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Prologue 

My husband, distinguished professor emeritus, Dr. Ib A. Svendsen, died 
on Sunday, December 19, 2004. 

He had been working intensely to finish this book for the past several 
months following his retirement from University of Delaware on September 
1, 2004. It seemed to be both a rewarding, but on the same time highly 
frustrating job, as anybody who has given birth to a book will probably 
recognize. 

As he mentions in his preface, one of the problems he was facing was 
deciding what to include in the book. He knew that some topics might 
have been included or covered in more details, and he was considering the 
possibility of an additional book exploring these subjects, and embodying 
the response from this edition. 

On December 10 Ib sent the manuscript to World Scientific Publisher. 
On Tuesday December 14 he made the last organizational changes to his 
files on the book, and inquired of the publisher how much longer he would 
have for changes and additions. He was looking forward to discussions with 
colleagues and students about the contents of the book. 

But early on December 15 he collapsed with cardiac arrest at the fitness 
center at University of Delaware. He died without regaining consciousness. 

It is my hope that this book will become the means of learning and in- 
spiration for future graduate students and others within coastal engineering 
as was Ib’s sincere wish. 

The royalties from this and Ib’s other publications will be used to 
finance a memorial fund in his honour: Ib A. Svendsen Endowment, 
c/o Department of Civil Engineering, University of Delaware, Newark, 
DE 19716. This fund will benefit University of Delaware civil engineer- 
ing students in their international studies. 

Karin Orngreen-Svendsen 
Landenberg, March 21, 2005 



Preface 

The objective of this book is to provide an introduction for graduate 
students and other newcomers to the field of nearshore hydrodynamics that 
describes the basics and helps de-mystify some of the many research results 
only found in journals, reports and conference proceedings. 

When I decided to write this book I thought this would be a fairly easy 
task. From many years of teaching and research in the field of nearshore 
hydrodynamics I had extensive notes about the major topics and I thought 
it would be a straight forward exercise to expand the notes into a text that 
would meet that objective. 

Not so. From being a task of considering how to expand the notes - 
which I found enjoyable - the work rapidly turned into the more stressful 
task of deciding what to omit from the book and how to cut. I had com- 
pletely underestimated the number of relevant topics in modern nearshore 
hydrodynamics, the amount of important research results produced over 
the last decades, and the complexity of many of those results. 

In the end I came up with a compromise that became this book. I have 
considered some topics are so fundamental that they have to be covered in 
substantial detail. Otherwise one could not claim this to be a textbook. 
On the other hand, for reasons of space, sections describing further de- 
velopments have been written in a less detailed, almost review style and 
supplemented with a selection of references to the literature. The list of 
references is not exhaustive but rather meant to give the author's mod- 
est suggestions for what may be the most helpful introductory reading 
for a newcomer to the field. This unfortunately means that many excel- 
lent papers are not included which in no way should be taken as an in- 
dication of lesser quality. The transition between the two styles may be 
gradual within each subject. It is hoped that the detailed coverage of the 

vii 
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fundamental topics such as linear wave theory, the basics of nonlinear Stokes 
and Boussinesq wave theory, the nearshore circulation equations, etc., will 
bring the reader’s insight and understanding to a point where he/she is able 
to benefit from the sections that discuss the latest developments, is able to 
read the current literature, and perhaps to start their own research. 

Though no computational models are described in detail and the presen- 
tation focuses on the hydrodynamical aspects of the nearshore the choice of 
topics and the presentation is oriented toward including the hydrodynam- 
ical basis in a wider sense for some of the most common model equations. 
The principles that form the basis of good modelling can perhaps be sim- 
plified as the following: 

If you want to model nature you rrmst copy nature 
It you want to copy nature you must understand nature 

This has been the motto behind the writing of this book. 
The purpose of hydrodynamics is the mathematical description of what 

is happening in nature, and the basic equations such as the Navier-Stokes 
equations are as close to an exact copy of nature as we can come. There- 
fore misrepresentation of nature only comes in through the simplifications 
and approximations that we introduce to be able to solve the particular 
problem we consider. No model/equation is more accurate than the un- 
derlying assumptions or approximations. An important task in providing 
the background for responsible applications of the equations of nearshore 
hydrodynamics is therefore to carefully monitor and discuss the physical 
implications of the assumptions and approximations we introduce. I have 
tried to do just that throughout the text. 

Todays models are becoming more and more sophisticated and com- 
plex. Usually this also means more and more accurate and the use of them 
is becoming part of everyday life. Mostly this also means they become 
more and more demanding of computer time and of man power to use and 
interpret them. So in many applications there will be a decision about 
which accuracy is needed. Is linear wave theory good enough? Are we out- 
side the range of validity of a particular Boussinesq model? Nobody can 
prevent users from deciding to use model equations/theories for situations 
where they are insufficient or do not properly apply. Sometimes the results 
are acceptable sometimes they are misleading. One parameter, such as for 
example the wave height, may be accurately predicted for the conditions 
considered while another, say the particle velocity, is not. It is generally 
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outside the scope of this book to provide estimates of errors for particular 
theories. 

It may be easy to run a computer model. One has to remember, how- 
ever, that all that comes out of that is numbers. An enormous amount of 
numbers. They may be interpreted and plotted in diagrams to look like 
nearshore flow properties. But knowing/understanding the powers and the 
limitations of models requires understanding the basis for the equations. 
Which features are represented in the equations, which not, why this or 
that effect is important, and when, etc., is a first condition for generating 
confidence in the results. It is the hope that the content of the book will 
help serving that purpose and thereby promote the prudent and construc- 
tive use of models. 

For reasons of space many important topics and aspects of nearshore 
hydrodynamics have been left out. 

One such is the testing of the theories using laboratory measurements. 
A major reason is of course lack of space, but there are some important 
concerns too. In a moment of outrageous provocation and frustration I once 
wrote about laboratory experiments: “If there is a discrepancy between 
the theory and the measurements it is likely to be due to errors in the 
experiments”. The reason is that, while it is fairly easy to create good 
theories, it is so difficult to conduct good experiments, in particular with 
waves. Anybody who has tried can testify to all the many unwanted - and 
often unanticipated - side effects and disturbances that occur even in a 
simple wave experiment in a wave flume. And often those are the major 
reasons for the deviations between the theory and the experiment designed 
to test it. Therefore we have to be careful before we use an experimental 
result to deem a well documented theory inaccurate or poor as long as we 
are within the range of validity of the assumptions. This is also why I 
prefer to replace the commonly used term L‘~erifi~ation” of a model against 
experimental data with the term “testing”. So though comparisons with 
measurements can be found many places a systematic testing of theories 
against laboratory measurements has not been one of the main objectives 
of the book. In fact comparison of the simpler theories to more advanced 
and accurate ones is often more revealing. 

In a different role experimental results have been quoted extensively to 
gain physical insight into areas where theoretical understanding is lacking. 
This particularly applies to the hydrodynamics of waves in the surfzone. 

Extensive field experiments have been conducted in particular over the 
last two decades. The comprehensive and careful data analysis of those 
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experiments has provided insights and ideas for further study. However, 
those results are described in the book only to the extent it is needed 
to understand the hydrodynamical phenomena and the theories covering 
them. It should be noted, though, that the way nearshore modelling is 
developing today the direct comparison of model results with the complex 
conditions on natural beaches will be one of the promising research areas in 
the coming years. Unfortunately we can only just touch upon this subject 
in an introductory book like this. 

Wind wave spectra is an area that is more related to data analysis than 
to hydrodynamics. Only the concept of energy spectra is explained as an 
example of wave superposition and a brief overview of the ideas is given. 
This also applies to nonlinear spectral Boussinesq models. The reader is 
referred to the relevant literature. 

Again for space reasons, evolution equations and concepts for time and 
space varying waves based on Stokes’ wave theory have not been explored 
at all. This applies to topics such as the side band instability, which mainly 
occurs in deeper water, to the theory of slowly varying Stokes waves and 
the nonlinear Schrodinger equation. An important reason for this choice is 
that the Stokes’ wave theory has an uncanny habit of not working well in 
the shallow water regions nearshore. Instead the Boussinesq wave theory, 
which leads to nonlinear evolution equations for waves in shallow water, 
has been covered in great detail. This theory has over the last one or 
two decades been developed into an extremely useful and accurate tool for 
nearshore applications. In fact it has even been extended to depths that 
approach the deep water limit of the nearshore region which further adds 
to its relevance. 
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Chapter 1 

Introduction 

1.1 A brief historical overview 

The nearshore coastal region is the region between the shoreline and a 
fictive offshore limit which usually is defined as the limit where the depth 
becomes so large that it no longer influences the waves. This depth depends 
on the wave motion itself and in simple terms it can be identified as a depth 
of approximately half the wave length. Thus in storms with larger and 
longer waves the offshore limit moves further out to sea. This definition 
is practical because the influence of the bottom on the waves is one of the 
most important mechanisms in nearshore hydrodynamics. 

Nearshore hydrodynamics could probably be said to have been founded 
by G. G. Stokes, who in 1847 developed the first linear and nonlinear wave 
theory. Today this theory is often referred to as Stokes waves (see also 
Stokes, 1880). Over the following century various wave phenomena were 
analysed and a great number of results, remarkable from a mathemati- 
cal point of view, were obtained. Of particular importance from todays 
perspective was the development by Boussinesq (1872) of the consistent 
approximation for nonlinear waves in shallow water, a situation for which 
Stokes himself recognized that his theory was failing. Korteweg and DeVries 
(1895) added to this result by finding analytical solutions to the Boussi- 
nesq equations. These solutions are known as cnoidal and solitary waves. 
Interestingly the infinitely long solitary waves had already been observed 
in real channels by Russell (1844). Finally even this ultra brief historical 
review would be incomplete without mentioning the pioneering discovery 
of the wave radiation stress by Longuet-Higgins and Stewart (1962). This 
established the insight that forms an essential element in all later research 
related to currents and long wave generation in the nearshore. 

1 
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The advent of computers has radically changed the perspective of what 
is relevant hydrodynamics in todays world. Equations or theories that, 
when developed before the computer age, were merely of theoretical interest 
have become central to modern engineering applications while many of 
the remarkable mathematical results that helped the understanding of how 
waves behave have become mainly of academical interest. The content of 
this book partially reflects that in the choice of which subjects and results 
are pursued in detail. 

1.2 Summary of content 

As an introduction Fig. 1.2.1 from Svendsen and Jonsson (1976) shows 
a schematic of most of the major wave phenomena that occur in the 
nearshore. These, and some more that are not visible in such a picture, 
are the phenomena that are analysed further in the following chapters. 

Chapter 2 
The first chapter (Chapter 2 )  is meant as a reference chapter that es- 

sentially presents the main hydrodynamical results used later in the book. 
For most sections there are no derivations in this chapter. If the reader 
needs further explanation reference is made to the textbooks quoted in the 
list of references at the end of the chapter. Exceptions are the sections on 
boundary conditions, turbulence and energy flux which contain material 
not so easily found in standard books. 

Chapter 3 
Remaining central to the understanding of nearshore wave and current 

motion is the Stokes theory, which in its simplest linear form represents 
the most important theoretical background for nearshore hydrodynamics. 
Chapter 3 therefore gives a thorough analysis, not only of the linear wave 
theory itself but also of the most important of the results that have been 
derived on the basis of that theory. 

The main objective of the linear theory is to establish a first approxima- 
tion for all the flow details of small amplitude waves on a constant depth. 
This is done in Section 3.2. 

The characteristic surface profile of such waves is described by the sine 
function, whence they are also called sinusoidal waves. It turns out that 
even though the average over a wave period of such wave profiles is zero 
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Fig. 1.2.1 Nearshore wave processes (Svendsen and Jonsson, 1976). 

they still have properties that in average over a period are non-zero (Section 
3.3). Linear waves transport energy (the socalled energy flux) which is 
the mechanism that causes waves generated in an area to spread forward 
in the direction of wave propagation. Waves also represent both a mass 
(or volume) flux of fluid and they exert a net force on the surroundings 
that is called the radiation stress. 

Section 3.4 explores what happens when we utilize the freedom of linear 
theory to form new wave solutions by adding solutions of waves. Thus two 
waves added can form standing waves or wave groups. And in particular 
the results of adding arbitrarily many waves leads to the concept of wave 
spectra which can be used in the analysis and description of random seas. 

A particularly important element in the hydrodynamics of waves on a 
coast is the variation of the water depth. The effect of wave propagation 
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over a varying depth is analysed in Section 3.5. The major effect causing 
changes of the waves is the depth dependence of the propagation veloc- 
ity for the wave forms. This induces wave refraction which is shown 
to follow laws similar to the laws controling the propagation of light and 
sound. The depth variations also cause change in wave heights. This be- 
comes particularly important as the waves approach the shore, because the 
decreasing depth increases the waves heights so that they eventually break. 
The process is termed shoaling and the concepts of energy flux generated 
by the waves and of energy conservation controls the development of the 
wave height. 

In the nearshore the currents also play an important role in changing 
the waves. Section 3.6 gives a brief introduction to the main mechanisms 
of combined waves and currents, including the doppler effect which is 
also known from optics and from the propagation of sound. 

The refraction theories described in Section 3.5 makes assumptions 
about the wave motion theatre not satified when there are rapid changes 
along wave fronts such as when waves propagate around the tip of breakwa- 
ters and also out in a general wave field the when wave height changes over 
short distances along a wave front. This influences the propagation pattern 
even for linear waves, a phenomenon called diffraction. In Section 3.7 
we develop a theoretical approach to the combination of depth refraction 
and diffraction. This leads to the socalled Mild Slope Wave Equation 
(MSE) which describes the variation over a domain of the wave height and 
wave pattern. The derivation and properties of this equation is discussed 
in detail. 

Chapter 4 
Chapter 4 is dedicated to a closer look at the energy balance in waves 

both before and after breaking. This expands the analysis in Section 3.5 and 
involves discussion of the various types of energy present in the nearshore 
and derivation of the energy equation which is an equation that describes 
the transformation and propagation of energy in areas with varying depth 
and currents. 

Chapter 5 
One of the most improtant physical processes in the nearshore region is 

the wave breaking that occurs close to the shore of beaches. As mentioned 
this is caused by the (gradual) decrease in depth closest to the shore. On 
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sufficiently gently sloping beaches such as most littoral beaches the break- 
ing process destroys or dissipates almost all the incoming wave energy in 
the nearshore region called the surfzone. This causes rapid changes in the 
waves with violent particle velocities that highly contribute to the move- 
ment of sediment material and beach erosion. The rapid changes in wave 
height also imply rapid changes in radiation stresses for the waves. This 
create the most important forcing mechanism for nearshore currents. Our 
knowledge about the wave breaking is still limited and in Chapter 5 we use 
both measured data and theoretical analysis in an attempt to describe and 
understand the details of the wave motion. 

Chapter 6 
In Chapter 6 a brief overview is given of the types of wave models based 

on of the results described in the previous chapters that are frequently used 
today. 

Chapter 7 
The following three chapters are focusing on the effect of finite wave 

heights. In the linear wave theory discussed and utilized in Chapter 3 
we assumed the wave height was infinitely small (which is the reason the 
equations become linear). Real waves, however, can be quite steep and the 
finite wave height has profound effects on the motion. In Chapter 7 we first 
derive the different forms of the model equations that properly describe the 
flow in different parameter ranges for the waves. The key parameters here 
are the water depth, the wave length (or wave period) and the wave height. 
It is shown how that this leads to the governing equations for the classical 
theories of Stokes waves, Boussinesq waves and nonlinear shallow 
water waves to  mention the most important. 

Chapter 8 
Chapter 8 is then presenting a detailed derivation of the second order 

stokes theory and briefly outlines third and fifth order versions of the 
theory. The chapter also includes a description of the special computer 
version of the stokes wave theory called the stream function theory, 
which makes it possible to calculate the properties of stokes waves to very 
high order. This theory has been proven a very effective numerical tool. 
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Chapter 9 
In recent years the Boussinesq wave theory has become one of the 

most effective ways of analysing nearshore wave motion computationally. 
Chapter 9 derives the basic equations. It also gives a relatively detailed 
account of the constant form solution for Boussinesq waves called cnoidal 
waves which is the Boussinesq wave equivalent to the sinusoidal waves of 
linear wave theory, and the infinitely long version of those waves waves 
called solitary waves. 

A strength of the Boussinesq equations is that when solved computa- 
tionally they provide the development in time and space of the entire wave 
motion in a coastal domain, which makes it possible also to analyze irreg- 
ular waves such as wind generated storm waves. One of the weak points of 
Boussinesq wave theory is its limitation to relatively shallow water. How- 
ever, numerous recent results have modified the equations to forms that 
extend the validity of the theory almost to the limt of what we have de- 
fined as the nearshore region. From the perspective of practical applications 
this has tremendous importance by making the method viable. These de- 
velopments are also presented in the chapter. Another problem is that 
solving the Boussinesq equations in a realistically large domain over a suffi- 
ciently long time period of time for practical applications still requires very 
substantial computational efforts. 

Chapter 10 
When waves propagate over a domain with depth small enough that 

the depth influences the waves (as in the nearshore region) a boundary 
layer develops at the bottom. In the traditional approach to wave motion 
analysis (such as described in the chapters above) the effect of this bound- 
ary layer is disregarded: the motion is considered irrotational described by 
a velocity potential and at the bottom we essentially have a slip veloc- 
ity. However, the boundary layer is real and it does produce both a local 
disturbance of the flow near the bottom and a shear stress (or bottom 
friction) acting on the fluid above. This stress dissipates energy and when 
waves propagate over longer distances the accumulative effect of the energy 
dissipation due to the bottom friction causes the wave height to decrease 
slowly but significantly. Chapter 10 presents the classical theory of vis- 
cous wave boundary layers for stokes waves to first and second order in 
the wave amplitude. It also derives and discusses the expressions for the 
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socalled steady streaming in the boundary layer which is a net current 
generated by nonlinear mechanisms active inside the boundary layer. The 
chapter then proceeds with analysis of turbulent boundary layers giving 
results based on the empirical concept of a fricion coefficient. The general 
case of combined wave-current motion is presented in detail. 

Chapter 11 
The wave averaged properties are important parts of the mechanisms 

resposible for the wave generated currents, such as longshore and cross- 
shore currents, socalled nearshore circulation. These currents are im- 
portant in the nearhsore environments where they contribute significantly 
to the morphodynamic changes of beaches. Because the currents are es- 
entially wave averaged flows those currents are governed by wave averaged 
equations which are also depth integrated. In Chapter 11 we describe the 
derivation of those equations which also reveals the exact definitions of the 
wave mass (or rather volume) flux and the radiation stress. Those concepts 
are analyzed in detail for linear waves which is the form most frequently 
used in applications and also put into context of waves in two horizontal 
dimensions. 

The chapter then goes through two important special (“canonical”) 
cases of nearshore circulation: the cross-shore momentum balance on a 
long straight coast with shorenormal wave incidence, and the wave gener- 
ated longshore current on such a coast with oblique wave incidence. Be- 
cause the equations are wave averaged they require as input information 
about the volume flux and the radiation stresses at all points of the domain 
which correspnds to demanding the wave motion known. This information 
is usually provided by wave models of the type described in earlier chapters, 
particularly linear models. 

Finally the use of boundary conditions along the free boundaries of 
nearshore models is described. Such boundaries are artificial in the sense 
that they only exist because we limit the computations to a section of a 
coast. The demand along such boundaries is that they form no obstacle to 
the wave motion. In particular the waves that would want to propagate out 
of the domain - either because they were generated inside or were reflected 
from the beach or engineering structues inside the computational domain - 
should be able to do so freely. 
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Chapter 12 
The nearshore currents covered by the equations discussed in the pre- 

vious chapter are essentially depth averaged and therefore no resolution is 
obtained for the vertical variation of those currents. In the case of a long 
straight beach with shorenormal wave incidence it is clear, however, that 
since the waves have shoreward net volume flux then there must also be a 
seaward going current. This is called the undertow and the mechanisms 
governing this flow are analyzed in Section 12.2. 

Chapter 13 
The results for the undertow can be supplemented with a similar anal- 

ysis of the longshore currents and this reveals that the nearshore currents 
in general vary over depth both in magnitude and direction. It turns out 
that this feature is important for the way in which the currents interact 
and change in the horizontal direction (Chapter 13). This chapter analy- 
ses general 3-dimensional currents by expanding the depth integrated and 
time averaged equations for nearshore circulation derived in Chapter 11 to 
depth varying currents and gives analytical results for the vertical profiles 
of the currents. The resulting equations are called quasi-3D equations 
because the depth varying currents is represented in the modified depth 
integrated equations as coefficients that account for the horizontal effects 
of the depth variations, much like the momentum correction factor in en- 
gineering hydraulics equations account for the depth variation of the flow 
in a river. 

Chapter 14 
Finally the variation in height and period of the irregular wind waves 

approacing a beach leads to variation in the radiation stresses which ends 
up generating new, much longer waves. These infragravity or IG waves 
become particular important in the inner part of the nearhsore region where 
the wind waves are breaking while the IG-waves usually are not (Section 
14.1). Canonical examples of IG waves are the socalled edge waves which 
anre waves propagating along the shore with their strongest motion closest 
to the shoreline and decreasing seaward. 

The chapter also analyses the fact that the simple models of nearshore 
currents, developed under the assumption of steady flow, turn out to be 
unstable - socalled shear instabilities. A consequence is that many (or 



1.3 References - Cha.pter 1 9 

most) longshore currents show fluctuations in time and space that again 
have profound influence also on the mean currents. The initial linear insta- 
bility theory is developed and numerical computations of what happens as 
the instabilites grow into complex longshore flows are discussed. 

The advanced present day nearshore models are now opening such situ- 
ations from natural beaches to realistic computational analysis. A food for 
thought discussion is offered at the end of the Chapter 14 about these and 
other complex flow situations found on natural beaches and how models 
can help improve our understanding. 
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Chapter 2 

Hydrodynamic Background 

2.1 Introduction 

As an introduction, this chapter summarizes the basic hydrodynamic 
principles and laws on which we base the entire analysis of nearshore hy- 
drodynamics and modelling. The presentation largely assumes that the 
reader is familiar with basic vector and tensor analysis which will be the 
language used for the rest of the book, and with the principles of basic fluid 
mechanics. The reference list at the end of the chapter includes a list of 
fluid mechanics texts that can be used as reference backup for the details of 
the basic parts of this chapter. Many of those will also contain useful lists 
of vector relationships. The book by Kundu (1990, 2001) is particularly 
designed for ocean fluid mechanics applications. 

The review includes only results needed for the rest of the text. The 
first two sections on the kinematics and the dynamics of fluid flow only con- 
tain well-known equations and principles. They are just reviewed without 
proof or detailed explanations. The subjects of boundary conditions 
covered in Section 2.4, of turbulence in Section 2.5, and the general expres- 
sion for energy flux in Section 2.6 are less commonly known, and therefore 
covered in more detail. 

The assumptions made will be included in the review, since they form 
the fundamental limitations for the validity of the results. This is impor- 
tant and attempts will be made throughout the book to keep track of this 
and emphasize it. The reason is that some of the model equations to be 
discussed later turn out to be almost as general as the basic hydrodynamic 
equations of motion, which highly increases the credibility of the results. 
Other model equations, on the other hand, turn out to be based on more 
empirical assumptions that potentially limit their generality and accuracy. 

11 
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In any case, understanding the assumptions underlying each result and how 
they limit the validity of those results is one of the most powerful tools in 
the process of building and using models. 

2.2 Kinematics of fluid flow 

Modern fluid mechanics is based on the concept that the fluid is a 
continuum. This allows all fluid properties to be described by mathematical 
functions that, except for isolated times and locations, are continuous and 
differentiable. 

2.2.1 Eulerian versus Lagrangian description 

Lagrangian description 
There are two fundamental ways to describe the fluid flow. One is the 

Lagrangian description that identifies the position r of each fluid particle 
at all times. This requires the particles are initially marked, e.g., by their 
position ro at time t o .  Therefore r = r(r0, t ) .  In this description, the fluid 
velocity v and acceleration a are given by 

v =  (g) 
ro=const 

a =  ($) 
ro=const 

(2.2.1) 

(2.2.2) 

This description of particle motion is rarely used though it can be useful in 
certain cases, such as the description of the particle motion in waves. 

Eulerian description 
In the Eulerian description, the fluid motion is described by specifying 

the velocity v = u, 'u, w in 2, y, z coordinates at all (fixed) points r. 
Unfortunately, the basic physical laws of hydrodynamics are formulated 

for bodies that essentially consist of a fixed set of particles or molecules. 
In other words the basic laws such as Newton's 2nd law are formulated in 
Lagrangian systems. Thus we need to transform the time derivatives for 
quantities f following the particles, i.e., f ( r ( t ) ,  t )  into Eulerian coordinates. 
Using the chain rule, we therefore define the material or total derivative 



2.2 Kinematics of f lu id  flow 13 

- + v . - = - +  v . 8  
d d  - 

d t  at dr at 
- _  

(2.2.3) 
- a d d d d  d _ -  at + U i -  = - + U-  + U -  + W -  dxi d t  dx dy dz 

where 

d d d  8:- - 
dx , dy , az 

is the gradient operator. 

tive”) derivative. Applied to v itself, we get the acceleration 
Here, & is called the local, ui& the convective (also called “advec- 

(2.2.4) 

2.2.2 Streamlines, pathlines, streaklines 

Overall impressions of the flow field can be obtained by three different 
types of lines linking points in the Aow domain. 

Streamlines 
Streamlines are defined so that they at all points in the flow have the 

velocity vector as tangent. Since there at any time is one velocity vector v 
at each point r there is one streamline going through each point at a given 
time. The definition expresses that along the streamline, v is parallel to 
dr, i.e., 

v x d r = O  (2.2.5) 

from which it may be infered that the streamlines must satisfy 

dx dy - 2 
- - --- 

u w w  (2.2.6) 

The streamlines give an instantaneous illustration of the flow field. 

Pathlines 
Pathlines show the paths of fluid particles. Thus, along a pathline, the 
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position vector r changes so that 

(2.2.7) 

Solution of (2.2.7) gives the pathlines which essentially represents a 
Lagrangian description of the flow. The pathlines can be said to give the 
history of the flow. 

S t reaklines 
A Streakline connects all particles that at some time have passed or will 

pass through a chosen point in the fluid. Thus, streaklines show the trace 
of dye continuously injected at points in the flow domain. For details see 
Currie (1974). 

In steady flow streamlines, pathlines and streaklines coincide. 

2.2.3 Vorticity wi and deformation tensor eij 

The vorticity vector of the flow is defined as 

+ 
w = u x v  

or 

where 6 i j k  is the alternating unit tensor. In x, y, z coordinates 

The deformation tensor eij is defined by 

e . .  - 1(” + 2) 
a3 - 2 d X j  

(2.2.8) 

(2.2.9) 

(2.2.10) 

(2.2.11) 

In some texts eij is called the “rate of strain tensor” e.g., Kundu (1990, 
2001). 



2.2 Kinematics of f l u id  flow 15 

2.2.4 Gauss theorem, Green’s theorems 

Gauss’ theorem 

following characteristics: 
The rule called Gauss’ theorem applies to a vector field with the 

0 A differentiable vector field V 
0 defined at  all points in space. 

For this vector field, we consider a closed, simply connected region 0, 
bounded by the surface S. Then V satisfies 

L V . V d R =  V.ndS (2.2.12) .I, 
where n is the outward normal to the surface S.  In tensor form (2.2.12) 
reads 

r r 
(2.2.13) 

The definition of “simply connected” region R is as follows: any closed 
curve inside R surrounding a point P in R must be reducible, which means 
the curve can be continuously shrunk to the point P,  without any point of 
the curve leaving the region. 

An example of a region which is not simply connected is the doughnut 
(a “torus”): a curve inside the doughnut which initially circumscribes the 
hole in the torus cannot be reduced to a point P in the region without part 
of the curve passing through the hole. 

Gauss’ theorem also applies to higher order tensors. Thus, for a second 
order tensor, such as a stress cij, the theorem takes the form 

(2.2.14) 

Similarly, for a second order tensor puivj, which occurs if the flux of mo- 
mentum is integrated over a larger domain, we get 

(2.2.15) 

The Gauss theorem essentially reduces the 3-dimensional volume in- 
tegral to a 2-dimensional surface integral. It can also be used in 2- and 
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1-dimensional domains. As an illustration, in the case of a 1-dimensional 
domain, R becomes an interval 2 E (ulb). Then (2.2.12) reduces to 

z=b 8~ 
-dx = V(b) - V ( U )  (2.2.16) La ax 

which is the well known integration from a to b of a function. 

Green’s theorems 

special vector field defined as 
Green’s theorems are derived from Gauss’ theorem by considering a 

v = 41V42 (2.2.17) 

where $1 and $2 are arbitrary differentiable scalar functions. For this field, 
the Gauss theorem can be written 

which is known as the First form of Green’s theorem. 
Interchanging 41 and 4 2  and subtracting from (2.2.18) gives 

which is the Second form of Green’s theorem. 
As for the Gauss theorem, the Green’s theorems can also be applied to 

2- and 1-dimensional domains. For a 1-dimensional domain, z ~ ( u l b ) ,  we 
get 

2.2.5 The kinematic transport theorem, Leibnia rule 

The kinematic transport theorem describes the rate of change in time 
of the content of some quantity F ( z ,  y, z ,  t )  inside a volume R(t). Thus, we 
are seeking 

(2.2.21) 
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The volume R(t) has a surface S(t) that at all points is assumed to move 
with the fluid velocity v(x, y, z ,  t). Thus, the volume R will contain the 
same fluid particles at  all times (it is a material volume). 

The rate of change (2.2.21) can then be written 

where R(t) and S(t) refer to the instantaneous positions of the volume s1 
and its surface S.  v, is the particle velocity along S. 

Applying Gauss' theorem to the last integral in (2.2.22) brings this on 
the form 

which is the kinematic transport theorem. 

comes 
The 1-dimensional form of (2.2.22) in the interval x E (a(t)lb(t)) be- 

W t )  df db  da 
-dx + --f(t, b ( t ) )  - - f ( t ,  a(t)) at at 

(2.2.24) f ( z ,  t)dz = 

which is known as Leibniz rule. 

2.3 . Dynamics of fluid flow 

The dynamics of fluid flow describes the three conservation principles: 
the conservation of mass, momentum and energy.' 

2.3.1 Conservation of mass 

In its general form (varying fluid density, p) ,  the conservation of mass 
is expressed by 

(2.3.1) dP - + p v  . v = 0 dt 

where by (2.2.3) 

(2.3.2) 

]Strictly speaking, the conservation of mass is also a purely kinematic principle. 
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Combining (2.2.3) and (2.3.2) we can also write (2.2.3) as 

dP - + v .  (pv) = 0 
at (2.3.3) 

If the flow is incompressible ~ as most flows in water are - and p is 
constant - which is often a realistic assumption in nearshore flows - then 
we get 

(2.3.4) 
au av aw 
ax a9 az 

v . v = 0  or - + - + - = 0  

This is usually termed the continuity equation. 

2.3.2 Conservation of momentum 

Stress components 
Stresses essentially are second order tensors, aij . This reflects that 

0 A stress is a force per unit area 
0 Acting on an (infinitesimal) surface area with normal vector n. 

The magnitude and direction of the stress depends not only on the 
position of the infinitesimal surface, but also on the direction of the 
normal vector n: changing the direction of n changes the stress. 

0 The stresses on a particle represent the effect of the fluid surround- 
ing the particle. 

In order to properly account for the effect of the stresses, it is neces- 
sary to define positive directions for the stress components in the 
direction of the coordinate axes. 

Thus, we consider the cubic particle in Fig. 2.3.1. It is recalled that the 
elements of a tensor represent the components in the coordinate directions. 
For uij, 

0 the first index (2)  indicates the direction of the normal vector to 

0 the second index ( j )  indicates the direction of the stress on the 
the surface element considered 

surface. 

The 9 components of aij can therefore be labeled 

(2.3.5) 
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The directions of the stress components shown in Fig. 2.3.1 are the 
positive directions of the coordinate components. It is noticed that the 
sign-conventions are as follows2 

0 On surface elements where the outward normal vector is in the pos- 
itive coordinate axis direction, all stress components are positive 
in the axis directions. 

0 on surface elements where the outward normal vector is in the 
direction opposite the coordinate axis, stresses are positive in di- 
rections opposite the coordinate axes. 

i 

Z 

Fig. 2.3.1 
Definition 

This figure shows two things: (a) Symbols for stress components. (b) 
of positive directions. 

Conservation of momentum in terms of stresses 
The equation for conservation of momentum is the fluid mechanic 

'This is the classical system of definitions for indices. 
It is not uniformly used in the literature, however. 
references use the opposite definitions. 

Some older, but still valuable, 

Examples: White (1991) uses Tnormal, stress dir. as here 
C.C. Mei (1983) uses T~,,,,I, stress dir. as here 
Batchelor (1968) uses ~~t~~~~ dir., opposite of here 
Hinze (1975) uses Tstress dir., normal opposite of here 
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version of Newton’s second law for a solid body saying 

Mass . acceleration,= all forces on the body (2.3.6) 

This is usually called the momentum equation. 
The analogy of the body is a unit volume material fluid particle with 

mass p . 1. Since the particle follows the flow, its acceleration is given 
by (2.2.4). The forces on the particle are volume forces (which we here 
will limit to gravity with acceleration g ) ,  and surface forces, which are the 
stresses aij (or F) in the fluid. 

The momentum equation in 

- +  d v  dv 
dt d t  

- - -  

or 

terms of the stresses then is 

1 -  
(v .V)v  = g t  -v .  (T 

P 
(2.3.7) 

d U j  1 
- + ( U 2 V i ) V j  = gj + -viazj 
d t  P 

(2.3.8) 

Here Viaij is the sum of j-components of the stress increases over all 
surfaces of the particle; i.e., all values of i (the normal vector direction) are 
considered in Viai, (summation rule). 

Though this version of the momentum equation gives a very transparent 
description of the dynamics of fluid flow, it is of limited practical use until 
the stresses aij are related to the flow itself. 

Exercise 2.3-1 Use the momentum equation (2.3.8) 
to verify the positive directions for stresses shown in Fig. 
2.3.1 assuming that velocities are counted positive in the 
positive direction of the coordinate axis. 

(Hint: notice that the index j in 2 indicates tat 
(2.3.8) describes the j- th component of the vector equa- 
tion). 

2.3.3 Stokes’ viscosity law, the Navier-Stokes equations 

The stresses aij are essentially due to intermolecular forces. In fluid 
flow, these are modelled by defining the dynamic viscosity ,u for the 
fluid. To conveniently introduce this, the average value of the normal com- 
ponents of the stresses is subtracted from the total stress. This is called 
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the pressure p defined by 

2 1  

1 
P = -- 3 (all + 0 2 2  + 0 3 3 )  (2.3.9) 

Thus aij is written 

(2.3.10) 

which defines the residual or deviatoric stress rij. Then, (2.3.8) becomes 

- -pb.. + 7 . .  
- 23 23 

(2.3.11) 

Through extensive analysis (for details see Aris (1962)), it has then been 
found that in so-called Newtonian fluid (of which water is one) we have for 
incompressible flows (i.e. (2.3.4) applies) 

aij = -pbij + 2peij (2.3.12) 

where eij is the deformation tensor given by (2.2.11) and p is is the above 
mentioned proportionality factor called the dynamic viscosity that sim- 
ply indicates the magnitude of the stresses caused by the deformations 
described by eij.3 p cannot be measured directly. In practice it is deter- 
mined by measuring combined values of stresses and deformations in well 
defined flows and calcualting p as the ratio. 

This is called Stokes’ viscosity law. Though introducing the addi- 
tional unknown p ,  this relation essentially links the fluid stresses aij to the 
fluid motion uj (through eij). 

Substituting (2.3.12) for aij into (2.3.8) then gives the momentum equa- 
tion in terms of the velocity uj and the pressure p .  Utilizing again the 
incompressibility of the flow, we then get (2.3.8) as 

This is know as the Navier-Stokes equation(s). Since uj is a vector, 
(2.3.13) has three components in 3-dimensional space. 

In vector form (2.3.11) reads 

dV 
at - + ( v .  0 ) v  = - 

1 
-vp + g + vv2v 
P 

(2.3.14) 

3Actually p is a “fudge factor” which establishes the connection between two quanti- 
ties, the deformation tensor and the viscous stresses, which is due to physical processes 
(the Brownian motions of the molecules in the fluid) that are not modelled. 
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The quantity 

is called the kinematic viscosity. 

ity. If we then write the pressure p as 
Usually, the positive z direction is taken in the direction opposite grav- 

P = pgz + PD 

where p~ is the so-called dynamic pressure, then the momentum equa- 
tion simplifies to 

(2.3.15) 

Along with the continuity equation, the N-S equations represent a com- 
plete set of equations for the fluid flow with (v, p )  or (v, p ~ )  as unknowns. 
As mentioned the assumptions behind those equations are incompressible 
flows and constant ( p ,  p). 

2.3.4 The boundary layer  approximation 

At solid walls, a viscous fluid is forced to adhere to the wall, making 
v = 0 at the wall. Except for very small reynolds numbers this creates large 
velocity gradients in the direction perpendicular to the wall, and hence 
large stresses in a layer along the wall. This is called a boundary layer. 
Often, boundary layers are thin, and for plane walls this makes it possible 
to simplify the Navier-Stokes equations for the flow in the boundary layer. 
The result is, for a simple 2-dimensional (x, z )  boundary layer along a wall 
in the x-direction. 

d u  dw - + - = 0  
ax d z  

Momentum equation, x-component 

d u  d u  d u  1 d p o  d2u 
at ax az a x  a z 2  
- +u-++-=---+v-  

Momentum equation z-component 

(2.3.16) 

(2.3.17) 

= 0  apo 
dz 

(2.3.18) 
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This is called the boundary layer approximation, and (2.3.17) is termed 
the boundary layer equation. 

2.3.5 Energy dissipation in viscous flow 

The internal viscous forces transform some of the mechanical energy of 
the flow into heat. The process is irreversible so that heat energy cannot 
be turned back into mechanical enegy. This is called energy dissipation. 

The energy dissipation E per unit volume in a viscous Aow is given by 

which can also be writtcn 

An alternative form of (2.3.19) is 

(2.3.19) 

(2.3.20) 

(2.3.21) 

2.3.6 The Euler equations, irrotational flow 

Away from boundary layers and turbulence, the viscous stresses raj will 
be small. The Navier-Stokes equations then reduce to the inviscid form 

dV 1 
- + (v . 0 ) v  = - -vp + g 
d t  P 

(2.3.22) 

or the equivalent with p ~ .  This is called the Euler equation(s). Along 
with the continuity equation, this represents a complete set of equations 
for the flow with unknown (v,p). 

The so-called Kelvin’s theorem states that in inviscid flows the vor- 
ticity (following a particle) does not change. Therefore, if to start with the 
vorticity is zero everywhere, it remains so, i.e., w = 0 at all times. This is 
called irrotational flow. 

The velocity potential 

scribes the entire flow field. 4 is defined in such a way that 
For irrotational flow, we can determine a scalar function 4 which de- 

v = 0 4  (2.3.23) 
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Introducing this definition of v into the continuity equation gives that 
4 must satisfy 

(2.3.24) 

which is the Laplace equation. 

The Bernoulli equation 

equation which can be integrated in space to give 
Similarly, the three components of the Euler equations collapse into one 

(2.3.25) 

where C(t )  is an arbitrary integration function and (Vj4)2) stands for 
Vj6Vj4. (2.3.25) is the Bernoulli equation. 

Exercise 2.3-2 

ically becomes irrotational. 
Verify that for v defined by (2.3.23), the flow automat- 

2.4 Conditions at fixed and moving boundaries 

In general, boundary conditions are mathematical expressions for the 
physical conditions at the boundary which specify how the flow behaves 
there. When solving the flow equations, enough boundary conditions are 
needed to determine the integration constants and introduce the effects of 
external forces on the fluid such as wind stresses on the surface or shear 
stresses at the bottom. 

In this section we analyze the boundary conditions at fixed and moving 
boundaries such as the free surface and fixed bottoms. The conditions are 
for potential and viscous flows. 

For general turbulent flows with stresses at free and fixed boundaries 
the kinematic conditions are the same. The dynamic conditions, however, 
are more complicated. A detailed derivation of those conditions is given in 
Chapter 11 where they are needed for the depth integration of the equations 
of motion. 
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2.4.1 Kinematic conditions 

One of the physical conditions imposed at boundaries leads to the 
kinematic boundary conditions. 

The basic assumption is that a fluid particle at a boundary stays o n  that  
boundary. At a fixed surface, such as an impermeable sea bottom, this is 
equivalent to assuming that the fluid velocity is parallel to the bottom at 
all points. At a free surface it means the fluid particles must follow the 
motion of the free surface. 

To formulate this principle mathematically, we let the position of the 
surface be given by 

z = C ( % ,  t )  (= a x ,  Y, 4 )  (2.4.1) 

where index a is a tensor notation representing horizontal ( x , y )  coordi- 
nates. 

This relationship applies to all points on the surface at all times. There- 
fore, whether we move from one point to another on the surface at a fixed 
time, or we move in time so that the surface changes position, such changes 
must be related by the differential of Eq. (2.4.1): 

(2.4.2) 

i.e., if we want to stay on the surface they must satisfy Eq. (2.4.2) 
This simply states that if we follow the surface we can freely change all 

variables except one. We can, for example, move horizontally at  will by 
choosing (infinitely small but arbitrary) values of d x ,  = ( d x ,  d y )  and we 
can consider the surface at time t and t + d t .  Eq. (2.4.2) then tells us that 
if point (x,, z ,  t )  was on the surface at time t and we move to x ,  + dx,, 
t + d t ,  then we must change z to z + dz where d z  is given by Eq. (2.4.2) if 
we want the point ( x ,  + dx,, z + dz,  t + d t )  to  be on the surface too. 

The second step in the derivation is to implement into Eq. (2.4.2) our 
physical assumption that a fluid particle at the surface with velocity com- 
ponents (u,, w) follows exactly those rules as the particle is moving around 
and the surface is changing position. This means requiring that in (2.4.2) 

d z = w d t  ; d x ,  =u,dt (2.4.3) 

which, after division by dt  gives 

(2.4.4) 
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Z 
I 

Fig. 2.4.1 
(KFSBC). 

Graphical illustration of the kinematic free surface boundary condition 

This is the general form of the kinematic boundary condition at a surface 
on which fluid particles stay. 

In x, y,  z coordinates, this becomes 

- _  w + u - + w - = O  at  z = (  at ax ay 
(2.4.5) 

Thus for the free surface z = (, (2.4.4) or (2.4.5) apply directly. 

The bottom condition 
In the case the flow can be assumed inviscid it will exhibit a finite 

velocity at  the bottom. Thus the proper boundary condition is simply that 
the velocity un normal to the bottom is zero 

un = 0 (2.4.6) 

In viscous flows and flows in boundary layers the proper boundary condition 
at  a solid bottom will be 

u=O (2.4.7) 

which clearly automatically satisfies the condition that a particle at  the 
bottom stays there. 

In many practical flow models the flow inside the bottom boundary layer 
is not resolved directly. In stead the models allow a socalled slip velocity 
which then represents the velocity immediately outside the boundary layer 
similar to  the conditions in a potential flow. 
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In the case of potential flow or a slip velocity being used the equation 
(2.4.4) also applies as the kinematic condition. Thus for a fixed bottom (no 
time dependencc) at z = -h(x,), we get the kinematic condition 

= 0  at z =  -h(x,) dh 
w + u ,  - (2.4.8) 

where (ua, w) is then the finite velocity. 
However, with a slip velocity the dynamic effect of the bottom must 

also be included in the sense that the shear stresses (if any) actually devel- 
oped by the bottom friction in the boundary layer must be included as a 
dynamical boundary condition at the bottom (see Chapter 10). 

2.4.2 Dynamic conditions 

Kinematic conditions relate the motion of the particles in time - i.e., 
the velocity field - to the development in time of the position of the surface. 

In contrast, dynamic conditions are instantaneous conditions ex- 
pressing that at all times the external stresses on a boundary surface must 
be balanced by equivalent internal stresses immediately inside the fluid. 

The dynamic free surface condition in potential flows 
The dynamic condition at the free surface in a potential flow can be 

written in much simpler form than for general turbulent flows. 
At the free surface we assume the potential flows are inviscid so that no 

stresses other than pressures acting on a boundary can be transfered onto 
the fluid. On the free surface the relevant stress is the atmospheric pressure 
p a  which varies little over the length scales we consider. Since a constant 
pressure on the surface does not contribute to the flow, p ,  is often just 
put equal to zero. In potential flow the Bernoulli equation is valid. The 
dynamic surface condition at a free surface position at z = q then follows 
directly by setting the pressure equal to zero in that equation. We get 

(2.4.9) 

where C( t )  is the Bernoulli constant. The proper specification of C(t )  is 
not quite trivial and will be discussed for each of the flows analyzed later. 
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For the derivation of the dynamic free surface condition in general tur- 
bulent flows reference is made to Chapter 11. 

2.5 Basic ideas for turbulent flow 

Most real flows are turbulent. This particularly applies to surf zone 
waves and currents. The Fig. 2.5.1 shows an example of a time series for 
the velocity component u in a (steady) turbulent flow. 

U 

I * t  

Fig. 2.5.1 Velocity u in steady turbulent flow. 

The flow is in principle determined by the Navier-Stokes equations. The 
solution of the full equations, even on large computers, is still not possible 
for problems of engineering relevance, and certainly not for any problems 
appearing in nearshore hydrodynamics. 

However, even if we could solve those equations, we would get an answer 
which, due to the immense amount of data and richness in small details, 
would be of limited practical interest. To get practical information, we 
would need to compress the data significantly by defining and extracting 
information about convenient parameters. 

From a technical point of view, such a data compression is done by sep- 
arating each flow property (such as u, II, p ,  etc.) into a “mean” component 
A 
f and a turbulent fluctuation f’. 
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2.5.1 Reynolds decomposition of physical quantities 

The separation of the flow into a mean and a fluctuation part is done 
by observing that any  flow-related quantity can be written 

A 
f = f +f’ 

A 
f = mean value (2.5.1) 

f’ = fluctuation 

(without loss of generality). 
This is called a Reynolds decomposition, and by definition we have 

A 
f ’  = o  (2.5.2) 

Using (2.5.1) and (2.5.2), we then get the following rules: 

A 
A A  f = f  (2.5.3) 

(2.5.4) 

A A &A 
f g =?.? ; espec. f g‘= f g’ = 0 (2.5.5) 
A A  - 
a f 2 f  . f ds (2.5.6) 

These relationships are useful to keep in mind when working with tur- 
bulent flow equations. They apply as long as (2.5.2) is valid. 

The philosophy behind splitting each total flow quantity (velocity com- 
ponents, pressure, etc.) into a mean and a fluctuating part can be justified 
quite rigorously, but that is beyond the scope of the present course (for 
reference see, e.g., Tennekes and Lumley (1972) or Hinze (1975)). 

In popular terms, the philosophy is the following: we can never predict 
the detailed development of a particular realization of a turbulent flow. 
What we may (and should) expect is that the effects, which the turbu- 
lence has on the mean flow properties, are predictable so that-by properly 

modeling those effects-we will be able to predict the m e a n  flow (i.e. f ). 
Clearly, the Reynolds decomposition depends on our capability to define 

the average f . It turns out that this is not always easy. This is discussed 
in the following, using the horizontal velocity component u as an example. 

A 

8 s  ’ l x c d f d s  = l x e d  
- as 

A 

A 
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2.5.2 

Ensemble averaging 

average : 

Determination of the turbulent mean flow 

One way of defining the mean value of u is through the ensemble 

The ensemble average of a quantity at a (fixed) 
point is defined as the mean of the values of the 
quantity at that point at the same time in many 
identical repetitions of the flow experiment. 

We use A to indicate ensemble averaged quantities. Any flow prop- 
erty (velocity, pressure, temperature) can be ensemble averaged. Fig. 2.5.2 
shows an example for steady mean flow. 

U 

to 

Fig. 2.5.2 Ensemble averaging in steady turbulent flow. This figure shows the 
time series of two independent realizations of the same (steady) flow. The ensem- 
ble average for these two realizations at t o  is the mean value of the two observed 
values at t o .  

The advantage of the concept of ensemble averaging is that it is also 
defined in flows with time varying mean values. An example is shown in 
Fig. 2.5.3. 

In mathematical terms, the ensemble average at t = t o  is defined by 

= experiment no. (2.5.7) 
1 "  

i=l 
-(to) = - c % ( t o )  
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U 

Fig. 2.5.3 Ensemble average for time varying mean flow (for clarity only one time 
series is shown) u. 

In practice ensemble averaging is almost imposssible to generate. For 
laboratory experiments with strictly periodic waves, however, the ensemble 
averaging can credibly be replaced with averaging of the measurements ob- 
tained at the same phase in each of the waves in the wave experiment. This 
works very well outside the breaking point where the waves all propagate 
at the same speed so that the constant wave period is kept throughout the 
wave flume. However, inside breaking the nonlinear effects in the waves 
have a tendency make the (slightly) higher waves move faster and catch up 
on the (slightly) smaller ones. The result is changing wave periods, which 
makes it difficult to identify which phase over the period of each wave to 
use in the averaging. And obviously in irregular waves such as on a real 
coast this surrogat for the ensemble average is not possible. 

Time averaging 
As mentioned it is very difficult to repeat the same experiment suffi- 

ciently many times to obtain a reasonably accurate assessment of the en- 
semble average. In contrast the time series collected from gages offers a 
natural basis for determining a time averaged mean value. Therefore many 
texts and scientists use time averaging instead of ensemble averaging. 

In steady flow, ensemble and time averaging are the same because the 
time average u(t) over time At is defined as A 
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I J 
I At I 

Fig. 2.5.4 Time averaging in steady turbulent flow. The figure shows the idea 
of time averaging over an interval At around t = t o .  Because At in the figure 
is not much longer than the characteristic time scale of the turbulence, the time 
average value shows some time variation even though the mean flow i s  steadwe 
introduce y. 

(2.5.8) 

which is similar to (2.5.7). 
The time averaging can be turned into a sliding average by continuously 

sliding the finite-length interval At along the t axis, which makes u(t) a 
continuous function o f t .  

A 

Discussion 
We see that in steady mean flow 

As Fig. 2.5.4 shows, however, for this to be valid even in flows with a 
steady long term mean value At needs to be much larger than the typical 
timescale of the turbulence. 

When it comes to a time varying mean flow, the situation is even more 
A complicated as the example in Fig. 2.5.5 shows. Though u(t) may be 

approximated by the value at t o  in the middle of the time interval we see 
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Fig. 2.5.5 Time averaging in time-varying mean flow. 

& that u ( ~ )  is not a well defined quantity. In the first place, it is not clear 
what to is. Secondly, it is also obvious that we must make the assumption 
that the mean flow does not change significantly within the time At. 

Hence we see that to obtain a reliable result from time averaging time 
varying mean flows we must require that the time scale Tt of the turbulence 
is so much shorter than time scale T, of the mean flow that we can select 
a At which satisfies Tt <( At << T,. 

This requirement can be written in terms of the turbulent fluctuations 
A 
utt) which are determined as: 

(2.5.9) 

The requirement is that 

A 1 1  t+At 
At must be long enough to give utt) = at 1 u’dt = 0 (2.5.10) 

This can of course not always be satisfied. Only if the time scale T, 
of the variation of the mean motion (e.g., the wave period) is large in 
comparison to the turbulent time scale T,, can we choose At so large that 

(2.5.11) 

which would be ideal. 
On the other hand, the ensemble average u ( to) remains a well defined 

quantity, also in time varying mean flows. 
It is finally pointed out that in many types of turbulence (including 

the early stages of wave breaking), there is an additional problem: Certain 

A 
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vortex patterns, which look turbulent at a first glance and have a large 
spatial (and therefore also a large time) scale, are likely to almost repeat 
themselves from experiment to experiment. According to both (2.5.7) and 
(2.5.8) such patterns would fall under the mean flow although they would be 
very difficult to include in a model. This complicates modeling of breaking 
waves. Only detailed Computational Fluid Dynamics (CFD)-models are 
able to resolve the flow down to such details. These problems remain largely 
unsolved. 

In the following we will disregard these difficulties related to what is 
turbulence and what is mean flow and simply assume that we can perform 
a Reynolds decomposition (meaning the can be determined), and we 
then discuss how to  derive and use the resulting equations. 

2.5.3 The  Reynolds equations 

When we introduce the Reynolds decomposition (2.5.1) into the equa- 
tions for conservation of mass (the continuity equation), and momentum 
(the Navier-Stokes equations), an equation system results which is called 
the Reynolds equations. The following gives a brief outline of the deriva- 
tion for the mass and momentum equations. 

Continuity: 
The Navier-Stokes equations can be written 

au av aw 
ax ay az  - + - + - = o  (2.5.12) 

Momentum: 

av av av av aP acy  I arty I "'I.) 
at ax ay  az (-5 ax ay az y : - +u- +v- + w- = - +- 

z : - aw +u-  aw +v- aw + aw 1(--+- aP a e z  I a7;z I a") 
at ax ay wat=-g+i az ax ay az 

(2.5.13) 

where 7; represents the viscous stresses given by 

721. 2.7 = pv (2 + 2) 
with v being the kinematic viscosity. 

(2.5.14) 
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We observe that the structure of the three components of the momentum 
equations above is the same. In order to reduce the number of equations to 
be examined, it is convenient (and customary when dealing with turbulence) 
to use tensor notation instead of the equivalent (but more cumbersome) 
x, y, z-coordinates used in (2.5.12) and (2.5.13). 

Derivation of the Reynolds equations 
In tensor notation (using the summation rule), we can write (2.5.12) 

and (2.5.13) in the form 

Continuity : 

(incompressibility has already 

dUa - = o  i = 1,2 ,3  
dXa 

(2.5.15) 

tions). Momentum, j-th component: 
been assumed in the Navier-Stokes equa- 

d U j  I d  
at 8x2 P axa 
-+u,% = g . +  -- ( - p b . . + ~ w . )  23 a3 i , j =  1 ,2 ,3  (2.5.16) 

where gj = ( O , O ,  -g) .  
Before embarking on the Reynolds decomposition we change the con- 

vective acceleration term ui duj/axi  to a more convenient form. We write 

(2.5.17) 

which, according to (2.5.15), for incompressible flow means adding 0. 
Hence 

d U j  - auiuj 
dxa dxa 

uz- - - 

Thus (2.5.16) can be written 

(2.5.18) 

(2.5.19) 

We now introduce the Reynolds Decomposition given by 

(2.5.20) A A 
Ui = ui +u; ; p =  p +pi 

In the continuity equation, this yields 

d Q  au; 
+ - = O  dxa 8x2 (2.5.2 1) 
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This entire equation can be ensemble (or “turbulent”) averaged which gives 

or since 

we get 

(2.5.22) 

(2.5.23) 

(2.5.24) 

Hence both the mean and the turbulent fluctuation satisfy the continuity 

For the momentum equation (2.5.19), we get 
equation independently as (2.5.23) and (2.5.24) show. 

n aQ au; a(Q+u;)( ug +uj) +- + at at axi 

This equation is ensemble averaged using: - n 
auI a- AA-AA.  27’ ‘=o ; 3 = 0  ; ua u, - ua U J  , 
at 8% 

= O  

(2.5.26) 
(2.5.25) then becomes 

- - A  
aQ aQQ + aQu; + au:Q au:u; +- at axa axa ax, axa + 
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and hence we get 

~ 

(2.5.28) 

Eqs. (2,5.24) and (2.5.28) are the Reynolds equations for the con- 
servation of mass and momentum in the mean flow. A similar equation 
can be derived for the energy of the mean flow, for the turbulent (kinetic) 
energy, and in fact for other turbulent quantities. For further reference see 
e.g. Tennekees and Lumley (1972), Hinze (1975), or Wilcox (1998). 

The equations we have derived here describe the mean flow. We see 
from (2.5.28) that the turbulence affects the mean flow only through the 
terms 

(2.5.29) 

A 

-p  u: 

Fig. 2.5.6 The stresses for z = l , j  = 1. 

They are equivalent to additional surface stresses. 

Example 1 
We consider the case i = 1 ; j = 1. This is 

illustrated in Fig. 2.5.6. The net contribution on the fluid 
element is 
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(2.5.30) 8 9  pu i  u. = p- u1 
d X j  8x1 

A 

Using the rules for stress components we see that -p-& a U f 2  

is a normal stress. 

Example 2 
i = 1 ; j = 2, See Fig. 2.5.7 for illustration. 

On each side of the fluid element in Example 2, we 

have contributions of the type -pui u; but the net effect 
on fluid element is a shear stress of the size 

A 

-P- (O) u1 u2 dx:! 
8x2 

(2.5.31) 

Fig. 2.5.7 The stresses for z = 1, j  = 2. 

A 
Thus, realizing that -pu;  u$ has the nature of a stress distribution we 

introduce the definition 

i , j  = 1,2 ,3  (2.5.32) * rzj. = - p u i  uj 

which are called the Reynolds stresses. We see that r& has the compo- 
nents 
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> (2.5.33) 

Hence the momentum equation(s) may be written - I d  f if i 
I a + -- (T; + T&) + gj (2.5.34) dQ d ui u3 - 

- 
at + axa p axj p a x i  

or, if we, for convenience, introduce the definition 

(2.5.35) 

total visc. turb. 

we get 

In view of the fact that 

721. << T!  (2.5.37) 

the viscous stresses are usually neglected altogether in turbulent flows, 
which means we assume 

23 $3 

Ti j  N r! a3 (2.5.38) 

In conclusion, by comparing (2.5.19) and (2.5.36) we see that if we 
replace the viscous shear stresses T$ with the total (or just the turbulent) 

shear stresses then the mean velocity satisfies the same equations as 
the total (instantaneous) velocity ui. 

2.5.4 Modelling of turbulent stresses 

When deriving the Navier-Stokes equations we found that the equations 
in terms of the stresses had too many unknowns. We resolved that problem 
by developing Stokes viscosity law which relates the stresses to the flow 
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velocities. This lead to introduction of the fluid viscosity p (or the kinematic 
viscosity u = p / p )  which is a fluid property independent of the flow. 

In turbulence we are faced with the same task: to express the turbulent 
A 

stresses ~ i j  = -pu: ZI; in terms of the mean flow. 
Unfortunately, as is readily understood, an analogous turbulent viscos- 

ity ut can be expected to depend on the turbulence which means on the flow 
itself. The problem of finding an equivalent to the Stokes viscosity is there- 
fore far more complicated. This is called the turbulent closure problem 
because we need at  least one extra relationship to close the equations so 
the number of unknowns equals the number of equations. This problem 
has not been solved in a satisfactory way yet. It constitutes the core 
of all turbulence research. 

In the following some of the simplest closure models are described very 
briefly. 

Prandtl’s mixing length 
The concept of a mixing length to model the turbulent stresses was 

introuced by Prandtl (see Prandtl, 1952). The basic idea is that due to 
the turbulent fluctuations fluid particles with velocity u in the x-direction 
travel a certain distance 1 in the cross-flow direction y before acquiring the 
velocity of the new region with velocity u + Au. Omitting for simplicity 
the overbrace the momentum difference between the two regions is 

d U  
m A u = m l -  

aY 
(2.5.39) 

The mass of fluid actually moving from one level yo to level yo + 1 is pro- 
portional to pIu’1, which leads to the expression for T 

For continuity reasons we must have 

This means that 

(2.5.40) 

(2.5.41) 

(2.5.42) 

which expresses T in terms of the mean flow. 
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The eddy viscosity model 
The mixing length hypothesis is mainly seen used in older literature. It 

has the disadvantage that it makes the equations non-linear because the 
shear stress is proportional to the velocity gradient squared. 

Today a more popular shear stress model is the simple concept of an 
eddy viscosity ut which assumes that the shear stress can be expressed as 

(2.5.43) 

This was first introduced by Boussinesq. The usefulness of this closure 
model lies of course in its simpliciy. It turns out to work relatively well for 
a number of simple flows provided ut is properly modelled. 

It is also worth to mention the suggestion that ut can be expressed as 

ut = lt A (2.5.44) 

where I t  is a characteristic length scale for the turbulence, and k the tur- 
bulent kinetic energy defined by 

1 A  A A 
k = - ( u’2 + d2 + w’2) 

2 
(2.5.45) 

represents a characteristic velcity. This can sometimes help judging the 
relevance of a ut value as in Chapter 13. 

As can be seen from the above both the mixing length and the eddy 
viscosity hypotheses are introduced on the basis of simple one dimensional 
shear flow. However, the eddy viscosity concept can directly be expanded 
to include random1 three dimensional flows the same way as the ordinary 
viscosity, meaning defining the shear stresses in a flow by 

(2.5.46) 

In the present text the turbulent closure modelling is entirely limited to 
the simple concept of an eddy viscosity. This kind of closure is also termed 
a simple algebraic closure model. 

Advanced turbulence modelling 
It is important to realize, however, that far more advanced closure 

models are available. These models require numerical computations and 
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are based on developing evolution equations for the turbulent quantities. 
The first such quantity modelled is usually the turbulent kinetic energy k .  
The equation for k is based on the energy equation for the turbulent flow. k 
is often modelled along with the dissipation E of k in a so called k - €-model, 
but this is only one type of turbulent closure model. Such advanced models 
of course have the advantage of being able to represent more realistically 
more complex flows. In the k - €-models k and E are used to determine a 
generalized (time and space varying) eddy viscosity vt by the expression 

(2.5.47) 

where C, is an emppirical constant. This vt is then normally used to 
determine the turbulent stresses by means of (2.5.46), by which the closure 
of the equations is achieved. 

However, all closure models have the same problem: in the evolution 
equations for each turbulent quantity such as k or will always emerge 
other, more complicated turbulent quantitites such as triple correlations 
between turbulent fluctuations, that need to be estimated on the basis of 
physical reasoning, experimental results etc. Thus the closure problem is 
always just transferred to other unknowns. 

The spectrum of modern turbulence methods also includes the Large 
Eddy Simulation (LES) approach in which the larger eddies in the flow are 
included in the numerical results as part of the mean flow, and only the 
small scale turbulence is covered by empirical model equations. Modern 
computers are also becoming so powerful that Direct Numerical Simulation 
(DNS) by direct solution of the (viscous) Navier-Stokes equations, where 
all turbulent scales are computed, can give answers to small scale flow 
problems. 

White 
(1991) gives a description of the Ic - model concept, and Wilcox (1998) 
gives an extensive recent overview of a wider selection of turbulence 
techniques. The review of turbulence Reynolds-stress closure models by 
Speziale (1991) still remains useful in spite of the rapid developments in 
this area, and there is a large paper by Vreman et al. (1997) covering the 
LES method, to mention a few. 

For more information reference is made to recent literature. 
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2.6 Energy flux in a flow 

To analyze the energy flux in a flow across an arbitrary surface, we first 
consider a small element dS of the surface, see Fig. 2.6.1. 

4. 

Fig. 2.6.1 
section. 

Definition sketch for analysis of the energy flux through a vertical 

The energy flux through this element has two contributions: 

(i) the actual flow of potential and kinetic energy carried by the water 

(ii) the work done by the pressure on the moving particles. 
particles passing through the section. 

The energy density (energy per unit volume) is therefore given by 

pyx + - p  1 (u2 + u2 + w2) = pyz + -puiui 1 
2 2 

(2.6.1) 

where the first term is the potential energy relative to some (arbitrarily 
chosen) horizontal reference level, the second the kinetic energy. 

Thus, the instantaneous energy flux through a surface element dS from 
transport of potential and kinetic energy is, per unit time 

where 

(2.6.2) 

uini = u, (2.6.3) 

is the velocity component normal to the surface element. 
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The work done by the pressure is, per unit time 

pui nidS = pu,dS (2.6.4) 

so that the total energy flux through d S  is 

(2.6.5) 

and we can determine the total energy flux by integrating over the entire 
surface 

In most of our applications the surface considered is a plane vertical 
section so that d S  = d z  times the unit width and ni is the same for all 
z (see Figure 2.6.1). This implies that ui ni = u, n,, where index a 
refers to a vector in the (z, y)-plane. Since we assume a plane surface here 
we can bring the constant normal vector n, outside the integral. The total 
instantaneous energy flux through such a vertical section therefore becomes 

At this point, however, we have not yet assumed that the velocity vector 
u, has the same direction at all points over the section. In fact if we are 
considering a flow that is a combination of waves (that may be plane so that 
u,, has the same direction over the vertical) and depth varying currents 
U,(z), then obviously the total velocity u, will vary in direction over depth. 
The total integral will then be a vector in a direction that depends on that 
depth variation, given by 

valid for an arbitrary flow sending energy through a plane vertical surface 
extending from the bottom to the instantaneous free surface. The flux 
through the plane surface with normal vector n, is then 



2.7 Appendix: Tensor notation 45 

In vector notation this can be written 

For completeness the x, y components of this are 

(2.6.10) 

(2.6.11) 

(2.6.12) 

2.7 Appendix: Tensor notation 

Tensor notation (or “index notation”) utilizes the fact that many equa- 
tions look the same in all three coordinate directions. Thus instead of 
writing out the x, y and z equations, we use the symbols i or j as indexes. 
Each of those can then be x, y or z .  

Fig. 2.7.1 Tensor-coordinate system. 

Example: uj can be u, Y or w depending on whether j corresponds to x, y 
or z .  

In addition, it is customary in tensor notation to talk about XI, 22, x3 
instead of z, y, z .  This i s  illustrated in Fig. 2.7.1 showing the Cartesian 
coordinate system normally used in tensor notation. 
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For that reason, we also normally say that i (or j )  is 1, 2, 3 instead of 
x ,  Y, 2 .  

Finally, tensor notation becomes really elegant because of the 
summation rule: If the same index is repeated as index within the same 
term, it means the term should be considered the sum of all the three 
terms we get by letting the repeated index be 1, 2 and 3. Thus we have as 
examples 

2) 7iz = 711 + 722 + 733 (2.7.1) 

dUi - -+-+-  au1 auz dU3 ii) - - 
axi axl ax2 ax3 

... auj - auj auj du j  
222) ui- - u1- + 212- + u3- 

d X i  ax1 8x2 ax3 

a24 a24 824 a24 iw) ~ = - +- +-  
axiaxi ax: ax: ax3 

Note that ii) is the same as 

(2.7.2) 

(2.7.3) 

(2.7.4) 

(2.7.5) 

which is the divergence of ui. Similarly iw) expresses the Laplacian operator 

(= A in some texts) 
d 

dXidXi 
q = ~ (2.7.6) 

Kronecker 's S i j  

In tensor notation we also meet the so called Kronecker bij. It is defined 
as 

1 for i = j 
6ij = {m} = { 0 for i # j 

1 0 0  
(2.7.7) 

Hence S i j  is really the unit matrix. 
Essentially, when 6ij  occurs in a term in an equation, it has the effect 

of changing i to j (or j to i) in that term. 

Example 1 

(2.7.8) 
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because by the summation rule 

s z j u i  = 6 1 j U l  + s 2 j u 2  + 6 3 j U 3  (2.7.9) 

However by the definition of dij,  only the term which has j equal to the 
first index is 1, the others are 0. So 

j = 2 + & 2 u i  = u 2 ,  (2.7.10) 
j = 1 -+ SZlUi = u 1 ,  

j = 3 + &3UZ = u 3  

Examde 2 

(or rjj, which makes no difference because of the summation rule) and 

(2.7.12) 
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Chapter 3 

Linear Waves 

Introduction 

The simplest possible water wave theory is that of linear waves, which 
emerge as solution to a simplified version of the general equations of motion. 
In this chapter, we first discuss the assumptions leading to the simplified 
equations, then derive the solution for linear waves. We then analyze the 
physical characteristics of that solution such as velocity and pressure fields, 
and special cases of the theory such as waves in very deep and very shallow 
water. We also analyze wave averaged quantities such as mean wave energy 
density, and the mean flux of mass (or volume), momentum and energy 
caused by a linear wave motion. We also consider the superposition of 
linear waves, both some simple canonical examples and the most general 
form described by wave spectra. We then go on to consider the propagation 
of linear waves in regions of varying depth and thereby derive the basic 
equations for many of the modern wave models.' 

Throughout we seek to clarify the physical properties and the limitations 
of the approximate solutions found. 

3.1 Assumptions and the simplified equations 

It is a fundamental scientific principle to start with the simplest possible 
formulation that contains the principal features of the problem. 

So we first restrict the analysis to the following situation 

a) Constant depth, h. 

'Part of the derivation in this chapter is a slightly modified version of the presentation 
by Svendsen and Jonsson (1976), and many of the figures are taken from that book. 

49 
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b) Periodic waves with period T. 
c) 2 dimensional motion in the vertical z, z-plane (2DV), i.e. one dimen- 

sional motion in the horizontal direction (1DH). 

These assumptions merely restrict the physical situation considered and 
do not represent approximations about the wave motion. 

However, as a necessary approximation, we neglect the effect of the 
boundary layer that develops at the bottom. This includes neglecting the 
viscous or turbulent stresses that develop in the boundary layer and also 
neglecting the disturbances the boundary layer causes in the flow above. 
There are two major reasons for this: one is that the shear stresses inside 
the boundary layer are small in comparison to the inertia and pressure 
forces that are the primary forces in the wave motion outside the boundary 
layer; the other that under waves with wave periods like wind waves the 
boundary layer is usually very thin in comparison to the water depth h. 
Both reasons imply that the local disturbances from the bottom boundary 
layer are really small. This will be discussed further in Chapter 

The internal viscous stresses in the motion are also extremely smalL3 
Notice, however, that away from boundary layers these stresses do not 
create vorticity so the flow remains irrotational inspite of the existence of 
the very small viscous stresses. 

This means the flow can effectively be considered frictionless and, ac- 
cording to Kelvin's theorem, it will remain irrotational if it is assumed 
initially to be so. 

The assumption of irrotational flow is necessary for a solution. It implies 
we can introduce a velocity potential 4 defined so that (see chapter 2.3.6) 

u, w = v$?l (3.1.1) 

where u, w are the horizontal and vertical velocity components, respec- 
tively, and V is the gradient operator defined by 

- a  a v = -  - 
ax ' d z  

(3.1.2) 

ZNotice the emphasis on local because over longer distances the energy dissipation 
due to bottom friction accumulates and over longer distances (many wave lengths) can 
dissipate substantial fractions of the wave energy. 

3Calculations show for example that a wave in deep water could move all the way 
around the earth loosing only half of its energy due to internal friction. 
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See Figure 3.1.1 for definitions. The velocity potential satisfies the 
Laplace equation 

V2$ = 4zz + g5zz = 0; -h < z < ~ ( x ,  t )  (3.1.3) 

or represent partial differentiation with respect to 2 and z ,  where index 
respectively. 

t‘ 

-U 
‘ h  

I 

Fig. 3.1.1 Definition sketch. 

Notice that we have chosen to place the x-axis at  the mean water level 
(MWL) which is determined so that 

Vdx = 0 I” (3.1.4) 

The boundary conditions for the problem are the bottom condition (see 
Chapter 2.4) 

4 z  = 0 at z = -h (3.1.5) 

and the two free surface conditions: the kinematic condition 

4 z  - rlt - 4zrlz = 0 at 2 = 7 )  (3.1.6) 

and the dynamic condition 

(3.1.7) 

Finally, we need a boundary condition in the x direction. For this we 
utilize the assumption that the motion is periodic with a wave length L 
which is the horizontal distance between two consequtive wave crests (see 
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Fig. 3.2.1). This means the conditions at an arbitrary z value will repeat 
itself for each L. Hence, we only need to consider the section 0 < x < L. 
This applies to all variables but is conveniently expressed in terms of the 
horizontal velocity as 

Mathematically this system represents two important difficulties. The 
first is that, while the Laplace equation and the bottom boundary condition 
are linear both boundary conditions at the free surface are non-linear. The 
second difficulty is that the shape and position of the free surface boundary 
z = q at which these boundary conditions are to be evaluated is itself one of 
the unknowns of the problem we try to solve. In fact, this combination 
makes it impossible to solve the problem analytically without 
further simplifications. 

For this purpose, it is useful to look at the magnitude of the terms in 
(3.1.6) and (3.1.7). As an example, we consider a “deep water wave” which 
is a wave in water deeper than half the wave length. It will be found later 
that in such a wave the fluid particles at  the free surface move in circular 
paths, each orbit taking one wave period T (which is the time elapsed 
between the passage at a fixed point of two consecutive wave crests). Since 
a fluid particle at the surface stays there, the diameter of the circular paths 
must be the wave height H defined as the vertical distance between the 
crest and trough levels in the wave (Fig. 3.2.1). Hence, the speed of such a 
particle can be approximated by V = x H / T ,  which means that 

For qt, a typical value must be 

v t = 0 ( F )  

whereas, we for qx have 

vx=o(;) 

(3.1.9) 

(3.1.10) 

(3.1.11) 

These estimates, how crude they are, suffice for the present purpose if 
we further realize that the propagation velocity c,  the wave length L,  and 
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wave period T are related by 

L 
T 

c = -  

Then we get the magnitude of the terms in (3.1.6) as follows 

d z  = 0 (g) = 0 (2) 
rlt = 0 (c;) = 0 ( d z )  

d x  rlx = 0 (.$) = 0 ( gdZ) 

(3.1.12) 

(3.1.13) 

by which we have, of course, said nothing about the phase differences of 
the maximum values for each term. 

Equation (3.1.13) shows that the order of magnitude of the last, non- 
linear term in (3.1.6) is H / L  times the linear terms 

Hence if we assume that H / L  - which also is called the wave steepness 
- is a small quantity (i.e. << l),  we thereby obtain the result that the non- 
linear term in (3.1.6) becomes much smaller than the two linear terms in 
(3.1.6). (In nature H / L  = 0.05 represents a quite steep wave which justifies 
the assumption.) 

Exercise 3.1-1 Show by analogous arguments that the 
same will be the result in (3.1.7): the nonlinear terms are 
O ( H / L )  times smaller than the linear terms. 

We can now obtain a first approximation to the problem simply by 
assuming H / L  << 1 and so, neglecting the non-linear terms, (3.1.6) 
and (3.1.7) then simplify to 

dz - rlt = 0 at z = 77 (3.1.14) 

1 
Q + ;dt = 0 at z = (3.1.15) 

which are linear. 
In fact, the second problem, that of the unknown position of the free 

surface, can be attacked by the same approach. Thus we can write by a 
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Taylor expansion 

= 4 z ( x ,  0, t> - rl dxx(x, 0, t )  + . ’ .  (3.1.16) 

where the Laplace equation has been invoked in the second term. Since we 
have 

77 = O ( H )  (3.1.17) 

we get 

4 x x  = 0 ($) 
and (3.1.16) becomes by virtue of (3.1.9) and (3.1.15) 

(3.1.18) 

(3.1.19) 

This means that if we in (3.1.14) evaluate 4z at z = 0 instead of at z = 77, 
it corresponds to neglecting terms of the same order of magnitude as the 
non-linear terms we decided above to neglect. 

Similar results can, of course, be obtained for 4t in (3.1.15) so that these 
two boundary conditions at the free surface to the first approximation both 
become linear, and can be evaluated at the fixed horizontal level z = 0. 

Thus, we can summarize the list of simplifications and approximations 
follows: 
We 

consider waves on constant depth h 
periodic waves with period T 
restrict consideration to the 2D vertical plane (x, z )  
neglect viscous (and turbulent) stresses so the motion becomes irrota- 
tional 
assume the wave height H is much smaller than the wave length L 

As described above, each of these assumptions contributes to simplifi- 
cation of the problem, but only the last two are also approximations. 

The resulting wave solution has many names. Often it is called “small 
waves,” “small amplitude waves” or “infinitesimal waves” because of the 
assumption of H / L  << 1. More frequently ‘Llinear waves” or “sinusoidal 
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waves” is used, the latter, of course, referring to the sine function which 
turns ou to describe the phase motion of these waves. In some contexts, 
they are also referred to as “Airy waves” because G. B. Airy (1845) was the 
first to derive the expressions describing these waves, or “first order Stokes 
waves” because G. G. Stokes (1847) was the first to derive a higher order 
theory. 

3.2 Basic solution for linear waves 

3.2.1 Solution for 4 and Q 

Fig. 3.2.1 Periodic waves on constant depth (SJ76). 

The mathematical problem we are now facing consists of solving the 
Laplace equation 

4m + 4 z z  = 0 (3.2.1) 

in the rectangular domain 

O < x < L  ; - h < z < O  (3.2.2) 

The boundary conditions are 

a) The (kinematic) condition at  the bottom 

(3.2.3) 



56 Introduction t o  nearshore hydrodynamics 

b) The (linearized) kinematic condition at the mean water surface (MWL) 

q L - r ] t = O  at z = O  (3.2.4) 

c) The (linearized) dynamic condition at  the MWL 

gr]+q5t=O at z = O  (3.2.5) 

d) The periodicity condition giving the boundary condition in the x- 
direction. As mentioned, we have chosen to impose this condition on 
the horizontal velocity. 

4Z(O, 21 t> = +Z(L, z1 t )  - h < z < O  (3.2.6) 

To finalize the formulation we notice that the differential equation 
(3.2.1) governing the motion only contains the velocity potential q5, while 
the surface elevation r ] ,  which is also an unknown of the problem, occurs in 
the two surface boundary conditions. This, combined with the fact that the 
Laplace equation only requires one boundary condition along each bound- 
ary] makes it necessary to eliminate r] between (3.2.4) and (3.2.5). This 
is accomplished by differentiating (3.2.5) with respect to t and adding to 
(3.2.4) which gives the condition for 4 only at  z = 0. 

g q 5 + &  = O  at z = O  (3.2.7) 

The physical situation is illustrated in Fig. 3.2.1, the mathematical formu- 
lation described above in Fig. 3.2.2. 

Fig. 3.2.2 The mathematical formulation of the problem (SJ76) 
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We see that the formulation now represents a regular boundary value 
problem for the Laplace equation with C$ as unknown. We also note that 
this problem is linear (linear equation with linear boundary condition). 

It turns out that solution to this problem can be expressed in different 
mathematical ways that also represent different types of wave motion. One 
is waves that propagate in either the positive or the negative x-direction 
without change of form (“progressive” waves), and at  this point we choose to 
consider only that case. We, therefore, choose to further limit the analysis 
to 

e) consider propagating waves of constant form. 

The case of standing waves will be considered in Section 3.4.4 

Waves of constant form 
To utilize assumption f ) ,  we first examine the implications this has on 

the physical wave motion. 
Fig. 3.2.3 shows the surface profiles of a wave of constant form at  two 

different times, t = 0 and t = t o .  The wave is assumed to propagate in 
the positive x-direction with the speed c, which means that the horizontal 
distance in the picture between points with the same 7 is xo = cto. In 
particular, the value of 77 at point (20, t o )  will be the same as the value of 
77 at (0,O) on 

only if xo and t o  are related by 

2 0  - cto = 0 (3.2.9) 

Recalling that c = L/T this means that (3.2.8) is satisfied for all (x0,to) 
provided 

(3.2.10) 

which therefore is the only possible combination of x and t that can occur 
in the description of constant form waves. In more general form, we define 

41n fact, it is unnecessary at this point to introduce “progressive waves of constant 
form” as an assumption. The equations can be solved without further assumptions (see 
Exercise 3.2-7). It is, however, illustrative to see how the progressive, constant form 
assumption can be utilized to simplify the solution. 
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t = o  t = to 

Fig. 3.2.3 Waves of constant form (SJ76). 

the variable 

(3.2.11) 

where the factor 27r is introduced to streamline the later results. 9 is called 
the phase angle. 

Exercise 3.2-1 
Show that if we consider a wave that propagates in the 

negative x-direction, the combination of x and t becomes 
t/T + x/L. 

We can therefore simplify the Laplace equation and the boundary con- 
ditions by replacing (5, t )  with 9. In the Laplace equation, this means 

(3.2.12) 

where the constant 
27r 
L k = -  (3.2.13) 

is called the wave number. Thus, we get 

k2$00 + 4 z z  = 0 (3.2.14) 

Similarly the free surface condition (3.2.7) becomes 

W 2  
g4z + - 4 0 0  = 0 

9 
(3.2.15) 

where we have defined the wave frequency w as 

27r 
T 

w = -  (3.2.16) 
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Finally, the periodicity condition (3.2.6) can be written 

h ( 0 , z )  = 4e(2T, z )  (3.2.17) 

The bottom condition does not change. Thus, we have reduced the 
number of independent variables from three (2, z ,  t )  to two ( 8 , ~ ) .  We also 
see that we have 

e = wt - k x  (3.2.18) 

and 
W c =  - 
k 

Exercise 3.2-2 
Show by considering the original problem in ( x , z , t )  

that this corresponds to saying: we can find a coordinate 
system (d, y, z )  that moves in the horizontal direction with 
velocity c in which the wave does not change with time. 

(3.2.19) 

Solution for the velocity potential 
It is now straightforward to determine the solution for 4. This can be 

done by means of the separation method which implies seeking solutions of 
the form 

4(8,z) = f(Q) Z ( z )  (3.2.20) 

Substituted into (3.2.14), this gives 

k 2 f " Z +  f Z " = O  (3.2.21) 

implies ordinary differentiation. The standard approach is to where the 
divide (3.2.10) by fZ and write the result as 

(3.2.22) 

In this equation, the left hand side is a function of 0 only, the right hand 
side of z only. Thus, both must be equal to a constant, X2 say, which we 
here assume > 0. This means that the single equation (3.2.22) splits into 
two equations 

A2 
f " + -  f = O  

k2 (3.2.23) 
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and 

2” - = 0 (3.2.24) 

which have the complete solutions (assuming for simplicity that X is the 
positive root of X2) 

f =A,s in(%O) +A2cos(;O) (3.2.25) 

Z = B l e X Z  + Cle-xz  (3.2.26) 

This form of f can be simplified if we realize that a sum of a sine and a 
cosine of the same variable can be written as a single sine (or cosine) with 
a different amplitude A and phase angle S, i.e., 

f =Asin(;  Of6)  (3.2.27) 

However, since we can freely choose the origin of x and t (and therefore 
e ) ,  we can put 6 = 0 without loss of generality. 

Similarly, we can choose B1 = ( B  + C ) / 2  and C1 = ( B  - C ) / 2  where 
B and C are two other constants. This changes Z to the more convenient 
form 

Z = B cosh Xz + C sinh Xz (3.2.28) 

In addition to A ,  the constants A, B and C are then the integration 
constants that need to be determined by means of the boundary conditions. 

The periodicity condition (3.2.17) becomes f ’ (0 )  = f‘(27r) which we see 
from (3.2.27) will only be satisfied if we require 

X = k  (3.2.29) 

Exercise 3.2-3 
Show that since by definition one wave length corre- 

sponds to 8 = 27r, solutions like X = 2k ,  3 k , . . .  are not 
allowed. 

The bottom condition (3.2.3) applied to (3.2.20) gives 

Z’(-h) = 0 (3.2.30) 
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which with (3.2.28) for Z gives 

B = C coth kh (3.2.31) 

Substituted into (3.2.28), that equation can then be written 

(cosh kh cosh k z  + sinh kh sinh k z )  
C z=- 

sinh kh 

coshk(z + h) 
sinh kh 

= c  (3.2.32) 

At this point, the solution (3.2.20) for 4 can then be written as 

cosh k ( z  + h) 
sinh kh 

+ = A C  sin 13 (3.2.33) 

Phase velocity, surface profile and velocity potential 
The only boundary condition left for 4 is the combined kinematic and 

dynamic condition (3.2.15). When we substitute the z and t derivatives of 
(3.2.33) into this, we get (after division by ACsinO) 

which can also be written 

lw2 =gktanhkhI  

(3.2.34) 

(3.2.35) 

This is called the dispersion relation for reasons which will become 
clear later. It essentially specifies the correlation between w and k (or 
between L and T ) .  Since we also have that c = w / k ,  (3.2.35) can also be 
written 

(3.2.36) lc2 = lctanhkhl 9 

which gives the value of the phase velocity (or propagation velocity or 
“phase speed”) c for given water depth h and wave length L(= 27r/k). 

Exercise 3.2-4 

in the negative x-direction? 
What will the expression (3.2.36) be for a wave moving 
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Exercise 3.2-5 Why does c not depend on the wave height 
H ?  

The surface elevation r] was initially eliminated from the two free surface 
boundary conditions. Therefore, r] can now be determined from either of 
those and we see the dynamic condition (3.2.6) is the simplest to use. Using 
(3.2.33), we get directly 

If we substitute (3.2.34) and (3.2.19), this can also be written 

(3.2.38) 

Obviously this means that the parameter combination - A C / c  repre- 
sents the wave amplitude a or half the wave height H .  

This brings us to the question, which will be discussed further in the 
next section: What is required to specify the wave? It is in accordance with 
intuitive physical understanding of the problem that the result describes the 
motion of a wave of any amplitude a or height H ,  provided we stay within 
the limits of H I L  << 1 which was a basic assumption for the mathematical 
formulation. Hence, we are free to choose this combination of constants. 
We define 

H AC 
a = 2 = - T  

Then the surface elevation can be written 

(3.2.39) 

(3.2.40) 
H 

q = acose = - cos(wt - kz) 2 

Substituting (3.2.39) into (3.2.33) then also gives directly the final expres- 
sion for the velocity potential 4: 

(3.2.41) H c  cosh k(z + h) 
q ) - -  sin (wt - kz) 

2 sinhkh 
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With 7 and 4 determined we have essentially determined the solution for 
linear (or sinusoidal) water waves. As expected, the parameters are 

h : the water depth 

H : the wave height 

L : the wave length 

However, in addition both the propagation speed c and the wave period 
T occur in the solution. It is therefore obvious that some further analysis 
is required to clarify how to properly specify the wave motion for practical 
applications. This is done in Chapter 3.2.2. 

It may be recalled that we initially obtained the simplified formulation 
of the equations by assuming H I L  << 1 and consequently evaluated the 
two free surface boundary conditions at the MWL z = 0 instead of at z = q. 
This implies, however, that the waves described by the solution have (at 
least theoretically) an infinitely small wave height, and that the results we 
have found for 4 and all the variables that can be derived from that are 
only valid up to z = 0. 

Exercise 3.2-6 
Show that the solution for 4 can also be written as 

H g cosh k ( z  + h) 
2 w cosh k h  

sin 0. 4 = _ _ _  (3.2.42) 

This form will be used in e.g. Chapters 3.5.4 and 3.7. 

Exercise 3.2-7 To illustrate the effect of the assumption 
of constant form waves, this exercise briefly outlines the 
solution of the equations without making that assumption. 

Thus, assume in the Laplace (3.2.1) that 

a) Show that his leads to the equivalent to (3.2.22) 

Xf t  Zff 

X z - - -A2 (3.2.44) 
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with the general solutions 

X = A1 sin Ax + A2 cos Ax (3.2.45) 

Z = BleXZ + BZe-” (3.2.46) 

b) Show that with suitable definitions of constants, the bot- 
tom condition (3.2.3) brings Z on the form 

cosh X(z + h) 
sinh Ah 

Z = B‘ (3.2.47) 

and that the periodicity condition again leads to 

X = k  (3.2.48) 

so that 

cosh k ( z  + h) 
sinh kh 

Z = B’ (3.2 -49) 

c) Show that the combined free surface condition then 
yields 

(3.2.50) 
Z’ T” 

9- = -- z T 
where 

2‘ 2 g- = gktanhkh z w 
Z’ 

(3.2.51) 

in which the second equality defines the constant w. 
Thus, show that this implies that 

T =  C1sinwt+C;?coswt (3.2.52) 

d) Define constants A, B,  C and D so that the total q!J can 
be written 

cosh k ( z  + h) 
sinh kh 

q!J = { A  sin wt sin kx + B cos wt sin k z }  

cosh k ( z  + h) 
sinh kh 

+ {C sin wt cos kx + D cos wt cos kx} 

(3.2.53) 

which is the general solution. 
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e) Show that any one of the four constants # 0 together 
with the others = 0 will give one of the standing waves 
considered in Section 3.4.1. 

f )  Show that C = -B = a,  A = D = 0 will give the 
progressive wave 

(3.2.54) 
cosh k ( z  + h)  

sinh k h  
sin(wt - kx) 4 a  = a 

and C = B = b, A = D = 0 gives 

(3.2.55) 
cosh k ( z  + h) 

sinh k h  
sin(wt + k ~ )  4 b  = b 

which are progressive waves in the + and - x-directions, 
respectively. 
Thus by suitable choice of the four integration constants 
the general solution contains all these options. 
As can also be seen, however, the solution procedure is 
more complicated without the constant form assump- 
tion. 

The solution presented above is based on utilizing that a frictionless 
flow that initially is irrotational will remain irrotational (Kelvin’s law), and 
hence the flow can be described by a velocity potential. However, such a 
flow will also satisfy the Euler equations in combination with the continuity 
equation. 

The linearized form of the Euler equations are (introducing the dynamic 
pressure p~ = p + pgz) 

du dw - + - = o  
dx d z  

aw 1 apD 
at d z  - +--  = o  

(3.2.56) 

(3.2.57) 

(3.2.58) 

In addition, we want the flow to be irrotational so we must also require 

du dw 
d z  dx = o  (3.2.59) 



66 Introduction t o  nearshore hydT0dynamic.s 

It can be shown that derivation of the linear wave results from this set of 
equations is also possible. 

Exercise 3.2-8 
Frequently the formulas for the wave motion (surface 

elevation, velocity potential or the velocity components 
themselves) are written as the Real value of a complex 
expression. For example 

r] = %{a eie} (3.2.60) 

Show that this is equivalent to (3.2.40). Show also that if 
ve write 

r ] = a e  ie +c.c (3.2.61) 

where C.C. stands for the complex conjugate of the eie , then 
that also sorresponds to (3.2.40). 

Often the 8 or the c.c is omitted in the derivations for 
brievity, but is understood throughout. In particular it is 
meant that we take the Real value of the final complex 
function results to get the actual physical result. 

This way of writing the wave motion makes it possible 
to use the powerful methods of complex variable theory, 
which often simplifies the derivations (see e.g. Chapters 
3.5.2 and 3.7). 

3.2.2 Evaluation of linear waves 

As (3.2.41) shows, in addition to the water depth h, we need H ,  L, c 
and T to specify the wave motion - a total of 5 parameters. However, these 
parameters are linked by two important relations which must be satisfied. 
One is the definition of c 

L 
T 

c = -  (3.2.62) 

the other is the dispersion relation (3.2.35). Thus, we can only choose three 
of the five parameters. 
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Therefore, the question becomes how to determine the necessary pa- 
rameters when the wave is specified by various combinations of the five. 
This choice, however, is not completely free. H must always be specified in 
addition to two other parameters and in practical applications the depth 
h is usually known as well. Here we discuss only the two most common 
combinat ions 

a) The wave specified by h, H and L 
b) The wave specified by h, H and T 

The simplest is case a), which literally provides the frame within which 
the surface profile varies. In the mathematical formulas, the problem also 
is very simple: when L is known, so is the wave number k ,  and along 
with h this means w and hence the wave period T follow directly from the 
dispersion relation (3.2.35). c is then obtained from (3.2.62) and thereby 
all parameters are known. 

Exercise 3.2-9 List the reasons why the wave scannot be 
specified uniquely by the combination h, L and T? 

Case b) is more difficult because we now need to determine L. This is 
done from the dispersion relation (3.2.35). However, with w and h known, 
this is a transcendental equation for L,  which can only be solved iteratively. 
The most convenient way is to write (3.2.35) in the dimensionless form 

w2h 
9 

k h  = - cothkh (3.2.63) 

which is then solved for kh. We see that this equation has one parameter 
only, namely w’hlg which can also be written as 

W2h = (27r)’ ( T m ) - ’  
9 

Hence T &% is a convenient dimensionless wave period. 

(3.2.64) 

Exercise 3.2-10 Eq. (3.2.63) yields to direct iteration 
which is also straightforward to program on a computer. 
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To demonstrate the procedure, perform a simple hand cal- 
culation based on the iteration 

w2h 
(kh),+l = ~ coth(kh), (3.2.65) 

9 

in which the previous (n’th) approximation for kh is used 
on the RHS to obtain the next (n + 1)’th approximation. 
Start with the approximation 

(corresponding to coth kh = 1 or kh = a), 
the right hand side and calculate (kh)z by 

This method converges rapidly for 

(3.2.66) 

substitute into 
(3.2.65), etc. 
all values of 

w2h/g(> 0) (see Fig. 3.2.4) and it is much simpler to pro- 
gram than for example a Newton-Raphson iteration which 
is sometimes used. 

Fig. 3.2.4 The iterative solution of (3.2.64). The solution is at the crossing of the two 
curves, the straight line representing the left hand side of the equation, the coth-curve 
the right hand side. The figure shows graphically how the iteration procedure progresses. 
The initial estimate of coth kh  = 1 leads to a new estimate kh2, etc. 
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Variation of L and c 

with depth h? This is discussed below. 
Interesting questions are: how do L and c vary with wave period T and 

We see that the dispersion relation (3.2.35) can also be written 

gT2 L = - tanhkh 
2n 

(3.2.67) 

which is useful for analyzing the variation of the wave length L versus T 
and h. Note that since L = cT the equivalent formula for c simply reads 

gT 9 c = - tanh kh = - tanh kh 
27r w 

(3.2.68) 

Deep and shallow water approximations for L and c 

Then kh is large, tanh27rhlL - 1 and the wave length L is given by 
We first consider the extreme case of very large depth h (relative to L). 

L(h  4 W) E Lo = - gT2 (3.2.69) 
27r 

This is called ‘deep water,’ LO the deep water wave length, and we see 
that ‘deep water’ means h large enough relative to L to  make tanh kh N 1 
a good approximation. For the phase velocity c, we similarly get 

(3.2.70) 

which shows that in deep water, the wave length and the phase speed only 
depends on T .  

Notice that for general kh, we can write 

L = LO tanhkh (3.2.71) 

and similarly 

c = co tanhkh (3.2.72) 

The other extreme is the situation where h << L. This is termed “shallow 
water” and we see it implies that tanhkh - kh so that 

L = T ~  (3.2.73) 
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The equivalent expression for c is 

c = f i  (3.2.74) 

which shows that in shallow water, the phase speed depends only on the 
depth. 

Exercise 3.2-11 Prove that (3.2.73) and (3.2.74) corre- 
spond to kh is so small that tanhkh is given by the first 
term in its Taylor expansion. 

Variation of L and c with T, h constant 
Since both L (and c) are given as transcendental functions of T ,  assessing 

the variation with T can only be done by first solving (3.2.64)) and then 
determine L and c from (3.2.67) and (3.2.68). The result is shown in Fig. 
3.2.5 for Llh  in terms of T m .  The figure also shows the deep and 
shallow water approximations for Llh.  

25 

20 

15 

10 

5 

0 

Fig. 3.2.5 
proximations (SJ76). 

Llh  versus TI-. The figure also shows the deep and shallow water ap- 
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Frequency dispersion 
The relation (3.2.68) shows that in general the propagation speed c 

depends on the wave period T and it turns out, that c grows monotonically 
with T .  

The most direct way to see this is to determine dc/dw and show it is 
5 0 meaning for given h c increases when w decreases, that is it increases 
with T increasing. Eliminating k from (3.2.68) gives 

9 wh c = - tanh - 
W C 

(3.2.75) 

Differentiating this with respect to w while keeping h = const we then 
get 

c 1 - G  - - 
dC 
d w  w I t G  
- 

where G is given by 

2kh G = 7  
sinh 2kh 

(3.2.76) 

(3.2.77) 

Since 0 < G 5 1 we see that dcldw 5 0 for all kh, meaning c increases 
momotonically with T 

Hence, waves with different periods will propagate with different speeds. 
In fact, the longer the wave period, the faster the propagation speed. This 
applies until the wave gets so long that it becomes a shallow water wave 
(=> G = 1). Then, c = &h is independent of the wave period. 

The property that cc varies with w is called frequency dispersion, 
and, as we just saw, shallow water waves are not frequency dispersive. 

Exercise 3.2-12 
Derive (3.2.76) 

Variation of L and c with h; T constant 
As (3.2.67) and (3.2.68) show, the variation with h is seemingly straight- 

forward. For T constant, both c and L vary as tanhkh. However, 
kh = 2 ~ h / L  is in itself a function of h/L. Hence, we again need to re- 
sort to a full numerical solution of these equations to get the full picture. 
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By using (3.2.71), we see that h / L  in kh is given by 

h h  
- = - tanhkh (3.2.78) 
Lo L 

where for given T ,  the left hand side is an explicit function of h that varies 
monotonously with kh. Hence, dimensionless plots of L and c can be gen- 
erated as functions of h/Lo. Fig. 3.2.6 shows the variation of L/Lo and 
CICO versus h/Lo. It confirms that for given wave period T ,  phase speed as  
well as wave length grows monotonously with h. 

Fig. 3.2.6 L/Lo and c/co versus h/Lo (SJ76) 

3.2.3 Particle motion 

Once the velocity potential (b is known, we in principle know everything 
about the wave motion. Thus, we can determine the complete velocity 
field, the particle motion and the pressure variation created by the wave 
motion. 

The velocity field 
The horizontal and vertical velocity components (u ,  w) are determined 

directly by partial differentiation of 4 with respect to (z, 2 ) .  The results 
can be written in different forms, but from (3.2.41), we get directly 
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(3.2.79) k H  coshk(z + h) 
cos(wt - k z )  ‘2 sinhkh 

u=&= 

k H  sinhk(z + h) w = & = -c- sin(& - kz)  (3.2.80) 
2 sinhkh 

We see that (apart from the z an 8 variations) k H / 2  = ka represents u / c .  
Other forms are obtained by replacing ckHl2  with r H / T  (which refers to 
the deep water value) or (less illustratively) with aw. 

Exercise 3.2-13 
Show that if we instead consider a wave that propa- 

gates in the negative x-direction (i.e., d = w t  + k z ) ,  then 
u changes sign while w does not. 

Exercise 3.2-14 

ume flux Q over a vertical is given by 
Show that in linear waves, the instantaneous local vol- 

Q = S q  u d z =  u d z + O ( H 2 )  
-h J’: 

= cq + O(H2)  (3.2.8 1) 

Fig. 3.2.7 shows the velocity variations in a linear progressive wave 
illustrated by the vertical profiles of the horizontal velocities under the 
crest of the wave and by the vertical profiles at the phase angle where 
q = 0. Similarly Fig. 3.2.8 shows an instantaneous picture of the velocity 
field. For illustrative purposes, the surface elevation has been exaggerated. 

Exercise 3.2-15 
Show that u can also be written as 

q 
h sinh kh 

kh  cosh k ( z  + h)  
u = c - .  (3.2.82) 

where q is the surface elevation given by (3.2.40). Thus 
u is in phase with q and consequently the largest particle 
velocities in the direction of wave propagation occur under 
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the wave crest, the largest in the opposite direction are 
found under the wave trough. 

Similarly, show that w can be written as 

sinh k ( z  + h) 
sinh kh 

w = -cqz (3.2.83) 

which shows the vertical velocity is largest where the slope 
on the surface is largest. 

0 

- 1  

a 

0 

- 1  

b 
Z - 
h 

1 ,wT 
TCH 

Fig. 3.2.7 The vertical velocity profiles in a linear progressive wave illustrated by the 
vertical profiles of the horizontal velocities under the crest (a) and profiles of the vertical 
velocities at the phase angle where 7 = 0 (b) (SJ76). 

The particle paths 
The description of the velocity field given above provides information 

on the velocity at any fixed point below MWL at any time (Eulerian 
description). This, however, does not indicate how the individual fluid 
particles move, though it may be sensed from Fig. 3.2.8 that the particles 
describe some sort of orbital motion. 
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3n 
2R - n 

8 :  0 2 lt 2 
- 

MWL 

U: max 0 min 0 max 

W: 0 max 0 min 0 

Fig. 3.2.8 
illustrative purposes, the surface elevation has been exaggerated (SJ76). 

The instantaneous velocity vectors in a linear progressive wave motion. For 

As described in Section 2, the particle paths are described by solving 
the equations 

with u, w given by (3.2.79) and (3.2.80), and where the RHS depends on t 
both directly and through x ( t ) ,  z ( t ) .  This gives a Lagrangian description 
of the motion. 

These equations cannot be solved exactly, because when we sustitute 
the results for (u, w) we find tht the unknowns ( x ,  z )  appear both outside 
and inside the transcendental functions of cos, cosh etc. On the other hand, 
we have already made assumptions about small wave height which suggests 
that the orbits indicated above let the particles move in small excursions 
A x ,  A z  around a mean particle position (<,<). We can utilize this by 
writing 

x = E + A x ( t )  

z = < + A z ( t )  
(3.2.85) 

and further introduce the Taylor expansion of (u, w) from the point ( E ,  <). 
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We have for the hyperbolic functions in (u, w) 

sinh k ( z  + h) = sinh k(< + h) + kAz cosh k ( [  + h) + . . . 

cosh k(,z + h) = cosh k (< + h) + kAz sinh k ( c  + h)  + . . . 
(3.2.86) 

sin(wt - k z )  = sin(wt - k J )  - kAx cos(wt - kJ) + . . . 

cos(wt - k z )  = cos(wt - Icc) + kArcsin(wt - kJ) + . . 
Substituting this into (3.2.79) and (3.2.80) and assuming (Ax, Az) = 

O ( H )  we get 

H c  cosh k(< + h) 
u(z, z ,  t )  = - k cos(wt - k t )  + O ( H 2 )  (3.2.87) 

2 sinh kh 

H e  sinhk(<+ h) . 
w(z ,z ,  t )  = -- k sm(wt - kJ )  + O ( H 2 )  (3.2.88) 

2 sinh kh 

This shows that to O ( H 2 )  the velocity for a particle at  point (z, z )  can 
be approximated by the velocity at the mean position (<, t) of that particle. 
Thus, (3.2.84) can be written 

where the RHS's now only depend on t explicitly. Neglecting terms O ( H 2 )  
the equations can then be solved by simple integration to give (using also 
(3.2.85)) 

H cosh k (<  + h) 
2 sinhkh 

z = < + -  sin(& - k c )  

Exercise 3.2-16 Show that the particle path given by 
(3.2.90) and (3.2.91) is an ellipse with center in the mean 
particle position (J, <) and the major semi-axis. 

H coshk(< + h) 
2 sinhkh 

a = -  (3.2.92) 

(3.2.90) 

(3.2.91) 
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which is also the horizontal particle excursion or displace- 
ment amplitude. Show, similarly, the minor axis or vertical 
particle amplitude is 

H sinh k(< + h) 
2 sinhkh 

p = -  (3.2.93) 

Show also that the horizontal distance between the fo- 
cal points of the ellipse is constant over 
equals &. 

the depth and 

The particle paths along a vertical line under 
Fig. 3.2.9. We see that at the surface (< = 0), the 

the wave are shown in 
horizontal amplitude is 

5 coth kh (which is always 2 9 )  while the vertical amplitude is 9 for all 
kh (as the kinematic surface condition would dictate). 

At the bottom, we of course have p = 0 but also Qb = &. Thus, 
at the bottom the ellipse degenerates into a horizontal line: the particles 
move back and forth along the bottom as dictated by the bottom boundary 
condition. 

3.2.4 The pressure variation 

As always in potential flow problems, the pressure can be determined 
from the Bernoulli equation. Neglecting again terms of O ( H 2 )  and intro- 
ducing that p = 0 at z = 0, we get 

gz + P - + 4t = 0 (3.2.94) 
P 

or 

P = -PSZ - P 4 t  (3.2.95) 

We see that p (as could be expected) consists of a hydrostatic component 
(- pgz )  and a component generated by the wave motion (-p&). Since the 
hydrostatic component does not contribute to the motion, it is convenient 
to define the dynamic pressure p~ as the part generated by the wave 
motion 
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a 

P 

Fig. 3.2.9 The particle paths in a progressive linear wave motion (SJ76) 

which shows that 

P D  = -P$t (3.2.97) 

Substituting for we then get 

H coshk(z+h) 
cos(wt - kz) 

= pgy cosh k h  

We see that p~ can also be written 

cosh k ( z  + h)  
= "' coshkh 

(3.2.98) 

(3.2.99) 

Thus, the pressure generated at  a point by the wave motion is propor- 
tional to the surface elevation vertically above that point. In fact, at the 
MWL we have 

P D ( z  = 0) = P g v  (3.2.100) 

which shows that at the MWL the pressure simply corresponds to the weight 
of the water above. As (3.2.99) also shows, the dynamic pressure is largest 
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at the surface and decreases downward with the factor cosh k(z+h)/  cosh k h  
which is 5 1 for all relevant values of z .  At the bottom, the value of p~ is 
pgq/ cosh kh. 

Exercise 3.2-17 Show that the vertical projection of the 
Euler equation can be written (in linearized form) 

(3.2.101) 

Substitute (3.2.80) for w and use the equation to derive 
(3.2.98) for p ~ .  

It is emphasized that the result of Exercise 3.2-17 shows that in lin- 
ear waves the dynamic pressure is caused entirely by the vertical 
accelerations in the wave motion. 

Exercise 3.2-18 
Use (3.2.101) to determine d p ~ / d z  at z = -h. Com- 

pare the result to 3.2.99. 

Fig. 3.2.10 illustrates the pressure variations along a vertical. The two 
straight lines indicate the hydrostatic pressure corresponding to z = 0 and 
z = q, and between them we find the dynamic pressure which decreases 
from pgrl at the surface to a value at the bottom that depends on kh. 

As with the velocities, we notice that the theory provides no information 
about the pressure between z = 0 and z = q. However the pressure at  the 
MWL corresponds to the estimate that the pressure above that level is 
hydrostatic. 

A frequent way of measuring wave heights in the field is to place a pres- 
sure sensor at  or near the bottom. That will measure pressure variations 
that can be transformed into wave height variations using (3.2.98) if the 
value of k is known. Usually k is found by determining the wave period T 
from the time series of the recording and solving the dispersion relation for 
k .  
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t "  

MWL 

Fig. 3.2.10 The pressure variations along a vertical (SJ76). 

3.2.5 

In section 3.2.2 we briefly discussed the deep and shallow water approxima- 
tions for the parameters L and c. Here we analyze the details of the motion 
in the case of very large, or infinitely large water depth, and the case of very 
small water depth (both relative to the wave length). In both these cases, 
the expressions found for sinusoidal properties such as 4, c, u, w, PO, etc. 
will simplify somewhat. However, in both cases there are also special fea- 
tures and pitfalls worth emphasizing. And in all cases, the surface profile 
remains sinusoidal with 17 given by (3.2.40). 

Deep water and shallow water approximations 

Deep water waves 
The deep water approximation for linear water waves is obtained by 

assuming that the water depth becomes very large (ideally infinitely large) 
relative to the wave length L,  that is, kh >> 1. 

In deep water the hyperbolic functions in the results change as follows: 

kh 
ekh - e -kh  

--$ -e 
2 2 

sinhkh = 

kh  
ekh + ,-kh 

---$ -e 
2 

coshkh = 
2 

(3.2.102) 

(3.2.103) 
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,kh - ,-kh 

,kh + e -kh  -+1 tanhkh = 

2kh 
sinh2kh 

G=- 

Fig. 3.2.11 shows the variation of the hyperbolic functions. 

~ 

01 02 03 04 
h 
L 
- 

Fig 3.2.11 Hyperbolic functions versus h / L  (SJ76). 

81 

(3.2.104) 

(3.2.105) 

We already saw that in deep water, the dispersion relation reduces to 

w2 =gkO or ko = w 2 / g  (3.2.106) 

where we follow traditional convention and mark deep water values by index 
0 .  
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Similarly, for the phase velocity, we get 

2 Q  co = - 
k0 

(3.2.107) 

and as mentioned in this case we can also get an explicit expression for c(T) 
and L ( T )  by eliminating ko from (3.2.106) and (3.2.107). 

(3.2.108) 

Thus, in deep water phase velocity and wave length depend on the wave 
period, T ,  only. 

It is tempting also to assume similar approximations in the expressions 
cosh k ( z  + h) and sinh k ( z  + h) which lead to C o ~ ~ n ~ ~ l h )  , s i n s ~ ~ ~ ~ ~ h )  + ekz .  
However, this needs to be handled with care, because close to the bottom, 
no matter how far below the surface it is, z + -h and hence k ( z  + h) is 
not large near the bottom. 

Therefore, the approximations 

cosh k ( z  + h)  k z  
+ e  

sinh k h  

sinh k ( z  + h) kz 
+-e 

sinh k h  

coshk(z + h) kr 
A e  

cosh k h  

(3.2.109) 

(3.2.110) 

(3.2.111) 

are only valid in the upper part of the water column. Though the errors 
from using these approximations near the bottom are small in absolute 
value, they become as large as 50% of the correct values which can be 
important. This implies for example that the expression (3.2.109) should 
never be used for p~ when determining wave heights from a pressure cell 
placed near the bottom. 

Exercise 3.2-19 
Show that the uniformly valid deep water approxima- 

tions are 
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which can then be used to simplify the z=dependent vari- 
ables such as 4, u, w and p~ . Show also that for reasonaly 
large values of k h ( z $ )  these expressions are very close ap- 
proximations to the full hyperbolic functions for the entire 
depth -h < z < 0. 

The particle paths also become simpler in deep water waves. €+om the 
results presented in Section 3.2.3 for the elliptic shape with axes a and p, 
we realize that in deep water a = p so the ellipses degenerate to circles. 
Fig. 3.2.12 shows an example of the variation of the particle paths in a deep 
water wave, and the values of a. The figure also illustrates the basic rule 
that at a depth of z = -L/2, the effect of the wave motion is negligible. 

Exercise 3.2-20 Show that in a deep water wave the in- 
stantaneous position z ( t ) ,  ~ ( t )  of a particle with mean 
position (6, <) is given by 

H 
2 

z( t )  = E + - ekC (1 + e-zk(C+h))  sine (3.2.115) 

The deep water limit 
The limit for the region in which the deep water approximations are 

usually considered valid is h / L  > 1/2. Use of the deep water approxi- 
mations at that limit causes errors relative to the general formulas that 
depend on the wave parameter considered. For the phase speed c, the error 
at h / L  = 1/2 is +0.4% (cg is larger). 
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-Lo 

MWL 

Fig. 3.2.12 Particle paths in deep water (SJ76). 

The deep water limit for typical short waves can be said to be the limit, 
shoreward of which the waves begin to “feel the bottom.” Thus, a typical 
storm wave of T = 8 s will have a deep water wave length of Lo N loom, 
and hence a deep water limit of h = 50 m. This could also be a reasonable 
definition of the region termed “Nearshore” in the title of this book, though 
obviously this can change with the application. 

The shallow water approximation 

longer than the water depth that is Llh  >> 1. 
In the shallow water approximation, the waves are assumed to be much 

As mentioned earlier this simplifies the dispersion relation to 

w2 = gk2h (3.2.11 7 )  

and the phase velocity to 

c =  Jsh L=TG (3.2.118) 
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Here we see right away that the phase speed is only a function of the 
depth, independent of T .  The waves are nondispersive as already shown in 
section 3.2.2. 

The shallow water assumption leads to straightforward approximations 
for the hyperbolic functions in the results 

sinhkh - kh 

coshkh - 1 

tanhkh - kh 

- 1  G=- 2kh 
sinh 2kh 

(3.2.1 19) 

(3.2.120) 

(3.2.121) 

(3.2.122) 

Since now k ( z  + h) must also be small when k h  is, we can introduce similar 
approximations for the z dependent functions in the results for 4, u, w, 
etc. 

(3.2.123) 
coshk(z + h) 1 

N -  (+ cc for kh + 0) 
sinh kh kh 

sinh k ( z  + h) z 
- l + x  sinh kh 

cosh k ( z  + h) 
cosh kh 

- 1  

(3.2.124) 

(3.2.125) 

For the z-direction variables, we get that the approximation is 

H 7rH 1 
2h T k h  

u=C-coSe=-  --Ose 

7TH 
T 

w = -- (1 + f> sine 

(3.2.126) 

(3.2.127) 

(3.2.128) 

As for general waves, both u and p~ are in phase with and proportional 
to the surface elevation 7. For u, this gives the useful relation 

(3.2.129) 77 
h 

u = c- 

and for p ~ ,  we get 

PD = pg7 or P = P d 7  - 2) (3.2.130) 

at all points over the vertical. 
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The result for p~ (or p )  also shows that in linear long waves, the pressure 
due to the waves is hydrostatic. In more physical terms, it means that the 
phase motion is so slow that the vertical accelerations are negligible so that 
locally the pressure corresponds just to the weight of the water above the 
point considered. 

It is also worth to notice that, while the expressions for u and p~ are in- 
dependent of z ,  the appropriate expression for thc vcrtical velocity (3.2.127) 
includes a linear variation with z .  Since for long waves k h  << 1, the result 
means that w << u, and in fact one often sees the approximation w N 0 
in shallow water waves. However, this obviously is in conflict with the 
kinematic free surface condition (3.2.4) which states that w = qt, and 
w = W ( Z )  # 0 is also required for satifaction of the continuity equation 
u, + 20, = 0. 

More controversially, this also means that if we calculate the velocities 
from the shallow water aproximation for the velocity potential 4, then we 
need to use two different approximations for 4 depending on whether we 
determine u or w. For w, we need the first two terms in the Taylor expansion 
of coshk(z + h)  in (3.2.41). 

(3.2.131) 

to obtain (3.2.127), while (3.2.126) corresponds to using only the first term 
in (3.2.131). This paradox is caused by the use of the velocity potential 
for shallow water waves and is illustrated again in Chapter 9 about the 
Boussinesq equations. 

The particle paths for shallow water waves can be determined the same 
way as the velocities by the lowest order Taylor expansions with respect to 
z + h of the general expressions. 

Exercise 3.2-21 
Show that the particle paths x( t ) ,  z ( t )  are given by 

H 1  
2 k h  

x ( t )  = [ +  - - sin0 (3.2.132) 

where ( E ,  <) is the mean position of the particle. 
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Fig. 3.2.13 shows the variation of the particle paths along a vertical in 
a shallow water wave motion. 

Fig. 3.2.13 The particle paths in a linear shallow water motion (SJ76). 

The shallow water limit 
The limit for the region in which the shallow water approximation is 

usually considered valid is h /L  < 1/20. Use of the shallow water approx- 
imations at  that limit causes errors relative to the general formulas that 
depend on which parameter is considered. For the phase velocity c, the 
error at h/L  = 1/20 is 0.6%: c = && is larger (in accordance with the 
fact that on any depth, the longest wave (shallow water wave) is the fastest 
possible wave). 

Exercise 3.2-22 
Show that for a fixed period T ,  the wave length Lo in 

deep water is related to the shallow water wave length L 
by the expression 

L=J2.lrhLo (3.2.134) 

and therefore in shallow water 

(3.2.135) 

These expression provide direct values of the shallow water 
L and h /L  in terms of the deep water Lo which is often 
known because it only depends on T .  
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3.3 Time averaged properties of linear waves in one 
horizontal dimension (1DH) 

3.3.1 Introduction 

In the analysis performed in this section we continue to consider only 
the local properties of the waves and only for the 1DV- motion. This implies 
that here we can continue to place the x-axis in the mean water level MWL. 

However, the MWL which is defined so that the mean value of r] is zero 
is a local concept. In nearshore problems, where we consider the waves 
and currents over a horizontal domain, the MWL is really not a horizontal 
surface. The variations of the water depth, will cause variations in wave 
height, and this will generate variations in the mean water surface. Hence 
the mean water level MWL should rather be called the mean water surface 
MWS. Furthermore we will need to distinguish between the MWS and the 
x-axis (or in 2DH the x, y-plane) (i.e. the level for z = 0), which of course is 
horizontal. In Chapter 11 we will choose the vertical position of the x-axis 
at a level corresponding to no waves. Therefore this level is also called the 
still water level, SWL. 

All this will be discussed in the chapters on nonlinear waves and on 
circulation modelling, but it is pointed out that the definitions of vertical 
distances used here will have to be somewhat modified in the more general 
presentation later. 

Surface elevation 
For linear (or “sine”) waves, we have found the following basic results 

0 = wt - kx (3.3.1) 
H 
2 

r] = -case 
Velocity potential 

H cosh k ( z  + h) sine 
2 sinhkh 

4 =  - -c  (3.3.2) 

When we start considering the properties of the waves averaged over a 
wave period (“wave averaging”) definition 

that from (3.1) and (3.2) we get 

(3.3.3) 

q = o , & = o etc. (3.3.4) 
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On the other hand, we clearly have # 0 and similar results apply for 
other nonlinear contributions. These constitute time or “wave” averaged 
properties of the waves which have important physical meaning. 

The four wave averaged quantities we will analyze for linear waves in this 
section are the mass flux, the momentum flux, the energy density, and the 
energy flux caused by linear waves. Essentially, these are the contributions 
due to the waves that will appear in the wave averaged equations that will 
be derived later for the conservation of mass, momentum and energy for 
the combined waves and currents that characterize the nearshore circulation 
flows. 

3.3.2 Mass and volume flux 

The instantaneous mass flux M ( t )  per unit width5 through a vertical is 
given by 

(3.3.5) 

Thus the general wave averaged mass flux is the defined as 

M = s_”, pu(x, z ,  t ) d z  (3.3.6) 

The particle velocities (u,w) in the sine wave motion is obtained as 
usual by partial differentiation of 4. In particular for u we found 

H cosh k ( z + h )  
u = - c k  cos I9 

2 sinh k h  

In (3.3.5) the integral can be divided into 

(3.3.7) 

(3.3.8) 

This division of the integral is motivated by the fact that linear waves 
are assumed to be infinitesimal in height, and the linear solution (strictly 
speaking) valid only in the interval -h 2 z 2 0. 

51t is understood everywhere in the following that the wave averaged quantities are 
“per unit width”. 
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i 

Fig. 3.3.1 The velocity profiles predicted by the sine wave velocity potential 
(3.3.2). Note that strictly speaking the theory only predicts the velocity up 
to the MWS. This also implies, however, that according to the theory there is a 
velocity all the way up to the MWS also over the wave trough even though there 
is not water all the way to the MWS there. This is consistent because the wave 
height is assumed infinitely small. 

Averaging over a wave period (i.e., using the definition (3.3.3)) gives 
the wave averaged mass flux M 

M = F+F = f h p t  dz + i n p u  dz 

11 
= pu dz (3.3.9) 

In obtaining a zero for the first integral, we have formally assumed that 4 is 
defined by (3.3.2) also between wave trough and mean water level, although 
for real waves, which do not have mathematically infinitely small height, 
there is no water in that region. It  may be verified, however, that this 
additional contribution is cancelled by the similar contribution of opposite 
sign from the second integral, so we have not in the total result of (3.3.9) 
assumed that there is water in the trough. 

In (3.3.9), however, linear wave theory does not define u above MWL 
for q > 0. We circumvent that problem by replacing u in this integral by 
its Taylor expansion from z = 0: 

u ( z , z ,  t )  = u(z,  0 ,  t )  + zuz(z ,  0 ,  t )  + . . . (3.3.10) 
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When evaluating (3.3.9), we use this expression in the entire region 
between trough and crest. We then get 

(Actually the O(H/L)3-term will also be 0 so the next term is O(H/L)*). 
For sine waves we have 

7TH H 
U (  z = 0) = ~ coth kh cos t’ = ur - coth kh cos 8 

T L 
(3.3.12) 

We therefore see that the first term in (3.3.11) is O((H/L)’)  so that we can 
use linear theory to evaluate this term. We get to leading order 

M = Pm + o(H/L)~ (3.3.13) 

Hence we have 

7TH2 .rrH2 1 1 
M =  p-cothkh COs28 = p-. - ~ 

2T 2T 2 tanhkh 
(3.3.14) 

The dispersion relation w2 = gk tanh kh can be cast in the form 

tanh kh = 2rc/gT (3.3.15) 

which substituted into (3.3.14) yields 

1 
8 

M = -pgH2/c (3.3.16) 

Notice again that M given by (3.3.16) is O(H2) and that this represents 
the lowest order of approximation for the mass flux (we have neglected all 
terms 0(H3)  and higher). 

In surf zone dynamics, we are generally more interested in the volume 
flux Qwz = M / p  so that for linear waves we have 

1 
Qwr = -gH2/c (3.3.17) 

8 

It is important to emphasize here that M (and O w )  is associated with the 
motion between trough and crest.6 

‘The expression for Qw in (3.3.17) can also be written Qw = where E = 1 /8pgH2 
is the energy density per unit bottom area. This expression is often seen used. However, 

P C  
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Sometimes one sees Qw transformed into an equivalent (fictive) - L‘mass 
transport velocity” Us by division with the depth h: 

Qw us = h (3.3.18) 

Given, as the derivation shows, that Qw is caused by nonlinear effects 
between wave trough and crest, this is a physically confusing concept. It 
would suggest that such a mean velocity Q should occur at  all points over 
a vertical with the value ;ti = Us.  Of course this is not true and in fact we 
used U = 0 in the derivation of the result (3.3.16). 

The problem of the actual mean velocity below trough level is quite 
complicated and a key problem in nearshore hydrodynamics. For further 
details see Chapter 12.2. However, in the simplest case of waves generated 
in a closed region (such as a wave flume) it is obvious that there cannot 
over an extended period of time be a net mass flux Qw. Once the wave 
motion in the flume is established, a return current U will develop which 
compensates for the mass flux between trough and crest. Disregarding 
viscous or turbulent effects, we must have 

(3.3.19) Qw 
h 

O = Q w + U h  or U =- -  

(which is entirely different from what (3.3.18) suggests). 
The situation is sketched in Fig. 3.3.2. 

3.3.3 Momentum flux-radiation stress 

Consider again a progressive linear wave motion on a horizontal bottom 
The total flux of x-momentum through a vertical plane x = const for 

such a wave is 

F ( t )  = ( p  u2 + p )  dz  1: (3.3.20) 

A detailed derivation of this expression will be given later (see Sect. 11). 
Essentially, this is the instantaneous force which the water to the left of 

the section exerts on the water to the right of the section. And vice versa, 
see Fig. 3.3.3. 

it is important to emphasize that this relationship is a mathematical coincidence which 
is only valid for linear sine waves. It does for example not apply for nonlinear waves 
in general, or for the wave motion inside the surfzone. The volume flux Qw is a purely 
kinematical quantity while the energy E which is a dynamical quantity. We will therefore 
avoid using this relationship here. 
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Fig. 3.3.2 Illustration of the volume flux Qw and the return flow U as it occurs 
in a closed wave flume. 

The time average over a wave period of F ( t )  is 

F = l ; ( P U 2 + P ) d Z  (3.3.21) 

Part of that force, however, is due to the hydrostatic pressure which would 
be there even without the waves. We now define the Radiation Stress, 
S,, for the wave motion as the mean momentum flux (or mean force) 
caused by the waves only. According to this definition S,, is obtained 
by subtracting the hydrostatic part of the pressure from F .  

Fig. 3.3.3 F ( t )  acting on the two sides of a vertical section. 
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The hydrostatic pressure force relative to the MWS is i p g h 2  so that 
S,, as described above is defined by 

(3.3.22) 
1 
2 

S,, 1 F - -pgh2 = 

which is the general definition of the radiation stress. Furthermore, p is 
the total pressure which includes the hydrostatic pressure contribution. 
Therefore, part of the J p d z  will be cancelled by the last term in (3.3.22). 
To extract the net wave component we replace p with the dynamic pressure 
p~ defined by 

i.e., pD is the (additional) pressure generated by the waves. 

we return to later (see Chapter ll), that S,, can be written as 
If pD is introduced into (3.3.22), it turns out, after some algebra which 

7 1 -  
Sxx = 1, (PU' + P O )  dz - - pgv2 (3.3.24) 

2 

It is convenient to define the momentum part S, of the radiation stress by 

7 
S, = 1, pu2 dz (3.3.25) 

or 

S, = 1, p." dz + O ( H / L ) 3  (3.3.26) 

Similarly the pressure part Sp of S,, can be defined by 

(3.3.27) 

We can calculate the integral for S, directly from linear theory, and we 

1 -  
s p  [l PD dz - -Pgv2 2 

get 

cosh2 k ( z  + h) dz (3.3.28) 
7r2H2 1 O 

S m = p 7 . -  
T sh2 2 lh 
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where sh  = sinhkh. Since w = 2.rr/T, this can further be transformed into 

- 

-h 
- 

- - -- g H 2  (sh2kh+2kh) 
32 s h c h  

(3.3.29) 

or 

2kh ] + o ( H / L ) ~  
1 
16 sinh 2kh S, = - p g H 2  [ 1 + 

(3.3.30) 1 
16 

E - p g H 2 ( 1  + G)  + 0 ( H / L ) 3  

where we have introduced the convenient definition 
2kh GE- 

sinh 2kh 
(3.3.3 1) 

We notice that in parallel with what was found for the mass flux, we have 
S, = O ( H 2 )  (or ( H / L ) 2 )  and clearly that is the lowest order approximation 
for S,. 

If we try to calculate S, as a repeat of the success from S, by substi- 
tuting the linear expression for p~ 

coshk(h + z )  
p D = p g r l  coshkh 

(3.3.32) 

into (3.3.27), we see that s p ~  dz  is zero. 
Unfortunately, this result is not correct. There is in fact an O ( H 2 )  

contribution from p ~ .  This contribution clearly cannot be found directly. 
It appears that the correct value of p~ dz  can be obtained if the second 
order Stokes approximation is used for p ~ .  On the other hand, since it is a 
contribution present even in linear waves one would also expect that linear 
wave theory should be able to provide the magnitude of this contribution, 
and this is indeed the case though it requires a more detailed analysis than 
we want to embark on here. 

It will be shown in Chapter 11 that for linear waves p~ can be written 
as 

p~ = -pw2 - l' wdz (3.3.33) 

When this expression is averaged over the wave period the integral be- 
comes zero because of the periodicity of the motion. Hence, using that 
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above trough level we can use the approximation p~ = pgv, s p ~  d z  can 
be written as 

and we see that this expression does give a non-zero result O ( H 2 )  for the 
integral of p~ when we substitute linear wave results for w and 77. We can 
therefore evaluate (3.3.34), and hence (3.3.27), from linear wave theory to 
get 

p g H 2  G + O ( H L / L ) 3  
1 

SP = 16 

Exercise 3.3-2 
Derive (3.3.35) from (3.3.34). 

(3.3.35) 

Therefore, for linear waves the total S,, becomes 

(3.3.36) 
1 

'- 16 
S,, = S, + S - - pg H2(1  + 2G) + O ( H / L ) 3  

which is the result for the radiation stress in linear waves.7 Notice that 
using (3.3.34), we can write S,, as 

17 

S,, = lh p(u2 - wz) dz + pg;? + O ( H / L ) 3  (3.3.38) 

which is another form for radiation stress valid for all wave descriptions. 
We finally emphasize that again it has turned out that the time mean 

(or wave averaged) value of a wave quantity (here the momentum flux) is 
nonzero and O ( H 2 )  in the lowest approximation. 

'As was the case with the mass flux, for linear waves only S,, can be expressed in 
terms of the energy density E.  This yields the following alternative expressions for S,, 

1 
Sxx = aE(1+ 2G) (3.3.37) 

which is fequently used in the literature. 
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3.3.4 Energy densi ty  

The wave motion also represents both potential and kinetic energy. 

Potential energy 
The potential energy must be measured relative to a horizontal level, 

which we naturally choose as z = 0. Hence the instantaneous potential 
energy of the wave motion Ep( t ) ,  per unit area of the horizontal plane is 
given by 

Ep( t )  = J' pgz dz - [)pgz dz (3.3.39) 
- h  

where the last term represents the potential energy of the fluid at rest. 
Thus we have 

The mean value E p  over a wave period then becomes 

which is exact. For sine waves this becomes 

(3.3.40) 

(3.3.41) 

(3.3.42) 

which is correct to second order in H .  

Kinetic energy 

volume of fluid, which is (for the 2DV wave motion we are looking at) 
For the kinetic energy we first consider the energy density ek(t) per unit 

1 
2 

e k  = -p(u2 + w2) (3.3.43) 

which again is exact, and, of course, always positive. For sine waves we get, 
using (3.2.79) and (3.2.80) 

2 

e k ( t )  = 5 P ( szkh) (cosh2 k ( z  + h) cos' f3 + sinh' k ( z  + h)  sin2 6) 

(3.3.44) 
which is correct to second order. Introducing further the dispersion relation 
into the first factor in brackets and using trigonometric and hyperbolic 
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relations this can be written 

1 gkH2 
4 sinh2kh 

ek( t )  = - p  ~ (cos2 0 + sinh’ k ( z  + h)) (3.3.45) 

The instantaneous kinetic energy EI, ( t )  per unit area of the horizontal plane 
can then be obtained by integrating e k ( t )  over depth 

1 g k H 2  [h cos2 8 + - (cosh2k(z + h) - 1) dz J0 = - p  
4 sinh 2kh 2 -h 

sinh 2kh 2kh ( :) 1 1 
= -pgH2 16 + s p g H 2 y  cos2 8 - - (3.3.46) 

Averaging this over a wave period we then get the average kinetic energy 
EI, per unit area 

(3.3.47) 
1 

Ek = -pgH2 
16 

which is the complete expression to second order. 

Exercise 3.3-3 
Derive equation (3.3.47) 

Notice that 

Ep = EI, (3.3.48) 

which is in fact the case for any conservative system unergoing small oscil- 
lations. 

The total energy density then be comes 

-1 (3.3.49) 

This is also sometimes called the specific energy. It is noted that E is a 
function of the wave height only, not the wave period or wave length. 
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3.3.5 Energy flux 

In Section 2.6 we found that the energy flux through a plane vertical 
section from the bottom to the surface with normal n, is given by 

where ui is the total flow velocity (waves plus currents), and u, is the 
horizontal component of ui. 

To determine the energy flux in waves we let ui be the wave particle 
velocities u , u , w  and p the pressure generated by the waves. Since u, 
in plane waves has the same direction for all points over the vertical the 
energy flux is a vector E f ,  in the direction of ua, that is in the direction of 
propagation of the wave. Thus the general expression for the simple case 
of a pure wave motion we simply get for the instantaneous flux 

If we average this over a short wave period we get the total energy flux in 
the flow averaged over T :  

For a plane 2DV wave in the x direction and a section perpendicular to the 
wave direction we have u,n, = u and u = 0 so the energy flux through the 
section (and in the wave direction) is 

(3.3.53) 
1 
2 Ef,. = l: ( p  + pgz  + - p  (u2 + w2) 

Exercise 3.3-4 
Show that for a linear wave train propagating in the 

x-direction the first approximation to the energy flux is 
O ( H / L ) 2  and that E f ( t )  can be written as 

(3.3.54) 
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Then we get that for linear waves propagating in the x-direction the 
mean energy flux Ef can be determined as 

1 
16 

Ef.  = -pg H 2  c(1 + G) + O ( H / L ) 3  

If we define a velocity cg by 

1 
2 

cg = - ~ ( l  + G) 

(3.3.55) 

(3.3.56) 

the energy flux can also be written 

Ef = c,E (3.3.57) 

which can be interpreted as that the energy Aux occurs as if the energy 
density in the wave motion is traveling with the speed cg. We shall later 
(Chapter 3.4.2) see that cg (the so-called group velocity) is also the speed 
with which variations in the wave amplitude are traveling. 

3.3.6 Dimensionless functions for wave averaged quantities 

Thus we have found that even in linear waves the wave averaged mass, 
momentum, and energy fluxes are non-zero. Less surprising perhaps the 
waves also represent a non-zero energy density. This means that in such 
a wave motion the waves leave mean signatures for these quantities. The 
waves move a certain amount of water QW per second along in the direction 
of wave propagation, they excert a net force S,, on a vertical section in 
the fluid (in addition to the hydrostatic pressure), and they transport an 
amount of energy E f  per second across such a vertical section. 

It is convenient for later discussions to introduce dimensionless func- 
tions for the three fundamental fluxes and the energy density generated 
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by the waves. 
we define 

Using the definitions for the quantities presented above 

Dimensionless mass flux 

(3.3.58) 

Dimensionless radiation stress 

Dimensionless energy density 

(3.3.60) 

Dimensionless energy flux 

(3.3.61) 

These expressions may readily be generalized to situations in the 2DH 
where x is replaced by z,. This generalimtion will be introduced in the 
individual applications as needed. 

It is important to realize that since the original integral expressions for 
E ,  Qw, S,, and E f ,  are exact, the equivalent dimensionless parameters 
in (3.3.58), (3.3.59), (3.3.60) and (3.3.61) can also be made exact provided 
the description for the wave motion we substitute into these formulas in 
terms of p ~ ,  u, etc. are exact. What wc havc donc above is to calculate 
the results for Qx, S,, E ,  and Ef,. under the assumption that the wave 
motion was adequately described by the linear sine wave theory. The results 
we found were apparently, that for linear waves we have 
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1 BQ. = - 
8 

1 
BE = - 

8 

1 
Bx = -(1+ G) 

16 

(3.3.62) 

(3.3.63) 

(3.3.64) 

(3.3.65) 

Later we will discuss the actual value of these dimensionless functions also 
for non-sinusoidal waves, e.g. for the very steep waves just before breaking 
and for the broken waves in the surf zone. 

3.4 Superposition of linear waves 

One of the most important features of linear problems is that solutions 
can be superimposed: If A and B each are solutions then A + B and A - B 
are also solutions to the problem. This is explored further in this section. 
However, adding solutions that are waves of simple sinusoidal shape can 
lead to solutions of any shape (as in Fourier series). Therefore, a corrolary 
to this is that the equations for linear waves we have solved supports waves 
of any shape. Or in other words, the linear wave theory cannot predict 
the shape of the waves. 

This fundamental fact is often overlooked. In order to extract infor- 
mation about the wave motion that includes results about the wave shape 
(that is the phase variation), it is necessary to include the nonlinear terms 
we disregarded to obtain the linear form of the equations. This is discussed 
extensively in Chapters 5 - 8. 

Adding even just two sinusoidal wave motions (not to speak of several) 
of different amplitude and frequency very quickly leads to complicated so- 
lutions in terms of the phase variation for the waves. Usually, a computer 
is required to analyze e.g. the time or space variation of such general solu- 
tions. In the following, we only focus on two important examples: standing 
waves and wave groups. In addition, a brief overview is given of the prob- 
lem formulation and theory for arbitrarily many wave components (wave 
spectra). 
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Exercise 3.4-1 
The simplest sum of two sine waves is obtained when 

we add two waves with the same frequency that propagate 
in the same direction but are phase shifted the angle p. 

771 = a1 cos(wt - kx) 
(3.4.1) 

772 = ~2 C O S ( ~  - kx f p)  

Show that this leads to a new wave 

773 = a3 cos(wt - kx + 6) (3.4.2) 

with 

a3 = us + a; + 2 U l U 2  cosp (3.4.3) 

and 

u2 sinp 
a1 +a2 cosp 

tan6 = (3.4.4) 

3.4.1 Standing waves 

Standing waves develop in the 2D vertical plane when a propagating 
wave normally incident against a vertical wall is reflected from the wall. 
The resulting wave system is a superposition of two waves of the same 
height and period but propagating in opposite directions. 

Since the wall represents a vertical plane along which the horizontal 
velocity must be zero, the problem can be solved by replacing the periodicity 
condition in Section 3.2 with the condition 

4 z  = 0 at X xwal1 (3.4.5) 

and go through the entire solution procedure again, omitting the assump- 
tion of constant form, progressive waves. This was in fact done in Exercise 
3.2-6, except that the boundary condition at the wall now requires a differ- 
ent selection of integration constants. 

However, a simpler approach is to follow the physical lead and form the 
solution as the sum of two, opposite moving progressive waves. Thus, we 
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consider the two components 

771 = acos(wt - kx) 

72 = acos(wt + kx) 
(3.4.6) 

It is seen that the sum of these two waves can be written 

7 = ? 7 2 + ? 7 2  =2acoswtcoskx (3.4.7) 

The velocity potential for the sum can be obtained the same way by 
adding two contributions similar to (3.2.41), one with 8- = w t  - k x ,  one 
with 8+ = wt  + kx. The result is 

cosh k ( z  + h) 
sinh kh 

4 = -2ac sin w t  cos kx (3.4.8) 

This wave motion is called a standing wave. 
As before, from this expression we can obtain all other properties of 

the motion, such as the velocity field (u,w),  the particle paths, the pres- 
sure distribution, etc. We also note that since each of the original wave 
components satisfy the dispersion relation 

w2 = gk tanh k h  (3.4.9) 

the sum does too. 

Exercise 3.4-2 Determine which constants in the general 
solution found in Exercise 3.2-6 will satisfy the boundary 
condition (3.4.5) and show that this results in (3.4.8). 

Notice that the result can also be interpreted as a standing wave with 
total height 2H = 4a. 

Analysis of the surface variation and the velocity field 

(nodes) where the surface shows no vertical motion, at 
Analysis of the expression (3.4.7) shows that the motion has points 

7r L L  
z = - + p -  

4 2  2 
k z  = - + p ~  or (3.4.10) 
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a 

rC 1 = 0 everywhere 
t=1= 

4 3  
X * 

9 = 0 everywhere 

I ;  ;I 

Fig. 3.4.1 Variation of the surface elevation in a standing wave (SJ76) 

where p is an integer and points (antinodes) where the vertical motion is 
f 2 a  at 

(3.4.11) 
L 

Z = O + p -  
2 

kx=O+p7r or 

As Fig. 3.4.1 shows, the surface oscillates between two extreme positions 
which are attained at  t = 0 + p T  and t = T + p T .  At those positions in 
time, the surface is stagnant everywhere at  the extreme position ( 2  = 0). 
On the other hand at  the instants t = 5 + p :  (coswt = 0) there is no 
surface elevation anywhere, but dq/dt is maximum at all points in x. 

Exercise 3.4-3 
Determine all the positions where a wall can be placed 

without disturbing the motion, 
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Exercise 3.4-4 
Show that the velocity field is given by 

m cosh k ( z + h )  . 
T sinh k h  

u = 4 -  sin wt  sin Icx (3.4.12) 

xu sinh Ic(z + h) 
T sinh k h  

. w = - 4 -  sin w t  cos kx (3.4.13) 

and verify the finding of Exercise 3.4-3. Verify that the 
velocities at the MWL vary as shown in Fig. 3.4.2. 

(u,w) = 0 everywhere 
t =o 

(u,w) = 0 everywhere 
X t,L -c 

2 

Fig. 3.4.2 Particle velocities at the free surface in a standing wave (SJ76). 

Exercise 3.4-5 
Determine the mathematical expression for the stream- 

lines in a standing wave. Verify that the velocities shown 
at  TI4 and 3T/4 in Fig. 3.4.2 are consistent with the 
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streamline pictures you can draw from the mathematical 
expressions. 

The pressure variation 

progressive waves from the linearized Bernoulli equation. 
The pressure variation in standing waves is found the same way as for 

Exercise 3.4-6 

amplitude 2a the pressure variation becomes 
Show that in a standing wave with node at x = 0 and 

cosh k ( z  + h)  PD = Pg 2a cash k h  cos w t  cos kx (3.4.14) 

It  is of interest (though not surprsing) to notice that, as in progressive 
waves, this can also be written 

cosh k ( z  + h)  
= '" cosh kh 

(3.4.15) 

because this shows that p~ is proportional to q and hence shows the same 
pattern of variation with x and t as q. 

We als note that the pressure decreases downward from the surface with 
the same attenuation factor as found for the pressure in progressive waves. 

The variation of p~ at  antinodes such as x = 0 where the horizontal 
velocity is zero is of particular interest. Those are the points where a 
vertical wall could be placed without disturbing the flow. Hence p ~ ( x  = 

0 + &) represents the (first approximation to) the pressure on a vertical 
wall generated by the waves. The variation is illustrated in Fig. 3.4.3. 

The arguments used in section 3.2 about the pressure at the MWL also 
apply here. 

Exercise 3.4-7 Consider partially standing waves: Two 
opposite waves with the same period but different wave 
height are given by 

ql = acos 8- 

(3.4.16) 

q2 = acos 8+ 
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f 

F 
rl 

Fig. 3.4.3 The wave pressure along a vertical wall generated by a standing wave (SJ76). 

Show this gives a combination of a standing and a pro- 
gressive wave and determine the amplitudes of those two 
wave components. 

3.4.2 Wave groups 

While standing waves were the outcome of adding waves in opposite 
directions with the same wave period, the addition of two waves propagat- 
ing in the same direction but with (slightly) different wave frequency will 
generate another canonical type of wave motion. If the two wave compo- 
nents have the same amplitude, the total wave motion will form what is 
called a wave group, which is a progressive wave with a (slowly) varying 
wave amplitude. We first consider this simple case. 

Thus, we consider the two wave components propagating toward +z 
and given by: 

r/l = acos(w1t - k l z )  , r/2 = U C O S ( W ~ ~  - k 2 ~ )  (3.4.17) 

To define the problem, we consider TI < Ta (i.e., w1 > wa), which also 
implies that L1 < La and lq  > IC2 since L decreases with T for constant 
water depth. 
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Using a simple trigonometric relation, the sum qs of ql and ~2 can be 
written 

qs = 2acos (-t w1 -w2 - ~ kl - k z x  ) cos ( F t  - W z )  (3.4.18) 
2 2 2 

The clearest illustration of this expression is obtained if we consider a case 
where TI is only slightly smaller than T2. Then w1 + w2 >> w1 - w2. Thus, 
the last factor in (3.4.18) will vary much faster with z and t than the first 
factor. In fact, we will get a wave motion which can be interpreted as a 
wave motion with a space and time varying amplitude written as 

qs(z, t )  = A(z ,  t )  C O S ( W , ~  - kmx) (3.4.19) 

where the frequency w ,  and the wavenumber k ,  are given by 

w1 +w2 w, = ~ 

2 

The wave amplitude A(z , t )  is given by 

(3.4.20) k l  + k2 k ,  = ~ 

2 

A(z ,  t )  = 2a cos(w;t - k;z )  (3.4.21) 

where w i  and k i  are defined by 

(3.4.22) k2 - k2 k' = ~ 

2 9 

Fig. 3.4.4 shows this wave motion which is called a wave group because 
where and when cos(wgt - k g z )  = 0 the amplitude A(z, t )  = 0. We see from 
(3.4.19) that the instantaneous surface (wave) profile propagates with the 

I 

Fig. 3.4.4 The surface elevation in a wave group. The instantaneous surface profile 
given by (3.4.19) is shown as a thick line. This motion is oscillating within the amplitude 
envelop given by (3.4.21) and shown as a thinner line above and a dashed line below in 
the figure (SJ76). 
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W m  c, = - 
km 

and has wave period and wave length given by 

(3.4.23) 

(3.4.24) 

(3.4.25) 

However, the amplitude variation, or amplitude modulation, of this wave 
is also propagating, but with the phase speed 

(3.4.26) 

While it is evident from (3.4.22) that Ti = % >> T, and L' = >> L,, 
it is not a priori clear whether c$ or c, is the larger of the two. If we form 
the difference c& - c g ,  we see that this can be written 

wg y g  

The assumption TI < T2 will imply c1 < c2 because the waves are frequency 
dispersive and kl > k2. Hence, we see that in general c$ < c,, i.e., the 
amplitude envelope in Fig. 5 propagates slower than the instantaneous 
surface profile. 

The exception is for shallow water waves, i.e., L ,  >> h, where we have 
c1 and c2 are independent of the wave period so that c$ = c,. 

The result of this analysis is that (except in shallow water waves) the 
individual waves will constantly propagate forward within the amplitude 
envelope while this is itself propagating. It will look as if the waves emerge 
at the rear end of the group, propagate forward and disappear at the front 
of each group. 

It  is important to notice that the apparent group length between two 
successive nodes is only L$/2 .  This is illustrated in Fig. 3.4.4 by the dis- 
tinction between the full and the dashed envelope curves. 
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Infinitely long wave groups and group velocity 
If we assume that w1 + w2 so that kl  -+ k2, we see from (3.4.22) that 

(3.4.28) 

and we have infinitely long wave groups. From the definition (3.4.27) of c$, 
we see that this implies 

(3.4.29) 

Since here w and k are connected by the dispersion relation w2 = 

gktanhkh, we can in the limit obtain an expression for cg by differenti- 
ation of this relation. We get, keeping h = const. 

9k 
cosh 2kh 

a W  

dk  
2 ~ -  = g t a n h k h +  (3.4.30) 

Using the relation c = w / k ,  this can after some algebra be reduced to 

dw 1 
cg = = 2 ~ ( 1  + G) (3.4.31) 

where G is again defined as G = A. 
This expression is usually quoted as the “group velocity” for the waves. 

It is worth to notice, however, that this is strictly speaking a misnomer, 
because the expression (3.4.31) is only valid for infinitely long wave groups 
where the wave height variation is so slow that there is no wave height 
variation. In other words the waves look like a train of uniform waves. The 
correct definition of the velocity of a wave group is given by (3.4.26) and 
this expression clearly depends on the length of the wave group. 

Exercise 3.4-8 
Derive the expression (3.4.31). Analyze the deviation 

c$ - cg from this expression for characteristic values of 
L$IL, and k,h. 

Exercise 3.4-9 
Show that d w l d k  can also be written 

aw dc 
- c + k -  

dk c g = - -  dlc 
(3.4.32) 
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and use this to deduce that in shallow water waves c = c g .  

The variation of G versus h/Lo (where Lo = gT2/2x is the deep water 
wave length of a (linear) wave with period 2') is shown in the Fig. 3.4.5 
along with the variation of c/co and c s / c  = n. We see that n varies from 1 
in shallow water to 1/2 in deep water. 

1.0 

hl Lo 

Fig. 3.4.5 The variation of n, the phase velocity c over the deep water value CO, 
the ratio of group velocity cg over co and G with h/Lo where LO is the deep water 
wave length. 

It was shown in Section 3.3 that the energy flux E f  is given by (3.3.55) 

1 
Ef .  = G p g  H 2  C( 1 + G) (3.4.33) 

As mentioned earlier with the expression above for cg the energy flux E f  
can be written as 

IEf = % E l  (3.4.34) 

where E = i p g H 2  is the wave energy density. Thus cg can actually be 
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interpreted as the speed at which energy travels in steady uniform wave 
motion. 

3.4.3 Wave spectra 

Introduction 
As mentioned earlier the superposition of just a few sine waves with 

different amplitude and frequency can create a highly complicated signal, 
with amplitudes of the total signal that changes both in time and space. 
This on the other hand leads to the natural question: would it be possible to 
represent a real, irregular wave motion in the ocean by simple superposition 
of a large number of sine wave components? 

The answer to this question is: yes. However, it means we need to 
determine the amplitudes and phases of each of the (very) many wave 
components, and that turns out to be a nontrivial task. 

This leads to the introduction of wave spectra as a theoretical concept. 
This will eventually make it possible to determine the amplitudes of the 
wave components that describe e.g. the surface variation in a given (mea- 
sured) time series for a natural wave motion. However, it turns out not to 
be the simple spetrum of the amplitudes that works but the socalled energy 
spectrum, which is the spectrum of the energy of each wave component. 

It also leads to development for practical applications of parameterized 
(standard) wave (energy) spectra that are based on results from numerous 
practical wave records. 

Finally it leads to use of statistical methods for analysing wave records 
to determine the gross parameters used to get an overall picture of a wave 
situation and as parameters in the standard spectra. 

There is a rich literature and a large number of spectral and statistical 
wave models that draw from these, mostly empirical, results. However, it is 
beyond the scope of the present text to go into the details of this complex 
area. Therefore we will only look at a simple formulation of the problems 
involved and point to some literature for further information. 

Fourier representation of a complex wave motion 
A registration at  a fixed point of the surface elevation of a wave motion 

can be thought of as consisting of many wave components, each of which 
can be written 

~/,(t) = A, cos(wnt - 6,) ; n = 1 ,2 ,  ..., n (3.4.35) 
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These wave components have different amplitude A,, frequency w,, and 
phase 6,. Hence the total wave motion at the point will be given by 

00 

~ ( t )  = C A, COS(W,~ - 6,) 

For our purpose a more convenient way of writing this is to introduce the 
amplitudes a, and b, given so that 

(3.4.36) 
n= 1 

(3.4.37) bn 
an A: = U: + b; ; tan 6, = - 

whereby ~ ( t )  becomes 

00 

~ ( t )  = c ( u n  C O S W , ~  + b, sinw,t) (3.4.38) 
n=O 

We see that this corresponds to the Fourier series for a record in time 
of finite length TIM provided we place three additional constraints on the 
inividual wave components 

(1) We assume the longest wave has the period 

(3.4.39) 

which defines f 1. 

(2) For the rest of the wave components we choose periods so that 

TI(= T M )  = 2T2 = ..... = nTn (3.4.40) 

or 

fn = nfl (3.4.41) 

(3) We assume that a0 = bo = 0 corresponding to 

This means that (3.4.38) can be written 

00 

q(t )  = Can cos ( Z ) t + b ,  s i n ( g ) t  
n=l  

(3.4.42) 

(3.4.43) 
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We then know from the theory for Fourier series that the sum (3.4.43) can 
represent an arbitrary continuous function as long as it is periodic with the 
period TM.  We also know that the coefficients a,  and b, are given by 

2nn 
Q(t) cos-tdt (3.4.44) 

a ,=- /  2 TM 

T M  -0 T M  

2 TM 2nn 
b - - / v(t) sin-tdt 
“ - T I M  TIM 

(3.4.45) 

Thus (3.4.38) with the above constraints satisfies our requirement that it 
can represent an arbitrary signal recorded over the period TM.  

The assumption that the wave record is periodic with period TM implies 
that if the record were continued beyond t = TM then the already obtained 
record would repeat itself. 

Of course no real wave motion will actually exhibit this periodicity and 
unfortunatley this deviation from our assumptions is far from trivial. 

This can be expressed in a different way: the dominating difference from 
a real wind wave motion is that from our knowledge about the time series 
of ~ ( t )  over a time interval TM we will not be able to predict the variation 
of q(t) at any time beyond TM.  A phenomenon with this property is called 
a stochastic process. 

For the Fourier series the consequence of this is: there is nothing that 
prevents us from determining the Fourier coefficients. So consider a record 
(a time series) for v(t) for TM so large that we would be tempted to assume 
that the time series was representative for the whole stochastic process. 
Then determine the Fourier coeffients a,, b, or (A, ,  6,) assuming period- 
icity with period TM even though it is not correct. The consequence of 
the stochastic property of the motion is then that any change in even 
by an arbitrary small amount, will generate arbitrary large changes in the 
Fourier coefficients. In other words the process of determing A, ,& 
by letting TM + co does not converge. The Fourier spectrum for a 
stochastic process is not defined.8 

The energy spectrum 
However, it turns out that for a stochastic process it is possible to 

give a unique definition of another quantity] the energy (or “power”) 
spectrum. 

8That is unless q( t )  goes to zero for t + f m .  
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To define the energy spectrum we first assume that we - for some TM - 
have determined the set of coefficients un,bn in (3.4.43). For this Fourier 
series Parceval's thorcm states that 

(3.4.46) 
l o o  l M  

= - x ( U :  + b:) = - 2 A; 
n= 1 n=l 

2 

However, q2( t )  can be compared to the instantaneous potential energy Ep( t )  
for which we have 

so that over a long period of time (TIM) we have 

1- - E p  = -r12 

PS 2 
(3.4.48) 

At this point we utilize the result from section 3.3 that in small amplitude 
(i.e. sinusoidal) waves the total energy En of the n'th component is 2Ep,n 
so that 

Hence we get for the entire wave motion 

(3.4.50) 

where E is the total energy in the wave motion per rn2 bottom and averaged 
over long time. 

< We can then define an energy spectrum S,, ( f n )  in the interval f n  - 
f < f n + y b y  

1 1 
sqq(fn)Af = -(u: 2 + b:) = -A: 2 (3.4.51) 

with 

1 A f = -  
T M  

(3.4.52) 
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f 

f" 

Fig. 3.4.6 The raw spectrum. 

Thus we have with defined ;ts the variance of the total wave motion 

(3.4.53) 

S,, is a step or discrete spectrum as shown in Fig. 3.4.6. It is also called 
the sample spectrum or the raw spectrum, and it represents an estimate 
of the true spectrum. It is a one-sided spectrum in the sense that it is 
defined only for positive values of f. If we go to the limmit this can be 
generalized to 

(3.4.54) 

A direct computation of this spectrum shows the same lack of convergence 
as the Fourier spectrum for an,&. However, the energy spectrum can be 
defined uniquely by a different approach, which is based on the autoco- 
variance function C,, defined as the autocorrelation for q( t )  

(3.4.55) 

It has been shown (see e.g. Jenkins and Watts, (1968)) that the correct 
energy spectrum S;, and C,, are the Fourier transfoms of each other, that 
is 

(3.4.56) 
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(3.4.5 7) 

Here (3.4.56) is a unique definition of the spectrum S;,, because C,, goes 
to zero for T -+ 00. Therefore C,, has a Fourier transform, S&,. It turns 
out to be computationally uneconomical to calculate the spectrum from 
actual wave records using (3.4.56) and (3.4.57). However, the knowledge 
that the energy spectrum is well defined is the result that allows us to go 
ahead and devise other, faster ways of determing S,,. 

Since both S,, and S&, must correspond to the same war(7) we have 

(3.4.58) 

which shows that the raw spectrum has twice the intensity as the spectrum 
S&, defined by (3.4.56).9 

The details of how to calculate S,, for a given finite length time series 
~ ( t )  is essentially a problem of signal processing and beyond the scope of the 
present text. In brief it is done by dividing the time series into segments, 
each of which provides a raw spectrum, which represents an estimate of 
the true spectrum. The Fast Fourier Transform (FFT) technique is used 
for this. In accordance with our findings above each of these raw spectra 
will give different estimates of S,, at each frequency f, so the ensemble of 
raw spectra estimates will show significant scatter around the (unknown) 
true value for S,,. However, the mean value over all the raw spectra will 
be closer to the true value and have smaller standard deviation. For more 
details of the techniques involved see e.g. Jenkins and Watts (1968). 

Reproduction of the wave motion specified by a spectrum 
We now consider the inverse problem of generating a time series ~ ( t )  

that represents a given energy spectrum. Thus we assume that S,, is given. 
Based on (3.4.51) we then have for the amplitude of a wave component in 
a small interval A f around the frequency f 

However, the spectrum only defines the distribution of energy with fre- 
quency. The total time series of length 7'1 for the wave motion will consist 

A; instead 9T0 compensate for this the raw spectrum is sometimes defined based on 
of ;A: as in (3.4.53). 
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of N components where N = 3 and can be written as by A f  

where 6, is the phase angle of each wave component. This phase angle 
6, cannot be determined from S,,(f). It is customary as a remedy to 
assume that 6, is a stochastic variable evenly distributed over the interval 
0 < 6, 5 27r. This is also called a random phase realization of the spectrum. 
This procedure for generating a wave signal is often used in laboratory 
experiments with random waves. 

It is noticed that by this method we do not represent the true phase 
conditions in the original wave motion from which the spectrum was deter- 
mined - the information was lost in the construction of the energy spectrum. 
Thus when constructing a time series for q(t) from S,,(f) we are not able to 
reproduce deterministic phenomena such as groupiness of the waves which 
depend on the phases between the individual wave components. The ran- 
dom choice of phases influence the water surface elevation but it does not 
change the spectrum. To retain the phase information we need to extend 
the concept of the amplitude spectrum S,,. For details see e.g. Kirby 
(2005). 

It  is important to emphasize that the entire analysis so far of the time 
series q(t) is only considering the conditions at a fixed point. In fact the 
only wave dynamics involved is in the knowledge that small amplitude 
linear waves can have sinusoidal shape. Accordingly the wave components 
in the Fourier series are not propagating waves. No assumptions have so 
far been made as to how the components may propagate to or from the 
point considered. 

This is also the situation with the time series for v(t) constructed above 
from a spectrum: it is strictly a time series describing the variation at a 
point. This variation could of course represent the wave motion generated 
by a wave maker in a laboratory facility, and then the water in the facility 
would by itself take care of propagating the wave. Our theory so far does 
not cover that part. 

However, if we make the additional assumption that the individual 
components in the spectrum are progressive linear waves, that propagate 
as constant form waves down the tank without interacting with the other 
components, then this correponds to replacing 27r fnt = w,t with w,t - k,x 
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in (3.4.60), which then becomes 

(3.4.61) 
n= 1 

where k,  is determined by the dispersion relation 

w, 2 = gk, tanh k,h (3.4.62) 

It is emphasized, however, that because of nonlinear interactions be- 
tween the wave components in real irregular waves the assumption of inde- 
pendent propagation of the individual components will only give reasonable 
results for a few wave lengths from the point where spectrum S,,(f) is de- 
termined. See e.g. Sand (1979) who investigated over how long distances 
linear theory would give acceptable predictions. 

Directional wave spectra 
In real wave situations the waves usually do not have long crests and 

constant wave heights along the crests. They are (‘short crested” and look 
3-dimensional. In terms of wave components this can be approximated by 
assuming the different components come from different directions. That 
means we could consider dividing the energy in the spectrum (which in 
principle is an exact quantity) into parts associated with the direction of 
the wave components. The directional spectrum defines the distribution of 
wave energy with respect to frequencies and directions. 

Since the energy spectrum S,,(f) (which is not able to distinguish be- 
tween wave directions) contains all the energy in the wave record obtained 
at a given point the total energy in a directional spectrum will remain the 
same as in S,, (f). Therefore we can formally spread the energy in S,, ( f )  
by multiplying S,,(f) with the spreading function F(f, a,), which satisfies 
that 

Lrn F(f,a,)da, = 1 (3.4.63) 

Thus for each frequency we have the frequency directional spectrum 
S,,(f, a,) given by 

S,,(f, a,) = ~,,(f)F(f,  a,) (3.4.64) 

Since the spectral wave component has an amplitude A, and an energy 
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(3.4.65) 

we get the total energy in the spectrum given by 

which shows the realationship between the total spectrum S,,(f) and the 
directional spectrum S ( f ,  a,). 

To actually determine the spreading function F( f , a , )  at a location 
requires a number of wave sensors, not just the one gage needed for the 
frequency spectrum S,,(f), and for a limited number of wave gages only 
an approximation for F can be determined. Both one (i.e. line) and two 
dimensional arrays have been used. The theory behind this has been disc- 
sussed in the literature and reference is made to Longuet-Higgins et al. 
(1963), Barber (1963), Seymour and Higgins (1977), Mitsuyasu et al. (1975) 
to mention a few. A detailed analysis and review will be given in Kirby 
(2005). 

Parameterized wave spectra for wind generated waves 
The analysis of numerous actual wave records from many different lo- 

cations has lead to the development of parameterized wave spectra, which 
are mathematical formulas for the the variation of S,,(f) with f. 

One of the frequently used spectra for fully developed seas is the 
Pierson-Moskowitz-spectrum, Pierson and Moskowitz (1964) which is 
represented by 

(3.4.67) 

where a is an empirical constant, and fo = g / 2 d J  where U is the wind 
velocity 19.5 m above the sea surface. A frequently used number for a is 

A further development of the Pierson- Moskowitz-spectrum is the 
JONSWAP-spectrum (Joint North Sea E a v e  Project) Hasselmann et 
al. (1973), which is given by multiplying the Pierson-Moskowitz-spectrum 

a = 8.1.10-3 
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by an additional factor. It has the form 

(3.4.68) 

Here f p  is the peak frequency of the spectrum while a,  y and IJ are further 
empirical parameters that determine the shape of the spectrum. Values for 
IJ are 

1 ~ = 0 , = 0 . 0 7  ; f s f ,  
0 = f fb  =0.09 ; f > f p  (3.4.69) 

The other parameters depend on the wave situation, though frequently 
the values used are a = 0.0081 and y = 3.3. The latter means that 
the JONSWAP-spectrum is more peaked than the Pierson-Moskowitz- 
spectrum. 

Today there are many different parameterized wave spectra available. 
For further details see e.g. Young (1999). 

Statistical analysis of waves 
Another, less detailed, way of analysing wave records is through the 

gross parameters for the wave motion such as wave heights and periods. 
This is useful, also because many of the empirical constants appearing in 
the parameterized spectra are linked to the gross parameters. 

The wave height for the individual wave in a record is usually defined as 
the zero-upcrossing-wave height. As Fig. 3.4.7 shows this is defined as 
the vertical distance between maximum and minimum surface elevation in 
the time interval between two succesive times at which the surface passes 
zero in the upward direction. 

Fig. 3.4.7 Definition sketch for the zero-upcrossing wave height. 
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This sample of wave heights form a discrete distibution from which we 
can define a probability density function p (  H )  that indicates the probability 
of the wave height having a certain value. Theory shows measurements have 
confirmed that that under certain simplifying conditions p ( H )  is close to a 
Rayleigh-distribution, which is given by 

(3.4.70) 

where 
of H 2  

= @, the “root-mean-squared-wave-height” is the mean value 

Similarly one cau define a zero-upcrossing wave period T,. 
The equivalent distribution function P ( H  < Ho)  is then 

(3.4.71) 

Fig. 3.4.8 shows the Rayleigh distribution, which only has the single pa- 
rameter H,,, . 
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Fig. 3.4.8 The Rayleigh dsitribution for wave heights. 

From the wave height distribution (3.4.70) we can of course define a 
mean wave height z, and the significant wave height Hs is defined 
as the mean height of the highest one third of the waves. 
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Exercise 3.4-10 
Show using (3.4.70) that 

p = 8 H,,, N 0.886 HTmS (3.4.72) 

Thus we also have 
-2 
H = 0 . 7 8 5 e  (3.4.74) 

Show also that the most probable wave height H p  (max 
for the frequency function p ( H ) )  is given by 

Hp = p = 0.798H (3.4.75) 

and that (in average) l/lOth of the waves will have a height 
larger than 

Hl/lo = 1.71 H (3.4.76) 

Waves of extreme height, freak waves 
The statistical nature of the wave height implies that theoretically there 

is no upper limt to how high a single wave can be in situation with a 
given ff. Since a single very high wave can be devastating to an engineer- 
ing structure such as an offshore platform this has lead to a field termed 
the Statistics of Extremes and it has been shown that certain statistical 
distributions characterise the extreme values of stochastic processes. The 
Rayleigh distribution cannot be expected to apply to the very high waves. 

The development of numerous offshore oilfields served by platforms with 
wave recording devices in even very deep water has also brought extensive 
new information about the wave motion in the ocean under storm condi- 
tions. From those records has appeared a (rare but critically important) 
phenomenon called a “Freak Wave” or a “Rogue Wave”, which is a single 
(or a 2-3) wave(s) with heights is more than 3zf. The mechanisms causing 
this phenomenon are not clear but it is suspected that a focusing effect in- 
volving waves of different frequency (longer waves overtaking shorter waves) 
combined with strong nonlinear interactions between the waves can create 
these enourmous mountains of wave crests. This also explains why the freak 
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waves seem to emerge out of nowhere, only exist for a very short time, and 
then disappear.'O 

Connection to the spectrum 
It turns out that under certain simplifiying assumptions the gross wave 

parameters described above can also be connected to the wave energy spec- 
trum. For this purpose we consider the moments m, of nth order of the 
spectrum defined as 

We see that the zero'th moment mo is 

It turns out that an important parmeter is E defined by 

(3.4.77) 

(3.4.78) 

(3.4.79) 

which is called the spectral width. It can be shown (Cartwright and 
Longuet-Higgins, 1956) that for c = 0 the wave amplitudes a will be 
Rayleigh distributed. If in addition we assume the wave heights are H = 2 a 
as in linear waves, then the wave heights are Rayleigh distributed too. 

E = 0 corresponds to the wave period T being constant. This is of 
course not the case for real waves in which the wave heights are also not 
2a. However, since measurements show that the actual zero-upcrossing 
wave heights are close to being Rayleigh distributed the relations which 
can be derived between the spectrum and the wave heights for the limit of 
E = 0 are of significant interest. 

Exercise 3.4-11 
Show that this leads to 

- 
H 2  = 8 mo = 8 77" (3.4.80) 

and that this means that the Reyleigh distribution can also 

"The recordings of those waves confirm numerous reports from sailors about the 
sudden occurrence of monstrous waves that for many years were regarded with great 
suspicion. 
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be written in terms of the spectral moments as 

H p ( H )  = G e  (3.4.81) 

This also implies that 

H,  = (dGZ + 3 &(I - e r f ( & Z ) ) ) J m o  
= 4 . 0 0 8 3 6  - 4 Jmo (3.4.82) 

where erf is the error function. 
More generally it is found that for E # 0 the more complicated Rice- 

distribution applies. If this is used we get a relation for H,  which can be 
approximated with 

H ,  = 4(1 - 0.092~~).\/mo (3.4.83) 

For additional information see also Battjes (1978), Ochi (1982) and Komen 
et al. (1994). 

3.5 Linear wave propagation over uneven bottom 

3.5.1 Introduction 

Up to this point, we have explored the solution to the linearized wave 
problem on a constant depth. This has lead to determination of essentially 
all the mechanical properties of the linear wave solution, from propagation 
speed to velocity and pressure field, and including instantaneous properties 
as well as depth integrated, time averaged properties. 

However, an important limitation of all investigations and results so 
far has been the assumption of constant water depth and one horizontal 
dimension (also called 1-D horizontal (1DH) motion or 2-D vertical (2DV) 
motion). 

In the situations encountered in nature, these simplifications are hardly 
ever satisfied: In practice the depth varies from point to point and the wave 
motion changes accordingly. 

Therefore, it is important to examine to which extent the linear wave 
theory we have developed can be extended to the more general situations of 
varying depth and the propagation of the waves in a 2DH domain. This is 
the objective of the next three sections. The linear wave models described 
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later in Chapter 6 are essentially also based on the results which we will 
develop in these sections. Therefore they are also subject to the same 
idealizations and limitations. 

Description 
In short, we are planning to look at the following generalizations 

0 Refraction of waves in the horizontal plane (2DH) in regions with vary- 
ing water depth (depth refraction) (section 3.5). 

0 The modification of waves by currents (section 3.6). 
0 Wave propagation in 2DH regions with varying depth and variation 

of wave heights along wave crests (combined refraction-diffraction) 
(section 3.7). 

It is emphasized from the outset that the objective is to examine how 
the existing constant depth, linear wave theory can be modified to provide 
information about the wave motion in the more general situations, not to 
develop new, more general wave theories. 

Thus in mathematical terms the equations we are analyzing are the 3D 
Laplace equation 

4 z z  + 4 y y  + (bzz = 0 (3.5.1) 

with the linearized, combined kinematic and dynamic free surface boundary 
condition given by 

4t t  + g4z = 0 ; z = o  (3.5.2) 

The new feature relative to Chapter 3.2 is the boundary condition at the 
bottom which is given by 

z = -h (3.5.3) 

The processes that will be examined in this seection are almost exclu- 
sively due to the changes in phase velocity that follows as a consequence of 
the changing depth. Similar phenomena occur in other areas of physics such 
as optics. They are called refraction. In the cases we discuss here where 
the changes are caused by changing depths the term depth refraction is 
also used. 

Fig. 3.5.1 gives a quantitative illustration of the process. When a wave 
is propagating at an angle to the depth contours one part of the wave front, 
defined as a curve along a wave crest, is at a smaller depth than another 
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Fig. 3.5.1 The local depth refraction of a wave over a sloping topography (SJ76) 

and therefore moves with a smaller speed. This causes the front to change 
direction as it moves on, as shown in the figure. 

Over larger distances, and considering the entire wave pattern it is more 
illustrative to consider lines perpendicular to the wave fronts, so-called 
orthogonals. As Fig. 3.5.2 show orthogonals can then be spread or focused 
depending on the geometry of the depth variation. The similarity to the 
effect optical lenses have on light beams is clear. 

a b C 

Fig. 3.5.2 
topograpical variations (SJ76). 

Examples of changes in the pattern of wave orthogonals as result of various 

In the last frame of Fig. 3.5.2 the wave orthogonals end up crossing 
each other on the back side of a region with smaller depth (a socalled 
shoal) in the bottom. If the waves are moving from shallower to deeper 
water this may also develop to the pattern illustrated in Fig. 3.5.3 where a 
line develops (called a caustic curve) beyond which the waves orthogonals 
do not penetrate. The dynamics of the wave motion in the region near the 
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caustic will not be well described by the theories described in the following 
sections since there is a rapid variation particularly of the wave height 
around the caustic. 

Fig. 3.5.3 Wave orthogonals forming a caustic (SJ76). 

Slowly varying depth 
The first assumption made to stretch the application of the theory is 

that the depth is only varying slowly. This is also called “gently varying 
water depth”. Gentle enough that the constant depth theory derived 
in the previous section can be applied locally. In the following this 
assumption is termed the locally constant depth assumption. In a 
more physical sence it can be expressed as: gently enough that the waves 
constantly have time to adjust to the new depth as they propagate. This, 
however, implies that, as we follow the wave from one depth to a slightly 
different depth, the phase speed c will change, and that is the effect that 
leads to changes in all other wave properties. Hence, the task becomes to 
establish ways of tracking these changes. 

We can only determine what “sufficiently gentle” means by developing 
a wave theory that provides information about how a sine wave is modified 
by a small but noticeable bottom slope h,. It then turns out that such 
modifications are proportional to the slope parameter S given by 

(3.5.4) 

where L is the local wave length L = CT with c determined by the local 
depth using the constant depth formula (3.2.36).11 The concept of “gentle 

“The parameter S is often seen defined as 

(3.5.5) 

This of course only changes the numerical value of the parameter. 
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slope” is then taken to mean that the terms proportional to S2 (i.e. hz) 
can be neglected. 

We see that S can be interpreted as the relative change in water depth 
h over a wave length. It means that the gentleness S << 1 which we seek 
depends on the value of h f L. Therefore, what is gentle for a storm wave 
of T = 8 sec may be far from gentle (it may act like a vertical wall) for a 
tidal wave of more than 12 hours period because the tidal wave has a huge 
value of L l h  even in the deep ocean. Fig. 3.5.4 illustrates the idea. 

L a )+------+I 

‘y MWL 

A A h  = h,L 

L 
b k +( 

- ~ M W L  

Fig. 3.5.4 The slope parameter S for two different waves on the same slope (SJ76). 

While some wave properties are more sensitive to the effects of bottom 
slope than others, it is generally considered that overall parameters such 
as wave height H and phase speed c can within reason be determined from 
the constant depth expressions for S up to 0.5-1. This is also termed the 
locally constant depth assumption. This is discussed further in section 
3.7 for the mild slope equation where we also look at some of the effects of 
the terms proportional to h: and also h,, toward the end of the section. 

Also notice that if we consider a beach with a constant value of S ,  this 
will correspond to h,L/h = constant. Using simple shallow water theory 
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whereby h / L  0: h1I2 we see this corresponds to the depth variation 

h ( x )  0: x2 (3.5.6) 

x being the distance from the shoreline. We see this coastal profile has 
a slope decreasing toward the shoreline, which differs from most natural 
beaches where the slope is increasing toward the shore. Therefore, for a 
given wave motion, the requirement of S small generally becomes 
more restrictive as we approach the shoreline. However, as long as 
S is small enough everywhere, there is of course no further constraint on 
the slope. 

3.5.2 Shoaling and refraction 

Conservation of wave period T 
It is implicit in the linear wave theory derived above that each wave 

component has one wave period T ,  that is the waves are monochromatic. 
When the waves propagate from one point to another, T is conserved. 

This can be seen by realizing that the number of waves that per unit time 
pass a point is l /T .  Since linear waves do not emerge or disappear that 
must also be the number of waves that pass any other point, i.e., T is the 
same at  all points. This is sometimes called “conservation of wave crests”. 

Within the framework of the linear wave theory considered, the 
monochromatic waves will also have long continuous wave fronts. 

The problem of tracking the waves as they propagate is then reduced 
to determining the parameters required to describe the wave motion at one 
depth h2 (typically by determining L2 and H2) from a full description of 
the motion at another (reference) depth hl. 

Determination of the wave length and phase velocity variation 
Once we know the wave period T ,  and can assume locally constant 

depth we can in principle determine the wave length at any depth by solving 
the dispersion relation (3.2.63) with respect to kh. This was discussed in 
Section 3.2.2. Thus if we know the wave solution at  some depth hl ,  we 
have for a different depth h2 that 

(3.5.7) 

This equation can of course be solved directly by the iterative procedure 
described earlier. However, for illustration purposes, it is useful to let the 
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reference depth hl ,  say, be infinite. Then (dropping index 2) tanh klhl = 1 
and (3.5.7) can be written in the form 

h h  h 
- = - tanh2x- 
Lo L L (3.5.8) 

which links h / L  at an arbitrary depth h to h/Lo, where Lo = gT2/2-rr is the 
deep water wave length. Table 3.5.1 below shows the solution to this rela- 
tion. The columns h/Lo and h / L  in the table represent the corresponding 
values in the equation. 

Table 3.5.1 Solutions to (3.5.8) (SJ76). 
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The table can be used in the following ways: 

If T and h are known, calculate LO and hence h/Lo. Use the column 
for h / L  to get that quantity. This corresponds to solving (3.5.8) with 
h/ LO known. 
If the wave length L1 is known at one depth hl and sought at another 
depth h2 (the problem described above), calculate hl/L1 and use the 
table to get hl/Lo, and hence LO. This corresponds to calculating h/Lo 
from (3.5.8) with h / L  known. Then calculate hz/Lo and determine 
h ~ / L z  from the table. 
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As can be seen, the table also provides values of other functions and 
parameters encountered in the linear wave theory using any of the columns 
as input. 

Thus, we have determined the wave length at an arbitrary depth from 
either the wave period T or from the wave length at  a reference depth. 

Determination of the wave height 
The second problem is to deterine the waveheight H at arbitrary points 

from the reference information. This, however, turns out to be more com- 
plicated than determining the wave length, phase speed, etc. While L and 
c are (assumed to be) strictly local quantities that depend only on the lo- 
cal depth, the refraction process will cause the wave height at a point to 
depend on the entire propagation pattern leading the wave orthogonal to 
that point. 

Here we first present the classical refraction theory with determination 
of the wave heights. This approach is well suited to provide insight into the 
mechanisms and it was for many years used through manual calculations. 
Later, we examine the more advanced theories that also include the effect 
of diffraction, but which can only be solved by computational methods. 

The physical mechanism responsible for the change in wave height is the 
change in local energy density in the wave motion. In the slowly varying 
waves of refraction theory, energy is not moving across wave orthogonals. 
Therefore, when the wave refraction changes the distance between adja- 
cent wave orthogonals, the energy density changes too and hence the wave 
heights. To determine the wave height variation we therefore need to de- 
termine the refraction pattern. This will be discussed later. 

However, when the refraction pattern has been determined, we can con- 
sider the wave motion betwen two adjacent wave orthogonals as shown in 
Fig. 3.5.5. We imagine the reference point is at hl where the distance be- 
tween the orthogonals is bl and wave height H I ,  and want to determine the 
wave height H2 at h2. The energy balance for the control volume between 
1 and 2 then states that the energy flowing into the volume at 1, blEf,l 
equals the energy flowing out at 2 ,  bzEf,2, plus the energy A E I , ~  added or 
subtracted between 1 and 2 .  In mathematical terms 

Notice that the energy equation (3.5.9) relates fluxes of energy, not local 
energy densities. 
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The change in energy AEl,2 can be due to bottom friction, or energy 
dissipation due to wave breaking between 1 and 2, but it could also represent 
energy added due to wind generation. However, even if the dissipation is 
only due to the (seemingly small) bottom friction, the term AEl,2 can be 
substantial if the distance between 1 and 2 is large enough. In the following 
we will a t  first neglect this energy dissipation. However, a warning needs 
to be issued. The concern is that energy dissipation accumulates. It 
is therefore not always realistic to neglect the energy dissipation in a wave 
propagation problem, even for non-breaking waves. 

Fig. 3.5.5 Energy flux through sections between adjacent wave orthogonals (SJ76). 

For now we ignore the energy change between the two section. Then the 
wave height at section 2 can be determined by substituting the expressions 
(3.3.55) for the energy flux. We get 

where G is (again) defined by 2khlsinh2kh. Using that c = cotanhkh, 
we can then eliminate the phase velocities, and solving with respect to H2 
then gives 

H2 bl  tanhklhl(1 + GI) - =(- HI bz tanh k2h2 1 + G2 (3.5.11) 
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It may be noticed that since cg is given by cg = i c (1  + G) we can also 
write (3.5.10) as 

b2 Hz2 cg2 = bl H i 2  Cgl (3.5.12) 

or 

(3.5.13) 

To determine bllb2 we clearly need to determine the propagation pattern 
for the wave motion in the x, y domain considered. 

(3.5.12) may be modified to a form which is mathematically more useful. 
Consider the closed volume R in x, y in Fig. 3.5.2 which has the surface S 
consisting of sections 1 and 2 and the two orthogonals. Since there is only 
flux of energy through the two sections 1 and 2 and (3.5.12) has already 
been integrated over depth we can write (3.5.12) as 

H 2  c g .  n dS = 0 J’ b i  ,b2 
(3.5.14) 

where cg = c g t .  We can then apply Gauss’ theorem to (3.5.14) in R which 
gives that 

(3.5.15) 

And since this must be true at  all points we see that we must have 

Vh . ( C g H ’ )  = 0 (3.5.16) 

or 

Vh . Ef = 0 (3.5.17) 

where Ef is the energy flux in the direction of the wave number vector k. 
This essentially is the wave version of the conservation of energy equation. 

3.5.2.1 Simple shoaling 

In the special case of a long straight coast, the bottom contours are 
straight and parallel. For waves perpendicularly incident on the ocast, this 
represents the simple case also reproduced in a 2DV wave flume. Then, 
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bl = b2 everywhere. If we continue to neglect the energy dissipation between 
1 and 2, (3.5.11) reduces to 

As for L and c, it is convenient to consider deep water ( k l h l  -+ cm) as 
the reference section 1 by which (3.5.18) can be written (neglecting index 
2). 

The ratio H/Ho is often termed the shoaling coefficient K,  and the 
case is called simple shoaling. 

Fig. 3.5.6 shows the variation of H/Ho as a function of h/Lo. It illus- 
trates how the shoaling process causes a significant increase in wave height 
as the depth is decreasing towards the shore. 

I 4 

0.02 0.1 1 

Fig. 3.5.6 The variation of HIHo ,  and 91% versus h/Lo. The lowest curve represents 
Green's law (3.5.21) (SJ76). 

An interesting feature shown in Fig. 3.5.6 is the minimum for H/Ho 
which turns out to occur at h/Lo = 1/27r = 0.16. The minimum value of 
H/Ho is 0.913. 
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Exercise 3.5-1 
Show that the minimum for H/Ho occurs where cs/co, the ratio 

of the group velocity to the deep water phase velocity has a maximum 
(see Fig. 3.5.6) and verify the minimum value of H/Ho = 0.913. 

Exercise 3.5-2 

the functions in (3.5.19). Show that this gives the approximation 
For h/L < 1/20, we can use the shallow water approximation for 

(3.5.20) 

or, using (3.2.114) 

(3.5.21) 
h H 

- = (8*&) for - < 0.015 
HO LO 

-1/4 

Eq. (3.5.21) is called Green's law (Green, 1837), and it is one of the 
oldest results in classical wave theory. It shows that in shallow water, the 
wave height changes proportional to h-1/4. The curve for (3.5.21) is also 
shown in Fig. 3.5.6. 

Notice also that at the shallow water limit of h / L  = 0.05, L/Lo = 

tanhkh is only 0.30 giving h/Lo = 0.015 (see Table 3.5.1) so that the 
shallow water limit in terms of h/Lo is significantly different from the limit 
in terms of h / L .  
The wave steepness N I L  

Fig. 3.5.6 also shows the variation of the wave steepness H / L  relative 
to the deep water steepness HOlLo. Writing H / L  = H / H o .  Ho/Lo. Lo/L,  
the relative steepness can obviously be written 

(3.5.22) 

As could be expected from the fact that as h decreases H increases 
(beyond the minimum) while L decreases, we find that H / L  increases quite 
rapidly in shoaling water. 

This is relevant because one of the basic assumptions leading to the 
linear wave theory was that H / L  was small. Hence, we can expect that as 
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the waves move toward the shore ( h /L  decreasing) the linear theory rapidly 
becomes a rather poor approximation for the wave motion. This is one of 
the reasons for the importance of the nonlinear wave theories described in 
chapters 7 - 9. 

It will be shown in those sections that the determining parameter U is 
formed by a combination of wave height H ,  wave length L and water depth 
h. It is called the Ursell parameter after F. Ursell who in (1952) defined 
the parameter as 

H L ~  u=-  
h3 

(3.5.23) 

In fact Stokes (1847) already found that this combination of the three 
geometrical dimensions of the wave motion were important and therefore 
U is also seen termed the Stokes parameter. 

3.5.2.2 Determination of the refraction pattern 

We now turn to the most difficult part of determining the wave height 
variation on a gently sloping beach. As we have seen, it is necessary to 
determine the propagation pattern for the waves. This can be interpreted 
as determining the pattern of the wave orthogonals due to the refraction, 
which essentially is what we need to obtain the variation of bl/ba in (3.5.11). 

We first briefly derive a differential relation valid locally which governs 
the change d a ,  in the direciton of the wave orthogonal at a point, and 
we show that for a long straight beach with parallel bottom contours, this 
relation can be integrated to give the global variation of the direction of 
the wave orthogonals. We also go through a computer oriented version 
of the theory. We then realize that, although physically sound, the idea 
of tracing the pattern of wave orthogonals directly results in numerical 
inconveniences. 

The local refraction relation 
To derive the local refraction relation, we consider the situation 

shown in Fig. 3.5.7. The dashed line is a depth contour and the figure 
shows two successive positions of a wave front, one at  t and the other at 
t + dt .  The orthogonals have been drawn through the two points where the 
two wave fronts cross the contour curve. 

The angle of incidence a is defined as the angle betwen the contour 
curve and the wave front (or between contour normal and orthogonal). On 
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F(t+dt) 
\ / 

_ _ - -  - - - _ _  
- Depth Contour 

Fig. 3.5.7 The local refraction pattern at an arbitrary point. 

the other hand the direction of the wave orthogonal is measured relative to 
a fixed (arbitrary) direction by the angle a,. Note that a and a,  are two 
different quantities and changes in one are not readilly related to changes 
in the other. 

As indicated in Fig. 3.5.7, we count both a and a, positive counter- 
clockwise. The (s, f )  coordinate system has s along the orthogonal, and f 
in the direction of the wave fronts, respectively, with directions positive as 
shown. 

The derivation of the refraction relation is based on the observation that 
if we move from A to B to C, the total change in phase velocity is zero. 

Between A and B,  we have the change d c f  in the phase velocity. Hence, 
the difference in distance betwen AD and BC is 

dC 
dc d t  = -df dt  (3.5.24) a f  

This corresponds to a change da, in the direction of the wave front 
which i s  

dc d t  
d a ,  = - 

df 
(3.5.25) 
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We also have 
cdt 

t a n a  = - + O ( d c )  
df 

(3.5.26) 

Eliminating df between those two equations then gives 

d a ,  = - t a n a  1 : I  (3.5.27) 

which is the general refraction relation at a point. 
Once again it is emphasized that d a ,  represents the change in the di- 

rection of the wave orthogonal (or the wave front) when we move from one 
point to another. In general this in not equal to the change in the angle of 
incidence a with respect to the local depth contour, because a also changes 
due to changes in the direction of the contour lines. In general, we have 

d a  = d a ,  - d n  (3.5.28) 

where d n  is the change in the direction of the contour lines from point 
to point. Therefore, (3.5.27) cannot be integrated without including a 
representation of the bottom topography. 

Exercise 3.5-3 
Show that (3.5.27) can also be written 

d a ,  1 ac 
ds c af - (3.5.29) 

which links the rate of change along a wave ray of the wave 
angle a, in the fixed (z,y) frame to the rate of change of 
c along the equivalent wave front. 

Parallel bottom coutours, Snell’s law 
In the special case of straight, parallel depth contours, which occurs 

only on a cylindrical coast, the bottom topography is represented by d n  = 0 
everywhere. (3.5.28) then shows that 

d a ,  = d a  (3.5.30) 

Substituted into (3.5.27), this means that 

d a ,  - dc 
tana, c 

(3.5.31) 



3.5 Linear wave propagation over uneven bottom 141 

which can be integrated directly to yield 

I p c I  (3.5.32) 

where C is a constant that is given as & at a reference point for the 
wave motion. (3.5.32) is called Snell’s law, and it is similar to the Snell’s 
law in optics. (3.5.32) is a powerful prediction because it expresses that 
if we know a,  at  a point with depth h, then we know aw, and hence, 
by (3.5.30), a everywhere. Thereby, the refraction pattern for the waves is 
known everywhere. Fig. 3.5.19 shows the pattern of fronts and orthogonals. 

sin a,  

Exercise 3.5-4 
Derive (3.5.32) from (3.5.31). 

Once again, it is emphasized that Snell’s law only applies globally for 
straight parallel depth contours. In the general case, the refraction is gov- 
erned by (3.5.27). 

Exercise 3.5-5 
Show by simple geometrical arguments that on a cylin- 

drical coast the ratio b l l b 2  for the distance between two 
adjacent orthogonals at depth contours h l  and h2 will be 
the same for all orthogonals at their crossing of h l  and h2 
and that 

(3.5.33) 

so that 

H2 coscq (1 + GI) tanhklhl ’” 
HI - ={-  cos a 2  (1 + Gz) tanh k2 h2 } (3.5.34) 

where the cosines of course are given by Snell’s law. 

For hl = m, (3.5.34) can be written (neglecting the index 2) 

-112 - =  H {- cos a (1+G)tanhkh} 
Ho COSQO 

(3.5.35) 
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0 0 0  0 

Fig. 3.5.8 The refraction pattern on a cylindrical coast (SJ76). 

In parallel with the shoaling coefficient K,, we may then introduce a 
refraction coefficient K,  

(3.5.36) 

This equation is general but in the special case of parallel bottom contours, 
we get 

K,  = { -} ' I2 cos Qo 
cos a 

(3.5.37) 

3.5.3 Refraction by ray tracing 

Wave rays are defined as the propagation paths for the wave energy. 
For waves with no underlying currents orthogonals are the same as rays. 
The method of determining the refraction pattern by solving (3.5.27) along 
wave orthogonals or wave rays is usually called ray tracing. Before the 
age of computers, this was often done semi-graphically on large scale topo- 
graphical maps of the area in question and by means of special templates 
that helpled plot the changes in direction of the orthogonals. For a detailed 
description of this method see e.g., CERC Shore Protection Manual (1984) 
or Svendsen and Jonsson (1976, 1981). This approach, however, is very 
time consuming and requires great care to obtain reliable results. 
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A mathematically more refined version of the ray tracing approach was 
developed by Munk and Arthur (1952) and adopted for computers by e.g., 
Wilson (1966), Noda (1974), Skovgaard and Berthelsen (1974) and Skov- 
gaard et al. (1975, 1976). 

The basic assumptions remain the same as in the previous description: A 
bottom slope gentle enough to allow the use of the locally constant depth 
solution for linear waves. The following is a very brief overview of the 
method. For a more detailed description reference is made to Svendsen 
and Jonsson (1976, 1981) or Dean and Dalrymple (1984). 

The computations use the same s, f coordinate system as used above 
and essentially follows the wave as it travels in time along the othogo- 
nals/rays using s as the distance. Thus, 

ds 
dt  

= c  - (3.5.38) 

This is related to the fixed direction x, y-coordinates by the relations 

3 = csina, dY - dx 
- = ccosa, 
d t  d t  

(3.5.39) 

and it is found that for the wave moving with speed c, the rate of change 
of a, is given by 

d a w  - dc . dC 
d t  dx dY 

sina, - - cos a,  - -  - (3.5.40) 

With appropriate boundary and initial conditions (3.5.39) and (3.5.40) 
can then be integrated numerically which provides the refraction pattern 
in terms of the orthogonal patterns in the x,y-plane. 

The wave height is then determined by deriving a differential equation 
which directly determines the variation of the distance b(z, y) between the 
orthogonals. This is measured by the orthogonal separation factor /3 
which essentially is defined as 

b p = -  
b, 

(3.5.41) 

where b, is an initial reference spacing for the particular orthogonal. In 
most cases, the reference positions are in deep water in order to provide 
easy information about the starting wave condition. By combining this 
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information, the equation for P can then, after some algebra, be written 

d2P dP 
- + p-  + qp = 0 dx2 ds 

where 

C 

(3.5.42) 

(3.5.43) 

and 

2 sina, cos au, + sin2a, - - d2C 
dxdy 

For details of this formulation see Dean and Dalrymple (1984). 

(3.5.13) 
The wave height is then determined by an expression analogous to  

(3.5.45) 

where H, is the wave height, cg, the group velocity at  the reference position. 
H ,  cg are the values along the wave ray. We see that (3.5.45) is the equation 
for conservation of energy flux (3.5.17). 

3.5.4 The geometrical opt ics  approximation 

It is instructive to realize that the somewhat intuitive results obtained 
above for refraction can also be obtained by a more rigorous expansion pro- 
cedure. This leads to the so-called geometrical optics approximation 
which is the refraction-only parallel to the refraction-diffraction approach 
described in Chapter 3.7. 

The core of this is the WKB method,12 which formally expresses that 
the amplitude A of the wave motion (here in terms of its velocity potential) 
varies much more slowly than the phase 13. 

Here we largely follow the approach used by Dingemans (1997), which 
only looks at  the simplified case of a steady wave field with sinusoidal time 
variation so that the velocity potential Qt is given by 

Qt(z, y, z ,  t )  = Re(Q(z, y, z )  e-Zwt) (3.5.46) 

12After Wentzel, Kramer, Brillouin. It is also sometimes also called the WKBJ method, 
where J stands for Jeffreys. 
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The case of a wave motion which also varies slowly with time is sketched 
by Mei (1983), p 60ff. 

The basic equations (3.5.1)-(3.5.3) are expressed in terms of a set of 
coordinates XI Y, 2 given by 

Here x, y, z are the actual physical coordinates. The ratio between a 
characteristic local scale (the water depth ho) and the slow length scale 
A (the scale of the topography variations) represents a small parameter p 
given by 

(3.5.48) 

Hence, the smallness 

In terms of these 
( S  << 1). 

4% 1 &>I 

of p is equivalent to assuming gently varying depth 

scaled variables, the equations become (with & = 

h(x,y) I z 5 0 (3.5.49) 

z = o  (3.5.50) - w 2 @ + - @ z = O  9 
ho 

Q,z = -$VhQ,. Xh' z = -h' (3.5.51) 

where we have also utilized that for sinusoidal time variation 

a'tt = -w2@ (3.5.52) 

We then formally write Q, as 

@(x, y, z ,  t )  = Re {+(XI Y, 2) eis}  (3.5.53) 

where 

s = s ( X ,  Y,  2) (3.5.54) 

represents the space varying part of the phase angle 6 .  
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To substitute this into (3.5.49), we get for the derivatives 

KQ, = (K$ + i$Ks)  eis (3.5.55) 

(3.5.57) 

(3.5.58) dZ dZ dZ2 
a$ ds 2--++- 

For (3.5.49) we then get a complex equation. In order for this equation to 
be satisfied the real and the imaginary parts of the equation must be zero 
separately. The real component can be written 

(3.5.59) 

and if the imaginary component is multiplied by $ then it can be written 

(3.5.60) 

The same approach is used for the boundary condition. Thus, the free 
surface condition becomes 

a+ w2 

dZ 9 
-+ = 0 _ _  R e  : 

Z = O  

Im : 
8s  

d Z = O  

(3.5.61) 

(3.5.62) 

and the botton condition similarly becomes 

(3.5.63) 84 2 - - 1  
- + /l vh$vhh = 0 
d Z  

dS 

R e  : 

Z= -h’ 

Im : + p 2 E e E h ’  = 0 (3.5.64) 

We then express that the effects of the slowly varying topography is 
expected to be small, by expanding the amplitude 4 and the phase s in 
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terms of p. Since p only occurs in the equations as p2,  we use 

4 = 4 0  ( X ,  Y ,  2) + p241 ( X ,  y, 2) + . . . (3.5.65) 

For s, we further include in the expansion that the phase s is expected 
to vary much faster than the slowly varying amp1it~de.l~ Thus, in terms 
of the slow variables X ,  Y, 2, we have 

s =  1 ( s 0 ( x , Y , z ) + p 2 s l ( x , Y , z ) + ~ ~ ~ )  (3.5.66) 

Substitution into the Re-part of Laplace’s equation (3.5.59) then gives 

P 

the terms 

p-240 ( 2)2 + po (g - ~ ~ ( V ~ S I I ) ~ )  + O(p2) = 0 (3.5.67) 

For this to be satisfied for arbitrary p, we must require that the coeffi- 
cient to each power of p vanish. Thus, the lowest order (O(pP2))  gives, for 
40  # 0 

- 2 P 

or so constant over 2. For po, we get 

2 (2) = o  (3.5.68) 

(3.5.69) 

In this equation, the consequence of (3.5.68) is that the RHS is inde- 
pendent of 2. Therefore, the LSH must be that too, i.e., be equal to a 
constant, K’ say. Thus, (3.5.69) separates into two equations 

(3.5.70) 

2 
( K S O )  = K 2  (3.5.71) 

Eq. (3.5.70) can be solved directly. The bottom boundary condition for 
4 0  is found by substituting (3.5.66) into (3.5.63) which gives 

(3.5.72) 

13Dingemans shows by rational reasoning that the factor representing this in the ex- 
pansion must be p- l  and the factor on s1 must be pz. 
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In dimensional form (3.5.70) can be written 

Thus if we define K = kho, we have 

which has the solution 

(3.5.73) 

(3.5.74) 

(3.5.75) 

Similarly, using the free surface condition with (3.5.66) inserted shows 
that k must satisfy 

I w2 = gk tanh khl  (3.5.76) 

Thus, we have found that the first approximation $0 has the same verti- 
cal variation as the constant depth sinusoidal wave motion analysed earlier, 
and that (w ,  k )  satisfy the equivalent constant depth dispersion relation. 

Exercise 3.5-6 
Derive the results (3.5.75) and (3.5.76). 

This result verifies the fundamental assumption used in this entire 
section of wave propagation: For sufficiently gently varying slope, 
( S , p  << l), the wave motion is to the first approximation de- 
scribed by the constant depth solution found in Section 3.2. In 
other words, we have formally confirmed that the assumption 
of “locally constant depth”, which is used in virtually all linear 
wave propagation models, is valid as a first approximation when 
S , p  << 1. This allows us to use the constant depth results for the waves 
derived in section 3.2 for description of all the wave properties. 

It may be in place here, however, to issue a warning. An inspection 
of the derivation will show that the result only applies to the propagation 
patterns and amplitude variations. Because the phase motion is locked 
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to the sinusoidal shape, the fast space and time variables such as particle 
velocities or pressures are not necessarily accurately modelled. 

The geometrical optics equations 
The second equation (3.5.71) essentially describes the variation of the 

phase function 80 in the horizontal plane. This equation is also called the 
eikonal equation and it is one of the basic equations in the geometrical 
optics theory. Since a wave front corresponds to 80 = constant and wave 
orthogonals are orthogonal to the wave fronts, the solution of (3.5.71) cor- 
responds to determining the refraction pattern for the wave propagation 
problem by e.g. a ray tracing method. 

As discussed earlier the second half of the refraction problem is then to 
determine the amplitude variation associated with this refraction pattern. 
This variation is controlled by the imaginary part of the Laplace equation 
(3.5.60) with the boundary conditions (3.5.62) and (3.5.64). 

Exercise 3.5-7 
Show by the same procedure used for the real part, 

that when the expansions of q5 and s are substituted into 
(3.5.60) we get at the order p 

(3.5.77) K. ( q 5 0 L o )  + a d (40z)  as1 = 0 

and show that the boundary conditions for s1 become 

- = o  Z = O  (3.5.78) 8% 
d Z  

as1 --=o 
dZ  z = -h' (3.5.79) 

Since neither 
depth. Using the 

60 nor so depend on Z, we can integrate (3.5.77) over 
boundary conditions for s1, we get 

r 0  

(3.5.80) 
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By virtue of (3.5.72) and substituting (3.5.75) for $0 ,  this can also be 
written 

Exercise 3.5-8 
Show that 

where c and cg are the phase velocity and the group veloc- 
ity, respectively, for the waves. 

(3.5.81) 

(3.5.82) 

Returning to dimensional coordinates (with = ho (& , 6) = 
hOVh) (3.5.81) can then be written 

I v h  ’ (a+ 2 c cgvhslj) = 0 I (3.5.83) 

This equation is known as the transport equation. Solution of this equa- 
tion will then determine the variation of the amplitude u4 for $0. 

In conclusion, the equations describing the geometrical optics approxi- 
mation for the refraction over the (2, y) domain are 

0 the eikonal equation (3.5.71), which in dimensional form becomes 

(3.5.84) 

where k is the wave number vector. 
0 the transport equation (3.5.83) 
0 the dispersion relation (3.5.76) 

with $0 given by the solution (3.5.75) 

(3.5.85) 

Comparison with earlier results 
It is useful to briefly show how these results compare to the earlier 

results for refraction. 
First, it is realized that (3.5.83) is essentially the equation for conser- 

vation of energy (3.5.17) (for short termed the “energy equation”) for the 
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wave motion. We have that c = w / k  and using V h s o  = k, we can then 
write the transport equation (3.5.83) as 

where 

c,k/k = cg (3.5.87) 

In Exercise 3.2-6, we found that the amplitude u4 in (3.5.84) is given by 

a4 = - - A  9 (3.5.88) 
W 

where A is the surface amplitude. Thus, (3.5.86) can be written 

v h  . (CgA2) = O (3.5.89) 

or, using Ef = pgc,H2 

I v h .  Ef = 0 I (3.5.90) 

which is the same as (3.5.17). Thus, we see that the transport equation is 
equivalent to the energy equation energy dissipation. 

It may also be shown that the eikonal equation is equivalent to the 
refraction law (3.5.27) and in particular, for long straight bottom contours, 
corresponds to Snell’s law (3.5.32) . 

Thus the geometrical optics approximation corresponds to a mathemat- 
ically more stringent formulation of the same principles we outlined earlier 
for the refraction with gently sloping bottom conditions. In particular this 
implies that the locally constant depth assumption is valid as a first ap- 
proximation. 

The solution of the geometrical optics equations is briefly outlined by 
Dingemans p 64-66. 

3.5.5 Kinematic wave theory 

From a numerical point of view, the ray tracing method in all its forms 
(be it the simple graphical or the &separation method described above) 
has the drawback that information about the wave heights is provided only 
at points along the ray. Since the rays are part of the solution and may 
spread or approach each other in the computational domain in ways that 
cannot be determined until the solution is available, it is difficult to predict 
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where information may become available for a given set of start conditions. 
A method providing information about the wave motion in a regular pre- 
chosen grid is much more convenient. 

As mentioned ray tracing and the geometric optics approximation are 
also intimately linked to the assumption of steady waves with harmonic 
(i.e. sinusoidal) fast time and space variation (see (3.5.52) and (3.5.70)) 
but time independent amplitudes. It is possible, however, to establish a 
simpler wave theory, based on the same assumptions of locally constant 
depth and motion described by a slowly varying amplitude times a phase 
function, the so-called Kinematic wave theory (see e.g., Phillips, 1966 
and later editions for a steady amplitude version). 

For varying depth the wave number k is a function of the position. In 
the phase function 8, kx is therefore replaced by kdx.  Further, in a 2DH 
situation, k becomes a (horizontal) vector k(x, y), called the wave number 
vector, which is pointed in the (local) direction of wave propagation (i.e., 
k is a tangent to the wave orthogonal). It also is possible that the frequency 
w varies (slowly) with time. Therefore, the appropriate form for 8 is 

8 = ] w,dt - 1 k . dx (3.5.91) 

where x is the (x, y)-position vector. It  is noticed that w, is the absolute 
frequency frequency measured at a fixed point. For waves on a current V ,  
w, is linked to the k = Ikl and V by the dispersion relation 

I w , = w , ( k h , k H ) + k . V  I (3.5.92) 

where w, is the relative frequency satisying (3.2.35). For details see Section 
3.6 on waves and currents. Notice it has not been excluded that wr and 
hence the wave phase speed depend on the wave height in addition to the 
variation with depth we know from linear wave theory. In any case the 
method assumes that the function for wr is known. 

We then assume that the surface variation ~ ( x ,  y, t )  can be described by 

where the amplitude A is a slowly varying function of position and time 
while the phase motion described by 8 varies rapidly with 8. 

This form for the wave motion has several important consequences. 
First, we notice that, we have 

k = -vhe (3.5.94) 
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where v h  = 8/8x, 8/89 is the gradient operator 6'. And since the curl of 
a gradient is zero k is irrotational implying that 

v h X k = O  (3.5.95) 

Similarly, we have from (3.5.91) 

= wa 
86' - 
at (3.5.96) 

By cross-differentiating (3.5.94) and (3.5.96) (differentiate the first by 
t ,  the second by vh), we can eliminate 6' to get 

(3.5.97) 

(3.5.92) and (3.5.97) represents a system of equations from which k and wa 
can be determined. The precise form of the phase function f ( 0 )  has not 
been specified. As long as the locally constant depth assumption is satisfied 
any constant depth wave theory can be used to provide the wave properties 
needed for the method. This is one of the advantages of this approach. 

It is interesting that if we take the curl v h x  of (3.5.97) we get 

and since vh x V h w a  = 0 this implies that 

8 
at 
-(vh X k) = 0 

(3.5.98) 

(3.5.99) 

This means that if vh x k = 0 initially then it remains zero at all times. 
Thus the condition (3.5.95) only acts as a (necessary) initial condition for 
the model system. 

In the simple case, we have considered so far, k is constant in time, so 
that 

or 

w, = C( t )  (3.5.101) 

where again, with monochromatic waves, this means C(t )  = C which con- 
firms that w is conserved in the wave field (= the wave fronts are conserved, 
as shown in Section 3.5.1). 
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Exercise 3.5-9 

the form 
Write k = k cosaw, k sina, where k = Ikl and get (3.5.93) on 

dk sin a, dk cos a,  
- = o  (3.5.102) 

Show then that for a cylindrical coast with no variations in the y 
direction, this can be solved to recover Snell’s law 

d X  dY 

sin aW 
= constant 

C 
(3.5.103) 

In general cases solution of of the equations (3.5.92) and (3.5.97) will 
provide the wave pattern. This corresponds to solving the eikonal equation 
in traditional geometrical optics theory. The wave heights are then deter- 
mined by solving the energy equation which is discussed in more detail in 
Chapter 4. 

This method forms part of many ocean wave models such as the WAM- 
model (see WAMDI-group, 1988) and the SWAN-model, both discussed in 
Chapter 6. In those models it is used to determine the wave propagation 
patterns and is combined with the special version of the energy equation 
called the wave-action equation introduced in Chapter 4. 

In the nearshore the method has so far mostly been used extensively in 
the simple cases where Snell’s law is valid, though time varying waves have 
been used, and recently in an application for waves with space and time 
varying currents, which implies solving the general equations (3.5.92) and 
(3.5.97). These applications are discussed in Chapter 6. 

3.6 Wave modification by currents 

3.6.1 Introduction 

In the nearshore region, the most important currents are horizontal and 
they have horizontal extensions (length scales) that are of the order of a 
wave length or much larger. Due to turbulence from various sources and the 
mechanisms responsible for generating the currents, they may show vertical 
variations in the horizontal velocity, typically in magnitude, but often the 
direction of the velocity is also varying over the vertical. 
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The presence of currents changes the waves. However, as with depth 
refraction, the lowest order effect turns out to be in the dispersion relation 
through changes in the speed of wave propagation. Because those kinematic 
properties do not depend on the wave amplitude] we are, in parallel with the 
depth refraction] able to analyze the propagation patterns in linear waves 
on currents separately from the analysis of the dynamics which provides 
the information about the amplitude variations. 

A common assumption is also that we analyze the effect the current 
has on the waves but assume the currents remain unchanged by the waves. 
This of course is a simplification that is discussed extensively in the chapters 
about wave induced currents and nearshore circulation. 

In the following, we first analyze the local effects of the simplest case, a 
wave motion on a steady current, uniform both over depth and in the hori- 
zontal plane. Then give a brief overview of the local effects of depth varying 
currents] and finally briefly discuss extension of the geometric optics ap- 
proximation to the case of combined wave-current motion in the horizontal 
plane. 

3.6.2 Waves on a steady, locally uniform current 

Thus, we consider a current with the steady velocity U. The uniformity 
of the current means an infinitely large length scale. The primary effect is 
that the wave will propagate relative to the moving water. 

Therefore] a wave with wave number k will satisfy the same dispersion 
relation found earlier, that is 

w, = gk tanh k h  (3.6.1) 

where wr ,  the relative wave frequency] represents the frequency mea- 
sured by an observer moving with the current velocity and k =I k I. In the 
general case, the current direction will differ from the wave direction. The 
wave speed, however, is measured in the direction perpendicular to the 
wave front. Therefore] the current component parallel to the wave front 
will not contribute to the speed of the wave. From a coordinate system 
fixed in space, we will therefore see the wave moving at an absolute speed 
c, which is in the direction of k and given by 

ca = C, + k . U (3.6.2) 
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or 

c, = c, + u c o s p  (3.6.3) 

where U =I U I and p is the angle between k and U. The situation is 
illustrated in Fig. 3.6.1. 

However, since the wave is merely translated with the current, the wave 
length will look the same from the fixed and moving coordinate system, 
i.e., lc is the same. Hence, we will have, since w = clc 

W, = c,lc ; W, = c,lc (3.6.4) 

which substituted in (3.6.3) gives the relation 

1 w, = w, + lcucosp 1 (3.6.5) 

This is also called the Doppler relation. It relates the absolute frequency 
w, observed from a fixed coordinate system to the relative frequency w, 
which is the frequency that satisfies the dispersion relation (3.6.1) (and 
which is observed from a coordinate system moving with the currents. 

Fig. 3.6.1 
steady uniform current (from Jonsson, 1989). 

The relation between absolute and relative phase velocity for a wave in a 

Notice that for a monochromatic wave motion wave fronts will be con- 
served, so that in any region the number of waves moving into the region 
will be the same as the number of waves moving out of the region. This 
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means that the absolute wave period T, and hence the absolute frequency 
w, are conserved. That is also the frequency that in practice is easy to 
measure through measurements of the absolute wave period T, = ~ T / w , ,  
i.e. the period observed from a fixed point in space. On the other hand, 
to evaluate other features of the wave motion such as velocities, pressures, 
etc., we need to determine k through w,. Therefore, the solution of (3.6.5) 
is important. 

Substituting (3.6.1) into (3.6.5) we get 

w, - kU cos p = & d g k  tanh kh  (3.6.6) 

which shows that the solution kh for given w, depends on U cos p which 
therefore is the parameter for the problem. 

While a numerical approach is required for specific cases, we see that 
solving (3.6.6) essentially corresponds to seeking crossing points between 
the two curves. 

y1 = w, - Icucosp 
(3.6.7) 

yz = fdglctanhlch 

This is illustrated in Fig. 3.6.2. 
In the figure, U = 0 corresponds to w, = wT (point E in the figure), a 

wave moving in a region with no current. However, for Ucosp # 0 both 
the + and the - case in (3.6.6) potentially offer two solutions for kh. 

Opposing currents 
In the case of U cos p < 0 the currents oppose the waves. There can be 

two, one or zero solutions depending on the magnitude of Ucosp. In the 
following discussion we assume that the current is changing slowly enough 
that locally it can be considered uniform. If a wave motion moves from a 
region with no current (point E) into a region with increasingly stronger 
opposing current the line for w, - U cos p gets steeper and point A moves 
upwards on the upper curve in the figure. Clearly this means that the 
stronger the opposing currents the larger the wave number k becomes, that 
is, for a given w, opposing currents reduce the wave length. 

In this general case of a weaker current, A corresponds to a situation 
where both the phase speed c and the group velocity (that is energy prop- 
agation velocity) cg = d w l d k  are >[ U cosp I. Thus, both the wave train 
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k 
0 r 

Fig. 3. 2 Solutions --r the wave number in terms of k h  for given values of m a r  h and 
Ucosp. Notice that Ucosp can be both positive and negative. The case of following 
currents corresponds to Ucosp > 0 (upper branch of ma - kUcosp), while opposing 
currents correspond to U cos p < 0 (from Jonsson, 1989). 

with this kh and its associated energy are able to move against the current, 
i.e., a group of waves will propagate upstream. 

When the current gets strong enough (U cos p numerically large, the 
straight line in the figure gets steeper) the waves are blocked by the currents 
from propagating further. In the figure this means A reaches point F (one 
solution) which is the blocking point or caustic point. Point F represents 
waves just able to maintain their position against the current because at F 
the absolute group velocity cga = 0 (Jonsson et al., 1970). Since the group 
velocity is defined as dwldk it is obtained by differentiating (3.6.5) with 
respect to Ic. This gives 

Cga = cgr + u c o s p  (3.6.8) 

Thus blocking of the waves occur when cgr = -Ucosp. 
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Figure 3.6.2 is essentially based on ray theory, and if an analysis of 
the wave height variation approaching the blocking point is carried out 
according to that theory it results in infinite values (the wave height is 
singular). However, Peregrine (1976) conducted a nonlinear analysis in the 
neighborhood of the blocking point and showed that in reality the waves 
have large but finite steepness. It also turns out that (if no breaking occurs) 
the waves are reflected at the blocking point but with a change in wave 
number. The wave solution at point C, the second solution, corresponds to 
the waves reflected from the blocking point. Since the early contributions 
quoted above this problem has been discussed by a number of authors and 
lately by Madsen and Schaffer (1999), and by Chawla and Kirby (2000). 

In nature blocking frequently occurs outside inlets and in river mouths 
with strong (often tidally dominated) currents. Where the current is strong 
enough to arrest the waves, the result is a region with very highlsteep waves 
that often break before they reach the actual blocking point. Such regions 
represent navigational hazards particularly to smaller craft. 

If the opposing current gets even stronger (the yl-line entirely above 
the ya-curve) there are no solutions, i.e., no waves are able to propagate up 
against the current. 

Following currents 
The case of Ucosp > 0 corresponds to currents following the wave 

motion. It is represented by the lower branch of w, - kU cos p in Fig. 3.6.2. 
Here, solution B represents the simple case of a wave motion on a following 
current. It is seen that B corresponds to  a kh-value smaller than for case 
E (wave with the same period on no current) indicating the effect of the 
following current is to increase c, and hence L. 

Wave orthogonals and wave rays 
In waves with currents the wave orthogonals and the wave rays generally 

have different directions. 
The wave orthogonals are defined as curves normal to the wave fronts. 

As Fig. 3.6.1 shows in a (locally) uniform current the absolute phase ve- 
locity ca given by (3.6.1) is in the direction of the wave orthogonal. 

A wave ray, on the other hand, is defined as the curve along which 
wave energy is moving. For a fixed system this will be in the direction of 
the absolute group velocity cga. The definition of cga (and thereby the 
direction of the ray) is given by 

Cga = Cgr + u (3.6.9) 
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which differs from the definition (3.6.3) for c, and has a direction different 
from the orthogonal. When the wave height varies along the wave front 
then the current component along the front matters because in addition 
to moving energy in the direction of the orthogonal it creates a net energy 
flux along the front. 

3.6.3 Vertically varying currents 

The solution of the Doppler version (3.6.5) of the dispersion relation 
represents a solution of the local problem of determining the parameters 
required to evaluate the formulas for velocity, pressure, etc. for the wave 
motion at  a point. 

Similarly, in this section we discuss the problem of determining the 
modification of the wave motion at a point in various cases with currents 
that vary over depth. This problem has been discussed in the literature 
by various authors. For an extensive overview of the dispersion relations 
for various cases see Peregrine (1976). An account of the solution for some 
simple current profiles is given by Dingemans (1997), while an approximate 
solution for more general current profiles is found in Kirby and Chen (1989). 
The following is a brief overview, which combines the last two versions. It 
also also provides some information about the changes in the wave particle 
velocities. For simplicity the discussion is limited to 2DV motion. 

The analytical solutions available all assume that the current profile 
U ( z )  is known (e.g., from measurements). The horizontal variations of the 
current field are assumed so slow that contribution to the equations from 
horizontal variations of the current can be neglected in the local relations. 
On the other hand, the current velocity U is assumed relatively strong in 
comparison to the wave particle velocity uwi, w, (u,i the horizontal, w, 
the vertical component, respectively, of the wave motion.) 

Thus, we consider a surface elevation C and total velocities ui, w that 
can be written 

u = U ( 5 ,  z )  + u,(z, z ,  t )  (3.6.11) 

w = W(5,  2) + w,(2, z ,  t )  (3.6.12) 
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Here it is assumed that the wave amplitude is small enough that 
u,, w, = O(e),  that U = O(l ) ,W = 0, and that = O(1), = O(p) 
where E ,  ,f3 are small parameters measuring the magnitude of the wave ve- 
locities and the gradient of the current, respectively. 

Substituted into the inviscid fully nonlinear (that is Euler) equations of 
motion and the associated (nonlinear) boundary conditions, this results in 
the following lowest order of the equations for inviscid motion. 

(3.6.13) 

(3.6.14) 

(3.6.15) 

where p~ is the dynamic pressure created by the wave motion. We see that 
these equations are linearized because we assume U >> u,. The boundary 
conditions are 

84L K W  w, = - + u- at ax z = o  (3.6.16) 

w, = 0 z = -h (3,6.17) 

P D  = p d w  z = o  (3.6.18) 

which are linearized in a similar way as the Euler ~qua t i0ns . l~  
We assume the wave part of the motion is described by a stream function 

7/I=X{(a,f(z)e"} 8-  w,t - kx (3.6.19) 

which implies that 

u,=- a$ . , w, = -- 
dY 

(3.6.20) 

and where a+ and f (z)  are also slow functions of xi and t. Substitution of 
this into the equations for the wave motion then shows that f must satisfy 

I4Since we seek only information about the effect the current has on the waves, but 
assume the currents unchanged, these equations assume inviscid motion also do not 
contain the (viscid or turbulent) terms required to actually maintain the assumed current 
profiles over some horizontal distance. 
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the equation. 

(3.6.21) 

with the boundary conditions 

(3.6.22) 

f = O  z = -h (3.6.23) 

where U’ = 8U/dz  at z = 0, U” = d2U/dz2  

tion. It is also named the Rayleigh e q ~ a t i 0 n . l ~  
Eq. (3.6.21) is the inviscid form of the so-called Orr-Sommerfeld equa- 

Exercise 3.6-1 
Derive (3.6.21), (3.6.22) and (3.6.23) from the basic equations. 

Linear current profiles 
Analytical solutions to (3.6.21) are only possible for a few special cases. 

The simplest case is the linear current profile for which U”(Z)  = 0. It 
is interesting for perspective to pursue this case. The linear profile can be 
written 

(3.6.24) 

where Us is the current velocity at the MWL z = 0. Then (3.6.21) reduces 
to 

Z U’ 
h US 

U ( z )  = US(l + a- )  = US(l  + - 2 )  

which has the solution 

sinh k ( z  + h) 
=a* coshkh 

(3.6.25) 

(3.6.26) 

I5Equations of this type frequently emerge in hydrodynamic stability problems. For 
detailed discussion, reference is made to Drazin and Reid (1981). 
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and the surface condition (3.6.22) gives the dispersion relation (with c = 

w / k )  

(3.6.27) 

where c, is the relative phase velocity given by w,/k with w, from (3.6.1) 
i.e. 

c: = - 9 tanhkh (3.6.28) 

(3.6.27) is essentially the modified dispersion relation for the case of a linear 
current profile. 

k 

Exercise 3.6-2 Derive (3.6.27) from (3.6.22). Then show 
that the solution to (3.6.27) can be written 

or 

ICU, - w, = w, [ c,- ri - /m] (3.6.30) 

It is noticed that in the case of a linear current, it is the derivative 
U' of the current profile U ( z )  that gives the modification of the dispersion 
relation. 

For the vertical velocity distribution, it is found that the amplitude a, 
is given by 

kU - w, 
tanhkh a' 

a,  = i (3.6.31) 

where a< is the surface amplitude given by 

< = %(aceie) (3.6.32) 

Thus, w, becomes 

w, = R i ( kU - w a ) q  c sinh kh (3.6.33) 

and uw can be determined from the continuity equation. 



164 Introduction to nearshore hydrodynamics 

In conclusion, we see that in a depth varying current the amplitudes of 
the wave velocities as well as the dispersion relation are modified by the 
current. 

As a check we see that if we assume U constant over depth with U = 

U(O), then we recover the dispersion relation (3.6.6). To complete the 
picture, we also realize that for U’(0) = 0, we have w,  - kU = w, by 
(3.6.30) so that (3.6.33) simplifies to 

w, = 8 iw,aC { sinhkh 
(3.6.34) 

which at  the surface z = 0 gives w, = % as in ordinary linear waves. This 
confirms the intuitively obvious result that in a depth uniform current, the 
wave is just convected with the current without other changes, and puts 
the earlier results for depth varying currents into further perspective. 

General current profiles 
For general current profiles, approximate solutions are available if the 

current is assumed weak relative to the wave speed c. This was pursued 
by Kirby and Chen (1989). Expanding both f and c in power series Kirby 
and Chen showed that in the first approximation, the dispersion relation 
can be written in a form similar to (3.6.5). 

- 
wa = w, + kU (3.6.35) 

where here U is a weighted average over depth of the actual current profile 
U (  z )  . U is given by 

I 

U = 7  2k /’ U ( Z )  cosh2k(z + h)& (3.6.36) 
sinh2kh -h 

For a linear current profile they confirm the exact solution (3.6.28) and 
find that in the first approximation U is 

U‘h U = Us - - + O(kh)2 
2 

(3.6.37) 

and 

f(z) = sinh k( z  + h)  (3.6.38) 

Their results imply that the parameter 

(3.6.39) 
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is the parameter that expresses that U << c. Accordingly the second order 
approximation for c, becomes (in our notation) 

c a = U + c r  [1+; ($,”I (3.6.40) 

which corresponds to a Taylor expansion of the exact solution (3.6.28) as 
expected. 

For further details, reference is made to Kirby and Chen (1989). They 
also provide information about the particle motion and other aspects of the 
flow. 

3.6.4 The kinematics and dynamics of wave propagation on 
current fields 

So far we have only considered the local problem of identifying the effect 
of a current on the wave motion, when the horizontal variations of the 
current is assumed slow enough to let the waves adjust to the local current 
conditions “locally constant current”. 

However, in nature waves propagate through current fields that change 
in space and time and the waves change the currents. The question arises: 
what are the laws governing this process. 

This much more complicated problem has been discussed in the litera- 
ture within the framework of the geometrical approximtion, and is briefly 
referenced here. For the cases discussed the waves are assumed not to be 
amplitude dispersive (which means the phase velocity does not depend on 
the wave amplitude). It is then possible to separate the kinematics of the 
wave propagation pattern from the dynamics of how the wave amplitudes 
change, which of course greatly simplifies the solution. The solutions as- 
sume the currents to be so slowly varying that the “locally constant current” 
results developed in the previous section apply, in particular, the Doppler 
version of the dispersion relation (3.6.5). 

This implies that we are essentially looking at an extension of the ge- 
ometrical optics method to a form that includes the effects of currents as 
well as depth, that is a current-depth refraction approach. Because of 
the inherent limitations of the geometrical optics approach, only the princi- 
pal aspects are covered. The review papers by Peregrine (1976), Peregrine 
and Jonsson (1983), Jonsson (1989), to mention a few, give a more de- 
tailed overview of the variety of problems and properties of the solutions. 
In particular Jonsson and co-workers developed a modelling system for the 
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solution of the combined wave current motion within the framework de- 
scribed above. Their solution includes the effect of changes in the MWL 
caused by the changes in the wave motion due to varying depth and also the 
effect of (small) energy dissipation. This is incorporated by the introduction 
of a mean energy level similar to the energy line used in classical hydraulics 
(Christoffersen and Jonsson, 1981). See also Jonsson et al. (1970), Jonsson 
(1978b), Jonsson and Wang (1980). 

The method of ray tracing is used for the wave patterns. The energy 
equation, which is used to determine the wave height variation over the do- 
main includes the wave-current interaction as developed by Phillips (1966, 
1977). The energy equation is used in the form of a wave action equation. 
The derivation of the wave action equation with energy dissipation and the 
principles of the approach is further described in Jonsson (1978a,), Christof- 
fersen and Jonsson (1980), and in Christoffersen (1982). The details of the 
the energy equation in the general form is discussed further in Chapter 4. 

The method, however is limited to irrotational wave motion and it only 
includes wave refration. Hence it is difficult to extend to conditions where 
diffraction is important and to the surf zone where the most active nearshore 
processes take place. The methods presented in the later chapters in this 
text do not have these limitations. For space reasons it is therefore chosen 
to refer readers interested in this method to the quoted references. 

3.7 Combined refraction-diffraction 

3.7.1 Introduction 

The limitation of the simple ray tracing is first of all that it disregards 
possible variations in amplitude along the wave fronts, and disregards the 
effects of curvature of the wave fronts. Such variations become important, 
e.g., in the neighborhood of caustics, and around structures such as break- 
waters that partly obstruct the wave propagation in the horizontal plane. 
These diffraction effects imply that wave energy propagates across wave 
number directions, which was specifically assumed not to happen in the 
simple refraction considered above. It also disregards reflections caused by 
variations in the borrom topography. 

The classical theory for linear constant depth diffraction is based on 
the same basic assumption of long crested waves as the refraction methods 
described above. However it allows for relatively rapid variations of the 
wave field also in the direction perpendicular to the wave fronts. Under 
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such conditions, the wave motion can be described by the so-called wave 
equation. 

For the sinusoidal (“harmonic”) motion this equation, which describes 
the wave motion in time and space, reduces to a Helmholtz equation which 
governs the space variation of the amplitude. It is worth already here to 
emphasize that the wave equation describes the propagation of the wave 
motion in space and time and therefore is a hyperbolic equation. Con- 
versely, the Helmholtz equation describes the (time constant) distribution 
in space of the amplitude and phase of a sinusoidal wave motion, and hence 
is an elliptic equation. 

Few analytical solutions are available for this equation, but one is the 
classical cases of diffraction at constant depth around the tip of a break- 
water by Sommerfeld (1896) and further developed by Penney and Price 
(1952). For further details and discussion of these pioneering works see, e.g., 
Shore Protection Munual (1984). Also the solution for diffraction around 
a (large) circular cylinder by MacCamy and Fuchs (1954) should be men- 
tioned. 

For many years refraction and diffraction were by necessity treated sep- 
arately because no description was available that covered the combination, 
although it is obvious that in most practical problems they occur in con- 
junction. The goal was to  incorporate the effect of the vertical variation 
of the wave motion into an equation that describes the propagation of the 
wave in time over the horizontal x, y-domain. To overcome this, focus was 
turned to the classical (constant depth) wave equation. An extension of 
this equation was derived, again using the assumptions of a depth varying 
so slowly (or gently) that the wave motion locally can be described by the 
constant depth results in Chapter 3.2. The term “mild slope” has come 
to cover this assumption which (in more descriptive terms) implies “locally 
constant depth.” 

This resulted in the Mild Slope Equation (MSE) which was first 
derived for one horizontal dimension by Svendsen (1967), and for the general 
2DH case by Berkhoff (1972). 

This chapter presents and discusses the derivation of the Mild Slope 
Equation. Since this general equation is elliptic in the x, y-plane, it is diffi- 
cult to solve numerically which has lead to development of the parabolic 
approximation for progressive waves (Radder, 1979). This and related 
methods are the basis for important wave models, and it is described in the 
last section of this chaper and in Chapter 6. 
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3.7.2 The wave equation for  linear long waves 

Like the geometric optics approximation the key feature of the vari- 
ous versions of the wave equation is that they provide information about 
the propagation pattern and variation of the wave amplitude in the 2 0  
horizontal x, y-plane in which the effect of the depth variation of particle 
velocities and pressures is automatically incorporated. 

It is instructive first to derive the classical wave equation for long waves. 
This is particularly simple because for long waves there is no depth variation 
of particle velocities and dynamic pressure. 

As starting point, we take the depth integrated continuity equation 

(3.7.1) 

where vh stands for (&, &). As we see, this equation links the surface 
elevation ((x, y, t )  to the depth uniform velocity vector u. 

The momentum equation is, for the inviscid problem considered here, 
the linearized Euler equation which reads 

(3.7.2) 

where p~ is the dynamic pressure. Integrating this equation over the depth 
(0, h) ,  we get (utilizing u and p~ are constant over depth) 

(3.7.3) 

For long waves, we have found that the pressure is hydrostatic, so that 

and (3.7.2) then becomes 

(3.7.4) 

(3.7.5) 

We then eliminate either uh or C from (3.7.1) and (3.7.5). Here we 
choose to eliminate uh. Cross-differentiation (differentiating (3.7.1) with 
respect to t ,  (3.7.5) with respect to Vh) and subtracting one from the other 
then gives 

(3.7.6) 
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which, since gh = c2 for long waves, can be written 

(3.7.7) 

We see that this is the classical wave equation for the surface elevation 

It is clearly a hyperbolic equation, describes the evolution in time and 

However, we notice that we have already found that the basic wave 

((z, y, t )  for long waves on a varying depth. 

space of the wave motion C(z, y, t )  as it propagates. 

components of the problem have sinusoidal phase variation for which 

(3.7.8) 

Hence for constant depth, (3.7.7) is, without additional assumptions, 
equivalent to (using c = w / k )  

+ k2< = 0 I (3.7.9) 

which is a Helmholtz equation. We can write the surface variation < in 
complex form as 

< = 8 { a(z ,  y)ezwt }  (3.7.10) 

where a (z , y )  is the complex amplitude of the wave motion. Thus (3.7.9) 
reduces to 

I v;u + k2a = 0 I (3.7.11) 

We notice that (3.7.11) (and (3.7.9)) are elliptic equations which essentially 
describe the distribution in space of the complex wave amplitude a,  (real 
amplitude and phase). 

The general solution to the long wave equation 
The shallow water wave equation is unusual in the sense that for con- 

stant depth it is possible to obtain a general solution to the equation. This 
is particularly interesting because it is noticed that in the derivation of 
(3.7.7) we did not make any assumptions about the phase motion of the 
wave and we even did not assume that the motion is irrotational. Hence in 
principle (3.7.7) could describe also waves in the surfzone which typically 
would be rotational. 
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To solve (3.7.7) we introduce two new variables instead of x and t :  

t- = 5 - ct and t+ = 5 + ct (3.7.12) 

where 

c =  Jsh 
According to the chain rule we then get 

(3.7.13) 

(3.7.14) 
a a a- a at+ a a 
ax ac- ax at+ ax ace at+ 
- - - -- +--=-+- 

(3.7.15) d d a- d a[+ a d 
at ac- at at+ at at- at+ 
- - - -- +----=-c-+c- 

and similarly 

(3.7.16) 

For constant depth (3.7.7) reads 

- - a2c c 2d2C - = o  
a t 2  a x ~  

and substituting (3.7.16) and (3.7.17) yields 

= o  d2 c 4c2 ~ at- at+ 

(3.7.18) 

(3.7.19) 

where 
with respect to I+ yields 

= <(<-, <+). This equation can be integrated directly. Integration 

3 = fl(t-) (3.7.20) at- 
Integration with respect to <- then gives 

c = f ( t - )+ dt+) (3.7.2 1) 

fl(l-)d<-.  Resubstituting for x and t this can also be where f(<-) = 

written 

I c = f ( x  - C t )  + g(z + Ct) I (3.7.22) 
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This is the general solution to (3.7.18). It is often termed the 
d' Alembert-solution referencing the name of the French mathematician 
d’AZembert (1717-1783) who along with other contemporary mathemati- 
cians studied the wave equation extensively. The important thing to notice 
here is that f and g are arbitrary functions representing surface elevations 
propagating in the positive ( f )  or negative z-direction (9). In other words: 
No matter which surface profile we specify for our linear long wave, it will 
satisfy the basic equation (3.7.18) and hence the original equations (3.7.1) 
and (3.7.2). The solution consists of two components which propagate with 
constant form, f in the positive x-direction, g in the negative x-direction. 
so we have again confirmed that liner wave theory does not place any con- 
straint on the shape of the waves. 

It is that property we utilize in some of the simpler applications for 
surfzone waves when we assume locally constant depth and use linear wave 
properties for waves with non-sinusoidal x and t variations. 

For completeness is mentioned that f ,  g can be determined by the initial 
conditions. If these are given in the form of a wave shape <o(z) = <(z,O) 
and the initial velocity field ~ ( z )  = u(z,O) at t = 0 then the particular 
solution satisfying those initial conditions can be written 

For more details see e.g Greenberg (1988, 1998). 

3.7.3 The mild slope equation 

Derivation of the mild slope equation requires a good deal more care, 
because we now consider an arbitrary depth where the velocity, dynamic 
pressure, etc. vary over depth. 

It turns out here to be more convenient to use a description of the motion 
based on the velocity potential @ which satisfies the Laplace equation 

and the linearized boundary conditions (see Sect. 3.2). 

d!D 1 d2@ 
dz g a t 2  
- + - - = O  ; at ; z = O  

(3.7.24) 

(3.7.25) 
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and 

(3.7.26) 

At this point it often is assumed that the motion is harmonic in time. How- 
ever, it is useful to show that this assumption is not directly needed (though 
(3.7.28) below implies that at least the fast time variation is harmonic). If 
omitted we get an equation similar to the hyperbolic time varying shallow 
water wave equation (3.7.7). 

a@ 
- + f h h . f h @ = O  ; ad ; Z = h  d z  

Instead, we assume solutions of the form 

where the z-variation has been factored out and ds is the velocity potential 
at the MWL. Note that dS can be complex and (3.7.27) includes the effect 
of reflected waves. 

In accordance with the locally constant depth (or mild slope) assump- 
tion we found in section 3.2, that we can use 

coshk(z + h) 
cosh k h  f(.) = 

Then we get 

(3.7.28) 

(3.7.29) 

and hence from (3.7.24) 

v;Q, + k2@ = 0 (3.7.30) 

We also see that 

= o  ; f ( O ) =  1 (g) -h 

and 

W 2  ($)o = ktanhkh = - 
9 

(3.7.31) 

(3.7.32) 

In order to incorporate the effect of the depth variation, we use the 
Green’s 2. theorem in the form (2.2.20) with = 41 = @ and $2 = f, a = -h, 
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b = 0. This gives 

173 

(3.7.33) 

Substituting (3.7.29), (3.7.31) and (3.7.32) for f and the equations 
(3.7.30), (3.7.25), and (3.7.26) for @ changes this to 

&om (3.7.27), we get 

which substituted into (3.7.34) gives 

Here the first two terms on the LHS may be combined to v h (  f ' v h 4 s ) .  

Rearranging terms, (3.7.37) may then be written 

(3.7.38) 
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We may then apply Leibniz' rule to the first two terms on the LHS, by 
which the equation can be written 

As shown in exercise 3.5-8 using (3.7.28) for f (z) gives 

f 2 ( z ) d z  = - - 1 + 7) 2kh 
c2 ( sinh2kh 2 9  

or 

(3.7.40) 

(3.7.41) 

Substituting this into (3.7.39), we get the mild slope equation on the 
form 

The terms on the RHS 

(3.7.43) 

can be shown to be 0((Vhh)2 ,  V i h )  (see Exercise 3.7-5). Therefore, if we 
introduce the mild -slope assumption that Vhh << kh corresponding to S = 
VhhL/h << 1 it can be argued that the ('Jhh)2-terInS << LHS. Similarly, 
letting V i h  << Vhh is also a natural additional assumption because V i h  = 

O(Vhh) can only occur over short distances without changing O(Vhh). 
This is the classical approach to the mild-slope equation? This means the 
RHS << LHS, and in the leading approximation in Vhh, we therefore get 

16However, as will be discussed in section 3.7.4, these assumptions cause certain limi- 
tations to the result. 
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which is the time varying (or hyperbolic) version of the Mild Slope 
Equation. 

Exercise 3.7-1 Show that if we as a consequence of (3.7.28) in- 
troduce time harmonic motion given by 

4s = a 4 ( z ,  y)eiwt (3.7.45) 

the time varying MSE (3.7.44) reduces to 

1 V h ( C C , V h U ~ )  + k2cc,a4 = 0 I (3.7.46) 

This is the equation which is normally referred to as the mild slope 
equation (MSE for short). 

Exercise 3.7-2 Show by differentiating (3.7.44) with respect to t 
and using the dynamic free surface boundary condition 

(3.7.47) 

that we can also write (3.7.44) on the form 

I Ctt - Vh(CCgVh<) + (k2ccg - w2)C = 01 (3.7.48) 

and hence if it is again introduced that 

<(z, Y, t )  = a ( z ,  Y)eiwt (3.7.49) 

we get the MSE as 

I Vh(CC,VhU) + k2ccgVha = 0 I (3.7.50) 

This is another form of the MSE, expressing the wave motion in terms 
of the surface variation a(%,  y). It has the same limitations as (3.7.46). 

Discussion of the MSE 
First it is noted that in the derivation of (3.7.42) described above we 

have actually only utilized the mild slope assumption at one point, namely 
in (3.7.28) where we assume that the locally constant depth approximation 
applies to the vertical varation of the phase motion (and as a consequence 
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that the dispersion relation is given by (3.7.32)). Consequently the R(h)- 
terms that account for higher order terms in the bottom slope, appear 
without further approximations about the bottom slope. In other words, 
given the locally constant depth assumption the rest of the derivation of 
(3.7.42) is not limited to mild slope at all. The consequences of this is 
discussed further in Chapter 3.7.4 where the effects of including the R(h)- 
temrs are analyzed further. 

It is also emphasized again, that the locally constant depth assumption 
which is behind (3.7.28) implies, as shown in section 3.2, that the local time 
variation is given by (3.7.49). Thus the MSE equation represents a wave 
motion with harmonic (i.e. “sinusoidal”) time variation. 

It  may be seen, however, from the derivation that a(z,  y) is the surface 
elevation and a4 the value of the 4s both at a fixed time. This means 
that a and a4 shows the instantaneous position of the water surface and 
value of the velocity potential at the surface. Thus a and a4 include the 
fast variation with (2, y) of ( and 4s, respectively, not just the amplitude. 
This is sometimes called a phase resolving model. 

Exercise 3.7-3 Show that for shallow water waves (3.7.48) reduces 
to the shallow water wave equation (3.7.7). 

Exercise 3.7-4 
The MSE (3.7.46) may be changed to a simpler Helmholtz equa- 

tion by changing the surface elevation a to a scaled elevation E by 
the substitution 

< = & a  (3.7.5 1) 

Show that this simplifies the MSE to the form 

v: <+  k,2 < = 0 (3.7.52) 

which is a Helmholtz equation with k ,  is defined by 

(3.7.53) 
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Relation to the geometrical optics approximation 
The geometrical optics approximation is essentially based on the same 

assumption as the MSE of locally constant depth but with a slowly varying 
amplitude. The waves also have long, continuous crests though they are 
curved, the amplitudes vary along the crests, and they are monochromatic. 
Therefore it is interesting to compare the two theories. 

While the MSE describes the variation of the total surface variation at 
a fixed time, the geometrical optics theory operates with the amplitude A 
of the wave motion. This means that the relation between a and A is given 
bY 

Here A and S are real functions. Substituting this into (3.7.46) we then 
get 

In this equation the real and imaginary parts must balance separately. The 
real part becomes directly 

which can also be written, after division by ccgA 

(3.7.57) 

We see that the eikonal equation of the geometrical optics approximation 
corresponds to neglecting the terms on the RHS of (3.7.57). Those are the 
terms representing the diffraction effects. 

For the imaginary part we get, after multiplying by A 

or 
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which combines to 

This looks very similar to the transport equation of the geometrical optics 
theory. However, there are some subtle but important differences. 

The wave number vector in diffracted waves 

defined the group velocity vector cg by 
In the simple refraction described by the geometrical optics theory we 

k 
cg = cg - 

k (3.7.61) 

(see (3.5.87)), where cg and k are defined by the usual constant depth 
solution. This was possible because in the approximation considered the 
eikonal equation showed that vhSO = k, where Ikl obeys the dispersion 
relation. 

However, as seen from (3.7.57), in diffracted waves vhs # k. It also 
follows from (3.7.54) that S = const still represents wave fronts along which 
the surface elevation is constant except for the slow variation with A. Hence 
we can still define wave rays which are perpendicular to the wave fronts but 
not in the direction of k and which are defined from (3.7.57) 

Similarly we can define a group velocity c; by 

(3.7.62) 

(3.7.63) 

which substituted into the transport equation (3.7.60) gives 

vh (A’CL) = O (3.7.64) 

Here we have used that c = w / k  and divided by w .  We see that the A2cL cor- 
responds to the energy flux of the refracted-diffracted waves. This confirms 
that the wave energy moves in the direction of the group velocity ck and 
the wave rays. However, as (3.7.62) shows vhs deviates from k = ( k z ,  Icy). 
It is the k = Ikl that is used to define the wave othogonals. We therefore 
also conclude that in diffracted waves rays and orthogonals have different 
directions and wave energy does not move along the orthogonals. As shown 
in section 3.6 this is analogous to situations with waves on currents. 
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It is emphasized that it is also k that is used to calculate all the wave 
properties in the underlying linear wave motion, not ( v h S ) 2 .  

Exercise 3.7-5 
The MSE is based on the same equations as the linear wave 

solution developed in Chapter 3.2 and which were used to derive 
the equation for conservation of wave energy (flux). Show that this 
implies that the energy flux in the diffracted waves must be in the 
direction of the normal to the wave fronts as indicated by (3.7.63). 

Hint: use that in linear waves the energy flux is given by 

(3.7.65) 

Finally we see that a measure of the error E from using the refraction 
theory in some form (including the Kinematic Wave theory) is represented 
by the last two terms in (3.7.62) 

(3.7.66) 

If E is << 1 everywhere in the domain the refraction theory gives a good 
approximation to the wave propagation pattern. Here the first term is rec- 
ognized as the approximate measure of the error defined by Battjes (1968) 
for this purpose. 

3.7.4 Further developments of the MSE 

In the years since the first derivation of the MSE for water waves ex- 
tensive research has been conducted into application and further extension 
of this important equation. One line of work lead to the parabolic approx- 
imation described in the next section. Within the frame of the MSE itself, 
however, two major directions have been pursued. 

One is aimed at easing the numerical solution of the equation. Because 
the equation is elliptic the computations become very expensive for increas- 
ing size of the model domain and for even moderate size practical problems 
they eventually become impossible to handle. Mostly this has been done 
by using the hyperbolic time domain version of the equation which allows 
for a marching solution in time. 
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A second major line of research is aimed at relaxing the original con- 
straint of a gently sloping bottom. 

Both these lines are briefly described below in addition to some further 
extensions of the MSE to deal with energy dissipation and with a combina- 
tion of waves and currents. For space reasons the review only describes the 
main features of the development and the reader is refered to the quoted 
literature for a full cover of the details. 

Numerical solution of the time domain mild slope equation 
As shown the MSE is generically a hyperbolic equation (3.7.44) which 

represents waves propagating in time across the region considered in the 
horizontal (z,y)-plane, although it is more often seen used in the case of 
steady monochromatic waves in which case it takes the elliptic form (3.7.46). 

Mathematically elliptic equations describe equilibrium situations. In 
the case of (3.7.46) the equilibrium solution is the distribution at a fixed 
time of the wave surface elevation a (or surface velocity potentioal q5s), 
which results from an incident wave motion with sinusoidal phase variation 
and constant amplitude in time. 

Real waves, however, have time (and space) varying amplitudes. And 
as such waves enter the computational comain, the changes in amplitude 
propagate with the propagation of the wave energy. This process would be 
described (within the limitations of linear wave theory) by the hyperbolic 
form (3.7.44) of the MSE, if solved directly. Another advantage is that the 
hyperbolic form is much easier to solve numerically. 

So the research into this topic takes the starting point in the hyperbolic 
MSE which we repeat here for convenience 

v .  (ccg v C) + (w2 - k 2 C C g ) S  = 0 (3.7.67) 

In one approach to solving this equation Copeland (1985) modified it further 
by reintroducing the monochromatic (i.e. time harmonic) property of < so 
that 

(3.7.68) 

(whereby the capability of dealing with timevarying irregular waves is lost). 
Using this to replace C in the last term in (3.7.67) simplifies the equation 
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to the form 

Copeland further introduces the auxiliary vaiable Qg defined by 

Substituted into (3.7.69) that equation becomes 

aQ, + c c g v <  = 0 at 

(3.7.69) 

(3.7.70) 

(3.7.71) 

Thus the original equation has been split into two simpler, coupled first 
order evolution equations for C and Q g ,  (3.7.70) and (3.7.71). 

These equations are much easier to solve than the elliptic form of the 
MSE. Copeland solved the equations using a low order finite difference 
scheme. Linear forms similar to (3.7.70) and (3.7.71) were also derived by 
Madsen and Larsen (1987) and solved using an AD1 method. 

It is emphasized, however, that because of the assumption of time har- 
monic motion Copeland's equations for the MSE and the methods derived 
from it only correspond to the steady state MSE (3.7.46) and do not have 
the capability to describe the time variations of the full hyperbolic form 

The approach has also been generalized by Suh et al. (1997) and Lee 
et al. (1998) without assuming monochromatic waves to also incoporating 
the small terms (see next section) 

(3.7.44). 

Validity of the mild-slope-assumption 
Throughout the discussion of combined refraction/diffraction problems 

we have used the assumption of a gently sloping bottom, which in our 
formulation corresponds to the slope parameter S = << 1. However, in 
many practical problems S is not so small and the question therefore arises 
how large values of S can be accepted without the results becoming too 
inaccurate to be useful. 

This question was investigated by Booij (1983) who compared finite 
element solutions of the MSE with similar solutions to the exact 3D problem 
solving the Laplace equation. 

The results are very encouraging. The (numerical) tests were performed 
for a plane slope that forms a transition from one water depth h to  another 
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depth h/3. The waves were incident from the deeper section toward the 
slope, and a sensitive measure of the accuracy is the amplitudes of the wave 
reflected from the slope. 

Fig. 3.7.1 shows results for the reflection coefficient versus tan a = 

h, = where Ah was 0.4 m and ws, the length of the slope, was varied 
for the case of normal incidence. In the figure the f’s are the 3D (“exact”) 
solutions, the full curve the MSE solution. We see that in this compari- 
son acceptable accuracy is lost when h, is larger than approximately 1/3. 
Comparisons for the variation of the free surface show similar high accuracy 
over the slope of h, = 1/3.17 

I -- 
0 1  0 2  0 4  1 2 L w, 

0 0 1  L 

Fig. 3.7.1 Booij’s computations (from Booij 1983). 

The incident waves in the tests had koh = 0.6 at  the large depth where ko 
is the deep water value. In terms of the slope parameter S this corresponds 

17Fig. 3.7.2 shows later computations by Suh et al. (1997) which indicate that there 
are inaccuracies in the finite element results in Fig. 3.7.1. 
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to 

hzL s = - = 3.47 
h 

(3.7.72) 

As the waves move toward the upper part of the slope the value of S 
increases even further to a value of 10.4.'' 

Thus we must conclude when it pertains to the accuracy of the MSE that 
our notion of a gentle slope must extend to values well beyond S = O(1). 

Similar comparisons for waves propagating along the slope parallel to 
the bottom contours show high accuracy even for a slope as steep as h, = 
0.8. For details see Booij (1983). 

This could tempt one to conclude that the small terms in the equation 
(3.7.43) will for all practical purposes be negligible. However, it turns out 
that for certain rapidly varying bottom topographies such as a series of 
ripples or undular bars with wave lengths of the order the surface wave 
length the standard MSE is unable to predict the effect of the bottom 
topography. 

The MSE extended to rapid depth variations 
The inability of the MSE (3.7.44) or (3.7.46) to predict the reflection 

from periodic variations of the bottom such as a row of sand bars is caused 
by the following mechanism. When the spacing 1 between the bars equals 
half the wave length L of the surface waves i.e. when 21/L = 1, the (weak) 
reflected waves from each of the bars are in phase as in a resonant oscilla- 
tion. Thus each reflected wave amplifies the total reflection from the bar 
system. The mechanism is known as resonant Bragg reflection. This phe- 
nomenon known from physics was first analysed for water waves by Davies 
and Heathershaw(l984) and Mei (1985). 

It appears that inclusion of the effect of the small terms on the RHS of 
the full MSE (3.7.43) improves the accuracy of the predictions and since 
the first investigations mentioned above numerous studies about this effect 
have been published. 

As may be seen from Booij's analysis in Fig. 3.7.1 the MSE also fails 
to accurately represent the reflection from the plane slope when h, ex- 
ceeds 0.3 - 0.4. Therefore these studies have largely focused on the same 

181n most publications the related parameter 5'1, = h,/kh is used. In the two cases 
mentioned above the values of Sk correspond to 1.67 and 0.56, respectively. However, 
from an intuitive/physical point of view S is much more transparent and makes it easier 
to judge what is a proper value. 
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benchmark tests of the reflection from the slope analysed by Booij and the 
Bragg scattering from ripple beds. 

It may be noticed that the small terms R(h) in (3.7.43) were not in the 
original derivation of the MSE by Berkhoff (1972), but they were included 
in the derivation outlined by Smith and Sprinks (1975). They analysed the 
terms and showed that they are O((Vh h)’, Vih) .  

Exercise 3.7-6 Show that the small terms R(h) can be expanded 
to a the form 

R(h) = R1 (Vhh)’ + RzVih (3.7.73) 

where 

-h 
(3.7.74) 

which confirms that the small terms are O((Vh  h)’, Vih) .  

This is the form of the small terms derived by Smith and Sprinks (1975). 
The proper form of the MSE with the small terms included remains an 

active research topic and the Aow of publications continues, even in 2003 
at the time of writing this. 

As a first step toward improving the prediction of the Bragg scattering 
Kirby (1986) developed what has later been termed the Extended MSE 
(EMSE). He considered the 1D problem and lets the total water depth 
h’(z) be given as a mean (slowly varying) depth h(z) with the periodic 
undulations as small (rapid) modulations S(z). The assumption can be 
written 

h’(z) = h(z) - S(z) (3.7.75) 

The modulations 6(z) can have any shape as long as they are small. 

keeping contributions only to O(6) Kirby arrives at the EMSE 
By inserting this into the MSE including the (Vh h)’, Vih-terms and 
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Hence in (3.7.76) the effect of the small terms has been simplified to the 
last term. 

The simulations using this equation were compared to the laboratory 
measurements for sinusoidal bottom undulations by Davies and Heather- 
shaw (1984). For the resonant frequencies the results are close to the mea- 
sured values. However, as is common even with carefully performed labo- 
ratory experiments unwanted disturbances create a substantial scatter in 
the measured data. But the trend is clear, for frequencies higher and lower 
than the dominant frequency the agreement is less good. 

Further investigations have also shown that while the EMSE describes 
the resonant Bragg scattering from regular bottom undulations with a single 
wave length reasonably well it is much less accurate for bedforms that 
consist of a combination of wave lengths (O’Hare and Davies (1993)). 

Recently this has lead to contributions that retain all the (Vh h)’, Vih)-  
terms in Smith and Sprinks’ original version. Starting with this version 
Chamberlain and Porter (1995) (CP95 in the following) essentially write 
the small terms on the form (3.7.73) and (3.7.74). They then consider the 
original mild slope equation (3.7.42) written for steady harmonic waves as 

v h  . ( C C g v h d ) s )  + ( k2ccg + gR(h)) d)s = 0 (3.7.77) 

CP95 terms this equation the Modified Mild-Slope Equation or 
MMSE and give explicit expressions for R1 and Rz derived from linear 
theory. They show comparisons of this and other approximations not out- 
lined here, including the EMSE with both Booij’s slope computations and 
with the measurements by Davies and Heathershaw (1984). Similar analy- 
sis was also conducted by Suh et al. (1997) using the MMSE separated into 
two evolution equations for q5s and c, with c given by the linear dynamic 
free surface boundary condition 

4 s , t  = - g c  (3.7.78) 

and the equivalent equation for <t. This is obtained by substituting (3.7.78) 
into the time dependent version of (3.7.77) which gives 

(6 + v h  . ( C C g v h d ) , )  + ( k2ccg + gR(h)) d)s = 0 (3.7.79) 

Essentially this system is equivalent to Copeland’s model extended to 
non-monochromatic waves and rapidly varying depth. The two equations 
(3.7.78) and (3.7.79) are then solved numerically and compared to new 
numerical solutions of the full Laplace equation for the normally incident 
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waves on Booij’s slope. Fig. 3.7.2 shows the results which clearly document 
that the MMSE, or equivalent equation like the two evolution equations 
above, give accurate predictions of the reflection coefficient even on ver- 
sions of Booij’s slope as steep as tan a: = 4, (a: = 76”), which corresponds 
to b = 0.1 in the figure). Similar comparisons were made by Lee et al. 
(1998). A truely surprising result considering the MSE and MMSE were 
xiginally derived under the assumption of a locally constant depth, but 
3howing the effect of the R(h)-terms. 

4 
U 
4 
W 
w 0.10 , .  
a) 
0 
U 

. .  
a) 
d 

0.01 

Fig. 3.7.2 Suh et al.’s (1997) computations. - represents the above equations, - - - is 
the MSE, - . - . - the above equations with only the curvature part of R(h) included 
(from Suh et al., 1997). 

Fig. 3.7.2 also shows the result of including only the curvature part 
of R(h).  The good agreement for this case up to very high values of the 
slope (small b)  suggest that the curvature-term is more important than 
the (Vhh)’-term. However, on the Booij slope ‘Lcurvature” only appears 
because in the numerical solution the discontinuity in the slope at the toe 
and top of the slope is represented by a smooth (but fast) transition in 
Vh. Since this is artificial it also suggests that the precise position of the 
dash-dot curve may depend on numerical details that are arbitrary. 
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Lee et al. (1998) also compare the MMSE solution to new results for 
the Davies and Heathershaw experiment. The new experiments show less 
scatter than the original data and hence are better suited than the original 
experiments for judging the accuracy of the model, which generally appears 
to be quite good also for this test. 

The locally constant depth assumption revisited 
In the previous sections we have discussed the importance of the (small) 

R(h)-terms in the MSE. However, considering the extreme conditions under 
which it has been tested it is natural also to ask how well the assumption 
of locally constant depth is satisfied. This was the other side of the mild 
slope assumption that lead to the adoption of the vertical variation of the 
motion given by f in (3.7.28). 

Here it is important for the perspective to recall that the MSE only pro- 
vides information about the wave amplitudes. It seems obvious that if we 
tried to used the f-variation in (3.7.28) to derive e.g. velocity distributions 
for the waves on the steep slope case of the computation with Booij’s slope 
then they could be highly misleading. The surprising thing is that this does 
not seem to seriously impede the accuracy of the amplitude results. But it 
is worth issuing a warning against trying that. 

What happens when the depth changes too fast is that the wave motion 
will not be able to adjust to the local conditions. This was mentioned by 
Smith and Sprinks (1975) and by CP95 and it has been analysed by Massel 
(1993) who finds that additional so-called evanescent terms are needed to 
describe the distortion of the motion. Those are non-propagating terms 
that acccount for the local modifications of the flow field to adjust for the 
inabilility of the motion to adjust to the (too rapidly varying) local bottom 
conditions. 

Another approach in which such effects were included was the initial 
derivation of the 1D MSE by Svendsen (1967). This was based on a so- 
lution for the wave motion on a sloping bottom by Biesel (1952). This 
solution includes terms in the velocity potential proportional to Vhh which 
corresponds to including the first approximation to the deviation from the 
locally constant depth assumption. Jonsson and Brink-KjEr (1973) showed 
that for sinusoidal waves this version is equivalent to the MSE. However, 
the derivation does not include the R(h)-terms. See also Dingemans (1997) 
p257 for a discussion. 
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The MSE for waves with currents 
The derivation and result for the MSE discussed so far is for a purely 

oscillatory wave motion. However, The MSE can also be extended to cover 
situations with waves on currents. For reference see Kirby (1984). 

The situation considered is for depth uniform currents U(x,y). As 
described in section 3.6 the relative and the absolute wave frequencies, w, 
and w, respectively, are then related by 

W, = W, + k. U (3.7.80) 

Here the relative frequency w, satisfies the usual dispersion relation 

wz = gk tanh k h  (3.7.81) 

and in MSE c and cg are the usual (relative) phase and group velocities 
defined by 

(3.7.82) 

The MSE for waves on currents then becomes 

where 

D d  
- Dt = at + u .vh  (3.7.84) 

The MSE with energy dissipation* 
Booij (1981) showed that including a term of the form iwwa in (3.7.50) 

will cause the waves to loose energy while propagating. Here w is an un- 
specified complex damping factor. Thus (3.7.50) becomes 

Different damping models for w representing w-values that simulate sources 
of energy loss to the waves such as a laminar bottom boundary layer, a 
porous bottom and other energy absorbing conditions were discussed by 
Dalymple et al. (1984). 
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3.7.5 The parabolic approximation 

Introduction 
As mentioned in section 3.7.3, the MSE equation for purely harmonic 

waves is an elliptic equation. This implies that a solution requires that it 
is solved in a closed domain with boundary conditions specified along the 
entire boundary. l9 

A second disadvantage of the mild slope equation is that elliptic equa- 
tions are numerically more time-consuming to solve. 

There is therefore a natural incentive for developing an approximation 
to the MSE which bypasses these problems and the so-called parabolic 
approximation serves that objective. It is valid for progressive waves with 
a main direction close to the x-direction and considers waves that vary 
more strongly in that direction than in the derection perpendicular to it. It 
transforms the elliptic equation into an equation which is of first order in the 
main direction of wave propagation (x) while of second order perpendicular 
to that (the y-direction). 

Derivation from the mild slope equation 
Many different approaches have been developed in the literature for 

deriving the parabolic approximation to the MSE, and some of those will 
be discussed later. 

The simplest derivation of the parabolic wave theory is to derive it 
directly from the MSE equation. This also has the advantage of showing 
what the approximation is. 

We therefore consider the MSE (3.7.46) (which implies considering an 
x,y-region with all the constraints of the MSE). Using the formulation 
based on the (surface) velocity potential we write it in the expanded form 

The key to the derivation is (as usual) an appropriate mathematical for- 
mulation of the assumptions underlying the theory. Thus, in a usual z , y  
coordinate system, we consider 

0 The wave motion propagates in a direction close to the x-axis. As the 
waves refract and diffract, they change direction and the accuracy of 

IgA1ternatively, the domain can stretch to infinity in which case only part of the 
domain is modelled and at the boundary simulating the distant far a radiation condition 
is specified. For a discussion see Chapter 11.9. 



190 Introduction to nearshore hydrodynamics 

the approximation decreases with increasing angle between wave and 
x-axis. We use a WKB-approximation in the form 

(3.7.87) 

where C.C. stands for the complex conjugate component and A’(x, y) is 
the (slowly varying) amplitude of C(x, y, t ) .  
As indicated by the fast varying exp-function in (3.7.87) the wave does 
not at any point move exactly in the x-direction. Therefore the de- 
viation from this becomes absorbed in the amplitude A(z,y), which 
is complex. The imaginary part of A(x,y) represents the phase dif- 
ferences between the actual wave motion (moving at a small angle to 
the x-axis) and the motion described by the factor exp(i(J kdx - wt)), 
which represents the primary wave. Furthermore A(x, y) will include 
the (slow) amplitude variations along the wave front. 

0 The variation of the amplitude A is assumed to have different length 
scales in the x and y directions. Denoting these scales by LX and L y ,  
respectively, we assume that 

L x  = 0(E2Lz) (3.7.88) 

where L, is of the order of the wave length and E is a small parameter. 
In the y-direction, the length scale is assumed to be 

L y  = O(EL,) (3.7.89) 

Thus we assume that in the y-direction, the variation of the amplitude 
is an order of magnitude slower than in the x-direction. This can be 
expressed formally by introducing the slow variables X, Y given by 

2 L x  
L z  

X = E x = - x  (3.7.90) 

(3.7.91) 

This implies that A and k are A(X, Y) and k ( X ,  Y), respectively. The 
fast variation given by the exp-function remains unchanged. Then 
(3.7.87) becomes 

LY 
L, 

Y = E y = - y  

(3.7.92) 
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so that in the MSE, we have 

(3.7.94) 
d A  d A  d 2 A  d 2 A  

= c - - ’  = 2- ay d Y ’ d y 2  d Y 2  

0 On the other hand, the depth variation is assumed of the same magni- 
tude in the x and y directions with Vhh  = 0 ( e 2 )  so that 

= 0 ( c 2 k )  
d k  d k  - -  
ax ’ d y  

and similar for ccg which is a function of k .  

This approach is usually called a multiple scale method. 
Substituting (3.7.92), we then get for the differentiations 

(3.7.95) 

(3.7.96) 

where 

O r =  k d x - w t  (3.7.98) J 
The MSE equation then becomes after division by -2 

E ’ ( C C ~ ) X  (e2Ak + ikA’) + ccg ( e 4 A & X  + c22ikAL + €’ilCXA’ - k2A’) 

+ e2 ( c c ~ A L ) ~  + Ic2ccgA’ = 0 (3.7.99) 

Here the O(1)-terms cancel, and if we neglect the O(c4)-terms and con- 
sider only O(e2)-term, we get the relation 

2iccgAL + i ( ~ C C , ) ~  A’ + ( C C ~ A L ) ~  = 0 (3.7.100) 

We see that this is a parabolic equation in X as sought. In this equa- 
tion, the (complex) amplitude A’ is defined to include the phase differences 
relative to the phase angle 6’ which is based on the local wave number 
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k ( X ,  Y ) .  It is more convenient, however, to let the phase differences incor- 
porated in the amplitude refer to a phase angle 0 based on a (constant) 
reference wavenumber ko. This is done by redefining the amplitude as 

A = Alei(koX-J k d z )  (3.7.101) 

Substituting (3.7.101) into (3.7.100), we then get the parabolic equation 
on the final form 

1 2ikccgAx + 2/41? - I?o)cc,A + i(kcc,)xA + (ccgAy)y  = 0 1 (3.7.102) 

It is useful to repeat here that the parabolic approximation assumes a 
primary wave direction in the x-direction. The accuracy of the solution 
will depend on how much the wave direction deviates from x-axis over the 
domain considered. This is analysed more closely in the section below on 
wide angle parabolic approximations. However, in practical applications 
this means that in addition to how much the actual wave directions vary 
over the computational domain the accuracy may depend on how wisely 
the direction of the x-axis is chosen. 

Extended with the featues of energy dissipation, wave-current interac- 
tion, nonlinear effects, etc. described briefly below the parabolic approxi- 
mation form the principal basis for the REF/DIF wave model designed by 
Kirby and Dalrymple (1994). 

History of the linear parabolic equation 
Eq. (3.7.102) is the parabolic approximation to the MSE. It is one of 

the forms found in the literature and it is similar to the linearized version 
of the equation derived by Kirby and Dalrymple (1983a), who also used the 
same nomenclature. 

However, different authors often use different symbols for the same vari- 
ables, which complicates immediate comparisons of the many forms pub- 
lished in the literature. In addition the parabolic equation is often presented 
in terms of different variables. 

The idea of a parabolic approximation for waves was first introduced 
by Leontovich and Fock (1944) for propagation of radio waves in the tro- 
posphcrc, and thc applications have since been extended to many other 
areas in physics such as seismic wave propagation, nonlinear optics, plasma 
physics, and underwater accustics to mention a few. For a review see also 
Mei and Liu (1993). 
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The first derivation for surface water waves was given by Bike1 (1972) 
and then by Radder (1979) who presented the equation in terms of the 
variable Q,+ related to A by 

@+ - Zg A eZkOz (3.7.103) 
W 

(see KD83). The result becomes 

i 
(cc,@+y)y = 0 (3.7.104) 1 cp+x - ilcQ,+ + - (kCC,)XQ,+ - - 

2kccg 2kccg 

where X ,  Y are the slow variables. 
Radder used a derivation starting from the Helmholtz version of the 

MSE, (3.7.50) in which he assumed that the total wave field Q, can be 
divided into a transmitted wave field (essentially the “incident” wave) 
and a (much weaker) reflected field a- so that 

Q, = Q,+ +a- (3.7.105) 

Writing the Helmholtz equation in the form 

d2Q, = - (k’ + $) cp 
8x2 

(3.7.106) 

he then uses an operator splitting technique (Corones, 1975, McDaniel, 
1975) for the operator on the RHS to split the equation into two coupled 
equations, one for @+ and one for @-. By neglecting the contributions 
from the @- field the parabolic equation (3.7.104) is obtained. 

An advantage of this approach is that it emphasizes explicitly that the 
parabolic approximation corresponds to neglecting the reflected part of the 
wave. In the derivation of the parabolic equation shown above that was 
implicitly behind the assumption of considering only waves of the form 
(3.7.87), which is a “progressive” wave. Radders derivation also shows the 
full version of the coupled equations which really is just a transformation 
of the MSE (see Radder, 1979, Eqs. (16a,b)). 

Another approach was used by Losano and Liu (1980) who used a mul- 
tiple scale expansion to obtain the parabolic equation, and Liu and Tsay 
(1983) developed an iterative technique for solving equations similar to the 
two coupled equations of Radder and thereby obtaining also the reflected 
(“backscattered) part of the wave field. 

Sancho (1991) tested several different explicit and implicit finite differ- 
ence schemes and boundary conditions. Since then numerous contributions 
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have been published exploring the parabolic equation method and its ap- 
plications. 

Wide angle parabolic equations 
One of the assumptions behind the parabolic equation is that the waves 

move at a small angle to the x-direction. Two questions arise. One is how 
to assess the effect of that assumption for wider angles and the second is 
to extend the parabolic equation to forms that allow wider angles. 

For simplicity we consider only constant depth in the following. Under 
those conditions the MSE (3.7.46), which we have as a reference, reduces 
to the Helmholtz equation 

V i a  + k2a = 0 (3.7.107) 

Similarly, for constant depth, we have k-ko = 0, and the parabolic equation 
(3.7.102) simplifies to 

2ikA, + A,, = 0 (3.7.108) 

The relation between the amplitude a(x, y) in (3.7.107) and A(x, y) is de- 
termined by combining (3.7.49), (3.7.92) (which shows A’ is the amplitude 
of the surface variation) and (3.7.101). The latter gives with k = ko that 
A = A’. Hence we have 

A e i ( k Z - w t )  = a ePwt (3.7.109) 

or 

Substituting this into the Helmholtz equation (3.7.107) changes this to 

A,, + 2ikA, + A,, = O (3.7.111) 

which is the form of the MSE in the same variables as the parabolic equation 
(3.7.108). 

One effect of wider angles is then seen in the accuracy relative to 
(3.7.111) which the parabolic equation provides when modelling the wave 
number vector k = (kz, k,) for a plane wave propagating at an angle to the 
x-axis, and given by 

c = qx, y) ei(kzz+kYY-wt)  (3.7.112) 
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In the parabolic equation the amplitude A refers to a wave defined by 

c = Y)" i ( kx -wt )  (3.7.113) 

The plane wave (3.7.112) therefore corresponds to an A variation obtained 
by equating (3.7.112) and (3.7.113) or 

A ( z ,  Y) = B(z ,  Y) e i[(k,-k)z+kyyl (3.7.1 14) 

Substitution of this into (3.7.111) gives the relation 

k: + kE = k2 (3.7.115) 

or 

5 k = [1 - (3'1'" (3.7.116) 

which is the exact relation between k , / k  and k,/k that we seek to model. 
As (3.7.116) shows this corresponds to a unit circle in a 5, %-coordinate 
system as shown in Fig. 3.7.3. 

Fig. 3.7.3 
number vector. 
(3.7.118), and the dashed curve to (3.7.124). 

Comparison between the MSE and the Parabolic approximation of the wave 
The solid curve corresponds to (3.7.116), the dash-dotted curve to 

If we also substitute (3.7.114) into the parabolic relation (3.7.108) we 
get 

2k(k ,  - k )  + k; = 0 (3.7.117) 

or 

(3.7.118) 
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which plotted in the 4, $-coordinates represents a parabola as also shown 
in Fig. 3.7.3. This is also called the binomial expansion (Kirby, 1986) 

This result may also be viewed in terms of the wave angle a, between 
the wave orthogonal and the x-axis. We have the exact relation 

kx = k cosa, ; k ,  = ksina, (3.7.1 19) 

and the parabolic equation gives by (3.7.118) 

that is an 

Fig. 3.7.4 

k ,  1 
- = 1 - - sin2 a, 
k 2 

error e of 

k X  1 . 2  e = - - cosoW = 1 - - sin a, - COSQ, 
k 2 

(Kirby 1986) shows the variation of e versus sina,. 

(3.7.120) 

(3.7.121) 

I 
I I I 1 I 

000 0 20 0 40 060 080 IM, -025 

sin 0 

Fig. 3.7.4 The error e versus sincr, (8 in the figure) by different parabolic approxi- 
mations, (from Kirby 1986). Here script 1 correponds to k,. The solid curve marked 
“binomial expansion” corresponds to (3.7.118), the dashed curve marked (1,l) Pad6 is 
(3.7.124). The (2,2) Pad6 approximation shown as the dash-dot curve is not given in the 
text (see Kirby, 1986) 
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The figure also shows the errors generated by various improvements of 
the approximation (3.7.118), which can be considerd a first order Taylor 
expansion of (3.7.116). 

Higher order Taylor expansions for (3.7.116) can readily be constructed. 
Parabolic eqations representing such higher order approximations may also 
be developed by a rigorous multiple scale method. For details see Kirby 
(1986). The next approximation (still for constant depth) in the mathe- 
matical expansion in the small parameter E introduced earlier results in an 
equation which can be reduced to 

i 
2k 2ikAx + A,, + -AzYY = 0 (3.7.122) 

This form of the parabolic approximation to the MSE was first derived by 
Booij (1981). Substitution into this equation of (3.7.115) for A results in 
the relation 

1 
2 

2k(kx - k )  + ky” - -i(kx - k ) k t  = 0 

which solved with respect ot k x / k  gives 

(3.7.123) 

(3.7.124) 

Inspection of this expression will show that it represents a (1,l) Pad6 ap- 
proximation to (3.7.116) (Kirby 1986). The error associated with (3.7.124) 
is also shown in the Fig. 3.7.4, and we see it is much smaller than the error 
using (3.7. 108).20 

Thus improved accuracy leading to only third order derivatives in x, y 
can be obtained by (3.7.122). While further such extensions are possible 
they will also involve higher order derivatives in the parabolic equation, 
which makes it somewhat more difficult to  solve numerically. 

Instead Kirby (1986) suggested approximating (3.7.116) by an expres- 
sion of the form 

(3.7.125) 

’OFor a brief review of the concepts of Pad6 approximations see the appendix to 
Chapter 9. 
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and determining the coefficients ao, al , bl by minimizing the largest error 

e = - - cosa, (3.7.126) kz 
k 

that occurs in a chosen wide angle interval a, fo a,. This is a so-called 
minimax approximation. 

The resulting parabolic equation can be retrieved by writing (3.7.125) 
on the form similar to (3.7.123) and identifying each term as a result of a 
differentiation (termed the method of operator correspondance). The result 
can be written 

2ibl 
2ikA, + 2k2(ao - l ) A  + 2(bl  - al)AYy - -AzYY = 0 (3.7.127) 

k 

For further details, including values of the constants ao, a l ,  bl  for different 
wide angle intervals aw, reference is made to Kirby (1986). The conclusion 
is that the smallest overall errors are obtained for am = 60". Within this 
interval the error in the predicted a, using (3.7.127) is less than 0.1", and 
in k no more than 0.1%. 

The wide angle results significantly increase the practical value of the 
parabolic equation. 

The nonlinear parabolic equation 
An extension to include the first approximation to nonlinear effects in 

the parabolic equation was developed by Kirby and Dalrymple (1983a,b). 
Because the MSE is inherently linear, nonlinear effects can only be analysed 
by going back to  the original equations of motion, here the Laplace equation 
and its (nonlinear) boundary conditions. Kirby and Dalrymple (1983a) 
used a multiple scale method to derive a lowest order nonlinear parabolic 
equation which is given as 

2ikccg A x  +2k(k -  ko)ccgA+i(kccg)x A +  ( C C ~  A y ) y  - kcc, K'IAI' A = 0 
(3.7.128) 

where K' is defined as 

with 

cosh 4kh + 8 - 2 tanh2 lch 
8 sinh4kh 

D =  

(3.7.1 29) 

(3.7.130) 



3.8 References - Chapter 3 199 

It may be noticed that the first four terms in this euation are identical 
with the terms in the linear version (3.7.102). Thus the only nonlinear 
contribution is represented by the last term. 

The parabolic equation for combined wave-current motion 
Similarly the parabolic approximation has been extended to situations 

with combined wave-currents motions. Assuming the currents (U, V )  that 
are weak in comparison to the wave speed (as in most practical cases) Kirby 
and Dalrymple (198310) found the equation takes the form 

(cg + U )  Ax + V AY + i (ko - k ) (cg  + U )  A 

k2 
2 

- -w  - D ( A ~ (  A = o (3.7.131) 

where D is again given by (3.7.130). See also Kirby and Dalrymple (1994). 

The parabolic equation with energy dissipation 
The parabolic equation with energy dissipation is equivalent to the MSE 

with energy dissipation (see there). It was also discussed by Dalrymple 
et al. (1984). Results for w corresponding to different situations can also 
be found in Kirby and Dalrymple (1994). 
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Chapter 4 

Energy Balance in the Nearshore 
Region 

4.1 Introduction 

In this chapter we analyse the energy balance for non-breaking and 
breaking waves. In Section 4.2 we derive a crude version of the energy 
equation for waves and currents in a situation with energy dissipation, and 
in Section 4.3 this equation is written in terms of the wave height, and it 
is shown that under certain conditions a closed form solution can be found 
to the equation. This solution is a generalization of the simple equation 
for conservation of energy used for 1DH wave shoaling with no dissipation. 
It illustrates how, for breaking waves inside a surfzone in the simple 1-D 
cross-shore case, two mechanisms - the shoaling and the energy dissipation - 
counteract one another in deciding the variation of the wave height. Section 
4.4 gives the general form of the energy equation in the 2D horizontal plane 
for combined wave-current motion. This equation is valid for any slowly 
varying wave motion on a depth uniform current. In Section 4.5 it is briefly 
outlined how for linear waves with currents the energy equation can be 
expressed in particularly simple form in terms of the socalled wave action. 

4.2 The energy equation 

We first derive the energy equation on a heuristic basis for combined 
waves and currents with energy dissipation. This will help illustrate the 
basic interactions between different types of energy such as organized me- 
chanical energy (waves, currents), random turbulent energy and energy 
“loss” to heat. In this derivation we seek to determine the change in or- 
ganized mechanical energy under the influence of waves and currents. It 
provides a generic form of the energy equation which can be used for simple 
purposes. 

207 
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Fig. 4.2.1 
horizontal only. 

The variables in the energy balance for a water column - shown for 1D 

In chapter 3 we found that for waves only with no energy dissipation 
we have 

(4.2.1) 

where Efwa is the energy flux which for steady waves only is given by 
(2.6.8). In vector notation this can be written 

In a combined wave-current motion with a time varying current and energy 
dissipation] however, the picture is a little more complex. The following 
analysis is a (somewhat intuitive) derivation that tries to avoid going into 
details that are unimportant for the final result. 

We consider the water column in Fig. 4.2.1. Inside this column we have 
a certain amount of mechanical energy &(za,  t ) ]  consisting of both kinetic 
and potential energy (the latter relative to a horizontal reference level). 
The kinetic energy can be both in the form of organized energy (waves and 
currents) and in the form of turbulent kinetic energy. If we use the still 
water level (SWL) (= z-axis equivalent to z = 0) as reference for potential 
energy, then we have the total mechanical energy & (per unit area) is given 
by 

(4.2.3) 
&(za1 t )  = rho (pgx + 5 p  1 (u2 + 21’ + w2)  
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where u, v, w are the total particle velocities including both waves, cur- 
rents, and turbulent components. 

The energy flux through the vertical walls of the column is still given 
by the same (exact) expression, that is 

1 
E f a ( x , ,  t )  = ( p  + pgz + - 2 (u2 + v2 + w2) u,dz (exact) (4.2.4) 

where so far E f ,  is the flux of total mechanical energy, i.e., both wave, 
current and turbulent energy because p and u, v, w represent the total values 
of those quantities. 

One of the basic principles of physics is that the total energy is con- 
served. The total energy is the sum of the mechanical and the thermal 
energy. Here, however, we are only interested in the mechanical energy. 
Therefore we introduce the concept of energy dissipation 2)h,  which strictly 
speaking means: %he change in the type of energy we have not accounted 
for otherwise”. 

If we consider the energy conservation for the column in Fig. 4.2.1, we 
can express this by realizing that the dissipation of energy Dh is the amount 
of energy transformed from mechanical energy to heat. 

Therefore, the rate of change of total mechanical energy & inside the 
column is 

(4.2.5) 

which means: results from a net inflow of mechanical en- 
ergy -dEf(x,,t)/dx, (minus because the net inflow is positive when 
a E f ( z , , t ) / d X ,  < o), minus the energy transformed into heat (i.e. Dh < 0 
for loss to heat). 

It  is also clear from the definition of E f a  that it can be divided into a 
turbulent and a wave-current part by a Reynolds decomposition (see section 
2.5), so we can write 

where Ef,(z,, t )  is the wave-current (also termed the “organized mechan- 
ical”) part of the energy flux, E;,(z,,t) the turbulent part. 

The total dissipation Dh(x,, t )  can also be divided into two parts: a 

small amount of wave and current energy, Dh(x,, t )  i s  turned directly into 
heat by dissipative forces, whereas the major part DL(x,,t) of Dh(z,,t)  is 
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the transformation of (small scale) turbulent kinetic energy to heat. Thus 
we may write 

Finally the energy density E may be separated into an organized part 
A 

E and a turbulent part E’ by 

n 
&(x,,t) = E (x,,t) +E’(&,t) (4.2.8) 

Therefore (4.2.5) can be written 

(4.2.9) 
at 

+- =-  
at ax, ax, 

However, for turbulent energy E’ we have: Turbulent kinetic energy is 
added (“produced”) from the wave-current energy and extracted from E’ 
due to dissipation. Thus the energy balance for the turbulent part E’ can 
be written 

(4.2.10) 

where “Prod” means the production of turbulent kinetic energy in the col- 
umn per unit time from ordered wave-current energy. 

Substituting (4.2.10) into (4.2.9) we get 

Eq. (4.2.11) is an instantaneous balance of organized mechanical energy 
in the column. We now consider the wave (or time) average of (4.2.11) given 
by the usual - We then get 

(4.2.12) 

It is emphasied that the minus in front of Prod is because Prod is considered 
positive when wave energy is transformed into turbulent energy. 

If the wave motion we consider is steady even over a time scale much 
longer than the wave period then 
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(4.2.13) 

and consequently we have 

(4.2.14) 

which is the equation for simple regular waves in a steady current environ- 
ment. 

Discussion 
We see equation (4.2.11) shows the balance of wave-current energy which 

is similar in structure to the equation (4.2.10) for turbulent energy except 
the Prod-term occurs with the opposite sign. In hindsight we might have 
constructed (4.2.11) directly because it says: The rate of change of wave- 
current energy inside the column originates from three contributions: - 

i) The net inflow - a ’$5’ t, of wave-current energy. 
ii) The loss “-Prod” due to production of turbulent energy from wave- 

iii) The direct dissipation v h  of wave-current energy into heat. 

current energy inside the column. 
A 

A difference between (4.2.10) and (4.2.11) or (4.2.14) is the sign in front 
of the Prod-term, the production of turbulent energy from organized wave- 
current energy. The production of turbulent energy of course emerge as a 
loss in the equation (4.2.11) for wave energy and as a gain in (4.2.10) the 
balance of turbulent energy, but otherwise the two equations are similar. 

For simplicity we drop the in the following so that from now on 
E f a  (xa, t ) ,  say, means flux of organized energy (rather than of total energy). 

The balances and processes are illustrated graphically in Fig. 4.2.2. In 
the figure, the fluxes of Ef(xa,t) and E;(x,,t) are shown as going out 
because a/dx of those quantities positive corresponds to a net outflow. 

Several observations can be made here. 
First we realize that in this heuristic derivation we have not yet dis- 

tinguished between wave and current energy. Both & and Efa represent 
the total mechanical energy. To get a description separating the wave 
and the current energy we have to use the analytical method described in 
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!2) fx, t) aE, (XJ) 
a x  

(Flux out) A e - h e a t )  \ 

Heat in volume 

I energy i y l u m e .  

( F l u  out) 

Fig. 4.2.2 
wave-current flow. 

A qualitative sketch of the energy transfer processes in a turbulent 

section 4.4. This will also reveal the mechanisms for the exchange of energy 
between the waves and the currents. 

Second it is clear that at this level of description we would not be able 
to tell which part of the energy loss goes directly to heat (Dh)  and which 
part is used in producing turbulence (the Prod-term). It is conceivable, 
however, that in all cases of breaking waves Dw << Prod. To be able to 
separate vh and Prod in (4.2.12), we will have to go into much more detail 
than we have done so far and at least develop the conservation equation for 
turbulent energy (4.2.11) sufficiently to be able to evaluate “Prod”. This is 
beyond the scope of the present analysis, and in fact this is far from trivial 
even with today’s increasingly advanced knowledge of wave breaking. 

Another intuitive estimate is that when wave breaking is involved the 
production of turbulent energy due to the currents is negligible relative to 
the turbulence production in the wave breaking. 

For all practical applications for waves and currents, however, it suffices 
to combine the two contributions on the RHS of (4.2.12) into one and term 
it “the loss (or “dissipation”) of wave (and current) energy” V and hence 
to write (4.2.12) in the simple form (dropping also the - signs of wave 
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averaging) 

where 

- - - _ d E f + D  dE - 
at ax, 

(4.2.15) 

V = Vh - Prod 

and & represents the energy density of the combined wave current motion. 
It is then straightforward to realize that if the wave motion is a steady 

wave train whose characteristics do not change (slowly) with time, then the 
energy equation simply becomes 

(4.2.16) 

4.3 The energy balance for periodic waves 

4.3.1 Introduction of dimensionless parameters for 1-D 
wave motion 

In the following we assume that the motion consists only of 1-D regular 
periodic waves. We can then introduce the dimensionless parameter B 
already used for the wave part E f w  of E f  

E f w  = pgcH2B (4.3.1) 

and add a similar definition for the dimensionless energy dissipation D 

(4.3.2) 

The reason for the choice of this form will become apparent later (see 
Chapter 5). 

Substituted into (4.2.15) this becomes 

d H 3  
- (cH2B) = -D 
dX 4hT 

(4.3.3) 

By expanding the differentiation on the LHS and rearranging terms, 
this equation may be transformed into the following differential form: 

1 H ,  + (9 + 2) = - H Z l  
8hLB (4.3.4) 
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where index means d /dx  and 

L = cT (4.3.5) 

is a wave length defined the usual way on the basis of the local phase speed 
c. This local wave length L is well defined because c and T are, but this L 
is fictitious in the sense that it cannot be measured between any two points 
in the wave motion. 

If c(x ) ,  B(z) and D(x)  are known as functions of h, H and T ,  then 
(4.3.4) is a differential equation for H .  

Alternatively, we can write (4.3.4) as an equation for Hlh .  Simple 
rearrangement of terms yields 

2 

(4.3.6) 

Exercise 4.1 
Derive equations (4.3.4) and (4.3.6) 

It  is important to emphasize that the equations (4.3.4) and (4.3.6) as- 
sume very little about the nature of the wave motion. In fact, all that is 
needed to derive (4.3.4) or (4.3.6) is the assumption that the waves are 
periodic and progressive on a slowly varying depth and with no currents. It 
has not even been assumed that the waves are breaking and as mentioned 
earlier: D > 0 could correspond to the generation of waves by wind if we 
include in D the energy added to the column due to the wind action on the 
surface. 

(4.3.4) and (4.3.6) are quite convenient forms of the energy equation for 
waves only. 

Discussion 
If we consider (4.3.6), it can be seen that in a nearshore region with 

decreasing depth the two terms on the RHS represent two counteracting 
mechanisms: 

The H/h-term represents the shoaling effect of changing (decreasing or 
increasing) water depth. If the depth decreases then h, < 0 and c, < 0 SO 

the term normally becomes positive: the shoaling tends to increase H / h .  
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Similarly, bottom friction or breaking corresponds to D < 0 and the 
second term consequently is negative if those mechanisms are in effect. 
Then the last term will tend to decrease H / h .  

Closer analysis will show that for breaking waves the last term will 
dominate immediately after breaking where N / h  is large, provided D is 
sufficiently large and h, sufficiently small. However, as H / h  decreases in 
consequence of this, ( H / h ) 2  will decrease faster than H / h  and hence there 
is a fair chance that the two terms become equal. Hence if the coefficients 
of H l h  and (H/h)'  were constant, that would mean that a breaking wave 
on a steadily decreasing depth would tend to a situation where ( H / h ) ,  = 0 
or H / h  = constant as is often assumed. 

In general, however, the coefficients are not constant. Both c and L are 
decreasing with h but not as fast as h,/h (as e.g. Green's law indicates for 
linear waves). Therefore, as the wave propagates under continued breaking 
into smaller and smaller depth, we find the first term becomes the largest so 
that near the shore H / h  starts increasing again. Consequently H l h  often 
has a minimum at some point in the surfzone. 

4.3.2 A closed form solution of the energy equation 

As the previous discussion indicates the energy equation for short waves 
can be used to determine the wave height variation in the nearshore. It 
turns out that for some quite plausible approximations we are able to give 
a closed form solution for the 1-D cross-shore energy equation (4.3.6) (or 
(4.3.4)), and for sufficiently simple bottom contours the integrals of the 
solution may even be solved in terms of known functions. This solution can 
be useful as illustration of how the wave height depends on the parameters 
involved. 

There are two ways this equation can be solved. 

1st solution method 
In both methods it is necessary in (4.3.6) to assume that h ,  c, B are 

(known) functions of h and T but not of H (as in linear waves). We also 
assume that the dimensionless dissipation D is independent of H .  If we 
introduce the definition 

y z H / h  (4.3.7) 
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then (4.3.6) can be written 

dY 
- dx + Ul(X)Y = u2(z)y2 

where 

h, c, Bx 
Q(5) = - + - + - 

h 2c 2B 
D 

.2(x) = - 
8LB 

This is a first order ordinary differential equation of the Bernoulli 
type. The general form is 

(4.3.8) 

which can be solved by the substitution w = yl-". Hence, in (4.3.7) where 
n = 2 we introduce 

dY 
- + Ul(X)Y = U2(X)Y" dx 

This transforms the equation into 

(4.3.9) 

(4.3.10) 

which is a linear inhomogeneous first order differential equation. The solu- 
tion to (4.3.10) is given by (see e.g. Greenberg, 1998). 

(4.3.11) 

(where C is the integration constant) or 

(4.3.12) 

C is to be determined from H / h  at some reference depth h, where we choose 
to specify the wave initially. This is of course equivalent to specifying the 
boundary condition for (4.3.7). 

The solution (4.3.12) is called a closed form solution because it is 
expressed in terms of integrals of known functions. 

Hence, a solution of the energy equation is possible provided we can dis- 
regard the influence of H / h  on the two functions fl(x) and f2(x). Clearly, 

>' - w-l = ,s fl(X)dX { 1 fi(x)e-f fl(x)dxdx + C H 
h 
-- 
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this means that we cannot have a phase velocity c, dimensionless energy 
flux B or dimensionless dissipation D that depends on Hlh .  

We will later find expressions for B and D in the surf zone (see Section 
5.6) that correspond to a moderate variation only of those quantities with 
respect to H l h .  However, in particular, D turns out to be almost constant 
for a reasonable range of H l h .  B depends slightly more on H l h  but we 
notice that B,/2B is only one of three terms in fl(z) and the h, and 
c, terms turn out to be much larger than the B,-term. Hence, provided 
reasonable values of the dimensionless parameters are used, the solution we 
can determine from (4.3.12) will clearly give some quite relevant guidelines 
as to the variation of H l h  in a surf zone. 

2nd solution method 
An alternative solution method utilizes the physical balance between 

shoaling and dissipation discussed in Sect. 4.2. This method is useful for 
illustrating that actually the problem only has one parameter. The two 
methods of course lead to the same final result. 

To develop the second approach, we define the shoaling coefficient 
K,  (h)  , and a dissipation coefficient Kd( h). 

Consider the reference depth h = h, where we intend to specify the 
wave by giving the wave height H,: 

At h = h, we have H = H, (4.3.13) 

and hence 

We now define K,(h) so that, if there were no dissipation, then at depth 
h we would have the wave height HI given by 

H’(h) = K,(h)H, (4.3.15) 

Thus, without dissipation E f ( h )  can be written 

E f ( h )  = pgc(KsHr)2B 

With no dissipation, however, we have 

(4.3.16) 

(4.3.17) 
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or since H ,  is a constant, we get substituting (4.3.16) into (4.3.17) 

a 
- (cK;B) = 0 
ax, 

(4.3.18) 

In particular, we can of course write 

cK;(h)B = crB,Ki(h,) where K,(h,) 3 1 (4.3.19) 

which gives 

(4.3.20) 

It is important to emphasize that (4.3.18) is a consequence of how K ,  
is defined. Hence, (4.3.18) applies also when we consider situations with 
dissipation. 

With dissipation, the wave height at h may be then written as 

H = Kd(h)Ks(h)Hr (4.3.21) 

where Kd is a dissipation coefficient that accounts for the reduction in wave 
height relative to the value H r  = K,H, we would have with no dissipation. 

Hence, E f  now becomes 

(4.3.22) 

The x-derivative of this can then be written 

which using (4.3.18) becomes 

where 

The energy equation (4.2.15) then reads 

(4.3.24) 

(4.3.25) 
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or 

' K,H,D 
8chTB 

The latter of those equations can be formally integrated to give 

1 
Kd Kdr 8chTB 

(4.3.26) 

(4.3.27) 

where we for convenience have named the integration constant &. And 
since Kd, = 1 by definition, we get 

(4.3.28) 

Substituting this and K ,  from (4.3.20) into (4.3.21) then yields 

(4.3.29) 
- = K , [ l - *  H " D K :  -' 
HT 8c,B,T lT hdx] 

Note that we can define the parameter 

HT h'T - --- K=--  HT 
8c,B,T 8B, h, L,  

where L, = c,T, so that H/HT can be written 

(4.3.30) 

The function under the integration sign 

(4.3.32) 

represents the way in which the variation of h influences the solution. 
So far, no assumptions have been used with respect to waves except: the 

waves are progressive and periodic (progressive because K,  is only defined 
for progressive waves), and that c, D ,  B are independent of H 

c, D ,  B = f ( h , T )  (4.3.33) 

This implies that the expression for H / H ,  is on the form 

(4.3.34) 

where the function g is given by (4.3.31). 
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We see that the only parameter in (4.3.29) is K = &. Hence, we 
conclude that for a wave model (which describes how D and K,  depend on 
h) all waves, that at the reference depth h, have the same K value 
will have the same H/H,-variation throughout the region where 
the solution applies, no matter which combination of H,, h,, B,, etc. 
is used to compose the K value in question. 

In the special case where h is monotonous in x we can express this more 
explicitly because then we can change the ingration variable to h. We get 

h = h(x) 
4 

x = x(h) (4.3.35) 

(4.3.36) 

(4.3.37) 

Fig. 4.3.1 The variation of H l h  in a wave motion with energy dissipation such as 
in a surfzone. It is assumed the dissiation starts at h = h, and that the dissipation 
rate D = conastant. The value of the factor K D  represents the combination of 
the incoming wave characteristics ( K ) ,  defined by (4.3.30), and the dissipation 
rate ( D )  (from Svendsen, 1984). 
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Using K ,  the result for H / H T  can be written. 

Eq. (4.3.31) (or (4.3.38)) is again a closed form solution which may be 
evaluated analytically for some of the simpler variations of the integrand. 
For any integrand, however, it can easily be evaluated numerically. 

Fig. 4.3.1 shows an example of the variation of H / h  for a wave motion 
with dissipation such as in the surfzone. The variation is determined from 
(4.3.38) using the parameters for a plane beach and D = constant. Then 
the factor K D ,  where K is defined by (4.3.30), becomes the only parameter 
for the problem. It is seen that, as decribed earlier, right after breaking 
the wave height to water depth ratio decreases rapidly but as the depth 
decreases the value of H / h  reaches a minimum and then starts increasing 
toward the shoreline. If K D  is too small the shoaling will dominate over the 
dissipation even from the beginning and the value of H / h  never decreases. 
A similar variation was found experimentally by Horikawa and Kuo (1966). 
For further details see Svendsen (1984). 

4.3.3 The energy equation for steady irregular waves 

The concept of a "steady wave train" can be extended to mean a train 
of random waves with a constant spectrum and hence a time independent 
H,,,. If we assume the time averaging underlying (4.2.16) is done over 
sufficiently long time (many wave periods) for the steady wave train then 
the definition of E f  and ID simply means the longterm average of those 
quantities. Thus for the energy flux we can write 

E f  = pgcH2B (4.3.39) 

where B is the dimensionless shape factor for the energy flux defined by 
(3.3.61). Often this averaging is performed while assuming the spectral 
variation of the phase velocity c and the shape factor B are small enough 
to be neglected. Then the longterm averaged expression for E f  in a random 
wave train simply becomes 
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where c and B are evaluated for the frequency of the spectrum correspond- 
ing to H,,,. Notice that strictly speaking this averaging does not require 
sinusoidal waves for c or B though this is often assumed. Similarly for V 
averaging is possible over many waves, but the result depends on which 
expression is used for V (see Section 5.7.1). 

4.4 The general energy equation: Unsteady wave-current 
motion 

In this section we return to the derivation of the energy equation and 
outline a more formal and complete derivation. This approach will also 
provide more details for the generic terms in (4.2.11), including the sepa- 
ration of energies between the waves and the currents and the exchange of 
energy between those two components of the motion. The derivation will 
only be outlined because it is algebraically complex. For a more detailed 
(though still short) derivation reference is made to Phillips (1966, 1977). 

To derive the general equation it is necessary to go back to the Reynolds 
equations and multiply scalarly those equations by u,. This means we 
create an equation with terms of the form 

3 + 
Force . velocity= Force, u, (4.4.1) 

which is the effect (or work-done-per-unit-time) of the forces in those equa- 
tions. We know that the equivalent acceleration terms then can be written 

du, 1 d u t  
a dt 2 dt 
- =--  (4.4.2) 

The result represents the well known principle rate of increase in kinetic 
energy equals the work done per unit time of all external forces. 

Thus we have created an equation for the instantaneous, local variation 
of energy caused by the external forces. 

Those equations then need to be integrated over depth and averaged 
over T .  The details of this rather complicated operation is beyond the 
scope of this text, and we will only discuss the outcome. 

First we realize that the equation that can be derived this way will 
describe the transformation of the total energy, that is the energy associated 
with both wave and current motion. We do want also to have equations 
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for the wave motion only (including the effect the currents have on that 
motion) and for the current motion only (analogously with terms describing 
the effect of the waves on the current energy). 

Hence there will in principle be three energy equations: 

- One for the wave (or fluctuating) part of the energy, 
- One for the (slowly varying) current part of the energy, 
- One for the total energy of the combined waves and currents, which es- 

sentially is the sum of the other two. 

We first introduce some convenient abbreviations of terminology. Thus 
we define the total volume flux Q,  through a vertical section 

c 

- ho 
Qa(t)  =/ u,d~ (4.4.3) 

This is used to define the shorthand terms 

Q2 = QaQa (4.4.4) 

Similarly the volume flux in the waves Qw, (see Section 3.3) is defined by 

c 
= I h o  uW& = (l uwadz) (4.4.5) 

where u,, is the wave part of the total horizontal velocity u, which is 
defined so that ZL, = 0 below wave trough level. This is used to define 

(4.4.6) 2 
(Qw) = QwaQwa: 

Both Q, and Q,, are allowed to  be slowly varying functions of t .  

the definition 
The current velocity is defined by splitting the total velocity u, using 

u, = v, + uw, + u& (4.4.7) 

where ub, = 0 and V, is the current. We assume the current velocity is 
depth uniform and given by 

Q,  - Qw, 

h 
v, = (4.4.8) 

which means we extract the wave volume flux from the total volume flux 
when assessing what is currents and what is waves. 
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Further we notice that, since we write the equations in the general form 
for 2D horizontal motion, the energy flux E f  becomes the vectorial quantity 
E f ,  given by (4.2.4). 

All these definitions will be discussed in more details later, in chapter 
11. 

We then get for the wave averaged energy flux due to the wave motion 
only 

Similarly the energy density E for the wave part of the motion is given 
by 

i = 1, 2, 3 (4.4.10) 

After lengthy derivations (for reference see 0. M. Phillips, (1966, 1977) 
“The dynamics of the upper Ocean,” where a brief account is given) we get 
the following equation for the total energy (waves and currents). 

(4.4.11) 

where, as before, 2) represents the total dissipation (4.2.15) of organized 
energy. 

Since the motion is considered unsteady, there are of course some d / d t  
terms, some of which represent the wave motion, some the current. Under 
the d / d x ,  operator we find numerous terms representing the current or 
the interaction between waves and the currents. Before considering the 
different versions of the energy equation separately, notice that this total 
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energy equation is on the form 

=v aA aB, - +-  at ax, (4.4.12) 

Had V been equal to zero this form would have been similar to that of the 
continuity equation which expresses that mass (or volume for incompress- 
ible flow) is conserved. V = 0 means mechanical energy is conserved, and, 
in general, equations on the form 

da db, - + - = o  
at ax, (4.4.13) 

express that something is conserved, whence such equations are said to be 
on conservation form. Extensive mathematical/numerical results and tools 
are available for such equations or equation systems. 

The reason why (4.4.11) is not quite on conservation form, in spite of 
the fact that we do assume that energy is conserved, is - as described earlier 
- that in (4.4.11) we only consider the total mechanicalenergy, not the total 
thermodynamical energy (see Section 4.2 for discussion). 

The energy equation for the fluctuating part of the motion 
The equation for the fluctuating part of the total wave-current motion 

(the waves) can be obtained by subtracting V, times the momentum equa- 
tion from the total balance (4.4.11). Again, the details are omitted here, 
but the result for the wave related energy becomes: 

= v - V,G (4.4.14) 

For our purposes, this is the important equation because given the currents 
this would be an equation which we could use to compute the wave height 
variation in combined wave and current motion. 

For a start, we notice that this equation is not on conservation form. 
In addition to the RHS of (4.4.12) we now have terms which represent the 
interaction between waves and currents. 

We also notice that if we extract the equation for time varying wave 
motion only by putting V, = 0 in (4.4.14) then we get 

(4.4.15) 
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which is not the trivial extension of (4.2.15) we would have expected from 
the heuristic derivation of the steady case in Section 4.2. 

Comparison of (4.4.15) with (4.4.14) clearly shows the additional terms 
that describe the interaction between the waves and the currents. Essen- 
tially, there are three groups: 

(4.4.16) 

which represents the enhanced (or decreased depending on direction be- 
tween waves and currents) energy flux in the waves: The current moves 
wave energy but not quite the simple amount V, E we would have expected. 

(4.4.17) 

is a term which represents the work that the radiation stress does on the 
current. This is equivalent to the forcing term in the time averaged momen- 
tum equation (see Chapter 11) which accounts for how the waves generate 
the currents. 

is the energy dissipation of the current due to the mean bottom shear stress 
G. This term is included because we have defined D as the total energy 
dissipation in the wave-current motion. Hence D - Vaw is the energy 
disipation in the waves only. 

The energy equation for the current motion 
For completeness, we also show the energy equation for the current 

(or mean motion). It can be found directly by subtracting (4.4.14) from 
(4.4.11) which gives 

(4.4.19) 
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The terms in this equation represent the following: 

-p- : Kinetic energy in the current 
2 h  
1 Qt 

i p g  (c2 - hi )  : Potential energy for the current motion 
2 

(< 0 because the x-axis = the MWL is used as reference 

level, and most of the water is below that level) 

-- 
a 

'p& : Divergence of the flu of kinetic current energy 
dx, 2 h2 

a (pgQag)  : Divergence of the flux of potential energy 
dX, 

Vp% : Work done by the current on the waves 
8% 

V a G  : Energy dissipation due to bottom friction. 

4.5 The wave action equation 

All the energy equations discussed above are expressed in terms of quan- 
tities such as E ,  Eta ,  Q, Qw, etc., that can be evaluated for any linear 
or nonlinear wave motion, with any depth uniform current. However, it 
was shown by Bretherton and Garrett (1968) that for linear ( "sinusoidal" ) 
waves and in a non-dissipative environment ( D  and = 0) the wave part 
of the energy equation can be written in the following simple form 

(4.5.1) 

where cgra is the relative group velocity. 
Thus, when there are no energy losses in the motion, the quantity E l w ,  

is conserved. E / w ,  is called the wave action. For details of the derivation 
see Mei (1983). Christoffersen and Jonsson (1980) (for the steady case) and 
Christoffersen (1982) (for the general unsteady case) showed that for waves 
and currents with energy dissipation (4.5.1) is extended to 

(4.5.2) 
W r  "I a 

where 2) and 

(negative) source terms that modify the wave action as it propagates. 

have the same meaning as above. 
We see that in this Equation the energy dissipation terms act as 
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The strength of this equation is of course that the effect of the current 
and its interaction with the wave motion, which in the general energy equa- 
tion for the wave motion (4.4.14) are explicitly accounted for by the many 
terms in the equation, are here simplified into the terms on the LHS. 

The wave action form of the energy equation for waves with currents 
is used in several wave models, usually enhanced with various other source 
terms (see Chapter 6). 
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Chapter 5 

Properties of Breaking Waves 

5.1 Introduction 

The process of wave breaking on a beach is both one of the most dra- 
matic visually and one of the most important physically for the wave motion 
and for the development of the nearshore currents. 

Breaking of a wave “dissipates” energy (a term defined more closely in 
Section 4.2) and hence causes the height of the wave to decrease. Once a 
wave starts breaking this process has a tendency to continue. However, the 
sustained breaking found in the surfzone on a beach requires a reasonably 
large wave height relative to the water depth to maintain the breaking. 
Therefore the sustained breaking of the type we see in a nearshore surfzone 
will always be associated with a decreasing water depth. In fact if the 
depth is not decreasing fast enough for the (decreasing) wave height to 
remain large enough relative to the water depth, the breaking will stop. In 
particular if a breaking wave passes over the shoreward edge of a longshore 
bar and into the (even slightly) deeper water in the trough behind the bar, 
breaking often ceases almost immediately because the wave height to water 
depth ratio becomes too small. 

Our knowledge about the processes involved in the initiation of and the 
sustained wave breaking is still far from complete. Therefore experimental 
results play an important role in the clarification of these processes. In 
this chapter we will outline the present state of knowledge and seek to 
systematize the insight we can gain using a combination of experimental 
results and simple theoretical approximations. 

In section 5.2 we first briefly discuss the concept of the highest possible 
wave on a given (constant) water depth. Though it will be shown that this 
concept necessarily has nothing to do with wave breaking it is of academic 
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interest. It has also played a prominent role, particularly in older litera- 
ture, and it is still used for (inappropriate) assessments of breaking wave 
heigths. Section 5.3 gives a qualitative discription of the breaking process 
and the classification of breaker types and section 5.4 provides an analysis 
of empirical data for the height of waves at  the initiation of breaking. In a 
way this can be said to describe the highest possible breaking waves. In 
section 5.5 we then look at  the characteristics of waves in the surfzone on 
a beach, and Section 5.6 seek to throw further light on the properties of 
surfzone waves through the use of simple theoretical methods. 

5.2 The highest possible wave on constant depth 

Fig. 5.2.1 
Shown is also a the surface profile of slightly smaller wave. 

Surface elevation for Stokes corner flow for the highest possible wave. 

The question of what is the highest possible wave of constant form that 
can propagate on a constant depth has been intensively discussed in the 
literature since Stokes’ time. Here we only give a very brief account of the 
basic ideas and results. 

Since we consider waves of constant (or “permanent”) form, the flow 
underneath the surface in such a wave can be made steady by observing 
the wave from a coordinate system following the wave at its speed c of 
propagation. Hence the motion in a wave propagating to the right will be 
seen as a steady flow moving towards the left. In such a flow the highest 
point - the wave crest - must have the velocity zero (corresponding to all 
kinetic energy being converted to potential enegy). Thus, seen from a fixed 
coordinate system trough which the wave moves with the phase velocity c, 
the particle velocity at  the wave crest equals c. 

The first important contribution to the discussion was made by Stokes 
(1880)’ who showed that for irrotational waves in the neighbourhood of the 
crest the surface has the shape of a corner with opening angle 120” (see 
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Fig. 5.2.1). However, this solution is only valid locally at the crest and 
says nothing about the shape of the the rest of the wave, so the question 
of the maximum possible height requires further analysis. 

On limited depth h the problem has two dimensionless parameters, h / L  
and H l h ,  where L is the wave length. However, for many years the attention 
was largely focused on waves of infinite length, i.e. L / h  + ca (so called 
solitary waves) because that reduces the parameters to one, ( H / ~ L ) ~ ~ % .  
Table 5.2.1 shows a list some of the results obtained over a period of almost 
100 years. The last value is considered the most accurate. 

Author 
Boussinesq 
McCowan 
Gwyther 
Davies 
Packham 
Fenton 
Longuet-Higgins and Fenton 

Of particular interest here is the result by McCowan (1894) which was 
based on the correct criterion of a particle velocity u = c at the wave crest. 
His value of (H /h )maz  = 0.78 is still (unjustifiably) used even today as the 
breaking index for periodic waves on a slope. 

In deep water the results for the highest wave have been more consis- 
tent. In this case the only parameter is of course the wave steepness H / L ,  
and the values in Table 5.2.2 have been obtained by various authors where 
again the last result is considered correct. 

Havelock 

It is worth to mention that these two cases, infinitely large and in- 
finitely small values of h /L  represent the extremes. The question of the 
highest possible wave for arbitrary h/ L were not propery analysed until 
Yamada and Shiotani (1968) and Cokelet (1977). However, a heuristic 
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interpolation formula for arbitrary h / L  by Miche (1944) is frequently 
quoted in the literature. It gives the highest wave steepness as 

= 0.142 tanh kh (5.2.1) (') maz 

where k = 2 x / L  as usual. 

Exercise 5.2-1 
In the deep water limit Ich + co this formula clearly gives 

(H/L)max  = 0.142 which is almost the exact value. Show that for 
a solitary wave the formula predicts (H /L )maz  = 0.89, compared 
to the exact value of 0.8261. 

For further details of the full variation of (H/h)maz  and (H/L)maz  
on arbitrary depth reference is made to Yamada and Shiotani (1968) and 
Cokelet (1977). 

It  is also worth to mention that although c generally increases with H 
the largest phase speed actually occurs for a wave height that is slightly 
smaller than the highest possible wave. 

For the present context, however, it is important to emphasize that all 
waves of constant form on a constant depth are strictly symmetrical with 
respect to vertical lines through the wave crests and the wave troughs. 
Thus the fronts and the rear of the waves have exactly the same slope. 
Therefore such waves are not at the brink of breaking. They bear no 
physical similarity to a wave breaking on a beach which always becomes 
skew with the front side of the wave crest becoming increasingly steeper 
than the rear side as the wave approaches breaking until the crest tumbles 
forward. 

5.3 Qualitative description of wave breaking 

Wave breaking is usually classified according to a visual impression of 
the process. This description was systematized by Galvin (1968) partly 
based on his own experiments on a plane beach partly on the experiments 
by Iversen (1952). The classification is inspired by wave breaking phe- 
nomena in coastal regions where the widest range of breaking forms occur. 
Even though such a description is insufficient for modelling purposes the 
terminology is useful as a reference frame. 
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The classifiaction operates with the following three breaker types 

(1) Spilling breakers 
(2) Plunging breakers 
(3) Surging breakers. 

Figs. 5.3.1 - 5.3.4 show the three types. 
These three types of breakers are of course canonical examples, and 

on a coast we will find a continuous spectrum of transitions between the 
canonical cases. 

On a plane slope it is primarily the bottom slope h, in combination with 
the wave period, i.e. the relative bottom slope S = h,L/h, that determines 
the type of breaking. Here indexB refers to values at the breaking point. 
In addition the initial wave steepness, usually refered to as the equivalent 
deep water steepness Ho/Lo plays a role (Iversen (1952), Galvin (1968)). 
Galvin presents his results in terms of the parameter BG defined as 

(5.3.1) 

Utilizing the relation (5.4.3) below for the connection between Ho/Lo and 
the value of LB/hg at the breaking point we get 

(5.3.2) 

where SB is defined as h,LB/hB. 

the limits for the three breaker types as 
Transforming the values of BG given by Galvin into values of SB gives 

0 Spilling breaking occurs for Sg < 1.05 
0 Plunging breaking occurs for 1.05 < Sg < 7.6 
0 Surging breaking occurs for SB > 7.6 

Battjes (1974) points out that BG is also connected to a deep water ver- 
sion <o = h , / J m  of the so-called surf similarity parameter 6 .  Utilizing 
again the relation (5.4.3) we get 

(5.3.3) 

which shows that the frequently used surf similarity parameter is also con- 
nected to the slope parameter Sg.  Notice the parameter SB is a local 
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parameter while the other two parameters include the deep water wave 
steepness. 

However, it is also pointed out by Kjeldsen (1968) that the limits be- 
tween the types suggested by Iversen and by Galvin differ somewhat. 

Spilling breakers 

Fig. 5.3.1 
left. 

Development of a spilling breaker. The waves are propagating towards the 

In the ideal spilling breaker the turbulence starts in a very small scale 
at the front side of the wave crest. It has been hypothesized that this is ac- 
tually just a very small scale plunging breaker, but Longuet-Higgins (1992) 
has shown, and Duncan and Dimasc (1996) have confirmed experimentally, 
that at least for some cases the initiation of the spilling breaker occurs as 
a very fast development of a series of small scale undulations just in the 
front of the crest which grow rapidly and turn into turbulence. 

As the wave propagates the extent of the turbulent region expands down 
the slope to cover the entire front. The water closest to the surface is 
tumbling down the front while the flow is constantly fed from beneath. 
Thus a (turbulent and air-entrained) amount of water (called the roller) 
is riding on the front of the wave much as in a moving hydraulic jump or 
bore. Experiments with a special illustration technique by Peregrine and 
Svendsen (1978) show, however, that the turbulence is actually spreading 
beneath the roller as illustrated in Fig. 5.3 .2 .  

If the water depth continues to decrease as on a plane beach the front 
gradually develops similarity with a bore, and the term a periodic bore 
can properly be used. 

Plunging breakers 
The plunging breaker occurs for steeper slopes (i.e. larger values of S ) .  
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Fig. 5.3.2 Experiments showing turbulence spreading underneath a spilling 
breaker. The roller clearly does not represent the limit of the turbulent region, 
and dissipation due to the breaking must take place in the entire turbulent re- 
gion. The white area emerges when tiny bubbles positioned on the free surface 
before the breaking wave arrives are entrained by the turbulence (Peregrine and 
Svendsen, 1978). 

Also, waves with a smaller deep water steepness HO/Lo will travel to  smaller 
values of h / L  before they become large enough to break. Hence at breaking 
the value of S will be larger. Towards breaking the wave becomes very skew 
and the front eventually passes a vertical position shortly before the crest 
shoots forward as a jet that plunges down in a free fall, hitting the trough 
of the wave in front of the crest (Fig. 5.3.3). 

Further shoreward the wave motion attains forms that very much resem- 
ble the periodic bore of the spilling breaker. Ting and Kirby (1995, 1996) 
have found experimentally, however, that there are differences between the 
two type of breakers in the values of some of the wave parameters. 
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* 7 6 5 4  3 2 

Fig. 5.3.3 The development of a plunging breaker. 

Use of the Boundary Element Method (BEM) has made it possible 
computationally to follow the initial overturning of the front till the point 
where the jet hits the surface, first in deep water by Longuet-Higgins and 
Cokelet (1976), and later in arbitrary depth in numerous investigations, by 
Dold and Peregrine (1986), Svendsen and Grilli (1990), Otta et al. (1992), 
Grilli and Subramanya (1994), Grilli et al. (1997) to mention just a few. 

Unfortunately the BEM, which is based on the Gauss theorem, breaks 
down the instant where the jet hits the surface (the computational domain 
ceases to be a simply connected region). 

Surging breakers 

6 5 4 3  2 

Fig. 5.3.4 Surging breakers. 

If the relative bottom slope S is increased further we reach a stage 
where the water depth in front of the breaking wave becomes very small. 
The breaking virtually occurs on the beach itself. Fig. 5.3.4 shows the 
process. It will then be seen, that at the time when the front almost 
reaches the vertical position, the toe of the wave mountain all of a sudden 
shoots forward and runs up the beach. 

In the first two types of breaking (spilling and plunging) essentially all 
the incident wave energy is turned into turbulence and dissipated. In a surg- 
ing breaker, however, the turbulence generation is often limited. Therefore 
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only part of the incoming energy is dissipated. The remaining energy is 
reflected and carried back seaward as a (partially ) reflected wave. Thus 
this breaking form provides a continuous transition to  the full reflection/no 
breaking that occurs when the relative slope S becomes large enough. 

Swash 
The surging breaking also is a situation that today is known as swash, 

and the description above corresponds to the swash motion we encounter 
on plane beaches. 

Typically, however, real beaches are not plane, although that may in 
some cases be a good approximation to the beach profile in the region away 
from the shore. In the immediate neighborhood of the shoreline the beach 
profile often gets rather steep and the beach front just above the mean 
water line has slopes of typically 1 : 10 - 1 : 3. If the tidal variations 
are small enough there also often is a step in the bottom almost at the 
mean waterline. The situation is shown in Fig. 5.3.5,  which also shows the 
breaking and runup that occurs on such beach profiles. 

On the relatively gently sloping bottom before the shoreline the waves 
are often showing spilling breaking or, if the beach has an offshore bar, may 
not be breaking at all in the trough shoreward of the bar and in front of the 
shoreline. Close to the shoreline, however, the wave rapidly steepens and a 
violently plunging breaker develops with only the little water in front of it 
that comes from the downrush on the beach front from the previous breaker. 
Within fractions of a second the large pressure gradients represented by the 
steep surface slope in the breaker accelerate the water and send it up the 
slope at high velocity. In this phase the motion is almost entirely under the 
control of gravity and the relatively weak bottom friction and thus resembles 
a free fall on a slope. The downrush is usually met by and merges with the 
next surge. 

Fig. 5.3.5 Swash on a beach with a bottom step at the shoreline. 
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5.3.1 Analysis of the momentum variation in  a transition 
(Or: Why do the waves break?) 

It is interesting to consider why waves break. In this section we analyse 
the mechanisms that on one side make non-breaking waves unstable so they 
steepen and turn over as breakers, and on the other side seem to stabilize 
the broken waves in a form that only changes very slowly once the breaking 
has been established as in the inner region of the surfzone. 

If we consider the transition in water level in a non-breaking bore or 
hydraulic jump seen from a coordinate system “following” the transition 
and assume all velocities are uniformly distributed over depth, then we 
can analyze the motion using the depth integrated momentum equation. 
Since we are essentially only looking at a large scale nonuniform current, 
there are no wave or turbulence components and the z-momentum equation 
hence simply becomes (omitting the index a since we are only dealing with 
one-dimensional variation in the x-direction, see Fig. 5.3.7) 

dd 
(5.3.4) 

In this form of the equation, we have also utilized that since we consider a 
horizontal bottom we have that 

(5.3.5) 

We will use d for the total local depth (i.e. d = h, + 0.’ 
The equation (5.3.4) describes the momentum balance for a column as 

shown in Fig. 5.3.6. Write (5.3.4) on the form 

(5.3.6) 

Then we see that the left hand side is the rate of change of momentum 
pQ inside the column and the right hand side represents the total forces. 
Clearly, the quantity 

Q2 1 M = - + -gd2 
d 2  

(5.3.7) 
~ 

‘The derivation of these equations can be found in books on classical open channel 
flow. See also Whitham (1974), or Lighthill (1978). However, they can also be derived 
as simplified versions of the nearshore circulation equations for depth uniform currents 
derived in Chapter 11 by assuming constant depth, no wave forcing, i.e. Q,,, S,o = 0, 
and neglecting the turbulent stresses. 
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Fig. 5.3.6 Analysis of momentum flux in a bore. 

is the force on (or “momentum flux through”) any vertical section (as can 
be ascertained directly using the assumptions of depth uniform current 
velocities and hydrostatic pressure). 

From (5.3.6) we may conclude that if the transition in water level is 
going to propagate without change in form, then aQ/& must be zero 
everywhere; i.e., M must be constant. 

We therefore analyze the variation from dl  through d2 of the momentum 
flux, M ,  and show that with depth uniform velocity, hydrostatic pressure 
and no turbulence, M cannot be constant. 

Let 

Then we can rewrite M as (d = d(z)) 

Ufdf 1 
d 2  

M = -  + -gd2 assuming Q = Uldl, everywhere 

dl 1 2d2 
= 3; ‘ gdf . - + -gd - 

d 2 Id? 

(5.3.8) 

(5.3.9) 

or 

M = gdf (7 + i t2) (5.3.10) 

where E = E(z) = d/di (5.3.11) 

The variation of M versus E through the bore is shown in Fig. 5.3.7. We 
see that the maximum value of < is at dz where < = <2 is given by 

(5.3.12) 

(Note: Ez is the quantity called [ in (5.6.63)). 
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Interpretation: Given the parameters (d1,Q) we know M l / p  = + 
i g d f .  We also see that there is one and only one other depth d2 for which 

M2 = Mi (5.3.13) 

and that depth is given by (5.3.12). 

picture shown in Fig. 5.3.7. 
When, however, we analyze M in (5.3.11) between d l  and d2 we get the 

Fig. 5.3.7 Variation of the momentum flux M versus E defined by (5.3.11) through 
a bore if we assume the velocity is depth uniform and the pressure hydrostatic 
from the toe to the top as given by (5.3.11). 

This shows that between the two corresponding depths d l  and d2 there is 
a deficit in M relative to what is required to keep M = const. Consequently, 
at any given point d l  < d < d 2 ,  we will according to (5.3.5) observe a aQ/at ,  
the sign of which depends on d M / d x .  

Using the depth integrated continuity equation 

- + - = o  aQ 
at ax (5.3.14) 

together with the aQ/at  determined form (5.3.5), we can realize quali- 
tatively that the changes we should expect from the above analysis is a 
steepening of the front as is actually observed. 
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And, of course, the steepening will eventually lead to breaking in the 
real world (which would here be represented by a vertical tangent on the 
surface profile). 

Let us assume the bore is initially smooth and non-breaking as shown 
above. Then, we can understand that in a bore (or a wave with the same 
conditions at trough and crest), the following mechanism is then responsible 
for the turbulent breaking: 

t 

H 4 
I /// /// 

nonbreaking 

Fig. 5.3.8 Similarity between the velocity profiles in a (non-breaking) bore and a 
breaking bore seen from a coordinate system moving at the speed of the bore/wave 
so that the motion appears steady. The shape of the equivalent wave has been 
shown as a dashed line. 

Because M is too small between d l  and d2 to satisfy the requirement 
of steady momentum balance, the wave will steepen. How fast depends on 
its relative height. 

When the wave becomes steep enough it will start breaking and the well 
known turbulent front is formed. 

This front, however, represents water particles tumbling down the slope 
near the surface. Hence, we must have a velocity distribution as shown in 
Fig. 5.3.8. 

The nonuniform velocity profile under the front means that the momen- 
tum flux changes from 

M = p ($ + p d 2 )  1 

to 

(5.3.15) 

(5.3.16) 
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(5.3.17) 

is > 1; i.e., Mi > M .  
The steeper the front, the larger the velocity of the particles tumbling 

down the front; i.e., the larger the velocity variation under the front, which 
means o, becomes larger. 

Hence, the breaking represents precisely the mechanism we need for sta- 
bilizing the wave front: The front will steepen until the breaking has created 
an a,-value large enough everywhere for Mi to be constant between dl and 
da. When that is the case, the front can propagate (almost) without change 
of form and we have the quasi-steady breaker proposed by Peregrine and 
Svendsen (1978). In other words, the breaking has stabilized the wave 
form. 

5.4 Wave characteristics at the breakpoint 

Ideally the start of breaking should be defined as the point where the 
energy dissipation begins. That point, however, is very difficult to identify 
experimentally. So is the point where the water surface becomes verti- 
cal as in a plunging breaker. Instead one may consider either the point 
of maximum wave height H,,, or the point of maximum value of the 
breaking index (H/h )max ,  which are both easy to measure using a wave 
gage. Here we use (H/h),,, as the definition of the start of breaking 
(Svendsen and Veeramony (2000) found that the two definitions were vir- 
tually indistinguishable). 

There are two important questions that need to be answered about the 
characteristics at the break point: 

At which point (depth) do the waves start to break? 
What is the value of the breaker index Hlh? 

We first notice that computationally these two questions cannot be 
answered by using simple theories. A simple linear wave theory will of 
course provide no information in itself about when the wave is breaking 
(unless an empirical breaking criterion is introduced), because linear waves 
imply a fixed wave shape. Perhaps more surprisingly, however, even the 
more advanced nonlinear Boussinesq theories are unable to predict when 
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breaking starts, because in Boussinesq waves the stabilizing dispersive ef- 
fects grow very large when the surface curvature becomes large, which pre- 
vents anything that looks like breaking from developing. The wave height 
on a slope can just continue to grow. Also, none of these theories, which 
describe the surface position as the vertical distance above a certain level, 
would be able to describe the overturning of a plunging breaker. The only 
theoretical approach which can predict the initiation of breaking is the 
BEM, which is too computer intensive for most practical applications. 

Therefore in practical models the initiation of breaking is identified 
based on empirical input to the model. 

The breaker index 

20 
0, 

t -  

U 

0 

3 

Fig. 5.4.1 
(from Svendsen and Hansen, 1976). 

The breaker index versus the relative bottom slope S = h,(L/h)~ 
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Fig. 5.4.1 shows a plot of experimental values of ( H l h ) ~  at the break- 
ing point versus the relative bottom slope S at breaking. After numerous 
attempts based on a wide selection of laboratory data Svendsen and Hansen 
(1976) (SH76 in the following) found that this way of plotting the data gave 
the most consistent results. The data used here are from Iversen (1952), 
Iwagaki and Sakai (1976) and data from SH76 (marked ‘?SVA”). It is 
noticed that in the ISVA-data, which are measurements on a 1/35 plane 
slope, the values of ( H l h ) ~  show very little scatter, while there is more 
scatter in the data from Iversen’s (1952) and Iwagaki and Sakai’s (1976) 
measurements, which also show somewhat smaller values for ( H l h ) ~ .  It is 
suspected that the smaller values are caused by small disturbances on the 
intended stable wave form generated in the wave tank. In particular so- 
called free harmonic wave componenets are generated when the wavemaker 
motion is a simple sinusoidal movement in time instead of the exact mo- 
tion appropriate for the finite height waves generated. The free harmonic 
components are likely to cause the breaking to occur a little earlier, that is 
at a point where ( H l h ) ~  is smaller. The free harmonic components were 
suppressed in the ISVA-experiments. Thus it is suggested that the ISVA- 
measurements represent an upper limit for ( H l h ) ~  for very clean, stable 
waves. Similar conditions would probably be present on a beach on a quiet 
day with pure swell which has been cleaned of all disturbances by travelling 
long distances over the ocean from distant storms. 

It is worth here to mention that storm waves also include many small or 
larger disturbances which cause the waves on a beach to break at breaker 
index values smaller than the ideal shown in Fig. 5.4.3. A typical value 
often quoted for the breaker index for H,,, is 0.6, but clearly that also does 
not exclude that individual waves become much larger before they break. 
It is suspected, however, that the values found in the experiments quoted 
in Fig. 5.4.3 are close to the maximum. 

Based on the data the value of ( H / h ) B  may be approximated by either 

(X) = 1.90 (&) 1’2 

(Svendsen 1987) or 

(5.4.1) 

(5.4.2) 

the latter valid for 0.25 < S 1 (Hansen, 1990). 
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We also see that (H/h )B  increases for increasing S-values. This is con- 
sistent with the perception that the breaking process takes some time to 
develop: the steeper the slope the further the wave will manage to travel 
before the breaking actually starts and the larger the breaker index. This 
is in particular the case for the surging breaker. Notice also that ( H / ~ ) B  
may be both smaller and larger than the value of 0.78 which is so frequently 
quoted as the value of the breaker index. 

Breaking position 

Fig. 5.4.2 The value of Llh at breaking versus the deep water wave steepness 
Ho/Lo. From Svendsen and Hansen (1976). 

The diagram Fig. 5.4.1 is only useful for predicting (H/h)B if the value 
of (h/L)B is known at the break point. Since none of the commonly used 
wave theories are able to provide this information empirical input is required 
for this too. Analysis of the same breaker data as above (using cnoidal 
theory to determine the wave length L because h / L  < 0.10 for all the data) 
gives the result shown in Fig. 5.4.2 for the relation between the deep water 
steepness Ho/Lo and the values of (L/h)B at the breaking point. The 
straight line is given by the empirical relation 

( L l h ) ~  = 2.30 ( H o / L o ) - ~ ’ ~  (5.4.3) 
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The scatter in this plot is generally small enough to allow the relationship 
(5.4.3) to act as a guideline. An exception is perhaps the results for the 
steepest slopes 1/10 both from Iversen and from Iwagaki and Sakai’s mea- 
surements, which gives slightly larger values for (L /h )B  than (5.4.3). That 
implies the waves break at a smaller depth than indicated by (5.4.3). Again 
this is consistent with the perception that wave breaking takes a while to 
develop, which particularly shows up on the steeper slopes. 

As can be seen from the analysis above, however, the prediction of 
the wave characteristics at the break point, even from quality laboratory 
data for the simplest case of regular waves on a plane slope, is subject to 
substantial uncertainty. 

5.5 Experimental results for surfzone waves 

The traditional wave theories have all been developed primarily for con- 
stant depth or slowly varying depth. As we have seen for linear waves this 
can be extended slightly to apply to water depth varying so gently that 
we can apply the constant depth results locally using the local depth. The 
requirement is that the dimensionless parameter S = h,L/h is sufficiently 
small. Essentially this means it is assumed that the local conditions suffice 
to describe the local wave motion and this was found to be a valid approxi- 
mation for e.g. some diffraction phenomena (see Section 3.7). The theories 
also normally assume irrotational flow and no turbulence. 

In spite of the shortcomings of the simplifying assumptions, such models 
may be useful because sine wave theory does include many of the important 
mechanisms that characterise also surfzone waves. Hence simplified models 
may give a qualitatively correct picture also of the surfzone processes. 

However, for a closer study of waves before and after breaking this is 
not a good approximation. Measurements show that real breaking waves 
are quantitatively very different from the simplified picture provided by the 
simple theoretical assumptions, i.e. the qualitatively correct picture may 
be quantitatively quite inaccurate. For the reasons described earlier, ex- 
perimental results are important for examining the characteristics of waves 
in the surf zone and for deciding what are acceptable assumptions. 
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Front part resembles [periodic) bore face roler" 
-- ~ 

wave shape 

Fig. 5.5.1 
with no bars (from Svendsen et al., 1978). 

Schematic representation of the surf zone on a gently sloping beach 

5.5.1 Qualitative surfzone characteristics 

Fig. 5.5.1 shows a schematic of a typical surf zone on a gently sloping 
beach with no bars. The waves will initially break at some depth and often 
continue to break until they reach the shore. The term surfzone refers to 
this region. 

Immediately after breaking the waves will usually change quite rapidly 
in the so called outer region which generally has a width of a few to about 
5 - 10 times the breaker depth. Further shoreward of the outer region the 
waves begin increasingly to resemble periodic bores. This has been termed 
the inner or the bore region. In this chapter we review experimental data 
for various wave properties in the surf zone and discuss approximations for 
some of the most important parameters for the wave motion. 

Detailed measurements of surf zone wave properties meet with difficul- 
ties much more serious than in non-breaking waves. Major reasons are the 
bubble entrainment usually associated with breaking, and the highly tur- 
bulent flow conditions in the breaking wave front where it is difficult even 
to define where the free surface is. 

Most of the following measurements are ensemble averaged from results 
for many waves in experiments with carefully controlled periodic waves. 
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Fig. 5.5.2 
phase velocities are somewhat larger than 

Measured phase velocities c r  in the surf zone. It is seen that the actual 
(Svendsen, 1986). 

5.5.2 The phase velocity c 

The phase velocities measured in experiments are absolute velocities ca. 
In a laboratory wave flume there is a weak return current, U .  averaged, 
over the depth it has the value of 

u=-- Qw 

h 
(5.5.1) 

where Qw is the volume flux caused by the waves. This current compensates 
for the forward volume flux Qw created by the waves, since there can be no 
net volume flux in a closed laboratory flume. 

We would then expect the relative phase velocities c, (that is the phase 
velocity relative to the water) to satisfy 

c z  = c, + current = c, - Qw/h (5.5.2) 
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Fig. 5.5.3 Comparisons of c2 /gh  between the experimental data (0) (from Hansen 
and Svendsen (1979)), and Svendsen and Veeramony (2001) and the cnoidal-bore 
model (-), and a model based on sinusoidal phase motion (-.) (from Svendsen 
et al., 2003). 

or 

Qw c, = c,” + h (5.5.3) 

where index a stands for “absolute”, i.e., relative to a fixed observer, and 
m stands for measured. Notice again that c, is the velocity we would 
determine from a theory for waves in water without currents such as the 
the linear wave theory.2 In an example in Section 5.6, we will see that 
Qw/h could typically be 558% of c which means the actual c, is - 1.05- 
1.08 times the measured c z .  Notice also that most wave theories (such as 

2cr is also sometimes called the “intrinsic” celerity, a term we will avoid here. 
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linear or cnoidal wave theory) describe the wave motion in water without 
a ~ u r r e n t . ~  

From Fig. 5.5.2, we see the measured phase velocities c r  are signif- 
icantly above the fi value of linear theory, though the scatter in the 
results obviously is quite substantial. In Section 5.6, we analyze the mech- 
anisms behind the phase velocity of a wave more closely using the theory 
of a nonlinear bore, and show that this results in a similar behaviour. In 
particular the bore results show that c 2 / g h  decreases toward the shore and 
can even get below 1, i.e. near the shore a bore may be slower than a linear 
shallow water wave. This can only barely be sensed in Fig. 5.5.2 but is 
quite clear in the results by Svendsen et al. (2003). They are shown in 
Fig. 5.5.3 which also includes results from before breaking. 

5.5.3 Surface profiles v(t)  
Time series of measured surface profiles reveal that even if the gener- 

ated waves were initially periodic and maybe small enough to be nearly 
sinusoidal at the depth where they were generated we find that 

surf zone wave profiles look very different from, e.g., sine waves. 
the shape of the surface profiles changes as the waves move/propagate 
shorewards while still breaking. 
the variability from wave to wave, although they were all equal when 
generated, is quite significant, in particular in the inner surfzone. 

In Fig. 5.5.4 is shown rl/H versus t /T taken from time-profiles (i.e. 
temporal variations at a fixed point). It exposes more clearly the change 
in shape towards the shore. Note that time increases to the right so that 
these time profiles have the shape of waves propagating to the left, and 
the turbulent front of the wave is on the left hand side of the “crest” of the 
time profile. 

One of the features that can be observed in this figure is that for all 
profiles plotted against t /T ,  the front seems equally steep in time. This 
means that in space the length X of the front is a constant fraction of the 
local wave length L.  To the first approximation we have 

~ = ~ J g h o : d Z  
H c x h  (5.5.4) 

3The phase velocity for waves with the return current is also analysed in Chapter 8 
under the heading “Stokes’ two definitions of c” .  



5.5 Experimental results for surfzone waves 251 

so that the wave steepness H I L  changes as 

H 
L 
-m& (5.5.5)  

which means the steepness of the breaking wave is decreasing as it ap- 
proaches the shore. Since the length X of the front is o( L, this means the 
front steepness will change as 

(5.5.6) 

i.e., the steepness of turbulent front of the breaking waves in Fig. 5.5.4 also 
decreases towards the shore. 

H 
X 
-m& 

Fig. 5.5.4 Development of the surface wave profiles in the surf zone (from Svend- 
sen et al., 1978). The figure shows that as the waves propagate toward the shore, 
the rear side of the waves becomes more straight so that the waves eventually 
approach a sawtooth shape. 

The rear side of the wave time profile is changing too: from a rela- 
tively hollow shape, the rear side becomes more straight so that the waves 
eventually approach a sawtooth shape. 
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5.5.4 The surface shape parameter Bo 

The surface shape parameter Bo defined as 
- 

(5.5.7) v2 ~ 2 Bo = - = ( v / H )  
H2 

is fairly easy to measure. It will appear later in approximate expressions for 
several of the wave averaged quantities in surfzone waves such as radiation 
stress and energy flux. Fig. 5.5.5 shows the variation of Bo for a large 
number of published laboratory experiments for surfzone waves. The figure 
is from Hansen (1990) and it also shows (as solid curves) the values of Bo 
according to the empirical formulas developed by Hansen: 

Bo = BOB [l - u ( b  - h/hB) (1 - h / h ~ ) ]  (5.5.8) 
where 

a = (15too)-' ; b = 1.3 - 10 ( to  - too)  (5.5.9) 
Eo = h x , / J H o T L o  ; coo = h x / h - =  (5.5.10) 

Here BOB is the value of Bo at the breaking point as determined by the 
following (curve fitted) approximation to the value of Bo in cnoidal waves. 

B o b  = 0.125 tanh 11 40/ UB (5.5.11) 

(5.5.12) UB = 10.1 ht20 (Ho/Lo)-' 

Although strictly empirical, we see from Fig. 5.5.5 that this system of for- 
mulas seems to predict the measured variation of Bo reasonably well over 
the entire surfzone for a wide range of h, and Ho/Lo, which are the only 
real parameters of the empirical formulas. 

Fig. 5.5.6 shows the range of variation of Bo predicted by Hansen's 
formulas. 

( .  0 

Discussion of Bo 
The value of Bo reflects the shape of the wave surface profile. Thus a 

sinusoidal wave has Bo = 118 = 0.125, whereas a very long wave with a 
short, peaky crest may have any Bo down to 0 (solitary wave), but often 
has Bo N 0.04-0.05. This development is qualitatively predicted by the 
cnoidal theory for waves approaching breaking (Svendsen et al. (2003)). As 
Fig. 5.5.5 shows at the breaking point, Bo is often as low as 0.05, i.e. much 
smaller than for a sinusoidal wave. However, as Fig. 5.5.5 (or Eqs. (5.5.9)) 
also show, depending on the deep water wave steepness Ho/Lo and bottom 
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The variation of Bo for laboratory experiments in the literature (from 
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Bo from Eq. (5.5.9) and associated equations (5.5.10)-(5.5.10) (from 

slope (represented by t o ,  the so called surf zone similarity parameter), BOB 

can be as large as 0.1. We also see that it rarely reaches the high value of 
sine waves. 

Exercise 5.5-1 
Show that the sawtooth shape wave observed in Fig. 5.5.4 

has a Bo = 1/12 = 0.083, which is also smaller than the value of 
a sine wave because the sawtooth wave is less “bulky” than a sine 
wave. 

5.5.5 The crest elevation q c / H  

The crest surface elevation rlc defined in Fig. 5.5.7 is an important 
parameter in the expression derived later for the energy dissipation. It 
also is a measure of the vertical asymmetry of the waves, with qc/H = 0.5 
representing no asymmetry (as in sine waves or sawtooth  wave^).^ 

4This vertical assymmetry is often in the analysis of wind waves termed the “skew- 
ness” of the wave, a term we here (more illustratively it seems) use for the difference in 
front and rear slope of the wave profile. 



5.5 Experimental results for surfzone waves 255 

Fig. 5.5.7 Definition of the crest elevation vc. 

Fig. 5.5.8 shows the v c / H  in surf zone waves from the same selection 
of experiments used in Fig. 5.5.5. Clearly, at  breaking the waves have 
fairly large vc /H  ratios (0.7-0.8) and the trend is toward decreasing ver- 
tical asymmetry shoreward from the breaking point. Closest to the shore, 
the waves are almost vertically symmetrical ( q c / H  + 0.5) as the waves 
approach a sawtooth shape (see also Fig. 5.5.5). 

The continuous curves are given by the empirical expressions (Hansen, 
1990): 

--  " - 0.5 + [ (2) - 0.51 ( h / h ~ ) ~  
H 

where 

=1-0.5tanh 4851 UB ( .  0 
(5.5.13) 

(5.5.14) 

with UB given by (5.5.12). We see again that these empirical formulas cover 
the data really well and that the vc /H  variation is virtually independent of 
the bottom slope once the value at the breaking point is determined. 

5.5.6 The roller area 

As mentioned a continuously breaking wave has a turbulent front in 
which water is tumbling down towards the trough as the wave propagates 
forward, and this water essentially is carried with the wave and actually 
has particle velocities at the surface slightly larger than the phase speed c 
of the wave. This volume of water is called the roller. Fig. 5.5.9 shows 
schematically the velocity profile in and under the roller in a surfzone wave. 
It is also pointed out that the roller must end at the wave crest, because 
surface particles in the roller by definition flow down the wave front (uw 2 
c). This is not possible mechanically for a particle on the rear side of the 
crest. 

The roller is a well defined region of the wave. This can be understood 
by viewing the flow inside the wave from a coordinate system that follows 
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Fig. 5.5.8 Experimental values of v c / H .  - is the prediction by (5.5.14) (from 
Hansen, 1990). 
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Fig. 5.5.9 Illustration of the characteristics of the velocity field under a wave in 
the surf zone. 

A i v i d i n g  streamline 

/// /// - /// /// 

Fig. 5.5.10 Velocity field under a surf zone wave viewed from a coordinate system 
following the wave. 

the wave with velocity c. We get the velocity field observed from such a 
system by subtracting c from the velocities observed from the fixed system. 
It is emphasized that this of course does not change the flow pattern as such 
- only the way we view it. Fig. 5.5.10 shows the result. In this system the 
flow is nearly steady and going against the direction of wavc propagation 
except in the upper part of the roller where the actual velocity is larger than 
c. Hence the free surface is a streamline. The roller now becomes a region 
of recirculation where the water above the lower limit of the roller stays in 
the roller, the water below passes through the picture from the right to the 
left. The two regions are separated by the dividing streamline shown in 
the figure. This streamline forms the lower limit of the roller. 

The consequence of this is that inside the roller the velocity is larger 
than c in the upper part, smaller than c in the lower part of the roller and 
in average close to c. This also means that the surface roller has velocities 
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far in excess of the particles in the rest of the wave although there is of 
course a continuous variation in the vertical direction. 

Fig. 5.5.11 shows the analysis from Svendsen (1984) of the photographic 
data by Duncan (1981) of the area A of the roller measured in a vertical 
cross section of the wave. This leads to the result 

- - 0.9 = const. 
A 

H2 (5.5.15) 

Later investigations (Okayasu, 1989) have suggested that an alternative 
approximation is to use A / H L  constant (instead of A / H 2  constant) over 
the surfzone where L = cT is the local wave length. These measurements 
suggest that we may use 

- = 0.06 - 0.07 
A 

H L  (5.5.16) 

This result, however, cannot readily be verified from Duncan’s data 
because of the situation he studied: The steady breaker behind a hydrofoil 
towed at some distance below the surface. Such breakers do not have a well 
defined wave length and are in rather deep water so the vertical variation 
of the particle velocity below the roller is rather different from what we find 
in surf zone waves. 

5.5.7 Measurements of particle velocities 

So far, most measurements of particle velocities has only covered the re- 
gion up to or slightly above trough level. The reason is that the instruments 
used (laser-doppler anemometers, accoustic-doppler anemometers) cannot 
easily record between wave trough and crest where there is intermittently 
water and air. 

However, Iwagaki and Sakai (1976) used photographic images obtained 
with stroboscobic lighting in an early Particle Image Velocimetry (PIV) 
method to obtain velocity measurements under the crest of waves at  the 
breaking point. This is exactly the instant when the largest velocities can 
be expected. The extensive measurements for two different bottom slopes 
(1 : 20 and 1 : 30) and a range of deep water wave steepnesses from 0.008 
to 0.051 are shown in Fig. 5.5.12. The measurements of u/c  are plotted 
as function of the dimensionless vertical coordinate E = ( z  + h) / ( vc  + h) 
(qc the surface elevation at the wave crest) which varies from zero at the 
bottom to 1 at the wave crest. The figure also shows the empirical formula 
suggested by Van Dorn (1978) for the velocity profiles under the crest of 
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Fig. 5.5.11 Cross section area A for a roller. Measurements by Duncan (1981) 
(from Svendsen, 1984). 

breaking waves. It is given by 

U 0.1E 
- = 0.2 + 
C 1.125 - E (5.5.17) 

As can be seen this formula assumes that the particle velociy at the crest of 
the breaking wave is exactly equal to the phase velocity c. We also see that 
the measurements give some support to this conjecture which is in keeping 
with the physical ideas of what happens when a wave starts breaking. Van 
Dorn’s (1978) measurements (not shown here) were done for slopes of h, = 

1 : 45,l  : 25, and 1 : 12 but do not distinguish between different wave 
steepnesses. They showed similar good agreement with (5.5.17) for the first 
two bottom slopes, but less so for h, = 1 : 12. Though there is significant 
scatter in the figure in particular near the crest the empirical expression 
(5.5.17) at least gives guidance. 

Figure 5.5.13 shows measurements by Cox et al. (1995) of the entire 
velocity field shortly after breaking in a spilling breaker. Not surprisingly 
the dominating velocity direction is horizontal. More surprisingly perhaps 
is that apart from the region right under the crest the horizontal velocity 
appears to be nearly constant over depth. A linear approximation to the 
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Fig. 5.5.12 Measured velocity profiles under the crests of breaking waves. The 
measurements are by Iwagaki and Sakai (1976), the curve corresponds to (5.5.17). 
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Fig. 5.5.13 
left of the crest (from Cox et al., 1994). 

Measured velocity field in a surfzone wave. Notice the front is to the 

equation for the wave component uw would be 

duw - 1 a p  dTzx  

d t  p a x  d z  
+- ~ - (5.5.18) 

where T~~ represent the horizontal turbulent stresses. Thus from the nearly 
constant values of u, over the vertical we may deduce that the RHS of 
(5.5.18) is nearly constant over depth. This means the turbulent stresses 
do not strongly influence the horizontal velocity uw below trough level, but 
also the pressure gradient has to be nearly depth uniform in that region, 
suggesting the pressure may be nearly hydrostatic. 

This is also confirmed by measurements of z which is of particular 
interest because it occurs for example in the exact expression for the radi- 
ation stress and the energy flux. Figure 5.5.14 shows that z is also nearly 
uniform over depth below trough level. 

We also see that the combination of variables & plotted in Fig. 
5.5.14 and discussed below only varies a little over the entire surfzone. This 
is confirmed by the experiments by Hansen and Svendsen (1986). 

- 
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The magnitude of may be further assessed by considering the linear 
approximation to u, given by 

U ,  = cv/h (5.5.19) 
- 

For u$ this leads to 

Hansen (1990) defines the parameter B, given by 

B -  
- gh(H/h )2  

(5.5.20) 

(5.5.2 1) 

and we see that if (5.5.19) were correct we would get 

B, N Bo (5.5.22) 

Fig. 5.5.15 shows B,/Bo. We see that in general B, is equal to or 
slightly smaller than Bo which means that (5.5.19) gives a little too large 
values of u,. For the present, however, it may be taken as a reasonable 
justification for using (5.5.19) for the estimation of surfzone properties in 
Section 5.6. 

5.5.8 Turbulence intensities 

Measured results for the rms-value, n, of the horizontal turbulent 
fluctuations (the horizontal turbulent normal stress) are shown in Fig. 
5.5.16. Similar to the particle velocities u, the turbulent fluctuations are 
nearly uniformly distributed over depth below trough level. The values 
vary between 2 and 8% of m. Similar results were obtained by Svendsen 
(1987) from analysing published experimental data and, with smaller val- 

ues of 4- (- 0.02 - O . O 3 f l ,  by Nadaoka and Kondoh (1982) and 
by Hattori and Aono (1985)). When compared with the results above for 
u$ it appears that the turbulent normal stress is less than 10% of the u$ 
value and hence within the uncertainty of the calculations in the surfzone. 
This was already observed by Stive and Wind (1982). Therefore the nor- 
mal Reynolds stresses are normally neglected in nearshore computations. 
Other measurements of velocities and turbulent energy are found in Ting 
and Kirby (1994, 1995, 1996). 

- - 
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Fig. 5.5.14 The values of in experiments by Okayasu (from Hansen, 1990). 
The experiments numbered 2/ are on a 1/20 slope, experiments 3/ are on a 1/30 
slope. 

It may also be noted that that 1/.'"/gh decreases relative to toward 
the shoreline while u$/gh(H/h)2  largely stays constant. 

5.5.9 The values of P,,, B, and D 

The shape factors P,, and B, defined in Section 3.3 and D defined in 
Chapter 4, represent the non-dimensional radiation stress, energy flux and 
energy dissipation, respectively. The definitions were 

(5 .5 .23)  s x x  
P,, = - 

PSH2 
Dimensionless radiation stress 
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Dimensionless energy flux Bx = - E f x  (5.5.24) 
PSH2C 

Dimensionless energy dissipation ;D=- PgH3 D (5.5.25) 
4hT 

It turns out that with some care these parameters in the basic equa- 
tions can be extracted from the laboratory measurements of wave height 
and MWS - variation (Svendsen and Putrevu, 1993). The values of P,, 
are determined from the measured MWS variations which are directly 
linked to S,,, and the values of Ex are then deduced from the wave height 

ISVA bar bottom Stive 1/40 
B./BQ 

Fig. 5.5.15 B,/B, (from Hansen, 1990). 
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Fig. 5.5.16 The figure showLthe wave averaged turbulent kinetic energy com- 
ponent in the 2-direction, u". The parameter Q represents a net current flux 
moving with the waves in the experiments (from Hansen and Svendsen, 1986). 

measurements. Some additional assumptions about the roller etc. are made 
to obtain the results and reference for the details are made to the quoted 
paper. Fig. 5.5.17 shows the value of P,, (here P for short) derived that 
way. The experimental results have been divided into four regions of the 
parameter S at  the breaking point 

(5.5.26) 

For comparison the value of P for shallow water sinusoidal waves is 

P = 3/16 = 0.1875 (5.5.27) 

In all intervals of sb, the value of P at the break point is lower than 
for sinusoidal waves. This is in accordance with the observations made 
earlier that at  the start of breaking the waves have short, peaky crests 
and long shallow troughs. The breaking, however, essentially makes the 
wave collapse. This transforms some of the potential energy stored in the 
crest into forward oriented momentum (kinetic energy). Measurements of 
the MWS in this region indicate little change, however, which means the 
radiation stress S,, = pgH2P must be almost constant, in spite of the 
rapidly decreasing wave height after the start of breaking. Therefore we 
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should expect an eqiiivalent increase in P shortly after breaking, and we 

see in Fig. 5.5.17 that this is what actually happens: P increases quite 
dramatically right after breaking starts. This was already conjectured by 
Svendsen (1984). 

Legend 
0.4 > S, 

hjh, 

0.4 < S, < 0.50 s, > 0.85 
0.4 

Legend 
0= 

0 2 2 g  

b 0.2 

0.1 

0 0.1 0.4 0.6 0.8 

Fig. 5.5.17 The variation of P = S,,/pgH2 in laboratory waves. S & W refers to 
the experiments by Stive and Wind (1982), OK is based on data from Okayasu 
et al. (1986), while “ISVA” represents data from Hansen and Svendsen (1986) 
(modified from Svendsen and Putrevu, 1993). 

Further shorewards the value of P decreases again, in some cases to well 
below 0.1. 

Comparing with the linear long wave result of P = 3/16, we see how 
different surf zone waves are. It will be shown in Chapter 11 that the forcing 
of currents and set-up is given by dS,s/dx, and the figure shows that the 
variations of P (i.e., the change in wave shape) contributes to the variation 
of this forcing. 



5.5 Experimental results for surfzone waves 267 

Similarly Fig. 5.5.18 shows results for the dimensionless energy flux B 
(short for Bz).  Here the relevant sinewave comparison is B = 0.125 and 
again it is the derivative of the results that appears in the equation of 
energy. The sine wave theory may be off by as much as a factor of 2 for 
the energy flux because it assumes B = constant and at  a wrong value. 

0.4 > S, 0.85 < S, 0.5 

0.15 

Legend 
S h W 2  

OKS3C1 

2!!SIC1 
0-3- - 
O)(SK3*- 

0 0.2 0.4 0.6 0.8 I 

h j h b  

S, > 0.85 

Legend 

O S Z E  

OKSZCl 

Fig. 5.5.18 
Svendsen and Putrevu, 1993). 

The variation of B = Efw/pgcH2  in laboratory waves (modified from 

Finally, we may look at the value D of the dimensionless energy dissi- 
pation. In Fig. 5.5.19, D is compared to the value Db in a bore or moving 
hydraulic jump. Thus DIDb = -1 as shown in the figure implies the energy 
dissipation in the surf zone wave is the same as it would be in a bore of the 
same height. 

We see that for a sufficiently gentle slope (sb < 0.4), there is a wide 
part of the surf zone where D/Db is constant and not much larger than 
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h/h. 

S, > 0.85 
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h/h, 

Fig. 5.5.19 
same height (modified from Svendsen and Putrevu, 1993). 

Energy dissipation D relative to the dissipation Db in a bore of the 

1. This probably indicates the wave is nearly in local equilibrium (locally 
constant depth conditions are valid). 

( s b  > 0.4) the D/Db becomes 
increasingly larger in absolute value, and the same happens for Sb < 0.4 
as the waves approach the shoreline. As described in Chapter 4 this leads 
to increasing H/h-values as the waves appraoch the shoreline. In terms of 

For steeper slopes, relative to h /L  
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breaking, this suggests that the dissipation is larger than in a bore of the 
same height: the wave is breaking more violently and most likely is unable 
to keep up with the shoaling effect (see discussion of equation (4.3.6)). This 
is actually happening in many experimental results as shown by Horikawa 
and Kuo (1966). 

Exercise 5.5-2 Show that if the waves are modelled by the simple 
energy wave model described in Section 4.3.2, and have a sawtooth 
shape, then as they approach the shoreline we get H + 0, but with 
H / h  --t 2 at  the shoreline (see Svendsen and Hansen (1986)). 

5.5.10 The wave generated shear stress u,’w, 

In symmetrical waves such as sinusoidal waves and other steady uniform 
waves on a constant depth and with no friction we have u,W, = 0. In a 
bottom boundary layer, however, it is found that # 0 (Chapter 10). 

The r,,za = - p x  represents a horizontal shear stress that comes 
from deformation of the wave motion relative to the steady motion on a 
constant depth. In the local momentum balance for the vertical veloc- 
ity profiles in cross-shore circulation - and also in general 3D models - the 
vertical gradient d’LL,W,/dz represents a contribution to the horizontal mo- 
mentum balance in line with the turbulent shear stresses. It  is therefore of 
interest to seek information about this term. 

It turns out that in many of the measurements available u, and w, can- 
not be combined to calculate the value of - because the time series for 
the two components have not been collected simultaneously. Thus slightly 
different waves would provide the data for each of the two components and 
this turns out to disturb the accuracy of the time averaging sufficiently to 
make the results difficult to interpret. However Figs. 5.5.20, 5.5.21 and 
5.5.22 (Ting, 2003) show results of u,zU, obtained from simultaneous mea- 
surement of u, and w, for a wave breaking on a plane beach with slope 
1 : 50. z = 0 is at the MWS. These figures represent measurements in a 
spilling breaker. The first at h/hb = 0.874 is relatively close to the break- 
ing point whereas the second and third are in the center of the surfzone at  
h/hb = 0.590 and h/hb = 0.538, respectively. 

In the measurements shown in Figs. 5.5.20 and 5.5.22 it is obvious that 
the values of u,W, are much smaller than the turbulent shear stress u’w’ 
which is the relevant magnitude to compare with. 

__ 
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For the measurements shown in Fig. 5.5.21 there is quite a bit of scatter 
so the situation is not so clear. However, it turns out that the vertical 
column can be divided into three regions with quite distinct differences in 
the value of 2L,w,. There is an upper region of approximately 10 mm, 
( z  = -10 to -20 mm, approximatly 10% of the depth of 98 mm) where 
the u,W, is in average 35 - 40% of the turbulent shear stress u‘w’. This is 
probably a region strongly dominated by the turbulence from the breaking 
at the surface. In the central region ( z  = -20 to -80 mm), however, the 
average value of u,W, is less than 1% of u‘w‘, which is at least an order of 
magnitude smaller t,han u’w’. In fact in this region it is not possible within 
the accuracy of the measurements to distinguish u,W, from zero. The 
same consequently applies also to the vertical gradient d m / d z .  Finally 
in the lowest approximately 16 - 18 mm we cannot distinguish between the 
two types of shear stresses. At the other two locations u,W, is actually 
larger than u’w’ in the region closest to the bottom. This is likely to be 
mainly in the bottom boundary layer where we would expect the value of 
u,w, to be quite significant anyway due to the boundary layer flow (see 
Chapter 10). 

Attempts have also been made to calculate the magnitude of zL,w, by 
assuming the wave motion is a combination of two sine waves phase shifted 
90” from each other (Deigaard and FredsQe, 1989, Stive and DeVriend, 
1994). This approach, however, results in values of u,W, that are of the 
same order of magnitude as the turbulent shear stress u’w’, a result which 
is not supported by the mesurements shown above. The work is based 
on the sensible assumption that since wave energy is dissipated primarily 
near the surface causing the entire wave motion to decay, energy must be 
transported vertically toward the surface. In the wave decay due to the 
dissipation in a bottom boundary layer (see Chapter 10) it is found that 
this generates a weak distortion of the wave motion above the boundary 
layer that provides the necessary vertical energy transport in the potential 
part of the flow above the boundary layer. For shallow water waves this 
transport turns out to be propotional to Uurw,. 

In a surfzone wave, however, the turbulence extends over the entire 
depth and the assumption that the wave motion can be approximated by 
two sinusoidal components phase shifted 90” does not seem to catch the 
main mechanisms of the flow. The interpretation of the measurements is 
that it is primarily the turbulent shear stresses that provide the necessary 
vertical energy transport, but this remains to be proved. 

- 

- 
___ 

- 

- 
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(X-X,)/hb = 6.95, hlh, = 0.871, H/h = 0.521 

0 
0 
0 

-20 -1 5 -10 -5 0 5 
Stresses (crn2/sZ) 

D 

Fig. 5.5.20 generated by 
the deformation of the wave breaking in the surfzone and the turbulent Reynolds 
stress m. Squares represent the -, 0's the values of m. z is the vertical 
distance below SWL. The wave is a spilling breaker, and the meaurements were 
taken in the outer surf zone at h/hb = 0.874 (courtesy F. Ting, 2003). 

Measured values of the shear stress r w , t z / p  = 

Thus at present there is no satisfactory understanding of what generates 
the u,W, stress. The few measurements available suggest that this wave 
shear stress is small in comparison to the turbulent stresses., and this will be 
the assumption used in the analysis of the cross-shore circulation currents 
called undertow (see Section 12.2) and in general 3D currents (Chapter 13). 

5.6 Surfzone wave modelling 

5.6.1 Surfzone assumptions 

In the following we review some simple theoretical approximations for 
the wave averaged properties such as volume, momentum and energy flux 
in surf zone waves, much as we have already done for linear waves outside 
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(X-vh,  = 23.96, hlh, = 0.590, Hlh = 0.456 

Shear Stress (cm2/s2) 

Fig. 5.5.21 Measured values of the shear stress T ~ , = ~ / P  = 2Lwwu, generated by 
the deformation of the wave breaking in the surfzone and the turbulent Reynolds 
stress u". Symbols as in Fig. 5.5.20. The wave is a spilling breaker, and the 
meaurements were taken in the central surf zone at h/hb = 0.590 including setup 
(courtesy F. Ting, 2003). 

the surf zone. We also examine the similarities between a surfzone wave 
and a periodic bore and use this to determine approximations for the phase 
velocity and energy dissipation in surfzone waves. 

The basic ideas in these estimates are: 

(1) The approximations of linear shallow water theory can be applied. By 
superposition of waves linear theory basically allows any wave form 
~ ( x ,  t )  (sine waves is just one, see Section 3.4.3). However, linear long 
waves have hydrostatic pressure 

and a depth uniform velocity given by 

(5.6.2) 
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(x-qlh, = 26.94, h/h, = 0 538, H/h = 0.465 

-10 -8 -6 -4 -2 0 2 
Stresses (Cm2/s2) 

Fig. 5.5.22 Measured values of the shear stress rw,,,/p = u,wW generated by 
the deformation of the wave breaking in the surfzone and the turbulent Reynolds 
stress u/w’. Symbols as in Fig. 5.5.20. The wave is a spilling breaker, and the 
meaurements were taken in the central surf zone at h/hb = 0.538 including setup 
(courtesy F. Ting, 2003). 

where c is the phase velocity. This also implies that 

w << u, (5.6.3) 

(2) The actual particle velocities under a broken wave are indicated by the 
velocity profiles shown in Fig. 5.5.9. The major feature distinguishing 
the velocity field in a surfzone wave is the “roller”. 

(3) We simplify this velocity distribution as shown in Fig. 5.6.1. In the 
roller the average velocity is constant and equal to c. The cross- 
sectional area of the roller in an 2, z-plot is A,  which is a geometrically 
well defined quantity that must (and can in principle) be measured or 
estimated. Below the roller the velocity is also depth uniform and equal 
to the value required to satisfy that the instantaneous volume flux Q 
in the wave motion is given by 

Q = c r l  (5.6.4) 
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This is a purely kinematical relation which is exact for a wave of con- 
stant form. Under such conditions it therefore includes the roller con- 
tribution to &. 

I 
Fig. 5.6.1 
roller, and definitions of the parameters used. 

Approximation for the velocity profile in a surf zone wave with a surface 

It turns out that the roller represents an important contribution from 
the breaking process to the wave averaged quantities such as the volume 
flux, radiation stress and energy flux for surf zone waves. 

The linear long wave theory leads to a phase velocity of 

c = f i  (5.6.5) 

However, the experimental results shown in Sect. 5.5 showed that the actual 
phase velocity can be 10 - 20% higher than the linear value and this will 
also be confirmed by the theoretical results below. Hence, in the following 
derivations we will simply assume that 

c = a& (5.6.6) 

5.6.2 Energy flux E f  for surfzone waves 

We first consider the energy flux in the form 

(5.6.7) 
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where for plane waves (w = 0) 

(5.6.8) 1 1 1 
= -/' pgcH2 -ho [PD + zp(u% + w i )  udz 

For the first term we get (with e(z, t )  equal to the local height or thickness 
of the roller as defined in Fig. 5.6.1) 

= pgc-(h v2 + r ]  - e )  + pgcw (since ho + ( - e = h + r] - e )  h 

2 v  "" ) + pgcH 3 =pgcH2 -+---  v2 713 (- H 2  H2h  - H2h 

because 
-~ - 
r]3 er]2 7 2  - << - 

H2h'  H2h'  H 2  H 2  
-- 

Hence we can write 

where 

(5.6.10) 

(5.6.11) 

(5.6.12) 

(5.6.13) 

To evaluate the second term in (5.6.8), we use the approximation for the 
velocity distribution shown in Fig. 5.6.1. We then get, using (5.6.2) 

For the first term in (5.6.14) we have 

1 3 v 3  
1 c-e 

uidz = -pc - (h  + r ]  - e )  2 pL ho 2 h3 

2 z H (  7 ) '  [1+ 2 - '1 (5.6.15) 
h h  

N -pga cH - - 
2 h H  

where a is given by (5.6.6). 
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Hence to the first approximation this term becomes 

(5.6.16) 

Because q3 is both positive and negative over a wave period whereas q2 
is positive only and q / H  < 1 we see that we must have 

(5.6.17) 

We therefore conclude that the first term in (5.6.14) is << the first term 

For the second term in (5.6.14) we get 
in (5.6.8). 

1 c  1 
5 p i - e  c3dz = -pc3e 2 

where for e we have 

(5.6.18) 

l T  
2 = L e ( t ) d t  

since d x  = cdt if the waves are of permanent form. 
Thus the final result for (5.6.14) becomes 

(5.6.20) 

For completeness it is mentioned that, as could be expected, the last term 
in (5.6.8) is even smaller than the second because ww << u,. 

Combining (5.6.12) and (5.6.20) then yields 

(5.6.21) 

Here c / g T  can also be written as 

(5.6.22) 
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Ef,, can also be written 
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Ef , ,  = pgcH2 Bo + -a -- ( 2 H L H  
(5.6.23) 

Therefore B can be used in two different forms 

B=Bo+ (5.6.24) 

Notice that A / H 2  = const. and A I H L  = const represent different varia- 
tions of B with h: 

A h  
- const + - - - over the surfzone 
A 

H2 H2 L (5.6.25) 

A h  
H L  H L  H 

const + - - N const over the surfzone if H l h  is constant 
A - 

(5.6.26) 
Therefore it is not quite without consequence which expression is used for 
the area of the roller. 

Exercise 5.6-1 
Show that non-breaking sine waves have 

G = -  2kh (5.6.27) 1 
16 sinh 2kh 

A=O ; B = - - ( l + G )  

so that 

E f w  = -pgcH2 1 + 7 16 ( sinh2kh (5.6.28) 

as found in Section 3.3. 
Show that for long waves (already assumed) this means 

1 
8 E f w  = -pgcH2 corresponding to B = Bo = 0.125 

(5.6.29) 

Exercise 5.6-2 
Consider breaking waves with 

A 
H2 
- N 0.9 ; c = fi (i.e. a = 1)  (5.6.30) 
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Show that if we have h / L  = 0.05 we get 

A - -0.0225 
2 H 2  L (5.6.31) 

or 

EfW = pgcH2 (Bo + 0.0225) (5.6.32) 

Here Bo must be estimated from measurements or using Hansen’s 
(1990) formulas (see Section 5.4). If Bo = 0.125 (sinusoidal waves) 
we see that the roller contributes close to 20% to the energy flux, 
but much more when Bo - 0.06 - 0.08 However, by using A = 
const.  H 2  the value of Efw decreases toward the shorelline. 

Exercise 5.6-3 
Some numerical results (Okayasu 1989) suggest 

A 
- - 0.06 - 0.07 is constant, 
H L  

Assuming H / h  = 0.6 show that we get 

- 0.05 - 0.06 
1 A  h 
2 H L  H 
--. - 

and hence 

(5.6.33) 

(5.6.34) 

Ef, = pgcH2 (Bo + 0.05) (5.6.35) 

Thus if Bo = 0.125 the roller in this approximation contributes 
approximately 40 - 45% to the energy flux. 

Measurements (see Fig. 5.5.5) also show that typically 

Bo - 0.065 - 0.10 (5.6.36) 

In conclusion the likely range for B o b t a i n e d  by heuristically com- 
bining the smallest values of Bo and A and the largest values of Bo and 
A-becomes 

} (5.6.37) 
0.065 + 0.0225 = 0.0875 (possible minimum) 
0.10 + 0.050 =.0.150 (possible maximum) 
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When this is compared with the results in Fig. 5.5.18 of analyzing mea- 
surements directly we see that, except for a short interval in one of the 
experiments, the value of B generally stays below 0.15 and generally also is 
above 0.065. Thus (5.6.37) is within the range of Fig. 5.5.18. 

5.6.3 Radiation stress in surfzone waves 

We next look at the two S,, components: 

(5.6.38) 

(5.6.39) 

For the first we get 

c 
pc2-dz v2 + 1. pc2dz where: C = q + l  

c-e 

sm = lh0 h2 

= pc 2 - r12 . ( h-  e )  +pc2 .  e 
h2 

because elh << 1. 
Hence we get for S, the approximation 

Sm = pgHZ$ [g+ $;] 
which means 

Sm = pgH22 [ n o  + &:] 
gh 

or 

Sm = pgH2a2 Bo + - .  - [ LH H 

(5.6.40) 

(5.6.41) 

(5.6.42) 

(5.6.43) 
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S , , = p g H 2 ( ( a 2 + i ) B o + a  3 A ') 

Similarly we get for S,, neglecting the w2-term, which represents the devi- 
ation from hydrostatic pressure 

(5.6.45) 

which results in 

S x x = p g H 2 ( ( a 2 + i ) B o + a  E H  A ') 

(5.6.44) 

(5.6.46) 

or 

Some examples will further illustrate this. 

Exercise 5.6-4 Long, non-breaking sine waves have 

1 
A = O  , a = l  , B O = 8  (5.6.47) 

Confirm using the above expressions that this gives 

3 
S,, = z p g H 2  = 0.183pgH2 

as we know from earlier. 

(5.6.48) 

Exercise 5.6-5 
Consider surf zone waves, and assume the waves are close to 

the sawtooth shape found in measurements of waves far into the 
surf zone (Section 5.5), which means that 

Bo = 0.083 (5.6.49) 

We again assume that a = 1 and 

AIHL - 0.06 ; H / h  = 0.6 (5.6.50) 

Show that we then get 

S,, - 0.22pgH2 (5.6.51) 
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or 

P,, = 0.22 (5.6.52) 

That means, even though the sawtooth shaped waves have smaller 
Bo, S,, is larger than for a sine wave of the same height because 
of the roller, which here contributes almost half of the total S,,. 

The values found in these examples clearly are in the same range as 
the empirical results shown for B and P in Section 5.4, Fig. 5.5.17 and 
Fig. 5.5.18. However, these figures also suggest that the real picture is 
more complicated than the nearly constant values for B and P across the 
surfzone determine above. 

5.6.4 Volume flux in surfzone waves 

The volume flux in the waves is defined as 

Qw = 6 uWdz (5.6.53) 

Qw can also be calculated for the simplified breaker used above. As before 
we assume that 

cq/h -ho < z < C - e 
u w = {  c < - e < z < (  

and get from the second equality in (5.6.53) 
C 

Qw = j - ( ~  - e - T ~ ) T  + ce 

(5.6.54) 

(5.6.55) 

since f j  = 0 + 1;/77t = 0. Furthermore, e(> 0) is non-zero only in an interval 
o f t  where 77 is both positive and negative. Therefore, we have 

Hence we get, using (5.6.19) for E 

H 2  L 

(5.6.56) 

(5.6.57) 
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H L  H (5.6.58) 

For non-breaking waves this result is of course identical with the result 
found in Section 3.3. 

Exercise 5.6-6 
If we consider a sawtooth shaped wave we again have 

Bo = 0.083 (5.6.59) 

and we also again take 

A 
N 0.06 (5.6.60) 

and consider a case where H l h  = 0.6. Show that this gives 

Qw N ch .0.066 (5.6.61) 

In this example the roller contributes the most to Q w  The result means 

that in a wave tank (where Q(= Q ) = 0 and hence the return current 
U = - Q w / h )  we have 

- 
A 

U Y - 0.066~ (5.6.62) 

i.e., a depth averaged return current in the surf zone which equals 6.6% 
of c! This result is very close to the actually measured values (for further 
details see Section 12.2). 

5.6.5 The phase velocities for quasi-steady breaking waves 

A bore is essentially a moving hydraulic jump. In the following the quasi 
steady breakers in the surfzone are assumed to have uniform velocities over 
depth and hydrostatic pressure. Those assumptions are usually also made 
in classical hydraulics when dealing with bores and hydraulic jumps. Figure 
5.6.2 shows equivalent features of the two types of flow. 

In a fixed frame of reference a bore and a quasi steady breaker propagate 
with a certain speed Cb and cw, respectively. We know that the bore speed 
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c w  

283 

MWS 

Fig. 5.6.2 Similarities between a breaking wave and hydraulic bore. 

cb is given by 

(5.6.63) 

and seek to determine the equivalent value of c,. Fig. 5.6.3 shows the 
definitions of the variables used. 

One obvious difference is: the bore propagates into quiescent water, 
whereas in a fixed frame of reference the breaking wave has an opposing 
velocity in the wave trough in front of it which is (exactly if the wave has 
constant form and no net volume flux): 

(5.6.64) 

where qt is the surface elevation in the trough. 
However, if we observe the wave from a coordinate system moving with 

the particle speed ut(< 0) in the trough (figure 5.6.3), we see that the two 
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- dc=4 
4=dl  

flows are analogous and that consequently 

cw - U t  = cb 

Using (5.6.64) this gives 

,,% 

u=O 

dt 
cw = c b .  h 

where 

(5.6.65) 

(5.6.66) 

(5.6.67) 

Fig. 5.6.3 Definitions of variables used in the comparison of bores and breaking 
waves. The wave is here viewed from a coordinate system moving with the velocity 
cw - ut so that the velocity in the trough is zero. This corresponds to the flow in 
a bore moving into quiescent water. 

Since dl  = dt we therefore have 

(5.6.68) 

Notice that thought d t l h  may be close to 1, the third power of this factor 
makes it worth keeping it in expression (5.6.68). 

Hence the bore-equivalent of the wave speed is not &E as i the linear 
theory. The reason is that (5.6.68) is an exact solution that contains non- 
linear terms. If we linearize (5.6.68) by letting E = d 2 / d l  - 1 and dt - h 
then obviously we get 

C; - gh (5.6.69) 
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In terms of the parameter a defined by (5.6.6), we get 

(5.6.70) 

As mentioned above, these results emerge if we require volume and momen- 
tum conserved in a frame of reference following the wave on a horizontal 
bottom as in hydraulics. (5.6.70) is also the expression used in the surfzone 
in the comparisons with measurements in Fig. 5.5.3 and we see that the 
results from this formula generally fit the measured values in the surfzone 
very well. 

Exercise 5.6-7 
Show that if we introduce the crest elevation qc/H the ex- 

pression (5.6.68) can (without further approximations) be written 

(5.6.71) 

which shows explicitly how the phase velocity depends on the two 
parameters H / h  and vc /H .  

5.6.6 The energy dissipation in quasi steady surfzone waves 

The total energy dissipation in a hydraulic jump/bore can be written as 

(5.6.72) 

where Q is the volume flux in the jump. As before we have defined AE < 0 
for energy loss. 

If we observe the wave from a coordinate system moving with speed 
cw so that the wave is stationary, then the volume flux, Q, in the flow is 
constant and given by 

Q = c,h (5.6.73) 

where h is the local depth, and the wave height H is given by 

H = dc - dt = ( J  - 1)dt (5.6.74) 
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Inserting (5.6.73) and (5.6.74) into (5.6.72) this can then be written 

(5.6.75) 
H 3  A E  = -pgcwh- 

4 4  dc 
Since the energy dissipation is invariant to a Galilei transformation A E  

is also the energy dissipation in a wave observed from a fixed reference 
frame. This energy dissipation A E  is per unit time and it happens once 
every time a wave passes. We seek the dissipation V in average over a wave 
length. Therefore 

4d+d,-T H 3  I A E  I D = L  = -pgh- (5.6.76) 

where also D < 0 for loss as usual. Thus the dimensionless energy dissipa- 
tion D defined as 

4hT 
D = V -  

PSH3 

can be written as 

(5.6.77) 

(5.6.78) 

Exercise 5.6-8 
Show that (5.6.78) can be written 

1 (5.6.79) D = -  
(1 + 2 X ) ( 1 +  : (2 - 1)) 

The bore similarity was first utilized by LeMehaut6 (1962). The deriva- 
tion above was given by Svendsen et al. (1978) and also used by Svendsen 
(1984a). While no assumptions have been made about the surface shape of 
the wave, this means that the relative crest elevation qc/H is an important 
parameter for the energy dissipation in a breaking wave. 

Discussion 

factors: 
The energy dissipation we have found is approximate due to several 

(1) The energy dissipation calculated is the amount of wave (or organized 
mechanical) energy which is turned into turbulent energy between the 
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two sections under the trough and under the crest. Hence, it neglects 
the production of turbulent energy after the section under the crest, 
that is under the rear part of the wave. This is expected to be a small 
error, but it means that the actual energy dissipation in a wave can 
be expected to be (a little) larger than given by (5.6.76). See also 
discussion for D in Section 5.5. 

(2) The assumption of depth uniform velocity and hydrostatic pressure may 
be realistic for the verticals used in the calculation of energy dissipation 
in a bore, but this is not necessarily the case for the trough and crest 
sections in a wave. 

(3) In the calculation of c, we neglect the momentum flux due to turbu- 
lence, both in the trough and the crest motion. Again a (small) error 
that would further increase c, and hence AE. For a given value of cw, 
however, this does not influence the calculation of AE. 

5.7 Further analysis of the energy dissipation 

Along with the flux of mass, momentum and energy, the wave energy 
dissipation is one of the most important elements in the surfzone processes. 
Several other methods have been developed for determining the dissipation 
in surfzone waves, and the most commonly used are briefly described here. 

5.7.1 Energy dissipation for  random waves 

The bore expression (5.6.76) essentially states the dissipation for each 
breaking wave event (averaged over the wave). In an irregular sea waves of 
different height breaking starts at  different places. On a uniform slope we 
can assume that the waves will continue to break once they have started. 
Thus at  a given point a certain percentage Q b %  of the (originally highest) 
waves will be breaking. By averaging over many wave periods we can then 
determine the mean dissipation rate as a function of Q b .  Thereby we can 
express the effect of the wave randomness as a dissipation which is a certain 
fraction of the bore dissipation we would have if the wave height had been 
constant and equal to, say, the H,,,. 

Among the contributions in the literature pursuing This idea was first 
developed by Battjes and Janssen (1978). Thornton and Guza (1983) have 
given a slightly different version. 
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The Battjes-Janssen approach 

unbroken waves follow the Rayleigh distribution given by 
Battjes and Janssen (BJ78 for short) assume that the heights of the 

H 2  

P(H 5 H ~ )  = 1 - e-+ (5.7.1) 

where H is a parameter of the distribution. It  is then assumed that as the 
waves move shoreward they start breaking when their height is H ,  which 
depends on the local depth h. Once the waves have started breaking it is 
assumed their height remains equal to the value of H ,  at each depth. Thus 
the percentage Qb of waves breaking is then given by 

H 2  

Q b  = P ( H  > H,) = e - a  (5.7.2) 

The probability that the wave height is smaller than a certain height HO 
then changes to 

H 2  

P ( H  5 H ~ )  = 1 - e-+ for H~ 5 H ,  

= 1  for HO > Hm (5.7.3) 

This is used to determine the H,,, which, as usual (see Section 3.4.3), is 
defined by 

(5.7.4) 

where p ( H )  = dP/dH is the probability density function. For p ( H )  we 
have 

for H 5 Hm - E 

= o  for H,  + E  5 H 5 00 

(5.7.5) 

If (5.7.5) is substituted into (5.7.4) we get H,,, = H .  However, the prob- 
ability distribution (5.7.3) gives, using (5.7.2) to express the exponential 
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function in terms of Q b  after some algebra 

Exercise 5.7-1 
Derive equation (5.7.6) 

289 

(5.7.6) 

It is then possible to eliminate fi from (5.7.2) and (5.7.6). This gives 
an equation for the breaking probability Q b  in terms of H,, H,,,. This is 
a transcendental equation in Qb 

2 

(5 * 7.7) 1 - &b Hrms m=-(H,) 
Thus it is possible to determine Q b  at each point once the two parameters 
H,, H,,, are known. Near the shore H ,  is often approximated as a frac- 
tion y of the depth h. BJ78 uses a version of Miche’s interpolation formula 
(5.2.1) for arbitrary depth, modified to give H ,  = y h  in shallow water. 

The H,,, is then the only parameter in the energy equation (4.2.16) 
for the random waves which is solved numerically but requires specification 
of the dissipation rate 2). 

Equation (5.6.76) is used as a starting point for the assessment of the 
energy dissipation V in the breaking waves. However, two approximations 
are made. The first is to set 

which changes D to 

1 H L  
4 hT 

;D = - - p g -  

(5.7.8) 

(5.7.9) 

The second is to assume H,/h - 1 which means the final result for V is 

(5.7.10) 

Notice that this reduces the dependence of lJ on H from H 3  to H2.  a is a 
factor that is introduced to account for inaccuracies and approximations in 
the form used for D. cr is determined by fitting results to measurements. 
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When averaging over many waves, only &b% of which are breaking, the 
average dissipation at each point becomes 

cr H k  - 
= --pg- Qb 

4 Tm 
(5.7.11) 

where Tm is the mean spectral period (= l / f m ,  f being the spectral fre- 
quency). 

It turns out that for waves passing over a shallow bar Q b  decreases 
causing a rapid decline of the calcualted dissipation rate, which is physically 
realistic. 

The Thornton-Guza approach 
Thornton and Guza (1983) (TG83 for short) also use the bore expression 

for the energy dissipation but in the more accurate form (5.7.9). However, 
they also introduce a “breaking coefficient” B to give leeway to adjustment 
of the results by comparing to measurements. Their dissipation then reads 

(5.7.12) 

where 7 = 1/T represents the mean frequency in the spectrum. 
The major difference from BJ78 is in the determination of the proba- 

bility that the waves are breaking. The choice of a fixed breaking height 
H ,  used by BJ78 is judged not to be realistic. Instead TG83 write the 
probality function pb(H) for the breaking waves as 

(5.7.13) 

where p ( H )  again is the probability density distribution for the unbroken 
waves, and W ( H )  is the probability that a wave is breaking. A Rayleigh 
distribution for p ( H )  is in fact found to give remarkably good estimates. 

Using extensive analyses of, and comparison with, field data two forms 
for W ( H )  are suggested 

and 

(5.7.14) 

(5.7.15) 
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In contrast to BJ78 these expressions imply a more complicated variation of 
the height of the breaking waves. Therefore the longterm averaged energy 
dissipation is calculated as 

The result for 2) for the first weighting function (5.7.14) is given by 

(5.7.17) 

Similarly the result for (5.7.15) becomes 

] (5.7.18) 
- 3 f i  B37 1 
2 ) z -  

16 "y2hsHrrnS [ - (1 + (HTrns/7h)2)5/2 

For a discussion of these results see TG83. 
Again these expressions are used in the energy equation (4.2.16) which 

- it turns out - for the first case can be solved analytically. TG83 also 
include bottom friction and find as expected that the loss from bottom 
friction is negligible. An exception is, though, the region closest to the 
shore where the general scale of the wave motion becomes very small due 
to the vanishing depth. 

Thus it is possible with relatively simple measures to establish wave 
models that include the most important effect of irregularitiy of the waves, 
namely that the breaking point changes with the wave height. The effect 
this has on the nearshore wave climate is analyzed further in Chapter 14, 
where it is shown how short wave energy is transformed into long wave 
energy through the breaking process, so called Infra Gravity (IG) waves. 

5.7.2 Energy dissipation with a threshold 

Dally et al. (1985) observed that if H l h  decreased below a certain level 
(roughly between 0.35 and 0.40), the waves stop breaking. They used this 
to assume that below that level the waves will become stable even if they 
were originally breaking. Thus-using linear wave results-they define the 
empirical concept: the stable energy flux (Ec,), which is defined as the 
energy flux at H l h  = 0.35-0.40. 

They then assume that the energy dissipation at  any point is given by 

--K v cx -(Ec,- 
h 

(5.7.19) 
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Here Ec, is essentially the energy flux Ef in the wave motion (sine waves 
implicitly assumed) and K. is a dimensionless decay coefficient adjusted to 
fit experimental data. 

The value of (Ec,), is determined so that Ec, = (Ec,), for H / h  = 

0.35 - 0.40, which causes the dissipation to vanish for H / h  below that 
limit. 

The dissipation in (5.7.19) differs from the bore dissipation (5.6.76) 
by assuming D oc Ef/h. It is not clear how this is justified physically. 
It implies that the dissipation varies as H 2 / h  versus H 3 / h  for the bore. 
However, the comparisons with measurements show that with a proper 
selection of the empirical constants the difference from the coefficient-free 
bore expression is not so significant and the method has been extensively 
used e.g. in the REF/DIF wave model. 

The merit of the model, however, lies in the recognition of the threshold 
in the wave height to water depth ratio beneath which waves usually stop 
breaking. This particular feature is realistic for example when waves pass 
over a bar into the deeper water behind in which case breaking usually stops 
quite abruptly. It may be noticed that the idea can readily be incorporated 
in many other dissipation expressions. 

5.7.3 A model for roller energy decay 

From the description in Section 5.6.6 it is clear that the roller concept 
is not needed to determine the total dissipation as e.g. in a bore. However, 
it is also clear that the roller contributes significantly to the time averaged 
properties such as volume, momentum and energy flux. Therefore it is 
necessary to develop a tool that keeps track of how the roller area develops 
through the surfzone. The two enmpirical relations (5.5.15) and (5.5.16) 
represent such a tool. 

An alternative approach was initiated by Nairn et al. (1990) and further 
developed by Reniers and Battjes (1997). It establishes a separate equation 
for the solution of the roller energy E, using an empirical formula for the 
energy dissipation of the roller energy given by Duncan (1981). 

The evolution of the total wave energy is still controlled by the energy 
equation for the wave motion (4.4.14) developed by Phillips (1966, 1977), 
and often the dissipation rate in this equation is approximated by the bore 
dissipation (5.6.76). 

5The concept of the roller as a mass of fluid carried with the wave implies that there 
must be a shear stress along the boundary between the roller and the flow underneath 
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The evolution of the roller energy then provides information about the 
area of the roller and thereby the roller contribution to time averaged wave 
parameters] in particular the radiation stress. 

5.7.4 Advanced computational methods for surzone waves 

In recent years powerful computational fluid dynamics (CFD) methods 
have been brought to bearing on the problem of modelling the broken waves 
in the surfzone. As mentioned in Section 5.3 the very successful Boundary 
Element (or rather Boundary Integral) method breaks down for fundamen- 
tal mathematical reasons when the jet hits the surface in front of the wave 
crest. Entirely different approaches are needed to deal with the highly tur- 
bulent flow in the surfzone, where even the definition of where the surface 
is becomes an important problem. 

The methods applied all deal with two major problems. One is to 
describe in some way the turbulence and its effect on the flow. In the 
surfzone we have high intensity turbulence (relative to the mean flow) that 
also has large scale fluctuations in both time and space. Even defining the 
mean flow is not trivial (see also the discussion in Section 2.5).  

The second problem is developing a method for identifying a highly 
irregular and rapidly fluctuating free surface (or more generally a Auid 
interface) in a computatinal grid and tracking its motion in time and space. 
Since both these problems are present in the surfzone any efficient model 
must deal with both. 

In addition we are facing the numerical problem of solving the Navier- 
Stokes (NS) or Reynolds equations in more or less unabridged form. Though 
numerical techniques are now available for this task they are not simple. 

The following is just a very brief list of examples of various types of 
modelling efforts for breaking waves. A review of the application of the 
methods is given by Bradford (2000). A more thorough introduction to the 
general methods of turbulence modelling is found in Wilcox (1998). 

that keeps the roller from sliding down the front. It was suggested by Deigaard and 
Fkedsoe (1989) to calculate the energy dissipation as the work done by the shear stress 
just along that boundary as if those were the only shear stresses in the flow. This 
approach has been used in a number of applications. The model, however, is not in 
accordance with the actual fluid dynamic processes where energy dissipation takes place 
over the entire turbulent region, both inside and outside the roller. 
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Surface tracking methods 
A common method for dealing with the free surface is the Volume Of 

Fluid (VOF) method, introduced by Hirt and Nichols (1981) using an al- 
gorithm for solving the NS equations called SOLAVOF. The VOF method 
is designed for fluid interfaces in general and is here used for the air-water 
interface. It represents the position of the interface in a grid cell by the 
fraction of the cell occupied by water. The VOF method has been improved 
through many developments that seek higher accuracy. Some of those are 
included in the review of the applications to breaking waves given below. In 
one such development leading to a SL-VOF by Guignard et al. (2001) the 
NS-equations are solved directly using a pseudo-compressibility method in 
curvilinear coordinates. 

Traditional turbulence approach (RANS methods) 
The traditional turbulence approach is to determine turbulence param- 

eters - particularly the time and space varying eddy viscosity - by two 
equation or even higher order turbulence models. Petit et al. (1994) used 
a constant eddy viscosity while Lemos (1992) used a standard k - E model. 
Another reference using a standard k--E model is Christensen et al. (2000). 

More recently Lin and Liu (1998a,b) solved the Reynolds Averaged NS 
(RANS) equations using a k - E model along with a VOF method. Instead 
of the usual linear relationship for the Reynolds stresses, they introduced 
a nonlinear, but still algebraic, relationship which helped predict the initi- 
ation of the breaking. 

A characteristic for the results of RANS-models seem to be that while 
many of the surface features are quite well represented the initiation of 
breaking is not and the undertow is underestimated. This is an indication 
that the mass flux in the surfzone waves is underestimated, an inaccuracy 
which originates in the turbulent breaking region at the surface. 

LES methods 
Large Eddy Simulation (LES) methods do not use Reynolds averaging 

but use a filtering technique to develop the turbulence equations. In essence 
this method implies that only the small scale turbulence is modelled by 
empirical relations such as the Reynolds stress model by means of an eddy 
viscosity. For this is often used a model suggested by Smagorinsky (1963). 
The larger eddies are represented directly in the numerical simulations. 
Examples are Zhao and Tanimoto (1998), Christensen and Deigaard (2001), 
Zhao et al. (2003). 
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5.8 Swash 

The wave breaking that occurs on the shoreline was described qualita- 
tively in Section 5.3 .  The phenomenon of swash is the runup on the beach 
which occurs as a result and it requires a whole chapter in itself in the theo- 
retical analysis of nearshore wave motion. The reason is that the two basic 
assumptions underlying many of the wave theories available fail completely 
to be satisfied in the swashzone even to the first approximation. Therefore 
the simple sine wave, or even traditional Boussinesq wave theories cannot 
be expected to give even a first approximation without close scrutiny of the 
conditions. The two conditions that are so radically different are 

0 The wave height is not small in comparison to the water depth. In 
fact in the runup process the wave height can be many times the water 
depth, which is different from the rest of the surfzone where we can get 
at least a first approximation by recognizing that the wave height is 
not negligible. 

0 The change in depth is not small over a characteristic horizontal length 
for the motion. It is even dificult to define the traditional parameters 
such as depth and wave length. Therefore the depth is not “slowly 
varying” and the locally constant depth assumption cannot be justified. 
The change in depth is so rapid, seen from the moving wave, that no 
local equilibrium has a chance to get established. 

These conditions for the swash motion essentially require that we start 
from the basics. 

It turns out that there is one version of the “processed)) equations for 
nearshore wave motion that comes close to satisfying the conditions in the 
swash zone. That is the special version of the long wave equations called 
the Nonlinear Shallow Water (NSW) equations described in Section 9.12. 
These equations, which can be viewed as a limiting case of the Boussinesq 
equations, assume H / h  = O(1). They assume the characteristic length 
scale X for the wave motion is very long in comparison to the depth (which 
is not in keeping with the conditions near the toe of the swash). However, 
this leads to hydrostatic pressure in the vertical direction and a velocity 
variation which is constant over depth and, in a modified form discussed 
below, that is in reasonable agreement with the conditions observed in the 
swash region. The only difference is that the hydrostatic pressure may be 
in the direction normal to the slope rather than in the vertical direction 
(which is not a quite negligible difference on a relatively steep slope). 
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The use of the NSW equations for analysis of swash has been pursued 
quite extensively for many years and the literature is rich with publications. 

1DH swash on a frictionless slope 
On the relatively steep slopes found in the swashzone on natural beaches 

the hydrostatic pressure occurs in the direction normal to the slope rather 
than in the vertical direction assumed in the usual NSW-equations. Thus 
the proper equations are a modified version of the normal NSW-equations. 

To derive the equations we use a coordinate system with the x-axis 
along, the z-axis normal to the slope as shown in Fig. 5.8.1. This figure 
also shows the definition of the variable used. 

Fig. 5.8.1 
solution. zs represents the maximum runup. 

The coordinate system and definition of variables used in the swash 

Along the axes gravity has the components 

The approaching wave is either breaking or close to. Often it is considered a 
bore (Shen and Meyer, 1963, and others). However, as described in Section 
5.3, at the moment the water depth in front of the wave becomes zero (or 
nearly so) the wave collapses and shoots up the beach forming the swash 
motion. In the solution this is supposed to happen at the undisturbed 
shorline x = 0 and the velocity in the ensuing swash motion is assumed to 
be uniform over depth. 

The conservation of volume at a point of this motion is best represented 
by the depth integrated version of the continuity equation which reads 

(5.8.2) 
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Since the motion is mostly parallel to the slope we also have that the velocity 
w in the slope-normal direction is so small that the normal acceleration 
dwldt can be neglected. Neglecting also the friction the motion is governed 
by the Euler equations. The z-component then becomes 

1 aP 
P az  

0 =- -  - - g  cosp 

with the boundary condition p(h) = 0 at the free surface. 
then yields 

(5.8.3) 

Integrated (5.8.3) 

(5.8.4) 

which represents the alledged hydrostatic pressure in the slope-normal di- 
rection with the reduced gravity gz = g cos p. 

In the slope-parallel x-direction we then get 

- 
a~ g sin@ du 

d t  p a x  
(5.8.5) 

Using (5.8.4) and expanding the acceleration therm this can be written 

(5 3.6) 

Equations (5.8.2) and (5.8.6) are the version of the Nonlinear shallow water 
equations (NSW) that governs the frictionless motion of the swash. 

Those are essentially the equations solved by Shen and Meyer (1963) 
with direct reference to swash. However, there are numerous other refer- 
ences to the discussion for the wave motion on steep slopes. In particular 
is mentioned the analytical solution of similar equations for non-breaking, 
fully reflected waves by Carrier and Greenspan (1958). 

The solution by Shen and Meyer uses the method of characteristics. A 
summary of results for the entire runup flow are given by Peregrine and 
Williams (2001). To derive this the equations are written on characteristic 
form. The procedure for that is outlined in Section 11.9. However, the 
details of the method are beyond the scope of the of the present text.6 

The initial and boundary conditions for the Shen and Meyer solution, 
which are an idealization of the collapse of the bore similar to a moving 
dam break, cause the equations to be singular at  the origin x, t = 0,O of 

6A detailed description of the method of characteristics for flows with a horizontal 
bottom is given by Abbott and Basco (1989). The method is also described briefly in 
Johnson (1997). 
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the motion. The method of characteristics allows this, but this idealization 
means that for small x, t the solution is not an accurate representation of 
the real swash flow (Peregrine and Wiliams, 2001). 

However, it was pointed out already by Shen and Meyer that surpris- 
ingly the entire swash flow in their solution depends very little on the 
boundary conditions after the initial collapse of the bore. To quote Meyer 
and Taylor (1972), the solution “forgets its boundary conditions after a 
short finite time”. This particularly applies to the region near the tip of 
the runup. See also Meyer and Taylor (1972) and many references quoted 
therein for an extensive discussion of this issue. This makes the ballistic 
solution described below for the movement of the tip of the swash more 
relevant. 

The NSW equations were solved numerically by Hibberd and Peregrine 
(1979) for the swash of a solitary wave using a dissipative Lax-Wendroff 
scheme, which considers the breaking waves as bores and represent them 
in the solution as discontinuities. Such schemes also allow the formation of 
new bores inside the solution. Hibberd and Peregrine found that frequently 
a new bore is formed during the downrush phase of the flow. 

Similar numerical approaches have since been further explored exten- 
sively in the literature, see e.g. Kobayashi et al. (1989), Kobayashi and 
Wurjanto (1992). More advanced methods for “bore capture’’ such as the 
“Weighted Average Flux” method (WAF) has been used by Brocchini et 
al. (2001), Hubbard and Dodd (2002) and Brocchini and Bellotti (2002) to 
mention a few. 

The ballistic model for the tip of the runup 
Another feature of the Shen and Meyer solution, is that near the tip 

of the runup the swash layer becomes very thin and actually the depth h 
approaches zero tangentially at the tip. This means that near the tip the 
motion is similar to a frictionless ballistic motion of a particle shooting up 
the slope with a velocity UO. 

This has lead to an approximate formulation of the motion of the runup 
tip which also allows analysis of cases that include friction. The weak 
variation with z near the tip makes it possible to neglect the nonlinear 
term in (5.8.6) and also the term proportional to d h / d z  originating from 
the pressure variation along the tip. It may also be assumed that the waves 
are incident on the beach at  an angle aw relative to the shore normal so 
that the velocity in the swash has the components u, 21. For a long straight 
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beach and adding further a friction term (5.8.6) can then be written 

au I f  --  - -9 sinp - --ulU[ 
at 2 h  

toget her with the longshore component 

(5.8.7) 

(5.8.8) 

Here U = (u2 + u2)1/2 is the total velocity of the flow. Because of the 
similarity with a heavy particle moving under the only influence of gravity 
and friction it is often called the ballistic solution but is also often just 
accredited to Shen and Meyer. 

This is again a nonlineear equation. However, a linearization is natural 
if we assume that the friction only changes the speed of the particle slightly 
over a cycle. Then U can be considered constant (equal for example to the 
starting value UO) and the equations become 

d U  I f  - = -g sinp - ---uIUo[ 
d t  2 h  

- d U  = - ! f U ~ U 0 ~  
dt  2 h 

(5.8.9) 

These two linear equations are uncorrelated and hence can be solved inde- 
pendently using standard methods for ordinary linear differential equations. 
The solution can be written 

u = UO sina, e -c f t  

where Cf = f U0/2h. For the coordinate x, of the tip of the runup we get 
by integrating (5.8.10) 

Fig. 5.8.2 shows the variation with time of the 1DH rupup for some values of 
the fsiction factor. The water depth in the expression for C f  has (somewhat 
arbitrarily) been set to 0.2U$/2g and UO has been chosen to 2 m/s .  It is 
seen that the friction reduces not just the magnitude of the runup, which 
might be expected, but also the duration of each swash event. Surprisingly 
the larger the bottom friction the shorter the total swash duration T,, 



300 Introduction t o  nearshore hydrodynamics 

counted as the time between start of runup and time where the tip is back 
at the SWL. For z, = 0 (5.8.11) gives 

(5.8.12) 

which is an  transcendental equation for T,. For small values of the param- 
eter Cf  we can expand the exponential function and we need to keep terms 
to order (CfT , )2 .  For Cf = 0 we then get, assuming also shorenormal 
waves ( C O S Q ~  = 1) 

T s -  - - 2UO =T,o 
sx 

(5.8.13) 

For small values of Cf we get 

(5.8.14) 

which confirms, since Cf  0: f, that the friction decreases the swash dura- 
tion. 

Fig. 5.8.2 The position of the swash tip versus time for three different value of 
the friction factor f for the solution given by (5.8.11). In the calculation of C f  
has been used a depth of h = 0.2 U,”/2g where Uo has been set to 2 m. The three 
curves correspond to f = 0 (-), f = 0.01 (-.-.-), and f = 0.02 (- - -). 
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Connection to the incident waves 

(5.8.11). With no friction and shore-normal waves we get along the slope 
The maximum runup predicted by the ballistic solution is obtained from 

u,2 
Xs,max = 

2% 

or, for the vertical runup R = x,,max sinp we get 

(5.8.15) 

(5.8.16) 

The question of how to link the initial speed UO at  the shoreline to the 
incident wave motion remains open. UO clearly depends on the nature of 
the bore collaps. However we have to remember that the notion of the 
actual wave motion represented by a bore collapse is an idealization, which 
can cover situations from waves not or barely breaking (as in the Carrier 
and Greenspan solution) to the type of swash described in Fig. 5.3.5. In 
waves with an infragravity component included the runup of the individual 
short waves also changes over the IG wave period. In order to cover this 
level of variability it is convenient to introduce a dimensionless empirical 
factor that can be adjusted according to the situation, and Baldock and 
Holmes (1999) suggested a coefficient C defined as 

(5.8.17) 

where H B  is the perceived height of the incident waves at the shoreline. 
Introducing this into (5.8.16) gives 

(5.8.18) 

Simultaneous measurements of R and H B  then essentially provides values 
of C. Baldock and Holmes find that C - 1.8 - 2 fit measurements in both 
regular and irregular waves. To interpret the meaning of C we should realize 
that this coefficient accounts for a number of effects. 

However, even after we have determined C the task remains of deter- 
mining H B  (or Uo) for the incident wave motion and it is not obvious how 
that is done. For example the expression does not represent the 
particle or phase velocity according to any known wave theory. In a linear 
wave on constant depth the phase velocity would be where h B  is 
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the depth, which is not helpful for guidance because the water depth at 
the shore is 0. The value of is also not related to the bore velocity 
cb given by expression (5.6.63) or the equivalent wave phase speed (5.6.68) 
which both tend to zero too for h + 0. Finally it is recalled that all mild- 
slope wave models except the NSW equations predict that the wave height 
goes to zero as the depth goes to zero at the shoreline. 

Though there are many analyses of swash in the literature a simple pro- 
cedure for connecting H B  (or UO) to the characteristics of the incoming 
waves which is applicable to engineering problems is still to come. Po- 
tentially a Boussinesq model for breaking waves could yield meaningful1 
results because the Boussinesq equations actually are valid for quite steep 
bottom slopes, but this has not been tried yet. In the meantime numer- 
ical simulations with the NSW equations using the appropriate software 
or more advanced CFD methods such as the VOF method seem the most 
reliable approach. That will also provide more detailed information about 
the entire flow field in the swash motion, not just the tip of the runup. 

Applications and comparisons with measurements 
In particular the ballistic (or Shen and Meyer) solution has been inves- 

tigated quite extensively in recent years in attempts to test the theory. 
The field measurement by for example Raubenheimer and Guza (1996), 

Raubenheimer (2002), Holland and Puleo (2001), Hughes and Baldock 
(2004) are important sources of information. So are laboratory experi- 
ments that have been reported. Reference is made to e.g. Mase (1988), 
Baldock and Holmes (1999). 

A central issue given much attention is the possible value of the friction 
factor f and its effect on the ballistic solution. Typical values found for tur- 
bulent boundary layers are reported in Chapter 10. However, in the swash 
motion boundary layers do not have time to develop fully which influences 
the value off  in a friction factor approximation, and so does beach porosity 
(Packwood, 1983). In addition, as the solution (5.8.10) or (5.8.11) shows, 
to evaluate the results the parameter C f  must be known and this requires 
information about the depth h in the swash motion. The ballistic solution 
does not provided by this information. Recent references where these prob- 
lems are discussed include Hughes (1995), Puleo and Holland (2001) and 
Raubenheimer (2002). 

As can be seen the swashzone mechanics is a highly active research area 
with several unsolved questions and new publications appearing every year. 
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Therefore the reader interested in this area is particularly advised to make 
a fresh literature search for the latest information. 
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Chapter 6 

Wave Models Based on Linear 
Wave Theory 

6.1 Introduction 

This chapter briefly reviews the methods available for modelling wave 
motion in nearshore regions based on linear wave theory. While most of 
the theoretical background material has been presented in the previous 
chapters the objective is to discuss some of the practical aspects in terms 
of strengths and limitations of using the methods in question. 

Useful models based on linear wave theory were derived by averaging 
over a wave period (socalled phase averaging) and assuming locally con- 
stant depth. This lead to the classical refraction theory, ray tracing meth- 
ods and the geometrical optics theory. Simply assuming locally constant 
depth and writing the wave motion as a product of a slowly varying ampli- 
tude and a phase function we obtained the kinematic wave model. These 
models all provide information about the propagation pattern of the wave 
motion (wave ray or wave number vector variation) and they all must be 
combined with an equation expressing the conservation of energy (minus 
various dissipative factors such as bottom friction and wave breaking) to 
obtain information about the wave amplitude variation. Though the theo- 
retical basis for those methods may seem similar in that they only describe 
the depth refraction process they nevertheless have different properties. 

Another branch of models were based on, again, the locally constant 
depth assumption but combined with the assumption that the wave motion 
can be written as a product of a slowly varying wave amplitude H(z,y) 
and a phase function which is given by ezwt. This leads to the mild slope 
equation MSE and the parabolic approximation to the MSE. Those models 
include the effect of combined refraction-diffraction. 

311 
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Therefore phase averaged models essentially consist of a component that 
determine the propagation pattern for the waves and a component that 
solves the energy equation to obtain the amplitudes. In the case of the 
MSE and the parabolic approximation to the MSE the two components 
have been combined into one by using a complex amplitude. 

The concept of phase resolution is often associated with the MSE and 
parabolic wave models because the solution of those equations provides both 
the amplitude and the spacial phase variation for the wave motion, which is 
slowly varying in space with locally sinusoidal time variation. However, the 
term also applies to the growing selection of nonlinear wave models, such as 
the Boussinesq models described in Chapter 9, Boundary Element models, 
etc., that are time domain models, and spectral Boussinesq models that 
operate in the wave frequency space. In addition to the phase variation, 
those models also determine the actual shape of the waves. 

It is characteristic for many of the model equations that they represent 
propagation patterns and amplitude variations that correspond to steady 
situations. As an example of the consequences of this a change in the 
incident wave conditions is not followed in time as it propagates through 
the model domain. A change in the incident wave characteristics (amplitude 
and wave number vector) will be represented by an equivalent instantaneous 
change in the amplitude and wave number vector in the entire domain. This 
also applies to the steady state MSE and to the parabolic approximation 
to the MSE. Exceptioiis to this are the kinematic wave models, and models 
based on the time varying version of the mild slope equation. 

As mentioned all the models we can construct using the linear theory 
imply the locally constant depth assumption. While this has turned out to 
be less of a constraint in e.g. the case of the MSE and its extensions (see 
Section 3.7), it has consequences for the model behavior at the shoreline. 
Basically all those models predict that the wave heights are going to zero 
when the water depth goes to zero. That is: these models cannot predict 
for example swash. 

A review of shallow water wave modelling was given by Battjes (1994). 

Application as wave drivers for circulation models 
Because these models provide wave amplitude information at all points 

in the computational domain they can readily be used to determine the 
radiation stresses and volume fluxes in a nearshore region. Those two quan- 
tities essentially represent the driving mechanisms for nearshore circulation 
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phenomena such as wave generated currents and their shear instabilities, 
very long waves called infragravity waves generated by the variation of 
short waves, etc. These phenomena play an important role in the coastal 
wave climate and longterm morphological development due to sediment 
transport and they are described in Chapters 11 - 14.2. The models dis- 
cussed in this chapter are therefore, with all their limitations, well suited 
and often used as wave drivers for the models describing nearshore circu- 
lation problems. 

6.2 1DH shoaling-breaking model 

In this, the simplest possible nearshore wave model, the direction of the 
wave number vector k is given by the shorenormal direction and its value 
is determined from the dispersion relation. Therefore the only component 
to this model is the energy equation 

(6.2.1) 

where, as before, V < 0 for energy loss. To obtain an equation in a useful 
variable, usually the wave height, this requires that we express the energy 
flux E f  and the dissipation V as functions of that variable. 

This model wa5 discussed at length in Chapter 4. Examples of the use 
of the model are many analyses of the situations in 1D wave tanks. As 
described in Section 4.3.3, with suitable choice of parameters the model 
includes random wave motion. 

6.3 2DH refraction models 

This group of models include all traditional refraction models and thus 
have two components: one that describes the wave propagation pattern and 
one that provides solution to an energy equation. 

6.3.1 The wave propagation pattern 

Determination of the wave propagation pattern is based on the principles 
described in Section 3.5.2. The changes in wave propagation are caused by 
changes in the phase velocity for the wave motion, primarily due to depth 
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variation but also due to currents as described in Section 3.6. If the phase 
speed is independent of the wave height, as in linear waves, the refraction 
pattern can be determined independently of the wave amplitude variation. 
We therefore first analyze this part of the problem. 

Long straight coasts 
The simple case of longshore uniformity as on a long straight beach is 

often assumed, which implies Snell’s law is valid. This of course greatly 
simplifies the refraction pattern which is the same along all cross-shore 
transects and given analytically by 

(6.3.1) 

where Co is determined as c/ sin a, at a reference point, usually offshore. 
For obvious reasons the use of Snell’s law to describe the refraction 

pattern is very popular and the literature contains numerous examples of 
such applications. A frequent case is related to analysis of laboratory ex- 
periments with longshore currents in wave basins such as Visser (1984), 
Reniers and Battjes (1997) to mention just two. However, Snell’s law is 
also often assumed for the wave pattern on real coasts as e.g. in Thornton 
and Guza (1983), Van Dongeren et al. (2003) and in numerous analyses of 
field data from the large field experiments on (nearly) straight beaches. 

As mentioned in Section 3.5.2 a warning is appropriate against uncritical 
use of Snell’s law in cases where sufficient knowledge about the topography 
and general wave conditions is not available. In cases like the analysis 
of intensive field experiments, or testing of models against measurements 
from such experiments, there is usually sufficient additional information 
available about the wave pattern and wave height variation to verify that 
the assumption of a long straight coast is justified. In particular for the 
experiments at the Field Research Facility at Duck in North Carolina the 
incident waves are measured right offshore of the test site so that the risk 
of unnoticed deviations from the assumption of longshore uniformity is 
limited. 

However, in general one has to remember that small depth variations at 
some distance offshore can have profound effects on the refraction pattern. 
Shoals or pits from offshore sand mining for beach nourishment are typical 
examples. This can result in considerable longshore variations of the wave 
heights in the nearshore region of interest. Therefore the warning is against 
uncritically assuming longshore uniformity as an expedient for analysis of 
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the nearshore wave height distributions on a coast that may look relatively 
straight. It can give very misleading results. 

General coastal topography 
The general case of refraction on an arbitrary coastal topography re- 

quires a fully fledged refraction analysis. In the past this was usually done 
using the ray tracing approach described in Section 3.5.2. This approach 
is difficult to implement into a regular computational grid. An alternative 
could be to solve the eikonal equation of the geometrical optics approxi- 
mation. However, the refraction approach also has the limitation, that on 
a general topography there is a risk that locally wave rays may intersect 
or come very close to do so. Under such conditions the refraction method 
breaks down as it predicts infinite wave heights locally. The reason is that 
at such locations the diffraction effects become important which will pre- 
vent the rays from intersecting. In numerical models based on fixed grids 
numerical dissipation usually prevents this from actually occuring in the 
model, which is useful although it is an artificial effect. In many cases of 
a general topography it is preferred today to use the Mild Slope Equation 
(MSE) or the parabolic approximation to the MSE to analyse the wave 
pat tern. 

The kinematic wave model 
The kinematic wave model is an alternative method for determining 

the wave refraction pattern. From a physical point of view this model is 
based on the same fundamental ideas of slowly varying depth and locally 
constant depth as other refraction methods, but it expresses those ideas in 
a different mathematical form. The model was described in Section 3.5.2, 
and it utilizes that the wave number vector k is irrotational 

VhXk=O (6.3.2) 

which is an initial condition for the system. The evolution equation for k 
is given by 

(6.3.3) 

where w, is the absolute frequency, and the wave number is linked to wa 
by the dispersion relation 

w:=f(lch,kH)+k.V (6.3.4) 
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where V is the velocity of the ambient current. f could typically be the 
linear dispersion relation but does not have to be so. 

Though this method was developed a long time ago (see e.g. Phillips 
1966, 1977) it is only recently that it has caught the attention of nearshore 
researchers. 

The kinematic wave model has the advantage over the traditional ray 
tracing approach that the basic equation (6.3.3) is an evolution equation 
that gives the development of the wave number vector (i.e. the refraction 
pattern) in space and time. Thus it is possible to analyse time varying wave 
and current fields. 

This has been utilized by Ozkan-Haller and Li (2003) who studied shear 
wave development (see Section 14.2). Though the incident wave motion 
is steady in time the currents fluctuate because shear instabilities of the 
longshore currents develop. The influence on the wave motion from the 
time and space varying currents are studied using the kinematic wave model 
to describe the waves. The paper also give some simple examples of how 
the kinematic wave model works. 

Both the ray tracing and the kinematic wave models have the advantage 
over e.g. the geometrical optics method and the MSE that they allow use of 
non-sinusoidal phase motion. An example of this would be the use of cnoidal 
wave theory (see Section 9.5) which represents a better approximation to 
the wave surface profile in the nearshore region. This means a dispersion 
relation different from the usual linear dispersion relation applies which 
influences the refraction pattern. Similarly different dimensionless time 
averaged wave parameters such as the coefficients for mass, momentum 
(radiation stress) and energy flux, which influencies the energy equation, 
the forcing of nearshore currents, etc. Another eample could be using a 
stream function method described in Section 8.4 for representation of the 
waves. 

The wave number variation is only directly influenced by the phase 
velocity. Cnoidal waves and stream function waves, however, are both 
frequency and amplitude dispersive which means the phase velocity depends 
(weakly) on the wave height. This means the refraction pattern and the 
amplitude variation need to be determined simultaneously, even on a long 
straight coast with Snell’s law valid. Due to the weak amplitude influence, 
though, a properly designed iterative procedure will generally work fast. 
An example with cnoidal waves was shown in Svendsen et al. (2003). 
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6.3.2 Determination of the wave amplitude variation 

The wave amplitude is determined by solving the energy equation which 
was discussed in Chapter 4. As shown for an irregular wave field with steady 
spectral parameters and no currents the energy equation simply reads 

Vh ' Ef ,Tms  = (6.3.5) 

where Ef,rms is the rms-value of the energy flux. The dissipation V ( H )  
(due to breaking, bottom friction etc.) for such a wave field is given as the 
mean-value of the dissipation in the individual waves 

(6.3.6) 

where p ( D ( H ) )  is the probability density for D(H) .  An example was given 
in Section 5.6 for the case where V ( H )  o( H 3  

In the general case of waves propagating in a (varying) current field 
the general energy equation for the wave motion is given by (4.4.14). In 
wave models of the type discussed here the Q,-terms in this equation are 
normally regarded as small and therefore omitted. The equation then reads 
(with E short for ET,, and similar for E f a )  

(6.3.7) 

or written in terms of the individual coordinate contributions 

dE 8 d 
- + -(Ef COSQ, + VxE) + - (Ef  sina, + V,E) = 
at dx dY 

where E f  = (Efal  is the energy flux in the direction of the wave motion, 
and a, the angle between the wave number vector and the x-axis. 

In order to solve this equation we need again to express the variables 
E,  E f ,  sap, V and Tb, in terms of a single parameter, usually the wave 
height H,,,. This is conveniently done by introducing the dimensionless 
form of these quantities defined in Section 3.3 for E f ,  E and Sap and in 
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Section 4.2 for V. We have 

(6.3.9) 

D = pg- H 3  D 
4hTm 

The dimensionless shape factors BE,  B ,  and Pap are then determined 
from the prescribed phase variations of the chosen wave model using the 
(exact) definitions of these parameters shown in Section 3.3. 

6.4 Wave action models 

Another type of wave model based on linear wave theory is the wave 
acion equation described in Section 4.5. The (homogeneous) wave action 
equation (7.5.1) 

(6.4.1) 

is a special version of the energy equation for waves on currents. It expresses 
the evolution in time and space of the wave action E / w r  in terms of the 
energy density E of a single monochromatic wave with relative frequency 
wT and group velocity cgra. The equation says that if we move with the 
group velocity of the wave then the wave action is conserved. 

Wave action models generally deal with irregular waves which then are 
represented by their wave spectra. The wave action spectrum N ( f ,  aw) is 
then defined on the basis of the directional frequency spectrum F ( f ,  aw) 
(see Section 3.4.3) as 

(6.4.2) 

In addition the wave action equation is modified by adding source terms 
that represent the change in wave action from various energy sources, posi- 
tive and negative. The equation (4.5.2) derived by Christoffersen and Jon- 
sson (1982) is an example of such an equation based on rigorous derivation. 
It takes into account the drain of wave action caused be the energy dissi- 
pation due to wave breaking ( s b r )  and to bottom friction ( S b f ) .  
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In operational wave action models the total amount of source contribu- 
tions St is written as the sum of each of the contributions. In deep water 
they include, in addition to the sources mentioned above: 

0 S, = energy input from wind stresses which contributes to the growth 

Swc = energy dissipation due to whitecap breaking. 
Snl = energy transfer due to nonlinear wave-wave interaction between 
spectral components. This contributes to the modification of the spec- 
trum during the wind generation or decay of the wave motion. 

of the wind waves. 

The total source term can then be written 

st = s b r  + S b f  + s w  + s w c  + snl (6.4.3) 

and the wave action equation for each spectral component takes the form 

This is solved in combination with the kinematic evolution equation for k 
which is also considered for each spectral component. 

The basis for this type of wave model was developed for mainly deep 
water waves by Hasselmann et al. (1973). An application especially for 
nearshore wave and current conditions has been developed from the WAM 
deep water model (see WAMDI Group (1988), and Komen et al. (1994)). 
It is described by Booij et al. (1999) and Ris et al. (1999) and named the 
SWAN-model. The model does not account for diffraction effects since the 
wave action equation is based on refraction principles only. 

6.5 Models based on the mild slope equation and the 
parabolic approximation 

Wave models based on the MSE and its parabolic approximation were 
discussed extensively in Section 3.7. As emphasized there they are based on 
the same assumptions of slowly varying depth and locally constant depth 
as the refraction models. In the MSE and parabolic wave models, however, 
the wave propagation pattern and the amplitude variations are determined 
simultaneously through the use of a complex amplitude. Then the phase 
information for the wave motion (and hence the propagation pattern) is 
imbedded in the imaginary part of the amplitude. 
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Reference to MSE and parabolic wave models described in the litera- 
ture were given in Section 3.7 including the widely used parabolic REF/DIF 
model. The REF/DIF model is also available in a spectral version called 
REF/DIF-S. In this model the wave patterns and wave heights are deter- 
mined for a large number of wave situations (angles of incidence, frequency 
and incident wave height) determined from the values in a incident direc- 
tional spectrum. The result corresponds to the spectral values of height 
and direction for the given incident spectrum at each point. The rms wave 
direction and wave height at  each point can then be determined by (linear) 
superposition using the spectral weights of all the wave components found 
at that point. 
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Chapter 7 

Nonlinear Waves: Analysis of 
Parameters 

7.1 Introduction 

As described in Chapter 3 the linear water wave theory ~ also called 
“sinusoidal wave theory” due to the shape of the waves - assumes that 
the wave height to wave length ratio H / L  (the wave steepness) is so small 
that the nonlinear terms in the free surface boundary conditions can be 
neglected. 

Although we found that the linear theory in many respects yields mean- 
ingful results, there are also situations where it is insufficient. This, of 
course, applies to cases where one wants to study wave properties that 
originate from the neglected nonlinearity of the waves. Some of these phe- 
nomena will be discussed in the following. It also applies to situations 
where the wave steepness is so large that linear wave theory becomes too 
inaccurate. And third, it is relevant to realize that the confidence in lin- 
ear wave results, where they are known to suffice, essentially comes from 
comparing with more accurate higher order wave theories. 

The more accurate wave theories all include the effects of the nonlin- 
ear terms in some form. Hence, all such wave theories are nonlinear and 
therefore also more complicated than the linear wave theory. 

The nonlinear wave theory most widely used today was developed by 
Stokes (1847) (who by the way at the same time invented the perturbation 
method which still is the most powerful mathematical tool for solving 
(weakly) nonlinear problems in all areas of physics), and for that reason, 
the theory is know as Stokes’ wave theory (see also Stokes (1880) for a 
more direct version). This theory utilizes that the wave steepness H / L  is 
small but not infinitely small as for sinusoidal waves. This assumption is 
reasonable since in actual waves the steepness never exceeds 0.10-0.15. 

323 
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The result is a wave description for which the linear wave theory appears 
as a first approximation. 

Stokes’ wave theory, however, assumes that kch = O(1) ( k  = ~ T / L  
being the wave number and h the water depth) which is not always the 
case. In coastal regions and for long waves in moderate depths on the 
continental shelf, the h / L  ratio may become too small for Stokes’ theory 
to work properly. For such cases, another wave theory was developed by 
Boussinesq (1872) and by Korteweg and De Vries (1895), in which h / L  was 
assumed small. The constant form wave solution for shallow water waves 
resulting from this approach is often termed cnoidal waves (an analogy to 
sinusoidal waves) because the wave profile is described by Jacobi’s elliptic 
cn-function. Such waves are also termed long waves since L / h  is large. 

A particularly simple, limiting case of cnoidal waves obtained for L / h  4 

00 is the solitary wave which physically looks like one single wave crest 
on an otherwise undisturbed water surface. 

The approach, however, has far wider application than the constant 
form cnoidal and solitary solutions, and its general version, which does 
not assume constant form for the waves is the basis for some of the most 
advanced and successful computational wave models available today. In 
this form it is usually known as Boussinesq wave theory. 

These theories are all based on the same fundamental hydrodynamical 
equations and their boundary conditions. In this chapter we will analyze 
more precisely how the different assumptions behind these classical wave 
theories lead to different forms of the equations to be solved. In particular 
the treatment of the nonlinear boundary conditions at  the free surface is 
important for distinction between the different theories. 

The perturbation method used in all the wave theories described above 
in essence generates solutions by successive approximations in the equa- 
tions. Stokes himself only carried the solution to third order. De (1955) and 
Chappelear (1961) gave various 5th order solutions for the Stokes waves. 
Later on, numerical results have been obtained on a computer correspond- 
ing to 110th order (Cokelet, 1977). These results will be discussed further 
in Chapter 8. 

In Chapter 8, we derive and discuss important aspects of the Stokes 
waves theory, and in Chapter 9 the nonlinear theories for long waves are 
described. 

In all the above described classical wave theories, a powerful element in 
the solution is the assumption that the waves are of constant or permanent 
form. This assumption is also an essential part of the so-called stream 
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function theory by Dean (1965) and has since been improved by sev- 
eral authors including Rienecker and Fenton (1981). This is essentially 
a computer solution based on a truncated Fourier expansion of the exact 
non-linear equations. The description of this method given in Section 8.4 
is based on Rienecker and Fenton’s version. 

7.2 The equations for the classical nonlinear wave theories 

For many years there was no precise account of how the classical wave 
theories were related and what the differences were. One consequence of 
this was the so-called “long wave paradox” (Ursell, 1953). The content of 
the paradox was that seemingly the same assumptions could lead to differ- 
ent versions of the nonlinear long wave theory depending on the method 
of derivation. The reason turned out to be that during the derivation dif- 
ferent additional assumptions were implicitly invoked by different authors 
without being noticed. 

Here we give a more general derivation which includes both Stokes’ 
wave theory, which applies to intermediate and deep water waves, and to 
the different long wave theories. Thus it is shown how the following theories 
and equations are related: 

0 Stokes’ waves 
0 Long waves - small amplitude 
0 Long waves - moderate amplitude (leading to Boussinesq theory) 
0 Long waves ~ large amplitude 

(leading to the socalled non-linear shallow water equations) 

So, one objective is to answer the question: Which assumptions lead 
to which of these theories? Or, phrased in a different way: Under which 
conditions does which theory apply? The second question is: How do the 
different assumptions influence the form of the basic equations from which 
the theories are derived? 

We answer these questions by analyzing the relative order of magnitude 
of each term in the inviscid hydrodynamical equations. The information 
thus gained turns out also to be important for understanding the different 
procedures for the solutions leading to the different wave theories. 

For all cases, we consider the following simple situations: 

(I) Constant depth h and period T .  
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Fig. 7.2.1 Definition of nomenclature. 

(2) Long-crested waves (two-dimensional vertical motion - 2DV motion) of 
permanent form. 

(3) Incompressible flow. 
(4) Effects of viscosity and turbulence are neglected. 

The symbols used are shown in Fig. 7.2.1. 
We use a velocity potential 4 defined so that': 

(u,w) = + V4 = + grad 4 (7.2.1) 

Therefore, the basic equations are: 

a24 a24 
ax2 822 

Laplace : 02+ = - + ~ = +xx + 4 z = o  (7.2.2) 

with the boundary conditions: 

4 z = o ;  z = -h (7.2.3) 

rlt + 4 x r l x  - 4 z  = 0 ; z = q  (7.2.4) 

where C(t )  is the arbitrary function in the generalized Bernoulli equation. 
In the linear wave theory, it was chosen to include C(t )  in &. In the order 
of magnitude considerations considered in this chapter we can freely choose 
to put C( t )  = 0. 

'The + in front of the gradient operator is included to emphasize the difference from 
older textbooks that sometimes use - in the definition of d. 
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In addition, we assume that the waves are periodic in space which is 
expressed in the periodicity condition 

For pure geometrical reasons, the specification of a wave of permanent 
form apparently involves three length scales: 

h : water depth 

H : scale of wave height (or amplitude) 

L : scale of wave length 

Two independent dimensionless parameters can be formed from these 
three scales. We choose: 

(7.2.7) 
h 
L 

p = - = the wave length parameter 

H 
h 

6 = - = the amplitude parameter (7.2.8) 

and we must expect that specification of p and 6 specifies the problem 
uniquely except for the absolute scale. 

To arrive at this “expectation”, let p and 6 be given. This is not enough 
to specify the scale of the wave but we can choose (freely) h = ho and 
realize that p and 6 then allow a sketch of the surface profile wave to be 
drawn. The precise shape of the wave is yet unknown, but all important 
positions are fixed relative to each other (crest, trough, bottom, etc.). The 
shape is what the equations are going to give us when we solve them. The 
solution to the equations will also tell us at  what speed this wave moves - 
that is the dispersion relation. 

We first notice that through the free surface boundary conditions, the 
equations are nonlinear. 

Experience shows that for most situations we can assume that the lin- 
ear solution at least gives the order of magnitude of all relevant 
quantities. The only exceptions are situations governed by the so-called 
Nonlinear Shallow Water (NSW) equations, which are strongly nonlinear 
so that no linear first approximation exists. 
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7.3 The system of dimensionless variables used 

As mentioned in the introduction the objective is to determine the rel- 
ative order of magnitude of each term in the equations. This is essentially 
done in two steps. We first introduce a system of dimensionless variables 
based on characteristic scales for the motion. The scales used are 

0 ho a characteristic depth 
0 X 
0 A a characteristic amplitude 
0 co 

a characteristic horizontal scale (not necessarily the wave length) 

a characteristic velocity (typically the phase velocity for the wave) 

Notice that thereby the characteristic timescale is implicitly fixed as 

When applied to  the independent variables this gives the following di- 
X/CO. 

mensionless variables (denoted by I) 

(x, Y) = X(z', Y'); (z, h) = ho(z', h') (7.3.1) 

(7.3.2) 

This implies, following the chain rule, that differentiation with respect 
to these variables can be written 

(7.3.3) 

( 7.3.4) 

(7.3.5) 

We then use linear theory to express the important basic variables q 
and 4 in a similar way as the product of a dimensionless quantity and a 
dimensional factor. In linear theory we have 

q = A  cos % ; % = w t - k x  (7.3.6) 

Hence we define q' by 

q = A q '  (7.3.7) 

Similarly we have for 4 
cosh k ( z  + h) sin 4 = -Ac 

sinh kh 
(7.3.8) 
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This expression requires some modification to identify the proper separation 
between the dimensionless 4' and the dimensional factor. We see that 
(7.3.8) can be written 

AC cosh k ( z  + h) sin 
@ = - -  

tanhkh cosh kh 
(7.3.9) 

and in order to unify all cases in the same formula it turns out to be 
convenient in the order of magnitude estimates to choose the following 
definition for d' 

which implies 

cosh k ( z  + h) sine 4' = 
cosh kh 

(7.3.10) 

(7.3.11) 

It may be emphasized here that this is as far as linear theory can give 
guidance. The actual 7' and 4' will essentially be the unknown functions 
in the study. Hence for the nonlinear wave motions we are going to study 
we can expect that 

# cos e (7.3.12) 
cosh k ( z  + h) 

sin 8 
' I  # cosh kh 

(7.3.13) 

The dimensionless version of the basic equations 
We can then determine the dimensionless version of each quantity 

occurring in the basic equations and thereby the form of each term in the 
equations. We get 

(7.3.14) 

(7.3.15) 

(7.3.16) 

(7.3.17) 
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Similarly we get 

(7.3.18) 

(7.3.19) 

Substituting this into the basic equations (7.2.2) - (7.2.5) we then get 
the dimensionless version of the equations. For the Laplace equation we 
get 

and for the bottom boundary condition we we get 

For the kinematic free surface boundary condition 
some reorganization 

(7.3.20) 

(constant depth) 

(7.3.21) 

(KFSBC) we have after 

1 p tanh kho q:, - & + Sp2qLl& = 0; z' = 6q' 1 (7.3.22) 

and finally the dynamic free surface boundary condition (DFSBC) yields 

( 7.3.23) 

both written here in a form convenient for the following. We notice that in 
dimensionless form the surface z = q changes to z' = 67'. 

Exercise 7.3-1 
Derive equations (7.3.20) - (7.3.23). 

It is worth noting that although use of linear theory and introduction of 
characteristic scales give relevant expressions for the dimensionless variables 
we have no guarantee that all the derivatives shown above are 0(1) for all 
the cases to be studied. In fact we will find that for long waves a few of 
them are not. 
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The equations (7.3.20)-(7.3.23) are now the basic equations on a form 
where all terms are expressed as a product of a combination of the external 
parameters 6, p, and tanh kho, and some dimensionless functions. The 
6, p-combinations give the order of magnitudes we are looking for, the 
dimensionless functions the more precise variation in space and time, which 
it is the purpose of an actual solution to describe. 

7.4 Stokes waves 

Stokes wave theory emerges from the equations (7.3.20)-(7.3.23) if we 
assume intermediate to deep water relative to the characteristic horizontal 
scale A. This mens assuming that 

ho 
x p = - = O(1) (7.4.1) 

When this is the case we see that 

tanh kho = 0(1) (7.4.2) 

and using the linear dispersion relation for the waves we also have co2 - gX 
so that 

Substituting this the four basic equations become 
Laplace: 

with the boundary conditions 

( 7.4.3) 

(7.4.4) 

Exercise 7.4-1 
Derive equations (7.4.4) - (7.4.7) 
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This is the case corresponding to Stokes waves. As the equations 
show, there is only one small parameter 6p = A/X N HIL,  and it occurs 
as a factor on all nonlinear terms. 

Hence in Stokes' waves, all nonlinear terms in the basic equations will 
be of the same order of magnitude, and we can keep nonlinear terms small 
by requiring 

H/L << 1 ( 7.4.8) 

H/L is, of course then, the proper expansion parameter in the perturbation 
expansion used in Stokes wave theory. 

In this case all the dimensionless variables in the equations turn out 
to be O(1). As an example we determine $',, and &,, the horizontal and 
vertical velocity components, by comparing with the values of linear theory. 

(7.3.8) with respect to z and using 
(7.3.14) we get 

Differentiating the dimensional 

(7.4.9) 
27rAc cosh k ( z  + h)  cos - Ac 

X tanh k h  '" $ s = 7 J = -  
L sinh lch 

Solving with respect to $',, and letting X/L = 1 then gives 

cosh k ( z  + h) cos 
#J;, N 27r 

cosh k h  

which is O(1). Similarly we get for 
to z and using (7.3.15) 

27rAc sinh k ( z  + h) 
L sinh kh 

Q z = w = -  

$:, differentiating (7.3.8) 

$ i t  

ACO 
ho tanh kho cos 0 - 

which means 

ho tanh kho sinh k ( z  + h) sin 
L sinh k h  $ i t  N 2n 

And since ho tanhkho/L = O(1) we get 

sinh k ( z  + h) 
sinh kh sin 8 $it - 27r 

(7.4.10) 

with respect 

(7.4.11) 

(7.4.12) 

(7.4.13) 

which again is O(1) 
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7.5 Long waves 

In the region near the shore the water depth becomes so small that 
the incident, windgenerated waves have wave lengths L much longer than 
the water depth h. This is the “shallow water region”. These waves are 
therefore also termed “long waves”. In terms of p it means that long waves 
are characterized by 

At the same time the wave height is often comparable to the water 

Under these circumstances the linear theory predicts that 
depth h. 

- = O(1) 
Sho 
CO 

tanh kho = kho = O ( p )  

(7.5.1) 

(7.5.2) 

Here we have assumed kho = O(ho/L) which underlines that 0 only stands 
for “order of magnitude”. For long waves, however, it turns out that the 
non-dimensional functions in the equations are not all O(1). To reveal this 
we use the same approach as for the Stokes wave case, and again we use 
4kr and 4:, as examples. For the first of those we get 

cosh k ( z  + h) 
cosh k h  

4;, = 27r cos 0 = O(1) (7.5.3) 

However, for $:, we now get 

h sinh k ( z  + h) sinh k ( z  + h)  
L sinh kh sinh k h  

$:, = 27r- tanh k h  sin 0 - 27rp sin 0 
(7.5.4) 

From this we conclude that 

which implies it is the product & / p 2  which is O(1). 

Exercise 7.5-1 Show that for long waves all other dimensionless 
functions in the equations are 0(1) except $:,,, which is also O(p2) .  
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Hence in the Laplace equation (7.3.20) the &z,/p2 term is of the same 
order as the bLrz, (which of course is consistent with the fact that the equa- 
tion only has two terms!), and the equation remains the same as (7.3.20) 

1 
&x/ + I;zi:.”. = 0 (7.5.6) 

Similarly the other linear equation, the bottom boundary condition, re- 
mains the same 

1 -4’ p2 z‘ - 0  - ; z = - h  (7.5.7) 

In the two nonlinear surface conditions, however, the assumptions about 
the magnitude of 6 and p change the form of the equations. We get For 
(7.3.22) and (7.3.23) 

; zr = 67’ (7.5.8) r 1  q: + 6 (b;, qx, - --+ = 0 

where the terms 6 & qk, and d(q53 + $43) are now the small terms. 
This clearly is much more complicated case than for Stokes waves, be- 

cause the two surface conditions contain two (small) parameters: 6 and p. 
The proper approximation depends on the relative magnitude of 6 and p. 
There are essentially 3 cases to consider: 

1. 6 << O(p2) 

2 .  6 = O(p2) 

3. 6 >> O(p2) 

This can also be written 

(7.5.10) 

(7.5.11) I 
In the following we consider each of these cases separately starting with 

the second condition which turns out to include the other two conditions 
as special cases. 
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7.5.1 The Stokes or Ursell parameter 

The significance of the parameter was already pointed out by Stokes 
(1847). He showed the value of this parameter is a measure of the shallow 
water limit for the validity of his second order theory which will be discussed 
further in chapter 8. For this reason the parameter is sometimes called the 
Stokes parameter. However, the parameter is also often called the Ursell 
parameter because Ursell (1953) showed the result indicated above that 
this parameter is important in distinguishing between the three different 
long wave cases. 

In practical applications the wave amplitude A is often replaced by the 
wave height H and the characteristic horizontal scale X is often set equal 
to the wavelength L. We see that then changes to 

(7.5.12) 

so that the proper approximation for long waves can also be said to depend 
on whether the parameter 

<< O( 1) linear shallow water waves 
U G -  = 0(1) cnoidal and solitary waves (7.5.13) 

h3 
H L 2  >> O( 1) nonlinear shallow water waves 

However, depending on the estimate of A, the differences in numerical values 
of and can be quite substantial. A X2 

7.5.2 Long waves of moderate amplitude 

The assumption here is 

(7.5.14) 

Inspection of the equations (7.5.6) - (7.5.9) shows that this means all 
the nonlinear terms must be retained. The relevant equations therefore 
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are simply (7.5.6) - (7.5.9): 

The linear terms are clearly O(1) as is @ L J 2 .  However, the nonlinear 
terms have factors 6 which, as mentioned, indicates that these terms are 
proportional to the amplitude of the waves. For 6 << 1 all the nonlinear 
terms are small, and the waves are therefore often termed weakly nonlinear. 
It is also recalled that +L,2  is O(p2) so the term 56,’ is O(p2). 

It will be shown later that these equations lead to the so-called Boussi- 
nesq waves. solutions for the constant form waves called cnoidal and soli- 
tary waves. However, substantial modifications, shown in Chapter 9, are 
needed to bring the equations on a form suitable for closer analysis. The 
analysis of this case forms the major part of Chapter 9. 

Because these equations contain all the terms of the original equations 
we can formally derive the other two cases from these equations by assuming 
6 an order of magnitude smaller than p2 (giving the case of very small values 
of the Ursell parameter) or 6 an order of magnitude larger than p2 (which 
gives the case of very large values of the Ursell parameter. 

7.5.3 Long waves of small amplitude 

6 AX2 
= - << O(1) I -  p2 h3 

(7.5.19) 

This implies that all nonlinear terms are very small. The equations simplify 
to : 
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(7.5.20) 

4; = O  ; = -h' (7.5.21) 

(7.5.22) 

q ' + & = o  ; z = q  (7.5.23) 

where the 0 on the RHS actually stands for O(p4). 
Closer inspection and comparison with Chapter 3 shows that these equa- 

tions are identical to the equations solved to get the linear wave theory. 
Their relevance for the Boussinesq waves will be discussed in Chapter 9. 

7.5.4 Long waves of large amplitude 

1 d = U(1) >> O($) J (7.5.24) 

When 6 = 0(1) the waves have heights of the same magnitude as the 
water depth, and some of the nonlinear terms are large, (i.e., of the same 
order of magnitude as the linear terms). 

However, we still have $:, = O(p2) according to (7.5.5). As for waves of 
moderate amplitude this implies that the linear term $4, = O(1) whereas 
the term $(q5i,)2 = U(p2).  

To the O(p2) the equations then reduce to: 

4L + 4L = 0 (7.5.25) 

4; = 0 ;  z'= -h' (7.5.26) 

(7.5.27) q; + 4; q; - 4; = 0 ; Zf = Xqf 

(7.5.28) 
1 ,  
2 

qf + - 4: + 4; = 0 ; 2' = Xq' 

We see that all terms in these equations are of the same order of magnitude 
because the only small nonlinear term (the 4;' term representing the effect 
of the vertical velocities) has been omitted. 

For these equations all nonlinear terms are essential and of the same 
order of magnitude as the linear terms. This implies that the results from 
linear wave theory cannot be used as a first approximation. Also no ana- 
lytical or even approximate solution is possible. The case is of significant 
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interest as it represents many situations occurring in practice, and the anal- 
ysis of the properties of the equations will be discussed further in Section 
9.12. As will be shown there, this case leads to the so-called nonlinear 
shallow water equations (NSW) or finite amplitude shallow water 
equations 

7.6 Conclusion 

In conclusion, the analysis in this chapter shows how the magnitude 
of the two parameters b and p leads to the four different sets of equations 
and thereby four different wave theories known from the classical literature. 
Derivation of the actual equations for those four cases, solutions for constant 
form waves where they exist, and discussion of many of the other results 
and methods associated with classical nonlinear wave theory, are discussed 
in the following chapters. 
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Chapter 8 

Stokes Wave Theory 

8.1 Introduction 

The Stokes wave theory is both the oldest and most well-studied of the 
nonlinear theories. The reason for studying it in some detail is, however, 
that in addition to being the simplest it also exhibits most of the effects 
associated with nonlinear waves. 

The theory was first developed by Stokes (1947), whence its name, and 
reprinted with some additions in the collected papers Stokes (1880). 

One of those characteristics is illustrated in Fig. 8.1.1 which shows the 
difference between the surface profile of a sinusoidal wave in intermediate 
depth of water and that of a “real” wave. While the sinusoidal wave has 
equally high and equally long crests and troughs the real wave has shorter 
and higher crests and longer and shallower troughs. 

Sinusoidal wave 
Real wave 

MWL 

Fig. 8.1.1 Comparison of wave profiles. 

In consequence of the results of Chapter 7, we again consider the basic 
equations. For convenience we repeat the equations in dimensional form 

341 
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here. They are: 
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(8.1.1) 
824 a24 

Laplace : v24 = - + - = $lx + $zz = o 
ax2 ax2 

with the boundary conditions: 

4 z = O  ; z = - h  (8.1.2) 

rlt + 4277, - 4* = 0 ; z = rl (8.1.3) 

(8.1.4) 

where C(t)  is the arbitrary function in the generalized Bernoulli equation. 
The variables used are defined in Fig. 7.2.1 which also shows the coordinate 
system is place with the z-axis (i.e. z = 0) on the Mean water surface 
MWS .MWS 

In addition we assume the waves are periodic in x which we express as 

Thus we are returning to dimensional form of the equations and seek solu- 
tions based on the assumption, that if we define the parameter y as 

then we have 

nonlinear terms = O(y) . linear terms 

or 

y << 1 <=> nonlinear terms << linear terms 

(8.1.6) 

(8.1.7) 

(8.1.8) 

8.2 Second order Stokes waves 

8.2.1 Development of the perturbation expansion 

So y is the wave steepness which we know is the proper expansion pa- 
rameter for Stokes waves. 
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We now formally expand all quantities in a power series in y: 

4 = 74; + y24; + . . . 
7 = 777; + y2v; + . . . 

(8.2.1) 

(8.2.2) 

(8.2.3) 

(8.2.4) 

(8.2.5) 

p = -pgz + yp: + y 2 1  p ,  + . ' . 
w = w; + yw; + y2w; + . . . 

C(t)  = yc; + 7%; + . . ' 
where wo is included because even waves of infinitesimal steepness d = 0 of 
course have a finite wave frequency. 

In the following, we will leave w unexpanded when met as an argument 
to the trigonometric functions (like cos(wt-kz)) and only substitute (8.2.5) 
when w occurs as a factor outside the functions. Notice that expanding the 
frequency instead of the wave number lc is convenient. It  implies that as we 
go to higher order approximations, we consider the changes in w for given 
k. In the numerical applications, however, we often solve the resulting 
equations in respect to lc for given w. (This is discussed later.) 

When we substitute into the equations it of course makes no difference 
whether we write y4;, y2+$, . .  . or just +I(=  yc/(), 4 2 ( =  y2&), . . .. So for 
simplicity, we use the expansions: 

4 = 41 + 4 2  + . . .  
77 = 111 + 772 + ' .  ' 
P = - p g z  + pl + p2 + . . . 
w = wo + W I  + w2 + .. . 

(8.2.6) 

(8.2.7) 

(8.2.8) 

(8.2.9) 
(8.2.10) C(t)  = CI + c, + . . . 

and recall that quantities with index1 are O(y), quantities with index2 are 
O(y2), etc. (Notice that this change is not necessary. It just reduces the 
number of symbols in some of the equations.) 

Substitution into the equations yields: 
Laplace: 

(412cz + 4 l a r )  + (4222 + 4 2 z z )  + ' .  . = 0 (8.2.11) 

Bottom boundary condition: 
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Periodicity condition: 

( # d o ,  z ,  t )  - 4 l z (L ,  z ,  t ,  )) + (42z(O,Z, t ,  1 - 42x(L, 2, t>> + . . . (8.2.13) 

Kinematic free surface conditions: 

""') +.. .  (771 + -41t - "") + ('Vz + - 42t + - (44% + 44,) - 
1 1 1 
9 9 9 29 9 

= O ;  z = q  (8.2.15) 

Here we have collected terms proportional to the same power of y and 
utilized that since both 41% and qlz are O(y), we get q51zq1z = O(y2), etc. 

This procedure is followed everywhere in the following. As in linear wave 
theory, we now realize that we cannot handle the free surface boundary 
conditions at the unknown and varying z = 77-level. 

So, using z = 0 as expansion point, we introduce a Taylor expansion for 
all +derivatives. This implies writting: 

(8.2.16) 

for all z-dependent variables in (8.2.14) and (8.2.15). We get (e.g.) 

4 lz (Z ,  77, t )  = 41z(Z,O, t )  + (771 + 772 + . . . )4lzz(Z, 0, t )  + . . . 

and similar expressions for other variables. 
Substitution of all these expansions into (8.2.14) and (8.2.15) yields: 

z = 0 (771t - 412) + (772t - 4 2 2  + 4lz'Vlz - 771z41zz) + . . . = 0 ; 
(8.2.18) 

and 

1 
(9% + $1,) + ( m 2  + 4 2 t  + 2 (4L + 44,)) + 7714ltz + . . . = 0 ; z = 0 

(8.2.19) 

Exercise 8.2-1 

above. 
Derive (8.2.18) and (8.2.19) by following the procedure outlined 
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The fundamental set of arguments which makes the perturbation tech- 
nique a method at all may now be described in the following way: 

If we consider the equations we have derived, viz. (8.2.11), 8.2.12), 
(8.2.13), (8.2.18) and (8.2.19), we realize that in each parenthesis all terms 
are proportional to y" (where n is the number of the parenthesis). We can 
then write each equation on the form: 

Y f l +  y2f2 + y3 f3 + . . . = 0 (8.2.20) 

Eq. (8.2.20) is a polynomium in y. Since we want the results of our theory 
(i.e., the results for f l ,  f2 ,  etc.) to apply for all values of y = H / L ,  this 
means the polynomium must be zero for arbitrarily many values 
of the variable y. And clearly this can only happen if all coefficients 
f1, f2 ,  . . . are identically zero. 

Thus we must conclude that to satisfy (8.2.20) for arbitrary values of 
y = H / L ,  we must require: 

f l  = 0 
f 2  = O etc. 

(8.2.2 1) 

(8.2.22) 

which means that each of the above mentioned equations split into one 
equation for the expression in each of the parentheses. 

8.2.2 First order approximation 

This is the idea that opens for the solution of the problem. If we now 
consider the first parentheses of all equations, we get the following system 
for the first order approximation: 

4lzz + 4 l z z  = 0 (8.2.23) 

41z=0  ; ~ = - h  (8.2.24) 

(8.2.25) 

v1t - $ I *  = 0 ; z = 0 (8.2.26) 

gv1+ 4lt - Cl(t) = 0 ; z = 0 (8.2.27) 

412(01z, t )  - 412(L, z1 t )  = 0 

which is exactly the system of equations we have solved previously to find 
the linear wave theory. 

Hence, we have by this formal procedure shown that the linear waves 
do indeed constitute the first approximation of what turns out (when we 
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go on) to be a wave theory that can be developed to arbitrarily high order 
(and (hopefully) accuracy) provided we are willing to do the work. 

Recall that the results for linear waves are: 

H c  cosh k(z + h) 4l = -- 
2 sinhkh 

H vl = - 2 case 
H cosh k ( z  + h) 
2 coshkh Pl = PS - 

wg = gk tanh kh or 

sin0 ; 0 = w t  - kx (8.2.28) 

(8.2.29) 

cos 8 (8.2.30) 

(8.2.31) 9 
k 

c: = - tanh kh 

and Cl(t) = 0. So, until here everything is well known and we can go on 
to the next approximation. 

8.2.3 Second order approximation 

Obviously the equations determining the second approximation also 
come from (8.2.11), (8.2.12, (8.2.13), (8.2.18) and (8.2.19). It turns out 
that it is convenient to separate C 2 ( t )  into a mean part C 2  = Cz(t) and a 
time varying part Ci(t)  by writing 

- 

c 2  ( t )  = c 2  + c; ( t )  (8.2.32) 

and to include Ci(t) in 4 2 .  For the second approximation we then get: 

4 2 1 2  + 4 2 z z  = 0 (8.2.33) 
4 2 2  = 0 ; z = - h  (8.2.34) 

4 2 1 ( O , Z , t )  - 4 2 2 ( L , z , t )  = 0 (8.2.35) 
772t - 4 2 2  = 77l4lzz - 7711412 ; z = 0 (8.2.36) 

1 
; z = 0 (8.2.37) 

2 

The solution to these equations will give us 772 and 4 2 .  As in all po- 
tential flow problems, the pressure is then afterwards determined from the 
Bernoulli equation. For this purpose, we introduce the dynamic pressure 
P O ,  again defined as the pressure over and above the hydrostatic pressure 
from the MWL. 

~ 7 2  + 4 2 t  - c2 = -77141tz - - (&% + &z) 
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which in combination with (8.2.8) shows that 

p o = p 1 + p 2 + . . .  

The Bernoulli equation for pz then becomes: 

1 
Pz = P 4 z t  + PCZ - 5 P (4fz + 4fJ 

Exercise 8.2-2 
Derive (8.2.40) from the Bernoulli equation. 

(8.2.39) 

(8.2.40) 

The next step towards a solution for the second order approximation is 
the same as for linear waves: 772 only occurs in the two surface conditions, so 
we eliminate 772. Differentiation of (8.2.37) with respect to t and subtraction 
from (8.2.36) multiplied by g yields (using that Cz is a constant): 

1 
4 2 t t  + g 4 2 2  = - (77141tz)t - 5 (4fz + 4?Jt - g77141zz + g7712412 ; z = 0 

(8.2.41) 
This may also be written 

42t t  + 942.2 = -771 (gwlz + W l t t )  - (u? + Wf) ,  (8.2.42) 

(This transcription is not necessary, though, (8.2.41) suffices). 

yields: 
Substitution of the results for 771, u 1  and w 1  from first order theory then 

sin2(wt - Icz) 
sinh 2kh 

. z = o  (8.2.43) 
3 
4 4 2 t t  + g 4 2 2  = - g c ( k W  

which is the combined kinematic and dynamic free surface boundary con- 
dition. 

Exercise 8.2-3 

equations for linear waves. 
Derive (8.2.43) from (8.2.41) by utilizing that u 1 ,  w 1  satisfy the 

Discussion 
There are two important observations to be made here. 
First: We notice that the initial equations (8.1.1), (8.1.2) and (8.1.5) 

which are linear produce the same equations (8.2.33), (8.2.34), and (8.2.35) 
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for second (and higher) order as the equations (8.2.23), (8.2.24), and 
(8.2.25) for first order. 

Second: In the second order approximation the nonlinear boundary 
condition (8.2.42) or (8.2.43) differs from first order version, but in a very 
particular way. On the LHS $2 and 7 2  occur in exactly the same way as $1 
and 71 do in the first order equations. The difference is that instead of 0 on 
the RHS (as in (8.2.26)), we now have a combination of terms all depending 
on the first order solution only. And since that solution is by now known, 
the RHSs of (8.2.36-8.2.37) represent known mathematical expressions. 

In mathematical terms, the first order expressions (8.2.23-8.2.27) are 
homogeneous, the second order (8.2.33-8.2.37) are inhomogeneous. 

If we think of a simple linear mechanical oscillation, a homogeneous 
equation represents free oscillations (with the natural frequency). Such 
oscillations may have any amplitude we want. In our wave case, this prop- 
erty shows up in the first order solution: we can choose any wave height 
we want. (The analogy with a simple one-dimensional oscillator fails at 
another point, however: we have infinitely many degrees of freedom and 
hence not one natural frequency. We can choose any wave frequency.) 

Similarly, in the one dimensional oscillator, an inhomogeneous equation 
represents a forced oscillation with an amplitude and frequency determined 
entirely by the external forcing term (i.e., the inhomogeneity). In our sec- 
ond order approximation, the inhomogeneities in the equations are formed 
by combinations of first order terms. We therefore arrive at the following 
physical interpretation: 

The second order approximation for the wave motion is a forced 
oscillation, generated (“forced”) by the first order wave. Hence, the 
second order solution will have the same frequency as the forcing 
term and its amplitude will also be fixed by the magnitude of that 
term. 

If we go to higher approximations we will, of course, find that at each 
approximation the wave component of that order is forced by combinations 
of all the lower order solutions already determined. 

The reason why a second order contribution is generated is apparently 
that the first order solution does not satisfy the free surface boundary 
conditions completely: we left out non-linear terms and let the conditions 
be satisfied at z = 0 instead of z = 7. The second order terms that 
appear are the first approximation to correcting this. This second order 
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improvement, however, will neglect terms 0 ( H / L ) 3  and hence a correction 
of that order of magnitude is required in the third order approximation. 
And so forth. 

8.2.4 The solution for 42 

As mentioned, the second order solution must have the same frequency 
as the forcing term. Hence, 4 2  must vary as 2(wt - kz) and we therefore 
seek solutions of the form: 

$2 = 4; + K z  = F(28) . Z ( z )  + K z  (8.2.44) 

(8.2.45) 8 = w t  - kx 

where we continue to consider w the full unexpanded value. The significance 
of the last term will become apparent soon. The important thing is that it 
turns out that we can allow such a term to be included. 

Substitution into Laplace’s equation (8.2.33) yields: 

FxxZ + FZ” = 0 (8.2.46) 

By the usual arguments for the separation method (see Chap 3) this splits 
into two equations 

where X is the separation constant. The complete solutions to (8.2.47) are 

A A 
F = A1 sin - 28 + A2 cos - 28 

2k 2k 
Z = B1 sinh Xz + B2 cosh Xz 

(8.2.48) 

(8.2.49) 

The bottom boundary condition yields: 

B1 = B2 tanh Ah 
cosh X(z + h) 

cosh Ah 
Z = B2 

(8.2.50) 

(8.2.5 1) 
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The free surface condition (8.2.43) then gives: 

x -w2- A1 sin -20 + A2 cos 
x2 k2 [ 2k 

3 sin 20 
4 sinh 2kh  

= - g c ( k H ) ’ y  (8.2.52) 

To satisfy this equation for all 6, we must require that the cos 20 and 
the sin 26 terms vanish separately which gives the requirements: 

a) A2 = O  

b) A =  2k 
(8.2.53) 

(8.2.54) 

and 

(8.2.55) 

At this point we substitute (8.2.9) for w. However, since (8.2.55) is al- 
ready O(kH)’ contributions from w1 would be a term O ( / C H ) ~ ,  etc. There- 
fore to the second order approximation we still have 

3 1 
c) 2gA1Bzk tanh 2kh - 4w2A1B2 = -gc(kH)’- 

4 sinh 2kh  

w2 = w i  = gk tanh k h  (8.2.56) 

which means that the dispersion relation for the second order approximation 
is the same as for linear waves. Using this, plus the trigonometric identities, 
we then find: 

3 c2 ,cosh2kh 
32 k sinh4 kh 

AlB2 = -- - ( k H )  

where c is given by (8.2.56) in combination with c = w / k .  
Hence, we get for $ 2 :  

(8.2.57) 

(8.2.58) 3 cosh2k(z + h) 
32 sinh4 kh 

$2 = -- c k H  sin 28 + Kx 
Notice xhat as anticipated, the amplitude AlBz of 4 2  cannot be chosen 
freely. It is a “forced oscillation”. 

Exercise 8.2-4 
Show that in fact the equations allow a solution with A2 # 0. 

Show that this solution corresponds to a wave with the frequency 
w2 = 2w that satisfies a dispersion relation similar to (8.2.56). 
b 
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Deduce that this means that in addition to the forced solution 
(8.2.58), a free second harmonic wave is a solution to the second 
oder equations. This solution turns out to appear as an unwanted 
disturbance when waves are generated by a wave maker in a wave 
flume. 

Exercise 8.2-5 Show that in deep water (kh + m) we get: 

4 = 41 + 42 + . . . = 41 + o ( ~ H ) ~  (8.2.59) 

that is, in deep water 4 2  vanishes. 
Show also that in shallow water ( k h  + 0) we have: 

42 B 41 

and hence deduce that there must be a limit to how small a water 
depth the theory can be applied at. 

8.2.5 The surface elevation q 

The 59 component of the surface elevation was eliminated from the two 
free surface conditions (8.2.36-8.2.37). We now go back and use (8.2.37) to 
determine q2 (exactly as done for linear waves) inserting the expressions 
for 4 2 ,  r]1 and 41. 

We get: 

~ - _ _ _ _  ] + 9 (8.2.60) 3 + 2 sinh2 kh cos 26 
~2 = -kH2 

8 2sinh2kh tanhkh sinh2kh g 

Exercise 8.2-6 Derive (8.2.60). 

We see that the expression for 72 corresponds to a mean value ?ji of r] 

which is non-zero and can be written 

_ _  1 k H 2  C2 
r] = Q2 = -- ____ + -  

8 sinh2kh g 
(8.2.61) 
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H 1 
2 16 

77 = 771 + q 2  = - C O S ~  + -kH2 ( 3 ~ 0 t h ~  kh - coth kh) cos28 

However, we have defined 7 as the surface elevation above the MWS 
which means we must have ?, = 0. Therefore we must require r/2 = 0 which 
means we must put 

(8.2.67) 

1 kH2 c -  
2 - g  8 sinh2kh 

Exercise 8.2-7 
Show that this value of Cz can also be written 

1 H 2  
16 h 

C, = -- - G 

where G as usual is defined as 

2kh 
sinh 2kh 

G =  

(8.2.62) 

(8.2.63) 

(8.2.64) 

We then get the following result for 7 2 ,  the second order approximation to 
the surface elevation measured from the MWS 

3 + 2 sinh2 kh cos 28 
2 sinh' kh --I tanh kh 

72 = -kH2 
8 

Exercise 8.2-8 
Show that (8.2.65) may also be written: 

(8.2.65) 

1 I 16 
7 2  = -kH2(3coth2 kh - cothkh)cos28 I (8.2.66) 

For completeness, the total result for 7 in second order Stokes waves 
can then be written 

Fig. 8.2.1 shows surface profiles in terms of 7 for second order Stokes' 
waves for two different wave steepnesses at kh = 1. We see that the steeper 
the wave the higher and shorter the crest and the shallower and longer the 
trough, which is exactly what is observed in nature. 
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Fig. 8.2.1 
steepnesses at kh = 1 (SJ76). 

Surface profiles for second order Stokes’ waves for two different wave 

Following Svendsen and Jonsson (1976) (denoted SJ76 in the following) 
the result for 77 and 772 can be written in a more illustrative form if we 
introduce the definition 

H 
a1 = - 

2 
(8.2.68) 

We can then write v 2  as 

(8.2.69) 
H 
L 772 = a2 cos 28 = a l -  f , (kh)  cos 28 

where f, is defined as 

7r 
f, = 4 (3 ~ 0 t h ~  kh - coth kh) (8.2.70) 

We see that this confirms that the second order apprximation is O(H/L) 
times the first order solution as postulated in Section 3.2. Fig. 8.2.2 shows 
the variation of f, with lch. As indicated earlier it is clear that f, grows 
dramatically as kh -+ 0, signifying the breakdown of the theory because we 
started out assuming 772 << 771. 

Exercise 8.2-9 
Show that, in the limit kh -+ co, we get 

(8.2.71) 



354 Introduction t o  nearshore hydrodynamics 

as shown 

(8.2.72) 

Thus we have the paradoxical result that for kh -+ cm the second order 
contribution qj2 to the velocity potential vanishes (see exercise 8.2-5) but 
the second order contribution 772 to the surface elevation does not. 
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We also find that in the limit kh + 00 we get 

71240 (8.2.73) 

Exercise 8.2-10 
Show that for kh + 0 we get 

3 H L ~  +-- a2 

a1 3 2 ~ ’  h3 
- (8.2.74) 

so that for shallow water we have 

77 = q1+ 772 = a1 cos 0 + -- L2 cos 20 ) (8.2.75) ( 32n2 h3 

which shows that in shallow water the Ursell parameter HL2/h3 is 
the parameter that determines the magnitude of the second order 
term relative to the first order solution. This result was already 
found by Stokes (1880), which is why the parameter is also called 
the Stokes parameter. 

We also notice that the factor & = 0.0095 = 0(10-2) is actually quite 
small. Therefore even when the value of N 25 (as e.g. for H/h  = 0.5 
and L / h  = 7) the second order term in (8.2.75) is only 25% of the first 
order term. For further discussion of this see Section 8.2.10. 

8.2.6 The  pressure p 

As usual in potential theory the pressure is obtained from the Bernoulli 
equation. For p2 (8.2.40) yields: 

1 cosh 2k(z + h) cos 20 
p 2 = g p g k H 2  3 - 1) ~ [( sinh21ch sinh 2kh 

- cosh 2k(z + h) ] + pc2 
sinh 21th 

and if we substitute Cz from (8.2.62), we get 

(8.2.76) 

(8.2.77) 
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The total pressure p is then given by 

P = - P S  z + P l  +P2 = -P g Z P l  +P2 (8.2.78) 

The expression for PO2 consists of a timevarying part changing with x 

It is instructive here to check the value of the mean pressure at the 
and t as cos 28 and some terms that do not depend on x and t .  

bottom. For p ( - h )  we have 

P(-h) = P 9 h + E + E  = P 9 h (8.2.79) 

This is exactly the result that can be derived from the vertical momentum 
balance: at the bottom the mean pressure equals the weight of the water 
in the column above, or: the mean pressure at the bottom is the same with 
and without progressive waves. Hence the value assigned to C2 above also 
ensures that this requirement is satisfied. 

Often it is convenient to introduce the dynamic pressure as the pressure 
over and above the hydrostatic pressure defined as the pressure relative to 
the local MWS. That is we define the dynamic pressure p~ by 

Going back to the definition of (8.2.8) for the perturbation expansion for p 
we see that this means writing p~ as 

P D  = P i  + P2 (8.2.81) 

PD2 = P2 (8.2.82) 

Exercise 8.2-11 

the p 2  goes to 
Show that for k h  + 00 the amplitude of the oscillating part of 

1 cosh 2k(z  + h) 
8 sinh 2kh ~ 2 , m a z  4 - -P  9 k H 2  (8.2.83) 

and consequently pz -+ 0 at the bottom. 
Interpret this result. 
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Discussion of the physical implications of the results for 77, p and 
c2 * 

Varying depth 
The value of C2 given by (8.2.62) clearly depends on the depth h. There- 

fore, if we consider the results presented above in a case where the depth 
changes (slowly) from one point to another then obviously the value of 
C, will change with x which is in conflict with the knowledge that C2 is 
independent of x. The solution (see Chapter 11) is to place the x-axis 
(which has to  be horizontal) at a level that differs from the MWS, and put 
C2 = 0. Then the surface elevation above the x-axis will be measured by a 
new variable < for which we have T(# 0) is the elevation of the MWS above 
the x-axis and 

v = < - T  (8.2.84) 

where 77 remains the surface elevation measured from the MWS and given 
by the expressions derived above for Stokes waves. 

Notice that the result (8.2.73) means that in deep water < = 0. It 
is also mentioned that the expression (8.2.63) will later (see Chapter 11.7) 
be shown to be the vertical distance between the MWS for a wave in deep 
water and the MWS for the same wave when it reaches depth h, that is 
( = -c2. 
- 

The mean pressure 
It  is noted that for points above the bottom, p # pgz. The reason for 

this is discussed in Chapter 11. However, we also see from the Bernoulli 
equation (8.2.40) that at arbitrary z (since & = 0), we have the mean 
second order pressure 

1 - -  
E = - 5 P  ( 4 L  + o:,) + pc2 (8.2.85) 

on account of 
MWS is at  z = 0), this expression implies that C2 can be written 

= 0. At the bottom (where 41, = 0, and = 0 when the 

( b  = value at the bottom). 

(8.2.86) 
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Exercise 8.2-12 

for the Bernoulli constant C 
Show that (8.2.86) can be generalized to the exact result 

(8.2.87) 

for z = 0 at the MWS (i.e. the level defined by 7 = 0) .  This simple 
result is useful for application in high order theories with 7 = 0. 

8.2.7 The volume f l u x  and determination of K 

In (8.2.44), we added, somewhat arbitrarily, a term K x  to the form of 
4 2 .  In solving for 4 2  to  find (8.2.58), we met no restriction on K .  Thus 
the question arises: what determines K ?  Since the answer to that question 
turns out to be quite important for both higher order approximations and 
for treating waves on a current, the following discussion is kept more general 
than a second order theory requires. 

First, we notice that the K-term in (8.2.58) represents a steady uniform 
flow with velocity 

K = L L T  T g d t  (8.2.88) 

Since this K did not influence the oscillatory term in the solution for 4 2 ,  

we conclude that we can freely add to the wave motion a steady uniform 
current with velocity K .  Yet recall: K occurs in the second order equations 
so K can at most be O ( H / L ) 2  

Within this limit, however, K can in principle be any current, both 
positive and negative. Before discussing how to determine K for a specific 
motion we first analyse the concept of mass flux in waves. 

Volume flux in waves 

volume flux 
One of the important nonlinear properties for surface waves is the mean 

for the waves defined by 

- &=I' u d ~ = ~ l  l T  d t l h u d z  
-h 

where the overbar again means average over T .  

(8.2.89) 
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In Section 3.3 we derived for linear waves and found that such waves 
have a volume flux Qw given by (3.3.17). Here we extend this calculation 
to more general conditions. 

In calculating this integral, it is useful first to define the time averaged 
velocity U under the wave trough level as: 

(8.2.90) 

where qtr is 7 at the wave trough. Thus, U is the mean velocity in the 
region of the flow where there is water all the time. We then split the 
velocity u into a purely oscillatory part u, which has: 

(8.2.91) - u, = 0 

below trough level and a steady part U so that: 

u=u,+u  (8.2.92) 

Here we have assumed that U is independent of z .  The integral in 
(8.2.89) is now determined in the following way: 

- Q = s_"yT uw d z + / '  u w d . z + l :  U d z  
VtT 

= O+[:? u, d z + U ( q + h )  (8.2.93) 

where the first integral is 0 on account of (8.2.91) and the fact that qtr is 
independent of t .  In the third term we have also assumed the value of U is 
extended above z = qtr to z = 7. 

From (8.2.93) we can see that it is convenient in general to define the 
quantity: 

1) 1) 

Qw = ltT uw dz = l h ( u  - U ) d z  (8.2.94) 

so that: 

- 
Q = Q , + U ( h + V )  I exact for U independent of z (8.2.95) 
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Qw is seen to be the volume flux of the purely oscillatory part of the 
wave motion. As found in Section 3.3 and seen from (8.2.102) below, this 
is a nonzero quantity.l 

Second order approximation 
In the lowest (second) order approximation considered above, we have: 

uW =4iz+(pLx ; U = K (8.2.96) 

where 4iz corresponds to the oscillatory part of 4z2. (8.2.95) yields (choos- 
ing f j  = 0) 

- & =  J" u,dz+Uh 
V t r  

exact (8.2.97) 

" l + W  

(v l+"z) t r  = J 
For the integrals in (8.2.98), we have: 

"1 +"2 

( 7 1  + ~ 2  ) t r  

171 +"2 

(4iX + &x) dz + Kh correct to second order (8.2.98) 

412 dz = I"' 412 dz + 0 ( H 3 )  (8.2.99) J 
J' ("1+"2)tr 

4kzez = o ( H ~ )  (8.2.100) 

Thus the only contribution of O ( H 2 )  in the integral of (8.2.98) is the 
integral of (8.2.99) and so we get: 

Q = f " '  #lz d z + K h  Correct to second order 
" l t r  

(8.2.10 1) 

= (111 - qltr) (41z)z=o + Kh Correct to second order 

or 

Correct to second order (8.2.102) 

' Q W  is also called the Stokes drift. Unfortunalely this name can be ambiguous 
because it is sometimes also used for other mean flows in waves. Thus Mei (1983) uses 
the term for the mean flow induced in a wave boundary layer. We therefore avoid the 
term here. 
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As found already in Section 3.3 the terms (q~q5~z)z=o is the lowest order 
volume flux and as (8.2.102) shows this is a O ( H 2 )  contribution which can 
be determined knowing only the first order solution. It is not until 
we want to determine the volume flux to O ( H 3 ) ,  O ( H 4 )  etc. ~ accuracy 
that we need higher order approximations. 

The value of K 
The reason why K above seems to be a free parameter is that the 

problem we have considered so far is actually incomplete. Obviously, K 
must be determined by the boundary conditions in the x-direction and/or 
the initial conditions for the wave motion. This question is hardly ever 
discussed in the literature, but it is instructive to mention at least two 
canonical cases. 

The first is a steady situation in a wave flume where the wave maker 
has been operating for a long time. This case was already mentioned in 
Section 3.3. If no current is added or extracted at the ends of the flume, 
the boundary conditions in the x-direction require that: 

(8.2.103) 

Obviously, to obtain this we must to the purely oscillatory motion add 
a net (or return) flow U so that: 

- 
Q = Qw +Uh = 0 (8.2.104) 

In the special case of zero net volume flux, the wave motion corresponds to 
a purely oscillatory part (giving a volume flux Qw) and a (“return”) current 
U in the opposite direction that compensates for Qw. Thus we have: 

exact (8.2.105) 

= K  to second order (8.2.106) 

u=-- QW 

h 

and: 

to second order (8.2,107) 
1 H 2  
8 ’ c  

K = - -  

It is stressed that this value of K implies that at any point below the 
wave trough we have 

(8.2.108) 
- u=Cl+U2=0+K 
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The second canonical case we want to consider corresponds to U = 0 
(or to second order K = 0). This obviously means: 

Q = Qw exact (8.2.109) 
1 H 2  
- to  second order (8.2.110) 

- 8 ’ 7  

i.e., the waves have a volume flux. In fact, any other value of U than 
(8.2.105) (i.e., K given by (8.2.107)) represents waves with a volume flux. 

We notice that K = 0 means including only oscillatory terms in 4. This 
is the way results for Stokes waves are usually presented. For extensions 
of the theory to higher order of approximation, this turns out to give a far 
simpler description than the form with Q = 0. Furthermore, in the ocean, 
far from horizontal boundaries, this seems a natural form if other effects, 
such as wind stresses, are disregarded. It is emphasized again, however, that 
strictly speaking the value of K is determined by the boundary conditions 
along the horizontal boundaries, and - if the flow is not steady - by the 
initial conditions. 

For completeness it may be noted that both 7 ,  7 and p are independent 
of the value of K .  

- 

8.2.8 Stokes’ two definitions of the phase velocity 

We are now ready to discuss the so-called “Stokes two definitions of 
the phase velocity c”. Notice that unless otherwise stated, the following 
remarks apply to approximations of arbitrary high order. 

In his 1880 papers, pp. 202-203, Stokes suggests that two definitions for 
the phase velocity c are possible. This has since been discussed widely in 
the literature. Some of the following points of view, however, do not seem 
to be represented. 

The first definition 
The “first definition” c originates from including only the oscillatory 

terms in 4, which - we have seen ~ for second order waves, means K = 0. 
Stokes states this clearly and calls this “definition” “the most convenient.” 
Thus c corresponds to: 

T 
ud t  = 0 (8.2.11 1) 
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at  any point below the wave trough, and the waves have a volume flux 
which is given by (8.2.109). 

This also means that since the water below the trough-level has no mean 
velocity, a frame of reference from which the wave is seen to be stationary 
must move with the velocity c. 

Or, in other words: c is the speed of the wave relative to the 
water. Hence, from a physical point of view, this is c for the wave, and 
also the c determined from the dispersion relation. 

The second definition The “second definition” c* corresponds to assum- 
ing (8.2.103). Since the wave still propagates with the velocity c relative to 
the water, we therefore have: 

c* = c -  - QW (exact 1 (8.2.112) 
h 

1 H 2  = c - - g -  
8 c  

(to second order) (8.2.113) 

Thus c* is actually the speed of the wave with a current -Q,/h. (Or, 
more precisely, a wave seen from a coordinate system relative to which there 
is a current -Q,/h.) 

Stokes terms this “definition” “the most natural.” Notice that by virtue 
of (8.2.112) c and c* differ only by an amount O ( H 2 ) .  

Conclusion about c 
To clarify, the conclusion of the above analysis is: 

a) There is for physical reasons of course only one value of the phase ve- 
locity. A wave of given period (and height) on a given depth of water 
propagates with one, well defined speed relative to the water: c. And 
this is the c (also called the relative phase velocity c, in Section 3.6) 
which comes out of the dispersion relation for the case Q = Qw. 

b) Stokes’ second “definition” c* is a special case which actually corre- 
sponds to a wave on a particular current. 

To second order we have seen that this zero-mass-flux-description gives 
no problems: The extra “return-ffow” I< required to balance the Stokes 
drift can freely be added. 

For higher order approximations, however, the zero-volume-flux- 
description turns out to require a much more elaborate derivation because 
K and its higher order equivalents interact with the oscillatory terms. Such 
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a derivation has never been carried out to higher than third order (see e.g., 
SJ76). Also for this reason it is, therefore, more convenient to use the de- 
scription with only oscillatory terms and accept that this corresponds to a 
net volume flux Q = Qw. 

8.2.9 The particle motion 

The particle velocities 

expression 
The particle velocities u, w are readiliy obtain by differentiating the 

4 = 41 + 4 2  (8.2.1 14) 

with (8.2.28) for 41 and (8.2.58) for 4 2 .  

Exercise 8.2-13 Show that the result is for the second order con- 
tributions u2, w2 are 

cosh 2k(z + h) 
cos 28 (8.2.115) 

3 
16 sinh4 kh 

u2 = - c ( k H )  

3 sinh 2/42 + h)  
w2 = -- sin 20 

16 sinh4kh 
(8.2.116) 

It  is pointed out that in this Eulerian description of the velocity field 
the the average of the velocities over a wave period are zero. 

Finally it is mentioned that if we go back to the derivation of the solution 
for 4 2  we will find that the boundary conditions at “the free surface” strictly 
speaking are only evaluated at the level of the first order solution z = r]l, 

not at  the actual second order position of the surface (because the Taylor 
expansions from z = 0 were only carried to first order in z ) .  Therefore the 
velocity field we have found is strictly speaking only valid below z = r]l.  

This limitation is often disregarded in practical applications of higher order 
wave theories, as is the equivalent limitation on velocities in the linear wave 
theory (which is only valid up to z = 0). 
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The particle paths 
For the instantaneous particle position (2, z )  we get to second order 

2 = < + z1+ z2 (8.2.117) 

z = q + 21 + z2 (8.2.118) 

where (<,q) denote the (imaginary) particle positions at rest. In parallel 
with the linear wave particle motion (Section 3.2) this represents a La- 
grangian description of the wave motion. 

Here the first order contributions (zl, zl) are the contributions already 
determined for the linear waves. To obtain the second order terms in 
(8.2.117) and (8.2.118) we need to integrate the particle velocities. 

t' 

Fig. 8.2.3 The particle paths. The full curves are the paths in a second order Stokes 
wave motion, the dashed lines the equivalent linear wave solution. The equilibrium 
positions (t, v) of the particles are in the center of each first order particle path. In the 
second order approximation the particle paths are not closed curcuits but represent a 
net movement (SJ76). 
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Excercise 8.2-14 
Show that the result of the integration is 

(3 cosh 
k H 2  

32 sinh4kh 

+ (cosh 

5 2  = 

k H 2  
8 sinh'kh 

2k(q + h) - 2 sinh2 kh) sin 20 

2k(q + h)) wt (8.2.119) 

(3 cos 28 + 2 sinh'kh) sinh 2k(q + h)  
k H 2  

32 sinh4 kh 
22 = 

(8.2.120) 

As could be expected both 5 2  and z2 have oscillatory terms depending 
on 20. For x2 there is in addition a term that grows linearly with t ,  and 
independently of x. This term obviously represents a constant net motion 
in the positive x-direction which depends on the vertical position q of the 
particle with the smallest value closest to the bottom. Because of this term 
the particle does not return to the same position in the s-direction after a 
wave period. The corresponding net particle motion l (q)  over a wave period 
is given by 

TkH2 
cosh 2k(q + h) 

'(') = 4 sinh2 kh 
(8.2.121) 

which corresponds to a mean velocity which is ZIT. This is also called the 
Lagrangian drift velocity. It  is also noted that this Lagrangian mean 
velocity occurs even though the Eulerian mean velocities of the particle 
motion, as mentioned above, are zero. 

The vertical postion also includes a non-oscillating term which is zero 
at the bottom and grows upwards. We see that this implies that in the 
vertical direction the oscillating motion of the particle takes place relative 
to a position which is elevated above the equilibrium position z = q. This 
can also be sensed in Fig. 8.2.4. 

8.2.10 Convergence and accuracy 

The presumption in perturbation theory is that the more terms we in- 
clude in the expansion (i.e.) the higher order the approximation) the more 
accurate is the approximation to the exact (albeit unknown) solution. 
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For convergence, this at least requires that beyond some value of n the 
terms An in the perturbation expansion are decreasing for increasing order. 
That is: 

(8.2.122) 

And to expect a good accuracy for a limited number of terms, we must 
rather require that for all n, even n = 1: 

00 n * << 1 as indication that Ai << Ai (8.2.123) 
An n+ 1 1 

so that the terms omitted represent insignificant corrections to the result.' 
Since we have only derived two terms in the expansion there is not much 

we can do in terms of assessing the accuracy, except requiring that: 

A2 - < 1  
A1 

(8.2.124) 

For 4 this yields for z = 0 and sin8 = 1 the requirement: 

(8.2.125) 

Since in deep water 4' * 0, this means no restriction at  all from 4 for 
deep water waves. This is, of course, not realistic and may be changed by 
considering Q instead. 

3 kHcosh2kh 
< 1  [ $1 = 16 cosh kh . sinh3 kh 

For shallow water, (8.2.125) becomes: 

- 210 u=-  <--  HL2 64n2 
h3 3 

(8.2.126) 

Notice that the Stokes-Ursell parameter HL2/h3 shows up here. (That 
was exactly where Stokes found it.) 

U = 210, however, will give very unrealistic waves. The reason is that 
when the second order term becomes sufficiently large, it causes a secondary 
maximum to occur in the trough of the main wave both in q and (in a 
generalized sense) in other variables too. And this is not a real physical 
phenomenon for waves of constant form. 

'As is known from mathematics even the first part of (8.2.123) is not a sufficient 
condition for ensuring the second part. 
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Hence, we may set up another and more realistic limit for the use of the 
second order Stokes theory: the steepness must not be so large that 
a secondary maximum occurs in the wave trough for any of the 
variables. It turns out that this criterion gives the sharpest constraint 
when applied to the surface elevation. 

Fig. 8.2.4 Maximum Ursell parameter U and wave steepness H / L  for the application 
of Stokes' second order theory based on the requirement of no secondary crest in the 
trough of the surface profile. 

Exercise 8.2-15 
ondary crest in the trough of the surface profile means that: 

Show that for 7 the requirement of no sec- 

1 
4 a2 < -a1 (8.2.127) 

where a l ,  a2 are the amplitudes of 71, 7 2 .  In terms of U this means 
a maximum value of 

3 

U,,, = (E) (3 ~ 0 t h ~  k h  - coth kh)-' 
7i 

(8.2.128) 
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or, in terms of HIL: 

1 
= - ( 3 ~ 0 t h ~  kh - cothkh)-' (8.2.129) 

which is far more restrictive than (8.2.126). Fig. 8.2.4 shows the 
variation of (8.2.128) and (8.2.129) with kh. 

This is the criterion normally used today, and it clearly emphasizes 
the original finding that Stokes wave theory is a theory for intermediate 
and deep water. The restrictions on HIL become increasingly severe as 
h/L decreases and essentially prevents practical applications for h / L  < 
0.07 - 0.10. 

Exercise 8.2-16 
Work out similar curves for Hlh .  

Finally, it is mentioned that although extension to very high order im- 
proves the accuracy of the theory, the above mentioned conclusion cannot 
be changed: Stokes theory only works well for h / L  > 0.05. 

8.3 Higher order Stokes waves 

8.3.1 Introduction 

In the previous section, the second order approximation for Stokes waves 
was derived. The presentation went through the derivation and analysis of 
the results in quite some detail in order to illustrate the complications and 
the new features entering the theory when extending from linear waves to 
just the second approximation in the wave amplitude. In this section, we 
briefly describe how higher order approximations further modify the wave 
description, some of which may not be readily anticipated. 
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Of particular notice in the second order approximation was the fact that 
we could freely define a wave with zero mass flux simply by adding a net 
contribution to  the phase velocity. 

8.3.2 Stokes third order theory 

Extension of the theory to third order will add two important features 
to the wave characteristics. These new features carry over to all higher 
order theories as well. 

The wave height H is not just 2a1 where a1 is the amplitude of the first 
order term in the expression for the surface elevation. 
If we consider the surface elevation in the third order approximation, 
this can be written 

rl = a1 cos0 + a2 cos20 + a3 cos30 (8.3.1) 

We see that for this expression the wave height defined as usual as the 
vertical distance between wave trough and crest is given by 

H = 2(a1 + a3) (8.3.2) 

and the analog expression for higher order approximations including 
all uneven terms. Thus, the wave height becomes a parameter separate 
from the first order amplitude. 
If we want to express the surface elevation 7 in terms of the wave height, 
we therefore get in the third approximation (in dimensionless form) 

2 

kq = 2 c ~ s O + ( y ) ~  b2cos28+( 7) b3(cos38-~0~8)+0(kH)~  

(8.3.3) 
so that the third order term will contain contributions varying both as 
cos 30 and as cos 8, etc. 
The second new feature is that in third and higher order approximation, 
the phase velocity cT relative to the water depends not just on the water 
depth h and the wave period T but also on the wave height, that is 
c, = c , ( k h , k H ) .  As discussed below, this has profound implications 
for all situations of waves with a current. Thus we have 

c = co 1 + q C H ) Z  + 3(kH)4 + . . . i co co 
(8.3.4) 
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where co is the already known first order result 

co = /; tanh k h  (8.3.5) 

To third order, the expression becomes 

I ( k H ) 2  (9 + 8 cosh4kh - 8 cosh2kh) 
c = / F  [l, 32 sinh 4 k h  

+ o ( l c ~ ) ~  (8.3.6) 

which means that third order Stokes waves are both frequency and ampli- 
tude dispersive. 

8.3.3 Waves with currents 

In general situations, waves will usually occur in combination with a 
net current, where we continue to define the current velocity U as the time 
averaged part of the total velocity u below the wave trough, that is 

U = E  (8.3.7) 

If a current U was added, this changes the absolute wave speed to ca by 
the Doppler shift given by 

c, = c, + u (8.3.8) 

In the first approximation, the dispersion relationship gave the connec- 
tion between the relative wave frequency w, = w r ( k h )  and the wave number 
k .  For waves with a current, the equivalent dispersion relationship is 

W ,  = w,(kh) + kU (8.3.9) 

When the wave is specified in terms of HI h and the absolute wave period 
T, - as is usually the case ~ this equation can for first and second order 
Stokes waves be solved independently of the wave height. For details see 
Section 3.6 on the interaction between waves and currents. 

However, since now we have the dispersion relation in the general form 

(8.3.10) W ,  = (gk)1’2 f ( k h ,  k H )  
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(8.3.9) takes the form 

w a  = (gk)’/”(kh, kN) + kU (8.3.11) 

which means the wave height will influence the solution for k .  Therefore, 
this dispersion relationship cannot be solved in advance. It needs to be 
solved along with all the other equations for the motion to determine k 
when the wave is specified in terms of Ta. 

8.3.4 Stokes fifth order theory 

The fifth order approximation for the Stokes wave theory has for many 
years been a standard reference wave theory used in offshore applications. A 
number of versions that differ at minor points are available in the literature. 
Examples are De (1955), Skjelbreia and Hendrickson (1960), Chappelear 
(1961). The very brief introduction given here is meant as an introduction 
to the version by Fenton (1985). See also Fenton (1990). The solution is 
derived in a coordinate system that follows the wave so that the flow is 
stationary. A stream function is used which leads to the same formulation 
with the same boundary conditions as for the Stream Function Method 
described in Section 8.4. The solution, is presented however, in terms of 
a velocity potential. The expansion used for the velocity potential 4 has 
the form (still in a coordinate system following the wave that has y as the 
vertical coordinate and y = 0 at the bottom) 

1/2 5 
4 = -c,z + co ($) 1 ci 2 A,  cosh j k y  sin jkzl + O(e6) 

i=l 

(8.3.12) 

where E = kH/2 is the dimensionless first order wave amplitude propor- 
tional to the wave steepness H / L .  This means the solution for 4 is given 
in terms of a power series in E with coefficients each of which are a series in 
sin j kx l  with a set of double indexed coefficients Aij . 

As before c, is the relative phase velocity which has the expansion 

(8.3.13) 

Similarly the solution operates with an expansion for the surface elevation 
7 (measured all the way from the bottom rather than from the MWL) in 
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the form 

~v(z) = kh  + ECOS k ~ l  + E’ B 2 2  cos 2kx1 + c3 B31 (COS - cos 3k21) 

4 + E  (B42 cos 2kxl  + B44 cos 4kZl) + c5 ( - ( I 3 5 3  + B55) cos k ~ l  

+B53 cos 3kXl + B55 cos 5kxl) + O ( E ~ )  (8.3.14) 

Here x1 is the horizontal coordinate in the moving system which is linked 
to a fixed x-system by 

x1 = x - cat (8.3.15) 

Furthermore the solution requires expansion of the volume flux Q in the 
steady flow and of the Bernoulli constant C still in powers of E .  In practical 
applications the moving wave is obtained by substituting (8.3.15) for x1 in 
the results. 

In Fenton (1985) the final results are given as a list of the analytical 
expressions for all the coefficients in the expansions described above. Sub- 
stituted into the expansions this makes it possible to give both analytical 
and numerical evaluations of the fifth order approximation. 

The above indicates how complicated the solutions become at higher 
order. For further details the reader is refered to Fenton (1985). 

8.3.5 Very high order Stokes waves 

The Stokes expansion has been carried to, in principle, arbitrary high 
order by Cokelet (1977). In practice this means about 110th order. The 
results are obtained by a combination of clever choice for the expansion 
variable, which is not just the wave height, combined with extrapolations 
using Pad6 approximations. In this way results have been obtained for 
properties of the highest possible waves. The results show several surprising 
features including the fact that the phase velocity and other parameters 
reach their maximum value at wave heights slightly smaller than the highest 
waves. For further details reference is made to Cokelet (1977). 
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8.4 The stream function method 

8.4.1 Introduction 

The Stream Function Method is a numerical solution to the exact gov- 
erning equations and their boundary conditions. It is based on expanding 
the unknown stream function and surface elevation into fourier series. The 
solution is for a constant form wave on constant depth and therefore leads 
to wave solutions that are horizontally symmetrical with respect to verticals 
through crest and trough. 

The Stream Function Method was first developed by Dean (1965). Later 
Chaplin (1980) found the solution technique used by Dean does not apply 
to the highest waves. Chaplin suggested an alternative procedure which, 
however, is rather complicated to implement and use. The approach de- 
scribed here is due to Rienecker and Fenton (1981) and it applies even to 
the highest possible waves (see also Svendsen and Justesen, 1984). Thus if 
sufficiently many terms are included in the expansions it can supplement 
the results for the highest waves described earlier in Chapter 5 .  

8.4.2 Description of the stream function method 

The wave motion considered is assumed incompressible and irrotational. 
In a fixed (x, 2)-coordinate system the waves are propagating in the posi- 
tive x-direction with an absolute phase velocity c,, including the effect of 
currents. In the fixed coordinate system the particle velocities are (u, w). 

Because the waves are of constant form observing them from a coor- 
dinate system moving with the wave will show a steady flow. Thus in a 
( 5 1 ,  2 )  coordinate system moving with speed c, we have 

21 = 2 - cat (8.4.1) 

and the velocities (u1, w) 

u1 = u- c ,  ; w = w  (8.4.2) 

The stream function II, is defined so that in the moving coordinate system 
we have 

(8.4.3) 
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and li, satisfies the Laplace equation 

(8.4.4) 

The boundary conditions express that in the moving coordinate system the 
sea bottom and the free surface are streamlines along which $ is constant 
with the values chosen as 

$(XI, -h) = 0 ; $(x1 ,~(~1) )  = -Q (8.4.5) 

The discharge Q is the total flow between bottom and surface and it may 
be written 

In addition, the solution must satisfy the dynamic surface condition of 
constant pressure at the free surface. Thus at z =  XI) we have 

1 2 ((gJ2+ (2)') + r l ( a ) = C  (8.4.7) 

where C is the Bernoulli constant for the steady flow. 

series 
Following Rienecker and Fenton (1981) function can be expressed as the 

In this expression the denominator in the terms in the summation is a 
scaling factor that helps keeping the values of the the B-coefficients limited 
for large depths. Hence the value of D can be chosen freely, but a value of 
D = h is appropriate. 

In (8.4.8) each of the terms in the sum satisfy the Laplace equation 
(8.4.4) and the bottom boundary condition (8.4.5). The purpose is there- 
fore to determine the coefficients Bo, ..., BN so that the surface boundary 
conditions are satisfied, and a t  the same time determine V ,  k ,  R and Q. 

Substitution of (8.4.8) into (8.4.5) gives 

cos j k X l  = 0 (8.4.9) 
sinh j k ( 7  + h) N 

Bo (7 + h, + Bj cash k D  
j=1 
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and (8.4.7) gives 

sinh j k ( q  + h)  

j=1 

Here (8.4.9) and (8.4.10) represent equations with the Bj’s and the values 
of the 77’s as well as k ,  Q, and C are unknowns. 

The solution is then obtained by requiring that (8.4.9) and (8.4.10) are 
satisfied at  N + 1 points in x1 where point 0 is at the wave crest, point N 
at the wave trough. This yields 2N + 2 equations with N + 1 Bj’s and qj’s 
plus k ,  Q and C as unknowns, that is a total of 2N + 5 unknowns. The 
additional three equations are then obtained, the first by requiring that the 
wave height is H so that 

70 - 7 7 ~  - H = o  (8.4.11) 

The second requirement is that the wave length L is linked to the phase 
speed C ,  by L = Ca T a  SO that 

kc,T, - 2~ = 0 (8.4.12) 

and finally we require that the mean surface elevation is zero, which gives 

L / 2  
(8.4.13) r l= 1 vdxl = O  

In these three equations c, is also unknown. However, c, is the speed of 
the wave in a fixed coordinate system so we have 

- 

c, = c, + u (8.4.14) 

where c, is the speed of the wave relative to the water, and U the iniform 
current velocity. Further, since in the fixed coordinate system ;ii = U ,  
(8.4.2) implies that T i i  = U - c, = -c, = -Bo so that 

Bo = U - C,  (8.4.15) 

Therefore equations we have 2N + 6 (transcendental) equations with as 
many unknowns. These equations can be solved on a given depth h by 
specifying the wave motion by its height H ,  period T and the current 
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velocity U .  It is mentioned that through the Bj-coefficients the solution ob- 
viously provides both the stream function and the velocity field determined 
by differentiating (8.4.8). However, part of the solution is also numerical 
values of the surface elevation given at as many points as there are terms 
in the expansions used. Hence with e.g. 64 terms in the expansion we get 
information about 77 at  64 points over half the wave length. 

The solution clearly requires a generalized iterative solution scheme such 
as a Newton-Raphson method. For details see Rienecker and Fenton (1981). 

0 4  t"- i T m h  = 7.94 
H/h =036  

T m = 7 3 4  
H/h =0.514 

Tflh = 794 

- $ , N = 6 4  
Stokes 9 

1. rllh 

0 5 -  H/h =Of543 

_ _  

-01 

- 0 2  - 

Fig. 8.4.1 Surface profiles for waves with different height H / h  but all with 
T@ = 7.94. The dased curves represent Stokes 5th order theory, the full 
curve the stream function result with 64 terms in the expansion for $. From 
Svendsen and Justesten (1984). 
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8.4.3 Comparison of stream function results with a Stokes 
5th order solution 

The Stream Function method has been applied in particular in the off- 
shore industry to assess the effect of very high waves on offshore structures. 
Dalrymple (1974) extended the method to cases with currents varying lin- 
early over depth. 

Since the stream function results can be made as accurate as wanted by 
including enough terms in the expansion it can be used to provide reference 
results for analytical wave theories. Thus Dean (1970) used the method to 
evaluate the accuracy of different wave theories for the drag forces on piles. 
Lambrakos and Brannon (1974) used 7th order stream function approxima- 
tions to evaluate the Stokes 5th order theory which is also used extensively 
in offshore problems. However, Svendsen and Justesen (1984) found that 
accurate results for very high waves required using up to 64th order and 
they also used this to assess the accuracy of Stokes 5th order theory. The 
following results are from the last of those publications. 

As illustration figure 8.4.1 shows a comparison of the surface varia- 
tions between wave crest and wave trough obtained by the stream function 
method (with 64 terms in the expansion for $) and by the Stokes 5th order 
theory. The waves are relatively high waves with values of H / h  from 0.36 
to 0.66 The latter is close to the highest stable wave at the dimensionless 
period of T m  = 7.94 shown and with 64 terms in the expansion the 
stream function results can be considered fairly close to the exact solution. 
We see that while the 5th order theory gives credible results for H / h  up to 
around 0.50 the wave crests predicted by the Stokes solution for waves as 
high as 0.64-0.66 are broader and not so high as the more accurate results. 
For the very high waves the Stokes results also show signs of fluctuations in 
the trough that suggest that the higher order contributions in the results 
are too large. These tendencies would become much more pronounced at 
smaller relative depth, corresponding to larger T m .  This is in keeping 
with the finding that no matter how high the order, as the depth decreases 
below roughly h / L  = 0.10 (approximately T m  > 10) the Stokes theory 
fails. 

Similarly Fig. 8.4.2 shows results for the vertical profiles of the hori- 
zontal velocities under the wave crests. In addition to the results from the 
stream function method and from the 5th order Stokes theory the figure 
also shows for comparison the profiles predicted by the linear wave theory. 
As can be expected the largest deviations occur for the highest waves. It is 
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, 

particularly important from an application point of view that the velocities 
near the crest of the waves are the most inaccurately predicted by the linear 
wave theory and even the 5th order theory shows too small values near the 
top of the wave. 

For a further and much more detailed discussion about these issues 
reference is made to the literature cited. 

-+-funct N : 6 4  
--Stokes P 
-.-Linear waves j,, 0.5 , , u/m , , 

Hlh : 0514  lo 
zlh 

Fig. 8.4.2 Velocity profiles under the wave crests for three of the same waves 
shown in Fig. 8.4.1. In addition to the stream function results (full curve) and the 
Stokes 5th order theory (- - -) the profiles for linear waves are also shown (- . -). 
The two nonlinear velocity profiles are extended to the z/h-value corresponding 
to the crest height in the respective wave theory, the linear profile is continued 
beyond that. From Svendsen and Justesten (1984). 
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Chapter 9 

Long Wave Theory 

9.1 Introduction 

In the present chapter we analyze closer the important case where the 
characteristic depth ho is much smaller than the characteristic horizontal 
length X in the wave motion i.e. p = X/ho << 1). Though X is not always 
equal to the wave length these waves are usually called “long waves”. At 
first we will particularly examine the case where the dimensionless wave 
amplitude 6 = A/ho = O(p2))  so that the Ursell parameter HL2/h3 is 
U(1). This is also meaningful because we found in Chapter 7 that the 
equations for the other two cases (6 << p2)  and (6 >> p’) can actually be 
deduced from this general case simply by omitting the proper terms in the 
basic equations. 

For clarity, we look at the simplest case of waves moving in one hor- 
izontal direction only (chosen as the x-axis) and on a constant depth h. 
This is defendable since all the important mechanisms will still be present. 
We will also continue to consider the equations in dimensionless form. The 
advantage of working with the dimensionless version is that the magnitudes 
of terms extracted in Chapter 7 remain explicit which greatly helps guiding 
the derivations. However, to simplify the equations we omit the that indi- 
cated dimensionless variables in Chapter 7. In order to keep contact with 
the physical content essential results will be transformed back into physical 
variables in exercises. 

381 
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For completeness it is recalled that for long waves the dimensionless 
system introduced in Chapter 7 reduces to 

(9.1.1) 

which implies the rules for differentiation are given by 

d co d - = -- (9.1.2) 
ax Adz’ ’ 8~ h0t.z’ ’ at x at‘ 

The velocity scales thus follow from 4 as 6co. It is also recalled from Chapter 
7 that while most dimensionless variables in this system are 0(1) we get 

d 1 d  - - - _ _  d I d  - - _ _ .  - 

w=&= Oh2) .  

Exercise 9.1-1 
Derive the following useful relations: 
From the difinition co = a it follows that 

c; = Jh‘ 
Also show that since u = q5x we get 

u = bcou’ 

where 6 = A/ho. 

(9.1.3) 

(9.1.4) 

On a domain with constant depth h it might seem natural t o  choose 
that depth as the characteristic depth ho. That is frequently seen in the 
literature. However, doing so implies h’ = h/ho = 1 which means the 
variation with h disappears from the equations, which is impractical for 
the physical understanding of the results. Hence, in the following, we use 
ho # h and hence h’(= “h”) # 1. 

Thus, the equations (4.2-37a-d) can be written as the Laplace equation 

1 
4 x 2  + - 4 z z  = 0 (9.1.5) 

P2 
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with the bottom boundary condition 

4 z  = 0; z = -h (9.1.6) 

and the two free surface conditions 

and 

, z = 67 

(9.1.7) 

(9.1.8) 

9.2 Solution for the Laplace equation 

The first step toward obtaining a solution to the problem of long waves 
is to develop a preliminary (or partial) solution for the Laplace equation 
(9.1.5) using only the bottom boundary condition (9.1.6). This will provide 
information about the vertical variation of 4. 

For constant depth we assume 4 can be written as an expansion from 
the bottom in the form' 

This implies that (omitting the (z, t ) )  

and 

d m  = 242 + 2 . 3 ( z  + h)43 + 3 ' 4(z + h)2& + . . . 
+(. + 1)(. + 2)& + .  . . (9.2.3) 

'For completenes it is mentioned that in the general case of varying depth it is more 
convenient to introduce an expansion from the undisturbed still water level, SWL. 
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The Laplace equation then becomes 

40m + (2  + h)4lza: + . . . + (2  + hy(bnzz + 
2 6 (n  + 1)(n + 2) 

P P P2 
++2 + >(Z + h)43 + . . . + ( z  + h)" & + . . . = 0 

(9.2.4) 

or in compact form 
00 1 [p2 4nzz + (n  + 1) ( n  + 2) 4 n + 2 ]  ( 2  + h)" = o (9.2.5) 

The philosophy is now the following: (9.2.4) or (9.2.5) represents a 
polynomium in ( z  + h)  which is required to be zero for all (i.e., infinitely 
many) values of z + h in the interval 0 I z + h 5 h +v. This is only possible 
if all the coefficients in the polynomium are zero separately. This leads to 
the following set of equations for n = 0, 1, 2, . . . . 

n=O 

2 

2 . 3  

3 . 4  

n = 0 : 4oZz + - 4 2  = 0 

n = 1 : 41zz + - $3 = 0 

n = 2 : q5zZx + - 4 4  = 0 

(9.2.6) 

(9.2.7) 

(9.2.8) 

P2 

P2 

P2 

( n  + l ) ( n  + 2) 
P2 

4n+2 = 0 n 4nzz + 
The latter of those corresponds to the general recursion formula 

(9.2.9) 

(9.2.10) 

which links dn+2 to &. 

O(p4)  included) 
Using (9.2.10) repeatedly for the terms in (9.2.6-9.2.9), we then get (to 

P2 4 = 40 + (2 + h)4l - -(z + h)240m 1 . 2  

(9.2.11) 
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In this equation, we have been able to express all the terms for n even by 
means of $0 and all uneven terms by means of $1. 

We next substitute (9.2.1) into the bottom boundary condition (9.1.6) 
and get 

(9.2.12) 
n=O 

We see that the terms in this sum are all 0 at z = -h except for n = 0 
which gives 

41 = o  (9.2.13) 

Hence, combining (9.2.10) and (9.2.13), the first terms in the solution 
to the Laplace equation become 

Notice that 4 is an infinite series. Therefore, when we truncate the 
series we must indicate the magnitude of the first omitted term, here O(p6) ,  
which will be the magnitude of the sum of all omitted terms if the expansion 
(9.2.1) converges uniformly for p -+ 0. 

Exercise 9.2-1 
Show that the complete solution for 4 can also be written 

where index (2nx) means 2n differentiations with respect to x. 

Discussion of the results 
In conclusion, we have found that by solving the Laplace equation and 

utilizing only the bottom boundary condition, we have determined an ex- 
pression for the vertical variation of the velocity potential 4 expressed in 
terms of 40, and its horizontal derivatives where 40 is the value of 4 at the 
bottom z = - h. 

It is an important feature of the solution that, while the vertical varia- 
tion of 4 is represented by an infinite polynomial in z + h with coefficients 
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that include horizontal derivatives of 40, we have so far not met any re- 
strictions on the surface elevation v (or 6). 

It is also noticed that this implies that the solution found for 4 is the 
same for all the three domains for the Ursell parameter discussed in Chapter 
7. 

Hence, 40 is from now on one of only two remaining unknowns, $0 and v. 
The second is the surface elevation v. For determining these two variables, 
we have left the two free surface boundary conditions (9.1.7) and (9.13). 
The analysis of this problem will be described in Section 9.3. 

Exercise 9.2-2 
For future reference, it is useful to show that 

It will soon become clear why it is relevant to extend the expansion for 
42 to include 0 ( p 4 )  terms, while the expansions for 4t and +x are only 
shown to  0 (p2 ) .  

Exercise 9.2-3 
In fact, it is not necessary to assume the polynomial variation 

(9.2.1) of 4 with respect to (2") .  Show for the 1-DH case with h 
= const that assuming 

(9.2.19) 

and solving the Laplace equation with the bottom boundary con- 
dition leads to the same result 

(9.2.20) 
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Exercise 9.2-4 
Show that the dimensional form of 4 is 

and for the velocity u = & 

9.3 The Boussinesq equations 

The next step is to examine the two free surface boundary conditions 
using the expression (9.2.14) for 4. It turns out there are many ways 
this can be done and each way leads to a different form of the Boussinesq 
equations. These forms usually differ in ways which turn out to be essential 
for their suitability for computational purposes. This will be discussed in 
detail in Section 9.7 along with the transformation of the equations between 
the different forms. 

For reference, it is recalled that in 1DH the two free surface boundary 
conditions are given by (9.1.7) and (9.1.8) 

1 
rlt + 6 4 Z r l Z  - - 42  = 0 z = 67 (9.3.1) 

P2 

z = 67 (9.3.2) 

The most direct approach is to substitute the expression (9.2.14) for 
4 into (9.3.1) and (9.3.2). For simplicity this is the procedure first fol- 
lowed here, although the resulting equations will later be found to have less 
desirable computational properties. 

For convenience we define the local depth d as 

d = h + 6 7  (9.3.3) 

When substituting for 4,  the kinematic condition (9.3.1), we have from 
(9.2.17) that at  the surface z = 67 the 4,-term can be written 

(9.3.4) 1 P2 3 w = 6rl) = -d40zx + -d  ~ o Z Z Z Z  + o ( ~ * )  - 
P2 6 
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We see that this expression includes terms with 

d = (bq+ h) (9.3.5) 
d3 = h3 + 36h27 + 3b2hq2 + d3q3 (9.3.6) 

or, in other words, terms O(1,6, d2, S3) which in the case of U = O(1) 
(i.e., 6 = O ( p 2 ) )  are O(p2, p4, p'). In the final equation, we will neglect 
terms O(p4) and smaller. Hence, we will neglect terms O(p4, 6p2, b2, b3) .  
Consequently, the version of (9.3.4) used in the kinematic condition can be 
written 

P2 3 + O h 4 ,  b2, S2) (9.3.7) 
1 

P2 6 - 4 z  1 -h4ozz - -h 40zzzz 

Notice that at  this point it becomes clear why we needed in (9.2.17) to 
include O(p4) terms in the expression for 4z: The q5,-term is multiplied 
by l/p2 which makes the O(p4) term in the expression for q5z appear as a 
p2-term in the equation. 

Similarly, the term br],q5, in the kinematic condition (9.3.1) is truncated 
to 

Consequently, the total kinematic condition becomes, to the order of 
accuracy chosen here 

By similar reasoning, we find the dynamic free surface condition can be 
written 

4ot + v + 2 6 ( 4 0 z ) ~  - -h P2 2 4otzz = O(p4, 6p2, S2) (9.3.10) 
1 

2 

The equations in terms of the bottom velocity 
The two equations (9.3.9) and (9.3.10) can also be written in terms of 

the bottom velocity U O .  We get, after differentiation of (9.3.10) with respect 
to x 



9.4 Boussinesq equations in one variable 389 

P2 3 r]t + [(h + 6r])uo], - s h  uozzz = O(p4, 6p2, S 2 )  

uot + r], + -6 (ui), - $h2uotzz = O(p4, 6p2, S2) 

(9.3.11) 

2 1 
2 

(9.3.12) 

Both (9.3.9 and 9.3.10) and (9.3.11 and 9.3.12) are possible forms of the 
Boussinesq equations. As can be seen these equations are in the form 
of evolution equations for r] and uo They will be analyzed and discussed in 
detail later. We notice that the nonlinear terms in these equations are all 
O(6). Since 6 = O($)  is small, the equations are often termed “weakly 
nonlinear”. 

Exercise 9.3-1 
Derive (9.3.10) in detail. 

Exercise 9.3-2 

and 9.3.12) become 
Show that in dimensional form the Boussinesq equations (9.3.11 

1 
qt + ( ( h  + q)uo), - h3 uoz,z = o ( ~ ~ ,  M, 6 2 )  

(9.3.13) 
1 1 

2 Uot +gvz + 5 (u;),  - - h2 uozzt = O(p4, 6p2, 6) 

(9.3.14) 

9.4 Boussinesq equations in one variable 

9.4.1 The fourth order Boussinesq equation 

To the order considered in the derivation of the Boussinesq equations 
either r ]  or 40 can in fact be eliminated to generate equations in the other 
variable only. It appears that and equation in r] only requires the extra 
constraint that the wave travel in one direction only, while an equation in 
40 can be obtained without that constraint. 
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Here we first derive an equation in q only and do this by eliminating 
u g  from the large terms in equations (9.3.11) and (9.3.12). Differentiating 
(9.3.11) with respect to t and (9.3.12) with respect to x and multiplying by 
h gives (omitting the order indications on the RHS) 

(9.4.1) 

(9.4.2) P2 3 1 
h%x + huotx - ,Sh(u;)l-x + -h 2 ~ O x x x t  = 0 

Subtracting these two equations yields 

Lowest order approximation for u ~ ( q )  

can be written 
We see that to the lowest order of approximation (9.3.11) and (9.3.12) 

qtt - h q x x  = O(6, $) (9.4.4) 

As found in Section 3.7 this is the linear shallow water wave equation, 
which has solutions that are the sum of constant form waves propagating in 
the positive and negative x-directions, respectively, that is (in dimensional 
form) 

q = f ( x  - cot) + g(x + cot) (9.4.5) 

In order to eliminate uo from the small terms in (9.4.3) we must assume 
here that the waves are moving in one direction only, say the positive x- 
direction. Then we get (in dimensional form) 

d 
- = - C O G  + 0(6,p2)  
a 
at 

which in dimensionless form (using the definitions (9.1.2)) becomes 

d 
= -- +O(S,$)  

a - 
at ax 

(9.4.6) 

(9.4.7) 

The wave equation also implies that to lowest order we have (dimensionally) 

(9.4.8) rl 
h uo = co - + O(S, p2)  
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which in dimensionless form becomes 

rl 
h uo = - + O(6, p2) (9.4.9) 

In the small terms in (9.4.3) these relations can then be used to eliminate 
uo and changing d ld t  to d/dx. Substituting we then get 

rltt - hrlxx - 8 2  
z(rl )xx - 

or, rearranging the terms 

(9.4.10) 

rltt - hvXx - ( 2 p  3 6  2 + 3h P2 2 rlxx)xx = 0 I (9.4.11) 

This equation was first obtained by Boussinesq ( 1872).2 

Exercise 9.4-1 
The Boussinesq equation can be written in several different 

forms depending on the way (9.4.5) and (9.4.7) are used. It is 
also possible to derive a version in $0 in which q is eliminated. 
Show uisng a similar procedure as above that this equation reads 

= O(p4, 6p2, 62) (9.4.12) 

and that the derivation of this equation does not require the con- 
straint of waves in one direction only. This is essentially the form 
given by Mei (1983). 

Exercise 9.4-2 Show that in dimensional form (9.4.11) reads 

2Therefore, the equation was originally called “the Boussinesq equation” ~ not to 
be confused with the term “the Boussinesq equations” which is now normally used for 
(9.3.11) and (9.3.12). 
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It is also useful to realize that omitting the O(p2 ,  6) terms in (9.4.11) 
or (9.4.12) gives the linear wave equation. Obviously the two fourth order 
equations are extensions of that equation that include (the first approxi- 
mation in terms of O(S) to) nonlinear processes in the wave and (the first 
approximation in terms of O ( p 2 )  to) effects of non-uniform vertical veloc- 
ity profiles and non-hydrostatic pressures over the vertical. This will be 
discussed extensively in section 9.7.5. 

9.4.2 The third order Korteweg-de Vries (KdV)  equation 

In the case of uni-directional waves (waves moving in one direction only), 
it turns out that it is possible to derive a third order equation in one 
variable only. This was first done by Korteweg and deVries (1895) and the 
equation is therefore called the Korteweg-deVries (or just KdV) equation. 
This equation essentially represents a one time integrated version of the 4th 
order Boussinesq equation derived above. We again let h = ho and hence 
write the equation as 

(9.4.14) 

The derivation requires a trick, however. To describe this, we change to a 
coordinate system moving with the velocity co = &$. In dimensionaless 
variables this means 

J = x - t  (9.4.15) 

This system does not completely follow the waves because the actual phase 
velocity is c = co + O(6). We will therefore in the J-system observe slow 
changes of the motion as the waves pass and also as the waves change 
shape (non-constant form). To account for this we also need to include a 
slow variable r given by 

7 = 6t (9.4.16) 

Changing to the variable J, r we have 

d - d dJ d d r  d d  - dt - @ at+-  - = ---+6- 
d r  dt  dJ d r  

(9.4.17) 

(9.4.18) 
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This is traditionally used to derive the KdV-equation from the 4th order 
equation (9.4.13) in 4 (see e.g., Mei (1983)). Since, however, we are assum- 
ing unidirectional waves, we here choose (9.4.14), the 4th order equation in 
77. 

Using (9.4.17) and (9.4.18) we get 

where the last term can be neglected] and 

77x2 = 77cc 

(9.4.19) 

(9.4.20) 

(9.4.21) 

(9.4.22) 

(9.4.23) 

(9.4.24) 

Notice that his equation only contains terms O(6, p2) .  It can be integrated 
once with respect to < which gives 

(9.4.25) 

Here C(T)  is an arbitrary function, which represents a <- (i.e. space-) 
independent contributions to q7. However, averaged over < such changes 
must for continuity reasons be zero, so that C(T) = 0, and the resulting 
equation becomes 

3 P2 6777 + ?67777< + -7cce + C(7) = 0(P4, 6P2, 6 

(9.4.26) 

Eq. (9.4.26) is the KdV-equation in a coordinate system moving with the 
speed C O .  

3 P2 6777 + 267777E + -77EEE = 0 ( P 4 ,  6P2, S 2 )  6 
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Eq. (9.4.26) is transformed back to fixed (x, t )  coordinates by inverting 
the equations (9.4.15) and (9.4.16) for ([, r )  to give 

x = [ + '  6 
(9.4.27) 

This implies substituting into (9.4.26) that 

d d  - . d - 1 d  I d  
a[ - ax ' ar 6 ax 6 at 
- -  (9.4.28) 

Used in (9.4.26) this results in the KdV-equation for fixed coordinates 

(9.4.29) P2 3 
77t + 77x + -6qqx 2 + -qxxx 6 = 0 

It is noted that the vT, which was O(6) in the coordinate system moving 
with velocity co, becomes rlt +vX in the fixed coordinate system. While this 
sum of course remains 0 ( 6 ) ,  vt and qx separately are O(1). 

Exercise 9.4-3 
Show that in dimensional form, this equation becomes 

3c0 cg h2 
77t + coqz + -qqx + ~ 2h 6 qxxx = 0 (9.4.30) 

Discussion of the KdV-equation 
It is of interest to notice here that (9.4.29) is not the only possible form 

of the KdV-equation. And neither is (9.4.11) the only possible form of 
the 4th order Boussinesq equation. This follows from the fact that (9.4.6) 
applies and can be used to interchange the derivatives with respect to x and 
t ,  in the small terms of (9.4.29). This is of particular interest for the third 
order term, because changing any of the x-differentiations of the highest 
order term changes the nature of the equation. 

This ambiguity was first pointed out by Benjamin et al. (1972) who sug- 
gested that using (9.4.6) to change one of the z-differentiations in (9.4.29) 
results in the alternative form 

3 co 
77t + coqx + - - r/vx - 2 h  

(9.4.31) 
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Used in its full consequences, this means that to the order considered 
(9.4.29) has several other equivalent forms. Following Mei (1983)) the fol- 
lowing forms are all equivalent to the order of approximation for (9.4.30). 

Benjamin et al. (1972) already mentioned the better numerical behaviour of 
(9.4.31). The reasons behind this will be analysed and discussed extensively 
in Section 9.7 for Boussinesq equations in general. 

As mentioned, this equation was first derived in 1895 by Korteweg and 
deVries, and used by them to also derive the analytical solution for cnoidal 
waves described in Section 9.5. However, it was not until the advent of 
digital computers in the 1950’s and 1960’s that the equation itself became 
the focal point of extensive studies that have helped provide valuable insight 
into the mechanisms of nonlinear water waves. The interest in the equation 
was further enhanced by the fact that similar equations were found to apply 
to the propagations of nonlinear waves in many other physical contexts 
including nonlinear optics, nonlinear accoustics, nonlinear elastic materials, 
etc. FInally immense attention was generated by the development of the 
so-called inverse scattering method which proved the existense of and 
ways to determine exact time-varying solutions to the KdV equation for a 
wide range of initial conditions. 

Briefly described, the lowest order of the equation, i.e. the first two 
terms in the equation 

77t + C0r)Z = 0 (9.4.33) 

describes the motion of a linear wave that moves in the +x direction with 
velocity co without change of shape. 

However, the two small terms influence both the propagation velocity c 
and the shape of the wave. As can be seen from (9.4.29), the first of those 
terms is nonlinear and represents (the first approximation to) the effect 
of the finite amplitude of the waves. The effect that the amplitude of the 
wave influences the the phase speed is termed amplitude dispersion. See 
also Chapter 9. This effect will have a tendency to destabilize the wave by 
making the crest move faster than the trough (see Section 9.12). 
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The second term, which is linear, represents (as can be seen by going 
back to the origin of this term in (9.2.14)) the effect of the depth variation 
of the horizontal velocity. Further inspection would reveal that this depth 
variation is also associated with deviation of the pressure from simple hy- 
drostatic pressure relative to the local surface level in the wave motion. 
This feature has a tendency to stabilize the wave by preventing curvatures 
on the surface from becoming too large. It will be shown in Section 9.7 
that this also affects the speed c of the wave. Since this effect depends on 
the depth to wave length ratio (as indicated by the -b2-factor in (9.4.29)) 
this means the waves are also frequency dispersive. 

In Boussinesq and KdV-waves it is assumed that U = 6/p2  = O(1) 
which means that the two small terms are of the same order of magnitude. 
This is sometimes described as frequency and amplitude dispersion tend to 
balance each other. 

As we can see from the discussion in Chapter 7, the case where the Ursell 
parameter U = f << 1 will cause the pu2-term in (9.4.26) to dominate over 
the nonlinear S-term, making (9.4.26) linear. Similarly, if U >> 1, we have 
b >> p2 and the linear term becomes negligible. 

Further aspects of all this are discussed in succeeding chapters. 

9.5 Cnoidal waves - Solitary waves 

Within the assumption of U = O(l ) ,  1DH and constant depth, the 
Boussinesq equations (9.3.11) and (9.3.12) do not place any constraint on 
the type of waves considered. In fact, when solved numerically, the equa- 
tions can describe the development in x, and t of random waves. Under 
such general conditions, it is not surprising that no analytical solution is 
possible. 

However, if the very simple restriction is introduced that the waves con- 
sidered propagate in one direction only ~ the direction toward positive x, 
say - then it turns out that it is possible to solve the equations analytically 
for waves of constant form. 

The solution was termed cnoidal waves (in analogy to sinusoidal 
waves) by Korteweg and DeVries (1895) who first discovered this solution. 
The reason is that the surface profile is described by the elliptic cn-function. 
An advantage of cnoidal wave theory is that it gives the analytical solution 
for constant form weakly nonlinear Boussinesq waves. Hence it represents 
the equivalent to sinusloidal wave theory for linear waves. This makes it 
possible to use cnoidal wave theory to check some of the principal properties 
of weakly nonlinear Boussinesq waves. 
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Cnoidal wave theory is applicable in sufficently shallow water where it is 
more accurate than linear wave theory. For a discsussion of the limitations 
of the theory see Section 9.6.4. It also avoids the limitations of 2nd and 
higher order Stokes theory for small depths discussed in Chapter 8. A char- 
acteristic feature is that the dispersion relation includes the wave height SO 

that the propagation speed depends on the wave height. Another impor- 
tant characteristic we shall see is that the shape of the surface variation 
for a wave on a given depth and with a given period depends on the wave 
height. in fact it will be shown, more precisely, that the wave shape and 
most other cnoidal wave properties are functions of the Ursell parameter U 
only. 

To solve (9.4.11) we assume waves of constant or “permanent” form. In 
Chapter 3 it was shown that assuming constant form implies that the wave 
motion depends on x and t only in the combination 

t x  g = - - -  
T L  

(9.5.1) 

so that q(x,t) = q ( S ) .  By the chain rule this implies that 

1 1 
vt = - T 770 ; 77, = -- L v(j (9.5.2) 

By eliminating between these two equations, we see that this also 
means that 

vt = -cvx (9.5.3) 

where as usual 

L 
T c = -  (9.5.4) 

is the phase velocity for the wave. 
Since we are considering uni-directional waves the Bossinesq equation 

(9.4.11) can be used for the analysis. We see that introducing 6 into the 
Boussinesq equation (9.4.11) brings this equation on the form (henceforth 
omitting the order information O(p4, 6p2, d2)) 

For convenience, we introduce the following shorthand 

(9.5.6) 
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where we remember that both h and L are dimensionless quantities (based 
on the characteristic length A). We also introduce the definition 

b = c 2 - h  

Hence we get for (9.5.5) 

(9.5.7) 

hx2h 
b e e  - -S(v 2 )ee - p2- veeee = 0 (9.5.8) 3 2  

This equation can be integrated directly twice, to give 

However, if we want periodic solutions with some period 00, we must require 
that v(0) = v(0 + 00), etc. so that C0 = 0. We then get for (9.5.9) 

3 h*2h 1 
b7 - -6v2 2 - p2T7ee + pl = 0 (9.5.10) 

We next multiply (9.5.10) by 670 which gives 

(6bv - 96v2 + 36Cl)ve - 2p2h*2hveeve = 0 (9.5.11) 

Here we have that 

(9.5.12) 

so that (9.5.11) can be written 

3b(v2)e - 36(q3)s + 36C17e - p2h*2($)e = 0 (9.5.13) 

We see that this equation can be integrated once more to yield 

36Cl7 + 3bv2 - 36q3 - p2h*2hqi + 36c2 = 0 (9.5.14) 

where 36c2 is the integration constant. Thus we have 

7: = 1”2h*2h 36 {c2+c1q+,-7 b72 (9.5.15) 
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C1 and C2 remain unknown for a while and so does b. (9.5.15) is an ordinary 
first order differential equation, the solution of which can be obtained just 
by separating variables. We get 

(9.5.16) 

9.5.1 The periodic case: Cnoidal waves 

This is the general case and, as we shall see, it turns out that in this case 
C1, C2 # 0. This implies that the integral on the left hand side is an elliptic 
integral, the behavior of which depends on the cubic under the square root. 
The simpler case with C1, Cz = 0 is treated in section 9.5.3. Directions for 
practical applications and how to evaluate cnoidal wave formulas are given 
in Appendix 9C. 

The detailed derivation given below is standard for what is necessary to 
resolve elliptic integrals involving the J of a cubic, but is a little more com- 
plicated here by the fact that the cubic contains three unknown constants, 
namely b, C1, and C2.3 

It is convenient to define 

and to write the cubic which represents l;li as 

bV2 -P(17) = -v3 + - + c1q + cz 6 
so that 170 can be written 

17; = M2(-P(17)) 

If we now choose 0 = 0 in the wave crest where 
write (9.5.16) as 

(9.5.17) 

(9.5.18) 

(9.5.19) 

7 = 71 is assumed, we can 

-MO (9.5.20) 

3A minor simplification may be obtained by shifting the zero-level for 7 to the wave 
trough where also 7 8  is zero. This was done by Korteweg and de Vries in their presen- 
tation (1895) and yields that one of the roots in the cubic (corresponding to 7 2  below) 
becomes zero. The gain is small, however, and for reasons of later practical applications 
we choose the general approach here. 
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Here the LHS is in one of the standard forms for elliptic integrals listed 
in Abramowitz and Stegun (1964) (A & S in the following). In order to 
completely identify the type of solution to the integral we first show that 
P has three real roots. For this we factorize -P as 

P(77) = (77 - 771)(77- 772)(77 - 773) (9.5.21) 

where 771, 772 and 773 are the roots. By identification we find that 

b a = 771 + 772 + 773 (9.5.22) 

‘1 = - (771772 + 771773 + 772773) (9.5.23) 
c2 = q1772773 (9.5.24) 

and we may without loss of generality assume that 

I % I 2  I 772 I 2  I 773 1 (9.5.25) 

In order for a wave with a real 770 to exist we must have an interval 
where 7; is positive. We see that -P and hence 77; + -00 for 77 4 03 and 
V;  + 00 for 77 + -03. Hence the area of interest will be between 772 and 771 
where -P > 0 i.e. 

(9.5.26) < <  772 = 7 7 =  771 

Therefore ~1 will represent the largest v possible (the wave crest), 772 the 
smallest (the wave trough), and we can conclude that the wave height H is 
given by 

H = V l  - 772 (9.5.27) 

If we assume that the mean value of 77 over a wave length is zero (which 
just implies a choice of the vertical position of the z-axis) then we must 
have 772,773 < 0, 771 > 0. It  also implies, however, that 771 and 772 are real 
and hence 773 must be real too, so that -P has three real roots. 

Fig. 9.5.1 shows a sketch of -P satisfying these conditions. 
For a -P with three real roots the integral on the LHS of (9.5.20) 

corresponds directly to the case described in A & S equation (17.4.69), 
which reads 

(9.5.28) 
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Fig. 9.5.1 Variation of -P. 

where F ( 4 / m )  is the incomplete elliptic integral of the first kind, with 
amplitude 4 and parameter m. For the case considered here Abramowitz 
and Stegun gives 4 by the relation (17.4.69) 

2 77 - 772 cos 4 =  ~ 

rll - 712 
(9.5.29) 

and m is given by (17.4.61) as 

(9.5.30) 7ll - 712 

rll - r13 
m=- 

while the constant X is (again from (17.4.61)) given by 

A=;- 

Substituting (9.5.28) into (9.5.20) we then get 

1 -F(4 ,m)  = -MO x 

(9.5.31) 

(9.5.32) 

The Jacobian elliptic function cn is defined so that it links 4 to F ( 4 ,  m) 
by the formula 

cos2 4 = cn2(F(+, m)) (9.5.33) 

Into this we sustitute (9.5.32) for F ( 4 ,  m) and (9.5.29) for cos24 which gives 

' - 712 = cn2 (-A M 0) 
rll - 712 

which can be solved with respect to q. That gives 

(9.5.34) 

rl = 712 f (771 - 772)cn2 (-A M 0) (9.5.35) 
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We then substitute (9.5.17) for M ,  (9.5.31) for A, and (9.5.27) for 111-772. 
Since cn is an even function so that cn- = cn+, we then finally end up 
with the result 

where the parameter m has been added in the bracket for the cn-f~nction.~ 
In (9.5.36), the three roots 71, 772 and 773 of the cubic in the elliptic 

integral still remain undetermined. However, with 71, 112 and 113 known rn 
can be obtained from (9.5.30). 

Physically, this means that although the variation of 77 is determined by 
(9.5.36) the level of this variation relative to our 7 = 0 level (represented 
by 112) is unknown and the two parameters, the wavelength L and the wave 
propagation speed c are also undetermined. On the other hand, to specify 
the wave we only have to choose L and c or T in addition to H ,  because L,  
c and T are already related by (9.5.4) 

Thus, we only have to produce two more equations by imposing condi- 
tions on our solution. 

9.5.2 Final cnoidal wave expressions 

The first additional constraint is that the mean value 5 j  of 11 taken over 
the period of 1 for 11 is 0, i.e. that 

(9.5.37) 

This esentially states that we want the x-axis (i.e. z = 0) placed in the 
mean water surface MWS. The detailed evaluation of this expression is 
shown in Appendix 9B. It results in the relation 

113K(rn) = -(111 - 113)E(m) (9.5.38) 

where K ( m )  and E(m) are complete elliptic integrals of the first and second 
kind. 

4As can be seen in this approach for the resolution of the elliptic integral we do not 
need to transform the elliptic integral on the LHS of (9.5.28) to the standard form (9.A.l), 
which is most often associated with the notion of elliptic integrals. It utillizes directly 
results already established in the literature for the particular case we have. However, for 
an ilustration of the transformations that change the LHS of (9.5.28) to (9.A.1) see Mei 
(1983), sect 11.5.3. 
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The second condition consists of establishing a relation between the 
variation of x (or t )  and the variation of the cn2-function in (9.5.36). 

The variation of the cn2-function is sketched in Fig. 9.5.2. It depends 
somewhat on the value of m, but for all m the maximum value is +1 and 
the minimum is 0, and it has the period 2K. Thus, in (9.5.36) there will 

be wave crests at 6 = 0 and at d s  6 = 2K (whereas a wave trough 

will be at dw 6 = K ) .  

C I  

10 

-I2 

0 5  

0 
0 0.1 0.2 a3 0.4 a5 

Fig. 9.5.2 Variation of cn2 in the expression for the surface profile of a cnoidal 
wave for different values of the Ursell parameter U .  For U = 0 the profile equals 
a sinusoidal wave, for U + 00 the profile becomes that of a solitary wave. 

As we want the distance between two wave crests, which correspond to 
a 6-interval of 1, to be the wave length L ,  we obtain the other relation as 

(9.5.39) 

The rest is mathematical manipulations. We first eliminate 771- 772 from 
the expression (9.5.30) for m using (9.5.27) and get 

H 
771 - q3 = - m 

(9.5.40) 

which we can use in both the above derived equations. 
(9.5.40) into (9.5.39) together with (9.5.6) for h* and get 

We substitute 

(9.5.41) 
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q = H [ A ( l - ; )  - l + c n 2 ( 2 K ( $ - ; ) ,  m ) ]  

which can be rearranged into 

(9.5.47) 

(9.5.42) 

As the formula in its nature is dimensionless and as only lengths normalized 
by the same X are involved, it does not change its form when the dimensional 
quantities H ,  L and h are reintroduced. Substituting the definitions for 6, p 
and the other dimensionless variables the dimensional version of (9.5.42) 
becomes 

(9.5.43) 

Eq. (9.5.43) is one of the basic relations of cnoidal wave theory. 

(9.5.40). We get 
To find 712, we first determine 711 by eliminating 713 from (9.5.38) and 

711 = L! m ( 1  - E) 
and 

H E  
7 1 3 = - - -  m K  

and from (9.5.27) then 

(9.5.44) 

(9.5.45) 

(9.5.46) 

which is the same as the value of 77 in the wave trough. Hence (9.5.46) 
represents the vertical distance from the MWS to the wave trough. The 
complete expression for 71 may now be written as 

which is obtained by substituting (9.5.46) and (9.5.39) into (9.5.36). 

This is obtained from (9.5.4), (9.5.7) and (9.5.22) as 
The last of the integral-parameters of the wave is the phase velocty c. 
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Substituting (9.5.44), (9.5.45) and (9.5.46) and rearranging terms yields 

m 

or, by reintroduction of the dimensional c, we get 

(9.5.49) 

(9.5.50) 

Notice, as a check, that the deviation of c2/gh from 1 is a term of O(6) 

By comparison with sinusoidal theory, we see that 2n in the argument 

In the limit m --$ 0 we have 

since H / h  = O(6). 

of sin (2n ($ - z ) )  has been replaced by 2K. 

El K -+ n/2 (9.5.51) 

but 

so we get 

and therefore 

so that 

E m --+I-- 
K 2 

H 
v2 4 -- 2 

(9.5.52) 

(9.5.53) 

1 
2 

cn22K8 + - ( 1 + cos 2 ~ 6 )  (9.5.54) 

H 
2 

11 ---f - cos 2 ~ 6  (9.5.55) 

This means that in the limit m -+ 0 (i.e. U + 0) the cnoidal waves are 
equal to sinusoidal waves. This is consistent with the basic assumptions of 
the theory and shows that the cnoidal wave theory is smoothly linked to 
the sinusoidal wave theory. 

In case we had chosen to base our derivation on the Korteweg-de Vries 
equation, we would have got for c the expression 

-- 
K 

C H 
m 2mh 

- 1 + - (2 - m -  3-  (9.5.56) 
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which is equal to (9.5.50) to the degree of accuracy of that equation, i.e., 
to terms O(p4) .  Squaring (9.5.56) directly gives (9.5.50). 

In some textbooks (e.g., Wiegel 1964) and in the tables of functions by 
Masch and Wiegel (1961), the expression for c is based on the depth ht 
below wave trough instead of below MWL. The expression by Masch and 
Wiegel can be obtained by substituting 

h ht - ~2 (9.5.57) 

(ht being the depth under the trough and 7 2  < 0) into e.g., (9.5.56). Doing 
so we get 

(9.5.58) 

which be means of (9.5.46) for 772 and by neglecting small terms becomes 

(9.5.59) 

which is the formula (2.160 a) in Wiegel 1964.5 
However, the formula (9.5.59) is not as convenient for practical appli- 

cations as (9.5.50) or (9.5.56) because ht depends on the wave data and 
hence is not suited as a reference parameter. 

9.5.3 Infinitely long waves: Solitary waves 

The results derived above for the periodic cnoidal waves are valid for 
any wave length larger than approximately 10 times the water depth h. For 
analysis of Boussinesq waves shorter than 10h (i.e., waves in deeper water), 
reference is made to Section 9.9. 

Closer inspection of periodic wave results shows, however, that in the 
opposite end of the spectrum, the case of infinitely long waves, the cnoidal 
results reduce to a simpler form. Such waves are know as Solitary waves 
and they essentially consist of one wave crest only (because the next crest 
is infinitely far away). 

Mathematically, we find that for L l h  + 00, the parameter U = 

HL2/h3 + 00 

51n the tables of functions (Masch and Wiegel 1961), an unfortunate misprint has 
emerged in (2) pag. 4: d should be replaced by ht at least on the left hand side corre- 
sponding to (9.5.59). This wrong formula has later been used (Masch 1964) to investigate 
the shoaling of cnoidal waves. 
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From (9.5.43), we see that this means 

mK2 -+ 0;) (9.5.60) 

which occurs when m + 1, K 4 00. In this limit, we also have E 4 1. 
Hence, in (9.5.37), we get 

4 0  (9.5.6 1) E 773 - 
~ - _ _  
Vl - 773 K 

which means 773 3 0. (9.5.40) then gives 

772 - 4 0  
H 

(9.5.62) 

Therefore, in this case 7 2  and 773 are both zero so the polynomial -P 
has a double root at 77 = 0. 

The result (9.5.62) also means, however, that the distance between the 
wave trough and the MWS is zero, or, in other words, the surface is po- 
sitioned entirely above the MWS. At first this may seem in conflict with 
the requirement expressed in (9.5.37) that ;iT = 0. However, if we transform 
(9.5.37) to dimensional form, it reads 

(9.5.63) 

which clearly yields ;iT = 0 for L + ca. 

the results above, we have everywhere 
As in periodic waves 77 = 771 represents the wave crest. Hence, continuing 

01771771 (9.5.64) 

and we see from (9.5.22) that 

b - c 2 - h  
s -771 (9.5.65) 

Since 71 represents the wave crest which according to (9.5.64) is also 
= 1 or the amplitude, we conclude that (the dimensionless) 771 = 

from (9.5.65) 

c2 - h 
6 

-- - 1  (9.5.66) 

or 

c 2 = h + S  (9.5.67) 
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We also see from (9.5.23) and (9.5.24) that in this case 

c1 = cz = 0 (9.5.68) 

Substituting ~2 = 773 = 0 into (9.5.22) shows the expression for P re- 
duces to 

P(V) = (77 - 7 7 h 2  (9.5.69) 

and hence 

rl; = -A2 rl’(71- rll) (9.5.70) 

and with ql = 1 this simplifies to 

77; = A’ ~ ‘ ( 1  - 77) (9.5.71) 

It turns out that in this case the integral on the LHS of (9.5.20) is no 
longer elliptic but can be solved directly and expressed in terms of simpler, 
ordinary functions. 

Thus, (9.5.71) can be written 

- drl = A ~ f i  
dB 

which gives 

(9.5.72) 

(9.5.73) 

The integral on the LHS can be solved by the substitution y = fi 
which gives 

-2 1 = A(B - 00) (9.5.74) 

This gives 

2 tanh-’ fi = A(& - 8) (9.5.75) 

or 
A 
2 

fi = tanh -(Bo - 0 )  

Solving with respect to q then gives 

A 
2 

77 = 1 - tanh’ -(Bo - 0 )  

(9.5.76) 

(9.5.77) 
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and since tanh2 is an even function, we can replace Bo - 0 with B - Bo and 
write 

a 
2 

7 = 1 - tanh2 - (B - 6,) (9.5.78) 

This expression is usually transformed using that tanh = sinh/cosh 
and cosh2 - sinh2 = 1 which brings (9.5.78) on the form 

r] = sech 2A - ( B  - 0,) (9.5.79) 2 

where sech = 1/ cosh. 

Fig. 9.5.3 Solitary wave surface profiles for three different values of H / h .  

We recall that in dimensional form, we have 

(9.5.80) 

/% (ct - - e,) -(e - e,) = 
A 
2 

(9.5.81) 

As (9.5.79) shows, 00 represents the position zo of the crest at  t = 0. 
Hence, we get in dimensional form 

r] = H s e c h 2 g ( c t  - (z - 20)) (9.5.82) 
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which is the solitary wave solution. We see from (9.5.82) that the variation 
with z (or t )  is scaled by JI?; the larger N, the stronger variation of the 
argument of the sech' function. That is, the larger wave height, the shorter 
crest of the waves, as shown in Fig. 9.5.3 that gives the shape of the surface 
for three different values of H / h .  

From (9.5.67) we also get in dimensional form 

(9.5.83) 

Inspection of the cnoidal wave results will show that this is the largest 
value of c obtained for L + 00. Hence, the cnoidal/solitary waves show 
the same property as found for linear waves: the largest phase speed is 
obtained for L + 00. 

Exercise 9.5-1 
Show that for L + 00 we get that (9.5.50) + (9.5.83) 

9.6 Analysis of cnoidal waves for practical applications 

(In this section, we use all formulas on dimensional form.) 
The practical application of cnoidal waves has been very limited. This is 

probably partly due to the difficulties in evaluating the results and the lack 
of information about the results for important parameters such as velocities, 
pressure, wave averaged quantities as energy flux, E f  , radiation stress, S,,, 
volume flux, Qw, etc. The aim of this section is to help alleviate that. In 
this, we draw heavily on Svendsen (1974) and Svendsen and Jonsson (1976, 
1980), which is used in the following without further quoting. 

In order to obtain numerical information about the cnoidal wave param- 
eters, we need to define the wave from practical parameters such as H ,  h, 
and L or T and then establish practical methods for calculating the elliptic 
functions and integrals. 

In principle, numbers could be obtained from standard tables for elliptic 
integrals such as, e.g., Abramowitz and Stegun (1964) or Milne-Thomson 
(1968). However, the values of m which emerge in practical applications 
are so close to unity that standard tables are of no real use. Hence, for 
practical purposes, evaluation of cnoidal waves will either require special 
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tables or special computer methods. Such tables were developed by Masch 
and Wiegel(l961) and by Skovgaard et al. (1974) (see also Svendsen, 1974). 

In the following, we discuss these problems. Simple tables for a first 
estimate are prescribed along with simple computer methods for solution 
of the basic cnoidal equations. 

9.6.1 Specification of the wave motion 

We first notice that similarly to the probIem discussed in Section 3.2.2, 
the wave motion can either be specified by H ,  L and h or by H ,  T and h. 
Basically, these variables can be reduced to two independent dimensionless 
parameters which can be either H l h  and Llh  (if H ,  L ,  h are specified) 
or H l h  and T@ (if H ,  T ,  h are specified). The tables by Masch and 
Wiegel are almost entirely two parameter tables. However, it turns out 
that most of the cnoidal wave parameters can be determined as a function 
of one parameter (e.g., U )  only. 

We discuss the two cases separately. 

Case 1: H/h and Llh  specified 

directly as 
In this case, the value of the Ursell parameter U can be calculated 

H L 2  u=- 
h3 

(9.6.1) 

However, to obtain the second parameter, m, we need to solve the tran- 
scendental equation (9.5.43) 

16 U = - m K 2  
3 

(9.6.2) 

where K = K(m) .  This equation establishes m as a monotonic function 
of U or vise versa. A simple and robust computer method for doing this 
is outlined in Appendix. State-of-the-are routines for computing E and K 
from m are given by Press et al. (1986). 

We notice then that once m has been computed, all other elliptic quan- 
tities such as the cn-function, the elliptic integrals, E(m) ,  and K(m) ,  etc. 
can in principle be determined too. Table 9.6.1 shows results for both 
m, ml = 1 - m, E(m) and K ( m )  for a range of U-values encountered in 
most practical applications. 

We also see that as U increases, the value of m gets so close to unity 
that an increasing number of digits are needed to separate m from 1 with 
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I 

Fig. 9.6.1 Definition sketch for cnoidal waves. 

the loss of accuracy as a consequence. Therefore, ml = 1 - m is generally 
a more convenient parameter for controlling the computations. 

To calculate the phase velocity we write c on the form 

(9.6.3) 

where 

(9.6.4) 
2 E 
m mK 

We have A = A(m) and through (9.6.2) this means A = A(U), i.e., A 
is only a function of the two nondimensional parameters H / h  and L / h  in 
the combination given as U .  

In other words, A can be determined as a function of one variable, U ,  
and although c is a function of both H / h  and A, the variation with H / h  
is a simple algebraic dependence. The variation of A versus U is also given 
in Table 9.6.1. 

When c is determined, the wave period T can then be found from T = 

Likewise, r/2 defined in Fig. 9.6.1 and by (9.5.46) is a function of U only 
and given too in Table 9.6.1. The variation of A = A(U)  with U is shown 
in Fig. 9.6.2. 

It may be noticed that for U < 47, the value of A becomes negative. 
As (9.6.3) shows, this means that we get c < @. U small is most often 
associated with L/h  small, i.e., deeper water. This feature mirrors a similar 
property of sinusoidal waves. However, there are negative aspects to this 
which are discussed for Boussinesq waves in general in Section 9.7.5. 

We also notice that A + 1 for U + ca which confirms the result that 
in a solitary wave c2/gh = 1 + H / h .  The convergence is slow, though, and 
even for U = 100, A is only 0.31. 

A = - - 1-3- 

L/c. 
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Table 9.6.1 The variation of cnoidal wave parameters versus U (Skovgaard et al. 
1974). 
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The surface profile 71 can, in terms of 712, be written 

(9.6.5) 

Fig. 9.5.2 shows the variation of the cn2 function versus 8 for different 
values of U (m) . 

For computational purposes, an algorithm is needed for the cn function. 
For state-of-the-art routines, reference is gain made to Press et al. (1986). 

Note that it is the variation of cn2 with m that makes the cnoidal waves 
change shape as the main parameters H / h  and L/h  change. 

Case 2. H / h  and T m  specified 
In the second case where T and hence T m  is specified instead of 

Llh, it is not possible to determine U directly. This case is actually the 
most common because it is usually much easier to determine the period T 
of a wave than the length L. 



Fig. 9.6.2 The variation of A = A ( U )  with U 

The problem then becomes to determine the wave length L. We see 
that L = cT can be written 

or 

L 
h 

which also leads to 

u =  ( T q 2  ; ( , + ; A )  

(9.6.6) 

(9.6.7) 

(9.6.8) 

which shows that L (or U )  are solutions to transcendental equations with 
two independent variables H l h  and T m .  Again an efficient computa- 
tional procedure for solving this problem is described in Appendix. 
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Once L / h  has been determined, U can be calculated and the problem 
is reduced to Case 1. 

Discussion of results: The values of U versus the assumption of 
6/p2 = O(1). 

First it is pointed out that L / h  can also be written 

- T r n  
L 
h m  

(9.6.9) 

Thus values of L / h  < T m  indicate conditions where c / G  < 1 that 
is the speed of the cnoidal wave is smaller than that of a linear wave. We 
see from figure 9.6.2 that this occurs for small values of U .  This is what 
happens in deeper water, and it is discused further in Section 9.7. 

A simple example will verify that values of U for typical practical wave 
conditions are actually >> 1. Thus if we assume L/h  = 10 (which is close to 
the lower limit for long wave approximations) and H/h  = 0.5 then U = 50, 
and in many practical cases U is much larger. This is in seeming contrast to 
the basic assumptions for Boussinesq waves that b / p 2  = O(1). Part of the 
explanation for this paradox lies in the fact that, as we have seen, the terms 
that occur in the dimensionless equations are actually of order p = ho/K2 
where K = 2rp, and ( 2 ~ ) ~  - 40 is not really small. Further H - 2a. So 
when U = 50 we have 6 / K 2  = a12/h3 Y 5012.40 = 0.62 which is 0(1)  

However, in many cases U becomes even 500 or more. For waves with 
so large U-values, the characteristic length X in p = ho/X is << L,  the wave 
length. X is assumed characteristic in the sense that “significant changes” 
in wave properties such as q or u occur over the distance A. As Fig. 9.5.2 
shows, when U is large, the wave crest is short and steep and most of the 
changes in Q occur within a horizontal length which more typically could 
be set at 

A = O(H/Qz,max) 

Considering the first approximation u N cqlh, the same applies to the 
horizontal particle velocity. Hence, values of U = O(500) do not invalidate 
the basic assumption that b / p 2  = O(1). 

9.6.2 Velocities and pressures 

The horizontal velocity u 
The variation over depth of the horizontal velocity u is essentially 
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determined by (9.2.18) which with uo = 4oZ inserted reads (in dimensional 
form) 

1 
2 u = uo - -(z + h)2uoZZ + 0 ( p 4 )  (9.6.10) 

This requires we determine U O ,  the velocity at the bottom, which can 
be done in several ways. 

One approach is to use either of the equations (9.3.13) or (9.3.14), from 
which we initially eliminated uo to get the 4th order Boussinesq equation 
in 17 only. Since the cnoidal waves have constant form, we have (see 9.4.7) 

(9.6.11) 17 
h 

U o  = c- + O(6 p2) 

and also exactly 

a a 
at dX 

-C- - - - (9.6.12) 

Substituting (9.6.11) into the small terms of (9.3.13) and using (9.6.12) 
on qt, we get to the order considered here 

- c ~ x  + huoz + -(v c 2  )Z - -ch2vZzZ 1 = 0 (9.6.13) 
h 6 

or 

(9.6.14) 

where C,(t) is an arbitrary function of t .  However, since the wave is as- 
sumed periodic G ( t )  = CI. 

Substituting (9.6.14) into (9.6.10), then gives 

(9.6.15) 

which is the expression for u as a function of z and of x,  t expressed in 
terms of q(z, t ) .  

Since 7i = 0, we see the constant C1 is a measure of the net flow in 
the wave. In parallel with both sine waves and also definition of the wave 
motion in combined waves and currents we choose to determine C1 so that 
the average E of u over a wave period is zero. Hence, we get 

- 
V 2  o=-c -+c1  
h2 

(9.6.16) 
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which gives 

(9.6.17) 

Discussion of the result for u 

profiles of the cnoidal wave. 

ity given by (9.6.11). 

We see that (9.6.17) determines the velocity profiles from the surface 

To the first approximation, the velocity equals the depth uniform veloc- 

The total depth averaged velocity fi is given by 

(9.6.18) 

where the last term has been approximated by the leading contribution. 
We see that to the O(p4) the last term is zero, so that ii become 

which can also be written 

(9.6.19) 

(9.6.20) 

We recognize (see Section 11.2) that the first term in this expression 
represents the (exact) depth averaged velocity 60 in a wave with a net 
volume flux Q = 0. 

uo = c- (9.6.21) 

However, we also found in Section 3.3 that a wave with zero net volume 
flux 0 = 0 includes a return current -Q,/h where Qw is the volume flux 
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in a wave with ii = 0 at all points (as specified here). This means that 

- (9.6.22) - Qw u o = u - -  
h 

so that 

(9.6.23) 

Hence, we conclude by comparison of (9.6.20) and (9.6.23) that in cnoidal 
waves 

(9.6.24) 

This result for QW is confirmed in Section 3.3. 

tional to q,,, the curvature of the surface profile. 
We also notice that the variation of the velocity over depth is propor- 

The vertical velocity w 

Exercise 9.6-1 Show that the vertical velocity w can be written 

w = - c ( z + ~ )  [; - ( 1--  ?) +- h  ; ( I-- ‘ Z ihzh )z )  ....] 
(9.6.25) 

However, since w = O(p2u) and w is less important in practical appli- 
cations, it would often suffice to use the first approximation which is 

(9.6.26) 7. w = -C(Z + h)- 
h 

which varies linearly with the vertical coordinate. 

Svendsen and Jonsson (1976, 1980) find (with cn 0 short for cn(0, m) 
vl: can be determined by differentiating (9.5.42) with respect to 2. 

7. = cn ~JCGG ~ 1 -  m + mcn2e (9.6.27) 

It turns out that this has its maximum for 

cn28 = - (am-  1 I + J1- m+ m2)) (9.6.28) 
3 
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We see that for m -+ 1 (U large), we get cn28 --+ 2/3 in this expression. 
The corresponding maximum value q,,, for q, is given by 

(9.6.29) 

which from (9.6.27) provides the numerically largest vertical velocity as 

(9.6.30) 

Exercise 9.6-2 
Show that for m N 1 this also corresponds to 

1 m - 1  (9.6.3 1) 
w,-*-(-) 2 H 3 / 2  c -  z + h  

3 h  h 

Even for U as small as 30, the actual value of cn28 from (9.6.28) is 
cn28 = 0.647 - 2/3. Hence even for relatively small values of U the correct 
cxpression for w, will differ only by a few % from the result (9.6.30). 

The pressure variation 

tion which reads 
The presure in the cnoidal waves is determined from the Bernoulli equa- 

.9z - 
1 + -(u2 + w2) + q5t = 0 

P 2  
(9.6.32) 

Here we as usual introduce the dynamic pressure p~ (relative to the mean 
water level) defined so that 

P = P g z + P D  

Then (9.6.32) reduces to 

(9.6.33) 

1 
2 PD = -&'t - -P(u2 + w') (9.6.34) 

or, to the order of accuracy used here 

1 
2 PD = -p$t - -pu2 + 0(p4) (9.6.35) 

While u2 in this equation can be calculated from (9.6.11) (because u2 
is a small term) we determine q5t from (9.3.10) for q50t and (9.2.16) for q5t. 
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1 - w) q.,] 

The result for q5ot is (in dimensional form) 

(9.6.39) 

and (9.2.16) then gives 

Here we can use (9.6.11) in small terms and since d / d t  = -cd/dx we 
get 

(9.6.38) 

where c2 = co2 = gh + O ( p 2 ) .  Inserting q5t into (9.6.35) then gives 

9.6.3 Wave averaged properties of cnoidal waves 

As in sinusoidal waves, the wave averaged properties of the motion such 
as the volume flux Q,, the radiation stress S,, and the energy flux E, are 
all proportional to H 2 .  This means that even the leading order contribution 
is O(S2) = O(p4). It is therefore possible to use low order approximations 
for the parameters involved to get a first approximation to these quantities. 

The volume flux Qw 
The volume flux is as usual defined as 

Qw = 1; 21 dz (9.6.40) 

where 7 again represents time averaging over a wave period. The integral 
is divided into two parts 

0 

Qw = 1 udz + I" udz (9.6.41) 

where the first integral vanishes because ii = 0. In the second integral we 

h 
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get the leading conribution by using (9.6.3) for u. This yields 

(9.6.42) 

which is the same as (9.6.24). 

The radiation stress 

stress is 
As shown in Section 3.3.3, a convenient form to write the radiation 

(9.6.43) 

(which is exact). 
In cnoidal waves, we found the w2-term is an order of magnitude smaller 

than the other two terms. Again, we only look for the leading order of 
approximation and therefore can use (9.6.3) for u. We then get 

whre c2 = g h  + O(p2) .  We, therefore, get 

(9.6.44) 

(9.6.45) 

The energy flux E f  

vertical section is 
The exact expression for the wave averaged flux of energy through a 

1 
Ef = s_”, { P D  + l p ( u 2  + w2) (9.6.46) 

The leading term is PDU,  so we get 

Ef = 1; PD u dz  + o ( p 6 )  (9.6.47) 

We also see from (9.6.39) that the leading term for P D  is p g q .  Hence, we 
get (replacing also r] with 0 in the upper limit of the integral because the 
difference is a small term and using (9.6.39) for u) 

(9.6.48) 
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Discussion of the results for Qw, S,, and Ef 

Substituting (9.5.42) for v, we get 
Thus, we find that all wave averaged quantities are determined by g. 

v2 = H 2  [$ + 2 ~ p ~ P ' ( u ,  m) + cu4(u, m)] (9.6.49) 

In the averaging over a wave period we use (9.B.3) (with a = 2K) to get 

(9.6.50) 

Similarly, it can be shown that (see Gadsh teyn and Qzhik (1965) p. 629) 

3m2 - 5m + 2 + (4m - 2)- "1 C U * U ~ U  = - (9.6.51) 
K 3m2 

Thus, we find that 

H2 K 
L 

(9.6.5;) 
Thus, defining the quantity B in (9.6.52), we see that we can write the 

wave averaged properties for cnoidal waves as 

H2 
Qw = c-B(m) h (9.6.53) 

Ef = pgcH2B(m) (9.6.55) 

The variation of B(m) = B ( U )  with U is shown in Fig. 9.6.3. 
It is interesting to compare B ( U )  with the value of 0.125 found for si- 

nusoidal shallow water waves. We see that the results for all three wave 
averaged quantities essentially are equivalent to those found in linear shal- 
low water theory. The only diErence lies in the value of or B. In linear 
waves, B has one value only: 0.125. In cnoidal waves, B depends on the 
wave shape and since cnoidal waves for all cases have steeper and shorter 
wave crests and have shallower, longer wave troughs, B is always smaller 
than 0.125 and B + 0 for U + 00. In brief, it can be said that such waves 
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B = E+. IpgH'L ' 

,125 

Fig. 9.6.3 The variation of B = B ( U )  with U 
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are less bulky than sine waves and therefore, for a given wave height, 
they produce less Qw , S,, and Ef . 

This is a general feature for non-sinusoidal waves. 

9.6.4 Limitations for cnoidal waves 

When we consider only he lowest order cnoidal waves derived above 
the most important limitation is that even for waves small enough to be 
considered linear we will fail to  find solutions for the h / L  for a given period 
if 

h/Lo > 3 / 8 ~  N 0.1193 (9.6.56) 

where Lo is the equivalent deep water wave length Lo = gT2/2r (Svendsen, 
1974). As explained further in Section 9.7 the reason for this is that the 
linear dispersion relation underlying the cnoidal wave equations has no 
solution when the value of h / L  or Ich becomes too large. For the details of 
this see Exercise 9.7-7. Thus there is a deep water limit given by (9.6.56) 
even for very small values of H / h  . 

The weakly nonlinear theory presented here has no upper limit for H / h  
(just as linear wave theory does not). It is found, however, that the second 
order polynomial expression for the horizontal velocity profiles given by 
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Fig. 9.6.4 Comparison of the horizontal velocity profiles for different wave theories. The 
full line curves represent the stream function results, - - - are the results using (9.6.17) 
and - - - represent (9.6.57). From Svendsen and Staub (1981). 

(9.6.17) becomes quite inaccurate for higher waves. Svendsen and Staub 
(1981) (SS81 in the following) showed that a simple expression can be 
derived under the crest and trough of the wave (where 7% = 0) for the 
second order polynomial approximation in which all terms in 6 are. This 
is the type of approximation later termed fully nonlinear even though it 
only includes terms p to O(p2) .  The result for the modified velocity profiles 
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under the wave crestlwave trough becomes 

-1 

u=c-  rl +-ch ( (’ + h2 ‘I2) (1 - f (q  + h)rlZZ) rlZZ (9.6.57) h + q  2 3 

In Fig. 9.6.4 the numerical results using (9.6.17) and (9.6.57) have been 
compared with velocity profiles obtained by using accurate calcualtion with 
the stream function method (Chaplin’s 1978 version) which for the present 
purpose can be considered exact. The waves are very steep waves with 
H l h  = 0.58 - 0.70 and values of T m  = 11.21 and 25.07 respectively. 
The lower of those values is close to the deep water limit and hence it is 
not surprising that both the velocity profiles show inaccuracies, though the 
modified profile is clearly more accurate. For the case with the longer waves 
the modified profiles are clearly the more accurate. The results indicate the 
level of accuracy one can expect with a second order polynomial approxi- 
mation for the horizontal velocities. The paper SS81 also shows extensive 
comparisons with measured velocity profiles. 

If the cnoidal theory is consistently developed to higher order in S (in the 
sense that all terms consistent with U = O(1) are retained but non smaller) 
the velocity profiles will start showing unrealistic behaviour for sufficiently 
large values of H / h .  Fenton (1979) developed the theory to ninth order and 
found the ninth order results for the velocities under the wave crest were 
“wildly divergent from the fifth order results”. It was shown by SS81 that 
this anomaly exists already in the third order approximation. However, 
their results also indicated that the anomaly is essentially eliminated if 
the coefficients of the polynomial velocity profiles are derived so that all 
nonlinear terms are retained even though they formally are smaller than 
corresponding to U = O(1). The advantage of keeping all nonlinear terms 
is discussed further in Section 9.10. 

9.7 Alternative forms of the Boussinesq equations - The 
linear dispersion relation 

The choice of the bottom velocity uo as the reference velocity in the 
Boussinesq equations is arbitrary. At the same time, it turns out that 
this choice has profound consequences for the behavior of the equations, in 
particular for cases where the water depth is not quite small in comparison 
to the characteristic length A. 
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The effect of choosing different reference velocities for the Boussinesq 
equations is discussed further in this section. To facilitate the discussion 
we first derive the Boussinesq equations for different reference velocities. 

9.7.1 Equations in terms of the velocity uo at the bottom 

We first recall that the horizontal velocity is given by 

(9.7.1) P2 P4 u = 4oz - - (z  + -h)240zzz + -4ozzzzz + O($) 

u = uo - - (z  + h) uozz + - (z + h)4uOzzzz + O($) 

2 24 
which can also be written 

(9.7.2) P2 2 P2 
2 24 

Here we have for illustration of the following included O(p4) terms. 

given by (9.3.7) and (9.3.8) which for reference read 
We found that in terms of the bottom velocity uo, the equations were 

(9.7.3) P2 3 
rlt + ( ( h  + 6rl)uo)z - --h uozzz = 0 6 

(9.7.4) P2 2 uot + r/z + 6uouoz - --h U o t z z  = 0 2 

9.7.2 Equations in terms of the velocity us at the MWS 

To replace the bottom velocity uo by the velocity us at z = 0 we consider 
us given by (9.7.1) 

us = uo - --h P2 2 ~ o z z  + --h P4 4 uozzz + O(p6) (9.7.5) 
2 24 

This equation can be reversed to express uo in terms of us by successive 
approximations. We first realize that to first order 

u s  = uo + 0(p2 )  (9.7.6) 

or 

210 = u s  + 0(p2 )  (9.7.7) 

This approximation we can insert into the second term in (9.7.5) which 
gives 

us = uo - --h P' 2 us,, - O(p4) (9.7.8) 
2 
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Solving with respect to uo yields 

uo = us + -h P2 2 us,, + O(p4) (9.7.9) 
2 

Similarly we can obtain the expression to O($) for uo = uo(u,) by 
inserting (9.7.9) into the second term of (9.7.5), and (9.7.7) into the last 
term and solve with respect to U O .  We get 

P4 4 u0 = us + 2 h2 ( U ,  + $ h2usxx) - --h 24 ~ s z z z z  + O(p6) (9.7.10) 
22 

2 

or 

P2 2 5 
uo = U S  + -h us,, + - ,~~h~~, , , ,3:  + 0 (p6 )  2 24 

(9.7.11) 

This expression can now be used in (9.7.3) and (9.7.4) to replace uo with 
us. The result is 

qt + ( ( h  + h)uS)z  + -h P2 3 '~.szxa: = 0 (9.7.12) 
3 

U s t  + qx + sususx = 0 (9.7.13) 

which are the Boussinesq equations in terms of the surface velocity us. We 
see that changing from uo to us changes the p2-terms but leaves the rest of 
the terms in the equations unchanged (as long as we only consider equations 
correct to O(p4)). 

9.7.3 The equations in terms of the depth averaged 
velocity 6. 

The equations (9.3.11) and (9.3.12) can also be expressed in terms of 
the depth averaged velocity U which is defined as 

(9.7.14) 

where u ( z )  = 4 2 ( z )  is determined by (9.2.16). Notice that the depth aver- 
aging is over the local time varying depth d = h + 67. 

Exercise 9.7-1 
To calculate U, it is convenient to change variable in (9.7.14) to 

[ = z + h  (9.7.15) 
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and define 

d = h + 6 7  

so that (9.7.1) becomes 

d 

U = f I udt 

(9.7.16) 

(9.7.17) 

Show that this yields 

(9.7.18) P2 2 = uo - -d uoZz + O(p4) 6 

This series expansion for U = U(u0) can be inverted to express uo = 
uo(U) by the same technique as used for us. The result becomes 

2 
(9.7.19) P 2 -  

6 
uo = U + --d u,, + O(p4) 

Exercise 9.7-2 

approximation, we get 
Show that if this technique is continued to the next order of 

(9.7.20) P2 7 4 4 -  uo = U + --d2U,, - -U d uZzzz + O(p6) 
6 360 

Substituting (9.7.19) into (9.7.1) and (9.7.2), we then get the Boussinesq 
equations in terms of the depth averaged velocity 6. The result is 

rlt + ( ( h  + Jrl)"), = 0 (9.7.21) 

where we have reinserted that 

d = h + 6 q  (9.7.23) 

It is of particular interest to notice that not only is the kinematic bound- 
ary condition (9.7.21) in a very simple form in this case, but it is in fact 
exact to any order in p and 6. 
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Exercise 9.7-3 Show that this is not surprising by integrating the 
continuity equation 

du dw - + - = o  
ax dz 

(9.7.24) 

over depth. Show that without any approximation, this yields 

(9,7.25) 

Inserting here the definition (9.7.14) of G, show this simply is 
identical with (9.7.21). 

Hence, the depth integrated continuity equation can replace the kine- 
matic free surface boundary condition. 

9.7.4 The equations in terms of Q 

Finally, it is useful to consider the equations in terms of the total, in- 
stantaneous volume flux Q defined by 

Q = 1” udz = ( h  + 6 ~ ) i i  
-h 

(9.7.26) 

We see directly from (9.7.25) that the continuity equation integrated 
over depth can be written as 

(9.7.27) 

which is exact and represents the equivalent of the KFSBC. The dynamic 
equation is then most directly obtained by expressing Q in terms of 2L. We 
have (again exactly) 

Q = iid = iih + 6 i i ~  (9.7.28) 

or 

(9.7.29) - &  u=- 
d 

Inserting this into (9.7.22) then gives 

(9.7.30) 
x x t  
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Here we can use the continuity equation (9.7.27) to eliminate dt .  We 
first realize that dt = ( h  + 6q)t  which means 

dt = -Qx (9.7.31) 

so that after multiplication by d (9.7.30) can also be written 

Q Q  p2 3 Q 
Qt + ~ x  + 6 2  - d ( d ) x - y h  ( z ) x x t = o  (9.7.32) 

This form clearly contains O(S2, 6p2) terms (through d in the denominator 
of the Q terms). Omitting the O(Sp2, 6’)-terms gives the dynamic equation 
in Q as 

Q 
Qt + ~x + 62 - h 

9.7.5 The linear dispersion 

(:) - $h2Qxxt = 0 (9.7.33) 

relation 

As direct computer solutions of the Boussinesq equations in time and 
space progressed along with the development of the capacity of computers, 
it became evident that the various alternative forms of the equations devel- 
oped in Sections 6.3 and 6.7 were not equally well behaved. In particular, it 
became clear that some were more prone to instability or unrealistic break 
down due to high frequency noise, i.e., due to explosive development of 
initially small amplitude disturbances with large values of kh .  

At the same time, the increasing success of numerically simulating more 
and more complex wave phenomena - in particular by using the even more 
advanced models described later in this chapter on varying depth, 2D- 
horizontal domains and allowing even larger waves through accepting more 
nonlinear effects - made the restriction of the Boussinesq methods to shallow 
water (i.e. small kh)  even more severe. In consequence, the recent 10-15 
years have seen first of all extensive and very successfuI work aimed at 
understanding the nature of the limitation in kh, including why the various 
forms derived above are not equally useful, and also modifications of the 
Boussinesq equations that allow application to larger and larger kh. 

It turns out the clue is found in analysis of how small amplitude waves 
behave when kh is not really small. This understanding will account both 
for the numerical growth of small disturbances with wave length much 
shorter than the main wave, and for the behavior of the main waves in 
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areas further offshore where the wave height may be smaller but kh larger 
due to larger depth. 

In the following, we examine these ideas for the Boussinesq models de- 
veloped above. 

Hence we turn to the linear part of the Boussinesq equations. We first 
examine the behavior of small sinusoidal waves in the original form of the 
equations based on the bottom velocity uo developed in Section 6.3. The 
linear version of the equation is obtained by neglecting all &terms. 

rlt + hUOz - 
P2 3 -h uozzz  = 0 
6 

(9.7.34) 

uot + rlz - -h P2 2 uotzz = 0 (9.7.35) 
2 

The small sinusoidal waves are assumed in the form 

0 = w t  - kx 1 77 = qoeis 
uo = Uoeie 

(9.7.36) 

Substituting this into (9.7.34) and (9.7.35) yields 

(9.7.37) 

(9.7.38) 

This is a set of homogeneous linear equations in ( q o ,  UO)  which can be 
written as 

- -_  
A X = O  x={:o} 

where 

1 - - w - k h ( l +  $(kh)2 
A = {  

-k w ( l +  

(9.7.39) 

(9.7.40) 

- This homogeneous system only has solutions provided the determinant 
of 2 is zero. That is, provided 

w2 (1 + <(khI2)  - k2h  (1 + F ( k h ) 2  = 0 
P2 1 (9.7.41) 
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or by rearranging, provided 

In dimensional form this is 

(9.7.42) 

(9.7.43) 

Thus, we find that in the q,  uo version of the equation, the small sinu- 
soidal waves will propagate with a phase speed given by (9.7.43). 

Equations in terms of the surface velocity us 

Exercise 9.7-4 
Show by a similar analysis for the equations (9.7.12) and 

(9.7.13) that those equations will propagate small sinusoidal waves 
with the velocity 

c2 1 
gh 3 
- = 1 - -(kh)2 (9.7.44) 

Equations in terms of the depth mean velocity ii 

Exercise 9.7-5 
Show that for the equations in terms of 11, U,  we get 

1 - c2 

gh l + $ ( k h ) z  
- _  (9.7.45) 

Discussion of results 
The important feature here is that for kh sufficiently large, the linear 

dispersion relation for the Boussinesq models analyzed above obviously be- 
have differently. Since these are small amplitude waves, one would ideally 



9.7 Alternative forms of the Boussinesq equations 433 

Fig. 9.7.1 
on U O ,  us and G. - - - corresponds to (9.7.44), - . - 
The linear dispersion relation is the line at c/clin = 1. 

The variation of c 2 / q i n  for linear dispersion relations of the equations based 
- to (9.7.45), and - to (9.7.43). 

expect them all to emulate the linear wave dispersion relation for which we 
have 

cfin - tanhkh 
gh kh 

(9.7.46) 

We see that the Taylor expansion for (9.7.45) can be written 

C i i ,  - 1 - - 1 - -(kh)’ + O(lcq4 
9h 3 

(9.7.47) 

Exercise 9.7-6 
Show that to terms O ( l c / ~ ) ~  the dispersion relations for the equa- 

tions in uo, us and ii, the linear dispersion relations all resemble 
(9.7.47) (which in itself is only an approximation to (9.7.46). 

Exercise 9.7-7 
Cnoidal waves were derived from the fourth order Boussinesq 
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equation which was modified to (9.5.5) by assuming waves of con- 
stant form. Show that the linear dispersion relation for (9.5.5) is 
(in dimensional form) 

C2 1 -- - 1 - -(kh)’ 
gh 3 

(9.7.48) 

If we for a wave with period T seek solutions for the value of L l h  
(or kh ) ,  show that (9.7.48) gives the kh as solution to the equation 

1 
- = (kh)’ (1 - j ( k h ) z )  
27rh 
LO 

(9.7.49) 

where LO = gT2/27r is the usual linear deep water wave length for 
a wave with period T .  

Show that the largest possible value of k h  for which this equa- 
tion has a solution is kh = and that the equivalent value of 
h/Lo is 

= 0.1193 
h 3  
Lo 87r 

- - -  - 

(Madsen et al. 1991) as mentioned in Section 9.6.4. 

(9.7.50) 

Thus to the first approximation in ( k h )  (that is for very small kh),  all 
the linear dispersion relations are the same. However, Fig. 9.7.1 shows the 
variation of the linear dispersion relations for the U O ,  us and U models for a 
wider range of kh-values and we see that even for the moderately large k h  
values of 2 (i.e., p = h / L  2 0.30) the deviation from (9.7.46) is substantial 
in particular for the versions based on us and U O .  

A particularly bad behavior is observed for the us model for which c2 
becomes negative for kh  > & = 1.73. Hence, for values of kh larger than 
that, c will be imaginary. We can write 0 as 0 = k(ct - x). We see that if 
an imaginary value is substituted for c this means the disturbances given 
by (9.7.36) will grow exponentially in time. 

In conclusion, since disturbances with larger kh can not be avoided in 
numerical computations, it is obvious that the behavior of the linear dis- 
persion relation is of crucial importance for the performance of Boussinesq 
models and the various forms of the equations discussed so far all show 
significant inaccuracies for k h  growing. Possible solutions to this problem 
will be discussed further in the following chapter. 
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9.8 Equations for 2DH and varying depth 

Before continuing it is useful to extend the equations to two dimensions 
in the horizontal plane (2DH) and to varying depth. In principle that 
implies going back to the starting point and solve the Laplace equation 
for 40 with the full set of boundary conditions under the more general 
assumption that the waves are now propagating in the horizontal x ,  y-plane 
and the depth h changes with position so that h = h(x ,  y). Though there 
are no principal difficulties in doing this the computations become a good 
deal more complicated. 

The extension to two horizontal dimensions is in principle only a ques- 
tion of changing the d/dx operator to 

d d  uh=-  - 
dx’ dy 

(9.8.1) 

though it needs to be remembered that vh represents a vector operator. 
The extension to varying depth requires a little more consideration be- 

cause the bottom slope is usually assumed small. Thus for varying depth 
we are dealing with a third small parameter Vhh  in addition to p,d. For 
the weakly nonlinear Boussinesq waves discussed so far it is normal to as- 
sume that Vhh = 0 ( p 2 )  so that in an equation correct to 0 ( p 4 )  terms 
with (Vhh)2 ,Vih  can be neglected. Then the expression (9.2.14) for the 
velocity potential up to terms O(p4)  becomes 

P2 4 = 40 - p2(z  4- h)VhhVh$o - -(Z + h)2 Vi40 f 0(p4) (9.8.2) 

which shows that in the first approximation the sloping bottom gives raise 
to an extra term that varies linearly over the depth. 

2 

Exercise 9.8-1 Derive equation (9.8.2) 

As in the case with constant depth the further derivations require that 
we decide which reference velocity potential or velocity we use to describe 
the equations. In principle the derivations, as mentioned above, follow the 
same lines as for constant depth. However, they get rather involved and it 
is beyond the scope of the present text to go into details. For reference we 
give the equivalent of the Boussinesq equations (9.3.11) and (9.3.12) (here 
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in dimensional form) in terms of the bottom velocity 210. 

where the actual magnitude of the RHS of O(p4,  d2, p2S, (Vhh)', V ih )  has 
been abbreviated to O(p4)  because of our assumptions of the relative mag- 
nitude of the small parameters. 

Exercise 9.8-2 It is natural here to pose the exercise to derive 
equations (9.8.3) and (9.8.4). This essentially requires generalizing 
to varying depth all the steps in the derivation for constant depth. 
However, the reader is warned that it is a little more involved than 
the constant depth derivation shown in the previous chapters. 

Similarly the equations in terms of the depth averaged velocity U become 

qt + Vh(fi(h + 77)) = 0 (9.8.5) 

(which is exact) and 

1 
2 at 3 

Ut + (U. Vh)Vhfi + g Vhq - h Vh(Vh . (hU)) - -h2 Vh(Vh. U) 

= O h 4 )  (9.8.6) 

Equations (9.8.5) and (9.8.6) were first derived by Peregrine (1967), and this 
is one of the most frequently used forms of the weakly nonlinear equations 
because of the relatively benign linear dispersive behaviour . 

Derivations of the various forms of the 2DH and varying bottom equa- 
tions are available from various sources but one of the most detailed and 
convenient reference is Madsen and Schaffer (1998). 
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9.9 Equations with enhanced deep water properties 

9.9.1 Introduction 

Peregrine (1967), Benjamin et al. (1972) and others already observed 
that the lowest order, linear version of the equations, which give relation- 
ships between the time and space derivatives of Q and the velocity parameter 
in the equations (be it uo , us ,  or ii) can be used to change differentiations 
in the highest order (p2)-terms from x to  t and vice-versa without changing 
the formal accuracy of the equations. An example of this was demonstrated 
in Section 9.5 which showed four different versions of the KdV-equation 
that were equally valid. Benjamin et al. also pointed out that the different 
versions obtained that way behaved differently numerically. 

As discussed in the previous section the behavior of the phase velocity, 
when the water depth increases, is entirely linked to the highest order linear 
terms in the equations. 

Combining these two observations suggests that, within certain limits, 
the accuracy of the dispersion properties of the equations in deeper water 
can be improved by suitable modifications of the highest order linear terms. 

In order to judge what we should expect in deeper water we recall that 
since the Stokes theory is considered a good approximation to waves in 
that region it is natural to compare the performance of the Boussinesq 
theory in a more broad sense with the results for Stokes waves. A closer 
investigation then reveals, however, that the poor predictions of the phase 
velocity in deeper water are not the only inaccuracies relative to Stokes 
waves that show up as the depth-to-wavelength ratio increases. In recent 
years this line of thought has been investigated and developed extensively, 
in particular by Madsen, Schaffer and co-workers and also along different 
lines by Nwogu (1993) and by Kirby and his co-workers. To illustrate the 
ideas pursued we briefly outline some of the results in this section. 

9.9.2 

Direct change of highest order terms 
The start of the development was based on Witting (1984). He essen- 

tially argued that since the coefficients of the p2 terms in the Boussinseq 
equations can to a large extent be changed freely one can choose them as 
unknowns. As the results in section 9.7.5 indicate this can also be inter- 
preted as using an unknown velocity U as reference velocity for the series 

Improvement of the linear dispersion properties 
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expansion for 4 (instead of, say, u g ) .  In this general formulation the linear 
part of the two Boussinesq equations can be written (in a 1D-horizontal 
form of Madsen et al., 1991) (M91 in the following) 

qt + hUx - / ~ ~ b l h ~ U , , ,  = 0 (9.9.1) 

(9.9.2) 2 2  ut + q x  - I.L a l h  Uxxt = 0 

where a1 and bl are the, so far, unknown coefficients. 

to the linear dispersion relation 
Following the procedure outlined in Section 9.7.5 we see that this leads 

(9.9.3) 

The question then becomes, how do we compare this approximation with 
the dispersion relation (9.7.46) for the Stokes waves? 

We notice that (9.9.3) is a rational fraction approximation. Determin- 
ing the coefficients a1 and bl by equating (9.9.3) to (9.7.46) creates a so- 
called Pad6 approximation. Priciples of such approximations are given in 
Appendix. Essentially it means equating the Taylor expansion of (9.9.3) 
with the Taylor expansion of (9.7.46). 

The result is (see M91) that 

1 
15 

b l = - - .  1 2  
a1 = b l +  - = - 

3 5  

This gives for (9.9.3) 

(9.9.4) 

(9.9.5) 

Because the numerator and denominator here both consist of second order 
polynamials in k h  this is called a [2/2] Pad6 approximation to the linear 
Stokes dispersion relation (9.7.46). 

M91 noted that if bl in (9.9.3) is considered a free parameter B,  then 
(9.9.5) can be written 

- 1 + B(kh)’ C2 

g h  
- - 

1 + ( B  + i ) ( k h ) 2  
(9.9.6) 

In this form (9.9.5) and the other dispersion relations found in Section 9.7.5 
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can be recovered by the following values of B 

(9.9.7) 1 
6 
1 
3 

1 
15 ’ 

B = - ; for uo 

B = -- ; for us (9.9.8) 

B =  0 ; for .ii (9.9.9) 

(9.9.10) B =  - . for U 

0 0  01 0 2  0 3  0.0 0 5  06 
h /LO 

Fig. 9.9.1 
relation for different values of B (from Madsen and Sorensen, 1991). 

The percentage error in the dispersion relation relative to the linear dispersion 

Fig. 9.9.1 shows a plot of these and other cases illustrating that the 
value of B = & is indeed a far better approximation to (9.7.46) than the 
other values found in Section 9.7.5. 

The derivation of (9.9.5) shows that the expression agrees with the Tay- 
lor espansion for (9.7.46) up to ( l ~ h ) ~ .  However, the direct Taylor expansion 
to (kh)4  is not nearly as good an approximation to (9.7.46) as (9.7.46) is. 
The remarkable feature of the Pad6 approximation is that, while the tra- 
ditional Taylor expansion has a radius of conversion of only kh < n/2 
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(and therefore start to diverge when kh  approaches that value), the Pad6 
approximation is well behaved in the entire domain 0 < kh  < a. 

It is not immediately clear which assumption about the reference veloc- 
ity in the Boussinesq equations will lead to the linear dispersion relation 
(9.9.5). To clarify this M91 considered the equations in terms of the volume 
flux Q derived in the previous section. In dimensional form they read 

qt + Qx = O (9.9.11) 

The lowest order approximation to this is 

q t + Q x = O  
Qt + g h q x  = o 

(9.9.12) 

(9.9.13) 
(9.9.14) 

(where the 0 corresponds to O(p2) in the dimensionless form of the equa- 
tions, which is the order of the omitted terms). 

Thus we have, for h = constant to the lowest approximation 

Qxxt  + ghqxza: = O (9.9.15) 

Hence, within the order of approximation of (9.9.11) and (9.9.12), we can 
subtract the quantity 

(9.9.16) 

from the momentum equation so that the equations become 

qt + Qx = 0 (9.9.17) 
Q 2  

Qt + - + g d ~ a :  h2 Qxzt - g B h3qxxx = 0 (9.9.18) d x  

We see that these equations have the linear dispersion relation (9.9.5) as 
wanted. 

Since the parameter B can be chosen at any value, a value that gives a 
least squares fit to (9.7.46) within a given interval of kh can also be used. 
M91 found that B = 1/18 actually gives significantly better results in the 
interval 0 < h / L o  < 0.6 (corresponding to 0 < k h  < 3.8) than B = 1/15. 



9.9 Equations with enhanced deep water properties 44 1 

This interval is beyond the limit for deep water which is normally set as 
h/L(-  h/Lo) = 0.5, kh = 3.15. The error for B = 1/18 reaches a maximum 
of only 3% at the largest value of h/Lo = 0.6. 

Madsen and Schaffer (1998) showed that the manipulations of the equa- 
tions leading to introduction of the B-terms can be simulated by applying 
a linear dfferential operator L to the equations where L is given by 

(9.9.19) 

This “linear enhancement operator” greatly helps and simplifies introduc- 
tion of this enhancement to other versions of the Boussinesq equations. 

Use of a reference velocity specified at an arbitrary z-level 
An alternative approach to improving the dispersion characteristics of 

the Boussinesq equations was followed by Nwogu (1993). 
Realizing the significance of choosing the appropriate reference velocity 

Nwogu expressed the Boussinesq equations in terms of the velocity u, at 
an arbitrary depth z,. 

The following steps are involved in that derivation. For varying depth 
h(x,y) the velocity profile u(x ,y ,z , t )  expressed in terms of the bottom 
velocity uo is given by 

where v h  as before stands for the horizontal vector gradient (& 6). 
From this expression we can get the velocity u, at a selected depth z ,  

in terms of UO. We invert that expression to get uo in terms of ua and by 
substituting that into (9.9.20) we then have the expression for the general 
velocity u(x, y, z ,  t )  in terms of u, 

u = ua + $(z ,  - Z ) V h [ V h  . (hu,)] + g(z: - Z 2 ) V h ( V h  . u,) + O(p4) 

(9.9.21) 

Nwogu then developed the Boussinesq equations in the general 2Dh-form 
on an arbitrary varying depth h(x,y) in terms of the velocity u,. The 
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result is 

= o  (9.9.22) 

= o  (9.9.23) 

However, as was the case with M91 his analysis of the dispersion properties 
are limited to the 1Dh version of the equations. The linearized form of the 
equations then become 

(9.9.24) 

u,t + + ah2 U,,,t = 0 (9.9.25) 

Again small amplitude waves as given by (9.7.36) lead to the dispersion 
relation 

c2 1 - (a + $) (lch)2 
- - 

gh - 1 - Q (lch)2 
(9.9.26) 

Nwogu (1993) found that a value of a = -0.39 gives the best agreement 
with the linear dispersion relation. Fig. 9.9.2 shows the results for some a 
values. 

We see that for a = - (B + ?j) (9.9.26) is identical with (9.9.6). Based 
on this we notice that the value of a = -2/5 corresponds to B = 1/15, 
and that a = -0,39 closely corresponds to the value of B = 1/18 found by 
M91 to give the best approximation in a least square sense in the interval 

Thus by comparing the two results we have also established the con- 
nection between the level z ,  of the reference velocity u, in the Boussinesq 
equations and the value of B in the equations by M91. The table below 
gives an overview of the z ,  values discussed here. 

up to h/Lo = 0.6 

9.9.3 Improvement of other properties 

Thus it is possible to vastly improve the accuracy of the the equations 
for their linear dispersion properties. 
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0.0 0.1 0.2 0.3 0.4 0.5 

0 
h/Q 

Fig. 9.9.2 The values of c / c A ~ ~ ~  for different values of a. Airy theory is linear 
theory (from Nwogu, 1993). 

-0.39 -0.53 h 

B 
-1/3 

0 
1/15 
1/17.6 N 1/18 
1/6 

Work on improving the deep water performance has continued through 
the development of improved models and through the testing of other prop- 
erties of the models. The question asked is: how accurate are the equations 
for other properties when h / L  increases? 

Thus the variation of the group velocity cg was already analysed by M91 
by Nwogu (1993). 
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The group velocity is given by 

dW 
cg = - 

dlc 
and since w = c k this implies 

dC 
c g = c + k -  

dk 
which with (9.9.6) substituted gives 

c g = c  1+  B (kh )2  - [ 1 + B (kh)z  1 

(9.9.27) 

(9.9.28) 

(9.9.29) 

(M91), and an analogous expression in terms of Q (Nwogu, 1993). In both 
cases it was found that cg is much less accurately represented than the 
phase velocity c, even for the optimal forms of the enhanced equations. 

Similarly the relative rate of change of the wave amplitude %/A 
(termed the “Linear shoaling coefficient”) has been examined and again 
a model with B = 1/15 fares better than equations based on (for com- 
parison) ii. Also nonlinear properties such as wave-wave interaction and 
energy transfer between wave components and the nonlinear (3rd-order) 
dependence of the celerity on the wave height are among the tests. For 
details about these and other aspects of the development of the deep water 
characteristics reference is made to Nwogu (1993), Madsen and Sorensen 
(1992), Schaffer and Madsen (1995), Madsen and Schaffer (1998, 1999). 

9.10 Further developments of Boussinesq modelling 

The advances described in the previous section were aimed primarily 
at improving and testing the deep water characteristics of the Boussinesq 
models. These are important because they influence the wave celerity which 
controls basic transformation processes such as wave refraction and diffrac- 
tion and also wave shoaling. 

Meanwhile the general accuracy and sophistication of the Boussinesq 
models have also undergone a wealth of other developments that dramati- 
cally improve the general performance of the models. These modifications 
have been dealing with a wide spectrum of important aspects of the models. 

Some of these steps are discussed a little further below but it is only 
possible here to give a brief introduction to the type of problems considered 
and the concepts introduced and analysed in these developments. And as 
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with other advanced subjects in this text the problems are so complex that 
this description cannot be exhaustive and neither is the literature review. 
However, very extensive reviews are provided by Kirby (1997), Madsen and 
Schaffer (1998, 1999), Kirby (2002), and Brocchini and Landrini (2004). 

9.10.1 Fully nonlinear models 

One of the most important developments is based on the observation 
that the derivation of the weakly nonlinear equations does not require an 
expansion of the solution in terms of the amplitude or “nonlinearity” param- 
eter 6. Going back through the derivation it will be found that consistent 
with the basic assumption for the weakly nonlinear model of U = O(1) or 
6 = O(p2)  we deliberately omitted terms 0(d2,6p2).  However, it is per- 
fectly possible to conduct the derivations while keeping all terms in 6. Such 
equations were first derived by Serre (1953) and it was shown by Wei et al. 
(1995) that retaining all &-terms leads to a set of nonlinear equations that 
only contains terms in 6 which are 0(6,62,63),  while still being accurate 
to O(p2)  in p. Since these equations include all nonlinear terms to the 
accuracy of p2 they are called fully nonlinear equations, though they 
do not contain neither linear nor nonlinear terms of order higher than p2. 

Tests of the fully nonlinear versions of the models show considerable 
improvements of accuracy in particular for the very high waves approaching 
breaking. These ideas are now broadly accepted and they can in principle 
be pursued also for higher order models. 

9.10.2 Extension of equations to O(p4)  accuracy 

As the model versatiliy expands one of the limiting factors is in the 
fact that in models with O(p’)-accuracy velocities and pressures are still 
only described by a second order polynomial variation over depth which 
is a very poor representation of the conditions in deeper water and also 
for very high waves near breaking. Extension to O(p4)-accuracy improves 
this. As a generalization of NWO~U’S approach Gobbi and Kirby (1999), 
and Gobbi et al. (2000) chose a model version that averages two reference 
velocities. However, the direct extension of the model to O(p4)-accuracy 
also introduces fifth order derivatives into the equations which make the 
numerical schemes (somewhat) more complicated. Therefore attempts have 
also been made to find forms of the equations correct to O(p4) and retaining 
Pad6 [4,4] order dispersive accuracy but without the high order derivative 
terms (Madsen and Schaffer, 1998) 
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9.10.3 Waves with currents 

The interaction of long waves with currents was already studied by Yoon 
and Liu (1989), Chen et al. (1998) used the the enhanced Boussinesq 
approach to develop versions that correctly represent the doppler shift of 
currents also in deeper water. 

9.10.4 Models of high order 

This type of model represents a new approach to Boussinesq modelling 
outlined by Agnon et al. (1999), Madsen et al. (2002), and Madsen et al. 
(2003). 

The new procedure achieves the same acceuracy in nonlinear properties 
as in linear properties. This is done by expressing the boundary conditions 
at the freee surface and at the bottom in terms of both the vertical and the 
horizontal velocity components at the still water level SWL, while using 
a truncated expansion solution for the Laplace equation. This results in 
a coupled system of equations with a total of 6 unknowns, including the 
surface elevations and several velocity components. The initial version of 
this system (Agnon et al. (1999)) allows an accurate description of the 
dispersive nonlinear waves up to k h  = 6. In the extensions by Masdsen et 
al. (2002,2003) these results are further improved by expanding the Laplace 
solution from an arbitray z-level and minimizing the depth averaged error 
in the velocity profile. The resulting equations have linear and nonlinear 
wave characteristics that are accurate up to kh  = 40 and reliable velocity 
profiles up to kh  = 12. 

In a recent paper Schaffer (2004) describes how to determine the ve- 
locity and other kinematic information from the results generated by such 
numerical models. 

9.10.5 Robust numerical methods 

One of the problems associated with Boussinesq equations is that they 
include third or even higher order derivatives. A consistent numerical 
scheme is therefore required to represent the lower order derivatives to 
an order where the truncation errors are smaller than the numerical repre- 
sentation of the high order terms. While several numerical schemes have 
been devised that satisfy this requirement it is probably fair to say that the 
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simplest, most transparent, and most flexible is the method developed by 
Wei an Kirby (1995). 

This method is a generalization of the Predictor-Corrector scheme in- 
troduced for ordinary differential equations by Adams-Bashford-Moulton. 
It is used to integrate the equations in time over a domain in the horizontal 
coordinates. The equations are written in the form 

- = F  dE 
at 

(9.10.1) 

where E is the vector quantity given by the unknowns of the formulation in 
question and F is the vector with components given by the rest of the terms 
in each of the governing equations. In ordinary differential equations F is 
just a combination of the independent and dependent variables and thus 
can be evaluated exactly. In partial differential equations F also include 
space derivatives of the unknowns. Hence the accuracy of the representation 
depends on the order to which those derivatives are evaluated. 

For each time step the horizontal spatial derivatives are calculated using 
schemes of sufficiently high order to satisfy the requirement of consistency. 
With third order predictor and a fourth order corrector steps often used 
the lowest order derivatives in space are determined with fourth order finite 
difference expressions. 

The method has turned out to be quite versatile and has also been used 
for the nearshore circulation equations described later. 

9.10.6 Frequency domain methods for solving the equations 

An entirely different way of solving the governing equations for the wave 
motion is represented by the frequncy domain methods. This involves using 
Fourier transform to the equations governing the wave motion. This means 
assuming the wave motion (in terms of the surface elevation 7) can be 
described by the sum 

N 
~ ( z ,  y, t )  = C an(z ,  y)ePzwnt + c.c. 

Here N is the total number of frequency components included in the com- 
putation. It is noted that this expansion assumes periodicity of the motion 
in time. Thus if irregular waves are considered the period of the smallest 
frequency w1 must be the length of the entire time series. Therefore to 

(9.10.2) 
n= 1 
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describe an irregular wave sequence a large number of frequencies will be 
needed. 

When substituted into the governing equations the nonlinear terms give 
raise to products of the series. This leads to terms that represent nonlin- 
ear interaction between the individual sinusoidal wave components in the 
expansion. The overall computation time i s  a function of the number of 
terms kept in the expansion and of the way the nonlinear interaction terms 
are handled. 

The method is best suited for non-breaking waves because in breaking 
waves a particular problem evolves from having to decide how the energy 
dissipation due to the breaking process is distributed to the individual wave 
components 

For a extensive and well written review of the aspects of and the lit- 
erature describing this method reference is made to Kaihatu (2003). This 
paper gives detailed overview of the form of the many different versions of 
the Boussinesq equations in the frequency domain and also includes such 
information for the nonlinear MSE models and a discussion of spectral 
breaking wave models. 

9.11 Boussinesq models for breaking waves 

In recent years the Boussinesq models have been extended to include 
the effect of wave breaking. This is done essentially in three different ways 
that differ in the details but in principle function the same way, which is 
by enhancing the momentum flux in the momentum equation. 

It is first noticed that Boussinesq models and other phase resolving 
models give a description of the flow based on the continuity and momentum 
equations. We know from the fundamental principle of hydrodynamics that 
if solved correctly such a description provides all the necessary details of the 
flow including the effect of energy dissipations. However, in contrast to the 
wave models described in Chapters 4 and 6 based on analysing the energy 
balance, in the momentum equation the energy dissipation only shows up 
as modifications of the momentum fluxes. 

This was also illustrated in the description in Section 5.3.1 of “why waves 
break?” It is recalled that in the turbulent front of a quasi-steady breaking 
wave we can expect the breaking process to enhance the momentum flux 
over and above the flux from the velocities and pressures in a non-breaking 
wave. 
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In a Boussinesq wave the turbulence will generate a similar enhancement 
of the momentum flux which represents the signature of the breaking pro- 
cess. The Boussinesq base model describes a potential flow which conserves 
energy and the enhancement will change the energy balance. 

A noticeable weakness of all these methods is that they cannot pre- 
dict the position where the breaking starts. In Boussinesq waves the wave 
front never becomes vertical because as the waves steepen the dispersive 
effects, which tend to stabilize the wave shape, from a certain point become 
so strong that they prevent the front from steepening further. Therefore 
breaking must always be initiated by artificial empirical mechanisms such 
as a limit on the front steepness or the wave height to water depth ratio. 

The following is a very brief description of the principles behind the 
three model types. They all need empirical input or calibration in some 
form in order to function. In addition the use of the nonlinear shallow water 
(NSW) equations for describing breaking waves is briefly mentioned. 

9.11.1 Eddy viscosity models 

One way of including the signature of breaking in the Boussinesq equa- 
tions is based on adding a viscosity or diffusion term, which has the form 
(vtu,),. Examples are the models by Zelt (1991), Karambas and Koutitas 
(1992), Wei et al. (1995), Kennedy et al. (2000) to mention some. The 
value of the eddy viscosity term is calibrated against experimental data 
both with respect to its magnitude and with respect to its variation with 
the wave phase. With proper choices for the term it is possible to obtain 
good agreement with data for the variation of the wave height. However, 
there is no physical justification for a term of the magnitude needed to sim- 
ulate the breaking. The flow is also still modelled as a potential flow which 
means the velocity profile is unchanged from the polynomial representation 
in the underlying Boussinesq model (usually the second order polynomial 
approximation corresponding to O(p2)-models). This approach has since 
been developed extensively with addition of further terms to better simulate 
the variation of the wave heights. 

9.11.2 Models with roller enhancement 

Roller methods add the effect of breaking in the form of terms that 
simulate the effect of the surface roller. Brocchini et al. (1992) used the 
concept introduced by Deigaard and Fkedsme (1989) where the weight of 
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the roller causes a change in the pressure variation in the wave which en- 
hances the pressure part of the momentum flux. On the other hand the 
model introduced by Schaffer et al. (1993) considers the enhancement in 
momentum flux from a roller riding on the front face of the wave and hence 
moving with speed equal to the phase speed c of the wave, as suggested 
in the wave averaged model by Svendsen (1984) Section 5.6. This leads 
to enhancement of the momentum flux both from the velocity of the roller 
and from the pressure variation. The empirical input to this model is in the 
specification of the roller thickness and extent in the horizontal direction. 

This approach was developed and tested in a series of papers by Madsen 
et al. (1997a,b), Smrensen et al. (1998). 

9.11.3 Vorticity models 

In the last type of model the motion is divided into a potential part, 
which is similar to the nonbreaking solution, and a rotational part. The 
rotational part is a result of the vorticity generated by the breaking and 
this is the part that generates the enhancement of the momentum flux due 
to both velocity and pressure variation. Reference is made to Veeramony 
and Svendsen (1998, 2000). 

It is worth to mention that this model approach utilizes a different way 
of deriving the Boussinesq equations which is based on the depth integrated 
equations of motion (derived later in Chapter 11). This method was first 
developed by Yoon and Liu (1989) in another context. The advantage 
in breaking waves is that the role of stresses on the free surface such as 
turbulent stresses at the turbulent mean surface of the wave front is more 
explicitly exposed. 

This model also requires empirical input in the form of the boundary 
condition along the surface in the roller for the vorticity. The data for this 
boundary condition is taken from detailed measurements in a hydraulic 
jump by Svendsen et al. (2000). 

Of the three methods described here this model gives the most detailed 
description of the internal flow in the breaking wave. The rotational part 
of the velocity profiles, which is not restricted to a polynomial, gives a 
much stronger variation over the vertical in particular just beneath the 
roller than the traditional polynomial variation in potential flow. This is 
in closer agreement with the measured profiles than the polynomial profiles 
that can be obtained using O ( p 2 )  or even O(p4)  approximation, as in the 
eddy viscosity method. 
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9.11.4 Wave breaking modelled by the nonlinear shallow 
water equations 

Like the Boussinesq equations the NSW-equations conserve mass and 
momentum. And since they contain no terms that represent dissipation 
of energy the exact solution to these equations will also conserve energy. 
However, these quations are often solved numerically by means of a Lax- 
Wendroff (or similar dissipative) numerical scheme in which artificial dis- 
sipation is introduced in such a way that the steepening of the front of 
the wave stops just before the front becomes vertical. We then have a 
permanent-form long wave of finite amplitude for which mss and momen- 
tum is conserved and it was shown in Section 5.6, that in such a wave energy 
is dissipated at the same rate as in a bore of the same height. The use of 
these equations to describe breaking waves is then based on the fact that the 
dissipative schemes of the Lax-Wendroff type freeze the front when it be- 
comes steep enough. Therefore the solution using such schemes essentially 
reproduce the wave decay due to breaking corresponding to bore dissipation 
of the energy and with it some representation of the phase variation. 

Starting with Hibberd and Peregrine (1979), this method for modelling 
breaking waves has been developed extensively. Other references are Pack- 
wood and Peregrine, (1980), Watson and Peregrine (1992), Watson et al. 
(1992) to mention a few. Also Kobayashi et al. (1989), Kobayashi and 
Wurjanto (1992), Cox et al. (1992, 1994) to mention some, have extended 
the method to analyzing swash zone motion on very steep slopes, and wave 
overtopping over structures. 

The method has two major weaknesses. One is that the position where 
the front becomes steep enough for the dissipation to start (the front is 
frozen) is determined only as a certain distance from the offshore boundary 
of the computation. Hence the method cannot predict the position of the 
onset of breaking. The second is that the length/steepness of the frozen 
front is fixed to a certain number of grid points, i.e. a few times the Ax in 
the numerical grid, rather than to a length related to the actual physical 
processes. 

9.12 Large amplitude long waves U >> 1: The nonlinear 
shallow water equations (NSW) 

The third case identified in Chapter 7 is for long waves with amplitudes 
of the same order as the water depth, i.e., 6 = A/ho = O(1). Since p = X/h, 
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is still << 1, this implies that U = 6 /p  >> 1. In this case, 6 is not small 
and the resulting equations will therefore be strongly nonlinear. Therefore, 
in the equations found in Chapter 7 for this case, we only need to include 
terms 0(1)  to get equations with the first approximation to the nonlinear 
terms. This results in 

1 
rlt + 64,rlz - -dz = 0 

1 
2 

z = 6q (9.12.1) 

r l + 4 t + - 6 ( 4 z ) 2 = 0  z - 6 7  (9.12.2) 

Following the same procedure as before, we substitute the solution for 4 
to  get for the kinematic condition. In 1DH 4 for varying depth from (9.8.2) 
is given by 

P2 

(9.12.3) P 2  4 = 4o - p 2 ( z  + h)hz40z - T ( z  + h)2 4ozz + 0b4) 

This implies that 

1 
- 4 z  = - U o z  - ( z  + h)  4ozz (9.12.4) 

which shows that at z = 67 we get for t,he last two terms in the kinematic 
condition 

P2 

1 
4026 rlz - - 4 z  = ( ( h  + Srl)40Z)z (9.12.5) 

P2 

The kinematic condition then becomes 

% + ((677 + h M O x ) ,  = 0 ( P 2 >  (9.12.6) 

Similarly, we get for the dynamic condition 

1 
77 + 4ot + $v40z)2 = 0 ( P 2 )  (9.12.7) 

Again, we can express these two equations in terms of the bottom velocity 
uo to get 

rlt + ( ( d r l  + h)uo)z = O h 2 )  
72: + UOt + UOUOz = 0 ( P 2 )  

However, since the approximation for 4 used in deriving these equations 
is just +(z, z ,  t )  = #o(z, t )  the assumed velocity is constant over the depth 
and consequently uo = U. 
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In the general 2DH version and dimensional form the equations become 

qt + Vh(u(h + T I ) )  = 0 (9.12.8) 

f it  + u ' v h f i + g  Vhq = 0 (9.12.9) 

This is the set of equations that is called the Nonlinear Shallow 
Water (NSW) equations. They have interesting features that are dis- 
cussed briefly in Section 9.11. Note that the Boussinesq waves described in 
earlier parts of this chapter include the NSW equations as a subset. 

Fig. 9.12.1 
the nonlinear shallow water equations. 

The deformation toward breaking of a wave propagating according to 

It may also be mentioned that these equations are often extended by 
adding the effect of a bottom friction by replacing the 0 on the RHS of 
(9.12.9) with a term of the form --if illill/h, where f is the friction factor 
(see Chapter 10). 

The NSW-equations have no solutions for waves of constant form. Anal- 
ysis of the above derivation shows that they correspond to hydrostatic pres- 
sue relative to the instantaneous (i.e. local) surface level and as mentioned 
to constant velocity over depth. Using the method of characteristics (see 
e.g. Abbott and Basco, 1989) it is found that in waves propagating accord- 
ing to these equations each part of the wave will propagate with a speed 
of c = u + d m ,  i.e. a c corresponding to the local depth of water 
and including the local particle velocity. This means that higher parts of 
a wave will move faster than lower parts, and overtake the lower parts as 
shown in Fig. 9.12.1, and eventually the waves break. Of course the ba- 
sic assumptions behind the equations have broken down long before this 
happens, because the characteristic horizontal length is no longer large in 
comparison to the water depth. 

As with linear shallow water waves the phase velocity for these waves 
is independent of the wave period so they are only amplitude dispersive. 
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Appendix 

Appendix 9A: Elliptic integrals and functions 

This appendix gives a very brief review of the definitions of elliptic 
functions and integrals used in the derivations in Chapter 6.5. 

Incomplete elliptic integrals and functions 
The elliptic functions used here are of the Jacobian type. The central 

definition is that of F ( $ , m )  which is called an incomplete elliptic integral 
of the first kind. F is defined by 

(9.A.l) 

m is called the parameter of F ,  $ the amplitude. 
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The inverse function of F with respect to 4 is defined within the neces- 
sary restrictions of monotony so that 

4 = arccos(m(F, m)) (9.A.2) 

or 

cos q5 = cn(F, rn) (9 .A. 3) 

which defines the elliptic function cn. this is written 

C O S ~  = cn u (9 .A.4) 

by the simplifying definition 

u = F ( 4 ,  m) (9.A.5) 

One also encounters incomplete elliptic integrals of the second 
kind defined by 

(9. A.6) 

and since 4 = +(ul m), E(4 ,  m) is usually written E(u ,  m). 
These two forms of elliptic integrals represent the standard forms to 

which all other elliptic integrals can be reduced. 
By various auxiliary definitions, the basic forms may be written in many 

different forms (see e.g., Abramowitz and Stegun (1964), Chapter 17). The 
reduction of arbitrary elliptic integrals to standard forms is well described 
by Erdelyi et al. (1953), vol. 11. 

Complete elliptic integrals 

We define 
When 4 = ~ / 2 ,  the integrals are called complete elliptic integrals. 

K ( m )  = F(Ir/2, m) 

E(m) = E(K(m) ,  m) 

where (9.A.5) has been used. 

Appendix 9B: Derivation of Eq. (9.5.38) 

(9. A. 7) 
(9.A.8) 

This appendix gives the derivation of equation (9.5.38). 
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Substituting (9.5.36) into (9.5.37) yields 

L1 qd38 = 1’ {q2 + Hcn2 2K6} d6 = 0 

where we have also used (9.5.39). This can also be written 

cn2u du = 0 

(9.B.1) 

(9 .B .2) 

From Abramowitz and Stegun (1964) (A & S in the following) equations 
(16.25) and (16.26) we have 

1 ml 
C~’U du = -E(a,m) - -a 

m m (9. B. 3) 

where 

m l = l - m  (9. B .4) 

Hence, (9.B.2) becomes 

U 
11 

772 + - ( E  (2K, m) - 2mlK) = o 2mK (9 .B. 5) 

A & S eq. (17.4.4) yields 

E(2K, m) = 2E(m) (9.B.6) 

which brings (9.B.5) on the form (after multiplication by mK) 

mK72 + H ( E  - mlK) = 0 (9. B. 7) 

As m is given by (9.5.30), we have for ml 

rll - 772 - 772 - 773 ml = 1 - ~ - - 
771 - 773 771 -773 

(9 .B 3) 

Substituting this into (9.B.7) together with (9.5.27) for H and (9.5.30) 
for m and rearranging terms finally yields 

which is eq. (9.5.38). 
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Appendix 9C: Numerical solution for cnoidal properties 

This appendix outlines simple numerical algorithms for obtaining the 
parameter m and for solving for the wave parameters when the waves are 
specified by H ,  h, and T .  

Numerical solution of U = 16/3 m K 2  
Solution of the equation 

16 
3 

U = - m K2(m) (9.C.1) 

for given values of U provides the value of m in the elliptic functions and 
integrals in the cnoidal wave solution. Here 0 5 m < 1. For practical cases 
we normally have U > 10 which means the relevant values of m is close to 
1, and K(m)  is large. 

(9.C.1) is a transcendental equation for m, and a Newton-Raphson it- 
erative solution will give m with only a few iterations. The problem is 
evaluation of K(m). To obtain a convenient formulation of the problem 
we introduce the complimentary parameter ml = 1 - m for the elliptic 
functions and write (9.C.l) as 

16 
3 u =- ( l -  m1) K2(m1) (9. C.2) 

It turns out that in the range of solutions in question K(m1) can with 
sufficient accuracy be approximated by (see Abramowitz and Stegun, 1964, 
p 592, (17.3.35)) 

K(m1) = [ ao+al ml+a2 m2]-[ bo+bl m1+b2 m 2 ]  In ml+c(ml) (9.c.3) 

where 

uo = 1.3862944 ; bo = 0.5 

a1 1 0.1119723 : bl = 0.1213478 (9.C.4) 
a2 = 0.0725296 ; b2 = 0.0288729 

and E < 3 .  lop5. 
Writing (9.C.2) as 

3u  f(m1) = 1 - m l -  - 
16 K 2  (9.C. 5 )  
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We seek values of ml for which f(m1) = 0. The Newton-Raphson iterative 
formula for ml becomes 

(9.C.6) 

where the derivative f ’  is obtained directly by differentiation of (9.C.5) 

1 
3 U  dK 
8 K 3  dml 

-- f’(ml) = -- (9.C. 7) 

and 

Initial estimate for ml 
Using a suitable initial estimate ml (9.C.5) will rapidly converge toward 

the solution for ml. An initial estimate for ml can be obtained from (9.C.2) 
by substituting (9.C.3) for K and assuming ml << 1. This gives 

[ a0 - bo 1nm1I2 16 
U - -  

3 
or 

(9.C.9) 

(9.C.10) 

For U > 30 (9.C.10) will even function as a quite accurate direct solution 
for ml. 

With ml known K is determined from (9.C.3). 

Calculation of L / h  

to first to calculate Llh  in order to determine U .  For Llh  we have 
Since in most cases the wave is specified by H ,  h and T it is necessary 

h 
L=T&$ h ( l + i l A )  

where 

(9.C.11) 

(9.C. 12)  
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and E(m) is the complete elliptic intergral of the second kind. (9.C.11) must 
be solved iteratively along with the solution of (9.C.1) for m. Substituting 
the definition for U into (9.C.1) gives 

16 m K 2  
(9. C .13) 

In the expression for 
Stegun (1964), p591) 

A E can be approximated by (see Abramowitz and 

where 

el = 0.4630151 : f l  = 0.2452727 

e2 = 0.1077812 ; f 2  = 0.0412496 
(9.C.15) 

and E < 4 .  10W5. 
The iterative solution is started by assuming A = 1 as the first ap- 

proximation. A direct iteration can then be performed by the following 
procedure 

(1) Set A = 1 
(2) Calculate L / h  from (9.C.11). 
(3) Calculate U = HL2/h3.  
(4) Calculate m by solving (9.C.1) iteratively as described above. 
(5) Calculate a new approximation for A using (9.C.12). 
(6) Return to (2), and so on. 

The algorithm converges to an accurate solution usually within 4-5 itera- 
tions (depending on the required axccuracy). 

It may be mentioned that there is a false root which is avoided by the 
initial choice of A = 1. 

Appendix 9D: Pad6 approximations: A brief outline 

Pad6 approximations (or "approximants as they are often called) are 
approximations for arbitrary functions f (z)  in the form of rational fractions 
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Usually the fraction is divided by bo so that the denominator becomes 

This appendix gives a very brief outline of how the Pad6 coeefficients in 

Determination of a,, b, is (9.D.1) can only be done by equating the 

1 + bl z + b2 z2 + .... 
(9.D.1) are determined. 

RHS of (9.D.1) to the Taylor expansion of f(z) ,  which is written 
00 

f ( Z )  = x c i  zi  (9 .D .2) 
i=O 

Thus determining the Pad6 approximation is equivalent of determining 
a,, b, in the equation 

00 

+ O(ZL+M+l  ) (9.D.3) 
a0 + a1 z + a2 z 2  + ... + U L  z L  c c i  z2 = 
1 + bl z + b2 2' + ... + bM z M  i=O 

for known ci. 
The powers L and M in the numerator and denominator polynomiums, 

respectively, must be chosen in advance. Thus we have the following number 
of unknowns 

L + 1 numerator coefficients 
M denominator coefficients 

or a total of L + M + 1 unknowns. 

by an example. 
The procedure for determining the a,, b, coefficients is best illustrated 

Example Consider the function 

(9 .D .4) 

where we imagine z = kh. It can be shown that this function has 
the Taylor expansion 

- = 1 - - z 2 + - z  - - z  l7 +- 62 z8  +0(z1O) (9.D.5) tanh z 1 
Z 3 15 315 2865 

We first seek the Pad6 approximation with L = 0, M = 2 (called 
the [0/2] Pad6 approximation). This means seeking values of bl 
and b2 that satisfy 

(9 .D .6) 
1 2  2 4  1 

1 - - z  +- z  = 
3 15 1 + bl z + b2 z2 
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Multiplication by the denominator on the RHS gives 

l + b l z +  ( b 2 - i ) z 2 - j b l z  1 3  + . . . = I  (9 .D .7) 

which gives the equations (by equating equal powers of z )  

(9 .D .8) 
1 
3 

Solving the equations, the last one first, gives 

1 = 1 ;  b l = 0 ;  b a - - = O  

1 
3 b 2 = - ;  b1 = 0 (9. D .9) 

which means that the [0/2] Pad4 approximation is 

(9 .D .lo) 

Exercise D-1 

the [2/2] Pad6 approximation becomes 
Using the same procedure as in the example above show that 

(9.D.11) 

Exercise D-2 

[0/1] and the [1/0] approximation only give the trivial answer 
Still using the same procedure as in the example show that the 

tanh z -- - 1  z (9 .D. 12) 

which is only valid for z = 0 
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Exercise D-3 
Show that the [2/4] approximation becomes 

(9.D.13) 

See Witting (1984) , who also gives the [4/4] approximation as 

(9. D. 14) 

It is noticed that all the coefficients in the approximations change when 
the order changes. 

The general version 
The general equation corresponding to (9.D.7) becomes 

(1 + bl z + b2 z2 + ... + bM zM)(co  + ~1 z + c2 z2 + ... + ci zi) 
-(a0 + a1 z + a2 z2 + ... + a, z M )  = o (9 .D. 15) 

which gives the equations 

for zo 
for z 1  

for z2 

(9 .D. 16) 
for z L  
for zL+l 

for zL+M 

Hence we have established L + M + 1 linear equations for the 
ao, a l ,  ..., aL, bl,  ..., bM = L + M + 1 unknown coefficients. 

These equations are called the Pad6 equations. The solution to the 
equations obviously gives the L + M + 1 coefficients in the [L/M] Pad6 
approximation. 
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For further information about Pad6 approximations ( “approximants” ) 
reference is made to Baker and Graves-Morris (1980). 
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Chapter 10 

Boundary Layers 

10.1 Introduction 

One of the most important discoveries in fluid mechanics was the fact 
that vorticity is not generated inside a normal flow. It always originates 
from disturbances along some boundary or discontinuity in the flow. This 
causes boundary layers to develop. The boundary layer is the layer with 
significant vorticity due to the large velocity gradients in the direction per- 
pendicular to the boundary. 

Examples of vorticity generating flow phenomena are: 

Boundary layers at solid walls. 

Two parts of fluid 

speeds are meeting 
with different Jets 

Boundary layers can be both laminar and turbulent, but they will always 
start laminar. 

In nearshore regions, the boundary layer that develops at the sea bot- 
tom in the oscillatory motion caused by the waves (and currents) is of 
particular interest as it accounts for substantial energy dissipation when 
active over longer distances. The bottom shear stress may be small locally 
in comparison to other forces acting on the fluid column, but as the waves 
travel the energy dissipation due to bottom friction accumulates. The bot- 
tom boundary layer also plays a central role in how the waves and currents 
move sediments . 

Also, internal “boundary layers” such as the vortex sheets that develop 
when the jet from a breaking wave hits the water in front of the crest are 

469 
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of importance. However, so far, nobody has been able to give a rational 
analyzes of those details that are of any significance for our understanding 
of the processes and even less of practical use. 

Here we only consider boundary layers along plane walls and concentrate 
on the oscillatory bottom boundary layer caused by waves. To some extent, 
the effects of currents will be included. Fig. 10.1.1 shows the concept of 
the bottom boundary layer and basic definitions of variables used in the 
following. Note that for simplicity in this chapter, we use z = 0 at the 
bottom. 

Although such boundary layers are often turbulent (at least on natural 
beaches, though not always under the conditions used in laboratory experi- 
ments), substantial insight is gained by considering laminar boundary layer 
flows. In addition to being the simplest, those flows are also the only ones 
for which generally accepted theoretical analyses are available. In the last 
section in this chapter we will look at some aspects of turbulent boundary 
layers. 

10.1.1 The boundary layer equations. Formulation of the 
problem 

The boundary layer develops because the viscosity causes the fluid to 
adhere to the wall, which means that at the wall the velocity is zero. The 
assumption of a plane boundary and (essentially) laminar flow implies that 
we can restrict our examinations to the 2D flow in the vertical plane of 
wave propagation. 

In oscillatory flow such as waves, this layer with high velocity shear 
perpendicular to the bottom is very thin. Outside the boundary layer, the 
flow can often (-not in breaking waves, though) be considered a potential 
flow, which means our well known wave theories apply outside the boundary 
layer. 

Near a plane horizontal bottom we know from linear wave theory that 
the bottom parallel velocity U in the irrotational wave flow is characterized 
by 

-- dU - 0 + O(lcz) 
az  

(10.1.1) 

or U P Ub+O(kz)2. This means that in the immediate neighborhood above 
the boundary layer ( z  << h),  we can assume the potential flow velocity 
equals the value at z = 0 predicted by the potential theory. 
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The equations for the boundary layer are further based on the assump- 
tion that in the boundary layer the velocity variation perpendicular to the 
wall is much bigger than the variations over similar distances along the wall. 
This leads to the simplifications of the Navier-Stokes equations known as 
the boundary layer approximation (see Section 2.3.4). 

Fig. 10.1.1 Definition sketch for the boundary layer variables. 

In the boundary layer approximation, the continuity equation is: 

du dw - + - = o  
d x  dz 

(10.1.2) 

The momentum equations can be reduced to the so called boundary 
layer equation in the x-direction which, for the velocity u inside the 
boundary layer, reads 

(10.1.3) 

where p~ is the dynamic pressure. 

simplifies to 
In the direction perpendicular to the wall, the momentum equation 

- 0  a P D  z :  -- 
dz 

( 10.1.4) 

which implies that inside the boundary layer the pressure variation perpen- 
dicular to the wall can be neglected. Thus, over the entire thickness of the 
boundary layer, we have the same dynamic pressure P D ( X ,  t ) .  
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The boundary conditions for (10.1.2) and (10.1.3) are 

i) u = O ,  w = O  at  z = O  (10.1.5) 

ii) u + Ub at  z/d -+ 00 (10.1.6) 

where S is a measure of the thickness of the boundary layer. 
Eq. (10.1.6) means that we “match” rather than “patch the solutions 

for the boundary layer flow and the potential flow. The situation is il- 
lustrated in the Fig. 10.1.2. This is called a matching condition. It 
is based on the assumption that because the potential velocity U changes 
proportional to kz  in the vicinity of the wall (as (10.1.1) shows), while the 
boundary layer thickness S is b (< l /k ,  the change in U over the distance 6 
is negligible. 

U,=U(z -0 ) 

Fig. 10.1.2 The concept of a matching (boundary) condition: At the upper limit 
of the boundary layer we assume that u(z )  approaches the bottom value Ub of 
the potential flow velocity even though the actual value of U ( z )  at that level may 
deviate (slightly) from u b .  This is consistent because the boundary layer solution 
assumes that the thickness of the boundary layer is small in comparison to the 
vertical scale for the variation of the outside flow U ( z ) .  

The inviscid flow outside the boundary layer satisfies the Euler equation 
with w = 0 

(10.1.7) 

In (10.1.7), we have already introduced the assumption (10.1.1) that the 
boundary layer does not reach further from the wall than what allows us 
to let (10.1.7) be valid. 
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In the solution of the equations for u, it is assumed that U is known. 
p~ can then be eliminated from (10.1.3) using (10.1.7) which gives 

(10.1 .8) au au au au au a2u 
- +u- +w- = - +u- +v- at ax d z  at ax 8.22 

10.1.2 Perturbation expansion for  u 

(10.1.3), (10.1.7) and (10.1.8) are nonlinear equations. Hence, we seek 
a perturbation solution for u, w given by 

(10.1.9) 

and assume that U is given by a similar (known) solution 

where U ( l )  is supposed to correspond to the first order Stokes solution, U ( 2 )  
the second order, etc., that is, we assume 

03 

u = c u, cos [n(wt - kx)] (10.1.11) 
n=l 

so that (with 0 = w t  - kx) 

u(l) = Ul cos(wt - kx) = u1 coso ( 10.1.12) 

d2) = u2 cos 20, (1 0.1.13) 

etc. 
When (10.1.9) and (10.1.10) are substituted into the continuity equation 

(10.1.2) and the boundary layer equation (10.1.8) and terms are collected 
according to order of approximation, we get 

1. order approximation 
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and (10.1.2) gives 

( 10.1.14) 

(10.1.15) 

2. order approximation 

10.1.3 The 1st order solution 

The solution to the 1 order problem is easiest to  obtain if we consider the 
complex equivalent to (10.1.14). We first introduce the defect velocity w 
given by (see Fig. 10.1.3) 

( 10.1.18) v = &) - u(1) 

which (using = 0) transforms (10.1.14) into 

dv d2v 
at dz2 
- = v- 

and the boundary conditions 

( 10.1.19) 

(10.1.20) 
(10.1.21) 

We further look for solutions of complex form so that we assume that 
the external flow is 

U(1) = &,i@ (10.1.22) 

and the solutions for v have the form 

v, = V(z)eie with w = Re(v,) (10.1.23) 
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velocity 

Fig. 10.1.3 Definition of the defect velocity v. Note that v has the opposite sign 
of u. 

where subscript c stands for “complex.” Substituted into (10.1.19) it yields 

iwv(z)eie  = uV”(z)eie (10.1.24) 

or 

(10.1.25) 
W 

Y 
V ” ( z )  - i - V ( z )  = 0 

The complete solution to this equaiton is of the form 

V ( z )  = A eRlz + B eRzz (10.1.26) 

where R1 and R2 are solutions to the characteristic equation 
W 

u 
R 2 - i - = 0  

from which we get 

(10.1.27) 

We define 

I=&+ ==+ R = + P ( l + i )  (10.1.29) s 2v 

Hence, the complete solution to (10.1.25) is 

V ( z )  = AeP(l+i)” + Be-P(l+i)z (10.1.30) 
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The boundary conditions give (since z /6  = Pz) :  

PZ -+ 00 =+ V ( z )  -+ 0; =+ A = 0 (10.1.31) 

Z = 0 =+ V ( Z )  = -U1 = B ( 10.1.32) 

so that (10.1.23) becomes 

(10.1.33) -p ( i+ i ) ze i e  'u, = - l e  

We then have from (10.1.18) 

Taking the real part, we then get 

u(l) = Re { uc} 

or 

The parameter 6 = 1/P is often considered a measure of the boundary layer 
thickness. Since there is no well defined upper limit to the boundary layer 
this is a definition and as we will see from the numerical examples 26 or 36 
is actually a more realistic measure of the thickness of the boundary layer 
if we think in terms of the height at which it appears reasonable to say 
that u(') M or the shear stress is negligible. Fig. 10.1.4 shows velocity 
profiles for 8 different phases over half a wave period. 

If we write 

U( ' )  = U1cosB(=Re{Uleie}) ( 10.1.36) 
and 

u(1)  = w(z)  cos (0 + 4)  (10.1.37) 

then, equating u 1  from (10.1.35) and (10.1.37), we get for the velocity 
amplitude u1(z) and the phase 41 (z )  relative to the exterior velocity U1 

(10.1.38) 
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Exercise 10.1-1 
Derive the above expressions for u1(z) and tan q5. 

This shows that for pz < 7r we havesinpz > 0 and q5 > 0 which implies 
that u is ahead of U ,  at  least in the lower part of the boundary layer where 
sin pz > 0. Fig. 10.1.5 shows the variation of q5 with z/6. 

' 
-1 

:I 
I 

-0.5 0 0.5 1 1.5 

"("/U, 

Fig. 10.1.4 The first order velocity profiles u( ' ) ( z ,  0) according to (10.1.35). 

We can also find the shear stress r. 

au(1) 

az 
r = pv- = pvu1 [pe-p" cos (e - pz)  - e-P"psin (e - pz) ]  

= pv,L3U1e-Bz [cos (0 - pz) -sin (0 - pz)] (10.1.39) 

In (10.1.39) we consider the [ ] an expression of the form (with a -- 0 - P z )  

- 1 . s i n a t c o s a  
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-"lo -5 0 5 10 15 20 25 30 35 40 45 
@ (degree) 

Fig. 10.1.5 Phase angle q5 for u(1)(z,8) according to (10.1.37). 

and introduce 1 = tann/4 = 3 to get 

(-sinasinn/4+cosn/4cosa) = h c o s ( a + n / 4 )  (10.1.40) 
1 

cos ~ / 4  

which means 

= pvp~le-PzJZcos (e - pz + n/4) (10.1.41) 

Especially at  the bottom z = 0 we get the bottom shear stress T b  as 

r b  = pvpu1 f i  cos (6 + ~ / 4 )  (10.1.42) 

i.e.: T b  is ahead of the free stream velocity U(l) = ul cose by an angle 
7r/4 = 45". This, however, only applies near the bottom. For increasing 
pz,  the phase difference decreases as (10.1.41) shows, and for pz > 7r/4 T 

is lagging behind U ( l ) .  At the same time, r decreases rapidly as we move 
away from the boundary due to the e-Pz-factor. Fig. 10.1.6 shows the phase 
variation of r versus z /6 .  
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5 
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00 
a3 
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1 

0 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Fig. 10.1.6 The first order shear stress profiles ~ ( z ,  0) according to (10.1.41). 

Exercise 10.1-2 
Derive (10.1.41) and (10.1.42). Show also that 

For completeness it is mentioned that once u(l) has been determined, 
w(l) can be found from the continuity equation (10.1.15). Thus we get 

(10.1.44) 

(where we have used as boundary condition that w(l)(O) = 0). Differen- 
tiating (10.1.35), inserting into (10.1.44), and integrating gives the result 
(after some algebra) 
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Exercise 10.1-3 
Derive (10.1.45). 

10.1.4 The 2nd order solution 

We do not go into detail here with the second order solution but notice 
that in essence (10.1.16) is exactly the same equation as (10.1.14) except 
for the fact that the inhomogeneity on the right hand side is different. In 
the case of (10.1.14), however, we were able to transform the equation into 
the homogeneous form (10.1.19) which could be solved by straightforward 
methods. This is not possible for the equation for the second order solution 
(10.1.16). 

We can deduce from (10.1.16) that the second order solution consists of 
both an oscillatory and a steady component. It is convenient to separate 
those by writing 

= U a  +us (10.1.46) 

where u, is the oscillatory part, and us the mean part of u ( ~ ) .  
We also realize that since both U(l) and u(’) have the form 

u(l),  ~ ( l )  = (u1, u1)eZe (10.1.47) 

all terms on the right hand side of (10.1.16) must be proportional to e2Ze. 
Thus, we assume that the oscillatory part ua can be written 

( 1 

u, = Re ( 0  u(’)ezie 1 (10.1.48) 

To recapitulate, the second order equation is (10.1.16) 

where 

and 

= U 2 p  ( 10.1.5 1) 
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In the following, we consider the complex solution to this equation but 
omit for simplicity the subscript c used in the derivation of the first order 
solution. Hence, u ( ~ ) ,  u, etc. stands for both the complex solution and 
(later) also for the real value of those solutions. 

Combining (10.1.46) and (10.1.48) u ( ~ )  is taken as: 

= u o  ( a e2 i0  +us (10.1.52) 

Substituting this into (10.1.16), we get 

u,,t+u,,t-v (u,,,, + us,+) = Ut (2) + U ( ~ ) U ~ ~ ) - U ( ' ) Z L ~ ) - - W ( ~ ) . I L ~ ~ )  (10.1.53) 

In order to separate this equation into equations for u, and us, we use 
that by virtue of (10.1.48) the time average (over a wave period) of ua is 
zero so that 

- 
u(2) = u, ( 10.1.54) 

Hence, us will satisfy the equation 
~~ 

- vus,, == u(1)up) - & ) u p  - ( 10.1.55) 

When we compute the righthand side in this equation we get (see Sect. 
10.2) 

u(l)uL1) = ae2io j u(l)uil) = 0 (10.1.56) 

.LL(~)  uz  (l) = bezie j u(l)uL1) = 0 (10.1.57) 

w(l)  u, ( l )  = ce2ie + zo(l)u~') where w(l)uL1) # 0 (10.1.58) 

where a,  b and c are the factors we get by calculating U(l)Uil), etc. from 
the expressions for U(l), u(') and dl). 

Thus, the equation for us becomes 

u,,t - vu,,, = -w(l)u$l) (10.1.59) 

The equation for ua is then obtained by subtracting (10.1.59) from (10.1.53) 
and using (10.1.57)-(10.1.58). We get 

(10.1.60) (2) 

Here Ui2)  is of course known from the outer solution. We will see later that 
U ( 2 )  gives by far the largest contribution to u,. 

uat - vu,,,, = Ut + ( a  - b - c)  e2ie 



482 Introduction t o  nearshore hydrodynamics 

The oscillatory part of the second order solution u, 

be written 
It turns out that the solution to (10.1.60) after quite some algebra can 

cos 20 
c 4sinh2 kh 

e-fipz cos (2e - f i , ~ Z )  

+ZPze-PZ 1 cos (2e - PZ) 

( 
1 
2 

--Pze-PZ cos 28 - pz + - 
By the same procedure as for w(l) we then get 

PZ sin 28 
3 

+[4, ini2kh + - :] sin ’ ( 213 - - I) 

(10.1.61) 

-PzeCPZ sin (28 - Pz)  

Exercise 10.1-4 
Derive (10.1.61) and (10.1.62). 

These two solutions are listed here for reference. The steady component 

The final result for the boundary layer motion is then (to second order) 

(10.1.63) 

us is discussed in the next section. 

U ( X ,  Z, t )  = .(e, Z) = ~ ( l )  + U ,  + us + 0 ( k q 3  

where us is given by (10.1.84) determined in the next section. 

Numerical results 
Fig. 10.1.7 shows an example of u(l)  and u,, both relative to U1, the 

bottom velocity amplitude in the 1. order potential motion. It  is the 
velocity amplitudes that are shown. 
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In some literature the second order component U(’) of U has been omit- 
ted in the result for u, (that is U(’) is put equal to zero in (10.1.16)) (curve 
marked U(’) = 0 in Fig. 10.1.7). As seen from the figure, this gives a radi- 
cally different result for u, which becomes an order of magnitude smaller. 
In other words, U(’), which is the second order component of the (outer) 
Stokes wave solution, is important for u ( ~ ) .  

We also see that for the wave example considered (which has a value 
of the Ursell parameter of HL2/h3 = 18.1, meaning Stokes expansion can 
be used to describe the wave) the second order contribution is quite small 
relative to u(l) (o(Io%)). 

h/L= 0.153 
H/L= 0.065 

% /Ul 

Fig. 10.1.7 Amplitudes of first and second order oscillatory velocities for a case 
with h/L = 0.153 and H / L  = 0.065. Shown is also the second order amditude we 
would obtain if we neglected the second order component of the potential motion 
U @ ) .  

10.1.5 The steady streaming us i n  wave boundary layers 

The steady component us of the second order solution to the wave 
boundary layer problem is actually more interesting than the oscillatory 
part u,. Where u, merely changes the details of how the time variation 
of u is, us adds a new element to the flow: a net velocity is induced by 
the oscillatory flow in the boundary layer. This is termed the steady 
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streaming velocity. This is of significant importance for the sediment 
transport. 

In addition to the steady streaming, we will have a Lagrangian drift of 
the individual particles, which is the net drift of individual particles in a 
wave motion where we at a fixed point have U. = 0, W = 0. As described 
in Chapter 8 this occurs at all points over the vertical also in the potential 
part of the wave motion. To avoid confusion let us make it clear already 
here: the steady streaming has nothing to do with the Lagrangian particle 
motion. The steady streaming occurs in the boundary layer and gives ii # 0 
at a fixed point! 

In the literature, we sometimes find the steady streaming termed 
“induced streaming” or “Eulerian streaming.” Even the name “mass flux 
in boundary layers” has been seen. 

Essentially, we are looking for the mean value of u(2) which was excluded 
from ua by the assumption (10.1.48) about the form for that solution. 
To find u(2) = us we time average (10.1.55), utilizing that the motion is 
periodic. Thus we get 
- ~ -  ~~ 

- &) = u p  + U(q$)  - u(1)up) - w ( l ) u p  ( 10.1.64) 

The periodicity implies that us is a constant in time. Thus in (10.1.64) 
we have 

(10.1.65) 

(10.1.66) 

up = 0 (10.1.67) 

and so also 

Exercise 10.1-5 
Show in detail that equations (10.1.64) - (10.1.69) hold. 

Hence we are left with the following equation for us: 

(10.1.70) 
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The RHS of (10.1.70) can be written 

which, using (10.1.15) and (10.1.69) above, becomes 
___ 

= (w(l)u(l)), + u;l)U(1) 
= (w(l)&)), (10.1.72) 

Therefore (10.1.70) is equivalent to 

(10.1.73) 

which can be integrated once directly. First, however, consider the bound- 
ary conditions: Clearly, u, must satisfy 

us = 0 at  z=O (10.1.74) 

The second boundary condition is less obvious. It is customary to specify 
the condition that the shear stress rs created by us vanishes as z/6 -+ co, 
which means 

us,, + 0 as z/6 + 00 (10.1.75) 

We will use this as the second boundary condition and the appropriateness 
of this assumption will be discussed after we have found the solution. 

Integrating (10.1.73) yields 

( 10.1.76) 

Using (10.1.75) to determine C then gives 

where the last term is the (non zero) limit for d1)u(l) at  z / 6  4 00. 

(10.1.77): 
Thus the final solution for us can be found by directly integrating 

which by virtue of (10.1.74) becomes 

(10.1.78) 

(10.1.79) 
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This expression was first derived by Longuet-Higgins (1956) 

10.1.6 Results for us 

Evaluation of the RHS in (10.1.79) using u(l)  and w(l)  from Section 10.1 
is tedious but straight forward. The results we find are the following 

which also yields 

i} (10.1.80) 
2 

(10.1.81) 

where U1 is the velocity amplitude in the first order potential wave solution 
at  the bottom (see Section 10.1): 

U ( l )  = u1 cose (10.1.82) 

Thus the integrand in (10.1.79) becomes 

1 (U(1)w(1) - ( Z L ( ~ ) W ( ~ ) ) ~ )  = { e-Pz (pzsinpz + cospz) - 
2 
(10.1.83) 

- 
Y C 

which, we notice, is independent of v! This finally results in 

(10.1.84) 

which is the steady streaming velocity. 

Exercise 10.1-6 
Derive equations (10.1.80) - (10.1.84). 

Once again: it is remarkable that this result is independent of v. Hence 
even if the boundary layer flow is turbulent (but with a constant 
v), we get the same formula (10.1.84) for the steady streaming. 
The only difference lies in the value of p which with a large eddy viscosity 
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vt >> v and 

B=B=E (10.1.85) 

will be much smaller in a turbulent boundary layer than in a laminar bound- 
ary layer. 

Numerical results 
Figure 10.1.8 shows us for the same wave as used in the example in Sect. 

10.1. We see that us is somewhat larger than u,. By comparison with the 
figure in Sect. 10.1 we find that in this example us is approximately 1/7 of 
the amplitude (i.e., the maximum) of u(l).  

Fig. 10.1.8 Second order steady streaming velocities and oscillatory velocity am- 
plitudes. 

Discussion 

be true until after a very long time. 
If we know what to look for it is fairly easy to see that (10.1.75) cannot 
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To understand this we assume that the motion is started from rest. 
We first realize that when the wave motion is started then the us low in 
the boundary layer will develop very rapidly, because it is driven by the 
u(l)zo(l) - (u(l)~(l))~, that is present at each point of the boundary layer 
and fairly large near the bottom of the boundary layer. Therefore, shortly 
after we have established the wave motion and the bottom boundary layer, 
we have for moderate z /6  a situation for steady streaming approximately as 
given by (10.1.84) and Fig. 10.1.9. “Approximately” because of the reasons 
listed below. 

As we approach larger values of 216, however, the driving force 
u(l)dl) - (u(l)~(l))~ decreases as u(l)w(l) approaches its cm-value. At 
the same time the us-value at those elevations above the bottom are the 
largest in the steady case (see Fig. 10.1.8). Hence the time it takes to es- 
tablish the (large) steady state us with the smaller driving forces become 
longer and longer as we get further and further away from the wall. 

Fig. 10.1.9 
tion). 

The start-up of steady streaming in a wave tank (tentative illustra- 

In a large scale (that of the entire depth), the situation can be viewed 
as shown in Fig. 10.1.9. For large values of z/S, we are essentially out- 
side the boundary layer. The situation there closely corresponds to having 
(suddenly) put the bottom into a horizontal motion with the velocity us at 
the top of the boundary layer. That would lead to an unsteady flow above 
the bottom boundary layer described by 

U t  = uu,, 

“Suddenly” because the time scale of starting up the us inside the bound- 
ary layer is much shorter than the time scale for spreading the velocity 
away from the wall outside the boundary layer by the diffusion mechanism 
described by (10.1.86). 
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In our case, we get a slightly modified equation. By assuming that 
u, = us(z, t )  equation (10.1.80) becomes 

Then (10.1.73) takes the form 

(10.1.88) 

which includes the effect of the local driving force w( l )u ( l )  in addition to 
the diffusive effect caused by us growing fastest at the lower levels of z/S 
and hence dragging the fluid along at higher levels much as the impulsively 
started wall drags the fluid with it. 

The boundary conditions for (10.1.88) as z / b  + 00 in, say, a wave tank, 
are complicated to specify because as the layer with significant us expands 
due to the upward diffusion of momentum it starts to interfere with other 
parts of the motion such as currents, mass flux at the surface, etc. In a wave 
tank there will also be a “return flow” (= a current) to compensate for the 
mass flux generated by the short waves, and there will be variations in the 
2-direction due to the finite length of tank. Hence, the problem becomes 
very messy both in z, z and t ,  in particular as time increases. Reference is 
made to Longuet-Higgins (1953) for some further discussion. The situation 
is sketched in Fig. 10.1.10. 

surface BL. steady streaming in 1 disregarded ,/ surface BL. 

Fig. 10.1.10 The mean velocities in a long wave tank at two different times if we 
disregard the (weak) boundary layer generated by the no-stress condition at the 
free surface (the left part of the figure). The right hand part of the fugure gives 
a qualitative illustration of the effect of the surface boundary layer. End effects 
due to the finite length of the tank are ignored. 
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Note on turbulent flow 

boundary layer flow is turbulent with an eddy viscosity defined so that 
If we, instead of considering laminar flow with a constant v ,  assume the 

dU 
722 = PVt- dz 

(10.1.89) 

then we can readily account for a z-variation of ut in the solution for us. If 
vt = vt(z) then (10.1.70) becomes 

which following the same procedures as above leads to 

(10.1.91) 

which may be integrated-analytically or perhaps only numerically-when 
vt(z)  is specified. 

Unfortunately, it is not equally straight forward to include a time varia- 
tion vt = vt(t, 2 ) .  For further details about a time varying vt see Trowbridge 
and Madsen (1984) 

10.2 Energy dissipation in a linear wave boundary layer 

The energy dissipation can be shown to be (per unit volume of fluid) 
(see Section 2.3, Eq. (2.3.20)) 

which in a boundary layer reduces to (with r ( z )  = rzx) 

d U  

82 
E = T(Z) -  

(10.2.1) 

( 10.2.2) 

Over the entire boundary layer we therefore have the instantaneous energy 
loss 

O0 du 

O0 87 00 

= -T(z)u] + /  u-dz 
0 0 dz 

(10.2.3) 
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where the boundary conditions r(m) = 0 and u ( 0 )  = 0 cancel the first 
term. Hence, 

Substituting (10.1.14) in the form 

d ( u - U )  87- 
at dz 

- - - 

yields 

again using T ( W )  = 0 and ~ ( 0 )  = 
Averaging over a wave period then yields 

V - V ( t ) d t  = -E I' 

( 10.2.4) 

(10.2.5) 

( 10.2.6) 

(10.2.7) 

Hence, the energy dissipation in a linear wave boundary layer can be 
determined simply from the bottom shear stress 7-b and U ,  the velocity 
outside the boundary layer. 

This result happens to be valid also for a turbulent boundary layer, but 
as can be seen from the use of (10.2.5) used for the derivation, it is only 
valid for linear wave boundary layers. 

Exercise 10.2-1 

pation can be written 
Show that in a linear shallow water wave the energy dissi- 

(10.2.8) 

where Uo is the velocity amplitude in the wave. 
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Vertical energy flux in waves with dissipation 
The interaction between the wave motion and the boundary layer is 

particularly easy to analyse in the case of shallow water waves. 
Consider a shallow water wave propagating on a constant depth. As 

energy is being slowly dissipated the entire wave motion is decaying. The 
question to be analysed is how is the energy, that is taken out of the wave 
when it decays, moved to the boundary layer where it is dissipated? 

We assume in analogy with the locally constant depth assumption of 
gently sloping bottoms that the energy dissipation is so slow that at each 
point the motion is described by the steady linear solution. Then for the 
shallow water wave the boundary layer solution (10.1.35) is 

u = vo (COS e - ,-p = cos(e - p .)) (10.2.9) 

which is valid over the entire water depth, and so is the expression (10.1.45) 
for w. If we consider the linear kinematic boundary condition at the free 
surface it is 

= w([ = h) 3 
at ( 10.2.10) 

Sustituting the expression for w into this we get for < the expression 

,-Ph 1 
Wh 2Ph 

cos 0 + -(cos(O - ph) + sin(0 - ph)) - -(sin 0 + cos 0) 

(10.2.11) 

For a thin boundary layer ph << 1 so that e-ph << 2ph which makes the 
second parenthesis negligible in comparison to the last. Thus the last term 
represents the first approximation to the disturbance of the free surface due 
to the boundary layer. We therefore have 

1 1 < = H (cos 0 - -(sin e + cos 0) 
2 2 m  

( 10.2.12) 

We see that there is a small disturbance of the wave due to the boundary 
layer. 

Furthermore, in shallow water waves the pressure is hydrostatic and 
given by 

The disturbance means that in average over the wave period there is a 
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vertical energy flux e f z  inside the wave motion which is given by 

- efz = WPD (10.2.14) 

Substituting the expressions for w and pD into this we get after some 
lengthy but trivial algebraic calculations that 

(10.2.15) 

where again Uo is the velocity amplitude in the wave motion. 
This shows there is a negative (= downward oriented) energy flux in the 

disturbed wave motion. The flux is zero at the surface 5 = h. It increases 
linearly from the surface to the bottom. This means that equal amounts of 
energy is extracted from the wave motion at each level. At the bottom we 
get the value 

1 u,2 
e f z  = -4 pw P ( 10.2.16) 

which is equal to the energy dissipation in the wave motion as shown in 
(10.2.7). Hence the slight disturbance of the potential wave motion above 
the boundary layer wave mirrored in the surface profile is actually responsi- 
ble for taking energy from each point of the vertical in the wave and moving 
it down to the boundary layer at exactly the rate at which it is dissipated. 

10.3 Turbulent wave boundary layers 

Turbulent boundary layer problems are an order of magnitude more dif- 
ficult than laminar boundary layers because it is the flow itself that creates 
the turbulence and hence the essential contribution to the “viscosity.” Since 
the basic hydrodynamics of this flow remain unsolved, the results available 
are limited to semi-empirical formulas. 

In addition in many nearshore wave and circulation modelling problems 
it suffices to consider only the effect that the bottom boundary layer has on 
the flow above namely to generate a bottom shear stress and to dissipate 
energy from the flow above the boundary layer. In essence that means in 
such modelling problems that the boundary layer is regarded as a black 
box that generates just a bottom shear stress and an energy dissipation. 
This simplification is the basis for the following discussion about turbulent 
boundary layers where empirical results are used to determine the bottom 
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shear stress and the energy dissipation without resolving the details of the 
boundary layer flow. 

Needless to say this approach will generally not be sufficient when deal- 
ing with sediment transport. This, however, is beyond the scope of the 
present text. For further discussion reference is made e.g. to  Nielsen (1993), 
Sleath (1984), and Fredsme and Deigaard (1992). A review of some of the 
models available is also given by Soulsby et al. (1993), and detailed mea- 
surements of the hydrodynamical details in 2D-vertical the turbulent flow 
in waves with currents were published by Kemp and Simons (1982, 1983). 

The first contribution to the problem of turbulent wave boundary lay- 
ers using this approach was by Jonsson (1966) who introduced the wave 
friction factor f w  in analogy to the current friction factor f in hydraulics. 
These factors are dimensionless, empirical coefficients that link the bottom 
shear stress to the free stream velocity (or depth averaged velocity in the 
case of a current). Hence, like the friction factor in hydraulics, f w  cannot 
be measured directly but has to be inferred from other results. f w  is - in 
other words - what is sometimes called a “fudge factor” that allows us to 
treat the boundary layer as a black box so that we do not need to resolve 
the details of the boundary layer flow in order to calculate the shear stress 
from flow information outside the boundary layer. 

In the case of waves, the first step is to determine the amplitude or 
maximum value of the time-varying shear stress. Thus if we think of the 
bottom shear stress as 

(10.3.1) 

we are actually first seeking results for q0 .  Using the free stream velocity 

u = uo cos w t  (10.3.2) 

the wave friction factor f w  is defined so that 

(10.3.3) 

The question of what would be appropriate values of f w  then becomes a 
question of establishing methods for analyzing measurements in turbulent 
wave boundary layers. Originally, it was very difficult to measure T directly 
in water, since the turbulent shear stress is defined as 

* 
7 = -pu w ( 10.3.4) 
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where A represents turbulent (i.e. , ensemble) averaging. Measuring u’ 
and w’ simultaneously at the same point was not really possible. Therefore, 
in Jonsson (1966) and later in Jonsson and Carlsen (1976), 7 was derived 
from measured profiles of turbulent averaged velocities. This essentially 
means solving 

av 1 d r  
at p d z  

- - - -- (1 0.3.5) 

where is the defect velocity, numerically from measurements of v. 
Today Laser Doppler Anemometers make it possible to measure u’, w’ 

and u’w’ directly. For such results reference is made to e.g. Cox et al. 
(1995). Even then, however, it is of interest to analyse which parameters 
are relevant for the variation of fw or T .  

Assuming a sinusoidal time variation in the flow outside the boundary 
layer, the important variables that determine the nature of the flow near 

boundary are the following: 

the velocity amplitude U,  in the oscillation outside the boundary layer. 
the particle excursion amplitude (or stroke) ab in that oscillation. 
the roughness kN of the wall. l c ~  is a length that characterizes the size 
of the irregularities on the surface of the boundary (such as the grain 
size d of a granular bottom, but k~ is not directly equal to d). The 
concept was introducd by Nikuradse for steady hydraulic flows. 
for low Reynolds numbers the viscosity v of the fluid is important. v is 
also important in the laminar sublayer very close to the wall (where 
the velocity is small). 

Notice that for sinusoidal motion, the wave period T or frequency w = 

27r/T is related to U, and ab by 

ab = Uo/w ( 10.3.6) 

so that w can replace ab or U, in the list above if this is convenient. 

dimensionless parameters: 
The variables U,, a,,, k~ and v can be combined into two independent, 

0 A boundary layer Reynolds number RE defined by 

Uoab R E = -  
v (10.3.7) 
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and 
0 an amplitude/roughness ratio 

a b / k N  (10.3.8) 

These two parameters turn out to be the dominating parameters for the 
variation of both fw and the thickness d ( t )  of the boundary layer. 

L 

Fig. 10.3.1 The wave friction factor, fw versus the boundary layer Reynolds num- 
ber RE (Jonsson, 1966). 

It also turns out that in analogy to pipe flow or open channel flow there 
are a number of important cases or flow regimes corresponding to different 
physical situations. Fig. 10.3.1 shows the variation of fw for the most 
important flow situations, using RE and a b / k N  as parameters: 

0 Laminar flow: fw is independent of the roughness ab/ lcN so RE is the 
only parameter 

fw = fw(RE) (10.3.9) 

0 Smooth turbulent flow: The roughness of the wall is so small that the 
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irregularities are buried in a layer in the immediate vicinity of the wall 
(0.1-0.2 mm) where the flow remains laminar (the laminar sublayer). 
See Fig. 10.3.2. 

0 A transition region: a relatively wide range of RE values where fw 
essentially has the value of rough turbulent flow, though substantial 
variation occurs. 

0 Rough turbulent flow: the most frequently occurring case in nature. 
Here the roughnesses are so large that the flow around the individual 
roughness elements is turbulent (Fig. 10.3.2). 

Fig. 10.3.2 Smooth turbulent flow (left). Rough turbulent flow (right). 

The important characteristic of the rough turbulent flow is that fw 
is essentially independent of RE, so that ab/kpJ is the only parameter, i.e., 

fw = f w ( a b / k N )  (rough turb. flow) (10.3.10) 

where in general we have 

fw = f w ( a b / k N ,  RE) (10.3.11) 

In the following, we concentrate on the rough turbulent flow and seek to 
establish an empirical relationship for f w ( a b / k N )  in (10.3.10), and also for 
the maximum thickness &, of the wave boundary layer, and for the energy 
dissipation D. 

10.3.1 Rough turbulent flow 

Although the variation of fw with ablk in the rough turbulent region 
may be determined from Fig. 10.3.1, it is more convenient to plot it directly 
as a function of U b l k .  We should remember, however, that the relationship 
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Fig. 10.3.3 Friction factor versus dimensionless particle amplitude a b / k N  (in the 
figure a!b = a b ) .  at the sea bed for fully turbulent flow. The full line corresponds to 
(10.3.12), the dashed line to (10.3.13) (not to (10.3.11) and (10.3.12) as indicated 
in the figure) (SJ76). 

is essentially empirical and rather few experiments are available from which 
fw can be determined. Hence, the curve shown in Fig. 10.3.3 is the result 
of a theoretical derivation which requires substantial simplification and ap- 
proximations. It results in the following expression for (10.3.10) (Jonsson, 
1966) 

where the constant -0.08 is determined so that the curve fits the experi- 
mental results. Since (10.3.12) can only be solved iteratively for f w ,  several 
approximations to (10.3.12) and the experimental data have been proposed. 
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Thus, Kamphuis (1975) suggests that fw is approximated by 

fw = 0.4 ( a b / k N )  -0.75 a b / k N  < 50 ( 10.3.13) 

which is the straight line shown in Fig. 10.3.3, clearly only a good approx- 
imation below the a b / k N  limit indicated. 

Alternatively, Swart (1974) proposed 

lnfw = -5.977 + 5.213(ab/k~)-"~'~ (10.3.14) 

which actually fits (10.3.12) very well. 
In the course of deriving (10.3.12), a result for the boundary layer thick- 

ness, &, is also obtained. It is recalled that the boundary layer does not 
have a well defined thickness, and the maximum thickness, b b ,  given below 
represents one of the approximations introduced. Fig. 10.3.5 shows how b b  

is defined. 
The quantity bb = max ( 6 ( t ) )  is given by 

3 0 6 6  30Sb a b  -log,, - = 1.2- 
k N  k N  kiv 

( 10.3.15) 

Fig. 10.3.4 shows the solution to this equation in terms of 2 = f (z) 
together with the alternative approximation 

-1/4 
- db = 0.072 (z) 
a b  

( 10.3.16) 

Fig. 10.3.4 
(10.3.15) and (10.3.16) (SJ76). 

Solution for the wave boundary layer thickness S b  according to 
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Variation of u and r with z 
Fig. 10.3.5 and Fig. 10.3.6 show typical variation of u(z)  at the time of 

maximum I J  outside the boundary layer, and the variation of the maximum 
of ~ ( z )  over the maximum Tb. w e  see that at a distance of 2bb above the 
bottom u ( z )  is close to U ,  and T~~~ is less than 10% of the bottom value, 
and at 365 there are essentially no shear stresses left. 

Sea bed 

Fig. 10.3.5 
the wave boundary layer thickness & used in (10.3.15) (SJ76). 

Typical variation of the velocity u ( z )  and sketch for the definition of 

10.3.2 Energy dissipation in turbulent wave boundary 
layers 

The expression for the energy loss per unit area of bottom and averaged 
over a wave period is from (10.2.8) 

D = K  (10.3.17) 

Recall that this expression is only valid for linearized wave motion, but 
that the derivation said nothing about whether the flow was laminar or 
turbulent. Hence, for linear motion it also applies for turbulent boundary 
layers. 

It does require, however, that we know not just the maximum value, rb0 
of Tb (named Tb,maz in the figure) but the full time variation of the shear 
stress. 
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It is therefore assumed that the instantaneous bottom shear stress 
~ b ( t )  is given by the generalization of (10.3.3) to arbitrary time: 

(10.3.18) 1 
Tb(t )  = G P f w I U ( t ) l U ( t )  

where U ( t )  is given by (10.3.2) and f w  is assumed constant. 

averaging yields, the result 
Substituting (10.3.2) and (10.3.18) into (10.3.17) and performing the 

v = --pf,Uo 2 3 (10.3.19) 
37T 

It turns out that writing 2) as 

2) = -mepfwUo 3 (10.3.20) 

and determining me from measurements of the real 7-b values leads to prac- 
tically the same value of me = 2137~ as determined using the heuristic 
variation (10.3.18) for Tb( t ) .  Thus (10.3.19) is not far from being correct 
(in fact it is found that me N 0.8 ' 2/37~) and in recognition of the uncer- 
tainties of the result V is often simply determined by (10.3.19) (Jonsson, 
1966). 

3 

2 

z - 
6 

1 

? 
0 TrnaK/t b,rnax 1 

Fig. 10.3.6 Typical dimensionless shear stress amplitude in a turbulent flow 
(S 576). 
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In this context, it may be noticed that we can always write 

1 
7b(t) = 5P.f I u(t) I v(t) (10.3.2 1) 

The real approximation in (10.3.18) or (10.3.21) is to assume that f 
is constant over the wave period and equal to the value fw found for 
Tbo = rnax(Tb(t)). 

10.4 Bottom shear stress in 3D wave-current boundary 
layers 

10.4.1 Introduction 

In the general case of waves and currents at  an angle relative to each 
other and waves approaching the depth contours at an angle, the flow very 
rapidly becomes complicated. Again, we only look for the bottom shear 
stress. However, in order for the results to be useful for nearshore applica- 
tions, we must extend the analysis to the time variation of ‘?b and also seek 
results for the wave averaged %. 

As an introductory observation, it is mentioned that the wave-current 
interaction in the boundary layer is considered a purely local process in 
which we assume locally horizontal bottom for the wave motion. Therefore 
at  each point only the local strength of the wave and current, and the angle 
between them are responsible for what happens in the boundary layer at  
that point. The bottom shear stress does not depend on the direction 
in which the bottom is sloping (i.e., the direction of the bottom contours 
relative to the wave orthogonals does not enter the problem). 

Hence, in the following, we will concentrate on examining the nature 
of the wave-current generated shear stresses, given waves and currents. 
Essentially this is equivalent to the “locally constant depth assumption” 
used for waves on gently sloping bottoms. 

10.4.2 Formulation of the problem 

Thus we consider the situation illustrated in Fig. 10.4.1. The angle 
between the wave direction and the current velocity direction at the bottom 
is p, and the wave direction relative to the (arbitrary but fixed) (x ,y)  
coordinate system is 4. It is assumed that the flow is turbulent and that 
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the instantaneous bottom shear stress ?b( t )  can be expressed by 

where U b ( t )  is the instantaneous total wave-current velocity at the bottom 
without considering the presense of the boundary layer (the “slip-velocity” ) 

‘& = f iw  + vb ( 10.4.2) 

Here uw is the wave particle velocity just outside the boundary layer. The 
waves are propagating in the direction of the wave number vector k and we 
define the unit vector e‘, in that direction by 

+ 

+ 

e, + k  F - 
k where k =) i )= (k: + ky) 2 112 (10.4.3) 

A 

Fig. 10.4.1 Definition sketch for nomenclature used. 

We let the wave induced particel velocity be given by 

(10.4.4) + u, = ii,cos6 ; and u, = 1 u, 1 
On varying depth we have that 

6 = wt - J L .  d; (or wt - J k,dr,) (10.4.5) 

is the phase angle including the effect of depth variation along the wave 
orthogonal which makes k ,  = k,(za).  
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Similarly, we have a current with the local bottom velocity c b  and we 
define 

(10.4.6) 

We also want to use the vector 6, which equals Zw rotated 90" in the 
counter clockwise direction. Thus with 

we have 

(10.4.7) 

(10.4.8) 

At any time the total velocity is the vector sum of the steady current 
velocity and the time varying wave particle velocity. The situation is illus- 
trated in Fig. 10.4.2 which shows the time variation of the total velocity 
vector. 

Substituting (10.4.2) into (10.4.1) yields 

( 10.4.9) 

We also observe that (10.4.1) or (10.4.9) can be interpreted as simply a 
definition equation for the wave-current friction factor f c w  . A consequence 
of (10.4.1) is, however, that the instantaneous shear stress is in the direction 
of the instantaneous total velocity cW + C b .  

In the following we assume that fcw is constant over a wave period. 
The variation of (10.4.9) was examined for some special cases by Liu 

and Dalrymple (1978). Here we follow the more general approach described 
by Svendsen and Putrevu (1990), Putrevu and Svendsen (1991). 

1 
2 6 = - p f c w  ( z w  + R) 1 '&u + c b  I 

10.4.3 The mean shear stress 

For the wave-averaged nearshore circulation equations (see Chapter 11), 
we are particularly interested in the wave averaged value of ?be Averaging 
(10.4.9), we get using (10.4.4) 

- 1 
(10.4.10) 

To calculate the time average, it is convenient first to separate ilw + c 
into their components with respect to e', and 2,. We see that (10.4.2) may 

'1 ?b = zpfcw ('&cos$ + & 1 'fro Cod + c b  I 
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Y 

t 

X 

Fig. 10.4.2 The temporal variation of the total velocity vector in a situation with 
waves and currents at angle to each other. ?1, is the angle between the current 
and the x-axis, CY the angle between the wave orthogonal and the x-axis, and 4 
is the angle of the total current relative to the x-axis. Clearly 4 is varying with 
time while the other two angles are constant. 

(10.4.11) 

so that 

(10.4.12) 

where ,&(t) represents the bracket. Thus we have 
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Time averaging then yields 

( 10.4.15) v b  

uo 
+- sinp Pl(t)e,  

We see it is convenient to define 

(10.4.16) 

( 10.4.17) 

and we see that (PI ,  Pz)  = f ( p ,  T/b/uo). 
Using those definitions, we can write (10.4.15) 

Notice that, as mentioned earlier, this confirms that at a given point 
the bottom shear stress only depends on the angle p between the waves 
and their currents (in addition to v b / U , ) ,  not on the angle of incidence a, 
for the waves relative to the bottom contours. 

With p1 and p2 defined, we can now change reference coordinates from 
(ZW, &,) to (Zz, Zy). In terms of 4 defined in Fig. 10.4.1, we have 

e', = e', cos 4 + ZY sin 4 

6, =2ycos+-Zxsinr$ 

( 10.4.19) 

Substituting into (10.4.18) this yields after some algebra 

cos ( p  + 4) + p2 COS 4 zx 1 
sin ( p  + 4)  + PZ sin4 ] .'y } (10.4.20) 

Here we introduce the x, y-components of v b  and uo given by 

(10.4.21) 
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I I I I I I 0.5' 

Variation of p, verus Vb/uo 

4.5 I I I I I I I I 

I 

Fig. 10.4.3 The variation of ,& with sinusoidal bottom velocity variation versus 
vb/UO for different values of p. 

uoz = uo cos q5 
uoy = uo sin q5 

( 10.4.22) 

by which we can write (10.4.20) as 

GbibJGbibJ = UO { ( U O Z P ~  + VmP1) e', + (uoyPz + VbyPl) Zg} (10.4.23) 

Alternatively, we can introduce the tensor notation 

&a = (&Z, vby) ; u0a = (uo2, uoy) ; uo =I uoa I (10.4.24) 

Substituting into (10.4.23), that equation can then be written 

uba I uba 1 = UO {Vbapl -k uOaP2) (10.4.25) 
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~ 

1 - 
+b = = 5f.fcwuO {VbaPl -t U O a P 2 )  

For the mean bottom shear stress this means 

(10.4.26) 

Fig. 10.4.4 The variation of /?2 versus Vb/uo for different values of p. 
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10.4.4 Special cases 

Of particular interest are the two special cases: weak currents, and 
strong currents relative to the oscillatory wave velocity. 

Weak currents. $ << 1 

An obvious special case is that of a weak current relative to the waves. 
In that case we get (since (cos' 0)lIz = I cose I which has the mean value 
2ln). 

(10.4.27) 

and 

which gives 

(10.4.29) 

where v k  = I$, cos p is the projection of the current onto the wave direction. 
Thus, for a weak current (10.4.26) becomes 

which can also be written 

(1 0.4.30) 

(10.4.31) 
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Clearly, ?;ba is not generally in the direction of gb. Also - as could be 
expected since I cos 41 cos #) = 0 - when ( V b a ,  V k )  + 0 we get = 0 
(pure waves). 

In the figures for PI and Pz,  this comes out clearly: 

N const. = 217r = 0.6367 
,& N linearly varying with v b / U o  with a slope proportional to 2/7r cos p 

The particle motion for this case is as shown Fig. 10.4.5 

Fig. 10.4.5 
rent relative to the oscillatory velocity component (the wave motion). 

The velocity variation and particle paths for a case with a weak cur- 

Waves and currents perpendicular to each other, p = 7r/2. Of par- 
ticular interest is the case of p = 7r/2 which means the current is perpen- 
dicular to the waves. We then get 

v k  = 0 (10.4.32) 

or 

(10.4.33) 

This result will be use in Section 11.7.3 for the case of longshore currents 
on a long straight coast with nearly perpendicular wave incidence. Note 
that here is in the direction of &, and ?b is proportional to the wave 
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velocity amplitude UO, even though the wave particle velocity is perpendic- 
ular to the current and to 3. 

Waves and currents parallel, p = 0. The other special example for 
a weak current is p = 0 which corresponds to current and waves parallel. 
Thus (10.4.31) 

( 10.4.35) 

Hence, again ?b is in the direction of cb-in this case this could be 
expected because there are no velocities at all perpendicular to that 
direction. 

Fig. 10.4.6 The velocity variation and particle paths for a case with a strong 
current relative to the oscillatory velocity component (the wave motion). 

Note also that the expressions for p = 0 and p = 7r/2 are similar except 
for the fact that for p = 0 the ?b is twice the value it attains for p = ~ / 2 .  

Strong currents. 2 >> 1 

When the current velocity v b  is much stronger than the wave motion, 
we essentially have a slight deviation from a uniform current with particle 
motion and path lines as shown in Fig. 10.4.6. 
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For v b / U o  >> 1 we get 

p2 = S [ l + 2  UO cos V / U O  p cos 0 +o (2,-2]1'i...se 
v b  COSpCOS8 
210 

N - [ l +  W U O  ] cose 

(10.4.36) 

( 10.4.37) 

or 

1 
p2 N - cosp 

2 ( 1 0.4.38) 

Thus for this special case we find from (10.4.26) 

Thus in the case of a strong current 6, we get ?b consists of two terms 

(1) A term in the direction of the currents at the bottom c b a  and propor- 

(2) A term in the witve direction U b a ,  proportional to uz and cosp. 
tional to h 2 .  

Waves and currents perpendicular to one another, p = 7r/2. Hence 
if p = 7r/2 (waves and current perpendicular to each other), the term in 
the wave direction is zero (no effect of the waves). We therefore get 

(10.4.40) 

which shows the mean stress in this case is in the direction of the current 
and equal to what we would expect for a current without waves, even though 
there is also a wave motion. 
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Waves and currents parallel, p = 0. If waves and currents are in the 
direction ( p  = O),  we simply get 

For completeness we also note, that in the limit where there is no wave 
motion at all, (uO = O), we get the result 

(10.4.42) 
1 .rb = - p f  cw v b v ba (currents only) 

as one should expect. 
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Chapter 11 

Nearshore Circulation 

11.1 Introduction 

Nearshore circulation is the term used for the complex nearshore cur- 
rents generated by the short wave motion. These currents are determined 
by the depth integrated and time averaged equations of continuity and and 
momentum. In the classical approach the currents are assumed depth uni- 
form. Since, however, it turns out that their depth variation is actually of 
significant importance for the way way in which the currents interact in the 
horizontal dimension we will avoid as long as possible in the derivations to 
make any assumptions about the variation over depth of the currents. How- 
ever, after deriving the equations governing general depth varying currents 
the special case of depth uniform currents is analysed in detail. Various 
aspects of the depth variation of nearshore currents are then analysed in 
Sections 12.2 and 13. 

The derivation of the general depth-integrated, time-averaged equations 
requires some care. The benefit, however, of such a derivation is a more clear 
understanding of which assumptions are involved and how the assumptions 
allow us to simplify the equations. 

When we integrate the differential equations over the depth from the 
(fixed, sloping) bottom to the (moving) free surface, we will need to apply 
the relevant boundary conditions as well. Since we are talking about highly 
turbulent flows, there will of course be contributions from bottom friction, 
and similarly wind stresses (if any) on the surface will contribute to the 
stresses there. In all, this makes the boundary conditions somewhat more 
complicated than for simple potential flow wave motions. The derivation 
of those boundary conditions is shown in Section 11.3. 
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In the following, it is convenient to separate the vertical coordinate, z ,  

from the two horizontal coordinates. Thus, where tensor notation is used, 
we will use a special version of the tensor notation. It is distinguished 
from the traditional tensor notation by the use of a,  p instead of i, j. The 
relation is the following: 

i , j  = 1, 2 ( x , y )  becomes a, P (1 ,2)  (11.1.1) 

i , j  = 3(2 )  becomes z , ui becomes w (11.1.2) 

As an example, dui uj/dxi will be written 

aui u j  - au, ulc3 aw uB +- f o r j  =/3= 1 , 2  (11.1.3) axi ax, az 
au, aW2 
ax, az +-  f o r j = 3  (11.1.4) 

Surface elevation and mean water surface, MWS 
In this section, as in later sections on wave generated circulation, we 

cannot count on the local mean water level being horizontal so we now call 
it the mean water surface MWS. We therefore also cannot place it in 
the x ,  y-plane of the coordinate system which is horizontal. On the other 
hand we want to keep the name of q for the distance from the MWS to 
the instantaneous surface so that we still have = 0 in the wave motion. 
Consequently we must define a separate variable < which measures the 
instantaneous surface elevation from the horizontal x ,  y-plane. Then we 
have that the elevation of the MWS above the x ,  y-plane is c. At the same 
time we define the depth below z = 0 as ho which implies that the local 
mean water depth is 

h=ho+c  (1 1.1.5) 

These definitions are shown in Fig. 11.1.1. 

Procedure for deriving the depth-integrated, wave-averaged 
equations 

In brief terms the procedure we are going to follow to derive the depth 
integrated, wave averaged continuity and momentum equations consists of 
the following steps 
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L 

Fig. 11.1.1 Definition sketch for this chapter. 

(1) The two horizontal components of the Reynolds equations are inte- 
grated from the bottom ( z  = -ho) to the surface ( z  = c)  

(2) This yields terms of the form s 8, s &, etc., in the equations. Leib- 
niz's rule is used to transform those terms into terms of the form 

(3) The boundary terms in the equations left by those steps are terms eval- 
uated at the bottom -ho and the free surface c. Invoking the boundary 
conditions at the bottom and the free surface essentially eliminates most 
of these boundary terms. Left is only the effect of wind stress at the 
surface, r," and bottom friction at the bottom, r,". 

(4) The variation over a vertical of the pressure is derived by integrat- 
ing the vertical momentum equation from the free surface to an arbi- 
trary location in the fluid z .  Usually hydrostatic pressure is assumed 
for the currents and also for the infragravity (1G)-waves discussed in 
Chapter 14. 

( 5 )  The expression for the pressure obtained in the previous step is used to 
eliminate the pressure from the depth-integrated horizontal momentum 
equations. 

(6) The horizontal velocity, u,, is divided into a current part, V,, and a 
wave-part, uWa, as 

g s, & s, etc. 

u, = v, + uwa (11.1.6) 



518 Introduction to nearshore hydrodynamics 

(7) The resulting equations are then averaged over a short-wave period. 
Quantities averaged over a short-wave period are hereafter denoted by 
an overbar 

- 1 t+T 

T t  
f = -/ f d t  

where T represents the short-wave period. 

It is emphasized already here that virtually 

(1 1.1.7) 

no assumptions are 
introduced in the derivation procedure described above. Hence 
in their general form (11.5.13), the resulting equations are as accurate as 
the Navier-Stokes equations they are initially derived from (see also Chap- 
ter 13). It is this procedure that is described in detail in this chapter. 

11.2 Depth integrated conservation of mass 

We first consider the conservation of mass for the column of fluid with 
dimensions ( d x a ,  h, + C) (see Fig. 11.1.1). If we define the instantaneous 
mass flux Ma as 

c 
Ma=S- , .  P a d .  (11.2.1) 

then simple continuity considerations show that the conservation of mass 
becomes 

(11.2.2) 

where ps is the fluid density at the surface. This equation simply says that 
the net difference between what flows into the column and what flows out 
is stored inside through change in the surface elevation. 

In most of the analysis of nearshore flows, we will assume that the 
density p of the fluid is constant, although there will be regions - like at 
the turbulent front of a breaking wave - where the content of bubbles in 
the water may reduce the density of the air-water mixture. 

With p = constant, the conservation of mass is equivalent to a conserva- 
tion of volume. Hence, we may define the volume flux equivalent to (11.2.1) 
as 

(1 1.2.3) 
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as in Section 3.3. The depth integrated continuity equation may then be 
written simply as 

(1 1.2.4) 

Although this result as shown above can be realized directly on an in- 
tuitive basis, it is useful already here to introduce the procedure of depth 
integrating the equations of motion in differential form. Hence in the fol- 
lowing, we go through the derivation of (11.2.4) directly from the equation 
of continuity at a point. 

We have 
au, aw - + - = o  
axa az  

(11.2.5) 

where u,, w represent the total velocities, including turbulent fluctuation. 
Formal integration of (11.2.5) over (-h,lC) gives 

(1 1.2.6) 

For convenience we repeat the kinematic boundary condition (2.4.8) at 
the bottom 

and (2.4.4) for the free surface 

(1 1.2.7) 

(11.2.8) 

Substituting these two expressions into (11.2.6) then yields 

Leibniz’ rule of differentiation of integrals indicates that 

which reduces (11.2.9) to 

u, dz = 0 
a[ a C - +-  
at ax, L h , ,  

(11.2.11) 
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or with (11.2.3) 
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- + - = o  dQa 
d t  ax, (1 1.2.12) 

which of course is the same as (11.2.4). It is noticed that this derivation is 
valid whether the bottom condition is a u, = 0 as in a boundary layer or 
a finite slip velocity is assumed at the bottom. 

11.2.1 Separation of waves and currents 

The next step in the process is the time averaging of (11.2.12). For that 
purpose, we divide the total particle velocity (u,, w) into three parts: A 
time (or wave) averaged part (Val 0) which represents the “current,”’ an 
oscillatory part (u,,,, w,) representing the wave motion and a turbulent 
fluctuation (uh , w’). 

Thus, we have 

u, = v, + u,, + u:, ( 11.2.13) 

w = o +  w, + WI (1 1.2.14) 

where we will assume that 

A A  
u& , w’ = 0 (11.2.15) 

(1 1.2.16) -- 
‘LLW,,, w w  = 0 

and use A for ensemble or turbulent averaging, and - for time or wave 
averaging. Notice that strictly speaking (11.2.16) only applies below trough 
level (see later discussion). 

Note also that the definition (11.2.13) implies that u, , the turbulent 
averaged total velocity is 

A 

c= v, +u,, (1 1.2.17) 

i.e., 2 encompasses both the current and the oscillatory wave component 
of the instantaneous velocity. 

‘Assuming gently sloping bottom implies W 0, but this is not a necesary simplifi- 
cation. 
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The time average of (11.2.12) becomes 

or 

- a t + a z - O  - - 

at ax, 

Substituting (11.2.13) into (11.2.3) yields 

6 

--ho 
Qa = J’ (V, + uw,, + uh) d z  

which after ensemble average and time average yields 

Comment: here we have assumed 

(1 1.2.18) 

(1 1.2.19) 

(11.2.20) 

(1 1.2.21) 

c A  
U; d z = O  (1 1.2.22) Lo ukdz = Lo 

which is equivalent to neglecting the turbulent fluctuations <’ of the free 
surface. In the region of the turbulent front of the wave, C’ is not quite 
negligible, however. Inclusion of <’ would lead to acceptance of a term 
A (c’ uh) in the equation, the value of which would depend on the correlation 

between fluctuations in the surface elevation and, particle velocity. For 
various reasons, this term is suspected to be small but we do not have 
any measurements or models available in support of that estimate in the 
turbulent front of a breaking wave. 

Introducing the surface elevation (t at the wave trough level, and drop- 
ping the A, we can now write 

which, by virtue of (11.2.16) means 

(11.2.24) 
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I 

t 

Fig. 11.2.1 Definition of Ci. 

For the last integral we can introduce the definition 

( 11.2.25) 

which means (11.2.21) can be written 
- c 
h o  

z=l  V, dz+Q,, (11.2.26) 

The quantity Q,, is the volume flux generated by the short wave mo- 
tion. Q,, was analysed for linear waves in Section 3.3, in Chapter 8 for 
second order Stokes waves, and in Section 9.6 for cnoidal waves. Substitut- 
ing this into the continuity equation we then get 

14,” at ax, (Lo V,di+Qwa) = O i  ( 11.2.27) 

which is the general form of the continuity equation. 

A comment on the flow above wave trough level 
As (11.2.3) indicates, for the calculation of &a it is necessary to 

integrate the total velocity all the way to the instantaneous surface C. Thus 
we need, not surprisingly, to know the flow in the entire region between 
bottom and surface. When we average over the wave period and separate 
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into the wave and current motion this become an integration to <. Thus 
(11.2.26) inevitably requires that we are able to define the current above 
wave trough level &. There is no unique way of doing this because the 
averaging over the wave period is not uniquely defined in that region where 
there is only water part of the time. However, the choice of how we do this 
will not affect the result for a as long as we are consistent: what is not 
included in the current Va above trough level must be included in the wave 
motion uw,. 

Depth uniform current V, = Va(za, t )  

component V, over depth. 

uniform over depth, we simply get 

So far we have made no assumptions about the variation of the current 

In the simple case, where the current component of the total velocity is 

- 
Qa = Vah + Q w a  (1 1.2.28) 

which is the equivalent to (11.2.26) valid for a depth uniform current that 
is assumed extended to the MWS. 

It  is emphasized that V, is the time-averaged velocity which will be 
measured below wave trough level by a current meter placed there. 

11.3 Conditions at fixed and moving boundaries, I1 

Before embarking on the depth integration of the momentum equations 
we derive the boundary conditions for the turbulent flow with stresses tan- 
gential and normal to the free surface and the bottom. 

11.3.1 Kinematic conditions 

As mentioned in Section 2.4 the kinematic conditions remain the same 
as discussed there. Thus we have the free surface condition is 

% - W + U , -  a< = O  a t z = C  (11.3.1) 
at ax, 

and at the bottom we get 

= O  at z = -h(x,) 
dh 

w + u a  - 
ax, 

(11.3.2) 
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11.3.2 Dynamic conditions 

Kinematic conditions relate the motion of particles in time - i.e., the 
velocity field - to the development in time of the position of the surface. 

In contrast, dynamic conditions are instantaneous conditions ex- 
pressing that the external stresses on a boundary surface must be balanced 
by equivalent internal stresses immediately inside the fluid. 

The stress variations at a point 
For general turbulent flows we need first to analyse the stresses at the 

surface. Since boundary surfaces usually form an angle to all coordinate 
axes, whereas the internal stresses in the fluid are expressed in terms of 
stresses oij on the coordinate surfaces, we must first derive a relationship 
between stresses on a surface of arbitrary direction and stresses on the 
coordinate surfaces at the same point. 

Let Rj be the total stress (i.e., force per unit area) on a surface with 
arbitrary normal vector n = ni. Letting 1ni I = 1 implies ni are the direction 
cosines of n. Fig. 11.3.1 shows the situation which we consider. This 
surface element will later be taken as part of the free surface or bottom. 

+ 
+ 

J 
Xl 

Fig. 11.3.1 
surface with normal vector ni. 

The tetrahedron considered for analysing the stresses on an arbitrary 
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The area of the boundary surface element is dA and it cuts off area 
dA3) on the three coordinate planes to form a sections dAi = (dAl, dA2, 

tetrahedron. Since ni are the direction cosines, we have 

dAi = nidA ( 11.3.3) 

On each of the coordinate-parallel area elements dAi, we have total 
stress components aij. Hence, the total force component in the j-direction 
from surface stresses on the tetrahedron is 

RjdA-DijdAi = RjdA-aljdAl-aajdAz-asjdA~ ( j  = 1,2,3) 

where the minus signs reflect that the aij stresses are opposing Rj 

11.3.4) 

The equation of momentum for the tetrahedron is then (with dV = the 
volume of the tetrahedron) 

p d V 3  = pgjdV + RjdA - aijnidA (11.3.5) 
d t  

Here dV 0: ( d ~ i ) ~  whereas dAi 0: Hence 

dV ---to 
dAi 
dxi 4 0 

(11.3.6) 

so that volume forces in Eq. (11.3.5) are infinitesimal relative to surface 
forces and we simply get 

(1 1.3.7) 

Fig. 11.3.2 shows a two dimensional version of the balance 
If, for example, dA is a free surface, then R can be a combination of a 

(wind) shear stress and a surface pressure that together add up to the total 

stress R on the surface. 

4 

-+ 

The dynamic condition in a general flow 

in question. Writing the equation for the surface as 
To utilize Eq. (11.3.7) we need the normal vector at the surface point 
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we have the normalized normal vector given by 

where 

and 

d 
8x2 

V =  - i = 1 , 2 , 3  

(11.3.9) 

(11.3.10) 

1/2 

lVFl= (1+ (2)’. ($)2) (11.3.11) 

In x ,  y, z coordinates, this yields 

(1 1.3.12) 

We now assume the external stress on the boundary surface F is Rj” 
where j refers to the j the component (see e.g. Fig. 11.3.2) and superscript 
s to the surface. We also assume that aij at a point immediately inside the 

fluid can be written as (- p Sij  + q j )  where 7 i j  is the Reynolds stress 
(see Section 2.5). Thus, according to (11.3.7), we have 

R S = a . . n . -  - A p S . . + 7 . .  n .  
3 23 % - (  13 v) a 

A 

(11.3.13) 

Fig. 11.3.2 The stresses on a two dimensional triangle. 
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In tensor form, distinguishing between a and z,  we split aij into two 
components: one on vertical surfaces (normal vector n,) and one on 
horizontal surfaces (normal vector n,): 

A 
aij = (- P baj  +,j) + (- p 6,j +rzj)  ( 11.3.14) 

which means (11.3.13) can be written as 

A 
R: = gij ni = (-P& + 7,j) n, + (- p Szj + r,j) n, (11.3.15) 

vert surface hor. surface 

Since we will later on need the horizontal and vertical components of RJ 
separately, we separate Rj” in (11.3.15) into those components already now. 

The horizontal component R; of R; (/3 = 1,2 corresponding to x or y) 
becomes, substituting (11.3.12) for ni into (11.3.15) 

Hor. comp (tensor) Ri = [ (-96,~ +rap)(-%) 8% +T,~] / \VFI  ; z = < 
( 11.3.16) 

where rap and r,p are the horizontal components of the internal stresses in 
the fluid, and it has been used that 6,p = 0. 

h Comment: In (11.3.16) there is no - p 6,p-term because /3 N x, y means 
S,p = 0. In physical words: - T S z p  would be the horizontal contribution 
to the stresses below the surface from the pressure on a surface with vertical 
normal, n,, which is of course zero. 

Hence, (11.3.16) indicates which internal horizontal stresses are gener- 
ated by the horizontal component R; of the external stress on the boundary 
F .  

wind 

Fig. 11.3.3 The stresses on the free surface. 
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In x, y, z coordinates, this reads 

A a< a< a< 
ax ax aY 

a4- a< ax r y y %  + rzy (11-3-18) A ac 
aY 

Hor. x-coord. Ri(VFI = p - - rzz- - ryz- + rz3. (11.3.17) 

Hor. y-coord. RCIVF( = p - - rzy- - 

Similarly, we get for the vertical component 

( 11.3.19) 

or 

A a< 
ax Vert z-comp. RZIVFI = - p -rzz- - ryz% + rzz (11.3.20) 

Discussion 
It may be recalled that when we talk about turbulent flows, the rij are 

the Reynolds (or turbulent) stresses (see Section 2.5). 
The forms (11.3.17), (11.3.18), (11.3.19), and (11.3.20) are convenient 

for the depth integration of the equations to be derived later. Usually, 
however, the external stress Rj is actually known by its normal component 
and its tangential component. Thus, e.g., in the case of strong winds blow- 
ing over waves this will create a pressure distribution and a shear stress 
distribution on the (sloping) surface. 

The two components will vary quite differently along the surface. The 
shear stress will usually be largest on the upstream side of the wave where 
the pressure may be small and either positive or negative. At the rear side 
of the wave, however, the pressure is strongly negative and the shear stress 
small. 

The bottom condition 
Here we analyse the dynamic conditions needed in case of a slip velocity 

being used at the bottom. In analogy to (11.3.8) the equation describing 
the bottom position is given by 

B = ZB + h ( ~ , y )  = 0 (11.3.21) 

We therefore have the normal 

( 11.3.22) 
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where 

lVBl = (1 + h% + h;)’” ( 11.3.23) 

The horizontal component RF of the total stress on the bottom can 
then be written (from Eq. (11.3.16)) 

(1 1.3.24) 

Parallel to the bottom we have a shear stress T: (in addition to what- 
ever pressure occurs there). It turns out to be convenient to rename the 
horizontal component of RF as ~ p ”  for which we then have from (11.3.24) 

(11.3.25) 

The reason for this separation of the pressure from the shear stress 
component of the total stresses will be discussed later. For the x and y 
components, this means 

ah 
ax, 

7,BlOBl =Tap- +.zp 

B dh  dh  
.Y lVBl = Txy 7& + Tyy & + Try 

(1 1.3.26) 

(11.3.27) 

It is useful to realize that T: is the stress actually created on the (slop- 
ing) bottom by the fluid motion (see Fig. 11.3.4)] and .,”, .: are the 2 and 
y components of that shear stress. T: is the shear stress we can measure or 
compute by modelling the physical processes in the flow near the bottom. 
r,, and rZy, on the other hand, are the x and y stress components that ap- 
pear in the x and (horizontal) components of the momentum equation(s). 
Thus (11.3.26) and (11.3.27) make it possible to evaluate the contribution 
of the bottom shear stresses T: to the horizontal momentum equation(s). 

Approximation for gently sloping bottom 

sloping bottom corresponding to 
The general equation (11.3.24) can be simplified if we assume gently 

d h  dh  
- , - < I  dx dy 

(1 1.3.28) 
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we get, 

Hence we get 

(11.3.30) 

(11.3.31) 

which of course is the approximation frequently used in practical applica- 
tions. 

Fig. 11.3.4 The stresses on coordinate surfaces at the bottom. 

11.4 Depth integrated momentum equation 

In order to derive the depth integrated momentum equations, we start 
with the momentum part of the Reynolds equations in the form (2.5.28). 

For simplicity, we also here from now on omit the A that mark tur- 
bulent averaging except where it can be confusing not to do so. Thus we 
have 

Horizontal comDonents 

Notice that ,O indicates the component we look at so that p = 1 means the 
x component, p = 2 is the y component. 
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Vertical component 

+ - +- aw au,w 
at ax, 

Depth integmted momentum equation 531 

aw2 1 a p  1 67,, a~, ,  
a z  p az 8% 
- - - -- - - g +  (- + (11.4.2) 

11.4.1 Integration of horizontal equations 

The first step is to integrate (11.4.1) over depth and use the Leibnitz 
rule to move the d / d t ,  d/dx operations from under the integration sign to 
outside. We get term by term 

84- (1 1.4.3) -dz = d / updz - up(C)z  
c 

r h o  -ha 

and 

and 

1' y d z  = up(()w(C) - up(-ho)w(-ho) ( 11.4.5) 
-ho 

The entire left-hand side of (11.4.1) then becomes 

) (11.4.6) 

Using the kinematic boundary conditions at the free surface (2.4.4) and at 
the bottom (2.4.8) we simply get 

We see that all the boundary terms on the LHS vanish exactly. 
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For the right-hand side we get: 

Here we see (from (11.3.16)) that for the free surface terms in (11.4.8) we 
get 

(11.4.9) ac 
( 7 Z P ) C  - (-P&p + r a d c  dz, = R; I V F  I 

For the bottom terms, we similarly get from (11.3.24): 

N -rp” +p(-ho)G,p- aho (11.4.10) 
ax, 

the latter by assuming the bottom sufficiently gently sloping to let 1 ABl = 1 
in the bottom stress term. Thus the entire right hand side becomes 

(11.4.11) 
In (11.4.1), we notice that by the summation rule we have 

6 -=o dho ah 
a P  ax, axp 

Combining (11.4.7), (11.4.11) and (11.4.12) then yields 

(1 1.4.12) 

pd updz + p- u,updz = 
at -ho ax ,  I‘ -ho 

which is the instantaneous depth integrated horizontal momentum equa- 
tion. We see that the RHS of (11.4.13) describes the sum of all horizontal 
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Fig. 11.4.1 
3 0  elevation, right panel 2DV(z.z) only. 

Sketch of column (or control volume) considered. Left panel shows 

forces acting on a water column (or control volume) as shown in Fig. 11.4.1. 
The column has fixed vertical sides distance 1 apart in the x and y direction 
and follows the sloping bottom. The upper boundary of the control volume 
coincides with the free surface and follows its motion at any time. 

In the following we will for simplicity assume that the surface slope is 
small enough to let I V F  I N 1 so that R; represents the horizontal stress 
at the surface. This, however, is not a necessary asumption. 

Note that we have continued to keep the term with the bottom pressure 
p(-ho) separate. The pressure force is normal to the bottom so it has the 
horizontal components p(-ho) (dho /ax ,  dh,/dy) in the x and y directions, 
respectively. 

11.4.2 Integration of the vertical momentum equation 

For convenience, we repeat the vertical Reynolds equation: 

(1 1.4.14) 
dw du,w dW2 1 d -+- + - = - - - ( ( p + p g z ) + -  at ax, az paz 

I I1 I11 1v V VI 

We now integrate this equation from a chosen level zo below the surface 
to the free surface <(x,, t ) .  In order later to allow zo to take the value 
-ho(x,), we formally let zo be zo(x,). 
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We get term by term in (11.4.14): 

(11.4.15) 

(1 1.4.16) 

( 11.4.17) 

Hence, the total LHS becomes: 

8% ai I, U,wdz - [w]' [$ + u,- - w 

20 

Here the surface terms in the bracket 
we get 

( 1 1.4.18) 

are zero by virtue of (11.3.1), so 

On the RHS, we have the following terms: 

V = 1: $dz = T,,~z - [T ] - a i  + [ T ~ ~ ] ~ ~ -  az0 (11.4.21) 
az  c ax, 8% 

( 1 1.4.22) 
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Hence, the total RHS becomes 

(11.4.23) 

Combining LHS and RHS then gives the result for ~ ( z o )  

(11.4.24) 

In (11.4.24), the [ ]c bracket represents the vertical component of the 
stresses caused by the vertical force RZ on the free surface (see (11.3.19)). 
This force consists of the combination of the atmospheric pressure ps and 
the wind stresses. As in the earlier parts of the derivation (for the horizontal 
components of the equations) we assumed that the vertical contribution 
from the wind stress is small in comparison to the atmospheric pressure 
which is constant. Thus we assume here for simplicity that 

(11.4.25) 

Again this is not a necessary condition. (11.4.24) then becomes 

(11.4.26) 

The pressure p ( z )  at arbitrary level 

be obtained by letting zo be independent of x,, so that 
From the expression (11.4.26) the pressure at  arbitrary level zo can then 

(11.4.27) 
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With zo = z we then get 

(1 1.4.28) 
We recall that rij are the turbulent shear stresses defined as 

Hence we can also write p ( z )  as 

(11.4.29) 

I 1 
(11.4.30) 

I I1 I11 IV 
where the terms are numbered to facilitate the discussion below. 

the wave averaged pressure p ( z ) .  We get from (11.4.30) 
For the purpose of the discussion below, we also calculate the value of - 

The pressure p(-ho) at the bottom 

the p(-ho)dho/dxp term in (11.4.13). Thus in (11.4.26) we take 
We next use (11.4.26) (with (11.4.25) inserted) to determine p(-ho)  in 

We also introduce the bottom boundaary condition 

(11.4.32) 

(1 1.4.33) 

In dealing with the term 
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at the bottom we use (11.4.29) for q j .  Hence, we have at zo = -ho 

since (uh , w') must also satisfy (11.4.33). 
Using all these results (11.4.26) at z = -ho becomes 

(11.4.35) 

We see that in general the pressure at the bottom is not just equal to 
the weight of the water in the column above. Both the vertical acceleration 
in that column (the second term) and the vertical shear stresses along the 
vertical sides of the column (the last term) contribute to the instantaneous 
value of p (  - ho). 

Finally, it is illustrative also to do a time average over the short wave 
period of (11.4.35) to determine the mean pressure at the bottom. Invoking 
the periodicity of those waves, the result is 

Negelecting the last term (see later discussion) then leads to the expres- 
sion 

(1 1.4.37) 

as one would intuitively expect. __ 
A 

Notice that the 3 and 'wl2' terms in (11.4.31) vanish exactly at the 
bottom as (11.4.36) shows, not because the bottom slope dho/dx, is small, 
but because (11.4.33) applies to both u,, w and u&, w ' . ~  

2Mei (1983) finds that it is necessary to require hoZ small to eliminate the bottom 
terms. The reason is he omits the C5zo/C5sa terms in (11.4.26). As the derivation above 
shows the results apply for arbitrary steep bottom slopes. 



538 Introduction t o  nearshore hydrodynamics 

Fig. 11.4.2 The vertical stresses on a column of fluid reaching from the free 
surface to an arbitrary depth z.  Note that for convenience the stresses in this 
figure have been named r ,  though this r is different from the ~~0 used else- 
where. The definitions of the 7's in this figure are: r,, = s!, (pu,w - raz) dz, 

Interpretation of results of the pressure variation. The terms indi- 
cated by the numbers I through IV, which were shown beneath of (11.4.30), 
represent the following: 

I. The term I is the hydrostatic pressure component. It represents the 
weight of the column of water (up to the instantaneous free surface 
z = <(xa, t ) )  above the point z = zo which we consider. 
represents the contribution to the flux of vertical momentum from 
the vertical fluid motion. This term can actually be written 

11. 

A (q2+ wr2 = w 2  

A where w = w +w' is the total vertical velocity. In other words, the 
total vertical velocity of water flowing through the element of z = zo 
helps carrying the weight of the water above and therefore reduces 
the pressure p (20) .  

A 
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111. represents the (integrated) vertical accelerations of the column above 
z = zo. (This is in fact the only source of the dynamic pressure in 
linear waves.) 
is the net (due to the &) vertical force due to (Reynolds) shear 
stresses along the vertical sides of the column from organized motion 

IV. 

- p  (CQ) and from turbulence - p  

Terms 11, 111, and IV together constitute the effect which the flow has 
on the hydrostatic pressure relative to the instantaneous water surface 

If the term IV differs from zero, it means that some of the weight of 
the column is transferred to the neighboring columns because of the water 
motion. In waves, this happens all the time throughout the wave period. 
(This effect is non-linear and is often neglected as e.g. in the weakly non- 
linear Boussinesq waves). However, if we consider (11.4.31) for the time 
averaged pressure p ( z )  we see that this expression can be written 

z = c. 

- 

A 
PS(T - 2 )  = p ( z )  - + p (- w 2  f T) w - t l ' p ( u , w  + ut,w')dz - 

weight of water \ 1 
(11.4.38) 

This can be interpreted as that in the average over a wave period, part 
of the weight of water pg(< - z )  above a point z is carried by the pres- 
sure p ( z )  as we should expect. In addition some of the weight is carried 
by the normal momentum stress from the wave and turbulent oscillations 

- 

A -  
. However, the expression also indicates that some 

weight is carried by the d/dx, term, meaning neighboring water columns 
are helping carrying each other. Simple intuitive arguments suggest that 
over longer periods of time this is not possible in progressive waves. Each 
water column must very nearly carry itself. Thus it can be expected that 
in the wave averaged sense these terms are negligible.3 

The time averaged dynamic pressure p~ is defined by 

(1 1.4.39) 

3Notice that in standing waves this is not the case. 
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Averaged over the wave period and omiting the &-terms this becomes 

E = p  (2+3) (1 1.4.40) 

which shows that the time averaged dynamic pressure at zo comes from the 
vertical motion. 

Finally, from (11.4.30), it is worth to notice that in a fluid in motion, the 
pressure is completely independent of the direction of the fluid surface 
considered (since p(z0)  in general depends on dzo/dx,). 

11.5 The nearshore circulation equations 

11.5.1 The time averaged momentum equation 

We are now ready to establish the various final forms of the depth inte- 
grated, time averaged momentum equations. 

We first do the time averaging of (11.4.13), although this will be rather 
formal without also separating the horizontal velocities into wave and cur- 
rent components. We get 

(11.5.1) 

We then eliminate the pressure at the bottom by substituting (11.4.37) 
into (11.5.1) which yields 

(1 1.5.2) 
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On the right hand side we add and subtract pghdcldxp which means 
the pressure term at  the bottom can be written (with h = ho + I )  

Here we have also utilized that 
a 

8XP ap ax, 
- = h  - 

The result is that (11.5.2) can be written 

d (1 1.5.4) 

(11.5.5) 

Separation of wave and current components 
In order to obtain the momentum part of the circulation equations we 

need to to separate the total velocity (u,, w) into a “current” and a short 
wave component the same way it was done for the continuity equation (see 
(6.3.13)). However, since the Reynolds equations we are using have already 
been averaged over the turbulence we only need to separate the waves from 
the currents. This is done by letting 

( 11.5.6) A A 
u,(= u, ) = v, +u,, ; w(= w ) = w, 

Here u,, , w, are the short wave components for which have 

( 1 1.5.7) 

V, is the current. If the short waves are irregular, we will expect the 
“current” to be varying with time. These time variations of the currents 
correspond to long wave components, and also to slow transient changes in 
the flows. 

- -  u,, , w, = 0 below wave trough level 
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Taking the terms in (11.5.5) one by one we get: 

c 1 ho  
updz 5 Qp 

according to (11.2.3). The second term becomes 

c c 
uaupdz = Iho (uwa + K )  (uwp + Vp) dz I ho 

(1 1.5.8) 

(1 1.5.9) 

where we have used (11.5.7) in the last term. Hence, the left hand side of 
( 11.5.2) becomes 

( 11.5.10) 

Rearranging terms we may then write the total horizontal momentum 
equation as 

(11.5.11) 

On the left hand side of (11.5.11) we now have the acceleration terms 
(local and convective) for the time varying current/long wave component of 
the motion. In this form of the equations the acceleration is expressed as the 
time rate of change of the momentum plus the gradient of the momentum 
flux. The third term represents the convective acceleration associated with 
the net mass flux Qw in the wave (defined by (11.2.25)). 
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On the right hand side, the first term is seen to represent the effect of 
the momentum flux (again in terms of its gradient) due to the waves. This 
is the term we call the radiation stress for the waves which hence is defined 
as 

(1 1.5.12) 

The momentum equation (11.5.11) can then be written 

-Rg +rp” = 0 ( 1 1.5.13) 

This is the general momentum equation for nearshore circulation of 
currents with depth variation, expressed in terms of the total volume flux 
Q, in the circulation. 

In this form of the equation, we have placed together the Sap which 
is the wave contribution and the rap  which is the turbulent contribution 
to the momentum flux. This emphasizes the parallel mechanism behind 
these two terms, one caused by organized (wave) fluctuations, the other by 
disorganized (turbulent) fluctuations. In fact, in some texts this is further 
emphasized by using the same letter “S” for the two contributions 

Wave radiation stress sap 
c 

l h o  rapdz 
Turbulent “radiation stress” st,p = - 

Notice the “-” in front of the rap term and the “+” in front of the 
Sapterm in (11.5.13). This indicates the difference between the + sign on 
the u,up term in the definition (11.5.12) for Sap and the - sign on the 
u,up term in the definition (5.3.34) for ~ ~ p .  This also implies that the 
sign convention for Sap and rap is opposite, a point worth bearing in mind 
when checking direction of terms in the equations. The positive directions 
for the two terms are shown in Fig. 11.5.1. 
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Fig. 11.5.1 Positive directions for ~~p and Sola. 

11.5.2 The equations for depth uniform currents 

Equation (11.5.13) allows the currents to vary over depth and in fact 
we know today that not only do nearshore currents normally do so but 
this depth variation is an important part of the mechanisms that control 
nearshore circulation. The depth variation of the currents result in a hor- 
izontal transfer of horizontal momentum which is of the same nature as 
the mixing caused by turbulent stresses. This effect is called dispersive 
mixing. It will be discussed later in Chapter 13. 

However, making the assumption of depth uniform currents allows us 
to simplify (11.5.13) somewhat. 

We therefore introduce the assumption that V,, Vp are independent of 
z .  The terms in (11.5.13) we can simplify using this assumption are the 
nonlinear current momentum terms. For depth uniform currents we have 
for the second term in (11.5.13): 

d 
8% 

VaVpdz = - (V,Vph) 
d 

( 11.5.14) 

Since the continuity equation for this case reads (see (11.2.28)) (letting 
n -  
Qa = Qa for short) 
- 

(11.5.15) 
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(11.5.14) may he written 

(11.5.16) 

Remember that Qa is the total discharge including the wave mass flux 
Qwa, so that Qa - Qwa is the volume flux due to the current. 

For the second current term in (11.5.13), we again assume the (constant) 
current profile can be extended to the mean water level as we did in Section 
11.2 for the continuity equation. This implies we get 

- 

Hence, the two terms together may be written 

h 1 

(1 1.5.17) 

( 11.5.18) 

Here the second term depends only on the wave motion since it is caused 
by interaction between mass flux components caused by the waves. 

Therefore an alternative definition of the radiation stress that includes 
all terms generated by the waves is: 

Q w a Q w ~  
h sap = S&, - p (1 1.5.19) 

which is the definition used by Phillips (1966,77). The last term in (11.5.19) 
is strictly speaking of O(H/L)4 and could therefore be considered very 
small, but this is not necessarily the case for nearbreaking waves or waves 
in the surf zone. It is often just neglected. However, it has a principal 
meaning which makes it desirable to keep it in the formula. 
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When substituting the result (11.5.18) into (11.5.13), and using the 
definition (11.5.19) for Sap, (11.5.13) takes the form 

I I 
(1 1.5.20) 

valid for depth uniform currents only. 
The equations for depth uniform currents were first derived by Longuet- 

Higgins and Stewart (1962, 1964). Those were also the publications where 
the term Radiation Stress was i n ~ e n t e d . ~  The form derived here is equiv- 
alent to the momentum equation derived by Phillips except for the turbu- 
lent stresses ~ ~ p ,  the horizontal components of the surface stress T:, and the 
bottom shear stress T:, all of which are neglected by Phillips. In nearshore 
circulation, however, these terms are of paramount importance as later 
analysis will show. Similar equations are also derived by Mei (1983). 

It turns out, that the definition (11.5.12) introduced above looks equiv- 
alent to that used by Mei (1983). However, Mei has a different definition of 

(versus our U, = 0 at each point below wave trough), which, with depth 
uniform currents as here, causes the integral (11.5.17) to vanish altogether. 
Thus in Mei’s case, the only contribution to the momentum equation ex- 
plicitly from the current comes from the integral (11.5.14) whereas other 
current contributions are actually hidden in the definition of Sap because 
in Mei’s version ‘ZL,, # 0 below trough level. 

- 

the wave and current velocities. That definition is based on J-ho c uwadz = 0 

Exercise 11.5-1 
The purpose of this exercise is to analyse the difference be- 

tween Phillips (1966, 1977) and Mei (1983). 
In Phillips the wave motion is defined so that &,,,Phil = 0 

below wave trough level. The equaivalent current is called Va,phil. 

In Mei the wave motion is defined so that 

c 1 ho 
Uwa,Mei  dz = 0 ( 11.5.21) 

*It is interesting for historical reasons to mention that the concept of a time averaged 
momentum signature of the short waves - which is what the radiation stress is - was 
actually developed separately already in the late 1950’ties by H. Lundgren. The author of 
the present book learned about this when taking the advanced coastal engineering course 
from Lundgren already in 1959 at The Technical University of Denmark. Lundgren used 
the name Wave Thrust and published his results in Lundgren (1963). 
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Show that with the mass flux Qwa defined as 

we get 

(11.5.22) 

( 11.5.23) 

Show similarly that (with the same definition of Qw) we get 

( 1 1.5.24) 

Thus we have 

U w a , M e i  = Uwa,Phi l  - - Qw ( 11.5.25) 
h 

The radiations stresses are also defined differently. We have 

- QwaQwp 
h 

(11.5.26) 

which is exactly what the equations dictate, while Mei neglects the 
QwaQwp-term (allegedly because it is of fourth order). Thus 

Show, introducing the respective definitions for the wave velocity 
components and the radiation stress, that in spite of the seeming 
differences we actually have 

S a p , M e i  = SaD,Phil  (11.5.28) 

Thus Mei's omission of the Q,,Q,p-term actually represents a 
correct definition of Sap, given his different definitions of the wave 
and current components, not an approximation to O ( / C H ) ~ .  
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11.6 Analysis of the radiation stress in two horizontal 
dimensions, 2DH 

We now return to the definition (11.5.19) for the radiation stress Sop 
(where we for the time being neglect the the last term which makes it equal 
to the expression for Shp). We repeat here for convenience 

( 11.6.1) 

The purpose is to use the results (11.4.28) for p ( z )  to eliminate p from 
(11.6.1). 

We have seen (see Section 3.3) that for simple sine waves in the x- 
direction, we can calculate the 1DH-version of the uaup-term from linear 
wave theory because we have 

c 1 saa = lh0 (PUwoUwP + &PP) dz - L P p I h 2  

uxux =c2  - coshJ4z + h) c0s2 0 = O(kH2)  (1 1.6.2) ( 2 sinhkh 

and we then found (see (3.3.14)) that the momentum part Sm of the Sop 
was given by 

1 
16 

Sm = -PgH2 (1 + G) + O ( I ~ H ) ~  (11.6.3) 

This result will be qualitatively the same for any wave theory used for S,. 
For the S p d z ,  however, we get, using linear theory: 

) cos Odz + p d z  
H coshk(z + h) 

Jc --ho p d z = I o  - ho  p g ( - i + l  cosh kh 

0 (11.6.4) 

Whereas the second term on the RHS of (11.6.4) apparently is O ( H 2 )  as 
we should expect even when we use first order theory for p ,  it turns out that 
the zero value of the first term is not correct to O ( H 2 ) .  As mentioned in 
Section 3.3, this term actually would give the correct O ( H 2 )  contribution if 
we for p used Stokes second order theory instead of the simple linear theory 
used here. 

To get the lowest order correct evaluation of J p d z  directly from p will 
therefore require that second order approximations for p are used. This is 
not only inconvenient. It could also give the (erroneous) impression that 
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the radiation stress of a first order wave cannot consistently be calculated 
by using only first order theory. Finally the definition (11.6.1) is exact and 
applies to any wave theory and we may not readily know a second order 
approximation for the wave theory we want to use to evaluate Sap. 

In particular, the last two objections are quite serious, and it is very 
useful for our understanding of wave mechanics in general to see how this 
difficulty can be avoided by using the earlier results for the pressure varia- 
tion along a vertical in the wave motion. 

We therefore turn to considering the net contribution to the radiation 
stress from the pressure, which is f h o  p d z  - i p g h 2 .  Using (11.4.30) for p 
we get 

1 
2 

pdz  - -pgh2  

I 11 111 

+ & 1' p (cQ+a) d . 2 )  dz - a p g h 2  1 (11.6.5) 

IV 

Term by term we get 

1 1 
2 I = --pg (C - z ) ~ ]  = ;pg(C + h0)2 - s p g h 2  

We leave I1 unchanged. For I11 we get, using Leibniz rule 

(1 1.6.6) 
-ho 

Here the first term vanishes due to the periodicity (g = 0). In the second 
term, the integral becomes zero where z = C. Hence 

111 = 0 (1 1.6.8) 
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This term represents the effect on Sap discussed earlier of one water 
column in average not being able to carry the weight of its neighbors. Since 
the wave averaged value of this contribution to the pressure was deemed 
negligible, it is consistent also to omit it in the expression for S,p. 

The result for I can be combined with the hydrostatic pressure we sub- 
tract in (11.6.1). Using that h = c +  ho we get: 

2 
= (<-<) =$ (11.6.10) 

Thus, we finally get 

Substituting all these results back into (11.6.1), we eventually get 

which is an expression for the radiation stress S,p that, in the case of linear 
waves, can be evaluated by means of linear wave expressions for q,  u, 
and w,. Notice that the w2-terms represent the effect of the deviation 
from hydrostatic pressure, and that turbulence contributes to the pressure 

through the w" term. In practice, however, the effect of the turbulence is 
usually neglected. Also (11.6.12) was the expression used in Section 3.3 for 

the 1DH S,, (without proof and without the w ' ~  -term). 
It is emphasized that (11.6.12) is exact5 and applies for any wave the- 

ory. We see that all terms in (11.6.12) are quadratic in the flow quantities 
uw, w, and q. Hence, for any wave theory, the lowest order of approxi- 
mation for S,p can be determined by inserting into (11.6.12) a (consistent) 
lowest order of approximation for that wave theory. 

A 

A 

5Apart from the contribution from term IV in (11.4.30), which however we showed is 
totally negligible. 
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11.6.1 Sap expressed in t e r m s  of S, and S, 

Omitting for convenience the index w for “wave” and A where possi- 
ble, we can write (11.6.12) as 

- c 1 
Sap = 1 ( pu,up - 6,pp ( w2 + 2)) dz + z6,ppgq2 (11.6.13) 

- 0  

We now assume that the wave is locally plane; i.e., fronts are straight 
enough for the motion to be considered locally two dimensional, with par- 
ticle velocities only in the vertical plane of the local wave orthogonal. This 
is normally an excellent approximation. 

Y 

c 1  

Front Orthogonal 

Fig. 11.6.1 Definition of the wave angle a,. Note that this is only equal to the 
angle of incidence for the waves when the y-direction is tangent to the bottom 
contour through the point considered. 

In that plane, velocities are 

( 11.6.14) 

Then the x and y components u, and uy are related to u by 

~ ~ = I u I c o s a ~  ; u y = ( u I s i n a W  (1 1.6.15) 

where a,  is the angle of the wave orthogonal (or k) to  the x-axis as shown 
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in Fig. 11.6.1. We may also define 

With these definitions we clearly have 

where 

cos2 a, 
sin a, cos a, sin2 a, 

sin a, cos a, 
e,p = 

(11.6.16) 

(1 1.6.17) 

(1 1.6.18) 

( 11.6.19) 

Introducing cap, S, and S, into (11.6.13) we see the general expression 
for Sap can be written 

Thus, in terms of (z, y), we have the following 

(11.6.20) 

Sap components 

(1 1.6.2 1) 

Essentially, this expresses Sap, the radiation stress components in the 
a,  /3 directions in terms of the two scalars S, and Sp which represent the 
radiation stress on a vertical section of unit width perpendicular to the local 
wave direction. The convenience of this is clear since S,, Sp  would be the 
radiation stress values usually calculated from a given (plane) wave theory. 
In other words (11.6.20) indicates how Sap varies with the direction of the 
waves. 

It is also clear that the dimensionless radiation stress Pxx introduced in 
Chapter 3 can now be generalized to Pap by writing 

sap = PSH2PC@ ( 11.6.22) 
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where we apparently have 

SP (11.6.23) 

Sometimes it is convenient to describe sin a, and cos a, by the compo- 

SWl Pap = e,p . - PgH2 + - PSH2 

nents of the wave number vector k,. We have 

k ,  = ( k ,  , ky) = k (11.6.24) 

and defining 

k2 = k ,  k ,  (11.6.25) 

wave 
orthogonal 

wave front 

Fig. 11.6.2 The wave number vector k. 

this means 

k,  = k cos a, 

k,  = k sin a,  
(11.6.26) 

or 

(cosa, , sina,) = ( k ,  , Icy) / k  ( 1 1.6.27) 

so that e,p may be written 

e,p = ( k ,  k p )  / k 2  (11.6.28) 

Again all these results are exact and apply to any periodic wave motion. 
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11.6.2 Radiation stress for linear waves in two horizontal 
dimensions (2DH) 

In Section 3.3 we derived the expression for the normal component S,, 
of the radiation stress, provided the wave motion is described by linear 
wave theory. Using the results of the previous section, we can now directly 
extend these results to the general radiation stress for linear waves. The 
situation we consider is shown in Fig. 11.6.3. 

For reference, it is worth first to recall the features of the locally plane 
linear wave motion we are talking about. It has a wave number vector 
k = Icp given by (11.6.24) with k = 27r/L given by (11.6.25). We assume 
the wave height is H ,  phase velocity is c and frequency w = 27r/T. Then the 
velocity potential q5 is represented by (invoking the locally-constant-depth 
assumption). 

4 =  --c H cash k ( z  + ho) sin (ut - 1 kp dxp) 
2 sinh kh (11.6.29) 

where 

kp dxp = k . dx (1 1.6.30) 

with 

xp = x = (x, y) ( 1 1.6.3 1) 

being the horizontal position vector for the point considered (see 
Fig. 11.6.3). The phase velocity c is determined through the (constant 
depth) dispersion relationship 

w 2  = gk tanh kh (11.6.32) 

where k = I k ,  I and 

c = w / k  (11.6.33) 

The horizontal velocities up(= (u, u ) )  are then obtained by differentia- 
tion of (11.6.29) which yields 

cos (ut - J kp dxp) (11.6.34) H coshk(z + ho) 
up = - c kp 

2 sinh kh 

which clearly is a vector in the direction of kp, that is, it has x and y compo- 
nents that are obtained from (11.6.34) by inserting the x and y components 
of kp.  
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normal to 
contour 

local angle 

\ 
\ 

wave front 

Y 

k 

* 
X 

\ 

\ 

depth 
contour 

shoreline 

Fig. 11.6.3 Wave fronts, orthogonals and depth contours on an arbitrary topog- 
raphy. Note the anlge of incidence a: is not equal to the wave angle aW. 

Similarly, the vertical velocity w becomes 

w = -ck H sinh k ( z  + ho) sin (wt - J' kpdzp)  
2 sinh k h  

(11.6.35) 

From (11.6.34), however, we can also calculate u = I'LL( which is the total 
horizontal velocity in the direction of kp.  Since by (11.6.28) ( kp  k p ) l l 2  = k 
we have 

cos (wt - J 'kp d z p )  (11.6.36) 
H cash k ( ~  + ho) u = (up  up)1'2 = -ck 
2 sinh k h  

which of course is equivalent to the expression from 1DH linear wave theory 
except 

Comment: Essentially, all these results are equivalent to originally 
considering a plane wave in the direction of one of the coordinate axes 
(z, say) in an z, y, z-system, and then turn the z, y axes to form an angle 
with the wave fronts. This rotation about the z-axis of course does not 
change w which is reflected in the fact that w is not a function of kp but of 
k only (since 

It is now straightforward to establish the expressions for Sap. We first 
notice that (11.6.16) and (11.6.17) are equivalent to the expressions used 

kp dxp has replaced kx. 

kp dzp is a scalar that remains invariant at the rotation). 
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in Section 3.3 to calculate S, and S, for linear waves. Hence those results 
are still valid and repeated for reference from (3.3.30) and (3.3.35) 

1 
’- 16 

s - - p g  H ~ G  

with G = 2kh/ sinh 2kh. 
Therefore, Sap can be written using (11.6.20) as 

1 
16 sap = - P H 2  [(I + + GLpI 

Thus, the (2, y)-components in (11.6.21) become 

1 
16 

S,,= - p g H 2 [ ( 1 + G ) ~ ~ ~ 2 a , + G ]  

S,, = S,, = - p g H 2  cos Q, sin a, (1 + G) 

S,, = 

1 
16 

1 
p g H 2  [(1+ G )  sin2 Q, + G] 

Alternatively using (11.6.28) for e,p we get 

Sap=  - p g H 2  1 [( l+G)-+G6,8]  ka kp 
16 k2 

(11.6.37) 

(11.6.38) 

( 11.6.39) 

( 1 1.6.40) 

(11.6.41) 

(11.6.42) 

(11.6.43) 

From (11.6.23) we see that the dimensionless radiation stress Pap becomes 

1 
16 pap = - [(I + G)eap + Gdap] 

(1 1.6.44) 

The function G is sometimes expressed in terms of the ratio of group 
velocity to phase velocity cg /c  (see (3.3.16)). Thus for linear waves only 
Sap can also be written 

(11.6.45) 

+ (? - 1) dap] (11.6.46) 
E 2cg k,kp 
- -~ 

= 2 [ c  k 2  

where E = i pgH2 .  
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For completeness, it is emphasized that the angle aw in Fig. 11.6.3 is 
the angle between the wave front and the x-axis. As the figure indicates, 
this is not the “angle of incidence” for the wave in a refraction sense. 

11.7 Examples on a long straight beach 

11.7.1 The momentum balance 

In order to illustrate the nature of the wave generated nearshore cir- 
culation it is instructive to consider two examples, which can be used to 
gain insight into how the equations work. They are both for a long straight 
beach. The first is the simple cross-shore momentum balance for normally 
incidence waves, the second analyzes the longshore current generated by 
obliqiely incident waves. 

On a long, straight (or 2D) beach, depth contours are straight and 
parallel to the shoreline and all cross-shore profiles are equal. (A special 
2D beach is the plane beach where the bottom slope is the same at all 
points.) 

The traditional simplification (the validity of which we will examine 
further in a later chapter) is to consider only depth uniform currents. Then 
we can use the momentum equation in the form (11.5.20). 

Incident waves 

x 

Fig. 11.7.1 A long straight (or “cylindrical”) beach with normal incident waves. 
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The x-component becomes: 

and similarly for the y-component: 

d -  8 Q P Q Y  
P,&~ + P- 8x0 (7) 

In addition the depth integrated, time averaged continuity equation 
(11.2.19) is valid 

(1 1.7.3) 

In (1 1.7.1) and (1 1.7.2) the surface force terms Ri  have been assumed equal 
to zero in accordance with the assumption that wind stresses are neglected. 

When we introduce the above mentioned constraint of a 2D beach, and 
add that we consider a steady state, we can deduce the following about the 
flow: 

(1) Steady state means d / d t  = 0 
(2) Since the situation would be the same for all cross-shore profiles along 

the coast, we must also have 

- 

(11.7.4) 

i.e., we need only to consider 
variable. 

shore direction so we have 

= & = -& since x is now the only 

(3) Then for continuity reasons there can be no net-discharge in the cross- 

a"P 

Qx = 0 (1 1.7.5) 

These simplifications will be used below in formulating the final version of 
the equations for the two examples. 
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First, however, it is recalled that in these equations the radiations stress 
and (hidden behind &a) the volume flux Qwa for the waves are the wave 
averaged signatures of the short wave motion and these contributions rep- 
resent the wave forcing for the currents and variation of the MWS T. These 
driving forces are assumed known and the unknowns in the equations are 
&cy and T. 

11.7.2 The cross-shore momentum balance: Setdown and 
setup 

We first consider the cross-shore momentum balance in the simple case 

The simplifications listed above then reduce (11.7.1) to the following 
of waves normal to the shore, i.e. aW = 0. 

(with h = ho + <): 

Comment: It is also worth to notice that we might think there is a 
longshore current Q y .  However, with normally incident waves we have 

s,, = ( S m ,  Sy,) = (fLz , 0) (1 1.7.7) 

Hence there is no driving force for such a current in the y-direction and, 
as we will see later, this means the longshore bottom friction component 
which a current would cause would make it die out quickly. 

Fig. 11.7.2 The controle volume for the simple cross-shore momentum balance of 
equation (11.7.8). The triangles indicate the pressure forces. 
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This also means that all terms in the continuity equations vanish. 
In (11.7.6) the rxx-term represents normal stresses on vertical surfaces 

x=const due to the turbulence (and viscosity). These terms are normally 
neglected because they are small in comparison to the other terms in 
(11.7.6), and we will do so here. 

Hence the general Eq. (11.7.1) reduces to the expression 

( 11.7.8) 

Fig. 11.7.2 illustrates this force balance. It is emphasized that with the 
present derivation (11.7.8) applies to any type of wave motion under the 
conditions listed above. This includes breaking waves. 

Notice also that the assumption of no mean current in the cross-shore 
direction does not justify the assumption that the bottom friction van- 
ishes (as claimed e.g., by Mei, p. 463). As we will see later, there is a 
cross shore circulation, which cannot be described by the depth integrated 
equations considered here and the mean bottom friction is linked to the 
current at the bottom, not to the (zero) mean current. Here we will neglect 
7,b because it turns out to be less than 5% of the other two terms in the 
equation. 

We now turn to ways of assessing the terms in (11.7.8) inside the surf 
zone, in particular the radiation stress S,,, and subsequently to integrating 
this equation. 

Without loss of generality we can introduce (11.6.22) for S,, into 
(11.7.8). We then get 

d - dc 
dx dx - ( P x x H 2 )  = -(ho + C)- (1 1.7.9) 

Because the wave motion before breaking (outside the surfzone) is so 
different from inside the surfzone we consider the two regions separately. 

The solution outside the surfzone 
In order to determine the driving forces dS,x/dx we must use a wave 

model to determine the S,,. On the sufficiently gently sloping bottom 
assumed here the locally constant depth assumption makes the linear wave 
theory a valid approximation outside the surfzone. 
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Disregarding losses from bottom friction etc. in the wave motion the 
energy flux E f  = E f ( h ,  H )  is conserved so that 

-- - 0  d E f  
dx 

(1 1.7.10) 

In principle (11.7.10) is then solved to provide information about the wave 
height variation, and at each depth the value of P,, is given by the expres- 
sion (11.6.44) 

(11.7.11) 
1 
16 P x x = - ( l + 2 G )  

where G = 2kh/ sinh 2kh. 
As can be seen (11.7.9) is a nonlinear equation in < and hence we should 

expect it to be impossible to solve it analytically. This is not the case, 
however. The following method was developed by Longuet-Higgins and 
Stewart (1964). 

Exercise 11.7-1 
In order to integrate (11.7.9) consider the two compponents S,  

and S, of the radiation stress defined by (11.6.37) and (11.6.38). 
Then using the linear wave expressions and (11.7.10) first show that 

d 
dz 
-(Smc) = 0 

Then also show that 
dc c G 
dh- h l + G  
_ -  -- 

Third show that (11.7.12) also implies that 

dS, S, dh 
dz h dx 
-- -_ - - 

(1 1.7.12) 

(1 1.7.13) 

(1 1.7.14) 

Then substituting these results into (11.7.9) show that this modifies 
that equation to the form 

which can be integrated to give 

- h2 
C=--G+C 

16h 

(1 1.7.15) 

( 11.7.16) 

valid for the non-breaking waves outside the surfzone. 
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It is first noticed that for infinitely deep water this gives 
- 
C=C (11.7.17) 

Therefore, choosing 3 = 0 at  deep water means C = 0. T = 0 at deep 
water implies that the horizontal x-axis (which represents the reference 
level z = 0) is now positioned at the deep water MWL. This is the most 
convenient choice and this position is used everywhere in this text 
in the discussions of nearshore circulation. 

We also see that relative to deep water 5 is < 0, meaning as the water 
depth decreases toward the breaking point the height of the MWL decreases 
and it reaches its lowest point at the breaking point. This is called the 
setdown. 

Exercise 11.7-2 
Verify the following statements: Waves in a storm may easily 

reach a height of H = 5m on a depth of h = lorn and with a 
wave period of T = 8s. This implies a deep water wave length of 
LO = lOOm which will correspond to L = 71m on h = 10m. 
Thus we have G = 0.62 and we get < = -9.7 cm. Thus even in a 
storm with very large waves the setdown is only a few cm. 

The solution inside the surfzone 
The variations of the mean water surface MWS after breaking, i.e. the 

conditions inside the surfzone were first analysed by Bowen (1968). 
As before the variation of H and P,, must be assessed independently. 

Inside the surfzone we do not use sinewave theory. Instead, to circumvent 
the need for establishing a wave model to determine H ,  we assume that in 
the breaking zone H is a constant fraction y of the local depth h, so we let 

H = y h  (11.7.18) 

The value of P,, essentially represents the shape of the wave motion in 
the widest sense (surface profile, velocity field, pressure variation), i.e., the 
entire phase motion. And that is information which we loose when we 
average over a wave period. For the present purpose we simply assume 
that 

(11.7.19) P,, = const. = P 

where we can use empirical information for P (see e.g. Section 5.5). 
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Substituting these simplifications into (11.7.9) that equation becomes 

dh2 - d( 
dx dx Y P- 1 -(ho + 0- 

and with h = ho + (, we get by solving with respect to dt ldx:  

2Py2 dho - d l  - - _ -  
dx 1 +2Py2  dx 

or 

C = - A  h,,dX + ( ( ~ 0 )  1: 
where h,, is short for dholdx and 

2Py2 
1 + 2Py2 

A =  

(11.7.20) 

(1 1.7.21) 

(1 1.7.22) 

(11.7.23) 

This results in a water level which increases shoreward from the breaking 
point. It is called the wave setup. 

Exercise 11.7-3 
Typical values for the wave height-to-water depth-ratio y and 

P in the surf zone are y = 0.6; P = 0.20, respectively. Show that 
this results in 

A = 0.126 (1 1.7.24) 

i.e.: The slope on the mean water level is 12.6% of the bottom 
slope. 

Analysis of a large number of measurements on a coast (Longuet-Higgins 
and Stewart, 1963) show that the slope on the mean water level is of the 
order 

N -0.15h0, - dc 
dx 

though the scatter of the data naturally is substantial. 

( 1 1.7.25) 

Plane beach, h,, = const. 
For a plane beach calculation of the integral in (11.7.22) is straight 
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forward and yields 

and hence 

(1 1.7.26) 

( 1 1.7.27) 

If we have xo = XB at the breaking point (11.7.27) becomes 

that is, a linear variation of the MWS shoreward of the breaking point. We 
see that using the value of A = 0.126 found above this result means that 
at the point of the initial mean shoreline where ho = 0 we have a setup 
of T = 0 .126h~ ,  and with a breaker depth of hB = 5 m as in the example 
earlier that means a setup of = 0.65m at the initial shoreline x = 2,. 
Thus the setup is typically much larger than the setdown. 

Exercise 11.7-4 
This substantial setup, however , moves the actual shoreline a 

substantial distance shoreward to position we can call 2,. Show 
that on a plane beach the distance 2,-x, from the shoreline defined 
by the MWL to the actual setup-defined shoreline can be written 

A 
A + hox x, - 2, = ~ (2s - XB) (11.7.29) 

Show that if A = 0.126 as in the example above and hoX = -0.2 
this means the shoreline moves the distance x r  - x, N 1.7(z, - XB) 
shoreward, that is a distance which is 1.7 times the surfzone width. 
Similarly show that for hoz = -0.3 the distance will be 0.72 times 
the surfzone width. 

Clearly this is a very crude model. However, it contains essential el- 
ements of the real world such as that the set-up is much larger than the 
set-down before breaking. 

Fig. 11.7.1 shows measurements of wave setdown and setup on a plane, 
but very steep, beach (1:12) by Bowen et aL(1968). They were some of 
the first lab measurements published showing the mean water variations 
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on a beach. As (11.7.28) suggests, we should expect a constant slope of 
the mean water surface in this case and the experiments seem to confirm 
this. Later, more accurate and detailed experiments have shown, however, 
that this is an over-simplification originating from the two assumptions 
(11.7.19) and (11.7.18) which do not hold in general and in some cases are 
quite inaccurate. 

THEORY 
/ 

ti k - % W l .  -/yq - - - - 
r t  E X P  ERiMENT 

EREAKI 
POINT 

Fig. 11.7.3 Comparison of experiments with theory for set-down and set-up on a 
plane beach. Data: wave period = 1.14 s; deep water wave height H ,  = 6.45 cm; 
breaker height Hb = 8.55 cm; beach slope = 0.082 (from Bowen et al., 1968). 
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11 -7.3 Longshore currents 

Introductory analysis of the problem 

I 
I 

Surf Zone 
-I 

Fig. 11.7.4 A long straight beach with obliquely incident waves. 

The next application of the basic equations which we consider is the 
longshore momentum balance on a cylindrical (or “2,”) coast with waves 
incident at an angle aw. 

Since refraction changes the wave direction as the waves approach the 
shore, we have aw = a,(x). As mentioned in Section 11.7.2, however, the 
situation will be the same at all points in the y direction with the same 
x-coordinate. The lack of variation in the y-direction can be used to show 
that the refraction follows Snell’s law 

sin aw 
= const. 

C 
(11.7.30) 

where c is the phase speed for the wave. 
It is worth to recall that Snell’s law is entirely based on the congruence of 

the wave orthogonals in the y-direction. Hence, Snell’s law is valid for any 
wave type, linear or nonlinear, breaking or non-breaking, only provided 
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T,, dz - rY B = 0 

they are regular with constant wave period T .  This is often overlooked 
because Snell’s law is often derived in the context of linear wave theory. 
As shown in Section 3.5.2 for pure wave motion Snell’s law applies exactly 
on any cylindrical beach (i.e. longshore uniform topography), regardless 
of coastal profile and the shape of the waves. Similarly for waves with 
longshore currents Snell’s law holds if we use the absolute phase velocity 
Ca. 

(11.7.31) 

Exercise 11.7-5 
Show that for the situation with waves incident at an angle 

the cross-shore momentum balance given by (11.7.9) formally re- 
mains the same. The influence of the angle of incidence aW shows 
up only in the value of P,,. 

Determine also that P-value assuming linear wave theory. 

Introducing the assumption (11.7.4) and the assumption of stady state 
(8/at = 0), the longshore (i.e., y) component of the momentum equation 
(11.7.2) can be written 

- 

... i 111 11 

We see that this equation says that on a long straight coast, the long- 
shore momentum variation is a balance between three forces (or processes). 

The cross-shore rate of variation of the longshore radiation stress com- 
ponent S,, - which acts as a driving force for currents. 
The bottom shear stress r:, which restrains the currents but which is 
zero unless there & a current. 
The rate of change of the turbulent shear stresses - which act as a 
distributing (or “dispersion” mechanism that transfers dS,,/ax driv- 
ing forces in the cross-shore direction. This mechanism is also called 
lateral mixing. 

The figure 11.7.5 shows the situation. Note that the arrows indicate the 
positive directions for each of the forces shown. 

Hence, it is evident that in the longshore direction the momentum bal- 
ance can only be achieved if there is a current (the “longshore current”) 
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c 

Fig. 11.7.5 The radiation and turbulent shear stresses acting in the longshore 
(y-direction) on a water column. 

that creates a bottom shear stress, because there is no MWS-variation in 
the longshore direction to counteract the driving radiation stress component 
(as was the case for the cross-shore momentum balance). 

Analysis of each of the terms in (11.7.31) 
The equation (11.7.31) for the momentum balance in the y-direction 

was first solved by Thornton (1970) and later by Longuet-Higgins (1970a,b) 
(LH70 in the following). The following is a modified version of Longuet- 
Higgins’ solution, using our nomenclature and the results from previous 
Chapters. 

Though it cannot be seen in the present form (11.7.31) actually rep- 
resents an equation that describes the longshore current. To expose that 
directly we need to replace the symbols for Szy, rzy and Tyb with expres- 
sions that relate these quantities to the waves and to the shear stresses 
generated by the current. 
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The value of dS,,/dx outside the breaking point 

dS,,/ax = 0 outside the breaking point. 

pression for the wave energy flux (see Section 3.3) 

We first show the remarkable result that under fairly general conditions 

In the direction of wave propagation, we have the following exact ex- 

(11.7.32) 

In the general 3-D case, the vector property E f  can be written, using tensor 
notation 

I Ef = / [PD + Z P ( U %  + w%) '1Lwdz 
c 1 

-ho 

I c 1 
EfP = / [PD + 5 P  (u,,u,, + wi) updz 

- ho 
(11.7.33) 

For the waves with orthogonals at an angle aw with the x direction this 
means 

ux = ucosa, ; uy = usina, ; u 2 = u,u, (11.7.34) 

so that 

Ef.  = E f  cos a, ( 1 1.7.35) 

Since the wave motion is a potential flow, the Bernoulli equation applies 

a4 P 1 2 - + - + z + - (u,~zL,, + ww) = const 6% P 2 (11.7.36) 

or with p~ = p- pg( b-z) introduced and the constant adjusted accordingly 
to zero this means 

which substituted into Efp  yields 

(11.7.37) 

(11.7.38) 

We also assume that the waves are progressive and described by a ve- 
locity potential q!J of the form 

4 ( x ,  y, Z ,  t )  = q!J Z ,  w t  - kxdx - ky9  (11.7.39) (i s 
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Therefore, we have 

(11.7.40) 

Substituting into (11.7.38) then leads to 

(1 1.7.41) 

For the x-component and with 2 = u this becomes 

(11.7.42) c 
E f x  = - puudz = - SX, 

sin a, 

By Snell’s law c/  sin a, is constant on a cylindrical 
crested monochromatic wave, and since E f ,  on a long 
a/dy = 0 is constant too outside the surf zone, we get 

dEf. - c as,, --oo-- 
dX sin a, dx 

coast for any long- 
straight coast with 

(11.7.43) 

which shows that dSx,/dx = 0 for non-breaking, progressive, periodic 
waves of any height and shape. Note that (11.7.43) does not assume linear 
wave theory. 

Comparing with momentum equation (11.7.31) we see that this means 
that outside the breaking point there is no driving force for the longshore 
current even though the radiation stress is changing there too. 

The radiation stress term 
The solution we are talking about assumes that the wave motion can 

be described by the linear sine-wave theory both before and after breaking. 
Hence, we have from Section 11.6.2 

(1 1.7.44) 1 
16 S,, = -p  g H 2  C O S ~ ,  sina,(l + G) 

Outside the breaker line 
Outside the breakerline we have already found that 

(11.7.45) 
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In other words, and relating to the analysis above, this means that outside 
the breaker line there are no driving forces in the longshore direction. 

Inside the breaker line 

waves so that 
In this simplified analysis it is assumed that the waves are linear long 

G = l  ; c = &  (1 1.7.46) 

We also assume that we are dealing with saturated breakers which means 

H = yh (1 1.7.47) 

Substituted into (11.7.44) this yields 

1 
S,, = p g y2 h2 sino, cosa, (11.7.48) 

Here h = ho + c. 
variation of cosa,, (11.7.48) gives inside the surf zone 

Using again Snell's law, and assuming a, small enough to neglect the 

s- _ -  p g  312 y h  2 312 h, (sincaw) 
0 dx 16 (1 1.7.49) 

where index 0 indicates a reference value of the Snell-const (e.g. deep 
water). 

The bottom friction term 
Clearly one of the crucial elements in the balance is the bottom friction 

term in (11.7.31). We are dealing with bottom friction due to a water 
motion which is a combination of waves and currents. This problem was 
analysed in Section 10.4.3. The conditions assumed in this case are that 

(1) a, N 0, i.e., waves are, for the computation of bottom friction, normal 

(2) V << uo, i.e., the current is weak relative to the wave particle motion. 
incident on the beach. 

Thus we have that the angle p between the waves and the current is 

p = 7r/2 (1 1.7.50) 
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This corresponds to one of the cases analysed in Section 10.4.3 where it was 
found that 7yb is given by (10.4.33) 

1 
(11.7.51) 

In the case of sinusoidal shallow water waves assumed here, we also have 

- 
Tyb % - P f  u o v  

T 

so that 

(11.7.52) 

(11.7.53) 

which is a shear stress in the direction of the current. 

The lateral mixing term 
As mentioned, the turbulent shear stresses rZy in (11.7.31) represent a 

distributing mechanism which is often modelled by an eddy viscosity ut. 
Thus we assume 

d V  
Tzy = P vt - d x  

which means that 

(1 1.7.54) 

( 1 1.7.5 5) 

By dimensional considerations 

vt c( U L  (11.7.56) 

where U and L are a characteristic velocity and a characteristic length, 
respectively. Longuet-Higgins chose 

u N (gh)l’2 , L - x ( 1 1.7.5 7) 

whence we get 

v t = N x a  (11.7.58) 

where N is supposed to be nearly constant. This assumption will be dis- 
cussed later in Section 12.2 and Chapter 13 and found to to be less realistic 
than a choice based on L - h. 
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It is convenient to non-dimensionalize the eddy viscosity by hJgfE so we 
get in dimensionless form 

Inserted into (11.7.55) together with (11.7.63), this yields 

(11.7.59) 

dV 
rXy dz = p N g1I2 h:l2 x5I2 - dx{ (11.7.60) 

11.7.4 Longshore current solution for a plane beach 

From here on we will restrict the considerations to a plane bottom 
(hox = const) because in that case we can find an analytical solution to 
the problem, which helps the understanding. 

Change of coordinate 2 to include setup at the shoreline 
At the shoreline we found there is a significnt setup which means x = 0 

is not the actual shoreline. However, since both the data mentioned earlier 
and the simple theory for < inside the surfzone shows that on a plane bottom 
we have 

c c  = c hox C = const (11.7.61) 

we may include the effect of set-up in the solution without further compli- 
cation (although this was not done by Longuet-Higgins) by a simple change 
in the definition of x. Hence, we let (with X I  the distance from the actual 
shoreline (see Fig. 11.7.6)) 

h = h, XI h = h o + C  (11.7.62) 

and use (11.7.21) to find 

hox h -  
x -  1+2Py2 

which can be used together with (11.7.53) to get 

( 1 1.7.63) 

( 1 1.7.64) 

Note that: V > 0 + 7yb > 0 which according to the sign convention 
means T is opposing V. That has already been built into (11.7.31). 
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,xpBreuker Point x=xs 

I 

Fig. 11.7.6 Definition of the x and x' coordinates. 

Substituting (11.7.49), (11.7.64) and (11.7.60) into (11.7.31) the entire 
equation may then be written (with (sina,/c)o = Co) 

where the RHS represents the forcing dSx,/dx. There are two regions for 
the equation because outside the breaking point the forcing is zero. 

The solution procedure 

to  h. Then (11.7.65) can be written 
It is convenient to change the independent variable in (11.7.65) from x' 

where we have defined 

and 

(11.7.67) 

(11.7.68) 



11.7 Examples o n  a long straight beach 

V 
I 

575 

/ 
/ 
/ 
/ 
/ 

By writing (11.7.66) in the form 

v=o 

I 4 0 5  
Breaker line 

,d2V 5 dV 
dh2 2 dh 

PNh ~ + -PNh- - v = 

/ 

/ 
/ 
/ 
/ 
/ 

/ - x’ 

(11.7.69) 

it is seen that (11.7.66) is an “equidimensional” equation (see e.g., Green- 
berg, 1988 p. 899), (also called a (Cauchy-)Euler equation). 

Special case: No lateral mixing 
We first consider the special case of N = 0 i.e. PN = 0, which corre- 

sponds to neglecting the turbulent or lateral mixing. Then (11.7.66) reduces 
to 

0 hg<h<CC 
Vo(h) 0 < h < hg V ( q  = 0) = (1 1.7.70) 

Fig. 11.7.7 shows the solution (11.7.70) which has a discontinuity at the 
breaker line and no longshore current at all outside the breaker line. 

Fig. 11.7.7 The cross-shore variation of the longshore current if lateral mixing is 
neglected. 

Solution with turbulent mixing 
The solution is obtained using the boundary condition 

V = 0 at 2’ = 0 (shoreline) (11.7.71) 
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and the matching condition that the velocity and shear stress are the con- 
tinuous at the breaker line, i.e., 

V(Z&+) = V(+) (1 1.7.72) 

(g) X g +  =(g)  51s- 

(1 1.7.73) 

The general solution to (11.7.68) can be found by the transformation of 
the independent variable h given by 

( 11.7.74) 

where ho is a reference depth. This changes (11.7.69) into an equation with 
constant coefficients. 

Substituting (11.7.74) into (11.7.69) we get 

d2V 3 dV 
dz2 2 dz 

PN- + -PN- - V = (11.7.75) 

where A0 = Vo/h. We first realize that inside the surf zone (zg < z’ < 0) 
(11.7.75) has a particular solution of the form 

V = AeZ(= Ah’) (hg < h < 0) (1 1.7.76) 

Substituting this into (11.7.75) gives 

( 1 1.7.77) 

The complete solution to (11.7.75) is then the sum of (11.7.76) and the 
general solution to the homogeneous version of (11.7.75) (or (11.7.70)) 

(1 1.7.78) 

The solution to this equation has the form 

V = BleP1’ + B2ePZZ (1 1.7.79) 

where p l ,  p2 are solutions to the characteristic equation 

(11.7.80) 
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Solving this equation for p gives the two values 

(11.7.81) 

Substituting back the inverse of (11.7.74) then gives the homogeneous so- 
lution for V 

V = B1 hlP1 + B2 hlPz 

Since p1 > 0 and p2 < 0 we only get bounded solutions in the two intervals 
if we choose B1 = 0 outside the surf zone and Bz = 0 inside so that the 
complete solution to (11.7.66) (or 11.7.70) becomes 

( 11.7.82) 

The boundary conditions at h = hB are then satisfied by taking 

A B2 = ~ A (11.7.83) 

In (11.7.77) we had to exclude the case PN = 2/5 which we see from 
(11.7.81) corresponds to 

PI - 1 P2 - 1 
B1 ~ 

PI -P2 P2 - Pl 

p l = l  , V =  Blh’+Ah’ 
5 (11.7.84) 

p2 = -- 
2 

Therefore for PN = 2/5 the particular solution const. h’ is also a solution 
to the homogeneous equation and hence cannot be used as a particular 
solution. An alternative to (11.7.76) is then 

V = A z ez (= Ah’ In h’) ( 1 1.7.8 5) 

which turns out to give A = -! and the complete solution for PN = 2/5 
becomes 

(11.7.86) 1 gh’ - $h‘ In h’ 0 < h’ < h’B 
v=( 

h’B < h’ < 00 - 10 hl-5/2 
49 

where the constants have again been chosen so that the solution satisfies 
the conditions (11.7.72) and (11.7.73). It also turns out that when PN + 
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215 then the solution given by (11.7.82) approaches the solution given by 
(11.7.86). 

Fig. 11.7.8 shows the variation of the solution for different values of PN, 
which is the only other parameter of the problem in addition to Vo. Clearly, 
the PN # 0 solution is radically different from the solution with no lateral 
mixing in Fig. 11.7.7, first of all in that the longshore current is nonzero 
also in a region outside the breaker line. 

Fig. 11.7.8 
x/xb and the lateral mixing parameter P = PN (from Longuet-Higgins, 1970b). 

Theoretical form of the longshore current V/Vb as a function of X = 

The best fit value of PN 
Fig. 11.7.9 from Longuet-Higgins (1970b) shows one of the comparisons 

with laboratory measurements by Galvin and Eagleson (1965). It is seen 
that most of the eperimental results lie in the range of PN-values for the 
solution described above of 0.1-0.4. We later (Chapter 13) want to compare 
these results with a case with a bottom slope of 1 : 35 and therefore we 
need the value of C = N/h ,  in (11.7.59). We see that for y = H / h  = 
0.6, f = 0.01 and h, = 1 : 35 we get that 

P N  = 0.1 

PN = 0.4 

corresponds to C N 0.45 

corresponds to C N 1.80 
(1 1.7.87) 

with a central fit corresponding to perhaps PN = 0.25 or C N 1.1. 
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Fig. 11.7.9 
and laboratory measurements (from Longuet-Higgins, 1970b). 

Comparison between theoretical prediction of longshore current profile 

11.7.5 Discussion of the examples 

The two examples analysed in this chapter form canonical cases in that 
they contain some of the most basic and important elements of nearshore 
circulation. 

In the first example, the cross-shore momentum balance, we find that 
the change in radiation stress - in particular the spectacular decline from 
maximum at the breaking point to zero at the shoreline - represent forces, 
that to hydrodynamical standards actually are quite large. 

However, except for a small bottom friction the force from the decreasing 
radiation stress is balanced entirely by the pressure force represented by the 
increase in mean water level. As we saw in the example the slope on the 
mean water level would be 10- 15% of the bottom slope. If that is 1/30 the 
slope on the mean water surface will be of the order 3 x This is roughly 
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30 times a typical slope required to drive a river, which is O(lOP4). This 
means a slope that could drive a roaring stream if it were left unbalanced. 
On the other hand, if the two forces balanced each other completely there 
would be no forces left to create currents. 

As mentioned earlier a closer inspection shows, however, that the dif- 
ference between the two forces is not completely zero. There is a small 
difference which is caused by the fact that on a long straight coast the vol- 
ume flux brought in by the waves must also go out at each point along the 
coast. This outgoing current component (called the undertow, see Section 
12.2) will create a bottom shear stress. In the above example this shear 
stress did enter the equation initially (see (11.7.8)) but we neglected it be- 
cause it is small - normally less than 5% of the radiation stress gradient. 
(As the river example shows, only very small forces are required to drive 
currents because currents create only small bottom stresses.) 

In this respect the longshore balance is radically different from the cross- 
shore situation. Here there is no change in the mean water level along the 
shore (i.e. no pressure gradient) to balance the change in longshore radi- 
ation stress component Szy. As (11.7.31) shows the longshore component 
of the radiation stress is essentially balanced by the bottom shear stress, 
because the lateral mixing only distributes the forcing in the cross-shore di- 
rection, it does not balance it in an overall sense. Only the bottom friction 
can do that. 

However, that longshore component of the driving radiation stress S,, 
is also much smaller than the cross-shore component, because the incident 
angle a, of the waves relative to the normal to the shore is assumed small. 
Hence there is again only a relatively small amount of forcing available to 
generate currents - in this case the longshore component. 

Thus we see that the forcing available for driving currents depends on 
how the radiation stress gradients and the pressure gradients develop. In 
more general nearshore flow situations the forcing available for driving cur- 
rents can be expressed by the Forcing Residual R, which is defined as 
the vectorial sum of the two gradients 

(11.7.88) 

The use of R, for analysis of nearshore flows with complicated hori- 
zontal variation as is often the case on natural beaches can facilitate the 
understanding of what drives the currents. 
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A consequence of the fact that the magnitude of the cross-shore radi- 
ation stress gradients often are much larger than the longshore gradients 
leads to a possible source of longshore current forcing. If the depth vari- 
ations are such that the setup generated at two neighboring cross-shore 
profiles is even moderately different we can have a situation where there 
is a (perhaps small) longshore difference in the setup at the two positions. 
This corresponds to a longshore gradient in 3 which can be a noticeable 
forcing in comparison to  the other (small) longshore forces. Therefore, as 
the expression for R, shows, this small gradient can drive a longshore cur- 
rent, which can be strong locally. Thus in more complex situations on 
natural beaches it is often not a good approximation to neglect the first 
term in R, as we are able to do on a long straight coast. One can say: a 
coast only needs to deviate very little from long and straight for the long- 
shore variations to be important. This also applies to the incoming waves. 
This can easily result in longshore variations caused by (small) offshore 
depth variations that create refraction of the waves resulting in focusing or 
spreading of the waves near the shore. 

It is also worth here to emphasize that the two examples above follow 
the classical approach of depth uniform currents. Not only do we know 
that the currents are not depth uniform, but the results of more detailed 
analysis suggests that the S U V  and the Ju,V-terms in (11.5.13), which 
we would get without the simplification of depth uniform current, would in 
fact have been important terms in (11.7.2) had we initially used (11.5.13) 
instead of (11.5.20). This is discussed in a continuation of the example in 
Section 13.5 

11.8 Wave drivers 

In the time averaging process used to derive the nearshore circulation 
equations we loose the detailed information about the short wave motion. 
What is left is the time averaged signature of the wave motion in the form 
of the short wave mass flux Q,, and radiation stress Sap. 

In order to solve the nearshore circulation equations (11.2.27) and 
(11.5.13) or (11.5.20) we therefore need to determine Q,, and Sap by 
separately solving the equations of a wave model that provides information 
about Qwa and Sap. Because the variations of Qwa and Sap are driving 
the nearshore circulations a wave model used in that capacity is also called 
a wave driver for the circulation equations. 



582 Introduction t o  neaTShOTe hydrodynamics 

..-- - O 2 h  

I 
0 1  \ . , 

0 
0 3 6 9 12 15 I8 

..-- - O 2 h  

I 
0 1  \ . , 

0 
0 3 6 9 12 15 I8 

03 

y= 29.7 rn 

~~~ - - 0 1  

0 3 6 9 12 15 18 

y= 29.7 rn 

- {~~ 0 1  

0 3 6 9 12 15 18 

y= 25.7 rn 

I I  

Y= 25.7 rn 

-y;'.,i 
y= 30.7 rn 

- 
0 1  

0 3 6 9 12 15 18 

Fig. 11.8.1 Comparisons of wave height ( H )  between experimental data (0) from Hamil- 
ton and Ebersole and the cnoidal-bore model (-), the sine wave model with a roller (-.) 
(Svendsen et al., 2003). 

To avoid that the wave driver becomes a major part of the total com- 
putational effort for the circulation problems wave drivers need to be rea- 
sonably simple. Typical examples of wave models that are suitable as wave 
drivers are the models described in Chapter 6 such as 

refraction models 
wave action equation models 
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Fig. 11.8.2 Comparisons of c 2 / g h  between the experimental data (0) from Hansen and 
Svendsen, and Svendsen and Veeramony and the cnoidal-bore model (-), and the sine 
wave model (-.) (Svendsen et al., 2003). 

0 kinematic wave models 
0 mild Slope Equation (MSE) models 
0 parabolic wave models 

These are all in some way wave averaged models from which the driving 
parameters can be determined fairly readily. 

On the other hand Boussinesq type models are not suited because the 
computational time needed to solve those equations is one or more orders of 
magnitude larger than it takes to solve the circulation equations. Further- 
more such models will already generate some of the circulation themselves. 
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Fig. 11.8.3 Comparisons of the mean water level (c) between experimental data (0) 
from Hamilton and Ebersole and the SC with the cnoidal-bore wave driver (-), with 
the sine wave driver with a roller (-.) and with the sine wave driver without a roller 
(--) (Svendsen et al., 2003). 

The accuracy of wave driver models 
As described in the past chapters the above mentioned wave averaged 

models are all, one way or the other, based on linear (or sinusoidal) wave 
theory, which is only a first approximation for the wave motion. It is 
therefore important to assess how accurate the predictions of QWLY and Sag 
provided by linear wave theory actually are. 
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A recent investigation (Svendsen et al., 2003) shows comparison of a 
sinusoidal wave driver model with a wide selection of laboratory measure- 
ments. Particular emphasis is on the extensive 3D experiments on a long 
straight coast conducted at the Large scale Sediment Transport Facility 
(LSTF) at the US-Army CHL-laboratory in Vicksburg, but many other 
published laboratory data are used as well. For illustration the compar- 
isons also include a wave driver built on a combination of cnoidal waves 
(outside the surfzone) and a bore-type model using Hansens (1990) empir- 
ical results for the shape factors (inside the surfzone). Fig. 11.8.1 shows 
a direct comparison of the wave height predictions with the LSTF-data 
(Hamilton and Ebersole, 2001). The eight panels are for eight cross-shore 
transects in the wave basin. Similar comparison with published data from 
a range of wave flume (i.e. 1DH) experiments show similar results: The 
model based on sinusoidal waves underestimate the increase of the wave 
height toward breaking. We can see the reason for this if we consider the 
expresssion for the energy dissipation 

E f  = pgcH2B (11.8.1) 

where B is the dimensionless shape factor. As discussed in Section 5.4 B for 
sine waves is larger than for real waves. Thus for constant E f  a too large 
B means a too small H .  Consistent with this it turns out that the cnoidal 
wave model comes closer to predicting the decrease in B that corresponds 
to the actual increasing peakedness of the waves approaching breaking. 

In the comparisons the breaking point is fixed at the point where the 
waves break in the experiments so the surfzone wave heights reflect the 
errors before breaking. Because all models of this type have wave heights 
tending to zero at the shoreline the absolute errors decrease shoreward. 

However, this is not the full story as we can see by considering Fig. 11.8.2 
which shows the phase velocities c2/gh. It is clear that the sinusoidal theory 
predicts c2/gh almost constant meaning c is decreasing rapidly shoreward 
while the measurements (and the cnoidal model) shows an increase in c2/gh 
toward breaking. Considering (11.8.1) a too small c (sine waves) would tend 
to increase the growth of H .  So this effect counteracts the other error in 
the sine wave theory. As Fig. 11.8.1 shows, however, the bottomline is 
that failure to predict the changes in B dominates over the errors in phase 
velocity and H is not increasing fast enough. 

Inside the surfzone the scatter in the measuremnts is substantial, but 
the behaviour of the two models considered is analogous to the variation of 
the wave height. 
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Fig. 11.8.4 Comparisons of wave volume flux Qw between experimental data (0) from 
Hamilton and Ebersole, Ting and Kirby, and Cox et al. and the cnoidal-bore model (-), 
the sine wave model with a roller and without a roller(--) (Svendsen et al., 2003). 

Turning to the (1DH for simplicity) radiation stress S,, this can be 
written 

Sxx = pgH2Pxx (1 1.8.2) 

With H too small one would expect the radiation stress to increase too 
little toward breaking. Unfortunately it is not possible to measure S,, 
directly. However, we saw in Section 11.7 that (if we disregard the small 
bottom friction) the gradient dS,,/dx is directly linked to the gradient on 
the mean water surface dT/dx (see (11.7.8)), which is easy to measure with 
great accuracy. Therefore the comparisons in Fig. 11.8.3 of the measured 
and computed variations in mean water surface c are direct indicators of 
the accuracy of the radiation stress, and, surprisingly, the sinusoidal theory 
seems to predict the radiation stresses quite well both before and after 
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breaking. The only possible explanation is that the too large value of P,, 
in sinusoidal waves compensates fully for the too small values of H .  

We finally consider the volume balance where the wave generated vol- 
ume flux Q,, is the important parameter. The expression found for the 
volume flux can be written 

Q w X  = -H 9 2  BQ ( 11.8.3) 

where BQ is the dimensionless shape factor. Again, we cannot measure Q,, 
directly. However, in a 1DH setting of a wave flume or a 2DH situation with 
no longshore variation as in the LSTF experiment the cross-shore undertow 
current balances the Q,, (See Section 12.2), and the undertow can be 
measured with good accuracy. The resulting values for Q,, are shown in 
Fig. 11.8.4 and we find that the sinusoidal waves have too large volume 
flux relative to the measurements as they approach breaking. Again this 
is likely to be because the sinusoidal waves are too bulky (BQ too large) 
and c is too small. And in this case of the volume balance there are no 
compensating factors that can eliminate the errors. 

So in conclusion we find that for wave drivers based on sinusoidal wave 
motion 

C 

we can expect the radiation stresses, which is one of the important driv- 
ing forces for nearshore circulation, to be surprisingly well represented. 

0 in contrast the volume fluxes will be predicted as too large. 

The consequence would be that longshore currents and cross-shore setup 
will be predicted relatively well, while currents dominated by the volume 
flux, such as the undertow, will be predicted too large. 

11.9 Conditions along open boundaries 

11.9.1 Introduction about open boundaries 

Many of the boundary conditions in the horizontal direction differ fun- 
damentally in nature from the boundary conditions in the vertical direction. 
Both the bottom and the free surface are actual physical boundaries and 
so is the shoreline, and the conditions are set by the physical conditions at 
those boundaries. 

In contrast, except for the shoreline, there are no natural horizontal 
boundaries for the computations in a limited coastal domain. In fact the 
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ideal would be to stretch the computations to the entire ocean.6 That, how- 
ever, would lead to computational conditions where the detailing required 
in the nearshore would be diffficult to achieve. 

Therefore practical computations are always done for a computational 
domain that is limited by a boundary at some distance offshore and some 
crsoss-shore boundaries that usually are nearly perpendicular to the shore- 
line at  some location up- and downstream of the region of the coast, which 
is of immediate interest. 

The problem then is that the boundary conditions we want t o  specify 
along those open boundaries are intended to simulate the effect inside the 
computational domain from what happens outside. In principle that can 
only be specified either by making assumptions about what is happening 
outside (as for example a certain incident short wave motion along the 
offshore boundary, or the conditions upstream and downstream along the 
coast are a certain type of beach, often a long straight beach with the same 
incident wave motion), or running a larger scale, coarser model that covers 
a much larger area than we are considering and using the information from 
that model to specify the conditions along the open boundaries of our model 
to nest it into the coarser model. The latter method is increasingly done 
in engineering applications. 

It  is inherent, however, in the problem that specifying the boundary con- 
ditions along an open boundary implies making assumptions about what 
happens outside the computational domain, that is assumptions about con- 
ditions which are in principle unknown. 

Because the open boundaries are imaginary except in the computations, 
we also want to make them as transparent as possible, which includes allow- 
ing waves and currents from inside to propagate out of the computational 
domain. Those issues are discussed briefly in the following. 

6That would, however, require a different set of equations, that among other things 
should include the Coriolis acceleration, which we have omitted because it only con- 
tributes significantly in larger scale problems than we are normally dealing with on a 
coast. It would also be necessary to consider density variations due to temperature and 
salinity differences in the ocean. Finally some consideration of the depth variation of the 
currents would he required, and the simple analytical treatment introduced in Section 
13 would have to he extended to include in particular vertical density variations even on 
the continental shelf. 
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11.9.2 Absorbing-generating boundary conditions 

On the types of coasts we consider here the incoming short wave mo- 
tion is generally dissipated by breaking on the beach. Therefore along the 
offshore boundary for the computational domain we can generally specify 
a short wave motion motion corresponding to an incoming wave motion. 
For the nearshore circulation equations the incoming wave motion is repre- 
sented by its radiation stress and its volume flux. The parameters for that 
motion needs to be specified through the assumptions about the short wave 
motion. 

However, as will be discussed in more detail in Chapter 14, an irregular 
wave train will carry with it a long wave motion (termed an infragravity 
or IG-wave) which is generated by the time and space variation of the 
radiation stresses of the short waves. In principle this component of the 
incoming wave motion which is a variation of the mean water surface c, 
can also be specified along the open boundaries, but those long waves will 
generally not be destroyed by breaking. Instead they are reflected from the 
beach and head back out to sea. It is necessary to  design the conditions 
at the open boundary in such a way that it allows the reflected IG-waves 
to freely pass through the boundary. That leads to  a boundary condition 
that generates the incoming variations of the radiation stress and volume 
flux for the computations, generates the incoming IG-waves, and absorbs 
the outgoing IG-waves. It is therefore called an absorbing-generating 
boundary condition. 

A brief literature review 
The problem of absorbing (sometimes called radiating or non-reflective) 

boundary conditions has been discussed in the literature since Sommerfeld 
about a hundred years ago suggested the 1D-condition at each point of the 
boundary for the wave particle velocity u normal to the boundary 

( ; + c o g )  u = o  (1 1.9.1) 

where co is the local linear wave speed. This condition (often called a 
Sommerfeld condition, see Sommerfeld (1964)) essentially says that the 
wave is a progressive wave that propagates in the offshore directed normal 
direction n without change of form, which is exactly the condition satisfied 
if we have no reflection from the boundary. It  allows update to the next 
timestep of the value of u at the boundary in the same way the circulation 
equations are solved. For a thorough review of the subject see Givoli (1991). 
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The condition becomes inaccurate, however, if the wave approaches the 
boundary at an angle. An alternative condition was derived by Engquist 
and Majda (1977). That however, is a global condition that requires the 
entire time history along the entire boundary to update the values of u at 
a point of the boundary, which is highly impractical in a computational 
setting. Instead various modifications of the Sommerfeld condition have 
been suggested which are centered around a chosen angle of incidence 8, 
relative to the local normal to the boundary. Those conditions can be shown 
(Higdon, 1986, 1987) to be on the form 

-+--) d C o d r n  u = o  
at cos 8, d n  

(11.9.2) 

where m is the chosen order of accuracy. This condition of course has the 
disadvantage that the wave angle 8, must be known in advance. This is 
usually not the case for the nearshore problems we are considering, and the 
accuracy of the condition decreases if 8, is not the same as the actual wave 
angle with the normal. 

The boundary condition briefly outlined below was developed by van 
Dongeren and Svendsen (1997) (VS97 for short) as an extension to 2DH of 
the 1DH condition given by Kobayashi et al. (1987). See also Verboom et 
al. (1981). 

Formulation of the problem 

generating boundary condition: 
Thus we can set up the following requirements for a local absorbing- 

The region outside the computaional domain can influence the motion 
inside only through the incident (long) waves and through the cur- 
rents along the boundaries. They both need to be specifiedldetermined 
otherwise because they represent the influence from the outside which 
we do not model. 

(Long) waves must be allowed to freely propagate out of the computational 
domain, that is with minimal reflection from the boundary. 

The equations considered are depth-integrated, shortwave averaged con- 
tinuity and momentum equations which form the circulation equations. 
When solved numericaly these equations provide updates in time and space 
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of the dependent variables C, Qa. The objective is to develop a boundary 
condition that does the same along the open boundary. If we place the open 
boundaries carefully (e.g. in a region with constant depth and no short wave 
breaking) the local forcing will be weak near these boundaries. This means 
that the dominating terms in the continuity and momentum equations near 
those boundaries are the terms corresponding to the nonlinear shallow water 
(NSW) equations. In matrix form they read: 

d 
dt  
- 

u' u' 0 g u' v' 0 0 u' 

h h 0 u' 0 h V' 

g dholdx' + f z  
(1 1.9.3) 

Here h is the total water depth h = ho+f, ho is the still water depth and f is 
the shortwave averaged surface elevation. U' and V' are the depth averaged 
and shortwave averaged velocities in the x' and y' directions, respectively, 
which at a general point is at an angle to the normal to the boundary. 
Usually f will also include a steady set-down or set-up component which 
we disregard here for simplicity. f represents all the local forcing terms for 
the motion, which comprises the radiation stress gradients, and the bottom 
and wind shear stresses. In the quasi-3D case described in Chapter 13 
f also includes the current-current and current-wave integrals (originating 
from the non-uniform variation of the velocities over depth). 

The solution of the nearshore equations in the domain provides the total 
values of the velocities and surface elevations for the IG-waves, but no direct 
information about in which direction they are propagating. With both 
incident and reflected IG-waves present at the same time at the boundary 
points it is necessasy to divide the total signal for velocities and surface 
elevations into incoming and outgoing components so that the outgoing 
components can be allowed to pass freely. This is done by writing the 
NSW-equations on characteristic form. 

To simplify the derivation we assume that locally the coordinate system 
is x, y with the x-axis normal to the boundary and pointing inwards into 
the computational domain. We first notice that the continuity equation 
can be written 

(1 1.9.4) 
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and since 

c2 = g ( h  + 5) (11.9.5) 

this can also be changed to 

aC2 a a 
- + -(uc2) + -(vc2) = 0 
at dx dY 

(11.9.6) 

or 

d(2c) du a(2c) d(2c) dv 
at ax dX 8Y dY 
- I- c- + u- +v-  + c - = 0  (1 1.9.7) 

Considering the x-momentum equation this can be written 

821 du dti d ( h + c )  = gdho  I fx 
- + 5,- + v- + g at ax dy dX dX 

which, again by means of (11.9.5), becomes 

dti d f i  d(2c) du dho 
-+ f -+c -  +v-  = g- + f at ax d~ ay ax 

(1 1.9 3) 

(11.9.9) 

Adding and subtracting (11.9.6) and (11.9.9) then gives the two equations 

d ( u  + 2c) d(u+2c)  d(u+2c )  av 
dY dY 

+ v  + C- d t  + ( u + c )  ax 

ah0 
= g - + f x  

dX 

which, along with the y-equation written as 

(11.9.10) 

(11.9.11) 

(11.9.12) 

constitute the equations on characteristic form. 
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We introduce the Riemann-variables p+, p-, and y defined as 

(11.9.15) 

where Qx, Qy are the total fluxes in the x, y direction, respectively, and U ,  V 
the depth averaged velocities. 

Substituting into (11.9.10) and (11.9.11) the equations in characteristic 
form then simplify to: 

(1 1.9.18) 

It is noticed that the y-equation is the ymomentum equation itself. 
As the definition sketch Fig. 11.9.1 shows, p+ propagates along a char- 

acteristic in the positive x direction, ,& in the negative x direction and y 
in the y direction. The forcing terms Fp+, Fp- and F7 originate from the 
f-terms in (11.9.3). These terms imply that p+,p- and y vary along their 
characteristics and hence they are variables rather than invariants. 

X 

Fig. 11.9.1 Definition sketch of the characteristics. 
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During the computation we will a t  time step n know the value of Cn 
and (QE,Q:)  at interior as well as at boundary points. The incoming 
IG-wave motion is specified along the boundaries through specification of 
(Qx,i,Qy,i),  which represent the 2 and y components of the flux of the 
incident wave. The numerical integration of (11.9.3) will then provide the 
values of the total ( , Q x , Q y  at time step n + 1, and the problem is to 
determine how large a fraction of this represents the outgoing wave at  n + l .  

Assuming linear superposition of the incoming wave (subscripted i in 
the following) and the outgoing wave (subscripted r),  we can write 

Q x  = Qx, i  + Qx,r (1 1.9.19) 

< = Ti + <r (11.9.20) 

Without further approximation the outgoing Riemann-variable (11.9.13) 
can then be rewritten as 

where 

(11.9.21) 

co = dgho (11.9.22) 

In order to solve this for QX, ,  we need to eliminate the surface elevations. 
For waves of constant form Q is related to the surface elevation by the 
(exact) equation (see VS97) 

Q = c a ( ( - C ) + C  (11.9.23) 

where c, is the celerity of the wave seen from a fixed coordinate system 
- and c,< represents the volume flux in the oscillatory part of the motion. 
Q is the net volume flux, which consists - of the volume flux, Q w ,  in the 
infragravity waves and the “current”. T is the average over the infragravity 

are zero. 
Then c, = c and Eq. (11.9.23) for the shorenormal z-components of the 
incoming and outgoing waves can be written as 

- 

wave period of the infragravity wave surface elevation <. - 
For simplicity we assume in the following that T as well as 

(11.9.24) 

(11.9.25) 
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where Oi and Or are defined as the angles between the normal to the bound- 
ary and the incoming and outgoing waves in the range [- s, ;], respectively. 
Eq. (11.9.21) then becomes 

hoc cos Or 
p- - - Qx,i  - 
co coho (1 + hoccosei 

+- (1 + Q x  r Qx,i  - 
hoc cos Bi hoe cos 0, co ho 

Qx,i  - 

hoc cos Oi hoc cos 0, - 2  (1 + (1 1.9.26) 

- 
To this point no real approximations have been made (except < = 0 

and = 0). However, we can expect that the volume fluxes are small in 
comparison to hoc. We therefore expand this expression with respect to 
Qx/hoco and to first order we get 

- 

where for convenience we have defined 

& I . = -  Qx,i  

co ho 
Q‘ = __ &x,r 

co ho 

x,z - 

x,r - 

(cos Or + 1) bl 
cos er 

(cos ei - 1) 
cos ei c1 2 

We solve this with respect to && which yields ’- + 2 - c l Q & )  + O ( % )  2 

QL,r = (x coho 

(11.9.27) 

(11.9.28) 

(11.9.29) 

(11.9.30) 

(11.9.31) 

( 1 1.9.32) 

which is the lowest order approximation for Qx,r in terms of quantities that 
we can consider known at  the boundary. 

Using (11.9.15) Q&,,, can be determined as 

(11.9.33) 
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This means that in (11.9.32) the unknown 8, can be determined by realizing 
that 

8, = arctan (z) Q&T (11.9.34) 

which gives 

Here QY,% is specified and y is determined by integration of the last of the 
characteristic equations (11.9.18). Thus we have determined the outgoing 
volume flux Qz,,  and its angle of incidence 4. relative to the normal of the 
boundary. 

It turns out, that for larger amplitude waves the expansion (11.9.32) 
is one of the most significant error sources. VS97 therefore extend the 
expansion of (11.9.26) to second order, which yields a quadratic equation 
in QL,r. For further details about this step the reader is referred to the 
paper. 

In these expressions p- is the Riemann-variable, which is updated to 
the next time level by (11.9.16) at the x = 0 boundary. (The value of 
p- in the interior points, which is needed to calculate in (11.9.16), is 
constructed from Qz and < using (11.9.13).) From (11.9.32) and (11.9.34) 
we can find the unknowns Q',,, and 8, iteratively. With the incoming wave 
known through specification, the boundary value of total flux Qz can then 
be determined at the next time stepand frp, the continuity equation. This 
concludes the upgrading along the boundary to time step n + 1. 

It should be emphasized that boundary condition (11.9.32) is derived 
for the x = 0 boundary and that it can readily be generalized for any other 
boundary that is normal to a coordinate axis. The boundary condition 
can also be generalized to boundaries that are not normal to a coordinate 
axis by rotating the coordinate system in the solution presented here. For 
brevity, this derivation is omitted here. 

Absorption errors 
The errors relative to complete absorption of the outgoing wave have 

been determined using tests with suitably designed domains. A least square 
error €2 averaged over the test domain can then be defined as the error on 
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Fig. 11.9.2 The relative errors using the linear approxiation (11.9.32) ( - - - ), 
the second order approximation (-), and the Sommerfeld condition (11.9.1) 
(- . - . -) (from VS97). 

Fig. 11.9.2 shows the error €2 as a function of the angle of incidence B 
of the wave at  the boundary. Curves are shown both for the linear solution 
outlined above and for the second order approximation. For comparison 
is also shown the error caused by the Sommerfeld condition (11.9.1). We 
see that the absorbing boundary condition gives errors that are unifom 
in magnitude for all angles of incidence up to 90" and even the linear 
solution gives errors that hardly exceed 1%. In contrast the error from 
the Sommerfeld condition grows rapidly with increasing angles of incidence 
and reaches 10% at  an angle of about 45". The more general radiation 
condition (11.9.2) will grow slower but also reach high values for larger 
angles of incidence. 
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11.9.3 Boundary conditions along cross-shore boundaries 

In coastal regions the computational domain will typically, in addition to 
the offshore boundary, be bounded by some cross-shore boundaries limiting 
the domain along the coast up- and downstream of the area of interest. 

Along those cross-shore boundaries the radiation stresses from incoming 
short waves will of course have to be specified as was the case along the 
offshore boundary. 

Through the cross-shore boundary will also flow (in or out) the long- 
shore currents on the coast in addtion to incoming and reflected IG-waves. 
Thus for the total volume flux an absorbing-generating boundary condition 
similar to - the one described above is approppriate, but in a version that 
includes a 0. This would represent the longshore current if we assume that 
flow component steady over the typical scale of the IG-wave periods (see 
Section 14.2). 

In most practical computations so far simpler boundary conditions have 
been used along the cross-shore boundaries. In particular two options are 
possible. 

Periodicity conditions 
The simplest option to implement is a condition that states that the 

condition at the left and right cross-shore boundaries are the same at the 
same time and at corresponding points in the cross-shore direction. Thus 
if we consider the simple case of a long straight coast with cross-shore 
boundaries a yleft and Yright we would have 

(1 1.9.36) 

and the surface elevations determined from the continuity equation. 
However, on a coast with longshore varying topography the words “cor- 

responding points in the cross-shore direction” cannot simply be identified 
as points with the same x-coordinate. In the first place if we talk about a 
simple Cartesian x, y, z-coordinate system the shoreline is not at the same 
x-position for different points along the shore. And even at points at the 
same distance offshore the depth will in general be different at the left and 
right boundaries . 

There is not a “correct” solution to this problem. A frequently used 
approach is to extend the coast artificially at both ends beyond the intended 
domain by adding regions in which the cross-shore depth profiles are allowed 
to gradually approach a common average cross-shore profile which is then 
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used at both ends, usually in a periodicity condition. This, however, does 
not mean that the volume flux at “corresponding points” are the same, 
because the cross-shore variation of Qy is determined by the conditions 
over quite a distance “upstream” (i.e. against the longshore current) of the 
boundary. 

Prescribed volume flux 
The second option used is to assume that the coast “upstream” of the 

upstream boundary is long and straight and use this to calculate the cross- 
shore distribution of the longshore current at the upstream boundary by 
solving the equations for a long straight coast (Section 11.7) with the chosen 
cross-shore profile. This essentially means that Qy,i is prescribed as we 
assumed for the offshore boundary. The downstream boundary condition 
can then be treated as a freee boundary where Qy+t is determined by the 
internal solution in combination with d/dy = 0 along the boundary. 

Discussion 
As mentioned none of these options can solve the problem that by for- 

mulating the “upstream” conditions we try to estimate (guess!) the distri- 
bution along the boundary of the incoming currents created in the region 
outside the domain we model (unless those conditions are determined in 
another larger scale computation). (In general terms the word “upstream” 
should be taken to mean all boundary sections where the volume flux is into 
the domain. This can in principle also be parts of the offshore boundary 
and even parts of a “downstream” boundary with e.g. a return flow). The 
question therefore arizes: how do these errors influence the flow inside the 
computational domain? 

Some insight into this was established by Chen and Svendsen (2003). 
They performed numerical experiments on a long straight coast where the 
true solution is known in which errors were imposed along the upstream 
boundary (i.e. Qy,i specified). At the downstream boundary the same 
distribution was specified by a periodicity condition. The results show 
that the upstream errors spread inside the domain so that the local errors 
become smaller but the total volume deficit of course remaines the same. 
However, the picture was complicated by the fact that when specifying for 
example an excessive total volume flux at the cross-shore boundary that 
was not distributed at the boundary in the cross-shore direction the same 
way as in a uniform longshore current with that volume flux. Then the 
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flow inside created recirculation flows that entrained extra fluid from the 
offshore, thus increasing the longshore flux inside the domain. When the 
flow reached the downstream exit, where the cross-shore distribution of 
the volume flux was forced to be the same as at the upstream bounday 
(periodicity imposed), a strong local disturbance emerged that over a very 
short distance (as in the runout to a drain in a bathtub) recirculated the 
extra volume flux entrained, and redistributed the longshore velocity profile 
to the prescribed profile. 

For decreased volume flow other disturbances occurred. In general, 
however, the conclusion is that errors in volume flux specified along cross- 
shore boundaries do disturb the internal flow more than one might expect. 
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Chapter 12 

Cross-Shore Circulation and 
Undertow 

12.1 The vertical variation of currents 

12.1.1 Introduction 

One of the most serious problems in coastal engineering is the disastrous 
erosion of beaches that often occurs during heavy storms. In a few hours, 
large amounts of material is removed from the beach and at first deposited 
as bars at some distance from the shoreline. 

Fig. 12.1.1 The undertow current (from Svendsen, 1984). 

Though it has not yet been finally proved, this process is likely to be 
linked to the strong seaward oriented current flowing in the lower part of 
the water column under breaking waves. This current, called the under- 
tow, is fed by the water volume brought shoreward by the volume flux of 
the breakers. In the two-dimensional situation on a long straight beach 
shown in Fig. 12.1.1, the two fluxes are equal. In cases with a horizontal 
circulation, the undertow will be superimposed on a net current. Inside 
the surf zone the amount of water carried shoreward in the roller of the 
breaking waves is further increasing the volume flux in such a wave relative 
to the ordinary volume flux in the waves, as found in Chapter 5. 

603 
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As found earlier (see Section 11.7.2), in the longshore uniform case the 
cross-shore depth integrated, time averaged momentum balance reads 

as,, ac 7b 
- = -pg (ho + () - - 

d X  d X  
(12.1.1) 

where c is the set-up, 7 6  the mean bottom shear stress, S,, the radiation 
stress. 

In the strictly 2D circulation flow shown in Fig. 12.1.1 Tb normally is a 
small term (0(5%) of the other two terms). Thus, the momentum balance 
(12.1.1) essentially means that, averaged over depth, the radiation stress 
gradient is balanced by the force from the slope on the MWS. 

However, S,, is defined as (see Sect. 6.6) 

(12.1.2) 1 -  
p (u$ - w$) dz + 1PgV2  

which shows that S,, is composed of contributions from ut and w t  (which 
in principle vary over depth) and a contribution from which originates 
between trough and crest of the waves. Thus the S,,-term varies over the 
depth. 

The 8</dx term, on the other hand, is the same at  all z-levels. Conse- 
quently, if we consider a small fluid element at any z-level below the wave 
trough there will, in average over a wave period, be a net horizontal force 
on that fluid element, which below trough level turns out to be seaward 
oriented. The situation is shown in Fig. 12.1.2. 

Fig. 12.1.2 Stresses in undertow (from Svendsen, 1984). 



12.1 The vertical variation of currents 605 

In order to properly analyze the phenomenon of cross-shore circulation, 
we need to go back to the original equations-before we started integrating 
those equations over depth-and analyze what they impIy at each point in 
the vertical when we consider the combination of a turbulent wave motion 
and a current, which we know is what we have in the surf zone. 

Although at first we are only looking for the cross-shore variation, let us 
take a more general approach and first derive the equations for the full 3D 
circulation, since this will not add much to the complexity of the equations 
at this point. 

12.1.2 The governing equations for the variation over depth 
of the 3D currents 

The equations used to describe the vertical distribution of the mean flow 

The instantaneous Reynolds' equations read (see Section 2.5) 
in the surf zone are the Reynolds' equations averaged over a wave period. 

A 

2 :  -+- +-+- 
A aQ a U 2  a 3  a u w  

at ax aY az 

A a 9  am a v 2  am 
at ax a Y  az y : -  +-+-+- 

(12.1.3) 

(12.1.4) 

2 : -  +- +-+- at ax dY az 

where, as before, A means turbulent averaging, and where 

(12.1.6) 

divides the total velocity (u, v, w) into a wave and a current component. 
The currents will in general be functions of the vertical position z and of 
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time t so that U, V = U ( x ,  y ,  z , t ) ,  V ( x ,  y ,  z , t ) ,  and we need to keep that 
option open now. 

We have chosen u,i so that 

u , i = O  below trough level (12.1.7) 

and the wave motion is periodic, soin consequence, we have 

- = o  auwi 
at (12.1.8) 

When we introduce (uw, v,) and U ,  V, we notice that 

(12.1.9) 
a= quwi + ui) (uwj + uj) - azl,iuzuj au,uj 
ax j  ax j  axj ax j  - +- - - 

where the overbar as usual means average over a wave period. 

which is much longer than the wave period. 

equations 

The current Ui, however, may in the general case vary over a time scale 

Time averaging over a wave period then yields for the two horizontal 

a u + a u 2  a u v  az a- a=- - 
at ax ay  ax ay 

1 + aU12 a u v  aulwI 
ax ax dY az 

2 :  - ~ +- +-+- +- 
- = A  

az 

(12.1.10) 

- 
~ 

- - - - - - 

a v + a u v  a v 2  a- a% a=- - 
at ax ay ax 

p ax ax ay az 

+-+- y :  - - +-+- aY az 
- 

x - / c I  
1 t+ - - a u v  - - a u/2  - - a u w  

(12.1.11) 

The vertical z-component of the momentum equation is integrated from 
the surface to an arbitrary level z from which we get an expression for p ( z )  
(see (11.4.30)). As in Chapter 11 we again assume hydrostatic pressure for 
the currents. After time averaging, this leads to 

/ -  A\ 

5 = PS (C - (12.1.12) 
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which substituted into (12.1.10) and (12.1.11) yields 

d X  
- +- +-  at ax  dy 

- g z  - 

~~ - -  x 
d X  dY 

a( a( ur2 - W t 2 )  du'v' 

and 
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A 
du'w' 

d z  
(12.1.13) 

t-+- - 
d X  d z  

Eqs. (12.1.13) and (12.1.14) are the ensemble and time averaged mo- 
mentum equations governing the variation of the current velocity in the 
nearshore at any point in the vertical, which is below wave trough level. 

In (12.1.13) and (12.1.14) the dU2/dx and dV2/dy represent the mo- 
mentum flux from the cross-shore and longshore currents respectively. The 
UV-terms represent coupling between the two current components. In the 
2D situation of pure undertow on a long straight coast (shore normal wave 
incidence), these terms are zero because d/dy = 0 and V = 0. 

In the general 3D case with obliquely incident waves, cross-shore circula- 
tion and longshore currents, these terms have traditionally been neglected. 
However, even with longshore uniformity in both topography (long straight 
coast) and flow (d ldy = 0), there is a dUV/dx-term which turns out to be 
crucial for a correct analysis of the current pattern. This will be discussed 
further in Chapter 13. 

However, in the following we concentrate on the simple 2D case with 
shore normal waves so all the UV-terms are zero. 

The - and v; - w; terms are the local contributions to the 
radiation stress (compare to (12.1.2)) and so are the u,w,-terms. 

The d"W,/dz and d x / d z  term represents the Reynolds-type 
stresses due to various factors that disturb the wave motion, such as the 
depth variation, the bottom boundary layer, and the effect of the wave 
breaking. It was found in Section 5.5 for 1D waves that between the bottom 
boundary layer and the surface the dzl,w,/dz-term is small in comparison 

with the turbulent shear stresses u'w' (see Section 5 .6 ) .  We will therefore 

- -  

A 
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neglect it above the boundary layer, but in the bottom boundary layer we 
found that the term is determined by the boundary layer solution and is 
responsible for generating the steady streaming (see Section 10.1.5). AS 
a consequence we leave those terms in the equations and assume they are 
known as the other wave averaged terms. 

On the right-hand side, the d</dx and d(/dy-terms are clearly the 
pressure gradients due to the sloping MWS. 

The rest of the terms in (12.1.13) and (12.1.14) are turbulent Reynolds’ 
stresses. 

12.2 The cross-shore circulation, undertow 

12.2.1 Formulation of the 2-D problem and general 
solution 

The purpose is first to study the cross-shore circulation U ( z )  in the 
vertical plane. In the momentum-equations 12.1.13 and 12.1.14 derived 
above that means concentrating on the x-component 12.1.13 and assuming 
that the situation is the same at all positions along the shore; i.e., assume 

- 

- = o  d 
dY 

(12.2.1) 

We further consider a case of steady currents so that we are looking 
at a situation similar to that found in a wave flume. This means that the 
volume flux Qw in the incoming waves is compensated by a by a return 
flow below wave trough level (see Section 3.3) with depth averaged velocity 
Um given by 

U Qw 

h m -  (12.2.2) 

Here QW is assumed known (see e.g. Chapter 5). 
A 

We also assume that we can neglect the turbulent normal stresses d2 
since in most of the water column these terms were found by Stive and 
Wind (1982) to be relatively small in comparison with dS,,/dx in the 
depth integrated equations. 
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The cross-shore momentum equation (12.1.10) can then be written 

In the shore normal direction we then find (as earlier for the depth 
integrated equation) that inside the surf zone the pressure term d ( / a x  
dominates relative to the U2-term. We will account for the U 2  term in an 
approximate way. 

For the turbulent Reynolds-stresses on the left-hand side of (12.2.3) 
we use an eddy viscosity vt to connect those stresses to the cross-shore 
circulation velocity U .  This means we introduce 

(12.2.4) 

which substituted into (12.2.3) yields: 

( 12.2.5) 
az a z  

In order to solve this equation, we assume as usual that the short wave 
driver used for the circulation equations gives (which are the 
components of the radiation stress), that the --term is either known 
or neglected, and that ut is known. 

The U2-term is the effect of the undertow on itself, and in this case of 
1DH cross-shore circulation it is small but non-negligible. We approximate 
it with the depth averaged value Urn given by (12.2.2). Thus we can write 
(12.2.5) as 

and 

where cq(x ,  z )  is defined as 

( 12.2.6) 

( 12.2.7) 

We see that a1 (x, 2 )  consists of quantities that are determined by the 
wave driver in addition to the g - t e rm which is determined by the solution 
to the depth integrated circulation equations. Therefore a1 (x, z )  can be 
assumed known in this context. The general solution to (12.2.6) can then 
be determined by direct integration on both sides of the equation. 
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For convenience we introduce the new vertical coordinate (, which is 
the distance from the bottom, defined by 

J = z + h  (12.2.8) 

because it makes the values of the integration constants simpler. Without 
further assumptions, we can then integrate (12.2.6) directly twice and get 
for U ( z )  

(12.2.9) 

where Al(z),  A2(z) are the (arbitrary) integration functions we must de- 
termine from the boundary conditions. 

12.2.2 Boundary conditions 

We need two boundary conditions to determine A1 and A2. 

wave 
trough level 

2 

Fig. 12.2.1 The three layer concept. 

A particular point is associated with the fact mentioned earlier that the 
current cannot be identified by ordinary averaging above wave trough level 
of the short waves where there is only water part of the time. Hence the 
momentum equation (12.2.6) is strictly speaking not valid above that level. 

We by-pass this problem by solving (12.2.6) below trough level only and 
extending the analytical solution up to the mean water level <. To clarify 
this we introduce the formal concept of a three layer model (see Fig. 
12.2.1). 
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The three layers are described as follows 
Layer 1: The region above the level of the wave trough (the upper region). 
Layer 2: The region below the level of the wave trough but above the top 
of the bottom boundary layer (the center region). 
Layer 3: The bottom boundary layer. 

The solution given by (12.2.9) is valid in both layer 2 and layer 3. All 
that is needed is to specify vt corresponding to the conditions in these two 
regions. However, because the oscillatory bottom boundary layer is very 
thin we will first focus on the solution for region 2, the central layer from 
the top of the oscillatory boundary layer to the wave trough level and seek 
the necessary boundary conditions to detemine the integration constants in 
the solution for that layer. 

There are several ways of prescribing the necessary conditions. We 
first describe the approach that is particularly convenient when the vertical 
profiles are analyzed in association with the solution of the nearshore cir- 
culation equations described in Chapter 11, and then describe alternative 
boundary conditions. 

When solving the circulation equations in the horizontal plane we obtain 
information about the total volume flux, Q and the vertical position of the 
MWS, 3 at all grid points in the computational domain and at each time 
step. Therefore, whatever boundary conditions we specify for the vertical 
profile equations the parameters involved must be calculated from Q and 
C along with the information about the short wave forcing provided by the 
wave driver. This is readily possible if we use the following two boundary 
conditions for the 2D vertical case. In Chapter 13 this is generalized to 3D. 

- 

I. The first boundary condition 
The first is a boundary condition at the bottom. In the presence of the 

undertow we essentially have a bottom boundary layer which is a combina- 
tion of a wave and a current motion. 

In the derivation we utilize the usual concept that the boundary layer is 
thin enough to only disturb the flow above by exerting a (mean) shear stress 
on that flow at the bottom. Hence, at the interface between layer 2 and 3 
in Fig. 12.2.1 we assume that the flow in layer 2 has a velocity distribution 
with a finite bottom value, the slip velocity ub (see Fig. 12.2.2). 

ub is then connected to the (mean) shear stress 5 at the bottom by the 
expression found in Section 10.4.3. 

In terms of the results in that chapter the case we are dealing with here 
has the angle p = 0 between the wave and current motion, and the current 
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Fig. 12.2.2 The slip velocity Ub at the bottom. 

velocity U << u,. Hence % is given by (10.4.35). 

2 - 
Tbx = -pfcw’&ub 

7r 
(12.2.10) 

Since the mean shear stress varies very little over the boundary layer 
this shear stress must also be the shear stress at the “upper limit” of the 
boundary layer in the U ( z )  distribution at the bottom of layer 2. Hence, 
we have the matching condition 

7b2 = put (E) 
b 

(12.2.11) 

Eliminating 76a: between (12.2.10) and (12.2.11) then yields the mixed 
boundary condition at the bottom 

(12.2.12) 

(Svendsen and Putrevu, 1990). 

11. The second boundary condition 
The second condition is specified as a continuity condition for the 

cross-shore flow that replaces a boundary condition. It expresses that the 
total (cross-shore) flow equals &z (=O). Because there is no net volume flux 
in the x-direction (which is what we assume here) then the depth averaged 
velocity Um satisfies the relation 

- 

QW U d z  = -- h (12.2.13) 
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It may be recalled from the note in Section 11.2 that the integration 
has to be carried all the way to 3 meaning we have to define the current 
above trough level. Here we assume the analytical expressions found later 
are continued to 3. 

Eq. (12.2.13) is a boundary condition that can readily be specified from 
the information provided by the nearshore circulation equations. 

Ia. Alternative boundary condition specifying a surface shear stress 
An alternative boundary condition is to specify the value of the short 

wave generated shear stress that acts at wave trough level (Stive and Wind, 
1986). This surface stress represents the part of the radiation stress gen- 
erated above trough level. If we consider a control volume covering the 
region above the trough level z = Ct then we get that the shear stress T ( & )  

at trough level must satisfy the horizontal momentum balance 

(1 2.2.14) 

The radiation stress component S,,,, in this expression is given by 

(12.2.15) 

Stive and Wind uses this condition together with boundary condition I1 
described above. The undertow profiles obtained from this approach using 
measured input for dT/dx fit measurements as well as other methods. Since 
the r,-condition in essence is a condition for the derivative of U the integra- 
tion constant must be detrermined so that the velocity profiles determined 
this way have the correct 8. 

12.2.3 Solution f o r  the undertow profiles with depth 
uniform ut and a1 

We see that (12.2.9) is valid for arbitrary variations of both vt and al. 
For simplicity, however, we will (following Svendsen and Hansen, 1988) 
consider the simplified version of (12.2.9) that corresponds to assuming 
constant over depth below trough level. For justification, see Fig. 5.5.14 
which show measurements of for a large number of experiments. It also 
turns out that z << (or assume z - C . z ,  
where C N 0.05). Then al(x, 2 )  = a ~ ( x ) .  

so that we can neglect 
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For constant vt (12.2.9) simplifies to 

We see that 

A2 = ub 

and by (12.2.11) 

or 

(12.2.16) 

(12.2.17) 

(12.2.18) 

( 12.2.19) 

the latter by virtue of (12.2.10). Thus U ( z )  expressed in terms of ub be- 
comes 

ub is then determined by means of the second boundary condition (12.2.13). 
Alternatively we can write U ( ( )  in terms of as 

(12.2.21) 

Exercise 12.2-1 Show that using (12.2.13) we get for ub 

1 ( 12.2.22) 

where 

( 12.2.23) 
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Therefore we can write the solution (12.2.20) in dimensionless form by 
dividing with m. We get 

(12.2.24) 

We see that U’(z)  depends on two parameters: 

A is a measure of the ratio between a1 - the forcing that generates 
the flow (see the introduction) - and ut - the viscosity that indicates 
the capability of the flow to carry the shear stresses. 
R is the ratio between bottom friction factor fczo and the eddy viscosity 
vt. AS (12.2.22) shows, R represents the change in Ub due to the bot- 
tom shear stress. It may be expected that R is small as the following 
example shows. 

12.2.4 Discussion of results and comparison with 
measurements 

In order to evaluate the results for the undertow profile from (12.2.20) 
(or (12.2.24)), the driving forces a1 given by (12.2.7) are required. The 
wave driver will provide information about and a. Furthermore, the 
gradient d f / d x  of the MWS is an important part of cx1, which must be de- 
termined from the solution of the circulation equations, here the momentum 
equation (12.1.1). 

In the simple 1DH cross-shore case considered here the direct solution 
of the momentum equation can be avoided by realizing that d</8x can be 
eliminated from the problem by substituting @/ax from (12.1.1) into al. 
The result is 

Tb S,, - - (12.2.25) 
d - -  8- 

d X  d z  ph dx Ph 
cx1(x,z) = - (u; - w: f u:) + -u,w, - -- 

However, T will still be needed to determine the local water depth h = 
ho + <. 

If we accept that ?i; is negligible then (12.2.25) expresses the driving 
force in terms that can be calculated from information about the wave 
motion only i.e. from the wave driver. 

As we can see from (12.2.25) the forcing for the undertow can also be 
interpreted as being equal to the difference between the local contribution 
to the radiation stress - represented by the uk - + UZ-term and the 
u,w,-term - and the depth averaged total radiation stress represented by 
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the S,,-term. This forcing is only slightly modified by the mean bottom 
friction 7-6. 

1 " " " '  

VI 

a. h,/ho,B = 0.738 

1 " " " "  ,S/h 
~ __. vt - 0.027 0.020 - 

- 

-0.10 -0.05 0 

, S / h  

b. ho/ho,e = 0.594 

" " " " '  C'h A 

- 

r 
-0.10 -0.05 0 

I d. h,/h,,B = 0.378 

Fig. 12.2.3 Measured and computed undertow velocities at four locations in the 
surfzone from (12.2.20), (12.2.22) and (12.2.23) for different values of ut. Slope 
1:35. It is seen that  the maximum value of U N 0.05 - 0 . l O m .  

Evaluation of the eddy viscosity 
A frequently used form for vt is 

Vt  =e l /%  ( 12.2.26) 

where e is a characteristic length scale for the turbulence, and q = 

(u? + v7 + 2) is the turbulent kinetic energy. 
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The major part of the turbulence is created by the wave breaking which 
suggests that e c( h and a c( c - m. This leads to an expression of the 
form 

ut = C h f i  (1 2.2.27) 

where C is a proportionality factor. In this form ut is constant over depth. 
This, however, is not necessary in the general solution (12.2.9). 

Thus the solution requires specification of the constant C (or its varia- 
tion over depth if (12.2.9) is used) in the expression for the eddy viscosity 
ut. ut can be determined by comparing computed undertow profiles to 
experimental results for U ( z )  and adjust vt to obtain the best possible 
agreement. 

As an example such comparisons were done by Svendsen et al. (1987). 
Fig. 12.2.3 shows comparison of the profiles at four different positions in 
the surfzone on a plane laboratory beach.' In each figure panel is shown 
the eveluation of (12.2.20) for different values of C. We see that the shape 
of the indertow profile is quite sensitive to the value of ut, which means 
that the best fit gives a relatively accurate estimate of ut. 

We also see form thc figure that actually the best fit for C is not quite 
constant accross the surfzone, the variation being in the range of C = 

0.01 - 0.02. 

The shear stress variation and the bottom shear stress 'rb 

Using (12.2.21) we have for the shear stress variation over the column 
The bottom shear stress can also be evaluated from the solution for U(<).  

(1 2.2.28) 

Svendsen and Hansen (1988) analyzed the bottom shear stress from 
model simulations. They considered the patching solution of Svendsen et 
al. (1987) with two different, but depth uniform values, of vt, one small 
value inside the bottom boundary layer one much larger in layer 2 above 
the bottom boundary layer. They gave the variation of .rb with a number 
of parameters including the level at  which the patching between the two 
layers was made. The values of 76 corresponding to the physically realistic 
patching level of <O = 2.56, (where 6, is the boundary layer thickness 
defined by equation (10.3.15)) are the most realistic so here we focus on 
those results. They show shear stresses of the order 0.05 - 0.10 pal&.. As 

lFig. 12.2.3 was originally intended as Fig. 4 in Svendsen et al. (1987) but was 
accidentally replaced with a wrong figure. 
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Fig. 12.2.4 The shear stress distibution for depth uniform a1 and the relation to 
the velocity profile. 

(12.2.28) shows paldtr  is a relevant measure in comparison to the variation 
of r ( t )  in layer 2, because paldt ,  is the total (depth integrated) driving force 
for the undertow below trough level. From (12.2.28) we see this means that 
the 7 varies linearly over depth and the total variation 7(dt,) - 76 is simply 
paldt,. Thus the value of 0.05 - 0.10 means the bottom shear stress is on 
a small fraction of the total variation. This also means 3% << 7s. 

Going back to the undertow velocity that then confirms the impression 
from the figures 12.2.3 that the maximum velocity - which occurs at the 
level where 7 = 0 - is found close to the bottom. Fig. 12.2.4 shows the 
relation between the shear stress and the velocity profile. 

Their results also showed that the value of 5 depends quite strongly on 
the bottom roughness parameter, l c ~  which is consistent with the results 
for turbulent boundary layers. 

Finally, since the total forcing pal&, over the column for the undertow 
is much less than than either of the two large terms in (12.1.1) it follows 
that the value of 5 in that equation is really very small as indicated at 
several places before. 

- 

12.2.5 

Depth varying eddy viscosity 
As mentioned the general solution (12.2.9) is valid in both layer 2 and 

3 and for an arbitrary distribution of the eddy viscosity. However, when ut 

is constant over depth we cannot satisfy the condition of zero velocity at 

Solutions including the effect of the boundary layer 
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the bottom, which is what leads to the assumption of a slip velocity there, 
and the boundary layer is only included through the bottom shear stress it 
generates. This is the situation expressed by boundary condition 11, 

A simple way to model the velocity distribution including the bound- 
ary layer is to specify a variation of the eddy viscosity which realistically 
describes the conditions in the boundary layer (layer 3 in Fig. 12.2.1) as 
well as in the central layer 2. 

Simple considerations suggest that near the bottom the turbulence is 
restricted so that both q and k? in (12.2.27) may be smaller there. In the 
oscillatory boundary layer the wave (and current) motion creates its own 
turbulence, and there are strong indications that the boundary layer turbu- 
lence is much weaker than the breaker turbulence in layer 2, which means 
ut becomes much smaller near the bottom, and tends to 0 at the bottom. 
Hence, we would expect the nature of the ut-variation is as shown in Fig. 
12.2.5. 

Fig. 12.2.5 Estimated variation of ut. 

In the literature, the variation of ut has been included in various ways. 
In particular, if ut -+ 0 at the bottom, then the solution (12.2.9) allows 
U = O  at < = O .  

An example is the eddy viscosity distribution (Okayasu et al., 1988) 
given by 

Vt  = c t a  (12.2.29) 

This vt varies linearly upwards from ut = 0 at the bottom. The value at 
the surface differs slightly from (12.2.27) by using a velocity based on d, 
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which is the depth under the wave crest. Okayasu makes C depend on the 
bottom slope by setting 

C = 0.30 h, (12.2.30) 

but combines this with an empirical expression for the driving force a1 

which is also proportional to h, so that al/vt in the first term of (12.2.9) 
is again independent of h, and has the form 

(12.2.31) 

where dt is the depth at wave trough. 

E = 0, the following solution can be obtained 
Substituted into (12.2.9) and using the bottom condition that U = 0 at  

U(<)  = Urn - 0.017cln[/dt + 0.15c(/dt - 0.10 c ( 12.2.32) 

Fig. 12.2.6 
files for a 1/30 slope (from Okayasu et al. (1988)). 

Comparison between the measured and the calculated undertow pro- 

As an example Fig. 12.2.6 shows comparison with measurements of 
U/Um for a bottom slope of 1/30. We see that this model predicts the 
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variation V(<) close to the bottom reasonably well but is less accurate in 
the upper part of the water column. 

What is important to notice is that for a bottom slope in the range of 
1/20 - 1/30 found in most experiments for comparisons the vt-expression 
(12.2.29) gives values of vt = 0.01 - 0.015 h &% at the surface where the 
values in this model are largest. This is in the same range as found for 
vt = C h m .  This observation is essential for the discussion in Chapter 
13. 

The effect of the steady streaming u, in the boundary layer 
Another approach is to consider a matched problem of two layers (layer 

2 and 3) with vastly different vt: The breaker dominated layer 2 above 
the bottom boundary layer with ut N Clh@ where C1 = O(10p2), and 
at the bottom the boundary layer with ut - C 2 h m  as a region with 
very low eddy viscosity with C2 typically O(10p4) (Svendsen et al. 1987, 
Svendsen and Hansen, 1988). In the latter case, the aU,W, /Bz  terms 
were included in the bottom boundary layer, and the effect of the steady 
streaming analyzed. 

The following mechanisms are at play for the averaged motion: 

0 In purely oscillatory boundary Iayers, we found a shoreward oriented 
steady streaming (see Chapter 10) driven by a uwww variation inside 
the boundary layer. 

0 However, measurements in the surfzone show that even close to the 
bottom boundary layer we have strong seaward oriented currents. 

0 We must expect that the seaward oriented undertow in layer 2 interacts 
with the generation of the steady streaming generated in layer 3. To get 
realistic results this interaction must obviously be properly accounted 
for. 

Svendsen et al. (1987) gives a solution based on patching the two solu- 
tions in layer 2 and layer 3 using continuity in velocities and shear stresses. 
Based on the results for turbulent boundary layers described in chapter 10 
the eddy vicosity in the boundary layer is O(10p2) times the viscosity of 
I O p 2 h G  found as typical between wave trough and bottom. Svendsen 
and Hansen (1988) derive a simplified version that treats the boundary layer 
as a black box while still including the effect of the shear stress reponsible 
for the steady streaming. 
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The results show that even inside the boundary layer the undertow has 
a tendency to be stronger and hence override the steady streaming. 

12.2.6 Undertow outside the surfzone 

Outside the surfzone we still have a volume flux in the waves and there- 
fore also and undertow flow, but because the Qw is much smaller the ve- 
locities in the undertow are also much smaller than inside the surfzone. 
However, it also turns out that because of the weaker forcing the steady 
streaming in the boundary layer is no longer negligible. 

Results by Putrevu and Svendsen (1993) shown in Fig. 12.2.7 for the 
theoretical profiles both inside and outside the surfzone illustrate the dra- 
matical difference between to two regions. Their solution is based on the 
patching of the solutions for the boundary layer and layer 2 above between 
wave trough and the boundary layer. In the figure the ratio between the 
two eddy viscositie is vts/vt = 100. Fig. 12.2.8 shows comparisons between 
theoretical results and laboratory measurements that confirm that outside 
the surfzone the velocity profile is almost linear over depth with the largest 
values near the surface. 

12.2.7 Conclusions 

The analysis shows that for the cross-shore 2DV conditions on a long 
straight coast or in a wave flume there is a cross-shore circulation caused by 
the volume flux generated by the short wave motion. As shown in Chaptcr 5 
this volume flux is particularly strong in the surf zone. In such simpel 2DV 
cases the return current (the “undertow”) can be analysed and predicted 
with good accuracy provided we are able to obtain the necessary input for 
the calculations. The necessary input is 

0 a.n appropriate model for the short wave motion (the wave driver) from 
which we can determine the variation of the radation stress S,, and 
the short wave volume flux Qw. 

and Q a  
from solving the circulation equations (Chapter ll), 

0 an appropriate model for the depth avaraged flow variables 

0 and the eddy viscosity distribution in the region. 

More importantly, however, the analysis shows that the undertow in the 
2-D flow under breaking waves is far from depth uniform. 
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Fig. 12.2.7 Undertow profiles inside and outside the surfzone for uts/vt = 100 
and for different values of h/hb, h b  being the brealing depth (from Putrevu and 
Svendsen, 1993). 

The analysis of the undertow essentially outlines the approach that can 
be used for a more general analysis of the 3-dimensional variation of wave 
generated currents in nearshore regions discussed in the Chapter 13. 
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Fig. 12.2.8 Comparison of theoretical predictions with experimental observations 
of undertow profiles outside the surfzone. N & K refers to Nadaoka and Kondoh 
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Chapter 13 

Quasi-3D Nearshore Circulation 
Models 

13.1 Introduction 

In Section 11.7.3 we saw that for longshore currents on a straight beach 
the lateral mixing coefficient could be written 

ut = Cx h f i  (13.1.1) 

where index x refers to mixing in the cross-shore direction , and it was found 
that a Cx-value of 0.45 - 1.80 is required to obtain cross-shore variations of 
the longshore current that resembled the measured variations. The order 
of magnitude of this number has been verified repeatedly in the literature. 

On the other hand the vertical variation of the cross-shore undertow 
profile investigated in Section 12.2 used a ut, which can be written as 

vt = C, hJgh  (13.1.2) 

requires a C,-value of only 0.01-0.02, at most, to achieve similarly reallistic 
comparisons to measured undertow velocities. Again this number has been 
verified in the litrature by several authors using different models. 

Thus, there is an order of magnitude difference between the ut required 
to predict the measured cross shore variation of longshore currents and the 
measured vertical variation of undertow, respectively. 

It is obvious that such a discrepancy is disturbing from a physical point 
of view. A natural hypothesis is to assume that the mixing is caused by 
the turbulence which is abundant due to the wave breaking. We may then 
express ut as 

ut = t& (13.1.3) 

where k is the turbulent kinetic energy and t a characteristic length scale 

627 
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for the turbulence. Based on measurements, Svendsen (1987) estimated 
Ic1/2 = O(O.O5m),  a result which was based on many laboratory exper- 
iments by independent authors. With C, = 0.01, this then corresponds 
to C, = O(0.2h) which seems reasonable. In contrast, C, N 0.45-1.80 will 
correspond to tx = 0(9 - 36h). Although there clearly could be a difference 
between the vertical and horizontal structure of the turbulence generated 
by the wave breaking, a factor of 45-180 between the respective mixing 
coefficients seems unlikely. 

In fact, it would be a more reasonable assumption that the characteristic 
length scale C in the horizontal and vertical directions are similar (so that 
vt, = vt, = vt or C, = (2,). 

As an illustration, Fig. 13.1.1 shows calculations of the longshore cur- 
rent distribution V ( x )  with vt, based on C, = 0.01 and 0.35, respectively. 
The value of C, = 0.35 gives a cross-shore distribution compares well with 
the measurements used by Longuet-Higgins (1970a,b) and the very detailed 
and accurate laboratory measurements by Visser (1984). For simplicity, the 
analytical solution derived in Section 11.7.3 has been used in the computa- 
tion. 

Svendsen and Putrevu (1994) (SP94) analysed this problem for the sim- 
ple case of the longshore current on a long straight beach and found that 
the discrepancy is caused by the omission of the vertical variation of the 
cross- and longshore currents. This variation represents mechanisms that 
cause far more lateral mixing than even turbulence generated by the wave 
breaking in the surf zone. This mixing mechanism has been termed dis- 
persive mixing because it disperses horizontal momentum. In fact in the 
longshore uniform case it was found that the mixing caused by the tur- 
bulence only accounts for approximately 5% while the dispersive mixing 
accounts for 95% or more of the total lateral mixing. Hence they found 
that the smaller values for the eddy viscosity required to correctly predict 
the undertow were close to the real values and when used together with the 
mixing caused by the vertical current profile variation the lateral mixing 
would also be large enough to fit the measured longshore current data. 

The 3-dimensional nature of the current profiles has been known for a 
long time and it follows directly from the strong vertical variation of the 
undertow. In comparison the longshore currents vary only a little over 
depth. However, when cross- and longshore velocities are added vectorily 
the result is a spiral-like profile as shown in Fig. 13.1.2 (Svendsen and 
Lorenz, 1989). 
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Fig. 13.1.1 Cross-shore variation of longshore current according to the analytical 
model derived in Section 11.7.3 for C, = 0.01 and 0.35. From Svendsen and 
Putrevu (1994). 

The analysis of this mechanism has since been extended to the general 
3-dimensional situation of arbitrary topography and current variation by 
Putrevu and Svendsen (1999), and Haas and Svendsen (2000). 

The conclusion is that physically realistic models for general nearshore 
circulation phenomena should include the effect of the 3D current profiles. 

Discussion 
The possibility exists that turbulence with a much larger length scale 

than the the turbulence generated by the wave breaking could play a role 
in the total lateral mixing. Such turbulence occurs on real beaches due 
to shear instability of the longshore currents (see Section 14.2). This was 
discussed and dismissed by SP94 because it is unlikely such turbulence could 
develop over the short longshore lengths of Vissers laboratory experiments 
used by SP94 for illustrating the effect of the dispersive mixing. Later 
model computaions with large scale conditions similar to natural beaches 
described in Section 14.2 show, however, that such large scale turbulence 
does have a significant lateral mixing effect. The remakable finding is that 
when this occurs the dispersive mixing due to the 3-dimensional current 
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Mean currents 
not defined above 
wave trough 

Boundary 
layer 

Fig. 13.1.2 The depth variation of the combined cross- and longshore velocity 
profiles in the surfzone (from Svendsen and Lorenz, 1989). 

profiles will automatically be reduced similarly. For discussion of this see 
Section 14.2.6. 

Quasi-3D models 
On the other hand, fully 3D models would be an order of magnitude 

more demanding computationally than the 2DH models represented by the 
circulation equations. This has lead to the introduction of quasi-3D models 
in which the 3D effects of the currents are represented in the 2DH cir- 
culation equations by coefficients the same way the effect of the velocity 
profile in a hydraulic flow is represented by a momentum correction factor 
in the 1DH momentum equation. The equivalent in the quasi-3D equations 
is an array of coefficients that are determined analytically by solving the 
local momentum equations for the vertical distribution of the current, from 
which the coefficients are then calculated. In this way the quasi-3D mod- 
els essentially solve 2DH equations and therefore are numerically almost as 
fast as traditional 2DH models although they include the depth integrated 
effecs of the 3D current profiles. 
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In the following we briefly outline the derivation the equations for 
the generalized case of the Quasi-3D circulation equations. The resulting 
equations are also the governing equations used in nearshore circulation 
model SHORECIRC (SC) which was first developed by Van Dongeren et 
al. (1994). 

13.2 Governing equations 

In many ways this chapter presents generalizations of the results derived 
and discussed in Chapters 11 and 12.2 for special cases. 

The idea of a circulation model which includes 3D current profiles was 
probably first introduced by DeVriend and Stive (1987) and by Sanchez- 
Arcilla et al. (1990). Svendsen and Putrevu (1994) showed that the 3D 
current profiles is not just a matter of adding cosmetic details to the circu- 
lation models. As mentioned above they found the 3-dimensionality of the 
currents stongly influences the horizontal exchange of horizontal momen- 
tum and thereby the lateral mixing. 

The derivation of the depth integrated equations for the flow was given 
in Chapter 11 and lead to the continuity equation (11.2.27) and the mo- 
mentum equation (11.5.13) for depth varying currents. However, it also 
gave the form of the equations for currents constant over depth. 

13.2.1 Time- averaged depth-integrated equations 

For reference we repeat here the continuity equation given as 

(13.2.1) 

where Qa as usual is the total volume flux including the volume flux Qw 
in the short wave motion. 

Similarly the momentum equation for arbitrarily varying currents was 
given as 

aQo, a c a <  - + - J V,Vpdz + -1 uWOlvp + uwpVadz = 
at axp -h, ax0 Ct 
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with the radiation stress SLp defined as 

1 c 
s&p lho pb,p + pu,,u,p dz - S,p-pgh2 2 (13.2.3) 

13.2.2 Choices f o r  splitting the current 

In (13.2.2) the momentum equation is written in terms of the total cur- 
rent velocity, V, and a short-wave velocity, u,, . However, it is convenient 
to further divide the current velocity by splitting it into a depth uniform 
and a depth varying component as follows, 

where we define the depth uniform component by 

Thus the depth uniform component of the current only represents the true 
current part and does not include the wave volume flux which originates 
between crest and trough. 

The combination of (13.2.4) and (13.2.5) implies that 

6 
Vda dz = 0 1 h, 

Substituting (13.2.4) into (13.2.2) yields, after some algebra 

(13.2.6) 

where a modified radiation stress similar to the definition used by Phillips 
(1966,1977) is defined as, 

( 13.2.8) 
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Because of (13.2.6), vdo: vanishes for the depth uniform current case. This 
means that for depth uniform currents the integral terms in (13.2.7) simply 
vanish as well. In this case the contribution from the integral terms for 
the depth uniform currents are already included in the modified radiation 
stress as evident in (13.2.8). Thus the depth uniform equations are obtained 
directly from (13.2.7) by simply omitting all the integral terms. These terms 
therefore clearly represent the effect of the depth variation of the currents, 
and the objective becomes to calculate those terms. We see that they are 
nonlinear current-current and current-wave interaction terms. 

We notice that, when we have solved the depth integrated, time averaged 
equations for g,  T ,  V, can be determined directly from (13.2.5) because Qw 
is known from the wave driver. 

Exercise 13.2-1 
Derive (13.2.8). Notice that this is not quite trivial! 

13.3 Solution for the vertical velocity profiles 

The solution for the vertical profiles is essentially a generalization of 
the solution presented in Section 12.2 for the 1-DH undertow. 

The momentum equations given by (13.2.7) are all in terms of depth- 
averaged properties except for the integral terms. In order to evaluate the 
integral terms we must derive a local (non depth-integrated) momentum 
equation for the depth varying part Vda of the currents. 

We begin with the local horizontal momentum balance which is rewrit- 
ten here for convenience, 

- + ”) (13.3.1) 
-+apt- 8% du u du,w 

- 

at dxp d z  Pax:, P dz 

In this we introduce the velocity separation into a wave and a current part, 
time-average the equation and assume the short-wave-averaged pressure is 
hydrostatic 

P = P d T  - .) (13.3.2) 
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This gives after some algebra 

av, a a 
- + - (V,Vp + u,,u,p) + - (%W + u,,w,) at axp a2 

By using the local continuity equation written as 

av, a w  
ax, az  - + - = o  

we rewrite (13.3.3) as 

av, av, av, a - a-  
- + vp- + w- + -(u,,uwp) + -(u,,w,) = dt  8x0 az ax, az 

(13.3.3) 

(13.3.4) 

(13.3.5) 

It may be noticed that we no longer neglect the vertical component W of 
the current. 

Further we introduce the split for the current given by (13.2.4) and 
express the turbulent stresses using an eddy viscosity model, 

(13.3.6) 

(13.3.7) 

with ut being the the eddy viscosity representing the turbulence created by 
the bottom friction and the short-wave breaking, and us being the eddy 
viscosity created by the shear in the flow. This results in 

at az 
av,, ar + Vrnp- + g - + f a  axp ax, 

- (vmP2 + vdp* + v d p -  avda + w-) avda 
axp axp dz 

(13.3.8) 
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Here we have defined fa, which is the local contribution to the radiation 
stress, as 

Using the definition for V,, (13.2.5) in (13.3.8) yields 

+- ( v t+v ) -  
az  a ( ax, ””> (13.3.10) 

This is the equation we need to solve for Vda. To do that Vda is divided 
into two parts by the definition 

Vda = VJ:’ + VJ;’ (13.3.11) 

The detailed derivation of the principal results is shown in Appendix 
13A. A general version is in Putrevu and Svendsen (1999) (PS99) who uses 
a different way of splitting the current into a depth uniform and a depth 
varying part. Therefore their results differ slightly from this presentation. 
The slightly simplified form used in the present version of the model can 
be found in Haas and Svendsen (2000) (HS2000) and some parts of the 
derivation are quoted from that report. 

The results (13.A.12) and (13.A.15) found in the Appendix 13A for VJ:’ 
and VJ:’ can be evaluated analytically for depth uniform eddy viscosity 
and FLo). As can be seen from the coefficients in section 13.4 below a 
further simplification is possible: only the VJt)-component of the velocity 
is required to account for the final values of the current-current and current- 
wave interaction terms. The effect of VJ;’ can be accounted for analytically 
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too. For details about the transformation leading to this, reference is made 
to (PS99), Appendix B. 

When evaluating 
(13.A.12) the vertical variation of V,(ao) can then be expressed in the form 
(HS2000) 

We therefore focus on the expression for Vj:'. 

VJ:) = d1at2 + e1aE + f l ,  + f i e  ( 13.3.12) 

where 

< = z + h o  ( 13.3.13) 

and 

(13.3.14) 

B 
(13.3.15) 7, el,  = - 

Put 

with F, given by 

h T," 
f l a  = -- 2 p(vt + 4 )  

and f a  given by (13.3.9) 
In addition, VjA' is given by 

with 

(13.3.16) 

( 13.3.17) 

( 13.3.18) 

( 13.3.19) 

(13.3.20) 

(13.3.21) 
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and 

For further details see Haas and Svendsen (2000). 

13.4 Calculation of the integral terms: The dispersive 
mixing coefficients 

From the current velocity profiles the current-current and current-wave 
interaction terms in (13.2.7) can be rewritten in terms of a set of coefficients 
M a p ,  Day, B,p, and A,p, which are the 3D dispersion coefficients. After 
substantial derivations (see HS2000) the integral terms can then be written 
in terms of those coefficients by introducing the following approximations 

c 
V d a V d p d Z  + V d p ( C ) Q w a  + V d a ( T ) Q w p  (13.4.2) 

This essentially assumes that V d a  remains constant between Ct and C. In 
the first place it is not clear how we should define V d a  above trough level. 
However, when the surface wind stresses are neglected this is not a bad 
approximat ion. 

We then get 

1 h, 

- 

V d a V d p d Z  + v d p ( T ) Q w a  + V d a ( < ) Q W p  

( 13.4.3) 
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The 3D-dispersive mixing coefficients in (13.4.3) are defined by’ 

( 13.4.4) 

(13.4.5) 

Here the last coefficient M a p  represents a simplification of the full coefficient 
that comes out of the derivations which is justified in (HS2000). 

‘It is emphasized again that although these formulas only seem to contain VJ:’ the full 

effect of Vk:’ in (13.3.11) is included in the formulas because in the above expressions for 
the dispersive mixing coefficients the contributions involving VjA’ have been expressed 

analytically in terms of VJ:’. See Putrevu and Svendsen (1999), Appendix B. 
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Alternative form of the coefficient Dap 
It is interesting to notice that the form (13.4.6) shown here for the 

D,p-coefficient is in a form which is convenient for analytical and numer- 
ical computations. However, its resemblance with the mixing coefficient 
in turbulent pipe flow found by Taylor (1954), and with the coefficients 
found by Fischer (1978) currents can better be realized if the coefficient is 
transformed the following way. We define the quantities p and q by 

1 ( 0 )  Qwa ' = 1' (vt + u s )  L h o  
--dz' (0) QWP 

h 
p = 11' Vdp - -dz' ; 

By these definitions we see that 

-h, h 
(1 3.4.8) 

(13.4.9) 

Thus we can write D,p as 

(13.4.10) 

Here the boundary terms vanish because p ( - h o )  = 0 and q ( c )  = 0. We 
therefore get for the coefficient 

(13.4.11) 

which esentially is the form in which the above mentioned references by 
Taylor (1954) and Fischer (1978) gave the results. 
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13.4.1 Final form of the basic equations 

The final depth-averaged horizontal momentum equation is then 

(13.4.12) 

We see that together with the continuity equation this forms a system with 
surface elevation c and the total volume flux components Qx and Qy as 
dependent unknowns. When written out in x,y-coordinates the results are 
as follows 
The continuity equation 

- aT+aQ,+a9,=, 
at ax ay 

and 
The x-momentum eauation 

(13.4.13) 
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The y-momentum equation 

d Qx a Q  --h B - - + 2 0  - 2 + ( 2 0  + B  )-  2 
dy [ "ax ( h )  xydz ( b )  yy yy :y ( ? ) I  

rys - 7; +- 
P 

( 13.4.15) 

In the above, T,", T,", are the bottom shear stresses, the surface (wind) 
shear stresses, and Sap, rap are the radiation stresses and the turbulent 
Reynold's stresses, respectively. 

The equations (13.4.13), (13.4.14) and (13.4.15) are the equations solved 
by the SHORECIRC model. 

13.5 Example: Longshore currents on a long straight coast 

The nature of the quasi-3D equations is perhaps best illustrated by 
considering the simple example of cross- and longshore currents on a long 
straight coast. This was the examples that were analysed in detail for 
depth uniform currents in Section 11.7.3. Comparison of the former results 
with the quasi-3D results will help explain the mechanisms involved in the 
dispersive mixing. 

Thus we first need to extract the form of the general equations for this 
case. As before we consider a steady situation and, on a long straight 
coast, there are no variations in the y-direction and no net volume flux in 
the x-direction, so 

- = o .  d 
at 

d - = o ;  
aY 

- 

Qx = 0 (13.5.1) 
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As in the case with depth uniform currents we also disregard for simplic- 
ity the surface stresses r,” The cross-shore x-momentum equation then 
reduces to 

B 
- g h  3 - rd (S,, - ~ ~ , r x x  d z )  - (13.5.2) 

ax pax P 

Inspection of (13.4.4) shows that for a long straight coast Arxy = 0. which 
is analysed further below. As before we also disregard the turbulent normal 
stresses which are negligeable. We then simply get 11 

ax p ax (13.5.3) 

For the longshore y-component of the momentum equation we simi- 
larly get by introducing the assumptions (13.5.1) 

ax ax 

- g h  3 - Id (SXy - f h o  rxy d z )  - 7yB (13.5.4) 
ax p a x  P 

where inspection of the difinitions for the coefficinets show that 

(13.5.5) 

and Axyy = 0. Also, for D,, we get 

At this point we also introduce the expression for rg 

( 13.5.7) 
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rB 
(DXX -k v t ) h g  (F)] + lzh’xy + P = 0 

P ax ax ax 

The final form of the longshore component of the momentum equation can 
then be written after integration of the -r,,-terrn 

(13.5.8) 

Discussion of the results for a long straight beach 
When we compare the cross-shore momentum equation (13.5.2) with the 

equivalent equation (11.7.8) in Section 11.7.2 for the cross-shore momentum 
balance, we see that the quasi-3D version of the equation contains the 
additional Mxx-term which represents the momentum correction factor for 
the cross-shore velocity profile in which the total volume flux is &z = 0. 
Otherwize the equation is the same as for depth uniform currents. 

Similarly when we compare the longshore momentum equation (13.5.8) 
with the equivalent equation (11.7.31) in Section 11.7.3 we see that the 
quasi-3D version of the equation contains an additional Mxy-term and, 
more importantly, a D,,-term. 

The Map is directly similar to the hydraulic momentum correction fac- 
tor and is for this case given as 

- 

(0) - (1 3.5.9) Mxx = ih0 VJ:)2dz + 2Vdx (C)Qwx 
c 

which with the above simplifications becomes 

MXx - W~x(0)(T)Qwz (13.5.10) 

At z = T the undertow velocity is close to zero meaning Vj:’(C) N -V& = 

Q,,/h so that we get 

QLx Mxx - 2- 
h (13.5.11) 

In comparison with the other terms in the cross-shore equation this is a 
small1 contribution. 

In the y-direction we get from (13.5.5) 

Mxy = Vdy(3)Qwx + Vdx(<)Qwy ( 13.5.12) 

and since the longshore current is almost uniform over depth we have 
V&,(c) - 0 and with a small angle of incidence for the waves (as is 
often the case) we may also expect Qwy N 0 so that we can conclude 
that Mxy is a very small contribution. 
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The D,,-term is the important result here. In (13.5.8) D,, obviously 
has the same role as the lateral mixing coefficient ut so that its function 
is to enhance the lateral mixing, which we found is too weak if we let ut 

correspond to the value it has in undertow. Thus it beome of paramount 
importance what the value of D,, is because we found that we need a factor 
of the order 20 on ut to fit the measurements. 

In order to get a simple feeling for the magnitude of the additional 
terms in the equations let us further disregard the vertical variation of the 
current represented by V d ,  and Vdy. That means approximating the 
undertow with a depth uniform return current balancing the Q ,  
and the longshore current profile with its depth average. In the cross- 
shore direction the current variation over depth then consists of the (depth 
uniform) return flow V,, and the (forward oriented) volume flux Q, in 
the short waves. In the longshore direction the profile is given by a depth 
uniform longshore current V,, and the y-component of the short wave 
volume flux Qwy. 

The D,, is more complicated to calculate than the M,,-term. Since V d ,  

has been assumed smaller than the Qw f h we may get a first approximation 
to D,, by neglecting V d ,  in (13.5.6). We also neglect the background eddy 
viscosity us. The expression for D,, then reduces to 

which can be integrated directly to give 

1 Qt 
3 Vt  

D,, = - - 

( 13.5.13) 

( 13.5.14) 

which means that the ratio between the two lateral mixing coefficients is 

(13.5.15) 

In Exercise 5.6-6 in Section 5.6 we found that a reasonable value for Q,, 
would be 

Q,, = 0.066hJsh (1 3.5.16) 

which combined with ut = 0.01hf l  shows that 

D x x  - N 14.5 (13.5.17) 
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The approximations made in the above evaluation of (13.5.6) means that 
the actual D,, will be somewhat larger. Numerical evaluations show that 
a value of D,,/vt = 20 is a realistic estimate for the conditions considered 
here. Thus we see that the D,,-term in the longshore momentum equation 
does provide an additional lateral mixing that is far stronger than that 
provided by the eddy viscosity which we can defend to use on the basis 
of the undertow comparisons shown in Section 12.2. In physical terms it 
means the even the strong turbulence generated by the wave breaking only 
provides about 5% of the lateral mixing. 

13.6 Applications and further developments of quasi-3D 
modelling 

The quasi-3D models have been applied to a number of nearshore phe- 
nomena and also developed further. A few examples are briefly reveiwed 
here. 

13.6.1 The start-up of a longshore current 

This hypothetical example was first analysed by Van Dongeren et al. 
(1994). It considers the temporal development of the 3-D flow on a long 
straight beach where the water is initially at rest. At t = 0, however, 
the forcing from obliquely incident regular waves is started without any 
transition. The numerical experiment then shows the development in time 
of cross- and longshore currents and of the setup. 

The temporal variation shows principal features that can be expected 
to be found on any coast when the wave motion is varying. 

In the analysis the time scale T b  used to describe the results is given by 

( 13.6.1) 

where L b  is the cross-shore width of the surfzone, h b  the depth at the 
breaking point of the waves. Thus T b  is about half the time it takes a 
shallow water wave to propagate from the breaking point to the shoreline 
on a plane beach. 

The first major change occurs in the setup which is almost fully estab- 
lished after only 2Tb. The equivalent shoreward velocity (averaged over the 
depth) represents the volume flux required to establish the setup. It already 
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reaches its maximum after just 1 T b ,  and at just 4Tb there is virtually no 
net coss-shore flow left. 

On the other hand, the growth of the longshore currents reveals that 
even at 2Tb the longshore current has hardliy started flowing, It is not until 
16 - 25 T b  that the longshore currents velocity has grown to near its steady 
value. Thus it is clear that variations in the longshore currents occur much 
more slowly (at a time scale O ( 2 0 T b ) )  than the the variations in setup which 
has a time scale of only O ( 2 T b )  

a b 

c d 

e f 

Fig. 13.6.1 Development of the velocity profiles at the breaking point (left column set 
of panels) and at a point well into the surfzone (h/hb = 0.35) at three different times: 
t = 6Tb (top row), 20Tb (center) and 48Tb (bottom) (Van Dongeren et al. 1994). 
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The main reason for the difference is - as discussed in Section 11.7 - that 
the forcing of the longshore current is much weaker thatn the cross-shore 
forcing. 

For a natural beach the variations in wave heights associated with wave 
groupiness accur on a time scale of typically 3 - 5 times the mean wave 
period and with a wave period of perhaps Tb/2  (depending on the steepness 
of the beach) this means that the setup can readily follow the groupiness 
variations in wave height whereas the changes generated in the longshore 
currents due to such wave height variations will be minimal. 

The uneven growth rates of the cross-shore and longshore flows give 
raise to similar changes in the vertical current profiles. Fig. 13.6.1 shows 
the velocity profiles at the breaking point (left column set of panels) and 
at a point well into the surfzone (h/hb = 0.35) at three different times: 
t = 6Tb (top row), 20Tb (center) and 48Tb (bottom). At 6Tb, when there 
is no more net cross-shore volume flux the undertow is fully establlished 
while the longshore current is only just beginning to flow. So the velocities 
are mainly crosshore (though the net cross-shore volume flux is close to 
zero). At 20Tb the longshore current is partly established and at 48Tb the 
situation has become steady and the velcity is mainly longshore. 

13.6.2 R i p  currents 

Rip currents are highly localized cross-shore currents the flow seaward 
usually through channels that cut through a longshore bar located so the 
waves break over the bar. They are among the most dangerous phenom- 
ena that occur on sandy beaches. It has been reported by the American 
Lifesaving Association that 80% of all rescues by lifeguards at surf beaches 
are the result of swimmers being caught in rip currents (Haas et al., 2003), 
and every year many swimmers drown becasue rapidly flowing rip currents 
in a very short time carry them far seawards to deeper water. 

Extensive testing of the quasi-3D SHORECIRC model has included 
analysis of the flow in rip currents on a barred beach. The work has also 
included comprehensive laboratory measurements. The results have been 
reported in a large number of publications, and the experimental results 
were ducumented by Haller et al. (2000, 2002), and by Haas and Svendsen 
(2000). The quasi-3D modelling has been applied to the problem and the 
combination of experimental and numerical modelling has revealed that rip 
currents are surprisingly complicated flows. Here we can only describe a 
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Fig. 13.6.2 
al., 1997) and (b) the SC simulation (Haas and Svendsen, 2000) 

Time-averaged below-trough velocity from (a) experimental data (Haller et 

few of the principal results. In addition to showing how complex the rip 
currents are they also illustrate the versatility of the quasi-3D modelling 
approach. 

The experiments were carried out in a wave basin with shore normal 
wave incidence of regular waves. Thus the forcin gof the flow was steady 
in time. A plane slope was superimposed with a longshore bar with two 
openigs that functioned as rip channels. Fig. 13.6.2 shows the outline and 
also shows longtime averaged velocity vectors, to the left the measured 
values, to the right quasi-3D simulations. Though there are differences 
between the measured and computed results similarities are clear. In par- 
ticular the tendency of the upper rip (which is the one covered in most 
detail in the measurements) to veer off to the left (downwards in the fig). 
The analysis showed that this was due to small irregularities in the intended 
longshore uniform topography. The computed results in the fig were made 
with a carefully surveyed version of the actual topography in the basin. 

It was also found that both the experimental and the computed flows 
were highly unstable. An analysis of the linear stability of the rip as a jet 
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was conducted by Haller and Dalrymple (2001). Quasi-3D computations 
shown in Fig. 13.6.3 indicate that flow is fluctuating dramatically over a 
period of time that corresponds to approximately 500 s laboratory time. 
It appears that large scale vortices are generated and convected seaward 
from the bar by the rip current. Unfortunately it is not possible with the 
limited number of velocity meters available for the experiments to illustrate 
this Aow field but the time series recorded at the individual gages showed 
radical time variations on a similar time scale that fully consisted with the 
computed pattern. It is also mentioned that the bottom friction coefficient 
f plays a role in how the flow develops. 

The velocities also showed variations over depth that meant the vertical 
velocity profiles were twisting and turning with velocities at the surface 
sometimes being opposite or perpendicular to the velocities near the bot- 
tom. Those variations are by far the strongest some distance offshore of 
the rip channel. Fig. 13.6.4 shows a sequence velocity vectors and their 
cross- and longshore projections measured at three different water depths. 
The times of the panels range over a period of just 70 s in the laboratory 
timescale. 

In comparison the measurements taken at the centerline of the channel 
between the longshore bars shown in Fig. 13.6.5 fluctuate much less in even 
over the longer period of 110 s covered. 

For comparison the entire velocity field obtained by quivalent compu- 
tations are shown in a snapshot in Fig. 13.6.6. We see that qualitatively 
the picture is similar to the measured results but a direct comparison be- 
tween the measured and the computed results is difficult to obtain because 
the flow is clearly turbulent in nature so the exact experimantal conditions 
cannot be reproduced from repetition to repetition. 

On sandy beaches rip currents are ubquitous and these investigations 
reveal how complex rip current flows are. However, there is still much to 
be learned about the occurence and development rip current systems and 
the role they play in the morhological evolution of sandy beaches. 

13.6.3 Curvilinear version of the SHORECIRC model 

Recently the quasi-3D SHORECIRC model has been developed for non- 
orthogonal curvilinear coordinates (Shi et al., 2002, 2003). This highly fa- 
cilitates the possibilities for fitting the coordinate grid to irregular bound- 
aries. After extensive testing of the scheme against canonical cases where 
the exact solution is known the paper shows application of the model to 
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Fig. 13.6.3 A series of instantaneous snapshots of vorticity and velocity vectors from 
the SC simulation. Only an excerpt of the entire computational domain is shown (Haas 
and Svendsen, 2000). 



13.6 Applications and further developments of quasi-3D modelling 651 

t = 917.2 s t = 927.3 S 

t = 937.4 s t = 947.5 s 

t = 957.6 s t = 967.7 S 

t = 977.8 s 

1 

0.5 

0 
e 

t = 987.9 s 

Fig. 13.6.4 Snapshots of the measured velocity vectors with projections of the cross- 
shore and longshore currents 2 m offshore of the channel (z = 9, y = 13.6 m in Fig. 13.6.2) 
(Haas and Svendsen, 2002). 
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Fig. 13.6.5 
longshore currents in the channel (z = 11.75, y = 13.6 m) (Haas and Svendsen, 2002). 

Snapshots of the velocity vectors with projections of the cross-shore and 
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Fig. 13.6.6 An instantaneous snapshot at t = 771 s of the 3D variation of V, from the 
SC simulations with the real topography. The middle row of profiles is along the edge 
of the rip (Ham and Svendsen, 2000). 

Fig. 13.6.7 
(from Shi et al. 2003). 

The non-orthogonal curvilinear grid used for the computations in Fig. 13.6.8 
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Fig. 13.6.8 
flow details around the tip of the breakwater (from Shi et al. 2003). 

The computed current field around Grey’s harbour. The insert shows the 

several more realistic situations. Fig 13.6.7 shows an example of the grid 
generated for calculating the current pattern in the neighbohood of Grey’s 
harbor California. The equivalent current patterns obtained from the model 
are shown in Fig. 13.6.8. The left part of this figure gives a view of the 
entire computational domain of approximately 10 times 23 km and the right 
panel shows the flow details around the tip of the southern breakwater. 

13.6.4 The nearshore community model, NearCoM 

In 1999 a large 5-year research project involving researchers from many 
universities in USA was funded by the National Oceanographic Partnership 
Program (NOPP) which includes the National Science Foundation (NSF) 
and the Office of Naval Research (ONR). The goal of the project was to 
develop a comprehensive Nearshore Community Model for nearshore hydro- 
dynamic and sediment processes. This model, which has now been called 
The Nearshore Community Model or NearCoM will become available 
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at the end of 2004 at  the NOPP home page at the University of Delaware 
Center for Applied Coastal Research website at www.coastal.udel.edu. In 
parallel with oceanographic models like the Priceton Ocean Model (POM) 
this is an open-source model which is availble to the community free of 
charge. 

To quote from the website: “The community model predicts waves, cur- 
rents, sediment transport and bathymetric change in the nearshore ocean, 
between the shoreline and about 10 m water depth.” 

The centerpiece of the system is a program, master.f, which is used to 
couple individual modules, including 

0 wave driver 
0 Circulation module 
0 Morphology module 

Components of the system are accessible (as they become available) from 
the NOPP page or from the link given at the website. The initial config- 
ured test system will include REF/DIF 1 as the wave driver, SHORECIRC 
as the circulation module and a sediment transport calculation based on 
the Bagnold-Bailard-Bowen formulation. Many of the programs that have 
previously been distributed as free standing models are configured as sub- 
routine calls within the larger modeling system. 
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Appendix 

Appendix 13A: Solution of the equation for the vertical 
current profiles 

The pricipal solution for the vertical profiles of the currents starts with 
equation (13.3.10). 

We first elliminate the first parenthesis on the left hand side of (13.3.10) 
the following way. Using the depth integrated continuity equation (Chapter 
11.2) the depth-integrated momentum equation, (13.2.7) is rewritten as 

(13.A.l) 

which is then used to rewrite (13.3.10) as 
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The previous equation governs the vertical structure of &a. Solving 
(13.A.2) requires boundary conditions for the current &a. We match the 
shear stress at the bottom and specify no net flow per (13.2.6) which is 
written as 

Equations (13.A.2) and (13.A.3) are similar to the equations governing VIa 
(19) and (20) in PS99. The terms in the third line of (13.A.2) are new. In 
addition, the depth integral boundary condition in (13.A.3) is equal to zero 
whereas in PS99 (20) it is equal to -Qwa. 

We solve these equations for the vertical variation of Vdn by assuming 
time variations slow enough to allow us to neglect g. This results in 

where the forcing on the right hand side is given by 

( 13 .A.5) 

(13.A.6) 

( 13 .A. 7) 
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A rigorous discussion about the scaling of the problem is given by PS99 
and the details are omitted here. It suffices here to say that the relative 
size of the forcing is as follows 

F p  >> F y  >> F p  (13.A.8) 

This allows us to solve (13.A.4) using a perturbation method where we 
utilize 

V& = v,, (0 )  + VJ;) + . . . (13.A.9) 

The equation governing Vk:’ is then 

with the boundary conditions 

( 13 .A. 10) 

The solution method for VJ:) is the same as shown by PS99 for 
gives the following result 

It 

1”‘ F2)dz”dz‘dz (13.A.12) 

This equation is the same as the steady solution for V,(,o) given by PS99 
(34) without the -* term. 

Similarly, the equation governing VJ;’ is 

with the boundary conditions 

(13.A. 13) 
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where we substitute VJ:) for vda. in the equation for F:). The solution 
method is the same as for V::) with the following result 

The equation (13.A.12) and (13.A.15) are the solutions for the depth vary- 
ing part of the vurrents currents in terms of the depth-integrated properties. 



Chapter 14 

Other Nearshore Flow Phenomena 

14.1 Infragravity waves 

14.1.1 Introduction 

Long waves (or “infra-gravity” waves, or IG-waves for short) are waves 
with significantly longer periods than the peak frequency of the incident 
wave spectrum. Field measurements show that such waves occur very fre- 
quently on many beaches. The measurements show that close to the shore 
- well inside the surfzone - the major part of the wave energy is often con- 
centrated in spectral components with wave periods much longer than the 
dominating periods (generally in the range 20-300s) of the incoming wave 
motion. Therefore it is natural to suspect that some mechanism is present 
in the very nearshore region that transforms short wave energy into longer 
wave energy. 

Different mechanisms have been considered for their generation. 
One mechanism is the height variation of incoming waves which Munk 

(1949) suggested create shoreward mass transport under high wave groups 
that, at the break point where wave groups are destroyed, transfers into 
long waves. The long waves are reflected from the shore and become free 
waves called surf beat. Tucker (1950) found negative correlation between 
incident wave amplitude and low frequency motion. This observation was 
later by Longuet-Higgins and Stewart (1962) shown to agree with the forced 
set-down waves under wave groups that is a consequence of the radiation 
stress variations. This mechanism is analysed in a section below. 

Symonds et al. (1982) pointed out that varying wave heights causes the 
break point of the waves to vary with height. This means varying the point 
where the surfzone starts and therefore the start of the strong decrease 
in radiation stress and the generation of setup starts. This generating 

661 
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Fig. 14.1.1 Frequency-longshore wave number diagram showing spectral energy 
at each point in frequency-wave number space (from Huntley et al. 1981). 

mechanism has turned out to create much stronger forcing than the non- 
linear resonant interaction described below. It leads to the idea (which we 
will use as basis for analysis of long waves in this Chapter) that a time 
varying set-down/setup, and the (time varying) currents associated with it, 
can be considered a (long) wave in itself. This has been pursued further 
by Schaffer and Svendsen (1988), Lo (1988), List (1992) and many others 
thereafter. 
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Another proposed mechanism is nonlinear interaction between shorter 
waves: Gallagher (1971) analysed interaction between various spectral com- 
ponents in the incident wave train suggesting that longshore variation of the 
wave height in wave groups forces the low frequency wave motion. Bowen 
and Guza (1978) found that even a monochromatic wave train may transfer 
energy into longer waves by non-linear resonant interaction with the long 
waves generated, and in Bowen and Guza (1978) discussed whether the res- 
onant wave generation versus nonresonant motion at surf beat frequencies 
could be responsible for edge wave motion. Since it has turned out that 
variations in wave breaking (variations in break point as well as in height) 
generate much stronger forcing of IG waves that type of mechanism has 
been a dominating line of research in recent years. 

The special type of infragravity waves called edge waves has been 
known as a mathematical solution to the linear equations for a plane beach 
since Stokes (1846) (see Lamb, 1945, p 446). Eckart (1951) provided an ex- 
tensive analysis of the shallow water solutions for what is actually several 
modes of edge waves and Ursell (1952) gave the general solution for arbi- 
trary depths. However, verification of their existence in nature remained 
uncertain for many years though many publications showed measurements 
indicating that the abundance of infragravity wave energy could be inter- 
preted as signs of edge wave activity. Inman and Bowen (1967) may have 
been the first to associate the large energy in the surf zone with progressive 
edge waves. Probably one of the most important breakthroughs came when 
field experiments made it possible to measure the longshore wave number of 
the infragravity wave motion. That made it possible to verify that some of 
the long wave energy originated from waves following the edge wave disper- 
sion relation, and it became clear that edge waves are actually ubiquitous 
in the nearshore environment. 

Fig. 14.1.1 shows an early example from Huntley et al. (1981) of a 
frequency-longshore wave number diagram. In the diagram the dispersion 
relations for the lowest mode edge waves appear as curves (numbered n = 

0,1,2,3 in the figure). The local the slope of the curves represent the 
group velocity dwldlc, the ratio of the coordinates w / k  at each point of 
the curves corresponds to  the phase speed of the waves. The small framed 
and tainted areas indicate frequency-wave number combinations for which 
spectral energy was identified in the experiment in question. The darker the 
more energy. Though perhaps not as conclusive as later examples of similar 
plots the concentration of energy along the curves clearly is consistent with 
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the presence of edge wave motion on the beach. It may be mentioned that 
in the diagram ordinary storm waves would appear as lines that almost 
cling to the vertical axis. 

In this section we first derive the proper equations for long, infragravity 
wave motion from the basic circulation equations. This will provide a gen- 
eralized wave equation that clearly demonstrates how short, time varying 
waves can act as forcing that generates the long waves. We then analyse the 
simplest case of free long waves without considering where and how they 
were generated. Mathematically that turns out to correspond to solving a 
homogeneous equation, while generation of the long waves discussed in the 
following subsection is governed by an inhomogenous wave equation. 

14.1.2 Basic equations for infragravity waves 

The fact that we assume the long waves to be “long” in the sense of 
classical long wave theory, h / L  << 1, leads in the first approximation (that 
of waves) to the conclusion that in those waves we have hydrostatic 
pressure 

P = PSC (14.1.1) 

where C = <(z,,t) is the surface elevation of the long wave (setdown- 
setup). If we also as a first approximation neglect the bottom friction and 
other effects causing a vertical variation of the horizontal particle velocity 
(= the “current”) then V, will be depth uniform, and therefore we can also 
consider the depth averaged velocities V, in such waves. 

As already indicated, however, those are exactly the conditions we have 
built into our depth integrated, wave averaged equations for depth uniform 
nearshore currents derived earlier. 

Hence, we turn back to those equations which are essentially conserva- 
tion of mass and momentum. 
Continuity equation 

(14.1.2) 

where as usual for depth uniform currents 

(14.1.3) 
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is the sum of the current discharge V,h and the volume flux QW,, in the 
short wave motion. 

We also have that 

h=ho+< ( 14.1.4) 

Momentum equation 

(11.5.20) 
The momentum equation for depth uniform currents are given as 

(14.1.5) 

In order to concentrate our attention on the long wave generation we will 
neglect here all the effects in (14.1.5) that are not strictly necessary for the 
generation and propagation of such waves. The point here is that neglecting 
those effects does not eliminate the phenomena we want to study. 

Thus we disregard 

0 Turbulent shear stresses r a p  (resposible e.g. for lateral mixing). 
0 Bottom friction r,”. 
0 Wind stress r,S. 

The result is a reduced version of (14.1.5) that actually corresponds to 
“potential flow theory” : 

(14.1.6) 

Notice that the effect of the short waves is still represented by the %-term 
in (14.1.6). 

We plan to assume the long waves are small, and so are then the particle 
velocitites V, in those waves. Therefore also Q,  2 V,h is small, which 
implies we can neglect the Q,Qp-terms, and replace h with ho. In all, this 
amounts to linearizing the equation. The final version of the momentum 
equation then becomes 

( 14.1.7) 
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We can now eliminate Q, between (14.1.2) and (14.1.7) by cross differen- 
tiation. This gives 

1 ass,, ( 14.1.8) 

which represents a generalized version of the traditional long wave mild 
slope equation (MSE). 

The coordinate form of the general equation (14.1.8) is 

+ 2  - 
(14.1.9) 

For long waves the traditional MSE reads: 

a 2 T  d 
a t 2  ax, - - - ( g h . 2 )  = O  (14.1.10) 

The difference is that (14.1.8) contains the forcing term coming from the 
variation of Sffp in the short waves. Thus where the ordinary (long wave 
version of the) mild slope equation (14.1.10) describes the propagation over 
a varying depth ho(x,) of (long) waves already in existence, Eq. (14.1.8) 
also includes the possible generation of such waves by the Sap variation. 
The short waves, it is recalled, are assumed known, also in terms of how 
they propagate (refract, diffract) over the same varying topography ho(z,). 

14.1.3 Homogeneous solutions - Free edge waves 

Eq. (14.1.8) is essentially an inhomogeneous equation. As with all 
such systems, it is useful first to consider which solutions the homogeneous 
version of the equation has for the geometry of interest here. Such solu- 
tions would indicate how free long waves-waves not forced by the short 
waves-would behave and propagate. 

Analytical solutions for (14.1.10) turn out to be possible for a long plane 
beach with ho = h,x. Fig. 14.1.2 illustrates the situation considered. For 
that topography we now seek solutions to this equation which have the 
form 

(14.1.11) i ( k ,  y f w t )  - c = rl(x)e 

where both + and -wt are possible but where we for simplicity look at 
- wt only. We see that these solutions are waves with a sinusoidal shape 
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Fig. 14.1.2 The long straight beach assumed for the analytical solution. The 
cross-shore coordinate x is pointed seawards and the longshore coordinate is y. 

corresponding to Re[ei(kyy*wt)] that propagate along the shore in the y- 
direction. The amplitude varies in the cross-shore direction as ~ ( x )  which 
is to be determined by the solution to the equation. 

Substituting into (14.1.10) we get the terms 

( 14.1.12) 

and 

( S h o C y ) y  = -ghokPT (14.1.13) 

and for the entire equation 

g h o f  + ghoxvl + (w2 - gh0S;)q = 0 (14.1.14) 

Since on a plane beach ho = hOxx this can also be written 

xq’! + 7)’ + (25 - kEx) 77 = 0 
Shox 

(14.1.15) 

- 
The variation of ((x) in the cross-shore direction turns out to be related 

to e-x. It turns out that the substitution 

77 = ane -E /2 f ( t )  where ( = 2kyx (14.1.16) 

transforms Eq. (14.1.15) into a standard equation. Substituting (14.1.16) 
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into (14.1.15) yields 

(14.1.17) 

which is a confluent hypergeometric equation. In general, this equation has 
solutions that tend to co as x + co (and hence have no physical relevance) 
unless the parameter combination 

( 14.1.18) 

is a non-negative integer. Thus, we get the constraint for meaningful solu- 
tions by solving (14.1.18) with respect to w': 

lw' = gky(2n + l )hx  = gky(2n + 1) t a n p  1 (14.1.19) 

where p is the beach slope angle. This is the shallow water dispersion 
relation for these waves, which are called Edge Waves because their energy 
turns out to be concentrated near the shore (the "edge" of the water). 

As the values of w and ky satisfying (14.1.19) corresponds to n being a 
non-negative integer, the permitted solutions are for (14.1.17) on the form 

(14.1.20) 

Those solutions (eigenfunctions) are (proportional to) 
Laguerre polynomials which are given by 

Ef" + (1 - <)f' + nf = O n = 0 ,  1, 2, .  . . 

n2(n - 1I2(n - 2)2) <"-3 + .  . . + n2(n- 1)'...2~ - 
3! (n  - I)! 

(14.1.2 1) 

See Abramowitz and Stegun (1964). Evaluation for the first values of n 
gives 

-k,x n-=O LO = 1 ; r ] = e  
n = l  L 1 = 1 - <  ; r] = e-'vz(l - 2kyz) (14.1.22) 
n = 2 L2 = 1 - 2< + it2 ; r ]  = e-'vX(l - 4kY + 2k,2x2) 

Thus we have 
- c = e - b x  ~ , ( 2 k , z )  ei(by*wt) (14.1.23) 
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Fig. 14.1.3 Edge wave profiles. Surface elevation versus 2.  

These solutions all tend to zero as 2 + a. From (14.1.19), we see that 
the larger n the smaller k ,  for given w (and hz). Hence, the higher the 
mode n, the slower the offshore attenuation. 

Figure 14.1.3 shows the cross-shore variation of the lowest order edge 
wave modes. We see that the 0th order mode has no zero-crossings in the 
cross-shore direction, the first order has one, the second two, etc. 

In Fig. 14.1.4 is shown a snapshot of the surface elevations in a 0th-order 
edge wave. This wave could propagate in both directions along the shore, 
and the picture could even be for a standing edge wave. 

Exercise 14.1-1 
Show by adding two edge waves traveling in opposite direction 

that the surface elevation of a standing edge wave can be written 
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(e.g.) as 
- < = 2 a,e-'yX ~ , (2k , x )  cos k,x cos wt  (14.1.24) 

It is noted that standing edge waves can emerge when edge waves 
are enclosed for example between two promontories on a coast or 
two breakwaters protruding from the shoreline. 

Exercise 14.1-2 The particle velocities in edge waves can be de- 
termined from the linear version of the nonlinear shallow water 
equations (NSW) 

dv d< 
- + g - = o  

du d< 
- + g - = o ;  at ax at ay (14.1.25) 

Use this to determine the particle velocities. As an example sub- 
stitute the Laguerre polynomial for n = 0 and n = 1. 

Fig. 14.1.4 A snapshot of a 0th-order edge wave. 
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Recalling (14.1.11) , it is realized that edge waves are sinusoidal along 
z = constant lines in the longshore direction and travel in that direction at 
the speeds 

(14.1.26) 

We see that since p << 1, these waves will generally travel much slower than 
ordinary deep water waves with the same wave length which have 

(14.1.27) 

This solution is due to Eckart (1951). However it only represents the shallow 
water approximation. In particular for larger n this approximation starts 
to  deviate from the general edge wave solution which our equations do not 
provide because we have assumed hydrostatic pressure in our long waves. 
The complete solution referred to was found by Ursell (1952). It has the 
slightly different dispersion relation 

w2 = gky sin[(2n + l)p] ; which is only valid for: ((an + l )p  < :) 
(14.1.28) 

This means that there is a limited number of possible edge wave modes. 
A comparison between the cross-shore profiles of the shallow water and 
the general solutions, respectively, is shown in Fig. 14.1.5 for two different 
beach slopes, 0.10 and 0.20. We see that the differences between the two 
solutions are negligible for the lowest order modes but start showing up for 
n = 2 and 3. This is because the higher order modes also reach farther out 
from the shoreline where the depths become larger. This is also the reason 
why the differences are more pronounced for the steeper slope of h, = 0.20. 

Trapped and leaky IG-wave modes 
Finally, it is useful to analyze the propagation pattern of the lowest 

order edge waves. 
Since there is no energy dissipation associated with these waves, they 

can be thought of as fully reflected from the shoreline. The propagation 
pattern becomes particularly clear if we look at a wave orthogonal. 

For n = 0, all orthogonals are parallel with and the fronts perpendicular 
to the shoreline. For n > 0, however, the solution given by (14.1.11) with 
~ ( I C )  according to (14.1.21) or (14.1.22) represent a situation where waves 
reflected from the shoreline are refracted to an angle of incidence = 90" 
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C/C(O) 
1 0  

h, = 0.10 

n =  
0.5 - 

0.0 - 

Fig. 14.1.5 Cross-shore variations of edge-wave surface elevation amplitudes for 
beach slopes h, = 0.1 and 0.2. Comparison between Ursell’s general solution <uT 
(eq. 5 )  (normalized by its value at the shoreline) (-) and Eckart’s shallow-water 
approximation &c (eq. 11) (- - -) for n = 1,2,3. For the dominant mode n = 0 
these coincide (from Schaffer and Jonsson, 1992). 

and then refracted back to the shore, reflected again, and so forth. Fig. 
14.1.6 (Schaffer and Jonsson, 1992) shows some examples for a long straight 
beach. Waves of this type are also called trapped waves. The offshore 
line in the figure indicating the farthest the waves reach is called a caustic 
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curve. The nature of the wave motion around caustics is complicated. An 
extensive discussion is given in Peregrine (1976). 

(a) ( b) 
wave front 

reflected X 

wave front 

Y 

Fig. 14.1.6 Sketch of trapped higher order edge wave motion. The waves are 
propagating to the right in the figure. Left panel shows the wave fronts, right 
panel the wave othogonals (from Schaffer and Jonsson, 1992). 

For IG-waves in general there is another type of motion of which the 
surf beat is an example. Those are waves for which the refraction, as the 
wave moves away from the coast, does not reach the angle of 90" at any 
depth. Therefore such waves leave the coast and move out into the open 
ocean where they can travel long distances before they reach another coast. 
They are called leaky mode waves. A typical example are set-down 
waves generated by incoming short waves or waves that are generated as 
leaky waves elsewhere and which arrive to the beach from offshore. On 
a long straight beach the reciprocity of the refraction process will always 
ensure that incoming IG-waves also leave the beach again as leaky mode 
waves (unless they break on the shore). On curved shorelines like an island, 
however, such waves can become trapped. Similarly on curved beaches edge 
waves can turn into leaky waves. 

14.1.4 IG wave generation 

This subject has been thoroughly researched and an abundance of lit- 
erature is available. For brevity we can only outline a few of the principal 
questions and ideas and with much regret have to refer the reader to the 
individual publications, of which only a few are quoted here. 
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Set-down waves 
We first consider short wave groups propagating in a region with con- 

stant depth ho. It is assumed that the depth is large enough that the short 
waves are not shallow water waves (kh  = 0(1)), while ho is small enough 
to make group length L, >> ho. 

In constant depth we only need to consider one dimension. Thus the 
governing equation (14.1.8) reduces to 

(14.1.29) 

The groups are propagating with the group velocity cg and so is therefore 
the variation of the radiation stress caused by the variation in wave heights 
in the groups. Hence, if we assume the situation is quasi-steady in time, 
variations in the mean surface elevation must also travel with speed c, so 
we have 

- 

[ = T(x - C,t)  (14.1.30) 

which implies that 

Substituted into (14.1.29) this yields 

( 14.1.3 1) 

(14.1.32) 

which, using the assumption of steady conditions and space uniformity to 
eliminate the integration functions, can be integrated twice to give 

(14.1.33) 

(see Longuet-Higgins and Stewart, 1964). We see that this solution is ex- 
actly in anti-phase with the radiation stress variation, so that the set-down 
is largest where the wave groups have their maximum, and the long wave 
motion is bound to the wave groups. Notice that as written this expression 
for < has a mean value T # 0. 

It  is noticed that as long as the short waves are long enough that c, < 
&& this expression is finite. However, if the length of the short waves, 
which create the groups become shallow water waves with L >> ho then 
cs + and the given by (14.1.33) will be very large. This means 
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that the solution (14.1.33) cannot readily be used as the waves approach 
the shoreline. On a sloping bottom this solution would essentially be a 
geometrical optics approach which assumes locally constant depth. This 
issue is discussed more closely later. 

Generation of IG-waves: The forcing 

to  the one dimensional wave equation 
In the special case of shore normal wave incidence (14.1.5) also reduces 

1 as,, --  
p h  ax 

W K  break-point 

( 14.1.34) 

distance offshore 

Fig. 14.1.7 Schematic illustration of the variation of the radiation stress with a 
time varying break point (from Symonds et al., 1982). 

As mentioned in the introduction to this chapter, one of the essential 
problems related to infragravity waves is the nature of the forcing, and as 
(14.1.8) shows the forcing comes from changes in the radiation stress. It was 
shown in Chapter 5 that the overwhelming changes in radiation stress are 
due to the wave breaking and therefore occurs in the surfzone. However, it 
is also clear that simple uniform waves with initially constant wave height 
and period do not produce significant second order space-derivatives of S,, 
as (14.1.8) or (14.1.34) require for IG wave generation. As the example 
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above showed that requires wave motion varying in time (and therefore in 
space) as in propagating wave groups or bichromatic waves. 

The strongest change in the gradients of S,, occurs at the start of 
breaking, and in wave groups the breaking point changes position due to 
the fact that the waves of different height break at diferent depths. The 
effect of changing break point was analysed by Symonds et al. (1982). The 
wave height variation is simplified as partial groupiness in which the wave 
amplitude is assumed to vary sinusoidally around a mean value with a given 
amplitude of variation. The waves are shallow water waves. It is further 
assumed that the breaking occurs at a fixed value of the breaker index 
y = H / h ,  so that after breaking all waves have the same height H = y h  at 
a given depth. This also means that the groupiness of the incoming waves 
is completely destroyed in the breaking process. 

The resulting temporal changes in the gradient of the radiation stresses 
are illustrated schematically in Fig. 14.1.7. Because there is no groupiness 
left inside the surfzone the dS,,/dx inside the surfzone is simply propor- 
tional to (y h,)’. Thus infragravity wave energy is only produced outside 
the surfzone per se and only in the narrow region between the two ex- 
treme positions of breaking shown in Fig. 14.1.7. This, however, does lead 
to (strong) generation of cross-shore IG-waves (or surf beat). Since these 
waves are fully reflected from the shoreline the beach radiates IG-waves out 
to the open sea as hypothesized by Munk (1949) and others. 

List (1992) used the same mechanism in a numerical approach with a 
similar model and comparing his results to field data found among other 
things that some groupiness is retained in the surfzone. In a further develop- 
ment of this approach Schaffer and Svendsen (1988) studied the alternative 
case where the breakpoint is fixed so that all groupiness is retained inside 
the surfzone. This approach had already been pursued by Foda and Mei 
(1981) using a multiple scale expansion. The assumption that groupiness 
is maintained inside the surfzone means that IG-wave energy is generated 
throughout the surfzone. This again creates strong cross-shore IG-motions. 
Schaffer (1993) generalized the approach to 2DH generation of IG-waves. 
The breaking was also generalized to an arbitrary combination of the two 
extreme breaking hypotheses by introducing a parameter K which takes the 
value of 0 for a fixed breaking point and has the value of 1 for a time vary- 
ing breaking point with no groupiness iside the surfzone. Fig. 14.1.8 shows 
a schematic illustration of the wave height variation in the two extreme 
cases of K = 0 and 1. A possibility that shows up in the analysis of labo- 
ratory data is that K can be > 1 which correponds to an inversion of the 



14.1 Infragravity waves 677 

groupiness so that smaller waves before breaking starts become the larger 
waves inside the surfzone. This was also found in laboratory experiments 
with wave groups by Svendsen and Veeramony (2001). 

Notice that Fig. 14.1.8 also shows in the bottom panel that the analysis 
starts from a constant depth region which can be at any depth. This 
ensures that at the outer boundary of the analysis we can count on actually 
having the constant depth solution for set-down waves given by (14.1.33) 
as boundary condition for the IG wave motion. 

c- 
I A- ,.- c I 

I ,  = It, 3 

Fig. 14.1.8 Schematic illustration of the variation of the wave heights in the two 
extreme cases of IF. = 0 and IF. = 1. The bottom panel also shows the constant 
depth shelf used as offshore boundary for the analysis (from Schaffer, 1993). 
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Generation of IG-waves: energy transfer into IG-waves 
As IG waves are generated from the forcing from short waves, energy 

must be transfered from the short wave to the long waves,' and a question 
becomes how this happens and how fast the long waves grow. 

As an introductory example we consider the constant depth bound set- 
down wave solution given by (14.1.33) applied to a gently sloping bottom. 
To simplify we would expect that sufficiently close to the shore the short 
waves would be close to shoaling following the Green's law - h-1/4, and 
the phase velocity c would satisfy 

c2 tanh kh 1 
gh - kh 3 

N 1 - - (kh)2 + O(kh)* - -~ (14.1.35) 

and cg = 1/2c(l + G) which varies nearly a c. Thus the radiation stress 
increases as S,, N H-'12 and for the set-down wave we get from (14.1.33) 

(14.1.36) 

which means the long wave energy would grow as hP5.  However, Elgar et 
al. (1992) found that the growth rate of the IG-energy on a coast is only 
approximately h'.' 

The reason for this discrepancy is apparently that not enough energy 
is transferred into the set-down solution for it to reach its local constant 
depth value at  each point as fast as the depth changes. To transfer energy 
into an IG wave a phase difference must exist between the forcing (the wave 
group in the simple case) and the IG-wave. Similar results were found by 
Elgar and Guza (1985) and List (1992). This corresponds to the IG-wave 
lacking behind the forcing while propagating. But this does not guarantee 
that enough energy can be transfered for the tremendous growth of hP5.  

Thus the forced total wave has the group frequency but is phase shifted 
4 relative to the forcing which can be written 

- c = a cos(8, - 4)  ( 14.1.37) 

which is equivalent to saying the forced wave can be considered a sum of 
a bound wave locked to the forcing moving with the phase 8, and a free 
wave. This is often the interpretation used. 

'Usually the resulting loss of energy from the short waves is not considered which 
implicitly assumes this to  be small in comparison to  the total short wave energy. 
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The forcing in the form of d2Sxx/dx2 is propagating shorewards only 
and dissipated with the short waves. Throughout the nearshore (both be- 
fore and after breaking) the total incoming IG wave (bound plus free) may 
attain any phase relatively to the forcing. Therefore energy transfer form 
the short to the incoming long waves can be both negative (growth of IG 
energy) and positive (loss of IG energy) depending on the phase difference. 

This conjecture was confirmed by van Dongeren and Svendsen (1997) 
solving numerically the quasi-3D circulation equations for an incoming bi- 
chromatic wave group. In order to explicitly study the energy transfer to 
the IG waves they used the general energy equation for the current motion 
given by (4.4.19) which in 1D and linearized form becomes 

= o  - +-  +-- d t  dn: ho all: 

a~ aEfx Q~ asxx (14.1.38) 

where E is the long wave energy, Ef. = pgTQx is the energy flux and the 
third term represents the work done by the short wave radiation stress on 
the long waves. This is the term that represents the energy transfer. The 
expression is averaged over the IG wave period and the long wave motion 
is further divided into the incoming and outgoing parts of the total motion. 

For a particular selection of parameters in the computations they found 
that the incoming part of the long wave (essentially the set-down wave 
generated on a shelf at the boundary of the computation) did not even 
grow as fast as the Green’s law of hk1l4. 

On the other hand, once the IG waves have been reflected from the 
shoreline and move seaward they pass through the forcing pattern so quickly 
that virtually no energy transfer takes place. Van Dongeren and Svendsen 
even found in another example that the reflection coefficient R (defined as 
the ratio of the amplitude of the outgoing wave over the incoming wave) can 
be as large as 100, indicating large generation of IG energy in the nearshore. 

Recently Janssen et al. (2003) analysed this mechanism analytically for 
arbitrary waves and gave an explicit solution for the phase shift for a bi- 
chromatic wave field. In confirmation of the above qualitative explanation 
they found that the phase shifts occur already before the breaking starts, 
and experimental data are confirming these results. These findings have 
been further analysed and discussed by Battjes et al. (2004). 

Other results 
As mentioned the literature about this subject is very extensive and it 

is beyond the scope of the present text to cover all the results properly. 
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Here we only quote a few papers addressing some principal issues. 
Edge waves on longshore currents 

Edge waves on longshore currents have been analysized mostly under the 
assumption of current velocities that are much smaller than the propagation 
speed of the edge waves. Examples are Howd et al. (1992) and Falques and 
Iranzo (1992). 

In both cases the analysis is restricted to the shallow water version of the 
equations. They use different methods to analyse the problem and Howd 
et al. find that the effect of a weak current is equivalent to the solution to 
the ordinary edge wave using a modified depth given by 

(14.1.39) 

The solution can be used for in principle arbitrary beach profiles on a long 
straight beach. As usual for waves on currents it is found that opposing cur- 
rents will increase the longshore wave number k,, while a following current 
decreases k,. The currents also strongly modify the cross-shore edge wave 
profiles and velocities with the nodal structure shifting in the cross-shore 
direction. 

Falquks and Iranzo (1992) also solve the problem on a long straight 
beach for an arbitrary beach profile and for arbitrary cross-shore varia- 
tions. Their method is to consider the periodic problem that emerge by 
assuming longshore periodicity. Then the linear shallow water equations 
can be subject to Fourier transformation in the longshore direction which 
reduces them to a set of ordinary differential equations in the cross-shore 
direction. Those equations are then solved using orthogonal Chebyshev 
polynomials. This approach has several advantages including computa- 
tional efficiency and potential high accuracy. The solution includes both 
the dispersion relation and the wave profiles. 
Resonant generation of edge waves 

The initial growth of edge wave has been studied in a complex wave 
environment described by a wave spectrum (Lippmann et al., 1997). The 
forcing is determined by considering the interaction of pairs of progressive 
shallow water waves that approach the beach obliquely and generate the 
radiation stress gradients that constitute the forcing with frequencies and 
wave numbers equal to the difference between the two components cor- 
responding to the groupiness. A varying break point is assumed so that 
inside the surf zone all groupiness is destroyed and no forcing generated 
there. Only frequency-wave number combinations that satisfy the edge 
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wave dispersion relation are considered so that the edge waves show reso- 
nant growth. In establising a linearized evolution equation for the growth 
rate of the edge wave amplitudes a, the cross-shore variation is eliminated 
by a cross-shore integration. This essentially utilizes that edge waves is a 
complete orthogonal function set. Finally introduction of a weak frictional 
damping rate makes it possible to determine equilibrium amplitudes for the 
edge wave components. 

14.2 Shear instabilities of longshore currents 

14.2.1 Introduction 

The phenomenon which is today most frequently refered to as shear 
waves or shear instabilities were not identified until 1989 when Oltman- 
Shay, Howd and Birkemeier discovered that the data from one of the large 
field experiments at the Army’s Field Research Facility at Duck, North 
Carolina, the SUPERDUCK experiment, showed charateristics that did 
not fit any known wave theory. The signal analysis showed that some of 
the oscillations in the measured data corresponded to wavy fluctuations 
that propagated in the longshore direction at a speed much smaller than 
edge waves. 

In this section we review the findings of Oltman-Shay et al. (1989) and 
then give an account of the first attempt to explain the observations theo- 
retically, the analysis by Bowen and Holman (1989). Since then intensive 
research has been conducted leading to much better insight into this phen- 
menon. This includes analytical analysis of situations more complex and 
realistic than the first results, and, at  least as exciting, extensive numerical 
computations showing how the initial linear instabilities develop over long 
time. For this, use has been made of advanced numerical models based 
on the circulation equations developed in Chapters 11 and 13. As will be 
discussed these results have far reaching implications for our understanding 
of nearshore phenomena. 

14.2.2 The discovery of shear waves 

The topography of the beach on which the measurements of the SU- 
PERDUCK experiment were taken is shown in Fig. 14.2.1. The beach had 
a clear longshore bar-system. The figure also shows the locations of the 
sensors primarly used in the analysis. The longshore array placed mainly 
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Fig. 14.2.1 Nearshore topography and positions of the sensors used in the analysis 
for the shear waves (from Oltman-Shay et al., 1989). 

in the trough behind the bar consisted of electromagmetic velocity sensors, 
the cross-shore array of pressure sensors and accoustic altimeters. There 
was an offshore array of sensors to monitor incoming wave characteristics. 

The time series from the instruments showed slow variations much larger 
that expected for a reasonably steady wave situation. An example of a time 
series of longshore (v), cross-shore (u) velocities and surface displacements 
on a particular date are shown in Fig. 14.2.2. The longshore velocity mea- 
surements (panel a in the figure) clearly illustrate the strong variations. 
The amplitude of the velocity variations is of the order 20cm/s and the 
period in the range of 100 to 1000s. The cross-shore velocity (panel b) and 
to some extent the surface elevation (panel c) also show these oscillations 
though to a less pronounced extent. 

All the sensors in the longshore array were used for analysis of the 
statistical features of the in-phase and quadrature components of the cross- 
spectra to obtain longshore wavenumber and direction of propagation for 
the disturbances. It was found that unidirectional progressive waves with 
longshore wave lengths of 300m and 200m and with frequncies of 0.0017 Hz 
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Fig. 14.2.2 Time series measurements of (a) longshore velocities w, (b) cross- 
shore velocities u, and (c) surface elevations at a position in the surfzone (from 
Oltman-Shay et al., 1989). 

and 0.0037 Hz, respectively, were present on the morning of October 15. 
Such waves are an order of magnitude shorter than the shortest (0th-order) 
edge waves on the beach so the authors ruled out that the fluctuations could 
be edge wave related. 

The availabililty of the longshore wave number for spectral components 
in the time series makes it possible to construct wavenumber frequency- 
spectra for both longshore and cross-shore velocities. An example is shown 
in Fig. 14.2.3. In this figure the rectangular boxes mark the location of 
variance peaks in the spectrum for the respective velocity, and the shading 
indicates the energy density within that box. In the figure is also marked 
the dispersion curves for the lovest order infragravity edge waves (Oth, lst ,  
and 2nd order), and the boundary between trapped and leaky wave modes. 

The detail to observe in this figure is that in addition to substantial 
amounts of energy in the area of edge wave dispersion there is in each of 
the two panels a significant amount of spectral energy concentrated along 
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a straight line with a much smaller slope than for the ordinary infragravity 
waves. Since the slope represents the phase velocity of the motion this 
means fluctuations that travel at  a much lower speed than even the edge 
waves. The travel direction is southward for both the longshore and the 
cross-shore components. In fact it is found that the travel speed is smaller 
than the maximum longshore current speed suggesting that this could be 
a fluctuation in the longshore current motion itself. 

a. LONFSHORE VEI.OCI" b. CROSS SIIORF VELOCIITY 

t ,  " I  3 hPwr 

C 

Fig. 14.2.3 Wavenumber-frequency spectra of (a) longshore velocity, and (b) 
cross-shore velocity in the surfzone for the October sata set (from Oltman-Shay 
et al., 1989). 

14.2.3 Derivation of the basic equations 

Simultaneously with the discovery by Oltman-Shay et al. (1989) that 
some of the very low frequency fluctuations behaved entirely differently 
than ordinary edge waves an analysis was presented by Bowen and Hol- 
man (1989) suggesting that the observed fluctuations had characteristics 
that were consistent with the characteristics found in stability analysis of 
the longshore currents. The initial analysis was made for very simplified 
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conditions but were later extended by others to more realistic conditions 
and essentially confirmed. 

Here we first show how to derive the equations analysed by Bowen 
and Holman illustrating the assumptions and approximations needed to get 
from the basic nearshore circulation equations, and then briefly describe the 
principle of the stability analysis. 

In the first approximation it suffices to consider the equations for depth 
uniform currents. Thus we start with the continuity and momentum equa- 
tions on the form derived in Chapter 11 

(14.2.1) 

(14.2.2) 
where for simplicity we have skipped the overbar on the volume flux Q,. 

It is convenient here to introduce he depth averaged velocity 

Qa v, = h ( 14.2.3) 

and 

which gives 

ar a - 
- + -V,h = 0 at ax, 

(14.2.4) 

( 14.2.5) 

( 14.2.6) 
It  is further assumed that the variations of the surface elevation c are so 
small that they have little influence on the acceleration terms so that we 
can write the momentum equation as 
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The same assumption used in the continuity equation gives 

(1 4.2.8) 

This is often referred to as a rigid lid assumption.' Hence we have 

d - - - avo - av, - dP, -v,vp = v,- + vp- = vp- 
d X P  dxp dxp d X P  

(14.2.9) 

so that (14.2.7) becomes 

d -  - aPa 1 a S B  
--va+v,-+--(s,-T~p)+g-+ Ta -Ta  = 0 (14.2.10) at dxp p h d ~ p  ax, Ph 

If we now introduce the coordinate components of the velocity we have 

v, = (u ,v )  (14.2.11) 

and writing the derivatives dldt, d/dx, dldy as indices we get the following 
set of equations 

- 1  t ut + uux + uuy = -!d, - -(szz,z + syz,y - Tba: - T,,,, - Tiz,y) 
Ph 

(14.2.12) 
- 1  t t vt + uvz + Vvy = -dy - -(szy,z + s y y , y  - Tby - TzY,% - Tyy,y) 

Ph 
( 14.2.13) 

At this point we introduce that the flow is a combination of a steady long- 
shore current and cross-shore setup plus a time varying fluctuation (u1,01) 

that may be stable or unstable. This is expressed as 

u = O+u1(x,y, t )  (14.2.14) 

21 = V(Z) + 211 (x, Y, t) ( 14.2.15) 

c = co(2) + C l ( X , Y , t )  ( 14.2.16) 
- 

where we assume that (u1, 211) << V, and 51 << h. This implies that 

Tap t - t  - Toap(x) ; Tbz, Tby = TObz(x),70by(x) ( 14.2.17) 

We also assume that the smallness of (~1,211) implies that effects which the 
fluctuations in the currents have on the short wave motion are so weak that 

2This term can be misleading because it still allows the pressure to be constant at 
the free surface which a real rigid lid would not. 
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the radiation stress components are not affected. That means the forcing 
of the longshore current is not changing, so that 

sap = Soap(z:) ( 14.2.18) 

Substituting all this into (14.2.12) and (14.2.14) then gives 

Ul , t  + UlU1,x + (V + Wl)Ul,y = 

1 t 

Ph 
-g(<O,x + <I, x) - - (sOxx,x + Thx - TOXZ,,) 

( 14.2.19) 
1 

V l , t  + Ul(V + .l)y + (V + Vl)Vl,y = -g<l,y - -(S0xy,x + Tby - T;xy,x) 
Ph 

(14.2.20) 

From these equations we get the zeroth order eqations are 

SOXX,X = -pgh<o,x - Thx 4- T:x,x 

sOxy,x = -Thy + Txy,x t 

(14.2.21) 

( 14.2.22) 

in the z and y directions, respectively. Here the T;,,,-term represents the 
cross-shore turbulent normal stresses which we normally neglect as small. 
We then see that to zeroth order the basic situation is the usual steady 
longshore current and setup on a long straight coast analysed in Section 
11.7. 

For the first order equations we get similarly 

U1,t + VUl,, = -g<1,x 
V1, t  + u1yx + VW,, = -g<l,y 

(14.2.23) 

( 14.2.24) 

Exercise 14.2-1 

(14.2.15) and (14.2.16) into the continuity equation we get 
Show that by substituting the perturbation expansions 

<o,t = 0 zeroth-order (14.2.25) 
Ci,t + ( h ~ i ) ,  + (hvi), = 0 1st-order (1 4.2.26) 

Thus if we neglect the fluctuations <I of the surface caused by the 
velocity flluctuations (which is very reasonable) then we get 

(hul), + (hq) ,  = 0 or V . (hu) = 0 (14.2.27) 
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It is worth to emphasize that the neglect of the surface variation in these 
fluctuations is not a trivial matter because it underlines the fact that, as 
pointed out already by Oltman-Shay et al. (1989), the shear instabilities 
we are studying here are not surface waves per se. 

These are essentially the equations for the shear wave instabilities anal- 
ysed by Bowen and Holman (1989). 

As the derivation above shows the basic assumptions underlying their 
equations is that the shear instability is a fluctuation on a steady longshore 
current on a long straight coast. The fluctuations are assumed so small 
that they do not disturb the wave motion that generates and maintains the 
longshore current. Finally, as (14.2.22) shows, it is assumed that the fluctu- 
ations generate no fluctuations in the bottom shear stresses or in the lateral 
mixing. The latter of those imply that the fluctuations are not damped: the 
constant bottom shear stresses are balanced in the zeroth order equations 
by the steady radiation stress forcing component and lateral mixing term 
T:~,~. This assumption is of cause not realistic and was abandoned in later 
investigations. 

We also see that the resulting equations are linear in the unknown first 
order variables u1, v1, [I. 

14.2.4 Stability analysis of the equations 

The next step is to eliminate [1 from (14.2.23) and (14.2.24). By cross- 
differentiation and subtraction the result becomes 

(14.2.28) 

As (14.2.27) shows the volume flux hu is now divergence free. Therefore 
we can introduce a stream function for the volume flux defined so that 

ulh=-$, ; V l h  = $x (14.2.29) 

With this (14.2.28) can be written 

(14.2.30) 

It is this equation for which we now analyse the possibility that the distur- 
bance described by $ could be an unstable oscillation propagating along 
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the shore. Mathematically this is expressed as 

(14.2.31) 

This means that (dropping Re and setting w t  - ky = 6 )  (14.2.30) can be 
written 

h 

( 14.2.32) 

After introducing the definition 

(14.2.33) 

where c is the propagation speed of the fluctuations this may be further 
modified to the form 

(14.2.34) ( c - V ) ( @ , , - k 2 $ - - ) - ~ h ( ~ )  $z h, = o  
h 3: 

Exercise 14.2-2 
Derive equations (14.2.32) and (14.2.34) 

This is an eigenvalue problem for the unknown z-variation 4 of the 
stream function, and c is the (unknown) eigenvalue. This means that so- 
lutions for q4 may only exist for certain values of c. c may be complex so 
that 

c = c,, - x i m  ( 14.2.35) 

which means that the corresponding frequency w is complex 

w = w,, - ZWim 

Substituting this, (14.2.31) then gives 

(14.2.36) 

11, = Re (ek'imt 4(z)ei(wvet--kY) (14.2.37) 

Thus if W i m  > 0 then we get a @-solution that grows exponentially with 
time. That means an unstable solution and the growth rate is proportional 
to wim. 
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- "" 
h O  

Solution of (14.2.34) for a simple case 
To illustrate the nature of the problem we briefly review the solution 

given by Bowen and Holman (1989) for the very simple distribution of the 
longshore currents velocity V ( x )  shown in Fig. 14.2.4. With xo the sea- 
ward limit of the assumed longshore current domain we have the maximum 
current velocity at 6x0. 

1 . 
x I 

Region1 I RegionUI Rapionm 

Fig. 14.2.4 The longshore current distribution used in the example (from Bowen 
and Holman, 1989). 

We see that in this case hx = 0 everywhere, and for this case (14.2.34) 
reduces to the equation 

(c  - V) (4m - k 2 4 )  - 4vxz = 0 (14.2.38) 

which is called the Rayleigh e q ~ a t i o n . ~  

for 4(x) are 
Before discussing the solution we notice that the boundary conditions 

4 = 0  at x = o  (14.2.39) 

$ 4 0  at deep water X - + W  ( 14.2.40) 

It is also clear that in (14.2.34) we cannot have c = V ( x )  because c is not 
a function of x. Therefore c - V # 0 and we can divide by c - V .  Thus the 

3For further details about hydrodynamic stability theory reference is made to Drazin 
and Reid (1982). 
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equation we need to solve is 

(14.2.41) 

and for the special velocity profile shown in Fig. 14.2.1 this reduces to an 
equation of the form 

( 4 x x  - k24) - 4 K x  = 0 

(bXX - k 2 4  = 0 (14.2.42) 

Exercise 14.2-3 

(14.2.41) reduces to (14.2.42). 
Show that for the conditions described in Fig. 14.2.1 equation 

Thus the problem is reduced to solving this equation in the three regions 
shown in Fig. 14.2.4 and determining the integration constants so that we 
get a continuous solution including the solution for < (which also represents 
the pressure variation). This is in principle a straightforward problem but 
leads to quite complicated algebraic manipulations. A few details are given 
in Bowen and Holman and the task concludes in finding that the frequency 
w must satisfy a quadratic equation of the form 

w2 + a1w + a0 = 0 (14.2.43) 

where a l l  a0 are complicated functions of the parameters 20, S, VO that de- 
scribe the velocity distribution assumed for V, and the wave number Ic in 
the assumed solution (14.2.31). The conclusion is then that for each value 
of k the equation will have two roots, which can be either both real or com- 
plex conjugate, depending on the value of a~ and a ~ .  The unstable cases 
that grow exponentially are those with complex conjugate roots. 

Fig. 14.2.5 shows the range of solutions for a case with chosen VO, S, 20. 

The numbers are in line with the field situation described by Oltman-Shay 
et al. The top panel in the figure shows the real comoponent of w ,  the 
bottom panel the imaginary part. The abscissa is L-' = kf27r. In the 
two outer intervals for L1 there are two real solutions for w and hence 
the imaginary part is zero. In the center interval however, wim # 0. The 
philosophy is then that the solution with the largest positive value of wim 
will grow faster than any other and therefore be the one that after some time 
dominates and provides the characteristics of the instabilites that occur. We 
see that the most unstable frequencies have w,, = O(0.0012-0.0015) which 
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0.0041 I I I , , , , I , 

i' 

Fig. 14.2.5 The solution for w for the parameter values shown in the diagram. 
The top panel gives the real value wre (named ore in the figure), the bottom 
panel wzm, (a,,) (from Bowen and Holman, 1989). 

is in the range of the observed shear wave instabilities in the SUPERDUCK 
data analysed by Oltman-Shay et al. 

Once we have found the most unstable k-value we can go back into 
the solution and determine how it varies with z,y. The solution does not 
provide any information about the magnitude because it is growing expo- 
nentially, only the relative amplitudes. Fig. 14.2.6 shows an example of the 
distibution of the fluctuation velocities. This is an instantaneous snapshot, 
the pattern propagates along the shore with velocity c = w / k .  

14.2.5 Further analyses of the initial instability 

The discovery that longshore currents in some field data showed slow 
fluctuations that could be interpreted as shear instabilities set off extensive 
research into the theoretical nature of this mechanism. As shown above the 
first analysis was for the very simplified bottom topography and cross-shore 
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Fig. 14.2.6 The distribution of the total velocities (steady longshore current plus 
fluctuations) for the most unstabble k-value in the case described in Fig. 14.2.2 
(from Bowen and Holman, 1989). 

distribution of the longshore current shown in Fig. 14.2.4, with no frictional 
damping or wave-current interaction. Here we briefly describe a few of the 
many contributions expanding the simplistic analysis described above. We 
mainly focus on the primary problem formulation and the solution tech- 
niques, rather than on the details of the derivations. 

It may also be mentioned that a condition for the following solutions is 
that the cross-shore profile V ( x )  of the longshore current is preset. This 
is not a necessary condition since - as the analysis earlier in this section 



694 Introduction to nearshore hydrodynamics 

shows - determination of V(z) is only a matter of solving the zeroth order 
equatins (14.2.21) and (14.2.22) 

Dodd and Thornton (1990) obtained analytical results with characteris- 
tics similar to the results by Bowen and Holman (1989) for a biplanar beach 
(i.e. a beach topography pieced together of two different plane slopes in 
the seaward direction). However, once the simple topography and current 
velocity profile in Fig. 14.2.4 is abandoned it is necessary to resort to nu- 
merical solution of the eigenvalue problem. This was done by Dodd et al. 
(1992) for two cases of field tested beaches. Using a second order numerical 
scheme they encountered limits in the accuracy of the solution. A similar 
approach but with a more accurate differential scheme correct to O(Az4) 
was used by Putrevu and Svendsen (1992). 

In all those cases it is equation (14.2.34) that is solved. When this 
equation is discretized using the chosen finite difference approximations for 
the derivatives we arrive at the following matrix equation for 4 

(14.2.44) 

This represents N linear equations in 4i which is the vector of &values at 
the N points in the cross-shore domain at which (14.2.34) is discretized, and 
A and B are N by N matrices. For the boundary conditions prescribed at 
the shore and in the far offshore this equation can only be solved for certain 
values of c, which are the eigenvalues. Each value of the wave number vector 
k will yield N eigenvalues that in principle are complex. As in the example 
above w-values that have eigenvalues with an imaginary component > 0 
represents unstable wave numbers, and it is assumed that when subjected 
to a whole spectrum of infinitesimal disturbances the eigenvalue with the 
largest imaginary component will dominate the instability of that wave 
number. Similarly, if for some k all eigenvalues are real then disturbances 
with that k are stable. 

Putrevu and Svendsen analysed three different cross-shore profiles: a 
plane beach, an equilibrium beach and barred beach and found substantial 
sensitivity to the topography. In particular for, a barred beach they found 
more than one unstable mode for some k-values: one is a strong instability 
that develops on the outer side of the bar, the second, much weaker, is found 
close to the shoreline. Fig. 14.2.7 shows characteristics of the velocity field. 
The classical criterion for instability is a socalled Rayleigh condition which 
requires that the longshore velocity distribution V(z) must have a shape so 
that V,/h has a minimum (i.e. (VZ/h) ,  = 0) somewhere in the cross-shore 
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Fig. 14.2.7 A plot of the distribution of the shear wave induced valocity field for a 
barred beach with breaking point at zo = 1, and the bar positioned at zo = 0.6. 
In this case there are two unstable modes at the chosen wave number (which 
corresponds to ICZO = 3.5): one, the strongest, at the outer side of the bar, the 
other close to the shoreline (from Putrevu and Svendsen, 1992). 

domain (Bowen and Holman, 1989). Putrevu and Svendsen show that, if 
we define V, as the velocity at  the point where (Vz/h)z = 0, then in fact 
it is also necessary that (V,/h),(V - V.) < 0 in some interval (Fjortofts 
theorem). This is typically satisfied on the seaward side of the barcrest. 

Thus each version of (14.2.44) represents the solution of (14.2.34) for 
one value of k ,  which means the solution to the entire eigenvalue problem 
requires solution of (14.2.44) for a large number of k-values. Computation- 
ally this is quite demanding (Dodd et al. 1992 found that N = 100 was 
about what was practically possible for their computer capacity). 
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A more efficient method for solving the stability problem is the method 
introduced by FalquBs and Iranzo (1994), which is a modified version of 
their more general solution technique used for edge waves in Falquks and 
Iranzo (1992). For the present one dimensional problem of the cross-shore 
variation only the Chebyshev collocation scheme used is modified to account 
for the special properties of the problem by dividing the domain into a 
nearshore region (where Chebyshev collocation is used) and an (infinite) 
offshore region where a modified (“rational”) Chebyshev technique is used. 

For more details about all these investigations the reader is referred to 
the original papers. 

14.2.6 Numerical analysis of f u l l y  developed shear waves 

All the previous contributions essentially have focused on the initiation 
of the linear instability of the longshore curents under various, increasingly 
more realistic conditions. That, however, does not give any clues as to how 
the instabilities behave once they begin to grow larger. A weakly nonlinear 
analysis was conducted by Feddersen (1998) but the full picture can only 
be exposed by direct numerical solution in time and space of the circulation 
equations in some of the relevant forms. 

Numerical accuracy 
One of the very important questions is: how accurately can comprehen- 

sive numerical models predict the long term temporal development of so 
complicated flows. In order to assess that Fig. 14.2.8 shows the develop- 
ment over the first 12 hours of the surface elevation and the two horizontal, 
depth averaged velocity components at a point in a flow which shows shear 
instability (Zhao et al. 2003). The figure shows the results from two dif- 
ferent models, the 2DH version of the SHORECIRC (SC for short), and 
the 2DH model by Oekan-Haller and Kirby (1999). The two models rep- 
resent essentially the same mathematical formulations of depth averaged 
2DH flow with the same bottom friction, the same lateral mixing, etc. The 
difference in the two analyses is entirely in the numerical schemes. The 
SC model is based on the numerical predictor-corrector method developed 
by Wei and Kirby (1995) with 4th order finite difference accuracy for the 
spatial derivatives, using a third order predictor step and a fourth order 
corrector step. The Ozkan-Haller-Kirby analysis uses a numerical scheme 
similar to the scheme used by Falquks and Iranzo (1992) for edge wave 
motion. It uses spectral (Fourier) decomposition in the longshore direction 
and a Chebyshev collocation for the cross-shore variation. 
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Considering the complexity of the flow problem (the computational do- 
main is approximately 500-800m x 2500-3000m in the cross- and longshore 
directions, respectively) and the time over which the computations stretch 
(12 hrs in beach time) the similarities between the two simulations are really 
remarkable. There are differences in particular in the initial growth rate 
of the shear wave instabilities. That can for example be due to small dif- 
ferences in the amplitudes of the disturbance used to seed the instabilities. 
However, once developed, the two timeseries look very alike. The similari- 
ties range from roughly the same period and magnitude of the dominating 
fluctuations and the slow variation of those amplitudes, to the temporal 
shape of those fluctuations, which perhaps is particularly characteristic in 
the longshore velocity. It may be mentioned that the computations by 
Allen et al. (1996) made with a lower order difference scheme show similar 
patterns but in a comparison with the two models above comes out rather 
differently (Sancho and Svendsen, 1997). 

Thus Fig. 14.2.8 is interpreted as a very strong illustration of the ac- 
curacy and reliability of the numerical schemes available today. The con- 
clusion is, as one could hope, that the accuracy (or the error sources) of 
the computations relative to the nature we try to represent lies in the 
mathematical formulation of the models including the approximations and 
empirical formulas that it has been necessary to introduce such as the eddy 
viscosity, and the friction factor for the bottom shear stress, but also in the 
short wave forcing terms. The numerical errors do not seem to dominate 
the results. 

The long term development of the shear waves 
When we look closer at the computations we find that as the shear 

waves grow, so does the vorticity they represent. The solutions available 
all assume that in the longshore direction the flow conditions are periodic 
so that the flow patterns that leave the domain in the downstream end 
are re-entered in the upstream end of the computational domain. Over 
time this is equivalent to following the flow as it develops downstream over 
longshore distances many times the longshore extent of the computational 
domain. 

After some time the picture typically looks as shown in Fig. 14.2.9 
(Ozkan-Haller and Kirby, 1999). The figure shows the intensity of the 
vorticity rather than the velocities. Unfortunately the grey scale does not 
give all the details available in the original color photo. We see that the 
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Fig. 14.2.8 Comparison of 2D models with two different numerical schemes. (a) the 2D 
version of the SHORECIRC model. (b) The analysis of Ozkan-Haller and Kirby (1999) 
(from Zhao et al., 2003). 

nature of a shear wave undulation found in the linear instability analysis 
has given way to what appears to be a vorticity distribution with a series of 
individual, but interacting vortices, moving largely with the local longshore 
current velocity. This is the picture found in all such long-term simulations 
withvorticity intensities varying from case to case. 

The three panels also show that the intensity of the vorticity depends 
strongly on the parameter M which is a measure of the lateral mixing 
imposed in the equations. 
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Fig. 14.2.9 Contour plots of vorticity after 5 hours of model simulations with 
three different values of the constant in the lateral mixing eddy viscosity (from 
Ozkan-Haller and Kirby, 1999). 

Overall effect of the shear waves on the mean flow 
It is instructive to consider the relations between the vorticity distri- 

butions and the various mechnisms involved in creating the mean flow, 
which in the cases studied is primarily a longshore uniform longshore 
current. 
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On one side the intensity of the vorticity depends on the parameters used 
in the computations. Since the shear wave motion is weakly forced changes 
in bottom friction and lateral mixing give significant changes in the vorticity 
level. These parameters therefore need to be assessed carfully. (It is recalled 
that the Ozkan-Haller and Kirby analysis assumes depth uniform currents, 
so there is no dispersive mixing.) The results clearly indicate the significant 
decrease in vorticity level with increasing lateral mixing (factor M )  in these 
2DH computations. We are seeing an interaction where increased pre- 
specified lateral mixing decreases the shear wave activity. 

However, as might perhaps be expected from the nature of the flow, the 
additional horizontal particle motions in the shear waves cause a horizontal 
exchange of momentum that is similar to an added lateral mixing. Thus 
the presense of shear waves also increases the lateral mixing. Conversely 
decreasing shear wave activity also decreases the momentum exchange from 
the shear waves and hence the total lateral mixing. This means that the 
two mechanisms tend to interact and counter-balance each other. 

However, in a 2DH model the lateral mixing is pre-specified at a level 
that does not change with the solution. Thus one side of the interaction 
mechanism is eliminated: the feed back from the shear waves to the lateral 
mixing. Therefore in the 2DH case of Ozkan-Haller and Kirby, both the 
shear wave activity and the total lateral mixing (the specified plus the shear 
wave generated) depend critically on the pre-specified lateral mixing. In a 
way one can say that once the lateral mixing (and other constants) are 
specified one can expect the general level of shear wave activity is also set. 

On the other hand this feed back mechanism from the shear wave ac- 
tivity to the lateral mixing is present in the quasi-3D model described in 
Chapter 13 and the SHORECIRC model, because there the major part of 
the lateral mixing is determined by the nonlinear current-current and wave- 
current interactions due to the vertical variation of the current velocities, 
that is by the flow itself and hence by the shear wave activity. 

Zhao et al. (2003) conducted simulations with the quasi-3D model with 
and without the dispersive mixing. The dispersive mixing mechanisms of 
course also suppresses the shear wave activity, and because it is controled by 
the flow itself, not pre-specified, it allows the shear wave activity to influence 
the lateral mixing. The overall reductions in the shear wave energy for the 
domain when dispersive mixing is included are found to be a factor ranging 
from 1.6 early in the computations to 4 - 5 after close to 3 hours simulation 
time. The quasi-3D computations also show the shear wave energy is more 
confined to the region closer nearshore. 
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In a longshore uniform case discussed here a change in lateral mixing 
shows up as a change in the cross-shore distribution of the longshore current 
velocity. This seems to be one of the major results of both Ozkan-Haller 
and Kirby (1999) and of Zhao et al. (2003) where the effect has been 
clearly demonstrated. It is not clear at this point if there is a well defined 
equilibrium or balance between the two mechanisms the are responsible 
for the cross-shore current profile and, if so, what characterizes such an 
equilibrium. Further research into these mechanisms would be interesting. 

The quoted papers further contain analysis of various other flow related 
features such as the interaction between vortices, the propagation paths of 
the vortices, influence of a barred topography, and Zhao et al. (2003) also 
analyse the energetics of the vorticity (the socalled enstrophy) along with 
the energy transfer to and from shear wave vortices and mean flow, and the 
vertical distribution of the vorticity. For these and other topics the reader 
is referred to the papers. 

Concluding remarks 
In all there is a growing understanding of how the different mecha- 

nisms interact in the complicated nearshore flows. The examples quoted 
above were still idealized in the sense that only flows over longshore uniform 
topography were analysed, but this is only to clarify the already compli- 
cated mechanisms. However, as the latest literatue shows the modelling 
techniques based on the equations described in Chapters 11 and 13 are 
fully capable of handling general topographies, and with the wave drivers 
that provide time series information about volume Aux and radiation stress 
variations in irregular waves then the circulation models are capable of also 
predicting the resulting time vaying currents and IG-wave motions. 
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surface elevation, shallow wa- 

third order theory, 370 
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Stream function, 374 
Stream function method, 372, 

boundary conditions, 375 
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comparison with cnoidal 
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374-379 

order theory, 378 
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Stress components, 18 
Superposition of linear waves, 

Surf beat, 661 
Surf similarity parameter, 254 
Surf zimilarity parameter, 233 
Surfzone data 
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absolute phase velocity, 248 
bore dissipation, 267 
crest elevation, 2544255 
dimensionless parameters, 
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energy dissipation, dimen- 

energy flux, dimensionless, 
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sionless, 263 
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intrinsic phase velocity, 249 
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Particle Image Velocimetry, 

PIV, 258 
particle velocities, 258-262 
phase velocities, 248 
radiation stress, dimension- 

relative phase velocity, 248 
roller area, 255-258 
sawtooth surface profile, 251, 

surface profiles, 250 
surface shape parameter, Bo, 

turbulence intensities, 262- 
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erated shear stress,=, 
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energy dissipation, 285-293 
energy dissipation in random 
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energy dissipation with a 
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energy dissipation, Battjes- 
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energy dissipation, Thornton 
-Guza approach, 290 

energy flux, 274-279, 281 
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radiation stress, 279 
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swash, 295 
volume flux, 281-282 
Volume Of Fluid (VOF) 

method, 294 
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ballistic model for tip of 
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Tensor notation, 45 
Kronecker’s 6 i j ,  46 
separate horizontal and verti- 

cal components, 516 
Time averaged wave properties, 
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see also wave averaging, 88 

Transport equation, 150 
Trapped waves, 672 
Turbulence modelling, 39-42 
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Direct Numerical Simulation, 
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Large Eddy Simulation, LES, 
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Turbulent flows, 28-42 
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Ensemble average, 30 
mean values, 30-34 
Reynolds decomposition, 29 
Reynolds equations, 34-39 
Reynolds stresses, 38 
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alternative boundary condi- 

boundary conditions, 610 
continuity boundary condi- 
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depth varying eddy viscosity, 

effect of boundary layer, 618 
effect of steady streaming, 

evaluation of eddy viscosity, 
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shear stress variation, 617 
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three layer model, 610 
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Ursell parameter, 335 

Velocity potential 
definition, 23 

Vertical current profiles 
solution, 657 
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dynamic, 20 
eddy viscosity, 41 
Kinematic, 22 

surfzone waves, 281 

definition, 91 

Volume flux, 358 

Volume flux Qw 
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Wave action 
models, 318 
source contributions, 319 

Wave action equation, 227 
Wave action spectrum, 318 
Wave averaging 

Wave breaking, 232-303 
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Boundary Element Method, 

breaking index, 231, 242, 

breaking position, 245-246 
breakpoint characteristics, 
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qualitative description, 232- 

reflection, 237 
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surging breakers, 236-237 
swash, 237 
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theoretical modelling, 271- 

turbulent region, 234 
why do waves break?, 238 
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237 

303 

Wave drivers, 581 
Wave equation 

Wave equation,long waves, 168- 

Wave friction factor, 494 

long waves, 169 
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highest wave in deep water, 

Wave height to water depth ratio, 

minimum in surfzone, 215 
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deep water approximation, 
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shallow water approximation, 

variation with depth, 71 
variation with wave period, 

wave, 231 

232 

231 

H / h  

Wave height , H 

Wave length, L 
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Wave models, 311-320 
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2DH refraction models, 313 
amplitude variation, 317 
general coastal topography, 
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MSE and parabolic models: 
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REF/DIF model, 320 
REF/DIF-S model, 320 
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SWAN model, 319 
wave action models, 318 

Wave number vector, k, 152 
irrotationality, 153 

Wave orthogonal, definition, 128 
Wave period 

Wave period, T 
absolute, 157 

conservation of, 131 
definition of, 52 

Wave setdown, 562 
Wave setup, 563 
Wave spectra, 113-126 

autocovariance function, 117 
directional spectra, 120 
fourier representation of mo- 

parameterized, 121 
random phase, 119 
reproduction of, 118 
the raw spectrum, 117 

mean wave height, 123 
Rayleigh distribution, 123 
significant wave height, 123 
spectral moments, 125 
spectral width, 125 
zero-upcrossing wave height , 
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Wave statistics, 122 
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Wave steepness, H / L ,  137, 323 
Wave volume flux Qw , 9 1 
Wave-current boundary layers, 

mean shear stress, general 

strong currents, 511 
weak currents, 509 

constant form, 57 
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Waves 
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wind generation, 134 
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absolute group velocity, 158, 

blocking point, 158 
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current-depth refraction, 165 
Doppler relation, 156 

159 

following currents, 159 
opposing currents, 157 
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