries of underwater sound propagation are used to measure the 

physical and biological characteristics of the sea and its boundaries. Our methods 

include laboratory scale models of ocean-acoustic environments as well as 

experiments at sea, and solutions based on theoretical analysis and numerical 

simulations. 

When we published our first book (C. S. Clay and H. Medwin, Acoustical 

Oceanography, 1977), the broad application of acoustics to learn about the 

sea and its boundaries had barely been defined. Now, two decades later, this 

exciting field is expanding in several directions. A broad range of imaginative 

. , o o  
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Author Preface xix 

specialists have used the methods of underwater acoustics to open new areas of 

ocean engineering, oceanography, marine biology, and even, unexpectedly, 

meteorology. 

Following a brief survey of recent successes in acoustical oceanography 

(Chapter 1), we explain the principles of underwater sound propagation (Chapters 

2-6). We then describe how both actively probing sonars and passively listening 

hydrophones can reveal what the eye cannot see over vast ranges of the turbid 

ocean. The goal is to use acoustical remote sensing, variations in sound 

transmission, in-situ acoustical measurements, computer models, or laboratory 

models to identify the physical and biological parameters and processes in the sea 

(Chapters 7-14). 

For the reader's convenience, we give brief derivations, summaries, and 

formulas in several sections and subsections that are marked with an asterisk (*). 

We will use material given there, but readers may wish to skip those entire 

sections or omit some of the details. 

Both of us have contributed to each of the chapters; however, the principal 

author of Chapters 1, 2, 4, 5, 8, 12, and 13 was H. Medwin, and that of Chapters 3, 

6, 7, 9, 10, 11, 14 was C. S. Clay. We invite you to direct comments and questions 

to the principal authors: Herman Medwin, Physics Department, Naval 

Postgraduate School, Monterey, California; Clarence S. Clay, Department of 

Geology and Geophysics, University of Wisconsin, Madison, Wisconsin. 
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1.1 Introduction 

This chapter is the reader's gateway to a young science. Throughout the book, 

wherever we can, we perform the trick of Janus, the mythological Roman God, 

who simultaneously faces in opposite directions. One view, called "the forward 

problem of ocean acoustics," is in the traditional direction where the knowledge 

of ocean parameters allows one to predict the propagation of sound. The opposite 

view, called "the inverse problem," uses the distinctive details of the 

propagation at a time and place to deduce the parameters and processes of the 

particular ocean through which the sound has traveled. We call this inverse 

view "acoustical oceanography." We encourage our readers to look in both 

directions. 

1.1.1 D E F I N I T I O N  

Acoustical oceanography is the active or passive use of sound to study physical 

parameters and processes, as well as biological species and behaviors, at sea. In 

some cases a specifically designed sound source is used to learn about the ocean 

and its boundaries. In other research, a natural sound in the sea is analyzed to 

reveal the physical or biological characteristics of the sound source. 

Let us now sample some of the successes of acoustical oceanography: studies 

of global warming by tomography; images of the ocean bottom, a sunken ship 

and underwater smokers, measurements of bubble clouds, plumes, and 

circulations; rainfall at sea and gas interchange in breaking waves; and whale 
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tracking. In the following chapters, we will develop the fundamentals of ocean 

acoustics that can be applied to explore the undersea world. 

1.2 Physical and Biological Characteristics of the Sea 

Light, radar, microwaves, and other electromagnetic waves attenuate very rapidly 

and do not propagate any significant distance through salt water. Because sound 

suffers very much less attenuation than electromagnetics, it has become the 

preeminent tool for sensing, identifying, and communicating under the ocean 

surface. And yet, for decades, inadequate oceanographic information about the 

extraordinary spatial and temporal variability of this medium has hindered 

underwater acousticians in their desire to predict sound propagation. It was 

necessary to learn more about those ocean characteristics that the traditional 

oceanographic instruments measure rather crudely, with great difficulty, and at 

great expense. 

} 

Figure 1.2.1 Spatial and temporal scales of physical and biological parameters and 
processes in the sea. (T. D. Dickey, "Technology and related developments for 
interdisciplinary global studies," Sea Technology, pp. 47-53, August 1993). 
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Figure 1.2.2 Marine biological pyramid with diameter (1) of equivalent spherical 
volume of the plants or animals. (Clay and Medwin, Acoustical Oceanography, Wiley; 
New York [1977].) 

Acoustical oceanographers invert the problem; they use the complex nature of 

sound propagation to learn about the ocean. The many successes of this young 

science range from the identification and counting of physical and biological 

inhomogeneities such as microbubbles, fragile zooplankton, fish, and 

mammals to the remote measurement of distant rainfall and sea surface 

roughness, deep sea mountains, rocks, consolidated and suspended sediments, as 

well as the shape and strength of internal waves, ocean frontal systems, and 

immense churning ocean eddies, hundreds of kilometers in extent. Fig. 1.2.1 

shows typical sizes and time scales of ocean patches, waves, and other physical 

and biological features (Dickey 1993). Fig. 1.2.2 is a marine biological pyramid 

that reveals the immense size range of life at sea. All of these unknowns can be 

measured by the techniques of acoustical oceanography. 
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1.3 Ocean Stratification, Sound Speed, and Ray Refraction 

In retrospect, acoustical oceanography started in 1912, when the steamship 

Titanic struck an iceberg. The subsequent loss of hundreds of lives triggered 

man's use of sound to sense scatterers in the sea. Within a month, two patent 

applications were  flied by L. R. Richardson in the United Kingdom for 

"detecting the presence of large objects under water by means of the echo of 

compressional w a v e s . . ,  directed in a b e a m . . ,  by a projector." The basic idea 

was that a precise knowledge of the speed of sound in water, and the time of 

travel of the sound, permits the calculation of the distance to the scatterer. By 

1935 acoustical sounding was used to determine the ocean depth as well as to 

hunt for fish schools. Much more recently it has been realized that the physical 

and spatial character of the scatterers can be inferred from the statistical 

characteristics of the scattered sound and that high-resolution images can be 

obtained at large range in optically opaque, turbid water. 

Knowing the sound speed in water is critical to many of the applications of 

acoustical oceanography. The earliest measurement was by Colladon and Sturm 

(1827) in Lake Geneva, Switzerland. (See Fig. 1.3.1.) A value of 1435 m/s was 

found, but it was soon realized that the speed in saline water is somewhat greater 

than this, and that in general the temperature of the water is an even more 

important parameter. 

Numerous laboratory and field measurements have now shown that the sound 

speed increases in a complicated way with increasing temperature, hydrostatic 

pressure, and the amount of dissolved salts in the water. A simplified formula for 

the speed in m/s, accurate to 0.1 m/s but good only to 1 kilometer depth, was 

given by Medwin (1975): 

c = 1449.2 + 4.6T - 0.055T 2 + 0.00029T 3 

+ ( 1 . 3 4 -  0 .010T) (S -  3 5 ) +  0.016z (1.3.1) 

In the above, temperature T is in degrees centigrade, salinity S is parts per 

thousand of dissolved weight of salts, and the depth z is in meters. A better, but 

more complicated, empirical expression is in Chapter 3. The best (and most 

carefully constructed) equations in this vital research area involve a large number 

of terms with a large number of significant figures in each coefficient. Such 

formulas can be found in recent articles in The Journal of the Acoustical Society 

of America. 

Portable sound "velocimeters" are now available with an accuracy of 0.1 m/s 

in nonbubbly sea water. The effect of salinity is quite small except near estuaries 

or in polar regions where fresh water enters the sea. But microbubbles have a very 
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Figure 1.3.1 Colladon and Sturm's apparatus for measuring the speed of sound in water. 

A bell suspended from a boat was struck under water by means of a lever m, which at the 

same moment caused the candle 1 to ignite powder p and set off a flash of light. An 

observer in a second boat used a listening tube to measure the time elapsed between the 

flash of light and the sound of the bell. The excellent results were published in both the 

French and German technical literature. (Annales de Chimie et de la Physique 36, [2], 236 
[1827] and Poggendorff's Annalen der Physik und Chemie 12, 171 [1828]). 

large effect on the speed of propagation near the ocean surface; frequency- 

dependent  sound speed deviations of tens of meters per second are common  in the 

upper ocean. 

An observation that has important acoustical implications is that the water 

density, temperature, salinity, and the speed of sound are horizontally stratified 

over most  of the world 's  oceans. A sound speed profile for the Atlantic Ocean is 

shown in Fig. 1.3.2. As shown, the depth of the min imum varies from near the 

surface for polar regions, to about 1800 m in mid-latitudes. 
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Figure 1.3.2 North-south section of iso-speeds of sound, and the sound channel 
minimum (speed indicated by dashed line) depths in the North and South Atlantic along 
the 30.500 W meridian. Speeds are in m/sec. Data positions are indicated by dots at the 
surface. (J. Northrup and J. G. Colborn, "Sofar channel axial sound speed and depth in the 
Atlantic Ocean," J. Geophys. Res. 79, 5633-41 [1974].) 

The significance of this stratification is that if temperature decreases with 

increasing depth- - tha t  is, if there is a "thermocline" m the speed will also tend 

to decrease. Sound rays in such a speed gradient will bend (refract) downward, 

just as light passing through a prism. On the other hand, where the temperature is 

constant, sound rays will bend upward, because the speed increases with 

increasing depth. 

The combination of a thermocline overlying isothermal water and the pressure 

effect causes sound rays to bend downward, then upward, then downward and so 

forth, as they pass through the axis of minimum speed as shown in Fig. 1.3.3. 

Because the sound is constrained to cycle in a pancakelike layer in the deep 

channel, it diverges cylindrically rather than spherically. It therefore attenuates 

quite slowly, particularly if it is low-frequency sound (say, 100 Hz). The fact that 

low-frequency sounds can take advantage of channel propagation to travel 

thousands of kilometers was probably first demonstrated by Ewing and Worzel 

(1948), who used 1 kg charges of TNT as their sound source. Fig. 1.3.3 shows one 

of the first calculations of the sound channeling effect that was used to explain the 

extraordinary ranges of propagation that were observed. The channel was called 

the "sofar"  (sound fixing and ranging) channel because of its originally 

proposed ability to locate an explosion at sea by triangulation from shore/ 

listening stations. 

1.4 A Few E x a m p l e s  of  Acoust ica l  O c e a n o g r a p h y  

In"ac t ive"  techniques of acoustical oceanography, a specifically designed sound 

system is used to obtain a precise time of propagation, generally over a long range 

(section 1.4.1), or scatter is analyzed (section 1.4.2). "Passive" methods, on the 
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Figure 1.3.3 Ray diagram for an Atlantic Ocean sound channel. Source is on the channel axis at 1.3 km depth. Sound 
speed profile is at the right. The grazing angles at the axis of the channel are given in degrees. (M. Ewing and J. L. Worzel, 

"Long range sound transmission," in Propagation of Sound in the Ocean, Memoir 237, Geological Society of America: 
New York [1948].) 
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other hand, take advantage of the natural sounds of the sea and use a physical 

understanding of the process to evaluate the ocean parameter that caused the 

sound (section 1.4.3). 

1.4.1 PULSE TIMING OF TRANSMISSIONS 

Global Warming 

Very-long-range transmission was again demonstrated conclusively in the Heard 

Island feasibility study in 1989 (Fig. 1.4.1). In this case a programmed electro- 

mechanical sound source was lowered to the sound channel axis. The test was the 

first step in a major international experiment to investigate the heating of the 

world's oceans by accurately and simultaneously measuring the time required to 

travel several fixed, submerged acoustical paths. It is expected that over a decade 

it will become clear whether global warming is taking place, and at what rate. 

Acoustical Tomography 

Tomography (literally, slice writing) is an imaging technique that inverts propaga- 

tion measurements through many sections of a volume to determine the physical 

characteristics of the interior of the volume. Similar inversion techniques are 

employed in medical tomography (e.g., CAT scans of the brain), optical tomog- 

raphy, geophysical tomography, and acoustical tomography. Ocean acoustic 

tomographers deduce the temperatures within a slice through the volume by using 

many accurate measurements of the travel time along several fixed acoustical paths 

through the volume. The concept of inverting travel time differences to obtain 

sound speeds and thereby to infer temperatures in a large ocean volume was first 

suggested by Munk and Wunsch (1979). (See Chapter 3.) It has been used to 

identify and delineate eddies, and ocean fronts, as illustrated in Plate 1. 

Accurate measurements of the sound travel time may be used to determine 

the water drift velocity by acoustical tomography. The technique is to reverse the 

sound source and receiver so that the temperature effect can be subtracted and the 

difference of travel times can be attributed to the three-dimensional motion of the 

water. When the experiment is carried out over a loop of sound sources and 

receivers, the circulation can be determined as well. 

The technique of acoustical tomography has also provided ocean surface wave 

determinations when the sound paths of the tomography experiment interact with 

the ocean surface, ocean bottom slope measurements when the sound path 



Figure 1.4.1 Paths taken by sound in the Heard Island feasibility test. Black circles indicate receiver sites. Ray paths from source to 

receivers are along refracted geodesics, which would be great circles but for the Earth's nonspherical shape and the ocean's horizontal 
sound speed gradients. Signals were received at all sites except the vertical array at Bermuda, which sank, and the Japanese station off 
Samoa. (Reprinted with permission from A. Baggeroer and W. Munk "The Heard Island feasibility test," Physics Today, 22-30, 

September 1992. Copyright 1992, American Institute of Physics.) 
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scatters off the ocean bottom, and ocean front and internal wave information 

within the volume. 

1.4.2 REMOTE SENSING BY SCATTER 

Fig. 1.4.2 shows a simple remote sensing system. A transmitter sends a sound 

signal, a receiver picks up the backscatter, and a display gives the travel time and 

strength of the return. These instruments, called SONARs (SOund NAvigation 

and Ranging) send out and receive a sound beam, somewhat like a flashlight. The 

sonar can be pointed, electronically, in any desired direction. Downward-looking 

sonars, "echo  sounders,"  measure the depth of the sea bottom beneath the ship. 

Ocean Bottom Imaging 

Multiple-beam sonars are used to measure a strip of depths on each side of a 

surveying surface ship or submersible. The process is called swath mapping. 

Digital processing of the multiple-beam echo data gives an image showing the 

undersea mountains and valleys (Plate 2). The time of arrival of the echo is a 

Figure 1.4.2 Backscattering experiment using separate transmitting and receiving 
transducers. Many echo sounders use the same transducer, which is switched to transmit 
or receive. The transmission cycle is started by an electronic trigger that can come from the 
display, the transmitter, or the receiver. 
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measure of the distance to the bottom feature, and the strength of the echo is 

interpreted as a measure of the slope or roughness. This technology 

revolutionized the study of sea-floor morphology in the 1980s. See also 

Chapters 12, 13, and 14. At higher frequencies and shorter ranges, objects on the 

sea floor can be revealed in fine detail (Fig. 1.4.3). 

Underwater Smokers 

An important feature of sea floors is the smoker-type hot spring. Because of the 

limited field of view and water opacity, photographic information can only show 

a small section of the smoker at an instant of time. Acoustical imaging, on the 

other hand, allows one to see the complete character and extent of the smoker as it 

evolves in time (Rona et al. 1991). Sound frequencies in the hundreds of kilohertz 

are used to show the activity of the ejected streams of particles. (See Plate 3. See 

also, Chapter 7.) 

Bubble Clouds, Plumes, and Circulations 

The massive numbers of bubbles that are created by breaking waves do not lie in 

stratified layers at the surface. They have been traced by acoustical backscatter to 

reveal forms described as clouds, plumes (Fig. 1.4.4), and Langmuir circulations. 

The activity is now known to extend from the surface down sometimes to depths 

as great as tens of meters. Backscattering from these bubble tracers has indicated 

the near-surface activity that is responsible for much of the surface heat and gas 

exchange, as well as the mixing and purging of the ocean surface. (See also 

Chapter 8.) 

Ocean Plankton Biomass 

The acoustical oceanographer's knowledge of biological parameters is gained by 

remote sensing of backscatter from plankton, nekton, sea mammals, and their 

swimbladders (when they have them). The simplest prototypes that guide us in 

the identification process for plankton are scatter from a fluid sphere and scatter 

from a resonating spherical bubble. An instrument developed by D. V. Holliday 

(1989) uses 21 discrete frequencies, from 100kHz to 10MHz for the smaller 

animals. The biomass of populations of zooplankton of equivalent spherical 

radius 1 mm to 4 mm is obtained as a function of depth. Many of these plankton 

would have been destroyed by conventional plankton net sampling; they are 

unaffected by the acoustic energy. (Plate 4. See also Chapters 9 and 10.) 
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Figure 1.4.3 A 500kHz sonar side-scan image of the wreck of the four-masted schooner Herbert D. 

Maxwell. The ship of length 57 m, breadth 12 m, sank in 1910 in water of depth 38 m off Annapolis, Maryland. 

The socnar "f ish"  was towed 14 m off the sea floor, when it obtained the image of the wreck at a range 75 m. 

Note the missing stern section, the three large hatches designed for convenient handling of lumber, and the 

crater due to sediment erosion. Optical visibility was about 1 m at the time of this test by the equipment 

designers EDGE TECH, Milford, Massachusetts. (Courtesy of EDGE TECH.) 
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Figure 1.4.4 Lines of constant bubble density observed during 8 m/s winds, calculated 
from bubble backscatter of l l2kHz sound. Resonant bubble radius approximately 27 
microns. The numbers represent the density in powers of 10--that is, 4 represents 10 4 

bubbles per cubic meter per micron radius increment. (G. B. Crawford and D. M. Farmer, 
"On the spatial distribution of ocean bubbles," J. Geophys. Res. 92[C8], 8231-43 [July 
1987].) 

Ocean Fronts, Convergence, and Divergence 

Within a region where ocean masses collide, there are temperature profiles which 

delineate the front of the water boundary. These may be deduced in an acoustical 

tomography transmission experiment as shown in Plate 1. But also, since marine 

animals tend to prefer certain temperatures, they often congregate at temperature 

gradients in a meandering ocean eddy. Remote acoustical sensing is thereby able 

to determine the outlines of the water masses by backscatter from the marine 

animals (Plate 5. See also Chapter 10.) 

Daily Fish Migration 

During the day many "p rey"  fish hide on the bottom of shallow coastal water, or 

below the depth of light penetration in deeper water regions. When darkness 

approaches, fish will migrate toward the ocean surface to feed. One can study the 

migration for larger, bottom fish by using a lower sound frequency and for 

smaller fish by employing a higher frequency. Fig. 1.4.5 shows the migration of 

fish in a shallow water environment. In less than an hour, the smaller fish move 

upward by almost 100 meters. (See also Chapters 9 and 10.) 

Pollution Monitoring 

The waste that is dumped at sea acts as a passive contaminent. It is subject to the 

temperature and velocity structure at the dumping site and can be detected and 
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Figure 1.4.5 Migrating fish populations just after sunset (2055 ADT). The use of two 
different frequencies, 50 kHz (below) and 200 kzHz (above), permits the tracing of larger 
and smaller marine organisms, respectively. (N. A. Cochrane et al., "Multiple-frequency 
acoustic backscattering and zooplankton aggregations in the inner Scotian Shelf basins," 
Can. J. Fish. Aquat. Sci. 4813], 340-55 [1991].) 



1.4. A Few Examples of Acoustical Oceanography 15 

monitored acoustically by backscatter from the particles, bubbles, or 

temperature differences of the contaminent. Fig. 1.4.6 shows the ability of the 

dumped waste to delineate internal waves and temperature layers at the site. (See 

also Chapter 7.) 

1.4.3 PASSIVE ACOUSTICS 

Rainfall at Sea 

When a raindrop strikes the ocean surface, there is an impact sound of duration 

several microseconds followed in many cases by the definitive sound of a newly 

created, shock-excited bubble. The sound of the screaming, infant microbubble 

lasts for many milliseconds and generally radiates much more energy than the 

impact. Of interest to the oceanographic and meteorological communities is the 

fact that the frequency of the bubble radiation is correlated to the drop size, and it 

precisely determines the bubble size. Therefore, passive underwater listening 

allows one to diagnose the amount of rainfall in terms of its component raindrop 

diameters. This knowledge also permits a calculation of the number and size of 

bubbles, per unit ocean surface area, per second, introduced into the water 

column. The type of cloud from which the rain has fallen can be judged from the 

shape of the underwater sound spectrum. The gas interchange at the ocean 

Figure 1.4.6 Acoustical imaging of a nonlinear internal wave packet. Frequency 
200 kHz. Note the changing internal wave periodicity of 2 to 3 minutes. At time 9 minutes, 
the three clearly defined layers between 15 m and 30m depth have been attributed to 
temperature structure, while those below have been ascribed to neutrally boyuant marine 
organisms. (M. Orr, 1989, personal communication.) 
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surface is strongly dependent on this phenomenon, as is the generation of aerosols 

from the raindrop splash. (See Chapters 6 and 8.) 

Gas Interchange in Breaking Waves 

When there is no precipitation, the underwater sound in the frequency range 500 

to 20,000 Hz is usually determined by microbubbles generated by breaking 

waves. The bubbles are shock-excited to large amplitudes of oscillation when 

they are created. During their short active lives, the bubbles in a small region can 

be counted by listening to the sound radiation. Their radii and volume are 

calculated from their resonance frequencies. (See also Chapters 6 and 8.) 

Whale Tracking 

After the collapse of the Soviet Union, U.S. Navy equipment that had been used 

to track Soviet submarines was made available to follow singing marine 

mammals. Using this equipment, a blue whale, which issued distinctive sounds of 

frequency about 20 Hz, was tracked for 43 days and many hundreds of kilometers 

as it foraged in the Atlantic Ocean. The use of passive listening devices is 

providing new insights to the habits of endangered marine mammals (Gagnon 

and Clark 1993; Clark 1995). 
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2.1  W a v e  P r o p a g a t i o n  

Sound is a mechanical disturbance that travels through a fluid. Generally, the 

propagating disturbance is identified as an incremental acoustic pressure that has 

a magnitude that is very much smaller than the ambient pressure. But sometimes 

the sound is described in terms of the incremental density, the incremental 

temperature, the material displacement from equilibrium, or the transient particle 

velocity imposed on the medium. 

17 
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In this chapter we assume that the medium is homogeneous (same physical 

properties at all positions) and isotropic (same propagation properties in all 

directions). And we assume that there is no sound absorption (no sound energy 

conversion to heat) and no dispersion (no dependence of sound speed on sound 

frequency), and that the acoustic pressure increment is very small compared with 

the ambient pressure (no finite amplitude, nonlinear effects). Under these 

assumptions, in sections 2.2, 2.3, and 2.4 we introduce several wave phenomena 

that commonly occur in the sea and that were part of the research discussed in 

Chapter 1. When the sound encounters an obstacle, it bends around it, and 

diffraction takes place; when it is incident on a boundary surface, reflection 

occurs; when it enters a region of different speed, it changes direction, and 

refraction results; when it meets another sound wave, the two pressures can add 

constructively, destructively, or at any other phase, and interference ensues. The 

plane-wave differential equation that controls such propagation is considered 

in section 2.5; the effects of smooth boundary interfaces, in 2.6; and three- 

dimensional propagation, in 2.7. 

2.1.1 I N T E N S I T Y  OF A DIVERGING WAVE 

In a medium that is homogeneous and isotropic, a tiny sphere expands suddenly 

and uniformly and creates an adjacent region of slightly higher density and 

pressure. The higher-density region is called a condensation. Assume that it has a 

thickness dr. This condensation " impulse"  or "pulse"  will move outward as a 

spherical wave shell and will pass a reference point in time 6t. It is called a 

longitudinal wave because the displacements in the medium are along the 

direction of wave propagation. It is also sometimes called a compressional wave. 

As it propagates, the energy of the impulse is spread over new spherical shells of 

ever larger radii, at ever lower acoustic pressure. By conservation of energy, the 

energy in the expanding wave front is constant in a lossless medium. 

The acoustic intensity is the energy per unit time that passes through a unit 

area. The total energy of the pulse is the integral of the intensity over time and 

over the spherical surface that it passes through. Fig. 2.1.1 shows the expanding 

wave front at two radii. Applying the conservation of energy, the energy that 

passes through the sphere of radius Ro is the same as the energy passing through 

the sphere of radius R. For a pulse of duration 6t, conservation of energy gives the 

sound intensity relationship, where io and iR are the intensities at Ro and R, 

4rtiRR2 (6t) - 4~zioRZ (6t) (2.1.1) 
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Figure 2.1.1 Spherical spreading of an impulse wave front. The instantaneous intensity 
is io at the radius Ro and later is iR at the radius R. 

Solving for the intensity at R, one gets 

2 
i 0 R 0  

i R = 2 (2.1.2) 
R 

The sound intensity decreases as 1/R 2, owing to spherical spreading. In section 

2.5.3 we will show that the sound intensity is proportional to the square of the 

sound pressure. Thus, sound pressure decreases as 1/R in a spherically diverging 

wave. We would have got an increase as 1/R if the spherical pulse had imploded 

instead of exploded. A rarefaction pulse, a region of density less than the ambient 

value, can also be created and propagated. 

2.2 Huygens'  Principle for Impulse Waves 

A useful qualitative description of wave propagation was first given by Christian 

Huygens, Dutch physicist-astronomer (1629-95). Huygens proposed that each 

point on an advancing wave front can be considered as a source of secondary 

waves, which move outward as spherical wavelets in a homogeneous, isotropic 

medium. The outer surface that envelops all these wavelets constitutes the new 

wave front (Fig. 2.2.1). 
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Figure 2.2.1 Huygens wavelet construction for a pulse, a) The wave front moves from a 
to b. b) The dependence of wavelet intensity on propagation direction, is called the Stokes 
obliquity factor. 

The sources used in underwater sound measurements are often condensation 

impulses, somewhat like the shock wave from an explosion. The application of 

Huygens '  Principle to an impulse wave front is particularly simple and physically 

direct. 

Baker and Copson (1939) provided a secure mathematical basis for Huygens'  

Principle. The methods are extensively used in optics, as well as in acoustics. A 

good reference book is M. Born and E. Wolf, Principles of Optics (1980); in 

acoustics, see A. L. Pierce (1989). 

Stokes (1849) derived an obliquity factor that describes the expanding wavelet 

with lesser side radiation and no back radiation, which agrees with observation: 

q9 ~/1 + cos q9 
pressure amplitude ~ cos ~ -  2 (2.2.1) 

In the short-time At, the disturbance from each of the secondary sources on the 

wave front a travels a distance AR (see Fig. 2.2.1). The outward portions of the 

wavelets coalesce to form the new wave front b. The strength of the wavelet is 

maximum in the direction away from the source and zero in the backward 

direction. 

The propagation can be demonstrated graphically without the preceding 

details of the Huygens construction. See Fig. 2.2.2a, where each successive 

position of the pulse is indicated by 1, 2, 3 and so forth. The time intervals At are 



Figure 2.2.2 Hugyens constructions of successive positions of a spherical pulse at a plane reflector. The penetration of the 

pulse into the lower half-space behind the plane face of the reflector is not shown, a) Point source over a half-space, b) Reflected 

wave fronts, c) The reflected wave fronts appear to come from an image source in the lower half-space. 

~ ~  

~ ~  
" O  
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equal, and the wave front travels the same distance AR during each interval. In 

the ray direction, normal to the wave front for the isotropic medium, the distance 

of advance of the wave front is given by 

A R = c ,4 t (2.2.2) 

where c is the sound speed. 

2.2.1 PLANE WAVE REFLECTION AT A PLANE SURFACE: 

LAW OF REFLECTION 

The Huygens construction of the interaction of a spherical wave at a plane 

boundary, Fig. 2.2.2a and b, suggests that the wave front of the reflection is 

expanding as if it has come from a source beneath the reflecting surface. The 

apparent source after reflection is called the image. 

A way to treat the image and the real source is shown in Fig. 2.2.2c. The image 

wave of the proper strength is initiated at the same time as the source, and when it 

moves into the real space it becomes the reflected wave. The geometry shows that 

the angle of reflection 0 2 of the rays (perpendicular to the wave front) is equal 

to the angle of incidence 01 and is in the same plane. Both angles are measured to 

the normal to the surface. This is called the Law of Reflection. 

2.2.2 PLANE WAVE REFRACTION AT A PLANE INTERFACE: 

SNELL 'S LAW 

Now we assume that the impulse wavefront has come from a very distant point 

source such that the curvature of the spherical wave front is negligible in our 

region of interest. The wave is incident on the plane boundary between two media 

1 

/ / 3  

cl j l/1 

Figure 2.2.3 Huygens construction for Snell's Law of Refraction. 
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which have sound speeds Cl and C 2 (see Fig. 2.2.3). The figure is drawn for c 2 > C 1 

(which is the case for sound going from air to water); the reader can easily sketch 

the figure for the other case, C l > c2. Successive positions of the wave fronts are 

shown as they move across the interface. To simplify the illustration, the wavelets 

for wave front position 4 was drawn as originating at a point on the interface. In 

general, there will also be a reflected wavefront, but it is omitted here for 

simplicity. In the time At the wave front has moved a distance AR1 in medium 1 

and AR2 in medium 2. In the same time, the contact of the wavefront at the 

interface has moved from 0 to a, a distance Ax along the x axis. The angles are 

measured between the rays and the normal to the interface, or between the 

wavefront and the interface. The propagation distances in the two media are 

AR 1 = A x s i n O  1 and A R z = A x s i n O  2. The speeds are c 1 - - A R 1 / A t  and 

c 2 = ARz/At .  Therefore, 

sin O1/C 1 = sin 02/C 2 (2.2.3) 

This is well known as Snell' s Law of Refraction. We use Snell's Law throughout 

Chapter 3. 

2.2.3 D I F F R A C T I O N  AT T H E  EDGE OF A P L A N E :  

SCATTERING OF A SPHERICAL WAVE 

Assume that the source is above a thin, semi-infinite plane that permits part of the 

impulse wave to be transmitted and part to be reflected. The situation is shown in 

Fig. 2.2.4, where the plane extends from the boundary edge at B, infinitely to the 

Source l 

Reflection ~ 

Diffraction ~ 

4 Time steps 

Figure 2.2.4 Huygens construction for diffraction of an impulse at a perfectly reflecting 
half-plane. The transmitted wave is omitted to simplify the sketch. 
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left, and infinitely in front and behind the page. The components of the figure are 

as follows: the wave front spreads from the source and interacts with the plane; 

the interactions at the plane become sources of Huygens wavelets; the envelopes 

of the wavelets coming only from the plane become the reflected waves; the 

outgoing wave beyond the edge of the plane continues, unaffected; the envelope 

of the Huygens wavelets originating at the edge form a wave front that appears 

to spread from the edge. That wave is called the diffracted wave. The 

transmitted wave is omitted for simplicity. 

The diffracted wave is a separate arrival. It is strongest in the direction of 

propagation but is more easily detected in any other direction because of its later 

arrival. The diffracted wave exists because there is a reflecting plane to the left of 

the edge and none to the fight. 

In general, "scattering" is a redirection of sound when it interacts with a body. 

Scattered sound in a fluid is made up of transmitted, reflected, and diffracted 

waves. Impulse sounds are particularly helpful in analyzing scattering problems 

because they have distinctive arrival times that depend on their path lengths. 

Scattering and diffracted waves for various geometries are discussed in 

quantitative detail in later chapters. 

2.3 C W  Sinusoidai  Signals: Spherical  Waves 

The abbreviation CW was originally used to designate the "carrier wave" in FM 

and AM radio. More recently, the same letters have represented a "continuous 

wave."  In either case, for the following simple description of acoustic 

propagation we will use a particular form of CW, the common sinusoidal 

wave. The sinusoidal wave is quite simple to apply in theoretical studies, and it is 

a common output of signal generators. 

2.3.1 VARIATIONS IN TIME AND SPACE 

A sinusoidally excited source expands and contracts repeatedly and produces a 

continuous wave, a wave without discontinuities. The resulting condensations 

(density and pressure above the ambient) and rarefactions (below ambient) in the 

medium move away from the source at the sound speed c, in the same manner as 

the disturbance from an impulse source. A representation of the sinusoidal 

fluctuations at some instant would resemble the cartoon in Fig. 2.3.1a. The 

distance between adjacent condensations (or adjacent rarefactions) along the 

direction of travel is the wavelength, 2. 



2.3. CW Sinusoidal Signals: Spherical Waves 25 

kJ k /  k J '  
c) 

Figure 2.3.1 Radiation from a very small sinusoidal source, a) Pressure field at an 
instant of time. Dark condensations are lightened to show decreasing acoustic pressure as 
the range increases, b) Range-dependent pressure at an instant of time. c) Time-dependent 
pressure signal at a point in space. 

The disturbances sketched in Fig. 2.3.1a radiate outward from a point source 

which is small compared with 2. As a condensation moves outward, the acoustic 

energy is spread over larger and larger spheres. Correspondingly, the pressure 

amplitude (the acoustic pressure at the peak of the sinusoid) decreases. Later we 

prove that the pressure amplitude decreases as 1/R, where R is the distance from 

the source. The distance between adjacent crests continues to be 2. 

The simplest functions that repeat periodically are sine and cosine functions. 

They repeat themselves for every increment of 2~z. For example, 

sin (0 + 2nTr)= sin0, where n is an integer. The spatial dependence of the 

instantaneous sound pressure at large ranges may be written as, for example, 

PoRo 2rcR PoRo 2rcR 
p - -  s i n - - 7 -  or p - -  cos (2.3.1) 

R / t  R 2 
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where Po is the amplitude of the pressure oscillation at reference range Ro. 

Equation 2.3.1 includes the decrease of pressure with increasing R. The 

amplitude at R is P(R) = PoRo/R. 

The time between adjacent crests passing any fixed point is the period, T 

(Fig. 2.3.1c). The temporal dependence of the pressure oscillation at R is, for 

example, 

p = P (R)  sin 27eft or p = P (R)  cos 2zcft  (2.3.2) 

wheref i s  the frequency of the oscillation, measured in cycles per second or hertz 

(Hz). 

For two adjacent crests at tl and t 2 = t I 4-T, the functions repeat, so that 

2~cft 2 = 2Tort 1 + 21t. Therefore 2~f  T = 27t, and the period, T, is 

T = 1 / f (2.3.3) 

Considering Fig. 2.3.1, in the time T the disturbance has moved the distance 2. 

Therefore the speed at which it travels, the sound speed, is 

c = / ~ / T  = f ,;L (2.3.4) 

The units of 2 are generally meters, so c is in meters per second. 

In Equation 2.3.2 the dimensionless product f t  is in cycles and 2rtft is in 

radians. The latter is sometimes called the temporal phase. 

It is customary to absorb the 2~z into the frequency and to define the angular 

frequency, 

co = 2~zf = 2rc/T radians/sec (2.3.5a) 

The spatial dependence of pressure change in Equation 2.3.1 is described by 

cos (2~tR/2)/R. The dimensionless argument (2~zR/2) is sometimes called the 

spatial phase. 

Comparing with cos(2~zt/T), we see that the spatial wave number, k, 

k = 2~z/2 radians/meter (2.3.5b) 

is analogous to the temporal angular frequency, co = 2~z/T. The two quantities 

are related through the equation for the speed, Equation 2.3.4. The relation is 

k = o) / c (2.3.6) 
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2.3.2 TRAVELING SPHERICAL WAVES 

We have seen that, at a fixed position, the simplest acoustic signal has temporal 

dependence sin (cot); at a fixed time, the spatial dependence is (l/R) sin (kR). As 

shown later, when solutions of spherical wave problems are given, these two 

concepts combine in a form such as 

p = (eoRo/R)sin (c~t-  kR) (2.3.7) 

o r  

p = (eoRolR)sin [o9(t- R/c)] (2.3.8) 

o r  

p = (PoRo/R)sin [2re(tiT - R/2)] (2.3.9) 

and so forth, where Po is the pressure amplitude at the reference range R = R 0. 

It is easy to prove that the foregoing equations represent a radially propagating 

wave having the speed c. For example, pick an arbitrary phase at time t, position 

R. At a later time, t + A t, the same phase will exist at position R + AR. Equating 

 o[t + A t -  (R + d R ) / d  =  o[t- (2.3.10) 

Therefore 

c = z ~ / A t  (2.3.11) 

To summarize, combinations such as ( t - R / c )  or ( R / c - t )  or (oo t -kR)  

indicate a wave traveling in the positive, increasing R direction. Others, such as 

(t + R/c)  or (R/c + t) or (ogt + kR), describe a wave traveling in the negative R 

direction. 

2.4 CW Interference and Phase Effects 

Wave interference phenomena are the result of sound pressures from more than 

one source being present at the same position and at the same time. In "linear 

acoustics," the resulting sound pressure is the algebraic sum of the contributions. 

The addition holds, regardless of the directions of travel, time dependencies, and 

amplitudes of the components. (But see Chapter 5 for very large amplitudes.) In 

other words, instantaneous acoustic pressures at a point are scalars, and they add 

algebraically. 
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2.4.1 APPROXIMATIONS 

Approximations have a long and distinguished history in the physical and applied 

mathematical sciences. They are a guide to understanding, and they permit one to 

obtain useful solutions to otherwise intractable analytical problems. 

Approximations continue to be important even in the era of high-speed digital 

computers because they assist the modeler and the experimentalist in evaluating 

whether the results of a complex computer calculation are realistic or not. 

Furthermore, the appropriate implementation of approximations reduces 

computer processing time. 

Local Plane Wave Approximation 

The spherical wave is often studied at a large distance from the source. It is then 

convenient to assume that, within a restricted region of interest, the spherical 

wave appears to be a plane wave. This local plane wave approximation is 

extensively used in acoustics, underwater sound, and geophysics. As shown in 

Fig. 2.4.1, when e ,~ R, the geometry gives 

R:2 = ( R - e ) 2  + W 2 / 4 (2.4.1) 

o r  

W 2 
4 = ( 2 R - e  )(e ) = 2 R e  (2.4.2) 

A common assumption for the CW plane wave approximation is that, over the 

restricted region W, the sagitta of the arc e _< 2/8 is 

E W 2 -- < /], / 8 (2.4.3) 
8R 

(R-e)  
W 

Figure 2.4.1 Geometry for the local plane wave approximation. 
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Therefore the region for the plane wave approximation has the extent 

W < (~ R) 1 / 2 (2.4.4) 

Fresnel and Fraunhofer Approximations for Different Ranges 

To add the signals owing to several sinusoidal point sources, we need the 

distances to the observation point. The geometry is shown in Fig. 2.4.2. 

The pressure waves incident at the point Q are spherical and, recalling section 

2.1.2, the amplitudes of the pressures depend on the ranges. We suppress the 

range dependence by letting the incident sound pressure amplitudes in the local 

region have the values P1, P2, and so forth. The total sound pressure is 

P -- E P~ sin (ogt - kRn) (2.4.5) 
/7 

Local region r 1 

i Pn I _~ I , i x,y,, 
I _ ! 

~ yl ~ R 1  

J 
X 

a) 

Y2 

R2 Local region 
~: Y l ,  

b) ~ 

Figure 2.4.2 (a) Geometry for several sources with receiver at Q. The local region for 
the plane wave approximation is in the dashed-line rectangle. As a plane wave 
approximation in the region, the incident sound pressures have the amplitudes Pn. The 
sources are at yl, Y2, and so forth. The distances from the sources to the listening point Q at 
R, ~ are R, R1, R2, and so forth. The acoustic pressure at Q is the sum of the pressures 
contributed by the several sources, b) Redrawing of a) to have ~ - 0. 
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where the P,, are the pressure amplitudes at ranges R,,. The relative phases of the 

terms are most important because they determine the character of the 

interference n t h a t  is, whether the total instantaneous pressure will be greater 

or less than the individual pressures. To separate the time dependence from the 

summation, we expand the sin ( . . . )  and get 

p - sin (09 t ) ~n Pn cos (kRn)- cos (tot) n ~ Pnsin (kRn) (2.4.6) 

There are two terms. The sin (090 and cos (cot) terms have a rt/2 phase difference 

and are said to be in "phase quadrature." 

One can make numerical evaluations of the summations in Equation 2.4.6 by 

using the following expressions for R and R~: 

R 2 =  y2 + x 2 (2.4.7) 

R 2 = (y_  yn) 2 + x 2 (2.4.8) 

R2n - (R sin a - yn) 2 + R 2 cos 2 (a) (2.4.9) 

This can be rearranged to 

2y n y2 1/ 2 
R n = R (1 - - ~  sin t~ + R--~, (2.4.10) 

Simpler forms are possible at very long ranges when W/R ,~ 1. Then 

expansion as a binomial gives 

[ Yn y2 ] 
R,~ ~ R 1 - ~ -  sin (~) + ~-5- (1 - sin 2 (~)) + . . .  (2.4.11) 

Depending on how small W/R is, one can neglect most of the higher-order terms. 

When only the first-order term in yn/R is kept, we get the Fraunhofer (very long 

range) approximation to the summation 

R n = R ( l - - ~ s i n a )  (2.4.12) 

On the other hand, when both the first-order term y,,/R and the second-order term 

(y,,/R) 2 are kept, we have the approximation for nearer ranges, which is called the 

Fresnel Approximation: 

R~ ~ R [1 Y~ sin (a) + Y2 1 - .~- ~ (1 - sin 2 (~)) (2.4.13) 
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Near-Fie ld  and Far-Fie ld  A p p r o x i m a t i o n  

Often the terminologies "near field" and "far  field" are used to describe 

different parts of the acoustic field owing to a localized array of sources. The near 

field is the region where the differential distances to the elements of the source 

are large enough for the phase differences to cause significant destructive 

interference. The far field is where the range is greater (usually much greater) 

than this "critical range" for destructive interference. 

To derive the minimum critical range, let e = 0 for simplicity in Fig. 2.4.2a, 

and redraw the geometry as in Fig. 2.4.2b. The critical range Rc is a distance at 

which it is no longer possible for wavelets traveling the longest path (from Y3, the 

farthest source away from the axis) to interfere destructively with those traveling 

the shortest path (from Yo, on the axis). A pressure minimum cannot occur when 

these two distances differ by less than 2/2. From the geometry and using the 

binomial expansion, 

R 3 = ( R  2+w2)l/2=R ( 1 +  W 2 
2R 2 ) (2.4.14) 

The condition in this case is 

AR = R 3 -  R -.- W2RZ < -2~ (2.4.15) 

The critical range, beyond which there can be no minimum, on the axis of the 

array, is 

R = W 2 ]/-[, (2.4.16a) 
c 

and the far-field range is 

R > W 2/2 (2.4.16b) 

In practice, if the plane wave approximation is to be used, one usually goes far 

beyond this critical range to be sure that the simplified calculations and  

measurements are securely in the far field. Often a range four times the critical 

range is used to define "far  field." The complexity of the acoustic near field and 

the transition to the far field can only be appreciated by calculating the acoustic 

pressure for various ranges and frequencies, as suggested in the problems at the 

end of the chapter. 
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2.4.2 SUM OF SOUNDS FROM TWO SOURCES 

At this point we introduce the powerful complex exponential description which 

simplifies operations that involve the sums and difference of angles and the 

products of trigonometric functions. The relations between trigonometric 

functions and complex exponential functions are 

exp ( i ~ ) =  e iq) _ COS t2b + i  s i n ~  (2.4.17) 

and 

e iO + e - i o  e i o _  e - i o  

cos �9 = 2 , s i n O =  2i (2.4.18) 

In section 2.3.2 we used sin (ogt- kR n) to describe the change of phase of a 

traveling wave. But notice that the expression exp [i(ogt - kRn)] contains both the 

sine and cosine components. Using the complex exponential and keeping in mind 

that the imaginary part is the sine, two pressure oscillations, P l and P2, of the 

same amplitude P can be expressed as 

and 

P l = P exp [i ( ( o t - k R 1 ) ]  

P 2 = P exp [i ( m t - k R  2 ) ]  

(2.4.19) 

The exponential description is particularly useful in differentiation and 

integration, which we will need to do later. For example, differentiation ofp with 

respect to time is equivalent to multiplication by ico; integration with respect to 

time is simply division by io9. 

The sum of the pressures is 

P = P 1 + P 2 = P { exp [i ( m t - k R 1 ) ]  + exp [i ( c o t - k R  2 ) ]  } 

(2.4.21) 

or  

p = P exp ( io) t )  [ exp (-  i kR 1 )] + exp (-i kR 2 ) ]  (2.4.22) 

Now compute the square of the absolute value Ip] 2 - p p * ,  where * denotes 

the complex conjugate. (The complex conjugate is obtained by changing the sign 

of the imaginary.) The effect of this operation is to eliminate the time dependence 

because the product exp (iogt) exp (-iogt) is unity. Then, Equation 2.4.22 becomes 

]p [2 __ pZ[exp ( - ikR, )  + exp (-ikR2) ] 
(2.4.23) 

x [exp (ikR l ) + exp (ikR2) ] 

(2.4.20) 
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and with the aid of Equation 2.4.17 we obtain 

Ip 1 2 = 2P 2 { 1 + cos [k (R 1 - R  2)] } (2.4.24) 

The maximum value is 4P 2 and the minimum value is 0. Therefore, the 

coexistence of the two pressures, P l and P2, produces interferences with maxima 

at k(R 1 - R2) = 0, 2re, 4zc... and minima at re, 3re, 5re . . . .  

The phase difference k(R 1 - R 2 )  causes constructive interference with 

pressure 2P at the maxima, destructive interference with zero pressure at 

the minima, and any amplitude between 0 and 2P, depending on the phase 

difference. 

2.4.3 I N T E R F E R E N C E  N E A R  A N  INTERFACE: 

P L A N E  STANDING WAVES 

Sound pressures near an interface consist of the incident and reflected 

components of the signal. The signals may overlap and interfere significantly 

within a few wavelengths of the surface. The result for a continuous wave is that 

there are near-surface regions of high acoustic pressure (anti-nodes of pressure) 

and low pressure (nodes). The warning for experimentalists is that the signal that 

is received by a near-surface hydrophone depends on both the wavelength and 

distance from the interface. 

To illustrate the effect we first assume that an incident plane wave is traveling 

vertically downward and that it reflects upward at a perfectly reflecting interface. 

The sound pressure will be the sum of the two pressures. Let Pi and Pr be the 

incident and reflected pressures which we assume have the same amplitude, P. 

Define z as positive upward and write 

P i -- P exp [i (co t + k z )] (2.4.25) 

P r - P  e x p [ i ( c o t - k z ) ]  

The sum is 

P = P i + P r - "  P exp ( i co t )[exp ( i k z )  + exp ( -  ikz )] 

p - 2 P e x p ( i c o t ) c o s ( k z )  
(2.4.26) 

The acoustic pressure has an envelope 12P cos (kz)l and a time dependence 

exp(icot). The envelope is stationary in time; therefore the result of the 

interference is called a "  stationary wave"  o r "  standing wave."  For example, the 

nulls at kz = re/2 are nulls at all times. 

Reflection at a partially reflecting interface also produces a standing wave. In 

this case the standing wave consists of the sum of the incident wave and the 
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reflected fraction of the incident wave. The remainder of the incident wave 

moves through the minima on the way to the second medium, so the interference 

minima are not zero. 

An obliquely incident plane wave at a perfectly reflecting interface produces a 

standing wave perpendicular to the interface and a traveling wave parallel to the 

interface. An obliquely incident wave at a partially reflecting surface creates a 

standing wave perpendicular to the surface, plus a traveling wave parallel to the 

surface and a traveling wave perpendicular to the surface. 

2.4.4 POINT SOURCE NEAR A PLANE REFLECTOR: 

LLOYD'S MIRROR INTERFERENCE 

During World War II it was discovered that a sinusoidal point source near the 

ocean surface produced an acoustic field with interferences between the direct 

sound and the phase-shifted sound which diverged from an above-surface image 

of the source. In underwater acoustics, the phenomenon is sometimes called "the 

surface interference effect." The optical effect, Lloyd's Mirror interference, had 

been discovered in the mid-nineteenth century. 

The geometry and some World War II experimental results are shown in Fig. 

2.4.3. The direct sound at range R l is 

P~176 e i(~~ ) (2 .4 .27)  
Pl = Rl 

The surface-reflected sound experiences a 180 ~ phase shift (section 2.6.1), 

travels a distance R2 from the image, and is described by 

PoRo ei(tot-kR~ ) 
P2 - -  " (2 .4 .28)  

R2 

It is left as a student problem to show that when the source is at shallow depth 

d <~ R and the hydrophone is at shallow depth d <~ R, the two sounds produce an 

interference pattern at range R with peaks and troughs given by 

khd ei(~ot_kR) 2iP~176 sin (2.4.29) 
p(R)--  R 

The usual amplitude decrease that goes as 1/R is modified by a pressure doubling 

with peaks at 

khd/R - n/2,  3n/2,  5n/2  (2.4.30) 
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Figure 2.4.3 a) Geometry for Lloyd's Mirror Interference. b) World War II 

experimental results at sea for frequency 1.8kHz. Source depth, d -  14 ft (4.3 m), 

receiver at h -- 50ft (15.2 m). Ranges are in yards (1 yd - 0.91 m). The curve is a best fit. 

"Transmission Anomaly" was the name used for the measured loss in decibels corrected 

for free field spherical divergence (Eckart 1951). 

and so forth, and troughs at 

khd/R -- re, 2re, 3re (2.4.31) 

and so forth. 

Beyond the last peak, at khd ~ R, the pressure decreases as R -2. This is shown 

in Fig. 2.4.3, which is a copy of an original WWII experimental result. The 

ordinate, "Transmission Anomaly, dB," represents pressures compared to the 

1/R expected. As defined, a negative TA (dB) describes a sound pressure greater 

than expected. For perfect surface reflection the peaks would have TA = - 6  dB. 

2.5 The Wave Equation 

Our discussion in the preceding sections dealt with the phenomena of wave 

propagation, based on the Huygens description. Now we develop the relations 

between the properties of the medium and the sound that propagates in the 

medium. These phenomena are encompassed in the second-order partial 

differential wave equation, which describes the relations in time and space. 
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2.5.1 C O N S E R V A T I O N  LAWS A N D  T H E  E Q U A T I O N  OF STATE FOR 

L I N E A R  A C O U S T I C S  

Assume that a disturbance in the medium is caused by the sudden expansion of a 

small spherical source. This causes the local density and pressure to increase 

because the rest of the medium does not instantaneously move to allow space for 

the expansion. Consider a small region at a very large distance from the source 

where the plane wave approximation holds (section 2.4.1). In this region the 

variations of pressure, velocity, and acceleration of a fluid particle are 

approximately functions of the direction of propagation, which we call x. 

Assume that the pressure decreases across our region (Fig. 2.5.1a). The total 

pressure is 

PT = PA + P (2.5.1a) 

where PA is the ambient, static pressure which does not change over our region, 

and where p ,~ PA is the incremental, acoustic pressure. 

Similarly, the total density is 

PT -- PA + P (2.5.1b) 

where the acoustic density p is very much less than the the ambient density, 

P "~ PA" 

Az 

Ax pu 

_ , e - ,  6x 
dx 

& 

1 

dx Z~ x x 

a) b) 

Figure 2.5.1 Pressure differential across a small volume, a) The pressure differential 
causes the mass PA Ax Ay Az to move to the right (Lagrangean coordinates), b) Mass flow 
through the small volume 6x 6y 6z (Eulerian coordinates); u is the component of velocity 
of flow along the x-axis; PA is the ambient density. 
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Newton's Second Law for Acoustics 

We consider the moving water particle in a description called the Lagrangean 

(moving) coordinate system as shown in Fig. 2.5.1a. The net pressure in the + x 

direction, acting on our fluid particle, is 

net p r e s s u r e -  - ~ Ax (2.5.2a) 

The net force is - (Op/Ot)AxAyAz.  The mass of the water particle is 

PA AxAy Az, where PA is the ambient density. We define u as the particle 

velocity in the § x direction and Ou/Ot as the local acceleration. Then Newton's  

Law, F -  ma, gives 

OH 
Ax Ay Az - PA --~ Ax Ay Az 

Op Ou 
Ox:  PA Ot 

(2.5.2b) 

We keep in mind that Newton's  Law for acoustics, Equation 2.5.2b is a point 

statement. It applies to the pressure and particle velocity at position x at time t. 

For the plane wave propagating in the + x  direction, p = p ( t - x / c )  and 

u = u(t - x/c). For a plane wave propagating in the - x direction, p = p(t + x/c) 

and u = u(t + x/c). The speed, c, may be a function of position. 

Conservation of Mass for Acoustics 

The expansion of the source causes an outward flow of mass. Within a small cage 

that is fixed in space (this is called an Eulerian, or fixed, coordinate system), mass 

flows in one face and out the other. Since the fluid is compressible, more mass 

may flow in than out, and the density within the cage may increase. The velocity 

of the fluid flow along the x direction is sketched in Fig. 2.5.1b. The net mass 

flowing per unit time into the cage is --[O(PTU)/Ot]Ax Ay Az. This causes a rate of 

density increase which may be written as OpT/Ot = Op/Ot because PA is constant 

in PT = PA § P" Equating the two rates of change of mass gives 

_ ( O(pr u ) )(~x (~y (~Z --  ( ~)p Ox - ~  ) 6 x  6 y  ~z  (2.5.3) 

Since O(pu)/Ox ~ PA OU/OX for acoustic waves, we simplify to the acoustical 

equation of conservation of mass, 

~) u 0p  (2.5.4) 
-/3A O x -  Ot 
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Equation of State for Acoustics 

Hooke's Law states that, for an elastic body, the stress is proportional to the 

strain. In the acoustical version of Hooke's Law, the stress (force per unit area) is 

the acoustic pressure, p, and the strain (relative change of dimension) is the 

relative change of density, P/PA. The proportionality constant is the bulk 

modulus of elasticity, E. Except for intense sounds (see Chapter 5), Hooke's Law 

holds for fluids. This relation between acoustic pressure and acoustic density is 

sometimes called the acoustical equation of state. 

E 
P = ( PA )/9 (2.5.5) 

The above equation also assumes that an instantaneous applied pressure p causes 

an instantaneous proportional increase of density, p. Actually there is generally a 

time lag in the response of the fluid to applied pressure (molecular relaxation), 

which causes acoustic energy to be absorbed, as explained in Chapter 3. 

2.5.2 THE ONE-DIMENSIONAL WAVE EQUATION AND 

OTHER RELATIONS 

The Wave Equation 

The one-dimensional wave equation, which incorporates all three laws developed 

in the previous section, is obtained by taking the O/Ox of Equation 2.5.2b and the 

O/Ot of (2.5.4) and eliminating the common second derivative 0 2u/OxOt. To put 

it in terms of the acoustic pressure, one uses the pressure density relation, (2.5.5). 

The result is the one-dimensional linear acoustic wave equation 

3 2p PA 3 2p 
(2.5.6) 

3X 2 - E 3t 2 

If we had eliminated p instead of p, we would have got an equation identical to 

Equation 2.5.6, but in terms of p. In fact, the wave equation (2.5.6) could also be 

derived in terms of the particle velocity component u, or the particle displacement 

~, or the incremental temperature AT, or any parameter that is characteristic of 

the acoustic wave. We choose to work with p because virtually all hydrophones 

that are sensitive to underwater sound are pressure-sensitive. 

Equations 2.4.19 and 2.4.25 where the directions of propagation were called R 

or z, are all solutions of the plane wave equation (2.5.6), or are long-range 

approximations to the plane wave solution. In fact, any linear combination of 
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solutions is also a solution of Equation 2.5.6, as may be easily proved by 

substitution. 

When we substitute any one of these solutions into the wave equation we 

obtain 

c 2 - E PA (2.5.7) 

and the one-dimensional wave equation can be written in its more common form 

~2p 1 O2p 
m 

OX 2 C 2 Ot 2 
(2.5.8) 

We have assumed that the elasticity, E, and the speed, c, are not dependent on the 

direction of propagation. If this were not the case (for example, in solids), we 

would write Ex and Cx for those quantities. 

Impedance  of  the M e d i u m  

There is an important relation between acoustic particle velocity and acoustic 

pressure in a plane wave. Recall that a wave traveling in the +x  direction has 

particle velocity component u u(x ct); therefore 

0 u ~u 
0 t - - c ~ (2.5.9) 

Substitution of Equation 2.5.9 into Equation 2.5.2b gives 

Op Ou 

O x  - PA c O x  

Integration yields 

P = +(P  A C )/1/ (2.5.10) 

where the plus sign is for waves traveling in the positive x direction; a minus sign 

would result for waves traveling in the negative x direction. 

Equation 2.5.10 resembles Ohm's Law, with the acoustic pressure taking the 

place of voltage, acoustic particle velocity replacing electric current, and (pAC) 

being the impedance. The analogy is used frequently, and the (pAC), rho-c, or 

specific acoustic impedance of the material is a common acoustical 

characterization of the medium. Often the subscript A is dropped for simplicity. 

We retain it to avoid confusion. 
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Acoustic Particle Velocity/Density Relation: Mach Number of a 

Sound Wave 

The ratio of the acoustic particle velocity to the speed of sound, u/c, may be 

=alculated by starting with Equation 2.5.4. Then, since u -  u ( t - x / c )  and 

OulOx - - (  l lc)(Ou/cgt), we find 

91// = U / C = p / p A (2.5.11) 

where 9v/is called the acoustical Mach number. The acoustical Mach number is a 

measure of the strength of the sound wave, and thereby the linearity of the signal 

propagation. For intense sounds, when the ratio is large enough, extraordinarily 

useful nonlinear propagation effects occur as described in Chapter 5. 

Acoustic Pressure-Density Relation 

Equations 2.5.10 and 2.5.11 allow us to go directly to the valuable relation 

between the acoustic pressure and the acoustic density, 

p =/9 c 2 (2.5.12) 

This equation can be used to calculate the speed of sound if the equation of state, 

p - p ( p ) ,  is known. For sound in gases, there is a relatively simple equation of 

state; consequently, the accurate theoretical speed in air has been known for over 

200 years. But for liquids, the equation of state is so complicated that the inverse 

calculation is used. That is, the equation of state for water is calculated from 

accurate measurements of the speed of sound in water. 

2.5.3 A C O U S T I C  I N T E N S I T Y  

As mentioned in section 2.1, the vector intensity of a wave is the power (watts) 

passing perpendicularly through a unit area; usually the area is 1 m 2. Suppose a 

plane wave is traveling in the + x direction and the unit area is in the y-z plane. 

The instantaneous intensity is the product of the instantaneous pressure and the 

in-phase particle velocity along the x- direction, ux. The x- component of intensity 

is 

i x = p ( t  - x / c  ) u x ( t -  x / c  ) (2.5.13) 

where we show the traveling wave parameter ( t - x / c )  to emphasize the 

dependence on position and time. Note, again, that we would need a subscript on 

c (e.g., cx) if the speed were a function of direction of propagation. 



2.6. Reflection and Transmission at Interfaces 41 

Since the plane wave is traveling in the + x direction, we apply Equation 

2.5.10 so that the intensity can be written in terms of pressure alone. 

( t -  x Ic )]2 
i x = (2.5.14) 

PA c 

Similarly, using the long-range plane wave approximation to a spherical wave, 

if the unit area is normal to the direction of R from the source, the intensity along 

R is 

[p ( t -  R Ic )]2 
i R = (2.5.15a) 

PA c 

When the wave is a continuous sinusoid p = P sin ( k x -  cot), the value of ix is 

p 2  
i x - p a r sinZ(kx - rot ) = P 2 1 - cos [2(kx - rot )] (2.5.15b) 

2 P a  c 

The instantaneous intensity ix oscillates between 0 and PZ/(pAC ) and has the 

frequency 2o~. 

For a sinusoidal wave it is useful to calculate the average intensity by 

integrating over time. The time average intensity at x, Ix, is 

(ix) (p2)/(EPAC) 2 _ _ Prms/(PA c) (2.5.16) 

where P is the peak pressure and Prms-  0.707 P at x. Again, the analogy of 

Equation 2.5.16 to power in AC circuits provides a useful mnemonic for electrical 

engineers and physicists, 

2.6 Reflection and Transmission at Interfaces 

While the derivations for reflections and transmissions at an interface are given 

for plane waves, the results are used practically in the context of the local plane 

wave approximation to a spherical wave, section 2.4.1. 

2.6.1 P L A N E  WAVE R E F L E C T I O N  A N D  T R A N S M I S S I O N  

C O E F F I C I E N T S :  C R I T I C A L  A N G L E  

A very powerful way to do interesting problems uses the satisfaction of physical 

boundary conditions on each side of an interface between two fluids. The simplest 

example is the reflection and transmission of plane waves at a fluid interface. 
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Fig. 2.6.1 shows the ray directions and the components of the incident, reflected 

and transmitted particle velocities at the interface, ui, ur, and u t 

The first condition at the boundary is the equality of pressures on each side of 

the interface, evaluated at z = 0, 

[Pi ( t  - Z / C  1 ) + P r ( t  + Z/C 1)] = P t (  t - z / c  2) (2.6.1) 

where the letter subscripts designate the incident, reflected, and transmitted sound 

pressures at time t. The number subscripts indicate the medium. 

The second condition at the boundary is the equality of the normal 

components of particle velocity, evaluated at z = 0, 

[blzi(t-- 7.101) 21- blzr(t + ZlCl)  ] -- l t z t ( t -  Z/C2) (2.6.2) 

Suppose a ray is incident at angle 01 at the interface. The angle of refraction is 02, 
given by Snell's Law" 

0 2 -- arcsin[(c2/c,)(sinO,) ] for (c2/c,)sinO , <1 (2.6.3) 

0 I 

P l C l  

P 2 c 2  

ur 

z[ o2 

Figure 2.6.1 Reflection and transmission geometry for vector particle velocities (heavy 
arrows). 
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The three vertical components of particle velocity at the fluid interface, z = 0, 

a re  

U zi ( t ) =  U i ( t ) c o s 0  1 (2.6.4) 

U zr(t )=  U r ( t ) c o s 0  1 (2.6.5) 

U Zt ( t ) =  U t ( t  ) C O S 0  2 (2.6.6) 

where Hi, H r and ut are in the incident, reflected, and transmitted directions, 

respectively. 

The computation of particle velocities in terms of pressure follows from 

Equation 2.5.10 where the negative value of pc is used for propagation in the 

( -  z) direction; subscript A is dropped for simplicity: 

P i ( t )  
U z i ( t )  = cos0  1 

P l C l  

P r ( t  ) 
u z r ( t )  = - cosO 1 (2.6.7) 

P l C l  

Pt (t ) 
U z t ( t ) =  COS0 2 

P 2 c 2  

At a simple plane fluid interface, the time dependencies of the incident, 

reflected, and transmitted waves are the same. The pressure reflection and 

transmission coefficients for a wave going from medium 1 to medium 2, 

evaluated at z - 0, are defined as 

Pr (t +Z /C 1) Pt  (t -Z [C 2) 
~PL12 ~- P i ( t - z  /Ca) and T a Z - p i ( t _ z  /Ca) 

(2.6.8) 

In terms of the coefficients, the pressure condition requires 

1 + ~PL12 --  cf'12 (2.6.9) 

and the velocity condition (Equation 2.6.2) leads to 

(P2C2 P2C2~12)  COS 01 - -  PlCl r COS 0 2 (2.6.10) 

Equations 2.6.9 and 2.6.10 are now solved for the pressure reflection and 

transmission coefficients, 

P2C2 COS 01 - PlCl COS 0 2 
- (2.6.11a) 

R12- P2C2 COS 01 +PlCl cOS 02 
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and 

T/2 = 

2p2c 2 cos 01 
(2.6.11b) 

P2C2 COS 01 +,OlClCOS 02 

Snell's Law gives the connection between 01 and 02: 

0 2 - arcsin (c~ sin 0 , )  (2.6.12) 

There are two generic applications for this theory of reflection and 

transmission between two fluids: the ocean surface and the ocean bottom. 

Consider the ocean surface under the greatly simplifying assumptions: the surface 

is a smooth plane between sea water (density 1000 kg/m 3, sound speed 1500 m/s) 

and air (density 1.03 kg/m 3 and sound speed 330 m/s). Assume underwater sound 

is normally incident to the interface (cos01 = 1 and COS0 2 ~ 1), since 

plc1 ~ p2c2 (Equations 2.6.11a and 2.6.11b) gives ~PLI2 ~ 1 and 

T12 = 4.5 X 10 -4. Further, from Equation 2.6.1 we find p, ~- - P i  (i.e., a 

phase-reversed pressure), which thereby produces a near-zero total pressure at 

the surface. And from Equation 2.6.2 we find u, ~- u i, so there is a particle 

velocity doubling at the surface. The water/air interface is called a "pressure 

release" or " s o f t "  surface for underwater sound. But notice that if the direction 

of propagation had been reversed, sound going from air to the ocean would find a 

pressure-doubling interface, with essentially zero particle velocity. Viewed from 

the air, the same surface would be called acoustically "ha rd . "  

The above situation is an extreme case of c 2 < c~, which always results in 

(c2 /c l ) s in  01 < 1 and 0 2 • 90 ~ for all angles of incidence. 

However, for sound going from the ocean to a sediment bottom, when c 2 > Cl 

there is the possibility of "total  reflection." Total reflection occurs at angle of 

incidence 01 _> 0,, where O, is the "critical angle" defined by 

O, = arcsin (ci /c2) (2.6.13) 

When the angle of incidence is greater than O,,  Snell 's Law can be written as 

C2 2 1/2 

= - - )  sin 201 - - ~ 2 (2.6.14a) c o s 0  2 1 - ( c 1 

where the imaginary value of the cosine is 

g 2 - ( ) sin 20 l- 1 (2.6.14b) 
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We choose the solution (--if12) because it describes an acoustic pressure that 

becomes weaker with increasing depth of penetration into the second medium (in 

the z direction) while it propagates in the x direction. The incorrect choice of the 

plus sign would have led to the physically absurd description of a wave that had 

its origin in the first medium and that is stronger at greater distances from the 

interface in the passive second medium. Using Equation 2.6.1 la, 

PL12 : P2C2 COS01 -+ iplclg2 for 0 > 0  c (2.6.15) 

P2C2 c o s  0 1  - -  iPlclg 2 

The numerator is the complex conjugate of the denominator. Therefore, the 

magnitude of the ratio is unity, IPLI2[ = 1. 

For angles greater than critical, we write PLI2 to allow us to calculate the phase 

shift, 

12 = e+2i~ (2.6.16) 

where 

PlC lg2 
- arctan (2.6.17) 

P 2 c 2  cOs 0 1 

2.6.2 P L A N E  WAVE R E F L E C T I O N  AT A S E D I M E N T A R Y  B O T T O M  

Extensive measurements of the geophysical structure have been made in the 

shallow water south of Long Island, New York. The sediment parameters are shown 

in Fig. 2.6.2. The values of the speed and density in the water, and in the uppermost 

sediment, are known. We assume that the sediment acts as a fluid, and therefore we 

Figure 2.6.2 Water and sediment structure south of Long Island, New -York. Parameters 

are Pl - -  1033kg/m3, Cl = 1508m/s, h 1 = 22.6m; P2 = 2pl, c2 = 1.12Cl, h2 = 0.9hi; 

P3 = 2Pl, c3 = 1.24Cl- 



2.6.3 

use the equations of the previous section to calculate the reflection coefficient and 

the phase shift, as a function of the angle of incidence. The fractional pressure 

ref lect ion,  ~PL12 , is sometimes called the "bot tom loss." Quite often bottom loss 

is expressed in dB as the positive number, BL = - 2 0  lOgl0Rl2. The values of 

~12  and the phases plotted in Fig. 2.6.3 should be verified by the student. 

D l l  

P L A N E  WAVE R E F L E C T I O N  A N D  T R A N S M I S S I O N  AT 

MULTIPLE T H I N  FLUID LAYERS  

The sea floor is usually covered by layers of sediments. The layers are " th in"  

when the reflection from a sequence of layers can be replaced by the reflection 

from a composite layer. The local plane wave assumption is used when the 

thickness of the sequence is very small relative to the distances to the source and 

receiver. The layers are assumed to act like fluids. 

12 - 
cal 

0 

0 
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Figure 2.6.3 Amplitude and phase of the reflection at the 1-2 interface shown in 
Fig. 2.6.2. 
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Thin layers are also used in the design of sonar windows. The sound passes 

from the transducer, through a thin protective window, into the water. The 

transmission coefficient through the window depends on the thickness of the 

window and the sound speed and ambient density of all three media. The 

thickness and physical parameters are chosen to maximize the sound 

transmission through the window. 

The geometry and notation for the propagation at a thin fluid layer are in 

Fig. 2.6.4. The pressure reflection and transmission coefficients for the 1-2 

interface were given in Equation 2.6.1 la and 2.6.1 lb. There are similar 

expressions for the 2-3 interface. From the figure, the total up-traveling signal is 

the sum of an infinite number of partial transmissions and reflections. Each path 

within the layer has a phase delay measured by the vertical component of the 

wave number in the middle layer, tJl52 = k2h 2 cos 0 2. The fractional pressure of the 

total reflection is R13, given by 

R13 --- R12 + T12T21R23 exp (-i2~2) 

2 exp (--i4~2) -+- �9 �9 �9 + T 1 2 T z l R 2 3 R 1 2  

where 

tI-) 2 = k2h 2 cos  0 2 (2.6.18) 

A 

I 
h 

2 

P l C l  

P 2 c 2  

P 3 c 3  

0/ / 
/ ~  12 0 1 12T21 R 23 

^12 PL 21 PL 23 

Figure 2.6.4 Reflection and transmission at a thin layer. 



48 2. Sound Propagation 

Skipping the first reflection term, the rest of Equation 2.6.18 has the form of a 

geometric series: 

S - -  ~ r  n-  1 
1 r 

o 

for r < 1 (2.6.19) 

and rearrangement of Equation 2.6.18 gives 

o o  

R 13 = R  12 + T  12 T 21R 23 e x p ( - i 2 ~ 2  ) ~ [R 23 R 12exp(-i 2 ~ 2 ) ]  n 
0 

(2.6.20) 

The pressure reflection and transmission coefficients are related by 

2 
R 12 = - R 2 1  a n d  T 12 T 21 -- 1 - R  12 (2.6.21) 

Evaluation of the infinite geometric series and some algebraic rearrangement gives 

R12+R23 e x p ( - i 2 O 2 )  

R 13 - 1 + R 12R 23 exp(- i 2 ~  2 ) (2.6.22) 

Using the same construction, the transmission through a thin layer is 

T 13 = T 12 T 23 exp(-i �9 2 ) + T 12 T 23 PL 23 ~ 21 exp(-i 3 ~  2 ) -I-... 

and the sum of the geometric series is 

T12T23  exp(-i ~ 2 )  

T13 =1 + R 12P~ 23 exp(-i 2 ~  2 ) 

(2.6.23) 

(2.6.24) 

The reflection and transmission functions depend on the sound speeds, densities, 

layer thickness, frequency, and angle of incidence. For very low acoustic contrast, 

I R~21 < 1, and 1R231 ,~ 1, the denominator is nearly unity, and the coefficients are 

oscillatory. 

Two examples of thin-layer-reflections and transmissions at normal incidence 

are shown in Fig. 2.6.5. The top shows the reflection from a 1 m thickness of 

sediment; the reflection is strongly frequency-dependent. The lower example 

shows the transmission through a well-designed sonar window; the transmission 

coefficient is nearly unity over the frequency range as desired. 

An example of the geophysical use of these relations is given in Fig. 2.6.6, 

where the bottom layers are identified by use of reflections from different depths. 

For this "seismic profile," the source and receiver look vertically downward 

from a "fish" at a depth 3 m below the surface. 
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Figure 2.6.5 Transmission and reflection at thin nonabsorbing layers. Normal incident sound, a) Thin sediment layer 
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Figure 2.6.6 Subbottom layers in Lake Michigan, identified by seismic reflections. The 
transmitted signal is 1 cycle of a 7 kHz sinusoidal pulse. (Lineback 1974, p. 18. Courtesy of 
the Illinois State Geological Survey.) 

2.6.4 R A Y  R E F L E C T I O N  B E Y O N D  C R I T I C A L  A N G L E  

In section 2.6.2 it was demonstrated that for plane wave incidence beyond the 

critical angle, there is perfect reflection with an accompanying phase shift. 

Weston (1960) and Buckingham (1985) have shown the usefulness of introducing 

a virtual, displaced, pressure release surface (i.e., R = - 1 )  to represent the 

magnitude and the phase shift of a plane wave reflected under that critical 

condition. Fig. 2.6.7 shows the geometry of the virtual reflector concept. 

The two-way travel between the real interface and the virtual reflector 

produces a phase shift 

2k  1 Az  c o s  01 = 2 (co / c l ) Az  cos 01 

The phase shift is equated with that in Equation 2.6.16, 

R 12 = e i 2 q ' = - e x p { i  [ 2 ( co /c  1 ) Az cos 01 ]} 

(2.6.25) 

(2.6.26) 

xp (i 2 ~  ) ] 

\ / 
P 2 c 2  ~ P2 "2 1 Az . . . .  Virtual reflector 

a) b) 

Figure 2.6.7 Reflection beyond critical angle, a) Reflection and phase shift. 
b) Reflection at a virtual reflector at 3z depth. 
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and the ( - )  sign is interpreted as a phase shift of ~z to give 

t2b - (C0/c 1 ) ~ COS 01 + /t"/2 (2.6.27) 

Therefore, for a given frequency, the distance of the virtual pressure release 

reflector below the real interface is 

Cl(t2b -- ~ ) 
z ~  = (2.6.28) 

w cos 01 

and the ray displacement, caused by reflection beyond the critical angle, is 

d x  = 2Az t an  01 (2.6.29) 

2.6.5 HEAD WAVES: SPHERICAL WAVES BEYOND CRITICAL A N G L E  

When there is a higher speed medium adjacent to the source medium, and the 

incident spherical wave front meets the interface at the critical angle, a head wave 

is produced. The head wave moves at the higher speed c2 along the interface and 

radiates into the source medium, c l. Because it travels at a higher speed, at 

sufficient ranges the head wave arrives significantly ahead of the spherically 

diverging direct wave. The energy appears to be continually shed into the lower- 

speed source medium at the critical angle sin 0c - cl/c2, as it propagates along 

the interface (Fig. 2.6.8a). 

Huygens wavelets and wave front constructions can explain the processes that 

produce a head wave in addition to the well-known reflected and refracted waves 

at the interface. Assume a homogeneous fluid half-space having a higher sound 

speed c2 under a lower sound speed Cl (e.g., most sediments under water). A 

sequence of positions of the impulse wave front constructions appears in Fig. 

2.6.8b. For this example c 2 -- 2c 1, and 0c is 30 ~ 

When the contacts of the spherical wave front and the interface are at angles 

less than the critical angle, the wave front constructions look like that previously 

shown for simple reflection (Fig. 2.2.2). To understand what happens at and 

beyond the critical angle, notice that the sound pressures and displacements are 

equal on both sides of the interface. The sound pressures and displacements at 

points such as h l in medium 2 cause corresponding sound pressures and 

displacements and determine the radiation of Huygens wavelets into medium 1. 

Fig. 2.6.8b illustrates the construction in medium 1 for the sequence of wavelet 

sources at the interface hc, hi, h2, and h3. The line labeled "head wave"  shows 

the envelope of the wavelets. For a point source, the head wave is a conical 

surface. The contact h moves along the interface at speed c2. The head wave 

radiates, at the critical angle, into the source medium. Some geophysicists refer to 
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Figure 2.6.8 a) Head wave geometry, b) Huygens head wave construction. The impulse 

source is in a lower-speed medium over a higher-sound-speed medium, c 2 = 2cl (e.g., 

water over most sediments). The Huygens sources move along the interface at speed c2. 

The head wave is the wave that connects the refracted wave in the lower medium to the 

reflected wave front at the critical ray position. The direct and refracted waves are omitted 

in the construction, c) Snapshot of the direct, reflected, refracted, and head wave fronts at 

an instant of time. 

this as the refracted arrival in med ium 1, and the head wave is sometimes called 

the lateral wave in medium 1. The three field components  in the upper region 1 

are the direct wave, the reflected wave, and the head wave (Fig. 2.6.8c). 

Analyt ical  developments  of the head wave are beyond the scope of our text 

(see Cerveny and Ravinda 1971). One significant conclusion is that, for a point 

source, the ampli tude of the head wave in med ium 1 depends on the curvature of 

the wave front in medium 2 and is given by 

ampli tude of head wave ~ x - l / 2 L - 3 / 2 k  -1 (2.6.3o) 
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where x and L are defined in Fig. 2.6.8a. Here it is assumed that attenuation is 

negligible. 

Experimental studies of the head wave are most easily accomplished by use of 

scaled models in the laboratory. The above relation was verified by O'Brien 

(1955), who used a set of laboratory experiments designed to model typical ocean 

seismic conditions of water over a high speed bottom. He verified the dependence 

of amplitudes on range and geometry as in Equation 2.6.30. 

The conditions for a head wave also exist for a sound source under Arctic ice 

even when it is only a fraction of a wavelength in thickness. Arctic "pack ice" 

often consists of "pla tes"  that are hundreds of meters in extent and 1 or 2 meters 

thick; the plates are bounded by broken sections called "r idges."  A laboratory 

scale model study of Arctic ice reported by Medwin et al. (1988) verified that the 

predicted amplitude dependence on range and frequency as given in Equation 

2.6.30 for seismic waves exists in this case as well (see Fig. 2.6.9). The physico- 

acoustical properties of the laboratory synthetic " i c e "  were in substantial 

agreement with the arctic ice values as studied by McCammon and McDaniel 

(1985). The geometry is shown in Fig. 2.6.9. 

To model Arctic propagation, it is important to use laboratory materials that 

have the same physical parameters as the Arctic ice. Then the spatial dimensions 

of plate thickness, source range, and receiver range are scaled relative to the 

wavelength. For example, a 3.3 mm acrylic plate floating on water in the 

laboratory, when insonified at 62.5 kHz, can represent a i m thick Arctic plate 

insonified by 200 Hz sound. In both cases, the point source under the " i c e "  

canopy generates a compressional wave at the critical angle for entry into the ice. 

As the compressional wave propagates in the plate, it " sheds"  a head wave into 

the water at the critical angle. The hydrophone will receive a reflected wave, and 

a direct wave (not shown in the sketch) as well. When the range is large enough 

the head wave precedes the other two arrivals. 

In geometrical-acoustical scale modeling, it is also necessary to select 

the frequency, pulse length, and source and receiver depths in order to 

isolate and identify the head wave. Since the compressional speed in the 

laboratory plate and laboratory water were essentially the same as in the Arctic, 

the critical angle for the compressional wave was approximately the same, 

0 C = sin -1 (Cl/C2),.~ sin -1 (1480 /2353)=  39 ~ A range of frequencies, plate 

thicknesses, and depths of source and receiver were used for the data of Fig. 2.6.9. 

For example, the data represented by squares in the figure were acquired with a 

pulse of 2 cycles of 62.5 kHz energy (2 -- 2.37 cm in water). The plate thickness 

was 3.3 mm (~ 0.142 in water and ~ 0.092 of the compressional wave in the 

plate). The signal used to obtain one square data point is shown in Fig. 2.6.10. 
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Figure 2.6.9 Dependence of head wave amplitude on path length of a compressional 
wave in an acrylic plate floating on water. Plate thickness 3.3 mm. Receiver depths were 
varied from 1 cm to 40 cm. Range X was 70cm. The three symbols represent data from 
three experiments. The divergence of the data from the theoretical, nonattenuation 
behavior was used to determine the attenuation of the compressional wave in the plate. 
(Medwin, H., K. J. Reitzel, and M. J. Browne, "Elements of Arctic surface scatter: Part III, 
the head wave," J. Acoust. Soc. Am. 82, (S 1), $31 (A) 1987.) 

Notice that, although the head wave was isolated as needed for Fig. 2.6.9, there 

was interference between the later-arriving direct and reflected waves. 

Because the thickness of Arctic ice is often a small fraction of a wavelength, 

early discussions of reflection from the ice cover incorrectly assumed that the 

" th in"  ice covered by air was equivalent to a simple water-air pressure-release 

interface. Model experiments such as that above showed that the problem is far 

more complex than that. Taking advantage of this complexity, the existence of a 

head wave in the Arctic provides a technique for measuring the low-frequency 

compressional wave speed in an ice plate. See also a series of ingenious 

laboratory experiments by Chamuel - -  for instance, Chamuel and Brooks (1988). 
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Figure 2.6.10 Impulse response for a shallow point source of sound under a model of 
the Arctic ice canopy. The source was driven by 2 cycles of 62.5 kHz; 2 -- 2.37 cm in 
water. Source and receiver depths were 0.4 wavelengths in water; source and receiver 
separation, X = 27 wavelengths; path lengh in plate, L -- 26 wavelengths. (Medwin, H., et 
al., "Elements of Arctic Surface Scatter; Part III, the head wave," J. Acoust. Soc. Am. 82 
(S 1), $31 (A), 1987.) 

2.6.6 FRESNEL ZONES: SPHERICAL WAVE REFLECTION 

AT A N  INTERFACE 

Consider the reflection of a spherical wave from a plane surface. An approximate 

local plane wave solution, which may be used for an infinite plane reflector, can 

be calculated by using an image technique with the reflection coefficient R12. 

However, for finite reflecting planes, because of interfering phase-shifted 

components, the magnitude of the reflection depends on the size of the plane 

surface as well as the reflection coefficient, R12. The geometry for a point source 

and receiver is sketched in Fig. 2.6.11. 

Many sonar systems have the source and receiver at the same position. In 

operation, the source transmits a signal for a short time, then the receiver listens 

for the returning signal. The source is quiet when the receiver is listening. 

Assume the point source is at height h above a plane-reflecting circular disk. The 

calculation of the reflection consists of summing (or integrating) the 

contributions of all wavelets radiating as point sources from small elements of 

the reflecting disk. 
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Figure 2.6.11 Reflection from a finite plane area. The circular geometry is at left, the 
Fresnel phase zones in the center, and the geometry for a rectangular subangle at right. 

We now calculate the dependence of the sum on the radius of the disk. For 

simplicity, we will not consider the small amount of diffraction at the disk edge. 

Referring to Fig. 2.6.6, considering the wavefront that travels from the source at 

Q to the typical scattering area element dS then back to the receiver, a total 

distance of 2R, the phase is 

= oo t -  2kR (2.6.31a) 

where 

R = (h 2 + r2) 1/2 (2.6.31b) 

In summing the contributions from different elements, as r increases from 

zero, the quantity of interest is the phase change, 2kR. When we let the smallest 

value, 2kh, be the reference phase, the relative phase difference for the element 

dS is 

A ~  = 2 k R -  2 kh (2.6.32) 

Solve for R and then for r as a function of At/,: 

R -  (r 2 + h2) 1/2 2A~ 
= 4--~- + h (2.6.33) 

r = 2n" + { 4n" ) (2.6.34) 

We are interested in the situation where the reflector is many wavelengths 

from the source, h ~ 2 in which case Equation 2.6.34 can be approximated by the 

first term only. Then 

2 
2~rr 

A ~  - - ~  (2.6.35) 
hA 
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The contributions are positive for elements at radii such that A~ given by 

Equation 2.6.35 is in the range 0 to re; this is the first-phase zone, the central white 

circle in Fig. 2.6.11. The contributions are negative when 4~ is in the range rt to 

2rt; this is the first shaded ring in the figure. 

In general, letting A4~ -- nrt, the phase changes sign at radii given by 

r n = n (2.6.36) 

Each ring with either phase sign is called a "Fresnel zone" or a "phase zone." 

The central circle, with n = 1, is the first Fresnel zone. The radius of this 

important Fresnel zone, in which there is a minimum of destructively interfering 

phase change, is 

(~h 1/2 
r ~ = ~ ) (2.6.37) 

A complete calculation shows that a signal reflected at a disk having radius rl 

has a maximum acoustic pressure a l m o s t  twice  as  large as f o r  an infinite p la te .  

On the other hand, when the radius of the disk is r2 the first- and second-phase 

zones both contribute, and the reflected signal is nearly to zero. Other maxima 

and minima alternate as the radius is increased, and as additional zones 

contribute. 

For a disk of infinite radius an analytical solution gives the reflected signal 

proportional to 

1 i ( m t - 2 k h )  
e (2.6.38) 

2h 

The interpretation of Equation 2.6.38 is that the amplitude and phase of the 

reflected pressure from a very large plate are equivalent to those from a virtual 

image at distance h behind the reflector. That is, using the image construction, the 

reflected pressure seems to come from an image below the interface. The factor 

1/(2h) appears because, for spherical divergence, the acoustic pressure is 

inversely proportional to the range. If the plate is not perfectly reflecting, the 

radiation from the image is multiplied by the fractional reflection coefficient at 

the interface. 

The exact solution of the reflection of a spherical wave at an infinite plane 

interface is a more difficult theoretical problem than we have implied above. The 

image approximation in this case is acceptable only when the distances R 1 and R2 

are many acoustic wavelengths, and the angle of incidence is not too near the 

critical angle. The solution is exact when the sound speeds c 1 = c2 and the 

densities are different. (One can prove this by substitution in boundary 
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conditions.) A general solution is given by Brekhovski (1960), who finds that for 

an infinite plane reflector the spherical reflection coefficient is the following 

modification of the plane wave coefficient: 

= ~ 1 2 -  iN  / (kR) (2.6.39) 

where 

N -  (R',2 + R',2 cot 0 , ) /2  (2.6.40) 

The derivatives Rtl2 and R~2 are taken with respect to 01; R is the distance from 

the image source to the receiver (2h in the case above). The value of N is 

negligible for 01 not too close to the critical angle and for large kR. However, the 

simple plane wave concept of reflection and transmission will fail near the critical 

angle. At and beyond the critical angle, part of the energy of the sound wave in 

the water travels along the interface in the higher-speed medium and sheds 

energy into the lower-speed water medium as described in section 2.6.5 for head 

waves. 

2.7 Propagation in Three Dimensions 

2.7.1 THE WAVE EQUATION 

The simple use of an infinite plane wave, or of a point source whose spherical 

waves at long ranges can be approximated by a local plane wave, have served us 

well. In a realistic world and for many applications, we use wave fields that are 

more conveniently described in spherical or cylindrical coordinates. Examples 

are: 1) sound transmissions in layered waveguides are effectively stated in 

cylindrical coordinates; 2) computations of the scattering of sound waves by 

cylinders are simpler if one uses cylindrical coordinates; 3) computations of the 

scattering of sound waves by spheres use spherical coordinates. An important 

part of the solution is often accomplished by the expansion of spherical functions 

in terms of incident plane waves. 

To generate the wave equation in three dimensions, we combine the results for 

each of the coordinate directions. It is easiest to start with rectangular 

coordinates, and use the unit vectors i, j, and k, Fig. 2.7.1. 

Generalization of Equation 2.5.2 gives the three vector equations 

i ~p  / ~x = - i PA (du / dt ) 

J ~P / ~Y = - J PA (dr / d t  ) (2.7.1) 

k Op / ~z = - k PA (dw / dt ) 
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Figure 2.7.1 Three coordinate systems, a) Rectangular. b) Cylindrical. c) Spherical. The 
z-axis is drawn as positive downward. The (longitude) angles ~b are measured in planes 
perpendicular to the z axis. The (latitude) angle 0 is measured to the z axis. 

where u, v, and w are the components of particle velocity along the x, y, and z 

directions. 

Since u is a function of x and t, the total derivative (du/dt) is found by using 

implicit differentiation: 

du ~)u i)u i)x Ou t)u 
- + - + u (2.7.2) 

dt Ot Ox Ot Ot Ox 

with similar expressions for the other components.  The first term of the equation 

on the right is called the local acceleration, the second term is the convective 

acceleration. 

Since u = u ( t - x / c ) ,  we find u(Ou/Ox)=-(u/c)(Ou/Ot). For linear 

acoustics, we require u/c ~ 1; therefore, for linear acoustics (du/dt) = (Ou/Ot). 

Equations 2.7.1 are summed to yield one three-dimensional acoustic force 

equation, 

. bp . bp bp Ou bv bw 
I-~X 4" j~y +k-~-Z- z = -PA (i -~- + J--o-t + k  ~ ) (2.7.3) 

or 

~U 
Vp =-PA t)t (2.7.4) 

where U =  iu + j r  + kw and the del operator is V = i(O/Ox) + j(O/Oy) 

+k(O/Oz). 
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Next, we generalize Equation 2.5.4 to calculate the density change and mass 

flow for the three-dimensional problem 

a(PTU) a(PTV ) a(pT W) ~p 
~ +  ~ +  = - ~  

ax /)y t)z at 
(2.7.5) 

where PT - -  PA + P is the total density. 

Again we use the vector symbols for a concise notation: 

OP (2.7.6) 
V-(p T U) = -  at  

where 

0 0 0) 
V.(PTU ) -- i ~ x x + J ~ y +  koz z "(iPTU +jpT v -q- kPTW ) (2.7.7) 

is the divergence of pT U and where i.  i -  1, i .  j -  0, and so forth. 

Simplification is possible by expansion of the LHS, using PT = PA + P, 

because, for linear acoustics, u/c = p/pA <~ 1. 

Therefore the three-dimensional equation for the acoustic conservation of 

mass is 

P A (V-U)= ap " ~t (2.7.8) 

We have derived a pair of equations that depend on U. We eliminate U by 

taking the divergence of Equation 2.7.4 and the O/Ot of Equation 2.7.8. Also, use 

the acoustical equation of state (2.5.13) to eliminate p. The result is the three- 

dimensional wave equation in terms of the acoustic pressure, 

v2e a2p 
- 2 2 (2.7.9) 

c ~ t  

where V 2 is the Laplacian that takes different forms in the different coordinate 

systems. 

In rectangular coordinates, 

a 2 a 2 a 2 

V 2 -  V ' V =  ~ X  2 + ~y2 + ag 2 (2.7.10) 

which is the form convenient for plane waves and plane surface interactions. 
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We use the spherical coordinate system, as shown in Fig. 2.7. lc, involving R, 

0, and ~b for spherical waves, or interactions with spherical surfaces. After much 

manipulation, obtain the gradient operator 

0 1 0 1 0 
V - 1R ~ + 14 R2 sin-------0 0---~ + 10 ~ 0---0 (2.7.11) 

where 1 R, 14, and 10 are unit vectors along the spherical coordinate directions R, 

~b, and 0. 

The vector U in spherical coordinates is 

U = 1RU R + Ir162 + loU o (2.7.12) 

The divergence of U in spherical coordinates is 

1 OU4~ 1 O(Uo sin 0) V . U -  O(R2UR) ~ ~ (2.7.13) 
R 20R R sin 0 0qb R sin 0 00 

The Laplacian in spherical coordinates is 

V 2 ~ 2  2 ~ 1 ~ 2  R--~( ~ 2 +  + cot0 A ) 
- ~ R  2 +-R---~-R --+ ~0 2 R 2 sin 2 0 ~q~ 2 _ 

(2.7.14) 

Use cylindrical coordinates for cylindrically propagating waves, or waves 

interacting with cylindrical surfaces. The gradient and Laplacian in coordinates r, 

z, and ~b are shown in Fig. 2.7.1b. Note that range in cylindrical coordinates is r, 

whereas range in spherical coordinates is R. The forms for cylindrical coordinates 

a r e  

,~ 1 0 d 
V = 1 r ~ + 10 ? ~ + k Oz (2.7.15) 

where the unit vectors are 1 r, 14, and k (as in rectangular coordinates). 

The vector U in cylindrical coordinates is 

U = lrU r + loU o + kU z (2.7.16) 

The divergence operator in cylindrical coordinates is 

OUr Ur l d U o  dUz 
V ,  

=--3--r - + - r - + - ~  ~0 + bz 

The Laplacian in cylindrical coordinates is 

0 r 2 + _ _  + _ _ ~ 1  02 2 
r 2~)0 2 + ()Z 2 

(2.7.17) 

(2.7.18) 
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When Equations 2.7.14 and 2.7.18 are used in Equation 2.7.9 we obtain the wave 

equations in spherical and cylindrical coordinates, respectively. Solutions of the 

cylindrical and spherical wave equations are considered in Chapter 7. We shall 

need those solutions in later chapters. 

2.7.2 CONTINUOUS WAVES IN RECTANGULAR COORDINATES 

The solution of the wave equation in rectangular coordinates gives a simple 

illustration of a very powerful method from classical physics, the separation of 

variables. Rectangular coordinates are simple because all of the functions are 

sines or cosines or complex exponentials. From above, the wave equation in 

rectangular coordinates is 

32 32P 32P 32P 1 P 
V2p = ~ + f f ~ y 2  + 3z 2 - c 2 3t 2 (2.7.19) 

We assume that the waves along the three coordinate directions are independent 

of one another. Therefore the pressure can be written as a product of functions of 

the four variables: 

p = X(x)Y(y)Z(z)T(t) (2.7.20) 

Substitution into the wave equation in rectangular coordinates gives 

T "  
X "  YZT + Y " X Z T  + Z " X Y T  = --~-XYZ (2.7.21) 

where X" is 02X/Ox 2 and so on. Now, rearrange to 

X "  Y "  " " c 2 ~ + c  2 ~ + c  2Zz - TT (2.7.22) 

Notice that each term is a function of only one variable. That is, T ' / T  is only a 

function of time, and the first term, c2X' /X  is a function of x only, and so on. 

Therefore, since Equation 2.7.15 is true for all values of x, y, z, and t, each of the 

terms must be a constant. 

Assume that the time dependence is harmonic and evaluate the constant. For 

example, try the solutions: 

T = A 1 ei~ or T = A2 e-ic~ or T =A 1 ei~ + A2 e-i~~ (2.7.23) 

where A I and A2 are constants. They all satisfy 

T "  _ 0)2 (2.7.24) 
T - 
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For the present illustration, we assume that c is constant. Again we use the 

logical argument that if Z, Y, and Z are independent of one another, then X " / X ,  

Y" /Y ,  and Z " / Z  must each equal constants. Using X as an example, we try the 

solution 

X - B 1 exp (ik~x) + B 2 exp ( - ikxx)  (2.7.25) 

Evaluation of X " / X  gives 

X "  2 
X - - kx (2.7.26) 

Similar expressions for Y and Z give 

y , ,  
y - 

2 
- - ky (2.7.27) 

and 

Z "  2 
Z - - kz (2.7.28) 

The substitution of these into Equation 2.7.22 yields 

c 2 (~2 + ~y + = (2.7.29) 

or 

k 2 = toe 
c2 (2.7.30) 

where 

2 2 k e =  k 2 + ky + k z (2.7.31) 

Our solution gives us flexibility to describe any set of plane waves propagating 

in any direction. For example, the equation of a plane wave traveling in the + x, 

+ y, and + z directions is 

p -- P exp [i(ogt- k x x -  k y y -  kzz)] (2.7.32) 

The vector wave number k, which defines the direction of propagation of the 

plane wave, can be resolved into its components in the x, y, and z directions by 

knowing the cosines of the angles with the coordinate axes. Usually it is obvious 

from the context whether the bold letter k is the vector wave number, as here, or 

the unit vector k in the z direction, as in Equation 2.7.1 and elsewhere. 
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2.7.3 OMNIDIRECTIONAL WAVES IN SPHERICAL COORDINATES 

General solutions to the spherical wave equation are in Abramovitz and Stegun 

(1964). Here we assume spherical symmetry. The wave equation is thereby 

greatly simplified, and the solutions are easily comprehended, and useful in many 

applications. 

O m n i d i r e c t i o n a l  R a d i a t i o n  

A very important solution to the wave equation is the pressure wave owing to a 

pulsating source that radiates the same in all directions in an ideal isotropic, 

homogeneous medium. Since the wave equation does not depend on 0 or ~b, the 

last two terms of Equation 2.7.14 are zero. The wave equation in spherical 

coordinates, with range and time dependence only, reduces to 

~2p 2 ~P 1 ~2p 0 (2.7.33) 
~)R 2 + R OR - c 2 ~)t 2 - 

This can be rearranged to 

~2 
1 (Rp)_ 1 O2p 0 
R ~)R 2 c 2 ~)t 2 - (2.7.34) 

or 

~2 (RP) 1 ~2(RP) 

OR-------- ~ - c2 Ot 2 = 0 (2.7.35) 

This equation is identical to the one-dimensional version of the wave equation in 

rectangular coordinates (2.5.8), but with p replaced by Rp and x replaced by R. 

The solutions to Equation 2.7.35 are therefore the same as for plane waves, but 

with the above replacements. In general, 

P o (ct +_ R ) R o (2.7.36) 
pR = R  o P o ( C t  +_R ) or p = R 

where po(ct + R) describes the acoustic pressure as any function of (ct + R). The 

+ sign in Equation 2.7.36 indicates that the pressure p may have either or both 

functional dependences. The choice ( c t -  R)] designates an outward radiating 

wave such as the wave from a pulsating sphere. The choice (ct + R) gives an 

inward radiating wave that might be, for example, an implosion or the inward 

reflection from a spherical reflector. In many situations, the waves are known to 

be traveling away from a source, and the inward traveling wave is dropped 
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on physical grounds. Normally, P0 is the sound pressure referred to the unit 

distance R 0. 

Acoustic Pressure for Sinusoidal, Omnidirectional Waves 

In general, the solution is the product of a radial function and a temporal function 

p = P 9~ (R)  T ( t )  (2.7.37) 

For sinusoidal waves, the time-dependent function is 

T = e i cot  (2.7.38) 

Substitution of Equation 2.7.37 into the omnidirectional spherical wave equation 

(2.7.33) gives 

1 02 
R OR e (RR) + k2R - 0 (2.7.39) 

where k - 09/c. 

The radial wave equation has two independent solutions: 

9~ = cos ( k R )  and 9~ = sin ( k R )  (2.7.40) 
R R 

In complex notation, the outward propagating sinusoidal wave is written 

p _ Po Ro ei(O3t- kR) (2.7.41) 
R 

where the amplitude is written in terms of the pressure Po at range Ro. 

Particle Velocity for Sinusoidai Omnidirectional Waves 

Computations of the particle velocity in spherical coordinates start with the 

acoustic force Equation (2.7.4) and use the gradient (2.7.11) for the case of 

spherical symmetry 

~)U ~)p 
Vp = - P A - - ~  where Vp = 1 R ~R (2.7.42) 

There is only one component so we write simply: 

dp  ~)u (2.7.43) 
~)R - - PA Ot 

When we use u in complex exponential notation, Ou/Ot -- iogu, so that Equation 

2.7.43 becomes 

1 dp ( 1 )  (2.7.44) 
b / - -  ID A ~ g  
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Form Op/OR from Equation 2.7.41, and get 

Op ik) (2.7.45) 
~R - - P ( ~  + 

Therefore, 

u = ~ 1 - ~ (2.7.46) 

Close to the source, small kR, the particle velocity has a "quadrature" 

component that lags the acoustic pressure by 90 ~ (A similar conclusion is found 

for an impulse sound such as an explosion, where there is a great "whooshing" 

motion as the medium moves outward following the pressure wave.) The 

nonpropagating energy carried by out-of-phase components such as exist for 

small kR in Equation 2.7.46 has been discussed by Stanzial et al. (1996). 

At large kR, the particle velocity in the spherical wave is proportional to the 

sound pressure and abides by the same equation as we derived for a plane wave 

(2.5.10). 

Far-Field Intensity for Omnidirect ional  Waves 

In section 2.1 we used the conservation of energy to show that the intensity of 

sound from an outwardly radiating omnidirection source is proportional to io/R 2 

(Equation 2.1.2). We now know that for pressure signals that satisfy kR ~> 1, the 

particle velocity along the direction of R is proportional to the pressure. 

Therefore, for outward propagating waves at large range, 

uR ~- po(ct - R)R o for kR )> 1 (2.7.47) 
PACR 

The instantaneous intensity itr is puk and, when calculated at long ranges, it is 

simply the product of Equations 2.7.36 and 2.7.47. Therefore, 

2 
pZ ct - R ) R o 

i e - P u 1~ = PA c R 2 (2.7.48) 

We have come full circle from our assumed solutions in section 2.1. Using our 

solutions to the wave equation, we have proved that, in the far  field of  a point 

source, as the range increases both the sound pressure and particle velocity 

decrease as I/R, and the intensity decreases as 1/R 2. 
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Problems 

Section 2.2 

2.2.1 Use a sketch similar to Fig. 2.2.3 to derive the law of reflection for plane 

waves incident at a plane interface. 

2.2.2 Use a sketch similar to Fig. 2.2.2 to derive Snell 's Law of refraction for 

spherical waves from a point source. 

Section 2.3 

2.3.1 Drop a small object in a shallow pond, or a bathtub, to observe reflection 

of a circular wave from a small plane reflector, a small concave curved reflector, 

and a small convex reflector. Sketch what you observe and identify the reflected 

waves and diffracted waves. 

2.3.2 Use your computer, or pencil and paper, to plot p = P sin ogt over a 

range from ogt = - 2 n  to ogt = +3n.  Do the same for p = P cos ogt. Compare 

with p = P cos(ogt + n). Compare with p = P cos(cot + n/2). 

2.3.3 Use your computer, or pencil and paper, to add p = P sin cot to 

p = P sin 2o9t. Now add p = P sin ~ot to p = P sin 3cot. Comment on the effect 

of adding harmonics. 

2.3.4 Use your computer, or pencil and paper, to add p = P sin o~t to 

p = P sin(ogt + ~b) and observe the changing wave form when ~b takes on values 

that range from 0 ~ to 180 ~ 

2.3.5 Starting from Equation 2.3.7, derive an expression for the phase speed 

(the speed of constant phase surfaces) in terms of the wave parameters. Do the 

same for Equations 2.3.8, and 2.3.9. 

Section 2.4 

2.4.1 Verify Equations 2.4.25 through 2.4.28. 

2.4.2 In section 6.6 we discuss the various sounds in the sea. Consider a 20 Hz 

sound of pressure amplitude Po, which radiates omnidirectionally from a whale 

that is two meters below a smooth (perfectly reflecting) ocean surface, a) What  

is the total sound pressure as a function of angle at range 1000 m? b) What is it if 

the whale is 10 m deep? c) If 100 m deep? 

2.4.3 Assume that the sound from a complex plane wave is normally incident 

at a smooth, hard, perfectly reflecting bottom. A hydrophone is fixed on a tripod 
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two meters above the bottom. The incident sound has equal pressure components 

of magnitude P at frequencies 1000 Hz, 2000 Hz, and 5000 Hz. What is the total 

(incident plus reflected) pressure at the hydrophone for each of these 

frequencies? Comment about the dependence of pressure measurements on the 

height of the hydrophone. What would be the effect if the bottom were only 

partially reflecting? 

Section 2.5 

2.5.1 The speed of sound in gases can be calculated from the equation for 

adiabatic propagation, pp-7 = constant, where 7 is the ratio of specific heats of 

the gas. a) Form dp/dp and show that the speed of sound in gases is given by 

c -  (TPA/PA) 1/2. b) For air 7 - 1.4, calculate the speed of sound in air at sea 

level, where P A = 105 pascals and PA = 1.29 kg/m 3. 

2.5.2 Equation 2.5.11 allows one to compare the particle velocities and 

acoustic pressures in two different media, such as air and water. The particle 

velocities at the air-water ocean surface interface are necessarily the same 

because the air is in contact with the water, a) Compare the pressures in air and 

water for the same particle velocities. Assume the constants PA = 1.29 kg/m 3, 

c a = 335m/s; Pw = 1000kg/m3, Cw = 1500m/s. b) From the previous answer, 

comment on the effectiveness of an air sound source when used in water, or an 

underwater sound source when used in air. Assume that the source transducer 

maintains a constant velocity at its face, regardless of the medium. 

Section 2.6 

2.6.1 Plot graphs of magnitude and phase of ~12 and c]"12 versus 01 for plane 

wave propagation fom water to sediment. Use values P l = lO00kg/m3, 

c 1 = 1500m/s;  P2 = 1400kg/m3, c2 = 1480m/s. 

2.6.2 Plot graphs of magnitude and phase of R l2 and c]"12 versus 01 for plane 

wave propagation from water to sediment. Use values P l -  lO00kg/m3, 

c 1 = 1500m/s; P2 = 2000kg/m3, c2 = 2000m/s.  

2.6.3 Plot graphs of magnitude and phase of ~12 and T12 versus 01 for plane 

wave propagation fom water to air. Use values Pl = 1000 kg/m 3, cl = 1500m/s; 

/92 = 1.3 kg/m 3, c 2 = 340m/s. 

2.6.4 Plot graphs of magnitude and phase of ~12 and c]-'12 versus O l for plane 

wave propagation fom air to water. Use values P l = 1.3 km/m 2, c I = 340m/s; 

P2 -- 1000 kg/m 3, c 2 = 1500 m/s. 
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2.6.5 Solve for the plane wave reflection and transmission coefficients for 

particle velocity rather than for pressure, a) Calculate these coefficients as a 

function of 01 for propagation from air to water, b) Calculate these coefficients 

as a function of 01 for propagation from water to air. 

2.6.6 Solve for the plane wave reflection and transmission coefficients for 

sound intensity rather than for pressure. 

2.6.7 Solve for the plane wave reflection and transmission coefficients for 

sound power rather than for pressure. Comment on the difference between the 

sound intensity coefficients and those for sound power. 

Section 2.7 

2.7.1 Wave equation 2.7.9 is in terms of the acoustic pressure. Rederive the 

wave equation, a) in terms of the acoustic density; b) in terms of the particle 

velocity in the x direction; c) in terms of the particle displacement in the x 

direction; d) in terms of the excess temperature for a wave propagating in a gas 

describable by PA = PARGTA, where PA is the ambient pressure, PA is the 

ambient density, Ro is a gas constant, and TA is the ambient temperature in 

degrees Kelvin. 
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The concepts based on Huygens's principle, which we used in Chapter 2, have 

guided the broad field of mechanical wave propagation, diffraction, reflection, 

refraction and interference for three centuries. When differential wave equations 

were derived in the nineteenth century, they were, for the most part, used to 

understand the propagation of harmonic waves I t h a t  is, waves described in 

terms of frequency as parameter. Frequency was a natural parameter because of 

the human perception of musical sounds, in which there is a close connection 

between pitch, frequency, and the harmonic, sinusoidal components that 

determine the quality of a musical sound. 

Isaac Newton's seventeenth-century concept of corpuscular energy moving 

along " rays"  radiating from a source soon proved to be fruitful in the description 

of reflection by mirrors and refraction by lenses. Ray-path techniques are popular 

today not only in optics but also in underwater acoustics and seismology; their 

great virtue is that they provide insight into propagation in complex environments. 

As shown in Fig. 1.2.1, the first effective use of an underwater impulse source 

(a bell) was the measurement of the speed of sound in 1827. By the 1930s, pulsed 

ocean sources, "sonars," had been introduced to determine distances, by 

measuring the time for reflections of the ping off the sea floor or from schools of 

fish. In those early days, some underwater acousticians still assumed that the 

sound paths could be described by straight line rays. 

Modem ocean acoustics stands on the shoulders of research done in World 

War II, 1939-45. For example, during the war, Ewing and Worzel extended their 

experience in geophysics by using explosives as impulse sources and following 

ray paths (Fig. 1.2.3) to describe long-range propagation at sea (Ewing, Worzel, 

and Pekeris 1948). They discovered and exploited the deep sound SOFAR 

(SOund Fixing And Ranging) channel, where the sound from a few kilograms of 

explosive can be heard at very great ranges across the ocean. In 1960 they 

dropped 100 kg-depth charges off Perth, Australia, and found that the low- 

frequency sounds reached hydrophones half-way around the world, off the coast 

of Bermuda, 3.5 hours later. 

Our development of ray methods emphasizes the use of impulse sources 

because the travel times of multiple arrivals provide information beyond the 

frequency description. We refer readers to additional analytical details in 

specialized books and papers. Books with good sections on ray-path methods, 

and with rich bibliographies, are Cerveny and Ravindra (1971), Cerveny, 

Molotkov, and Psencik (1977), Aki and Richards (1980), and Hubral and Krey 

(1980). The papers of Friedlander (1942, 1946), R. Chapman (1976, 1978), 

Stickler et al. (1981), and Foreman (1989) give valuable discussions of ray theory 

in acoustics. 
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Starting in this chapter, we become flexible in describing propagation in terms 

of frequencies or times, whichever is more suitable. As we shall see in Chapter 6, 

there is a duality in the two descriptions, and the two parameters are often 

advantageously interconverted. 

3.1 Impulse and CW Propagation in Ocean Acoustics 

3.1.1 I M P U L S E  S O U R C E S  

Chemical explosions, airguns, and sparks are commonly used as short duration 

" impulse"  sources for sound transmissions. The underwater implosion of a 

collapsing light bulb produces a simple impulse pressure. These sources are small 

compared with a wavelength, and they initially radiate sound omnidirectionally 

(see section 5.4). At the instant of the explosion, a pressure wave starts spreading 

from the source. 

As shown in Fig. 3.1.1 a, typically the sound pressure is very large at the instant 

of the explosion and then decays rapidly. Depending on the size of the explosive, 

the duration of the peak pressure pulse is usually a few milliseconds. For 

convenience, physicists and engineers sometimes replace the explosive 

exponential wave form by a simplified impulse source with time dependence 

given by the ideal delta function 6(t). (One could also appproximate the 

exponential form by several appropriately timed delta functions, of exponentially 

decreasing amplitudes, if desired.) A definition of the finite/discrete delta 

function that can be used in digital calculations is 

6f(t) - 1~At for 0 <_ t <_ At (3.1.1) 

and by(t) - 0 for all other t. Also, 

i~ 
t dt 
~ - 1  (3.1.2) 

Since the integral over time is 1, 6f(t) has the units of s -l  . Commonly At is one 

time step, the sampling interval. The delay of the impulse by time t I is shown in 

Fig. 3.1.lb. In the limit, one can let At ~ 0 and still require that the integral be 

unity. This limiting form commonly appears in the literature. In its proper usage, 
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,~ ~ Explosive source 

T - -  A t  

l / A t  

a) Time, arbitrary units 

t 1 

t 1 + A t  

I i 

0 1 2 

b) Time, arbitrary units 

Figure 3.1.1 Impulse pressures, a) Explosive impulse represented by a single discrete 
delta function 6f(t) of duration/It and amplitude 1 l/It. b) Delta function delayed by the 
time t 1. 

the delta function is defined by an integration operation. An example follows for a 

function g(t) 

f_ ~~ ) 8 ( t - t  1 )d t  = g ( t l )  
o o  

(3.1.3) 

The delta function integration evaluates g(t) at t - t  1. The concept was 

introduced by the physicist E A. M. Dirac, and is known as the Dirac delta 

function. 
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3.1.2 PRESSURE,  PARTICLE VELOCITY, A N D  

I N T E N S I T Y  IN  A PULSE 

From the discussion of energy conservation in sections 2.1 and 2.7.3, the far-field 

sound pressure, particle velocity, and instantaneous intensity for waves spreading 

spherically from a point source in a lossless, iso-speed medium are 

R 0  
p ( t )  = p o  ( t - R  /c ) R (3.1.4) 

u R -- 

p PO(t  - R  / c )  R o 

p c  p c  R 
(3.1.5) 

iR =PU R = 

02(t 2 p - R  / c )  Ro  

p c  R 2 

(3.1.6) 

where po(t) is the source pressure at the range R0, and p(t) is the outward 

traveling pressure wave. Although there is a time delay and amplitude change, the 

waveforms of po(t) and p(t) are the same. 

A suitable transient signal po(t) satisfies two conditions: 

p0(t) -- 0 (for t <0)  (3.1.7a) 

and 

I o l P  (t) [dt is finite (for t >_ R/c)  (3.1.7b) 

For example, assume for simplicity that the far-field pressure after an 

explosion (actual details are in section 5.4) is approximated by the exponential 

decay 

1 ( t - R ) ]  (3.1.8) p(t) -- P~176 exp [ -  z~ 

where zs is the time for the pressure to decay to e -1 of its peak value P0 at 1 m. For 

t>_R/c, 

r ,poRoexp - - -  t -  dt 

, R z~ (3.1.9) 

= z L ~ P ~ 1 7 6  
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where tg is the duration of the integral after the arrival of the pressure signal or the 

"gate t ime" for acceptance into the integration operation. As the gate time tg 

goes to infinity, the integral tends to ZsPoRo/R. The integral is within 98 percent 

of the limit for tg > 4~ s. 

3.1.3 P U L S E  E N E R G Y  T R A N S M I S S I O N  

In the far field, the radial component of particle velocity (units, m/s; Equation 

2.7.47) and the instantaneous radial intensity (units, watts/m2; Equation 2.7.48) 

are, respectively, 

uR = P/ (PA c) and i R -- p u  R (3.1.10) 

For acoustic propagation, or communication, in a lossless medium, one can define 

the "message"  energy, A E  m (units, joules), which passes through an element of 

surface AS at range R in time tg 

jf 
+t~ R 2 A S  J~--~tg [~0( t _ _  R/c)]2  

A E  m -- AS  pu  R dt ~ R2 
PA c _ 

c c 

dt (3.1.11a) 

where the integration limits are over the effective duration of the transient 

pressure, tg. 

The element of surface area can be expressed as 

AS RZA(2 (3.1.lib) 

where Af2 i san  element of solid angle. 

All energy flows outward through the spherical surface and along R. The 

radiation from a directional source can be expressed in terms of the solid angle 

subtended by AS. The solid angle viewed from the center of a sphere is 4re. 

Assuming the source radiation is spherically symmetric, the integral over 4re of 

solid angle, which gives the total energy, E m, in the "message ,"  is simply 

Equation 3.1.11a with AS = 4nR 2. (Somet imeswe drop the subscript m for a 

general statement of radiated energy and call it simply E.) 

Therefore, for isotropic radiation, 

4rcR o - - +  
Em -" [ P 0 (t - R /c )]2 dt  (3.1.12) 

P A  c 
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The total energy transmitted by the source (units, joules, or watt sec) may also 

be written 

E m ,.~ aRZ-Tc--~ [tips] (3.1.13) 
PA c 

where [tips], the time integral of  the pressure squared (units, pascal 2 sec), is 

~ ~  + tg 
[ tips ] - [ P 0 (t - R Ic )]2 dt (3.1.14) 

c 

The energy per unit area (units, joules/m2), measured at range R, transmitted 

during the time interval tg is 

f ~ + t g  [ t i p s ] R  0 2 
R -- p u R dt - (3.1.15) 

R 2  pA  c 

Equations 3.1.13 and 3.1.15 are energy equations for spherically divergent 

transmission in an ideal, lossless, homogeneous medium. They give the total 

sound energy, and the sound energy per unit area, respectively, of a single 

transient arrival that has the travel time R/c. They are forms of what has been 

called the sonar energy equation. 

3.1.4 R A D I A T E D  POWER FOR CONTINUOUS WAVE S I G N A L S  

Assume a point source transmits the continuous wave sinusoid of peak value P0, 

written in exponential form as Po ei2~ft. The source power is the average energy 

transmitted per unit time over the period T of the sinusoidal wave. If there is no 

loss by scatter or absorption, the total power (units, watts) over all angles at a 

large range is the same as at the source: 

4rcR 2 p2 
H ~ (3.1.16a) 

pA c 2 

where 

P~/2 - ~ I P0 sin (2rtft)12 dt (3.1.16b) 

Sometimes (P2)/2 is written e Prms for a sinusoidal wave. 
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In addition to sinusoidal source transmissions, Equations 3.1.16a and b are 

used when average power defines the transmitter-transducer output. In that case, 

the time T is the duration of the transmission. 

3.2 Ray Paths, Ray Tubes, and Path Times 

The solution of the spherical wave equation in section 2.7 and Equation 2.7.36 is 

the start of our discussion of ray paths. That solution, using the separation of 

variables, is the product of a spatial function and a temporal function. We cast our 

discussion of ray paths in that context. First, the exact solution is taken apart, and 

each term is identified as either space- or time-dependent. 

3.2.1 PATH AMPLITUDE FACTOR AND PATH TIME 

In a homogeneous, isotropic, lossless medium, the exact spherical wave solution 

for the acoustic pressure at R is 

R 0  
p ( t )  = p 0 (t -R /c ) R (3.2.1) 

The sound input to the medium is the temporal function P0 (t). The travel time for 

the message to arrive, R/c, and the dimensionless ratio, Ro/R, are components of 

the spatial function. The output temporal function at the receiver is p(t). 

To generalize, we identify all spatial components that depend on the Pressure 

And Time History as the function [path]. The sound output is 

p(t) = po(t) [path] (3.2.2) 

The [path] function has two components, the dimensionless [path amplitude 

factor] or [paf], which gives the relative pressure amplitude, and tpath , which is 

the time delay owing to the travel time of the original po(t) (Fig. 3.2.1). 

The received sound pressure p(t) can be written 

p(t) -- [paf ]p0(t - tpath ) (3.2.3) 

where, for a point source in a lossless, homogeneous medium, we have 

[paf ] = Ro/R and tpath - -  R/c  (3.2.4) 

For linear acoustics, the factor [pal] is independent of the amplitude of the source 

sound pressures and the source waveform. 
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a) �84 

P o (t ) - - ~  [Path] ~-4~ p (t ) 

P o (t ) ~  [path amplitudefactor] or  [paf ] -----~ p (t ) 
[path time ] or  [tpath ] 

b) [path ] 

Figure 3.2.1 Temporal input and output functions and the [path] and [paf] functions. 

3.2.2 R E F L E C T I O N S  A L O N G  RAY PATHS 

Ray paths that include reflections are simple examples of the application of the 

path amplitude factors. The Hugyens construction of a reflected wave was shown 

in Fig. 2.2.2. In ray-path constructions, the reflected waves appear to come from 

an " image"  source behind the interface, as shown in Fig. 3.2.2a. 

We assume that there is a point source, that the medium is homogeneous and 

lossless, and that the interfaces are smooth. We make the approximation that the 

ray is reflected locally as if it were a plane wave. Then the plane-wave reflection 

coefficient is computed for the local angle of incidence using Equation 2.6.11a 

for simple reflections and Equations 2.6.14 through 2.6.17 for reflections beyond 

the critical angle. Figure 3.2.2 shows the ray path for a reflection at the bottom 

and one at the top interface. 

The pressure signal for the bottom reflected path, shown in Fig. 3.2.2, is 

R + R  R o 
p ( t )  = p 0 ( t -  a b ) ~PL 12 (3.2.5) 

c R a + R  b 

o r  

p(t) = po(t - tpath)[Pa f JR,2 

where the path amplitude factor and time delay are 

[paf ] = Ro/  (R a + R h) 

and 

(3.2.6) 

(3.2.7) 

tra,~ = (Ro + R~)/C (3.2.8) 

and R12 is the pressure reflection coefficient at the water/bottom, 1, 2, interface. 
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Image: Surface 
% . .~10  Air 

Source 
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I 0 l ~ b  
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I 
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Figure 3.2.2 Image constructions of a) a singly reflected ray, and b) a doubly reflected 
ray path. The segments of the ray paths are labeled Ra, Rb, and R C. The direct ray path from 
the source to the receiver is not shown. It is assumed that the sound speed is the same at all 
points of the water medium. 

It is convenient, at this point, to keep the reflection coefficient out of the 

amplitude path factor. The pressure signal for the bottom and surface reflected 

ray path, shown in Fig. 3.2.2, is 

R a + R  b + R  c R o 

p ( t )  = P O ( t -  ) R l z R 1 0  
c R a + R  b + R  c 

(3.2.9) 

or 

p(t) - po(t - tpa,h)[paf ]R,~Rlo  (3.2.10) 
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The path amplitude factor and time delay are 

[paf ] = Ro/(R a + Rb+ R c) (3.2.11) 

and 

t path = (R a + Rb+ R c ) / c  (3.2.12) 

and R10 is the pressure reflection coefficient at the water-air interface. 

General methods of constructing [path] functions follow from these simple 

examples. 

3.2.3 MULTIPLE RAY PATHS 

Transmissions from a source can travel by many paths, and each path has its path 

amplitude factor [paf] and time delay tpath. It is very important to recognize that, 

in acoustic propagation, the signal pressure amplitudes for each path add linearly 

and may therefore interfere at the receiver. Sketches of four paths are shown in 

Fig. 3.2.3a. The sound speed is the same at all points in the water. 

Ray path R l is direct. The other ray paths have reflections at the surface and 

bottom. Figure 3.2.3b gives a diagram of the individual [path] functions and 

reflection coefficients. Examples of the meaning of [path ] are shown in Fig. 

3.2.3.c. Consider the top trace for a delta function source. Time 0 is the beginning 

of the transmission. The first arrival [paf (1)] is a vertical (delta function) line (1) 

at the transmission time R~/c. The height of the vertical line is proportional to 

Ro/R 1 . The second arrival [paf (2)] is the negative (owing to surface reflection) 

vertical line (2) at the transmission time R2/c. The height of that vertical line is 

proportional to (Ro/R2)RlO. Similar discussions apply to [paf (3)] and [paf (4)]. 

A model source transmission, such as from an explosive, is the exponentially 

decaying po(t) in the middle trace of Fig. 3.2.3c. The bottom trace p(t) is 

constructed by delaying po(t) by the travel time R~/c and multiplying po(t) by the 

amplitude factor [pal (1)]. Similarly, arrival 2 has the time delay R2/c and a 

magnitude determined by multiplying po(t) by the amplitude factor [paf(2)] and 

R10. Since arrivals 1 and 2 overlap, the signal pressure is the algebraic sum of the 

pressures. Arrivals 3 and 4 are calculated similarly. 

Figure 3.2.3 is an example of sound transmissions to ranges of about 

three water depths. In perhaps 20m water depth, straight ray paths are good 

approximations to the actual ray paths. We will return to multiple arrivals in 

section 3.3.8, when we model a transmission experiment in the Mediterranean 

Sea. 
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Figure 3.2.3 Four ray paths, path amplitude factors, and a simulation of a transmission from an explosion, a) The ray 

paths are labeled R 1 , R 2, R 3, and R 4. b) The path amplitude factors and time delays for each path are in the four boxes 

labeled [path]. The reflection coefficients are shown explicitly for the appropriate paths, c) The delta function [path] is 

the top trace. The middle trace is the source signal po(t). The bottom trace is the pressure signal at the receiver p(t). The 
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3.2.4 C O N S E R V A T I O N  OF E N E R G Y  I N  R A Y  T U B E S :  

NONABSORBING, NONSCATTERING, I S O - S P E E D  M E D I U M  

Ray tube concepts will be used later in more complicated examples of sound 

transmission and computations of sound pressures. Ray tubes are constructed by 

drawing all of the rays from a source to an area of the wavefront; the rays form the 

surface of the ray tube Fig. 3.2.4. For a constant speed (iso-velocity) medium, the 

rays are straight lines, the solid angle Af2 is constant, and the areas of the ends of 

the ray tube are 

S 1 - - ( A ~ ' 2 ) R  2 (3.2.13a) 

and 

S 2 -- (Af2)R 2 (3.2.13b) 

Since ideal rays are normal to wavefronts, no energy passes through the sides of 

the ray tube. Thus, if there is no sound absorption or scattering, the energy 

passing through the area S l equals the energy passing through S 2. 

Figure 3.2.4 Ray-tube construction for a homogeneous, nonabsorbing, nonscattering, 
iso-speed medium. Only a few of the rays that bound the outside surface of the tube are 
shown for clarity. The vectors representing the surface areas, S1 and $2 are along the 
particular ray path through the center of the tube and at ranges R 1 and R 2. 
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Now consider the inhomogeneous, lossless (nonabsorbing, nonscattering) 

medium, in which c and PA depend on position. Put the energy (Equation 3.1.11 a) 

in terms of the local pressures Pl and P2, and replace AS by S1 or $2. The equality 

of the energy entering and leaving the section of the ray tube gives 

R1 
S 1 (--6-i-1 + tg 

OAlC 1 JR  1 
Cl 

R2 
s2 

DA2 C2 j R  2 
c2 

[P l ( t - R 1  /C l ) ] 2 d t  = 

[P 2 (t - R  2 /c2 ) ] 2 dt  

(3.2.14) 

where the subscripts on PAl, C1, PA2, and c 2 indicate the local ambient densities 

and sound speeds. Using the t ime integral pressure squared notation, 

conservation of energy within a ray tube is 

S1 $2 
PAlCl [ tips 1 ] _ p--A2C~ [ tips 2 ] (3.2.15) 

In a homogeneous medium, the PA and c parameters are constant, and they cancel 

out, leaving 

S 1 [ tips 1 ] = S 2 [ t ips2 ] (3.2.16) 

3.2.5 S O U N D  P R E S S U R E S  I N  RAY  T U B E S :  H O M O G E N E O U S ,  

N O N A B S O R B I N G ,  N O N S C A T T E R I N G  M E D I U M  

The sound pressures at the surfaces S 1 and S 2 follow the 1/R rule of Equation 

3.2.1, and of Equation 3.2.5 in a homogeneous, nonscattering, nonabsorbing 

medium. In such homogeneous media, PA2Cl --PA2C2, the integral (Equation 

3.2.14) is an accurate approximation of the energy propagation, and the 

wavefronts are nearly spherical. These expressions are the starting place for 

calculations of the sound pressure in a ray tube. The changes of variable 

z 1 = t - R1 /c  and "~2 = t - R2/c  (3.2.17) 

in the integral (Equation 3.2.14) gives 

fo tg 2 fo tg S1 [ P l  (xa)] dx = S  2 [P 2 (x 2) ] 2 d'l; (3.2.18) 
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The limits of integration tg can be chosen so thatpl (T1) andp2(z2) are essentially 

zero for z > tg. Rearrangement of Equation 3.2.18 gives 

fO tg {SI[  p 1 ( ' 1 :1 ) ]2 -$2 [p  2 ( ~ 2 ) ] 2 } d ' ~  = 0  (3.2.19) 

When Pl (z~) and pc(z2) are proportional, one can set the contents of the bracket 

{...} to zero and write 

~ S 1 (3.2.20) 
P 2 (x2) -  +- P 1 (1:1 ) S 2 

The + sign is chosen for the tube sketched in Fig. 3.2.2 because the areas are 

simple projections on an expanding wavefront. 

3.3 Ray Paths in a Lossless,  Refracting M e d i u m  

Profiles of the sound speed versus depth in oceans, lakes, and rivers are often 

complicated. Pickard and Emery (1982) give elementary descriptions of the 

physical structure of oceans and ocean currents, as well as temperature, salinity, 

and depth, which are the critical parameters of the sound speed. Since water tends 

to stratify with the density, which increases with depth, the regions of constant 

salinity and constant temperature and the corresponding sound speed profiles are 

nearly horizontal in local regions. Currents disrupt horizontal stratifications and 

cause boundaries, or fronts, between different types of water. Oceanic fronts, 

such as the boundaries of the Gulf Stream, have very complicated structures. 

3.3.1 SOUND SPEED IN THE OCEAN 

The sound speed in water does not depend on the direction of the ray. Therefore, 

the names "sound speed" and "sound velocity" can be used interchangeably. 

In-situ instruments called sound velocirneters operate by timing a megahertz 

pulse in a small "sing-around" water circuit in the instrument; speed accuracies 

of 0.1 m/s are claimed (but see Chapter 8, where we find that bubbles can cause 

deviations of several meters per second). 

When the sound speed is to be determined from temperature, salinity, and 

depth, the best values are obtained by using the empirical formulation of Del 

Grosso (1974). But that formula has 19 terms, 18 of which have coefficients with 

12 significant figures each. The following simplified formula (Medwin 1975) has 
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less than 0 .2m/s  error compared with Del Grosso for 0 < T~ < 32 and 

22 < Salinity ppt < 45 for depths under 1000 m: 

c - 1449.2 § 4.6T - 0.055T 2 + 0.00029T 3 

§ ( 1 . 3 4 -  0 . 0 1 T ) ( S -  35) + 0.016z (3.3.1) 

where c = sound speed (m/s); T = temperature (~ S = salinity (%o; i.e., parts 

per thousand); and z - depth (m). 

Mackenzie (1981) gives a longer formula, which claims a standard error of 

0.07 m/s and is not restricted to depths less than 1000 m: 

c = 1448.96 § 4.591T - 5.304 x 10-2T 2 + 2.374 x 10-4T 3 

+ 1 . 3 4 0 ( S -  3 5 ) +  1.630 x 10-2z § 1.675 x 10-7z 2 (3.3.2) 

- 1.025 x 1 0 - 2 T ( S -  35) - 7.139 x 10-13Tz 3 

3.3.2 R E F R A C T I O N  A T  A N  I N T E R F A C E :  T H E  R A Y  P A R A M E T E R  

Ray paths obey Snell 's  Law as the waves propagate in water (Fig. 3.3.1)" 

sin 0 0 sin 01 sin 0 z 
- - = a = cons tan t  (3.3.3) 

Co C l  c z 

where c o is the initial sound speed, 00 is the initial incident angle with the vertical, 

and 0~ is the refracted angle. The constant a is k n o w n a s  the ray p a r a m e t e r .  

Suppose we start a ray at a depth z o and sound speed c 0. By Snell ' s  Law, the 

incident angle is 0 z at a depth z, where the sound speed is c z. 

/90 and c o 

/901 ~ 1 and c 1 

Z0 

Z l 

X 1 

z I 
X z 

Figure 3.3.1 Snell's Law and ray trace in a multilayered medium, a) Refraction at an 

interface, b) Refraction in a multilayered medium. The incident, reflected, and transmitted 

rays are shown. 
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3.3.3 R A Y S  T H R O U G H  C O N S T A N T - S P E E D  L A Y E R S  

In Chapter 2 we considered reflection and transmission at distinct layers. Here we 

follow the transmitted ray as it progresses through a continuous medium that is, 

f o r  convenience o f  calculation, split into several constant speed layers. Since the 

sound speed in each layer is constant, the ray path within each layer is a straight 

line. R a y  trace calculations use Snell 's Law at the interfaces between layers to 

follow rays through a medium. The calculations are usually done on a computer, 

because the same algorithm is applied repeatedly. 

Let the ray leave the source at an angle 0 0 with the normal. Then the ray 

parameter is 

a = s in0  0 / c o (3.3.4) 

At the (n + 1)th interface, sin0,, is, 

= a c (3.3.5) sinO n n 

and the other trigonometric functions are 

cos O n = V/1 - (aCn) 2 

and 

for ac n < 1 (3.3.6) 

a c  n 
tan O n = 

/ 1  - (a c n )2 (3.3.7) 

The ray parameter a is convenient because sinOo/Co is computed once, and the 

rest of the functions are computed using a in Equations 3.3.5 through 3.3.7. 

Refering to Fig. 3.3.1, we write an expression for computing the horizontal range 

of the ray trace to its intersection at the Nth interface 

N - 1  

X N  = n=~0 ( Z n + l - - Z n  ) t a n 0 n  (3.3.8) 

The travel time for the ray to travel to the Nth interface is 

% 1  ( Zn + 1 - - Z n  ) 
t N = 

n = 0  C n C O S 0 n  
(3.3.9) 

For ranges less than a few hundred meters, and near vertical angles of 

incidence, the ray paths are nearly straight lines. We can use the constant sound- 

speed approximation in most sonar applications where the ranges are less than a 

few hundred meters. 
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3 . 3 . 4  R A Y S  T H R O U G H  C O N T I N U O U S  S O U N D - S P E E D  C H A N G E S  

Assume the sound speed profile, c(z), is a continuous function of depth. Along a 

ray, the differential distance ds  and time d t  are 

ds  - d z /  co s  0 and dt  I dslc(z) - dzl[ (z) cos 0] (3.3.10) 

Let the ray be in the x - z  plane and measure the horizontal range as distance r. The 

differential displacement d r  is 

d r  - d z  tan 0 (3.3.11) 

where, using the ray parameter a in Snell 's Law, the trigonometric functions are 

given by Equations 3.3.3 through 3.3.5 and where c n becomes c ( z ) .  The 

summations become the integrals 

fz fz t f - t i = d t  = dz 1 (3.3.12) 
i i c ( z  ) ~ / 1 - a  2 c 2  ( z )  

and 

j'zl Jii a c ( z )  

t ' f  - -  t" i Zi d r  i d z  V ~  1 _ a 2 c 2 ( z )  
(3.3.13) 

With ingenuity, these integrals can be evaluated in closed form for several sound- 

speed profiles. See the construction in Fig. 3.3.2. 
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wn . . . . .  , I 

I 

'On+/ I 
I 
I 

Z2 - -  i 

I 
,, 

(a) (b) 

/ 

. /  

J 
t 

/ 

/ 

J 

/ 
/ 

Figure 3.3.2 a) Sound-speed profile in w coordinates, b) Circular ray path for linear 
�9 �9 - 1  

dependence of speed on depth between z n and Zn+ 1. Radius is (abn) = Wn/(sinOn), 

where bn is the speed in the nth layer. 
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The sound speed in the nth layer is given by 

C(Z) - -  C(Zn) + b n ( z -  Zn) f o r  z n ~ z ~_ Zn+ 1 (3.3.14) 

where the sound speed gradient, with units [(m/s)/m] = I s - l ] ,  is 

C ( Z n+l  ) -- C ( Z n ) (3.3.15) 
b n = Zn+l  - - Z n  

The interfaces are at z n and zn+ 1 . A change of variables from z to w facilitates the 

integration 

C ( Z n )  
(3.3.16) w n = z - z  n + b n 

where 

dw = dz and c(w)  -- bnw (3.3.17) 

For downgoing rays (the positive z and w direction), the integrals (Equations 

3.3.12 and 3.3.13) are 

s ~ n .  l d w  

t n + 1 --  t n - b n w ( 1 - a 2 b n  2 w 2 ) 1/2 (3.3.18) 
' n  

w.§ a b  n w d w  

2 2 112 (3.3.19) r n +  1 - r n  = ( 1 - a  2 b n w ) 
n 

The integrations are in integral tables, which give 

t n + l - t n  

1 [ w [ 1 +  ( 1  a 2 1/2 
= ~ In n + 1 -- b n  2 w 2 ) ] (3.3.20) 

W n [ l + ( 1 - a 2 b n 2 W 2 + l ) l / 2 ]  

and 

] 2 1/2 - = [ ( 1 - a  2 b n 2 w n  2 ) 1/2 _ (  1 - a  2 b n W2+l ) ] r n +  1 rn  a n 

(3.3.21) 

The travel time and range through a set of layers are 

N - 1  N - 1  

t =  ]~ t - t and r = ]~ r - r (3.3.22) 
n 0 n + l  n n + l  n = n = 0  

The ray-path Equations (3.3.20 through 3.3.22) are coded as subroutines in ray- 

path programs. 
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If the sound speed increases such that the ray becomes horizontal, and then 

turns, the turning depth w t is given by 

1 2 - 2  2 - a OnW t --  0 (3.3.23) 

The ray turns and travels upward. If c(z )  is not a function of range, the upward 

trace is the reversal of the downward ray trace. 

3 .3 .5  E X A M P L E S  O F  R A Y  P A T H S  

The path of a ray is associated with the sound speed structure of the ocean and the 

initial conditions at the source. In a horizontally stratified ocean, the sound speed 

c(z)  is the same everywhere at depth z, and this simplification is used in all of our 

examples. Actual sound speed profiles are time- and space-dependent. Except 

near ocean currents and fronts, the sound-speed structure is nearly constant for 

many ocean depths away from the surface. We have chosen typical examples of 

ocean stratifications to illustrate the range of possibilities and to introduce the 

nomenclature of ray paths. 

Arctic  Ocean  

The temperature of the water under the sea ice is nearly constant (Pickard and 

Emery 1982, p. 177). Although below 200 m to 4000 m the temperature ranges 

from +0.5 to - 1 . 0  ~ and the salinity is about 35%0, for a simple example, we 

choose T = 0 and salinity = 35%0 (parts per thousand). Then, from the sound- 

speed Equation (3.3.2), the sound speed is approximately 

c ( z )  "~ 1449 + 1.630 x lO-2z + 1.675 x lO-7z 2 (m/s) (3.3.24) 

Since the gradient of the sound speed is constant in our example, one can use 

the integrated Equations (3.3.20 and 3.3.21) to compute travel times and range for 

a ray having the incident starting angle 00. A set of ray paths for this profile is 

shown in Fig. 3.3.3. 

Each ray becomes horizontal and turns at its t u r n i n g  d e p t h  w t, given by 

Equation 3.3.23. The ray that just grazes the bottom is a limiting ray path. The 

s h a d o w  z o n e  is just beyond this ray path, and no direct path can get there. The 

penetration of sound energy into the shadow region is attenuated exponentially. 

The steeper paths are reflected at the bottom as shown in Fig. 3.3.4. The reflection 

paths that can get into the shadow region have at least two bottom reflections. As 

angles of incidence tend to normal, ray paths tend to straight lines. 
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Figure 3.3.3 Refracted and surface-reflected ray paths in an Arctic water structure; sound-speed profile at right. The sound speed 

increases linearly with depth. Following a common convention for nearly horizontal ray paths, the rays are identified by the initial 

grazing angle (degrees) with the horizontal, where grazing angle = 0 - 90 ~ Each of the rays has a turning depth where the tangent to 

the ray path is horizontal. Steeper ray paths (omitted here, for simplicity) will reflect from the bottom as shown in Fig. 3.3.4. 

B 
~ o  

~ ~  

O 

~ r  



2000 

..... I 

1000 

0 
0 

I - 16 grazing 

1 0oo 
/ 

Range km 

20 

Bot tom 

3000 

40 

Limiting 
raypath and 
shadow 
zone 

Figure 3.3.4 Reflected ray paths in an Arctic water structure of the profile shown in Fig. 

3.3.3. The limiting ray path has an angle of incidence of 74 ~ (16 ~ grazing angle). Angle 

increments are 2 ~ . These steeper angles are reflected at the bottom and at the surface. The 

rays at nearer grazing are shown in Fig. 3.3.3. 

North Atlantic Profile 

The North Atlantic Profile is f rom the seminal  research of  Ewing and Worzel  

(1948). The sound-speed profile has a min imum sound speed, which creates a 

sound channel axis at 1 2 0 0 m  depth. The sound speed is 1524 m/s at the surface 

and 1527 m/s at 4800 m. As shown in Fig. 3.3.5, the ray paths pass through the 

axis of the sound channel  (dashed line). For il lustration, the steepest  rays are 

Range  k m  
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0 . . . .  I I I I I 
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.~ 2000 

3000 
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Sound  speed  m/s  

1540 .. . . . . . . .  ,f 

Figure 3.3.5 Ray traces for a source on the sound channel axis (dashed line at 1200m 

depth) with a North Atlantic sound-speed profile. Grazing angles given at 2 ~ increments. 
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Range km 
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Figure 3.3.6 Convergence-zone ray paths for a source at 50 m. The sound-speed profile 
is given in Fig. 3.3.5. 

+ 11 o grazing angle. If the ray paths do not reflect from the surface or bottom, and 

are not blocked by features on the ocean floor, sound channel transmissions are 

very efficient for long-range (thousands of kilometers) communications in the 

ocean. It is likely that some whales use these paths for communications. 

A sound source near the surface excites a different type of phenomenon. 

Figure 3.3.6 shows a few rays from a shallow source. The ray paths go deep, turn, 

and return to the surface. At about 90 km range, the ray paths appear to converge 

in a region named the convergence zone. A magnification of the convergence 

zone is shown in the inset. Because many ray paths converge, the acoustic 

pressure is large in a convergence zone and smaller elsewhere. 

3.3.6 SOUND I N T E N S I T Y  A N D  P R E S S U R E  I N  A HORI Z ONT AL L Y  

STRATIFIED O C E A N  

An example of sound transmission in a stratified ocean is sketched in Fig. 3.3.7. 

As shown in the inset, the local region around the source is assumed to be 

homogeneous so that the initial radiation is spherical. As the energy propagates 

away from the source, the energy trapped in a ray tube follows Snell 's Law. The 

rays that define a ray tube must be very close together over the entire path. 

In spherical coordinates, the area of a tube near the source is 

AS 0 - Ro 2 sin00 AO 0 AC)o (3.3.25) 
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Figure 3.3.7 Construction for conservation of energy in a ray tube showing the 
separation of the rays AL. 

To get the area AS of the tube (see Fig. 3.3.7) at the horizontal range r and depth 

h, compute 0, A r and AL and form 

AS = rAdpAL (3.3.26) 

where 

AL - A r cos 0 (3.3.27) 

Conservation of the message energy in the transmission gives 

soAS o = eRAS (3.3.28) 

and 

2 [ tips] 
[tips]o R 0 s in0  oAOo A4b - r Aq) AL (3.3.29) 
P o C o  p c  

where [tips] represents the time integral of  the pressure squared, and where P0 

and c o are the density and sound speed at the source, and p and c are the values at 

the receiver. Note that the subscript a for " a m b i e n t "  has been dropped to 

simplify the typography. 
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If the sound speed is only a function of z (no horizontal refraction), 

A~b - A~b 0. Solution for the time integral pressure squared gives 

[tips] pc R 2 sin OoAO o 

[tips]o poCo rAL 

so that the ratio of the energies per unit area is 

/3 r Rg sin OoAO o 

eo rAL 

(3.3.30a) 

(3.3.30b) 

Using the functional notation for r and 0, the path amplitude factor for this 

refracting medium is 

[paf(r, 00) ] P~p-~c ~ R~ SinrAL00A00 (3.3.31) 

The energy per unit area at range r is given by 

8 r  s [paf (r, O0)] 2 (3.3.32) 

The energy arrives after the path time [tp,th]. 

When the sound pressure signal has little distortion in its travel from a source 

to receiver, the pressures that were integrated to produce Equation 3.3.26 are 

related by 

p ( t )  = [paf (r,O 0)] P 0[ t -  t path(r,O 0)] (3.3.33) 

a n d  [tpath(r, 00) ] --  t N is the ray path travel time (Equation 3.3.9). The wave form 

of p(t) is a delayed replica of po(t) multiplied by the path amplitude factor. 

3.3.7 WAVE FRONTS AND CROSSING RAY PATHS: 

PHASE SHIFTS AT CA USTICS 

When rays cross we need a special treatment for the refracted signal. We give a 

heuristic discussion that uses concepts from the seismic literature (Cerveny and 

Ravindra 1971; Cerveny et al. 1977; Aki and Richards 1980; Hubral and Krey 

1980. Figure 3.3.8 shows two situations: a) a pair of noncrossing rays and b) a 

pair of crossing rays. The tube end areas S1 and $2 are drawn the same for 

illustration. 

At a simultaneous crossing of ray paths, the AL of the wavefront, shown in 

Fig. 3.3.7, goes to zero as the ray paths go through a focus, as sketched in Fig. 

3.3.8b. Correspondingly, the pressure amplitude tends to infinity although 



3.3. Ray Paths in a Lossless, Refracting Medium 95 

Figure 3.3.8 Construction for crossing ray paths, a) Common expanding wavefront. 
b) Wavefront that has passed through a focus. The wavefront curvature has been inverted. 

fundamental wave-theory computations of the sound pressure in the region of the 

focus give finite amplitudes. Computations of pressures near the focus are based 

on using continuous sinusoidal waves and various asymptotic approximations 

(Pekeris 1946; Kay and Keller 1954; Born and Wolf 1959, 1965; Tolstoy and Clay 

1966, 1987; Tolstoy 1968; Clay and Medwin 1977; R. Chapman 1976, 1978; 

Stickler et al. 1981; L. Brekhovskikh 1980). 

Recalling the relations developed from the conservation of energy integral 

(Equation 3.2.18), for the situation in Fig. 3.3.8a we write 

~o tg fo tg S 1 [ P 1 ('c) ] 2 d'c = S 2 [P 2 (~) ] 2 dx (3.3.34) 

The crossing of the ray pa ths- - tha t  is, the situation in Figure 3.3.8b m 

effectively turns the area $2 around and introduces a negative sign, because the 

normal to the area has changed direction and the radius of curvature of the 

wavefront that is associated with the ray has changed direction (Cerveny and 

Ravindra 1971, p. 76; Hubral and Krey 1980, p. 52). The energy expression 

(Equation 3.3.30) then becomes 

fo tg fo tg S a [ P 1 ('c) ] 2 dz  = - S 2 [19 caus 2 ('C ) ] 2 d'c (3.3.35) 

where the subscript c a u s  indicates that the rays have crossed or passed through a 

caustic. 
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The pressure Pcaus2 is 

Pcaus 2 -- -t- ip l (3.3.36) 

The crossing of the rays and turning of the normal to the area $2 has introduced a 

factor i, which represents a 90 ~ (quadrature) phase shift. 

For sinusoidal pressures, it is fairly easy to show the effect of a 90 ~ phase shift. 

For example, assume the CW signal has amplitude P, and is described by the real 

trigonometric form 

p = e cos (cot + ~b) -- e cos (cot)cos (q~) - e sin (cot) sin (cb) (3.3.37) 

Notice that when cb : 0, p = P cos cot. When there is a phase shift, ~b = n /2 ,  

p = - P  sin cot. 

When expressed in the complex exponential form, Equation 3.3.37 becomes 

p = Real{Pe  i(~'+~) } (3.3.38) 

In the complex form, when there is a phase shift ~b = n /2 ,  it is equivalent to 

multiplying the complex signal e i'ot by i, and then choosing the real part, which is 

- P  sin cot. In conclusion, the phase shift 45 - n /2 ,  or multiplication by i, gives 

the quadrature component. 

The above argument for a sinusoidal signal has its counterpart for an impulse 

signal, which can also be phase-shifted by 90 ~ . The 90 ~ phase shift operation, 

which is also known as the Hilbert transformation of the impulse signal, gives the 

quadrature term. 

Examples of a discrete impulse signal and its quadrature transformation are 

shown in Fig. 3.3.9. The top trace shows the impulse signal. The middle trace is 

the result of a 90 ~ phase shift. The bottom trace is the result of a quadrature 

transformation of the middle trace. The application of the second 90 ~ phase shift 

gives a 180 ~ phase shift, which produces the negative of the original signal. The 

time delays have been shifted for display. The quadrature component has a 

precursor. Analytical details of the Hilbert transformations are in Born and Wolf 

(1965, sec. 10.2), Gabor (1946), and Oppenheim and Schafer (1975, sec. 7.4). 

3.3.8 S I G N A L  T R A N S M I S S I O N S  I N  A R E F R A C T I N G  M E D I U M  

W I T H  CA U S T I C S  

Now we apply methods given in this chapter to interpret signal transmission 

experiments where there are caustics. The experiments were performed in the 

Mediterranean Sea (Parkes [1966], Tolstoy and Clay [1966, 1987], and Leroy 
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a) Impulse 8 (t) 

b) Hilbert transform 

c) Double Hilbert transform 
v 

Time steps 

Figure 3.3.9 Impulse signal and quadrature (or Hilbert) transformation operations. The 
sampled signals are shown as vertical lines. The heights of the vertical lines are 
proportional to the sampled pressures, a) The original impulse, Pn. b) The quadrature or 
Hilbert transformation of the impulse, c) The effect of an additional quadrature 
transformation of b) or double Hilbert transformation of a) gives -pn, the negative of 
the original signal. The very small vertical lines at large Inl are artifacts. 

[1967], where the axis of the sound channel is very shallow (Figs. 3.3.10 and 

3.3.11). Some of the upward traveling ray paths are part of a caustic near the 4 km 

range (Fig. 3.3.11). Other (downward-going) ray paths form a caustic near the 

surface at approximately 30 km (Fig. 3.3.11). One path (labeled 4) goes through 

both caustics. 

Starting from a source at 100 m depth, it is evident that several ray paths will 

pass through the same depth and range locations. Since these paths are distinct, 

each path produces a distinct arrival. Figure 3.3.10 shows the ray paths for the 

first four arrivals. We will use these arrivals for numerical calculations of the 

[ p a t h ] s  and the received pressure signal waveforms. The received signal is the 

sum of all [ p a t h ] s .  A n  outline of the numerical computations follows. 

Ray-Path Computations: Ranges and Travel Times 

The numerical ray path code uses Equations 3.3.20 through 3.3.22 as a 

subroutine. Downgoing rays are turned upward at a turning point or a reflection at 

the bottom. Upgoing rays reflect at the surface or are turned downward. The ray 

path computation starts with an initial 00 and proceeds to the range r at depth z e. 

The code gives the range as the ray crosses z e. Picking a value of 00 that gives r e is 
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Figure 3.3.10 Four ray paths (left) and the Mediterranean Sea sound-speed profile (right). The source is at 100 m depth, the receiver 

is at 90 m depth, the range is 29.7 km. Path 1 goes down and up to the receiver without passing through a caustic. Path 2 goes through a 

caustic as it turns downard near the sea surface at about 28 km (Fig. 3.3.1 la). Path 3 goes through a caustic at about 4 km (Fig. 3.3.10b). 

Path 4 goes through caustics both near the source and near the receiver. The sound-speed profile was drawn using data from Leroy 

(1967). 
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Figure 3.3.11 Upward-starting ray paths for sound-speed profile in Fig, 3.3.10, Caustics 
are formed by crossing ray paths at range approximately 4 km (see "zoom" below) and in 
the 27-37 km range (above). 
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a tedious task. We use Newton's method of iterative calculations. A pair of ray 

paths at 00 and 00 + AO o give r + Ar for estimating a new 00. The program 

iterates until r is within 0.5 m of r e. The angle Ofina I is the angle that has the ray 

passing through (re, Ze). Its value is the initial angle 00 in Equation 3.3.31, which 

is needed for the next step. 

Computations of [path amplitude factor] and [path time] 

Amplitude calculations follow the method of section 3.3.6. A choice A 00 of about 

0.1 ~ gives Ar for the calculation of AL in Equation 3.3.31. For notation, let 01 be 

the angle for path 1 and [paf(re, 01) ] and so on. The calculation also gives the 

travel t i m e - - t h a t  is, [tpath(re, 01) ]. Calculations of the [path amplitude factors] 

and [path time] are performed for each of the four paths. 

Source Sound Pressure 

The source po(t) is chosen to match the apparent source pressure signal of the 

explosive used in the experiments. 

Caustics and Signal Waveforms 

Path 1 with no caustics has a factor of unity. Path 2 has one caustic and a phase 

factor of [ - i ] .  Path 3 has one caustic and a phase factor of [- i ] .  (The sign choice 

in [ - i ]  is arbitrary.) Path 4 has two caustics and a factor of [ -1  ]. 

The source po(t) is numerically convolved with the Hilbert transform (Chapter 

6) shown, in Fig. 3.3.9 to give the 90 ~ phase shift. Results of these computations 

are shown in Fig. 3.3.12. 

Summary of the Theoretical Signal Transmissions 

Path 1: p,(t)  = [paf(re, O,) lPo(t-  tp,th(re, Ol) ] 

Path 2: p2(t) = [paf(re, 02)][-i]po(t - tp,th(re, 02) ] 

Path 3: p3(t) = [paf(re, 03)][-i]po(t-  tpath(re, 03) ] 

Path 4: P4(t) = [paf(re, 04)][-1]Po(t-  tpa,h(re, 04) ] 

The sound pressure waveform is the sum of all arrivals. The waveform for the 

first four arrivals is 

Signal: p(t) = Pl (t) + pz(t) + Pa(t) + p4(t) (3.3.39) 
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a) 

b) 

c) 

Path 1 

Path  2 and 3 

Path 4 

V 
Time 

Figure 3.3.12 Sound pressure signal and its Hilbert transforms: a) explosive signal for 

path 1; b) - 90 ~ phase shift or Hilbert transformation of a) for Paths 2 and 3" c) Double 

Hilbert transformations for Path 4. 

The theoretical signals are shown in Fig. 3.3.13. The experimental  data are 

given in Fig. 3.3.14. The arrivals are aligned on the first arrival. All of the 

experimental  and model  arrivals agree within a few mill iseconds m t h a t  is, two 

parts in 105. The waveforms of the theoretical and experimental  signals are 

similar for all ranges. The ray path, - 9 0  ~ phase shift for a single caustic and 180 ~ 

for two caustics, properly described the waveforms of the experimental  signal 

transmissions. The [path amplitude factors] and [path times] analysis gives a 

good match to the experiments.  

1 
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_A 30.2 km ____~.____._~ 
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Time after first arrival ms 

4 

Figure 3.3.13 Theoretical (model) transmissions. We align the first arrivals of the model 

calculations at all ranges. The model travel time to the 29.7 km range is 19.594 s. The 

travel time to the 31.5 km range is 20.770 s. 
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Figure 3.3.14 Experimental transmissions. The first arrivals are aligned. The explosive 
sources were at 100 m and receivers were at 80-90 m depths. Redrawn for data in Tolstoy 
(1965). Compare with transmission in Fig. 3.3.13. 

3.3.9 G E N E R A L  C O M M E N T S  ON RAY-PATH M E T H O D S  

Classical ray-path theory simply uses Snell's Law to determine the ray paths. In a 

region where several ray paths arrive at a hydrophone, an impulse is received 

for each of the rays. When there is a longer duration signal, the pressures of the 

several signals from the several ray paths add coherently at the hydrophone. If 

ray paths cross at the same time, correct interpretation of the interference of the 

crossing rays requires wavefield calculations. 

"Exact ray paths" have been obtained by Foreman (1989) by solving the 

complete wave equation for certain simple, sound-speed profiles. His exact ray- 

path solutions do not show crossing rays for situations where the classical ray 

calculations (incorrectly) do. Foreman suggests that classical ray-path cal- 

culations are acceptable for broad frequency bandwidth signals (i.e., impulses). 

Some ray-path calculations create artifacts for two main reasons: (1) approx- 

imations that are made in going from the wave equation to a ray-path solution can 

produce errors (e.g., when ray paths cross or go through a focus); and (2) 

numerical or algebraic approximations that are made to approximate 

continuously varying sound-speed profiles produce false answers. They can 

give superfluous arrivals as well as amplitude anomalies (Pedersen 1961; 

Spiesberger et al. 1994). 

Despite these limitations, the ocean acoustics community continues to use ray- 

trace methods because they give a simple picture and because careful 

computations generally match experimental data. 
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3 .4  A t t e n u a t i o n  

3.4.1 E X P O N E N T I A L  A T T E N U A T I O N  OF P L A N E  WAVES 

The exponential attenuation of propagating plane waves is well known in both 

electromagnetics and acoustics. The physical basis in acoustics is the fact that, in 

a homogeneous medium with wave absorption (conversion to heat) or 

omnidirectional scattering, a plane wave experiences a reduction of acoustic 

pressure, dp, proportional to the original pressure, p, and proportional to the 

distance traversed, dx. We call the proportionality constant ~e because the effect 

leads to an equation, 

dp = --~eP dx (3.4.1) 

that, when integrated, gives the natural logarithm to base e = 2 .71828-- tha t  is, 

In (1)/1)o) = - - ~ e  X (3.4.2) 

or 

(1) 1n  343, 

where we evaluated the constant of integration by letting p = P0 at x = 0. The 

familiar decay law follows by exponentiating. Equation 3 .4 .2m that is, 

p = po e-~et (3.4.4) 

The spatial rate of amplitude decay, the amplitude decay coefficient ae, has 

SI units of nepers/unit distance. (The unit neper, abbreviated Np, was named after 

John Napier, the inventor of logarithms, which were in everyday use before the 

advent of digital computers.) The distance is usually given in meters or 

kilometers. 

The plane-wave attenuation rate c~ e, which depends on the medium, is 

generally expressed as a function of frequency. Commonly the attenuation per 

wavelength is very small, that is, ~e)~ ,~ 1, which permits attenuation to be 

included as a factor not only for plane waves but also in the pressure spreading 

from a point source. For example, including plane-wave attenuation in a lossy 

medium, the pressure sonar equation (3.1.4) for a spherically diverging wave 

could be written 

p ( t )  = p o ( t - R /c ) - ~  e -~ (3.4.5) 
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In the 1920s, a new decay coefficient, advocated by the Bell System (Martin 

1929) and based on loglo of the relative power in lossy communication circuits, 

came into common usage. The " b e l "  was named to honor Alexander Graham 

Bell (1847-1922), and one-tenth bel, the decibel (abbreviated dB), became much 

more popular than the neper in underwater acoustics. To distinguish the 

attenuation coefficient in decibels per unit distance, we call it simply ~. The 

plane-wave attenuation coefficient is written in terms of the relative sound 

intensity at two points of a plane wave, 

= (1/x)[lOlOglO(il/i2)] dB/unit distance (3.4.6) 

or, since the intensity is proportional to the square of the pressure in a plane wave 

(or at long range in a spherical wave), one writes 

= (1/x)[2OlOglo(Pl/P2)] dB/distance 

Comparing with Equation 3.4.3, we find 

(3.4.7) 

o r  

1 neper = 8.68 dB (3.4.8a) 

8.68~ e = ~ (3.4.8b) 

3.4.2 ABSORPTION LOSSES 

To understand the attenuation due to absorption, we return to the acoustic force 

Equation (2.7.4), where, for simplicity, we previously ignored two forces. The 

complete acoustic force equation includes viscosities and is a simplification of 

the Navier-Stokes equation found in any good book on fluid dynamics. For 

acoustics we drop the convective acceleration term compared with the local 

acceleration, as we did in Equation 2.7.2, and obtain 

OU -Vp  + ( ~  + p h ) V V . U - p V  • (V • U) (3.4.9) 
PA Ot -- 

The two new terms introduce the dynamic (or absolute) coefficient of shear 

viscosity, ~, and the dynamic bulk viscosity, ~h. The shear viscosity, which is 

generally called simply "the viscosity," is defined as the ratio of the shearing 

stress to the rate of strain. Each component of the stress is due to a shearing 

force component F parallel to an area A, caused by a gradient of velocity 

perpendicular to the area. For example, for velocity components u, v, and w in the 

x, y, and z directions, the shearing stress in the x direction, F x, is proportional to 
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the shearing rate of strain, which is caused by a velocity gradient in the y 

direction: 

A - ( 3 . 4 . 1 0 )  

The important bulk viscosity appears only when there is a compressible 

medium (e.g., an acoustic wave in water ). It is not found in traditional, 

incompressible hydrodynamics. Note that it appears only in the divergence term 

of Equation 3.4.9, which is proportional to the rate of change of density. We will 

look at the physical origin below. 

To calculate the influence of the viscosities on the attenuation of a plane wave, 

consider the x component of Equation 3.4.9, 

Ou Op + -~- fib (3.4.11) 
PA Ot -- - Ox OX 2 

Rederive the plane wave-equation by differentiating Equation 3.4.11 with respect 

to x, using the conservation of mass, Equation 2.5.4, and the plane-wave relation 

p --  p c  2, to obtain the wave equation in terms of the acoustic density p and the 

coefficients of viscosity, 

~)2 D ( ? + ~ b ) ~ )  ~)29 1 ~)2D 
0x 2 + Pa C2 0t  0X 2 C2 ~)t 2 

(3.4.12) 

Molecular Relaxation 

Consider the physical origins of/~ and #b. It takes a finite time for a fluid to 

respond to a pressure change, or to relax back to its former state after the pressure 

has returned to normal. The process is called relaxat ion.  Chemical relaxation, 

which occurs in sea-water, involves ionic dissociation that is alternately activated 

and deactivated by sound condensations and rarefactions. Surprisingly, 

magnesium sulfate and boric acid are the two predominant contributors to 

sound absorption in sea water, even though their contribution to water salinity is 

very much less than that of common salt (sodium chloride). 

To obtain the form of the attenuation due to the molecular relaxation effect, 

add a time-dependent term to Hooke's Law (Equation 2.5.5), 

dp  (3.4.13) 
P = c2 P +b d t 
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where b is a constant. To obtain the relaxation time, assume that a pressure is 

released (p = 0) at time t -- 0, and the density then decays from its initial value, 

P0- The fractional change in time dt is 

d 9 c 2 
- ~  dt (3.4.14) 

9 -  b 

Integrate, and let p = P0 at t = O, to obtain, 

P -- P0 exp - (3.4.15) 

where the relaxation time of the process is 

b 
"~r C2 (3.4.16) 

The value of % depends on the fraction of molecules active in the relaxation 

process. This depends, in turn, on the temperature and pressure of the liquid. 

For this reason, as we shall see, the attenuation at sea due to absorption by 

relaxation processes is sensitive to the temperature and ambient pressure (depth) 

of the water. 

Relaxation in sea water affects the speed of propagation very slightly, but it is 

the source of a most important factor in the attenuation of sound. To determine 

these effects, rederive the wave equation (section 2.5.2) with the time-dependent 

equation of state (3.4.13) instead of Equation 2.5.5. In terms of density one 

obtains 

P 

3X 2 

~2 
1 

+ ~ r a t a x  2 - c 2 ~)t 2 
(3.4.17) 

Propose a solution for a plane-wave sinusoid propagating in the +x  direction, 

P = P0 ei(c~ t ) -  (ikr + ~,,)x (3.4.18) 

where k, is the propagation constant in the fluid with molecular relaxation, and ~e 

is the exponential attenuation rate expected. The values are determined by 

substitution into Equation 3.4.18, which gives 

C02 -1 - ( k 2 - c ~ 2 ) +  c~---~(1 +c02a:2) -1 +i ekrcZ ~ -  c2 (1 + = 0  

(3.4.19) 
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Equate the reals and equate the imaginaries to give two equations. Solve 

simultaneously to get the exponential attenuation rate, 

O)2T, r C r 

(Ze = 2c2(1 + (02'172) (3.4.20) 

and the real propagation constant, the dispersive phase speed. 

It turns out that the dispersive speed, Cr, differs from c by only about 1 percent 

owing to relaxation effects in sea water, so we henceforth assume 

c ~ -  c r (3.4.21) 

We now define the relaxation frequency 

1 
f r -  2rt '1; r (3.4.22) 

and obtain the characteristic form for the attenuation rate owing to molecular 

relaxation in a f lu id- - tha t  is, 

(rCfr/c)f2 nepers / distance (3.4.23) 
O~e = f2 + f2 

For attenuation rate ~ in decibels/distance, use the conversion one 

neper - 20 log10 e -- 8.68 dB, where e is the base of the natural logarithm. The 

plane-wave attenuation rate for a relaxation process is therefore of the form 

A fry 2 
-- f2 + f2  dB / distance (3.4.24) 

where A = 8.68rc/c. 

Notice that the attenuation rate in a relaxation process reduces to 

= A f2 = constant for f >> fi  

A f2 ~ f2 (3.4.25) 
~ = ~  for f ' ~ f r  

These are the behaviors that dominate the attenuation in sea water, as seen in the 

next section. 

A few more words about the physics of the relaxation process may be helpful. 

When the effect is expressed in terms of attenuation per cycle (aft) ,  or 

attenuation per wavelength, one finds that 

r ~,= (A c fr) f 2 f + fr 2 (3.4.26) 
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which describes an effect that approaches zero for very high or very low 

frequencies. This is because, at very high frequencies, the relaxing molecules 

cannot respond fast enough to be effectively activated. At the other extreme, 

when the frequency is very low, the molecular relaxation follows in step with the 

sound wave, and there is no evidence that relaxation is taking place. However, 

when the frequency is approximately equal to the relaxation frequency, the 

activated molecules will dump energy from a condensation into a rarefaction, and 

some of the ordered energy of the sound wave is thereby transformed into 

random, thermal motion of the medium. 

Comparison of the two forms of the wave equation (Equations 3.4.12 and 

3.4.17) permits an immediate identification of the macroscopic descriptors of the 

medium,/x and #b, and the molecular behavior in terms of relaxation, 

(4 /3)#  + #h (3.4.27) 
Tr - -  PAC2 

Consider fresh water at 14~ Designating freshwater by the subscript F, the 

conventional constants are: [/F = 1.17 x 10 -3 N-s/m2; PF = 1000kg/m3; and 

CF = 1480 m/s. From the experiments in acoustic streaming (section 5.5), it is 

known that the bulk viscosity for water is 2.8 times the shear viscosity m tha t  is, 

/t h = 2.8/.t F. Therefore, Equation 3.4.27 yields 

%. = 2.1 x 10 -12 (S) (3.4.28a) 

Recalling Equation 3.4.25, this very small relaxation time means that the 

attenuation will be proportional to frequency squared for any useful sound 

frequencies propagating in fresh water m t h a t  is, for 

f <~ 1/(2~z • 2.1 • 10-12 seconds) f <~ 10" Hz (3.4.28b) 

This frequency squared component of the total absorption is seen in the straight 

lines that have slope 2, in the log-log graph plotted in Fig. 3.4.1. 

Relaxation in Sea Water 

In the 1950s, the mysteriously large attenuation of sound observed at frequencies 

around 20 kHz during World War II was finally explained by a series of careful 

laboratory experiments by R. W. Leonard (1949) and his students O. B. Wilson 

(1954) and D. Bies (1955). The technique used was to drive a water-filled sphere, 

of diameter approximately 30 cm, into its modes of oscillation, and to determine 

the damping constants caused by the various sea salts added in proper amounts to 

the water. The startling realization that the relatively small amounts of 
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Figure 3.4.1 Sound pressure attenuation rate in dB/km in fresh and sea water at 
temperatures 0 ~ , 10 ~ , and 20 ~ C. Calculated from Franqois and Garrison (1982). Parameters 
at pH--8; S-- 35 ppt; and depth, z--0 m. 

magnesium sulfate salts were causing a molecular relaxation phenomenon 

changed, forever, the naive thought that only viscosity was important. 

In the 1970s, similar laboratory experiments by Fisher and Simmons (1977) 

and experiments by Mellen and Browning (1977) showed that there was another 

relaxation phenomenon, due to boric acid in sea water, moderated by the pH of 

the sea water. This causes a strong effect at frequencies around 1 kHz. 

The dependence of relaxation effects on temperature, shear viscosity, and 

bulk viscosity is discussed in somewhat more detail in section A3.2 of Clay and 

Medwin (1977). The result of much research in the laboratory and at sea have 

been summarized by Franqois and Garrison (1982). It is their empirical formula 

that will be used in this text. They give the attenuation in sea water as the sum of 

the two relaxation terms and the viscosity component: 

A 1 P l f  i f  2 A 2 P 2 f  2f 2 
= 2 + 2 + A 3 P 3 f  2 dB/km 

f 2 + f l  f 2 + f 2  

(3.4.29) 

where ~ is the total absorption coefficient in dB/km. The coefficients are expres- 

sed in terms of z = depth, (m); T = temperature, (~ S -- salinity (parts/1000); 

and the relaxation frequencies fl  for boric acid and f2 for magnesium sulfate. 



110 3. Transmissions Along Ray Paths 

Boric Acid Component in Sea Water 

8.68 10 (0.78 pH- 5 ) dB k m  -1 kUz  -1 
A 1 -  c 

P I = I  

f 1 = 2.8 ( ~ 5 ) 0 5  10 [4- 1245/(273 + T )] kHz  

q = 1412 + 3 .21T + 1.19 S + 0.0167 z m/s. 

(3.4.30) 

Magnesium Sulfate Component in Sea Water 

A 2 = 2 1 . 4 4 S  ( 1 + 0 .025T)  dB k m  -1 kUz  -1 

P 2  - 1 - 1.37 x 10 -4Z -I-- 6.2 X 10 -922 

8.17 • 10 [8- 1990/(273+ T )] 

f 2 = 1 + 0.0018 (S -35 )  kHz  

(3.4.31) 

Pure Water (Viscosities) Component for T < 20~ 

A 3 : 4.937 x 10 -4 - 2.59 x 10-ST + 9.11 • 10-TT 2 

- 1.50 x 10-8T 3 (dB km -l kHz -2) 
(3.4.32) 

Pure Water (Viscosities) Component for T >20~  

A 3 - 3.964 x 10 - 4 -  1.146 x 10-ST + 1.45 x 10-7T 2 

- 6 . 5  x 10-1~ 3 (dB km -l  kHz -2) 

P 3 -  1 -  3.83 x 10-Sz + 4 . 9  x 10-1~ 2 

(3.4.33) 

(3.4.34) 

3.4.3 SCATTERING LOSSES 

In carrying an acoustical message through a ray tube, any energy that is scattered 

out of the ray tube causes attenuation, just as effectively as absorption and 

divergence of sound. In Chapters 7 and 8 we consider the scattering of energy by 

bodies and bubbles, which is the third source of propagation loss at sea. 
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3.4.4 AMPLITUDE SONAR EQUATIONS 

We now assume that our signal covers a narrow frequency range so that we can 

include absorption simply, as a factor, in the sound transmission equations. Using 

Equation 3.4.8 to write Equation 3.4.5 in terms of ~, the (linear) pressure sonar 

equation for a spherically divergent wave in a homogeneous attenuating medium 

is written as, for example, 

p(t) = po(t - R/c) R--O-~ 10 -~e/e~ (Pa) 
R 

(3.4.35) 

More generally, including absorption in the path amplitude factor, [pal], the 

linear pressure sonar equation can be written 

p(t) = [paf (r, 0o, ~)]P0[t- tpath(r , 00) ] (Pa) (3.4.36a) 

where 

[pal (r, 0o, ~)] -- [Pal (r, 0o)]10 -~r/20 (3.4.36b) 

This expression was derived to calculate the sound signal as a theoretical 

transmission. If the individual arrivals are displayed as in Figs. 3.2.3 or 3.3.14, 

one can use the source pressure po[ t -  tpath(r , 00) ] and the received pressure p(t) 

to compute experimental values of the attenuation for that particular ray path and 

travel time. Generally all pressures are in pascals. 

3.4.5 SUM OF MULTIPLE ARRIVALS: 

THE TRANSMISSION FRACTION 

Multiple arrivals, as shown in Figs. 3.3.13 and 3.3.14, can be expressed as the 

sum of the individual arrivals. The sum of four arrivals (Equation 3.3.39) can be 

extended to N arrivals. Each arrival has a path amplitude factor that may include 

refraction in an inhomogeneous medium (section 3.3), the plane-wave 

attenuation owing to absorption or scatter (sections 3.4.2 and 3.4.3), coefficients 

of reflection R when there are interactions with the bottom or top surfaces, and 

phase shifts owing to caustics ~b c (section 3.2.3) when they exist. These are 

included in the [paf] function so that p(t) becomes 

N 
p ( t ) =  ~_~ [pclf(r,O n,~,R,(~c)] P o ( t  - tpath n ) (3.4.37) 

n = l  
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In practice, we choose individual arrivals and measure their travel times, 

amplitudes, and waveforms when the signals are separable in the time domain. If 

the multiple arrivals are not separable, both the phases and amplitudes of the 

components determine how they interfere (see, for example, Fig. 2.6.10). 

Continuous Source Transmissions 

Some sound-transmission measurements in the ocean are made as sketched in 

Fig. 3.4.2. The ship tows a sinusoidal source away from the receiver, and the 

receiving system records the pressure signal at the receiver. All of the arrivals are 

present, and their sound pressures add and interfere at the receiver. The 

relationship to theory follows by evaluating (Equation 3.4.37) for a continuous, 

sinusoidal source transmission. 

Let the source function po(t) be Po ei2~ft, substitute it into Equation 3.4.37, and 

write 

p ( t ) =  P o e i2zr f  t 
N 
~_, [paf  (r,O n )] e - i  2zrf t path,n (3.4.38) 

n = l  

where the time dependence has been factored from the summation. The [paf(r, 

0n)] function here must include all of the parameters of Equation 3.4.37; the 

parameters are omitted here for typographic simplicity. The nth path amplitude 

factor has the phase (2rcftpath,n). The summation depends on range, travel times or 

phases of the arrivals, and frequency but not time. The time and space 

dependencies in Equation 3.4.38 are separable for a continuous wave source 

transmission. 

Receiver~ 
and 1 

recorder] 

[trans (r, f )] Ar ~ Source sound 
pressure = 
P 0 sin 2rcft 

Bottom 

Figure 3.4.2 Transmission from a continuous (e.g., sinusoidal) wave source. The 
numerous ray paths are not shown. The region within the rectangle contains practically all 
of the ray paths that contribute to the transmission fraction. 
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Equation 3.4.38 is a general expression for the sum of many arrivals that travel 

by many different paths. We use it to define a transmission fraction [trans(r, f ) ]  

for N arrivals: 

N 

[trans(r,f )] -- ~ [paf (r, On)]e -i2nftpath'n (3.4.39) 
n = l  

The pressure at a receiver is 

and 

p(t) = e ( r , f  )e i2~ft = [trans(r,f )]Po ei2~ft 

P(r, f)  = [trans(r,f)]P 0 

(3.4.40a) 

(3.4.40b) 

The transmission fraction [trans(r,f)] depends on the summation over all 

arrivals. Solving Equation 3.4.40 for [trans(r, f ) ] ,  one gets the transmission 

fraction in terms of the pressure amplitude of a continuous wave transmission and 

a measured or calculated sound pressure at the receiver: 

[trans(r,f )] = P(r , f  )/Po (3.4.41) 

3.4.6 LOGARITHMIC SONAR EQUATIONS: 

TRANSMISSION LOSS (dB) 

For simplicity in transforming to the log-sonar equations, we consider continuous 

wave transmissions as just described. In the past, both experimental and 

theoretical studies have used the amplitudes of the sound pressures and have 

ignored the phases in the logarithmic operations. Thereby the log-sonar equation 

is expressed in terms of the logarithm of the absolute value of Equation 3.4.41, 

after reference pressures have been included to make the argument of each 

logarithmic term dimensionless, 

20 log IP(r,f)/Pref I = 20 log (P0/Pref) + 20 log I[trans(r,f)] (dB) (3.4.42) 

Reference Pressures  

The use of reference sound pressures in acoustics is untidy. The current reference 

pressure in underwater acoustics is the pascal, 1 Pa = 1 Newton/m 2, or the 

micropascal, 1 ktPa -- 10 -6 pascals. In former years, underwater acousticans used 

the reference 1 microbar = 0.1 Pa = 105 micropascal. Acousticians who work in 

air use 20 ~tPa for their reference. The use of different reference pressures in 
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ocean and air acoustics has caused much confusion. For this reason, we strongly 

recommend the use o f  Sl units ( pascals or micropascals) to report sound pressure 

measurements. 

The log-terms in Equation 3.4.42 have been given simple, easy-to-remember 

names: sound pressure level SPL, source level SL, and transmission loss TL. 

Their definitions are 

SL = 20 lOgl0 (Po/Pref) 

SPL = 20 lOgl0 (I P(r,f)[/Pref) 

TL -- - 2 0  log l[trans(r,f)] I 

(dB referred to Pref) (3.4.43) 

(dB referred to Pref) (3.4.44) 

(dB, dimensionless) (3.4.45) 

Using these definitions, the log-sonar equation is 

S P L =  S L -  TL (dB) (3.4.46) 

and the transmission loss TL is 

TL -- S L -  SPL (dB) (3.4.47) 

The complexities of underwater acoustics propagation are hidden in the 

concepts of the transmission fraction [trans(r, f)] and its logarithmic form TL 

(dB). These quantities depend on the bathymetry, sound-speed profiles, multipath 

arrivals, range, source frequency, character of the divergence from the source to 

the receiver, possibility of caustics, and absorption and scattering along the way. 

Simple Examples of Transmission Losses in dB 

Spherical Spreading. Recalling sections 2.7.3 and 3.4.4, the sound pressure 

from a point source in a homogeneous medium is (including attenuation) 

p = Po(Ro/R) 10 -~R/2~ (2.7.41) 

The logarithmic transformation of the pressure sonar equation (2.7.41) gives 

20log Ip(R,f)/Prefl = 20log (eo/Pref) -J- 20log (Ro/R) - c~R (dB) (3.4.48) 

and the transmission loss for spherical spreading is 

TLspnR ,~ 20 log (R/Ro) + eR (dB) (3.4.49) 

The spherical divergence loss is 6dB for range doubled, if absorption and 

scattering are negligible. 
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Cylindrical Spreading. Waveguide propagation will be considered properly 

in Chapter 11. But notice that in waveguide propagation, such as shown in Fig. 

1.3.3, energy is trapped between the top and bottom boundaries of the waveguide. 

Consequently, at long range, the average energy is expected to spread 

cylindrically within the waveguide. The intensity would then be inversely 

proportional to the range and the pressure inversely proportional to the square 

root of the range, but modified by attenuation, 

p constPo(ro/r)l/210-~r/2~ (3.4.50) 

where the "const"  is a constant of proportionality. The transmission loss for the 

waveguide is, including the attenuation, 

TLcr L -- L c o n s t -  20log (ro/r) 1/2 + ~r (dB) (3.4.51a) 

o r  

TLcy L -- Lconst - 10 log (ro/r) + ~r (dB) (3.4.51b) 

where Lconst is a new proportionality constant. When there is no absorption or 

scattering, doubling the distance increases the TLcrL by 3 dB. 

Refraction Spreading. The path amplitude factor [pay (r, 00)] gives the 

amplitude for a single ray path, 

, / p c  R~ sin OoAO o 
[pay(r, 00)] 

V PoCo rAL 

Including attenuation, the transmission loss for a single ray trace path is 

(3.4.52) 

TL[paf ] = -201og l [pa f ( r  , 00)]l + ~r (dB) (3.4.53) 

and 

pc R~sinOoAOo 1 
TL[paf ] = - -  10 log (P-~0) (rAL) + ~r (dB) (3.4.54) 

This theoretical transmission loss is useful only when a single arrival is received. 

If multiple arrivals are received and overlap, one must use the summation in 

[trans(r,f)] and Equation 3.4.39, because the sound pressures add and interfere at 

the receiving hydrophone. 
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3.5 T o m o g r a p h y  

Tomography (slice writing) uses the differences in speed, or attenuation, along 

several paths to deduce the properties of different parts of the region between 

source and receiver. Its earliest application was in three-dimensional studies of 

human tissue density variation by the differential attenuation of X-rays along 

many paths through the human body (CAT scan). 

On the other hand, ocean acoustical tomography uses the time difference of 

arrival to infer the speeds of sound along the ray paths. Experimental and 

synthetic transmissions show that the pattern of sound pressure arrivals varies 

systematically as the geometry of the experiment is changed. For this reason, 

sucessful ocean acoustical tomography requires fixed (or correctable) source and 

receiver positions, strong signals, and a long time series of transmissions. The 

Heard Island experiments are described briefly in section 1.4.1. A very detailed 

18-paper review of that tomography trial was published in the October 1994 issue 

of The Journal of the Acoustical Society of America (Volume 96, pp. 2327- 

2484). See also the excellent monograph Ocean Acoustic Tomography, by Munk, 

Worcester, and Wunsch (1995). 

3.5.1 INVERTING FOR A MAP OF THE SPEED OF SOUND 

The sound that reaches a distant point in the ocean arrives at its destination after 

sampling the speeds along the way; its relative time delay is an integrated 

measure of those speeds. For a point source, issuing a short burst of sound, there 

are multiple bursts of energy that arrive at different times as shown in sections 

3.2.3 and 3.3.8. It is the difference in propagation time along these multipaths that 

is used in a tomography experiment to determine the speeds of propagation 

within the vertical slice between source and receiver. 

Another example of multiple arrivals is shown in Fig. 3.5.1 for a 300 km path 

(Howe et al. 1987; Munk 1986). The source and receiver were near the channel 

axis. The sound-speed gradient and channel depth were similar to that shown in 

the North Atlantic Profile (Fig. 3.3.5). The arrivals are identified by the number of 

times the energy crosses the channel axis. The (+) rays started in an upward 

direction at the source; the ( - )  rays started downward. The +20 ray traveled 

closest to the channel axis, where the speed was a minimum, so that it arrived last 

even though its path length was shorter than that of the other rays. 

The beautifully clear, unambiguous, and perfectly understandable arrivals 

discussed in section 3.3.8 are rare. Fig. 3.5.1 is more typical. To be usable, 

arrivals such as in Fig. 3.5.1 should be resolvable m tha t  is, they should be 
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Figure 3.5.1 Measured and computed arrival times of rays at sea. The numbered peaks 
are identified by the (+) and ( - )  grazing angle (degrees) at the source. The unidentified 
peaks were inconsistent and were not used in the analysis. (From Munk, W., "Acoustic 
monitoring of ocean gyres," J. Fluid Mech. 173, 43-53, 1986.) 

sufficiently above the noise and clearly separated in time from other arrivals. The 

rays that are used in tomography should also be stable during times short 

compared to the duration of the experiment. Finally, the rays should be 

identi f iable in terms of the location of the ray path over which they are presumed 

to have traveled. When these conditions are fulfilled, the time t i for the ith ray is 

given by 

t i = S j R i j / c  j (3.5.1) 

where cj is the speed in layer j and Rij is the distance traveled by ray i in 

layer j. 

Equation 3.5.1 is a matrix relation that can be inverted to solve for the "wave  

slowness," 1/c~. 

When several transducers are used at different locations, it is possible to 

observe the medium in three dimensions and to determine movements of ocean 

eddies or fronts. In the first tomography experiment (1981), four source moorings 

and five receiver moorings were deployed at 2000 m depth, on the periphery of a 

300 km square. This configuration produced evidence of a cold eddy that was first 

stationary, and then moved out of the monitored volume. Fig. 3.5.2 shows a 30- 
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I03 

91 97 

Figure 3.5.2 Movement of a cold eddy, inferred from travel times in the first (1981) 
tomography experiment. The depth is 700 m; the area is 300 km by 300 km. Constant 
speed contours (in m/s relative to 1506 m/s) are shown at six-day intervals from Day 85 to 
Day 115. The cold eddy (low sound speed) is seen to drift to the left. (From Comuelle, 
B. D., C. Wunsch, D. Behringer, T. G. Birdsall, M. G. Brown, R. Heinmiller, R. A. Knox, 
K. Metzger, W. H. Munk, J. L. Spiesberger, R. C. Spindel, D. C. Webb and P. E Worcester, 
"Tomographic maps of the ocean mesoscale," J. Phys. Oceanogr. 15, 133-152, 1985.) 

day sequence of sound-speed profiles (relative to the reference speed of 1506 m/s) 

as deduced for 700 m depth. The calculations can be performed for other depths 

as well. 

The precision with which the speeds can be determined depends on the 

number of rays passing through the unknown region. The effectiveness of the 

tomographic probe of a slice of the ocean can be improved by using 

supplementary data such as temperatures or sound speeds as a function of 

depth, or by utilizing satellite reports of the sea surface temperature (Chiu et al. 

1987). Generally, knowledge of the sound-speed profile is sufficient to convert to 

temperature. However,  in polar regions, or near river estuaries, the salinity 

variations may also be important. 

The sound frequency selected for a tomography experiment depends on the 

scale of the ocean variability that is to be sensed and the range. Lower 

frequencies, in the hundreds of Hertz, are usable for ranges of hundreds or 
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thousands of kilometers. Higher frequencies can be employed, consistent with the 

larger attenuations described in Fig. 3.4.1, for studies over tens of kilometers m 

for instance, across a bay. However, if the wavelength is comparable to, or 

smaller than, the ocean inhomogeneities, short-time variability of the 

microstructure alters the time of arrival. 

3.5.2 I N V E R T I N G  FOR O C E A N  M O T I O N S  

The drift of patches of the ocean between source and receiver may be determined 

by using a transducer that can be operated to send and receive, or two colocated 

transducers, at the ends of ray paths. By propagating in opposite directions the 

sound-speed dependence can be subtracted. The very small differences in travel 

times for such "reciprocal" sound propagation are then a measure of the ocean 

currents along the ray path. 

When three or more transducers comprise a circuit, reciprocal propagation can 

be used to calculate the angular momentum (e.g., of an eddy) or the component of 

vorticity perpendicular to the plane of the transducers. When rays intercept the 

ocean surface, there are variable time delays, owing to the varying surface 

heights. These fluctuations can be used to infer characteristics of the surface 

roughness, as shown by Miller et al. (1989). And by a judicious selection of sets 

of transducers, and shorter times between pings, it is possible to infer the three- 

dimensional root-mean-square (rms) displacements and rms currents due to 

internal waves in a region of the ocean, as demonstrated by Flatte and Stoughton 

(1986). See also the earlier monograph by Flatte et al. (1979). These and other 

examples of acoustical oceanography have been attempted, with significant 

success, in recent years. 

3.6 Doppler Frequency Shift 

3.6.1 DOPPLER T H E O R Y  

Motions of a source, receiver, or scattering object change the frequency of 

received signals. We assume here that the water is still, and that the propagating 

signal moves with sound speed c, regardless of the velocities of the source or 

receiver or scattering objects. A brief review of the Doppler effect follows. 

Initially, we consider source and receiver motions along the §  axis. The 

source moving with velocity v s transmits either a continuous wave or a very long 

ping of frequency fs. When the source advances on its own waves, the waves are 
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shortened, and the apparent wavelength along x is 

~a : ( C -  Vs)/fs (3.6.1) 

Also, assume that the receiver has velocity Vr away from the source. In a unit time 

it detects fr crests, where 

fr : ( C -  Vr)/~, a (3.6.2) 

Solve for fr and obtain 

f s ( c - v~ )  
fr = (C-  Vs) 

(3.6.3) 

For both actions, the frequency at the receiver tends to decrease because of the 

receding receiver (the numerator) and to increase because of the approaching 

source (denominator). Switching the sense of the movements will change the 

signs in Equation 3.6.3, of course. 

Now consider a fixed transducer radiating frequency fs. A scattering object 

moving away with velocity Vo receives a lesser number of crests per second. 

Therefore, the frequency of sound observed by the receding object is 

fo = fs (c - Vo) Ic (3.6.4) 

From the point of view of a fixed receiver at the source location, the scattering 

object becomes a receding source, and the frequency at the transducer is 

fs(C-Vo) 
f r =  (C+Vo) 

(3.6.5) 

In other directions, the velocities in Equation 3.6.5 become the components of 

Vo along the directions to the source and receiver. For the case in Fig. 3.6.1, 

fr fs (C + VO COS O s) 
= (c - v0 cos Or) (3.6.6) 

The Doppler shift may be positive or negative, depending on the geometry and 

the direction of motion. 

3.6.2 DOPPLER MEASUREMENTS OF PARTICLE MOTION 

Doppler velocimeters have been used successfully in studies of mixed-layer and 

upper-ocean dynamics (Pinkel and Smith 1987; Vagle and Farmer 1992), internal 

waves (Pinkel, Plueddemann, and Williams 1987), and tidal motion (Lhermitte 

1983). The platform for the device must either be fixed (e.g., the Floating 
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Figure 3.6.1 Doppler effect for an object moving along the x coordinate. Source and 
receiver at in the x - z  plane. 

Instrument Platform, FLIP, operated by the Scripps Institution of Oceanography) 

or have its motion referenced to an inertial frame. 

The scatterers that produce the Doppler shift are plankton and detritus, which 

are found everywhere in the sea. Bubbles are additional Doppler scatterers near 

the sea surface. These bodies and bubbles, when they are entrained, act as tracers 

of the moving medium. 

Consider the pulse-to-pulse coherent sonar. Two sinusoidal signals are 

generated at the same frequency but out of phase by 90 ~ (the sin and cos signals). 

Either one of these is then gated and transmitted. The backscattered Doppler- 

shifted signal is multiplied by each of these reference signals, and they are then 

low-pass-filtered. The resulting pair of signals represent the real and imaginary 

components, which determine the angle of the Doppler phase shift. In the pulse- 

to-pulse coherent technique, the change of phase from one pulse to the next, at 

fixed range, is used to calculate the component of the scatterer motion parallel to 

the beam direction. The great virtue of this technique is that, by pinging 

millisecond duration pulses many times per second, drift velocities as small as 1 

cm/s can be readily measured. 

One flaw in the coherent sonar technique is that, if the scatterer were to move 

by an integral number of wavelengths, the equipment would show no apparent 

phase shift, and therefore would imply no motion. Also troubling is the 
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possibility that an echo may have come from a previous pulse, scattered from a 

larger, more distant body. Signal coding can eliminate that problem. 

It is possible to quantify the ambiguity of a pulse-to-pulse coherent Doppler 

system. If the time between pulses is t, the maximum unambiguous range is 

R m = c(t/2) (3.6.7) 

Also, to avoid aliasing, the maximum round-trip distance must change by at 

most 2/2 (where 2 is the wavelength) between pings. This represents a maximum 

drift of the medium of Dm -- 2/4. The maximum unambiguous drift velocity for 

the pulse-to-pulse coherent sonar is then 

V m : O m i t  : 2/(4t) (3.6.8)  

The conditions for Rm and Vm are an example of the contradictory uncertainty 

in their measurements. To decrease the uncertainty in drift velocity, we could 

increase t, but this would increase the uncertainty in position. In fact, the two 

conditions can be summarized in the resolution product, 

V m R  m --  c 2 / 8  (3.6.9)  

Frequencies of around 100 kHz to 1 MHz are commonly used. The higher 

frequencies provide smaller values of the resolution product Vm Rm. But this 

improved resolution is achieved at the cost of reduced range, because of the 

greater attenuation at higher frequencies. 

The pulse-to-pulse incoherent Doppler system follows the backscatter of a 

single pulse as its range increases. Doppler shift is estimated from the rate of 

change of phase with time. The spectrum of the echo is slightly shifted in 

frequency compared with the outgoing pulse, and the spectrum is rather broad, so 

that the peak is unclear. Although longer transmitted pulses can be used to 

improve the narrowness of the spectrum, by the same action the range resolution 

is deteriorated. In practice, the incoherent Doppler finds its greatest use because 

of the large ranges possible (kilometers), although the spatial resolution may be 

as large as many meters (Lhermitte 1983). 

3.6.3 SEA-SURFACE MOTION 

The sea surface is in constant motion. The water beneath the surface also moves, 

and the particle velocities are functions of depth. From an elementary 

oceanography text, the phase velocity for a gravity wave over a bottom at 

depth d is 

2 g tanh( ~r d ) (3.6.10) 
C p , x  -- t (  x x 
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where g is the gravitational acceleration 9.8 m/s 2. By convention, d is a positive 

number and coordinate z is positive upward. Depending on x x d ,  or the ratio of the 

wave length A of the surface wave to the water depth d, water waves are 

classified as deep-water and shallow-water waves. 

Deep-Water Gravity Waves 

For the value of ~cxd >> 1, the tanh(tcxd ) tends to one, and the phase velocity 

becomes 

and 

c 2 -- g (3.6.11) 
p , x  Ir x 

s 
c - (3.6.12) 

p , x  1r x 

The horizontal component  of velocity u and the vertical component of velocity w 

are 

u = -62 h exp(tcx z ) cos(  tCx x - s t ) (3.6.13) 

w = .(2 h exp(tc~ z ) sin(rex x - s t ) (3.6.14) 

where tc x is the horizontal component of the wave number, f2 is the angular 

frequency, h is the amplitude. The wave particles have circular orbits. In deep 

water, the magnitudes of the orbits decrease exponentially as depth increases. 

The group velocity of the deep-water gravity wave is 

Cg ,x "" Cp ,x / 2 (3.6.15) 

The surface tension adds a term as follows: 

v/ g + z tr / p (3.6.16) 
C p  ,x = l (  x 

where z is surface tension 0.074 N/m. At short wave lengths, these surface tension 

waves often appear as tipples following the wave crest. 

Shallow Water Gravity Wave 

In the limit of small tcxd, the expansion of tanh(tcxd) gives tcxd and Equation 

3.6.10 simplifies to 

c ~ , ,  x = g d  (3.6.17) 
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The velocity components of orbital motion are 

u = .(2 h cosh[ tr (z + d )] cos(rex z - .(-2 t ) 

w = ~ h sinh[ tcx (z + d )] sin(rex z - s t ) 

(3.6.18) 

(3.6.19) 

Doppler Frequency Shifts from the Ocean Surface 

Signals scattered at the moving sea surface are shifted in frequency. For a fixed 

transducer, the amount of the frequency shift is given by Equation 3.6.6. In the 

back-scatter direction, for 0 s - +0~ - 0 (see Fig. 3.6.1), 

f s ( C  +v c o s 0 )  
f r = ~3.6.20) 

( c - v c o s  0 )  

Nominally, the Doppler shift from a " smoo th"  horizontal surface is zero in the 

specular (mirror) direction. However, when a beam insonifies a real ocean 

surface, in addition to specular reflection from horizontal facets, some of the 

scattered components reach the receiver from other parts of the ocean wave 

system, and these show a Doppler shift. Roderick and Cron (1970) give 

comparisons of theoretical and experimental Doppler shifts from ocean wave 

surfaces. 

The Doppler shift is a measure of the component of wave velocity along the 

axis of the sonar system. Usually there are bubbles, zooplankton, and so forth in 

the water, and these objects scatter sound back to Doppler sonar. The orbital 

motions of the water carry the objects, which have the velocities given by 

Equations 3.6.13 and 3.5.14 or 3.6.18 and 3.6.19. Clearly, the results of a Doppler 

measurement are strongly controled by the location and size of the region being 

measured. A record of the Doppler shifts versus time will depend on ~2. 

3.6.4 DOPPLER NAVIGATION 

Doppler navigation systems use the frequency shift of backscattered sound 

signals to measure the velocity of the ship relative to the bottom, or stationary 

objects within the water. The algebra is the same as for Equation 3.6.6, and, since 

v ~ c, the frequency shift of the backscattered signal is approximately 

2 v Z cos 0 
A f  -- (3.6.21) 

c 
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P r o b l e m s  

Section 3.1 

3.1.1 From Chapter 5, one learns that there is a maximum acoustic pressure 

that can be radiated from any source. Near the ocean surface that maximum CW 

peak source pressure is approximately one a tmosphere-  105 pascals. Calculate 

the maximum power output from a point source near (not at) the ocean surface. 

For simplicity, ignore surface reflection. 

3.1.2 From Chapter 5, one learns that the maximum acoustic pressure that can 

be radiated from any source depends on the duration of the signal. Assume that a 

sinusoidal signal of frequency 7 kHz, duration lOOms, radiates 6 watts/cm 2 at 

depth 17 m. Calculate a) the point source pressure (at range 1 m); b) the [tips]; c) 

the energy per unit area at range 10 m. 

Section 3.2 

3.2.1 Repeat the calculation of Fig. 3.2.3c for a point source radiating a single 

cycle of a sinusoid of frequency 200 Hz. Assume source depth 5 m, receiver 

depth 15 m, water depth 20 m, and horizontal range 60 m. 

3.2.2 Assume that the source amplitude in the previous problem was 104 

pascals. Calculate the peak pressure, the [tips], and the duration of the 

interfering signal at the receiver. 

Section 3.3 

3.3.1 The sound speed profile for a region in the deep sea is approximated by 

the three linear segments defined by 

depth (m) speed (m/s) 

0 1495 

500 1495 

1000 1485 

4000 1520 

Compute the paths and travel times of rays leaving the surface at grazing angles 

80 ~ 60 ~ 30 ~ 20 ~ and 10 ~ 

3.3.2 Calculate and print out the example in Fig. 3.3.10 on your computer. 
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Section 3.4 

3.4.1 A point source radiates 100 watts of CW acoustic power in homogeneous 

water. Plot a graph of the rms pressure from 1 m to 1000 m, taking into account 

attenuation owing to spherical divergence and absorption. Assume that the 

frequency is a) 1000 Hz, b) 10 kHz, c) 100 kHz, d) Identify the ranges where 

divergence is the principal source of attenuation for each frequency and the 

regions where energy absorption is the principal attenuation process. 

3.4.2 Near estuaries the salinity varies from zero, in the stream, to close to 35 

ppt in the ocean away from the outlet. Plot a curve of the variation of absorption 

rate with salinity for frequencies 200 Hz, 10 kHz, and 100 kHz. 

Section 3.6 

3.6.1 A 100 kHz sonar is directed horizontally to insonify a fish. Transmitter 

and receiver are side by side. The fish is swimming toward the sonar at 12 cm/s. 

Compute the Doppler shift. 

3.6.2 Calculate the frequency shift of a 100 kHz signal aimed at a horizontally 

swimming fish at 12cm/s as viewed from the sonar at 10m below the fish. 

Assume that the fish is tracked as it approaches, passes overhead, and then 

receeds from the transducer. Plot a graph of Doppler shift as a function of angle 

with the vertical. 

3.6.3 Derive the Bragg condition for interference scattering of frequency f 

from a corrugated wave system, 

( f  /c ) (s in  O, - sin 02) = rl/A 

where f is the sound frequency; c is the speed of sound; 01 and 02 are the angles 

of incidence and scatter; A is the surface corrugation wavelength; 0~ and 02 are 

the angles of incidence and scatter; and n is an integer. 

3.6.4 When using a 150 kHz upward-looking sonar at a grazing angle of 30 ~ a 

signal with a frequency shift of 1370 Hz is backscattered from a corrugated 

surface wave. a) What is the velocity of the surface wave along the direction of 

the sonar?; b) In what directions does one see a maximum of scatter (see 

previous problem)? 
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For theoretical developments, it is often assumed that the source is a pulsating 

sphere. Typically, it is also assumed that the sound receiver is a device sensitive 

to acoustic pressure. In fact, sources and receivers, "transducers," have been 

designed with a wide range of physical, geometrical, acoustical, and electrical 

characteristics. Proper selection of a transducer element, or an array of elements, 

can provide increased sensitivity to certain frequencies or to specific directions of  

propagation. Furthermore, the effectiveness of  either a hydrophone or sound 

source is a function of its physical mounting and the electrical circuit to which it 

is connected. 

4.1 Transducer Elements 

4.1.1 THE PULSATING SPHERE 

At this point we make the "connection" between a source and the sound field 

that it radiates. Again, consider the pulsating sphere. The instantaneous radial 

velocity u r at the sphere surface, R - a is described by 

Ur] R = a = U a e ic~ (4.1.1) 

127 
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where U a is the amplitude of the sphere radial velocity. 

From section 2.7.3, the isotropic radiated presssure at range R is 

PoRo exp [i(oJt - kR)] 
p = (4.1.2) 

R 

In section 2.7.3 we also derived Equation 2.7.46, the radial particle velocity of 

the acoustic field. At R = a, the particle velocity is 

Ur]R=a - -  P~176 exp [i(~ - ka)] ( -k-dai ) (4.1.3) 

Equate the two expressions for Ur at R = a and thereby obtain an expression 

for PoRo. Insert that value into Equation 4.1.2 to give the acoustic pressure in the 

" m o n o p o l e "  field in terms of the source parameters 

ik(PAC)V exp [i(ogt- kR + ka)] 
P - 4rcR(1 + ika) (4.1.4) 

where 1)" = 4rca2U,. 

One concludes that 

(1) for a constant source velocity amplitude, the radiated pressure is 

proportional to the sound frequency of the CW source; 

(2) for a given CW frequency, the radiated acoustic pressure is 

proportional to the amplitude of the source rate of volume flow 

4rta 2 U a (m3/sec); 

(3) for the same volume flow and sound frequency, the radiated sound 

pressure is proportional to the pa r of the medium (e.g. since 

the pA c of water is about 5000 times the pa r of air, an under- 

water sound source is a very ineffective source of sound in air). 

4.1.2 SOURCES OF SOUND 

The pulsating sphere is a prototype of some simple underwater sound sources. In 

fact, Sims (1963) describes a low frequency, high-power, gas-filled bag that is a 

realization of the pulsating sphere described in the previous section. In addition, 

as will be seen in Chapter 8, when bubbles are formed at sea, they act as natural 

pulsating spheres. 

But we need a more general answer to the question " W h a t  causes a sound to 

be radiated?" For an answer, reconsider the derivation of the wave equation in 

section 2.7 by accepting that at a sound source point of the medium there can be 
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an injection (or removal) of mass or momentum. This occurs not only in the case 

of the pulsating sphere but also for a siren, and almost all other sources as well. 

When there is a source or sink of mass, the acoustic conservation of mass 

equation becomes 

Op ~)m (4.1.5) 
V o ( p U ) +  a t - a t  

where Om/Ot is the rate of injection of mass per unit volume, m. 

Likewise, the acoustic equation of conservation of momentum is modified to 

accept the fact that momentum can be impressed by the source on the medium. 

This is the situation when an oscillating source is not baffled, so that during 

oscillation there is mass ejected at one end of the source at the same time that 

mass is injected at the other end; the net result is a momentum transfer to the 

medium. Where this occurs, the acoustic conservation of momentum equation 

becomes 

OU 
V p + Pa --0-/- = f (4.1.6) 

where f is the force (i.e., rate of injection of momentum) per unit volume. (The 

vector force per unit volume, f,  should not be confused with the scalar sound 

frequency, f.) 

To obtain the wave equation with source terms, take the divergence of 

Equation 4.1.6 and the partial derivative with respect to time of Equation 4.1.5, 

combine with the acoustical equation of state, and 

1 ~2p ~2 m 
V Z p -  6" 2 ~)t2 - - Ot-- 5- + V �9 f - V o[p(U~ V)U + U(V .pU)] (4.1.7) 

The terms on the fight are the mechanical sources of the radiated acoustic 

pressure. They consist of 

(1) the acceleration of mass per unit volume; 

(2) the spatial rate of change (divergence) of force per unit volume 

exerted on the medium; 

(3) a nonsimple third term, which is the double divergence of what 

hydrodynamicists designate as the "Reynold's  stress tensor." This 

term is acoustically important only as the source of noise owing to 

turbulence. It is particularly important in air, where it explains the 

noise caused by the turbulence of a jet aircraft exhaust. 

An extended interpretation of Equation 4.1.7 will be found in Lighthill (1978). 

The various waves that can be produced by a complicated source are described in 
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the expansion of the wave equation in spherical coordinates. In this context, the 

first term on the right of Equation 4.1.7, the injected mass source, is sometimes 

called a monopole source of sound (e.g. the pulsating sphere). In designing a 

mounting for a transducer, if radiation from the back of the transducer is 

prevented from propagating into the medium, either by a baffle, an enclosure, or 

absorption, only the monopole term remains. In that case the radiated energy is 

not deteriorated by the back radiation. 

The second term on the right-hand side of Equation 4.1.7 is most simply 

interpreted as a dipole source; its prototype is discussed in the next section. 

4.1.3 THE DIPOLE 

A dipole is the combination of two equal-amplitude, out-of-phase monopoles 

with a small separation (re 2) between them. The dipole occurs, for example, in 

the case of an unbaffled oscillating membrane which simultaneously creates a 

condensation at one face and a rarefaction at the other. When the membrane 

oscillation reverses, the condensation is replaced by a rarefaction, and the 

rarefaction by a condensation. When the membrane is in a rather small baffle, 

kl ~ 1, where I is the effective separation between the two sides, a dipole exists. 

Physically, it can be seen that the two out-of-phase radiations will completely 

cancel each other along a plane perpendicular to the line joining the two poles; 

the radiation from the two poles will partially cancel each other everywhere else. 

The idealized dipole is shown in Fig. 4.1.1. 

R1 

Pd 

R2 

Pd 

Figure 4.1.1 The idealized dipole source. Two point sources of equal strength but 
opposite phase are separated by a distance l, much less than a wavelength. The far-field 
directionality is a figure-eight pattern in polar coordinates. 
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Call the summation, the dipole pressure Pd = P+ + P-,  and obtain it by using 

two out-of-phase components of the pressure of a spherical wave from a point 

source. The addition is 

( exp [i (co t - k R1)] 
Pa eo Ro 

R1 

exp [i (co t -  k R2)] } (4.1.8) 

For ranges large compared with the separation 1, use the Fraunhofer 

approximation Equation 2.4.12 to write 

RI=R(1 - 2-~cos (0))and R2=R(1 + 2-J-Rcos (0)) (4.1.9) 

As expected for an interference effect, the small differences between R 1 and 

R 2 in the denominators of Equation 4.1.8 are not important, and each may be 

approximated by R. But the terms kR1 and kR2 in the exponentials, which 

determine the phases and the interference, are crucial. After factoring out the 

common terms, 1/R and exp[i(cot-kR)] ,  and expanding the remaining 

imaginary exponentials for the dipole condition kl ~ 1, we obtain 

Pd - PO Ro e i (03 t - k R){i k 1 cos (0)} (4.1.10a) 
R 

which is recognized as the monopole pressure multiplied by {ikl cos 0 }. 

When attenuation is included, this becomes 

p d _  PO Ro R ei (03 t -  k R)[ i k I cos (0)]1 0-  ~ R / 20 (4.1.10b) 

The dipole has produced two significant effects compared with the individual 

monopole radiations. First, the radiated pressure has been reduced because of the 

small factor kl. Second, the radiation pattern is no longer isotropic; it now has a 

directionality given by cos 0, where 0 is the angle with the dipole axis. That is, 

there is a maximum (but very much reduced ) acoustic pressure along the line of 

the dipole, and there is zero sound pressure in the central plane perpendicular to 

the dipole line. The directionality is sometimes called a figure-eight pattern 

because of the way the cosine looks when it is plotted in polar coordinates 

(Fig. 4.1.1). 

4.1.4 MATERIALS AND MECHANISMS 

Now a few words about the electro-acoustical materials that are being used for 

modern transducers. Experimentalists who have specific needs in selecting or 

designing their transducers should consult a transducer manufacturer or a book on 

the subject, such as Wilson (1985) or Bobber (1970). 
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The most common material used for underwater transducers is the 

polycrystalline, "piezoelectric" material barium titanate (BaTiO3), which was 

discovered in the 1940s. A piezoelectric material shows a voltage across 

electodes when subjected to pressure (sound receiver) or changes in dimension 

when a voltage is appplied (sound source). In the manufacture, the granular 

material is fused into a ceramic-like block (which looks like the ceramic of a 

coffee mug). Electrodes are applied to selected surfaces of blocks of any desired 

shape. The blocks are heated to a temperature (Curie Point, approximately 

120 ~ C) at which the minute crystals become cubic. A DC polarizing voltage is 

applied, and, as the element is cooled, the block becomes an assemblage of 

tetrahedron crystals with a preferred axis. Depending on the electrode orientation, 

this causes the material to be piezoelectric for shear or compression. The addition 

of other chemicals to the barium titanate (e.g., lead zirconate) can lead to specific 

design advantages as a source or receiver. 

Because the electrical polarization properties of the material follow a 

hysteresis loop (resembling a ferromagnetic material) when an electric field is 

applied and reversed, the materials are called ferroelectrics. A major advantage 

of the ferroelectric ceramic is that it can be formed into a large variety of sizes 

and shapes to fit the particular array design. Transducer manufacturers (e.g., 

Channel Industries, Santa Barbara, California) have developed elements in 

various sizes and in the forms of cylinders, rods, tubes, disks, plates, hemispheres, 

and so forth. 

Magnetostrictive transducers depend on the physical phenomenon of certain 

ferromagnetic materials such as nickel, which expand or contract when a 

magnetic field is applied. Since the change of dimension (contraction or 

expansion) is independent of the direction of the current that is creating the 

magnetic field, there is a frequency doubling when an AC signal is applied. (Note 

that a noisy 60-cycle power transformer radiates a sound of frequency 120 Hz.) 

This may be avoided by superimposing the AC signal over a larger DC polarizing 

field. Magnetostrictive devices have been particularly effective as low-frequency 

sound sources because at lower frequencies there is less loss caused by hysteresis. 

A large variety of piezoelectric plastics (e.g., polyvinylidene fluoride, PVDF) 

and new electrostrive, ferroelectric, and magnetostrictive materials and 

composites are now being used as transducer elements. There are unusual 

configurations such as benders and segmented cylinders, as well as mushroom- 

shaped (Tonpilz) mechanical oscillators for low frequencies. A promising fiber- 

optic flextensional hydrophone has been patented (Brown 1994). The latest 

copies of the technical literature must be researched for these rapidly changing 

developments. 
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4.2 Arrays of Discrete Sources 

The sound pressure produced by an array of discrete sources such as in a 

multielement sound source is readily adapted to computer  summations. For 

example, assume there are N sources evenly spaced over a distance W in a 

straight line along the y axis (Fig. 4.2.1). The separation between adjacent 

elements is 

W 
b = N - 1  (4.2.1) 

The pressure Pn of the nth source at distance R and angle 0 is 

an PO RO nk W s in0  
P n = Rn exp [ i (cot -kR + N -  1 ) ] 1 O-  ~ R / 20 (4.2.2) 

where an is a dimensionless amplitude factor of the nth source; 0 is the angle with 

the z axis, which is perpendicular to the line array (Fig. 4.2.1); and c~ is the rate of 

attenuation in the medium. 

In the spirit of the Fraunhofer far-field approximation, let Rn in the 

denominator become simply R. Also at long range, since c o t -  kR is common 

to all signals, we factor it out and obtain the pressure in terms of the transducer 

directional pressure response Dt: 

p -- Ot P~176 exp [i(cot - kR)]lO -~R/2~ R ~ W (4.2.3) 
e 

A 

W "- 

0 

~ b  

Figure 4.2.1 Geometry for the directivity of a straight line of discrete sources. 
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where D t represents the "directional response," the "directivity function," or, 

simply, the "directivity" of a transducer or an array of transducers: 

N - 1  ( nkW sin O) 
D t -  ~--~P. exp i 

.=o N -  1 
(4.2.4) 

This can be written in the form D t - A + iB, where 

N-1 (nkW sin 0)  
a - ~-~an cos \ ~ - -  i- 

n--O 

(4.2.5) 

and 

N-l (nkW sin O) (4.2.6) 
B -- ~--~a. sin \ ~ - - ~  

n = 0  

Then the magnitude of the array directivity is found from 

D t - A + i B  and I D t I - ( A  2 + B  2)1/2 (4.2.7) 

The a n are relative amplitudes of the transducer elements. It is often 

convenient to normalize the a. by setting 

N - I  

a .  - -  1 (4 .2 .8)  

n = 0  

Proper choices of the contributions by elements of the array whose amplitudes are 

P. can improve array performance. The simplest equally driven arrays have 

a,, - -  1 / N  (4 .2 .9)  

However, other choices of the contributions by elements of the array can improve 

array performance. Generally, the improvements desired are either to reduce the 

side lobes or to narrow the central lobe. 

When the functional dependence on 0 is included, the directivity of a 

symmetrical array with an odd number of elements is 

N,, (nkW sin O~ 
Dt(O ) - a o + 2 Z a,, cos \ ~ - -  i / (4.2.10a) 

n = 0  

where 

N - 1  
N h - 2 (4 .2 .10b)  
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Two common weightings of elements are 

triangular: a(n) = a( -n)  = (N h - n)/N h (4.2.11) 

cosine: a(n) = a( -n )  = (1 + cos OznlNh) (4.2.12) 

where Equations 4.2.11 and 4.2.12 can be normalized by using Equation 4.2.8. 

Another weighting choice that is very popular because it often makes 

theoretical computations more tractable and convergence more rapid, and 

because it has no side lobes, is the so-called Gaussian directivity: 

Dtc(O ) exp [ -  (kWc)2 (sin 2 0)/4] (4.2.13) 

where Wc is the width parameter. One determines the 01/2 for an array directivity 

D(O) at its "half-power" response, (1/21/2) = 0.707, and solves for Wc in the 

expression 

exp [ - (kWr)  2 sin 2 (01/2)/4] D(O~/2) 0.707 (4.2.14) 

These types of "weighting" can also be applied to rectangular, circular, and 

other arrays. 

The examples of linear, triangular, cosine, and Gaussian array directivities 

shown in Fig. 4.2.2 demonstrate the rule that, for the same number of elements, 

weightings that decrease the side lobes also widen the main beam. 

4.3 Directivity of a Line Source 

The integration of a continuous distribution of point sources along a straight line 

yields a line source. As shown in Fig. 4.3.1, let the array be many discrete 

sourcelets at very close spacing over a line of length W. Replace the summation 

by an integration. The strength of a differential sourcelet is proportional to dy/W. 

Let p be the resulting sound pressure in the local field region. 

In the Fraunhofer plane wave approximation, the path difference from the 

sourcelet at origin 0 and that at y is y sin 0. The differential pressure dp owing to a 

sourcelet at y is 

dp = (dy/W)P exp [i(ogt - kR + ky sin 0)] (4.3.1) 

The pressure is calculated by the integration from - W / 2  to W/2 of 

p = PD t exp [i(ogt- kR)] (4.3.2) 
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Figure 4.2.2 Examples  of array directivities for four common weightings: a) uniform, 

b) triangular, c) cosine, and d) Gaussian. Angle 0 is measured to the normal  to the line of  

elements,  the transducer axis z. 
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l y Local region I-Q( f ) ] 

J 
W / 2 - .  

dy R 

I\ 0 

- W / 2  - 
y sinO 

Figure 4.3.1 Construction for a continuously distributed source at large range. 

where 

Integration gives 

1 [w/2 
Dt -- W a-w/2 

exp [i(oot - ky sin 0)] dy 

1 exp (iky sin 0) I W/2 

Dt = W ik sin 0 I-w~2 

Evaluation for the limits of integration gives 

1 exp [(ikW sin 0)/2] - exp [ ( - ikW sin 0)/2] 

D t = W ik sin 0 

The expression for D t reduces to 

(4.3.3) 

(4.3.4) 

(4.3.5) 

sin [kW sin 0)/2] (4.3.6) 
Dt = (kW sin O) /2  

The preceding expression has the form (sin F/F) ,  which is sometimes called the 

sinc function. Since the sinc is indeterminate as F tends to zero, the directivity Dt 

at zero is evaluated by forming the derivatives 

lim ( d / d F ) s i n F _  _ lim cos___~F_ -- 1 (4.3.7) 
F--,O (d/dF)F F~O 1 

The sinc function is shown in Fig. 4.3.2a in a linear graph, and in Fig. 4.3.2b in 

polar coordinates for the case F = (kW sin 0)/2 when the source extent W = 42. 

In the polar pattern, the length of the radius vector is proportional to the 

directional response at that angle and, although the source is sketched in, the 

directivity is applicable only at long ranges from the source. The important sinc 

function specifies the directional response not only of a line source but of a line 

receiver as well. 
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0 2rt 4rt 6rt 

a) 

x 

8rt 

, - ~ ~ 1  0 -- 
t~.5 ' ' z ' -  

Line source 
b) w =4~, 

Figure 4.3.2 Far-field radiation from a line source, a) The (sinF)/F function. 
b) Directional response, DI versus angle for a uniform line source, where 
F--(kW sin0)/2 with W--42.  The angle 0 is measured from the normal to the line 
source. 

We have given this analysis for point sources aligned in the y direction. We can 

do the same for sources in the x direction. If each of the dy sources on the y axis 

were a line of sources along the x axis, a rectangular source would be formed. The 

resulting directional response would be the product of the directional responses 

for the x and y directions. 

Such a source is called a rectangular "piston source" when the individual 

elements within the source plane are very close together and have the same 

amplitude and phase. The function is the same for a receiver. The sinc function 

comes up again in the scattering of sound from a rectangular plane segment. 

4.4 Circular Piston Source 

4.4.1 FAR-FIELD DIRECTIVITY 

The geometry for a circular piston transducer is given in Fig. 4.4.1. We are 

interested in the directivity so we suppress the absolute pressure term and the 

propagation term exp [i(r and consider only the dependence on the 

" la t i tude"  0. It is assumed that the piston is in an infinite baffle (or enclosed), so 

that there is no back radiation, which would produce a dipole term. 

The field pressure will depend on an areal integration of the elements 2 y dx in 

the plane of the source (rather than along the length for the line source in 

Fig. 4.3.1). In this Fraunhofer far-field approximation, the range to any element is 
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Figure 4.4.1 Geometry for calculation of radiation from a circular piston transducer. 

approximately R. When spherical divergence aned medium attenuation are 

included, 

PoRo 10_~R/2 0 2 [a 
P R rca2 3 y cos (kx sin 0) dx (4.4.1) 

a 

Define the directional response O t a s  

2 ja 
D t y cos (kx sin 0) dx (4.4.2) ga2 -a 

Change Equation 4.4.1 to polar coordinates x - a  cos 4~ and y = a sin ~b and 

obtain 

D t = cos (~ cos q~ ) sin 2 q~ dq~ (4.4.3) 
0 

where we use ~ -  kasin  0 to agree with the form of the cylindrical Bessel 

Function in Abramowitz and Stegun (1964), which is written 

J 1 ( ~ ) = cos (~" cos ~o ) sin 2 ~o d q~ (4.4.4) 
0 

Using our value of ~', Equation 4.4.3 and 4.4.4 give the directional response for a 

circular piston source: 

2 J  1 (ka sin 0) (4.4.5) 
O t = ka sin 0 
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The comple te  express ion for the radiated pressure for a circular piston source 

has the same form as for a rec tangular  piston source, but with the different 

directivity factor as g iven by Equat ion  4.4.5. Table 4.1 presents  numerical  values 

of the relat ive pressures and intensit ies of the circular piston directivity factor. 

Table 4.1 Values of the Circular Piston Pressure Directivity function D t and 

Intensity Directivity Dt 2 (in terms of z - ka sin 0)  

2J,(z) 
z z 

0.0 1.0000 1.0000 

0.2 0.9950 0.9900 

0.4 0.9802 0.9608 

0.6 0.9557 0.9134 

0.8 0.9221 0.8503 

1.0 0.8801 0.7746 

1.2 0.8305 0.6897 

1.4 0.7743 0.5995 

1.6 0.7124 0.5075 

1.8 0.6461 0.4174 

2.0 0.5767 0.3326 

2.2 0.5054 0.2554 

2.4 0.4335 0.1879 

2.6 0.3622 0.1326 

2.8 0.2927 0.0857 

3.0 0.2260 0.0511 

3.2 0.1633 0.0267 

3.4 0.1054 0.0111 

3.6 0.0530 0.0028 

3.8 +0.0068 0.00005 

3.832 0 0 

4.0 -0.0330 0.0011 

4.5 -0.1027 0.0104 

5.0 -0.1310 0.0172 

5.5 -0.1242 0.0154 

6.0 -0.0922 0.0085 

6.5 -0.0473 0.0022 

7.0 -0.0013 0.00000 

7.016 0 0 

7.5 +0.0361 0.0013 

8.0 0.0587 0.0034 

8.5 0.0643 0.0041 

9.0 0.0545 0.0030 

9.5 0.0339 0.0011 

10.0 +0.0087 0.00008 

10.173 0 0 

10.5 -0.0150 0.0002 

11.0 -0.0321 0.0010 

11.5 -0.0397 0.0016 

12.0 -0.0372 0.0014 

12.5 -0.0265 0.0007 

13.0 -0.0108 0.0001 

13.324 0 0 

13.5 +0.0056 0.00003 

14.0 0.0191 0.0004 

14.5 0.0267 0.0007 

15.0 0.0273 0.0007 

15.5 0.0216 0.0005 

16.0 0.0113 0.0001 

16.471 0 0 

16.5 -0.0007 0.00000 

17.0 -0.0115 0.00013 

17.5 -0.01868 0.00035 
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D t  

D t = 2 J l(ka sin0 ) / ( k a  sin0 ) 

ka sin0 

i I i 

4 ~ 8 10 

Figure 4.4.2 Directional response of a circular piston transducer. 

A linear graph of Equation 4.4.5 is shown in Fig. 4.4.2. The central lobe of the 

radiation is down to fractional pressure 2 - 1 / 2 =  0.707 (i.e. half-intensity) at 

ka sin 0 _-__ 1.6. The central lobe reaches zero at ka sin 0 = 3.83. The first side lobe 

is 180 ~ out of phase with the central lobe and shows a peak of sound pressure and 

intensity at ka sin 0 ~ 5.0. 

Directivity functions of a circular piston are shown in polar coordinates in 

Fig. 4.4.3. The pattern begins to resemble a searchlight beam only when ka is 

quite large. 

Transducer ka = 2.5 ka = 5 

- 0 . f -  

Receiver 1 1 

k a = l O  

J 

Figure 4.4.3 Polar coordinate graphs of directivity patterns of circular piston 
transducers for four values of ka. 
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4.4.2 N E A R - F I E L D  

The circular piston-radiated pressure field at great distance (kR >> 1), which was 

derived in the previous section, has been known for a long time. But it was t h e  

advent of high-speed computers that permitted the calculation of the very 

complicated acoustic field closer to the source. Fig. 4.4.4 is an early three- 

dimensional plot of the pressure field near a circular piston source of size 

a / ) , - - 2 .5 .  There is an inner circle of very high pressure at the face of the 

transducer and two somewhat lesser-pressure amplitude rings out toward the 

periphery of the radiating disk. Along the axis of the source the pressure 

amplitude is an oscillating function of range until it reaches a maximum, which 

turns out to be at R ~- a2/2. Beyond that range the pressure decreases into the far 

field. An increase in the ratio a/~, increases the number of pressure maxima and 

minima over the face of the source and along the axis. The maxima of these 

pressures on the face of the source can be very much higher than the average, so 

that destructive cavitation (see section 5.2) may take place at local "hot  spots," 

although the average pressure implies that there is no problem. 

The complex "near  field" is caused by constructive and destructive 

interferences of the radiation from different subareas of the transducer face. 

Figure 4.4.4 Three-dimensional plot of relative pressure amplitude in the near field of a 
circular piston of size a/2 -- 2.5 ka = 5n. (Lockwood, J. C., and J. G. Willette, "High- 
speed method for computing the exact solution for the pressure variations in the near field 
of a baffled piston," J. Acoust. Soc. Am. 53, 735-41, 1973.) 
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Near the source, these radiating wavelets may differ in travel path by 2/2 and 

cause almost complete cancellation of the sound pressure (see section 2.4.1). 

Along the axis of the transducer, a critical range Rc exists at a range where it is no 

longer possible for wavelets traveling the longest path (from the rim of the piston) 

to interfere destructively with those traveling the shortest path (from the center of 

the piston). It is left as a simple problem for the reader to show that, for a circular 

piston source, this path difference, beyond which there can be no near-field axial 

minimum, is 

e r i  m - eaxis ~ a2/(2Rc) < 2 / 2  (4.4.6a) 

from which a critical distance is 

R c ~ a2/2 (4.4.6b) 

The range at which the experiment is "safely"  in the far field, so that the pressure 

varies "essentially" as R -1, is somewhat arbitrary. Often the far field for the 

circular piston is defined as beginning at the greater critical range, rca2/2. 

4.5 Radiation from a Transducer 

4.5.1 TOTAL POWER RADIATED 

The total acoustic power output by a CW point source radiating into 4n radians of 

solid angle is given in section 3.1.4. Computation of the total radiated power 

when the pressure amplitude directional response is Dt(O , c~) is a simple 

adaptation of that calculation. 

The incremental "message" power passing through an increment of surface 

AS, in terms of the pressures P(R) or Pax(R) at the field range, R, is 

where 

p 2  

A I I  M = 2PAC AS(R, O, qg) 

P(R) = Pax(R)Dt(O , q~) 

or, in terms of the reference pressure Po at axial reference range Ro, 

Al l  g = p2R~ D2t (O q~) Io-~R/I~ 0, q~) 
2PACR 2 

where the medium attenuation is included. 

(4.5.1a) 

(4.5.1b) 

(4.5.1c) 
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Using the coordinates sketched in Fig. 4.4.1, the increment of area AS can be 

written as 

A S = R  2 s i n 0 d 0 d 0  (4.5.2) 

An integration over all angles gives the total radiated power H M. Typically the 

transducer is enclosed so that there is no back radiation. Then the 0 integration 

limits are 0 to re/2, 

I-IM pzR2 10 -~R/10 [rr/2 i~rc = sin 0 dO D2t(O, dp) dq) 
2PAC aO 

(4.5.3) 

The double integral over the angles appears often. It is called the integrated beam 

pattern d/D. For an enclosed transducer ~PD is defined as 

ire/2 12rt 
0o - sin 0 dO Det (O, 49) dc/) 

dO 0 

(4.5.4) 

In general, lacking an analytical expression, the integrated beam pattern is 

evaluated numerically. The example of the theoretical circular piston transducer 

is shown in Fig. 4.5.1. 

10 

0 

1 3 5 10 

ka 

I I I I I I l l  

30 50  100 

Figure 4.5.1 Integrated beam pattern of the circular piston transducer of radius a as a 
function of ka. It is customary to plot (ka)2~ko as the ordinate. For ka > 10, ~D is 
approximately 4re/(ka) 2. 
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In terms of the integrated beam pattern ~D, using S.I. units, the total radiated 

power over all angles is 

H M --  [ p 2 R 2 1 0 - = R / l O ] ~  D _ [P2xR2] 

L2PA c L 2PA c J fflD 
watts (4.5.5) 

For comparison to omnidirectional radiation, recall the expression for total 

power Equation 3.1.16a. In that case, the point source, D t - 1 and ~D -- 4n. It is 

strongly recommended that the output of transducers be reported in total watts of 

radiated power. It is easy, using Equation 4.5.5 to go from peak pressure on the 

axis of the transducer to total radiated power. However, notice that, because of 

near-field interferences, Po should not be measured at one meter from the source. 

It should be obtained by extrapolation from a measurement at a far-field 

range. 

The total radiated power is proportional to the integrated beam pattern. In 

order to keep the same sound intensity (proportional to p2) along the axis of a 

transducer when there is an increase of beam width, (e.g., from ka -- 10 to ka -- 5 

in Fig. 4.4.3), the total radiated power must be increased. 

If one knows the total radiated power at range R and the integrated beam 

pattern, one can solve Equation 4.5.5 to obtain the reference peak pressure one 

meter from the transducer on the radiation axis: 

2 2 I I M P A C  
Po = 2 10 r  (4.5.6) 

~ D R o  

4.5.2 DESCRIPTORS OF B E A M  STRENGTH 

The need to comprehend the complicated radiation patterns (and receiving 

patterns) and to compare transducers, in some simple way, has led to several 

single-number descriptors. 

Direct iv i ty  Factor  

The directivity factor of a transmitter, Qt, is the ratio of the transducer sound 

intensity in the axial beam direction (0 = 0) to the intensity, at that same far-field 

range, that would be caused by a point source radiating the same total power 

omnidirectionally (over 4re steradians). 

Beam axial intensity at R PZx/(2PAC ) 

Qt = Point source intensity at R = 11 M~ (4nR2ax) (4.5.7) 
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Substitute H M from Equation 4.5.5 and obtain the transmitter directivity function 

Qt = 4rC/~D (4.5.8) 

Directivity Index 

The directivity index is obtained by taking the logarithm to express in dB: 

DI t = 10 log10 Qt (4.5.9a) 

Special cases of the directivity index for piston sources are a rectangle of 

dimensions, 

k2LW 
L ~- W: DI t = 10 lOgl0 ka >> 1 (4.5.9b) 

7C 

and a circle of radius a 

DI t -- 10 logl0 (k2a 2) ka ~ 1 (4.5.9c) 

Half-Intensity Beam Width 

The half-intensity beam width is the angle O b e a m  - -  20 measured from - 0 ,  where 

the acoustic intensity is half the axial value, past the axis, to the angle +0, where 

the acoustic intensity is again half the axial value (see Fig. 4.5.2). It is also called 

the "hal f -power  beam width,"  an unfortunate misnomer which comes from 

electric circuit theory. 

For example, from Table 4.1, the half-intensity value of the circular piston 

beam is at kasin 0 = 1.6. Therefore, for k a - - 2 0 ,  the half-intensity angle is 

0 = sin -~ 0.08 = 4.6 ~ and the half-intensity beam width is O b e a m  - -  20 = 9.2 ~ 

4 .6  E q u i v a l e n c e  o f  S o u r c e / R e c e i v e r  D i r e c t i v i t y  

The same analytic expressions that were derived for the pressure field due to an 

array of sources can be used to describe the directional response of an array of 

pressure-sensitive receivers. As shown in Fig. 4.6.1, let Q be the location of an 

omnidirectional source. The electrical source drive is Vo ei~ot. The source 

transmits the sound pressure Po ei~t. The pressure/voltage conversion factor for 

the transmitting transducer is Kp/v. The source sound pressure, referred to range 

Ro, is 

Po = V o K p / v (4.6.1) 
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1 D2 

~ t  I 

ka [9 

Half intensity beam width 

k a  - 

Figure 4.5.2 Directional response of a circular piston transducer of radius a in linear 

graph as a function of ka sin 0 (left) and in logarithmic, polar plot for ka = 20 (right). The 
half-intensity beam-width angle where D 2 -- 0.5, or - 3  dB with respect to the axial value 

is indicated. (Eckart, C., ed., Principles and Applications of Underwater Sound, 
Department of the Navy, NAVMAT P-9674, Government Printing Office, Washington, 

D.C., 1968.) 
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Figure 4.6.1 A point source and an array of receivers. 
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Pressure-sensitive receiver transducers are at Y l, Y2, and so forth. The sound 

pressures at these locations are p~, P2, and so forth. The sound pressure at y, is 

e i (r_ot-kR ~) 

P n = Po R o R (4.6.2) 
n 

The sound pressure on a transducer causes it to generate an electrical voltage. 

Common linear transducers give output voltages that are proportional to the 

sound pressures. The time dependencies are the same. Let Kv/p, with units volts/ 

#Pa be the conversion factor for voltage amplitude to pressure amplitude. For 

simplicity, the same amplitude factors and conversion factors are used for all 

receivers. The output voltage of the nth transducer is 

e i ( o J t - k R , , )  

V n = K v / p P o R  0 R (4.6.3) 
n 

The simple sum of the voltages from an array is 

V = V n = Po R 0Kv/p 
i ( o x - k R , )  

R 
n 

(4.6.4) 

The substitution of the electrical source drive for Po gives 

~.~ e i ( o J t - k R  ,, ) 

v = V o R  o K v / p K p / v  R (4.6.5) 
71 

We next show an important result. Replace all of the receivers shown in Fig. 

4.6.1 by source transducers which transmit Po e i ' t "  A receiver is placed at Q. The 

voltage/pressure and pressure/voltage factors are numerically the same. Then, 

calculation of the voltage at Q is the same as before. Therefore, one can 

interchange sources and receivers and still have the same transmission pattern. 

In the Fraunhofer incident plane wave approximation (section 2.4.1), one can 

write Equation 4.6.4 as follows: 

P o R o K i (ox - kR ,, ) (4.6.6) 
V = ~ av  n = R v/P~ e 

where 

e n , . ~ e - ~  
nW sin 0 

N - 1  

In many applications, the same array is used to transmit sound pressures and 

then to receive sound pressures. These arrays of transducers are reciprocal 

devices. The directional response of the array as a transmitter is the same as its 

directional response as a receiver. 
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4.7 Free-Field Calibration of Transducers 

A relatively simple, absolute method for the calibration of transducers is the 

"free-field" reciprocity technique, which is performed in a region free of 

scatterers. Needed are two small, "identical," "point"  hydrophones, A and B 

(one of which can be used as a source as well), and a third transducer, C, that acts 

solely as a source. 

Transducers A and B should be "identical"  in shape and size to minimize 

differential sensitivities due solely to different diffraction fields around the 

transducers. Transducers A and B should be "poin t"  transducers (size ,~ 2) so 

that pressure is inversely proportional to the separation range R between source 

and receiver. 

The free-field condition can be satisfied by using a ping or an impulse short 

enough to complete the measurement before extraneous reflections are received at 

the hydrophone. When an impulse is used, the Fourier transform of the pulse yields 

a broad spectrum that allows many frequencies to be calibrated simultaneously. 

Transducer C is a source of far-field pressures (inversely proportional to the 

separation) used to determine the relative sensitivities of A and B as 

hydrophones. The procedure is simple (see Fig. 4.7.1). Transducer A is placed 

at a position of the sound field produced by C; its open-circuit voltage, VAC, is 

measured. Then B is placed at the same position and its voltage, V~c, is obtained. 

This yields the ratio of sensitivies, KvpB/KvPA. 

" ~ "  R - - - ~  

a) i ~..~*~ VAC 

b) [SOURCE ~ ~ )  (~'"~RECEIVER 
~ V B c  

x..~~VAB 

Figure 4.7.1 Scheme for obtaining free-field reciprocity calibrations. In a) C is the 
source, and the voltage at transducer A is measured to yield VAC. In b) C is the source, and 
the voltage at B is VBC. In c) B is the source, and the current to B is IB when the voltage 
across A is VAB. 
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The final two measurements are the current IB, drawn by B when it is used as a 

source, and the open-circuit voltage VAB across A at the same time. When these 

voltages, current, and separation are known, the sensitivity of hydrophone A is 

given by 

2 R VAC VAB] 1/2 
KVPA = PA C VBC IB } volts / pascal  (4.7.1) 

where PA --water density and c = speed of sound in water. 

The reciprocity technique thereby provides an absolute calibration of the 

sensitivity of hydrophone A by measurements of electrical quantities and 

distance alone. Furthermore, the sensitivity of hydrophone A is the key to unlock 

the sensitivity of B because we know the relative sensitivities, KVPB/KvPA. 

Finally, by using either hydrophone, we have measured the output of source C or 

any other transducer that we can specify in terms of pascals produced at the 

measurement range/source voltage input. A precaution: we have assumed that the 

transducers are not driven beyond their linear range and that they do not produce 

nonlinear distortion. 

4.8 Self-Reciprocity Calibration of Transducers 

A transducer can be calibrated by pointing it toward a large reflecting surface 

(Carstensen 1947), such as the smooth water-air surface above the transducers in 

a water tank. Assume that the separation from the mirror is distance d, and the 

frequency of the short duration CW signal is f. 

Define Kve = Vm/Pm, the voltage generated by pressure Pm at the transducer, 

where Vm is the open-circuit voltage after mirror reflection of the signal, and Pm is 

the pressure after mirror reflection. 

Also define S = P l ~Is, the source response, pressure per ampere input, where 

p~ is the output pressure at range 1 meter when the source draws a current, Is 

amperes. 

The ratio of the transducer sensitivity (as a hydrophone) to its response (as a 

source) is called the reciprocity parameter, J: 

J = Kvp [ S = ( g  m ] p m ) [ (P 1 ] I s ) (4.8.1) 

The calibration is performed in a spherically divergent field, so that the pressures 

are inversely proportional to the distances (in meters): 

Pm/Pl = Ro/ (2d) (4.8.2) 
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Combining Equations 4.8.1 and 4.8.2, and setting R0 = 1 m, we find the 

transducer sensitivity when used as a hydrophone, 

Kvp=Vm(2mdpl) 1/2 (4.8.3) 

and the same transducer output pressure at 1 meter, when used as a source, 

S = ~ ( 2  d Pm Pl) 1/2 (4.8.4) 

This simple, nearly magical, calibration of the transducer as a source or receiver 

is predicated on several conditions: the field is spherically divergent so that the 

source is effectively a point at the range of the calibration; the reflecting surface is 

large and smooth (compared with the wavelength); the transducer axial 

propagation is perpendicular to the reflector; and the source "p ing"  is long 

enough to identify the frequency of the CW but short enough to avoid scatter 

from nearby objects. 

P r o b l e m s  

Section 4.1 

4.1.1 Use Equation 4.1.4 to set up your own criterion that specifies the range at 

which the sound pressure from a point source is "essential ly" in phase with the 

radial particle ve loc i ty- - tha t  is, define "essentially." 

4.1.2 Expand the right-hand side of Equation 4.1.7 in vector notation and 

identify the physical meaning of the component sound source terms in spherical 

coordinates. 

Section 4.2 

4.2.1 Calculate the directivity patterns for a 21-element line source (as shown 

in Fig. 4.2.2) for those four cases: a) uniform (piston) point source weighting; b) 

triangular weighting; c) cosine weighting; d) Gaussian weighting. 

4.2.2 a) Calculate the central lobe beam widths for the four cases in Problem 

4.2.1. b) Calculate the relative pressure of the first side lobe peak, compared 

with the axial value, for the four-beam patterns in Problem 4.2.1. 
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Section 4.3 

4.3.1 State the far-field directivity function for a rectangular piston source of 

length L in the x direction and width W in the y direction, propagating in the z 

direction. 

4.3.2 Determine the far-field directivity in the x z  plane and y z  plane of a 

rectangular piston source of dimensions L and W. Plot the directivity as a 

function of 0 < ~b < 2n for the cases in which a) L = W; b) L = 2W; c) 

L =  10W. 

Section 4.4 

4.4.1 Use a " reasonab le"  criterion to derive the critical range for the far-field 

directivity of a rectangular piston source of dimensions L and W, propagating in 

the x z  plane, or y z  plane. 

4.4.2 Compare the directivity pattern of a circular piston source of radius a 

with that of a rectangular source of dimensions L = W = a for the cases 

ka  = 2.5 and k a - -  10. 

Section 4.5 

4.5.1 Calculate the half-intensity beam widths in the x z  and y z  planes for a 

rectangular piston source of L = 2 W and L = 10 W. 

4.5.2 Calculate the half-intensity beam widths of the triangular, cosine, and 

Gaussian line sources in Fig. 4.2.2. 
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Nonlinear effects, which occur when the sound intensity is sufficiently great, 

limit the amount of energy that a sound source can radiate into the ocean. The 

limitations include harmonic distortion and the consequent "sa tura t ion"  of 

sound intensity output; cavitation, which limits the pressure swing; and acoustic 

streaming, which can erode the face of a t ransducer  or nearby object. On the 

positive side of the ledger, high intensities permit the use of small "pa ramet r i c"  

sound sources that have extremely narrow beams and large bandwidths at very 

low frequency; they allow the determination of source intensity by the 

measurement of the radiation pressure of the sound. 

5.1 Harmonic Distortion and Shock-Wave Growth 

The approximations that lead to infinitesimal amplitude acoustics, which is 

assumed everywhere else in this book, obscure the extraordinary behaviors that 

occur when sound pressures are large. It is important to understand these effects 

whenever high-intensity sound sources are used underwater. The first correction 

that we consider occurs because the sound speed is a function of ambient 

pressure. 

Fig. 5.1.1 sketches the difference between the equations of state of air and 

water. 

153 
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�9 Water 

p;oWater 

Figure 5.1.1 Schematic sketch of equations of state for air and water, PA - -  PA (PA)" The 
curves are not to scale. The steep slope for water shows its relative incompressibility. The 
values PAO and f lAO are the standard conditions (one atmosphere). The correct slopes at 
standard conditions for water are about 23 times greater than they are for air. 

The physical relation between incremental changes of pressure and density 

determines the speed of sound in the medium as first described in Equation 2.5.7: 

c2 _ Ap E (5.1.1) 
A p  - PA 

To calculate the speed, we need an analytic expression for the equation of state of 

the fluid, PA = PA (PA)" An appropriate form is the adiabatic relation 

(pAPAF)S -- K (5.1.2) 

where K is a constant. The subscript s identifies the condition of zero heat 

exchange in a reversible process (constant entropy). This is generally a good 

assumption for sound propagation at sea, except in bubbly water. 

For gases, F (which is usually written as ? in physics texts) is the ratio of the 

specific heat at constant pressure to the specific heat at constant volume. The 

adiabatic equation of state for gases is well known. Therefore, the slope is easily 

calculated and the speed of sound in gases follows. For air, in which F - 1.40, 

the predicted speed of sound is in excellent agreement with measurements. This 

has been understood since the works of J. B. B iot and P. S. Laplace at the 

beginning of the nineteenth century. 

However, when Equation 5.1.2 is assumed to describe water, PA must be 

interpreted as including not only the external ambient pressure but an internal 

cohesive pressure of approximately 300 MPa (3000 atmospheres). For water, the 
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constant F is not the ratio of specific heats; it must be determined empirically. 

Differentiate Equation 5.1.2 and get the formula for the speed at ambient 

density PA, 

{OPA ] = g F 10A F-  1 (5.1.3) 
CZa = ~ t)Pa }s 

For a small excursion in pressure and density, PA becomes 

PA ~ PA +,40 = ,O a 1 + ~ (5.1.4) 

where, to be explicit, we use Ap and A p rather than p and p to represent the 

incremental changes. 

Therefore, in that region, the speed is 

[ A AP ] (F 1)/2 
c [KFpF 111/2 1 + (5.1.5) 

The expression in the first bracket is CA. By the binomial expansion, the second 

bracket leads to the speed of sound as a function of the incremental density, A p, 

and the ambient density, PA: 

C CA[i+ (F-1)(a~ pA)] (5.1.6) 

The sound speed will reduce to CA at ambient density PA when Ap ,~ PA; this 

infinitesimal amplitude is the realm of acoustic propagation that is assumed 

elsewhere throughout this book. The second term of Equation 5.1.6 describes the 

finite amplitude effect that interests us here. 

An alternative fitting of the curve of Fig. 5.1.1 is given by the power series 

expansion 

n(aP/pa)2 (5.1.7) 
Ap = A(AP/pA) + 

2 

Now form c 2 - Ap/Ap from Equation 5.1.7 and compare with the square of 

Equation 5.1.6. Define the "parameter of nonlinearity," 

B/A = F -  1 (5.1.8) 

where A -  pA c2 -- _FpA and B -- F(F - 1)PA. 

The ratio B/A is a popular descriptor of the nonlinear potentialities of the 

medium in studies of high-intensity sound. The B/A for water ranges from 5.0 at 

temperature 20~ to 4.6 at 10 ~ C. In terms of B/A, Equation 5.1.6 becomes 

[ B Ap//PA ] (5.1.9) 
C = C A I +  2 
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To calculate the signal speed u + c at a point  where the excess density is A p,  

use Equat ion 2.5.11: 

bl= - - ~  C A (5.1.10) 

Then 

u + c = c a 1 + (5.1.11) 

where fl = 1 + B/(2,4) .  

Consider the f i n i t e  sinusoidal wave sketched in Fig. 5.1.2a. The wave ' s  crest is 

at higher  pressure than the undisturbed medium;  therefore the speed of sound at 

the crest is c > c A. The particle velocity at the crest is u. The crest advances at 

speed c + u. In a rarefaction, u is negative,  c < c A, and the wave trough advances 

at the lesser speed c - u. The net result  is that the crests advance relative to the 

(a) 

(b) 

PA C+I~ 

(c) 

(d) ~ ~ " " ~  -- 

( e )  ' f ' ~ ' ~ _ _ ~  ~ -- 

Figure 5.1.2 Stages of a finite-amplitude sinusoidal sound wave. (a) Close to a source 

with large sinusoidal pressure swings. (b) Nonlinear distortion after propagation away 

from source. (c) Fully developed repeated shock wave (sawtooth wave) away from source. 

(d) Aging repeated shock wave after greater loss of higher-frequency components. 

(e) Infinitesimal amplitude of a former shock wave. 
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axial positions, and the troughs lag behind the axial positions. As the effect 

continues, the wave distorts to a form resembling Fig. 5.1.2b. Finally, if the 

pressure swing is large enough for a sufficient number of wavelengths, the finite 

amplitude wave becomes a "sawtooth" wave or "repeated shock wave," (Fig. 

5.1.2c). The progressive growth construction cannot continue beyond this point; 

to do so would be to imply double values of pressure at various parts of the wave. 

After the shocks are formed, the phenomenon of harmonic distortion proceeds 

into "old age" as the higher frequencies, which define the comers of the shock- 

wave fronts, dissipate too rapidly to be compensated by harmonic growth. In that 

condition the comers of the shock wave erode and become rounded. The shock 

wave thereby returns toward a sine wave form, but with greatly reduced 

amplitude (Figs. 5.1.2d and e). 

Fourier analysis of the various forms of the sawtooth wave reveals that energy 

has been taken from the fundamental of frequency f (the original sinusoidal 

frequency) and redistributed into the second, third, and higher harmonics as the 

wave distorts. In the ultimate repeated shock, the pressure amplitude of the 

second harmonic (frequency 2f) is half that of the fundamental, the third 

harmonic (3f) has one-third the amplitude of the fundamental, and so on. The 

cascading redistribution of energy from the fundamental to the upper harmonics 

is accompanied by an increased real loss of acoustic energy because the newly 

generated higher frequencies dissipate into thermal energy at a much faster rate 

than the fundamental (Chapter 3). 

A simple derivation of the harmonic distortion of an intense, unattenuating 

plane wave was given by Black (1940) (see Problem 5.1.1). There the amplitude 

of the second harmonic of such a sawtooth wave is shown to be 

P2 = I] k X P21 

2 PA C2A 
(5.1.12) 

where X is the distance of propagation, and P1 is the amplitude of the 

fundamental. The second harmonic amplitude, P2, is proportional to the 

fundamental intensity and the number of wavelengths progressed, kX. 

It is useful to compare nonlinear propagation in air with that in water. Using 

B/A = 4.8 for water and 0.4 for air, fi is 3.4 for water and 1.2 for air. But the 

major difference between the two media comes about because the factor PA (CA) 2 

is 1.6 • 104 larger in water than in air. For the same presssure amplitude of the 

fundamental, the second harmonic will grow to the same magnitude in a distance 

only 1/5000 as far in air as in water. Even though the sound is diverging from the 

source, the sensitive listener often hears the popping, crackling sound of mini-  

shock waves from nearby jet aircraft during takeoff. 
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The shock wave will have reached its final sawtooth form when the second 

harmonic amplitiude, P2 is equal to P l/2. From Equation 5.1.12, the distance 

required for a plane wave is 

XO = PA C2A = (kM ~)- 1 
k P1 [3 (5.1.13) 

where 

u P1 
M -- acoustical Mach number . . . .  ( 5 . 1 . 1 4 )  

C A pA c2 

A much greater distance is required for a lossless, spherically diverging wave to 

achieve the sawtooth wave form. Furthermore, the calculation of shock conditions 

at large ranges must take into account energy absorption as well as spherical 

divergence. This problem has been studied by many investigators and is not 

repeated here. See Beyer (1974), Novikov et. al. (1987), Naugol'nykh et al. (1997), 

or the proceedings of the triennial International Symposium on Nonlinear 

Acoustics. 

The effect that we have described limits the energy that can be put into a sound 

beam by a source. As the input power increases, more and more power goes into 

the higher harmonics which, with their larger attenuation rate, act to dissipate the 

new power. Consequently an intensity is reached where additional input of 

energy at the source does not produce increased sound pressures in the field. The 

limit is called "saturation." 

The saturation effect for a spherically divergent beam in water is illustrated in 

Fig. 5.1.3. Where the response is linear, the 45 ~ line shows that field pressure is 

proportional to source pressure. The ultimate saturation effect is increasingly 

evident at the larger ranges. For the four greatest ranges, the saturation pressure is 

indicated by the horizontal lines to the right. 

A simultaneous effect of nonlinear harmonic distortion is the modification of 

the beam radiation pattern. Since the axial part of the beam has the greatest 

intensity, it suffers more than the off-axis field. As a result, the lesser attenuation at 

greater angles off-axis causes a broadening of the beam. This also causes the side 

lobe intensities to be closer to the intensity of the strong central part of the beam. 

5.2 Cav i ta t ion  

Near sea level, minute bubbles of micron or submicron size are always present in 

the ocean. When the rarefaction tension phase of an acoustic wave is great 

enough, the medium ruptures or "cavitates." For sound sources near the sea 
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Figure 5.1.3 Amplitude response curves showing the reduced field pressures due to 

extra losses caused by nonlinear propagation at increased source pressures for six ranges. 

Piston source diameter -- 7.6cm, f = 454 kHz. The horizontal lines at the right are the 

asymptotic saturation pressures. (Data from Shooter, J. A., et al., Acoustic saturation of 

spherical waves in water, J. Acoust. Soc. Am. 55, 54-62, 1974.) 
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surface, the ever-present cavitation nuclei permit rupture to occur at pressure 

swings of the order of I atm (0.1 MPa), depending on the frequency, duration, and 

repetition rate of the sound pulse. Cavitation bubbles may also be produced by 

Bernoulli pressure drops associated with the tips of high-speed underwater 

propellers. Natural cavitation is created by photosynthesis. 

Several extraordinary physical phenomena are associated with acoustic 

cavitation. Chemical reactions can be initiated or increased in activity; living 

cells and macromolecules can be ruptured; violently oscillating bubbles close to a 

solid surface can erode the toughest of metals or plastics; light may be produced 

by cavitation (sonoluminescence). The high pressures and high temperatures 

(calculated to be 30,000 ~ Kelvin) at the inteior during the collapsing phase of 

cavitating single bubbles can cause emission of a reproducible pulse of light of 

duration less than 50 picoseconds. 

Of direct importance to the use of sound sources at sea is the fact that, as the 

sound pressure amplitude increases, ambient bubbles begin to oscillate 

nonlinearly, and harmonics are generated. At sea level, the amplitude of the 

second harmonic is less than 1 percent of the fundamental as long as the pressure 

amplitude of the fundamental of a CW wave is less than about 0.01 atm rms 

(1 kPa) (Rusby 1970). This increases to about 5 percent harmonic distortion when 

the signal is about 10 kPa. 

When the peak pressure amplitude is somewhat greater than 1 atm, the 

absolute pressure for a sound source at sea level will be less than zero during the 

rarefaction part of the cycle. In using CW below 10 kHz, this negative pressure, 

or tension, is the trigger for a sharply increased level of harmonic distortion and 

the issuance of broadband noise. Any attempt to increase the sound pressure 

amplitude appreciably beyond the ambient pressure will cause not only total 

distortion but also the generation of a large cloud of bubbles which will actually 

decrease the far-field acoustic pressure. 

The detailed bubble activities during cavitation have been studied in several 

laboratories. Acousticians have identified gaseous cavitation resulting in 

streamers of hissing bubbles that jet away from regions of high acoustic pressure 

swings, and vaporous cavitation, which radiates shock waves of broadband noise. 

The nuclei for cavitation often are bubbles caught in crevices of solid 

particles. If the acoustic pressure swing is great enough, the bubbles grow by a 

process called "rectified diffusion." During a cycle of this action, more gas 

diffuses inward from the liquid to the bubble during the expansion part of the 

cycle than moves outward during the contraction part of the cycle, when the 

bubble surface is smaller. After growth to a critical radius, the bubble will expand 

explosively. 
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The acoustic pressure threshold for cavitation depends on the criterion 

selected to define its existence. In the laboratory it is possible to use visual 

observation. More commonly, the broadband noise of the cavitating bubbles is 

evidence of the onset. Additionally, the nonlinear generation of subharmonics of 

half-frequency is one criterion that defines the onset of cavitation. 

The sound field of an oceangoing transducer consists of regions close to the 

source and on the face of the source where the sound pressure is either greater 

than, or less than, the calculated pressure at the one meter reference range (see 

Fig. 4.4.4). Furthermore, both acoustic radiation pressure and streaming (see 

section 5.5) move cavitating bubbles to new positions where they experience 

different growth rates. Therefore there are "hot  spots" where cavitation activity 

is significantly greater than the prediction from the average reference pressure. 

The sound intensities that can be radiated deep below the surface are higher than 

those that can be radiated at the surface, because there are fewer cavitation nuclei, 

the radii of these nucleii are smaller, and the ambient pressure is greater. 

The dependence of cavitation onset and harmonic distortion on pulse duration 

is shown in Fig. 5.2.1. For pulse durations less than 100 ms, the average acoustic 

intensity required for 10 percent distortion is much greater than for CW. 

. .  m 

- X X -~  

_-- 

Figure 5.2.1 Pulse-length dependence of the onset of cavitation (solid lines) and of 10 
percent harmonic distortion (dashed lines) in seawater for 7 kHz sound at depths of 17 m 
and 45 m. (Rusby, J. S. M. "The onset of sound wave distortion and cavitation in 
seawater," J. Sound Vib. 13, 257-67, 1970.) 
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When the sound is alternately on and off, the allowable acoustic intensity, 

before distortion or cavitation, increases with decreasing percentage of on-time, 

At~T, from CW (100 percent) to lower values as shown in Fig. 5.2.2. An 

asymptotic value is reached that is higher with shorter pulse duration. 

5.3 Parametric Sources and Receivers 

5.3.1 CW P A R A M E T R I C  SOURCES 

Section 5.1 described the harmonic distortion that characterizes a single, intense 

sound beam. In 1963 Westervelt pointed out that if two intense sound beams are 

coaxial, the nonlinearity of the medium also creates entirely new propagating 

frequencies; these are sum and difference frequencies of the original "p r imary"  

sound frequencies. For example, when two primary beams of frequencies 

500kHz and 600kHz  are superimposed, a secondary beam of 100kHz and 

6 - -  

8 
< 

~ , , . ~ - ~ - - ~ - - - ~ - - ~ - -  - -~ - - -  

Figure 5.2.2 Duty-cycle dependence of onset of cavitation and 10 percent harmonic 
distortion at 45 m depth in seawater for different pulse lengths of 7 kHz sound. Pulse 
durations are: 74ms, V; 165ms, x; 380ms, A; 800 ms, [--]; 1650 ms, o. (Rusby, J. S. M., 
"The onset of sound wave distortion and cavitation in seawater, J. Sound Vib. 13, 257-67, 
1970.) 
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another of 1100 kHz will be generated. So-called parametric or virtual sources 

will be distributed all along the intense part of the interacting primary beams. 

The difference frequency is particularly attractive for technical applications 

because it has an extremely narrow beam at relatively low frequency. In the 

example given, the difference frequency of 100 kHz will have approximately the 

narrow beam width of a 550 kHz source radiating from the same transducer. The 

volume-distributed parametric source acts as if it were a highly directional end- 

fire array, so it is sometimes called a "virtual-end fire array." Furthermore, the 

bandwidth of the difference frequency of the parametric source is very much 

greater than it is for a linear transducer. 

For a simple description of the nonlinear action, consider how sum and 

difference frequencies can be generated at a point traversed by CW sounds of two 

different frequencies. Assume plane waves carrying the primary frequencies COl 

and (_o 2 described by 

p~ (t) = P1 cos (o)1 t) (5.3.1) 

and 

P2(t) -- P2 cos ((_o2 t) (5.3.2) 

Assume that these two primary waves are traveling in the same direction and 

that they are both very intense. Each beam will be modulated by the other. For 

example, the amplitude of the p~ wave will be modulated by the presence of P2 

and will become PI(1 +mcos(CO2t)) ,  where m - P 2 / P  1 is the modulation 

amplitude. When the modulated P I is added to Equation 5.3.2, we obtain the sum 

p(t) -- P1 cos (COlt) + P2 cos (CO2t) + PlmCOS (COl t) cos (CO2t) (5.3.3) 

The third term is the nonlinear interaction and m(P1, P2) is a measure of its 

strength. To recognize that sum and difference frequencies have been generated, 

rearrange the product of the cosines by using the trigonometric relation 

2 cos x cos y - cos (x + y) + cos (x - y) (5.3.4) 

and p becomes 

p(t) - El cos (~ -+- P2 cos  (co2t) 

elm [cos (cost) + cos (COAt)] 
+ -5 - -  

(5.3.5) 

The third term is a function of the sum and difference frequencies; 

0)~ = 0)1 + O) 2 
(5.3.6) 
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Sum and difference frequencies such as these would be generated at all points 

of intense interaction along the beams and would constitute a volume distribution 

of "v i r tua l"  secondary sources. For a sound beam they become equivalent to a 

properly phased array of simple real sources in an end-fire configuration. 

To describe and evaluate the distributed secondary sources, we go to the 

inhomogeneous wave equation derived first by Westervelt. It is a wave equation 

in which the squared primary pressures act as sources of the secondary or 

"sca t te red"  waves. In one dimension, this is written 

~2ps 

~X 2 

2 
1 ~) P s _  ~ [~2(pl + P2) 2 

r ~)t 2 - PA C4[ ~)t2 
(5.3.7) 

where the nonlinear parameter fl was defined in Equation 5.1.11. 

When we insert the expression for the two primary pressures with their 

attenuations 0{ 1 and o{ 2 into the RHS of Equation 5.3.7, 

P, + P2 = P, cos (COlt- klX ) exp ( - ~ , x )  

+ P2 cos (CO2 t - kzx ) exp ( -~2  x) 
(5.3.8) 

we obtain the terms that describe the source of the scattered pressure" 

02(pl -+- p2) 2 

Ot 2 
= -2coZP 2 cos [2(co,t - klX)] exp ( -2~ ix )  

- 2coZP 2 cos [2(cozt-  kzx)] exp (-2~2x)  

- 2co2p,P2 cos (cost - k s x ) e x p  [ - (~ ,  + ~2)x] 

- 2ooZP,P2 cos (mAt -- kAX ) exp [--(~l + ~2) x] 

(5.3.9) 

The second harmonic terms (first two terms on the RHS) were present in our 

discussion of shock-wave generation (section 5.1.1). In addition to those shown, 

there are others that would come from further harmonic distortion. The third and 

fourth terms on the RHS of Equation 5.3.9 describe the sum and difference 

frequencies. 

The difference frequency can be exploited. To show this, we use a Huygens 

type of calculation for a distribution of sources to determine the directional 

dependence of the difference tone component,  COA- Refer to Fig. 5.3.1. 

Assume that the cross-sectional diameter of the volume is small compared 

with the wave length of the difference tone. The element of volume is So dx, 

where So is the cross-sectional area of the high-frequency primary beams. The 

secondary wavelets diverge spherically with the relatively low sound-pressure 
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R a 

"~ virtual sottrces of the diffe~nce frequency 

Figure 5.3.1 Geometry for the generation of a difference frequency from two intense 
coaxial high-frequency beams. The new frequency arises as a continuous distribution of 
virtual sources throughout the beam. It is observed at Q. 

attenuation rate of 0~ A (nepers/m). The sound pressure at Q is proportional to the 

integral over all sources, 

CO2A~P1PzSo 
p~(e, O) ~. 

2Pa c4 

I o e X p  [--~A R' -- (~1 + ~2)X + i(09At - kAx -- kaR')] C.C 
R' + " 

(5.3.10) 

(5.3.13) 

where 

R' -- (R 2 - 2xRcosO + x2) 1/2 "-" R - x c o s 0  (5.3.11) 

and C.C. means the complex conjugate. The limit is given as infinite for 

convenience; actually, the length of the volume is small compared with R, 

because exp [-(~1 + ~ tends rapidly to zero as x increases. Substitution of the 

approximation for R' and 1 - c o s  0 = 2 sin 2 (0/2) permits a simple integration 

result for the secondary pressure at the field position, R, 0, 

PA(R O ) ~ . l ~ 1 7 6 1 7 6  C.C. (5.3.12) 
' 4RPaC4[(~) + ik 2 sin 2 (0/2)] 

where ( ~ ) =  (~1 + ~ 2 ) / 2  is the average attenuation of the primary-source 

frequencies. 

Determination of the amplitude factor requires the solution of the three- 

dimensional form of Equation 5.3.8. The reader is referred to Westerfelt (1963) 

for the following quantitative solution: 

PA(R, O) -- ~ flP1P2S~ exp !--~A R ) COS (___~At ~ k__AR - e) 

NgR(O~)RA c4 1 -~ sin 4 (0 /2 )  

where e - arc tan[k~/(0~)sin2(0/2)]. 
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The quantity multiplying the cosine term is the peak pressure of the difference 

tone, PA. This equation shows that PA is proportional to the product of the primary 

acoustic pressures. Since the primaries are attenuating relatively rapidly, the 

region of the beams close to the transducer is most important in generating the 

difference frequency. Once the difference tone is generated, it propagates with its 

relatively small low-frequency attenuation, ~a, far beyond the region of the 

primaries that created it. 

The difference tone diverges spherically, so that the pressure goes as 1/R. 

However, its beam pattern is very narrow. The pressure directional response 

depends on 

k2 A ] -1/2 
DA(O ) -- 1 + ~  sin4(0/2) (5.3.14) 

The sound will be down to half-intensity ( - 3  dB) at the angle given by 

1 + 7 , ~  sin4 (OA/2)- 2 

For difference tone generation, the ratio is (~)/k A ~ 1, 

sin (OA/2) TM (OA/2) and 

beam width = (2 0zx )=  4 ((a)/kA) 1/2 

(5.3.15) 

so that 

Not only is the beam width much narrower than would be expected from a 

piston of the size used or the primaries, but Equation 5.3.14 predicts that there 

will be virtually no side lobes in the radiation pattern of the difference frequency. 

In addition, one notes that, under the assumptions of the development, the beam 

width of the difference tone does not depend on the size of the primary sources. A 

further advantage of the parametric source is that its beam width is relatively 

insensitive to the value of the difference frequency. 

Fig. 5.3.2 shows the beam patterns of two primary w a v e s - - o n e  at 418 kHz 

and the other at 482 kHz, and the difference tone produced at 64 kHz. Not only 

does the difference tone have a central beam width like those of the high- 

frequency primaries, but its side lobes appear to be down by about 40dB 

compared with the axial value. The absence of side lobes is striking. 

Another advantage of the parametric array is the increase in bandwidth. 

The bandwidth of a primary source is normally some percentage of the 

central frequency, say +5 percent. When the primaries are operated within 

this percentage bandwidth, the difference frequency will range over this same 

(5.3.16) 
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Figure 5.3.2 Directivity patterns of a parametric source. (a) Primary 418kHz. 
(b) Primary 482 kHz. (c) Beam pattern of difference frequency, 64 kHz. The solid lines 
are experimental; values obtained by a few theoretical calculations are shown by open 
circles. (From Muir, T. G., "Non-linear acoustics and its role in the sedimentary 
geophysics of the sea," pp. 241-287, in L. L. Hampton, ed., Physics of Sound in Marine 
Sediments, Plenum Press, New York, 1974.) 

absolute bandwidth, centered on its lower frequency. For example, if the 

primaries are 500 + 5 percent (i.e., 475 to 525 kHz) and 600 + 5 percent (i.e., 

570 to 630 kHz), the difference frequency will have the relatively wide 

bandwidth of 100 + 25 kHz. 

The great virtues of the parametric source are bought at the cost of very low 

power efficiency. To calculate the appproximate efficiency of the nonlinear 

source, assume that the two primary sources radiate the same power, W1 = W2, 

that the primary field pressures are equal, P1 = P2; that they are measured close 

to the source and have not yet attenuated, and that the attenuation of the 

difference tone is negligible. The powers radiated through the primary beam area 

So are 

SOP21 
H1 = 1-12 _ 2PAC (5.3.17) 

In terms of the total primary power,/70 = /71  + He, from Equation 5.3.13, the 

axial peak pressure of the CW difference tone is 

fl (_OJ n o (5.3.18) 
PA: 8Jr R c3 
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or, in terms of the half-beam width from Equation 5.3.16, 

flf A H~ (5.3.19) 
PA = Rc202 

where we have used fA = 09A/2rC. 
The power radiated by the difference tone is the product of the average 

intensity, PZ/(ZPaC ), and the beam area, n(ROA)2; 

~ 2 f 2 d 1-I2 0 

I'IA= 2 P a C 5 0 ~  

The percentage efficiency is 

100HA _ 100 rcfl2f2H~ (5.3.21) 

Ho 2PACSO 2 

The efficiency is generally a fraction of one percent. There are three apparent 

ways to increase the efficiency: improve the difference frequency, improve the 

primary power, decrease the primary beam width. Only increased power offers 

direct promise for increased efficiency without sacrificing the advantage of the 

parametric source. However, that avenue is restricted by saturation effects and 

beam broadening, as well as cavitation at high intensities. 

When gas bubbles are present in an intense sound beam, they may be driven 

into large-amplitude, nonlinear oscillations at or near their resonance 

frequencies. This effect can substantially increase the power of the difference 

frequency, but with some loss in the radiation directionality. 

Even though the efficiencies are very low, parametric sources are in active use. 

They are one solution to the need for transducers which have a narrow beamwidth 

and a uniform response over a wide range of low frequencies. Because their low 

frequency permits them to penetrate several layers of sediment, they are 

particularly desirable as seismic transducers for profiling lower layers of the 

ocean bottom. 

5.3.2 PARAMETRIC RECEIVERS 

In his original papers in the 1960s, Westervelt pointed out that it should be 

possible to develop a parametric receiver that would detect very low frequency 

sound and reveal its direction of propagation. A series of experimental papers has 

since verified that expectation. 
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The general scheme for parametric reception is shown in Fig. 5.3.3. A high- 

intensity " p u m p "  frequency, fp, radiates a narrow beam toward a receiver. Any 

incoming low-frequency signal, fs '~. fp, will interact nonlinearly with the pump 

sound to produce sum and difference frequencies. The new frequencies will have 

the directivity, D(O) given by 

sin [ksL sin 2 (0/2)] 

D(O) - ksL sin 2 (0/2) (5.3.22) 

where 0 -- angle between signal direction and pump signal direction; k s = wave 

number of incoming signal = 2rC/2s; and L = path length from pump source to 

receiver. Half-intensity points for this directionality are at 

sin 2 ( ~  
D2(0 ) ___ ~x j=  1/2 (5.3.23) 

X 2 

where x - kLsin 2 ( 0 / 2 ) - - t h a t  is, at 01/2 - 0.94V/2s/L. 

The directionality improves with larger path lengths, L, over which the pump 

frequency can be maintained at high intensity. Several ideas for accomplishing 

this have been published. A good review of progress in the development and use 

of the parametric receiver, as well as other effects of nonlinear propagation, has 

been written by Hamilton (1986). 

l)I~ITEPACTION 

Figure 5.3.3 Schematic diagram of a parametric receiver. (From Rhode, D. E, T. G. 
Goldsberry, W. S. Olsen, and C. R. Reeves, "Band elimination processor for an 
experimental parametric receiving array," J. Acoust. Soc. Am. 66, 484--487, 1979.) 
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5.3.3 INTENSE TONE BURSTS, SELF-DEMODULATION 

Not long after the discovery of parametric effects, it was shown by Berktay 

(1965) that an intense, high-frequency tone burst will be demodulated as it 

progresses. After propagating a certain range, R, the carrier frequency will have 

attenuated, and only a low frequency component will remain. The new wave form 

is determined by the duration of the tone burst and the character of the transient 

start and stop parts of the burst signal. If one assumes a carrier of frequency o9 

modulated by the envelope function f(t),  Berktay showed that the peak, axial 

secondary pressure will be given by Equation 5.3.24. 

flP~ S ~R .~) 0 2 

"--(167CPA c4 / -~ ~2 (t - R) (5.3.24) 

w h e r e R > ~ - l  and R>S/2 

where c~ is the attenuation of the carrier frequency,/l is its wavelength, and S is the 

source area. The nonlinear parameter 13 was defined in section 5.1. 

The prediction was confirmed by experiments such as shown in Fig. 5.3.4. 

5.4 Explos ive  Sources  

5.4.1 THE SHOCK WAVE 

An underwater chemical explosion (e.g., TNT, Pentolite, Tetryl) is an effective 

source of sound for experiments at sea. The energy available from the explosion 

is approximately 4.4 • 103 joules/gm (TNT). The explosion starts with a very 

rapid chemical reaction which creates product gases at temperatures of the order 

3,000~ and pressures of about 50,000 atms. The pressure at the gas-water 

interface is relieved by the rapid outward motion of the water, and a 

discontinuous shock-wave front is formed for the reasons described in section 

5.1. There are then two sources of sound in the water surrounding a deep-water 

explosion: the shock wave, which carries about half of the energy of the 

explosion and which propagates spherically at speeds greater than the 

conventional 1500 m/s; and the huge oscillating gas bubble. 

First consider the shock wave. An approximate description is that the shock 

shows an instantaneous rise in pressure to a maximum value, p,,. The pressure 

then decays exponentially (Fig. 5.4.1). Studies during and since World War II 

have shown that both the peak pressure and the time constant of the decay can be 

scaled according to a universal parameter, (W~/3/R), where W is the weight of the 
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Figure 5.3.4 Self-demodulation of a tone burst. The burst amplitude was 1.9 atms at 
10 MHz. The on-off transients caused low-frequency components of fundamental about 
100 kHz at an amplitude approximately 3 x 10 -3  atms as predicted by Equation 5.3.24. 
Propagation was as I/x, where x is the range. (Moffett, M. B., et al., "Large-amplitude 
pulse propagationma transient effect," J. Acoust. Soc. Am. 47, 1473-74, 1970.) 

explosive and R is the range to the measurement position. See R. H. Cole, 

"Underwater Explosions" (1948), for a discussion of theory~ and early 

experiments. More recently, Rogers (1977) has used weak shock theory to 

derive accurate expressions for the peak pressure and decay time constant as a 

function of the charge-range parameter. 

The most common explosives in current experiments at sea are 0.82 kg SUS 

(Signal, Underwater Sound) charges that are comprised principally of TNT. A 
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I i 

Figure 5.4.1 Sound pressures from an explosive at various depths and ranges at sea. The 

geometry is at the left. The first sound impulse is the shock wave (note the steep rise in 

pressure, and exponential decay), which is observed at all depths. At 194.5 m depth, the 

shock is followed by several oscillations of the bubble pulse. The pressure graph is similar 

at 99.6 m depth, but there is a greater time between the shock and the first bubble pulse, 

owing to the depth dependence of the bubble period Equation (5.4.10). At explosive depths 

49.0 m and 23.5 m, one can identify the shock wave and the several bubble pulses and their 

phase-reversed reflections from the ocean surface. (From Chapman, N. R., "Measurement 

of the waveform parameters of shallow explosive charges," J. Acoust. Soc. Am. 78, 672-  

81, 1985.) 

great deal of  effort has been expended to determine the source strength and 

decay time constant of  SUS charges. The best empirical  equations appear to be 

those of  Chapman (1985),  who conducted extensive  trials at sea and verified a 
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relation originally by Slifko (1967) for the peak shock-wave pressure of the 

0.82 kg SUS charge, 

P m  - -  50"94(w1/3/R) 1"13 MPa (5.4.1) 

where Pm is given in megapascals when the charge weight w is in kilograms and 

the propagation range R is in meters. The range dependence is R-113 rather than 

R -1, because of excess attenuation at the shock front. 

The early exponential decay immediately after shock passage is given by 

P - Pm exp ( - t / Z s )  (5.4.2) 

where Z s is in seconds. 

Chapman' s redetermined expression for the decay time constant for the shock 

from a 0.82 kg SUS charge is 

z s - 8.12 x lO-5w1/3(w1/3//R) -0"14 seconds (5.4.3) 

5.4.2 SHOCK FRONT PROPAGATION; THE R A N K I N E - H U G O N I O T  

E Q U A T I O N S  

The propagation equations that were derived for infinitesimal (acoustic) waves in 

Chapter 2 are not valid for shock waves. However, the equations of conservation 

of mass, momentum, and energy at a shock front, the "Rankine-Hugoniot 

equations," are easily derived (Fig. 5.4.2). 

Conservation of Mass 

Let an observer move with the front. The mass per unit area per unit time entering 

from the right is M - PA U. The mass per unit area per unit time leaving the front 

must be the same, M -  Pm ( U -  Um). Equating, we get the Rankine-Hugoniot 

U 

UA=0 

J �9 Pm PA 

j Pm PA 
. . . . .  ~----X 

Figure 5.4.2 Conditions at a plane shock front that moves with velocity, U. In front of 
the shock, the particle velocity is zero, pressure is PA, and density is PA. At the shock front 
the pressure, density, and particle velocity are Pm, Pm and Um, respectively. 
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equations for conservation of mass; 

M - -  pA U -- Pm(U- Um) 

(Pm--PA) 
Urn= P-m U 

(5.4.4) 

Conservation of M o m e n t u m  

For conservation of momentum, notice that the net momentum per unit area per 

unit time delivered to the entering fluid is pA U2 -- P m ( U  - urn) 2. The net pressure 

acting toward the right is Pm -PA" Equating the two gives the conservation of 

momentum equations 

)2 
Pm -- PA --  PA U 2  --  Pm ( U - u m (5.4.5) 

or, more simply, using Equation 5.4.4, 

Pm -- PA --  PAUm U (5.4.6) 

from which we obtain the shock front propagation speed, U: 

-- V/(P~m -- PA ) Pm U (5.4.7) 
--PA)PA 

Since water is only slightly compressible, P A / P m  ~- 1. Therefore, the shock 

speed U depends on the a v e r a g e  slope (Pm - PA ) / ( P m  -- PA) in the p p  graph, Fig. 

5.1.1. On the other hand, the speed of sound at the peak, Cm, depends on the l oca l  

i n c r e m e n t a l  slope, (Ap/dp)pm,~ ,m,  which is clearly larger than the average slope. 

Therefore c m > U > c A. 

To obtain the densities in order to calculate Um and U from Equation 5.4.7, one 

needs the equation of state for seawater and the conservation of energy equation 

at the shock front. See section 2.6 of Cole (1948). The result is plotted in 

Fig. 5.4.3, from which one observes that the speed of the shock front can be 

significantly greater than the conventional speed of sound in seawater, 

1500 m/s. 

5 .4 .3  T H E  G A S  G L O B E  

The huge gas globe which encloses the products of the chemical components of 

the explosion, as well as vaporized water, contains about half the total energy of 

the explosion. Sound is radiated during acceleration of the bubble radius. After 

the initial acceleration, the great bubble decelerates, expands past the point where 
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Figure 5.4.3 Particle velocity at shock front /'/m and relative speed of shock front in 
seawater as a function of the peak pressure at the shock front Pm. (From Cole, Robert H., 
Underwater Explosions, Princeton University Press: Princeton, N.J., 1948.) 

the internal bubble pressure equals the ambient pressure, slows, and reaches a 

maximum radius. At maximum radius, the internal gas pressure is less than the 

ambient pressure, and the bubble contracts. The oscillating gas bubble is 

responsible for the bubble pulses, following the shock wave in Fig. 5.4.1. 

The period of the gas bubble oscillation is a function of the energy available to 

it after the shock has been formed, and the ambient density and pressure of the 

water that surround it. To calculate the approximate period, assume that the 

bubble is spherical and determine the partition of nonshock energy, Y. 

At the maximum radius, am, the kinetic energy is zero, and the internal energy 

is much less than the potential energy. Therefore we can assume that the 
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nonshock energy, which contains about half of the total explosion yield, is all 

potential energy: 

Y =(4/3) Jr am 3 PA (5.4.8a) 

o r  

/ 3 Y  

am-- W4~a  
(5.4.8b) 

To calculate the approximate period of the motion, assume that the bubble 

oscillates spherically as an ideal bubble (see Chapter 8) at its depth, where the 

ambient conditions are PA, PA" The period of oscillation of a spherical bubble 

Equation 8.2.13 is given by 

T -  2rCam~/3P-~ PA (5.4.9) 

Substitute am from Equation 5.4.8a to obtain the approximate period, 

T = K yI/3p~2P A 5 / 6 (5.4.10) 

where dimensionless K ~ 2 depends on our assumptions. The S.I. for Y are 

joules. 

This equation has been derived by others in many ways; it is called the Willis 

equation. It is important for our purposes because it specifies the approximate 

dependence of bubble period on depth (recall Fig. 5.4.1) and explosive yield. The 

reality is that, because of the large differential pressure from its top to bottom, 

large explosive bubbles are not spherical but are flattened or dimpled at the 

bottom. Furthermore, the gas globe often splits into two because of that dimpling. 

Also, the nonharmonic pulsation does not generate a sinusoid, and the effective 

period changes as the bubble rises owing to buoyancy. Nevertheless, Equation 

5.4.10 is a useful initial predictor. 

5.4.4 INTERACTION WITH THE OCEAN SURFACE 

When the explosive is close to the ocean surface, phase-reversed signals (caused 

by reflection from the water-air interface) will be received after the direct 

received signals. Fig 5.4.1, with the source at depth 49.0 m, shows the reflected 

shock wave just after the first bubble pulse. 

Note the "noise" that follows the reflected shock in Fig. 5.4.1. When the 

positive shock pressure is reflected, it is phase-shifted, and it becomes a tension. 

This negative pressure can have a greater absolute value than the ambient 
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pressure. As a result, the water cavitates (section 5.2). The newly created 

microbubbles near the surface will reradiate damped oscillations at many 

frequencies (see section 8.2.9). This will give the appearance of random noise 

radiated from the surface. The reflected shock loses significant energy as it 

ploughs through the water and causes cavitation. Note, however, that the reflected 

first bubble pulse in this same figure does not appear to have a large enough 

tension to give evidence of cavitation. The signal shown for explosive depth 

23.5 m should now be easy for the reader to explain. 

In experiments at sea, it is often the case that the cacophony of multiple sources 

of sound that comes from an underwater explosive is not desirable. To avoid the 

bubble pulses and its sea surface reflections, experimenters can set off the 

explosive close enough to the surface to cause the bubble gases to vent before an 

oscillation can take place. The isolated shock wave is easier to deal with. 

5.5 Acoustic Radiation Pressure 

A sound beam transports acoustic energy and acoustic momentum. The average 

acoustic momentum carded through unit area in unit time causes an acoustic 

radiation pressure. The Langevin radiation pressure PnL is the time average of 

the product of the momentum per unit volume, pAU, by the particle velocity, u: 

momentum transfer 
Pt~L = = (pA u2) (5.5.1) 

time area 

The Langevin radiation pressure is the difference between the pressure in the 

beam perpendicular to the wall and the static pressure in the fluid behind the wall. 

For additional explanations, see, for example Beyer (1978). 

The quantity in Equation 5.5.1 is also the average acoustic energy per unit 

volume, (e), at the point. It is equal to the average acoustic intensity divided by 

the speed of sound, 

(I) 
PRL - (PA u2) - -  @) - 

CA 
(5.5.2) 

Therefore, if one determines the Langevin radiation pressure, the energy 

density is obtained, and the intensity of the beam is readily calculated. The 

technique is frequently used in ultrasonic measurements where the insertion of a 

hydrophone would disturb the acoustic field that is being measured. It can also be 

used in calibration of a high-frequency underwater source. To use the technique, a 
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diaphragm is inserted perpendicular to the beam, and the radiation force is 

measured as in Figs. 5.5.1 and 5.6.1. 

Strictly speaking, radiation pressure is not solely a high intensity effect; it 

exists for infinitesimal sound amplitudes, as well. However, because the radiation 

pressure depends on the square of the acoustic pressure it is much easier to 

measure at high intensities than at low intensities. 

5.6 Acoustic Streaming 

In addition to harmonic distortion, intense sound waves cause a unidirectional 

flow call "s t reaming."  Acoustic streaming is characterized by an outward jetting 

of the medium in front of any transducer that propagates high-intensity sounds. In 

the early days the phenomenon was called the "quartz wind" because quartz 

crystals were used as underwater sound sources. In air, the effect is experienced 

most easily by turning up the gain of an audio system and placing one's hand in 

front of the loudspeaker to feel the breeze. 

In the case of a piston transducer propagating a sound beam in the open sea, 

the acoustic streams are strongest away from the source end on the sound axis. 

This is because the axial stream velocity increases somewhat beyond the source 

where the higher attenuation of the newly generated frequencies (due to harmonic 

distortion) increases the momentum transfer from the sound wave to the bulk 

medium (see, for example, Starritt et al. 1989). At much greater ranges, the 

stream velocity decreases owing to the weaker acoustic field and fluid mixing. 

Nevertheless, the streams jet out for distances of the order of meters as they 

~Ax~ 

Figure 5.5.1 Acoustic radiation pressure and acoustic streaming in a beam. Left, sound 
attenuation through the path Ax causes a decreased acoustic momentum along the path AI/c A; 
this is taken up by a streaming momentum of the bulk medium. Right, Langevin radiation 
pressure of a sound beam measured at a wall is the average energy density in the beam. 
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Figure 5.6.1 Acoustic streaming in front of a source in water. The quartz piston sound 
source is at the left. At the right, a diaphragm, which was used to measure radiation 
pressure, caused the axial stream to diverge into a tight vortex. The flow was made visible 
by suspended particles of aluminum. (From Liebermann, L. N., "Second viscosity of 
fluids, Phys. Rev. 75, 1415-22, 1949.) 

gradually circulate back to the side of the transducer (Fig. 5.6.1). The acoustic 

streams start to flow in tenths of seconds. 

The many different acoustic streaming patterns that occur in intense sound 

fields depend on the geometry of the region and the form of the acoustic field. The 

basic reason for the flow can be easily understood as momentum transfer from the 

attenuating sound wave to the bulk medium. Following an argument of Fox and 

Herzfield (1950), consider a section of a plane wave beam (Fig. 5.5.1) carrying 

sound in the +x  direction. 

For an attenuating medium such as water, the spatial change of intensity is 

given by 

A(I ):  - 2~e(Z)Ax (5.6.1) 

where ~e is the rate of attenuation of acoustic pressure, nepers per unit distance 

(section 3.4). 
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The spatial decrease of energy density due to the absorption of energy in 

distance Ax is 

A(E)-  A(I) _ - 2(z e( l)Ax (5.6.2) 
CA C A 

The spatial rate of decrease of acoustic momentum per unit area per unit time 

is compensated by the change of static pressure: 

2cx e ( I )  Ax (5.6.3) 
ApA = CA 

If that pressure is unsupported, it will cause the fluid to drift. Otherwise stated, the 

loss of momentum from the acoustic beam is taken up by a gain of momentum of 

the fluid mass; thus conservation of momentum is fulfilled. 

A more general study of the streaming phenomenon (Medwin 1953) shows 

that the streaming vorticity (vorticity -- Vxu 2 where u 2 is the streaming velocity) 

is generated at all points where there is sound absorption. If the acoustic field is 

completely away from boundaries, the volume absorption rate, ~e, determines the 

vorticity. When the sound field is adjacent to a boundary, the absorption in the 

acoustic boundary layer is the source that drives streams in the medium. The 

acoustic boundary is the viscous layer within which a grazing plane-wave particle 

velocity decreases exponentially from the plane-wave value to zero at a rigid 

wall. It was originally calculated by Lord Rayleigh; (1877); see also Pierce 

(1981). The thickness to e -l is given as 

(5.6.4) 

The detailed flow patterns in specific situations depend on the local absorption 

of energy, the geometry of the region in which flow is driven by these distributed 

acoustical sources, and the sound intensity. For example, very strong eddies form 

around a bubble attached to a wal l - - say ,  at a sound transducer (Elder 1959). 

Potentially destructive streaming velocities thousands of times greater than the 

acoustic particle velocity have been observed. 

The first specific example of streaming in free space was solved by Eckart 

(1948), who considered a nondivergent beam of radius a within a tube of larger 

radius ao. Equation 5.6.5 has been used in this manner to determine the bulk 

viscosity when the axial streaming velocity is measured and the shear viscosity of 

the medium is known: 

2rt 2 f~  a 2 G I b (5.6.5) 

U2 - r PA 
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where G - [(a2/a 2 - 1 ) / 2 ] -  log (a/ao); I - P2/(2PAC); b -- 4/3 + #b/#;  

/~b -- dynamic bulk viscosity; and # = dynamic shear viscosity. 

This equation was used by Liebermann (1949) to calculate the seawater bulk 

viscosity, #b, a quantity whose numerical value was unknown at the time (see 

section 3.4.3). By this calculation he showed that the great difference between the 

theoretical and experimental values of the attenuation of sound in seawater that 

existed prior to the 1950s was due to the lack of knowledge of the macroscopic 

quantity, bulk viscosity (or the microscopic descriptions, the molecular relaxation 

or the structural relaxation). 

The streaming pattern is sensitive to the form of the primary acoustic field. 

When the correct divergent beam pattern is used and the physical constants of the 

medium are known, predictions of the streaming velocity can be within 2 percent 

of the measured values (Medwin 1954). The streaming technique is a practical 

means to determine the bulk viscosity of fluids from simple acoustical and drift 

measurements. An excellent early summary of acoustic streaming was written by 

Nyborg (1965). Continuing research on the subject can be found in the triennial 

Proceedings o f  the International Symposium on Nonlinear Acoustics.  

Problems 

Section 5.1 

5.1.1 Calculate the second harmonic generated in an intense unattenuating 

sinusoidal plane wave as shown in Fig. 5.1.2b by following a scheme first used 

by Black (1940). First show that in time At the advance of a crest is 

Ax = f l (Ap/pa)CAAt.  Then assume the the distorted wave is simply the sum of a 

fundamental plus second harmonic, p = P1 cos kx + P2 sin 2kx, and show that 

the zero-slope peak (dP/dx)  = 0 results in P2 ~ P l k A x / 2  = f l (Ap /PA)kxP1/2 .  

5.1.2 Use Fig. 5.1.3 to determine the rate of attenuation of the 454 kHz 

nonlinear wave propagating to range 101 m if the source pressure is 100 kPa, 

200 kPa, and 300 kPa. Compare with the attenuation rate ~ in Chapter 3. 

Section 5.2 

5.2.1 Based on Fig. 5.2.2 and assuming that the density of cavitation nuclei 

remains constant with depth, plot a graph of onset of cavitation dependence on 

duty cycle for pulse duration 74 ms at transducer depth 5 m. 
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5.2.2 Fig. 4.4.4 shows how the near-field pressure varies across the face of  a 

piston transducer. Replot those pressures on a two-dimensional graph and 

compare the hot-spot pressures where cavitation will most likely occur with the 

average acoustic pressure over the face of the transducer. 

Section 5.3 

5.3.1 Given a parametric source device with two primary coaxial beams of 

frequencies, 418 kHz and 482kHz, a) calculate the 3 dB beam width of the 

difference tone and b) calculate the size of the simple piston source that would 

have been needed to produce the same beam width. 

5.3.2 A parametric source is advertised as having a mean primary frequency of 

200kHz, a difference frequency of 12kHz, and source input powers of 

W~ = W1 - 2 0 0 w a t t s .  Using the value / ~ -  3.5 and the attenuation rate from 

Chapter 3 for seawater, calculate the efficiency of the parametric source. 

Section 5.4 

5.4.1 Plot a graph of peak explosive shock pressure versus range for a deep 

explosion from a 0.82 kg SUS charge. 

5.4.2 Sketch the shock pressure p versus t for the first 200ms after the 

detonation of a 0.82 kg SUS charge at depths 10m, 100m, and 500 m. 



Chapter 6 Processing of Ocean Sounds 

6.1 Sampling Rules 

6.1.1 Spatial Sampling 

6.1.2 Temporal Sampling 

6.2 Filter Operations 

"6.2.1 Finite Fourier Transformations (Optional) 

*6.2.2 Fourier Integrals and Series (Optional) 

6.2.3 Filter Response Measurements 

6.2.4 Time Domain View of Bandpass Filtering 

*6.2.5 Convolution Operations (Optional) 

6.2.6 Filter Operations in the Frequency Domain 

6.3 Gated Signals 

6.3.1 Dependence of Spectrum on Ping Carrier Periodicity 

6.3.2 Dependence of Spectrum on Ping Duration 

6.4 Power Spectra of Random Signals 

6.4.1 Signals Having Random Characteristics 

*6.4.2 Spectral Density and Correlation Methods (Optional) 

6.4.3 Random Signal Simulations: Intensity Spectral Density 

6.4.4 Spectral Smoothing 

6.4.5 Traditional Measures of Sound Spectra 

6.5 Matched Filters and Autocorrelation 

6.6 Sounds in the Ocean 

6.6.1 Natural Physical Sounds 

6.6.2 Natural Biological Sounds 

6.3.3 Ship Noise: Sample Calculation 

184 

185 

185 

188 

188 

191 

194 

195 

195 

197 

199 

200 

200 

200 

203 

203 

204 

206 

208 

209 

211 

212 

215 

219 

Signals are the messages that we want to receive at our hydrophone. Noises are 

everything that we don't want to receive. The types of signal messages include 

impulses and CW tones of short or long duration and constant or varying 

frequency; they also include complicated coded messages and random sequences. 

The form of noise can run the gamut. 

We all know the popular saying "Beauty (or ugliness) is in the eye of the 

beholder." One can propose a comparable acoustical maxim: "Signals (or noise) 

are in the ear of the listener." There are many examples: the sonar operator 

searching for the "signal" of a submarine will call the sounds of whales and 

dolphins "noise." Needless to say, the marine mammal seeking to communicate 

or locate food would characterize man-made sounds as "noise." Some sounds 

that were called "noise" for may years are now recognized as bearing 

* Background material. 
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information that qualifies them as "signals";  for example, the sound of rainfall at 

sea is now used to measure the size and number of raindrops per square meter per 

second. 

Flow noise at a transducer, electrical circuit noises, and the 60 or 50 Hz 

electrical interferences from power lines are generally regarded as noise by 

everybody. 

Traditionally, underwater ambient noise has been specified in terms of the 

sound measured at a convenient hydrophone, some distance from the sources. 

The origins of the sound are often a mystery. We initiate a different approach. In 

section 6.5 we will survey the acoustic power, source pressure, directionality, and 

intermittency of physical, biological, and man-made ocean sounds at  the ir  

source .  When this information is known, one's knowledge of propagation in the 

ocean (e.g., Chapter 3) allows us to calculate the ambient sound at any location. 

In addition to our survey of many of the more common sound sources at sea, 

we need operations that allow the listener to sort out the signal from the noise. 

The communication literature has many very thick books and lengthy discussions 

of each signal processing topic that we mention h e r e - - f o r  instance, Churchhill 

and Brown (1987), Kanasewich (1981), Oppenheim and Shafer (1975), and Clay 

(1990). A comprehensive linear systems theory approach to underwater acoustics 

is given by Ziomek (1995). The necessary proofs and derivations of signal 

processing procedures are in these books. 

6.1 S a m p l i n g  Rules  

Practically all underwater sound signals and noise are recorded digitally, and the 

results of analysis are displayed on computer terminals. The acoustician uses 

signal acquisition and digitizing equipment, signal processing algorithms, and 

graphic display software to make this happen. 

The noisy signal that comes from our hydrophone is an electrical voltage that 

is a continuous function of time. It is called an analog signal. Hydrophone signals 

must be sampled to convert them from analog to digital format in order to enter a 

digital computer. 

We must sample signals properly or we get garbage. The sampling rules are 

general. They apply to either temporal or spatial sampling of the oceanic 

environment. When the rules are obeyed, the original signal can be recovered 

from the sampled signal with the aid of an interpolation procedure. If the rules are 

not obeyed, and sampling is too sparse, the original signal cannot be recovered. 

The Nyquist sampling rules are 
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(1) Space Domain Rule. The spatial sampling interval must be less 

than half of the shortest wavelength of the spatial variation. Spatial 

sampling is sometimes described in terms of the spatial wave 

number, k s -- (2r~)/2s, where 2 s is the distance between samples. 

(2) Time Domain Rule. The time interval between samples must be less 

than half of the shortest period in the signal. Sampling is defined in 

terms of the sampling frequency fs : 1/t o, where to is the time 

between samples Otherwise stated, the sampling frequency must be 

greater than twice the highest frequency component in the signal. 

6.1.1 SPATIAL SAMPLING 

In traditional marine biology, samples are taken by towing a net through the 

water. A net is lowered to the depth, opened, and towed for a specified distance. 

Net sampling takes a lot of work. The following example of spatial sampling uses 

a two-dimensional map (or depth profile) of a marine biological survey in which 

the results of sparse net sampling and detailed acoustical sampling are compared. 

The details of the data acquisition are not important here. 

Fig. 6.1.1 shows a simulation of sampling of the density of organisms or 

"particles" in the ocean, using nets. In this simulation, the length of the tow is 

1.5 km. Simulated sampling stations were occupied at approximately 5km 

spacings, and samples were simulated at 50 m depth intervals. The inadequately 

sampled data do not show much structure or pattern. 

For comparison with Fig. 6.1.1, almost continuous acoustical sampling of the 

biomass is shown in Fig. 6.1.2. This figure shows strong features both in having 

regions with many scatterers, indicating large biomass (black spots), and regions 

with few or no scatterers (white). The heavy concentrations of biomass show 

much structure in the ocean biomass. 

6.1.2 TEMPORAL SAMPLING 

The electrical signal x(t) is sampled by an analog-to-digital converter to create a 

sequence of numbers, (Fig. 6.1.3). The clock, (Fig. 6.1.3a), gives the sampling 

instruction. The sample is the instantaneous value of the signal voltage at the 

clock time. No information is recorded about the signal voltage between samples 

where straight lines are drawn. 

Examples of data taken at two different sampling intervals are shown. In Fig. 

6.1.3c there are for four samples in a half-period. In Fig. 6.1.3d the sampling 

interval is larger than the half-period. Reconstruction of the inadequately sampled 
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F i g u r e  6.1.1 Simulation of net sampling of marine organisms. The net is towed at a set 

of stations at different ranges and depths. Each net tow is over a 1.5 km distance. The 

relative densities of organisms captured in the net tows are indicated by shaded rectangles 

using the relative density code at the right, 0, 1,2, 3, and 4. 

F i g u r e  6.1.2 Acoustical profile of biomass. The profile was made by recording the 

output of a downward-looking sonar as the ship traveled. The simulation of net samples 

shown in Fig. 6.1.1 was made from this profile. (From Nero, R. W.; J. J. Magnuson; S. B. 

Brandt; T. K. Stanton; and J. M. Jech, "Finescale biological patchness of 70 kHz acoustic 

scattering at the edge of the Gulf Stream-EchoFront 85," Deep-Sea Res. 37, 999-1016, 

1990.) 
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Figure 6.1.3 Temporal sampling of a simple signal, a) Sampling system to change an 
analog voltage into a sequence of numbers, b) Input analog sinusoidal voltage, c) The 
result of sampling four times during each half-period. The vertical lines represent the 
magnitudes of the sampled voltages. The straight lines between the ends of the vertical 
lines are interpolations, d) The result of sampling at times greater than the half-period. 
Compare the interpolated waveforms of c) and d) to the analog signal of b). 
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signal, Fig. 6.1.3d, does not resemble the original signal, whereas Fig. 6.1.3c 

does. 

A practical rule of thumb is to sample at intervals less than the period/3 for 

approximate reconstruction of the original signal. Communication textbooks give 

more elaborate methods to get excellent reconstructions based on the Nyquist 

theorem. 

6.2 Fi l ter  O p e r a t i o n s  

Electrical filters were originally introduced into electronic systems by radio and 

telephone engineers to separate the signals they wanted from those that they 

didn't. Instrumentation manufactures built analog filters or "black boxes" for 

research laboratories. These filters had switches on the front to make frequency 

bandpass choices. We use the filters that are built into our radio or television set 

when we select a channel that tunes in our desired station and rejects others. 

Audio amplifiers have filters (equalizers, bass, and treble controls) to modify the 

amplitudes of the input frequencies and to enhance the quality of the sound 

coming from the speakers. 

Digital communication engineers have developed the digital equivalent of the 

black box analog filter. The incoming analog electrical signal is digitized by an 

analog-to-digital converter, and the filter operations are done by a computer. In 

many systems, the filtered digital sequence of numbers is converted back to an 

analog signal for listening and display. 

For simplicity in our discussion of operations on signals and noise, we use the 

neutral symbols x, h, and y to represent source, filters, and filter outputs, 

respectively. Notation, while generally consistent, varies in the literature; for 

example, x,, and x(n) usually mean the same thing m t h e  series of voltages that 

have been sampled from the analog input signal. 

"6.2.1 FINITE FOURIER TRANSFORMATIONS (OPTIONAL) 

Digital computers, digitized data, and efficient algorithms have made the 

numerical computations of Fourier transformations practical. Applications are in 

MATLAB TM, Mathematica TM, and Theorist TM. Examples and source codes are 

given in Clay (1990). 

* Background material. 
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The Fourier transformation of a finite number of data points is called the finite 

Fourier transformation (fit), or discrete Fourier transformation (dr). The time 

intervals between all digitally sampled data points are to. For N data points, the 

Fourier transformation pairs are 

N - 1  

- i 2 m n n / N  
( m ) =  E x ( n  ) e  (6.2.1) X f f t  

n = O  

N-1 
1 

X ( n )  - N E X f f t  ( m ) e  i 2rcmn/N (6.2.2) 

m --0 

where xn is the nth digital input signal amplitudes, and Xfft(m ) is the mth spectral 

component. Equation 6.2.1 changes a time-dependent series of terms into a 

frequency spectrum. The companion Equation 6.2.2, or inverse finite Fourier 

transformation or (ifft), changes a spectrum into a time-dependent expression. 

Real x(n) transforms to complex Xfft(m) and vice versa. 

A simple example demonstrates the periodic properties. Let N = 64 and 

suppose that the original digitized signal is real and exists between n = 0 and 

n = 63 as shown in Fig. 6.2.1 a. The digitized signal is assumed to be an isolated 

event, (Fig. 6.2.1a). Thefft method assumes that the signal has the period N = 64, 

as shown in Fig. 6.2.1b. Evaluations of the f i t  give real and imaginary 

components of Xfft(m). Inspection of Fig. 6.2.1.c shows that the real components 

are symmetric about 0, N/2, and N. In Fig. 6.2.1 d the imaginary components are 

antisymmetric about 0, N/2, andN. The modulus IXfft(m)l, Fig. 6.2.1e, is 

IX fft(m ) I= [(real X fft  ( m )  )2 + (imag X fit (m)  )2] 1/2 (6.2.3) 

which is symmetric about 0, N/2, and N. If we had started with real Xfft(m) and 

imagXfft(m), we would have got the periodic x(n). This figure shows most of the 

important properties of the finite Fourier transformation. 

Symmetry and Periodic Relations 

real X ff  t (m ) = real X fft ( -m  ) 

imag X fit (m ) = - imag X fit ( -m  ) 

x ( n + k N )  = x  (n )  

X fft (m +kN ) = X f f  t ( m )  

(6.2.4) 

(6.2.5) 

(6.2.6) 

(6.2.7) 
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Figure 6.2.1 Signal, periodic Fourier series and its spectrum. Even if the original signal 

is not periodic, expansion in the Fourier series creates a new signal that is periodic. In 

applications, many zeros are appended to the signal to move the next cycle out of the way. 

a) Original signal, b) Periodic signal, c) Real component of Xttt(m). d) Imaginary 

component of X#.t(m). e) Modulus of X#t(m), [xfft(m)[. 

where k is an integer. The symmetry relations and Fig. 6.2.1 show that the 

summation limits in Equations 6.2.1 and 6.2.2 can be shifted to 

N/2-1  

X fit ( m ) =  Z x ( n )  e- i 2zcrnn/N (6.2.8) 

n = N / 2  

and 

N/2-1  
1 

x ( n )  - N ~_~ X fft ( m ) e  i 2nmn/N (6.2.9) 

m = - N / 2  
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Time and Frequency Parameters 

The time of a sample of the digitized signal is tn, and its duration is T1. These are 

defined by 

t n -  nt  o (6.2.10) 

and 

T 1 - -  N t o (6.2.11) 

The fundamental frequency is fl, and the mth harmonic is fm, given by 

f l = l / T 1  (6.2.12) 

and 

f m = m / T 1 (6.2.13) 

Substitutions in 2z~mn/N give 

2 ~ z m n / N -  2~Zfmt o (6.2.14) 

Warning: In some applications, thefft algorithms use the parameter range I to N. 

These algorithms put sample 0 into x(1) and frequency 0 into Xfft(1). Our x(n) 

goes to x(n + 1), and our Xfft(m) goes to Xfft(m + 1). The summations become 1 

to N. 

*6.2.2 FOURIER I N T E G R A L S  AND SERIES  (OPTIONAL) 

Fourier Integrals 

Our first task is to relate the Xfft(m ) from thefft to the spectral density. Substitute 

2rCfmt n for the fft  (Equation 6.2.1) and multiply both sides by to. The result is 

N-1 

X f f t  ( m ) t  o = ~ x ( n ) e  -i2~rnn IN t 0 (6.2.15) 

n=0  

Write Equation 6.2.15 as follows: 

N-1 

X ( f m ) =  Z x ( n  ) e  
n=0  

- i 2nfmt ~ t 0 (6.2.16) 

* Background material. 
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where 

X (fm)---- ( m ) t  o (6.2.17) 

The amplitude spectral density is X(fm). 

To get the integral, let to become dt, fm become f, and tn become r The 

summation becomes the infinite integral 

~0 ~176 
X ( f )  x ( t )  e -i 2Jrftdt (6.2.18) 

The condition for the existence of Equation 6.2.18 is that the integral of the 

absolute value Ix(t)l is finite. The limits can range from finite to doubly infinite 

( - ,  +). 

The same substitutions or changes of variables give the inverse Fourier 

integral. Start with the ifft (Equation 6.2.9), replace Xfft(m) with the amplitude 

spectral density, and replace Nto with T1 . The new ifft is 

N/2 

x ( n )  = Z X 0 cm ) e i 2%fm t n 1 (6.2.19) 

m = - N / 2  +l T 1 

The last step is to let 1/T~ become df and replace the summation by the infinite 

integral, 

~ O o  

x ( t )  = X ( f ) e  i2tcft d f  (6.2.20) 
o O  

where the negative frequencies are needed to give a real x(t). 

Infinite Fourier Series 

The classical infinite Fourier series, the one in most texts, assumes that x(t) is 

continuous and periodic with the period T~. 

x (t + T 1 ) =  x ( t )  (6.2.21) 

In the infinite series, the spectral component is the average of the Xfft(m) and 

Equation 6.2.1: 

Xo.g (6.2.22) 
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where the subscript avg means average. Divide the f i t  (Equation 6.2.1) by N and 

multiply and divide by to to get 

X ff  t (m ) 1 N-1  
- Z x ( n )  e -i 2nmf~ t t 0 (6.2.23) 

X avg ( m )  = N N t On =0 

where the fundamental frequency is 

f l = 1/T 1 = 1 /(Nto) (6.2.24) 

Let to become dt and Nto become T1, and integrate over a full period: 

1 
I~ ~ x( t)e-i2rcmf l tdt (6.2.25) 

Xavg(m) -- -Tll 

Since the averaging factor (l/N) was moved to Equations 6.2.23 and 6.2.25, the 

(l/N) is removed from the ifft (Equation 6.2.2), and the changes of variables give 
o o  

X ( t )  - Z X avg ( m )  e i 2Jrmf it (6.2.26) 

m . . - - o o  

The conversions of the spectral components Xavg(m) and Xfft(m) to the amplitude 

spectral density are 

X(fm) = Xavg(m)T 1 = Xfft(m)t o (6.2.27) 

There are others. To get a standard result of  Fourier analysis, we suggest 

converting the results of  spectral analysis to the amplitude spectral densities 

X(fm) (see Table 6.1), so that X(fm) = Xavg(m)T1 = Xfft(m)t o. 

Table 6.1 Summary of Symbols for Operations on Signals 

Time Domain Continuous (analog) t Sampled Digital 

Source signal x(t) x(n) 

Filter h(t) h(n) 

Filter output y(t) y(n) 

Frequency Domain Continuous (Analog) f Sampled Digital 

Source signal X( f  ) Xfft(m ) 

Filter H(f)  Hfft(m ) 

Filter output Y( f  ) Yfft(m) 

The analog signal amplitudes (e.g., voltages) are designated (t) before being filtered and y 

(t) after being filtered by h(t). The amplitude spectral densities, X(f)  and Y(f),  come 

from Fourier integral transformations. Fourier series uses Xavg(m). The sampling interval 

is to; the period is T1; and the fundamental frequency is fl. 
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6.2.3 F I L T E R  R E S P O N S E  M E A S U R E M E N T S  

As shown in Fig. 6.2.2, the frequency response of a filter is the ratio of the output/ 

input voltages for a (long-duration) sinusoidal input signal (the oscillator). Two 

measurements are sketched in Fig. 6.2.2. To record signals digitally, we need a 

low-pass filter to prepare the signal for the digitizing operation. The filter shown 

in Fig. 6.2.2b is a " low pass," "anti-aliasing filter." It is adjusted to pass 

frequencies that are less than half the sampling frequency of the analog-to-digital 

converter and to reject higher frequencies. It thereby can prevent higher- 

frequency components from appearing as alias signals. The action of a bandpass 

filter is sketched in Fig. 6.2.2c. It is used to pass a signal and to reject unwanted 

signals and noise within the designed frequency range. 

Oscillator 

b) 

I m Filter 

a) Reference signal 

Display 

I h 

Frequency 

"A 

�9 
0 

c) 

I 

f s/2 

Frequency 

f s 

I h 
u w ,  

Figure 6.2.2 Filters and their responses, a) Block diagram for a typical filter response 
measurement, b) Response of an anti-aliasing, low-pass filter that is used ahead of analog- 
to-digital conversions at sampling frequency f,,. c) Response of a bandpass filter. 
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6.2.4 TIME D O M A I N  V I E W  OF BANDPASS  FILTERING 

Fig. 6.2.3a shows a short-duration signal, Xl(t), which then passes through an 

appropriate bandpass filter to give the output yl(t) in Fig. 6.2.3b. The high- and 

low-pass settings on the filter were chosen to pass the signal with an acceptable 

amount of distortion of waveform. 

A longer-duration, low-frequency whale song x2(t), is emitted during this 

same time so that the sum of the two signals at the input (Fig. 6.2.3c) is 

x ( t )  = Xl(t ) + x 2 ( t )  (6.2.28) 

The output of the bandpass filter y(t) is shown in Fig. 6.2.3d. The bandpass filter 

effectively removes the interfering whale song and reveals the short-duration 

150 Hz ping. 

*6.2.5 CONVOLUTION OPERATIONS (OPTIONAL) 

Filter operations on a signal are convolutions of the signal and the filter response. 

Convolutions are usually evaluated numerically as follows: 

e l  

Y ( J )  = E x ( m  )h ( j -  m ) (6.2.29) 

m =0 

a) x l(t) 

/ 

C) x ( t )  

y ( t )  .. ~ - -  

d) 

0 0.1 0.2 0.3 0.4 0.5 

Time s 

Figure 6.2.3 Filter operation shown in the time domain, a) Signal input is a 150 Hz ping 
having a duration of 0.01 s. b) Signal out of a 50-150 Hz bandpass filter, c) Input 150 Hz 
ping and a 20 Hz whale song. d) Filtered signal output using the 50-150 Hz bandpass filter. 

* Background material. 
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For the convolution integral, change the summation to an integration on dt, the 

subscript m to the time parameter t, and the subscript j to the variable t = rio. To 

keep the dimensions right, multiply and divide the summation by to and get 

m l  

h (j  - m )  
y ( j )  = ~ x (m) t 0 (6.2.30) 

to 
m = 0  

Next, define the temporal density function, htdf(t), 

htd f (t ) = hj / t o (6.2.31) 

and let to become dt. The integral expression follows: 

y (t )=f_==x (r )h td f  ( t  - r ) d r  (6.2.32) 

The limits are usually infinite. The dependence of htdf(t- z) on z is in the 

negative time direction; therefore, htdf(t--z ) has been turned around. The 

convolution integral is often hard to evaluate analytically. 

Frequency Domain Convolution 

Using the finite Fourier transformation (Equation 6.2.1), 

Yfft (m )= Hff t (m )Xff t (m ) (6.2.33) 

the Fourier transformation is 

N - 1  
1 

y ( n )  - N  ~-~ Y fft (m)e  i2nmn/N (6.2.34) 

m = 0  

The corresponding convolution integral, using Y(f)  = H ( f ) X ( f )  and Equation 

6.2.20, is 

o o  

y ( t ) =  Y ( f ) e  
m o o  

i 2z f t d f  (6 .2 .35)  

In many theoretical computations, the frequency domain is used for 

computations, and the results are transformed to the time domain. 
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6.2.6 FILTER OPERATIONS IN THE FREQUENCY DOMAIN 

Operations in the frequency domain are intuitively simple. The frequency- 

dependent functions, X(f) and Y(f), are the amplitude spectral densities of the 

input and output signals, and H(f) is the filter frequency response. 

Using the symbols in Table 6.1, the input-output expressions for analog 

signals are 

and 

Y ( f )  = H ( f )  X ( f )  (6.2.36) 

Y fft(m ) = H fft (m) X fft (m) (6.2.37) 

The output signals Y(f) or Yfft(rn) have the frequency components that are passed 

by the filters. Our discussion uses the amplitude spectral densities for brevity. 

Fig. 6.2.4a represents a spectrum analyzer that was constructed of many 

ban@ass filters. The complex signal is an input to each of the filters. The spectral 

output of the jth filter is 

Y j ( f )  = H j ( f )  X ( f  ) (6.2.38) 

Parseval's theorem gives the equivalence between the integral squares of signals 

in the time and frequency domains: 

s fo y 2 ( t )  dt = IY ( f  ) 12 df = 2 IY ( f  ) 12 df (6.2.39) 

where the time integral of y2(t) is finite, and the absolute squares of [Y(f)l and 

[Y(-f)l are equal. For signals that start at 0 time, the limits of the doubly infinite 

integral become 0 to oo.  Using the filter input and output (Equation 6.2.38) and 

Parseval's theorem, the integral square output of the jth filter is 

f0 f0 y j2 ( t )  dt = 2 IYj ( f  )12df (6.2.40) 

The substitution of Equation 6.2.38 into Equation 6.2.40 gives the filter output: 

f0 f0 y j2 ( t )  dt = 2 IX ( f  ) Hj ( f  )12df (6.2.41) 

For an approximation, let Hj(f) be a "boxcar" filter defined by 

H j ( f ) = l  f o r ( f  j - A  f /2 )< f < ( f  j +A f ~ 2 )  

and 

Hj(f) = 0 otherwise 

(6.2.42a) 

(6.2.42b) 
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a) 

Signal I 

Output display, IX (f)l 

Bank of N 
band pass filters 

b) 

Spectrum of the transient 

' ' ' ' ' 360 ' 460 0 100 200 
Frequency Hz 

Whale song 

ctrum of the transient 

c) 

' 56~ 

0 100 200 300 400 50' 
Frequency Hz 

Figure 6.2.4 Spectral analysis of the signals of Fig. 6.2.3 using a digital spectral 
analysis. The bandwidths of the equivalent bandpass filters are 2 Hz. a) An analog 
spectrum analyzer that uses a bank of bandpass filters, b) The digitally calculated spectrum 
of the 150 Hz ping in Fig. 6.2.3a. c) The digitally calculated spectrum of the ping and 
whale song in Fig. 6.2.3c. The spectral amplitude factor of the ping is 1/40 that of the 
whale song. The ping doesn't show the detail of 6.2.4c because of the change of scale. 

If X(f) is approximately constant in the pass band (Equation 6.2.42), then the 

time integral square (Equation 6.2.41) is approximately 

f O~y ( t )d t  -- 2 I X  ) 1 2 A f  (6.2.43) j2 (fj 

This is the raw output of the boxcar spectrum analyzer. 

The spectral density in a 1 Hz bandwidth is obtained by dividing both sides of 

Equation 6.2.43 by Af 

1 j2 (t) dt 2 I X  (fj)12 A f Y = (6.2.44) 

The quantity in Equation 6.2.44 is sometimes called an "energy spectral 

density," Exx(fi), when the signal amplitude is a voltage, because the "integral 
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luare" over time is proportional to the energy of the electrical signal during that 

me: 

f0 oo 1 j2 ( t  )d t  2 I X  ( f j ) l  2 E xx ( f  j ) - A f  Y = (6.2.45) 

he subscript xx indicates that x(t) is the function being analyzed. 

If x(t) and y(t) have units of Pa, the units of Exx(fj) are Pa 2 s/Hz. Although the 

lantity Exx(f) is often called an "energy spectral density," it is actually 

"oportional to the energy spectral density of the wave. As shown in the 

scussion of intensity in section 2.5.3, true expressions for energy spectral 

~.nsity ((joules/m2)/Hz) require that Pa 2 s/Hz be divided by pAt. 
Most spectrum analyzers are digital and use computers to do the spectral 

lalysis. The digital spectrum analyzers often can have the equivalent of more 

an 1000 very narrow band-pass filters. Examples of spectrum analysis are 

Lown in Fig. 6.2.4b and c. The spectrum of the 150 Hz ping (Fig. 6.2.4b) and the 

,ectrum of the short-duration ping and longer-duration whale song are shown in 

g. 6.2.4c. 

3 Gated  Signals  

ae spectrum of a signal depends on its time-domain waveform. Consider some 

ngs and their spectra. These comparisons display the relation of periodicity and 

1ration, in the time domain, to the peak frequency and bandwidth of the 

pectrum. 

For these examples, the ping has a slow turn-on and turn-off. The signal x(t) is 

x(t) -- 0.511 - cos (2~zt/tp)] sin (2rcfct), for O<t<tp (6.3.1) 

ld 

x(t) = 0 otherwise (6.3.2) 

here tp is the total (non-zero) ping duration, andfc is the (carrier) frequency. The 

nplitude factor in the [.. .] gives a spectrum with very small side lobes. This 

gnal is similar to the sound-pressure signal radiated by many sonar transducers 

ld some marine animals. The envelope of the sine wave is tapered from zero to a 

~aximum and then back to zero. 
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6.3.1 DEPENDENCE OF SPECTRUM ON PING 

CARRIER PERIODICITY 

Fig. 6.3.1 shows the dependence of the peak of the spectrum on the carrier 

frequency of the pings. The durations of the pings were chosen to be long so that 

the widths of spectral peaks are narrow. The 50 Hz signal has a spectral peak at 

approximately 50 Hz. The other signals have their spectral peaks at 100 and 

150 Hz. The period of the signal can be measured to estimate the peak or central 

frequency of the spectrum. This is the first rule of thumb. 

6.3.2 DEPENDENCE OF SPECTRUM ON PING DURATION 

Fig. 6.3.2 shows the dependence of the widths of the spectral peaks on the 

durations of the pings. The effective durations of the signals td are a little less than 

the tp in Equation 6.3.1 because the turn-ons and turn-offs are very gradual. The 

same frequency, 100 Hz, was used for all examples. To define the bandwidth Af, 

we use the half-power width, given by the two frequencies where the amplitude is 

0.707 of the peak amplitude. The spectra shown in Fig. 6.3.2b are the moduli, the 

absolute amplitudes. The widths of the spectra decrease as the signal duration 

increases and are approximately the reciprocals of the durations of the signals. 

The comparisons are 

tl, , sec td, sec 1/td, Hz A f ,  Hz 

0.01 0.0085 118.0 120 

0.02 0.017 58.8 60 

0.04 0.034 29.4 30 

0.10 0.080 12.5 13 

(6.3.3) 

These comparisons give a second rule of thumb" 

( A f )  (t d) -> 1 (6.3.4) 

We use the _> sign for (Af) (td) because many signals have durations greater than 

1/Af. The time td gives the minimum duration of a signal for a sonar system to 

have a bandwidth Af. 

6.4 P o w e r  S p e c t r a  of  R a n d o m  S igna l s  

Sound pressures that have random characteristics are often called noise, whether 

they are cleverly created as such or are the result of random and uncontrolled 

processes in the ocean. The spectral analysis of both are the same. As inputs to a 
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Figure 6.3.1 Signals and their spectra. All of the pings have the same duration, a) Time 
domain presentation of pings x(t) with carrier frequencies of 50, 100, and 150 Hz. b) 
Modulus of the spectral amplitudes IX(f)I-The moduli of the spectra were computed using 
digital algorithms. 
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Figure 6.3.2 Signals having the same carrier frequency and different durations, a) 
Signals in the time domain, b) Moduli of spectral amplitudes in the frequency domain. The 
bandwidths were measured at the half-power points (i.e., at 0.707 of the peak amplitudes). 
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spectrum analyzer, they are signals, and their spectral descriptions are to be 

determined. For a short name, these are called random signals. 

6.4.1 SIGNALS HAVING RANDOM CHARACTERISTICS 

In their simplest form, signals that have random characteristics are the result of 

some process that is not predictable. In honest games, the toss of a coin and the 

roll of a die give sequences of random events. In the earth, processes that range 

from the occurrence and location of earthquakes to rainfall at sea are generators 

of random signals. For simulations and laboratory tests, we use computers and 

function generators to make sequences or sets of random numbers. Many of the 

algorithms generate sequences that repeat, and these algorithms are known as 

pseudorandom number generators. The numerical recipe books give random 

number-generating algorithms. Programming languages usually include a 

function call such as rnd( ) in the library of functions. 

*6.4.2 SPECTRAL DENSITY AND CORRELATION METHODS 

(OPTIONAL) 

The correlation or covariance method of analyzing random signals is discussed in 

detail by Blackman and Tukey in their monograph The Measurement of Power 

Spectra (1958). The random signal is the sequence of numbers x(n), and the 

sequence has N + kma x numbers. The covariance of the random signal is the 

summation 

N - 1  
1 

c ( k ) -  N ~ x ( n ) x  (n  + k ) (6.4.1a) 

n = 0  

and 

Cxx(k ) 0 otherwise (6.4.1b) 

The covariance Cxx(k) is symmetric, and Cxx(k ) =Cxx ( k ) .  The Fourier 

transformation of Cxx(k) is, using Equation 6.2.1, 

N - 1  

Cxx, f f  t (m )= ~ Cxx(k )e  
k = 0  

- i 2 r c k m / N  
(6.4.2) 

* Background material. 
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The substitution of Equation 6.4.1 in Equation 6.4.2 gives 

N - 1  N - 1  

1 Z Z X ( n ) x  (rt + k  ) e - i  2zcm k/N (6.4.3) 
C f f  t (m ) -  U 

k = 0  n = 0  

Change variables by letting j -- n + k, and Equation 6.4.3 becomes 

N-1 

1 x(n)ei27~mn/N Z x(j)  e -i27rmj/N (6.4.4) 
Cfft(m) -- N ,=0 ~:o 

The first summation is the complex conjugate * Xfft(m) and the second summation 

is Xfft(m). The spectrum is 

C xx, fit ( m )  = X fit *(m ) X fft(m ) I N (6.4.5) 

and, using Equation 6.2.27, the spectral density is 

C xx ( m )  = C xx, fit (m)  t o 

Frequency domain expressions for the autocovariance are 

cxx(z) -- Cxx(f) ei2nfr df 
--00 

(6.4.6) 

(6.4.7) 

and 

f oo 
Cxx ( f  ) = c xx ( "c )e --i 2a'fr dz" (6.4.8) 

- - o o  

where C,x(f) has positive and negative frequencies, and C,x ( f )=  C,x(-f) ,  or 

c xx ( z ) = 2 fooo C xx ( f )  cos (2a:f z ) d f  (6.4.9) 

This pair of transformations, Equations 6.4.8 and 6.4.9, are known as the Wiener- 

Khinchine theorem. 

The power spectral density of x(t) is the sum of the positive and negative 

frequency components: 

H xx ( f )  = 2C xx ( f )  (6.4.10) 

6.4.3 RANDOM SIGNAL SIMULATIONS: INTENSITY  SPECTRAL 

DENSITY  

In the simulation of a random signal, the random function generator gives a 

sequence of random numbers" x(0), x(1), and so on. Fig. 6.4.1 a shows a sequence 

where the numbers have been connected by interpolation lines. The result of 
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No filter 

x(t) 

0 0.1 0.2 013 014 0.5 

a) Time s 

Filtered signal 50 - 150 Hz 

y ( t )  

b) 6 0.1 012 013 0.4 015 
Time s 

Figure 6.4.1 a) Random signal created by using a random number generator. The 
sampling interval was 1 ms. b) Result of bandpass filtering the signal in a) through a 50- 
150 Hz bandpass filter. The duration of the signal is td. 

bandpass filtering the input random signal gives a new random signal, the output 

y(n) in Fig. 6.4. lb. 

The operations of bandpass filtering, squaring the signal, and summing or 

integrating the squared signal are indicated in Fig. 6.4.2. The effective number of 

independent trials is 

Nit = t d A f m (6.4.11) 

where td is the duration of the signal, and Afro is the filter bandwidth: 

N-1  
1 ~ [Y m ( n ) ]  2 

I1 xx ( f  m ) = N  A f  m n = 0 
(6.4.12) 

x(n) 

Random 
signal 

Bank 
of 

band 
pass 

filters 
h(m)  

Ym (n) 

"- Square 
~ and 

sum 
each 

channel 

Average 
each 

channel 
over 

td 
-.................1~ 

o r  

p~ (m) 

Figure 6.4.2 Block diagram of spectral analysis of a random signal in a computer or a 
single dedicated instrument. The set of filters h(m) have center frequencies fm and filter 
widths Afm. The duration of the random signal is td. 
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The filtered signal is ym(n), where the subscript is added to indicate the 

filtering by the mth filter. The signal is squared, summed, and averaged over td to 

give the power. Since the mean square output (e.g., volt 2) is proportional to the 

filter bandwidth and the duration of the signal, it is customary to define the 

"power"  spectral density, 

N - 1  
1 ]~ [Y m (?/) ] 2 (6.4.13) 

Ilxx ( f  m ) = N A f m n = 0 

where N is the number of samples. The first step in deriving an equivalent integral 

expression for continuous functions of time uses the multiplication and division 

by to: 

N - I  
1 ]~ [Y m (?/)  ] 2 (6.4.14) 

I l  xx ( f  m ) =  N t oA f m n=0  to  

Let Nto become td, the duration of the signal, and to become dt. The summation 

becomes the integral: 

1 f) td [Y m ( n  ) ] 2 dt (6.4.15) Hxx ( f  m ) =  t d A f  m 

If x(n) has the units of volts, the so-called power spectral density has units of 

(volts)Z/Hz. True power spectral density would require division by a load 

resistance in an electrical circuit to give watts/Hz. Since a hydrophone output in 

volts is proportional to the acoustic pressure, x(n) has the units of Pa, the spectral 

density has units of (Pa)Z/Hz, and the true intensity spectral density requires 

division by pA c, tO give (Pa2/pZc)/Hz-- (watts/m2)/Hz. 

Acoustic spectra are often reported in dB relative to one (~pa)2/Hz, so that the 

Intensity Spectrum Level 

ISL -- 10 log,0 {[Ilxx(fm)]/[(laPa)Z/Hz]} (6.4.16) 

The spectrum levels depend on the reference sound pressure, which is 

sometimes unclear. It is better to use SI units such as (Pa)Z/Hz or (watts/mZ)/Hz. 

6.4.4 SPECTRAL SMOOTHING 

Consider the following example of spectrum analysis. A random signal is 

constructed of 512 magnitudes at separation t o = 0.001 s and duration 0.512s. 

Fig. 6.4.3 shows the results of processing the signal by the equivalents of very- 

narrow, wide, and very-wide bandpass filters. 
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Figure 6.4.3 Smoothing of power spectra by filtering. The top trace is a random signal 
x(n) or x(t). Filter bandwidths are a) Af=2 Hz, b) Af-----64 Hz, and c) Af = 128Hz. 

The output of the narrow 2 Hz filter, Fig. 6.4.3a, is extremely rough. The 

number of independent samples (see Equation 6.4.1) in the 2 Hz bandpass filter is 

1. Fig. 6.4.3b shows the result of using a wider filter, Af = 64 Hz. Here the 

number of independent samples is 32. The spectrum is much smoother and has 

less detail. An increase of the filter width to Af = 128 Hz and the number of 

independent samples to 64 is shown in Fig. 6.4.3c. Another random signal would 

have a different spectrum. These examples show the basic trade-off between 

resolution and reduction of roughness or variance of the estimate of the spectral 

density . . . . . .  
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The importance of smoothing power spectra and the trade-off between the 

reduction of frequency resolution and the reduction of fluctuations is given in 

detail by Blackman and Tukey (1958). 

6.4.5 T R A D I T I O N A L  M E A S U R E S  OF SOUND SPECTRA 

The measurement of underwater sounds has inherited the instrumentation and the 

vocabulary that were developed for measurements of sounds heard by humans in 

air. The principal areas of interest to humans have been accoustic pressure 

threshold for hearing; acoustic threshold of damage to hearing; threshold for 

speech communication in the presence of noise; and community response to 

annoying sounds. 

The vast amount of data required to evaluate human responses, and then to 

communicate the recommendations to laymen, forced psychoacousticians and 

noise control engineers to adopt simple instrumentation and a simple vocabulary 

that would provide simple numbers for complex problems. Originally this was 

appropriate to the analog instrumentation. But even now digital measurements 

are reported according to former constraints. For example, the "octave band," 

which is named for the eight notes of musical notation that corresponds to the 2 : 1 

ratio of the top of the frequency band to the bottom, remains common in noise- 

control work. For finer analysis, one-third octave band instruments are used; they 

have an upper- to lower-band frequency ratio of 21/3, so that three bands span one 

octave. 

The use in water of instruments and references that were designed for air has 

caused great confusion. The air reference for acoustic pressure level in dB was 

logically set at the threshold of hearing (approximately 20/~Pa at 1000 Hz) for the 

average adult human. This is certainly not appropriate for underwater 

measurements, where the chosen reference is 1/~Pa or 1 Pa. 

Furthermore, plane-wave intensity (of CW) is calculated from Equation 

2.5.16, where Intensity - P2ms/(PAC ) (where P2m. ~ is the mean squared pressure; 

P A -  water density; and c = speed of sound in water). Therefore, the dB 

reference for sound intensity in water is clearly different from that in air because 

the specific acoustic impedance pA c is about 420 kg/m2s for air compared with 

1.5 x 106 for water. This ratio corresponds to about 36 dB, if one insists on using 

the decibel as a reference. 

The potential for confusion in describing the effects of sounds on marine 

animals is aggravated when physical scientists use the decibel notation in talking 

to biological scientists. Confusion will be minimized if psychoacoustical 

characteristics of marine mammals - - such  as thresholds of pain, hearing, 
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communication perception and for so for th--are  described by the use of SI units, 

(i.e., pascals; acoustic pressure at a receiver), watts/m 2 (acoustic intensity for CW 

at a receiver), and joules/m 2 (impulse energy/area at a receiver). Likewise, only 

SI units should be used for s o u r c e s -  that is watts (power output of a continuous 

source) and joules (energy output of a transient impulse source). The directivity 

of the source should always be part of its specification. All of these quantities are 

functions of sound frequency and may be expressed as spectral densities (i.e., per 

1 Hz frequency band). 

6.5 Matched Filters and Autocorrelation 

The coded signal and its matched filter and associated concepts have become very 

important in the applications to sound transmission in the ocean. The simple 

elegance of the original paper of Van Vleck and Middleton (1946) is well worth a 

trip the the library. The generality of their concepts was far ahead of the then- 

existing signal-processing methods. 

Digital signal processing facilitates the design of many types of filters for 

processing sonar signals (Oppenheim and Schafer 1975). Each definition of an 

optimum condition also defines a class of optimum filter. We limit our discussion 

to the simplest of the optimum filters, the matched filter (Van Vleck and 

Middleton 1946). An example is shown in Fig. 6.5.1. 

An example of a coded signal x(n) is shown in Fig. 6.5.1b. Recalling 

the convolution summation (Equation 6.2.29), the convolution of hM(n) and 

x(n) is 

m l  

YM (J)  = Z X ( m )  h M ( J - m )  (6.5.1) 

m=0 

where the subscript M means the matched filter. The matched filter uses the 

criterion that the square of the peak output value yM(0) is a maximum. To 

maximize the square of yM(0), we use Cauchy's inequality (Abramowitz and 

Stegun, eq. 3.2.9): 

ml ml 

[YM(0)]2 --< Z h~(m) x Z x2(m) 
m=0 m - 0  

(6.5.2) 
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Figure 6.5.1 Coded signal, matched filter, and output, a) Simple matched filter system. 
b) Coded signal. Here the coded signal is a short sequence from a random-number 
generator, c) Output of the matched filter. 

The filter produces a maximum output (the equal sign in Equation 6.5.2) when 

x(m) is time-reversed to x ( - m )  - x(m)" 

hM(m ) -- A x ( - m )  or hM(--m ) -- Ax(m) (6.5.3) 

where A is a constant of proportionality. In our examples we use A - 1 / (ml + 1). 

The filter defined by Equation 6.5.3 is called the matched filter. In computations, 

it is convenient to shift the indices by rnt and to shift the time by m lto. 

h M (m 1 - m) = h M ( - m )  (6.5.4) 

to give a causal filter. Except for constants and normalization, YM(j) has the same 

form as the autocorrelation (Equation 6.4.1) 

m l  

YM (J') - A ~ x ( m )  x (m + j ) (6.5.5) 

m=0 

The output of the matched filter is shown in Fig. 6.5.1 c. Here the output of the 

matched filter is the autocorrelation or covariance of x(n). 

The signal-to-noise amplitude ratio gain is proportional to the square root of 

the number of independent samples of the coded signal. While we don't prove it, 

ignoring noise in our derivation is equivalent to assuming that the noise is an 



6.6. Sounds in the Ocean 211 

uncorrelated sequence of random numbers having a mean value of zero. This 

kind of noise is often called "white noise." 

In frequency domain and using Equations 6.2.18 and 6.2.20, the time reversal 

of x(m) to hm(-m) is equivalent to taking the complex conjugate of Xm(m) to 

get HM(m). Recalling section 6.4.2, the optimum matched filter operation is 

equivalent to computing the autocorrelation of the signal. 

In 1962 Parvulescu obtained a classified patent for the use of the matched 

equivalent signal, which he called MESS, for measuring the reproducibility of 

signal transmissions over large ranges in the ocean. In this first use of the matched 

filter technique in the ocean, the multipath received signals were regarded as a 

coded signal. An analog tape recorder was employed, with the tape direction 

reversed to convert the multipath arrivals into a matched filter. See Parvulescu 

(1995) and Tolstoy and Clay (1987, sec. 7.7). 

6.6 Sounds in the Ocean 

Ambient sound in the ocean is caused by a large number of physical and 

biological elements that are indigenous to the sea, as well as by powerful man- 

made sources. Each contributes to the local sound pressure by an amount that 

depends on the source characteristics and the attenuation between the source and 

receiver. Since low-frequency sounds have smaller attenuations, even distant 

sources of low-frequency sound are important at any measurement position. The 

sound often reaches the receiver by paths through the bottom, or scatter from the 

coastal shore, as well as through the water. Where possible, we give an outline of 

source characteristics such as the acoustic power radiated, the source pressure, 

directivity pattern, source spectrum, intermittency, and location. 

Much of this essential information about sound sources is simply not known at 

this time, and marine scientists have accepted (by default) any hydrophone 

measurements they can get. Unfortunately, much published data on sounds at sea 

do not reveal the conditions of the experiment that affect the quoted numbers 

for instance, hydrophone height above the ocean floor, topography at the 

hydrophone position, nearby scatterers, depth of water, distance from coastal 

reflectors, source and hydrophone distances from the ocean surface, and 

roughness of the ocean surface. Sometimes experimenters have buried these 

details into a single transmission number that is used to"cal ibra te"  the site of the 

experiment. 

When the source is known, algorithms such as the ray-path procedures (Chapter 

3) or waveguide propagation (Chapter 11) can be used to predict the sound at any 
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location. Sections 11.3-11.5 show how arrays of hydrophones can operate as 

directional or mode filters in the reception of sound in an ocean waveguide. 

During World War II, and for 40 years thereafter, the U.S. Defense Department 

sponsored a huge number of measurements of sound levels in the sea. (Many of 

these reports have been declassified and may be purchased from the U.S. 

Department of Commerce, National Technical Information Service, Springfield, 

VA 22151.) However, most experiments were, for expedience, limited to the 

frequency range of military interest of the moment, and they are reported in 

systems of units that are no longer in use. 

Historically, several rms reference pressures P,'ef have been used to calculate 

S P L -  20 log(P/Prey) dB m for example, P,'ef may be 0.0002 dyne/cm 2, 1 dyne/ 

cm 2, 1 mb, 1 Pa, 1 #Pa. In order to present a simple and consistent system of units, 

we convert original values in dB to the SI units of pascals, watts, and joules. 

However, to facilitate reference to the literature, we present both the original 

values in dB and the converted values in SI units. Converted numbers are rounded 

to one or two significant figures as seems appropriate. 

More recently, the civilian community has recognized that fisheries research 

vessels must be acoustically designed to minimize the effect on marine life. The 

International Council for the Exploration of the Sea has given recommendations 

for the proper acoustical parameters and units that should be measured during 

such research (Mitson 1995). 

6.6.1 NATURAL PHYSICAL SOUNDS 

Fig. 6.6.1 is a traditional presentation of spectra of nonbiological sounds sensed 

by hydrophones at sea. The reader should be aware that these curves are simple, 

approximate representations that may be incorrect by large factors (many 

decibels) at specific times or places. The traditional curves have been 

supplemented by recent measurements of the sound of rain for different wind 

and cloud conditions. The left ordinate in Fig. 6.6.1 is sometimes incorrectly 

called power spectral density (similarly for the level in dB on the right). In fact, 

the left ordinate is proportional to the intensity spectral density [(watts/m2)/Hz], 

which can be obtained by dividing Pa2/Hz by pA c "~ 1.5"106 (kg/m-3)(m/s), as 

described in section 2.5.3. 

In general, ocean sound at frequencies from 0.1 Hz to 5 Hz is attributed to the 

nonlinear interactions of surface waves, "wave-wave interactions," and 

microseisms, and is dominated by sound propagating through the bottom 

layers (Kibblewhite and Wu 1991). It is a function of depth as well as the sea 

surface spectrum of heights. 
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Figure 6.6.1 Published values of "intensity" spectral density levels of physical sounds 
measured at various locations by many researchers. The heavy solid line at the bottom is 
the empirical minimum at sea. A, "seismic noise" due to earthquakes and wind; B, ship 
noise; H, hail; W, sea surface sound at five different wind speeds; R1, drizzle (~1 mm/hr) 
with 0.6 m/s wind over lake; R2, drizzle with 2.6 m/s wind over lake; R3, heavy rain 
(15 mm/hr) at sea; g4, very heavy rain (100 mm/hr) at sea; T, thermal noise. 

From 5 to 20 Hz there is again a strong correlation of noise with wind speed 

(Nichols 1987). The natural sound-producing mechanisms that have been 

proposed at frequencies between 20 and 500 Hz are wave-turbulence interactions 

and oscillating bubble clouds (Cary and Bradley 1985; Prosperetti 1988). 

However,  particularly near shipping lanes, the noise in the 10-150 Hz band is due 

largely to the machinery of distant ships [Ross 1987].) 

Ocean sound in the band 500-20,000 Hz has been called "wind  noise ,"  " s ea  

state noise ,"  or "Knudsen  noise ,"  because, during World War II, Vern O. 



214 6. Processing of Ocean Sounds 

Knudsen discovered that it correlated very well with wind speed (Knudsen et al. 

1948). 

The depth dependence owing to the attenuation of sea surface sound by near- 

surface bubble layers and bubble plumes cannot be ignored. The sound from 

radiating surface bubbles is modified by inactive older bubbles below the surface 

(section 8.4) and by absorption attenuation (Chapter 3). For these reasons, when 

measured several meters below the surface, the traditional straight lines of the 

Knudsen spectra in Fig. 6.6.1 actually droop (at aboutf > 5 kHz) to lower levels. 

Nevertheless, the sound due to breakers has been shown to be sufficiently well 

correlated with winds at sea to permit estimates of wind speed from ambient 

sound measurements on the sea floor (Evans et al. 1984). The distribution of these 

overhead breakers can be determined from the variation of the underwater 

ambient sound (Farmer and Vagle 1989). 

Summary of Knudsen Sea State Sound 

(For additional details, see section 8.5.1.) Frequency range" greater than 500 Hz, 

probably to 50 kHz. Microsource description: dipoles near ocean surface; peak 

source pressures 0.1 to 1.0 Pa. The microsources are transient, damped 

oscillations of microbubbles radiated immediately after their creation by 

breakers (Medwin and Beaky 1989; Updegraff and Anderson 1991). Local 

breaking depends on sea swell as well as local winds. The sound level increases 

with increasing wind speed partly because there are more waves breaking 

simultaneously at higher wind speeds than at lower wind speeds. Ignoring 

absorption, the average spectral intensity is independent of depth. There is 

potential for determining underwater sound from satellite photos of surface foam 

coverage (Monahan and O'Muircheartaigh 1986). 

Rainfall Sound 

The intensity spectral density during rainfall at sea (Fig. 6.6.1) is an example of 

"noise" that has yielded information about the source (see section 8.5.2). For 

light rainfall, "drizzle" (~1 mm/hr), at very low wind speeds over "calm" seas, 

this most prominent peak (curve R1) is due to transient, exponentially decaying 

oscillations of bubbles created by normal incident raindrops 0.8 mm < diameter < 

1.1 mm. At higher wind speeds the peak spectrum level lowers, broadens, and 

shifts to higher frequencies (curve R2) because these small raindrops enter at 

oblique incidence (Medwin, Kurgan and Nystuen 1990). 
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During heavy rainfall (>7.6 mm/hr), there are also raindrops of diameter up to 

several millimeters falling at terminal speeds up to 10 m/s. The larger drop 

kinetic energy creates larger bubbles which radiate strongly for greater durations 

at the lower frequencies from 2 to 10 kHz. Each drop diameter has a distinctive 

energy spectrum. The larger drops produce a broader spectrum (curves R3 and 

R4) than those shown for light rain (<2.5 mm/h) in Fig. 6.5.1, partly because the 

larger drops generate splash hydrosols that create bubbles when they fall back 

into the sea. The type of rainfall (from stratus or cumulus clouds) can be readily 

deduced from this shape difference of the underwater sound spectrum. 

Summary  of Rainfall Sound 

(For details, see section 8.5.2.) Radiated power and source level: depends on 

number and distribution of raindrop sizes and local angle of drop incidence (see 

Fig. 6.6.1). Significant frequency range: 1 to 25 kHz. Individual sources: dipoles 

perpendicular to surface; "energy" spectral density per raindrop, up to 10 -7 Pa 2 

sec/Hz. Source location: at surface. Sound is comprised of a broadband impulse 

source and (usually) much more energetic damped bubble oscillations. 

Knowledge of the rainfall drop size distribution and the ocean surface slope 

permits calculation of the underwater sound spectrum, which, except for sound 

absorption, is essentially independent of depth. By matrix inversion, measure- 

ment of the underwater sound spectrum permits calculation of the number of 

drops/m2/s within raindrop diameter bands (e.g., 100 /zm bands), which are 

summed to give the total rainfall rate. 

Free-drifting ocean buoys reporting signals of rainfall sound via satellite can 

be inverted to yield rainfall description in remote ocean regions (Nystuen 1996). 

6.6.2 NATURAL BIOLOGICAL SOUNDS 

Fig. 6.6.1 omits biological sounds, not because they are unimportant but because 

of their great diversity and complexity, and because so little is known about them. 

Probably the first identification of the noise of marine animals was by Knudsen et 

al. (1948), who observed that "colonies of certain species of snapping shrimp 

close their pincers with a loud audible click." In some coastal regions and in the 

frequency range of 200 to 20,000 Hz, snapping shrimp "intensity" spectral 

densities range from 1 to 100 pa2]Hz (the corresponding spectrum levels range 

from 60 to 80 dB re 1/~PaZ/Hz). 

A remarkable sound radiation specialization is shown by the "Plainfin 

midshipman" fish, Porichtys notatus. The 15 cm long Type I male can activately 
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resonate its swimbladder to produce a loud, mating-attractive 100 Hz sound for 

many minutes duration, or transiently "grunt"  50 ms duration impulses at a 

repetition rate of two per second, for threat display (Brantley and Bass 1994). 

A "brain "motor volley" of that same frequency drives the surrounding bladder 

muscles, which act as a pacemaker to maintain the radiation (Bass and Baker 

1990). 

An extensive review of animal sounds, how animals use sound, and their 

anatomy for sound production, is in the symposium volume of Busnel and Fish, 

Animal Sonar Systems (1980), and in The Sonar of Dolphins (Au 1993). Sound 

recordings have been made of many species of odontocete (toothed) animals, 

including dolphins and porpoises, as well as baleen (nontoothed) whales. The 

vast diversity of mammalian sounds has been described as "clicks," "whistles," 

"screams," "barks ,"  "moans ,"  ' 'rumbles," "chirps," "growls ,"  "ratchets," 

"shrieks," "raucous screeches," "horn blasts," "grunts,"  and "songs," 

depending on the poet, naturalist or scientist, as well as the animal itself. Some 

more recent research has been very specific in terms of the sound's source level, 

directivity pattern, temporal character, frequency spectrum, and intermittency. 

A dolphin's train of ultrasonic pulses is in Fig. 6.6.2. 

Our purpose in this section is simply to give a "flavor" of the radiation from 

marine mammals. We use the term "apparent" source power because it is 

calculated by extrapolation from far-field sound pressure measurements. 

Similarly, peak sound pressure measurements at the hydrophone are extrapolated 

back to R 0 --- 1 m to give the peak "apparent" source pressure Po. 

The apparent source power in watts is calculated from the acoustic radiation 

equation (4.5.5), taking account of the integated beam pattern 7~D (Equation 

4.5.4, (which depends on the far-field directivity) and the sound transmission loss 

between the source and the receiver. 

(Po R 0) 2 
H M  = 2 p A c I]/D (6.6.1) 

The frequency range of baleen whales can be as low as tens of Hertz for 

"moans"  to kilohertz for "songs"  to tens of kilohertz for "clicks" (see 

Cummings and Holliday 1987). The sounds have been extrapolated from 

hydrophone back to imply sound source pressure amplitudes ranging from 3 Pa to 

3000 Pa referred to 1 m (or 130 to 190 dB re 1/zPa). We use these sound pressures 

and Equation 6.6.1 to estimate the acoustic radiation power. Assuming that the 

whale radiates omnidirectionally and that 7Jo = 4n, the acoustic radiations of 

whales range from 4 x 10 -5 to 40watts. The combination of low frequencies 
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Figure 6.6.2 A typical sonar click train for a Tursiops truncatus performing a detection task in the open sea near Hawaii. 

The spectra of the sequence of clicks are at the left. The ordinates are relative spectral amplitudes. The sound pressure p(t) 
of individul signal clicks is at the right. The central frequency above each click, and its clock time is below. The ( - )  peak to 

(+) peak (at maximum) pressures are indicated in dB re 1 #Pa at 1 m. To get the vertical coordinate scale of the signals, 

these should be converted to sound pressures in Pa. The average time between clicks is about 0.120 ms. (From W. W. L., The 
Sonar of Dolphins, Springer-Verlag, New York, 1993, Fig. 5.2.) 
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and high source powers implies that these animals can communicate for large 

ranges across the oceans. 

Obviously, different species of dolphins emit different types of sounds. Some 

dolphin transmissions are frequency-modulated continuous tonals (whistles), 

from 5 to 30 kHz, which last for several seconds. These appear to be for 

communication Others, at frequencies near 100 kHz, appear to be for 

identification of objects. Beam widths (3dB down) of different species of 

dolphins have been measured or estimated from 6 ~ to 16 ~ The monograph by Au 

(1993) gives results of extensive research on the Tursiops truncatus sonar. Au 

(1993, sec. 6.5.1) that states the radiation is equivalent to that of a circular 

transducer of radius a = 5.7 cm. Note that Au's  figures show the (+)  peak to ( - )  

peak sound-pressure level in dB re 1 #Pa; we convert to pascals in Fig. 6.6.3. 

The maximum of the average click, Fig. 6.6.3, has "apparen t"  peak-to-peak 

sound pressures of about 200 kPa referred to 1 m (peak-to-peak SPL - 226 dB re 

1 #Pa). Such a very high-intensity sound would be expected to cause cavitation if 

it occured continuously at sea level. But the signal is a damped sinusoid of 

0 

+ / Data 

4- + 

+ § § 

§ 

0 10 20 30 40 50 60 70 

Time micro sec 

-I- + + + 

Figure 6.6.3 Dolphin click and an approximate analytical function. The dolphin is a 
Tursiops truncatus. The data points (+) were read from Au (1993, Fig. 5.3), who aligned 
and averaged (stacked) the 32 clicks shown in Fig. 6.6.2. The smooth curve is Equation 

6.6.2, where P0 -- 110 kPa: f0 = 100 kHz, z 0 - 13 ms: Az - 33 ms, and q5 - -7t/4. 
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duration only 50 #s, which would not cause cavitation (see section 5.2). An 

approximate analytical function for the clicks is 

p (t) = P 0 sin(2Jr f 0 t +r  ) exp[ -to 2 ( t -  z o) 2 [ A't" 2 ] (6.6.2) 

A comparison of Equation 6.6.2 and the data is shown in Fig. 6.6.3. 

To compute the acoustic energy radiated by a dolphin, recall the discussion in 

section 3.1 and the message energy computation, Equation 3.1.12. The message 

energy is 

2 R / c + t  

I/tD R o ( g dt [p o (t ---~- ) 2 1 (6.6.3) 
E m = P A C d R / c  

where the 4~z is replaced by the integrated beam pattern, TD, defined in Equation 

4.5.5, and tg is the duration of the click. For a = 5.7 cm and f0 = 100 kHz, ka is 

11. Using Fig. 4.5.1, the integrated beam pattern, ~PD ~ 12/(ka)2=0.09. A 

numerical evaluation of Equation 6.6.3 has been made using the points shown in 

Fig. 6.6.3. One click has the apparent message energy 

E m ~ 2.6 • 10 -4 joules (6.6.4) 

The character of repeated "cl icks" can be seen in Fig. 6.6.2. The waveforms of 

the messages are not quite the same. 

The dolphin Tursiops truncatus appears to alter its sound output according to 

its environment. The peak sound pressures were about 30 to 300 times higher 

when measured in the open waters than in tanks, and the output frequencies were 

near 115 kHz in open waters compared with nearly 50 kHz in tank experiments. 

6.6.3 SHIP NOISE: SAMPLE CALCULATION 

Intentional sound sources were discussed in Chapter 4. Here we perform a simple 

calculation of ship noise using World War II raw data. 

The principal sources of ship noise are a) radiation of engine noise from the 

ship hull; b) "blade passage" tones from the propeller; and c) cavitation from 

propeller blades. The engine noise is common to all rotating machinery. When 

the engine is not isolated from the ship, its vibration drives the hull; thereupon, 

sound is radiated according to the modes of vibration of the hull panels. The blade 

passage tones are caused by the rotating dipole created by the pressure in front of 

the propeller being positive, while the pressure behind is negative (Gray and 

Greeley 1980). The frequency of these tones is the product of the number of 

blades times the shaft rotation frequency. Hydrodynamic cavitation is the 
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creation of bubbles by the lowered pressures along the edge, particulaly near the 

tip, of the rotating blades (see also section 5.2 for acoustic cavitation). It is 

strongly dependent on the propeller tip speed. 

The complexity of the multiple sources of ship noise is rendered even more 

complex by the fact that these noise sources are close to the ocean surface. For a 

smooth surface, the radiation is a function of the ratio of source depth/sound 

wavelength, which may cause the lower frequencies to radiate as dipoles, while 

the higher-frequency sounds act as monopoles (see sections 4.1.2 and 4.1.3, 

2.5 

Figure 6.6.4 a) Average noise directivity in 200-400 Hz band for 15 World War II 

freighters. Contours are sound pressure levels in dB re 1 dyne/cm 2. From Eckart (1946, 

1968). b) High-frequency ship noise "butterfly" pattern. (From Urick, R. J., Principles of 
Underwater Sound, 3rd edition, Peninsula Publishing, P.O. Box 867, Los Altos, CA, 1983, 

Fig. 10.9.) The original caption is "Equal pressure contours on the bottom in 40 ft of water 

of a freighter at a speed of 8 knots. Contour values are pressures, in dynes per square 

centimeter in a 1-Hz band, at a point on the bottom, measured in the octave band 2,500 to 

5,000 Hz."  To translate the U.S. Navy units of the 1940s to SI units, use 1 knot - 1.15 

miles/h -- 1.85 km/h; 1 ft = 0.3095 m; 1 dyne/cm 2 = 10 s/~Pa = 0.1 Pa; intensity spectral 

density - (watts/mZ)/Hz = (PaZ/Hz)/pa C. The ship outlines are shaded. 
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which describes multipoles). Finally, when the rms height of the ocean surface is 

large compared with the sound wavelenght, the sound at the surface is scattered 

rather than reflected, and the dipoles become relatively strong monopoles. 

Radiation at low frequencies of 200 to 400 Hz (Fig. 6.6.4a) looks somewhat 

omnidirectional. This is not the case at higher frequencies (Fig. 6.6.4b). 

Rms pressure contours for the frequency band 2500 to 5000 Hz are shown in 

Fig. 6.6.4b. They were drawn from the values measured by eight sea floor 

hydrophones as a freighter steams by. The sources of ship noise are spread along 

the ship. However, the radiated energy is generally greatest abeam and appears to 

come principally from the propeller. The propeller noise power radiated astern is 

reduced by being absorbed and scattered by the bubbly wake. It is reduced 

forward by diffraction by the ship body. The ocean surface reflection of the 

dominant dipole source results in radiation not unlike that of convected 

distributed quadrupole sources in a jet engine exhaust (section 4.1.2). The net 

effect is that the sea-floor measurement of ship radiation is typically a 

"butterfly" pattern as shown in Fig. 6.6.4. This figure, here reprinted from 

Urick (1967), originally came from U.S. Naval Ordnance Laboratory Report 

7333, by Pomerantz (1943). 

The "butterfly" pattern, which is presented as spectral pressures (1 Hz band) 

in Fig. 6.6.4b, was calculated from the measured squared pressure in the octave 

band, 2500 to 5000 Hz. This reduction to spectral values is sometimes done by 

assuming equal intensity in each 1 Hz band and simply dividing by the 

bandwidth, 2500 Hz. Possibly the stated values were calculated by recognizing 

that there is an f -2  dependence of radiated intensity in the typical ship noise 

spectrum (see Fig. 6.6.6). We will assume that the spectral values in Fig. 6.6.4b 

are at the approximate mid-frequency of the band, 4000 Hz. 

Directivity Pattern 

We first convert the rms pressures to pascals (see caption of Fig. 6.6.4). As the 

next step in calculating the radiated spectral power, the data in Fig. 6.6.4 are 

transformed to a directivity pattern (Fig. 6.6.5) in spherical coordinates. This 

gives us the apparent spectral intensity (PaZ/Hz) extrapolated back to 1 m as a 

function of angle. We find that the propeller position is the approximate source of 

spherical (l/R) spreading. Some asymmetry is evident in Fig. 6.6.4b, but, for 

simplicity, we set the z axis along the ship and assume that there is axial 

symmetry around the ship (no ~b dependence). The radiation is at angles 0, with 

the ship axis into the underwater half space (0 <_ 0 _< n). 
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Figure 6.6.5 Directivity pattern for apparent source spectral "intensity" in pa2/Hz at 
1 m, for the mid-frequency 4000 Hz, calculated from data within octave band 2500 to 
5000 Hz for a freighter traveling at speed 8 knots toward the left, as described in Fig. 6.6.4. 
The data points are plotted as circles. Radiation is in the half-space. 

Because we have chosen the convenience of having the coordinate axis along 

the ship, we are able to calculate the spectral power directly from contributions in 

incremental areas, rather than by using the integrated beam pattern concept 

defined for CW in Equation 4.5.4 or numerical integration. The total radiated 

power spectral density at a given frequency, PSD (units, watts/Hz), is calculated 

by integrating, over the hemisphere, the mean squared pressure in the 1 Hz band 

at angle 0, p2(0), 

P S D -  I ~ J'n p2(O) ds (6.6.5a) 
4~=0 0=0 PA c 

where 

dS -- R 2 sin (0) dO ddp (6.6.5b) 

Assuming axial symmetry, the ~b integration gives ~z, the 0 integration gives 

- p 2 ( 0 )  cos 0, and we are left with the summation over incremental angles, 

_~R 2 
PSD - ~ ~ - ~  PZ(0)[cos (0,) - cos (02)] wat ts /Hz (6.6.6) 

PAC 0=0 
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Angular Dependence of Power Spectral Density at 4000 Hz 

To show the relative contributions at different angles, we divide the 180 ~ of 0 into 

seven incremental regions, between 0 and 15 ~ 15 ~ and 45 ~ 45 ~ and 75 ~ and so 

on, and determine the following mean values tabulated at the mid-angles: 

0mean e2(pascals)2/Hz p2A cos 0(pascal)2/Hz (~zp2A cos O)/(PAC ) 
Watts/Hz ( 10 -6 ) 

7.5 9 000.3 0.6 

30.0 64 17 36 

60.0 100 45 94 

90.0 144 75 158 

120.0 256 115 242 

150.0 144 37 78 

172.0 16 0.5 1 

TOTAL 290 610 

Total Apparent Power Spectral Density at 4000 Hz 

The total apparent power spectral density over all angles is P S D =  

610 • 10 -6 watts/Hz = 0.61 mW/Hz for the 1 Hz bandwidth at 4000 Hz. 

Notice that the total is more than twice the peak value, which is found at the 

angular increment centered at 120~ if one simply looks at the peak transient 

value and ignores the directivity, as the ship goes by, the observed PSD is about 

half the correct value. 

Power Spectral Density at Other Frequencies 

We don't know the freighters' sound radiation directivity except for the octave 

band from which Fig. 6.6.4 was drawn. Fig. 6.6.6 shows a "typical"  peak noise 

spectral dependence for a naval cruiser. Roughly the dependence f - 2  appears to 

be a pretty good assumption for the frequency range from about 20 kHz to about 

100 Hz, depending on the ship speed. Spectral values for frequencies less than 

20 Hz, which would probably be caused by the blade passage tone and its 

harmonics, are not available. The low-frequency oscillations below 500Hz, 

shown at 8 knot cruiser speed, may be machinery noise. The absence of evidence 

of machinery noise at higher ship speeds is probably due to the increasing 

dominance of broadband cavitation noise. 
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Figure  6.6.6 Radiated spectra of noise maxima referred to 1 m from the British cruiser 
Cardiff, considered as a point source, as measured during World War II. The two ship 
propeller shafts of diameter 3.4 m rotated at 10.5 RPM/knot. The column on the right is the 
apparent spectral power, wattsfldz. (Adapted from Ross, D., Mechanics of Underwater 

Noise, Peninsula Publ., Box 867, Los Altos, CA, 1987.) 

T o t a l  R a d i a t e d  P o w e r  at  8 K n o t  S p e e d  

To perform an engineering estimate of the overall noise power radiated at a given 

ship speed, one can, for simplicity again, assume the f -2  dependence as described 

above. To calculate the dominating low-frequency contributions from 100 Hz to 

4000 Hz, assuming the same directivity, use the relation 

[4000 ( 7 ) 4  0 
2 

1I - PSD (4000 Hz) 
5O 

df (6.6.7) 

Accepting these assumptions, this freighter at speed 8 knots radiates a total 

acoustic power of about about 0.2 watts. But note that Fig. 6.6.6 shows that major 

power contributors are at f < 200 Hz, and our approximation is quite poor in this 

region; indeed during World War II, when these data were taken, there was no 

interest in f < 20 Hz. 
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Figure 6.6.7 Dependence of overall noise power in watts, and apparent source level 
calculated by extrapolation to 1 m from the ship considered as a point source, plotted as a 
function of ship speed. Data measured for various categories of ship during World War II, 
and include only frequencies over 100 Hz. (Adapted from Ross, D., Mechanics of 
Underwater Noise, Peninsula Publ., Box 867, Los Altos, CA, 1987.) 

Radiated Power at Higher Speeds 

The dependence of overall radiated noise on the speed of the ship is presented in 

Fig. 6.6.7. These data show the freighter noise at about 0.2 watts (frequencies > 

100 Hz) in agreement with our computed value of 0.2 watts at 8 knot speed. The 

agreement is surprising, considering the approximations that we have made in our 

calculations. 

The power rises rapidly for increased speeds. In Fig. 6.6.7 it is up by a factor of 

10, to about 10 watts at 13 knot speed, and by another facor of 10 to 100 watts for 

19 knot speed. 

Problems  

Problems in signals and signal processing require numerical computations and 

displays. Many high-level programming languages are available. MATLAB 

from the Math Works Inc. does what you need and is reasonably simple to use. 
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MATLAB comes with a user 's guide and reference manuals. Ruda Pratap, 

Getting Started with MATLAB [Harcourt Brace College Pub., Fort Worth (1996)] 

gives an introduction and examples for scientist and engineers. More examples 

and applications are in Duane Hanselman and Bruce Littlefield, Mastering 

MATLAB [Prentice-Hall, Upper Saddle River, NJ (1996)]. People who use 

BASIC and FORTRAN will find sound propagation, ray tracing, and signal 

processing algorithms in C. S. Clay, Elementary Exploration Seismology, the 

Appendices [Prentice-Hall, Englewood Cliffs (1990)]. 

We assume that the reader has an elementary knowledge of MATLAB 

methods; for example, an understanding of the first 5 chapters of Pratap or 

equivalent. 

Section 6.1 

6.1 Purpose: To create a simple signal and to sample the signal. Computations 

at the times t l, t2, etc., are samples of the signal in numerical space at those 

times. This sampled signal becomes our digital signal and we don't  know the 

values between sampled points. 

6.1.1 Create and run a short program or script file to make and display a ping. 

The graphic output of the program is Fig. P6.1.1 

7, signal_cos_env; - a MATLAB script file to display a ping.csc 1997 

The envelope of the ping is 0.5*[1-cos(2*pi*t./tp)]: Eq(6.3.1) 

7, The carriers are sin(2*pi*Cf*t) or cos(2*pi*Cf*t) 

In MATLAB, % is a comment. The ; stops the printing of numbers to 

the screen. 

t p  = 1; 7, Duration of ping, s 

Cf = 10; 7, Carrier frequency, Hz 

Sf = 100; 7, Sampling frequency, Hz 

Ns = S f , t p ;  7, Number of samples in time tp 

t = l i n s p a c e ( 0 , t p , N s )  ; 7, create a time vector t with Ns elements. 

x = 0 . 5 ,  ( l - c o s  ( 2 , p i , t . / t p )  ) .  * s i n  ( 2 , p i , C f .  , t )  ; 

7, vector x = term by term multiplication, " . * " . x  

has Ns elements. 

7, or x = .5*(1-cos(2*pi*t./tp)).*cos(2*pi*Cf.*t); 
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Figure P6.1.1 A ping that has a carrier and envelope. The equation of the signal is 
(6.3.1). This is the black on white print of the plot(t,x, ' w') instruction. In MATLAB, the 
monitor shows colors on black. 

% plot the signal x versus time t. ' -w'  gives the 

color white. 

% label 

% label 

% title 

" S a v e "  on a Macintosh makes a PICT file that can be read with a graphics 

application. 

6.1.2 Sampling above Nyquist frequency, 2Cf. Compute and display the signal 

for the sampling frequencies 1000 > Sf > 20. ( C f -  10 Hz) 

6.1.3 Sampling below Nyquist frequency, 2Cf. Compute and display the signal 

for Sf < 20. 



228 6. Processing of Ocean Sounds 

6.1.4 Sampling at carrier frequency. Compute and display the signal for 

S f = f =  10. 

a) The carrier is given by sin(2*pi*Cf.*t). 

b) The carrier is given by cos(2*pi*Cf.*t). 

Sections 6.2 and 6.3 

Fast (Finite) Fourier transformations. The instruction fft (...) does the fast 

Fourier transformation. See Hanselman and Littlefield, Sec. 14.2. These 

advanced problems use the following MATLAB script. 

7, fit_signal; - a MATLAB script file to do an fft of x. 

Changes some parameters to time domain. The sampling interval is tO and 

the number of samples Ns=2^n. Let: 

tO = .  01; Y, Sampling interval, s 

Ns = 128; 7, number of samples, n=6 

t p  = N s , t 0 ;  7, Duration of ping, s 

Cf = 10; 7, Frequency, Hz 

t - l i n s p a c e ( 0 , t p , N s )  ; 7, create a time vector t with Ns elements 

= ; 

7, create a freq vector f with Ns elements 

x = 0 . 5 ,  ( 1 - c o s  ( 2 , p i , t . / t p )  ) .  , s i n ( 2 , p i , C f .  * t )  ; 

7, Compute x. 

7, fft of x. 

7, Plot x for inspection. 

7, Pause to look at the plot, get E Press return to 

continue. 

This command does the Fourier transformation 

(Equation 6.2.8). 

6.2.1 Program and run thefft script with Cf = 10. Thefft gives peaks a t / =  10 and 

90. Why is the extra peak at 90 Hz? What do the components above 50 Hz mean? 

6.2.2 Keeping the same sampling interval tO and Ns, change the carrier Cf. 

What happens to the sampled signal and the pair of peaks? 
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6.2.3 What happens to x, IX I, and the widths of the spectral peaks when the 

number of samples= 16, 32, 64, 128, 256, 512? Also try Cf = 10, 20, 30 etc. 

6.2.4 Write a convolution program using Equation 6.2.29. The program can be 

written in MATLAB script, BASIC or FORTRAN. In MATLAB, let the vectors 

x has mx elements and the vector h has mh elements. An example of a 

convolution script is 

7, convl_examp; 

7, Given a pair of vectors, x and h compute their convolution. 

x =  2 3 4 ] ;  ~ m x = 4  

h =  [ .7  . 3 ] ;  ~, m h = 2  

y = conv(x ,h) 7, my = mx + mh - 1 = 5 

y = [.7 1.7 2.7 3.7 1.2] 

Let x ( 1 ) =  1, x ( 2 ) =  2, etc and h ( 1 ) =  0.7, and h ( 2 ) =  0.3. Compare the 

computer result with a hand evaluation of Equation 6.2.29. 

6.2.5 Filter operations in the time domain. Let x = 0 .5" (1 -cos (2*p i* t . /  

tp)).*sin(2*pi*Cf.*t) and h = 0.5*(1-cos(2*pi*t./tF)).*sin(2*pi*Ft.*t). For the 

first t r ia l ,  u s e  the time step, tO = 0.01, x(t): Cf = 15 and tp = 0.4. h(t): Ff = 15 

and tF = 1. Compute and display the convolution of x(t) and h(t). 

6.2.6 Multichannel filter operation. Compute the convolution of x(t) in 

problem 6.2.5 and a set of filters where the filter frequencies are Ff = 5, 10, 15, 

20, 25, 30, 35 Hz. The duration of the filter tF = 1 s for all trials. Observe the 

wave forms of y(t) and make a graph of the peak amplitudes as a function of the 

filter frequency Ff. 

6.2.7 Construct a signal that is the sum of 2 pings that have different 

frequencies. Test the multichannel filter on this signal. How much frequency 

difference do you need to resolve the two pings? 

6.2.8 The transmission of a message consists of the message and the 

transmission paths. Concepts from Section 3.2 on transmission paths and 

convolution are combined. The message is po(t) and the transmission function is 

[path]. Obvious changes of notation were made to create compatible variables 

in MATLAB. Copy and run the script. 

path_messages; 

Ray traces give the travel time tpath and message amplitude paf. 

The impulse response is trPath, trPath can have many arrivals. 

Here, the travel times and amplitudes of arrivals are assumed. 
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p(t) = conv(p0(t),path) 

transmission path, trPath 

i p a t h 2  = round  ( t p a t h 2 / t O )  ; 

imax = r o u n d ( t m a x / t O )  ; 

7, Message is p0(t) 

ns = r o u n d ( 4 , T s / t O )  ; 

Z First arrival travel time 

7, Amplitude 

Y, Second arrival travel time 

Z Amplitude 

Z Sampling interval 

Y, Maximum duration of path 

Z round(.) nearest integer time 

step 

Time steps to second arrival 

Y, Arbitrary maximum for tpath 

~ Create array of zeros 

Y, Put the arrivals into the array 

Use exp(-st/Ts), where st is 

message time. 

Z Time constant for exponential 

p0(t) 

Z Time steps for 4 time con- 

stants 

7, Time vector for message 

Create a simple exp message 

Y, convolve the message p0(t) and path(t) to get p(t), the received 

message pressure. 

p is the received message 

Y, Size of convolved vectors. 

Z Create the vector t. Size t=size 

p. 

Program the convolution computation and test it using the parameters in the 

script. 
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Figure P6.2.2 Example of the transmission of a message po(t) along 2 paths. The arrival 
times are 0.5 an 0.9 s. 

6.2.9 Replace the message in problem 6.2.8 with the ping, p0 = 0.5*(1- 

cos(2*pi*t./tp)).*sin(2*pi*Cf.*t). Explore the transmissions of different mes- 

sages. Try different durations of pings for the same carrier frequency. What is 

the maximum duration that gives separated arrivals? What happens when the 

pings are longer? Try different frequencies for these ping durations. What 

happens if you choose a frequency greater than 50 Hz? 

6.2.10 Use the convolution multichannel filter method in problem 6.2.6 to do 

multichannel filter operations on the pressure p in the script in problem 6.2.8. 

Here the message is the exponential p0 = exp(-st /Ts).  Try filter durations of 

0.4 s and 1 s. What happens if you let pafl = 1 and paf2= - 1  ? What happens 

as tpath2 is decreased from 0.9 to 0.5? 

6.2.11 Purpose is to display the effect on anfft spectrum transformation of how 

the signal is conditioned prior to the fit operation. Let x(t) have pO(t) be a ping 
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with t p = 0 . 1 s  and Cf  = 10Hz. To approximate the infinite integral 

transformation one, add zero to the sampled pO(t). Let the sampling interval 

tO = 0.01 s. We explore adding different numbers of zero (the number is an art). 

a) Compute Fourier transformation P = fft(pO) and display the abs(P). What are 

the frequency increments of the transformed signal? b) Add zeros to make the 

total duration td = 2tp. Compare to a). c) Continue the process for td - 5tp, 

l Otp, etc., to td = 50tp. Do you see an effect on the frequency resolution? 

6.2.12 Construct a p(t)  using pO(t) and the convolution from problem 6.2.8. 

Let Ts = 0.05 s. Let tpath 1 = 0 and pa f  -= 1. Let tpath2 - 0.4 and paf2  = - 1 .  

The initial total duration is tdl  = tpath 1 + tpath2 + 4Ts. a) Follow the tasks in 

problem 6.2.11 and add zeros, where td = 2tdl ,  5tdl ,  etc. How large must td be 

relative to tdl  for the f i t  to be insensitive to td? 

Sec t ion  6.4 

MATLAB has a normal distribution, unit variance, and zero mean random 

number generator, randn( ..... ). For a vector, use rand(l ,  N) for a vector that 

contains N elements of random numbers. We smoothe adjacent time steps to 

reduce frequency components above the sampling frequency. 

7, play_w_randn; 

N = 1 0 0 0  ; 

*x = r a n d n  ( 1, N) ; 

f o r  n = 1 : N - l ;  7, 'DO loop or FOR-NEXT algorithm. 

x (n + 1) = x (n) + x (n + 1) ; ~ Do a running integration to smooth. 

end 7, End of operation 

6.4.1 Simply run this script over and over to get a feel for the properties of a 

sequence of random numbers. This generator does not have a high-pass filter, so 

you will see large excursions on some of the runs. 

6.4.2 Let the random signal be x in problem 6.2.5. N = 100 corresponds to 1 s 

of signal. Use the convolution multichannel filter method in problem 6.2.6 to 

do multichannel filter operations on the random signal. Try different filter 

durations. 

6.4.3 Advanced readers can use the methods in section 6.4.4 to do spectral 

smoothing. 
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Section 6.5 

A matched filter algorithm follows: 

7o matched_filter; 

N : 6 4 ;  

% x is the signal 

% Reverse time for filter 

% Create a vector of zeros 

% Add a string of zeros to x 

% Convolve x and its matched filter 

% For plot 

6.5.1 Run the script several times and notice that the side lobes change for 

each run. Why? 

6.5.2 Why is the peak delayed? 

6.5.3 Compare the relative sizes of the side lobes for N = 16, 32, 64, 128,256. 

6.5.4 Replace the random signal x(t)  with a chirp 

po(t)  - sin[2n(f + at)t] for 0 <_ t <_ tp and - 0 otherwise 

and try different chirp durations tp and bandwidths, that is, values of f and a. 
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The scattering of sound by bodies has its roots in the classical physics of giants 

such as Rayleigh, Helmholtz, Kirchhoff, and Born. Their analytical techniques 

and solutions to problems form the core of the mathematical physics of wave 

propagation. Where the bodies do not have simple geometries that can be solved 

analytically, we use numerical techniques based on the classical formulations. 

In an underwater acoustics experiment, a pressure-sensitive hydrophone 

measures the scattered sound pressure, not its square or some other function. The 

scattered sound pressures are observables. They can be compared with the results 

*Background material. 
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of theoretical and numerical calculations to yield a characterization of the 

scattering body. 

We begin with brief descriptions of experiments and scattering measurements,  

because they define the meanings of the scattering parameters. These same 

parameters are used in theoretical calculations. 

7.1 Scattering Measurements: Incident Plane-Wave 

Approximation 

An object is effectively insonified by plane waves when its dimensions are less 

than the diameter of the first Fresnel zone, (Fig. 2.6.11). Within the first Fresnel 

zone, an actual spherical wavefront can be approximated as being a plane wave. 

The geometry of scattering measurements and theory is sketched in Fig. 7.1.1. 

The transmission is a gated sinusoid, a "p ing . "  The crests of the ping are 

sketched as individual wavefronts. 

Figure 7.1.1 Sound pressure scattered by a small object. An effective plane wave is 
incident on the object. The crests of a sinusoidal sound pressure or ping are indicated as a 
sequence of wavefronts. While there is 0 dependence of the incident energy, it is 
suppressed for simplicity in this sketch, a) The incoming waves, b) The wavefronts after 
being scattered. For simplicity, the scattered wavefronts are drawn as coming from the 
center of the object. For a complicated object, such as in the sketch, there would be many 
interfering wavefronts spreading from the object. The shadow behind the object extends to 
X. Outside of the shadow, the incident and scattered fields form a penumbra. Beyond the 

penumbra, where 0 < 0interfer , the incident and scattered waves can be separated. In some 
regions, separation can be achieved, also, by use of a pulse. 
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Oscilloscope traces of the incident and scattered sound pressures are sketched 

in Fig. 7.1.2. The Incident sound pressure is assumed to be a ping having a high 

carrier frequency f and the duration re. 

For very simple and approximate measurements,  we use the peak pressures of 

the pings to measure the incident and scattered sound pressures. The pressure of 

the incident sound pressure at the object is Pinc(t). It has the peak value Pinc- The 

time dependence is 

pi~c(t) - Pince i2nft for 0 <_ t <_ tp and - 0 otherwise (7.1.1) 

where tp is the ping duration. 

The sign of the exponential was chosen to match that used in most scattering 

theories. 

The scattered sound pressure is Pscat(t). The pressure amplitude is Pscat- The 

time dependence is 

ps,, t(t)  -- P,.,,, exp {i2nf (t - R/c)]  10 -~R/2~ (7.1.2) 

for R / c  < t < R / c  + tp, where tt, is the ping duration, and p~cat(t) = 0 otherwise. 

Sound attenuation from scatterer to hydrophone is included. Figure 7.1.1 

indicates a region of interference and a geometrical shadow behind the object. 

The theoretical solution shows that the shadow is due to the destructive 

interference of the scattered sound and the incident sound that arrive at 

essentially the same time, with the same, but oppositively phased, amplitudes. 

The gray region of interferences of the incident and scattered sound pressures 

depends on the relative magnitudes and times of arrival of the two sounds. When 

the incident wave is a pulse of sufficiently short duration, it is experimentally 

possible to isolate and measure the scattered sound in this region. The incident 

and scattered sound pressures are shown as isolated for 0 < 0interfer. 

/ ) l c  

Incident pressure 

Scattered pressure 

R/c 

Time 

Figure 7.1.2 Sketches of incident and scattered sound pressures. The amplitudes of the 
envelopes of the incident and scattered sound pressures are P~nc and Pscat. The travel time 
for the sound to scatter to the pressure-sensing hydrophone is R/c. 
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7.1.1 SCATTERING LENGTH 

At a large distance from the object, the amplitudes of the scattered waves 

decrease as 1/R by spherical divergence and 10 -~R/2~ by energy absorption (and 

sometimes by scattering in the medium as well). We assume that the scattered 

energy is separated from the incident. Using the peak amplitudes of the incident 

and scattered sound pressures of a ping, we define a complex acoustical 

scattering length, L(O, qb, f ) ,  which is determined by the experiment. At this 

time, we use the absolute value ] . . .  I and ignore the phase 

Pscat : Pincl f_3 (0 ,  +,f)[(IO-~R/20)/R (7.1.3) 

o r  

I L(0, ~b,f)l - escat[glO~R/2~ (7.1.4) 

Although the acoustical scattering length has the dimensions of length, it 

usually turns out to be different from any actual dimension of the body. The 

scattering expression (Equation 7.1.4) is for a "poin t"  receiver. Actually the 

receiving transducer in the sketch (Fig. 7.1.1) integrates the sound pressures over 

its area AS. The dimensions of the transducer, which covers angles A O and A~b, 

limit the angular resolution of measurements of the scattering length. 

7.1.2 DIFFERENTIAL SCATTERING CROSS SECTIONS 

The concept of the differential scattering cross section comes from quantum 

physics, where it describes the scattering of particles (Shift 1949, p. 97). In 

acoustical measurements, the differential scattering cross section at angle 0, 4) is 

the absolute square of the scattering length 

2 
Pscot Aas(O d?,f) - [s ~b,f)l 2 = (0, , f)R 2 

' p2no 
10 ~R/I~ (7.1.5) 

where ~b is the angle out of the plane of Fig. 7.1.1. 

The SI dimensions of Aa s are m 2. The functional dependence in Equation 

2 (O,d?f)  7.1.5 explicitly indicates that, in general, both Aa,(O, 49, f )  and Pscat , 

depend on the geometry of the measurement and the carrier frequency of the ping. 

This measurement is called bistatic scatter when the source and receiver are at 

different positions. When they are at the same position, it is called backscatter, or 

monostatic scatter. 
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Specialization to the backscattering direction, 

0 : 0  and ~ b - O  (7.1.6) 

for backscatter, gives the differential backscattering cross section, 

A a s ( O ,  O , f )  - A a b s ( f )  - -  I Z(0, 0,f)l 2 (7.1.7) 

for backscatter. This very important function has previously been called the 

backscatteringcross section, abs(f) (Clay and Medwin 1977). The A notation is 

used here to emphasize the differential character and to parallel the general case 

(Equation 7.1.5), 

abs(f) =- Aabs(f) (7.1.8) 

The acoustic backscattering length is defined as 

L bs ( f ) = L (0, 0 , f  ) (7.1.9) 

(Note: For typographical simplicity, we omit functional dependencies when they 

are obvious.) 

7.1.3 TOTAL SCATTERING AND EXTINCTION CROSS SECTIONS 

Calculations of the total acoustical cross sections go back to Rayleigh. The 

theoretical total scattering cross section is the integral of Aas(O, dp, f ) ,  over 4re of 

solid angle 

f0 f0 o- s ( f )  - d e  AO-s (0, r  ) s in0 dO (7.1.10) 

The total scattering cross section can also be defined by 

G s = 1 - I  s c a t  ] I in c (7.1.11a) 

where /-/scat is the total power scattered by the body, and /inc is the incident 

intensity. The two definitions are equivalent, as can be easily proved. 

The total power lost from the incident wave owing to absorption by the object, 

]labs, determines the absorption cross section 

O" a --- 1 - I a b s / l i n  c (7.1.11b) 

The total power removed from the incident beam, /-/scat +/-/abs, is used to 

define the extinction cross section, 

Oe = (Usca, + nobs)Ii,c (7.1.11c) 
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The sum of the total scattering cross section and the total absorption cross section 

is the total extinction cross section, 

O" e : O" s + 0" a (7.1.12) 

If there is no absorption, the total scattering and extinction cross sections are 

equal, 

a e --- a S (no absorption) (7.1.13) 

Experimentally, it is difficult to isolate the integral scattered sound power in 

regions where there are interferences with the incident sound wave. As an 

alternative, the differential extinction cross section could be measured 

(Fig. 7.1.3). 

The receiver, which is a distance x behind the scattering object, senses the sum 

of the scattered and the incident wave pressures. This raw measurement depends 

on the value of x and Aas(O , ~b,f) within the solid angle dO. Appreciable 

curvature of the wavefront at the receiver can complicate the measurement if the 

dimensions of the receiver are many wavelengths. 

Wave scattering depends on the dimensions of objects a relative to the acoustic 

wavelength. As we will see later in this chapter, for a/2  ~ 1, a simple assumption 

of spherical wave divergence is often a useful approximation; at a /2  >> 1, ray- 

Kirchhoff approximations give accurate results; at intermediate values, 

0.5 ~ a/2  ~ 20, solutions require detailed evaluations based on wave theory, 

particularly if the body can resonate. 

Some authors compute a total acoustic scattering cross section, a s, by 

multiplying the differential backscattering cross section, Aabs by 4n. This 

procedure is correct only in special cases where the scattering is known to be 

Figure 7.1.3 Measurement of sound extinction in the forward direction. The receiver 
senses the pressure waves over the subtended solid angle, dO, where there are 
interferences. The sketched scatter directivity L(O) is for a rigid sphere having ka -- 5. 
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o m n i d i r e c t i o n a l - - f o r  example, scattering from a gas bubble near resonance is 

known to be isotropic. 

7.1.4 T A R G E T  S T R E N G T H  

The target strength is a logarithmic measure (to the base 10) of the differential 

cross section that depends on the geometry: 

TS(O, qb,f) = lOlog[Aas(O,  dp , f ) / ( lm2) ]  (dB) (7.1.14) 

where the reference area is/(1 m2). The most common usage is for backscatter. 

Then 

TS( f )  = l O l o g [ A a b s ( f ) / ( l m 2 ) ]  (dB) (7.1.15) 

In terms of the general statement of the scattering length, the target strength is 

TS(O, ck,f)  = 201og [lL(O, c k , f ) / l m  ] (dB) (7.1.16) 

or, more particularly, in terms of the backscattering length, 

TS( f )  = 201og[lLhs(f)l/ lm ] (dB) (7.1.17) 

The measured scattering lengths are simpler to use and closer to the physical 

processes than the logarithmic functions. (Note: For most bodies, the back- 

scattering length, backscattering cross section, and target strength are also 

functions of the angles of entry of the sound at the scatterer.) 

7.1.5 S I N G L E  T R A N S D U C E R  M E A S U R E M E N T S  

A typical backscattered sound measurement is sketched in Fig. 7.1.4. Using Fig. 

7.1.4, the incident sound pressure at the object is 

Pinc e i 2zcf t _ P O e i [2n-f ( t - R  /c )] R 0 10 - a R /20 (7.1.18) 
- R 

where the reference sound pressure for the source Po is referred to the reference 

distance Ro, usually 1 m. 

The sound scattered back to the source-receiver, Pscat(f), is 

�9 Poei[2rcf(t-2R/c)]Rof.,bs(f) 10_2~R/20 
Pscat etz~zft - -  R2 (7.1.19) 
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transmission 

P~nc 

Transducer _ ~ _  

reception R 

escat 

Object 

Figure 7.1.4 Sound scattered by a small object, a) Outgoing ping from a transducer, b) 
Ping scattered back to the transducer. It is assumed that the sound spreads spherically from 
the transducer and also spreads spherically from the object. 

The travel time to go from the source to the scattering object and back to the 

receiver is 2R/c. 

7.2 Helmholtz-Kirchhoff Methods 

The Helmholtz-Kirchhoff integral and the Kirchhoff approximations are 

analytical statements of the principles discussed in sections 2.2 (Huygens's 

principle) and 2.6.6 (Fresnel zones). We will use methods from mathematical 

physics to derive quantitative expressions for the sum of Huygens sourcelets and 

wavelets. This derivation begins with the Gauss-Green theorem and ends with the 

Helmholtz-Kirchhoff equation. The fundamental derivations of the Gauss and 

Green theorems are in the next section, which some readers may wish to skip. 

"7.2.1 THEOREMS OF GAUSS AND GREEN (OPTIONAL) 

The derivations of these theorems use three-dimensional waves and vectors as 

introduced in section 2.7. Let the sources within a volume V cause a field F, 

where F is a vector. The surface S encloses the volume V. The outward flux is 

defined as 

flux = Is F'dS (7.2.1) 

*Background material 
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where dS is the incremental area; its direction is inward, normal to the surface. 

The dot indicates the scalar or "do t "  product, and F(dot) dS is proportional to the 

cosine of the angle between F and dS. The divergence operation (Equations 2.7.5 

through 2.7.7) is a measure of the flux leaving the source(s) in the volume, 

f l u x =  I I V  �9 F dv (7.2.2) 

Gauss's theorem states that the net outward flux through the surface S 

surrounding the volume V is equal to the sum of the divergences from sources 

within the volume. Analytically, Gauss's theorem is 

fs F ~ = f v V  o F dv (7.2.3) 

Green's theorem follows by replacing F by a pair of rather carefully chosen 

vectors and doing manipulations. Recall the force expression (Equation 2.7.4) 

and that the del operation on a scalar gives a vector. Let U1 and U2 be scalar 

solutions of the wave equation (2.7.9). We create the pair of vectors 

( U 1 V U 2 ) and ( U 2 V U 1 ) (7.2.4) 

and insert them into Gauss's theorem: 

f U 1 (V U 2 ) o d S  = f V o ( U 1 V U 2 ) dv (7.2.5) 
..IS Jv 

ls U2(VUl) e d S  - I V �9 (U2VUj)dv  (7.2.6) 
f 

d V 

Expansions of the right-hand sides give 

V o ( U  I V U  2 ) = V U  l O V U  2 + U  1 v 2  U 2 (7.2.7) 

and 

V o ( U  2 V U  1 ) = V U  2 o V V  1 + U 2 V2 U 1 (7.2.8) 

Insert the expansions into the integrals, take the difference, and get Green's 

theorem, 

f ( U I V U  2 - U2VU1)edS - [ (UIV2U2- U2V2Ul)dV (7.2.9) 
3s d V 

It is conventional to replace the gradient operations on the left side of Equation 

7.2.9 by the normal derivative at the incremental area dS. Then the incremental 

area becomes the scalar dS, and we have 

OU 1 OU 2 
VUI �9 dS - On dS and VUz �9 dS - On dS (7.2.10) 
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where the normal is drawn inward. Green's theorem is then written as 

-~n - U2 On J dS -- Jv(U1V2U2 - U2V2U1)dv (7.2.11) 

7.2.2 THE HELMHOLTZ-KIRCHHOFF INTEGRAL 

The source at Q emits a continuous wave having the frequency 09 = kc. The fields 

U 2 (x.y, z.t) and U1 (x.y, z.t) are solutions of the wave equation, and are functions 

of position, frequency, and the source sound pressure. The fields have the time 

dependence exp(icot). We will find their values by using Green's theorem. Later, 

we will replace the generic symbol U by the acoustic field pressure p. 

The effect of the source singularity, Q, is removed by enclosing it within the 

surface S t. Since there are then no singularities in the volume between S and S t, 

the fight-hand side of Equation 7.2.1 1 is 0, and we have 

fs OU2 - oU1 ~ ~ OU2 - OU1 
(7.2.12) 

(7.2.14) 

The normal derivative on S t is O/Oa. The differential area is dS t = aZdf2. We 

evaluate the second term of Equation 7.2.14 at the point Q by letting a tend to 

zero, and obtain 

 imy4L (ea al  1 - i k -  1)_ e- 0 U a 2 d a  =4~: U(Q) (7.2.15) 
a ~ 0  ~ a ~a  

Therefore, Equation 7.2.15 becomes 

ikR O U 
U(Q) =_~ fs [ u ~ ( e R ~  ) e- l R ~)n 3 S dS (7.2.16) 

which is the integral theorem of Helmholtz and Kirchhoff for harmonic sources. 

In our later calculations, S will be an element of the ocean surface, or an element 

on the surface of a scatterer in the volume. We use the artifice of transmitting a 

We assume that U2 is the solution of the spherical wave equation 

U2 _ e-  iktr R (7.2.13) 

Let the distance to S be R, the radius of S t be a, and for simplicity drop the 

subscript on U1. Then Equation 7.2.12 becomes 

U ~ [  e-RikR ) e- ikR , ~ [ e-ika, ika ~ U ' 
R ~n dS+ U-ff~ a ) -  a ~n dS =0 
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ping that is short enough to separate the direct and scattered arrivals and still long 

enough to permit the application of CW theory. Then the field at Q is determined 

by the sound that is scattered from the surface elements, alone, because 

contributions from the source are not present at Q when we observe the scattered 

signal. 

It is possible to use Equation 7.2.16 also to calculate the transmitted sound for 

a surface element. The geometry is shown in Fig.7.2.1a. The value on the 

boundary for the outward-traveling wave is 

l fs [ ~--~n( e-ik'R" ik'R'~-U--tl dS 
U'(Q'):~--~ U" R" ) - e R "  On] S (7.2.17) 

where k' = og/c'. 

The field quantities U(Q) and U'(Q') have the units m -1. When they are 

multiplied by the source function PoRo exp(iogt), they become the time-varying 

sound pressure. As usual, P0 is the sound pressure amplitude referred to the 

reference distance Ro from the source, generally 1 m. 

7.2.3 KIRCHHOFF APPROXIMATION 

Although the Helmholtz-Kirchhoff integral expresses the wave field U(Q) or 

U' (Q'), the problem is still difficult because we have to evaluate these quantities 

on the surface S. To do this we make approximations. The first approximation is 

usually called the Kirchhoffapproximation. The technique is called the Kirchhoff 
method. 

dS Q,~ 

13' c' ~ '  
S --Q 

pc dS 

a) b) 

Figure 7.2.1 a) Geometry for calculation of the interior field for scatter from an 
enclosing surface, b) Geometry for transmission through a surface. The source is a 
singularity at Q, which is surrounded by a sphere S' of radius a. The normals, n, are inward 
to the volume between S and S'. 
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The Kirchhoff approximation assumes that the coefficients R and T that 

would be derived for reflection and transmission of an infinite plane wave at an 

infinite plane interface can be used at every point of a rough surface interface. 

We use the symbol Us for the field that would exist at the interface position if the 

scattering surface were not present; U is the reflected field, and U' is the 

transmitted field. Both U and U' are evaluated on the surface S. We designate R 

as the pressure reflection coefficient and T as the pressure transmission 

coefficient, as defined in Chapter 2. Then 

u = Us 

~U dUs 
~n - - ~ n  

(7.2.18) 
U =T U s 

~U" dUs 
On =T bn 

The substitution of Equation 7.2.18 into Equation 7.2.17 gives the scattered 

field, 

fs R )dS (7.2.19) U(Q) = ~-~ 1 R~nn(Us e-i~R' 

and the transmitted field, 

U'(Q')=-~-~ T Us R" ) - e - R "  ~n Is dS (7.2.20) 

Even with the Kirchhoff approximation, the integrals are difficult to evaluate 

because R and T are inside the integrals. Four conditions may be considered: 

(1) When kR is large and the incident angle 0 is not too close to 

critical, the spherical wave may be approximated as a local plane 

wave, and the plane wave reflection and transmission coefficients 

may be used. 

(2) When R and T are constant, or slowly varying over the surface 

element, we can use the mean values; this is particularly true near 

vertical incidence. 

(3) When the interface is the water-air interface, the density contrast is 

so large that R = - 1  for virtually any angle of incidence. 

(4) When the two sound speeds are nearly the same and the contrast is 

due to different densities. 
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Under these conditions, we may move the reflection and transmission 

coefficients to outside the integral and obtain 

4~~s ~ ( e - i kR )  U ( Q ) =  ~ U s -R dS (7.2.21) 

and 

e- ik'R" ik'R" ~_Us ] ) e , 
On Js 

(7.2.22) 

The Kirchhoff approximation is often called the geometrical optics approxima- 

tion because the ray description is assumed to represent the reflected and 

transmitted waves at the point where the ray strikes the plane interface. 

7.2.4 FRESNEL APPROXIMATION 

We now replace the generic symbol U by the scalar acoustic pressure, p. Since the 

Helmholtz-Kirchhoff integral is for continuous waves, we suppress the time 

dependence and calculate the pressure P(f) as a function of frequency f. The 

geometry is shown in Fig. 7.2.2. Assume the attenuation is negligible. Including a 

source directionality, D, the incident pressure at the surface element dS at 

distance Rs from the source is 

PoRo D exp (-ikRs) 
Us = Pin," ~ (7.2.23) 

Rs 

where k is the wave number 2nf/c, Po is the source pressure at range Ro, and R12 

is the reflection coefficient at the 1, 2 rough interface. The integral for the 

scattered field (Equation 7.2.21) becomes 

P o R  0 5/(, 12~  ~ exp[ - ik  (R+R s)] 

e ~ ) = 4re Js D -~n { R R s } dS (7.2.24) 

The ranges R and R~ are defined in Fig. 7.2.2. The incremental area dS is at the 

depth ((x',y') relative to the x' and y' plane. The local depth ( (i.e., the local 

roughness) is a deviation from the plane interface. The angular displacement of 

the receiver ~3 in the x' - z' plane is not shown. In most applications, ~'3 is zero. 

The deviation ( is small relative to Rs and R. From the geometry, the second-order 

"Fresnel" approximations of Rs and R are given by 

R 2 _ (R l cos01 + ~)2 + (R 1 sinO, + x') 2 + y,2 (7.2.25a) 
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Figure 7.2.2 Geometry for facet scattering calculation. The element of area dS is 
elevated - (  above the x ~ - yl plane. The receiver can be at the angle ~P3 relative to the 
x' - z' plane. 

and 

R 2 -- (R 2 sin if2 cos if3 - x') 2 + (R2 sin if2 sin if3 - y,)2 
(7.2.25b) 

+ (R 2 COS ~t 2 -- ()2 

Using the expans ion  (1 + a) 1/2 ~ 1 + a / 2  - a2 /8  + . . . ,  the second-order  

expansion of  Rs is 

X '  2 COS 21// 1 y , 2 
+ + x s i n ~  1 + ~" c o s ~  1 R s = R 1 + 2 R  1 2 R  1 

(7.2.26) 

w h e r e  (2 was dropped  because  ( /R1  is very small. The express ion for R is 

Xt2 y~2 
R -- R 2 + ~ (1 - sin 2 ~'2 c~ ~'3) + ~ (1 - sin 2 ~'2 sin2 if3) 

- x' sin ~2 cos ~'3 + ( sin ~'2 - Y' sin if2 sin q/3 

(7.2.27) 
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The approximate sum of k(R s + R) is 

k(R S -Jr- R) ~ k(R 1 + R2) + xf-2x t2 + yf-2yt2 

+ kx' (sin ff 1 - sin ff 2 COS ~/3 ) 

- ky' sin~, 2 sin ~p3 + k{(cos ~pl + cos tp2 ) 

(7.2.28) 

where 

2 2 2 ) 
- 2 k cos ~ 1 1 - s in  V 2 cos ~ 3 

= + 
Xf  T R 1 R 2 

(7.2.29a) 

1 s i n  

Y f  - 2  + R 2 
(7.2.29b) 

To evaluate the normal derivative, we make the small-slope approximation 

/9 O 
t)n "" t~" "" k (cos I]/1 + cos Ip r 2 ) (7.2.30) 

Since the factor (RRs) varies slowly, it can be replaced by (Rl R2 ) and moved out 

of the integral. The dependence of D and exp[-ik(R + Rs)] on x ~ and y' are 

important; these terms stay in the integral. With these approximations, the 

integral (Equation 7.2.24) becomes 

Pg) 
iPoRo~12k(c~ ~tl -+- c~ ~t2)e-ik(Ri+R2) lXl dx t I y' 

4xRIR2 -x~ -yl 

x D exp - i  + ~ + kx(sin 01 - sin 02 cos 03) 

-kYt sin I//2 sin IP3 + k~(cos IP 1--FcoslP2)lldyt 

(7.2.31) 

This integral is sometimes called the Helmholtz-Kirchhoff-Fresnel integral, or 

the HKF integral, because it introduces the Fresnel approximation into the 

Helmholtz-Kirchhoff integral. The importance of this Fresnel approximation was 

demonstrated in the acoustic scattering literature by Horton and Melton (1970). 

The usefulness and accuracy of the Kirchhoff approximation has been the 

subject of many theoretical and experimental papers. (Theory: Thorsos 1988; 

Thorsos and Jackson 1989; Thorsos 1990; Thorsos and Broschat 1995; and 

references in those papers. Experiments: Neubauer and Dragonette 1967; Jebsen 
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and Medwin 1982; Kinney, Clay, and Sandness 1983; Neubauer 1986; Thorne 

and Pace 1984; Clay, Chu, and Li 1993.) 

7.3 Specular Backscatter by the Kirchhoff Method 

Theory and measurements of the sound scattered by any complicated object often 

assume that the complex surface may be approximated by plane segments, and 

that the total scatter is obtained by summing the scatter from each of these facets. 

We will use the HKF method in this section. However, first we must explore the 

regions where plane-wave, specular (mirroflike) backscatter is valid. The 

scattering of sound waves by a finite plane facet is simple enough that the details 

are tractable with reasonably simple functions. We will find that the HKF method 

also "works"  quite well for cylinders. It should be noted that the facet reflection 

solution given by the HKF integral is incomplete because it evaluates the 

interaction of the sound wave at each increment of the scattering area dS but 

ignores diffractions at the boundaries of the facet. Usually, in the "specular" 

(mirror) direction, the "reflection" component from S is much larger than the 

diffraction component from the boundary, so that the diffractions may be ignored. 

The method is satisfactory for cylinders but inadequate for spheres. Since the 

HKF integral is an approximation, we compare HKF calculations to theory, and 

experimental results to theory, to establish the validity of the approximations. 

7.3.1 RECTANGULAR PLANE FACET 

Reflection and scattering of sound waves from finite rectangular plane facets is 

one of the most fundamental applications of the HKF integral. The reflection of a 

spherical wave at a circular plane interface is described in section 2.6.6. Phase 

zones (Fresnal zones) were introduced at that time. Finite rectangular facets are 

drawn on the phase zones in Fig. 7.3.1. If a dimension of a facet extends beyond 

many phase zones, the contributions average out, and the facet is effectively 

infinite in that direction. Thus, the facets shown in Fig. 7.3.1a and b are 

effectively infinite in the y-direction. Then the reflection amplitude is sensitive 

only to the facet width in the x-direction. The reflection from the wider facet, Fig. 

7.3.1a, is expected to be larger than the reflection from the facet in Fig. 7.3.1b. 

Evaluations of the HKF integral give quantitative measures of these effects, even 

when we ignore diffractions. 



250 7. Sound Scattered by a Body 

Figure 7.3.1 Phases of Fresnel zones at vertical incidence of a spherical wave at a 
rectangular facet. The facet lengths Wy as sketched in a) and b) are effectively infinite 
because they cover many phase zones. (From Clay, C. S.; D. Chu; and C. Li, "Specular 
reflection of transient pressures from finite width plane facet," J. Acoust. Soc. Am. 94, 
2279-86, 1993.) 

To describe backscatter amplitudes at normal incidence to the rectangular 

facet, let 

D =  1, ~, =~2 =0 ,  R l = R  2 = R  and ( = 0  (7.3.1) 

The Fresnel parameters x]: 2 and 2/-:-2 in Equation 7.2.29 reduce to 

X f - 2  = y f -2 = k l R  = 2 J r / ( A R )  (7.3.2) 

The HKF integral (Equation 7.2.30) becomes 

P ( f ) =  

-i 2kR  
i P  O R 0 ~PLI2 k e 

27cR 2 

s I s Rk.~__ ( 
x dx  ' exp [-  i x 

Xl ) 1 
,2 +Y ,2 ) ] d y  ' 

(7.3.3) 

where the limits x~ and y~ are the half-width and half-length of the rectangular 

facet. The limits can go to infinity. The expression contains the product of 

"Fresnel  integrals." 

Define the following changes of variable to make the length and width 

dimensionless and to transform Equation 7.3.3 into the " h a n d b o o k "  form of the 
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Fresnel integrals (Abramowitz and Stegun 1965, sec. 7.3): 

2 2 
= ~ x and v = ~ y (7.3.4) 

I i  I 7"C lg 2 l~ 1 
C ( U l ) -  cos (\~ ]edu and S ( U l ) -  sin ( ] \~uZ/du (7.3.5) 

The dimensionless limits are 

u 1 = w x/x/2R and v 1 = Wy/v/2R (7.3.6) 

The pressure (Equation 7.3.3) is written in terms of the Fresnel integtrals 

-i 2kR 
i P  0 R O ~  12 e 

P ( w  x , W y  )-- 4 R  I (u 1)I  (v 1) (7.3.7) 

where 

I (u 1 ) - 2 [ C  ( u  1)  - i  S ( u  1 ) ]  (7.3.8) 

The frequency and range dependence are expressed in Equation 7.3.6. 

Evaluations of the HKF integral for infinite limits or for an infinite plane 

interface gives the familiar "image solution" because 

C(c~) = 0.5 and S(c~) = 0.5 (7.3.9a) 

and the product I(u 1 )l(v 1) is 

I(Ul)I(Vl) -- (1 - i ) ( 1  - i )  - - 2 i  (7.3.9b) 

The substitution of Equation 7.3.9b into Equation 7.3.7 gives 

P o  R o  ~ 12 e -i 2k R 
p (0% oo ) -  (7.3.10) 

2 R  

which is the image solution discussed in section 2.6.6. 

The ratio of the reflected pressure from a finite square (w x = Wy) facet to that 

from an infinite plane I P(wx, Wy)l/le(c~, e~)l is shown in Fig. 7.3.2. The 

Fraunhofer (incident plane-wave) region is approximately wx/v/2R < 0.5. In this 

region the relative backscattered pressure is proportional to the area of the facet. 

The Fresnel region is characterized by amplitude oscillations above and below 

unity at approximately wx/v/2R > 0.5. The ratio tends to the constant pressure 

" image"  region of unity at large wx/x/'2R; there the finite facet is large enough to 

give the same reflected pressure as an infinite plane. Note that we have not 

calculated the diffraction at the facet edges; Fig. 7.3.2 is solely due to the 
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Figure 7.3.2 Presssure of a sinusoidal wave reflected from a square facet (w X -Wy)  

relative to pressure from an infinite plane. The sound waves are vertically incident. The 

parameters are u~ = W,./v/2R and v j = w,,/v/2R. In the Fraunhofer region there is 

fractional reflection because the dimensions are less than the first Fresnel zone. In the 

Fresnel region the facet is insonified over several zones, and the reflected pressure 

oscillates above and below the infinite plane value. (From Clay, C. S.; D. Chu; and C. Li, 

"Specular reflection of transient pressures from finite width plane facet," J. Acoust. Soc. 
Am. 94, 2279-86, 1993.) 

in te r ference  effect  when  a spher ical  wave  is incident  on a square  plane facet. 

These  theore t ica l  results  have  been  verif ied by a set of  labora tory  exper iments  

(Clay, Chu,  and Li 1993). 

7.3.2 P E N E T R A B L E  C Y L I N D E R  

In app ly ing  the K i r chhof f  m e t h o d  to pene t rab le  cyl inders  and other three- 

d imens iona l  objects,  it is ins t ruct ive  to sketch  the expec ted  wave  paths. The  
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Figure 7.3.3 Sketches of reflection, transmission, and diffraction mechanisms, a) The 
wave is reflected at the front face of the cylinder, b) The incident wave continues to travel 
to the right. The wave is shown at the edge of the shadow, c) A diffracted wave travels back 
from the edge of the shadow with phase shift 2ka. d) A wave travels through the penetrable 
cylinder and is reflected at the backside with phase shift 4kla, where kl is the wave number 
in the cylinder, e) A wave, the "Franz wave," is diffracted around the cylinder; its phase 
shift is (2 + ~z)ka relative to the front face reflection. When the body is rigid, this wave is 
strong enough to cause observable oscillations in the magnitude of the backscatter as 
shown in Fig. 7.5.5. (From Clay, C. S., "Low-resolution acoustic scattering models: fluid- 
filled cylinders and fish with swim bladders," J. Acoust. Soc. Am. 89, 2168-79, 1991.) 

sketches, (Fig. 7.3.3) describe a plane sound wave normally incident on a 

cylinder. The sequence of sketches shows a) the reflection from the front face; b) 

the transmitted energy outside the shadow; c) a diffracted wave from the shadow 

edge of the insonified region; d) internal reflections; and e) diffracted waves that 

travel around the object. The Kirchhoff integral gives the reflected components, 

(Fig. 7.3.3a and d); it does not give correct values for the diffraction 

components, (Fig. 7.3.3c and d). One needs exact theoretical solutions, or 

experiments, to establish the regions of validity and the accuracy of the 

Kirchhoff integral and the approximations. 

We adapt the Helmholtz-Kirchhoff integral (Equation 7.2.21) to the geometry 

and notation shown in Fig. 7.3.4. For backscatter, both the transmitting and 
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l~n c (f  ) 

Shadow a ~ L 

a) b) 

Z t 

v ~ 

i 

Figure 7.3.4 Geometry for Kirchhoff backscattering calculations for a cylinder. The 
wave number k indicates the direction of the incident plane wave. Only scattered 
components that go back to the receiver are considered. The integral is over the insonified 
area. The shadowed surface is indicated, a) Triangular subareas for numerical evaluations. 
b) Finite-length cylinder perpendicular to incident rays where the increments of area, dS, 
have normals at the angle ~b relative to k. c) Tilted cylinder. 

receiving transducers are at range R. Replace Us by the incident pressure Pinc(f ). 

and use the approximation that the amplitude is constant over the body, to write 

1 10 -~n/2~ 1 [ 0 ik(R+~) 
Pscat(f) -- ~ 4---n Js R12 On (e i .c ( f )e -  ) dS (7,3.11) 

After-taking the normal derivative and rearranging terms, the backscattered 

sound pressure is 

D P i n c ( f  ) e  - i k R  
P scat ( f )  = R 1 O- a R / 20 Z bs (7.3.12) 

where 

_ 1 ~i  C~ 2 i k ( ) d  S 
f~bs - 41r 51~12-ff-n-n ( e (7.3.13) 

The ( is a coordinate at the object (Fig. 7.3.4), and the phase kR is shifted to the 

incident pressure. The frequency dependence of Lbs is implicit. The normal 

derivative operation gives 

- ik ~~ ( e-  2i k ( ) cos(n,k ) dS 
Zbs  - 27c R 1 2  (7.3.14) 

where (n, k) is the angle q between vectors n and k, as shown in Fig. 7.3.4a. The 

product k ' n  --- - k  cos(q) for the upward-traveling wave. 

Numerical evaluations of Equation 7.3.14 replace the integral with the finite 

summation 

ik le 07m ( - 2i k (,n ) COS( Z bs "- 27c E R ) ~ e 7"Ira ) ZIS m (7.3.15) 
m 
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where the subscripts label the parameters for the mth scattering area A S  m. The 

dependence of the reflection coefficient ~Pk.lZ(~m) on  ~m is included for generality, 

although the reflection coefficient at the surface of a gas-filled swimbladder is 

approximately - 1  everywhere. Foote (1985) used numerical evaluations such as 

this to calculate the target strengths of the model swimbladder of a fish 

(Chapter 9). 

7.3.3 F I N I T E  F L U I D  C Y L I N D E R  

The finite fluid cylinder is shown in Fig. 7.3.4b. For a cylinder of geometrical 

length L, the equivalent acoustic backscattering length is, using the Helmholtz- 

Kirchhoff integral, 

ika  L ~  e f /2 -2 i ka (1 -cosq )  ) cosr de  (7.3.16) 
f_a bs (ka  ) -- 27c Jr/2 e 

where we a s s u m e  ~P~12 is a constant, and we explicitly write the dependence on 

frequency in terms of ka for clarity. The integral is over the illuminated region 

-re/2 to +rt/2. This approximation is accurate for gas-filled cylinders and rigid 

cylinders in water. 

Note that when the sound velocities of the body and the water are the same, 

and the two fluids have a density contrast, the reflection coefficient is constant at 

all angles of incidence; then the angle of refraction equals the incident angle, and 

~PL12 is constant. For example, this is an acceptable approximation for fish flesh in 

water because the velocity contrasts are small. 

An evaluation of the Helmholtz-Kirchhoff integral (Equation 7.3.16) is given 

in Haines and Langston (1980), Gaunaurd (1985), and Stanton (1988). The 

integrals are in Gradshteyn and Ryzhik (1980). In the limit of large ka, the 

acoustic backscattering length of the cylinder is 

i x / ~ L R 1 2  eiZ/4e_i2ka for 12kal  ~ 1 (7.3.17) 
L c y I = _ 2 v/- ff 

The magnitude of the backscatter is 

I f--~cyl ] ,~ LR122 V ~  (7.3.18) 

where we have dropped the usual backscatter subscript bs for simplicity. 
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An example of the variation of [Lbs I with ka is shown in Fig. 7.3.5. The 

acoustic scattering length is given relative to the geometrical length, L. 

Sometimes the ratio ILbsl/L is called the reduced scattering length; we prefer 

to call it the relative acoustic backscattering length. 

The figure shows that, for a gas cylinder in water, ka > 1, the Helmholtz- 

Kirchhoff solution agrees with the complete normal-mode wave solution that will 

be developed in section 7.4. 

Tilted Cylinder 

The scattering amplitude for a tilted finite cylinder uses the geometry shown in 

Fig. 7.3.4c. Replace k by k cos g and L by an integral over dx ~. The tilt of the 

cylinder introduces a phase term 2kx' sin Z- Equation 7.3.17 becomes 

L/2 
Lcy I ,~ + iV/ka c~ ZRl2 eirr/4e -i2kac~ e - i 2 k x '  s i n x  dx' (7.3.19) 

2 X/-~ a-L~2 

Integration over x ~ gives 

ix/ka c o s  zL~PLI2 eirr/4 sin A e-i2kac~ 
Lcy I ,~ -+- 

A = kL sin (Z) 

for [ 2kacosx I >2  
(7.3.20) 

7.3.4 L O W - C O N T R A S T  F I N I T E  FLUID C Y L I N D E R  

A ray-path construction for the penetrable, fluid-filled cylinder is shown in Fig. 

7.3.6. In the Kirchhoff approximation, the sound wave is partly reflected from the 

top of the cylinder; the transmitted wave travels through the cylinder and is 

1.6 ~ + + + Helmholtz-Kirchhoff 

0.0 . . . . . . . . . .  

0 2 4 6 8 10 12 14 16 18 20 
ka 

Figure 7.3.5 Relative acoustic backscattering length at normal incidence to a finite gas 
cylinder in water, solved by HK method and normal mode description (section 7.4). The 
reflection coefficient for the water-gas interface is ~1~.12 -'- -0.999. The mode solution is 
the finite cylinder approximation of a gas-filled cylinder. (From Clay, C. S., "Composite 
ray-mode approximations for backscattered sound from gas-filled cylinders and 
swimbladders," J. Acoust. Soc. Am. 92, 2173-80, 1992.) 
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reflected from the bottom. It then passes through the top (Fig. 7.3.6). Details are 

in Stanton, Clay, and Chu (1993) and Clay and Home (1994). 

The Kirchhoff approximation for a low-contrast fluid cylinder is 

f l u i d  .Lcyl = -i L [ (ka COS X ) ] 1 / 2 sinAA ~L01 
2V/Jr (7.3.21) 

>( [ e - i 2kzu _ ~ O l ~ l O  e - i 2kzv+ i 2 k l(Zv- ZL ) +i lltl ] 

where 

2 r c f  P l  c l  - PoCo  
and TOl TlO = 1-9(,02 (7.3.22) 

k 1 - c1 ' I~01 PlCl + PoCo 

The empirical phase term ffl is 

k l z u  (7.3.23) 
~tl = - 2(kl Z u  + 0.4) 

where zu and ZL are the upper and lower surfaces of the cylinder. The density and 

sound speed in water are P0 and c 0, and in the body, P l and Cl; a is the radius as 

viewed from the top, and 7/1 is an empirical phase correction. 

The following parameters are commonly used for relative density and relative 

speed: 

g = P l / P 0  and h = C l / C  0 (7.3.24) 

For low acoustic contrast and near vertical incidence, refraction is negligible, 

and the reflection coefficient is approximately 

(7.3.25) 

Figure 7.3.6 Construction of rays in the Kirchhoff reflection approximation for a low- 
contrast, penetrable fluid cylinder. 
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Ray path 
0.05 g = 1.036 h = 1.028 

r~ 

,q 

-- 0.0 . . . . . .  

0 2 4 6 8 10 
ka 

Figure 7.3.7 Comparison of the calculations of the relative acoustic backscattering 
lengths for a low-contrast fluid cylinder at normal incidence. The ray-path computations 
were made using Equation 7.3.21. The parameters g -- 1.036 and h -- 1.028 approximate 
fish flesh in water. The mode calculations were made using 14 modes of the normal mode 
solution for finite-length cylinders, given in section 7.4.2. 

The result of a computation of the relative acoustic scattering length for a low- 

contrast fluid cylinder is shown in Fig. 7.3.7. The parameters are approximately 

those of fish flesh in water. The sequence of maxima and minima show 

interferences between the frequency-dependent reflections from the top surface 

and the bottom surface of the cylinder. These peaks and troughs of scattered 

pressure are interpreted as changes in the acoustical scattering length. 

This Kirchhoff approximation is compared with the normal mode solution (see 

section 7.4) for the finite cylinder (Stanton et al. 1993). A most remarkable result 

is that the simple sum of the reflections from the top and bottom surfaces in Fig. 

7.3.6 combine to give an excellent approximation to the solution from the 

detailed modal solution. This simple approximation is accurate for g and h in the 

range of 1.1 to 0.9. Larger or smaller values give errors that are greater than 10 

percent. 

7.4 Modal Solutions for a Fluid Cylinder 

In section 7.3 we considered the specular reflections, which dominate many 

scattering situations. To obtain the diffraction contributions to the total scatter, as 

well as the resonances of penetrable bodies, we turn to normal-mode solutions. 

The fluid-filled cylinder and fluid-filled sphere are the simplest of the general 

problems that have been solved by the mode technique, and we will look at the 

magnitude and the directionality of scattering for these cases. Lord Rayleigh 

(1877) introduced the modal description. Faran (1951) gives expressions for 

elastic solid cylinders and spheres. Stanton (1988b) used Faran's expressions for 

numerical calculations. Scattering computations for prolate spheroids are much 

more difficult because the spheroidal functions converge slowly and and require 
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extensive numerical computations (Spence and Granger 1951; Furusawa 1988; 

Feuillade 1996). The extended boundary condition (EBC) technique, or T-matrix 

method, can be used to compute the sound scattered by arbitrary objects 

(Waterman 1965, 1969). 

In the beginning of this chapter we introduced several measures of sound 

scattered by objects: the acoustic scattering length, the differential scattering 

cross section, and the target strength. There are other parameters of scattering. 

For example, we have used the concept of reduced or relative acoustical 

length, (relative to the actual geometrical length) and relative scattering cross 

section (relative to the geometrical cross section). This was done to make 

scattering functions nondimensional and easily comprehended. 

Anderson (1951) uses the terminology "reflectivity factor" for the relative 

reflection amplitude for spheres, and Hickling (1962) describes a function,fc(ka ), 

for cylinders. These types of scattering functions are often called form functions. 

Unfortunately, the theoretical studies of mode studies use two different sign 

conventions. For example, the sign convention that is generally used in normal- 

mode theory has the incident harmonic pressure as Pine = Pine ei(kR-zT~ft) and the 

scattered pressure 

pscat ( t) - -  Pine  ei(kR-2r@t) 
R f-"mode (here D -- 1) (7.4.1) 

A comparison of Equations 7.4.1 and 7.1.2 shows that we have changed 

2n f ( t -  R/c) to ( kR-  2rcft). Either form describes a wave traveling in the +R 

direction. The magnitude is the same, of course. However, the result of this sign 

change is that acoustic scattering lengths in this section will be the complex 

conjugates of the scattering lengths in sections 7.1-7.3. Scattering cross sections 

are not affected by this sign change. 

"7.4.1 INFINITE CYLINDER (OPTIONAL) 

The normal-mode solutions describe the scattering of CW by matching the 

incident wave and the scattered wave at the boundary of the body to reveal that 

only certain "modes"  can occur. The mode desciption is similar to the 

characterization of longitudinal standing waves that exist in organ pipes. We now 

derive the equations needed to obtain scattering amplitudes or acoustic scattering 

lengths using the normal mode solutions for the cylinder (Stanton 1988). The 

geometry of the scattering from a cylinder is shown in Figs. 2.7.1 and 7.3.4b. 

*Background material 
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The normal-mode solutions for the scattering lengths from an infinite-length 

cylinder of radius a are " e x a c t "  over a wide range of ka, where k is the wave 

number in water. Assume an external medium described by P0 and Co, and a fluid 

cylinder of density and sound speed P l and c l. The wave number inside the 

cylinder is k c = k l / h ,  where h = c l / c  o. A plane wave, propagating in the +z  

direction, is incident on the finite cylinder, which is aligned with the x axis (Fig. 

2.7.1b). The incident plane wave can be reexpressed as the sum of cylindrical 

waves (i.e., solutions of the wave equation in cylindrical coordinates) valid at the 

origin, with radial and azimuthal dependence (Morse 1981, sec. 29): 

O(3  

Pinc(t' z) -- Pi"' ei(k:-2~ft) = Pince-i2Vt Z e'mim cos mdpJm(kr) 

o 

(7.4.2) 

where g m is the Neumann number ( e 0 -  1 and ~3 m - - 2  for m -  1 ,2 , . . . ) .  The 

cylinder interior acoustic pressure is 

o o  

Pint (t, r ) = P inc e -i 2aft Z A m cos m C J  m (k  c r ) (7.4.3) 

o 

The sound pressure scattered by the infinite cylinder is 

o o  

Pscat (t, R ) = e - i 2nf t P inc Z b m (i )m cos mqSHm(1)(kr) 

o 

(7.4.4) 

where the combination bin(i) m describes the anticipated unknown amplitude and 

phase, and where H(,I ) is the Hankel function. Using U(t, r) for the vector radial 

particle velocity, Newton's  law (Equation 2.7.4) is 

OU ( t , r )  
(7.4.5) V p ( t , r )  - --PA Ot 

For time dependence e -i2gft, this is 

V p ( t , r )  - - i 2 7 t f P A U ( t , r  ) - - i k P A C U ( t , r  ) (7.4.6) 

The component of particle velocity along r is 

- i  Op(t, r) 
u, (t, r) -- ~ - -  (7.4.7) 

PACk Or 
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The boundary conditions are: the pressures are equal on each side of the interface; 

the normal components of particle velocities are equal on each side the interface. 

These give solutions for the amplitudes of the interior modes, Am, and the 

amplitudes of the scattered modes, bm, in the equation: 

(X3 

Pscat(t' r) -- e-i2zftPinc E bm(i)mH(ml) (kr) COS m~b 
0 

(7.4.8a) 

where 

H(m~)(kr) -- Jm (kr) + iN m (kr) (7.4.8b) 

and 

-E 
m 

b m = ( 7 . 4 . 9 )  

l + i C  m 

1 [C m (i ) m Jm (ka) + BmI4(m 1) (ka)] (7.4.10) 
Am=Jm(kca  ) 

J m (kc a ) N m ( k a ) -  gh N m ( k a )  J m (kc a ) 
C m - , , (7.4.11) 

J m (kc a ) J m ( ka ) -  gh J m (ka) Jm (kc a ) 

The constants Am, bm, and Cm result from the solution of the boundary conditions. 

The functions Jm(x) and Nm(x) are cylindrical Bessel functions, and J ~m (x) and 

/Vim (X) are their derivatives. Note: Abramowitz and Stegun use the notation Ym(x) 

for the Neumann function Nm(x). From Abramowitz and Stegun (1965, Equation 

9.2.3), the expansion of the Hankel function for large kr is 

H(1) (kr ) = (  2 ) 1/2 )m i(kr-rc/4) 
m rC kr (- i e (7.4.12) 

The substitution of Equation 7.4.12 into Equation 7.4.8a gives the far-field 

expression for the pressure scattered by an infinite cylinder: 

0<3 
/ 

P scat (t, r )= Pinc e i ( k r - 2 r c f t ) \ /  
2 --i ~ ] 4  

Z e b m cosm~ (7.4.13) 
V 

0 

Stanton (1992) gives the solution in terms of the form function F for the infinite 

cylinder (c~)" 

/-a- v(~ ) 
Pscat(t~ r) ,.~ Pincei(kr-21rft) ~]  'mo e 

v 

(7.4.14) 
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where 

(oo) 2 e  -iJr 14 
F = z_, b m cosm~ (7.4.15) 

mode-- v/ rtka m = 0  

The scattering expressions (Equations 7.4.13 and 7.4.14) are equivalent. 

Sometimes definitions vary and comparisons of expressions such as Equations 

7.4.13 through 7.4.15 determine the definition of the form function used by 

different authors (see Neubauer 1986). 

7.4.2 FINITE CYLINDER 

Stanton (1988a) used the far-field normal-mode solution (Equation 7.4.13) as the 

basis of an approximation for finite-length cylinders. As sketched in Fig. 7.4.1a, 

the finite cylinder has an outward volume flow per unit length of qr(m3/s)/m. 

For an incremental length of cylinder, dx, the volume flow is qr dx. In 

Stanton's larger-range approximation, the toroidal increment of volume flow is 

equivalent to a monopole source on the x-axis. The incremental sound pressure 

owing to the incremental source of volume flow of a pulsating sphere is discussed 

in section 4.1.1. For the source flow, qr dx, the increment of pressure at range R is 

Figure 7.4.1 Geometry for finite cylinder calculation, a) Radiation from an increment of 
radial volume flow per unit length, qr, for an annular ring of width dx at the cylinder 
surface, b) Cylinder tilted at angle g relative to the normal of the incident wave. 
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In order to determine the modal constants of Equation 7.4.8a in terms of the 

flow qr, we integrate dp(t,R) over infinite x. This gives the sound pressure owing 

to an infinite cylindrical source at range r normal to the cylinder, 

p~  (t, r) -- --ikPAC I ~ ei(kR(x)-2nft) 
4--------~ qr _~ R(x) dx (7.4.17a) 

The integral is in Gradshteyn and Ryzhik (1980, equations 3.876.1 and 2), 

.oo eikR 

- ~  --~--dx = n[iJo(kr ) - No(kr)] - inH~ 1) (kr) (7.4.17b) 

Thus, in terms of qr, the sound pressure due to a cylindrical source is 

p ~  (t, r) -- kPACqrH~l) (kr)e -i2nft 
4 

Using the 0th order Hankel func t ion ,  n ~  1) -- (V/2/(nkr) e i(kr-n/4) , 

(7.4.18a) 

k P A C ( 2 )  1/2 
ei (kr-n /4)e- i2nf t  

P~c 4 qr ~ r  (7.4.18b) 

At a large range perpendicular to the cylinder, we equate Pscat(t,r) from 

Equation 7.4.13 and p~( t , r )  from Equation 7.4.18b and get 

O0 

Pine ~ bm cos mqb kPACqr 
o 4 

(7.4.19a) 

Therefore, the apparent volume flow per unit length, qr, is given in terms 

of the amplitudes and phases of modes, m, and the incident pressure amplitude, 

Pinc, 

4P inc e~ 
qr = kp a c Z bm cos m~b (7.4.19b) 

0 

Tilted Cylinder 

Now consider a finite-length tilted cylinder as sketched in Fig. 7.4.1b. Assume 

the length L is smaller than the first Fresnel or phase zone and in the Fraunhofer 

region (Fig. 7.3.2). Then, R(x) in Equation 7.4.17a is 

R(x) ~ r § 2x sin Z (7.4.20a) 
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and the backscattered sound pressure from a cylinder of length L is 

_ikPAC ei(kr-2nft) fL /2  
PL(t, R) ~ q r ~  e i2kxsinz dx (7.4.20b) 

4n r a-L~2 

There is no flow along the x-axis in this approximation. Sound scattering from 

the ends is ignored. The pressure is measured at angle Z relative to the normal to 

the axis of the cylinder, where Z is limited to values near 0 ~ Integration gives 

pL( t ,R  ) ~ --ikPAC e i(kr-2rtft) LsinA 
4re qr r A ' A kL sin Z (7.4.21) 

The substitution of qr (Equation 7.4.19b) gives the pressure backscattered by a 

tilted, finite cylinder, 

~.lD in c e i ( kR - 2aft ) sinA 
PL (t ,  R ) = -  i x R  A ~ b m COS (m r ) (7.4.22) 

m = 0  

The factor - i  describes the phase of the scattered pressure relative to the phase of 

the pressure owing to the infinite line of sources (Equation 7.4.17a). A 

comparison of the scattered pressures in Equations 7.4.13 and 7.4.22 gives the 

acoustic scattering length in terms of the modal contributions, 

L bs = -  i L sinA 
Jr A ~ b m COS (m q~ ) (7.4.23) 

m=0 

The mode solution, Equation 7.4.23, gives the apparent acoustic length when 

viewed in a plane essentially perpendicular to the finite cylinder. A perfect 

cylinder with no losses has been assumed. Realistically there are losses, and a 

so-called cylindrical body may have bumps and deformations that cause 

destructive wave interferences at its surface. To take account of these 

possibilities, an empirical mode interference, loss factor, exp(-6m), is sometimes 

assumed. The mode summation then becomes the finite limit 

M-1 
L c .  =- i  L sinA -a 

A Z b m cos  (m q~ ) e m (7.4.24) Ub 
m=0  

where M is the number of modes being summed. The mode-loss coefficients can 

be determined empirically by comparison with experiment. The introduction of 

mode losses also lowers the resolution of the mode calculation (Clay 1991). 
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7.4.3 COMPARISON OF KIRCHHOFF AND MODAL SOLUTIONS 

Gas filled Cylinder 

The gas-filled cylinder is assumed to have the same volume at any depth, 

and the pressure inside is equal to the pressure outside. This condition 

describes the swimbladders of some marine animals. By using the gas law, 

PV : nRT, and adding gas to keep the volume constant, the density in the 

swimbladder Pl is 

Pl'oPA kg/m 3 (7.4.25a) 
Pl =1 .01  • 105 

and 

PA = 1.01 X 105 + 9.8PwZ (7.4.25b) 

where Pl,0 -- 1.29 kg/m 3 is the gas density at z - 0. The assumed sound speed in 

the gas cylinder is c 1 ~ 345 m/s. 

Examples of the dependence of the acoustic scattering lengths on the number 

of modes are shown in Fig. 7.4.2. As the number of modes is increased, the mode 

summation tends to the Kirchhoff solution (section 7.3.3 and Fig. 7.3.5). This 

figure also shows that the number of modes needed depends on the range of ka 

that is of interest. That number is approximately ka + 2. The cylindrical radial 

breathing modes for a gas envelope in water have expansions and contractions 

perpendicular to the axis of the cylinder. Fig. 7.4.3 shows the relative 

backscattering length calculated from Equation 7.4.24 for cylindrical radial 

pulsation mode, m -- 0. 

7.4.4 EQUIVALENT SPHERE FOR SMALL FLUID BODIES 

The scattering of sound by a body that is small relative to the wavelength is 

somewhat insensitive to the shape because details of the shape are not resolved. 

Under these conditions, spheroidal models and finite cylindrical models can 

replace a detailed, complicated body. 

Consider various simple body shapes. The volumes of the cylinder, sphere, 

and prolate spheroid are, respectively, 

volcy 1 - ~Za2c L (7.4.26) 

volsp h -- (4~Za~s)/3 (7.4.27) 

VOlprl sph -- (4~zaZp~azps)/3 (7.4.28) 
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Figure 7.4.2 Comparison of the relative acoustic backscattering lengths Lhs/L ] given 

by the sum of modal solutions and the HK approximation for a gas cylinder of length L in 

water. The M = 1 curve is the 0th mode. The six graphs show that agreement with HK 

requires a sufficient number of modes in the sum. (From Clay, C. S., "Low-resolution 

acoustic scattering models: fluid-filled cylinders and fish with swim bladders," J. Acoust. 

Soc. Am. 89, 2168-79 ,  1991.) 
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Figure 7.4.3 Relative backscattering length in a plane perpendicular to the axis of a gas- 
filled cylinder of length L for the lowest frequency cylindrical radial breathing mode. The 
frequency and breadth of the modal response increase with depth, z, as shown. Viscous and 
thermal damping have not been included. 

where aec is the radius of the equivalent cylinder; aes is the radius of the 

equivalent sphere; and ales and aaps are the semi-minor and semi-major axes of 

the prolate spheroid, respectively. For equal volumes, the radius of the equivalent 

sphere for the short cylinder is 

aes _ (0.75a2cL)1/3 (7.4.29) 

and for the prolate spheroid it is 

aes (a2psa2ps)1/3 (7.4.30) 

These approximations are commonly used to describe scattering of sound by 

zooplankton. 

More accurate modeling must take into account the effects of the animal's 

curvature. 

7.5 Scattering from a Sphere 

The marine acoustician is interested in spheres because scattering from these 

simple models has been well studied, and the results of this research are 

applicable to many forms of marine life. For example, an acoustically small and 

compact nonspherical body whose dimensions are much less than those of the 

sound wavelength scatters in about the same way as a sphere of the same volume 

and same average physical characteristics. 
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Scattering from a sphere is an ideal vehicle to demonstrate the contributions 

by the three components of scatter from a fluid body: reflection, diffraction, and 

transmission. In section 7.5.1 we use the rigid sphere to provide one reference 

point, the reflection component, which dominates in "geometrical scatter" 

(ka >> 1). In section 7.5.2 we introduce "Rayleigh scatter" (ka ,~ 1), in which the 

wave diffraction around the body dominates. Here the ratio of the backscatter 

cross section to the geometrical cross section is proportional to the very small 

quantity (ka) 4. We then go on to the complete modal wave solution for scatter 

from a sphere (section 7.5.3), valid for all values of ka. In this solution all three 

components of scatter are subsumed in a description that yields the strengths of 

each mode of an infinite series. In the modal description, the infinite series 

describes the full range of ka, of which the first two modes are sufficient for the 

low-frequency range (ka ~ I). 

7.5.1 GEOMETRICAL SCATTER FROM A RIGID SPHERE (ka >> 1) 

The behavior for ka ~> 1 is described as "geometrical ,"  Kirchhoff, or 

"specular"  (mirrorlike) scatter. In the Kirchhoff approximation, a plane wave 

reflects from an area as if the local, curved surface is a plane. The situation can be 

understood by using rays as illustrated in Fig 7.5.1. In the ray description, scatter 

consists of a spray of reflected rays that follow the Kirchhoff reflection 

approximation. That is, each reflected ray obeys the simple law of reflection, in 

which each ray is reflected with its angle of reflection equal to its angle of 

incidence, as if the reflection point is a plane that is tangent to the sphere at that 

point. Diffraction effects, mainly from the edge of the shadow and behind the 

sphere, are ignored in this approximation. Those effects will be displayed when 

we give the normal-mode solution. 

Figure 7.5.1 Ray acoustics for geometrical scatter from a fixed, rigid sphere at high 
frequencies, ka ~> 1. 
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We now calculate the scattering from a fixed, rigid, perfectly reflecting sphere 

at very high frequencies, ka >> 1. The incident sound is a plane wave of incident 

intensity Ii~c. There is no energy absorption in the medium. No energy penetrates 

into the sphere. 

First, calculate the incoming power at angle Oi, for ring increments dOi,  o n  the 

sphere surface (Fig. 7.5.1). 

The surface area increment is 

d S  i = 2 rc (a s in  0 i ) a  dO i 

The component perpendicular to the surface is 

dS_t - = d S  i c o s  0 i 

The input power in the ring is 

Therefore 

d l ] i n  c - -  1in c dS_t - = l i n c ( 2 ~ a  2 s i n  0 i c o s  0 i dOi )  

(7.5.1) 

(7.5.2) 

(7.5.3a) 

dHin c -- Iinc~Za 2 sin (20i) dO i (7.5.3b) 

Next calculate the scattered power. The rays that are within angular increment 

dO i a t  angle 0 i are scattered within increment dO s = 2dO i at angle 0 s - -  2 0  i. The 

geome t r i ca l l y  sca t t e red  power, measured at range R, is 

d H g  s = Ig s 2 ~  ( R  sin 0 s) R dO s (7.5.4a) 

o r  

d H g  s -- Ig s 2Jr R 2 (sin 2 0  i) ( 2 d O  i) 

Assume that there is no loss of power, d//in c -- dl-lg s. Therefore 

(7.5.4b) 

a 2 a 
I gs = I inc 4R 2 or Pgs  = Pinc 2 R  (7.5.5a) 

or, in terms of the scattering length, 

Pgs_P ILgsl where [Lgsl-a/2 
lnc R 

(7.5.5b) 

o r  

I Lgs I/(Tra2) 1/2 - 1/(2re 1/2) - 0.28 (7.5.5c) 

(See Fig. 7.5.4.) 
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In this geometrical scatter approximation, the derivation shows that scattered 

power is not a function of Oi. All differential geometrical cross sections, including 

the backscattering cross section, are equal. A high-frequency acoustical wave 

gets a "wal l -eyed" view of the sphere. From Equation 7.1.5, assuming no 

attenuation in the medium, 

Aag  s = l Lgs l 2 - ( a  2/4) for ka >> 1 (7.5.6) 

and the total geometrical scattering cross section is 

Crg s = 4rcAo'g s = rca 2 - A for ka ~ 1 (7.5.7) 

where A is the cross-sectional area. 

Some of the literature calls ag s the "total scattering cross section." However, 

the true total scattering cross section is larger than ag s because diffractions must 

be included, even for ka ~ 1. 

The fact that Lg s and ag s are approximately independent of frequency for 

ka  > 10 has important practical applications. This independence has been 

exploited by acousticians for many decades in laboratory calibrations of sonars, 

because the high-frequency backscattered sound pressure is almost a delayed 

replica of the transmitted signal or message. A detailed analysis of the scatter of 

fin impulse wavefront by a rigid sphere is in Sun, Didier, and Denis (1991). 

The ray treatment is deceptively simple. In fact, it is an incomplete description 

of the problem because it ignores the complicated interferences between direct 

and scattered sound in the shadow region in the hemisphere behind the object. A 

complete wave solution (e.g., see section 7.4) shows that the ray solution is 

accurate for 0 in the backscatter direction from zero to 90 ~ But it does not 

describe the situation at larger values of 0, where waves are diffracted into the 

shadow and penumbra, (Fig. 7.1.1). 

Brillouin (1949) and Born and Wolf (1965, sec. 13.5.3) give calculations of the 

ex t inc t i on  cross section for electromagnetic waves incident on a nondissipative 

object in a dielectric. For an object having a cross sectional area A, they find that 

the extinction cross section is 

O" e : 2 A ,  ka >~> 1 (7.5.8) 

Born and Wolf point out that this unexpected, somewhat paradoxical result is due 

to the nature of the fields at the edge of the shadow. Sinclair (1947) describes 

optical measurements of the scattering of light waves from spheres (ka ~ 180), 

which verify the extinction cross section (Equation 7.5.8). 
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Similarly, our numerical calculations using mode descriptions of scattering 

(Fig. 7.5.7) show that the scattering cross section of a large, acoustically opaque 

sphere approaches twice its geometrical cross section area (2rca 2) as ka increases. 

A simple interpretation is that the geometrically scattered component of the 

scattering cross section for a sphere ~ca 2 (Equation 7.5.7) is supplemented by an 

effective diffraction scattering cross section, also of magnitude g a  2. The 

electromagnetic description of the high-frequency extinction cross section 

includes the power loss due to interference of the scattered and the incident waves 

in the region 90 ~ < 0 < 180 ~ Therefore, the extinction cross section at large ka 

tends to 2~za 2. 

7.5.2 RAYLEIGH SCATTER FROM A SPHERE (ka ~. 1) 

When the sound wavelength is very much greater than the sphere radius, the 

scatter is due solely to diffraction. There are two simple conditions that then 

cause scatter. (1) If the sphere bulk elasticity E 1 (= compressibility 1 ) is less than 

that of the water, Eo, the incident condensations and rarefactions compress and 

expand the body, and a spherical wave is reradiated. This monopole reradiation 

occurs with opposite phase if E 1 > E 0. (2) If the sphere density, Pl, is much 

greater than that of the medium, P0, the body's inertia will cause it to lag behind 

as the plane wave swishes back and forth. The motion is equivalent to the water 

being at rest and the body being in oscillation. This action generates dipole 

reradiation (section 4.1.3). When P l < P0, the effect is the same but the phase is 

reversed. In general, when P l ~ P0, the scattered pressure is proportional to cos 0, 

where 0 is the angle between the scattered direction and the incident direction. 

The simplest sphere model is a small, fixed, incompressible sphere that has no 

waves in its interior. There will be monopole scatter because the body is 

incompressible. There will also be dipole scatter because it is fixed. To illustrate 

this, we use a simple derivation that shows the essential physical concepts. The 

same result can be derived formally by using the first two terms, which are the 

largest terms, of the mode solution for ka ~ 1. 

An incident plane wave moves to the left in the z direction, Fig. 7.5.2. The 

fixed, rigid sphere scatters sound to the receiver at range R and angle 0. The 

sphere is so small relative to 2 that, at any instant, its entire surface is exposed to 

the same incident acoustic pressure at that time. The sound pressure on the sphere 

P e i c ~  is the sum of the incident plane wave pressure of amplitude Pinc and the 

scattered pressure wave of amplitude Pscat: 

Pe i~~ - -  Pinc ei(o~t+kz) + Pscat ei~ (7.5.9a) 
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where 

z = R cos 0 (7.5.9b) 

The common time dependence e i~ is dropped, and Equation 7.5.9a becomes 

p = Pince i kR  cos0 + Pscat  (7.5.10) 

The boundary condition on the surface of a rigid sphere is that the normal 

components of displacement and particle velocity are zero at all times. From 

Equation 2.7.43, the normal (radial) component of particle velocity is related to 

the pressure by 

UR = ikPA C - ~  (7.5.11) 

We use Equation 7.5.10 to find the velocity relation at R = a, where u R = 0, 

~)P i k a cos0 O e s c a t  
OR ] R - a = i k P inc cos0  e + OR - 0 (7.5.12) 

The gradient of the scattered component is 

~ e s c a t  _ i k a COS 0 
-~ ] R = a - - i  k Pinc c o s  19 e (7.5.13) 

Therefore, from Equation 7.5.11, the radial component of the scattered particle 

velocity at R = a is 

Pine  
U s c a t ] R  - a - cos 0 e ikac~ (7.5.14) 

PA c 

Expansion of the exponential for small ka gives 

e i n c  (cos 0 + ika cos 2 0) at R a (7.5.15) Usca t ~ ~ m 
PA c 

Equation 7.5.15 gives the radially scattered particle velocity that is necessary 

to make the total fluid particle velocity equal to zero on the sphere. We will show 

that this scattered particle velocity is equivalent to radiation from a source 

composed of a monopole and a dipole. 
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Monopole Component 

To calculate the equivalent monopole rate of volume flow, Wm, (m3/s), we 

integrate Uscat over the surface of the sphere, 

(7 m - -  Uscat dA -- 2zca 2 Uscat sin 0 dO (7.5.16) 

The integral over the first term of Equation 7.5.15 is zero. The integral over the 

second term gives the monopole flow through the surface that surrounds the 

sphere, 

ika 4~za 2 
(/m = - - P i n e  (7.5.17) 

p a  c 3 

From Equation 4.1.4, the monopole sound pressure at range R is given in terms 

of its volume flow, 

ikPA C(Tm e -ik(R-a) (7.5.18) 
Pm = - 4rcR(1 + ika) 

Using Equation 7.5.17, at large range kR ~ 1 ~ ka, the pressure due to the 

monopole is 

(k a ) 2a P inc - i k R  
P m = 3 R e (7.5.19) 

Dipole Component 

To calculate the acoustic dipole, notice that the first term in Equation 7.5.15 is 

equivalent to alternating flow in the z direction (because of the time factor that we 

have suppressed). This dipole flow is obtained by integrating over the sphere: 

2rCPinc a2 fo -- COS 0 sin 0 dO -- rCPinca2 
PA c J /2 PA c 

(7.5.20) 

Using Equation 7.5.20 in Equation 4.1.4, the long-range dipole solution 

(Equation 4.1.10) has the dipole axis 1 -- 2a, so that the dipole pressure is 

a Pinc e-ikR 
Pd = (ka)2~ cos0 R (7.5.21) 
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This value of Pd also follows from the exact modal solution that we consider in 

section 7.5.3, in which case modes 0 and 1 correspond to the monopole and dipole 

terms, respectively. 

S c a t t e r e d  P r e s s u r e  

The scattered pressure at large R is the sum of the monopole and dipole 

components of pressure, 

Pscat Pm+Pd [ 2 ( 7 ) 2 ( 3  )21 Pince-ikR --  - 1 + ~ cos 0 R (7.5.22) 

The low-frequency (small-body) polar radiation pattern is shown in Fig. 7.5.2. 

The scattering length and differential scattering cross section for the small, 
p 2 2 

fixed, rigid sphere are calculated from (scat)/(Pinc) , as in Equation 7.1.5, and 

are extrapolated back to R -- 1 m,  

,L[ a (k~)2 ( 3 ) 
: 1 + ~ cos 0 (7.5.23a) 

and 

Atrs(f,O) (ka )4 (  3 )2 - 1 + cos0 a 2 
9 

(7.5.23b) 

Although the analytical derivation above was for ka ,~ 1, the mode solution 

for a large range of ka show that Equations 7.5.23a and 7.5.23b are useful for ka 
as large as 0.5 (see Fig. 7.5.4). Backscattering is obtained by setting 0 - 0 ~ The 

results are 

5(ka)2 (7.5.24a) 
ILhsl--a 6 

0 0.005 
LL (0)1/ sqr(na2) 

Incident wave 

Figure 7.5.2 Polar scattering pattern for a fixed, rigid sphere, at ka = 0.1. The reference 
length is (Tta2) 1/2. 
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and 

= a 2 25(ka)4 (ka ,~ 1) (7.5.24b) 
O'bs 36 

The relative scattering cross section, obtained by division by rca 2, is 

proportional to (ka) 4. This dependence characterizes what is widely known in 

optics and acoustics as "Rayleigh scatter." The Rayleigh region f o r  scattering 

lengths has a (ka) 2 dependence. In optics, it is the intensities and cross sections 

that are directly measured. In acoustics, pressures and scattering lengths are 

directly measured. 

The acoustical scattering cross section in Rayleigh scatter is very much 

smaller than the geometrical cross section because the sound waves bend around, 

and are hardly affected by, acoustically small nonresonant bodies. Ocean waves 

diffract around small rocks, and very-low-frequency/long-wavelength swell 

waves diffract around small islands, in similar ways. 

When the small sphere is an elastic fluid, the Rayleigh scatter region remains. 

But then the scattering depends also on the relative elasticity and the relative 

density, compared with the water medium surrounding it. This was first 

demonstrated by Lord Rayleigh (1896, sec. 335), who found that for a fluid, 

elastic sphere, 

Aas ( f ,  O) - (ka) 4 1 e 3e 1 

where 

2 

g -  1 cos 0 a 2 for ka ,~ 1 (7.5.25a) 
+ 2 g + l  

k = 2rc/2 = wave number in the surrounding medium 

g = P l / P o  = ratio of density of sphere to that of the medium 

h = c 1/c o = ratio of sound speed in sphere to that in the medium 

e = E1/Eo = ratio of elasticity of sphere to that of the medium 

C 2 --- E / p  

e = gh 2 

0 -- angle between incident and scatter directions 

(7.5.25b) 

(7.5.25c) 

(7.5.25d) 

(7.5.25e) 

(7.5.250 

(7.5.25g) 

(7.5.25h) 

The backscattering cross section for a small, fluid sphere follows by setting 

0 -- 0 ~ in Equation 7.5.25a. 

The relative magnitude of the monopole component of the polar scattering 

pattern depends on the first term in the brackets of Equation 7.5.25; the 

magnitude of the dipole component depends on the second term. Most bodies in 
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the sea have values of e and g which are close to unity. On the other hand, for a 

gas bubble, e ~ 1 and g ~ 1. In that case, the scatter is omnidirectional because 

the elasticity term dominates. 

Highly compressible bodies such as bubbles are capable of resonating in the 

ka ~ 1 region. Resonant bubbles produce scattering cross sections several orders 

of magnitude greater than for a rigid sphere of the same size. Resonant bubbles 

are considered in Chapter 8. 

The total scattering cross section for the small fluid sphere is obtained by 

integrating Equation 7.5.25a over all angles 0, as in Equation 7.1.10: 

a s ( f )  = 7ca 2 A a , dr2 

(7.5.26) 

[ ( e - 1 )  2 l ( g - 1 ) 2 1  k a 4 . 1  
= 47ta2 (ka)4 3e + 3 2g + 1 

Light follows essentially the same backscattering laws as sound. One big 

difference is that the wavelength of visible light is of the order 5"10 -5 cm. 

Therefore, almost all scattering bodies in the sea, even the everpresent ocean 

"snow,"  have optical cross sections equal to their geometrical cross sections. 

However, the same particles are very much smaller than the wavelength of 

sounds in the sea (almost always 1 cm or more). These bodies are therefore in the 

Rayleigh region, where they scatter sound very weakly. This is the major reason 

why the sea is turbid for light but transparent to sound. 

*7.5.3 A X I A L L Y  S Y M M E T R I C  S P H E R I C A L  M O D E  S O L U T I O N S  

(OPTIONAL)  

From the previous two sections, valuable approximations are that Rayleigh 

backscatter operates for/ca ~ 1, and geometrical backscatter operates for ka >> 1. 

This means that a body acts as a high-pass backscattering filter with a cutoff at 

ka ~ 1. This simple generalizing concept, proposed by Johnson (1977) and 

extended by Stanton (1989), is often used to approximate the rigid body 

backscatter shown in Figs. 7.5.4 and 7.5.5. But these simple behaviors are special 

cases of the general solution that is given by the modal description for a fluid 

sphere, which we now consider. We follow Anderson (1950) and use his 

nomenclature with minor changes. 

The external fluid medium has the properties c o and P0. The fluid sphere of 

radius a has the properties C l and P l. As shown in Fig. 7.5.3, the incident plane 

*Background material 
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Figure 7.5.3 Scattering geometry for sound incident at a sphere. 

wave is traveling in the - z  direction and has the amplitude Pinc" The wave has 

the time dependence e -i~t and the wave number k. The scattering angle 0 is 

measured from the z-axis. Because of symmetry around the z-axis, there is no 

dependence on the azimuthal angle ~b. The amplitude of the pressure at a large 

distance from the sphere is to be determined by solutions of the spherical wave 

equation with proper boundary conditions. 

The axially symmetric solutions of the spherical wave equation are the axially 

symmetric spherical harmonics, which are 

where 

Pm(#)[jm(kR) -+- inm(kR)] (7.5.27a) 

and the components with simple cos 0 dependence, 

Jl ( k R )  _ ~(,kR~sin _ ~(,kR~cos and n 1 (kR) -- _ _ ~(,kR~sin 
(kR) kn 

(7.5.30) 

Pm(#) --Legendre function, where # -  cos0, and (7.5.27b) 

Jm (kR) -- spherical Bessel function, (7.5.27c) 

nm(kR ) = spherical Neumann function, (7.5.27d) 

hm(kg ) - - jm(kR)  + inm(kg ) -- spherical Hankel function. (7.5.28) 

The notation Ym(kR) is sometimes used for the Neumann function, nm(kR ). 

The first two r-dependent spherical wave functions are components with no 0 

dependence, 

J 0 ( k R )  = sin ( k r )  and n ( k R )  = cos ( k R )  (7.5.29) 
kR 0 - kR  
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The derivatives at R - a are 

fo(ka) - -J l  (ka) and n~o(ka) - - n l  (ka) (7.5.31a) 

(See Abramowitz and Stegun 1965, Equations 10.1.11 and 10.1.12). The 

recursion formulas for generating the higher orders are 

2 m +  1 
fm + 1 (ka ) = k-----~ f m (ka ) - f m-1 (ka ) (7.5.31b) 

where fm(ka) stands for any of the spherical Bessel functions. Abramowitz and 

Stegun also have graphs and tables of values. The Legendre functions, Pm, are  

also given (Abramowitz and Stegun 1965, Equation 8.4.1). For example, the first 

two Legendre polynomials are 

Po(/~) = 1 (7.5.32a) 

and 

P l (/.t) : / . t  - -  c o s  0 (7.5.32b) 

Other Legendre polynomials can be found by using the recursion formula 

(Abramowitz and Stegun 1964, Equation 8.5.3), 

(m +1) Pm + 1 (b t ) = (2m + 1 )//Pm (11)- m Pm-1 (/1) (7.5.32c) 

where the superscript 0 in Abramowitz and Stegun is not needed here. 

The incident plane acoustic wave, expressed as the sum of the spherical 

harmonics, is in Morse (1974): 

CO 

Pinc -- Pinc ~--~(-i)m( 2m + 1)Pm(~)jm(kR) e-i~t (7.5.33) 
o 

Inside the sphere, R _< a, the coefficient of the Neumann function in Equation 

7.5.27, is set equal to zero to avoid an infinity at R - 0. There remains the interior 

pressure 

OO 

Pinc -- Y ~  BmPm(~)jm(klR) e-i~t (7.5.34) 
o 

where kl is the wave number inside the sphere. The scattered pressure is 

o o  

Pscat = ~ A m P m (J.l ) [ j  m ( k R  ) + i n m ( k R  ) ] e - i  rot (7.5.35) 

0 
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The boundary conditions are: pressures are equal on each side of the interface 

at R = a; the normal components of the particle velocities are equal on each side 

of the interface. The particle velocity for spherical coordinates is 

-i ~p 
u R - (7.5.36) 

p c ~ (kR  ) 

Application of the boundary conditions gives two sets of equations m one set for 

the equality of pressures and one for the equality of the normal components of the 

particle velocity. Since the modes are orthogonal, individual modes can be 

equated to give simultaneous equations for the coefficients Am and Bm. The 

solution and substitutions give 

,m(2m + 1) 
A m = - Pine (- i ) i + i-C- m (7.5.37) 

where 

C m = fm(k ,a)nm(ka)  - ghjm(kla)n~m(ka) 

- j~ (k la ) jm(ka  ) - ghjm(kla) fm(ka ) 

__ Pl h - -  C1 and k l _  k 
m 

g Po Co h 

(7.5.38) 

Also, j ~m(kR) - -O jm(kR) /O(kR  ), where, from Abramowitz and Stegun (1965, 

Equation 10.1.20), 

m m + l  
Sm't (kR) -- ~Jm-12m + 1 (kR) - 2m + 1 Jm+l (kR) (7.5.39a) 

and 

m m + l  
' (kR) 2m § 1 2m + 1 rtm+l n m - ~ n m _  1 (kR) - (kR) (7.5.39b) 

The general solution for the axially symmetric scattered pressure wave is 

(2m + 1)[jm(ke ) § inm(ke)]e_iOgt 
Pscat -- -Pine Z ( - i ) m e m  (~) 1 + iC m 

0 

(7.5.40) 

At large kR, the spherical functions can be replaced by simpler expressions 

(Morse 1981, p. 317): 

1 ( m +  1)re 
for kR  >> 1, j m (kR ) ~ - - ~  cos [ kR  - 2 ] ( 7 . 5 . 4 1 a )  
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and 

1 
for kR >> 1, n m (kR ) ---> - - ~  sin [ kR - 

(m+ 1)Jr 
] (7.5.41b) 

The sum of the Bessel function and the Neumann function is called a Hankel 

function. See Equation 7.5.28. The following Hankel function, combined with the 

dependence on time e -i~ descibes a wave that propagates in the direction of 

increasing R. To insert into Equation 7.5.40, form 

( - i )m[jm(ke)  + inm(ke)] - -  ( - - i )mei[kR-(m+l)zt /2]  --  --i(--1)meikR (7.5.42) 
kR kR 

The scattered pressure at large range is 

o o  

i i (kR-  tot ) )m (2m + 1) 
Pscat = Pinc-~--~ e s  P m ( ' U ) l  + i C--------~ 

o 

(7.5.43) 

This is now expessed in terms of the acoustic scattering length, L, 

1 i(kR-tot) 
P scat = Pinc --~ e L (7.5.44) 

where 

M-1 
i a )m (2m + 1) 

.L = k a  ~ (- 1 P m ( ' / t ) l  +iC-------~m 
m =0 

(7.5.45) 

Here, M is the number of modes needed to obtain acceptable results for the 

particular problem. Numerical studies have shown that when M > ka + 3, the 

sum is effectively the same as for an infinite number of modes. 

The backscattering cross section is 

a ~ h s -  I&sl 2 (7.5.46) 

The backscattering cross section is often displayed as the ratio relative to the 

actual cross sectional area, 

A abs / ( rca 2) (7.5.47) 

7.5.4 TOTAL SCATTERING CROSS S E C T I O N  

In experimental work, some of the scattered sound may interfere with the incident 

sound so that a raw measurement must be corrected in order to express the total 

sound scattered. Theoretical evaluation is more direct; the total sound power 
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scattered by an object is found from the integral of the absolute pressure squared 

over the solid angle (Equations 7.1.10 and 7.1.5). The calculation produces the 

total scattering cross section a s (see discussion in section 7.5.1). This integral can 

be evaluated for nondissipative fluid and rigid spheres. When there is no 

absorption, total scattering cross section is 

as(ka) = ae(ka) - dd~ I s 12 sin 0 dO, no absorption (7.5.48) 

Since the sphere is symmetric, the integral on d~ becomes 2n, and the subsitution 

of Equation 7.5.45 gives 

as(ka)_2rca2j~[~ (2m + 1) 
(ka)2 Pm(#) 1 + iC m 

Lm=O 

M-1 (2n + 1)] 

• ~n=O Pn (#) 1 - TC-mj sin 0 dO 

(7.5.49) 

where # - cos 0 and d# - - s in  0 dO. From Morse (1981, p. 315) or Abramowitz 

and Stegun (1964, Equation 8.14.13), the orthogonality of the Legendre functions 

ia for m n 
2 

-1Pn(#)Pm(~) d# - 2m + 1 
I 

= 0  for m e n  

The total scattering cross section for a sphere (Anderson 1950) is 

4xa 2 M ~ l ( 2 m  + 1) 

tYs(ka ) =  2-, 2 
( k a ) 2  m --0 1 +C m 

(7.5.50) 

(7.5.51) 

7.5.5 RIGID SPHERE 

The rigid sphere is frequently used to display many of the characteristics of 

scattering phenomena. One reason is that it gives a fair approximation to a very 

dense sphere in water, which is often used for calibration in experimental work 

(see Table 7.1). 

The backscattering length is sometimes expressed as a "reflectivity" relative 

to a/2 (Anderson 1950). The literature also uses the name "form function." 

Using a/2 as a reference, the form function for spheres is 

F~ (ka) [ Lbs I/(a/2) (7.5.52) 

Table 7.1 gives data on the practical realization of backscattering theory, in 

which a stainless-steel sphere replaces the idealization of a perfectly reflecting 

rigid sphere, for the range 0.2 < ka < 5. 
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Table 7.1 Relative Acoustic Backscattering Length, or Form Function 

F~(ka) -ILbsl/(a/2), for Rigid and Stainless-Steel Spheres 

ka 

Rigid Stainless- Rigid Stainless- 

Sphere Steel Sphere ka Sphere Steel Sphere 

0 0 0 2.6 1.0025 1.0917 

0.2 0.0653 0.0575 2.8 0.8583 0.949 

0.4 0.2457 0.2139 3.0 0.7582 0.8477 

0.6 0.4972 0.4327 3.2 0.8258 0.9244 

0.8 0.7537 0.6468 3.4 0.9771 1.0736 

1.0 0.9381 0.7948 3.6 1.0654 1.1792 

1.2 0.9886 0.8239 3.8 1.032 1.1458 

1.4 0.8924 0.7281 4.0 0.9126 1.0177 

1.6 0.7157 0.5898 4.2 0.8233 0.9008 

1.8 0.6309 0.5936 4.4 0.8673 0.9186 

2.0 0.7617 0.8036 4.6 0.9892 1.0334 

2.2 0.9548 1.025 4.8 1.0659 1.1197 

2.4 1.0508 1.136 5.0 1.0398 1.098 

Stainless steel: Type 302 
Density 7900 kg/m3; compressional wave velocity 5594 m/s; shear wave velocity 3106 m/s. 
Computations by T. K. Stanton and R. Eastwood (Personal communication.) 

Unlike the solutions for the plane facet and the cylinder, the HK solution for 

the rigid sphere is not accurate because the diffraction for scatter off from normal 

incidence is inadequately represented. Therefore, we use the mode solution as 

developed above. 

The relative backscattering length for a rigid sphere is presented in 

logarithmic scale in Fig. 7.5.4. The figure demonstrates the (ka) 2 dependence 

(slope 2:1) in the Rayleigh scattering region (ka ,~ 1), the asymptotic constant 

value of geometrical scatter (ka > 1), and the oscillations at ka > 1 owing to the 

diffracted waves described in Fig. 7.3.3e. The relative backscatter length is 

shown on a linear scale in Fig. 7.5.5. The peaks and troughs of backscatter at 

ka > 1, which are caused by interference between the diffracted wave around the 

periphery and the wave reflected at the front surface of the sphere, occur with a 

periodicity due to their path difference, 2a+rca- -n2  or ka=2rcn/ 

(2 + ~z) = 1.22n, where n is an integer. 

The directional scattering at various values of ka is shown in Fig. 7.5.6. The 

sound is not scattered isotropically. However,  as ka increases, the sound tends 

toward isotropic, particularly for 0 < re/2. The number of diffration side lobes 
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Figure 7.5.4 Relative backscattering lengths for a rigid sphere. The Rayleigh scattering 
region for relative scattering lengths, which is proportional to (ka) 2, is at approximately 
ka < 0.5. The dashed line is the high-frequency asympote, 1/(4n) 1/2. 

increases as ka increases, and at large ka they oscillate around the ult imate 

isotropic solution for this component.  The increasingly large forward scattered 

lobe is out of phase with the coexistent incident sound, so that, at high 

frequencies, the sum gives the shadow. 
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_~ 0.3 
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0 2 

Franz wave 
interference 

4 6 8 10 
ka 

Figure 7.5,5 Linear presentation of the relative backscattering length as a function of ka 
for a rigid sphere. The periodicity of the peaks and troughs, due to interference between the 
diffracted wave and the front-face reflection, occurs at intervals of ka = 1.22. See also 
Fig. 7.5.4. 
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Figure  7.5.6 Directivity of relative acoustic scattering length for a rigid, fixed sphere at 
a large range. The sound is incident from the right. The circles on ka = 10 and ka -- 20 are 
the ray approximation described in section 7.5.1. 

The total scattering cross section for a rigid sphere is given in Equation 7.5.51, 

and the value relative to rta 2 is shown in Fig. 7.5.7. The relative total scattering 

cross section approaches the limiting value of 2rta 2 very slowly as ka increases. 

7.5.6 F L U I D  S P H E R E  

Fluid spheres are often used to represent small marine animals such as 

zooplankton, and sometimes even larger animals when the sound frequency is 

low (ka ,~ 1). The sound speeds and densities of sea life are nearly those of water. 

For example, we have calculated the backscatttering magnitude and directivity 
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Figure 7.5.7 Relative total scattering cross section for  a rigid sphere as a funcion of  ka. 

patterns f o r  a fluid sphere with characteristics similar to fish f l e s h ,  g - 1 . 0 6  and 

h -  1.02, where 

P J, h - Cl , kl : k = m~ (7.5.53) 

g - -  P0 Co h C1 

Figure 7.5.8 shows the relative sound backscattering length for a fluid-filled 

sphere of these constants, as a function of ka. The directional scattering patterns 

are shown in Fig. 7.5.9. These curves, following Anderson's equations, do not 

include viscous and thermal losses. The incident plane wave interferes with the 

scattered wave as described in subsection 7.5.5. 
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Figure 7.5.8 Relative backscattering length for  a f lu id-f i l led  sphere, with g = 1.06 and 

h --  1.02. 
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In the late 1950s, several studies introduced oceanographers and sonar users to 

the importance of bubbles at sea. Urick and Hoover (1956) were concerned about 

the military implications of sound scatter from the rough sea surface; they 

discovered that much of the scatter came from below the surface, presumably fom 

bubbles created by breaking waves. About the same time, Blanchard and 

Woodcock (1957) were interested in the airborne salt nuclei, generated from 

breaking waves, that affect thunderstorm activity at sea and climate throughout 

the world; they waded out from shore, scooped up a jar of bubbly water in the 
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surf, and obtained the first measurements of bubbles caused by breaking waves. 

In the same year, LaFond and Dill (1957) wrote an internal U.S. Navy Laboratory 

memorandum with the provocative title "Do Invisible Bubbles Exist in the 

Sea?" Starting from the evidence that sea slicks were formed over turbid surface 

water convergence zones, or were correlated with internal waves that had brought 

minute particulate matter to the surface, they concluded that bubbles may indeed 

be present in some parts of the ocean. 

All of this research activity ran counter to laboratory experiments, and 

intuition. The belief at the time was that any bubbles that may be created would 

soon disappear either by buoyant action, which would bring them popping to the 

surface, or by gas diffusion forced by bubble surface tension, which would 

squeeze the gas out of any small bubble. The flaws in this reasoning are now 

recognized: (1) bubbles are not clean but may have solid or dissolved material on 

the surface which would inhibit gas diffusion, or they may exist in crevices; (2) 

ocean currents will create a friction drag that can overcome buoyant forces; (3) 

bubble populations are continually replenished by the myriad bubble source 

mechanisms. Most of the bubbles found near the surface of the open sea appear to 

be continually generated by spilling or plunging breakers, or during rainfall. 

Particularly in coastal regions, the sources of ocean bubbles also include those 

entrained by continental aerosols that drop into the sea, generated by 

photosynthesis of marine plants, life processes of marine animals, the 

decomposition of organic material, or released from gas hydrates on or below 

the ocean floor. 

The immense number of microbubbles per unit volume that have been 

identified in the ocean are a major factor in near-surface sound propagation. They 

have also proved to be a unique tool in the study of near-surface ocean 

characteristics. 

The statistical size distribution of bubbles caused by breaking waves in a 

laboratory flume was first measured by Glotov et al. (1962). The first 

photographic evidence of bubbles in a quiescent sea was that of Barnhouse et 

al. (1964), and the first measurements in the coastal ocean were by Buxcey et al. 

(1965), who used acoustical techniques. Research from the latter two master's 

theses was reported by Medwin (1970). The dependence of ocean bubble 

densities on depth, season of the year, time of day/night, wind speed, and 

presence of sea slicks was revealed by using various acoustical techniques 

(Medwin 1977) and extensive photography (Johnson and Cooke 1979). 

The omnipresence of unidentified particles, sometimes called "detritus" or 

"snow,"  makes it difficult for simple photography to positively identify bubbles 

of radius less than about 40 microns. It required laser holography (O'Hern et al. 
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1988) to prove, unequivocally, that there can be as many as 105 to 5 x 106 

bubbles per cubic meter at radii between 15 and 16 microns near the ocean suface 

even during calm seas, and that the inverse acoustical determinations of the 

preceding 20 years had been essentially correct. It is generally assumed that the 

peak density is somewhere around radius 10 to 15 #m, depending on ocean 

chemistry. 

The principal practical techniques for bubble identification and counting at sea 

have proved to be inversions of linear acoustical measurements. Determinations 

of bubble densities have been based on acoustic backscatter, excess attenuation, 

and differential sound speed (see section 8.4.1), as well as on nonlinear behavior 

and acoustic doppler shift. The acoustical techniques have also included passive 

listening at sea to the sound under breaking waves, or during rainfall, to 

determine the number of newly created bubbles (section 8.5). 

The direct consequence of bubbles at s e a - - f o r  example, during wind speeds 

of 8 m / s - - h a v e  been demonstrated to result in near-surface excess attenuations 

as great as 60 dB/m and speeds of sound that are tens of meters per second less 

than the approximately 1500 m/s that would be measured by a sound velocimeter, 

or that would be expected from a calculation based on temperature, salinity, and 

depth alone. 

8.1 Scattering from a Spherical Gas Bubble: 

Modal Solution 

8.1.1 SCATTERING DIRECTIVITY 

The modal solution to scatter by a sphere was applied to the rigid sphere and the 

fluid filled sphere in Chapter 7. The rigid sphere is an extreme limit of the 

physical properties. Theoretical studies sometimes use the perfect pressure- 

release vacuum as the other extreme limit. But the acoustic reaction of a spherical 

vacuum in water is physically unrealistic; the fluid that fills the sphere determines 

its behavior as a scatterer as well as within the sphere boundaries The realistic 

gas-filled sphere has a low-frequency, omnidirectional breathing-mode resonance 

and higher-order, directional resonances. Using the modal solution in Chapter 7, 

the relative directional scattering lengths of a gas-filled sphere insonified by a 

plane wave are shown in Fig. 8.1.1. These curves were calculated from 

Anderson's (1950) equations; they do not include viscous and thermal losses. 

They show that for small ka, the scatter is essentially omnidirectional. For 

simplicity, the condition for omnidirectional scatter from a bubble is often stated 
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Figure 8.1.1 Directivity of the scattering from an air-filled bubble as a function of ka. 
Plane wave incidence. 

approximately  as ka < 1. Fig. 8.1.1 shows how the anisotropicity changes for 

ka < 1 . (See Problem 8.1.1 for a measure of the anisotropicity.) 

8.1.2 B A C K S C A T T E R I N G  L E N G T H  

The modal  solution for backscatter from a sea-level gas bubble, calculated from 

Equation 7.5.51, is shown in Fig. 8.1.2, where it is compared  with the relative 

backscattering length of the rigid sphere. Fig. 8.1.2 shows that the sea-level 

bubble has a very large response to a CW plane w a v e - - t h a t  is, an m = 0 

resonance,  at ka -- 0.0136. There are other much weaker  resonances for m = 1, 

2, etc. The calculation does not include the significant bubble damping effects 

due to viscous and thermal losses. When  these are included (in section 8.2), they 

decrease the height  and broaden the resonance curve of backscatter. 
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Figure 8.1.2 Relative backscattering length of a spherical air bubble at sea level 
compared with the rigid sphere solution of section 7.5.5. Inclusion of viscous and thermal 
damping would lower the bubble peak and broaden the resonance, as shown in section 8.2. 

The sea-level resonance peak at ka = 0.0136 has been known since the 

research on the musical sounds of running water (Minnaert 1933). We find the 

result again if we apply the small ka condition to the mode solution and drop all 

higher-order terms; this gives the bubble resonance frequency o f  the 

scattering expression. Although the starting poin t ,  Equation 7.5.51, is 

complicated, the solution is tractable for the m = 0 (omnidirectional) mode, 

where ka ,~ 1, and the large resonance response occurs. This approach is left as a 

student problem. 
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8.2 Single Pulsating Bubbles: ka <~ 1 

8.2.1 L U M P E D  C O N S T A N T S  O F  B U B B L E  P U L S A T I O N  

The modal solution of the previous section established that, for ka ,~ 1, a 

spherical air bubble in a plane wave oscillates omnidirectionally and has a 

resonance at ka = 0.0136 (at sea level). In the ka ,~ 1 condition, the bubble is 

very effectively driven by the virtually uniform acoustic pressure over its surface. 

Furthermore, a pulsating (breathing) bubble radiates more effectively than in any 

other mode (section 4.1.1). 

When ka <~ 1, the acoustical parameters of an oscillating bubble can be 

" lumped"  into an equivalent mass, stiffness, and mechanical resistance, so that 

the acoustical system resembles the mechanical system of a mass on a spring. 

This type of analogue is very commonly used by engineering acousticians; see, 

for instance, Olson (1947). Lighthill (1978) calls these "acoustically compact" 

regions. The equivalent mass is due to the inertia of the adjacent layer of water 

that envelops the bubble and that has essentially the same radial displacement as 

the bubble surface. The compressibility of the bubble volume, plus the surface 

tension effect for very small bubbles, determines the spring stiffness. The 

equilibrium bubble radius, a, takes the place of the reference position of the 

spring at rest, and the radial displacement, da = ~, corresponds to the linear 

displacement of the spring. The acoustical damping owing to reradiation, 

viscosity, and thermal conductivity will later be described, in the lumped constant 

approach, as a mechanical resistance. For the moment, we assume that there is no 

damping. 

The mechanical equation of motion of a mass-stiffness system is 

m-~7 5 + s ~ = O  (8.2.1) 

The solution is of the form 

= ~ 0 e imP' t (8.2.2) 

Substitution into Equation 8.2.1 leads to the system natural frequency, 

co h - 2rcfh - (8.2.3) 

We need to determine the equivalent s and m for an oscillating bubble. 
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8.2.2 B U B B L E  S T I F F N E S S  

Consider a spherical gas bubble of volume V - (4/3)rta 3, surface area S - 4rta 2, 

and interior gas pressure Pint "" PA, where PA is the static ambient pressure at that 

point in the ocean. Assume the bubble experiences an incremental interior 

pressure change, dPint <~ PA, and that the gas follows the adiabatic relation, 

Pint V7 - constant, where 7 is the ratio of specific heats of the bubble gas. 

Differentiating yields 

dPint --7PA 
= ~ (8.2.4) 

dV V 

Use d V -  4~za2{, where ~ is the small radial surface displacement. For the 

present, assume that there is no surface tension force, so that the restoring force is 

4tea 2 dPint -- -- (127tyPa a) ~ (8.2.5) 

This is a form of Hooke's Law, with stress proportional to strain. The 

proportionality constant is the stiffness of the bubble, 

s -  12rc~/pza (8.2.6) 

8.2.3 E Q U I V A L E N T  B U B B L E  M A S S  

The inertial force experienced by the radiating bubble is calculated to determine 

the equivalent mass. It is not the mass of the bubble gas but rather the entrained 

water next to the bubble that comprises the mass of the pulsating system. 

From Fig. 8.1.2, ka ~ 1 at the natural pulsation frequency. The pressure 

radiated omnidirectionally by a pulsating bubble is 

Pa a 
P -- --R-- exp [i(oobt-- kR)] (8.2.7) 

where P~ is the pressure amplitude at R = a. 

For radial motion, the acoustic force equation (2.7.43) is 

02~ Op 
PA Ot----~ = OR (8.2.8) 

where PA is the density of the water. 

Use Equation 8.2.7 to obtain 

02~ 1 -- 
PA-O-~ R=a-- 

Pa d 
R2 (1 -+- ikR) exp [i(OObt - ke)]R= a (8.2.9) 
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Since ka ,~ 1, Equation 8.2.9 simplifies to 

PA R = a  = -d R = a  

The inertial force at the surface is a form of Newton's Second Law, 

(8.2.10) 

= _ 4/l:a2p]-! = _ 4/r, a3pA__~_ 11R : a (8.2.11) Fm]R=a R=o 

so we identify the effective mass as 

m = 4rca 3pA (8,2.12) 

It is interesting to observe that, in this low-frequency approximation, the effective 

mass of the pulsating bubble is equivalent to an oscillating shell of water three 

times the volume of the bubble itself. 

8.2.4 S I M P L E  P U L S A T I O N ;  B R E A T H I N G  F R E Q U E N C Y  

Inserting the mass Equation 8.2.12 and the stiffness Equation 8.2.6 into Equation 

8.2.3 gives the simple harmonic breathing frequency of a small bubble (ka <~ 1) 

under the assumptions of this derivation (no surface tension, adiabatic gas 

oscillations, no energy absorption): 

fh- -~-~  : 2 r c a  V ~A 

The ambient pressure can be written in terms of the depth z by expressing 

PA : PAO + Pag z '~ 105( 1"01 + 0.1Z) Pascals (8.2.14) 

where PAO - -  sea level atmospheric pressure - 1.01 • 105 pascals; g -- 9.8 m/s2; 

PA '~ 1030 kg/m3; 7 -- 1.4 for an air bubble; z - depth (meters). 

For a spherical air bubble in water we get the simplified expression for the 

breathing frequency: 

fh 3"25V/(1 + 0.1z) _ 3.25 • 1 0  6 

-- a(meters) - a(microns) V/(1 + 0.1z) (8.2.15) 

At sea level, Equation 8.2.13 may be written ka - 0.0136 in agreement with 

the modal solution in Fig. 8.1.2. Some people use the simple mnemonic that a 

bubble of radius 60 #m resonates at a frequency of about 60 kHz near the sea 

surface. 
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*8.2.5 E F F E C T S  OF S U R F A C E  T E N S I O N ,  S H E A R  VISCOSITY,  A N D  

T H E R M A L  C O N D U C T I V I T Y  ( O P T I O N A L )  

We now include concepts of surface tension, shear viscosity, and thermal 

conductivity to rederive the expressions for the resonance frequency and to 

determine the damping constant of a spherical bubble that is excited by an 

incident plane wave. 

Effect of Shear Viscosity 

Assume that ka ~ 1. The incident plane wave is therefore uniform at all points of 

the bubble, 

Pinc= Pinc eiC~ : a (8.2.16) 

where Pinc is the incident-plane-wave amplitude. 

Since the bubble is small and is not fixed, one obtains a spherically 

symmetrical scattered pressure 

R0 
Pscat -- Pscat--~ exp [i(cot-  kR)] (8.2.17) 

where R 0 is the reference distance from the scatterer (=1 m) and Pscat is the 

scattered pressure amplitude at R = R 0. 

To find the pressure ratio Pscat/Pinc, w e  use the pressure condition at the bubble 

boundary: 

[pressure inside = pressure outside]R= a (8.2.18) 

The excess interior pressure (beyond the ambient PA), evaluated at the surface, 

is the sum of the incident acoustic pressure, the scattered pressure, and a shear 

viscous stress at the surface. The latter is proportional to the product of the 

dynamic coefficient of shear viscosity for water, #, and the radial rate of strain, u,J 

R, evaluated at the surface, 

Pin t :  Pinc +Pscat + C[.t (-~) JR= a (8.2.19) 

where Pint is the interior pressure, and C is a dimensionless proportionality 

constant. The constant C was evaluated by Devin (1959) as equal to 4. 

We have already derived the expression for the radial particle velocity in 

Equation 4.1.3. For ka ~ 1, it reduces to 

ei COt 
U r = - i Pscat R0 2 (8.2.20) 

P A C k a  

*Background material 

| 
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The expression for the scattered pressure is Equation 8.2.17, in which we now 

expand the exponential for ka ,~ 1, and evaluate at R -- a, to obtain 

Pscat = Pscat ( ~ )  ( 1 -  i k a) e i c~ t (8.2.21) 

Therefore, from Equation 8.2.19 we have the pressure amplitude condition at 

R - - a :  

Pint =Pinc + e s c a t ( ~ )  ( 1 -  i k a) - 
i 4 g Pscat RO 

P A C k a  3 
(8.2.22) 

Effect of Thermal Conductivity 

Now consider the particle velocity at R -- a. If the bubble is large, the reversible 

adiabatic relation will hold for most of the bubble gas. However, for very small 

bubbles in water, the action is isothermal at the water temperature, and the 

effective value of 7 approaches unity. Equally important, the bubble pressure and 

temperature do not instantly follow the volume variation. For example, as the 

bubble volume is decreasing during a cycle, the temperature will be increasing. 

But at the minimum volume some heat will still be escaping, which means that 

the gas temperature and pressure will be decreasing. Therefore we rewrite the 

adiabatic law and replace 7 by the complex expression y(b + id), where b and d 

are real dimensionless numbers. This allows the magnitude of 7 and the phase 

between pressure and volume to be functions of the driving frequency and the 

bubble size. We write, 

Pint wT(b+id) - -  c o n s t a n t  (8.2.23a) 

where 

Pint = PA -k- dPint - -  t o t a l  i n t e r i o r  p r e s s u r e  

Differentiate with respect to time and rearrange to 

(8.2.23b) 

Use dV/dt  = 4na2Ur]g=a to obtain the interior radial particle velocity at R = a: 

eiCOt 

Ur]R=a -- -i~ [3~/(b 4- id)PA] (8.2.25) 

d V  i co Pint V 
d---t = - 7 (b + i d ) p  a (8.2.24) 



8.2. Single Pulsating Bubbles 297 

Equate the two expressions for particle velocity at R = a, Equation 8.2.20 and 

8.2.25, and obtain the ratio 

Pint 3 7 (b + id) PA RO 
escat - PA c2k2a3 (8.2.26) 

Frequency Correction 

To correctfb in Equation 8.2.13, define the resonance frequency of the bubble,fR, 

in terms of the average interior pressure that depends (through fl) on surface 

tension, Pint --- flPz, and the effective ratio of specific heats that depends (through 

b) on the thermal conductivity, 7b, 

1/37bflPA 
f R - - ~ a  v PA 

=A V 

(8.2.27) 

Equations 8.2.28a, b, c, and d, which permit detailed calculations of the effects 

of surface tension and thermal conductivity at all frequencies, are developed in 

Eller (1970) based on work in Devin (1959). See also Prosperetti (1977). (Note, 

however, that the symbols are defined differently in those references.) In order to 

extract the resonance frequencies (or damping constants) from these equations, 

the following order of operations is recommended. After obtaining the physical 

constants of the gas at the depth and temperature of the bubble, calculate, for a 

given sound frequency and bubble radius, first X, then d/b, b, and fl in that order. 

2 co 9g Cpg) 1/2 
X = a Kg (8.2.28a) 

d 3(7 - 1)IX X(sinhX + s i n X ) -  2(coshX-cosX) ] 
g - -  ~ 2 ( c ~  cosX) + 3 ( 7 -  1)X(sinhX- sinX).~ (8.2.28b) 

b - l =  [1+  ( b )  2] [1+ ( 3 7 ;  3 ) ( s i n h X - s i n X )  ] 
k, coshX - cos XJ 3 (8.2.28c) 

~_Pint 1 + 2 7 : (  1 ) 
PA - PA a 1 - 3 7 b (8.2.28d) 

Most of these constants are traditionally given in cgs units: pg, bubble gas 

density --- PgA[1 + 2z/(paa)](1 + 0.1Z), where z is depth in meters; PA, ambient 

pressure = 1.013 • 106(1 + 0.1z) dynes/cm2; PgA, density of free gas at sea 

level (1.29 • 10 -3 g/cm -3 for air); Cpg, specific heat at constant pressure of 
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bubble gas (-~ 0.24cal/(g ~ for air); Kg, thermal conductivity of bubble gas 

(~- 5.6 x 10 -5 cal/(cm) (s) (~ for air); 7, ratio of specific heats of bubble gas 

(=  1.4 for air); ~, surface tension at the air/water interface ( ~  75 dyne/cm). Fig. 

8.2.1 shows how b and fl affect the resonance frequency. The corrections are 

significant for small bubbles, but, near resonance, they tend to go in opposite 

directions. The net effect is that these corrections modify the simple expression 

for fb by more than 10 percent only for bubbles smaller than about 5 microns 

radius (Anderson and Hampton 1980a). 

1.0 

0 

0 

a = 10 000  

"•a = lOla  

= lOObt 

f / fb or CO/CO b r e s o n a n c e  

l 2 3 4 5 6 7 8 9 10 

f/fb o r  m / co b 

1.4 f \x 
1.3 \ 
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1.1 

'~ I ,  - -  _ . . . . .  

. r  . . . . .  - '  . . . .  r " 7 " ]  , , , ,  I , , , , 

Figure 8.2.1 Corrections for b and fl for a resonating clean, free air bubble at sea 
level. Above, dependence o f f e / f  h = (bfl)1/2 on relative frequency for three bubble radii. 
The corrected resonance frequency, re, is defined in Equation 8.2.27. The simple bubble 
resonance frequency, fh, is given in Equation 8.2.13. Below, the separate variations of b, fl, 
and fe/fh at resonance, as a function of bubble radius. 
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One concludes that the simple Equation 8.2.13 is an acceptable predictor for 

the resonance frequency of most of the bubbles in the sea. Exceptions are: a) 

bubbles of radii less than 5 pm (important in cavitation); b) dirty bubbles where b 

and fl are different from our assumed values; c) bubbles in crevices; d) bubbles 

near surfaces (see section 8.2.10); and e) nonspherical bubbles (see section 

8.2.11). 

8.2.6 D A M P I N G  C O N S T A N T S  

The inclusion of thermal conductivity and shear viscosity, as described in section 

8.2.5, produces significant changes in the bubble damping at resonance. It 

therefore causes major corrections to resonant bubble scattering, as derived in 

Chapter 7 and shown in Fig. 8.1.2. To evaluate the effect, use Equations 8.2.22 

and 8.2.26 to eliminate Pint and form the ratio of the scattered pressure amplitude 

to the incident plane wave amplitude, 

Pscat - a / R 0 

Pinc - [(fR [ f)2 _ 1] + i[ka + (d / b)(fR / f)2 + 4 g ](OA 0) a2)] (8.2.29) 

The imaginary term in the square brackets is called the total damping constant, 

c~ = 6 r + 6 t -+- 6 v (8.2.30) 

which is the sum of the reradiation (scattering) t e r m  (~r = ka,  the thermal 

damping term 6 t, which is a function of d/b; and the viscous damping term 6v, 

which is a function of the kinematic coefficient of shear viscosity of the water, 

#/PA. Typical curves of the total ~ for clean bubbles in fresh water are shown for 

1, 10, and 100 kHz, and the three separate components are shown for frequency 

10 kHz, in Fig. 8.2.2. 

At resonance fR = f ,  the scattered wave amplitude Pscat is limited only by the 

square-bracket imaginary term in Equation 8.2.29. Now define the damping 

constants at resonance within that term, 

(~R = (~Rr + (~Rt + (~Rv (8.2.31a) 

where 6er = kRa = resonance damping constant due to reradiation (scattering); 

6Rt= ( d / b ) = r e s o n a n c e  damping constant due to thermal conductivity; 

6ev = 4#/(PACOR a2) = resonance damping constant due to shear viscosity. 

One can evaluate the damping constants by going to Equations 8.2.27a, b, c, 

and d for X, d/b, b and fl as functions of the frequency, specific heat, bubble depth, 

gas density, specific heat at constant pressure, and thermal conductivity of the 
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Figure 8.2.2 Damping constants of clean small spherical air bubbles in fresh water at 
sea level for frequencies 1, 10, and 100 kHz. The three components 6,., 6,., and 6v are 
shown for frequency 10 kHz. The damping constants at resonance fiR, 6R,. 6m, and 6et a r e  

near, but not at, the minimum values of 6. 

gas. Fig 8.2.3 shows the damping constants at  r e s o n a n c e  for a small, clean air 

bubble in fresh water at sea level. One notes that the resonant thermal damping 

6Rt, is significant over  a very wide range of frequencies; the resonant viscous 

damping,  6Rv, is important  above 1 MHz,  and the resonant  radiation damping, 6Rr 

is important  below 1 kHz. 



Figure 8.2.3 Resonance damping constants for a small, clean, fresh-water air bubble at sea level. (Adapted from Devin, Charles, Jr., 
"Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water," J. Acoust. Sor Am. 31, 1654-457, 1959.) 
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A simple approximation to the curve from 1 knz to 100 kHz is 

6 R ~ 0 . 0 0 2 5 f  1/3 

with f in Hz 

(8.2.31b) 

8.2.7 A C O U S T I C A L  C R O S S  S E C T I O N S  

When the small bubble is insonified by a plane wave, its total acoustical  

scat tering cross section, a s , is defined as the total scattered power divided by the 

incident plane-wave intensity: 

a s ( f )  = n s / l i n  c - 4rcR2(P2cat /PAC) = 4rta2 (ka  < 1) 

(P}nc/PA c) [ ( fR/ f )  2 -- 112 nt- a20  c) 

(8.2.32a) 

At resonance, the total scattering cross section is 

47za 2 
as (fR) -- +62 when f - fR (8.2.32b) 

At resonance, the total scattering cross section becomes 4/62 greater than the 

geometrical cross section. For example, from Fig. 8.2.3 we see that a 30 micron 

radius bubble with resonance frequency of about 100 kHz will have a damping 

constant of about 0.1, and therefore a total scattering cross section 400 times 

larger than its geometrical cross section. 

Because the scattering is omnidirectional when ka ,~ 0.1, at resonance the 

differential scattering cross section in any direction is simply 

Aa s : as/(4rt ) = a2/a2R (8.2.33a) 

The backscattering length ILbsl is the square root of Aas, and the relative 

backscattering length is 

I s 1/2 - ( a s ) l / 2 / ( 2 g a )  k a <  1 (8.2.33b) 

The comparison of the resonant bubble at sea level, where ka = 0.0136, with 

the rigid sphere of the same size reveals the immense selectivity of bubble 

resonance. This was shown in Fig. 8.1.2 for the oversimplified case, where 

6 R = ka rather than the corrrect value of 6 R in Fig. 8.2.3. The rigid sphere has a 

relative scattering length that decreases as (ka) 2 for frequencies below k a -  1 

(see Chapter 7). Therefore, at k a -  0.0136, the resonating bubble has a relative 

scattering length of about 105 greater than for a rigid sphere of the same size. For 

this reason, an acoustical scattering experimenter has a very easy task 

distinguishing a rigid sphere from a resonating bubble of the same size. The 
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significant corrections for viscous damping and thermal conductivity loss is left 

as a problem for the student. 

The attenuation of a plane wave depends on both the bubble scattering cross 

section, a s, which removes sound from the beam, and the absorption cross 

section, a a, which converts sound energy to heat. The sum of the two is the 

extinction cross section, O'e, 

O'e  = (Ya + (Ys  (8.2.34) 

The extinction coss section is calculated directly from the rate at which the 

incident pressure does work on the bubble divided by the incident plane-wave 

E inc - ~  dt 
T T R=a 

O" e - -  Iinc (8.2.35) 

intensity, 

4rca2 (6/6,.) 
O" e - -  (8.2.36) 

[ f iR~f)  - 1] + 6 

The integration yields 

Using Equation 8.2.34, we find the absorption cross section by subtraction of 

Equation 8.2.32a from Equation 8.2.36. The result is 

4rca 2 (6t q-  ~v 

6r ) (8.2.37) 
\ 

O'a = __ (~2 
[ (fR/f) 2 1] 2 + 

Comparing Equations 8.2.32a, 8.2.36, and 8.2.37, we obtain relations between 

the cross sections in terms of the damping constants, 

aa 6t + 6v 
= (8.2.38a)  

O- s t~ r 

and 

= - -  (8.2.38b) 
O" s C] r 

Again we see that, at resonance, the acoustical cross sections are much larger 

than the geometrical cross section. This fact, combined with the simple, direct 

connection between resonance frequency and bubble radius Equation 8.2.27, is 

the key to the advantages of acoustical measurements in determining bubble 

populations at sea. By comparison, when light scatters from a bubble or particle, 

the optical cross section is at most equal to the geometrical cross section. 
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Using the concept of specific acoustic impedance (the ratio of the acoustic 

pressure to the acoustic particle velocity), the bubble at and near resonance is 

effectively a "ho le"  of very low impedance compared with the water. This 

hole distorts the incoming acoustic field over a large volume surrounding the 

bubble. The distorted field causes a power flow toward the bubble center from 

a section of the incoming plane wave that is far beyond the bubble cross 

section. When this is "v iewed"  acoustically from a great distance, the 

absorption, scatter, and extinction give the impression of a body that is far 

larger than its true size. 

The left side of Fig. 8.2.4 shows the scattering and extinction cross sections 

and the fight side the absorption cross sections as functions of bubble radius 

for three frequencies, where ka < 1. The very prominent peaks at resonance 

are clearly seen. For bubbles of radius smaller than the resonance size, the 

cross sections are approximately proportional to  a 6. However, notice that 

larger bubbles have large extinction and scattering cross sections. Therefore, if 

there is a mixture of bubble radii, those of radius much greater than the 

resonance radius may make a significant contribution to the measurement of 

total scatter or extinction if there are enough of them. An absorption 

measurement is not contaminated by larger bubbles. See Fig 8.3.1 for an 

estimate of this effect. 

8.2.8 I N S O N I F I E D  D A M P E D  P U L S A T I O N S  

We now rewrite the equation of the lumped mechanical motion of a bubble, 

Equation 8.2.1, to include damping when the bubble is insonified. In addition to 

the inertial force and the stiffness restoring force, there is a damping force, 

RM(O~/Ot) ,  which is assumed to be proportional to the radial velocity. The 

mechanical resistance, RM, represents energy losses caused by sound reradiation, 

shear viscosity, and thermal conductivity. The equation describing the radial 

displacement, ~, of the insonified bubble is 

02~ 0~ 
m - - ~  + R M --~ + s~ - 4rcaZPin, e i~~ (8.2.39n) 

is 

The solution of Equation 8.2.39a, which may be demonstrated by substitution, 

-- i4 7r, a 2 (P inc / Og )e i~ 
: (8.2.39b) 

R M + i ( o g m -  s/o9) 
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Figure 8.2.4 Left, extinction (solid line) and scattering (dashed line) cross sections of 
small sea-level air bubbles in fresh water, insonified by 10, 50, or 100 kHz plane waves. 
Right, absorption cross sections for the same parameters. (From Medwin, H., "Acoustical 
determinations of bubble-size spectra," J. Acoust. Soc. Am. 62, 1041-44, 1977b.) 

The lumped mechanical resistance, R M, is simply related to the damping 

constant, 6. To show this, equate the time derivative of Equation 8.2.39b to the 

radial velocity from the point of view of the radiating wave Equation 8.2.25. Use 

Equations 8.2.26 and 8.2.28 to eliminate b and d, and obtain 

] RM +i (o) m - s/o)) = i 4 rc a3 pA CO - 1  + i 8  (8.2.40) 
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Equating the reals gives the connection between RM and 6, 

R M =4Xa3pAO) 8 =O) m 8  

where we have used Equation 8.2.12 for the mass m. 

(8.2.41) 

8.2 .9  D E C A Y I N G  B U B B L E  P U L S A T I O N S  

After the bubble excitation has ceased and its oscillations are allowed to decay, 

we use the analytic description of radiation by damped, pulsating bubbles as 

given by Equation 8.2.39a, with right side equal to zero; 

m ~ + RM--O~ + s ~ =0 (8.2.42) 

Propose the damped sinusoidal solution for the surface displacement with 

damping rate Db [sec-l]: 

= Ae  -Dht+i`odt (8.2.43a) 

where 

1 
D h - g-- ~ co d (8.2.43b) 

t~ 

The angular frequency of the damped oscillation is o9 d, and the "modulus of 

decay" is T,,, the time required for the amplitude to decrease to e-l  of its former 

value. 

Then Equation 8.2.42 becomes 

m ( i  (0 d - D b )  2 + R m ( i  o) d - D b )  + s = 0 (8.2.44) 

Expand the terms and gather the imaginary and real parts, so that for 

imaginary terms 

D h -- R M / ( 2 m  ) (8.2.45) 

and for real terms 

m D  2 - mo92 - DbR M 4- s -- 0 (8.2.46) 
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O)d = + V /  s R M 2 2 
- m - ( 2 m ) (8.2.47) 

or  

/ 

co d - -  + ~/OOb 2 --  D 2 (8 .2 .48)  

Choosing the cosine of the complex exponential in Equation 8.2.43a, the real 

displacement is 

= A e - D b t COS 0)d t (8.2.49) 

Using the damped bubble frequency, co d - 2rcfd, one can write the damping 

rate, Db, in terms of the bubble damping constant at resonance, ~e" 

Db -- rC6R fd (8.2.50) 

The time, T e -- 1/D b, for the amplitude to reduce to (1/e)  of its original value 

can be written in a form that permits the determination of 6R from Te and fb, 

1 1 
T e - - ~  ,,~ (8.2.51) 

7C(SR f d 7C(SR f b 

because fd "~ fb" 

8.2.10 N E A R - S U R F A C E  A N D  N O N L I N E A R  B U B B L E  P U L S A T I O N S  

The bubbles created by a breaking wave or by a raindrop are close to the ocean 

surface m c a l l  it depth, z. When a pulsating bubble is close to the " s m o o t h "  

ocean surface, radiation from the bubble will reflect from the surface as a 

spherically diverging wave. For a " s m o o t h "  ocean surface, the reflected wave 

will have a virtual source strength that is equal to that of the real pulsating bubble 

and a phase that is shifted by 180 ~ The combination of the source and its out-of- 

phase reflection at a separation 1 - 2z constitutes a dipole as described in section 

4.1.3. 

The conditions for a perfect dipole at the sea surface are a) the radiated 

wavelength, 2, must be very large compared with the distance between the source 

and its image, 2 ~ l = 2z; and b) the radiated wavelength must be large 

compared with the rms height of the fine-scale surface roughness (see 

Chapter 13). 
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Under these conditions, the pulsating bubble and its image will radiate as a 

dipole. The dipole axis will be oriented perpendicular to the surface, and the 

radiation will follow the cos 0 law of Equation 4.1.10, with the maximum of 

radiation perpendicular to the local ocean surface. The local ocean surface may 

be tilted by the low-frequency large-wavelength components of the surface wave 

spectrum. 

Strasberg (1953) has shown that a spherical, pulsating bubble at very close 

separation z from a free surface will have a resonance frequency higher than that 

of a more distant bubble. The resonance frequency of a near-surface bubble of 

radius a is given by 

where 

f = 3~ F (8.2.52) 

1 
a 

(8.2.53) 

Possible evidence of this frequency shift is shown in Fig. 8.5.1 for a bubble 

produced by a laboratory breaking wave. 

Sometimes the pulsations of the bubble are so large that shape oscillations take 

place, in addition to the radial pulsation. Longuet-Higgins (1992) has proved that 

under this condition the second harmonic of a shape oscillation can be resonant to 

the pulsation frequency, and an excess dissipation results. This continues until the 

oscillation amplitude is lowered to a level where only the omnidirectional 

pulsation remains, with its predictable theoretical damping. 

8.2.11 NONSPHERICAL BUBBLES 

Strasberg (1953) showed that an oscillating ellipsoidal bubble of the same 

volume as a spherical bubble will have weaker radiation and a higher 

fundamental resonance frequency. The effect may have been observed in 

laboratory experiments of breaking waves; see caption of Fig. 8.5.1. 

The change in volume resonance, when a bubble is nonspheroidal, has been 

studied also by Weston (1967) and Feuillade and Werby (1994). For the same 

volume of gas, as the aspect ratio of the prolate ellipsoid, or cylindrical volume 

with endcaps, increases from that of a spherical bubble, (unity aspect ratio), the 

resonance frequency increases, the magnitude of the scattered energy decreases, 

and the breadth of the resonance curve increases (Fig. 8.2.5). Both of these cases 

are posssible models of swim-bladders of fish. 
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The complex  nonlinear oscillations of bubbles have also been studied 

optically, most  recently by Stroud and Mars ton (1994) and Asaki and Mars ton 

(1995). Because of the difficulty of  observing volume fluctuations optically, the 

work is usually conducted with larger bubbles.  It has been found that clean water  

bubbles of radius greater than 800 microns show damping two to four t imes larger 
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Figure  8.2.5 Change in volume resonance as a function of axial length to cross- 
sectional diameter for a nonspherical bubble at sea level. Above, resonance curves of the 
prolate spheroid at broadside incidence. Below, the same for a cylindrical bubble with 
hemispherical end caps. Aspect ratios 1, 2, 4, 8, and 16 are the ratio of the major to minor 
axis of the ellipsoid, or length to cross-section diameter of the cylinder. (From Feuillade, 
C., and E Werby, "Resonances of deformed gas bubbles in liquids," J. Acoust. Soc. Am. 

96, 3684-92, 1994.) 
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than predicted by theory, which the authors say is "associated with some 

nonlinear response of the bubble." 

8.2.12 DAMPING CONSTANTS OF B U B B L E S  IN  SEAWATER 

Throughout this chapter we have been careful to describe the bubbles as "clean 

air bubbles in fresh water." The damping constant 6 that was derived in section 

8.2.6 was based on the assumptions that the surface of the spherical air bubble 

was uncontaminated and that the bubble was in clean fresh water, not salt water. 

The potential effects of these assumptions are significant. Different damping 

constants in the real ocean would cause different expressions for the scattering, 

absorption and extinction cross sections. These would, in turn, affect the bubble 

densities obtained by the inversion of those equations. 

There is evidence that the bubble damping constant in salt water is different 

from that in fresh water. Scofield (1992) found that the damping constants of 

rainfall-produced bubbles of radius from 140 to 300 microns (23 > fR > 11 kHz) 

were about 10 percent greater in 35 ppm salt water than in tap water. Kolaini 

(personal communication, 1997) has found similar differences for bubbles 

generated in salt water, compared with fresh water. 

8.3 Scatter, Absorption, and Dispersion in Bubbly Water 

When widely spaced bubbles are insonified, the acoustical cross sections of the 

individuals simply add. The classical development assumes that there are no 

interactions between bubbles. Feuillade (1995a) shows that the scattering cross 

section of an assemblage of identical bubbles depends on the bubble spacing. 

There is a downward frequency shift and a broadening of the resonance peak 

when identical bubbles are packed. But truly "identical" bubbles do not exist in 

the real world. By comparison with attenuation and dispersion experiments in 

which the air-to- water volume fraction, U, approached 10 -2, Feuillade (1995b) 

has proved that, for realistic ocean distributions of bubble sizes and random 

spacings, the classical multiple scattering development for attenuation or 

dispersion of sound in a random-sized bubbly mixture, as used in this chapter, 

is appropriate. 

Clouds of bubbles are produced naturally when large numbers of individual 

bubbles from breakers are entrained by the turbulence and Langmuir circulations 

under a breaking wave (Thorpe 1982). These bubble clouds have been offered as 

an explanation of the significant backscatter of low-frequency sound (f  < 2 kHz) 
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from the sea surface (Prosperetti et al. 1993) as well as the ambient low- 

frequency noise ( f  < 500 Hz) at sea. In the latter case it is postulated that the 

volume of the bubble cloud has a density and stiffness that allows it to oscillate as 

a huge "bubble"  with low-frequency modes. 

When bubbles of random sizes are in a separated, close-packed, random, 

three-dimensional configuration as in the wake of a ship, there will be significant 

reflection at the pressure-release face of the bubble cluster. 

8.3.1 SOUND BACKSCATTERED BY AN ENSEMBLE OF BUBBLES: 

VOLUME REVERBERATION 

Techniques for calculating and measuring the sound scattered by a single object 

are discussed in section 7.1. The methodology for many objects starts with the 

scattering by a single object, and includes the distribution of sizes of the objects. 

We now consider the backscattered sound for a single transducer sonar 

(monostatic backscatter). Since the same sonar transducer projects a ping into 

the medium and receives the sum of the scattered sound pressures, we use 

Equation 7.1.19 as the starting expression. Eventually, the scattering region of N 

bubbles will be in the range increment AR, and this will simplify the calculation. 

The first bubble of backscattering length L 1 causes the scattered pressure 

P o e  i[2rcf ( t - 2 R  1 ]c )] R o L l ( f  ) 1 0 - 2 a R 1 / 2 0  (8.3.1) 

2 P a ( t )  = R 1 

The sum of the backscattered pressure from the N bubbles of various radii is 

i [2rcf ( t -2R n /c )] 
e L 

Pscat(t ) = Po R o ,~a n 10 -2  a R n / 2 0  
2 

n = l  R n  

(8.3.2) 

For time-integral-pressure-squared processing of a pulse, one uses the [tips] 

concept of section 3.1.3. Express the absolute square of Equation 8.3.2 and 

integrate over time, tg = 2AR/c, to obtain the "volume reverberation" due to 

bubbles (subscript Reverb): 

ei[2rT(t-2Rn/c)] 
[tipS]Reverb __ (Poe 0)2 [ (Rn/c)+tg ~ Ln l O-2C~Rn/20 

Jl~,/c n=l R2 

N e-i[2rcf(t-2Rm/C)]L*rn O_2C~Rm/20 
• ~ ~ 1 dt 

m = l  

(8.3.3) 

(8.3.4) 
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In our simplified formulation, the sound that is multiply scattered between 

bubbles is ignored. The product can be wrttten as the sum of a term for m - n and 

a term for m ~ n: 

[tipS]Reverb __ (POe 0)2 [ (Rn/c)+tg ~ [ Ln[2 0 -4(x'Rn/20 
aRn/C n=l R4 1 dt 

(8.3.5) 

N N * 

-~(PoRo)2 [(Rn/c)+tg z Z ei4rtf(Rm-Rn)/C LnLm O--20~(en-~-em)/20 
2 2 1 dt (8.3.6) 

dRn/c nr RnRm 

The first summation Equation 8.3.5 has N terms and is the sum of the absolute 

squares of the scattering lengths. The double summations Equation 8.3.6 for 

n ~ m have N ( N -  1) terms and are the cross terms. These cause fluctations in 

the values of repeated measurements of [tipS]Rever b . Relative to the first 

summation Equation 8.3.4, the second summation decreases as 1/N. If the 

bubbles keep the same positions and the transducer is fixed, then repeated 

measurements of [tipS]Rever b are the same, including the cross terms. However, in 

most oceanographic measurements and when the bubbles are well dispersed (all 

I e n - em[ > 2) and are moving, each repeated measurement of [tipS]Reverb has a 

new and different set of R,, and Rm. Then, the average of many measurements 

causes the average of the cross terms to tend to zero. Drop the cross terms and use 

the differential scattering cross section Aa  n in place of IL21, in [tipS]Reverb, to 

obtain 

[tipS]Reverb ..~ (PoRo) 2 [(R./c)+t~ ~ A~ n 10 -4~ dl 
.-I I-gF. 

(8.3.7a) 

This expression describes the volume reverberation in which multiple 

scattering and cross terms are ignored. As a simplification, let AR ~ R, 

R n ~ R. Then 

[tipS]Rever b ,~ R4 IRn/c 

For omnidirectional scatter, each bubble of radius a,, has its own differential 

scattering cross section Aa,, -- as/(4rc), where as is given in Equation 8.2.32a. 

The volume A V  contains N A V  bubbles, and [tipS]Reverb could be calculated if the 

total bubble distribution were known. 
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In the ocean there is a continuous distribution of sizes, so it is preferable to 

rewrite the summation as an integration, 

(8.3.8) 

where Sbs is the backscattering cross section per unit volume for all bubbles 

contained in the sampled volume and n(a) da -- the number of bubbles, of radius 

between a and a + da, per unit volume. Insert the differential cross section for 

small (ka < 1) bubbles, Aas(a ) - as(a)/4rr from Equation 8.2.32a, to get 

a 2 

(ka < 1) (8.3.9) 

When n(a) da is known, one can numerically integrate Equation 8.3.9 for a given 

frequency, f. 

A simple analytical integration of this type of equation was first provided by 

Wildt (1946), who reported on World War II studies of sound scattering and 

attenuation in ship wakes. In his solution it is assumed that the scatter is 

dominated by the resonant bubbles, and that neither 6 nor n(a)da change 

appreciably over the the important narrow band of radii around the resonance 

radius. Then n(a) may be factored out of the integration. Also, the substitution is 

made 

q = ( f R / f ) - 1 = (a  / a g ) - 1 (8.3.10) 

where q is small number, and dq = da/aR. 

For the convenience of using a known definite integral, the integration over q 

is extended from - c ~  to +c~, and we have the backscattering cross section per 

unit volume, due to bubbles, 

a (+~ aR dq _ r t a 3 n  (a) 
Sbs = (aR) 2 n ( ),1_= (2 q)2 + 82 - 28 R (ka < 1) (8.3.11) 

A similar integration is used for the extinction cross section (next section). 

Numerical integrations have been compared with the approximation Equation 

8.3.11 by Medwin (1977), Commander and McDonald (1991), and Sarkar and 

Prosperetti (1994). The accuracy of the approximate integration depends on the 

assumed ocean variation of bubble density with radius, and the frequency of 

interest. In the cases studied, the errors are a few percent. Proper calculation of 

the backscatter for bubbles larger than ka = 0.1 would require integration over 

directional patterns, such as shown in Fig. 8.1.1. 
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Since most bubbles are close to the ocean surface, another factor that affects 

the ocean measurement of [tips]Reverb, or its inversion to obtain bubble densities 

by remote backscatter, is the proximity of the bubble to the sea surface and the 

roughness of the surface. The total picture of backscatter includes consideration 

of four paths: 1) direct backscatter from the bubble region; 2) bubble scatter that 

is then backscattered from the sea surface to the source; 3) insonification of the 

bubble by sound scattered from the sea surface; 4) the path from surface scatter to 

bubble, back to surface, and finally back to sound source. The answer, which 

depends on the assumption of the surface roughness effect, has been considered 

by Clay and Medwin (1964), McDaniel (1987), and Sarkar and Prosperetti 

(1994). 

A further important factor is the dependence of the bubble reverberation on the 

sonar beam and ping characteristics. Since the bubble density n(a)  is known to be 

strongly dependent on depth (sections 8.4.1 and 8.4.2), the insonified volume 

must not be large if the backscatter is to be inverted to yield bubble density with 

good spatial resolution. Sonars that are far from the scatttering region can provide 

only gross average values of the bubble densities. 

8.3.2 E X C E S S  A T T E N U A T I O N  

The presence of upper ocean bubbles, each with absorption and scattering cross 

sections, causes extra attenuation beyond that described in section 3.4. 

Bubbles  of  One Size 

Assume that we have water containing N bubbles of radius a per unit volume. 

Assume, also, that the bubbles are separated enough so that there are no 

interaction effects. Effectively, this is true when the separation is greater than the 

square root of ac. (Sometimes a stronger criterion is used--separat ion greater 

than the wavelength.) 

If the incident plane-wave intensity is li,,,, the power absorbed and scattered 

out of the beam by each bubble is lin,.~y e,  where or,, is calculated from Equation 

8.2.36. The spatial rate of change of intensity is 

d l  - line (Ye N (8.3.12) 
d x -  

Integrating, 

I (x )  = li,,, , exp ( - a c N x )  (8.3.13) 
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After traveling a distance x, the change in intensity level will be 

AIL(dB) = 101ogl0 \/i-~-c j - lOaeNxlogloe (8.3.14) 

The spatial attenuation rate due to bubbles is 

A/L 
~b (dB/distance) - ~ = 4.34O'eN (8.3.15) 

X 

where the units are generally ~b in dB/m, o e in m 2, and N in m -3. 

Bubbles of Many Sizes 

When there are bubbles of several sizes, the number per unit volume must be 

defined in terms of the number in a radius increment (typically, one micron) as 

number of bubbles of radius between a and a+da 
n(a) da - volume (8.3.16) 

The extinction cross section per unit volume, Se, for sound traversing a random 

mixture of noninteracting bubbles in the range ka < 1 is calculated by using 

Equation 8.2.36 in the integration 

S e - ffen(a) da = 4rca2((~/(~r)n(a) da 
[OCRff)2 _ 112 + ~2 

(8.3.17) 

This S e replaces fie N in Equation 8.3.15 to give the expression for the 

attenuation rate owing to a mixture of bubbles of ka < 1, 

c~ b - 4.34S e dB /m (8.3.18) 

In some bubble determinations at sea, one seeks the bubble density n(a)da 

from the results of an attenuation measurement by inverting Equations 8.3.18 and 

8.3.17. The simplest approximation is to assume that the major contribution to the 

attenuation is near the resonance frequency. As shown in the derivation of 

Equation 8.3.11, Wildt (1946, p. 470) assumes that only bubbles close to 

resonance contribute to Se, and that the bubble density and the damping constant 

are constant over that interval. Using our notation, the approximate value is 

2rc2a3n(aR) 
S e = (8.3.19) 

6R 
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Therefore, from Equation 8.3.18 and using Equation 8.3.19, in an extinction 

experiment an approximate value of the bubble density at the resonance 

frequency n(aR) is obtained from 

85"7a3n(aR) (8.3.20) 
~ b  - -  ~R 

Numerical integration will give a better value than this approximate theory. See 

Sarkar and Prosperetti (1994) for some possibilities. 

A graphical solution can also be used to find Se when one knows the 

dependence of bubble density on the bubble radius. At sea, it turns out that 

dependences in the range of a -2 to a - 4  a r e  possible for certain realms of bubble 

radius (see Figs. 8.4.4 and 8.4.5). 

A graphical calculation is shown in Fig. 8.3.1. Assume that the insonification 

is by a plane wave of frequency 50 kHz. In the graph at the left there is a plot of 

the single bubble extinction cross section, a e, as a function of bubble radius (see 

the left ordinate). In this same graph, there is a plot of bubble density n(a)da that 

is assumed to vary a s  a - 4  (see the right ordinate). In the graph on the right the 

product of the curves, aen(a ) da is drawn. The total values Se will be given by the 

\ n(a) da 10 10-' F 

1 0  
F 

10-5 - 102 

,~ = 10-3 
~_~ 10 -6 - 10 = 

Oe 

10 -7 - 1 U ~ 10-4 

i \ , i  
[ I t [ J I 1 10 a R 102 103 

10-810 a R 102 103 104" 

a (~ tm)  a (I . tm) 

Figure 8.3.1 Left, log-log graph of extinction cross sections per bubble, a e, for 50 kHz 
insonification (ordinate at left side) and n(a)da bubble density proportional to a - 4  

(ordinate at right side). Right, the product of a,, and n(a) da is calculated from the graph on 
the left. The area under the curve in a linear-linear graph would be Se. 
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areas under the curves (when replotted on a linear graph, of course). The strong 

dominating contribution of aen(a ) da near the resonance radius is quite clear. The 

dependence on n(a) da has been discussed by Commander and McDonald (1991). 

8.3.3 S O U N D  S P E E D  D I S P E R S I O N  A N D  W O O D ' S  E Q U A T I O N  

Single Radius Bubbles 

From Equation 2.5.7, the speed of longitudinal waves in a fluid medium may be 

written as 

EA 1 (8.3.21) 
c ~ -  PA - PA KA 

where KA = 1/EA is the compressibility of the ambient medium (fractional 

change of volume per unit applied pressure, Pascals -1) and PA is its density. The 

presence of a small void fraction of bubbles (e.g., fraction of gas in bubble form 

to volume of water) < 10 -5 has a negligible effect on the density, but it has a very 

significant effect on the compressibility. 

In bubbly water the compressibility is made up of a part due to the bubble-free 

water, Ko, and a part due to the compressibility of the bubbles themselves, Kb: 

K A = K o + K b (8.3.22) 

The compressibility for the bubble-free water is a function of the speed in 

bubble-free water, 

K0 - 1 
P0 C2 (8.3.23) 

For now, assume all bubbles have the same radius a, and that ka < 1. The 

compressibility of the bubbles is found in terms of the displacement when 

insonified by an incident plane wave (Equation 8.2.39b), 

Kb = (AV/v) N A y  NS~  N S  2 

A P - A P  - Pinc eic~ = mo)2[( - 1 + ~~ iRm/'(o~m)] (8.3.24) 

where N is the number of bubbles per unit volume, Av is the change of volume 

and S = 4rca 2 is the surface area of each bubble, and ~ is the radial displacement 

of the bubble surface. 

To simplify, we use 6 = RM/(com ) and also define the frequency ratio, 

Y = m R / co (8.3.25) 
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After multiplying numerator and denominator by the complex conjugate, we 

obtain 

where 

Kb = N 4 rt a (y2)12 = Ko(A - iB) (8.3.26) 
9A 0)2[( Y 2 -  1 + 

A -  ( y 2 - 1 )  4~zaNcg and B -  6 4~zaNcg (8.3.27) 
( y 2 _ 1 )  2+~2  092 ( y 2 _ 1 )  2+62  092 

From Equations 8.3.21 and 8.3.26, the speed in bubbly water is 

( 1KA)I/2 (= l )1/2 = C O 
CA = Pa PA (Ko + Kb) (1 + A - iB) 1/2 (8.3.28) 

where we assumed that PA '~ PO" 

The propagation constant is 

ka = CO = o) (1 + A -  iB) '/2 (8.3.29) 
c A c 0 

Assume that the correction is small compared with unity, so that the first terms 

of the Taylor expansion may be used to replace the square root, 

kA = ko ( l + ~ - i ~ )  (8.3.30) 

The plane wave propagating through the bubbly medium is 

Pin," = Pine eikax -- Pin," exp ( - k i m x )  exp [i(09t - krex)] (8.3.31) 

where 

kim = k o ( B / 2  ) 

kre = ko(1 --3 I-- A / 2 )  
(8.3.32) 

The imaginary part of the complex propagation constant represents the 

attenuation of the wave: this was called ah earlier. The real part is the wave 

number for the propagation of constant phase surfaces at the dispersive speed 

 0/kre. 
This empirical presentation is a very much simplified form of the Kramers- 

Kronig relation, which was originally developed to show the connection between 

dispersion and attenuation of electromagnetic waves. A recent application of the 

K-K relation to sound propagation in a bubbly medium has been given by Ye 

(1997). Calculations of ab and Re {c} are given by Farmer et al. (1997) for an 

assumed bubble density. 
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From Equation 8.3.32, the speed in bubbly water is a function of frequency: 

Re{c} --kre - c o 1 - ( y 2  _ 1) 2 _o r_ 62 L ...... (O  2 j (8.3.33) 

It is useful to write the speed in fractional terms of volume of gas in bubble 

form divided by volume of water. This is called the void fraction, U: 

U = N ( 4  x a 3) (8.3.34) 

{ r,  2-1, 1 3  21} 
Re{c} -- c o 1 - L(Ye ~ 1~- 2 ~ 02 L2a2k2 j (ka < 1) (8.3.35) 

where k R = OR/C o is the value of ko at resonance. 

Graphs of the relative change in sound speed predicted by Equation 8.3.35 are 

plotted in Fig. 8.3.2 for two different densities of bubbles of the same radius. The 

dispersion curves show that at incident frequencies below the bubble resonance 

I n 2 ( a  ) 

- ~ _ - 0 . 5  _ . . _ . ~ 0 . 6  0.7 11.8 " 0.9 ~ 1.0 i' 1}I ' 1!2 1!3--"--~ 1!4 ~' 115 ~ 
- - "  ' = " "  ~ ] i  t f / f .  ~ ' 

CY 

i 1~I I I n(a)  -- B U B B L E  D E N S I T Y  

|| I k 1 n2(a) > n l (a )  

. ~ ~ . ~ / ~  / ~ j ~  ~Jc(n(a)) 

(l+SR) -'a (1-SR) -'a 

Figure 8.3.2 Above, sound speed dependence on frequency for two different bubble 
densities in a liquid containing only one bubble size. Below, standard deviation of the 
sound speed dispersion as a function of change in bubble density, ac[n(a)], and as a 
function of resonance frequency change due to variation of ambient pressure above the 
bubble population, ac (fR). (From Medwin, H., J. Fitzgerald, and G. Rautmann, "Acoustic 
miniprobing for ocean microstructure and bubbles," J. Geophys. Res. 80, 405-413, 
1975b.) See also Wang and Medwin (1975). 
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frequency, the relative differential sound speeds, Ac/c  o, are below the value for 

bubble-free water, and approach a negative asymptote. Incident sounds of 

frequencies above the bubble resonance frequency reach a peak sound speed and 

then decrease to approach the speed in bubble-free water as the frequency 

becomes very large. 

The limit of the dispersion curves (Fig. 8.3.2) at high frequencies is 

chf -- Co [1 + 1 --+ Co; f ~ fR 
2aZk2(1 + 6 2) 

(8.3.36) 

Therefore, bubbles do not affect the sound phase speed if the frequency is high 

enough. This explains why commercial sound velocimeters, which use megahertz 

frequency pulses to measure the travel time over a fixed short path, do not 

recognize the dispersive effect of bubbles. Sound velocimeters provide Ca = Co 

even in bubbly water because at 1 MHz, f  >> fR for all significant bubble fractions 

in the sea. 

The limit at low frequencies is 

( 3u ) 
ctf : c o 1 2a2k 2 ; f "~ fR (8.3.37) 

Since akR is a constant for a given gas at a given depth (for an air bubble at sea 

level akR = 0.0136 from section 8.2.4), the low-frequency asymptotic speed 

depends only on the void fraction, U. The simple approximations above are 

acceptable for U < 10 -5 and ka < 1. 

Multiple Radii Bubbles 

Using the same approximations, the generalization to the multiradii bubbles of 

the ocean medium is accomplished by replacing N by n(a) da and U by u(a) da in 

the previous development. Because all contributions to the compressibility are 

very small quantities, they add linearly, and the speed of sound in the bubbly 

region can be written in terms of the integral over all radii: 

Re{c} - c o 

(y2 1) 3y2u(a) da 

Ja -- 
1 - ( y 2  - 1 ) 2 _~_ 62 (8.3.38) 
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For values of U greater than 10 -4, the approximation of Equation 8.3.30 is 

inadequate, and consequent predictions of Equations 8.3.35 and 8.3.38 are 

incorrect. Hall (1989, Appendix 2) and R. Goodman (personal communication, 

1997) have proposed alternative expressions that work for U > 10 -4 provided 

that n(a) da is known over the entire range of the integration. The low-frequency 

asymptotic value can be obtained by use of Wood's Equation, which is valid for 

all void fractions and does not require a knowledge of n(a)da. 

Wood' s Equation 

When n(a)da is not known, there is a simple technique to find U for any void 

fraction because the low-frequency asymptotic value of the speed in Fig. 8.3.2 is 

dependent only on the fluid "zero frequency" compressibility due to bubbles and 

the density. 

Following Wood (1955), let Pb and Pw represent the densities of air in bubbles 

and in water, respectively, and let Eb and Ew be the bulk moduli of elasticity of air 

and water. Since U is the fraction of air by volume, (1 - U) is the fraction of 

water by volume. For bubbly water, we first express the average density, PA,  and 

the average elasticity, EA, which are needed to determine the speed at low 

frequencies, as follows: 

PA -- UPb + (1 -- U)p w 

1 U 1 - U  
_ _  ~ .  _ _ . . . ~ _ ~  

EA Eb Ew 

c,f -- [UE w + (1 - U)Eb][UPb + (1 - U)Pw] 

(8.3.39) 

For bubble-free water, Ew is calculated from Pw and Cw given in section 3.3.1. 

For the bubble gas, one uses c 2 - A p / A p  with p p - ~ ' -  constant for adiabatic 

propagation in a gas to obtain E b - "YPA. 

When the low-frequency asymptote of the sound speed is experimentally 

determined in any mixture of bubbles, U can be calculated from Equation 

8.3.39. 

The approximate equation (8.3.37) for noninteracting bubbles agrees with 

Wood's Equation when U < 10 -5. Feuillade (1996) has shown that, although 

interactions are important if the bubble sizes are identical, there is no significant 

interaction effect for a mixture of bubble radii, as exists in the sea. 
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8.4 Active Measurements in Bubbly Water 

8.4.1 TECHNIQUES FOR LINEAR BUBBLE COUNTING 

Remote Sensing by Backscatter 

Determinations of bubble density by backscatter sometimes use an upward- 

looking source and receiver at the same position on the sea floor and follow an 

analytical development such as in section 8.3.1. Sometimes the transducers are on 

a ship, underwater vehicle, or buoy (e.g., L~vik 1980; Vagle and Farmer 1992). 

Segments of the backscattered sound are received by opening and closing an 

electronic gate in the receiving system, as described in Chapter 4. The advantage 

of remote sensing is that the bubbly medium is undisturbed by the intrusion of 

equipment. A major disadvantage is that the illuminated volume is generally 

quite large and poorly defined. The axial extent is limited by the windowing 

procedure; the cross-sectional extent depends on the divergence of the sound 

beam and the range. Therefore the backscatter comes from a spherical cap which 

covers more than one depth. Since the bubble populations are sensitive functions 

of depth, the divergence of the beam produces an undesirable averaging over a 

range of depths. Another disadvantage is that it is necessary to correct for the 

attenuation of the signal before and after it acts in the scattering region. 

In-situ Sensing 

Several techniques, originally used in physical acoustics laboratories to 

determine the ultrasonic characteristics of liquids or solids, have been brought 

to sea to measure the acoustical characteristics of bubbly water. "Linear bubble 

counting" depends on the distinctive dispersive sound speed, attenuation and 

backscatter in the bubbly parts of the ocean. 

The Pulse-Echo Technique. (See Barnhouse et al. 1964; Buxcey et al. 

1965; and Medwin 1970), several cycles of a high-frequency sound are emitted 

from a piston transducer and returned by reflection from a nearby plane-rigid 

plate, (Fig. 8.4.1, left). After emission the source transducer is switched 

automatically to receive, and the decreasing amplitude of the series of reflections 

of the ping is measured (Fig. 8.4.2). The attenuation due to normal absorption and 

diffraction of the ping is first calibrated in a tank of nonbubbly water. The 

increased attenuation at sea is attributed to bubble absorption and scatter of sound 
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Figure 8.4.1 Experimental schemes for measuring bubble densities and void fractions at 

sea. The set-up at the left is drawn for a pulse-echo system. When the source and receiver 

are at separation less than the plate diameters, the device may also be used as a standing 

wave resonator system. The scheme at the right is for measuring the amplitude and phase 

changes for propagation past two or more hydrophones. The device is oriented vertically or 

horizontally. (From Clay and Medwin, 1977.) 

Figure 8.4.2 Oscillograms of pulse-echo signals. The multiple echoes at the left are for 

sound frequency 200 kHz. The right top shows two ehoes of a 30 kHz signal, with the 

transient backscatter between them. Right center is the amplified backscatter between 

echoes. Right bottom is the background noise. (From Clay and Medwin, 1977.) 
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out of the system (section 8.3.2), and the average bubble density is calculated for 

the region traversed by the pulse. 

An added feature of the pulse echo technique is that backscatter can be 

detected separately, and measured, between the times of the echoes (Fig. 8.4.2). 

The backscatter occurs while the ping is traveling away from the transducer. It 

has the appearance of a tapered signal because the solid angle viewed by the 

receiver becomes smaller as the ping moves toward the reflector. 

A third feature of the pulse-echo system is that the time between pulses can be 

used to determine the speed of the pulse, provided the phase shifts at the 

transducer and reflector have been calibrated. 

In the pulse-echo system it is necessary to have clean pulses that are replicas of 

the applied voltage, without the transient growth and decay characteristic of most 

transducers. The desirable low Q source used in the Buxcey et. al. (1965) 

experiments was a Mylar electrostatic transducer. This has an output acoustic 

pressure proportional to the applied voltage and a receiving voltage sensitivity 

that is inversely proportional to the acoustic pressure at the face over a wide range 

of frequencies. When used in the send-receive mode, its electro-acoustical 

transducer performance is therefore independent of frequency to about 200 kHz 

in this version. 

The Resonator Technique. If the source/receiver plate and reflector (Fig. 

8.4.1) are close compared with their diameters, and the sound is CW, the source 

and reflector act as a leaky one-dimensional multifrequency resonator. When a 

"white noise" CW sound that covers a broad range of frequencies is radiated 

from the source, a series of standing waves (section 2.4.3) is formed in the 

resonator. The frequencies of the standing waves are a nearly harmonic series. 

The amplitudes and breadths of the standing wave responses at these frequencies, 

measured at the plate pressure antinode, depend on the system attenuation and the 

bubbly medium absorption between the plates. The resonance Q at sea is 

compared with the laboratory calibration to obtain the bubble density within the 

resonator at that frequency (see Fig. 8.4.3). Breitz and Medwin (1989a) describe 

the equipment and the calculation. Medwin and Breitz (1989b) give experimental 

results and comparisons with other measurements at sea. In addition to the bubble 

density determination, it is also possible to calculate the dispersion of the sound 

speed from the absolute frequency of the harmonics and the corrected separation 

of the plates. 

Cartmill and Su (1993) have used the resonator technique in a very large 

wave-making facility. They show that the number density of bubbles from 35 to 

1200#m radius produced by breaking waves in salt water is an order of 
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4 ~ 7 

Figure 8.4.3 Left, schematic of the standing wave during calibration of the resonator at 
the fourth "harmonic" as used by Breitz and Medwin, "Instrumentation for in-situ 

acoustical measurements of bubble spectra under breaking waves," J. Acoust. Soc. Am. 86, 
739-43 (1989). The source is a solid dielectric fiat plane capacitor, 1, backed by an 
aluminum plate, 2, in a plexiglas base, 4. The receiver is a probe hydrophone, 3. The 
reflector consists of a constrained damping layer between two aluminum plates, 5. A 
counted array of bubbles, 7, from a capillary, 6, is swept through the standing waves of the 
resonator by oscillating the capillary tube. Right, 9 resonance peaks from 20 to 70 kHz 
during calibration with bubbles (blackened) and without bubbles (outlined). The changes 
of heights and breadths of the peaks are used to determine the sound absorption at these 
several frequencies; for the calibration, the number of bubbles is calculated and compared 
with the visually counted bubbles. 

magnitude greater than in fresh water for the same wave system. Farmer et al. 

(1997) have mounted five resonators (depths 0.7, 1.3, 1.9, 3.3, and 5.5 m) on a 

vertical frame to obtain simultaneous sound speed dispersion and void fractions 

for radii 20 to 500 #m during 12 m/s winds at sea. 

Fig. 8.4.4 is an example of the range of bubble densities that have been 

measured under breaking waves at sea. Even in quiescent coastal waters, 

densities as great as 103 to 105 bubbles within a 1 micron radius (say, between 30 

and 31 microns) per cubic meter are not uncommon near the sea surface and in 

coastal waters. Because bubble density is sensitive to ocean parameters, its 

measurement  can reveal a wealth of information about physical, chemical, and 

biological processes in the volume and on the sea floor. 

The Direct Transmission Technique. The simplest of all techniques uses a 

source to radiate sound to two or more nearby hydrophones (Fig. 8.4.1, right). 

The signal received at each hydrophone is analyzed by Fast Fourier Transform to 

yield the amplitude and phase. The ratio of the amplitudes gives the attenuation; 



326 8. Bubbles 

10 1-0 3 

Figure 8.4.4 Resonator determinations of bubble densities at sea during a 12 m/s wind 
in the Gulf of Mexico. The ordinate is number of bubbles/m 3 in a 1 micron radius 

increment. Simultaneous measurements were made at 36 frequencies to yield 36 bubble 

densities for radii from 15 #m to 450/~m every 2 seconds during a 2-minute interval at each 

of five depths (not all results are shown). Data at the two depths shown are for increasing 
air fractions due to breaking waves as time progressed. The curves are smoothed between 

the data points." (D. Farmer, personal communication, 1997.) 

the difference of the phases, corrected for the whole number  of periods, provides 

the speed of propagation. When the propagation experiment  uses a complex 

signal such as a sawtooth wave, the bubble densities and dispersion can be 

evaluated simultaneously for several bubble radii. See Medwin (1977). 

Comparison of In Situ Bubble-Counting Techniques 

The direct transmission technique involves measurements  of both extinction 

(scatter and absorption) and dispersion. The pulse-echo technique has a lesser 

dependence on scatter than direct transmission because some of the scattered 
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energy is retained between the plates. The nearly closed resonator leaks only a 

small fraction of the scattered energy and is thereby almost a pure bubble 

absorption device. The resonator largely avoids the "noise"  due to scattering 

from bubbles that are larger than the resonating bubbles (see Fig. 8.2.4, left). 

All bubble-counting techniques must be calibrated by use of a known 

bubble stream, which may be obtained by electrolysis or from a pipette fed 

with pressurized gas. Results of field measurements are more trustworthy when 

two of the bubble effects are measured and compared at the same t i m e - - f o r  

example, scatter and extinction, absorption and dispersion, extinction and 

dispersion--and the K-K relation shows their compatibility. 

8.4.2 DEPENDENCE OF BUBBLE DENSITIES ON WINDS, PLACE, 

AND TIME 

Bubbles are generated by many physical, biological, and chemical actions. Avast 

range of bubble densities have been measured under different conditions. 

Measurements, to date, have demonstrated the dependence of bubble densities on 

water depth, bubble depth, time of day or night, wind speed, rainfall, cloud cover, 

season of year, presence of sea slicks. 

Some results obtained in coastal waters are shown in Fig. 8.4.5; these are a) 

increased bubbles caused by increased breaking waves at higher wind speeds; b) 

seasonal dependence of increased biological activity in coastal waters; c) more 

common smaller bubbles in daylight due to photosynthesis; d) more common 

larger bubbles at night, possibly due to offshore winds ("sea breeze") dropping 

continental aerosols, which trap bubbles when they fall into the sea, or biological 

activity on the sea floor. 

Bubbles cause frequency-dependent ray refraction near the sea surface. 

Because the bubble density increases as rays approach the surface (see Fig. 8.4.5) 

low frequencies are refracted and reflect at more nearly normal incidence. There 

is a lesser effect in the opposite direction for higher frequencies. Wave guide 

modes (Chapter 11) are also distorted by the varying dispersion near the ocean 

surface. To predict these acoustical behaviors, it is useful to provide some 

guidelines that take account of the dependence of average bubble densities on 

bubble radius, experiment depth, and wind speed. Rough empirical formulas that 

have been published, or can be extracted from published graphs, are in Equations 

8.4.1 through 8.4.9. 
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Figure 8.4.5 Wind, season, depth, and diel dependence of bubble densities. Left, average at 4 m depth, winds 6 knots (3 m/s) and 10-11 

knots (5 to 6 m/s) in water of 40m depth, Monterey Bay, California. Center, daytime average at different seasons; data from two coastal 

locations (San Diego Mission Bay water depth 20m, Monterey water depth 40 m) at similar distances below the surface and low wind speeds 

(1 to 4 m/s). Right, diel variations, February off San Diego, as a function of depth and day/night (day, open symbols; night, closed). (From 

Medwin, H., "In-situ acoustic measurements of bubble populations in coastal waters," J. Geophys. Res. 75, 599-611, 1970, and "In-situ 

measurements of microbubbles at sea," J. Geophys. Res. 82, 971-76, 1977a.) 
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Figure 8.4.6 Early average sound speed dispersions with standard deviations shown by 
vertical bars. The dashed line data were taken 3.3 m below the surface in water 15 m deep, 
1 mile from shore off San Diego, during 6 knot winds. The solid line data were 5 m below 
the surface, close to an ocean tower in Bass Strait, Australia, during 8 to 10 knot winds. 
(From Medwin, H., J. Fitzgerald, and G. Rautmann, "Acoustic miniprobing for ocean 
microstructure and bubbles," J. Geophys. Res. 80, 405-13, 1975b.) 

For Biological and Continental Aerosol Sources in Near-Calm, Isothermal 

Coastal Waters 

From Fig. 8.4.5, the slope of bubble density versus radius changes at 

approximately 40 to 60 microns bubble radius; there is a depth dependence 

that is different for high frequencies (smaller bubbles) and low frequencies 

(larger bubbles); the density can be described by 

n(a)da = Kl(a/60)-2(z) -'/2 for 2 0 0 # m > a > 6 0  #m (8.4.1) 

and 

n(a)da - K2(a/60)-4e -~/L for 1 0 # m < a < 6 0  #m (8.4.2) 

where a - bubble radius in microns; n(a) da = number of bubbles in a 1 micron 

increment, per m3; L - small bubble folding depth -~ 7 m; z > 1.5 m - depth in 

meters; K 1 and K 2 are constants that depend on the time of day and season. 

To add to the complexity of the coastal situation, there is evidence that bubble 

densities will be greater under sea slicks and windrows, and are even affected by 

the presence of fog. Bubble densities in other locations with different flora and 
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fauna will be very different. (There will also be a wind dependence and a 

dependence on distance from the surf zone, due to breaking waves.) 

For Breaking Wave Sources in Deep Water 

See Novarini and Norton (1994), Hall (1989), and Johnson and Cook (1979). 

where 

n(a)da = 1.6 x 104G(a,z)U(V)D(z,  V) (#m- '  m -3) 

G(a, z) - (alaref ) -s(z) 

spectral slope, 

(8.4.3) 

for a > are f 

s(z) - 4.37 + (z/2.55) 2 

G(a, z) - (a/aref ) -4 

aref(~m ) = 54.4 + 1.98z 

for 10 #m < a < are f 

where 

U(V) - (V/13) 3, wind speed dependence 

where V is the wind speed, m/s, at height 10 m. Also, 

D(z, V) = exp [-z /L(V)] ,  depth dependence 

L, the folding depth, is 

L ( V ) = 0 . 4  for V < 7 . 5 m / s  

L ( V ) = O . 4 + O . 1 1 5 ( V - 7 . 5 )  for V > 7 . 5 m / s  

(8.4.4) 

(8.4.5) 

(8.4.6) 

(8.4.7) 

(8.4.8) 

(8.4.9) 

8.4.3 GAS VOID FRACTION 

The determination of gas void fraction follows from the development of section 

8.3.3. The effect of a mixture of bubbles is to superimpose many curves such as in 

Fig. 8.3.2. Although the details of the average dispersion curves can be quite 

complicated as shown in Fig. 8.4.6, one can still see that there is a low-frequency 

asymptote, which can be used in Equation 8.3.37 to determine the gas fraction, U, 

of the mixture. Also, there is always a high-frequency asymptote, as described for 

bubbles of one radius, at which there is no effect of bubbles on the sound speed. 

The sound speed dispersion can be determined, also, by direct time-of-flight 

measurements over short paths, at several simultaneous frequencies. There is a 
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large variation with time as patches of bubbles move through the transmission 

paths as shown in Fig. 8.4.7. 

8.4.4 SOUND PHASE FLUCTUATIONS 

The temporal variation of bubble densities and bubble radii near the ocean surface 

causes fluctuations in sound speed. A simple explanation follows from Fig. 8.3.2. 

When the number of bubbles of a given radius changes, the dispersion curve for that 

bubble radius moves up and down. Additionally, when the pressure over a bubble 

changes (e.g., during passage of a wave crest or trough), the bubble resonance 

frequency changes, and the speed moves from the positive to the negative region of 

differential speed. The statistics of these changes have been considered by Medwin 

et al. (1975) and Wang and Medwin (1975). Changing patchiness of bubbles 

produces sound phase fluctuations that are Gaussian for frequencies less than 

predominant bubble frequencies. Separately, the variation of ocean pressure over a 

bubble patch with a predominant bubble radius creates sound phase modulations 

that are well-correlated with the time variable surface displacement. The phase 

fluctuation spectrum therefore mimics the ocean wave height spectrum with a slope 

of F -5 over a broad range of ocean spectral frequencies (F is the ocean wave 

frequency). The spectral density of these sound phase fluctuations decreases with 

increasing depth and is a measure of decreasing bubble density. See Fig. 8.4.8. 

The temporal fluctuation of near-surface sound speed has been measured for 

several frequencies as shown in Fig. 8.4.7. At frequencies over 25 kHz, the speed 

is already close to the high-frequency asymptotic value. At lower frequencies, the 

changing speeds, which are substantially below the bubble-free speed, are 

evidence of temporal changes in the void fraction. 

8.4.5 COLLECTIVE OSCILLATIONS AND LOW-FREQUENCY NOISE 

When waves break, particularly in the case of plunging breakers, the cloud or 

"plume" of bubbles that is produced is a region of much reduced compressibility 

and slightly reduced density. The bubble cloud is capable of resonating with 

frequencies that depend on the shape, dimensions, average compressibility, and 

average density, just as single bubbles can. The theory that ambient noise in the 

region f < 500 Hz (section 6.6.1) may be partly due to collective oscillations of 

bubble patches (e.g., Prosperetti 1988; Carey et al. 1993) has been supported by 

several experiments in the laboratory and at sea (e.g., Loewen and Melville 

1991). 
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Figure 8.4.7 Above, Variation of sound speed with time, obtained by direct 

measurement at seven frequencies at depth 5 0 +  l Ocm during 8m/s  wind. (From 

Lamarre, E. and W. K. Melville, "Sound speed measurements near the sea surface," J. 

Acoust. Sot. Am. 95, 1317-28, 1994.) For the lower frequencies, 6, 10, 15, 20, and 25 kHz, 

the asymptotic low speeds were as much as 120 m/s below the value for bubble-free water. 

The calculated void fraction is at the right. A record low sound speed of 700 m/s and void 

fraction of 1.6 x 10 -4 was observed at 5 kHz at another time. Below, seven rapidly 

changing dispersion curves obtained by resonator technique during 30 seconds at depth 

0 .7m with a 12m/s wind measured by Farmer et al. (1997). 
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Figure 8.4.8 Frequency spectra of sound phase fluctuations for 95.6 kHz sound at two 

depths, 3.0 m and 7.6 m, during bubble measurements in Bass Strait, Australia. The log-log 

plot shows that the sound phase fluctuations with slope F -5 compares well with the 

frequency spectrum of the surface wave displacement for a fully developed sea, which also 

has the slope F -5 (see Fig. 13.1.4). These sound phase fluctuations were highly correlated 

with the ambient pressure change owing to passing waves, as described by a C (fR) in Fig. 

8.3.2. This change of the magnitude of the sound phase spectrum with depth could be used 

to obtain the change of the 95.6 kHz bubble densities with depth. (From Medwin, H., 

"Acoustic fluctuation due to microbubbles in the near-surface ocean," J. Acoust. Soc. Am. 

56, 1100-04, 1974.) 
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8.5 Sea Surface Microbubble Production 

8.5.1 B U B B L E S  F R O M  B R E A K I N G  WAVES 

The ambient underwater sound that has been known since World War II as 

"Knudsen sea noise" and which, for 40 years, had been attributed to 

miscellaneous turbulent actions caused by wind at the sea surface is now 

known to be comprised of the damped radiations from newly formed 

microbubbles created by spilling breakers (Medwin and Beaky 1989; Loewen 

and Melville 1991). Fig. 8.5.1 shows two examples of damped pressures due to 

what have been poetically called "screaming infant microbubbles" created by a 

laboratory, freshwater-spilling breaker. The bubble radius is determined from the 

pulsation frequency, which is obtained by reading the zero crossings. The 

observed damping rate, Dh, when used in Equation 8.2.50, gives an experimental 

value of 6 R that is generally within 10 percent of the theoretical damping rate for 

fresh water, calculated from the fir in Fig. 8.2.3. 

At the moment of their creation, the infant microbubbles are shock-excited by 

the sudden radial inflow of water and the simultaneous application of surface 

tension. They then show damped oscillations (Equation 8.2.49) with the damped 

pulsation frequency given by Equation 8.2.48; these single damping bubbles have 

been called Type A1. Sometimes there are two damping rates for a bubble; a 

higher rate of damping due to shape oscillations is followed by the theoretically 

predicted lower rate (Type A2 in Fig. 8.5.1). These relatively simple oscillations 

occurred in about 65 percent of the cases observed in the laboratory. Several other 

types (e.g., Type C in Fig 8.5.1) have been identified, as well as larger bubbles 

spawning smaller bubbles and bubbles that split into nearly equal parts whose 

radiation interfered to cause amplitude pulsations called "beats." 

By placing a hydrophone close to the breaking wave, an individual oscillation 

can be isolated, and the bubble radius can be determined from the frequency and 

the damping constant, Equations 8.2.48 and 8.2.51. This was done during 

intermittent spilling breakers of a wind-driven laboratory freshwater surface by 

Medwin and Beaky (1989) and at sea by Updegraff and Anderson (1991). 

By using two calibrated hydrophones, the differential time of arrival can be 

employed to deduce the position and orientation of the bubbles, so that their axial 

source pressures can be calculated (Daniel 1989). 

One can duplicate the 5 dB/octave slope of what is sometimes called the 

Knudsen "wind" noise by listening to sound from spilling breakers generated by 

a plunger with no wind at all; a rather conclusive proof that Knudsen noise is not 

directly attributable to wind, although it is fairly well correlated to wind speeds! 

(See Fig. 8.5.2.) 
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Figure 8.5.1 Damped microbubble oscillations observed in laboratory study of 
breaking waves. In Type A2 (above), the pulsation frequency was 10.4 kHz (radius 
312 pm) and there were two decay rates. The fact that the first 4 cycles decayed at a higher 
than normal rate was explained by Longuet-Higgins (1992) as due to shape oscillations. 
Initial amplitude was 0.36 Pa, on axis at 1 m. There are two proposed explanations for the 
early part of Type C (below). Possibly it was a bubble that was rapidly moving away from 
the surface; this would initially make its amplitude increase owing to the dipole axis 
becoming larger, and its frequency decrease owing to its increasing distance from the 
surface (see section 8.2.10). Another possibility is that the bubble was initially 
nonspherical and that, as it became spherical, its radiation became more efficient and its 
frequency became lower (see section 8.2.11). Initial frequency was 25.6 kHz; final 
frequency, 11.5 kHz. Peak pressure on axis at 1 m, was 0.33 Pa. (From Medwin, H., and 
M. M. Beaky, "Bubble sources of the Knudsen sea noise spectra," J. Acoust. Soc. Am. 

86, 1124-30, 1989b.) 

Because it is easy in the laboratory to identify the individual damped 

oscillations, one can actually c o u n t  the bubbles within a 1 micron radius 

increment, produced per square meter (Medwin and Daniel 1990). (See Fig. 

8.5.3.) Supported by similar work at sea, it is now clear that the Knudsen sea- 

noise spectrum from 500 Hz to probably 50,000 Hz is due to the cumulative 

sound of damped individual bubble oscillations of a large range of sizes, 

intermittently created by breaking waves. 

In the freshwater study, breaker bubbles of radii 0.050 mm to 7.4 mm were 

observed with resonance frequencies 65 kHz to 440 Hz respectively (Fig. 8.5.3). 

Since it is very close to the surface, an oscillating bubble combines with the 

phase-inverted reflection from the pressure-release surface to radiate as a dipole. 
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FREQUENCY, Hz 

Figure 8.5.2 Laboratory breaking wave spectrum (jagged lines), compared with typical 
Knudsen sea-noise spectral slope 5 dB/octave. The lower graph was obtained during 
continuous recording, the upper graph during intermittent recording when breakers were 
seen over the hydrophones. Breakers were driven by a plunger source with the hydrophone 
24 cm below the surface. The height of the comparison Knudsen spectrum is arbitrary. 
(From Medwin, H., and M. M. Beaky, "Bubble source of the Knudsen sea noise spectra," 
J. Acoust. Soc. Am. 86, 1124-30, 1989b.) 

The peak production was found to be about 6 bubbles per m 2 in a 1 micron radius 

increment at radius 150 mm for these smal l"  spillers." The total gas encapsulated 

by the laboratory breaking wave was 23cm3/m 2, calculated simply from 

the number of bubbles and their volumes. This number is of interest to those 

concerned with the important question of gas exchange at the water surface. 

Loewen and Melville (1991) were able to duplicate the surface sound 

spectrum of Fig. 8.5.2 by combining the bubble production data of Fig. 8.5.3, 

with the assumption that the relative bubble pulsation amplitudes (r  were 

0.015 and the depth of the bubbles was 1.0cm (Fig. 8.5.4). Furthermore, they 

were able to show that, with certain simplifying assumptions, the inverse problem 

could be solved to yield the number of bubbles in a given radius increment from 

the spectral sound of the surface. Although this development was for fresh water 

in a laboratory experiment, it shows promise as an acoustical predictor of ocean 

bubble production under particular conditions of the ocean surface. 
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Figure 8.5.3 Bubbles produced by a spilling breaker in fresh water. About 500 bubbles 
were counted from 10 breakers covering surface areas of an average of 320 cm 2 for this 

graph. (From Medwin, H., and A. C. Daniel, Jr., "Acoustical measurements of bubble 
production by spilling breakers," J. Acoust. Soc. Am. 88, 408-12, 1990.) 

8.5.2 BUBBLES FROM RAINFALL 

Precipitation is an additional source of  bubbles near the sea surface. The impact 

of rain or hail will first create an impulse of  radiation (Fig. 8.5.5). More 

important, this is often followed, after a few milliseconds, by the birth of  one or 

more bubbles, which then radiate sound as described in section 8.2.9, during their 

damped oscillations. The newly created microbubble is generally the source of 

dipole radiation because its wavelength is generally large compared with its 

proximity to the ocean surface (section 4.1.3). 

Raindrops of diameter 0.8 mm to 1.1 mm, which are common in light rain such 

as drizzle, are called "smal l"  drops. They always create bubbles when they fall 

at normal incidence to a plane water surface. This has been proved by 

experiments in the laboratory (Pumphrey et al. 1989), by numerical solution of 
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Figure 8.5.4 Comparison of a predicted sound spectrum (thick line), calculated 

from measurements of bubble production, with the measured laboratory sound spectrum 

(thin line). The model assumed that the fractional radial displacement to radius of the 

bubbles, ~/a, was 0.015 and the depth of the bubbles was I cm. (From Loewen, M. R., and 

W. K. Melville, "A model of the sound generated by breaking waves," J. Acoust. Soc. Am. 
90, 2075-80, 1991.) 

I M P A C T  B U B B L E  

N O R M A L  I N C I D E N C E  D R O P S  

Figure 8.5.5 The pressure signal for the impact sound (left) and bubble sound (right) 
caused by a small water drop of diameter 0.83 mm entering the water at normal incidence 

and terminal velocity. The time between impact peak and bubble peak was 17.7 ms. The 

spacing of the time grid is 400 ps. (From Medwin, H., J. A. Nystuen, P. W. Jacobus, L. H. 

Ostwald, and D. E. Snyder, "The anatomy of underwater rain noise," J. Acoust. Soc. Am. 

92, 1613-23, 1992.) 
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the fluid flow (Oguz and Prosperetti 1990), and analytically by Longuet-Higgins 

(1990). At normal incidence, each of these very special drops creates a shock- 

excited transient bubble of radius approximately 220 microns, and peak pressure 

about 0.5,pascals (at 1 m), which tings at about 14.5 kHz for a few milliseconds 

until its motion is damped to an undetectable level. This is preceded by the impact 

sound, which has a lower amplitude and a very much lower total energy. 

Fig. 8.5.5 shows the relative strengths of the impact and the bubble signals for 

a normally incident small raindrop. The Fourier transform of the impulse alone 

gives a broadband spectrum. The damped oscillation, of constant frequency, 

gives a narrow band spectrum with a band width determined by the bubble 

damping constant. 

But when the angle of incidence moves away from normal, the bubble creation 

becomes less and less likely and the distinctive spectral peak lowers, broadens, 

and shifts to higher frequencies (Kurgan 1989; Medwin et al. 1990). This happens 

when there is a wind, or in the presence of a rough ocean surface. Consideration 

of the entry angle as a function of wind allows one to predict the underwater 

sound of rainfall during drizzle (Fig. 8.5.6). 
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Figure 8.5.6 Light lines are underwater sound levels in a lake during different wind 
speeds. The heavy lines are predictions based on laboratory results for single small water 
drops at oblique incidence into fresh water. In the calculation, the angles of incidence were 
assumed to be the theoretical slopes given by the Cox and Munk relation (Equation 13.1.5) 
for the wind speed measured at the time of the field experiment. (From Nystuen, J. A., "An 
explanation of the sound generated by light rain in the presence of wind," in Natural 
Physical Sources of Underwater Sound, ed. B. R. Kerman; Kluwer Press; Dordrecht, 
Netherlands, pp. 659-69, 1993.) See also Medwin et al. (1992). 
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Laboratory experiments with single drops of diameters 0.8 mm to 4.6mm 

falling at terminal velocities have established that, in all rainfalls at sea, there are 

potentially three ranges of drop diameters with distinctive acoustical 

characteristics (Snyder 1990; Jacobus 1991; Medwin et al. 1992). "Smal l"  

drops, of diameter 0.8 mm < D < 1.1 mm, will produce the characteristic signal 

described above. "Mid-size" drops, 1.1 < D  < 2.2 mm, cause only an impact 

sound, with no bubbles. "Large"  drops, D > 2.2 mm, create a complex splash 

that involves not only a crater but also a large, thin, hemispherical canopy of 

water; an upward moving jet of droplets; and a downward moving jet. Tiny 

droplets of water, "hydrosols," leave from points of the coronet before the 

canopy closes and when it shatters. These jets and droplets produce bubbles, 

which then radiate as dipoles. 

Despite the complexity of the splash from a large drop, one can propose a 

"standard" spectrum of sound for each diameter. The peak of acoustic spectral 
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Figure 8.5.7 Frequency dependence of the peak of the underwater sound spectral 
density for large bubbles created by large water drops falling into fresh water. Closed 
squares, Snyder (1990); open squares, Jacobus (1991). (From Medwin, H., J. A. Nystuen, 
P. W. Jacobus, L. H. Ostwald, and D. E. Snyder, "The anatomy of underwater rain noise," 
J. Acoust. Soc. Am. 92, 1613-23, 1992.) 
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density is a function of the drop diameter (Fig. 8.5.7). A dependence on salinity, 

temperature, and water surface slope has been demonstrated by Jacobus (1991) 

and Miller (1992). 

The shape of the underwater sound spectrum provides a characterization of the 

type of cloud, stratiform or cumuliform, from which the rain came. The 

meteorological characterization is not really mysterious: stratus are low clouds 

that produce predominantly small drops of rain, "drizzle." These cause small 

oscillating bubbles and a narrow spectrum with a predominant peak around 

15kHz. Cumulonimbus clouds have strong vertical air currents that allow 

raindrops to grow to large diameters before they fall into the sea, where they 

create larger bubbles and radiate a broad sound spectrum. 

One can obtain the drop size distribution (and total rainfall rate) by inversion 

from the spectrum of the underwater sound (Nystuen 1996). 

8.6  B u b b l e s  in S e d i m e n t s  

By the 1950s, seismic exploration geophysicists had extended their activities to 

offshore and lakes. In some areas, instead of getting the usual reflection records 

that showed subsurface structure, the records "rang like a bell" (Werth, Liu, and 

Trorey 1959; Backus 1959; and Levin 1962). Levin's extensive measurements in 

Lake Maracaibo, Venezuela, showed that there was near-perfect reflection off a 

pressure-release bubbly layer at the ocean floor. Independently, signal theorists in 

competing laboratories described the ringing as due to the upward traveling 

reflection signals being multiply reflected in the water layer (see Backus 1959). 

Clay (1990) gives an elementary treatment of optimum methods used to sort out 

the signal. Sonar detection of bubbles rising through the water column 

(McCartney and Bary 1965) awakened geophysicists and acousticians to the 

fact that there are significant inclusions of bubbles in ocean and lake sediments. 

Several thousand gassy areas have now been identified in the sediments of the 

Gulf of Mexico, Southern California coastal regions, and the Bering Sea 

(Anderson and Bryant 1989); undoubtedly, many others will be found as 

geophysical prospecting continues in the oceans of the world. 

The acoustical consequences of bubbly sediments are substantial: the sound 

velocity can be significantly lower than for the water medium, and even more 

divergent from the expected sediment velocity; the attenuation, principally owing 

to scattering through the sediment, can be great enough to prevent sound 

penetration in geophysical oil exploration (Fig. 8.6.1). 
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Figure 8.6.1 Minisparker profile of the Texas continental slope. The figure shows 
regions where the backscatter is "wiped out," as well as reflection terminations and 
"acoustically turbid" zones, where there is reverberation owing to multiple scatter from 
bubbles. (From Anderson A. L. and W. R. Bryant, "Gassy sediment occurrence and 
properties: Northern Gulf of Mexico," Geo-Marine Letters, 10, 209-10, 1990.) 

The smaller sediment bubbles (radii less than 1 mm) are expected to be 

spheroidal. The larger bubbles have been identified by X-ray-computed 

tomography of enclosed cores brought to the surface without change of original 

pressure (Orsi et al. 1994). The X-ray-computed tomography technique is 

sensitive to bulk density and has a length resolution of 1 mm. The larger bubble 

shapes are described as similar to a "coin on edge" (Fig. 8.6.2), so they are 

approximated as prolate spheroids in theoretical calculations of the acoustic 

effect. Gas fractions as great as 4.5 x 10 -2 have been measured by this means. 

In lake sediments, the predominent gas is methane. At sea, most of the bubbles 

analyzed appear to be due to anaerobic bacteria acting on organic matter to 

release predominantly hydrogen sulfide at the shallower depths into the sediment 

and methane at depths greater than a few decimeters. Another significant source 

of sea-floor bubbles is the natural "cracking" of organic material buried to great 

depths (and thereby great temperatures); these travel from great depths to the 

sediment via sea-floor faults. These "thermogenic" sources of methane are of 

great interest to the petroleum industry. The acoustical evidence of gas pockets is 

a function of sound frequency. In accordance with the Rayleigh law of scattering, 
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Figure 8.6.2 Horizontal slice through a core from Eckernfoerde Bay, Germany. The 
bubbles were at depth 38 cm. From Abegg et al. (1994). 

lower frequencies do not backscatter from the smaller (2) bubbles. Penetration to 

greater depths is achieved because of the lesser attenuation owing to both scatter 

and absorption. 

The definitive papers by Anderson and Hampton (1980a, 1980b) lay out the 

reason for bubble formation and the effects on sound propagation. For simplicity, 

one starts with the assumption that the bubble is spherical and the sediment is a 

slurry of particles in water. Bubble oscillations in water-loaded sediment differ 

from those in free water by the added visco-elastic forces due to the sediment 

frame. This produces an increased stiffness term and an added dissipation term, 

represented by a complex dynamic shear modulus. The real part of the dynamic 
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shear modulus affects the resonance frequency of the bubble (compared with free 

water), and the imaginary part enters into the bubble damping constant. (The 

dynamic shear modulus of an elastic body is the ratio of the shearing stress to the 

shearing strain; the shear modulus is complex when there is a phase relation 

between the applied stress and the resulting strain.) The derivation of the 

equations is in Weston (1967). 

The equation for the resonance frequency, (compare with Equation 8.2.27) 

given by Lyons et al. (1995) may be written 

1 ~/(3yb~SpA)+4G 
f n s - 2  rt a Pa 

(8.6.1) 

where fRs is the resonance frequency for a bubble in sediment and G is the real 

part of the complex dynamic shear modulus G* = G + iG'. 

The other constants were defined in section 8.2, except that PA, the ambient 

density, is here the density of the sediment. 

In general, the sediment shear modulus term (4G) in the numerator is greater 

than the bubble gas elastic restoring term. As a result, the resonance frequency of 

the bubble in sediment is greater than for the equivalent bubble in water. 

Equation 8.6.1 must now be corrected for the eccentricity of the generally 

ellipsoidal bubble shapes in sediments. A correction scheme that depends on the 

relative area to volume of the elllipsoid was introduced by Weston (1967) and 

applied by Lyons et al. (1995) for the type of bubbles identified by X-ray- 

computed tomography in sediments (e.g., as in Fig. 8.6.2). 

The damping constant for a pulsating bubble in a water-filled sediment, 6s, 

which is dependent on the imaginary component of the shear modulus, is much 

larger than the viscous term, 6v, for a bubble in water (compare with Equation 

8.2.29). It thereby causes a wider resonance curve (lower Q) than for the 

equivalent bubble in water. The damping constant is given as 

4 G '  

~f = PA f-02 a2 
(8.6.2) 

By using measurements of the density and character of the bubbles observed 

by X-ray-computed tomography, Lyons et al. (1996) have been able to explain 

the detailed reverberation and attenuation that is observed in sonar backscatter 

from a bubbly sediment such as in Fig. 8.6.1. 
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Problems 

8.1.1 Sometimes it is assumed that, when insonified by a plane wave, the 

bubble scatter directivity at ka - 1 is approximately omnidirectional. Compare 

the scattering cross section for the actual directivity at ka - 1 (Fig. 8.1.1) with 

the omnidirectional scattering cross section to see what the error is in this 

assumption. Hint: Do the integration numerically, using axially symmetric 

spherical coordinates. 

8.1.2 Calculate the directivity pattern, as in Fig. 8.1.1, for k a -  15. 

8.1.3 Integrate the directivity patterns of ka - 2, 5, 10, and 20 to find the total 

scattering cross section in each case. Compare with ka - 1 and ka = 0.5, which 

are closer to omnidirectional. 

8.1.4 Use the lumped constant approach to calculate the m -  0 radial, 

cylindrical pulsation frequency for an air-filled cylinder. Hint: The cylindrically 

radiated pressure is inversely proportional to r 1/2, and the derivation is done in 

terms of the mass per unit length and the stiffness per  unit length. 

8.1.5 This problem uses Anderson's solution for the fluid sphere in a fluid 

medium (section 7.5.3). a) From examination of the scattering length for a 

sphere, show why Cm - 0 gives the local maxima of ILl due to resonances, b) 

Show why the zeroth mode is spherically symmetric and the others are not. c) 

For the small ka region and m -  0, one can use [ k a l ~  1 approximations to 

develop a relatively simple algebraic expression for calculations of the scatter- 

ing length. Use small ka expansions of the spherical Bessel functions jo(x), no(x), 

jl(x), and nl(x) to derive small ka expressions for Co and L and obtain 

1 - 3 g h  2 / ( k a )  2 and ooba - v/3gh 2 
Co ~ - ka 

and 

ia a 
s  = for ka<O.1 ] 1] 

Hints" k 1 = k / h , f  o - - E j l  , and n~ -- - n  1 . d) The adiabatic sound speed in a gas 

is c - (7 P/P)  1/2, where 7 is the the ratio of the specific heats. Express o9 b using 

the adiabatic sound speed, e) What limits the peak value of L? f) Compare a 

graph of this approximation for L with the scattering from a gas sphere shown in 
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Figs. 8.1.1 and 8.1.2. What are the upper limits of ka for the error of L in 

backscatter and directional scattered amplitude to be less than 5 percent? 

Section 8.2 

8.2.1 Assume that surface tension is a significant restoring force, and 

recalculate the stiffness and the resonance frequency. Plot the effect as a 

function of bubble radius. 

8.2.2 How will a bubble skin of detritus affect the resonance frequency? 

8.2.3 Plot the dependence of bubble breathing frequency on depth. Calculate 

the correction needed for resonance radius, when a constant frequency is used at 

various depths. 

8.2.4 Plot d/b as a function of frequency. Identify the value when f - - f b -  

8.2.5 Plot fl as a function of frequency. Identify the value when f = fb. 

8.2.6 Calculate the correction to the relative backscatter length at resonance in 

Fig. 8.1.2, when the complete damping constant 6 R is used rather than only the 

reradiation damping fiR, in the figure. 

8.2.7 Plot the dependence of modulus of decay, T,,, on bubble resonance 

frequency, fh, for the range 1 kHz to 1 mHz. 

8.2.8 Use Equations 8.2.52 and 8.2.53 to plot the dependence of resonance 

frequency proximity to the ocean surface. 

8.2.9 Compare the peak backscattering length at resonance, given in Fig. 8.1.2, 

with the correct value obtained by considering viscous and thermal damping. 

Make the comparison for the three sample frequencies 1 kHz, 10kHz, and 

100 kHz. 

Section 8.3 

8.3.1 Equations 8.3.7 and 8.3.8 give the value of [tips] for a collection of small 

bubbles. What is the equation for the relative backscattered energy of this 

"reverberation"? 

8.3.2 Fig. 8.3.1 shows a graphical calculation of the effect of a n  a - 4  bubble 

distribution. Complete the calculation by determining S,, for the example given. 

Warning: Use a linear graph. 

8.3.3 Redraw Fig. 8.3.1 for the case of 100 kHz insonification. Comment. 

8.3.4 Redraw Fig. 8.3.1 for 50 kHz in an ocean where n(a)da varies as a -3. 

Comment. 
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8.3.5 Estimate the void fraction implied by Fig. 8.4.6 (left). 

8.3.6 Use the low-frequency data in Fig 8.4.8 to estimate the void fractions in 

the experiment. 
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9.1 Introduction to Bioacoustics 

Marine biologists  study ecological  systems, food chains, and the dynamics of 

marine populations.  They  attempt to describe the distributions, sizes, and species 

of the animals and plants, and the interrelat ionships of these to the ocean 

environment .  The tradit ional biological  pyramid  shows a succession of predators 

and prey; herbivores  at the bot tom of the food chain eat the phytoplankton and 

plants; most  animals at higher  levels are carnivores.  The marine bioacoustical 

pyramid,  Fig. 9.1.1, is an enhanced version of the traditional marine biological 

pyramid.  It includes information about the effective sound frequencies that may 

be used for detection of  the various levels of marine life, based on the backscatter 

theories developed in Chapters  7 and 8. The right side of the marine bioacoustical  

pyramid,  Fig. 9.1.1, al lows us to interpret the distribution of the biomass in terms 

of the effective frequencies for detection of the impedance  mismatch  of the body 

and its swimbladder .  The left side of the bioacoust ical  pyramid  lists the critical 

348 
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Figure 9.1.1 The marine bioacoustical pyramid, showing the levels of animal lengths or 

equivalent spherical radius (esr) and the effective sound frequencies for their detection. 
Within each level, two frequency bands are given. The left side shows the radial resonance 

of an equivalent spherical bubble at the surface; the range of values represents different 

swimbladder shapes and different fractions of the fish volume. The right side gives the 

frequencies for ka = 1, where a is an equivalent cylindrical radius of the fish body (aec) or 

equivalent spherical radius (aes)  of small zooplankton. The model fish parameters are 
calculated as fractions of the actual fish length, L: fish equivalent spherical radius, 

aes- -O.1L,  swimbladder equivalent cylindrical radius, aec--O.O4L; swimbladder 
length--0.3L. Also, swimbladdder volume-- 5 percent of fish body volume. 

frequencies that may be used for effective detection of resonant bubble-carrying 

bodies. 

Traditionally, marine biologists have used nets to sample fish and plankton. 

Their purposes have been to determine who is there, and how big or old they 

are. Nets are biological tools that have become very sophisticated. They may 

include remote temperature sensing, remote video cameras, and remote control of 

multiple-opening nets. But there are problems using nets as primary sampling 

tools. For example, some animals can swim out of the way, and this "ne t  

avoidance" biases surveys. Some nets destroy the very plankton that they attempt 

to recover. 
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Collaborations between marine biologists and acousticians have had profound 

effects on the way marine biologists work and visualize their data. These 

collaborations have changed the bulk of sonar applications from military to civil. 

There are more sonars on sports and commercial fishing boats than there are on 

naval vessels. 

Traditionally, bioacousticians make sonar transects and measure backscatter. 

A qualitative interpretation based on the bioacoustical pyramid is that high- 

frequency sonar transects are sensitive to the distributions of small animals, 

whereas low-frequency transects show the large animals. But quantitative 

interpretation of sonar data requires a more detailed knowledge of the scattering 

of sound waves by animals. Laboratory studies of the scattering of sound by single 

animals in this chapter are bridges that take us from mere volume scattering 

measurements to the goal of size and density distributions obtained by inverse 

methods in Chapter 10. Acoustical oceanography brings new tools to marine 

biology and limnology and provides challenging problems for acousticians. 

Although we use the terms "marine biology" and "oceanography," we mean 

to include studies in "fresh water" and "limnology." To biologists, the salt 

water (marine) environment supports life forms that are different from those in 

freshwater lakes and rivers. To acousticians, the main differences between salty 

and fresh water are in the physical parameters that affect backscatter: sound 

absorption, sound speed, and water density. 

As physicists and engineers studied the scattering of sound by fish, they 

created simple acoustical models to "explain"  the results of measurements. 

Their " f ish"  were constructed of simple elements, spherical and cylindrical 

bodies and swimbladders, and assemblages of both. A minimum number of 

elements were used to match a set of data. 

9.2 S o u n d  B a c k s c a t t e r e d  by a Fish:  E c h o e s  

Sonar transducers can be pointed in any direction and placed at any depth. The 

fish or animal can have any orientation relative to the sonar beam as sketched in 

Fig. 9.2.1. The animal can be in any part of the beam. For a consistent geometry, 

we use vertically downward transducers for most illustrations because almost all 

bioacoustic surveys use them, and the data analysis is the same for transducers 

that point in any direction. 

The uses of sonars to measure fish echoes are sketched in Fig. 9.2.2. The sonar 

transmits a ping that has the carrier frequency fc. The fish is at the range R, angle 
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Figure 9.2.1 Sonar transducer orientations, a) Data taken from moving boats generally 
use downward-looking sonars. The typical frequency range is 10 to 400 kHz. b) Sonar 

vertical casts are made by lowering a horizontally pointed transducer from a stopped boat. 

Usually high-frequency instruments (0.1 to 10 MHz) are used. The orientations of fish 

range from broadside to head and tail aspects, c) Fixed transducers are pointed in various 

directions to monitor fish swimming in rivers, d) Upward-pointing sonars can monitor fish 

near the surface. 

0, and directivity D. Assume that the fish of length L is completely within the 

first Fresnel zone (section 2.6.6): 

L < r 1 = v / R 2 / 2  (9.2.1) 

Then the local wavefront  at the fish is effectively a plane wave, From Chapter 4, 
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Figure 9.2.2 Scattering of sound by a fish. a) Fish at angle 0, directivity D in a sonar 
beam. b) Sound pressure incident on a fish. c) Fish as a source of scattered sound pressure. 
The sourcelet radiates a pressure proportional to Lhs back to the transducer. 

the incident sound pressure at the fish is 

P inc ( t )  -- D PO (t - R/c ) R 0 1 O- aR / 2O 
R (9.2.2) 

The scattered sound pressure at the fish, the " e c h o , "  is proportional to the 

incident sound pressure and to the acoustical backscattering length of the fish, 

Lbs (section 7.1.1), which is a function of frequency. The backscattered sound 

radiates as if the fish is a sound source. Again the fish is at range R and in the 

beam response D of the receiving transducer. At large ranges the scatterer 

reradiates spherically, and the backscattered pressure that is received from the 

fish is 

Pinc ( t - R  / c  ) L  bs 10 aR /20 
P scat ( t )  = D - (9.2.3) 

Use Equation 9.2.2 to replace the incident sound pressure and get 

P scat ( t )  = D 2 p o(t-  2R/c ) L b s  R o 

R 2 
10-  aR / 10 (9.2.4) 
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Scattering lengths may be measured experimentally or calculated theoretically. 

Scattering cross sections are described in section 7.1.2. We are interested in the 

backscattering cross section, 

O'bs = LLbs 12 (9.2.5) 

The backscattering length and backscattering cross section depend on the 

incident angle at the fish, as well as the sound frequency. 

9.3 Sound Backscat tered  by M a n y  Bodies:  Reverberat ion  

The scattering by randomly placed objects in a sonar beam is analyzed in the 

same way as the scattering by an ensemble of bubbles. In section 8.3.1 we 

assumed that the relative positions of the bubbles with respect to one another and 

with respect to the transducers change from ping to ping. The spatial changes are 

assumed to be large enough to make the relative phases change by several n. In 

laboratory studies, it is a mistake to place objects at random locations and make 

repeated echo measurements while not letting the relative positions change 

enough for the cross terms to tend to zero. Foote (1983) studied the linearity and 

addition theorems for fisheries acoustics. The ratio (fish length)/2 ranged from 7 

to 21. His experiments showed that: 1) the backscattered pressures from fish ad~l 

linearly; 2) backscattering acoustic cross sections of live free-swimming fish can 

be determined from measurements on anesthetized samples; and 3) time integral- 

echo-squared processing is valid for ensembles of "s imi lar"  fish. The 

acoustically estimated and true fish densities are the same. This is important 

because operations on echoes from simple "objects"  that will be developed here 

will work for the scattering from ensembles of complicated objects such as fish 

and zooplankton. 

Based on laboratory research, and to keep the analysis from being too 

cumbersome, the following characteristics of the objects are assumed: 

(1) Backscatter is essentially the same for the object in any part of the 

transducer beam. 

(2) The backscatter from an object has a broad directional pattern 

toward the transducer. 

(3) The backscattering cross sections of individuals are near the mean 

of all backscattering cross sections for objects in the ensemble. 
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(4) For the narrow frequency bandwidth of a sonar ping, the frequency 

dependence of the backscattering lengths is constant, and the 

incident ping is scattered back with nearly the same wave form. 

(5) Multiple scattering and interactions between objects are ignored. 

9.3.1 R A N D O M L Y  SPACED OBJECTS  I N  A D I R E C T I O N A L  B E A M  

The instantaneous acoustic pressure of the backscattering from many objects is 

the algebraic sum of the time domain pressures from the separate objects. This 

t ime-dependent quantity is called "reverbera t ion."  Again, the analysis is given 

for colocated transmitting and receiving transducers. The geometry for a typical 

sonar measurement  of the sound scattered from a volume containing scattering 

objects is shown in Fig. 9.3.1 for two different transducer directivity patterns. The 

back radiation from the transducer is assumed to be negligible and all radiation 

goes into the lower half space. In our usage, the reference omnidirectional "half- 

space"  responses are D1 = 1 and D 2 = 1. The location of the ith object in the 

directional responses of the two transducer beams is indicated by D~i and D2i. 

Figure 9.3.1 Scatter from many objects within two beams of different directivity. A 
time gate in the receiver selects the echoes from the "gated volume." The time-gated 
volumes are the same for both the senders and receivers. For example, the transmission is 
in D 1 and the reception is in D 2. 
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The many-object problem requires summations of the time integral 

pressure squared [tips] described in section 3.1.3. Four simplifying 

assumptions are used to reduce the expressions to something that can be 

"explained." First, within a population of scattering objects, the objects are 

nearly alike and can be replaced by a population of average objects. Second, the 

objects are uniformly and randomly distributed within layers of the selected 

volume. Third, the duration of the ping td is very small compared with the time 

gate that selects the shell thickness of the scattering volume, AR. And fourth, the 

attenuation of sonar energy within the ensemble can be ignored because the 

density of objects is small. Extinction effects are observed in dense schools of 

fish (Foote 1983). 

The scattered pressure (Equation 9.2.4) is for a single object. For many 

objects, we label the scattered pressure of the ith object Pi,scat(t). The ith object is 

at the range Ri, and the directional responses of the sonar beams a r e  Dli and D2i. 

The sum is over all objects within the gated volume: 

N-1 

PS (t )= ~_~ p i,scat (t ) 
i=0  

(9.3.1) 

where the subscript S means sum of scattered pressures over all objects. 

Numerical scattering simulations show the meaning of Equation 9.3.1. 

Assume many objects are placed at random ranges in a layer and at random map 

locations in the sonar beam. The properties of the objects are described in the 

introduction to this section. Fig. 9.3.2a shows the travel times from each 

randomly spaced scatterer. Each echo is shown as being an impulse for this 

illustration. The "thickness" of the layer is 1 ms. The map locations of the 

scatterers are at different angles in the sonar beam. The amplitudes of the echoes 

are the responses for locations of the objects in the sonar beams. Fig. 9.3.2b 

shows the echo amplitudes for an omnidirectional source and directional 

receiver, and Fig. 9.3.2c shows the echo amplitudes for a directional source and 

directional receiver. The directionality of the transducers increases the relative 

number of small echoes and decreases the relative number of large echoes. The 

different combinations of directionality have strong effects on the amplitudes of 

the echoes from individual objects. 

Fig. 9.3.3 is a more realistic example of the simulation of scattered pressures 

because we use a short ping for the signal. The signals shown are the result of 

convolving the impulse signals shown in Fig. 9.3.2 with a short ping. ~ Again the 

echo amplitudes have not been corrected for the different ranges. Echoes from 

individual objects overlap and usually cannot be identified. (Note, however, the 
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Figure 9.3.2 Scattered delta function impulse signals for different directional responses 

of source and receiver. The theoretical signals are for 50 objects randomly located in a 

layer within the source and receiver beams. The gate open duration is 1 ms. The objects are 

identical. The locations of the objects are the same for each trial. For simplicity, the display 

amplitudes are the same (although the different ranges would actually produce different 

amplitudes). The time increment is 0.001 ms. a) Omnidirectional (in half-space) source 

and receiver, b) Omnidirectional (in half-space) source and directional receiver (ka = 5). 

c) Directional source and directional receiver. 
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Figure 9.3.3 Scattered ping signals for randomly placed objects for different source and 

receiver directivities. The impulse responses for this figure are the same as in Fig. 9.3.2. 

The gate duration is 1 ms. The objects are identical. The ping has frequency 70 kHz and 

duration 0.2 ms. Note that the arrivals from individual objects overlap. The time increment 

is 0.001 ms. a) Omnidirectional (in half-space) source and omnidirectional receiver with 

the presentation reduced by a factor of four. b) Omnidirectional (in half-space) source and 

directional receiver, c) Directional source and directional receiver. 
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somewhat isolated pulse at 0.5 ms.) The phase differences, or times of arrival, can 

no longer be sorted out deterministically, and one must resort to time integral 

pressure squared calculations [tips] to specify the assemblage of scatterers. The 

development will show that the backscattering cross section a h s -  ILb~[ 2 is an 

appropriate descriptor. In fisheries acoustics, [tips] processing of an echo is called 

echo integration. 

9.3.2 TIME-INTEGRAL-PRESS URE-SQ UARED CALCULATIONS FOR 

M A N Y  SCATTERERS 

The time integral pressure squared of the gated volume (subscript GV) 

within opening time t 2 - t 1 is a useful measure of  the scattering when echoes 

overlap: 

[ t i p s ] c  v - Ip~(t ) l  2 dt --- ]Pi, scat(t) 12 dt 
1 i = 0  

§ ~. . Z 1 Pi, scat(t)pj, scat(t) dt 

(9.3.2) 

The left side of Equation 9.3.2 is of the form 

~ 2 12 [tips]  - Ip (t) at 
1 

-- sum of squares + sum of cross terms for tl < 2Ri/c < t2 

(9.3.3) 

The summations on i and j are for objects within the time-gated volume. The first 

summation is the sum of the squares of echoes [Pi, scat(t)] 2, and all are positive. 

The double summation for the cross terms contains the products of the pressures 

[Pi, scat(t)pj, scat(t)] scattered by a pair of objects at R; and Rj. These cross products 

are positive and negative. The first summation is much greater than the 

contributions of the cross terms. The effect of the cross terms is to cause 

fluctuations of the [tips]or. In experimental measurements of time integral 

pressure squared, one averages repeated measurements as the ship moves relative 

to an ensemble of objects, and this reduces the effects of fluctuations by making 

the ensemble larger. Although cross terms in the double summation are always 

present, from now on we ignore them. 
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9.3.3 VOLUME BACKSCATTERING COEFFICIENT 

The Pscat(t) given in Equation 9.2.4 allows one to compute the time integral 

pressure squared in Equation 9.3.2. Using the simplification that p(t)inc is a 

simple incident ping of duration td, source pressure P0 at range R 0, the result is 

N-1D21iD2 i2 10 -O~Ri/5 
[tips]or -- R2 Z 

i=0 R4 
i Lbsi(f) [2 Ii d iPo(t)12 at (9.3.4) 

The time integral pressure squared of the source presssure po(t) is defined as 

fo td [tips ]0 = I p 0 ( t ) l  2dt (9.3.5) 

where td is the duration of the ping. 

Let the [Lbsil 2 be replaced by its average <l&sl2> - <oh,). Also, let the integral 

in Equation 9.3.4 be replaced by Equation 9.3.5. Then Equation 9.3.4 becomes 

N~  2 -aR /5 1 D l i D 2 i  10 ; 2 
[tips ]GV = R 0 < O'bs > [tips ]0 4 (9.3.6) 

i =0 Ri 

where (ahs) -([Lb,~[2). Now assume that the fish or scattering bodies are 

uniformly distributed with density nh in the gated volume, 

n b --number of scattering objects/m 3 (9.3.7) 

Within the gated volume, Fig. 9.3.1, the Ri can  be replaced by their mean range R. 

For the thin shell, the mean range is 

R = (R l + R2)/2 (9.3.8) 

and the shell thickness is 

A R = ( R  2 - R  l ) = ( t  2 - t  1 )c /  2 ,  AR < < R  (9.3.9) 

where 

t I -- 2Rl/c , t2 -- 2R2/c (9.3.10) 

The summation over the positions of the objects in Equation 9.3.6 counts the 

number of objects in the insonified shell and weights the amplitudes. The 

dependence on the beam patterns is gathered into an expression called the 

integrated beam pattern ~Po (see also section 4.5 and Equation 4.5.4), 

d/~ - I ddp J D~ (dp, O)D 2 (ok, O)sin 0 dO 
4) o 

(9.3.11) 
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Therefore, the summat ion  in Equat ion 9.3.6 becomes  

~D2iD2ilO-TRi/5 10-~/5  

i : 0  R4 "~ R4 HbR2(AR)OD (9.3.12) 

Transducer suppliers often give the integrated beam pattern ~D as one of  the 

performance parameters.  Numerical  evaluations of 0D are shown for two typical 

transducer systems in Fig. 9.3.4. Approximate  formulas for integrated beam 

patterns 0D for some geometr ies  are given in Table 9.1. 

0 i t t i t t t t  

1 3 5 10 30 50 100 

a) ka 

10 

0 I I II I .... I I I I I I II 

1 3 5 10 30 50 100 

b) ka 

Figure 9.3.4 Numerical evaluations of integrated beam pattems. The high-frequency 
limits are given in Table 9.1. a) Omnidirectional source and directional receiver, b) 
Transmission and reception on the same directional transducer. The radius of the circular 
piston transducer is a, k = 2rc/2. 
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Table 9.1 Integrated Beam Pattern ~ o  

Source Receiver ~D Condition 

Piston, radius a Same 5.78/(ka) 2 

Omnidirectional Piston, radius a 12/(ka) 2 

Rectangular, L x W Same 17.4/(k2LW) 

Omnidirectional Rectangular rc 2 / (k 2 L W) 

Omnidirectional Omnidirectional 47z 

Half- space Half- space 2rt 

k a > 1 0  

k a > 3 0  

kL, kW }> l 

kL, kW >> 1 

From Clay and Medwin (1977). 

In terms of the integrated beam pattern, an effective sampled volume AVe is 

A V e = R 2 ~ D A R (9.3.13) 

With these substitutions, the gated time integral pressure squared of the volume 

reverberation (GV) is 

_ jr2 12 gg 10-~g/5 
[tipS]C v Ips(t) dt ,~ nhdV e R4 

l 1 

(ahs) [tips]o (9.3.14) 

Using ~Po and the gate times for a colocated source and receiver, the 

expression is 

2 - aR  /5 
R 0 10 

[tips ]GV = I//D ( t 2- t 1 ) c n o <tYbs > [tips ]0 (9.3.15) 
2R 2 

The density of scatterers and the mean square backscattering cross section 

define the volume backscattering coefficient: 

s v (Of) = n b <o" bs > (9.3.16) 

where both Sv and (ahs) depend on frequency. 

Scattering measurements give the time integral pressure squared of the gated 

volume, Equations 9.3.14 and 9.3.15. The volume scattering coefficient is 

sv(f)  ~ 2 [tipS]avR 210~R/5 
(9.3.17) 

d/o [tips]o(t2 - t l ) C R g  

The volume scattering coefficient is a measure of the backscattering from 

particles and inhomogenities in the volume. If the sonar system parameters in 

Equation 9.3.17 are correct, then measurements of sv are independent of the sonar 
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system. If there is only one type of scatterer and its scattering length, I&s], is 

known from theory, laboratory experiment, or in situ measurements, the density 

of animals is obtained from Equation 9.3.16. 

If there are different animals, or different sizes of the same species, within the 

scattering volume, multiple frequencies can be used to sort out the different 

components. Multiple-frequency sonar surveys require special care because 

errors in system parameters bias the results of data analysis. 

One can adapt the development in Equations 9.3.1 through 9.3.15 to a 

distribution of different type bodies, or the same type of different sizes. Let the jth 

kind of object have the density nbj and the squared scattering amplitude [f-,hs, il 2. If 

the total number of objects of all types is Nb, the average volume backscattering 

coefficient is the weighted sum over all objects, 

1 2 
Hf il Lbsi I (9.3.18) 

i 

2 m 2. The SI units are nj~ in m -3 and ILbs, i in 

Some workers prefer the logarithmic sonar equation. Then a reference, 

Sv, r e f -  1 m2/m 3, is used, and the volume backscattering strength is given as 

S v = 10 loglo [(Sv)/(Sv,ref) ] dB (9.3.19) 

9.3.4 SCATTERING LAYERS 

Deep Scattering Layers (DSL) 

Many zooplankton and fish respond to light. They move up at dusk and down at 

daybreak. They tend to concentrate at strong changes of properties in the water 

column, such as the base of the mixed layer and oceanic fronts. Much of the 

knowledge of the vertical migrations of plankton has been obtained by echo 

sounding. Sonars have identified deep scattering layers (DSL) throughout the 

world's oceans, down to depths of several hundred meters. Although the vertical 

migration of the DSL is a striking feature on the records, other groups of 

scatterers seem to remain at almost constant depth, probably because of 

temperature preferences. Fig. 1.3.6 is a presention of plankton of equivalent 

spherical radii from 0.1 to 4.0mm, calculated from volume backscatter of 21 

frequencies, in a horizontal backscattering experiment. 

Because plankton and nekton are sensitive to the presence of nutrients, food, 

light, and other physical-chemical characteristics of their environment, they may 

respond to the change of any of these. Many water properties change at the water 

mass boundaries, and the boundary is often marked by changes of the volume 
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scattering strength. Marine animals may concentrate at the interface or behave as 

if the interface were a barrier. Fig. 1.3.7 illustrates the influence of temperature 

profiles at an eddy of the Gulf Stream; the biological scatterers act as passive 

tracers of the temperature structure. 

Fig. 1.3.8 uses backscattering to depict the migration of larger marine 

organisms just after sunset. 

The motion of an internal wave of periodicity two or three minutes is 

illustrated by volume acoustical backscatter in Fig. 1.3.9. In addition to this 

natural phenomenon, the distribution of man-made garbage is made visible by 

backscatter in an ocean dumping ground. 

Near Surface Scatterers 

The near surface region of the ocean plays host to a large number of scatterers, in 

addition to the transient presence of the DSLs that come up during the night. This 

is also the region that shows the greatest effects of surface wave action. The full- 

time residents of the near surface region are both biological and physical in 

origin. 

In one experiment, the biological scatterers in the near surface region were 

found to be predominantly of the phylum Arthropoda, subclass copepod. The 

copepods are approximately millimeters in length. To study them required the use 

of sound frequencies of the order of hundreds of kiloHertz. For example, 

Barraclough et al. (1969) perfomed net sampling of the upper ocean from the 

surface to a depth of about 100 m and simultanously measured backscatter with a 

200 kHz sonar. The experiment, which was conducted over a great circle route 

from British Columbia, Canada to Tokyo, showed a coincidence of depth of 

strong echoes with depth of maximum catches that were 99 percent Calanus 

cristatus, a species of copepod. The peak depth was at about 40 m during the day. 

There were about 100 copepods per cubic meter, comprising a wet density of 

about 1.5 gm/m 3. 

The near surface ocean is also a nightly host to some anchovies, which ingest a 

bubble to keep them floating quietly and unobtrusively, while they rest and try to 

avoid the search by predators. Undoubtedly other behaviors of interest to marine 

biologists await the concurrent use of sonars. 

As discussed in Chapter 8, the upper region of the ocean also contains bubbles 

that are not part of any zooplankton or fish, and that cause substantial acoustical 

effects. These bubbles may be the vented gas of zooplankton or fish, the products 

of photosynthesis, or the result of breaking waves, precipitation, cosmic rays, or 

decaying matter. 
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9.4 Var iabi l i ty  o f  F ish  S t r u c t u r e  and S o u n d  B a c k s c a t t e r  

Acoustical models of fish are partly empirical and partly based on the anatomy of 

a fish. It has been known for a long time that the main contributions of sound 

scattering by fish come from their swimbladders (Hersey and Backus 1962; 

Haslett 1962). Early swimbladder models were simple shapes such as gas-filled 

spheres and prolate spheroids. Laboratory measurements of sound scattering by 

fish give empirical forumlas such as those of Love (1969) and McCartney and 

Stubbs (1970). Many papers on biological sound scattering and research are 

collected in the proceedings, edited by Farquhar (1970). 

9.4.1 PHYSICAL STRUCTURES: X-RAYS AND HIGH-FREQUENCY 

SOUND SCANS 

The acoustical response of fish depends on size and physical structure and, most 

important, on the presence or absence of a swimbladder. The swimbladder is an 

active organ of the fish that maintains buoyancy and attitude by controlling the 

bladder volume. For different fish species, the shapes of swimbladders are 

extremely variable and can be quite complicated (Whitehead and Blaxter 1989). 

The swimbladder shapes, dimensions, and tilt with respect to the axis of the 

animal all determine the sound backscattering. Sketches of the wide variety of 

contours of swimbladders of pollack have been obtained by microslicing after 

shock-freezing the animal (Fig. 9.4.1). The shape and tilt of swimbladders of 

Atlantic cod are sketched in Fig. 9.4.2. 

High-frequency acoustical scans of two kinds of fish are shown in Fig. 9.4.3. 

The transducer focused 220 kHz pings at the axis of the fish. The peak amplitudes 

of the backscattered pressures were measured as the transducer was moved 

parallel to the axis of the fish. All amplitudes are relative. After the live whole fish 

was scanned, flesh and body parts were removed to obtain the relative scatter 

from vertebrae, head, and swimbladder. These four sets of scans are shown for 

each of two fish with vastly different physical structures. The yellow perch has 

about 80 percent of its scatter from the pressure release swimbladder and small 

contributions from flesh and vertebrae. The northern hog sucker has about 22 

percent of its scatter from the swimbladder and larger contributions from the 

flesh, head, and vertebrae. The scans do not show the swimbladder resonance 

effect, which occurs at very much lower frequencies. Comparative acoustical 

scans of many small freshwater fish are given in Nash et al. (1987). 
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c-'-7 

Figure 9.4.1 Sketches of contour types of pollack swimbladders. (From Foote, K. G., 
"Rather-high-frequency sound scattered by swimbladdered fish," J. Acoust Soc. Am. 78, 
688-700, 1985.) 

9.4.2 E C H O  S T A T I S T I C S :  R I C I A N ,  R A Y L E I G H ,  A N D  E X T R E M A L  

Repeated measurements of echoes always give the same result if the source, 

receiver, and scattering object remain  constant  and the water is stationary. In 

other words, static measurements are reproducible. However,  if a fish changes its 

tilt in the sonar beam, as shown in Fig. 9.4.4, then the echoes change. 

Changes of the echo amplitudes as a target moves in the sonar beam can 

range from predictable amplitudes for a simple object, such as a sphere, to 

unpredictable amplitudes for a complicated object, such as a live fish. We are 

interested in a sequence of measurements in which we use e as the variable that 

represents the acoustic pressure amplitude of the echo envelope. The statistical 

variation in the echo amplitude is related to the statistical variation of the 

acoustical backscattering length Lhs. The probability of observing a value of 

pressure amplitude e between e , -  A e / 2  and e,, + A e / 2  is given by 

w ( e n ) Ae  = P [ (e n - A e / 2  ) < e < (e n + A e / 2  ) ] (9.4.1) 
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Cod A �9 177 mm, 48 g Lsb = 47 mm V sb = 1.3 ml 
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Cod B: 156 mm, 43 g /~b = 42 mm V sb = 0.9 ml 

. . . .  . 

Cod C: 323 mm, 286 g Lsb = 86 mm V sb = 6.3 ml 

A -5 d ~ ~ ~ ~ - ~ ~  

~ Bone 

Gonad Swimbladder 

Cross section A-B 
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Figure 9.4.2 Ske tches  and d imens ions  of  four  At lant ic  cod  (Gadus  morhua).  The  v iews  

are ventral  ( f rom above)  and  lateral  ( f rom the side). The  s w i m b l a d d e r  d imens ions  were  

ob ta ined  by  X-ray .  (F rom Clay,  C. S., and  J. K. H o m e ,  " A c o u s t i c  mode l s  of  fish: the 

At lant ic  cod (Gadus  m o r h u a ) , "  J. Acoust .  Soc. Am. 96, 1 6 6 1 - 6 8 ,  1994.)  
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a) Acoustic scanning system. 
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b) Yellow perch 

Figure 9.4.3 High-frequency (220 kHz) scans of fish. See text. (From Sun, Y., R. Nash, 
and C. S. Clay, "Acoustic measurements of the anatomy of fish at 220 kHz,"  J. Acoust. 

Soc. Am. 78, 1772-76, 1985.) 
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c) Northern hog sucker 

Figure 9.4.3 Continued 

where P[...] means probability of. The probability density function w(e.)  is the 

limit as Ae goes to O: 

w ( e n ) =[Limit Ae -> 0 ] 
P [(e n - A e / 2 ) < e  < (e n + A e / 2 ) ]  

Ae 
(9.4.2) 

The probability distribution function (PDF) of the peaks of the backscattered 

echoes from a fish depends on the fish behavior. One experiment is described in 

Sonar transducer ~// b ) ~ . . ~ x  

x'5 - -  ""-~"~x' 

a)  c , 

"-I•XI 
~ . . . I ~ X t  

d) f) 

x' 

e) g) ' 
Figure 9.4.4 Repeated "snapshots" of an active fish, showing changes of angle X in a 
downward-looking sonar. 
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Fig. 9.4.5. The 220 kHz sonar was at side aspect relative to the fish (Huang and 

Clay 1980). (Measurements at top aspect would give different values.) The data 

labeled " w i l d "  were taken just after the fish had small hooks placed in its tail 

and lip. Sometimes the fish was very " c a l m "  and nearly stationary. Ripples on 

the water surface caused the fish to move gently and be "a l ive ."  These data 

reveal the variation of peak echo amplitudes for repeated pings from the sonar. 

The animal is tethered at a fixed angle in the beam, but small moitions are 

possible. 

The variation of a random variable (e.g., either the echo amplitude or ILbsl) 

may be defined in terms of the squared quantity that is proportional to the 

scattered energy. From statistics for a random variable, the "var iance"  of the 

scatter amplitude is the mean of the square of the deviation from the mean value, 

Variance of ILls  [ = (I Lbs [> -- ([ L~s I> z (9.4.3a) 

or s, expending, 

War [L~, I -- <[ L~s 12> -- <1L~s I> 2 (9.4.3b) 

o r  

War [ Lbs I = <~ h , >  - <1 Lhs I) 2 (9.4.3c) 

where ( . . . )  indicates the mean. Experimental probability density functions of 

echoes such as in Fig. 9.4.5 have the appearance of amplitude fluctuations about a 

t t t 

I I 
. 0 2  

i 

. 0 2  

Figure 9.4.5 Probability density functions (PDF) of echo amplitudes from a live fish, 
beam aspect at 220 kHz. Data are points, and Rician-fitted theory are solid curves. Fish 
length L - 12 cm. Number of echoes is 256. The Rician statistics parameters are a) very 
calm fish, 7 = 33; b) moving fish, ?, = 3.5; c) wild fish, 7 -- 1.9. (From Clay, C. S., and 
B. G. Heist, "Acoustic scattering by fish acoustic models and a two-parameter fit, "J. 
Acoust. Soc. Am. 75, 1077-83, 1984.) Note that the acoustical length is much less than the 
actual length, Lbs = (O 'bs )  1/2 <~ L .  
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mean echo amplitude. The square of the mean amplitude of the acoustical 

scattering length, (]s is sometimes called the "concentrated" back- 

scattering cross section, 

cr c = < Is b s l >  2 (9.4.4) 

The fluctuating component Var Is is due to animal motions; the notation cr d 

represents the scattering cross section of fluctuations of echoes from an 

assemblage of scatterers, 

crd --- Var l s I (9.4.5) 

From Equation 9.4.3, the mean backscattering cross section is the sum 

(9.4.6) 

Rician PDF 

By regarding the scattered component cr c as "s ignal"  and tr d as "random noise," 

the fish scattering problem is analogous to the problem of the complex sum of a 

sinusoidal signal and narrow band random noise. O. R. Rice (1954) derived a 

probability density function (PDF) for the envelope of this sum and used the two 

parameters a c and a d to describe the Rician PDF of the echoes: 

(2 )  ( ) 
e + (7 c 2e ((7" c )1/2 

2e exp - I0 (9.4.7) 
W Rice (e ) = (T d (T d tT d 

where e is the peak of the echo envelope and Io( ) is a modified Bessel function, 

where lo(x ) = Jo(ix) and I0(0) -- 1. Modified Bessel functions are described in 

Abramowitz and Stegun (1965); their sections 9.6 and 9.8 give polynomial 

approximations. 

In the fish scattering problem, the ratio, ac/a d, and the average, (abs), are 

convenient parameters because values of (abs) are measured directly, and the 

ratio ac/ad is easy to estimate from data. Following Clay and Heist (1984), we 

define the ratio by the parameter 7, 

0" c 
(9.4.8) 
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and use  (O'bs) and 7 to describe the statistics of fish echoes. With these acoustical 

parameters, WRice (e) becomes 

2e [1 + ?' ] e x p /  [1 + ~' ] e 2 + y <O'bs >] 
W Rice (e) = I ) <CT bs > < ~  bs > 

( 2e y [1+ y ]1/2 ) (9.4.9) 

x I 0 1/2 

<CTbs > 

The reduction of the experimental scattering measurements to a two-parameter 

PDF is a useful description that often approximates the true PDE Examples of the 

Rician PDF for echoes are shown in Fig. 9.4.5. The Rician PDF gives a good 

description of echo amplitudes for single nonoverlapping echoes. Wiebe et al. 

(1990) also found Rician PDFs in measurements of the statistics of echoes from 

decapod shrimp. 

The Rician PDF is a generalization that encompasses the Gaussian PDF and 

the Rayleigh PDE A very large value of 7 gives the well-known Gaussian PDE 

Rayleigh PDF 

The Rician PDF reduces to the Rayleigh PDF by letting ~ go to 0, where there is 

no concentrated component. Since I0(0) = 1, Equation 9.4.9 reduces to 

2e exp(-  e 2  ) 
(9.4.10) 

W Rayl (e ) = <Crbs > <O'bs > 

Rayleigh derived this PDF to describe the envelope of the sum of many sine 

waves having the same frequency and random phases. 

The probability distribution of echo amplitudes and 7 depends on the ratio of 

the fish length L to 2. At large L/2, 7 is small, and the PDF tends to the Rayleigh. 

At small L/2, 7 is large, and the Rician PDF becomes the Gaussian with peak near 

e - (ahs(f))1/2. The peak of the PDF in scattering lengths or echo amplitudes is 

systematically different when the linear PDF is transformed to a PDF of target 

strengths in dB. 

Extremal PDF 

When echoes overlap as shown in Fig. 9.3.3, one gets the extremal PDE Fig. 

9.4.6 (Stanton 1985). The extremal PDF gives the density of the maximum value 

of the echo envelope ec that is observed within the gate time t 1 to t 2. The extremal 
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Figure 9.4.6 Rician and extremal PDF in terms of 7 and ~. a) The Rician PDF describes 

the statistics of echo peaks when the echoes do not overlap, b) The extremal PDF describes 

echo peaks when echoes overlap. The maximum value of the echo amplitude observed in 

the gate time tl to t2 is ec; the time integral echo pressure squared during the gate open 

duration t d is [tips]; and ~ -  -- (t 2 - t l ) / t  d. 
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calculation depends on the PDF of the nonoverlapping echoes. For a Rayleigh 

PDF of nonoverlapping echoes, the extremal PDF is 

eG eG 

W ext (eG) = [ties ]l(t 2 - t 1 ) exp - 2 [ties ]l(t 2 - t 1 ) 

(9.4.11) 

e c  ] ( a  -1~ 

x [ 1 - e x p  - 2 [ t i e s l / ( t 2  - t l  ) 

where [ties] is the time integrated echo squared of echo amplitudes. The e can 

stand for echo pressure, echo voltage or normalized echo amplitude, 

[ties ] - [e (t )]2 dt (9.4.12) 

1 

The parameter ~ is the ratio of the gate open time (t2 - t~ ) to the ping duration t d. 

It is also the maximum number of independent observations of the echo, 

= (t 2 - t l ) / t  d (9.4.13) 

and [ties] is the time integral echo squared for the gate time. The parameter ~ = 1 

gives the Rayleigh PDE When echoes overlap, there is a very low probability of 

observing very-small-amplitude echoes. For many overlapping echoes, the 

maximum values of echo amplitudes tend to saturate as the gate open duration 

increases relative to t,~. 

9.5 A c o u s t i c a l  M o d e l s  o f  F i s h  

9.5.1 A N A T O M I C A L - A C O U S T I C A L  M O D E L S  

Acoustical models of fish are metaphors for real animals. We use these metaphors 

in the ways that we think about data. All acoustical models are low-resolution 

representations of the animals; none has fine details of the shape and anatomy of 

fish. The simplest models are spheres that are gas-filled to represent the 

swimbladders or fluid-filled to represent the average flesh of the animal. The 

progression has been from such simple approximations to more complicated 

finite cylindrical or prolate spheroidal models that begin to look like the animals. 

The introduction of multiple-frequency sonars and the acquisition of high-quality 

data have permitted greater sophistication of the models and correspondingly 

more accurate identification of unknown animals. 
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Relationships between actual fish length and high-frequency target strength 

are important in fisheries research. (We use the terminology "high frequency" 

when ka > 1, although in many cases our developments hold for the larger region 

ka > 0.2.) The radius a is usually subscripted (e.g., aec is the equivalent 

cylindrical radius, and aes is the equivalent spherical radius). Acousticians and 

biologists have used measured target strengths of single fish to construct 

empirical target strength-fish length formulae (McCartney and Stubbs 1970; 

Love 1971; and Foote 1988). The earlier measurements used caged fish. More 

recently, in situ target strength measurements have been effectively compared 

with net captures. When local "calibrations" are used, the empirical formulas 

work very well. 

Validations of acoustical models have several important requirements: 

(1) Measurements should be done under reproducible, usually 

laboratory, conditions. 

(2) Fish and zooplankton should be described by simple theories and 

models, without acoustically-superfluous extensions. 

(3) Multiple-frequency scattering measurements of live animals should 

be made of the same animal and at the same time. 

(4) Measurements of the far-field scattering amplitudes or target strengths 

must be made in the far field of the animal. 

When it exists, the gas-filled swimbladder provides a large contrast of acoustic 

impedance (PA c) relative to flesh and skeletal elements and is the major source of 

high-frequency scattered sound. At very low frequencies (kaes ~ 1), the gas-filled 

organ has a low-frequency resonance. Therefore, over the entire frequency range, 

most of the scattered sound comes from the swimbladder (Clay and Home 1994). 

9.5.2 HK ACOUSTIC SCATTERING MODELS FOR SWIMBLADDER 

FISH (ka > 1) 

In the equivalent cylinder description, at high frequencies (kaec > 1, where aec is 

the equivalent cylindrical radius) and in the range of 8 < L/~ < 36 (where L is 

the length of a fish), experiments and theory show that a swimbladder accounts 

for about 90 percent of the total high-frequency backscatter in the dorsal aspect. 

Foote (1985) made a precise, postmortem measurement of a fish swimbladder 

that allowed him to construct a numerical facet model of its three-dimensional 

surface. He then used a numerical evaluation of the Helmholtz-Kirchhoff (HK) 

integral to compute the scattered sound from these facets, which he compared 
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with acoustical measurements. The successful comparison of experimental 

backscatter with the HK facet reflection calculation (section 7.3) is shown in Fig. 

9.5.1. 

In Fig. 9.5.1 four frequencies are presented in two different aspects, dorsal and 

ventral. The correlation coefficient between the experiment and the numerical 

integration of the HK integral ranges from 0.89 to 0.96 for the dorsal aspect cases, 

and from 0.58 to 0.80 for the ventral aspects. There is a strong dependence on tilt 

angle, particularly for the higher frequencies. These detailed figures demonstrate 

the soundness of combining swimbladder morphology and the HK method. 

To demonstrate how the Kirchhoff-ray approximations for the scattering of 

sound by finite length cylinders can be used for high frequencies, consider the 

scattering geometry at a fish as sketched in Fig. 9.5.2. In this case the fish is cod D 

of Fig. 9.4.2. We consider scatter from the swimbladder first, and then from the 

fish body. 

H K  Scattering from the Swimbladder  

Following the development in Chapter 7, with adjustments, the acoustic 

scattering length of a gas-filled cylinder in water may be given by 

Lecb f_.,blad(kaecb ) ~ . ~ [ ( k a e c  b + ~a)COSZ]I/2 sinA 
d Rwc (9.5.1) 

X e -i  (2 khae,, h cos Z + ffp + n/2) 

where ~/a and ffp are empirical amplitude and phase adjustments for small kaecb; 

aec b and Lec b are the radius and length of the equivalent swimbladder as a 

cylinder. For a swimbladder in a fish body, we include the transmission through 

the fish body to the swimbladder and back out, TwhTbw. The revised expression 

for the scattering length is 

LecbAsb 
[(khaec h + 1)COSZ] 1/2 s inA,Twh,ThwRb c Lblad 

2 v/-~ d (9.5.2) 
X e -i(2khae,h cos Z+~p+rC/2) 

Ash 

A - kbLec b sin Z, 

glhl - 1 
~bc -- 

glhl + 1 

g' - Pc/Pb and 

kas 

kaec b + 0.083 
and 

kb -- 2rcf /cb 

h / _ c c / c  b 

kaecb 

~P ~ 40 4- kaec b 
- 1.05 

(9.5.3) 

(9.5.4) 



9.5. Acoustical Models of Fish 375 

-20 

-30 

F=- A 68., 

-V , ,x, ,  

[ 

/ 

~ I  120.4 . IMP30 

-45 -30 -15 0 lS 30 45 -45 -30 -15 0 15 30 45 

Figure 9.5.1 Target strengths as a function of tilt angle for a 31.5 cm pollack at dorsal 

(left) and ventral (right) aspect. The solid line is the experimentally determined value. The 

dashed line is computed from the fish body and bladder dimensions by means of the HK facet 

reflection technique. The high correlation coefficients C, calculated for the computed and 

experimental curves of TS, are a function of frequency. The frequencies (top to bottom) are 

38.1, 49.6, 68.4, and 120.4 kHz. There is a strong dependence on tilt angle, particularly at the 

higher frequencies. (From Foote, K. G., "Rather-high-frequency sound scattered by 
swimbladdered fish," J. Acoust. Soc. Am. 78, 688-700, 1985.) 
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Figure 9.5.2 Geometrical construction of an acoustic fish model. Cod D, previously 

sketched in Fig. 9.4.2, is used for the example. Outlines of the fish body and swimbladder 

are digitized at a set of x ~ (j) along the axis of the fish. The upper and lower coordinates are 

x ~ ( j ) ,  z u ( j ) ,  and z L (j). The width of the body is w(j ) .  The jth volume element is between 

x ~ (j) and x ~ ( j  + 1). The swimbladder is sampled at smaller spacings. The ray path from the 

source and its normal, the wavefront, define the directions of the u-v coordinate system. 

Coordinate u is parallel to the incident wavefront, and v is parallel to the incident ray. a) 

The ray is vertically incident in the x-z  plane, b) Top view. c) The swimbladder is omitted 

from the volume element for clarity, d) Rotation of x ~ - z' to u-v coordinates. (See Clay, 

C. S., and J. K. Home, "Acoustic models of fish: the Atlantic cod (Gadus morhua)," 

J. Acoust .  Soc. Am.  96, 1661--68, 1994.) 

where f is frequency; aecb is the radius of the effective cylinder bladder; Lecb is 

the length of the effective cylinder bladder; Z is the tilt angle measured from the 

the horizontal axis to the cylinder (or fish) axis; Pb and c b are the density and 

sound speed in the fish body; Pc and Cc are the density and sound speed in the gas- 

filled cylinder; Rbc is the reflection coefficient at the fish body-cylinder interface; 

Asb, (kaec h + 1) and ~p are empirical amplitude and phase adjustments for small 

kaecb; e -izt/2 = -- i .  

Typical acoustical parameters for water and fish are given in Table 9.2. The 

reflection coefficients that are calculated for a gas-filled cylinder in the fish body 

or in water are nearly the same, because Pc/Pb "~ Pc/PA and cc/c  h ,,~ Cc/C a. 

Equation 9.5.2 is accurate for kaec b > 0.15. 

Table 9.2 Acoustical Parameters 

M e d i u m l S u b s c r i p t  p k g / m  3 c m/s  g = P2/Pl  h = c2/c I 

Ambient WaterlA 1030 1490 - -  

Fish flesh 1070 1570 1.04 1.05 

Swimbladder [blad 1.24 345 0.001 0.22 

(From Clay, C. S., and J. K. Home, "Acoustic models of fish: the Atlantic cod (Gadus morhua)," 

J. Acoust. Soc. Am. 96, 1661-68, 1994.) 
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Coordinate Rotation 

The fish tilt relative to the sonar beam is included by rotating the fish corrdinate 

system from the x' and z' coordinates to the u and v coordinates: 

u( j )  - x' ( j )  cos Z + z' (j) sin Z (9.5.5) 

v ( j )  -- - x '  ( j )  sin Z + z' (j) cos Z (9.5.6) 

A uj = [x'(j + 1) - x ' ( j )  cos] Z (9.5.7) 

[w(j) + w ( j  + 1)] (9.5.8) 
a j -  4 

where A uj is the projection of Ax' along the reference x'-axis on to u. Generally 

the scattering theory is limited to tilt angles near (. Choosing a limit of 

cos Z > 0.9 to specify the nearness to 0 ~ Z can range from 25 to 25 ~ 

The next step uses short sections of modified cylinders as elements of a 

construction. The transformed coordinates (Equations 9.5.5 through 9.5.8) are 

used in constructing the summation. The element of scattering length is obtained 

from Equation 9.5.7 by letting Lecb become A uj in the rotated coordinates. The 

factor (sin A ) / A  is approximately 1 because kbLec b sin Z is small. The sum of the 

elements is 

f-"blad ~ iRbc(1 R2wb)EAsb[(kba + 1)cosz]l/2e-i(2kbVj+~P)Auj (9.5.9) 
ev/-~ o 

a j  = [ w s ( j  ) + w s ( j  +1)] / 4 (9.5.10) 

v j  - [ v s v ( J  ) + Vs v (J  + 1)] / 2 (9.5.11) 

and k b ~ k at low contrast. 

As shown in Fig. 9.5.2, the number of terms, N s -- 8 for the swimbladder 

summation and, later, Nb -- 11 for the fish body summation, is chosen to give an 

acceptable model of the fish. The model does not give unwarranted details. In the 

numerical evaluations, we use the coordinates of the middle of each volume 

element uj and include a small correction for the tapers of zv,  ZL, and vj and wj 

from one end of the volume element to the other, (Fig. 9.5.2c). If small and large 

members of a species have the same relative structure, the sizes can be scaled by 

letting x" -- (scale fac tor )  • x' and z" - (scale fac tor )  • z". 
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Scattering from Fish Body 

A ray-path construction for the fluid-filled fish body is shown in Fig. 9.5.3a. 

Somewhat unconventionally, the fish cross section is modeled as a half-cylinder 

over a straight section over a cylindrical bottom. There is no backscatter from the 

straight section at vertical incidence. 

In the Kirchhoff approximation, the top cylinder gives the scattering of the 

sound wave from the top, and the bottom surface gives the scattering from the 

bottom. The sides make no contributions to the HK integral; however, the travel 

distance adds to the time delay of the reflection from the bottom of the model. 

The Kirchhoff approximation and construction for low-contrast fluid cylinders 

are 

Lecf 1/2 sin d 
Lbo d ,,~ -- i ~ [(kaec f COS )~)] A ~wb 

X [e -i2kzv -- Twb'Tbw ei2kzv+i2kh(zv-zL)+iq'h] 

(9.5.12) 

where 

2rcf PbCb -- PACA 
k = ~ ,  Rwh = 

Ca PbCb + PACA 

rckbzv 
I~t b - -  

2(khz U + 0.4) 

and T h w -  1 - R2,b 

(9.5.13) 

Figure 9.5.3 Ray-path constructions for reflections, a) Fish body. b) Fish body and 
swimbladder. (From Clay, C. S., and J. K. Home, "Acoustic models of fish: the Atlantic 
cod (Gadus morhua)," J. Acoust. Soc. Am. 96, 1661--68, 1994.) 
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where zv and ZL are the upper and lower surfaces of the equivalent cylinder; the 

density and sound speed in ambient water are PA and CA; aec f (or  w / 2 )  is the 

equivalent cylindrical fish body radius as viewed from the top; ~Pb is an empirical 

phase correction. 

The sum over the fluid elements of volume follows from Equation 9.5.12: 

Rwb Ns-1 
Lbo d ,,~ -- i~-~ ~ (kaj)l/2Auj 

o (9.5.14) 

• [e-i2kvuj _ Cffwbr-ffbwe--i2kvtyj+i2kb(Vuj--vLj)+{~b ] 

The number of terms, Nb, is chosen to give an acceptable model of the fish. The 

transformed coordinates of the fluid body are computed by using expressions 

similar to Equations 9.5.13 and 9.5.14. 

W h o l e  Fish  

The ray-path construction for a swimbladder in the fish body is shown in Fig. 

9.5.3b. The scattering amplitudes from the fish body and swimbladder are added 

coherently (i.e., with real and imaginary terms added separately): 

L bs = L blad + ~ bod (9.5.15) 

The acoustical backscattering length Lbs is a function of the relative 

wavelength (Lecf/2) and relative equivalent cylindrical radius, kaec. The relative 
(or reduced) scattering length combines these variables into one expression: 

relative scattering length = f__,bs(Lecf//~)/Lecf (9.5.16) 

Simple generalizations may be calculated. For example: changes of fish structure 

along the body can be included by moving the reflection coefficients inside of 

Equations 9.5.12 and 9.5.14; the reflection coefficients of the jth element become 

Rbcj and Rwb. When the surface is "bumpy," one can use reflection coefficients 

that have the form ~PLwj exp[-(ka)2], where a is the rms roughness of the surface 

(Stanton 1992; Stanton and Chu 1992). 

Results of calculations of the relative scattering length for swimbladder, fish 

body, and the whole cod D (Fig. 9.4.2) are shown in Fig. 9.5.4 as a function of the 

length of the animal relative to the wavelength, L/2. The incident rays are at tilt 

Z -  0. The swimbladder and body scatter were each computed and then 

combined by separately adding their real and imaginary components to obtain the 

value for the whole fish. 
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Figure 9.5.4 Theoretical relative high-frequency scattering lengths for a model Atlantic 
cod (Gadus morhua). The acoustical model is cod D (L = 380ram). The low-frequency 
swimbladder resonance peaks in a) and c) are not shown, a)I&s(L/~)I/L for swimbladder. 
b) Fish body. c) Whole fish. (From Clay, C. S., and J. K. Home, "Acoustic models of fish: 
the Atlantic cod (Gadus morhua)," J. Acoust. Soc. Am. 96, 1661-68, 1994.) 

The swimbladder backscattering lengths (Fig. 9.5.5a) were computed using 

Equation 9.5.2. The fish body scattering lengths were computed using Equation 

9.5.14. The whole fish is the coherent sum of the scattering from the swimbladder 

and the fish body (Equation 9.5.15). The oscillatory modulations of I&,(L/,~)/LI 
are due to the contributions of the fish body. 

Figure 9.5.5 shows the Z dependence for cod C as a function of L/,~ for seven 

frequencies. The higher-frequency scattering lengths have strong dependencies 

on fish tilt Z. The swimbladder is almost perpendicular to the incident ray at fish 

body tilt Z = - 7 ~  Recalling the dependence of transducer beam widths on 

frequency, scattering of sound by fish has a similar dependence. The center lobe 

is very broad at 12.5 kHz, and the scattering length has a weak dependence on tilt 

angle. Compare this with the dependence on tilt at 400 kHz. The main lobe is 

centered at about - 6  ~ tilt and has a width of about 5 ~ Fig. 9.5.5 shows the effect 

of a progression of beam widths from very broad at 12.5 kHz to narrow at 

400 kHz. This dependence can have a profound effect on the measurements of 

high-frequency backscattered sound with a narrow beam width echo sounder. For 

example, for a horizontal fish, a vertically incident 5 ~ beam-width transmit- 

receive transducer system would measure ]Lhs/L ] ~ 0.08 from 12.5 to 25kHz 

with small dependence on tilt. Under the same conditions, the relative scattering 

lengths are about ]Lhs/L ] ~ 0.05 from 100 to 400 kHz, but they are likely to be 

extremely variable as the fish changes its tilt. 
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Figure 9.5.5 Relative high-frequency scattering lengths for cod C as a function of tilt 
angle in degrees. The approximate fish length (cod C) is 300 mm for these calculations. 
The scattering maxima occur at g ~ -7~  tilt, at which angle the swimbladder is 
approximately horizontal and is perpendicular to the sound beam. (From Clay, C. S., and 
J. K. Home, "Acoustic models of fish: the Atlantic cod (Gadus morhua)," J. Acoust. Soc. 
Am. 96, 1661-68, 1994.) 

9.5.3 COMPARISONS OF H I G H - F R E Q U E N C Y  ACOUSTICAL M O D E L S  

A N D  DATA 

Laboratory mesurements of scattering use captured fish, identified species, and 

measured sizes. Ideally, live fish should be used because the swimbladder is an 

active organ in fish. To control fish orientation, fish are often tethered from a 

frame. An acoustical model is based on the fish structure, and calculations are 

made over a wide range of frequencies. Alternatively, assuming that the fish 



382 9. Biomass Echoes, Reverberation, and Scattering Models 

structures can be scaled over a range on fish lengths, one can use measurements of 

many lengths of fish at a single frequency. 

North  At lant ic  Cod (Gadus morhua) 

The extensive 38kHz scattering data for cod that were taken by Nakken 

and Olsen (1977) meet all criteria that we have set, except that they used 

mortally wounded or dead fish. Their Fig. 40 gives the maximum measured 

target strength for any orientation angle as a function of fish length. Fig. 

9.5.6 compares the Nakken and Olsen data with the acoustical model 

calculations. 

The acoustical model for cod C (L : 32.3 cm) was scaled to a set of lengths by 

replacing all of the x' and z' shown in Fig. 9.5.3 by x" = (scale factor) • x' and 

z" = (scale factor) x z'. A single tilt of - 5  ~ was used for fish lengths from 8 to 

100 cm. The theoretical calculations and the acoustical models are based on X- 

rays of cod. Since most of the high-frequency sound scatter comes from the upper 

surface of the swimbladder, the backscatter calculations are relatively insensitve 

to the density and sound speed of the fish flesh. The shape of the swimbladder is 

important in this frequency range because the frequencies are far above the 

swimbladder resonance. 

-10 . . . . . . .  
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Figure 9.5.6 Atlantic cod (Gadus morhua). Comparison of measured data and 
acoustically modeled, reduced target strengths TS (re 1 m)=201oglo [Lbs/(lm)) at 
38 kHz. The data points are maximum target strength measurements of Nakken and Olsen 
(1977) for Atlantic cod of fish lengths from 8 to 96 cm. The theoretical acoustical model 
curve for cod C at - 5  ~ tilt was scaled for different lengths. 
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Threadfin Shad (Dorosoma petenense) 

Dual-beam, high-frequency laboratory measurements of acoustic scattering 

lengths have been made on live threadfin shad at 120, 200, and 420 kHz (Jech et 

al. 1995) as a function of the ratio L/2.  Fish lengths ranged from 52mm to 

111 mm. The sonar system accepted measurements only for fish positions that 

were near the axis of the transducer: specifically, within 7.7 ~ for 120 kHz, 3.9 ~ for 

200 kHz, and 5.2 ~ for 420 kHz. The total lengths (L) of the fish were measured 

from the tip of the snout to the end of the caudal fin. The published paper includes 

comparisons to the finite bent cylinder model (Stanton 1989) and the low- 

resolution-mode model (Clay 1991). 

One fish was dissected to obtain a photocopy of the swimbladder, which was 

then digitized. This model was scaled to different fish lengths for theoretical 

computations of f_,bs(L/2). The acoustical model and methods in section 9.5.2 

were used for computations. This model is based on the fish anatomy. 

The acoustical model, data, and scattering lengths are shown in Fig. 9.5.7. 

Considering that the swimbladder is tipped about 15 ~ and that the fish were 

constrained to be near the axis of the high-frequency transducer, small tilt 

motions of the fish could have had large effects on the echo amplitudes. 

The probability density functions of echoes are shown in Fig. 9.5.8. 

Qualitatively, we expect the Rician PDF to have a large 7 and to be Gaussian- 

like at low frequencies and a smaller 7 at high frequencies. The measured PDFs 

for the same fish had 7 = 10 for 120 kHz and 3.8 at 420 kHz. The small hump at 

0.004 to 0.007 may have been caused by tilts of the fish. 

Empirical Target Strength Equations 

The observation that the high-frequency (ka > 1) acoustical scattering lengths 

are nearly proportional to fish lengths has lead to empirical formulas for L/2  > 2. 

Love (1971, 1977), McCartney and Stubbs (1970), and Foote and Traynor (1988) 

have given target strength formulas, for example: 

Foote: TS : 201oglLwf/R o I = m log (L/Ro) + b 

Walleye pollock: b = - 2 6  dB for R 0 -- 1 m (9.5.17) 

or b = - 6 6  dB for R 0 = 1 cm 

Love: TS -- 20 log lLwf/Ro I - 20 log [L/Ro] + bL + mL log [L/2] 

m L = - I . 1 ,  b L - - - 2 3 . 8  for R 0- -  l m  or b L = - 6 3 . 8  for R 0- -  l c m  

(9.5.18) 
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Figure 9.5.7 Relative backscattering lengths f_,hs/L of threadfin shad. Above, the 
digitized fish picture. Below, experimental data compared with theoretical calculation 
based on dimensions. The 33 fish were at about 10m depth and had lengths that ranged 
from 53 to 111 mm. The solid curve (ray mode model) was computed using the fish 
acoustical model. (From Jech, J. M., D. M. Schael, and C. S. Clay, "Application of three 
sound scattering models to threadfin shad (Dorosoma petenense)," J. Acoust. Soc. Am. 98, 
2262--69, 1995.) 

The frequency dependence of m L log(L/2)  is weak and is often omitted for 

narrow ranges of frequencies. Since these equations are empirical, bioacousti- 

cians usually use data from acoustical surveys and nets to calculate constants for 

their fish. 

9.5.4 LOW-FREQUENCY S W I M B L A D D E R  R E S O N A N C E  MODELS 

In the low-frequency resonance region, we need a better understanding of the 

swimbladder and fish structure than is necessary for high-frequency scattering. 

Simplified sketches of  swimbladders are shown in Figs. 9.4.1 and 9.4.2. In 

Chapter 10 (Fig. 10.5.1), we show X-ray pictures of an ensemble of brook trout. 

These sketches and the pictures demonstrate that the swimbladder is quite 

variable and is not a simple prolate spheroid- (cigar-) shaped organ. A physicist 

or acoustician can learn much by dissecting (gutting) a fresh fish. Starting with a 
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Figure 9.5.8 PDF of scattering from a 66 mm fish. The solid squares are measured echo 
amplitudes. The solid curves are Rician PDE (From Jech, J. M., D. M. Schael, and C. S. 
Clay, "Application of three sound scattering models to threadfin shad (Dorosoma 

petenense)," J. Acoust. Soc. Am. 98, 2262-69, 1995.) 

cut along the belly, one finds the liver, intestines, and stomach. The swimbladder 

is at the top of the cavity, just beneath the spin and ribs. The swimbladder is a gas- 

filled, elastic-walled sack attached to the ribs. Swimbladder functions include 

hearing and buoyancy. While the swimbladder can expand and contract down- 

ward and sideways as the volume changes, the top keeps the same shape, and the 

high-frequency back-scattering lengths will be nearly the same at all depths. 

Applications of the gas laws to the gas volume and pressure in the swimbladder 

are complicated because the gas not a free gas bubble (see Chapter 8). In response 

to external pressure changes, the ability of a fish to adapt to the pressure change by 

increasing or decreasing gas volume in the swimbladder depends on its physiology. 

It can take many hours for a fish to adapt to a new depth by adjusting the gas volume 

and pressure in its swimbladder. The resonance frequency of a full swimbladder 
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depends on the elastic properties of the membrane and musculature of the fish. A 

sudden increase of external pressure causes the gas volume to decrease. The swim- 

bladder becomes limp like a sack, causing the resonance frequency to decrease. 

Sudden decreases of external pressure cause an increase of pressure differential. 

The gas expands and, correspondingly, the swimbladder membrane expands a 

little and has a new resonance frequency. Further expansion ruptures the 

membrane. We strongly recommend the study of the acoustic measurements and 

their corresponding biological interpretations in Sand and Hawkins (1973) and 

McCartney and Stubbs (1970). Feuillade and Nero (1997) simulated the Sand and 

Hawkins experiments. They used a grossly simplified low-frequency resonance 

model with a gas sphere core, a thin elastic shell around the gas to represent the 

swimbladder membrane, and a thick viscous shell to represent the fish flesh. The 

whole fish model is in water. While the high-frequency scattering depends 

strongly on shape, the low-frequency resonance scattering mainly depends on 

first behavior, anatomy, physiology, and the physical properties of the 

swimbladder and the flesh. 

Early swimbladder simulations used the classic bubble equation (see Equation 

8.2.32). The Qs of the swimbladder resonances were of the order of 1 to 4, much 

smaller than the Q of a free gas bubble, indicating very large viscous losses. The 

lumped constant developments in Chapter 8 are for very small viscosity and may 

be inaccurate for the very large viscosities of fish flesh. Thus, it is prudent to use 

the traditional wave equation and boundary condition approach. 

The spherical wave equation and the boundary conditions are satisfied at each 

interface between the shells. Elasticity and viscosity greatly increase the 

complexity of solutions. Analytical solutions have been derived for the gas 

bubble in an elastic medium (Andreeva, 1964) and for a spherical bubble inside 

an elastic shell in water (Love, 1978). 

In Love's model, the spherical bubble represents the swimbladder and the 

elastic shell represents the fish flesh. The model is in water. Love chose the shell 

to be a viscous, heat-conducting Newtonian fluid and derived a total scattering 

cross-section for kae, ,. ,~ 1. We give Love's final expressions and follow Love's 

notation with minor changes. The differential scattering cross-section is A a, 

where A a  = ah,  = a / 4 n .  

The scattering expressions are extremely complicated and have many terms. 

Love made many approximations and dropped terms to reduce the scattering 

expression to the same form as the classical bubble equation 

2 )2 

ZIG --  abs - -  I Lbs 12 = a e s ( P A / D f  (9.5.19) 
(o ,2 /o ,2  _ 1) 2 + a 2 
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where aes is the radius of the equivalent sphere, 6 is the damping constant, o90 is 

the resonance frequency, and PA and pf are the densities of water and fish 

flesh. 

On including the surface tension z and specific heat ratio ~a - -  1.4 for the gas, 

the resonance frequency oo 0 of the spherical bubble is 

((-Ooaes) 2 : 37aeA t 2Z 

pf Pfaes(37a - 1) 
(9.5.20) 

Surface tension is an approximation for the swimbladder membrane. The 

distortion of the sphere into a prolate spheroid increases the resonance 

frequency by a factor that depends on the ratio e of the minor to major axis a l 

and a 2. 

e = a 1 / a 2 (9.5.21) 

co Op 2 1/2 ( 1 - e  2) 1/4 
m 

0) 0 e 1/3 
[ l n (  1 + 4 '  1 - e  2 - 1 / 2  

l _ V / l _ e  2 ) ]  
(9.5.22) 

where mOp is the resonance frequency of the prolate spheroid [Strasberg (1953) 

and Weston (1967)]. 

The damping constant 6 is 

(~" = (~rad + (}vis + 4h,s (9.5.23) 

where the damping terms a r e  t~ra d for radiation; 6vi s for shear viscosity; a n d  (~th, s 

for thermal conductivity and surface tension. [In Love, COo/(coH ) 6.] The 

damping terms are 

P A O.kTi es l~vis = 211 
(~ rad -~ P f C w ' p f 0)el es2 (9.5.24a) 

3 ( ~ ' a i r - l ) ( 0 ) l f a i r ) l l 2 (  2v ) 
= 1 + (9.5.24b) 

(~th,s -- 0) aes 2 P a 2  Cair p f 0) 2 a ) s  

where # is shear viscosity, z is surface tension, K:ai r is thermal conductivity of air. 

Love dropped the dependence of the scattering on the dimensions of the spherical 

shell surrounding the gas bubble. Love's values for the parameters are in Table 

9.3. 

The distortion of the sphere to a prolate spheroid causes the radiation damping 

to increase as 1/e (Ye, 1996) 

PAkal v/1 e 2 
Spheroid 6ra d ,.~ (9.5.25) 

epf In [(1 + v/1 + e2)/e] 
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Table 9.3 Notation and Swimbladder Parameters 

Parameter and Units Air Sea Water Fish Flesh 

aes = radius of equivalent sphere (cm) 

c = sound speed (cm/s) 

p = density (g/cm 3) 

= surface tension (dyne/cm) 

7 - ratio of specific heats 

Cp = specific heat, constant P (cal/g~ 

~c = thermal conductivity (cal/cm s~ 

/~ = dynamic shear viscosity (poise) 

PA -- ambient pressure (dynes/cm 2) 

Surface pressure = 106 dyne/cm 2 

3.3 x 104 1.5 x 105 1.55 x 105 

1.3 x 10 -3 1.026 1.05 

104 to 6 x 106 

1.4 1.01 1.01 

0.24 0.93 0.89 

5.5 x 10 -5 1.34 x 10 -3 1.32 x 10 -3 

1 to 5000 

(From Love, R. H., "Resonant acoustic scattering by swimbladder-bearing fish," J. Acoust. Soc. Am. 

64, 571-80, 1978.) 

In the limit, as e goes to 1, the spheroid damping becomes the radiation damping 

constant 5rad in Equation 9.5.24a. 

A comparison of the acoustic scatter from a small cod and a computation using 

Equation 9.5.19b and Cod A (Fig. 9.4.2) is shown in Fig. 9.5.9. A particularly 

useful set of measurements were made by Sand and Hawkins (1973). They used 

the technique of McCartney and Stubbs (1970), where fish was placed inside a 

ring hydrophone in a cylindrical cage. The ring hydrophone measured the 

monopole component of the scattered sound. The fish and ring hydrophone were 

insonified by a CW source. The target strength measurements were relative to an 

arbitrary reference. 

At the cod's adapted depth, the maximum of the data is about 1.8 kHz, while 

the theory has a maximum at 1.2 kHz. One can hypothesize that the connective 

tissue of the swimbladder causes the frequency increase (Feuillade and 

Nero, 1997). 

In field measurements, one does not have the luxury of having a single length 

of fish at a single depth. Love (1993) gives real-world results of extensive 

acoustical surveys in the Norwegian Sea. The scattering data were taken by using 

small explosive charges and a broad bandwidth directional receiving system. The 

data processing consisted of selecting a depth range and doing frequency spectral 

analysis of the pressure signals from a distribution of fish lengths at that depth 

range. A much simplified set of examples and numerical simulations can 
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Figure 9.5.9 Comparison of low-frequency range of acoustic scattering from cod A and 
data from Sand and Hawkins (1973). The fish was a 16cm cod. The data are for the fish at 
its adapted depth of 11 m. The numerical calculations used viscosity = 750 poise and cod 
A for an acoustic model. The swimbladder volume was computed using a triangular cross- 
section approximation as seen in Fig. 9.4.2. This volume was used to compute an 
equivalent prolate spheroid. Parameters: fish length L = 160mm, z = l lm,  and 
X = 0 deg. The data have an arbitrary reference level. 

illustrate the separate dependencies on depth and fish length in Love's  

measurements. To show the effect of the distribution of fish lengths, Equation 

9.5.17 was used to calculate target strengths for 25, 28, and 31 cm blue whiting at 

a fixed depth (375 m); the results are represented in Fig. 9.5.10a. The target 

strengths for a fixed fish size (28 cm) at different depths (300, 375, and 450 m) are 

shown in Fig. 9.5.10b. 

In Love's  surveys, all of the backscattered sounds are from the fish within a 

depth range. Fig. 9.5.11 shows the data and the theoretical curve for the fish and 

depths shown in Fig. 9.5.10. The loss of resolution precludes using this kind of 

field data to test the details of scattering theories. 

Fishery surveys usually report fish lengths and species. Fish lengths are 

measured because it is hard to measure fish weights on a rolling ship. An 

empirical relation between fish length L and weight Wf is 

Wf ,-~ kcw L3 (9.5.26) 

where kLw is in gm/cm 3, L is in cm, and Wf is in gm. For blue whiting, the 

empirical constant kcw may range from 0.0047 to 0.0062 depending on the 

season, spawning condition, and age of the animal (Love, 1993). 
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Figure 9.5.10 Reduced target strengths, TS,.e= 201og[Lbs(f)/L)]dB, for Love's 

spheroidal swimbladder model. The parameters were chosen to match blue whiting 

Micromesistius poutassou. See Love (1993). The reference length for the reduced or 

relative target strength computations is L = 28 cm. Above, Fixed depth z - 375 m for three 

lengths (cm). Below, Fixed fish length L -- 28 cm at three depths (m). 
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Figure 9.5.11 Comparison of Love's swimbladder model and a survey in the 
Norwegian Sea. The data are from Love (1993). Target strengths are reduced 
TSre = 20 log[f_,bs(f )/L] using the reduction length of 28 cm. The depth range is 300 m 
to 450m. 

9.6 Sound Backscattered by Zooplankton 

Acoustical estimates of zooplankton populations can be made if the scattering 

lengths are known as a function of frequency and zooplankton size. In most 

acoustical surveys, zooplankton are too close together for echoes from 

individuals to be resolved. In the laboratory, the echoes from individuals are 

very small because the animals are small. NcNaught (1968, 1969) and Greenlaw 

(1979) suggested using multiple-frequency sonars to separate different sizes of 

zooplankton populations. The methods depend strongly on the frequency 

dependence of scattered sound as described in Chapter 7. 

Zooplankton are often modeled by fluid-filled spheres and cylinders. The fluid 

sphere model and matrix inversion methods (Chapter 10) have been used by 

Johnson (1977), Greenlaw (1979), Holliday and Pieper (1980), and Holliday, 

Peiper, and Kleppel (1989) to interpret scattering from aggregates of small 

plankton. 

Zooplankton have appearances and structures that range from simple to 

"exotic." Fig. 9.6.1 shows sketches of zooplankton. These animals are 

examples of the kinds of the structures that we want to model acoustically by 

using simple elements such as combinations of cylinders and spheres. The 

physical properties of the animals are needed in order to model them. Physical 
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Figure 9.6.1 Zooplankton. a) Euphausid. b) Copepod. c) Pteropod. Based on sketches in 
M. G. Gross, Oceanography a view of  the earth (1972), pp. 427-430. 

properties of many zooplankton are given in Tables 9.4 and 9.5. The sound 

velocity and density contrasts of most zooplankton, relative to water, are 

generally quite small. On the other hand, the finite-length bent fluid cylinder and 

Kirchhoff models look more like a shrimp and are surprisingly accurate 

acoustical models of the animal. 

Laboratory measurements of sound scattering by zooplankton are difficult to 

make because the animals are small and the echoes are very small. It is hard to 

keep the animals alive and in good condition for measurements. Techniques and 

results are in the papers on preserved zooplankton (Greenlaw 1979), encaged 

aggregations of krill (Foote 1990a, 1990b), and single zooplankton (Chu, 

Stanton, and Wiebe 1992). 

9.6.1 H K  A C O U S T I C A L  M O D E L S  O F  Z O O P L A N K T O N  

The HK expression for sound scattered by zooplankton is the same as for sound 

scattered by fish bodies (Equations 9.5.12 through 9.5.14). For a straight cylinder 
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Table 9.4 Measured Dimensional Properties of Several Zooplankters in Terms of 

Coefficients of the Allometric Expressions zlV = oJ_fl and des - -  7L 6 

Organism a x 106 fl ), t~ 

Euphausiids 

Euphausia sp. 6.03 3.07 0.11 1.02 

E. pacifica (n -- 10, r 2 -- 0.97) 20.2 2.80 0.17 0.93 

E. superba 3.67 3.16 0.10 1.05 

3.471 3.1761 0.09 1.0587 

Meganyctiphanes norvegica 49.0 2.58 0.23 0.86 

43.7 2.59 0.22 0.86 

Nematoscelis sp. 1.29 3.50 0.07 1.17 

Nematobrachion sp. 

Nyctiphanes sp. 9.77 2.79 0.13 0.93 

Pseupeuphausia sp. 

Stylocheiron sp. 4.07 3.34 0.10 1.11 

Thysanoessa sp. 3.47 3.33 0.09 1.11 

Thysanopoda sp. 6.76 3.07 0.12 1.02 

All euphausiids 5.75 3.10 0.11 1.03 

Decapods 

Sergestes similis (n = 4, r 2 -- 0.96) 3.74 3.00 0.10 1.00 

Copepods 

Acartia tonsa 129.0 3.00 0.31 1.00 

Calanus finmarchicus 37.5 3.06 0.21 1.02 

Where A V is in ml, L is the length in mm and aes = 7L6; where aes is the radius of the equivalent 

sphere. (From Greenlaw, C. E, and R. K. Johnson, "Physical and acoustical properties of 

zooplankton," J. Acoust. Soc. Am. 72, 1706-10, 1982.) 

having radius aec, the scattering length  is 

Le [(kaec cos Z)] 1/2 sin A 
f-" e c "~ -- i - ~  A ~PL w b 

(9.6.1) 

>( e -i2kaec [1 -- Twb Tbw ei4kbaeC+id/b ] 

where  the parameters  are g iven in Equat ions  9.5.12 and 9.5.13. The  reader  will  

not ice that the bracket  [ . . . ]  in Equat ion  9.6.1 is the sum of two arrivals: " 1 "  and 

'"TwbTbw exp(i4kba + i~b) . "  The term 4kbaec gives a t ime delay of 4aec/C b. The 

phase shift q/b, using Equa t ion  9.5.13, tends to 

~b ~ --7r/2 for kba ~ 1 (9.6.2) 



Table 9.5 Values of Physical Properties for Some Zooplankters 

Organism 

Temp. 

~ 

p C K 

g/ml m/s 10 -1~ m-s/kg g 

Amphipods 

Cyphocaris sp. 

Gammarus pulex 

Parathemisto pacifica 

Sciva sp. 

Cladocerans 

Chirocephalus diaphanus 

Daphnia pulex 

Copepods 

Calanus finmarchicus 

Calanus plumchrus 

Eudiaptomus gracilis 

Decapods 

Sergestes similis (preserved) 

20 

25.6 

20 

20 

20 

11.3 

7 

15.4 

15 

20 

23.4 

25 

8 

16.5 

24 

1.080-1.100 3.82-3.89 1.055-1.074 

1542 

1.066-1.088 

1.080-1.100 1514 3.96-4.04 1.055-1.074 

1.080-1.100 1.055-1.074 

1.070 

1533 4.02 

1546 

1515 

1522 

1.011 

1.017 

1.029-1.033 

1.045-1.049 

1.0255-1.0265 

1.043-1.047 

1.047 

1.023 

1.009 

1.000 

1.006 

1.012 

1.006 

0.997 

0.917-0.933 a 

0.931--0.948 

0.918 a 

m.~ 

=. 

,< 

0 "  

~o 

= 

m.o 
= 

Sergestidae and Oplophoridae 1.075 



continued 

Organism 

Euphausiids 

Euphausia pacifica 

E. pacifica (preserved) 

E. superba 

Meganyctiphanes norvegica 

Thysanoessa raschii 

Temp. p c 

~ g/ml m/s 

7.4 1.063 

16.2 1513 

19 1505 

19.2 1504 

20 1.060-1.065 

22.4 1555 

24.1 1550 

25.4 1553 

9.4 1.043 1502 

12 

K 

10 -10 m-s/kg 

1.037 

1.035-1.040 

4.25 1.043 

1.005 

1.000 

1.000 

1.022 

1.016 

1.015 

1.038 

1.049-1.068 1.021-1.040 

1.035 1.010 

12.3 1.055 1511 4.15 1.027 1.010 

9 1.040-1.045 1532-1555 3.96-4.10 1.013-1.018 1.032-1.046 

20 1.070-1.075 1.045-1.050 

Mysids 

Memimysis lamornae 6.4 1.075 

a/s k computed from average values of p, c, g, h. 

(From Greenlaw, C. E, and R. K. Johnson, "Physical and acoustical properties of zooplankton," J. Acoust. Soc. Am. 72, 1706-10, 1982.) 

0.935 a 

0.889 

0.850 

0.955 

0.875-0.903 

~O 

= 
g:. 

r 

r 
g~ 

gl. 

O" 
,.< 

O 

= 
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and the second arrival has a - 9 0  ~ phase shift relative to the first. An example of 

the frequency domain expression (Equation 9.6.1) and its Fourier transformation 

are shown in Fig. 9.6.2. 

Fig. 9.6.2 might seem to be so idealized that one could not get a corresponding 

signal from real shrimp. Fig. 9.6.3 shows the corresponding echoes from a 

shrimp. 

9.6.2 B E N T - C Y L I N D E R  A C O U S T I C A L  M O D E L S  

Finite fluid cylinders are used to model fish bodies (no swimbladder) and 

zooplankton such as shrimp. Comparisons of the results of models and data show 

that the fits are improved by bending the cylinders 2,3,8. The acoustically effective 

length of a bent cylinder is 

~) L i2kz(x) 
L ebc = e dx  (9.6.3) 

Using a parabolic displacement function, z(x) is 

2 

The acoustically equivalent length of a bent cylinder is 

(9.6.4) 

Figure 9.6.2 Frequency and time domain representations of scattering by finite fluid 
cylinders. Amplitude and time scales are arbitrary. The HK algorithm (Equation 9.6.1) was 
used to compute the scattering length in the frequency domain and filtered to reduce the 
amplitudes at low and high frequencies. The finite Fourier transformation was used to 
compute the time domain signal, a) HK computation for frequency (ka,,,) domain, b) 
Transformation to time domain. Note the reflections from the near and far surfaces of the 
cylinder. The time delay of the second arrival is the travel time for a round trip through the 
cylinder. 
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Figure 9.6.3 Scattering of an impulse wave by a live decapod shrimp, a) The incident 
impulse acoustic signal; b) single echo from a decapod shrimp near broad side incidence; 
c) single echo from the decapod shrimp near end-on incidence; d) single echo from 
laboratory generated turbulence. Note the change of scale. (From Stanton, T. K., C. S. 
Clay, and D. Chu, "Ray representation of sound scattering by weakly scattering deformed 
fluid cylinders: simple physics and applications to zooplankton," Jr. Acoust. Soc. Am. 94, 

3454-62, 1993.) 
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where the subscript ebc indicates an equivalent bent cylinder. The integral for Leb c 

(Equation 9.6.5) has the form of a Fresnel integral. Change the variables to the 

following parameters 

2 2 ~/ 
2 ~ - 2 k f l x  and ~1 = 2 L  k fl//t" (9.6.6) 

and obtain the standard form of the Fresnel integral (Abramowitz and Stegun 

1964, sec. 7.3): 

fo ~' 7r f0 "~' Jr C ( ~ ) =  cos ( -~ ~ 2) d~ and S ( ~ ) =  sin ( -~ ~2)  d~ (9.6.7) 

The expansion of Equation 9.6.5 gives the sum of the Fresnel integrals: 

L ebc= 4kf l  [ C  ( ~ l )  + i  S ( ~ 1 ) ]  (9.6.8) 

where ~L 2 is the displacement of the end of the bent cylinder at x = L. 

Relative (or reduced) scattering amplitudes are computed using L as the 

reference length. Examples of the effect of bending the fluid-filled cylinder are 

shown in Fig. 9.6.4. Relative to the straight cylinder (~ = 0), bending causes the 

scattering amplitudes to decrease at large ka. 

9.6.3 SCATTERING AMPLITUDES OF LIVE SHRIMP 

We have chosen to show the scattering measurements of single shrimp and make 

comparisons to a rather precise acoustical theory. Once a model is shown to 

match an individual animal, then one can use the model to compute the scattering 

amplitudes for a distribution of zooplankton sizes and behaviors. 

Laboratory measurements were made of the acoustic scattering by live shrimp 

Palaemonetes vulgaris (Chu, Stanton, and Wiebe 1992), shown in Fig. 9.6.5. 

Some shrimp may have a short horizontal section that curves down to a tail and 

others may be straight. Shrimp are different, and depending on the shape, one can 

use numerical integrations. For model shrimp, it is convenient to use the arc 

length of the shrimp L, as a primary measure. 

Two live shrimp of lengths 13.5 mm and 19.8 mm were used. The shrimp were 

insonified in dorsal aspect. The acoustical measurements were made by using a 

wide-band-frequency-modulated "chirp" as the source. The receiver was 

mounted next to the source. The effective spectrum of the chirp was from 330 

to 650kHz. Echoes from the shrimp were amplified and then were Fourier 
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Figure 9.6.4 Bent cylinder and relative scattering amplitude, a) Incident and back- 

scattered component, b) Relative scattering amplitudes for different amounts of deflection 
of the parabolically bent cylinder, z(x) =/~x2: L = 0.1 m; a = 0.01 m; g = 1.036; and 
h = 1.026. 

Figure 9.6.5 Lateral view of a typical Palaemonetes species. Thorax is from A to B; 

length La is measured from A to C when the body is fully extended. (From Chu, D., T. K. 

Stanton, and P. H. Wiebe, "Frequency dependence of backscattering from live individual 
zooplankton," ICES J. Mar. Sci. 49, 97-106, 1992.) 
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analyzed. Since live shrimp move between pings, single echoes were chosen for 

analysis. The backscattering cross section and reduced target strengths were 

computed  from the spectral amplitudes: 

- I Lbs 12 and TSre - 10log  (abs/L 2) (9.6.9) 

where L, is the shrimp (arc) length, and we introduce the reduced target strength 

Tare. The frequency dependence is implicit. The reduced/relative target strengths 

for both shrimp are shown in Fig. 9.6.6. There are deep nulls at ka ~ 2, 3.6, and 5. 

The values and spacings of the nulls are diagnostic of the animal sizes. 

The most important results are the agreement of the locations of the 

experimental and theoretical nulls for cylindrical fluid models. The bent-cylinder 

theory, Fig. 9.6.4, gives a reduction of the scattering lengths at large ka relative to 

the straight cylinder. As shown in Fig. 9.6.6, a bent cylinder matches the data 

better than the straight cylinder. The thorax of the shrimp sketched in Fig. 9.6.5 is 
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Figure 9.6.6 Comparisons of measured relative target strengths TS,,, and models: 
cylinder, bent cylinder, sphere, and modified sphere. The anesthetized shrimp 
(Palaemonetes vulgar&) were tethered by human hairs in an inverted position and 
insonified in dorsal aspect from below the shrimp. Theoretical reduced target strengths are 
given relative to the arc length of the shrimp or the area of the sphere. 
TS,.(.---201oglL, y//Lal, OB and TS~es = lOlog[ILsphl2/(rca2)])], da. (From Chu, D., 
T. K. Stanton, and P. H. Wiebe, "Frequency dependence of backscattering from live 

individual zooplankton," ICES J. Mar. Sci. 49, 97-106, 1992.) 
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rough. Decreases of g to 1.03 and h to 1.01 would move the theoretical target 

strength curves down and give a better match to the data. 

As mentioned earlier, zooplankton are also modeled as equivalent spheres that 

have the same volume as the animal. The problems of using this approximation 

for shrimp are shown in Fig. 9.6.6c and d. The equivalent spherical radius for 

the shrimp gives nulls at the wrong values of ka. To fit the null spacings, 

the equivalent radii of the spheres were reduced to 0.56aes. These changes 

gave the curve shown in Fig. 9.6.6d. Reduction of the equivalent radius also 

reduced the target strengths too much. 

The fit of the bent-cylinder model to the scattering amplitudes for a single 

echo from a shrimp is remarkable. Even though the shrimp looks like a crude and 

bumpy bent cylinder, the nulls are well defined to ka ~ 5. The bent cylinder is an 

accurate working model for shrimp. 

9.7 Bubble-Carrying Plankton 

At sea, there are tiny gas-bubble-carrying plankton that, though only millimeters 

in extent, have a very large scattering effect. One example is Nanomia bijuga, a 

colonial hydrozoan jellyfish (order Siphonophora, suborder Physonectae) that has 

been identified as a primary cause of some sound scattering layers off San Diego, 

California. Positive identification was accomplished by simultaneous viewing 

from a deep-sea submersible while recording the backscattered sound (see Fig. 

9.7.1). 

Siphonophores consist of many specialized individuals, aligned along an axis 

that may be as long as 75 cm. One of the major groups of siphonophores, the 

Physonectae, is identifiable by bubble-carrrying pneumatophores, which operate 

as flotation elements for the colony. This individual is approximately a prolate 

spheroid of dimensions about 3 mm x 1 mm and contains from 12.6mm 3 to 

0.25 mm 3 of ejectable, rechargable, carbon monoxide gas (7 = 1.40). The 

resonance frequencies, which may be calculated from Equation 8.2.13, 

adjusted by the ellipticity factor in Fig. 8.2.6, range fom about 7 to 27 kHz at 

100 m depth. 

9.8 Allometric Expressions for Zooplankton 

The overwhelming complexity and vast differences in physical appearance 

of zooplankton has led acousticians to look for simple generalized dimensional 
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Figure 9.7.1 Photograph of pneumatophores of N a n o m i a  bi juga with contained gas 
bubbles: A, pore; B, gas gland; C, longitudinal muscle band. (From Barham, E. G., 
"Siphonophores and the deep scattering layer," Sc ience  14, 826-28, 1963.) 

"allometric" expressions that are adequate for puposes of scattering 

calculations. The following expressions are from Greenlaw and Johnson 

(1982). Where convenient, their notation is used: 

A V  = o~L fl A V  in ml, L in mm (9.8.1) 

a,,L, = ?L '~ radius of equivalent sphere (9.8.2) 

where density ratio is g = (scatterer)/(medium); sound speed ratio is h = 

(scatterer)/(medium), compressibility ratio is k = (scatterer)/(medium); com- 

pressibility is •. 
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Problems 

Section 9.2 

9.2.1 Use Fig. 9.2.2. The sonar frequency is 50 Hz and the circular transducer 

diameter is 10 cm. The sonar transmits a 1 ms ping. At 1 m from the transducer 

and on the axis of the transducer, the peak pressure of the ping is 3 Pa. A 2 cm 

diameter stainless-steel sphere is at 5 m range, a) Calculate the sound pressure 

incident on the sphere, b) Calculate the sound pressure scattered back to the 

transducer, c) Plot the peak of the backscattered sound pressure at the transducer 

as a function of 0. 

Section 9.3 

9.3.1 The sonar of Problem 9.2.1 insonifies several 5.2 cm diameter stainless- 

steel spheres at the following ranges: 10, 11, 13, 15, and 19m. The spheres 

scatter sound (echoes)back to the transducer. The spheres are on the axis of the 

transducer, a) Compute and graph the envelopes of the echoes, b) Compute the 

squared sound pressure and the volume backscattered sound for the volume 

bounded by 9 and 20 m. c) Compare the values of the cross terms to the squared 

pressure terms. 

9.3.2 Use the same sonar as in Problems 9.3.1 and 9.2.1. The objects are on the 

axis of the transducer. The ranges are 10, 10.02, 10.93, 11 i0, and 11.8 m. Repeat 

a), b) and c) of Problem 9.3.1. d) Do you obtain interfering arrivals? 

9.3.3 Use the sonar of Problem 9.3.1. Choose a random number generator that 

gives an uniform distribution of random numbers between 0 and 1 (rnd is the 

usual one in computers). Let R -- 10 + 2x random and select five ranges to do 

the sonar signal calculations for a) through d) of Problem 9.3.2. 

9.3.4 Repeat Problem 9.3.3 for three more sets of random ranges, e) Combine 

all of the data to compute the mean-squared sound pressures for the set of four 

random ranges. Compare the average values of the cross terms with the mean- 

squared pressure. 

Section 9.5 

9.5.1 Use a gas-filled cylinder to make an oversimplified model of a gas-filled 

swimbladder in water. Let the length be 10 cm and the diameter be 1 cm. Use the 

Kirchhoff approximation for backscattering length calculations, a) Calculate and 

plot Lbs for the range of 0.2 < ka < 10. b) Plot the same versus frequency. 
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9.5.2 Use results from Problem 9.5.1 and compute and plot the scattering 

lengths for Z = 0 to 20 ~ for ka = 5. " 

9.5.3 Use a fluid-filled cylinder to make an oversimplified fluid model of a 

large zooplankton in water. Let the length be 10cm, the diameter be 1 cm, 

g = 1.036, and h = 1.028. Use the Kirchhoff approximation for backscattering 

length calculations, a) Calculate and plot Lh,~, for the range of 0.2 < ka < 10. b) 

Plot the Lbs versus frequency. 

9.5.4 Use results from Problem 9.5.3. For ka = 1.7, 2, and 2.9, compute and 

plot the scattering lengths for Z -- 0 to 20 ~ 

9.5.5 Use a fluid-filled cylinder to make an oversimplified fluid model of a fish 

body in water. Let the length be 30 cm, the diameter be 3 cm, g -- 1.036, and 

h =  1.028. Use the Kirchhoff approximation for backscattering length 

calculations, a) Calculate and plot Lhs for the range of 0.2 < ka < 10. b) Plot 

the Lbs versus frequency, 10 to 200 kHz. 

9.5.6 Place the gas-filled cylinder, Problem 9.5.1, along the axis of the fish 

body of Problem 9.5.5. a) Calculate the coherent sum of the scattering lengths 

and plot the Lhs versus frequency. Let the frequency range be 10 to 200 kHz. b) 

Tip the axis of the gas-filled cylinder 7 ~ and repeat a). 

9.5.7 Use the low-frequency resonance model to calculate the scattering from 

the simplified fish model of Problem 9.5.6. Calculate Lh,, in the frequency range 

of 50 to 20,000 Hz. 
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Sonar systems are used to remotely sense the interior of the ocean, what is in it, its 

surface, its bottom, and structure beneath the bottom. Many specialized systems 

have been developed to do this. Data interpretation methods range from a simple 

display of "what 's  there and what's it doing" to statistical analysis of the 

pressure signals received by a system. In display and analysis there are two 

signal-processing classes: resolved and unresolved scatterers or reverberation. 

With resolved signals, the sources, scatterers, and so forth are separately 

displayed or imaged in time and space. Decades of development in sonar systems 

have improved the time and spatial resolution of the systems. With unresolved 

signals, the pressure signals from the sources, scatterers, and so forth are not 

separated in time or space and are called "reverberation." Statistical analysis, 

spectral analysis, and directional scattering are used in the study of unresolved 

scatterers in the reverberation. 

Acoustical studies of animal organs and flesh in medical physics have a 

striking resemblence to acoustical probing of the ocean. General objectives are to 

define the shape and structures of organs and to find anomalies within organs. In 

animals, the frequencies are much highermfrom 2 to 50 MHzmand the ranges 

are measured in mm. Madsen, Insana, and Zagzebski (1984) give a detailed 

development of the data-reduction methods that are used in medical physics. 

They compared their data-reduction method to laboratory measurements of the 

sound scattering by glass beads in agar gel. Another example of a laboratory 

experiment is the measurements of the scattering of polystyrene beads in agarose 

(Bridal et al. 1996 and their references). 

As our ability to image scatterers has improved, the number and complexity of 

tasks in the reverberation region are reduced. Even so, for any sonar system, there 

is always an unresolved region where new kinds of measurements and analysis 

are needed. 

10.1 Types  of  S o n a r s  

Many sonar systems are almost one-task devices. The introduction of digital 

recording and data analysis has broadened the range of usefulness of an instrument 

so that a single instrument may be able to do several related tasks. Digital software 

has replaced many of the analog operations in sonar systems, and digital signal 

processing has improved the adaptability of a system to new tasks. Sonar hardware 

and transducer configurations tend to be specialized to measurement task. Starting 

with a simple sonar or echo sounder, we describe sonar configurations and their 

relation to remote sensing tasks. Generally, acoustic pings are used. 



10.1. Types of Sonars 407 

10.1.1 E C H O  S O U N D E R  

The most common sonar system is the echo sounder (Fig. 10.1.1). It employs an 

electrical signal generator and amplifier, called a "transmitter," a transducer to 

convert an electrical signal to sound; a transducer to convert sound to an electrical 

signal; an electrical receiving circuit; and display. Many sonar systems use the 

same transducer for transmission and reception. Systems range in complexity 

from the "fish finders" that are sold in sporting goods departments to multibeam 

systems that are used by commercial fishermen and navies. The multibeam 

systems are basically combinations of many single-beam systems. 

A typical echo sounding record is shown in Fig. 10.1.2. This sonar has a time 

(or depth) varying gain to compensate for the 1/R 2 dependence of the echo 

amplitude on range. It is easy to interpret the record qualitatively. The small black 

dots are echoes from single targets, here fish. A school of fish appears as a cloud 

of returns because the echoes from individual fish overlap. The bottom of the lake 

is indicated by the black line. Echoes also come from the multiple reflection path, 

bottom to surface to bottom to the transducer. Those shown appear to come from 

beneath the bottom. Because of the complexity of the backscatter, quantitative 

interpretation requires careful analysis. 

Figure 10.1.1 Echo sounder. Separate transmitting and receiving transducers are 
shown. Many echo sounders use the same transducer for transmission and reception. 
The cycle is started by a trigger from the display or transmitter. 
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Figure 10.1.2 A nighttime 70 kHz echo sounding record taken in Trout Lake, 
Wisconsin. Some of the bottom echoes saturate the receiver electronics and cause the 
trace to be white. (From Rudstam, L. G., C. S. Clay, and J. J. Magnuson, "Density 
estimates and size of cisco, Coregonus artedii, using analysis of echo peak PDF from a 
single transducer sonar," Can. J. Fish. Aquat. Sci. 44, 811-21, 1987.) 

10.1.2 SIDE-SCANNING SONAR 

The side-scanning sonar is an echo sounder that is pointed sideways (Fig. 10.1.3). 

However,  although the design concepts are the same as the simple echo sounder, 

the sending transducer produces a fan-shaped beam, and the receiver has a time- 

variable gain to compensate for range. Side-scanning sonars are used in 

geological studies to give images of rough features on the sea floor (e.g., 

Fig. 1.3.5). The instruments are also used to locate objects such as sunken ships 

on the sea floor. Fig. 10.1.4 shows a side-scanning record. 

10.1.3 M U L T I B E A M  SONAR 

Comparisons of mapping and object location operations that use radar in air and 

sonar in water demonstrate the large differences between the use of 

electromagnetic waves in air and sound waves in water. Radar (electromagnetic 

wave velocity -- 3 • 108 m/s): the radar pulse travel time for a range of 30 km is 

Figure 10.1.3 Side-scanning sonar. The sonar looks to the side of the shp and makes an 
echo sounding record as the ship moves. The time of return of a pulse is interpreted as the 
range to the bottom feature that caused the scatter. Display software converts the "raw 
image" to a map of features on the bottom. 
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Figure 10.1.4 Sidescan record. (From Clay, C. S., and H. Medwin. Acoustical 
Oceanography; Wiley; New York, 1977.) 

2 x 10 -4 s, and a simple radar systems can send, receive, and display in a very 

short time. The time required to make a 360 ~ image at 1 o increments can be less 

than 0.1 s. Thus radar systems can use a single rotating dish to give good images. 

Consider an airborne radar. In 0.1 s, an aircraft moving at a little less than the 

speed of sound in air (about 600 miles/hr or 1000 km/hr) moves only about 30 m. 

The attenuation of electromagnetic waves in sea water is very large, and radar 

does not have a useful working range in the ocean. However, the attenuation of 

electromagnetic waves in glacial ice is small enough that radar soundings are 

used. 

Sonar (sound s p e e d =  1500m/s): the time required for a sonar to range to 

30km is 40s.  In a sequential data acquisition system that takes one echo 

measurement at a time, several hours at one location would be needed to make 
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one 360 ~ image. A ship moving at 9 km/hr (2.5 m/s) moves 100 m during the time 

for a single echo ranging measurement. A technological solution is to acquire 

sonar data in parallel by transmitting and receiving in many directions at the same 

time. 

Fig. 10.1.5 shows an example of a multibeam sonar for sea-floor mapping. 

This system is intended to map a swath of depths along the ship track. Since these 

systems are usually mounted on the hull of the ship, the receiving array points in 

different directions as the ship pitches and rolls. The data-reduction system must 

compensate for the ship motions and the direction in which the receiving array is 

pointing when the echoes arrive. 

Figure 10.1.5 Multichannel sonar system using preformed beams. A cross section of the 
ship is shown. The transmission is a broad beam. By adjusting time delays of the receiving 
elements, the multielement receiving array is preformed to a set of narrow beams that look 
from port to starboard and measure the depths to various positions such as 1 to 7. As the 
ship moves, the computer makes a contour plot of the depths. Using color coding, one gets 
a highly revealing picture such as Fig. 1.3.4. 
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10.1.4 DOPPLER SONAR 

Doppler sonars are used to measure the velocities of ships relative to the water or 

the sea floor (Fig. 10.1.6). They may also be used to measure the motion of the 

ocean surface or swimming objects, or internal waves, within the volume. The 

theory of operation is given in section 3.6. 

Another application of the Doppler phenomenon is the oceangoing "port- 

able" Doppler velocimeters, as seen in Figs. 10.1.6 through 10.1.8. 

10.1.5 PASSIVE ACOUSTICAL S Y S T E M S  

Passive acoustical systems listen to sounds in the ocean. A system may range in 

complexity from a single hydrophone to an elaborate, steered array of 

hydrophones similar to the multibeam system in Fig. 10.1.5. Examples of 

noises at sea are described in sections 6.6 and 8.5. 

Acoustic Daylight 

Buckingham et al. (1992) coined the phrase "acoustic daylight" to describe a 

very different application of passive acoustics. The basic idea is sketched in Fig. 

10.1.9. Physical, biological, and man-made sounds at sea can be used as an 

acoustic analog of daylight--that is, they illuminate (more correctly, insonify) 

unknown objects in the sea. Since the ocean water between the surface and the 

bottom is acoustically transparent, the situation is the acoustic analog of an 

optically transparent atmosphere. The natural sounds of the sea insonify objects 

in the water, and the objects scatter these waves. Therefore, if one were to scan 

with the proper acoustic equipment, one should be able to identify the 

waves scattered by objects in the ocean, and thereby identify the objects 

themselves (Buckingham and Potter, 1994). 

Using acoustic daylight to sense objects at sea is much more difficult than 

using our eyes to identify objects on a sunny day. Since the natural sounds are 

extremely variable in frequency spectrum, amplitude, and phase, some kind of 

multibeam, acoustic lens-retina or focusing reflector-retina system is needed to 

compare the relative sounds from many directions at the same time, and to 

identify the scattering body. One acoustical advantage may be that identifiable 

sounds in the sea cover a vast frequency range from fractions of a cycle to 

megaHertz. This is to be compared with the optical frequencies to which the eye 

is sensitive--frequencies that cover a range (violet to red) of only 2 to 1. 
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I 
Figure 10.1.7 Physical configuration of an acoustic Doppler current velocimeter. The 

four transducers here are oriented 30 ~ off the cylinder axis with 90 ~ azimuthal spacing. 

The instrument body is a cylinder of length 81 cm and diameter 18 cm. When used with 

75kHz transducers, the four transducers span 76cm measured perpendicular to the 

instrument axis. At 1200 kHz, with smaller transducers, the span is 22 cm. Courtesy RD 

Instruments, San Diego, California. 

10.1.6 STEERED ARRAY SYSTEMS 

Transmitting or receiving arrays of transducers are steered by adding the signals 

from each transducer with proper t ime delays. The same analysis applies to send 

or to receive; we give the analysis for a receiving array. 

Figure 10.1.8 Beam pattern of the vertically oriented Doppler velocimeter. The 

velocity measurement region is the space bounded by the four beams. The resolution 
cell is defined by the transducer beam pattern and the ping duration. Up to 128 cells are 

available in the instrument shown in Fig. 9.1.7. 
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Figure 10.1.9 Object insonified by acoustic daylight. The sketch shows natural sources 
from near the sea surface and scattered sound from the sea floor, illuminating an object that 
scatters sound toward a receiver. The directional receiver is sketched as an acoustic 
reflector that is focused on an acoustic retina. 

Consider the array of transducers in a line perpendicular to the direction ~b - 0 

(Fig. 10.1.10). To electronically/digitally steer the array, we insert appropriate 

time delays in each y,,-channel. 

Let the signal at the 0th hydrophone be p(t) and the channel amplification 

factor be ao. From the geometry in Fig. 10.1.10 the plane wavefront arrives at the 

nth hydrophone at advance At,, before reaching the 0th hydrophone, where 

At,  - ( y,, sin dp)/c (10.1.1) 

The signal at hydrophone n is p ( t - A t , , ) .  The A/D conversion and 

amplification is in the a,.  The time delay %, is inserted to give the signal 

p ( t -  At ,  + %). 

The sum signal for N channels is 

N - 1  

A N P N ( t )  = ~ a n P (t - A t  n + Z n ) (10.1.2) 
n = 0  

where A,, is an amplitude factor. 

Now, if z,, is chosen to equal At,,, then the signals add in phase for that 

direction ~b, and we have 

N - 1  

A N P  N ( t ) =  p ( t )  n-~O a n  for A t  n = v n (10.1.3) 
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Figure 10.1.10 Electronically/digitally steered array for a plane wave entering the line 
of transducer array elements at angle ~b. To steer the array, the elements at positions Y0, Yl, 
and so forth are given time delays %, z 1, and so forth that depend on the angle. The 
combination of the transducer sensitivity, A/D conversion, and amplifiers for the 
individual elements have the values a n. The concept works for sources as well as receivers. 

This method of array steering is c a l l e d "  delay and sum."  The only assumption 

is that the signals in each channel are the same except for their time delays. Delay 

and sum processing works for any p ( t ) .  The directional response of a steered array 

in other directions can be computed by choosing an incoming angle ~b' and letting 

Zn - -  ( Yn sin r  (10.1.4) 

Then 

A t  n - % - -  yn(sin q5 - sin d / ) / c  (10.1.5) 

The directional response of the array as a function of ~b depends on the value 

of ~b'. 

We have assumed that the incident sounds are plane waves. This is equivalent 

to assuming that the curvature of the wavefront is small over the dimensions of 

the array (e.g., less than 2//8). The plane-wave assumption is effective for small 

arrays and distant sources. 

Arrays are built in many configurations: cylinders, spheres, and so on. The 

multibeam sonar described in section 10.1.3 is one example. By using time 

delays, almost any shape can be steered to receive signals of any curvature from 
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any direction. However,  when the arrays are built around a structure, diffraction 

effects can cause the performance to be deteriorated. 

10.2 Sonar Systems" Details 

Quantitative measurements of sound scattered from an object require that we 

understand the specifications and use of the sonar system as well as the physics of 

the scattering processes. Sonars are often designed and adapted to the physics of a 

particular type of measurements.  However,  the operating characteristics of the 

sonar and the physics of the reflection and scattering processes (which we 

described in Chapters 7, 8, and 9) are really independent. We now consider the 

sonar system. 

10.2.1 GENERIC SONAR 

A generic sonar, shown in Fig. 10.2.1, is a combination of analog and digital 

components. Typical displays are paper chart recorders and video display 

terminals. Sonars that are used for surveys and research usually include control of 

Transmitter 

Transmitter control 

Preamplifier control 

Display 

Transmit 
receive 
switch 

Preamplifier 
with step gain 
control 

Signal 
processing 
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[Transducer [ 
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Figure 10.2.1 Block diagram of a generic sonar. The sonar system has an automatic 
transmit/receive switch. Some systems have separate transducers for sending and 
receiving. The trigger, from a clock that is internal and/or external, initiates the 
transmission and reception cycle. The receiver includes the electronic and digital signal 
processing. The transducers may be mounted on the ship or in a tow body, "the fish." The 
signals may be recorded on an analog tape, a digital tape, or a compact disc. 
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ping duration, choice of the t ime-varying-gain ( T V G )  function, calibration 

signals, displays, and analog signal outputs. As shown in Fig. 10.2.2, for each 

transmission and reception cycle, the TVG starts at low gain and increases as a 

function of time. All sonar receivers have a minimum output that is related to the 
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Figure 10.2.2 Time-varying-gain (TVG) as a function of range for two settings for a 
generic sonar. The operation is used to compensate for range dependence. Unresolved 
overlapping echoes (volume scatter) have a pressure amplitude proportional to 1~(time) 2, 
and the amplitude compensation is proportional to (time) and (20 log R). Isolated echoes 
from individuals have echo amplitudes proportional to 1~(time) 2 and and compensation is 
(time) 2 or (401ogR). a) The final TVG reference gain is unity (0 dB). b) The initial 
reference gain is unity (0 dB). The maximum TVG action is limited by the maximum gain 
of the amplifier. 
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noise and a maximum output/limit when the amplifier overloads. Digital systems 

have equivalent minimum and maximum limits. The TVG is chosen to keep the 

output electrical signal amplitudes approximately the same for near and distant 

scatterers and to keep the signals above the minimum and less than the maximum 

limits. 

It is preferable to choose a TVG function that keeps the electrical signals in a 

good recording range rather than trying to match some preconceived notion of 

what the TVG ought to be. Standard preprogrammed choices are gain 

proportional to (time) 2 or 40 log(R) and gain proportional to (time) or 20 

log(R). How the TVG operates on voltage signal in an instrument depends on the 

engineering design. Some designs start with a very low gain and then increase to 

the amplifiers limit (Fig. 10.2.2a). Others start with an initial gain of unity (0 dB) 

and increase to the amplifier's limit (Fig. 10.2.2b). If one has individual echoes 

from many small, isolated targets, then the echo pressure amplitudes (the echoes) 

decrease as approximately 1~(time) 2, and a TVG of 40 log(R) compensates for the 

spherical divergence. 

As discussed later in section 10.4, when the objects are close together, as in a 

cloud of scatterers, and their echoes overlap, the sum of all of the unresolved echo 

pressures tends to decrease as 1~(time), and a TVG of 20log(R)gives  

compensation. This is characteristic of volume scatter. In acoustical surveys, 

both clouds of fish and individuals can be present, and neither choice of TVG fits 

all. It is better to use one TVG choice that keeps the voltage levels in a good range 

for recording. (Don't twist knobs.) Whatever the TVG choice, an appropriate 

range dependence can be included in digital signal processing. 

Digital-signal-processing technology has enabled the mass manufacture of the 

small sports-fisherman's sonars. These inexpensive instruments contain 

preprogrammed computers and are actually very sophisticated. The small 

portable sonars can identify echoes from individual fish, display relative fish 

sizes, look sideways and separate echoes of large fish from reverberation, and 

show water depth. 

10.2.2 BAND-SHIFTING OR HETERODYNING 

OPERATIONS 

The ping from a sonar may have a carrier frequency of 100 kHz and a duration of 

1 ms. Examples of pings having the same envelope and different carrier 

frequencies are sketched in Fig. 6.3.1. Since the carrier f requencyf  is known, the 

ping can be described by sampling the envelope and measuring the relative phase 

of the carrier frequency. This can simplify the signal processing operations and 
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greatly reduce memory requirments in sonar systems. The ping is Equation 

6.3.1, 

x(t) - e(t) sin (2rCfct) for 0 < t < tp 

= 0 otherwise 
(10.2.1) 

where the envelope of the ping is 

e(t) -- 0.511 cos(2~zt/tp) l (10.2.2) 

The spectrum of x(t) is X(f) ,  which is sketched in Fig. 10.2.3a. The two 

multiplication operations, shown Fig. 10.2.3b, are the first step: 

x n ( t )  = e ( t )  sin (2Ir f c t) cos (2Jr f n t) (10.2.3) 

and 

Xo(t) -- e(t) sin (2~zfct) sin (2rcf/4t) (10.2.4) 
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Figure 10.2.3 Band-shift or heterodyne operations, a) Spectrum of the input signal, b) 
Diagram of the band-shift operation for both cosine (H) and the sine quadrature (Q) 
multiplications, c) Output spectra. 
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We make the approximation that the time dependence of the envelope 

[1-cos(2m/ tp) ]  can be ignored because the frequencies are very small 

compared with fc. Expansion of the products of the sine and cosine terms gives 

2sin (2rcfct) cos (2rcfHt) = sin [2rt(f C - fH)t]  + sin [2rc(fc +fH)t] (10.2.5a) 

and 

2sin (2rcfct) sin (2rtfHt) = cos [2rt(fc - fH)t]  - cos [2rt(fc +fH)t] (10.2.5b) 

and the H and Q components of the band-shifted pings are 

xH(t ) ,~ e(t){sin [2rc(fc-fu)t] + sin [2rc~, + fu ) t ] } /2  (10.2.6a) 

and 

xo(t  ) ,~ e(t){cos [2re(f,-fH)t] - cos [2rt(f, + fH)t]}/2 (10.2.6b) 

The spectra of the band-shifted pings are sketched in Fig. 10.2.3c. Band-shifting 

operations are also known as heterodyning. The final steps are to low-pass-filter 

the results to select the (f. - f , )  bands. It is sufficient to sample the heterodyned 

signal at more than twice the frequency bandwidth of the envelope. For example, 

let a ping have the duration of 1 ms and a carrier frequency of 100kHz. The 

bandwidth of the 1 ms ping is approximately 1 kHz, and thus the minimum 

sampling frequency is 2 kHz. At 4 kHz, the envelope would be sampled four 

times. 

Phase shifts 

The relative phases of heterodyned signals are preserved in the hetrodyning 

operation. Let the ping (Equation 10.2.1) have a relative phase r/, 

x (t, 7/) = e ( t )  sin ( 27rf c t + 7/) (10.2.7) 

The shift of the envelope is very small. Repeating the steps that gave Equations 

10.2.5 and 10.2.6, the low-pass-heterodyned signals with a phase shift are 

x , ( t ,  rl) ~ e( t)s in (27tfjt + r/)/2 (10.2.8) 

where fd = L - fm, and 

XQ(t, q) ~ e(t) cos (2~zfdt + q)/2 (10.2.9) 
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Cross Correlations for Measuring the Relative Phase 

The reference signal is x(t), the phase-shifted signal is x(t, r/), and we want to 

measure the relative phase. The cross correlations of the signals are less sensitive 

to noise than direct comparisons of the phases. Consider the cross correlation of 

xH(t) and XQ(t, q), 

(x.(t)XQ(t, rl)) Norm [e(t)] 2 sin (2rcfdt) cos (2~zfdt + rl) dt (10.2.10) 

where 

tp 

Norm - [e ( t )  ] 2 sin 2(2rc f d t ) dt (10.2.11) 

The expansions of the product of the sines and cosine are 

sin(ZJrf a t ) cos (2Jrf  d t + 7/) = - �89  (7/) + l s i n  (4Jrf  d t + 7/) 

(10.2.12a) 

and 

2 (2~f  
1 1 

s i n  d t ) =  ~ -  ~cos  (4~ ' f  d t ) (10.2.12b) 

The substitution of Equation 10.2.12 into Equation 10.2.10 gives the sum of two 

integrals. The integral that includes the sin(47rfdt + q) term tends to 0. The 

remaining integral is 

1 ( t p  - s i n ( r /  ) 
<x H (t ) x Q (t, rl ) > = Norm J0 [e ( t )  ] 2 2 dt (10.2.13) 

The evaluation of Norm, using Equation 10.2.12, reduces Equation 10.2.13 to 

<Xi_l(t ) x Q(t, 7/) > - - -  sin(r/ ) (10.2.14) 

The other cross correlations are 

<XQ(t  ) X n ( t ,  71 ) >= sin(r/ ) (10.2.15) 

< x  i4 (t ) x i4 (t, I/) > =cos( r / )  (10.2.16) 

< x  o ( t )  x o (t, 7/) > = c o s ( 7 / )  (10.2.17) 
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The following expression gives the tan0/) 

<XH(t )XQ(t, 77) >-~CQ(t  )xH(t, 77) > 
tan(7/) = - (10.2,18) 

<XH(t )xH(t, rl)>+<XQ(t )XQ(t, rl)> 

The cross correlation method of measuring the phase difference is useful when 

two pressure signals (pings) are received on a pair of transducers and their phase 

difference is used to calculate the direction of the incident pressure signal 

(Traynor and Ehrenberg 1990). 

10.2.3 ECHO IDENTIFICATION RULES 

The echo amplitude display from echo sounders shows an interesting 

phenomenon as the instrument moves slowly over isolated fish. Normally, the 

TVG compensates for range so that the echo amplitudes are the same for the same 

sizes of fish at different ranges (Fig. 10.1.2). Since it is difficult to see the details 

of echo shapes on this figure, we use a simulation, Fig. 10.2.4, to show the details 

of echoes from one fish in a sonar beam. An echo crescent is formed as the 

scattering object (fish) moves through the echo sounder 's  beam pattern. Starting 

with the object at the left edge of the beam, the echo is weak, and, from the 

Beam pattern of 

a b c d el 

0.2 

0.4 

f g h i 

Position of object along track Echo 

Position of object along the track 

a b c d e f g h 

i 
i j l recer I 

[ ]  

I .. 

Figure 10.2.4 Simulation of a graphic display of echoes from a single fish. First for 
simplicity of drawing, the sonar is fixed and the fish swims through the center of the sonar 
beam. Pings measure the sequence of ranges to the fish at positions a-i. The graphic 
recorder plots the echoes beneath the time of the ping and the sequence of echoes form a 
crescent. The echo amplitudes are given by the position of the fish in the transducer 
response pattern. The graphic record of echoes would be the same if the fish were fixed and 
the sonar transducer were moved from left to right (a-i) over the fish. 
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geometry, the range is a little larger than at position e. As the object moves into 

the center of the beam (e), the echo is larger, and the range is smaller. The width 

of the crescent and its amplitude depend on depth and whether the object goes 

through the center of the beam or is off to one side. Craig and Forbes (1969) 

suggested procedures to use these effects in the analysis of echoes from fish. 

The machine identification of an echo requires acceptance rules. The 

envelopes of a single echo, reverberations, and several echoes are sketched in 

Fig. 10.2.5. 

Single echo identification and acceptance rules are important parts of the 

signal processing codes that are used in data analysis. Acceptance rules are used 

in the fish-finding sonars for sportsmen. Latham (1993) is an example of a patent 

on the "fi l ter" (i.e., the signal processor) that implements the echo acceptance 

rules. A few of the patents have been tested in court. 

e(t) T 
a) 

Echo peak "-4~ ~ 

Echo peak / 2 / ~ - - -  Width rule 

t'q" tp Time 

Threshold 

b) 

oise and reverberation 

~- tp -~l Time 

Threshold-/ 

e ( t ) l ~ - - - ~ - - - - ~ r  ~ 

C) ] > tmin ~9- tp'll~l > tmin] Time 

Figure 10.2.5 Identification of echoes. The sonar return has been compensated for 
spherical spreading. The echo envelope is e(t). A single echo has shape parameters. The 
ping has a duration of tp, and ideally the duration of the echo is tp. A specific example of 
acceptance rules follows, a) At half-echo amplitude, the width must be less than 1.5 tp and 
greater than 0.5 tp. b) The echo amplitude must be greater than a threshold and the 
reverberation and noise, c) The echo is less than the threshold before and after the echo. 
The minimum time tmi n is greater than the reciprocal frequency bandwidth of the receiver. 
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"10.2.4 USING SONAR SYSTEM SPECIFICATIONS (OPTIONAL) 

An understanding of the system specifications is required to make quantitative 

measurements of sound scattered by objects. 

Example:  The following specifications are from a small sonar. Readers 

should repeat these calculations, based on the specifications of their own 

instruments. Manufacturer's pressure specifications in #bar have been changed 

to #Pa, or dB re 1 #Pa, using 1 l~bar = 105 #Pa. The two references differ by 

100 dB. Manufacturer's specifications are in bold type. Derived quantities and 

comments are in parentheses. 

Transmitter 

Pulse  power:  70 watts 

Frequency:  70 kHz 

Ping duration: 0.6 ms 

Transducer  

Circular  a r e a - 8 5  cm 2 (radius a = 5.2 cm) (ka-- 15) 

B e a m  width - 11 ~ (half-power to half-power) 

10 log(~D) =16.5dB (~D is the integrated beam pattern; see sections 

4.5 and 10.4) 

Source  Level: SL -- 211.5 dB (re 1/~Pa at 1 m) 

(20 log rms pressure measured in the far field on the axis of the 

transducer and extrapolated back to 1 m). 

Receiver 

Bandwidth 2.2 kHz 

Transducer-receiver  voltage response: (TRVR)= -102  dB re 1 volt//~Pa 

(receiver sensitivity with receiver at full gain and TVG at maximum 

gain) 

Gain c o n t r o l - 2 7  to 0 dB in 3 dB steps 

Time-varying-gain (TVG) function (use actual TVG calibration) 

TVGs are referenced  to gains of  unity (i.e., 0 dB) at maximum gain. 

*Background material. 
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(TVG(20) - 20 log(R/Ro)  + 2aR - 40 d B •  1 dB, for 3 _ R _< 100 m) 

(TVG(40) - 40 log(R/Ro)  + 2aR - 71.9 dB i 1 dB, for 3 _< R _< 60 m) 

(~ - 2.5 x 10 - 3 d S / m ,  c -- 1450 m/s ,  andR o -- 1 m) 

Transmission Calculations 

Starting at the transmitter, we change the source level in dB to apparent rms 

source pressure in ktPa at 1 m. Also, we need the peak amplitude in our analysis 

for transient source transmissions and signals. Calculating from SL - 211.5 dB re 

1 #Pa (rms for a sinusoid), the peak sound pressure referred to 1 m is 

P0 -- V/2(10SL/20)# Pa (zero to peak) (10.2.19) 

P0 -- 5.32 x 1010 #Pa (zero to peak) (10.2.20) 

A gated sine wave, a ping, starting at t - 0 and having a duration tp, has pressure 

Po(t) - P o  sin (2~zft) for 0 <_ t <_ tp 

po(t)  - 0 otherwise (10.2.21) 

peak envelope [p0(t) l - P 0  

The symbol p(t)  is used for the source transmission at time t. Actual 

waveforms of p(t)  have bell-shaped envelopes. The Pa and #Pa pressure units are 

tiny. This small, 70-watt transmitter gives a peak pressure of 53,200 Pa at i m 

from the transducer. 

Receiver Calculation 

At maximum gain the transducer-receiver voltage response TRVR in dB is given 

as TRVR - - 102 dB re i volt/#Pa. We convert TRVR in dB to the gain sensitivity, 

Kv/p, in volts/micropascal, 

Kv/p - 10 TRVR/20 v / # P a  

Ku/p = 7.9 x 10 -6 v / # P a  
(10.2.22) 

where peak echo amplitudes give peak pressure amplitudes. The subscript v/p 

means volts per pressure unit. The receiver has an amplifier gain control, G, that 

varies from - 2 7  to 0 dB in three dB steps. The corresponding linear gain grcv is 

g rcv - 10 G/20 (10.2.23) 
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The TVG circuit operates on the signal amplitudes and causes the receiver's gain 

to be a function of time t. Using the TVG (40) setting for an example, the 

amplitude TVG function g~c( t )  is 

g~c( t )  - (R/Ro) 2 x 10 (2aR-71"9)/20 (10.2.24) 

where R = t~ (2c). As usual, Ro is the reference range, 1 m. Combining the gains 

and calibration, the amplified scattered voltage signal Vscat(t ) at the receiver 

output is 

Vscat(t ) - Pscat(t)grcvg~c(t)Kv/p, volts (10.2.25) 

where pscat(t) is the scattered pressure at the hydrophone. For the analysis of echo 

data Equation 10.2.25 is solved for Pscat(t) in terms of the voltage output and the 

receiver characteristics at the time of the measurement: 

V sca t  ( t ) 
P scat ( t )  = grey g TVC ( t )  K v / p  (10.2.26) 

We recommend that readers should correct their sonar data using Equation 

10.2.26 prior to signal analysis, so that calculations of scattering are done in 

acoustic pressure units and scattering lengths rather than voltages, because the 

scattering lengths are then independent of the sonar. Using the peak values of the 

pressure envelopes, the scattering length equation (7.1.19) becomes 

Ip sca t  ( t ) l  R 2 10 2au/2o 
= (10.2.27) 

L bs Ipo(t  )lRo 

Time Integral Pressure Squared Processing [tips] 

Presumably the voltages have been converted to pressures. Do the absolute 

square of Equation 10.2.27 and then let Ip0(t)l 2 become [tips(source)] and 

]Pscat(t)l 2 become [tips(scat)] as follows. Recalling the time integral pressure 

squared [tips] in Equation 3.1.14, the integrals for the source and scattered 

pressure squares are 

ft) t [tips ( s o u r c e ) ]  = " [P 0 ( t )] 2 dt 

and for the scattered sound pressure is 

(10.2.28) 

f 
2 R I c  + t p  

[tips ( s c a t ) ]  = [P sca t  ( t ) ]  2 dt 
,J2R / c 

(10.2.29) 
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where the time gates for the transmitted ping and echo are chosen to be tp. The 

absolute square and replacement of the squared envelope peaks by their 

equivalent [tips] gives 

[~ bs ] 2 _- [tips ( sca t ) ]  R 4 10 ate / 5 
2 (10.2.30) 

[tips (source)]R 0 

10.2.5 SONAR CALIBRATION WITH A HARD SPHERICAL TARGET 

Experience with scientific sonars in bioacoustic research has shown that the 

instruments require calibrations. Calibrations must be done in the far fields of the 

transducers and must be free of interferences such as reflections from tank side- 

walls or the water-air interface. Often a lake or the deep end of a swimming pool 

can be used as a calibration facility. During the winter, a frozen lake surface is a 

stable platform for calibrations. 

The purposes of the calibration are 1) to measure the directional responses of 

the transducers; 2) to determine the transmitter-transducer output Po; and 3) to 

obtain the receiver sensitivity Kv/p. In the case of a ping, the center frequency may 

be used, and the time integral of the square of the transmitted sound pressure, 

[tips], is required. If the same combination of sonar transmitter and receiver is 

used, Po and Kv/p can be measured at the same time. In calibration measurements, 

the scattering length Lbs or backscattering cross section of the target abs are 

known from data or theoretical values such as given in Table 7.1 and Fig. 7.5.6. 

Directional Response 

The most direct technique to measure the directional response is to use a small 

"p robe"  transducer (a calibrated hydrophone) to receive the sound from the 

sonar (Fig. 10.2.6). The transmission of pings from the same probe transducer, as 

the sonar is rotated, gives the receiving transducer directional response. In this 

context, when we say "smal l "  we mean that the probe transducer dimension is 

small compared with the wavelength and first Fresnel zone. If the same 

transducer is used for sending and receiving, a known target can be used to 

measure the directivity. 

Measurements of echoes from a calibrated target are a direct way to measure 

the product [P0 Kv/p]. Solid spheres of copper, tungsten-carbide, stainless steel, 

and so on are used as calibration targets. Stainless-steel ball bearings are 

inexpensive, and many diameters are available. To demonstrate the method, we 

used a stainless-steel sphere (ball bearing) to calibrate the 70kHz (center- 
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Target, 

[ Sonar I probe receiver 
or probe 
transmitter 

_7 

Figure 10.2.6 Setup to measure the directional response of a sonar transducer. If a 
known omnidirectional target is used, the directional response of the transmitter/receiver 
may be measured by rotating the sonar. If the transmitter is different from the receiver, a 
small probe hydrophone may be used as a receiver or source, respectively, rather than the 
small known target. 

frequency) sonar described in the previous section. Recapitulating: the sonar 

system characteristics are 

P0 = 5.32 x 10 l~ zero to peak (instrument's manual) (10.2.31) 

Kv/p - 7.9 x 10 -6 v//~Pa (instrument's manual) (10.2.32a) 

[PoK,,/p] - 4.2 x 10Sv (a calibration target measures the product) (10.2.32b) 

grvc( t )  = (R /Ro)  2 x 10 ~R/'~176 40log (R) option (10.2.33) 

v,...(t) 
p,,.,a,(t) -- (10.2.34) 

g,.,.,,g'ivc ( t)K,,/p 

In calibrations, one should select a radius of ball bearing that will give ka at one 

of the peak values of Lb,,., where the rate of change of f-,hs with ka is small (note 

the oscillations in Table 7.1 and Fig. 7.5.3). The purpose is to measure [Po Kv/p] 

and check the manual ' s  value. Using the scattering equation (7.1.19 or 10.2.27), 

Equation 10.2.26 can be rearranged as 

]V scat ( t )] R 2 10 2o~R /10 
[P 0 K v / p  ] = (10.2.35) 

grcv  g 7~r ( t ) Z bs 

Note: the peak envelopes of Ip0(t)[ and Po are the same. 
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Target: a stainless-steel ball bearing o f  characteristics 

Material: p - 7900 kg/m3; Cp (compressional s p e e d ) -  5594 m/s; cs (shear 

velocity) -- 3106 m/s 

Geometr ical  Size: a - 0.9525 cm (0.375 in); rca 2 - 2.9 x 10 -4 m 2 

Acous t ica l  Size: k = 303 m - l ,  �9 c = 1450 m/s, for freshwater calibration; 

k a - -  2.89 

Theoret ical  Acous t i ca l  Scat ter ing Leng th  (see Table 7.1): Interpolation 

for k a =  2.89 gives f_.,bs/(a/2) ,~ 0.89 and Y--'bs '~ 4.24 X 10 -3 m 

Data from Laboratory Calibration Measurements 

The actual measurements were made with the target and transducer under lake 

ice. The transducer was pointed to maximize the target echo. 

t = 17.8 ms (two-way) (10.2.36) 

R = 12.9 m (10.2.37) 

grcv - -  1 gain control setting, G = 0) (10.2.38a) 

peaklvsca,(t) l = 0.44 v (10.2.38b) 

Computations 

Equation 10.2.24 gives grvc(t)  at 17.8 ms: 

gTVG(t ) = 0 .042 (10.2.39) 

The use of Equation 10.2.35, the substitution of these numbers, and, 

s ~ 4.24 X 10 -3 m give 

[PoKv/p] = 4.1 x 105 volts (10.2.40) 

From the instrument manual, [PoKv/p] -- 4.2 x 105 v, and the difference is about 

2.5 percent. This example is for one radius of ball bearing. One can repeat the 

measurements for several radii of spheres. The same method can be applied to 

calibrate the sonar by using time integral pressure squared processing. Use the 
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absolute square of Equation 10.2.35 and Equations 10.2.28 through 10.2.30, 

where [tivs(scat)] replaces Vscat(t)[ 2 and [tips(source)] replaces Po or Ip0(t)l. 

10.3 In Situ Scat ter ing-Length  M e a s u r e m e n t s  

In situ measurements of the scattering lengths of freely swimming fish require 

cooperative fish, care, and good luck. "Cooperative" fish are dispersed so that 

most of the echoes are from individual fish. In lakes, fish are usually dispersed at 

night. Fish are in schools or on the bottom during the day. In data processing, one 

uses the character of the echogram to select data sets for analysis. Lakes, where 

the populations of fish are relatively simple, are good places to gain experience 

and test techniques. 

10.3.1 EMPIRICAL TARGET S T R E N G T H  FORMULAS FOR FISH AT 

L/~, > 1 

Fish with swimbladders scatter sound over a very wide range of L/2  (Fig. 9.5.5). 

The observation that the scattering lengths are approximately proportional to fish 

lengths has lead to construction of empirical formulas (Love 1971, 1977; 

McCartney and Stubbs 1970; Rudstam et al. 1987; Foote and Traynor 1988). The 

frequency dependence of the scattering process is weak and is sometimes 

ignored. The target strength, as a function of fish length, is the usual form of the 

expressions 

TS = 20 log lLhs/Ro I = mFL log (L/Rfish) + bFL (riB) (10.3.1) 

where Lh, , is the backscattering length, L is the fish length and R~sh is the unit of 

length. Fish lengths are usually given in centimeters and millimeters. Our sound- 

scattering expressions use Lhs in m and R o -- 1 m. The empirical constants are 

mFC and bFc. Algebraic manipulations give the backscattering length as a 

function of fish length: 

I & /Ro I - (t/efish) mFL/2010hFL/20 (10.3.2) 

Fish length, L ,~ IO--(bFL+mFL)/201 s IlO--mF'/2Oefi~h (10.3.3) 

Table 10.1 gives typical values of the parameters. 
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Table 10.1 Length-Scattering Length Parameters 

Frequency mFL bFL 

Fish, e f i s h  : 1 cm kHz dB dB Reference 

Gadoids (cod) 38 21.3 - 68.3 

alternate 38 20.0 - 66.3 

Herring 38 21.2 - 74.2 

alternate 38 20.0 - 72.5 

Pollack 38 16.8 - 62.5 

alternate 38 20.0 - 67.3 

Walleye pollock 38 20.0 - 66.0 

Cisco 38 21.9 - 67.2 dB 

Foote (1987) 

Foote (1987) 

Foote (1987) 

Foote (1987) 

Foote (1987) 

Foote (1987) 

Foote and Traynor (1988) 

Rudstam et al. (1987) 

The fish lengths are in centimeters--that is, Rfish = 1 cm. Frequency is in kHz. 

McCartney and Stubbs (1970) and Love (1971; 1977) give frequency- 

dependent forms. For simplicity, let L, Lbs, and 2 be in meters and 

R o -- Rfish -- 1 m. Love's  equation (1971, 1977) for swimbladdered fish is 

TS = 20 l og[Lbs /R  o ] = 20 log [L/Ro] - 23.8 - 1.1 log [L/2] 

The solution of Equation 10.3.4 for fish length is 

L ~ 18 (f_,bs) 1.06/~-0.06 m 

(10.3.4) 

(10.3.5) 

Since these equations are empirical, bioacousticians usually use data from 

acoustic surveys and nets to calculate constants for their fish. Love'  s equation fits 

the data for 41 mm and 120 mm fish at frequencies that range from 29 to 198 kHz. 

Trevorrow (1996) gives interesting results of a study that was made in a Japanese 

lake. 

10.3.2 E C H O E S  F R O M  S I N G L E  F I S H  A N D  T H E  C R I T I C A L  

F I S H  D E N S I T Y  

As echoes from individual fish begin to overlap, the echo PDF has the marked 

changes shown in Fig. 10.3.1. The echogram is a transect across the lake (Stanton 

1985). The probability density functions (PDF) of peak echo amplitudes are for 

1 m depth intervals at 12, 15, and 18 m. Comparisons of the PDF for 12 and 18 m 

and the transducer PDF in Fig. 10.3.1 show that these echoes are likely to be from 

single fish. The PDF for the 15 m depth has the appearance of the extremal PDE 

= 0 in Fig. 9.4.6b. Some of the echoes in this depth interval are overlapping. 
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Figure 10.3.1 Echogram and echo peak PDF histograms from a Trout Lake, Wisconsin, 
survey. The echo sounder was a 70 kHz Simrad EYM. The PDF histogram for the 15 m 
depth shows the onset of overlapping echoes. (From Stanton, T. K., "Density estimates of 
biological sound scatters using sonar echo peak PDFs," J. Acoust. Soc. Amer. 78, 1868- 
1873, 1985b.) 

The critical density o f f i sh  neaT (number/volume) is the fish density at which the 

echoes just begin to overlap. The onset of overlapping echoes occurs when the 

time separations between echoes just tends to zero (Stanton 1985). The resolved 

thickness of the insonified layers is (Ctp/2), where c is sound speed and tp is the 

duration of the ping. Overlapping echoes just begin to occur when adjacent layers 

have fish. We use the integrated beam pattern ~o  (Equation 9.3.11) and Table 9.1 

to compute the insonified volume as being equal to 

(Ctp/2)~,DR 2 (10.3.6) 

and the critical density of fish for an echo in adjacent layers is 

n,:.df ~ 1/[(Ctp/2)~D R2] (10.3.7) 

The volume reverberation (Equation 9.3.14), sonar calibration, and critical 

density (with n b - n,.af) can be combined to estimate the scattering length. 

10.3.3 D U A L - B E A M  S O N A R S  

The amplitude of an echo from a body depends on its location in the sending and 

receiving sonar beams. To measure the apparent scattering length or the 
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backscattering cross section, we must know the object 's  position in the sonar 

beams. If the object is uncooperative, like a freely swimming fish, some 

ingenuity is needed. 

In 1974 Ehrenberg suggested the potential effectiveness of the dual-beam 

sonar system as a means to locate a scatterer. Traynor and Ehrenberg (1979) 

showed that, in addition to being simple, the method is practical. As shown in Fig. 

10.3.2, the system has a wide-beam source transducer and a narrow-beam 

transducer. The transducers are circular, and their beam patterns are symmetrical 

about the axis. 

Assume spherical divergence from the source and spherical divergence from 

the scatterer and that there are no refraction effects and no incidental scattering 

between the source and the scattering object. Transmission can be on either the 

wide- or narrow-beam transducer. Transmission by the narrow-beam transducer 

Figure 10.3.2 Dual-beam transducer system. The response of the wide beam is 
approximately the reciprocal of the response of the narrow beam. The ping is transmitted 
on the wide beam, and the echo is received on both transducers. The echo amplitudes are 
compared in the analyzer. 



434 10. Sonar Systems: Measurements and Inversions 

and reception of the backscattered pressures received by the wide and narrow 

transducers are, using the scattering length Lbs, 

R0 
Pns ( t ) = ~P 0 (t - 2R /c ) s bs D n(O )D n(O ) 10 aR/10 (10.3.8) 

R 

and 

R0 
Pw s ( t ) = ~ S p  o (t - 2R /c ) L bs Dn ( 0 ) D  w ( 0 )  10 aR /10 (10.3.9) 

R 

As a simplification, the scattering length Lhs is assumed to be a constant at the 

carrier frequency of the ping. 

The receivers are calibrated and matched to give the same output signal when 

the object is on the axis of either transducer. The voltages at the receiver outputs 

for the wide- and narrow-beam transducers are 

and 

(10.3.10) 

where and are the equivalent scattered pressures received by the wide- and 

narrow-beam transducers; subscript vvG is for the time variable gain that is a 

function of time; gw and gn are the gain settings of the wide- and narrow-beam 

transducers; Kw v/p and K, ,,/p are the receiver sensitivities in volts per pascal (v/p) 

for the wide and narrow transducers. On the beam axis, with adjustments to match 

the receiver gains and TVG, we have 

(10.3.12) 

The acceptance rules, section 10.2.2, identfy an echo at time t and range 

R -- 2tc. Then, the processor may "gate"  the signal into a time integral pressure 

(voltage) square [tips] processor or measure the peak amplitude of the envelope, 

or do both. For sonar pings, both methods give equivalent results, and we choose 

to use the echo peak amplitudes because the algebra is simpler. The ratio of the 

echo voltage peaks is 

Iv n( t  )l D n(O ) 
= (10.3.13) 

Iv w(t  )l D w(O ) 

Many dual-beam systems are designed to make the wide-beam directivity nearly 

unity for an object in the main lobe of Dn(O). Then, Equation 10.3.13 is 
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approximately 

Iv n(t )l D n(O ) 
= (10.3.14) 

Iv w(t )1 1 

where the functional dependence on 0 is included. Therefore, the voltage ratio, 

when combined with the known polar radiation pattern of the narrow transducer, 

gives the unknown position of the object in the beam, D n (0) and 0. Since it does 

not matter whether Dw(O ) or Dn(O ) is the transmission beam, the same analysis 

applies to transmissions on either the wide- or narrow-beam transducers. This 

value of Dn(0) can be substituted into Equation 10.3.11, and, using the echo peak 

amplitudes, the scattering length is 

R 21 p ns  ( t )  I 10 a R  /10  

Lbs ( f  c ' 0 ) = (10.3.15) 
Rolpo(t )1 O~(0) 

The functional dependencies of Lbs on fc and 0 are included because the 

scattering length depends on both. Recall from Chapter 9 that the scattering 

lengths of fish are dependent on the angle of incidence of sound waves at a fish. 

The backscattering cross section is 

~s(f~, 0) - I L~s(L, 0)12 (10.3.16) 

Since fish are complicated scattering objects, the averages of many echo 

measurements are needed to get good estimates of the scattering lengths or 

backscattering cross sections. Noise in the receiver channels and the rejection of 

small echoes can bias estimates of the backscattering cross section. 

10.3.4 SPLIT-BEAM SONARS 

The receiving transducer has four sectors and four receiving channels (Fig. 

10.3.3). The first step in the signal processing is to use the echo identification 

rules, section 10.2.3, to identify an echo in all four receiver channels. The 

accepted echo is processed to determine its direction. Fig. 10.3.3b and c show the 

phase comparisons. The receiver amplifiers heterodyne the signals, (section 

10.2.2) use the cross correlations (Equations 10.2.14 through 10.2.18) to compute 

the phase shifts and direction to the fish. The conversion of measured phase shifts 

to directions requires acoustic calibrations of the system. Commonly, split-beam 

systems transmit a narrow beam by using all transducers on transmission. Details 

of the echo processing are in the software. 



Figure 10.3.3 Split-beam sonar and dual-beam sonar. The sonars transmit a narrow beam by using transducers (A + B + C + D + E) 

together. For dual-beam echo processing, the output of transducer E gives the wide beam. For split-beam echo processing, the transducers 

A, B, C, and D are the receivers, a) A fish is in the sonar beam at the range R and angles q~ and X. b) The comparison of the phases of 

(A + B) and (C + D) gives the angle ~b. c) The comparison of the phases of (A + B) and (C + D) gives the angle Z- (Based on Traynor, J. J., 

and J. E. Ehrenberg, "Fish and standard-sphere target-strength measurements obtained with a dual-beam and split-beam echo-sounding 

system," Rapp. P.-V. Reun. Cons. Int. Explor. Mer. 189, 325-335, 1990.) 

ra~ 

ra~ 
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The sonar system in Fig. 10.3.3 was used for comparisons of the dual-beam and 

split-beam sonar systems. For the dual-beam sonar, the transducer E was the wide 

beam ( - 3  dB to - 3  dB is 25~ and all of the transducers were combined to form 

the narrow beam ( - 3  dB to - 3  dB is 6~ Split-beam echo processing used the 

system shown in Fig. 10.3.3. Traynor and Ehrenberg (1990) made 460 repeated 

measurements of the target strengths of the standard spherical target ( -42.25 dB). 

Results of the tests are shown in Fig. 10.3.4. They report that the dual-beam results 

were more variable than the split-beam results. Since the ratio of the echo 

amplitudes is used in evaluations of Equations 10.3.14 and 10.3.15, Traynor and 

Ehrenberg suggest that noise could have made the estimates ofD n (0) less accurate. 

" 1 0 . 4  Single Transducer Scattering-Length Measurements 

(Optional) 

Figure 10.3.1 shows how echo amplitudes depend on where a fish is in the sonar 

beam. Unlike the dual-beam and split-beam sonars, a single transducer system 

(dB) 

Figure 10.3.4 Comparison of calibrations of dual-beam and split-beam sonars. (From 
Traynor, J. J., and E. Ehrenberg, "Fish and standard-sphere, target-strength measurements 
obtained with a dualbeam and split-beam echo-sounding system," Rapp. P.-V. Reun. Cons. 

Int. Explor. Mer. 189, 325-35, 1990.) 

*Background material. 
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does not give the position of the fish. Again referring to Fig. 10.3.1, it seems that 

a set of echo amplitudes could be used to estimate the scattering length. This set 

of echo amplitudes is the result of the scattering at the fish and the positions of 

the fish in the sonar beam. Our task is to do the inverse problem of using a set of 

echo amplitudes and the beam pattern to get the scattering length. The basic 

tools for the inverse problem are an understanding of the forward problem, the 

probability density functions (PDF) of the echo amplitudes in the sonar beam, 

and the scattering processes at the fish. Our development is based on concepts 

from Craig and Forbes (1969), Ehrenberg (1972), Peterson, Clay, and Brandt 

(1972), Clay and Medwin (1977), Clay (1983), Stanton and Clay (1986) and 

Furusawa (1991). 

Simplifying assumptions: (1) all fish are isolated, and their echoes do not 

overlap; (2) the fish have Poisson distributions or two-dimensional random 

positions within a thin horizontal layer; (3) the scattering length is constant; (4) 

receiver outputs or echoes in volts have been changed to the equivalent sound 

pressures at the input to the transducer. 

10.4.1 PROBABILITIES 

Assume the scattering process at a fish and its location in the sonar beam are 

independent, and each has its own probability of occurrence. As in section 9.4, 

the envelope of the backscattered sound pressure is e. For a unit scatterer, 

the directional response of the transmission and receiving transducers is the 

product 

D = D t D  r = 0 2 ( 0 )  (10.4.1) 

for a single transducer. We use the joint probability to combine the random 

scattering process at the fish and its random location (0) in the insonified area of 

the transducer. The transmit-receive response of the transducer to a scatter at the 

random location 0 is D. The joint probability of the independent events e and D 

occurring is the product of the probabilities of e and D - - t h a t  is, 

P(e and D) = P(e)P(D) (10.4.2) 

For a highly directional scatterer, the angle of incidence of the sound waves at 

the fish depend on the fish's location in the beam and the orientation of the fish. 

The inclusion of fish tilt and orientation would put additional probabilities into 

the joint probability expression. 
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10.4.2 T R A N S D U C E R  B E A M  P A T T E R N  P D F  

The computation of the probability density function of the transducer uses the 

following method of transforming PDE The transformation of wx(x) to Wy(y), 

where y = g (x), uses the equality of the probability of the occurrence of x within 

dx and the occurrence of y within dy (Lee 1960, pp. 190-93): 

Wy( y) dy -- Wx(X ) dx (10.4.3) 

wx(x) 
W y ( y  1 ) - Ix--x 1 and y I = g ( x 1 ) (10.4.4) 

dy 

The forward calculation is to compute the frequency distribution of echo 

amplitudes when an object (fish) is randomly located in a transducer beam. To 

develop the transducer beam pattern PDF, we assume that the PDF of the echo 

amplitudes owing to an object' s location in the sonar beam is independent of how 

the object scatters. 

The geometry is sketched in Fig. 10.4.1. The object is at the angle 0 relative to 

the axis of the transducer and within the range gate R - A R / 2  and R + AR/2 .  The 

Figure 10.4.1 Geometry and a gated transmission. The probability of the object being 
on the axis of the transducer is 0, and it increases with sin 0 to a maximum at 0 -- rc/2. At 
the angle 0, the echo amplitude is proportional to D. 
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transmission-reception response of the transducer is D. Assuming the back 

radiation is negligible, the incremental gated volume AV c is 

AV G= 2 7 c R  s i n 0  d O R A  R (10.4.5) 

with cylindrical symmetry about the z axis. The gated volume Vc is 

VG-2-~~ [ ( e - ~ ~ - ) 3 - ( e - ~ - - )  3] (10.4.6a) 

V G ,.~ 2rcR2AR (10.4.6b) 

AR : (R 2 - R 1 ) :  (t 2 - t l ) C / 2  (10.4.6c) 

The probability of an object being within A V c is 

AVe = sin 0 dO (10.4.7) P(AVc) = vc 

The transformation of the probabilities expression (Equation 10.4.4) gives a 

direct way to write wT(D): 

I sin 0, I 
w ~ ( D )  A D I 0 = o ,  = [ sin o ,  A 0 [ or W T ( D )  = (10.4.8) 

dD 

- ' ~  0 -- 0 l 

The circular piston transducer has the backscatter amplitude response 

4[J = , z - kr t sinO (111.4.9) 
z 

where J1 (z) and later Jo(z) are Bessel functions (section 7.4.1). The derivative of 

D with respect to 0 is 

dD 2J (z ) 2J l (z ) cos0  
dO - [ l-----L--- ] [ J o  ( z ) -  ] s i n 0 '  for 0 < 0 < ~r 12 (10.4.10) 

z z 

The substitution of the derivative in Equation 10.4.8 gives the transducer PDF 

sin 2 0 [ (10.4.11) 
W T(D ) = ] 2 J l (  z ) 2 J l (Z  ) 

4 cos0 [ ~  ] [ J 0 ( z ) -  ] 
z z 

Expansion of the Bessel functions as z ~ 0 gives 

2.00 
w r ( D )  (kr t )2 as 0 --~ 0 (10.4.12) 
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Ehrenberg (1972) has given an empirical approximation to Equation 10.4.11" 

a0 
wr(D)  ,-~..(krt)2 (al + D) -a2 for 

a 0 -- 2.03, a 1 -- 0.001 and 

0.005 < D < 1, wT.(D ) - - 0  for 

a 2 -- 0.83 

D > I  

(10.4.13) 

where rt is the effective radius of the transducer. 

A numerical evaluation of Equation 10.4.12 for a circular piston transducer is 

shown on Fig. 10.4.2. Since numerical evaluations of (krt)2WT(D) depend on the 

derivative of the beam response, directional calibrations should be used when 

possible. 

10.4.3 COMBINATION OF F I S H  ECHO PDF AND TRANSDUCER PDF 

The amplitude of the echo from an object or fish depends on the scattering 

amplitude of the fish and the mth location of the fish in the sonar beam. The joint 

probability of observing an echo amplitude en in the mth trial is 

pE(en) -- PT(Dm)PF(en/Dm) (10.4.14) 

0.1 

wr~9 ) 

0.05 

0 

0 0.2 0.4 0.6 0.8 
D 

Figure 10.4.2 Transducer PDE wr(D) and kr t 18.3. 

-q 

1.0 
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where PT(D) is the probability of the transducer having the response D m at the 

object, and P F ( e n / / D m )  is the probability of the fish having the scattering 

amplitude e n / / D m  . The total probability is the sum over all trials: 

(en) 
PE(en) -- Z PT(Dm)PF -~m 

m 
(10.4.15) 

These probability functions can be replaced by the probability distribution 

functions (PDF) as follows: 

PE(e,,) = WF~(e,,)Aen, PT(Dm) = WT(Dm)AD m (10.4.16) 

and 

(e__~) (e__~m) Ae,, PF - -  WF 
Dm 

(10.4.17) 

The substitution and reduction give 

ell 
wE (en )= ~ wr ( D m )  W F ( -~m ) 

m 

z ~  m 

Dm 
(10.4.18) 

where the absolute value ensures positive increments of A Dm. Since the total 

probability of observing all echoes is unity, we write 

P E (e ~ ) - ~ w E (e ~ ) A e ~ = 1 (10.4.19) 

H n 

and 

Ae n = e o { exp [- (n - .5) 6e  ] - exp [-  (n + .5) 6 e  ] } (10.4.20) 

Equation 10.4.18 is a solution because it gives the PDF of echoes in terms of 

the independent PDF of positions of fish in the sonar beam and the PDF of 

scattering processes at the fish. Unfortunately, the data or echo frequencies are on 

the left side of the summation and the unknown scattering by the fish is inside the 

summation. Direct solution of Equation 10.4.18 is rather difficult. Ehrenberg 

(1972) and Robinson (1978) developed methods for solving the integral equation 

that corresponds to Equation 10.4.18. We make nonlinear changes of variables 

that transform the summation into the much more tractable convolution 

summation. 
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10.4.4 C O N V O L U T I O N  E X P R E S S I O N  F O R  E C H O  P D F  

Changes of the variables en and Q~)m to the following parametric expressions are 

the first step in changing Equation 10.4.18 into a convolution summation: 

D m - -  exp ( - m b e )  and e~ - e o exp ( - n b e )  (10.4.21a) 

fie - In (10)/N d (10.4.21b) 

AD 
= fie and e n -- e o exp (nbe)be (10.4.21c) 

Dm 

Again, the choice of Nd is arbitrary, and N d = 10 gives 2 dB steps. Although 

the amplitude resolution is small, value of 10 is suitable for a data set of 

perhaps several hundred. One can use N d = 20 (or 1 dB steps) for data sets 

having thousands of echoes and improve the amplitude resolution. One can 

always combine bins to reduce resolution from 20 to 10 steps per decade if 

desired. 

The substitutions of the parametric expressions into Equation 10.4.18 give, 

making changes of notation, 

wE(en) --+ wE[e o exp (-nbe)]---+ wE, n 

WT(Dn) ~ WT[eX p (--mbe)]--~ WT, m 

(e~m) 
W F ~ WF{e 0 exp [ - - ( n -  m)be]} ~ WF,n_ m 

(10.4.22a) 

(10.4.22b) 

(10.4.22c) 

The substitutions of the parametric expressions into Equation 10.4.22 give the 

convolution summation 

w E,n = ~ e  Z WT, m WF,n -m (10.4.23) 

By using the exponential amplitude steps, the finite summation (Equation 

10.4.18) has been transformed into a convolution. The reader will notice that 

Equation 10.4.23 has the same form as the convolution of the time-dependent 

functions in section 6.2.5. 

10.4.5 F I S H  E C H O  DATA R E D U C T I O N  

The first task is to examine the data from a sonar survey and to select data where 

the echoes appear to be from single fish. For example, Fig. 10.1.1 shows that 

sonar recordings usually contain several echoes from the same fish, and the trace 

of the echoes from one fish looks like a cresent. Let us assume that (1) the data 
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were taken with Nping pings; (2) all of the echoes are from individual fish within 

the gated volume VG; (3) the echo amplitudes have been corrected for 

spherical spreading and absorption losses; and (4) the peak of the envelope of 

the echo is e. 

For digital processing, the echo amplitudes e are counted into amplitude bins 

as follows. If e m <_ e < e m + l, then add 1 to the number of echoes in bin m, where 

em = em - A e m / 2 ;  em § 1 = em § A e m / 2 ;  and the number of echoes in mth bin is 

N L m .  To remove the number of pings, let the frequency of echoes NE, m be the 

number of echoes per ping in the mth amplitude bin; 

57(E , m = N E ,  m / N p i n g  (10.4.24) 

The echo frequency is proportional to the gated volume VG, the fish density nb 

(i.e., number of bodies), and the size of the echo amplitude bin Aem; 

~E,m --  nbVGWE,mAem (10.4.25) 

V G - 2n(R32 - R ~ ) / 3  (10.4.26) 

where R1 and R2 are the ranges to the near and far ranges of the gated volume. The 

unknown fish density is nh. The solution of Equation 10.4.25 for WE, m is 

WE, m = 
NE,m 

n b V G A e  m 

(10.4.27) 

where the knowns are the echo frequencies per ping ~7~E,m , the gated volume, and 

the echo amplitude bins. Next, define a distribution function UE, m that is 

proportional to the probability density function (PDF) WE, m and includes the 

unknown fish density nh: 

N E , m  
- = n b WE, m (10.4.28) 

UE,m VG A e  m 

The PDF of fish echo amplitudes, using Equation 10.4.23, becomes 

UE, n = n b ~ e  E WT, m W F , n  -m (10.4.29) 
m 

There are two basic approaches in using Equation 10.4.29 to estimate fish density 

and the fish echo PDF. 
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10.4.6 A FORWARD I T E R A T I O N  E S T I M A T E  OF F I S H  D E N S I T Y  

Laboratory and in situ measurements of the PDF of fish show that the Ricean PDF 

is an approximation for the distribution of the echo amplitudes (Equation 9.4.7). 

The Rician PDF has the parameters 7 and (abs). The fish density is unknown. If 

the fish are of the same species and have the same sizes, then fish have 

approximately the same Ricean parameters. 

Non-overlapping echoes: An iterative method starts with guesses of the 

parameters 7, (abs), and rib. The numerical evaluation of Equation 10.4.29 and the 

data UF, ~ are compared. The parameters are adjusted for the next iteration. 

The result of an iterative analysis is shown in Fig. 10.4.3. The fish PDF was 

assumed to be Rayleigh (7 = 0). The transducer PDF and the fish PDF control the 

shape of uE, m, while the amplitude depends on rib. Thus one can estimate the fish 

density without knowing the amplitude sensitivity of the sonar. The beam width 

of the sonar transducer, the gated volume, and the number of pings were used to 

give the fish density. 

10.4.7 D E C O N V O L U T I O N  M E T H O D  FOR F I S H  D E N S I T Y  A N D  

E C H O  PDF 

The convolution (Equation 10.4.29) can be solved for the PDF of scattering 

processes at the fish WF, n by using the deconvolution techniques. Deconvolution 

means undoing a convolution, and it is a linear filter operation. Deconvolution 

methods are well known in exploration geophysics (Robinson and Treitel 1978; 

Kanasewich 1981; Oppenheim and Schafer 1975; and Clay 1990). The essence of 

the method is to change the terms in Equation 10.4.29 into polynomials, the 

Laplace generating functions, or z-transformations. Details are in the references. 

The Laplace generating function representations of the PDF are polynomials 

in powers of z, where each power of z represents an array element. For example, 

the term WT, m becomes WT, m z -m.  We use descending powers of z to facilate the 

use of deconvolution programs in MatLab. The Laplace generating functions for 

the terms in Equation 10.4.29 are 

-1 -2 
W T ( Z ) = - W T ,  0 + WT, 1 Z + WT, 2Z + ... (10.4.30) 

-1  - 2  
U E (Z ) = U E+ UE, l Z + UE, 2 Z +. . .  

-1 -2  
W E ( Z ) -  WE, 0 +WE, lZ  +WE, 2Z +.. .  

-1 -2 
W F (Z ) - -  WF, 0 + w F ,  lZ  + W F ,  2 z +. . .  

(10.4.31) 

(10.4.32) 

(10.4.33) 
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Figure 10.4.3 Amplitude distribution of echoes from individual fish. The sonar was 

uncalibrated for amplitude measurements, and the peaks of the echo envelopes are in 

arbitrary units. The data are the shaded areas, where the widths are the amplitude bin and 

the heights are estimates of the fluctuations (proportional to 1/v/Y(e,m). The data were 

taken in Lake Michigan in the 8 -10m depth range. The fish are believed to be alewives 

(Alosa pseudoharengus). Reduction of the data for the sonar and number of pings gave 

n b ,~ 0.0057 fish/m 3. (From Peterson, M. L., C. S. Clay, and S. B. Brandt, "Acoustic 

estimates of fish density and scattering functions," J. Acoust. Soc. Amer. 60, 618-622, 

1976.) 
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where Equations 10.4.31 and 10.4.33 are related by fish density, 

UE(z ) -  nbWE(z). The convolution (Equation 10.4.29) is the product of the 

generating functions 

U E ( Z ) =  n b 8e  W T ( z )  W F ( z )  (10.4.34) 

The convolution (Equation 10.4.34) gives UE(z) for known WT(z), WF(Z), and fish 

density. If fish density is not known, it can determined later. The multiplication of 

the polynomials (Equations 10.4.30 and 10.4.33) does the convolution 

computation. When WF(Z) is unknown, Equation 10.4.34 can be solved for 

WF(Z) as follows: 

UE(z ) 
n b WF ( Z ) =  8e  W T ( z )  (10.4.35) 

Algebraic long division gives nbWF(Z ). The algebraic division undoes the 

algebraic multiplication and is the deconvolution operation. The algorithms are in 

Clay (1983), Stanton and Clay (1986), and Clay (1990). 

Next we use the properties of PDF to compute fish density. The total 

probability of all echoes is unity, and this can be used to write 

1 
~_~ w E (e  n ) A e n - ~_~ u E (e  n ) A e n = 1 (10.4.36) 
n n b  n 

and 

nb = l [ [ E u E ( e , , ) A e , , ]  
n 

(10.4.37) 

where en is given by Equation 10.4.21 and Ae,, is given by Equation 10.4.20. 

The determination of the fish density does not use the sonar calibration. If 

sonar calibration is used to reduce the echo amplitude data (Equation 10.2.27), 

then the deconvolved scattering lengths are 

s "~ WF(Z) (10.4.38) 

The derivation of the deconvolution method of analyzing fish echo statistics is 

finished. 

10.4.8 EXAMPLES OF SINGLE TRANSDUCER SURVEYS 

The results of a survey in Trout Lake, Wisconsin (Jacobson et al. 1990), are 

shown in Fig. 10.4.4. The echograms, not shown, were similar to the transect 

shown in Fig. 10.3.1. The inversion or deconvolution method in section 10.4.7 
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Figure 10.4.4 Fish length distributions from acoustic data and gill nets. a) The data are 
from Trout Lake Wisconsin, August 1985. The gill net data were corrected for size 
selectivity. The acoustic data were taken using a 70 kHz Simrad EYM sonar (section 
10.2.4). The half-power to half-power beam width was 11 ~ b) Acoustic estimates of fish 
lengths and fish lengths from gill net catches for Wisconsin lakes. (From Jacobson, P. T., 
C. S. Clay, and J. J. Magnuson, "Size distribution and abundance of pelagic fish by 
deconvolution of single beam acoustic data," J. Cons. Int. Explor. Mer. 189, 404-11, 
1990.) 

was used to compute the PDF of fish echoes for depth intervals 13-15 m and 22-  

23 m. The -t- symbols are the results of deconvolution and PDF of the fish echoes. 

Ricean PDF's were fitted to the data and are the solid lines. The backscattering 

lengths were converted to fish length L by using Equation 10.3.5 to estimate L. 

The acoustical lengths of the fish were different for the two depth selections. 

The sonar data are compared with the fish length distributions from gill nets. 

Note: gill nets are mesh nets that catch the fish that happen to swim into the net. 

The fish must be larger than the mesh opening to be caught, while the smaller fish 

swam through the mesh openings. Here the nets were floated up from the bottom. 

Comparisons of the acoustical data to the gill net sample show that: 1) the 160- 

220mm fish were observed elsewhere in the lake at 13-15 m and 22-23 m depths; 
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2) the population of 90mm fish was larger in the 13-15 m depth range; 3) the 

small 4 0 m m  fish were observed in the 22-23 m depth range, and none were 

caught by the gill net (Jacobson et al. 1990). 

Noise and Deconvolution Errors 

Noise adds to the echoes, and it carries into the PDF of the echo peaks. Other 

errors are due to the operation of placing the peak amplitudes of echoes into finite 

width amplitude bins, as in Equations 10.4.19 through 10.4.21. The 

deconvolution operation passes small errors at large values of the scattering 

lengths to the small scattering lengths and can cause some of the values of the 

PDF to be negative. The noise and other errors cause the resulting deconvolution 

to have alternating positive and negative values that increase for small values of 

fish length. Considered as an analogy to sampling in the time domain, these 

alternations occur at the sampling interval and should be low-pass-filtered. Since 

the deconvolution operation is linear, one can do additional filter operations on 

the data before or after deconvolution. We ignore this region when alternating 

values are present. 

10.5 I n t e r a c t i o n s  o f  S o n a r s  a n d  F i s h  B e h a v i o r :  S i m u l a t i o n s  

The sonar system is an acoustic window through which we can watch aquatic 

organisms. Our preceptions of the images in the window depend on the frequency 

(color), on the sonar beam width (field of view), and on the echo processing (what 

is seen). We use numerical simulations to display the interactions of live fish and 

sonar systems. The simulations are for multi-frequency sonar systems that have 

narrow-beam or wide-beam transducers. 

These simulations will give some guidance in choosing equipment and system 

specifications. Many details and system considerations are given in Furusawa 

(1991). There is a strong constraint. The limited resolution of the sonar system 

does not display the image of a fish in enough detail so that we can see what the 

fish is doing. Fish behavior appears in the probability density distributions (PDF) 

of the echoes and repeated measurements. 

Sometimes, an average fish is used in simulation sonar surveys. In general, it is 

a mistake to create one average fish for simulations because some steps in the 

echo processing are nonlinear. For example, the average of the tilt dependencies 

of the sound scattered by a collection of similiar fish is not the same as the tilt 

dependence of the sound scattered by an average fish. 
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10.5.1 E N S E M B L E  OF THE S A M E  SPECIES  OF F I S H  

A net was used to scoop 10 small brook trout from a holding tank. The fish were 

of the same age and species and had the same feeding history. The X-ray images 

of the fish, Fig. 10.5.1, show the small differences among the 10 fish. The flesh 

has medium density and shows as gray. The air-filled swimbladder has least 

density and is almost white. Just above the swimbladder one can see the darker 

spine. On some of the fish, one can see a dark organ, the stomach, below the 

swimbladder. The stomach is more visible when it has food in it. Comparisons of 

the X-rays show that food in the stomach alters the shape of the swimbladder. 

Here the stomach presses into the swimbladder and decreases the swimbladder 

volume. The top side of the swimbladder appears to be unaffected by food in the 

stomach. 

Figure 10.5.1 X-rays of brook trout (Sah, elinus fontinals). The image is a print 
(positive) of the X-ray (negative). (From O'Keefe (personal communication) and Clay, 
C. S., and J. K. Home, "Analysis of rather high-frequency sound echoes from ensembles 
of fish," J. Acoust. Soc. Amer. 98, 2881 (A), 1995.) 
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One can apply these observations to acoustic measurements. The fullness of 

the stomach will have small affects on the high-frequency sound scattering from 

the top surface of the swimbladder. The low-frequency volume resonance 

(section 9.5.4) depends directly on the volume, the swimbladder membrane, the 

fish flesh, and shape of the swimbladder (Feuillade and Nero 1997). In addition, 

the resonance frequency depends on activities of the fish (Sand and Hawkins 

1973). 

The X-rays and the methods of section 9.4 were used to make acoustic models 

of the fish. Reiterating, the fish were simplified to a gas-filled swimbladder and a 

simplified fluid-filled body. The acoustic models represent the ensemble of fish 

for the simulations. 

A typical echo sounder survey will be the model for our simulations. During 

the survey, the recorder will store the nonoverlapping echoes from the ensemble 

of fish. We don't know which echo comes from which fish. Even if the fish were 

caught in a net, one could only guess which fish to associate with which echo. If 

the survey is repeated many times, the fish will have moved about and have 

different orientations relative to the sonar beam for each survey. 

The scattering lengths of the ensemble are shown in Fig. 10.5.2. 

The dependencies of backscattering lengths on tilt are smallest at the lowest 

frequency and large at high frequencies. Consider the 25kHz and L / 2 -  2 

simulation. Over the range of tilt 0 ~ to - 1 0  ~ one can make associations of the 

backscattering lengths and fish length. Trout 1 and 2 are the largest; trout 6 and 10 

are the smallest. At the highest frequency, 200 kHz and L/2 = 16, the situation is 

much more complicated. At t i l t -  0 ~ the backscattering lengths are less than the 

backscattering lengths for 25 kHz. The scattering lengths have large fluctuations 

between 0 ~ and - 1 5  ~ tilt. The fluctuations and peak amplitudes are largest in the 

- 5  ~ to - 1 5  ~ tilt range. In the - 5  ~ to - 1 5  ~ tilt range, the top surface of the 

swimbladder is approximately normal to the incident ray from the transducer. 

These dependencies on tilt strongly affect calculations of echo PDE 

10.5.2 THE PDF wF OF AN ENSEMBLE OF FISH 

The analysis and interpretation of acoustic surveys are directly related to fish 

behavior and their environment. A very simplistic description of fish behavior 

follows: fish behavior depends on whether a fish is a large predator or the smaller 

prey. During the day the smaller fish tend to form schools or hide by moving to 

depths where light penetration is very small. The deep scattering layer is an 

example. In lakes and streams, the fish may school, move to the bottom, or hide in 

the shade of trees, piers, and so forth. Fish schools can be dense because they may 
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Figure 10.5.2 Scattering lengths as a function of fish tilt and frequency. The fish are the 
10 trout shown in Fig. 10.5.1. (From Clay, C. S., and J. K. Home, "Analysis of rather high- 
frequency sound echoes from ensembles of fish," J. Acoust. Soc. Amer. 98, 2881, 1995.) 
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be a fraction of body length apart. At night the schools of fish disperse to random 

locations where they feed on smaller prey. At dawn the fish schools re-form. It is 

easier to catch fish in a school, and sonars help fisherpeople to find schools. It is 

easier to make population estimates when the fish are dispersed. Thus 

bioacousticians often do their surveys at night. 

For economy of illustration, a map of possible random fish locations is shown 

in Fig. 10.5.3. In the simulation and for any one ping, a fish may be located at any 

one of the locations, and the sonar receives an echo from this fish. The next ping 

finds a fish at another location. In our simulations, each echo is from one fish of 

the ensemble of trout. The angles are the incident and backscattering angles of the 

ray paths from and to the sonar transducer. 

The split-beam processing, dual-beam processing, or transducer PDF 

deconvolution have been done. The processed echoes from the fish are an 

ensemble of scattering lengths Lbs. The PDF of the scattering lengths is WF. 

Y N 

15 deg " " ' l 
10 

x 

5deg  / : ~  

Figure 10.5.3 Map of fish locations and possible directions. The + are the locations that 
simulate the random locations of fish at night. All locations are assumed to be in the same 
narrow range of depth. The circles indicate the incident angles of rays from the transducer 
at the depth of these locations. At each trial (ping) a fish is assumed to be at one of the 
locations. The fish can point in any direction. For simplicity, we reduce the fish directions 
to the north, east, south, and west directions. These fish and their directions are indicated 
by the short arrows. (From Clay, C. S., and J. K. Home, "Analysis of rather high- 
frequency sound echoes from ensembles of fish," J. Acoust. Soc. Amer. 98, 2881, 1995.) 
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Although the echo amplitudes are corrected for the transducer beam pattern D, 

the width of the beam pattern still limits the field of view because the corrections 

only apply to echoes within the central beam. Thus a narrow, 5 ~ beam-width 

transducer measures echoes from the area indicated by the "5  deg"  circle shown 

in Fig. 10.5.3, and the incident angles at a fish are also less than 5 ~ Wider beam- 

width transducers measure echoes from larger areas and have a larger range of 

incident angles. 

The echo amplitudes and the backscattering lengths depend on where a fish is 

in the sonar beam and the direction that it is pointing. Fig. 10.5.4 shows the 

incident angles for a fish that is under the x-axis on the map and is pointing west. 

If the fish is east of the transducer (Fig. 10.5.4a), then the incident and fish tilt 

angle (Z + ~) is large, and the echo amplitude is small. When the fish is west of 

the transducer (Fig. 10.5.5b), the ray path having the angle (Z + ~ )  is 

approximately normal to the top surface of the swimbladder, and the echo 

amplitude is large. Fish locations north of the transducer (Fig. 10.5.4c) have 

nearly the same echo amplitudes as if the fish were under the center of the 

transducer. 

10.5.3 V E R Y  N A R R O W  B E A M  W I D T H  A N D  R A N D O M  F I S H  TILTS 

The ensemble of fish have a random distribution of tilts, rms tilt = 15 ~ and mean 

tilt 1 o. The half-power to half-power beam width of the transducer is much less 

than the rms fish t i l ts--that is, 5 ~ The probability density functions (PDF) of the 

scattering lengths are shown in Fig. 10.5.5. The results are complicated. 
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Figure 10.5.4 Positions of a fish in a sonar beam. The fish is pointing west. a) Under the 
x-axis and east of the transducer, b) Under the x-axis and west of the transducer, c) Under 
the y-axis. (From Clay, C. S., and J. K. Home, "Analysis of rather high-frequency sound 
echoes from ensembles of fish," J. Acoust. Soc. Amer. 98, 2881, 1995.) 
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Figure 10.5.5 PDF from a narrow-beam sonar simulation. The ensemble of trout 

models is used. The root-mean-square (rms) tilt is 15 ~ and the mean tilt is 1 ~ The sonar 

beam is vertically downward and very narrow, ~ 15 ~ The frequencies are given on the 

examples. (From Clay, C. S., and J. K. Home, "Analysis of rather high-frequency sound 

echoes from ensembles of fish," J. Acoust .  Soc. Amer .  98, 2881, 1995.) 
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If one only had the data shown in Fig. 10.5.5, it would be reasonable to 

interpret each peak as representing fish sizes of 0.0055, 0.008, 0.011, and 0.016 m 

of scattering lengths. The reader can use one of the empirical formulas (Equations 

10.4.2 through 10.4.4) to estimate the fish lengths and compare them with the 

data shown in Fig. 10.5.2. The simulations at 50 kHz show similar results except 

that there is evidence of a fish having a scattering length of 0.002 m. At 100 kHz 

and L/2 -- 8, the PDF is very broad and approximately Rayleigh (7 = 0). The 

same is true for 200 kHz. 

10.5.4 WIDE BEAM WIDTH AND HORIZONTAL FISH 

Except for a wider transducer beam width, this simulation is similiar to the survey 

described in section 10.4.8. The half-power to half-power beam width of the 

simlation transducer is approximately 20 ~ The ensemble of trout are swimming 

horizontally and are pointing in the directions as shown in Fig. 10.5.3. The 

average PDF from this simulation are shown in Fig. 10.5.6. 

First, the 25 kHz simulation looks as if it can be fitted by the sum of Rician 

PDFs, one for each fish length. The higher frequencies (L/2 = 4, 8, and 16) 

match a single Rician PDE The peak values of the PDF are at different scattering 

lengths, and the 7's are different. Superficially at least, the simulated data look 

like the PDF that were obtained from the analysis of field data (Fig. 10.4.1 and 

10.4.2). This suggests that, during these field surveys, the distribution of fish tilts 

was very narrow. It is clear that the orientation of the swimbladder in the fish 

body biases the scattering length as the frequency and L/2 increase. And, 

depending on fish behavior, very narrow transducer beam widths can bias the 

measurements of backscattering lengths and PDE 

We want robust measurements of fish populations, and it appears that L/2 ~ 2 

may give better measurements than larger L/2. Furusawa (1991) made a very 

detailed analysis of the measurements of sound scattered by fish and showed that 

the sonar frequency corresponding to L/2 = 2 was least sensitive to the unknown 

fish tilts. The frequency dependence of the backscattering length on fish tilt may 

be useful in fish length estimations. Measurements with narrow and wide 

transducer beam width allow for larger ranges of fish tilts to be observed. Multi- 

beam sonars could measure the echoes and PDF of echoes over a range of fish tilt 

angles and fish orientations. 
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10.6 Quantitative Reverberation Analysis: Zooplankton 

Bacteria and nanoplankton are the base of the food chain. Zooplankton eat 

phytoplankton. As one goes up the food chain, the larger animals eat the smaller 

animals and transfer energy up the food chain. Some of the energy is lost, and the 

balance of the energy moves to larger animals as they eat smaller ones (Sheldon 

et al. 1972; Platt and Denman 1978). In ecological research, the size spectra are 

important in following the food chain and organism interactions. Acoustic 

surveys enable us to measure the patches and populations of zooplankton. 

Many oceanographers, limnologists, and acousticians have contributed to the 

developement of acoustic methods for measuring zooplankton. McNaught (1968, 

1969) described methods of using multifrequency sonars to estimate biomass in 

several size ranges. He got interesting results. A combined multifrequency sonar 

(47, 107, and 197 kHz) and a net biological study of zooplankton were made in 

the Saanich Inlet, British Columbia (Bary and Pieper 1970). Greenlaw (1979) 

used a three-frequency sonar in the same inlet. This early research demonstrated 

the relationship of acoustic volume reverberation and zooplankton populations. 

Zooplankton (Fig. 9.6.1) can have all sorts of shapes. In the commom 

measurement range of ka from 0.2 to 6.0, details of the zooplankton anatomy are 

not resolved. Laboratory sound-scattering measurements have shown that fluid- 

filled cylinders and spheres are pretty good acoustic models of zooplankton 

(Greenlaw 1979; Johnson 1978; Stanton 1988; Wiebe et al. 1990). The laboratory 

measurements of a shrimp (Fig. 9.6.6), are accurately modeled by a fluid-filled 

cylinder. While we use shrimp in our examples, the shrimp can stand for any 

zooplankton, and the fluid cylinder can be replaced by bent cylinders, spheres, 

and combinations. 

An acoustic model of a shrimp and its scattering length is shown in Fig. 10.6.1. 

The scattering length computations were made using the methods in section 

Figure 10.6.1 Backscattering lengths of acoustic models of shrimp. The densities of the 
shrimp are assumed to be 1.03 times the water density, and their sound speeds are the same 
as in water. The tilts of the shrimp are Z = 0. The backscattering lengths are in meters. 
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9.6.1. The backscattering lengths, s a r e  simple functions of frequency. The 

40 mm shrimp has a readily identifiable maximum and a null. Using Fig. 10.6.1, 

a set of scattering measurements at 50, 100, 200, and 300 kHz would define the 

first maximum of the 40mm shrimp. Measurements at the same set of 

frequencies on the 10mm shrimp would define its slowly increasing scattering 

length as frequency increases. 

A side-looking acoustic plankton sampler is sketched in Fig. 10.6.2. 

The beam pattern of the transducers and range (time) gates select a volume 

sample. Usually the transducers for multifrequency instruments are designed to 

have the same beam widths and to sample the same volume. The dimensions of 

the volume sample control the spatial resolution. As an example, three 

populations of zooplankton (A, B, and C ) are in layers. Each of the layers has 

its own distribution of zooplankton. Layer 1 has mainly types A and B; layer 2 

has types B and C; layer 3 has type C. The sketch shows the acoustic plankton 

sampler in layer 2. 

Figure 10.6.2 Zooplankton in layered ocean structure and in an insonified volume, t{1 

and R2 are the ranges that correspond to the time gates tl and t2. The effective sampled 
volume is AVe. Holliday et al. (1989) use a set of horizontally facing transducers to 
insonify the volume. 
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10.6.1 V O L U M E  R E V E R B E R A T I O N  E Q U A T I O N S  

We repeat a few formulas from section 9.3. The integrated beam pattern is ~D; 

the gate times are tl and t2; the effective sampled volume is 

3 3) 
AVe = (R 2 - R 1 IP o (10.6.1a) 

where 

t I -- 2R1/c ' t2 - -  2 R 2 / c  (10.6.1b) 

For a colocated source and receiver, the gated time integral pressure squared 

[tips] of the volume reverberation is 

[tips ]GV = ~D ( t 2- t 1 ) r 

2 1 0 - a R / 5  
R0  

2R 2 
n b <Gbs > [tips ]0 (10.6.2a) 

where 

R ~ (R i + R2)/2 (10.6.2b) 

The density of scatterers and the mean backscattering cross section define the 

volume scattering coefficient: 

s v ( f ) -  n h < o'hs > , m  - l  (10.6.3) 

For a distribution of different type bodies, or the same type of different sizes, the 

jth kind of object has the density nhi, and the squared scattering amplitude is 

[Lbs, jl 2. The total number of objects of all types is Nh, and the average volume 

scattering coefficient is the weighted sum over all objects, 

1 ~ nbj ~ b s d l 2  ( S v  ) - N b  j (10.6.4) 

The SI units are n0i in m -3 and ]Lbs, j[ 2 in m 2. Both Sv and (ah.,.) depend on 

frequency. 

In multiple-frequency surveys, it is necessary that scattering measurements be 

made the same insonified volume, as shown in Fig. 10.6.2. Since the ocean is 

highly variable, the scattering measurements at different frequencies should be 

made as near to simultaneous as possible. 
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"10.6.2 I N V E R S E  S O L U T I O N  USING MULTIPL E  F R E Q U E N C I E S  

(OPTIONAL)  

Our discussion follows Greenlaw (1979) and Holliday et al. (1989). It uses 

standard matrix algebra. First, we recall the volume scattering coefficient 

(Equation 10.6.3), 

Sv ( f c )  = n b < tc b~ ( f ~ ) 1 2  > (10.6.5) 

wherefc is the center frequency of the ping; f_3bs(fi ) is the scattering length; nb is 

the density or bodies/m3; and the functional dependence on frequency is 

included�9 We compress the notation by defining the set of volume scattering 

coefficients as the vector s: 

So 

$1 

S -  

SM 

(10.6.6a) 

where 

Si - Sv (ft) (10.6.6b) 

where M is the number of frequencies. The densities of the N size classes are in 

the vector n: 

no 

nl 

n - -  

/'/N 

(10.6.7a) 

where 

ny -- nbj (10.6.7b) 

*Background material. 
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and nb, j is the density of the jth size class of N classes. The nj are also known as 

the size spectra. The mean square scattering lengths as a function of frequency 

and size class are (ILhs and j(f/)12), and the scattering matrix S is 

where 

S 0 , 0  SO, 1 �9 �9 �9 SO,N 

S 1 , 0  S I , 1  S1,N 

S - " (10 .6 .8a )  

SM,O SM,1 �9 . SM, N 

Sid f-"bsd(fi)12) (10.6.8b) 

The vector s contains the measured volume scattering coefficients. The 

theoretical scattering amplitudes are contained in the matrix S. We seek the 

animal densities in the vector n. For more observations M than unknown 

coefficients N, the error vector, 

e - -  s - S n  (10 .6 .9 )  

is minimized. Least squares minimization is also known as the "L2 norm." After 

much algebraic manipulation, the estimated vector for the densities is (Menke 

1984, pp. 40--46) 

n est - STs (10.6.10) 

S T S  

This least squares solution is for the "overdetermined problem"--namely,  one 

makes measurements at more frequencies M than the number of animals N, 

M > N. The literature on generalized inversions includes constraints on solutions 

and methods when N is larger than M (Menke 1984). 

10.6.3 ACOUSTIC PROFILES OF ZOOPLANKTON 

From the literature we select an example of an acoustic profile and the relation of 

the distribution of zooplankton relative to ocean structure. Holliday, Pieper, and 

Kleppel (1989) used a 21-frequency sonar in different oceanic environments. 

Figure 10.6.3 shows the zooplankton size spectra in the northern Pacific ocean. 

The zooplankton are in the size range of 0.1 to 4.0mm. The hydrographic, 

biological, and acoustic casts included biological samples, temperature, 

conductivity, and fluorescence (for chlorophyll). The profiles was taken during 
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Figure 10.6.3 Acoustic profile from Northern California. Data were taken in a coastal 
transition (33 ~ 220.82/N, 124 ~ 05.521 W) at 09:30 local time, 30 June 1985. (From 
Holliday, D. V., R. E. Pieper, and G. S. Klepple, "Determination of zooplankton size and 
distribution with multifrequency acoustic technology," J. Cons. Int. Explor. Mer. 46, 
52-61, 1989.) 

the day to sample the usualinhabitants of the shallow depths. Holliday and Pieper 

(1995) discuss methods and the approach for doing bioacoustical oceanography 

at high frequencies. The size spectra are shown as a function of depth and 

"biovolume," an analog of biomass. The biovolume contours are drawn on the 

doubling of the biovolumes. The size spectra are also given using the 

"equivalent spherical radius" (esr) in millimeters. 

An acoustic profile and oceanographic data from Southern California are 

shown in (Plate 4 Holliday, Pieper, and Kleppel 1989), most of the biovolume is 

in the first 10 m, and the biovolume is very small (below 50 m). Near the surface, 

the size spectra is large, in the 0.3 mm to 0.6 mm esr, and then skips to 3.2 mm esr 

and larger. Below 10m depth, the spectral peaks are at 0.3 and 0.5 mm. 

Organisms in the 3 mm esr may include fish larvae. 

North Wall of the Gulf Stream 

The north wall of the Gulf Stream is a major boundary between water masses 

(Fig. 10.6.4). The warm Gulf Stream water flows over the colder and more dense 

slope water. The front is very dynamic, with large surface currents of about 8 km/ 

h. The transition zone between the water masses is very sharp and is easily 

identified on echo sounder profiles (Fig. 10.6.5). 

These results are from the multidisciplinary cruise EchoFront 85. Downward- 

looking echo sounders and the multiple-frequency acoustic profiling system were 

used (Holliday, Pieper, and Klepple 1989; Nero et al. 1990). 

Holliday, Pieper, and Kleppel (1989) measured the oceanographic and 

biological details in a series of casts along the acoustic transect. One of these 
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Figure 10.6.4 Representation of the Gulf Stream front with generalized water masses. 
Slope water (SL) temperature < 15~ thermocline (TH); hot Gulf Stream (HG) temperature 
>24~ cold Gulf Stream (CG) temperature < 24 ~ (From Nero, R. W., J. J. Magnuson, S. B. 
Brandt, T. K. Stanton, and J. M. Jech, "Finescale biological patchness of 70 kHz acoustic 
scattering at the edge of the Gulf Stream-EchoFront 85," Deep-Sea Research 37, 999- 
1016, 1990.) 

casts is shown in Fig. 10.6.6. The thermocline is at about 6 0 m  depth. The 

biovolume maximum at 6 0 m  depth coincides with a maximum of the 

chlorophyll. 

In this chapter we have given examples of bioacoustic research in the ocean. 

Gaps in the data exist, and it is difficult to obey the Nyquist sampling rules in 

Figure 10.6.5 Acoustic transect (70kHz) across the Gulf Stream front. The strong 
sound scattering is in the hot Gulf Stream and slope waters (Fig. 10.6.4). The dynamic 
range of the volume scatter exceeds the range of a black and white picture. (From Nero, 
R. W., J. J. Magnuson, S. B. Brandt, T. K. Stanton, and J. M. Jech, "Finescale biological 
patchness of 70 kHz acoustic scattering at the edge of the Gulf Stream-EchoFront 85," 
Deep-Sea Research 37, 999-1016, 1990.) 
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Figure 10.6.6 Acoustic profile at the Gulf Stream front. Data were taken in the Gulf 
Stream (35 ~ 20N, 74 ~ 35' W) at 1849:30 local time, 12 August 1985. (From Holliday, D. V., 
R. E. Pieper, and G. S. Klepple, "Determination of zooplankton size and distribution with 
multifrequency acoustic technology," J. Cons. Int. Explor. Mer. 46, 52-61, 1989.) 

time, frequency, and space. Bioacoustic research is expensive, difficult, and at 

times very frustrating because storms can destroy equipment, disrupt schedules, 

and change the ocean. Although the examples are a minuscule sample of the 

ocean, these measurements and their analysis represent very large efforts. 

Problems 

Section 10.3 

10.3.1 Use the sonar specifications in section 10.2.4 to compute the maximum 

density of fish (i.e., the critical density) for echoes from single fish. a) 15 to 17 m 

depth range, b) 99 to 101 m depth range. 

10.3.2 The sonar described in section 10.2.4 is used. In a laboratory 

measurement of sound scattered by a 20cm fish with swimbladder, replace 

the stainless-steel sphere with the fish at the same range, 12.9 m. The output 

peak voltage is 1.1 v. a) Calculate the scattering length of the fish. b) Compare 

this with the value computed using the empirical target strength formulas. 

10.3.3 A dual-beam sonar has the on-axis peak sound pressure 

P0 = 5 x 101~ #Pa at 1 m. The carrier frequency of the sonar is 200 kHz, and 

the ping duration is 0.7 ms. The fish echo referred to the sound pressure at the 

face of the narrow transducer is 3 • 106 #Pa. Both the narrow- and wide-beam 

transducers are circular pistons. The narrow transducer beam width is 5 ~ from 

half-power to half-power. The wide beam is 30 ~ from half-power to half-power. 

The peak echo from the narow beam is 0.5 v, and the peak echo from the wide 
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beam is 0.9 v. The two-way travel time is 0.03 s. a) Compute the angle by which 

the fish is off the transducer axis. b) Compute the backscattering length of the 

fish. c) Assuming a swimbladder and estimate the length of the fish. 

Section 10.4 

(Advanced) For the following problems, the Laplace-transformation expressions 

are 

W~(z) -- [2.0 + 2.4z -1 + 2.9z -2 + 3.5z -3 + 4.2z -4 + 5.1-5 

+ 6.1z -6 + 7.3z-7]/(ka) 2 

UE(z) -- [4.3 + 5.2z -1 + 6.5z -2 + 7.9z -3 + 9.3z -4 + 12z -5] • 10 -4 

6 e = I n ( 1 0 ) / 1 0 = 0 . 2 3 0  and e 0 - -  1 

10.4.1 (Advanced) Do algebraic long division (deconvolution) to estimate, to a 

constant of proportionality, the Laplace-transformation of the fish. 

10.4.2 (Advanced) Let WF(Z) = 4.62 + 0.05z -z + 0.31z -2 + 0.06z -3. Comput 

the convolution of WF(Z) and Wr(z). 

10.4.3 (Advanced) Write an algorithm to do the convolution of WF(Z) and 

Wv(z) on a computer. 

10.4.4 (Advanced) Write an algorithm to do the deconvolution of UE(z) and 

W~z) on a computer. 

10.4.5 (Advanced) Try Problems 10.4.3 and 10.4.4 using MATLAB. 

Section I0.5 

For the following problems, all of the echoes are from individual fish. 

10.5.1 Use the simplified model of a swimbladder (Problem 9.5.1 [L = 10 cm, 

a = 0.5cm)]. Tilt the cylinder 6 ~ relative to the horizontal. Let the incident angle 

(Fig. 10.5.4) be from - 10 ~ to 10 ~ Compute and plot the PDF of the peak echo 

amplitudes for carrier frequencies of 10, 20, 50, 100, and 200 kHz. 

10.5.2 An ensemble of fish are represented as swimbladder models with the 

gas cylinders having the following: 

Length (cm) Radius (cm) Tilt degrees 

10 0.05 6 

11 0.05 4 

9 0.04 7 

12 0.06 5 

8 0.04 6 
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The incident angle range is - 1 0  ~ to 10 ~ For carrier frequencies of 10, 20, 50, 

100, and 200 kHz, compute the PDF of the individual fish. Assuming that all 

measurements are independent, compute the PDF of the ensemble. 

10.5.3 Use the ensemble of fish in Problem 10.5.2, but here the fish are looking 

about and their fish axis tilts are 0. The frequencies are the same set. a) What 

would the PDF of the ensemble be for a sonar that has a beam from - 1 o to 1 o? b) 

All fish are looking west as in Fig. 10.5.4. b) Compute the PDF of the ensemble 

when the sonar beam is from 5 ~ to 7 ~ c) Compute the PDF of the ensemble 

when the sonar beam is from - 5  ~ to - 7  ~ d) Compare the PDF and discuss the 

possibility of using mult ibeam sonars to study fish tilts and fish schools. 

10.5.4 The fish are looking in " r a n d o m "  directions. The simplified ensemble 

has four sets of the fish in Problem 10.5.2. The fish in set A look west; those in set B 

look south; those in set C look east; those in set D look north. The frequencies are 

the same set. a) What would the PDF of the ensemble of A, B, C, and D be for a 

sonar that has a beam from - 1  ~ to 1~ b) Compute the PDF of the ensemble 

when the sonar beam is from 5 ~ to 7 ~ c) Compute the PDF of the ensemble 

when the sonar beam is from - 5  ~ to - 7  ~ d) Compare the PDFs and discuss the 

possibility of using mult ibeam sonars to study fish tilts and fish schools. 

S e c t i o n  10 .6  

10.6.1 The scattering lengths of shrimp are shown in Fig. 10.6.1. 

Measurements are made at 50, 100, 200, and 300 kHz. All data are reduced 

to the volume scattering coefficient. Interpret the data in the table to estimate the 

density of 40 mm shrimp (A) and 10 mm shrimp (B). 

Table P10.6.1 LOs in m and (Sv) in m -1. 

Set 

Data Set 50 kHz 100 kHz 200 kHz 300 kHz 

(A) s 
(B) .Lbs 
(1) (Sv) 
(2) (Sv) 
(3) <s~) 

1.3 x 10 -4 3.5 • 10 -4 5.4 x 10 -4 1.0 x 10 -4 

1 . 0 •  10 -5 2 x  10 -5 5 .0x  10 -5 9 . 0 x  10 -5 

8 x 10  - 7  0.6 z 10 -5 1.5 x 10 -5 5.0 X 10 -7  

5 X 10  - 7  2 • 10 - 6  1.2 x 10 -5 4.0 x 10 -5 

1.3 x 10  - 6  6.2 x 10  - 6  2.7 x 10 -5 4.1 x 10 -5 

Use a least squares method to estimate the populations of shrimp (A) and (B). 
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of MATLAB. Advanced theoretical waveguide solutions are very elegant and 

have huge, complicated codes. 

Since the literature is extremely rich, we will reference only the early 

contributions. The classic reference is Ewing, Worzel, and Pekeris (1948). Their 

research was done during World War II, as part of the undersea warfare effort. 

Ewing and Worzel did a set of sound transmissions in shallow water in 1943. 

They discovered the frequency-group velocity dispersion relation for sound 

transmission in a shallow-water waveguide. Pekeris, a theoretician, formulated 

the normal-mode solution for sound transmission in a shallow-water waveguide 

in both the frequency and time domains, and compared it with Ewing and 

Worzel's data. Details of normal-mode theory and extensive references are 

provided in Tolsoy and Clay (1996, 1987), Tolstoy (1973), and Brekhovskikh and 

Godin (1990). 

The concepts and examples of trapped rays are given in Chapter 3. Rays are 

trapped when a ray path reflects at the surface, has " to ta l"  reflection at the 

bottom, or turns above the bottom. Examples are given in section 3.3.5. In 

normal-mode solutions for sound-wave transmissions, the sound energy is 

trapped between the upper and lower boundaries. 

11.1 Normal  Modes  in Plane-Layered Media  

The normal modes are a way of solving the wave equation. In Chapter 7 we used 

expansions of the normal modes to solve the scattering of sound waves by fluid 

spheres and cylinders. The spherical Hankel functions were used for the sphere. 

The cylindrical Hankel functions were used for the cylinder. These choices were 

based on using the the most convenient coordinates for the problem. In a plane- 

layered medium, cylindrical Hankel functions are convenient, because the 

structure of the medium is only a function of depth z, and the source transmission 

has radial symmetry. As before, the solutions are for a simple harmonic source or 

continuous wave of angular frequency 09. A basic waveguide is sketched in Fig. 

11.1.1. 

11.1.1 WAVE EQUATION IN A WAVEGUIDE 

The cylindrical scaler wave equation for sound pressure is 

2p Op ~ 2p 1 ~ 2p 

Or 2 + 1 ~ + Oz 2 - c 2 Ot 2 (11.1.1) 
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Z 

Point  ~ / r  

source 

h 

Z 

M e d i u m  0: Air  

r --'-I 

! 

M e d i u m  1" Water  , v , . z  

P 1 a n d c  1 I ~ , , R e c e i v e r  

M e d i u m  2: Sed iment  

Figure 11.1.1 Source and receiver in a plane-layered waveguide. For simplicity, the 
upper layer, medium 0, is air. The water layer is medium 1. The sediment, medium 2, may 
be a single or half-space have many layers. 

Letting the pressure be expressed as being proportional to the product, 

p ,,, U(r)Z(z)T( t )  (11.1.2) 

the substitution of Equation 11.1.2 into Equation 11.1.1 and division by p gives 

1 (0 2U(r) 10U(r)) 
U(r) \ Or 2 -~ -r Or -Jr 

1 02Z(z) 1 02T(t) 

Z(z) Oz 2 c2T(t) Ot 2 
(11.2.3) 

For the harmonic source, T(t) - exp(ioot), the right-hand side reduces to-0)2/r 2. 

For all values of r and z, the r-dependent term and the z-dependent term are equal 

to constants. The separation constants are designated - K  2 for the radial term and 

- 7  2 for the vertical term. The separated expressions are 

~ ) 2 U ( r )  1 O U ( r )  2 
c)r 2 + r c)r = - - i f  U ( r ) (11.1.4) 

t)2Z ( Z )  

OZ 2 
= _ y  2 Z ( z )  (11.1.5) 

k 2 - co 2 / c  2 (z)  (11.1.6) 

K 2 + 7 2 -- k 2 (11.1.7) 

where c depends on z; K is the horizontal component of the wave number; 7 is the 

vertical component of the wave number. Since U(r) is only a function of r, this 

implies that x is constant for all values of z. 
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and 

For the angle of incidence 0, the horizontal and vertical components of k are 

tc = k sin 0 (ll.l.ga) 

? -- k cos 0 (ll.l.8b) 

and this is another way of expressing Snell's Law. The solution of Equation 

11.1.7 for ?2 shows that ? depends on c(z). Correspondingly, the function Z(z) 

depends on c(z) and co. 

The 0th order solution of the radial equation (11.1.4) for an outgoing wave is 

the Hankel function, H~ 2) (tcr)" 

(2)( 
H 0 to-) = J 0(K'r) - i  N 0(tcr) (11.1.9) 

At very large range, the Hankel function has the convenient approximation of an 

outgoing wave: 

H~ 2) (tcr) ~ ~/ 2 e_i(Kr_~z/4 ) 
v ~ K r  

for ~cr >> 1 (11.1.10) 

For trapped waves, the upper and lower reflection coefficients both have the 

absolute value of unity. In real waveguides, there is a minimum range for 

trapping, because rays must be reflected at angles larger than the critical angles of 

incidence. 

11.1.2 DEPTH DEPENDENCE IN AN IDEALIZED WAVEGUIDE 

A simple idealized waveguide consists of a homogeneous fluid (water) that has 

pressure-release interfaces at the upper and lower boundaries. Recalling section 

2.6.4 and Equation 2.6.26, reflections beyond the critical angle can be replaced by 

a pseudo-pressure release interface at Az beneath the water sediment interface. 

Hence, a water layer over a real sediment bottom can be approximated by an 

idealized waveguide. The boundary conditions require the pressure to vanish at 

the upper and lower interfaces. Correspondingly, the eigenfunctions, Z(z), must 

satisfy 

Z(z) Iz=0 = 0 and Z(z)Iz=h = 0 (11.1.11) 

Solutions of the Z(z) for the boundary conditions of Equation 11.1.11 are 

Z(z ) =  sin( Tz ) = 0 at z = 0 and z = h (11.1.12) 

where 7 is the vertical component of the wave number. A fluid layer between 

"r igid" interfaces has the other possible solution, Z(z) = cos(?z). 
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The requirements of Equation 11.1.12 give the "moda l  equat ion" for the 

idealized waveguide: 

Tm h - -  mn, or 7m = mn/h (11.1.13) 

where m is an integer and designates the " m o d e  number ."  The ])m are known 

as the eigenvalues. The values of /r are given by Equations 11.1.7 and 

11.1.13: 

K" m (k 2 ~/m _ 2 (11.1.14) = _ 2) 1/2 and k 2 > T m 

The requirement that K7 m be real gives the mode cut-off condition, because the 7m 

increase with mode number. 

In an idealized (pressure-release) waveguide, the eigenfunctions, Zm(z ), 

a r e  

Zm(z ) - sin (mltz/h), m -- 1,2, 3 (11.1.15) 

Examples of the Zm(z) are shown in Fig. 11.1.2. 

The top and bottom interfaces have pressure-release boundaries. The fluid 

layer is homogeneous.  

Zm 

0 -- 

h 
m = l  

Zm Z m 

( 
m = 2  m = 3  

Z m 

m = 4  

Figure 11.1.2 Eigen functions in an idealized waveguide. 
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11.1.3 O R T H O G O N A L I T Y  OF M O D E S  

The eigen functions of the ideal waveguide are sinusoidal, and the eigen 

functions are 0 for z > h and z < 0. Evaluation of the following integral for the 

mth and nth eigen functions of the ideal waveguide gives 

I i  ~ m~z mz 
p sin (--~-- z) sin (-~--z)dz -Vm6(rn  --n) (11.1.16) 

where 

Y m " -  ph/2 ( l l . l . 17a )  

6 ( n - m ) =  1 for n = m a n d = 0  for n C m  (ll.l.17b) 

Note: In this section, for typographical convenience, we drop the subscript a and 

use p rather than PA for the ambient density. The symbol 6 ( n -  m) is the 

"Kronecker delta," which has value unity when m = n and is otherwise 0. This is 

a specific example of the orthogonality of the eigen functions. In general, the 

integral is over the full thickness of the waveguide in which the sound field is not 

0. The general orthogonality integral is 

I ~ pZ m(z)Z n (z) Vm6(m - n) (11.1.18) dz 
- - 0 0  

where the density depends on depth. Proof of this integral is part of the discussion 

of the Sturm-Liouville problem in texts on boundary value problems (Churchill 

and Brown 1987, section 57). 

Thus, the orthogonality constant v m is equal to 

•m -- pZ  m2 (z) 62 (11.1.19) 
-(20 

The orthogonality of the eigen functions enables us to expand the dependence of 

sound pressure on depth as the sum of eigen functions. The orthogonality integral 

requires that the integral be taken over the full range of depth for which the Zm(Z) 

are not 0. 

A source function at the depth zs is proportional to the delta function 6(z - zs) 

and is null for z r zs. The delta function for a source at z s can be expanded as a 

series sum of eigen functions. Using the analogy of a Fourier series, we write 

t~ (Z -- Z s ) - ~ m Z m ( Z )  (11.1.20) 
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Using the standard procedure to solve for the Am, we multiply both sides of 

Equation 11.1.20 by p Zm(z ), then integrate over the depth of the waveguide: 

f o ~ p Z  m (z ) t~ (z - Z s  ) d z=  ~ A  f o ~ p Z  m (z ) Z  m (z ) d z  

(11.1.21) 

The integral on the right-hand side is Equation 11.1.18, and the values of the Am 

a r e  

A m - PlZm(7.s)/Ym (11.1.22) 

where P l is the ambient density at the source depth zs. 

11.1.4 SOUND P R E S S U R E  A N D  THE SUM OF MODES 

The sound pressure is the sum of the pressures in each mode. The sound pressure, 

for source and receiver in medium 1, 

p ( r , z , , z , t ) = A , e  itot ~ Pl Zm(Z, )Zm(Z )e-(itc,,,r-Jr/4) 
m = l  1) m (2/t- K- m r )I/2 

(11.1.23) 

where A,. depends on source power. The summation is over the allowed modes M. 

Starting with a source power / / ,  computations of the amplitude factor As require 

much analysis (Tolstoy and Clay 1987, p. 81-84). Comparision of pressure 

amplitude in our Equation 11.1.23 and the pressure amplitude given in Tolstoy 

and Clay's Equation 3.122 shows that 

A s = 2~z V/27tpl c I H (11.1.24a) 

The replacement of A, in Equation 11.1.23 by Equation 11.1.24 gives 

M 

Pl Z e -(iKm'-~z/4) p(r, zs, z , t  ) -- e i")t 2Ztv/PlClI1 ---_:__= ,,(zs)Zm(z ) (11.1.24b) 
"Um V / Knl F 

Next, rearrange the parameters, use a reference power H o, and define the mode 

excitation, 

P l  
- 2Jr V / P l C l  H 0 qm D m 

(11.1.25) 
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where/-/0 -- 1 watt, and then write the expression for the time-dependent sound 

pressure" 

M 

p ( r ,  Zs, z, t) --  e i~ v / H / H o  E qm e--(i~Cmr--~/4) 
m=l KV/-~--~mFzm(Zs)zm(Z) (11.1.26) 

The ratio (1I/1Io) 1/2 is proportional to eo/ /ere f ,  where P0 is the sound pressure 

referred to 1 m and Pref is a reference pressure--that is, 1 Pa. To show that qm has 

the unit of pressure, recall the expression for the source power of a point source 

(Equation 3.1.16a), 

2 r c R g  P g  
H =  

P l c l  

and substitute it into Equation 11.1.25. 

The pressure amplitude of the trapped wave decreases as 1/v/r,  as one would 

expect for a spreading wave that is trapped in a layer. While the sound pressure 

has a single frequency, its dependence on range and depth is complicated because 

the components of sound pressures in each of the modes have different 

dependencies on range and depth. 

In real waveguides, the absorption losses in the bottom and the water layer 

cause the sound pressures to decrease faster than 1/v/r. All of these kinds of 

losses are included in the empirical mode attenuation rates 6 m, so that Equation 

11.1.26 becomes 

p (r, z s, z ,  t ) = e iogt 4H/U 0 m~ q m Z m (Z ) Z ( Z )  e -(itr m 
?._ / 4) ~m r 

=1 ~ / l ~ m r  s m 

(11.1.27) 

p(r, Zs, z, t) -- e i~~ V/11/1-1o e(o9, r, Zs, z) (11.1.28) 

q 
P ( o 9 ,  r, Z s , Z  ) = 2_~ 

m 

m = 1 ~/IC m r 
~ Z m ( z  s ) Z m ( z  )e - ( i t f m  r -  ~ ] 4 ) - ~  m r 

(11.1.29) 

The pressure transmission function, P(o9, r, Zs, z), has frequency dependence in 

the 7m, Xm, Vm, and qm. The pressure transmission function is also known as the 

Green's function, with the notation G(co, r, Zs, Z ). We will use the transmission 

function when we do its Fourier transformation to compute the transmission of a 

transient sound in a waveguide. These equations will be referred to many times. 
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11.1.5 R E F L E C T I O N S  AND TRANSMISSIONS  AT THE 

WAVE GUIDE B 0 UNDA R IE S 

When a real waveguide has horizontal stratification and parallel interfaces, 

theoretical models can be excellent approximations to reality. Many areas of the 

deep ocean and the shallow water environments have nearly horizontal 

stratifications. The main changes in going from ideal to real waveguides are to 

include many layers and finite sound speed and density changes. Later we will 

give examples that show that the requirement of parallel interfaces can be 

relaxed. 

We repeat a few formulas from section 2.6.1. In an n-layered medium, the 

wave number in the nth layer is 

wave number kn - og/cn 
(11.1.30) 

Snell's Law k I sin 01 -~- k,, sin 0 n 

Reflection coefficients are 

P 2  c 2C0S 0 1 - p l  C 1 COS 0 2  

IP~I2= P 2 c 2 COS 0 1 + p  1 c lCOS 0 2 
(11.1.31) 

critical angle and c 2 > CI ,  0 c - -  arcsin(cl/c2); and 

C2 
272 - -  ---- sin 201 - 1 and c o s  0 2 - -  - i 2 7  2 (11.1.32) 

Beyond critical angle, the reflection coefficient is 

~ 1 2  = 

P 2  c 2 c ~  P l  c lg  2 

P 2 c 2 COS 0 1 -- i /9 1 c 127 2 

(11.1.33) 

where 

] R l 2 l -  1, 

~1~ 12 - -  e2 iq '  
(11.1.34) 

and 

/9 i c 1 ~ 2  
q~ = arctan (11.1.35) 

P 2 r 2COS 0 I 

Figure 11.1.1 shows the waveguide. In the water layer, the z-dependence of a 

downward-traveling wave (z + down) is 

Z ( z )  -- e - ik, z cosO, (11.1.36) 
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Below the depth h, as in Fig. 11.1.1, and beyond the critical angle, the downward- 

traveling wave is 

Z(z)  ~ e -k2s2(z-h) for z > h, 01 > 0 c (11.1.37) 

and the amplitude of the Z(z) decreases exponentially beneath the interface. 

Multiple Layers 

It is easy to extend the ideal model to waveguides having many layers by letting 

the upper and lower reflection coefficients in Fig. 11.1.1 represent many layers. 

Recalling Section 2.6.3, the reflection coefficient at a thin layer is 

!PL12 + !PL23 exp (--i2~2) 

PL13 -- 1 + [PL12[PL23 exp (-i2052) 

cI) 2 -- k2h 2 cos  0 2 

(11.1.38) 

It is easy to extend this formula to n layers by replacing the reflection coefficient 

!Pk.23 by the reflection from a layer beneath it and so forth. Usually if the wave (or 

ray) is critically reflected at an interface, layers beneath that interface can be 

ignored. The exception is for a very thin layer where the wave field penetrates 

through the layer. Methods and algorithms for computing the reflection 

coefficient for a wave reflected by a sequence of thin layers are provided in 

Tolstoy and Clay (1987, sec. 2.5), Brekhovskikh (1980, sec. 3.6), and Clay (1990, 

sec. B 1.3). 

11.1.6 M O D A L  E Q U A T I O N S  ( C H A R A C T E R I S T I C  E Q U A T I O N S )  

The waveguide boundaries (Fig. 11.1.3) have upper and lower reflection 

coefficients. The reflection at the lower boundary has unity amplitude and the 

phase shift as given in Equation 11.1.34. The reflection at the upper free surface 

has 

~ u p p e r  "-- - 1 ;  ~upper  - -  exp  (ire); ~ u p p e r  - -  exp  (2iCDupper) 

(Dupper - 7c /2  
(11.1.39) 

In trapped wave propagation, the z-dependencies of the upward- and 

downward-traveling components of the sound pressure combine to form standing 

waves. Since the time factor exp(icot) is the same for all sound pressures, it is 
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0 
~PL upper 

/ ~ p . ~  ~Lupper 

• 
/ ~ + ~ P L  lower 

lower 

Water 

Figure  11.1.3 Reflections of pressure waves at the upper and lower boundaries. The 
arrows show the directions the waves are traveling. The incident waves are p+ and p_. 

omitted. The downward (+z) traveling pressure p+ and the upward ( - z )  traveling 

pressure p_ are 

p+ -- Ae-i(xr+Tz) 

p_ -- Be-i(xr-Tz) 
(11.1.40) 

where A and B are constants. The reflection coefficient at the lower interface is 

~PLlower - -  P - ] B ei27 z 
- -  P + z = h  - -  -~ (11.1.41) 

and at the upper interface is 

~k.upper - -  P__+_+ ]z=O A --  P _ = ~ (11.1.42) 

To obtain the modal equation, we first solve Equation 11.1.42 for B/A, and then 

substitute it into Equation 11.1.41: 

R u p p e r  ~PL l o w e r  e - i 2 ~'z _ 1 = e i 2 n rc (11.1.43a) 

where n = integer, and 

~P~ upper" exp (2 i ~upper ), ~ lower- exp (2 i ~lower ) (11.1.43b) 

The phase form of the modal equation comes from equating the phases 

2( '~h)  - -  2(n7~ -~- ~I)uppe r -~ CI)lower ) (11.1.44) 
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where Equations 11.1.43 and 11.1.44 are satisfied for any n. Since the integer n is 

arbitrary, we can write the modal equation for the mth mode as follows" 

ym h -- ( m -  1)n + (I)uppe r + (I)lowe r (11.1.45) 

where m is the mode number and where we use the subscript m or ~)m for mode 

number. The modal equations are also known as the "characteristic equations" 

in the waveguide literature. 

The eigen function for a waveguide that has a free surface is 

Zm(Z) -- sin (7m h) (11.1.46a) 

and 

(I)uppe r - -  n/2 (11 .1 .46b)  

and the horizontal component of the wave number is 

2 2) 1/2 
K'm = (k 1 - ~'m 

and 

(11.1.47a) 

k 1 = o ) [ c  1 (11.1.47b) 

In medium 2, the eigen functions decay exponentially because the incident angles 

are greater than the critical angle: 

Zm(z ) - exp [-k2tcm2~2m(Z - -  h)] (11.1.48) 

where z > h, and 

k 2 ~ 2 m  - (k2m - -  k 2 ) l / 2  (11.1.49) 

where k 2 = o9/c 2 

The excitation function (Equation 11.1.25) uses the orthogonality integral 

(Equation 11.1.18). The energy flux function (Equation 11.1.16) that includes the 

penetration of the pressure field into medium 2 is 

f0 h D m = /9 1 sin 2(~z m Z ) dz + P 2 e - k 2  g 2 (Z -h  ) dz (11.1.50) 

and 

sin( 2~" m h ) ] + P 2 (11.1.51) 
D m P l [  h 

= 2 - 4~,, m k 2 g  2 
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The numerical solutions for 7m, t('m, Vm, and qm are the biggest part of evaluating 

the equations for sound pressures in a waveguide (Equations 11.1.27 through 

11.1.29). 

11.1.7 N U M E R I C A L  E X A M P L E :  T W O - L A Y E R  WAVEGUIDE 

The numerical example uses the acoustic model, Table 11.1 to compute a set of 

graphs of the waveguide acoustical parameters and sound pressures. MATLAB 

was used to perform the computations. The modal (characteristic) equation 

(11.1.46) is a transcendental equation, therefore direct numerical solutions for a 

selected frequency can be difficult. A simpler method uses a set of incident angles 

01 as inputs to the reflected phase expression (Equation 11.1.33). 

The phases r and r r are substituted into the modal equation (11.1.42), 

and ~m is computed. The frequency 09 follows directly by using Equation 11.1.47. 

The interpolation between a pair of evaluations of ~m gives the values of 7m, Km, 

and qm for a chosen frequency. A set of numerical solutions is shown in Fig. 

11.1.4. 

Cut-off Frequencies 

Figure 11.1.4 shows 7m and •m as functions of frequency. In this example, the 

smallest frequency for 71, Km, and mode 1 is about 37 Hz. The next modes start at 

l l0Hz,  182Hz, and 255Hz. These are the mode "cu t -o f f "  frequencies. The 

requirement that the sound pressures be trapped requires that all angles of 

incidence be greater than the critical angle 0, = arcsin(cl/c2).  At the critical 

angle of incidence, we use 

2zr f cos ( 0 )  (11.1.52) 
~'m = C1 

and the modal equation (11.1.45), and solve for the cut-off frequency: 

Cl [ ( m -  1)rt + + O/owe,. ] for 0 -- 0, (11.1.53) 
fc = 2n cos (0,) Oupper 

Table 11.1 Waveguide Physical Parameters 

Layer n Thickness h, m pnkg/m 3 Cn, m/s 

1 22.3 1033 1500 

2 ~ 2pl 1.12Cl 
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Figure 11.1.4 Numerical solutions of the modal (characteristic) equation. The 2 layer, 
or "Pekeris" waveguide, has the parameters given above. The vertical component of wave 
number, 7m, is shown by the dashed curve; the horizontal component, ~c m, is shown by the 
solid curve; and the mode number is m. 

As shown in Fig. 11.1.4, the cut-off frequency (Equation 11.1.46) increases with 

mode number. Since the critical angle is the same for all modes, the differences of 

the cut-off frequencies should be the same. The differences are 72 and 73 Hz and 

are within graphic errors. The mode excitations, Fig. 11.1.5, also show the cut-off 

frequency for trapped modes. 

We remind the reader that untrapped paths exist, and contributions having 

frequencies less than the cut-off frequency can be received. Examples are the 

direct path, image reflections, and the head wave. Generally, the pressure 

amplitudes of the untrapped arrivals decrease as 1/r or faster. Analytical 

developments for the untrapped arrivals is beyond the level of difficulty of this 

book. Recalling the normal mode solution (Equation 11.1.27) and ignoring 

losses, the pressure amplitudes of trapped modes decrease as 1/v/r; these will 

dominate the received signals at large range. 
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Figure 11.1.5 Mode excitations, qm. The mode excitations were computed using 
Fig. 11.1.4 and Equation 11.1.51. The units of the qm are pressure, Pa. The reference power 
is 1 watt. 

Sound Pressure Due to a Sinusoidai Sound Source 

One of the classic sound transmission measurements consists of towing a sound 

source away from, or toward, a receiver (Tolstoy and Clay 1966, 1987, sec. 4.6). 

The sound source or "projector" transmits a sinusoidal sound pressure that has a 

constant frequency. The absolute sound pressure is measured as a function of 

range. These experiments were designed to match the sound transmission 

equation (11.1.27). Continuing our numerical example, we choose a frequency of 

150 Hz for computations. From Fig. 11.1.4 and Fig. 11.1.5 the eigenvalues are 

listed in Table 11.2. 

The eigenfunctions Zm for 150 Hz are shown in Fig. 11.1.6. Comparisons of 

this figure and Fig. 11.1.2 for the ideal waveguide show the effects of including 

the sediment sound speed on the eigenfunctions. 
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Table 11.2 Eigen Values 

m rm, [m-'] Km, [m-'] k2fl2m [m]-' qm, [Pa] 

1 0.110 0.612 0.16 470 

2 0.225 0.583 0.24 425 

Computations are for the frequency 150 Hz, mode attenuations 6 m - -  0, source power 1 watt, the 
waveguide structure is in Table 11.1. 

The source and receiver depths are important. If the depth of the source were 

chosen to be at the null of Z2 at 14 m, then mode 2 would not be excited. Only 

mode 1 would be excited. Putting a single source on the bottom would strongly 

excite mode 2 and mode 1. The reader can show that placing a pair of equal 

sources at approximately 7 and 21 m depths will cancel the sound pressures in 

mode 2. And the same pair of sources would transmit in mode 1. Examples of the 

sound transmissions for single modes are shown in Fig. 11.1.7. 

Zm(Z ) 

-1 0 
I 

10 

1 

2 

1 

20 

Bottom 

Figure 11.1.6 Eigen functions Z 1 and Z2. The parameters for the waveguide are given in 
Table 11.1. The eigen values are in Table 11.2. The frequency is 150 Hz. 
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Figure 11.1.7 Sound transmission IPl in modes 1 and 2. The amplitudes are arbitrarily 
chosen to display the two transmissions. The parameters are given in Tables 11.1 and 11.2. 
Frequency is 150Hz. The individual modes decrease with range as 1/v/r. If the 
attenuations 61 and 62 were appreciable, the modes would decrease faster. 

Commonly in analog receiving systems, either the absolute amplitude or the 

absolute square of the sound pressure is measured in sound transmissions from a 

sinusoidal source. The absolute square of the transmission (Equation 11.1.26) is 

( m ~ 2 2(Z )Z 2(Z ) ] p (r, Zs,Z)]2= H/Ho =l rtcmqm Zm s m 

+ 2  Z s 
m > n  

q m q n  
r (x" m x" n )1/2 

Z m (z s ) Z n ( Z s ) Z  m ( z )  Z n ( z )  (11.1.54) 

• c o s [ (  tOm--tO,, )r ] ) 

where the double summation for m > n means that the (m - n) and (n - m) terms 

are combined to give 2 cos[(~c m -~:,,)r].  The first summation gives the mean 

absolute square. The second summation gives the "mode  interferences." The 

second summation is not (lightly) ignored because mode interferences have been 

observed over the huge range from Antigua to Newfoundland (2800 km). These 

low-frequency sound transmissions were at 13.89 Hz (Guthrie et al. 1974). 

Simulated Sound Transmission 

A simulation of a sound transmission in the shallow-water waveguide is shown in 

Fig. 11.1.8. The regular sequence of maxima and minima are the result of 

coherently adding the first two modes and then taking the absolute value of the 
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Figure 11.1.8 Simulation of sound transmission at 150 Hz. The pressure is the absolute 
value of the coherent sum of mode 1 and 2. The waveguide parameters are given in Tables 
11.1 and 11.2. The source is at 8 m depth, and the receiver is at 18 m depth. 

result. The mode interferences are due to the cosine terms in the second 

summation (Equation 11.1.54). 

If the two-mode simulation shown in Fig. 11.1.8 were an experiment, one 

could start an interpretation by measuring the "interference wavelength"  A 1,2 of 

the sequence of maxima and minima. From this figure we count 14 peaks over a 

range of 3000 m; the interference wavelength is approximately 214 m. Using the 

cosine term in Equation 11.1.47, the interference wavelength is 

Am,~ = 12~/(~Cm -- ~Cn)l (11.1.55) 

From Table 11.2, the interference wavelength A 1,2 is predicted to be 217 m. The 

simulation is within 1.5 percent. 

Real Sound Transmissions 

The results of a shallow-water sound transmission experiment are shown in Fig. 

11.1.9. In addition to the experimental waveguide parameters given in Table 11.1, 

the theoretical calculations were for three-layer model. The agreement is 

excellent for the smooth sea surface. 

The same transmission measurements were repeated a week later, when the 

rms wave heights were approximately 0.5 m. The maxima and minima of the 

mode interferences were much smaller. It is apparent that the fluctuating sea 
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Figure 11.1.9 Comparisons of experimental and theoretical sound transmissions. The 

experiments were done in the shallow water south of the Fire Islands of New York. Solid 

line is experiment, and dashed line is theory. Pressure amplitudes are arbitrary. The theory 

used a three-layer waveguide. The top two layers are those given in Table 11.1. Physical 

parameters for the third layer are h 2 - 0.9hi; P3  - -  2p~; and c 3 = 1.24c]. Source was at 

10 m depth, and the receiver was at 19.8 m depth. Two transmission runs were made. a) 

The sea surface was very smooth, and the rms wave height was a = 0. b) The experiment 

was repeated when the wave swell had the rms height a ~ 0.5 m. From Tolstoy and Clay 

(1987, Fig. 6.17). 

surface reduced the magnitude of  the interference term (Clay 1964 and Tolstoy 

and Clay 1987). 

11.2 Geometrical Dispersion: Phase and Group Velocities 

The propagation of  pressure signals in a waveguide  exhibits a phenomenon called 

dispersion, where different frequency components  of  the signal travel at different 

velocit ies .  In a waveguide,  the dispersion is due to the geometry and the physical 

properties of  the waveguide,  hence it is called geometric dispersion. There are 

two v e l o c i t i e s - - t h e  phase velocity and the group velocity. 
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11.2.1 P H A S E  V E L O C I T Y  

Let us pick a mode and phase of the sound pressure and " r ide"  it as it moves 

along the waveguide. The mth mode phase in Equation 11.1.23 is given as the 

imaginary part of the exponential: 

Phase of mode m -  ( c o t -  t g m r -  re/4) (11.2,1) 

For example, a pressure maximum travels with the velocity r / t  - c o / 1 s  and this 

defines the phase velocity along the r-coordinate. Using the subscripts r and m for 

the velocity along r and the mth mode, the phase velocity is 

V r m = O) / K" m (11.2.2)  

11.2.2 GROUP V E L O C I T Y  

Figure 11.2.1 shows a section of the sound transmission from an explosive source 

in shallow water. The experimental details are in the figure. The duration of this 

arrival is approximately 180 ms. From the oscillograph trace, the frequencies at 

the beginning and ends of this arrival are approximately 500 Hz and 70 Hz. Using 

a range of 8.42 km and travel times of 5.555 s and 5.73 s for the beginning and 

end, the velocity of the 500 Hz frequency component is 1516m/s, and the 

velocity of the 70 Hz component is 1470 m/s. The data for this waveguide was 

used to calculate a set of phase and group velocity curves. Since the high- 

frequency limit was used to calculate the range, we can only calculate the group 

velocity for the end of the dispersed signal. For the first mode, the group velocity 

has a minimum of 1475 m/s, andthe frequency at the minimum is 70-75 Hz. The 

agreement with the experiment is excellent. 

We can use the Fourier integral, the convolution of a source S(co), and the 

pressure transmission function P(co, r, z) (Equation 11.1.29) to compute the 

transient arrivals. The transient arrival in the ruth mode is 

f oo 
Pm (t ) = S ( 0 ) ) P m ( O ) , r ,  Z s , Z ) e i ~ do) 

~ o o  

where the mth mode pressure transmission function is 

(11.2.3) 

P m ( o ) , r ,  Z s , Z  ) = q m  Z ( z ~ ) Z  (z ) e - i  (to m r - z c / 4 ) - ~ m r  
( t fm r )1/2 m m 

(11.2.4) 

Numerical evaluations of this integral (Equation 11.2.3) are practical, and 

analytical evaluations are very difficult. 
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Consider  a very narrow range of f requency Am that is centered on o9. Then, the 

source S(co) and the e igenfunct ions  Zm and qm are approximate ly  constant and 

can be m o v e d  out of the integral:  

S (  co ) q m  (z ) Z  (z ) e  i l r / 4 - t ~ m r j l  
Pm (t ) = ( i f  m r ) l ~  2 Z m s m co 

e i (tot- ~C mr ) d to 

(11.2.5) 

The oscil lat ions of  the integrand effectively cancel  each other  out on integration, 

except  where  (cot - ~:m r) is constant  over the range of o9 within Aco. These values 

are known as stationary phases. The stationary phase condi t ion requires that the 

slope of ( c o t -  •m r) be null  as a function of G,,. Different iat ing ( c o t -  tCmr ) with 

respect  to ~c,,, gives 

d ( t o t  - tr r ) = 0 (11.2.6) 
d r  m m 

dco r 
so that ~ - - -  (11.2.7) 

dK m t 

where t is the t ime required for the componen t  of signal having the frequency co to 

travel the distance r. The group velocity of the mth mode  is 

do9 
- (11.2.8) big m d l f  m 

Figure 11.2.1 Dispersion in the shallow-water transmission from an explosive source, 

Shot #91. Ewing, Worzel, and Pekeris called this pressure signal the "water wave" 

because the sound wave travels in the water layer. The signal is an oscillograph trace of the 

wide-band hydrophone output, and the time lines are 10ms. The water depth was 18 m 

(60 ft). Both shot and hydrophone were on the bottom. The sound speed in water was 

1516 m/s. The travel time was 5.555 s. The travel time and sound speed in water were used 

to compute the range of 8.42 km. The second layer was approximately 300 m of sand over 

limestone. Refraction measurements gave the sand speed 1935 m/s. From Ewing, Worzel, 

and Pekeris (1948). Worzel and Ewing Fig. 12, Pekeris Plate 10. 
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Figure 11.2.2 Phase and group velocities for the Jacksonville, Florida, shoal shallow- 
water waveguide. The parameters are cl = 1516m/s; Pi - 1033kg/m3; c 2 -  1.12c1, 
(1698 m/s), P2 ----- 2P1" h - 18 m. The first four modes are shown. The maximum velocities 
are c2, and the high-frequency limit is cl. The values are from Ewing, Worzel, and Pekeris 
(1948, Fig. 9). They also give other values of c2 that range from 1592m/s to 1935 m/s. 

Numerical examples of the phase and group velocities are shown in Fig. 11.2.2. 

Obvious observations are (1) the highest velocities are c2; (2) the mode cut-off 

moves to higher frequency as the mode number increases (as in Fig. 11.1.4); (3) 

the group velocities have minima that are much smaller than the sound speed in 

the water layer, cl (these give the last arrivals in a mode); (4) the group velocities 

decrease as the mode number increases; and (5) at very high frequency, the phase 

and group velocities tend to C l. 

Before computers (B.C.), data such as shown in Fig. 11.2.1 were analyzed by 

hand. The times between peaks and the travel times to the peaks were used to 

compute a group velocity for the short segment of the signal with that period. The 

experimental group velocities were compared with theoretical group velocities. If 

the fit was poor, the parameters of the waveguide were adjusted, and new hand 

calculations of the group velocities were made for the next iteration. 
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11.2.3 DISPERSED ARRIVAL: p(t) 

The time domain expression p(t) is computed by taking the Fourier 

transformation of the sound transmission function (Equation 11.2.4). 

Numerical evaluations are a practical method. A few modifications are needed 

to change the integral into a numerical summation. The first step is to change the 

infinite integral (Equation 11.2.3) to a numerical finite summation (Equation 

6.2.19) as follows: the infinite integral becomes the summation - N  F to NF; the 

time and frequency variables are computed using the sampling interval t o (for dr) 

and the frequency step fl (for df); thus, t and f are 

t n = nt o and fj -- Jfl (11.2.9) 

With these changes, the Fourier transformation from frequency to time becomes 

N F  

X ( n )  = J =-ZN F X ( j )  exp ( i 27r f j t n ) f  1 (11.2.10) 

and the companion Fourier transformation from time to frequency is 

N T 

X ( j )  = ~ x ( n )  exp ( - i 2Jr f j t n ) t o (11.2.11) 
n = - N r  

Assuming that the sound transmissions are real, the spectral terms have a 

complex conjugate relationship (Equations 6.2.4 and 6.2.5): 

X ( - j )  -- X* (j) (11.2.12) 

where * indicates complex conjugate. Equation 11.2.10 simplifies to a sum, its 

complex conjugate, and X(0): 

NF 

x(n) -- Z X(j) exp (i 2rc~tn)fl 
j -I  

NF 

+ X(O)f, + Z X* (j) exp ( - i  2rc~.t,)f, 
j--I 

(11.2.13) 

The choice of the summation limits in Equations 11.2.11 and 11.2.13 can be 

different. 
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In numerical computations, we let X ( j ) =  S ( f ) P ( f , r ,  Zs, Z ). The sound 

pressure for the mth mode is, dropping some of the functional dependence in P, 

NF 

S ( j ) P  m ( j ) e x p (  i 2 ~ f j  t n ) f  1 P m ( n ) =  j Z  1:  

N r  

+ S ( 0 ) P  (0)  f 1 + ]~ [S ( j ) P  m]* ( J )  exp ( - i 2~r f j t ) f  1 m j = l  n 

(11.2.14) 

Notice the choice of the summation limits in Equation 11.2.14. The conditions of 

the transmission simulation control the choices of the parameters t 0, fl,  and N F. 

For a specific example, we use a Pekeris model for the Jacksonville shoal and the 

parameters given in Fig. 11.2.2. 

Time 

The time to the beginning of the "water wave" is r/C 1. At 8420m range, the time 

is 5.55 s. The longest time is approximately r/(group velocity minimum 1475 m/ 

s) and is 5.71 s. The sampling interval should be less than half of the shortest 

period of interest. From Figure 11.2.2 and the first mode, most of the dispersion 

occurs between frequencies of 70 to 500 Hz. A sampling interval of 0.001 s will 

display the dispersed waveform. 

Frequency 

The frequency range is approximately 70 to 500Hz. The frequency step fl 

depends on the complexity of Pm (J) and the detail needed to compute km r for the 

largest values of j  and r. A sampling interval of 2 Hz is sufficient to describe Pm. 

Source, Filter, and Computations: Numerical Details 

Evaluation of the Fourier summation (Equation 11.2.12) gives a time domain 

signal that repeats at 1/fl. At a 2 Hz sampling rate, the Fourier summation will 

give a signal that repeats (or folds) every 0,5 s. Figure 6.2.1 shows examples of 

folding. 

The numerical evaluations of Equation 11.2.14 are very sensitive, and the 

choices of parameters can require many trials. So, we give the ones that we used. 

For the range of 8.42 km and the high-frequency group velocity of 1.516 km/s, the 

simulated sound pressure is expected to start a little after 5,5s and to have a 

duration of less than 0.5 s. The ban@ass filter S( f )  simulates the explosion, 
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transmission, and electrical  system. It was necessary to taper the ends of the 

bandpass filter. The parameters  are 

r -- 8.42 km 

f l - 2 H z  and N F - 2 7 0  

t o -- 0.00099 s 

l i m a  x - -  505 

S ( j ) - 0  for 0 < _ f < 7 0 H z  

S ( j ) - ( + t a p e r )  for 7 0 _ < f _ <  120Hz  

S ( j ) - I  for 1 2 0 < f < _ 4 8 0 H z  

S(j) - ( - t a p e r )  for 480 < f  < 530 Hz 

S ( j ) - 0  for 5 3 0 < f < 5 4 0 H z  

where 

( +  taper) - 0.5{ 1 - cos [rt(f - 7 0 ) / 5 0 ] )  

( -  taper) - 0.5{ 1 - cos [rt(530 - f ) / 5 0 ] }  

(11.2.15) 

With these choices, the dispersed transient appears in a 0 to 0.5 s window. The 

display starts at 5.5 s and lasts to 6 s. A simulated transmission in the first mode is 

shown in Fig. 11.2.3. 

i t i i i 
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Figure 11.2.3 Simulation of the dispersed mode 1 arrival in a Pekeris waveguide. 

Physical parameters are given in the caption of Fig. 11.2.2. The source and receiver were 

on the bottom, 18 m, and the range was 8420 m. The numerical parameters for the Fourier 

transformation are in Equation 11.2.15. 
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Starting in the 1950s, the slender volume of Ewing, Worzel, and Pekeris, 

Memoir 27 of the Geological Society of America (1948), was required reading. It 

had a profound effect on a generation of underwater acousticians and 

geophysicists all over the world. While our discussion has focused on the 

developments in the United States, very important research was done in the 

Soviet Union (Russia). Brekhovskikh's book, Waves in Layered Media (1960, 

1980), is a comprehensive and excellent reference. Chinese research is in the 

monograph of Wang Te-Chao and Shang Er-Chang, Underwater Acoustics 

(1981). 

11.3 Arrays, Signals, and Noise 

For simplicity, we assume (1) the waveguide is horizontally stratified and time- 

independent; (2) the transmission is from a sinusoidal (CW) source; and (3) the 

noise sources are uncorrelated and have stationary statistical properties. An 

extensive review is provided in Clay (1966) and Tolstoy and Clay (1987, 

Appendix 6). 

11.3.1 ARRAYS OF SOURCES AND R E C E I V E R S  IN A WAVEGUIDE: 

MODE FILTERS 

The source and receiver arrays are shown in Fig. 11.3.1. In general, each 

transducer in the vertical arrays can, by itself, be a horizontal array. 

The sound pressures from each source transducer add at each receiving 

transducer, and the output signal of the receiving array s(t) is the sum of all 
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Figure 11.3.1 Vertical arrays of sources and receivers in a waveguide. 
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pressures. Using Equations 11.1.27 through 11.1.29, we write the sum of sound 

transmissions from all sources to all receivers as follows: 

~ a U b (11.3.1) s ( t ) = e  i~ ~ 0  m = l  m m m 

where the source array of A transducers is 

A - I  

a m --A, ~=0 a A, Z m (z A, ) (11.3.2) 

the receiver array of L transducers is 

L - 1  

bm -- E flnZm(zn ) 
n-O 

(11.3.3) 

q m exp [ - (i x" r - z /4 ) - r r ] (11.3.4) 
U m -~ ( if m r  ) 1/2  m 

The waveguide function has the units of sound pressure Pa. 

The vertical arrays operate as "mode filters" and can be adjusted to transmit 

and receive in selected modes. The arrays should span most of the depth of the 

waveguide. For M modes, the number of sources (or receivers) should be more 

than the number of modes, if A > M. Using the transmitting array as an example, 

the transmission drives c~, are chosen to satisfy the following equations: 

A - I  

Z a A Z m (Z A ) = 1 (11.3.5) 
2 = 0  o 

for the moth mode, and 

A-I 

Z a~Zm(Z2) : 0, m r m 0 
2=0 

(11.3.6) 

for all other modes. When the eigen functions are large in the water layer and 

negligible below it, letting the transducer drive be proportional to the eigen- 

function is a good approximation to Equations 11.3.5 and 11.3.6" 

O~ 2 ,~ Zmo (z2) (11.3.7) 

Results of the laboratory experiments of Gazanhes and Gamier (1981) are 

shown in Fig. 11.3.2. The model was a thin water layer over a thick sand layer. 

where a2 is the relative pressure amplitude of the 2th source at depth z2; fin is the 

relative sensitivity of the ~/th hydrophone at depth z n. The density is assumed to 

be constant over the depth of the arrays. The waveguide function Um for the mth 

mode is taken from Equation 11.1.29" 
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Figure 11.3.2 Array mode filtering in a laboratory waveguide. The 57 mm thick water layer is over a 

thick bed of sand. The frequency is 124 kHz. Sound pressures as functions of depth (z) and range (r) for 
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The transducer drive amplitudes of the 15-element array c~ were proportional to 

the eigenfunction of the desired mode (Equation 11.3.7). For transmission in a 

single mode, one would expect the depth dependence of the sound pressure to be 

proportional to the eigenfunction. The measurements verify this. The attenuation 

of sound pressure as a function of range shows that the mode attenuations t~ m a r e  

larger for higher modes. 

11.3.2 NOISE IN WAVEGUIDES 

Following the discussion in Chapter 6, analog measurements of "noises"  are 

made by bandpass filtering the "noise voltage," squaring it, and averaging the 

square over time to give the mean square noise voltage. We do the same to the 

outputs of the receiving array. In Figure 11.3.3, an array is shown in an ocean 

environment, and numerous noise sources are distributed in the ocean. 

The noise sources may be breaking waves, rain, seismic activity, ships, 

animals, and so on. The sound pressures from the "natural noise sources" 

propagate the same as the sound pressures from man-made noise sources. All of 

the "noise signals" add at a hydrophone. Array mode filters select the "noise 

signal" components in the modes. At large range from the noise sources and for 

finite frequency bandwidth Aog, the noise signals in different modes are 

incoherent and add as the sums of squares. Measurements of the bandpass-filtered 

noise pressure squared for each mode give the noise terms N2,. The mean-square- 

filtered noise is the sum over all modes: 

(n r )  = Aco E Nm2 l bm 12 (11.3.8) 
m = l  

where the subscript b is for the array output, and Aco is a narrow frequency band. 

If one were measuring the sound transmission from a distant source, this noise 

would interfere with the measurement. 

~i . [  4 ~  . .  
0 

...---~ )-t~ ~ -  
Point -~ 
noise " ~  _ ~  Point 

sources )-t~ -~- -z  receiver 
_ ~ n array 

_~___ 

~ - ~ - -  h 

,z 
Figure 11.3.3 Noise sources in the ocean. Conventionally, the range to a noise source is 
measured from the receiving array. 
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11.3.3 SIGNAL-TO-NOISE RATIO AND THE OPTIMUM 
ARRAY FILTER 

The mean-square signal-to-noise pressure ratio in a waveguide is 

m ~ a U b l  e Is 21 / . /  I =1 m m m 

(nb 2) - / 7 0  Ao) ]~ N 2 b m 2 
m = l  

(11.3.9) 

We multiply and divide by Nm to write the numerator of Equation 11.3.9 as 

follows: 

[ ]~ a U b I 2 = I Z am U m  ( b  m N m ) [  2 (11.3.10) 
m =1 m m m m =1 N m  

and then apply Cauchy's inequality (Abramowitz and Stegun 1964, sec. 3.2.9)" 

I X am U m ( b m N m ) 1 2 <  X I am Uml2 X Ib 12 
m =1 N m m =1 N m m =1 m N m  

(11.3.11) 

The equality holds for the condition 

am U m ) *  
N "~ ( b m N m ) (11.3.12) 

m 

where (...)* means the complex conjugate. Since the Um depend on range, the bm 

must include the range and depth of the source. The ratio of signal to noise 

simplifies to 

Is21 _ <  1 1 7 m ~ l a m U m [ 2  
( r tb  2 ) - Ao)  / - /0  =1 N m  

(11.3.13) 

The signal-to-noise ratio can be improved by making the source power/-/larger 

and Ao) smaller. The maximum signal-to-noise pressure-squared ratio occurs for 

the phase-matching condition 

b --  ( a m U m ) (11.3.14) 
2 m N m  

Analogous to section 6.5, the array is a "matched array filter" in mode space. 

The matched filter transmission function (Equation 11,3.1) becomes 

~ /  M N1 * U  U * (11.3.15) s ( t ) ~ e  icot I7  ~_a 2am am m m 
/ - /0  m =1 m 
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If matching to the source range and depth is impractical, the ratio of the signal-to- 

noise pressure squared can be improved by using 

l a m U  ] 
ib m 1,~ m (11.3.16) 

2 
N m  

These expressions clearly show that (1) the signal-to-noise ratio is improved 

by selecting the modes that have the smallest noises relative to the signal; (2) the 

phase-matching condition adjusts the phases in all of the modes so that the 

components add in phase to maximize s(t); (3) the parameters of the theoretical 

model must be the same as the actual waveguide; (4) and the maximum occurs 

when the range and depth for the model calculation are the same as the actual 

source's range and depth (i.e., giving the source location). 

11.3.4 MATCHED A R R A Y  FILTER FOR SOURCE LOCATION 

Suppose a single source is at an unknown range r,k and unknown depth z,~. The 

signal-to-noise ratio is large enough to measure the source frequency. Then, the 

product amUm is 

q m e rt / 4 - fi,,, r,, k 

a m , u k U m , u k  = ( l f m r u k  ) 1 / 2  [ Z m ( Z u k  )exp(-i IC m ru~)] 

(11.3.17) 

and, keeping only the phase-dependent parameters in the [...], am,,,~Um, uk is 

approximately proportional to the [...] as follows: 

a m , u k U m , u k  "~ [ Z m ( Z u k  ) e x p ( - i X ' m  r u ~ ) ]  (11.3.18) 

We construct a trial matched filter for the trial range and depth rt,. and ztr, 

b ,---, [ Z m ( Z t r  ) e x p ( - i  lc m r t r  ) ] (11.3.19) 
2 m , tr  N m 

The substitution of the trial matched filter into Equation 11.3.15 gives a detection 

algorithm, 

Is ( r t r , Z t r )  l ~" [ 

M 

~_~ a m,u~ U m,u~ b m , t r  I (11.3.20) 
m = l  
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One searches in the trial ranges and depths to maximize the output Is[. The trial 

range and depth match the source range and depth (i.e., rtr -- ruk and Ztr = Zuk). 

Hinich (1973) derived the maximum likelihood equations for the vertical array in 

a waveguide. 

11.4 Transmission Functions in Matrix Notation 

The signal transmission equation can be expressed as products of vectors and 

matrices. The results are compact and show clearly the roles of the input, 

waveguide function, and the output filter. The eigenfunction vector can be 

written as 

izl zJll Zj = " (11.4.1) 

Z M (Zj 

where zj is the depth of a transducer. Similarly, the source array vector is Z i. 

The diagonal matrix U is the waveguide function. The matrix elements are the 

Umm--that is, the Um in Equation 11.3.4: 

U - U22 (11.4.2) 

o 

Let the source be at depth Z i and the receiver be at depth Zj. In matrix notation, the 

transmission function (Equation 11.1.29) from a source at depth zi to the 

hydrophone at depth zj is 

P ( o ) , r ,  z i , z  j ) =  Z ]  U z i (11.4.3) 

where T indicates the transpose of zj. The vectors zj and zi have M elements, and 

the matrix U is M by M. The resulting scalar is the product of a source vector, a 

diagonal transmission matrix, and the receiver vector. 

11.4.1 E X A M P L E  FOR TWO M O D E S  

The purpose is to demonstrate that matrix expression (Equation 11.4.3) is the 

same as Equation 11.2.29. The expansion of Equation 11.4.3 is 

P ( ( ~  ) =  [ Z I ( Z J  ) Z 2 ( z J  ) ]  [ U10 ~J22_01 /ZI(Zi)2( z i )_  (11.4.4) 
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and its expansion gives the sum 

p(co, r, z i , z / ) -  [ZI(zj)U,, Z , (z i )+ Zz(zj)Uz2 Z2(zi)] (11.4.5) 

And this is the same as the evaluation of Equation 11.1.29 for two modes. 

11.4.2 ARRAY OF RECEIVERS 

The source is at range r and depth z;. The observations are made by the receivers 

at the depths Z l to Zc. The transmissions to one receiver can be extended to L 

receivers by constructing an observation matrix: 

b .~ l% 
l ( Z l )  ... Z l ( z c )  

o . ,  

M ( Z l  ) ... ZM(Z L) 

(11.4.6) 

The transmission functions to the set of L receivers can be written as the 

following vector: 

p ~ o . o  

P ( O , r , Z L  

(11.4.7) 

and the transmission function to the set of receivers is 

p = b T U Z i (11.4.8) 

where z i --[Z,(z,)l... The array sensitivity parameters are the ft. in 

Equation 11.3.3. The vector of these parameters is 

(11.4.9) 

Recalling Equation 11.3.1, array output gives the pressure signal, 

s(t) - e i'''' ~~__~)flTp (11.4.10) 
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Expansion of the vector product gives Equation 11.4.3 for the transmission from 

a single source. 

11.5  S o u r c e  L o c a t i o n  

Our ability to locate sources and do ocean tomography is limited by the ocean. 

Sound transmissions should be reproducible and have small fluctuations. The 

structure of the ocean is time-dependent, and the time dependence causes 

transmitted signals to be time-dependent. From the theory of Chernov (1960), the 

time-dependent fluctuations of the phases and amplitudes of pressure signals 

were expected to be large. 

Measurement of the transmission limits imposed by the ocean is an old 

problem. Scientists at the Hudson Laboratories (1950-69) made long-range CW 

sound transmission studies (10 to 30 Hz) over the ranges of 30-2000 km. The 

phases of the received pressure signals were very stable relative to a local 

oscillator. The source ship towed the source, and many of the signals were 

received on bottomed hydrophones. The radial velocity component of the ship's 

velocity caused the relative phase of the received signal to go through 2re as the 

range changed by one wavelength, 0.1 km at 15 Hz. This was observed for 

distances as large as 1000 km. These experiments only gave upper limits of 

fluctuations attributed to time-dependent changes of the structure of the ocean. 

The study of reproducibility of signal transmission required repeated 

transmission of a transient signal and the comparison of sequence of received 

pressure signals. This problem was studied by using Parvulescu's matched-signal 
method (1961, and in Parvulescu's review, 1995). The matched signal is created 

by first transmitting a short transient into a complicated multipath environment. 

The transmission is recorded as s(t). The time-reversed signal s(-t) is the 

matched signal. When s(-t) is transmitted by the source, the received signal is 

the covariance of s(t) at the matched position. The covariance of the matched 

signal and the transmission decreased rapidly for small changes of the positions 

of the source and receiver relative to the matched position. At a range of 36 km, 

transmissions of transients (400 Hz center-frequency) were reproducible. The 

details are in Tolstoy and Clay (1966, 1987, chaps. 6, 7, and 8) and Parvulescu 

(1995). Williams and Battestin (1971) used a correlation receiver to extend the 

research to 250nm (460km) and demonstrated a 6s stability of the ocean 

response without establishing an upper limit of fluctuation effects. 

Acoustic tomography of the oceans has made the transmissions of sound in a 

fluctuating ocean a central issue. Analytic treatments such as Flatte et. al (1979) 
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are beyond the level of our discussion. Ocean variability and acoustic 

propagation are in the workshop proceedings of Potter and Warn-Varnas 

(1990). 

11.5.1 M A T C H E D  F I E L D  P R O C E S S I N G  FOR S O U R C E  LOCATION 

To determine the location of a source, Bucker 's  (1976) matched field processing 

algorithms compare the measured pressure signals at the receivers with the 

theoretical simulations of transmissions from a source at a set of trial ranges and 

depths rtr and Ztr (Fig. 11.5.1). 

The source is at the unknown range ruk and depth zuk. Since the pressure field 

owing to the source is being received with a large signal-to-noise ratio, the source 

frequency is known. The sound pressures are observed at a vertical array of 

receivers, and the sound pressure at the jth hydrophone is pj. The vector of the 

sound pressures is 

P u k =- " (11.5.1) 

N 

The relative phases of the pressures at the receivers depend on the source's range 

and depth. 

Bucker computed the cross covariance of the pressure signals at the jth and kth 

hydrophones to eliminate the time dependence, 

C j k  - (PjP*k ) (11.5.2a) 

uk 

~ r k 

U n S o w n  source 

r  Trial point 
( rtr , Z tr ) s o u r c e  position 

I 

Point 
Z.  

j ~ receive1 
array 

Z 
h 

Figure 11.5.1 Transmissions from the source and a trial source to an array of receivers. 

The unknown range and depth are ruk and zuk. The trial range and depth are rtr and Ztr. 
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where time average is < . . .  >, and the cjk depend on the unknown depth and 

range of the source. The covariances of the sound pressures from all of the N 

hydrophones are collected as the elements of the cross  s p e c t r a l  m a t r i x ,  

C l l , u k �9 . . C l N ,  u k 

Cuk r --  PukPuk . . . .  (11.5.2b) 

C N  1, uk " " " C N N ,  uk  

The matrix is also called the s a m p l e  c o v a r i a n c e  ma t r i x .  The diagonal elements cjj 

are the squares of the sound pressures, and the ckj elements are the complex 

conjugates of cjk. In his computations, Bucker kept the cross terms of the 

covariance matrix and dropped the diagonal cjj elements. 

The simulation of the transmission from the trial source position gives the trial 

pressure sj at the jth hydrophone. It is sufficient to only calculate the relative 

phases of the trial pressures. The vector of the trial pressures at the set of 

hydrophones is 

E sl ] st~ --  i (11.5.3) 

SN 

The detection factor is defined as follows: 

* r  C 
$ t r  u k  $ t r  

D F  - N o r m a l  (11.5.4) 

where T is the complex conjugate transpose and the normalization factor is 

* T S P u k  P u k  N o r m a l  - s t r t r (11.5.5) 

At match, the detection factor D F  is unity. Fizell (1987) shows that keeping the 

diagonal terms in Equation 11.5.2 improves the detection and defines a detection 

index D I  that includes all terms of the cross spectral matrix. The "ambiguity 

surface" is the map of D I  as a function of r and z. 

Figure 11.5.2 shows the shallow-water waveguide that Bucker used for his 

numerical simulation. A map of the detection factor, essentially the ambiguity 

surface, is shown in Fig. 11.5.3. The number and heights of the " fa l se"  peaks are 

major problems in using matched field processing to locate sources in the 

field. 
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Figure 11.5.2 Waveguide and ray traces, a) Waveguide without vertical exaggeration. 

b) Waveguide with vertical exaggeration and ray traces. The source is at range 10,000 yd 

and depth 70 yd. The conversion from English yards to meters is 1 y d -  0.9144 m. (From 

Bucker, H. P., "Use of calculated sound fields and matched-field detection to locate sound 

sources in shallow water," J. Acoust. Soc. Am. 59, 368-73, 1976.) 

Figure 11.5.3 Map of DF for range and depth. The single vertical array has 24 receivers 

that are equally spaced between 25 and 14 yd. The source frequency is 300 Hz. (From 

Bucker, H. P., "Use of calculated sound fields and matched-field detection to locate sound 

sources in shallow water," J. Acoust. Soc. Am. 59, 368-73, 1976.) 
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11.5.2 O P T I M U M  M O D E  P R O C E S S I N G  F O R  S O U R C E  L O C A T I O N  

The source at the unknown position transmits a signal that is received by the jth 

receiver. In the transmission equation (11.1.27), the source power, mode 

excitations, and mode attenuations are the same for transmissions to all receivers 

in the vertical array. We drop the amplitude terms, suppress the time dependence, 

and write 

p j  = A  ~ Z (z  ) Z  (z ) e  -ilr m = 1 m u k m j (11.5.6) 

where pj is the sound pressure at the jth receiver, and A is the pressure amplitude 

factor. 

The source power, depth, and range are unknown, so we replace them by the 

parameter 

m = A Z m (z u k ) e -itr m Fuk (11.5.7) 

and write the summation for each receiver as follows: 

P 1 = Z I ( Z l  )~1  +''" + Z M  ( Z l ) ~ M  (11.5.8a) 

�9 �9 o 

P N  = Z I ( Z N  )~1  +''" + Z M  ( Z N ) ~ M  (11.5.8b) 

This is a set of N linear equations with M unknowns. Methods of solving the 

linear equations for the/t m are in texts on linear algebra. Because of the choices of 

receiver depths, some of the coefficients of Zm(zj) may be very small, and having 

N > M is helpful. 

Again, we use the artifice of making a trial transmission from rtr and zt,. and 

write the ]2m, tr a s  follows: 

m, t r = Z m (z t r ) e -i 1r m F t r  (11.5.9) 

The modal detection function is, including the modal noise (Equation 11.3.8), 

~m ,  I 1 I M D F  - t 2 (11.5.10) 
n o r m a l  m = ] N m 

where normal  gives M D F  equal to unity at match. 

Many papers have been published on matched field processing since 1987. 

Yang (1990) used simulations of sound transmissions in Arctic and Pacific 

environments to compare matched field and matched mode processing. He got 

better locations and lower side lobes with matched mode processing. As reviewed 
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in Baggeroer and Kuperman (1993); Baggeroer, Kuperman, and Mikhalevsky 

(1993); and Porter (1993), most of the papers are at advanced levels of signal 

processing. There are many more numerical simulations than location trials that 

use real data. The results of field tests are in Hamson and Heitmeyer (1989); 

Frisk, Lynch, and Rajan (1989); Livingston and Diachok (1989); Feuillade, 

Kinney, and DelBalzo (1990); and Jesus (1993). 

11.5.3 TIME D O M A I N  SOURCE LOCATION 

Sound transmission from an explosion in a shallow-water waveguide gives the 

dispersed waveform shown in Fig. 11.2.1. The "water wave" begins with very 

high frequency (more than 300 Hz), and the frequency decreases to about 70 Hz at 

its end. The duration of the water wavemthat is, the time from the highest 

frequency at the beginning to the lowest at the end--depends on the range, the 

group velocity minimum, and the high-frequency limiting velocity, 

r _ r 
At ww - r ig ,rain  u g,  l imi t  (11.5.11) 

The phase and group velocities are shown in Fig. 11.2.2. The first mode has a 

group velocity minimum of Ug, min = 1475 m/s at approximately 70 Hz, and the 

high-frequency limit is Ug, lim = 1516 m/s. Depending on one's estimate of the 

end of the "water wave," the duration is 0.15 i 0.02 s. The solution of Equation 

11.5.11 for r gives 8200 • 1100 m, while the measured distance was 8400 m. In a 

waveguide, the systematic changes of the waveform of a signal can be used to 

estimate the range. Yang (1993) gives modal techniques for broadwidth 

signals. 

The correlation (matched filter) receiver technique is a way of doing the 

waveform recognition and analysis (section 6.5). In source location applications, 

one knows the structure of the waveguide and has a recording of the received 

pressure puk(t). A pair of simulations of sound pressures is shown in Fig. I 1.5.4. 

To create replicas for the correlation receiver, one transmits an impulse from a set 

of possible source locations p, cp(t) and then correlates these with the sound 

pressure from the unknown position. Transmissions from the matched position 

give the maximum correlation peak. 

The matched-signal technique is equivalent to a matched-filter receiver 

(section 6.5). Feuillade and Clay (1992) used a matched-signal approach for 

source location because it is easy to adapt it to transmissions from an array of 

receivers. In their simulations, the received sound pressure p,k(t) is time-reversed 

to give p ,k ( - t ) .  The time-reversed signal is transmitted from the receiver 

location, and the sound field in the waveguide is explored with a probe receiver. 
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Figure 11.5.4 Simulated transmission from a source to a receiver in a Pekeris 
waveguide. Parameters are water layer c 1 - 1500m/s and P l -  1000kg/m3; thickness 
20m; sediment c 2 - 1800 m/s and P2 - 1760 kg/m3; range 1500m; source depth 13 m and 
receiver depth 10m. a) Bandwidth 192Hz and 4 modes, b) Bandwidth 825Hz and 13 
modes. (From Feuillade, C., and C. S. Clay, "Source imaging and sidelobe suppression 
using time-domain techniques in a shallow water waveguide," J. Acoust. Soc. Am. 92, 
2165-72, 1992.) 

The low-frequency component  is transmitted first, and the high-frequency 

component is transmitted last. All components arrive at the matched position at 

the same time. Figure 11.5.5 shows examples of receptions at matched and 

unmatched positions for both signal frequency bandwidths. The process of 

transmitting time-reversed signals from an array of receivers is a form of 

holography (Clay 1990, chap. 15). In the underwater sound literature, time- 

reversed transmissions are called back-propagation (Porter 1993). 
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Figure 11.5.5 Reception of time-reversed transmissions at matched and unmatched 

locations. The pressures are shown in Fig. 11.5.4. In all examples, the probe depth is 13 m, 

the same as the original source. The matched range is 1500 m, and the unmatched range is 

1250m. a) Matched position: 192 Hz bandwidth and 4 modes, b) Unmatched position: 

192 Hz bandwidth and 4 modes, c) Matched position: 825 Hz and 13 modes, d) Unmatched 

position: 825 Hz and 13 modes. (From Feuillade, C., and C. S. Clay, "Source imaging and 

sidelobe suppression using time-domain techniques in a shallow water waveguide," 

J. Acoust.  Soc. Am. 92, 2165-72, 1992.) 
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11.6 Range-Dependent Waveguide" Wedge 

Range-dependent waveguides are actually the normal waveguides found most 

often in nature. Since this is the case, one may ask why the normal-mode 

solutions of plane-layered waveguides have been so successful in describing 

sound propagation. Perhaps the theory is much more robust than is superficially 

apparent. 

11.6.1 "ADIABATIC"  APPROXIMATION 

Early suggestions of the robustness of normal-mode theory came from the Brown 

University acoustics group and their sound transmission research with a small, 

two-layered model (Eby et al. 1960). They measured the effects of rough bottoms 

and a sloping bottom on sound transmissions. Lead shot was put on the bottom to 

make the randomly rough bottom. With mode 1 excitation, the randomly rough 

bottoms increased the attenuation and did not cause the transfer of appreciable 

energy into the second mode. Organized roughness, such as ridges, caused energy 

transfer into the second mode. Eby and his colleagues measured the attenuation 

of sound transmissions for both up-slope and down-slope propagation. The local 

attenuations were those expected for a uniform layer having those depths: " I f  

sound is propagated straight upslope or downslope from a source, the 'adiabatic' 

assumption (of Williams and Lewis, 1956) permits calculation of the received 

pressure amplitude as a function of range. We assume that the slope is small (a 

few degrees at the most), that a single mode is used and that the mode is not cutoff 

anywhere along the path" (Eby et al. 1960). With no losses and no mode cut-offs, 

Williams and Lewis postulated that the energy trapped in a mode stays in the 

mode as the depth and properties of a waveguide vary slowly. Since no energy is 

lost from the mode, by analogy with thermodynamic processes without heat 

exchange, it is called the "adiabatic" approximation. 

Theoretical treatments of the slowly varying waveguide are given in Pierce 

(1965), McDaniel (1982), Arnold and Felsen (1984), Desaubies and Dysthe 

(1995), and references in these papers. The coupled-mode solutions are 

interesting because the apparent cross-mode coupling may be due to the 

observation coordinates used for calculations and measurements while the actual 

transfers of energy between modes may be very small. Desaubies and Dysthe 

(1995) give a comprehensive discussion of roles of the adiabatic approximation, 

intrinsic modes, coupled modes, and comparisons to experiments. 
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11.6.2 TRANSMISSIONS IN WEDGE WAVEGUIDES 

Exact theoretical solutions for a range-dependent wedge waveguide are given via 

the normal-mode solution of Buckingham (1987) and the normal-coordinate 

solution of Biot and Tolstoy (in Tolstoy and Clay 1987) and later in section 11.8. 

Numerical solutions for sound transmissions in a wedge can be complicated and 

need to be tested. For the tests, the Technical Committee on Underwater 

Acoustics of the Acoustical Society of America designed two "benchmark" 

wedge problems as a challenge (Felsen 1990). Seven groups responded, and their 

results were collected into a single issue of the Journal of the Acoustical Society 

of America 87, 1497-1545 (1990). The groups are Jensen and Ferla; Buckingham 

and Tolstoy; Thomson; Thomson, Brooke, and DeSanto; Stephen; Collins; and 

Westwood. While people used different theoretical and numerical techniques, 

their results were almost the same. 

Experiments and Adiabatic Theory 

The laboratory waveguide of Tindle, Hobaek, and Muir (1987a, 1987b) is shown 

in Fig. 11.6.1. The details are in the caption. The source array was constructed of 

line sources. The excitation was a gated 4-cycle, 80 kHz sine wave that was 

bandpass-filtered between 60 and 100 kHz. The excitations of the elements of the 

array were chosen to transmit selectively single modes. The receiver is a probe 

hydrophone. Signals from the hydrophone were recorded as a function of depth, 

and the receiving array processing was performed by the computer. The slope of 

the bottom interface was adjusted for different wedge angles. 

In range-dependent waveguides, it is important to use the local coordinates in 

making sound field measurements and for mode-filtering of the sound pressures. 

The shallow-water wedge is simple because cylindrical coordinates are its 

reference. The air-water interface is the upper surface of the wedge and is in the 

x-y plane. The water sediment interface is the lower plane of the wedge. In 

cylindrical coordinates, the intersecting planes are the wedge axis and are along 

the y-direction; r is the radial distance from the line of the intersecting planes; and 

the angle 0 is measured relative to the x-y plane. 

According to the adiabatic approximation, the eigen functions Zm(Z, r) should 

stretch as the water depth increases. Figure 11.6.2 shows the stretching or 

adjustment of the third mode to fit the bottom depth for bottom slopes of 0 ~ 1 ~ 

4 ~ and 9 ~ If the amplitudes of the sound pressures were plotted instead of the 

levels in dB, one would see the nulls and changes of phase of Zm(z, r). The third- 

mode structure is the same at different ranges for the constant-depth waveguide 
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[~ ~ O . .  ~,,. 

Figure 11.6.1 Shallow-water model of a wedge waveguide" water over sand. Water: 

c 1 - 1490m/s and Pl = 1000kg/m3. Sand: c 2 - 1780m/s and P2 = 1.97Pl- The water 
depth at the source was 10 cm. The measured attenuation in sand was 1 dB per wavelength, 

and reflections from the bottom of the sand were not detectable. The waveguide 

attenuation coefficient in the water layer was 0.06f/(m kHz). (From Tindle, C. T., H. 
Hobaek, and T. G. Muir, "Downslope propagation of normal modes in a shallow water 

wedge," J. Acoust. Soc. Am. 81, 275-86, 1987.) 

(slope 0~ The increase of the slopes to 1 ~ 4 ~ and 9 ~ show how the modes are 

stretched as they adjust to the changing depths. The wave numbers 7m and K: m are 

functions of the local depth. 

Waveforms of sound transmissions for the Pekeris constant-depth waveguide, 

and for a set of wedges with 0 ~ and 9 ~ slopes, are shown in Fig. 11.6.3. The 

laboratory model can be scaled to real-world conditions by letting the frequency 

be 80 Hz, and then the depth at the source becomes 100 m and the maximum 

range becomes 8900 m. 

The waveforms of the transmission in a uniform layer and the 9 ~ slope are 

shown in Fig. 11.6.3a and b. The amplitudes and travel times of the waveforms 

depend on mode number, receiver depth, and slope. First we consider the travel 

times in the uniform waveguide (Fig. 11.6.3a). The delays of the arrivals depend 
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Figure  11.6.2 Amplitude levels of the sound pressure in dB for the third mode. The 

source array is at 0 range, and the local water depth is 10 cm. The source array was adjusted 

to excite the third mode at 80 kHz. At each range, the probe hydrophone was run from top 

to bottom to measure the sound pressures. Converted to dB, the amplitude levels are 

20 log[] Z 3 (z, r)[] in dB relative to arbitrary levels. The steps are 10 dB. (From Tindle, C. T., 

H. Hobaek, and T. G. Muir, "Downslope propagation of normal modes in a shallow water 

wedge,"  J. Acoust. Soc. Am. 81, 275-86, 1987.) 
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Figure 11.6.3 Single-mode transmissions as functions of depth and slope. For all 

transmissions, the water depth at the source is 10 cm. The range is 8.9 m. Time is measured 

relative to a convenient time delay after the transmission, and all traces have the same 

delay. The figures 1, 2, and 3 indicate the mode numbers, a) Constant depth (0 ~ slope): the 

source array is vertical. The depth at the receiver is 10cm. b) Wedge 9 ~ slope: the source 

array is curved to match the cylindrical coordinates. The probe receiver is moved 

vertically, and the waveforms arrive later as depths increase. (From Tindle, C. T., H. 

Hobaek, and T. G. Muir, "Downslope propagation of normal modes in a shallow water 

wedge,"  J. Acoust. Soc. Am. 81, 275-86, 1987.) 



514 11. Waveguides: Plane Layers and Wedges 

on the group velocities of the modes. Figure 11.2.2. shows the group velocities 

for the 18 m water depth. If the laboratory waveguide depth were scaled to 18 m, 

the frequency would be 440 Hz. As consistent with the group velocities, the travel 

times increase as the mode numbers increase. The amplitude and phases of the 

waveforms depend on depth, as in the eigenfunctions (Fig. 11.6.2). Next, the 

laboratory world changes, and the bottom has the 9 ~ slope. The transmitting array 

is curved to keep constant range from the axis of the wedge. If the adiabatic 

approximation works, then the waveforms should be trapped in each mode and be 

identifiable at the probe hydrophone depths (Fig. 11.6.3b). The arrivals maintain 

their identities, and the amplitudes and phases correspond to the local eigen- 

functions. Waveforms at the deeper receivers have time delays relative to the 

receiver at 14 cm depth because the receiving hydrophone was moved vertically 

and the receivers were not at constant radius from the axis. Thus, the deepest 

receiver is 9 cm farther from the axis than the top receiver. This demonstrates the 

importance of measuring along the local coordinatesmthat is, at constant radius 

for a wedge waveguide. The adiabatic mode theory gives the correct arrival times 

and amplitude dependence on range for different bottom slopes. 

11.7 Parabolic Equation (PE) Method 

The parabolic form of the wave equation was introduced into computational 

acoustics by Tappert and Hardin (1974) to take account of slowly varying range 

dependence. Our purpose here is to give a derivation of the "standard" parabolic 

equationmto say what it is and to give a few of the early references. 

Ignoring the angular dependence, the wave equation in cylindrical coordinates 

is (Lee 1984) 

~2 
~)2p 1 ~)P + P + k  2 n  2 p  _ 0 (ll.7.1a) 
a r  2 + r ~)r ~2Z. 

where n is the index of refraction and a function of r and z; ko is the reference 

wave number. To simplify the notation, we let the partial derivatives be indicated 

by subscripts, 

02p 

p , . , . -  Or 2 

Op 
P' - Or 

OZp 

p= - OZz 

(11.7.1b) 
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and so forth for all functions. The field pressure is written as the product of a 

function that combines range and depth u(r, z) and a function of range v(r): 

p ~ u(r , z )v(r)  (11.7.2) 

The substitution of Equation 11.7.2 in Equation 11.7.1a gives 

rr --~ ! V r  U + Urr Av--U r -~--Ur13 r Av Uzz -~- k2n2u v = 0 
r J r v 

(11.7.3) 

Add and subtract k2uv to the brackets, rearrange, and then set the brackets to 0. 

This gives two equations because the coefficient of u must vanish for the first 

bracket and the coefficient of v must vanish for the second bracket: 

Vrr + - l - v r + k g v  = 0 (11.7.4) 

and 

U rr + - ~ -  U r + _2_ U r V r + U zz + k g (n 2 1 ) u  = 0 (11.7.5) 

The solution of Equation 11.7.4 is the Hankel function of the first kind, H~ ~) (kor). 

The approximation for large r is 

V / 2  v = H o ( 1 ) ( k o  r ) =  ~- 
~/k o r  

exp[ i  ( k 0 r - ~ ) ]  (11.7.6) 

The substitutions of v and Vr in Equation 11.7.5 give 

Urr + i 2 k o u  r + u zz + k ~  (n 2_ 1 )u = 0 (11.7.7) 

The approximation [Urr I ~ ]2kour], so that Urr can be dropped, gives the standard 

parabolic equation 

i u zz (11.7.8) U r = ~ k o ( n  2 - 1 ) u  + 2 k  0 

This is referred to as the "standard" PE (Hardin and Tappert 1973; Tappert and 

Hardin 1974; Tappert 1977). Other early papers are by Fitzgerald (1975); S. T. 

McDaniel (1975a, 1975b); Palmer (1976); DeSanto (1977); and DeSanto, 

Perkins, and Baer (1977). Lee, Sternberg, and Shultz (1988) are the editors of two 
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volumes on computational acoustics that include PE methods. An integrated 

treatment is in Computational Ocean Acoustics (1994), by Jensen et al. 

11.8 Wedge Waveguide in the Time Domain: 

Biot-Tolstoy Method 

A closed-form, time-domain solution for the fluid-filled-wedge was given by Biot 

and Tolstoy (1957) as an example of normal coordinate applications to problems 

in wave propagation. The diffraction part of the solution was significantly 

different from the Kirchhoff boundary wave solution of Born and Wolf (1965, 

sec. 8.9), Trorey (1970), and Clay and Medwin (1977, Appendix 10). Beginning 

in 1978, the BT theory was interpreted, and a series of diffraction experiments 

was conducted in the Ocean Acoustics Laboratory of the Naval Postgraduate 

School. The experiments by Bremhorst and Medwin (1978) and Jebsen and 

Medwin (1982) tested crucial parts of the BT and HK theories and made 

extensions. The BT solution was found to be accurate, and the Kirchhoff 

boundary wave solution proved to have large errors in certain geometries (section 

12.3.1). 

The original Biot-Tolstoy solution was for the transmissions from a doublet 

(two opposing delta functions) impulse point source near a rigid wedge. Later, 

Kinney, Clay, and Sandness (1983) gave a solution for the wedge with free 

boundaries. Chu (1989a, 1989b, 1990) derived the exact impulse response of a 

density-contrast wedge and expressions for a half-space of air over a rigid wedge 

and a half-space that contains a density-contrast wedge. In the density-contrast 

wedge, the source and receiver can be in either medium. 

The time domain impulse solutions for the wedges have tremendous 

advantages compared with the harmonic normal-mode solution. In the time 

domain, all of the reflection arrivals and the diffraction from the intersection of 

the planes are identifiable and separable. Depending on the practical situation, 

one can keep, modify, and discard any of the arrivals. Numerical Fourier 

transformations give frequency domain transmissions of any combination of 

arrivals. 

The coordinates and geometry are shown in Fig. 11.8.1. The line of the 

intersecting planes is along the y-axis. The line of intersection is called the 

"wedge apex" in some of the literature. The boundary planes of the wedge are 

normal to the x-z plane. These choices let us use the z-coordinate for depth and to 

have the x and y coordinates in the horizontal plane. The source is in the x-z plane 
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at y - 0. The receiver can be displaced at a distance y. The radial distance from 

the y-axis is r. The wedge angle 0 w can have any value, 0 < 0 w _< 2re. The 

solution is general, and Fig. 11.8.1 also shows other wedge angles, source 

positions, and wedge constructions. The sound speed is C l. To simplify notation 

in the fluid, we use c for the sound speed; p for the density in the wedge. 

The acoustic wave equation in these cylindrical coordinates is 

~2p 1 ~p 1 ~2p ~)2p 1 ~2p 
r 2 + - + ~ 2 + 2 - 2 2 (11.8.1) 

r - ~ r  r ~0  c)y c ~ t  

where p is the sound pressure. The sound pressure is the product of a spatial 

function ~(r , y ,  O) and a t ime-dependent function T(t).  We use pressure in the 

derivation because it is a scalar and the pressure is a measurable quantity. 

As in section 11.1, the separation constants are tr and 7 and co. The spatial part 

of the solution is 

~n ~ R(r )Y(y)O(O)  (11.8.2) 

CO 2 
c 2 - K" 2 + ~, 2 (11.8.3a) 

where 

R ( r ) = J n v  ( I f r )  (11.8.3b) 

Y ( y ) = c o s ( ~ ' y  ) 

69 ( 0 ) =  c o s ( n v O  ) 

(11.8.3c) 

(11.8.3d) 

~ n  = J nv ( t o " )  cos ( ~ ' y )  cos ( n o  0 ) (11.8.4) 

n and v are defined in the boundary conditions, and ~'n is defined as being 

dimensionless. 

The boundary conditions for a fluid within the rigid wedge walls (P2 -- c~) 

require that the normal displacement along O vanish on the walls: 

d O  
~0  - 0  at 0 - 0  and 0 = 0  w 

(11.8.5) 

O =  c o s ( n o 0 )  

where v -- ~z/O w and n is an integer. The wedge angle 0 w can have any value from 

0 to 2re. The boundary conditions for a fluid within free wedge walls (P2 = 0) are 

0 = 0  at 0 - 0  and O - O w  

O -- sin (nvO) 
(11.8.6) 
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Figure 11.8.1 Coordinate system and wedge constructions. Two planes are the 

boundaries between the lightly shaded region and the darker shaded region. The line of 

the intersecting planes is along the y-axis, and all radial distances are measured normal to 

this line. The lighter shaded region has the density P l and sound speed c I . The darker 

shaded region has the density Pe and sound speed c I . For the rigid boundaries, the source is 

in the lightly shaded region, and Pe becomes infinite. For free boundaries, the source is in 

the lightly shaded region, and P2 becomes 0. The density-contrast model has the same 

sound speeds and different densities. In the analysis, c is the sound speed, and p is the 

density of the fluid in the wedge, a) Wedge construction and the locations of the source and 

receiver, b) View along y-direction to show a large wedge angle, c) Same for a small 

wedge angle, d) A beach model. The density contrast wedge is under a half-space of air 

(free boundary). 
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11.8.1 NORMAL COORDINATE METHOD 

The normal coordinatemthat is, the Lagrangianmmethod is one of the most 

powerful tools in physics. Intermediate mechanics textbooks give introductory 

discussions and examples. Expositions of normal coordinate methods in wave 

propagation are in Chapter 3 and Appendix 5 of Tolstoy and Clay, Ocean 

Acoustics (1987), and Chapter 8 of Tolstoy, Wave Propagation (1973). Chu 

(1989) gives many of the analytical details. The mathematical manipulations are 

rather complicated, so we give results of manipulations from the references. The 

text of v. Ka'rma'n and Biot, Mathematical Methods in Engineering (1940), may 

be particularly helpful. 

The normal coordinates q, have time and space dependence. Each of the 

coordinates represents a component of energy of the system. In a continuous 

medium, the normal coordinates become the differentials dZq,. The sound 

pressure is the sum of the integrals of the dZqn~n, 

P - Z Iffn d 2 q n (11.8.7) 
n = 0  

The q, are solutions of the differential equation 

b2 
~/ n 2 O~ n (11.8.8) 

~t2 +c~ q . -  /~. 

where the source is in the generalized force Q, and the pseudo-normalization 

is #,, 

].l n -- P f ( V I [ /  n ) 2 dV (11.8.9) 
Jv oi. 

An evaluation of #, is provided in Tolstoy (1973, Eq. 8-146) and Chu (1989b, 

Appendix A): 

POw o) 2 
7~ (11.8.10) 

Ft. - 2 c 2 ~ d ~ d 7  

where the expression 1/(• d~ dT) is symbolic. �9 

Source and the Generalized Force 

Many acoustic experiments use explosive sources (i.e., sparks) that give a delta 

function of pressure. In our discussion we use the finite/discrete 6f(t) [s -1 ] and 

Equation 3.1.1. The sound pressure has a peak pressure P0 referred to R0; the 

duration of the peak is At; and the impulse is PoAt. The Fourier cosine integral 
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transformation of the impulse source (unity for time equal to 0 to t and zero 

otherwise) is 

'0 sin (cot) 
cos (cot)dt - 

co 
(11.8.11) 

The solution of the differential equation is, using Equation 11.8.11 and the 

impulse source PoAtRo, 

pc2V2~o sin (cot) 
d2qn = 4 ~ z P o A t R o ~  

~n co 
(11.8.12) 

where 

V 2 0) 2 
lif o = - ~  I//0 (11.8.13) 

and ~0 is the value of ~ at the source position (r 0, 0 0, and y = 0), and the 

constants are chosen to give pressure for the impulse source. Note, the constants 

and ~0 are not functions of time in the solution of Equation 11.8.8. The 

substitution of/4, into Equation 11.8.12 gives 

8PoAtRo c2 
d2q" 0w cos (nvOo)Jm~(Kro)cos (TY) sin (cot) --  ~c d~c d7 (11.8.14) 

co 

The nth term of the summation (Equation 11.8.7) is 

~ J 7  8P~176 
,, d 2 q, - cos (nv0) cos (nv0 o ) 

) Ow 

x J... (~cr)J..~ (~cr o) cos (TY) 
) ) 

sin (cot) 
~c d ~c dy 

CO 

(11.8.15) 

The integration over d7 yields (Gradshteyn and Ryzhik 1980, no. 3.876.1): 

sin((_o t ) sin[ct (~' 2 + K" 2) 1/2 ] 

f0  ~ cos(yy ) d ~ ' - f ( , ~  cos(yy ) 
O) r ( y 2 +  K. 2 ) 1/2 

and the expression for integral d2q,,~,, becomes 

d), 

/t" 2 
- 2--~--J0[K" (c 2t  --Y 2)] 

(1L8.16) 

J i ~  I 7  ~,, d2q,, = 4ztPoAtRoc 
) 

cos (nvO0) cos (nvO) 

OW 
I!1 (11.8.17) 
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where 

n =- J n v  ( K'r ) J n o  ( K ' r 0 ) J 0  [ K" (c 2t 2 
0 

The sound pressure is the infinite summation 

2 1/2 
- y  ) ] t c d t r  

(11.8.18) 

4~c  o o  

p(t) PoAtRo - 7 -  ~ cos (nvO) cos (nvOo)I n 
Vw 7-'6 

for ct > y (11.8.19) 

where the source is at (r0, 00, 0); the receiver is at (r, 0, y); the wedge angle is Ow; 

and v = ~/0  w. Each term in the summation represents the component of energy 

in its normal coordinate. The integral is evaluated in Erde ' lye (1954, vol. II, p. 

52) and in Gradshteyn and Ryzhik (1980, p. 695 and no. 6.578.8, where m = 0). 

Convenient forms of the Legendre functions are in Abramowitz and Stegun 

(1964, formulas 8.6.10-8.6.13). Three regions of the solution are defined by the 

values of t relative to tdi r and z0: 

1 2 2 1/2 
t dir = [ (r - r 0) + Y ] (11.8.20) 

C 

w h e r e  tdir is the time for a ray to travel from the source to the receiver, and 

1 

1 2 2 1/2 
z 0 = - -  [ (r + r o) + Y ] (11.8.21) 

C 

where z 0 is the time required for a ray to go from the source to the line of the 

intersecting planes and then to the receiver. The diffraction from the line of 

intersection begins after z0. 

Region 1: Before  the First  Arrival  and t < tdi r 

p(t)  - 0 and J d i r  - -  int (tdir/tO) 

where t o is the finite time step. 

(11.8.22) 

Region 2- Direct  Arrival  and Images  and tdir _< t < ~o 

1 
m 

In  - x r 0 r  s i n ~  c o s ( n v ~  ) (11.8.23) 
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where 

2 2 2 2 2 
r + r  0 +y - c  t 

= arc cos for  0 <l  ~ l</t" (11.8.24) 
2 r o r  

The parameter ~ includes time and space as would be expected of a normal 

coordinate in the Lagrangian. A few manipulations are needed to transform this 

normal coordinate frequency domain solution into the image solution with 6(t) 

time dependence. 

Region 3: Diffraction Arrival  and t > Xo 

The travel time z 0 is the beginning of the last arrival: 

1 sin( n v rc ) e -nvo I n = (11.8.25) 
r c r o r  sinh 7/ 

77 = arg cosh U = log [ U + ( U 2 1 ) 1/2 ] (11.8.26) 

2 2 2 g 2 
c t - ( r  + r  +y ) 

U = (11.8.27) 
2r  O r 

The parameter q is a function of time, and it starts at the beginning of the 

diffraction arrival %. To display the relationship of q and t, we write, 

t = % + z  where z / z  o <~ 1 (11.8.28) 

and the expression for U (Equation 11.8.24) becomes 

C292 q_ l:2r nt - 2%ZC 2 _ (ro 2 _+_ r 2 + y2) 
U ~ (11.8.29) 

2rr o 

and the substitution of Equation 11.8.18 for z 0 gives, after dropping z2, 

U = I + (11.8.30) 
r r  0 

Equation 11.8.26 is convenient for computations over a wide range of ~/. The 

substitution of the small z approximation and expansion of the logarithm 

[iog(l + x) ~ x] gives 

2•0 T 

~l ~ c V rro ~ 1 
(11.8.31) 
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where we keep v/z and drop higher-order terms for very small values of z. The 

parameter r/includes time and space dependence. 

For special values of 0 w = n / m ,  the substitution v = m into Equation 11.8.25 

causes the diffraction component I,, to be 0, and the images are the complete 

solution. 

The expressions or solutions for the pressures within the wedge depend on the 

values of t relative to tdi  r and z0. Figure 11.8.2 shows the regions and a typical 

time domain solution for sound transmission in a wedge. The arrivals in each of 

the regions are separated by time from arrivals in the other regions. While the 

diffraction is the more challenging physics problem, the image part is usually 

more important because the reflected components are larger. The relative 

contributions are shown in Fig. 11.8.2 for this wedge. 

L 

free 
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Direct 
arrival 

Region 1 

! 

1 

b) 

Region 2 

1Ill 

A ~ Image arrivals ] 
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Time seconds 

Diffraction 
arrival 
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l i I I illl 
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Figure 11.8.2 Time domain arrivals in a wedge, a) Source and receiver in a 11 ~ wedge. 

The source * is at r 0 - 1000 m and 00 = 4 ~ The receiver (circle) is at r -- 3000 m; 0 = 8 ~ 
and y = 0. The sound speed is c = 1500 m/s. The upper boundary is free, and the lower 
boundary is rigid, b) Pressure signal due to an impulse source. Region 1 has no arrivals 

before the direct arrival. Region 2 contains the image arrivals. Region 3 is the diffraction 

arrival. 
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11.8.2 REGION 2: ARRIVALS  FROM IMAGES 

In a wedge waveguide, the amplitudes of the arrivals from the images are usually 

about the same or larger than the diffraction arrival. The substitution of Equation 

11.8.23 in Equation 11.8.19 gives the solution for region 2. Although the image 

results are expected, much manipulation is needed to demonstrate that the exact 

solution gives image reflection arrivals; 

4PoAtRoc 
p(t) - Owrr ~ sin ~ E cos (nvO) cos (nvOo) cos (nv~) 

n=0 

(11.8.32) 

The transformation of the summation as a function of ~ to one of t requires much 

manipulation. 

Details for Images 

The expansion of the product of the cosines in Equation 11.8.32 gives the sum of 

four terms: 

1 
c o s ( n v 0 )  c o s ( n v 0 0 ) c o s ( n v ~ )  - ~ [ c o s n v  (~ +0 - 0 0 )  

+ c o s n v ( ~  -0 + 0 0  ) + c ~  +0 + 0 0 ) + c o s n v ( ~  -0 -0o ) ]  

(11.8.33) 

Use the Fourier series, Equations 6.2.25 and 6.2.26, and compute the spectral 

component of the function 6({ - {o) + 6({ + {0), where {0 represents 0 • 00 

and 20 w is the period, 

,f2 ( ) 
[6({ - {o) + 8({ + {o)] exp - in l t  

20w Jo Ow ~ d~ 

1 (nlr~o) 
-- ~ cos ~ (11.8.34) 

The right side of Equations 11.8.32 and 11.8.33 is the infinite series expansion of 

6(~ - ~(,) + 6(~ + ~0) and the periodic sequence is 6(~ • ~,, - 2kOw). The sound 

pressure becomes 

1 6(~ • 0 • Oo- 2kOw) p(t) -- PoAtRoc E rr o sin 
k 

(11.8.35) 
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Next we equate the delta function integrals: 

f ~ ~  (~ ) d ~  = f ~ ~  (t )d t  = 1  and 6 (~ ) d~ = 6 (t ) dt 

a ( t )=  a (~)  de 
dt 
(11.8.36) 

and letting ct = R~+, where R k ( i  ) is given later, 

+ 0 + 0 )] (11.8.37) 6 [ t - ~ ]  = ~ ; [ ~ - ( 2 k O  w _ _ o dt 
c 

The cosine of ~ is, using Equation 11.8.24, 

2 2 2 t 2 r + r Z + y  - c  
cos ~ = 2 r r 0 = cos ( _+ 0 _+ 0 o- 2k 0 w ) (11.8.38) 

and differentiation with respect to t and solving for sin (r gives 

c 2 dt 
sin(~ ) - r r 0 d~ (11.8.39) 

The change of variable from r to t in Equation 11.8.36 gives the sum of delta 

functions from the image sources. 

Again, the finite/discrete delta function is 

1 
6f(t) =_-  for 0 <_ t _< to, and = 0 otherwise (11.8.40) 

to 

The sound pressure in region 2, the image region, is 

= E k Rk(+ ) p(t) -- PoAtRo Z~ Rk(+) 

(11.8.41) 
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where the Rk(+ ) are the combinations that are given by 

2 2 2 1/2 
R k ' t+- ' )=  ~tro + r  +y - 2 r o r  cos (2kOw + 0  - 0 o ) ]  (11.8.42a) 

R k ( - + ) = [ r 2 + r 2 + y  2 - 2 r 0 r  c o s ( 2 k O w - O  + 0 0 ) ]  1/2 (11.8.42b) 

R k ( + + ) = [ r ~ + r 2 + y 2 - 2 r o  r c o s ( 2 k O  w + 0  + 0 0 ) ]  1/2 (11.8.42C) 

R k ( - - ) = [ r 2 + r 2 + y 2 - 2 r o r  c o s ( 2 k O w - O - 0 0 ) ]  1/2 (11.8.42d) 

_ 2 + 0  + 0  )]1/2 Rk(+_ ) [ r  + r 2 + y  2 2 r o r  c ~  - o (11.8.43) 

Collectively, the notation R k (+) is used to represent all of the combinations in 

Equation 11.8.43. Each of the image contributions represents the energy for a 

normal coordinate. In region 2 there are a discrete number of normal coordinates. 

The maximum value of k or kmax is given by the condition in Equation 11.8.24, or 

�9 0 < 12k 0 w _+ 0 0 -+ 01 < Jr (11.8.44) 

This condition gives a finite number of images. The pressure disturbance from the 

last image arrives before %, the diffraction from the line of intersecting planes. 

We show the image construction in Fig. 11.8.3. The images are reflections of the 

source in wedge planes. Possible image locations are on the circle containing the 

source and at the angles given by 2kO w 4- 0 o and 0 = 0. Here k ranges from -kma x 

to -+-kma x, and the image angles satisfy Equation 11.8.44. 

The choice of a receiver angle 0 requires that the satisfaction of Equation 

11.8.44 be tested to determine if one can receive an arrival from that image. The 

positive values of k use (2kOw 4-0 o - 0 ) ,  and the negative values of k use 

( 2kO w + 0 o + 0). 

If one lets k = -kmax, . . .  0 , . . .  kma x, then (2kO w + 0 o + O) and 

(2kOw - Oo + O) give all of the combinations. 

The travel times are computed at 

R k ( -+ ) (11.8.45) 
tk(--+) = c 

In numerical computations and at a sequence of time steps jto, the jth time step is 

j = int ( tk 
(+ ) 

t 0 ) (11.8.46) 

where the small fluctuation of the arrival time within a time step is acceptable, 
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Figure 11.8.3 Examples of image constructions, a) Rigid-rigid boundaries have all 
positive images, b) Free-free boundaries have pairs of positive and negative images, c) 
Free-rigid boundaries have positive-image pairs and negative-image pairs. 

The ray paths from the images to the receivers in the density-contrast model 

are straight because the sound speeds are the same in all regions. The reflection 

coefficients and transmission coefficients are constant for all angles of incidence. 

11.8.3 REGION 3: DIFFRACTION ARRIVAL 

The diffraction arrival exists for t > z 0, and, by Equation 11.8.20, z 0 is the 

minimum time for a disturbance to go from the source to the line of intersection 

and to the receiver. The closed form expressions for In in region 3 are given by 

Equations 11.8.25 through 11.8.27. The substitution of Equation 11.8.25 in 
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Equation 11.8.19 gives 

p(t) = 

O(3 

-4P~176  Z cos (nvO) cos (nvOo) sin (nvrc)e -'v'7 
rroO w sinh rl ,,=o 

for t > z 0 

(11.8.47) 

The experiments of Li and Clay (1988) have shown that the diffraction arrival 

from the line of intersecting planes is extremely sensitive to the perfection of the 

wedge. Let us assume that z in Equations 11.8.28 and 11.8.29 can go to zero for 

perfect intersection of the wedge plane, but can't for an imperfect wedge. Thus, 

we add an empirical limit 6 to form (r /+ 6) and include a mode attenuation factor 

exp(-nvqS) in the summation. It seems reasonable to use nv6 because one would 

expect the effects of leakage and roughness at the wedge apex to increase with 

larger mode number and smaller wedge angle. For an imperfect wedge, p(t) in 

Equation 11.8.39 becomes 

_4PoAtRoc ~ 
p(t) - rroO w sinh ( r /+ 6) Z cos (nvO) cos (nvOo) sin (nvrc)e -'v(~+'~) for t >  1:0 

n : 0  

(11.8.48) 

In the normal coordinates, the terms in Equations 11.8.47 and 11.8.48 represent 

components of energy. Each term is time-dependent as a function of r/ 

1 -no(77 +5) for 77 > 0  (11.8.49) Time dependence .-- sinh(r/ + ~ ) e 

For large q, the time dependence tends to zero. As r/tends to 0, Equation 11.8.49 

tends to finite limit that is proportional to 1/6. 

In comparisons of the theory to experimental data, p(t) is convolved with the 

source and system responses, and thus p(t) is band-pass filtered. Effectively, the 

filter operation makes a running time average of p(t), and this time-averaging 

operation also reduces the maximum value of p(t) as r/tends to zero. 

Details for Diffraction 

Expand the product of the sine and cosine functions: 

1 
cos v n 0 cos v~ 00 sin v, zc = ~ [ s i n  V n(Jr +0  - 0 0 ) +  sin V n(Jr -0 +00) 

+ sin Vn(Zr +0  +0  0) + sin Vn(Jr - 0 - 0  0) ] 

(11.8.50) 
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The sine functions are expanded as exponentials to give the sum of eight infinite 

geometric series. Evaluations of the sums, and simplification, give the sum of 

four terms where the + combinations indicate the terms 

p ( t  ) = 
- P o A t R  0 c 

20w r ro 
[ D (7/ ,+-)  + D (7/ , -+)  + D (7/ ,++) + D (7/ ,--)  ] 

(11.8.51) 

where D (q, •  is 

sinv(rc + 0 - 0o) 

D(q, + - )  sinh (q + b){cosh[v(r/+ 6)] - cosv(n + 0 - 0o) } 
(11.8.52a) 

v -- zc/O o (11.8.52b) 

and so forth for the other sign combinations. We abbreviate the sum of the sign 

combinations in Equation 11.8.52a by writing D(r/, +)  and 0+, where 

O + = v  (Jr + 0 + 0  o ) (11.8.53) 

This is the exact time domain solution for the diffraction arrival. The values of 

D(r/, + - )  are very sensitive to the locations of the source and receiver and to the 

values of 04- in Equation 11.8.3. As sin(0+) passes through zero, the sign of 

D(~/, + - )  changes. Finite values of 6 keep D(r/, + - )  finite. If 6 -  0, then 

Equation 11.8.52 becomes infinite and/or indeterminate as r/ tends to zero. 

Laboratory acoustic experiments show that p(t)  is well behaved as sin(0~) 

passes through zero. 

Numerical calculations of D(q,-+-) are measured from z 0 as z -  t - % .  

Equations 11.8.25 through 11.8.31 are used in numerical calculations of ~/. In 

numerical calculations, the use of the various approximations for (~/+ 6) ~ 1 is 

not advised. 

When times are a little greater than z0, expansions or approximations for 

(~/+ ~) ~ 1 are useful for making analytical approximations and for displaying 

the properties of Equation 11.8.52. For example, the value of sinh(~/+ 6), using 

the first term of the series expansion [sinhx ~ x], is 

sinh (r /+ 6) ~ ( r /+ 6) (11.8.54a) 

as r/tends to 0 and ~ ,~ 1 (11.8.54b) 
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To estimate ~ for an imperfect line of intersection, first recall Equation 11.8.31, 

and then write 

/2 O im er e , 
( q + 6 ) ~  V rr~ ~ ~ c v  ~r~ 

(11 .8 .55)  

where "/Timperfec t represents the imperfectionsmi.e., the leakiness-roughness--at 

the intersection of the wedge planes. The imperfectness is assumed to be small 

compared to z0. 

Numerical  Computations 

In the time expression t -- z 0 + z, the time z after the beginning of the diffraction 

arrival z0 must be accurately computed. One can compute accurate values of -c by 

using very small sampling steps and measuring all distances in the sampling steps 

ct o. A simpler robust method uses a secondary time reference to compute z as 

follows: 

r = t - r 0 01.8.56) 

Let the integer operation (INT, basic) or (round in MATLAB) give 

J t a u  - INT [(t - % ) / t 0 ] 

the secondary reference is 

Jdif = I N T ( T  0 / t 0 )  

O1.8.57) 

(11.8.58) 

n = INT (t / t 0 ) (11.8.59) 

n = j dif + J t a u  (11.8.60) 

The reference array element for z0 is Jdif and at z = 0, Jtau - -  0. The diffraction 

terms are computed for n = 0, 1 , . . . ,  Jdif + 0 ,  + 1 . . . ,  the expression for D(q, +) 

is 

D (7/,+-) = 

7t" 

sin[ ~ w ( Z  +0  -0 o) 

sinh(r/ + 5 ){ c o s h [ - ~  z ( z + O - O  o)]}  z (77 +5 )1- cos[ Ow 
w 

(11.8.61) 
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where the dependence of r/on z is given by Equations 11.8.26 and 11.8.29. In our 

numerical tests, the computer computations were well behaved for 6 > 10 -6 and 

q _> 0. Thus, special evaluations and approximations ofp(t) for very small q were 

not needed. 

An altemative form of the diffraction expression is used in section 12.2.1, 

D (r/. + -  ) /k 
- exp [ - - h  -K- (r /+ fi ) ]  
- sinh (7/+ fi ) ' - ' w  

(11.8.62) 

where 

sin [~w (re + 0 + 0o) ] 

1 -  2exp [ - ~ ( q  + 6)] cos [~(rc + 0 +  Ow) + exp - 2 ~ ( r / +  6) 

(11.8.63) 

and 

PO A t R o c  fl+ exp [ - - ~ w  (7/+ ~ ) ]  (11.8.64) 
p ( t ) = -  0w r r  o s i n h ( 7 / + ~ )  

In general,/3+ is sensitive to Ow, 0o, and 0. It is also time dependent because q is 

time dependent. 

Diffraction Expressions for Different Boundaries 

The conditions give different combinations of the D(~/, + - )  as follows: 

Rigid-rigid 

p( t  ) = -  
Po A t R o c  

20 w r r o 

Free-free 

p( t  ) = -  
Po A t R o c  

20 w rro 

[D ( r / ,+ -  ) + D (77 ,- + ) + D (7/,+ + ) + D (7/ ,--  )] 

(11.8.65) 

[D (7/ ,+-  ) + D (7/,- + ) - D (7/,+ + ) -  D (7/ , --  )] 

(11.8.66) 
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Free-rigid 

PoRoto c 
p(t) - - 20wrro [D,./f(q, + - )  + D,./ f(rl ,-+) + Dr/f(rl, ++) + D~/f(rl , --)]  

(11.8.67) 

where 

D r / f  (rl,+-)-- 

t~ 6 
s in~ (to +0  -00)  cosh( 2 + ~ ) 

sinh(r/ + ~ ) { cosh[v (7/ + ~ ) ] - c o s  v(zc +0  -0 0) } 

(11.S.68) 

Density Contrast Wedges 

Chu (1989) has shown the following: the wave equation for the density-contrast 

wedge is seperable when the sound speeds are the same as sketched in Fig. 11.8.1. 

Since the wedge is penetrable, the source and receiver can be in either region. The 

direct, reflected, and transmitted arrivals are the same as computed by using ray- 

path and image methods. Numerical evaluations of the diffracted component 

show that the diffracted component is not the ideal wedge solution multiplied by 

an impedance factor. 

11.8.4 NUMERICAL EXAMPLES 

The first numerical example is the wedge transmission shown in Fig. 11.8.2. This 

example simulates the down-slope transmission in a shallow-water wedge 

formed by a sloping bottom. The main arrivals are the direct arrival and the 

sequence of reflected ray or image arrivals. On referring to Fig. 11.8.3, one can 

see that groups of the same sign of image arrivals are expected--that is, a pair 

from above the free surface and a pair of negative images from locations beneath 

the rigid bottom. The next arrivals are pairs of positive images also from above 

and beneath the boundaries. The image arrivals exist as long as Equation 11.8.37 

is satisfied. The last arrival is the diffraction from the intersecting line at the 

contact between the rigid bottom and the free surface (the beach). In real beachs, 

irregularities of the contact would cause the diffraction arrival to be very small. 

The parameters for two examples of the waveforms of the diffracted 

components were chosen to match the experiments that are described later. The 

first example is for the interior wedge (Fig. 11.8.5). The diffraction component 

was computed using Equation 11.8.65 and a sampling interval of t o = 10 #s. The 

diffraction pressure is positive, has a large value of ]p(t)[ at 1: 0, and has a tail that 



11.8. Wedge Waveguide in the Time Domain: Biot-Toistoy Method 533 

decreases with time. The spectrum of the diffraction component is shown in Fig. 

11.8.4b. Although they are not shown, the spectra of the direct arrival and the 

reflected ray paths (from the images) are constant as a function of frequency. 

The simplified structure of a continent consists of a gently sloping bottom to 

the "shelf break," where the slope becomes much steeper. The sketch, shown in 

Fig. 11.8.5, is an exaggerated shelf model. 
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Figure  11,8,4 Numerical  example of the diffraction arrival from a 52 ~ rigid wedge line 

of intersecting planes. The rigid wedge walls and the locations of the source and receiver 

are 0w = 52~ r 0 = 0 .49m;  0 o = 0, r = 1.613 m; and 0 = 0. The source and receiver are 

flush-mounted in the boundary wail. The reference pressure is the image reflection at 

vertical incidence, a) The sound pressure P(O. b) Fourier transformation ]P(f) l  of p(t). 
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Figure 11.8.5 Diffraction from a model shelf break, a) Shelf model, b) The diffraction 
arrival from the wedge at a shelf break is shown. The amplitude units are arbitrary. 

11.8.5 COMPARISONS OF T H E O R Y  A N D  E X P E R I M E N T S  

Many aspects of the wedge theory have been verified in detail by experiments. 

Comparative tests in the frequency domain are summarized in section 12.3.1. At 

certain angles, the amplitudes of the Kirchhoff diffraction arrivals are found to be 

wrong by many decibels, but the Biot-Tolstoy diffraction predictions agree with 

experiment. 

A series of laboratory experiments in air were made to test critical parts of the 

extensions in the time domain. A spark source was used for the transmissions 

because the arrivals were separated by time of arrival. Questions were: (1) What 

is the dependence of the waveforms of diffracted components on the wedge angle 

and quality of the wedge? (2) What are the amplitudes and waveforms of the 

components reflected by planes having finite dimensions? (3) What are the 

effects of finite facet widths, diffractions, and double diffractions on m o d e l  

simulations of a ridge feature on the sea floor? (See Li and Clay 1988; Clay, Chu, 

and Li 1993; and Li, Chu, and Clay 1994.) 

We give some of the results of the time-domain research here. The impulse 

source was a spark in air, and the receiver was a small microphone. Figure 11.8.6 

shows the transmission in free air from the spark to the small electret microphone, 

the filter, and the recording system. The free-air transmission was used as the 

reference source function for convolutions with the theoretical transmissions and 

comparisons with experiments. 

Figure 11.8.7 shows a comparison of the theoretical arrivals and the data 

for a 12.07 ~ wedge. For this rigid-rigid wedge transmission, all arrivals are 

positive. The first arrival is the direct path, and the last arrival is the diffraction 

arrival. 
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Figure 11.8.6 Pressure signal from a spark source. Reflecting surfaces such as the 

ceiling and floor were far enough away for the reference transmissions to be made in "free 

air." a) A coaxial spark was the source, and the receiving microphone was a 6 mm 

diameter electret microphone. After bandpass filtering, the pressure signal was sampled at 

a 100kHz frequency and stored in the computer, b) p(t) is an example of a typical 

transmission. (From Li, S., and C. S. Clay, "Sound transmission experiments from an 

impulsive source near rigid wedges," J. Acoust. Soc. Am. 84, 2135-43, 1988.) 

I . . . . I . ~  I I I I 1 I I 

Figure 11.8.7 Sound transmission measurements in an acoustic wedge, Ow = 12.15 ~ 

The spark source and the microphone were mountod flush on the wedge wall. The 

distances from the line of intersection were r 0 - 0 . 4 9 m  and r -  1.613 m. The direct 

transmission time (3.12ms) is suppressed. (From Li, S., and C. S. Clay, "Sound 

transmission experiments from an impulsive source near rigid wedges," J. Acoust. Soc. 
Am. 84, 2135-43, 1988.) 
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11.8.4. The acoustic and signal processing systems are the same as was used for the "flee-air" transmission shown in Fig. 11.6.5. 
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part of the travel time along the direct path (3.12ms) is suppressed, a) Theoretical transmission. Direct is "D" ;  image is " I" ;  
diffraction is "W." b) Experiment with tight seal at the line of intersecting planes, c) Leaky seal. (From Li, S., and C. S. Clay, 
"Sound transmission experiments from an impulsive source near rigid wedges," J. Acoust. Soc. Am. 84, 2135-43, 1988.) 
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Figure 11.8.9 Simulated arrivals for single modes in the wedge waveguide. The wedge 
waveguide is shown in Fig. 11.6.1. The slope is 9 ~ As in the experiment, single modes 
were excited, and the pressures were observed at a set of depths. For comparison, the data 

are shown in Fig. 11.6.3b. (From Chu, D., "Exact solution for a density contrast shallow 
water wedge using normal coordiantes," J. Acoust. Soc. Am. 87, 2442-50, 1990.) 

The ray path for the direct arrival traveled from the flush-mounted source to 

the flush-mounted microphone, as sketched in Fig. 11.8.4a. The radiation from 

the spark was a little weaker along this direction, and the wall board probably 

absorbed a little energy. Thus, the amplitude of the direct arrival is relatively 

smaller than the early reflected paths and less than the theoretical amplitude. The 

image arrivals occur between the direct arrival and the diffraction arrival. The 

times of the theoretical and experimental direct, image, and diffraction arrivals 

agree. The waveforms are the same (ignoring the noise), and, except for the direct 

arrival, the relative amplitudes are the same within a few percent. 

Comparisons of theory and experiment for the wide 52 ~ wedge are shown on 

Fig. 11.8.8. These comparisons are interesting because they show the effect of 
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leakage/imperfections at the line of intersecting planes. Leakage reduces the 

amplitude of the diffraction arrival. 

A simplified beach construction is sketched in Fig. l l.8.1d. Chu (1990) 

compared his contrast-density solution for the wedge waveguide under a half- 

space of air with the experimental results of Tindle et al. (1987) and section 

11.6.2. For the simulation, the point sources were placed at positions of the 

transducers, shown in Fig. 11.6.1. The source excitations were chosen, as in 

Tindle et al., to excite single modes. Simulated time domain transmissions in the 

first three modes are shown in Fig. 11.8.9. The depth and mode dependence of 

these waveforms can be compared with the experimental waveforrn shown in Fig. 

11.6.3b. The ray-path/image solution gives the same amplitude dependence of 

the arrivals on depth as in Fig. 11.6.3b. 

Problems 

The problems are identified by section number. In doing the calculations 

for sound pressures, determine the relative amplitudes and ignore the source 

power. 

Section 11.1 

11.1.1 Compare the exact values and the large ~:r approximation (Equation 

11.1.10) for H~ 2) (~cr). Test the range of 0.2 < tcr < 5. 

11.1.2 Compute and plot the wave number components ~m and R7 m for a 

waveguide that has free upper and lower interfaces. The waveguide is 10m 

thick. Plot the first three modes as functions of frequency. If cut-off exists, 

explain why. 

11.1.3 Use the waveguide parameters in Table 11.1 for this problem. For the 

modes 1 and 2, compute the penetration into medium 2 and sketch the pressure 

field beneath the bottom in Fig. 11.1.6. 

11.1.4 Use the waveguide parameters in Table 11.1 and 150 Hz frequency for 

this problem. Use the concept of the ray reflection beyond the critical angle, 

section 2.6.4, to construct an equivalent waveguide for modes 1 and 2. 

Compute a simulated transmission run (as in Fig. 11.1.8) for the equivalent 

waveguide. 
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Section 11.2 

11.2.1 Make a photocopied enlargement of Fig. 11.2.1 and do a group velocity 

analysis. 

11.2.2 Draw the ray paths and compute the travel times for the model in Table 

11.1. Let the source be at 1000 m range and 13 m depth. The receiver is at 7 m 

depth, a) Display the signal for an impulse source. Use the no-phase-shift 

approximation for the first calculation, b) Use the equivalent bottom interface 

(section 2.6.4) for a calculation and comparison. 

Section 11.3 

11.3.1 Use the free top and free bottom water waveguide for simplicity. The 

wave guide is 20m thick, and the source and the receiving array are at 15 m 

depth. The source has the frequency of 200Hz and is at 10000m range. 

Horizontal arrays can be steered to locate the direction to a source. The line 

array is 750m long and has 10 elements. The array processing includes time 

delays for digitally steering the beam to " look"  in different directions. The 

steering directions are from 0 ~ at normal to the line array to +90 ~ a) How many 

modes are excited? b) Compute the array output for each mode as a function of 

steering angle for the source directions of 0 ~ and end fire, 90 ~ directions, c) 

Repeat b), except that all modes are received. For simplicity, ignore the mode 

interference terms. 

Section 11.5 

11.5.1 Use the matched filter/matched signal to compute the ambiguity 

function for a source location task. For simplicity, let the waveguide have 20 m 

depth of water over a free reflection bottom. The source for the simulation is at 

10,000m range and 13 m depth. Let the source transmit an impulse (i.e., 

explosive shot), a) Calculate and display the signal at the receiver, 13 m depth. 

b) Compute ambiguity functions for the bandpass filters at 100-200 Hz, 100- 

500 Hz, and 100-1000 Hz. 

Section 11.6 

11.6.1 Discuss the effects of water waves on sound transmissions. Read Clay, 

Wang, and Shang (1985). Compare their conclusions to those given in Tolstoy 

and Clay (1987, p. 232-36). 
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11.6.2 How would you expect  the time dependence of a surface to affect the 

transmission in a waveguide? J. A. Scrimger describes an elegant experiment: 

"Signal  Ampli tude and Phase Fluctuations Induced by Surface Waves in Ducted 

Sound Propagat ion"  (J. Acoust. Soc. Am. 33, 239-74  1961). What  are the most 

important regions for causing fluctuations of the sound transmissions? 

Section 11.7 

11.7.1 Use the wedge having rigid boundaries with the angle 0 w = 57 ~ as in 

Fig. 11.8.7, the medium is air, c -- 346 m/s. Determine the image positions for a 

source at 00 = 0 ~ and r 0 - 0.49 m. Put the receiver at r - 1.613 m and 0 - 0 ~ 

a) Calculate the pressure response relative to the direct transmission for an 

impulse source. Let t o = 0.01 ms and 6 -- 0.00001. b) Test the effects of leakage 

by letting 6 - - 1 ,  0.1, 0.01, and so forth, b) What  is the transmission for 

Ow--60~ Explain any difference. 

11.7.2 Assume a wedge having rigid boundaries and the angle Ow = 57 ~ as in 

Fig. 11.8.7. The medium is air, c = 346 m/s. Determine the image positions for a 

source at 00 = 11 ~ and r 0 = 0 .49m.  Put the receiver at r - 1 . 6 1 3 m  and 

0 = 50 ~ Calculate the pressure response relative to the direct transmission for 

an impulse source. Let t o - 0.01 ms. Test the effects of leakage by letting 6 - 1, 

0.1, 0.01, and so on. 

11.7.3 Assume the wedge has rigid boundaries and the angle 0w = 57 ~ as in 

Fig. 11.8.7. The medium is water, c -- 1500 m/s. Determine the image positions 

for a source at 00 = 11 ~ and r 0 = 2 .12m. Put the receiver at r = 7 .0m and 

0 - 50 ~ Calculate the pressure response relative to the direct transmission for 

an impulse source. Let t o = 0.01 ms. Test the effects of leakage by letting 6 = 1, 

0.1, 0.01, and so forth. 

11.7.4 Repeat Problem 11.7.3 for a wedge that has free boundaries. 

11.7.5 Repeat Problem 11.7.3 for a wedge that has a free upper boundary 

(0 w = 57 ~ and a rigid lower boundary. 
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Wedges are simple models of several naturally occuring roughness elements at 

sea, including sea swell, lineal rock outcroppings on the sea floor, keels 

(underwater ridges), and leads (ice separations) of the Arctic ice canopy. It is 

therefore fruitful to interpret the scatter from a statistically rough sea surface or 

rough sea bottom as being made up of scatter from a sequence of contiguous finite 

wedges. Even a large seamount has been effectively interpreted as being 

acoustically equivalent to two or three contiguous wedges fitted to the profile of 

the seamount. 

For these reasons, we look at finite planes and wedges as elements of 

scattering, so that we can interpret the character of the sea floor and the sea 

surface when they are remotely sensed. 

As stated in the simple qualitative description of the interaction of sound with 

a section of a plane in Chapter 2, both rigid body scattering and scattering from a 

fluid interface are made up of reflection and diffraction, and sometimes trans- 

mission as well. In this chapter we look, quantitatively, at these components of 

scatter from elements of a rough surface, in two ways. The exact Biot-Tolstoy wedge 

solution, which was developed in Chapter 11, is a firm foundation that can be 

extended to wedge geometries that are the elements of scattering from rough 

surfaces as varied as the ocean bottom, sea ice ridges, and seamounts. The 

541 
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Helmholtz-Kirchhoff method is the best-known classical technique for some of 

these problems. The two methods are compared in some simple, fundamental cases. 

12.1 The Helmholtz-Kirchhoff  Integral for Surface Scatter 

The Helmholtz-Kirchhoff (HK) technique, an attractive implementation of 

Huygens' Principle, gives one a " fee l"  for the problem. However, the solutions 

often turn out to be approximate rather than exact. The method was reviewed in 

Chapter 7 and applied to scattering from fish in Chapter 9. Detailed laboratory 

tests, to be described in this chapter, show that the HK theory yields good 

predictions for diffraction backscatter from a plate only when the sound 

incidence is nearly perpendicular to the surface and when the frequency is high. 

The general consequences of the approximations of the Helmholtz-Kirchhoff 

method, when used with the Kirchhoff approximation, have been evaluated, and 

some solutions have been substantially improved by several authors. Meecham 

(1956) was the first to show that additional terms can be neglected when the 

minimum radius of curvature of the surface is much greater than the acoustic 

wavelength. De Santo and Shisha (1974) gave a numerical solution that includes 

additional terms. Thorsos (1988) proved that, for a long-crested, randomly rough 

surface, it is the spatial correlation length that must be greater than the acoustic 

wavelength for the Kirchhoff approximation to yield accurate results. Many of 

these "corrections" to the HK theory are sometimes moot because the B iot- 

Tolstoy exact solution for scattering by a wedge (or plate) agrees with all 

experiments for several specific surface scattering elements such as plates and 

wedges, whereas the HK solution often does not. 

12.2 Implementation of Biot-Tolstoy Theory of Impulse 

Scatter from Wedges and Plates 

12.2.1 THEORY FOR INFINITE WEDGES 

To provide a building block for rough surface scattering, we tum to a simplified 

but accurate interpretation (Medwin 1981) of the rigorous Biot-Tolstoy (1957) 

theory of diffraction by a rigid infinite wedge. As discussed in Chapter 11, Biot 

and Tolstoy used the "normal coordinate method" to solve the ideal rigid wedge 

problem in the time domain. The detailed derivation is in Chapter 3 and 

Appendix 5 of Tolstoy and Clay (1987). The complete solution describes two 
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components of the scatter: (1) a set of images (virtual sources that replace the 

reflecting surfaces), the number of which is a function of the wedge angle and the 

angles of incidence and scatter as described in Chapter 11; and (2) a true 

diffraction wave from the wedge crest. A big advantage of the BT solution is that 

it gives the times of the reflections and diffraction directly, as well as the time- 

varying amplitudes. The solution may then be transformed to the frequency 

domain as needed. 

A principal interest in this chapter is the diffraction from the exterior 

wedge m that is, the body wedge, with 0 w > 180 ~ as shown in Fig. 12.2.1. When 

the wedge angle is opened up to 0 w = 2re, the ridge of the body wedge is the 

mating edge of the two semi-infinite plates. 

For sound diffracted from a rigid wedge, Bremhorst (1978) and Medwin 

(1981) reinterpreted Equation 5.24 of Biot-Tolstoy (1957), which had concluded 

with the applied mathematical description of a "rate of change of the scalar 

potential function," rather than the experimentally verifiable "acoustic 

pressure." The trick was to replace the BT doublet source by a point source 

Dirac delta function of volume flow, ~?, at t -- 0. Section 4.1 shows that, at the 

instant when there is this injection of volume flow at a point, there is a spherical 

radiation of acoustic pressure given by 

p : [(PAV/(4rcR))][6(t-  R/c)] (12.2.1a) 

Note" For digital implementation, one writes the impulse pressure field radiated 

into free space as 

p -- ( P o R o / R ) ( A t ) f f ( t -  R / c )  (12.2.1b) 

where by is the source finite delta function Equation 3.1.1, which is defined in 

terms of impulse duration At. 

6f(t) = l / A t  for 0 <_ t <_ At and 6f(t) = 0 otherwise (12.2.1c) 

The introduction of Equation 12.2.1 into the BT theory (which has been called 

the BTM solution) permitted Biot-Tolstoy's Equation 5.24 to become the 

following simple expression for the diffracted pressure from a rigid wedge as a 

function of time, the rate of volume flow, and the source/receiver wedge 

geometry, which could readily be transformed to the frequency domain. 

p(t)  = k, 4~zOw J rrosinh~l exp (-rcrl/Ow) , t >_ z o (12.2.2a) 

p ( t )  - o t < ~o 



544 12. Scattering at Elements  of  a Rough Surface 

where (see Fig. 12.2.1a) r 0 and r are perpendicular ranges from source or 

receiver to wedge crest, respectively; 00 and 0 are angles from a wedge side to 

source or receiver, respectively; 0 w is the wedge angle measured in the fluid as 

shown; y is the separation of the range vectors at the wedge crest; % is the 

" leas t"  (minimum) time from source to crest to receiver; PA and c are the density 

and sound speed of the medium; and ~) is the source strength in m3/s. 

Note: Comparison with Equation 11.8.64, which was developed in terms of an 

impulse pressure P0 of duration At at source range Ro, shows that 

f '  = 4~zP~176 At (12.2.2b) 
PA 

Also, for a rigid wedge, as given in Equation 11.8.63, 

sin [(%.,)(x + 0 + 0o) ] 

fl+ = ~ '  1 - 2 exp (-~ %w)COS [(%w)(X +_ 0 +_ 0o) ] + exp (2~ %w) 

where, from Equations 11.8.24 and 11.8.27, 

(12.2.3) 

r / =  arc cosh [c2t 2 - (r e + r~ + y2)]/(2rro) (12.2.4) 

and the least-time, from Fig. 12.2.1, is 

Z o [ ( r + r 0)2+ y 211/2/ = C (12.2.5) 

For diffraction, we are interested in the time, r, after the least time, %, 

z = t -  z o (12.2.6) 

In terms of z and Zo, we have 

7/= arc cosh 
c 2 ( 2 r 0 z +  z 2) ] 

2 r r o  + 1 (12.2.7a) 

o r  

- 1 ]  -1/2 
(12.2.7b) 

As in Equation 11.8.63, we employ the Greek letter X in Equation 12.2.3 as an 

abbreviated symbol to designate the sum of the four terms obtained by using the 

four possible combinations of signs: 
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The BT theory has been broadened substantially by Kinney et al. (1983), Chu 

(1990) and Davis and Scharstein (1997) to apply to wedge surfaces of different 

impedances. For example, for pressure-release situations, the zero pressure 

boundary condition is realized by reversing the signs of two of the terms so that 

(~z + 0 + 00) becomes -(~z + 0 + 00) and (~z - 0 - 00) becomes (-~z + 0 + 00). 

That form of Equation 12.2.3 is called/~_. The various forms of the solution were 

given in Equations 11.8.65 through 11.8.68. 

The infinite wedge diffractions given by Equations 12.2.2 to 12.2.7 may be 

supplemented by reflections as described in Chapter 11 and as determined by the 

geometry. For the reflection amplitude, the R in Equation 12.2.1 is the total path 

length fom source to reflecting facet to receiver. 

12.2.2 REFLECTION AND DIFFRACTION IN THE TIME DOMAIN: 

REALIZATIONS AND VERIFICATIONS 

The theoretical prescription for scatter of a Dirac delta function pressure by an 

infinite rigid wedge has been effectively realized by several laboratory 

experiments in order to verify the predictions and to model scattering elements 

at sea. To represent the conditions of the theory, the following three techniques 

are used. 

(1) Dirac delta function sound source: A short-duration, impulselike 

source is used, and the theory for a delta function source, section 

12.2.1, is convolved with the experimental source wave form to 

produce the predicted wave form for the scatter. This is then 

compared with the laboratory experimental wave form. 

(2) Infinite wedge: The experiment is concluded before receiving scatter 

from the ends of the finite wedge. 

(3) Rigid wedge: The laboratory wedge material has a high acoustic 

impedance (pc') relative to the surrounding medium. To maximize 

the contrast, usually the medium is air rather than water, and often 

the wedge material is plasterboard (also called sheetrock) which has 

a smooth surface, and which damps compressional and shear waves 

which are absent from the theory. 

Right-Angle Wedge 

Li and Clay (1988) studied reflected and diffracted components of forward scatter 

in the time domain by using a laboratory right-angle rigid wedge (0 w = 270 ~ as 
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shown at the left of Fig. 12.2.2. The source and receiver were on a line 79 cm 

above the wedge, and the theoretical BT solution for a delta function source was 

calculated for ten different displacements at the constant source to receiver 

separation 81 cm (right side of Fig. 12.2.2). The direct signal and theoretical 

reflection and diffraction components are calculated from Equation 12.2.2. The 

direct and reflected sound appear as sharply peaked curves which represent the 

Dirac 6 function. The much weaker diffraction signal is negative when the 

midpoint of  the source/receiver is over the horizontal surface (positive x 

displacements) and positive when it is beyond the edge (negative x values). The 

diffraction is stronger when the midpoint between source and receiver is closer 

to over the crest of the wedge. When the reflection point is at the edge, x - 0, 

there is a half-amplitude "ref lec t ion"  from the comer. 

The laboratory experiment uses a signal as shown in Fig. 12.2.3. The 

experimental result is at the left side of Fig, 12.2.4. The predicted scatter, at the 

fight side of  Fig. 12.2.4, is obtained by convolving the theoretical solution with 

the experimental signal shown in Fig. 12.2.3. Direct, reflected, and diffracted 

signals are all seen in Fig. 12.2.4. For positive values of x, there are reflections 

which dominate the total scattered signal; the delayed, negative diffraction is just 

evident. For negative values of x, the only scatter is the positive diffraction 

component.  

T 
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Figure 12.2.2 Left, geometry of the theoretical and experimental test of the theory. 
Right, the theoretical wedge solution for 10 positions of a delta function source/receiver at 
fixed separation on a line over the wedge. The direct signal is D, reflected is R, and wedge 
diffracted is W. The half-amplitude diffraction occurs at x - 0, the midpoint of the source/ 
receiver over the crest of the wedges. (From Li, S., and C. S. Clay, "Sound transmission 
experiments from an impulsive source near rigid wedges," J. Acoust. Soc. Am. 84, 2135- 
43, 1988.) 
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Figure 12.2.3 Free space reception of signal from a spark source. Receiver is a 0.6 cm 

electret microphone. Signal sampled at 10 #s intervals. (From Li, S., and C. S. Clay, 

"Sound transmission experiments from an impulsive source near rigid wedges," J. Acoust. 

Soc. Am. 84, 2135-43, 1988.) 
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Figure 12.2.4 Experimental and theoretical signals of direct, reflected, and diffracted 

sound from the wedge-scattering experiment sketched in Fig. 12.2.2. The direct and 

reflected (when it exists) signals occur at constant time delays, independent of source/ 

receiver positions. The diffraction timing, amplitude, and phase depend on the position of 

the source/receiver with respect to the wedge ridge. (From Li, S., and C. S. Clay, "Sound 
transmission experiments from an impulsive source near rigid wedges," J. Acoust. Soc. 

Am. 84, 2135-43, 1988.) 
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Right-Angle Rigid Step 

Chambers and Berthelot (1994) have used the BTM m e t h o d - - E q u a t i o n s  12.2.1 

to 12 .2 .7 - - t o  predict the contributions from the reflection and the two 

diffractions that occur in propagation over a step discontinuity (Fig. 12.2.5). 

Their extensive impulse measurements have confirmed that the theory provides 

accurate t ime-domain predictions for that geometry. They also show that the 

acoustic field scattered from the step is essentially unchanged if the step is 

smoothly curved with a radius less than the predominant wavelength of the 

sound. The experiment can be considered to be a representation of propagation 

over an escarpment at sea. 

The geometry is at the left in Fig. 12.2.5 (not to scale). The source is a spark 

with peak-to-trough duration approximately 50#s.  In addition to the direct 

incident sound " i "  (see Fig. 12.2.6), the step results in potential reflection from 

the top plate, " r l  "; reflection from the bottom plate, " r 2 " ;  and diffraction from 

the top exterior comer at E " d l "  and component " d 2 "  which is diffracted at the 

top comer and then reflected at the bottom of the step. Multiple diffractions, 

which would be of lesser strength, are not considered. 

Two, three, or four of the five signal components can be received in the five 

different zones shown at the right of Fig 12.2.5. A microphone in zone 1 receives 

i, r l ,  and dl ;  in zone 2, i, r l ,  d l ,  and d2; in zone 3, i, d l ,  and d2; in zone 4, i, r2, 

d l, and d2; in zone 5, d l and d2. These expectations have been confirmed by 

moving a microphone at radius 34.3 cm over an arc that passes from zone 4 
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Xs --~ I 

Zone 2 
f 

I 
I 

f 
f 

7 
/ Zone 3 

f 

f 

5 ~" ~ / / Zone 4 
7 i l l  t / / / t / - - - - - ~  

Figure 12.2.5 Left, the geometry of the step discontinuity experiment, H s -- 19.3 cm 
X s = 46.6 cm and h = 1.8 cm (the height in the figure has been exaggerated). Right, the 
five zones of potential interference between the four principal components of incidence, 
reflection, and diffraction. (From Chambers, J. B., and Y. H. Berthelot, "Time domain 
experiments on the diffraction of sound by a step discontinuity," J. Acoust. Soc. Am. 96, 
1887-92, 1994.) 
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Figure 12.2.6 Experimental and theoretical reflections and diffractions within and near 

transition zones for a rigid step geometry. Receiver moves along arc 34.3 cm from comer E 

(see Fig. 12.2.5). (a) In zone 4 close to zone 3. (b) At edge of zone 3. (c) In middle of zone 

3. (d) At edge of zone 3. (e) In zone 2, close to zone 3. (From Chambers, J. B., and Y. H. 

Berthelot, "Time domain experiments on the diffraction of sound by a step discontinuity," 

J. Acousr  Soc. Am. 96, 1887-92, 1994.) 

th rough  zone 3 to zone  2. Note  that in Fig. 12.2.6 the s imple  diffract ion d2 moves  

in to replace  the ref lected diffract ion r2 at the edge  of  zones 3 and 4, and the top 

plate  ref lect ion r l comes  in as one moves  into zone 2. The  exper imenta l  and 

theore t ica l  osc i l lograms  are vir tual ly  identical .  
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Right-Angle Rigid Wedge on a Rigid Plane 

The geometry of a 90 ~ triangular rigid wedge protruding above a rigid plane (Fig. 

12.2.7) has been examined by Li et al. (1994). In this more complicated case, in 

addition to reflections and " s ing le"  diffractions, there are significant diffractions 

of the diffracted signals, which we call "double  diffractions." The analysis of 

double diffraction is in section 12.3.2. 

12.2.3 D I G I T A L  I M P L E M E N T A T I O N  FOR F I N I T E  W E D G E S  

The diffraction arrival in the time domain was discussed in section 11.8.3. One 

way to implement  Equation 12.2.2 for digital calculations is to obtain the average 

p(t) over each of many discrete intervals. This produces a series of impulses as 

shown in Fig. 12.2.8 from regions of the wedge as indicated in the inset of Fig. 

12.2.8 and in Fig. 12.2.9. The integration may be performed by using the 

DCADRE routine (Digital Cautious Adaptive Romberg Extrapolation), which is 

listed in IMSL Library Edition 9.2 (1984). In fact, away from the shadow 

boundary and the reflection direction, the pressure is generally changing slowly 

enough to permit  the mid-time instantaneous value to represent the average with 

only a small error. The time increment AT is selected to produce the minimum 

bandwidth B W  (Min) -- (2 AT) -1 for the desired frequency spectral description. 

B 

C 

15 

10- 

< 

0 

-5 , ,  

0 

' "  ' 1  - '  ' | - - i  I 

SCBR 
REF SBAR SBCR 

SABR L 

r - - - f  
SAlt SCR 

A TIME STEPS(us) 

Figure 12.2.7 Geometry (left) and reflection and diffraction amplitudes (right) for a 90 ~ 
rigid wedge on a rigid plane. The paths are indicated by the combination of letters, for 
instance, SBR is a single diffraction at B; REF is a simple reflection; SABR is a double 
diffraction of the signal that starts at S, is diffracted first at A and thenat B, and then goes 
to the receiver. In (x, y, z) cm; the source is at (20, - 13.0), receiver is at (20, § 13,0), where 
y is the ridge direction. (From Li, S., D. Chu, and C. S. Clay, "Time domain reflections and 
diffractions from facet-wedge constructions: acoustic experiments including double 
diffractions," J. Acoust. Soc. Am. 96, 3715-20, 1994,) 
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Figure 12.2.8 Some of the discrete values of impulse pressure for diffracted backscatter 

from a rigid right-angle wedge (0 w = 270 ~ in air, calculated from Equation 12.2.2. The 

impulse pressures are separated by/IT - 1 ~ts. The range is r = r 0 = 50 cm, and the angles 

of incidence and scatter are 0 = 00 = 146 ~ (From Medwin, H., M. J. Browne, K. R. 

Johnson, and P. L. Denny, "Low frequency backscatter from Arctic leads," J. Acoust. Sor 

Am. 83, 1794-1803, 1988.) 

Where the pressure is rapidly changing as a function of travel time, the 

integration for the singular least-time point may be unstable. Keiffer et al. (1994) 

replaced the original integration range, as shown in Fig 12.2.8, by a more robust 

integration with a different definition of the index n = 0. In Keiffer'  s method, the 

separation between adjacent points is s t i l l / IT,  but the integration is centered on 

z = (AT)~2 ,  3 ( A T ) ~ 2 ,  5 ( A T ) ~ 2 ,  and so forth: 

P ('C~ + ) ~rJ~,, p (t) dt 
(12.2.8a) 

In general, 

% : A T  (12.2.8b) 

with n -- 0, l, 2, and so forth. 

Once the diffracted pressure given by Equations 12.2.2 and 12.2.3 has been 
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_ ~ "  

Figure 12.2.9 Unfolded geometry showing discrete paths (solid lines) and their 
boundaries at n 4-(1/2)AT (dashed lines) for the assumption that n = 0 is the least- 
time path. The blackened regions on the wedge crest are Huygens sources for even-ordered 
time lags. (From Medwin, H., E. Childs, and G. M. Jebsen, "Impulse studies of double 
diffraction: a discrete Huygens interpretation," J. Acoust. Soc. Am. 72, 1005-13, 1982.) 

digitized, the continuous diffracted signal may be interpreted as a series of 

contributions from Huygens wavelets that radiate sequentially from the wedge 

ridge, starting with the largest contributor from the intersection of the least-time 

path with the wedge. In this interpretation, the least-time impulse is the first and 

the strongest of the sequence; it is followed by pairs of wavelets of lesser 

strength from each side of the least-time intercept. Fig. 12.2.9 shows this 

interpretation. 



554 12. Scattering at Elements  of  a Rough Surface 

12.2.4 SIMPLIFICATIONS 

The largest diffraction contributions occur for incremental times that are small 

compared to the least-time, z ,~ Zo- Then certain analytical simplifications can be 

calculated, 

lim (r r 0 sinh Y )- 1 .._..) (2,ro ~. c 2 r r o ) -  1 / 2 
T ---~T o 

(12.2.9) 

and, except near the geometrical shadow boundary or reflection direction, we 

have the appproximation 

p(z) ,.o Bz-1/2 (12.2.10) 

where 

4nx/2(zorro) 1/20v~ 

and 

V =  4rcPoRo(At)/PA 

Under these conditions, except for the rapidly changing pressure at the least- 

time point n = 0, the discrete pressures at n AT are given simply by 

B ~(n+l/2)AT 
r - 1 / 2 d v  

(p  (n A T )> n > 1  - -  AT Jt,,-i ,:l~r 

= B z[(2n + 1) - ( 2 n -  1) 

(12.2.11) 

The effect of being close to the geometrical shadow boundary has been 

evaluated (Medwin et al. 1982) by considering the small angular displacement, e, 

away from the shadow boundary: 

0 = 0 0 + ~ + g (12.2.12) 

It is found that Equation 12.2.11 holds, provided that 

E > >  
C T  0 

(r ro)l /2 
(-~00) 1/2 (12.2.13) 

The spectral response is shown in Fig. 12.3.1. 
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12.3 Digital Calculations of Biot-Tolstoy Diffraction in the 

Frequency Domain 

In considering the spectral response implied by the BT impulse theory, one notes 

first that, away from the shadow boundary or reflection direction, for times small 

compared with the least time, z ~ %, the Fourier transform of Equation 12.2.10 

gives the frequency spectrum, 

P(f) - (B/2)(1 + i ) f  -1/2 (12.3.1) 

where B is given in Equation 12.2.10. 

The f-1/2 dependence is an analytical statement that describes the commonly 

observed fact that high frequencies do not bend around comers as well as low 

frequencies do. 

The common reference pressure is the "white noise" spectral description of a 

Dirac delta function free-field point source, 

p6( f )_  ~/rpA PoRO (Ndt ) 
4rcRNAT -- -~ i AT (12.3.2) 

where N A T is the total duration of the sequence of samples that has been Fourier- 

transformed, and is 1? the source strength, m3/s. The time between samples, AT, is 

selected to yield the bandwidth, BW, that is ultimately desired, where 

BWMin (2AT) -1. Practically, one sets BW 4BWMi n This achieves the 

smaller values of AT that are desirable for the rapidly changing strong early 

arrivals. 

It is convenient to form the ratio of Equations 12.3.1 to 12.3.2 and thereby 

obtain the relative diffracted pressure compared with the point source 

pressure for a given frequency. This quantity is independent of the source 

strength 1? or the source reference pressure Po and is a popular way to show 

the relative strength of the diffracted signal. Such a description is presented 

in Fig 12.3.1, where the spectrum is plotted as a function of penetration into 

the shadow region, e. As e approaches zero, the diffracted sound approaches 

one-half of the free-field pressure ( - 6  dB), independent of the frequency. The 

f 1/2 asymptote is recognized as the slope for low frequencies at e -  10 ~ in 

this case. 

Detailed predictions of rigid wedge impulse theory (Equation 12.2.2) and 

its transform to the frequency domain (Equation 12.3.1) have been verified 
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Figure 12.3.1 Spectra of relative diffracted pressure as a function of angle of 
penetration, e, into the geometrical shadow region when r = r 0 - 100m, 00 - 45 ~ for a 
right-angle wedge (0 w = 270~ (From Medwin, H., E. Childs, and G. M. Jebsen, 
"Impulse studies of double diffraction: a discrete Huygens interpretation," J. Acoust. Soc. 

Am. 72, 1005-13, 1982.) 

by several laboratory tests employing realistic rigid surfaces in air. In these 

validating experiments, solid wedges are used in air because a surface is more 

nearly " r ig id"  in air than in water, owing to the greater pc mismatch. But also, 

since one must avoid extraneous scatter from the ends of a real wedge, the 

required size of the wedge can be one-fifth as great in air as in water. 

The polar diagram of BT diffraction scatter for a right-angle wedge, 

Fig.12.3.2, gives an instant comprehension of the relative amplitude and 
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Figure 12.3.2 Polar diagram of diffraction loss compared with divergence loss for a 
free-field range r § r0 for a right-angle rigid wedge, 0 w = 270 ~ in air. The ranges are 
r = r 0 -- 25 cm. The phase is positive for the right lobe and negative for the left lobe. 
Comparison with experimental data dots at 10 kHz is from Bremhorst (1978) and 
Bremhorst and Medwin (1978). (For details, see Medwin, H., "Shadowing by finite noise 

barriers," J. Acoust .  Soc. Am.  69, 1060-64, 1981.) 

different phase of the scatter in diffferent directions. This calculation is a model  

of the backscatter and the forward diffraction into the " s h a d o w "  region of an 

escarpment at sea. This polar diagram, which shows diffraction loss (in dB 

relative to the level if the signal had diverged spherically from a point source to 

the total range R = r + r0), when compared to experiment, was the first evidence 

of the effectiveness of the BT theory. 

The frequency spectral response, such as in Fig. 12.3.2, is a quantitative 

measure of the excellent agreement of BT theory with experiment for certain 

prototype geometries. The limited realm of agreement of HK theory with 

experiment is demonstrated in the next section. 
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Figure 12.3.3 Angular dependence of diffraction backscatter from a rigid plate at 2, 10, and 40 kHz, predicted by HK (dashed line) and 
BT (solid line) theories, and measured at range 25 cm in air. (From Jebsen, G. M., and H. Medwin, "On the failure of the Kirchoff 
assumption in backscatter," J. Acoust. Soc. Am. 72, 1607-11, 1982.) 
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12.3.1 C O M P A R I S O N  OF D I F F R A C T I O N  B A C K S C A T T E R  

P R E D I C T I O N S  OF H K  A N D  B T  T H E O R I E S  

To compare and test the HK and BT theories of diffraction backscatter, two 

experiments were conducted in air, with the source/receiver at a separation of 

25 cm fom two different diffractors (Jebsen 1981). One diffractor was a rigid 

plate with one edge exposed, 0 w = 360 ~ the other a rigid right-angle wedge, 

0 w = 270 ~ The more prominent reflections from the perpendicular surfaces were 

excluded from the analysis by gating the backscattered signal in the experiment. 

Fig. 12.3.3 shows the results at three frequencies for the semi-infinite plate. 

The experiment agrees with the BT theory at all angles measured. It agrees wih 

the HK prediction only at (and presumably near) normal incidence to the 

diffracting plate. The HK prediction of zero acoustic pressure on the plate is far 

from the true behavior for low frequencies, although its discrepancy becomes 

smaller at higher frequencies. 

The comparison of the two theories with laboratory experiment is shown for a 

fight-angle rigid wedge in Fig. 12.3.4. Again the experiment agrees with BT 

theory. The error in the HK prediction has decreased from about 15 dB for 

0 = 15 ~ to approximately 10 dB for 0 = 30 ~ 

12.3.2 D O U B L E  D I F F R A C T I O N  

The Huygens interpretation of the action at a diffracting edge, as shown in Fig. 

12.2.9, is that the original source initiates reradiation from "secondary sources" 

on the diffracting edge. The pressure signal received at the field point is the 

accumulation of the radiation from delta function sources initiated at the proper 

times along that edge. 

In many problems (for example, shadowing by a seamount or guyot) there is a 

second diffracting edge, between the first one and the receiver. Fig. 12.3.5 is an 

idealization of the geometry. 

From the Huygens point of view, there will be an infinite number of sources 

on the first edge, each of which spawns an infinite number of sources on the 

second edge. Practically, because they are far stronger than the later arrivals, only 

the earliest arrivals need to be considered. 

The "secondary source" contributions come in pairs from points on either 

side of the least-time crestal source, which is located at the point of intersection of 

the source-receiver axis and the first crestline. These secondary sources will have 

the source strengths (/ssn, which are necessary to produce the expected field after 
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Figure 12.3.4 Backscatter diffraction from a right-angle wedge measured in air at range 

r -- r 0 - 25 cm. Comparison between experiment, Biot-Tolstoy theory, and Helmholtz- 

Kirchhoff theory at three different angles with respect to the wedge face. (Data from 

Bremhorst, 1978; Theory from Jebsen, G. M., and H. Medwin, "On the failure of the 

Kirchoff assumption in backscatter," J. Acoust. Sor Am. 72, 1607-11, 1982.) 



Figure 12.3.5 Left, double diffraction geometry for a barrier of thickness W. The general case is shown in the unfolded geometry with the least 

time contributor from S and the n = 1 contributors, $1 and S~, at 1 AT. One of the 1 AT contributors is shown as the source of a second line of 

diffractors from the second edge. Right, relative spectral loss calculated for three thick-plate barriers at range r = r 0 - 25 cm. The double- 

diffraction laboratory data points (Jebsen 1981; Medwin et al. 1982) compare well with the double-diffraction theory; the single-diffraction theory, 

dashed line, w -- 0, does not describe the diffraction adequately. (From Medwin, H., E. Childs, and G. M. Jebsen, "Impulse studies of double 

diffraction: a discrete Huygens interpretation," J. Acoust. Soc. Am. 72, 1005-13, 1982.) 
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traveling the range R from their crest positions to the field position. That is, for a 

symmetrical geometry, the n th secondary source has the strength 

where 

Vss (12.3.3a) 

(/P A (12.3.3b) 
P~ 4rcRAT 

The calculation of the mean value < > follows the prescription of Equation 

12.2.8. Calculations for nonsymmetrical contributions are considered in Medwin 

et al. (1982). 

12.3.3 FORWARD DIFFRACTION AT A SEAMOUNT 

Submerged mountains, "seamounts,"  can interrupt sound propagation and create 

a shadow zone behind the obstacle. This was conclusively demonstrated by 

Canadian experiments at Dickins seamount off the coast of British Columbia 

(Fig. 12.3.6). (The seamount was named for a respected scientist of the U.S. Coast 

and Geodetic Services, not the famous English author, Charles Dickens). 

In the experiment at Dickins seamount, a CW shadowing loss of 15 dB at 230 

Hz was first observed by Ebbeson and Turner (1983). Later, using an explosive 

source, a splitting of the signal was found by Chapman and Ebbeson (1983). The 

earlier arrival showed a frequency-dependent shadowing loss proportional to fl/2; 

it was the only signal during high sea states. 

The experimental results at sea have been explained by using a laboratory 

model to consider the two means by which sound may reach into the shadow. The 

later arrival, revealed by an impulse source, is due to multiple reflections between 

the insonified surface of the seamount and the ocean surface. This contribution, 

which repeatedly involves the ocean surface, cannot be found during high sea 

states because of losses by scattering at the rough ocean surface. The rough 

surface was modeled by a gravel-covered plate suspended over the laboratory 

seamount. The laboratory ratio of (wavelength)/(surface rms height) was the 

same as the ocean ratio 2/h for a Pierson-Moskovitz sea during the 35 knot wind, 

as calculated from Equation 13.1.12. 

At this point we are more interested in the earlier arrival, which the model 

proved to be due to forward scatter along the rough insonified seamount face 

followed by diffraction over the crest of the seamount. Both at sea and in scale 

model experiments by Spaulding (1979) and Jordan (1981), this component was 



Figure 12.3.6 Reconstruction of sound wave interaction at upslope of Dickins seamount in experiments by Ebbeson and Tumer (1983) and 

Chapman and Ebbeson (1983). The sound source is about 20 km to the left of the crest. The incoming rays are identified by their angles with 

the horizontal at the source. The 15 ~ ray reflects on itself after 2 sea surface reflections and 3 interactions with the seamount; it does not go 

over the seamount. The 5 ~ ray forward reflects from the seamount 3 times and from the ocean surface 3 times before it crosses over the 

seamount, The forward scattered wave at the rough seamount surface diffracts over the crest and arrives at the hydrophone sooner than the 

multiply reflected rays. However, it is weakened by scattering from the rough ocean surface, as well as from the seamount. (From Medwin, H., 

E. Childs, E. A. Jordan, and R, J. Spaulding, Jr., "Sound scatter and shadowing at a seamount: hybrid physical solutions in two and three 

dimensions," J. Acoust. Soc. Am. 75, 1478-90, 1984.) 
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found to have t h e f  -]/2 dependence predicted by the simplified spectral version of 

the BT theory (Equation 12.3.1). The work is summarized in Medwin  et al. (1984). 

The diffraction component  can be roughly estimated by assuming that the 

seamount is a simple exterior rigid wedge of upslope and downslope 14 ~ with the 

horizontal (Ow = 208~ where we ignore all the bumps along the way. A more 

accurate prediction is obtained by using the double-diffraction technique 

described in the previous section. Equation 12.3.1 shows that there is a range 

dependence r-1/2 and a frequency dependence f -1 /2  (or 2 +i/2). Therefore, in order 

to have the scaling independent  of range and frequency, the magnitude of the 

diffraction strength, DS, is defined in terms of the diffracted spectral pressure, PD, 

DS - 20 log ( P ~ 1 7 6  (~),,/2 
\PoRo}  

(12.3.4) 
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Figure 12.3.7 Comparison of laboratory diffraction strengths (data triangles, A) plotted 

versus r/)~ (upper abscissa) with a theoretical calculation for a symmetrical single wedge of 

slope 14 ~ and with two different freehand-drawn two-dimensional double-diffraction 

models of Dickins seamount shown in silhouette. The lower abscissa in kHz are the 

frequencies of the sound in the laboratory model where the range was several centimeters. 

In model approximation 1 it is assumed that the two wedges are 0 w = 186 ~ and 0 w = 210 ~ 
at crests a and c, respectively; in the second model it is assumed that the wedges have 

angles 0 w = 212 ~ and 0 H = 186 ~ at positions b and d. The wedges are assumed to have 

crest lines perpendicular to the sound track. The double-diffraction calculation for model 

approximation 2 agrees with experiment with less than I dB rms error. (From Medwin, H., 

E. Childs, E. A. Jordan, and R. J. Spaulding, Jr., "Sound scatter and shadowing at a 

seamount: hybrid physical solutions in two and three dimensions," J. Acoust. Soc. Am. 75, 

1478-90, 1984.) 
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where PD -- PD( O, 00, Owr, r0, z) is the diffracted pressure given by, Equation 

12.3.1, and Po is the reference pressure at the reference distance Ro (=1 m). 

This definition allows us to compare air laboratory experimental data at 

frequencies of tens of kilohertz and ranges of tens of centimeters on the same 

graph as ocean data at frequencies of the order of 100 Hz and at ranges of several 

kilometers. The definition permits theoretical wedge diffraction calculations to 

also be presented as a function of r/2, as shown in Fig. 12.3.7. 

12.3.4 THE FINITE WEDGE APPROXIMATION TO THE 

INFINITE WEDGE 

The Biot-Tolstoy solution is for an infinite wedge. The crest length is infinite, and 

the two facets that comprise the wedge are semi-infinite planes joined at the crest 

line. To use the BT equations in the real world, one truncates the infinite time 

series of the diffracted pulse. The truncation is done either 1) when the remaining 

terms can offer no significant correction to the total diffraction amplitude; 2) at 

the time when the incident sound is beyond the end of the wedge; or 3) in order to 

obtain a desired frequency resolution (-- 1/duration of signal) after performing the 

Fourier transform. 

Finite Crest Length 

The scatter from a finite wedge, insonified by perpendicular incidence to the 

wedge crest at its midpoint, will lack the tail of the impulse response shown for 

the "infinite" wedge in Fig. 12.2.8. The spectral diffraction from such a real 

wedge is found by transforming the truncated BT impulse response to the 

frequency domain. It will be a function of the sound frequency, the wedge angle 

Ow, the angles 00 and 0, and the ranges r 0 and r. 

Greatest interest is in the case of backscatter, 00 = 0 and r 0 = r. For 

backscatter at a given range, shorter wedges cause shorter duration responses m 

that is, the impulse response of Fig. 12.2.8 becomes more truncated. For 

backscatter from a given length of the wedge crest, greater ranges cause the 

wedge impulse response to be of shorter duration; again the response is truncated. 

Finite wedge backscatter for a point source shows the effect of a Fresnel zone- 

like interference that depends on the length of the wedge and the sound frequency 

(recall section 2.6.6 for point-source sound scattered by a finite plane surface). 

Also, the spectral diffracted pressure can be expected to decrease rapidly when 

the wedge crest length W is less than (2r) 1/2, where 2 is the wavelength in the 

transformed signal, and r is the range; the effect is reminiscent of Rayleigh scatter 
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of a plane wave by a sphere that is small compared with the wavelength (recall 

Fig. 7.5.4 for plane wave incidence). 

Offset Wedge 

An offset wedge will cause decreased basckscatter because the important 

pressure contributions at, and near, the least-time impulse component are 

missing. Some of the spectral effects have been analyzed in the context of low- 

frequency backscatter from Arctic leads in Medwin et al. (1988). Numerical tests 

0 0 0 0 0 0  

Figure 12.3.8 Numerical calculation of strip diffraction for the upper paths. The total 
pressure-time behavior is the sum of the single diffraction contribution by path SABR and 
those of opposite phase by double diffraction paths SACR and SBDR. The symmetrical 
lower paths such as SCDR are not shown. The BT impulse was sampled at 160 kHz. The 
strip width was 4cm; source to strip range, 14.5 cm; strip to receiver, 9.5cm. (From 
Medwin, H., E. Childs, and G. M. Jebsen, "Impulse studies of double diffraction: a 
discrete Huygens interpretation," J. Acoust. Soc. Am. 72, 1005-13, 1982.) 
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Figure 12.3.9 Spectra of diffracted pressures of a 4 cm strip relative to that of a single 
edge. The curve is the Fourier transform of the theoretical impulse response of the previous 
figure, which used double-diffraction theory. Data circles were obtained with a 2.54cm 
diameter source, crosses with a 1.27 cm source in an anechoic chamber. The impulse was 
sampled at 160 kHz. The strip width was 4 cm; source to strip range, 14.5 cm; strip to 
receiver, 9.5 cm; the curve of the upper graph corresponds to the impulse in Fig. 12.3.8. 
The case of strip to receiver distance 23.2 cm is in the lower graph. The strip is within the 
first Fresnel zone of the source for frequencies less than 20 kHz. (From Medwin, H., E. 
Childs, and G. M. Jebsen, "Impulse studies of double diffraction: a discrete Huygens 
interpretation," J. Acoust. Soc. Am. 72, 1005-13, 1982.) 

by Denny and Johnson (1986) and Browne (1987) have shown that, when the 

series is converted to the frequency domain, the offset loss in backscattered 

spectral energy is greater for the higher frequencies and can be specified in terms 

of the order of the harmonic of the frequency in the transform. The higher 

frequencies are reduced more because they are more sensitive to the missing, 

rapidly decreasing, impulse-pressure contributions that occur immeditely after 

the least-time impulse component.  

Finite Facet Width (Finite Wedge "Skirts")  

The dependence of diffraction on facet width is revealed by the results of the thin 

"s t r ip"  experiment described in Figs. 12.3.8 and 12.3.9. The geometry of the 

forward scatter and the pressure-time behavior in the thin strip experiment are 
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sketched in Fig. 12.3.8. The sound from a point source follows three principal 

paths (and their symmetrical counterparts, which are not shown). The two sides 

of the thin plate are identified by points A and B at the top and C and D at the 

bottom. The principal paths are the single diffraction trajectory SABR and the 

double-diffraction paths SACR along the front face AC and SBDR along 

the shadowed face B D. The double diffraction is calculated by dividing the 

diffraction from the first wedge into several Huygens wavelet sources for the 

second wedge (section 12.3.2). Paths SACR and SBDR show the same amplitudes 

but opposite phase shifts at A and B and then reversed phase shifts at C and D, so 

that the pulse that propagates from CD to R is a double pulse that arrives at a 

delayed time relative to the single diffraction path SABR. That event, which 

determines the constructive and destructive interference peaks and troughs in the 

frequency domain, occurs at time index n -- 8 in Fig. 12.3.8. 

If the double-diffraction paths and the time-dependent interferences did not 

exist, the situation could be represented by the sum of the two single diffractions 

from edges of the semi-infinite plates at AB and CD. In that case, the diffraction 

field for the strip would be 6 dB greater than the field from a single semi-infinite 

plate. But the double-diffraction paths strongly perturb this simple addition with a 

periodicity that depends on the strip width. The theoretical and experimental 

spectra are presented in Fig. 12.3.9 for a 4 cm-wide strip. The periodicity of the 

interference effect is about 8 kHz, which is the reciprocal of the time required to 

traverse the strip. 

The prediction of the double-diffraction treatment, using the BT formulation, 

is essentially correct, and shows an rms discrepancy of only about 0.5 dB 

compared with the experiment for frequencies over 2 kHz. The agreement with 

experiment begins to deteriorate for frequencies below about 2 kHz because of an 

inadequate number of samples in the sampling time of the experiment. 

12.3.5 COMPONENTS OF REVERBERATION FROM 

RO UGH SURFACES 

When a facet of a rough surface is perpendicular to the incident sound, 

dominating reflection will take place to a degree that depends on the size of the 

facet in terms of the Fresnel zone conditions (section 2.6.6). When there are no 

reflecting facets, the surface reverberation will be made up of ridge diffractions. 

When the acoustic impedance and the detailed topography of a surface are 

known to the scale of the wavelength of the insonification, the reverberation can 

be calculated from the theory in this chapter. 
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12.4 BT Wedge Assemblage Techniques for Rough Surfaces 

Knowledge of the impulse reflection and diffraction from a single wedge is the 

building block used to calculate the scatter from a complex, known surface. The 

wedge assemblage (WA) technique replaces the surface by several contiguous 

wedges. The BT theory described in section 12.2 is employed to calculate the 

scatter from each wedge element. These inpulse pressures are simply added to 

calculate the scatter from the assemblage; we call this the BT/WA method. 

12.4.1 P A R A L L E L  W E D G E S :  L A B O R A T O R Y  T E S T  O F  A S I N U S O I D A L  

L O N G - C R E S T E D  WATER S U R F A C E  

Swell waves are long-crested waves from a distant storm. To model this, one can 

use a long-crested, sinusoidal water wave system for the test of the wedge 

assemblage method at an air/water interface. The laboratory wave system shown 

was driven by an oscillating plunger (Fig. 12.4.1). The cross-sectional 

displacement was given by 

~(Xs) a sin (2~Zxs/As) (12.4.1) 

where a = surface wave amplitude = 0.305cm; A s = surface wave leng th=  

8.8 cm; x s = distance along the surface; ~(Xs) = water surface displacement. 

For the purposes of the BT/WA calculations, several posssible wedge spacings 

were tried, as shown in Fig. 12.4.2. It turned out that there was little difference in 

Figure 12.4.1 Water tank experiment to test the BT/WA technique. The source is S; the 
receiver is R. The wave generator was a rod that moved up and down. (From Kinney, 
W. A., C. S. Clay, and G. A. Sandness, "Scattering from a corrugated surface: comparison 
between experiment, Helmholtz-Kirchhoff theory, and the facet-ensemble method," 
J. Acoust. Soc. Am. 73, 183-94, 1983.) 
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Figure 12.4.2 Wedge approximations to the experimental surface for application of the 
BT/WA method. (From Kinney, W. A., and C. S. Clay, "Insufficiency of surface spatial 
power spectrum for estimating scattering strength and coherencemnumerical studies," 
J. Acoust. Soc. Am. 78, 1777-84, 1985.) 

the calculation of the field as long as there were more than 6 facets per surface 

wavelength. 

The two theoretical results and the experimental scattered pressures are shown 

in Fig. 12.4.3. Either the BT/WA or HK solution fits the experiment (with 

differences of about 10 percent) for scattered angle less than 40 ~ which suggests 

that the HK method is not all that bad. But the results of section 12.3.1 and other 

critical tests advise us that, for larger angles, or steep waves, the HK solution 

would have been seriously in error. 

12.4.2 P A R A L L E L  WEDGES:  THE O C E A N  AS  A LOW-FREQUENCY 

D I F F R A C T I O N  GRATING 

When there is no local wind-driven sea, several theories have shown that the 

periodic, long-crested waves from a distant storm scatter underwater sound like a 

"diffraction grating." Because of their importance to science and technology, 

there have been several exact analytical solutions to the problem of 

electromagnetic "reflection" by a diffraction grating. These solutions provide 

a critical test of the wedge assemblage technique using BT elements (Novarini 

and Medwin 1985). 
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Figure 12.4.3 Comparison of experimental values with predictions of the BT wedge 
assemblage method and the HK method for the laboratory experiment described in Figs. 
12.4.1 and 12.4.2. (From Kinney, W. A., C. S. Clay, and G. A. Sandness, "Scattering from 
a corrugated surface: comparison between experiment, Helmholtz-Kirchhoff theory, and 
the facet-ensemble method," J. Acoust. Soc. Am. 73, 183-94, 1983.) 

The "grating equation," which defines the scatter, is 

sin 0 m = m (/~ / D )  + sin 0 i (12.4.2) 

where 0 m and 0 i a r e  the angles of diffraction scatter and incidence, respectively, 

as measured from the normal to the plane of the grating (Fig. 12.4.4a). The 

integers m = 0, + 1, + 2, and so on are called the "orders"  of the diffraction 

grating; the orders determine the angles at which wave reinforcement occurs 

because of integral wavelength path differences for the different wedges. The 
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Figure 12.4.4 a) Geometry of the simulated experimental setup, used as a model for the 
BT wedge assemblage calculation of the scatter, b) Surface profile for the asymmetric 
(echelette) grating calculation. (From Novarini, J. C., and H. Medwin, "Computer 
modeling of resonant sound scattering from a periodic assemblage of wedges: comparison 
with theories of diffraction gratings," J. Acoust. Soc. Am. 77, 1754-59, 1985.) 

integer m = 0 corresponds to specular (mirror direction) scattering. The wedge 

separation is D. The geometry of an echelet te  (ladder) grating is sketched in Fig. 

12.4.4b. 

Two interpretations have to be made to compare the BT wedge asemblage 

calculation for acoustics with the analytical electromagnetic solutions. First, the 

BT/WA solution is for a point source, whereas the electromagnetic solutions are 

for plane waves. To achieve the equivalent of a plane wave, an array of point 

sources is assumed to represent the plane wave. A receiver array (whose outputs 

are to be summed) is proposed to collect the sound at the scattered angle of 

interest (Fig. 12.4.4a). The second change is to recognize that the boundary 
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Figure 12.4.5 Fractional energy at two diffracted orders, m = 0 and m -  1, as a 
function of relative wavelength to wedge separation, for a pressure-release surface with an 
echelette shape, where ~ = 10 ~ and 13 = 90 ~ in Fig. 12.4.4. The angle between the incident 
beam and the first-order diffracted beam is zero. Dots are BTAVA calculations; solid lines 
are theory by Jovicevic and Sesnic (1972); dashed lines are extrapolations. (From 
Novarini, J. C., and H. Medwin, "Computer modeling of resonant sound scattering from a 
periodic assemblage of wedges: comparison with theories of diffraction gratings," 

J. Acoust. Soc. Am. 77, 1754-59, 1985.) 

conditions for a pressure release acoustical wave are the same as for an 

electromagnetic Ell  (parallel field) wave. 

Since all the scattered energy concentrates into the various diffracted orders, 

the fractional energy in a given order is used to define its energy in Fig. 12.4.5 for 

orders m = 0 and m = 1. The BT wedge assemblage solutions are compared with 

electromagnetic theory as a function of 2/D, where D is the periodic wedge 

separation. This research shows that diffraction gratings (which are a model  of 

parallel, equally spaced, long-crested waves in the oceanic world), operating 

wavelengths comparable to the crest separation, produce their scatter by 

diffraction, not by reflection. Computer model results of the type shown were 

achieved by the use of only 6 or 7 wedges, with a discrepancy of less than 

10 percent. 

12.4.3 S Y N T H E T I C  SEISMIC PROFILES  

For the seismic study, source and receiver are at the same location. Because of its 

accuracy, the BT solution has been proposed by Hutton (1987) as a reference for 

seismic diffraction modeling. Seismic wedge calculations can be performed on a 

much larger scale, as in the seamount problem (section 12.3.3) or in the seismic 

study by Daneshvar and Clay (1987). In the latter case, the bathymetry was 



4 ~  

1"4 

ml 
~ o  

0"Q 

r~ 

Figure 12.4.6 Comparison of a segment of seismic profile data and synthetic seismograms constructed by 
using the WA method. A facet and wedge bathymetric model of the sea floor is (a) above the seismograms. 
(b) Seismic profile obtained in the field; (c) synthetic seismogram, including reflections from plane facets as well 
as wedge diffractions; (d) synthetic seismogram showing diffraction arrivals only. (From Daneshvar, M. R., and 
C. S. Clay, "Imaging of rough surfaces for impulsive and continuously radiating sources," J. Acoust. Soc. Am. 

82, 360--69, 1987.) 
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known on a gross scale over a range of about 15 km (top of Fig. 12.4.6). The 

actual seismic profile (a) shows not only the scattering from the changes of slope 

(wedges crests) of the bathymetry, but scattering from under the surface as well. 

A synthetic seismogram (b) was constructed using only the bathymetry shown 

and including both the BT crest diffractions and facet reflections. It was initially 

assumed that the surface of the facet was rigid and smooth enough for facet 

reflections (b). In fact, when the reflections were omitted (c), an even better 

synthetic seismogram was obtained. The interpretation is that, for the frequencies 

being used, the facet surfaces were rough enough to cause diffuse scatter and 

thereby to eliminate the need for the reflection component of the BT solution. 

Only diffraction from the wedge crests was important. 

Problems 

Section 12.2 

12.2.1 Write computer programs for Equations 12.2.1 through 12.2.7 so that 

you can solve the following problems. 

12.2.2 Use your computer program of the BT theory to verify the graph of Fig. 

12.3.2, which describes diffraction of 100 Hz, 1 kHz, and 10 kHz sound by a rigid 

wedge in air when the source and receiver ranges are 25 cm and 00 = 0 = 15 ~ 

12.2.3 Repeat the calculation of Problem 12.2.2 when the source and receiver 

are in air at a range of 100 m from the crest. 

12.2.4 Repeat the calculation of Problem 12.2.2 when the source and receiver 

are at a range of 100m from a right-angle ridge in the ocean. Repeat the 

calculation when the source and receiver are at a range of 1 km in the ocean 

(assume c = 1500 m/s).  

12.2.5 Repeat the calculation of Problem 12.2.4 when the source is at range 

1 km; angle 00 = 30 ~ 45 ~ 60 ~ and 85~ and receiver is at range 100m, 0 = 15 ~ 

Section 12.3 

12.3.1 Use your computer program of the BT theory to verify the predictions 

for backscatter diffraction by a rigid plate in air as shown in Fig 12.3.3 for 

frequencies 2 kHz, 10 kHz, and 40 kHz at angles 0 ~ 30 ~ and 60 ~ 

12.3.2 Calculate the forward diffraction loss (compared with spherical 

divergence over the same distance) for a range of frequencies for a symmetrical, 

wedgelike seamount of slope 14 ~ on each side of the wedge :(Ow = 208~ 
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Assume that the water is isothermal and ignore the effect of the water surface 

above the seamount. Assume that the ranges are r = r 0 = 2 km, that the source 

is on the upslope of the seamount, and that the receiver is on the downslope. 

12.3.3 How would your answer to the previous problem change if, instead of a 

downslope, there is a horizontal mesa (Ow = 194 ~ on the fight side of the 

wedge? 

12.3.4 How would your answer to Problem 12.3.3 change if there is a 

horizontal mesa that extends for 1 km at the top of the seamount (a guyot)? 

12.3.5 (Advanced) a) Calculate the diffraction backscatter (relative to an 

infinite wedge) as a function of frequency for a finite, rigid-ridge outcropping 

that is 2 m high and 10m long and has a crest wedge angle of Ow = 270 ~ 

Assume that the outcropping is insonified perpendicular to its 10m length, at 

incidence 0 0 = 0 = 0 = 2 0  ~ and a range r = r  0 - -  100m. What minimum 

effective frequency would this suggest for detection of diffraction by a side-scan 

sonar? Note that there are two single diffracting " w e d g e s " - - t h e  crest wedge of 

Ow--270 ~ and the wedge of angle Ow = 135 ~ between the base of the 

outcropping and the horizontal sea floor, b) Compare the strength of the two 

diffracted signals with that from a 1 m 2 reflecting facet that happens to be on the 

rough outcropping. Comment. 

12.3.6 (Advanced) Consider the previous problem. How does the minimum 

effective frequency of the crest diffraction depend on the range? How does this 

depend on the angle of incidence 00 = 0? How does this depend on the ridge 

wedge angle 0w? 
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The real sea floor and the real sea surface are randomly rough. Sound signals are 

imperfectly reflected and partly scattered by rough surfaces. The statistics of the 

scattered sound pressure can be predicted after the statistics of the rough surface 

have been specified. The first pragmatic step in predicting sound scatter is to 

define the surface roughness in terms of those concepts developed by the physical 

oceanographer and geophysicist that fit the needs of the ocean acoustician. The 

two main, interconnected types of descriptors useful to the acoustician are: a) the 

statistical description such as the probability density function of the rough surface 

displacements (with respect to the mean surface) or slopes, and their statistical 

moments (e.g., the rms values); and b) the temporal and spatial spectra of the 

rough surface with their transforms, the correlation functions. The most efficient 

use of these variables depends on the surface as well as the desired acoustical 
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description m for example, the correlation of the acoustic scatter is most easily 

expressed in terms of the correlation of the scattering surface. 

Conventional descriptions of the wind-blown surface are different from those 

of the rough ocean bottom. In section 13.1 we present surface statistical 

descriptions that are most effective in predicting sound scatter at the ocean 

surface and ocean bottom. Some of the most convincing laboratory scale models 

and simplified analyses of the coherent and incoherent components of scatter in 

the mirror direction are summarized in section 13.2. The general Helmholtz- 

Kirchhoff-Fresnel solution for scattering in any direction from a known surface 

is given in section 13.3. The special case of grazing incidence over steep-sloped 

rough surfaces is the topic of section 13.4. Theoretical and experimental 

transmissions through smooth and rough surfaces are considered in section 13.5. 

1 3 . 1  D e s c r i p t i o n s  o f  O c e a n  S u r f a c e s  

13.1.1 THE WIND-BLOWN SURFACE 

Phillips (1977) and Lighthill (1978) give lucid descriptions of surface gravity 

waves. Oceanographers commonly describe the ocean surface in terms of the 

probability density function (PDF) of the displacements of the rough surface, the 

frequency spectrum of the displacements, and the directional wave spectrum. As 

we see in the following sections, not only those quantities but also the PDF of the 

slopes of the surface and the correlation function of the surface displacements are 

closely related to the scattering of sound from the surface. We introduce these 

quantities briefly here, and present examples of data from real seas as well as 

laboratory "seas."  Properly designed laboratory scale models are effective 

devices for controlled studies of sound scatter. 

The PDF of displacements of a wind-blown sea is close to Gaussian, as seen, 

for example, in Fig. 13.1.1. The Gaussian PDF is given by, 

w ( ~ ' ) - h ~ e x p  [ - ~ (  ) (13.1.1) 

where ~ is the displacement from the mean surface and h is the rms height of the 

displacements. 

The first two moments are 

m I : (~) : 0 (13.1.2a) 
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Figure 13.1.1 Normalized PDF of water surface displacements. Ocean data are circles; 

dashed line is a fitted curve using first four moments of the Gram-Charlier expansion with 

h = 2.72 cm, m 3 = 0.092, and m 4 --0.031 for wind 6.75 m/s, measured 12.5 m above 

surface at sea, from Kinsman (1960). Crosses are data for a carefully designed laboratory 

" sea"  with h = 0.119cm, m 3 --0.086, and m 4 --0.073; solid line is laboratory four- 

moment fit. The Gaussian is the simple dotted curve. (From Medwin, H., and C. S. Clay, 

"Dependence of spatial and temporal correlation of forward scattered underwater sound 

on the surface statistics: part II---experiment." J. Acoust. Sac. Am. 47, 1419-29, 1970.) 

and 

m2 = ( (2)  _ h 2 (13 .1 .2b)  

Modificat ions of the simple Gauss ian  are necessary for a more  nearly correct  

specification of the ocean PDE These  are components  of a Gram-Char l i e r  series 

descr ibed by Longuet -Higgins  (1963) in terms of  the moments .  

Two of the higher-order  moment s  are the skewness,  

m3 _ (~3)/(2(~2)3/2) (13.1.3) 

and the kurtosis,  (or " p e a k e d n e s s " ) ,  

m 4  _ ( ( ~ 4 ) _  3(~2)2) / (2((2)2)  (13.1.4)  
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Extensive studies of scattering from an oceanlike surface have been performed 

in laboratory scale models. The laboratory " sea"  is generated by a paddle, or 

fans in a water-wind tunnel. The scaling is accomplished by using higher 

laboratory sound frequencies, in order to reproduce the ratio h/2 of an acoustical 

scattering trial at sea. The higher-order moments m 3 and m4 should be similar 

for the scaling to be appropriate for acoustical scattering studies. In Fig. 13.1.1 

the laboratory m3 and m4 are within the range of sea values for wind speeds 4 to 

9 m/s. 

The PDF of sea slopes is also important in sound scatter from the sea surface. 

Fig. 13.1.2a presents the crosswind (subscript c) and windward (subscript w) 

behavior for a 10 m/s wind at sea (Cox and Munk 1954). The latter shows the 

skewness expected in the windward direction; both measurements show 

peakedness. The mean squared slopes for clean water were empirically given as 

Sw2 _ 0.000 + 3.16 X 10-3W i 0.004 

s~ -- 0.003 + 1.92 • 10-3W -+-0.002 (13.1.5) 

S 2 __ Sw2 + Sc2 = 0.003 + 5.12 x 10-3W -+-0.004 

where wind speed W is in m/s, measured at the traditional height 12.5 m above the 

surface at sea; s is the rms slope independent of direction. Oily water has lesser 

rms slopes. Slopes of a laboratory model are shown in Fig. 13.1.2b. 

The temporal autocorrelation of heights ~(t) is the temporal autocovariance 

divided by the mean squared height, 

C(z ) =  (< ((t)  ~ (t + z)> ) / h  e (13.1.6) 

where r is the time lag. 

A "typical" temporal correlation at sea is shown at the top of Fig. 13.1.3. It is 

typical in that it shows a periodicity that corresponds to the frequency of the most 

prominent wave component, and a correlation magnitude that decreases as the 

time lag increases. A very similar scaled version of the temporal correlation at sea 

can be achieved by the use of a programmed plunger or fans operating in a 

sufficiently long water tank with the result as shown at the bottom of 

Fig. 13.1.3. 

To manipulate analytical expressions for the correlation of acoustical scatter 

as a function of the correlation of ocean surface displacement, a first step is to 

approximate the temporal surface correlat ion--for  example, by writing it 

empirically as 

C(z) - exp [ - ( r / T )  2 cos (2mr ] (13.1.7) 
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Figure 13.1.2 a) PDF of slopes measured optically during 10 m/s wind at sea. The solid 
lines are observed normalized distributions crosswind and windward; dashed lines are 
simple Gaussians of the same rms slope. (From Cox, C. S., and W. Munk, "Statistics of the 
sea surface derived from sun glitter," J. Marine Res. 13, 198-227, 1954.) b) slope PDF for 
NPS laboratory 3 blower "sea" obtained by two-minute integrations of photocell output 
using a colocated point light source for various angles windward and crosswind. The lines are 
simple Gaussians of the same rms slope (windward, circles, Sw = 7.8~ crosswind, crosses 
s C = 4.9~ (From Ball, E. C., and J. A. Carlson, "Acoustic backscatter from a random 
rough water surface," M.S. thesis, Naval Postgraduate School, Monterey, Calif., 1967.) 

where T is the time lag for C = e-1 and ~"~m is close to the angular frequency of 

the peak of the surface wave displacement spectrum (Fig. 13.1.3). 

The general expression for the temporal autocovariance of the surface 

displacements is related to its spectral density, @(f2), [m2/Hz] by the Wiener- 
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Figure  13.1.3 Above, a temporal correlation function at sea for a low wind speed case 

from Kinsman (1960). Circles are data points. Solid line is a fit to Equation 13.1.7 with 

t-2 m = (2re/1.78) sec -1 and T = 2.0 sec. Below, a temporal correlation function in a water 

wind tunnel at the Naval Postgraduate School; the solid line is fitted to Equation 13.1.7. 

The NPS correlation constants a r e  ~r~ m = 9rr s e c  -1  and T -  0.24 sec. The scaling is 

( ~ " ~ m ) L a b / ( ~ - ~ m ) S e a  - -  8.1 and (T)sea/(T)Lab = 8.3. Dashed lines are damped exponential 

fittings. (From Medwin, H., and C. S. Clay, "Dependence of spatial and temporal 

correlation of forward scattered underwater sound on the surface statistics: part I I - -  

experiment." J. Acoust. Sac. Am. 47, 1419-29, 1970.) 
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Khinchine theorem, which gives the transforms (section 6.4). To compare with 

his graph, we follow the normalization of the transform relation as in Phillips 

(1977), Equation 4.1.16, but with our symbols: 

1 h2C(z)e  +mr dr �9 

(13.1.8) 

C(z) h -2 tb(e)e iQz d e  
0(3 

where (2 -- 2~zF is the angular frequency of a component F (sec l) of the surface 

waves. 

The spectral density is the part of the total mean-squared height in a 1 hertz 

bandwidth. Therefore the mean-squared height, h 2, is the integral over all 

frequencies: 

I; h 2 ci)((2) d(2 (13.1.9) 

Similarly, the mean-squared slope, s 2, is obtained from the K2-weighted 

spectrum, where K - 2rc/A is the wave number of the surface wave component 

of wavelength A. Using the expression for a gravity wave system, f22 - K g ,  

where g is the acceleration of gravity, 9.8 m/s 2, Cox and Munk (1954) show that 

the mean-squared slope is 

s 2 g 2 ~r~4~(f2) dr2 (13.1.10) 

The frequency spectrum of ocean displacements has been measured many 

times. Fig. 13.1.4 shows several of these from Phillips (1970). 

The Pierson-Moskowitz (1964) frequency spectrum is an empirical expression 

for the spectral density of ocean displacements due to wind-blown waves acting 

over an infinite fetch: 

�9 (f2, W) 0~g20 -5 exp [  (o0/o) 4] (mZ/Hz) (13.1.11) 

where f2, radians/sec, is the angular frequency of an ocean surface wave 

component; (20 g / W  nominal angular frequency of the peak of the 

spectrum; W wind speed (m/s) at 19.5 m above sea surface" 0~ 8.1 x 10-3; 

fl 0.74; g 9.8 m/s  2. 

The Pierson-Moskovitz spectrum is integrated over all frequencies to give the 

rms height in meters of such a surface, as a function of wind speed in m/s. 

h ~b(f2) dr2 0.0053 W 2 (13.1.12) 
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Figure 13.1.4 The equilibrium range of the frequency spectrum of wind-generated 
waves from seven experiments, including 52 spectra. The shape of the spectral peak is 
shown in only three cases. The straight line has the slope -5 ,  as in Equation 13.1.11. 
(From Phillips, O. M., The Dynamics of the Upper Ocean, 2nd ed.; Cambridge University 
Press; New York, 1970.) 

In general, there is no reason to assume that the ocean surface is isotropic. 

Consequently, sound scatter from the ocean surface is usually dependent on the 

direction of the sound beam with respect to the axial direction of the surface wave 

system. To take account of this anisotropic surface, the directional wave 

spectrum must be specified. Kuperman (1975) does this in a general way. One 

very simple approximate form employed by Fortuin and Boer (1971) and 
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Novarini et al. (1992) assumes that there is a cos20 dependence of the spectral 

amplitude, where 0 is the angle with respect to the wind direction. This gives 

simply 

cI)(f2, W, O) = ~g2(2-5 exp [-fl(f20/f2)4]cos 2 0 (13.1.13) 

A more flexible description uses the two-dimensional spatial correlation 

function of spatial lags ~ and q for the x and y directions. This is the analog of the 

temporal correlation function. It may be Fourier-transformed to obtain the two- 

dimensional wave number spectrum of the surface. In the x direction, the 

transform pair is written in Phillips's (1977) way: 

1 f l  
05 (to x)=2--~ C (~ )e i tCx~ d~ (13.1.14) 

f 
OG 

C(~) -- ~(Kx)e i'~x~ dK x 
- -  ( X 3  

(13.1.15) 

where Kx is a wave number component in the x direction. 

Similar relations exist for the y direction, in which case q is a spatial lag and Ky 

is a wave number component in the y direction. 

The character of the two-dimensional spatial correlation functions at sea can 

be seen from the ocean examples plotted at the top of Fig. 13.1.5, from the SWOP 

(Stereo Wave Observation Project) report (see Kinsman 1965). A scaled version 

of the ocean correlation functions, at the bottom of Fig. 13.1.5, was obtained by 

the use of a set of fans in a water wind tunnel designed to study sound scatter from 

an oceanlike surface. 

A useful view of the windward surface spatial correlation function is that it can 

be approximated by the simple empirical expression 

C(r - exp [-(~/Lx) 2] coSgxm ~ Windward (13.1.16) 

where Lx is the correlation length in the x direction and gxm is the wave number in 

spatial correlation space that corresponds to the most prominent surface wave- 

length in the x direction. Sometimes acoustician theorists set gxm equal to zero and 

assume that the Gaussian form exp[-(~/Lx) 2] is an acceptable approximation. 

The crosswind spatial correlation function does not oscillate with the spatial 

lag as does the windward (Equation 13.1.16). The function is sometimes 

approximated by either an exponential or a Gaussian form, depending on the 

particular sea. The Gaussian form is written as 

C(q) - exp [-(filLy) 2] Crosswind (13.1.17) 
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Figure 13.1.5 Above, spatial correlation functions measured at sea by the Stereo Wave 

Observation Project (SWOP) during 10m/s winds. Triangles and solid line are crosswind; 

circles, crosses, and dashed lines are windward. (From Cole, L. J., et al., "The directional 

spectrum of a wind generated sea as determined from data obtained by the Stereo Wave 

Observation project, Meteorol. Papers (N.Y.U., Coll. of Eng.) 2(6), 1960 and Kinsman, B. 

"Surface waves at short fetches and low wind speeds: a field study," Chesapeake Bay Inst. 
Tech. Rep. 129, Johns Hopkins, 1960.) Below, windward and cross-wind spatial correlation 

functions generated by fans in a water wind tunnel at the Naval Postgraduate School. When 

fitted to Equations 13.1.16 and 13.1.17, the constants for the laboratory sea are 

L = 14.0 cm, Krm = 7z/8 cm - i ,  and L~, - 7.35 cm. (From Medwin, H., and C. S. Clay, 

"Dependence of spatial and temporal correlation of forward scattered underwater sound 

on the surface statistics: part II---experiment." J. Acoust. Soc. Am. 47, 1419-29, 1970.) 



13.1. Descriptions of Ocean Surfaces 587 

where Ly is the correlation lengths in the y direction. For long-crested waves, 

L y ~ L x .  

Fig. 13.1.6 is a two-dimensional presentation of the surface correlation of 

displacements generated by fans in a laboratory " s e a "  to study the dependence 

of scattered sound correlation on surface correlation. The windward and 

crosswind components are shown in Fig. 13.1.5. 

Although Equation 13.1.7 is a useful representation of the surface temporal 

correlation function, and Equations 13.1.16 and 13.1.17 represent the 

components of the spatial correlation functions, laboratory research (Medwin 

et al. 1970) has made it clear that the space-time correlation is not separable into 

its spatial and temporal components. 

In the laboratory " s e a "  described by Fig. 13.1.7, the envelope of the crests 

moves at the group velocity of the waves, 

u= L x 1 7 (13.1.18) 

while the individual crests move at the phase velocity, 

v - if2 m / K x m  (13.1.19) 

�9 

+0" 

] 
r , , , , , . ,  

Figure 13.1.6 Two-dimensional spatial correlation of displacements in a laboratory sea 
generated by fans. The correlation lengths are spatial lags for the e 1 values. The data were 
collected by time averages for spatial lags in a fixed region, which is assumed by 
ergodicity to equal the data for those lags over many regions of a large surface area at an 
instant of time. The windward and crosswind components were shown in Fig. 13.1.5. 
(From Medwin, H., and C. S. Clay, "Dependence of spatial and temporal correlation of 
forward scattered underwater sound on the surface statistics: part II---experiment." J. 
Acoust. Sor Am. 47, 1419-29, 1970a. See also Clay and Medwin, part I theory, 1970.) 



588 13. Scattering and Transmission at Statistically Rough Surfaces 

20 

% 
15 

I0 

0 . . . . .  t 
2.0 

Figure 13.1.7 Map of the correlation function C(~, r) of a wind-blown laboratory water 

surface. The circles are ~, r values that yield zero correlation. These are connected by 

lines whose slope gives the phase velocity of the correlation v, Equation 13.1.19. The 

shaded areas are correlations greater than 0.5. The correlation group velocity, u, Equation 

13.1.18, is the slope of the maxima of the correlation. (From Medwin, H., C. S. Clay, J. M. 

Berkson, and D. L. Jaggard, "Traveling correlation function of the heights of windblown 

water waves," J. Geophys. Res. 75, 4519-24, 1970.) 

Figure 13.1.8 Two examples of the PDF of the ocean bottom displacements, at scales of 

the order of meters. The solid lines are the Gaussian PDF after filtering through a high-pass 

spatial filter of wave number = 0.003 m -~ . On the left a Norwegian sea basin; on the right a 

Norwegian sea marginal plateau. (From Berkson, J. M., and J. E. Mathews, "Statistical 

properties of seafloor roughness," in Acoustics of the Sea-Bed, ed. N. G. Psace, Bath 

University Press; Bath, England, pp. 215-23, 1983.) 
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An equation describing this "traveling correlation function" that reduces to 

the separate correlation functions n Equations 13.1.7, 13.1.16, and 13.1.17 - -  is 

C(~, r/, z) - exp [ - (~ - uz)Z/L 2] exp [-(filLy) 2] cos (Kxm~ - (2mZ) (13.1.20) 

A three-dimensional surface correlation function such as Equation 13.1.20 has 

been used to predict the correlation of sound scattered from the sea surface (Clay 

and Medwin 1970). 

13.1.2 THE ROUGH OCEAN BOTTOM 

PDF of Displacements and RMS Roughness 

The ocean bottom roughness is sometimes defined in terms of its PDF of 

displacements above and below the mean, as in Fig. 13.1.8, or, more often, in 

terms of the rms deviation from the mean, h, which is called the "bottom 

roughness," as shown in Table 13.1. 

Spatial Frequency Spectrum 

A different presentation exploits the spatial transform relations of the previous 

section. In analogy to the Pierson-Moskovitz temporal frequency spectrum for 

water waves, one specifies a spatial frequency spectrum in terms of the wave 

number, K (radians per wave length) or, quite commonly, in terms of the cycles 

per unit distance, K. A vast variability of spectra of ocean bottoms has been 

observed. 

The framework adopted is to assume that the spatial "power"  spectral density 

of the roughness follows the empirical law 

~ (K)  ~ K -b (13.1.21) 

where �9 is the "power"  spectral density in units of [m2/(cycle/distance)], K is 

the spatial cycle frequency (e.g., cycles/m or cycles/km), and b is a constant that 

is fitted for the "province" of the bottom that is being described. The parameter b 

is often assumed to be 3, but values from less than 2 to 5 have been found, as 

shown in the following Table 13.1 from Berkson and Matthews (1983). 

Sometimes the amplitude spectrum is specified rather than the "power"  

spectrum. Then, instead of Equation 13.1.21, the empirical equation is 

A( K) ~ K -b/2 (13.1.22) 
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Table 13.1 Roughnesses of Various Sea Bottoms 

Physiographic Band-Limited 

Province Ocean h, RMS (Meters) b 

Rise Atlantic 3.7 3.2 

Continental Slope Atlantic 6.4 2.2 

Seamount Atlantic 3.6 2.1 

Abyssal Plain Atlantic <1.3 

Abyssal Plain Atlantic <1.5 

Rise Norwegian Sea <1.1 

Abyssal Hills Pacific 3.4 4.9 

Continental Shelf Norwegian Sea 2.5 2.0 

Marginal Plateau Norwegian Sea 1.9 1.9 

Abyssal Hills Pacific 2.5 4.2 

Continental Rise Mediterranean < 1.4 

Continental Rise Norwegian Sea <1.2 - -  

Marginal Plateau Norwegian Sea 2.1 1.5 

Abyssal Hills Pacific 2.3 2.2 

Continental Rise Mediterranean <1.0 

Basin Norwegian Sea 5.4 1.8 

Basaltic Interface* Atlantic (av. of 50) 259 + 74 1.8 -+-0.4 

Basaltic interface* Pacific (av. of 50) 99 i 36 1.6 • 0.4 

RMS displacement (roughness), h, and spectral slope parameter b, for various band-limited 

topographies as defined in Equation 13.1.21. Spatial wave number band pass is 0.003 to 0.03-1 for 

all cases except the basaltic interfaces (*), where the band pass is from 0.00006 to 0.003 m - 1  . In cases 

where the RMS roughness is less than the resolution of the measuring system, the upper limit of RMS 

is given, and b is not estimated. Source: Berkson and Matthews (1983). 

The appropriate spectral description of a backscat ter ing patch of ocean bot tom 

depends on the beam pattern " f o o t p r i n t "  (that is, the insonified area) and the 

frequency of the sound. The description of the province is general ly  determined 

from echo soundings made from a ship on the ocean surface. Then the footprint is 

very large, and the returns are averaged,  so that the scale of that spectral 

description is many meters or a fraction of a kilometer.  On the other hand, a 

remotely  operated undersea vehicle operat ing at higher  frequencies at closer 

ranges will backscat ter  from a much smaller  footprint. The spectral description 

and the rms roughness  appropriate to such a usage is very different, and the 

predict ions of backscat ter  will require a different value of b in Equation 13.1.21. 

At intermediate  ranges,  the backscattering is determined by the tilt of the surface 

as well as the local patch descriptors. Quantitative methods  for performing such 
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an analysis have been described by Fox and Hayes (1985) for the large-scale 

problem. Goff and Jordan (1988) have demonstrated how Sea Beam backscatter 

data (see Chapter 14) from a track 100 to 200 km long can be inverted to provide 

a statistical description of the sea-floor morphology. 

The power law relations and spectral regions of applicability depend on 

physiographic provinces (Malinverno 1989a, 1989b). Over limited dimensions 

on the sea floor and a limited spectral range, one can compute the root-mean- 

square roughness and spatial correlation functions from measurements of the 

displacements with respect to the mean level. 

Circularly Symmetric  Isotropic Correlation Function 

A two-parameter isotropic surface correlation function can be written 

C(r) exp [-ILl n] -- (13.1.23) 

where L is the omnidirectional "correlation distance" and parameter n is a 

positive number. Examples of correlation functions and their spectra are shown in 

Fig. 13.1.9. 

The function (Equation 13.1.23) is the exponential when n -  1 and the 

Gaussian when n - 2. The power of n in the correlation function is an indicator of 

the shape of the surface. When n > 1, the correlation function decays gradually 

for r/L < 1; this corresponds to a surface having large radii of curvature. When 

n < 1, the correlation decays very rapidly in the region r/L < 1; this corresponds 

to a surface having sharp angular features. The corresponding spectra and 

correlation functions for the exponents 0.5 < n <_ 2.0 are shown in Fig. 13.1.9. 

The Fourier transformations were evaluated numerically. 

Laboratory Model of a Rough Ocean Bottom 

A laboratory scale model of an "isotropic" rough surface was constructed by a 

visually "uniform" distribution of #2 aquarium gravel (consisting of stones 

roughly 1/4" in size) in order to scale-model the coupling between modes of 

propagation in a rough-surfaced waveguide (Kasputis and Hill 1984). The results 

of very careful measurements of the statistics of the "uniform," "isotropic" 

surface are a cautionary demonstration of how unlikely it is to find an isotropic 

correlation function in the real world. (Furthermore, turbidity currents in the 

ocean can cause significant anisotropy of the correlation function.) The rms 

height was 0.150 cm; the correlations were different in different directions (Fig. 

13.1.10), with correlation lengths that ranged from 1.2 to approximately 2.0 mm 
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Figure 13.1.9 Examples of isotropic correlation functions a) described by Equation 
13.1.23 for various values of n, and their spatial "power" spectra, ~(K),  which are 
Fourier transforms of the spatial correlation functions b). The Gaussian correlation 
function is the case n = 2. 
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Figure 13.1.10 Variation of correlation function for different directions in a laboratory 
scale model that used "uniformly spread" nominal 1/4" gravel. The Kasputis-designed 
micrometer measured heights in increments of 20 microns at spacing of 35 microns. (From 
Kasputis, S., and P. Hill, "Measurement of mode interaction due to waveguide surface 
roughness," MS thesis, Naval Postgraduate School, Monterey, CA, 1984.) 

(depending on the direction), with an average value of 1.48 mm. Comparing with 

Fig. 13.1.9, we clearly see that the different values of n were all somewhat greater 

than unity. 

13.2 Forward Scatter in the Specular (Mirror) Direction" 

Simple Concepts 

Before we apply the general HKF theory to scatter from a rough surface (section 

13.3), it is helpful to consider the important case of surface scatter in the mirror 

(specular) direction under simplifying assumptions. The results of this section 

provide guidance in the interpretation of the more general problem. "Specular 

scatter" is defined as scatter in the direction of mirror reflection (i.e., the angle of 

scatter equals the angle of incidence and is in the same plane of incidence). Our 

important conclusion will be that specular scatter consists of a coherent 
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component, which has a fixed-phase relation with respect to the incident sound, 

and an incoherent component. The coherent component will be found to depend 

on the rms height and the PDF of the surface roughness. The incoherent sound is a 

function of the two-dimensional statistics of the surface and the geometry of the 

experiment. 

The special case of specular scatter at grazing incidence to a steep-sloped 

rough surface will be discussed in section 13.4. 

13.2.1 M E A N  COHERENT SCATTERED PRESSURE IN THE 

SPECULAR DIRECTION, ACOUSTICAL ROUGHNESS 

Consider Fig. 13.2.1, in which a spherical wave front, which is approximated by a 

CW plane wave segment at (AA), is incident on a rough surface that has 

homogeneous, stationary statistics as described in section 13.1. Assume that all 

points of the interface have a reflection coefficient Rle due to the impedance 

change at the interface, and that ka >> 1 where a is the local radius of curvature 

and k is the acoustic wave number. With this Kirchhoff assumption, each ray 

experiences a phase shift relative to the phase of reflection from the mean surface. 

The phase shift depends on k, the surface displacement, ~, and the angle of 

incidence, 0. The specular scatter contributions come from insonified horizontal 

facets. For a facet with displacement ~, the path difference to the plane wave 

position at B B is 2~ cos 0 and the spatial phase difference equals 

k ( 2 ~" cos 0 ) (13.2.1) 

OS 

Figure 13.2.1 Path differences for specular scatter from a typical horizontal facet of a 
rough surface. In general, many such horizontal facets will be insonified by an incident 
beam. 
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In terms of the perfect mirror-reflected signal from the mid-surface, at any 

instant the real value of the pressure reflected at a facet of the rough surface will 

be 

Prough -- R12Pmir c o s  (2k(cos 0) (13.2.2) 

We assume that during each ping the rough surface is "frozen" in time. The 

many horizontal facets of different elevations within an insonified surface result 

in many contributions to the total specularly scattered pressure at any instant of 

time. For a given surface configuration (a "realization"), the interfering sum of 

the contributing pressures produces a coherent pressure as represented by Prough. 
Similarly, other surface realizations of the same statistics produce specularly 

scattered, phase-shifted signals. 

The average pressure from these interfering reflections at a particular time 

depends on the statistics of the surface. For simplicity, assume that the PDF of the 

surface is Gaussian. To find the average relative pressure, calculate the product of 

the relative amplitude of each component- -R12 cos(2k~ cos 0) times the 

Gaussian PDF from Equation 13.1.1 m and integrate over all ~. The average of 

the ratio of the coherent, specularly scattered pressure to the mirror-reflected 

pressure from the mean surface is 

\Pmirror(Pr~ I - R12 I-~{c~ (2k~c~ exp [--2 (13.2.3) 

where h is the rms displacement of the surface. The integration yields the 

coherent reflection coefficient for a Gaussian rough surface, 

Rc~176176 (13.2.4) 

Note that, for CW, the stacking average over instantaneous values is equivalent to 

an average over the peak values Rcoh -- (erough/Pmirror) �9 
The rough surface coherent pressure reflection coefficient, Rcoh, which is 

often called (R) in the literature, is the product of the coefficent due to a change 

of medium, R12 (section 2.6.11), and that fraction owing to mutual phase 

cancellations of the scatter contributions, exp[-(2kh cos 0)2/2]. When the rough 

surface is symmetrical m t h a t  is, when the skewness moment m 3 (Equation 

13.1.3) of the displacements is z e r o m t h e  contributing phase shifts from below 

and above the mean level cancel each other. Then, although the amplitude is 

reduced, the phase of the coherent mean pressure is the same as would occur for a 

mirror-reflected pressure from the mean surface. When there is peakedness or 
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kurtosis (Equation 13.1.4), more of the horizontal facets are at small or zero 

displacements from the mean surface, and the coherent component is enhanced. 

The specularly scattered coherent intensity relative to the mirror-reflected 

intensity is 

2 
Rcoh --  ~l~22e-gR ( 1 3 . 2 . 5 a )  

where 

gR, the "acoustical roughness" -- (4k2h 2 COS 2 0 )  (13.2.5b) 

Sometimes the quantity (gR)1/2 is called the "Rayleigh Roughness Parameter," 

to honor the discoverer of the effect. Sometimes Equation 13.2.5b is written in 

terms of the grazing angle, in which case the sine of the grazing angle replaces the 

cosine of the angle with the normal to the surface. An "acoustically smooth" 

surface, gR <~ 1, has stronger specularly scattered energy because it has an rms 

height much less than the acoustic wavelength or is nearer grazing, 0 ~ 90 ~ (But 

see section 13.4 for steep-sloped roughness elements.) 

The predictions of Equation 13.2.5a have been carefully tested many times in 

laboratory wind-blown wave systems with a near-Gaussian PDF of heights. Mayo 

(1969) correlated the incident and scattered signals in the specular direction at 

50kHz and 100kHz, at seven angles of incidence and several surface rms 

heights, 0.1 cm < h < 0.45 cm (Fig. 13.2.2). The simple conclusion (Equation 

13.2.5a) is confirmed up to gR ~- 1. Data from these and additional experiments 

have been analyzed by Clay, Medwin, and Wright (1973), who found that small 

deviations from the Gaussian PDE and shadowing, profoundly change the 

coherent scatter at large gk. An early determination of bottom rms roughness by 

studying coherent specular scatter from the deep sea floor was that of Clay 

(1966). 

13.2.2 I N V E R T I N G  FOR THE PDF OF H E I G H T S  

For a general PDF of heights, w(~), Equation 13.2.3 would be written 

P,Ol,gh - -  Pk.12 w((){e -2ik:c''~~ d( (13.2.6a) 
\Pmirror -oc 

Note that the integral (13.2.6a) has the form of the Fourier integral transform- 

ation, with co replaced by 2k cos 0. Therefore one can calculate its inverse, 
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Figure 13.2.2 Ratio of rough-surface, specularly scattered coherent intensity (Icoh . . . .  t )  

to smooth-surface reflection, Imirror, relative to the simple theoretical prediction e -gR , for 
various values of roughness parameter, gR. (From Mayo, N. H., "Near-grazing, specular 
scattering of underwater sound from sea and swell," M.S. thesis, U.S. Naval Postgraduate 
School, Monterey, Calif., 1969.) 

which is the acoustical estimate, Wa, of the PDF of the surface displacements, 

Wa(() -- ~R1------~2 - ~  Rss exp (2ik( cos O)d(k cos 0) (13.2.6b) 

The good agreement between the observed specular scatter and that predicted 

from the wave height as well as the result of inversion are shown in Fig. 13.2.3 for 

a laboratory experiment of Spindel and Schultheiss (1972). 

13.2.3 STATISTICS  OF SCATTER I N  T H E  S P E C U L A R  D I R E C T I O N  

Assume that we have a CW beam specularly scatttered from an ocean surface. As 

the ocean surface moves by a fixed sonar, or as a sound beam on a ship moves 

past a rough bottom surface, the scattered pressure amplitude ]P] will fluctuate. 

From statistics theory (see also section 9.4.2), it is known that the mean-squared 

value of a randomly varying quantity is equal to the square of its mean value plus 

the variance of the quantity. Therefore the total specularly scattered intensity, 

which is proportional to ([ pZ]), can be determined from the sum of the coherent 
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Figure 13.2.3 a) Coherent reflection coefficient for specular scatter, (Rco~), measured 

in a laboratory, wind-driven sea compared with the value predicted from a Gaussian PDF 

of surface displacements (Re). b) The PDF inverted from acoustical measurements w a 

(Equation 13.2.6) is compared with the wave staff measurements of the PDE Ww s. (From 

Spindel, R. C., and P. M. Schultheiss, "Acoustic surface-reflection channel characteriza- 

tion through impulse response measurements," J. A c o u s t .  Soc .  A m .  51, 1812, 1972.) 



13.2. Forward Scatter in the Specular (Mirror) Direction 599 

component described in the previous section, ([P[) 2, and an incoherent 

component, the variance of lP [, 

(IP2[>- (IPl> 2 + Var el (13.2.7) 

Var [P 1, a measure of the random phase and amplitude of the scattered sound 

that depends on the correlation of surface displacements, will be considered in the 

next section. The similarity between variability of the envelope of scattered 

sound and the statistics of noise added to a sinusoid in an electrical circuit allows 

the results developed by S. O. Rice (1954) to be adapted to sound scatter (see also 

section 9.4.2). Ricean statistics for sound scatter can be defined in terms of the 

relative coherence, 

7 -  (coherent intensity)/(incoherent in tensi ty)-  ([pl)a/var IP[ (13.2.8) 

For acoustically smooth surfaces, gR < 1, 3: > 1, there is a relatively large 

coherent component, and the specularly scattered pressure distribution is nearly 

Gaussian (Equation 13.1.1). At the other extreme, for acoustically rough surfaces, 

gR > 1, 7 < 1, the probability density function approaches the Rayleigh PDF for 

the sum of a large number of randomly phased, equal amplitude components, 

WRayz(lP]) - ~n ~- exp - (13.2.9a) 

The distribution described by Equation 13.2.9a was derived by Lord Rayleigh 

(1894, 1896, 1945) for the specific problem of determining the sum of a large 

number of randomly phased, equal-amplitude wave components. It can be shown 

(e.g., Beckmann and Spizzichino 1963) that of all possible distributions of the 

amplitude of a field scattered by a symmetrically distributed rough surface, the 

Rayleigh distribution has the greatest variance; in terms of acoustic pressure 

during sound scatter, that value is 

Variance - 0.212 (([Pscat l/[Pmir l) 2) (13.2.9b) 

where I Pmir [ is the amplitude of the pressure that would be reflected from a 

mirror-smooth surface. 

Electrical engineers sometimes represent the magnitude and phase of a time- 

varying component by a "phasor." A phasor is drawn with a length proportional 

to the amplitude and at an angle that represents the relative phase of the 

component. Phasors add like vectors. From the phasor point of view, a near- 

Gaussian distribution is caused by the addition of a strong constant phasor 

(representing the mean value of the scattered sound) to much smaller, randomly 

distributed, time-variable phasors. On the other hand, the Rayleigh distribution is 
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approached for sound scatter when the constant phasor component, which 

represents the coherent signal, is very small compared with the variable, 

randomly phased contributions. 

The change of the PDF of the scatter for surfaces of different acoustical 

roughnesses has been demonstrated by using a laboratory wind-driven sea. In the 

top panel of Fig. 13.2.4, at gR = 0.12, ? = 10, the coherent intensity ([p2 I) is 10 
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Figure 13.2.4 PDF of specularly scattered, normal-incidence sound amplitudes for three 
laboratory Gaussian water surfaces of rms heights, h = 0.059 cm, 0.121 cm, and 0.206 cm 
(top to bottom). The PDF of the pressure amplitude goes from Gaussian to Rayleigh as the 
acoustical roughness increases (top to bottom) from gR = 0.12 to 0.50 to 1.5 and the 
relative coherence of the specularly scattered sound intensity, 7, decreases fom 10 to 3 to 
0.5. The sound frequency was 70 kHz. (From Ball, E. C., and J. A. Carlson, "Acoustic 
backscatter from a random rough water surface," M.S. thesis, Naval Postgraduate School, 
Monterey, Calif., 1967.) See also Stephens (1970, Chap. 3). 
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times the incoherent Var P, and the PDF of the amplitude of the specular scatter is 

virtually Gaussian, with a large mean value of lP l- When g R -  1.5, 7 = 0.5 

(bottom panel), and the coherent intensity is half  the incoherent, the peak- 

scattered amplitude has been greatly reduced and has nearly a Rayleigh PDE 

13.2.4 I N T E N S I T Y  OF SOUND SCATTERED IN  THE SPECULAR 

DIRECTION:  SCALE-MODEL RESULTS 

The coherent component  of intensity in the specular direction decreases with 

increasing acoustical roughness (Fig. 13.2.3a). Extensive theoretical research has 

shown that at roughness gn >> 1, the total scattered intensity will be dominated by 

the incoherent component.  For plane-wave incidence at a surface with a Gaussian 

PDF and a Gaussian correlation function, the forms of the contributing 

components are shown in Fig. 13.2.5. 
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F i g u r e  13.2.5 Specularly scattered, mean-squared pressure relative to mirror reflection 
as a function of the surface acoustical roughness, gR, showing the dominating coherent 
component at low roughness and the controlling incoherent component at larger acoustical 
roughness that depends on the surface correlation function and the area insonified. To get 
these theoretical results, an incident plane wave of cross section area A is assumed, as well 
as a Gaussian PDF of heights and a Gaussian spatial correlation function. 
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The incoherent scattering theory line of Fig. 13.2.5 has been calculated by 

assuming that the incident sound is a plane wave of cross section area A, that the 

surface roughness has a Gaussian PDF of heights and an isotropic Gaussian 

spatial correlation function of displacements. The asymptotic high-frequency 

value is then found to be proportional to the insonified area and inversely 

proportional to the mean-square slope, s 2. Eckart (1953), Beckmann and 

Spizzichino (1963), and Tolstoy and Clay (1966, 1987) also show that, for such a 

Gaussian surface, the rms slope, s, is simply related to the rms height, h, and the 

isotropic spatial correlation length, L. 

The general relation is 

@2) = _ h 2 ~2[C (~)]1 (13.2.10a) 

From Equation 13.1.17, for an isotropic Gaussian spatial correlation function of 

correlation length L, 

C(~) - exp [ - (~ /L)  2] (13.2.10b) 

After differentiating (13.2.10b) to insert into (13.2.10a), 

s -  v /2h /L  (13.2.10c) 

where s is the rms value of the isotropic slope. However, note that real surfaces 

such as in Figs. 13.1.5 and 13.1.10 generally do not have an isotropic Gaussian 

spatial correlation function. 

Laboratory experiments by Ball and Carlson (1967) and Medwin (1967), 

observing multifrequency, normal-incidence scatter in a wind wave tunnel, have 

confirmed the form of Fig. 13.2.5. At the top of Fig. 13.2.6 is a sketch of one 

experimental setup to measure the specular scatter at normal incidence. The PDF 

of the slopes was determined by photographing ten cases of the glitter deflection 

at various positions below a string grid as shown typically at the bottom of Fig. 

13.2.6. The rms slope s and ratio of the windward to the crosswind slopes, Sw/S C, 

were similar to Fig. 13.1.2 and were found from Equation 13.1.5 to be equivalent 

to a wind 1.4 m/s at 12.5 m over an ocean surface. The rms slope has also been 

obtained by integration of the output of a photocell, using a colocated point 

source (see Fig. 13.1.2) in this early experiment. 

To determine both h and s by specular scatter, eight sequential pings of 

frequencies from 21 to 194kHz, total duration 2.2ms, were radiated 

perpendicular to the surface, from a low Q Mylar transducer. The PDF of 

the specular scatter at 21 kHz was nearly Gaussian; therefore it was assumed 

that, at that frequency, the scatter was coherent, and Equation 13.2.5 was used to 
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Figure 13.2.6 Above, sketch of experimental arrangement. The floating water wind 

tunnel was constructed o f  wood in the form of an inverted " U "  in cross section. The 

2.2 ms duration pulsed sound beam was a sequence of 12 to 29 cycles of each of eight 

frequencies from 21 to 194kHz insonifying the surface in the transducer's near field. 

Below, a typical glitter pattern used to determine the PDF of slopes by the light deflection. 

(From Medwin, H., "Specular scattering of underwater sound from a wind-driven 

surface," J. Acoust. Soc. Am. 41, 1485-95, 1967.) 
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calculate the rms height, h. This allowed the specification of the acoustical 

roughnesses 0.3 < gR < 25 for the range of frequencies of the experiment. 

At gR = 10, 14, 19, 25, the statistics of the scatter approached the Rayleigh 

PDE Therefore, the specular scatter was assumed to be totally incoherent for 

these four asymptotic points (Fig. 13.2.7). The rms slope s was calculated from 

acoustics theory for gR ~ 1 and found to be in satisfactory agreement with the 

optical value. 

In summary, the value of the rms slope, obtained optically, or from formulas 

such as Equation 13.1.5 for the ocean surface, can be used to estimate the 

magnitude of the asymptotic (large gR) incoherent component of specular scatter 

for a surface assumed to have a Gaussian PDF and a Gaussian correlation 

function. Inversely, the rms slope, s, can be estimated from measurements of 

specular scatter for large gR values if the surface is Gaussian in height and 

correlation function (see section 13.3.3). 
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F i g u r e  13.2.7 Experimental results showing the normal-incidence, mean-squared, 
specularly scattered pressure relative to mirror reflection for eight frequencies, using the 
wind wave laboratory arrangement shown in Fig. 13.2.6. The nearly plane-wave 
insonification of the surface was over an area approximately equal to the area of the 
source, a 24 cm diameter piston. For gk < 1, the relative intensity goes as exp (-gR). For 
gR > 10, the relative intensity is independent of frequency and is proportional to the 
insonified area and inversely proportional to the mean-square slope. The theoretical 
variance for a Rayleigh PDF (Equation 13.2.9b) is shown by dashed line for the mostly 
incoherent specular scatter at gR > 1. (From Medwin, H., "Specular scattering of 
underwater sound from a wind-driven surface," J. Acoust. Soc. Am. 41, 1485-95, 1967.) 



13.2. Forward Scatter in the Specular (Mirror) Direction 605 

A much more extensive set of laboratory measurements (Thorne and Pace 

1984) employed a parametric source (section 5.4) to get narrow beams with a 

wide range of frequencies. An underwater pressure-release surface was 

constructed of low-density polyurethane with Gaussian PDF of displacements 

and a simple "isotropic" Gaussian correlation function to represent an ocean 

surface. The phase-sensitive HKF scattering solution of section A10.5 of Clay 

and Medwin (1977) (see section 13.3.2 of this chapter) was used to predict the 

incoherent normal incidence surface scatter, and the inverse proportionality to the 

mean-square slope, s 2, was confirmed (for this Gaussian surface) to be 

independent of sound frequency for gR -> 10. The interrelation of s, h, and L 

(Equation 13.2.10c) was applied to calculate s. 

Ocean Experiments 

Clay (1966) showed that the bottom roughness is characteristic of sea bottom 

processes, and suggested ways to measure it. The methods were then used by 

Leong (1973) and Clay and Leong (1974) to consider a sea-floor area southwest 

of Spain. The 12 kHz echo-sounding profiles, the 3.5 kHz subbottom profiles, and 

the seismic profiles (25 to 100Hz) were analyzed to estimate the sea-floor 

roughness periodograms in the four spatial wavelength ranges: less than 1 km, 0.6 

to 3 km, 2 to 6 km, and 6 to 12 km. The histograms of the spectral estimates 

mapped consistently into small "provinces" on the sea floor. 

T. K. Stanton (1984) has employed a technique similar to the experiment 

resulting in Fig. 13.2.7 to obtain the rms height h of ocean bottom "micro- 

roughness" at small values of gR and has supplemented this by obtaining bottom 

correlation information from the Ricean statistics of the specularly scattered 

sound. A ship-mounted 3.5 kHz sonar was used at water depths of 20-30m to 

identify ripples, beds of rocks, and nodules. 

13.2.5 OTHER SPECULAR SCATTER EFFECTS  

Non-Gaussian Surfaces 

The several derivations that lead to the conclusions that rms height h can be 

obtained from the low roughness (gR ~ 1) specular scatter, and rms slope s can be 

determined from the very high roughness data (gR >> 1), are based on surfaces 

defined by a Gaussian PDF of heights and Gaussian correlation function (simply, 

"Gaussian surfaces"). When the surface is not Gaussian, one may find several 
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arbitrary surface realizations that produce scattered pressures that deviate from 

the above conclusions (Kinney and Clay 1985). 

Short-Term Signal Enhancements 

The theoretical predictions of specular scatter, and the measurements that lead to 

statistical data such as displayed in Fig. 13.2.4, are based on long-term 

observations for a Gaussian surface. But a Gaussian surface will produce very 

different scatter for shorter periods of time. It may even cause acoustic pressures 

greater than for plane surface reflection, for shorter periods of time (Medwin 

1967). For example, Perkins (1974) and Shields (1977) have used a laboratory 

wind-blown Gaussian surface to demonstrate signal enhancement (compared 

with average values) of the order of 3 to 5 dB for surfaces of roughness of 

0.5 < gR < 4 during experiments that lasted for five "ocean"  surface wave 

periods. At sea, this would correspond to specular scattering enhancements over 

many seconds to minutes for certain sound frequencies. 

Long-Range Reverberation 

Theoretically, it should be possible to use long-range reverberation to extract 

information about prominent underwater topographic features. Good progress 

has been made, so that it is now clear that major echoes in reverberation come 

from the faces of escarpments that are large enough and flat enough (compared to 

the acoustic wavelength) and properly oriented to coherently reflect the incident 

sound in a deterministic manner. A positive ocean-basin geomorphological 

identification has been made by use of 268 Hz sound traveling beyond two 

convergence zones over ranges of 100 km even in the presence of refraction, 

Lloyd's mirror interferences, and the cacophony caused by smaller diffractors at 

the western Mid-Atlantic Ridge (Makris et al. 1995). 

13.3  S u r f a c e  S c a t t e r  o f  S o u n d  

The original theoretical research on scattering from rough surfaces dealt with 

incident plane waves and dates from the 1950s (Eckart 1953; Isakovitch 1952); 

the first book was by Beckmann and Spizzichino (1963). 1 A recent, excellent 

book gives a detailed treatment of surface scattering using incident plane waves 

~Most of this electromagnetics reference deals with scalar waves that may be interpreted as acoustic 

waves. 
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with the Helmholtz-Kirchhoff integral to compute scattering at rough interfaces 

(Ogilvy 1992). 

Direct applications to ocean acoustics requires the introduction of Fresnel 

corrections (Horton 1970). Horton pointed out that the incident-plane-wave 

assumption is equivalent to having a large planar transducer radiating to the 

scattering surface in the near field. In the incident-plane-wave assumption, the 

scattering surface is small compared with the first Fresnel zone. (This was the 

condition in the experiment described in Fig. 13.2.6.) However, common 

underwater field experiments have geometries with small transducers far from the 

scattering surface. Then, the incident wave fields are curved, and Fresnel effects 

and corrections are important. We call the theory that includes Fresnel effects the 

HKF theory. 

The conditions for validity of the Kirchhoff and small-slope assumptions 

made in the original derivations (which we follow) is a field of active research. In 

general, one compares exact solutions for specific geometries with the various 

approximate theoretical approaches and looks for higher-speed methods of 

calculation. Thorsos (1988) points out that predictions based on the Kirchhoff 

approximation are generally acccurate for surfaces with a Gaussian PDF of 

heights and slopes, provided that the correlation length is greater than the sound 

wavelength, L > 2. Kaczkowski and Thorsos (1994) use the parameter khs 

(where k is the acoustic wave number, h is the Gaussian rms height, and s is the 

Gaussian rms slope) to evaluate an efficient "operator expansion method" of 

solution. Thorsos and Broschat (1995) have extended the Voronovitch (1985) 

small-slope approximation method to speed the accurate calculation of scattering 

from rough surfaces. 

13.3.1 SCATTER OF A SPHERICAL WAVE: 

HELMHOLTZ-KIR  CHHOFF-FRESNEL SOLUTION 

Now we formally employ the HKF theorem developed in Section 7.2 to derive 

the scattering of a CW signal as a function of the sonar characteristics and the 

surface statistics. Assume the source projects a Gaussian beam pattern (section 

4.2) that insonifies a small area of the rough surface (Fig. 13.3.1). The Gaussian 

insonification function is convenient because it can be integrated easily. 

We will use the HKF integral (Equation 7.2.19) with the following 

assumptions: 

(1) The source and receiver are far from the insonified area. 

(2) The dimensions of the source are small compared with R1 and R2. 
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e l /  u 1  I '~ Receiver x 

Source 

Figure 13.3.1 Scattering geometry. Differential area dS is at the position x, y and has 
height ( with respect to the mean surface. The plane of the source is perpendicular to range 
R1, which is in the x-z plane. The plane of the transducer x'-y' is normal to R 1. 

(3) No surface shadowing occurs. 

(4) The reflection coefficient, ~k~12, is constant over the insonified area. 

(5) The scatter diverges spherically from the insonified points. 

The incident sound pressure is 

Dt eo Ro exp  [ i ( 03 t - k R s ) ] 

Pinc - Rs (13.3.1) 

where Rs is the range from source to surface e lement  dS (Fig. 13.3.1); P0 is the 

source pressure at range R0 - 1 m; D t is the Gaussian transmission function; Wg 

and Lg are the half-beam widths to D t = e - l  , described by 

2 
A ~b -~ sin t~ - ~ (13.3.2a) 

kwe 

and 

2 
AZ -~ s i n z  rL"g (13.3.2b) 
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At distance R1, the transducer's insonification factor is 

D t -- exp X2 ~-~ (13.3.2c) 

where 

AZ 
X ~ R l and Y TM R1Ad ? 

COS 01 
(13.3.2d) 

The pressure scattered from a point at range R2 to the receiver is 

iPoRoR12kG(O ) exp [iogt - ik(R 1 + R2) ] p~-- 
2rcR1R2 

I I  ~ [x('-~f y2yf )]  • D t exp - i  + .-Z + 2~x + 2fly + 27( dy dx 
- - 0 0  

(13.3.3a) 

where 

( 1+ / xf 2 k cos 20 1 - sin 2 0 2 COS 2 03 

R----7-- 
(13.3.3b) 

+ 1 
(13.3.3c) 

COS01 -+- COS 02 
G(O) ~ 2 (13.3.4) 

2~ ~ k(sin 01 - sin 0 2 COS 03) (13.3.5a) 

2fl _= - k ( s i n  0 2 sin 03) (13.3.5b) 

27 =-- k(cos 01 -3r- COS 02) (13.3.5c) 

Equation 13.3.4 is the small slope form of G(O). From Tolstoy and Clay (1987, 

p. 199) and Ogilvy (1992, p, 84), the larger slope correction form of Equation 

13.3.4 is 

1 + cos 0 1 cos 0 2 - sinO 1 sinO 2 cos 0 3 (13.3.6) 

Gsc (0)--  cos 0 1 + cos 0 2 

This factor misbehaves as the 01 and 02 tend to 90 ~ ~ that is, at grazing angles of 

incidence. We suggest using Equation 13.3.4 near grazing. (See also section 13.4 

for grazing incidence at steep-sloped surfaces.) 
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Smooth Surface Image Reflection 

When roughness ( = 0, the integation of the HKF integral (Equation 13.3.3a) 

over the infinite limits gives the reflection as describred by a virtual image behind 

the surface. For an example, we choose the vertically incident specular direction 

and evaluate the parameters as follows: 

D, = 1,G(0) = 1,0~ = 0, fl = 0 , 7 ( =  0, and 

k ( 1  1 )  k ( R I + R 2 )  

E + E  -  -RI 7 

(13.3.7a) 

The integral (Equation 13.3.3a) reduces to 

p ~ -  iPoRoR,2k  exp [io~t - ik(R,  + R2) ] 
2~zRiR 2 

{ 1 • - ~  exp - i k ( x  2 + y2) \ 2RIR2 e I d y d x  

(13.3.7b) 

From mathematical handbooks, the infinite integral is 

e -a2-v2 d x  - -  

-,:x~ a 

(13.3.8a) 

where 

a 2 -- -- ik(RI + R2) (13.3.8b) 
2RIR2 

Therefore, the evaluation of the HKF integral for a smooth surface gives the 

reflected pressure as due to a virtual image at range R I + R 2, 

poRoR ,2  exp [icot - ik(R,  + R2) ] 
p = (13.3.8c) 

R! +R2 

The HKF integral converges to the image reflection because we kept the second- 

order terms in the integral. 

13.3.2 M E A N - S Q U A R E D  S C A T T E R E D  P R E S S U R E :  

S U R F A C E  S C A T T E R I N G  S T R E N G T H  

The scattered sound intensity depends on the rms height h and the correlation of 

the nearby surface displacements within the insonified area. We use Equation 

13.3.8c to compute the covariance (p*p((, q, r)). To do the operation 
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symbolically, let the complex conjugate p* represent the contribution from area 

dS and p(~, q, z), that from the nearby surface element dg:  

P* -- Is P[x, y, z]* exp [2i7(] dS (13.3.9) 

p(~, q, z') = Is P[x', y', z'] exp [-2i7~'] dS' (13.3.10) 

The covariance of the scattered pressure is 

(PP*)scat - ~, Js P[x,y, z]*P[x',y', z']( exp [2i7(( - ( ' )])dSdS'  (13.3.11) 

The Rough Surface Term 

The surface's effect on the incident wave is described by the expression within 

( / ,  which is called the characterisic function W: 

W - (exp [2i7(( - (')]) = w 2 exp [2i7(~ - ~')d~ d( '  
- - O O  - - 0 ( 3  

(13.3.12) 

where W 2 is the bivariate PDE which depends on both the PDF at a point and the 

correlation of the surface heights, C (~, r/), between points. 

~,y + 11) -- [2rch2(1 - C2)1/2] -1 exp { ~.2 + ~,2 _ 2~1~,2C'1~ 
w2 (x,  y , x + 

J % 

(13.3.13a) 

where 

C -  (~1~2) 
h2 (13 .3 .13b)  

For a statistically stationary surface, the value of W depends on ( and (t and is 

a function of the separation ~ and q. 

Change variables to include an assumed dependence of W on ~ and ~/, 

,, ~ ,, 1"1 
x = x + -2' Y = Y + 2- (13.3.14) 

, ~ , r l  
x =x  --~,  y =y - ~  
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The surface integrals become 

(13.3.15) 

The Beam Geometry Term 

This term is expressed as 

G exp (+2i0~{ + 2iflrl) (13.3.16a) 

where 

G = exp ( - a ~  2 - at/r/2) (13.3.16b) 

and 

X 2 1 y2 1 

a ~ - - ~ + ~ 5 ,  a , - - ~ + 2 y - - -  5 
(13.3.16c) 

Therefore, the general expression for the mean-squared scattered pressure is 

2k2 Gz (O) Aei 'O ~ f f ~ {p p ,  ) =p2 R20 Pv 12 8 n 2 e21 R 2 G W e 2i (er ~, + f3 n)d~ dq (13.3.17) 

where A = rtXY is the insonified area. 

One notes that, since the scatter is a function of the geometry through c~ and fi, 

bistatic experiments are needed to characterize the surface correlation function. 

On the other hand, in the specular direction, where ~ = fl - 0, the rms height h 

can be determined as discussed in section 13.2. 

Commonly, for surface-scattered sound, Equation 13.3.17 is written in the 

simpler form 

A , S  (p p , )=p2 R 2 R 2 R~ (13.3.18) 

where the scattering coefficient, S, which includes all of the parameters that 

describe the experiment and the surface, is 

5 51(122k2 G2(O) e i m X f f ~  
- 871; 2 G W e  

2i ( ~  + ~q)d~ d'l] (13.3.19) 
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If the assumptions of the derivation are correct, we can characterize a rough 

surface acoustically by performing an experiment to get the surface-scattering 

coefficient 

(p p *) R2 R 2 (13.3.20a) 
5 - p 2 R 2  A 

for CW or 

[tips ]s R2 R2 

5 -[tips ]o R2A 
(13.3.20b) 

for an impulse. 

It is common to use the 10 times logarithm of 5, to obtain the scattering 

strength of the surface 55, which is expressed in decibels: 

55 = 10 lOgl0 5 (dB) (13.3.21) 

In general, to characterize the surface acoustically, through 5, the complete 

Equation 13.3.17 must be integrated, using the surface correlation function and 

the particular beam pattern of the experiment. The solution is then best left to 

computer integration. 

Since 5 has the form of a two-dimensional Fourier integral, in principle, 

measurements of 5 can be used to determine the roughness parameters. 

13.3.3 DEPENDENCE OF SPECULAR SCATTER ON THE 

PARAMETERS OF THE EXPERIMENT: APPARENT 

REFLECTION COEFFICIENT AND BOTTOM LOSS (dB) 

Some people like to look at the specularly scattered sound (mirror direction) as an 

apparent reflection, which is then simply called a "reflection with reduced 

amplitude." This permits the characterization of an ocean bottom surface 

interaction in terms of the simple concept of "bottom loss per bounce." To do 

this, the squared "apparent reflection coefficient," R 2a, is written in terms of a 

point source at range R1 from the surface, and the receiver at range R2 from the 

surface, and is defined in terms of the received intensity, assuming spherical 

divergence. 

<p p = po 2 ( +R2 )2 a3.3.22) 
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One needs to look at the concept analytically to determine the implications of 

Equation 13.3.22. To evaluate Ra 2 analytically, introduce (pp*)/(pZR2) from 

Equation 13.3.17. For specular scatter, ~ = fl = 0 and G(O) = cos 0. Also use 

A = ~zXY = rc[RI(AZ) / cosO][R1Aq9 ] to get 

R 2a : R22k2 (cos O)(Az)(Aq))ei~ 2 -k- R2) 2 1 joc_e~ G Wd~ dY I (13.3.23a) 

Clearly, this squared apparent reflection coefficient not only depends on the 

ranges R1 and R2 but also is a function of the frequency, the geometry, the beam 

pattern, and the correlation function of the surface (through W). Equation 13.3.22 

is therefore a superficially simple representation of the complex specular 

scattering process. Some of the real consequences of specular scatter were 

described from the point of view of laboratory experiments in section 13.2.4. 

When the apparent reflection coefficient is used, one expresses the bottom loss 

as 

BL (dB) = 10 lOgl0 (gL]) 

When the bottom is smooth, the problems due to incoherent scattering 

components disappear, and the bottom loss is simply 

-- R12) (13.3.23c) BL (dB) 101ogl0 ( 2 

for a smooth bottom. 

Dependence on Surface Correlation Function 

When the PDF of surface displacements is approximately Gaussian, one 

estimates the characteristic function W by using the bivariate Gaussian PDE 

w2 of Equation 13.3.13a in Equation 13.3.12, to obtain 

W =  exp [ -@2h2(1 -  C(~,q))] (13.3.24) 

The specular scattering direction is particularly simple. In order to evaluate 

(pp*), we first obtain 27 from Equation 13.3.5c, 

27 = 2k cos 0 (specular, 01 = 02, 03 = 0) (13.3.25) 

The characteristic function is then given in terms of the acoustical roughness 

parameter, gR (see Equation 13.2.5b), and the correlation function 

Wspec ~- exp [ - g R ( 1 -  C(~,q))] (13.3.26) 

where gR = 4k2 h2 cos2 0. 
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Incoherent scatter depends on the form of the spatial correlation function. 

Gently curving surfaces have spatial correlation functions that may be described 

by 

C -- 1 - a 2 ~  2 b2r/2 (13.3.27) 

where ~ and r/are the orthogonal spatial lags. These are, in fact, the first three 

terms of the expansion of the two-dimensional Gaussian correlation functions 

given in Equations 13.1.16 and 13.1.17. 

Surfaces with sharply peaked comers may be describable by an exponential 

function or by a linear approximation to the exponential correlation function, 

In either case 

C - l - a , l ~ l - b l l r / I  (13.3.28) 

C - 0 for r/> r/1 and ~ > ~ (13.3.29) 

Clay and Leong (1974) and Clay and Medwin (1977, pp. 520-22), give algebraic 

expresions for the evaluation of S, assuming the correlation function is described 

by Equation 13.3.27 or 13.3.28. 

13,3.4 SCALE-MODEL PROOFS OF THE D E P E N D E N C E  OF SCATTER 

ON P A R A M E T E R S  OF THE E X P E R I M E N T  

Dependence on Angle of Incidence 

The dependence on angle of incidence of a spherical wave is revealed in Fig. 

13.3.2 Seven cycles of frequency 200 kHz were normally incident at a wind- 

blown surface, and the display was intensity-modulated to show the fluctuations 

of the sound amplitude. When gR < 1, the first return (from directly over the 

source) is virtually unaffected by the rough surface, but contributions from 

farther off-axis are increasingly incoherent. When gR > 1, not only the off-axis 

scatter but also the normal scatter varies strongly with time. There is a 

demonstrable dependence on the beam pattern. 

Dependence on Beam Width 

To show the dependence of the surface-scattering coefficient 5 on the beam width 

of an incident spherical wave, Clay and Sandness (1971) evaluated the theoretical 

expression for 5 (Equation 13.3.19) by first using their measurements of the 

surface correlation function and the geometry of the sound beam to determine G 



Figure 13.3.2 Left, intensity-modulated signals, specularly backscattered at normal incidence from a laboratory wind-blown surface. The 

white areas are positive phases of the signals. Signal frequency 200 kHz; ping length 7 cycles; 35 #s duration. Right, dependence of ,5 on 

beam width of the transducer. Points are experimental values of ,5 for six transducers of different beam widths at the same range. Curve is 

theoretical and is based on experimental measurements of the laboratory sea surface and the sonar beam characteristics. Rms height 

h - 0.14 cm, gR -- 5.5. From Clay and Sandness (1971). See also Clay and Medwin (1977, Figs. 10.5.5 and 10.5.6) for the correlation 

functions and their approximations. 
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and 'W for a normal-incidence laboratory experiment. The predicted curve of 5 is 

shown in Fig. 13.3.2. It agreed with the experimental values of 5, obtained with 

six transducers of different beam width. Both determinations confirmed that, for a 

given rough surface, 5 depends on the beam width. Experimental determinations 

of 5 are system- and geometry-dependent, rather than solely rough-surface- 

dependent. 

Dependence on Range 

Thorne and Pace (1984) and Pace et al. (1985) have specialized the HKF solution 

(section A10.5 of Clay and Medwin [1977] or Equation 13.3.19 of the previous 

section) to large acoustical roughness (gR -> 10) at normal incidence. This is the 

realm dominated by incoherent scatter, as indicated in Figs. 13.2.5 and 13.2.7. To 

simplify the calculation and the experiment, they evaluated the specular scatter of 

a Gaussian beam incident at right angles to a rough surface of pressure reflection 

coefficient R12 that has a Gaussian PDF of displacements and a Gaussian 

correlation function. The purpose of this model was to determine how S depends 

on range, and therefore to check on the region of applicability of the common 

Equation (13.3.20a). 

The experiment showed that the surface-scattering coefficient increases from 

low values in "near-field scattering" to stable values that can be used to define a 

rough surface in "far-field scattering." The increase in 5 for an increasing range, 

and the transition from near-field to far-field incoherent scatter, was verified by 

extensive laboratory experiments using manufactured polyurethane ("pressure- 

release") and gravel ("rigid") Gaussian surfaces. One of their figures for a 

pressure-release surface is Fig. 13.3.3. 

Equation 13.2.10c was invoked to convert from the measured correlation 

length to the desired dependence on slope. The far-field scattering region, within 

which the frequency-independent incoherent scatter can be used to characterize 

an isotropic Gaussian surface, is then given by 

e 2 ~ R1/[(2s/Oo)-  1] (13.3.30) 

where s is the rms slope of the surface, and 00 is the e-1 pressure half-beam angle 

of the transducer. 

For source and receiver at the same range, R2 --R1, the far-field region is 

simply 

0 o < s (13.3.31) 
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Figure 13.3.3 Scattering strength as a function of range for a manufactured Gaussian 
pressure-release surface insonified at normal incidence by frequency 250 kHz (gR = 15). 
The dots are experimental. The curved line is theoretical. 5FF is the far-field asymptote that 
occurs at 00 _< s, where 00 is the beam angle and s is the surface rms slope. (From Pace, 
N. G., Z. K. S. A1-Hamdani, and E D. Thorne, "The range dependence of normal incidence 
acoustic backscatter from a rough surface," J. Acoust. Soc. Am. 77, 101-12, 1985.) 

It is shown that under these special conditions, within the far-field region, the 

scattering coefficient of the acoustically very rough interface, gR > 10, has the 

constant value, independent of frequency, 

5 -- R~e/(16rcs2) (13.3.32) 

where RI2 is the pressure reflection coefficient at the interface. 

Under these conditions, the rms slope could be determined from Equation 

13.3.32 and the isotropic Gaussian correlation function could be calculated from 

Equation 13.2.10c. 

13.3.5 C O M P U T E R  M O D E L  OF P O I N T - S O U R C E  B A C K S C A T T E R  

F R O M  A N  O C E A N  S U R F A C E  

Generally a surface is studied by monostatic backscatter. The concept o f "  surface 

backscattering strength," BSS, has been used to characterize the backscatter from 

a surface that consists of point scatterers. From Equation 13.3.20a, 

BSS - 10 logio \ Io (13.3.33) 
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where I s s  - backscattered intensity measured at the source/receiver; I 0 - source 

intensity at 1 m; R -  range (meters) fom source/receiver to scattering surface; 

R 0 -- reference range at source -- 1 m; A - scattering area (m2). 

The derivation that led to the concept of a scattering coefficient 5 in Equation 

13.3.18 assumes that the point scatterers will cause the far-field intensity range 

dependence to vary as R -2 f rom the surface. But is it correct that scattering from 

the ocean surface is point scattering? One notes that if the ocean surface is 

smooth, for a point source the relative scattered (reflected) intensity varies as R -z, 

not R -4. If the ocean is wedgelike, the relative scattered intensity varies as R -3. In 

either case, it is clear that the definition of B S S  is critically dependent on the type 

of scatterer at the ocean surface. 

We have selected the wedge as a flexible element that can accomodate the 

various behaviors of a real rough surface. The flexibility derives from the fact that 

a wedge is comprised of reflecting facets and a diffracting edge. Furthermore, at 

long range, a finite wedge looks like a point scatterer, particularly if the incident 

sound has a wavelength that is large compared with the wedge extent. 

The theory for single wedges is given in sections 11.8 and 12.2. A computer 

model based on single wedge scattering was exercised by Medwin and Novarini 

(1981) to determine the backscatter from an ocean surface made up of finite 

wedge elements. First a model ocean surface was generated, as in Fig. 13.3.4. The 

surface has a Gaussian PDF of displacements selected to produce an rms height 

appropriate to the wind (Equation 13.1.12) and with wedge spacing in the 

windward direction to produce an appropriate surface-displacement correlation 

function (see section 13.1.1). The extent of the wedge was set by the correlation 

length in the crosswind direction. For a 5 m/s wind speed, the model rms wave 

height was Gaussian, ranging from h -  0 .139m to 0 .15m compared with a 

theoretical value of 0.14m. The windward correlation length was 2 .7m 

compared with the theoretical value 3.3 m. The rms slope was 6.3 ~ compared 

with 7.1 ~ + 0.9 ~ for a Cox and Munk type of calculation from Equation 13.1.5. 

Fifteen surfaces were defined, each containing 9 wedges (10 facets). The 

equations in section 12.2.1 for a pressure-release wedge were used to calculate 

the impulse response. Fig. 13.3,5, which is a typical response curve, shows 9 

wedge diffractions and one case of a reflection from a facet. The magnitudes and 

phases of the wedge diffractions depend on the angle of incidence as noted for 

single wedges, in section 12.2.1. 

Some of the results of the computer simulation are shown in Fig. 13.3.6. The 

left figure demonstrates that the grazing angle (30 ~ backscatter may fall between 

R -3 and R -4, depending on the frequency. This grazing angle was selected 

because it is more than three times the rms slope; therefore, reflections are 
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Figure 13.3.4 Model ocean surface with 100 wedges, appropriate to a wind speed of 5 m/s. Spacing between wedges, 0.342 m; rms 

height, 0.139m; spatial correlation length, 2.7 m; surface rms slope, 6.3 ~ (From Medwin, H., and J. C. Novarini, "Backscattering 

strength and the range dependence of sound scattered from the ocean surface," J. Acoust. Soc. Am. 69, 108-11, 1981b.) 
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Figure 13.3.5 Impulse response for one nine-wedge surface. The order of the wedge 
numbering was sequential along the surface; it differs from the time of arrival of the 
reflection and diffractions because of the range differences. For this case, wind speed is 
20 m/s; range, 500 m. (From Medwin, H., and J. C. Novarini, "Backscattering strength and 
the range dependence of sound scattered from the ocean surface," J. Acoust. Soc. Am. 69, 
108-11, 1981.) 

virtually absent, and we are looking at only the diffraction effect. The range 

dependence is R -4  (point scattering) for the low frequencies only, that is when the 

acoustic wavelength is comparable to, or larger than, the surface correlation 

lengths. For 8000 and 16,000 Hz, however, the acoustic wavelengths are less than 

one-tenth the correlation lengths. Then the scatterers are wedgelike, and the 

backscattered intensity follows the R -3 law to about 200 m. At greater ranges, 

interference between the wedge scatter causes the transition to the R -4  behavior. 

The backscatter is large when a facet reflects; for example, it is large near 

vertical incidence because horizontal facets are then very common (see Fig. 

13.1.2). Backscatter decreases to very small values for incidence angles nearer to 

grazing because it is asssumed that there are no vertical facets. The diffracted 

sound is the only significant component of intensity during backscatter at angles 

of incidence very much greater than the rms slope. For example, from Fig. 13.1.2 
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Figure 13.3.6 Left, backscattered intensity as a function of range for a fixed area of 

surface defined by one spatial correlation length in each direction (3.4 m upwind • 5.5 m 

crosswind). Four frequencies shown for 5 m/s wind, 30 ~ grazing angle. The dashed lines 

bounding the calculated scattered intensities are theoretical slopes for wedge scattering 

(R -3) and point scattering (R-4). Right, relative backscattered intensity for normal- 

incidence backscatter at frequency 1000 Hz. The dotted lines show the idealized slopes for 

facet reflection, wedge scatter, and point scatter. (From Medwin, H., and J. C. Novarini, 

"Backscattering strength and the range dependence of sound scattered from the ocean 

surface," J. Acoust. Soc. Am. 69, 108-11, 1981.) 
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and tables of areas under the Gaussian PDE at an angle of incidence greater than 

twice the rms slope, only 5 percent of the facets will be perpendicular to the 

incoming rays and thereby reflect. In that case the major part of the backscatter 

will come from diffraction and will depend sensitively on the correlation function 

of the surface. 

The graph at the right of Fig. 13.3.6 shows the effect of horizontal facet 

reflections that occurs with a high probability at normal incidence and that will be 

found more often at shorter ranges than at long ranges. Within about 10 m of the 

surface, about 9 percent of the facets are effectively reflecting; from 10 to 30 m, 

about 4 percent of the facets produce reflections, and these dominate and give the 

appearance of a reflecting surface, rather than a scattering surface, and determine 

the R -2 behavior. Beyond 50 m, less than 1 percent of the facets are oriented to 

cause reflection and, because of the dominating interference of the diffractions 

from the wedges, the net result appears like point scattering and varies as R -4. 

This exercise has shown us that scattering from the ocean surface is not always 

point scattering. This suspicion had been growing for two decades, (e.g., Mikeska 

and McKinney 1978). 

In all cases, it would be prudent to verify that the range dependence is R -4 

before one assumes that the measurement is of far-field point scattering from 

ocean surfaces or bottoms, and before one applies Equation 13.3.20a or 13.3.21 to 

characterize the surface scatter. 

13.3.6 SCATTERING F R O M  A T W O - D I M E N S I O N A L  ROUGH 

SURFACE: TRI -WEDGE COMPUTER A S S E M B L A G E S  

The approach described in the previous section has been extended by Keiffer and 

Novarini (1990) to the complete problem of a two-dimensional rough surface. 

The surface is divided into triangular elements that can be tilted in any direction. 

The terminology "virtual wedge" is used for the infinitely long wedge crest that 

would be obtained if a side of a triangle is extended to include the least-time, 

perpendicular location. The BT solution for the virtual wedge is truncated on both 

sides to correspond to the times during which that edge of the triangle is 

insonified for a given source and receiver position (Fig. 13.3.7). This limited 

impulse component, which represents the "physical wedge," is then combined at 

the proper times with the impulses from all the other edges of the insonified 

triangles that describe the surface. 

The "tri-wedge assemblage" technique has been validated by solving and 

comparing with exact solutions of the classical scattering from a hard or soft 

disk (see Fig. 13.3.8 and Keiffer et al. 1994). The computer time needed for the 
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Figure 13.3.7 (a) Scattering geometry for the two-dimensional ocean surface and 
(b) impulse response for a truncated facet. From Keiffer and Novarini (1990). 

tri-wedge assemblage technique was only 1/3600 of that required for an exact 

solution in this case. 

The two-dimensional rough ocean surface is generated by starting with a 

series of random numbers that, when normalized for the particular wind speed, 

represent the displacement above or below the mean level of the water. 

Realizations of sea surfaces having a desired spectrum are achieved by specifying 
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Figure 13.3.8 Tri-wedge assemblage for the test case of scattering from a circular disk. 
(From Keiffer, R. S., J. C. Novarini, and G. V. Norton, "The impulse response of an 
aperture: numerical calculations within the framework of the wedge assemblage method," 
J. Acoust. Soc. Am. 95, 3-12, 1994.) 

the appropriate rms height, rms slopes in the x and y directions, and spatial 

correlation functions in the x (windward) and y (crosswind) directions as a 

function of wind speed and fetch (see section 13.1.1). 

Comparisons of the tri-wedge assemblage impulse solution (transformed to 

the frequency domain) are shown in Fig. 13.3.9 for single-surface realizations for 

the difficult case of backscatter at 60 ~ for each of two wind speeds. The complete 

solution for the scatter from a time-varying ocean surface would be obtained by 

calculating the scatter for many realizations and then calculating the statistics of 

sound scatter due to the time-varying ocean condition. 

13.3.7 E F F E C T  OF B U B B L E S  B E L O W  T H E  O C E A N  S U R F A C E  

From Chapter 8 it is clear that both the sound attenuation and speed are functions 

of bubbles under the surface, and that the bubble density is a non-uniform 

function of depth and location. There are several consequences: 

(1) Significant energy loss can occur as sound approaches the surface; 

this excess attenuation is a function of the sound frequency and the 

local bubble distribution. 

(2) Sound approaching the surface is refracted due to the generally 

greater bubble density nearer the surface; for low-frequency sound 
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Figure 13.3.9 Comparison of a highly accurate solution (dotted line) with tri-wedge 
assemblage solution (solid line) for single realizations of a directional Pierson-Moskowitz 
sea, at 60 ~ angle of incidence, for wind speeds 5 and 15 m/s, rms height 0.15 and 1.4 m, 
respectively. The grid size was 2048 • 2048 points coveting 3 km at intervals of 1.5 m. 
Source and receiver range 50 km. (From Keiffer, R. S., and J. C. Novarini, "A versatile 
time domain model for acoustic scattering from 2-D ocean surfaces," J. A c o u s t .  Soc .  A m . ,  

in preparation, 1997.) 

(< 10 kHz), the sound speed is less than the bubble-free speed, and 

the angle of ray incidence becomes more nearly normal at the rough 

surface. 

(3) Bubble resonance frequencies fluctuate as a function of the fluctuating 

ambient pressure at depth (Equation 8.2.13 and Fig. 8.4.7). Therefore, 

sound that interacts with the bubbly region fluctuates in amplitude 

and phase as a function of time and position (Medwin et al. 1975). 

The historical Fig. 13.3.10 shows the first quantitative explanation of 

the potential effect of  adding the omnidirectional scatter of postulated bubble 

densities to directional rough surface backscatter calculated from the Beckmann 

and Spizzichino theory (1963). The paper was written in the days before there 

were data of ambient bubble densities at sea. The combination of the two 

scattering processes produces large backscatter that is strongly dependent on 

angle of incidence near the normal and less, essentially constant, backscatter for 
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Figure 13.3.10 Backscatter from a rough surface for two wind speeds and backscatter 
from two postulated below-surface unresolved column-resonant bubble densities 
(horizontal lines). The circles are experimental data of Urick and Hoover (1956) at 
60kHz during 4-5 m/s winds. (From Clay, C. S., and H. Medwin, "High-frequency 
acoustical reverberation from a rough sea surface," J. Acoust. Soc. Am. 36, 2131-34, 
1964a.) 

grazing angles Og < 60 ~ owing to unresolvable bubbles below the surface. The 

calculation was done for the frequency of 60 kHz to compare with the acoustic 

data available. 

13.4 Near Grazing Scatter at a Steep-Sloped, Rough Surface 

One would expect that sound specularly scattered from a rough, rigid surface is 

always weaker than when it is reflected from a smooth rigid surface. However, 

when the scattering elements are steep, there is an important exception to that 

expectation that has been tested in a laboratory model of a rough sea bottom. 

Consider "low-frequency" scatter, kd < 1, where d is the separation between 

roughness elements, and "low-roughness" surfaces, kh < 1, where h is the 

height of the roughness elements. A specialized low-frequency theory by I. 

Tolstoy (1979) takes into account secondary scatter and shadowing and shows 

that there is a strong boundary wave at near grazing incidence under those 

conditions. The theory does not require the roughness elements to have small 

slopes, as in most theories. In fact, steep-sloped elements are essential to the 

existence of the effect. (See also a more general series of papers by V. Twersky 

and colleagues dating from the 1950s- - fo r  instance, R. Lucas and V. Twersky 

[1986].) 
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There is a simple qualitative explanation of the phenomenon. Recall Rayleigh 

scatter from a single sphere (ka < 1), where a is the sphere radius (subsections 

7.5.2 and 7.5.5). There is a significant component radiated in the forward 

direction. When kd ~ 1, forward scattering from adjacent spheres is nearly in 

phase and adds coherently. The result is a large net forward component of scatter 

in the grazing, specular direction. 

In the Tolstoy (1985) derivations, the roughness scattering elements are 

replaced by a continuous surface distribution of monopole and dipole sources (as 

identified in section 7.5). These pseudo-sources represent the primary scattering, 

multiple scattering, and shadowing at the elements. This low-frequency, near- 

grazing specialization leads to a simple expression for a large, coherently 

scattered boundary wave which propagates outward from a point source in a thin 

layer of the fluid adjacent to the steep-sloped roughness elements. 

Because the low-frequency scattering is predominantly in the forward 

direction, a point source near the rough surface generates a cylindrical boundary 

wave which has its greatest amplitude at the rough interface and smaller values 

away from that surface. At large ranges, the cylindrically diverging boundary 

wave amplitude exceeds the spherically diverging direct wave amplitude. For a 

rigid hemispherical approximation to the roughness elements, at kr >> 1 and near 

grazing incidence, the normalized spectrum is predicted to be a function of a 

scattering parameter s, the range r, the wave number k. 

We consider only the special case of grazing incidence (0 = 90~ For this 

condition, the scattered wave is a maximum and becomes the boundary wave 

with amplitude, 

P8 - e(2rcr) -1/2k3/2 (13.4.1) 

The critical scattering parameter, e, with units of length, is proportional to the 

volume of the protuberances per unit area. It is a function of the shape and 

packing density of the roughness elements. For close-packed hemispheres, 

Tolstoy gives the value 

e = 4.44 x 10-2d (13.4.2) 

where d is the separation. 

To compare with the direct wave, the normalized spectral amplitude for the 

delta function source in the half-space is 

PD -- (2nr) -! (13.4.3) 
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Therefore, at grazing incidence, 

P B / P D  --  e(2~zr)1/2k3/2 ( 1 3 . 4 . 4 )  

The boundary wave is also predicted to be dispersive. Tolstoy's theoretical 

dispersion of the grazing, specularly scattered sound over a spherical bosslike 

surface is 

(c - v ) l c  - -  1 - ( k s l k R )  - A e Z k  2 (13.4.5) 

where kR and ks  are propagation constants over the rough and smooth surfaces; c 

is the speed in free space; v is the phase velocity over the rough surface; and 

A -- 0.5 for hemisphere theory. 

The grazing propagation of a low-frequency wave over a low-roughness 

surface is describable in terms of 

Prough m Psmooth -k- Pboundary (13.4.6) 

where Psmooth - -  PD exp [i(cot -- ksr)];  Pbounda,*y = P 8  exp [i(cot - ksr)]; k s - c o / c  

is the propagation constant at the smooth surface; and k~ is the propagation 

constant for the boundary wave. 

Laboratory experiments at grazing incidence over gravel have been used to 

extend the theory to "real world" surfaces. In the case of a randomly rough 

surface, the scattering parameter e is empirically determined from the slope of the 

relative boundary wave amplitude, and the dispersion constant A comes from the 

slope of the relative speed curve (Fig. 13.4.1). The experimental technique 

involves computer subtraction of an impulse signal propagated over the smooth 

surface (the direct wave) from the signal for the rough surface; the difference 

yields the boundary wave due to the surface scatter. 

The laboratory experiments have gone beyond the Tolstoy theory to reveal that 

the growth phase of the boundary wave is limited at the higher frequencies. This 

happens not only because of the condition k d  < 1 but also because two other 

factors are important: the boundary wave is partly scattered outside of the vicinity 

of the rough surface; the increasingly lagging phase shifts become self- 

destructive at greater ranges. In the original theory the ratio P s / P D  could be 

predicted for any range when the rms slope, h, and parameter, ~, are known. 

However, extensive laboratory studies lead to the conclusion that the peak value 

is generally given by 

( P ~ / P D ) m a x  - -  2.7 (13.4.7) 
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Figure 13.4.1 Laboratory boundary wave propagation over a randomly rough surface 
constructed of #1 aquarium gravel of volume/area 0.103cm. Left, boundary wave 
amplitude P8 for grazing incidence over a randomly rough surface, normalized with 
respect to the smooth surface (direct) amplitude PP. The relative amplitudes agree with 
theoretical (straight line) sloper 3/2 until a peak amplitude is reached. From the curve, the 
empirical value of the scattering parameter, e, is 2.6 + 0.3 • 10 -2 cm for the gravel. Right, 
frequency dependence of the phase velocity of the rough surface wave with relative speed 
varying as f 2, in agreement with theory. The straight-line fit gives a dispersion constant 
A = 1.35 for the gravel. (From Medwin, H., and G. L. D'Spain, "Near-grazing, low- 
frequency propagation over randomly rough, rigid surfaces," Jr. Acoust. Sor Am. 79, 657- 
65, 1986a.) 

One consequence of the grazing boundary wave scatter is the prediction of a 

gradient of velocity near a rough, hard ocean bottom (Medwin and Novarini 

1984). This would mean that grazing sound rays would be displaced relative to 

the smooth bottom ray behavior. Inverting the problem, knowledge of the beam 

displacement as shown in Fig. 3.3.3 observed, say, at the ocean surface could 

yield an estimate of the roughness of the unseen rigid bottom. 

A second consequence occurs in waveguide propagation. The boundary wave 

phenomenon alters both the amplitudes and the phase speeds of modes of a 

waveguide when one of the surfaces is rough. Fig. 13.4.2 presents laboratory 
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Figure 13.4.2 Propagation in an air-filled, rigid-walled wedge sectoral waveguide with 
the bottom covered with gravel. Wave number k -  0.366cm -1, waveguide height, 

D = 7.6cm. The pressure is greater near the rough surface than at the smooth surface. 
Solid line is theory. (From Medwin, H., K. J. Reitzel, and G. L. D'Spain, "Normal modes 
in a rough waveguide: theory and experiment," J. Acousr Sac. Am. 80, 1507-14, 1986.) 
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experimental results compared with theory for the grazing mode in a rough, rigid- 

walled waveguide. In a smooth m - 0 cylindrical mode (see also Chapter 11), the 

acoustic pressure has the same value across the rigid-walled waveguide; in the 

rough-surfaced waveguide the pressure at the rough surface is greater than at the 

smooth surface. The effect is well predicted by theory (Medwin et al. 1986). This 

variation from a uniform pressure amplitude becomes very much greater as the 

sound approaches cut-off. The variation in the pressure distribution is 

accompanied by a decrease in the phase velocity of the grazing mode. 

A third observation (Medwin et al. 1984) is that the boundary wave diffracts 

over the crest of a ridge in the same manner as for a typical wave as described in 

Chapter 12. 

13.5 P o i n t - S o u r c e  T r a n s m i s s i o n  t h r o u g h  a R o u g h  Interface  

13.5.1 S M O O T H  A I R - S E A  I N T E R F A C E  

Plane Wave 

From section 2.6, a plane wave going from a fluid medium described by plCl 

through a smooth interface into a medium described by p2c2 is described by the 

pressure transmission coefficient, 

2P2C2cosO1 
c]" 12 --- (2.6.11b) 

D2C2 cosOI -~- DlCl COS02 

The ray direction is described by Snell's Law, 

C2 
02 = arc sin (~11 sin 01) (2.6.12) 

where 01 is the angle of incidence measured to the normal of the interface, and 02 

is the angle of transmission measured to the normal. 

For sound going from air to water, P2C2 ~-(1000 kg/m 3) (1500 m/s) > 

PlCl "~ (1 kg/m 3) (330m/s); therefore for a plane wave z~2 "~ 2, the pressure is 

doubled at the surface. 

For a plane wave from air to water, there is a critical angle of incidence 

(Equation 2.6.13), 

01 - O , -  arcsin(c~/c2) ~- arc sin (330/1500) "~ 13 ~ (13.5.1) 

Plane-wave theory shows that for 01 > 13 ~ there is an evanescent wave in the 

water (section 2.6.1). 
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Point Source 

Invoking the Kirchhoff assumption one can argue that, for a point source, the 

plane-wave transmission coefficient given by Equation 2.6.11 may be used at all 

incident points on the surface. Consequently, only a cone of energy with incident 

angles less than 13 ~ would penetrate into the smooth sea. To determine the 

dependence on source height, H, and receiver depth, D, we calculate the effect of 

a ray spreading at a smooth interface (Fig. 13.5.1). This is done by comparing the 

incident intensity passing through a conical shell at angle 01 and incremental 

width dO i with the transmitted intensity at angle 02 and incremental width dO1 at 

the surface. 

At the surface, where the surface pressures in media 1 and 2 are pls and P2s, the 

incident and transmitted powers through a ring of area A are 

H1 __ i _ COS 01 (13.5.2a) 
1C1 

/  sAcos 
k, P2C2 

(13.5.2b) 

For a source at height H (see Fig. 13.5.1), the incident intensity at the surface is 

/-/1 cOS2 01 

I1~ = 2zcH 2 sin 01 dO 1 

The transmitted intensity received at depth D is 

(13.5.3) 

The ratio of the transmitted to the incident pressure at the surface is given by 

Equation 2.6.1 lb. Finally, after significant algebraic manipulation, Hagy (1970) 

shows that the change in sound pressure for a mirrorlike surface is given by 

[(  ceDc~ 1 cos 0e)-I 1 (13.5.5a) P__L -- - 2 0  log 1 + ClH cos TC = 20 log P ls 

The transmission change to "ground zero," immediately below the source, is 

TC z -- TC - 20 loglo (cos 01) (13.5.5b) 

/2 __ /-/2 (13.5.4) 
{HtanO1 D )dO2 

2rc(H tan  01 + D tan 0e) ~ sin 0 e + cos 0 2 
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Figure 13.5.1 Top left, geometry of transmission into smooth water from a point source in air. Bottom left, pressure 

transmission change, TC, as a function of the depth to height ratio, D/H, for sound at normal incidence through a low-roughness 

ocean surface. Solid line is the theoretical prediction; data are low-roughness experimental values for 0.04 < gt < 0.15; circles for 

a helicopter sound source, crosses and squares for flyovers by a P3 aircraft. Right, geometry for a rough ocean surface. (From 

Medwin, H., R. A. Helbig, and J. D. Hagy, Jr., "Spectral characteristics of sound transmission through the rough sea surface," 

J. Acoust. Soc. Am. 54, 99-109, 1973.) 
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where TC is the transmission change in dB across the smooth interface for the 

geometry shown in Fig. 13.5.1. At normal incidence, when H ~ D, the pressure 

in the water will be twice as high as the incident pressure (TC = +6 dB), whereas 

when D >> H, the pressure in the water decreases proportional to the depth-- that  

is, 6 dB per double distance. The smooth-surface theory (Equation 13.5.5a) has 

been verified in an anechoic tank and then at sea (Fig. 13.5.1). In the ocean 

experiment, the sound source was a hovering helicopter or fly-by aircraft. The 

"almost smooth surface" for the ocean analysis was in the frequency band 100 to 

200Hz, so that, with the sea h -  14.5cm, the acoustical roughnesss for 

transmission was 0.04 < gt < 0.15, where gt is given by (Equation 13.5.6b). 

13.5.2 R O U G H  A I R - S E A  I N T E R F A C E  

The acoustical roughness parameter for transmission, gt, depends on the in-water 

and in-air phase shifts relative to the interface. It is different from that for 

reflection, gR, by virtue of the different sound speeds and refraction in the second 

medium. It was derived by Hagy (1970) and may be calculated from Equation 

A10.7.3 of Clay and Medwin (1977), 

(gt) l/2 _ h(kl c o s  01 - k 2 cos 02) (13.5.6a) 

o r  

( g , ) l / 2  __ k l h [ c o s O  1 _ ( C l / C 2 )  c o s  02] (13.5.6b) 

where h is the rms height of the surface; 01 is the angle of incidence in the first 

medium, where the sound speed is c l; and 02 and c 2 are for the second medium. 

For transmission from air to water, c2 > C l and 02 > 01, so that the first term 

dominates. 

For large acoustical roughness of the surface, energy that would not have 

penetrated beyond the critical angle for a smooth surface is transmitted through 

the angled facets of the rough surface. These incoherent components may be 

calculated by applying the theory of the previous section to transmission as 

shown by Hagy (1970) and in section A10.7 of Clay and Medwin (1977). 

The ratio (P2/Pls) was measured in extensive at-sea experiments using the 

Floating Instrument Platform FLIP of Scripps Institution of Oceanography as a 

base of operations. The 100 to 1000 Hz band noise of hovering U.S. Navy 

helicopters and fly-by P3C aircraft were the sound sources at height 180 m. The 

sound receivers were sonobuoy hydrophones at 6 m and 90 m depth. 
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Figure 13.5.2 Pressure transmission change as a function of surface acoustical roughness for transmission, gt, for a point 

source at H = 180 m above the sea. The receivers were at depth D -- 6 m and 90 m, directly under the source. The surface rms 

height was h -- 13 cm; correlation lengh was L ~ 150 cm. The source was a hovering helicopter. Solid line is digital analysis 

with 2 Hz frequency resolution for the noise in the 100 Hz to 1000 Hz band. The circles are spectral levels derived from analog 

band filtering. From Helbig (1970). (See Medwin, H., R. A. Helbig, and J. D. Hagy, Jr., "Spectral characteristics of sound 

transmission through the rough sea surface," J. Acoust. Soc. Am. 54, 99-109, 1973.) 
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Figure 13.5.3 Pressure transmission change as a function of surface acoustical roughness for transmission, gt, for 

a point source at H = 180 m above a sea of rms height h -- 13 cm. The receivers at depth D - 6 m and 90 m are 

offset by 75 m from the ground-zero point under the source. The offset angles are 85 ~ for the 6 m hydrophone and 40 ~ 

for the 90 m hydrophone. Solid line is digital analysis from 100 Hz to 1000 Hz with 2 Hz frequency resolution. From 

Helbig (1970). Dashed line is HK thoeretical solution by Hagy (1970). (For theory, see also Medwin, H., and J. D. 

Hagy, Jr., "Helmholz-Kirchhoff Theory for Sound Transmission Through a Statistically Rough Plane Interface 

Between Dissimilar Fluids," J. Acoust. Soc. Am. 51, 1083, 1972; for experimental details, see Medwin, H., R. A. 

Helbig, and J. D. Hagy, Jr., "Spectral characteristics of sound transmission through the rough sea surface," J. Acoust. 

Soc. Am. 54, 99-109, 1973.) 

~n 

~ ~  

| 

= 

~ ~  

m,=~ 

= -  

= . ,  

= 

= .  

= 



638 13, Scattering and Transmission at Statistically Rough Surfaces 

When the source was over the shallow hydrophone (01 = 02 = 0  ~ and 

D/H = 0.03, the transmission change was + 6 + 1 dB not only at low roughness 

but also at higher frequencies, where gt -- 4.2. (See Fig. 13.5.2.) This was due to 

the incoherent contributions that came in from other positions beyond the normal- 

incidence direction. For the hydrophone at depth 90 m, where D/H -- 0.5, there is 

a similar effect. Off-axis transmission contributions through a rough surface 

provide a TC that shows more energy than the theoretical loss 4.1 dB as predicted 

for smooth surfaces by Equation 13.5.5a. 

When the 180 m high-sound source is offset from the hydrophones, so that the 

Snell angles in the water are 85 ~ for the 6 m depth hydrophone, and 40 ~ for the 

90m hydrophone, there are incoherent contributions from insonified regions 

beyond the transmission cone. Significantly, much more sound is received at 

larger surface roughness, especially by the shallow hydrophone, in general 

agreement with the theoretical solution (Fig. 13.5.3). 

Problems 

Section 13.1 

13.1.1 Integrate the Pierson-Moskovitz spectrum over all frequencies to obtain 

the rms height, h. 

13.1.2 Use the two graphs in Fig. 13.1.5 to give analytical equations m such as 

Equations 13.1.16 and 13.1.17--  for the SWOP correlations. Plot those 

equations and compare with the actual data in Fig. 13.1.5. 

13.1.3 Derive the PDF of a swell wave, ( =  a sin K,x. Answer w ( ( ) =  

n_l(a2_ ~2)-1/2 for ~ < a. 

Section 13.2 

13.2.1 A 38 kHz sound beam is specularly scattered from a sea surface of rms 

height h = 2 cm. Determine the angles at which the relative coherent intensity 

Rcoh > 0.7. 

13.2.2 Use the data on coastal bubble densities, resonant at 60 kHz (Chapter 

8), to calculate the proper position of the horizontal bubble backscattering line in 

Fig. 13.2.6. 
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Section 13.3 

13.3.1 Use "reasonable" values to describe a rough sea surface and calculate 

the backscatter of a "reasonable" sonar as a function of angle of incidence. 

13.3.2 Repeat the calculation of the previous problem to determine forward 

scatter as a function of the grazing angle of incidence. 

Section 13.4 

13.4.1 Using the laboratory experiments as a guide, and "reasonable" 

assumptions, calculate the low-frequency, grazing-incidence, relative boundary 

wave amplitude for propagation over a bed of manganese nodules of reasonable 

diameter. 

13.4.2 Using the laboratory experiments as a guide, and "reasonable" 

assumptions, calculate the phase velocity of grazing sound over a rock-strewn 

bottom, assuming close-packed boulders of diameter about 1 m, and correlation 

functions as shown in Fig. 13.1.10. 

Section 13.5 

13.5.1 Derive Equation 13.5.4 for the transmitted intensity across a smooth 

interface between two media. 

13.5.2 Verify Equation 13.5.5a. 
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The topography and structure of the sea floor are enormously varied. One cannot 

use one sonar system and one method of data analysis for the whole ocean. We 

suggest four guiding principles: 1) as the spatial and temporal resolution of sonar 

systems improve, more and more small features are displayed; 2) as the 

frequency of a sonar goes lower, the sea floor appears to become smoother; 3) 

there are always unresolved features; and 4) global positioning systems and 

accurate navigation are absolutely essential. 

14.1 Bathymetric and Seismic Profiles" Geophysics 

Vertical echo sounders (Section 10.1.1) are the workhorses of marine geology 

and geophysics. The 12 kHz echo sounder frequency is low enough to obtain 

usable reflections from the deepest parts of the ocean-- for  example, the 10,830 m 

depth of the Challenger Deep in the Mariana Trench. Over very smooth sediment 

deposits, subbottom reflections from interfaces at several meters depth can be 

observed for signal frequencies as high as 12 kHz. Another standard echo sounder 

has a 3.5 kHz carrier frequency. This echo sounder can penetrate the subbottom 

structure to a 100 or so meters. Both the 12 kHz and the 3.5 kHz echo sounders 

can be mounted on the hulls of oceanographic survey vessels. For deep 

penetration to kilometers of depth, oceanographic geophysicists use seismic 

profiling systems. Commonly used seismic sources are "air  guns,"  sparks, and 

explosives. The receiver is an array of hydrophones. As sketched in Fig. 14.1.1, 

640 



14.2. Deep-Tow Side-Scan Sonar Mapping of the Sea Floor 641 

--='--'! - - -  := ~ ~ ' : ~ ? i i ~ i ~  ~ ~ _ _ _ . ~ ~ - - - - -  : : : : " : ,  ~ , _ = _ _ _ _ _ - = - - = =  .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7g 

Figure 14.1.1 Seismic profiling system. Many kinds of towing configurations are used. 

the source and receiving array are towed behind the survey vessel. The frequency 

ranges for seismic profiling systems are usually 100 Hz and lower. 

Comparisons of the acoustic profiles for three systems and two examples of 

sea floors are shown in Fig. 14.1.2. The increase of subbottom penetration as the 

frequency decreases is apparent. The Sea (vol. 3, ed. M. N. Hill, 1963) gives 

broad discussions of early applications of geophysical, geological, and acoustical 

methods for exploring the sea floor. The Physics of Sound in Marine Sediments 

(ed. Hampton, 1974) gives a 10-year progress report in describing the acoustic 

properties of sea-floor sediments. Compressional wave attenuations are in 

Hamilton (1987) and Kibblewhite (1989). Bowles (1997) gives an extensive 

review and tables of shear-wave velocities and attenuation in fine-grained marine 

sediments. Many symposium volumes and monographs have been published 

(Oceanographic Atlas of the North Atlantic 1965; Kuperman and Jensen 1980; 

Akal and Berkson 1986; Vogt and Tucholk 1986). 

14.2 Deep-Tow Side-Scan Sonar M a p p i n g  of  the Sea Floor 

Bottom-scanning sonar technology has gone from a simple echo sounder pointed 

sideways to instruments that have carefully designed beam patterns, very 

sophisticated time-varying gains, and image processing. One of the early deep 

tow surveys was made during the search for the lost submarine Thresher (April 

10, 1963). The image of a wreck on the sea floor (Fig. 1.3.5) shows what a 

high-resolution sonar can do. Side-scanning sonars are towed at approximately 

0.2 times the maximum range above the bottom to give a map of the locations of 
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Figure 14.1.2 Acoustic profiles from the Kane9, 1968 cruise. The profiles within each 

set were taken from the same rough area. (From Lowrie, A., and E. Escowitz, Kane 9. 

Global Ocean Floor Analysis and Research Data Series. U.S. Naval Oceanographic 
Office, 1969.) 

scatterers on the sea floor. Even in the deep ocean, side-scan sonars that have a 

range of 500m are towed about 100m above the bottom. The maximum tow 

speeds are a few km/hr. The area is on the continental shelf and has extremely 

varied morphology (Clay, Ess, and Weisman 1964). All of the data were recorded 

on a paper graphic recorder, and the image processing was done photo- 

graphically. Examples of side-scan records are shown in Fig. 14.2.1. Black is a 

strong return and a large-surface (back) scattering coefficient. The white area 
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Figure 14.2.1 Deep-tow side-scan images of the sea floor. Side-scan images are from 

the areas # 1 and #6 as indicated in the tracing of features shown in Fig. 14.2.2. The carrier 

frequencies were 215 and 225 kHz. The ping duration was 1 ms. The peak input power to 

the transducers was about 300 watts. The beam widths were 70 ~ vertical and 0.3 ~ 

horizontal. The swath was 375 m to port and 375 m starboard. The instrument was towed 

about 60m above the bottom. (From Clay, C. S., J. Ess, and I. Weisman, "Lateral  echo 

sounding of the ocean bottom on the continental rise," J. Geophys. Res. 69, 3823-35, 

1964b.) 
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indicates small return and a shadow or a depression. The side-scan image shows 

features that give stronger surface (back) scattering than the background. For an 

optical analogy, put a few objects on a cloth-covered table and illuminate them 

with a flash light at grazing angles to the table top and then look down on the 

objects and their shadows. 

Side-scanning sonars record the backscatter from features on the bottom at 

very small grazing angles. Here the intensity of backscatter is very sensitive to the 

spatial correlation function. Numerical studies of the backscattering coefficients 

have shown that the backscatter is easily observed when the correlation 

coefficients have a ]~] dependence at small ]~/L] and kh > 1. Commonly, sand 

waves and gravel interfaces have this ]~] dependence and give strong backscatter. 

The correlation coefficients, for smoothly undulating interfaces, have the ~2 

dependence at small (~/L) 2 (see section 13.1). The backscatter is very small at 

shallow grazing angles. 

The graphic records were assembled into a mosaic image of the sea floor. 

After reduction to page size, the mosaic is not suitable for reproduction. The 

features on the mosaic were traced and superimposed onto a bathymetric chart of 

the area (Fig. 14.2.2). 

The bottom has smooth sediments, gravel, wavelike features, and just plain 

puzzling features. This research shows that smooth-sediment-covered areas have 

very small uniform surface scattering coefficients. Ridges, gravel beds, sand 

waves, grooves, and so forth show as dark and light features. It takes much 

geological imagination to guess what the images represent. 

Deep-tow side-scan surveys are extremely expensive and difficult to do. 

During the summer of 1963, the oceanographic vessel USNS Gibbs and 25 

scientists were at sea for two months and only mapped 20 km 2 of sea floor. A 

team of scientists spent nine months on the data analysis, preparation of the 

figures, and writing the manuscript (Clay, Ess, and Weisman 1964). Tyce et al. 

(1980) describe the later, more efficient developments in deep-tow technology. 

14.3 Swath Mapping  from Surface Vessels 

As is evident in Fig. 14.2.2, bathymetry and side-scan images are complementary. 

Bathymetry shows the water depths and general structure of the sea floor. Side- 

scan images give a measure of the surface (back) scattering coefficient. But a 

month or two of ship time is far too expensive to map only 20 km 2 of sea floor. 

Multibeam sonar or swath-mapping techniques have greatly improved the 

efficiency of sea charting because normal surveying speeds of 12 km/hr are used. 

Although the spatial resolution obtained from surface vessels is not as good as 

from deep-towed instruments, the side-scan images display the surface- 
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Figure 14.2.2 Tracing of features on a mosaic of side-scan records. The area is at the 

bottom of the continental rise at 4 l~ and 64~ The features are superimposed on 

bathymetric contours. The sounding velocity is 1500 m/s. The circled numbers are drawn 

beneath the sonar images. Only #1 and #6 are included here. (From Clay, C. S., J. Ess, and 

I. Weisman, "Lateral echo sounding of the ocean bottom on the continental rise," 
J. Geophys. Res. 69, 3823-35, 1964b.) 
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scattering coefficients and give another dimension in remote sensing of the sea 

floor. 

An introduction to a special section on sea-floor mapping is in Detrick (1986). 

Tyce (1986) reviews deep-sea-floor mapping systems. 

14.3.1 ACOUSTIC SURVEY:  L A U R E N T I A N  F A N  

The area is located approximately 100 to 125 km south of the 1929 earthquake 

epicenter on the Grand Banks off Newfoundland. It caused immense slumping. 

The bathymetric map and ship track lines are shown in Fig. 14.3.1. The resulting 

turbidity currents broke submarine cables in a number of places (Heezen and 

Hollister 1971). The fan has a complex geomorphology owing to the presence of 

strong turbidity current activity. The turbidity currents primarily distribute thick 

sands and gravels on the channel floor. Most of the acoustic survey, Fig. 13.4.1, 

was made within the relatively flat channel floor, where the gradient is only 0.5 

degrees (Talukdar, Tyce, and Clay 1995). 

Figure 14.3.1 Bathymetric map of the survey area and locations of backscatter analysis 
sites (contour intervals are in meters). Type A areas are l, 3, 5, and 7. Type B areas are 2, 4, 
6, and 8. (From Talukdar, K. K., R. C. Tyce, and C. S. Clay, "Interpretation of sea beam 
backscatter data collected at the Laurentian Fan off Nova Scotia using acoustic backscatter 
theory," J. Acoust. Soc. 97, 1545-58, 1995.) 
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14.3.2 S W A T H - M A P P I N G  S Y S T E M  

The 1986 version of the Sea Beam system is a hull-mounted,  mul t i -narrow-beam 

sonar. It was designed to obtain high-resolution bathymetry for a swath width of 

about 75 percent of the water depth. As shown in Fig. 14.3.2, it has one fan- 

shaped transmit beam oriented across track and 16 fan-shaped receiver beams 

m .  

o 

R1 

- -~  b"-- 

(a) c t p / (2 sinO ) 

Figure 14.3.2 Transmit and receive geometry of the 1086 Sea Beam system. 

Transmission beam is fanlike and normal to the track. The reception beams are fans 

along the track. The intersections are the "footprints." The travel times to a footprint and 

its beam angle are used to compute the depth of the footprint. The frequency of the pings is 
12.158 kHz, and the ping duration is 7-ms. (From Talukdar, K. K., R. C. Tyce, and C. S. 

Clay, "Interpretation of sea beam backscatter data collected at the Laurentian Fan off 

Nova Scotia using acoustic backscatter theory," Z Acoust. Soc. 97, 1545-58, 1905.) 
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oriented perpendicular to the transmit beam. The directions of the receiver beams 

are evenly spaced at (8/3) ~ to form effectively 8 port and 8 starboard beams. 

In the system's normal mode of operation, the backscattered echoes are 

compensated for roll and refraction and then integrated to determine a single 

range and angle to the bottom for the center of that beam. The actual beam angles 

are determined dynamically for every ping. A maximum of 16 depths and their 

cross-track positions are determined for each transmission. The envelopes of the 

rectified return signals or backscattered data are recorded on magnetic tape for 

acoustic research. 

The intensity-modulated side-scan images of sound scattered at the sea floor 

add another dimension to the data. The resolution of features on the sea floor, as 

given by the Sea Beam "footprint," is about 170 x 170m at 3800m depth. In 

backscatter, the lateral width Ax of the bottom insonified by the sonar ping is 

Ax --- t p c / (2 sin0 1) (14.3.1) 

where tz, is the duration of the sonar ping and 01 is the angle of incidence at the 

bottom. Values of Ax for incident angles of 5 ~ and 20 ~ are 60 and 16 m. Except 

for vertical incidence, the lateral resolution is better in side-scan modes than the 

resolution is in beam-forming modes. 

The footprint is the spatial resolution of the insonification on the sea floor (Fig. 

14.3.2). The depth of the footprint gives the resolved bathymetry, and this is the 

"deterministic" part. The unresolved features within the footprint are defined as 

being "random."  

For practical necessity, one makes assumptions about the sea floor within a 

footprint: 1) the PDF of the roughness relative to a mean surface in a footprint is 

Gaussian; 2) the roughness and the spatial correlation functions are the same 

everywhere in a footprint; 3) the roughness, h, and spatial correlation functions, 

C(L), remain the same for usable distances along the track; and 4) the slope of a 

mean surface in a footprint can be got from bathymetric data. Details are given by 

de Moustier and Alexandrou (1991). 

Side-scan images are constructed by combining the beams on the port side to 

produce a single, time-dependent record for each ping. The same process is 

applied to the starboard beams. Fig. 14.3.3 shows the side-scan image of the 

Laurentian fan. The side-scan images were studied to choose areas where these 

simplifying assumptions could be satisfied. The chosen areas, 1-8 as shown on 

the bathymetric chart, are along the ship track and on a relatively flat area on the 

fan. The side-scan display (Fig. 14.3.3) shows relatively uniform backscatter 

from patches on each side of the ship track. 
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Figure 14.3.3 Side-scan image of the Laurentian fan. The image was constructed by 
combining the output of adjacent beams. Time was converted to distance along a flat 
bottom for construction of the mosaic. The backscattered returns are displayed on a 
logarithmic gray scale. Type A areas (1, 3, 5, and 7) are dark. Type B areas (2, 4, 6, and 8) 
are light. (From Talukdar, K. K., R. C. Tyce, and C. S. Clay, "Interpretation of sea beam 
backscatter data collected at the Laurentian Fan off Nova Scotia using acoustic backscatter 
theory," J. Acoust. Soc. 97, 1545-58, 1995.) 

The backscatter changes abruptly from " d a r k "  or strong backscatter (type A: 

1, 3, 5, 7) to " l igh t "  weak backscatter (type B: 2, 4, 6, 8) as one goes from area 1 

to 2 and so on. These data were analyzed to estimate the roughness parameters 

and structure of the sea floor and to "exp la in"  why the " A "  areas have strong 

backscatter and the " B "  areas have smaller backscattered sound. 

14.3.3 DATA R E D U C T I O N  

Computations of the experimental scattering coefficients are the first steps in data 

reduction. The experimental scattering coefficient is computed by using the form 
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of Equation 13.3.20: 

5exp(k, O1,R1,R2,A) - 
[pp, 2 2 ]R1R2 
[pop;lg2A 

(14.3.2) 

where k is the wave number; 01 is the incident angle; IPP*] is the square of the 

envelope at the receiver; I P0P~[ is the square of the source envelope at the 

reference distance R0; R 1 is the distance to A from the transmitting transducer; R 2 

is the distance from A to the receiving transducer; A is the insonified area. The 

Sea Beam system was not calibrated, so that measurements of 5exp are relative to 

the same arbitrary reference. The relative dependence of Sex p on 01 will be the 

basis of data analysis. 

The dependence of 5exp(k, 01 ,R 1 ,R2,A ), or just Sex p on surface roughness is 

implied. The distances R~ and R2 are large enough that the wavefront spreading is 

nearly spherical. The sound speed in water is c. 

14.3.4 THEORETICAL BACKSCATTERED SOUND PRESSURES 

In the backscattering mode, the scattering expressions in Equations 13.3.3 

through 13.3.6 simplify as follows" 

R 1 = R 2 , 0 1  = - 0 2 , 0 3 = 0  (14.3.3) 

and the expressions for ~, fl, and y (Equation 13.3.5) reduce to 

a = k c o s 0 1  , f l  = 0 ,  and  y = k COS01 (14.3.4) 

The "slope-corrected" form of Gsc (Equation 13.3.6) becomes 

1 
(14.3.5) G sc(O ) = c o s 0 1  

dsf 
R 1 = (14.3.6) 

cos 01 

-2 
xS 

k k (14.3.7) = ~  cos 201 ' y f 2 _ R 1  
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where dsf is the depth of the sea floor beneath the transducers. The theoretical 

backscattered pressure is 

p _ ~  ipoRoR12kex p ( iog t -  2ikR1) dx D t D  r 

2rcR 2 cos (01) o~ -~ 

x exp - i  + ~ + 2 e x - 2 7 (  dy 

(14.3.8) 

where ~PL12 is the pressure reflection coefficient at the interface; k is the wave 

number; Dr is the receiver directivity function; Dt is the transmitter directivity 

function; ( is the surface height above a mean surface, 

The effective beam pattern is the product of the transmitted beam and the 

received beams. At vertical incidence, the directivity function for the insonified 

area is 

DtDr, ,~  exp [-  (~02 + ~02) ] (14.3.9a) 

and 

X 0 '~ dsfA~t , Yo ~ dsfA~r for 01 -- 0 (14.3.9b) 

where AdPt is the half-beam width of the transmit beam along track and Aq5 r is the 

half-beam width of the receiver beam normal to the track. The half-beam widths 

are equal and 

Aq~ - Aqb t - Aqb r - (4/3) ~ (14.3.9c) 

At angles larger than 0, we use the transmitted ping duration tp and sound speed c 

to write Xo and Yo as follows" 

dsfAO 8 ~ 
-. Ctp  , Y 0  -- for 0 1 > 

X o  4 s i n O 1  cos 01 - 3  
(14.3.10) 

The mean absolute pressure squared is given in Equation 13.3.20. In backscatter, 

the theoretical mean squared pressure is 

4 q q/ff exp (2i a~  )d~ dr/ 
8zcR 1 c o s  201 __oo 

(14.3.11) 
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where 

G - e x p ( - a {  ~ 2 - a 0 r  / 2 ) 

1 k 2X 0 2 COS401 
a ~ =  + 

2Xo 2 2 R  1 2 

1 k2y 2 

a~ = 2  y2 § 2 R 2 

(14.3.12) 

(14.3.13) 

(14.3.14) 

and 

The area is 

C - 1 - a, I 1- a2~ 2 - bl Iql- b2r/2 

W -- e x p [ - ~ ' 2 h 2 ( 1 - C  ) ]  

(14.3.15) 

(14.3.16) 

A = rtXoY o (14.3.17) 

Since the the spatial correlation function is symmetric, 

(14.3.18) 

and G is even, the doubly infinite integrals for (p2 / reduce to the following: 

(p 2)=. k 2p ~ ) R ~ 1 7 6 1 7 6  f~, ~ 

4 2 0 G W c o s ( 2 ~  )d~ dr/ (14.3.19) 
2JrR 1 cos l 

With these changes, the theoretical backscattering coefficient (Equation 

2 

5 (k, 01,R l, a ) = 2 G W cos(2a  ~ ) d~dr/  
21r 2cos  0 1 

(14.3.20) 

where the function G includes the parameters k, 0 l, R~, and A. The surface 

roughness, h, and the spatial correlation function, C, are contained in the 

function W. 

Except for a few special cases such as incident plane waves and near-field 

measurements, the geometric information in G cannot be moved out of the 

integral. Thus measurements of 5exp depend on the sonar system that was used to 

make the measurements. As demonstrated in Chapter 13, the only parameters 

that don't depend on the sonar system are the bottom roughness, spatial 

correlation functions or spectral densities, and sound speeds. 

13.3.20a) becomes 
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14.4 Analytical and Numerical Evaluations of the 

Scattering Coefficients 

Approximate evaluations of the scattering integrals in Equation 14.3.20 are 

possible for the spatial correlation coefficients given in Equations 13.3.27 and 

13.3.27 (Clay and Leong 1974; Clay and Medwin 1977 Appendix A10). Because 

G tends to 0 rapidly as ~ and r/increase, numerical evaluations are practical. 

14.4.1 CYLINDRICALLY SYMMETRIC CORRELATION FUNCTION 

A two-parameter, cylindrically symmetric correlation function is 

r ]n 
C ( r ) - -  exp [-1-7- ] 

L 

(14.4.1) 

where L is a "correlation distance" and n is a positive parameter. Examples of 

the correlation functions and their spectra are shown in Fig. 13.1.9. 

Equation 14.4.1 becomes the exponential function for n --- 1 and the Gaussian 

function for n -- 2. The power of n in the correlation function is an indicator of 

the shape of the surface. Large n causes the correlation function to decay 

gradually for r < 1, and this corresponds to a surface having large radii of 

curvatures. Small n causes the correlation to decay very rapidly, and this 

corresponds to a surface having sharp angular features. The corresponding 

spectra for correlation functions having the exponents 0.5-2.0 are shown in Fig. 

13.1.9b. The Fourier transformations were evaluated numerically. 

Transformation of the scattering function from rectangular coordinates to the 

cylindrical coordinates r and ~p uses the transformations 

= r  cos v and 7/ = r  s i n v  (14.4.2) 

The transformation of (a~x 2 + a~72) to cylindrical coordinates is simplified by 

letting 

a~ ~ a~ ~ a~ for 0~ <25  ~ (14.4.3) 

and computing an average ar using ar ~ (a~ + a,)/2.  With these approximations, 

the theoretical backscattering coefficient (Equation 13.3.19) becomes 

S ~ 8~z2 c-~s 2 O1 exp ( - a r r  2) exp (i2kr sin 01 cos O)Wr dr dO (14.4.4) 

and 

r in 
W - exp {-  ~/2 h 2 [1-  exp ( -  I--ff ) ] } (14.4.5) 
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The evaluation of the integral over ~ gives 

2 e~ 

._-- k 2~L12 fo J~ sin01 ) exp ( - ar r2 ) '14) r dr 
5 4/r 2 cos 2 01 

(14.4.6) 

The integral is evaluated numerically. The backscattering strength in dB is 

Backscattering strength = 10 log10 (,5) dB (14.4.7) 

14.5 An Analysis of the Backscattered Data in Two Areas: 

Spatial Correlations 

The side-scan map (Fig. 14.3.3) shows areas of light and dark patches. These 

eight sites on the channel floor (Fig. 14.3.1) were selected for study. We assume 

that the sea-floor roughness and physical properties are statistically stationary 

within those areas. 

The Sea Beam sonar system used was not calibrated for this effort--that is, the 

projector source level and the various gains applied to the return signals are not 

known--so the backscattering strengths are computed with reference to an 

arbitrary level. The choice of an arbitrary reference has the effect of translating 

the backscattering strength versus incident angle curves up or down from the true 

level, but the shapes of the curves remain unaltered. The plots of the 

backscattering strength versus angle for the type " A "  areas are shown in Fig. 

14.5.1. The backscattering strengths versus angle have gradual decreases as the 

incident angle decreases. 

A nonlinear regression technique was used to estimate the roughness 

parameters and structure. Since the backscatter data is referenced arbitrarily, 

the source function, reflection coefficient, and so forth in Equation 14.4.5 are 

carried as a scaling factor, Bsf. 
The best fits for the A-type areas of regions are shown in Fig. 14.5.1, and the 

corresponding parameters are summarized in Table 14.1. Generally, all of the 

type A areas have similar descriptions. We hypothesize that these areas are 

covered with gravel. Marine geologists define gravel as being the loose material 

that ranges in size from 2 to 256 mm (Gross 1972, Glossary). 

Data from the B-type areas (Fig. 14.5.2) have an initial sharp drop followed by 

a gradual decrease. These scattering data could not be fitted by a single interface 

scattering model. 
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Figure  14.5.1 Backscattering strengths (dB) from the type A areas. The data points are 

the solid circles connected by short lines, and the solid lines are the theoretical scattering 

functions. The parameters are given in Table 14.1. The reference is arbitrary. (From 

Talukdar, K. K., R. C. Tyce, and C. S. Clay, "Interpretation of sea beam backscatter data 

collected at the Laurentian Fan off Nova Scotia using acoustic backscatter theory," 

J. Acoust.  Sac. Am. 97, 1545-58, 1995.) 

Table 14.1 S u m m a r y  of  the E s t i m a t e d  P a r a m e t e r s  for Type  A Areas  

Area Scale Factor rms Height, m Exponent 

Bsf h n 

Correlation 

length, m 

L 

1 0.77 0.08 1.5 1.4 

3 0.93 0.06 0.96 2.0 

5 0.70 0.07 1.15 2.7 

7 0.85 0.08 1.30 2.0 

Avg 0.81 0.07 1.22 2.0 

(From Talukdar, K. K., R. C. Tyce, and C. S. Clay, "Interpretation of sea beam backscatter data 

collected at the Laurentian Fan off Nova Scotia using acoustic backscatter theory," J. Acoust. Sac. 

Am. 97, 1545-58, 1995.) 
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Figure 14.5.2 Backscattering strengths (dB) from the type B areas. The data points are 
the solid circles connected by short lines, and the solid lines are the theoretical scattering 
functions. The parameters are given in Table 14.2. The reference is arbitrary. (From 
Talukdar, K. K., R. C. Tyce, and C. S. Clay, "Interpretation of sea beam backscatter data 
collected at the Laurentian Fan off Nova Scotia using acoustic backscatter theory," 
J. Acoust. Sac. Am. 97, 1545-58, 1995.) 

Volume scattering from scatterers underneath the scattering surface has been 

proposed as a possible contributor to the total scattering process in shallower 

waters (Jackson et al. 1986; Matsumto et al. 1993). However,  the channel floor is 

a region of strong turbidity current activity. Since turbidity currents deposit 

sediments in an orderly manner with distinct facies, scattering from subsurface 

layers seems more likely. Figure 14.5.3 shows deep-tow data that were taken 

over an area southwest of this survey. 

Assuming that the structure shown in Fig. 14.5.3 commonly occurs in this 

geologic environment,  the theory was modified to include scattering from a 

subbottom interface (Fig. 14.5.4). 

14.5.1 ASSUMPTIONS 

1) The surface and the subbottom scattering add incoherently as the square of 

sound pressures. 2) The scattered intensity from the subbottom layer is attenuated 

in the sediments. 3) If 6~s and 6eb are the backscattering coefficients from the 
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Figure 14.5.3 Deep-tow acoustic profile. The source was a 1000 Hz ping. D is the direct 
arrival, and the reflections scattering from interfaces 1 and 2 are indicated. The length of 
the profile is approximately 2.5 km. This profile was taken during the survey shown in Fig. 
14.2.2. The poor quality of the reflection from interface 2 is typical of scattering from a 
rough interface. Interface 1 on the right side appears to be smoother. The short profile 
shows the transition from two layers to one layer. 

surface and subbottom, respectively, then the total backscattering coefficients, 

ST, is equal to 

'ST -- .Ss + .sb lO-2~ (14.5.1) 

where a s is the attenuation in sediment in dB/m, and ds is the depth of layer. 

Assuming thin layers, both .ss and 5b were calculated using the scattering 

equation (13.4.22). The attenuation in the sediments can vary widely depending 

on the grain size, porosity, material type, and so on. From the literature, the 

Figure 14.5.4 Cartoons of the interfaces at the type A and B areas, a) Type A is gravel. 
b) Type B has a thin layer of sediment over gravel. (From Talukdar, K. K., R. C. Tyce, and 
C. S. Clay, "Interpretation of sea beam backscatter data collected at the Laurentian Fan off 
Nova Scotia using acoustic backscatter theory," J. Acoust. Soc. Am. 97, 1545-58, 1995.) 
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attenuation range for 12 kHz can be expected to be from as low as 0.7 dB/m to as 

high as 6 dB/m (Hamilton 1972). An estimate of 1 dB/m was selected for carrying 

out the best fit analysis. 

The density and velocity of compressional waves in saturated, silty sand are 

estimated as 1320kg/m 3 and 1540m/s; correspondingly, a plane-wave pressure 

reflection coefficient is 0.14. The density and velocity of compressional waves in 

marine gravels is not readily available in the literature. Values of 2000 kg/m 3 for 

the density and 1800m/s for the velocity yield a reflection coefficient of 0.28 

(Hamilton 1972). The ratio of the two reflection coefficients is 0.5, which agrees 

with the averaged ratio 0.5 of (B sfl /B  c2 ), obtained from Tables 14.1 and 14.2, 

strengthening the possibility that the backscatter analysis indicates a 

primarily rough gravel surface sometimes covered with a lighter and smoother 

silty sand. 

Table 14.2 Summary of the Estimated Parameters for Type B Areas 

Top layer Correlation Sediment 

Interface 1 Scale Factor rms Height, m Exponent Length, m Depth, m 

Area Bsfl hi nl LI ds 

2 0.21 0.03 2.0 1.2 0.24 

4 0.20 0.03 1.9 1.2 0.58 

6 0.25 0.03 1.9 1.05 0.44 

8 0.29 0.03 2.0 0.95 0.33 

Avg 0.24 0.03 1.95 1.1 0.40 

Bottom Layer Correlation 

Interface 2 Scale factor rms Height, m Exponent Length, m 

Area Bsf2 h2 n2 L2 

2 0.47 0.08 1.3 1.0 

4 0.45 0.1 1.4 1.0 

6 0.53 0.1 1.3 0.95 

8 0.44 0.08 1.2 1.1 

Avg 0.48 0.09 1.3 1.01 

(From Talukdar, K. K., R. C. Tyce, and C. S. Clay, "Interpretation of sea beam backscatter data 
collected at the Laurentian Fan off Nova Scotia using acoustic backscatter theory," J. Acoust. Soc. 
Am. 97, 1545-58, 1995.) 
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The best fit procedures for type B areas involve nine parameters: Bsf l, h 1 , n 1 , 

and L 1 for the top layer; Bsf2, h2, n2, and L 2 for the bottom layer; and ds, the 

sediment depth. The results of the analysis are the theoretical curves in Fig. 

14.5.2. Considering the assumptions, the agreement between the data and the 

theory is good. The parameters are summarized in Table 14.2. The thickness of 

the assumed layer, estimated from regression analysis, varies from 

approximately 24 to 58 cm, which is too thin to show on conventional subbottom 

profilers. 

It is evident that two distinct sets of parameters are present in Table 14.2. The 

subsurface layer has not only a higher rms roughness but a lower correlation 

length and exponent, indicating its coarse nature. Moreover, the parameters h, n, 

and L estimated for the subsurface are comparable to the parameters of Table 14.1 

for the type A areas. The top-layer parameters of Table 14.2 exhibit lower rms 

height, higher correlation length, and exponents indicating a smoother surface. 

The spatial correlation function is nearly Gaussian. Although the material 

providing the rougher surface is more abundant on the sea floor, deposits on the 

order of tens of centimeters thick of a smoother material occur regularly. Since 

the channel floor mainly consists of coarse sands and gravels, the analysis 

indicates a scenario sketched in Fig. 14.5.4, where the scattering from the type A 

areas is only from the gravel water interface. At other places it is a combination of 

scattering from both the sediment-water and sediment-gravel interface. The 

validity of this hypothesis can only be tested by collecting cores and photographs 

from these areas. 

14.6 An Analys is  of  the Backscat tered  Data  in Two Areas:  

Spatial  Spectra  

The Wiener-Khinchine spectral transformations (Equations 6.4.8 and 13.1.23) 

were made on the average spatial correlation functions in Tables 14.1 and 14.2. 

The spectra are shown in Fig. 14.6.1. The spatial (power) spectrum for area A fits 

a power law, where K is reciprocal wavelength, 

~b(K) ~ [5.5 • 10 -5] K -2"25 for 0.2 < K (14.6.1) 

over a wide range of spatial frequency (Fig. 14.6.1a). As shown in Fig. 14.6.1b, 

the top interface is approximately a Gaussian and does not fit a power law. The 

lower interface (Fig. 14.6.1c) appears to fit the power law 

~ (K)  ~ [5 x 10 -5] K -2"36 for 0 .4<  K (14.6.2) 
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Figure 14.6.1 Spatial spectra of the areas A and B. These (power) spectra ~(lc) were 
computed by taking the cosine Fourier transformation of the spatial correlation functions. 
~c is the reciprocal wavelength or cycles per meter. (From Talukdar, K. K., R. C. Tyce, and 
C. S. Clay, "Interpretation of sea beam backscatter data collected at the Laurentian Fan 
off Nova Scotia using acoustic backscatter theory," J. Acoust. Soc. Am. 97, 1545-58, 

1995.) 
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Comparisons of the spectra for Fig. 14.6.1 c and d show that the contribution from 

the top interface is buried in the spectra of the rougher lower interface. 

Malinvemo (1989a, 1989b) describes tests of linear models of sea-floor 

topography and shows that a power spectrum of a random walk process varies 

as K -2. The exponents in Equations 14.6.1 and 14.6.2 are a little larger than 2, 

and these values are consistent with the spatial spectra of sea-floor topography. 
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Symbols 

Different ocean acoustic specialties such as wave propagation, scattering by 

objects and rough surfaces, transducers, nonlinear propagation, oceanography, 

geophysics, and fishery acoustics use some of the same symbols in different 

contexts. Where possible, our expressions use symbols appropriate to the 

different technical areas; thus some of the same symbols and parameters appear 

in different contexts. We employ Italicized Times Roman, greek, and Zapf 

Chancery fonts for symbols. When the meaning is clear, and in order to simplify 

the notation, the functional dependence may be omitted. When the units of the 

quantity are not obvious, we specify them. The number in parentheses refers to 

the equation where the symbol is encountered first in this text. A&S refers to 

symbols and sections in Abramowitz and Stegun (1964). 

aec 

aes 

an 

Am 

AS 

An 

A/D 

b 

bF/ 

B/A 

radius of a sphere or cylinder 

the ray parameter for refraction (3.3.3) 

radius of an equivalent volume cylinder (7.4.26) 

radius of an equivalent volume sphere (7.4.27) 

displacement amplitude of the nth transducer element 

(4.2.7) 

dispersion constant for the boundary wave, dimen- 

sionless (13.2.16); insonified area (13.3.17) 

amplitude of the mth cylindrical mode at the source 

(11.1.20) 

amplitude factor proportional to source power in 

modal analysis ( 11.1.23) 

amplitude of the sum of hydrophone signals (10.1.2) 

analog to digital conversion 

real component of the ratio of specific heats, 7, 

dimensionless (8.2.23); separation between adjacent 

elements of a line source (4.2.1) 

gradient of sound speed,(m/s)/m (3.3.15) 

parameter of nonlinearity, dimensionless (5.1.8) 
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BW 

BSS 

B 

C(k) 

c(r 

dB 

dS 

DSL 

D 

q9 

DIt, DI~ 

DF 

DS 
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bandwidth, Hz 

backscattering strength (13.3.33) 

pressure amplitude for impulse diffraction, pascal 

sec 1/2 (12.2.10) 

sound speed or velocity; subscripts identify the 

medium or type of wave (1.2.1 and 3.3.2); Ce, 

Rayleigh wave; cs, shear wave; Cp, compressional 

wave 

covariance of a random signal (6.4.1); C,~ unknown 

(sample) covariance matrix (11.5.2) 

autocorrelation of time varying surface (13.1.7) 

spatial correlation in the x direction of a rough 

surface (13.1.15) 

autocovariance of a signal (6.4.7) 

Fresnel cosine integral; also see S(x) 

a distance or separation (4.8.2); imaginary compo- 

nent of the complex ratio of specific heats, 7, 

dimensionless (8.2.23) 

decibel, 20 log lo of ratio of pressures, voltages, and 

so forth to appropriate reference values; 10 loglo of 

ratio of intensities, or powers to appropriate reference 

values; subscript lo is often omitted 

element of area 

deep scattering layer (biological) (section 9.3.4) 

transducer and array directional responses; also with 

subscripts and functional dependence as in D(O), D t, 

and D r directivity factors for transmitter and receiver, 

dimensionless (4.2.13); diffraction terms in the 

wedge solution (11.8.51); periodic separation of 

wedges (12.4.2) 

product of transmit and receive directivities (10.4.1) 

directivity index for transmission, reception, dB, 

101oglo(Dt), and 10 loglo(Dr), (4.5.9 and 13.3.1) 

detection factor (11.5.4) 

diffraction strength, dB (11.5.4) 
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Db 

eG 

esr 

Em 

En 

Exx(f,.) 

f 

f~ 

L 

f ( t ) , f ( x )  

fr 

f~ 

f~ 

fd 

f~ 

f 

F 

gr 

gR 

damping rate, sec -~ (8.2.43) 

base of natural logrithms, 2.71828; error matrix for 

matrix inversion (10.6.2); ratio of bulk elasticities in 

two media; en(t) amplitude of envelope of a ping 

(10.2.1 and 10.4.14) 

amplitude of the envelope within "gate open" 

interval (9.4.10) 

equivalent spherical radius (Fig. 10.6.3) 

message energy passing through an area in a given 

time, joules (3.1.11 and 6.6.3) 

bulk modulus of elasticity of medium n (2.5.5 and 

2.5.7) 

energy spectral density at frequency ~ (6.2.44) 

sound frequency, Hz (2.3.2) 

frequency of the mth harmonic; subscripts give 

specific harmonic 

carrier frequency, Hz (6.3.2); waveguide cut-off 

frequency ( 11.1.53) 

general functions of time or position 

relaxation frequency of a molecular process (3.4.22) 

simple bubble breathing frequency, Hz (8.2.13) 

corrected bubble breathing frequency, Hz (8.2.27) 

frequency of damped oscillation, sec -l (8.2.50); 

heterodyne-shifted frequency (10.2.8) 

heterodyning frequency (10.2.3) 

a generalized vector (7.2.1) 

ratio of near-surface bubble frequency to free-space 

frequency (8.2.53); frequency of an ocean surface 

gravity wave, sec -l (Fig. 8.4.6) 

acceleration of gravity, m/s 2 (8.2.14); ratio of 

densities in two media 

volume flow per unit length, m2/s (7.4.16) 

acoustical roughness for scatter from a randomly 

rough surface (13.2.5) 



gt 

gA 

g(t) 

grcler 

gTVG 
)2 111/2 

- + r (  /_,.,,.-,,-.- , - 2  , -~  - ,,8'2 

G 

G* = G + G' 

h 

Hn(1)(x) and H~ (2) (x) 

i : v / -1  

i or i(t) 

i , j ,  k 

I 

J~(x) 
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acoustical roughness for transmission through a 

randomly rough surface (13.5.6) 

linear sonar receiver gain factor 

a function of time (3.1.3) 

gain of receiver (10.2.23) 

time-varying gain function (10.2.24) 

function for incident angles greater than critical 

(2.6.14 and 11.1.32) 

sonar receiver gain in dB (10.2.23); pressure 

transmission function in a waveguide (11.1.29); 

scattering angular function (13.3.4) 

imaginary value for transmission (2.6.14); beam 

geometry term in rough-surface scatter (13.3.16) 

dynamic shear modulus, (newtons/m2)/(m/s) (8.6.1) 

ratio of sound speeds for two media (7.3.24); height 

(2.6.31); h(t) filter response 

cylindrical Hankel functions (7.4.18) (A&S, chap. 9) 

imaginary number; also a summation index 

instantaneous intensity: the energy passing through a 

perpendicular unit area in unit time, watts/m 2, a 

vector (2.1.2) 

unit vectors along coordinates x, y, and z 

time average intensity, watts/m e (2.5.16); current in 

transducer calibration, amperes (4.7.1); I (.. .) 

spectral intensity in 1 Hz band, (watts/m2)/I--Iz 

an integral in the wedge diffraction solution (11.8.18) 

unit vector along coordinate y 

spherical Bessel function of first kind and order n 

(A&S chap. 10); see yn(x) for companion function 

cylindrical Bessel function of first kind and order n 

(A&S chap. 9); see Yn(x) for companion function 

transducer reciprocity factor, watts/Pa 2 (4.8.1) 

wave number or propagation constant, m -1 (2.3.5b); 

subscripts give the medium; an integer in the image 

construction of the wedge problem (11.8.35) 
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~o 

ks 

k 

kLw 

K 

K 

gv/p 

gp/v 

Lec 

L(O,r 

Lbs(f) 

Lgs 

a reference wave number (11.7.1) 

grazing propagation constant over a rough surface 

(13.2.16) 

grazing propagation constant over a smooth surface 

(13.2.16) 

grazing propagation constant for boundary wave over 

a rough surface (13.2.17) 

unit vector along coordinate z 

empirical constant for fish weight, gm/cm 3 (9.5.24) 

ocean surface wave number, radians/meter (13.1.13); 

compressibility, reciprocal of bulk elasticity, Kg s -2 

m -1 (6.3.21) 

ocean bottom spatial cycle frequency, cycles/meter 

(13.1.21); thermal conductivity of a gas (8.2.28a); 

horizontal component of wave number in waveguide 

(11.1.7) 

transducer voltage to pressure conversion factor, 

volts/#Pa (4.5.3) 

transducer pressure to voltage conversion factor, at a 

defined position, Pa/volt (4.6.1) 

dipole separation (4.1.9) 

length of a cylinder, or a rectangular transducer face, 

or a path (2.6.30); folding depth, distance to decrease 

to e -~ of reference value (8.4.2); spatial correlation 

length, where subscripts indicate direction (13.1.16) 

equivalent scattering length of a cylinder; subscripts 

ebc for equivalent bent cylinder; subscript x for 

projection on x axis and so on (9.6.1 and 9.6.3) 

acoustic scattering length or amplitude (spectral) in 

0, r direction, meters (7.1.3); subscripts give parti- 

cular case~for  example, blad for bladder (9.5.1), 

bod for body (9.5.12), and K for Kirchhoff method 

acoustic backscattering length (7.1.9) 

acoustic scattering length for geometrical scatter 

(7.5.6) 



In 

log, loglo, log(.) 

m 

M 

M 

n(a) da 

nb 

n n (X) o r  Yn (X) 

ncdf 

N 

Nm 

Nit 

N,.,(x) or Yn(x) 

Npings 

~-,em 
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relative, or reduced, backscattering length (9.5.16) 

natural logrithm to base e 

logarithm to base 10 

lumped mass of an oscillating acoustical system 

(8.2.1); source mass injection/volume (4.1.5); statis- 

tical moment of a surface roughness, subscript 

indicates order (13.1.2); mode number in a wave- 

guide (7.4.2 and 11.1.13); order of diffraction by a 

grating (12.4.2) 

number of modes (7.4.24); mass per unit area per unit 

time (5.4.4) 

acoustical Mach number (2.5.11 and 5.1.14) 

an integer (2.6.36); the number of sources (4.2.2); 

index of refraction (11.7.1) 

number of bubbles of radius a, in increment da, per 

unit volume, m -3 (8.3.8) 

vector normal to an area, dS; matrix vector for 

density components of scatterers, m -3 (10.6.7) 

number of scattering bodies per unit volume, m 3 

(9.3.7 and 10.4.27); noise output voltage of an array 

(11.3.8) 

spherical Bessel function of order n (A&S chap. 10) 

critical density of fish, number per unit volume, m -3 

(10.3.7) 

correction for spherical wave reflection (2.6.40); 

number of elements of a transducer (4.2.1) 

bandpass-filtered noise voltage of the ruth mode 

(11.3.8) 

number of independent trials (6.4.11) 

cylindrical Bessel function of order n (A&S chap. 9) 

number of pings (10.4.24) 

number of echoes in the ruth amplitude bin per ping 

(10.4.24) 



698 Symbols 

PRL 

P( f )  

P(z) 

[path] 

[pail 

Pa 

PE(en) 

P(AV~) 

PDF 

PSD 

qm 

qn 

Q 

Qt 

instantaneous acoustic pressures, pascals or micro- 

pascals (2.5.1a); subscripts give name--inc for 

incident, s or scat for scattered (7.1.1); pj, acoustic 

pressure radiated by a dipole (4.1.10); Po, instanta- 

neous acoustic pressure at the reference distance R0; 

PA, ambient pressure, pascals or micropascals 

(7.4.25); PT, total pressure (2.5.1a); p,,.,., backscattered 

pressure with narrow-beam sonar (10.3.8); Pws, 

backscattered pressure with wide-beam sonar 

(10.3.9); p,~, impulse of pressure, pascal sec (12.3.4) 

amplitude of acoustic pressures; Po at the reference 

distance Ro (2.3.1); P,x, axial acoustic pressure 

amplitude (4.5.5); P2, pressure amplitude of second 

harmonic (5.1.12) 

Langevin radiation pressure, pascals (5.5.1) 

spectral acoustic pressure, pascals/Hz 

polynomial generating function of acoustic pressure 

acoustic pressure and time history, dimensionless 

(3.2.3) 

path amplitude factor, dimensionless (3.2.4 and 

3.4.36) 

pascal, unit of pressure: 1 newton/m 2 

probability of observing x,, in x,, + Ax/2, subscripts 

give specific functions 

joint probability function (10.4.14) 

probability of body being in gated volume (10.4.7) 

probability density function 

power spectral density, watts/Hz (6.6.5) 

mode excitation, pascals (11.1.25) 

normal coordinate in the wedge solution (11.8.7) 

quality of a resonant system, Q = f / A f  or Q = 1 / 

directivity factor, subscript t for transmitter, r for 

receiver, dimensionless (4.5.7) 



R 

em 

R(R) 

~Pk.12 

RSS 

Ro 

S 

s(t) 

Sv(f) 

$ 

Sbs 

Sv 

S 

s( o) 

S(x) 
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radial distance in polar and cylindrical coordinates, r, 

z, and ~b; r,k, unknown range (11.3.17); rtr, trial range 

in matched filter (11.3.19); ro, range source to 

diffracting wedge; r, range from diffracting wedge 

to receiver (Fig. 11.8.1 and Fig 12.2.1) 

range in spherical coordinates, R, 0, and qS; Rs, range 

source to scatterer (13.3.1); Ro, reference range, 

usually 1 meter (2.1.2); Rc, "critical range" for far- 

field of transducer (2.4.16) 

lumped mechanical resistance of an oscillating 

system, newtons/(m/s) (8.2.38) 

radial function solution of the wave equation (2.7.37) 

plane wave pressure reflection coefficient at the 1-2 

interface (2.6.8) 

specular scatter, coherent reflection coefficient 

(13.2.4) 

apparent reflection coefficient (13.3.22) 

lumped stiffness of an oscillating system, newton/m 

(8.2.1) 

sum of pressure or voltage signals of all receivers in a 

waveguide (11.3.1) 

rms slope of a surface; Sw, rms slope in windward 

direction; Sc, rms slope in the cross wind direction 

(13.1.5) 

volume sattering coefficient, mZ]m 3 

matrix vector of volume scattering coefficients 

(10.6.6) 

backscattering cross section per unit volume, m -1 

(8.3.8) 

volume backscattering strength in dB (9.3.19) 

transducer source response at a designated position, 

#Pa/ampere (4.8.1) 

waveguide source function, Hz -1 (11.2.3) 

Fresnel sine integral (9.6.7); see also C(x) in A&S 

chap. 7 



700 

5 

SL 

SPL 

t 

to 

t n = nt o 

tp 

ta 

tdir  

Tr 

[tips] 

[ties] 

[trans (r, f)] 

T 

T 

T(t) 

TL 

TC 

T12 

TS 

T S  Fe 

TVG 

b/, V, W 

UR 

Symbols 

salinity, parts per thousand (1.2.1); cross sectional 

area--for example, of a raytube (3.2.14) 

surface scattering coefficient (13.3.32) 

source level, dB (3.4.43) 

sound pressure level, dB (3.4.44) 

time; subscripts give particular times 

time between samples (section 6.2.1) 

the digital time of a sample (6.2.10) 

actual ping duration (6.3.1) 

effective ping duration (6.3.3) 

direct travel time from source to receiver (11.8.20) 

relaxation time of a molecular process (3.4.15) 

time integral of pressure squared; subscript cv for the 

gated volume (3.1.13 and 9.3.2) 

time integral of an echo squared (voltageZsec or 

pressure2sec) (9.4.12) 

transmission fraction, dimensionless (3.4.39) 

period of a periodic wave, sec 

temperature, degreees centigrade (1.2.1) 

temporal function for propagation of acoustic 

pressure, dimensionless (2.7.20 and 11.1.2) 

transmission level, dB (3.4.45 and 3.4.53) 

transmission change of level, dB (13.5.5) 

plane wave pressure transmission coefficient at the 1- 

2 interface (2.6.8) 

target strength, dB re 1 m 2 (7.1.4) 

"reduced" target strength, various references (9.6.6 

and 9.6.9) (caption Fig. 9.5.7) 

time-varying gain (Fig. 10.2.2) 

rectangular components of particle velocity in x, y, 

and z directions, m/s (2.5.2 and 2.7.1) 

radial particle velocity at range R (3.1.5) 



u(r, z) 

Ugm 

Ugmm 

u~ 

U 

U(Q) 

Us 

ue 

U 

U(r) 

us 

Vrm 

V 

v(r) 

Vo 

VA8 

V 

f/ 

Var 

W 

W 
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function of range and depth in waveguide propaga- 

tion (11.7.2) 

group velocity of ocean surface wave (13.1.18) 

group velocity of mth waveguide mode (11.2.8) 

group velocity minimum of mth waveguide mode 

(11.2.8) 

amplitude of radial particle velocity at R = a (4.1.1) 

void fraction, ratio of bubble volume to total volume 

(8.3.34) 

scattered (spectral) acoustic field at a point Q 

incident acoustic field at the surface, in scattering 

calculations 

Laplace generating function (10.4.31) 

a scalar solution of the wave equation (7.2.4) 

radial dependence of field in cylindrical coordinates, 

dimensionless (11.1.2) 

propagation speed of a shock wave (5.4.4) 

voltage at a transducer (4.6.3); vn, voltage peak for 

narrow-beam receiver (10.3.13); Vw, voltage peak for 

wide-beam transducer 

particle velocity in the y direction 

phase velocity of mth mode propagating in the r 

direction (11.2.2) 

surface wave phase velocity (13.1.19) 

the range function in the parabolic equation (11.7.2) 

transducer input voltage amplitude (4.6.1) 

a voltage during transducer calibration (4.7.1) 

volume (8.2.4) 

rate of volume flow, m3/s (4.1.4 and 12.2.2a) 

the statistical variance (9.4.3) 

weight of explosive, kg (5.4.1) 

particle velocity in the z direction, m/s 



702 

w(x.) 

Symbols 

% 

W 

w~, wE, WF 

W 

x, y, z 

Xcrit 

x(n) 

x(t) 

X 

X(x) 

X ( f )  

Xfft(m) 

Y 

y(t) 

YM(j) 

Y(Y) 

Y~(x) 

Y ( f )  

Y 

probability density function, PDF; w(xn)Ax is the 

probability of observing a value of xn between 

x n - A x / 2  and x n + Ax/2;  WRayl, Rayleigh prob- 

ability density function (13.2.9); WE, PDF of an 

echo (10.4.16); WF, PDF of fish scattering length 

(10.4.18) 

fish weight, gm (9.5.24) 

width, of a rectangular face 

Laplace generating functions (10.4.30, 10.4.32 and 

10.4.34) 

characteristic function for scatter from a two- 

dimensional rough surface (13.3.12) 

rectangular coordinates in X, Y, Z system 

critical (minimum) distance for far-field approxima- 

tion (5.2.4) 

the nth digital input amplitude (6.2.2) 

filter input source signal at time t (Table 6.1); a signal 

(10.2.1) 

a distance (5.1.12) 

a function of coordinate x (2.7.20) 

input amplitude spectral density (6.2.36) 

the ruth spectral component in an FFT (6.2.1) 

a rectangular coordinate 

filter output in time domain (Table 6.1) 

convolution of signals (6.5.1) 

a function of coordinate y (2.7.20) 

spherical Bessel function of order n (A&S chap 10) 

output amplitude spectral density (6.2.36) 

non-shock wave energy in an explosion, joules 

(5.4.8) 

ratio, resonance frequency divided by insonification 

frequency (8.3.25) 



Z(z) 

z1 

~e 

C~ b 

~+ 

7 

7 

m 
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a rectangular coordinate; depth m (1.2.1); z,~, 

unknown depth (11.3.17); Ztr, trial depth for matched 

filter (11.3.19) 

a function of coordinate z (2.7.20); Zm(Z) eigen- 

function of z dependence of mode m in cylindrical 

coordinates (11.1.15) 

source depth vector matrix eigenfunction for wave- 

guide (11.4.1) 

receiver depth vector matrix eigenfunction for 

waveguide (11.4.1) 

naperian logarithmic attenuation rate for plane 

waves, nepers/m (3.4.1) 

attenuation rate for plane waves, dB/m (3.4.6) 

plane wave logarithmic attenuation rate due to 

bubbles, dB/m (8.3.18) 

a constant in the Pierson-Moskovitz wind wave 

spectrum, dimensionless (13.1.11) 

function of angles in rough surface scatter (13.3.5a) 

ratio, gate open duration/signal duration (9.4.13) 

ratio of bubble interior pressure to ambient pressure 

(8.2.27) 

a parameter in the equation of a parabolic bent 

cylinder (9.6.4) 

a parameter in nonlinear propagation (5.1.11) 

a constant in the Pierson-Moskovitz wind wave 

spectrum, dimensionless (13.1.11) 

a function of angles in rough surface scatter (13.3.5b) 

a parameter in wedge diffraction (11.8.63 and 12.2.3) 

a function of angles in rough surface scatter (13.3.5b) 

vertical component of wave number in cylindrical 

waveguide propagation (11.1.7) 

eigenvalue of mth mode in z direction (11.1.13) 

ratio of specific heats of a gas; 7 = 1.4 for air, 

dimensionless (5.4.9) 



704 Symbols 

7(f) = ac(f)/aa(f)  

F 

6 

r 

6t 

V 

6R 

6Rr 

6Rt 

6Rv 

6( t - t~)  

6 ( n - m )  

6 
6m 

A 

ratio of coherent to incoherent components in Rician 

PDF (9.4.8); see also Fig. 13.2.4 

exponential power in the adiabatic relation (5.1.2) 

an increment (2.1.1) 

an empirical damping constant for dissipation in 

wedge diffraction (11.8.48) 

total damping constant of a bubble, dimensionless 

(8.2.30) 

bubble damping constant due to reradiation (scat- 

tering), dimensionless (8.2.30) 

bubble damping constant due to thermal conductivity, 

dimensionless (8.2.30) 

bubble damping constant due to shear viscosity, 

dimensionless (8.2.30) 

total bubble damping constant at resonance, dimen- 

sionless (8.2.31) 

bubble damping constant due to reradiation at 

resonance, dimensionless (8.2.31) 

bubble damping constant due to thermal conductivity 

at resonance, dimensionless (8.2.31) 

bubble damping constant due to shear viscosity at 

resonance, dimensionless (8.2.31) 

Dirac delta function, everywhere 0 except infinite at 

t = t~ (3.1.1) 

Kronecker delta function; value unity when m = n; 

otherwise zero (11.1.17) 

finite, discrete delta function (11.8.40 and 12.2.1a) 

attenuation rate of mth mode (11.1.27) 

a finite increment, as in Af for a narrow frequency 

band; AR for a range difference (2.4.15); Az for 

virtual surface displacement (2.6.25); AE for energy 

passing through an incremental area AS (3.1.11); Aas 

for differential scattering cross section (7.1.5); At for 

digital duration of a delta function (3.1.1); At, 



AT 

AU 

A = kL sin Z 

V 

V. 

V 2 

g 

@ 

Oo 

OW 

Oi 

Os 

Oc 
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duration of impulse source (11.8.11); Atww, duration 

of "water wave" in a waveguide (11.5.11) 

time between impulses (12.2.8) 

effective frequency bandwidth between half-power or 

half-intensity points (6.3.2) 

a phase shift in scattering from cylinders (7.4.21) 

gradient operator (2.7.4, 2.7.10, and 2.7.15) 

divergence operator (2.7.7, 2.7.13, and 2.7.17) 

Laplacian operator (2.7.9, 2.7.14, and 2.7.18) 

a small quantity; as in length of sagitta of the arc 

(2.4.1) 

roughness parameter for boundary wave (13.2.12) 

angular displacement from diffraction shadow 

boundary (12.2.2) 

energy per unit area at range R (3.1.15) 

surface displacement (12.4.1) 

a phase shift (10.2.4) 

a function of time and distance in wedge diffraction 

(11.8.26 and 12.2.7) 

angle of incidence at a cylinder (7.3.15) 

polar coordinate in spherical coordinates; angle with 

the axis of radiation (4.2.2); angle with the normal to 

the surface in plane wave reflections (2.2.3, 3.3.3, and 

11.1.8); angle between diffracting wedge face and 

receiver (Fig. 11.8.1); angle between sound beam 

axis and wind wave system direction (13.1.13) 

angle between diffracting wedge and source (Fig. 

11.8.1) 

wedge angle; angle in fluid between sides of a 

diffracting wedge (Fig. 11.8.1) 

angle of incidence at a scatterer (7.5.1) 

angle of scatter at a body (7.5.4) 

critical angle for total reflection (2.6.13) 



706 Symbols 

K 

K 

2 

2~ 

A 

A 

#b 

m 

Vm 

1I 

f i g s  

HM 

[ -1xx ( fm)  

[3A 

PT 

O" e 

O" s 

(7 a 

thermal conductivity of a gas, cal/(cm s ~ (8.2.28a 

and 9.5.22) 

wave number of an ocean wave component (13.1.13); 

subscripts designate direction (13.1.14) 

acoustic wavelength (2.3.1) 

apparent acoustic wavelength in doppler shift (3.6.1) 

spatial distance between samples (section 6.1) 

ocean wavelength 

waveguide mode interference wavelength (11.1.55) 

dynamic coefficient of shear viscosity, pascal sec 

(3.4.10) 

dynamic coefficient of bulk viscosity, pascal sec 

(3.4.9) 

waveguide parameter that includes unknown source 

power, depth, and range (11.5.7) 

a parameter in the wedge diffraction solution 

(11.8.19) 

a quantity proportional to the energy flux in mode m 

(11.1.16) 

a parameter in the wedge diffraction solution 

(11.8.24) 

power passing through an area, watts (3.1.16) 

geometrically scattered power, watts (7.5.4) 

source message power, watts (6.6.1) 

spectral density (1 Hz band) of a source at frequency 

fro, v~ or pascal2/Hz (6.4.13 and 6.4.15) 

acoustic density, kg/m3; subscript numbers identify 

the medium (2.5.16) 

ambient density of the medium, kg/m 3 (2.5.16) 

total density of the medium, kg/m 3 (2.5.16) 

total extinction cross section of a body, m 2 (7.1.12) 

total scattering cross section of a body, m 2 (7.1.11) 

total absorption cross section of a body, m 2 (7.1.11) 



o't,s(f) 

ac(f) 

ad(f) 

"CO 

~'12 

Z 

7~D 

03 

Q 

(2 
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obsolete form of backscattering (differential) cross 

section (Clay and Medwin 1977) (7.1.8); see Aabs(f ) 

concentrated (mean) component of the backscattering 

(differential) cross section (9.4.4) 

distributed (variable) component of the backscat- 

tering (differential) cross section (9.4.5) 

a delay time (3.1.9); a decay time (5.4.2); surface 

tension (9.5.22); travel time excess beyond the least 

time in wedge diffraction (11.8.28 and 12.2.6) 

travel time from source to wedge crest to receiver 

(11.8.21) 

pressure transmission coefficient at 1-2 interface 

(2.6.11) 

azimuthal spherical coordinate 

phase angle (2.4.17); phase shift (2.6.17) 

ocean wave spectral density, mZ]Hz (13.1.8) 

tilt angle of a cylinder (7.3.19) 

empirical phase shift or amplitude adjustment (7.3.21 

and 9.5.1); spatial part of the solution to the wave 

equation in cylindrical coordinates (11.8.2) 

integrated beam pattern (4.5.4 and 9.3.11) 

angular frequency, radians/sec (2.3.5a); subscript 

number is harmonic number (5.3.1); subscript letter 

is descriptive (5.3.6) 

element of solid angle (3.1.11a) 

angular frequency of a time-varying ocean surface 

displacement (13.1.8); ~r2 m is the frequency of the 

maximum (13.1.7) 



Subject Index 

Absorption, 18, 104 

Acoustic 

boundary layer, 180 
daylight, 411 

density, 36 

equation of state, 154 

particle velocity, 65 

power, 76, 143 

pressure, 37, 65 

radiation pressure, 177 

streaming, 178 

Acoustical oceanography, 1 

active, 8 

passive, 15 

Adiabatic 

approximation, 509 

gas relation, 154 

Algorithms, 225 

Biot-Tolstoy wedge, 530 

deconvolution for fish data, 445 

MATLAB signal processing, 225 

Approximations 

adiabatic, 509 

far field, 31 

Fraunhofer, 29 

Fresnel, 29 

plane wave, 28 

Array 

cosine, 13 

Gaussian, 135 

line, 135 

triangular, 135 
uniform, 135 

waveguide, 4 

Attenuation, 103 

decibels, 104 

formulas, 109 

nepers, 103 

Backscattering length 

bubble, 290 

fish, 352 

Bandshifting, 418 

Beam width, 146 

Bioacoustic pyramid, 349 

Biological pyramid, 4 

Biot-Tolstoy exact wedge theory, 519 

Bottom loss, 613 

Boundary 

hard, 44 

soft, 44 

Boundary wave 

dispersion, 630 

propagation, 627 

wave guide, 631 

Breaking wave, 334 

Bubble, 287 

backscattering length, 290 
corrections, 307 

cross sections, 302, 305 

damped motion, 304, 306, 310 

damping, 299 

lumped constant, technique, 292 

modal solution, 289 

non-spherical, 308 
oscillating mass of, 293 

resonance frequency of, 294 

scatter directivity, 290 

sediments, 341 

stiffness of, 293 

Bubbly water 

attenuation, 314 

dispersion, 317 

scatter, 31 I 

Caustics, 94 

Cavitation, 158 

Channel axis, 7 

Characteristic equation for waveguide, 477 

Coherent reflection coefficient, 595 

inversion for PDF of heights, 596 

Condensation, 19 

Conservation 

energy, 82 

mass, 37 
Convolution. 195. See also Deconvolution 

for echo PDF, 443 

Coordinates 

cylindrical, 6 ! 

Eulerian, 36 

Lagrangean, 36 

spherical, 61 

Correlation 
auto, 209 

cross, 421 

Critical angle, 41 

Critical fish density, 431 

Critical reflection, 50, 476 

Cross section. See also Bubble 

absorption, 238 
extinction, 238 

scattering, 238 

Cylinder scatter 

finite, 262 

finite fluid, 255, 257 

infinite, 259 

modal solution, 258 

penetrable, 252 

tilted, 256, 263 

708 



Subject Index 709  

Decibels, 104 

Deconvolution, 445, 449 

Deep scattering layer (DSL), 361 

Delta function 

Dirac, 72 

Kronecker, 473 

Density 

acoustic, 36 

ambient, 36 

total, 36 

Differential scattering cross section. See also 

Scattering, cross section 

and scattering length, 237 

and target strength, 240 

Diffraction, 18 

double, 559 

edge, 23 

plate, 558 

thick-plate, 561 

wedge, 552, 557 

Directional response, 147 

Directivity, 134 

factor, 145 

index, 146 

Dispersion, 18 

bubbly water, 317 

wave guide, 486 

Doppler shift, 119 

navigation, 124 

particle motion, 120 

sea surface, 122 

Dual-beam transducer sonars, 432 

Echo sounder, 407, 422 

Eigenfunction, 472 

Eigenvalue, 472 

Energy 

conservation, 18 

density, 76 

message, 75 

Ensemble of fish 

PDF of echoes-random fish tilts, etc., 451 

volume scattering coefficient, 361 

Equivalence of source/receiver directivity, 146 

Far field, 66 

Filter, 184, 188, 197 

matched, 209 

Finite wedge scattering, 543 

for impulse, 552 

for Huygens sources in, 553 

in frequency domain, 564 

for shadow penetration, 556 

for wedge spectra, 557 

for finite crest length, 563 

for offset wedge, 563 

for strip, 566 

Fish 

acoustical parameters, 376 

body scatter, 378 

critical density, 432 

ensembles, 450 

models, 372, 381,386, 396 

patchiness, Plate 5 

structure, 363 

swimbladder parameters, 389 

swimbladder resonance, 384 

swimbladder scatter, 374 

target strength, 383 

tilts, 454 

whole scatter, 379 

Fluctuations of sound transmissions 

due to bubbles, 319 

long-range transmission, 501 

shallow water waveguide, 486 

Fourier 

integrals, 191 

series, 191, 192 

Fraunhofer region, 25 

Frequency, 26 

angular, 26 

Fresnel zones, 55, 351 

approximation, 246 

Gas globe, 174 

Gated signal, 199 

Gauss theorem, 241 

Geometrical dispersion, 486 

group velocity, 487 

phase velocity, 486 

Global warming, 8 

Green's function, 475 

transmission, 375 

Green's theorem, 242 

Harmonic distortion, 156 

Helmholtz-Kirchhoff (HK) methods 

and experiment, 557-560 

for fish body, 373, 378 
for fish swimbladder, 373 

for fluid cylinders, 252 

for rectangular plane facet, 249 

for wedges, 542 

for zooplankton, 392 

Fresnel approximation, 246 

Kirchhoff approximation, 244 

Hilbert transformation 

at caustic, 97 

Homogeneous medium, 18 

Hooke's Law, 38 

Huygens' Principle, 19 

Images 

Biot-Tolstoy wedge, 524 

construction with reflections, 78 

Huygens' construction, 21 

Imaging 

ocean bottom, 10 

ocean surface, 12 

ocean volume, 12 

Impedance 

specific acoustic, 39 

Impulse, 72 



710 Subject Index 

Impulse reflection 

by fluid cylinder, 396 

by live decapod shrimp, 397 
Integrated beam pattern, 144 
Intensity 

average, 41 
instantaneous, 40, 74 

Interference, 18 

at an interface, 33 
Lloyd's mirror, 34 
Inverse solution for multiple frequencies, 461 

Isotropic medium, 18 

Kirchhoff approximation, 244. See also Helmholtz- 

Kirchhoff methods 

Laplace generating function, 445 
z-transform, 445 

Laplacian, 60 

Mach number, 40, 158 

Matched 

field processing, 502 
filter processing, 209 

waveguide, 497 
field, 502 

signal, 501,506 
Mode. See also Waveguide, 469 

characterisic equation, 477 
excitation, 474 

orthogonality of, 473 

processing, 505 
transmission function, 475 

Mode filters, 493 

by arrays, 493,497 

by matched array, 498 

for noise, 496 
Mode interferences, 484 

Molecular relaxation, 105 
boric acid, 109 

magnesium sulfate, 108 

Monopole, 128 
Multiple arrivals by raypaths, 80 

Near field, 142 

Non-linearity, 155 
Normal coordinates, 519. See also Wedge impldse 

scatlel 
diffraction, 527 

generalized force and source, 519 

images, 524 
theory and experiment, 534 

Normal modes. See also Mode 
fluid cylinder, 258 
fluid sphere, 267 

plane-layered media, 469 

Obliquity factor, 20 

Ocean bottom 
backscatter, 650 
correlation function, 591 
deep tow side-scan images, 643 

mosaic of deep tow, 645 

spatial correlation functions, 589, 591,651,653 

spatial frequency spectra, 588-591,659 

spatial spectrum, 589 
Ocean surface 

frequency spectrum, 583 

moments, 579 
PDF of displacements, 578 

PDF of slopes, 580 

space-time correlation, 588 
spatial correlation, 585 
temporal correlation, 580 

Ocean volume 

biological and physical realms, 2, 3 
physical characteristics, 2 

Parabolic equation (PE), 514 

Parametric receiver, 168 
directivity, 169 

Parametric source, 162 

directivity, 167 
Particle velocity, 37, 74 

PDE See Statistics 

Period, 26 
Phase 

shift of caustic, 91 
spatial, 26 

temporal, 26 
velocity, 486 

Plane wave approximation, 58, 78, 235, 350 
Plankton 

bubble-carrying, 401 
zooplankton, 40 I 

Power, radiated, 76 
Pressure 

acoustic, 37 

ambient, 37 
impulse, 74 

pulse timing, 8 

ray tube, 83 
reference, ! 13 
release, 44 

total, 37 

Rainfall, 337 
Rankine-Hugoniot equations, 173 

Rarefaction, 19 

Ray 
caustics, 94 

crossing, 94 

multiple paths, 80 

parameter, 85 
paths, 71, 89 

tracing, 85 
Ray path 

amplitude factor [pail, 77 
time, 77 

Reflection, 18 

along ray paths, 78 

coefficient, 43 
from a disk, 57 
layers, 46 
multiple layers, 69, 477 

plane wave, 22 



Subject Index 711 

sediment, 45 

wedge wall, 524 

Reflector 

virtual, 50 

Refraction, 18 

plane wave, 22, 85 

Reverberation 

bodies, 353 

bubble, 311 

Reynolds stress tensor, 129 

Sampling 

Nyquist, 184 

spatial, 185 

temporal, 185 

Saturation, 159 

Scale model 

boundary wave, 627 
head wave, 53 

rough waveguide, 631 

seamount, 563 

surface scatter, 603 

transmission, 632, 635 

Scattering, 24, 110 

cross section, differential, 227 

cross section, total, 238 

length, 237 

modal solution, 258 

plane facet, 249 

specular, 249 

Sea beam swath mapping, 647 

backscatter. See Ocean bottom 

Seamount diffraction, 563 

computer model, 564 

scale model, 563 

Shock wave 

growth, 153 

repeated, 156 

single, 170 

theory, 173 

Side scan, 11. See also Sonar 

Signal 

CW, 24 

impulse, 72 

ping, 236 

random, 204 
Sine function, 137 

Single transducer sonars, 437 

Smokers, 12, Plate 3 

Snell's Law, 22, 85 

Sofar, 71 

Sonar, 10, 16 

calibration, 427 

Doppler, 409 

dual beam, 432 

equations, 111, 113 

multibeam, 408 

side scan, 408 

single transducer technique, 437 

split beam, 435 

system specifications, 424 

Sound 

biological, 215 

channel, 469 

Knudsen sea noise, 214 

physical, 213 

rainfall, 214 

sea surface, 214 

ship, 219 

Sound speed 

in bubbly region, 155 

variation with T, s, z, 3, 26 

Sound speed profiles 

Arctic ocean, 90 

Mediterranean Sea, 98 

North Atlantic, 91 

Source 

array, 133 

demodulation, 170 

dipole, 130 

directivity, 134 

Gaussian, 135 

location, 501,502, 506 

materials, 132 

monopole, 128 

piston, 138 

weighting, 135 

Spectral 

dependence, 208 

smoothing, 206 

Spectrum 

random signal, 200 

relation to correlation, 203 

Specular scatter, 594 

coherent component, 594 

image reflection, 610 

incoherent component, 601 

scale model of, 603 

signal enhancement, 606 

statistics of, 594, 599 

Speed of sound, 3, 85 
profile, 87 

Sphere scatter 

equivalent, 265 

fluid, 284 

geometrical, 268 

mode solution, 276 

Rayleigh, 271 

rigid, 281 

scattering cross section, 280 

Split-beam transducer sonars, 435 

State, equation of, 38 

Statistics 
beam pattern, 439 

echo PDF, 441 

extremal, 370 

Rayleigh, 370 

Rician, 369 

Surface roughness 

acoustical, 596 

coherent scatter, 596 

Rayleigh parameter, 595 

statistics, 578 

Surface scatter 

apparent reflection, 614 



7 1 2  Subject Index 

Surface scatter, (continued) 
beam width dependence, 614 

bubble effect on, 625 
computer model of, 618 
grazing incidence, 627 

incident angle dependence, 615 

range dependence, 617 
scattering parameter, 628 

spherical wave, HKF theory, 607 
two-dimensional, 623 

Swath mapping, 10, Plate 2 
Swimbladder examples 

brook trout, 450 

cod, 365 
pollack, 364 

shad, 384 

Swimbladder sound scattering 
high-frequency, 374 
low-frequency, 386 

Target strength, 240 
of fish, 383, 430 

reduced, 390 
Thermocline, 5 

Time integral pressure squared [tips], 76 
for many scatterers, 357 
processing, 426 

Time reversed transmissions, 501 
matched signals, 209, 506 

Tomography, 8, 116, Plate 1 

Total reflection. See also Critical reflection 
in waveguide, 477 

Transducer 

calibration, 15, 149 

directional beam pattern, 138 
fish survey, 447 

intergrated beam pattern, 144 

line source, 135 
orientation, 351 

PDE 440 
piston, 138 

power, 143 

Transformation, finite Fourier, 188 
Transmission 

anomaly, 35 
fraction, 111 
layer, 46 
loss, 114 

plane wave coefficient, 43 

rough interface spherical wave, 635 
smooth interface spherical wave, 632 

Transmission function, waveguide, 475 

Velocity 

group, 487 
phase, 486 

Viscosity 

bulk, 104 
shear, 104 

Volume backscatter 
coefficient, 360 

strength, 361 

Volume flow, 128 
point source, 543 

Volume reverberation equations, 460 

Water waves, 122 

Wave 

compressional, 18 

equation, 38, 55 
head, 51 

impulse, 19 
internal, 15 
number, 26 

rectangular coordinates, 62 
spherical coordinates, 64 

standing, 33 

traveling, 27 
Waveguide, 469 

boundary, 476 
cut-off frequencies, 480 

eigenfunction, 471 
matched filter, 498 
noise, 496 

optimum filter, 497 
transmission, 499 
wedge, 510, 516 

Wavelength, 24 

Wedge impulse scatter, 522, 546, 549, 552 
BT theory, 516 

BTM technique, 543 
different boundaries, 531 
diffractions, 527, 544 

digital implementation, 543, 551 
experiments, 533 

Huygens' sources, 533 
offset wedge, 563 

reflections, 524 
strip, 566 

synthetic seismic profile, 573 
waveguide, 516 

Wedge spectral scatter, 554 

double diffraction, 559 
parallel wedges, 568, 572 
plate, 557, 566 

right-angle bump, 551 

right-angle step, 549 
right-angle wedge, 547, 556 

seamount, 562 
shadow penetration, 556 

strip, 567 
Whale tracking, 16 

Zooplankton. See also Plankton 
allometric descriptions, 393 

backscattered sound, 391 
distribution profile, 463, Plate 4 

HK models, 392 

multifrequency inversion, 461 
physical properties, 394, 395 
reverberation, 458, 460 
shrimp backscatter, 378 

target strength, 400 



Plate 1 A tomographic image of the sound speed at a polar front in the coastal water of 

the Barents Sea. A single source of frequency 224 Hz was precisely timed to the 16 receiv- 

ing elements in the vertical array to provide the input for the inversion which yielded 

sound speeds from time-of-arrival differences. The temperatures can be calculated from 

sound speeds by using an equation such as Equation 1.3.1 with an assumption about the 

salinity. (Chiu, C.-S., J. H. Miller, W. W. Denner, and J. P. Lynch, "Forward modeling of 

Barents Sea tomography: Vertical line array data and inversion highlights." in Full-Field 

Inversion Methods in Ocean and Seismic Acoustics, O. Diachok, A. Caiti, P. Gerstofl, and 

H. Schmidt [eds.], Kluwer Academic Publishers, Dordrecht, Netherlands, 237-242, 1995; 

Parsons, A. R., R. H. Bourke, R. Muench, C.-S. Chiu, J. F. Lynch, J. H. Miller, A. J. 

Plueddemann, and R. Pawlowicz, "The Barents Sea polar front in summer," J. Geophys. 

Res. 101 [C6], 14201-21 [1996]). 



Plate 2 Computer-generated image showing a spreading section of the Chilean Ridge 

(left) colliding with the continental margin of Chile (right). The Chilean Trench (left) is 

being overridden by the South American plate. The dark blue trough running from upper 

left toward the center is the rift valley floor, marked by a line of small volcanic centers. 

The color code to the left is in meters depth. Bathymetric data were acquired with the 

SEABEAM swath-mapping system operating at 12 kHz from the R/V Conrad of the 

Lamont-Doherty Geological Observatory in January 1988. Analysis and color image by 

Robert C. Tyce, Joyce Miller, and Scott Fergusson, Department of Ocean Engineering, 

University of Rhode Island. 



Plate 3 Three-dimensional reconstruction of two hydrothermal plumes emanating from 

black smoker-type sea-floor hot springs. Data obtained at sound frequency 330 kHz. (P. 

A. Rona et al, "Acoustic imaging of hydrothermal plumes," Geophy. Res. Ltrs. 18 [12], 

2233-36 [1991]). 
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Plate 4a Volume scattering strength from small zooplankton (equivalent spherical radii 0.1 to 4 mm) obtained by backscatter of 21 discrete 

frequencies 100 kHz to 10 MHz. Simultaneous recording of temperature, salinity, excess density (sigma), and chlorophyll permits one to deduce 

the ecological conditions required by different size organisms. Data from a station at the northwest wall of the Gulf Stream off Cape Hatteras, 

North Carolina (35~ 74~ These data were collected at 11:35 local time on 12 August 1995. (D. V. Holliday et al., "Determination of 

zooplankton size and distribution with multifrequency acoustic technology," J. Cons. Int. Explor. Met. 46, 52-61 [1989]). 



1 

1 -3 0 0 1w 
:hl(Fg/l) loge(Light) BV(mm3/m3) 

I. 

I:. c 

Plate 4h Biovolume of populations of small zooplankton (equivalent spherical radii 0.1 to 4 mm) obtained by hackscatter of 21 discrete fre- 
quencies 100 kHz to 10 MHz. See plate 4A. Simultaneous recording of temperature, salinity. excess density (sigma). and chloroph~ll permits 
one to deduce the ecological conditions required by different size organisms. (D. V. Holliday et al.. “Detennination of zooplankton xiLe and dis- 
tribution with multifrequency acoustic technolugy,” J.  Cons. Int. ExploK Mef. 46, 52-61 [ 19891). 



Plate 5 Multifrequency acoustical imagery which describes nekton behavior at conver- 

gent (downwelling) and divergent (upwelling) sections of a Gulf Stream meander. Each 

figure combines three colors-red, yellow, and blue-to represent backscatter of frequencies 

38, 70, and 200 kHz, respectively. The color intensity is proportional to the volume 

backscattering strength. Approximate animal sizes (estimated from concepts such as in 

Chapters 7, 8, and 9) were 40 mm (red), 20 mm (yellow), and 10 mm (blue). (Arnone, 

R. W., R. W. Nero, J. M. Jech, I. De Palma, "Acoustic imaging of biological and physical 

processes within Gulf Stream meanders," EOS 71,982 [July 17, 1990]). 


