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Preface to the Expanded Edition

This is Part One of the expanded edition of Applied Dynamics of Ocean
Surface Waves by CCM first published twenty two years ago by Wiley-
Interscience. A corrected version was later published by World Scientific
without essential changes. During the past two decades, many theoreti-
cal advances have been made by researchers throughout the world. Great
strides have been made in analytical and numerical treatments for accu-
rate predictions as well as physical understanding. In this new edition, the
authors have added considerable new materials, hence the division to two
separate parts.

Part One is restricted to the linear aspects. While nearly all the matieri-
als in the first edition are kept, many new exercises are added. A major
change is the addition of Chapter 7 on the multiple scattering by many
scatterers on the seabed. Introductory aspects of Bragg resonance by peri-
odic bars are first discussed. Important to coastal geomorphology, a com-
plete understanding of longshore bars requires quantitative understanding
of both the cause and the effect; it turns out that waves and bars affect each
other in complicated ways. The formation and evolution of sandbars under
waves is, however, a very slow process and involves the highly empirical
science of sediment transport; we only discuss the linearized effects of rigid
bars on the wave climate. Over a much larger scale of the continental shelf,
bathymetric variations can be very irregular. Therefore we also present a
new theory of the effects of scattering by random depth fluctuations. It is
shown that the accumulation of incoherent scattering over an extended area
results in energy removal from the averaged motion which is coherent. This
physics is related to the phenomenon of Anderson localization in quantum
physics.
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viii Preface to the Expanded Edition

In Chapter 8 on the dynamics of floating bodies, we have included a
section on the trapped modes of the mobile gates designed for Venice lagoon,
as a current application in coastal engineering.

The science of water waves has always been enriched by the use of
mathematical tools. In order that a reader with only some familiarity with
advanced calculus can make effective use of this book, we have continued
the style of the previous edition by shunning the phrase “it can be shown
that...”. Often the mathematical steps of derivation are given in consid-
erable detail. More advanced tools such as the techniques of asymptotic
analysis are explained in the text. To highlight our objectives of bridging
theory and applications, the title of this book has been changed.

Chiang C. Mei, Cambridge, Massachusetts, USA
Michael Stiassnie, Haifa, Israel
Dick K.-P. Yue, Cambridge, Massachusetts, USA
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Preface to the First Edition

A substantial growth of knowledge in the dynamics of ocean surface
waves has been witnessed over the past 20 years. While many advances
have been stimulated by purely scientific inquiry in geophysics, the pace
of progress has also been quickened by the increase in large engineering
projects both offshore and along the coast. A major construction project
now demands not only careful estimates of wave conditions near the site
but also reliable predictions of the effects on and of the construction itself.
With a view to bringing together scientific and engineering aspects of ocean
waves, educational and research programs have naturally been established
in a number of universities and industries.

This book is the outgrowth of my lecture notes for a two-semester course
taught at M.I.T. since 1974 to graduate students in civil and ocean engi-
neering, with occasional participants from physical oceanography. The aim
of the book is to present selected theoretical topics on ocean-wave dynamics,
including basic principles and applications in coastal and offshore engineer-
ing, all from the deterministic point of view. The bulk of the material deals
with the linearized theory which has been well developed in the research
literature. The inviscid linearized theory is covered in Chapters One to
Five and again in Eight. Frictional effects caused directly or indirectly by
viscosity are treated in Chapters Six, Nine, and Ten. A special effect of
breaking waves on beaches is examined in Chapter Eleven. Chapters Ten
and Eleven focus on the secondary effects of nonlinearity. The cases where
nonlinearity is of primary importance are the subjects of Chapters Twelve
and Thirteen, for shallow and deep waters, respectively. The last chapter
(Fourteen) is on wave-induced stresses in a porous but deformable seabed,
which is a problem vital to offshore engineering. In the construction of a
gravity platform, the cost of the foundation alone can be as high as 40% of

ix
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x Preface to the First Edition

the total. Under the influence of waves, the strength of a porous seabed is
affected to varying degrees by fluid in the pores. Hence hydrodynamics is
an essential part of the problem. In this chapter a well-known fluid-dynamic
reasoning is applied to a soil model which includes fluid and solid phases.
I hope the material will stimulate further interaction among researchers in
different disciplines.

Most parts of this book have been used either for my own lectures or
for self-paced reading by the students. Since contributions by mathematical
scientists have always been prominent in this field, the use of certain analyt-
ical techniques which may be less familiar to many potential readers cannot
be avoided. Therefore, considerable space is devoted to the informal ex-
planation and demonstration of those techniques not customarily discussed
in a course on advanced calculus. The derivations of most of the results
are given in detail in order to reduce possible frustrations to those who
are still acquiring the requisite skills. A few exercises are included; nearly
all of them demand some effort. For additional exercises, I have usually
suggested term papers based on the student’s own survey of literature.

Studies on waves in general, and on water waves in particular, have
always been enriched by cross fertilization among diverse fields of science
and engineering, including physics, mathematics, oceanography, electrical
engineering, and others. A conscientious effort has been made in this book
to reflect this fact which I hope will induce more engineers and scientists
to join their talents for further challenges of the sea.

Several important areas which are either beyond my own experience
or have been treated in other books are not included here. The mecha-
nisms of wave generation by wind and many aspects of resonant interac-
tions have been admirably surveyed by Phillips (1977) and by LeBlond and
Mysak (1978). On the statistical description of random sea waves, a de-
tailed discussion of the basic aspects may be found in Price and Bishop
(1974). For the statistical mechanics of sea waves one should consult
Phillips (1977) and West (1981). The rapid advance on steep waves, spear-
headed by M. S. Longuet-Higgins, is of obvious interest to engineers and
oceanographers alike; the numerous papers by him and his associates on
the subject cannot be matched for clarity and thoroughness. Waves due to
advancing bodies belong to the realm of ship hydrodynamics; the definitive
treatises by Stoker (1957), Wehausen and Laitone (1960), and Newman
(1977), and all the past proceedings of the Naval Hydrodynamics Sympo-
sium should be consulted. Wave-induced separation around small bodies is
at the heart of force prediction for offshore structures; it is a subject where
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Preface to the First Edition xi

experiments play the leading role and has been expertly covered in a recent
book by Sarpkaya and Issacson (1981). Storm surges are also omitted.

In a book containing many mathematical expressions, freedom from
error can be strived for but is hard to achieve. I shall be grateful to readers
who wish to inform me of any oversights that remain.

Chiang C. Mei
Cambridge, Massachusetts
July 1982
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Introduction 1
Many types of waves involving different physical factors exist in the ocean.
As in the elementary problem of a spring-mass system, all waves must be
associated with some kind of restoring force. It is therefore convenient to
make a crude classification of ocean waves according to the restoring force,
as shown in Table 1.1.

Wind waves and swell, generated by local and distant storms, are the
most directly experienced by mankind. Occurring less frequently but with
occasionally disastrous consequences are the tsunamis which usually refer to
long-period [∼ O(1 h)] oscillations caused by large submarine earthquakes
or landslides. Within the same broad range of time scales, waves can also
exist as a result of human activities (ship motion, explosion, and so on).
Since these waves are the most prominent on the water surface and their
main restoring force is gravity, they are called the surface gravity waves.
The shorter term, surface waves, is often used if the exclusion of surface
capillary waves is understood.

Important in the science of oceanography are the internal gravity waves
along the thermoclines which are horizontal layers of sharp density strati-
fication beneath the sea surface. The associated wave motion is generally
not pronounced on the surface except for some indirect signs of its pres-
ence. These waves contribute to the process of mixing and affect the eddy
viscosity of ocean currents. Storm surges are the immediate consequence
of local weather and can inflict severe damage to human life and properties
by innundating the coast.

In nature, several restoring forces can be in effect at the same time,
hence the distinction between various waves listed in Table 1.1 is not always
very sharp.

3
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4 Introduction

Table 1.1: Wave Type, Physical Mechanism, Activity Region.

Wave Type Physical Mechanism Typical Perioda Region of Activity

Sound Compressibility 10−2–10−5 s Ocean interior
Capillary ripples Surface tension
Wind waves and swell Gravity
Tsunami Gravity

< 10−1 s
1–25 s
10 min–2 h

 Air–water interface

Internal waves Gravity and density 2 min–10 h Layer of sharp
stratification density change

Storm surges Gravity and 1–10 h Near coastline
earth rotation

Tides Gravity and
earth rotation

Planetary waves Gravity, earth
rotation and Entire ocean layer

12–24 h

O(100 days)

variation of
latitude or
ocean depth

aIn seconds (s), minutes (min), hours (h), and days.

This book will be limited to wave motions having time scales such that
compressibility and surface tension at one extreme and earth rotation at the
other are of little direct importance. Furthermore, the vertical stratification
of sea water is assumed to be small enough within the depth of interest.
Therefore, we shall only be concerned with the surface gravity waves, that
is, wind waves, swell, and tsunamis. Discussions of all other waves listed
in Table 1.1 can be found in the oceanographic treatises by Hill (1962) and
LeBlond and Mysak (1978).

In this chapter we first review the basic equations of fluid motion and
some general deductions for inviscid, irrotational flows. Linearized equa-
tions for infinitesimal waves are then derived. After introducing the general
notions of propagating waves, we examine the properties of simple harmonic
progressive waves on constant depth. An elementary discussion of group
velocity will be given from both kinematic and dynamic points of view.

1.1 Review of Basic Formulation for an
Incompressible Fluid of Constant Density

1.1.1 Governing Equations

In a wide variety of gravity-wave problems, the variation of water density
is insignificant over the temporal and spatial scales of engineering interest.
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1.1. Review of Basic Formulation for an Incompressible Fluid 5

The fundamental conservation laws are adequately described by the follow-
ing Navier–Stokes equations:

mass : ∇ · u = 0 , (1.1.1)

momentum :
(

∂

∂t
+ u · ∇

)
u = −∇

(
P

ρ
+ gz

)
+ ν∇2u , (1.1.2)

where u(x, t) is the velocity vector (u, v, w), P (x, t) the pressure, ρ the
density, g the gravitational acceleration, ν the constant kinematic viscosity,
and x = (x, y, z) with the z axis pointing vertically upward.

One of the most important deductions from these equations is concerned
with the vorticity vector Ω(x, t) defined by

Ω = ∇× u , (1.1.3)

which is twice the rate of local rotation. By taking the curl of Eq. (1.1.2)
and using Eq. (1.1.1), we can show that(

∂

∂t
+ u · ∇

)
Ω = Ω · ∇u + ν∇2Ω . (1.1.4)

Physically, the preceding equation means that following the moving fluid,
the rate of change of vorticity is due to stretching and twisting of vortex
lines and to viscous diffusion (see, e.g., Batchelor, 1967). In water where ν

is small (∼= 10−2 cm2/s) the last term in Eq. (1.1.4) is negligible except in
regions of large velocity gradient and strong vorticity. A good approxima-
tion applicable in nearly all of the fluid is(

∂

∂t
+ u · ∇

)
Ω = Ω · ∇u . (1.1.5)

An important class of problems is one where Ω ≡ 0 and is called the
irrotational flow. Taking the scalar product of Eq. (1.1.5) and Ω, we have(

∂

∂t
+ u · ∇

)
Ω2

2
= Ω2[eΩ · (eΩ · ∇u)] ,

where eΩ is the unit vector along Ω. Since the velocity gradient is finite in
any physically realizable situation, the maximum of eΩ · (eΩ · ∇u) must be
a finite value, M/2, say. The magnitude Ω2(x, t) following a fluid particle
cannot exceed Ω2(x, 0)eMt. Consequently, if there is no vorticity anywhere
at t = 0, the flow will remain irrotational for all time.
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6 Introduction

For an inviscid irrotational flow, the velocity u can be expressed as the
gradient of a scalar potential Φ,

u = ∇Φ . (1.1.6)

Conservation of mass requires that the potential satisfies Laplace’s equation

∇2Φ = 0 . (1.1.7)

If the velocity potential is known, then the pressure field can be found
from the momentum equation (1.1.2). By using the vector identity

u · ∇u = ∇u2

2
− u× (∇× u)

and irrotationality, we may rewrite Eq. (1.1.2), with ν = 0, as

∇
[
∂Φ
∂t

+
1
2
|∇Φ|2

]
= −∇

(
P

ρ
+ gz

)
.

Upon integration with respect to the space variables, we obtain

−P

ρ
= gz +

∂Φ
∂t

+
1
2
|∇Φ|2 + C(t) , (1.1.8)

where C(t) is an arbitrary function of t and can usually be omitted by re-
defining Φ without affecting the velocity field. Equation (1.1.8) is called the
Bernoulli equation. The first term, gz, on the right-hand side of Eq. (1.1.8)
is the hydrostatic contribution, whereas the rest is the hydrodynamic con-
tribution to the total pressure P .

1.1.2 Boundary Conditions for an Inviscid
Irrotational Flow

Two types of boundaries interest us: the air–water interface which will also
be called the free surface, and the wetted surface of an impenetrable solid.
Along these two boundaries the fluid is assumed to move only tangentially.
Let the instantaneous equation of the boundary be

F (x, t) = z − ζ(x, y, t) = 0 , (1.1.9)

where ζ is the height measured from z = 0, and let the velocity of a geo-
metrical point x on the moving free surface be q. After a short time dt,
the free surface is described by
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1.1. Review of Basic Formulation for an Incompressible Fluid 7

F (x + q dt, t + dt) = 0 = F (x, t) +
(

∂F

∂t
+ q · ∇F

)
dt + O(dt)2 .

In view of Eq. (1.1.9), it follows that

∂F

∂t
+ q · ∇F = 0

for small but arbitrary dt. The assumption of tangential motion requires
u · ∇F = q · ∇F which, in turn, implies that

∂F

∂t
+ u · ∇F = 0 on z = ζ , (1.1.10)

or, equivalently,

∂ζ

∂t
+

∂Φ
∂x

∂ζ

∂x
+

∂Φ
∂y

∂ζ

∂y
+

∂Φ
∂z

on z = ζ . (1.1.11)

Equation (1.1.10) or (1.1.11) is referred to as the kinematic boundary con-
dition. In the special case where the boundary is the wetted surface of a
stationary solid SB, ∂ζ/∂t = 0 and Eq. (1.1.10) reduces to

∂Φ
∂n

= 0 on SB . (1.1.12)

On the sea bottom B0 at the depth h(x, y), Eq. (1.1.9) becomes
z + h(x, y) = 0 and Eq. (1.1.12) may be written

−∂Φ
∂z

=
∂Φ
∂x

∂h

∂x
+

∂Φ
∂y

∂h

∂y
on B0 . (1.1.13)

On the air–water interface, both ζ and Φ are unknown, and it is neces-
sary to add a dynamical boundary condition concerning forces.

For most of the topics of interest in this book, the wavelength is so
long that surface tension is unimportant; the pressure just beneath the free
surface must equal the atmospheric pressure Pa above. Applying Eq. (1.1.8)
on the free surface, we have

−Pa

ρ
= gζ +

∂Φ
∂t

+
1
2
|∇Φ|2 on z = ζ . (1.1.14)

The two conditions, (1.1.11) and (1.1.14), may be combined into one in
terms of Φ, by taking the total derivative of Eq. (1.1.14):(

∂

∂t
+ u · ∇

)
Pa

ρ
+
(

∂

∂t
+ u · ∇

)(
∂Φ
∂t

+
u2

2
+ gζ

)
= 0 , z = ζ .

(1.1.15)
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Using Eq. (1.1.11) and

u · ∇∂Φ
∂t

=
∂

∂t

1
2
u2 ,

we have from Eq. (1.1.15)

D

Dt

Pa

ρ
+
[
∂2Φ
∂t2

+ g
∂Φ
∂z

+
∂u2

∂t
+

1
2
u · ∇u2

]
= 0 , z = ζ . (1.1.16)

Furthermore, if Pa = constant, the above condition becomes

∂2Φ
∂t2

+ g
∂Φ
∂z

+
∂

∂t
(u)2 +

1
2
u · ∇u2 = 0 , z = ζ , (1.1.17)

which is essentially a condition for Φ. Not only do nonlinear terms appear
in these boundary conditions, but the position of the free surface is also an
unknown quantity. An exact analytical theory for water-wave problems is
therefore almost impossible.

When the motion of the air above is significant, the atmospheric pressure
cannot always be prescribed a priori ; the motions of air and water are, in
general, coupled. Indeed, the exchange of momentum and energy between
air and sea is at the heart of the theory of surface-wave generation by wind.
However, we shall limit our attention to sufficiently localized regions in the
absence of direct wind action. Air can then be ignored for most purposes
because of its comparatively small density.

1.2 Linearized Approximation for
Small-Amplitude Waves

Let us assume that certain physical scales of motion can be anticipated
a priori. In particular, let

λ/2π

ω−1

A

Aωλ/2π

 characterize


x, y, z, h

t

ζ

Φ

 , (1.2.1)

where λ, ω, and A are the typical values of wavelength, frequency, and
free-surface amplitude respectively. We have assigned the scale for Φ to be
Aωλ/2π so that the velocity has the scale Aω which is expected near the
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free surface. We now introduce dimensionless variables and denote them
by primes as follows:

Φ
x, y, z, h

t

ζ

 =


AωλΦ′/2π

λ(x′, y′, z′, h′)/2π

t′/ω

Aζ′

 . (1.2.2)

When these variables are substituted into Eqs. (1.1.7), (1.1.11), (1.1.12)
and (1.1.14), a set of dimensionless equations is obtained:

∇′2Φ′ =
(

∂2

∂x′2 +
∂2

∂y′2 +
∂2

∂z′2

)
Φ′ = 0 , −h′ < z′ < εζ′ , (1.2.3)

∂Φ′

∂n′ = 0 , z′ = −h′ , (1.2.4)

∂ζ′

∂t′
+ ε

(
∂Φ′

∂x′
∂ζ′

∂x′ +
∂Φ′

∂y′
∂z′

∂y′

)
=

∂Φ′

∂z′
(1.2.5)

on z′ = εζ′ ,
∂Φ′

∂t′
+
(

2πg

ω2λ

)
ζ′ +

ε

2
(∇′Φ′)2 = −P ′

a = − 2πPa

ρAω2λ
(1.2.6)

where ε = 2πA/λ = 2π × amplitude/wavelength = wave slope. Since the
scales are supposed to reflect the physics properly, the dimensionless vari-
ables must all be of order unity; the importance of each term above is
measured solely by the coefficients in front.1

Let us now consider small-amplitude waves in the sense that the wave
slope is small: ε � 1. The free-surface boundary conditions can be sim-
plified by noting that the unknown free surface differs by an amount of
O(ε) from the horizontal plane z′ = 0. Thus, we can expand Φ′ and its
derivatives in a Taylor series:

1If the scales have been chosen properly, the normalized variables and their derivatives
should indeed be of order unity. The relative importance of each term in an equation
is entirely indicated by the dimensionless coefficient multiplying the term. If under
certain conditions the solution of the approximate problem exhibits behavior which
violates the original assumptions on the order of magnitude, then the scales initially
chosen are no longer valid. New scales, hence new approximations, must be found to
reflect the physics. It is not an exaggeration to say that estimating the scales is the
first step toward the approximate solution of a physical problem.

As a procedural point, when the choices of the scales are limited so that only one
dimensionless parameter appears, the formalism of nondimensionalization can often be
omitted for brevity, although its essence must always be clearly understood.
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f ′(x′, y′, εζ′, t′) = f ′
∣∣∣∣
0

+ εζ′
∂f ′

∂z′

∣∣∣∣
0

+
(εζ′)2

2!
∂2f ′

∂z′2

∣∣∣∣
0

+ O(ε3) ,

where f |0 means f(x, y, 0, t), etc. To the leading order of O(1), the free-
surface conditions become approximately

∂ζ′

∂t′
= Φ′

z′

z′ = 0 .
∂Φ′

∂t′
+

2πg

ω2λ
ζ′ = −P ′

a

Only linear terms remain in these conditions which are now applied at a
known plane z′ = 0. Together with Eqs. (1.2.3) and (1.2.4) the approximate
problem is completely linearized. Returning to physical variables, we have

∇2Φ = 0 , −h < z < 0 , (1.2.7)

∂Φ
∂n

= 0 , z = −h , (1.2.8)

∂ζ

∂t
=

∂Φ
∂z

(1.2.9)

z = 0 .

∂Φ
∂t

+ gζ = −Pa

ρ
(1.2.10)

Furthermore, Eqs. (1.2.9) and (1.2.10) may be combined to give

∂2Φ
∂t2

+ g
∂Φ
∂z

= −1
ρ

∂Pa

∂t
, z = 0 , (1.2.11)

which can also be obtained by linearizing Eq. (1.1.16).
The total pressure inside the fluid can be related to Φ by linearizing the

Bernoulli equation:

P = −ρgz + p , where p = −ρ
∂Φ
∂t

= dynamic pressure . (1.2.12)

These conditions must be supplemented by initial conditions and the
boundary conditions on the body and at infinity, if appropriate.

It is worthwhile to remark further on the assumption of zero viscosity in
the context of linear approximation. Near a solid boundary, the potential
theory allows a finite slip in the tangential direction, but in reality all
velocity components must vanish. There must be a thin boundary layer to
smooth the transition from zero to a finite value. Thus,
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∂

∂xN
� ∂

∂x′
T

,
∂

∂x′′
T

,

where xN , x′
T , and x′′

T form a locally orthogonal coordinate system with xN

normal to the solid surface and x′
T and x′′

T tangential to it. It follows from
the linearized momentum equation that the tangential velocity uT satisfies

∂uT

∂t
∼= ν

∂2uT

∂x2
N

− 1
ρ
∇T p

inside the boundary layer. With the wave period as the time scale, the
boundary-layer thickness δ must be of the order

δ ∼
(

2ν

ω

)1/2

.

For water, ν ∼= 0.01 cm2/s; in model experiments the typical period is 1 s so
that δ ∼ 0.056 cm, which is far too small compared with the wavelength of
usual interest. In the ocean, swells of 10-s periods are common; δ ∼ 0.17 cm.
But the boundary layer near the natural sea bottom is usually turbulent for
most of the period. As will be discussed later, a typical experimental value
of eddy viscosity is about 100ν; the thickness of the turbulent boundary
layer for a 10-s period is then about ≤ O(10) cm, which is still quite small.
Thus, the boundary-layer region is but a tiny fraction of a fluid volume
whose dimensions are comparable to a wavelength, and the global influence
on the wave motion is small over distances of several wavelengths or time
of several periods.

1.3 Elementary Notions of a Propagating Wave

Let us consider a special form of the free surface

ζ(x, y, t) = Re Aei(k·x−ωt) = A cos(k · x − ωt) , (1.3.1)

where i is the imaginary unit (−1)1/2 and

k = (k1, k2) , x ≡ (x, y) . (1.3.2)

For the convenience of mathematical manipulation, the exponential form
is often preferred, and for brevity the sign Re (the real part of) is often
omitted, that is,
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ζ(x, y, t) = Aei(k·x−ωt) (1.3.3)

is used to mean the same as Eq. (1.3.1). What sort of free surface does this
expression describe?

To a stationary observer, ζ oscillates in time with the period T = 2π/ω

between the two extremes A and −A. If we take a three-dimensional snap-
shot at a fixed t with ζ as the vertical ordinate and (x, y) as the horizontal
coordinates, the variation of ζ in (x, y) describes a periodic topography. In
a plane y = const, ζ is seen to vary periodically in the x direction between
A and −A with the spatial period 2π/k1. Similarly, in a plane x = const,
ζ varies periodically in the y direction between A and −A with the spatial
period 2π/k2. Thus, along the x direction the number of crests per unit
length is k1/2π, and along the y direction the number of crests per unit
length is k2/2π.

Let us define the phase function S by

S(x, y, t) = k1x + k2y − ωt = k · x− ωt . (1.3.4)

For a fixed time, S(x, y, t) = const = S0 describes a straight line with the
normal vector

ek =
(

k1

k
,
k2

k

)
, where k = (k2

1 + k2
2)

1/2 = |k| . (1.3.5)

Along this straight line, the surface height is the same everywhere. In
particular, the waves are the highest (crests) when S0 = 2nπ and the lowest
(troughs) when S0 = (2n + 1)π. When S0 increases by 2π, the surface
height is repeated. Lines of different S0 are parallel to each other if k1

and k2 are constant. We call these lines the phase lines. If we take a
snapshot and cut a cross section along the direction ek, the profile of ζ is
sinusoidal with the wavelength λ = 2π/k. Alternatively, we may say that
the number of waves per unit length along the k direction is k/2π. Hence k

is called the wavenumber, and k the wavenumber vector with k1 and k2 as
its components. The maximum deviation A from the mean z = 0 is called
the amplitude.

Let us follow a particular phase line S = S0. As time t progresses, the
position of the phase line changes. What is the velocity of the phase line?
Evidently, if the observer travels with the same velocity dx/dt, the phase
line appears stationary, that is,

dS = ∇S · dx +
∂S

∂t
dt = 0 .
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From Eq. (1.3.4) it follows that

k = ∇S = ek|∇S| , (1.3.6a)

−ω =
∂S

∂t
, (1.3.6b)

and that

ek · dx
dt

=
−∂S/∂t

|∇S| =
ω

k
≡ C . (1.3.7)

Thus, the speed at which the phase line advances normal to itself is ω/k,
which is called the phase speed C. Equations (1.3.6a) and (1.3.6b) can be
regarded as the definitions of ω and k, that is, the frequency is the time
rate, and the wavenumber is the spatial rate of phase change.

1.4 Progressive Water Waves on Constant Depth

For simple harmonic motion with frequency ω, linearity of the problem
allows separation of the time factor e−iωt as follows:

ζ(x, y, t) = η(x, y)

Φ(x, y, z, t) = φ(x, y, z)

u(x, y, z, t) → u(x, y, z)

P (x, y, z, t) + ρgz = p(x, y, z)


e−iωt . (1.4.1)

Note that the same symbol u is used for both the fluid velocity and its
spatial factor. The linearized governing equations (1.2.7) to (1.2.10) can be
reduced to

∇2φ = 0 , −h < z < 0 , (1.4.2)

∂φ

∂z
= 0 , z = −h , (1.4.3)

∂φ

∂z
+ iωη = 0 , (1.4.4)

z = 0 ,

gη − iωφ =
−pa

ρ
, (1.4.5)
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where Eqs. (1.4.4) and (1.4.5) may be combined as

g
∂φ

∂z
− ω2φ =

iω

ρ
pa , z = 0 . (1.4.6)

Let us seek a two-dimensional solution which represents a progressive
wave without direct atmospheric forcing, that is, pa = 0 and

η = Aeikx . (1.4.7)

The potential that satisfies Eqs. (1.4.2) and (1.4.3) is easily seen to be

φ = B cosh k(z + h)eikx .

To satisfy the free-surface conditions with pa = 0, we require

B = − igA

ω

1
cosh kh

and

ω2 = gk tanh kh (1.4.8)

so that

φ = − igA

ω

cosh k(z + h)
cosh kh

eikx . (1.4.9)

Thus, for a given frequency ω the progressive wave must have the proper
wavenumber given by Eq. (1.4.8). In dimensionless form

ω

(
h

g

)1/2

= (kh tanh kh)1/2 .

The dimensionless frequency ω(h/g)1/2 and the dimensionless wavenumber
kh vary as shown in Fig. 1.1. In particular, the limiting approximations
are

ω � (gh)1/2k , kh � 1 ,

ω � (gk)1/2 , kh � 1 .
(1.4.10)

Since kh = 2πh/λ is essentially the depth-to-wavelength ratio, the terms
long waves and shallow-water waves refer to kh � 1, while short waves and
deep-water waves refer to kh � 1. For fixed h, shorter waves have higher
frequencies. In shallow water, waves of a fixed frequency have shorter length
in smaller depth since k � ω/(gh)1/2.
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Figure 1.1: Dispersion curves for a progressive wave.

The phase speed C is given by

C =
ω

k
=
(g

k
tanh kh

)1/2

, (1.4.11)

which is plotted in dimensionless form in Fig. 1.1. For long and short waves
the limiting relations are

C = (gh)1/2 , kh � 1 ,

C = (g/k)1/2 , kh � 1 .
(1.4.12)

In general, for the same depth, longer waves have faster speeds. It will be
shown in Chapter Two that a localized initial disturbance can be thought
of as a Fourier superposition of periodic disturbances with wavelengths
ranging over a continuous spectrum. As time passes the longer waves lead
the shorter waves. As the disturbances propagate outward the longest and
shortest waves become further and further apart with intermediate waves
marching in between. The phenomenon that waves of different frequen-
cies travel at different speeds is called dispersion. Clearly, if the relation
between ω and k for a sinusoidal wave is nonlinear, the medium is disper-
sive. Equation (1.4.8) or its equivalent, Eq. (1.4.11), is therefore called the
dispersion relation.
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From the linearized Bernoulli equation the dynamic pressure (without
−ρgz) is

p

ρ
= iωφ = gA

cosh k(z + h)
cosh kh

eikx = gη
cosh k(z + h)

cosh kh
. (1.4.13)

The velocity field is

u =
gkA

ω

cosh k(z + h)
cosh kh

eikx , (1.4.14)

v = 0 , (1.4.15)

w = − igkA

ω

sinh k(z + h)
cosh kh

eikx . (1.4.16)

For very deep water, kh � 1,

(φ, u, v, w, p) =
(
− ig

ω
,
gk

ω
, 0,− igk

ω
, ρg

)
Aekzeikx , (1.4.17)

and for very shallow water, kh � 1,

(φ, u, v, w, p) =
(
− ig

ω
,
gk

ω
, 0, 0, ρg

)
Aeikx . (1.4.18)

Several distinctive features of the shallow-water results deserve men-
tioning: (i) The dependence on z disappears; (ii) the vertical velocity is
negligible; and (iii) the dynamic pressure is ρgη and the total pressure
P = ρg(ζ − z), which is hydrostatic in terms of depth below the free
surface.

Finally, we know from Section 1.2 that when the spatial scale is 1/k, the
condition for linearization is kA � 1. Let us check the linearizing assump-
tion again by comparing a nonlinear term with a linear term, both evaluated
at the free surface z = 0. For arbitrary kh, we have from Eqs. (1.4.11) and
(1.4.14)(

u∂u/∂x

∂u/∂t

)
z=0

∼
(

uk

ω

)
z=0

∼
( u

C

)
z=0

=
kA

tanh kh
for all kh .

Note that for kh � 1, the above ratio becomes A/h. Therefore, in shallow
water the linearized theory is indeed a very restricted approximation.
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1.5 Group Velocity

One of the most important concepts in dispersive waves is the group veloc-
ity, for which two views may be examined to understand its significance.

1.5.1 A Kinematic View

Suppose that there is a group of sinusoidal waves with a continuous but
narrow range of wavelengths centered around k = k0. The free-surface
displacement may be represented by

ζ =
∫ k0+∆k

k0−∆k

A(k)ei[kx−ω(k)t] dk ,
∆k

k0
� 1 , (1.5.1)

where A(k) is the wavenumber spectrum with ω and k satisfying the dis-
persion relation

ω = ω(k) . (1.5.2)

By Taylor expansion we write

ω = ω[k0 + (k − k0)] = ω(k0) + (k − k0)
(

dω

dk

)
k0

+ O(k − k0)2 .

Denoting

k − k0

k0
= ξ , ω0 = ω(k0) , and

(
dω

dk

)
0

=
(

dω

dk

)
k0

≡ Cg , (1.5.3)

we have for sufficiently smooth A(k) and to the crudest approximation

ζ � A(k0)ei(k0x−ω0t)

∫ ∆k/k0

−∆k/k0

{exp[ik0ξ(x − Cgt)]}k0 dξ

= 2A(k0)
sin ∆k(x − Cgt)

(x − Cgt)
ei(k0x−ω0t) = Ãei(k0x−ω0t) , (1.5.4)

where

Ã = 2A(k0)
sin ∆k(x − Cgt)

(x − Cgt)
. (1.5.5)

Because of the factor exp[i(k0x − ω0t)] in Eq. (1.5.4), ζ may be viewed
as a locally sinusoidal wavetrain with a slowly modulated amplitude Ã. In
particular, the envelope defined by Ã is in the form of wave groups as shown
in Fig. 1.2 and advances at the speed Cg. Therefore, Cg is called the group
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Figure 1.2: A group of waves within a narrow frequency band.

velocity. The distance between two adjacent nodes of an envelope, hence
the modulation length scale of the amplitude, is roughly π/∆k and is much
greater than the length of the constituent waves 2π/k0.

For water waves on a constant depth, it follows by differentiating the
dispersion relation (1.4.8) that

Cg =
dω

dk
=

1
2

ω

k

(
1 +

2kh

sinh 2kh

)
=

C

2

(
1 +

2kh

sinh 2kh

)
. (1.5.6)

For deep water kh � 1,

Cg � 1
2
C � 1

2

(g

k

)1/2

, (1.5.7)

while for shallow water, kh � 1,

Cg � C � (gh)1/2 . (1.5.8)

Since the phase velocity exceeds the group velocity for general depths, the
individual wave crests travel from the tail toward the front of a group.

It will be shown more generally in Section 2.4 that Cg is the velocity of
any slowly varying envelope, Eq. (1.5.5) being a special case.

1.5.2 A Dynamic View: Energy Flux

Let us first compute the average energy in a uniform progressive wavetrain
beneath a unit square of the free surface. Denoting the time average over
a period by an overhead bar, we have the kinetic energy in the whole fluid
column
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K.E. =
ρ

2

∫ ζ

−h

[u(x, t)]2 dz

∼= ρ

2

∫ 0

−h

{[Re u(x)e−iωt]2 + [Re w(x)e−iωt]2} dz , (1.5.9)

where for second-order O(kA)2 accuracy the upper limit has been replaced
by z = 0, and u may be approximated by the first-order result, Eqs. (1.4.14)
and (1.4.16). Note that for any two sinusoidal functions,

a = Re Ae−iωt and b = Re Be−iωt ,

the following formula is true:

ab =
1
T

∫ T

0

dt ab =
1
2

Re (AB∗) =
1
2

Re (A∗B) , (1.5.10)

where ( )∗ denotes the complex conjugate. The proof is left as an exercise.
With Eqs. (1.4.14), (1.4.16), and (1.5.10), Eq. (1.5.9) becomes

K.E. =
ρ

4

(
gk|A|2

ω

)2 1
cosh2 kh

∫ 0

−h

[cosh2 k(z + h) + sinh2 k(z + h)] dz

=
ρ

4

(
gk|A|

ω

)2 sinh 2kh

2k cosh2 kh
=

1
4
ρg|A|2 , (1.5.11)

where use is made of the following formula:∫ kh

0

cosh2 ξ dξ =
1
4
(sinh 2kh + 2kh) , (1.5.12)

and the dispersion relation. On the other hand, the potential energy in the
fluid column due to wave motion is

P.E. =
∫ ζ

0

ρgz dz =
1
2
ρgζ2 =

1
4
ρg|A|2 (1.5.13)

since ρg dz is the weight of a thin horizontal slice whose height above the
mean-free surface is z. The total energy is

E = K.E. + P.E. =
1
2
ρg|A|2. (1.5.14)

Note that the kinetic and potential energies are equal; this property is called
the equipartition of energy. Let us consider a vertical cross section of unit
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width along the crest. The rate of energy flux across this section is equal
to the mean rate of work done by the dynamic pressure, that is,

Rate of
energy flux

=
Rate of

pressure working
=
∫ ζ

−h

p(x, t)u(x, t) dz ∼= −ρ

∫ 0

−h

ΦtΦx dz ,

(1.5.15)

which can be calculated to be

Rate of energy flux = −1
2
ρgA2

[
1
2

ω

k

(
1 +

2kh

sinh 2kh

)]
= ECg . (1.5.16)

Hence the group velocity has the dynamical meaning of the velocity of
energy transport. In contrast, the phase speed is merely a kinematic quan-
tity and is not always identifiable with the transport of any dynamical
substance.

As an immediate application, consider a long wave tank of unit width
with sinusoidal waves generated at one end. Many periods after the start
of the wavemaker, the envelope is uniform almost everywhere except near
the wave front which may look like Fig. 1.3. Since the rate of energy input
by the wavemaker at the left (say at x = 0) is ECg, the rate of lengthening
of the wave region must be Cg. Thus the wave front must propagate at
the group velocity. Details of the wave-front evolution will be discussed in
Section 2.4.

Exercise 1.1

Consider a two-layered fluid system over a horizontal bottom. The lighter
fluid above has the density of ρ, while the heavier fluid below has the density
of ρ′. Let the free surface be at z = 0, the interface at z = −h, and the

Figure 1.3: The envelope front of a sinusoidal wavetrain.
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bottom at z = −h′. Show that a sinusoidal progressive wave must satisfy
the dispersion relation:(

ω2

gk

)2

{ρ′ coth kh coth k(h′ − h) + ρ}

−ω2

gk
ρ′{coth kh + cothk(h′ − h)} + ρ′ − ρ = 0 .

Study the two possible modes corresponding to the two solutions ω2
1 and

ω2
2 for the same k.

In particular, when h′ ∼ ∞ show that

ω2
1 = gk and ω2

2 = gk
ρ′ − ρ

ρ′ coth kh + ρ
< ω2

1

and that the amplitude ratio of interface to free surface is

e−kh and − ρ

ρ′ − ρ
ekh

for the first and second mode, respectively. Plot the group velocity as a
function of k for each mode.

Exercise 1.2: Capillary Waves

Surface tension on the free surface introduces a pressure difference between
the atmospheric pressure Pa above and the water pressure P below. The
difference is given by the Laplace formula (see, e.g., Landau and Lifshitz,
1959, p. 237 ff)

P − Pa
∼= −T (ζxx + ζyy) , on z ∼= 0 , (1.5.17)

where the right-hand side is proportional to the surface curvature
and T is the surface tension coefficient. For the water–air interface at
20◦C, T = 74 dyn/cm in cgs units. Reformulate the boundary conditions
on the free surface and study a plane progressive wave on deep water:
Φ ∝ ekzei(kx−ωt). Show that

ω2 = gk +
Tk3

ρ
.

Show further that the phase velocity has a minimum value Cm which
satisfies

C2

C2
m

=
1
2

(
λ

λm
+

λm

λ

)
=

1
2

(
km

k
+

k

km

)
,
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where

λm =
2π

km
= 2π

(
T

gρ

)1/2

.

What are the numerical values of λm and Cm for water and air?
Discuss the variations of ω, C and Cg versus k or λ.
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Propagation of
Transient Waves in Open
Water of Essentially
Constant Depth 2
Disturbances generated by excitations of finite duration such as submarine
earthquakes, landslides, explosions, and so on, produce transient waves.
Because of dispersion, the propagation of transient water waves is con-
siderably more complex than many other kinds of waves in nature. To
facilitate a clear understanding of the physical consequences of dispersion,
we will study in this chapter simple models of source mechanism and ocean
depth for which detailed analyses are possible. In Sections 2.1 and 2.2 we
will study the so-called Cauchy-Poisson problem of waves due to an impul-
sive source of some kind, with particular emphasis given to the behavior
away from the source. Many practical issues concerning earthquake-induced
waves in nature are omitted for simplicity. In Sections 2.3 and 2.4 the role of
dispersion in slowly modulated wave groups will be investigated. The math-
ematical technique of multiple-scale expansions is introduced to arrive very
directly at the asymptotic result for large time and to prepare the ground
for later inclusion of nonlinearity.

2.1 Two-Dimensional Transient Problems

Let us consider an ocean of constant depth without other rigid boundaries.
Assume that the disturbances on the free surface and at the bottom are
independent of y. The problem can be formulated in the x, z plane. Thus,
the velocity potential Φ(x, z, t) satisfies

∇2Φ =
∂2Φ
∂x2

+
∂2Φ
∂z2

= 0 . (2.1.1)

23
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On the free surface the following conditions hold:

∂ζ

∂t
=

∂Φ
∂z

, z = 0 , (2.1.2a)

∂Φ
∂t

+ gζ = −Pa(x, t)
ρ

, z = 0 , (2.1.2b)

where Pa(x, t) is prescribed. Let the seafloor be denoted by z = −h +
H(x, t). If the ground motion is known, continuity of normal velocity gives

∂Φ
∂z

=
∂H

∂t
+

∂Φ
∂x

∂H

∂x
on z = −h + H(x, t) . (2.1.3)

Within the framework of linearization we assume that the amplitudes of
H , ∂H/∂t and ∂H/∂x are small so that the quadratic term is negligible;
hence

∂Φ
∂z

=
∂H

∂t
≡ W (x, t) on z ∼= −h . (2.1.4)

Initial conditions must be further prescribed. To see what initial data are
needed, let us employ the method of Laplace transform defined by

f̄(s) =
∫ ∞

0

e−stf(t) dt , (2.1.5a)

f(t) =
1

2πi

∫
Γ

estf̄(s) ds , (2.1.5b)

where Γ is a vertical line to the right of all singularities of f̄(s) in the
complex s plane. The transforms of Eqs. (2.1.1) and (2.1.4) give

∇2Φ(x, z, s) = 0 , −h < z < 0 , (2.1.6)

∂Φ
∂z

= W (x, s) , z = −h . (2.1.7)

From Laplace transforms of conditions (2.1.2a, b) we obtain

−ζ(x, 0) + sζ̄(x, s) =
∂Φ(x, 0, s)

∂z
, (2.1.8)

−Φ(x, 0, 0) + sΦ(x, 0, s) + gζ̄(x, s) = −P a(x, s)
ρ

, (2.1.9)

which can be combined to give

∂Φ
∂z

+
s2

g
Φ = −sPa

ρg
− ζ(x, 0) +

s

g
Φ(x, 0, 0) , z = 0 . (2.1.10)
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From the above equation it is immediately clear that we only need to pre-
scribe the initial data Φ(x, 0, 0) and ζ(x, 0) on the free surface, but nowhere
else, because time derivatives appear only in the free-surface conditions. A
more mathematical study on the uniqueness of the initial-value problem
has been made by Finkelstein (1953).

What is the physical significance of Φ(x, 0, 0)? Assume that, before
t = 0, all is calm, but at t = 0 an impulsive pressure Pa(x, t) = Iδ(t) is
applied on the free surface. Integrating Bernoulli’s equation from t = 0−
to t = 0+, we obtain

Φ(x, 0, 0+) − Φ(x, 0, 0−) +
∫ 0+

0−
gζ dt = −I

ρ

∫ 0+

0−
δ(t) dt = −I

ρ
.

Since Φ(x, 0, 0−) = 0 and ζ must be finite, we obtain Φ(x, 0, 0+) = −I/ρ.

Thus, the initial value of Φ represents physically an impulsive pressure
acting on the free surface at an instant slightly earlier than t = 0+.

Equations (2.1.6), (2.1.7), and (2.1.10) now define a boundary-value
problem which formally resembles that of a simple harmonic case. For any
finite t it is expected that no motion is felt at a great distance from the initial
disturbance so that Φ(x, t) → 0 as |x| → ∞, which implies that Φ → 0 as
|x| → ∞. Since the region does not involve any finite bodies, the problem
can be readily solved by applying the exponential Fourier transform with
respect to x, defined by

f̃(k) =
∫ ∞

−∞
e−ikxf(x) dx , f(x) =

1
2π

∫ ∞

−∞
eikxf̃(k) dk . (2.1.11)

The Fourier–Laplace transform of Φ satisfies

d2Φ̃
dz2

− k2Φ̃ = 0 , −h < z < 0 , (2.1.12)

dΦ̃
dz

+
s2

g
Φ̃ = F (k, s) , z = 0 , (2.1.13)

dΦ̃
dz

= W̃ , z = −h , (2.1.14)

where

F (k, s) ≡ −sP̃a(k, x)
ρg

− ζ̃(k, 0) +
s

g
Φ̃(k, 0, 0) . (2.1.15)
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The general solution of Eq. (2.1.12) is

Φ̃ = A cosh k(z + h) + B sinh k(z + h) .

The coefficients A and B are found from the boundary conditions (2.1.13)
and (2.1.14) with the following result:

Φ̃ =
1/coshkh

s2 + gk tanh kh

×
[
gF cosh k(z + h) +

W̃

k
(s2 sinh kz − gk cosh kz)

]
. (2.1.16)

Clearly, the first and second addends in the brackets represent, respectively,
all the disturbances on the free surface and on the bottom. Taking the
inverse Fourier and Laplace transforms, we have, formally,

Φ(x, z, t) =
1
2π

∫ ∞

−∞
dk eikx 1

2πi

∫
Γ

ds estΦ̃(k, z, s) . (2.1.17)

To obtain the free-surface height we use Eq. (2.1.2b),

ζ(x, t) =
−Pa

ρg
− 1

g

∂Φ
∂t

(x, 0, t)

=
−Pa

ρg
+

1
2π

∫ ∞

−∞
dk eikx

∫
Γ

ds

2πi
est−s

g
Φ̃(k, 0, s) , (2.1.18)

where Φ̃ is given by Eq. (2.1.16). The task is now to extract information
from Eqs. (2.1.17) and (2.1.18). Two special cases will be studied in the
following subsections.

2.1.1 Transient Disturbance Due to an Initial
Displacement on the Free Surface

Here we let

Pa(x, t) = W (x, t) = Φ(x, 0, 0) = 0 and ζ(x, 0) ≡ ζ0(x) �= 0 , (2.1.19)

hence

W̃ = 0 , F = −ζ̃0(k) . (2.1.20)
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Figure 2.1: Contours for inverse Laplace transform.

Equation (2.1.18) gives the free-surface height

ζ =
1

4π2i

∫ ∞

−∞
dk eikxζ̃0(k)

∫
Γ

sest ds

s2 + gk tanh kh
. (2.1.21)

The s integral can be easily evaluated. The integrand has two imaginary
poles at

s = ±iω , with ω = (gk tanh kh)1/2 . (2.1.22)

For t < 0 we introduce a closed semicircular contour in the right half s

plane as shown in Fig. 2.1. Since the factor multiplying est in the integrand
vanishes uniformly as s → ∞, the line integral along the great semicircular
arc is zero by Jordan’s lemma. By Cauchy’s residue theorem, the original
s integral is zero, there being no singular points in the semicircle. Not
suprisingly, then,

ζ = 0 , t < 0 . (2.1.23)

For t > 0 we must choose a semicircle in the left half of the s plane.
By Jordan’s lemma again, the line integral along the semicircle vanishes,
leaving only the residues for the two poles at ±iω.

1
2πi

∫
Γ

sest ds

s2 + ω2
=

1
2πi

∫
Γ

sest ds

(s + iω)(s − iω)
= cosωt , t > 0 .
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Substituting into Eq. (2.1.21), we get

ζ(x, t) =
1
2π

∫ ∞

−∞
dk eikx cosωtζ̃0(k) . (2.1.24)

Clearly, cosωt is even in k. In general, we can split ζ0(x) into even and odd
parts with respect to x : ζe

0 and ζo
0 . It follows from the definition of Fourier

transform that

ζ̃0(k) = 2
∫ ∞

0

dx cos kxζe
0(x) − 2i

∫ ∞

0

dx sin kxζo
0 (x)

≡ ζ̃e
0(k) + ζ̃o

0 (k)

where ζ̃e
0 is real and even in k and ζ̃o

0 is imaginary and odd in k.

For simplicity, let ζ0 be even in x; Eq. (2.1.24) may now be written

ζ(x, t) =
1
π

∫ ∞

0

dk ζ̃e
0 cos kx cosωt

=
1
2π

Re
∫ ∞

0

dk ζ̃e
0 [ei(kx−ωt) + ei(kx+ωt)] . (2.1.25)

The first and second terms in the brackets above represent right- and left-
going waves, respectively.

For a better physical understanding, approximations are necessary. At
large t we can employ the method of stationary phase devised by Kelvin.
Heuristically, the idea is as follows.

Consider the integral

I(t) =
∫ b

a

feitg dk , (2.1.26)

where f and g are smooth functions of k. When t is large, the phase tg of
the sinusoidal part oscillates rapidly as k varies. If one plots the integrand
versus k, there is very little net area under the curve due to cancellation
unless there is a point at which the phase is stationary, that is,

g′(k) = 0 , k = k0 . (2.1.27)

In the neighborhood of this stationary point the oscillating factor of the
integrand of Eq. (2.1.26) may be written

eitg(k0) exp{it[g(k)− g(k0)]} .



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

2.1. Two-Dimensional Transient Problems 29

Figure 2.2: The real part of exp{it[g(k) − g(k0)]}.

The real part of exp{it[g(k)− g(k0)]} varies slowly, as sketched in Fig. 2.2,
while the imaginary part slowly touches the k axis at k = k0. Therefore, a
significant contribution to the integral can be expected from this neighbor-
hood. If we approximate g(k) by the first two terms of the Taylor expansion

g(k) ∼= g(k0) +
1
2
(k − k0)2g′′(k0) ,

then the integral may be written

I ∼= eitg(k0)f(k0)
∫ ∞

−∞
dk exp

[
1
2
i(k − k0)2tg′′(k0)

]
,

where the limits (a, b) have been approximated by (−∞,∞). Using the fact
that ∫ ∞

−∞
e±itk2

dk =
(π

t

)1/2

e±iπ/4 ,

we finally have

I ∼= eitg(k0)f(k0)
(

2π

t|g′′(k0)|
)1/2

e±iπ/4 , (2.1.28)

where the ± sign is to be taken if g′′(k0) ≷ 0. It can be shown by a more
elaborate analysis that the error is of order O(t−1). Also if there is no
stationary point in the range (a, b), the integral is at most of order O(t−1).
This and other information can be found in Stoker (1957) or Carrier, Krook,
and Pearson (1966).

Returning to Eq. (2.1.25), we need certain properties of the dispersion
curve as sketched in Fig. 2.3. Consider x > 0. For the first integral

g(k) = k
x

t
− ω ,
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Figure 2.3: Variations of ω, ω′, and ω′′ with k.

it may be seen from Fig. 2.3(b) that there is a stationary point at

x

t
= ω′(k0) = Cg(k0) if

x

t
< (gh)1/2 . (2.1.29)

In the same interval (0,∞) of k, there is no stationary point for the second
integral. It follows from Eq. (2.1.28) that

ζ ∼= 1
2π

ζ̃e
0(k0)

[
2π

t|ω′′(k0)|
]1/2

cos
[
k0x − ω(k0)t +

π

4

]
+ O(t−1) ,

x < (gh)1/2t , (2.1.30)

where use is made of the fact that ω′′(k) < 0 [Fig. 2.3(c)], and

ζ ∼= O(t−1) , x > (gh)1/2t . (2.1.31)

Now let us examine the physics represented by Eq. (2.1.30). An observer
moving at a certain speed x/t lower than (gh)1/2 sees a train of sinusoidal
waves of wavenumber k0 [and frequency ω(k0)] whose group velocity equals
x/t. The amplitude of the wavetrain decays as O(t−1/2). For large x/t we
see from Fig. 2.3(a) that k0 is small, hence, a faster moving observer sees
longer waves which are also of larger amplitude since (|ω′′(k0)|)1/2 is less.
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The precise shape of ζ0(x) affects ζ̃0(k) and the amplitude of the dispersed
waves. For example, if

ζ0(x) =
Sb

π(x2 + b2)
,

which is a symmetrical bump of area S and characteristic spread b, we find
that

ζ̃0(k) = ζ̃e
0 (k) = Se−|k|b .

If the spread b is large, then ζ̃e
0 is not appreciable except for small k0 or

long leading waves. As b increases, the amplitude of a given k0 decreases.
Summing up the views of many observers for the same t, we obtain

a snapshot of the free surface (see Fig. 2.4). Thus, at a constant t, long
waves are found toward the front and short waves toward the rear. Now
consider the snapshot at a later time t2 > t1. Both observers have now
moved to the right. The spatial separation, however, has increased. In
particular, let ξ1 ≈ ξ2 so that between them k, ω ≈ const. The total extent
of a monochromatic wavetrain with k, ω now stretches with increasing t,
implying that wave crests are created in the course of propagation.

To follow a particular wave crest at its phase speed, an observer must
travel at a varying speed since k0 and C(k0) do not remain constant as the
crest moves into new territory. However, if one moves at the group velocity
of the waves of length 2π/k0, one only sees sine waves of this length catching

Figure 2.4: Space–time plot of dispersive waves between two moving observers.
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up from behind and then running away toward the front, since their phase
velocity exceeds the group velocity.

A similar picture exists for the left-going disturbance.

2.1.2 Energy Propagation, Group Velocity

Consider a rightward traveling disturbance only. Equation (2.1.30) holds
for large t and represents a progressive wave with amplitude

A =
ζ̃e
0(k0)
2π

(
2π

t|ω′′(k0)|
)1/2

, (2.1.32)

which decays slowly as t−1/2.

The wave energy density of this progressive wave is approximately

E ≈ ρ
gA2

2
=

1
2
ρg|ζ|2 =

ρg

2

∣∣∣∣∣ ζ̃e
0(k0)
2π

(
2π

t|ω′′(k0)|
)1/2
∣∣∣∣∣
2

=
ρg|ζ̃e

0(k0)|2
4πt|ω′′(k0)| . (2.1.33)

At any given t, consider the waves between two observers moving at Cg1 ≡
Cg(k1) and Cg2 ≡ Cg(k2), that is, between the two rays

x1

t
= Cg1 and

x2

t
= Cg2

in the space–time diagram. The total wave energy between them is∫ x2

x1

E dx ∼=
∫ x2

x1

ρg|ζ̃e
0(k0)|2

4πt|ω′′(k0)| dx . (2.1.34)

Since x = ω′(k0)t for fixed t and ω′′(k0) < 0, we have

dx

t
= ω′′(k0) dk0 = −|ω′′(k0)| dk0 . (2.1.35)

Now for x2 > x1, k2 < k1 [see Figs. 2.3(a), (b)], Eq. (2.1.34) becomes∫ x2

x1

E dx ∼= ρg

∫ k1

k2

|ζ̃e
0(k0)|2
4π

dk0 = const , (2.1.36)

which is constant in time. Therefore, the total energy of the waves between
two observers moving at the local group velocities is conserved. This in-
terpretation, due to Jeffreys and Jeffreys (1953), further strengthens the
significance of the group velocity as discussed in Chapter One.
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Whitham (1965) has shown that the asymptotic result by stationary
phase for large x and t agrees with the so-called geometrical optics theory.
From Eq. (2.1.29) we obtain, by differentiations with respect to x and t,

1 = ω′′(k)kxt and 0 = ω′′(k)ktt + ω′

so that

kx =
1

tω′′(k)
, kt = − ω′

tω′′(k)
. (2.1.37)

It follows that

∂k

∂t
+ ω′ ∂k

∂x
= 0 ,

which may also be written

∂k

∂t
+

∂ω

∂x
= 0 . (2.1.38)

Since

dk =
∂k

∂t
dt +

∂k

∂x
dx ,

we see from Eq. (2.1.37) that along the curve dx/dt = Cg = ω′, dk = 0;
hence k remains constant. Furthermore, by multiplying Eq. (2.1.33) with
ω−1 and differentiating with respect to t and x, we obtain straightforwardly

∂

∂t

(
E

ω

)
+

∂

∂x

(
Cg

E

ω

)
= 0 . (2.1.39)

Both Eqs. (2.1.38) and (2.1.39) are basic results of the geometrical optics
approximation and are of general validity for slowly varying, nearly periodic
wavetrains as will be elaborated in Chapter Three.

2.1.3 Leading Waves Due to a Transient Disturbance

The fastest waves correspond to k � 0 and move at the speed near (gh)1/2.

In the neighborhood of the wave front, g′(k) � x/t − (gh)1/2 is small, and
the phase is nearly stationary. Furthermore, ω′′(k) � −(gh)1/2h2k is also
very small and the approximation of Eq. (2.1.30) is not valid. A better
approximation is needed (Kajiura, 1963).
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Since k � 0, we expand the phase function for small k as follows:

g(k) = k
x

t
− ω(k) � k

(x

t

)
− (gh)1/2

(
k − k3h2

6
+ · · ·

)

= k
[x

t
− (gh)1/2

]
+

(gh)1/2

6
h2k3 + · · · . (2.1.40)

Near the leading wave, x/t− (gh)1/2 can be zero; we must retain the term
proportional to k3. Again, only the first integral in Eq. (2.1.25) matters so
that

ζ =
1
2π

∫ ∞

0

dk ζ̃e
0(k) cos(kx − ωt) + O

(
1
t

)

� 1
2π

ζ̃e
0(0)
∫ ∞

0

cos
{

k[x − (gh)1/2t] +
[
(gh)1/2h2t

6

]
k3

}
dk ,

where use is made of the fact that ζ̃e
0 is real. With the change of variables

Z3 =
2[x − (gh)1/2t]3

(gh)1/2h2t
and k[x − (gh)1/2t] = Zα ,

the integral above becomes

ζ ∼ (2)1/3ζ̃e
0(0)

2π((gh)1/2h2t)1/3

∫ ∞

0

dα cos
(

Zα +
α3

3

)
,

which can be expressed in terms of Airy’s function of Z:

Ai(Z) ≡ 1
π

∫ ∞

0

dα cos
(

Zα +
α3

3

)
. (2.1.41)

Thus, we have

ζ ∼
[

2
(gh)1/2h2t

]1/3 1
2
ζ̃e
0(0)Ai

{[
2

(gh)1/2h2t

]1/3

[x − (gh)1/2t]

}
.

(2.1.42)

Ai(Z) is oscillatory for Z < 0 and decays exponentially for Z > 0. Its
variation is shown in Fig. 2.5.

The physical picture is as follows: For a fixed t, Z is proportional to
x − (gh)1/2t which is the distance from the wave front x = (gh)1/2t. At a
fixed instant the amplitude is small ahead of the front, and the highest peak
is at some distance behind. Toward the rear, the amplitude and the wave-
length decrease. Since Z is proportional to t−1/3, the snapshots at different
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Figure 2.5: Leading wave due to a symmetrical surface hump or trough. The ordinate
is ζ[(gh)1/2h2t/2]1/3[ζ̃e

0(0)]−1, see Eq. (2.1.42).

times are of the same form except that the spatial scale is proportional to
the factor t1/3, meaning that the same wave form is being stretched out
in time. During the evolution the amplitude decays as t−1/3 while the rest
of the wavetrain decays as t−1/2. Thus, the head lives longer than the rest of
the body. Note that the amplitude of the leading wave is proportional to
ζ̃e
0(0) which is equal to the total area of the initial displacement ζe

0(x).

2.1.4 Tsunami Due to Tilting of the Bottom

Tsunamis are the water waves generated by submarine earthquakes. If the
seafloor displacement is known in the area of the earthquake, the water-
wave problem is a purely hydrodynamic one. Unfortunately, direct mea-
surements near the epicenter are too difficult to make, and a good deal of
effort has been centered on using water-wave records measured at larger dis-
tances from the epicenter to infer roughly the nature of tectonic movement.
Hence, there has been considerable theoretical studies on water waves due
to a variety of ground movement.

Among the many features of tsunamis as recorded near a coast, two have
been frequently (but not always) reported (Shepard, 1963). One feature is
that the arrival of a tsunami is often preceded by the withdrawal of water
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from the beaches, and the other is that the first crest may not be the
largest. In this section we shall show an idealized model which reproduces
these features qualitatively.

We shall assume that there is no disturbance on the free surface

ζ(x, 0) = Φ(x, 0) = Pa(x, 0, t) = 0 . (2.1.43)

On the seafloor z = −h, the ground displacement H(x, t) is prescribed.
Thus, W = ∂H/∂t is known and the transformed solution follows from
Eq. (2.1.16).

Φ̃ =
W̃

k cosh kh

s2 sinh kz − gk cosh kz

s2 + gk tanh kh
. (2.1.44)

The free-surface displacement is

ζ =
1
2π

∫ ∞

−∞
dk

eikx

cosh kh

1
2πi

∫
Γ

ds
sW̃est

s2 + ω2
, (2.1.45)

where ω = (gk tanh kh)1/2, as before. We further restrict the ground motion
to be a sudden displacement accomplished in an infinitesimal interval of
time,

H(x, 0−) = 0 but H(x, 0+) = H0(x) .

The ground velocity can be represented by a δ function

∂Φ
∂z

= W (x, t) = H0(x)δ(t)

so that W̃ = H̃0(k). The s integral can be immediately evaluated to give

ζ =
1
2π

∫ ∞

−∞
dk

H̃0(k)
cosh kh

1
2
[ei(kx+ωt) + ei(kx−ωt)] . (2.1.46)

Again any H0(x) can be thought of as the sum of Ho
0 (x) and He

0 (x) which
are odd and even in x, respectively. By linearity, the two parts may be
treated separately first and their results superimposed later. It is easily
shown that the even part He

0(x) has effects very similar to the previous
example of symmetrical initial displacement on the free surface, the only
difference being the factor (coshkh)−1 which cuts down the influence of the
short waves. We shall, therefore, only focus our attention to the odd part.

Let us introduce

Ho
0 (x) =

dB

dx
(2.1.47)
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so that H̃o
0 (k) = ikB̃(k). Since H̃o

0 (k) is odd, B̃ must be real and even in
k; hence,

ζ =
1
2π

∫ ∞

−∞
dk

eikx

cosh kh
ikB̃(k)

1
2
(eiωt + e−iωt)

=
1
2π

d

dx

∫ ∞

−∞
dk

eikx

cosh kh
B̃(k)

1
2
(eiωt + e−iωt)

=
1
2π

d

dx
Re
∫ ∞

0

dk
eikx

cosh kh
B̃(k)(eiωt + e−iωt) . (2.1.48)

For large t and away from the leading waves, the integrals can be dealt
with by the stationary phase method just as before, and many of the same
qualitative features should be expected. Let us only look at the neighbor-
hood of the leading waves propagating to x > 0. Again, the second integral
dominates and the important contribution comes from the neighborhood of
k � 0. Hence

Re
∫ ∞

0

dk
ei(kx−ωt)

cosh kh
B̃(k)

∼= Re B̃(0)
∫ ∞

0

dk eikxe−iωt

∼= Re B̃(0)
∫ ∞

0

dk exp
(

i

{
k[x − (gh)1/2t] +

1
6
(gh)1/2h2k3t

})

= πB̃(0)
[

2
(gh)1/2h2t

]1/3

Ai

{[
2

(gh)1/2h2t

]1/3

[x − (gh)1/2t]

}
,

as discussed earlier. Differentiating with respect to x, we have

ζ � B̃(0)
2

[
2

(gh)1/2h2t

]1/3
d

dx
Ai

{[
2

(gh)1/2h2t

]1/3

[x − (gh)1/2t]

}

=
B̃(0)

2

[
2

(gh)1/2h2t

]2/3

Ai′
{[

2
(gh)1/2h2t

]1/3

[x − (gh)1/2t]

}
,

(2.1.49)

where

Ai′(Z) ≡ d

dZ
Ai(Z) .
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Figure 2.6: Leading wave due to antisymmetric ground tilt ζ[B̃(0)]−1[(gh)1/2h2t/2]2/3,
see Eq. (2.1.49).

The leading wave attenuates with time as t−2/3 which is much faster than
the case of a pure rise or fall (where ζ ∼ t−1/3). This result is due to the
fact that the ground movement is half positive and half negative, thereby
reducing the net effect. The function Ai′(Z) behaves as shown in Fig. 2.6.
Note that

B̃(0) =
∫ ∞

−∞
B(x) dx =

∫ ∞

−∞
dx

∫ x

−∞
Ho

0 (x′) dx′ = −
∫ ∞

−∞
xHo

0 (x) dx .

Thus, if the ground tilts down on the right and up on the left, B̃(0) > 0
and the wave front propagating to the right is led by depression of water
surface (hence withdrawal from a beach). The subsequent crests increase in
amplitude. On the left side, x < 0, the wave front has the opposite phase
and is led by a crest. If, however, the ground tilt is opposite in direction,
that is, down on the left and up on the right, then the right-going wave
front should be led by an elevation.

Kajiura pointed out that retaining the terms gk3h2 in ω(k) implies
keeping dispersion to the lowest order, and the same results, Eqs. (2.1.42)
and (2.1.49), may be obtained alternatively by invoking the long-wave
approximation at the outset, which is clearly appropriate far away from the
source. It will be shown in Chapter Twelve that such an approximation is
given by the linearized Boussinesq equations which are, in one dimension,
equivalent to

∂2ζ

∂t2
= gh

(
∂2ζ

∂x2
+

h2

3
∂4ζ

∂x4

)
. (2.1.50)
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The vicinity of the tsunamic source has been examined by Kajiura
(1963) and Momoi (1964a, b; 1965a, b).

Exercise 2.1

Show that by solving Eq. (2.1.50) exactly with the initial conditions

ζ(x, 0) = ζ̃0(0)δ(x) , ζt(x, 0) = 0 ,

the answer is given by Eq. (2.1.42).

Exercise 2.2: Cauchy–Poisson Problem for Capillary–Gravity
Waves

Consider a free surface with capillarity (refer to Exercise 5.2, Section 1.5).
Solve for the two-dimensional free-surface response to a localized initial el-
evation: ζ(x, 0) = (b/π)(x2 + b2)−1. Deduce the asymptotic result for large
t and fixed x/t and describe the physical picture. Examine in particular
the case where the stationary point is a zero of ω′′(k).

Exercise 2.3: Waves on a Running Stream

Consider a river of constant depth h and uniform streaming velocity U.

Formulate the linearized initial-boundary-value problem for the potential
Φ of the disturbed flow defined by

total velocity = U i + ∇Φ , Φ = Φ(x, z, t) ,

where x, y, z refer to the coordinates fixed in space. Examine the effect of
U on the dispersion relation ω = ω(k; U) for a progressive wave.

If at t = 0, a localized impulsive pressure P = P0δ(x)δ(t) is applied
externally on the free surface, find the asymptotic behavior of ζ(x, t) for
large t and x including the wave front. Describe the physics and the effects
of U.

Exercise 2.4: Alternative Method for Solving the Transient
Problem

The initial-boundary-value problem of this sub-section and the general
problem in Section 2.1 can be solved without Laplace transform and com-
plex variables. Start by Fourier transform with respect to x, and get

φ̃ = A sinh kz + B cosh kz . (2.1.51)

Show that the boundary condition at the seabed is

φ̃z = W̃ , z = −h . (2.1.52)
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Let the free surface be undisturbed initially,

φ̃(k, 0, 0) = φ̃t(k, 0, 0) = 0 . (2.1.53)

Show from (2.1.52), (2.1.53) and (2.1.51) that

Btt + ω2B =
−gW

cosh kh
, (2.1.54)

where ω =
√

gk tanh kh, subject to the initial conditions

B(k, 0) = 0 and Bt(k, 0) = 0 , (2.1.55)

which can be solved straightforwardly.
For the special case where W (x, t) = H0(x)δ(t), integration across the

delta function gives the impulsive vertical displacement∫ 0+

0−
W dt = H0(t) . (2.1.56)

Show that (2.1.54) to (2.1.55) can be replaced by

Btt + ω2B = 0 , t > 0+ , (2.1.57)

B(k, 0+) = 0 and Bt(k, 0+) =
−gH̃0

cosh kh
. (2.1.58)

Complete the solution and show finally that the free surface is given by
(2.1.46).

2.2 Three-Dimensional Transient Response to
Bottom Disturbances

If the source of disturbance is confined to a limited horizontal area, waves
will propagate in all horizontal directions and the fluid motion will be
three-dimensional. We illustrate only the case of a tsunami due to a sudden
motion of the seafloor (Kajiura, 1963).

The governing equation for the velocity potential Φ(x, y, z, t) is the
three-dimensional Laplace equation. Let there be no disturbance on the free
surface at any time. On the bottom, the ground motion is two-dimensional:

∂Φ
∂z

= W (x, y, t) , z = −h , (2.2.1)
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where W differs from zero only in a finite area. Furthermore,

Φ, ∇Φ → 0 as r = (x2 + y2)1/2 → ∞ . (2.2.2)

One can solve the initial-boundary-value problem by Laplace transform
with respect to t and two-dimensional Fourier transform with respect to x

and y. Here a method by superposition of sources will prove to be quite
efficient. Consider an impulsive disturbance concentrated at the origin
x = y = 0, z = −h at time t = 0+. Denote the potential response by
G(x, y, z, t); then

∂G

∂z
= δ(x)δ(y)δ(t − 0+) , z = −h (2.2.3)

instead of Eq. (2.2.1). Otherwise, G satisfies the same conditions as Φ,
that is,

∇2G = 0 , (2.2.4)

Gtt + gGz = 0 , z = 0 , (2.2.5)

G = Gt = 0 , t = 0 , z = 0 , (2.2.6)

G,∇G,→ 0 , r → ∞ , t finite . (2.2.7)

Once G(x, y, z, t) is found, Φ can be expressed immediately by

Φ(x, y, z, t) =
∫ t

0

dτ

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′ W (x′, y′, τ)

×G(x − x′, y − y′, z, t− τ) . (2.2.8)

Physically, Eq. (2.2.8) represents the superposition of elemental impul-
sive sources whose intensity at x = x′, y = y′, z = −h, and t = τ is
W (x′, y′, τ) dx′ dy′ dτ. We record here for later use that the Laplace trans-
forms of Φ, W , and G are related by the convolution theorem as follows:

Φ(x, y, z, s) =
∫∫ ∞

−∞
dx′ dy′ W (x′, y′, s)G(x − x′, y − y′, z, s) . (2.2.9)

G(x, y, z, t) is considerably easier to construct because a point source
has axial symmetry. Let us define δ(r) by

δ(x)δ(y) =
δ(r)
2πr
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in the sense that the area integrals of both sides are equal, that is,∫ 2π

0

dθ

∫ ∞

0

r dr δ(r)
2πr

= 1 =
∫∫ ∞

−∞
dx dy δ(x)δ(y) .

Equation (2.2.3) may be rewritten

∂G

∂z
=

1
2πr

δ(r)δ(t − 0+) ; (2.2.10)

now the problem of G does not involve θ.

Because of axial symmetry, a Hankel transform with the Bessel func-
tion J0(kr) as the weighting function can be applied. Define the Hankel
transform (see Sneddon, 1951) by

f̂(k) =
∫ ∞

0

rJ0(kr)f(r) dr , (2.2.11a)

then the inverse transform is

f(r) =
∫ ∞

0

kJ0(kr)f̂ (k) dk . (2.2.11b)

Let us define the compound Laplace–Hankel transform of G by Ĝ

Ĝ =
∫ ∞

0

e−st dt

∫ ∞

0

rJ0(kr)Gdr .

In polar coordinates,

1
r

∂

∂r

(
r
∂G

∂r

)
+

∂2G

∂z2
= 0 , −h < z < 0 , 0 ≤ r < ∞ . (2.2.12)

Applying Hankel transform to the first term, integrating by parts, using the
boundary conditions at r = 0 and ∞, and invoking the differential equation
satisfied by J0, we can show that∫ ∞

0

dr rJ0(kr)
(

1
r

∂

∂r
r
∂G

∂r

)
= −k2Ĝ .

Thus, the Laplace–Hankel transform of Eq. (2.2.12) is

d2

dz2
Ĝ − k2Ĝ = 0 . (2.2.13)

The transform of the free-surface condition is

Ĝz +
s2

g
Ĝ = 0 , (2.2.14)
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and the transform of the bottom boundary condition (2.2.10) is

Ĝz =
1
2π

. (2.2.15)

The solution to Eq. (2.2.13), subject to the boundary conditions (2.2.14)
and (2.2.15), is

Ĝ =
1
2π

1
s2 + ω2

s2 sinh kz − gk cosh kz

k cosh kh
(2.2.16)

with ω2 = gk tanh kh. Inverting the Hankel transform, we have

G(r, z, s) =
∫ ∞

0

kJ0(kr)Ĝ(k, z, s) dk , r = (x2 + y2)1/2 . (2.2.17)

If the point disturbance is not at the origin but at some other point r′, we
must replace |r| by |r − r′| so that

G(|r − r′|, z, s) =
∫ ∞

0

kJ0(k|r − r′|)Ĝ(k, z, s) dk , (2.2.18)

where

x = r cos θ , y = r sin θ ,

x′ = r′ cos θ′ , y′ = r′ sin θ′ ,

|r − r′| ≡ [(x − x′)2 + (y − y′)2]1/2

= [r2 + r′2 − 2rr′ cos(θ − θ′)]1/2 .

(2.2.19)

When Eq. (2.2.18) is substituted into Eq. (2.2.9), it follows that

Φ(r, θ, z, s) =
∫ ∞

0

r′ dr′
∫ 2π

0

dθ′ W (r′, θ′, s)

×
∫ ∞

0

kJ0(k|r − r′|)Ĝ(k, z, s) dk . (2.2.20)

The potential Φ can then be obtained by Laplace inversion.
The Laplace transform of the free-surface displacement is

ζ̄ = − s

g
Φ
∣∣∣∣
z=0

=
1
2π

∫ ∞

0

r′ dr′
∫ 2π

0

dθ′ W (r′, θ′, s)

×
∫ ∞

0

kJ0(k|r − r′|) 1
cosh kh

s

s2 + ω2
dk . (2.2.21)

We now study a few specific cases.
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2.2.1 Two-Dimensional Tsunami Due to
Impulsive Bottom Displacement

In the special case of impulsive displacement

W (r, θ, t) = W(r, θ)δ(t − 0+) , (2.2.22)

the Laplace transform is W = W(r, θ). Inversion of the Laplace transform
of Eq. (2.2.21) is immediate:

ζ =
1
2π

∫ ∞

0

r′ dr′
∫ 2π

0

dθ′ W(r′, θ′)

×
∫ ∞

0

kJ0(k|r − r′|)
cosh kh

cosωt dk . (2.2.23)

Further progress can be made by expressing J0(k|r − r′|) as a series with
the aid of the famous addition theorem (Watson, 1958, pp. 358–359)

J0(k[r2 + r′2 − 2rr′ cos(θ − θ′)]1/2)

=
∞∑

n=0

εnJn(kr)Jn(kr′) cosn(θ − θ′) , (2.2.24)

where εn is the Jacobi symbol (ε0 = 1, εn = 2, n = 1, 2, 3, . . .). Substituting
(2.2.24) into (2.2.23) and denoting

1
2π

∫ ∞

0

r′ dr

∫ 2π

0

dθ′ W(r′, θ′)Jn(kr′)
(

cosnθ′

sin nθ′

)
=

(
W c

n(k)

W s
n(k)

)
,

(2.2.25)

we have

ζ(r, θ, t) =
∑
n=0

εn

∫ ∞

0

kJn(kr)
cosωt

cosh kh

× (W c
n cosnθ + W s

n sin nθ) dk . (2.2.26)

In principle, given W(r, θ) we may perform the integration in Eq. (2.2.25)
and obtain W s

n(k) and W c
n(k) so that the final solution can be obtained by

numerical integration and summation.
To get some physical ideas we consider the following two simple

examples:
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(i) Axially symmetric displacement:

W(r, θ) = W0(r) . (2.2.27)

Due to the orthogonality of {cosnθ} and {sinnθ}, it follows that

W c
0 =
∫ ∞

0

rW0(r′)J0(kr′) dr = Ŵ0(k) , n = 0 ,

W c
n = 0 , W s

n = 0 all n �= 0 .

We have, therefore,

ζ(r, θ, t) =
∫ ∞

0

kJ0(kr)
cosωt

cosh kh
Ŵ0(k) dk

=
∫ ∞

0

r′J0(kr′)W0(r′) dr′
∫ ∞

0

kJ0(kr)
cosωt

cosh kh
dk , (2.2.28)

which can be deduced directly by Hankel transform with J0(kr), without
recourse to the source function G.

(ii) Displacement which is antisymmetric about the y axis:

W(r, θ) = W1(r) cos θ . (2.2.29)

It is easy to show that

W c
1 =

1
2

∫ ∞

0

rW1J1(kr′) dr′ , W c
n = 0 all n �= 1 , W s

n = 0 all n .

The integral is just the Hankel transform of W1 with J1 as the weighting
function. Since ε1 = 2, we have

ζ(r, θ, t) = cos θ

∫ ∞

0

kJ1(kr)
cosωt

cosh kh
dk

∫ ∞

0

r′W1(r′)J1(kr′) dr′ .

(2.2.30)

The above result can also be directly obtained by Hankel transform with
the weighting function J1.

In general, one may need many terms in the series of Eq. (2.2.26) to
model a more general disturbance.

Let us examine the asymptotic behavior for large r and t for antisym-
metric impulsive displacement only, leaving the symmetrical case as an
exercise. Writing
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F (k) = k
Ŵ1

cosh kh
and Ŵ1(k) =

∫ ∞

0

rJ1(kr)W1(r) dr ,

and using the identity

J1(kr) =
1
2π

∫ 2π

0

dψ exp[−i(ψ − kr sin ψ)]

=
1
π

∫ π

0

dψ cos(ψ − kr sin ψ) , (2.2.31)

which may be proved readily from the partial wave expansion, Appen-
dix 4.A, Eq. (4.A.5), we may rewrite Eq. (2.2.30) as

ζ(r, θ, t) = cos θ Re
1
π

∫ π

0

dψ

∫ ∞

0

dk F (k) cos(ψ − kr sin ψ)e−iωt

= cos θ Re
1
2π

∫ π

0

dψ

{
e−iψ

∫ ∞

0

dk F (k)eikr sin ψ−iωt

+ eiψ

∫ ∞

0

dk F (k)e−ikr sin ψ−iωt

}
. (2.2.32)

Now consider the first double integral above

I1 =
∫ π

0

dψ e−iψ

∫ ∞

0

dk F (k)eit[k(r/t) sin ψ−ω(k)] . (2.2.33)

The phase function depends on two variables, k and ψ, and a stationary
phase point can be sought in the strip k ≥ 0, 0 ≤ ψ ≤ π by equating to zero
partial derivatives with respect to k and ψ simultaneously. A comprehensive
account for higher-dimensional stationary phase methods may be found in
Papoulis (1968). Let us take the obvious route of first keeping ψ fixed and
finding the stationary phase contribution along k, and then repeating the
process for ψ. Thus, for large t, fixed r/t and sinψ, one may apply the
method of stationary phase

g(k) = k
r

t
sin ψ − ω(k) , (2.2.34a)

g′(k) =
r

t
sin ψ − ω′(k) , (2.2.34b)

g′′ = −ω′′(k) > 0 . (2.2.34c)
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There is a stationary point at the zero of g′(k) since ψ > 0 in the range
0 < ψ < π. The approximate value for the k integral is(

2π

t|ω′′(k)|
)1/2

F (k) exp
{

it
[
k

r

t
sinψ − ω(k)

]
+ i

π

4

}
,

where the stationary point k depends on ψ through Eq. (2.2.34b).
By a similar analysis, the remaining integral in Eq. (2.2.32) has no

stationary point, hence is of the order O(1/t). The integral I1 becomes

I1 =
∫ π

0

dψ ei(−ψ+π/4)

[
2π

t|ω′′(k)|
]1/2

×F (k)eit[k(r/t) sin ψ−ω(k)] + O

(
1
t

)
. (2.2.35)

The ψ integral can be approximated once more by the method of stationary
phase for large t and fixed r/t. The phase function and its first two deriva-
tives are

f(ψ) = k
r

t
sin ψ − ω(k) , (2.2.36a)

df

dψ
= k

r

t
cosψ +

dk

dψ

[r
t

sin ψ − ω′(k)
]
, (2.2.36b)

d2f

dψ2
= −k

r

t
sinψ +

r

t
cosψ

dk

dψ
+

d2k

dψ2

[r
t

sin ψ − ω′(k)
]
. (2.2.36c)

By the use of Eq. (2.2.34b), the point of stationary phase is clearly at
ψ = π/2. Incorporating this result into Eqs. (2.2.36b) and (2.2.36c), we
obtain

r

t
− ω′(k0) = 0 (2.2.37)

for the stationary point, now denoted by k0, and

d2f

dψ2

∣∣∣∣
ψ=π/2

= −k0
r

t
< 0 . (2.2.38)

Equation (2.1.28) may be applied to Eq. (2.2.35), yielding

I1 = −iπ

[
2π

t|ω′′(k0)|
]1/2

F (k0)
(

2
πk0r

)1/2

ei[k0r−ω(k0)t] + O

(
1
t

)
.
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The second double integral in Eq. (2.2.32) does not have a stationary point
in k ∈ [0,∞], hence it is of O(1/t). Finally, the total displacement is

ζ(r, θ, t) = cos θ Re

{
−i

2

(
2π

t|ω′′(k0)|
)1/2

×F (k0)
(

2
πk0r

)1/2

ei[k0r−ω(k0)t]

}
+ O

(
1
t

)

=
1
2

cos θ

[
2π

t|ω′′(k0)|
]1/2

F (k0)
(

2
πk0r

)1/2

× sin[k0r − ω(k0)t] + O

(
1
t

)
. (2.2.39)

The preceding result can also be obtained by using the asymptotic formula
of J1(kr) for large kr,

J1(kr) �
(

2
πkr

)1/2

cos
(

kr − 3π

4

)
,

and then applying the method of stationary phase only once. However,
the legitimacy of assuming large kr when k ranges from 0 to ∞ needs
confirmation and we have taken a more cautious route here.

The physical features of dispersion are almost the same as in the one-
dimensional case and need not be elaborated. It is only necessary to point
out that the amplitude decay rate is different since for r/t = const

ζ � 1
2

1
t

cos θF (k0)
[

2
|ω′′(k0)|

]1/2( 2
k0(r/t)

)1/2

sin(k0r − ω0t) ,

(2.2.40)

where k0 depends on r/t according to Eq. (2.2.38). Thus, the individual
waves found near r/t = const decay at the rate of O(1/t) which is due to
the radial spreading of two-dimensional waves. The antisymmetric nature
of the source is exactly carried over to the propagating waves by the factor
cos θ; the wave is the greatest along the x direction θ = 0, and insignificant
along the axis of antisymmetry θ = π/2, 3π/2.

For a more explicit result it is necessary to prescribe W1(r). For example,
one may assume that
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W1(r) =
A

a
(a2 − t2)1/2 , r < a ,

= 0 , r > a .

(2.2.41)

It can be inferred from a formula in Erdelyi (1954, II, p. 24, No. 25) that

Ŵ1(k) =
A

a

∫ ∞

0

rJ1(kr)(a2 − r2)1/2 dr

=
A

a

(π

2

)1/2 a2

k
J2

1

(
ka

2

)
.

Hence

F (k) =
k

cosh kh
Ŵ1

=
(π

2

)1/2 Aa

cosh kh
J2

1

(
ka

2

)
, (2.2.42)

which shows the effect of the size (a) of the source area. Through the Bessel
function, F (k) oscillates in ka, which is a manifestation of interference of
waves from different parts of the source area.

2.2.2 Leading Waves of a Two-Dimensional Tsunami

Let us continue the antisymmetric example with the specific W1 given by
Eq. (2.2.41). In the zone of leading waves kh � 1, but for sufficiently large
r, the leading wave must have some finite wavelength so that

kr � 1 .

We may either express J1(kr) as an integral, Eq. (2.2.31), and carry out
the stationary phase approximation for the ψ integral first, or take the
asymptotic approximation of J1(kr) for large kr. Either way the result is

ζ � cos θ Re
∫ ∞

0

dk F (k)
(

2
πkr

)1/2

× 1
2
[eikr−iωt−i3π/4 + e−ikr−iωt+i3π/4] . (2.2.43)
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For leading waves kh � 1, only the first integrand matters and we can
expand

ω ∼= (gh)1/2

(
k − k3h2

6

)
,

F (k) ∼= Aa
(π

2

)1/2
(

ka

4

)2

=
Aa3

16

(π

2

)
k2 .

It follows that

ζ ∼= cos θ

2
Aa3

16
1

r1/2
Re e−i3π/4

∫ ∞

0

dk k3/2

× exp
(

i

{
k[r − (gh)1/2t] +

(gh)1/2h2k3t

6

})
. (2.2.44)

This integral cannot be expressed in terms of known functions. Let us first
rewrite it as follows:∫ ∞

0

= h−5/2

∫ ∞

0

d(kh)(kh)3/2

× exp
(

i

{
kh

[
r

h
−
( g

h

)1/2

t

]
+

(kh)3

6

( g

h

)1/2

t

})
(2.2.45)

and introduce the new variables (Kajiura, 1963, p. 549).

(kh)3

6

( g

h

)1/2

t = u6 or kh = u2

[( g

h

)1/2 t

6

]−1/3

.

Then the integral of Eq. (2.2.45) becomes

h−5/2

[( g

h

)1/2 t

6

]−5/6 ∫ ∞

0

du 2u4 ei(u2p+u6) , (2.2.46)

with

p =
r/h − (g/h)1/2t

[(g/h)1/2t/6]1/3
. (2.2.47)

Equation (2.2.46) can be rewritten

−2h−5/2

[( g

h

)1/2 t

6

]−5/6
d2

dp2

∫ ∞

0

du ei(u2p+u6) ,
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whereupon Eq. (2.2.44) becomes

ζ ∼= cos θ

21/2

Aa3

16r1/2
h−5/2

(( g

h

)1/2 t

6

)−5/6

× d2

dp2
Re
[
(1 + i)

∫ ∞

0

du ei(u2p+u6)

]
. (2.2.48)

For p = 0, that is, if the observer is exactly at r = (gh)1/2t, the integral in
Eq. (2.2.46) can be evaluated by letting u6 = τ ,∫ ∞

0

du u4eiu6
=
∫ ∞

0

dττ−1/6eiτ = Γ
(

5
6

)
ei5π/12 .

For general p we follow Kajiura and define

Figure 2.7: T , −Tp, and Tpp as functions of p (from Kajiura, 1963, Bull. Earthquake
Res. Inst. Univ. Tokyo).
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T (p) = Re
[
(1 + i)

∫ ∞

0

du ei(u2p+u6)

]
, (2.2.49)

then

ζ = cos θ
Aa3

16(2r)1/2

Tpp

h5/2((g/h)1/2t/6)5/6
. (2.2.50)

The variations of T , −Tp, and Tpp are plotted in Fig. 2.7. Since the coeffi-
cient of Tpp in Eq. (2.2.48) is proportional to

r−1/2t−5/6 =
(r

t

)−1/2

t−4/3 ∼
(r

t

)5/6

r−4/3 ,

we conclude that near the wave front r/t ∼= (gh)1/2 the wave amplitude
decays as t−4/3 or r−4/3. If A < 0, the ground tilts down on the right
−π/2 < θ < π/2 and up on the left. To an observer on the right the
leading waves are a low trough followed by a high crest, similar to the
two-dimensional case.

2.3 The Propagation of a Dispersive Wave Packet

Let us leave the idealized tsunamis and study the evolution of a slowly
modulated wave group in order to achieve further understanding of
dispersion. Consider a disturbance traveling to the right, which may be
represented as a superposition of sinusoidal waves with a continuum of
wavelengths:

ζ(x, t) = Re
∫ ∞

−∞
�(k)ei(kx−ω(k)t) dk . (2.3.1)

The result may be generated by a wavemaker at x ∼ −∞ in a long tank
from t ∼ −∞. The amplitude spectrum �(k) is determined by the initial
disturbance (see Section 2.1). We shall leave ω(k) to be general so that the
water wave is just a special case. Consider, in particular, a wave packet
with a Gaussian envelope:

ζ(x, 0) = Re A0e
−ik0xe−x2/4σ2

. (2.3.2)

The amplitude spectrum is obtained by inverse Fourier transform
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�(k) =
1
2π

∫ ∞

−∞
ζ(x, 0)e−ikx dx

=
A0

2π

∫ ∞

−∞
e−i(k−k0)x−x2/4σ2

dx

=
A0

2π

∫ ∞

−∞
e−[x/2σ+i(k−k0)σ]2−(k−k0)2σ2

dx (2.3.3)

after completing the square. Letting u = x/2σ + i(k − k0)σ, we have
further

� =
A0

2π
2σe−(k−k0)

2σ2
∫

Γ

e−u2
du ,

where the contour Γ is a straight line from −∞ + i(k − k0)σ to
∞ + i(k − k0)σ in the complex u plane. Since e−u2

is analytic in the strip
between Γ and the real u axis, by Cauchy’s theorem the contour can be
replaced by the real axis. Using the well-known result∫ ∞

−∞
e−u2

du = π1/2 , (2.3.4)

we have

�(k) =
A0σ

π1/2
e−(k−k0)2σ2

. (2.3.5)

Thus, the wave profile at any t is

ζ = Re
A0σ

π1/2

∫ ∞

−∞
e−(k−k0)2σ2+i(kx−ωt) dk . (2.3.6)

Let us study the behavior of the above integral when σk0 is very large,
that is, when the original envelope is very flat or the amplitude spectrum is
very sharp near k = k0. The integrand attenuates quickly away from k = k0

so that one may approximate ω(k) by a few terms in the Taylor expansion:

ω(k) = ω0 + (k − k0)ω′
0 +

1
2
(k − k0)2ω′′

0 + · · · ,

where ω0 ≡ ω(k0), ω′
0 ≡ ω′(k0), and so on. After we let u = k − k0, ζ

becomes

ζ ∼= Re
A0σ

π1/2
ei(k0x−ω0t) ·

∫ ∞

−∞
e−(σ2+iω′′

0 t/2)u2+i(x−ω′
0t)u du . (2.3.7)
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Completing the squares and using Eq. (2.3.4), we get

ζ ∼= Re A0
ei(k0x−ω0t)

[1 + iω′′
0 t

2σ2 ]1/2
exp

{
−(x − ω′

0t)
2

4σ2[1 + ( iω′′
0 t

2σ )2]

}
. (2.3.8)

Clearly, the envelope moves at the group velocity Cg = ω′
0; its maximum is

at x = Cgt and attenuates as t1/2 for large t. In addition, the length of the
envelope, which is measured by

2σ

(
1 +

i

2
ω′′

0 t

σ2

)1/2

,

increases as t1/2 for large t. Therefore, the whole wave group flattens during
propagation.

Compared with Eq. (1.5.4), Eq. (2.3.8) is an improved approximation.
Several other observations are useful here. Let us regard Eq. (2.3.8) as
slowly modulated sinusoidal waves. The energy contained in the entire
wave group can be approximated by

1
2
ρgA2

0

∫ ∞

−∞
dx

∣∣∣∣∣exp{−(x − ω′
0t)

2/4σ2[1 + iω′′
0 t

2σ2 ]}
[1 + iω′′

0 t

2σ ]1/2

∣∣∣∣∣
2

× ρgA2
0

2

∫ ∞

−∞
dx

exp{−(x − ω′
0t)2/2σ2[1 + (ω′′

0 t
2σ2 )2]}

(1 + (ω′′
0 t

2σ )2)1/2

=
ρgA2

0

2

√
2σ
∫ ∞

−∞
e−u2

du =
ρgA2

0

2
√

2

√
πσ , (2.3.9)

after an obvious change of variables. The total energy in the initial profile,
Eq. (2.3.2), is

ρg

2
A2

0

∫ ∞

−∞
e−x2/2σ2

dx =
ρg

2(2)1/2
A2

0π
1/2σ . (2.3.10)

Thus energy is conserved, as it must be.
It may be noted that to the order σ−2 where σ−1 designates the slow

rate of envelope modulation, the curvature of the dispersion curve ω′′ is
involved. To see that this is no accident, let us examine the elementary
example of two wavetrains with slightly different wavelengths k+ = k + dk

and k− = k − dk with dk/k � 1,

ζ = A0{exp[i(k+x − ω+t)] + exp[i(k−x − ω−t)]} , (2.3.11)
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where ωα = ω(kα), α = 1, 2. Expanding ω to O(dk)2, we have

ω± =
[
ω ± ω′ dk +

1
2
ω′′(dk)2 + · · ·

]
k

, (2.3.12)

so that

ζ ∼= 2A0 cos[dk(x − Cgt)] exp
{

i

(
kx −

[
ω +

1
2
ω′′(dk)2

]
t

)}
.

(2.3.13)

Over the space and time scale O(dk)−1, the envelope modulates and moves
at Cg; however, over the time scale O(dk)−2, the phase, in particular the
frequency, changes. This example suggests that there is a cascade of time
scales O(1), O(dk)−1, O(dk)−2, . . . , and so on.

Finally, for any amplitude spectrum sharply peaked around k0 (the
Gaussian spectrum (2.3.5) being a special case), Eq. (2.3.1) may be ap-
proximated by

ζ(x, t) ∼= Re {A(x, t)ei(k0x−ω0t)} , (2.3.14)

where

A(x, t) =
∫ ∞

−∞
dk �(k)

× exp
{

i

[
(k − k0)x −

[
(k − k0)ω′

0 +
1
2
(k − k0)2ω′′

0

]
t

]}
.

(2.3.15)

It is readily verified that A satisfies the following differential equation:

∂A

∂t
+ ω′

0

∂A

∂x
+

1
2
ω′′

0

∂2A

∂x2
. (2.3.16)

Such a simple equation obviously makes subsequent analysis easy, as will
be demonstrated in the next section. To prepare the ground for further
extension to nonlinear problems where formally exact solutions are often
not possible, we shall also rederive Eq. (2.3.16) by an alternative method
directly from the governing equations, and not from the integral solution.
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2.4 Slowly Varying Wavetrain by
Multiple-Scales Analysis

2.4.1 Evolution Equation for the Wave Envelope

Let us incorporate the difference in scales as suggested at the end of
Section 2.3 by formally introducing slow variables

x1 = µx , x2 = µ2x, . . . ,

t1 = µt , t2 = µ2t, . . . ,
(2.4.1)

where µ � 1 measures the ratio of two time scales, and then treating
these variables in a perturbation analysis as if they were independent. This
device may appear very artificial to the newcomer, but it has been shown to
agree with other methods in old problems and to be an especially powerful
tool for problems with weak nonlinearity. For a systematic exposition, see
Cole (1968) and Nayfeh (1973).

Assume that

Φ(x, z, t) = Φ(x, x1, x2, . . . ; z; t, t1, t2, . . .) ,

ζ(x, t) = ζ(x, x1, x2, . . . ; t, t1, t2, . . .) .
(2.4.2)

Derivatives with respect to x and t must now be replaced by

∂

∂x
→ ∂

∂x
+ µ

∂

∂x1
+ µ2 ∂

∂x2
+ · · · , (2.4.3)

so that

∂2

∂x2
→ ∂2

∂x2
+ 2µ

∂2

∂x∂x1
+ µ2

(
∂2

∂x2
1

+ 2
∂2

∂x∂x2

)
+ · · · . (2.4.4)

Similar replacements must be made for time derivatives, while z derivatives
remain the same. We now restrict ourselves to slowly varying sinusoidal
waves and assume a perturbation series as follows:

Φ = (ψ0 + µψ1 + µ2ψ2 + · · · )ei(kx−ωt) , (2.4.5)

where

ψα = ψα(x1, x2, . . . ; z; t1, t2, . . .) , α = 0, 1, 2, . . . . (2.4.6)

Substituting Eq. (2.4.4) to Eq. (2.4.6) into Laplace’s equation and separ-
ating by powers of µ, we obtain
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O(µ0) : −k2ψ0 +
∂2ψ0

∂z2
= 0 , (2.4.7a)

O(µ) : −k2ψ1 +
∂2ψ1

∂z2
= −2ik

∂ψ0

∂x1
, (2.4.7b)

O(µ2) : −K2ψ2 +
∂2ψ2

∂z2
= −
(

2ik
∂ψ1

∂x1
+

∂2ψ0

∂x2
1

+ 2ik
∂ψ0

∂x2

)
. (2.4.7c)

Similarly, the free-surface boundary condition gives

O(µ0) : g
∂ψ0

∂z
− ω2ψ0 = 0 , (2.4.8a)

O(µ1) : g
∂ψ1

∂z
− ω2ψ1 = 2iω

∂ψ0

∂t1
, (2.4.8b)

O(µ2) : g
∂ψ2

∂z
− ω2ψ2 = 2iω

∂ψ1

∂t1
−
(

∂2ψ0

∂t21
− 2iω

∂ψ0

∂t2

)
. (2.4.8c)

On the bottom we have

∂ψ0

∂z
=

∂ψ1

∂z
=

∂ψ2

∂z
= 0 , z = −h . (2.4.9a, b, c)

It is obvious that the solution for ψ0 governed by Eqs. (2.4.7a), (2.4.8a),
and (2.4.9a) is simply

ψ0 = − igA

ω

cosh k(z + h)
cosh kh

, A = A(x1, x2, . . . ; t1, t2, . . .) (2.4.10)

with ω2 = gk tanh kh. The amplitude A is thus far undetermined. Now
ψ1 is governed by the inhomogeneous boundary-value problem (2.4.7b),
(2.4.8b), and (2.4.9b). Since the homogeneous version of the boundary-
value problem has ψ0 as a nontrivial solution, the inhomogeneous problem
must satisfy a solvability condition,1 which follows by applying Green’s
theorem to ψ0 and ψ1:

1This condition is related to a very general mathematical theorem called Fredholm
alternative. In the context of boundary-value problems the theorem can be stated
as follows (see, e.g., Garabedian, 1964): “Either the inhomogeneous boundary-value
problem is solvable whatever the forcing terms may be, or the corresponding homoge-
neous problem has one or more eigenfunctions (nontrivial solutions). In the first case
the inhomogeneous solution is unique. In the second case the inhomogeneous problem
is solvable if and only if the forcing terms are orthogonal to all the eigenfunctions of

the homogeneous problem.”
In our problem, ψ0 is the eigenfunction to the homogeneous problem and ψ1 is the

solution to the inhomogeneous problem; Eq. (2.4.12) is the “orthogonality” condition.
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∫ 0

−h

dz

[
ψ0

(
∂2ψ1

∂z2
− k2ψ1

)
− ψ1

(
∂2ψ0

∂z2
− k2ψ0

)]

=
[
ψ0

∂ψ1

∂z
− ψ1

∂ψ0

∂z

]0
−h

. (2.4.11)

If Eqs. (2.4.7a, b) are used on the left, and Eqs. (2.4.8a, b) and (2.4.9a, b)
are used on the right, we get, from the preceding theorem,

− ∂A

∂x1

[
gk

ω

1
cosh2 kh

∫ 0

−h

cosh2 k(z + h) dz

]
=

∂A

∂t1
.

In view of Eq. (1.5.12), it follows that

∂A

∂t1
+ Cg

∂A

∂x1
= 0 . (2.4.12)

The solution can be easily verified to be A(x1 − Cgt1), implying that the
envelope propagates at the group velocity without change of form. This
general result includes Eq. (1.5.5), as a special case. In addition, it also
applies to the front of a gradually started and steadily maintained wavetrain
as anticipated in Section 1.5.2.

Before proceeding to the next order, let us digress for an immediate
application. When sinusoidal disturbances are generated in a localized
region, there is a mathematical ambiguity in the boundary condition at
infinity in the steady-state formulation. For example, merely stating that
the disturbance should remain finite (in one dimension) or die out (in
two or three dimensions) at infinity does not guarantee the uniqueness
of the solution; a much stronger condition must be imposed. Within the
strict limits of a steady-state formulation this condition is usually stated
as follows: “A locally generated sinusoidal disturbance must propagate
outward to infinity”. This important statement is called the radiation
condition. A justification, even for a special case, is certainly desirable.

Let us regard the steady state as the limit of t → ∞ of an initial-
value problem. In particular, consider the one-dimensional waves in the
domain x > 0 due to the sinusoidal oscillation of a wavemaker at x = 0.

Let the amplitude of the sinusoidal wave near x = 0 vary slowly from
0 at t ∼ −∞ to a constant A0 at t ∼ +∞ according to some law
A(t) = A(t1), see Fig. 2.8. We then expect the solution at any x1 > 0
to be given by Eq. (2.4.10) with A(x, t) = A(t1 − x1/Cg). By causality,
the wave amplitude vanishes at sufficiently large x1 for any finite t; hence
A(x, t) ∼= A(−x1/Cg) ↓ 0 as x1 ↑ +∞. In view of Fig. 2.8 this is possible
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Figure 2.8: Slow rise of amplitude near the wavemaker.

only if Cg > 0. Since Cg and k are of the same sign, we must have k > 0,
which implies from Eq. (2.4.5) that ψ0e

i(kx−ωt) propagates to the right,
that is, outgoing.

In principle, the radiation condition can be deduced from an initial-value
problem without the assumption of a slow start. However, the required
analysis is long (see Stoker, 1956, 1957).

The permanence of form implied by Eq. (2.4.12) is only true on the scale
O(µ−1), that is, with respect to x1 and t1. Let us pursue the next order to
observe changes over a longer distance or time O(µ−2), that is, with respect
to x2 and t2.

First, we leave it to the reader to show that the inhomogeneous solution
for ψ1 is

ψ1 = − gQ sh Q
ωk ch kh

∂A

∂x1
, with Q ≡ k(z + h) , sh ≡ sinh and ch ≡ cosh .

(2.4.13)

The boundary conditions are satisfied because of Eq. (2.4.12). A homo-
geneous solution is omitted because it can be considered as contained in
ψ0. Substituting Eqs. (2.4.10) and (2.4.13) into the right-hand sides of
Eqs. (2.4.7c) and (2.4.8c), we obtain

∂2ψ2

∂z2
− k2ψ2 =

2ig

ω

∂2A

∂x2
1

Q sh Q

ch kh
+

ig

ω

(
∂2A

∂x2
1

+ 2ik
∂A

∂x2

)
ch
ch

Q

kh
, (2.4.14a)

∂ψ2

∂z
− ω2

g
ψ2 = i

(
2h sh kh

ch kh
Cg +

C2
g

ω

)
∂2A

∂x2
1

+ 2
∂A

∂t2
, z = 0 , (2.4.14b)

∂ψ2

∂z
= 0 , z = −h . (2.4.14c)
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In arriving at Eq. (2.4.14b), use is made of Eq. (2.4.12). Now the argu-
ment of solvability can be repeated which, after lengthy but straightforward
algebra, gives a surprisingly simple result:

∂A

∂t2
+ Cg

∂A

∂x2
=

i

2
ω′′ ∂

2A

∂x2
1

, (2.4.15)

where

ω′′ =
d2ω

dk2
=

Cg

k
(1 − 2kh th kh) − C2

g

ω
+

C

2k
(2kh cth 2kh − 1)

=
−g

4ωkσ
{T 2 − 2khT (1− T 2) + (kh)2(1 − T 2)2 + 4(kh)2T 2(1 − T 2)} ,

with th ≡ tanh, cth ≡ cotanh and T ≡ tanh kh for brevity.
The two orders (2.4.12) and (2.4.15) may be combined, and the small

parameter µ may be dropped to give

∂A

∂t
+ Cg

∂A

∂x
=

i

2
ω′′ ∂

2A

∂x2
, (2.4.16)

which governs the slow modulation of the envelope and is exactly
Eq. (2.3.16).

In terms of the coordinate system moving at Cg, that is, with the group

ξ = x − Cgt ,

Eq. (2.4.16) becomes the Schrödinger equation in quantum mechanics,

∂A

∂t
=

iω′′

2
∂2A

∂ξ2
. (2.4.17)

This equation involves only one space coordinate and is, therefore, easier
to deal with than the boundary-value problem involving x and z. Let us
apply it to a new example.

2.4.2 Evolution of the Front of a Wavetrain

Consider a sinusoidal disturbance originated from a wavemaker which is
switched on at some earlier time and is maintained steadily afterward.
Ultimately, at a fixed station, a steady sinusoidal motion is attained. It
is interesting to examine the development of the wave front. This problem
was first studied by Wu (1957) for an oscillating point pressure suddenly
started at t = 0 on the surface of an infinitely deep water with surface
tension. The same problem, without surface tension, was later studied by
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Miles (1962). The transient wave front caused by a vertical plate rolling
in the free surface was also examined by Mei (1966a). The approach of all
these authors was to start from an exact solution and then to perform an
asymptotic approximation of the integral representation for large x and t.

The mathematics contained some subtleties in that the major contribution
came from near the pole of a principal-valued integral.

Let us use Eq. (2.4.17) which should be applicable for the wave front
once it is far enough from the source of disturbance. The precise history of
the starting process is not important. We now seek the solution to satisfy
the boundary conditions that

A → 0 as ξ → ∞ , (2.4.18a)

A → A0 as ξ → −∞ , (2.4.18b)

that is, the envelope changes from the constant A0 behind the wave front
to zero ahead of the front. No restriction is made on kh.

The boundary-value problem defined by Eqs. (2.4.17) and (2.4.18a, b)
can be solved by the similarity method familiar in boundary-layer theory
or heat conduction. Since Eq. (2.4.17) resembles the heat equation, we
anticipate a similarity solution of the form

A = A0f(γ) where γ = − ξ

t1/2
. (2.4.19)

It follows from Eq. (2.4.17) that

f ′′ − iγ

|ω′′|f
′ = 0 , (2.4.20)

with the boundary conditions

f → 1 , γ ∼ ∞ , (2.4.21a)

f → 0 , γ ∼ −∞ . (2.4.21b)

Equation (2.4.20) may be integrated to give

f = C

∫ γ

−∞
exp
(

iu2

2|ω′′|
)

du ,

which satisfies Eq. (2.4.21b). To satisfy Eq. (2.4.21a), we insist that

1 = C

∫ ∞

−∞
exp
(

iu2

2|ω′′|
)

du .
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Since ∫ ∞

0

eiτ2
dτ =

π1/2

2
eiπ/4 , (2.4.22)

we obtain

C = e−iπ/4(2π|ω′′|)−1/2 ,

and the solution

A

A0
= e−iπ/4(2π|ω′′|)−1/2

∫ γ

−∞
du exp

(
iu2

2|ω′′|
)

. (2.4.23)

The above result may be expressed alternatively

A

A0
= e−iπ/4(2π|ω′′|)−1/2

[∫ 0

−∞
+
∫ γ

0

]
du exp

(
iu2

2|ω′′|
)

=
1
2

+ e−iπ/4(2π|ω′′|)−1/2

∫ γ

0

du exp
(

iu2

2|ω′′|
)

(2.4.24)

after the use of Eq. (2.4.22). Introducing u2/|ω′′| = πυ2, we get

A

A0
=

1
2

+
e−iπ/4

21/2

∫ β

0

eiπυ2/2 dυ

=
e−iπ/4

21/2

[
1 + i

2
+
∫ β

0

dυ

(
cos

πυ2

2
+ i sin

πυ2

2

)]
, (2.4.25)

where

β = −ξ(π|ω′′|t)−1/2 . (2.4.26)

Since

C(β) =
∫ β

0

cos
πυ2

2
dυ (2.4.27a)

and

S(β) =
∫ β

0

sin
πυ2

2
dυ (2.4.27b)

are the Fresnel cosine and sine integrals, Eq. (2.4.25) may be written

A

A0
=

e−iπ/4

21/2

{[
1
2

+ C(β)
]

+ i

[
1
2

+ S(β)
]}

. (2.4.28)
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Figure 2.9: Comparison of theory (Miles, 1962) with experiments. The amplitude is
measured at 160 ft from the wavemaker; frequency is ω = 5.52 rad/s (from Longuet–
Higgins, 1974a, Proceedings, Tenth Symposium on Naval Hydrodynamics. Reproduced
by permission of U.S. Office of Naval Research).

Figure 2.10: Effect of group velocity versus phase velocity in deep water Cg = C/2; the
time interval is 2T between two successive instants when a wave crest coincides with the
envelope crest.
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The magnitude |A/A0| is given by∣∣∣∣ AA0

∣∣∣∣ = 1
21/2

{[
1
2

+ C(β)
]2

+
[
1
2

+ S(β)
]2}1/2

, (2.4.29)

which is plotted in Fig. 2.9. It is interesting that Eq. (2.4.29) also describes
the variation across a shadow boundary in a diffraction problem which
will be examined later. To an observer fixed at x which is far from the
wavemaker, the envelope first grows monotonically to A0/2 when t = x/Cg,
then approaches the steady-state limit A0 in an oscillatory manner. The
transition region stretches out with time as t1/2. Longuet–Higgins (1974a)
has performed experiments which support this theory qualitatively. Some
quantitative discrepancy exists which is likely related to nonlinear effects.
In particular, for sufficiently high amplitude the observed crests break at
the first peak of the envelope. Since the envelope velocity in deep water is
one-half of the crest velocity, the time interval between two successive crests
arriving at the peak of the envelope is two wave periods (see Fig. 2.10).
If the waves at the peak are high enough to break, one finds the time
interval between two successive breakers to be 2T. This phenomenon can
be observed in white caps (Donelan, Longuet–Higgins, and Turner, 1972).
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Refraction by Slowly
Varying Depth
or Current 3
When a train of plane monochromatic waves enters a zone of slowly varying
depth, the wavenumber can be expected to change with depth in accor-
dance with Eq. (1.4.8), Chapter One, resulting in a gradual change in
the phase velocity. In general, the spacings between equal phase lines and
the amplitude of crests and troughs will vary from place to place. Sim-
ilar changes can also occur for waves riding on a current whose inten-
sity varies in horizontal directions. These phenomena, which are related
mainly to the variation in phase velocity, are of course well known in op-
tics and acoustics and are called refraction. In this chapter, we develop
an approximate ray theory (or geometrical optics theory) for the effects of
varying depth (Sections 3.1–3.4) and of varying current (Sections 3.6 and
3.7) on the propagation of infinitesimal waves. The evolution equations
will be deduced by the so-called WKB method which is a special version
of the multiple-scales method. While these equations are normally solved
numerically for practical problems, we shall extract from them physical in-
sights through a variety of analytical examples. A brief discussion is also
made, for varying depth only, on the local remedy needed when the ray
approximation fails. In a numerical treatment of natural topography, this
failure can be overcome more straightforwardly by incorporating diffraction
in the so-called mild-slope equation, which we derive in Section 3.5. Other
more mathematical aspects not treated here can be found in the excellent
surveys of Meyer (1979a) for varying depth and Peregrine (1976) for varying
current.

65
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3.1 Geometrical Optics Approximation for
Progressive Waves Over a Gradually
Varying Bottom

We assume that the typical wavelength is much less than the horizontal
length scale of depth variation. A small parameter can be introduced as
follows:

µ = O

(∇h

kh

)
� 1 . (3.1.1)

To be more general, let us allow slow modulation in time too, which may
be the result of initial conditions. Following Keller (1958), we introduce
the slow coordinates

x̄ = µx , ȳ = µy , t̄ = µt . (3.1.2)

The linearized governing equations become

µ2(Φx̄x̄ + Φȳȳ) + Φzz = 0 , −h(x̄, ȳ) < z < 0 , (3.1.3)

µ2Φt̄t̄ + gΦz = 0 , z = 0 , (3.1.4)

Φz = −µ2(Φx̄hx̄ + Φȳhȳ) , z = −h(x̄, ȳ) . (3.1.5)

The second key step, typical of WKB, is to introduce the following expan-
sion in anticipation that waves are progressive:

Φ = [φ0 + (−iµ)φ1 + (−iµ)2φ2 + · · · ]eiS/µ , (3.1.6)

where

φj = φj(x̄, ȳ, z, t̄ ) for j = 0, 1, 2, . . . ; and S = S(x̄, ȳ, t̄ ) .

The intuitive basis for this assumption is that while wave amplitude varies
with the slow coordinates x̄, ȳ, t̄, the phase varies with the fast coordinates
(x̄, ȳ, t̄ )µ−1. By straightforward differentiation we get

µ2Φt̄t̄ = −(−iµ)2Φt̄t̄ = −{S2
t̄ (φ0 + (−iµ)φ1 + (−iµ)2φ2 + · · · )

+ (−iµ)[St̄t̄(φ0 + (−iµ)φ1 + · · · ) + 2St̄(φ0t̄ + (−iµ)φ1t̄ + · · · )]
+ (−iµ)2(φ0t̄t̄ + · · · )}eiS/µ ,

∇Φ =
{

[∇φ0 + (−iµ)∇φ1 + · · · ] + i∇S

µ
[φ0 + (−iµ)φ1 + · · · ]

}
eiS/µ ,
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µ2∇ · ∇φ = −(−iµ)2∇ · ∇φ = −(−iµ)2

·
{

[∇2
φ0 + (−iµ)∇2

φ1 + · · · ] + [∇φ0 + (−iµ)∇φ1 + · · · ]

· i∇S

µ
+

1
−iµ

[∇ · φ0∇S + (−iµ)∇ · (φ1∇S) + · · · ]

+
(

i∇S

µ

)2

[φ0 + (−iµ)φ1 + · · · ]
}

eiS/µ .

Let us define

k = ∇S (3.1.7a)

and

ω = −St̄ , (3.1.7b)

which represent the local wavenumber vector and frequency, respectively.
Substituting Eqs. (3.1.7) into Eqs. (3.1.3)–(3.1.5) and separating the orders,
we obtain at O(−iµ0)

φ0zz − k2φ0 = 0 , −h < z < 0 , (3.1.8)

φ0z − ω2

g
φ0 = 0 , z = 0 , (3.1.9)

φ0z = 0 , z = −h ; (3.1.10)

and at O(−iµ)

φ1zz − k2φ1 = k · ∇φ0 + ∇ · (kφ0) , −h < z < 0 , (3.1.11)

φ1z − ω2

g
φ1 = − [ωφ0t̄ + (ωφ0)t̄]

g
, z = 0 , (3.1.12)

φ1z = φ0k · ∇h , z = −h . (3.1.13)

Equations (3.1.8)–(3.1.10) and (3.1.11)–(3.1.13) define two boundary-
value problems governed by ordinary differential equations. The solution
to Eqs. (3.1.8)–(3.1.10) is, formally,

φ0 = − igA

ω

cosh k(z + h)
cosh kh

, (3.1.14)
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with

ω2 = gk tanh kh . (3.1.15)

Thus, ω(x̄, ȳ, t̄ ) and k(x̄, ȳ, t̄ ) are related to the local depth h(x̄, ȳ) by the
same dispersion relation as if h were constant. The amplitude A(x̄, ȳ, t̄ ) is
still arbitrary.

To get a condition on A we examine the solvability of φ1 by applying
Green’s formula [Eq. (2.4.11)] to φ∗

0 and φ1. Making use of all conditions
(3.1.8)–(3.1.10) and (3.1.11)–(3.1.13), we get∫ 0

−h

dz φ∗
0[(k · ∇φ0) + ∇ · (kφ0)]

= −1
g
{φ∗

0[ωφ0t̄ + (ωφ0)t̄]}z=0 − |φ0|2z=−hk · ∇h .

By Leibniz’s rule

D

∫ a

b

f dz =
∫ a

b

Df dz + (Da)(f)z=a − (Db)(f)z=b , (3.1.16)

where D is either ∂/∂t̄, ∂/∂x̄, or ∂/∂ȳ; the integral on the left and the last
term on the right can be combined to give

∇ ·
∫ 0

−h

dz k|φ0|2 +
1
g

∂

∂t̄
[ω|φ0|2]z=0 = 0 .

By the use of Eqs. (3.1.14) and (3.1.15), and the definitions of E and Cg

[Eqs. (1.5.14) and (1.5.6), Chapter One] which are still valid here except
that they are functions of (x̄, ȳ, and t̄), it is easy to verify that

∇ ·
(

E

ω
Cg

)
+

∂

∂t̄

(
E

ω

)
= 0 . (3.1.17)

In the classical mechanics of oscillators, a similar ratio of energy to fre-
quency is called action and is also found to be invariant when properties
of the oscillator change slowly (adiabatically). Hence E/ω has come to be
known as the wave action and Eq. (3.1.17) states its conservation while
being transported by the group velocity.

In summary, the phase function of slowly varying water waves is go-
verned by Eq. (3.1.15) with k and ω given by Eq. (3.1.7). S is thus governed
by a highly nonlinear first-order partial differential equation which is called
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the eikonal equation in optics. Once the phase is found, the amplitude is
solved from the wave action equation (3.1.17).

Let us also note that definition (3.1.7) implies

∇× k = 0 (3.1.18)

∂k
∂t̄

+ ∇ω = 0 . (3.1.19)

The one-dimensional version of Eq. (3.1.19)

∂k

∂t̄
+

∂ω

∂x̄
= 0 (3.1.20)

is most easily interpreted physically. By definition, k is the number of
equal phase lines per unit distance, hence the density of equal phase lines.
By definition also, ω is the number of equal phase lines passing a fixed
station, hence the flux of equal phase lines. Between the two stations x̄

and x̄ + dx̄, the net rate of out-flux of phase lines is (∂ω/∂x̄) dx̄, while the
rate of decrease of phase lines in the control volume is −(∂k/∂t̄ ) dx̄. It is
clear that Eq. (3.1.20) is simply a law of wave-crest conservation.

In the next few sections we shall confine ourselves to strictly sinu-
soidal waves and study several examples which have their analogs in optics
(Luneberg, 1964). Since the purpose of deducing approximate equations is
already achieved, there is no need to distinguish the slow variables from the
physical variables. All bars will now be removed.

Exercise 3.1: Slow Modulation of Waves in a Two-layered Sea

A two-layer ocean with densities ρ and ρ′ has a slowly varying bottom
z = −h(x, y). The interface is at z = 0, while the mean free surface is
at z = h′. Invoke the rigid-lid approximation and analyze a progressive
train of internal waves by WKB approximation. Show that at the leading
order O(µ0) energy is E = 1

2∆ρgA2 with ∆ρ = ρ− ρ′, while the dispersion
relation and group velocity are, respectively,

ω2 =
∆ρgk

ρ′ coth kh′ + ρ coth kh
,

Cg =
C

2

[
1 +

ω2

g∆ρ
(ρ′h′csch2kh′ + ρh csch2kh)

]
.

From the solvability condition at O(µ), show that Eq. (3.1.17) is also true.
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Figure 3.1: A ray channel and depth contours.

3.2 Ray Theory for Sinusoidal Waves,
Fermat’s Principle

If the waves are steady, ∂/∂t = 0, then Eq. (3.1.19) implies that ω = const.
The problem involves waves purely sinusoidal in time. From Eq. (3.1.17)
the amplitude variation is governed by

∇ · (ECg) = 0 . (3.2.1)

Imagine the x-y plane to be filled with k vectors which vary with position in
magnitude and direction. Starting from a given point, let us draw a curve
which is tangent to the local k vector at every point along the curve. Such
a curve is called a wave ray and is always orthogonal to the local crests
or phase lines S = const. From different starting points different rays can
be drawn. Two adjacent rays form a ray channel. Consider a segment of
a ray channel whose widths at the two ends are dσ0 and dσ (Fig. 3.1).
Integrate Eq. (3.2.1) along the closed contour formed by the boundaries of
the ray segment. From the Gauss divergence theorem and the fact that Cg

is tangent to the ray, it follows that the energy fluxes through both ends
are the same

ECgdσ = (ECgdσ)0 = const . (3.2.2)
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The variation of amplitude along a ray then follows the law

A

A0
=
[
(Cg)0
Cg

dσ0

dσ

]1/2

, (3.2.3)

where the ratio dσ/dσ0 is called the ray separation factor.
The problem now is to find the rays, or their orthogonals, which are

just the phase lines S(x, y) = const. Once the rays are located and the
amplitude at station ux0 is known, the amplitude at any other station
along the ray is found immediately.

Taking the square of Eq. (3.1.7a), we obtain a nonlinear partial dif-
ferential equation for S:

|∇S|2 = k2 or
(

∂S

∂x

)2

+
(

∂S

∂y

)2

= k2 , (3.2.4)

the right-hand side being known from the dispersion relation. Equa-
tion (3.2.4) is called the eikonal equation which can be treated in a most
general way by the method of characteristics. We present below a more
elementary approach.

Let y(x) represent a particular ray; its slope must be given by

y′ =
dy

dx
=

∂S

∂y

/
∂S

∂x
.

It follows from Eq. (3.2.4) that

(1 + y′2)1/2 =
k

∂S/∂x
and

ky′

(1 + y′2)1/2
=

∂S

∂y
.

The derivative of the second equation above gives

d

dx

ky′

(1 + y′2)1.2
=

∂2S

∂y∂x
+

∂2S

∂y2
y′

=
(

∂2S

∂y∂x

∂S

∂x
+

∂2S

∂y2

∂S

∂y

)/
∂S

∂x

=
[
1
2

∂

∂y
(∇S)2

]/
∂S

∂x

=
(

∂k

∂y

)
(1 + y′2)1/2
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or

d

dx

[
ky′

(1 + y′2)1/2

]
= (1 + y′2)1/2 ∂k

∂y
with k = k(x, y(x)) . (3.2.5)

Equation (3.2.5) is a nonlinear ordinary differential equation for the
ray y(x). Once the initial point is known, the ray path can be solved
numerically.

Before discussing specific examples, it is interesting to establish the
correspondence between Eq. (3.2.5) and the celebrated Fermat’s principle
which states: “If P0 and P1 are two points on a ray and

L =
∫ P1

P0

k ds (3.2.6)

is an integral along a certain path joining P0 and P1, then L is an extremum
if and only if the path coincides with the ray.” It is well known in the
calculus of variations (see Hildebrand, 1964 p. 355ff) that the functional

L =
∫ P1

P0

F [x, y(x), y′(x)] dx (3.2.7)

is extremum if and only if F satisfies the following Euler’s equation:

d

dx

(
∂F

∂y′

)
=

∂F

∂y
. (3.2.8)

If we let

L =
∫ P1

P0

k(1 + y′2)1/2dx

and identify

F = k(1 + y′2)1/2 ,

then Eq. (3.2.5) is precisely Euler’s equation for Fermat’s principle.
We have now seen that the eikonal equation and Fermat’s principle are

but two ways of expressing the same thing. Let us consider a few cases
where the ray geometry can be easily found. Indeed, all the cases have
their counterparts in optics (Luneberg, 1964).
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3.3 Straight and Parallel Depth Contours

3.3.1 Geometry of Rays

Let all the contours be parallel to the y axis so that h = h(x) and k = k(x).
The Euler equation (3.2.5) gives

d

dx

ky′

(1 + y′2)1/2
= 0 , (3.3.1)

implying that

ky′

(1 + y′2)1/2
= K = const . (3.3.2)

Since

y′

(1 + y′2)1/2
=

dy

ds
= sin α , (3.3.3)

where α is the angle between the ray and the positive x axis, Eq. (3.3.2) is
easily recognized as the well-known Snell’s law:

k sin α = K = k0 sin α0 or
sinα

C
=

sin α0

C0
(3.3.4)

where k0 and α0 refer to a known point (x0, y0) on the ray. Solving for y′

from Eq. (3.3.2), we have

dy

dx
=

±K

(k2 − K2)1/2
. (3.3.5)

The above result can also be arrived at more simply. Indeed, Eq. (3.3.4)
is just the consequence of Eq. (3.1.18) with ∂/∂y = 0, while Eq. (3.3.5)
follows from the geometrical definition of a ray:

dy

dx
=

k sin α

k cosα
.

The equation of the ray is, upon integration,

y − y0 = ±
∫ x

x0

K dx

[k2(x) − K2]1/2
. (3.3.6)

Clearly, a ray can exist only where k2 > K2.
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On the other hand, since a wave phase line is orthogonal to the rays, its
slope must be given by

dy

dx
= ∓ 1

K
(k2 − K2)1/2 .

The equation of the phase line is therefore

∓Ky =
∫ x

dx(k2 − K2)1/2 + const .

A good deal can be learned from Eqs. (3.3.5) and (3.3.6) without restricting
k(x) to any explicit form. The following cases give some idea of the possible
varieties.

Case 1: Plane Wave Incident on a Ridge or a Beach

Let a plane incident wave approach from the left, x ∼ −∞. The incident
rays are all parallel and enter the ridge at x = x0 < 0 at the angle α0.
Since k0 sinα0 = K < k everywhere, the square root (k2−K2)1/2 is always
real, and since dy/dx > 0, the positive sign is to be taken in Eqs. (3.3.5)
and (3.3.6). As h decreases, k increases, and dy/dx decreases; thus, when
a ray passes over the ridge, it first becomes increasingly normal to the
depth contours. After the peak is passed, the ray then turns away from the
normal. The ray path is sketched in Fig. 3.2.

As a limiting case, let the summit of the ridge rise above the mean water
level, resulting in a beach on either side. Consider a ray with k = k0 at
x = x0 approaching from the left at the incidence angle α0. The ray turns
toward the depth contours and finally strikes the shorelines perpendicularly
since k ↑ ∞ for h ↓ 0.

The following choice of k, due to Pocinki (1950), is a special model for
a beach which begins at x = a and ends at the shoreline x = b.

k

k0
= 1 , x < a ,

k

k0
=

1 − a/b

1 − x/b
, a < x < b .

Substituting into Eq. (3.3.5), we get

dy

dx
=

(1 − x/b)[(sin α0)/(1 − a/b)]
{1 − [(sin α0)/(1 − a/b)]2(1 − x/b)2}1/2

, a > x > b .
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Figure 3.2: An incident ray passing over a submarine ridge. (a) Variation of k(x) for a
ridge; (b) an incident ray with K < k0 = kmin.

Let

β =
sin α0

1 − a/b
, ξ = 1 − x

b
, η =

y

b
,

then the ray differential equation becomes

dη =
−βξdξ

(1 − β2ξ2)1/2
=

1
β

d(1 − β2ξ2)1/2

which is easily integrated to give

ξ2 + (η − ηc)2 =
1
β2

or

(x − b)2 + (y − yc)2 =
(b − a)2

sin2 α0

.

Hence, the rays are a family of circular arcs centered at x = b and
y = yc. The parameter yc is related to the coordinate y0 where the ray
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intersects the contour x = a. By letting x = a and y = y0 in the last
formula, we find

yc = y0 − (b − a) cotα0 .

Case 2: Wave Trapping on a Ridge

If kmax > K = k0 sinα0 > kmin [Fig. 3.3(a)], then rays can exist only in
the region b < x < a, where k > K. Let such a ray originate from x0 at
the angle α0 with 0 < α0 < 1

2π. From x0 to a, dy/dx > 0 and y is given
by Eq. (3.3.6) with the positive sign. The ray approaches the point x = a

and y = ya where

ya = y0 +
∫ a

x0

K dx

(k2 − K2)1/2
.

For a sufficiently smooth bottom where k can be expanded as a Taylor
series near x = a,

k2 = K2 + (x − a)(k2)′a + · · · if (k2)′a ≡ (k2)′|x=a �= 0 , (3.3.7)

the integral is finite. The slope dy/dx is, however, infinite; hence the line
x = a is the envelope of all the rays and is called a caustic. Because of
the crossing of the adjacent rays, the equation for the amplitude variation
(3.2.3) ceases to be valid. A more refined treatment in the neighborhood of a
caustic will be described in Section 3.3.3. After the point (a, ya), dy/dx < 0;
the ray turns back and is described by Eq. (3.3.6) with the negative sign
until it reaches the line x = b, which is another caustic enveloping all
rays. Thus, the ray bounces back and forth within the two caustics while
advancing in the positive y direction [Fig. 3.3(b)]. No simple harmonic
waves with the stated K are possible outside the range b < x < a. This
phenomenon is called wave trapping.

External excitation of the trapped waves is possible by meteorological
forcing on the free surface (atmospheric pressure or wind). For such high
values of K(> kmin) there is no simple harmonic wave away from the ridge.
It is not possible to excite the ridge wave by a simple harmonic incident
wave from either side of the ridge, according to the linearized mechanism.
This does not, however, rule out the excitation of transient waves from
outside sources.

Case 3: Submarine Trough

For a trough connecting two sides of equal depth, k(x) varies as shown in
Fig. 3.4(a). If an incident wave is such that K = k0 sin α0 = K2 < kmin,
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Figure 3.3: Wave trapping on a ridge: (a) variation of k over a ridge; (b) a trapped ray
with kmax > K > kmin.

it will simply bend first toward, then away from the axis of the trough
and pass the trough to the right side as shown in Fig. 3.4(b). However, if
K = K1 is sufficiently large, then no rays can exist in the region where
k < K and the line x = x1 where k(x1) = K1 is a caustic. The ray must
then turn around to the same side where it started. For fixed k0 > kmin,
a sufficiently large value of K may be achieved if the incidence angle α0 is
sufficiently close to 1

2π. The incident ray then makes a small acute angle to
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Figure 3.4: Wave rays over a submarine trough.

the contours; this is called glancing incidence. At the critical value k0 sin
α0 = kmin, the incident ray becomes asymptotically parallel to the depth
contours.

3.3.2 Amplitude Variation

In this simple case, ∂/∂y = 0 and Eq. (3.2.1) can be integrated to give

ECg cosα =
1
2
ρgA2Cg cosα = const . (3.3.8)

Let the subscript ( )0 denote values at the reference depth h0, then the
amplitude ratio is

A

A0
=
[
(Cg)0 cosα0

Cg cosα

]1/2

=
[
k cosα0

k0 cosα

(1 + 2kh/ sinh2kh)0
1 + 2kh/ sinh2kh

]1/2

. (3.3.9)
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In very shallow water, cosα → 1, Cg � C � (gh)1/2 and

A

A0
� (Cg0 cosα0)1/2(gh)−1/4 , (3.3.10)

hence the amplitude increases with decreasing depth. The 1/4 power
dependence is often called Green’s law. Combined with the shortening
of the wavelength [k � ω(gh)−1/2], the local wave slope increases with
decreasing depth as kA ∝ h−3/4. For sufficiently small depth, the small-
amplitude assumption underlying the linearized theory ceases to be valid
and nonlinear effects become important. For a beach of constant slope
the assumption that (dh/dx)kh−1 � 1 inherent in the WKB method
also breaks down ultimately. Under certain conditions to be elaborated in
Chapter Twelve, incident progressive waves may break in very shallow wa-
ter. For normal incidence on a plane beach, experiments by Eagleson (1956)
confirm Eq. (3.3.9) almost up to the first line of breaking.

3.3.3 The Neighborhood of a Straight Caustic

The inadequacy of the ray approximation may be remedied near a straight
caustic with reasonable ease. In terms of the stretched variables defined by
Eq. (3.1.2) we let the ȳ axis be the caustic, and the incident and reflected
rays be to the left. Then near x̄ = 0 we may approximate

k2 ∼= K2 − γx̄ with γ > 0 (3.3.11)

provided that dk/dx does not vanish at x̄ = 0. It follows that

k1 = (−γx̄)1/2 and
∫

k1dx̄ = −2
3
γ1/2(−x̄)3/2 (3.3.12)

where k1 is the x component of k. According to the ray approximation
(3.3.9), we have

A = A0

(
Cgk1

k

)1/2

0

(
K

Cg

)1/2

x̄=0

(−γx̄)−1/4 ≡ τ(−γx̄)−1/4 . (3.3.13)

The free surface to the left of the caustic is

η = τ(−γx̄)−1/4eiKȳ/µ

×
{

exp
[
−i

γ1/2

µ

2
3
(−x̄)3/2

]
+ R exp

[
i
γ1/2

µ

2
3
(−x̄)3/2

]}
(3.3.14)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

80 Refraction by Slowly Varying Depth or Current

where the first term in { } is the incident wave and the second term is the
reflected wave whose complex amplitude R is yet unknown.

From the above result the amplitude increases without bound as x̄ → 0.
An improved local theory near the caustic must therefore retain the highest
derivative of the amplitude with respect to x̄. Substituting

Φ =
−igX(x̄)

ω

cosh k(z + h)
cosh kh

exp
(

iKȳ

µ
− iωt̄

µ

)
(3.3.15)

into Eq. (3.1.3) and keeping the leading terms and the highest derivatives
with respect to x̄, we get

µ2Xx̄x̄ + (k2 − K2)X ∼= 0 . (3.3.16)

Now k2 − K2 changes sign at x̄ = 0, being positive for x̄ < 0 and negative
for x̄ > 0. The solution is oscillatory for x̄ < 0 and monotonic for x̄ > 0.
The point x̄ = 0 is called a turning point in mathematical physics. Invoking
Eq. (3.3.11), we have from Eq. (3.3.16)

µ2Xx̄x̄ − γx̄X ∼= 0 , (3.3.17)

which is a good approximation in the region x̄ = O(µ)2/3, that is, x =
O(µ−1/3). With the new variable

σ = γ1/3x̄µ−2/3 , (3.3.18)

Eq. (3.3.17) becomes the Airy equation

Xσσ − σX = 0 (3.3.19)

whose general solution is

X = a Ai(σ) + b Bi(σ) . (3.3.20)

The Airy function Ai has already been plotted in Fig. 2.5, Chapter Two.
It is also known that for large |σ|:

Ai(σ) ∼ 1
2π1/2

σ−1/4 exp
(
−2

3
σ3/2

)
, σ ∼ ∞ , (3.3.21a)

∼ 1
π1/2

(−σ)−1/4 sin
[
2
3
(−σ)3/2 +

π

4

]
, σ ∼ −∞ , (3.3.21b)
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and

Bi(σ) ∼ 1
π1/2

σ−1/4 exp
[
2
3
(σ3/2)

]
, σ ∼ ∞ , (3.3.22a)

∼ 1
π1/2

σ−1/4 cos
[
2
3
(−σ)3/2 +

π

4

]
, σ ∼ −∞ . (3.3.22b)

If there are no other caustics or solid boundaries within the region x̄ =
O(µ2/3) > 0, the solution Bi(σ) must be discarded; hence

η = a Ai(σ)eiKȳ/µ . (3.3.23)

The coefficient a and the amplitude R of the reflected wave must be found
by matching Eq. (3.3.23) with Eq. (3.3.14) for −σ � 1. With Eq. (3.3.21b)
we rewrite Eq. (3.3.23)

η ∼= a

2iπ1/2

(
−γ1/3

µ2/3
x̄

)−1/4{
exp
[
i
2
3

γ1/2

µ
(−x̄)3/2 +

iπ

4

]

− exp
[
−i

2
3

γ1/2

µ
(−x̄)3/2 − iπ

4

]}
eikȳ/µ (3.3.24)

for σ ∼ −∞. Equations (3.3.14) and (3.3.24) are now required to match,
hence

a = −2π1/2ieiπ/4τ(γµ)−1/6 (3.3.25a)

and

R = −eiπ/2 . (3.3.25b)

For a given incident wave at x̄ = x̄0, τ is known. The coefficient a can
be found at once. It is interesting that the largest amplitude is now finite
and occurs before the caustic is reached. The reflected wave has the same
amplitude as the incident wave but differs from the latter in phase by 1

2π.
For a submarine trough there can be two parallel caustics. If the dis-

tance between them is not too great, the residual effect of Ai(σ) from the
left caustic may penetrate the right caustic, inducing a transmitted wave.
The details involve a similar treatment of the right caustic with both Ai
and Bi used. Another case where dk2/dx̄ = 0 but d2k2/dx̄2 �= 0 is more
complicated but may be analyzed in principle by modifying Eq. (3.3.11).

The approximate treatment of the caustic region presented in this sub-
section is of the boundary-layer type well known in viscous flow theory. An
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alternative procedure is to seek a single representation which is uniformly
valid everywhere. Such theories have been developed in other physical
contexts for curved caustics (see Ludwig, 1966; Nayfeh, 1973) and have
been applied to water waves (Chao, 1971). Experimental confirmation of
this kind of theory is also available for simple topography and sufficiently
small amplitudes (Chao and Pierson, 1972).

3.4 Circular Depth Contours

This class of problems was first studied by Arthur (1946) for water waves;
analogous examples are also known in optics (Luneberg, 1964).

3.4.1 Geometry of Rays

In cylindrical polar coordinates (r, θ), the water depth, and hence the
magnitude of the wavenumber vector, depend only on r, that is, h = h(r),
k = k(r). To get Euler’s equation for the ray we start from Fermat’s
principle and extremize the integral

L =
∫

k(r)(1 + r2θ′2)1/2 dr (3.4.1)

where θ′ ≡ dθ/dr. Euler’s equation is then

d

dr

{
∂

∂θ′
[k(1 + r2θ′2)1/2]

}
= 0 ,

or

kr2θ′

(1 + r2θ′2)1/2
= const = κ (3.4.2)

along a ray where κ is a constant characterizing the ray. Solving for θ′, we
obtain

dθ

dr
=

±|κ|
r(k2r2 − κ2)1/2

. (3.4.3)

This differential equation can be integrated formally to give

θ − θ0 = ±|κ|
∫ r

r0

dr

r(k2r2 − κ2)1/2
, (3.4.4)

where r0 and θ0 refer to a known point passed by the ray.
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Figure 3.5: A smooth bottom with circular contours.

What is the significance of the constant κ? With the help of Fig. 3.5,
Eq. (3.4.2) may be rewritten

κ = kr
r dθ

(dr2 + r2 dθ2)1/2
= kr

r dθ

ds
= kr sin α (3.4.5)

where α is the angle between the ray and the normal (radius) vector to the
depth contour intersected by the ray. If at the point r0, θ0 the incidence
angle is α = α0, then

κ = k0r0 sin α0 . (3.4.6)

Thus, the constant κ is determined by the initial position and direction of
the ray.

In contrast to the case of straight and parallel contours, r appears on
the right-hand side of Snell’s law (3.4.5) as an additional factor. To help
understand this difference, let us examine in an elementary way a bottom
having a stepwise depth variation with radial symmetry, that is,

k = ki = const , ri−1 ≤ r ≤ ri , i = 1, 2, 3 .

Here the subscripts 1, 2, 3 designate the regions and not the vector com-
ponents. Consider a ray passing through regions 1, 2, and 3 (see Fig. 3.6).
The ray in region i leaves the discontinuity at r = ri−1 at the angle αi−1

and is incident on r = ri at the angle α′
i, being a straight line segment in

between. Applying Snell’s law at the junction r = r1, we obtain

k1 sin α′
1 = k2 sin α1 . (3.4.7)
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Figure 3.6: Circular step bottom.

It is important to note that α1 �= α′
2; in fact, it is evident from Fig. 3.6

that

sin α1 =
CD

AC
=

r2∆θ

AC
, sin α′

2 =
AB

AC
=

r1∆θ

AC
,

hence

r1 sin α1 = r2 sin α′
2 . (3.4.8)

Combining Eq. (3.4.8) with Eq. (3.4.7), we have

k1r1 sin α′
1(= k2r1 sin α1) = k2r2 sinα′

2 .

Clearly, the same argument can be extended for many successive rings so
that knrn sin α′

n = const which is the discontinuous version of Eq. (3.4.5).
Thus, the appearance of r is due to the curvature of the depth contours.

From Eq. (3.4.4), it is clear that rays only exist in the regions where
k2r2 > κ2. The critical radius at which

k2r2 = κ2 , r = r∗ (3.4.9)
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will be denoted by r∗ and the corresponding θ by θ∗ with

θ∗ − θ0 = ±
∫ r∗

r0

|κ| dr

r(k2r2 − κ2)1/2
. (3.4.10)

From Eq. (3.4.3), dr/dθ = 0 at (r∗, θ∗); the ray is either the closest to, or
the farthest from, the origin. The proper choice of sign in the preceding
formula can be made by considering the sign of dr/dθ as will be illustrated
in later examples.

Let us also deduce the equation for the constant-phase lines. Denoting
the ray by r = f(θ) and the constant-phase line by r = g(θ), we use the
fact that the two are orthogonal to obtain

∇[r − f(θ)] · ∇[r − g(θ)] = 0

or

g′ = −r2

f ′ .

Since

f ′(θ) = ± r

κ
(k2r2 − κ2)1/2,

the differential equation for a phase line is

dr

dθ
= ∓ κr

(k2r2 − κ2)1/2
, (3.4.11)

which may be integrated to give

κθ ±
∫

dr

r
(k2r2 − κ2)1/2 = const . (3.4.12)

Several types of k are now examined for the physical implications:

Case 1: 0 < kr < ∞ and kr is monotonic in r

In very shallow water, k ∼ h−1/2; we have kr → 0 when r → 0 as long as
rh−1/2 → 0. A submerged circular shoal falls into this category. Let the
point P0(r0, θ0) be the initial point. Then

θ − θ0 = −|κ|
∫ r

r0

dr

r(k2r2 − κ2)1/2
, (3.4.13)
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where the negative sign is chosen since dθ/dr < 0. This equation is valid
until the point P∗ is reached where r = r∗ is minimum. Beyond this point
the ray is given by

θ − θ∗ =
∫ r

r∗

|κ| dr

r(k2r2 − κ2)1/2
, (3.4.14)

where the positive sign is chosen. Since the ray is obviously symmetrical
about the radius vector θ = θ∗, we may incorporate both branches of the
ray into one equation,

|θ − θ∗| =
∫ r

r∗

|κ| dr

r(k2r2 − κ2)1/2
. (3.4.15)

The geometry is shown in Fig. 3.7.
Suppose that there is a plane wave incident from x ∼ −∞ toward a

circular shoal. Beyond r = r0, the bottom is assumed to be horizontal so
that k = k0 for r > r0. The incident rays are originally parallel to the x

axis. Among them, those rays which are initially outside the strip |y| ≤ r0

do not intersect the circle r = r0 and advance without deflection. Consider
a ray initially within the strip −r0 < y < 0 entering the shoal at the angle
α0 with respect to the radius vector; it first bends toward, and then away
from, the center after a minimum r∗. Since the ray must be symmetrical
about the minimum radius vector θ = θ∗, the angle between the outgoing
ray and the radius vector at the point of departure must be π − α0 (see
Fig. 3.7). Let the total angle by which the ray is deflected be β. It is
clear that

β = π − α0 + θ′0

where θ′0 is the direction of the point at which the ray leaves the shoal:

θ′0 − θ∗ =
∫ r0

r∗

|κ| dr

r(k2r2 − κ2)1/2
.

Similarly, rays entering the shoal from 0 < y < r0 bend first toward, and
then away from, the center of the shoal. Thus, on the lee side of the shoal,
rays from opposite sides of the x axis intersect, and the progressive waves
associated with these rays interfere. In particular, at any point on the
positive x axis, the resulting amplitude is twice that associated with a single
ray because of symmetry. At a point not on the x axis, the intersecting
rays may interfere either destructively or constructively, depending on the
wave phases.
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Figure 3.7: Submerged shoal: (a) side view of topography; (b) variation of kr versus r;
(c) ray geometry.

Consider rays from the same side of the x axis, say, −r0 < y < 0. Since
there is no deflection and β = 0 for the two extreme values of α0 : π (normal
incidence) and π/2 (glancing incidence), and since β > 0 for intermediate
values of α0, there must be a positive maximum for β. Similarly, a ray
entering the upper half of the shoal must have a negative maximum for β.
It follows that the bundle of rays from the same side of the x axis must
intersect one another in addition to intersecting those from the other side.
A cusp-like caustic will develop on the lee side of the shoal, and a local
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Figure 3.8: Circular island: (a) side view of topography; (b) kr versus r; (c) ray
geometry.

remedy more complicated than that in Section 3.3.3 can be constructed to
yield finite amplitude.

Case 2: kr first decreases to a minimum, then increases

Here is a case of a circular island with the shoreline at r = b (see Fig. 3.8).
Let h ↓ 0 as r − b ↓ 0, then k ↓ h−1/2 from the dispersion relation, and
kr ↑ bh−1/2. At large r, kr → k0r. All the incident rays intersecting the
outer circle r = a have |κ| less than k0a. Those sufficiently close to the
island axis satisfy κ2 < (kr)2min so that they reach the shore eventually.
However, those farther from the axis satisfy (kr)min < κ2 < (k0a)2 and
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Figure 3.9: Trapped waves on a ring-shaped ridge: (a) side view of topography; (b) kr
versus r; (c) ray geometry.

will be repelled by the island without reaching the shore. The critical ray
is one which has such an entry angle that α0 = αC

0 , where | sin αC
0 | =

(kr)min/k0r0. A more explicit example will be given shortly.

Case 3: Wave trapping on a ring-shaped ridge

If the depth variation is as shown in Fig. 3.9(a), then a local maximum kr

is possible at some finite r. A ray originating at r0, θ0, with an inclination
α0 < π, is given at first by

θ − θ0 =
∫ r

r0

|κ| dr

r(k2r2 − κ2)1/2
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so that dr/dθ > 0 until r = r1, θ = θ′1. The ray then bends back to larger
r with

θ − θ′1 =
∫ r

r1

−|κ| dr

r(k2r2 − κ2)1/2

and advances clockwise, undulating between two caustic circles r = r1 and
r = r2. Previous arguments show that the ray is symmetrical about the
radius vector θ = θ′1 and θ′2, and so on. Clearly, the configuration of the
ray is repeated after every angular period:

∆θ = 2|κ|
∫ r2

r1

dr

r(k2r2 − κ2)1/2
.

Furthermore, if ∆θ is a rational multiple of 2π, the ray will return to its
original point and form a closed curve. Thus, the condition

∆θ

2π
=

n

m
, m, n = 1, 2, 3, . . .

determines the “eigenvalues” of free oscillation trapped on the ridge. Direct
meteorological or transient incident waves may excite these modes, which
may pose potential hazards to ocean structures built on the ridge.

3.4.2 Amplitude Variation

Consider the ray separation factor for a plane wave incident on a circular
zone of refraction r ≤ r0. Let the incident rays be parallel to the negative
x axis as before. We note from Fig. 3.7 that

θ0 = π + β0

where β0 = π − α0. It follows from Eq. (3.4.4) that

θ = π + β0 ±
∫ r

r0

|κ| dr

r(k2r2 − κ2)1/2
, (3.4.16)

where

|κ| = k0r0| sinα0| = k0r0| sin β0| ,
and a refracted ray is characterized by its point of entry r0, θ0, or β0.
Consider two neighboring rays of slightly different incident angles β0 and
β0 + dβ0. From Fig. 3.10 we have, at any circle r < r0,

dσ = AB cosβ = r dθ cosβ = r cosβ dβ0

(
∂θ

∂β0

)
r=const
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Figure 3.10: Geometry of a ray channel for circular depth contours.

because dθ is measured along the circle of radius r. Now at the initial circle
r = r0, dθ = dβ0 and

dσ0 = A0B0 cosβ0 = r0 dβ0 cosβ0 .

Hence the separation factor is

dσ

dσ0
=

r cosβ

r0 cosβ0

(
∂θ

∂β0

)
r=const

.

Since kr sin β = κ = const and

cosβ =
(

1 −
( κ

kr

)2)1/2

,

we have

dσ

dσ0
=

{
r

[
1 −
( κ

kr

)2
]1/2(

∂θ

∂β0

)
r=const

}
(r0 cosβ0)−1 (3.4.17)

where ∂θ/∂β0 may be obtained from Eq. (3.4.16).
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Figure 3.11: A circular island (Pocinki, 1950): (a) bottom profile; (b) kr versus r;
(c) ray geometry; (d) polar plot of (dσ0/dσ)1/2 at the shore r = b.

Example: A Circular Island (Pocinki, 1950)

Take

kr = k0a · ln(a/b)
ln(r/b)

, b < r < a ,

= k0r , a < r ,

(3.4.18)

so that the shoreline is at r = b and the toe of the island is at r = a. The
variation is shown in Fig. 3.11(a). Near the shore r = b where the depth is
small, h ∼ k−2 ∼ r2 ln2 r/b and dh/dr ∼ 0 as r → b. The beach is therefore
very flat. It is evident that in this case all the rays entering the island toe
eventually intersect the shoreline at right angles.

With this choice of k, the ray equation is easily integrated:

±(θ− θ0) =
∫ r=r

r=a

ln(r/b)d[ln(r/b)]k0a| sinα0|
[(k0a)2 ln2(a/b) − (k0a)2 sin2 α0 ln2(r/b)]1/2

(3.4.19)

where the +(−) sign is chosen for those rays entering the shoal in the second
(third) quadrant. Letting
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D =
ln(a/b)
sin β0

, ρ = ln
r

b
, (3.4.20)

we rewrite and integrate Eq. (3.4.19)

±(θ − θ0) =
∫ ln(r/b)

ln(a/b)

ρ dρ

(D2 − ρ2)1/2

=
(
D2 − ln2 a

b

)1/2

−
(
D2 − ln2 r

b

)1/2

, (3.4.21)

or, equivalently,

ln
r

b
=

{
D2 −

[
±(θ − θ0) −

(
D2 − ln2 a

b

)1/2
]2}1/2

.

Dividing throughout by ln(a/b), we have, finally,

ln(r/b)
ln(a/b)

=

{
csc2 β0 −

[
± θ − θ0

ln(a/b)
− cotβ0

]2}1/2

, θ0 = π + β0 (3.4.22)

which has been plotted by Pocinki, 1950 [see Fig. 3.11(c)].
Let (rb, θb) be the point where the outermost ray entering the shoal in

the third quadrant (β0 = 1
2π, i.e., θ0 = 3

2π) intersects the shore. Since
sin β0 = 1 and cotβ0 = 0, we have from Eq. (3.4.21)

θb − 3π

2
= ln

a

b
.

Since θb > 3π/2 the plus sign has been chosen. Similarly, the outermost
ray which enters the shoal in the second quadrant (β0 = −π/2, θ0 = π/2)
intersects the shore at the point r = b and

θ′b =
π

2
− ln

a

b
.

If ln(a/b) < π/2, there is a portion of the shoreline within the range −[π/2−
ln(a/b)] < θ < π/2− ln(a/b) which is shielded from the incident waves; this
range has been called the lee shore by Arthur (1946).

If ln(a/b) > π/2, the rays from one side of the axis cross those from
the other side in the lee of the island. The resulting wave amplitude can
be computed by superposition and proper account of the phases. At the
value ln(a/b) = π/2 or a/b ∼= 4.81, the outermost rays from both sides
meet the shore at θ = 0; the lee shore then disappears.
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To find the separation factor, consider again the rays entering from the
third quadrant. Differentiating Eq. (3.4.21) in accordance with Eq. (3.4.17),
we get

∂

∂β0

(
D2 − ln2 r

b

)1/2

= D
∂D

∂β0

(
D2 − ln2 r

b

)−1/2

,

so that

∂θ

∂β0
= 1 − D

∂D

∂β0

[(
D2 − ln2 a

b

)−1/2

−
(
D2 − ln2 r

b

)−1/2
]

.

Now from the definition equation for D we find

∂D

∂β0
= − cosβ0 ln

a

b
sin−2 β0 .

It follows after a little algebra that

∂θ

∂β0
=
{

1 +
ln(a/b)
sin2 β0

[
1 − cosβ0

(1 − R2 sin2 β0)1/2

]}
, (3.4.23)

where

R ≡ ln(r/b)
ln(a/b)

.

The separation factor is therefore

dσ

dσ0
=

r cosβ

a cosβ0

∂θ

∂β0
=

r[1 − (k0a)2 sin2 β0/(kr)2]1/2

a cosβ0

(
∂θ

∂β0

)
(3.4.24)

with ∂θ/∂β0 given by Eq. (3.4.23). The inverse square root of Eq. (3.4.24)
is plotted for r = b in Fig. 3.11(d).

The approach presented in Sections 3.3 and 3.4 is a semi-inverse one in
that some convenient form of k is assumed and the depth variation must be
found from the dispersion relation. Thus, for different frequencies the same
k corresponds to different depths. The more direct problem of prescribing
ω and h(x) must usually be solved by numerical methods. This is not a
difficult task for straight or circular contours. For general contours com-
puter methods have been developed by Skovgaard, Jonsson, and Bertelsen
(1976) who also incorporated the additional effects of bottom friction.

Over a general topography, caustics of various kinds are possible. Al-
though a local remedy or uniformly valid approximation is still possible in
principle (Ludwig, 1966), incorporation in a numerical refraction program
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becomes cumbersome in practice. In the next section an approximate equa-
tion will be deduced for slowly varying depth but without the assumption
of rays, as implied by Eq. (3.1.6). Since the new equation can be effectively
solved by modern numerical methods, the intricate theory of caustics can
be circumvented altogether for general topography and will not be pursued
here.

Exercise 3.2: Spiral Wave in a Circular Basin (Mei, 1973)

For simulating an infinitely long plane beach in a laboratory, a circular basin
with a drum-like wavemaker at the center has been suggested (Dalrymple
and Dean, 1972). Outgoing waves of a single frequency are generated by
the wavy motion of the drum circumference proportional to exp[i(mθ −
ωt)]. By the ray approximation, the wave field far away from the drum is
approximately given by

Φ =
−igA(r)

ω

cosh k (z + h)
cosh kh

eiS , η = A(r) eiS ,

where k(r) and h(r) are slowly varying in r and satisfy the familiar disper-
sion relation, and the phase function S is

S =
∫ r

αdr + mθ ,

where m is a large integer and m/r = O(1).
Show first that the components of the wavenumber vector in the radial

and in azimuthal directions are kr = α and kθ = m/r, and α2+(m/r)2 = k2.
Sketch a few wave crests.

Assuming that energy flux between two closely adjacent rays is con-
served, derive the following formula

ECgr
α

k
= constant .

Discuss the qualitative behavior of A as r for the following cases.
(i) If the beach has the constant slope s so that h = s(R − r) where R

denotes the radius of the shore, show that A increase with r in the manner

A ∝ [R1/2s(R − r)]−1/4 .

(ii) If h ∼ r−n as r increases, show that A ∼ r(n−2)/4 for large r. If
the breaking criterion A ∼= 0.8h (known empirically for straight beaches) is
accepted, are there any values for n for which spiral waves will not break
as h ↓ 0?
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3.5 An Approximate Equation Combining
Diffraction and Refraction on a Slowly
Varying Bottom — The Mild-Slope Equation

A merit of the ray approximation is to reduce a three-dimensional prob-
lem to many one-dimensional problems along ray channels. Yet, near a
caustic, additional consideration must be given to variations transverse to
a ray. Hence the problem is, at least locally, two dimensional in the hori-
zontal plane. There are also situations where the problem is basically two
dimensional, as for instance the obstruction of incident waves by a verti-
cal cylinder on a slowly varying seabed. These two-dimensional effects are
related to diffraction which will be studied more extensively later in this
book. It is therefore desirable to obtain an approximation which accounts
for slow depth variations and allows rapid horizontal variations associated
with diffraction.

In the case of constant depth, the velocity potential may be written

φ = − igη

ω
f , (3.5.1)

where

f =
cosh k(z + h)

cosh kh
and ω2 = gk tanh kh . (3.5.2)

From Laplace’s equation, η(x, y) is found to satisfy the two-dimensional
Helmholtz equation

∇2η + k2η = 0 (3.5.3)

which describes diffraction. It is plausible to expect that for slowly varying
depth, Eqs. (3.5.1) and (3.5.2) still apply with k and h referring to their
local values. Based on this idea, Berkhoff (1972) deduced a convenient
equation for η(x, y). Various derivations of the same result have been
reported by Schonfeld (1972), Jonsson and Brink-Kjaer (1973), Smith
and Sprinks (1975), and Lozano and Meyer (1976). Here we present the
arguments of Smith and Sprinks.

The exact governing equations for φ may be written

∂2φ

∂z2
+ ∇2φ = 0 , −h ≤ z ≤ 0 ; ∇ =

(
∂

∂x
,

∂

∂y

)
, (3.5.4a)
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∂φ

∂z
− ω2

g
φ = 0 , z = 0 , (3.5.4b)

∂φ

∂z
= −∇h · ∇φ , z = −h , (3.5.4c)

while f satisfies Eqs. (3.1.8)–(3.1.10). Considering Eq. (3.5.4a) as an ordi-
nary differential equation in z, and applying Green’s formula for φ and f ,
we get, upon using Eqs. (3.5.4a)–(3.5.4c) and (3.1.8)–(3.1.10),∫ 0

−h

(k2φf + f∇2φ) dz = −(f∇h · ∇φ)−h . (3.5.5)

Now we invoke Eqs. (3.5.1) and (3.5.2) and note that

∇φ = − ig

ω

(
f∇η + η

∂f

∂h
∇h

)
,

∇2φ = − ig

ω

(
f∇2η + 2

∂f

∂h
∇η · ∇h + η

∂2f

∂h2
(∇h)2 + η

∂f

∂h
∇2h

)
.

Equation (3.5.5) may be written∫ 0

−h

{
f2∇2η + 2f

∂f

∂h
∇η · ∇h + ηf

∂2f

∂h2
(∇h)2 + ηf

∂f

∂h
∇2h + k2ηf2

}
dz

= −∇h · ∇ηf2

∣∣∣∣
−h

− η(∇h)2f
∂f

∂h

∣∣∣∣
−h

. (3.5.6)

By Leibniz’ rule, the first two terms on the left of Eq. (3.5.6) may be
combined with the first term on the right, yielding

∇ ·
∫ 0

−h

f2∇η dz +
∫ 0

−h

k2f2η dz

= −f
∂f

∂h

∣∣∣∣
−h

η(∇h)2 −
∫ 0

−h

ηf
∂2f

∂h2
(∇h)2 dz −

∫ 0

−h

ηf
∂f

∂h
∇2h dz .

Since ∇h/kh = O(µ) � 1 and ∇η/kη = O(1), every term on the right-
hand side of Eq. (3.5.6) is of O(µ2) relative to the left-hand side and may be
omitted. Upon integration and using Eq. (1.5.12), Chapter One, we obtain,
finally,

∇ · (a∇η) + k2aη = 0 , (3.5.7)
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where

a = gh
tanh kh

kh

1
2

(
1 +

2kh

sinh 2kh

)
= CCg , (3.5.8)

In the special case of arbitrary constant kh, Eq. (3.5.7) reduces to the
Helmholtz equation (3.5.3). On the other hand, for small but variable depth
kh � 1, Eq. (3.5.7) reduces to

∇ · (h∇η) +
ω2

g
η = 0 (3.5.9)

which will be shown in Chapter Four to be valid even if ∇h/kh = O(1).
Therefore, Eq. (3.5.7) provides a two-dimensional approximation of the
three-dimensional problem for the whole range of wavelengths as long as
the seabed slope is small, and is now known as the mild-slope equation
(Jonsson and Skovgaard, 1979).

By the simple transformation

η = a−1/2ξ , (3.5.10)

Eq. (3.5.7) may be rewritten

∇2ξ + κ2ξ = 0 , (3.5.11)

where

κ2(x, y) = k2 − ∇2a

2a
+

|∇a|2
4a2

. (3.5.12)

Equation (3.5.11) is well known in the acoustics of inhomogeneous media,
with κ being the index of refraction. Many approximate analytical tech-
niques exist in classical physics for special classes of κ2. For coastal
problems, numerical techniques are required. In Chapter Four one such
technique will be described for Eq. (3.5.9); the necessary modification
for Eq. (3.5.7) or (3.5.11) is straightforward and has been carried out
by Houston (1981). By reducing the three-dimensional problem to two,
the computational effort needed for practical problems is obviously much
reduced.

There have been several extensions of the mild-slope approximation,
aiming either at steeper slopes of very large characteristic length scales
or at shorter irregularities such as sand bars, (Kirby, 1986; Chamberlain
and Porter 1995; Porter and Staziger, 1995, Miles and Chamberlain, 1998;
Agnon and Pelinovsky, 2001).
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The simplest extension of Chamberlain and Porter is to keep all terms in
(3.5.6.a) without discarding terms of the order O(∇2h, (∇h)2). The result
is still of the form of (3.5.7),

∇ · (a∇η) + bη = 0 (3.5.13)

where

a = CCg , and b = k2a + gU∇2h + gV (∇h)2 , (3.5.14)

with

U =
∫ 0

−h

f
∂f

∂h
dz , (3.5.15)

and

V =
∂U

∂h
−
∫ 0

−h

(
∂f

∂h

)2

dz . (3.5.16)

From the definition of f , we get

∂f

∂h
=

1
cosh kh

∂k

∂h

[
z sinh k(z + h) − sinhkh sinh kz

k

]
(3.5.17)

and

∂k

∂h
= − 2k2

2kh + sinh 2kh
. (3.5.18)

We leave it as an exercise to show that

U =
sinh 2kh − 2kh cosh2kh

4 cosh2 kh(2kh + sinh 2kh)
(3.5.19)

and

V =
k[(2kh)4 + 4(2kh)3 sinh 2kh− 9 sinh 2kh sinh 4kh]

12 cosh2 kh(2kh + sinh 2kh)3

+
k[kh(kh + sinh 2kh)(cosh2 2kh− 2 cosh 2kh + 3)]

cosh2 kh(2kh + sinh 2kh)3
. (3.5.20)

With these coefficients, the result is called the modified mild-slope equation
(MMSE), which can be just as easily solved numerically as (3.5.7). The ad-
vantage of doing only two-dimensional computations for three-dimensional
problems is preserved.
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A still better approximation by Massel (1993) and Porter and Staziger
(1995) is to admit not only the propagating mode but also evanescent modes
in the velocity potential

ψ = − ig

ω

∞∑
n=0

ξn(x)fn(z, h(x)) , where fn(z, h(x)) =
cos kn(z + h)

cos knh
.

(3.5.21)

The first term in the series n = 0 corresponds to the propagating mode
with f0 = f defined by (3.5.2). For n = 1, 2, . . . , kn are the real roots of
the equation

−ω2 = gkn tan knh , (n − 1/2)π ≤ knh ≤ nπ , (3.5.22)

and correspond to the evanescent modes.
Repeating for each m the procedure of weighted vertical averaging via

Green’s formula, we obtain a matrix equation coupling all modal ampli-
tudes:

∇ · (al∇ξl) +
∞∑

m=0

{(bml − blm)∇h · ∇ξm

+ [bm,l∇2h + cml(∇h)2 + dml]ξm

}
= 0 , (3.5.23)

where

al =
∫ 0

−h

f2
l dz , bm,l =

∫ 0

−h

fl
∂fm

∂h
dz

cml =
dbml

dh
−
∫ 0

−h

∂fm

∂h

∂fl

∂h
dz , dml =

∫
fl

∂2fm

∂z2
dz .

More explicit formulas for these coefficients can be straightforwardly worked
out, and are given by Porter and Staziger (1995).

In numerical computations, it is necessary to truncate the series (3.5.21).
The numerical task of solving the matrix equation with two dimensional
discretization is likely less laborious than the fully three-dimensional dis-
cretization needed otherwise. For a two-dimensioal example of scattering
by a long slope connecting two horizontal shelves, Porter and Staziger have
indeed demonstrated improved accuracy by comparing with calculations
with the simplest mild-slope approximation.
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3.6 Geometrical Optics Approximation for
Refraction by Slowly Varying Current
and Depth

In addition to depth variation, the presence of current in the ocean affects
the propagation of waves. Of practical interest in coastal problems are the
tidal currents near a river inlet or a harbor entrance. During flood tides the
current and the waves are in the same direction, resulting in the lengthening
of waves and reduction of wave heights. However, during ebb tides the waves
are shortened and steepened by the opposing current, often to the extent
of inducing breaking (see aerial photograph of Humboldt Bay, California,
Johnson, 1947). If there are submarine bars in the entrance channel of a
harbor, the combined effect of shoaling and current over the bars can create
significant choppiness on the sea surface and therefore present hazards to
navigation. Entrance channels to many harbors on the northern Pacific
coast of the United States are rarely passable for small fishing boats during
ebb tides in the winter (Issacs, 1948). The best time for passage is at the
end of the flood tide when the water depth is the greatest and current speed
is the least.

In this section we shall lay the theoretical foundation for the combined
effects of currents and depth on small-amplitude waves. In particular,
attention will be focused on strong currents which affect waves but are
not affected by waves. We shall also assume, as is frequently the case in
nature, that the characteristic time and distance of the current are very
much greater than those of the waves. A systematic theory of this class of
problems began with Longuet–Higgins and Stewart (1961) and Whitham
(1962), while important extensions have been made by Bretherton and
Garrett (1968), and Phillips (1977). A different derivation of the basic
equations will be presented below by extending the WKB formalism of
Section 3.2.

To describe the magnitude of a quantity in this section, reference to the
characteristic wavelength 2π/k and wave period 2π/ω (which are related
by the dispersion relation) is always implied. It will be assumed that the
depth h varies slowly in horizontal coordinates xi (i = 1, 2), while the
current varies slowly both in xi and t. The long length and time scales
are L and T such that

(ωT )−1 ∼ (kL)−1 ∼ h

L
= O(µ) � 1 . (3.6.1)
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While the horizontal velocity components of the strong current Ui are
O(gh)1/2, and the small wave velocities ui and w are O[(kA)(gh)1/2], we
shall for brevity speak of Ui, h, and so on, as being O(1), and ui and w

as being O(kA). Similarly, the operators ∂/∂t and ∂/∂xi (i = 1, 2) are
O(µ) when acting on a current-related quantity and O(1) when acting on
a wave-related quantity, for example,

∂Ui

∂t
,
∂Uj

∂xi
,

∂h

∂xi
· · · ∼ O(µ) ;

∂ui

∂xj
,
∂w

∂xi
, . . . ∼ O(kA) ;

and

∂

∂z
= O(1)

on all quantities.
Consider first the current U = (Ui, W ) without waves. If dissipation is

ignored, then the governing equations are

∂Ui

∂xi
+

∂W

∂z
= 0 , (3.6.2)

∂Ui

∂t
+ Uj

∂Ui

∂xj
+ W

∂Ui

∂z
= −1

ρ

∂P

∂xi
, i = 1, 2 , (3.6.3)

∂W

∂t
+ Uj

∂W

∂xj
+ W

∂W

∂z
= −1

ρ

∂P

∂z
− g . (3.6.4)

Because of Eq. (3.6.1) and continuity, the vertical current velocity is
small, W = O(µ). It follows from Eq. (3.6.4) that the pressure is nearly
hydrostatic

P = ρg(ζ̄ − z) + O(µ2) (3.6.5)

where ζ̄ is the associated free-surface displacement. On the free surface and
at the sea bottom, the kinematic boundary conditions are

W =
∂ζ̄

∂t
+ Uj

∂ζ̄

∂xj
, z = ζ̄(xi, t) , (3.6.6)

W = −Uj
∂h

∂xj
z = −h(xi) . (3.6.7)
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Now the vorticity vector has the following horizontal components:

Ω1 =
∂W

∂x2
− ∂U2

∂z
, Ω2 =

∂U1

∂z
− ∂W

∂x1
. (3.6.8)

The term ∂W/∂xj above is O(µ2); thus, as long as

Ωj � O(µ2) , (3.6.9)

Uj is independent of z to the order O(µ2), that is,

∂Uj

∂z
= O(µ2) . (3.6.10)

Equation (3.6.9) will be assumed. Recall, however, that the vertical vor-
ticity component is allowed to be of the order O(µ). With Eq. (3.6.10) the
horizontal momentum equations may be approximated by

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −g

∂ζ̄

∂xi
+ O(µ2Ui) . (3.6.11)

Integrating the continuity equation vertically from z = −h to z = ζ̄ and
using Eqs. (3.6.6) and (3.6.7), we obtain

∂ζ̄

∂t
+

∂

∂xi
[Ui(ζ̄ + h)] = 0 . (3.6.12)

Equations (3.6.5), (3.6.11), and (3.6.12) constitute the so-called Airy’s
theory of finite-amplitude long waves which will be discussed more exten-
sively in Chapter Twelve. For present purposes, Ui and ζ̄ will be assumed
to be known. We merely point out that the free-surface displacement ζ̄ is of
the order O(h). In the special case of steady current, ∂/∂t = 0, Eq. (3.6.11)
may be rewritten

Uj
∂

∂xj

(
UiUi

2
+ gζ̄

)
= 0 ,

which implies

ζ̄ = −UiUi

2g
+ const (3.6.13)

along a streamline.
Consider next the wave fluctuations that are superposed on the current.

The velocity components (ui, w) and the pressure p of the wave field are
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less than their counterparts in the current by the factor O(kA). Continuity
requires that

∂ui

∂xi
+

∂w

∂z
= 0 . (3.6.14)

The momentum equations may be linearized by omitting O(kA)2. We
further discard linearized terms of O(µ2kA) or less, that is, w∂Ui/∂z and
ui∂W/∂xi, and obtain

∂ui

∂t
+ Uj

∂ui

∂xj
+ W

∂ui

∂z
+ uj

∂Ui

∂xj
= −1

ρ

∂p

∂xi
, (3.6.15)

∂w

∂t
+ Uj

∂w

∂xj
+ W

∂w

∂z
+ w

∂W

∂z
= −1

ρ

∂p

∂z
. (3.6.16)

The remaining terms contain O(kA) and O(µkA). By differentiating
Eqs. (3.6.15) and (3.6.16) and adding the results, we have

∂2p

∂xi∂xi
+

∂2p

∂z2
= −2ρ

(
∂ui

∂xj

∂Uj

∂xi
+

∂w

∂z

∂W

∂z

)
(3.6.17)

after omitting again terms of O(µ2kA). Equation (3.6.17) will be treated
as the governing equation for p.

At the sea bottom the wave field also has no normal velocity

w = −uj
∂h

∂xj
, z = −h(xi) . (3.6.18)

It is desirable to infer from this condition a boundary condition for p.
Differentiating Eq. (3.6.18) with respect to xj and noting that w and ui are
already evaluated on z = −h(xi), we get

∂w

∂xj
− ∂h

∂xj

∂w

∂z
= − ∂ui

∂xj

∂h

∂xi
+ O(µ2kA) .

With this result, Eq. (3.6.16) may be rewritten

−1
ρ

∂p

∂z
= −∂uj

∂t

∂h

∂xj
+
(

Uj
∂h

∂xj
+ W

)
∂w

∂z
− Uj

∂ui

∂xj

∂h

∂xi
− w

∂Uj

∂xj

= − ∂h

∂xi

(
∂ui

∂t
+ Uj

∂ui

∂xj

)
+ O(µ2kA)

=
∂h

∂xi

1
ρ

∂p

∂xi
+ O(µ2kA) (3.6.19)

after invoking Eqs. (3.6.7), (3.6.15), and (3.6.18).
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On the free surface, the exact kinematic boundary condition states that

∂

∂t
(ζ̄ + ζ) + (Uj + uj)

∂

∂xj
(ζ̄ + ζ) = W + w on z = ζ̄ + ζ .

Upon linearizing and using Eq. (3.6.6), we get

∂ζ

∂t
+ Uj

∂ζ

∂xj
+ uj

∂ζ̄

∂xj
= w + ζ

∂W

∂z
on z = ζ̄ . (3.6.20)

The dynamic condition is that the total pressure does not vary as one
follows the fluid motion along the free surface

∂p

∂t
+ (Uj + uj)

∂p

∂xj
+ (W + w)

∂p

∂z

+
[

∂

∂t
+ (Uj + uj)

∂

∂xj
+ (W + w)

∂

∂z

]
ρg(ζ̄ − z) = 0 , z = ζ̄ + ζ .

With the help of Eq. (3.6.6) the above equation can be linearized to give

∂p

∂t
+ Uj

∂p

∂xj
+ W

∂p

∂z
+ ρg

(
uj

∂ζ̄

∂xj
− w − ζ

∂W

∂z

)
= O(kA)2 , z = ζ̄ . (3.6.21)

In order to express this boundary condition for p only, we shall differentiate
Eq. (3.6.21) and make use of Eqs. (3.6.16) and (3.6.20). Again, it must be
realized that

∂

∂xi
W (xi, ζ̄, t) =

[
∂

∂xi
W (xj , z, t) +

∂ζ̄

∂xi

∂

∂z
W (xj , z, t)

]
z=ζ̄

(3.6.22a)

and

∂

∂t
W (xi, ζ̄ , t) =

[
∂

∂t
W (xi, z, t) +

∂ζ̄

∂t

∂

∂z
W (xi, z, t)

]
z=ζ̄

. (3.6.22b)

With this kind of care the following boundary condition is obtained on the
free surface: (

∂

∂t
+ Uj

∂

∂xj

)2

p + 2W
∂

∂z

(
∂p

∂t
+ Uj

∂p

∂xj

)

−g
∂ζ̄

∂xj

∂p

∂xj
+ g

∂p

∂z
= 0 , z = ζ̄ (3.6.23)

where derivatives with respect to t and xi are taken before letting z = ζ̄.
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We now introduce the slow variables x̄i = µxi and t̄ = µt, so that Uj =
Uj(x̄i, t̄ ), ζ̄ = ζ̄(x̄i, t̄ ), and h = h(x̄i), and assume the WKB expansions

p(xi, z, t) = [p0 + (−iµ)p1 + · · · ]eiS/µ , (3.6.24a)

ui(xi, z, t) = [u0i + (−iµ)µ1i + · · · ]eiS/µ , (3.6.24b)

and so on, where

p0 = p0(x̄i, z, t̄ ) , u0i = µ0i(x̄i, z, t̄ )

S = S(x̄i, t̄ ) , and so on .
(3.6.25)

When Eqs. (3.6.24a) and (3.6.24b) are substituted into Eqs. (3.6.17),
(3.6.19), and (3.6.23), a sequence of perturbation equations results. At
the order O(µ0) we have simply

∂2p0

∂z2
− k2p0 = 0 , −h < z < ζ̄ , (3.6.26)

∂p0

∂z
− σ2

g
p0 = 0 , z = ζ̄ , (3.6.27)

∂p0

∂z
= 0 , z = −h , (3.6.28)

where

σ = ω − Ujkj , (3.6.29)

with

ki ≡ ∂S

∂x̄i
, ω ≡ −∂S

∂t̄
, kiki = k2 .

We shall call ω the absolute and σ the intrinsic frequency, respectively.
From these definitions, it is clear that

∂ki

∂t̄
+

∂ω

∂x̄i
= 0 , (3.6.30)

that is, wave crests are conserved, and

∂ki

∂x̄j
=

∂kj

∂x̄i
, (3.6.31)

that is, k is irrotational. The solution to Eqs. (3.6.26)–(3.6.28) is

p0 = ρgA
cosh k(z + h)

cosh kh̄
(3.6.32)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

3.6. Geometrical Optics Approximation for Refraction 107

where A = A(x̄i, t̄ ), h̄ = ζ̄ + h is the total mean depth, and

σ2 = gk tanh kh̄ . (3.6.33)

It may be shown from the horizontal momentum equation (3.6.15) that

u0i =
kip0

ρσ
. (3.6.34)

Let us denote the group velocity relative to the current by

Cg =
∂σ

∂k

∣∣∣∣
h̄

=
1
2

σ

k

(
1 +

2kh̄

sinh 2kh̄

)
(3.6.35)

and

Cgi = Cg
ki

k
.

Two useful results on wave kinematics may be deduced at this stage. Dif-
ferentiating Eq. (3.6.29) with respect to time and using Eqs. (3.6.30) and
(3.6.31), we find

∂ω

∂t̄
+ (Ui + Cgi)

∂ω

∂x̄i
= ki

∂Ui

∂t̄
+

∂σ

∂h̄

∣∣∣∣
k

∂h̄

∂t̄
. (3.6.36)

When the current is steady, the absolute frequency ω does not change for
an observer traveling at the absolute group velocity U+Cg. Alternatively,
one may start from Eq. (3.6.30) and get

∂ki

∂t̄
+ (Uj + Cgj )

∂ki

∂x̄j
= −kj

∂Ui

∂x̄j
− ∂σ

∂h̄

∣∣∣∣
k

∂h

∂x̄i
(3.6.37)

after using the irrotationality of k [cf. Eq. (3.6.31)]. In principle, Eq. (3.6.37)
may be solved numerically for the rays which are everywhere tangent to the
local k vector.

We must now seek information regarding the variation of the wave
amplitude A(x̄i, t̄ ). To this end the order O(µ) problem is needed,

∂2p1

∂z2
− k2p1 =

∂

∂x̄j
(kjp0) + kj

∂p0

∂x̄j

+ 2ρ

(
kju0i

∂Uj

∂x̄i
+ kiu0i

∂Uj

∂x̄j

)
, −h < z < ζ̄ (3.6.38)
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g
∂p1

∂z
− σ2p1 = − ∂

∂t̄
(ωp0) − ω

∂p0

∂t̄
− 2Uj

[
ω

∂p0

∂x̄j
− ∂

∂t̄
(kjp0)

]

+ UiUj

[
∂

∂x̄j
(kip0) + ki

∂p0

∂x̄j

]
+
(

∂Ui

∂t̄
+ Uj

∂Ui

∂x̄j

)
kip0

− 2
(

∂ζ̄

∂t̄
+ Uj

∂ζ̄

∂x̄j

)
(ω − Uiki)

∂p0

∂z

− g
∂ζ̄

∂x̄j
kjp0 , z = ζ̄ (3.6.39)

and

∂p1

∂z
= kj

∂h

∂x̄j
p0 , z = −h . (3.6.40)

In Eq. (3.6.39), the derivatives of p0 with respect to t̄ and x̄i are taken
before letting z = ζ̄(x̄, t̄ ). Making use of Eq. (3.6.22), we may condense
the right-hand side of Eq. (3.6.39) to

− ∂

∂t̄
(ωp0) − ω

∂p0

∂t̄
− 2Uj

[
ω

∂p0

∂x̄j
− ∂

∂t̄
(kjp0)

]

+ UiUj

[
∂

∂x̄j
(kip0) + ki

∂p0

∂x̄j

]
+ p0

[
kj

∂Uj

∂t̄
+ kiUj

∂Ui

∂x̄j

]
− gkjp0

∂ζ̄

∂x̄j

where p0 is now evaluated at z = ζ̄ first before derivatives are taken with
respect to t̄ and x̄i. Applying Green’s formula to p0 and p1, we then get,
after a little rearrangement,

∂

∂t̄

(
E

σ

)
+

∂

∂x̄i

[
(Ui + Cgi)

E

σ

]
+

2E

σ2

[
∂σ

∂t̄
+ (Ui + Cgi)

∂σ

∂x̄i

]

+
2E

σ

∂Ui

∂x̄j

[
Cg

C

kikj

k2
+
(

Cg

C
− 1

2

)
δi·j

]
= 0 (3.6.41)

where E = 1
2ρgA2. As will be discussed more extensively in Chapter Eleven,

the quantity

Sij = E

[
Cg

C

kikj

k2
+
(

Cg

C
− 1

2

)
δij

]
(3.6.42)

is a component of the radiation stress tensor associated with averaged
momentum fluxes in a sinusoidal wavetrain. Equation (3.6.41) may thus be
rewritten
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{
∂

∂t̄

(
E

σ

)
+

∂

∂x̄i

[
(Ui + Cgi)

E

σ

]}

+
{

2E

σ2

[
∂σ

∂t̄
+ (Ui + Cgi)

∂σ

∂x̄i

]
+

2
σ

Sij
∂Ui

∂x̄j

}
= 0 . (3.6.43)

It can be shown (Bretherton and Garrett, 1968) by differentiating
Eq. (3.6.33), and using Eqs. (3.6.36), (3.6.37) and (3.6.12), that quanti-
ties in the second pair of curly brackets in Eq. (3.6.43) vanish identically,
therefore,

∂

∂t̄

(
E

σ

)
+

∂

∂x̄i

[
(Ui + Cgi)

E

σ

]
= 0 . (3.6.44)

The wave action defined with the intrinsic frequency σ is again conserved!
Using the same identity, we may also rewrite Eq. (3.6.43)

∂E

∂t̄
+

∂

∂x̄i
[(Ui + Cgi)E] +

1
2
Sij

(
∂Ui

∂x̄j
+

∂Uj

∂x̄i

)
= 0 (3.6.45)

after noting that Sij = Sji. This result was first deduced by Longuet–
Higgins and Stewart (1961) and means physically that work done to the
current strain by the radiation stress tends to reduce wave energy.

As in Section 3.1 the ordering parameter µ may be dropped from the
final results and the original coordinates restored.

Equation (3.6.44) forms the starting point for further analysis. In prin-
ciple, one computes k first; Eq. (3.6.44) is then integrated along the path
of the convected ray for the wave amplitude. There are some numerical
techniques for this purpose (see Dingemans, 1978 for a survey). We shall
only examine a few analytical examples in subsequent sections.

The law of wave-action conservation is a very general result valid
in many different physical contexts involving slowly varying media. In
fact Eq. (3.6.44) has been deduced for general non-dissipative dynam-
ical systems by Bretherton and Garrett (1968) by applying WKB ex-
pansions to a variational principle involving a Lagrangian. The same
result can be obtained even more rapidly by first averaging the La-
grangian and then taking the variations. These approaches require that
the problem be first formulated as a variational principle; this is not
always a trivial task. For a comprehensive treatment of the averaged
Lagrangian method, the more advanced reader should consult Whitham
(1974).
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3.7 Physical Effects of Simple Steady Currents
on Waves

When current and waves are both steady, ∂/∂t = 0, we get from
Eqs. (3.6.29) and (3.6.30)

ω = const = σ + U · k . (3.7.1)

Let y = y(x) be the equation for a ray. With Eq. (3.7.1), Eq. (3.2.5) may
be solved numerically by first noting that

U · k = (U1 + U2y
′)k(1 + y′

2)
−1/2 . (3.7.2)

The wave amplitude may be obtained from

∇ ·
[
(U + Cg)

E

σ

]
= 0 . (3.7.3)

Clearly, in addition to rays which follow k, one must construct curves that
are everywhere tangential to the local absolute group velocity U + Cg.

The implication of Eq. (3.7.1) is best seen through the simplest example
of a uniform current.

3.7.1 Uniform Current on Constant Depth

With the help of Galilean transformation

x′ = x − Ut , (3.7.4)

a progressive wave in the rest frame may be written

ei(k·x−ωt) = ei[k·(x′+Ut)−ωt] = ei[k·x′−(ω−k·U)t] . (3.7.5)

Thus in the moving frame the effective frequency is

σ = ω − k · U = ω − Uk cosα (3.7.6)

where α denotes the angle between k and U. We observe immediately that
σ ≷ ω if |α| ≷ π/2; this result is the well-known Doppler’s effect.

Let us orient our coordinate system such that k = (k, 0) with k > 0.
Equation (3.6.33) may be rewritten

ω − kU cosα = ±σ̂(k) = ±(gk tanh kh̄)1/2 . (3.7.7)
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Figure 3.12: Graphical solution of Eq. (3.7.7).

This dispersion relation can be solved graphically from the intersection of
the straight line y = ω − kU cosα and the curves y = ±σ̂(k) as shown
in Fig. 3.12. When α = ±π/2, the current has no effect on waves (see
point E).

For U cosα > 0, there are two solutions corresponding to the points A

and B. In comparison with the waves without current (point E), the waves
represented by A are lengthened, and their intrinsic phase and group velo-
cities are increased. The opposite is true for the waves represented by B.
In particular, the intrinsic phase and group velocities are negative, but they
are both less than U cosα in magnitude. Hence the crests and wave energy
are swept along by the fast current.

For U cosα < 0, the current has a component opposing the waves. If
−U cosα > (gh̄)1/2, no waves of any length are possible. For a smaller
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−U cosα there is a threshold such that only one solution exists for any
given ω. At this threshold, the net velocity of energy transport vanishes,

Cg + U cosα = 0 . (3.7.8)

Thus, although the crests appear to propagate upstream (σ/k > 0), energy
is held stationary in space.

For still smaller −U cosα, two solutions exist. The waves represented
by point C satisfy

σ

k
> Cg > −U cosα ,

hence both the crests and wave energy move upstream. The waves repre-
sented by D satisfy

σ

k
> −U cosα > Cg .

Now wave energy is swept downstream while the crests move upstream.
This type of wave owes its existence to the finite curvature of the σ-curve,
hence to dispersion.

3.7.2 Oblique Incidence on a Shear Current Over
Constant Depth

Let the shear current be in the positive y direction,

U1 = 0 , U2 = V (x) > 0 . (3.7.9)

The associated ζ̄ may be taken to be zero. Since ∂/∂y = 0, k2 = k sin α =
const from Eq. (3.6.31). The direction of the ray is determined from

k1 = [k2(x) − k2
2 ]

1/2 , (3.7.10)

where

ω − V (x)k2 = (gk tanh kh)1/2 . (3.7.11)

The equation of the ray is similar to Eq. (3.3.6)

y − y0 = ±
∫ x

x0

dx k2

(k2(x) − k2
2)1/2

. (3.7.12)

Assume that V increases from zero for x < 0 to a peak at x = 0, and
decreases to zero for x > 0 as shown in Fig. 3.13. Consider first waves
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Figure 3.13a: 0 < k2 < kmin: rays pass through a shear current after deflection.
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Figure 3.13b: k0 > k2 > kmin: rays are bent back by a shear current.
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Figure 3.13c: k2 < 0 and k0 < |k2| < kmax: rays are trapped in a shear current.

propagating with the current, that is, k2 > 0. The variation of k(x) implied
by Eq. (3.7.11) is qualitatively shown in Figs. 3.13(a) and 3.13(b). If 0 <

k2 < kmin, then a ray can penetrate the current [see Fig. 3.13(a)]. If,
however, 0 < kmin < k2, the square root in Eq. (3.7.12) is real only for
x < xc. Rays incident from outside must bend backward after touching the
caustic at x = xc, where k1 = 0. These geometrical varieties resemble those
over the submarine trough in Section 2.3. If the waves propagate against



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

116 Refraction by Slowly Varying Depth or Current

the same current, k2 < 0, the variation of k(x) is shown in Fig. 3.13(c) in
accordance with

ω + V |k2| = (gk tanh kh)1/2 . (3.7.13)

Now rays can exist only within the current when k0 < k2 < kmax, that is,
they can be trapped near the current peak. This situation resembles the
submarine ridge in Section 2.3.

From the wave-action equation (3.7.3) the amplitude variation can be
found

k1ECg

k(ω − V k2)
=
[

k1ECg

k(ω − V k2)

]
0

= const .

It follows that

A2

A2
0

=
Cg0 cosα0

Cg cosα

ω − V k2

ω − V0k2
. (3.7.14)

In the special case of deep water, kh � 1, more explicit results may be
obtained. In particular, Eq. (3.7.11) gives

ω − V k2 = (gk)1/2 . (3.7.15)

With the further simplification that V0 = 0, Eq. (3.7.14) becomes

A2

A2
0

=
cosα0[1 − (V/C0) sin α0]2

{1 − (sin2 α0/[1 − (V/C0) sin α0]4}1/2
. (3.7.16)

Figure 3.14 gives the amplitude ratio for various values of incidence angle
α0 and local current strength V/C0.

Along a caustic, α = ±π/2 in Eq. (3.7.14) and the amplitude cannot be
correctly predicted by the ray approximation. Local improvement can be
effected in the manner of Section 2.3.3. McKee (1974) and Peregrine and
Smith (1975) have given a detailed treatment of various types of caustics
in a current in the context of linearized theory. Smith (1976) further in-
cluded nonlinearity in order to accommodate fairly large amplitudes. These
highly theoretical investigations have been stimulated by the giant waves
in Agulhas Current, as vividly described in the introduction of Smith’s
paper:
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Figure 3.14: Wave amplitude versus current velocity for various angles of incidence α.

During the closure of the Suez Canal a number of ships, particularly oil
tankers, have reported extensive damage caused by giant waves off the south-
east coast of South Africa (Mallory, 1974). Two particularly unfortunate vessels
were the World Glory, which broke in two and sank in June 1968, and the Neptune
Sapphire, which lost 60 m of its bow section in August 1973. We can only speculate
that giant waves may account for many ships which have been lost without trace
off this coast. When returning from the Persian Gulf the tankers take advantage
of the rapid Agulhas Current, and all except one of the eleven incidents listed
by Captain Mallory (1974) involved vessels riding on the current. By examining
weather charts, Mallory showed that when the incidents occurred the dominant
wind-produced waves were opposed by the current.

Smith’s account suggests that the situation depicted in Fig. 3.13(c) is likely
encountered in nature.

In recent years there has been intensive interest in the role of nonlinear-
ity in giant waves, now also called freak waves or rogue waves. Much focus
has been directed to the side-band instability mechansism to be studied
in Chapter Thirteen (see, e.g., Onorato et al., 2001; Trulsen and Dysthe,
1997).
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3.7.3 Colinear Waves and Current

Assume that both waves and current are parallel to the x axis and the
current speed changes in x:

U1 = U(x) , U2 = 0 , k = (k, 0) . (3.7.17)

This kind of current, which must be accompanied by a vertical velo-
city component to satisfy continuity, Eq. (3.6.2), is called upwelling (or
downwelling). Again ω = const so that

ω = kU + σ = k0U0 + σ0 = const (3.7.18)

where ( )0 signifies the value at a reference point. Defining C and C0, which
are the phase velocities with respect to the moving fluid, by

C2 =
(σ

k

)2
=

g

k
tanh kh̄ , C2

0 =
(

σ0

k0

)2

=
g

k0
tanh k0h̄0 , (3.7.19)

we have from Eq. (3.7.18)

k

k0

(
U

C0
+

C

C0

)
=

U0

C0
+ 1 . (3.7.20)

On the other hand, from Eq. (3.7.19)

C2

C2
0

=
k0

k

tanh kh̄

tanh k0h̄0
(3.7.21)

which is an implicit equation for k/k0 in terms of C/C0. Equations (3.7.20)
and (3.7.21) can be combined to give

C2

C2
0

=
(U/C0 + C/C0)

(U0/C0 + 1)
tanh kh̄

tanhk0h̄0
. (3.7.22)

Solving C/C0 formally from Eq. (3.7.22) by pretending that k is constant,
we get

C

C0
=

1
2T

[
1 +
(

1 + 4T
U

C0

)1/2
]

(3.7.23)

where

T =
(

1 +
U0

C0

)
tank k0h̄0

tank kh̄
. (3.7.24)
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Clearly, there is a critical current velocity at which the square root in
Eq. (3.7.23) vanishes, that is,

U = −C0

4T
(3.7.25a)

which implies that

C

C0
=

1
2T

(3.7.25b)

and

U = −C

2
. (3.7.25c)

When −U is greater than C/2, C/C0 is complex and no unidirectional
propagation is possible.

Consider the limit of deep water kh̄, k0h̄0 � 1, and U0 = 0. Equa-
tion (3.7.23) reduces to

C

C0
=

1
2

[
1 +
(

1 + 4
U

C0

)1/2
]

. (3.7.26)

Thus, a current following the waves (U > 0) increases the phase velocity
and lengthens the waves. On the other hand, an opposing current (U < 0)
reduces the phase velocity and shortens the waves. The critical speed is at
U = −C/2 = −C0/4.

For arbitrary depth, the wavelength has been calculated for an exten-
sive range of current and depth by Jonsson, Skovgaard, and Wang (1970).
Figure 3.15 shows a few sample results computed by Brevik and Aas (1980)
who also conducted some experiments which confirmed the present theory.

As for the amplitude, Eq. (3.7.3) gives

(Cg + U)
E

σ
= const

so that

A2

A2
0

=
σ

σ0

Cg0 + U0

Cg + U
, (3.7.27)

which becomes unbounded when U = −Cg. For deep water, Cg → 1
2C,

σ → g/C; Eq. (3.7.27) may be written

A2

A2
0

=
C0

C

C0/2 + U0

C/2 + U
=

C0

C

1
2 + U0/C0

1
2C/C0 + U/C0

, kh̄ � 1 . (3.7.28)
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Figure 3.15: Change of wavelength due to colinear current (from Brevik and Aas, 1980,
Coastal Engineering. Reproduced by permission of Elsevier Scientific Publishing Co.).

By using Eq. (3.7.26), C/C0 may be eliminated to give

A2

A2
0

=
1
2 + U0/C0

U/C0 + 1
2 [12 + 1

2 (1 + 4U/C0)1/2]
1

[12 + 1
2 (1 + 4U/C0)1/2]

, kh̄ � 1 .

(3.7.29)

Again, when the critical current speed U = − 1
2C = − 1

4C0 is reached, the
wave amplitude becomes infinite. This prediction is often used to infer
breaking and is the idea behind the so-called hydraulic breakwater. In fact,
the ray approximation ceases to be valid here. A more refined linear theory
accounting for reflection near the critical speed can be found in Peregrine
(1976). Nonlinear effects, however, can also be important and have been,
to some extent, explored by Crapper (1972).

Numerical results for A/A0 can be obtained straightforwardly for
arbitrary kh̄, by obtaining the mean surface height from Eq. (3.6.13),
then solving for k from Eq. (3.7.22). Finally, Eq. (3.7.27) gives A/A0.
Figure 3.16 shows some sample results for U0 = 0 by Brevik and Aas (1980),
who also performed some experiments which supported the theory here.
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Figure 3.16: Change of wave amplitude due to colinear current (from Brevik and Aas,
1980, Coastal Engineering. Reproduced by permission of Elsevier Scientific Publishing
Co.).

More extensive computations have been reported by Jonsson, Skovgaard
and Wang (1970).

For the purpose of computing practical cases where the slow variations
of depth and current can be quite arbitrary, Eq. (3.5.7) has been generalized
by Booij (1981) using the elegant theory of Lagrangian. Both refraction and
diffraction are included. Actual computations can, however, be expensive
and further approximation must be added.
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Long Waves of
Infinitesimal Amplitude
Over Bottom with
Appreciable Variations 4
When a propagating wave enters a region where the fractional change of
depth within a wavelength is significant, the phenomenon of scattering
occurs in which reflection becomes appreciable. The simple ray theory
which ignores reflection is no longer adequate. Before discussing the scat-
tering of dispersive waves, let us examine similar problems for long waves
in shallow water where dispersion is not important. For mathematical
simplicity we shall deal largely with discontinuous depth variation. An
interesting aspect of varying depth is wave trapping, that is, the phe-
nomenon whereby waves are effectively confined in a part of the ocean.
This topic has been discussed for short waves in Chapter Three. Long-wave
trapping problems associated with sloping beaches, continental shelves, and
oceanic ridges will be discussed here by way of several simple models such
as a rectangular sill or shelf, and a uniformly sloping beach, and so on. In
addition, several general aspects of the scattering matrix will be studied.
Since only a few continuous variations can be solved analytically with a
good deal of algebra, approximate or numerical methods are needed and
will be discussed at the end of this chapter.

4.1 Formulation of Linearized Long-Wave Theory

4.1.1 Governing Equations

In Section 1.4 we have observed that for infinitesimal waves on constant
depth, water motion in long waves is essentially horizontal, implying that
the vertical variation is weak and the pressure is hydrostatic. This obser-
vation has been reaffirmed in Section 3.6 in the derivation of the nonlinear

123
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equations for large-scale currents which are just long waves of finite ampli-
tudes. Thus, long-wave motions are approximately two dimensional.

Linearizing Eqs. (3.6.11) and (3.6.12), Chapter Three, for infinitesimal
amplitudes

|ζ|
h

� 1 , (4.1.1)

and changing the notations from U to u and from ζ̄ to ζ, we have for mass
conservation

∂ζ

∂t
+ ∇ · (hu) = 0 , (4.1.2)

and for momentum conservation

∂u
∂t

= −g∇ζ . (4.1.3)

The total pressure is still hydrostatic:

P = ρg(ζ − z) . (4.1.4)

Eliminating u from Eqs. (4.1.2) and (4.1.3), we obtain

g∇ · (h∇ζ) =
∂2ζ

∂t2
(4.1.5)

which is a hyperbolic partial differential equation with variable coefficients.
If the waves are sinusoidal in time with radian frequency ω, we may

separate time and space dependences by

ζ = η(x, y)e−iωt ,

u(x, y, t) → u(x, y)e−iωt . (4.1.6)

From Eqs. (4.1.2) and (4.1.3) the spatial factors are related by

iωη = ∇ · (hu) , (4.1.7)

u = − ig

ω
∇η , (4.1.8)

and

∇ · (h∇η) +
ω2

g
η = 0 . (4.1.9)

For constant depth (h = const), Eq. (4.1.5) becomes the classical wave
equation
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∇2ζ =
1
gh

∂2ζ

∂t2
, (4.1.10)

while Eq. (4.1.9) becomes the Helmholtz equation

∇2η + k2η = 0 , k =
ω

(gh)1/2
. (4.1.11)

If the lateral boundary is a rigid vertical wall, the boundary condition
must be such that the normal flux vanishes. It follows from Eq. (4.1.8) that

∂ζ

∂n
= 0 or

∂η

∂n
= 0, (4.1.12)

which implies that the free-surface height is either a maximum or a
minimum. If the boundary is a relatively steep beach and if the waves
are not steep enough to break (see Section 10.5), Eq. (4.1.12) may be
modified to

lim
h→0

hu · n = 0 or lim
h→0

h
∂ζ

∂n
= 0 . (4.1.13)

On the other hand, the boundary condition along a rubble-mound break-
water or a mild beach with breaking waves cannot be easily stated because
dissipation on these boundaries is a nonlinear process which is difficult to
describe mathematically.

Finally, an appropriate condition must be specified at infinity.
To reinforce the above heuristic argument, let us give a more formal

derivation for Eqs. (4.1.1) and (4.1.4) by taking the long-wave limit of the
general linearized theory. The reasoning follows that of Friedrichs (1948a)
for nonlinear long waves and is partially similar to that of Section 3.1. Let
us normalize all variables according to the scales anticipated on physical
grounds:

(x′, y′) = k(x, y) , z′ =
z

h0
, h′ =

h

h0
,

t′ = [k(gh0)1/2]t , ζ′ =
ζ

A0
, Φ =

1
k

A

h0
(gh0)1/2φ ,

(4.1.14)

where ω ∼ (gh0)1/2k. The normalization for t and Φ is suggested by
Eq. (1.2.2), Chapter One. The dimensionless governing equations are pre-
cisely Eqs. (3.1.3)–(3.1.5), Chapter Three, if (−) is replaced by ( )′ every-
where. For brevity the primes will be omitted from here on.
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Let us introduce the series

φ = φ0 + µ2φ2 + µ4φ4 + · · · . (4.1.15)

At the order O(µ0) we have

∂2φ0

∂z2
= 0 , −h < z < 0 , (4.1.16)

∂φ0

∂z
= 0 , z = 0,−h , (4.1.17)

so that φ0 = φ0(x, y, t). At the order O(µ2) we have

∂2φ2

∂z2
= −∇2φ0 , −h < z < 0 , (4.1.18)

∂φ2

∂z
= −∂2φ0

∂t2
, z = 0 , (4.1.19)

∂φ2

∂z
= −∇h · ∇φ0 , z = −h . (4.1.20)

Application of Green’s formula [Eq. (2.4.11), Chapter Two] to φ0 and φ2

gives a solvability condition for φ2,

∇ · (h∇φ0) =
∂2φ0

∂t2
. (4.1.21)

If the physical variables are restored and the linearized Bernoulli equation
gζ = Φt is used, then Eq. (4.1.21) leads to Eq. (4.1.5).

4.1.2 Quasi-One-Dimensional Waves in a Long
Channel of Slowly Varying Cross Section

For a long channel of rectangular cross section with width much less than
the length longitudinal scale, the lateral variation is expected to be much
less significant than that of the longitudinal variation. Intuitively, this is
true because the boundary conditions of zero normal flux on the banks of a
narrow channel imply that the transverse variation of ζ is negligible every-
where. The motion should be describable by a one-dimensional equation;
a heuristic derivation is given below.

Let x be the longitudinal axis, y the transverse axis, b(x) the width,
and h(x, y) the depth. Let y = a1(x) and a2(x) be the banks, then
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b = a2 − a1 , Area A =
∫ a2

a1

h dy . (4.1.22)

Integrating the continuity equation (4.1.2) from one bank to the other, we
have ∫ a2

a1

∂ζ

∂t
dy +

∂

∂x

∫ a2

a1

hu dy

[
h

(
υ − u

da

dx

)]y=a2

y=a1

= 0 ,

where use is made of the Leibniz rule. The integrated terms vanish along
both banks, hence,

∂ζ

∂t
+

1
b

∂Au

∂x
= 0 . (4.1.23)

When the transverse variations of ζ and u are ignored, the momentum
equation reads approximately

∂u

∂t
= −g

∂ζ

∂x
. (4.1.24)

Combining Eqs. (4.1.23) and (4.1.24), we have

∂

∂x

(
A

∂ζ

∂x

)
− b

g

∂2ζ

∂t2
= 0 . (4.1.25)

For sinusoidal waves ζ = ηe−iωt, the governing equation is

∂

∂x

(
A

∂η

∂x

)
+

ω2b

g
η = 0 , (4.1.26)

which is of the well-known Stürm–Liouville type. It should be emphasized
that so far the wavelength and the longitudinal scale of channel geometry
are considered to be of the same order.

Exercise 4.1

Use Friedrichs’ method to deduce Eq. (4.1.25) by a perturbation analysis.

4.1.3 Further Remarks on the Radiation Condition

Recall from Section 2.4 that for steady sinusoidal problems, it is necessary
to impose the radiation condition that waves due to localized disturbances
propagate outward. An equivalent approach is to begin with an initial-value
problem and to regard the steady state as the limit of t → ∞. Another
alternative is to insist on a steady-state formulation but to include a small
damping, which may be either real or fictitious, and then to require that
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the simple harmonic solution vanish at infinity. When damping is allowed
to diminish at the end, the ultimate result satisfies the radiation condition
also. The artifice of fictitious damping is due to Rayleigh.

In shallow water, one may imagine bottom friction to be the physical
source of damping. Let the friction force be modelled by 2εu, where ε is a
small positive coefficient. The momentum equation reads

∂u
∂t

= −g∇ζ − 2εu . (4.1.27)

which can be combined with the continuity equation (4.1.2) to give

∇ · gh∇ζ − 2ε
∂ζ

∂t
=

∂2ζ

∂t2
. (4.1.28)

For simple harmonic motion Eq. (4.1.28) becomes

∇ · gh∇η + (ω2 + 2iεω)η = 0 , (4.1.29)

which may be written

∇ · gh∇η + (ω + iε)2η = 0 (4.1.30)

for small ε. The boundary condition at infinity is that η must be bounded.
The ultimate steady state is then the limit of the solution when ε ↓ 0.

Instead of the physical or pseudophysical approach of introducing
damping, a mathematically equivalent way is to say that η satisfies

∇ · gh∇η + ω′2η = 0 , (4.1.31)

where ω′ is complex with a small but positive imaginary part.
To see the implication of “damping” or complex ω′, consider one-

dimensional scattering by a localized obstacle. In the zones of constant
h the scattered wave is

eik′|x| or e−ik′|x| ,

where

k′ = k + iε(gh)−1/2 (4.1.32)

with k = ω(gh)−1/2. For the solution to be bounded as |x| → ∞, e−ik′|x|

must be discarded. In the limit of ε ↓ 0, the disturbance becomes

ηS ∼ eik|x| , k|x| � 1 , (4.1.33)
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which implies outgoing waves. Hence the complex ω′ implies the radiation
condition. As is easily verified, the radiation condition can be expressed(

∂

∂x
∓ ik

)
ηS → 0 , |kx| → ∞ . (4.1.34)

In two-dimensional scattering by localized objects, the solution in a
sea of constant depth can be constructed by superposition of the following
terms: {

H
(1)
n (k′r)

H
(2)
n (k′r)

}{
sinnθ

cosnθ

}
.

Because of the asymptotic behavior of the Hankel functions{
H

(1)
n (k′r)

H
(2)
n (k′r)

}
∼
(

2
πkr

)1/2

exp
[
±i
(
k′r − π

4
− nπ

2

)]
, (4.1.35)

H
(2)
n must be discarded when k′ is complex with a positive real part. At the

limit of ε ↓ 0, the general solution for the scattered waves may be written

ηS =
∞∑

n=0

(αn cosnθ + βn sin nθ)H(1)
n (kr) . (4.1.36)

For kr � 1 , ηS behaves as

ηS �
[∑

(αn cosnθ + βn sinnθ)e−inπ/2
]( 2

πkr

)1/2

eikr−iπ/4

≡ A(θ)
(

2
πkr

)1/2

e−ikr−iπ/4 (4.1.37)

which is again an outgoing wave. Equation (4.1.37) is therefore the radi-
ation condition for two-dimensional scattering by finite objects. Alterna-
tively, this condition may be expressed

(kr)1/2

(
∂

∂r
− ik

)
ηS → 0 , kr � 1 . (4.1.38)

We hasten to emphasize that Eq. (4.1.38) is much stronger than the mere
requirement that ηS ↓ 0 at infinity.

The above remarks suggest a simple routine for constructing transient
solutions from simple harmonic solutions. If the disturbance begins at some
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finite time, then ζ → 0 as t → −∞. With damping we expect ζ → 0 also
as t → +∞. Thus, the Fourier transform may be applied

η =
1
2π

∫ ∞

−∞
ζ(x, t)eiωt dt . (4.1.39)

The transform of Eq. (4.1.28) is just Eq. (4.1.29) and the boundary-value
problem is precisely the one for damped harmonic disturbance η(x, ω′).
Consequently, the transient disturbance may be obtained by inversion

ζ(x, t) =
∫ ∞

−∞
η(x, ω′)e−iωt dω, (4.1.40)

which amounts to linear superposition of damped simple harmonic solu-
tions. Since ω′ = ω + iε, Eq. (4.1.40) may be rewritten

ζ(x, t) = eεt

∫ ∞

−∞
η(x, ω′)e−iω′t dω

= eεt

∫ ∞+iε

−∞+iε

η(x, ω′)e−iω′t dω′ . (4.1.41)

The inviscid solution is simply the limit of ε ↓ 0, with the understanding
that the Fourier integral in Eq. (4.1.41) is along a path slightly above the
real axis in the complex ω′ plane. Now that the final goal has been achieved,
one can forget the artifice of damping and simply say that ζ(x, t) is the
Fourier integral of the simple harmonic solution which satisfies the radiation
condition

ζ(x, t) =
∫ ∞

−∞
η(x, ω)e−iωt dω , (4.1.42)

where the path of integration must be slightly above the real ω axis.
The ideas in this subsection can be generalized to the three-dimensional

case of arbitrary kh.

4.2 Straight Depth Discontinuity —
Normal Incidence

4.2.1 The Solution

Consider a simple ocean where the depth changes discontinuously at x = 0,
and h = h1 for x < 0 and h = h2 for x > 0, where h1 and h2 are unequal
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constants. Two incident waves of frequency ω arrive from x ∼ ±∞. From
each wavetrain some energy is transmitted beyond the step and some is
reflected backward, creating scattered waves propagating away from the
step. The problem is to find the transmitted and the reflected waves.

The wave on either side of x = 0 satisfies

∂ζ

∂t
+

∂

∂x
(hu) = 0 (4.2.1)

and

∂u

∂t
+ g

∂ζ

∂x
= 0 , (4.2.2)

where ζ = (ζ1, ζ2), u = (u1, u2), and h = (h1, h2) for x < 0, x > 0,
respectively. We must now find matching conditions at x = 0. Subject to
further scrutiny let us assume for the moment that Eqs. (4.2.1) and (4.2.2)
are valid even across the depth discontinuity and can be integrated with
respect to x from x = 0− to x = 0+. Since the interval of integration is
infinitesimal and ∂ζ/∂t and ∂u/∂t are finite, the first terms of Eqs. (4.2.1)
and (4.2.2) do not contribute to the result, so that

lim
x→0−

h1u1 = lim
x→0+

h2u2 , (4.2.3)

lim
x→0−

ζ1 = lim
x→0+

ζ2 . (4.2.4)

These conditions (Lamb, 1932) relate ζ and the flux uh across the dis-
continuity.

For simple harmonic motion we use Eq. (4.1.9) so that the spatial factors
satisfy

d2ηm

dx2
+ k2

mηm = 0 , m = 1, 2 (4.2.5)

with

km =
ω

(ghm)1/2
. (4.2.6)

The spatial part of the velocity is given by

um = − ig

ω

dηm

dx
. (4.2.7)
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The matching conditions at the junction are

η1 = η2 , (4.2.8a)

h1
∂η1

∂x
= h2

∂η2

∂x
. (4.2.8b)

To complete the formulation we must add the radiation condition that
the disturbance caused by the incident wave can only be outgoing. Thus,
if there is only one incident wave from the left (or right), the waves on the
right (left) side must be only right- (or left-) going. More generally, we
assume that there are incident waves coming from both infinities A−eik1x

and B+e−ik2x. The general solution should be of the following form:

η1 = A−eik1x + B−e−ik1x for x < 0 (4.2.9)

and

η2 = B+e−ik2x + A+eik2x for x > 0 . (4.2.10)

The amplitudes of the incident waves A− and B+ are known and those of
the scattered waves A+ and B− are to be found. Applying the matching
conditions (4.2.8a) and (4.2.8b), we obtain

A+ + B+ = A− + B− ,

k1h1(A− − B−) = k2h2(−B+ + A+) ,

which are readily solved to give

B− =
(k1h1 − k2h2)A− + 2k2h2B+

k1h1 + k2h2
, (4.2.11)

A+ =
2k1h1A− − (k1h1 − k2h2)B+

k1h1 + k2h2
. (4.2.12)

The results may be written more compactly in matrix form as

{AS} = [S]{AI} (4.2.13)

with

{AI} =

{
A−
B+

}
, {AS} =

{
A+

B−

}
, (4.2.14)
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and

[S] = (k1h1 + k2h2)−1

[
2k1h1 −(k1h1 − k2h2)

k1h1 − k2h2 2k2h2

]

=

[
T1 R2

R1 T2

]
. (4.2.15)

The matrix [S] is called the scattering matrix.
To understand the meaning of T1, T2, R1, and R2, let there be an

incident wave from the left only so that A− �= 0 and B+ = 0. It is clear
that

A+

A−
= T1 =

2k1h1

k1h1 + k2h2
, (4.2.16a)

B−
A−

= R1 =
k1h1 − k2h2

k1h1 + k2h2
. (4.2.16b)

Thus, T1 and R1 can be defined, respectively, as the transmission and
reflection coefficients when the incident wave originates from the side of
h = h1. T2 and R2 are similarly defined for an incident wave from h2. Since
kmhm = ω(hm/g)1/2, we have

T1 =
2(h1)1/2

(h1)1/2 + (h2)1/2
=

2
1 + (h2/h1)1/2

, (4.2.17a)

R1 =
(h1)1/2 − (h2)1/2

(h1)1/2 + (h2)1/2
=

1 − (h2/h1)1/2

1 + (h2/h1)1/2
. (4.2.17b)

The variation of T1 and R1 with the depth ratio is shown in Fig. 4.1. Note
that the phase of the reflected wave does not change when the incident wave
is from the deeper side, but changes by π when it is from the shallower
side. We leave it as an exercise to prove that the energy transported by the
scattered waves (reflected and transmitted) equals the energy transported
by the incident wave. For very shallow shelf, h2/h1 � 1,

T1 = 2

[
1 −
(

h2

h1

)1/2
]

R1 = 1 − 2
(

h2

h1

)1/2

. (4.2.18)

The reflection coefficient R1
∼= 1, so that the sum of the incident and

reflected waves represents essentially a standing wave with an antinode
of amplitude 2AI at x = 0. It must be cautioned that nonlinear effects
so far ignored here can be very important for small enough h2. Although
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Figure 4.1: Transmission (T1) and reflection (R1) coefficients for a step shelf with
normally incident waves.

the transmitted wave amplitude increases to twice the incident wave am-
plitude due to the decrease in depth h2, very little energy gets through
because the rate of energy flux is T 2

1 Cg ∝ (h2)1/2. In the extreme case of
h2/h1 � 1 the reflection coefficient R1 = −1, so that the total wave system
in x < 0 is also a standing wave but with a node at x = 0.

Exercise 4.2: A Shelf with a Parabolic Transition

Consider a shelf of depth h1 in the region x < x1 connected to an ocean of
greater depth h2 in the region x > x2. In the transition x1 < x < x2, the
depth is given by h = ax2 with h1 = ax2

1, h2 = ax2
2, and x2 − x1 � h1 or

h2. Let a train of long-period waves be incident normally from the ocean.
Show that the scattering coefficients are

T =
ib

µ1/2∆
and R = i sinh

(
b

2
ln

1
µ

)
exp[−2i(ω2/ga)1/2]

∆
,

where

b =
(

1 − 4
ω2

ga

)1/2

, µ =
x1

x2
,

and

∆ = 2
(

ω2

ga

)1/2

sinh
(

b

2
ln

1
µ

)
+ ib cosh

(
b

2
ln

1
µ

)
.

Plot the results and examine the effects of ω2/ga and µ (Kajiura, 1961).
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4.2.2 Justification of the Matching Conditions
at the Junction

Although the conditions of matching Eqs. (4.2.8a) and (4.2.8b) are intui-
tively reasonable, they are deduced on the basis of Eqs. (4.2.1) and (4.2.2),
which are valid only when the vertical motion is negligible compared with
the horizontal and when ∂/∂x is small. However, these assumptions are no
longer valid in the neighborhood of the step. Is our theory in Section 4.2.1
still valid? This question was the subject of a paper by Bartholomeuz (1958)
who started from a formulation for arbitrary kh and proved rigorously
that the result of the foregoing section is the correct asymptotic limit of
kmhm → 0. His argument was very lengthy and involved some very diffi-
cult mathematics. We present below a simpler argument via the matched
asymptotics method, which is a slightly elaborated version of the boundary-
layer approximation in Section 3.3.3, and has been used effectively in many
long-wave problems by Ogilvie (1960), Tuck (1975), and others.

As a start we divide the physical region into a near field and a far field
according to the dominant scales in each region. For example, the length
scale on the incident side far away from the junction is the wavelength 1/k1,
hence

η1 = A(eik1x + Re−ik1x) (4.2.19)

properly describes the waves. This region of O(k−1
1 ) is a far field. In the

eyes of a far-field observer, the neighborhood of the step appears so small
that the first few terms of the Taylor expansion of Eq. (4.2.19) sufficiently
approximate the free surface there, hence

η1 = A[1 + R + (1 − R)ik1x] + O(k1x)2 as k1x → 0 . (4.2.20)

To another similar observer on the transmission side of the far field, the
wave is described by

η2 = ATeik2x , (4.2.21)

which tends to

η2 = AT (1 + ik2x) + O(k2x)2 (4.2.22)

in the neighborhood of the step. For shallow water the Bernoulli equation
gives
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φ =
−ig

ω
η ,

so that

φfar
1 → −ig

ω
A[(1 + R) + (1 − R)ik1x] , k1x → 0 , (4.2.23)

φfar
2 → −ig

ω
AT (1 + ik2x) , k2x → 0 . (4.2.24)

Now the neighborhood of the step constitutes a near field where the
motion is two dimensional and the characteristic scale is the local depth
h(h1 or h2). The equation of motion and the boundary condition on the
step are

∂2φ

∂x2
+

∂2φ

∂z2
= 0 , (4.2.25)

∂φ

∂n
= 0 . (4.2.26)

Although the exact linearized boundary condition on the free surface is

∂φ

∂z
− ω2

g
φ = 0 , (4.2.27)

the two terms above are in the ratio

ω2φ/g

(∂φ/∂z)
= O

(
ω2h

g

)
= O(k2h2) .

Hence condition (4.2.27) is approximately

φz
∼= 0 (4.2.28)

with an error of (kh)2. Physically, Eq. (4.2.28) implies that the near-field
observer is oblivious of the long-scale waves and sees, at any instant, a

Figure 4.2: Near field of a step shelf.
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current passing a confined channel with a step as in Fig. 4.2. The for-
mal solution to this simplified potential flow problem can, in principle, be
obtained by conformal mapping or other means.

Thus far, the near- and far-field solutions contain coefficients yet unde-
termined. The next step of the matched asymptotics method is to require
that these solutions be joined smoothly in intermediate regions, which
appear to be very near the junction to the far-field observer but very far
from the junction to the near-field observer; in other words,

φfar||kx|�1 = φnear||x/h|�1 + O(kh)2 . (4.2.29)

Before carrying out the matching, let us write down the far-field (outer)
approximation of φnear:

φnear = C − DUh1 + Ux ,
x

h1
∼ −∞

= C + DUh1 + U
h1

h2
x ,

x

h2
∼ +∞ .

(4.2.30)

Note in particular that the additive constants at x ∼ ±∞ are different by
2DUh1; in fact, D is related to the unknown constant U as follows. By
continuity, we have at any x,

Uh1 =
∫ 0

−h

∂φ

∂x
dz =

∂

∂x

∫ 0

−h

φdz − ∂h

∂x
φ(x,−h)

which gives, after integration from x1 to x2 where −x1/h1 and x2/h2 � 1,[∫ 0

−h

φdz

]x2

x1

= Uh1(x2 − x1) +
∫ x2

x1

∂h

∂x
φ(x,−h) dx . (4.2.31)

Since Eq. (4.2.30) applies at x1 and x2, the left-hand side of Eq. (4.2.31)
may be written

C(h2 − h1) + DUh1(h1 + h2) + Uh1(x2 − x1) ,

whereas the right-hand side of Eq. (4.2.31) may be written

Uh1(x2 − x1) + C(h2 − h1) +
∫ ∞

−∞

∂h

∂x
[φ(x,−h) − C] dx .

Substituting these into Eq. (4.2.31), we get

D =
1

h1 + h2

∫ ∞

−∞
dx

∂h

∂x

φ(x,−h) − C

Uh1
. (4.2.32)
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Since φ − C must be of the order of Uh1, D is a dimensionless number of
order unity and depends only on the geometry of the near field. The explicit
value of D can be worked out for a rectangular step as in Section 4.2.3.

Supposing that the near field and hence D are already known in terms
of C and U , let us match Eqs. (4.2.23) and (4.2.24) with Eq. (4.2.30). By
equating the coefficients of like powers of x, we get

C − Uh1D = − igA

ω
(1 + R) ,

U = − igA

ω
(1 − R)ik1 ,

C + Uh1D = − igA

ω
T ,

U
h1

h2
= − igA

ω
T ik2 .

These equations can be solved for R, T , U , and C; the results are

R = −1 − s + 2iDk1h1

1 + s − 2iDk1h1
, (4.2.33)

T =
2s

1 + s − 2iDk1h1
, (4.2.34)

h1U = − igA

ω
ik2h2

2s

1 + s − 2iDk1h1
, (4.2.35)

and

C = − igA

ω

2s − iDk1h1

1 + s − 2iDk1h1
, (4.2.36)

where

s ≡ k1h1

k2h2
. (4.2.37)

Since D is real and of order unity [see Eq. (4.2.32)], it only affects the phases
of R, T , U , and C but may be ignored for their magnitudes, with an error
of O(kh)2. This conclusion is consistent with Bartholomeuz (1958) and was
deduced in this manner by Tuck (1976). Thus, the simple requirements of
Eq. (4.2.8) are justified.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

4.2. Straight Depth Discontinuity — Normal Incidence 139

Exercise 4.3: Flux Condition at the Junction of a Floating Body

If there is a ship with a draft z = −H(x), show that Eq. (4.2.32) is
generalized to

Uh1D =
1

h1 + h2

∫ ∞

−∞
dx

×
{
−∂h

∂x
[φ(x1,−h) + C] +

∂H

∂x
[φ(x1,−H) + C]

}
.

4.2.3 The Near Field for a Rectangular Step

In general, the near field of an abrupt transition must be solved numerically
as a classical problem of steady potential flow. For a rectangular step, the
solution can be achieved analytically by the theory of complex functions
(see Milne-Thomson, 1967).ındexMilne-Thomson, 1967 Let us introduce
the complex variable z = x + jy and the complex velocity potential W (z)
with φ(x, y) = RejW (z). Note that the imaginary unit here is denoted
by j in order to be distinguished from the unit i used for time variation.
Although both i and j are (−1)1/2, each is to be regarded as real with
respect to the other when they appear together. In particular the real
velocity potential is to be interpreted by

Φ(x, y, t) = ReiRejW (z)e−iωt = Reie
−iωt Rej(φ + jψ)

= Reie
−iωtφ = Reie

−iωt(φ1 + iφ2)

= φ cosωt + φ2 sinωt ,

where φ1 and φ2 are real with respect to both i and j.

The physical strip in the z plane can be mapped to the upper half of
the ζ plane, as shown in Fig. 4.3, by the Schwarz–Christoffel formula

dz

dζ
=

K

ζ

(
ζ − 1
ζ − c2

)1/2

. (4.2.38)

Clearly, the complex potential W = φ + jψ is a source of strength Uh1 at
the origin of the ζ plane,

W =
Uh1

π
ln ζ + const . (4.2.39)
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Figure 4.3: Mapping of the physical strip in the z plane to the upper half of the ζ plane.

To fix K and c2 we note that the complex velocity is

dW

dz
=

dW

dζ

/
dz

dζ
=

Uh1

πK

(
ζ − c2

ζ − 1

)1/2

.

Since ζ ∼ ∞ near A, dW/dz ∼= Uh1/πK = Uh1/h2, hence

K =
h2

π
.

Near B, ζ ∼ −0 and dW/dz ∼= Uh1c/πK = U , hence

c =
h2

h1
.

To integrate Eq. (4.2.38) we introduce a t plane by

ζ =
t2 − c2

t2 − 1
(4.2.40a)

or

t =
(

ζ − c2

ζ − 1

)1/2

, (4.2.40b)
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which maps the upper half ζ plane to the first quadrant of t as shown in
Fig. 4.3. Taking the logarithmic derivative of Eq. (4.2.40) and combining
with Eq. (4.2.38), we can integrate z in terms of t, with the result

z + jh1 =
h2

π

(
1
c

ln
t − c

t + c
− ln

t − 1
t + 1

)
, (4.2.41)

where the constant jh1 is chosen so that the images of point C are as shown
in the z and t planes.

Now putting Eq. (4.2.40a) into Eq. (4.2.39), we get

W =
Uh1

π
ln

t2 − c2

t2 − 1
. (4.2.42)

For a given t in the first quadrant, we can find z from Eq. (4.2.41) and the
corresponding W from Eq. (4.2.42). Now the near-field solution is complete.

The asymptotic approximations in the neighborhoods of A and B are
needed. Let t approach the point B from the left, t → c − 0, then

z + jh1
∼= h2

π

[
1
c

ln(t − c) − 1
c

ln 2c − ln
c − 1
c + 1

]
and

W ∼= Uh1

π

[
ln(t − c) + ln

2c

c2 − 1

]
.

After ln(t − c) is eliminated, it follows that

W ∼= Uz +
Uh1

π

[
jπ + ln 2c + c ln

c − 1
c + 1

+ ln
2c

c2 − 1

]
. (4.2.43)

Let t approach A from the right, then

z + jh1
∼= h2

π

[
1
c

(
ln

c − 1
c + 1

+ jπ

)
− ln(t − 1) + ln 2

]
and

W ∼= Uh1

π
[ln(c2 − 1) + jπ − ln 2 − ln(t − 1)] .

Eliminating ln(1 − t) , we get

W ∼= Uh1z

h2
+

Uh1

π

[
ln(1 − c2) − 2 ln 2 + jπ − 1

c
ln

c − 1
c + 1

]
. (4.2.44)
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We may now subtract the additive constants of Eqs. (4.2.43) and (4.2.44)
to give

2D =
1
π

[
c2 + 1

c
ln

c + 1
c − 1

− 2 ln
4c

c2 − 1

]
(4.2.45)

which was given by Tuck (1976) and confirms the order estimate of D in
Section 4.2.2.

Exercise 4.4: Scattering by a Submerged Thin Barrier (Siew and
Hurley, 1977)

Consider the scattering of infinitesimal long waves normally incident toward
a long and thin plate horizontally submerged in a sea of constant depth H.

The plate has the width � = 2a and is fixed at depth z = −c. A steady train
of sinusoidal waves of frequency σ and wavenumber k arrives from x = −∞.

The depth is small and the plate is wide so that we can assume that kH � 1
and k� = O(1). Verify, by matched asymptotics, the approximate reflection
and transmission coefficients R and T to the leading order in kH , as given
below:

R = S

{
σ�√
gH

sinΩ − 2
√

c

H
(1 − cosΩ)

}
(4.2.46)

and

T = S

{
2i

[
sin Ω +

σ�

b

√
c

g

]}
, (4.2.47)

where

S = 1

/{
2
√

c

H
(1 − cosΩ) +

σ�

b

√
H

g

(
1 +

c

H

)
sin Ω

+ 2i

(
sin Ω +

σ�

b

√
c

g
cosΩ

)}
(4.2.48)

Ω =
σ�√
cg

, and b = H − c .

The time factor e−iσt is assumed. Discuss R vs k� for c/H = 0 and for
nonzero but small c/H.

Can you derive the same answer by just using the linearized long-
wave approximation everywhere with some crude but physically plausible
junction conditions?
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4.3 Straight Depth Discontinuity —
Oblique Incidence

Consider a plane wavetrain arriving at an angle θ1 with respect to the depth
discontinuity (Fig. 4.4). Let the y axis be the discontinuity and x be normal
to it. The depths on two sides are h1, x < 0 and h2, x > 0, where h1 �= h2

in general.

Figure 4.4: Directions of wave vectors at a step.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

144 Long Waves Over Bottom with Appreciable Variations

Let the incident wave come from x → −∞,

η1 = Aei(αix+βy) so that α2
1 + β2 = k2

1 . (4.3.1)

The incident wavenumber vector is inclined at the angle

θ1 = tan−1(β/α1) (4.3.2)

with respect to the x axis. The solutions should be of the following form:

η1 = A(eiα1x + Re−iα1x)eiβy , α2
1 + β2 = k2

1 , x < 0 , (4.3.3)

η2 = ATei(α2x+βy) , α2
2 + β2 = k2

2 , x > 0 , (4.3.4)

so that on the left side there is a reflected wave toward the left, and on
the right side a transmitted wave toward the right. The reflection and
transmission coefficients R and T must be determined by matching the
surface height and the volume flux at x = 0. Substituting Eqs. (4.3.3) and
(4.3.4) into Eqs. (4.2.8a) and (4.2.8b), we obtain

1 + R = T , (4.3.5a)

h1(iα1 − Riα1) = h2iα2T . (4.3.5b)

The solutions for R and T are formally the same as for normal incidence if
we replace k1 and k2 by α1 and α2 in Eqs. (4.2.16) and (4.2.17), that is,

T =
2α1h1

α1h1 + α2h2
(4.3.6a)

R =
α1h1 − α2h2

α1h1 + α2h2
. (4.3.6b)

Certain features of the solution deserve attention. The directions of the
incident and transmitted waves are given by

tan θ1 =
β

(k2
1 − β2)1/2

(4.3.7)

and

tan θ2 =
β

(k2
2 − β2)1/2

. (4.3.8)

For h1 > h2, k1 < k2, hence θ1 > θ2. If the transmission side is the shallower
of the two, the wavenumber vector of the transmitted wave is directed more
closely to the x axis than to the incident wave vector. On the other hand,
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if h1 < h2 so that the incident side is the shallower, then θ1 < θ2 and the
transmitted wave turns away from the normal x axis. This result is just
the phenomenon of refraction discussed in Chapter Two for slowly varying
depth, and the transmitted wave may be called the refracted wave. For a
fixed frequency, k1 and k2 are fixed by h1 and h2. If we increase β toward
k1 (i.e., increase the angle of incidence), a stage will be reached such that
k2 = β because k2 < k1. At this stage, θ2 = π/2 and the transmitted
wave propagates along the discontinuity (α2 = 0). The critical angle of
incidence is

(θ1)cr = tan−1 k2

α1
= tan−1 k2

(k2
1 − k2

2)1/2
. (4.3.9)

Since α2 = 0, the reflection coefficient is R = 1; hence there is total re-
flection. The transmitted wave has crests parallel to the x axis with equal
amplitude along the crests.

What happens when β increases further? α2 = (k2
2 − β2)1/2 becomes

imaginary, and tan θ2 loses meaning. Let us go back to the original solution
and rewrite α2 = iγ2, γ2 = (β2 − k2

2)
1/2 so that γ2 is real and positive:

η2 = a1Te−γ2xeiβy . (4.3.10)

The general solution actually contains eγ2x and e−γ2x; we take only e−γ2x

for the bounded solution at x ∼ ∞. Thus,

T =
2α1h1

α1h1 + iγ2h2
(4.3.11a)

R =
α1h1 − iγ2h2

α1h1 + iγ2h2
. (4.3.11b)

Clearly |R| = 1, so that reflection is perfect. With Eqs. (4.3.11) the solution
may be renormalized to give

η1 = A cos(α1x + δ)eiβy , (4.3.12)

η2 = A
α1h1

(α2
1h

2
1 + γ2

2h2
2)1/2

e−γ2xeiβy , (4.3.13)

where δ is a phase angle

tan δ =
γ2h2

α1h1
.
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Figure 4.5: A submerged ridge.

This solution requires a new interpretation. On the deep side, x > 0,
the transmitted wave propagates along the y axis with the amplitude
exponentially attenuating away from the maximum at x = 0. The larger
the angle β, the faster the attenuation.

4.4 Scattering by a Shelf or Trough of Finite Width 1

Consider an ocean bottom with a stepwise variation of depth as shown
in Fig. 4.5. An obliquely incident wave of unit amplitude arrives from
x ∼ −∞. What are the effects of the finite size of the step?

The general solution over each flat region can be written

η1 = eiβy(eiα1(x+a) + R′e−iα1(x+a)) , x < −a , (4.4.1)

η2 = eiβy(Aeiα2x + Be−iα2x) , −a < x < a , (4.4.2)

η3 = T ′eiβyeiα3(x−a) , x > a . (4.4.3)

We may define

R = R′e−2iα1a (4.4.4)

as the reflection coefficient, and

T = T ′e−i(α1+α3)a (4.4.5)

as the transmission coefficient. The coefficients A, B, R′, and T ′ must be
found by matching η and h ∂η/∂x at the two edges.

1This problem is analogous to the problem of a square-well potential in quantum
mechanics (see Bohm, 1951, p. 242ff).
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Matching at x = −a, we get

1 + R′ = Ae−iα2a + Beiα2a (4.4.6)

and

α1h1(1 − R′) = α2h2(Ae−iα2a − Beiα2a) , (4.4.7)

whereas matching at x = a, we get

Aeiα2a + Be−iα2a = T ′ (4.4.8)

and

α2h2(Aeiα2a − Be−iα2a) = α3h3T
′ . (4.4.9)

The simultaneous equations (4.4.6)–(4.4.9) remain to be solved. The book-
keeping may be simplified with the following new substitutions:

sµν =
αµhµ

ανhν
with µ, ν = 1, 2, 3 (no summation) . (4.4.10)

Equations (4.4.6)–(4.4.9) become

Ae−iα2a + Beiα2a = 1 + R′ , (4.4.11)

Ae−iα2a − Beiα2a = s12(1 − R′) , (4.4.12)

Aeiα2a + Be−iα2a = T ′ , (4.4.13)

Ae−iα2a − Be−iα2e = s32T
′ . (4.4.14)

From Eqs. (4.4.13) and (4.4.14) we can express A and B in terms of T ′

or T :

A =
1
2
T ′e−iα2a(1 + s32) , (4.4.15)

B =
1
2
T ′eiα2a(1 − s32) . (4.4.16)

Eliminating A and B from Eqs. (4.4.11) and (4.4.12), we can solve for R′

and T ′:

R′ =
e−2iα2a[−(1 − s12)(1 + s32) + (1 + s12)(1 − s32)e2iα2a]

∆
, (4.4.17)
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T ′ =
4s12

∆
, (4.4.18)

where

∆ = (1 + s12)(1 + s32)e−2iα2a − (1 − s12)(1 − s32)e2iα2a . (4.4.19)

Finally, A and B can be obtained from Eqs. (4.4.15) and (4.4.16) with the
help of Eq. (4.4.18).

For physical implications let us examine a special case where the depths
on both sides of the step are equal, h1 = h3. We now have α1 = α3,
so that

s12 = s32 =
α1h1

α2h2
≡ s =

h1

h2

(
ω2/gh1 − β2

ω2/gh2 − β2

)1/2

. (4.4.20)

Note that s > 1 if the center region is a shelf and s < 1 if it is a trough.
The transmission and reflection coefficients are

T ′ =
4s

(1 + s)2e−2iα2a − (1 − s)2e2iα2a
, (4.4.21)

R′ =
−(1 − s2)(e−iα2a − eiα2a)

(1 + s)2e−2iα2a − (1 − s)2e2iα2a
. (4.4.22)

The energy of the transmitted and reflected waves are proportional to(
|T ′|2
|R′|2

)
=

(
|T |2
|R|2
)

=

(
4s2

(1 − s2)2 sin2 2α2a

)

× [4s2 + (1 − s2)2 sin2 2α2a]−1 . (4.4.23)

It is straightforward to show that |R|2 + |T |2 = 1, which means that the
energy of the scattered waves is the same as the energy of the incident waves.
An important physical feature is that |R|2 and |T |2 vary periodically with
2α2a. In particular, for 2α2a = nπ, n = 0, 1, 2, 3, . . . , that is, 4a/λ2 =
0, 1, 2, 3, . . . , where λ2 = 2π/α2, |R|2 = 0, and |T |2 = 1 so that there
is total transmission and the shelf is transparent to the incident wave.
Minimum transmission and maximum reflection occur when sin2 2α2a = 1
or

2α2a =
(

n − 1
2

)
π , n = 1, 2, 3, . . .
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Figure 4.6: Properties of |T |2 and |R|2. Top: Effects of varying s = α1h1/α2h2.
Bottom: Effects of varying 2α2a for several s.

that is,

4a

λ2
=

1
2
,
3
2
,
5
2
, . . . .

The corresponding values are

min |T |2 =
4s2

(1 + s2)2
, (4.4.24)

max |R|2 =
(1 − s2)2

(1 + s2)2
(4.4.25)

whose dependence on s2 is shown in Fig. 4.6(a). The dependence of |T | and
|R| on 2α2a is oscillatory as shown in Fig. 4.6(b).

The wave on the shelf is obtained by substituting Eq. (4.4.21) into
Eqs. (4.4.15) and (4.4.16) with s12 = s32 = s, that is,

A =
1
2
T ′(1 + s)e−iα2a , B =

1
2
T ′(1 − s)eiα2a (4.4.26)

and then into Eq. (4.4.2). Omitting the intermediate steps, we give the
final result:

η2 =
2s[(1 + s)eiα2(x−a) + (1 − s)e−iα2(x−a)]

(1 + s)2e−2iα2a − (1 − s)2e2iα2a
(4.4.27)
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so that the square of the envelope is

|η2|2 =
4s2[cos2 α2(x − a) + s2 sin2 α2(x − a)]

4s2 + (1 − s2)2 sin2 2α2a
. (4.4.28)

The free surface within −a < x < a is composed of two wavetrains traveling
in opposite directions, resulting in interference and a partially standing
wave with amplitude varying along x. In particular, at the edge x = a,

|η2|2 =
4s2

4s2 + (1 − s2)2 sin2 2α2a
, x = a (4.4.29)

so that the interference is destructive, that is, |η2|2 is the smallest, when
2α2a = (n− 1

2 )π, and constructive, that is, |η2|2 is the largest, when 2α2a =
nπ. Since the fluid at x = a acts as a piston for the motion in the region of
x > a, its amplitude of motion determines the amplitude of the transmitted
wave.

The features of interference just deduced mathematically can also be
explained physically. When a wave first strikes the edge at x = −a, part
of the wave is transmitted into −a < x < a and part is reflected. Upon
reaching the edge at x = a, the transmitted wave undergoes the same
scattering process, whereupon part of the wave is transmitted to x > a

and part is reflected toward the edge x = 0. This back-and-forth process
of transmission and reflection is repeated indefinitely for all the waves of
the periodic train. The total left-going wave in x < −a is the sum of the
reflected waves from x = −a and all the transmitted waves from −a < x < a

to x < −a, whereas the total right-going wave in x > a is the sum of all
the transmitted waves from −a < x < a to x > a. Now if 4a is an integral
multiple of wavelength λ2, each time a typical wave crest completes a round
trip, being reflected from x = a to x = −a and back to x = a, its phase
is changed by π twice. Therefore, all the crests which arrive at x = a at
the same time after different numbers of round trips . . . ,−2,−1, 0, 1, 2, . . .

have the same phase; they interfere constructively and the total amplitude
at x = a is consequently the larger. On the other hand, if 4a is an odd
multiple of half-wavelength λ2/2, then after a round trip a typical wave
crest is opposite in phase with the other crests which lag or lead by an
odd number of round trips. This interference is destructive, resulting in the
smallest net amplitude at x = a.

Furthermore, taking the x derivative of |η2|2, we find ∂|η2|2/∂x ∝
sin 2α2(x − a) so that the intensity |η2|2 is extremum at 2α2(x − a) = nπ,



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

4.5. Transmission and Reflection by a Slowly Varying Depth 151

that is, x−a = 1
2nλ2. It follows from Eq. (4.4.28) that the extremum values

are

Extr |η2|2 =
4s2

4s2 + (1 − s2)2 sin2 2α2a
if n = even ,

and

Extr |η2|2 =
4s2

4s2 + (1 − s2)2 sin2 2α2a
if n = odd .

In both cases the extremum values are the largest when 2α2a are integer
multiples of π. Thus, the peaks of T versus 2α2a coincide with the peak
response in the region −a < x < a.

Finally, we consider the limit of a short step α2a ↓ 0. By Taylor’s ex-
pansion of Eq. (4.4.23), it follows that

|T |2 = 1 − (1 − s2)2

s2
(α2a)2 + O(α2a)4 ,

|R|2 =
(1 − s2)2

s2
(α2a)2 + O(α2a)4 .

Thus, a barrier much shorter than the wavelength is quite transparent to
incident waves. In nature, real fluid effects introduce flow separation, hence
dissipation, and change the above conclusion in important ways.

4.5 Transmission and Reflection by a Slowly
Varying Depth

There are certain special depth profiles (linear, parabolic) for which ana-
lytical solutions are possible (Kajiura, 1961). The mathematics involved is
straightforward but can be tedious. For slowly varying bottoms, it is pos-
sible to derive some general but approximate results which are physically
revealing.

For a depth varying with the scale that is much longer than the local
wavelength, the classical WKB approximation is a natural starting point.
Assuming one-dimensional topography, that is, h = h(x), the equation of
motion is, from Eq. (4.1.26),

d

dx

(
gh

dη

dx

)
+ ω2η = 0 . (4.5.1)
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Consider a wave propagating in the positive x direction,

η = A(x̄)eiS(x̄)/µ , (4.5.2)

where x̄ = µx with µ being a small parameter characterizing the bottom
slope. As in Section 2.1, we denote

k(x̄) =
1
µ

dS

dx
=

dS

dx̄
. (4.5.3)

Substituting the derivatives of η into Eq. (4.5.1), we get

(−ghk2 + ω2)A + µ

{
g
dh

dx̄
ikA + gh

[
ik

dA

dx̄
+ ih

d(kA)
dx̄

]}

+ µ2

(
g
dh

dx̄

dA

dx̄
+ gh

d2A

dx̄2

)
= 0 .

From O(µ0) the dispersion relation follows

ω2

g
= k2h , (4.5.4)

while from O(µ) we have, after some simple manipulations,

d

dx
(khA2) = 0

so that

(khA2) = const ≡ E2
0 ≡ (khA2)x∼−∞ . (4.5.5)

In terms of E0 the leading-order solution is

η =
E0

(kh)1/2
eiS/µ =

E0

(kh)1/2
exp
[

i

µ

∫ x̄

k(x̄) dx̄

]
, (4.5.6)

where E2
0 is proportional to the energy flux of the wave incident from

x ∼ −∞.
It is possible to superimpose waves traveling in both directions so that

the general solution is

η ∼= 1
(kh)1/2

(E0e
iS/µ + F0e

−iS/µ) , (4.5.7)

where F 2
0 is proportional to the incident wave energy from the right,

F 2
0 = (khA2)x∼+∞ .
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The solution (4.5.6) or (4.5.7) gives no account of reflection. Extensions
of the preceding analysis to weak reflection were developed in other physical
contexts by Bremmer (1951) and others and applied to shallow-water waves
by Ogawa and Yoshida (1959). For a very good summary see Kajiura (1961)
or Wait (1962); their reasoning is followed here.

Beginning from the mass and momentum equations, it is convenient to
define uh = Q so that

iωη =
dQ

dx
, (4.5.8)

iωQ = gh
dη

dx
. (4.5.9)

From Eq. (4.5.7) the discharge to the leading order is given by

iωQ ∼= ig(kh)1/2(E0e
iS/µ + F0e

−iS/µ) , (4.5.10)

the omitted term being O(µ). We now follow Bremmer and replace E0

and F0 in Eqs. (4.5.7) and (4.5.10) with two unknown functions E and F ,
that is,

η =
1

(kh)1/2
(EeiS/µ + Fe−iS/µ) , (4.5.11)

iωQ = ig(kh)1/2(EeiS/µ − Fe−iS/µ) , (4.5.12)

which are now taken as the exact solution to Eqs. (4.5.8) and (4.5.9). Upon
substitution we obtain a pair of equations governing E and F :

dE

dx
eiS/µ − dF

dx
e−iS/µ = − µ

(kh)1/2

d(kh)1/2

dx̄
(EeiS/µ − Fe−iS/µ)

and

dE

dx
eiS/µ − dF

dx
e−iS/µ =

µ

(kh)1/2

d(kh)1/2

dx̄
(EeiS/µ + Fe−iS/µ) .

The derivatives dE/dx and dF/dx can be solved to give

dE

dx
=

µ

(kh)1/2

d(kh)1/2

dx̄
Fe−2iS/µ , (4.5.13a)

dF

dx
=

µ

(kh)1/2

d(kh)1/2

dx̄
Ee2iS/µ , (4.5.13b)
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which are still exact. We now introduce the perturbation expansions

E = E0 + µE1 + µ2E2 + · · · ,

F = F0 + µF1 + µ2F2 + · · · .

Direct substitution yields

dE0

dx
=

dF0

dx
= 0 ,

dEn+1

dx
=
[

d

dx̄
ln(kh)1/2

]
Fne−2iS/µ ,

and

dFn+1

dx
=
[

d

dx̄
ln(kh)1/2

]
Ene2iS/µ ,

which can be integrated to give

E0 = const , F0 = const , (4.5.14a)

En+1 =
∫ x

−∞

[
d

dx̄
ln(kh)1/2

]
Fne−2iS/µ dx , (4.5.14b)

Fn+1 =
∫ x

∞

[
d

dx̄
ln(kh)1/2

]
Ene2iS/µ dx . (4.5.14c)

The lower limits of integration are chosen such that

En(−∞) = 0 , Fn(∞) = 0 , n = 1, 2, 3, . . . .

From now on the parameter µ may be set to unity and x̄ restored to x. The
solution is complete.

As a special case, let F0 = 0 so that the incident wave is from left to
right. Then,

E = E0 + µE1 + µ2E2 + µ3E3 + · · · , x ∼ +∞ (4.5.15)

represents the transmitted wave, while

F = µF1 + µ2F2 + · · · , x ∼ −∞ (4.5.16)

represents the reflected wave. To O(µ) the reflection coefficient is

R1 =
(

F1

E0

)
x∼−∞

= −
∫ ∞

−∞
dx

[
d

dx
ln(kh)1/2

]
e2iS/µ . (4.5.17)
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The integrals can be carried out by quadrature once ω and h(x) are
prescribed.

To gain some physical understanding let us assume that h differs slightly
from a constant h0,

h = h0[1 + q(x)] , q � 1 , (4.5.18)

then

ω2

g
= k2h0(1 + q)

and

k =
ω

(gh0)1/2
(1 + q)−1/2 ∼= k0

(
1 − q

2

)
so that

kh ∼= k0h0

(
1 +

q

2

)
.

Expanding the logarithm, we get

d

dx
ln(kh)1/2 ∼= 1

4
dq

dx

and ∫ x

0

k dx ∼= k0x .

Thus, for small perturbations the reflection is approximately

R1 = −
∫ ∞

−∞

1
4

dq

dx
e2ik0x dx . (4.5.19)

Let us consider several special cases where the depth changes from one
constant to another. If the depth changes discontinuously by an amount
∆h0, that is,

q = ∆H(x) , H(x) = Heaviside function (4.5.20)

where δ � 1, we have

R1 = −1
4
∆ (4.5.21)

which is constant. The above result can also be deduced as a limit of
Eq. (4.2.17), even though a discontinuity is not consistent with the as-
sumption of slow variation.
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If the depth changes linearly from x = − 1
2L to x = + 1

2L by an amount
∆, then

q =
(

∆
L

)
x , (4.5.22)

so that

R1 = −∆
4

∫ L/2

−L/2

eik0x dx

L
= −∆

4
sin k0L

k0L
(4.5.23)

which oscillates with k0L; the envelope diminishes as k0L → ∞.
Finally, if the transition is infinitely smooth and can be represented by

an error function of x, then

d

dx
q =

∆
π1/2L

e−x2/L2
(4.5.24)

is Gaussian so that

R1 = − ∆
4π1/2L

∫ ∞

−∞
e−(x/L)2e2ik0x dx = −∆

4
e−k2

0L2
. (4.5.25)

Note that for this case R1 diminishes exponentially in (k0L)2.
The preceding examples differ from one another significantly in their

rates of attenuation with respect to k0L; the smoother profile attenuates
faster with increasing k0L. This fact can be proven more generally from
Eq. (4.5.17) (Felsen and Marcuvitz, 1973). Let h, hence k also, be different
from constant only within the range x1 < x < x2 with x2 − x1 = L. We
rewrite Eq. (4.5.17)

R1 = −
∫ x2

x1

e2iS d

dx
ln(kh)1/2 dx .

If dh/dx is finite at the end points x = x1, x2 but d2h/dx2 is not, we can
integrate by parts once to get

R1 = −
{

e2iS 1
2ik

[
d

dx
ln(kh)1/2

]}x2

x1

+
∫ x2

x1

dx e2iS d

dx

{
1

2ik

[
d

dx
ln(kh)1/2

]}
.

From the integrated term above it is clear that R1 = O(k0L)−1, which
agrees with Eq. (4.5.23). If d2h/dx2 is finite at the ends but d3h/dx3 is
not, then the last integral above can be partially integrated once more to
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give a term that is of the order O(k0L)−2. More generally, if dnh/dxn is
finite at both ends, then R1 = O(k0L)n−1. If the profile is infinitely smooth
which implies that x1 → −∞ and x2 → ∞, then R1 decays faster than any
algebraic power of k0L0.

The result that reflection depends strongly on the smoothness at two
points invites mathematical curiosity, since such a local property can hardly
be so influential from the physical standpoint. Indeed Eq. (4.5.25) implies
that the reflection coefficient is transcendentally small for infinitely smooth
topographies. In a highly mathematical paper, Meyer (1979b) abandoned
the WKB approximation and showed the reflection coefficient to be of the
form exp[−α(k0L)1/2] instead for both a Gaussian ridge and a shelf of
hyperbolic-tangent profile. Since the improvement is concerned only with
a small quantity, we do not pursue the matter further here. The interested
reader may consult Meyer’s paper for details and references.

4.6 Trapped Waves on a Stepped Ridge

As shown in Section 4.3, certain sinusoidal waves may exist at a depth
discontinuity, but are unable to propagate from shallow to deep water. Let
us study what can happen on a shelf with two edges at a finite distance
2a apart. It will be found that eigenfrequencies exist which correspond to
modes trapped over the shelf. These modes are analogous to the so-called
bound states in a square-well potential in quantum mechanics and to Love
waves in a layered elastic half-space. Indeed, the analyses of trapped long
waves (Snodgrass, Munk, and Miller, 1962; Longuet–Higgins, 1967) can be
borrowed from any standard treatise on quantum mechanics (e.g., Bohm,
1951).

Consider the geometry of Fig. 4.5 with h = h2 over the ridge −a < x <

a; the general solution is

η2 = (Beiα2x + Ce−iα2x)eiβy (4.6.1)

where α2 = (k2
2 − β2)1/2. We are only interested in the solution which

attenuates to zero at infinities on either side of the ridge; hence

η1 = Aeγ1(x+a)eiβy , x < −a , (4.6.2)

and

η3 = De−γ1(x−a)eiβy , x > a , (4.6.3)
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where γ1 = (β2 − k2
1)

1/2. It is assumed that

k2 > β > k1 or β(gh1)1/2 > ω > β(gh2)1/2 . (4.6.4)

The coefficients A, B, C, and D are as yet arbitrary. Continuity of η and
h∂η/∂x at x = ±a gives four conditions

A = Be−iα2a + Ceiα2a , (4.6.5)

γ1h1A = iα2h2(Be−iα2a − Ceiα2a) , (4.6.6)

D = Beiα2a + Ce−iα2a , (4.6.7)

−γ1h1D = iα2h2(Beiα2a − Ce−iα2a) . (4.6.8)

For a nontrivial solution the coefficient determinant of the simultaneous
Eqs. (4.6.5)–(4.6.8) must vanish:

(γ1h1 − iα2h2)2e−2iα2a − (γ1h1 + iα2h2)2e2iα2a = 0 (4.6.9)

which can be manipulated to give

tan 2α2a =
2γ1h1α2h2

(α2h2)2 − (γ1h1)2
. (4.6.10)

Let

γ1h1

α2h2
= tan δ , (4.6.11)

then Eq. (4.6.10) becomes

tan 2α2a =
2 tan δ

1 − tan2 δ
= tan 2δ ,

hence

δ =
1
2
nπ + α2a . (4.6.12)

Taking the tangent of both sides of Eq. (4.6.12), we get

tan δ =
γ1h1

α2h2
=

(
tan α2a

− cotα2a

)
,

(
n = even

n = odd

)
, (4.6.13)

or

h1

h2

(β2 − k2
1)

1/2

(k2
2 − β2)1/2

=

(
tan(k2

2 − β2)1/2a

− cot(k2
2 − β2)1/2a

)
,

(
n = even

n = odd

)
.
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Since

k2
2 =

ω2

gh2
and k2

1 =
ω2

gh1
=

h2

h1
k2
2 ,

Eq. (4.6.13) may be expressed in terms of k2 alone,

h1

h2

[β2 − (h2/h1)k2
2 ]1/2

(k2
2 − β2)1/2

=

(
tan(k2

2 − β2)1/2a

− cot(k2
2 − β2)1/2a

)
,

(
n = even

n = odd

)
.

(4.6.14)

By the change of variables

ξ = a(k2
2 − β2)1/2 = α2a , (4.6.15)

we obtain

a

(
β2 − h2

h1
k2
2

)1/2

=
[
k2
2a

2

(
1 − h2

h1

)
− ξ2

]1/2

so that Eq. (4.6.14) becomes

(h2/h1)ξ
(ξ2∗ − ξ2)1/2

=

(
cot ξ

− tan ξ

)
,

(
n = even

n = odd

)
, (4.6.16)

with

ξ2
∗ = k2

2a
2

(
1 − h2

h1

)
=

(ωa)2

gh2

(
1 − h2

h1

)
. (4.6.17)

For a given ω and geometry, ξ∗ is fixed; ξ is solved from Eq. (4.6.16), and
the eigenwavenumber a2 follows from Eq. (4.6.15). Let us consider odd and
even n separately.

n odd: The eigenvalues can be found graphically and correspond to
intersections of the curve y1 = tan ξ with the curve

y2 = −h2

h1

ξ

(ξ2∗ − ξ2)1/2

as shown in Fig. 4.7(a). The y2(ξ) curve is odd in ξ, passes through the
origin, and approaches ±∞ as ξ approaches ±ξ∗.

From the same figure it is clear that the roots appear in pairs ±ξn and
only +ξn needs to be considered. For 1

2π < ξ∗ < 3
2π there is one mode

with 1
2π < ξ1 < π. For 3

2π < ξ∗ < 5
2π there are two modes ξ1 and ξ3, with
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Figure 4.7: Graphic solution of eigenvalues: (a) odd n, (b) even n.

3
2π < ξ3 < 2π. In general, if (n − 1

2 )π < ξ∗ < (n + 1
2 )π, there are n modes

ξ1, ξ3, . . . , ξ2n−1 (n odd) with the mth root in the range(
m − 1

2

)
π < ξm < mπ .

Thus, there is a new trapped mode for every increase of ξ∗ by π, which
can be achieved by increasing ωa or decreasing shelf depth h2 for a fixed
h2/h1.

n even: We need to examine the intersections of y1 = cot ξ with

y2 =
h2

h1

ξ

(ξ2∗ − ξ2)1/2
.

The intersections are shown in Fig. 4.7(b). For 0 < ξ∗ < π there is one
trapped mode, ±ξ0 with 0 < ξ0 < 1

2π; for π < ξ∗ < 2π there are two modes
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±ξ0 and ±ξ2, with π < ξ2 < 3
2π. In general, for (n + 1)π > ξ∗ > nπ there

are n + 1 modes: ξ0, ξ2, . . . , ξ2n.
Summarizing, the roots ξn form a sequence ξ0 < ξ1 < ξ2 < · · · ; the

corresponding eigenwavenumbers also form an increasing sequence α0 <

α1 < α2 < α3 < · · · .
What are the free surfaces of these modes like? From Eqs. (4.6.5) and

(4.6.6), we have

B

C
= −e2iα2a

(
γ1h1 + iα2h2

γ1h1 − iα2h2

)
= −e2iα2a tan δ + i

tan δ − i

= e2iα2a cos δ − i sin δ

cos δ + i sin δ
= e2i(α2a−δ) = einπ . (4.6.18)

The last equality follows from Eq. (4.6.12). For n = even, B = C; from
Eqs. (4.6.5) and (4.6.7), A = D, and the displacement is proportional to
cosα2x, see Eqs. (4.6.1)–(4.6.3). Hence n = even corresponds to an even
mode. Similarly, for n = odd, B = −C and A = −D; the displacement is
proportional to sinα2x and odd in x. The first few modes are sketched in
Fig. 4.8.

The even modes can be regarded alternatively as the trapped modes
on an idealized continental shelf of width a with x = 0 being the coast-
line. As an approximate model for the California Shelf, Miles (1972) has
taken h2 = 600 m, h1 = 3600 m, and ξ∗ = 2.19π which for a = 70 km

Figure 4.8: Trapped modes on a ridge.
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corresponds to T = 2π/ω = 27.78 min = 1
6 × 104 s. The three trapped

modes are at ξ0
∼= 1

2π, ξ2
∼= 1.45π, and ξ4

∼= 2.15π, so that 2π/α0 = 280 km,
2π/α2 = 96 km, and 2π/α4 = 65 km, which can be important to resonate
the so-called Helmholtz mode in a harbor, a subject to be discussed in the
next chapter. For the same ω and β there is no solution that corresponds to
imaginary γ1; no propagation in the x direction is possible. It follows that
trapped waves over an infinitely long ridge or shelf of finite width cannot be
excited by sinusoidal incident waves according to linearized theory. How-
ever, excitation is possible by transient waves, wind stress, or on a ridge
(or shelf) of finite length. Furthermore, nonlinear mechanisms of excitation
cannot be ruled out.

Exercise 4.5: Waves Trapped in a Jet-Like Stream

In Chapter Three the presence of a variable current is seen to be similar to
a variable depth in influencing waves. Examine shallow-water long waves
in a strong current U = 0, V = V (x), on a sea of variable depth z = −h(x).
Show that the equations for the wave perturbations are

∂ζ

∂t
+ V

∂ζ

∂y
+

∂uh

∂x
+ h

∂v

∂y
= 0 , (4.6.19)

ζ
∂u
∂t

+ V
∂u
∂y

+ u
∂V

∂x
ey = −g∇ (4.6.20)

where the current set-down is zero.
Assume (

ζ(x, y, t)

u(x, y, t)

)
=

(
ζ̂(x)

û(x)

)
ei(βy−ωt) , (4.6.21)

and show that

(hζ̂′)′ +
2βV ′h
ω − βV

ζ̂′ +
[
(ω − βV )2

g
− β2h

]
ζ̂ = 0 . (4.6.22)

Thus, if V (x) > 0 within a finite strip |x| < a and vanishes outside, and if
β < 0 (waves oppose the current), waves satisfying the condition

ω2

gh
< β2 <

(ω − βV )2

gh
(4.6.23)

will be trapped in the current.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

4.7. Some General Features of One-Dimensional Problems 163

For the special case where h = const for all x, V = const if |x| < a and
V = 0 if |x| > a, study the eigenvalues β of the trapped waves. Analyze
also a scattering problem where β2 < ω2/gh.

4.7 Some General Features of One-Dimensional
Problems — Trapped Modes and the
Scattering Matrix

4.7.1 A Qualitative Discussion of Trapped Waves

Let us discuss qualitatively the existence of trapped modes for a continuous
one-dimensional topography h = h(x). Substituting ζ = X(x) exp[i(βy −
ωt)] into Eq. (4.1.5), we obtain

(hX ′)′ +
(

ω2

g
− β2h

)
X = 0 . (4.7.1)

The qualitative features may be studied in the so-called phase plane of X

and Y , where Y is defined by

Y = hX ′ or X ′ =
1
h

Y . (4.7.2)

Equation (4.7.1) may be written

Y ′ +
(

ω2

g
− β2h

)
X = 0 . (4.7.3)

Division of Eq. (4.7.3) by Eq. (4.7.2) gives

dY

dX
=

−(ω2/g − β2h)X
(1/h)Y

(4.7.4)

which is a first-order equation in X and Y with x as the parameter. In
the phase plane the solution to Eq. (4.7.4) is represented by a trajectory.
Assume that h(x) approaches a finite constant at infinity, that is,

h(x) → h∞ , |x| → ∞ ,

and assume further that

β2h0 <
ω2

g
< β2h∞ (4.7.5)
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so that there are two points (x1, x2) at which

ω2

g
= β2h(xl) , l = 1, 2

(see Fig. 4.9). In the theory of differential equations, these two points are
called the turning points on opposite sides of which the solution behaves

Figure 4.9: Variation of β2h with x for a submarine ridge.

Figure 4.10: The solution trajectories in the phase plane (left) and the corresponding
free surface (right) for the first few trapped modes. Dash lines in the phase planes are

Y = ±Hh
1/2
∞ x. Arrows along the phase-plane curves show the direction of increasing x.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

4.7. Some General Features of One-Dimensional Problems 165

differently. In the ranges x > x2 and x < x1, the factor h(ω2/g − β2h) is
negative, and the solution X(x) is monotonic in x. In particular, for large x

h

(
β2h − ω2

g

)
→ h∞

(
β2h∞ − ω2

g

)
≡ h∞H2 > 0

so that X ∝ e−H|x|. In the phase plane the solution point (X, Y ) ap-
proaches the origin as x → ∓∞ along the straight lines Y = ±Hh

1/2
∞ X

which are integrals of the limiting form of Eq. (4.7.4). Within the range
x1 < x < x2, the coefficient h(ω2/g−β2h) is positive and the solution X(x)
is in general oscillatory in x. The trajectory in the phase plane can wind
around the origin and cross the X, Y axes. Several possible solutions are
sketched in Fig. 4.10 for both the phase plane and the physical plane. Thus,
a wavy surface exists only in the range (x1, x2) and decays exponentially
outside it; this feature is precisely the characteristics of trapped waves. If
ω2/g > β2h∞, there is no monotonic region and the entire fluid can have
wave-like motion; waves are no longer trapped. If ω2/g < β2h0, there is no
periodic wave anywhere.

4.7.2 The Scattering Matrix [S(α)]

Consider oblique incidence on a submarine ridge with h(x) → h∞ as
|x| → ∞. We rewrite Eq. (4.7.1)

(aX ′)′ +
(

ω2

gh∞
− β2a

)
X = 0 with a(x) =

h

h∞
, (4.7.6a)

or, since ω2/gh∞ = α2 + β2,

(aX ′)′ + [α2 + β2(1 − a)]X = 0 (4.7.6b)

which is a Stürm–Liouville equation. By the transformation X = a−1/2ξ,
Eq. (4.7.6b) becomes the time-independent Schrödinger equation in quan-
tum mechanics:

ξ′′ + [λ − U(x)]ξ = 0

where

λ = −β2 , −U = h−1

(
α2 + β2 +

3
4

h′2

h
− 1

2
h′

h
− h′′

2

)
.

Many general properties of Schrödinger’s equation are known in quantum
scattering theory. We shall only discuss a few of these properties with
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respect to Eq. (4.7.6). For a more extensive study reference should be
made to Roseau (1952) and Sitenko (1971).

Let us consider a general scattering problem whose asymptotic be-
havior is

X ∼ A−eiαx + B−e−iαx , x ∼ −∞ , (4.7.7a)

∼ A+eiαx + B+e−iαx , x ∼ +∞ . (4.7.7b)

Thus, A− and B+ correspond to the incoming waves from the left and
the right, respectively, and A+ and B− correspond to the scattered waves
toward the right and the left, respectively.

Let us also define f1(x, α) to be the solution to the left-scattering
problem

f1(x, α) ∼ 1
T1

eiαx +
R1

T1
e−iαx , x ∼ −∞ , (4.7.8a)

∼ eiαx , x ∼ +∞ , (4.7.8b)

and f2(x, α) to be the solution to the right-scattering problem

f2 ∼ e−iαx , x ∼ −∞ , (4.7.9a)

∼ 1
T2

e−iαx +
R2

T2
eiαx , x ∼ +∞ . (4.7.9b)

In quantum mechanics f1 and f2 are called Jost functions. Now f1 and f2

are linearly independent solutions since their Wronskian

W (f1, f2) ≡ f1f
′
2 − f2f

′
1 = −2iα

T1
(from x ∼ −∞)

= −2iα

T2
(from x ∼ +∞)

does not vanish in general. As a by-product the preceding equation implies
at once

T1 = T2 , (4.7.10)

that is, the right and left transmission coefficients are equal even if h(x) is
not symmetrical. Also, due to the linear independence of f1 and f2 we may
express X in Eqs. (4.7.7) as a linear combination,
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X = Cf1 + Df2 . (4.7.11)

Comparing the asymptotic values of Eqs. (4.7.11) and (4.7.7), we get

C

T1
= A− , C

R1

T1
+ D = B− ,

C + D
R2

T2
= A+ , D

1
T2

= B+ .

A+ and B− may be solved by eliminating C and D,

A+ = T1A− + R2B+ , B− = R1A− + T2B+

which may be expressed in matrix form:(
A+

B−

)
= [S]

(
A−
B+

)
(4.7.12a)

with

[S] =

[
T1 R2

R1 T2

]
. (4.7.12b)

As before, [S] is the scattering matrix, or S matrix, which is the general-
ization of Eqs. (4.2.13) and (4.2.15) for a very special depth profile.

4.7.3 Trapped Modes as Imaginary Poles of [S(α)]

In the result for a rectangular shelf let us replace γ1 = −iα1, so that the
eigenvalue condition (4.6.9) becomes

(1 + s)2e−2iα2a − (1 − s)2e2iα2a = 0 with s =
α1h1

α2h2
.

In view of Eqs. (4.4.21) and (4.4.22) the above equation amounts to the
vanishing of the denominators of R and T of the scattering problem, that
is, the trapped modes correspond to the positive imaginary poles of R and T

in the complex α plane. That the two physically different problems should
be so connected mathematically arouses curiosity. We now give a general
theory for arbitrary h(x) as long as h → h∞ when |h| → ∞.
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The Jost solutions f1(x, α) and f1(x,−α) are linearly independent since
their Wronskian

W [f1(x, α), f1(x,−α)] = f1(x, α)f ′
1(x,−α) − f1(x,−α)f ′

1(x, α)

= −2iα

does not vanish after using the asymptotic values at x ∼ +∞. Any solution
such as f2(x, α) can be expressed as a linear superposition of f1(x, α) and
f1(x,−α). From the behavior at x ∼ ∞, it is easy to see that

f2(x, α) =
R2

T2
f1(x, α) +

1
T2

f1(x,−α)

or

T2f2(x, α) = R2f1(x, α) + f1(x,−α) . (4.7.13)

Differentiating the preceding equation with respect to x, we have

T2f
′
2(α, x) = R2f

′
1(x, α) + f ′

1(x,−α) . (4.7.14)

Let us solve T2 and R2 from Eqs. (4.7.13) and (4.7.14):

T2 = − 2iα

W{f1(x, α), f2(x, α)} ,

R2 =
W{f1(x,−α), f2(x, α)}
W{f1(x, α), f2(x, α)} .

If there are poles for T2, they must correspond to the zeroes of

W{f1(x, α), f2(x, α)} = 0 .

Let the poles be denoted by αn. First, they must also be the poles of R2,
hence of [S(α)]. Second, at these poles 1/T2 = 0 and R2/T2 = finite so that
f2 behaves asymptotically as

f2 ∼ e−iαnx , x ∼ −∞ ,

∼
(

R2

T2

)
αn

eiαnx , x ∼ +∞ . (4.7.15)

Assume that these poles are complex with positive imaginary parts so that
f2 decays exponentially to zero as |x| → ∞, that is,
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αn = δn + iγn , γn > 0 .

From Eq. (4.7.6) it is simple to derive

[a(XX∗′ − X∗X ′)]′ = 2i(Imα2)|X |2 . (4.7.16)

Now letting X = f2, integrating both sides of Eq. (4.7.16) from −∞ to ∞,
and using the exponential behavior at |x| → ∞, we get

Im α2
n

∫ ∞

−∞
|f2|2 dx = 0

which implies

Im α2
n = 0 or δn = 0 . (4.7.17)

Thus, the poles are purely imaginary and the trapped modes are monoto-
nically decaying at large x.

For such an eigenvalue αn = iγn, the eigenfunction X may be taken to
be real. Multiplying Eq. (4.7.6a) by X and integrating by parts, we get∫ ∞

−∞
a(X ′)2 dx +

∫ ∞

−∞

(
β2a − ω2

gh∞

)
X2 dx = 0 .

Since (β2a − ω2/gh∞) → (β2 − ω2/gh∞) > 0 as x → ±∞, the above
equality implies that β2a − ω2/gh∞ < 0 for some range of x; otherwise X

is trivially zero. The condition (4.7.5) for the existence of trapped modes
is again confirmed.

4.7.4 Properties of [S(α)] for Real α

Returning to Eqs. (4.7.7) for the scattering problem, we now examine
some other properties of the S matrix. Consider α to be real, then from
Eqs. (4.7.6) and its complex conjugate, it can be shown that

a(XX∗′ − X∗X ′) = const . (4.7.18)

Equating the asymptotic values of the left-hand side at x ∼ −∞ and x ∼
+∞, we get

|A+|2 + |B−|2 = |A−|2 + |B+|2, (4.7.19)
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which states that the energy of the incoming waves equals the energy of
the outgoing waves. In view of Eq. (4.7.12a), Eq. (4.7.19) may be written

|A+|2 + |B−|2 = {A+, B−}
{

A∗
+

B∗
−

}

= {A−, B−}[S]T [S∗]

{
A∗

−
B∗

+

}

where [S]T is the transpose of [S]. It follows that

[S]T [S∗] = I =

[
1 0

0 1

]
(4.7.20)

which is called the unitary property of the S matrix. By the definition of
[S], Eq. (4.7.20) implies[

T1 R1

R2 T2

][
T ∗

1 R∗
2

R∗
1 T ∗

2

]
=

[
1 0

0 1

]
, (4.7.21)

which yields three independent relations:

|T1|2 + |R1|2 = 1 (4.7.22a)

|T2|2 + |R2|2 = 1 (4.7.22b)

T1R
∗
2 + R1T

∗
2 = 0 . (4.7.22c)

Equations (4.7.22a) and (4.7.22b) again represent energy conservation.
Because of Eq. (4.7.10), Eq. (4.7.22c) implies that

|R1| = |R2| . (4.7.23)

From Eqs. (4.7.7), the asymptotic behavior of the complex conjugate of
X is

X∗ ∼ A∗
−e−iαx + B∗

−eiαx , x ∼ −∞ , (4.7.24a)

∼ A∗
+e−iαx + B∗

+eiαx , x ∼ +∞ . (4.7.24b)

By comparison with Eqs. (4.7.7) it is clear that A∗
−, B∗

−, A∗
+, and B∗

+, may
be substituted for B−, A−, B+, and A+, respectively, so that Eq. (4.7.12a)
may be written
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{
B∗

+

A∗
−

}
= [S]

{
B∗

−
A∗

+

}
(4.7.25a)

or {
B+

A−

}
= [S∗]

{
B−
A+

}
. (4.7.25b)

On the other hand, we rewrite the solution X [Eqs. (4.7.7)] as

X ∼ B−ei(−α)x + A−e−i(−α)x , x ∼ −∞ , (4.7.26a)

B+ei(−α)x + A+e−i(−α)x , x ∼ +∞ , (4.7.26b)

which can be regarded as a problem with ω replaced by (−ω) and α replaced
by −α. Now B− and A+ are the incoming waves and A− and B+ are the
outgoing waves. By analogy to Eq. (4.7.12), we get{

B+

A−

}
= [S(−α)]

{
B−
A+

}
. (4.7.27)

Upon comparing Eqs. (4.7.25b) and (4.7.27), we conclude that

[S∗(α)] = [S(−α)] . (4.7.28)

In summary, Eq. (4.7.18), which is a consequence of Green’s formula,
has led to considerable information regarding the far fields. This approach
will be further explored in Chapter Eight.

Exercise 4.6: A Channel with Changing Width

Consider a channel which has a varying cross section only in the finite part
of x and approaches constant width and depth at infinities: (b, h) → (b1, h1)
as x ∼ −∞, and → (b2, h2) as x → +∞. Let (R1, T1) and (R2, T2) be the
left- and right-scattering coefficients, respectively. Show that

k1A1(1 − |R1|2) = k2A2|T1|2 , where A1 = b1h1 and A2 = b2h2 ,

(4.7.29a)

T1

T2
=

k1A1

k2A2
, (4.7.29b)

and
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|R1| = |R2| (4.7.30a)

|T1T2| = 1 − |R2|2 . (4.7.30b)

4.8 Edge Waves on a Constant Slope

As a special case of continuous depth variation we consider a straight and
long beach with constant slope (Eckart, 1951). Let the mean shoreline
coincide with the y axis, and let water be in the region x > 0. The bottom
is described by

z = −h = −sx , x > 0, s = const . (4.8.1)

Because the coefficients are constant in y and t, we try the solution

ζ = η(x)ei(βy−ωt) . (4.8.2)

Equation (4.1.9) then gives

xη′′ + η′ +
(

ω2

sg
− β2x

)
η = 0 . (4.8.3)

By the following transformation

ξ = 2βx , η = e−ξ/2f(ξ) . (4.8.4)

Eq. (4.8.3) may be rewritten

ξf ′′ + (1 − ξ)f ′ +
[

ω2

2βsg
− 1

2

]
f = 0 (4.8.5)

which belongs to the class of confluent hypergeometric equations (more
specifically Kummer’s equation, see Abramowitz and Stegun, 1972). In
general, there are two homogeneous solutions, one of which is singular at
the shoreline ξ = 0 and must be discarded. Nontrivial solutions which
render η finite at ξ = 0 and zero as ξ → ∞ exist when ω corresponds to
the following discrete values:

ω2

2βsg
= n +

1
2

, n = 0, 1, 2, 3, . . . . (4.8.6)

The associated eigenfunctions are proportional to Laguerre polynomials



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

4.8. Edge Waves on a Constant Slope 173

Ln(ξ) =
(−)n

n!

[
ξn − n2

1!
ξn−1 +

n2(n − 1)2

2!
ξn−2

− n2(n − 1)2(n − 2)2

3!
ξn−3 + · · · + (−)nn!

]
; (4.8.7)

for example, L0 = 1, L1 = 1−ξ, L2 = 1−2ξ+ 1
2ξ2, and so on. The first few

modes are plotted in Fig. 4.11 with the higher mode attenuating faster in
the offshore direction. Because these eigenfunctions correspond to modes
that are appreciable only near the shore, they are called edge waves. These
eigenfunctions are orthonormal in the following sense:∫ ∞

0

e−ξLnLmdξ = δnm . (4.8.8)

For m = n Eq. (4.8.8) implies that each mode has a finite energy.
Edge waves are of interest in coastal oceanography because the largest

amplitude, hence the largest run-up, occurs at the shore. They are also
believed to be responsible for rip currents near the shore when the shorter

Figure 4.11: Profiles of some edge wave modes.
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breaking waves are present. For large beach angles, similar edge waves
were discovered by Stokes (1847); the complete edge- wave spectrum which
includes both discrete and continuous parts was discovered by Ursell (1952).

Several mechanisms for generating edge waves are possible in nature.
On a large scale (typical wavelength 200 miles, period 6 h, amplitude
3 ft) edge waves can be excited by wind stress directly above the water.
Munk, Snodgrass, and Carrier (1956) and Greenspan (1958) have studied
the effect of pressure deviation in a storm traveling parallel to the coast;
their results are relevant to storm surges. Smaller-scale edge waves can
be excited by a nonlinear mechanism of subharmonic resonance (Guza
and Bowen, 1976; Minzoni and Whitham, 1977) as will be discussed in
Chapter Twelve. Medium-scale edge waves of periods 1–5 min can also be
excited by a long group of short swells through a nonlinear mechanism,
which will be further commented on in Chapter Thirteen.

4.9 Circular Bottom Contours

4.9.1 General Aspects

Next in complexity to straight and parallel contours is the topography
with concentric circular contours. In polar coordinates (r, θ), h = h(r), the
long-wave equation becomes

∇2η +
h′

h

∂η

∂r
+

ω2

gh
η = 0 , (4.9.1)

with

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
. (4.9.2)

Let us consider, for integer n,

η = R(r)ei(nθ−ωt) (4.9.3)

so that R satisfies

R′′ +
(

1
r

+
h′

h

)
R′ +

(
ω2

gh
− n2

r2

)
R = 0 (4.9.4)
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or

(hrR′)′ +
(

ω2

g
− n2h

r2

)
rR = 0 . (4.9.4’)

Now the behavior of R will be exponential or oscillatory according to

ω2

gn2
≷ h

r2
:

oscillatory
exponential

. (4.9.5)

Consider a submerged island with monotonically increasing h, 0 < h(0) <

h(r) < h(∞). For a fixed n, h/r2 behaves as shown in Fig. 4.12. The
solution is oscillatory outside a critical circle r = r0 where

ω2

g
=
(

n2h

r2

)
, r = r0 . (4.9.6)

In comparison with one-dimensional topography, the factor 1/r2 drastically
changes the situation and perfect trapping is no longer possible.

Figure 4.12: h/r2 versus r for a submerged island.

Figure 4.13: h/r2 versus r for an island with shoreline radius a.
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Consider an island with a shore at r = a so that h(r) = 0 for 0 < r < a

and increases monotonically for r > a. Then n2h/r2 behaves as shown in
Fig. 4.13. For ω2/gn2 < max(h/r2), the free surface is oscillatory near the
shore a < r < r1, exponentially attenuating in the region r1 < r < r2,
and oscillatory again outside (r > r2). Therefore, the island slope acts
as a barrier of finite thickness to trap waves of sufficiently low frequency,
or waves of fixed ω but sufficiently large n. For a large n, the barrier
appears thicker and is more effective in trapping energy, which means less
energy leakage. These facts have important consequences on the resonance
of trapped waves over a submarine seamount by externally incident waves.

Longuet–Higgins (1967) considered a special example of a stepped
circular sill where

h = h1 , 0 < r < a

= h2 , r > a with
h1

h2
< 1 (4.9.7)

as shown in Fig. 4.14(a). The variation of h/r2 is shown in Fig. 4.14(b).
For sufficiently low ω or high n there is also an annular region r1 < r < a

over the sill where oscillations occur. This annulus of oscillations surrounds
a central core of monotonic motion (0 < r < r1) and is separated from the
oscillating ocean (r > r2) by a barrier a < r < r2. If h1/h2 is very small,
the barrier is high so that trapping is very effective, though still imperfect,
and resonance of higher modes near the edge over the sill can be severe.

This mechanism of energy trapping is of practical interest in offshore
engineering where geological conditions may dictate the site of construction
to be on a seamount. The inherent danger of such a site is not always
evident to the designer. During a tour of a Texas tower on Brown’s Bank,
off the east coast of the United States, a party of inspectors, caught by a
Nor’easter, saw the storm waves moving the iron collars up and down the
piles by as much as 100 ft and threatening to break up the structure. These
collars weighed several tons each and were installed to protect the feet of
the piles. This phenomenon was believed to be an evidence of the resonant
mechanism discussed here (Meyer, 1970).

In the following subsection, we describe further details of Longuet–
Higgins’ example for which the analytical solution is relatively simple. For
other smooth circular topographies, a WKB approximation is possible.
However, for still more general two-dimensional topography, numerical
methods are inevitable.
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Figure 4.14: A submerged circular sill: (a) geometry; (b) h/r2 versus r.

4.9.2 Scattering of Plane Incident Waves by a
Circular Sill

Consider the circular sill as shown in Fig. 4.14. The top of the sill is at
the depth z = −h2. The adjacent water is assumed to be of constant
depth h1. For simple harmonic waves with frequency ω, the wavenumber is
k2 = ω/(gh2)1/2 in the region above the sill r < a and is k1 = ω/(gh1)1/2

around the sill r > a. Let the incident wave approach from x ∼ −∞ with
unit amplitude so that

ηI = eik1x . (4.9.8)

In the region r > a, there must be radiated (scattered) waves which prop-
agate away to r ∼ ∞. Hence if

η1 = ηI + ηR , (4.9.9)

ηR must satisfy, in polar coordinates,

∇2ηR + k2
1η

R =
1
r

∂

∂r

(
r
∂ηR

∂r

)
+

1
r2

∂2ηR

∂θ2
+ k2

1η
R = 0 (4.9.10)

and must be outgoing as r → ∞. Above the sill the displacement satisfies
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∇2η2 + k2
2η2 =

1
r

∂

∂r

(
r
∂η2

∂r

)
+

1
r2

∂2η2

∂θ2
+ k2

2η2 = 0 . (4.9.11)

At the edge of the sill r = a, the pressure and the flux must be matched:

η1 = η2 , (4.9.12)
r = a .

h1
∂η1

∂r
= h2

∂η2

∂r
, (4.9.13)

By separation of variables, it is easy to show that the general solution to
Eqs. (4.9.10) and (4.9.11) must consist of linear combinations of Bessel
functions, that is,

ηR ∼ cosnθ[Jn(k1r), Yn(k1r)] ,

η2 ∼ cosnθ[Jn(k2r), Yn(k2r)] .

In Appendix 4.A it will be shown that the incident wave can be expanded
as a series of partial waves, each with an angular dependence of cosnθ,
n = 0, 1, 2, . . . ,

eikx = eikr cos θ =
∞∑
0

εn(i)n cosnθJn(kr) (4.9.14)

where εn are the Jacobi symbols defined by ε0 = 1, εn = 2, for n = 1, 2, . . . .

We propose the following solution for η:

η1 =
∞∑
0

εn(i)n cosnθ[Jn(k1r) + BnH(1)
n (k1r)] , r > a , (4.9.15)

η2 =
∞∑

εn(i)n cosnθ[AnJn(k2r)] , r < a , (4.9.16)

where An and Bn are to be determined. In Eq. (4.9.16) only Jn’s have
been kept to ensure boundedness at the center r = 0. In Eq. (4.9.15), only
H

(1)
n ’s have been kept so that the scattered waves are outgoing. Since H

(2)
n

is never used here, we shall omit the superscript on the Hankel functions
and write simply

Hn(k2r) ≡ H(1)
n (k2r) . (4.9.17)

The coefficients An and Bn must be chosen so that the matching conditions
at r = a, Eqs. (4.9.12) and (4.9.13), are satisfied; thus
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AnJn(k2a) = Jn(k1a) + BnHn(k1a) ,

k2h2AnJ ′
n(k2a) = k1h1[J ′

n(k1a) + BnH ′
n(k1a)] ,

where primes denote derivations with respect to the argument.
In terms of

s =
k2h2

k1h1

(
=
(

h2

h1

)1/2

=
k1

k2

)
, υ = k2a , (4.9.18)

the solutions for An and Bn are

An =
−[Jn(sυ)H ′

n(sυ) − J ′
n(sυ)Hn(sυ)]

∆n
=

−2i

πsυ∆n
(4.9.19a)

and

Bn =
Jn(υ)J ′

n(sυ) − sJ ′
n(υ)Jn(sυ)

∆n
, (4.9.19b)

where

∆n ≡ −Jn(υ)H ′
n(sυ) + sJ ′

n(υ)Hn(sυ) . (4.9.19c)

Use has been made of the Wronskian identity:

Jn(ζ)H ′
n(ζ) − J ′

n(ζ)Hn(ζ) =
2i

πζ
(4.9.20)

which may be verified by writing the Bessel equation in Stürm–Liouville
form and by using the asymptotic behavior of Jn and Hn. When
Eqs. (4.9.19a)–(4.9.19c) are substituted into Eqs. (4.9.15) and (4.9.16), the
solution for η is fully determined.

The modal responses over the sill have been calculated by Longuet–
Higgins (1967), as shown in Fig. 4.15. Note that for the lowest mode n = 0,
the resonant amplification ratio is nearly 8, while increasing n leads to
much higher and sharper resonant peaks. Of course, the narrowness of a
peak implies that the corresponding mode is difficult to excite unless the
incident wavetrain is precisely tuned. If the tuning is good, then a weak
but persistent incident wave can cause a large response. This feature can
also be anticipated from Fig. 4.14 where a larger n leads to a thicker outer
barrier which makes it hard to acquire energy from the incident waves.
On the other hand, once the energy is trapped within the outer barrier,
it does not escape easily. These features have further ramifications in the
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Figure 4.15: Graph of An for h1/h1 = 1/16 and n = 0, 2, 4, and 6, giving the amplitude
of the response as a function of the frequency of the incident wave (from Longuet–Higgins,
1967, J. Fluid Mech. Reproduced by permission of Cambridge University Press).

transient excitation by short-lived incident waves,2 as will be described
in Chapter Five for the similar problem of harbor resonance. The large
numerical values of some of the amplification factors suggest that nonlinear
and/or frictional effects may also be important near these resonant peaks,
when the incident waves are steady.

Exercise 4.7: Scattering by a Circular Platform

A large circular platform of radius R is fixed on the mean free surface
z = 0 in a shallow sea of constant mean depth h. A plane incident wave
of long period ω arrives from x ∼ ∞. Find the scattered waves and the

2Longuet–Higgins (1967) studied the special case of an impulsive incident wave propor-
tional to δ(x − (gh1)1/2t).
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hydrodynamic pressure under the platform. Impose crude but physically
reasonable junction conditions at r = R.

4.10 Head-Sea Incidence on a Slender
Topography — The Parabolic Approximation

Before embarking on a general numerical method, let us describe the
approximate analysis of a slender island or a sill attacked by waves in-
cident along the longitudinal axis of the topography (head-sea incidence).
A crucial aspect of this method was originated in electromagnetics and has
been further developed in acoustics (see Tappert, 1977, for a review). The
present adaptation is based on the work of Mei and Tuck (1980) and the
critical appraisal by Bigg (1982). Similar ideas have also been extended to
deep-water waves (Haren and Mei, 1981) and to weakly nonlinear waves
(Yue and Mei, 1980, see Section 12.8).

Consider first an island with vertical sides in a shallow sea of constant
depth h. The length L of the island is assumed to be much greater than
the half-breadth B and the incident wavelength 2π/k, namely,

B

L
= µ � 1 and kL = ωL(gh)−1/2 � 1 . (4.10.1)

For head-sea incidence on a slender obstacle, the waves should roughly
remain propagating forward with the amplitude modulated slowly in both
horizontal directions, that is,

η(x, y) = A(x, y)eikx (4.10.2)

where A varies slowly in x and y. Substituting Eq. (4.10.2) into (4.1.11),
we get

2ikAx + Ayy + Axx = 0 . (4.10.3)

Now the length scale of A along x is L, 2ikAx/Axx = O(kL), hence Axx is of
secondary importance. In order to get something nontrivial, we retain Ayy;
the implied length scale along y is then O[L(kL)−1/2]. Let us introduce the
outer length scales as follows:

X =
x

L
, Y = y/(µα/2L) , (4.10.4)

and express
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η = A(X, Y )eiKXµ−α

(4.10.5)

with kL = Kµ−α and K = O(1); the leading order approximation to
Eq. (4.10.3) is

2iKAX + AY Y = 0 (4.10.6)

with a relative error O(µα). This equation is called the parabolic approx-
imation and the region defined by Eq. (4.10.4) will be referred to as the
parabolic region. Because of the resemblance to the heat equation, the
following initial and boundary conditions

A = 1 x = 0, |y| < ∞ , (4.10.7)

A → 1 x > 0, |y| ↑ ∞ (4.10.8)

are natural, where the incident wave amplitude has been taken to be unity.
The usual radiation condition is relevant to the region where O(x, y) = L

which lies outside the parabolic region, however.
Assuming symmetry about the x axis, we need be concerned only with

the side y > 0. The no-flux condition on the island wall then requires

∂η

∂y
=

dW

dx

∂η

∂x
on y = W (x) . (4.10.9)

Letting

W (x) = Bb(x) , 0 < b < 1 (4.10.10)

and using Eq. (4.10.5), we get, in terms of the normalized variables,

∂A

∂Y
= iKµ1−α/2b′A , on Y = µ1−α/2b(x) (4.10.11)

with a relative error of O(µα). With α = 2, both sides of Eq. (4.10.11) are
balanced

∂A

∂Y
= iKb′A on Y = b(x) . (4.10.12)

The initial-boundary-value problem as defined by Eqs. (4.10.6), (4.10.7),
(4.10.8) and (4.10.12) can be solved in general by numerical methods for
heat conduction in one dimension (Y ). Here X plays the role of time, and
the computation marches forward in X over discrete steps much greater
than a wavelength, hence is much more economical than the direct numer-
ical solution of the Helmholtz equation. For the special case of a parabolic
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half-body, b =
√

X, the approximate problem can be solved quickly by the
method of similarity as in Section 2.4; the result is:

A = 1 +
iK

2

(∫ Y/
√

X

∞
eiKξ2/2dξ

)(
eiK/2 +

iK

2

∫ ∞

1

eiKξ2/2dξ

)−1

.

(4.10.13)

Thus, the amplitude along the island remains constant. Without the slen-
derness assumption the parabolic cylinder can be solved exactly in terms
of parabolic coordinates (see Jones, 1964, p. 467).

We now turn to a sill whose top is submerged at the depth h0 < h.
Let the half-breadth B be much smaller than µα/2 (i.e., α < 2); the sill
appears practically as a thin line to the outer observer in the parabolic
region, causing a distributed flux ∂A/∂Y = V (X) along the X axis with
V �= 0, for 0 < X < 1, and V = 0, for X > 1. This problem resembles
the heat conduction in a semi-infinite rod with the variation of heat flux
prescribed at one end. The solution is formally

A(X, Y ) = 1 − 1 + i

2(πK)1/2

∫ X

0

dξV (ξ)
(X − ξ)1/2

exp
iKY 2

2(X − ξ)
, 0 < X < 1 .

(4.10.14)

Near the sill the appropriate inner variables are

X =
x

L
, Y =

y

µL
. (4.10.15)

Assume the inner solution to be of the form

η = A(X, Y )eiKXµ−α

, (4.10.16)

then outside the sill this solution must satisfy Eq. (4.1.11) which yields

∂2A

∂Y
2 + µ2−α2iK

∂A

∂X
+ µ2 ∂2A

∂X2
= 0 , Y > b(X) . (4.10.17)

Omitting terms of order O(µ2−α), we get

A = B + C(Y − b) . (4.10.18)

Over the sill, the governing Helmholtz equation is of the same form as
Eq. (4.1.11) but k2 must be replaced by k2

0 = ω2/gh0. Substitution of
Eq. (4.10.16) then gives
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∂2A

∂Y
2 + K2

(
h

h0
− 1
)

µ2(1−α)A = O(µ2−αA) . (4.10.19)

The solution which is symmetric about the X axis is

A = A cos

[
K

(
h

h0
− 1
)1/2

µ2(1−α)Y

]
, 0 < Y < b , (4.10.20)

where A(X) is the amplitude along the axis. Requiring the inner solutions
(4.10.18) and (4.10.20) to be continuous and to have equal normal flux
across Y = b, we get, to the leading order,

B = A cos

[
µ1−αK

(
h

h0
− 1
)1/2

b

]
(4.10.21)

and

−h0Aµ1−αK

(
h

h0
− 1
)1/2

sin

(
µ1−αK

(
h

h0
− 1
)1/2

b

)
= hC . (4.10.22)

We now match the inner approximation of Eq. (4.10.14) for small Y

A(X, Y ) ∼= 1 − 1 + i

2(πK)1/2

∫ X

0

dξV (ξ)
(X − ξ)1/2

+ V Y + · · · , Y � 1 ,

(4.10.23)

with the outer approximation of Eq. (4.10.20) for large Y � 1,

A ∼= B + CY , (4.10.24)

yielding

B = 1 +
1 + i

2(πK)1/2

∫ X

0

dξV (ξ)
(X − ξ)1/2

(4.10.25)

and

C = V µ1−α/2 . (4.10.26)

From Eqs. (4.10.21), (4.10.22), (4.10.25), and (4.10.26), B, C, and A may
be eliminated to give

1 + i

2(πK)1/2

∫ X

0

dξV (ξ)
(X − ξ)1/2

= 1 + Z(X)V (X) , (4.10.27)
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where

Z(X) =
hµα/2

h0K(h/h0 − 1)1/2
cot

[
µ1−αK

(
h

h0
− 1
)1/2

b

]
. (4.10.28)

We insist that Z = O(1) to make all terms in Eq. (4.10.27) of equal order
of magnitude, thus,

α = 2/3 and
h

h0
= µ−2/3 , (4.10.29)

that is, the sill must be much shallower than the surrounding sea bottom.
The flux V can be solved numerically from the integral equation (see

Mei and Tuck, 1980); afterward, the amplitude A along the sill axis can be
calculated.

Bigg (1982) has evaluated the present theory against numerical solutions
of the full Helmholtz equation. He cautions that Eq. (4.10.27) can be used
only when Eq. (4.10.29) is met and A and V do not change rapidly over
the sill. Numerically, when K increases to the value such that

cot

[
µ1−αK

(
h

h0
− 1
)1/2

bmax

]
= 0 ,

V and A become unbounded at the station where the sill is the widest.
Although this suggests resonance over the sill, the results are grossly invalid.
Several numerical examples reported by Mei and Tuck (1980) are unaccep-
table for these reasons. We present in Fig. 4.16 the center-line amplitude
along a parabolic sill with pointed ends for a range of parameters where
Eq. (4.10.27) is reliable. The wave amplitude outside the sill follows from
Eq. (4.10.14) and is omitted.

The parabolic approximation has been applied to short waves propagat-
ing over a slowly varying bottom. For example, Radder (1979) has exam-
ined a submerged circular shoal, neglecting the bending of rays. Diffraction
around curved rays has been studied by Liu and Mei (1976a) in the shadow
boundary created by the tip of a long breakwater (see Section 10.7 for the
limiting case of straight rays). Extensions by Lozano and Liu (1980) can
now deal with the local curvature of rays and the neighborhood of a focus.
Booij (1981) has treated the combined effects of varying current and depth.
As this approximation expedites numerical computations, it deserves to be
further developed for practical problems.
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Figure 4.16: Variation of wave amplitude along the centerline of a submerged sill in
head seas. The sides of the sill are a pair of parabolas y/L = ±µx(L − x)/L2. Numbers
next to each curve indicate the value of kL = ωL(gh)−1/2 of the incident wave. µ = 0.05,
h/h0 = 9.

4.11 A Numerical Method Based on Finite Elements

4.11.1 Introduction

The topography of the coastal region is seldom simple. To predict the
water response to wave excitations, it is desirable to have a method which
is capable of treating arbitrary geometry and depth. The method of finite
elements is particularly suitable to fill this need because the element sizes
and shapes can be freely varied to discretize the region of irregularity. After
scoring spectacular successes in structural mechanics, this method has been
extended to a variety of water-wave problems. While further refinements are
still being made, recent advances have already found applications in actual
design and planning on a large scale. We therefore devote this section to
describing some essentials in the context of long waves, emphasizing those
aspects which are unique to exterior problems. For the standard aspects of
the theory of finite elements, the reader is referred to many excellent texts,
for example, Zienkiewicz (1971) and Tong and Rossettos (1976).
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A common procedure of the finite-element method for a linear boundary-
value problem involves the following key steps:

1 Express the boundary-value problem as a variational principle where
a certain functional is stationary.

2 Discretize the region into finite elements (such as triangles, quadri-
laterals, and so on, for two-dimensional problems).

3 Select interpolating functions which approximate the solution inside
the finite elements (linear, quadratic, and so on). The interpolating
functions involve unknown coefficients.

4 For each element, perform the necessary differentiation and integra-
tion called for in the functional. For linear problems the functional
is quadratic and can be expressed as a bilinear form in the unknown
coefficients.

5 Assemble the element bilinear forms so that the total functional is
expressed as a global bilinear form.

6 Extremize the functional with respect to each unknown coefficient
and obtain a set of linear algebraic equations for the coefficients.

7 Solve the equations for the coefficients.
8 Compute quantities of physical interest.

Variational principles are not always easy to derive nor do they exist
for all physical problems. A more general and straightforward approach
is the so-called Galerkin weak formulation which will be touched upon
in Chapter Eight for two- and three-dimensional problems with vertical
variation. For problems of our interest, it can be shown that the variational
formulation is equivalent to the weak formulation. Both formulations in-
volve derivatives of order lower than those present in the original differential
equation; therefore, they allow the use of a class of interpolating functions
which are less differentiable (hence more general).

Usually the problems in structural mechanics involve a region of finite
extent (a plate, a shell, a machine part, an airplane fuselage, and so on),
whereas those in fluid mechanics often involve a theoretically infinite region.
One may, of course, attempt to use a large but finite exterior boundary
on which the condition at infinity is applied. After a numerical solution
is completed for this finite region, a new and more remote boundary is
introduced and the calculation is repeated. This procedure is continued
until further expansion gives rise to negligible corrections to the solution.
For wave problems the exterior boundary must be at least several wave-
lengths away from the bodies to give any degree of accuracy, while within
each wavelength there must be sufficient grid points for good resolution.
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Thus, in order to study a wide range of wavelengths, one must use either a
different grid for each narrow range of wavelengths or a single but enormous
total region dictated by the longest waves, with very fine grids dictated by
the shortest waves. Clearly, neither alternative is economical and many
artificial devices such as fictitious damping have been proposed.

To study diffraction by an island where the water depth is constant ex-
cept in the vicinity of the island, Berkhoff (1972) divided the fluid into two
regions by a circle which surrounds the island but is in the domain of con-
stant depth. Only the interior of the circle is discretized into finite elements,
while the solution in the exterior is represented by a continuous distribu-
tion of sources along the circle. The source solution is analytic and satisfies
exactly the governing equation and the boundary condition at infinity. The
source strength along the circle is unknown, however, and must be solved
along with the interior of the circle by requiring the continuity of pres-
sure and normal velocity across the circle. Different types of interpolating
functions are used in different regions; hence the method may be called a
hybrid-element method (HEM). The element with an analytical interpolat-
ing function is called the superelement, after Tong, Pian, and Lasry (1973).

Considerable freedom remains in the manner of enforcing the continu-
ity of pressure and normal velocity between the finite elements and the
superelement. An optimal choice is to cast the two matching conditions as
natural boundary conditions in a variational principle, so that they are au-
tomatically satisfied in the numerical procedure. This variational approach
has been successfully used for two-dimensional scattering and radiation
problems (Chen and Mei, 1974a, b; Bai and Yeung, 1974), two-dimensional
ship waves (Mei and Chen, 1976), three-dimensional scattering problems
(Yue, Chen, and Mei, 1976, 1978), as well as for wave problems involving
fluid-structure interactions (Mei, Foda, and Tong, 1979). The procedure of
Chen and Mei is described below.

4.11.2 The Variational Principle

We assume that complicated topography, such as large structures, curved
coastlines, varying depths, and so on, are localized within a closed contour
C, as shown in Fig. 4.17. Beyond C, the depth is everywhere constant, and
the fluid region is denoted by Ω. The incident plane wave is in the direction
θI :

ηI = Aeikr cos(θ−θI) = A

∞∑
n=0

εninJn(kr) cos n(θ − θI) . (4.11.1)
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Figure 4.17: Definitions.

Within Ω, the scattered wave, denoted by η̄S , must satisfy the Helmholtz
equation and the radiation condition and may be represented exactly by
the Fourier–Bessel expansion

η̄S = α0H0(kr) +
∞∑

n=1

Hn(kr)(αn cosnθ + βn sin nθ) (4.11.2)

where Hn’s are Hankel functions of the first kind. The expansion coefficients
αn, n = 0, 1, 2, . . . , and βn, n = 1, 2, 3, . . . , are to be found. The total
displacement in Ω will be denoted by η̄ (= ηI + η̄S). The region Ω is the
superelement.

Let the fluid region within C be denoted by Ω and the corresponding
displacement by η. Then η must satisfy Eq. (4.1.9) in Ω and Eq. (4.11.3)
on B. Across C the pressure and normal velocity must be continuous:

η = η̄ ,
∂η

∂n
=

∂η̄

∂n
on C . (4.11.3)

We shall now show that the stationarity of the functional

J(η, η̄) =
∫∫

Ω

1
2

[
h(∇η)2 − ω2

g
η2

]
dA

+
∫

C

h

[(
1
2
η̄S − ηS

)
∂η̄

∂n
− 1

2
η̄S ∂ηI

∂n

]
ds, (4.11.4)
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where ηS ≡ η − ηI , is equivalent to the boundary-value problem defining η

in Ω and η̄S in Ω. To prove the equivalence, we take the first variation of J :

δJ =
∫∫

Ω

[
h∇η · ∇δη − ω2

g
ηδη

]
dA

+
∫

C

h

[(
1
2
δη̄S − δηS

)
∂η̄

∂n
+
(

1
2
η̄S − ηS

)
∂δη̄

∂n
− 1

2
δη̄S ∂ηI

∂n

]
ds .

By partial integration and Gauss’ theorem, the first term above may be
written∫∫

Ω

h∇η · ∇δη dA =
∫∫

Ω

[∇ · (hδη∇η) − δη∇ · (h∇η)] dA

= −
∫∫

Ω

δη∇ · (h∇η) dA +
∫

C

hδη
∂η

∂n
ds +
∫

B

hδη
∂η

∂n
ds .

Since ηI is known, δηI = 0 and

δη̄S = δη̄ and δηS = δη .

It follows that

δJ = −
∫∫

Ω

δη

[
∇ · (h∇η) +

ω2

g
η

]
dA

+
∫

C

h

[(
1
2
δη̄ − δη

)
∂η̄

∂n
+
(

1
2
η̄S − ηS

)
∂δη̄

∂n

− 1
2
δη̄

∂ηI

∂n
+ δη

∂η

∂n

]
ds +

∫
B

h δη
∂η

∂n
ds

= −
∫∫

Ω

δη

[
∇ · (h∇η) +

ω2

g
η

]
dA

+
∫

C

h

[
δη

(
∂η

∂n
− ∂η̄

∂n

)
− ∂δη̄

∂n
(ηS − η̄S)

]
ds

+
1
2

∫
C

h

[
δη̄

∂η̄S

∂n
− η̄S ∂δη̄

∂n

]
ds +

∫
B

hδη
∂η

∂n
ds . (4.11.5)

The next to the last integral in the preceding equation is equal to

I(C) =
h

2

∫
C

[
δη̄S ∂η̄S

∂n
− η̄S ∂δη̄S

∂n

]
ds .



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

4.11. A Numerical Method Based on Finite Elements 191

Now apply Green’s formula to η̄S and δη̄S for the region Ω. Since both
η̄S and δη̄S satisfy the Helmholtz equation exactly, the above integral I is
unchanged if C is replaced by a circle C∞ of great radius. Along C∞, both
η̄S and δη̄S satisfy the radiation condition (4.1.38); hence

I(C∞) = 0 , implying I(C) = 0 .

With I removed from Eq. (4.11.5), it is clear that if Eqs. (4.1.9), (4.1.13b),
(4.11.3a), and (4.11.3b) are satisfied by η, then

δJ = 0 . (4.11.6)

Conversely, if δJ = 0, it is necessary that η satisfies Eq. (4.1.9) in Ω as the
Euler equation, Eq. (4.1.13b) on B, and Eqs. (4.11.3a) and (4.11.3b) on C

as the natural boundary conditions. The equivalence is thus proved.
The stationary functional involves integrals in and on the boundaries of

Ω and may be used as the basis for obtaining an approximate solution in
Ω. The method of finite elements is only one of the possibilities.

4.11.3 Finite-Element Approximation

Let us discretize the integrals in Eq. (4.11.4) by dividing the water area in Ω
into a network of finite elements whose sizes should be much less than both
the typical wavelength and the scale of local topographical variation. Since
the integrands in Eq. (4.11.4) contain only first-order derivatives of η, it is
only necessary to require the continuity of η in the finite-element domain.
For simplicity we choose the three-node triangular elements, within each of
which η is approximated by linear interpolating functions

η2(x, y) =
3∑

i=1

N2
i ηe

i = {Ne}T

1×3
{ηe}
3×1

(4.11.7)

where superscripts e represent quantities associated with an element. Here
{ } denotes a column vector and the superscript T denotes the transpose;
hence { }T is a row vector. The underlying products indicate the dimensions
of a matrix, for example, 1 × 3 means that the matrix has 1 row and
3 columns. More explicitly,

{ηe}T = (ηe
1, η

e
2, η

e
3) (4.11.8a)

{Ne}T = (Ne
1 , Ne

2 , Ne
3 ) (4.11.8b)

where
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Ne
i (x, y) =

ai + bix + ciy

2∆e
, i = 1, 2, 3 (4.11.9a)

a1 = xe
2y

e
3 − xe

3y
e
2 , b1 = ye

2 − ye
3 , c1 = xe

3 − xe
2 (4.11.9b)

∆e = area of element e

=
1
2

∣∣∣∣∣∣∣
1 xe

1 ye
1

1 xe
2 ye

3

1 xe
3 ye

3

∣∣∣∣∣∣∣ . (4.11.9c)

Other coefficients a2,3, b2,3, and c2,3 may be obtained by permutation while
xi, yi, and the coefficient ηe

i represent, respectively, the x, y coordinates and
the value of ηe at node i. Let the depth within an element be approximated
by a plane,

h2(x, y) =
3∑

i=1

N2
i he

i = {Ne}T

1×3
{he}
3×1

, (4.11.10)

he
i being the water depth at node i. When integration is performed for the

area integral, we obtain

I1 =
∫∫

Ω

1
2

[
h(∇η)2 − ω2

g
η2

]
dA

=
1
2

∑
e∈Ω

{ne}T

1×3
[Ke

1 ]
3×3

{ηe}
3×1

, (4.11.11)

where the element stiffness matrix [Ke
1 ] has the components

Ke
1ij

= he
β

∫∫
e

Ne
β

∂Ne
i

∂xα

∂Ne
j

∂xα
dx dy − ω2

g

∫∫
e

Ne
i Ne

j dx dy . (4.11.12)

When Eq. (4.11.9) is substituted into (4.11.12), the integrals over any
triangle e can be evaluated explicitly as∫∫

e

Ne
i Ne

j dx dy =
1
6
∆e , i = j

=
1
2
∆e , i �= j ,

(4.11.13a)

∫∫
e

∂Ne
i

∂xα

∂Ne
j

∂xα
dx dy =

1
4∆e

(bibj + cicj) , (4.11.13b)

he
β

∫∫
e

Ne
β

∂Ne
i

∂xα

∂Ne
j

∂xα
dx dy =

he
1 + he

2 + he
3

12∆e
(bibj + cicj) . (4.11.13c)
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The element stiffness matrix [Ke
1 ] is symmetric. Now assemble all the

element nodal displacements and define a total nodal displacement vector
{η} with E components where E is the total number of nodes in and on the
boundaries of Ω. In so doing, the element nodal points must be reindexed to
take into account the fact that the same node can belong to several adjacent
elements. The element stiffness matrices must be assembled accordingly to
give a total stiffness matrix [K1]. Finally, I1 is written

I1 =
1
2
{η}T

1×E

[K1]
E×E

{η}
E×1

. (4.11.14)

Because [Ke
1 ] is symmetric for all elements, [K1] is also symmetric.

The line integral in Eq. (4.11.4) may be written as follows:∫
C

h

[(
1
2
η̄S − ηS

)(
∂η̄S

∂n
+

∂ηI

∂n

)
− 1

2
η̄S ∂ηI

∂n

]
ds

=
∫

C

h
1
2
η̄S ∂η̄S

∂n
ds −

∫
C

h(η − ηI)
∂η̄S

∂n
ds −

∫
C

h(η − ηI)
∂ηI

∂n
ds

=
1
2

∫
C

hη̄S ∂η̄S

∂n
ds

I2

−
∫

C

hη
∂η̄S

∂n
ds

I3

−
∫

C

hη
∂ηI

∂n
ds

I4

+
∫

C

hηI ∂η̄S

∂n
ds

I5

+
∫

C

hηI ∂ηI

∂n
ds

I6

. (4.11.15)

For simplicity, C is assumed to be a circle of radius R. For computational
purposes we truncate the series (4.11.1) and (4.11.2) at the term m. With
Eq. (4.11.2), the line integral I2 can be evaluated analytically by invoking
the orthogonality of sines and cosines:

I2 =
π

2
kRh

[
2α2

0H0H
′
0 +

m∑
n=1

(α2
n + β2

n)HnH ′
n

]
,

where

H = H(1)
n (kR) , H ′

n ≡
[

d

d(kr)
H(1)

n (kr)
]

r=R

and R is the radius of C. Note that h on and outside C has been assumed
to be constant. Define the column vector

{µ}
1×M

such that
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{µ}T

1×M

= {α0, α1, β1, α2, β2, . . . , αm, βm}

with M = 2m + 1, and [K2] the diagonal matrix

[K2]
M×M

= πkRh diag{2H ′
0H0, H

′
1H1, H

′
1H1, . . . , H

′
mHm, H ′

mHm} .

The integral I2 can now be written

I2 =
1
2
{µ}T

1×M

{K2}
M×M

{µ}
M×1

. (4.11.16)

For integrals I3 and I4, we define for convenience the subset {η̂} of {η}
which lies on C (see Fig. 4.18)

Figure 4.18: Typical boundary and interior elements.
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{η̂}T

1×P

= {η̂1, η̂2, . . . , η̂P } .

Approximating the line integral over C by the sum of the integrals along
the straight elements η̂pη̂1, η̂1η̂2, . . . , η̂p−1η̂p, η by its linear interpolations,
and η̄S by its value at the center of each arc element on C, namely, at
θ = θj (see Fig. 4.18), we obtain

I3
∼= −1

2
kh

p∑
j=1

Lj(η̂j−1 + η̂j)

[
α0H

′
0 +
∑
n=0

H ′
n(αn cosnθj + βn sin nθj)

]

where Le
j is the length of the element segment j. This may be written in

matrix form

I3 = {η̂}T

1×P

[K3]
P×M

{µ}
M×1

(4.11.17)

where [K3] is a fully populated P × M matrix

{K3}
P×M

= −kh

2

×


2H′

0L1 · · ·H′
n(cos nθP +cos nθ1)L1 H′

n(sinnθP +sinnθ1)L1 · · ·
2H′

0L2 · · ·H′
n(cos nθ1+cos nθ2)L2 H′

n(sinnθ1+sinnθ2)L2 · · ·
...

...
...

2H′
0LP · · ·H′

n(cos nθP−1+cos nθP )LP H′
n(sinnθP−1+sinnθP )LP · · ·


(4.11.18)

in which n = 1, 2, . . . , m.
Similarly, the integral I4 is obtained:

I4 = −1
2
kh

P∑
j=1

Lj [i cos(θj − θI)] exp[ikR cos(θj − θI)] · (η̂j−1 + η̂j)

≡ −{Q4}T {η̂} (4.11.19)

where

{Q4}T =
1
2
kh{(qP − q1)L1, (q1 + q2)L2, . . . , (qP−1 + qP )LP } ,

qj = i cos(θj − θ1) exp[ikR cos(θj − θI)] , j = 1, 2, . . . , P .

Finally, the integral I5 can be evaluated analytically to give

I5 = −{Q5}T

1×M

{µ}
M×1

(4.11.20)
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where

{Q5}T

1×M

= 2πRkh{J0H
′
0, . . . , i

mJmH ′
m cosmθI , i

mJmH ′
m sin mθI} .

I6 is a known constant and drops out upon extremization, hence it is of
no interest.

Now we summarize the functional

J =
1
2
{η}T [K1]{η} +

1
2
{µ}T [K2]{µ} + {η̂}T [K3]{µ}

− {Q4}T {η̂} − {Q5}T {µ} . (4.11.21)

Since J is stationary, we require that

∂J

∂ηj
= 0 , j = 1, 2, . . . , E

and
∂J

∂µj
= 0 , j = 1, 2, . . . , M

which leads to a set of linear algebraic equations

[K1]{η} + [K3]{µ} = {Q4} ,

[K2]{µ} + [K3]T {η̂} = {Q5} .
(4.11.22)

Elimination of {µ} gives a matrix equation for {η}
[K]{η} ≡ [[K1] − [K3][K2]−1[K3]T ]{η}

= {Q4} + [K3][K2]−1{Q5} . (4.11.23)

The resultant matrix [K] is symmetric; only half of its elements need to be
stored in the computer.

By heuristic reasoning and numerical experiments in which comparisons
with analytic solutions were made in several cases, the following empirical
rules on the element size have been found:

1 The element size should be everywhere less than 10% of the incident
wavelength.

2 At the neighborhood of sharp curvature, elements smaller than the
radius of curvature should be used locally, otherwise local but not
global errors can result.

The number of coefficients M needed in the superelement is easy to
decide by trial and error; it usually increases for shorter waves.
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To minimize the bandwidth of [K], the numbering of nodes should be
proceeded first along one ring, then along the next ring either toward or
from C. When this is done, the semibandwidth is then roughly equal to the
number of nodes on C and is independent of the number of series coeffi-
cients in the superelement. Because of the symmetry and bandedness of
the matrix, the numerical solution of the algebraic equation is particularly
efficient. Clearly, the smaller the circle C, the smaller the bandwidth, and
the amount of computation is usually reduced even though more coefficients
may be required in the superelement.

It should be remarked that the contour C need not be a circle; for an
arbitrarily shaped contour numerical integration of the line integrals along
C is needed and [K2] is full.

An interesting application of the hybrid-element method has been made
by Houston (1978) on the response near the Hawaiian Islands to tsunamis
caused by earthquakes near Chile in 1960 and Alaska in 1964. Based on a
two-dimensional linearized long-wave equation including the earth’s curva-
ture, Houston used initial data estimated from the permanent displacement
of the fault and calculated the waves up to a depth of 5000 m near the
islands. The calculated wave history (shown in Fig. 4.19) was then Fourier
analyzed into 18 harmonics with periods ranging from 14.5 min to 260 min.

Figure 4.19: Calculated transient incident waves for 1964 Alaskan earthquake (from
Houston, 1978, J. Phys. Ocean. of American Meteorological Society).
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Figure 4.20: Typical finite-element grid surrounding Hawaiian islands (from Houston,
1978, J. Phys. Ocean. of American Meterorological Society).

These harmonics were used as the incident waves. With the finite-element
grid shown in Fig. 4.20 which has roughly 2500 nodes, the harmonic re-
sponses were calculated and superimposed in accordance with Eq. (2.56)
to give the transient response at three wave stations: Kahului of Maui,
Honolulu of Oahu, and Hilo of Hawaii. The agreement between theory
and records is excellent. Figure 4.21 shows a sample comparison for the
Alaskan earthquake with a 500-mile-long fault. The theoretical reason that
the linear shallow-water equation is adequate for tsunami transocean pro-
pagation will be discussed in Chapter Twelve. This kind of calculation is
useful for planning policies for tsunami flood insurance and can be applied
to improve the speed and accuracy of tsunami warning systems.
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Figure 4.21: Calculated (dashed curve) versus measured (solid curve) tsunami records
at Kahului, Maui for 1964 Alaskan earthquake (from Houston, 1976, J. Phys. Ocean. of
American Meteorological Society).

Appendix 4.A Partial Wave Expansion of the
Plane Wave

Consider the product of the Taylor series expansions of ezt/2 and e−zt/2

ez(t−1/t)/2 = ezt/2e−z/2t

=

[ ∞∑
n=0

1
n!

(
zt

2

)n
][ ∞∑

m=0

1
m!

(
− z

2t

)m
]

. (4.A.1)

Carrying out the multiplication and collecting the coefficients of the term
tn, we find that
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ez(t−1/t)/2 =
∞∑

n=−∞
tn

[
(z/2)n

n!
− (z/2)n+2

1!(n + 1)!

+
(z/2)n+4

2!(n + 2)!
+ · · · (−1)r (z/2)n+2r

r!(n + r)!
· · ·
]

.

Now the series in the brackets above is just the Bessel function of order n,
Jn(z); hence

ez(t−1/t)/2 =
∞∑

n=−∞
tnJn(z) . (4.A.2)

If we substitute t = ieiθ into Eq. (4.A.2), then

eiz cos θ =
∞∑
−∞

ein(θ+π/2)Jn(z) . (4.A.3)

Now let us combine pairs of terms with equal but opposite n’s and use the
fact that

J−n(z) = (−1)nJn(z) .

Equation (4.A.3) can be written in an alternate form:

eiz cos θ =
∞∑
0

εn cosnθ(i)nJn(z) (4.A.4)

where the Jacobi symbols have been used.
For a plane wave, we let z = kr in Eq. (4.A.4) and get

eikx = eikr cos θ =
∞∑
0

εn cosnθinJn(kr) . (4.A.5)
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Harbor Oscillations
Excited by Incident
Long Waves 5
5.1 Introduction

A harbor is a partially enclosed basin of water connected through one or
more openings to the sea. Conventional harbors are built along a coast
where a shielded area may be provided by natural indentations and/or by
breakwaters protruding seaward from the coast, as sketched in Fig. 5.1.

Although a variety of external forcings can be responsible for significant
oscillations within a harbor, the most studied forcing is caused by incident

Figure 5.1: Variety of harbor configurations.

201
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tsunamis which have typical periods from a few minutes to an hour and are
originated from distant earthquakes. If the total duration of the tsunami
is sufficiently long, oscillations excited in the harbor may persist for days,
resulting in broken mooring lines, damaged fenders, hazards in berthing
and loading or navigation through the entrance, and so on. Sometimes
incoming ships have to wait outside the harbor until oscillations within
subside, causing costly delays.

To understand roughly the physical mechanism of these oscillations, con-
sider a harbor with the entrance in line with a long and straight coastline.
Onshore waves are partly reflected and partly absorbed along the coast. A
small portion is, however, diffracted through the entrance into the harbor
and reflected repeatedly by the interior boundaries. Some of the reflected
wave energy escapes the harbor and radiates to the ocean again, while
some stays inside. If the wavetrain is of long duration, and the incident
wave frequency is close to a standing-wave frequency in the closed basin,
resonance will occur in the basin so that a relatively weak incident wave
can induce a large response in the harbor.

The peak amplitude at resonance can be limited by a number of
mechanisms:

1 Radiation damping, associated with energy escaped seaward from the
harbor entrance.

2 Frictional loss near the basin boundary and the harbor entrance.
3 Loss due to wave breaking on shallow beaches.
4 Finite-amplitude effects of energy transfer into higher harmonics.

Among these mechanisms, radiation damping is the most understood
theoretically and was first treated in a pioneering paper by Miles and
Munk (1961) for a rectangular harbor. Frictional losses occur along har-
bor boundaries and near breakwater tips at the entrance; these losses are
harder to estimate and vary widely according to the property of the bound-
ary. Reliable estimates require empirical information which is difficult to
obtain by model tests because of the scale effects. Breaking is a phenomenon
associated mostly with wind-generated waves on mild beaches and is not
amenable to full treatment by theory. Fortunately, for very long tsunamis,
breaking is usually unimportant.

In this chapter we shall ignore frictional and breaking losses and only
include the effects of radiation damping. After the formulation, three ele-
ments of the harbor problem are discussed separately: standing waves in
a basin, the concept of radiation damping, and diffraction through a gap.
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Next, for sinusoidal inputs and constant depth, we shall study the full
problem coupling the ocean with harbors of various simple plan forms.
Transients will be considered for a narrow bay. At the end of the chapter
the general hybrid-element method of Section 4.11 will be modified for
harbors of arbitrary depth and shape.

5.2 Formulation for Harbor Oscillation Problems

For simplicity we make the following assumptions on the fluid motion: (i)
inviscid fluid, (ii) irrotational flow, (iii) infinitesimal waves amplitude, (iv)
very long wavelength compared to depth, and (v) lateral boundaries are
perfectly reflective and vertical throughout the sea depth. The govern-
ing equations derived in Section 4.1 are applicable; for convenience they
are recalled here. For transient motion the displacement satisfies the field
equation

g∇ · (h∇ζ) =
∂2ζ

∂t2
(5.2.1)

with the no-flux condition

h
∂ζ

∂n
= 0 (5.2.2)

on the lateral walls. For simple harmonic motion the spatial amplitude η

of the free-surface displacement satisfies the field equation

∇ · (h∇η) +
ω2

g
η = 0 (5.2.3)

subject to the no-flux condition

h
∂η

∂n
= 0 (5.2.4)

on the lateral walls. For constant depth, Eq. (5.2.1) reduces to the classical
wave equation, while Eq. (5.2.3) reduces to the Helmholtz equation

∇2η + k2η = 0 (5.2.5)

where ω = (gh)−1/2k.
The radiation condition for sinusoidal motion can be stated explicitly if

the topography far away from the harbor is simple. Consider a harbor on
a coastline which is also perfectly reflective. Let Ω denote the region which
includes the harbor and all the complex topography nearby, and let Ω be
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Figure 5.2: Definition sketch.

the remaining part of the ocean in which h = const and the coastline B is
straight (see Fig. 5.2). A plane incident wave may be expressed by

ηI = A exp[ik(x cos θI + y sin θI)] (5.2.6)

where A, k, and the direction θI are prescribed. The complete wave system
in the ocean Ω may be split as

η = ηI + ηI′
+ ηS , (5.2.7)

where ηI′
denotes the reflected wave due to the straight coast without the

local topography near the harbor, while ηS denotes the wave scattered by
the local topography and radiated by the piston action at the entrance. Let
the y axis coincide with the straight portion of the coast B; the reflected
wave is

ηI′
= A exp[ik(−x cos θI + y sin θI)] (5.2.8)

so that on B

∂

∂x
(ηI + ηI′

) = 0 . (5.2.9)

Then the radiated/scattered wave cannot have any normal flux along the
straight coast:

∂

∂x
ηS = 0 on B . (5.2.10)

Furthermore, ηS must be outgoing at large distances,
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(kr)1/2

(
∂

∂r
− ik

)
ηS → 0 , kr → ∞ . (5.2.11)

In the case of an offshore harbor many wavelengths away from a coast,
one may simply omit the reflected wave ηI′

from Eq. (5.2.7). For other
coastal configurations, or nonconstant depth in Ω, an explicit description
of ηI and ηI′

may be a difficult task in itself.
When the depth is constant everywhere in Ω and in Ω, and all walls are

vertical, the three-dimensional potential for arbitrary kh may be expressed
as

φ(x, y, z) =
−igη

ω

cosh k(z + h)
cosh kh

.

Recall from Section 3.5 that η also satisfies the horizontal Helmholtz equa-
tion except that ω and k are related by ω2 = gk tanh kh. Since the walls
are vertical, the normal vector is in the horizontal plane, and the boundary
condition is ∂η/∂n = 0 on side walls. Thus, the boundary-value problems
for long and short waves are formally the same. This mathematical analogy
enables one to perform harbor experiments in deep water where nonlinear
effects are easier to avoid.

5.3 Natural Modes in a Closed Basin of Simple Form
and Constant Depth

As a preliminary, it is useful to discuss the typical features of standing
waves in a closed basin. For simplicity, we assume the depth to be con-
stant. The boundary-value problem for η, which may now be taken as real,
is defined by the homogeneous equations (5.2.5) and (5.2.4), and admits
nontrivial solutions only when k equals certain eigenvalues. The corre-
sponding ω’s are called the natural (or eigen) frequencies and the corre-
sponding η’s the natural (or eigen) modes. Two elementary examples are
discussed below.

5.3.1 A Rectangular Basin

Let the lateral boundaries of the basin be x = 0, a and y = 0, b. The
eigensolutions to Eq. (5.2.5) are found by separation of variables

η = Anm cos
nπx

a
cos

mπy

b
(5.3.1)
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with n, m = 0, 1, 2, 3, . . . . The corresponding eigenvalues are

k = knm =
[(nπ

a

)2
+
(mπ

b

)2]1/2

. (5.3.2)

The natural periods are

Tnm = 2π/ωnm (5.3.3)

where ωnm are related to knm via the dispersion relation

ω2
nm = ghk2

nm . (5.3.4)

If a > b, the lowest mode (n = 1, m = 0) has the lowest frequency
and the longest period and is referred to as the fundamental mode. The
corresponding motion is one dimensional.

If the ratio between the two sides is a rational number, that is, a = pL,
b = qL (p, q = integers),

knm =

[(
m

p

)2

+
(

n

q

)2
]1/2

π

L
,

there are more than one set of (n, m) which correspond to the same
eigenfrequency. This situation is called degeneracy.

Let us illustrate the spatial structure of the mode (n, m) = (1, 1), that is,

η11 = A11 cos
πx

a
cos

πy

b
.

At the boundaries x = 0, a, and y = 0, b, the amplitude is maximum. On
the other hand, the amplitude is zero along the nodal lines x = a/2 or
y = b/2, which divide the basin into four rectangles. At a given instant two
adjacent rectangles are opposite in phase. Thus, if two regions are above
the mean water level, the other two are below and vice versa. In Fig. 5.3
the contour lines are shown.

Figure 5.3: Free-surface contours of natural mode cos(πx/a) cos(πy/b) in a rectangular
basin.
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For higher modes (n, m), the free surface is also similarly divided by
n nodal lines along x/a = 1

2π, 3
2π, . . . , (n − 1

2 )π, as well as m nodal lines
along y/b = 1

2π, 3
2π, . . . , (m − 1

2 )π.

5.3.2 A Circular Basin

Let the radius of the basin be a; polar coordinates (r, θ) may be chosen so
that the origin is at the center. The governing Helmholtz equation may be
written in the form of Eq. (4.9.10), Chapter Four. On the wall, r = a, the
normal radial velocity component vanishes. Hence

∂η

∂r
= 0 . (5.3.5)

A solution to the Helmholtz equation is, by separation of variables,

η = Jm(kr)(Am cosmθ + Bm sin mθ) (5.3.6)

where Am and Bm are arbitrary constants. To satisfy the boundary condi-
tion we must have

J ′
m(kr)|r=a = J ′

m(ka) = 0 . (5.3.7)

Now J ′
m(z) is an oscillatory function of z having an infinite number of

zeroes. Denoting the nth zero of J ′
m by j′mn : J ′

m(j′mn) = 0, we have the
eigenvalues

kmn =
j′mn

a
, n = 1, 2, 3, . . . , m = 0, 1, 2, 3, . . . . (5.3.8)

The corresponding eigensolutions or natural modes are

ηmn = Jm(kmnr)(Amn cosmθ + Bmn sin mθ) . (5.3.9)

To illustrate the structure of a particular mode, we consider the free-surface
variation for ηmn = Jm(kmnr) cosmθ with n, m fixed. Clearly, cosmθ = 1
when mθ = 0, 2π, 4π, . . . , 2mπ, and −1 when mθ = π, 3π, 5π, . . . , (2m−1)π.
Thus, θ = 0, π/m, 2π/m, 3π/m, . . . are antinodal lines where the surface
displacement is the greatest along a circle of given r. On the other hand,
θ = π/2m, 3π/2m, 5π/2m, . . . are the nodal lines where the displacement is
zero. For a fixed θ, the curve Jm(kmnr) crosses the zero line exactly n − 1
times within the range r < a so that there are n − 1 nodal rings; this fact
is the consequence of the general Stürm’s oscillation theorem in the theory
of ordinary differential equations. The partition of the free surface into



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

208 Harbor Oscillations Excited by Incident Long Waves

Figure 5.4: Contour lines of two natural modes in a circular basin: J1(k11r) cos θ and
J2(k21r) cos 2θ.

�
��

Table 5.1: Values of j′mn such that J ′
m(j′mn) = 0.

m 0 1 2 3 4 5n

1 0 1.84118 3.05424 4.20119 5.31755 6.41562

2 3.83171 5.33144 6.70713 8.01524 9.28240 10.51986

3 7.01559 8.53632 9.96947 11.34592 12.18190 13.98719

4 10.17346 11.70600 13.17037 14.58525 15.96411 17.31284

ups and downs is illustrated in Fig. 5.4. The values of these zeroes are
available in Abramowitz and Stegun (1972) and are tabulated in Table 5.1.
In ascending order, the indices (n, m) of the zeroes are (0, 1), (1, 1), (2, 1),
(0, 2), (3.1), (4.1), (1.2), . . . . For mass conservation, the mode (0, 0) cannot
exist in a completely closed basin.

5.4 Concept of Radiation Damping —
A Model Example

An important feature of wave diffraction in an infinite medium is that oscil-
lations which originate from a finite region experience damping even when
the medium is conservative. This damping is associated with the energy
carried away to infinity by outgoing waves and is called radiation damping.
To gain some idea about it let us study a very instructive model example of
Carrier (1970) which has the physical features typical of a vibrating system
coupled with propagating waves.

Consider a semi-infinite channel of uniform depth h and width b,
Fig. 5.5. At x = 0 there rests a gate of mass M which is allowed to
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Figure 5.5: A spring-supported mass against water waves.

slide along the channel without friction. The gate is supported by a spring
with elastic constant K. Assuming for simplicity that there is no leakage
at x = 0, we wish to find the displacement Xe−iωt of the gate when there
is an incident shallow-water wave of amplitude A and frequency ω from
x ∼ +∞.

The water surface can be represented by

ζ = ηe−iωt = A(e−ikx + Reikx)e−iωt

= A[e−ikx + eikx + (R − 1)eikx]e−iωt . (5.4.1)

In the last brackets above the second term stands for the reflected wave
when the gate is held stationary, and the third term stands for the radiated
wave due to the induced motion of the gate.

The equation of motion of the gate is

−Mω2X = −KX = pbh (5.4.2)

where p is the hydrodynamic pressure per unit area at x = 0:

p = ρgη = ρgA(1 + R) . (5.4.3)

Equations (5.4.2) and (5.4.3) can be combined to give

A(1 + R) =
K − Mω2

ρgbh
X . (5.4.4)

At x = 0 the fluid velocity u(0) = (−ig/ω)ηx(0) must equal the gate velocity
−iωX , thus,

u(0) = −iωX =
gkA

ω
(−1 + R) . (5.4.5)

It is easy to deduce the solution from Eqs. (5.4.4) and (5.4.5)
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X

2A
=

ρgbh

−K + Mω2 + i(ω2/k)ρbh

=
ρgbh

−K + Mω2 + iω(gh)1/2(ρbh)
. (5.4.6)

The radiated wave amplitude is

R − 1 = −2iω

(
h

g

)1/2
X

2A
.

Equation (5.4.6) may be compared with the usual mass–spring–dashpot
system. Except for a constant of proportionality, the denominator in
Eq. (5.4.6) may be called the impedance. The imaginary part (propor-
tional to ρbh) of the impedance plays the role of damping. To see this let
us consider the system to be unforced. A nontrivial free vibration can still
be described by Eq. (5.4.6) with A = 0 if we insist that the denominator
vanishes, that is,

−K + Mω2 + iω(gh)1/2(ρbh) = 0, (5.4.7)

which is an eigenvalue condition with complex solutions for ω:

ω = ±
{

ω2
0 −
[
(gh)1/2ρbh

2M

]2}1/2

− i(gh)1/2ρbh

2M

where ω0 = K/M . Inserting either solution in the time factor exp(−iωt),
we see that the oscillation decays exponentially at the rate proportional to

(gh)1/2ρbh

2M
. (5.4.8)

To trace the physical source of this damping, let us calculate the rate of
work done by the radiated wave averaged over a cycle

Ėrad =
1
2

Re [pradu∗]x=0bh

=
1
2
bh Re ρgA(R − 1)(−iωX)∗

=
1
2
ρ
ω3

k
|X |2 =

1
2
ρbh(ω2(gh)1/2)|X |2

after using Eq. (5.4.5) and ω = (gh)1/2k. This positive-definite quantity is
clearly associated only with the damping term so that damping is due to
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the rate of work imparted by the radiated waves to the fluid. Therefore,
we refer to the imaginary term in Eq. (5.4.6) as the radiation damping.

The response (5.4.6) may be written either as a function of ω:

X

2A
=
(

ρgbh

M

)[
ω2 − K

M
+

iω(gh)1/2ρbh

M

]−1

, (5.4.9)

or as a function of k:

X

2A
=
(
− ρb

M

)(
k2 − K

Mgh
+

ikρbh

M

)−1

. (5.4.10)

In the complex k plane there are two poles located at

±k̃ + ik̂ (5.4.11)

with

k̃ = k0

[
1 −
(

ρbh2

M

)2
Mg

4Kh

]1/2

,

k0 ≡ ω0

(gh)1/2
≡
(

K

M

)1/2 1
(gh)1/2

, (5.4.12)

and

k̂ = −ρbh

2M
< 0 . (5.4.13)

Equation (5.4.10) then becomes

X

2A
=
(

ρb

M

)
(k − k̃ − ik̂)−1(k + k̃ − ik̂)−1 . (5.4.14)

For small damping the two poles are only slightly below the real axis. In
the physical problem, ω and k are both positive and real; the only pole of
physical meaning is k̃+ik̂. In its neighborhood, |X | is large and Eq. (5.4.14)
may be approximated by

X

2A
∼=
[(

ρb

M

)
1
2k̃

]
(k − k̃ − ik̂)−1 . (5.4.15)

The maximum of |X/2A|2 is∣∣∣∣ X2A

∣∣∣∣2
max

= (k̃h)−2 ∼= (k0h)−2
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which is attained near k ∼= k̃. When k− k̃ = ±k̂, the square response drops
to one-half of the peak value, therefore k̂ is a measure of the width of the
response curve (|X/2A|2 versus k). As in electric circuit theory, we may
define the quality factor Q by

Q = − k̂

k̃
∼= ρbh

2M

(
M

K

)1/2

(gh)1/2 . (5.4.16)

As the radiation damping k̂ decreases, Q decreases; the peak width of the
response curve decreases, hence the shape of the curve sharpens. As is
seen from Eq. (5.4.8), Qω0 also corresponds to the rate of damping of free
oscillations.

5.5 Diffraction Through a Narrow Gap

A harbor entrance is often just an opening along an otherwise long and
thin breakwater. Transmission of waves through the opening is of obvious
interest. For analytical simplicity, we assume that the breakwater is thin,
vertical, and perfectly reflective, and the depth is constant so that the
problem has an exact acoustical analogy.

Referring to Fig. 5.6, we consider normal incidence from x > 0. On
the incidence side, x > 0, the total wave system consists of the incident
wave, the reflected wave from a solid wall, and disturbances due to the
fluid motion along the gap. On the transmission side, x < 0, there are only
disturbances due to the motion along the gap. The gap acts as a piston in
a baffle wall and radiates waves to infinity on both sides.

Figure 5.6: A gap between two breakwaters.
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While the boundary-value problem can be solved approximately for any
gap width by the integral-equation method, we shall apply the method of
matched asymptotic expansions, which is particularly convenient for a gap
whose width is much less than the wavelength (Buchwald, 1971).

The intuitive ideas of the method have been explained in Section 4.2.2.
Briefly, when various parts of the physical domain are governed by vastly
different scales, we approximate the equations and the boundary conditions
according to the local scales and seek solutions valid in these separate
regions. The solution in one region usually does not satisfy the boun-
dary conditions in the other, resulting in some indeterminancy. By the
requirement that they match smoothly in some intermediate region, this
indeterminancy is removed and the solution is obtained to a desired order.

Let us define the far field to be the region which is a few wavelengths
away from the gap,

kr = O(1) (the far field) . (5.5.1)

Clearly, 1/k is the proper scale and all terms in the Helmholtz equation
are equally important. At great distances from the gap, the radiated waves
must satisfy the Helmholtz equation and the radiation condition. However,
to the far-field observer, the gap is a very small region in the neighborhood
of the origin. The radiated wave may be represented by superimposing
solutions which are singular at the origin and cause no flux along the y

axis:

ηR
± =

ωQ±

2g
H

(1)
0 (kr) +

ωµ±

2g
H

(1)
1 (kr) sin θ + · · · , x ≷ 0 . (5.5.2)

The total far-field solutions on both sides of the gap are

η+ = 2A cos kx + ηR
+ , x > 0 , and η− = ηR

− , x < 0 . (5.5.3)

From the first term in the series of Eq. (5.5.2), the flux out of a semicircle
of small radius around the origin is, for x ≶ 0,

flux = lim
r→0

πr

(−ig

ω

ωQ±

2g

)
∂

∂r
H

(1)
0 (kr) = Q± .

Hence, the first term of Eq. (5.5.2) represents a source with a discharge rate
of Q± into the half-plane x ≷ 0. The subsequent terms represent doublet,
quadrupole, . . . , and so on.

Near the junction, the length scale is the gap width; hence we may
define a near field where
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r

a
= O(1) . (5.5.4)

In this region

k2η

∇2η
= O(ka)2

so that the flow is essentially governed by the Laplace equation

∇2η = 0 (5.5.5)

with a relative error of order O(ka)2. The no-flux condition must be satis-
fied on the solid walls. The radiation condition is no longer relevant and has
to be discarded. Now Eq. (5.5.5) and the no-flux condition define a usual
potential flow problem with time as a parameter only. Since η is harmonic,
it may be taken as the real part of an analytic function W of the complex
variable z = x + jy, that is,

η = RejW (z) (5.5.6)

where Rej means the real part with respect to j, with i regarded as real.
The solution of Eqs. (5.5.5) and (5.2.4) becomes the search for W (z) that
is analytic in the z plane with

ImjW (z) = constant on the solid walls . (5.5.7)

For simple geometries, the solution is most effectively found by the
technique of conformal mapping. In the present case, we use the Joukowski
transformation in the airfoil theory

z = − ja

2

(
τ +

1
τ

)
(5.5.8)

to map the z plane outside the two breakwaters onto the upper half-plane
of τ (see Fig. 5.7). In particular, the image of the solid wall ABD is the
negative real τ axis, and the image of A′B′D′ is the positive real τ axis.
To satisfy the condition that ImjW = 0 on A′B′D′ and ImjW = const on
ABD, we adopt the solution

W (z) = C +M ln τ +C1τ +C2τ
2 + · · ·+C−1τ

−1 +C−2τ
−2 + · · · (5.5.9)

where the coefficients are real with respect to j but may be complex with
respect to i. The coefficients Q± and µ± in Eq. (5.5.2), as well as C,
M , and C1, C−1, and so on, will be found by matching the near and far
fields.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

5.5. Diffraction Through a Narrow Gap 215

Figure 5.7: Mapping of the near field from the z plane (physical) to the upper half of
the τ plane.

Let us require that in an intermediate region, which appears to be close
to the origin to the far-field observer (kr � 1), while very far away from
the near-field observer (r/a � 1), the near- and far-field solutions should
match smoothly. For kr � 1, the inner expansion of the total far field is

η+ = 2A +
iωQ+

g

(
− i

2
+

1
π

ln
γkr

2

)

− ωµ+

2g

1
r

sin θ + · · ·O(kr)2 ln kr , x > 0 (5.5.10)

η− = +
iωQ−

g

(
− i

2
+

1
π

ln
γkr

2

)

− ωµ−

2g

1
r

sin θ + · · ·O(kr)2 ln kr , x < 0 (5.5.11)

where ln γ = Euler’s constant = 0.5772157. . . . To approximate the near-
field solution for r/a � 1, we must distinguish the two sides x < 0 and
x > 0. On the side of x > 0, the region of |z|/a � 1 corresponds to |τ | � 1
in the τ plane so that

τ =
2jz

a

[
1 + O

( r

a

)−2
]

(5.5.12)

from Eq. (5.5.8). If this is substituted into Eq. (5.5.6), the outer expansion
of the near field η is obtained,
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η � RejW � Rej

(
C + M ln

2jz

a
+ C1

(
2jz

a

)
+ · · · + C−1

(
a

2jz

)
+ · · ·

)

= C + M ln
2r

a
− C1

(
2y

a

)
+ · · · − C−1

( a

2r

)
sin θ + · · · (5.5.13)

On the side of x < 0, the region of |z|/a � 1 corresponds to the origin in
the τ plane. Hence from Eq. (5.5.8)

τ =
a

2jz

[
1 + O

(z

a

)−2
]

, (5.5.14)

and the outer expansion of the near field is

η � RejW � Rej

{
C + M ln

a

2jz
+ C1

(
a

2jz

)
+ · · · + C−1

(
2jz

a

)
+ · · ·

}

= C − M ln
2r

a
− C1

( a

2r

)
sin θ + · · · − C−1

(
2y

a

)
+ · · · . (5.5.15)

We now equate Eqs. (5.5.10) and (5.5.13) to match η+. From the coefficients
of like terms several algebraic relations are found,

(const) : 2A +
iωQ+

g

[
− i

2
+

1
π

ln
γk

2

]
= C + M ln

2
a

(5.5.16a)

(ln r) :
iωQ+

πg
= M (5.5.16b)

(y) : C1 = 0 (5.5.16c)(
1
r

sin θ

)
: C−1 =

ωµ+

ga
. (5.5.16d)

Matching η− by equating Eqs. (5.5.11) and (5.5.15) similarly, we obtain

(const) :
iωQ−

g

(
− i

2
+

1
π

ln
γk

2

)
= C − M ln

2
a

(5.5.17a)

(ln r) :
iωQ−

πg
= −M (5.5.17b)

(y) : C−1 = 0 (5.5.17c)(
1
r

sin θ

)
: C1 =

ωµ−

ga
. (5.5.17d)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

5.5. Diffraction Through a Narrow Gap 217

Observe immediately that

C1 = C−1 = 0 , (5.5.18a)

µ+ = µ− = 0 . (5.5.18b)

It can be shown that poles of higher order are likewise zero so that only
the source is important at the leading order. Thus Cn, n = ±2,±3, . . . , are
also zero and no nonzero powers of τ are needed in the inner solution to
the present accuracy. These facts will be used in future analysis without
further verification.

There are now only four unknowns remaining: Q±, M , and C which
can be solved to give

− iωQ+

g
= +

iωQ−

g
=

A

− 1
2 i + (1/π) ln(γka/4)

, (5.5.19a)

M = +
iωQ+

πg
= − iωQ−

πg
, (5.5.19b)

C = A . (5.5.19c)

Combination of Eq. (5.15.19a) with Eq. (5.5.2) yields, finally,

ηR
± ∼= ±i 1

2AH
(1)
0 (kr)

− 1
2 i + (1/π) ln(γka/4)

. (5.5.20)

Expanding the Hankel function for large kr, we have

ηR
± = ±AA

(
2

πkr

)1/2

eikr−iπ/4 (5.5.21)

where

A =
(

1 +
2i

π
ln

γka

4

)−1

. (5.5.22)

The function − ln z approaches infinity very slowly as z diminishes. For
example, − ln z = 2.0, 4.6, 6.9, . . . for z = 10−1, 10−2, 10−3, and so on.
Thus, − ln(γka/4) is really not so large for practical ranges of ka, and |A|
diminishes slowly as ka decreases, as shown below:

ka 1 0.1 0.01 0.001

|A| 0.8890 0.4506 0.2786 0.1995 .
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The persistence of transmission for very small ka is a typical result in
potential theory and should be modified by real fluid effects of viscosity
and separation at the tips.

To the present degree of approximation, the near field is dominated by
a constant and a term proportional to ln r. Physically, the former term
represents a uniform rise and fall of the free surface and the latter indicates
that the gap acts as a source to one side and a sink of equal magnitude to
the other.

In closing, it should be mentioned that for arbitrary ka the diffraction
problem can be solved by a number of approximate methods based on the
method of integral equations. As ka increases the radiated wave amplitude
� has a more complicated dependence on θ. As will be shown later, signif-
icant resonance in a harbor occurs when the wavelength is at least compa-
rable to the harbor dimensions, which usually far exceeds the width of the
harbor entrance. Hence, we shall not discuss the gap problem further here.

5.6 Scattering by a Long and Narrow Canal or a Bay

5.6.1 General Solution

Let us consider a narrow canal of width 2a open to the ocean. The geometry
is depicted in Fig. 5.8. For long waves, ka � 1, the far field in the canal
can only be one dimensional, this being a special case of Section 4.1.2.
Therefore, the general far-field solution in the canal is

ηc = Be−ikx + Deikx , x < 0 (5.6.1)

with the inner expansion

Figure 5.8: A narrow bay.
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ηc = (B + D) + ik(−B + D)x + · · ·O(kx)2 for |kx| � 1 . (5.6.2)

The far-field solution in the ocean is, as before,

η0
∼= 2A cos kx +

ωQ

2g
H

(1)
0 (kr) (5.6.3)

with the inner expansion

η0 = 2A +
ωQ

2g

(
1 +

2i

π
ln

γkr

2

)
+ O(kr) , kr � 1 . (5.6.4)

The near-field problem is that of a potential flow past a right-angled
estuary; see Fig. 5.9. By the Schwarz–Christoffel transformation the phy-
sical region in the complex z plane (z = x + jy) can be mapped onto the
upper half of the τ plane by

z =
2a

π

[
−j(τ2 − 1)1/2 + ln

τ

(τ2 − 1)1/2 + j

]
(5.6.5)

(Kober, 1957, p. 155) with the images shown in Fig. 5.9. For single valued-
ness the square root (τ2−1)1/2 is defined in the τ plane with a cut along the
real axis −1 ≤ Re τ ≤ 1, and the branch is chosen so that (τ2 − 1)1/2 → τ

as |τ | → ∞. The logarithmic function ln τ is defined with a cut along the
positive real axis.

The near-field approximation has to be analytic in τ as before,

η = RejW (τ) = Rej(M ln τ + C) (5.6.6)

with M and C real in j. Its outer expansion must be calculated by dis-
tinguishing the two sides x ≷ 0. On the ocean side, x > 0, large |z|/a

Figure 5.9: Mapping of the near field from the z plane to the upper half of the τ plane.
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corresponds to large |τ | (see Fig. 5.9). By expanding the right-hand side of
Eq. (5.6.5), we have

z =
2a

π

[
−jτ + O

(
1
τ

)]
, −jτ =

πz

2a

[
1 + O

(a

z

)2
]

, x > 0 .

(5.6.7)

Substituting Eq. (5.6.7) into Eq. (5.6.6), we obtain the outer expansion of
the near field

η ∼= RejM ln
jπz

2a
+ C = M ln

πr

2a
+ C , x > 0 . (5.6.8)

On the canal side, x < 0, large |z/a| corresponds to small |τ |. Since from
Eq. (5.6.5)

πz

2a
= 1 + ln τ − ln 2j + O(τ)2

= ln
eτ

2j
+ O(τ)2 or τ ∼= 2j

e
eπz/2a , −x

a
� 1 ,

we have

ln τ ∼= πz

2a
− ln

e

2j
, (5.6.9)

the error being exponentially small for x/a → −∞. The outer expansion
of the near-field solution is, therefore,

η ∼= M
πx

2a
− M ln

e

2
+ C , x < 0 . (5.6.10)

Matching of the inner and outer solutions on the canal side x < 0 gives

B + D = C − M ln
e

2
, (5.6.11a)

ik(−B + D) =
πM

2a
. (5.6.11b)

Similarly, on the ocean side we obtain by matching Eqs. (5.6.4) and
(5.6.8)

2A +
ω

2g
Q

(
1 +

2i

π
ln

γk

2

)
= C + M ln

π

2a
, (5.6.11c)

iQω

πg
= M . (5.6.11d)
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Thus far, there are four algebraic equations for five unknowns: B, D,
C, M , and Q; A being prescribed. One more condition is needed which
depends on the constraints at the far end of the canal. The following
possibilities are of physical interest:

1 Wave scattering into an infinitely long channel with no reflection from
the far end. Since only left-going waves are possible, D = 0, so that
the channel solution is

ηc = Be−ikx . (5.6.12)

2 Wave incident from the far end of the channel and transmitted into
the ocean. In this case D is given and A = 0.

3 Wave scattering into a long bay of length L where the far end x = −L

is highly reflective. Here we impose

∂ηc

∂x
= 0 , x = −L .

The appropriate outer solution is

ηc = E cos k(x + L) , (5.6.13)

so that

B =
1
2
Ee−ikL, D =

1
2
EeikL . (5.6.14)

The corresponding inner expansion is

ηc = E[cos kL − (sin kL)kx] + O(kx)2 . (5.6.15)

The algebraic problems for the unknown coefficients can now be solved
for each case. For instance, for the first problem (wave scattered into a long
canal), we get

ωQ

2g
=

2Aka

[1 + ka + (2ika/π) ln(2γka/πe)]
, (5.6.16)

B =
−2A

[1 + ka + (2ika/π) ln(2γka/πe)]
. (5.6.17)

Again, C is concerned with the near field only and will not be recorded.
Equation (5.6.16) gives the strength of the source radiating waves back to
the infinite ocean and Eq. (5.6.17) gives the amplitude of the transmitted
wave.
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Exercise 5.1

Complete the solution for problem 2, wave propagation from the channel
into the ocean, and discuss the result.

5.6.2 An Open Narrow Bay

The case of a narrow bay of finite length, that is, problem 3 above, illustrates
many common features of harbor resonance, hence a detailed analysis is
given here. A complete analysis was first given by Miles and Munk (1961)
whose approximation at the entrance was slightly different from matched
asymptotics (Ünlüata and Mei, 1973).

By combining Eq. (5.6.14) with Eqs. (5.6.11a)–(5.6.11d), we obtain the
bay response ηc and the discharge Q through the bay entrance:

ηc =
2A cosk(x + L)

cos kL + (2ka/π) sinkL ln(2γka/πe)− ika sinkL
(5.6.18)

ωQ

2g
=

2Aika sinkL

cos kL + (2ka/π) sinkL ln(2γka/πe)− ika sinkL
(5.6.19)

where ηc refers to the far-field motion away from the entrance by a distance
much greater than 2a but much less than the wavelength. Relative to the
standing wave amplitude 2A, an amplification factor � may be defined,

� =
1

cos kL + (2ka/π) sinkL ln(2γka/πe)− ika sinkL
(5.6.20)

so that

ηc = 2A� cos k(x + L) . (5.6.21)

The plot of |� |2 versus kL will be called the response curve, with ka being
a parameter.

Since ka � 1, the response curve has a peak near the zeroes of cos kL,
that is,

cos kL ∼= 0 , kL ∼= knL =
(

n +
1
2

)
π , n = 0, 1, 2, . . . .

Because of the small terms of O(ka) in Eq. (5.6.20), the resonant peaks are
slightly shifted from these crude values. A better approximation is obtained
by letting

k = kn + ∆
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and expanding for small ∆:

cos kL = −L∆ sinknL + O(∆3) , sin kL = sin knL + O(∆2) .

In the neighborhood of the nth resonant peak, the amplification factor is

� ∼= 1
− sinknL[L∆− (2kna/π) ln(2γkna/πe) + ikna]

∼= 1
(−1)n+1[(k − k̃n)L + ikna]

, (5.6.22)

with

k̃n ≡ kn

(
1 +

2
π

a

L
ln

2γkna

πe

)
, (5.6.23)

which may be compared with Eq. (5.4.15) for the model example. Clearly,
the peak is at k = k̃n and the shift of the peak is given by

(k̃n − kn) =
2
π

kna

L
ln

2γkna

πe
< 0 . (5.6.24)

Around the peak, the square of the amplification factor is

|� |2 =
1

|(k − k̃n)L|2 + (kna)2
, (5.6.25)

while the peak value is

|� |max =
1

kna
=

1
(n + 1

2 )πa/L
. (5.6.26)

Thus, the height of successive resonant peaks decreases with the mode
number n.

For mode n, the plot of � versus kL is approximately symmetrical about
the peak. At the values

(k − k̃n)L = ±kna ,

|� |2 is reduced by half. Thus, kna is a measure of both the peak height
and the half-width of the resonance curve. The corresponding wave profile
in the bay is roughly proportional to

cos
[(

n +
1
2

)
π
( x

L
+ 1
)]

.

In particular, at the lowest mode n = 0, the bay length is about one-quarter
of the wavelength so that the harbor entrance is very close to the first node.
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Compare two bays of equal length L but different width 2a. The narrower
harbor has the small shift (kn − k̃n)L and the resonant peak is sharper and
higher. In the limit of ka → 0 the radiation damping diminishes to zero
and the peak height becomes infinite. Since the width of the resonant peak
in the response diagram also diminishes with a, the incident wave must be
precisely tuned to the peak frequency in order to resonate the harbor. If
the tuning is slightly off, the response is greatly reduced. The feature that
the resonant response increases with narrowing entrance does not always
agree with practical experience and is one aspect of the harbor paradox
termed by Miles and Munk (1961). This paradox can be removed by con-
sidering friction at the harbor entrance and/or nonlinearity, both of which
will be considered in later chapters.

From Eq. (5.6.19) the discharge per unit depth at the harbor entrance Q,
which is essentially the amplitude of the radiated waves, is also maximum
at a resonant peak. The maximum values of Q are obtained by letting the
real part in the denominator vanish so that

max |Q| =
4Ag

ωn

where ωn = kn(gh)1/2. The resonant discharge is smaller for a higher mode.
Notice that at the nth peak the free surface has an apparent node at

x = l so that

cos k̃n(l + L) = 0 ,

or

(kn + ∆)(l + L) =
(

n +
1
2

)
π ,

or

l

L
∼= − ∆

kn
= − 2

π

a

L
ln

2γkna

πe
> 0 ,

which decreases with a/L and with n. Thus, the effective length of the bay
is greater than the actual L. This increase in length can be thought of as
the added inertia of the ocean water near the entrance.

The analytical result Eq. (5.6.20) is accurate as long as ka is small. For
a special case treated by finite elements and shown later in Fig. 5.23, the
present theory is quantitatively satisfactory only for the lowest (quarter
wavelength) mode.
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Exercise 5.2

Study the mutual influence of two straight and narrow canals of finite
lengths opened perpendicularly to the same straight coast. Consider the
angle of incidence to be arbitrary (Mei and Foda, 1979, where a math-
ematically similar problem of elastic SH waves incident on open cavities
is treated).

Exercise 5.3

Study the oscillation in a semicircular canal of narrow width 2a, with both
ends open to the same straight coast. Consider the angle of incidence to be
arbitrary (Mei and Foda, 1979).

Exercise 5.4: A Modeling Effect in Harbor Resonance (Rogers
and Mei, 1978)

In harbor experiments the ocean is limited by the finite size of the test
basin. Typically, the wavemaker is at a finite distance L′ from the coast.
Show by the method of images that the effect of the wavemaker at x = L′

can be approximately accounted for by letting the far-field solution in the
ocean be

η = 2A coskx

+
ωQ

2g

{
H

(1)
0 (kr) +

∞∑
n=1

[H(1)
0 (k|r − 2nL′ex|) + H

(1)
0 (k|r + 2nL′ex|)]

}

for 0 < x < L′ and kL′ �= mπ. Near the entrance for kr � 1 the correction
due to finite L′ is

e =
ωQ

g

∞∑
n=1

H
(1)
0 (2nkL′) .

For large kL′, the Hankel functions may be replaced by their asymptotic
approximations so that

e ∼= ωQ

g

(
2
π

)1/2

e−iπ/4
∞∑

n=1

einZ

(nZ)1/2
,

Z = 2kL′ .

For Z = 2kL′ � 1 the series can be approximated by an integral in the
following manner:
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∞∑
n=1

f(n) =
∞∑

n=1

f(n)∆n (since ∆n = 1)

=
∞∑

n=1

f(σZ)Z∆σ with
n

Z
= σ

∼=
∫ ∞

1/Z

f(σZ)Z dσ .

Express the integral as a Fresnel integral and show that e ∼ O(kL′)−3/2,
hence give your own criterion on how large a wave tank should be to model
an infinite ocean.

Exercise 5.5: Resonance in a Canal Connecting Two Seas

A straight and narrow canal of width 2a and length L connects two seas.
Assume for simplicity that the coasts are vertical cliffs parallel to the
y axis, the centerline of the canal is along the x axis, and the water deph
is constant everywhere. Let a simple harmonic long wavetrain approach
from x ∼ −∞ normally. Find the response in most of the canal except
near the entrances. Discuss the physics. (You may use the crude method
of matching averages of the far fields across the entrances.)

5.7 A Rectangular Harbor with a Narrow Entrance

In addition to the physical features deduced in Section 5.6, a harbor with
comparable dimensions in both horizontal directions has a new mode of
oscillation where the free surface within the harbor rises and falls in unison.
This phenomenon is familiar in acoustics and may be demonstrated by a
simple analysis. In reference to Fig. 5.10, consider a basin of surface area
S open to the infinite ocean through a channel of length L and width a,
where L is assumed to be sufficiently long so that the added hydrodynamic

Figure 5.10
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length is negligible by comparison. Let the free-surface amplitude at A be
ζ and the velocity in the channel be U . Continuity requires that

∂ζ

∂t
S = −Uah .

When resonance occurs in the basin, ζ is small at the estuary B; the pressure
gradient between A and B is approximately

−∆p

∆x
=

pA − pB

L
=

ρgζ

L
.

The momentum equation for the channel water is

∂U

∂t
=

gζ

L
.

Combining the mass and momentum equations by eliminating U , we get

S
∂2ζ

∂t2
+ gh

a

L
ζ = 0 ,

which resembles a mass–spring system and has a natural mode with the
natural frequency

ω =
(

gha

SL

)1/2

.

The corresponding characteristic wavenumber is, in dimensionless form,
kS1/2 = (a/L)1/2 and is very small. This mode of oscillation is called the
Helmholtz mode in acoustics and the pumping mode in harbor engineering
literature. Clearly, the existence of the Helmholtz mode is associated with
the finite harbor area. Since the narrow bay in Section 5.6 corresponds to
an oscillation with a spring but without mass, there is no Helmholtz mode.

We now turn to the special example of a rectangular harbor for a de-
tailed analysis. This example was first studied by Miles and Munk (1961)
with revisions by Garrett (1970). Use of matched asymptotics was made
by Ünlüata and Mei (1973). Let the sides of the harbor be B and L as
shown in Fig. 5.11. The harbor entrance is a gap in an otherwise thin and
straight breakwater aligned with the coast. The gap width is assumed to
be small compared to the wavelength ka � 1.

Assuming for simplicity that the incidence is normal, the outer solution
for the ocean is again given by Eq. (5.6.3):

η0 = 2A cos kx − iω

g
Q0

[
i

2
H

(1)
0 (kr)

]
, r2 = x2 + y2 (5.7.1)
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Figure 5.11: A rectangular harbor behind a straight coast.

where the coordinate system has its origin at the center of the entrance.
The inner expansion of η0 is recorded here for convenience,

η0 = 2A + i
ω

g
Q0

(−i

2
+

1
π

ln
γk

2

)
+ i

ω

gπ
Q0 ln r + O(kr ln kr) . (5.7.2)

The inner solution near the entrance is the potential flow past a gap and has
the following two-term outer expansion [cf. Eqs. (5.5.13) and (5.5.15)]:

(5.7.3a)
ηE = C ∓ M ln

a

2
+ M

(
+ ln r

− ln r

)
,

x > 0

x < 0 (x1 > 0)
.

(5.7.3b)

To describe the interior of the harbor, it is convenient to use a different
coordinate system (x1, y1) where the origin coincides with a corner of the
basin so that

x = −x1 , y = y′
1 − y1 , r2

1 = x2
1 + (y1 − y′

1)
2 . (5.7.4)

The center of the harbor entrance is at y1 = y′
1 (see Fig. 5.11).

5.7.1 Solution by Matched Asymptotic Expansions

Let it be understood that in the harbor the coordinate system (x1, y1) is
used. However, for brevity, the subscripts ( )1 will be omitted.

To the leading order the outer solution for the harbor is the field due
to a pulsating source of unknown strength QH at the point x = 0, y = y′.
Let G(x, y; y′) be the solution corresponding to
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∇2G + k2G = 0 , (5.7.5a)

∂G

∂y
= 0 , 0 < x < L, y = 0, B , (5.7.5b)

∂G

∂x
= 0 , x = L , (5.7.5c)

= δ(y − y′) , x = 0 , 0 < y < B . (5.7.5d)

Since G represents the solution for a point source of unit discharge, it
follows that

ηH =
iω

g
QHG(x, y; y′) (5.7.6)

is the desired outer solution in the harbor basin. The function of G is a
kind of Green’s function; its solution is derived in Appendix 5.A. We only
give the following result:

G(x, y; y′) =
∞∑

n=0

Xn(x)Yn(y)Yn(y′) (5.7.7)

where

Xn(x) =
εn cosKn(x − L)

KnB sin KnL
, (5.7.8a)

Yn(y) = cos
(nπy

B

)
, (5.7.8b)

Kn =
[
k2 −

(nπ

B

)2
]1/2

, (5.7.8c)

and εn is again the Jacobi symbol. The inner expansion, however, needs a
little work. The series for G converges slowly as it stands since

Kn ∼ i
(nπ

B

)
for n large, and

εn cosKn(x − L)
KnB sinKnL

= −2 cosh[nπ(x − L)/B]
nπ sinh(nπL/B)

= O

(
1
n3

)

= − 2
nπ

e−nπx/B + O

(
1
n3

)
.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

230 Harbor Oscillations Excited by Incident Long Waves

The nth term dies out only as fast as 1/n. A usual trick to speed up
the convergence is to try summing the series composed of the leading
approximation of each term:

G̃ =
∞∑
1

− 2
nπ

e−nπx/BYn(y)Yn(y′) . (5.7.9)

The remaining series

X0Y0(y)Y0(y′) +
∞∑

n=1

(
Xn +

2
nπ

e−nπx/B

)
Yn(y)Yn(y′) (5.7.10)

then converges much faster (as 1/n3) (see Kantorovich and Krylov, 1964,
p. 79ff for examples of this technique). The summation turns out to be
possible and is detailed in Appendix 5.B; we only give the following result:

G̃ =
1
2π

ln |1 − e−Zs |2 |1 − e−Z′
s |2 , (5.7.11)

where

Zs =
π

B
[x + j(y − y′)] , Z ′

s =
π

B
[x + j(y + y′)] . (5.7.12)

Note that Zs is the normalized complex distance from the field point (x, y)
to the source (0, y′), and Z ′

s is the normalized complex distance from (x, y)
to the mirror image of the source located at (0,−y′). Very close to the
mouth, r/B � 1, we have |Zs| � 1. Since

Z ′
s = Zs +

2jπy′

B
,

1 − e−Zs = Zs[1 + O(Zs)] , (5.7.13)

1 − e−Z′
s = (1 − e−2jπy′/B)[1 + O(Zs)] ,

it follows that

|1 − e−Zs |2 =
(πr

B

)2 [
1 + O

( r

B

)]
,

|1 − e−Z′
s |2 = 4 sin2 πy′

B

[
1 + O

( r

B

)]
. (5.7.14)

Substituting these formulas into Eq. (5.7.11), we get

G̃ =
1
π

ln
(

2πr

B
sin

πy′

B

)
+ O
( r

B

)
(5.7.15)
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which is logarithmically singular as r → 0. This result is expected since
r = 0 is the source point. From Eq. (5.7.15) the flux through an infinitesimal
half-circle surrounding the source point on the side x > 0 is unity. Thus, G̃

represents the singular part of the Green function, and the residual series
in Eq. (5.7.10) must be regular at the source point r = 0. The leading inner
expansion of G is, therefore,

G(x, y; y′) ∼= 1
π

ln
(

2πr

B
sin

πy′

B

)
+ F , (5.7.16)

where F is the value of the residual series evaluated at the source point

F =
∞∑

n=1

(
εn cosKnL

KnB sin KnL
+

2
nπ

)
Yn(y′)Yn(y′) +

cos kL

kB sinkL
. (5.7.17)

Finally, the inner expansion of the outer solution is

ηH
∼= i

ω

g
QH

[
1
π

ln
(

2π

B
sin

πy′

B

)
+ F

]
+ i

ω

g

QH

π
ln r . (5.7.18)

Now we can perform the matching. On the ocean side the constant terms
and the ln r terms in Eqs. (5.7.2) and (5.7.3a) must match separately; two
equations are obtained

C − M ln
a

2
= 2A + i

ω

g
Q0

(−i

2
+

1
π

ln
γk

2

)
(5.7.19)

and

M = i
ω

g

Q0

π
. (5.7.20)

Similarly, by matching Eqs. (5.7.3b) and (5.7.18) on the harbor side x < 0
(x1 > 0), we obtain

C + M ln
a

2
= i

ω

g
QH

[
1
π

ln
(

2π

B
sin

πy′

B

)
+ F

]
, (5.7.21)

−M = i
ω

g

QH

π
. (5.7.22)

These four algebraic equations (5.7.19)–(5.7.22) can be easily solved for the
unknowns C, Q0, QH , and M . An immediate result is that Q0 = −QH

which could have been anticipated on grounds of continuity. The most
important result is
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i
ω

g
Q0 =

−iωQH

g
= −2A

[−i

2
+ F − I

]−1

, (5.7.23)

where

I =
1
π

ln
[

4B

(πγka2 sin(πy′/B))

]
. (5.7.24)

Finally, the far-field solution in the harbor is

ηH =
−2A

−i/2 + F − I

∑
n

Xn(x)Yn(y)Yn(y′) (5.7.25)

which can be used to calculate numerically the harbor response at almost
all points except within a small region of order O(a) from the entrance.

5.7.2 Resonant Spectrum and Response for
Non-Helmholtz Modes

In order to enhance the physical understanding of the numerical results to
be presented later, it is useful to examine the formulas (5.7.23) and (5.7.25)
approximately.

When the incident wavenumber k is close to one of the natural modes
of the closed basin, knm = [(nπ/B)2 + (mπ/L)2]1/2, resonance should be
expected. In the neighborhood of knm let

k = knm + ∆ (5.7.26)

and assume that

∆
knm

� 1 . (5.7.27)

From Eq. (5.7.8c) we have

KnL = L

[
(knm + ∆)2 −

(nπ

B

)2
]1/2

∼= mπ +
knmL2∆

mπ
, n = 0, 1, 2, . . . , m = 1, 2, 3, . . . (5.7.28a)

or

∼= L(2kn0∆)1/2 m = 0, n = 1, 2, 3, . . . . (5.7.28b)
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Note that sin KnL is nearly zero for either Eq. (5.7.28a) or (5.7.28b). In
the series for G or F the nth term is much greater than all the rest. The
dominant term of the series F is

F ∼= εn cosKnL

KnB sinKnL
cos2

nπy′

B
∼= c

∆
, with c =

εnεm

2knmBL
cos2

nπy′

B

(5.7.29)

when at least one of the indices n or m is not zero, whereas G is approxi-
mated by

XnYn(y)Yn(y′) ∼= c

∆
cos(mπ/L)(x − L)

cosmπ

Yn(y)
Yn(y′)

.

Equation (5.7.25) gives the harbor response

ηH
∼= −2A

−i/2 + c/∆ − I(knm)
c

∆
cos(mπ/L)(x − L)

cosmπ

Yn(y)
Yn(y′)

(5.7.30)

where

I(knm) ≡ [I(k)]k=knm (5.7.31)

is logarithmically large for small knma. It is important to point out
that when ∆ = 0, that is, k = knm, the right-hand side of Eq. (5.7.30)
approaches

−2A
cos(mπ/L)(x − L)

cosmπ

Yn(y)
Yn(y′)

which is not large. Thus, the resonant mode does not coincide with the
natural mode of the closed basin. The amplification factor � for mode
(n, m) can be defined by

ηH

2A
= �

cos(mπ/L)(x − L)
cosmπ

Yn(y)
Yn(y′)

, (5.7.32a)

where

� =
c/I

∆ − c/I + 1
2 i∆/I

. (5.7.32b)1

Equation (5.7.32b) has the same form as Eq. (5.4.15) for the model
example. Therefore, the term i∆/2I is associated with radiation damping

1Note that � has a simple pole in the complex k plane; the pole is located slightly below
the real k axis.
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which depends on the frequency shift ∆. Consider the square of the modal
amplification factor

|� |2 =
(c/I)2

(∆ − c/I)2 + ∆2/4I2
. (5.7.33)

The minimum of the denominator occurs at

∆peak =
c

I

(
1 +

1
4I2

)−1

∼= c

I
.

Hence, the resonant wavenumber is slightly greater than the natural value
knm,

k̃nm
∼= knm +

c

I
. (5.7.34)

The correction c/I decreases as the width of the harbor mouth decreases.
The peak value of |� |2 is

|� |2max
∼= 4I2 . (5.7.35)

It is easy to check that when

∆ ∼= c

I
± c

2I2
,

the square response is reduced to half the peak value. Thus, c/2I2 is essen-
tially the half-width of the resonant peak in the plot of |� |2 versus k. By
the definition of I, a reduction of the entrance width results in an increase
in I, hence an increase in �max and a decrease in the width of the reso-
nant peak. Although narrowing the harbor entrance reduces the change of
precise tuning for resonance, the peak response, if perfectly tuned, is height-
ened. This behavior is related to the radiation damping which corresponds
to the term i∆/I in Eq. (5.7.32). Being proportional to c/2I2 at resonance,
the radiation damping diminishes sharply as a decreases. Thus, energy es-
capes the harbor with greater difficulty, and amplification is understandably
more severe. This result is again likely at variance with the intuition of the
designer who would normally narrow the entrance for better protection and
is a feature of the harbor paradox. Note that the sharpening of a resonant
peak is such that the area under the curve is roughly

|� |2max

c

2I2
= 2c (5.7.36)

which is independent of the entrance width and decreases with higher reso-
nant mode (increasing n or m) (Garrett, 1970). If the incident waves are a
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stationary random process with the spectrum SI(k), it may be shown that
the mean-square response in the harbor is proportional to∫ ∞

0

SI(k)|�(k)|2 dk

as in the case of simple oscillators. To this integral the resonant peak at
knm makes a contribution approximately equal to the product of SI(knm)
and the area of the |� |2 curve under the peak. Equation (5.7.36) then
implies that the mean-square response is unchanged as the harbor entrance
narrows. This result is another feature of the harbor paradox.

By combining Eq. (5.7.29) with Eq. (5.7.23) the discharge per unit depth
near a resonant peak through the harbor entrance is found

iωQ0

g
=
( −2A

−i/2 + c/∆ − I

)
. (5.7.37)

Note that when the entrance width a vanishes, k = knm and Q0 = 0
so that pressure is transmitted across the entrance but mass is not. At
resonance the quantity ωQ0/g is simply 4A; the corresponding averaged
current velocity through the entrance UE is

|UE| =
∣∣∣∣Q0

2a

∣∣∣∣
max

=
2gA

ωnma
=

gATnm

πa
(5.7.38)

where ωnm is a resonant frequency = (gh)1/2knm, and Tnm is the corre-
sponding period. As a numerical example we take a = 200 m, A = 0.2 m,
and Tnm = 10 min, then

|UE | = 6 m/s .

If the local breakwater thickness is estimated to be 10 m, the maximum local
Reynolds number is 6 × 107. As the flow is oscillatory, the instantaneous
Reynolds number varies from 0 to O(108). In reality there must be a signi-
ficant energy loss due to vortex shedding and turbulence. Equation (5.7.38)
also shows that |UE | is inversely proportional to the entrance width a,
suggesting that for narrower entrance width real fluid effects should be more
important. Dissipation at the entrance will be pursued in Chapter Six.

5.7.3 The Helmholtz Mode

The preceding analysis [in particular, Eq. (5.7.28)] does not apply when
n = m = 0 so that k00 = 0. Since X0 and Y0 are constants, the free surface
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rises and falls in unison throughout the basin, and hence corresponds to
the Helmholtz or the pumping mode. From Eq. (5.7.8c) we have

∆ = k and Kn = k = ∆ (5.7.39)

instead of Eq. (5.7.28). The leading terms in the series for F and G are
associated with the term n = 0, and the harbor response is

ηH
∼= −2A

−i/2 + 1/k2BL − I

1
k2BL

. (5.7.40)

The resonant wavenumber k̃00 is approximately given by the root of the
transcendental equation

1
k2BL

− I = 0 or k2BL =
1
I

, k ≡ k̃00 , (5.7.41)

since I depends on k. As a decreases, I increases so that k decreases. The
square amplification factor is

|A|2 =
(1/k2BL)2

1
4 + (1/k2BL − I)2

. (5.7.42)

The peak value of |� |2 is approximately 4I2 when Eq. (5.7.41) is satisfied.
The half-width of the peak is obtained by letting

1
k2BL

− I = ±1
2

or k − k̃∞ = ±1
4

1
(BLI3)1/2

. (5.7.43)

As a decreases, �2
max increases and the width of the peak decreases. How-

ever, the area under the peak of the curve of |� |2 versus k is proportional
to

1
4

4I2

(BLI3)1/2
=
(

I

BL

)1/2

, (5.7.44)

which increases, although mildly, with decreasing a. The severity of the
harbor paradox is worse for the Helmholtz mode than for non-Helmholtz
modes, suggesting that friction loss is more important at the entrance, as
will be discussed in detail in Chapter Six.

5.7.4 Numerical Results and Experiments

The response of a square harbor has been computed from Eq. (5.7.25) for
a wide range of wavenumbers by Ünlüata and Mei (1973); these results
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Figure 5.12: Root mean square response σ and normalized flux intensity |(ω/g)(Q0/2A)| at the harbor mouth. 2a/B = 3× 10−2 (solid
curve); 2a/B = 0.585 × 10−2 (dashed curve). σ is defined in Eq. (5.9.5).
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are consistent with those of Miles (1971) who used a different approxi-
mate analysis. Two different entrance widths are studied; see Fig. 5.12.
The effects of reducing a are clearly in agreement with the analysis in
Sections 5.7.2 and 5.7.3.

Figure 5.13: Response curve at r = 0.7 ft. θ = 45◦ of a circular harbor of radius =
0.75 ft. Solid and dashed curves are by two different theories; ©: experiment. (a) 60◦
opening; (b) 10◦ opening (from Lee, 1971, J. Fluid Mech. Reproduced by permission of
Cambridge University Press).
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Approximate analytical theories for a circular harbor have been worked
out by Miles (1971) and Lee (1971). In addition, Lee performed experi-
ments which were in excellent agreement with the linear theory. The only
significant discrepancy appeared for the lowest resonant peaks, near which
friction was likely important; see Fig. 5.13. It should be pointed out that
Lee’s experiments were made in very deep water, kh � 1, and comparison
with the long-wave theory was based on the analogy for linear theories
with constant depth and vertical side walls. However, in the laboratory,
nonlinearity cannot be easily avoided in shallow water, and discrepancies
between shallow-water experiments and the linearized long-wave theory can
be expected to be large.

5.7.5 Effects of Finite Entry Channel

For a harbor with a single basin, Carrier, Shaw, and Miyata (1971) found
that the finite length of the entry channel, or the finite thickness of the
breakwater at the entrance, has qualitatively the same effect as a nar-
rowed entrance. This conclusion can also be proven analytically by matched
asymptotics. For a junction whose thickness 2d is of the same order of
magnitude as the width 2a, the near-field solution can be pursued by means
of the Schwarz–Christoffel transformation. The results have been given by
Davey (1944) in terms of elliptic integrals and have been used by Guiney,
Noye, and Tuck (1972) for the transmission of deep-water waves through a
narrow slit. Ünlüata and Mei (1973, in the context of harbor oscillations)
and Tuck (1975, in a survey of wave transmission through small holes) have
shown that all results obtained for a thin gap can be reinterpreted for a
thick-walled gap if an effective width ae is introduced to replace the actual
width. The effective width ae is given parametrically (through v) by the
following relations:

ae

a
= 2pv1/2 ,

d

a
= −p

2
(K ′v′2 − 2K ′ − 2E′) (5.7.45)

where

p = (2E − v′2K)−1, v′ = (1 − v2)1/2

E = E(v)

K = K(v)

}
= complete elliptic integrals of the

{
first
second

}
kind

E′ ≡ E(v′) , K ′ ≡ K(v′) .



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

240 Harbor Oscillations Excited by Incident Long Waves

Figure 5.14: The ratio ae/a of effective width to actual width of a junction as a function
of the thickness-to-width ratio d/a. Equation (5.7.45): solid curve; Eq. (5.7.46): dashed
curve (from Mei and Ünlüata, 1978).

We caution that the symbols E and K are conventional in the literature
of elliptic integrals and do not have the same meaning as similar symbols
used elsewhere in this section.

Details of the analysis leading to Eq. (5.7.45) are rather complicated
and can be found in Ünlüata and Mei (1973). We simply state that
ae/a decreases monotonically with d/a. A rather explicit approximation
to Eq. (5.7.45), valid for large d/a, is

ae

a
∼= 8

π
exp
[
−
(

πd

2a
+ 1
)]

(5.7.46)

which is very accurate for d/a > 0.5. In fact, even for d/a = 0, Eq. (5.7.46)
gives a fairly good result: ae/a = 0.937, as shown in Fig. 5.14.

5.8 The Effect of Protruding Breakwater

The coastline near the harbor entrance is often not a straight line, due either
to the natural topography or to breakwaters protruding seaward. The latter
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Figure 5.15: A circular harbor with protruding breakwater.

is a common configuration for new and small harbors on shallow coasts.
Physically, the protrusion alters the scattered waves when the harbor mouth
is closed; therefore, the forcing agent at the mouth is different from that
of a straight coastline. The radiation pattern is also altered, for now the
harbor mouth is like a loudspeaker mounted on a protrusion from a baffle
wall. The shape of the protrusion and the location of the harbor mouth
become new factors which must be considered in design and/or operations.

To illustrate the effects of protrusion, we follow Mei and Petroni
(1973) and consider a circular harbor with half of its area indented be-
hind a straight coast. The breakwater is a semicircular arc with an opening
centered at θ = θ0. The harbor mouth subtends an angle 2δ. The geometry
is shown in Fig. 5.15.

5.8.1 Representation of Solution

Consider the representation of the solution outside the harbor. We shall
account for the straight coast first, then the semicircular breakwater, and
finally the harbor mouth. Let the incidence angle be θI as shown in
Fig. 5.15.

A perfectly reflective coast along the y axis introduces a reflected wave
ηI′

in addition to the incoming wave ηI . In terms of partial waves, the
sum is
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ηI + ηI′
= A[e−ikr cos(θ+θI) + eikr cos(θ−θI)]

= A
∑
m

εm[(−i)m cosm(θ + θI) + (i)m cosm(θ − θI)]Jm(kr)

= 2A
∑
m

εm

(
cos

mπ

2
cosmθI cosmθ + i sin

mπ

2
sinmθI sin mθ

)
× Jm(kr) , m = 0, 1, 2, . . . . (5.8.1)

It is easy to verify that there is no normal velocity on the y axis, that is,

1
r

∂

∂θ
(ηI + ηI′

) = 0 , θ = ±π

2
. (5.8.2)

The presence of a solid circular cylinder centered at the origin cre-
ates scattered waves radiating outward to infinity. Thus, we must add
to Eq. (5.8.1) terms which are proportional to Hm(kr)

(
cos mθ
sin mθ

)
, where Hm

are the Hankel functions of the first kind. The coefficients must be chosen
so that the sum of ηI + ηI′

and the scattered ηS satisfy

∂η0

∂r
= 0 , r = a , (5.8.3)

where

η0 = ηI + ηI′
+ ηS (5.8.4)

is the solution to the diffraction problem for a circular peninsula on a
straight coast. The result is

η0(r, θ) = A
∑
m

2εm

(
cos

mπ

2
cosmθI cosmθ + i sin

mπ

2
sin mθI sinmθ

)

×
[
Jm(kr) − J ′

m(ka)
H ′

m(ka)
Hm(kr)

]
, r ≥ a (5.8.5)

in which ( )′ denotes differentiation with respect to the argument. Note
that the boundary condition on the coastline is still satisfied. The preceding
solution can be thought of as two plane waves incident symmetrically from
the opposite sides of the y axis and scattered by a circular cylinder in an
open sea. The acoustic counterpart for one incident wave is well known
(Morse and Feshbach, 1953, Vol. II, pp. 1387ff).

To complete the wave field outside the harbor, we must further correct
for the piston action at the harbor entrance. The corresponding displace-
ment can be formally given as
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ηR =
∑
m

Hm(kr)
kaH ′

m(ka)
(Am cosmθ + Bm sin mθ) , R ≥ a (5.8.6)

in which Am and Bm are to be found.
In summary, the total field outside the harbor is

η0 = η0 + ηR , r ≥ a , |θ| <
1
2
π . (5.8.7)

The displacement inside the harbor, ηH , must satisfy the Helmholtz
equation so that the formal solution is

ηH(r, θ) =
∑
m

Jm(kr)
kJ ′

m(ka)
(Cm cosmθ + Dm sinmθ) (5.8.8)

in which Cm and Dm are yet unknown.

5.8.2 Reduction to an Integral Equation

The unknown coefficients Am, Bm, Cm, and Dm must be fixed so that the
surface height (i.e., pressure) and the normal surface slope (i.e., normal
velocity) are continuous at every point of the harbor entrance

η0 = ηH , (5.8.9)

∂η0

∂r
=

∂ηH

∂r
, r = a , |θ − θ0| ≤ δ . (5.8.10)

Let the surface slope in the radial direction at the entrance be formally
F (θ)

∂η0

∂r
=

∂ηH

∂r
= F (θ) (5.8.11)

which differs from zero only across the entrance |θ − θ0| ≤ δ. Applying
Eq. (5.8.11) to Eq. (5.8.8) and using the theory of Fourier series, we can
express the coefficients Cm and Dm as

Cm =
εm

2π

∫
M

F (θ′) cosmθ′ dθ′ , (5.8.12a)

Dm =
εm

2π

∫
M

F (θ′) sin mθ′ dθ′ , (5.8.12b)

in which M stands for harbor mouth.
Now apply Eq. (5.8.11) to Eq. (5.8.7). Some care is required for Am

and Bm as the conditions ∂η0/∂θ = 0 on θ = ±π/2, and r > a must
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not be violated. The physical region outside the harbor is to the right
of x = 0 (i.e., |θ| < π/2). However, as far as the outside of the harbor is
concerned, the problem is equivalent to an offshore circular harbor with two
mouths symmetrically located with respect to the y axis, attacked by two
symmetrically incident waves at the angles θI and π−θI . The corresponding
boundary condition is then

∂η0

∂r
=

∂ηR

∂r
= F (θ) , 0 ≤ θ ≤ 2π , r = a (5.8.13a)

where

F (θ) = F (π − θ) . (5.8.13b)

With this condition the no-flux condition on the coast (y axis) is assured
by symmetry.

Applying Eq. (5.8.13) to Eq. (5.8.6) for the complete range of 0 ≤ θ ≤
2π, and using the symmetry property of F (θ), Eq. (5.8.13b), we obtain the
Fourier coefficients

Am =
εm

π
cos2

mπ

2

∫
M

dθ′F (θ′) cos mθ′ , (5.8.14a)

Bm =
εm

π
sin2 mπ

2

∫
M

dθ′F (θ′) sin mθ′ . (5.8.14b)

Thus, Am = 0 for m = odd, and Bm = 0 for m = even.
In terms of the surface slope, F (θ), we get from Eqs. (5.8.6) and (5.8.7)

η0 = η0 + a
∑
m

εm

π

Hm(kr)
kaH ′

m(ka)

[
cos2

mπ

2
cosmθ

∫
M

du F (u) cosmu

+ sin2 mπ

2
sin mθ

∫
M

du F (u) sinmu

]
, r > a , (5.8.15)

and from Eq. (5.8.8)

ηH = a
∑
m

εm

2π

Jm(kr)
kaJ ′

m(ka)

[
cosmθ

∫
M

du F (u) cosmu

+ sin mθ

∫
M

du F (u) sinmu

]
, r < a . (5.8.16)

Finally, condition (5.8.9) is invoked to match the surface displacement
for all points at the harbor entrance r = a, |θ − θ0| ≤ δ, leading to an
integral equation for F (θ),
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∫
M

du F (u)K(θ|u) =
1
a
η0(a, θ) , |θ − θ0| ≤ δ (5.8.17a)

in which the kernel K is

K(θ|u) = K(u|θ) =
∑
m

εm

2π

Jm(ka)
kaJ ′

m(ka)
(cos mθ cosmu + sinmθ sin mu)

−
∑
m

εm

π

Hm(ka)
kaH ′

m(ka)

×
(
cos2

mπ

2
cosmθ cosmu + sin2 mπ

2
sin mθ sin mu

)
. (5.8.17b)

Note the important property that the kernel is symmetric with respect to
the interchange of u and θ.

The Wronskian identity (4.9.20), Chapter Four, can be used to rewrite
the right-hand side of (5.8.17a)

1
a
η0(a, θ) =

A

a

∑
m

2i

πka

2εm

H ′
m(ka)

(
cos

mπ

2
cosmθI cosmθ

+ i sin
mπ

2
sin mθI sin mθ

)
, |θ − θ0| < δ . (5.8.18)

The crux of the problem is to solve F (θ) from Eq. (5.8.17) for every θ

within |θ− θ0| ≤ δ. This can be done by a variety of numerical procedures,
most of which lead to a set of finite algebraic equations. Alternatively, by
recasting the integral equation as a variational principle, one may obtain
a simple but optimal approximation whose numerical accuracy is best for
narrow mouths, as has been demonstrated in the straight-coast problem by
Miles and Munk (1961). The latter approach is adopted below.

5.8.3 Approximate Solution by Variational Method

It can be shown that solving the integral equation (5.8.17) is equivalent
to finding the extremum of the following functional (the proof is given in
Appendix 5.C):

J [F (θ)] =
1
2

∫∫
M

F (θ)K(θ|u)F (u) dθ du − 1
a

∫
M

η0(a, θ)F (θ) dθ .

(5.8.19)
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Although this variational principle can be used as the basis of the finite-
element approximation, we take a less numerical approach and assume F

to possess a certain form with a multiplicative parameter f0, that is,

F (θ) = f0f(θ) (5.8.20)

with f(θ) prescribed; then

J =
f2
0

2

∫∫
M

f(θ)K(θ|u)f(u) dθ du − f0

a

∫
M

η0(a, θ)f(θ) dθ . (5.8.21)

For J to be stationary, f0 must be chosen such that dJ/df0 = 0; thus

f0 =
(1/a)

∫
M

η0(a, θ)f(θ) dθ∫
M

∫
f(θ)K(θ|u)f(u) dθ du

. (5.8.22)

One reasonable choice for f(θ) is that

f =
1
π

[δ2 − (θ − θ0)2]−1/2 (5.8.23)

which has the correct singularity at the tips and is particularly appropriate
for a narrow mouth (� wavelength). Intuitively, in the neighborhood of
the narrow mouth, the term k2η can be neglected from the Helmholtz
equation and Eq. (5.8.23) should be a good quasistatic approximation. For
a wide mouth, Eq. (5.8.23) is not adequate and other methods must be
used.

The identity

1
π

∫ θ0+δ

θ0−δ

[δ2 − (θ − θ0)2]−1/2

(
cosmθ

sin mθ

)
dθ =

(
cosmθ0

sin mθ0

)
J0(mδ)

(5.8.24)

changes the numerator of Eq. (5.8.22) to

A

a
N ≡ 1

a

∫
M

η0(a, θ)f(θ) dθ

=
A

a

∑
m

2i

πka

2εmJ0(mδ)
H ′

m(ka)

×
(
cos

mπ

2
cosmθI cosmθ0 + i sin

mπ

2
sin mθI sin mθ0

)
. (5.8.25)
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Since η0 is the wave pressure at the entrance in the absence of the opening,
N is a weighted average of the forcing pressure. Note in particular the
reciprocity between θ0 and θI , that is, N is symmetrical with respect to the
interchange of θ0 and θI . Furthermore, the denominator of Eq. (5.8.22) is

D ≡
∫

M

∫
f(θ)K(θ|u)f(θ) dθ du

=
∑
m

εm

2π

Jm(ka)J2
0 (mδ)

kaJ ′
m(ka)

−
∑
m

εm

2π

Hm(ka)J2
0 (mδ)

kaH ′
m(ka)

(1 + cosmπ cos 2mθ0) . (5.8.26)

The first series in Eq. (5.8.26) appears also in the case of a straight coast but
the second series is now different. Substituting Eqs. (5.8.20) and (5.8.23)
into Eq. (5.8.16), and using Eqs. (5.8.22) and (5.8.24)–(5.8.26), we obtain
the harbor response

ηH = A
N

D

∑
m

εm

2π

J0(mδ)
kaJ ′

m(ka)
Jm(kr) cos[m(θ − θ0)] . (5.8.27)

The necessary numerical calculations merely involve summation of series.
Qualitative behavior of ηH near the natural modes can be examined

analytically as seen in previous sections, and can be found in Mei and
Petroni (1973).

5.8.4 Numerical Results

The excitation N at the mouth is plotted as a function of ka for several
values of incidence angle θI and mouth position θ0, in Fig. 5.16. In contrast
with a straight coast, the most important new feature is the fluctuation with
respect to ka, due to the complicated diffraction process. For a given ka

and θI which characterize the incident wave, it is possible to orient the
harbor mouth θ0 so that the forcing is small.

Let us define

Am =
N

D

εm

2
J0(mδ)Jm(ka)

kaJ ′
m(ka)

(5.8.28)

as the amplification factor for the modes with angular dependence cosm(θ−
θ0). Near a zero of J ′

m(ka), that is, ka ∼= j′ms, s = 1, 2, . . . , Am is large and
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Figure 5.16: Excitation at the harbor mouth for an opening 2δ = 10◦. Numbers
in a parenthesis show (θ0, θI) in degrees (from Mei and Petroni, 1973, J. Waterway,
Port, Coastal and Ocean Div. Reproduced by permission of American Society of Civil
Engineers).

the standing wave mode (m, s) is resonated. From Section 5.3 the first
few values of j′ms are 0 (0, 1), 1.84118 (1, 1), 3.05424 (2, 1), 3.83171 (0, 2),
4.20119 (3, 1), 5.33144 (1, 2) . . . , where the numbers in the parentheses refer
to the index pair (m, s). Note that the mode (0, 1) corresponds to the
Helmholtz mode. Because of radiation damping, D is complex. The peak
frequency is slightly shifted and Am is finite at resonance. Figure 5.17 is a
typical plot for |Am|.

For any given set of ka, a, θ0, and δ, the free-surface displacement at the
point (r, θ) within the harbor can be calculated as soon as the amplification
factors Am are calculated. As a convenient measure of the overall response,
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Figure 5.17: Amplification coefficient for mode m with 2δ = 10◦, θ0 = 0◦, θI = 0◦
(from Mei and Petroni, 1973, J. Waterway, Port, Coastal and Ocean Div. Reproduced
by permission of American Society of Civil Engineers).

the mean-square elevation, averaged spatially over the entire area of the
basin, is useful. From Eq. (5.8.27), the mean square

|ηH |2 =
1

πa2

∫ 2π

0

dθ

∫ a

0

dr r|ηH |2

=
A2

πa2k2

∑
m

|Am|2
J2

m(ka)
2π

εm

∫ ka

0

zJ2
m(z) dz

=
4A2

(ka)2
∑
m

1
εm

|Am|2
J2

m(ka)

m∑
n=0

(m + 2n + 1)J2
m+2n+1(ka) (5.8.29)

is obtained. The last integral is evaluated with the help of an identity in
Abramowitz and Stegun (1972, p. 484).

For the following range of parameters: wavelength, 0 < ka < 5; half-
opening angle of harbor entrance, δ = 5◦; entrance position, θ0 = 0◦, 45◦;
and the direction of incidence, θI = 0◦, ±45◦, the root mean square of the
harbor response (|ηH |2)1/2 is shown in Figs. 5.18(a)–5.18(e).
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Figure 5.18: Mean harbor response for 2δ = 10◦. (a) θ0 = 0◦, θI = 0◦; (b) θ0 = 0◦,
θI = −45◦; (c) θ0 = 45◦, θI = 0◦; (d) θ0 = 45◦, θI = −45◦. (e) θ0 = 45◦, θI = 45◦.
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Figure 5.18: (Continued)

Qualitatively, the response curves look the same in all cases with the
peaks occurring at the expected places. However, the heights of the peaks
differ quantitatively for different values of θ0 and θI . As an example,
consider the resonant mode (2, 1) near ka = 3.1. The peak heights de-
crease according to the order (θ0 = 45◦, θI = 0), (θ0 = 45◦, θI = −45◦),
(θ0 = 0, θI = 0), and (θ0 = 45◦, θI = 45◦); the forcing N at the mouth is
also in the same order as shown in Fig. 5.17. Thus, if the design wavelength
is close to a particularly dangerous mode, proper siting of the entrance can
reduce the input and the response.

Note that the Helmholtz mode is hardly affected by θ0 and θI ; this
result is consistent with Fig. 5.16 where N ≈ 2 for small ka.

Comparing Figs. 5.18(b) (for θ0 = 0; θI = −45◦) and 5.18(c) (for θ0 =
45◦, θI = 0◦), we see that the modes with m = 0, 2, namely, (0, 1), (0, 2),
and (2, 1), have the same peak height. This equality occurs because N is
symmetric with respect to the interchange of θ0 and θI [cf. Eq. (5.8.25)],
while D is independent of θI [cf. Eq. (5.8.26)] and has the same value for
the two sets of θ0 and m.
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Local responses may be calculated from Eq. (5.8.27) but are not pursued
here.

5.9 A Harbor with Coupled Basins

The total area of some harbors consists of two large basins connected by a
narrow passage; the Long Beach Harbor in California is such an example.
Several new features arise because of the added degree of freedom. For two
equal circular basins with centers lying on a line normal to the coast, numer-
ical and laboratory experiments were first conducted by Lee and Raichlen
(1972) whose results showed a systematic doubling of resonant peaks in
contrast to a harbor with only one basin. Further analytical studies were
made by Mei and Ünlüata (1978) for narrow openings, using the method
of matched asymptotics as in Section 5.7. Though straightforward, the
analysis is necessarily lengthy and we only summarize here the approxi-
mate results for two equal rectangular basins. The configuration is shown
in Fig. 5.19 where the widths of the harbor entrance and the inter-basin
opening are denoted by 2a1 and 2a2, respectively.

Figure 5.19: A harbor with two basins.
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Corresponding to the natural mode knm of a closed basin with n and m

not both zero, there are two resonant peaks k̃+
nm and k̃−

nm with

k̃±
nm

∼= knm + c

 1
I ′

+
1
2I

±
[(

1
I ′

)2

+
(

1
2I

)2
]1/2


k=knm

, (5.9.1)

where

c =
εnεm

2knmBL
, (5.9.2)

and

I =
1
π

ln
4B

πγka2
1

, (5.9.3a)

I ′ =
1
π

ln
B2

π2a2
2

. (5.9.3b)

The separation between the two peaks is

k̃+
nm − k̃−

nm
∼= 2c

[(
1
I ′

)2

+
(

1
2I

)2
]1/2

. (5.9.4)

When either a1 or a2 increases, I or I ′ decreases, hence the peaks move
further apart. Corresponding to k00, there are also two Helmholtz modes
with similar dependence on the openings.

If we define σ2
H as the mean-square amplification factor of the outer

basin

σ2
H =

1
2BL

∫ L

0

dx

∫ B

0

dy
|ηH |2
4A2

, (5.9.5)

and define σ2
H

′ similarly for the inner basin, it can be shown that

(σ̃2
H

′)+

(σ̃2
H)+

∼= (σ2
H)−

(σ̃2
H

′)−
∼=
{

1
β

[(
β2 +

1
4

)1/2

− 1
2

]}2

knm

(5.9.6)

where β ≡ I/I ′ increases with decreasing harbor entrance (2a1) or increas-
ing inter-basin opening (2a2). Since β lies between 0 and ∞, the following
ordering is true

(σ̃2
H

′)− > (σ̃2
H)− > (σ̃2

H)+ > (σ̃2
H

′)+ . (5.9.7)
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For very large β, the ratios of mean squares in Eq. (5.9.6) tend to unity;
the basin responses for both peaks are equalized. However, for small β

these ratios become as small as 2β; the contrast of the basin responses
then increases for both modes k̃±

nm. In particular this implies that the
inner basin becomes less protected for the lower mode k̃−

nm. Clearly, this
is a paradox associated with the coupling of basins in the context of the
inviscid theory.

For the pair of Helmholtz modes corresponding to k00, the ordering
relation and the dependence on β is qualitatively the same. In addition,
the two basins are out of phase for k̃+

00 but in phase for k̃−
00.

Numerical results based on the matched asymptotic theory are shown
in Fig. 5.20 for two equal square basins. The width of the harbor entrance
is fixed at 2a1/B = 3 × 10−2. In Fig. 5.20(a) we take a1 = a2 and the
breakwaters have zero thickness. Within the computed range 0 < kB < 8,
the distinct natural modes of one basin H or H ′ are: k01B = π = 3.1415,

Figure 5.20: Root mean square responses of two identical square basins: Outer basin:
solid curve; inner basin: dashed curve. 2a1/B = 3× 10−2. (a) a1 = a2, dl = d2 = 0; (b)
a2 = 4a1, d1 = d2 = 0; (c) a1 = a2, d1 = 0, d2 = 2a1 (from Mei and Ünlüata, 1978, J.
Eng. Math., Reproduced by permission of Sijthoff and Noordhoff).
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k02B = k20B = 2π = 6.2833, k21B =
√

5π = 7.0248, which correspond
to the second, third, and fourth pairs of peaks, respectively, the first pair
being the Helmholtz modes. Clearly, the ordering of the first three pairs
of peaks obey Eq. (5.9.7). The ordering of the last pair of peaks is only in
partial agreement with Eq. (5.9.7) because the parameter k̃a is no longer
sufficiently small (> 0.107).

In Fig. 5.20(b) the inter-basin opening is changed to a2 = 4a1; the
thickness of all breakwaters is still zero. Let us examine the lowest three
pairs of peaks. In comparison with Fig. 5.20(a) the separation between a
pair k̃± is indeed increased, and for the same mode the difference between
the response of the basins is reduced, in accordance with Eq. (5.9.6). Note
that for the fourth and highest pair of peaks the ordering rule Eq. (5.9.7)
has deteriorated further, for now k̃a2 > 0.426.

In Fig. 5.20(c) we keep a1 = a2 but increase the thickness of the break-
waters which divide the two basins, from zero to d2 = 2a1. In accordance
with the results in Section 5.7.5 the effective width a2e is reduced. In com-
parison with Fig. 5.20(a) the highest pair of peaks now obey the ordering
rule since (k̃a2e) is reduced to ∼ 0.027. Moreover, the separation between
pairs of peaks at k̃± decreases, while for the same mode (k̃+ or k̃−) the
difference between the resonant responses of the basins is increased.

These features are consistent with the numerical and experimental find-
ings of Lee and Raichlen (1972).

5.10 A Numerical Method for Harbors of
Complex Geometry

For harbors of constant depth but arbitrary plan form, numerical solutions
have been obtained by Hwang and Tuck (1970) and Lee (1971) by the
method of integral equations. Extension of integral equations for varying
depth is rather complicated and expensive (Lautenbacher, 1970; Mattioli,
1978). The hybrid-element method (HEM) discussed in Section 4.11 can be
modified to account for the coastline and other special features of harbors
and is particularly well-suited for variable harbor depth.

The coastline causes a reflected wave and modifies the scattered waves.
Assume for simplicity that all topographical irregularities are within a con-
tour C, and the coast is otherwise straight and coincides with the x axis, as
shown in Fig. 5.21. In the superelement Ω outside C, the depth is assumed
to be a constant. Now the total wave in Ω must consist of an incident
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Figure 5.21: Harbor with a straight coast.

wave, a reflected wave due to the straight coast, and a scattered wave.
Thus,

η = ηI + ηS ,

where

ηI = eikr cos(θ−θI) + eikr cos(θ+θI)

= 2
∞∑

n=0

εn(i)nJn(kr) cos nθI cosnθ , (5.10.1)

and

ηS =
∞∑

n=0

αnHn(kr) cos nθ so that
1
r

∂η

∂θ
= 0 , θ = 0, π . (5.10.2)

The same stationary functional (4.11.4), Chapter Four, still holds as long
as one uses ηI and ηS as given here. The computational procedure remains
the same.

Figure 5.22 shows the finite-element grid for a rectangular bay which
was already studied by using matched asymptotics in Section 5.6.2. The
response at the inland end of the bay is shown in Fig. 5.23 for comparison
with experiments performed in rather deep water. Discrepancy near the
lowest peak suggests the importance of friction losses at the entrance.

If there is a thin breakwater, the velocity near the tip is very high
so that local gradients are large. It is inefficient to increase the number
of finite elements around the tip because ordinary interpolating functions
cannot represent the singularity adequately. However, the hybrid-element
idea can again be applied by inserting a circular disc Ω′ centered at the
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Figure 5.22: Network of finite elements for a rectangular bay (from Mei and Chen,
1975, Proc., Symp. on Modelling Techniques. Reproduced by permission of American
Society of Civil Engineers).

tip (see Fig. 5.24). Within Ω′, an analytical solution η′ is used so that the
singular behavior is accounted for exactly. The functional of Eq. (4.11.4),
Chapter Four, must be modified by adding the following integral:

−
∫

C′

(
1
2
η′ − η

)
∂η′

∂η
ds , (5.10.3)

where C′ is the boundary of Ω′, and n is the unit normal to C′ pointing
out of Ω′. Matching of η and ∂η/∂n is guaranteed as natural boundary
conditions.
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Figure 5.23: Amplification factor |η|/2A at the inner end of an open rectangular bay.
Solid curve: solution by integral equation (Lee, 1971); ×××: solution by hybrid elements;
©©©: experiment by Lee (1971); •••: experiment by Ippen and Goda (1963). In
both experiments, 2a = 2.38 in., L = 12.25 in., and h = 10.13 in (from Mei and Chen,
1975, Proc., Symp. on Modelling Techniques. Reproduced by permission of American
Society of Civil Engineers).

Figure 5.24: Neighborhood of the tip of a thin breakwater.

For a thin breakwater the curve C′ may be taken as a circle small enough
so that the depth within is approximately constant. The proper form of
η′ is

η′ =
∞∑

n=0

γnJn/2(kr′) cos
nθ′

2
, (5.10.4)

where r′ and θ′ are the local polar coordinates shown in Fig. 5.24. Equa-
tion (5.10.4) satisfies the Helmholtz equation and the no-flux conditions on
the walls:
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1
r′

∂η

∂θ′
= 0 on θ′ = 0, 2π . (5.10.5)

In addition, since

J1/2(kr′) =
(

2
kr′

)1/2

sin kr′ ,

Eq. (5.10.4) has the right singular behavior. For other wedge-shaped cor-
ners with the wedge angle equaling a rational multiple of 2π, analytical
representation similar to Eq. (5.10.4) can also be obtained (Chen and Mei,
1974a, b).

Because of the versatility in treating arbitrary depth and boundary
shape, the hybrid element method is a very powerful method for harbor
studies. Indeed, its inception was in response to the proposed but later
aborted offshore harbor project for the New Jersey Public Service Gas and
Electric Company (Kehnemuyi and Nichols, 1973). Houston (1976) has
made use of it in planning new piers and terminals in Long Beach Harbor;
a sample finite-element grid is shown in Fig. 5.25.

5.11 Harbor Response to Transient Incident Wave

In Section 4.1.3 we have pointed out that the transient response in shal-
low water can be obtained by Fourier integration of the simple harmonic
response. Let us now apply this procedure to the transient response in
a harbor. Our analysis is adapted from Carrier (1970) who treated the
elementary model of Section 5.4 in detail.

Let the transient incident wave be described by

ζI(x, t) =
∫ ∞

−∞
dωA0(ω)e−ikx−iωt (5.11.1)

where A0(−ω) = A∗
0(ω) for real ζI . The incident/reflected wave system

due to the straight coastline at x = 0 must be

ζI + ζI′
=
∫ ∞

−∞
dω2A0(ω)(cos kx)e−iωt . (5.11.2)

The harbor response may be written

ζH = 2
∫ ∞

−∞
dωA0(ω)e−iωtηH(x, y, ω) (5.11.3)
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where ηH is the frequency response to an incident wavetrain of unit ampli-
tude. The path of integration should be slightly above the real axis so that
ζH → 0 as t → −∞. Although all previous results were for positive and
real ω and k, the results for negative and real ω can be inferred from the
former by changing the sign of i, implying that

ηH(x,−ω) = η∗
H(x, ω) . (5.11.4)

Note first that to obtain the transient response by Fourier superposition
it is, in principle, necessary to know ηH(x, y, ω) for the entire range of
frequencies −∞ < ω < ∞. This knowledge would require a numerical
solution unrestricted for narrow entrance. Fortunately, tsunami inputs are
usually of long periods and the harbor response is significant only in the
lowest few modes; inaccuracy in the high-frequency range should not be
essential. Therefore, it is reasonable to expect that the approximate long-
wave theory developed in previous sections may be used without incurring
gross error.

Consider a transient wave packet with a carrier frequency ω0 and a
slowly varying Gaussian envelope so that at x = 0

ζI + ζI′
= 4Be−Ω2t2 cosω0t , x = 0 , (5.11.5)

where

ω0

Ω
� 1 . (5.11.6)

The peak of the envelope strikes the coast at t = 0. The amplitude spectrum
is easily found:

A0(ω) =
B

π1/2

1
2Ω

{
exp

[
−
(

ω − ω0

2Ω

)2
]

+ exp

[
−
(

ω + ω0

2Ω

)2
]}

.

Making use of Eq. (5.11.4), we can verify that

ζH =
B

π1/2

1
Ω

Re
∫ ∞

−∞

{
exp

[
−
(

ω − ω0

2Ω

)2
]}

ηH(x, ω)e−iωt dω ,

or, equivalently,

ζH =
B

π1/2

1
K

Re
∫ ∞

−∞

{
exp

[
−
(

k − k0

2K

)2
]}

ηH(x, k)e−ikτ dk , (5.11.7)
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Figure 5.26: The complex plane for Fourier integral.

where

(k, k0, K) = (ω, ω0, Ω)(gh)−1/2 and τ = (gh)1/2t . (5.11.8)

Equation (5.11.6) implies that

K

k0
� 1 , (5.11.9)

so that the important part of the spectrum is narrow.
For simplicity only the rectangular bay in Section 5.5.2 is discussed

here, but the analysis is much the same for other harbors where analytical
solutions are available (see Carrier, 1970; Risser, 1976). Let us confine our
attention to the point x = −L, that is, the landward end of the bay:

ζH =
B

Kπ1/2
Re
∫ ∞

−∞
�(k) exp

[
− (k − k0)2

4K2
− ikτ

]
dk , (5.11.10)

where

� =
[
cos kL +

2ka

π
sin kL ln

2γka

πe
− ika sinkL

]−1

(5.11.11)

is the amplification factor from Eq. (5.6.20). The preceding integral can be
evaluated numerically. However, an analytical study for the present simple
case here is both physically informative and useful in guiding numerical
work. First of all, �(k) has a logarithmic branch point at k = 0. Since the
path of integration is slightly above the real k axis, the branch cut must
lie beneath the path and may be chosen as shown in Fig. 5.26. As a check
recall that for negative and real ω one may replace i by −i in Eq. (5.6.20)
with the result

�(ω) =
[
cos kL +

2ka

π
sin kL ln

2γka

πe
+ ika sinka

]−1

,

k = ω(gh)−1/2 < 0 . (5.11.12)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

5.11. Harbor Response to Transient Incident Wave 263

Equation (5.11.12) can also be obtained from Eq. (5.6.20) by replacing k

by keiπ (not by ke−iπ). This particular choice of phase is consistent with
the position of the branch cut.

Next, note that �(k) has poles in the lower half of the complex k plane at

k̄n = ±k̃n + ik̂n , k̂n < 0 ,

where k̃n corresponds to the nth resonant mode and k̂n to the radiation
damping rate.

The integral in Eq. (5.11.10) can be analyzed by the asymptotic method
of steepest descent. Leaving the general exposition to many existing texts
on applied mathematics (e.g., Carrier, Krook, and Pearson, 1966), we shall
only explain this method for the problem at hand. Consider the phase
function of the exponential in Eq. (5.11.10)

g(k) = − (k − k0)2

4K2
− ikτ (5.11.13)

as an analytic function of k. Let k = α + iβ, then the contour lines of Re g

and Im g are given by

Re g = const : (α − k0)2 − (β + 2K2τ)2 = const (5.11.14a)

Im g = const : (α − k0)(β + 2K2τ) = const (5.11.14b)

which are hyperbolas; contours of Re g are as shown in Fig. 5.27 for τ < 0
and Fig. 5.28 for τ > 0. The center of the hyperbolas is the point S where

k = k0 − 2iK2τ = k0 − 2iKΩt . (5.11.15)

Relative to the point S, the topography of exp(Re g) falls both to the east
and west and rises both to the north and south; point S is therefore called
the saddle point.2 Because g is analytic, the contours of Im g are orthogonal
to Re g = const and are the paths along which exp(Re g) changes most
rapidly; we call these the paths of the steepest descent. The strategy is to
deform the original path to the steepest path so that the integrand is of
significant magnitude only over a small stretch of the path.

Before the peak strikes the harbor mouth, τ < 0, the saddle point is in
the first quadrant. A closed rectangular contour is introduced in Fig. 5.27
with a horizontal path I1 passing from the west valley over the saddle and
down to the east valley. The integral along the two short vertical stretches

2In the most general situation a saddle point is defined by dg/dz = 0. Recall that an
analytic function cannot have an extremum in the region of analyticity.
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Figure 5.27: Topography near the saddle point for τ < 0 (before the pulse strikes the
coast). Vertical scale is exaggerated, −2K2τ � k0, K/k0 � 1.

Figure 5.28: Topography near the saddle point for τ > 0 (after the pulse strikes the
coast). Branch cuts I2 and I3 follow the steepest path. N refers to a resonant pole.
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at Re k → ±∞ vanishes because of the exponential in the integrand. By
Cauchy’s theorem, I0 = I1. Now along path I1, Im g = 0 and Re g drops
off most rapidly on both sides of S; I1 is a path of the steepest descent.
Clearly, the most important contribution is from the neighborhood of S

itself, where the rate of change of Re g is zero. Along I1, let

σ = k − k0 + 2iK2τ , (5.11.16)

then

ζH =
B

Kπ1/2
Re

{
e−K2τ2−ik0τ

∫ ∞

−∞
dσ exp

(
− σ2

4K2

)
�

∣∣∣∣
k=k0−2iK2τ+σ

}
.

(5.11.17)

Because of the Gaussian factor exp(−K2τ2) we need only confine our at-
tention to Kτ = O(1). Since K/k0 � 1, the leading term in Eq. (5.11.17)
is

ζH
∼= B

Kπ1/2
Re
{

e−K2τ2−ik0τ �(k0)
∫ ∞

−∞
dσ exp

(
− σ2

4K2

)}
= 2B Re {�(k0)e−Ω2t2e−iω0t} , t, τ < 0 . (5.11.18)

Thus, before the peak of the envelope strikes, the harbor responds passively
with the same carrier frequency and similar envelope as the input.

Equation (5.11.18) is valid whenever the saddle point is at a distance
greater than O(K) from a pole of �(k). Now all the poles of �(k) cor-
respond to resonances and have negative imaginary parts, k̂n < 0. If the
lowest resonant mode has a −k̂1 > O(K), that is, when the duration of
the incident wave packet is much greater than the radiation damping time
scale, Eq. (5.11.18) is valid up to t = 0 when the peak of the incident wave
envelope strikes the coast. If the envelope is infinitely long, the peak of
the envelope arrives at the coast only asymptotically in time. The input
is effectively sinusoidal and the steady-state response is obtained by let-
ting Ω → 0, while keeping t finite in Eq. (5.11.18); the result is, of course,
already known.

After the peak of the incident packet strikes the coast, τ becomes pos-
itive and the saddle point S moves to the fourth quadrant. The most
interesting case is when

k0 = k̃N , (5.11.19)
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that is, the incident wave has the same frequency as one of the lowest
resonant modes N . For Kτ ≤ O(1) so that the wave packet is still ap-
preciable, there is a time interval when S is just above the Nth pole, that
is, 2K2τ < −k̂N . In order to shift the integration path to a horizontal
line passing through S, we must account for the contributions from the
branch cut and from the poles lying above S and corresponding to modes
with lower frequencies than the incident wave. Referring to Fig. 5.28, let
us deform the branch cut so that it follows a path of the steepest descent.
By Cauchy’s theorem

ζH = ζH(I1) + ζH(I2) + ζH(I3) − B

Kπ1/2
Re 2πi

∑
n

residues ,

(5.11.20)

where ζH(Iα) stands for Eq. (5.11.10) with Iα as the integration path.
Along I2 and I3 which are the steepest paths, the neighborhood of k = 0
contributes the most to the integral. Because of the exponentially small
factor exp(−k2

0/4K2), the corresponding integrals ζH(I2) and ζH(I3) are
not important.

The residue for mode n can be obtained by first using Eq. (5.6.22) which
is valid near the pole

A ∼= (−1)n+1 1
(k − k̃n)L + ikna

(5.11.21)

=
1

(−1)n+1L

1
k − (k̃n + ik̂n)

with k̂n = −kna

L
< 0 , (5.11.22)

where k̃n is given by Eq. (5.6.23). The residue is

B

Kπ1/2

−2πi

(−)n+1L
e−ik̃nτek̂nτ exp

[
− (k̃n − k0 + ik̂n)2

4K2

]
, (5.11.23)

which is also exponentially small for all n �= N .
We now examine the term ζH(I1). Extra care is needed since the saddle

point S is close to the pole k̃N + ik̂N . Again using Eq. (5.11.22) we obtain
from Eq. (5.11.10) that

ζH(I1) =
B

Kπ1/2
Re
∫

I1

exp[−(k − k0)2/4k2 − ikτ ]
[k − (k̃N + ik̂N)](−)N+1L

dk
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which can also be written

ζH(I1) ∼= B

Kπ1/2
Re

e−K2τ2
e−ik̃N τ

(−)N+1L

∫ ∞

−∞

e−σ2/4K2
dσ

σ − i(2K2τ + k̂N )
(5.11.24)

after the use of Eqs. (5.11.16) and (5.11.19). The integral above may be
evaluated exactly (Carrier, 1970) as is detailed in Appendix 5.D. In partic-
ular, for 2K2τ + k̂N < 0, the saddle point S is still above the pole,

ζH(I1) ∼= B

Kπ1/2
Re

−iπe−k̃Nτ

(−)N+1L

{
ek̂2

N /4K2
ek̂N τ

[
1 + erf

(
2K2τ + k̂N

2K

)]}
.

(5.11.25)

When time has increased further so that 2K2τ + k̂N is positive, the
integral along I1 becomes

ζH(I1) =
B

Kπ1/2
Re

−iπe−k̃N τ

(−)N+1L

{
ek̂2

N /4K2
ek̂N τ

[
1 + erf

(
2K2τ + k̂N

2K

)]}
(5.11.26)

(see Appendix 5.D). We must now add the residue from pole N :

Re
−2iBπ1/2

(−)N+1KL
eik̂N τek̂N τek̂2

N /4K2
, (5.11.27)

which follows from Eq. (5.11.23). The combined result is also given by
Eq. (5.11.25). It is evident that the bay is excited at the frequency of
mode N and attenuates according to the time scale of radiation damping
∝ |k̂N |−1. The maximum amplitude in the bay increases with increasing
duration of the incident wave group (decreasing K). For a shorter wave
group (larger K) the maximum not only is smaller but also occurs
earlier.

The preceding analysis can be extended to harbor basins which are truly
two dimensional. There the Helmholtz mode has the lowest resonant fre-
quency and damping rate and may be excited by a simple pulse with nearly
zero carrier frequency ω ≈ 0. Carrier and Shaw (1969) integrated numeri-
cally the harmonic response to get the transient response in a rectangular
harbor with B = 600 ft, L = 100 ft, and h = 21 ft, which approximately
represents Barber’s Point Harbor in Oahu, Hawaii. For a very long pulse
(pulse duration is 6.4 times the Helmholtz mode period), they found the
response to be passive as shown in Fig. 5.29(a). The reason is that the
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Figure 5.29: Transient responses to a single-crested wave: (a) long pulse, (b) short pulse.
Solid curve: incident wave; dashed curve: harbor reponse (from Carrier and Shaw, 1969,
Tsunamis in the Pacific Ocean edited by W. M. Adams. Reproduced by permission of
University Press of Hawaii).

Fourier spectrum of a flat pulse is very sharp with k0 = 0 and very small
K; the residue from the Helmholtz pole is very small. However, for a very
short pulse, the Helmholtz mode is excited, as shown in Fig. 5.29(b). This
excitation occurs because the Fourier spectrum of a short incident pulse is
quite broad (K large) so that the terrain near the saddle is mild, and the
residue from the Helmholtz pole is considerable. Finally, Fig. 5.30 shows
the response of the Helmholtz mode excited by an incident wave packet.
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Figure 5.30: Transient response to a wave packet (from Carrier and Shaw, 1969,
Tsunamis in the Pacific Ocean edited by W. M. Adams. Reproduced by permission
of University Press of Hawaii).

Figure 5.31: Sample transient responses in two identical square basins coupled in series.
2a1 = 2a2 = 3B × 10−2, k = 3.289 × 10−3, T0 = 136 s. Only the envelopes are shown
(from Risser, 1976).
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The growth to resonance for t < 0 and the reverberation and attenuation
for t > 0 are qualitatively consistent with the analytical predictions of a
narrow bay.

For two coupled square basins, analytical and numerical studies have
been carried out by Risser (1976). In Fig. 5.31(a) a sample result by Risser
is shown for the harbor system of Fig. 5.19(a) with h = 20 m and B =
L = 1000 m. The carrier frequency of the wave packet is assumed to be
kB = 3.289 which corresponds to the third lowest peak (k−

01B or k−
10B). In

physical terms the incident wave period is T0 = 136 s. For a wave packet
of duration = 30T0, the envelopes of the responses at points P and Q as
marked in the inset of Fig. 5.31 are shown. It is interesting that there is
an oscillatory interchange of energy between the two basins and that the
inner basin can have slightly higher response than the outer.

Appendix 5.A The Source Function for a
Rectangular Basin

In this appendix we deduce the source function G(x, y; y′) which satisfies
the Helmholtz equation

(∇2 + k2)G = 0 (5.A.1)

and the boundary conditions

∂G

∂y
= 0 on y = 0, B, 0 < x < L , (5.A.2)

∂G

∂x
=
{ 0 , x = L , (5.A.3)

δ(y − y′) , x = 0 . (5.A.4)

Thus, G represents a source on the wall at x = 0, y = y′.
We assume the solution to be in the form

G =
∞∑

n=0

Xn(x) cos
nπy

B
, (5.A.5)

and note that it satisfies the zero-flux condition (5.A.2). Upon substituting
Eq. (5.A.5) into Eq. (5.A.1), we have(

d2

dx2
+ K2

n

)
Xn = 0 , (5.A.6)
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wherein

K2
n = k2 −

(nπ

B

)2
. (5.A.7)

The solution of Eq. (5.A.6) satisfying Eq. (5.A.3) is simply

Xn = An cosKn(x − L) . (5.A.8)

To determine the unknown coefficients An in Eq. (5.A.8), we first substitute
Eq. (5.A.8) into Eq. (5.A.5) and invoke the condition (5.A.4):

∞∑
n=0

AnKn sinKnL cos
nπy

B
= δ(y − y′) . (5.A.9)

Second, we multiply both sides of Eq. (5.A.9) by cos(nπy/B) and integrate
with respect to y from 0 to B. By means of the orthogonality relation∫ B

0

cos
nπy

B
cos

mπy

B
dy =

Bδmn

εn

where

ε0 = 1 , εn = 2 , n = 1, 2, 3, . . . , (5.A.10)

the coefficients are found to be

An =
εn

BKn sin KnL
cos
(

nπy′

B

)
. (5.A.11)

Finally, the source function is given by

G(x, y; y′) =
∞∑

n=0

εn

BKn sin KnL
cosKn(x − L) cos

nπy

B
cos

nπy′

B
.

(5.A.12)

Appendix 5.B Summation of the G̃ Series

The series to be summed is

G̃ =
∞∑

n=1

G̃n , (5.B.1)

where

G̃n = X̃n(x)Yn(y)Yn(y′) (5.B.2)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

272 Harbor Oscillations Excited by Incident Long Waves

and

X̃n = − 2
nπ

e−nπx/B , (5.B.3)

Yn = cos
nπy

B
. (5.B.4)

We let

ξ =
πx

B
, η =

πy

B
, η′ =

πy0

B
, (5.B.5)

and note, by using trigonometric identities, that

Yn(y)Yn(y′) = cosnη cosnη′

=
1
4
{[e−jn(η−η′) + e−jn(η−η′)] + ∗} , (5.B.6)

where (∗) denotes the complex conjugate of the preceding terms in curly
parentheses. Upon substituting Eqs. (5.B.6) and (5.B.3) into Eq. (5.B.2),
we have

G̃ = −1
2

[(
e−nZs

n
+

e−nZ′
s

n

)
+ ∗
]

, (5.B.7)

where

Zs = ξ + j(η − η′) , Z ′
s = ξ + j(η + η′) . (5.B.8)

The substitution of Eq. (5.B.7) into Eq. (5.B.1) yields four infinite series,
each of which can be summed in closed form by the following formula
(Collin, 1960, p. 579):

∞∑
n=1

e−ns

n
= − ln(1 − e−s) , (5.B.9)

yielding the result that

G̃ =
∞∑

n=1

G̃n =
1
2π

{[ln(1 − e−Zs) + ln(1 − e−Z′
s)] + ∗} (5.B.10)

or

G̃ =
1
2π

ln{|1 − e−Zs |2 |1 − e−Z′
s |2} . (5.B.11)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

Appendix 5.C. Proof of a Variational Principle 273

Appendix 5.C Proof of a Variational Principle

The functional J is defined as

J =
1
2

∫
M

∫
F (θ)K(θ|θ′)F (θ′) dθ dθ′ − 1

a

∫
M

F (θ)η0(θ) dθ (5.C.1)

in which F (θ) is the solution to the integral equation∫
M

F (θ′)K(θ|θ′) dθ′ =
1
a
η0(θ) , θ in M (5.C.2)

with a symmetric kernel

K(θ|θ′) = K(θ′|θ) . (5.C.3)

Let us now prove that Eq. (5.C.2) is equivalent to the vanishing of the
first variation of J , that is,

δJ = 0 . (5.C.4)

Let an approximate solution be denoted by F which differs from the
true solution F by δF , that is,

F = F + δF . (5.C.5)

Thus, the approximate value of J is

J =
1
2

∫
M

∫
(F + δF )K(F ′ + δF ′) dθ dθ′ − 1

a

∫
M

(F + δF )η0 dθ

=
1
2

∫
M

∫
[FF ′ + F ′(δF ) + F (δF ′)]K dθ dθ′

− 1
a

∫
M

(F + δF )η0 dθ + O(δF )2

= J +
1
2

∫
M

∫
(F ′δF + FδF ′)K dθ dθ′ − 1

a

∫
M

δFη0 dθ + O(δF )2

(5.C.6)

in which the shorthand notation F ′ = F (θ′) is used. The first variation of
J is

δJ = J − J =
1
2

∫
M

∫
(F ′δF + FδF ′)K dθ dθ′ − 1

a

∫
M

δFη0 dθ . (5.C.7)
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Due to the symmetry of K [cf. Eq. (5.C.3)],∫
M

∫
F ′δFK dθ dθ′ =

∫
M

∫
FδF ′K dθ dθ′ , (5.C.8)

it follows that

δJ =
∫

M

dθF

∫
M

dθ′
[
F (θ′)K(θ|θ′) − 1

a
η0(θ′)

]
. (5.C.9)

Thus, the integral equation (5.C.2) implies Eq. (5.C.4). Conversely, if
Eq. (5.C.4) is true for small but arbitrary δF , then Eq. (5.C.2) must be
true.

Appendix 5.D Evaluation of an Integral

Carrier (1970) has given the following result:

J =
∫ ∞

−∞

dσ e−σ2/4K2

σ + iγ

= −(sgn γ)iπeγ2/4K2
[
1 − erf

( |γ|
2K

)]
, (5.D.1)

which can be derived by contour integration (Risser, 1976). Consider first
that γ > 0, and introduce z = σ + iγ. It follows that

J =
∫ ∞+iγ

−∞+iγ

dz

z
exp
[
− (z2 − 2iγz − γ2)

4K2

]
. (5.D.2)

The pole is now at the origin of the z plane while the path of integration
is above the real z axis. By Cauchy’s theorem, the integration path can be
replaced by the real z axis indented above the origin.

Now break the integral into two parts: a principal-valued integral Jp

Jp = eγ2/4K2 −
∫ ∞

−∞

dz

z
e−(z2−2iγz)4K2

, (5.D.3)

and an integral along the indentation

Jε = eγ2/4K2
lim
ε→0

−
∫ θ=0

θ=π

dεeiθ

εeiθ
= iπeγ2/4K2

. (5.D.4)
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Denoting the principal-valued integral in (5.D.3) by F ,

F = −
∫ ∞

−∞

dz

z
e−(z2−2iγz)/4K2

, (5.D.5)

we find

∂F

∂γ
=

i

2K2

∫ ∞

−∞
dz e−(z2−2iγz)/4K2

=
i

2K2

∫ ∞

−∞
dz e−(z−iγ)2/4K2

e−γ2/4K2

=
i

2K2
2Kπ1/2e−γ2/4K2

=
iπ1/2

K
e−γ2/4K2

. (5.D.6)

When γ = 0, the integrand in Eq. (5.D.5) is odd in z; hence F (γ = 0) = 0.
We may integrate Eq. (5.D.6) to get

F =
iπ1/2

K

∫ γ

0

e−γ2/4K2
dγ

= iπ
2

π1/2

∫ γ/2K

0

e−σ2
dσ

= iπ erf
( γ

2K

)
. (5.D.7)

Adding up Jp and Jε, we get

J = Jp + Jε = −iπeγ2/4K2
[
1 − erf

( γ

2K

)]
. (5.D.8)

If γ < 0, we write γ = −|γ| which amounts to replacing i by −i in the
integrand of Eq. (5.D.1), hence the change of sign.
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Effects of Head Loss at
a Constriction on the
Scattering of Long
Waves: Hydraulic Theory 6
In the idealized theory of wave scattering in an inviscid fluid, it is usually
assumed that the fluid flow is always tangential to the solid boundary of a
wall or a structure. In reality, however, an adverse pressure gradient and
viscosity can decelerate the fluid near a sharp convex corner, forcing the
flow to separate and to form eddies of high vorticity and causing significant
energy loss. This natural tendency is the basis of perforated panels on room
walls to absorb sound energy. Jarlan (1965) introduced this idea to coastal
engineering and patented the design of a caisson breakwater which has a
perforated front wall but a solid back wall. Dissipation is enhanced by the
water jets falling through the holes when the surface elevations on both
sides differ. Breakwaters of similar types have been constructed at Baie
Comeau Harbor and Chandler Harbor in Quebec, Canada, and at Roscoff
Harbor in France (Richey and Sollitt, 1969). A more recent and dramatic
example is the North Sea Ekofisk oil storage tank which is surrounded by
a circular perforated breakwater with a diameter of approximately 92 m in
water of 70 m (Gerwick and Hognestad, 1973). A breakwater consisting of
a row of circular piles of 2 m diameter spaced with 0.5 cm gaps has been
in use in Osaka Harbor, Japan (Hayashi, Kano and Shirai, 1966).

In all these designs, flow separation due to sudden contraction and
expansion is the primary physical feature. Now flow separation around a
small cylinder is a related subject important in offshore structures and much
experimental research has been done for isolated cylinders with smooth or
sharpedged boundaries (see, for example, Sarpkaya and Issacson, 1981). It
is known from the experiments that the Strouhal number U/ωa (or equiva-
lently the Keulegan–Carpenter number UT/a for the pioneering work of
G. H. Keulegan and L. H. Carpenter, 1956, on oscillatory flows) is an

277
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important parameter, where U is the velocity amplitude and a the body
dimension. According to Graham (1980), there appears to be at least two
distinct regimes within the range of 2 < UT/a < 100. For UT/a > 20
(the number depends on the cylinder cross-section), a limited wake con-
taining a number of vortices extends downstream of the point of separa-
tion. With increasing UT/a, the wake lengthens and resembles more and
more the steady stream situation of a Kármán vortex street. However, for
UT/a < 20, vortices are shed from the separation points of the cylinder;
each vortex is swept back by the reverse flow to the other side of the
cylinder to pair up with a successive vortex of the opposite sign. This
vortex pair is then convected away from the body at large angles (∼ 45◦)
to the incident flow. A friction loss formula which is quadratic in the local
velocity [see Eq. (6.1.17) later] is satisfactory only for high values of UT/a.

Unfortunately, a similar criterion is still lacking for gaps and holes. Since
the Keulegan–Carpenter number can be rather large1 for usual breakwater
dimensions and wave periods, the quadratic loss formula provides at least a
crude estimate until more experimental data become available. For one-
dimensional scattering problems, such a semiempirical theory has been
developed by Hayashi, Kano, and Shirai (1966), Terrett, Osorio, and Lean
(1968), and others. Their reasoning has been further elaborated by Mei,
Liu, and Ippen (1974) as described below.

6.1 One-Dimensional Scattering by a Slotted or
Perforated Breakwater

6.1.1 The Field Equations

We limit ourselves to the study of small-amplitude waves in shallow water.
Since the local velocity in the neighborhood of a sudden constriction can
be large, let us include nonlinearity and begin with the equations of Airy,
already given as Eqs. (3.5.11) and (3.5.12), Chapter Three:

∂ζ

∂t
+ ∇ · (ζ + h)u = 0 (6.1.1)

1For tsunamis past a breakwater, we may take U = 1 m/s, T = 3600 s, and a =

breakwater thickness = 10 m, then UT/a = 360. For wind waves attacking a perforated
breakwater we take U = 3 m/s for the velocity through the holes, T = 10 s, a = 0.5 m,
then UT/a = 60.
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∂u
∂t

+ u · ∇u = −g∇ζ . (6.1.2)

Consider a thin barrier with vertical slots of width 2b. The center-to-
center spacing between any adjacent slots is 2a. Periodicity allows us to
consider a channel whose side walls coincide with the center lines of two
adjacent vertical piles, as sketched in Fig. 6.1. The water depth h is assumed
to be constant. The incoming wave is long, of low amplitude, and normally
incident; hence it must satisfy

∂ζ

∂t
+ h

∂u

∂x
= 0 , (6.1.3)

∂u

∂t
+ g

∂ζ

∂x
= 0 , (6.1.4)

which are the limits of Eqs. (6.1.1) and (6.1.2) for A/h � 1. More explicitly,
the incident wave may be written

ζI =
1
2
A[ei(kx−ωt) + e−i(kx−ωt)] , (6.1.5)

uI =
gk

ω
ζI . (6.1.6)

It is assumed that the incident wave is not only long compared to the depth,
but is even longer compared to the channel width, so that ka � 1.

Referring to Fig. 6.1, let the region at a distance O(k−1) away from the
constriction be called the far field. Because ka � 1, the flow is one dimen-
sional and governed by Eqs. (6.1.3) and (6.1.4) on both sides of the barrier.
Their solutions must be joined across the barrier by certain matching
conditions which depend on the near field, defined as the neighborhood
of O(a) around the barrier.

Figure 6.1: Near and far fields.
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6.1.2 The Matching Conditions and the Near Field

For sufficiently sharp constriction and moderate amplitude, flow is sepa-
rated downstream of the barrier. A jet is formed which expands and collides
with jets from adjacent slots to create two eddy zones. Further downstream
the flow becomes nearly one dimensional again. We denote the outer limits
of the near field by x− and x+ as shown in Fig. 6.1. The geometry is
reversed with the reversal of flow direction.

In this complex near field the continuity equation (6.1.1) may be sim-
plified. Even when the gaps or holes are absent, the wave amplitude can be
2A at most, hence ζ may be neglected relative to h. Furthermore, between
x− and x+ the horizontal length scale is a, ζ = O(A), t = O(ω−1), and
u � O((A/h)(gh)1/2); it follows that

∂ζ

∂t

/
∇ · (hu) � O(ka) � 1 .

The continuity equation (6.1.1) becomes

∇ · u ∼= 0 . (6.1.7)

Outside the region of turbulent eddies the inviscid momentum equation
applies. Since the velocity through the slots can be large, we retain the
convective inertia term, that is, the entire Eq. (6.1.2) which is valid outside
the eddy zone.

We now take the hydraulic approach by examining the differences of the
cross-sectional averages between x− and x+. Upon integrating Eq. (6.1.7),
it is obvious that

u−S = ucSc = u+S , (6.1.8)

where S is the gross area of the channel. Sc is the area at the vena con-
tracta and is related to the net opening area S0 by the empirical discharge
coefficient c

Sc = cS0 ; (6.1.9)

uc is the mean velocity at the vena contracta.
Outside the eddy zone, it is consistent with Eq. (6.1.2) to take u as

irrotational so that u = ∇Φ. A Bernoulli equation then holds:

∂Φ
∂t

+
u2

2
+ gζ = const . (6.1.10)
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Applying Eq. (6.1.10) between x− and xc which is at the vena contracta,
see Fig. 6.1, we get

∂

∂t
(Φc − Φ−) +

1
2
(u2

c − u2
−) + g(ζc − ζ−) = 0 , (6.1.11)

assuming that at both stations the transverse variation is negligible.
Downstream of the barrier we apply global momentum conservation to

the control volume EBCF in Fig. 6.1. In the wake of the solid barrier
the mean-fluid velocity is negligible and the free-surface height, hence the
dynamic pressure, is essentially uniform in y, and is equal to that in the jet.
Thus, the pressure force along EF is ρgζcS. The balance of total momentum
requires that

ρgS(ζc − ζ+) + ρ(u2
cSc − u2

+S) = ρ
∂

∂t

∫ x+

xc

SJu dx , (6.1.12)

where SJ is the cross-section area of the jet. Subtracting Eq. (6.1.12) from
Eq. (6.1.11) and invoking Eq. (6.1.8), we get

(ζ− − ζ+) =
1
2g

u2
�

(
S

cS0
− 1
)2

+
1
g

∂

∂t

[∫ xc

x−
u dx +

∫ x+

xc

u

(
SJ

S

)
dx

]
,

(6.1.13)

where the first integral above follows from the definition of Φ. If we intro-
duce the loss coefficient f

f =
(

S

cS0
− 1
)2

, (6.1.14)

and the length L

Lu+ =
∫ xc

x−
u dx +

∫ x+

xc

u

(
SJ

S

)
dx , (6.1.15)

Eq. (6.1.13) may be rewritten

ζ− − ζ+ =
f

2g
u2

+ +
L

g

∂u+

∂t
, u+ > 0 . (6.1.16)

If the argument is repeated for u+ < 0, a negative sign appears in front
of the first term on the right of Eq. (6.1.16). Accounting for both flow
directions, we have

ζ− − ζ+ =
f

2g
u+|u+| + L

g

∂u+

∂t
. (6.1.17)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

282 Effects of Head Loss at a Constriction

Once the coefficients f and L are determined empirically, Eqs. (6.1.8)
and (6.1.17) provide the boundary conditions for the far-field solutions on
two sides of the barrier. Since the far-field length scale is O(k−1), these
matching conditions can be approximately applied to the far-field solutions
by letting x → ±0.

If there is a solid wall at x = l, as in the case of a caisson with one wall
perforated, the boundary condition ∂ζ+/∂x = 0 at x = l must be added. If
the region extends to x → ±∞, then the scattered waves must be outgoing
from x = 0 (radiation condition). In practice, the width of the caisson l is
typically of order O(10 m) and is shorter than a design wavelength. Use
of Eqs. (6.1.9) and (6.1.17) for the perforated wall is therefore not entirely
legitimate from a theoretical point of view.

As an aside, a formula may be deduced for the force acting on the solid
barrier. Consider the fluid in ABCD and outside the body and its wake.
The net effect of pressure distribution on the upstream face of the body
and in its wake is to produce a force −F against the fluid in the control
volume. Hence from momentum balance

S[ρg(ζ− − ζ+) + ρ(u2
− − u2

+)] − F = ρ
∂

∂t

[∫ 0

x−
dxuS +

∫ x+

0

dxuSJ

]
.

It follows from Eqs. (6.1.8), (6.1.15), and (6.1.17) that

F = S

[
ρg(ζ− − ζ+) − ρL

∂u+

∂t

]
=

1
2
ρfSu+|u+| . (6.1.18)

6.1.3 The Coefficients f and L

It is well-known that in steady flows past sharp-edged orifices, the dis-
charge coefficient c (thus f) depends primarily on the orifice geometry, if
the Reynolds number is sufficiently high so that separation is a clear-cut
feature. For a sharp-edged orifice, an empirical formula is

c = 0.6 + 0.4
(

S0

S

)3

. (6.1.19)

For thick or rounded edges, the discharge coefficient c is much closer to
unity. According to this formula, c varies between 0.6 and 1. As the passing
fluid slows down, the frequency of vortex shedding decreases. Thus, f and
c should vary with the instantaneous velocity and acceleration, hence with
Reynolds and Strouhal numbers. Since comprehensive experimental data
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on f and c are not available for this kind of oscillatory flow, the steady-
state values are customarily used in the engineering literature. On the
other hand, the length L is the most difficult to estimate. While Hayashi
et al. (1966) neglected L altogether, Terrett et al. (1968) chose a constant
value to fit the experiments. In the absence of separation, the boundary-
value problem is linear; the corresponding length, denoted by L0 herein,
can be calculated by a two-dimensional theory. In fact, for long waves, L0

is related to the transmission and reflection coefficients T and R as will now
be shown. In the far field where the flow is one dimensional, the free-surface
displacement is given by

ζ− = Aei(kx−ωt) + ARe−i(kx−ωt) , x < 0 , (6.1.20)

ζ+ = ATei(kx−ωt) , x > 0 . (6.1.21)

Evaluating ζ− at x−, ζ+ at x+, and noting that |kx−|, kx+ � 1, we obtain

ζ− − ζ+ � A(1 + R − T )e−iωt . (6.1.22)

At x+ the velocity field on the right is

u+ =
gk

ω
ζ+ � gk

ω
ATe−iωt . (6.1.23)

With Eq. (6.1.23), Eq. (6.1.22) may be written in the form

ζ− − ζ+ =
[
T − (1 + R)

ikT

]
1
g

∂u+

∂t

=
L0

g

∂u+

∂t
, (6.1.24)

where L0 is given by

L0 =
[
T − (1 + R)

ikT

]
. (6.1.25)

After multiplying by ρgS, we can interpret Eq. (6.1.24) as Newton’s second
law for a mass of ρSL0, subject to the net force ρgS(ζ− − ζ+); the effect
of the orifice is equivalent to adding a mass of ρSL0 at the section x = 0.

The transmission and reflection coefficients must be found by a locally
two-dimensional theory. Now long waves of small amplitude are exactly
analogous to sound waves; analytical results known for several acoustic
orifices (a slot in a rectangular duct, a circular hole in a circular pipe, and
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so on) may be applied here. As an example, for a thin two-dimensional
slot, we have

L0

2a
� 1

π
ln

1
2

(
tan

πb

4a
+ cot

πb

4a

)
, ka � 1 (6.1.26)

(Morse and Ingard, 1968). Note that for long waves L0 depends on k in the
above approximation. The derivation of this formula is left as an exercise
of matched asymptotics. In the limits of small and large gaps, we get

L0

2a
� 1

π
ln

2
π

a

b
=

1
π

ln
2
π

S

S0
,

b

a
� 1 ,

L0

2a
∼ π

8

(
a − b

a

)2

;
a − b

a
� 1 .

(6.1.27)

Even for quite large S/S0, ln(S/S0) remains practically of O(1); the ratio

L0

gζ

∂u+

∂t
= O(kL0) (6.1.28)

is very small for long waves. Thus, ζ− � ζ+ and the constriction is in-
effective. This result is related to the deduction in Section 5.5 that the
transmission coefficient is nearly unity in the irrotational theory, unless
S/S0 is an enormous number.

With separation, L is obviously less tractable theoretically. Compared
with the unseparated flow, separation reduces the curvature of the local
streamlines around the gap. The local acceleration, which is responsible
for the hydrodynamic reaction and hence the apparent mass, should be
reduced also. In other words, we can expect the inviscid L0 to be the upper
bound of L. Now compare the inertia term to the friction loss term in
Eq. (6.1.17)

α =
(L/g)(∂u+/∂t)
(f/2g)u+|u+| = O

(
kL

1
2fA/h

)
= O

(
2kaL/2a
1
2fA/h

)
.

Using L0 in Eq. (6.1.26) for L, one sees that the aforementioned ratio is
only important for relatively short waves. As the area ratio S/S0 increases,
L/2a ∼ ln(S/S0) and f ∼ (S/S0)2, so that the preceding ratio diminishes
rapidly as

α � (4/π)ka ln(2/π)(S/S0)
f(A/h)(S/S0)2

. (6.1.29)
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Table 6.1: Ratio α according to Eq. (6.1.29).

a(m) b(m)
b

a
or

S0

S

L

2a
f

1

2

fA

h
α

1 0.5 0.5 0.22 1 00.5 0.1332

1 0.025 0.025 2.32 1.521 76 0.0018

Thus, for small gaps or holes, friction loss dominates for small but practical
wave amplitudes. As a numerical example, assume that A = 1 m, h =
10 m, T = 2π/ω = 10 s, k = ω/(gh)1/2 = 0.06/m, and c = 1. For the
perforated breakwater of the North Sea oil storage tank, S/S0 � 2 with
hole diameter ≈ 1 m. We may take for estimates a = 1 m and b = 0.5 m
as the equivalent channel and gap widths, respectively. For the Osaka pile
breakwater, the values are close to a = 1 m, b = 25 mm, and S/S0 = 40. The
apparent orifice length is calculated according to Eq. (6.1.26) and the ratio
α by Eq. (6.1.29) as given in Table 6.1. Note that even for wind waves, α is
quite small and diminishes for larger amplitudes or longer waves, or both.
Thus, in practical calculations there is an ample range of circumstances in
which the inertia term can be ignored altogether.

Exercise 6.1

Use comformal mapping and matched asymptotics to verify Eq. (6.1.26).

6.1.4 Equivalent Linearization

The quadratic friction term in Eq. (6.1.17) makes the entire problem non-
linear, and the response to a simple harmonic input should contain many
harmonics. If the response is dominated by the first harmonic as the input,
as should be checked a posteriori, then the so-called equivalent linearization
may be applied. Let the friction term be expressed in a linear form ceu,
that is,

ζ− − ζ+ = ceu , (6.1.30)

where ce denotes the equivalent friction coefficient. We shall choose ce in
such a way that the mean square of the error

e =
f

2g
u|u| − ceu (6.1.31)
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is minimum. Averaged over a period, the mean square is

e2 =
(

f

2g
u|u|
)2

− f

g
ceu2|u| + c2

eu
2 . (6.1.32)

The minimum occurs when ∂e2/∂ce = 0, which determines the optimal ce

ce =
f

2g

u2|u|
u2

. (6.1.33)

The equivalent friction coefficient now depends on u, and is not known
before the solution is completed. Alternatively, Eq. (6.1.33) can be ob-
tained by requiring that the nonlinear friction force and the equivalent
linear friction give the same energy loss per period. Approximating u by a
simple harmonic, that is,

u ∼= 1
2
(U0e

−iωt + U∗
0 e−iωt) = |U0| cosω(t + τ) (6.1.34)

where τ is the phase of U0, that is, U0 = |U0|e−iωτ , we have

u2 =
ω

2π

∫ 2π/ω

0

|U0|2 cos2 ω(t + τ)dt

= |U0|2 1
2π

∫ 2π

0

cos2 σdσ =
1
2
|U0|2

u2|u| =
1
2π

∫ 2π

0

cos2 σ| cosσ||U0|3dσ =
4
3π

|U0|3 .

It follows that

ce =
f

2g

8
3π

|U0| , (6.1.35)

which depends on the amplitude of the motion.

6.1.5 Approximate and Exact Solutions

We first derive the approximate solution by using Eq. (6.1.30) instead of
Eq. (6.1.17). The solution can be written in the following form:

ζ− = Ae−iωt[e+ikx + Re−ikx] ,
x < 0 (6.1.36)

u− =
gk

ω
Ae−iωt[e+ikx − Re−ikx] ,
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ζ+ = ATe−iωt+ikx ,
x > 0 . (6.1.37)

u+ =
gk

ω
ATe−iωt+ikx ,

Invoking continuity of velocity (6.1.8), we obtain

T =
ω

gk

U0

A
=

U0

(A/h)(gh)1/2
(6.1.38)

R = 1 − T = 1 − ω

gk

U0

A
. (6.1.39)

Applying the head-loss condition (6.1.30), we have

A =
(

ce

2
+

ω

gk

)
U0

which becomes

A =
ω

gk
U0 +

2
3π

f

g
U0|U0| (6.1.40)

upon inserting Eq. (6.1.35). The phases of U0 and A0 are equal and may
be taken to be zero, that is, U0 = |U0|. Equation (6.1.40) is a quadratic
equation for U0, which may be solved:

U0 =
A

h
(gh)1/2T =

A

h
(gh)1/2 (1 − 2β)1/2 − 1

β
(6.1.41)

where β = (4/3π)(fA/h) (Hayashi et al., 1966).
For small-amplitude waves or a wide opening, β is much less than unity.

Taylor expansion of the right-hand side of Eq. (6.1.41) gives

U0 =
A

h
(gh)1/2

[
1 − 1

2
β + O(β2)

]
.

Thus,

ce
∼= f

2g

8
3π

(
A

h
(gh)1/2

)(
1 − 1

2
4
3π

fA

h

)
, (6.1.42)

T ∼=
(

1 +
1
2
β

)
, R ∼= 1

2
β .
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For small openings, S0/S � 1, f is large according to Eq. (6.1.14);
Eq. (6.1.41) may be approximated for large β by

U0 =
A

h
(gh)1/2

(
2
β

)1/2

=
(

3π

2f
gA

)1/2

∼=
(

3π

2

)1/2
cS0

S
(gA)1/2 . (6.1.43)

The above limit may be deduced more directly as follows. By assuming
that the reflection is nearly total, one has a standing wave with amplitude
2A on the side x < 0. The maximum difference of the free surfaces on both
sides is 2A which gives the discharge velocity (4gA)1/2 through a tiny hole,
according to Torricelli’s law. The discharge velocity defined by averaging
over the gross area of S is then U0 = (4gA)1/2S0/S, which corresponds to
c = 2

√
2/(3π)1/2 = 0.92 in Eq. (6.1.43), the theoretical range of c being

0.6 < c < 1. Finally, the corresponding transmission coefficient is

T ∼=
(

2
β

)1/2

=
(

3π

2
h

fA

)1/2

=
(

3π

2
h

A

)1/2
cS0

S
. (6.1.44)

The scattering coefficients T and R are plotted in Figs. 6.2(a) and 6.2(b).
Özsoy (1977) compared the experiments of Hayashi et al. (1966) for

a closely spaced pile breakwater with the theory of this section. With f

given by Eq. (6.1.14), he found that the agreement in transmission and
reflection coefficients was rather good (Figs. 6.2(a) and 6.2(b)). Özsoy also
performed experiments for vertical slots in a thin barrier (b/a = 0.052,
0.103, 0.162, 0.441, and d/2b � 0.133 where d = thickness, 2b = slot width,
and 2a = 0.87 m). The empirical coefficient f has a significant scatter
for a fixed b/a (see Fig. 6.3), suggesting that other parameters such as the
Strouhal number might be important. Further information of interest may
be found in Özsoy.

The present problem with the nonlinear boundary condition (6.1.17)
without (L/g)(∂u/∂t) has been solved exactly by Mei, Liu, and Ippen
(1974). We include it here to show that although odd higher harmonics
exist, the fundamental harmonic dominates in practice and is quite accu-
rately given by the method of equivalent linearization.
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Figure 6.2: Comparison of theory (solid curve), Eqs. (6.1.14) and (6.1.41), with experi-
ments by Hayashi et al. (1966). Experiments were performed for various b/a : (• : 0.055;
� : 0.075; � : 0.091; © : 0.141; � : 0.182). (a)T ; (b)R (from Özsoy, 1977).
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Figure 6.3: The friction coefficient as a function of b/a. (From Özsoy, 1977).

Due to the nonlinear boundary condition we propose the solution

ζ− = ζI +
1
2

∞∑
−∞

Ame−im(kx+ωt) , (6.1.45)

u− = uI −
∞∑
−∞

gk

2ω
Ameim(kx+ωt) , (6.1.46)

for x < 0, and

ζ+ =
1
2

∞∑
−∞

Bmeim(kx−ωt) , (6.1.47)

u+ =
gk

2ω

∞∑
−∞

Bmeim(kx−ωt) , (6.1.48)

for x > 0. By time averaging the governing conditions, it may be shown
that ζ̄ is zero if ū is assumed to be zero at one end. Thus, there is no zeroth
harmonic in the series above. For every harmonic we require that
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A−m = A∗
m , B−m = B∗

m , (6.1.49)

so that all physical quantities are real.
By matching the velocity according to Eq. (6.1.8), it follows that

Bm = −Am for m �= 1 ,

B1 = A1 + A for m = 1 . (6.1.50)

Since

ζ− =
ω

gk

(
uI +

gk

2ω

∑
Ame−imωt

)

=
ω

gk

[
2uI −

(
uI − gk

2ω

∑
Ame−imωt

)]
=

ω

gk
(2uI − u+) ,

at x = 0−, and

ζ+ =
ω

gk
u+ ,

at x = 0+, it follows from Eq. (6.1.17) with L = 0 that

f

2g
u+|u+| + 2

ω

gk
u+ = 2

ω

gk
uI = 2A cosωt .

Clearly, the signs of u+ and uI are the same, that is, u+ and uI(O, t) are
always in phase. The above equation then gives

f

2g
|u+|2 +

2ω

gk
|u+| = 2A| cosωt| . (6.1.51)

In terms of the dimensionless variable W defined by

u+(0, t) = A
gk

ω
W =

A

h
(gh)1/2W (t) , (6.1.52)

the solution to Eq. (6.1.51) is

|W | =
(1 + 2β′| cosωt|)1/2 − 1

β′ , (6.1.53)

where

β′ =
fA

2h
=

3π

8
β . (6.1.54)
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When W is expressed as a Fourier series

W =
1
2

∑
Tme−imωt , (6.1.55)

the Fourier coefficient must be

Tm

2
=

1
2π

∫ 2π

0

dτ eimτ sgn(cos τ)|W (τ)| .

The results are

Tm = 0 , m = 2, 4, 6, . . . , even , (6.1.56)

1
2
Tm =

2
π

[
(−1)(m+3)/2

βm
− Mm(β′)

β′

]
, m = 1, 3, 5, . . . , odd , (6.1.57)

where

Mm(β′) =
∫ π/2

0

dτ cosmτ(1 + 2β′ cos τ)1/2 , (6.1.58)

which may be expressed in elliptic integrals but is readily integrated
numerically.

By combining Eqs. (6.1.46), (6.1.50), (6.1.52), and (6.1.55), we get

Bm = ATm , (6.1.59)

so that Tm is the transmission coefficient of the mth harmonic. The re-
flected coefficient for the mth harmonic is

R1 = 1 − T1 , Rm = −Tm , (6.1.60)

where Am = ARm. Table 6.2 shows the calculated first and third harmonics
by the exact theory, and the first harmonic by the equivalent linearization
for 1 < β < 5. The smallness of the third harmonic and the efficiency of
the approximate theory are evident.

Exercise 6.2

Consider a caisson breakwater which is composed of two parallel walls x = 0
and x = l. The wall x = 0 faces the incoming waves normally and is per-
forated with the area ratio S0/S. Use the equivalent linear friction formula
(6.1.30) to find the reflection coefficient. Discuss the effect of l.
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Table 6.2: Transmission coefficients as a function
of β′ = fA/2h, Tm : mth harmonic.

T1 T3

β′ Exact Approximate Exact

0.0 1 1 0

0.1 0.9601 0.9608 −0.0052

0.2 0.9271 0.9290 −0.0120

0.3 0.8978 0.8975 −0.0169

0.4 0.8719 0.8712 −0.0207

0.5 0.8486 0.8476 −0.0238

0.6 0.8276 0.8262 −0.0264

0.7 0.8084 0.8067 −0.0285

0.8 0.7907 0.7888 −0.0304

0.9 0.7744 0.7722 −0.0319

1.0 0.7593 0.7569 −0.0332

2.0 0.6498 0.6459 −0.0400

3.0 0.5813 0.5766 −0.0418

4.0 0.5326 0.5275 −0.0421

5.0 0.4954 0.4902 −0.0418

6.2 Effect of Entrance Loss on Harbor Oscillations

In Chapter Five where real fluid effects were ignored, the resonant response
in a harbor was found to increase for decreasing entrance width. However,
experiments by Lee (1971) confirmed this trend only for a relatively wide
entrance and showed the reduction of the entrance width ultimately reduced
the peak response. This discrepancy suggests the importance of friction
loss at the harbor entrance. Indeed, Japanese engineers have successfully
utilized friction to diminish tsunami effects in Ofunato Bay by narrowing
the entrance with two transverse breakwaters. In a research conducted for
the Ofunato project, Ito (1970) and Horikawa and Nishimura (1970) found
experimentally that entrance friction practically eliminated the quarter-
wave mode in the long bay. They also developed a theoretical model which
incorporated the hydraulic loss formula (6.1.17) without the apparent iner-
tia, that is,

ζ− − ζ+ =
f

2g
u|u| . (6.2.1)

While more experimental information is needed for two-dimensional prob-
lems with a constriction, the simple formula (6.2.1) with an estimated
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constant f appears to yield reasonable global predictions. Based on
the same assumptions, Ünlüata and Mei (1975) studied the problem
analytically for the simple rectangular harbor with a centered entrance, and
Miles and Lee (1975) for the Helmholtz mode of general harbor shape. The
theory of Ünlüata and Mei, simplified by ignoring all higher harmonics, is
presented below.

6.2.1 The Boundary-Value Problem

For analytical convenience we consider a rectangular harbor with a centered
entrance as depicted in Fig. 5.11, Chapter Five.

In the ocean x > 0, we separate the radiated waves from the normally
incident and reflected waves

η0 = 2A cos kx + ηR . (6.2.2)

The radiated wave ηR satisfies

∇2ηR + k2ηR = 0 , (6.2.3)

∂ηR

∂x
= 0 , |y| > a (6.2.4)

on x = 0 ,
∂ηR

∂x
=

iω

g
U(y) , |y| < a (6.2.5)

and must behave as outgoing waves at infinity. The velocity across the
harbor entrance is denoted by U(y) = |U(y)|e−iωτ where τ is the phase of
U. In the harbor x < 0, the displacement amplitude ηH is governed by

∇2ηH + k2ηH = 0 , (6.2.6)

∂ηH

∂x
= 0 , x = −L, |y| < B (6.2.7)

∂ηH

∂y
= 0 , y = ±1

2
B, −L < x < 0 (6.2.8)

∂ηH

∂x
= 0 , a < |y| <

B

2
, (6.2.9)

x = 0 .

=
iω

g
U(y) , |y| < a , (6.2.10)
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Together, Eqs. (6.2.9) and (6.2.10) imply the continuity of normal velocity
across the entrance. In addition we have at x = 0, |y| < a,

ηH − η0 = ceU , ce =
8
3π

f

2g
|U | . (6.2.11)

The solution can be formally written as a superposition of sources:

η0 =
∫ a

−a

U(y′)G0(x, y|y′) dy′ + 2A cos kx , (6.2.12)

ηH =
∫ a

−a

U(y′)GH(x, y|y′) dy′ , (6.2.13)

where the source functions are

G0 = − iω

g

i

2
H

(1)
0 (kr) , (6.2.14)

GH = − iω

g

[
cos k(x + L)
kB sin kL

+ 2
∞∑

n=1

cosKn(x + L)
KnB sinKnL

cos
2nπy

B
cos

2nπy′

B

]
,

(6.2.15)

with Kn = [k2 − (2nπ/B)2]1/2. Equations (6.2.14) and (6.2.15) are essen-
tially the same as Eqs. (5.7.1) and (5.7.7), Chapter Five, except for a factor
−iω/g. Substituting Eqs. (6.2.12) and (6.2.13) into Eq. (6.2.11), we get∫ a

−a

M(y|y′)U(y) dy − 2A = ceU(y) =
f

2g

8
3π

|U |U

=
f

2g

8
3π

|U |2e−iωτ (6.2.16)

where

M(y|y′) = GH(0, y|y′) − G0(0, y|y′) . (6.2.17)

Equation (6.2.16) is a nonlinear integral equation which can be solved nu-
merically for U(y). Because of the uncertainties in f , we shall be contented
with a gross estimate by assuming that U is constant in y for |y| < a and
try to satisfy Eq. (6.2.16) only on the average, that is,

U

∫∫ a

−a

M(y|y′) dy dy′ − 4aA = a
f

g

8
3π

|U |2e−iωτ . (6.2.18)
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For a small gap in a perfect fluid, U(y) is well approximated by (const)(a2−
y2)−1/2. With flow separation, however, U(y) should no longer be singular
at the tips. For this reason and for mathematical simplicity, a uniform
velocity distribution is adopted. Needless to say, this approximation cannot
give the correct U in detail, and the inaccuracy is not easy to ascertain.
Since it is already known that the harbor response for a narrow entrance
is related to the total flux through the entrance, a gross global error is not
likely to occur using this approximation. With

2a2ω

g
D = −

∫∫ a

−a

M dy dy′ , (6.2.19)

and S ≡ 4/3π, Eq. (6.2.18) may be rearranged as follows:

−
(

f

ωa
S|U |
)2

+
(

f

ωa
S|U |
)

D =
2fA

h

S

(ka)2
exp(−iωτ) , (6.2.20)

where use has been made of ω2 = gk2h. Taking the square of the magnitude,
we get

W 4 + 2(Re D)W 3 + |D|2W 2 −
[

4β

(ka)2

]2
= 0 , (6.2.21)

in which Re D is the real part of D,

W =
fS

ωa
|U | , and β =

fA

2h
S =

2fA

3πh
. (6.2.22)

Equation (6.2.21) is a quartic equation for W , which can be solved numeri-
cally. Afterward the phase ωτ follows from Eq. (6.2.20) and the solution
for U is complete. Finally, the value of U is substituted into Eq. (6.2.13)
to give the harbor response.

6.2.2 Local and Mean Square Response
in the Harbor

From Eqs. (6.2.13) and (6.2.16), the response at a point (x, y) in the har-
bor is

ηH(x, y) =
(A/a)

∫ a

−a GH(x, y|y′) dy′

(1/4a2)
∫∫ a

−a M(y|y′) dy dy′ − (fS/2ga)|U | . (6.2.23)
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Since the integral

1
2a

∫ a

−a

GH dy′

= − iω

g

[
cos k(x + L)

kb sinkL
+ 2

∞∑
n=1

cosKn(x + L)
KnB sin KnL

sinnα

nα
cos

2nπy

B

]
,

(6.2.24)

in which

α ≡ 2πa

B
, (6.2.25)

is the response to an oscillating piston with uniform velocity 1/2a at the
entrance (thus, unit total discharge per unit depth), the remaining factor

Q ≡ 2A

(1/4a2)
∫∫ a

−a M dy dy′ − fS|U |/2ga
(6.2.26)

in Eq. (6.2.23) represents the amplitude of the discharge across the entrance.
We introduce the normalized mean square response as follows:

σ2 =
1
2

1
BL

∫ 0

−L

dx

∫ B/2

−B/2

dy
∣∣∣ηH

2A

∣∣∣2
=

1
2
|Q/2A|2

BL

∫ 0

−L

dx

∫ B/2

−B/2

dy

∣∣∣∣ 1
2a

∫ a

−a

dy′ GH

∣∣∣∣2 . (6.2.27)

After evaluating all the integrals, one obtains

σ2 =
1
4

∣∣∣∣ Q2A

ω

g

∣∣∣∣2 F , (6.2.28)

in which

F =
1

(kB sin kL)2

(
1 +

sin 2kL

2kL

)

+ 2
∑
n=1

(
(sin nα)/nα

KnB sin KnB

)2(
1 +

sin KnL

2KnL

)
. (6.2.29)

Various aspects of these general formulas are examined in the following
subsections.
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6.2.3 Approximations for Narrow Entrance

As may be anticipated intuitively, the effect of head loss is most important
for narrow entrances and near resonant peaks. Hence further considerations
will be restricted to ka � 1.

By a common technique of improving the convergence of a series, it can
be shown that

1
4a2

∫∫ a

−a

M dy dy′ � − iω

g

(
− i

2
+ F − I

)
+ O(k2a2 ln ka) , (6.2.30)

in which

F ≡ cotkL

kB
+ 2

∞∑
n=1

(
cotKnL

KnB
+

1
2nπ

)(
sin nα

nα

)2

, (6.2.31)

and

I = −
(

ln
πka2γ

4B
+ ln 16 − 3

)
, (6.2.32)

with ln γ = 0.5772157 = Euler’s constant. Details of the derivation are
given in Appendix 6.A. The approximate discharge per unit depth is

Q � 2A

−(iω/g)[− 1
2 i(1 + W ) + F − I]

, W =
fS|U |

aω
, (6.2.33)

which can be combined with Eq. (6.2.28) for the approximate σ and with
Eq. (6.2.23) for the approximate ηH . The result should be compared with
Eq. (5.7.23), Chapter Five.

The effect of head loss enters the theory explicitly only through the
factor W = fS|U |/ωa in the entrance discharge Q [cf. Eq. (6.2.33)]. In
the absence of friction (f = 0), the resonance features in the harbor have
been studied in Chapter Five. In particular, the term − 1

2 i in brackets
in Eq. (6.2.33) (with W = 0) corresponds to radiation damping. Clearly,
the term (− 1

2 i)(1 + W ) corresponds to the sum of radiation and friction
damping at the entrance. For a narrow entrance and f = W = 0, radiation
damping should be weak so that resonance occurs near the natural modes
of the completely closed basin, that is,

k = kmn =

[(mπ

L

)2
+
(

2nπ

B

)2]1/2

, m = 0, 1, 2, 3, . . . ; n = 0, 1, 2, 3, . . . .

(6.2.34)

Now, when W �= 0 but
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W � O(1) , (6.2.35)

the friction loss, and thus the total damping, is also weak; the resonant
peaks should still be near kmn and the neighborhoods of the resonant peaks
can be examined in the manner of Section 5.7. For brevity, only the peaks
themselves, when they are well isolated, are studied in the next subsection.

6.2.4 Small Radiation and Friction Damping

Near the natural mode k = kmn, the magnitude of Q is, from Eq. (6.2.33),

|Q| =
2A(ω/g)−1

[| 12 (1 + W )|2 + (F − I)2]1/2
. (6.2.36)

Since F is large for k � kmn and I is logarithmically large for small ka2/B,
the maxima of |Q| occur approximately where

F − I = 0 , (6.2.37)

provided that W � O(1). Let (̃ ) denote quantities evaluated at the resonant
peaks. In particular, the real roots of Eq. (6.2.37) will be designated by
k̃mn. Since F and I are independent of f , the locations of the resonant peaks
are not strongly affected by friction losses. The corresponding maximum
discharge is

|Q̃| =
(

4A(ω/g)1/2

1 + W

)
ω=ω̃mn

. (6.2.38)

Since

|Q̃|f=0 =
(

4A

ω/g

)
ω=ω̃mn

(6.2.39)

for f = 0, the reduction ratio for peak discharge at the entrance is

|Q̃|
|Q̃|f=0

=
1

(1 + W )ω=ω̃mn

. (6.2.40)

In view of Eq. (6.2.28), Eq. (6.2.40) is also the reduction ratio for the root
mean square response at resonance since F and the resonant wavenumbers
are approximately independent of f.

The value of W at resonance remains to be found. From Eqs. (6.2.30)
and (6.2.19) it follows that for a narrow entrance and at resonance

2a2ω

g
D = −

∫∫ a

−a

M dy dy′ � 2a2ω

g
, or D � 1 . (6.2.41)
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Hence,

ωτ = 0 (6.2.42)

from Eq. (6.2.20) and W can be solved from Eq. (6.2.21):

W =
fS|U |

ωa
=

1
2

[
−1 +

(
1 +

16β

(ka)2

)1/2
]

k=k̃mn

(6.2.43)

in which β = 2fA/3πh [cf. Eq. (6.2.22)]. Note that the original condition
(6.2.35) implies that

16β

(ka)2
≤ O(1) . (6.2.44)

After Eq. (6.2.43) is substituted into Eq. (6.2.40), the reduction factor is
found to be

σ̃

σ̃f=0

∼= Q̃

Q̃f=0

=
(

2
1 + (1 + 16β/(ka)2)1/2

)
k=k̃mn

, (6.2.45)

where the value of k̃mn may be estimated by the natural wavenumbers of
the closed basin when n and m are not both zero (non-Helmholtz mode).
For the Helmholtz mode, k̃00 may be estimated by the inviscid value.

It can be concluded from Eq. (6.2.45) that the reduction of resonant
peaks by entrance loss is more pronounced for increasing 16β/(k̃a)2, that is,
for (i) larger f , (ii) larger amplitude, (iii) longer waves or lower resonant
modes, or (iv) narrower entrance. The wisdom in the Ofunato breakwater
design is evident. Items (iii) and (iv) are also consistent with the experi-
mental observations by Lee (1971) for a circular harbor.

With regard to the parameter 16β/(k̃a)2, it should be pointed out that
the loss coefficient f may depend on the Strouhal and Reynolds numbers
and on the geometry of the breakwater tips at the entrance. Ito (1970)
suggests that the empirical value f = 1.5 gives reasonable results for the
Ofunato tsunami breakwater. For reference, note that when A = 0.5 m,
h = 10 m and f is taken to be 1, then β = 10−2. Now take a square basin
with B = L; the lowest few natural modes of the closed basin are:

k10L = π , k01L = k20L = 2π , and k11L = 51/2π .

For a narrow entrance with 2a/B = 3× 10−2, the reduction factor and the
parameter 16β/(k̃a)2 are listed in Table 6.3 for a range of β no greater than
10−2. The values marked with a † violate the assumption that 16β/(k̃a)2 ≤
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Table 6.3: Reduction factor according to Eq. (6.2.45).

m, n (0, 0) (1, 0) (2, 0), (0, 1) (1,1)

k̃B 0.55 π 2π
√

5π

k̃a =
2a

B

k̃B

2
0.825 × 10−2 4.71 × 10−2 9.42 × 10−2 10.53 × 10−2

β = 10−2 2350a 72.1a 18.0a 14.43a

β = 10−3 23.5a 0.721 0.18 1.44

16β

(k̃a)2
β = 10−4 23.5a 0.721 0.18 0.144

β = 10−5 2.35 0.0721 0.018 0.0144

β = 10−2 0.04a 0.209a 0.373a 0.406a

β = 10−3 0.122a 0.517 0.748 0.781

σ̃

σ̃f=0
β = 10−4 0.336a 0.865 0.959 0.966

β = 10−5 0.707 0.983 0.996 0.996

aFrom Mei, Liu, and Ippen (1974). J. Waterway, Port, Coastal and Ocean Division.
Reproduced by permission of the American Society of Civil Engineers.

O(1) and the calculated reduction factor is not reliable quantitatively; a
different approximation is needed.

6.2.5 Large Friction Damping

Table 6.3 shows that the value of 16β/(k̃a)2 can be very large for the
lowest resonant mode or for narrow entrance. From Eq. (6.2.21) the value
of W = fS|U |/ωa is also large and can be approximated to the leading
order by

W � (4β)1/2

ka
(6.2.46)

or

|U | �
(

2gA

fS

)1/2

. (6.2.47)

Note that the velocity U is proportional to (2gA)1/2, as in the elementary
Torricelli’s law. The corresponding discharge per unit depth through the
entrance is
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|Q| � 2a

(
2gA

fS

)1/2

, (6.2.48)

which diminishes with the entrance width 2a. Combining this result with
Eq. (6.2.28), it may be concluded that sufficiently large head loss removes
the harbor paradox, that is, the response ultimately diminishes with the
entrance width.

6.2.6 Numerical Results for General W

As shown in Table 6.3, the assumption of small friction damping W ≤ O(1)
is not appropriate for the Helmholtz mode, and an accurate solution of
W from the quartic equation (6.2.21) is necessary. Since the real part
of D is proportional to the total damping, the coefficients of W 4, W 3,
and W 2 in Eq. (6.2.21) are positive; one and only one real and positive
solution can exist. After solving for W numerically the root mean square
response for the fundamental harmonic can be calculated from Eq. (6.2.28)
without the assumption of ka � 1. The normalized flux and the root mean
square response are plotted in Fig. 6.4 for the range 0 < kL < 8 for β =
10−2, 10−4 and 0. For comparison, the inviscid theory which predicts the
harbor paradox is also shown. In Figs. 6.5 and 6.6, the amplification ratios

Figure 6.4: Root mean square response σ and the normalized flux intensity |Qω/2gA|
of the fundamental harmonic as function of kL(= kB). Normalized entrance width
2a/B = 3 × 10−2. β = 0: solid curve; β = 10−4: dashed curve, β = 10−2: dash–dot
curve (from Ünlüata and Mei, 1975, J. Waterway, Port, Coastal and Ocean Division.
Reproduced by permission of American Society of Civil Engineers).
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Figure 6.5: Mean resonant amplification σ̃ of the fundamental harmonic for the
Helmholtz mode (from Ünlüala and Mei, 1975, J. Waterway, Port, Coastal and Ocean
Division. Reproduced by permission of American Society of Civil Engineers).

Figure 6.6: Resonant amplification η̃ of the fundamental harmonic at the corner x =
−B, y = 1

2
B for the first mode k01B = π (or η ∝ cos(π(x + L)/L) (from Ünlüata and

Mei, 1975, J. Waterway, Port, Coastal and Ocean Division. Reproduced by permission
of American Society of Civil Engineers).
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for the Helmholtz mode (m = n = 0) and for the mode m = 1, n = 0
are plotted as functions of the normalized entrance width 2a/B. Again, the
harbor response reduces with 2a/B for a fixed β.

Appendix 6.A Approximations of an Integral
for ka � 1

The integral in question is

1
4a2

∫∫ a

−a

dy dy′M(y|y′) =
1

4a2

∫∫ a

−a

[GH(0, y, y′) − G0(0, y|y′)] dy dy′

= JH − JO . (6.A.1)

From Eq. (6.2.14) it follows that

JO ≡ 1
4a2

∫∫ a

−a

G0(0, y|y′) dy dy′

=
1

4a2

iω

g

(
− i

2

)∫ a

−a

H
(1)
0 (k|y − y′|) dy dy′ ,

=
ω

2g

∫∫ 1/2

−1/2

H
(1)
0 [(2ka)|ξ − ξ′|] dξ dξ′ , (6.A.2)

after the transformation y = 2aξ, y′ = 2aξ′. Approximating H
(1)
0 for small

ka, one has

JO =
ω

2g

∫ 1/2

−1/2

[
1 +

2i

π
ln(γka|ξ − ξ′|)

]
dξ dξ′ + O(ka)2 ln(ka) , (6.A.3)

where ln γ = 0.5772157 = Euler’s constant. Thus,

JO =
ω

2g

[(
1 +

2i

π
ln γka

)
+

2i

π

∫ 1/2

−1/2

ln |ξ − ξ′| dξ dξ′
]

(6.A.4)

=
ω

2g

[
1 +

2i

π

(
ln γka − 3

2

)]
+ O[(ka)2 ln ka] , (6.A.5)

where the following identity has been used:∫∫ 1/2

−1/2

ln |ξ − ξ′| dξ dξ′ = −3
2

. (6.A.6)
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From Eq. (6.2.15) it follows that

JH =
1

4a2

∫∫ a

−a

GH(0, y|y′) dy′

= − iω

g

1
4a2

∫∫ a

−a

dy dy′
(

cotkL

kB
+ 2

∞∑
n=1

cotKnL

KnB
cos

2nπy

B
cos

2nπy′

B

)

= − iω

g

[
cotkL

kB
+ 2

∞∑
n=1

cotKnL

KnB

(
sin nα

nα

)2
]

, (6.A.7)

where α ≡ 2πa/B. Consider the series above. Since the harbor dimensions
have been assumed to be comparable to the incident wavelength, we must
have

α =
2πa

B
� 1 .

Now for large n, the nth term in the last series of Eq. (6.A.7) approaches

cotKnL

KnB

(
sin nα

nα

)2

→ − 1
2nπ

(
sinnα

nα

)2

;

the series, to be denoted by Σ, may be written

Σ = − 1
π

∞∑
n=1

1
n

(
sinnα

nα

)2

+ 2
∞∑

n=1

(
cotKnL

KnB
+

1
2nπ

)(
sin nα

nα

)2

. (6.A.8)

The second series on the right-hand side above now converges rapidly; its
sum with the remaining term in Eq. (6.A.1) will be denoted by F ;

F =
cot kL

kB
+ 2

∞∑
n=1

(
cotKnL

KnB
+

1
2nπ

)(
sin nα

nα

)2

. (6.A.9)

The first series on the right-hand side of Eq. (6.A.8) may be approximately
summed in closed form. By the following rearrangement,

F ′ ≡ − 1
π

∞∑
1

1
n

(
sin nα

nα

)2

=
1

2πα2

∞∑
1

1
n3

(cos 2nα − 1) ,
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it can be found from Collin (1960, p. 579) that
∞∑
1

cosnz

n3
=

z2

2
ln z − 3

4
z2 + O(z4) +

∞∑
1

1
n3

.

Hence

F ′ =
1

2πα2

[
(2α)2

2
ln 2α − 3

4
(2α)2 + O(α)4

]

=
1
π

(
ln 2α − 3

2

)
[1 + O(α2)]

=
1
π

(
ln

4πa

B
− 3

2

)[
1 + O

(
2πa

B

)2
]

.

Substituting into Eq. (6.A.8) and combining with Eqs. (6.A.7) and (6.A.9),
one gets

1
4a2

∫ a

−a

M dy dy′

= JH − JO

� − iω

g

{
F +

1
π

(
ln

4πa

B
− 3

2

)
+ O[(ka)2 ln ka] − i

2
+

1
π

(
ln γka − 3

2

)}

= − iω

g

{
− i

2
+ F +

[
ln
(

πka2γ

4B

)
+ ln 16 − 3

]
+ O(ka)2 ln(ka)

}
.

(6.A.10)

Since ln 16 − 3 = −0.2274 and ka2/B � 1, the square bracket is negative
and will be denoted by

I = −
[
ln
(

πka2γ

4B

)
+ ln 16 − 3

]
. (6.A.11)

In summary, the integral in Eq. (6.A.1) is

1
4a2

∫∫ a

−a

M(y|y′) dy dy′

� − iω

g

(
− i

2
+ F − I

)
+ O(k2a2 ln ka) . (6.A.12)
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Multiple Scattering by
Seabed Irregularities 7
Proper account for bathymetric variations is an important task in con-
structing wave-forcasting models for coastal waters. For slowly vary-
ing depth, the ray (or WKB) and mild-slope approximations are use-
ful tools to deal with refraction and diffraction in many practical situ-
ations. For abrupt depth changes involving one or a few obstacles, ef-
fective numerical schemes have been well developed to give the details
of wave scattering near the obstacles. In cases where the bottom ir-
regualarities extend over many wavelengths, i.e., tens or hundreds of
kilometers, however, one must deal with multiple scattering. In nature
both the waves and the depth variations can be highly irregular. A
comprehensive wave model should account for the scattering of random
waves by randomly irregular bathymetry, in addtion to viscous dissipa-
tion. Early works on this topic are due to Hasselmann (1966) and Long
(1973).

As a first step towards physical understanding of multiple scattering,
we shall examine in this chapter two types of bathymetry and monochro-
matic waves. Specifically, two linearized theories will be discussed: (i)
Bragg scattering by a periodic bathymetry (Section 7.1–Section 7.3), and
(ii) scattering by random roughness (Section 7.4–Section 7.6). Extensions
to narrow-banded nonlinear waves can be found in Mei and Hancock (2003)
and Pihl, Mei and Hancock (2002). Ardhuin and Herbers (2002) have stud-
ied the effects of Bragg mechanism on the scattering of random waves over
random bottom. More work is needed.

307
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7.1 Field Evidence of Periodic Longshore Bars

Longshore sand bars are often found along gentle beaches. The number of
bars can range from a few to dozens and the spacing from tens to hundreds
of meters, see Table 7.1. The bar amplitudes can be as high as a meter.
Figure 7.1 shows a sample profile in Chesapeake Bay, Maryland, USA,
recorded by accoustic sounding (Dolan, 1983; Dolan and Dean, 1985). An
aerial photograph of longshore bars at Ecambia Bay Florida is shown in
Chapter 10.

Scientifically, it is natural to ask what effects the presence of long-shore
bars may have on the wave climate. Of course how these sand bars are
generated is of interest to coastal morphodynamics. Indeed the first labo-
ratory study of bar formation on a beach was motivated by military needs,
and was conducted by Keulegan (1943) as a classified project in preparation
for the Normandy landing of Allied troops at the end of the second World
War. As will be discussed in Chapter 10, waves can induce a circulation in

Table 7.1: Records of sand bars in US.

Beach slope No. of bars Bar spacing (m)

Lake Michigan 0.0072–0.012 3–4 39–321

Cape Cod 0.0014–0.0029 6–8 40–105

Alaskan Artic 30.0041–0.0057 4–5 141–479

Chesapeake Bay 0.0017–0.0052 4–17 12–70

Figure 7.1: Bar profile at Scientists Cliff, Chesapeake Bay, by Dolan, 1983 .
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Figure 7.2: Bragg resonance as the result of constructive interference.

the bed boundary layer and transport sand particles from wave antinodes
to nodes, hence to form bars. A fuller explanation requires the combina-
tion of the hydrodynamics of waves boundary layers and the dynamics of
sediment motion. The latter subject is very complicated and theoretical
understanding is meager. In this chaper we shall only examine the effects
of rigid bars on waves.

If the bar amplitudes are small, D � h, one might expect their effects
on a train of progressive waves to be small and apply a straightforward
second-order analysis so that the effect on waves will appear at the order
kA(KD) (Davis (1982), see Exercise 7.2). The situation is different however
if the incident waves are twice as long as the bar spacing, i.e., K = 2k; then
the phenomenon of Bragg resonance occurs and the reflection by many
small and periodic bars can be very strong. The source of this resonance is
due to constructive interference of incident and reflected waves and is well
known in x-ray diffraction by crystaline materials. Referring to Fig. 7.2
where a number of bars of wavelength λb are fixed on a horizontal bed, we
consider the propagation of a train of waves incident from the left. Every
wave crest passing over a bar will be mostly transmitted toward the next
bar ahead and sends a weak reflected wave towards the bar behind. At
any given bar, the maximum amplitude of the left-going wave is the sum
of all left-going wave crests, each of which is the consequence of reflection
by the nth bar on the right. Therefore, each of these wave crests has
traveled the distance of 2nλb. When 2λb equals the surface wavelength, λ,
all these reflected wave crests are in phase upon arrival at the same bar
and reinforce one another, resulting in strong (resonant) reflection. Thus
many small bars can give rise to strong reflection if the Bragg resonance
condition is met.

Let us now describe a theory of Bragg resonance. Since many bars must
be involved in order for this phenomenon to be appreciable, the total region
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of bars must be much greater than the typical bar length or wavelength.
Second, since reflection is strong, incident and reflected waves must be
allowed to be comparable in order. Let us also allow slow variation in mean
depth h(x, y). Therefore, the WKB approximation1 in Section 2.1 will be
used.

7.2 Evolution Equations for Bragg-Scattering

Let the seabed be describd by z = −h(x, y)+εδ(x, y), where εδ(x, y) denotes
the bar profile with ε � 1 signifying the order of magnitude of both the
mean beach slope and the bar slope. The exact kinematic condition on the
seabed reads,

Φz = ∇(−h + εδ) · ∇Φ , z = −h + εδ , (7.2.1)

where ∇ denotes the horizontal gradient. Expanding about z = −h, we get

Φz + εδΦzz + O(ε2) = ∇(−h + εδ) · ∇Φ + O(ε2) , z = −h . (7.2.2)

Since Φzz = −∇2Φ, we get the approximate condition,

Φz = −∇h · ∇Φ + ε∇ · (δ∇Φ) , z = −h . (7.2.3)

Introducing slow coordinates x1 = εx, y1 = εy, t1 = εt, we recall from
Section 3.1 the governing Laplace equation:

ε2∇2
1Φ + Φzz = 0 , −h < z < 0, (7.2.4)

where

∇1 =
∂2

∂x2
1

+
∂2

∂y2
1

(7.2.5)

is the horizontal Laplacian. The free-surface condition becomes

gΦz + ε2Φt1t1 = 0 , z = 0 . (7.2.6)

On the mean seabed we have

Φz = −ε2∇1h · ∇1Φ + ε3∇1 · (δ∇1Φ) , z = −h . (7.2.7)

We assume the seabed to have parallel contours so that h = h(x1) and
δ = δ(x1). Anticipating strong reflection, let us start with the following

1Equivalently, the multiple-scale method can be employed to yield the same results.
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WKB expansion where both incident and reflected waves are allowed at
the leading order

Φ = Φ(0) + εΦ(1) + O(ε2)

= (ψ+ + iεγ+ + · · · )eiS+/ε + (ψ− + iεγ− + · · · )eiS−/ε + ∗ , (7.2.8)

where

S± = ±
∫

α dx1 + βy1 − ωt1 (7.2.9)

is ε times the wave phase of incident and reflected waves. The local
wavenumber components α, β are related to the local wavenumber vector
k and local angle of incidence θ by

k± = (±α, β) , α = k cos θ , β = k sin θ . (7.2.10)

The leading-order solution is the sum of incident and reflected waves,
as in Section 2.1,

ψ± = − igA±

2ω

cosh k(z + h)
cosh kh

(7.2.11)

with

ω2 = gk tanh kh . (7.2.12)

At the next order O(ε) we assume the bars to be parallel to the depth
contours

δ =
D

2

[
exp
(

2i

ε

∫
α dx1

)
+ exp

(
−2i

ε

∫
α dx1

)]
, (7.2.13)

where D(x1, y1) is the bar amplitude. Using (7.2.13) in (7.2.7) we get, after
some algebra,

Φ(1)
z = −i∇1h · (k+ψ+eiS+/ε + k−ψ−eiS−/ε) + ∗

D

2
(α2 − β2)(ψ−eiS+/ε + ψ+eiS−/ε) + ∗ + non-resonating terms .

(7.2.14)

Only terms proportional to exp(iS±/ε) (hence to the homogeneous solu-
tions) are written explicitly above, as they may force resonance. Other less
important terms are grouped as the non-resonant terms. Assuming

Φ(1) = iγ+eiS+ + c.c. + iγ−eiS− + c.c. + · · · (7.2.15)
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and separating the coefficients of incident and reflected waves, we get two
inhomogeneous boundary-value problems for γ±:

γ±
zz − k2γ± = k± · ∇1ψ

± + ∇1 · (k±ψ±) , −h < z < 0 (7.2.16)

γ±
z − ω2

g
γ± = −2ω

g
ψ±

t1 , z = 0 (7.2.17)

γ±
z = ∇1h · (k±ψ±) +

iD

2
(α2 − β2)ψ∓ , z = −h . (7.2.18)

Since ψ± are the homogeneous solutions of (7.2.16), (7.2.17) and (7.2.18),
Green’s formula can be used:∫ 0

−h

[ψ±(γzz − k2γ±) − γ±(ψ±
zz − k2ψ±)] dz

= [ψ±γ±
z − γ±ψ±

z ]z=0 − [ψ±γ±
z − γ±ψ±

z ]z=−h . (7.2.19)

Use of the governing equations for ψ± and γ± yields the following evolution
equations for A± as solvability conditions,

∂

∂t1

(
(A+)2

2

)
+ ∇1 ·

[
C+

g

(
(A+)2

2

)]
= −iΩoA

+A− cos 2θ (7.2.20)

∂

∂t1

(
(A−)2

2

)
+ ∇1 ·

[
C−

g

(
(A−)2

2

)]
= −iΩoA

+A− cos 2θ (7.2.21)

where C+
g and C−

g defined by

C±
g = Cg

k±
k

(7.2.22)

are the group velocities of the incident and reflected waves, respectively,
and Ωo is defined by

Ωo =
gkD

4 cosh2 kh
=

ωkD

2 sinh 2kh
, (7.2.23)

which has the dimension of frequency. Use has been made of α2 − β2 =
k2 cos 2θ. Thus, under Bragg resonance, the incident and reflected waves are
coupled; the coupling coefficient Ωo is proportional to the bar amplitude.

For brevity we shall change A+ to A and A− to B from here on. Because
h, k, Cg depends only on x1, we have
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∂A

∂t1
+ Cg cos θ

∂A

∂x1
+

∂(Cg cos θ)
∂x1

A

2
+ Cg sin θ

∂A

∂y1
= −iΩoB cos 2θ

(7.2.24)

∂B

∂t1
− Cg cos θ

∂B

∂x1
− ∂(Cg cos θ)

∂x1

B

2
+ Cg sin θ

∂B

∂y1
= −iΩoA cos 2θ .

(7.2.25)

In the simplest case where the mean depth h and D are constants, then
so are Cg and θ. The two equations can be easily reduced to one(

∂

∂t1
+ Cg

∂

∂y1

)2

A − (C2
g cos2 θ)

∂2A

∂x2
1

+ (Ωo cos2 θ)A = 0 (7.2.26)

which also governs B.

For normal incidence, θ = ∂/∂y1 = 0, A and B are coupled by

At1 + CgAx1 = −iΩoB (7.2.27)

Bt1 − CgBx1 = −iΩoA (7.2.28)

which can be combined to give the Klein-Gordon equation for A and B,

At1t1 − C2
gAx1x1 + Ω2

oA = 0 . (7.2.29)

It is easy to check by considering a propagating wave solution that the
envelopes A and B are dispersive themselves.

In the next subsection, explicit solutions for constant mean depth will
be analyzed.

Exercise 7.1

Use (7.2.24) and (7.2.25) to show that

∂

∂t1

( |A|2
2

)
+ ∇1 ·

[
C+

g

( |A|2
2

)]
= −iΩoA

∗B cos 2θ + ∗ (7.2.30)

∂

∂t1

( |B|2
2

)
+ ∇1 ·

[
C−

g

( |B|2
2

)]
= iΩoA

∗B cos 2θ + ∗ (7.2.31)

whose sum gives

∂

∂t1
(|A|2 + |B|2) + ∇1 · (Cg|A|2 + C−

g |B|2) = 0 . (7.2.32)

Thus rigid bars do not add or remove energy from, and merely transfer
energy between, incident and reflected waves.
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Exercise 7.2: Solution for Nonresonant Scattering (Davies, 1982)

Consider only constant mean depth h and use the linearized boundary
condition on the bed

∂Φ
∂z

=
∂

∂x

(
δ
∂Φ
∂x

)
, z = −h . (7.2.33)

Let the bar profile be

δ = εD cosKx =
εD

2
(eiKx + e−iKx) (7.2.34)

with ε � 1 and KL � 1.

Carry out a perturbation analysis by letting

Φ = Φ0 + εΦ1 + · · · . (7.2.35)

Show that at the leading order O(ε0), the solution is simply

Φ0 = − igA

2ω

cosh k(z + h)
cosh kh

eikx−iωt + ∗ . (7.2.36)

Show at the next order O(ε), that the governing equations are

∂2Φ1

∂x2
+

∂2Φ1

∂z2
= 0 , h < z < 0 (7.2.37)

g
∂Φ1

∂z
+

∂2Φ1

∂t2
= 0 z = 0 (7.2.38)

∂Φ1

∂z
=

D

2
∂

∂x

{
(eiKx + e−iKx)

gkA

2ω

1
cosh kh

[eikx−iωt + e−ikx+iωt]
}

=
gkAD

4ω cosh kh
[iα+eiα+x−iωt − iα−e−iα−x+iωt + ∗] (7.2.39)

on z = −h, where α± = K ± k. Verify the following solution

Φ1 = f+(z)eiα+x−iωt + f−(z)e−iα−x+iωt (7.2.40)

with

f±(z) =
igkAD

4ω cosh kh

×
[

α± − ω2

g tanhα±h

ω2

g − α± tanhα± + h
coshα±(z + h) + sinhα±(z + h)

]
.
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Observe that if α− = k, i.e., K = 2k, then e−iα−x+iωt = e−ikx−iωt is
a reflected wave. The associated amplitude is unbounded. By expanding
α− = k+O(ε), show that εΦ1 blows up as εx. The theory here breaks down.

7.3 Normal Incidence

In a laboratory experiment, Heathershaw (1982) installed 10 bars of am-
plitude D = 5 cm and wavelength 100 cm on the bottom of a long wave
flume. Incident waves of length 2π/k = 200 cm were sent from one side of
the bar patch. On the transmission side, waves are essentially absorbed by
breaking on a gentle beach. Sizable reflection coefficients were measured
along many stations over the bar patch. This experiment gives the first
observed evidence of strong reflection by periodic bars. Let us apply the
present theory to a more general case where the normally incident wave is
slightly detuned from perfect resonance.

Let the bars of wavenumber 2k be located in 0 < x1 < L and the
incident wavetrain be slightly detuned from resonance, so that the wave
frequency is ω + εΩ and the wavenumber is k + εK, where Ω = O(ω) and
K = O(k). Since ω + εΩ and k + εK must be related by the dispersion
relation,

Ω = K
dω

dk
= KCg . (7.3.1)

The detuned incident wave

ζ = Ao exp[i(k + εK)x − (ω + εΩ)t], x1 < 0 , (7.3.2)

can be alternatively written as

ζ = A(x1, t1)eikx−iωt , x1 < 0 , (7.3.3)

where

A(x1, t1) = Aoe
iK(x1−Cgt1) , x1 < 0 . (7.3.4)

When such a wavetrain passes a patch of periodic bars, A and B must vary
with x1 and t1 according to (7.2.27) and (7.2.28).

To the left and to the right of the bars, the governing equations are
simply

At1+CgAx1 = 0 , Bt1−CgBx1 = 0 , x1 < 0 , and x1 > L . (7.3.5)
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We shall assume further that B = 0 for x1 > L. Over the bars (7.2.27)
and (7.2.28) or (7.2.29) hold. In order that pressure (∝ Φ) and horizontal
velocity (∝ Φx) are continuous at x1 = 0, L, A and B must be continuous
at x1 = 0, L. Since the solutions must be of the form

(A, B) = A0(T (x1), R(x1))e−iΩt1 , 0 < x1 < L . (7.3.6)

T and R are governed by

Tx1x1 +
(Ω2 − Ω2

0)
Cg

T = 0 , 0 < x1 < L . (7.3.7)

Several cases can be distinguished according to the sign of Ω2 − Ω2
0:

7.3.1 Subcritical Detuning: 0 < Ω < Ω0

Let

QCg = (Ω2
0 − Ω2)1/2 (7.3.8)

then

T (x1) =
iQCg cosh Q(L − x1) + Ω sinhQ(L − x1)

iQCg coshQL + Ω sinh QL
(7.3.9)

and

R(x1) =
Q sinh Q(L − x1)

iQCg coshQL + Ω sinh QL
. (7.3.10)

On the incidence side the reflection coefficient is just R(0) and on the trans-
mission side the transmission coefficient is T (L). Clearly the dependence
on L and x1 is monotonic. In the limit of L → ∞, it is easy to find that

T (x1) = e−Qx1 , R(x1) =
Q

iQCg + Ω
e−Qx1 . (7.3.11)

Thus all waves are localized in the range x1 < O(1/Q).

7.3.2 Supercritical Detuning: Ω > Ω0

Let

PCg = (Ω2 − Ω2
0)

1/2 (7.3.12)
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Figure 7.3: Effects of detuning on the reflection coefficient (from Mei (1985), J. Fluid
Mech. Reproduced by permission of Cambridge University Press).

then the transmission and reflection coefficients are:

T (x1) =
PCg cosP (L − x1) − iΩ sinP (L − x1)

PCg cosPL − iΩ sinPL
(7.3.13)

and

R(x1) =
−iQ0 sin P (L − x1)

PCg cosPL − iΩ sinPL
. (7.3.14)

The dependence on L and x1 is clearly oscillatory. Thus Ω0 is the cut-off
frequency marking the transition of the spatial variation. Figure 7.3 shows
the dependence of the reflection coefficient R(0) on the width of the bar
patch for various ratios of Ω/Ω0. For subcritical detuning complete reflec-
tion can occur for sufficiently large L. For supercritical detuning there can
be windows of strong transmission.
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Figure 7.4: Comparison of theory with measurements by Heathershaw, 1982 (from Mei
(1985), J. Fluid Mech. Reproduced by permission of Cambridge University Press).

In the special case of perfect resonance, we get from (7.3.9) and (7.3.10)
that

T (x1) =
A

Ao
=

cosh Ωo(L−x1)
Cg

cosh ΩoL
Cg

,

R(x1) =
B

Ao
= −

i sinh Ωo(L−x)
Cg

cosh ΩoL
Cg

.

(7.3.15)

Clearly both coefficients decrease monotonically from x1 = 0 to x1 = L.

These results agree quite well with the experiments of Heathershaw, as
shown in Fig. 7.4, and therefore confirm that enough small bars can generate
strong reflection, especially in very shallow water.

Further theory and experiments demonstrating the linear effects of
cut-off frequency when the incident wave is detuned are discussed in Hara
and Mei (1987).
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x

y

Figure 7.5: A channel with wavy banks.

Exercise 7.3: Bragg Resonance by a Corrugated River Bank

An infinitely long river has constant depth h and constant averaged width
2a. In the stretch 0 < x < L where kL � 1, the banks are slightly sinusoidal
about the mean so that

y = ±a ± B sinKx , KB ≡ ε � 1 (7.3.16)

see Fig. 7.5. Let a train of monochromatic waves be incident from x ∼ −∞,

ζ =
A

2
ei(kx−ωt) (7.3.17)

where kh, ka = O(1). Develop a uniformly valid linearized theory to predict
Bragg resonance. Can the corrugated boundary be used to reflect waves as
a breakwater? Discuss your results for various parameters that can affect
the function as a breakwater.

Suggested steps: Assume

φ = − igη(x, y)
ω

cosh k(z + h)
cosh kh

(7.3.18)

and show that (
∂2

∂x2
+

∂2

∂y2

)
η + k2η = 0 (7.3.19)

and

ω2 = gk tanh kh . (7.3.20)

Show that the no-flux boundary condition on the upper bank can be
approximated by

∂η

∂y
+ δ

∂2η

∂y2
=

∂δ

∂x

∂η

∂x
+ · · · , y = a , (7.3.21)
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where δ = B sin Kx. Try a uniformlly valid approximation by assuming

η = [ψ+
0 + iεψ+

1 + · · · ]eikx−iωt + [ψ−
0 + iεψ−

1 + · · · ]e−ikx−iωt (7.3.22)

where ψ’s depend on the slow coordinate X = εx.

Exercise 7.4: Bars on a Sloping Beach (Mei, Hara and Naciri,
1988)

Consider a patch of longshore bars of uniform amplitude D on a plane
beach with gentle slope. The bars are spread in the region −L < x1 < 0
while the shore at x1 = L1 absorbs all the incident wave energy. To solve
the evolution equations let

A
√

Cg = Âe−iΩt1 , B
√

Cg = B̂e−iΩt1 . (7.3.23)

Show, after suitable normalization, that the coupled equations can be
reduced to a Stürm-Liouville equation for B̂:

d

dx1

[
p(x1)

dB̂

dx1

]
− q(x)B̂ = 0 , −1 < x1 < 0 (7.3.24)

subject to the boundary conditions

B̂ = 0 , x1 = 0 (7.3.25)

dB̂

dx1
+ rB̂ = b , x1 = −1 (7.3.26)

where

p(x1) = −
(

Cg

ΩoL

)
, q(x1) =

ΩoL

Cg

[(
Ω
Ωo

)2

− 1

]
+ i

d

dx1

Ω
Ωo

r(x1) = i

(
ΩoL

Cg

Ω
Ωo

)
−1

, b(x1) = i

[
ΩoL

Cg
Â

]
−1

. (7.3.27)

Use MATLAB to study the numerical solution. Discuss the effects of L/L1.

Exercise 7.5: Effects of Oblique Incidence (Mei, 1985)

Consider a bar field occupying the semi-infinite region 0 < x1 < ∞. A
detuned sinusoidal wavetrain arrives from x1 ∼ −∞. Let the envelopes of
the incident and reflected waves be

A = Ao exp{i[K(x1 cos θ + y1 sin θ) − Ωt1]} (7.3.28)

B = Bo exp{i[K(−x1 cos θ + y1 sin θ) − Ωt1]} (7.3.29)
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in x1 < 0 and

A = Ao exp{i[px1 + Ky1 sin θ) − Ωt1]} (7.3.30)

B = Bo exp{i[−px1 + K(y1 sin θ) − Ωt1]} (7.3.31)

over the bar field (x > 0). Show first that

p2C2
g = Ω2

0 cos2 θ

[(
Ω
Ω0

)2

−
(

cos 2θ

cos θ

)2
]

(7.3.32)

and that

R =
B0

A0
=

cos2 θ

cos2 2θ

 Ω
Ω0

−
[(

Ω
Ω0

)2

−
(

cos 2θ

cos θ

)2
]1/2
 . (7.3.33)

Discuss the dependence of R on the angle of incidence and on the detuning
parameter Ω/Ω0.

Exercise 7.6: Effects of Shore Reflection on Waves Over Offshore
Bars (Yu and Mei, 2000a)

Let there be many sinusoidal bars in the range 0 < x̄ < L,

δ =
1
2
De2ikx +

1
2
D∗e−2ikx

where D = |D|eiθD is complex and D∗ its complex conjugate. A train
of slightly detuned incident waves arrive from x̄ ∼ −∞. Due to partial
reflection at the shoreline somewhere along x̄ > L, the reflection coefficient
RL at x̄ = L is finite. Let the incident and reflected wave amplitudes over
the bars be A0T (x̄) and A0R(x̄) respectively. Show that for sub-critical
detuning 0 < Ω < Ω0, T and R are given by

T (x1) =
−iQCg coshQ(L − x1) − Ω sinh Q(L − x1) + Ω0R̃L sinh Q(L − x)

iQCg coshQL + Ω sinh QL + Ω0R̃L sinh QL
(7.3.34)

R(x1)eiθD

= − [iQCg coshQ(L − x1) + Ω sinhQ(L − x1)] R̃L + Ω0 sinh Q(L − x1)

iQCg coshQL + Ω sinh QL + Ω0R̃L sinh QL

(7.3.35)

where
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Ω0 =
|D|ωk

2 sinh(2kh)
, QCg =

√
Ω2

0 − Ω2

and RL is a known complex constant and

R̃L = RLeiθD = |RL|ei(θL+θD)

Show that with R̃L �= 0 the variation of |T | (or |R|) over the bar patch
has three different possible trends, depending on the magnitude and phase
of R̃L.

Figure 7.6: Complex plane of R̃L for subcritical detuning. Region 1 (semi-circle in
the upper half plane: |T | and |R| decrease monotonically shoreword. Region II (doubly
hatched): |T | and |R| increase monotonically shoreward. Region III (singly hatched):
|T | and |R| first decrease then increase shoreward (from Yu and Mei (2000), J. Fluid
Mech. Reprinted by permission of Cambridge University Press).
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With reference to Fig. 7.6, show that the three trends corresponds to
the three regions in the unit circle in the complex plane of R̃L. In par-
ticular (i) Region I (lower half plane): Both incident and reflected waves
decrease monotonically onshore. Thus the shore is sheltered by the bars.
(ii) Region II (doubly hatched): Both incident and reflected waves increase
monotonically shoreward. In this case, the bars make things worse for the
shoreline. In the complex plane of R̃L, Fig. 7.6, this region corresponds to
the doubly hatched area defined by the intersection of the unit circle and
the circle C of radius

� =
QCg/Ω0

sinh 2QL

centered at the complex point

C : − Ω
Ω0

+ i
QCg

Ω0
coth 2QL .

Finally, Region III (singly hatched): Both incident and reflected waves de-
crease first then increase onshore. This correspnonds to the singly hatched
area in the upper half of the unit circle.

We now turn to the randomly rough seabed.

7.4 Randomly Rough Seabed–Envelope Equation

In many branches of physics there is an extensive literature on the pro-
pagation of infinitesimal sinusoidal waves in randomly inhomogeneous
media (see Ishmaru, 1980). In one-dimensional propagation through a large
region of disorder, multiple scattering is known to yield a complex change
in the wavenumber k of which the real part corresponds to a change of
wavenumber and the imaginary part to spatial attenuation (Keller, 1964).
In solid-state physics this phenomenon was found to be important by An-
derson (1958), who explained the transition of randomly inhomogeneous
metals from a conductor to an insulator, and is known as Anderson lo-
calization. In contrast to periodic inhomogeneities where Bragg resonance
causes strong scattering only for certain discrete frequencies, attenuation
(localization) by disorder is effective for a broad range of incident wave
frequencies.

The study of localization of water waves by bathymetric disorder was
stimulated by the experiments of Belzons et al. (1988) for long waves
of infinitesimal amplitude in shallow water of constant mean depth with
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discontinuous step of random amplitudes and lengths. They found that,
in addition to boundary-layer friction at the bottom and vortex shedding
around sharp corners, radiation damping due to multiple scattering indeed
led to spatial attenuation for all frequencies. Relevant theories have been
given by Devillard et al. (1988), Nachbin (1997) and Nachbin and Papani-
colau (1992).

Random depth variations of gentle slope in water of finite mean depth
have been studied for infinitesimal waves by Pelinofsky et al. (1998), and for
weakly nonlinear waves by Kawahara (1976), Mei and Hancock (2003), and
Pihl et al. (2002). We present the linearized version of Mei and Hancock
and restrict our attention to two-dimensional motion in a sea of constant
mean depth. The characteristic length � of the random perturbations is
taken to be comparable to the wavelength 2π/k and to the mean depth h,
i.e., kh, k� = O(1). The root-mean-square amplitude of the irregularities σ

is small so that kσ = O(ε) � 1, and the horizontal extent of randomness is
very long, ∼ 2π/ε2k. Under these scale assumptions it will be shown that
the attenuation distance is inversely proportional to the root-mean-square
amplitude of the disorder. For weakly nonlinear waves in finite depth, the
envelope equation was first found by Kawahara (1976). Detailed analysis
of physical effects may be found in Mei and Hancock (2003) and Pihl, Mei
and Hancock (2002). Transient nonlinear waves over a shallow seabed with
random roughness will be discussed in Chapter Thirteen.

Let the seabed be z = −h + b(x), where b is a real random function of
x of zero mean and order kb = O(ε) = O(kA). We further assume that b

is non-zero over a large domain kx = ε−2, i.e., kx2 = ε2 = O(1). Omitting
the Laplace’s equation and the familiar linearized boundary condition on
the free surface, we start with the seabed condition,

φz = bxφx , z = −h + b(x) . (7.4.1)

Let us first approximate this condition to O(ε3),

φz + bφzz +
b2

2
φzzz + · · · = bx(φx + bφxz + · · · ) (7.4.2)

which can be rewritten as

φz = bφxx +
b2

2
φxxz + bx(φx + bφxz + · · · )

= (bφx)x +
1
2
(b2φxz)x + · · · z = −h . (7.4.3)
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After introducing the multiple-scale expansions

φ = φ0 + εφ1 + ε2φ + · · · , (7.4.4)

where φn are functions of x, x2 and z, pertubation equations are obtained.
They are, at the leading order O(ε0),

φ0xx + φ0zz = 0 , −h < z < 0 (7.4.5)

φ0z − ω2

g
φ0 = 0 , z = 0 , (7.4.6)

φ0z = 0 , z = −h; (7.4.7)

at the next order O(ε):

φ1xx + φ1zz = 0 , −h < z < 0 (7.4.8)

φ1z − ω2

g
φ1 = 0 , z = 0 , (7.4.9)

φ1z = (b(x)φ0x )x , z = −h (7.4.10)

and at O(ε2):

φ2xx + φ2zz = −2ikφ0x2
, −h < z < 0 (7.4.11)

φ2z − ω2

g
φ2 = 0 , z = 0 , (7.4.12)

φ2z = (b(x)φ1x)x +
1
2
(b2(x)φ0xz )x = (b(x)φ1x )x , z = −h (7.4.13)

after using (7.4.7).
We shall focus on the evolution of the simple progressive wave at the

leading order

φ0(x, z) = − igA(x2)
ω

cosh k(z + h)
cosh kh

eikx . (7.4.14)

Uneffected directly by disorder, this solution is deterministic and represents
a coherent wave.

At the next order the forcing at the seabed is random, hence the response
is random (incoherent). Let us solve the inhomogeneous problem via a
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Green’s function G(x, z; x′), defined as the response to a unit source on the
seabed. The defining equations are

Gxx + Gzz = 0 , −h < z < 0 (7.4.15)

Gz − ω2

g
G = 0 , z = 0 , (7.4.16)

Gz = δ(x − x′) , z = −h (7.4.17)

and the radiation condition at infinities. By the method of exponential
Fourier transform, it is straightforward to find

G(x, z) =
1
2π

∫
C

dα eiα(x−x′)
−ω2

g sinh αz − α coshαz

α
(
α sinh αh − ω2 cosh αh

g

) . (7.4.18)

To satisfy the radiation condition, we take the integration path C to be
the real axis of the complex α plane, but indented above the real pole at
α = −k and below another real pole at α = k, where k is the positive real
root of the dispersion relation. The integrand also has imaginary poles at
±ikn which are the positive real roots of

ω2 = gikn tanh iknh = −gkn tanknh , n = 1, 2, 3, . . . . (7.4.19)

By residue calculus it can be shown that, at z = −h,

G(|x − x′|,−h) = −
iω2

gk eik|ξ|

ω2h
g + sinh2 kh

−
∑

n

ω2

gkn
e−kn|x−x′|

ω2h
g − sin2 knh

, (7.4.20)

which is symmetric with respect to the interchange of x and x′. Details are
left as an exercise.

By using Green’s theorem, the solution for φ1 is found to be

φ1(x, z) =
∫ ∞

−∞
(b(x′)φ0x′ )x′G(x,−h; x′) dx′

=
gkA

ω cosh kh

∫ ∞

−∞
[bx′(x′) + ikb(x′)]eikx′

G(|x − x′|, z) dx′ (7.4.21)

which is a random function of x. Denoting the ensemble average of a random
function R by 〈R〉, it is clear that 〈φ1(x, z)〉 ≡ 0.
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Now we take the ensemble average of the problem at O(ε2) and get from
((7.4.11), (7.4.12), (7.4.13)) or (7.4.21)

〈φ2〉xx + 〈φ2〉zz = −2ikφ0x2
, −h < z < 0 (7.4.22)

〈φ2〉z − ω2

g
〈φ2〉 = 0 , z = 0 , (7.4.23)

〈φ2〉z =
〈

(b(x)φ1x )x +
1
2
(b2(x)φ0xz )x

〉
= 〈(b(x)φ1x )x〉 , z = −h . (7.4.24)

With the help of (7.4.21), the boundary condition (7.4.13) becomes

〈φ2〉z =

〈
∂

∂x

{
b(x)
(

gkA

ω cosh kh

)∫ ∞

−∞
[bx′(x′) + ikb(x′)]eikx′

×G(|x − x′|,−h) dx′
}〉

. (7.4.25)

To solve for 〈φ2〉, we let

〈φ2〉 = eikxF (x, x2, z), (7.4.26)

then from the Laplace equation:

Fzz − k2F = −2gk

ω

∂A

∂x2

cosh k(z + h)
cosh kh

, −h < z < 0 , (7.4.27)

and on the free surface,

Fz − ω2

g
F = 0 . (7.4.28)

On the seabed, (7.4.21) gives

∂〈φ2〉
∂z

= eikxFz =
gkA

ω cosh kh

×
〈

∂

∂x

{
b(x)
∫ ∞

−∞
[bx′(x′) + ikb(x′)]eikx′

G(|x − x′|,−h) dx′
}〉

(7.4.29)
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or

∂F

∂z
=

gkA

ω cosh kh
e−ikx

×
〈

∂

∂x

{
b(x)
∫ ∞

−∞
[bx′(x′) + ikb(x′)]e−ikx′

G(|x − x′|,−h) dx′
}〉

.

(7.4.30)

Let us assume stationarity and define the correlation function

〈b(x)b(x′)〉 = σ2γ(|x − x′|) = σ2γ(ξ) (7.4.31)

where ξ = |x − x′| and σ(x2) is the root-mean-square amplitude of the
disorder. We assume for generality that the length scale (the correlation
length �) is of the order of the incident wavelength. Note that the disorder
is characterized by both σ and �; large σ or small � corresponds to strong
disorder.

Since

〈bx(x)b(x′)〉 = 〈b(x)b(x′)〉x = σ2 dγ

dξ
,

the boundary condition (7.4.30) can be manipulated to the form

∂〈F 〉
∂z

= iβA cosh kh (7.4.32)

where

β =
gk2σ2

ω cosh2 kh

{∫ ∞

−∞

{(
d

dξ
− ik

)2

γ

}
e−ikξG(|ξ|,−h) dξ . (7.4.33)

The last integral is a complex constant.
Now the inhomogeneous boundary-value problem defined by (7.4.27),

(7.4.28) and (7.4.32) also has the homogeneous solution f(z) = coshk(z +
h)/ cosh kh. Appying Green’s formula to f and 〈F 〉 we get, after using their
governing equations,

Cg
∂A

∂x2
=

iβA

2 cosh kh
. (7.4.34)

This is the evolution equation for the envelope A of the coherent wave as
affected by disorder through its statistical correlation.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

7.5. Change of Wave Amplitude by Disorder 329

In Appendix 7.A, the complex coefficient β = βr + iβi is evaluated an-
alytically in terms of the Fourier transform of the correlation function. For
the special case of Gaussian correlation

γ(ξ) = exp(−ξ2/�2
G) , (7.4.35)

where �G is the Gaussian correlation length. The result is

βr

ω
=

(σ/�G)2(k�G)2

2 cosh2 kh

{
2 +

√
πk�G

2 e−(k�G)2erfi(k�G)
ω2h

g + sinh2 kh

+
∞∑

n=1

2 − kn�G
√

π Re {exp( �2G
4 (kn + ik)2)erfc( �G

2 (kn + ik))}
ω2h

g − sin2 knh

}
,

(7.4.36)

and

βi

ω
=

(σk)2

cosh2 kh(ω2h
g + sinh2 kh)

√
πk�G

4
(1 + e−(k�G)2) . (7.4.37)

The task is now to discuss the solution to (7.4.34) and the physical
implications.

7.5 Change of Wave Amplitude by Disorder

The solution to (7.4.34) is

A = A(0)e−βix2/Cg exp
(

i
βrx2

Cg

)
. (7.5.1)

The magnitude of A decays exponentially in space. The localization
distance can be defined by

Lloc =
Cg

ε2βi
. (7.5.2)

Substituting (7.4.37) into (7.5.2) yields

Lloc

h
=

(2kh + sinh 2kh)2

2
√

πε2kh(σ/�G)2(k�G)3(1 + e−(k�G)2)
. (7.5.3)

The localization length Lloc is plotted in Fig. 7.7. Either large σ (strong dis-
order) or large σ/�G (steep roughness) leads to short localization distances
and fast attenuation.
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Figure 7.7: Localization length to depth ratio ε2L/h corresponding to the Gaussian
[solid line, Eq. (7.5.3)] and exponential [broken line, Eq. (7.5.4)] correlations, for
B/ = 1 and various k, where  = G or E . Numbers adjacent to curves indicate the
corresponding value of k (from Mei and Handcock (2003), J. Fluid Mech. Reproduced
by permission of Cambridge University Press).

If the correlation length to depth ratio �G/h and the steepness σ/�G

of the random topography are held fixed, then Lloc/h becomes infinite as
kh → 0 and as kh → ∞. Thus long waves are only affected by the mean
depth h and not by the relatively short bottom roughness, while short waves
do not feel the bottom at all.

The product k�G = 2π�G/λ represents the ratio of correlation length
to wavelength. If kh and the mean steepness of the roughness, σ/�G, are
held fixed, then Lloc/h ∝ F(k�G) where F(x) = x−3(1 + e−x2

)−1 is a
monotonically decreasing function for x > 0. Therefore, as k�G increases
(longer roughness relative to the wavelength), the localization length Lloc

decreases, indicating stronger attenuation. For k�G � 1, waves are too
long relative to the correlation length to be affected by the random bed
roughness. On the other hand, for k�G � 1, the waves are very short
relative to the correlation length and are thus strongly attenuated.
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To see whether localization is sensitive to the precise form of the correla-
tion function, Mei and Hancock (2003) have also examined the exponential
correlation function

γ(ξ) = exp
(
−|ξ|

�E

)
. (7.5.4)

The corresponding localization distance is found to be

Lloc

h
=

(2kh + sinh 2kh)2(1 + 4(k�E)2)
8ε2kh(σ/�E)2(k�E)3(1 + 2(k�E)2)

. (7.5.5)

The length �E is chosen to be �E =
√

π�G/2 so that the two correlation
functions have the same total area. As seen in Fig. 7.7, only minor differ-
ences exist between the two correlations.

In the experiments by Belzons et al. (1988), the depth irregularities are
discontinuous with the step heights comparable in order of magnitude to
the depth itself. Vortex shedding at the step corners appear important.
Despite these geometrical differences, the predictions are consistent with
their measured data. Conclusive checks must await new experiments for
small-amplitude randomness, common in many oceanographic situations.

7.6 Change of Wavenumber by Disorder

In view of (7.5.1), disorder leads to an increase in wavenumber through βr,

∆k = (∆k)RD ≡ ε2

Cg
βr . (7.6.1)

Figure 7.8 shows that (∆k)RD is positive for all kh, and hence random-
ness shortens the wavelength. Since dCg/dk = ω′′ < 0 and dC/dk =
(Cg − C)/k < 0, randomness also reduces the group and phase speeds. If
σ/h is fixed, decreasing �/h is equivalent to increasing σ/�, implying steeper
random roughness, which is seen to shorten the waves. For fixed roughness
(σ, �), (∆k)RD decreases with increasing kh in general, since short waves are
less affected by the bottom. As a last remark, since the change of wavenum-
ber is a function of k, randomness modifies the dispersive character of the
coherent wave.

The theory of this section has been extended to narrow-banded and
weakly nonlinear waves. If the region of random irregularities spreads in
two horizontal directions (x, y), the slow modulation must be described
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Figure 7.8: Normalized increase in wavenumber ∆kRD/ε2k due to Gaussian disorder
vs kh, for σ/h = 1 and various G/h (from Mei and Hancock (2003), J. Fluid Mech.
Reproduced by permission of Cambridge University Press).

by x1 = εx, y1 = εy, t1 = εt; x2 = ε2x. The coherent wave amplitude is
governed by the following evolution equation,(

∂

∂t1
+Cg

∂

∂x1

)
A+iε

{
−1

2
d2ω

dk2

∂2A

∂x2
1

−Cg

2k

∂2A

∂y2
1

+α1|A|2A−α2A−βA

}
=0 ,

(7.6.2)

which is coupled to the potential of a long wave φ10, with

α1 =
cosh 4kh + 8 − 2 tanh2 kh

16 sinh4 kh
(7.6.3)

and

α2 =
k2

2ω cosh2 kh

∂φ10

∂t1
− k

∂φ10

∂x1
. (7.6.4)

In the limit of two dimensions, the amplitude equation can be reduced to the
nonlinear Schrödinger form, which was first deduced by Kawahara (1976).
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Without the effects of disorder (β = 0) the equation will be discussed at
length in Chapter Fourteen. Effects of disorder on nonlinear waves are dis-
cussed in Mei and Hancock (2003) and Pihl, Mei and Hancock (2002). The
propagation of long waves over a shallow seabed with random perturbations
will be discussed in Chapter Twelve.

In summary, we have examined in this chapter two complementary
mechanisms of multiple scattering by bottom perturbations of gentle slope
O(ε). For spatially periodic irregularities, Bragg resonance is effective over
the distance O(1/εk). On the other hand, for random irregularities locali-
zation becomes important over the distance O(ε2k). For oceanographic
applications it would be useful to predict how bathymetric variations af-
fect nonlinear random waves. Both mechanisms are likely important. A
promising first step has been initiated by Ardhuin and Herbers (2002)
who show that the Bragg mechanism also affects random waves propa-
gating over a random seabed. Comprehensive wave forecasting models
for a very large region will likely require the account of localization by
disorder.

Appendix 7.A Explicit Evaluation of the Coefficient β

Substituting the Green’s function (7.4.20) into (7.4.33) yields

β

ω
=

(kB)2

2 cosh kh

{
I0

ω2h
g + sinh2 kh

+
∞∑

n=1

k

kn

In

ω2h
g − sin2 knh

}
, (7.A.1)

where

I0 = − i

k

∫ ∞

−∞

{(
d

dξ
− ik

)2

γ

}
e−ikξ+ik|ξ| dξ , (7.A.2)

In = −1
k

∫ ∞

−∞

{(
d

dξ
− ik

)2

γ

}
e−ikξ−kn|ξ| dξ . (7.A.3)

Note that 2n−1
2 π < knh < nπ, and as n → ∞, knh ∼ nπ. Thus

limn→∞ sinknh = 0.

Assume that γ(ξ) is real and even in ξ, has the maximum value γ(0) = 1
and decays exponentially as |ξ| → ∞. Equations (7.A.2) and (7.A.3) can
be simplified to
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I0 = ik

∫ ∞

0

(e2ikξ + 1)γ(ξ) dξ + 2 , (7.A.4)

In = −2
k

Re

{∫ ∞

0

e−(kn+ik)ξ

(
d

dξ
− ik

)2

γ(ξ) dξ

}
. (7.A.5)

Note that In is real. Taking the real and imaginary parts of (7.A.1) and
substituting (7.A.4) and (7.A.5) gives

βr

ω
=

(kB)2

2 cosh kh

{
Re (I0)

ω2h
g + sinh2 kh

+
∞∑

n=1

k

kn

In

ω2h
g − sin2 knh

}
, (7.A.6)

βi

ω
=

(kB)2

2 cosh kh

Im (I0)
ω2h

g + sinh2 kh
. (7.A.7)

Taking the real and imaginary parts of (7.A.4) gives

Re (I0) = 2 − k

∫ ∞

0

γ(ξ) sin(2kξ) dξ ,

Im (I0) = k

∫ ∞

0

γ cos(2kξ) dξ + k

∫ ∞

0

γdξ

=
k

2

∫ ∞

−∞
γ cos(2kξ) dξ +

k

2

∫ ∞

−∞
γdξ

=
k

2

∫ ∞

−∞
γ(ξ)e−2ikξdξ +

k

2

∫ ∞

−∞
γ(ξ) dξ

=
k

2
(γ̂(2k) + γ̂(0)) ,

where γ̂(k) is the Fourier transform of γ(ξ). Hence (7.A.7) can be rewritten
as

βi

ω
=

(kB)2k(γ̂(2k) + γ̂(0))
4 cosh kh(ω2h

g + sinh2 kh)
. (7.A.8)

This result was first obtained by Pelinofsky et al. (1998).
For the special case of Gaussian correlation

γ(ξ) = e−ξ2/�2G , (7.A.9)
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(7.A.4) gives

I0 =
i
√

πk�G

2
(1 + e−(k�G)2) +

√
πk�G

2
e−(k�G)2 erfi (k�G) + 2 ,

(7.A.10)

In =
kn

k
Re
{

2 −√
πkn�G exp

(
�2
G

4
(kn + ik)2

)
erfc
(

�G

2
(kn + ik)

)}
,

(7.A.11)

where erfi (x) = i erf (ix) is a real-valued function. It is straightforward to
show that for large n, In ∝ 1/n2, so that the sum in βr converges. With
these results we finally get

βr

ω
=

(σ/�)2(k�)2

2 cosh2 kh

{
2 +

√
πk�
2 e−(k�)2 erfi (k�)

ω2h
g + sinh2 kh

+
∞∑

n=1

2 − kn�
√

π Re {exp( �2

4 (kn + ik)2) erfc ( �
2 (kn + ik))}

ω2h
g − sin2 knh

}
(7.A.12)

and

βi

ω
=

(σk)2

cosh2 kh(ω2h
g + sinh2 kh)

√
πk�

4
(1 + e−(k�)2) . (7.A.13)
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Floating Body Dynamics:
Diffraction and Radiation
by Large Bodies 8
8.1 Introduction

Ships, buoys, barges, floating docks, breakwaters, submersibles supporting
oil drilling rigs, and so on, are all structures whose safety and performance
depend on their response to waves. In a calm sea, the body weight, the
buoyancy force, and possible forces from external constraints such as ten-
sion legs, keep the body in static equilibrium. In waves, the presence of
a sufficiently large body causes diffraction (scattering) of waves. The body
must absorb some of the incident wave momentum and therefore must
suffer a dynamic force. If the constraints, such as the mooring lines, are not
sufficiently rigid, the body oscillates, hence further radiates waves, and ex-
periences reacting forces from the surrounding fluid and from the constraint.
Since the reacting forces depend on the motion of the body itself, the body,
the constraint, and the surrounding water are dynamically coupled in the
presence of incoming waves.

In modern offshore oil exploration, the gravity-type structure is fre-
quently used in relatively shallow seas. This massive structure sits on the
sea bottom and serves both as a storage tank and a support for the drilling
deck above the sea level. The intensity of wave pressure has a direct effect on
the stability of the seabed near the structure. Moreover, wave forces on the
structure are transmitted to the seabed, causing stresses and deformation
in both solids. Thus, the design of gravity structure involves the dynamic
interaction of three media (water, structure, and seabed). A comprehen-
sive discussion involving all three elements at once is too complex to be
discussed here; we shall limit ourselves to the interaction of water with a
rigid body.

337
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First, a few remarks must be made on what is a large body. Excluding
local corners, there are at least three relevant length scales in wave–body
interaction: the characteristic body dimension a, the wavelength 2π/k, and
the wave amplitude A. Among these scales two ratios may be formed,
for example, ka and A/a. If ka � O(1), a body is regarded as large; its
presence alters the pattern of wave propagation significantly and produces
diffraction. Ships, submersibles, and underwater storage tanks fall into this
category. For small bodies (ka � 1), such as the structural members of a
drilling tower, diffraction is of minor importance. When A/a is sufficiently
large, the local velocity gradient near the small body augments the effect of
viscosity and induces flow separation and vortex shedding, leading to the
so-called form drag. At present, the inviscid linearized diffraction theory
has been fairly well developed for A/a � 1 and ka = O(1) with considerable
experimental confirmation. The case of A/a � O(1) and ka � 1 has been
the subject of intensive experimental studies (Sarpkaya and Issacson, 1981),
but is not easily describable on purely theoretical ground. The intermediate
case of A/a � O(1) and ka = O(1) involves both separation and nonlinear
diffraction and is the most difficult and least explored area of all.

It is useful to recall from the classical viscous flow theory why A/a

plays a role in flow separation. If a circular cylinder of radius a starts to
accelerate from rest with a uniform acceleration b, the inviscid flow just
outside the cylinder is potential and is given by

U(x, t) = t2b sin θ , (8.1.1)

where U is the tangential velocity along the cylinder and θ is the angle of a
point along the cylinder measured from the forward stagnation point. From
the solution of the viscous boundary layer along the cylinder surface, it is
known that the boundary layer begins to separate at the rear stagnation
point θ = π after the critical time tc

tc =
(
1.04

a

b

)1/2

(8.1.2)

(Schlichting, 1968, p. 407). If the acceleration is continued, the rear region
of separation expands toward the forward stagnation point; eddies are gen-
erated and shed downstream. The above information may be used to give
an order-of-magnitude estimate for an oscillating cylinder in a calm fluid
or an oscillating flow around a stationary cylinder. Let the amplitude of
the oscillating velocity be U0 so that the acceleration is b = O(ωU0). The
separation time is
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tc = O

((
a

ωU0

)1/2
)

. (8.1.3)

Over a period 2π/ω, there is no separation if

2π

ω
< tc or

2π

ω
< c

(
a

ωU0

)1/2

where c = O(1) . (8.1.4)

This criterion may be rewritten in terms of the Strouhal number, which is
just 1/2π times the Keulegan–Carpenter number U0T/a:

U0

ωa
<
( c

2π

)2

. (8.1.5)

Since U0 = O(ωA) in water waves where A is the wave amplitude, the
criterion may be expressed

A

a
<
( c

2π

)2

. (8.1.6)

Thus, the parameter A/a governs the phenomenon of separation. Keulegan
and Carpenter (1956) found experimentally that for a circular cylinder the
value A/a = 1 is sufficiently large for flow separation and form drag is
important. Since A is also the measure of the particle orbit in waves, a
convenient rule of thumb is that no separation occurs if the orbital diameter
is much less than the cylinder diameter.

Although large floating or submerged structures must often be designed
to withstand storm waves with typical amplitudes as high as 15 m, the
diffraction of large amplitude waves is still a challenging task in compu-
tatinoal dydrodynamics. On the other hand, wave–body interaction at
infinitesimal amplitudes is a richly developed subject, which has been serv-
ing the field of naval architecture with great success. Its applications in
offshore technology have have been wide-spread. An acquaintance with the
elements of linearized theory is now an essential first step to the rational
design of a costly new project. Some aspects of this are expounded here.

In Section 8.2 the governing equations for a partially constrained floating
rigid body are derived for a body of arbitrary shape. The equations of static
equilibrium and of small-amplitude motion are obtained as the zeroth- and
the first-order approximations, respectively. The main body of this chapter
is devoted to simple harmonic motions. Thanks to linearity, the fluid motion
may be decoupled from that of the rigid body. A survey of the theoretical
aspects of wave scattering and radiation is given in Sections 8.3–8.6 which
include the derivations of the general reciprocity theorems for a single body.
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The principles of a versatile numerical method of hybrid elements which
extends the method described in Chapter Four are then briefly described
in Section 8.7, followed by some remarks on the alternative methods of
integral equations in Section 8.8. Applications of the theoretical tools are
demonstrated via the topic of wave-power absorption in Section 8.9. As
another application, wave trapping near a storm barrier designed for Venice,
Italy, is discussed in Section 8.10. General formulas for the second-order
drift forces are deduced in Section 8.11 by using the first-order results.
Finally, we develop in Section 8.12 the general relationships between the
simple harmonic response and the responses to transient waves.

8.2 Linearized Equations of Motion for a
Constrained Floating Body

Details of the derivation presented below are due to John (1949) whose
formal approach not only leads systematically to the complete first-order
theory but also shows how higher-order extension may be made.

As in the case of the free surface, there are kinematic and dynamic
conditions on the wetted body surface SB, relating the motions of the body
and of the surrounding water.

8.2.1 The Kinematic Condition

Let the instantaneous position of SB be described by z = f(x, y, t). Conti-
nuity of normal velocity requires that

Φxfx + Φyfy + ft = Φz , z = f(x, y, t) . (8.2.1)

For small-amplitude motions, we expand f in powers of the wave slope
ε = kA which is expected to characterize the body motion also,

z = f (0)(x, y) + εf (1)(x, y, t) + ε2f (2)(x, y, t) + · · · , (8.2.2)

where f (0)(x, y) corresponds to the rest position of SB, that is, S
(0)
B . Like-

wise the velocity potential may also be expanded:

Φ = εΦ(1) + ε2Φ(2) + · · · . (8.2.3)

Since the body motion is small, any function evaluated on SB may be
expanded about S

(0)
B , that is, z = f (0)(x, y). To the order O(ε), Eq. (8.2.1)

gives
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φ(1)
x f (0)

x + φ(1)
y f (0)

y + f
(1)
t = φ(1)

z on z = f (0)(x, y) . (8.2.4)

It is necessary to find f (1). Let the center of rotation of the rigid body
be Q which has the following moving coordinate:

X(t) = X(0) + εX(1)(t) + ε2X(2)(t) + · · · , X = (X, Y, Z) , and so on ,

(8.2.5)

where X(0) is the rest position of Q independent of t. For generality, Q need
not coincide with the center of mass of the body. We introduce x̄ to be the
coordinate system fixed with the body such that x̄ = x when the body is
at its rest position. If the angular displacement of the body is εθ(1)(t) with
the components εα, εβ, and εγ about axes parallel to x, y, and z, then the
two coordinate systems x and x̄ are related, to the first order, by

x = x̄ + ε[X(1) + θ(1) × (x̄ − X(0))] + O(ε2) . (8.2.6)

To the same accuracy x̄ may be solved in terms of x to give

x̄ = x − ε[X(1) + θ(1) × (x − X(0))] + O(ε2) , (8.2.7a)

or, in component form,

x̄ = x − ε[X(1) + β(z − Z(0)) − γ(y − Y (0))] , (8.2.7b)

ȳ = y − ε[Y (1) + γ(x − X(0)) − α(z − Z(0))] , (8.2.7c)

z̄ = z − ε[Z(1) + α(y − Y (0)) − β(x − X(0))] . (8.2.7d)

Since x = x̄ at rest by definition, the following is true:

z̄ = f (0)(x̄, ȳ) . (8.2.8)

Upon substituting Eq. (8.2.7) into Eq. (8.2.8), expanding about S
(0)
B , and

then comparing the result with Eq. (8.2.2), we get

f (1) = Z(1) + α(y − Y (0)) − β(x − X(0))

− f (0)
x [X(1) + β(z − Z(0)) − γ(y − Y (0))]

− f (0)
y [Y (1) + γ(x − X(0)) − α(z − Z(0))] . (8.2.9)

Finally, the combination of Eqs. (8.2.9) and (8.2.4) yields the first-order
kinematic condition:
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−Φ(1)
x f (0)

x − Φ(1)
y f (0)

y + Φ(1)
z

= −f (0)
x [X(1)

t + βt(z − Z(0)) − γt(y − Y (0))]

− f (0)
y [Y (1)

t + γt(x − X(0)) − αt(z − Z(0))]

+ Z
(1)
t + αt(y − Y (0)) − βt(x − X(0)) . (8.2.10)

There are more compact ways of expressing Eq. (8.2.10). Since the unit
normal vector n pointing into the body is

n = (−f (0)
x ,−f (0)

y , 1)[1 + (f (0)
x )2 + (f (0)

y )2]−1/2 , (8.2.11)

Eq. (8.2.10) may be written

∂Φ(1)

∂n
= X(1)

t · n + [θ(1)
t × (x − X(0))] · n

= X(1)
t · n + θ

(1)
t · [(x − X(0)) × n] . (8.2.12)

Alternatively, we may introduce the six-dimensional generalized displace-
ment vector {Xα} and the generalized normal vector {nα} defined by

{Xα}T = {X(1), Y (1), Z(1), α, β, γ} = {X(1), θ(1)} , (8.2.13a)

{nα}T = {n1, n2, n3,−[n2(z − Z(0)) − n3(y − Y (0))] ,

− [n3(x − X(0)) − n1(z − Z(0))] ,

− [n1(y − Y (0)) − n2(x − X(0))]}
= {n, (x− X(0)) × n} , (8.2.13b)

where { } denotes a column vector and { }T its transpose, and the subscript
α ranges over 1, 2, . . . , 6. Equation (8.2.12) becomes

∂Φ(1)

∂n
=

6∑
α=1

(Xα)tna = {Xt}T {n} . (8.2.14)

Exercise 8.1

Show that the order O(ε2) correction to the kinematic boundary condition is

φ(2)
x f (0)

x + φ(2)
y f (0)

y + f
(2)
t = φ(2)

z − (φ(1)
x f (1)

x + φ(1)
y f (1)

y )

+ f (1)(φ(1)
zz − φ(1)

xz f (0)
x − φ(1)

yz f (0)
y ) .
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However, to get f (2) it is necessary to improve Eq. (8.2.6) which is good
only for infinitesimal rotation. For finite rotation, the concept of Euler’s
angles is needed (Goldstein, 1950, Chapter 4).

We turn next to the dynamic conditions.

8.2.2 Conservation of Linear Momentum

Let M be the mass of the entire floating body, part of which may be
above the free surface, and xc(t) be the position of the center of mass.
Conservation of linear momentum requires that

Mxc
tt =
∫∫

SB

Pn dS − Mge3 + F , (8.2.15)

where SB is the instantaneous wetted body surface. F denotes the con-
straining force from external support, such as mooring lines, tension legs,
and so on, and consists also of a static and a dynamic part:

F(t) = F
(0) + εF

(1)(t) + · · · . (8.2.16)

Up to the first order, Eq. (8.2.7) applies to xc(t) so that

xc = x̄c + ε[X(1) + θ(1) × (x̄c − X(0))] + O(ε2) .

The left-hand side of Eq. (8.2.15) becomes

Mxc
tt = εM [X(1)

tt + θ
(1)
tt × (x̄c − X(0))] + O(ε2) . (8.2.17)

On the right-hand side of Eq. (8.2.15), the linearized Bernoulli equation

P = −ρgf − ερΦ(1)
t + O(ε2) (8.2.18)

is used in the first integral. The second term above gives

−ε

∫∫
S

(0)
B

ρΦ(1)
t n dS + O(ε2) , (8.2.19)

where SB has been approximated by S
(0)
B . To consider the buoyancy term

−ρgf we assume for simplicity that the horizontal cross section of the body
decreases in area with depth, although all the final results can be shown to
remain valid for more complex geometries. Now on the instantaneous body
surface SB,

n dS = (−fx,−fy, 1) dx dy ,
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Figure 8.1: A floating body.

and the domain of integration SB may be replaced by the part of the water
surface cut out by SB, that is, SA (see Fig. 8.1). The vertical component
of buoyancy is

−ρg

∫∫
SB

fn3 dS = −ρg

∫∫
SA

(f (0) + εf (1)) dx dy .

Since SA differs from its equilibrium counterpart S
(0)
A by O(ε), and since

f (0) = 0 in the equilibrium free surface, the surface SA may be replaced by
S

(0)
A with an error of O(ε2). By partial integration, we have∫∫

S
(0)
A

f (0)
x dx dy =

∮
Γ

[f (0)]x+
x− dy ,

where Γ is the edge of S
(0)
A , that is, the water line, and x+ and x− refer to

the points on Γ intersected by a line of constant y. Since f (0) = 0 on Γ, the
right-hand side integral in the equation above vanishes; it follows by using
Eq. (8.2.9) that

−ρg

∫∫
SB

fn3 dS = −ρg

∫∫
S

(0)
A

f (0) dx dy − ερg

∫∫
S

(0)
A

× [Z(1) + α(y − Y (0)) − β(x − X(0))] dx dy + O(ε2) .

(8.2.20)

The first integral on the right is just the submerged volume V (0) (static
displacement). When Eqs. (8.2.17), (8.2.19), and (8.2.20) are combined with
Eq. (8.2.15), terms of different orders may be separated. At the zeroth
order, we have

Mg = ρgV (0) + F
(0)
3 , (8.2.21)

which is just Archimedes’ law.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

8.2. Linearized Equations of Motion for a Constrained Floating Body 345

Let A(0) be the area of S
(0)
A and

IA
1 =
∫∫

S
(0)
A

(x − X(0)) dx dy , IA
2 =
∫∫

S
(0)
A

(y − Y (0)) dx dy (8.2.22)

be the moments of inertia of the cut plane S
(0)
A , then the linearized z

momentum equation at O(ε) is

M [Z(1)
tt + αtt(ȳc − Y (0)) − βtt(x̄c − X(0))]

= −ρ

∫∫
S

(0)
B

Φ(1)
t n3 dS + F

(1)
3 − ρg(IA

2 α − IA
1 β + Z(1)A(0)) . (8.2.23a)

If the floating body is totally immersed, S
(0)
A vanishes and buoyancy does

not affect the dynamic equilibrium.
Consider next the x and y components. Note that

ρg

∫∫
SB

fn1 dS = −ρg

∫∫
SB

ffx dx dy

= −ρg

∮
Γ

[
1
2
f2

]x+

x−

dy = O(ε2) ,

and

ρg

∫∫
SB

fn2 dS = −ρg

∫∫
SA

ffy dx

= −ρg

∮
Γ

[
1
2
f2

]y+

y−

dx = O(ε2) .

Thus, buoyancy has a negligible effect in the horizontal directions. It follows
from Eq. (8.2.15) that at the first order

M [X(1)
tt + βtt(z̄c − Z(0)) − γtt(ȳc − Y (0))]

= −ρ

∫∫
S

(0)
B

Φ(1)
t n1 dS + F

(1)
1 , (8.2.23b)

M [Y (1)
tt + γtt(x̄c − X(0)) − αtt(z̄c − Z(0))]

= −ρ

∫∫
S

(0)
B

Φ(1)
t n2 dS + F

(1)
2 . (8.2.23c)
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The zeroth-order (static) balance of horizontal momentum is trivially
satisfied.

8.2.3 Conservation of Angular Momentum

Let Vb be the volume of the whole body including the part above the free
surface. The rate of change of angular momentum of the body about the
axes passing through the fixed origin 0 is

dL
dt

=
d

dt

∫∫∫
Vb

x × xtdm =
∫∫∫

Vb

x × xtt dm ,

where dm is the body mass per unit volume and x(t) denotes the instan-
taneous position of a point in the rigid body. Conservation of angular
momentum requires that∫∫∫

Vb

x × xtt dm =
∫∫

SB

x × Pn dS + xc × (−Mge3) + T , (8.2.24)

where T is the constraining torque due to external influences. Note that
by definition xc is the center of mass of the body, that is,∫∫∫

Vb

x dm = Mxc . (8.2.25)

The equation of linear momentum (8.2.15) may be rewritten∫∫∫
Vb

xtt dm =
∫∫

SB

Pn dS − Mge3 + F . (8.2.26)

Taking the cross product of X with Eq. (8.2.26) and subtracting the result
from Eq. (8.2.24), we get

dLQ

dt
≡
∫∫∫

Vb

(x − X) × xtt dm =
∫∫

SB

(x − X) × Pn dS

+ (xc − X) × (−Mge3) + (T + F × X) (8.2.27)

which represents the conservation of angular momentum with respect to
the center of rotation Q.

Consider the zeroth-order balance. The left-hand side of Eq. (8.2.27) is
ineffective. On the right-hand side, the constraining torque is simple:

T + F × X = (T(0) + F
(0) × X(0))

+ ε(T(1) + F
(1) × X(0) + F

(0) × X(1)) + O(ε2) .
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For convenience we denote

T(0) = T(0) + F
(0) × X(0) and T(1) = T(1) + F

(1) × X(0) ,

so that

T + F × X = T(0) + εT(1) + εF
(0) × X(1) . (8.2.28)

When Eq. (8.2.28) is substituted into Eq. (8.2.27), it is easily seen that to
the zeroth order

−ρg

∫∫
S

(0)
B

(x̄ − X(0)) × nf (0) dS + (x̄c − X(0)) × (−Mge3) + J(0) = 0 .

(8.2.29)

Being over the rest surface S
(0)
B , x̄ in the integral above may be replaced

by x. Using the argument leading to Eq. (8.2.20), we may write the x

component of the same integral as

−ρg

[∫∫
S

(0)
A

(y − Y (0))f (0) dx dy +
∫∫

S
(0)
A

f (0)(f (0) − Z(0))f (0)
y dx dy

]
.

The second integral above vanishes after partial integration in y. On the
other hand, since f (0) = − ∫ 0

f(0) dz the first integral may be rewritten

ρg

∫∫∫
V (0)

(y − Y (0)) dx dy dz ≡ ρgIV
2 ≡ ρgV (0)(yV − Y (0)) , (8.2.30)

where V (0) is the static submerged volume, IV
2 its first moment about the

plane y = Y (0), and yV the y coordinate of the center of buoyancy. In
terms of these symbols, we get from Eq. (8.2.29)

ρgIV
2 − Mg(yc − Y (0)) + T

(0)
1 = 0 . (8.2.31)

Similarly, for the y component we may define IV
1 and xV by

ρgIV
1 ≡ ρgV (0)(xV − X(0)) ≡ ρg

∫∫∫
V (0)

(x − X(0)) dx dy dz , (8.2.32)

and obtain

−ρgIV
1 + Mg(x̄c − X(0)) + T

(0)
2 = 0 . (8.2.33)

If there is no external contraint, T(0) ≡ 0; we must have Mg = ρgV (0). It
follows from Eqs. (8.2.31) and (8.2.33) that xc = xV and yc = yV , that is,
the centers of mass and of buoyancy must lie on the same vertical line.
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We leave it for the reader to verify that the z component of the integral
in Eq. (8.2.29) vanishes identically so that the corresponding static balance
is trivial:

T
(0)
3 = 0 . (8.2.34)

Now consider the order O(ε). On the left-hand side of Eq. (8.2.27) we
may replace x − X by x̄ − X(0) and invoke Eq. (8.2.6):

xtt = ε[X(1)
tt + θ

(1)
tt × (x̄ − X(0))] .

Equation (8.2.27) becomes

dLQ

dt
≡ ε

{[∫∫∫
Vb

(x̄ − X(0)) dm

]
× X(1)

tt + θ
(1)
tt

∫∫∫
Vb

(x̄ − X(0))2 dm

−
[
θ

(1)
tt ·
∫∫∫

Vb

(x̄ − X(0))
]

(x̄ − X(0)) dm

}
. (8.2.35)

Let us define the first and second moments of inertia as follows:

Ib
1 =
∫∫∫

Vb

(x̄ − X(0)) dm ≡ M(x̄c − X(0)) ,

Ib
11 =

∫∫∫
Vb

(x̄ − X(0))2 dm , (8.2.36)

Ib
12 =

∫∫∫
Vb

(x̄ − X(0))(ȳ − Y (0)) dm .

Other moments Ib
2 , I

b
3 , Ib

22, . . . , I
b
33, . . . , and so on, are similarly defined. In

terms of these moments, the left-hand side of Eq. (8.2.27) becomes, in
component form,

dLQ
1

dt
= ε{Ib

2Z
(1)
tt − Ib

3Y
(1)
tt + (Ib

22 + Ib
33)αtt − Ib

21βtt − Ib
31γtt} ,

dLQ
2

dt
= ε{Ib

3X
(1)
tt − Ib

1Z
(1)
tt + (Ib

33 + Ib
11)βtt − Ib

32γtt − Ib
12αtt} , (8.2.37)

dLQ
3

dt
= ε{Ib

1Y
(1)
tt − Ib

2X
(1)
tt + (Ib

11 + Ib
22)γtt − Ib

13αtt − Ib
23βtt} .

There are no terms of zeroth order.
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On the other hand, the right-hand side of Eq. (8.2.27) gives

−ε

∫∫
S

(0)
B

ρΦ(1)
t (x − X(0)) × n dS

− ρg

{∫∫
SB

f(x− X) × n dS −
∫∫

S
(0)
B

f (0)(x − X(0)) × n dS

}

+ ε[θ(1) × (x̄c − X(0))] × (−Mge3) + ε(T(1) + F
(0) × X(1)) . (8.2.38)

These terms represent torques of various physical origin: the first integral
is due to hydrodynamics, the second from buoyancy, and the third from
inertia, while the remaining terms are from the constraint. We now treat
them separately.

Hydrodynamic Torque

The generalized normal (8.2.13b) enables us to express the components of
the hydrodynamic torque

−ε

∫∫
S

(0)
B

ρΦ(1)
t nα dS , α = 4, 5, 6 . (8.2.39)

Buoyancy Torque

Written in component form, the buoyancy torque is

−ρg

∫∫
SB

f(x − X) × n dS

= −ρg

∫∫
SB

f{[(y − Y )n3 − (z − Z)n2] e1

+ [(z − Z)n1 − (x − X)n3]e2 + [(x − X)n2 − (y − Y )n1]e3} dS

= −ρg

∫∫
SA

f{[(y − Y ) + (f − Z)fy] e1 + [−(f − Z)fx − (x − X)]e2

+ [−(x − X)fy + (y − Y )fx]e3} dx dy .

After partial integration and noting f = εf (1) on the edge of SA, we find
that the terms with fx and fy are of order O(ε2); hence

−ρg

∫∫
SB

f(x − X) × n dS = −ρg

∫∫
SA

[f(y − Y )e1 − f(x − X)e2] dx dy .

(8.2.40)
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The second integral in { } of Eq. (8.2.38) obviously takes a form similar to
Eq. (8.2.40). Consider the x component of the same { }:

{ } = −ρg

∫∫
SA

f(y − Y ) dx dy − ρg

∫∫
S

(0)
A

f (0)(y − Y (0)) dx dy

= −ερg

∫∫
S

(0)
A

[f (1)(y − Y (0)) − f (0)Y (1)] dx dy

= −ερg

∫∫
S

(0)
A

[Z(1) + α(y − Y (0)) − β(x − X(0))](y − Y (0)) dx dy

+ ερg

∫∫
S

(0)
A

f (0)
x [X(1) + β(z − Z(0)) − γ(y − Y (0))](y − Y (0)) dx dy

+ ερg

∫∫
S

(0)
A

f (0)
y [Y (1) + γ(x − X(0)) − α(z − Z(0))](y − Y (0)) dx dy

+ ερgY (1)

∫∫
S

(0)
A

f (0) dx dy .

After partial integration, the second integral above vanishes; the third and
fourth integrals combine to give

−ερg

∫∫
S

(0)
A

f (0)[γ(x − X(0)) − α(z − Z(0))] dx dy

= +ερg

∫∫∫
V (0)

[γ(x − X(0)) − α(z − Z(0))] dx dy dz ,

where use is made of f (0) = − ∫ 0

f(0) dz. Introducing the second moments

IA
22 =

∫∫
S

(0)
A

(y − Y (0))2 dx dy ,

IA
12 =

∫∫
S

(0)
A

(x − X(0))(y − Y (0)) dx dy , and so on , (8.2.41)

we get the x component of the buoyancy torque:

−ερg[Z(1)IA
2 + αIA

22 − βIA
12 − γIV

1 + αIV
3 ] , (8.2.42)

and, by similar arguments, the y component:

−ερg[Z(1)IA
1 + αIA

21 − βIA
11 − βIV

3 + γIV
2 ] . (8.2.43)
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There is no z component.

Inertia Torque

Expanding the triple vector product in Eq. (8.2.38), we get

e1(−Mg)[γ(x̄c − X(0)) − α(z̄c − Z(0))]

+ e2(Mg)[β(z̄c − Z(0)) − γ(ȳc − Y (0))] . (8.2.44)

Constraining Torque

e1(T
(1)
1 + F

(0)
2 Z(1) − F

(0)
3 Y (1)) + e2(T

(1)
2 + F

(0)
3 X(1) − F

(0)
1 Z(1))

+ e3(T
(1)
3 + F

(0)
1 Y (1) − F

(0)
2 X(1)) . (8.2.45)

Equations (8.2.39) and (8.2.42)–(8.2.45) may be combined with
Eq. (8.2.38) and then with Eq. (8.2.37) to give the conservation equations
of angular momentum as follows:

x component:

Ib
2Z

(1)
tt − Ib

3Y
(1)
tt + (Ib

22 + Ib
33)αtt − Ib

21βtt − Ib
13γtt

= −ρ

∫∫
S

(0)
B

Φ(1)
t n4 dS − ρg{Z(1)IA

2 + α(IA
22 + IV

3 ) − βIA
12 − γIV

1 }

+ Mg[α(z̄c − Z(0)) − γ(x̄c − X(0))] + T
(1)
1 + F

(0)
2 Z(1) − F

(0)
3 Y (1) ,

(8.2.46a)

y component:

Ib
3X

(1)
tt − Ib

1Z
(1)
tt + (Ib

33 + Ib
11)βtt − Ib

32γtt − Ib
12αtt

= −ρ

∫∫
S

(0)
B

Φ(1)
t n5 dS + ρg{Z(1)IA

1 + αIA
21 + β(−IA

11 − IV
3 ) + γIV

2 }

+ Mg[(z̄c − Z(0))β − (ȳc − Y (0))γ] + T
(1)
2 + F

(0)
3 X(1) − F

(0)
1 Z(1) ,

(8.2.46b)

z component:

Ib
1Y

(1)
tt − Ib

2X
(1)
tt + (Ib

11 + Ib
22)γtt − Ib

13αtt − Ib
23βtt

= −ρ

∫∫
S

(0)
B

Φ(1)
t n6 dS + T

(1)
3 + F

(0)
1 Y (1) − F

(0)
2 X(1) . (8.2.46c)
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Equations (8.2.23) and (8.2.46) can be regarded as the dynamic bound-
ary conditions for the fluid problem. In the original derivation of John
(1949, 1950), the reference point Q is assumed to coincide with the center
of mass. The minor extension presented here is due to Serman (1978).

8.2.4 Summary of Dynamic Equations for a
Floating Body in Matrix Form

The linear system of Eqs. (8.2.22) and (8.2.46) can be summarized in matrix
form in terms of the generalized coordinates (8.2.13a)

[M ]{Ẍ} + [C]{X} = −ρ

∫∫
S

(0)
B

dS Φ(1)
t {n} + {F} , (8.2.47)

where an overhead dot denotes the time derivative and {F} is the genera-
lized dynamic force of constraint:

{F
(1), T(1) + F

(0) × X(1)}T . (8.2.48)

The mass matrix [M ] and the buoyancy restoring force matrix [C] are given,
respectively, by Eqs. (8.2.49) and (8.2.50) shown on the next page.

It is obvious that the matrix [M ] is symmetric. If the center of mass
coincides with the center of rotation, then x̄c − X(0) = 0, and many terms
in [M ] and [C] vanish identically. Furthermore, when there is no constraint,
IV
1 = IV

2 = 0 by Eqs. (8.2.31) and (8.2.33); [C] is also symmetric.
In some situations the constraining force F

(1) and torque T(1) may de-
pend on the body displacement; equations governing the dynamics of the
constraints must then be added.

The Two-Dimensional Limit

For a long horizontal cylinder with normally incident waves from one
side, the motion can be described in the cross-sectional plane of x and
z. It is only necessary to restrict our attention to unit length in the y

direction.
For the rigid body there are only two translational modes x and z

and one rotational mode β about the y axis. The relevant generalized
coordinates are 1, 3, and 5. For a right-handed coordinate system, the
negative y axis points out of the paper so that positive rotations are
clockwise.
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[M ] =



M 0 0 0 M(z̄c − Z(0)) −M(ȳc − Y (0))

0 M 0 −M(z̄c − Z(0)) 0 M(x̄c − X(0))

0 0 M M(ȳc − Y (0)) −M(x̄c − X(0)) 0

0 −M(z̄c − Z(0)) M(ȳc − Y (0)) (Ib
22 + Ib

33) −Ib
21 −Ib

13

M(z̄c − Z(0)) 0 −M(x̄c − X(0)) −Ib
12 Ib

33 + Ib
11 −Ib

32

−M(ȳc − Y (0)) M(x̄c − X(0)) 0 −Ib
13 −Ib

23 Ib
11 + Ib

22


.

(8.2.49)

[C] =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 ρgA ρgIA
2 −ρgIA

1 0

0 F
(0)
3 ρgIA

2 − F
(0)
2

(
ρg(IA

22 + IV
3 )

−Mg(z̄c − Z(0))

)
−ρgIA

12

(
−ρgIV

1

+Mg(x̄c − X(0))

)

−F
(0)
3 0 −ρgIA

1 + F
(0)
1 −ρgIA

21

(
+ρg(IA

11 + IV
3

−Mg(z̄c − Z(0))

) (
−ρgIV

2

+Mg(ȳc − Y (0))

)
F

(0)
2 −F

(0)
1 0 0 0 0


.

(8.2.50)
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The linear momentum equations are reduced to

M [X(1)
tt + βtt(z̄c − Z(0))] = −ρ

∫
S

(0)
B

Φ(1)
t n1 dS + F

(1)
1 , (8.2.51a)

M [Z(1)
tt + βtt(x̄c − X(0))] = −ρ

∫
S

(0)
B

Φ(1)
t n3 dS + F

(1)
3 + ρgIA

1 β − ρgZ(1)A ,

(8.2.51b)

and the angular momentum about the y axis is

Ib
3X

(1)
tt − Ib

1Z
(1)
tt + (Ib

33 + Ib
11)βtt

= −ρ

∫
S

(0)
B

Φ(1)
t n5 dS + ρg{Z(1)IA

1 − β(IA
11 + IV

3 )}

+ Mg(z̄c − Z(0))β + J
(1)
2 +F

(0)
3 X(1) − F

(0)
1 Z(1) , (8.2.52)

where

IA
1 =

∫
S

(0)
A

(x − X(0)) dx , Ib
1 =
∫∫

Vb

(x − X(0)) dm ,

IA
11 =

∫
S

(0)
A

(x − X(0))2 dx , Ib
11 =

∫∫
Vb

(x − X(0))2 dm , (8.2.53)

IV
3 =

∫∫
V (0)

(z − Z(0)) dx dz .

In the expressions above, A is the length of the water line SA, that is,
the segment of the x axis which is displaced by the body, V is the sub-
merged cross-section area, and Vb is the entire body cross section. The
corresponding matrix equation is

[M ]
d2

dt2


X(1)

Z(1)

β

+ [C]


X(1)

Z(1)

β



= −ρ

∫
S

(0)
B

dS Φ(1)
t


n1

n3

n5

+


F

(1)
1

F
(1)
3

T
(1)
2 + F

(0)
3 X(1) − F

(0)
1 Z(0)


, (8.2.54)
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Figure 8.2

where

[M ] =


M 0 M(z̄c − Z(0))

0 M −M(x̄c − X(0))

M(z̄c − Z(0)) −M(x̄c − X(0)) Ib
11 + Ib

33


(8.2.55)

and

[C] =


0 0 0

0 ρgA −ρgIA
1

−F
(0)
3 −ρgIA

1 + F
(0)
1

(
ρg(IA

11 + IV
3 )

−Mg(z̄c − Z(0))

)
 , (8.2.56)

where the inertia terms refer to the unit length of the cylinder.
So far our derivation has been rather formal so that no first-order term

could escape our attention. For the relatively simple case of two dimensions,
it is instructive to reexamine some of the terms heuristically. Consider the
buoyancy torque caused by rotation β. Referring to Fig. 8.2 for the bound-
ary element dS, a positive (clockwise) β will induce an added buoyancy
force of the magnitude

−ρg[θ(1) × (x − X(0))] · n dS

= −β[(z − Z(0))n1 − (x − X(0))n3]ρg dS (8.2.57)

in the vertical direction. The corresponding restoring moment is

−ρgβ

∫
S

(0)
B

[(z − Z(0))n1 − (x − X(0))n3](x − X(0)) dS .
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Since n1 dS = −dz and n3 dS = dx, this moment can also be expressed

−ρgβ

[∫
S

(0)
B

(x − X(0))(z − Z(0)) dz +
∫

S
(0)
B

(x − X(0))2 dx

]
. (8.2.58)

Noting that (x − X(0)) =
∫ x

X(0) dx, we may rewrite the first integral in
Eq. (8.2.58) as ∫∫

V (0)
(z − Z(0)) dx dz = IV

3 ,

and the second integral in Eq. (8.2.58) as∫
S

(0)
B

(x − X(0))2 dx = IA
11 .

Thus, Eq. (8.2.58) gives the first β terms on the right of Eq. (8.2.52) and
the appearance of IV

3 and IA
11 is verified by an elementary consideration.

In subsequent sections all superscripts (0) and (1) will be omitted for
brevity.

8.3 Simple Harmonic Motion

8.3.1 Decomposition into Diffraction and
Radiation Problems

As in simpler vibrating systems governed by linear ordinary differential
equations with constant coefficients, the most basic task is to study the
frequency response to a simple harmonic excitation. Furthermore, it is
convenient to decouple the hydrodynamics from the body dynamics by the
following device (Haskind, 1944). Let us introduce the complex amplitude

{Φ, Ẋα}T = Re {φ, Vα}T e−iωt , (8.3.1)

where Vα denotes the amplitude of the generalized body velocity, and the
decomposition

φ = φD +
∑

α

Vαφα , α = 1, 2, . . . , 6 . (8.3.2)
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The potential φD is governed by the following conditions:

∇2φD = 0 in the fluid , (8.3.3)

∂φD

∂z
− ω2

g
φD = 0 on SF (z = 0) , (8.3.4)

∂φD

∂z
= 0 on B0 (z = −h, sea bottom) , (8.3.5)

∂φD

∂n
= 0 on SB (body surface) , (8.3.6)

φD − φI outgoing at infinity . (8.3.7)

φI represents the incident wave potential. Thus, φD represents the diffrac-
tion potential when the body is held stationary in incoming waves. Using
the generalized normal introduced in Eq. (8.2.4), we define φα to satisfy
Eqs. (8.3.3)–(8.3.5) and

∂φα

∂n
= nα on SB , (8.3.8)

φα outgoing at infinity . (8.3.9)

It is obvious that the total potential φ of Eq. (8.3.2) satisfies

∂φ

∂n
=
∑
α

Vαnα on SB , (8.3.10)

hence Φ satisfies Eq. (8.2.14). Each φα corresponds to a generalized mode
of forced motion with unit body velocity and is a radiation potential.

The advantage of the decomposition is that the component problems
for φD and φα involve only hydrodynamics and can be solved separately
first. The results are then used in Eq. (8.2.47) or (8.2.54) to determine the
body motion. The solution of φD and φα is usually the most difficult part
of the entire task.

For very large structures, elastic deformation due to wave forces may be
appreciable. If the motion of the body surface is decomposed into real-
valued normal modes, then decomposition can still be introduced with
suitable reinterpretation of the generalized normal nα.

We shall always assume that sufficiently far from the body or variable
depth, the sea bottom is horizontal at the depth h. We further assume a



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

358 Floating Body Dynamics: Diffraction and Radiation by Large Bodies

plane incident wave propagating in the direction θ = θI ; the corresponding
potential is

φI =
−igA

ω

cosh k(z + h)
cosh kh

eikr cos(θ−θI) . (8.3.11)

8.3.2 Exciting and Restoring Forces;
Added Mass and Radiation Damping
for a Body of Arbitrary Shape

We now introduce some general definitions applicable to a body of arbitrary
shape.

The αth component of the generalized hydrodynamic force on the
body is

Fα =
∫∫

SB

pnα dS = Re (Fαe−iωt) , (8.3.12)

where

Fα = iρω

∫∫
SB

φnα dS . (8.3.13)

Substituting Eq. (8.3.2) into Eq. (8.3.13), we get

Fα = iρω

∫∫
SB

φDnα dS +
∑

β

iρωVβ

∫∫
SB

φβnα dS . (8.3.14)

We also denote

FD
α = iρω

∫∫
SB

φDnα dS ,

fβα = iρω

∫∫
SB

φβnα dS

(8.3.15)

so that

Fα = FD
α +

∑
β

Vβfβα . (8.3.16)

The vector {FD
α } is the exciting force on a stationary body due to dif-

fraction, while the matrix [fβα] is called the restoring force matrix. The
component fβα represents the hydrodynamic reaction in direction α due to
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the normal mode β. Consider the effect of the β mode only. The restoring
force is, without summing over β,

Re (Vβfβαe−iωt)

= Re [(Re fβα + i Im fβα)Vβe−iωt]

= Re
[(

iρω

∫∫
SB

Re φβnα dS − ρω

∫∫
SB

Im φβnα dS

)
· Vβe−iωt

]

= −
(

ρ

∫∫
SB

Re φβnα dS

)
Re

d

dt
(Vβe−iωt)

−
(

ρω

∫∫
SB

Im φβnα dS

)
Re (Vβe−iωt)

= −
(

ρ

∫∫
SB

Re φβnα dS

)
Ẍβ −

(
ρω

∫∫
SB

Im φβnα dS

)
Ẋβ .

(8.3.17)

The first integral above is proportional to the body acceleration and is the
hydrodynamic inertia. We therefore call the matrix

[µ] : µβα = ρ

∫∫
SB

Re φβnα dS =
1
ω

Im fβα (8.3.18)

the added mass matrix. The second integral in Eq. (8.3.17) is proportional
to the body velocity and is expected to lead to damping, as will be shown.
We call the matrix

[λ] : λβα = ρω

∫∫
SB

Im φβnα dS = −Re fβα (8.3.19)

the radiation damping matrix. In terms of these matrices the restoring force
due to all six modes is expressed as

FR
α = −

∑
β

µβαẌβ−
∑

β

λβαẊβ , so that Fα = FD
α +FR

α . (8.3.20)

To justify the name “damping matrix” for [λ], let us consider the average
rate of work done by the body to the fluid over a period:

Ė = −
∑
α

FR
α Ẋα =

∑
α,β

µβαẌβẊα +
∑
α,β

λβαẊβẊα . (8.3.21)



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

360 Floating Body Dynamics: Diffraction and Radiation by Large Bodies

Because µαβ = µβα, which will be proven later, the first term may be
written

1
2

∑
α,β

µβα(ẌβẊα + ẊαẌβ) =
1
2

∑
α,β

µβα
d

dt
ẊβẊα = 0 , (8.3.22)

which vanishes due to periodicity. Thus,

Ė =
∑
α,β

λβαẊβẊα (8.3.23)

and [λ] is associated with the energy given away by the oscillating body,
hence the name radiation damping.

Finally, with these definitions, the matrix equation for the rigid body
(8.2.47) may be written

[−ω2([M ] + [µ]) + [C] − iω[λ]]{ξ} = {FD} + {F} , (8.3.24)

where {ξ} is the amplitude of {X}:

{X} = Re {ξ}e−iωt . (8.3.25)

From Eqs. (8.2.49) and (8.2.50), [M ] and [C] are known from the equi-
librium geometry of the body. Solutions of the hydrodynamic boundary-
value problems then give [µ], [λ], and {FD}. Once the information for the
constraint is known, Eq. (8.3.24) may be solved for {ξ}.

8.4 Formal Representations of Velocity Potential
when h = Constant

8.4.1 Away from the Body

Let all the geometrical departures (bodies, topography, etc.) from a sea
of constant depth be confined in an imaginary vertical cylinder of finite
size. In the exterior of this cylinder the general solution can be represented
analytically in the form of an eigenfunction expansion, as shown below.

Two Dimensions

By separation of variables, φ = ψ(x)f(z), it is easy to show that ψ(x) =
e±ikx and that
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f ′′ − k2f = 0 , −h < z < 0 (8.4.1a)

f ′ − σf = 0 , z = 0 , (8.4.1b)

f ′ = 0 , z = −h (8.4.1c)

with σ = ω2/g. This is an eigenvalue problem of the Stürm–Liouville type.
The solution is proportional to coshk(z + h) and the eigenvalue condition
for k is the usual dispersion relation

σ = k tanh kh . (8.4.2)

Let us examine Eq. (8.4.2) graphically. There is a pair of real roots which
are familiar; see Fig. 8.3. Both of these roots ±k correspond to the same
normalized eigenfunction; hence only the positive real root needs to be

Figure 8.3: Graphical solution of dispersion relation: (a) real solutions and (b) imagi-
nary solutions.
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considered in the future. For later convenience, we introduce the normalized
eigenfunction:

f0(z) =
√

2 cosh k(z + h)
(h + σ−1 sinh2 kh)1/2

so that
∫ 0

−h

f2
0 (z) dz = 1 . (8.4.3)

In addition, there are also imaginary eigenvalues k = iκ corresponding to
the real solutions of

σ = −κ tanκh . (8.4.4)

Graphically, these roots are the intersections of −σh/κh and tan κh, as
shown in Fig. 8.3(b). Since tanκh has infinitely many branches, there is
an infinite number of discrete roots κ = ±kn. Again it is only necessary to
consider positive kn. From Fig. 8.3(b), it is evident that

π

2
< k1h < π ,

3π

2
< k2h < 2π ,

(
n − 1

2

)
π < knh < nπ . (8.4.5)

As n becomes large, knh approaches nπ. The corresponding normalized
eigenfunctions are

fn(z) =
√

2 cos kn(z + h)
(h − σ−1 sin2 knh)1/2

,

∫ 0

−h

f2
n dz = 1 . (8.4.6)

By straightforward integration and by using the eigenvalue condition (8.4.2)
or (8.4.4), it can be shown that distinct eigenfunctions are orthogonal to
one another, that is,∫ 0

−h

fm(z)fn(z) dz = δmn , m, n = 0, 1, 2, . . . . (8.4.7)

Kreisel (1949) has proven that the set {fn}, n = 0, 1, 2, . . . , is complete so
that any function G(z) in the interval z ∈ [−h, 0] can be represented by a
Fourier series based on {fn}. Consequently, one can use the series

φ(x, z) = a0f0(z)e±ikx +
∞∑

n=1

bnfn(z)e∓knx

{
x+ < x < ∞
x− > x > −∞ (8.4.8)

to represent the potential of a radiated or scattered wave. The first term
corresponds to the propagating mode, while the series terms are only of
local importance and are called the evanescent modes.
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Three-Dimensional Eigensolutions in Cylindrical

Polar Coordinates

The Laplace equation in polar coordinates is

1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2

∂2φ

∂θ2
+

∂2φ

∂z2
= 0 . (8.4.9)

The eigensolution corresponding to the real and the imaginary eigenvalues
are {

H
(1)
m (kr)

H
(2)
m (kr)

}{
cosmθ

sin mθ

}
f0(z) , m = 0, 1, 2, 3, . . .

{
Im(knr)

Km(knr)

}{
cosmθ

sin mθ

}
fn(z) , n = 1, 2, 3, . . . (8.4.10)

where H
(1)
m and H

(2)
m are the Hankel functions of the first and second kinds,

and Im and Km are the modified Bessel functions of the first and second
kinds, respectively. The most general representation which satisfies the
radiation condition at infinity is

φ =
∑
m

H(1)
m (kr)(α0m cosmθ + β0m sin mθ)f0(z)

+
∑
m

∑
n

Km(knr)(αnm cosmθ + βnm sin mθ)fn(z) . (8.4.11)

Because of the exponential attenuation with r, terms associated with
Km(knr) are the evanescent modes.

From the general representations (8.4.8) and (8.4.11) we may express
the radiation condition in more explicit mathematical forms as follows:

Two Dimensions : For φ = φS ≡ φD − φI , or φα

φ → − igA±
ω

cosh k(z + h)
cosh kh

e±ikx as kx → ±∞ , (8.4.12)

or equivalently

∂φ

∂x
∓ ikφ → 0 as kx → ±∞ . (8.4.13)
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Three Dimensions : With the asymptotic formula for H
(1)
m , the wave

potential can be written

φ ∼ − ig

ω

∑
m

H(1)
m (kr)(α′

0m cosmθ + β′
0m sin mθ)

cosh k(z + h)
cosh kh

∼
{∑

m

(α′
0m cosmθ + β′

0m sin mθ)e−imπ/2

}

· (−)
ig

ω

(
2

πkr

)1/2

eikr−iπ/4 cosh k(z + h)
cosh kh

. (8.4.14)

Let us denote the quantity inside { } above by A(θ); then

φ ∼ −igA(θ)
ω

(
2

πkr

)1/2

eikr−iπ/4 cosh k(z + h)
cosh kh

, kr → ∞ . (8.4.15)

A(θ) represents the angular variation of the radially spreading wave. By
differentiation, the above statement can be expressed alternatively as

(kr)1/2

(
∂φ

∂r
− ikφ

)
→ 0 , kr → ∞ (8.4.16)

just as the case for shallow water waves.

Exercise 8.2

In a sea of constant depth, a row of equally spaced, identical bodies sym-
metrical about their axes parallel to x are fixed along the y axis. A train
of plane waves is incident in the direction of positive x. Formulate the
problem. Find the most general expressions for the velocity potential on
the reflection and transmission sides. Give the explicit forms of the eva-
nescent and the propagating modes. What is the effect of spacing on the
number of propagating modes?

8.4.2 The Entire Fluid Domain

A formal solution for the whole fluid domain is possible by the use of Green’s
theorem and the so-called Green function.

For two twice-differentiable functions f and g, Green’s theorem is∫∫∫
Ω

(f∇2g − g∇2f) dΩ =
∫∫

∂Ω

(
f

∂g

∂n
− g

∂f

∂n

)
dS , (8.4.17)
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where Ω is a closed volume, ∂Ω its boundary, and n a unit normal to ∂Ω
and outward from Ω.

The Green function G(x|x0) is defined to be the potential at any field
point x due to an oscillating source of unit strength at x0. The governing
conditions for G are

Two Dimensions : x = (x, z), x0 = (x0, z0)(
∂2

∂x2
+

∂2

∂z2

)
G = δ(x − x0)δ(z − z0) in the fluid , (8.4.18)

∂G

∂z
− σG = 0 , σ =

ω2

g
, z = 0 , (8.4.19)

∂G

∂z
= 0 , z = −h , (8.4.20)

∂G

∂x
∓ ikG = 0 , k|x − x0| ∼ ∞ . (8.4.21)

Three Dimensions : x = (x, y, z), x0 = (x0, y0, z0). Equations (8.4.19)
and (8.4.20) are still valid but Eqs. (8.4.18) and (8.4.21) must be replaced
by (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
G = δ(x − x0)δ(y − y0)δ(z − z0) , (8.4.22)

(kr)1/2

(
∂G

∂r
− ikG

)
→ 0 , kr ∼ ∞ . (8.4.23)

The depth h is constant everywhere and the differentiations refer to
x only.

Postponing the details of G, let us first apply Green’s theorem to a
radiation or a scattering potential and to the Green function, that is, f = φ

where φ = φR or φS and g = G. Consider only the three-dimensional
case and let Ω be the control volume bounded by the free surface SF , the
body surface SB , the sea bottom B0, and a vertical circular cylinder S∞ of
great radius surrounding the body. For simplicity, the sea bottom for the
radiation or the scattering problem is assumed to be horizontal everywhere,
but it is not difficult to extend to the case where the bottom irregularity
is confined in a finite region near the body. It follows from Eq. (8.4.17)
that
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∫∫∫
Ω

(φ∇2G − G∇2φ) dΩ

=
{∫∫

SF

+
∫∫

SB

+
∫∫

B0

+
∫∫

S∞

}(
φ

∂G

∂n
− G

∂φ

∂n

)
dS .

The field equations for φ and G and the property of the δ function reduce
the left-hand side to simply φ(x0). Because of the boundary conditions
on φ and G, the surface integrals on SF , B0, and S∞ vanish. Thus the
preceding equation becomes

φ(x0) =
∫∫

SB

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS , x0 ∈ Ω, /∈ SB . (8.4.24)

Now the Green function is symmetric with respect to the interchange of x
and x0, that is,

G(x|x0) = G(x0|x) . (8.4.25)

This fact may be proven straightforwardly by introducing another Green
function with the source at x′, G(x|x′), and applying Green’s formula to
G(x|x0) and G(x|x′). With Eq. (8.4.25) one can interchange x0 and x in
Eq. (8.4.24) to get

φ(x) =
∫∫

SB

[
φ(x0)

∂G

∂n0
− G

∂φ(x0)
∂n0

]
dS0 , x ∈ Ω, /∈ SB . (8.4.26)

Thus, if φ and ∂φ/∂n are known on the body surface, φ(x) is known
everywhere. But in practice only the normal velocity ∂φ/∂n is prescribed
on the body, while φ(x0) is not known a priori. The representation (8.4.26)
is therefore only formal.

While other applications of Eq. (8.4.26) will be discussed later, we shall
derive here an asymptotic approximation of φ for kr � 1. For this purpose
we need to obtain G explicitly. For three dimensions, one form of G is cited
below, while further information may be found in Appendix 8.A.

G(x|x0) = − i

2
σ2 − k2

h(k2 − σ2) + σ
cosh k(z0 + h) coshk(z + h)H(1)

0 (kR)

+
1
π

∞∑
n=1

k2
n + σ2

h(k2
n + σ2) − σ

cos kn(z0 + h) cos kn(z + h)K0(knR) ,

(8.4.27)
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where

R = [(x − x0)2 + (y − y0)2]1/2 .

For kR � 1 it is sufficient to keep the propagating mode only which may
be written

G(x|x0) ∼= C0 cosh k(z+h) coshk(z0+h)
(

2
πkR

)1/2

eikR−iπ/4 , (8.4.28)

where C0 is a constant coefficient

C0 =
(− 1

2 i)(σ2 − k2)
h(k2 − σ2) + σ

. (8.4.29)

Using polar coordinates

(x, y) = r(cos θ, sin θ) , (x0, y0) = r0(cos θ0, sin θ0)

and approximating R for r � r0

R = [r2 + r2
0 − 2rr0 cos(θ − θ0)]1/2 ∼= r − r0 cos(θ − θ0) ,

we get

G(x|x0) ∼= C0 cosh k(z + h) coshk(z0 + h)

×
(

2
πkr

)1/2

eikre−ikr0 cos(θ−θ0)e−iπ/4 . (8.4.30)

Substituting this into Eq. (8.4.26), we get

φ(x) ∼= C0 cosh2 kh
cosh k(z + h)

cosh kh

(
2

πkr

)1/2

eikr−iπ/4

∫∫
SB

dS0

×
(

φ
∂

∂n0
− ∂φ

∂n0

)
cosh k(z0 + h)

cosh kh
e−ikr0 cos(θ−θ0) , (8.4.31)

which can also be written in the form of Eq. (8.4.15). This result gives
a relation between the far-field amplitude A(θ) and the values of φ and
∂φ/∂n0 on SB:

A(θ) =
iω

g
C0 cosh2 kh

∫∫
SB

dS0

(
φ

∂

∂n0
− ∂φ

∂n0

)

× cosh k(z0 + h)
cosh kh

e−ikr0 cos(θ−θ0) . (8.4.32)
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When φ and ∂φ/∂n are known on the body, A(θ) is obtainable by quadra-
ture. In Russian literature the integral above is used to define the so-called
Kochin’s H function.

For two dimensions the Green function may be expressed as

G(x|x0) = − i

k

(
h +

1
σ

sinh2 kh

)−1

eik|x−x0|

× cosh k(z0 + h) coshk(z + h)

+
∞∑

n=1

1
kn

(
h − 1

σ
sin2 knh

)−1

e−kn|x−x0|

× cos kn(z0 + h) cos kn(z + h) . (8.4.33)

The full derivation is given in Appendix 8.A. For |kx| � 1, only the pro-
pagating mode needs to be kept and Eq. (8.4.26) may be written

φ(x) ∼= − i

k

cosh2 khe±ikx

h + (1/σ) sinh2 kh

cosh k(z + h)
cosh kh

×
∫

SB

dS0

(
φ

∂

∂n0
− ∂φ

∂n0

)
e∓ikx0

cosh k(z0 + h)
cosh kh

. (8.4.34)

The wave amplitude at x ∼ ±∞ is

A± =
ω

gk

cosh2 kh

h + (1/σ) sinh2 kh

∫
SB

dS0

×
(

φ
∂

∂n0
− ∂φ

∂n0

)
e∓ikx0

cosh k(z0 + h)
cosh kh

. (8.4.35)

In this form A± is essentially the two-dimensional Kochin H function.
We now leave generalities behind for a specific solution.

8.5 Scattering by a Vertical Cylinder with Circular
Cross Section

There are only a few geometries in the theory of water-wave diffraction
where exact analytical solutions have been found. One of them is a vertical
cylinder of circular cross section, extending from the sea bottom to the free
surface. Without loss of generality, we take the incident wave to arrive
from x ∼ −∞, as given by Eq. (8.3.11). The orthogonality property (8.4.7)
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can be used to show that only the propagating mode matters and the
evanescent modes vanish identically.1 Consequently, the total potential
can be expressed

φ = − ig

ω
η(x, y)

cosh k(z + h)
cosh kh

, (8.5.1)

where η is the free-surface displacement and satisfies the two-dimensional
Helmholtz equation. The free surface of the incident wave is, in terms of
partial waves,

ηI = Aeikx = Aeikr cos θ

= A

∞∑
m=0

εm(i)mJm(kr) cos mθ . (8.5.2)

The total free-surface displacement is given by

η = A

∞∑
m=0

εm(i)m

{
Jm(kr) − Hm(kr)

J ′
m(ka)

H ′
m(ka)

}
cosmθ , (8.5.3)

where Hm ≡ H
(1)
m and H ′

m(s) ≡ dHm/ds for the sake of brevity. The
dynamic pressure may be calculated as

p(r, θ, z) = iωρφ = ρgη
cosh k(z + h)

cosh kh
. (8.5.4)

In general, the pressure at any point on the cylinder can be calculated by
summing up the infinite series

p(a, θ, z) = ρgA
cosh k(z + h)

cosh kh

×
∞∑

m=0

εm(i)m

{
Jm(ka) − Hm(ka)

J ′
m(ka)

H ′
m(ka)

}
cosmθ . (8.5.5)

In view of the Wronskian identity Eq. (8.9.20), Chapter Four, the pressure
may be rewritten

p(a, θ, z) = ρgA
cosh k(z + h)

cosh kh

∞∑
m=0

2(i)(m+1)εm cosmθ

πkaH ′
m(ka)

. (8.5.6)

The series also represents the normalized free-surface displacement around
the cylinder. For small ka, the pressure p is rather uniform around the

1This result holds for a vertical cylinder of arbitrary cross section.
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Figure 8.4: Polar distribution of run-up on a circular cylinder extending the entire sea
depth. Incident wave is in the direction θ = 0. (a) ka = 0.5, (b) ka = 1.0, (c) ka = 3.0,
and (d) ka = 5.0.

cylinder. As ka increases, the variation becomes more complex, as shown
in Fig. 8.4.

Let us integrate the pressure on the cylinder. On a horizontal slice of a
unit height, the force in the direction of wave propagation is
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dFx

dz
= −a

∫ 2π

0

p(a, θ, z) cos θ dθ .

By the orthogonality of cosines, only the term m = 1 in the series of
Eq. (8.5.6) remains,

dFx

dz
=

4A

ka

ρga

H ′
1(ka)

cosh k(z + h)
cosh kh

. (8.5.7)

The total horizontal force on the cylinder is then

Fx =
∫ 0

−h

dFx

dz
dz =

4ρgAah

kaH ′
1(ka)

tanh kh

kh
. (8.5.8)

The total moment about an axis parallel to y passing through the bottom
of the cylinder is

My = −
∫ 0

−h

(z + h)
dFx

dz
dz

= − 4ρgAah2

kaH ′
1(ka)

kh sinh kh − cosh kh + 1
(kh)2 cosh kh

, (8.5.9)

which is positive counterclockwise. Formulas (8.5.8) and (8.5.9) were first
given by McCamy and Fuchs (1954). To show the dependence of Fx and
My on ka, it is only necessary to plot the magnitude and the phase of the
factor [kaH ′

1(ka)]−1:∣∣∣∣ 1
kaH ′

1(ka)

∣∣∣∣ = (ka)−1{[J ′
1(ka)]2 + [Y ′

1(ka)]2}−1/2 , (8.5.10)

and the phase tan δ = Y ′
1(ka)/J ′

1(ka); see Fig. 8.5.
Let us introduce the inertia and drag coefficients per unit height,

analogous, respectively, to the added mass and damping coefficients in the
restoring forces on a body in forced radiation, as defined in more general
terms in Section 8.3.2. For a unit horizontal slice of the cylinder we write

Re
(

dFx

dz
e−iωt

)
= ρπa2(CM U̇ + ωCDU) , (8.5.11)

where U is the velocity of the incident wave at x = 0 in the absence of the
cylinder,

U = Re
∂φI

∂x
e−iωt =

gkA

ω

cosh k(z + h)
cosh kh

cosωt . (8.5.12)
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Figure 8.5: Magnitude and phase of the factor (kaH′
1)−1, which describes the depen-

dence of force and moment on ka [cf. Eqs. (8.5.8) and (8.5.9)].

From Eq. (8.5.7) it can be deduced that

Re
(

dFx

dz
e−iωt

)
=

4ρgaA

ka|H ′
1(ka)|2

cosh k(z + h)
cosh kh

[J ′
1(ka) cosωt−Y ′

1(ka) sin ωt] .

Upon comparing with Eq. (8.5.11), we obtain

CM =
4
π

Y ′
1(ka)

(ka)2|H ′
1(ka)|2 , (8.5.13a)

CD =
4
π

J ′
1(ka)

(ka)2|H ′
1(ka)|2 . (8.5.13b)

The inertia coefficient is plotted in Fig. 8.6. It is important that even in
the absence of viscosity the cylinder experiences a drag (damping) force,
which is due to the transport of energy toward infinity by scattered waves.

For a small cylinder we have approximately

CM
∼= 2 (8.5.14)

and

CD
∼= π(ka)2

2
. (8.5.15)
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Figure 8.6: Inertia coefficient CM by Eq. (8.5.13a) and by experiment (from Charkra-
barti and Tam, 1975, J. Ship Res. Reproduced by permission of the Society of Naval
Architects and Marine Engineers).

Thus, the drag coefficient due to waves is very small; in reality, viscous
effects including vortex shedding are much more dominant. Note also that
the apparent mass is twice that of the accelerating circular cylinder in an
otherwise calm fluid without a free surface. To help understand this limit,
we examine the neighborhood of the cylinder where r = O(a). By keeping
only the two most important terms, m = 0, 1, in Eq. (8.5.3), we find

φ � − igA

ω

cosh k(z + h)
cosh kh

{
1 + ik

(
r +

a2

r

)
cos θ

}

= − igA

ω

cosh k(z + h)
cosh kh

{
1 + ik

(
x +

a2

r
cos θ

)}
. (8.5.16)

At a fixed z, this is just the potential for an oscillating flow past a stationary
circular cylinder. The first term, ikx, corresponding to the incident wave
in the absence of the cylinder, gives half of CM , while the scattered waves,
due to the presence of the cylinder, gives the other half.

Not too close to the small cylinder, the amplitude of the scattered wave
is, from Eq. (8.5.3),

ηS

A
= −H0(kr)

J ′
0(ka)

H ′
0(ka)

− 2iH1(kr)
J ′

1(ka)
H ′

1(ka)
cos θ + O(ka)3

=
π

2
(ka)2

{
− i

2
H0(kr) − H1(kr) cos θ

}
+ O(ka)3 . (8.5.17)
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The scattered wave therefore consists of a radially symmetric wave and
a dipole-like wave; their amplitudes are, however, very small (O(ka)2).
Correspondingly, the damping force given by Eq. (8.5.15) is small.

The linearized theory here has been checked experimentally by Charkra-
barti and Tam (1975), as shown in Fig. 8.6 for the coefficient CM . Their
measurements were taken for a cylinder of radius a = 40.5 in. in water
depth of h = 47.25 in. The range of wave period was 1.0 to 3.5 s, while the
incident wave amplitude was under 4.5 in.; the corresponding range of kA

was 0.1 < kA < 0.38, which included some steep waves. There was a good
agreement between theory and experiment for 0.2 < ka < 0.65. For still
smaller radius or larger waves, viscous effect and flow separation became
dominant which greatly affected both CM and CD.

Exercise 8.3

Solve the problem of a vertical circular cylinder forced to sway in the x

direction, or to roll about the axis x = 0, z = c. The boundary condition
on the cylinder is

∂φ

∂r
= U cos θ , sway

or

∂φ

∂r
= Ω(c − z) cos θ , roll .

Find the added inertia and the damping force matrices by numerical sum-
mation of the series.

Exercise 8.4

Let a plane wavetrain be incident from x ∼ −∞ toward a vertical cylinder
whose cross section is described by r = a[1+ εξ(θ)] with ε � 1. Show that,
on a unit horizontal slice at height z,

(a) the in-line wave force is

fx
∼= −a

∫ 2π

0

dθ{[p(0) + ε(ξp(0) + p(1))] cos θ + εξ′p(0) sin θ}r=a ;

(b) the transverse wave force is

fy
∼= −εa

∫ 2π

0

dθ{[ξp(0) + p(1)] sin θ − ξ′p(0) cos θ}r=a ; and
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(c) the moment about the z axis is

mz
∼= εa2

∫ 2π

0

dθ ξ′p(0)(a, θ) ,

where p = p(0) + εp(1) + · · · .

For a slightly elliptical cylinder whose major axis is inclined at the angle
α with the x axis, solve for p(1) explicitly and find fx, fy, and mz .

8.6 General Identities for the Diffraction and
Radiation of Simple Harmonic Waves

As seen in Section 4.7.4 and in many other wave problems, there are cer-
tain very general identities relating quantities of practical interest. These
identities are useful for several reasons. First, they facilitate the theoreti-
cal understanding of the physical problem. Second, they provide necessary
checks for an analytical or numerical theory. Third, they minimize the task
of computing those quantities related by them. For constant h, many of
these identities have been derived individually for a long time (Wehausen,
1971). Here we shall follow the systematic approach of Newman (1976) by
selecting exhaustively various pairings of φD and φα for f and g in Green’s
formula (8.4.17).

Let f and g be any two velocity potentials φ and ψ, and let the bounding
surface ∂Ω be divided into the free surface SF , the bottom B0, the body
SB, and a vertical circular cylinder S∞ with an arbitrarily large radius. The
volume integral in Eq. (8.4.17) clearly vanishes. By invoking the appropri-
ate boundary conditions, neither the sea bottom B0 nor the free surface SF

gives any contribution to the surface integral; therefore,∫∫
SB+S∞

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS = 0 . (8.6.1)

If we take f = φ but g = ψ∗ where ( )∗ denotes the complex conjugate and
use the fact that ψ∗ satisfies the conjugate of the equations governing ψ, it
follows that ∫∫

SB+S∞

[
φ

∂ψ∗

∂n
− ψ∗ ∂φ

∂n

]
dS = 0 . (8.6.2)

Further information may be obtained by specifying the boundary con-
ditions on SB and S∞. A general result used repeatedly later is that the
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surface integral of S∞ in Eq. (8.6.1) vanishes if φ and ψ are outgoing waves
at infinity and satisfy Eq. (8.4.16),2 that is,∫∫

S∞

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS = 0 . (8.6.3)

As a consequence, Eq. (8.6.1) gives∫∫
SB

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS = 0 . (8.6.4)

We now specify φ and ψ even further.

8.6.1 Relations between Two Radiation Problems
and their Consequences

Let φ = φα and ψ = φβ be the radiation potentials for two normal modes.
Since they both satisfy Eq. (8.4.16), Eq. (8.6.4) applies. If use is made of
the boundary condition on the body, we have∫∫

SB

φβnα dS =
∫∫

SB

φαnβ dS . (8.6.5)

In view of the definitions in Eqs. (8.3.15), (8.3.18), and (8.3.19), the restor-
ing force, the added mass, and the damping matrices must be symmetric:

fβα = fαβ , µαβ = µβα , λαβ = λβα . (8.6.6)

It should be stressed that there is no restriction on the symmetry of the
body.

Recall that the average rate of work done by the body to water as given
by Eq. (8.3.23) was deduced after using the symmetry of λαβ . Now the
working rate can be alternatively obtained in terms of the total radiation
potential φR = ΣVαφα as follows:

Ė = −Re
2

[
iωρ

∫∫
SB

φR ∂φR∗

∂n
dS

]
=

ωρ

2
Im
∫∫

SB

φR ∂φR∗

∂n
dS

=
ωρ

2
1
2i

∫∫
SB

[
φR ∂φR∗

∂n
− φR∗ ∂φR

∂n

]
dS .

2Alternatively, one may regard Eq. (8.6.3) as the weak radiation condition on φ if ψ
satisfies the strong condition (8.4.16). An application of the weak condition is discussed
in Section 13.12.
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From Eq. (8.6.2) the integral over SB is the negative of a similar integral
over S∞; hence

Ė =
ρωi

4

∫∫
S∞

[
φR ∂φR∗

∂n
− φR∗ ∂φR

∂n

]
dS . (8.6.7)

If the asymptotic expressions of φR and φR∗, that is, Eq. (8.4.15) and its
complex conjugate, are used in Eq. (8.6.7), we get

Ė =
iρω

4

∫ 2π

0

∫ 0

−h

[
− ig

ω

(
2

πkr

)1/2
]2

2ik|AR(θ)|2 cosh2 k(z + h)
cosh2 kh

r dθ dz ,

(8.6.8)

which is non-negative. Therefore, the radiation condition is consistent with
the physical fact that energy can only flow from the rigid body to wa-
ter when the body is forced externally to move.3 Let us now return to
Eq. (8.3.23). Since Ẋα and Ẋβ can be arbitrarily prescribed, the non-
negativeness of Ė implies that the damping matrix is positive semidefinite.
As a corollary, the diagonal terms of [λ], λ11, λ22, and λ33, are each
individually positive semidefinite.

The radiation damping rate may also be related to the radiated am-
plitude in the far field. Putting φ = φα and ψ∗ = φ∗

β in Eq. (8.6.2), we
get ∫∫

SB

(φαnβ − φ∗
βnα) dS = −

∫∫
S∞

(
φα

∂φ∗
β

∂n
− φ∗

β

∂φα

∂n

)
dS .

By virtue of the symmetry relation (8.6.5), the left side is seen to be

2i Im
∫∫

SB

φαnβ dS =
2iλαβ

ρω
.

It follows after using the radiation condition that

λαβ = −ρω

2i

∫∫
S∞

(
φα

∂φ∗
β

∂n
− φ∗

β

∂φα

∂n

)
dS = ρωk

∫∫
S∞

φαφ∗
β dS . (8.6.9a)

In particular we have

λαα = −ρω Im
∫∫

S∞
φα

∂φ∗
α

∂n
dS = ρωk

∫∫
S∞

|φα|2 dS > 0 (8.6.9b)

3There are special cases where an oscillating body does not radiate any energy for a
particular frequency (e.g., Bessho, 1965; Frank, 1967a; Kyozuka and Yoshida, 1981).
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for α = β. The right-hand side of Eqs. (8.6.9a) and (8.6.9b) may be ex-
pressed in terms of far-field amplitudes, as shown below.

Two Dimensions

According to Eq. (8.4.12), the asymptotic behavior of φα is

φα ∼ − igA±
α

ω
e±ikx cosh k(z + h)

cosh kh
, x ∼ ±∞ , (8.6.10)

where �±
α have the dimension of time. The right-hand side of Eq. (8.6.9a)

consists of two integrals on S±∞ at x ∼ ±∞. By straightforward substitu-
tion, it can be shown that

λαβ = ρgCg(A−
αA−∗

β + A+
αA+∗

β ) . (8.6.11)

Three Dimensions

The asymptotic behavior is, from Eq. (8.4.15),

φα = − igAα(θ)
ω

cosh k(z + h)
cosh kh

(
2

πkr

)1/2

eikr−iπ/4 . (8.6.12)

We leave it as an exercise to show from Eq. (8.6.9a) that

λαβ =
2
πk

ρgCg

∫ 2π

0

Aα(θ)A∗
β(θ) dθ . (8.6.13)

8.6.2 Relations between Two Diffraction Problems

Let φ = φ(1) and ψ = φ(2) be two diffraction problems corresponding to
different angles of incidence. As the normal velocity vanishes on the body,
the surface integral on SB in Eq. (8.6.1) vanishes. It follows that∫∫

S∞

(
φ(1) ∂φ(2)

∂n
− φ(2) ∂φ(1)

∂n

)
dS = 0 . (8.6.14)

For the same reason, Eq. (8.6.2) gives∫∫
S∞

(
φ(1) ∂φ(2)∗

∂n
− φ(2)∗ ∂φ(1)

∂n

)
dS = 0 . (8.6.15)

A special case of Eq. (8.6.15) is obtained by letting φ(1) = φ(2) = φ; then
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Im
∫∫

S∞
φ

∂φ∗

∂n
dS = 0 . (8.6.16)

The left side is proportional to the pressure work done on the surface S∞.
Hence Eq. (8.6.16) states the conservation of energy. Let us examine these
results in terms of the far-field amplitudes.

Two Dimensions

Let φ(1)(φ(2)) be the diffraction potential with an incident wave from left
(right) to right (left). The asymptotic potentials are

φ(1)
∼
∼

{
eikx + R1e

−ikx

T1e
ikx

}
·
(
− igA

ω

)
cosh k(z + h)

cosh kh
,

x ∼ −∞ ,

x ∼ ∞ ,
(8.6.17)

and

φ(2)
∼
∼

{
T2e

−ikx

e−ikx + R2e
ikx

}
·
(
− igA

ω

)
cosh k(z + h)

cosh kh
,

x ∼ −∞ ,

x ∼ +∞ .
(8.6.18)

Let S±∞ be two vertical lines at x ∼ ±∞. Then on S±∞, ∂/∂n = ±∂/∂x.
Upon substitution of Eqs. (8.6.17) and (8.6.18) into Eq. (8.6.14), we obtain,
after a little algebra,

T1 = T2 (8.6.19)

(Kreisel, 1949). The transmission coefficient is independent of the direction
of the incident wave even though the body may not possess any symmetry
at all! It should be emphasized that this result does not imply the equality
of two problems and their solutions; only the far fields are involved here.
Performing similar computations, we get from Eq. (8.6.15)

R1T
∗
2 + R∗

2T1 = 0 (8.6.20)

(Meyer, 1955; Newman, 1965), and from Eq. (8.6.16) for a single diffraction
problem

|R2| + |T 2| = 1 . (8.6.21)

Further inferences may be made. Using Eq. (8.6.19), Eq. (8.6.20)
leads to

|R1| = |R2| (8.6.22)
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which was first obtained by Kreisel (1949) in a different way. Let δT
1 and

δR
2 be the phase angles of the transmission and reflection coefficients as

defined by

Tj = |Tj|eiδT
j , Rj = |Rj |eiδR

j , j = 1, 2 . (8.6.23)

It follows from Eqs. (8.6.19) and (8.6.20) that

δT
1 = δT

2 , (8.6.24)

and

δR
1 + δR

2 = δT
1 + δT

2 ± π (8.6.25)

(Newman, 1965). In the special case of a symmetric body, δR
1 = δR

2 and
δT
1 = δT

2 ; hence

δR
1 = δT

1 ± π

2
. (8.6.26)

Equations (8.6.19)–(8.6.22) are extensions of similar results in Section 4.7.4
for long waves.

Three Dimensions

φ(l) ∼= − igA

ω

cosh k(z + h)
cosh kh

×
[
eikr cos(θ−θl) +

(
2

πkr

)1/2

AS
l (θ)eikr−iπ/4

]
, l = 1, 2 (8.6.27)

where AS
l denotes the normalized scattered wave amplitude due to the inci-

dent wave in the direction θl. Substitution of Eq. (8.6.27) into Eqs. (8.6.14),
(8.6.15), and (8.6.16) yields three relations governing AS

l (θ). Let us il-
lustrate the analysis for the energy conservation theorem only. Due to
Eq. (8.6.27), the left-hand side of Eq. (8.6.16) reads

2i Im
∫ 2π

0

dθ

∫ 0

−h

dz
cosh2 k(z + h)

cosh2 kh

(
gA

ω

)2

r

×
[
eikr cos(θ−θl) +

(
2

πkr

)1/2

AS
l e

ikr−iπ/4

]

×
[
−ik cos(θ − θl)e−ikr cos(θ−θl) − ik

(
2

πkr

)1/2

AS∗
l e−ikr+iπ/4

]
.
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After multiplying out the integrand and omitting a constant factor, we get

− Im i

∫ 2π

0

dθ

{
2
π
|AS

l (θ)|2 + kr cos(θ − θl)

+
(

2
π

kr

)1/2

AS
l cos(θ − θl)eikr[1−cos(θ−θl)]e−iπ/4

+
(

2
π

kr

)1/2

AS∗
l e−ikr[1−cos(θ−θl)]eiπ/4

}
= 0 . (8.6.28)

The term proportional to kr vanishes by periodicity. The fourth term may
be combined with the third upon using the identity Im if = Im if∗; the
combination gives

e−iπ/4

(
2
π

kr

)1/2 ∫ 2π

0

dθAS
l e

ikr[1−cos(θ−θl)][1 + cos(θ − θl)] , (8.6.29)

which can be approximated for kr � 1 by the method of stationary phase.
The stationary phase points occur at

∂

∂θ
[1 − cos(θ − θl)] = sin(θ − θl) = 0 or θ = θl, θl + π (8.6.30)

within the interval [0, 2π]. In the neighborhood of the first stationary phase
point the integrand in Eq. (8.6.29) is roughly

eikr(θ−θl)
2/22AS

l (θl) . (8.6.31)

When the limits are approximated by (−∞,∞), the integral in Eq. (8.6.29)
can be evaluated:

AS
l (θl)

∫ ∞

−∞
eikrθ2/2 dθ =

(
2π

kr

)1/2

eiπ/4AS
l (θl) as kr � 1 . (8.6.32)

Near the second stationary point the integrand of Eq. (8.6.29) vanishes.
Finally, Eq. (8.6.28) becomes

1
π

∫ 2π

0

|AS
l (θ)|2 dθ = −2 ReAS

l (θl) (8.6.33)

which was first derived by Maruo (1960). Similar relations are well known
in quantum mechanics and other physical contexts as the optical theorem.
Since |AS

l (θ)|2 dθ is a measure of the scattered energy within the wedge
(θ, θ + dθ), the integral on the left of Eq. (8.6.33) is a measure of the total



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

382 Floating Body Dynamics: Diffraction and Radiation by Large Bodies

scattered energy and is a feature of the body. The theorem implies that
the total energy scattered can be alternatively obtained from the scattered
wave amplitude in the forward direction alone. This result is important
in experiments if the total scattered energy is of interest, as is the case in
many branches of physics.

By a similar analysis for Eq. (8.6.14), and using the approximation∫ 2π

0

AS
l (θ)e−iπ/4[1 − cos(θ − θ2)]eikr[1+cos(θ−θ2)] dθ

= 2
(

2π

kr

)1/2

AS
1 (θ2 + π) for kr � 1 ,

we get

AS
1 (θ2 + π) = AS

2 (θ1 + π) . (8.6.34)

In particular, if θ1 = 0 and θ2 = −π, then AS
1 (0) = AS

2 (π); this coin-
cides with Eq. (8.6.19) which relates the transmission coefficients in two
dimensions. In general, Eq. (8.6.35) states that the amplitude of the first
scattered wave toward the second incident wave is equal to the amplitude
of the second scattered wave toward the first incident wave.

We leave it for the reader to show from Eq. (8.6.15) that

−π[AS
1 (θ2) + AS∗

2 (θ1)] =
∫ 2π

0

dθAS
1 (θ)AS∗

2 (θ) (8.6.35)

of which Eq. (8.6.33) is just a special case.

Exercise 8.5

Show that for a two-dimensional rigid body induced to oscillate by an
incident wave A from x ∼ −∞,

1 =
∣∣∣∣R +

A−
A

∣∣∣∣2 +
∣∣∣∣T +

A+

A

∣∣∣∣2 (8.6.36)

in which R and T are the reflection and transmission coefficients when the
body is held stationary, while A+ and A− are induced wave amplitudes
toward x ∼ +∞ and x ∼ −∞, respectively.

Exercise 8.6

Consider a variable bottom which changes from one constant depth to
another, that is, h(x) → h+ or h− as x ∼ ∞ or −∞. A train of waves
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is incident obliquely from the left. What should the far-field expressions
be for φ on both sides of the transition? Define the reflection (R) and
transmission (T ) coefficients, and derive an energy relation for R and T .

8.6.3 One Diffraction Problem and
One Radiation Problem

Haskind Hanaoka Theorem

There is a remarkable theorem due independently to Haskind (1957) and
Hanaoka (1959), and popularized by Newman (1960), which relates the αth
generalized component of the exciting force (due to diffraction) on a fixed
body to the radiation potential of the αth normal mode of the same body;
specifically,

FD
α = iωρ

∫∫
SB

(
φI ∂φα

∂n
− φα

∂φI

∂n

)
dS

= −iωρ

∫∫
S∞

[
φI ∂φα

∂n
− φα

∂φI

∂n

]
dS . (8.6.37)

By definition,

FD
α =

∫∫
SB

pnα dS

= iωρ

∫∫
SB

(φI + φS)nα dS

= iωρ

∫∫
SB

(φI + φS)
∂φα

∂n
dS . (8.6.38)

Because φS and φα are outgoing at infinity, Eq. (8.6.4) applies so that

FD
α = iωρ

∫∫
SB

(
φI ∂φα

∂n
+ φα

∂φS

∂n

)
dS . (8.6.39)

By the boundary condition ∂φS/∂n = −∂φI/∂n, the first equality in
Eq. (8.6.37) follows at once; the second equality then follows by letting
φ = φI and ψ = φS in Eq. (8.6.1).

We leave it for the reader to deduce from the proper asymptotic
expressions the following explicit formulas:
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Two Dimensions :

FD
α = −2ρgAA−

α Cg . (8.6.40)

Three Dimensions :

FD
α = −4

k
ρgAAα(θI + π)Cg . (8.6.41)

In both cases the exciting force is related to the wave amplitude in the
direction opposite to the incident waves.

Exercise 8.7

Show from Eqs. (8.6.13) and (8.6.41) that in three dimensions the damping
coefficients and the exciting force are related by

λαα =
k/8π

ρgCg|A|2
∫ 2π

0

|FD
α (θ)|2 dθ . (8.6.42)

Bessho Newman Relations

A still less obvious identity between radiation and scattering problems was
discovered by Bessho (1967) for two dimensions, rediscovered and extended
for three dimensions by Newman (1975, 1976).

Assuming that the normal velocity on SB has the same phase every-
where, we may always redefine time so that

∂φR

∂n
= Vn = real or

∂

∂n
(φR − φR∗) = 0 on SB . (8.6.43)

Because φI + φS satisfies the same condition on SB, it follows from
Eq. (8.6.1) that∫∫

S∞

[
(φR − φR∗)

∂

∂n
(φI + φS) − (φI + φS)

∂

∂n
(φR − φR∗)

]
dS = 0 .

(8.6.44)

By applying Eq. (8.6.3) to φR and φS , we may rewrite Eq. (8.6.44)∫∫
S∞

[
(φR − φR∗)

∂φI

∂n
− φI ∂

∂n
(φR − φR∗)

]
dS

=
∫∫

S∞

(
φR∗ ∂φS

∂n
− φS ∂φR∗

∂n

)
dS . (8.6.45)
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Equation (8.6.45) relates the far fields of φR and φS . More explicit impli-
cations follow.

Two Dimensions : By letting S∞ be a large rectangular box and using
Eq. (8.6.10) in Eq. (8.6.45), the two-dimensional Bessho–Newman relation
can be obtained:

A− + RA∗
− + TA∗

+ = 0 . (8.6.46)

Consider now the special case of a body which is symmetrical about
its vertical plane and is executing either a symmetric mode (heave) or an
antisymmetric mode (roll or sway). For the symmetric mode, we have

A+ = A− = As = |As|eiδs , (8.6.47)

and for the antisymmetric mode

A+ = −A− = |Aa|eiδa . (8.6.48)

Substituting Eqs. (8.6.47) and (8.6.48) in turn into Eq. (8.6.46), we get

R + T = −e2iδs , R − T = −e2iδa . (8.6.49)

Since both roll and sway are antisymmetric modes, we have the striking
result that the phases of their radiated waves must satisfy

δ1 = δ5 ± π . (8.6.50)

Furthermore, for the same body and bottom geometry one may obtain the
scattering coefficients R and T by solving two radiation problems (for two
modes, say). With the help of the Haskind–Hanaoka relation for excit-
ing forces, it is possible to obtain all the important global quantities in
both radiation and scattering problems by solving the radiation problems
alone!

Three Dimensions : Use of the asymptotic formulas for φS and φR trans-
forms the right-hand side of Eq. (8.6.45) to:

C2i
2
π

∫ 2π

0

dθAS(θ)AR∗(θ) , (8.6.51)

where C is a constant multiplier. For the left-hand side of Eq. (8.6.45) we
observe first that
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∫∫
S∞

(
φR ∂φI

∂n
− φI ∂φR

∂n

)
dS

= Ci(kr)1/2 2
π

∫ 2π

0

dθAR[1 − cos(θ − θI)]eikr[cos(θ−θI)+1]

= 4iCAR(θI + π) (8.6.52)

after using Eq. (8.6.34); then by similar reasoning,∫∫
S∞

(
φR∗ ∂φI

∂n
− φI ∂φR∗

∂n

)
dS = 4iCAR∗(θI) . (8.6.53)

Finally, from Eq. (8.6.45) we get the three-dimensional Bessho–Newman
relations:

−AR∗(θI) + AR(θI + π) =
1
π

∫ 2π

0

AR∗AS dθ . (8.6.54)

Consider the special case of a body with rotational symmetry about the
z axis. Without loss of generality we let θI = 0. Now only three modes are
distinct, that is, sway (α = 1), heave (α = 3), and roll about the y axis
(α = 5).

Aα(θ) = (const) cos θ , α = 1, 5 ,

A3(θ) = const . (8.6.55)

For sway, we expect that AR = A1(0) cos θ. It follows from Eq. (8.6.54)
that

−A∗
1(0) −A1(0) =

1
π
A∗

1(0)
∫ 2π

0

AS cos θ dθ , (8.6.56)

or

−1 − A1(0)
A∗

1(0)
=

1
π

∫ 2π

0

AS cos θ dθ . (8.6.57)

For roll, we also expect AR = A5(0) cos θ although A1(0) �= A5(0). Equa-
tion (8.6.57) also applies if A1(0) is replaced by A5(0); therefore

A1(0)
A∗

1(0)
=

A5(0)
A∗

5(0)
. (8.6.58)
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If we denote the phase angle of Aα(0) by δα, that is, Aα(0) = |Aα(0)|eiδα ,
then the phase angles due to sway and roll are related by

δ1 = δ5 ± π. (8.6.59)

This result was first shown for a circular cylinder by Garrett (1970) and
generalized in the present manner by Newman (1976). From Eq. (8.6.41)
the phases of the sway exciting force and the roll exciting moment must
also satisfy Eq. (8.6.59). Similar results hold for a two-dimensional body
symmetrical about its vertical axis.

For the heave mode, AR = A3, which is independent of θ. A similar
application of Eq. (8.6.55) gives

e2iδ3 − 1 =
i

π

∫ 2π

0

AS(θ) dθ . (8.6.60)

All the general identities discussed in this section have been generalized
for N bodies (Srokosz, 1980). These identities are useful in theoretical ar-
gument and can be used to check the correctness of calculations or to reduce
the numerical work of calculating certain global quantities. Nevertheless,
they do not change the basic need of an efficient technique for solving the
typical hydrodynamic boundary-value problem; hence the next section.

8.7 Numerical Solution by Hybrid Element Method

Two primary classes of numerical methods have been well developed for
diffraction problems of this chapter. One class is based on finite elements,
and the other on integral equations. In each class, there are variations
in details, but the general spirits are exemplified by the two methods dis-
cussed briefly here and in the next section. Further information may be
found in the survey by Mei (1978), Susbielles and Bratu (1981), Sarpkaya
and Issacson (1981), and Yeung (1982). In particular, the second and third
references contain the numerical and experimental results of a variety of
geometries.

In this section we shall extend the hybrid element method of Section 4.11
for long waves in shallow water to water of arbitrary depth. As before, one of
the main ideas is to employ the finite-element approximation near the body
and analytical representation everywhere else. As the first step we must
establish the variational principle which only involves integrals over a finite
domain surrounding the body.
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Figure 8.7: Division of fluid regions in the hybrid element method: (a) three dimen-
sional; (b) two dimensional.

With reference to Fig. 8.7(a) let all bodies and bottom irregularities be
localized within a vertical cylinder C of finite size. Beyond C the ocean
depth is assumed to be constant everywhere. Overhead bars will be used
to distinguish quantities outside C (i.e., in the superelement Ω) from those
within C (i.e., in Ω). Let φ̄ satisfy exactly the Laplace equation, the boun-
dary conditions on the free surface SF and on the bottom B0, and the
radiation condition at infinity. Since nothing is yet specified on C, φ̄ is so
far unknown but may be formally represented in a variety of ways. One
way is to use Green’s function and express φ̄ as the superposition of sources
on C with unknown source strength. Another way is to use eigenfunction
expansions with unknown coefficients as in Eq. (8.4.8) for two dimensions
and Eq. (8.4.11) for three dimensions. The latter course will be adopted
here.

8.7.1 The Variational Formulation

Taking the radiation problem for demonstration, we shall show that the
stationarity of the functional

J(φ, φ̄) =
1
2

∫∫∫
Ω

(∇φ)2 dΩ − ω2

2g

∫∫
SF

φ2 dS

−
∫∫

SB

V φdS +
∫∫

C

(
1
2
φ̄ − φ

)
∂φ̄

∂n
dS (8.7.1)

implies, and is implied by, the original boundary-value problem. Equating
the first variation to zero, we get,
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δJ = 0 =
∫∫∫

Ω

∇φ · ∇(δφ) dΩ − ω2

g

∫∫
SF

φδφ dS

−
∫∫

SB

V δφ dS +
∫∫

C

(φ̄ − φ)
∂δφ̄

∂n
dS

+
1
2

∫∫
C

(
δφ̄

∂φ̄

∂n
− φ̄

∂δφ̄

∂n

)
dS −

∫∫
C

δφ
∂φ̄

∂n
dS (8.7.2)

after some arrangement. Since δφ̄ satisfies the same conditions as φ̄, it
may be shown by applying Green’s formula to δφ̄ and φ̄ over Ω that the
last integral in Eq. (8.7.2) vanishes identically. By partial integration and
Gauss’ theorem, the first integral in Eq. (8.7.2) may be transformed to
surface integrals, leading to the following:

δJ = 0 = −
∫∫∫

Ω

δφ∇2φdΩ +
∫∫

SF

δφ

(
∂φ

∂z
− ω2

g
φ

)
dS

+
∫∫

B0

δφ
∂φ

∂n
dS +

∫∫
SB

δφ

(
∂φ

∂n
− V

)
dS

+
∫∫

C

(φ̄ − φ)
∂δφ̄

∂n
dS +

∫∫
C

δφ̄

(
∂φ

∂n
− ∂φ̄

∂n

)
dS . (8.7.3)

In order for δJ = 0 for arbitrary δφ and δφ̄, it is both necessary and suffi-
cient that Laplace’s equation be satisfied as the Euler–Lagrange equation,
while all the other boundary conditions on SF , SB, and B0, including the
continuity of φ and ∂φ/φn across C, must be satisfied as natural conditions.
Thus, the stationarity of J is equivalent to the boundary-value problem for
the radiation potential.

Equation (8.7.2) without the last integral may be stated in another way.
Since only first derivatives are involved, φ and δφ need only be piecewise
linear in Ω. In mathematical language, φ and δφ are said to be in the
Sobolev space H1(Ω) defined by

f ∈ H1(Ω) if
∫∫∫

Ω

[(∇f)2 + f2] dΩ < ∞ .

Being analytic functions, φ̄ and δφ̄ are said to be in the space C∞(Ω). Thus,
Eq. (8.7.2) may be stated as follows: Find φ ∈ H1(Ω) and φ̄ ∈ C∞(Ω) such
that for every ψ ∈ H1(Ω):
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−
∫∫∫

Ω

∇φ · ∇ψ dΩ +
ω2

g

∫∫
SF

φψ dS

+
∫∫

SB

V ψ dS +
∫∫

C

∂φ̄

∂n
ψ dS = 0 , (8.7.4)

and for every ψ̄ ∈ C∞(Ω):∫∫
C

(φ − φ̄)
∂ψ̄

∂n
dS = 0 , (8.7.5)

where we have written

ψ ≡ δφ , ψ̄ = δφ̄ . (8.7.6)

Equations (8.7.4) and (8.7.5) constitute the weak formulation of the pro-
blem (Aranha, Mei, and Yue, 1979).

Finally, the reader may verify that the proper functional for the diffrac-
tion problem is

J(φ, φ̄) =
1
2

∫∫∫
Ω

(∇φ)2 dΩ − ω2

2g

∫∫
SF

φ2 dS

+
∫∫

C

[(
φ̄S

2
− φS

)
∂φ̄S

∂n
− φ̄S ∂φI

∂n

]
dS , (8.7.7)

where φS = φ − φI and φ̄S = φ̄ − φI .

Exercise 8.8

Use Eq. (8.7.7) to deduce the expansion coefficients in Eq. (8.5.3) for the
circular cylinder, by making the entire fluid domain the superelement Ω.

8.7.2 The Approximate Solution

Equation (8.7.2) is now most convenient for setting up the discrete ap-
proximation. For simplicity, we shall demonstrate for the two-dimensional
problem in the vertical plane. As shown in Fig. 8.7(b) there are now two
superelements, Ω− and Ω+, to the left of C− and to the right of C+,
respectively. In Ω− and Ω+ we take,

φ̄+ = A±
0 e±ikxf

(z)
0 +

∑
n

A±
n e±knxfn(z) , x ∈ Ω± . (8.7.8)

The region Ω is divided into triangles to form a network with N nodes.
Let us introduce the pyramid function Fi(x, z) which is linear in x and z in
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each triangle, has the value 1 at the node (xi, zi), and vanishes at all other
nodes, that is,

Fi(xj , zj) = δij . (8.7.9)

Clearly, Fi is in H1(Ω). We now express

φ =
n∑

j=1

φjFj(x, z) , (8.7.10a)

ψ =
N∑

i=1

ψiFi(x, z) , (8.7.10b)

where φj is the nodal potential, ψi is the nodal weight, and

ψ̄± = B±
0 e±ikxf0(z) +

∞∑
n=1

B±
n e∓knxfn(z) . (8.7.11)

Substituting into Eq. (8.7.4), we get from various integrals∫∫
Ω

∇φ · ∇ψ dΩ =
∑

i

∑
j

ψi

(∫∫
Ω

∇Fi · ∇Fj dΩ
)

φj

= {ψ}T [K1]{φ} , (8.7.12a)

−ω2

g

∫
SF

φψ dS =
∑

i

∑
j

ψi

(∫
SF

FiFj dS

)
φj

= {ψF }T [K2]{φF } , (8.7.12b)

−
∫

SB

V ψ dS = −
∑

i

ψi

(∫
SB

V Fi dS

)
= −{ψB}T {V } . (8.7.12c)

After truncating the series (8.7.8) and (8.7.11) after M terms, we have

φ̄± =
M−1∑
j=0

φ̄±
j fj(z) , (8.7.13a)

ψ̄± =
M−1∑
j=0

ψ̄±
j fj(z) , (8.7.13b)
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∂φ̄±

∂n
=

M−1∑
j=0

σ±
j kj φ̄

±
j fj(z) , (8.7.13c)

∂ψ̄±

∂n
=

M−1∑
j=0

σ±
j kjψ̄

±
j fj(z) , (8.7.13d)

where σ±
0 = ±i, σ±

j = ∓1, and j = l, 2, 3, . . . . If (φ+
i , ψ+

i ) denote the N+

nodal values on C+, the remaining integrals on C+ in Eq. (8.7.4) become

∫
C+

∂φ̄

∂n
ψ dS =

N+∑
i=1

M−1∑
j=1

ψ+
i

(∫
C+

σ+
j kjfjFidz

)
φ̄+

j

= {ψ+}T [K+
3 ]{φ̄+} , (8.7.14a)

∫
C+

φ
∂ψ̄

∂n
dS =

N+∑
i=1

M−1∑
j=1

φ+
i

(∫
C+

σ+
j kjfjFi dz

)
ψ̄+

j

= {φ+}T [K+
3 ]{ψ̄+} = {ψ̄+}T [K+

3 ]T {φ+} , (8.7.14b)

∫
S+

φ̄
∂ψ̄

∂n
dS =

M−1∑
i=1

M−1∑
j=1

ψ̄+
i

(∫
S+

σ+
j kififjdz

)
φ̄+

j

=
M−1∑
i=1

M−1∑
j=1

ψ̄+
i (σ+

j kiδij)φ̄+
j = {ψ̄+}T [K+

4 ]{φ̄+} . (8.7.14c)

Similar expressions may be obtained for integrals along C−.
Using Eqs. (8.7.12) and (8.7.14), we assemble Eqs. (8.7.4) and (8.7.5)

to give

{ψ}T [K]{φ} = {ψ}T {V } , (8.7.15)

where the transpose of the column vector {φ} is arranged as follows

{φ}T = {{φ̄−}T , {φ−}T , {φ̃}T , {φ+}T , {φ̄+}T }

with {φ̃} corresponding to the nodes inside Ω and on SB. The column vector
{ψ} is arranged similarly. The column vector {V } has nonzero entries only
for the nodes on SB. The global stiffness matrix [K] is of the following
form:
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[K−
4 ][K−

3 ]T

[K−
3 ]

[K1] + [K2]

[K+
3 ]

[K+
3 ]T [K+

4 ]


which is symmetric. Since {ψ} is arbitrary,

[K]{φ} = {V } (8.7.16)

which may be solved numerically.
To minimize the bandwidth of [K], it is desirable to number the nodes

downward along a vertical line, followed by the nodes on the next vertical
line. . . , and to let {φ̄−} and {φ̄+} occupy the top and bottom positions,
respectively, of the column vector {φ}. In this arrangement, the semiband-
width is roughly equal to the number of nodes on a vertical line, that is,
N+ or N−. Further details may be found in Bai and Yeung (1974) for two
dimensions and Yue, Chen, and Mei (1976) for three dimensions.

When the sea depth becomes infinite, the eigenfunction expansion be-
comes inefficient and it is more advantageous to localize the finite element
in all three dimensions and to employ Green’s function for φ̄. These modifi-
cations have been accomplished by Seto and Yamamoto (1975) and Lenoir
and Jami (1978).

8.7.3 A Theoretical Property of the Hybrid
Element Method

In the weak formulation, let us choose among all admissible functions ψ =
φ∗. Equation (8.7.4) yields

−
∫∫∫

Ω

|∇φ|2 dΩ +
ω2

g

∫∫
SF

|φ|2 dS +
∫∫

SB

V φ∗ dS +
∫∫

C

∂φ̄

∂n
φ∗ dS = 0 .

(8.7.17)

Since the first two integrals are purely real, we must have

Im
∫∫

SB

V φ∗ dS = −Im
∫∫

C

φ∗ ∂φ̄

∂n
dS . (8.7.18)
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From C∞(Ω) let us choose ψ̄ = ∂φ̄∗/∂n; Eq. (8.7.5) then implies∫∫
C

φ
∂φ̄∗

∂n
dS =

∫∫
C

φ̄
∂φ̄∗

∂n
dS . (8.7.19)

Using the complex conjugate of Eq. (8.7.19) in Eq. (8.7.18), we get

Im
∫∫

SB

V φ∗ dS = −Im
∫∫

C

φ̄∗ ∂φ̄

∂n
dS . (8.7.20)

But this is formally the statement of energy conservation that the rate of
work done by the body is equal to the rate of energy flux through the
cylinder C. The remarkable point is that φ∗ and φ̄ (and φ̄∗) correspond to
the approximate solution whose accuracy depends on the discretization and
the number of terms in the truncated series. Therefore, the present hybrid
element method, which imposes continuity on C in a special way according
to Eq. (8.7.5), preserves energy conservation. This property was observed
in numerical experiments by Yue and Mei and proven by Aranha; it implies
that the energy theorem cannot be used as a way to check the discretiza-
tion error. Indeed, by proper selections of φ, ψ, and ψ̄ one can further
prove that all the global identities deduced in Section 8.6 are preserved in
the weak formulation. Aranha, Mei, and Yue (1979) also gave numerical
evidence of these properties by treating a given problem with two vastly
different finite-element grids. They showed that while the two grids gave
quite different answers at any point, the global identities were satisfied to
an extremely high degree with a minute round-off error. Therefore, the
relations in Section 8.6 are not sufficient to guarantee an accurate solution,
although they are necessary, when the present hybrid element method is
employed. Similar caution is warranted when other numerical methods are
used.

8.7.4 A Numerical Example

As an application of the hybrid element method, we shall show some sample
numerical results for a floating two-dimensional cylinder with the cross
section of a tear drop. This cylinder was used by Salter as a device to
extract energy from water waves, a topic which will be further discussed in
Section 8.9. Here we shall only give the hydrodynamical quantities (Mynett,
Serman, and Mei, 1979).

A sample finite-element grid for Salter’s cam is shown in Fig. 8.8. Note
that the lines C+ and C− are as close as one element away from the body.
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Figure 8.8: Sample finite-element grid for Salter’s cam.

Figure 8.9: Sample computed results for schematized Salter cam with θ = 1
4
π, h = 4a.

(a) Transmission and reflection coefficients; (b) sway exciting force F̂ D
1 = F D

1 /ρgAa; (c)

heave exciting force F̂ D
3 = F D

3 /ρgAa; (d) roll exciting moment F̂ D
5 = F D

5 /ρgAa2; (e) roll

inertia and damping coefficients, µ̂55 = µ55/ρa4, λ̂ = 55 = λ55(ρa4(g/a)1/2)−1 (from
Mynett et al., 1979, Appl. Ocean Res. Reproduced by permission of CML Publications).
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Figure 8.9 (Continued)
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Figure 8.9 (Continued)
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The results shown in Figs. 8.9(a)–8.9(e) correspond to a schematized Salter
cam with a circular stern of radius a and a straight bow slanted at an angle
θ = π/4. The water depth is kept at a constant h = 4a.

For the diffraction problem the reflection and transmission coefficients
are given in Fig. 8.9(a) for three depths of submergence, s = 0, a/2, and
a. As ω(a/g)1/2 increases beyond 1, |T | → 1 and |R| → 0. Figures 8.9(b)–
8.9(d) give the exciting forces FD

1 (horizontal), FD
3 (vertical), and FD

5

(moment about the y axis). Note that the largest forces occur around
ω(a/g)1/2 = 1.

For the radiation problem, the real quantities λij and µij are shown in
Fig. 8.9(e).

For three-dimensional examples and programming details, reference is
made to Yue, Chen, and Mei (1976).

8.8 Remarks on the Numerical Methods by
Integral Equations

8.8.1 The Integral Equations

Another powerful numerical technique for diffraction is the method of inte-
gral equations via Green’s function, which was introduced in Section 8.4.2.
Let us consider three dimensions and recall that

φ(x0) =
∫∫

SB

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS if x0 ∈ Ω but not on SB . (8.8.1)

If x0 is on SB, we must proceed with caution and exclude from Ω a small
hemisphere Ωε centered at x0 as shown in Fig. 8.10.

Figure 8.10
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Let the surface of the ε-sphere be denoted by Sε. Application of Green’s
theorem to φ and G over Ω (excluding Ωε) leads to∫∫

SB+Sε

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS = 0 , (8.8.2)

where the integral over SB is to be interpreted as the principal value, a
circular patch of radius ε being excluded. Over Sε, φ is nearly constant
and equal to φ(x0), and ∂G/∂n is much greater than G. Integrating the
polar form of Eq. (8.4.22) for small r where r = |x − x0|, we get

∂G

∂r
∼ 1

4πr2
, r → 0 . (8.8.3)

Therefore, the integral over the hemisphere Sε is

lim
ε→0

∫∫
Sε

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS = − lim

ε→0
φ(x0)

∫∫
Sε

∂G

∂r
dS = −1

2
φ(x0) .

(8.8.4)

Putting Eq. (8.8.4) into Eq. (8.8.2), we get

1
2
φ(x0) =

∫∫
SB

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS , x0 on SB . (8.8.5)

Since ∂φ/∂n is prescribed in a diffraction or radiation problem, Eq. (8.8.5)
is a Fredholm integral equation of the second kind for φ(x0) (x0 ∈ SB).
By dividing SB into discrete panels and approximating φ in each panel by
a constant φi and then carrying out the integration, one obtains a system
of algebraic equations for φi, i = 1, 2, . . . , N , which can be solved for φi.
Afterward, φ at any other point is given by Eq. (8.8.1) or (8.8.5).

In practice, higher-order interpolating functions may be used within
each panel. More important, when x and x0 are close, the integration in
Eq. (8.8.5) must be carried out to high accuracy; indeed, analytic integra-
tion is often necessary. While the advantage of this method is that the
number of unknowns is usually small, being the φi on SB, evaluation of the
integrals in order to get the matrix coefficients is a laborious task both for
the worker and for the computer (Jawson and Symm, 1977).

A closely related approach is the method of source distribution where
one represents the potential everywhere in Ω by

φ(x0) =
∫∫

SB

γGdS0 (8.8.6)
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with γ unknown. The boundary condition on the body requires that

lim
x→x0

∫∫
SB

γ
∂G

∂n0
dS0 = U(x0) (8.8.7)

as x approaches SB from without. To carry out the limiting process we
indent SB inward by a hemispherical surface Sε. Since,

∂G

∂n0
= −∂G

∂r
∼= − 1

4πr2
(8.8.8)

on Sε, we get the limit

−1
2
γ(x0) +

∫∫
SB

γ
∂G

∂n
dS = U(x0) . (8.8.9)

This integral equation has the same kernel as Eq. (8.8.5).

8.8.2 Irregular Frequencies

The type of integral equations (8.8.5) or (8.8.9) is known to possess the
so-called irregular frequencies and nontrivial eigensolutions if SB intersects
the free surface. The numerical consequence is that the approximate matrix
equation becomes ill-conditioned. This drawback is strictly a feature of the
kernel and does not imply that the original diffraction or radiation problem
has eigensolutions, as is well known in acoustics (Lamb, 1932, Sec. 290).
In the context of a floating body in water waves, John (1950) was the first
to call attention to irregular frequencies, while Frank (1967b) gave the first
numerical evidence.

To see the origin of irregular frequencies we consider first a fictitious
problem for the interior of SB, that is, Ω′ which intersects the free surface
over the portion S′

F . Let the interior potential φ′ satisfy

∇2φ′ = 0 in Ω′ , (8.8.10)

∂φ′

∂z
− σφ′ = 0 z = 0 on S′

F . (8.8.11)

Using the same Green’s function G as before which is defined everywhere
in Ω + Ω′, and applying Green’s theorem to φ′ and G over Ω′, we get

−φ′(x0) =
∫∫

SB

(
φ′ ∂G

∂n
− G

∂φ′

∂n

)
dS , x0 ∈ Ω′, not on SB . (8.8.12)
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The minus sign on the left is due to the fact that the unit normal n is from
Ω to Ω′. It is also easy to deduce that−1

2
φ′(x0)

0

 =
∫∫

SB

(
φ′ ∂G

∂n0
− G

∂φ′

∂n0

)
dS0 if x0

[
on SB

∈ Ω

]
.

(8.8.13a)

(8.8.13b)

Now subtracting Eq. (8.8.13b) from Eq. (8.8.1), we get

φ(x0) =
∫∫

SB

[
(φ − φ′)

∂G

∂n
−
(

∂φ

∂n
− ∂φ′

∂n

)
G

]
dS x0 in Ω but not on SB .

(8.8.14)

If we impose that

φ′ = φ on SB (8.8.15)

as the boundary condition for the interior problem, we recover the source
representation (8.8.6) upon defining

γ = −
(

∂φ

∂n
− ∂φ′

∂n

)
SB

. (8.8.16)

Therefore, Eq. (8.8.6) and the integral equation (8.8.9) are related to the
interior problem defined by Eqs. (8.8.10) and (8.8.11) and the Dirichlet
condition (8.8.15). It may be shown that this interior problem has eigen-
solutions defined by the homogeneous problem

∇2ψm = 0 in Ω′ , (8.8.17)

∂ψm

∂z
− σmψm = 0 on S′

F , (8.8.18)

ψm = 0 on SB , (8.8.19)

where σm = ω2
m/g and ωm is the mth eigenfrequency. If ω = ωm, the

inhomogeneous problem for φ′ does not have a unique solution. It follows
from Eq. (8.8.16) that the source distribution is not unique; hence the
integral equation method must fail. The irregular frequencies are precisely
the eigenfrequencies of the fictitious interior problem with the Dirichlet
condition on SB.

A simple example serves to confirm the theoretical discussion above.
Let a vertical circular cylinder in shallow water pulsate uniformly in all
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directions. The potential satisfying the Helmholtz equation, the radiation
condition, and

∂φ

∂r
= U on r = a (8.8.20)

is easily found to be

φ =
(U/k)H(1)

0 (kr)

H
(1)′
0 (ka)

. (8.8.21)

On the other hand, the Green function is

G =
i

4
H

(1)
0 (kR) , R2 = r2 + r2

0 − 2rr0 cos(θ − θ0) (8.8.22)

which may be expanded to

G =
i

4

∞∑
n=0

εnJn(kr)H(1)
n (kr0) cosn(θ − θ0) (8.8.23)

by the addition theorem. The integral equation for the source strength is

−U = − lim
r0→a

a

∫ 2π

0

[
γ

∂G

∂n0

]
r=a

dθ

= − i

4
γka

∫ 2π

0

dθ
∞∑
n

εnJn(ka)H(1)′
n (ka) cosn(θ − θ0)

= − i

4
2πγkaJ0(ka)H(1)′

0 (ka) . (8.8.24)

Hence

γ = −2iU

πka
[J0(ka)H(1)′

0 (ka)]−1 . (8.8.25)

Formally, we may substitute Eq. (8.8.25) into Eq. (8.8.6)

φ(r, θ) = a

∫ 2π

0

γGdθ0 (8.8.26)

to recover Eq. (8.8.21). However, γ is clearly infinite at the zeroes of J0(ka),
that is, at the eigenfrequencies of the interior Dirichlet problem.

There are ways to avoid irregular frequencies in solving these integral
equations. Usually one introduces additional artificial unknowns and more
conditions so as to improve the conditioning of the matrix equations. There
are other integral equation methods which do not employ Green’s function
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and hence do not share the same difficulties, for example, Yeung (1975).
References may be made to Mei (1978) or Yeung (1982) and the literature
cited therein.

In contrast, the hybrid element method of Section 8.7 does not seem
to have irregular frequencies. Indeed, Aranha has shown theoretically that
for long waves the method gives unique solutions for all ω (see Aranha
et al., 1979). Yue (private communication) has experimented numerically
for three-dimensional floating boxes of rectangular and circular shapes; no
irregular frequencies have been encountered. By combining finite elements
with singularity distributions, Lenoir and Jami (1978) have also devised a
hybrid method which is free of irregular frequencies.

8.9 Power Absorption by Floating Bodies

8.9.1 Introduction

To demonstrate the applications of the theory developed in this chapter,
we shall discuss the subject of wave-power absorption by floating bodies.

The power flux within a unit crest length of a plane sine wavetrain in
deep water is 1

2ρgA2Cg = ρg2A2T/8π. By this simple formula the available
power for 10-s-period swells is estimated below.

Amplitude A (m) Wave Power (kW/m)

0.5 10
1 40
5 1000

If A = 1 m, the power along 25 km of the sea coast is 1000 MW and
is comparable to the capacity of a typical conventional power plant. Of
course, this estimate must be reduced by directivity of the wave spectrum
and varies widely with season and locale. Although the economic feasi-
bility and environmental consequences of wave power are still matters of
contention, technical potentials and challenges have already spurred seri-
ous research in several countries (see Jansson, Lunde, and Rindby, 1979).
Contemplated applications include small-scale power supplies for desolate
islands, remote lighthouses, and desalinization of sea water (Pleass, 1978),
and so on, or, more optimistically, integration with conventional power
plants in a large grid system. Continued depletion of oil and gas resources
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will eventually force mankind to pursue alternative energy sources such as
wave power.

That power can be extracted from sea waves is readily seen by modifying
the elementary example discussed in Section 5.4.

If a damper (i.e., a power takeoff device) is attached to the block shown
in Fig. 5.5, Chapter Five, power is fed into the damper by the oscillating
block. By proper adjustment of the spring and the damping rate, the net
radiated waves to the right can be made to vanish so that all the incident
wave power is removed by the damper. A detailed analysis for long waves
can be worked out in the same manner as in Section 5.4. For better real-
ism the spring may be replaced by a finite body of water filling the space
between the block and the shore, if the distance between them is suitably
chosen.

A large variety of designs have been proposed (see McCormick, 1981).
In most of them the energy converter (turbine, generator) is on or di-
rectly connected to the structure. The designs may be classified into three
types according to the gross geometry of the structure. With respect to
plane incident waves, these are (a) beam–sea absorbers, (b) omnidirectional
absorbers, and (c) head–sea absorbers. A beam–(head-) sea absorber is an
elongated device with the longitudinal axis parallel (perpendicular) to the
incident wave crests. A special case of the omnidirectional absorber is a
point absorber which can be a buoy or a resonant water column whose
diameter is much smaller than the dominant wavelength.

Beam Sea Absorbers

To save construction material, it is natural to use floating bodies whose
draft is less than the water depth. Consider a cylinder which is symme-
trical about its vertical axis and is allowed to have two modes of motion:
heave and sway (or roll). Let R and T be the reflection and transmission
coefficients, respectively, when the body is held fixed. The induced heave
(sway) creates radiation potentials which are symmetric (antisymmetric)
with respect to the vertical axis. The corresponding normalized radiated
wave amplitudes at infinity are As (Aa) at x ∼ +∞ and As (−Aa) at
x ∼ −∞. If the induced motion is controlled (e.g., by dampers and springs)
so that R + As − Aa = 0 and T + As + Aa = 0, then all the incident wave
energy is absorbed.

By using a cam with a cross section in the shape of an inclined tear drop,
Salter (1974) demonstrated that roll mode alone is sufficient to give high
efficiency. This is partly due to the fact that for sufficiently short waves
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or large cylinder T ≈ 0 and |R| ≈ 1. Because of the inclined bow and the
circular stern, the nodding cam radiates larger waves to the incidence than
to the transmission side. By controlling the phase and magnitude of A−, it
is possible to make R + A− very small, leaving a large fraction of incident
power for extraction. This device has been christened the duck, because of
its pointed beak, round tail, and nodding motion.

Many other varieties of design are possible. For example, one may hinge
one end of a floating pontoon on a sea wall and install a converter (e.g., a
torsional damper) at the hinge. Proper control of the pontoon size and mo-
tion will enable complete removal of incident wave energy also. Instead of a
fixed hinge, several pontoons may be hinged in a series and moored only
at the bow; energy may then be extracted from the relative rotation of
adjacent pontoons about the hinges. This is the two-dimensional version of
the raft invented by G. Hagen (1975) and C. Cockerell (Wooley and Platts,
1975). Another device makes use of the fact that a submerged stationary
circular cylinder does not reflect normally incident waves, while the trans-
mitted waves only suffer a phase shift (Ursell, 1950). If the same cylinder
is made to move along a circular orbit around its axis, then wave radiation
will be in one direction only (Ogilvie, 1963). Because of these properties, a
buoyant circular cylinder tied to a pair of taut moorings can be controlled
to absorb all the incident wave energy (Evans et al., 1979).

There are also designs involving pneumatic mechanisms for power take-
off. For example, the oscillating water column of the National Engineering
Laboratory, United Kingdom, has a line of caissons moored to the sea floor.
The interior of the caisson is an air–water chamber open to the sea through
a slot below the free surface on the incidence side. With proper chamber
dimensions, the water level within may be tuned to resonance, thereby pro-
ducing high-pressure air capable of driving, through a rectifier, a turbine
in a duct.

Omnidirectional Absorbers

An extensively studied point absorber is a small vertical cylindrical buoy
moored to the sea bottom (Budal and Falnes, 1975; Falnes and Budal,
1978). Work is done by the heaving buoy relative to the mooring rod or
line. When properly tuned, energy can be absorbed from a sizable width
of the wave crest much larger than the diameter of the buoy.

Another variety makes use of a resonant tube which can be either totally
or partially submerged (Simon, 1981; see also Lighthill, 1979a for the beam–
sea version).
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The so-called dam–atoll (Wirt and Higgins, 1979) uses a submerged
circular island to focus the incoming wave rays to the top of the island,
where special vanes guide the high water down to a vertical shaft which
houses a turbine.

Head Sea Absorbers

In contrast to the beam–sea absorbers, a slender body pointed normally to
the wave crests suffers relatively small horizontal wave forces. The differ-
ences among various slender head–sea absorbers lie primarily in the details
of power takeoff. In the floating raft system of G. Hagen and C. Cockerel1
each raft has several pontoons connected by hinges, and energy is derived
from the relative rotation about the hinges. The Kaimei ship of M. Masuda
(1979) has a series of vertical chambers open along the keel to the sea. In
each chamber there is a turbine which is driven by the oscillatory water
column. The system of M. J. French (1979) has many flexible air bags
mounted on a slender floating frame. The varying pressure from the pas-
sing waves compresses the bags which then act as pumps to circulate air in
a pipe connected to a turbine.

When the power converter is physically a part of the main structure
placed in the sea, costs for energy storage and transmission to land are
important concerns. To circumvent these costs, Mehlum and Stamnes
(1979) introduced a submerged (beam–sea) lens along a line parallel to
the incoming wave crests. Each section of the lens is designed to induce
little reflection but to cause different phase lag in the transmitted wave.
After passing the lens, the wave crests become concave and converge to-
ward a focal point where a converter is installed. The lateral dimensions of
the lens are comparable to other beam–sea devices.

While a recent survey of the large literature can be found in Falnes
(2002), we analyze a few simple devices below.

8.9.2 A Two-Dimensional Beam–Sea Absorber —
Salter’s Cam (Duck)

Consider normal incidence and an infinitely long cam with a rigid shaft.
The problem is two dimensional. Let X and Z denote the mean position
of the center of the shaft (point Q), ξ1 and ξ3 the translations of the shaft,
and ξ5 the rotation about the shaft.

The equations of the cam are given by Eq. (8.3.24). There is now a re-
acting force due to the energy generator which transforms the mechanical
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energy of waves to another form. For generality, we assume that the gen-
erator exerts a force on the cam

(ω2µ′
αβ − C′

αβ + iωλ′
αβ)ξβ , α, β = 1, 3, 5 (8.9.1)

which is partly inertial (µ′
αβ), partly elastic (C′

αβ), and partly damping
(λ′

αβ). These primed matrices are the characteristics of the energy gener-
ator. If the force in the αth direction due to ξβ is nonzero, off-diagonal
terms of the matrices do not vanish, meaning that modes of the generator
can be coupled. The equations of motion of the cam are, therefore,

[−ω2(Mαβ + µαβ + µ′
αβ) + (Cαβ + C′

αβ) − iω(λαβ + λ′
αβ)]ξβ

= FD
α + Fα , (8.9.2)

where FD
α is the exciting force due to diffraction and Fα the constraining

force on the shaft, where the matrices [M ], [C], [µ], and [λ] have been
defined in Sections 8.2 and 8.3.

When the shaft is fixed, ξ1 = ξ3 = 0, there is only one degree of freedom,
that is, ξ5 (roll). If we assume that the friction between the cam and the
shaft is also included in λ′

αβ of Eq. (8.9.1), then F5 = 0 and Eq. (8.9.2)
may be simplified to

[−ω2M55 + C55 − iω(λ55 + λ′
55)]ξ5 = FD

5 , (8.9.3)

where

M55 = M55 + µ55 + µ′
55 ,

C55 = C55 + C′
55 .

The solution is obvious. The known value of ξ5 can be substituted into the
remaining momentum equations:

[−ω2(Mα5 + µα5 + µ′
α5) + (Cα5 + C′

α5) − iω(λα5 + λ′
α5)]ξ5

= FD
α + Fα , α = 1, 3 (8.9.4)

to determine the constraining force Fα, which is the negative of the force
exerted by the cam on the shaft.

Equation (8.9.4) is formally identical to that describing a simple har-
monic oscillator. Clearly, the power extracted is
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Ė =
1
2
λ′

55ω
2|ξ5|2

=
1
2

λ′
55ω

2|FD
5 |2

(C55 − M55ω2)2 + (λ55 + λ′
55)2ω2

. (8.9.5)

We emphasize that this total power removed from the waves includes both
usable and wasted power due to friction and generator loss, and so on. If
the incident wave frequency and the cam geometry are both fixed, then µ55,
λ55, and FD

5 are fixed. Let us suppose that the cam inertia M55 and the
damping rate λ′

55 can be adjusted to maximize the power output. Therefore
we require that

∂Ė

∂λ′
55

= 0 and
∂Ė

∂(M55 − C55ω2)
= 0 , (8.9.6)

leading to the optimizing criteria

C55 − M55ω
2 = 0 (8.9.7)

and

λ′
55 = λ55 . (8.9.8)

According to the first criterion, the cam must be tuned to resonance, which
is intuitively reasonable. The second criterion means that the effective
extraction rate must equal the effective radiation damping rate, which is
a result not easily anticipated. Substituting Eqs. (8.9.7) and (8.9.8) into
Eq. (8.9.5), we get the optimum power

Ėopt =
|FD

5 |2
8λ55

. (8.9.9)

By means of Eq. (8.6.11) and the Haskind–Hanaoka relation (8.6.40), the
right-hand side of Eq. (8.9.9) may be represented in terms of the far-field
amplitudes A± due to unit roll:

Ėopt =
1
2ρgA2Cg

1 + |A+|2/|A−|2 . (8.9.10)

Since the numerator is the power flux of the incident wave per unit crest
length, the optimum efficiency is

Eopt
ff =

(
1 +

|A+|2
|A−|2

)−1

. (8.9.11)
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This formula (Evans, 1976; Mei, 1976; Newman, 1976) gives the maximum
possible efficiency for energy removed from the waves. Through A±, Eopt

ff

is a function of frequency and the cam geometry. For a body symmetrical
about its vertical axis, |A+| = |A−|; the maximum ideal efficiency is at
most 1

2 . As |A+|/|A−| decreases, this efficiency increases toward unity;
this can be achieved by an asymmetrical cam, and Salter’s cam with its
circular stern and inclined bow certainly conforms with this principle.

Using the damping and added mass coefficients calculated by numer-
ical solutions of the requisite scattering and radiation problems, Mynett,
Serman, and Mei (1979) have obtained the following results for Salter’s
model cam profile shown in Fig. 8.8 which is slightly different from the
profile used for Figs. 8.9(a)–8.9(d). The depth of water is kept at h = 4a,
where a is the radius of the cam stern.

Figure 8.11 shows the efficiency curves for a variety of extraction rates.
Note first that if the cam is so small that for a given design frequency the
resonance corresponds to ω̂ < 0.5 where ω̂ = ω(a/g)1/2, then not only is
the peak efficiency low but the bandwidth of the efficiency curve is narrow.

Figure 8.11: Efficiencies of Salter’s cam on a fixed shaft. Optimum efficiency Eopt
ff .

Solid curve: Inertia is optimized at ω(a/g)1/2 = 0.7 (Î55 = I55/ρa4 = 1.9) but extraction
rates vary from below to above optimum (λ̂′

55 = 1.10) where λ̂′
55 = λ55/ρa4(g/a)1/2.

Dash–dot curve: inertia and extraction rates are optimized at ω(a/g)1/2 = 0.25 with
Î55 = 13, and λ̂′

55 = 0.4 (from Mynett et al., 1979, Appl. Ocean Res. Reproduced by
permission of CML Publications).
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Figure 8.12: Normalized amplitude of roll angle ξ̂5 ≡ (aξ5)/A, corresponding to
solid curves in Fig. 8.11 (from Mynett et al., 1979, Appl. Ocean Res. Reproduced
by permission of CML Publications).

The sharpness is associated with the rapid decrease of radiation damping
(see Fig. 8.9(e) for the qualitative trend).

For a sufficiently large cam the bandwidth of the efficiency curve easily
spans over a range k0 < k < 2k0 which is the range in which most of
the wind wave energy lies. Thus, Salter’s cam with one degree of freedom
is excellent in efficiency. Figure 8.12 gives the roll amplitude for various
damping rates.

The major drawback of a cam on a fixed axis is the large wave force
which must be endured by the shaft [Figs. 8.13(a) and 8.13(b)]. The maxi-
mum vertical and horizontal forces at resonance are of the order (5ρgaA)
per unit cam length. Let a = 10 m, A = 1 m, and ρg = 104 kg/m2-s. The
peak force can be f ∼ 50 tons/m. This large force is inevitable on any
rigidly supported beam–sea absorber of similar draft.

Because a rigid support is costly, there are now attempts to allow
for a flexible support with provisions to utilize each mode of motion for
power production. For this purpose an intricate automatic control system
is needed which is capable of varying the impedance of the power-takeoff
mechanism in order to maximize the efficiency according to the chang-
ing sea spectrum. Indeed, Salter (1979) has developed a system with a
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Figure 8.13: Normalized forces F̂ = F/ρgAa. Solid curves correspond to solid curves
in Fig. 8.11. (a) Horizontal exciting force F̂ D

1 and horizontal constraining force F̂1; (b)

vertical exciting force F̂ D
3 and vertical constraining force F̂3 (from Mynett et al., 1979,

Appl. Ocean Res. Reproduced by permission of CML Publications).
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string of ducks which are slackly moored. Precessing gyros, controlled by
microprocessors, are sealed within each duck. Energy is extracted from the
precession relative to the moving duck. While automatic control may be a
technologically innovative solution of some difficult problems unique to the
sea, strong sentiments exist which prefer the use of simple devices at the
expense of low efficiency.

8.9.3 Optimum Efficiency of
Three-Dimensional Absorbers

A complete study of three-dimensional absorbers regarding optimum and
off-optimum performances, wave forces, and so on, requires considerable
numerical computations for the scattering and radiation problems (see, e.g.,
Simon, 1981; Thomas, 1981). The detailed results vary with the design. We
shall limit our discussion here to certain features regarding the optimum ef-
ficiency without specifying the power-takeoff system (Newman, 1976, 1979;
Budal, 1977).

First, the power extracted by a body must equal the rate of work done
by the dynamic pressure in water to the body, that is,

Ė =
∫∫

SB

p
∂Φ
∂n

dS =
iωρ

4

∫∫
SB

(
φ

∂φ∗

∂n
− φ∗ ∂φ

∂n

)
dS

= − iωρ

4

∫∫
S∞

[
φ

∂φ∗

∂n
− φ∗ ∂φ

∂n

]
dS . (8.9.12)

Let the total potential be decomposed to three parts: incident, scattered,
and radiated:

φ = φI + φS + φR . (8.9.13)

Let us define A to be the amplitude factor of the total outgoing waves:

φS + φR = − igAA
ω

cosh k(z + h)
cosh kh

(
2

πkr

)1/2

ei(kr−π/4) . (8.9.14)

It follows after familiar use of stationary phase that

Ė =
ρgA2

k
Cg

{
− 1

π

∫ 2π

0

dθ|A(θ)|2 − 2 ReA(0)
}

(8.9.15)

which is a generalized optical theorem.
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We further define the absorption (or capture) width as the ratio of the
absorbed power to the incident power per unit width of the crest, that is,

W = Ė

(
1
2
ρgA2Cg

)−1

, (8.9.16)

then the following dimensionless ratio

kW = − 2
π

∫ 2π

0

dθ|A(θ)|2 − 4 ReA(0) (8.9.17)

is clearly a measure of efficiency. For greatest efficiency, it is necessary to
maximize the total scattered and radiated waves in the forward direction
θ = 0.

Newman has also deduced useful expressions for Ė and kW in terms
of the radiation potentials only. To anticipate the behavior of articulated
rafts or deformable bodies, he assumes that the normal velocity of the body
surface can be expressed as the sum of real-valued normal modes fα(x, y, z)
on SB, that is,

∂φR

∂n
= A
∑
α

Vαfα(x, y, z) on SB , (8.9.18)

with Vα being complex constants. The total potential can then be decom-
posed as

Φ = Ae−iωt

(
φD +

∑
α

Vαφα

)
, (8.9.19)

where

∂φD

∂n
= 0 , on SB , (8.9.20)

∂φα

∂n
= fα , on SB , (8.9.21)

The extracted energy is

Ė =
∫∫

SB

p
∂Φ
∂n

dS =
1
2
ρωA2 Re

∫∫
SB

i

(
φD +

∑
α

Vαφα

)(∑
β

V ∗
β fβ

)
dS

=
1
2
ρωA2 Re

{
i
∑
α

V ∗
α

∫∫
SB

φDfα dS + i
∑
α

∑
β

VαV ∗
β

∫∫
SB

φαfβ dS

}
.

(8.9.22)
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For the first series above, the Haskind–Hanaoka theorem applies,∫∫
SB

φDfα dS =
4ig

ωk
CgAα(π) , (8.9.23)

which is simply Eq. (8.6.41) when nα is replaced by fα. Furthermore, the
restoring force matrix is symmetric, that is,∫∫

SB

φαfβ dS =
∫∫

SB

φβfα dS . (8.9.24)

Now the double series in Eq. (8.9.22) may be manipulated by interchanging
the indices to give

Re i
∑
α

∑
β

VαV ∗
β

∫∫
SB

φαfβ dS

= −Re
∑
α

∑
β

VαV ∗
β

(
Im
∫∫

SB

φαfβ dS

)
.

Again by using the symmetry theorem (8.9.24), we obtain

Im
∫∫

SB

φαfβ dS =
1
2i

∫∫
SB

(
φα

∂φ∗
β

∂n
− φ∗

β

∂φα

∂n

)
dS

=
−1
2i

∫∫
S∞

(
φα

∂φ∗
β

∂n
− φ∗

β

∂φα

∂n

)
dS

=
2gCg

πωk

∫ 2π

0

dθAα(θ)A∗
β(θ)

which agrees with Eq. (8.6.13); therefore,

Re i
∑
α

∑
β

VαV ∗
β

∫∫
SB

φαfβ dS

= −2gCg

πωk

∫ 2π

0

dθ

∣∣∣∣∑
α

VαAα(θ)
∣∣∣∣2 . (8.9.25)

When Eqs. (8.8.24) and (8.9.25) are put in Eq. (8.9.22), the extracted power
becomes

Ė = −1
2
ρgA2 Cg

k

[
2
π

∫ 2π

0

dθ

∣∣∣∣∑
α

VαAα

∣∣∣∣2 + Re 4
∑
α

VαA∗
α(π)

]
(8.9.26)
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which is expressed only in terms of the radiation potentials. Accordingly,
the efficiency is

kW = − 2
π

∫ 2π

0

dθ

∣∣∣∣∑
α

VαAα(θ)
∣∣∣∣2 − 4 Re

∑
α

VαA∗
α(π) . (8.9.27)

If there is only one degree of freedom, the summation sign can be re-
moved from Eq. (8.9.27). To maximize the efficiency the second term in
Eq. (8.9.27) must be real and negative, that is,

VαA∗
α(π) = −|Vα| |Aα(π)| .

The maximum value is

(kW )opt =
2π|Aα(π)|2∫ 2π

0
|Aα(θ)|2 dθ

, (8.9.28a)

which occurs when

|Vα| =
π|Aα(π)|∫ 2π

0
|Aα(θ)|2 dθ

. (8.9.28b)

Equation (8.9.28) is the three-dimensional counterpart of Eq. (8.9.11) and
implies that for one degree of freedom, focusing the radiated waves in the
opposite sense of the incident wave can increase efficiency. We now seek
more specific results.

Omnidirectional Absorbers

Consider an absorber which is an axially symmetric rigid body about an
upright axis. There are only three modes α = 1, 3, and 5. Substituting
Eq. (8.6.55) into Eq. (8.9.26) and integrating, we get

Ė = −1
k

ρgA2Cg{|V1A1(0) + V5A5(0)|2 + 2|V3A3(0)|2

− 2 Re [V1A∗
1(0) + V5A∗

5(0) + 2 Re [V3A∗
3(0)]} . (8.9.29)

For maximum Ė we must orchestrate the motion so that V1A∗
1(0)+V5A∗

5(0)
is real and positive while V3A∗

3(0) is real and negative. The optimum criteria
are

V1A∗
1(0) + V5A∗

5(0) = 1 and V3A∗
3(0) = −1

2
. (8.9.30)
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The corresponding optimum absorbed power and efficiency are

Ėopt =
3
2k

ρgA2Cg , (8.9.31a)

kWopt = 3 . (8.9.31b)

When all three modes are optimized, the absorption width is about 1
2λ,

independent of the body size. If the axially symmetric buoy only heaves
(such as a small buoy), Eq. (8.9.28) shows that kWopt = 1 which is one-
third of the possible maximum when all three are optimized. These results
may be confirmed in another way. Recall that the incident wave may be
expanded as

Aeikx = A

∞∑
n=0

εn(i)nJn(kr) cos nθ .

In the far field the nth partial wave mode may be approximated by

εnin cosnθ
A

2

(
2

πkr

)1/2

×
{
exp
[
i
(
kr − π

4
− nπ

2

)]
+ exp

[
−i
(
kr − π

4
− nπ

2

)]}
which consists of both outgoing and incoming parts. Supposing that the
body is only allowed to heave, its induced motion in the fluid can only be
axially symmetric, that is, isotropic. With proper orchestration the radia-
ted wave can be combined with the isotropic mode (n = 0) of the scattered
wave to cancel the outgoing part of the isotropic mode in the incident wave.
The converging part of the incident isotropic mode is available for absorp-
tion; the corresponding rate of energy influx through a circular cylindrical
surface around the body is 1

2ρgA2Cg/k, which implies an absorption width
of W = 1/k. Similarly, if the body can only sway or roll, the radiated wave
is proportional to cos θ only and can be used to cancel the outgoing part of
the partial wave mode with n = 1. The energy influx from the converging
part is then ρgA2Cg/k, which implies W = 2/k.

It is interesting that the value of the optimum efficiency does not depend
on the size of the buoy, suggesting that a small buoy can be as efficient as a
larger one. However, a small buoy can only achieve the same optimum by
oscillating at a very large amplitude, which may be demonstrated for the
case of heave only V3 �= 0, V1 = V5 = 0. By the Haskind–Hanaoka theorem,
Eq. (8.6.41), A3(0) may be expressed in terms of the exciting force FD

3
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A3(0) = −k

4
FD

3 (ρgCgA)−1 . (8.9.32)

For a small buoy, FD
3 may be estimated by ignoring both diffraction and

the spatial variation of pressure around the buoy, yielding

FD
3

∼= ρgAπa2 , (8.9.33)

where a is the radius of the buoy at the water plane. Putting Eq. (8.9.33)
into Eq. (8.9.32) and then into Eq. (8.9.30), we get

A3 = −πka2

4Cg
, (8.9.34a)

AV3 =
2
π

A

a

Cg

ka
. (8.9.34b)

Thus, for diminishing ka the heave velocity AV3 must become very large
for optimum absorption.

Furthermore, from Eq. (8.6.13) the radiation damping coefficient may
be calculated:

λ33
∼= ρga4k

4Cg
(8.9.35)

which also diminishes with ka. By considerations similar to Section 8.9.2,
the response curve of a small heaving buoy must be very sharply peaked.
In order to achieve high efficiency for the broad frequency spectrum of sea
waves, it is necessary to tune a small heaving buoy to optimum conditions
for nearly every frequency in that spectrum. The following tuning method
by phase control has been demonstrated in the laboratory by Falnes and
Budal (1978) and Budal et al. (1979). A small buoy is used so that the
resonant frequency is always far above the incident wave frequency. In
order to maximize the power output, an electronic circuit is introduced to
alternately lock or free the buoy so that its heave velocity is roughly in
phase with the exciting force. Note that for a small buoy the exciting force
is in phase with the incident wave surface, scattering being negligible. Wave
height measured instantaneously in front of the buoy can be signaled back
for optimum phase control.

In large-scale applications, it is natural to envision an array of point
absorbers. The total system is in general no longer omnidirectional and in-
terference among neighboring buoys can either enhance or reduce the overall
efficiency. Budal (1977), Falnes and Budal (1978), Budal et al. (1979), and
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Falnes (1980) have made a number of important theoretical and experimen-
tal contributions to this topic. In particular, Budal studied a single row of
N small and identical buoys equally spaced at the distance d between cen-
ters, with the incident wave inclined at the angle α with respect to the line
of centers. He assumed that all the buoys only heaved at equal amplitude,
but different phase. When kd = 0(1), he used an approximation for weak
interaction and showed the total capture width to be

kW = Nq , (8.9.36a)

with q being the interaction factor

q =

[
1 +

2
N

N∑
n=1

(N − n) cos(nkd sinα)J0(nkd)

]−1

. (8.9.36b)

When d → ∞, q → 1; the total capture width is the sum of the individual
capture width of N isolated bodies. Figure 8.14 shows the interference
factor for normal incidence α = 0 and for N = 2, 10, and ∞. Clearly,
interference can be constructive so as to augment the capture width. In
the limit of N → ∞,

Figure 8.14: The interaction factor q [Eq. (8.9.36b)] for normal incidence and for two,
ten, and an infinite number of bodies in a row. For small kd, Eq. (8.9.36b) is invalid.
All bodies move with equal amplitudes (from Budal, 1977, J. Ship Res. Reproduced by
permission of The Society of Naval Architects and Marine Engineers).
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W =
Nd cosα

2
for kd <

2π

1 + sin α
,

implying that the row of buoys absorbs half of the power incident on the pro-
jected length Nd cosα. Budal further studied two parallel rows and showed
that all the incident power on the projected length could be absorbed.

Srokosz (1979) (see also Evans, 1979, and Falnes, 1980) relaxed the
constraint of Budal and allowed the N point absorbers to have unequal
motions. The optimum interaction factor q was found to be greater than
that given by (8.9.36b) for low value of kd but the difference diminished for
sufficiently large kd. For two absorbers the unconstrained result is

q =
1 − J0(kd) cos(kd sin α)

1 − J2
0 (kd)

. (8.9.36c)

A sample comparison is shown in Fig. 8.15. Note that for long waves kd → 0
the unconstrained theory gives different q for different incidences. These
limits are of doubtful practical significance since the predicted amplitude
of optimum motion would be infinite and inconsistent with the assumption
of linearity.

A Head Sea Absorber: Hagen Cockerell Raft

Newman (1979) has made a penetrating study of the optimum efficiency of a
slender Hagen–Cockerell raft which has fore-and-aft symmetry. Following
him we let the longitudinal axis of the slender body be the x axis. In
general, the vertical displacement Z of the raft may be decomposed into a
number of modes fα(x):

Z(x, t) = A
∑

α

Zαfα(x)e−iωt , (8.9.37)

where Zα and fα are dimensionless and fα is real. Let us consider deep wa-
ter only. Aα(θ) may be related to the potential on the body by Eq. (8.4.32)
which becomes, in the limit of kh → ∞,

Aα(θ) = −ωk

2g

∫∫
SB

dS

(
φα

∂

∂n
− ∂φα

∂n

)
ekz exp(−ikx cos θ − iky sin θ) .

(8.9.38)

For a slender body with beam and draft small compared to the wavelength,
ky, kz � 1 on SB and the term ∂φα/∂n above dominates so that

Aα(θ) ∼= −ωk

2g

∫∫
SB

dS
∂φα

∂n
e−ikx cos θ .
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Figure 8.15: The interaction factor for two bodies at various incidences: (a) α = 0
normal incidence; (b) α = 1

4
π oblique incidence; (c) α = 1

2
π waves along the line of axis

of bodies. Dashed curve: Budal’s theory requiring two bodies moving at equal amplitude;
solid curve: Srokoz’s theory without Budal’s constraint (from Srokosz, 1979).
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On the body

dS
∂φα

∂n
= −iωfαnz dx[(dy)2 + (dz)2]1/2 = −iωfα dx dy ,

hence

Aα(θ) ∼= − i

2
k2

∫ l/2

−l/2

dx b(x)fα(x)e−ikx cos θ , (8.9.39)

where l is the body length. Assume for simplicity that b = const and end
effects are minor; Eq. (8.9.39) may be written

Aα(θ) = − i

2
K2

(
2b

l

)∫ 1

−1

dXfα(X)e−iKX cos θ (8.9.40)

after introducing X = 2x/l and K = 1
2kl. Clearly, Aα(θ) is a function of

cos θ. For a body with fore-and-aft symmetry, the motion can always be
decomposed into modes which are either even or odd in X . Let fα be even
in X when α is an even integer, then

Aα(θ) = −iK2

(
2b

l

)∫ 1

0

dXfα(X) cos(KX cos θ) (8.9.41)

is even in cos θ and imaginary. Similarly, let fα be odd in X when α is an
odd integer, then

Aα(θ) = K2

(
2b

l

)∫ 1

0

dXfα(X) sin(KX cos θ) (8.9.42)

is odd in cos θ and real. For varying b, the product bfα may be considered
as the effective modal shape.

The even and odd symmetry of Aα implies that the absorption width
may be decomposed into even and odd parts also:

kW = kW e + kW o , (8.9.43)

where

kW e = − 2
π

∫ 2π

0

dθ

∣∣∣∣∑
α

ZαAα(θ)
∣∣∣∣2 − 4 Re

∑
α

[ZαA∗
α(π)] , (8.9.44)

with a similar formula for kW o.
To extract energy from heave or pitch the raft must be dynamically

coupled with a stationary structure which must endure a large wave force.
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For the sake of reducing structural costs, a slack mooring is likely preferable
in design. One can then expect no absorption from these rigid body modes
α = 0, 1; therefore

kW0 = − 2
π

∫ ∞

0

dθ|Z0A0(θ)|2 − 4 Re [Z0A∗
0(π)] = 0 , (8.9.45)

and a similar relation kW1 = 0 holds. Subtracting Eq. (8.9.45) from kW e,
we get

kW e = − 2
π

∫ 2π

0

dθ

∣∣∣∣∑
α

′
ZαAα(θ)

∣∣∣∣2 − 4 Re
∑
α

′{ZαA∗
α(π)}

− 4
π

Re
∫ 2π

0

dθZ∗
0A∗

0(θ)
∑

α

′
ZαAα(θ) , α = 2, 4, 6, . . . (8.9.46)

where α = 0 is excluded from the sum
∑′. Recall first that Aα is real for

all even α. For optimum performance at higher modes α � 2, the phases
must be such that ZαA∗

α is real and negative. Now α = 0 is a passive
mode with Z0 = O(1) at most. Since A0 = O(2b/l) from Eq. (8.9.41),
Eq. (8.9.45) implies that Re (Z0A0) = O(2b/l)2. Consequently, the last
term in Eq. (8.9.46) may be neglected with a relative error of O(2b/l).
Thus,

kW e ∼= − 2
π

∫ 2π

0

dθ

∣∣∣∣∑
α

′
ZαAα(θ)

∣∣∣∣2 − 4 Re
′∑
α

{ZαAα(π)}∗ . (8.9.47)

A similar result may be obtained for kW o.
If there is only one even or odd mode, the summation sign may be

removed from Eq. (8.9.47). For optimum efficiency one must have

ZeAe∗
(π) = |Ze|Ae(π)|eiπ

so that

kW e = − 2
π
|Ze|2

∫ 2π

0

dθ|Ae(θ)|2 + 4|Ze| |Ae(π)| . (8.9.48)

A similar expression holds for the odd mode. Equations (8.9.28a) and
(8.9.28b) hold for (kW e)opt and (kW o)opt when Aα is replaced by Ae and
Ao, respectively.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

8.9. Power Absorption by Floating Bodies 423

Now consider an articulated raft made up of three pontoons with two
hinges located at x = ± 1

2al (i.e., X = ±a). There can only be four inde-
pendent modes of transverse motion. Hence, aside from heave and pitch,
there are only one even and one odd mode. The following modal shapes
can be shown to be orthogonal to heave and pitch:

fe =


1 , |X | < a

1 − 2(|X | − a)
(1 − a)2

, a < |X | < 1

 (8.9.49a)

fo =
±a[2 + (a2 − 3)|X |]

(2 + a)(1 − a)2
, ±a ≶ X ≶ ±1 . (8.9.49b)

The corresponding maximum displacements are

fe
max = fe(1) =

1 + a

1 − a
(8.9.50a)

fo
max =


fo(a) = a , a <

√
2 − 1

fo(1) =
a(1 + a)

(2 + a)(1 − a)
, a >

√
2 − 1

. (8.9.50b)

A power-takeoff mechanism can, in principle, be designed for each mode.
Now the amplitude functions may be evaluated explicitly:

Ae =
2iK2b

l

{
1 + a

1 − a

sin(K cos θ)
K cos θ

+
2

(1 − a)2(K cos θ)2

× [cos(K cos θ) − cos(Ka cos θ)]
}

(8.9.51a)

and

Ao =
K2b

l

{ −2a

(2 + a)(1 − a)2K cos θ

[
2 sin(Ka cos θ)

Ka cos θ
+ (a2 − 3)

× sin(K cos θ)
K cos θ

+ (1 − a2) cos(K cos θ)
]}

. (8.9.51b)

These functions may be substituted into Eq. (8.9.48) for the optimum
absorption widths which are plotted as solid lines in Fig. 8.16. Although
W/l ↑ ∞ as k ↓ 0, it may be shown that kW approaches a finite limit for
long waves. Nevertheless Ze and Zo become unbounded, implying violent
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Figure 8.16: Absorption width ratios W/l for hinged raft (a = 0.4) with the modes fe

and fo of optimum amplitude and phase. Broken curves are for the limited displace-
ments defined by Eq. (8.9.52) (from Newman, 1979, Appl. Ocean Res. Reproduced by
permission of CML Publications).

motion. A further condition that the vertical displacement must not exceed
a certain limit,

β =
|Ze,o|b

l
< 0.2 or 0.4 , (8.9.52)

may be imposed on Eq. (8.9.48) for the maximum absorption width. The
corresponding curves for (W/l)opt are shown in Fig. 8.16 by long dashes for
β < 0.4 and short dashes for β < 0.2. These constraints can be enforced by
electronically controlling the impedances. The total optimum power is the
sum of the contributions from the two modes. Within the practical range
of 0.2 < a < 0.6 the optimum W/l is insensitive to a.

Further studies on the impedance of the power-takeoff mechanism at the
hinges have been made by Haren and Mei (1980). They have shown that
it is necessary to have negative springs and even negative damping at the
forward hinge so that the induced raft motion can radiate large waves in
the forward direction. This result is in accordance with Eq. (8.9.15) since
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the scattered wave is negligible. Heuristically, the radiated waves should
be made to cancel the diverging part of as many partial wave modes in
the incident wave as possible. For “infinite” absorption width the radiated
waves must have the following far field:

ηR ∼= −
(

2
πkr

)1/2

ei(kr−π/4) A

2

∑
n=0

εn(i)ne−inπ/2 cosnθ

= −
(

2
πkr

)1/2

ei(kr−π/4) A

2
δ(θ) .

The δ-function dependence implies forward focusing. Of course, this limit
cannot be achieved in practice for a raft of finite length.

Finally, Newman (1980, private communication) has also extended the
slender body theory to the Kaimei ship with a discrete number of resonant
chambers.

For a survey of many other theoretical aspects of wave-power absorption,
reference should be made to Evans (1981) and Falnes (2002).

8.10 Trapped Modes Near a Mobile Storm Barrier

Venice is a small island city in a lagoon approximately 50 km long and 5 km
wide. During much of the last century excessive pumping of groundwater
in the neighboring mainland district of Maghera has caused severe land
subsidence. Compounded by the gradual rise of the sea-level, the elevation
of Venice is now so low that storm tides entering the lagoon from the
Adriatic innundate the city at the average frequency of once a week. As
a measure to hault further decay of this fabled city, storm barriers have
been designed to span the four inlets of Venice Lagoon: Lido-Tiporti, Lido-
Saint Nicolo, Malamocco and Chioggia. Each barrier consists of a series
of 19 ∼ 20 hollow steel gates all of which are unconnected to one another
but hinged along a common axis on the seabed. In calm weather the gates
rest horizontally on the seabed so as not to obstruct shipping traffic or to
impair the scenic view of the area. In stormy weather, all gates will be
raised by buoyancy to an inclination of about 50◦ from the horizon, and
hence will act as a dam for keeping upto 2 meters of high water outside
the lagoon. The gates are otherwise free to swing to and fro so that only a
small portion of the wave force is transmitted to the weak foundation. An
artist’s sketch is shown in Fig. 8.17.
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Figure 8.17: Artist’s sketch of Venice storm barrier (courtesy of Consorzio Venezia
Nuova).

Each inlet has a pair of long and parallel jetties of O(1 km) length
extending normally seaward. At the early stage of design, laboratory ex-
periments for gates spanning the full width of a wide channel revealed
an unexpected phenomenon when the incident waves are long-crested and
monochromatic. At certain frequencies, neighboring gates did not oscillate
in unison but in opposite directions at half the incident-wave frequency
(Consorzio Venezia Nuova, 1988; Varisco, 1992). The out-of-phase motion
due to subharmonic forcing poses a possible threat to diminish the intended
function of the barrier as a dam.

As will be shown in Chapter Twelve, edge waves trapped on a sloping
beach can be excited subharmonically by normally incident waves. In-
spired by this possible analogy, Mei et al. (1994) showed theoretically that
trapped waves exist as natural modes along an articulated barrier composed
of a series of vertical gates spanning across the middle of an infinitely long
channel. They also showed experimentally for the same geometry that a
natural mode can indeed be resonated by incident waves of twice the fre-
quency. Focussing at first on the most undesirable mode where neighboring
gates move in opposite directions, a nonlinear theory has been carried out
by Sammarco et al. (1997a, b) for the amplitude of the gate oscillations
at and near resonance long after the arrival of monchromatic and bichro-
matic incident waves. For calculating the same eigenmode for inclined
gates including the complex geometry of housing, a hybrid-element method
has later been developed by Liao and Mei (2000). Calculations of all the
eigenmodes involving many inclined gates across a long channel have been
worked out by Li and Mei (2003). Since the Venice barriers face a large
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open water on the lagoon side, without the jetties, trapping is not perfect.
Sychronous excitation by a linear mechanism is also possible. A linear the-
ory has been carried out and applied by Adamo and Mei (2004) to predict
the statistical responses to random incident waves. Related works have been
reported by Vittori et al. (1996), Vittori (1997, 1998) who have studied
a more idealized model where the barrier consists of gates of infinitesimal
width.

Waves can also be trapped near periodic and fixed structures with finite
separation (Evans et al. (1994) and Porter and Evans (1999).) In contrast
the gaps between neighboring gates of Venice barrier are very small (a few
centimeters), and it is the articulatedness that allows wave trapping. As
an application of the tools introduced in this chapter, we shall describe
below the theory of trapped modes for vertical gates in an infinitely long
channel.

8.10.1 The Two-Gate Mode in an Infinitely
Long Barrier

Let us first consider the simplest and the worst mode with just two gates
per period in an otherwise infinitely long barrier. Let the horizontal dis-
placement of the gates in the period −a < y < a be described by

−(z + h)θ(y)e−iωt (8.10.1)

with

θ(y) = 1 , −a/2 < y < a/2 ; (8.10.2)

− 1 , −a < y < −a/2 , and a/2 < y < a. (8.10.3)

Using eigenfunction expansions, the most general solution in a long rect-
angular channel of width 2a consists of not only long-crested propagating
and evanescent modes,

e−iωt

{
A0e

±ikx cosh(k(z + h)) +
∞∑

n=1

Ane∓knx cos(knk(z + h))

}
+ c.c.

but also short-crested propagating modes,

e−iωt
m∑

m=1

cos
mπy

a
Am0e

±iαm0x cosh(k(z + h)) + c.c.
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and short-crested evanescent modes,

e−iωt
∞∑

m=m+1

cos
mπy

a
Am0e

±iαm0x cosh(k(z + h))

+ e−iωt
∞∑

m=1

cos
mπy

a

∞∑
n=1

Amne∓αmnx cos(kn(z + h)) + c.c.

Here k and kn are the real roots of the following dispersion relations

ω2 = gk tanh kh ; ω = −gkn tan knh, n = 1, 2, 3, . . . ,

with

αm0 =

√
k2 −

(mπ

a

)2

, αmn =

√(mπ

a

)2

+ k2
n.

m is the largest integer m for which αm0 is real, i.e., for all m ≥ m + 1,
±iαm0 = ∓√(mπ/a)2 − k2 is real. To construct trapped modes we must
exclude all propagating waves. First the frequency must be low enough

k <
π

a
(8.10.4)

so that no short-crested propagating modes can exist, hence m = 0. To
ensure the absence of the long-crested propagating wave, A0 = 0, we must
also require that ∫ a

−a

θ(y) dy = 0 (8.10.5)

which also guarantees the absence of all long-crested evanescent modes, i.e.,
An = 0 for all n.

Let the vertical sides of the gates be x = ±b, the trapped mode potential
is therefore

φ± = ∓iω

∞∑
m=1

bm cos
mπy

a

[
D0

αm0C0
e∓αm0(x∓b) coshQ

+
∞∑

n=1

Dn

αmnCn
e∓αmn(x∓b) cosQn

]
e−iωt + c.c. (8.10.6)
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where Q = k(z + h) and Qn = kn(z + h). The coefficients are obtained by
matching the normal velocities of the gate and of the adjacent fluid:

bm =
1
a

∫ a

−a

θ(y) cos
mπy

a
dy =

4
mπ

sin
mπ

2
. (8.10.7)

C0 =
1
2k

(
q +

1
2

sinh 2q

)
, D0 =

1
k2

(q sinh q − cosh q + 1) (8.10.8)

where q = kh, and

Cn =
1

2kn

(
qn +

1
2

sin 2qn

)
, Dn =

1
k2

n

(qn sin qn + cos qn − 1) (8.10.9)

where qn = knh. The corresponding free-surface height is

ζ± = ±ω2

g

∞∑
m=1

bm cos
mπy

a

[
D0

αm0C0
e∓αm0(x∓b) cosh q

+
∞∑

n=1

Dn

αmnCn
e∓αmn(x∓b) cos qn

]
e−iωt + c.c. (8.10.10)

To determine ω we apply Newton’s law to the gate at the center of the
modal period,

Iθ̈ + Cθ = −2
∫ a/2

−a/2

dy

∫ 0

−h

ρ[φ+
t ]x=b(z + h) dz , (8.10.11)

where I is the moment of inertia of the gate, and C is the restoring moment
due to buoyancy, both of which can be determined from the material and
construction of the gate. The right-hand side of (8.10.11) can be found
from (8.10.6) to be ω2Iaθ1e

−iωt, where

Ia(ω) =
16ρa

π2

∞∑
m=1

∞∑
n=0

D2
n sin2 mπ/2
αmnCnm2

(8.10.12)

is the hydrodynamic moment of inertia which is a function of ω and of
the parameters kh and a. Combining (8.10.11) with (8.10.12) we get the
eigenvalue condition for ω:

ω2(I + Ia(ω)) = C . (8.10.13)

This is a transcendental equation for the eigenfrequency ω. Once solved
numerically, the free surface height of the eigenmode is given by (8.10.10).
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As shown in Fig. 8.18, predictions are confirmed by laboratory experi-
ments with two vertical gates in a long channel, for a range of water depths
and several gate inertias (Mei et al., 1994). The same experiments also give
evidence of subharmonic resonance by incident wave of twice the frequency.

Figure 8.18: Measured and predicted eigenfrequencies for various gate buoyancy torque
C, moment of inertia I and water depth h. C was varied by attaching styrofoams on
the front and back of the gates. I was changed by attaching extra weight on the top
(from Mei et al., 1994, Proc. Roy. Soc. Lond. Reproduced by permission of The Royal
Society).

Figure 8.19: Time-series record of gate oscillations induced by incident waves at the
frequency twice that of the eigenfrequency (from Mei et al., 1994, Proc. Roy. Soc. Lond.
Reproduced by permission of The Royal Society).
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Figure 8.20: Sketch of M gates spanning a channel of total width L.

Figure 8.19 shows the time series of a gate motion. In the beginning, all the
gates oscillate in phase and at the same frequency as the incident waves.
After a long time, neighboring gates oscillate more vigorously in opposite
phases at one-half of the incident-wave frequency, implying subharmonic
resonance.

8.10.2 Multi-Gate Modes in a Barrier of Finite Length

We now explain how to calculate all the eigenmodes in an M -gate barrier
spanning the full width L of an infinitely long channel, shown in Fig. 8.20.
The width of each gate is then B = L/M . It is now convenient to choose
the x − z plane to coincide with one channel bank.

On the side y ≥ 0, the unknown amplitudes of the M gates are denoted
by

θ(y) = (θ1, θ2, . . . , θj , . . . θN ) for y ∈ Y1 =
(
0,

a

M

)
,

Y2 =
(

L

M
,
2L

M

)
, . . . Yj =

(
(j − 1)L

M
,
jL

M

)
, . . . , YM =

(
(M − 1)L

M
, a

)
.

(8.10.14)

Let the gate rotation θ(y) be represented by a Fourier cosine series:

θ(y) =
∞∑

m=1

Bm cos
(mπy

L

)
(8.10.15)
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where Bm is the Fourier coefficient

Bm =
2
a

∫ a

0

θ(y) cos
(mπy

a

)
dy , B0 = 0 . (8.10.16)

If m=even (odd), the mode is symmetric (antisymmetric) with respect to
the center line y = L/2. The Fourier coefficients can be calculated as

Bm = θ1
2

mπ
sin
(mπ

M

)
+ θ2

2
mπ

[
sin
(

2mπ

M

)
− sin

(mπ

M

)]
+ · · ·

+ θj
2

mπ

[
sin
(

jmπ

M

)
− sin

(
(j − 1)mπ

M

)]
+ · · ·

− θM
2

mπ
sin
(

(M − 1)mπ

M

)
. (8.10.17)

Similar to the analysis in the last subsection, the velocity potential on
the right side of the vertical barrier x = b is found to be

Φ+ =
M∑

j=1

θjφj(b, y, z, t) (8.10.18)

where

φj = −iω

∞∑
m=1

2
mπ

[
sin
(

jmπ

M

)
− sin

(
(j − 1)mπ

M

)]
cos
(mπy

a

)

×
{

D0

βm0C0
cosh[k(z + h)] +

∞∑
n=1

Dn

βmnCn
cos[kn(z + h)]

}

× e−iωt + c.c. , j = 1, 2, 3, . . .M (8.10.19)

with

βm0 =
√

(mπ/a)2 − k2 , βmn =
√

(mπ/a)2 + k2
n (8.10.20)

To ensure a trapped mode we insist that βm0 must be real so that all
terms decay exponentially with |x|. Specifically, if k < π/L, all terms
in (8.10.19) are kept. If π/L < k < 2π/L, the terms associated with
β10 is excluded. If 2π/L < k < 3π/L, the term associated with β10 and
β20 are excluded. If Mπ/L < k < (M + 1)π/L, terms associated with
β10, β20, β30, . . . βM0 are excluded.
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Invoking the equation of motion for gate j we again get the homogeneous
matrix equation for {θj},

−ω2Iθj + Cθj − Fjpθp = 0 , j = 1, 2, 3, . . .M ; (8.10.21)

where

Fjp = 2ρω2L

∞∑
m=1

2
m2π2

[
sin
(

jmπ

M

)
− sin

(
(j − 1)mπ

M

)]

·
[
sin
(pmπ

M

)
− sin

(
(p − 1)mπ

M

)] ∞∑
n=0

D2
n

Cnβmn
. (8.10.22)

Again in the m− series in (8.10.19) and (8.10.22), only terms with real βm0

are included.
The unknown frequency ω can be determined by the brute-force method

of equating the determinant of (8.10.21) to zero and solving the simulta-
neous transcendental equations for all eigenfrequencies. Li and Mei (2003)
have found, not suprisingly, that for the mode with wavelength L/K (or
wavenumber 2πK/L), the modal profile is the piece-wise constant substi-
tute of the cosine curve cos(2Kπy/L). In other words, the area between
the discontinuous curve θ(y) and the y axis is the same as that under the
smooth cosine curve. More explicitly, the rotation amplitude of gate j is

θj = θo

∫
Yj

cos
(

2Kπy

L

)
dy

=
Lθo

2Kπ

(
sin

2Kjπ

M
− sin

2K(j − 1)π
M

)
. (8.10.23)

Being a homogeneous solution, the amplitude θo of an eigenmode is ar-
bitrary. The relative amplitudes of all gates θj/θo are simply related to
the relative amplitude of one gate, say θk/θo. Now one can calculate the
eigenfrequency ω by requiring (8.10.21) on gate k only. This reduces the
numerical tasks significantly. Indeed, if the number of gates per period is
small, analytical confirmation can be made.

Numerical results are obtained for the following inputs which are close
to the designed gates for Malamocco Inlet: number of gates = 20, height =
20 m, thickness 2b = 4.5, water depth h = 1, gate width B = 20 m,
gate inertia I = 39.337 × 106 kg-m2, weight = 2619 kN, C = 60.246 ×
106 kg m2 s−2. Ordered according to increasing periods, profiles of modes
that are even N2, N4, . . .N18 with respect to the center of the barrier are
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Figure 8.21: Profiles of symmetric modes of a 20-gate barrier in a channel. N2, . . . N18

are the possible modes for 20 whole gates. Mode N20 is possible if there are two half
gates at the ends.

shown in Fig. 8.21. Only these modes can be excited by long-crested,
normally incident waves.

The dispersion relation between the eigenfrequency and the modal wave
number is shown in Fig. 8.22. Modes with profiles both even and odd with
repect to the center are included. From left to right, the first, second, . . .

dot corresponds to mode N1, N2, . . . , etc. The odd modes can only be
excited by obliquely incident waves.
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Figure 8.22: Dispersion relationship for a barrier of 20 gates (from Li and Mei, 2003,
Appl. Ocean Res. Reprinted by permission of Elsevier Publishers).

8.11 Drift Forces

Consider the time-averaged momentum flux of a plane progressive wave
across a vertical plane

M = ρ

∫ ζ

−h

u2 dz .

If the linearized result is used in the integrand, M may be calculated to
second-order accuracy in wave slope,

M =
ECg

C
+ O(kA)3 , (8.11.1)

where E = 1
2ρgA2.

First, consider a two-dimensional obstacle in normally incident waves.
If all the wave energy is absorbed by the body, as is the case of the wave-
power devices discussed in Section 8.9, the mean momentum must also be
totally absorbed by the body. Therefore, the body must experience a steady
force ECg/C. If the body reflects all the energy instead, then the reflected
wave carries a momentum of ECg/C in the opposite direction. The steady
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force on the body must be equal to the total rate of momentum change
2ECg/C, which is similar to a steady jet impinging normally on a wall.
More generally, a body oscillating in waves scatters waves by its presence
and radiates waves by its motion. Let the amplitude of the left-going waves
on the incidence side be (R + A−)A and of the right-going waves on the
transmission side be (T + A+)A. The net steady force on the body must
be

F x =
ECg

C
(1 + |R + A−|2 − |T + A+|2) (8.11.2)

(Longuet–Higgins, 1977a), and can be calculated as soon as R, T , A−, and
A+ are known from the linearized theory. This steady force is important in
designing moorings or dynamic positioning devices to prevent the body from
drifting, hence it is called the drift force. Because of energy conservation

|R + A−|2 + |T + A+|2 + Eff = 1 , (8.11.3)

where Eff is the efficiency of energy absorption, the drift force may also
be expressed as

F x =
ECg

C
(Eff + 2|R + A−|2) . (8.11.4)

Thus, F x is positive, that is, in the direction of the incident wave propa-
gation, if Eff > 0. However, if sufficient energy is supplied to the body so
that

Eff < −2|R + A−|2 , (8.11.5)

then F x becomes negative, that is, against the waves.
Figure 8.23 shows the horizontal drift force on a Salter duck under

various conditions. Absorption of wave power is limited to the roll mode
and is seen to reduce the drift force for a broad range of frequencies. In
particular, at high ka, we expect T ≈ 0 and the induced motion (hence A−)
to be small, so that with no absorption, F x

∼= 2ECg/C, as is confirmed by
the dotted and dashed curves. When absorption is complete, R + A− ∼= 0
and Eff ≈ 1 so that F x = ECg/C which implies a 50% reduction; this
result also agrees with the solid and the dash–dot curves in Fig. 8.23.

General formulas for drift forces on three-dimensional bodies were first
derived by Maruo (1960) and extended to include the drift moment about
the vertical axis by Newman (1967). The derivation is also based on momen-
tum balance and is described below in detail in the manner of Newman.
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Figure 8.23: Horizontal drift force on a Salter cam with fixed axis: a = radius of
circular stern. No energy absorption: solid curve, roll only; dash–dot curve, roll and
sway. With energy absorption: dashed curve, roll only; dotted curve, roll and away (from
Maeda, Tanaka, and Kinoshita, 1980, Proc., 13th Symp. Naval Hydrody. Reproduced
by permission of U.S. Office of Naval Research).

For any vector quantity per unit volume inside the moving volume
V bounded by S, the following kinematic transport theorem (see, e.g.,
Batchelor, 1967, p. 135) is true:

d

dt

∫∫∫
V

G dV =
∫∫∫

V

∂G
∂t

dV +
∫∫

S

GUn dS , (8.11.6)

where Un denotes the normal velocity of S. Now let G = ρu be the linear
momentum per unit volume and M be the total linear momentum in V . In
index form we have

dMi

dt
= ρ

∫∫∫
V

∂ui

∂t
dV + ρ

∫∫
S

uiUn dS . (8.11.7)

If we use the Euler equation in the form

∂ui

∂t
= − ∂

∂xi

(
P

ρ
+ gz

)
− ∂

∂xj
(uiuj) ,
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the first integral on the right of Eq. (8.10.7) may be transformed to a surface
integral via Gauss’ theorem

dMi

dt
= −
∫∫

S

(P + ρgzδi3)ni dS −
∫∫

S

ρui(ujnj − Un) dS . (8.11.8)

In particular, the horizontal components are

d

dt

(
Mx

My

)
= −ρ

∫∫
S

[
P

ρ

(
nx

ny

)
+

(
u

v

)
(u · n− Un)

]
dS . (8.11.9)

Now let S be the union of the wetted body surface SB, the free surface
SF , the horizontal sea bottom B0, and the fixed vertical cylinder S∞ at
“infinity.” On the material surfaces SB, SF , and B0, u · n − Un = 0. On
the free surface, P = 0, while on S∞, Un = 0. On the flat bottom B0,
nx = ny = 0. Therefore, the total force needed to hold the body is(

Fx

Fy

)
≡
∫∫

SB

P

(
nx

ny

)
dS

= −
∫∫

S∞

[
P

(
nx

ny

)
+ ρ

(
u

v

)
(u · n)

]
dS − d

dt

(
Mx

My

)
. (8.11.10)

When the time averages are taken and periodicity invoked, the last term
on the right gives no contribution; the drift force components are(

F x

F y

)
= −
∫∫

S∞

[
P

(
nx

ny

)
+ ρ

(
u

v

)
(u · n)

]
dS . (8.11.11)

If S∞ is further taken to be a circular cylinder of large radius R, then we
may employ polar coordinates to write

F x = −
∫∫

S∞
[P cos θ + ρur(ur cos θ − uθ sin θ)R dθ dz] ,

F y = −
∫∫

S∞
[P sin θ + ρur(ur sin θ − uθ cos θ)R dθ dz] .

(8.11.12)

So far, the results above are exact; from here on only second-order terms
will be preserved. Using the Bernoulli equation, we get
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−R

∫ 2π

0

dθ

(
cos θ

sin θ

)∫ ζ

−h

P dz

∼= R

∫ 2π

0

dθ

(
cos θ

sin θ

){
ρ

∫ 0

−h

dz

[
Φt + gz +

1
2
(∇Φ)2

]

+ ρ

∫ ζ

0

dz

[
Φt + gz +

1
2
(∇Φ)2

]}
r=R

. (8.11.13)

In the first integral on the right the time average can be performed directly
on the integrand. The term Φt is zero owing to periodicity, while the
hydrostatic term ρgz does not contribute after integrating with respect to
θ; the remaining term 1

2 (∇Φ)2 can be calculated with an error of O(kA)3

by using the linearized Φ. In the second integral, the contribution from
the term 1

2 (∇Φ)2 is O(kA)3 and negligible; the remaining terms can be
evaluated to O(kA)2 as

ρ

∫ ζ

0

(Φt + gz) dz = ρ

(
Φt|z=0ζ +

1
2
gζ2

)
= − ρ

2g
Φ2

t

∣∣∣∣
z=0

= − ρ

2g
(Re iωφe−iωt)2z=0 = −ρω2

4g
|φ|2z=0 . (8.11.14)

It follows that∫∫
S∞

P

(
cos θ

sin θ

)
R dθ dz ∼=

∫ 2π

0

R dθ

(
cos θ

sin θ

)

×
{[

−
∫ 0

−h

dz
1
2

ρ(∇Φ)2
]

+
ρω2

4g
|φ|2z=0

}
.

(8.11.15)

Substituting Eq. (8.11.15) into Eq. (8.11.12), we get

F x = −
∫ 2π

0

ρR dθ

{∫ 0

−h

dz

{
− 1

2

[(
∂Φ
∂r

)2

+
1

R2

(
∂Φ
∂θ

)2

+
(

∂Φ
∂z

)2
]
cos θ

+
(

∂Φ
∂r

)2
cos θ − 1

R

∂Φ
∂r

∂Φ
∂θ

sin θ

}
+

ω2

4g
|φ|2z=0 cos θ

}
r=R

,

(8.11.16)
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F y = −
∫ 2π

0

ρR dθ

{∫ 0

−h

dz

{
− 1

2

[(
∂Φ
∂r

)2

+
1

R2

(
∂Φ
∂θ

)2

+
(

∂Φ
∂z

)2
]
sin θ

+
(

∂Φ
∂r

)2
sin θ +

cos θ

R

(
∂Φ
∂r

∂Φ
∂θ

)}
+

ω2

4g
|φ|2z=0 sin θ

}
r=R

.

(8.11.17)

We now make use of the asymptotic formula for large r,

Φ = Re [(φI + φ̃)e−iωt] (8.11.18a)

with

φI = − igA

ω

cosh k(z + h)
cosh kh

eikr cos θ , (8.11.18b)

φ̃ = − igA

ω

cosh k(z + h)
cosh kh

A(θ)
(

2
πkr

)1/2

eikr−iπ/4 (8.11.18c)

where φ̃ represents the sum of the scattered and the radiated waves. It is
useful to realize that in the quadratic terms in Eqs. (8.11.16) and (8.11.17),
products involving only φI will not contribute, that is, there cannot be any
drift force with incident waves alone. In the limit of R → ∞, the terms
multiplied by 1/R2 vanish. Also, since only cross products of φI and φ̃

appear, the term

1
R

∂Φ
∂r

∂Φ
∂θ

∼ R−3/2

does not contribute to the integral. As a result, Eqs. (8.11.16) and (8.11.17)
reduce to

F x = −
∫ 2π

0

ρR dθ cos θ

{∫ 0

−h

dz
1
2

[(
∂Φ
∂r

)2
−
(

∂Φ
∂z

)2 ]
+

ω2

4g
|φ|2z=0

}
r=R

,

(8.11.19)

F y = −
∫ 2π

0

ρR dθ sin θ

{∫ 0

−h

dz
1
2

[(
∂Φ
∂r

)2

−
(

∂Φ
∂z

)2
]
+

ω2

4g
|φ|2z=0

}
r=R

.

(8.11.20)

The remaining task involves the familiar use of the stationary phase
method; we only record the final results here:
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Fx = −ρgA2

k

Cg

C

{
1
π

∫ 2π

0

cos θ|A(θ)|2 dθ + 2 ReA(0)
}

, (8.11.21)

F y = −ρgA2

k

Cg

C

1
π

∫ 2π

0

sin θ|A(θ)|2 dθ . (8.11.22)

It should be emphasized that A combines scattering and radiation. Equa-
tion (8.11.21) can be rearranged by eliminating 2 ReA(0) with the help of
the generalized optical theorem (8.9.15), yielding

F x =
ρgA2Cg

kC

[
1
2kĖ

1
2ρgA2Cg

+
1
π

∫ 2π

0

(1 − cos θ)|A|2 dθ

]
(8.11.23)

where Ė is the rate of power absorption by the body, and the first term
in the brackets is the efficiency of power absorption within a width λ/π

of the wave front. The integral above is positive-definite, therefore, F x is
positive-definite if Ė ≥ 0.

The moment about the z axis on a stationary body in waves is defined
as

Tz =
∫∫

SB

P (r × n) · ez dS . (8.11.24)

We leave it as an exercise to show that the change of angular momentum
about z is

−
∫∫

S

[P (r × n) · ez + ρ(r × u) · ez(u · n − Un)] dS ,

and that the mean drift moment is

T z = −ρ

∫∫
S∞

∂Φ
∂r

∂Φ
∂θ

R dθ dz

= ρgA2 1
k2

Cg

C
Im
[
dA∗

dθ

∣∣∣∣
θ=0

+
1
π

∫ 2π

0

A(θ)
dA∗(θ)

dθ
dθ

]
. (8.11.25)

In summary, the drift forces can be inferred from the far field of the
first-order theory.

The subject is being developed further for the slowly varying drift force
in irregular seas. If the incident waves consist of two slightly different
frequencies ω ± ∆ω/2, the second-order response will contain terms such
as e±2iωt and e±i∆ωt. The latter has a much longer time scale than 2π/ω.
The corresponding long-period forces can resonate the natural modes of the
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mooring lines attached to a floating body, thereby causing severe strain. For
further information see Newman (1974) and Faltinsen and Løken (1979).

Exercise 8.9

For two dimensions, show from Eq. (8.11.11) that

F x =
[
ρ

2

∫ 0

−h

(v̄2 − ū2) dz − ρω2

4g
|φ|2z=0

]x∼∞

x∼−∞

and then rederive Eq. (8.11.2).

Exercise 8.10

For a Hagen–Cockerall wave absorber in head seas, the scattering ampli-
tude AS(θ) is negligible if the raft is very slender. Use the approximate
estimates of the radiated waves Ae and Ao [cf. Eqs. (8.9.52a) and (8.9.52b)]
to calculate the drift force in the direction of the incident waves.

8.12 Principles of Calculating the Transient Motion
of a Floating Body

In this section we shall endeavor to show how the transient response of a
floating body can, in principle, be calculated from the sinusoidal response
for which general numerical methods are available. The material here4

is based on the work of Cummins (1962), Ogilvie (1964), and Wehausen
(1967).

8.12.1 Radiated Waves Caused by Impulsive Motion
of a Floating Body

Let a generalized displacement in the α direction be given impulsively to
the body at the instant t = τ , so that the generalized body velocity is

∆Vα = Vα(τ)δ(t − τ) , Vα = Ẋα . (8.12.1)

Let Φ∆ be the velocity potential of the radiated waves caused by the im-
pulse. Φ∆ must satisfy the Laplace equation in the fluid, the free-surface
condition (1.2.11), Section 1.2, with Pa = 0, and ∂Φ∆/∂n = 0 on the hori-
zontal bottom (z = −h). The boundary condition on the body surface is

4I have benefited from the survey by Serman (1978).
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∂Φ∆

∂n
= ∆Vαnα = Vαnαδ(t − τ) . (8.12.2)

In addition we require boundedness at infinity

|∇Φ∆| → 0 as r → ∞, t < ∞ , (8.12.3)

and that there be no disturbance before t = τ :

Φ∆ = 0 , t < τ , all x . (8.12.4)

Cummins introduced the following decomposition:

Φ∆(x, t) = Vα(τ)[Ωα(x)δ(t − τ) + Γα(x, t − τ)H(t − τ)] , (8.12.5)

where H is the Heaviside step function. Summation over the repeated index
α is implied. We now require Ωα and Γα to satisfy the following conditions
on the body:

∂Ωα

∂n
= nα (8.12.6a)

on SB .
∂Γα

∂n
= 0 (8.12.6b)

Both Ωα and Γα are further subjected to Laplace’s equation and the bottom
boundary condition. Care is needed in satisfying the remaining condition on
the free surface. Substituting Eq. (8.12.5) into the free-surface condition
(1.2.11), Section 1.2, and noting that f(t)δ(t) = f(0)δ(t) for any smooth
f(t), we have

∂2Φ∆

∂t2
=
{

δ̈Ωα + δ̇Γα(x, 0) + δ
∂

∂t
Γα(x, t − τ) + H

∂2

∂t2
Γα(x, t − τ)

}
Vα ,

(8.12.7a)

g
∂Φ∆

∂z
= g

[
δ
∂Ωα

∂z
+ H

∂Γα

∂z

]
Vα , (8.12.7b)

where the arguments of δ, δ̇, δ̈, and H are all t − τ . After inserting
Eqs. (8.12.7a) and (8.12.7b) into Eq. (1.2.11), Section 1.2, we use the fact
that H , δ, δ̇, and δ̈ are singularities of different orders, and equate to zero
their coefficients individually. In this manner four conditions are obtained
on the free surface. The initial-boundary-value problems for Ωα and Γα

may be summarized:
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∇2Ωα = 0 in fluid , (8.12.8a)

Ωα(x) = 0 , z = 0 , (8.12.8b)

∂Ωα

∂z
= 0 , z = −h , (8.12.8c)

∂Ωα

∂n
= nα on SB , (8.12.8d)

Ωα → 0 |x| → ∞ . (8.12.8e)

The above boundary-value problem for Ωα may be regarded as a radiation
problem in the limit of infinite frequency. For Γα we have

∇2Γα = 0 in the fluid , (8.12.9a)

Γα = 0 , z = 0, t = t0 , (8.12.9b)

∂Γα

∂t
+ g

∂Ωα

∂z
= 0 , z = 0, t = t0 , (8.12.9c)

∂2Γα

∂t2
+ g

∂Γα

∂z
= 0 , z = 0, t0 < t < ∞ , (8.12.9d)

∂Γα

∂z
= 0 , z = −h , (8.12.9e)

∂Γα

∂n
= 0 , on SB . (8.12.9f)

Note that Γα is just a Cauchy–Poisson problem in the presence of a fixed
body.

Let us try to obtain the response to a continuous V (t) by integrating the
effect of a succession of impulses over −∞ < τ < ∞, that is, by integrating
Eq. (8.12.5),

ΦR =
∫ ∞

−∞
dτ Φ∆ = Ωα(x)Vα(t) +

∫ t

−∞
Γα(x, t − τ)Vα(τ) dτ (8.12.10a)

= Ωα(x)V (t) +
∫ ∞

0

Γα(x, τ)Vα(t − τ) dτ . (8.12.10b)

It is straightforward to verify that ΦR satisfies the governing equation and
all the boundary and initial conditions.
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The hydrodynamic force on the body can be derived in terms of Ωα and
Γα by first taking the time derivatives of ΦR

∂ΦR

∂t
= Ωα(x)V̇α(t) − Γα(x, 0)Vα(t) + Γα(x,∞)Vα(−∞)

+
∫ t

−∞
Γα(x, t − τ)V̇α(τ) dτ . (8.12.12)

Because of Eq. (8.12.9b) and Vα(−∞) = 0, we simply have

∂ΦR

∂t
= Ωα(x)Ẍα(t) +

∫ t

−∞
Γα(x, t − τ)Ẍα(τ) dτ , (8.12.13)

where use is made of Vα = Ẋα. The β component of the generalized
restoring force reacting on the body is

FR
β (t) = −

[
ρ

∫∫
SB

Ωα(x)nβ dS

]
Ẍα

+
∫ t

−∞

∫∫
SB

ρΓα(x, t − τ)nβẌα(τ) dτ dS , (8.12.14)

where nβ is the generalized normal. Following Wehausen, let us define

µβα(∞) = ρ

∫∫
SB

Ωα(x)nβ dS , (8.12.15)

Lβα(t) = ρ

∫∫
SB

Γα(x, t)nβ dS , (8.12.16)

which are both real, then

FR
β (t) = −µβα(∞)Ẍα(t) −

∫ t

−∞
Lβα(t − τ)Ẍα(τ) dτ . (8.12.17)

8.12.2 Relation to the Frequency Response

Let

Vα(t) = Re V αe−iωt , (8.12.18)

and suppose the motion to have begun from t ∼ −∞. Substituting
Eq. (8.12.18) into Eq. (8.12.10b), we get

ΦR(x, t) = Re
{[

Ωα(x) +
∫ ∞

0

Γα(x, τ)eiωτ dτ

]
V αe−iωt

}
. (8.12.19)
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Now the quantity in [ ] must be the normalized simple harmonic response
due to forced radiation with ∂φα/∂n = nα on the body; therefore,

φα(x, ω) = Re φα + i Im φα

= Ωα(x) +
∫ ∞

0

Γα(x, τ)eiωτ dτ . (8.12.20)

Since Γα = 0 for τ ≤ 0, the integral above is just the Fourier transform
of Γα. Once φα (and its special limit Ωα) is solved for a broad range of
frequencies by any of the modern numerical means, Γα(x, t) can be ob-
tained by inverse Fourier transform for which the numerical technique of
fast Fourier transform is available. The β component of the restoring force
on the body is, from Eq. (8.12.14),

FR
β = −ρ

∫∫
SB

ΦR
t nβ dS

= Re
{[

−ρ

∫∫
SB

Ωαnβ dS − ρ

∫ ∞

0

dτ eiωτ

∫∫
SB

Γαnβ dS

]
V αe−iωt

}
.

(8.12.21)

If Eqs. (8.12.15) and (8.12.16) are substituted into Eq. (8.12.21) and
the result is compared with the definitions of apparent mass and damping
coefficients in Section 8.3.2, we conclude that

µαβ(ω) +
i

ω
λαβ(ω) = µαβ(∞) +

∫ ∞

0

Lαβ(τ)eiωτ dτ . (8.12.22)

Separating the real and imaginary parts, we finally get

µαβ(ω) − µαβ(∞) =
∫ ∞

0

Lαβ(τ) cos ωτ dτ , (8.12.23)

λαβ(ω) = ω

∫ ∞

0

Lαβ(τ) sin ωτ dτ (8.12.24)

(Wehausen, 1967). Conversely, if the added mass or damping coefficients
are known for all frequencies 0 ≤ ω < ∞, Lαβ(t) can be found by in-
verse cosine or sine transform. Also, since Lαβ can be found from either
Eq. (8.12.23) or (8.12.24), a relation should exist between the apparent
mass and the damping coefficients. Such a relation is called the Kramers–
Kronig relation (see Ogilvie, 1964) which also appears in other branches of
physics.
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8.12.3 Exciting Force Caused by Scattering of
Transient Incident Waves

To complete the formulation of the dynamic problem of a body in transient
incident waves it is necessary to know the exciting force on a stationary
body caused by diffraction. Wehausen (1967) has shown that the exciting
force can be obtained from the radiation problem through a generalized
Haskind–Hanaoka relation, as described below.

Let us define

Bα(x, t − τ) = Ωα(x) +
∫ t

τ

Γα(x, t′) dt′ . (8.12.25)

From the governing conditions of Ωα and Γα it can be shown that Bα

satisfies the following conditions:

∇2Bα = 0 , in the fluid , (8.12.25a)

∂Bα

∂n
= nα on SB , (8.12.25b)

∂Bα

∂z
= 0 , z = −h , (8.12.25c)

∂2Bα

∂t2
+ g

∂Bα

∂z
= 0 , z = 0, all t > 0 , (8.12.25d)

∂Bα

∂t
= 0 , z = 0, t = 0 , (8.12.25e)

Bα(x, t) = 0 , z = 0, t = 0 , (8.12.25f)

Bα(x, t) = Ωα(x) , t = 0, in the fluid , (8.12.25g)

Bα = O(R−2) , R → ∞, t < ∞ . (8.12.25h)

The last condition on the behavior of Bα at infinity requires mathematical
arguments too lengthy to enter here (Stoker, 1957).

Next we let ΦI(x, t) denote the potential of the transient incident wave
and ΦS(x, t) the scattered wave potential. ΦI is originated in a finite region
before striking the body. ΦS satisfies Eqs. (8.12.25a)–(8.12.25h) provided
that nα is replaced by −∂ΦI/∂n in Eq. (8.12.25b) and Ωα is replaced by 0
in Eq. (8.12.25g).
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Let us apply Green’s theorem to ∂ΦS(x, τ)/∂τ and Bα(x, t− τ) for the
usual control volume bounded by SF , SB , and B0 and a circular vertical
cylinder S∞ of great radius R. After the familiar use of the governing
equations, we get∫∫

SB

(
∂ΦS

∂τ
nα − ∂2ΦS

∂τ∂n
Bα

)
dS

+
∫∫

SF

(
∂ΦS

∂τ

∂Bα

∂z
− ∂2ΦS

∂τ∂z
Bα

)
dS = 0 . (8.12.26)

When the boundary conditions and fτ (t − τ) = −ft(t − τ) are used, the
second integral may be expressed

−1
g

∫∫
SF

(
∂ΦS

∂τ

∂2Bα

∂t2
− ∂3ΦS

∂τ3
Bα

)
dS

=
1
g

∫∫
SF

∂

∂τ

(
∂ΦS

∂τ

∂Bα

∂t
+

∂2ΦS

∂τ2
Bα

)
dS . (8.12.27)

With this result Eq. (8.12.26) may be integrated with respect to τ from
−∞ to t, yielding∫ t

−∞
dt

∫∫
SB

(
∂ΦS

∂τ
nα − ∂2Φs

∂τ∂n
Bα

)
dS = 0 , (8.12.28)

where the integrated terms vanish by virtue of Eqs. (8.12.25e) and (8.12.25f)
for Bα and the fact that ∂ΦS/∂t, ∂2ΦS/∂t2 → 0 as t → ∞. Differentiating
Eq. (8.12.28) with respect to t, and using

∂ΦS

∂n
= −∂ΦI

∂n
on SB (8.12.29)

along with Eqs. (8.12.25) and (8.12.25g), we find that

−
∫∫

SB

∂ΦS

∂t
nα dS =

∫ t

−∞
dτ

∫∫
SB

∂2ΦI

∂τ∂n
Γα(x, t − τ) dS

+
∫∫

SB

∂2ΦI

∂t∂n
Ωα(x) dS . (8.12.30)
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Finally, the exciting (diffraction) force is

FD
α (t) = −ρ

∫∫
SB

(
∂ΦI

∂t
+

∂ΦS

∂t

)
nα dS

= −ρ

∫∫
SB

(
∂ΦI

∂t
nα − ∂2ΦI

∂t∂n
Ωα

)
dS

+ ρ

∫ t

−∞
dτ

∫∫
SB

∂2ΦI

∂τ∂n
(x, τ)Γα(x, t − τ) dS (8.12.31)

which is due to Wehausen (1967).
Since the right-hand side depends only on the incident wave and on

Ωα and Γα, which are defined for the radiation problem, Eq. (8.12.31) is
an extended Haskind–Hanaoka relation and may be used to calculate the
exciting force without solving the transient diffraction problem.

8.12.4 Linearized Equations of Transient Motion of
a Floating Body

The governing equation (8.2.47) still holds, but the hydrodynamic restoring
force is given by Eq. (8.12.17) and the exciting force by Eq. (8.12.31), with
the result that

[Mαβ + µαβ(∞)]Ẍβ +
∫ t

−∞
Lαβ(t − τ)Ẍβ(τ) dτ + CαβXβ

= FD
α + Fα (8.12.32)

which is a set of integro-differential equations to be solved for given initial
position and velocity of the body.

From the above results it is evident that the transient response may
be calculated, in principle, from sinusoidal responses numerically. On this
basis an analytical theory has been worked out by Ursell (1964) and Maskell
and Ursell (1970) for a two-dimensional circular cylinder freely floating
on the free surface. At present all existing numerical methods are costly
for high frequencies. However, this shortcoming is not fatal in practice
since the most important responses usually occur in the range where the
product of k and the body size is of order unity. Alternative numerical
methods via transient Green’s functions for initial-value problems are being
developed for general bodies and may someday prove to be more effective.



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

450 Floating Body Dynamics: Diffraction and Radiation by Large Bodies

(See Proceedings of the 3rd International Conference on Numerical Ship
Hydrodynamics, 1981, Paris).

Appendix 8.A Derivation of Green’s Function

For both two and three dimensions the Green functions have been deduced
by John (1950) and by other authors. Only the details for two dimensions
are explained here. Defining the Green function G(x|x0) by Eqs. (8.4.18)–
(8.4.21), and taking the Fourier transform of Eqs. (8.4.18)–(8.4.20) with
respect to x, we get

d2G̃

dz2
− K2G̃ = δ(z − z0)e−iKx0 , (8.A.1)

dG̃

dz
− σG̃ = 0 , z = 0 , (8.A.2)

dG̃

dz
= 0 , z = −h , (8.A.3)

where K is the Fourier transform variable. An equivalent boundary-value
problem is defined by

d2G̃

dz2
− K2G̃ = 0 , −h < z < z0, z0 < z < 0 , (8.A.4)

G̃|z=z+
0
− G̃|z=z−

0
= 0 , (8.A.5a)

dG̃

dz

∣∣∣∣
z=z+

0

− dG̃

dz

∣∣∣∣
z=z−

0

= e−iKx0 , (8.A.5b)

and by Eqs. (8.A.2) and (8.A.3). The second jump condition (8.A.5b) may
be deduced by integrating Eq. (8.A.1) across z0 and invoking Eq. (8.A.5a).
In terms of

z> = max(z, z0) and z< = min(z, z0) , (8.A.6)

the solution is easily expressed in a compact form

G̃ =
e−iKx0

K

σ sinh Kz> + K coshKz>

σ coshKh − K sinh Kh
coshK(z< + h) . (8.A.7)
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Figure A.1: Contours of integration.

In applying the Fourier inversion formula, an ambiguity arises along the
real K axis where two poles exist at the real zeroes of

σ coshKh − K sinh Kh = 0 or K tanhKh = σ , (8.A.8)

that is, K = ±k. Now the radiation condition must be invoked to define
the improper integral. To be checked for correctness, we now choose the
path Γ which is indented above −k and below +k along two semicircles of
small radii, as shown in Fig. A.1. Thus,

G(x|x0) =
1
2π

∫
Γ

dK eiK(x−x0)

×
{

1
K

σ sinh Kz> + K coshKz>

σ coshKh− K sinh Kh
coshK(z< + h)

}
. (8.A.9)

The above representation can be manipulated into several different forms.
One of them is an eigenfunction expansion which is deduced by recognizing
that the integral has imaginary poles at the imaginary zeroes of Eq. (8.A.8),
that is, at K = ±ikn, n = 1, 2, 3, . . . , where kn is a positive real root of

kn tan knh = −σ . (8.A.10)

For x > x0 we introduce a closed semicircular contour in the upper half
complex plane of K, as shown in Fig. A.1, so that the integrand diminishes
as Im K ↑ ∞. By Jordan’s lemma, the line integral along the semicircle
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vanishes in the limit of infinite radius. Therefore, the original integral is
equal to the sum of residues from the poles at k and ikn, n = 1, 2, 3 . . . .

The residues may be calculated by repeated use of (8.A.8) and (8.A.10).
Similarly, for x < x0, we introduce a closed contour in the lower half plane,
capturing the residues at −k and −ikn. The combined result is

G = − i

k

(
h +

1
σ

sinh2 kh

)−1

eik|x−x0| cosh k(z + h) coshk(z0 + h)

+
∞∑

n=1

1
kn

(
h − 1

σ
sin2 knh

)−1

e−kn|x−x0| cos kn(z + h) cos kn(z0 + h) .

(8.A.11)

Details are left as an exercise. Clearly, the first term represents the outgoing
waves, while the series represents the evanescent modes. Thus, the radiation
condition is satisfied. Indeed, any other indentation of the integral path
would violate the radiation condition.

An alternative representation, which is important in the numerical me-
thod of integral equations, exhibits the singular part of the Green function
explicitly. Near the source point (x0, z0) the Green function must be do-
minated by (1/2π) ln[(x−x0)2 +(z− z0)2]1/2. To extract this term we first
use the symmetry of the bracket { } in (8.A.9) and of the contour in order
to use only one-half of the path, that is,

G(x|x0) =
1
π

∫ ∞

0

dK

K
cosK(x − x0)

× σ sinh Kz> + K coshKz>

σ coshKh − K sinh Kh
coshK(z< + h) , (8.A.12)

where the path of integration is the positive half of Γ in Fig. A.1. Let us
define

r = [(x − x0)2 + (z − z0)2]1/2 ,

r′ = [(x − x0)2 + (z + z0 + 2h)2]1/2 ,
(8.A.13)

where r′ is the distance between the field point and the image of the source
below the sea bottom. From the following identities of Laplace transform:∫ ∞

0

dK

K
e−Kb(1 − cosKa) = ln

[
(a2 + b2)1/2

b

]
, (8.A.14)
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∫ ∞

0

dK

K
(e−Kb − e−Kh) = ln

(
h

b

)
, (8.A.15)

it follows that

ln
r

h
=
∫ ∞

0

dK

K
(e−Kh−e−Kb cosKa) , a=x−x0, b=z>−z< (8.A.16)

with a similar formula for ln(r′/h). Substituting (8.A.16) into (8.A.12), we
obtain

2πG = ln
r

h
+ ln

r′

h
+
∫ ∞

0

dK

K

×
{

cosK(x − x0)
[
2
σ sinh Kz> + K coshKz>

σ coshKh − K sinh Kh
coshK(z< + h)

+ e−K(z<−z>) + e−K(z>+z<+2h)

]
− 2e−Kh

}
.

After a little algebra and returning from z>, z< to z and z0, we get

G =
1
2π

ln
r

h
+

1
2π

ln
r′

h
+ 2
∫ ∞

0

dK

K

{
cosK(x − x0)

σ coshKh − K sinh Kh

× coshK(z + h) cosh K(z0 + h) − e−Kh

}
, (8.A.17)

which is the form deduced by John (1950).
The first two logarithmic terms above represent two sources (one in the

fluid and one beneath the sea bottom); their sum satisfies the boundary
condition at z = −h. The contour integral therefore represents the effect
of the free surface. It may be easily checked that the contribution from the
small semicircle gives the outgoing wave, while the remaining principal-
valued integral is of local importance only.

For infinite depth, the limit of (8.A.17) gives

G(x|x0) =
1
2π

ln r +
∫ ∞

0

dK

K

[
σ + K

σ − K
eK(z+z0) cosK(x − x0) − e−K

]
.

(8.A.18)

For a three-dimensional ocean of constant depth, the Hankel transform
may be used instead of the Fourier transform. A formula similar to (8.A.9)
is obtained. One must then use some integral identities of Bessel functions
to deduce alternative representations. The explanations for two dimensions
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should provide sufficient background for the reader to follow the details
given in John (1950). Only certain key results are recorded here.

Corresponding to (8.A.12) the result can be expressed as

G = − 1
2π

∫ ∞

0

dKKJ0(KR){ } (8.A.19)

where the bracket { } is the same as that of (8.A.9). In series form G may
be expressed as

G = − i

2
k2 − σ2

h(k2 − σ2) + σ
H

(1)
0 (kR) coshk(z0 + h) coshk(z + h)

+
1
π

∞∑
n=1

k2
n + σ2

−h(k2
n + σ2) + σ

K0(knR) cos kn(z + h) cos kn(z0 + h) .

(8.A.20)

With the singular part exhibited, G may be written alternatively as

G = − 1
4π

(
1
r

+
1
r′

)
+

1
4π

∫ ∞

0

dK J0(KR)
2(σ + K)e−Kh

σ coshKh − K sinh Kh

× coshK(z + h) coshK(z0 + h) , (8.A.21)

where

r = [(x − x0)2 + (y − y0)2 + (z − z0)2]1/2 ,

r′ = [(x − x0)2 + (y − y0)2 + (z + z0 + 2h)2]1/2 .

Finally, for infinite depth the three-dimensional Green’s function is

G = − 1
4πr

+
1
4π

∫ ∞

0

σ + K

σ − K
eK(z+z0)J0(KR) dK . (8.A.22)
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Viscous Damping in
Small-Amplitude Waves 9
9.1 Introduction

Except in Chapter Six, we have so far disregarded the effect of viscosity
because it is usually so weak and confined in such thin layers as to exert
very little influence on the wave motion over a few periods or wavelengths.
However, over a long time compared to a characteristic wave period, or
a long distance compared to a characteristic wavelength, the cumulative
effect of viscosity on wave attenuation can be of first-order importance. In
this chapter, theories are developed for the damping of infinitesimal waves
by molecular viscosity. Within this framework the mechanism of energy
transfer is examined in detail. A formal method of perturbation is also
demonstrated for calculating viscous effects on both the amplitude and
phase of the wave. The possible importance of air, dismissed in the past by
most authors but pointed out recently by Dore (1978), is briefly discussed.
Finally, a semiempirical theory of turbulent boundary layer near the sea
bottom is described with a simple example of its applications.

9.2 Linearized Equations of Viscous Flows and
the Laminar Boundary Layer

The full Navier–Stokes equations are given in Eqs. (1.1.1) and (1.1.2),
Chapter One. For convenience we quote them here in index form. Let the
rectangular coordinates be denoted by xi, i = 1, 2, 3, with x1 = x, x2 = y,
x3 = z and the corresponding velocity components be denoted by ui. The
equation of continuity is

455
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∂uj

∂xj
= 0 , (9.2.1)

where summation over the repeated indices is implied. The equation of
momentum conservation is

∂ui

∂t
+ uj

∂ui

∂xj
= −gδi3 − 1

ρ

∂P

∂xi
+

1
ρ

∂τij

∂xj
, i = 1, 2, 3 , (9.2.2)

where τij are the components of the viscous stress tensor

τij = 2µeij , eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (9.2.3)

On a stationary solid the fluid velocity must vanish:

ui = 0 , i = 1, 2, 3 . (9.2.4)

On a water surface F = z−ζ(x, y, t) = 0 the kinematic condition still holds:

∂ζ

∂t
+ u1

∂ζ

∂x1
+ u2

∂ζ

∂x2
= u3 z = ζ . (9.2.5)

The dynamic boundary condition is the continuity of normal and tangential
stresses:

{−Pδij + τij}nj = {−Pδij + τij}airnj , z = ζ . (9.2.6)

In this chapter the water surface will be assumed to be free of atmospheric
pressure and stresses so that the right-hand side of Eq. (9.2.6) vanishes.
In reality, surface contamination can complicate the above condition and
affect wave damping considerably. It is also a common experience in the
laboratory that fresh water gives a different damping rate from water that
is visibly clean but has been in the tank for more than a day. This phe-
nomenon is called aging. However, the physics of surface contamination
and aging is not well understood and will not be pursued here.

To facilitate analysis, we assume infinitesimal amplitude and linearize
Eq. (9.2.2),

∂ui

∂t
= −gδi3 − 1

ρ

∂P

∂xi
+

1
ρ

∂τij

∂xj
. (9.2.7)

As is well known, any vector can be taken as the sum of an irrotational and
a solenoidal vector (Morse and Feshbach, Vol. I, 1953, p. 53):

ui =
∂Φ
∂xi

+ Ui , (9.2.8)
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with U being solenoidal, that is,

∂Ui

∂xi
= 0 , (9.2.9)

and ∇Φ being irrotational. It follows from the continuity equation (9.2.1)
that

∇2Φ = 0 . (9.2.10)

We now let

P = −ρgz + p = −ρgz − ρΦt , (9.2.11)

where p is the dynamic pressure. Substituting Eq. (9.2.8) into Eq. (9.2.7)
and using Eq. (9.2.11), we obtain

∂Ui

∂t
= ν∇2Ui . (9.2.12)

The unknowns Φ and U are coupled by the boundary conditions, though
not by the governing equations. In particular, there must be no slip on the
solid wall S,

∂Φ
∂xi

+ Ui = 0 on S . (9.2.13)

On the free surface, we apply the linearized boundary conditions on the
mean free surface z = 0. The kinematic condition reads

∂ζ

∂t
= Φz + W . (9.2.14)

Dynamically, we also require the vanishing of the normal stress

∂Φ
∂t

+ gζ +
2µ

ρ

∂w

∂z
= 0 , (9.2.15a)

and of the tangential stresses

µ

(
∂u

∂z
+

∂w

∂x

)
= µ

(
∂v

∂z
+

∂w

∂y

)
= 0 . (9.2.15b)

Strictly speaking, one may question the legitimacy of applying the stress-
free conditions on z = 0 unless the wave amplitude is much smaller than
the boundary-layer thickness δ = O(ν/ω)1/2. However, since the stresses
are related to the velocity gradient, viscosity has much less constraint on
the free surface than near a solid wall where the velocity must vanish. In
other words, the free-surface boundary layer is very weak. In fact, it will
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be shown shortly that the damping rate from the free-surface boundary
layer is of the order O(µ3/2) as compared to O(µ1/2) from near the solid
walls and O(µ) in the main body of the fluid. Hence, the error incurred
from misplacing the free surface is only of the order O(µ3/2kA) which is
too small to be of concern here.

By taking the scalar product of the momentum equation (9.2.2) with
u and integrating over any material volume whose boundary is S0(t), we
obtain an equation stating the balance of mechanical energy inside the
volume V (t):∫∫∫

V

∂

∂t

1
2
ρuiui dV +

∫∫
S0

1
2
ρuiuiujnj dS

=
∫∫

S0

{−Pδij + τij}njui dS −
∫∫∫

V

ρgδi3ui dV − 1
2µ

∫∫∫
V

τijτij dV .

(9.2.16)

The left-hand side is the total rate of energy change in V ; the second term
is the flux of energy across the boundary. On the right-hand side, the first
integral represents the rate of working by surface stresses (pressure and
viscous stress) acting on the boundary; the second integral is the rate of
work done by body force throughout the volume, and the third integral is
the rate of viscous dissipation (rate of working by viscous stresses on strain)
throughout the volume.

The above energy equation is exact. Consistent with linearization, the
second integral on the left may be neglected, being of the order O(kA)
higher than the rest. The mean position of S0 may be used to replace the
instantaneous bounding surface of V.

For later convenience we review the well-known theory of Stokes for an
oscillatory boundary layer near a smooth wall. Let the inviscid velocity just
outside the boundary layer near a flat wall be UI(t). Within the boundary
layer the tangential velocity u is governed by

∂u

∂t
=

∂UI

∂t
+ ν

∂2u

∂z2
, (9.2.17)

where z is normal to the wall. On the wall (z = 0), u = 0. For large z,
u ∼ UI . Assume UI to be simple harmonic in time,

UI = Re U0e
−iωt , (9.2.18)

then the tangential velocity in the boundary layer is given by
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u = Re (U0F1(ξ)e−iωt) , (9.2.19)

where

F1(ξ) = 1 − e−(1−i)ξ , (9.2.20)

with

ξ =
z

δ
, δ =

(
2ν

ω

)1/2

. (9.2.21)

The corresponding shear stress at the wall is

τB
xz = µ

∂u

∂z

∣∣∣∣
0

= µ Re
[
U0

δ

√
2 e−i(ωt+π/4)

]
, (9.2.22)

which is out of phase with the inviscid velocity UI by 1
4π.

9.3 Damping Rate and the Process of
Energy Transfer

To understand the physical mechanism of wave damping, it is illuminating
to examine the detailed process of energy transfer in the fluid. First, let us
estimate the order of magnitude of the rate of dissipation in various parts
of the fluid. We decompose the fluid velocity as in Eq. (9.2.8) into the
rotational part U which depends directly on viscosity, and the irrotational
part ∇Φ.

Outside of all boundary layers, it is reasonable to expect that |U| �
∇Φ. There the rate of strain is dominated by the irrotational part whose
velocity scale is ωA and length scale is either the basin dimension L or the
wavelength 2π/k, whichever is smaller. The energy dissipation rate is then

O

(
1
µ

∫∫∫
RI

τ2
ij dV

)
∼ µ2

µ

ω2A2L3

L2
∼ µω2A2L ∝ µ . (9.3.1)

Inside a wall boundary layer Rε (see Fig. 9.1), the tangential components
of U and ∇Φ, are comparable, but the normal gradient of the tangential
component of U is much greater and dominates the strain rate, so that

O

(
1
µ

∫∫∫
Rε

τ2
ij dV

)
∼ µ2

µ

ω2A2

δ2
L2δ ∼ µω2A2L · L

δ
∝ µ1/2 . (9.3.2)

Consider the neighborhood of the free surface. In principle, a boundary
layer RF also exists there; its importance depends on the free-surface
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Figure 9.1: Division of fluid regions. The total fluid volume is defined by the instanta-
neous free surface SF . Dashed lines designate the outer surface of the boundary layer.

condition. Consider first a clean surface. Since U is negligible beneath
the boundary layer, it cannot grow to an appreciable magnitude within a
short distance of O(δ). Thus, the stress is mainly controlled by the potential
velocity field which varies according to the length scale L or 2π/k and is of
the same order as the stress in the main body of the fluid exterior to the
boundary layer. Because of the small volume O(δL2) the rate of dissipation
in the free-surface boundary layer is only

O

(
1
µ

∫∫∫
RF

τ2
ij dV

)
∼ µ

(
ωA

L

)2

L2δ ∼ µω2A2L
δ

L
∝ µ3/2 . (9.3.3)

At the other extreme, if the free surface is heavily contaminated, for
example, by oil slicks, the fluid particles are immobilized so that the free
surface may resemble an inextensible, though flexible, sheet. The stress in
the free-surface boundary layer can then be as great as in the boundary
layer near a solid wall. As stated in Section 9.2, surface contamination is
assumed to be absent. Therefore, the largest energy dissipation takes place
inside the wall boundary layers; only in very deep and unbounded water or
for very short waves (kh � 1) is the dissipation in the main body of the
fluid important.

With the energy flux term neglected on the left-hand side, Eq. (9.2.16)
will now be averaged over a period T. We define the average as follows:

f̄(t) =
1
T

∫ t+T

t

f(t′) dt′ (9.3.4)
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which has the important property that ∂f/∂t = ∂f̄/∂t. For generality, we
take V to contain part of Rε, RF , and RI , where RI is the inviscid core.

From the second term on the right-hand side of Eq. (9.2.16), the work
done by the body force is negligible everywhere except on the free surface
and is given by∫∫∫

V

ρgiui dV = −ρg

∫∫
SF

∂ζ

∂t
dA

[∫ ζ

0

dz

]

= ρg

∫∫
SF

∂ζ

∂t
ζ dS = − ∂

∂t

∫∫
SF

1
2
ρgζ2 dS

which is just the negative of the rate of change of the potential energy.
Combining the preceding term with the change of the kinetic energy in R,
we have from Eq. (9.2.16)

∂

∂t

[∫∫∫
V

1
2
ρuiui dV +

1
2

∫∫
SF

ρgζ2 dS

]

=
∫∫

S0

(−pδij + τij)njui dS − 1
2µ

∫∫∫
V

τ2
ij dV + O(A3) . (9.3.5)

The left side represents the rate of change of the total kinetic and potential
energy. On the right-hand side, the first integral gives the rates of working
by the dynamic pressure p and by the viscous stresses, while the second
integral gives the rate of dissipation.

From here on it is more convenient to employ dimensionless variables
defined as follows:

(x′, y′, z′) = k(x, y, z) , t′ = (gk)1/2t

u′ =
u

A(gk)1/2
, p′ =

p

ρgA

Φ′ =
Φk

A(gk)1/2
, ζ′ =

ζ

A

(9.3.6)

where all variables without primes are dimensional. A and k are the
typical wave amplitude and wavenumber, respectively. After substitution,
the primes are dropped for brevity. Let

ε = kν1/2(gk)1/4 � 1 . (9.3.7)
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Equation (9.3.5) becomes{∫∫∫
V

∂

∂t

uiui

2
dV +

∫∫
SF

∂

∂t

ζ2

2
dS

}
︸ ︷︷ ︸

I

=
∫∫

S0

−puini dS︸ ︷︷ ︸
II

+ 2ε2

∫∫
S0

eijuinj dS︸ ︷︷ ︸
III

− 2ε2

∫∫∫
V

e2
ij dV︸ ︷︷ ︸

IV

. (9.3.8)

In this equation the free surface SF may be excluded from the total S0

which bounds V , due to the stress-free condition.
Referring to Figs. 9.1(b) and 9.2, we denote the meniscus boundary layer

by RM , whose dimensionless height is O(kA). The solid boundaries of Rε

and RM will be denoted by S and SM , respectively, while the corresponding
outer edges by S̃ and S̃M , respectively. The precise physics in the neighbor-
hood of the meniscus is a complex matter involving surface tension (Adams,
1941). In particular, the reversal of contact angles when the meniscus
rises and falls is believed to contribute to damping by hysterisis (Miles,
1967), but the subject appears to be a poorly understood part of physical
chemistry. We shall, therefore, not venture into hysterisis damping but
postulate the following picture in the context of viscous fluid only. In the

Figure 9.2: Enlarged view of the meniscus neighborhood. The line NB(SMW ) symbo-
lizes the border between meniscus and wall boundary layers.
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neighborhood of the meniscus the free surface attains its greatest height at
the level M and the least height at the level N (Fig. 9.2). The wall below
M is always wetted. The piece ME of the meniscus free surface changes
from being nearly horizontal at the maximum rise to a thin film at the
maximum fall. At any intermediate time during each period the meniscus
consists of a thin viscous boundary layer MNBE (of thickness O(ε) and
a height of O(kA)) near the wall, and a potential region whose boundary
and volume change with time. The lower extreme of this boundary layer
NB also forms the ceiling of the main wall boundary layer Rε.

We now examine the leading terms in Eq. (9.3.8) for different control
volumes (Mei and Liu, 1973).

9.3.1 The Entire Fluid

Let the volume V be the entire fluid volume R; hence the boundary surface
consists of all wetted walls and the free surface:

V = RI + Rε + RM , S0 = S + SM + SF .

In Eq. (9.3.8), term (I) is well approximated by

1
2

∂

∂t

{∫∫∫
RI

uiui dV +
∫∫

SF

ζ2 dS

}
since RI = O(1) � Rε + RM = O(ε). The magnitude of O(∂/∂t) is unde-
termined.

The sum of terms (II) and (III) vanishes on SF because of the stress-free
condition. Each term vanishes individually on SW and SM because ui = 0.

Term (IV) = O(ε) in the boundary layer since eij = O(1/ε) and Rε +
RM = O(ε). The contribution from the essentially inviscid interior is O(ε2).
Furthermore, the volume of the meniscus boundary layer is much smaller
than that of the wall boundary layer (RM/Rε = O(kA)), while the straining
rate is of the same order. Hence, we need only to account for the dissipation
in the main wall boundary layer. In summary, we have, to O(ε),

1
2

∂

∂t

{∫∫∫
Rt

uiui dV +
∫∫

SF

ζ2 dS

}
= −2ε2

∫∫∫
Rt

e2
ij dV . (9.3.9)

This formula is the basis of many existing damping theories and implies that
both the time derivative and the dimensionless damping rate are O(ε).
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9.3.2 Meniscus Boundary Layer

Now consider the meniscus boundary layer with volume V = RM and
bounding surface SM + S̃M + SMW , where SM is the side wall, S̃M is
the outer edge of the boundary layer, and SMW is the borderline with
the main wall layer (see Fig. 9.2). Referring to Eq. (9.3.8), we find the
following:

Term (I): Since ui = O(1), RM = O(εkA) and ∂ (̄ )/∂t = O(ε), term I
is O(ε2kA).

Term (II): SM gives no contribution since ui = 0. On SMW , uini =
w = O(1), p = O(1), and SMW = O(ε); hence the integral over SMW is of
O(ε). Use is made of the fact that only the hydrodynamic pressure p does
work. On the outer edge S̃M of the meniscus boundary layer the tangential
velocity is w = O(1). Note that the tangential (vertical) length scale is
O(kA); hence by continuity the normal (horizontal) velocity is uini =
O(ε/kA). Since p = −Φt = O(1) and the area of S̃M is of O(kA), we
have ∫∫

SM

pui ni dS = O(ε) .

Term (III): On SM , ui = 0. On S̃M , eij = O(1). The integral on SM+S̃M

is O(ε2kA). On SMW , eij = O(ε−1) and ui = O(1), and the area of SMW =
O(ε); hence the integral is only of O(ε2).

Term (IV): As was estimated before, the dissipation rate in this volume
is of O(εkA).

Thus, to O(ε), Eq. (9.3.7) reduces to∫∫
S̃M

pui ni dS +
∫∫

SMW

pui ni dS = O(ε2) , (9.3.10)

which means that, by pressure working on SM , power is fed into the
meniscus boundary layer from the inviscid core, and then transmitted essen-
tially undiminished to the main wall boundary layer, also through pressure
working on SMW . Thus, the meniscus boundary layer serves as a channel
of energy flow from waves to the main side-wall boundary layer!

9.3.3 Wall Boundary Layer

Take the wall layer bounded by the solid surface S, the outer edge of the
boundary layer S̃, and the narrow strip bordering the free-surface meniscus
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Figure 9.3: Basins with corners. The main boundary layer is separated into side-wall
layer RW and bottom layer RB.

boundary layer SMW . Similar estimates give that term (I) = O(ε2), term
(II) = O(ε), term (III) = O(ε2), and term (IV) = O(ε). In particular,
the pressure working term has contributions from both S̃ and SMW . The
resulting energy budget is, to O(ε), given by

−
∫∫

SMW

pw dS −
∫∫

S

pui ni − dS2ε2

∫∫∫
Rε

e2
ij dV = −0 . (9.3.11)

Physically, pressure working on the ceiling and on the side balances the
dissipation within.

If the water basin has sharp convex corners below the free surface, it
is convenient to separate the wall layer into a side-wall layer RW , and a
bottom layer RB. Within the corner region whose volume is O(ε2) (see
Fig. 9.3), the velocity field is essentially stagnant; all surface and volume
integrals in Eq. (9.3.8) associated with the corner are at most of O(ε2) and
can be ignored. Thus, the energy budget for the bottom boundary layer is∫∫

S̃B

pui ni dS − 2ε2

∫∫∫
RB

e2
ij dV = O(ε2) , (9.3.12)

that is, dissipation within RB is balanced by pressure working on the
side S̃B.

9.3.4 Interior Core

It can be shown that term (I) = O(ε), term (II) = O(ε), term (III) = O(ε2)
since eij , uj = O(1), and term (IV) = O(ε2). Furthermore, the free-surface
integral can be transformed into one for potential energy as before. Hence,
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∂

∂t

{∫∫∫
Rt

1
2
uiui dV +

∫∫
SF

1
2
ζ2 dS

}
= −
∫∫

S̃+S̃M

pui ni dS + O(ε2) .

(9.3.13)

It may be verified that Eqs. (9.3.9)–(9.3.12) are totally consistent with
Eq. (9.3.13). Upon using Eq. (9.3.10), we can also write Eq. (9.3.13) as

∂

∂t

{∫∫∫
R

1
2
uiui dV +

∫∫
SF

1
2
ζ2 dS

}
= −
∫∫

S̃

pui ni dS −
∫∫

S̃MW

pw dS ,

(9.3.14)

where R is the average volume of the entire fluid.

9.3.5 The Damping Rate

A general formula for the damping rate can now be easily derived. As a
slight modification of Eq. (1.5.10), Chapter One, we can show that

alam =
1
2

Re (A∗
l Am)[exp(2ω(i)t)](1 + O(ε))

=
1
2

Im (iA∗
l Am)[exp(2ω(i)t)](1 + O(ε)) , (9.3.15)

if

al(t) = Re Al exp(−i(ω(r) + iω(i))t) , (9.3.16)

with ω(i) = O(ε)ω(r). For the left-hand side of Eq. (9.3.14), the kinetic and
potential energies may be calculated by the potential theory (Appendix 9.A)
and are equal to each other. On the right-hand side the following formulas
are true to the leading order:

[p]S̃ = −
[
∂φ

∂t

]
S̃

= iω0[φ0]Se−iωt + O(ε) ,

[p]S̃MW
= iω0[φ0]S̃,z=0e

−iωt + O(ε) , (9.3.17)

[uini]S̃ = −[n · U]Se−iωt + O(ε2) ,

where (φ)0 refers to the inviscid leading-order approximation, while {n·U}S

is the viscous correction of the normal velocity in the boundary layer, which
will be explained more explicitly in Section 9.4. The term pw is of the order
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O(ε) and can be obtained from continuity after the tangential velocity is
found.

Upon substituting Eq. (9.3.17) into Eq. (9.3.14), we obtain

2ω(i)

∫∫∫
R

|∇φ0|2 dV

= Im
{

i

[∫∫
S

(iω0φ0)∗(n ·U)S dS − 1
ε

∫∫
SMW

(iω0φ0)∗SW dS

]}
,

which gives the dimensionless damping rate:

ω(i)

ω0
=

Im
{∫∫

S
φ∗

0[n ·U]S dS + 1
ε

∫∫
SMW

φ∗
0W dS

}
2
∫∫∫

R
|∇φ0|2 dV

. (9.3.18)

For a specific problem, the explicit value of the damping rate can be
calculated from the potential solution and from the viscous correction in
the boundary layers, both to the leading order.

Alternatively, one may start from Eq. (9.3.9) and obtain another formula
for the damping rate. By the use of Eqs. (9.3.10), (9.3.11), and (9.3.12)
the equivalence of the two formulas may be shown. It should be stressed
that the meniscus term over SMW , which is easily overlooked in intuitive
reasoning, plays a crucial role.

9.4 Damping Rate by a Perturbation Analysis

In this section a more formal way of deducing Eq. (9.3.18) by a perturbation
analysis is presented. The idea is to incorporate the slow rate of decay into
a multiple-scale scheme and to make boundary-layer corrections iteratively
(Johns, 1968; Dore, 1969; Greenspan, 1968; Mei and Liu, 1973). Let us first
write the governing equations in Section 9.1 in terms of the dimensionless
variables of Eq. (9.3.6):

u = ∇Φ + U , (9.4.1)

∇2Φ = 0 , (9.4.2)

∇ ·U = 0 , (9.4.3)

∂U
∂t

= ε2∇2U , (9.4.4)

p = −Φt . (9.4.5)
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The dimensionless boundary conditions are

∇Φ + U = 0 , on S ≡ SB + SW (solid surface) , (9.4.6)

∂ζ

∂t
= W

∂Φ
∂z

, (9.4.7)

Φt + ζ + 2ε
∂w

∂z
= 0 , (9.4.8)

ε2

(
∂u

∂z
+

∂w

∂x

)
= ε2

(
∂v

∂z
+

∂z

∂y

)
= 0 , (9.4.9)

 on z = 0 ,

where the small parameter ε is defined by Eq. (9.3.7). Combining
Eqs. (9.4.7)–(9.4.9), we have

∂2Φ
∂t2

+
∂Φ
∂z

+ W + 2ε2 ∂2w

∂t∂z
= 0 , z = 0 . (9.4.10)

The tangential stress conditions are

ε2

(
2

∂2Φ
∂x∂z

+
∂W

∂x

)
+ ε2 ∂U

∂z
= 0 ,

ε2

(
2

∂2Φ
∂y∂z

+
∂W

∂y

)
+ ε2 ∂V

∂z
= 0 .

(9.4.11)

Equation (9.4.11) suggests that ∂U/∂z, ∂V/∂z can be of the order O(1).
However, U and V vanish outside the boundary layer and they can grow
at most to be O(ε) inside. From continuity, we must have ∂W/∂z = O(ε).
Thus, the last term in Eq. (9.4.10) is of the order O(ε2) and can be
neglected. Consequently, we have

∂2Φ
∂t2

+
∂Φ
∂z

+ W = O(ε2) z = 0 . (9.4.12)

Since W is of the same order as the other terms only in a thin strip of the
meniscus boundary layer and much less elsewhere, its global effect can only
be felt at the order O(ε).

Expecting that the rotational part U varies rapidly within the dimen-
sionless distance O(ε), we introduce a boundary-layer coordinate

ξ =
xN

ε
so that U = U(xT , ξ) , (9.4.13)

where xT , xN form a locally rectangular coordinate system with xN being
in the normal direction pointing into the fluid from the wall, hence, opposite
to n, as shown in Fig. 9.4.
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Figure 9.4: Local coordinate system.

If the dimensional radius of curvature of the wall is comparable to 1/k,
then ∂/∂xT = O(ε∂/∂xN ). The continuity equation in terms of the local
coordinate is

−∂n ·U
∂xN

+
∂UT1

∂xT1

+
∂UT2

∂xT2

= 0 , (9.4.14)

so,

−∂n · U
∂ξ

+ ε

(
∂UT1

∂xT1

+
∂UT2

∂xT2

)
= 0 . (9.4.15)

We now introduce perturbation expansions. Since there is a damping
time scale of the order O(T/ε) in addition to the wave period T , it is natural
to employ the multiple-scale expansions with t and εt as independent
variables. Equivalently, we may expand the dimensionless ω in powers of ε.

Thus,

Φ = [φ0(x) + εφ1(x) + O(ε2)]e−iωt , (9.4.16a)

U = [q0(xT , ξ) + εq1(xT , ξ) + O(ε2)]e−iωt , (9.4.16b)

ω = ω0 + εω1 + O(ε2) . (9.4.16c)

When Eq. (9.4.16) is substituted into Eqs. (9.4.2)–(9.4.10) and the orders
are separated, a sequence of problems is obtained.

(i) Inviscid solutioon at O(ε0):

∇2φ0 = 0 , (9.4.17a)

n · ∇φ0 = 0 on S , (9.4.17b)

∂φ0

∂z
− ω2

0φ0 = 0 on SF , z = 0 . (9.4.17c)
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Note that W is not present at this order because of its small area of effec-
tiveness. This solution gives rise to a nonzero tangential velocity on S.

(ii) Boundary-layer correction of O(ε0):

∂2q0

∂ξ2
= −iω0q0 , (9.4.18a)

q0 = −∇φ0 , on S , (9.4.18b)

q0 → 0 ξ → ∞ . (9.4.18c)

Note that q0 is tangential to the wall S, that is, n · q0 = 0. The continuity
equation gives

− ∂

∂ξ
(n · q1) +

(
∂UT1

∂xT1

+
∂UT2

∂xT2

)
= 0 (9.4.19)

from which n · q1 may be integrated from ξ ∼ ∞ (outside the boundary
layer) inward to ξ, subject to the condition that n · q1 = 0 at ξ ∼ ∞. In
general, (n · q1) is nonzero at the wall S (ξ = 0) and must be cancelled by
∂φ1/∂xN at the order O(ε).

(iii) Inviscid correction of O(ε):

∇2φ1 = 0 , (9.4.20a)

n · ∇φ1 = −[n · q1]S on S , (9.4.20b)

∂φ1

∂z
− ω2

0φ1 = 2ω0ω1φ0 − W0

ε
on SF . (9.4.20c)

Note that W0/ε is effective only over an area of O(ε).
Problem (i) is homogeneous and is an eigenvalue problem. The eigen-

frequency ω0 and the eigenfunction φ0(x) can be found in principle.
Now Problem (ii) is the classical Stokes’ problem of a plate oscillating

in its own plane; the solution is similar to Eqs. (9.2.19)–(9.2.21). In the
present dimensionless variables, the solution is

q0 = −[∇φ0]SΓ(ξ) , Γ(ξ) = exp[1 − (1 − i)(ω0/2)1/2ξ] (9.4.21)

which can be used to obtain n · q1 by integrating Eq. (9.4.19). Now Pro-
blem (iii) for φ1 contains the unknown ω1 which we are seeking. The
homogeneous boundary-value problem is identical to that of φ0 which has
nontrivial solutions. By invoking the Fredholm alternative, that is, applying
Green’s formula to φ∗

0 and φ1
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∫∫∫
R

(φ∗
0∇2φ1 − φ1∇2φ∗

0) dV =
∫∫

S+SF

(
φ∗

0

∂φ1

∂n
− φ1

∂φ∗
0

∂n

)
dS ,

and by using all boundary conditions on φ∗
0 and φ1, we obtain ω1

immediately:

ω1 =

∫∫
S φ∗

0[n · q1]S dS +
∫∫

SF
φ∗

0W0 dS/ε

2ω0

∫∫
SF

|φ0|2 dS
. (9.4.22)

An alternative form of Eq. (9.4.22) may be derived by noting that

∇ · (φ∗
0∇φ0) = |∇φ|2 + φ∗

0∇2φ0 = |∇φ0|2 .

Integrating the preceding equation over the entire volume R and using
Gauss’ theorem, we obtain∫∫∫

R

|∇φ0|2 dV =
∫∫

S+SF

φ∗
0

∂φ0

∂n
dS

=
∫∫

SF

φ∗
0

∂φ0

∂z
dS +

∫∫
S

φ∗
0

∂φ0

∂n
dS .

From the boundary conditions on SF and S, it follows that∫∫∫
R

|∇φ0|2 dV = ω2
0

∫∫
SF

|φ0|2 dS . (9.4.23)

Since W0 = 0 except in SMW , Eq. (9.4.22) becomes

ω1

ω0
=

1
2

∫∫
S φ∗

0[n · q1]S dS +
∫∫

SMW
(φ∗

0W0 dS/ε)∫∫∫
R |∇φ0|2 dV

. (9.4.24)

Finally we have, in physical variables, ω = ω0 + ω1 and

ω1

ω0
=

∫∫
S

φ∗
0[n · q1]S dS +

∫∫
SMW

φ∗
0W0 dS

2
∫∫∫

R
|∇φ0|2 dV

. (9.4.25)

In particular, the imaginary part of Eq. (9.4.24) is precisely Eq. (9.3.18).
The perturbation analysis gives as a bonus the real part of ω1 which

represents a shift of the eigenfrequency due to viscosity.
The case of progressive waves in an infinitely long channel of uniform

cross section (see Fig. 9.5) can be worked out in a manner similar to that for
standing waves. If the progressive waves are strictly sinusoidal in time as in
the case of a laboratory wave flume, we should expect them to attenuate in
the direction of propagation. The spatial rate of attenuation can be derived
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Figure 9.5

for arbitrary cross section by following the steps suggested in the next
exercise.

Exercise 9.1: Boundary-Layer Effect on Progressive Waves in a
Uniform Channel

Rewrite the linearized governing equations in terms of the following dimen-
sionless variables

(x, y, z) =
(

ω2

g

)
(x′, y′, z′) , t = ωt′ ,

u =
u′

ωA
, φ = φ′

(
ω

gA

)
, ζ =

ζ′

A
.

(9.4.26)

Define the small parameter

ε =
ω2

g

( ν

ω

)1/2

, (9.4.27)

and assume the expansions

Φ(x, y, z, t) = [φ0(y, z) + εφ1(y, z) + · · · ]ei(kx−t) , (9.4.28a)

U = [q0(xT , ξ) + εq1(xT , ξ) + · · · ]ei(kx−t) , (9.4.28b)

k = k0 + εk1 + · · · , (9.4.28c)

then show that

k1 =
− ∫∫S φ∗

0[n · q1]S dS +
∫∫

SMW
φ∗

0W0 dS/ε

2k0

∫∫∫
R |φ0|2 dV

, (9.4.29)
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where the numerator involves line integrals and the denominator is an area
integral. Here S is the wetted wall contour, SF is the contour of the free
surface, and R is the total water area of a cross section of the channel.

9.5 Details for Standing Waves in a Circular Basin

Consider a circular basin of radius a′ and depth h′, and choose a polar-
coordinate system with the origin at the center of the free surface. The
first-order potential solution for a typical mode (m, n) with m, n =
1, 2, 3, . . . , is, in physical variables,

φ′(r′, θ, z′) =
−iAω′

0

k′
cosh k′(z′ + h′)

sinhk′h′ Jn(k′r′) sin nθ , (9.5.1)

where k′ = k′
mn is the mth root, m = 1, 2, 3, . . . , of

J ′
n(k′a′) ≡ d

dk′a′ Jn(k′a′) = 0 , (9.5.2)

and

ω′2
0 = gk′ tanh k′h′ . (9.5.3)

For nondimensionalization it is convenient to use k′ = k′
mn as the scaling

wavenumber so that in dimensionless variables Eqs. (9.5.1)–(9.5.3) become

φ0 = −iω0
cosh(z + h)

sinh h
Jn(r) sin nθ , (9.5.4)

J ′
n(a) = 0 , (9.5.5)

ω0 = tanhh , (9.5.6)

where

a = k′
mna′ , h = k′

mnh′ , and ω0 =
ω′

0

(gk′
mn)1/2

. (9.5.7)

Let U , V , and W denote the dimensionless components of the rotational
velocity in the r, θ, and z directions, respectively. Divide the boundary layer
into two parts, that is, the side wall and the bottom layer, designated by
the subscripts W and B, and let the boundary-layer coordinates be

ξW =
a − r

ε
and ξB =

z + h

ε
. (9.5.8)
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The first-order boundary layer solutions are

U0W = 0 , (9.5.9a)

V0W = −
(

1
r

∂φ0

∂θ

)
r=a

Γ(ξW )

= iω0
n

a
Jn(a)

cosh(z + h)
sinh h

coshnθΓ(ξW ) , (9.5.9b)

W0W = −
(

∂φ0

∂z

)
r=a

Γ(ξW )

= iω0Jn(a)
sinh(z + h)

sinh h
sin nθΓ(ξW ) (9.5.9c)

near the side wall, and

U0B = −
(

∂φ0

∂r

)
z=−h

Γ(ξB)

=
iω0

sinh h
J ′

n(r) sin nθΓ(ξB) , (9.5.10a)

V0B = −
(

1
r

∂φ0

∂θ

)
z=−h

Γ(ξB)

=
iω0

sinh h

n

r
Jn(r) cos nθΓ(ξB) , (9.5.10b)

W0B = 0 (9.5.10c)

near the bottom, with Γ(ξ) being Stokes’ solution as defined in Eq. (9.4.21).
The induced velocity normal to the side-wall boundary layer is obtained by
integrating the continuity equation (in polar coordinates)

[n · q1]SW = U1W =
∫ ξW

∞

(
1
a

∂V0W

∂θ
+

∂W0W

∂z

)
dξW

= −(1 − i)
(ω0

2

)1/2
(

n2

a2
− 1
)

cosh(z + h)
sinh h

sin nθJn(a)Γ(ξW ) ,

(9.5.11)

where use is made of the fact that

−iω0

∫ ξ

∞
Γ(ξ) dξ = −1(1 − i)

(ω0

2

)1/2

Γ(ξ) .
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Similarly, the normal velocity in the bottom boundary layer is

[n · q1]SB = W1B =
∫ ξB

∞

(
∂U0B

∂r
+

U0B

r
+

1
r

∂V0B

∂θ

)
dξB

=
iω0

sinh h
sin nθ

(
J ′′

n +
J ′

n

r
− n2

r2

)∫ ξB

∞
Γ(ξB) dξB

= −(1 − i)
(ω0

2

)1/2 sinh nθ

sinh h
Jn(r)Γ(ξB) . (9.5.12)

Now the S integral in Eq. (9.4.22) or (9.4.23) is composed of two parts∫∫
S

φ∗
0[n · q1] dS

=
∫∫

SW

φ∗
0[n · q1] dS +

∫∫
SB

φ∗
0[n · q1] dS

=
∫ 0

−h

dz

∫ 2π

0

[
iω0

cosh(z + h)
sinh h

Jn(a) sin nθ

]

×
[
−(1 − i)

(ω0

2

)1/2
(

n2

a2
− 1
)

cosh(z + h)
sinh h

Jn(a) sin nθ

]
a dθ

=
∫ 2π

0

dθ

∫ a

0

[
iω0Jn(r)

sin nθ

sinh h

][
−(1 − i)

(ω0

2

)1/2

Jn(r)
sin nθ

sinh h

]
r dθ .

(9.5.13)

If the orthogonality property∫ a

0

rJ2
n(r) dr =

1
2
(a2 − n2)J2

n(a) if J ′
n(a) = 0 (9.5.14)

is used, Eq. (9.5.13) becomes∫∫
S

φ∗
0[n · q] dS = −(1 + i)ω0

(ω0

2

)1/2
(

n2

a2
− 1
)

aJ2
n(a)

sinh2 h

π

4
(sin 2h + 2h)

− (1 + i)ω0

(ω0

2

)1/2 a2 − n2

2
πJ2

n(a)
sinh2 h

= −(1 + i)ω0

(ω0

2

)1/2 π

4
J2

n(a)
sinh2 h

(a2 − n2)

×
[
2 − 1

a
(sinh 2h + 2h)

]
. (9.5.15)
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From Eqs. (9.5.4) and (9.5.9c) the second integral in Eq. (9.4.22) along the
free surface is∫∫

SMW

φ∗
0W0

dS

ε
= −
∫ 2π

0

a dθ

∫ ∞

0

dξW

[
iω0

cosh h

sinh h
Jn(a) sin nθ

]
· [−iω0Jn(a) sin nθ]Γ(ξW )

= πaJ2
n(a)

1 + i

2(1
2ω0)1/2

, (9.5.16)

where the dispersion relation has been applied.
Finally, the denominator of Eq. (9.4.22) is∫∫

SF

|φ0|2 dS =
∫ 2π

0

dθ

∫ a

0

ω2
0

cosh2 h

sinh2 h
sin2 nθrJ2

n(r) dr

=
π

ω2
0

1
2
(a2 − n2)J2

n(a) . (9.5.17)

When Eqs. (9.5.15)–(9.5.17) are substituted into Eq. (9.4.22), the dimen-
sionless frequency correction ω1 is obtained:

ω1 = −(1 + i)
(ω0

2

)1/2
[

a2 + n2

2a(a2 − n2)
+
(

1 − h

a

)
1

sinh 2h

]
(9.5.18)

where the dispersion relation is again applied.
Returning to dimensional variables, we now have

ω = ω0

{
1 − k′δ

1 + i

2

[
(k′a′)2 + n2

2k′a′((k′a′)2 − n2)
+
(

1 − h′

a′

)
1

sinh 2kh′

]}
(9.5.19)

where δ = (2ν/ω0)1/2 is the boundary-layer thickness and ω0 and k′ are the
eigenfrequency and the eigen wavenumber, respectively, of a specific mode
(m, n). The imaginary part which gives the damping rate was first derived
by Case and Parkinson (1957) by using Eq. (9.3.9). If k′h′ is large, the
second term in Eq. (9.5.19) becomes insignificant. On the other hand, for
a shallow basin where k′h′ and h′/a′ are small, the bottom boundary layer
becomes dominant.

It is interesting to examine the energy details for a side-wall boundary
layer, using the explicit solution to check Eq. (9.3.11).
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The average work done by the pressure on the strip of surface SMW is,
omitting the factor exp[−2ω(i)t],

Re
∫ 2π

0

a dθ

∫ ∞

0

[p∗0]z=0,r=a[wz ]z=0 dξW

= Re a

∫ 2π

0

dθ[−ω0φ
∗
0]z=0,r=a

∫ ∞

0

[W0W ]z=0 dξW

= −πa
(ω0

2

)1/2

J2
n(a) . (9.5.20)

The dynamic pressure and the potential part of the velocity are out of phase
to the present order of approximation. The work done by the pressure on
the interface between the inviscid interior and the side-wall layer is

Re
∫ 0

h

dz

∫ 2π

0

a

[
p∗0

(
−∂φ1

∂r

)]
r=a

dθ

= Re
∫ 0

−h

dz

∫ 2π

0

a[−iω0φ
∗
0U1W ]r=a dθ

= −πa

2

(ω0

2

)1/2
(

1 +
2h

sinh 2h

)(
n2

a2
− 1
)

J2
n(a) . (9.5.21)

Note that the outward normal points toward the z axis. Finally, the average
rate of viscous dissipation in the side-wall layer is

Re
∫ 0

−h

dz

∫ 2π

0

a dθ

∫ ∞

0

(∣∣∣∣∂V0W

∂ζW

∣∣∣∣2 +
∣∣∣∣∂W0W

∂ζW

∣∣∣∣2
)

dξW

= πa
(ω0

2

)1/2

J2
n(a)
[
1
2

(
n2

a2
− 1
)(

1 +
2h

sinh 2h

)
+ 1
]

. (9.5.22)

The three energy terms in Eq. (9.3.11) add up precisely to zero, as estimated
by Eq. (9.3.10).

Note from Eq. (9.5.14) that n2 < a2 = (k′
mna′)2 for all modes.

We conclude from Eq. (9.5.21) that the side-wall layer receives power
from waves through the meniscus boundary layer above, spends only a
part of it on internal dissipation, and gives up the rest to the inviscid
interior!

A similar calculation for the bottom layer confirms Eq. (9.3.12) with no
surprises.

Other interesting examples are left as exercises.
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Exercise 9.2

Deduce for a progressive wave advancing down a uniform rectangular
channel, that

k1 =
1 + i

21/2

k0

b

(
2k0b + sinh 2k0h

2k0h + sinh 2k0h

)
(9.5.23)

(Hunt, 1952) where 2b is the dimensionless width, h is the dimensionless
depth, and k0 tanh k0h = 1. Discuss separately the energy balance in the
boundary layers near the side wall and near the bottom.

Exercise 9.3

Get the frequency correction due to viscosity for the standing wave in a
rectangular basin

φ0 =
−iω0

sinh h
cosh(z + h) cos

nπx

a
cos

mπy

b
. (9.5.24)

The physical wavenumber used for normalization is

k2
mn =

(nπ

a′
)2

+
(mπ

b′
)2

. (9.5.25)

Show that

ω1 = −(1 + i)
(ω0

2

)1/2
{

1
a

[
2 −
(nπ

a

)2]
+

1
b

[
2 −
(mπ

b

)2]

+
1

sinh 2h

[
1 − 2

h

a

(nπ

a

)2

− 2
h

b

(mπ

b

)2
]}

(9.5.26)

(Keulegan, 1959). Discuss separately the energy balance in the boundary
layers near the side wall and near the bottom.

9.6 The Effect of Air on the Damping of
Deep Water Waves

An additional factor, which has not received much attention until recently
(Dore, 1978), is the presence of air above the water surface. Despite its
relatively small density and viscosity, air, which must be moved by the
waves, can contribute as much dissipation as water if the water depth is
great and the side-wall effects are negligible.
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The physical argument, due to Dore, is as follows. Let the physical
properties of air be distinguished by primes. In deep water waves the rate
of dissipation in water is of the order O(µU2/λ), where U is the typical
orbital velocity in the waves. On the free surface, the tangential motion of
the water particles induces a Stokes boundary layer in air. Because of the
much smaller density of air, the motion of water particles near the free
surface is hardly affected and the free-surface boundary layer in water
remains ineffective. The rate of dissipation in the air boundary layer, whose
thickness is δ′ = (2ν′/ω)1/2, is of the order O(µ′U ′2/δ′). The ratio of the
two dissipation rates is

O

(
µ′λ
µδ′

)
. (9.6.1a)

Although µ′/µ � 1, λ/δ′ is much greater than unity for sufficiently long
waves so that the ratio (9.6.1a) can be of order unity. Using definitions and
the dispersion relation ω2 = gk, we may rewrite ratio (9.6.1a)

µ′

µ

(
ρ′

µ′

)1/2 ( g

λ

)4

λ . (9.6.1b)

Since the following values are representative

water air

µ = 1.3 × 10−2 g/cm − s µ′ = 1.76 × 10−4 g/cm − s

ρ = 1 g/cm3
ρ′ = 1.25 × 10−3 g/cm3

the ratio (9.6.1b) is small only if λ is much less than 10 cm. Thus, in a
natural environment where the range of interest is λ > 10 cm, air cannot
be ignored.

If one only wishes to find the damping rate, the simplest procedure is to
start from the potential-theory result for water and calculate the boundary
layer in the air to ensure that there is no slip between air and water. The
rate of dissipation within this boundary layer may be added to that within
the main body of water to give the total damping rate. This approach
was used by Dore. However, we sketch below a perturbation analysis with
a view to obtaining the damping rate as well as the real frequency shift.
With two fluids the algebra is lengthy, but straightforward.

Defining ε = k(ν/ω)1/2, ε′ = k(ν′/ω)1/2, we first note that µ′/µ =
10−2 � 1 and ρ′/ρ = 10−3 � 1, but that
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ε′

ε
=
(

ν′

ν

)1/2

=
(

µ′ρ
µρ′

)1/2

= O(1) .

Let us assume for the convenience of ordering that

O(ε) = O(ε′) = O(ε̄) ,

α =
µ′

µ
= O(ε̄) and β =

ρ′

ρ
= O(ε̄) .

(9.6.2)

In terms of the normalized variables defined in Eq. (9.3.6), the linearized
dimensionless equations are

u = ∇Φ + U , u′ = ∇Φ′ + U′ , (9.6.3)

with

∇2Φ = 0 , ∇2Φ′ = 0 , (9.6.4)

∂U
∂t

= ε∇2U ,
∂U′

∂t
= ε′2∇2U , (9.6.5)

∇ ·U = 0 , ∇ ·U′ = 0 . (9.6.6)

The kinematic boundary conditions on the mean free surface z = 0 are

∂ζ

∂t
= W +

∂Φ
∂z

, (9.6.7a)

∂ζ

∂t
= W ′ +

∂Φ′

∂z
, (9.6.7b)

U = U ′ . (9.6.8)

The dynamic stress conditions on the free surface are as follows:
normal:

∂Φ
∂t

+ ζ + 2ε2

(
∂W

∂z
+

∂2Φ
∂z2

)

= β

[
∂Φ′

∂t
+ ζ + 2ε′2

(
∂W ′

∂z
+

∂2Φ′

∂z2

)]
, (9.6.9)

tangential:

2
∂2Φ
∂x∂z

+
∂U

∂z
+

∂W

∂x
= α

(
2

∂2Φ′

∂x∂z
+

∂U ′

∂z
+

∂W ′

∂x

)
. (9.6.10)
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In addition, Φ, Φ′ → 0 and U, U′ → 0, when z → −∞, ∞, respectively.
We now assume the following expansions:

Φ = (φ0 + ε̄φ1 + ε̄2φ2 + · · · )eiθ , (9.6.11)

U = (U0 + ε̄U1 + ε̄2U2 + · · · )eiθ , (9.6.12)

W = (ε̄W1 + ε̄2W2 + · · · )eiθ , (9.6.13)

ζ = (ζ0 + ε̄ζ1 + ε̄2ζ2 + · · · )eiθ , (9.6.14)

and similar expansions for Φ′, U ′, and W ′, with

θ = x − ωt , (9.6.15)

ω = ω0 + ε̄ω1 + ε̄2ω2 + · · · , (9.6.16)

and

φ0 = φn(x, z)φ′
n = φ′

n(x, z) and Un = Un

(x, z

ε

)
, U ′

n = U ′
n

(
x,

z

ε′
)

.

(9.6.17)

The details of the perturbation analysis are very similar to those
of Section 9.4. In the following chart we only indicate the procedure of
obtaining ω2:
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At each order, the potential parts φn and φ′
n are subject to the nor-

mal components of the kinematic and dynamic conditions, whereas the
tangential components of the rotational velocity are subject to the tan-
gential components of the same conditions. The vertical components Wn

and W ′
n follow from continuity. We leave it for the reader to verify

that

ω0 = 1 , ε̄ω1 = −β ,

and

ε̄2ω2 =
1
2

[
β2 − 1√

2

(
α

ε2

ε′
+ βε′

)]
− i

[
2ε2 +

1√
2

(
α

ε2

ε′
+ βε′

)]

=
1
2

[(
ρ′

ρ

)2

−
√

2ε

(
µ′ρ′

µρ

)1/2
]
− i

[
2ε2 +

√
2ε

(
µ′ρ′

µρ

)1/2
]

.

(9.6.18)

The imaginary part of ε̄2ω2 gives the damping rate, as found by Dore.
To have some numerical ideas, Dore has computed the time required for
the wave amplitude to decrease by a factor of e−1, for two examples:

Wavelength Air–Water Vacuum–Water

1 m 75.9 min 161.8 min
100 m 30.5 days 3.1 years .

The importance of air is evident. A more complete picture is seen in
Fig. 9.6. The real part of the frequency change which shows the effect
on the phase is

Re (ε̄ω1 + ε̄2ω2) =
ρ′

ρ
+

1
2

[(
ρ′

ρ

)2

−
√

2ε

(
µ′ρ′

µρ

)1/2
]

. (9.6.19)

In open seas, the coupling of air and water may involve a turbulent
transfer of energy and momentum near the interface; this is an important
part of the subject of wave generation by wind (Phillips, 1977). The
intermittent breaking of large crests also contributes to the damping of
random sea waves. However, these aspects are too complicated to be
entered here.
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Figure 9.6: Viscous attenuation rates of surface waves in deep water with a clean sur-
face. Solid curve: air–water interface; Dashed curve: vacuum–water interface (from
Dore, 1978, Geophys. Astrophys. Fluid Dyn. Reproduced by permission of Gordon and
Breach Scientific Publishers).

9.7 The Turbulent Boundary Layer Near a
Rough Bottom

9.7.1 The Boundary-Layer Structure

When the wave amplitude becomes large, the laminar Stokes layer near a
smooth wall can be unstable to infinitesimal disturbance and transition to
turbulence is possible. According to Li (1954) who has conducted experi-
ments with an oscillatory plate, the critical condition is A0/δ = 280, where
A0 is the orbital amplitude just outside the boundary layer. In nature the
roughness at the sea bottom enhances turbulence. Jonsson (1966) has given
the following empirical criteria for turbulence:

RE =
ωA2

0

ν
> 1.26 × 104 and

A0

kN
≥ 4

π
(2RE)1/2 ,
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where RE is the Reynolds number and kN is the typical roughness height.1

Assuming fully developed turbulence, Kajiura (1964) has proposed a semi-
theoretical model. Specifically, an eddy viscosity νe is assumed to relate the
stress to the velocity gradient within the bottom boundary layer, that is,

τxz

ρ
=

τ

ρ
= νe

∂u

∂z
, (9.7.1)

where

νe = κ|u∗|z . (9.7.2)

The coefficient κ is the Kármán constant, which is approximately equal
to 0.4 for steady boundary layers in clean water, while u∗ is the friction
velocity, which is formally related to the bottom stress τB by

τB = ρ|u∗|u∗ . (9.7.3)

By definition, u∗ depends on time also. When Eq. (9.7.1) is combined with
the momentum equation

∂u

∂t
=

∂UI

∂t
+

∂

∂z

(
κ|u∗|z ∂u

∂z

)
, (9.7.4)

the mathematics of solving u becomes nonlinear. One simplification is
to replace |u∗| above by a representative constant. For example, Kajiura
invokes the idea of equivalent linearization and introduces the constant ũ∗
such that

τB = ρũ∗u∗ (9.7.5)

gives the same rate of dissipation as Eq. (9.7.3). Assuming u∗ to be sinu-
soidal with amplitude û∗, we can easily verify that

ũ∗ =
8
3π

û∗ . (9.7.6)

Alternatively, Grant (1977), and Grant and Madsen (1979) assume

τB = ρū∗u∗ , (9.7.7)

where ū∗ is defined by the average bottom stress τ̄B according to

ū∗ =
(

τ̄B

ρ

)1/2

. (9.7.8)

1The subscript N is for Nikuradse whose experiments on roughness in steady turbulent
flows are well known.
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From Eq. (9.7.6) and the average of Eq. (9.7.3),

τ̄B = ρ|u∗|u∗ =
1
2
ρû2

∗ =
1
2
τ̂B , (9.7.9)

where τ̂B denotes the amplitude of τB . It follows that

√
2ū∗ = û∗ =

3π

8
ũ∗ . (9.7.10)

We may now solve Eq. (9.7.4) for u subject to the boundary conditions

u → UI , z ∼ ∞ , (9.7.11)

u = 0 , z = z0 , (9.7.12)

where z0 denotes the effective position of the bottom and is an empirical
constant which depends on the roughness. The solution for a simple
harmonic wave is

u = Re

[
U0e

−iωt

(
1 − ker 2ζ1/2 − i kei 2ζ1/2

ker 2ζ
1/2
0 − i ker 2ζ

1/2
0

)]
, (9.7.13)

where

ζ =
z

l
, ζ0 =

z0

l
, l =

κū∗
ω

, (9.7.14)

and ker(x) and kei(x) are the real and imaginary parts of K0(xe−iπ/4),
respectively. The above solution is essentially the same as Kajiura (1964) if
ū∗ is replaced by (3π/8(2)1/2)ũ∗ (Grant, 1977; Grant and Madsen, 1979).

The friction velocity, so far unknown, may be found by combining
Eqs. (9.7.1) and (9.7.2) and the original definition (9.7.3); the result is

u∗ = κz
∂u

∂z

∣∣∣∣
z=0

. (9.7.15)

Using the approximation

ker 2ζ1/2 − i kei 2ζ1/2 = −1
2

ln ζ − 0.5772 +
i

4
+ O(ζ ln ζ) (9.7.16)

for small ζ, we obtain

u∗ = Re
[κ
2
U0e

−iωt(ker 2ζ
1/2
0 − i kei 2ζ

1/2
0 )−1

]
, (9.7.17)

which defines both the magnitude and the phase of u∗. In particular, the
magnitude is



June 21, 2005 16:57 Theory and Applications of Ocean Surface Waves bk04-002

486 Viscous Damping in Small-Amplitude Waves

û∗ =
√

2ū∗ =
κU0

[(ker 2ζ
1/2
0 )2 + (kei 2ζ

1/2
0 )2]1/2

. (9.7.18)

As soon as z0 is prescribed, Eq. (9.7.18) gives ū∗, implicitly, after which u

is completely known. For a natural sea bottom, however, it is not an easy
matter to estimate z0 because the bottom roughness depends not only on
the sand grains but also on the ripples.

Extensive experiments on artificially roughened bottoms have been
performed by Jonsson (1966) (see also Jonsson and Carlsen, 1976) and
Horikawa and Watanabe (1968). These authors measured u as a function
of x and t and calculated νe by

νe = −
[∫ z

∞
dz

∂

∂t
(u − UI)

/
∂u

∂z

]
. (9.7.19)

At any fixed instant of the wave period the eddy viscosity was found to
increase from zero to a maximum value and then to decrease again with
height. At some instants, however, negative eddy viscosity was found over
part of the height. The magnitude of νe could be as much as 100 cm2/s,
and 20–40 cm2/s was the typical range. At a fixed z, νe oscillated in time
at twice the fundamental frequency. Horikawa and Watanabe also found
that the measured velocity typically contained higher harmonics. The eddy
viscosity, calculated from Eq. (9.7.19) by using the first harmonic only,
varied widely over a wave period, the typical range being −15 cm2/s to
+15 cm2/s. The temporal dependence of νe is not yet well understood and
does not strictly conform with the theory given here.

Grant (1977) and Grant and Madsen (1979) have made a careful com-
parison of the theoretical (hence only first harmonic) velocity profile with
the available experiments of Jonsson. With z0 properly selected, they found
Eq. (9.7.13) to give a fairly good prediction for the magnitude but not the
phase of u. Furthermore, they have extended this type of theory to include
currents (Grant and Madsen, 1979).

9.7.2 The Friction Coefficient

A practical motivation for studying bottom stresses is to find the friction
coefficient fw defined by

τB =
1
2
fwρ|UI |UI , (9.7.20)
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which may be used to find the effect on the wave field outside the boundary
layer.

Taking the maximum of both sides of Eq. (9.7.20) and using Eq. (9.7.10),
we get

û∗ =
1
2
f1/2

w U0 (9.7.21)

so that Eq. (9.7.18) is also an implicit equation for fw in terms of U0. Grant
(1977) lets

U0 = A0ω and z0 =
kN

30

for fully rough turbulent flows, where A0 is the inviscid orbital amplitude
just above the boundary layer and kN is the characteristic bed roughness
height.2 Upon further using the approximation (9.7.16) for small ζ0, he has
shown that

1

4.06f
1/2
w

+ log10

1

4f
1/2
w

= log10

A0

kN
− 0.325 , (9.7.22)

which is of the form given by Jonsson (1966) except for the last constant
being −0.08, and implied by Kajiura (1964). Figure 9.7 shows the variations
of fw versus A0/kN , according to Eq. (9.7.22) [Jonsson (1966) and Kajiura
(1968) who used a more complex mode of νe]. The empirical curve of
Kamphuis (1975) is also shown.

The length scale l is clearly a characteristic length of the boundary layer.
Grant and Madsen found that at the height 2l the velocity u reached 90%
of the inviscid value UI . Thus, they defined the turbulent boundary-layer
thickness δt to be 2l which implied from Eqs. (9.7.14) and (9.7.21) that

δt

A0
= 0.4f1/2

w . (9.7.23)

This ratio varied from 0.04 ∼ 0.4 for A0/kN = 103 ∼ 1.

9.7.3 Bottom Friction on the Damping of Standing
Shallow-Water Waves in a Basin

As an application of the foregoing results, we consider the effect of friction
on standing waves in shallow water.

2It must be pointed out that in natural surroundings, kN cannot be defined unequivo-
cally.
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Figure 9.7: Comparison of wave friction factor formulas of Kamphuis (1975), Jonsson
(1966), Kajiura (1968), and Grant (1977) (from Grant, 1977).

Let us recall the continuity equation

∂ζ

∂t
+ ∇ · (uh) = 0 , (9.7.24)

and add the bottom stress to the momentum equation

∂u
∂t

= −g∇ζ − τB

ρh
. (9.7.25)

Multiplying Eq. (9.7.25) by uh, we get

∂

∂t

(
1
2
u2h

)
= −g∇ · (uhζ) + gζ∇ · (uh) − τB · u

ρ

= −g∇ · (uhζ) − ∂

∂t

(
gζ2

2

)
− τB · u

ρ

after using Eq. (9.7.24). Integrating over the entire basin area S and
invoking the no-flux boundary condition, we get

∂

∂t

∫∫
S

(ρ

2
u2h +

ρ

2
gζ2
)

dx dy = −
∫∫

S

τ B · u dx dy . (9.7.26)

Since the integral on the left is the total energy E, Eq. (9.7.26) simply states
that the energy decay rate is equal to the rate of work done at the bottom.
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Using Eq. (9.7.20), invoking equivalent linearization and neglecting
possible phase difference between τB and u, we get

τB =
4ρ

3π

fwU0

h0
uh , (9.7.27)

where U0h/h0 is the amplitude of u which, in general, depends on x. For
estimation we shall simply redefine U0 as a constant typical of u. Substi-
tuting Eq. (9.7.27) into Eq. (9.7.26) and taking the time average over a
wave period, we find

∂E

∂t
=

4ρ

3π

fwU0

h0

∫∫
S

u2h dx dy =
4
3π

fwU0

h0
E , (9.7.28)

where we have assumed that the friction is small enough, so that the
kinetic and potential energies are equal as in the inviscid limit (equipartition
theorem, Appendix 9.A). Equation (9.7.28) implies that energy damps out
according to

E(t) = E(0)e−αt with α =
4
3π

fwU0

h0
. (9.7.29)

To have a quantitative idea of the damping rate we take h = 10 m, U0 =
(A/h)(gh)1/2 ∼= 0.1 m/s and f = 0.025. It follows that α ∼ 10−4 s−1.

It is now opportune to assess the possible importance of bottom friction
in harbor resonance. For the open bay of Section 5.6, the radiation decay
rate can be estimated from Eq. (5.6.22), Section 5.6, to be ωa/L where
a is the half-width and L the length of the bay. If we take a = 100 m,
L = 5000 m, and h = 10 m, the lowest resonant wavenumber is k0 = π/2L

so that ω = (gh)1/2k0 = (π/2L)(gh)1/2 = π× 10−3 s−1. The corresponding
radiation damping rate is about π/5 × 10−4 s−1 which is comparable to
the bottom friction. Thus, in practical computations of harbor oscillations,
bottom friction may be of importance.

In principle, U0 represents the local velocity amplitude and is unknown
a priori. Therefore, to include turbulent bottom friction in a general wave
problem such as harbor oscillations would involve nonlinear mathematics
and massive computations. In practice, one does not have sufficient infor-
mation of the bottom roughness to warrant such an effort; the coefficient
fwU0/h0 in Eq. (9.7.27) is often taken to be a constant instead.

Over a natural sea bottom there are other physical factors which may
contribute to the damping of waves. An important contribution to the
bottom roughness is the sand ripples formed naturally by waves. Accord-
ing to an experimental study by Vitale (1979), ripples may amount to
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25–34 percent of the total friction on a natural seabed. A theoretical model
which accounts for energy losses from vortex shedding at the sharp fixed
ripple crests has been advanced by Longuet–Higgins (1981). Smith and
McLean (1977) and Grant and Madsen (1982) have developed semiempir-
ical theories which include both the form drag and the movement of the
sand ripples. Another factor is the scattering by topographical irregularities
with dimensions as large as the typical wavelength, as discussed in the last
Chapter. In addition, water percolates into the sea bottom and loses en-
ergy due to friction within the pores. This kind of loss is, however, difficult
to estimate; various hypotheses regarding the solid skeleton (rigid, elastic,
viscoelastic, porous or nonporous, etc.) have been proposed. Since the per-
tinence of the hypotheses must vary widely from one locale to another, we
do not pursue it here.

Appendix 9.A An Equipartition Theorem

For simple harmonic infinitesimal waves

u = ∇φe−iωt , (9.A.1)

the time-averaged kinetic energy is

1
2

∫∫∫
V

ρ uiui dV =
1
4

∫∫∫
V

ρ(∇φ · ∇φ∗) dV . (9.A.2)

The potential energy is

1
2

∫∫
SF

ρgζ2 dS =
ρg

4

∫∫
SF

|η|2 dS =
ρ

4
ω2

g

∫∫
SF

|φ|2 dS (9.A.3)

after the kinematic boundary condition is invoked. By virtue of the identity
(9.4.23), the right-hand-sides of Eqs. (9.A.2) and (9.A.3) are equal, implying
that

1
2
ρ

∫∫∫
V

uiui dV =
1
2

∫∫
SF

ρgζ2 dS =
1
2
E . (9.A.4)

Thus, the total energy is equally divided between kinetic and potential
energies. This is an example of the equipartition theorem which is valid in
many other conservative physical systems.

The reader should try to check the equipartition theorem in standing
waves by using the explicit formulas for u, ν, and ζ.
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Preface to Part 2

This is Part Two of the expanded edition of The Applied Dynamics of
Ocean Surface Waves first published in 1982 by Wiley-InterScience. In this
volume our focus is on the nonlinear aspects of water waves, leaving the
linear theories in Part One.

During the last quarter century, the most important advances have been
on the effects of nonlinearity, the perennial hallmark of water-wave dynam-
ics. In comparison with the original edition, this volume now contains sev-
eral new sections, two new chapters as well as new exercises. In Chapter 12
on nonlinear long waves in shallow water, we have now added a discussion
on the radiation of upstream solitons when a slender-body moves in a shal-
low channel at a speed near the speed

√
gh of the shallow-water waves. This

phenomenon demonstrates that steady forcing can yield unsteady motion
when nonlinearity is involved. Another new section treats the evolution
of a soliton propagating over a randomly rough seabed, as a sequel to the
linearlized problem for a sinusoidal wavetrain over a rough seabed of finite
depth. The combined effects of localization and nonlinearity are analyzed
as a first step toward the more complicated random scattering of a tran-
sient tsunami. This topic should be further developed for wave-forecasting
models for coastal seas.

In Chapter 13 on weakly nonlinear narrow-banded waves in finite depth
or deep water, we have added new material on the theory of infragravity
waves which are long waves generated by short-wave groups. This topic
is of interest to surf-beats and harbor resonance. As an application of the
famed nonlinear Schrödinger equation for the wave envelope, we discuss a
problem stimulated by the satellite sensing of long and narrow wakes, i.e.,
the presence of soliton envelopes in the wake of a ship. Finally the analytical
theory of nonlinear diffraction by a large cylinder, a problem which was

vii
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not solved satisfactorily at the time of the first edition, is described at
the end.

One of the two major additions is Chapter 14 (by M. Stiassnie) on
the nonlinear dynamics of broad-banded surface waves, an important topic
which is at the core of modern wave forecasting but was not dealt with
in the original edition. Enormous advances have taken place in the last
two or three decades in the nonlinear wave-wave interactions of broad spec-
tra. In particular the celebrated mechanism of quartet resonance due to
O. M. Phillips and the kinetic equation of Klaus Hasselmann are the founda-
tions of current wave-forcasting models. Although originated from different
angles, these ingredients can be unified by the powerful theory of weak tur-
bulence due to V. E. Zakharov. The mathematics involved in Zakharov’s
theory is rather daunting. In view of its importance, we have presented a
detailed discussion of its essentials in order to provide a gateway for new-
comers to the field.

Despite the many theoretical developments, computational tools have
become indispensable to comprehensive understanding and practical appli-
cations of nonlinear waves dynamics. In Chapter 15 (by D. K.-P. Yue), we
present an extensive survey of two powerful methods for nonlinear wave-
wave and wave-body interaction problems: the high-order spectral method
and its variations, and the mixed-Eulerian-Lagrangian method. For each
of the methods, the theoretical development and numerical implementation
are described in detail, and the scope and efficacy in applications are illus-
trated in specific examples. The high-order spectral method is based on
a Zakharov-equation mode-coupling perturbation idea but generalized in a
direct computational framework to handle high nonlinear orders and very
large numbers of (free) wave modes. Using (global) spectral basis functions
and a pseudo-spectral approach exploiting fast transform techniques, the
method obtains near linear computational effort and exponential conver-
gence with perturbation order and number of wave modes. Applications of
the method are presented for nonlinear evolutions of wave trains and groups
and ship wakes, and nonlinear interactions of surface waves with currents,
with bottom ripples, and with submerged bodies. For complex geometries,
we present a versatile extension of the method, the high-order spectral ele-
ment method, that require only element rather than global basis functions.
As example, application of this method to the study of instability of non-
linear standing wave in a tank is given. The mixed-Eulerian-Lagrangian
method is a useful method for steep and even overturning waves. The
method obtains the nonlinear evolution of the free surface by following
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surface Lagrangian point and solves the field equation using a boundary-
integral equation formulation in the Eulerian flow variables. Development
of the method and illustrative applications in two and three dimensions are
presented. The latter include two- and three-dimensional plunging breaking
waves, development of steep crescent waves, withdrawal from a submerged
sink, plunging wave impact on a wall, and high-frequency nonlinear diffrac-
tion forces on a vertical cylinder in waves.

Among the major areas where significant progresses have been made
but are not covered in this edition, we mention in particular the surf zone
dynamics. A few key references are added at the end of Chapter 11. The
topic of the wave-induced stresses in a poroelastic seabed, which was de-
scribed in the last chapter of the old edition, has been deleted in the present
edition.

Many challenges remain in the nonlinear physics and mathematics of
water waves, and in the interactions of water waves with their surround-
ings. For example, we are still far from the full understanding and pre-
diction of breaking waves. The complex interactions of surface waves with
the atmosphere and with erodible seabeds await the combined efforts of re-
searchers from several disciplines. The catastrophic Indian Ocean tsunami
on December 26, 2004 highlights the urgent needs for reliable modelling of
the nonlinear processes of wave runup and rundown along the coast. Im-
provements of tsunami warning systems and plans for evacuation can only
come from better theories for forcasting or estimating disasters from the
sea waves. It is the hope of the authors that this book can help stimu-
late greater efforts by fellow researchers and future students, not only to
overcome old challenges, but also to open new vistas of both theory and
applications.

Chiang C. Mei, Cambridge, Massachusetts, USA.
Michael Stiassnie, Haifa, Israel.
Dick K. P. Yue, Cambridge, Massachusetts, USA.
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Mass Transport
Due to Viscosity 10
10.1 Introduction

In addition to pure fluctuations, waves can induce currents which do not
change their directions during a time long in comparison with a wave period.
Although the current velocity is often weak, its persistence can result in the
transport of bottom sediments. In order to understand the changes of the
sea bottom, it is necessary to acquire a good understanding of currents
generated by waves.

Two different types of currents that owe their existence to wave fluctu-
ations are of interest to us. In this chapter we examine the mass transport
within the boundary layer near the sea bottom when the wave field above is
essentially inviscid and irrotational. In the next chapter we shall examine
the longshore current and its variations in and near the surf (breaking) zone
of a gently sloping shore. In both cases the driving mechanism is the steady
momentum flux due to the convective inertia of the waves, and dissipation
plays a central role in maintaining the steady drift.

It was first discovered in acoustics that steady currents could be induced
near a solid wall adjacent to an oscillating fluid. This phenomenon of
acoustic streaming makes standing waves in tubes visible by the accu-
mulation of dust particles at the nodes. Rayleigh (1883) first analyzed
the phenomenon theoretically and determined Eulerian streaming in the
boundary layer. Extension to water waves propagating in one direction
was made by Longuet–Higgins (1953) who pointed out that Stokes drift
had to be added to Eulerian streaming velocity in order to find the particle
(Lagrangian) drift which is now known as the mass transport velocity. Hunt
and Johns (1963) deduced formulas for the induced Eulerian streaming in
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Figure 10.1: Local coordinates near the bottom.

two-dimensional waves and for Lagrangian drift at the outer edge of the
boundary layer. Carter, Liu, and Mei (1973) gave Lagrangian drift through-
out the boundary layer. While all of the theories above have been based
on the assumption of constant viscosity, Longuet–Higgins (1958) and Johns
(1970) have proposed theories of vertically varying eddy viscosity. Because
of our incomplete knowledge of the turbulent boundary layer and because
the variable eddy viscosity theory has not produced qualitatively different
results, we shall only discuss the model of constant viscosity in this chapter.

10.2 Mass Transport Near the Sea Bottom —
General Theory

It is convenient to adopt a local coordinate system (x, y, z) with x, y in
the plane of the boundary layer and z pointing normally into the inviscid
region as shown in Fig. 10.1. For small bottom slopes, z is nearly in the
vertical direction. By continuity, the normal velocity component w is small
so that w/u and w/v = O(kδ), where k is the typical wavenumber and δ is
the boundary-layer thickness. Let A be the typical orbital amplitude near
the bottom, then

ν(∂2/∂x2 + ∂2/∂y2)
[
u
v

]
∂
∂t

[
u
v

] ∼ O(kδ)2 ,

(u ∂
∂x + v ∂

∂y )
[
u
v

]
∂
∂t

[
u
v

] ∼ O(kA) .

As long as 1 � kA � (kδ)2, Navier–Stokes equations can be approxi-
mated by

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (10.2.1a)
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+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
+ ν

∂2u

∂z2
, (10.2.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂x
+ ν

∂2v

∂z2
, (10.2.1c)

0 = −1
ρ

∂P

∂z
− g . (10.2.1d)

In the last equation of vertical momentum, we have ignored terms of the
order O(kδ). Thus, p = P − ρgz does not vary in the direction normal to
the boundary layer and must be the same as its value in the inviscid flow
field just outside. Consequently,

−1
ρ

∂p

∂x
=

∂UI

∂t
+ UI

∂UI

∂x
+ VI

∂UI

∂y
, (10.2.2a)

−1
ρ

∂p

∂y
=

∂VI

∂t
+ UI

∂VI

∂x
+ VI

∂VI

∂y
, (10.2.2b)

where UI and VI are the tangential components of the inviscid velocity field
at the wall, with WI being zero. In this section UI and VI are assumed to
be prescribed. Let the total velocity components in the boundary layer u

and v be expanded as a perturbation series with kA as the implied small
parameter:

u = u1 + u2 + · · · (10.2.3a)

v = v1 + v2 + · · · (10.2.3b)

where u1 = O(ωA) and u2 = O(ωkA2), and so on. At the first order,
Eqs. (10.2.1b) and (10.2.1c) give

∂u1

∂t
=

∂UI

∂t
+ ν

∂2u1

∂z2
, (10.2.4a)

∂v1

∂t
=

∂VI

∂t
+ ν

∂2v1

∂z2
. (10.2.4b)

The boundary conditions are

(u1, v1) = 0 on z = 0 , (10.2.5)

(u1, v1) → UI , VI ,
z

δ
� 1 . (10.2.6)
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For simple harmonic motion, we write

UI(x, y, t) = Re[U0(x, y)e−iωt] (10.2.7a)

VI(x, y, t) = Re[V0(x, y)e−iωt] . (10.2.7b)

Since x and y are just parameters in the boundary-value problem, u1 and
v1 are again given by the Stokes solution:(

u1

v1

)
= Re

[(
U0

V0

)
F1(ξ)e−iωt

]
, (10.2.8)

where F1 is given by F1 = 1 − e−(1−i)ξ, ξ = z/δ. From the continuity
equation, the normal component is found to be

w1 = −δ

∫ ξ

0

dξ

(
∂u1

∂x
+

∂v1

∂y

)

= −δ Re

{(
∂U0

∂x
+

∂V0

∂y

)
e−iωt

∫ ξ

0

F1(ξ) dξ

}

= Re
{

δ

(
∂U0

∂x
+

∂V0

∂y

)
e−iωt

[
1 + i

2
[1 − e−(1−i)ξ] − ξ

]}
. (10.2.9)

Although w1 is of the order O(kδ) times u1 and v1, which is insignificant
by itself, its effects through the terms w1∂u1/∂z and w1∂v1/∂z are as im-
portant as the other convection terms and cannot be overlooked. Now at
the next order, the equations are

∂u2

∂t
− ν

∂2u2

∂z2
= UI

∂UI

∂x
+ VI

∂UI

∂y

−
(

u1
∂u1

∂x
+ v1

∂u1

∂y
+ w1

∂u1

∂z

)
, (10.2.10a)

∂v2

∂t
− ν

∂2v2

∂z2
= UI

∂VI

∂x
+ VI

∂VI

∂y

−
(

u1
∂v1

∂x
+ v1

∂v1

∂y
+ w1

∂v1

∂z

)
. (10.2.10b)

Equations (10.2.10a) and (10.2.10b) can be used to obtain the complete
second-order velocity field. Because the forcing terms on the right of
Eqs. (10.2.10a) and (10.2.10b) contain zeroth and second harmonics, we
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must expect that u2 and v2 contain the same harmonics in response,
that is,

u2 = ū2 + Re ũ2e
−2iωt , v2 = v̄2 + Re ṽ2e

−2iωt , (10.2.11)

where ū2 and v̄2 do not vary with time and are referred to as the induced-
streaming velocities. In the terminology of electrical circuits, ū2 and v̄2 are
the DC (direct current) as opposed to the time-varying AC (alternating
current) components. While the AC parts ũ2 and ṽ2 modify the oscillatory
velocity field, their influence is overshadowed by u1 and v1. The components
ū2 and v̄2 are new, however, and are the leading contribution to the steady
motion. Although small, they are responsible for the steady drifting of fluid
particles after many periods. Let us concentrate on these mean values by
taking the averages of (10.2.10a) and (10.2.10b):

−ν
∂2ū2

∂z2
= UI

∂UI

∂x
+ VI

∂UI

∂y

−
(

u1
∂u1

∂x
+ v1

∂u1

∂y
+ w1

∂u1

∂z

)
, (10.2.11a)

−ν
∂2v̄2

∂z2
= UI

∂VI

∂x
+ VI

∂VI

∂y

−
(

u1
∂v1

∂x
+ v1

∂v1

∂y
+ w1

∂v1

∂z

)
. (10.2.11b)

Before proceeding further let us use the continuity equation for u1 to
rewrite

u1i
∂

∂xi
u1j =

∂

∂xi
(u1iu1j) , i = 1, 2, 3 ,

thus

−ν
∂2ū2

∂z2
= UI

∂UI

∂x
+ VI

∂UI

∂y

−
(

∂

∂x
u1u1 +

∂

∂y
u1v1 +

∂

∂z
u1w1

)
, (10.2.12a)

−ν
∂2v̄2

∂z2
= UI

∂VI

∂x
+ VI

∂VI

∂y

−
(

∂

∂x
u1v1 +

∂

∂y
v1v1 +

∂

∂z
v1w1

)
. (10.2.12b)
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The terms u1u1, u1v1, and so forth, are just the components of the
Reynolds stress tensor representing momentum fluxes due to wave fluctua-
tions. The physical picture is now clear, that is, the mean streaming current
(ū2, v̄2) arises because a mean shear stress field must be present in order
to balance the mean dynamic pressure field and the Reynolds stress field.
Equations (10.2.12a) and (10.2.12b) may be integrated straightforwardly
with the boundary conditions that there be no velocity at the wall and no
stress at the outer edge of the boundary layer,

(ū2, v̄2) = 0 , z = 0 ; (10.2.13a)

∂

∂z
(ū2, v̄2) → 0 ,

z

δ
→ ∞ . (10.2.13b)

After some algebra, the following results are obtained:

ū = ū2 = − 1
ω

Re
[
F2U0

∂U∗
0

∂x
+ F3V0

∂U∗
0

∂y
+ F4U0

∂V ∗
0

∂y

]
, (10.2.14a)

v̄ = v̄2 = − 1
ω

Re
[
F2V0

∂V ∗
0

∂y
+ F3U0

∂U∗
0

∂x
+ F4V0

∂U∗
0

∂x

]
, (10.2.14b)

where U0 and V0 are the amplitudes of UI and VI as defined in Eq. (10.2.7),
and

F2 = −1
2
(1 − 3i)e(−1+i)ξ − i

2
e−(1+i)ξ − 1 + i

4
e−2ξ

+
1
2
(1 + i)ξe(−1+i)ξ +

3
4
(1 − i) , (10.2.15a)

F3 =
1
2
ie(−1+i)ξ − i

2
e−(1+i)ξ − 1

4
e−2ξ +

1
4

, (10.2.15b)

F4 = −1
2
(1 − 2i)e(−1+i)ξ +

1 + i

2
ξe−(1−i)ξ

− i

4
e−2ξ +

1
4
(2 − 3i) . (10.2.15c)

The present two-dimensional formulas were first derived by Hunt and Johns
(1963).

The results just given are Eulerian streaming velocities. To infer the
motion of a marked fluid particle, it is necessary to calculate Lagrangian
velocity. Let x(x0, t) be the position of the particle which was at point x0

when t = t0, namely,
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x(x0, t0) = x0 .

At any subsequent time t, the position and velocity of the particle are
related by

dx
dt

≡ uL(u0, t) (10.2.16)

where uL denotes Lagrangian velocity of the particle. When a particle
arrives at x at the time t, its Lagrangian velocity must be the same as its
Eulerian velocity u(x, t), that is,

xL(x0, t) = u(x, t) .

From Eq. (10.2.16), the particle position at time t is

x = x0 +
∫ t

t0

dt′uL(x0, t
′) ,

so that

uL(x0, t) = u
[
x0 +

∫ t

t0

dt′uL(x0, t
′), t)

]
.

For sufficiently small t − t0 (say within a few periods), the integral, being
the particle displacement, is of the order O(A) and is comparable to the
orbital size. Hence, we may expand u as a Taylor series:

uL(x0, t) � u(x0, t) + (x − x0) · ∇0u(x0, t) + · · ·

� u(x0, t) +
[∫ t

t0

dt′uL(x0, t
′)
]
· ∇0u(x0, t) + · · · ,

where ∇0 = (∂/∂x0, ∂/∂y0, ∂/∂z0). Clearly, to the first order uL and u are
the same so that we may replace uL by u in the integral with second-order
accuracy. The streaming velocity is

ūL(x0, t) = ū(x0, t) +
[∫ t

t0

dt′u(x0, t′)
]
· ∇0u(x0, t) + · · · . (10.2.17)

Thus, for sufficiently small time, the particle velocity is equal to its initial
velocity plus a correction due to the fact that the particle moves in an
environment where the velocity field varies. The correction is proportional
to the distance traveled and to the spatial rate of change of the local velocity
field. Now ū = ū2 and the quadratic terms are both of second order; hence,
in the second term u may be approximated by u1. Finally, since all spatial
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variables are x0, the subscripts ( )0 may be dropped. The components of
ūL are then

ūL = ū2 +
(∫ t

u1 dt′
)

∂u1

∂x
+

(∫ t

v1 dt′
)

∂u1

∂y
+

(∫ t

w1 dt′
)

∂u1

∂z
,

(10.2.18a)

v̄L = v̄2 +
(∫ t

u1 dt′
)

∂v1

∂x
+

(∫ t

v1 dt′
)

∂v1

∂y
+

(∫ t

w1 dt′
)

∂v1

∂z
;

(10.2.18b)

the lower limits of integration are immaterial. Equations (10.2.18a) and
(10.2.18b) give the components of the mass transport velocity of a marked
fluid particle which is located at (x, y, z) at time t.

The difference between Lagrangian and Eulerian drifts is represented by
the integral terms above, or in vector form, by[∫ t

u1(x, t′) dt′
]
· ∇u1(x, t) , (10.2.19)

which is known as Stokes’ drift.
With the known expressions of u1, v1, and w1 in Eqs. (10.2.8) and

(10.2.9), various terms in Stokes’ drift can be evaluated(∫ t

u1 dt′
)

∂u1

∂x
= Re

1
2ω

{
U0

∂U∗
0

∂x
[1 − e−(1−i)ξ − e−(1+i)ξ + e−2ξ]

}
,

(∫ t

v1 dt′
)

∂u1

∂y
= Re

1
2ω

{
V0

∂U∗
0

∂y
[1 − e−(1−i)ξ − e−(1+i)ξ + e−2ξ]

}
,

(∫ t

w1 dt′
)

∂u1

∂z
= Re

1
2ω

{ [
U0

∂U∗
0

∂x
+ U0

∂V ∗
0

∂y

]

× [e−2ξ − e−(1−i)ξ + (1 + i)ξe−(1−i)ξ]

}
.

The other terms may be obtained by interchanging u1 and v1. Combining
Stokes’ with Eulerian mean drift, we finally obtain Lagrangian mass
transport velocities:
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ūL =
1
4ω

Re
{

F5U0
∂U∗

0

∂x
+ F6V0

∂U∗
0

∂y
+ F7U0

∂V ∗
0

∂y

}
, (10.2.20a)

v̄L =
1
4ω

Re
{

F5V0
∂V ∗

0

∂y
+ F6U0

∂V ∗
0

∂x
+ F7V0

∂U∗
0

∂x

}
, (10.2.20b)

where

F5 = −8ie−(1−i)ξ + 3(1 + i)e−2ξ − 3 + 5i , (10.2.21a)

F6 = −4ie−(1−i)ξ + (1 + 2i)e−2ξ − 1 + 2i , (10.2.21b)

F7 = −4ie−(1−i)ξ + (2 + i)e−2ξ − 2 + 3i . (10.2.21c)

These formulas were derived by Carter, Liu, and Mei (1973) from Hunt
and Johns (1963). In particular, at the outer edge of the boundary
layer

F5 → −3 + 5i , F6 → −1 + 2i , F7 → −2 + 3i ,

so that the mass transport velocity at z � δ is

ūL = − 1
4ω

Re

[
3U0

∂U∗
0

∂x
+ V0

∂V ∗
0

∂y
+ 2U0

∂V ∗
0

∂y

− i

(
5U0

∂U∗
0

∂x
+ 3U0

∂V ∗
0

∂y
+ 2V0

∂U∗
0

∂y

) ]
, (10.2.22a)

v̄L = − 1
4ω

Re

[
3V0

∂V ∗
0

∂y
+ U0

∂V ∗
0

∂y
+ 2V0

∂U∗
0

∂x

− i

(
5V0

∂U∗
0

∂y
+ 3V0

∂U∗
0

∂x
+ 2U0

∂V ∗
0

∂x

) ]
(10.2.22b)

(Hunt and Johns, 1963). The one-dimensional version for u 
= 0 and v = 0
was first given by Longuet–Higgins (1953). Thus far, Eqs. (10.2.20) and
(10.2.21) are applicable to any oscillatory flows, water waves being a special
case.

Although the mass transport velocities owe their existence to viscosity,
their limits at the outer edge of the boundary layer do not depend on
ν. Also, as soon as the inviscid wave field is known, it is, in principle,
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a straightforward matter of numerical differentiation to obtain the mass
transport in the boundary layer. We now study two special cases and their
possible qualitative implications on sediment transport.

10.3 Bottom Mass Transport Under a
Long Crested Wave

Consider a wave system described by

ζ = ReA[e−i(kx+ωt) + R ei(kx−ωt)] , (10.3.1)

which represents the sum of an incident wave and a reflected wave, R being
the reflection coefficient. Without loss of generality we may take A and R

to be real since the phase of a complex R may be eliminated by redefining
x. The corresponding velocity potential is

Φ = Re
[
− igA

ω

cosh k(z + h)
cosh kh

(e−ikx + Reikx)e−iωt

]
. (10.3.2)

This potential includes the standing waves as a special case (R = 1) and
may also be applied to shoaling waves on a mildly sloping beach if R is
taken to be zero and kx is replaced by

∫
k dx. At the sea bottom z = −h,

the inviscid tangential velocity is

UI = ReU0e
−iωt = Φx(x,−h, t) ,

= Re
[
− −ωA

sinh kh
(e−ikx − Reikx)e−iωt

]
, VI = 0 (10.3.3)

hence,

U0 =
−ωA

sinh kh
(e−ikx − Reikx) , V0 = 0 . (10.3.4)

Lagrangian mass transport in the boundary layer follows from
Eqs. (10.2.20a) and (10.2.21a)

ūL = Re
(

1
4ω

F5U0
∂U∗

0

∂x

)

=
kωA2

4 sinh2 kh
[(1 − R2)(8e−ξ cos ξ − 3e−2ξ − 5)

+ 2R sin 2kx(8e−ξ sin ξ − 3e−2ξ − 3)] , (10.3.5)
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Figure 10.2: Mass transport profile within Stokes boundary layer near the bottom for
various instants and reflection coefficients. Envelope maxima are at 2kx = 0 and 2π and
envelope minima at 2kx = π. Dimensionless ū′

L = ūL(4 sinh2 kh/ωkA2). (a) 2kx = 0,
(b) 2kx = π

2
; (c) 2kx = 3

2
π (from Carter et al., 1973, J. Waterway, Port, Coastal and

Ocean Div. Reproduced by permission of American Society of Civil Engineers).
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Figure 10.2: (Continued)

which is due to Longuet–Higgins (1953). For several values of R the profiles
of ūL are shown in Figs. 10.2(a)–10.2(c).

The special case of a purely progressive wave corresponds to R = 0:

ūL =
kωA2

4 sinh2 kh
(8e−ξ cos ξ − 3e−2ξ − 5) , (10.3.6)

which varies monotonically from zero at ξ = 0 to

ūL(∞) = − 5kωA2

4 sinh2 kh
as ξ → ∞ . (10.3.7)

On the other hand, in front of a long and straight sea wall the reflection
is nearly complete so that R = 1. In this case

ūL =
kωA2

4 sinh2 kh
2 sin 2kx(8e−ξ sin ξ + 3e−2ξ − 3) , (10.3.8)

where the vertical variation described by the parenthesis changes sign at
ξ ≈ 1, see Fig. 10.2(b). The sign of ūL now depends on kx and ξ. In Fig. 10.3
we sketch the free surface of a standing wave with nodes at kx = 1

2π, 3
2π, . . .

and antinodes at kx = 0, π, 2π, . . . . Above ξ � 1, that is, in the top part
of the boundary layer, the mass transport always converges toward the
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Figure 10.3: Schematic variation of mass transport velocity beneath a standing wave.

antinodes and diverges away from the nodes, while below ξ � 1, that is, in
the bottom part of the boundary layer, the reverse is true. From the curves
for R = 1 in Fig. 10.2(b) the net mass flux above the level ξ = 1 certainly
exceeds that below, implying that the streak lines must be as sketched in
Fig. 10.3(d). Near the antinodes some fluid sinks below ξ � 1 to form
closed circulating cells within the boundary layer, while other fluid escapes
upward. A more complete picture involves the introduction of a thicker
boundary layer which is caused by the convective inertia of the streaming
velocity but will not be discussed here (Mei, Liu, and Carter, 1972; Dore,
1976).

The mass transport velocity near the bottom (ξ ≈ 0) is likely to be
influential for the motion of heavy sediments which roll on the bottom.
Near the bottom, ūL is in the direction of the incident wave for a purely pro-
gressive wave (R = 0) and is alternately along and opposite to the incident
wave for a completely reflected wave (R = 1). It is therefore interesting to
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examine the effect of intermediate R. Reversal of sign in ūL(x, ξ) near the
bottom requires that the profile of ūL has a slope greater than zero, that is,

∂ūL

∂ξ
(x, 0) > 0 , ξ = 0 . (10.3.9)

Because of Eq. (10.3.5), Eq. (10.3.9) implies

R2 + 2R sin 2kx − 1 > 0 .

For a fixed x the critical value Rc is

Rc = − sin 2kx + (1 + sin2 2kx)1/2 . (10.3.10)

If R > Rc, reversal of direction occurs. Since 0 < R < 1, an acceptable
solution of Rc can occur only when sin 2kx > 0 or 0 < 2kx < π. Accordingly,
the variation of Rc versus 2kx is shown in Fig. 10.4. The lowest Rc is
21/2 − 1 = 0.414 which occurs at 2kx = 1

2π or x/λ = 1
4 . For any 0.414 <

R < 1 reversal of ūL occurs in the range of x1 < x < x2 where R = Rc

Figure 10.4: Critical reflection coefficient for reversal of bottom mass transport velocity
(from Carter, Liu, and Mei, 1973, J. Waterway, Port, Coastal and Ocean Div. Repro-
duced by permission of American Society of Civil Engineers).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

10.3. Bottom Mass Transport Under a Long Crested Wave 523

at x = x1 and x2. The corresponding vertical variations of ūL(x, ξ) can be
seen in Figs. 10.2(a)–10.2(c).

In the case of partial reflection 0 < R < 1, the total wave can be viewed
as a progressive wave with a modulated envelope

ζ = Re {[A(1 + Re−2ikx)]e−i(kx+ωt)}
= Re �(x)e−i(kx+ωt−θ�(x)) (10.3.11)

where θ� is the phase of the square bracket above and

� = [A(1 + R2) + 2R cos 2kx]1/2 . (10.3.12)

The amplitude � of the envelope is the greatest [= A(1 + R)] at 2kx =
0,±2π,±4π, . . . and the smallest [= A(1−R)] at 2kx = ±π,±3π,±5π, . . . .

Thus, if R > 0.414, reversal of ūL occurs within the quarter-wavelength in
front of every peak �max of the envelope.

The mass transport near the bottom of the boundary layer should be
particularly relevant to heavy particles which roll on the bottom as bed load.
On many beaches of the world the sand size distribution is commonly in
the range from 0.05 mm to 10 mm (pebbles). As pointed out in Section 9.7
the eddy viscosity is typically 10–100 cm2/s for a hydrodynamically rough
bottom. The scale of the boundary-layer thickness δ = (2ν/ω)1/2 can be
estimated to be roughly 6–18 cm for a wave of period 10s and is larger
than most sand grains. Once the sand grains are mobilized by the first-
order oscillatory velocity of the nearby fluid, the heavy ones will likely
move, on the average, in the same general direction as the mass transport
velocity near the bottom; the magnitude of the velocity of the sand particles
themselves is so far too difficult to predict. For beaches of mild slope and
for normally incident waves of short periods, reflection is small and the
direction of net sand movement should be onshore. If reflection is large as
in the vicinity of a sea wall, a cliff, near a beach of steep slope, or in the
presence of a large offshore sand bar, ūL can be opposite in direction to the
incident waves and can cause deposition on the sea bottom along parallel
lines spaced at half-wavelengths apart. Dunes parallel to the coasts can,
therefore, be formed at the same spacings. Such periodic dunes can be
found on the coast of Florida (see Plate 10.1, from Lau and Travis, 1973).

In the case of large reflection (R > 0.414) the sign change of ūL should
also have consequences on sediment sorting. Because fine particles are more
likely to be transported in suspension, they should be influenced by the
value of ūL near the top of the boundary layer. Therefore, they may drift
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Plate 10.1: Aerial view of submarine longshore bars Escambia Bay, Florida (from Lau
and Travis, 1973, J. Geophys. Res. Reproduced by permission of American Geophysical
Union).

in opposite directions to the heavier particles rolling beneath. In a standing
wave the light particles should be deposited around the antinodes and the
heavy particles around the nodes no matter what the initial distribution
of sediment size is. This sorting has been observed in the laboratory by
Noda (1968) De Best and Bijker (1971), and Carter, Liu, and Mei (1973).
In nature, finer sand is similarly found near dune troughs and coarser sand
near dune crests (Inman, 1957). Bagnold (1946) and Herbich, Murphy, and
Van Weele (1965) experimented with sand beds under a standing wave.
Dunes were found to be present at precisely the intervals of half of the
length of the surface waves. Carter et al. (1973) performed experiments for
partially standing waves over a solid bottom sprinkled sparcely with sand;
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Plate 10.2: Sediment morphology for variable beach reflectivity (from Carter, Liu, and Mei, 1973, J. Waterway, Port, Coastal and
Ocean Div. Reproduced by permission of American Society of Civil Engineers).
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they found the same initial tendency of scour and deposition on a bottom
covered with a thick layer of sand. For R > 0.50, the tendency toward
large-scale depositions became visible near the peaks of the wave envelope
(Plate 10.3), thereby supporting the relevance of the present theory to the
initial development of a flat sandy bottom. Laboratory evidence of sediment
sorting is shown in Plates 10.3 and 10.4.

Once grown to a sufficient size, the dunes will alter the wave field;
the conclusions of this section are no longer appropriate. The interaction
between waves and dunes has been studied by Yu and Mei (2000b).

As seen in Plate 10.2, ripples with wavelengths much less than the
surface wavelength are a prominant feature of a sandy bottom. Formed
when the oscillation amplitudes are slightly above the threshold of sand
movement, these gentle (rolling-grain) ripples are the results of an insta-
bility mechanism (Blondeaux (1990), Vittori and Blondeaux (1990, 1993).
See also the review by Blondeaux (2001)). If the oscillations are strong
and far above the threshold, ripples can be steep and are accompanied by
vortex shedding. Observations by Inman (1957), Zenkovich (1967), and

Plate 10.3: Side view of a sandy bed under a standing wave after four days. Initially
the bed is a pink layer of sand mixture of two diameters: 0.2 mm (red) and 0.11 mm
(light), in roughly equal parts. Eventually coarse (red) sand is accumulated beneath the
node where ripples and a bar crest are formed. Beneath antinodes, the bed is flat and
is covered by fine (light) sand. Experiments by Blake Landry and Matthew Hancock,
Dept. Civil & Environ. Eng., MIT. Photograph by Felice Frankel, MIT, 2003.

Plate 10.4: Top view of a sandy bed under a standing wave after four days. Initially
the bed is a pink layer of sand mixture of two diameters: 0.2 mm (red) and 0.11 mm
(light), in roughly equal parts. Periodic bands of coarse (red) and fine (light) sands are
eventually found beneath wave nodes and antinodes. Experiments and photograph by
Blake Landry and Matthew Hancock, Dept. Civil & Environ. Eng., MIT, 2003.
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others show that the ripple dimensions, amplitude, and wavelength depend
strongly on the fluid orbital velocity (hence, the depth of water) and the
grain size and size distribution. Theoretical modelling is a challenging task
involving both turbulence of an oscillatory flow and sediment transport.
The reader is referred to Hansen et al. (1994) and Anderssen et al. (2001)
for recent progress.

Exercise 10.1: Induced Streaming Near a Lake Bottom

Consider an rectangular lake with vertical banks and constant depth h.

Find the details of the mass transport field in the bottom boundary layer
under the standing wave mode,

Φ = Re
{

C cos
πx

a
cos

πy

b
cosh k(z + h)e−iωt

}
,

where

k =

√(π

a

)2

+
(π

b

)2

, ω2 = gk tanh kh .

Discuss the streaming patterns next to the bottom and to the top of the
boundary layer.

10.4 Bottom Mass Transport Near a Small Structure

Since the simple wave system in Section 10.3 already reveals many inter-
esting features in the mass transport and its possible implications on the
sand-bed configuration, it is now tempting to work out some cases that
correspond to more complex wave systems. In principle, this is a straight-
forward but largely numerical problem; once the inviscid wave field (U0, V0)
is known the mass transport is obtained from Eqs. (10.2.20a) and (10.2.20b)
by differentiation. For illustration we shall study in this section only a three-
dimensional problem where analytical information is possible (Lamoure and
Mei, 1977).

There are many coastal structures, man-made or natural, whose gover-
ning horizontal dimension a, say, is much less than the prevailing wave-
length (∼ 1/k). The head of a breakwater and the piles of an oil drilling
rig are such instances. Near these bodies where the local curvature is large,
eddy formation or flow separation can exist when the wave amplitudes
are sufficiently large. The corresponding flow field is impossible to deduce
purely theoretically. However, for low-amplitude swells that are present
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most of the time, separation can be insignificant near the sea bottom and
a potential theory may be applied to the waves. The assumption of small
structure ka � 1 then simplifies the calculation of waves near the body, as
demonstrated in Section 8.4 for a vertical pile of circular cross section. In
addition, we shall assume for simplicity that all the solid lateral boundaries
are vertical and the sea bottom is horizontal. The inviscid potential may
be related to the free-surface displacement η by

φ = − igη(x, y)
ω

cosh k(z + h)
cosh kh

e−iωt , (10.4.1)

where η is governed by the Helmholtz equation. In the near field of the
structure, that is, in the neighborhood within the radius of O(a), the proper
horizontal length scale of motion is a, so that the horizontal Laplacian in
the Helmholtz equation is much more important

k2η

∇2n
∼ O(ka)2 � 1 where ∇ =

(
∂

∂x
,

∂

∂y

)
.

It follows that

∇2η � 0 . (10.4.2)

Thus, the inviscid flow in the near field is harmonic in the horizontal plane,
and many solutions in classical hydrodynamics that are solved by methods
of conformal mapping can be employed here for analytical purposes.

The solution in the near field is indeterminate by a complex constant
factor, which must be found by matching with the solution in the far field
about a wavelength away from the structure. The details of the matching
process are unimportant for present purposes. Since the complex constant
factor is common to both U0 and V0, the phases of U0 and V0 cancel out
in Eqs. (10.2.20a) and (10.2.20b).1 Hence we can discuss the variation of
mass transport by taking U0 and V0 to be real without any loss of generality,
that is,

ūL =
1
4ω

Re
[
U0

∂U0

∂x
(F5 − F7) + F6V0

∂U0

∂y

]
,

v̄L =
1
4ω

Re
[
F6U0

∂V0

∂x
+ (F5 − F7)V0

∂V0

∂y

]
,

1These formulas do not hold within the distance of O(δ) from the vertical wall.



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

10.4. Bottom Mass Transport Near a Small Structure 529

where

(U0, V0) = − ig∇η

ω
sech kh . (10.4.3)

Since F5 − F7 = F6 from Eq. (10.2.21), we have

ūL =
1

4ω
Re

[
F6

(
U0

∂U0

∂x
+ V0

∂U0

∂y

)]
, (10.4.4a)

v̄L =
1

4ω
Re

[
F6

(
U0

∂V0

∂x
+ V0

∂V0

∂y

)]
, (10.4.4b)

or, in vector form,

ūL =
1
4ω

Re F6U0 · ∇U0

=
1
4ω

∇|U0|2
2

(4e−ξ sin ξ + e−2ξ − 1) . (10.4.5)

Note that the strength of the mass transport velocity is proportional to
the horizontal gradient of the inviscid velocity. Furthermore, the factor for
vertical variation inside the boundary layer is

ReF6 = 4e−ξ sin ξ + e−2ξ − 1 � 2ξ for ξ � 1 ,

� −1 for ξ � 1 .

Thus, there is a sign reversal within the boundary layer. Very close to the
bottom

ūL � ξ

4ω
∇|U0|2 , ξ � 1 , (10.4.6)

so that the mass transport is in the direction of increasing |U0|2. In parti-
cular, fluid must drift toward the convex corner of a vertical structure. On
the other hand, near the top of the boundary layer

ūL � −1
8ω

∇|U0|2 , (10.4.7)

so that the mass transport points away from the convex corner. The
variation of Re F6 for all ξ is plotted in Fig. 10.5.

The above simple conclusion suggests that heavy sediments, once
mobilized to roll on the bottom, may be attracted toward the neighborhood
of high oscillating velocity. More specifically, for a pile in the presence of
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Figure 10.5: Vertical variation of Lagrangian mass transport in gravity waves near a
small body; ξ = z/δ (from Lamoure and Mei, 1977, J. Fluid Mech. Reproduced by
permission of Cambridge University Press).

Figure 10.6: Mass transport velocity vectors in gravity waves near the solid bottom
in the presence of a circular cylinder (from Lamoure and Mei, 1977, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).

waves from x ∼ −∞ (θ = π) deposition is the largest near the two ex-
tremities on the two sides of the x axis, as shown in Fig. 10.6. By similar
reasoning, heavy sediments would tend to deposit near the tip of a break-
water. Deposition would also tend to narrow the neck of a narrow harbor
entrance.

Why is ūL parallel to ∇2|U0|2? Consider a vertical column of fluid of
unit square cross section with its base somewhere inside the boundary layer
and its top at the outer edge. The mean shear stress acting at the base is
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Plate 10.5: Sediment accumulation (see dark areas) near two sides of a circular pile.
Wave crests are parallel to the ripple marks. Prior to wave motion, there were no sand

particles in an annular area next to the cylinder (from Lamoure and Mei, 1977, J. Fluid
Mechs. Reproduced by permission of Cambridge University Press).

µ∂ū/∂z. The net normal stresses acting on a unit area of the vertical sides
are the mean pressure gradient 1

2ρ∇U2
I and the gradient of the normal

Reynolds stress −(1/ρ)ρ∇u2. Because w ∼= 0, the shear components of the
Reynolds stress are negligible. Equating the forces, we have

µ
∂ū
∂z

=
ρ

2

∫ ∞

z

∇(U2
I − u2) dz .

From the boundary-layer solution, the integral on the right is coplanar with
and proportional to ∇U2

0; the same must be true for ū and ūL.
The qualitative prediction of Eq. (10.4.7) has been verified experimen-

tally by Lamoure and Mei (1977); see Plate 10.5. We caution that, in
nature, the presence of solid particles in fluid not only produces turbu-
lence but affects the nature of turbulence by their own dynamics. Hence
the mechanics of littoral drift by waves is far more complex than the mass
transport of pure fluid.

Other beach topographies have been attributed to the mass transport
under complex wave systems by Holman and Bowen (1982).

Exercise 10.2

A plane incident wave of amplitude A propagates in the positive x direction
in a sea of constant depth. A small circular pile is located at the origin.
Use the fact from Section 8.3 that
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ζ � Re Ae−iωt

[
1 + ik cos θ

(
r +

a2

r

)]
, for r = O(a)

to deduce the following formulas for the mass transport velocity in the
bottom boundary layer near the pile:

ūL =
1
a

(
gkA

ω cos kh

)2 (a

r

)3


(
−a2

r2
+ cos 2θ

)
er

sin 2θ eθ

 1
2ω

Re F6 . (10.4.8)

Make some computations to verify Fig. 10.6.

10.5 Remarks on Induced Streaming Outside
the Stokes Boundary Layer

One of the main features of the preceding deductions is that Eulerian
streaming velocity approaches a finite value at the outer edge of the Stokes
boundary layer. It is interesting to ask what the effect of this current is
on the essentially inviscid core. Does this current induce further current
throughout the entire water depth by viscous diffusion?

In studying the boundary layers near oscillating bodies, Stuart (1966)
suggested that if the amplitude of motion was sufficiently large, the con-
vective inertia of the induced current became important in the average
momentum balance and had to be counteracted by a new shear stress in
a relatively thick boundary layer. Riley (1967) and Wang (1968) deve-
loped this subject further. In particular, Wang analyzed systematically the
variety of possibilities outside the Stokes layer. The following is a synopsis
of Wang’s reasoning.

In terms of physical variables, denoted with primes, the equations of
motion are

∇′ · u′ = 0 , (10.5.1)

∂Ω′

∂t′
−∇′ × (u′ × Ω′) = −ν∇′ × (∇× Ω′) , (10.5.2)

where Ω′ = ∇′ × u′ is the vorticity vector. Note that the Navier–Stokes
equation has been replaced by the vorticity equation (10.5.2).

Let the unknowns be split into a mean (DC) and a fluctuating (AC)
part as follows:

u′ = ū′ + ũ′ , (10.5.3)
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Ω′ = Ω
′
+ Ω̃

′
, (10.5.4)

with (̄ ) representing the time mean over a period and (̃ ) representing the
fluctuations. Substituting into Eqs. (10.5.1) and (10.5.2) and taking time
averages, we obtain equations governing the mean motion:

Ω′ · ū′ = 0 , (10.5.5)

∇′ × (ũ′ × Ω̃
′
) + ∇′ × (ū′ × Ω

′
) = ν∇′ × (∇× Ω

′
) . (10.5.6)

In Eq. (10.5.6) the first term corresponds to the Reynolds stress con-
tribution, which is the steady part of self-interaction of two oscillating
components. This term is nonzero if ũ′ and Ω̃

′
are not always out of phase

by 1
2π.

Subtracting Eqs. (10.5.5) and (10.5.6) from Eqs. (10.5.1) and (10.5.2),
we obtain the equations governing the fluctuations:

∇′ · ũ′ = 0 , (10.5.7)

∂Ω̃
′

∂t′
−∇′(ū′ × Ω̃

′
) −∇′ × (ũ′ × Ω

′
) −∇′ × ( ˜

ũ′ × Ω̃
′
)

= −ν∇′ × (∇× Ω̃
′
) , (10.5.8)

where the last term on the left of Eq. (10.5.8) is the unsteady part of self-
interaction. We now normalize the variables as follows:

x = kx′ , t = ωt′

ũ =
ũ′

ωA
, ū =

ū′

ωkA2
,

Ω̃ =
Ω̃

′

ωkA
, Ω =

Ω
′

ωk2A2
,

(10.5.9)

where ω is the wave frequency, k is the wavenumber, and A is the wave
amplitude. The scale of the fluctuation velocity is the fluid velocity in
waves and the scale of the mean drift is that of the mass transport velocity
[cf. Eq. (10.3.5)]. In dimensionless form Eqs. (10.5.5)–(10.5.8) become

∇ · ū = 0 , (10.5.10)

(kA)−2∇× (ũ× Ω̃)
(Reynolds stress)

+ ∇× (ū × Ω) steady
convection


=

δ2

a2
∇× (∇× Ω)

(diffusion)

, (10.5.11)
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for the steady streaming, where

δ =
(

2ν

ω

)1/2

(10.5.12)

and

∇ · ũ′ = 0 , (10.5.13)

∂Ω̃
′

∂t′
− (kA)2[∇(ū × Ω̃) + ∇× (ũ × Ω)] − (kA)[∇× ( ˜ũ × Ω̃)]

= −(kδ)2∇×∇× Ω̃ (10.5.14)

for the fluctuations.
It is now easy to delineate various regions and their proper approxi-

mations. In most laboratory setups, the wave slope and the viscosity are
small,

kA � 1 , kδ � 1 . (10.5.15)

Therefore, for the fluctuations the convective term may be ignored from
Eq. (10.5.14). Viscous diffusion can be ignored except near a solid wall
within a layer of thickness O(δ). Within this layer the normal derivative
dominates and Eq. (10.5.14) is approximately

∂Ω̃
∂t

= (kδ)2
∂2Ω̃
∂n2

, (10.5.16)

which governs the structure of the Stokes layer O(δ).
Now examine Eq. (10.5.11) for the steady streaming inside the Stokes

layer. The Reynolds stress due to the mean motion is unimportant, and
∂/∂n ∼ 1/kδ. Hence the Reynolds stress due to fluctuations must be
balanced by a steady viscous stress:(

1
kA

)2

· ∇ × (ũ × Ω̃) = −
(

δ

A

)2
∂2Ω
∂n2

. (10.5.17)

Outside the Stokes layer, since the cross product of the fluctuating parts ũ,
Ω̃ is known to be exponentially small, we have from Eq. (10.5.11)

∇× (ū× Ω) = −
(

δ

A

)2

∇× (∇× Ω) (10.5.18)

which leads to several possibilities:
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(i) δ/A � 1: The amplitude is very much smaller than the Stokes-layer
thickness. The approximation

∇× (∇× Ω) � 0 (10.5.19)

can be made which corresponds to small-Reynolds-number (creeping) flows.
While unrealistic in practical situations, this approximation is the easiest
to analyze.

(ii) δ/A � 1: The amplitude is much greater than the Stokes-layer
thickness, which corresponds to high-Reynolds-number flows. Viscosity and
inertia are both important within a layer of thickness

O(δ1) = o

(
δ

kA

)
. (10.5.20)

Within this layer the normal derivative again dominates so that

∇× (ū × Ω) ∼= −(kδ1)2
∂2Ω
∂n2

, (10.5.21)

which corresponds to the Blasius equation in the classical laminar
boundary-layer theory. Vorticity is expected to be confined within this
second boundary layer and diminishes to zero outside it (Stuart, 1966).

(iii) δ/A = O(1): Equation (10.5.18) must be solved exactly.
The case of standing waves has been analyzed by Mei, Liu, and Carter

(1972) and Dore (1976) for the double structure of boundary layers,
corresponding to Case (ii) above.

One aspect of two-dimensional progressive waves in a channel of
constant depth deserves special remark. In earlier theoretical papers
(e.g., Longuet–Higgins, 1953), the amplitude attenuation along the channel
(x direction) was totally ignored, and the induced streaming was strictly
horizontal and independent of x,

ū = ū(z) ∝ A2f(z) , v̄ = 0 .

Under these assumptions the induced streaming is governed by Eq. (10.5.19)
even when δ/A � 1 and there is no double-layer structure. However, the
attenuation rate in the longitudinal direction is not exactly zero and is
known to be

1
kA

dA

dx′ = O(kδ) . (10.5.22)

If the vertical length scale is taken to be 1/k for the time being, the order
of magnitude of the terms in Eq. (10.5.18) is as follows:
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∇× (ū′ × Ω
′
) = ν∇× (∇× Ū′) ,

(k2δ)(ωkA2)(ωk2A2) ∼ (ν)(k2)(ωk2A2) (10.5.23)

or

O

(
viscous diffusion

inertia

)
=

kδ

(kA)2
. (10.5.24)

For inertia terms to be negligible it is necessary that kδ � (kA)2 and not
that δ/A � 1. In many laboratory tanks with smooth bottoms, the ratio
(10.5.24) is usually less than O(1); for example, take ν = 10−2 cm2/s, k =
2π/50 (wavelength = 50 cm), ω = 2π/T = 4π (T = 1

2 s), and A = 1 ∼ 5 cm,
then δ = (10−2/4π)1/2 = 0.03 cm and

kδ

(kA)2
= 0.05 ∼ 0.25 .

For very small kδ/(kA)2, there can be secondary boundary layers near the
free surface and the solid bottom, of the thickness

δ2 = O

(
1
k

(kδ)1/2

kA

)
,

which is rather thick and may eventually grow to be comparable to the
water depth. Furthermore, over a rough or sediment-laden bottom the
eddy viscosity which is many times larger than the laminar viscosity can
increase the boundary-layer thickness δ2 even further. Convective inertia
of the induced streaming can then become as important as lateral diffusion
throughout the entire depth.

The details of secondary boundary layers in water waves are complicated
(Dore, 1977). In the following section we only investigate the classic case
of creeping flow theory due to Longuet–Higgins (1953).

10.6 Creeping Flow Theory of Mass Transport in a
Channel of Finite Depth

In his original analysis, Longuet–Higgins (1953) employed a curvilinear
coordinate system embedding the free surface so that the boundary layer
could be measured from the instantaneous free surface. An alternative is to
employ the Lagrangian coordinate system in terms of which the free-surface
condition can be conveniently stated (Ünlüata and Mei, 1970). Let a and c
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be the initial horizontal and vertical coordinates of a fluid particle. In the
a-c plane, the position of the free surface is simply c = 0 at all times and
is no longer unknown. Use of the Lagrangian coordinate system has been
made later by Piedra-Cueva (1995) and Ng (2004) for partially standing
waves in gravity waves. In the latter Ng also revised a step in the reasoning
of Ünlüata and Mei (1970) for progressive waves.

We refer the readers to Monin and Yaglom (1971) for a derivation of
the Navier–Stokes equations in Lagrangian form and only quote the results
for two dimensions.
Continuity:

∂(x, z)
∂(a, c)

≡

∣∣∣∣∣∣∣∣
∂x

∂a

∂x

∂c

∂z

∂a

∂z

∂c

∣∣∣∣∣∣∣∣ = 1 , (10.6.1)

x momentum:

xtt = −1
ρ

∂(P, z)
∂(a, c)

+ ν∇2xt , (10.6.2)

z momentum:

ztt + g = −1
ρ

∂(x, P )
∂(a, c)

+ ν∇2zt , (10.6.3)

where the Laplacian ∇2, which is an Eulerian operator, can be trans-
formed to

∇2xt =
∂(∂(xt, z)/∂(a, c), z)

∂(a, c)
+

∂(x, ∂(x, xt)/∂(a, c))
∂(a, c)

. (10.6.4)

Vanishing of the normal and tangential stresses on the free surface can be
stated exactly as

(−P + τzz)xa + τxzza = 0 (10.6.5a)
on c = 0 ,

τzxxa − (−P + τxx)za = 0 (10.6.5b)

where

τzz = 2µ[xaztc − ztaxc] , (10.6.5c)

τxx = 2µ[xtazc − xtcza] , (10.6.5d)

τxz = µ[xaztc + ztaxc − ztcza − xcxta] . (10.6.5e)



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

538 Mass Transport Due to Viscosity

The usual kinematic condition is accounted for by the very fact that c = 0
always refers to the free surface.

Pierson (1962) first applied Eqs. (10.6.1)–(10.6.3) to small-amplitude
waves by introducing the perturbation series

x = a + x1 + x2 + · · · , (10.6.6a)

z = c + z1 + z2 + · · · , (10.6.6b)

P = (p0 − ρgc) + p1 + p2 + · · · , (10.6.6c)

where

(x1, z1, p1) ∼ O(kA) , (x2, z2, p2) ∼ O(kA)2 .

Thus, these series are valid for a small time range in which the net displace-
ment is small. The following equations are obtained at the order O(kA):

x1ta + z1tc = 0 , (10.6.7)

x1tt + gz1a +
p1a

ρ
= ν∇2

Lx1t , (10.6.8a)

z1tt + gz1c +
p1c

ρ
= ν∇2

Lz1t , (10.6.8b)

where ∇2
L denotes the Laplacian for Lagrangian coordinates

∇2
L =

∂2

∂a2
+

∂2

∂c2
.

On the free surface, the normal and tangential stresses vanish:

p1 = 2ρνz1tc , (10.6.9a)
c = 0 .

x1tc + z1ta = 0 , (10.6.9b)

On the bottom the no-slip condition is

x1t = z1t = 0 , c = −h . (10.6.10)

Formally, the first-order problem is identical to the linearized Navier–Stokes
equations in Eulerian form if we identify

x1t = u1 , z1t = v1 . (10.6.11)
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Let

x1 = xp
1 + xr

1 , z1 = zp
1 + zr

1 , (10.6.12)

where the potential (irrotational) part is governed by

(xp
1t, z

p
1t) = ∇LΦ , (10.6.13)

Φt = −p1

ρ
+ gz1 , (10.6.14)

∇2
LΦ = 0 , (10.6.15)

and the rotational part is governed by

xr
1tt = ν∇2

Lxr
t , (10.6.16a)

zr
1tt = ν∇2

Lzr
t , (10.6.16b)

xr
1ta + zr

1tc = 0 . (10.6.17)

The results in Section 10.3 may now be used. In the core outside the
Stokes layers the solution is(

xp
1

zp
1

)
=

Aeiθ

sinhkh

(
i cosh k(c + h)

sinh k(c + h)

)
, (10.6.18)

with

θ = ka − ωt . (10.6.19)

In the bottom boundary layer we have

x1 =
iA

sinh kh

{
1 − exp

[
−(1 − i)

c + h

δ

]}
eiθ , (10.6.20)

z1 =
kδA

(1 − i) sinh kh

{
exp

[
−(1 − i)

c + h

δ

]
− 1

}
eiθ . (10.6.21)

In the free-surface boundary layer, which was ignored previously, the poten-
tial part does not change significantly. Equation (10.6.16a) is approximately

∂xr
1t

∂t
= ν

∂2xr
1t

∂c2
. (10.6.22)

The shear stress condition (10.6.9) on c = 0 now implies

∂xr
1t

∂c
= −

(
∂xp

1t

∂c
+

∂zp
1t

∂a

)
= −2ωkAeiθ . (10.6.23)
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With the further requirement that

xr
1t → 0 ,

c

δ
→ −∞ , (10.6.24)

xr
1 is easily found to be

xr
1 = −2iAkδ

1 − i
eiθ exp

[
(1 − i)

c

δ

]
, (10.6.25)

hence by continuity

zr
1 = O(kδ · xr

1) = O(kδ)2 . (10.6.26)

The total solution in the free-surface layer is:

x1 = iA

{
coth kh − 2kδ

(1 − i)
exp

[
(1 − i)

c

δ

]}
eiθ , (10.6.27)

∂x1

∂c
= ikA

{
1 − 2 exp

[
(1 − i)

c

δ

]}
eiθ , (10.6.28)

z1 = A{1 + O(kδ)2}eiθ . (10.6.29)

Note that xr
1 itself is insignificant but gives rise to O(1) vorticity (∂x1/∂c).

The second-order equations have been worked out by Pierson. The
horizontal momentum is governed by

x2tt + gz2a +
p2a

ρ
− ν∇2

Lx2t = G , (10.6.30a)

where

G = −x1ttx1a − z1ttz1a + ν{(x1taa + 3x1tcc)x1a + 2x1taaz1c

+ x1ta(z1ac − x1cc) − 2x1tac(z1a + x1c)

− x1tc(z1aa − x1ac) − z1a(z1taa + z1tcc)} . (10.6.30b)

The vertical momentum is governed by

z2tt + gz2c +
p2c

ρ
− ν∇2

Lz2tt = H , (10.6.31a)

where

H = −x1ttx1c − z1ttz1c + ν{(x1taa + x1tcc)x1c

+ z1c(3z1taa − z1cc) − 2z1tac(z1a + x1c)

− z1ta(x1aa + x1cc) − z1tc(z1aa + z1cc)} . (10.6.31b)
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The normal stress boundary condition on the free surface is

−p2

ρ
+ p1x1a − µ(z2

1c)t + µx1tcz1a + µ(z1a)2)t = 0 , c = 0 . (10.6.32)

We now consider the time averages. After making use of the first-order
results, we find

p̄2 = 0 , on c = 0 . (10.6.33)

By integrating (10.6.31a) with respect to c from the core to the free surface
and denoting the mean surface displacement by ζ̄2a(a) = z̄2(a, c = 0), we
get

gζ̄2a(a) − gz̄2(a, c) − p̄2(a, c)
ρ

=
∫ 0

c

H̄ dc .

On the right-hand side, H̄ is dominated by the inviscid terms in the free
surface boundary layer. Making use of the first-order solutions, and the
fact that the time averages of the quadratic products are independent of a,
we find

gζ̄2a = gz̄2a(a, c) +
p̄2a(a, c)

ρ
. (10.6.34)

(Ng, 2004). It follows that

ν
d2x̄2t

dc2
= gζ̄2a − G (10.6.35)

for all c. Denoting

x1 = AX(c)eiθ , z1 = AZ(c)eiθ (10.6.36)

where X and Z can be inferred for different regions, we obtain from
Eq. (10.6.30b), after some algebra, that

G =
A2

2
νωk Re

{
k2(|X |2 + |Z|2) − 4X∗ d2X

dc2
− ik

d

dc
(X∗Z)

− 3
∣∣∣∣dX

dc

∣∣∣∣2 − Z∗ d2Z

dc2

}
. (10.6.37)

Inside the free-surface boundary layer only the terms

4X∗ d2X

dc2
and 3

∣∣∣∣dX

dc

∣∣∣∣2
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dominate; Eq. (10.6.37) can be substantially simplified. On the free surface,
the condition (10.6.5b) on the tangential stress gives

x2tc + z2ta = 3x1taz1a − 2x1tcx1a + x1cx1ta , c = 0 . (10.6.38)

After Eqs. (10.6.27) and (10.6.29) are used, the time average of Eq. (10.6.38)
yields, happily,

dx̄2t

dc
= O(k2δ2ωk2A2) , c = 0 . (10.6.39)

With this boundary condition, Eq. (10.6.35) can be integrated. In particu-
lar, the result leads to

dx̄2t

dc
→ 4ωk2A2 coth kh ,

c

δ
→ −∞ (10.6.40)

at the outer edge of the free-surface layer.
Either by a similar analysis, or by invoking the known result of

Eq. (10.3.7), we have

x̄2t → 5ωkA2

4
sinh kh ,

c + h

δ
→ ∞ (10.6.41)

at the outer edge of the bottom layer.
Now in the core region between the two boundary layers, Eq. (10.6.35)

takes the simple form

ν
d2x̄2t

dc2
= gζ̄2a + 2νωk3A

cosh 2(c + h)
sinh2 kh

, (10.6.42)

since G can be calculated from the first-order potential solution. Equa-
tion (10.6.42) is readily solved, subject to Eqs. (10.6.40) and (10.6.41) at
c = 0 and c = −h, respectively; the result is

x̄2t =
g

ν
ζ̄2a(c2 − h2) +

ωkA2

sinh2 kh

×
[
3
4

+ k(c + h) sinh 2kh +
1
2

cosh 2k(c + h)
]

(10.6.43)

which is Lagrangian mass transport outside the two boundary layers. The
mean sea-level gradient ∂ζ̄2/∂a can be determined by imposing one more
condition. For example, in a tank of great but finite length, the total mass
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Figure 10.7: Comparison of mass transport velocity profiles for kh = 0.5, T = 10 s.
Solid curve: Dore (1978, air–water); dashed curve: Longuet–Higgins (1953, vacuum–
water). U = Aω2k(sinh kh)−1 (from Dore, 1978, Geophys. Astrophys. Fluid Dyn.
Reproduced by permission of Gordon and Breach Scientific Publishers).

flux across the depth is zero; ∂ζ̄2/∂a = O(νωkA2) = O(kδkA)2 is then
readily found. The corresponding mass transport velocity is

x̄2t =
A2ωk

4 sinh2 kh

[
3 + 2 cosh2k(c + h) + 3

(
sinh 2kh

2kh
+

3
2

) (
c2

h2
− 1

)

+ kh sinh 2kh

(
1 + 4

c

h
+ 3

c2

h2

) ]
. (10.6.44)

(Longuet–Higgins, 1953). A typical plot is shown in Fig. 10.7.
In a laboratory tank of length L, the state of zero net flow is reached

when a return flow is established throughout the length of the tank; the time
required is T1 ∼ O(L/ω2kA2). Now the time required for viscous diffusion
to reach the entire depth is T2 = O(h2/ν). The ratio

T2

T1
=

h2ωkA2

Lν
=

(kh)2

2kL

(
A

δ

)2

is of the order O(1) in normal laboratory tanks. Thus, when vorticity
is diffused throughout the depth, the return mass transport is just about
established in most of the length. However, Eq. (10.6.44) has not been
convincingly verified in experiments.

Note that the results for infinite depth cannot be obtained by taking the
limit of Eq. (10.6.41) or (10.6.42). This is not surprising, since the theory is
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constructed on the basis that the attenuating length scale in the direction
of wave propagation is infinite (i.e., � h). One cannot take the limit of
h → ∞ without first accounting for the effects of attenuation and Stuart’s
double boundary layers. These remedies have been studied by Dore (1977),
and Liu and Davis (1977).

Finally, the presence of air, which was shown in Section 9.6 to have
a pronounced effect on wave damping, can also be important in the mass
transport. By recalculating the boundary layers near the free surface, Dore
(1978) found that Eq. (10.6.39) must be modified. As a result Eq. (10.6.44)
had to be corrected by adding the following expression:

1
4h

(ω

2

)3/2 1
k
(1 + cothkh)2

(
ρ′u′

ρµ

)1/2 1
ν1/2

(c + h)(3c + h) (10.6.45)

where ρ′ and µ′ refer to air. For a typical frequency and depth the resulting
velocity profile is compared to Eq. (10.6.44), in Fig. 10.7.

Exercise 10.3: Peristaltic Pumping by Water Waves (Longuet–
Higgins, 1983)

It has been suggested that wave energy can be used to transport water
through a water channel that is bounded below by a rigid horizontal bottom
and above by a flexible but inextensible membrane. The mean channel
height is ∆. Passing waves cause the membrane to move so that

z = ∆ + b cos(kx − ωt) .

Assume kA � 1, b/∆ � 1, δ/∆ � 1. Show first that the leading-order
inviscid velocity in the channel is

u =
ωb

k∆
cos(kx − ωt) w =

z

∆
ωb sin(kx − ωt) .

Next show that the horizontal velocity of the membrane is much less than
u above. Use known results to show that the mass transport velocity at
the outer edges of both top and bottom boundary layers is

ūL =
5
4

q2

C
z = 0, ∆ where q =

bC

∆
, C =

ω

k
.

Then derive the equation for the Eulerian streaming velocity in the core
between the top and bottom Stokes layers,

ν
∂2ū

∂z2
=

1
ρ

∂P̄

∂x
+ u

∂u

∂x
+ w

∂u

∂z
0 < z < h ,
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where 1
ρ

∂P
∂x is the steady constant pressure gradient in the channel. Show

finally that the Lagrangian mass transport in the core outside the boundary
layers satisfies

ν
∂2ūL

∂z2
=

1
ρ

∂p̄

∂x
0 < z < h .

With the derived boundary conditions find the mass transport through-
out the core and the total mass flux rate with the pressure gradient as a
parameter.

10.7 Further References

As pointed out earlier, Longuet–Higgins’ theory for the mass transport in
a sea of finite depth leads to an unbounded limit for infinite depth. As
an alternative to Stuart’s second boundary layer, it turns out that earth
rotation can give a finite limit. While irrelevant in the laboratory, this new
physical factor cannot be ruled out in an ocean where distances of hundreds
of kilometers are involved. Madsen (1978) and Huang (1978) showed inde-
pendently that the wind-induced current in the Ekman layer near the sea
surface could interact and modify the wave-induced mass transport in a
nontrivial way. In particular, the mass transport was found to be confined
within the Ekman layer. Madsen assumed that the effect of wind (hence, of
air) was only to provide a steady driving shear stress to maintain the wave
motion. Possible direct effect of air on wave-induced Reynolds’ stresses in
water was, however, not taken into account. In view of Dore’s conclusion
cited in Section 10.6, further study, which may yield results useful in oil
spills, is desirable.

The effect of earth rotation is of first-order influence to tidal waves
whose frequencies are comparable to the angular velocity of the earth. To
the coastal engineer, the tide-induced mass transport may be of interest in
affecting the silting and scour in an estuary, near a barrier island, and so on.
Pertinent theoretical studies have been made by Hunt and Johns (1963),
Longuet–Higgins (1970c), Moore (1970), and Huthnance (1981). Lamoure
and Mei (1977) examined the bottom mass transport near small bodies
and found for the northern hemisphere that the mass transport near the
sea bottom had a counterclockwise tilt and varied in a spiraling manner in
the Ekman layer.
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Radiation Stresses,
Bound Long Waves
and Longshore Current 11
11.1 Introduction

One of the most important reasons for studying nearshore currents is to help
understand the interaction between the shoreline and the fluid motion in
the sea. In the past, geographers and geomorphologists accumulated a good
deal of descriptive knowledge on the formation and evolution of coastlines
(Johnson, 1919; King, 1959; Zenkovich, 1967; Shepard and Wanless, 1973).
Since the loss of sand and the recession of beaches can be undesirable to
parks, residential areas, and coastal highways, and the accumulation of silt
near a harbor entrance or a river inlet can be hazardous to navigation or
flood control, it is the task of engineers to grapple with the mysteries of
beach processes in order to plan proper defenses.

Most of the guidelines for coastal protection practices have been based
on observational studies both in the field and in the laboratory (see,
for example, Shore Protection Manual, U.S. Army Coastal Engineering
Research Center, 1977, Vols. I–III). These studies have been and will
undoubtedly remain indispensible in increasing our knowledge of shore
processes. In recent years, much progress has also been made in the de-
velopment of semiempirical theories on both the causative currents and
the resultant sediment motion. The whole problem of shoreline dynamics
is extremely complex, due in part to the turbulent interaction between
sediments and fluid flow and in part to the large variety of currents that
can be present (wind waves, tides, storm surges, river currents, and large-
scale ocean circulation caused by wind, thermal or salinity gradients, etc.).
Among these currents a prominent role is played by the longshore current
induced by breaking waves in the surf zone.

547
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Figure 11.1: Waves incident on an infinitely long plane beach.

With reference to Fig. 11.1, let us first give a bird’s-eye description of
the physical processes on a straight beach. A train of periodic waves with
frequency ω and amplitude A∞ is incident from deep water x ∼ +∞ at the
incidence angle θ∞. When waves first feel the bottom, refraction causes
the x component of the wavelength to decrease so that the wave rays tend
to strike the shore normally; the wave amplitude varies such that energy is
roughly conserved between two adjacent rays. In sufficiently shallow water
the wave profile steepens and eventually breaks at a certain line x = xb,
where the depth is hb = h(xb). This line of first breaking is called the
breaker line, which divides the shoaling zone seaward of xb and the breaker
zone or the surf zone shoreward of xb. Kinematically, the wave rays proceed
in roughly the same direction as if there were no breaking. Once inside the
surf zone, turbulence prevails so that the breaking wave is dissipated and
diminishes in height. When the shore is reached, the wave crest finally
exhausts itself in the form of a thin sheet rushing up the beach. After the
highest climb, the sheet of fluid retreats seaward by gravity, encounters, and
is swallowed by the next onrushing wave crest. Aside from this to-and-fro
motion, however, there is also a less conspicuous drift along the shore in the
direction of the longshore component of the incidence waves. This steady
drift, called the longshore current, can be significant in magnitude, say
O(1 m/s). Since the turbulent fluctuations in the surf zone dislodge many
sand particles from their rest position and mix them with the fluid, the
steady longshore drift becomes a powerful mechanism for sand transport,
and, in turn, for the evolution of the beach.

In the earliest analytical theories on longshore currents, focus was
centered on the total longshore flux in the entire surf zone. Putnam, Munk,
and Traylor (1949) assumed that the crests of a periodic wavetrain were so
well separated that they were practically independent of each other. The
momentum flux of a solitary crest incident obliquely was averaged over the
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actual period to give the mean momentum flux entering the surf zone. After
breaking, the crest dissipated into a much slower current along the shore and
carried away certain momentum flux. By equating the longshore compo-
nent of the net momentum flux into a control volume to the bottom friction
experienced by this volume, they obtained the total longshore discharge.
Eagleson (1965) discarded the assumption of solitary crests and modified
the above argument by taking time averages of a periodic wavetrain de-
scribed by the small-amplitude theory. He also considered the growth of
the longshore current from a headland or an infinitely long surf zone bar-
rier where the longshore current was zero. In both cases, only the mean
across the surf zone was derived. In arriving at explicit results, empirical
assumptions on breaking waves and bottom friction were introduced.

The idea of the mean momentumn flux is the precursor of the theory of
radiation stresses initiated by Longuet–Higgins and Stewart (1962). As will
be explained in this Chapter, the radiation stresses are analogous to the
Reynolds stresses in turbulence, being the consequence of convective inertia
and obtained by averaging over wave fluctuations. The first application of
radiation stresses was on the phenomena of set-down and surf beats outside
the surf zone. The same tool was applied later to predict the longshore
current along a straight beach, independently by Bowen (1969), Longuet–
Higgins (1970a, b), and Thornton (1970). In the shoaling zone where the
wave steepness is small, these stresses can be calculated from the leading-
order theory of waves, without the usual headache of closure in turbulence.
In the surf zone where breaking and turbulence prevail, empirical relations
between the radiation stresses and mean-flow quantities are introduced in
order to enable the prediction of a longshore current profile.

In this chapter we shall first develop the radiation stress theory by
averaging the fundamental equations of hydodynamics. Applications to
setdown and bound long waves will be briefly demonstrated. After a discus-
sion of the empirical knowledge of breaking waves, semiempirical theories
are presented for the uniform longshore current on a straight beach. Two
examples of more complex wave fields are also discussed.

11.2 Depth and Time-Averaged Equations for the
Mean Motion

The main objective of this section is to obtain conservation laws of mass
and horizontal momentum for the mean current field by arguments similar
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to those leading to the Reynolds equations for the mean turbulent flow
(Longuet–Higgins and Stewart, 1962; Phillips, 1977).

For the convenience of vertical integration, the vertical and horizontal
directions are distinguished. Specifically, we denote the vertical velocity by
w and the vertical coordinate by z, the horizontal velocity components by
ui (i = 1, 2; u1 = u, u2 = v), and the horizontal coordinates by xi (i = 1, 2;
x1 = x, x2 = y). We define the mean velocity Ui (i = 1, 2) by integrating
ui over the instantaneous water depth and then over the time period T ,
that is,

Ui(x, y, t) =
1

ζ̄ + h

∫ ζ

−h

ui dz , i = 1, 2 , (11.2.1)

where ζ(x, y, t) is the free-surface displacement, ζ̄ is its time mean, and
h(x, y) is the still water depth. Physically, ρUi(ζ̄ + h) is the mean rate of
mass flux across a vertical plane of unit width along xi = const. The vector
(U1, U2) may, therefore, be called the mass flux velocity, which depends
only on the horizontal coordinates and the long time scale. Denoting the
deviation from the mean by ũi, we have

ui = Ui + ũ1(x, y, z, t) . (11.2.2)1

It follows from the definition that∫ ζ

−h

ũi dz = 0 . (11.2.3)

11.2.1 Averaged Equation of Mass Conservation

Integrating the local continuity equation over the depth, we get∫ ζ

−h

∂ui

∂xi
dz + [w]ζ − [w]−h = 0 , (11.2.4)

where [w]ζ denotes the value of w at z = ζ and [w]−h, denotes the value of
w on the bottom. With Leibniz’s rule, Eq. (11.2.4) can be written

∂

∂xi

∫ ζ

−h

ui dz +
[
−ui

∂ζ

∂xi
+ w

]
ζ

−
[
ui

∂h

∂xi
+ w

]
−h

= 0 . (11.2.5)

1This definition differs slightly from that of Phillips (1977, p. 45).
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On the free surface, the kinematic boundary condition

∂ζ

∂t
+ ui

∂ζ

∂xi
= w , z = ζ , (11.2.6)

may be recalled. For simplicity, we assume a rigid sea bottom at z = −h,
then

ui = w = 0 for real fluid , (11.2.7)

or [
ui

∂h

∂xi
+ w

]
−h

= 0 for inviscid fluid . (11.2.8)

Because of Eqs. (11.2.6) and (11.2.7) or Eq. (11.2.8), Eq. (11.2.5) becomes

∂ζ

∂t
+

∂

∂xi

∫ ζ

−h

ui dz = 0 . (11.2.9)

Upon taking the time average, we get

∂ζ̄

∂t
+

∂

∂xi
[Ui(ζ̄ + h) = 0 (11.2.10)

exactly; the same result was deduced before [see Eq. (2.5.12)] as an approx-
imation for long waves in shallow water.

11.2.2 Averaged Equations of
Momentum Conservation

In order to include the laboratory case of smooth and rigid bottoms, we
allow both viscous and turbulent stresses to be present. For a rough and
rigid bottom, the viscous stresses are unimportant almost everywhere and
may be discarded from the following discussion.

Let us first rearrange the Navier–Stokes equations of motion as follows:

horizontal momentum (j = 1, 2):

∂uj

∂t
+

∂uiuj

∂xi
+

∂ujw

∂z
=

1
ρ

∂

∂xi
(−Pδij + τij) +

1
ρ

∂τj3

∂z
, (11.2.11)

vertical momentum:

∂w

∂t
+

∂uiw

∂xi
+

∂w2

∂z
= −1

ρ

∂

∂z
(P + ρgz) +

1
ρ

∂τi3

∂xi
+

1
ρ

∂τ33

∂z
, (11.2.12)
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where τij , τj3, and τ33 are the components of the viscous stress tensor.
When the horizontal momentum equation (11.2.11) is integrated vertically,
terms on the left-hand side give∫ ζ

−h

dz
∂ρuj

∂t
=

∂

∂t

∫ ζ

−h

ρuj dz − ρ[uj ]ζ
∂ζ

∂t
,

∫ ζ

−h

dz
∂ρuiuj

∂xi
=

∂

∂xi

∫ ζ

−h

ρuiuj dz − ρ[uiuj]ζ
∂ζ

∂xi
− ρ[uiuj]−h

∂h

∂xi
,

∫ ζ

−h

dz
∂ρuiw

∂z
= ρ[uiw]ζ − ρ[uiw]−h .

Summing up these terms and invoking the kinematic boundary conditions
on the free surface and on the bottom, that is, Eqs. (11.2.6) and (11.2.7),
we obtain for the left-hand side of Eq. (11.2.11)

L.H.S. =
∂

∂t

∫ ζ

−h

ρuj dz +
∂

∂xi

∫ ζ

−h

(ρuiuj) dz . (11.2.13)

Similarly, the right-hand side of Eq. (11.2.11) gives

R.H.S. =
∫ ζ

−h

∂

∂xi
(−Pδij + τij) dz +

∫ ζ

−h

∂τj3

∂z
dz

=
∂

∂xi

∫ ζ

−h

(−Pδij + τij) dz − [−Pδij + τij ]ζ
∂ζ

∂xi

− [−Pδij + τij ]−h
∂h

∂xi
+ [τj3]ζ − [τj3]−h . (11.2.14)

On the free surface, the atmospheric force per unit area must balance
the fluid stresses. This balance implies that in the jth direction

[−Pδij + τij ]ni + τj3n3 = τF
j , z = ζ, j = 1, 2 , (11.2.15)

where τF
j is the externally applied horizontal stress component which is

defined to include both atmospheric pressure and shear stress given from
meteorological data and n = (n1, n2, n3) is the unit outward normal
vector. On the free surface described by F (x, y, z, t) = z−ζ(x, y, t) = 0, the
unit outward normal is n = ∇F/|∇F | where ∇F = (−∂ζ/∂x,−∂ζ/∂y, 1).
Hence, Eq. (11.2.15) can be written

−[−Pδij + τij ]ζ
∂ζ

∂xi
+ [τj3]ζ = τF

j |∇F | , z = ζ . (11.2.16)
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On the bottom B(x, y, z) = z+h(x, y) = 0 we denote the total horizontal
shear stress by τB

j , that is,

τijni + τj3n3 = τB
j , z = −h(x, y), j = 1, 2 . (11.2.17)

Since the unit outward normal to the bottom is n = −∇B/|∇B| where
∇B = (∂h/∂x, ∂h/∂y, 1), Eq. (11.2.17) may be expressed as

τij
∂h

∂xi
+ τj3 = −τB

j |∇B| , z = −h . (11.2.18)

With Eqs. (11.2.16) and (11.2.18), Eq. (11.2.14) becomes

R.H.S. =
∂

∂xi

∫ ζ

−h

[−Pδij + τij ] dz + [P ]−h
∂h

∂xj
+ [τF

j |∇B| − τB
j |∇B|] .

(11.2.19)

Equating Eqs. (11.2.13) and (11.2.19), we have

∂

∂t

∫ ζ

−h

ρuj dz +
∂

∂xi

∫ ζ

−h

ρuiuj dz = [P ]−h
∂h

∂xj
+

∂

∂xi

∫ ζ

−h

[−Pδij + τij ] dz

+ [τF
j |∇F | − τB

j |∇B|] . (11.2.20)

Physically, Eq. (11.2.20) represents the momentum balance in a vertical
column of fluid of height ζ + h and unit cross section (dx = 1, dy = 1). On
the left-hand side the terms are successively the acceleration and the net
momentum flux through the vertical sides of the column. On the right, the
terms represent, in the sequence shown, the pressure by the bottom to the
fluid, the net surface stresses on the vertical sides, and the surface stress at
the free surface and the sea bottom.

The time average of the left-hand side of Eq. (11.2.20) may be written

ρ(ζ̄ + h)
(

∂Uj

∂t
+ Ui

∂Uj

∂xi

)
+ ρ

∂

∂xi

(∫ ζ

−h

ũiũj dz

)
(11.2.21)

after using Eq. (11.2.10). On the right-hand side of Eq. (11.2.20) we define
p̄ as the mean dynamic pressure at the bottom, that is,

p̄ = [P ]−h − ρg(ζ̄ + h) , (11.2.22)

so that

[P ]−h
∂h

∂xj
= p̄

∂h

∂xj
+

∂

∂xj

[
1
2
ρg(ζ̄ + h)2

]
− ρg(ζ̄ + h)p̄

∂ζ̄

∂xj
. (11.2.23)
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Substituting Eqs. (11.2.21) and (11.2.23) into the time average of
Eq. (11.2.20), we obtain finally for j = 1, 2

ρ(ζ̄ + h)
[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]

= p̄
∂h

∂xj
− ρg(ζ̄ + h)

∂ζ̄

∂xj

+
∂

∂xi

{
−Sij

∫ ζ

−h

τij dz

}
+ τF

j |∇F | − τB
j |∇F | , (11.2.24)

where the following definition has been introduced

Sij =
∫ ζ

−h

[Pδij + ρũiũj ] dz − ρg

2
(ζ̄ + h)2δij . (11.2.25)

Physically, Sij is the (i, j) component of the stress tensor representing the
excess momentum fluxes.2 Since

ρg

2
(ζ̄ + h)2 =

∫ ζ̄

−h

ρg(ζ̄ − z) dz

is just the total mean hydrostatic pressure over the mean depth, Sij may
be written

Sij =

[∫ ζ

−h

P dz −
∫ ζ̄

−h

ρg(ζ̄ − z) dz

]
δij +

∫ ζ

−h

ρũiũj dz . (11.2.26)

Thus, Sij represents the sum of the ith component of the excess hydrody-
namic pressure on, and the net momentum flux across, a surface normal to
the jth direction. Also on the right-hand side of Eq. (11.2.24), the quantity∫ ζ

−h
τij dz corresponds to the mean momentum flux tensor caused by fluc-

tuations of molecular scale. p̄∂h/∂xj is the mean hydrodynamic reaction
at the sea bottom and ρg∂ζ̄/∂x is the hydrostatic pressure gradient due to
the mean sea level.

Thus far, Eqs. (11.2.10) and (11.2.24) are exact. In particular, the orders
of magnitude of the mean current and the waves are yet arbitrary. Practical
applications of these equations sometimes permit (or even demand) certain
simplifications as will be shown later.

2The definition of Sij is slightly different from Phillips [1977, Eq. (3.6.12)]. The difference
is of the fourth order for infinitesimal waves.
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11.2.3 Some Preliminary Simplifications

Let us introduce certain simplifying assumptions before proceeding further.
First, let all mean quantities be slowly varying in time, and let there be

no atmospheric disturbance on the free surface

τ̄F
j = 0 . (11.2.27)

This assumption precludes the study of the transient effects of wind which
may have very direct influence on the short-term evolution of beaches.
Little work has been done in this regard.

Let us now discuss further approximations for Eq. (11.2.26) when the
following quantities are small: (i) viscosity, (ii) bottom slope, |∇h| �
O(kA), and (iii) wave slope kA. In addition the averages are slowly varying
in time so that

∂f̄

∂t
= ωkAf̄ . (11.2.28)

Viscous Stress Terms

The integrated viscous stress terms, being the product of molecular vis-
cosity and the horizontal gradients of the horizontal velocity, are of the
order ∫ ζ

−h

τij dz ∼ O(µkωAh) . (11.2.29)

Since Sij is of the order O(ρ(ωA)2h), we get∫ ζ

−h τij dz

Sij
= O

(
kν

ωA

)
= O(R−1

E ) (11.2.30)

where

RE =
ωA

kν
=

A

kδ2

is the Reynolds number based on the wave orbital velocity and the wave-
length. Under practical circumstances the above ratio is very small and the
integral of viscous stress τij is negligible.

The bottom stress τ̄B
j is, however, not necessarily small. In the present

chapter the bottom slope of the beach will always be regarded as small,

|∇B| = 1 + O(∇h)2 ,
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and we may approximate

τ̄B
j |∇B| = τ̄B

j [1 + O(∇h)2] (11.2.31)

in Eq. (11.2.24). Recall from Section 8.9 that the τ̄B
j can be related to the

local orbital velocity if there is a turbulent boundary layer.

Dynamic Pressure p̄∂h/∂xj

To estimate the mean dynamic pressure, we integrate the vertical momen-
tum equation (11.2.12) and employ Leibniz’s rule as before,

[P ]z = ρg(ζ − z) + ρ

[
∂

∂t

∫ ζ

z

w dz +
∂

∂xi

∫ ζ

z

uiw dz

]

= −ρ

[
w

(
∂ζ

∂t
+ ui

∂ζ

∂xi
− w

)]
ζ

− ρ[w2]z − ∂

∂xi

∫ ζ

z

τi3 dz

−
[
−P + τ33 − τi3

∂ζ

∂xi

]
ζ

+ [τ33]z , (11.2.32)

where [P ]z means P evaluated at an arbitrary height z. The free-surface
boundary terms vanish by Eqs. (11.2.6) and (11.2.16) if the atmospheric
pressure is zero. The time average of the mean water pressure at any z is,
therefore,

[P ]z = ρg(ζ̄ − z) +
∂

∂xi

∫ ζ

−h

ρuiw dz − ρ[w2]z − ∂

∂xi

∫ ζ

z

τi3 dz + [τ̄33]z .

(11.2.33)

The integrated molecular viscous term is of the order O(R−1
E ) relative to

the others. From continuity, the term [τ̄33]z may be estimated by

[τ̄33]z = µ
∂w̄

∂z
∼

(
µ

∂ūi

∂xi

)
and is also negligible. Thus, to a good approximation, we have

[P ]z �
{

ρg(ζ̄ − z) +
∂

∂xi

∫ ζ

−h

ρuiw dz − ρ[w2]z

}
{1 + O(R−1

E )} , (11.2.34)

implying that viscosity does not have any direct influence on [P ]z. The
same is true for [P ]−h
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[P ]−h
∼= ρg(ζ̄ + h)

∂

∂xi

∫ ζ

−h

ρuiw dz . (11.2.35)

Combining Eqs. (11.2.35) and (11.2.22), we have simply

p̄
∂h

∂xj
=

{
∂h

∂xj

∂

∂xi

∫ ζ

−h

ρuiw dz

}
[1 + O(R−1

E |∇h|)] . (11.2.36)

Finally, let us compare the preceding term with other terms in Eq. (11.2.24).
For short-crested waves we should expect the length scale of variations of
Ui, ζ̄, Sij , and so on, to be k−1 so that the largest terms among

ρ(ζ̄ + h)Ui
∂Uj

∂xi
, ρg(ζ̄ + h)Ui

∂ζ̄

∂xj
,

∂Sij

∂xi

are of the order O(khρω2A2). Now because of the factor ∇h,

p̄
∂h

∂xi
= O(|∇h|ρ(ωA)2kh) (11.2.37)

is unimportant and can be ignored.
For long-crested waves refracted by the sea bottom, all mean quantities

are expected to vary slowly in horizontal directions as the depth h itself;
hence p̄∂h/∂xi is again O(|∇h|) times smaller than the largest remaining
terms and may be ignored.

The Excess Momentum Flux Tensor — The Radiation

Stresses for Small Fluctuations

In the exact definition for Sij , Eq. (11.2.25), let ũi and ζ̃ ≡ ζ − ζ̄ be
further decomposed into wave and turbulent fluctuations, which will be
distinguished by single and double primes, respectively; thus

ũi = u′
i + u′′

i , ζ̃ = ζ − ζ̄ = ζ′ + ζ′′ . (11.2.38)

Clearly, ζ̃ = O(A). If we assume that the characteristic time scales of the
two fluctuations are vastly different, then u′

i and u′′
j are uncorrelated

u′
iu

′′
j = 0 , ζ′ζ′′ = 0 . (11.2.39)

The second term in Eq. (11.2.25) may now be approximated as
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ρ

∫ ζ

−h

ũiũj dz = ρ

∫ ζ̄

−h

ũiũjdz + O(ρω2A3)

∼= ρ

∫ ζ̄

−h

u′
iu

′
j dz + ρ

∫ ζ̄

−h

u′′
i u′′

j dz . (11.2.40)

The leading term is of the order O(ρhω2A2) = O(ρgA2).
To obtain a more explicit formula for the remaining terms in

Eq. (11.2.25), we integrate Eq. (11.2.32) vertically and then average the
result with respect to time:∫ ζ

−h

P dz = ρg
(ζ + h)2

2
+ ρ

∫ ζ

−h

dz
∂

∂t

∫ ζ

z

w dz

+ ρ

∫ ζ

−h

dz
∂

∂xi

∫ ζ

z

uiw dz − ρ

∫ ζ

−h

w2 dz . (11.2.41)

Again, the integrated viscous stresses have been ignored. The first term on
the right of Eq. (11.2.41) may be rewritten

ρg

2
(ζ + h)2 =

ρg

2
[(ζ̄ + h)2 + ζ′2 + ζ′′2] . (11.2.42)

The second term in Eq. (11.2.41) becomes, upon partial integration,

ρ

∫ ζ

−h

dz
∂

∂t

∫ ζ

z

w dz′ = ρ
∂

∂t

∫ ζ

−h

dz

∫ ζ

z

w dz′ = ρh2 ∂W

∂t
(11.2.43)

where W denotes the averaged vertical velocity which is, by definition,

W =
1

ζ̄ + h

∫ ζ

−h

w dz =
1

ζ̄ + h

(∫ ζ̄

−h

w̄ dz +
∫ ζ

ζ̄

w dz

)
.

Assume that the horizontal scales of depth and Ui are comparable. Then
either for a strong current [O(Ui) = (gh)1/2] with ∇h/kh = O(k2A2) or
for a weak current [O(Ui) = ωA] with ∇h/kh = O(kA), the mean vertical
current W is much smaller than w′ or w′′ by a factor O(∇h) or O(kA).
In view of (11.2.28), the time-derivative term in (11.2.43) is of the order
ρ(kh)2ω2A3 which is negligible. It also follows that

ρ

∫ ζ

−h

dz
∂

∂xi

∫ ζ

z

uiw dz ∼= ρ

∫ ζ̄

−h

dz
∂

∂xi

∫ ζ̄

z

[u′
iw

′ + u′′
i w′′] dz , (11.2.44)
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and

−ρ

∫ ζ

−h

w2 dz ∼= −ρ

∫ ζ̄

−h

(w′2 + w′′2) dz , (11.2.45)

with a relative error of O(|∇h|, kA). When Eqs. (11.2.42)–(11.2.45) are
substituted into Eq. (11.2.41) and then into Eq. (11.2.25), the result is

Sij = S′
ij + S′′

ij , (11.2.46)

where

S′
ij = ρ

∫ ζ̄

−h

u′
iu

′
j dz + δij

{
ρ
gζ′2

2
+ ρ

∫ ζ̄

−h

dz
∂

∂xi

∫ ζ̄

z

u′
iw

′ dz′

−ρ

∫ ζ̄

−h

w′2 dz

}
. (11.2.47)

Similarly, S′′
ij is defined with all ( )′ being replaced by ( )′′

S′′
ij = ρ

∫ ζ̄

−h

u′′
i u′′

j dz + δij

{
ρ
gζ′′2

2
+

∫ ζ̄

−h

dz
∂

∂xi

∫ ζ̄

z

u′′
i w′′ dz′

−
∫ ζ̄

−h

w′′2 dz

}
. (11.2.48)

S′
ij and S′′

ij are, respectively, the excess momentum flux tensors due to
wave and turbulent fluctuations. S′

ij is called the radiation stress tensor by
Longuet–Higgins and Stewart (1962, 1964). Since the last term in S′′

ij

ρ

∫ ζ̄

−h

u′′
i u′′

j dz

is the negative of the integrated Reynolds stress due to horizontal turbulent
fluctuations, S′′

ij is an extension of the Reynolds stress, with additional
contributions from vertical fluctuations.

Away from the surf zone, turbulence is usually unimportant so that
S′′

ij � S′
ij ; the wave radiation stress S′

ij can be evaluated by using the first-
order wave theory, as will be shown shortly. Inside the surf zone, waves
and turbulence can be equally strong; nonlinearity becomes important and
u′

i may even be comparable to the phase velocity. While Eq. (11.2.25) still
holds, definitions (11.2.47) and (11.2.48), which are approximate for small
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kA, should be modified. More important, neither stress can be deduced
theoretically, and empirical closure conditions are needed.

In contrast to Eq. (11.2.48), Phillips (1977) did not include the diagonal
terms in the curly brackets. This formal difference is, however, only of
academic significance in view of the uncertainties in the closure hypothesis
to be introduced for S′′

ij .

11.2.4 Summary of Approximate
Averaged Equations

The approximate equations for the mean motion may now be collected
below:

∂ζ̄

∂t
+

∂

∂xi
[Ui(ζ̄ + h)] = 0 (11.2.50)

and

∂Uj

∂t
+Ui

∂Uj

∂xi
= −g

∂ζ̄

∂xj
− 1

ρ(ζ̄ + h)
∂

∂xi
(S′

ij +S′′
ij)−

τ̄B
j

ρ(ζ̄ + h)
, (11.2.51)

where S′
ij and S′′

ij are given by Eqs. (11.2.47) and (11.2.48).
In the shoaling zone and away from lateral boundaries, such as break-

waters and jetties, turbulence is negligible so that S′′
ij may be further

neglected. For small-amplitude waves the radiation stresses are second-
oreder in wave steepness, so are the mean current velocity annd the mean
sea-level. The quadratic products of the mean quantities in Eq. (11.2.50)
and(11.2.51) are of the fourth order and may also be ignored, so that

∂ζ̄

∂t
+

∂(Ujh)
∂xj

= 0 (11.2.52)

and

∂Ui

∂t
= −g

∂ζ̄

∂xi
+

1
ρh

∂S′
ij

∂xj
. (11.2.53)

For monochromatic waves, the mean quantities are independent of time.
Eq. (11.2.53) is then simplified to

0 ∼= −g
∂ζ̄

∂xj
− 1

ρh

∂S′
ij

∂xi
. (11.2.54)
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If the bathymetry is one-dimensional and waves are normal to the shore,
then there is no shoreward current anywhere. The mean sea-level is in
static balance with the radiation stress field.

11.3 Radiation Stresses in the Shoaling Zone —
Small-Amplitude Waves on Constant
or Nearly Constant Depth

In this section we derive some explicit formulas for the wave-induced radia-
tion stresses S′

ij in the shoaling zone. Consider first the more practical case
of weak current where Ui is comparable to the wave velocity field (u′

i, w
′).

Due to the absence of breaking, turbulence must be rather insignificant
except near the bottom. Consequently, the wave and the current fields
should not affect each other at the first order in wave slope, and the
linearized theory for waves is still applicable to the leading order. In
particular, in a region of nearly constant depth and several wavelengths
away from local scatterers, the wave potential can be expressed by
Eq. (10.4.1), Chapter 10, while wave-induced free-surface displacement ζ′

is

ζ′(x, y, t) = Re
{
η(x, y)e−iωt

}
with η governed by the Helmholtz equation. Keeping only terms of the
second order in wave slope, the upper limits of integration in Eq. (11.2.47)
may be replaced by 0. The various terms involved are evaluated individually
as follows:

I = ρ

∫ 0

−h

u′
iu

′
j dz =

ρg

4
Re

(
∂η

∂xi

∂η∗

∂xj

)
1
k2

[
1 +

2kh

sinh 2kh

]
, (11.3.1)

II =
1
2
ρgζ′2 =

1
4
ρg|η|2 , (11.3.2)

III = ρ

∫ 0

−h

dz
∂

∂xi

∫ 0

z

u′
iw

′ dz

=
ρg

4
Re

∂

∂xi

(
η∗ ∂η

∂xi

)
1

2k2
[2kh coth2kh − 1] , i = 1, 2 ; (11.3.3)

IV = −ρ

∫ 0

−h

w′2 dz =
ρg

4
|η|2

(
2kh

sinh 2kh
− 1

)
. (11.3.4)
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Summing up the four integrals and using the Helmholtz equation, we obtain

Sij = I + II + III + IV

=
ρg

4

{
Re

[
∂η

∂xi

∂η∗

∂xj

]
1
k2

(
1 +

2kh

sinh 2kh

)

+ δij

[
|η|2 2kh

sinh 2kh
+

2kh coth2kh − 1
2k2

(∣∣∣∣∂η

∂x

∣∣∣∣2 +
∣∣∣∣∂η

∂y

∣∣∣∣2 − k2|η|2
)]}

(11.3.5)

(Mei, 1973), where primes for the radiation stresses are omitted from here
on until Section 11.6.

The following two limits are easily found

1 Deep water kh � 1, ω2 = gk.

Sxx

h
=

Syy

h

ρg

4
1
k

(|∇η|2 − k2|η|2) , (11.3.6a)

Sxy

h
=

Syx

h
= 0 . (11.3.6b)

2 Shallow water kh � 1, ω = (gh)1/2k.

Sxx =
ρg

2

(
1
k2

∣∣∣∣∂η

∂x

∣∣∣∣2 + 2|η|2
)

, (11.3.7a)

Syy =
ρg

2

(
1
k2

∣∣∣∣∂η

∂y

∣∣∣∣2 + 2|η|2
)

, (11.3.7b)

Sxy = Syx =
ρg

2
1
k2

Re
∂η

∂x

∂η∗

∂y
. (11.3.7c)

For the special example of a progressive wave in the direction θ with
respect to the x axis,

η = Aeiψ , A real , (11.3.8)

where

ψ = k1x1 + k2x2 , (11.3.9)

k1 = k cos θ , k2 = k sin θ , x1 = x , x2 = y .
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It is straightforward to show that the radiation stresses are

Sij =
ρgA2

4

{
kikj

k2

(
1 +

2kh

sinh 2kh

)
+ δij

2kh

sinh 2kh

}

=
E

2

{
kikj

k2

2Cg

C
+ δij

(
2Cg

C
− 1

)}
(11.3.10)

(Longuet–Higgins and Stewart, 1962, 1964). More explicitly, the compo-
nents of the radiation stresses may be written

Sxx = S11 =
E

2

[
2Cg

C
cos2 θ +

(
2Cg

C
− 1

)]
, (11.3.11a)

Syy = S22 =
E

2

[
2Cg

C
sin2 θ +

(
2Cg

C
− 1

)]
, (11.3.11b)

Sxy = Syx = S′
12 = S′

21 = E
Cg

C
sin θ cos θ . (11.3.11c)

In very deep water Cg/C → 1
2 so that

Sxx
∼= E

2
cos2 θ , (11.3.12a)

Syy
∼= E

2
sin2 θ , (11.3.12b)

Sxy = Syx
∼= E

2
sin θ cos θ , (11.3.12c)

while on very shallow water, Cg/C → 1, so that

Sxx
∼= E

2
[2 cos2 θ + 1] , (11.3.13a)

Syy
∼= E

2
(2 sin2 θ + 1) , (11.3.13b)

Sxy = Syx
∼= E sin θ cos θ . (11.3.13c)

Applications of Eqs. (11.3.10)–(11.3.13) will be found in the next section.
Although Eqs. (11.3.11)–(11.3.13) are derived for strictly constant

depth, they are a good first approximation for slowly varying depth if A

and k are interpreted as the local values corresponding to the local h.
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For a strong current on a nearly constant depth, the linearized equations
governing the leading order wave field can be inferred from Eqs. (3.6.17),
(3.6.19), (3.6.20), and (3.6.23), Chapter Three, by ignoring nonlinearity
and spatial variations of Ui and h. It can be shown that formulas (11.3.5)
and (11.3.10) still hold if h is replaced by h + ζ̄, where ζ̄ is the mean sea
level induced by the strong current according to (3.6.13), and ω and k must
satisfy Eqs. (3.6.29)–(3.6.33), all of Chapter Three.

Exercise 11.1: Radiation Stresses in a Partially Standing Wave

Let the first-order waves be composed of incident and reflected waves,

η = Aeikx + Be−ikx . (11.3.14)

Use Eq. (11.3.5) to show that the radiation stress components are

Sij =
ρg

4

{
(|A|2 + |B|2 − 2 Re [AB∗e2ikx])

(
1 +

2kh

sinh 2kh

)

+ δij

[
(|A|2 + |B|2 + 2 Re [AB∗e2ikx])

2kh

sinh 2kh

− 2(2kh coth2kh− 1) Re [AB∗e2ikx]

]}
(11.3.15)

and

S11 =
ρg

4
(|A|2 + |B|2)

×
(

1 +
4kh

sinh 2kh
+

ρg

2
Re [AB∗e2ikx](1 − 4kh coth 2kh)

)
(11.3.16)

in particular.
Derive a general formula for the mean-free surface displacement

ζ̄ = − 1
2g

(u2
1 − w2

1) = − g

4ω2

(
|ηx|2 − ω4

g2
|η|2

)
(11.3.17)

and then show for the partially standing wave that

ζ̄ = −k(|A|2 + |B|2)
2 sinh 2kh

− k(1 + tanh2 kh)
2 tanhkh

Re (AB∗e2ikx) . (11.3.18)
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Figure 11.2: Drift force on a floating body.

Exercise 11.2: Drift Force on a Two-Dimensional Body

Consider a very long vessel moored in transverse waves (beam sea). The
free-surface displacement in the far fields are, at the leading order,

η = A(eikx + R e−ikx) , kx ∼ −∞ ; η = AT eikx , kx ∼ ∞
(11.3.19)

where R and T are the reflection and transmission coefficients, respectively.
Use the spatial averages of S11 and ζ̄ to calculate the net horizontal force
at a station in the far field at kx ∼ −∞ by adding the radiation stress
and the hydrostatic pressure force. Do the same for kx ∼ ∞ and take the
difference of the two results to show that the drift force on the body is

Drift force = 〈S11 + ρgζ̄h〉kx∼−∞ − 〈S11 + ρgζ̄h〉kx∼∞

= ρg|A|2(1 + |R|2 − |T |2)Cg

C

= 2ρg|A|2|R|2 Cg

C
. (11.3.20)

(Longuet–Higgins, 1977a).

11.4 Long Waves Forced by Radiation Stress
of Short Waves

Consider progressive short waves with frequency bandwidth of the order
O(εω) where ε = kA, the temporal and spatial variations of the period-
averages must have the time scale O(1/ωε) and the spatial scale, O(1/εk)
so that ζ̄, Ui, Sij in (11.2.52) and (11.2.53) are functions of t1 = εt
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and x1i = εxi. These two equations may be combined to give the forced
long-wave equation

∂

∂x1i

(
gh

∂ζ̄

∂x1i

)
− ∂2ζ̄

∂t21
= −1

ρ

∂2Sij

∂x1i∂x1j
. (11.4.1)

Thus, long waves are forced by the divergence of the radiation stress of the
short waves. This result resembles the equation governing sound genera-
tion by turbulent fluctuations (Lighthill, 1952, 1954). We now discuss two
simple applications.

11.4.1 Set-Down or Bound Long Wave

Let us consider a narrow-banded progressive wavetrain propagating in the
x direction over a horizontal seabed. The amplitude is A = A(x1 − Cgt1).
Recall that

S11 = E

(
2Cg

C
− 1

2

)
, E =

1
2
ρg|A|2 . (11.4.2)

From the one-dimensional long-wave equation,

∂2ζ̄

∂t21
− gh

∂2ζ̄2

∂x2
1

=
1
ρ

∂2S11

∂x2
1

. (11.4.3)

it is evident that S11 and ζ̄ must depend only on the moving coordinate
ξ ≡ x1 − Cgt1. Changing to the moving coordinate, we find

∂

∂x1
=

∂

∂ξ
,

∂

∂t1
= −Cg

∂

∂ξ

so that (11.4.3) becomes a second-order ordinary differential equation,
which can be readily integrated to give

ζ̄ = − S11/ρ

gh − C2
g

= − g|A|2
2(gh − C2

g )

(
2Cg

C
− 1

2

)
. (11.4.4)

This result represents an infragravity wave bound to the envelope and
propagating at the group velocity of the short waves. Furthermore, since
gh > Cg and 2Cg/C > 1 for all k, ζ̄ is negative (see Fig. 11.3). For these
reasons this long wave is also known as the bound wave or the set-down
wave (Longuet–Higgins and Stewart, 1964).
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Figure 11.3: Set-down long waves bound to the envelope of the short wave groups.

11.4.2 Parasitic Long Seiches in a Wave Flume

In many laboratory experiments monochromatic short waves are generated
by an oscillating piston at one end of a long tank. A gentle beach at the
opposite end induces breaking so that little energy is reflected. Frequently,
unintended seiches (standing waves) of a long period are observed and con-
taminate the experiment. What causes these seiches and how can they be
avoided?

Due to mechanical imperfections, the piston may generate waves within
a narrow frequency band. As a result a long set-down wave is forced
by the radiation stress, with the frequency comparable to the frequency
band-width. In addition, free long waves, to be explained shortly, are also
generated due to the finite length of the flume. Unlike the short waves that
generate them, these long waves tend not to break on the sloping beach,
and can be resonated to significant amplitude if their wavelength is close
to that of a standing wave mode in the flume.

Quantitative analysis can be facilitated by the theory here. Let the
piston displacement be prescribed by

X(t, t1) = X10(t1) + X11(t1)e−iωt + ∗ (11.4.5)

where t1 = εt, with ε = O(kA). The first term represents the slow drift
while the second term the fast oscillations with a slowly modulated ampli-
tude, both are of the order of A. By solving a linearized radiation problem
as in Chapter 8, the radiated wave amplitude A can be found from the
piston amplitude X11. We leave it as an exercise to show that

A(t1, x1 = 0) = −2iC

Cg
tanhkh X11(t1) . (11.4.6)

For x1 > 0 we invoke wave-action conservation so that A = A(t1 − x1/Cg),
or,

A = −2iC

Cg
tanh kh X11(t1 − x1/Cg) . (11.4.7)
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The mean sea-level of the long wave ζ̄ is governed by (11.4.3), and is related
to U(x1, t1) by

∂ζ̄

∂t1
+ h

∂U

∂x1
= 0 ,

∂U

∂t1
+ g

∂ζ̄

∂x1
= − 1

ρh

∂2S11

∂x2
1

.

The kinematic boundary condition at the piston gives, approximately,

U(x1 = 0, t1) =
∂X10

∂t1
(11.4.8)

which also implies that

∂ζ̄

∂x1
= − 1

ρgh

∂S11

∂x1
− 1

g

∂2X10

∂t21
, x1 = 0 . (11.4.9)

Note that since S11 = S11(t1 − x/Cg), we can also write

∂S11

∂x1
= − 1

Cg

∂S11

∂t1
. (11.4.10)

The solution for the long wave can be split into two parts

ζ̄ = ζ̄B + ζ̄F . (11.4.11)

The forced or bound long wave ζ̄B satisfies only the inhomogeneous equa-
tion (11.4.3). The solution is just (11.4.4).

The free long wave ζ̄F must now satisfy the homogeneous wave equa-
tion, i.e., (11.4.3) with zero on the right, and the inhomogeneous boundary
condition on the piston at x1 = 0,

∂ζ̄F

∂x1
= −1

g

∂2X0

∂t21
− ∂ζ̄B

∂x1
+

1
ρghCg

∂S11

∂t1

= −1
g

∂2X0

∂t21
− 1

ρgh

∂S11

∂t1

Cg

gh − C2
g

. (11.4.12)

The solution is easily found to be

ζ̄F (t1 − x1/
√

gh) =
1
ρ

Cg√
gh

S11(t − x1/
√

gh)
gh − C2

g

+
h√
gh

∂

∂t1
X10(t1 − x1/

√
gh) (11.4.13)

which travels at the fast speed
√

gh. Note that the first term is positive,
hence is a set-up. Note also that the height of the set-up is smaller by the



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

11.4. Long Waves Forced by Radiation Stress of Short Waves 569

factor Cg/
√

gh than the set-down, but the length is greater by the factor√
gh/Cg. Therefore their volume displacements are equal and opposite,

ensuring mass conservation.
In the special case of a wave packet, A and hence S11 are of finite

duration and length. The free long wave will eventually be separated from
and outrun both the wave packet and the bound long wave.

In wave flume experiments, short progressive waves are mostly destroyed
on a sloping beach by breaking, so are the bound long waves. If the free
long-wave frequency 2εΩ matches that of a standing wave mode in the flume
of length L,

2εΩ/
√

gh ≈ nπ/L ,

resonance can occur. To eliminate this resonance one can program the
piston to perform the slow-drift oscillations such that

∂X10

∂t1
= − CgS11

ρh(gh − C2
g )

, (11.4.14)

then the sum of terms on the right-hand side of (11.4.13) vanishes. Without
any forcing by the wavemaker the free long waves should not appear.

In Chapter 13 more will be discussed about long waves forced non-
linearly by short waves.

Exercise 11.3: Short Waves Generated by an Oscillating Piston

Use the usual governing equations and the following piston condition,

φ11x = −iωX11 , x = 0

to show that the radiation potential is formally

φ11 = a0(x1, t1)f0(z)eikx +
∞∑

n=1

an(t1)fn(z)e−knx ,

where k and ikn are, respectively, the real and imaginary roots of the
dispersion relation, and f0(z), fn(z) are the orthonormal eigenfunctions
defined in Chapter 7. Apply the piston boundary condition and orthog-
onality to get

a0(x1 = 0, t1) = −
(

ω

k

∫ 0

−h

f0(z) dz

)
X11 = −ω sinh kh

k2

√
2X11(t1)√

h + g
ω2 sinh2 kh

.
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From the first harmonic part of the dynamic condition on the free surface
show that

A =
2iω

g

√
2a0 cosh kh√

h + g
ω2 sinh2 kh

, ∀x1, t1 > 0 .

Finally, verify that

A = −2iC

Cg
X11 tanh kh .

Exercise 11.4: Free Long Waves Generated by a Sinusoidally
Modulated Piston

Show that, if the piston motion is free of slow drift and the envelope of the
piston oscillation is sinusoidal,

X10 = 0 , X11(t1) = X̄ sin Ωt1

then the free long wave is

ζ̄F = − X̄2(2Cg

C − 1
2 )

h(
√

gh
Cg

− Cg√
gh

)

(
C

Cg
tanh kh

)2

cos 2Ω
(

t1 − x1√
gh

)
.

A more general discussion of short-wave induced long waves will be given
in Chapter 13, without the use of radiation stresses.

We now turn to the longshore current in the surf zone.

11.5 Empirical Knowledge of Breaking Waves

At present, theoretical information on breaking waves on a sloping beach is
still inadequate, especially with regard to breaking-induced turbulence. A
succinct summary of the empirical knowledge of sinusoidal waves normally
incident on a plane beach is given in Battjes (1974a, b), from which much
of the present section is extracted. The film entitled Breaking Waves made
by Kjeldsen and Olsen (1971) is also very informative.

11.5.1 Breaking of Standing Waves on a Slope

On a smooth plane beach, the parameters which govern wave breaking
are the wave slope and the beach slope s = tanα. For sufficiently large
s or sufficiently low amplitudes, an incident wave does not break and is
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completely reflected. When s decreases and/or kA increases, a threshold
is reached where breaking begins. Irribarren and Nogales (1949) and others
have found empirically that the single dimensionless parameter

ξ =
s

(H/λ∞)1/2
= s

(
π

k∞A

)1/2

(11.5.1)

plays an important role, where H is the total height of the breaking wave
and λ∞ is the wavelength in deep water. The critical value is roughly

ξc � 4
π1/2

� 2.3 or k∞A =
(π

4

)2

s2 . (11.5.2)

If ξ < 2.3, waves break and the reflection coefficient reduces to below
unity. A heuristic explanation for the parameter ξ has been proposed by
Munk and Wimbush (1969). Their reasoning is that the fluid accelera-
tion downward along the slope cannot exceed the acceleration of a free-
falling particle, that is, g sin α, without causing breaking. For a standing
wave of local amplitude A, the maximum vertical fluid acceleration may
be estimated as ω2A; the maximum acceleration along the slope is roughly
ω2A/ sinα. Hence, the critical value for breaking is

ω2A

sin α
= g sinα or k∞A = sin2 α .

For small slope s = tanα � sin α,

ξc � s

(H/λ∞)1/2
=

sπ1/2

(k∞A)1/2
= π1/2 = 1.772 (11.5.3)

which is essentially the same as Eq. (11.5.2) for small slope except for the
factor (4/π)2 = 1.62. As will be shown in Chapter 12, Eq. (11.5.3) is the
same as the theoretical deduction of Carrier and Greenspan (1957) based
on Airy’s nonlinear approximation and the criterion that the free surface
is vertical at the breaking point. While the quantitative agreement may be
accidental, it is reassuring that the role of ξ as the governing parameter has
theoretical support.

As ξ decreases beyond the critical value, reflection from the slope de-
creases. Moraes (1970) has performed extensive experiments for wave re-
flection for various incoming waves and beach slopes. From these data
Battjes (1974a) found that the reflection coefficient could be expressed as
the function of ξ alone as shown in Fig. 11.4. This, of course, gives further
significance to the quantity ξ which has been called the surf parameter by
Battjes.
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Figure 11.4: Reflection coefficient of a beach as a function of surf parameter ξ =
s(k∞A/π)−1/2 where A is the local amplitude. +: s = 0.1; •: s = 0.15; ©: s = 0.20;
and �: s = 0.30 (from Battjes, 1974a, based on Moraes’ data).

11.5.2 Types of Breakers on Mild Beaches

Three types of breakers may be crudely distinguished when ξ is below ξc

(Galvin, 1968).3 The collapsing breaker is associated with a large beach
slope and flat incident waves. A small amount of breaking occurs only
at the instantaneous shoreline. Dissipation of wave energy is quite small
and reflection is nearly complete. When the beach slope decreases and/or
the incident wave slope increases, a crest becomes forward-leaning as it
advances toward the shore; its amplitude grows so that the profile is quite
asymmetric. The crest ultimately curls forward and forms a jet plunging
into the trough ahead; this type of breaker is called a plunging breaker, or
a plunger. Because of the air tunnel formed by the splashing crest, the
front of the breaking wave is accompanied by much noise and turbulence.
Shortly after the collapse of the tunnel, a traveling bore is formed which
marches shoreward with continued dissipation. If the beach slope is further
decreased and/or the incident wave slope increased, the onset of breaking
occurs at a greater distance offshore when the wave crest is still symmetric.
Breaking is signalled by the presence of foam draping the forward side of the
crest; the trough in front is not visibly disturbed. This is called a spilling
breaker in which dissipation takes place with a less violent appearance.
Galvin classifies the breaker type on a quantitative scale:

3Galvin further calls an essentially nonbreaking wave on a beach a surging breaker.
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ξb < 0.4 spilling

0.4 < ξb < 2.4 plunging

ξb > 2.0 collapsing

where ξb is the value of ξ at the breaker line. It must be emphasized
that transition from one type to another is always gradual so that the
numerical values marking the border lines cannot be precise. Theoretically,
all three types may be regarded as plunging with the collapsing breakers
having the narrowest surf zone and the spilling breakers having a negligible
overhanging crest.

11.5.3 Maximum Wave Height

The maximum wave height corresponds to the limiting amplitude of a
crest before breaking. There is as yet no simple theory for predicting the
maximum wave height on a sloping beach. For a strictly horizontal bottom,
there are perturbation theories of the Stokes type for periodic progressive
waves (see Chapter Thirteen). By taking the Stokes wave solution and
assuming that at the threshold of breaking the fluid velocity at the crest
equals the phase speed, Miche (1951) calculated the maximum wave height(

H

λ

)
max

=
(

2H

2π

)
max

= 0.14 tanhkh . (11.5.4)

For very shallow water kh � 1, Eq. (11.5.4) gives

Hmax

h
= 0.88 , (11.5.5)

which turns out to be in good agreement with experiments. Because the
Stokes theory implies a symmetrical wave profile, the above result is more
relevant to spilling breakers. Now breaking is a manifestation of extreme
nonlinearity; a perturbation theory of a few orders is hardly satisfactory.
An exact numerical theory of Schwartz (1974) for maximum wave height
indicates, nevertheless, that Miche’s estimate is quite good.

Experimental results for maximum wave height on a sloping bottom
obtained by Iversen, Goda, Bowen et al., and Battjes have been collected
by Battjes (1974a) as shown in Fig. 11.5. The ratio of height to depth at
breaking is denoted by γ. The empirical range

γ =
Hb

hb
= 0.7 − 1.2 (11.5.6)
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Figure 11.5: Breaker height to depth ratio as a function of ξ∞ = s(k∞A∞/π)−1/2

(from Battjes (1974a)). Sources of data are: •: Iversen; ©: Goda; + : Bowen et al.;
and ×: Battjes (1974a).

is roughly comparable to Eq. (11.4.5) and shows a weak dependence on the
parameter ξ. In the absence of a satisfactory theory for wave breaking,
these empirical results have been used for predicting the breaker line on a
gently sloping beach in conjunction with a convenient theory for shoaling
waves. From the theoretical relation between H and h before breaking,
Eq. (11.5.6) may be invoked to calculate the breaking depth hb which, in
turn, gives the position of the breaker line. As a crude estimate we take the
linearized shoaling theory, Eq. (3.3.9), Chapter Three, to relate the wave
amplitude and the depth for the entire shoaling zone. Near the breaker
line, kh � 1; Eq. (3.3.10), Chapter Three, applies, namely,

A

A∞
= (2| cos θ∞|)−1/2

(
ω2h

g

)−1/4

(11.5.7)

where A0 and θ0 have been replaced by A∞ and θ∞, respectively, and
k∞h∞ � 1 is assumed. Invoking (A/h)b = 1

2 (H/h)b = 1
2γ, we get

ω2hb

g
=

(
1
γ

ω2A∞
g

)4/5

(2| cos θ∞|)−1/2 . (11.5.8)

From the observed data of H , Komar and Gaughan (1972) found that the
best value for γ was 1.42 which was larger than that of Eq. (11.5.6). This
discrepancy is likely due to the inadequacy of the linearized theory at the
breaker line.

The ratio of breaker height to depth at the breaking line γ = 0.7–
1.2 has been used also to approximate the ratio of height to depth of a
breaking wave as it travels across the surf zone (Munk, 1949a). This simple
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statement describes empirically the diminishing of wave amplitude and has
been adopted as a basic assumption in all longshore current theories.

11.6 The Structure of a Uniform Longshore Current
on a Plane Beach

Assume for simplicity that the beach has a plane bottom, that is, h = sx.
Uniformity in the longshore direction of y implies that ∂/∂y = 0. Hence
the continuity equation is

∂

∂x
[U(ζ̄ + h)] = 0 ,

which leads to

U ≡ 0 for all x . (11.6.1)

The mean velocity can only be alongshore, that is, V = V (x).
In the offshore–onshore (x) direction, the bottom friction can be omitted

from the momentum equation since U = 0; thus,

0 = −g
∂ζ̄

∂x
− 1

ρ(ζ̄ + h)
∂

∂x
(S′

xx + S′′
xx) . (11.6.2)

In the alongshore (y) direction, the momentum equation reads

0 = − 1
ρ(ζ̄ + h)

[
∂

∂x
(S′

xy + S′′
xy) + τ̄B

y

]
. (11.6.3)

These formal equations are valid for both shoaling and surf zones. As in
uniform pipe flows in ordinary fluid mechanics, the convective inertia terms
are absent identically.

11.6.1 Shoaling Zone: x > xb

In most of the shoaling zone the turbulence intensity is weak so that S′′
xx �

S′
xx. Furthermore, ζ̄ is of the second order in wave slope O(kA2) and is

negligible compared to the still water depth. Hence, Eq. (11.6.2) can be
written

0 � −g
∂ζ̄

∂x
− 1

ρh

∂S′
xx

∂x
, (11.6.4)
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where S′
xx can be given approximately by Eq. (11.3.11a):

S′
xx =

ρgA2

4

[
2Cg

C
cos2 θ +

2Cg

C
− 1

]
, (11.6.5)

while Cg, C, θ, and A refer to the refracting waves implied by Eqs. (11.5.7)
and (11.5.8). Qualitatively, S′

xx decreases as h increases, that is, ∂S′
xx/∂x <

0. It follows from Eq. (11.6.4) that ∂ζ̄/∂x > 0, and ζ steadily increases
with x. Since it vanishes in very deep water, ζ̄ must be below the still water
level; this variation is called the set-down. After some algebra, Eq. (11.6.4)
may be integrated with respect to x to give ζ̄ (see Longuet–Higgins and
Stewart, 1962, for normal incidence). The same result can also be derived
simply by using the dynamic condition on the free surface. Approximating
to the second order only, we have

gζ +
∂Φ
∂t

+ ζ
∂2Φ
∂t∂z

+
1
2
(u′2 + v′2 + w′2) � 0 , z = 0 ,

whose time average is

gζ̄ + ζ
∂w′

∂t
+

1
2
(u′2 + v′2 + w′2) = 0 .

Using the kinematic condition on the free surface ∂ζ/∂x = w′, we get

gζ̄ = −1
2
(u′2 + v′2 − w′2) .

The linearized wave field may be recalled as

Φ = Re
−igA

ω

cosh k(z + h)
cosh kh

exp
[
i

(∫
α dx + βy − ωt

)]
.

Calculating the mean squares of the velocity components from this poten-
tial, we obtain

ζ̄ = − kA2

2 sinh 2kh
(11.6.6)

where derivatives of h have been ignored. Equation (11.6.6) is formally the
same as if h = const. Very near the breaker line kh � 1, Eq. (11.6.6) may
be approximated by

ζ̄ � −A2

4h
. (11.6.7)

For normal incidence, experiments by Bowen, Inman, and Simmons
(1968) have confirmed Eq. (11.6.6) very well for nearly all points in the
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Figure 11.6: Comparison of experiments with theory for set-down and set-up on a plane
beach. Data: wave period = 1.14 s; deep water wave height H∞ = 6.45 cm; breaker
height Hb = 8.55 m; beach slope = 0.082 (from Bowen et al., 1968, J. Geophys. Res.).

shoaling zone except very near the breaker line (see Fig. 11.6) where dis-
crepancies are likely caused by nonlinearity and turbulence through S′′

xx.
Now let us consider the alongshore (y) momentum. In the shoaling zone

and far away from the breaker line, turbulence is negligible and there is no
current; therefore,

∂S′
xy

∂x
= 0 or S′

xy = const. (11.6.8)
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This result is a special case of the more general conclusion (11.2.52). As
a check note that ECg cos θ is the constant rate of energy flux into a unit
distance of y, and (sin θ)/C is constant by Snell’s law; therefore S′

xy is
constant by Eq. (11.3.11c).

Near the breaker line there is a lateral transfer of turbulent momentum
through the integrated Reynolds stress:

S′′
xy = ρ

∫ ζ̄

−h

u′′v′′ dz . (11.6.9)

If the modification of waves by turbulence diffused out of the surf zone is
ignored, it follows from Eq. (11.6.3) that

0 = −∂S′′
xy

∂x
− τ̄B

y . (11.6.10)

This equation must be supplemented with further hypotheses on S′′
xy and

τ̄B
y as will be discussed later.

11.6.2 Surf Zone: x < xb

Although formal equations are available (see Eqs. (11.2.47) and (11.2.48)),
the stresses S′

ij and S′′
ij are both unknown in the surf zone due to breaking-

induced turbulence. This is a familiar situation in usual turbulent flows and
closure hypotheses are needed in order to render the problem determinate.
For the radiation stresses S′

xx and S′
xy, Bowen (1969), Longuet–Higgins

(1970a, b), and Thornton (1970) introduced the important hypothesis that
the relations (11.3.11)–(11.3.13) between S′

ij and E = 1
2ρgA2 be formally

valid even though they are derived for small-amplitude nonbreaking waves.
In addition, the breaking-wave amplitude is assumed to be related to the
local depth (ζ̄ + h) by

A =
γ

2
(ζ̄ + h) (11.6.11)

where γ is the same empirical constant given in Eq. (11.5.6).
We now apply this new hypothesis to the x-momentum equation in the

surf zone. Using the shallow water approximation, we get

S′
xx =

3
16

γ2ρg(ζ̄ + h)2 . (11.6.12)

The cited authors did not include the turbulent stress S′′
xx defined by

Eq. (11.2.48); this omission is not easy to assess since S′
xx and S′′

xx have
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not been measured separately.4 Combining Eq. (11.6.12) with Eq. (11.6.4),
we get the following differential equation:

0 = −∂ζ̄

∂x
− 3

8
γ2 ∂

∂x
(ζ̄ + h) ,

which immediately leads to

∂ζ̄

∂x
=

− 3
8γ2∂h/∂x

1 + 3
8γ2

. (11.6.13)

Integrating with respect to x and matching ζ̄ with the mean sea level ζ̄b at
the breaker line, we get

ζ̄ − ζ̄b =
3
8γ2(hb − h)

1 + 3
8γ2

. (11.6.14)

A crude estimate of ζ̄b can be obtained by using Eq. (11.5.8) and (A/h)b =
1
2γ in Eq. (11.6.7). With this result the total mean depth may be written

ζ̄ + h =
h − hs

1 + 3
8γ2

, (11.6.15)

where

hs = −
[(

1 +
3
8
γ2

)
ζ̄b +

3
8
γ2hb

]
(11.6.16)

is the still water depth of the mean shoreline at which (ζ̄ + h)s = 0.
As the incident wave amplitude A∞ increases, hb increases. While the

change in ζ̄b is small, the right-hand side of Eq. (11.6.14) increases. Hence,
the set-up ζ̄ increases. Equation (11.6.13) has been verified experimentally
for a plane beach by Bowen, Inman, and Simmons (1968); see Fig. 11.6.
It may now be concluded that the momentum balance in the x direction
results in a static set-down in the shoaling zone and a set-up in the surf
zone.

With the mean sea-level known, the radiation shear stress in the shallow
surf zone is

S′
xy � 1

16
ρgγ2(ζ̄ + h)2 sin 2θ (11.6.17)

when Eq. (11.6.11) is combined with Eq. (11.3.13c). From Eq. (11.2.51),
S′

xy now acts as the forcing term in the longshore direction which must

4Recall that in a turbulent pipe flow, terms analogous to S′′
xx are present which alter

the mean pressure corresponding to ζ̄ here.
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be balanced by bottom friction and the turbulent Reynolds stress. At this
stage empirical relations must be added to express τ̄B

y and S′′
xy in terms of

the mean current V (x). We follow Longuet–Higgins (1970a) in this regard.
In open-channel hydraulics bottom friction is usually related to the total

mean velocity excluding u′′
i :

τ̄B =
f

2
ρ|U + u′|(U + u′) , f = friction coefficient , (11.6.18)

where u′ is the wave velocity field evaluated at z = −h. Thus, in the y
direction the mean bottom friction is

τ̄B
y =

f

2
ρ|U + u′|(V + v′) . (11.6.19)

For reasonably small incidence angle the wave vector in shallow water is
essentially in the x direction, namely, v′ � u′, while the shear current is in
the y direction so that the total velocity is approximately

U + u′ ∼= u′ex + V ey ,

and

τB
y

∼= f

2
ρ(u′2 + V 2)1/2V .

Now u′ = U0 cosω(t + t0) where U0 is the amplitude of the orbital (oscilla-
tory) velocity at the bottom. In the surf zone the magnitudes of V and U0

are usually comparable and the average

(U0 cos2 ωt + V 2)1/2 =
1
T

∫ T

0

(V 2 + U0 cos2 ωt)1/2 dt

=
1
T

∫ T

0

((V 2 + U2
0 ) − U2

0 sin2 ωt)1/2 dt (11.6.20)

may be evaluated in terms of the complete elliptic integral of the second
kind (Jonsson, Skovgaard, and Jacobsen, 1974). Longuet–Higgins assumes,
however, that V � U0 so that

(u2 + V 2)1/2 � |u′| = U0| cosωt| =
2
π

U0 .

Consequently, the bottom friction becomes

τ̄B
y � − 1

π
fρU0V . (11.6.21)
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The orbital velocity amplitude in the shoaling zone near the breaker line
may be estimated according to the linear shallow water theory,

U0 =
A

h
(gh)1/2 .

In the surf zone, no wave theory is available, but an order-of-magnitude
estimate can be made by replacing h with ζ̄ +h, and by using Eq. (11.6.11):

U0 =
A

ζ̄ + h
(g(ζ̄ + h))1/2 � 1

2
γ[g(ζ̄ + h)]1/2 . (11.6.22)

The mean depth for a plane beach may be inferred from Eq. (11.6.15):

ζ̄ + h = s′x′ , (11.6.23)

where

s′ =
s

1 + 3
8γ2

, (11.6.24)

and

x′ = x − xs = x − hs

s
(11.6.25)

is the offshore distance measured from the mean shoreline. Thus, from
Eq. (11.6.21)

τ̄B
y =

1
π

f

2
ργ(gs′x′)1/2V . (11.6.26)

Moreover, Longuet–Higgins assumes the same formula for the shoaling zone.
The integrated Reynolds stress or the turbulent radiation stress S′′

xy is
assumed to be of the following form:

−S′′
xy = (ζ̄ + h)ρνe

∂V

∂x
, (11.6.27)

where νe is the eddy viscosity which has the dimension

[νe] = [U ][L] .

Longuet–Higgins takes the velocity scale [U ] to be proportional to (g(ζ̄ +
h))1/2 which is of the same order as the orbital velocity U0. Analogous to
the mixing length of a turbulent flow near a wall, [L] may be taken to be
proportional to the distance x′ from the shore. Thus,

−S′′
xy = Nρg1/2s′3/2x′5/2 dV

dx′ (11.6.28)
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after the use of Eq. (11.6.23); N is an empirical coefficient. Again the same
expression is assumed for the shoaling zone, which is likely an overestimate
because of the expected reduction of turbulence.

In summary, the momentum equation is

Nρg1/2s′3/2 dV

dx′

(
x′5/2 dV

dx′

)
− 1

π

f

2
ργg1/2s′1/2x′1/2V

= − 5
16

g3/2s′5/2γ2

(
sin θ

C

)
∞

(x′)3/2 , 0 < x′ < x′
b ,

= 0 , x′ > x′
b , (11.6.29)

which may be solved by requiring that V be bounded for all 0 < x′ < ∞.
The solution for the longshore current profile V (x′) can be simply ob-

tained. The analytical details are straightforward and we shall only present
the numerical results in Fig. 11.7. The results depend on the parameter

P = 2π
s′N
γf

(11.6.30)

which signifies the relative importance of lateral turbulent diffusion to
bottom friction. Qualitatively, the longshore velocity decays outside the
surf zone. The experimental results of Galvin and Eagleson (1965) scatter
within the range 0.05 < P < 1.0 in Fig. 11.7.

Figure 11.7: Theoretical form of the longshore current V/Vb as a function of X = x/xb

and the lateral mixing parameter P = 2π(s′N/γf) (from Longuet–Higgins, 1970b, J.
Geophys. Res.).
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The profile for zero turbulent diffusion gives a useful guide for the order
of magnitude of the longshore current, although the discontinuity at the
breaker line is physically unrealistic. Taking N = 0, we have

V = 0 , x > xb ,

V =
5π

8
γs′

ρf
gs′x′

(
sin θ

C

)
b

, x < xb ,
(11.6.31)

which is a discontinuous distribution with the following maximum at the
breaker line:

Vm =
5π

8
γs′

ρf
(g(ζ̄ + h)b)1/2 sin θb . (11.6.32)

Thus, Vm increases with increasing incidence angle, bottom slope, or
incident wave amplitude through (ζ̄ +h)b. By using empirical data in open-
channel flows and assuming a sand grain diameter of 1 mm for bed rough-
ness, Longuet–Higgins (1970a) estimated f = 0.02. Equation (11.6.32) then
crudely agrees with both field and laboratory data if the breaker line depth
hb is reasonably estimated.

11.7 Other Empirical Hypotheses or Improvements

From the simple example of a longshore current it is evident that one
must resort to a number of empirical approximations that are based on
limited observations. For example, that S′

ij has the same expression in
both surf and shoaling zones can only be regarded as a physically plausible
assumption. The hypothesis of Eq. (11.6.11) has some experimental sup-
port only for normally incident waves on a plane beach, but little is known
for more complicated waves. Unfortunately, there appears to be no better
replacements yet for these major assumptions. A few other questions, and
attempted answers, are discussed below in order to reflect ideas on this
subject.

11.7.1 Bottom Friction

The Friction Factor in the Joint Presence of Waves and Currents

Abundant experimental information exists for the friction coefficient fc

when the flow is unidirectional and steady. On the other hand, there are
data for pure oscillatory flows without breaking waves, and semiempirical
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formulas for fw are available [see Eq. (9.7.22), Chapter Nine]. These data
are only appropriate for the shoaling zone. Jonsson, Skovgaard, and Jacob-
sen (1974) have proposed an interpolation formula for the combined case
where both waves and current are present. They define the instantaneous
f by

τB =
1
2
ρf |U |U , (11.7.1)

where U is the vector sum of the current and the inviscid orbital velocity
at the sea bottom. The instantaneous f is assumed to be

f = fw + (fc − fw) sin µ , (11.7.2)

µ(t) being the angle between U and the instantaneous wave orbital velocity.
In the special case where the current and the wave orbits are orthogo-

nals, we have

tanµ =
V

U0 cosωt
. (11.7.3)

The time average of Eq. (11.7.1) leads to the integral in Eq. (11.6.20) which,
in turn, gives

τ̄B
y =

1
2
feρV 2 , (11.7.4)

where the effective fe is

fe = fc +

 2
π

[
1 +

(
V0

V

)2
]1/2

E(m) − 1

 fw , (11.7.5)

with E(m) being the complete elliptic integral of the first kind and m its
modulus.

E(m) =
∫ π/2

0

(1 − m sin2 τ)1/2 dτ m = U2
0 (V 2 + U2

0 )−1 . (11.7.6)

For weak current V/Uo � 1, it may be shown again that

τ̄B
y =

1
π

fwρU0V . (11.7.7)

No direct experimental verification of the general formula (11.7.2) is
yet available. Moreover, adequate information on fw is still missing for
the surf zone. The situation is much better in the shoaling zone where
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a more rational theory has been proposed by Grant and Madsen (1979)
which extends the turbulent boundary-layer picture to waves with currents
for any angle between them.

Large Angle of Incidence and Strong Current

Most existing laboratory experiments are performed with a fairly large
incidence angle at the breaker line (10◦–50◦), and the measured long-
shore currents are often comparable to the local orbital velocity. Both
these facts are not in accord with the assumptions made in Section 11.6.
More specifically, if we use Eq. (11.6.31) for the longshore current velocity
V and 1

2γ(g(ζ̄ +h))1/2 for the local orbital velocity U , then the assumption
V/u � 1 implies a severe limitation on the incidence angle throughout the
surf zone:

sin θ � 4f(1 + 3γ2/8)
5πs

∼= 0.315f

s

(Liu and Dalrymple, 1977). If we take f = 0.01, s = 0.1 for laboratory
experiments and s = 0.01 for natural beaches, then the theory (11.6.31) is
limited to θ � 1.8◦ in the laboratory and θ � 18◦ in the field. Liu and
Dalrymple (1978) reconsidered the problem by allowing large incidence an-
gle and relatively strong longshore current, but ignoring lateral turbulence
for simplicity. We shall first discuss their theory of weak current but large
angle of incidence.

Let the total velocity be

U = (U cosα + u′ cos θ)ex + (U sin α + u′ sin θ)ey , (11.7.8)

where U and u′ are the mean current and the oscillatory velocity, respec-
tively, and α and θ are their inclinations with respect to the x axis. Let U0

denote the magnitude of u′, that is, u′ = U0 cosωt, and assume the current
to be weak, that is, U/U0 � 1, then

|U | ∼= |u′| + U
|u′|
u′ cos(θ − α) .

Putting this result into Eq. (11.7.1), taking averages, and using the fact
that

|u′| =
2U0

π
, |u′|u′ = 0 ,
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we obtain

τ̄B = ρf

(
U0

π

)
{[U(1 + cos2 θ) + V sin θ cos θ]ex

+ [V (1 + sin2 θ) + U sin θ cos θ]ey} (11.7.9)

where

U = U cosα , V = U sinα .

When the mean current and the orbital velocity are colinear, θ = α = 0,
V = 0, and U = U so that

τ̄B = 2f

(
U0

π

)
Uex . (11.7.10a)

On the other hand, if the two velocities are perpendicular, θ = 0, α = 1
2π,

then U = 0 and ū = V , so that

τ̄B = ρf

(
U0

π

)
V ey (11.7.10b)

which is the same as Eq. (11.7.7). The preceding formulas differ by a factor
of 2, as first pointed out by Jonsson (1966).

For a longshore current, U = 0 and α = 1
2π. Let θ be arbitrary so that

τ̄B = ρ
f

2

(
U0

π

)
{(V sin 2θ)ex + 2V (1 + sin2 θ)ey} . (11.7.11)

Using this result and proceeding as in Section 11.6, one obtains

0 = −g
dζ̄

dx
− gγ2

8(ζ̄ + h)
d

dx

×
[
(ζ̄ + h)2 +

(
3
2
− sin2 θ

)]

− f

2
γ

π
g1/2(ζ̄ + h)−1/2V sin θ cos θ (11.7.12)

in the x direction (offshore), and

0 = − gγ2

8(ζ̄ + h)
d

dx
[(ζ̄ + h)2 sin θ cos θ]

− f

2
γ

π
g1/2(ζ̄ + h)−1/2V (1 + sin θ) (11.7.13)
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Figure 11.8: Nondimensional longshore current profiles by assuming weak current in
bottom friction. Lateral diffusion is ignored. Vm is given by Eq. (11.6.32) and X =
(x − xs)/(xb − xs) (from Liu and Dalrymple, 1978, J. Marine Res.).

in the y direction (alongshore). Note that the mean sea level ζ̄ is no
longer independent of the longshore current. If Snell’s law, (sin θ)/C =
((sin θ)/C)b, and C = [g(ζ̄+h)]1/2 are assumed, Eqs. (11.7.12) and (11.7.13)
may be combined to give a single ordinary differential equation for (ζ̄ + h).
The boundary condition is:

(ζ̄ + h) = (ζ̄ + h)b . (11.7.14)

From the solution the mean shoreline position xs can be immediately in-
ferred, and the longshore current distribution V can be computed. The
resulting formulas are omitted and only the current profiles are shown in
Fig. 11.8. For a larger angle of incidence, the current velocity falls below
the prediction [Eq. (11.6.32)] by Longuet–Higgins.

Liu and Dalrymple further considered the effect of a strong current
|u′/U | ≥ 1. In general, the total velocity magnitude is

|U | = [(u′)2 + U
2

+ 2u′U cos(θ − α)]1/2 .

It turns out that the following three-term expansion for small u′/Ū

|U | ∼= U

{
1 +

(
u′

U

)
cos(θ − α) +

1
2

(
u′

U

)
sin2(θ − α)

}1/2

gives a fairly good numerical approximation for |u′/U | < 1 as long as θ−α >

45◦, which is normally the case. The error term is 1
2 (u′/U)3 cos(θ−α) which
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Figure 11.9: Nondimensional longshore current profiles by assuming strong current in
bottom friction. Lateral diffusion is ignored; bottom slope s = 0.05; f = 0.025 (from Liu
and Dalrymple, 1978, J. Marine Res.).

further diminishes as |θ − α| → 1
2π. With this approximation the averaged

bottom stress becomes, in general,

τ̄B =
ρf

4

{[
U2

0

2

(
1
2

sin2(θ − α) cos α + cos(θ − α) cos θ

)
+ UU

]
ex

+
[
U2

0

2

(
1
2

sin2(θ − α) sin α + cos(θ − α) sin θ

)
+ UV

]
ey

}
.

(11.7.15)

For a longshore current α = 1
2π, we have

τ̄B =
ρf

2

{[
U2

0

2
sin2 θ

]
ex +

[
V 2 +

U2
0

4
(1 + sin2 θ)

]
ey

}
(11.7.16)

which may be inserted in the mean momentum equations for numerical
solution. Sample results in Fig. 11.9 show a considerable reduction from
the weak-current theory of Longuet–Higgins [see Eq. (11.6.32)].

11.7.2 Lateral Turbulent Diffusion S′′
xy

In the theory of Bowen (1969), the simplest assumption is made that the
eddy viscosity is constant in and outside the surf zone.

In the mixing length argument, Longuet–Higgins (1970b) estimates the
velocity scale to be less than O.1U0 = 0.1{ 1

2 [g(ζ̄ + h)]1/2}, and the mixing
length scale to be κx′ where κ = 0.40 is the Karman constant; thus



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

11.7. Other Empirical Hypotheses or Improvements 589

N � (0.1)
(γ

2

)
κ � 0.016 . (11.7.17)

Thornton (1970) and Jonsson, Skovgaard, and Jacobsen (1974) suggest
that

−S′′
xy = ρ

(
γ2

2π
s′

)
g1/2s′3/2x′5/2 dV

dx
, (11.7.18)

which implies an equivalent N of

N =
γ2

2π
s′ � 0.1s′ . (11.7.19)

For s′ ∼ 0.1, Eq. (11.7.19) is not much different from Eq. (11.6.28) except
that the former depends on the beach slope.

Battjes (1975) argues that turbulence in the surf zone is derived pri-
marily from wave breaking and not from the horizontal shear in the mean
longshore current. The rate of dissipation (into heat) of turbulent energy
should be equal to the rate of loss of wave energy by breaking. The latter
is approximately

d

dx
(ECg) =

d

dx

(
1
2
ρgA2Cg

)

� γ2

8
ρg

d

dx
[h2(gh)1/2]

=
5γ2

16
ρg3/2h3/2 dh

dx
.

Now the rate of turbulent energy dissipation ε can be estimated by the
fluctuating velocity q′′ and the eddy size which must be limited by the
depth h. By dimensional reasoning, we have ε = q′′3/h per unit mass.
Equating ε and dECg/dx in order of magnitude, we get an estimate of the
turbulent velocity:

q′′ ∼
(

5γ2

16
dh

dx

)1/3

(gh)1/2 . (11.7.20)

Battjes further assumes that the integrated Reynolds stress is related to
the mean shear by

−S′′
xy = −ρ

∫ ζ̄

−h

u′′v′′ dz ∼ ρh(q′′h)
dV

dx
.
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Substituting Eq. (11.7.20) for q′′, he finds an expression for the eddy
viscosity,

νe ∼ q′′h = K

(
5
16

ρg3/2h3/2 dh

dx

)1/3

h (11.7.21)

where K is a constant of order unity. In order to compare Eq. (11.7.21)
with Longuet–Higgins’ assumption we express νe as

νe = Nx(gh)1/2 .

The corresponding N for a plane beach with slope s is

N =
(

5
16

γ2

)1/3

s4/3K . (11.7.22)

This result differs slightly from that of Thornton and Jonsson et al. in
the dependence of N on beach slope s. Available experiments are not yet
sufficiently extensive to enable a choice among these alternative models.

Finally, observations by dye injection have shown that turbulence
outside the surf zone is weak (Inman, Tait, and Nordstrom, 1971); there-
fore they do not support the assumption made in most theories that
the eddy viscosities in and outside the surf zone are the same. Al-
though this weakness is widely recognized, no satisfactory substitute is
yet known.

11.8 Currents Behind an Offshore Breakwater

The uniform longshore current along a straight beach is one dimensional
with variations in the offshore–onshore direction only; the associated
mathematics is especially simple since the convective acceleration of the
mean current vanishes identically. We shall now discuss briefly two exam-
ples where the wave system, hence also the current, are two dimensional.
Certain approximations will be made for the sake of mathematical expedi-
ence. Specifically, we shall omit convective inertia and turbulent diffusion.
Further, we shall use very simple models for the bottom friction by ignoring
the variation of the angle between the local mean current and the wave
velocities. Also omitted is the possible modification of the waves by the
mean current. Intuitively, waves are modified the most where there is a
strong rip current (a narrow current in the offshore direction), and our
omission is likely to give quantitatively poor results. Owing to the lack of
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Figure 11.10: An offshore breakwater.

definitive empirical information, an elaborate model will not be attempted
here so that the results are of qualitative and order-of-magnitude signifi-
cance only. The purpose of our examples in this section and the next is to
illustrate how much a simple model can tell us about the current patterns,
the difference in forcing mechanisms, and the possible inferences on littoral
transport, in two interesting situations.

For the prevention of a given stretch of beach from excessive erosion, an
offshore breakwater is sometimes built at a certain distance parallel to the
shore to reduce the influence of the incident waves, as shown in Fig. 11.10.
A well-known consequence is that, after a long time, the sandy beach may
develop a cusp at the center of the wave shadow. If the breakwater is
close enough to the shore, the cusp head may eventually reach the back of
the breakwater. This process is known in coastal geography to be partly
responsible for the linking of an offshore island with the mainland and is
called the tombolo effect. More on the offshore island will be discussed later.
For the offshore breakwater, laboratory studies on a plane beach have been
conducted by Sauvage de Saint Marc and Vincent (1955). On the bottom
of a rigid beach, two opposing currents were observed to flow toward the
center line of the shadow, and then to combine into a rip current toward
the breakwater. When the bottom of the beach was covered with sand,
the sand particles drifted towards and were deposited near the stagnation
point along the initial shore. The deposition eventually grew to be a cusp.
It is, therefore, of engineering and scientific interest to predict the current
pattern behind the breakwater.
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11.8.1 The Wave Field

Assume the bottom contours of the beach to be straight and parallel so
that h = h(x). Let the breakwater be of length B and be located outside
the breaker line at x = L from the still water shoreline (x = 0), where
L > xb. A normally incident wavetrain arrives from x ∼ ∞. The waves in
the shoaling zone must be first calculated by accounting for both diffraction
and refraction; generally this is a numerical task. For this special case we
follow the analytical approach of Liu and Mei (1974, 1976a) who extended
the parabolic approximation to the case of varying depth.

According to the geometrical optics approximation, the lines y = ±B/2
and the breakwater divide the whole region into three zones. In the
illuminated zone |y| > B/2, a plane progressive wave is dominant. In
the reflection zone |y| < B/2, x > L, there is a standing wave due to the
superposition of the incident and the reflected waves. All these waves are
slowly refracted by the changing depth. In the shadow zone |y| < B/2,
0 < x < L, no waves are present. This approximation is, of course, discon-
tinuous near the boundaries of these zones. Boundary layers are needed to
describe the transition smoothly by accounting for diffraction.

The exact linearized formulation of the diffraction problem calls for
the solution of the boundary-value problem for the velocity potential
Φ(x, y, z) = φ(x, y, z)e−iωt, where φ satisfies Eqs. (3.5.4a)–(3.5.4b), Sec-
tion 3.5, with h = h(x). We assume that the depth varies slowly within a
wavelength and define a small parameter µ such that

µ = O

(
1
kh

dh

dx

)
� 1 . (11.8.1)

Intuitively, the slow depth variation produces slow variations in the
amplitude and phase of the propagating wave. Let us concentrate on the
vicinity of the shadow boundary along y = B/2, 0 < x < L and introduce
ỹ = y−B/2. Far outside the shadow, the waves simply experience shoaling
effects; the potential should approach

φ ∼ ψ(µx, z) exp
[
−i

∫
k(µx) dx

]
(11.8.2)

where k(x) is the local wavenumber. If the breakwater is long enough so
that the transition regions of the two shadow boundaries do not intersect,
we expect that

φ ∼ 0 (11.8.3)
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far inside the shadow. Now we assume

φ = ψ(µx, z)D exp
(
−i

∫
k dx

)
(11.8.4)

where the factor D accounts for diffraction and takes the following limits:

D → 1 as ỹ → ∞ (11.8.5a)

and

D → 0 as ỹ → −∞ . (11.8.5b)

In the classical problem of tip diffraction in a uniform medium (correspond-
ing to h = const), it is known that the neighborhood of the shadow bound-
ary is like a boundary layer. In particular, the variations in the transverse
(ỹ) direction are much more rapid than those in the longitudinal (x) direc-
tion, and that variations in both directions are slow sufficiently far away
from the tip. Accepting this for the time being, we now let the diffraction
factor D depend on x, ỹ slowly so that

D = D(αx, βỹ) with α � β � 1 .

The precise nature of α and β will be determined later. Substituting
Eq. (11.8.4) into Laplace’s equation, we obtain{

∂2ψ

∂z2
− k2ψ + µ

[
2ik

∂ψ

∂(µx)
+ i

∂k

∂(µx)
ψ

]}
D

+
[
β2 ∂2D

∂(βỹ)2
− αik

∂D

∂(αx)

]
ψ = O(αµ, α2, µ2) , (11.8.6)

where the exponential factor has been omitted. The boundary conditions
are

∂ψ

∂z
− ω2

g
ψ = 0 , z = 0 (11.8.7)

and

∂ψ

∂z
= µik

dh

d(µx)
ψ + O(µ2) , z = −h(x) . (11.8.8)

Note that the boundary conditions do not depend on ỹ. For ỹ → ∞, D → 1,
Eq. (11.8.6) reduces to

∂2ψ

∂z2
− k2ψ = −µ

[
2ik

∂ψ

∂(µx)
+ i

∂k

∂(µx)
ψ

]
+ O(µ2) (11.8.9)
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subject to the boundary conditions (11.8.7) and (11.8.8). This problem is
a special case of the refraction theory, Chapter Three; the leading-order
solution is

ψ =
igA

ω

cosh k(z + h)
cosh kh

[1 + O(µ)] (11.8.10)

where ω, k and A must satisfy Eqs. (3.1.15) and (3.3.9), Chapter Three,
with θ = θ0 = 0. Because of Eq. (11.8.9), it follows from Eq. (11.8.6) that

β2 ∂2D

∂(βỹ)2
− 2αik

∂D

∂(αx)
� 0 . (11.8.11)

Since the task of deducing the approximate equation is at last achieved,
the small parameters µ, α, and β may now be dropped and the original
variables x and y restored. Thus, Eq. (11.8.11) is simply

∂2D

∂ỹ2
− ik

∂D

∂x
� 0 , (11.8.12)

subject to the boundary conditions (11.8.5a) and (11.8.5b). The variable
coefficient in Eq. (11.8.12) may be eliminated by introducing

ξ = k0

∫ L

x

dx

k
, (11.8.13)

where k0 is the wavenumber at the breakwater x = L. Then,

∂2D

∂ỹ2
+ 2ik0

∂D

∂ξ
= 0 , (11.8.14)

which is just the Schrödinger equation. Indeed, the present boundary-value
problem has been solved in Section 2.4.2 in a totally different context. For
convenience the salient results are quoted here. Let

σ =
k0ỹ

(πk0ξ)1/2
, (11.8.15)

then the diffraction factor D may be expressed

D =
1

21/2
e−iπ/4

{[
1
2

+ C(σ)
]

+ i

[
1
2

+ S(σ)
]}

. (11.8.16)

The magnitude of D is

|D| =
1

21/2

{[
1
2

+ C(σ)
]2

+
[
1
2

+ S(σ)
]2

}1/2

. (11.8.17)
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The diffraction factor is constant for σ = const. Therefore, one may define
the boundary of the transition zone by

(k0ỹ)2 = (const)πk0ξ = (const)πk0

∫ L

x

dx

k
(11.8.18)

which is a sort of parabola.
From the solution for D, Eq. (11.8.18), it is clear that

1
k0D

∂D

∂x
= O

(
∂σ

∂x

)
= O(k0ξ)−1 ,

1
k0D

∂D

∂ỹ
= O

(
∂σ

∂ỹ

)
= O(k0ξ)−1/2 . (11.8.19)

Thus, variations in x and y directions are small only when k0ξ is large. In
view of Eq. (11.8.13) the distance from the tip must be large. Because of
these restrictions, the present approximate theory may be applied to the
offshore breakwater of finite length only if k0L and k0B are both large so
that the two shadow boundary layers do not intersect.

In summary, the potential in the shadow boundaries near y = ± 1
2B,

x < L is given approximately by

Φ = Re

(
− igÃ

ω

cosh k(z + h)
cosh kh

exp
[
−i

(∫
k dx + ωt + Θ

)])
, (11.8.20a)

where

Ã = A

{
1
2

[
1
2

+ C(σ)
]2

+
1
2

[
1
2

+ S(σ)
]2

}1/2

, (11.8.20b)

Θ =
π

4
− tan−1

1
2 + S(σ)
1
2 + C(σ)

, (11.8.20c)

and

σ =
k0(y ± 1

2B)
(πk0ξ)1/2

. (11.8.20d)

The diffraction factor |D| is shown in Fig. 11.11 for the side y > 0.
Again we use the linearized theory to estimate the position of the breaker

line x = xb(y). By invoking the hypothesis

Ã = (xb; y) =
γ

2
h(xb) ,
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Figure 11.11: Variation of diffraction factor |D+| on the side of x > 0 for normal
incidence on an offshore breakwater. The breakwater is at x = 350 m and has a length
of 700 m (from Liu and Mei, 1976a, J. Geophys. Res. Reproduced by permission of
American Geophysical Union).

Figure 11.12: Streamline of mean current behind an offshore breakwater of normal
incidence (breaker line is shown in dashes) (from Liu and Mei, 1976b, J. Geophys. Res.
Reproduced by permission of American Geophysical Union).
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which is an extrapolation of the empirical result established for strictly
plane waves, and by using Eq. (11.8.20b) for Ã, we can determine a crude
breaker line. A further simplification may be made by taking x = 0 in the
expression for ξ, that is,

ξ → ξ0 = k0

∫ L

0

dx

k
.

The estimated breaker line is shown by dashes in Fig. 11.12, the important
feature being the increase of the surf zone width from zero in the shadow
to the finite limit far outside.

We emphasize that the quantitative prediction of wave transformation
in the shoaling zone can certainly be improved. Indeed, a uniformly valid
theory is now available (Liu, Lozano, and Pantazarus, 1979) which supports
the present theory quite favorably.

11.8.2 The Mean Motion

With the convective inertia and turbulent diffusion S′′
ij ignored for mathe-

matical simplicity, the equations of motion are

∂

∂xi
[Ui(ζ̄ + h)] = 0 , (11.8.21)

0 = ρg(ζ̄ + h)
∂ζ̄

∂xj
− ∂S′

ij

∂xi
− τ̄B

j . (11.8.22)

In the shoaling zone we approximate ζ̄ + h by h so that

∂

∂xi
(Uih) = 0 , (11.8.23)

0 = −ρgh
∂ζ̄

∂xj
− ∂S′

ij

∂xi
− τ̄B

j . (11.8.24)

As shown in Section 11.2.4 the current is expected to be significant in the
surf zone but not in most of the shoaling zone. Thus, the mean sea level
and the radiation stress should be in static equilibrium. Let us denote the
corresponding mean sea level by ζ̄w so that

0 = −ρgh
∂ζ̄w

∂xj
− ∂S′

ij

∂xi
, x > xb .
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More specifically, since the wave in the shoaling zone is approximately a
slowly modulated progressive wave normally incident toward the beach, the
part ζ̄w is

ζ̄w = − kÃ2

2 sinh 2kh
. (11.8.25)

Very near the breaker line there must be some current in the shoaling zone
due to continuity. As a consequence, a new adjustment of mean sea level
ζ̄c is induced. Let the total mean sea level be expressed by

ζ̄ = ζ̄c + ζ̄w , (11.8.26)

where ζ̄c is related to the current through the bottom stress by

0 = −ρgh
∂ζ̄c

∂xi
− τ̄B

j . (11.8.27)

In the surf zone it is no longer reasonable to ignore ζ̄ with respect to
h; hence the problem is still nonlinear despite the omission of convective
inertia. Now the radiation stresses are again assumed to be of the same
form as in the shoaling zone. Since the waves are slowly modulated and
normally incident progressive waves in shallow water, these stresses are
given by

S′
xx � 3

4
ρgÃ2 , (11.8.28a)

S′
yy =

1
4
ρgÃ2 , (11.8.28b)

S′
zz = S′

yx � 0 , (11.8.28c)

[see Eq. (11.3.3)]. Note that while S′
xy is the only driving force in the

longshore current, it disappears in normally incident waves. Again the
assumption Ã = 1

2γ(ζ̄ + h) is made so that the radiation stresses become

S′
xx =

1
16

ρgγ2(ζ̄ + h)2 ,

S′
yy =

1
16

ρgγ2(ζ̄ + h)2 . (11.8.29)

To complete the formulation, the following simple model for the bottom
friction is introduced:
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τ̄B
i =

f

2
ρU0Ui , (11.8.30)

where U0 is taken to be a constant typical of the orbital velocity in the
shoaling zone

U0 =
(

gkA

ω cosh kh

)
xb

, x > xb , (11.8.31)

and the following orbital velocity in the surf zone

U0 =
Ã

ζ̄ + h
(g(ζ̄ + h))1/2

=
γ

2
(g(ζ̄ + h))1/2 , x < xb . (11.8.32)

With these assumptions the equations are closed. We add the boundary
conditions that the mean flow is tangential to the mean shoreline (ζ̄+h = 0),
to the line of symmetry (y = 0), and to the breakwater and vanishes at
infinity. The mathematical problem is now determinate.

The above nonlinear boundary-value problem can only be solved numer-
ically, as reported in Liu and Mei (1976b, see (1974) for further details).
Only the calculated results are described here. Figure 11.12 presents the
stream function ψ defined by

U(ζ̄ + h) = −∂ψ

∂y
, V (ζ̄ + h) =

∂ψ

∂x
. (11.8.33)

The geometrical dimensions chosen for this sample case are B = 700 m,
L = 350 m, and dh/dx = 1/50. The incident wave is assumed to be a
swell of period T = 10 s and amplitude A∞ = 0.5 m. For reference, the
incident wavelength is 79 m and the amplitude is 0.52 m at the depth of
the breakwater (h = 7 m). The empirical coefficients used are f = 0.02
and γ = 0.8.

The streamlines for the side y > 0 show a counterclockwise circulation.
On the side y < 0 there is a symmetric cell in the clockwise direction. This
result is certainly in agreement with known observations of currents and is
consistent with the cusp or tombolo formation.

Figure 11.13 shows the corresponding mean sea level on the side of
y > 0. Deep inside the shadow the mean sea level is zero; far outside the
shadow the mean sea level has a set-up in the surf zone and a set-down in
the shoaling zone, as expected.
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Figure 11.13: Contours of mean sea level displacement ζ̄ behind an offshore breakwa-
ter at normal incidence. Mean shore line and mean breaker line are shown in dashes
(from Liu and Mei, 1976b, J . Geophys. Res. Reproduced by permission of American

Geophysical Union).

For a better understanding of the physical mechanism of the circula-
tion, we substitute assumptions (11.8.29), (11.8.30), and (11.8.32) into the
momentum equation (11.8.22), and then take the curl, yielding,

∂

∂x

(
V

ζ̄ + h

)
− ∂

∂y

(
U

ζ̄ + h

)

=
2g

f

{
hζ̄y − 1

4γ2(ζ̄ + h)xζ̄y

γg1/2(ζ̄ + h)3/2
+

γζ̄xy

2[g(ζ̄ + h)1/2

}
. (11.8.34)

The left-hand side of Eq. (11.8.34) is the potential vorticity in the mean
flow; the right-hand side may be viewed as the forcing vorticity. Now the
behavior of ζ̄ is easy to speculate, although it is a part of the solution.
Because of the small numerical value of the factor 1

4γ2 � 0.16 which is
associated with S′

xx and S′
yy, the most important term is hζ̄y in the first

fraction on the right of Eq. (11.8.34). For y > 0, ζ̄y is certainly posi-
tive; the driving vorticity is positive and the responding current must be
counterclockwise. Therefore, the gradient of mean sea level is the driving
force; the radiation stresses act in an indirect way to produce the mean sea
level.

If convective inertia were included, the streamlines would be more
crowded around the x axis, resulting in a stronger rip current. Inclu-
sion of the turbulent term S′′

xy would push the center of the cell seaward
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where the speed is maximum. These effects have not yet been investigated
quantitatively.

Although only the results for an offshore breakwater with normally in-
cident waves are presented here, the following variations have also been
studied by Liu and Mei (1976b): (i) oblique incidence: the added feature
is that a uniform longshore current must be superposed, and (ii) oblique
incidence on a long breakwater intersecting the shore normally. A cell is
found around the shadow boundary, and flow is directed toward the break-
water near the shore and seaward along the shadow face of the breakwater.
Laboratory evidence relevant to the second example has been reported by
Shimano, Hom-ma, and Horikawa (1958) who performed experiments in a
wave tank with a jetty intersecting the beach at an angle different from 90◦.
When the incident wave crests were parallel to the beach, flow was indeed
found to be outward along the shadow side of the jetty. This tendency is
qualitatively consistent with the results of the present section.

The formation of tombolos behind an offshore island is a common
geographical phenomenon as discussed by Zenkovich (1967) whose sketches
are reproduced here as Figs. 11.14(a) and 11.14(b). For an island long
in the direction parallel to the mainland coast, it is further possible to
have two spits emanating from the mainland behind the island. The spits
either form a lagoon first and then a single tombolo to link with the

Figure 11.14: Formation of tombolos from the mainland toward the island when only
the mainland beach is erodible (after Zenkovich, 1967, Processes of Coastal Development,
Oliver and Boyd Publishers). (a) Small island and single tombolo; (b) long island and
twin tombolos. Dots: area of deposition; double hatches: area of erosion; single hatches:
undisturbed land.
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island [Fig. 11.14(a)] or extend to the island directly as twin tombolos
[Fig. 11.14(b)]. These varieties may be explained by the fact that breaking-
induced currents are sufficiently strong to move heavy sediments only
slightly outside, hence accumulation should occur slightly inside of the
shadow boundaries. For a long island the shadows do not overlap, so that
there must be two initial spits which form new natural barriers for further
deposition. If the initial spits are close, a lagoon forms first before reaching
the island. For a still longer island twin tombolos result. So far we have
tacitly assumed that only the shore of the mainland is erodible; the possible
impact on an erodible island shore is the motivation of the next section.

11.9 Currents Around a Conical Island

Having discussed some effects of an offshore island on the mainland beach,
we now turn to the effects of the beach on the island itself (Mei and An-
gelides, 1976). For simplicity in wave computation we select a conical island
whose depth contours are concentric circles. From the shore (r = b) to the
toe (r = a), the depth is a function of r only. Beyond the toe the sea depth
is assumed to be constant (see Fig. 11.15). A plane wave is incident from
the left x ∼ −∞ where θ = −π. As in the last section, we first calculate the

Figure 11.15: Definitions for a conical island.
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waves in the shoaling zone, then the breaker line, by invoking an empirical
rule. Radiation stresses, calculated for the shoaling zone, are applied to
the surf zone with the assumed closure relation between the breaking wave
amplitude and the local mean depth. By neglecting convection and lateral
turbulent diffusion, the mean circulation is obtained numerically from the
average conservation equations of mass and momentum.

11.9.1 The Wave Field

The island slope dh/dr is assumed to be so gentle that the ray (geometrical-
optics) theory of refraction applies outside the surf zone. Because of sym-
metry, only the half to the right of the island, π < θ < 2π, will be discussed.
With reference to Fig. 11.15 the equation of the ray r = r(θ) is given by
Eq. (3.4.4), Chapter Three. To illustrate the effect of the island size, we
shall fix the wave frequency, the beach length a − b, the deep water depth
h0, and the slope dh/dr. Only the island radius b is left as a free parameter.
Specifically, we take T = 2π/ω = 10 s, h0 = 100 ft, dh/dr = 1/20,
a − b = 2000 ft. and take b = 10, 000, 7370, and 5831 ft. for Cases I,
II, and III, respectively.

After calculating the ray paths by numerical integration, the refracted
wave amplitude A may be computed by invoking energy conservation in
a ray tube. Assuming the linear refraction theory to be valid up to the
breaker line, we introduce the familiar hypothesis that (A/h)b = 1

2γ, which
determines the breaker line r = rb(θ).

Figures 11.16(a), (b), and (c) show the geometry of the rays. Upon
comparing these curves, it is evident that as the island size increases, the
extent of the lee shore where no rays can enter increases. Case III is the
threshold where the lee shore is just zero. In reality modifications due to
diffraction must be present so that the wave intensity does not drop to
zero without some further penetration. The existence of the lee shore for
a large island is physically obvious, and suggests immediately that for a
very large island there is no current caused by breaking in a portion of
the lee.

11.9.2 The Mean Motion

The approximate mean equations of motion can be conveniently expressed
in polar coordinates:
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Figure 11.16: Geometry of rays near a conical island (from Mei and Angelides, 1976,
Coastal Eng. Reproduced by permission of Elsevier Scientific Publishing Co.). (a) Large
island with a long lee shore; (b) intermediate island with a reduced lee shore; (c) small
island with no lee shore.
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Continuity:

∂

∂r
[(ζ̄ + h)Ur] +

1
r

∂

∂θ
[(ζ̄ + h)Uθ] +

1
r
Ur(ζ̄ + h) = 0 , (11.9.1)

r Momentum:

0 � −ρg(ζ̄ + h)
∂ζ̄

∂r
− ∂Srr

∂r
− f

2
ρU0Ur , (11.9.2)

θ Momentum:

0 � −ρg(ζ̄ + h)
1
r

∂ζ̄

∂θ
− ∂Srθ

∂r
− f

2
ρU0Uθ , (11.9.3)

where Ur and Uθ are the components of the mean current in the r and θ

directions, respectively. Formal derivation of these equations is left as an
exercise. Suffice it to say that the continuity equation is exact, and the
momentum equations are approximately valid when

∂

∂r
� 1

r
or

1
r

∂

∂θ
, (11.9.4)

which applies in the present example since the island is large and the radial
range of the current is anticipated to be in and near the narrow surf zone. It
is further reasonable to approximate the refracted waves locally by a plane
progressive wave with incidence angle β. In shallow water, the important
components of the radiation stress are

S′
rr � 1

4
ρgA2(3 − 2 sin2 β) , (11.9.4a)

S′
rθ = S′

θr =
1
4
ρgA2 sin2 β , (11.9.4b)

where β is the local incidence angle which differs for different rays and is a
function of r and θ.

The closure condition A = γ(ζ̄ + h)/2 and assumptions of U0 similar
to that of Section 11.8 are again introduced. The current velocities are
replaced by the stream function ψ defined by

Ur =
−1

ζ̄ + h

1
r

∂ψ

∂θ
, (11.9.5a)

Uθ =
1

ζ̄ + h

∂ψ

∂r
. (11.9.5b)
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ψ must vanish on θ = π, 2π, along the mean shoreline, and at r → ∞. The
mean motion is solved numerically as before. The streamlines calculated
for an incident wave amplitude of A0 = 3 ft are shown for three islands,
Cases I, II, and III in Figs. 11.17(a), 11.17(b), and 11.17(c), respectively.

The general picture is that there are two symmetric cells hugging the
shores on each side of the island axis. Near the shoreline the flow is di-
rected from the upwave side to the lee. Without significantly penetrating
the lee shore, the current returns at low velocities via the shoaling zone.
The primary function of S′

rr is to establish the set-up in the surf zone,
while the shear component S′

rθ provides the forcing of the longshore cur-
rent. Thus, the driving mechanism here is roughly analogous to that of the
uniform longshore current. The main difference is that the driving force
varies in the longshore direction. One reason for such a difference is that
∂S′

rθ/∂r depends on the local incidence angle β which increases with θ.
The dominant term here is

gγ2

8
(ζ̄ + h)

∂(ζ̄ + h)
∂r

sin 2β .

For a ray with a larger α0, the value of β at the breaker line is also larger,
that is, the incidence is more oblique. Numerically, it is found that ∂S′

rθ/∂r

always increases with θ from θ = π to the edge of the lee shore. Another
reason is that the breaker zone width decreases from θ = π to the edge
of the lee shore. Thus, the total driving force across the surf zone, which
can be measured by the product of ∂S′

rθ/∂r and the surf zone width, is
zero at θ = π, maximum at some intermediate θ, and zero again at the
edge of the lee shore. Consequently, the center of the circulating cell is
somewhere between the upwave point and the edge of the lee shore, as
shown in Figs. 11.17(a)–11.17(c)

As the island radius decreases from Cases I to III, ray convergence is
more pronounced so that the current velocity is increased. The extent of
the lee shore is also reduced, until in Case III the two longshore currents
converge at the center of the lee and form a rip current leaving the island.

From these current patterns, one may venture to explain certain obser-
vations near an offshore island. On the upwave side, erosion prevails; sand
is transported toward the island lee by longshore currents. Because of the
large weight, sediments are deposited somewhere before reaching the edges
of the lee shore. Therefore, if the island is large enough to have a finite lee
shore, two sand spits may form, which may converge to form a lagoon if
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Figure 11.17: Streamlines of breaking-induced currents (from Mei and Angelides, 1976,
Coastal Eng. Reproduced by permission of Elsevier Scientific Publishing Co.). (a) A
large island; (b) an intermediate island; (c) a small island.
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Figure 11.18: Tombolo from a small island toward the mainland when only the island
beach is erodible (from Zenkovich, 1960, Processes of Coastal Development, Oliver and
Boyd).

Figure 11.19: Polygenetic formation of tombolos (from Zenkovich, 1967, Processes of
Coastal Development, Oliver and Boyd).

the mainland is very far, or may reach the mainland directly to form twin
tombolos. If the island is so small that there is no lee shore, as in Case III,
deposition occurs at the center of the lee and a single spit is formed. These
features are known to happen when the mainland has a rocky coast (see
Fig. 11.18) as was discussed by Zenkovich (1967).

In general the shores of both the island and the mainland are sandy.
Spits can emanate from both of them; the tendency is shown in Fig. 11.19
and is called polygenetic by Zenkovich.

11.10 Related Works on Nearshore Currents

Since the introduction of radiation stresses, the literature on nearshore
currents due to breaking waves has grown considerably. For uniform long-
shore currents, James (1974a, b) applied the theory of cnoidal waves and
its approximation, the so-called hyperbolic waves, to allow for large ampli-
tudes. Battjes (1972) developed a stochastic theory for longshore currents
due to random waves; lateral turbulence was ignored.
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On two-dimensional rip currents which are relevant for the formation
of beach cusps, Arthur (1962) demonstrated the effect of nonlinear con-
vective inertia of the current on the intensification of rips. Bowen (1969)
and Bowen and Inman (1969) suggested that the presence of long-period
edge waves might be a cause of longshore variation of the mean sea-level,
which, in turn, would induce periodic circulation cells. Sonu (1972) gave
field evidence that rip currents could also be generated as a consequence
of the periodic variation of beach contours. Noda (1974) developed a nu-
merical model accounting for refraction and wave-current interaction for
Sonu’s problem. In the presence of periodic shoreline variation (shoals
and embayments), rip currents can emanate from the shoals or from the
embayments (Komar, 1971). Mei and Liu (1977) found that the ratio of
the surf zone width to the longshore wavelength of the beach topography
influenced the direction of the circulation cells. In nearly all of these theo-
ries, lateral turbulence was ignored. Extending Arthur’s work, Tam (1973)
used a boundary-layer approximation and treated the rip as a turbulent jet
within which convective inertia was strong. The presence of the rip head,
that is, the sudden expansion and dissipation into a big stagnant patch,
was attributed to the sudden change of bottom slope. LeBlond and Tang
(1974) studied the wave-current interaction for rips. Dalrymple (1975) gave
experimental evidence of rip currents near a straight beach when two wave-
trains were incident symmetrically from opposite sides of the shore-normal.
Liu and Lennon (1978) applied the finite-element method for numerical
modelling of nearshore currents.

From the discussions in this chapter, it is evident that the idea of radia-
tion stress has enabled us to study increasingly complex nearshore current
problems with at least qualitative reliability. Formidable obstacles remain
for a scientifically satisfactory understanding and quantitative modelling of
the breaking waves. For progresses in surf-zone dynamics since the early
days of the radiation stresses concept, the readers are referred to the expert
surveys by Battjes (1988), and Svensen and Putrevu (1996).
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Nonlinear Long Waves
in Shallow Water 12
12.1 Derivation and Classification of

Approximate Equations

As pointed out in Chapter One, the linearized shallow-water approximation
is useful only if the following two length ratios are small:

µ ≡ kh � 1 and ε ≡ A

h
� 1 . (12.1.1)

The second restriction is a severe one for many coastal problems; therefore,
a nonlinear theory of shallow water waves is needed. The presence of two
small parameters (three length scales) introduces new subtleties into the
procedure of approximation since the magnitude of one ratio relative to the
other is now important. Historically, two different theories, one by Airy
and the other by Boussinesq (1877), and Korteweg and de Vries (1895),
were separately developed which led to opposite conclusions regarding wave
breaking on constant depth. The confusion was resolved in a fundamental
paper by Ursell (1953) and further clarified by Lin and Clark (1959). In
particular, Ursell has shown that the ratio

Ur =
A

h

1
(kh)2

=
kA

(kh)3
=

Aλ2

h3(2π)2
(12.1.2)

plays a central role in deciding the choice of approximations which corre-
spond to very different physics. This ratio has since been widely referred to
as the Ursell parameter and will be denoted by Ur in this book, although
it also appeared in the earlier theory of Stokes.

611
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For simplicity we shall illustrate the approximation procedure for con-
stant depth, using the formalism of Benney (1966) and Peregrine (1967).
The extension to variable depth is left as an exercise.

Since there are now two small parameters, it is advantageous to use
dimensionless variables for the sake of clarity. The scales of the variables
are suggested by the linearized theory:

(x′, y′) = k(x, y) , z′ =
z

h
, t′ = k(gh)1/2t

ζ′ = ζ
A , Φ′ = Φ

[
A

kh
(gh)1/2

]−1

. (12.1.3)

Note that the implied normalizations on velocity components are

(u, v) =
(

∂

∂x
,

∂

∂y

)
Φ =

A

h
(gh)1/2

(
∂

∂x′ ,
∂

∂y′

)
Φ′ =

A

h
(gh)1/2(u′, v′)

w =
∂Φ
∂z

=
1
kh

A

h
(gh)1/2 ∂Φ′

∂z′
=

1
kh

A

h
(gh)1/2(w′) . (12.1.4)

The difference in scaling for horizontal and vertical components is required
by continuity. The normalized equations are

µ2(Φ′
x′x′ + Φ′

y′y′) + Φ′
z′z′ = 0 , −1 < z′ < εζ′ (12.1.5)

µ2[ζ′t′ + εΦ′
x′ζ′x′ + εΦ′

y′ζ′y′ ] = Φ′
z′ , z′ = εζ′ (12.1.6)

µ2[Φ′
t′ + ζ′] +

1
2
ε[µ2(Φ′2

x′ + Φ′2
y′) + Φ′2

z′ ] = 0 , z′ = εζ′ (12.1.7)

Φ′
z′ = 0 , z = −1 . (12.1.8)

For convenience the primes will be dropped from here on. First, we only
assume µ = kh to be small, leaving ε to be arbitrary for the time being.
Since Φ is analytic, we may expand it as a power series in the vertical
coordinate,

Φ(x, y, z, t) =
∞∑

n=0

(z + 1)nΦn (12.1.9)

where Φn = Φn(x, y, t), n = 0, 1, 2, 3, . . . , whose orders of magnitude are
yet unknown. Using ∇ to denote the horizontal gradient (∂/∂x, ∂/∂y), we
first evaluate the derivatives
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∇Φ =
∞∑
0

(z + 1)n∇Φn , (12.1.10a)

∇2Φ =
∞∑
0

(z + 1)n∇2Φn , (12.1.10b)

∂Φ
∂z

=
∞∑
0

(z + 1)n−1Φn =
∞∑
0

(z + 1)n(n + 1)Φn+1 , (12.1.10c)

∂2Φ
∂z2

=
∞∑
0

(z + 1)n−1(n + 1)nΦn+1 =
∞∑
0

(z + 1)n(n + 2)(n + 1)Φn+2 .

(12.1.10d)

Substituting Eqs. (12.1.10b) and (12.1.10d) into the Laplace equation, we
obtain

µ2∇2Φ +
∂2

∂z2
Φ =

∞∑
n=0

(z + 1)n[µ2∇2Φn + (n + 2)(n + 1)Φn+2] = 0 .

(12.1.11)

Since z is arbitrary within (−1, εζ), the coefficient of each power of (z + 1)
must vanish, which yields a recursive relation

Φn+2 =
−µ2∇2Φn

(n + 2)(n + 1)
, n = 0, 1, 2, . . . . (12.1.12)

On the horizontal bottom Eq. (12.1.8) leads to

Φ1 ≡ 0

which implies from Eq. (12.1.12) that all Φn’s with odd n vanish

Φ1 = Φ3 = Φ5 = · · · 0 . (12.1.13)

For even n, we have, specifically,

Φ2 =
−µ2

2 · 1∇
2Φ0 =

−µ2

2!
∇2Φ0 ,

Φ4 =
−µ2

4 · 3∇
2Φ2 =

µ4

4!
∇2∇2Φ0 , (12.1.14)

Φ6 =
−µ2

6 · 5∇
2Φ4 =

−µ6

6!
∇2∇2∇2Φ0 .
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Since Φ0 = O(φ) = O(1), it may be concluded that Φ2 = O(µ2), Φ4 =
O(µ4), and so on. Thus, with an error of O(µ6) the potential is

Φ = Φ0 − µ2

2
(z + 1)2∇2Φ0 +

µ4

24
(z + 1)4∇2∇2Φ0 + O(µ6) . (12.1.15)

We must now make use of the boundary conditions on the free surface.
Because of the multiplier µ2 it is sufficient to keep O(µ4) terms in Φt, Φx,
and Φy.

µ2

[
Ht

ε
+ ∇H ·

(
∇Φ0 − µ2

2
H2∇2∇Φ0

)]

= −µ2H∇2Φ0 +
µ4

6
H3∇2∇2Φ0 + O(µ6) , (12.1.16)

µ2

[
Φ0t −

µ2

2
H2∇2Φ0t + ζ

]
+

1
2
εµ2[(∇Φ0)2 − µ2H2∇Φ0 · ∇2(∇Φ0)]

+
1
2
εµ4H2(∇2Φ0)2 = O(µ6) , (12.1.17)

where

H = 1 + εζ (12.1.18)

denotes the total depth. By defining

u0 = ∇Φ0 (12.1.19)

as the horizontal velocity at the bottom, Eq. (12.1.16) may be written

1
ε
Ht + ∇H ·

(
u0 − µ2

2
H2∇2u0

)

+ H∇ · u0 − µ2

6
H3∇2(∇ · u0) = O(µ4) . (12.1.20)

Taking the gradient of Eq. (12.1.17), we have

u0t + εu0 · ∇u0 +
∇H

ε
+ µ2∇

×
[
−ε

2
H2u0 · ∇2u0 +

ε

2
H2(∇ · u0)2 − 1

2
H2∇ · u0t

]
= O(µ4) .

(12.1.21)
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Once ζ and u0 are solved, the actual velocity components are given by

(u, v) = ∇Φ = u0 − µ2

2
(z + 1)2∇∇ · u0 + O(µ4) , (12.1.22)

w =
∂Φ
∂z

= −µ2(z + 1)∇2Φ0 = µ2(z + 1)∇ · u0 + O(µ4) . (12.1.23)

The pressure field may be obtained from Bernoulli’s equation whose
dimensionless form is, exactly,

−P = z + ε

{
Φt +

ε

2

[
(∇Φ)2 +

1
µ2

Φ2
z

]}
, (12.1.24)

where P has been normalized by ρgh. The approximate pressure field
follows by substituting Eqs. (12.1.22) and (12.1.23) into Eq. (12.1.24):

−P = z + ε

{[
Φ0t −

µ2

2
(z + 1)2∇ · u0t

]

+
ε

2
[u2

0 − µ2(z + 1)2u0 · ∇2u0 + µ2(z + 1)2(∇ · u0)2]
}

+ O(µ4) .

Equation (12.1.17) can be used to eliminate Φ0t , so that

P = (εζ − z) − εµ2

2
[H2 − (z + 1)2]

×{∇ · u0t + ε[u0 · ∇2u0 − (∇ · u0)2]} + O(µ4) . (12.1.25)

Instead of u0 we may introduce the depth-averaged horizontal velocity
ū defined by

ū =
1
H

∫ εζ

−1

dz∇Φ

=
1
H

∫ εζ

−1

dz

(
u0 − µ2

2
(z + 1)2∇∇ · u0 + · · ·

)

= u0 − µ2

6
H2∇2u0 + O(µ4) , (12.1.26)

which can be inverted to give

u0 = ū +
µ2

6
H2∇2ū + O(µ4) . (12.1.27)
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After Eq. (12.1.27) is substituted into Eq. (12.1.20), it follows at once that

Ht + ε∇ · (Hū) = 0 , (12.1.28)

which is just the depth-averaged law of continuity and is, in fact, exact
to all orders of (µ2) [cf. Eq. (11.2.10), Chapter Eleven]. Expressing u0 in
terms of ū to the stated accuracy, we have

ūt + εū · ∇ū +
∇H

ε
+

µ2

6
(H2∇2ū)t

+ µ2∇
{
−ε

3
H2ū · ∇2ū +

ε

2
H2(∇ · ū)2 − H2

2
∇ · ūt

}
= O(µ4) .

(12.1.29)

It deserves emphasis that all the equations thus far are valid for arbitrary
ε. Extension to higher orders in µ2 is straightforward, although tedious.

Let us express Eqs. (12.1.28), (12.1.29), and (12.1.25) in physical
variables

Ht + ∇ · (Hū) = 0 , (12.1.30)

ūt + ū · ∇ū + g∇H +
1
6
(H2∇2ū)t

+∇
{
−1

3
H2ū · ∇2ū +

H2

2
(∇ · ū)2 − H2

2
∇ · ūt

}
= 0 , (12.1.31)

and

P = ρg(ζ − z) − 1
2
[H2 − (z + h)2]{∇ · ut + [u · ∇2u− (∇ · u)2]} .

(12.1.32)

We now turn to limiting cases.

Airy’s Theory for Very Long Waves: ρ → 0, ε = O(1)

Airy’s theory is the leading-order approximation for very long waves of
finite amplitude. By omitting terms proportional to µ2 from Eqs. (12.1.25)
and (12.1.29), we get, in physical variables,

ζt + ∇ · [(ζ + h)ū] = 0 , (12.1.33)

ūt + ū · ∇ū + g∇ζ = 0 , (12.1.34)

P = ρg(ζ − z) . (12.1.35)
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The preceding equations are actually valid for variable h(x, y). A distin-
guishing feature of Airy’s approximation is that the pressure is hydrostatic.

Boussinesq Theory: O(ε) = O(µ2) < 1

For weakly nonlinear and moderately long waves in shallow water, we
approximate Eqs. (12.1.28), (12.1.29), and (12.1.25) to include terms of
order O(ε) and O(µ2) only, obtaining

ζt + ∇ · [(εζ + 1)ū] = 0 , (12.1.36)

ūt + εū · ∇ū + ∇ζ − µ2

3
∇∇ · ūt = 0 , (12.1.37)

P = εζ − z +
εµ2

2
(z2 + 2z)∇ · ūt . (12.1.38)

In physical variables, they are

ζt + ∇ · [(ζ + h)ū] = 0 , (12.1.39)

ūt + ū · ∇ū + g∇ζ − h2

3
∇∇ · ūt = 0 , (12.1.40)

P = ρg(ζ − z) +
ρ

2
(2zh + z2)∇ · ūt . (12.1.41)

Equations (12.1.36) and (12.1.37), or, equivalently, Eqs. (12.1.39) and
(12.1.40), are called the Boussinesq equations. Note that the pressure field
is no longer hydrostatic. Formally, Airy’s and Boussinesq’s theories differ by
the linear term multiplied by µ2 in Eq. (12.1.37). To see the physical signi-
ficance of this term, let us examine the linearized versions of Eqs. (12.1.39)
and (12.1.40) for one-dimensional infinitesimal waves

ζ = Aei(kx−ωt) , ū = Uei(kx−ωt) .

When the exponential factors are cancelled, we get

−iωA + ikhU = 0 ,

iωU + ikgA − h2

3
− (ik)2(−iω)U = 0 ,

which is a homogeneous set of equations for A and U . For a nontrivial
solution the discriminant must vanish, that is,
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∣∣∣∣∣∣∣
−iω ikh

igk −iω

(
1 +

k2h2

3

)∣∣∣∣∣∣∣ = 0 ,

or

ω2 =
ghk2

1 + 1
3k2h2

= ghk2

(
1 − k2h2

3
+ · · ·

)
, (12.1.42)

or

phase velocity C ∼= (gh)1/2

(
1 − k2h2

3

)−1/2

∼= (gh)1/2

(
1 − k2h2

3

)1/2

. (12.1.43)

The term 1
3 (kh)2 = 1

3µ2 above arises from the term (1
3h2)uxxt and rep-

resents frequency dispersion. Indeed, Eq. (12.1.42) is precisely the two-
term expansion of the familiar dispersion relation for arbitrary depth,
ω2 = gk tanh kh.

In summary, Boussinesq equations account for the effects of nonlinearity
ε and dispersion µ2 to the leading order. When ε � µ2, they reduce to
Airy equations which are valid for all ε; when ε � µ2, they reduce to the
linearized approximation with weak dispersion. When ε → 0 and µ2 → 0,
the classical linearized wave equation is obtained.

Variable Depth

If the horizontal scale of depth variation is no greater than the typical
wavelength, the procedure beginning from Eq. (12.1.9) may be extended.
Now the bottom boundary condition is, in physical variables,

Φz = −hxΦx − hyΦy , z = −h(x, y) , (12.1.44)

or in dimensionless variables,

Φz = −µ2(hxΦx + hyΦy) , z = −h(x, y) , (12.1.45)

where the variable depth is normalized by the typical depth h0, which is also
used in defining the dimensionless variables of Eqs. (12.1.3) and (12.1.4).
Instead of Eq. (12.1.9), one may assume

Φ =
∞∑

n=0

[z + h(x, y)]nΦn(x, y) . (12.1.46)
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By substituting Eq. (12.1.46) into Laplace’s equation and applying
Eq. (12.1.45), we obtain a set of recursive relations among Φn. In particular,
Φn’s for odd n no longer vanish. Following arguments similar to those given
here, Mei and LeMèhautè (1966, with corrections by Madsen (see Madsen
and Mei, 1969)) obtained the Boussinesq equations for one-dimensional
waves. For two dimensions the following equations were deduced by Pere-
grine (1967) in terms of ū and ζ:

ζt + ∇ · [(h + ζ)ū] = 0 , (12.1.47)

∂ū
∂t

+ ū · ∇ū + g∇ζ =
h

2
∇[∇ · (hūt)] − h2

6
∇[∇ · ūt] . (12.1.48)

The algebra involved is straightforward but lengthy and may be left to the
reader.

In recent years there have been many extensions of Boussinesq approx-
imtions to higher orders in order to account for steeper waves and greater
depth, i.e., larger ε and µ2. water. In this book, we shall restrict our discus-
sions to analytical aspects within the accuracy presented in the preceding
sections. For advances on the higher-order theories and the associated
computational schemes, readers may wish to consult Madsen an Schäffer
(1998), Madsen, Bingham and Liu (2002), Madsen and Agnon (2003),
Masden Bingham, and Schäffer (2003), and Fuhrman, Madsen and Bingham
(2004).

Exercise 12.1

Derive from Eqs. (12.1.5)–(12.1.7) and (12.1.45) the following alternative
approximate equation for varying depth by keeping terms up to O(ε2) and
O(µ2) for ε = O(µ):

g∇ · (h∇φ0) − φ0tt =
1
2
(∇φ0)2t + ∇ · (φ0t∇φ0) +

1
2
∇ · [∇φ0(∇φ0)2

]
+ g∇ ·

(
h3

6
∇∇2φ0 − h2

2g
∇φ0tt

)
, (12.1.49)

where φ0(x, y, t) is the velocity potential at z = 0. In dimensionless form,
the error is of the order O(εµ2, µ4) relative to the leading terms kept in
Eq. (12.1.40). Begin by letting

Φ =
∑
n=0

zn

n!
φ0(x, y, t) .
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12.2 Nondispersive Waves in Water of
Constant Depth

12.2.1 Analogy to Gas Dynamics

When (A/h)(kh)−2 � 1, the approximate equations given by Eqs. (12.1.33)
and (12.1.34) are analogous to those governing two-dimensional gas
dynamics in an isentropic flow (Riabouchinsky, 1932). Let

ρ̂ = (ζ + h) (12.2.1)

denote the density of a fictitious compressible fluid. The continuity equation
becomes

∂ρ̂

∂t
+ ∇ · (ρ̂ū) = 0 . (12.2.2)

Defining a fictitious pressure by

p̂ =
g

2
(ζ + h)2 =

g

2
ρ̂2 , (12.2.3)

and using Eq. (12.2.1), we may rewrite the momentum equation in the form

ρ̂ =
[
∂ū
∂t

+ ū · ∇ū
]

= −∇p̂ . (12.2.4)

Equations (12.2.2) and (12.2.4) are just the continuity and momentum
equations for a compressible fluid, while Eq. (12.2.3) is the equation of
state for an isentropic flow of a perfect gas. In general, the equation of
state for a calorically perfect gas is

p

p0
=

(
ρ

ρ0

)Cp/Cv

exp
[

Cp(s − s0)
Cv(Cp − Cv)

]
, (12.2.5)

where s is the entropy and p0, ρ0, and s0 are the reference values of p, ρ,
and s, respectively. Cp and Cv are specific heats under constant pressure
and constant volume, respectively. Thus, Eq. (12.2.3) corresponds to a gas
with Cp/Cv = 2, which does not exist in reality.

Because of this analogy, knowledge and methods established in gas
dynamics can be transferred directly to long water waves. This aspect is
most thoroughly exploited in Stoker (1957) on which much of the present
section is based. It must be emphasized that while Eqs. (12.2.2) and
(12.2.4) are exact in gas dynamics, they are only approximate in water
waves when the horizontal scale of motion is much larger than the vertical
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scale. In particular, while the gas-dynamic theory succeeds in predicting
shock formation, Airy’s theory is basically unsuitable for predicting bore
formation, a problem of enormous importance for which the full solution is
not yet forthcoming. Therefore, care must be exercised in interpreting the
results of Airy’s theory.

12.2.2 Method of Characteristics
for One-Dimensional Problems

As in one-dimensional gas dynamics, the method of characteristics is a very
useful tool in Airy’s shallow-water wave theory. The salient features of this
method will be outlined only to the extent needed. A full account of the
general method is available in Courant and Friedrichs (1949), Courant and
Hilbert (1962), and Stoker (1957), among others.

With the overbars omitted for brevity, Eqs. (12.1.33) and (12.1.34)
become

∂ζ

∂t
+

∂

∂x
[(h + ζ)u] = 0 , (12.2.6)

∂ζ

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
= 0 . (12.2.7)

Let us rearrange the governing equations by introducing

C2 = g(ζ + h) . (12.2.8)

The continuity and momentum equations may be written

2Ct + 2uCx + Cux = 0 , (12.2.9)

ut + 2CCx + uux = 0 . (12.2.10)

By adding and subtracting the two equations above, we get[
∂

∂t
+ (u + C)

∂

∂x

]
[u + 2C] = 0 . (12.2.11)

[
∂

∂t
+ (u − C)

∂

∂x

]
[u − 2C] = 0 . (12.2.12)

Equations (12.2.11) and (12.2.12) describe the total rate of change of u±2C

along the curves which are governed by
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dx

dt
= u ± C . (12.2.13)

These curves are called the characteristics. The solutions to dx/dt = u+C

are a one-parameter family of curves which we shall call C+ characteris-
tics, the parameter being the initial position of a curve at a given time t0.
Similarly, the solutions to dx/dt = u − C are also a one-parameter family
of curves, to be called C− characteristics. A set of partial differential equa-
tions possessing real characteristics are said to be hyperbolic. Because the
right-hand sides are zero, Eqs. (12.2.11) and (12.2.12) may be integrated
to give

u + 2C = const along C+ ,

u − 2C = const along C− . (12.2.14)

The quantities u ± 2C are called the Riemann invariants.
Let us explain how a typical initial-value problem can be solved in

principle. Consider the example where u(x, 0) = F (x) and C(x, 0) = G(x)
are given for t = 0, all x. The Riemann invariants are

along C+ :
dx

dt
= u + C , u + 2C = F (x) + 2G(x) = R+(x) ;

along C− :
dx

dt
= u − C , u − 2C = F (x) − 2G(x) = R−(x) .

(12.2.15)

Consider the x-t diagram (Fig. 12.1). Divide the x axis into small intervals
by grid points x = x0

1, . . . , x
0
i , . . . ; from the initial values u(x0

i , 0) and
C(x0

i , 0) we calculate the initial stretch of the characteristics

C+ : x = x0
i + [u(x0

i , 0) + C(x0
i , 0)]t ,

C− : x = x0
i + [u(x0

i , 0) − C(x0
i , 0)]t .

(12.2.16)

Consider a C+ curve starting from x0
i and a C− curve starting from a

neighboring grid point x0
i+1. Their intersecting point x1

i , t1i is found by
solving the simultaneous equations

x1
i = x0

i + [u(x0
i , 0) + C(x0

i , 0)]t1i , C+ ,

x1
i = x0

i+1 + [u(x0
i+1, 0) + C(x0

i+1, 0)]t1i , C− .
(12.2.17)

Let us denote the intersecting point by P 1
i = (x1

i , t
1
i ). From all such neigh-

boring points a row of new points P 1
i (x1

i , t
1
i ), i = 1, 2, . . . , is obtained. Now
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Figure 12.1: x-t diagram.

because P 1
i is on the C+ characteristic which is originated at P 0

i (x0
i , 0), we

have

u(P 1
i ) + 2C(P 1

i ) = u(P 0
i ) + 2C(P 0

i ) . (12.2.18)

Because P 1
i is also on the C− characteristic originated at P 0

i+1(x
0
i+1, 0), we

have

u(P 1
i ) − 2C(P 1

i ) = u(P 0
i+1) − 2C(P 0

i+1) . (12.2.19)

Equations (12.2.18) and (12.2.19) can now be solved for u(P 1
i ) and C(P 1

i ).
After obtaining the solution for all i = 1, 2, 3, . . . we have marched forward
in time, although t1i are in general not equal for all i. The points P 1

i then
form a new initial line from which the characteristics C+ and C− can be
extended, and the solution procedure for u and C repeated, and so on. In
this way a network of characteristic curves and the solution at each grid
point are found.

Through each point P passes a pair of characteristics C+ and C−. From
the procedure just described it is clear that the solution at P depends
only on the initial data between these two characteristics. As shown in
Fig. 12.2, the triangular region, bounded by the initial curve and the two
passing characteristics C±, is called the domain of dependence. On the
other hand, the initial data at point P 0

i are felt by every later point in
the sector bounded by the two characteristics C± initiated from P 0

i . This
sector is called the range of influence.

Instead of an initial-value problem, consider an initial-boundary-value
problem for the quadrant x > 0, t > 0; Fig. 12.3. Let the two characteristics
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Figure 12.2

Figure 2.3

C± emanating from the t axis point to the opposite sides of the t axis. Then
only one boundary condition is needed on the t axis because the two un-
knowns u and C at any interior point P are uniquely determined by the two
equations (Riemann invariants) along the two intersecting characteristics.
For example, one may prescribe u(0, t), while C(0, t) must be compatible
to the value determinable from the Riemann invariant along C− going back
to the x axis. In general, the initial curve can be anything in the x-t plane.
If a section of the initial curve, say AO, is such that at every point both
C+ and C− point into the region of interest as t increases, the curve AO

is called space-like, and two initial conditions are needed. If a section OB

is such that at every point only one (C+ or C−) points into the region of
interest, then this section is called time-like and one boundary condition is
required.

In principle, integration of the characteristics equations may be carried
out graphically or numerically; the unknowns as well as the characteristics
are found in the course of solution. In more general hyperbolic problems
the characteristics equations corresponding to Eqs. (12.2.11) and (12.2.12)
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are inhomogeneous with the right-hand side depending on x, t, u, and
C. There are no Riemann invariants and integration must be carried out
numerically. Nevertheless, the partial differential equations are reduced to
ordinary differential equations by means of characteristics.

In practice, the method of finite differences is a more convenient alterna-
tive. The basic aspects are amply described in Stoker (1957), while further
extensions and improvements are a well-developed part of computational
hydraulics. Interested readers should consult Abbott (1979) and current
literature in hydraulics for further details. In the following subsections
only analytic examples will be treated to explore the physical implications
of nonlinearity.

12.2.3 Simple Waves and Constant States

As in gas dynamics, some useful concepts may be built on the basis of the
following important theorem (Courant and Friedrichs, 1949):

If one of the C+ (or C−) characteristics is straight, then all
other C+ (or C−) characteristics in the neighborhood must also
be straight.

Consider two points A and B along the known straight characteristic C+.
From the Riemann invariant along C+ it follows that

u(A) + 2C(A) = u(B) + 2C(B) . (12.2.20)

Since C+ is straight, the following is true:

u(A) + C(A) = u(B) + C(B) . (12.2.21)

After subtracting Eq. (12.2.21) from Eq. (12.2.20), we see that

C(A) = C(B) , (12.2.22)

which implies

u(A) = u(B) . (12.2.23)

Thus, along a straight characteristic C+, u and C are constants. Conversely,
if u and C are constants along C+, then C+ is straight. Now let C′

+

be a neighboring characteristic of the C+ family and C− and C′
− be two

characteristics of the C− family. The intersecting points A, B, C, and D
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Figure 12.4

are shown in Fig. 12.4. Using the Riemann invariants along C′
+, C−, and

C′−, respectively, we have

u(C) + 2C(C) = u(D) + 2C(D) , (12.2.24)

u(D) + 2C(D) = u(A) + 2C(A) , (12.2.25)

u(C) + 2C(C) = u(B) + 2C(B) . (12.2.26)

Because of Eqs. (12.2.22) and (12.2.23) the last two equations give

u(C) − 2C(C) = u(D) − 2C(D) . (12.2.27)

It is evident from Eqs. (12.2.24) and (12.2.27) that

u(C) = u(D) , C(C) = C(D) . (12.2.28)

Thus, C ′
+ is also straight, and the theorem is proved.

A region R in the x, t diagram is called a simple wave zone if all
characteristics of one family are straight. Note that the straight charac-
teristics are not necessarily parallel; the constant values of u and C are
different along different characteristics. A special case of the simple wave is
called the constant state where u and C are the same constants throughout.
Both families of C+ and C− are then straight and parallel. It is clear that
adjacent to a constant state there must be a simple wave.

Let us use these notions to study an initial-boundary-value problem.

12.2.4 Expansion and Compression Waves —
Tendency of Breaking

In a linearized theory, the disturbances due to an initial depression on the
free surface and to an initial elevation of the same shape are essentially the
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Figure 12.5: Expansion waves.

Figure 12.6: Compression waves.

same except for a change of sign. The situation is quite different in a non-
linear problem. As an illustration, consider ζ(0, t) and hence C(0, t) to be
prescribed at the end (x = 0) of a long channel (x > 0). Figures 12.5(a) and
12.6(a) show C(0, t) as a decreasing and increasing function of t, respec-
tively. As shown in Figs. 12.5(b) and 12.6(b), there is always an undisturbed
zone DOB where

u = 0 , C = C0 = (gh)1/2 (12.2.29)

which is a constant state.
Being next to a constant state, the sector BOA must be a simple wave

where C+ characteristics are straight. By using the Riemann invariant
along a C− which crosses the t axis at a given instant t, we get
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u(0, t) − 2C(0, t) = 0 − 2C0 . (12.2.30)

Therefore, the velocity at the channel estuary is not arbitrary but is given
by

u(0, t) = 2C(0, t) − 2C0 . (12.2.31)

Alternatively, one may prescribe u(0, t); C(0, t) is then implied by
Eq. (12.2.31). Moreover, any C+ intersecting the t axis at t = τ has the
slope

dx

dt
= u(0, τ) = C(0, τ) = 3C(0, τ) − 2C0 . (12.2.32)

From the Riemann invariant along a C+ characteristic,

u + 2C = u(0, τ) + 2C(0, τ) = 4C(0, τ) − 2C0 ,

whereas from the Riemann invariant along a C− characteristic,

u − 2C = −2C0 .

At the intersection point P (x, t) of these two curves, we must have

C(x, t) = C(0, τ) (12.2.33a)

and

u(x, t) = 2[C(0, τ) − C0] . (12.2.33b)

If C(0, τ) is a decreasing function of time, then the C+ characteristics
in zone AOB spread out as a fan. Referring to Fig. 12.5(b), we compare
P2(x, t2) with two other points P1(x1, t2) and P3(x, t3) with x1 > x and
t3 > t2. It follows from Eq. (12.2.33a) that

C(P3) − C(P2) = C(0, τ3) − C(0, τ2) < 0 ,

C(P2) − C(P1) = C(0, τ2) − C(0, τ1) < 0 .

Hence, the free-surface height increases with x for a fixed time. This
physical situation is called an expansion wave.

Next, if C(0, t) is an increasing function of time, then the neighboring
C+ characteristics in zone AOB tend to intersect. Referring to Fig. 12.6(b),
we compare P2(x, t2) with two other points P1(x1, t2) and P3(x, t3), with
x1 > x and t3 > t2 before the intersection occurs. From Eq. (12.2.33a) we
have
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C(P3) > C(P2) > C(P1)

instead. Thus, the free-surface height increases with time at a fixed x and
decreases with x at a given t. As the two neighboring C+ curves approach
the intersection, the free-surface height becomes steeper. At the first mo-
ment of such an intersection, the free surface becomes locally vertical, and
the wave profile breaks.

The preceding deduction on breaking requires that the free-surface
slope be so large as to be incompatible with the basic assumption of
Airy’s theory, that is, kA ∼ ∂A/∂x � 1. Therefore, the implications
near and after initial breaking cannot be reliable quantitatively. There are
also cases where even the qualitative predictions are of doubtful validity.
Consider, for example, the disturbance generated in a long wave tank by
first pushing the wavemaker for a finite distance and then stopping it. The
velocity u(0, t) must increase from zero to a maximum and decrease to
zero after a finite duration. From Eq. (12.2.31), C(0, t) first increases from
and then decreases to C0. The C+ characteristics emanating from the t

axis must first lean toward and then away from their neighbors. After the
wavemaker stops, a hump of finite length propagates on the free surface
toward x ∼ ∞. The front of the hump is a compression wave tend-
ing to steepen, while the lee is an expansion wave tending to flatten.
According to Airy’s approximation, an initial hump of finite amplitude
would always break at the front. By a similar reasoning, waves generated
by an oscillating flap started from rest would break near the front of every
wave crest. These conclusions are, however, not always observed in experi-
ments. Indeed, there is a considerable range of ε and µ where an initial
hump or periodically driven waves does not break at all. Theoretically,
the increase of free-surface slope implies that higher horizontal gradients,
corresponding to frequency dispersion which is neglected in Airy’s theory,
become more and more important. Because of the large gradient near a
breaking crest, a valid theory must be able to account for derivatives of
all orders and full nonlinearity, which implies that the full equation must
be solved exactly, at least locally. More research is needed in this difficult
area.

While inadequate for the prediction of initial breaking, Airy’s theory
has relevance, however, to the events after breaking. Specifically, the prop-
agation of a bore can be treated as a discontinuous (shock) solution within
the framework of Airy’s theory. A good example is the classical theory of
hydraulic jumps in open channels. For a horizontal bottom, theories on
bore propagation are thoroughly discussed in Stoker (1948).
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12.3 Nonbreaking Waves on a Slope

For tsunamis with very long periods, the wave slope is so small that wave
breaking is not important, that is, the shore is highly reflective. Of engineer-
ing interest is the quantity called run-up, that is, the maximum landward
excursion of the shoreline. Since the water depth at the shoreline is zero, a
nonlinear theory is needed. Airy’s approximation, being valid for arbitrary
A/h, is clearly the proper one to use.

Let us begin with Eqs. (12.1.47) and (12.1.48) without the dispersion
terms and the overhead symbol (̄ ):

∂ζ

∂t
+

∂

∂x
[u(h(x) + ζ)] = 0 , (12.3.1)

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
= 0 , (12.3.2)

which may be rewritten

(ζ + h)t + [u(ζ + h)]x = 0 , (12.3.3)

ut + uux + g(ζ + h)x = ghx . (12.3.4)

With the definition

C2 = g(ζ + h) , (12.3.5)

Eqs. (12.3.3) and (12.3.4) may be further written

2Ct + 2uCx + Cux = 0 , (12.3.6)

ut + uux + 2CCx = ghx . (12.3.7)

By adding and subtracting Eqs. (12.3.6) and (12.3.7), we arrive at a pair
of characteristics equations:[

∂

∂t
+ (u ± C)

∂

∂x

]
[u ± 2C] = ghx . (12.3.8)

In general, Eq. (12.3.8) cannot be integrated to give Riemann invariants
unless hx is constant. For simplicity it is assumed from here on that

h = sx , (12.3.9)
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and that the sea is to the right of the slope. The Riemann invariants are

u + 2C − mt = α along C+ :
dx

dt
= u + C , (12.3.10)

and

u − 2C − mt = β along C− :
dx

dt
= u − C , (12.3.11)

where m = sg. Since the values of α or β are different along different C+

or C− characteristics, the x, t plane may be covered with a new set of co-
ordinate curves α = const and β = const. This suggests transforming the
independent coordinates from x, t to α, β. Along a particular C+ charac-
teristic, only β is varying; hence the differential equation for C+ may be
written

xβ − (u + C)tβ = 0 . (12.3.12)

Likewise, the differential equation for C− is

xα − (u − C)tα = 0 . (12.3.13)

Now Eqs. (12.3.12) and (12.3.13) are a set of partial differential equations
for the dependent variables x and t as functions α and β. Since u and
C are linearly related to the new independent variables α and β, these
new equations are linear. Let us further introduce (λ, σ) as independent
variables:

λ

2
=

α + β

2
= u − mt , (12.3.14)

σ

4
=

α − β

4
= C , (12.3.15)

so that

∂

∂α
=

∂λ

∂α

∂

∂λ
+

∂σ

∂α

∂

∂σ
=

∂

∂λ
+

∂

∂σ
,

∂

∂β
=

∂λ

∂β

∂

∂λ
+

∂σ

∂β

∂

∂σ
=

∂

∂λ
+

∂

∂σ
.

The equations for the characteristic curves become

−xλ + xσ − u(−tλ + tσ) − C(−tλ + tσ) = 0 ,

xλ + xσ − u(tλ + tσ) + C(tλ + tσ) = 0 ,
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which may be added and subtracted to give

xσ − utσ + Ctλ = 0 , (12.3.16)

xλ − utλ + Ctσ = 0 . (12.3.17)

By cross-differentiation a single linear partial differential equation is
obtained,

σ(tλλ − tσσ) − 3tσ = 0 (12.3.18)

(Stoker, 1948).
Carrier and Greenspan (1957) chose to use an auxiliary dependent vari-

able ψ, as follows: With the help of Eqs. (12.3.14) and (12.3.15), t and C

may be eliminated from Eq. (12.3.16) to yield

xσ +
u

m

(
λ

2
− u

)
σ

− σ

4m

(
λ

2
− u

)
λ

= 0 ,

which may be written(
x − u2

2m
− σ2

16m

)
σ

+
σ

4m
uλ = 0 . (12.3.19)

Similarly, Eq. (12.3.17) may be written(
x − u2

2m

)
λ

+
u

2m
+

σuσ

4m
= 0 . (12.3.20)

Equation (12.3.19) suggests the introduction of a “stream function” ψ such
that

−u

m
=

ψσ

σ
, (12.3.21)

x − u2

2m
− σ2

16m
=

ψλ

4
. (12.3.22)

When the above substitutions are made into Eq. (12.3.20), a single equation
for ψ is obtained

(σψσ)σ − σψλλ = 0 , (12.3.23)

which is equivalent to Eq. (12.3.18). Once ψ is found, u, C, x, and t are
found, respectively, from Eqs. (12.3.21), (12.3.15), (12.3.22), and (12.3.14)
in terms of the parameters λ and σ, which may be eliminated to give u(x, t)
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and C(x, t). The free-surface displacement is found from Eqs. (12.3.5),
(12.3.19) and (12.3.15) to be:

ζ = −s

(
x − σ2

16m

)
= −s

(
u2

2m
+

ψλ

4

)
(12.3.24)

after Eq. (12.3.22) is taken into account.
It is useful to attach some physical significance to the new variables σ

and λ. By definition, 1
16σ2 = C2 = g(ζ + h) is proportional to the total

depth, the instantaneous shoreline being at σ = 0. In the limit of deep water
u becomes much less than C; it follows from Eq. (12.3.14) that t ∼ −λ/2m

so that λ is closely related to time.
Because of the simplicity of Eq. (12.3.23), analytical solutions may

be sought for some convenient initial and/or boundary conditions on ψ.
The corresponding physical problem and solution are then found by inverse
transformation. A simple example is discussed below.

12.3.1 Standing Waves of Finite Amplitude

Let us study a simple solution of the type

ψ = f(σ) cos
(

ωλ

2m

)
. (12.3.25)

The coefficient has been chosen so that ω represents frequency. Substituting
Eq. (12.3.25) into Eq. (12.3.23), we get

σ2f ′′ + σf ′ +
( ω

2m

)
σ2f = 0 . (12.3.26)

A solution which is finite at σ = 0 is J0((ω/2m)σ); thus,

ψ =
8g

ω
AJ0

( ω

2m
σ
)

cos
( ω

2m
λ
)

. (12.3.27)

At large distances

σ = 4X ∼= 4(gh)1/2 = 4(gsx)1/2 , x > 0 ,

λ ∼ −2mt ,

so that

ψ � 8g

ω
AJ0

(
2ω

(
x

sg

)1/2
)

cosωt . (12.3.28)
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It is easily shown that Eq. (12.3.28) is just the standing-wave solution to
the linearized equations

∂ζ

∂t
+

∂

∂x
(sxu) = 0 ,

∂u

∂t
+ g

∂ζ

∂x
= 0 . (12.3.29)

The corresponding free surface is

ζlinear = −AJ0

(
2ω

(
x

sg

)1/2
)

sin ωt . (12.3.30)

In Eq. (12.3.27), ψ is clearly a single-valued function of λ and σ. Is it
also a single-valued function of x and t? In the theory of implicit functions
it is well known that the mapping between (x, t) and (λ, σ) is not one-to-one
only when the Jacobian

J =
∂(x, t)
∂(σ, λ)

=

∣∣∣∣∣xσ tσ

xλ tλ

∣∣∣∣∣ (12.3.31)

vanishes at some λ and σ. Since ∂C/∂x, which is proportional to the surface
slope, is also given by

∂C

∂x
=

∣∣∣∣∣Cσ tσ

Cλ tλ

∣∣∣∣∣
J

,

the vanishing of J implies a vertical free surface, hence breaking. To gain
some qualitative insight on the inception of breaking, we calculate J from
Eq. (12.3.17),

J = (utσ − Ctλ)tλ − (utλ − Ctσ)tσ ,

= C(t2σ − t2λ) .

Since

tσ =
1
m

uσ = −
(

ψσ

σ

)
σ

,

tλ =
uλ

m
− 1

2m
= −ψσλ

σ
− 1

2m
,
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from Eq. (12.3.14), the vanishing of J implies

±
(

ψσ

σ

)
σ

+
(

ψσλ

σ
+

1
2m

)
= 0 . (12.3.32)

The derivatives involved above can be found from Eq. (12.3.27). With the
abbreviations (ω/2s)σ = σ′ and ωλ/2s = λ′, condition (12.3.32) becomes,
after some algebra,

−8gA

ω

( ω

2m

)3

m{±[−(σ′J0(σ) − 2J1(σ′)) cosλ′] + σ′J1(σ′) sin λ′} =
1
2
σ′2 .

(12.3.33)

For a fixed λ, the curly bracket on the left first increases with σ′, then
oscillates with diminishing amplitude about a mean which grows as (σ′)1/2,
while the right-hand side increases as σ′2. If the left-hand side is less than
the right for small σ′, then it remains so for all σ′. Since for small σ′

[−σ′J0(σ′) − 2J1(σ′)] ∼= σ′3

8
+ O(σ′5) ,

σ′J1(σ′) =
σ′2

2
+ O(σ′4) ,

the left-hand side of Eq. (12.3.33) is approximately

4gA
( ω

2m

)2
[
±σ′3

8
cosλ′ +

σ′2

2
sin λ′

]
+ · · ·

which is always less than the right-hand side if

4gA
( ω

2m

)2

< 1 . (12.3.34a)

Thus, if

A <
gs2

ω
=

1
4π2

gT 2s2 , (12.3.34b)

no breaking will occur. Note that the limiting amplitudes increase with the
squares of the period and of the bottom slope. This breaking criterion is
meaningful only as a qualitative rather than quantitative guide. In fact, A
should not be too close to this limiting value for the solution to be valid.
It is nevertheless interesting that Eq. (12.3.34) is of the same form as the
empirical law Eq. (11.5.2), Chapter Eleven, in terms of the surf parameter.
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Let us assume that Eq. (12.3.34) is satisfied and study the run-up of the
shoreline. By taking σ = 0 in Eq. (12.3.22), we locate the instantaneous
shoreline

x(0, λ) =
u2(0, λ)

2m
+

ψλ(0, λ)
4

. (12.3.35)

From Eqs. (12.3.21) and (12.3.27), we get

u(0, λ) =
gAω

m
cos

ωλ

2m
, (12.3.36a)

ψλ(0, λ) =
−4gA

m
sin

ωλ

2m
, (12.3.36b)

x(0, λ) =
A

s

[
− sin

ωλ

2m
+

gA

2

( ω

m

)2

cos2
ωλ

2m

]
. (12.3.36c)

At the shoreline, t and λ are related by

t = − 1
m

(
λ

2
− u(0, λ)

)
=

−1
2m

[
λ − 2gAω

m
cos

ωλ

2m

]
. (12.3.37)

Equations (12.3.36c) and (12.3.37) give the shoreline in terms of the pa-
rameter λ. Using condition (12.3.34a) in Eqs. (12.3.36), we find the run-up
for waves just beginning to break at the shore,

−x ≤ A

s

(
sin

ωλ

2m
− 1

2
cos2

ωλ

2m

)
. (12.3.38)

The maximum run-up occurs when ωλ/2m = 1
2π, so that x = −A/s. This

result can also be obtained from the linearized theory which is presumably
invalid at the shore (Keller, 1961). From Eq. (12.3.30), the linear theory
gives A as the maximum wave height at x = 0. Thus, by assuming the free
surface to be horizontal near the shore, the maximum run-up is again −A/s.
This coincidence gives us some hope that the linearized approximation may
give a reasonable estimate for the run-up of nonbreaking waves on beaches
of more general profile, for which a nonlinear analysis is too difficult.

The instantaneous free-surface profile and the flow field predicted by the
present nonlinear theory are quite different from the linear theory; some
computed results by Carrier and Greenspan (1957) are shown in Fig. 12.7.
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Figure 12.7: Standing wave profiles on a beach according to Eq. (12.3.27) at E, point
of maximum run-up ωλ/2m = ( 1

2
)π; B, ωλ/2m = 3

2
π; C, D, intermediate times. (a)

A/ζ0 = 1; (b) A/ζ0 = 1
2

where L = 4gs/ω2, ζ0 = 4gs2/ω2 (from Carrier and Greenspan,
1957, J. Fluid Mech. Reproduced by permission of Cambridge University Press).

12.3.2 Matching with Deep Water

In the sense of matched asymptotics, the results of Section 12.3.1 may be
further used as the inner solution to be matched with a linear standing-wave
solution in the deep sea. This is possible because the outer limit of the non-
linear Airy equations is linear and is the same as the inner limit (kh → 0)
of the linear WKB theory in gradually varying depth (Carrier, 1966; and
Mei, 1966b).

Far from the beach the linearized theory should suffice. By adding two
progressive waves propagating in opposite directions on a slowly varying
bottom (Chapter Three), a standing wave is obtained,

Φ =
2gA0

ω

cos k(z + h)
cosh kh

cosωt cos
(∫ x

k dx

)
, (12.3.39)
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ζ = −2A0 sin ωt cos
(∫ x

k dx

)
, (12.3.40)

where the lower limit of integration is, so far, arbitrary. The amplitude A0

is given by A of Eq. (3.3.9), Chapter Three, with α = α0 = 0. Let the
reference point be far offshore (x ∼ ∞) where the depth is great. Then in
very shallow water

A0 = A∞(k∞h)−1/42−1/2 , (12.3.41)

and ∫ x

k dx =
k

1/2
∞
s

∫ sx dh

h1/2
=

2ωx1/2

(gs)1/2
+ δ , (12.3.42)

where ( )∞ denotes quantities far offshore and δ is an integration constant.
Hence, the inner approximation of Eq. (12.3.40) is

ζ ∼= −A∞21/2
( g

ω2

)1/4

s−1/4x−1/4 sinωt cos
(

2ωx1/2

(gs)1/2
+ δ

)
. (12.3.43)

On the other hand, the nonlinear solution valid near the shore becomes
linear far offshore. Specifically, when 2ω(x/sg)1/2 � 1, the outer approxi-
mation is, from Eq. (12.3.30),

ζ ∼= −AJ0

(
2ω

( x

sh

)1/2
)

sin ωt

= −Aπ−1/2
( g

ω2

)1/4

s1/4x−1/4 cos

(
2ω

(
x

sg

)1/2

− π

4

)
sin ωt . (12.3.44)

Matching Eq. (12.3.43) with Eq. (12.3.44), we find

δ = −π

4
(12.3.45a)

and

A = A∞

(
2π

s

)1/2

. (12.3.45b)

Together Eqs. (12.3.27) and (12.3.40) give a uniformly valid theory for all
depths.
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Equations (12.3.45b) and (12.3.34b) can be combined to give the
breaking criterion

k∞A = s2 or k∞A∞ =
1

(2π)1/2
s5/2 . (12.3.46)

With Eq. (12.3.45b) the empirical criterion (11.5.2), Chapter Eleven, may
be written

k∞A =
(π

4

)2

s2 or k∞A∞ =
1

(2π)1/2

(π

4

)2

s5/2 . (12.3.47)

Based on a linearized theory of standing waves on a slope, Miche (1944)
assumed breaking to begin when the free surface at the water edge was
tangential to the sloping bottom. His criterion for the critical moment was
derived in terms of k∞A∞ and may be expressed as

k∞A = 2s2 , k∞A∞ =
(

1
π

)1/2

s5/2 (12.3.48)

because of Eq. (12.3.45b). Recall from Eq. (11.5.1), Section 11.5, that ξ =
s(π/k∞A)1/2 is the surf parameter. Thus, the critical value of ξ is the
largest in the experiments, intermediate by the nonlinear theory of Airy,
and the smallest by the linearized theory of Miche. We hasten to emphasize
that neither theory should be expected to be quantitatively correct, but
both confirm the basic significance of the surf parameter. To bring the
theory closer to experiments, it is likely that the boundary conditions must
be exactly met near the breaking crest.

Despite the difficulties in predicting the incipient breaking, Airy’s
equations provide a useful framework for bore propagation. Assuming
that the bore is already present, one may treat the motion away from
the bore by Airy’s equations and connect both sides of the bore by proper
shock conditions. Early studies of this kind may be found in Stoker (1957)
for horizontal bottom and in Keller, Levine, and Whitham (1960) for a
beach. Further analytical studies of a single bore and its run-up on a beach
have been given by Ho and Meyer (1962), Shen and Meyer (1963a, b), and
summarized by Meyer and Taylor (1972). Using finite differences, Hibberd
and Peregrine (1979) have investigated a bore incident from a horizontal
bottom toward a sloping beach. While these situations may be simulated
in the laboratory, periodicity and breaking inception are two other aspects
that are ever-present in nature and should be included in a more complete
picture of bores climbing a beach.
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12.3.3 Transient Responses to Initial Inputs

Another advantage of the linear equations (12.3.23) is that several interest-
ing initial-value problems can be treated conveniently in an inverse way. A
typical example is to let ψ(σ, 0) = 0 and ψλ(σ, 0) be prescribed for λ = 0,
σ > 0. The initial-value problem with finite ψ at σ = 0 may be obtained
straightforwardly by Laplace transform. In view of Eqs. (12.3.14), (12.3.21)
and (12.3.22), the initial conditions ψ(σ, 0) = 0 and ψλ(σ, 0) 
= 0 imply the
physical conditions u(x, 0) = 0 and ζ(x, 0) at t = 0. Carrier and Greenspan
studied a number of initial humps in this way.

Another interesting transformation which renders the nonlinear equa-
tions linear has been found by Tuck and Hwang (1972). Let

x∗ = x +
ζ

s
, t∗ = t − u

gs
,

u∗(x∗, t∗) = u(x, t) , ζ∗(x∗, t∗) = ζ +
u2

2g
. (12.3.49)

Then it can be shown straightforwardly that u(x∗, t∗) and ζ(x∗, t∗) satisfy
the linearized equations

∂ζ∗

∂t∗
+ s

∂

∂x∗ (x∗u∗) = 0 , (12.3.50)

∂u∗

∂t∗
+ g

∂ζ∗

∂x∗ = 0 . (12.3.51)

Note that sx∗ = sx + ζ. Thus, one can also seek solutions in terms of
the transformed variables, then find the physical problem later. A sample
problem is to prescribe

ζ∗(x∗, 0) = ae−x∗/b (12.3.52)

and

u∗(x∗, 0) = 0 . (12.3.53)

The initial free surface is then given by

x = x∗ − a

s
e−x∗/b (12.3.54)

or

x = −b ln
ζ

a
− ζ

s
. (12.3.55)
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Figure 12.8: Transient waves on a beach where t′ = t(gs/b)1/2. (a) a/sb = 2.0; (b)
a/sb = 5.0 (from Tuck and Hwang, 1972, J. Fluid Mech. Reproduced by permission of
Cambridge University Press).
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The history of free-surface motion is shown in Figs. 12.8(a) and 12.8(b).

12.4 Subharmonic Resonance of Edge Waves

In Section 4.8 linearized edge waves are found to be free modes trapped
on a sloping beach. It was mentioned there that progressive edge waves
may be generated directly by a storm traveling along the coast at a speed
close to the phase velocity of an edge wave mode. The typical period of
this kind of edge wave is related to the spatial extent of the storm area and
is of the order of several hours. On the other hand, shorter edge waves of
periods less than a few minutes are also of practical interest because they
can induce either harbor seiches or rip currents which are responsible for
beach cusps.

Can edge waves be excited by the ever-present incident swell?
If the coastline has an indentation, a linear resonance mechanism similar

to harbor resonance is possible. Imagine a rectangular cove of length L with
width B on an otherwise straight coast. Let the bottom of the cove be a
beach of constant slope s. If the incident waves have the frequency w which
nearly satisfies the eigenvalue condition

ω2 = gks(2n + 1) with k =
2mπ

B
, n, m = integers ,

and if the cove length L is O(2π/k), then a trapped edge wave can certainly
be excited in the cove. The finiteness of L makes it possible to have some
radiation damping and enables the incident wave to supply energy to the
edge wave.

In their studies of nearshore circulation, Bowen and Inman (1969) found
field evidence of standing edge waves of periods comparable in order of mag-
nitude to the period of the incoming swell. The amplified edge waves cause
longshore modulation of the incident swell which may be sufficiently short
to break near the shore. The periodic modulation affects the breaking
wave height and the radiation stresses, leading to periodic cells of currents,
which, in turn, lead to beach cusps. Motivated by these interests, Guza and
Davis (1974) and Guza and Bowen (1976) made a systematic examination
of the nonlinear mechanism of subharmonic resonance in which a stand-
ing edge wave of frequency ω was resonated by a normally incoming and
reflected wave of frequency 2ω. Guza and Bowen employed Airy’s shallow-
water approximation as the basis of their theory. In addition to the initial
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instability of edge waves, the incident and reflected waves were found to
leak energy by radiation due to quadratic nonlinearity. Consideration of
cubic nonlinearity and of radiation damping enabled them to predict both
the initial resonant growth and the final equilibrium amplitude. Their own
experiments also strongly supported these findings.

Minzoni and Whitham (1977) further extended the theory of Guza et al.
In particular, they began with the more complete but complicated theory
of Friedrichs (1949) for normally incident and reflected waves on a beach
of finite slope. Since most beach slopes are small, we shall follow Guza and
Bowen in using the shallow-water equations

ζt + [(sx + ζ)Φx]x + [(sx + ζ)Φy ]y = 0 , (12.4.1)

Φt +
1
2
(Φ2

x + Φ2
y) + gζ = 0 . (12.4.2)

However, the more systematic perturbation arguments of Minzoni and
Whitham will be applied, as in Rockliff (1978).

Eliminating ζ from Eqs. (12.4.1) and (12.4.2), we acquire a single non-
linear equation for Φ:

LΦ ≡ −Φtt + sg[(xΦx)x + xΦyy]

= 2(ΦxΦxt + ΦyΦyt) + Φt(ΦxxΦyy)

+
1
2
(Φ2

x + Φ2
y)(Φxx + Φyy)

+ Φ2
xΦxx + Φ2

yΦyy + 2ΦxΦyΦxy . (12.4.3)

12.4.1 Perfect Tuning

We first discuss the simple case of perfect tuning. The linearized approxima-
tion of Eq. (12.4.3) admits two solutions. The first solution is the normally
incident and reflected waves with frequency 2ω

Φ0 = − igA

2ω
J0

(
4ω

(
x

gs

)1/2
)

e−2iωt + ∗ (12.4.4)1

which is finite at the shore x = 0; ω can be arbitrary. The second solution
is an edge wave mode of frequency ω (see Section 4.8). For simplicity, we
shall only take the lowest mode (mode 0) which is described by

1( ) + * is the abbreviation for ( ) + the complex conjugate of ( ).
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Φe = − igB

ω
e−kx cos ky e−2iωt + ∗ , (12.4.5)

subject to the dispersion relation (eigenvalue condition)

ω = (gks)1/2 . (12.4.6)

If both Φ0 and Φe are initially present, the quadratic term involving the
pair (Φ0, Φe) will, at the second order, give rise to a simple harmonic forcing
term proportional to G(x) cos ky e−iωt where G(x) is a certain function of
x. Unless G(x) is in some sense orthogonal to the homogeneous solution
e−kx, the edge wave will be further resonated to great amplitude. The two
waves are said to be perfectly tuned since the frequency ratio is exactly 1
to 2.

Let the linear terms on the left of Eq. (12.4.3) be denoted by LΦ and
the quadratic and cubic terms on the right be denoted symbolically by their
possible combinations

LΦe + LΦ0 = (Φe, Φe) + (Φ0, Φ0) + (Φe, Φ0)

+ (Φe, Φe, Φe) + (Φ0, Φ0, Φ0)

+ (Φe, Φ0, Φ0) + (Φ, Φe, Φe) . (12.4.7)

The harmonics of the terms of the right are, respectively,

(0,±2) (0,±4) (±1,±3) (±1,±3)

(±2,±6) (±1,±3,±5) (0,±2,±4) . (12.4.8)

Let a and b denote the order of magnitude of A and B, respectively; the
order of the terms on the right of Eq. (12.4.7) are, respectively,

(b2) , (a2) , (ab) , (b3) , (a3) , (a2b) , (ab2) . (12.4.9)

Terms containing first harmonics are potentially resonance-forcing. Since
b � a at the initial stage of resonant growth, the third term on the right
of Eq. (12.4.7) is of the order O(ab) and is the most important term for
resonating Φe. In response to this forcing, the amplitude B of the edge
wave is no longer constant in time. From −∂2Φe/∂t2, a term proportional
to ∂B/∂t, which represents the initial growth of B, is expected. Since
∂B/∂t, must be comparable to the leading-force term of O(ab), the time
scale of resonant growth must be O(1/a). Consequently, two time scales
are inherent in this problem: ω−1 and (ωka)−1.
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As resonance develops further, the edge wave is no longer small in
comparison with the standing wave. Let us postulate the existence of a
final equilibrium state where some cubic terms become as important as
the quadratic terms. From Eqs. (12.4.8) and (12.4.9), we see that (Φe, Φ0)
can only be balanced by (Φe, Φe, Φe) which implies that O(ab) = O(b3) or
b = O(a1/2) at equilibrium. To account for this eventuality we allow Φe to
be O(a1/2), introduce the slow time T = at, and assume a multiple-scale
expansion as follows:

Φ = [a1/2ψ1(x, y, T ) + a3/2ψ2(x, y, T ) + · · · ]e−iωt + ∗
+ [aφ1(x, T ) + a2φ2(x, y, T ) + · · · ]e−2iωt + ∗ + · · · . (12.4.10)

The left-hand side of Eq. (12.4.3) becomes

a1/2{ω2ψ1 + gs[(xψ1x)x + xψ1yy]}e−iωt + ∗
+ a{4ω2φ1 + gs[(xφ1x)x}e−2iωt + ∗

+ a3/2

{
ω2ψ2 + gs[(xψ2x)x + xψ2yy] + 2iω

∂ψ1

∂T

}
e−iωt + ∗ + · · · .

(12.4.11)

The right-hand side of Eq. (12.4.3) may be symbolically rewritten

a(ψ1, ψ1)e−2iωt + ∗ + a3/2(ψ∗
1 , φ1)e−iωt + ∗

+ a3/2(ψ∗
1 , ψ1, ψ1)e−iωt + ∗ + · · · . (12.4.12)

We now examine the perturbation equations sequentially and explicitly.
At O(a1/2), the governing equation is

ω2ψ1 + gs[(xψ1x)x + xψ1yy] = 0 , (12.4.13)

which has a homogeneous solution

ψ1 = − igB

ω
e−kx cos ky (12.4.14a)

with

ω2 = gks , (12.4.14b)

that is, the lowest edge wave mode. For later purposes note that the factor
F = e−kx which describes the x dependence satisfies
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ω2F + gs[(xFx)x − xk2F ]· = 0 ;

xF ′ = 0 at x = 0 ; F → 0 , x ∼ ∞ .
(12.4.15)

At O(a), the governing equation is

4ω2φ1 + gs(xφ1x)x = (ψ1, ψ1) , (12.4.16a)

where the quadratic forcing term is, after some algebra,

(ψ1, ψ1) = 2i
(gk)2

ω
B2e−2kx . (12.4.16b)

The solution to Eq. (12.4.16) has both homogeneous and particular parts.
The homogeneous solution is just the standing wave

φh
1 = − igA

2ω
J0(4(kx)1/2) , (12.4.17)

where A is the amplitude at the shore. The particular solution should be
finite at x = 0 and outgoing at infinity. We leave it as an exercise to show
that

φp
1 = i

2πgk

ωs
B2G(ξ) , (12.4.18a)

where ξ = kx and

G(ξ) = −E2(ξ)J0(4ξ1/2) + E1(ξ)Y0(4ξ1/2)

+ (E2(∞) − iE1(∞)J0(4ξ1/2) , (12.4.18b)

with

E1(ξ) =
∫ ξ

0

e−2ξJ0(4ξ1/2) dξ ,

E2(ζ) =
∫ ξ

0

e−2ξY0(4ξ1/2) dξ . (12.4.18c)

It is easy to check that φp
1 satisfies the radiation condition.

Now we examine the O(a3/2) problem. It is straightforward to calculate
the cubic terms

(ψ∗
1 , ψ1, ψ1) = −3i

( g

ω

)3

k4B2B∗e−3kx cos ky . (12.4.19)
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The quadratic terms are lengthier and can be written in the following form:

(ψ∗
1 , φ1) = e−kx cos ky

{
iAB∗ g2

2ω

(
2k

dJ0

dx
+

d2J0

dx2

)

− i
2πg2k

ωs
B∗B2

(
2k

dG

dx
+

d2G

dx2

)}
. (12.4.20)

Without the factor cos ky, the O(a3/2) equation may be summarized as
follows:

ω2H + gs[(xHx)x − k2xH ]

=
[
−2g

∂B

∂T
+ iAB∗ g2

2ω

(
2k

dJ0

dx
+

d2J0

dx2

)

− i
2πg2k

ωs
B∗B2

(
2k

dG

dx
+

d2G

dx2

)]
e−kx

− 3i
( g

ω

)3

k4B2B∗e−3kx , (12.4.21)

where H is defined by

ψ2 ≡ H(x) cos ky . (12.4.22)

Since the homogeneous problem (12.4.15) has the nontrivial solution F =
e−kx, there must be a solvability condition for H (Fredholm alternative).
This condition is derived as usual by multiplying Eq. (12.4.21) by F and
Eq. (12.4.15) by H , and integrating the difference from 0 to ∞. After
partial integration we obtain∫ ∞

0

dxe−kx{RHS of Eq. (12.4.21)} = 0 . (12.4.23)

This orthogonality condition gives a differential equation for B. With the
change of variable ξ = kx, Eq. (12.4.23) becomes

∂B

∂T
=

iAB∗gk2

2ω
α − i

2πgk3

ωs
B∗B2β − i

3
4

g2

ω3
k4B∗B2 , (12.4.24)

where α and β are a pair of definite integrals

α =
∫ ∞

0

dξe−2ξ

(
2
dJ0

dξ
+

d2J0

dξ2

)
= 8E1(∞)

= 8/2e2 = 0.0541314 , (12.4.25a)
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and

β =
∫ ∞

0

dξe−2ξ

(
2
dG

dξ
+

d2G

dξ2

)
= − 1

π
+ 8EG , (12.4.25b)

where

EG =
∫ ∞

0

dξe−2ξG(ξ)

= −i(E1(∞))2 + 2
∫ ∞

0

dξe−2ξY0(4ξ1/2)
∫ ξ

0

dτe−2τJ0(4ξ1/2)

= 0.02862− 0.0045782i .

The evaluation of the preceding integrals is detailed in Appendix 12.A.
Equation (12.4.24) describes the nonlinear evolution of the edge wave

amplitude B and may be integrated numerically for a given A and an initial
value B(0). Its physical significance can be better seen by multiplying with
B∗ and adding the result to its complex conjugate, yielding

∂|B|2
∂T

=
−gk2αA

ω
Im B∗2 +

4πgk3

ω3
|B|4 Im β . (12.4.26)

This is an energy equation stating that the change of the edge wave is due
to its interaction with the standing wave (the first term on the right) and
the radiation of the second harmonic (the second term). Indeed, Imβ is
negative so that radiation causes damping, as expected.

During the initial state when B is still much less than A, the last
two terms (proportional to B∗B2) may be omitted from Eq. (12.4.24),
leaving

∂B

∂T
=

4igk2

ω
E1(∞)AB∗ . (12.4.27)

Differentiating Eq. (12.4.27), we get

∂2B

∂T 2
= |A|2

[
4gk2

ω
E1(∞)

]2

B , (12.4.28)

which can be solved to give

B(T ) = B(0) exp
(
±4gk2

ω
|A|E1(∞)T

)
. (12.4.29)

Hence the growth rate is proportional to |A|. Since gk2/ω = ω3/gs2, the
growth rate increases with higher frequency and smaller beach slope. This
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result agrees with the limit of the full theory at s → 0 by Minzoni and
Whitham.2

Consider now the nonlinear equilibrium state, when ∂B/∂T = 0. From
Eqs. (12.4.24) and (12.4.25) the equilibrium amplitude of the edge wave is
found to be

|B| =
[

4E1(∞)s|A|
k|16πEG − 5

4 |
]1/2

. (12.4.30)

The corresponding run-up, defined as the maximum excursion of the
shoreline, is

XR =
4|B|

s
= 8

(
E1(∞)

|16πEG − 5
4 |

)1/2 ( |A|
ks

)1/2

= 3.815
( |A|

ks

)1/2

= 3.815
( |A|g

ω2

)1/2

, (12.4.31a)

which is equivalent to the limiting result (s → 0) of Minzoni and Whitham
(1977, Eq. (76)):

XR = 5.4
(ga0

σ2

)1/2

(12.4.31b)

where a0 = 2A and ω = 2σ. This result also agrees with the theory of Guza
and Bowen (1976). Model experiments were performed by the latter authors
for a beach angle of s = 6◦ and an incident wave period of 2π/2ω = 2.7s.
For 2A ranging from 2 to 4 cm, the measured coefficient in Eq. (12.4.31b)
was on the average 4.5 instead of 5.4, but in the experiments the standing
waves φ1 were very steep. In addition, the radiated second harmonic was
also confirmed experimentally.

In view of Eq. (12.3.47), Section 12.3.2, the edge wave run-up can be
expressed in terms of the deep-water amplitude A∞ instead of A.

Guza and Bowen, and Minzoni and Whitham also discussed imperfect
tuning and showed that a higher equilibrium amplitude could be achieved

2It may be remarked that while they give the same growth criterion for the leading-
order edge wave as the small-slope limit of the full theory, Airy’s equations for a plane
beach can lead to difficulties at the third order. Despite the solvability condition,
Whitham (1976) found for a progressive edge wave of permanent form that the third-
order solution became logarithmically unbounded with y as compared to the linear

(first-order) solution. This nonuniformity has to be avoided either by using the full
theory of arbitrary slope or by letting the sea depth approach a constant far offshore
(Minzoni, 1976).
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when phase matching was imperfect. For other issues their papers and
Rockliff (1978) should be consulted.

12.4.2 Effects of Detuning

If there is a slight frequency mismatch between the edge wave and the
incident/reflected wave system, we can replace (12.4.4) by

Φ0 =
−igA

2ω
J0(4

√
kx)e−2i(ω+εΩ)t + ∗ (12.4.32)

where Ω = O(ω) and ε is the small dimensionless parameter characteri-
zing the incident wave amplitude a. This amounts to replacing A in
Section 12.4.1 by

A0e
−2iεΩt = A0e

−2iΩT .

Therefore (12.4.24) is replaced by

−i
∂B

∂T
=

2
e2

gk2

ω2
A0e

−2iΩT B∗ − g2k4

ω3

(
16πEG − 5

4

)
|B|2B (12.4.33)

which includes the effects of small detuning. The complex evolution equa-
tion (12.4.38) for B is of Landau–Stuart type appearing often in stability
problems, and can be analyzed by the theory of dynamical systems
(Rockliff, 1978).3 As an alternative, let B = B̄e−iΩT , then

∂B

∂T
=

(
∂B̄

∂T
− iΩB̄

)
e−iΩT

and (12.4.33) becomes

−i
∂B̄

∂T
= ΩB̄ +

2
e2

gk2

ω2
A0B̄

∗ − g2k4

ω3

(
16πEG − 5

4

)
|B̄|2B̄ . (12.4.34)

Let us denote

δ =
2
e2

= 0.27 , σ − iγ = 16πEG − 5
4

= 0.189− 0.23i , (12.4.35)

and introduce the normalization,

T = T0τ , B̄ = B0B , (12.4.36)

3The details here are a part of an unpublished work by Prof. Oded Gottlieb, Technion,
Israel (private communication).
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with

T0 =
ω

δkA0gk
, (kB0)2 =

ω2

gk
δkA0 . (12.4.37)

We then get the dimensionless evolution equation with detuning,

−i
∂B
∂τ

= Ω̂B + B∗ − (σ − iγ)|B|2B , (12.4.38)

where

Ω̂ =
Ωω

δA0k2
. (12.4.39)

The preceding complex equation can be converted to two equations for
two real variables, if we express B in the polar form

B =
√

Ieiθ , (12.4.40)

where I = |B|2 is called the action variable and θ the angle variable.
Equation (12.4.38) becomes

−i

(
dI

dτ
+ 2iI

dθ

dτ

)
= 2Ω̂I − 2(σ − iγ)I2 + 2Ie−2iθ . (12.4.41)

Separating the imaginary and real parts, we get

dI

dτ
= −2γI2 + 2I sin 2θ (12.4.42)

and

dθ

dτ
= Ω̂ − σI + cos 2θ . (12.4.43)

These two real equations form a dynamical system of two-degrees of free-
dom, and were first analyzed by Rockliff (1978) using the tools of nonlinear
dynamics.

The final states of equilibrium,4 if they exist, are found by taking
d/dτ = 0. We then get from (12.4.42) and (12.4.43)

I(−γI + sin 2θ) = 0 (12.4.44)

and

Ω̂ − 2σI + cos 2θ = 0 . (12.4.45)

4An equilibrium state is also called a fixed point in the phase space (I, θ).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

652 Nonlinear Long Waves in Shallow Water

The first equilibrium state is trivial with zero amplitude, i.e., I = 0 for all
Ω̂. The edge wave is not excited. The angle variable which will be needed
later is

cos 2θ = −Ω̂ . (12.4.46)

The second equilibrium state corresponds to the solution of

sin 2θ = γI (12.4.47)

and

cos 2θ = −Ω̂ + σI . (12.4.48)

Eliminating θ we get

(Ω̂ − σI)2 + γ2I2 = 1 , (12.4.49)

which is a quadratic equation for I, having the solutions

I±0 =
Ω̂σ

σ2 + γ2
±

√
Ω̂σ

σ2 + γ2
− Ω̂2 − 1

σ2 + γ2

=
σ

σ2 + γ2

(
Ω̂ ±

√
1 +

γ2

σ2
(1 − Ω̂2)

)
. (12.4.50)

The corresponding angle variables are

cos 2θ±0 = 2σI±0 − Ω̂ . (12.4.51)

Referring to the bifurcation diagram Fig. 12.9 which relates the equi-
librium action and the detuning frequency, the first equilibrium state of no
motion coincides with the entire Ω̂ axis. For the second equilibrium state

��

�
�c�

�

Figure 12.9: Bifurcation diagram relating the action I0 of equilibrium state and detun-
ing frequency Ω̂. Solid line: stable branch. Dashed line: unstable branch.



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

12.4. Subharmonic Resonance of Edge Waves 653

of finite motion, I0 must be real and positive. Both I+
0 and I−0 are possible

roots if

1 < Ω̂ < Ω̂c ≡
√

1 +
σ2

γ2
, (12.4.52)

as marked by QR in Fig. 12.9. Only I+
0 is possible if

−1 < Ω̂ < 1 , (12.4.53)

i.e., segment NQ in Fig. 12.9.
To see if the equilibrium states can be realized physically, one must

study their stability.
Consider first the finite amplitude state. Let us add some infinitesimal

disturbances to both I0 and θ0 by substituting

I = I0 + I ′ , θ = θ0 + θ′ (12.4.54)

into (12.4.42) and (12.4.43). After linearizing we get

dI ′

dτ
= (2 sin 2θ0 − 4γI0)I ′ + 4I0 cos 2θ0)θ′ (12.4.55)

and

dθ′

dτ
= −σI ′ − 2 sin 2θ0I

′ . (12.4.56)

Making use of (12.4.47) and (12.4.48), we get

d

dτ

(
I ′

θ′

)
=

[
−2γI0 −4I0(Ω − σI0)

−σ −2γI0

](
I ′

θ′

)
. (12.4.57)

Substituting (
I ′

θ′

)
=

(
Ĩ ′

θ̃′

)
e−λt (12.4.58)

into (12.4.57), we get the eigenvalue condition∣∣∣∣∣λ − 2γI0 −4I0(Ω − σI0)

−σ λ − 2γI0

∣∣∣∣∣ = 0

or

(λ − 2γI0)2 − σ4I0(Ω − σI0) = 0 . (12.4.59)
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The two eigenvalues are

λ± = 2γI0 ±
√

4σI0(Ω̂ − σI0) . (12.4.60)

For stability, λ must have a positive real part. If Ω̂ > σI0, both eigenvalues
are real. The larger eigenvalue λ1 is always positive, while the smaller root
λ2 is positive only if √

4σI0(Ω̂ − σI0) < 2γI0

or

I0 >
σΩ̂

σ2 + γ2
. (12.4.61)

Recall that if Ω̂2 < 1, I+
0 is the the only root which satisfies the preceding

inequality in view of (12.4.50), hence stable in the range QR.
If

1 < Ω <

√
σ2 + γ2

σ2
= Ω̂c (12.4.62)

there are two equilibrium states with finite amplitudes. The smaller root
satisfies

I−0 <
σΩ

σ2 + γ2
(12.4.63)

hence is unstable (see dashed branch QP in Fig. 12.9). The larger root is

I+
0 >

σΩ
σ2 + γ2

(12.4.64)

and stable (see solid branch TP).
Now we turn to the stability of the trivial state where the edge wave

is not excited, I0 = 0. Then cos 2θ0 = −Ω̂. Linearizing (12.4.42) and
(12.4.43) we get

dI ′

dτ
= 2I ′

√
1 − Ω2 (12.4.65)

hence

I ′ = I ′(0)e2τ
√

1−Ω̂2
. (12.4.66)

Hence the zero state is unstable for Ω̂2 < 1 (NQ in Fig. 12.9) and stable
for Ω̂2 > 1 (MN and NS).
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What will happen if the detuning frequency of the incident/reflected
waves is increased from M along the Ω̂ axis? Starting from the left of N,
i.e., Ω̂ < −1, the first equilibrium state of zero amplitude is stable, amount-
ing to no resonance of edge waves. When N is crossed, i.e., −1Ω̂ < −1, the
first equilibrium state is unstable but the second state is stable. Edge waves
of initially infinitesimal amplitude must grow to reach an amplitude cor-
responding to a point on the stable branch NT. Note that the amplitude
at perfect tuning is not the largest. With greater detuning beyond Ω̂ = 1,
the stable amplitude continues to become larger, and then falls to the final
value corresponding to point P at Ω̂ = Ω̂c. Afterwards only the first state
exists and is stable; the edge wave disappears.

If we reverse the direction and lower the detuning frequency from above
towards Ω̂ > Ω̂c, i.e., from S to R, no edge wave is excited from infinitesimal
amplitude until point Q (where Ω̂ = 1) is crossed. Then the zero state is no
longer stable; an edge wave of finite amplitude is resonated with amplitude
given by a point on the branch TN. When Ω̂ drop below −1, edge waves
are again no longer excitable.

As described in Section 7.11, the mobile storm barrier for Venice Lagoon
admits trapped modes similar to edge waves here. These modes can also
be excited nonlinearly by subharmonic resonance; the gate dynamics is
also governed by Landau-Stuart equation. Many theoretical deductions
common to both edge waves and gate oscillations have been confirmed
experimentally by Sammarco et al. (1997a, b).

12.5 Dispersive Long Waves of Permanent Form
and the Korteweg–De Vries (KdV) Equation

In linear wave theories, solutions of the type eik(x−Ct) are the most elemen-
tary; it is natural to inquire whether in nonlinear theories solutions which
depend on x, t in the combination (x − Ct) exist. Since these solutions
represent waves propagating at constant speed without change of form,
they are called the permanent or stationary waves. From earlier discus-
sions, nonlinearity is known to steepen a crest, while dispersion tends
to counteract this trend by “dispersing” into waves of different lengths.
Permanent waves, if any, must therefore correspond to a dynamical
equilibrium in which the two effects are in perfect balance.

The normalized equations of Boussinesq, Eqs. (12.1.36) and (12.1.37),
can be written for one-dimensional waves as follows:
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ζt + ε(ζΦx)x + Φxx = 0 , (12.5.1)

Φt + ζ +
ε

2
Φ2

x =
µ2

3
Φxxt , (12.5.2)

upon substituting Φx for u. For brevity the symbols ( )′ and (−) have
been omitted. The spatial and times scales for normalization are k−1 and
(k
√

gh)−1, respectively. Eliminating ζ from Eqs. (12.5.1) and (12.5.2), we
obtain a single equation for Φ

Φtt − Φxx =
µ2

3
Φxxtt − ε

(
Φ2

x +
1
2
Φ2

t

)
t

, (12.5.3)

where terms smaller than O(ε, µ2) have been ignored. Equation (12.5.3)
may also be called the Boussinesq equation. We now seek a solution of the
following form:

Φ = Φ(ξ) with ξ = x − Ct . (12.5.4)

Since

∂

∂x
=

d

dξ
≡ ( )′ and

∂

∂t
= −C

d

dξ
≡ −C( )′ ,

Eq. (12.5.3) becomes

(C2 − 1)Φ′′ =
µ2

3
C2Φ′′′′ + εC

(
1 +

C2

2

)
(Φ′2)′ .

Now the preceding equation implies that C = 1 + O(ε, µ2); hence, in all
terms on the right-hand side C may be approximated by unity without
affecting the accuracy. Integrating once with respect to ξ, we get

(C2 − 1)Φ′ + A1 =
µ2

3
Φ′′′ +

3ε

2
(Φ′)2 .

To the leading order, ζ = −Φt = Φ′; thus,

(C2 − 1)ζ + A1 =
µ2

3
ζ′′ +

3ε

2
ζ2 .

Finally, we multiply the above equation by ζ′ and integrate once more to
get

−ε

2
ζ3 + (C2 − 1)

ζ2

2
+ A1ζ + A2 =

µ2

6
ζ′2 (12.5.5)

where the integration constants A1 and A2 are both of the order O(ε, µ2).
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Two cases will now be discussed.

12.5.1 Solitary Waves

A solitary wave5 has a single crest whose amplitude diminishes to zero as
|ξ| → ∞. Since ζ, ζ′, and ζ′′ vanish at infinity, so should the constants A1

and A2. Equation (12.5.5) becomes simply

(ζ′)2 = 3ζ2

(
C2 − 1

ε
− ζ

) (
ε

µ2

)
. (12.5.6)

For the right-hand side to be positive we must have

C > 1 or C > (gh)1/2

in physical variables; this wave speed is called supercritical. Furthermore,
we must insist that ζ ≤ (C2 − 1)/ε. Hence (C2 − 1)/ε is just the maximum
amplitude of the crest which is unity because of the normalization, that is,

C2 = 1 + ε . (12.5.7)

In dimensional form Eq. (12.5.7) reads

C = (gh)1/2

(
1 +

A

h

)1/2

= [g(h + A)]1/2 (12.5.8)

which was first found by Rayleigh. Thus, the wave speed increases with
amplitude.

With Eq. (12.5.7), Eq. (12.5.6) can be written

dζ

dξ
=

(3ε)1/2

µ
ζ(1 − ζ)1/2

which can be integrated to give

ε1/2

µ
31/2(ξ − ξ0) = −2 tanh−1(1 − ζ)1/2

or

ζ = sech2 (3ε)1/2

2µ
(ξ − ξ0) . (12.5.9)

5Discovered by John Scott Russell in 1834.
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The corresponding profile is a solitary hill with the crest at ξ = ξ0. The
integration constant ξ0 may be taken to be zero. In dimensional form the
surface profile is

ζ = A sech2 31/2

2

(
A

h3

)1/2

(x − Ct) . (12.5.10)

Thus, the higher the peak, the narrower the profile.
Solitary waves can be easily generated in a long tank by almost any kind

of impulse. For experimental proof of this theory see Dailey and Stephan
(1952).

Major advances in numerical theory have been made in the past decade
so that it is now possible to compute strongly nonlinear solitary waves.
From the exact boundary conditions on the free surface, Byatt-Smith (1970)
obtained an integral-differential equation which was then solved numeri-
cally. Fenton (1972) extended an expansion procedure due to Benjamin
and Lighthill (1954) to the ninth order and made calculations comparable
in accuracy to Byatt-Smith’s as long as the amplitude was less than 3

4 of
the still-water depth. In a series of remarkable papers, Longuet–Higgins
and associates made a most thorough investigation. By first deducing a
number of exact relations on mass, momentum, energy, and circulation
(Longuet–Higgins, 1974b), then carrying out numerical computations with
the aid of either Padé approximants (Longuet–Higgins and Fenton, 1974) or
an integral-differential equation (Byatt-Smith and Longuet–Higgins, 1976),
they uncovered a great deal of accurate information. Perhaps the most
striking discovery is that the highest wave is not the most energetic. For
fascinating details of both the approaches and the results, the reader is
referred to these papers.

12.5.2 Cnoidal Waves

Besides the solitary wave just discussed, periodic permanent waves are pos-
sible. Let us first rewrite Eq. (12.5.5) as follows:

1
3

µ2

ε
(ζ′)2 = −ζ3 +

C2 + 1
ε

ζ2 + B1ζ + B2

= (ζ3 − ζ)(ζ − ζ2)(ζ − ζ1) = P3 , (12.5.11)

where ζ1 < ζ2 < ζ3 are the three zeroes of the third-order polynomial P3.
Since the left-hand side of Eq. (12.5.11) is positive, the right-hand side
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Figure 12.10: Polynomial P3.

must be positive also for a real solution. As shown in Fig. 12.10, ζ must
lie between the two zeroes ζ3 and ζ2 which correspond to the heights of the
crest and the trough, respectively. Their difference is the total dimension-
less wave height

(ζ3 − ζ2) = H . (12.5.12)

Equation (12.5.11) can be integrated in terms of an elliptic integral by
introducing

ζ = ζ3 cos2 φ + ζ2 sin2 φ with φ = φ(ξ) , (12.5.13)

and differentiating,

ζ′ = (ζ3 − ζ2)φ′(−2 sinφ cosφ) . (12.5.14)

Equations (12.5.13) and (12.5.14) may be inserted into both sides of
Eq. (12.5.11), yielding

4φ′2(ζ3 − ζ2)2 sin2 φ cos2 φ

=
3ε

µ2
[ζ3(1 − cos2 φ) − ζ2 sin2 φ]

· [−ζ3 cos2 φ + ζ2(1 − sin2 φ)][ζ1 − ζ3(1 − sin2 φ) − ζ2 sin2 φ]

=
3ε

µ2
(ζ3 − ζ2)2 sin2 φ cos2 φ[(ζ3 − ζ1) − (ζ3 − ζ2) sin2 φ)] , (12.5.15)
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or, after cancellation of common factors,

(φ′)2 =
3
4

ε

µ2
(ζ3 − ζ1)[1 − m sin2 φ] , (12.5.16)

with

m =
ζ3 − ζ2

ζ3 − ζ1
, (12.5.17)

where 1 > m > 0. Finally, we get∫ φ

0

dφ

(1 − m sin2 φ)1/2
≡ F (φ, m) = ± (3ε)1/2

2µ
(ζ3 − ζ1)1/2(ξ − ξ0) .

The integral is the standard form for the incomplete elliptic integral of
the first kind with modulus m. The above relation can be regarded as an
implicit equation for φ as a function of ξ. More explicitly, we denote

cosφ = Cn
[
(3ε)1/2

2µ
(ζ3 − ζ1)1/2(ξ − ξ0)

]
,

sin φ = Sn
[
(3ε)1/2

2µ
(ζ3 − ζ1)1/2(ξ − ξ0)

]
,

where Cn and Sn are called the cosine-elliptic and the sine-elliptic functions.
From Eq. (12.5.13) the surface height is then

ζ = ζ2 + (ζ3 − ζ2) Cn2

[
(3ε)1/2

2µ
(ζ3 − ζ1)1/2(ξ − ξ0)

]
, (12.5.18)

where ζ2 is the level of the trough measured from the mean and is negative.
In physical terms the surface height is

ζ = ζ2 + (ζ3 − ζ2) Cn2

[
31/2

2
(ζ3 − ζ2)1/2

h3/2
(x − Ct − x0)

]
. (12.5.19)

Korteweg and de Vries (1895) coined the word cnoidal for the function Cn;
thus Eq. (12.5.18) or (12.5.19) is now called the cnoidal wave.

Since cos φ is periodic with period 2π, Cn(z) is, by definition, periodic
with z with the period 4K, where

K = F
(π

2
, m

)
=

∫ π/2

0

dφ

(1 − m sin2 φ)1/2
(12.5.20)
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is the standard symbol for the complete elliptic integral of the first kind.
Since Cn2 must have the period 2K(m), the dimensionless wavelength λ of
a cnoidal wave is given by

(3ε)1/2

2µ
(ζ3 − ζ1)1/2λ = 2k(m)

or

λ =
4K(m)µ

[3(ζ3 − ζ1)ε]1/2
. (12.5.21)

The wavelength depends on the amplitude through m. Equation (12.5.18)
may be rewritten

ζ = ζ2 + (ζ3 − ζ2) Cn2

[
2K

λ
(x − Ct)

]
. (12.5.22)

The wave speed is found from Eq. (12.5.11) in terms of ζ1, ζ2, and ζ3

C2 − 1
ε

= ζ1 + ζ2 + ζ3 ,

or

C2 = 1 + ε(ζ1 + ζ2 + ζ3) . (12.5.23)

In principle, the cnoidal wave is specified by three parameters ζ1, ζ2, and
ζ3, or equivalently by ζ2, ζ3, and the wavelength λ. For engineering usage,
it is more convenient to replace ζ1, ζ2, and ζ3, by the wavelength λ, the
mean depth and the wave height H measured vertically from trough to
crest. Let us define the mean depth so that the net area occupied by fluid
within a wavelength is zero: ∫ λ

0

ζ dξ = 0 ,

which implies ∫ π

0

(ζ3 cos2 φ + ζ2 sin2 φ)
dξ

dφ
dφ = 0

because of Eq. (12.5.13). From Eq. (12.5.17) and the square root of
Eq. (12.5.16), the left-hand side of the preceding integral may be rewritten∫ π/2

0

dφ
ζ1 + (ζ3 − ζ1)(1 − m sin2 φ)

(1 − m sin2 φ)1/2
= 0 ,
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where a constant multiplier has been dropped and the symmetry of sin2 φ

about φ = 1
2π is used. Using Eq. (12.5.20) and the definition

E(m) =
∫ π/2

0

(1 − m sin2 φ)1/2 dφ (12.5.24)

for the elliptic integral of the second kind, we have

ζ1K(m) + (ζ3 − ζ1)E(m) = 0 (12.5.25)

or

ζ1 = −E

K
(ζ3 − ζ1) =

ζ3 − ζ2

m

E

K
= −H

m

E

K
. (12.5.26)

It follows from Eq. (12.5.25) that

ζ3 = −ζ1

(
K

E
− 1

)
=

H

E

(
1 − E

K

)
, (12.5.27)

and, finally,

ζ2 = ζ3 − H =
H

m

(
1 − m − E

K

)
. (12.5.28)

Thus, all three parameters ζ1, ζ2, and ζ3 are expressed in terms of H and
m, the mean depth of h being fixed. These expressions may be inserted
into Eq. (12.5.23) for the dimensionless wave speed

C2 = 1 + ε
H

m

[
−m + 2 − 3E

K

]
, (12.5.29)

and into Eq. (12.5.21) for the dimensionless wavelength

λ =
4Kµ

(3ε)1/2

(m

H

)1/2

. (12.5.30)

Now the dimensionless wave period is

T =
λ

C
=

(4µ/(3ε)1/2(m/H)1/2K

[1 + ε)(H/m)(−m + 2 − 3E/K)]1/2
. (12.5.31)

To return to physical variables the following transformation is necessary:

x → kx , t → k(gh)1/2t , C → (gh)1/2C ,

λ → kλ , H → H

A
.
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By using the definitions µ = kh and ε = A/h, it is easy to obtain that, in
physical variables,

C2 = gh

[
1 +

H

h

1
m

(
−m + 2 − 3

E

K

)]
, (12.5.32)

λ = 4Kh

(
m

3H/h

)1/2

, (12.5.33)

T ∼=
(

h

g

)1/2 4K(m/3H/h−1)1/2

[1 + (H/h)(1/m)(−m + 2 − 3E/K)]1/2
, (12.5.34)

ζ = ζ2 + H Cn2

[
2K

λ
(x − Ct)

]
. (12.5.35)

The parameter m can, in principle, be eliminated from any pair among
Eqs. (12.5.32)–(12.5.34) so as to obtain relations of the type C = C(T, H),
λ = λ(T, H), and so on. However, it is simpler to leave m as a parameter.
Wiegel (l960) has plotted the wave profile ζ for various values of m ranging
from 0 to almost 1; sample results are reproduced in Figs. 12.11 and 12.12.

For a better understanding of these curves it is helpful to check the
following two limiting cases:

(i) m → 1. In this limit ζ2 → ζ1, E(1) = 1, and K(1) → ∞; conse-
quently, λ → ∞ and Cn2u + sech2u. However, from Eq. (12.5.30) the ratio
K/λ approaches a finite limit so that

ζ = H sech2 31/2

2

(
H

h3

)1/2

(x − Ct)

which is just Eq. (12.5.10). Thus, the solitary wave is the limit of the
cnoidal wave with infinite wavelength. If the wavelength is kept fixed, the
wave profile becomes isolated peaks, as is represented by the curve with
m ≈ 1 in Fig. 12.11. The wave speed becomes

C2 = gh

(
1 +

H

h

)
.

This equation corresponds to the horizontal asymptotes in Fig. 12.12.
(ii) m → 0. In this limit ζ3 − ζ2 = H → 0, that is, the waves are

infinitesimal. It can be easily shown that

C2 → gh , Cn(u|m) → Cn(u|0) → cosu , K → π

2
,
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Figure 12.11: Surface profiles of cnoidal waves (from Wiegel, 1960, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).

Figure 12.12: Dispersion relation of cnoidal waves (from Wiegel, 1960, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).

and

ζ = ζ2 + H cos2
π

λ
(x − Ct) .

Now ζ2 = −a = − 1
2H so that

ζ =
H

2
cos

2π

λ
(x − Ct)

which is the linearized sinusoidal wave, as is evident in Fig. 12.11.
In Fig. 12.12 the wave speed is represented by the horizontal line
C/(gh)1/2 = 1.
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A fifth-order theory has also been worked out by Fenton (1979).

12.5.3 The Korteweg–de Vries (KdV) Equation

The permanent waves studied so far depend on the following variable:

ξ = x − Ct = x − t + O(ε)t

because of Eq. (12.5.7). Thus, an observer traveling at the linearized long-
wave speed, which is unity in dimensionless variables, witnesses a slow
variation in time. The dimensionless scale of the slow-time variation is
1/ε, which suggests the following variables for the more general transient
evolution of nonlinear and dispersive long waves propagating in positive x

direction:

σ = x − t , τ = εt . (12.5.36)

In terms of these variables, the derivatives become

∂

∂x
→ ∂

∂σ
,

∂

∂t
→ − ∂

∂σ
+ ε

∂

∂τ
.

By substituting these derivatives into the alternate Boussinesq equa-
tion (12.5.3), we get immediately

(φσ)τ +
3
4
(φ2

σ)σ +
µ2

6ε
φσσσ = O(ε, µ2) .

To the leading order φσ may be replaced by ζ or u, that is,

ζτ +
3
2
ζζσ +

µ2

6ε
φσσσ

∼= 0 . (12.5.37)

This is commonly called the Korteweg–de Vies (or KdV) equation. In
physical variables and stationary coordinates, Eq. (12.5.37) takes the form

∂ζ

∂t
+ (gh)1/2

(
1 +

3
2

ζ

h

)
∂ζ

∂x
+

h2

6
(gh)1/2 ∂3ζ

∂x3
= 0 . (12.5.38)

In the stationary frame of reference the nonlinear and the dispersion terms
are small quantities of order ε and µ2, respectively, hence one may replace
(gh)1/2ζx by −ζt without affecting the accuracy. Possible alternative forms
for Eq. (12.5.38) are:
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ζt + (gh)1/2ζx +
3
2
(gh)1/2 ζ

h

 ζx

− 1
(gh)1/2

ζt



+
h2

6
(gh)1/2



ζxxx

− 1
(gh)1/2

ζxxt

1
(gh)

ζxtt

− 1
(gh)3/2

ζttt


= 0 .

(12.5.39a)

(12.5.39b)

(12.5.39c)

(12.5.39d)

It is easy to check that none of these forms will alter the linearized dispersion
relation to the accuracy O(ε, µ2). The permanent solitary and cnoidal waves
can also be deduced from Eq. (12.5.37) by assuming ζ = ζ(σ − Cτ); the
details are left as an exercise.

12.6 Nonlinear Dispersive Standing Waves on
a Horizontal Bottom

In studying the interaction between two trains of permanent waves propa-
gating in two different directions, Benney and Luke (1964) found that the
interaction effect remained O(ε) times smaller than the primary waves, as
long as τ = εt = O(1) and the angle of intersection was greater than O(µ).
This conclusion implies that two permanent nonlinear waves that do not
travel in the same direction may be superimposed to give another leading-
order solution to the Boussinesq equations. In particular, standing waves
can be constructed by adding two opposite-going cnoidal waves. To show
this result, it is convenient and sufficient to begin with Eq. (12.5.3).

We introduce the multiple-scale expansion

Φ = φ(0)(x, t; τ) + εφ(1)(x, t; τ) + · · · (12.6.1)

into Eq. (12.5.3) and get

φ
(0)
tt − φ(0)

xx = 0 , (12.6.2)

φ
(1)
tt − φ(1)

xx =
1
3

µ2

ε
φ

(0)
xxtt −

[
(φ(0)

x )2 +
1
2
(φ(0)

t )2
]

t

− 2φ
(0)
tτ . (12.6.3)
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The general solution to Eq. (12.6.2) is

φ(0) = φ+(σ+; τ) + φ−(σ−; τ) , (12.6.4)

where

σ± = x ∓ t . (12.6.5)

Thus, φ+ and φ− travel to the right and left, respectively. Equation (12.6.3)
may be written

−4
∂2φ(1)

∂σ+∂σ−
= 2

∂

∂τ

∂φ+

∂σ+
+ 3

∂σ+

∂σ+

∂2φ+

∂σ2
+

+
1
3

µ2

ε

∂4φ+

∂σ4
+

− 2
∂

∂τ

∂φ−

∂σ−

− 3
∂σ−

∂σ−
∂2φ−

∂σ2−
+

1
3

µ2

ε

∂4φ−

∂σ4−
+

∂2φ+

∂σ2
+

∂φ−

∂σ−
− ∂φ+

∂σ+

∂2φ−

∂σ2−
.

(12.6.6)

For φ(1) not to grow linearly with σ+ or σ−, the first and second lines on
the right-hand side of Eq. (12.6.6) must vanish separately. Writing

ζ+ = −φ+
t = φ+

σ+
, and ζ− = −φ−

t = −φ−
σ− , (12.6.7)

we obtain

∂ζ+

∂τ
+

3
2
ζ+ ∂ζ+

∂σ+
+

µ2

6ε

∂3ζ+

∂σ3
+

= 0 (12.6.8)

and

−∂ζ−

∂τ
+

3
2
ζ−

∂ζ−

∂σ−
+

µ2

6ε

∂3ζ−

∂σ3−
= 0 . (12.6.9)

Thus, the right- and left-going waves are decoupled and satisfy their own
Korteweg–de Vries (KdV) equations separately. To the leading order, ζ(0),
which corresponds to φ(0), may be constructed by superposition:

ζ(0) = ζ+(σ+; τ) + ζ−(σ−; τ) . (12.6.10)

Consider a one-dimensional tank in the spatial domain 0 ≤ x ≤ π. If

ζ+ = F (−σ+; τ) and ζ− = F (σ−; τ) , (12.6.11)

then the corresponding velocity field

u(0) = −F (−σ+; τ) + F (σ−; τ) (12.6.12)
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vanishes at the left wall x = 0 for all t. In order for u(0) to vanish also at
x = π we require

−F (t − π; τ) + F (t + π; τ) = 0 ,

which implies that F (σ; τ) is periodic in σ with the period 2π. A cnoidal
wave of unit amplitude meets all these conditions:

F (σ; τ) = f2 + (f3 − f2)Cn2

[(
3ε

2µ2
(f3 − f1)

)1/2

(σ + γτ); m

]
, (12.6.13)

ε

µ2
=

4mK2

3π2
, (12.6.14a)

γ =
1
m

(
1 − 3

2
E

K

)
− 1

2
, (12.6.14b)

f1 = − E

mK
, (12.6.14c)

f3 = f2 + 1 =
1
m

(
1 − E

K

)
. (12.6.14d)

The standing wave is given by

ζ(0) = F ((1 + γε)t − x) + F ((1 + γε)t + x) (12.6.15)

with the dimensionless period of

T = 2π(1 + γε)−1 . (12.6.16)

The dimensionless crest-to-trough amplitude of the standing wave is 2.
Given the following physical data: amplitude A0, tank depth h, tank length
L, and modal index n, the Ursell parameter

Ur =
ε

µ2
=

A0

h

(
L

h

)2 (
1

nπ

)2

is known, and m and γ can be calculated from Eqs. (12.6.14a) and
(12.6.14b), respectively. The remaining parameters f1, f2, and f3 follow
from Eqs. (12.6.14c) and (12.6.14d).

Figure 12.13 shows the sample history of a standing wave within half of
the tank for n = 1 and Ur = 1.825. Unlike the sloshing mode of a linear
standing wave, the free surface is never horizontal and fixed nodes do not
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Figure 12.13: Instantaneous free surfaces of nonlinear standing waves within half of a
wavelength. Numbers near each profile indicate t/T for half a period (S. R. Rogers and
C. C. Mei, 1978, in an unpublished manuscript).

exist. Furthermore, a crest bounces back and forth between two end walls.
As the Ursell number becomes very large, the bouncing crest approaches
a solitary wave except very near the ends. These features are also present
in the theory of nonlinear standing waves when kh is not small (Wehausen
and Laitone, 1960, p. 665).

Lepelletier (1980) performed experiments by oscillating a shallow-water
tank sinusoidally and horizontally at very low amplitudes, until steady res-
onance was reached. In the case where kh = 0.314, A0/h = 0.055–0.2 (i.e.,
Ur = 0.5–2) the measurements agreed with the present theory very well.
For two other cases with larger Ur (case (i) kh = 0.157, A0/h = 0.043–0.23,
Ur = 1.72–9.32; case (ii) kh = 0.107, A0/h = 0.04–0.075, Ur = 3.5–7.0),
appreciable quantitative discrepancies existed which were attributed to the
strictly sinusoidal excitation.

Returning to Eq. (12.6.6), the next order correction is

εφ(1) = ε

[
φ

(1)
+ + φ

(1)
−

1
4

(
φ− ∂φ+

∂σ+
− φ+ ∂φ−

∂σ−

)]
, (12.6.17)

where φ
(1)
+ )(σ+) and φ

(1)
− )(σ−) are the homogeneous solutions to the KdV

equations (12.6.8) and (12.6.9) and are indeterminate until cubic terms of
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the order O(ε2, εµ2, µ4) are examined. The remaining terms in Eq. (12.6.17)
represent the weak effect of interaction and can be straightforwardly calcu-
lated (Benney and Luke, 1964).

12.7 Evolution of an Initial Pulse

Since mid-1960’s, the KdV equation has been the object of intensive re-
search, as it describes a wide range of nonlinear dispersive waves in different
branches of physics. Extensive numerical studies of the KdV equation by
Zabusky and Kruskal (1965) for periodic boundary conditions have shown
that an initial hump goes through recurring stages of disintegration into,
and recombination of, pulses, each of which has the properties of a soli-
tary wave. These solitary waves travel at different speeds and may pass
through one another. After the encounter, the solitary waves leave each
other with the original features preserved; the only effect of the interaction
is a change of phase. Because these features are common in the physics of
particles such as electrons, protons, and so on, Zabusky and Kruskal coined
the word soliton for a solitary wave.

In a landmark paper, Gardner, Greene, Kruskal, and Miura (1967)
reported an analytical solution to the initial-value problem due to a distur-
bance of finite length in an infinite domain, |x| < ∞. Subsequent develop-
ment stimulated by this work has had a profound impact on the study of
nonlinear waves not only in fluids but also in numerous branches of physics
and engineering. This section is intended as an introduction to this ex-
panding literature. More extensive expositions may be found in Ablowitz
and Segur (1981), Karpman (1975), Gardner et al. (1974), Lamb (1980),
Scott et al. (1973), Miura (1974, 1976), and Whitham (1974).

The procedure of Gardner et al. may be regarded as an extension to the
classical method of Fourier transform for linear partial differential equations
(Ablowitz et al., 1974). Let u(x, t) be governed by ut = Lu where L is a
linear differential operator in x with constant coefficients, and let the initial
data u(x, 0) be prescribed for |x| < ∞. To find u(x, t) for t > 0 we may take
the exponential Fourier transform with respect to x and solve the initial-
value problem for û(k, t) where k is the transform variable. Afterward
the inverse Fourier transform is performed for u(x, t). In the nonlinear
problem here, the Fourier transform is replaced by the mapping into a linear
eigenvalue problem (or direct scattering problem, step I). We then look
for some information regarding the transient evolution of the eigenvalue



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

12.7. Evolution of an Initial Pulse 671

problem from the given initial data (step II). Finally, an inverse mapping
is performed to determine the transient solution (step III). The inverse
mapping involves the so-called inverse scattering theory which is a linear
problem. Therefore, by this indirect procedure the nonlinear problem is
replaced by a series of linear problems.

In the following discussions, the original arguments of Gardner et al. are
followed.

First we switch to their convention and write the KdV equation in the
form

ηt − 6ηηx + ηxxx = 0 (12.7.1)

which can be achieved by making the transformation

ζ → −4η , σ → µ

(6ε)1/2
x , τ → µ

(6ε)1/2
t

to Eq. (12.5.37). The initial data η(x, 0) is prescribed for |x| < ∞. For
later use we express the solitary wave of amplitude 1

2f2 by

η = −f2

2
sech2 f

2
(x − f2t) . (12.7.2)

For step I, the transformed problem turns out to center around the
Schrödinger equation

ψxx + (λ − η)ψ = 0 (12.7.3)

where η = η(x, t) with t being a parameter. In a typical quantum-
mechanical problem, the potential η is prescribed, and the task is to find
the eigenvalues λ and the eigenfunctions. Consider the case where η < 0 in
a finite region, but vanishes sufficiently fast for |x| → ∞. It is known that
there are then two kinds of eigenvalue problems. On one hand the negative
eigenvalues form a discrete spectrum, λ = λn = −k2

n, n = 1, 2, 3, . . . ;
the associated eigenfunctions ψn vanish at infinity, hence are called bound
states. Their asymptotic behavior at infinity is

ψn ∼ cne−knx , x ∼ ∞ ,

∼ dneknx , x ∼ −∞ ,
(12.7.4)

where cn and dn are the normalization constants chosen so that∫ ∞

−∞
ψ2

n dx = 1 all n . (12.7.5)
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In general, kn, cn, and dn, depend on the parameter t. On the other hand,
the positive eigenvalues λ = k2 > 0 form a continuous spectrum and the
eigenfunction for each k has the following asymptotic behavior:

ψ ∼ a(k, t)e−ikx , x ∼ −∞ , (12.7.6a)

ψ ∼ e−ikx + b(k, t)eikx , x ∼ ∞ . (12.7.6b)

Clearly, for each of these k’s, ψ describes a direct scattering problem where
a is the transmission coefficient and b is the reflection coefficient; both
coefficients depend on t.

For step II, a surprising discovery of Gardner et al. is that the eigen-
values of Eq. (12.7.3) do not vary with time if η(x, t) in Eq. (12.7.3) satisfies
the KdV equation (12.7.1) and vanishes sufficiently fast as |x| → ∞. This
result can be verified by solving η from Eq. (12.7.3) and substituting into
Eq. (12.7.1) to get

λtψ
2 + (ψRx − ψxR)x = 0 , (12.7.7a)

where

R = ψt + ψxxx − 3(η + λ)ψx . (12.7.7b)

Taking λ = λn to be the nth discrete eigenvalue and integrating
Eq. (12.7.7a) from x ∼ −∞ to x ∼ +∞, we obtain λn = const by using
Eq. (12.7.5). Consequently, λn may be determined from the initial data
of η, that is, η(x, 0). Afterward, the bound-state eigenfunctions ψn(x, 0)
and the normalization constants cn(0) can be calculated for t = 0. The
continuous eigenvalue λ = k2 ranges from 0 to ∞; this fact does not change
with time, so λ may be taken as constant. The corresponding scattering
problem for η(x, 0) may be solved for the initial values a(k, 0) and b(k, 0).

We shall now show that cn(t) and b(k, t) may be determined from their
initial values cn(0) and b(k, 0) without having to know ψ(x, t) for all x.
Equation (12.7.7a), which is valid for both discrete and continuous spectra,
may be integrated twice to give

ψt + ψxxx − 3(η + λ)ψx = cψ + Dψ

∫ x dx

ψ2
. (12.7.8)

If ψ is the eigenfunction of the discrete spectrum, ψ−2 is exponentially
large and we must insist that D = 0. Multiplying Eq. (12.7.8) by ψ and
integrating from x ∼ −∞ to x ∼ +∞, we get

∂

∂t

∫ ∞

−∞

1
2
ψ2 dx +

∫ ∞

−∞
(ψψxx − 2ψ2

x − 3λψ2)x dx = C

∫ ∞

−∞
ψ2 dx .
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Clearly, the second integral vanishes for bound states and the first integral
vanishes because of Eq. (12.7.5). Hence C = 0 and

ψt + ψxxx − 3(η + λ)ψx = 0 . (12.7.9)

For x ∼ +∞, η ∼ 0 and ψ is given asymptotically by Eq. (12.7.4a); the
above equation now implies that

ċn − 4k3
ncn = 0 ,

hence

cn(t) = cn(0)e4k3
nt . (12.7.10)

For the continuous spectrum we consider x ∼ −∞ and substitute
Eq. (12.7.6a) (the transmission side) into Eq. (12.7.8) to get

at + 4ik3a = Ca +
D

a

∫ x

e2ikx dx . (12.7.11)

Since a is independent of x, D must vanish so that

at + (4ik3 − C)a = 0 . (12.7.12)

Consider next x ∼ +∞. By substituting Eq. (12.7.6b) (the incidence side)
into Eq. (12.7.8) and separating the coefficients of e±ikx, we find

C = 4ik3 (12.7.13a)

and

ḃ − 8ik3b = 0 . (12.7.13b)

From Eqs. (12.7.12), (12.7.13a) and (12.7.13b), the evolution of a and b are
found:

a(k, t) = a(k, 0) b(k, t) = b(k, 0)e8ik3t . (12.7.14)

Step III involves the inverse scattering problem for Eq. (12.7.3). Ac-
cording to Gelfand and Levitan (1955), η(x, t) can be uniquely determined
if the scattering data cn(t) and b(k, t) are known. Specifically, we must first
construct the kernel

B(x, t) =
1
2π

∫ ∞

−∞
b(k, t)eikx dk +

N∑
n=1

c2
n(t)e−knx , (12.7.15)
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and solve the Gelfand–Levitan integral equation6 for K,

K(x, y, t) + B(x + y, t) +
∫ ∞

x

B(y + z, t)K(x, z, t) dz = 0 . (12.7.16)

Afterward η(x, t) is given by

η(x, t) = −2
d

dx
K(x, x, t) . (12.7.17)

The basis of Eqs. (12.7.15)–(12.7.17) is a well-developed subject in mathe-
matical physics but is too lengthy to be discussed here; interested readers
may consult Lamb (1980) or Ablowitz and Segur (1981) for a thorough
discussion.

If the initial potential leads to no reflection (b(k, t) = 0), so that only
the discrete eigenvalues enter the kernel B, the linear Gelfand–Levitan in-
tegral equation can be solved explicitly (Gardner et al., 1967; Segur, 1973).
Otherwise much information can still be deduced analytically.

Let us examine the asymptotic behavior for large x and t. Since our
interest is only in K(x, x, t) we need only consider

B(x + z, t) =
1
2π

∫ ∞

−∞
b(k, 0)eik(x+z)−8ik3t dk

+
N∑

n=1

c2
n(0)e[8k3

nt−kn(x+z)] . (12.7.18)

For large t and x ∼ 4k2
N t, where kN is the largest of the discrete eigen-

values (kN > kN−1 > · · · > k2 > k1), the Nth term dominates among
the series terms and the major contribution to the integral of Eq. (12.7.16)
comes from the neighborhood of the lower limit, that is, z = x ∼ 4k2

N t.
Furthermore, the integral in Eq. (12.7.18) may be shown by the method
of stationary phase to diminish with t as t−1/3 (Segur, 1973). Let B be
approximated by the dominant term

B(x + z, t) = c2
n(0)e−kN (x+z)+8k3

N t . (12.7.19)

The Gelfand–Levitan equation becomes

K(x, x, t) + c2
N (0)e8k3

N t−2kN x + c2
N (0)e8k3

N t−2kN x

×
∫ ∞

−∞
e−kN zK(x, z, t) dz ∼= 0 . (12.7.20)

6Also called the Marchenko equation (see Lamb, 1980).
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Only the second variable in K pertains to the integral equation which can
be solved by assuming

K(x, z, t) = L(x, t)e−kN z

so that

L + c2
N (0)e8k3

N te−kN x + c2
N (0)e8k3

N tL

∫ ∞

x

e−2kN z dz = 0 .

It follows that

K(x, x, t) = − c2
N (0)e8k3

N t−2kN x

1 + (c2
N (0)/2kN)e8k3

N t−2kN x
. (12.7.21)

Finally, Eq. (12.7.17) gives

η = −2k2
N sech2(kN (x − x0) − 4k3

N t) , (12.7.22)

with

2kN

c2
N (0)

≡ e−2kN x0 .

In view of Eq. (12.7.2), Eq. (12.7.22) is a soliton of amplitude 2k2
N and

speed 4k2
N !

If we focus instead on large t but x ∼ 4k2
nt for any other n, the domi-

nant term in B is the nth term in the series of Eq. (12.7.18). Evidently, a
soliton of amplitude 2k2

n should then travel at the speed 4k2
n. In summary,

the initial hump eventually disintegrates into N solitons, each of which cor-
responds to a discrete eigenvalue of the initial “potential well.” By a more
elaborate analysis of the integral in Eq. (12.7.18), an oscillatory tail can be
shown to follow the train of solitons. However, the lag increases with time
so that the solitons are eventually alone at the front. This disintegration
of an initial pulse to a train of solitons is also called fission.

The following results which follow the known properties of the
Schrödinger equation are quoted below without proof:

1 If
∫

η(x, 0) dx < 0, which corresponds to a net hump, there is at least
one bound state, hence one soliton.

2 Let η0 and l be the characteristic height and length of the initial

hump, then the number of bound states N is proportional to η
1/2
0 l.

Rather than deducing these results in general terms, let us cite an ex-
actly solvable example which is well known in quantum mechanics (Landau
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and Lifshitz, 1958, p. 70) and was first used in the present context by
Zabusky (1968). If the initial profile can be expressed by

η(x, 0) = −p(p + 1) sech2x , p > 0 , (12.7.23)

the Schrödinger equation can be reduced to a hypergeometric equation.
The bound-state eigenvalues are:

−λN−1−n = k2
N−1−n = (p − n)2 = (c + N − 1 − n)2 (12.7.24)

for n = 0, 1, 2, . . . , N − 1 where c is the noninteger difference between p + 1
and N . The number N of bound states is the largest integer satisfying

N ≤ p + 1 . (12.7.25)

The success of Gardner et al. hinges, in part, on finding the proper linear
eigenvalue problem [cf. (12.7.3)] which leads to constant eigenvalues. Their
ingenuity has inspired further generalizations by Lax (1968), Zakharov and
Shabat (1972), Ablowitz et al. (1974), and others for other equations gov-
erning nonlinear dispersive waves, all for pure initial-value problems on an
infinite line. Apparently, similar treatments have not been successful for
many other types of initial-boundary-value problems, for which numerical
methods are now available for quantitative information (see, e.g., Zabusky
(1968) and Fornberg and Whitham (1978)).

12.8 Fission of Solitons by Decreasing Depth

In general, the effects of varying depth on long waves of finite amplitudes
may be studied by solving numerically the partial differential equations
(12.1.47) and (12.1.48) with appropriate initial and boundary conditions.
For normal incidence on one-dimensional topography, Madsen and Mei
(1969) and Madsen, Mei, and Savage (1970) expressed an equivalent set
of equations in quasi-hyperbolic form and solved them by the method of
characteristics. It was found numerically and confirmed experimentally
that a soliton traveling from one constant depth to another constant but
smaller depth, disintegrates into several solitons of varying sizes, trailed
by an oscillatory tail. This fission is clearly related to the result of the
last section. Analytical confirmation and extension were provided later by
Tappert and Zabusky (1971), Johnson (1973), and Ono (1972).

The analytical theory is based on a KdV equation with variable
coefficients under the assumption that the scale of depth variation L is
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Lε−1, that is, much longer than wavelength L inherent in Eqs. (12.1.47)
and (12.1.48). Let us, therefore, approximate Boussinesq equations further.
After normalization and noting hx = O(ε), hxx = O(ε2), and so on, we get

ζt + (εζ + h)u]x = 0 , (12.8.1)

ut + εuux + ζx − µ2

3
h2uxxt = 0 . (12.8.2)

Let the following new variables be introduced:

X = εx , ξ =
1
ε

∫ X

h1/2 dX − t (12.8.3)

so that h = h(X) with h = 1, X ≤ X0, and ξ is the coordinate moving at
the local linear wave speed. With the following changes

∂

∂t
→ ∂

∂ξ
,

∂

∂x
→ ε

∂

∂X
+ h−1/2 ∂

∂ξ
, (12.8.4)

Equations (12.8.1) and (12.8.2) become

−ζξ + εhXu + εhuX + εζξh
−1/2u + εζh−1/2uξ + h1/2uξ = 0 ,

−h−1/2uξ + εuuξ + εh1/2ζX + ζξ +
µ2

3
h3/2uξξξ = 0 .

Adding the two equations above and using the leading-order approximation
u ∼= h−1/2ζ, we get, to the leading order,

2h1/2ζX +
1
2

hX

h1/2
ζ +

3
h

ζζξ +
µ2

3ε
hζξξξ = 0 . (12.8.5)

This extended KdV equation was deduced by Kakutani (1971) and Johnson
(1973) and may be expressed in several forms. For example, let us apply
the following transformation (Ono, 1972):

ζ = −4h2ψ , τ =
µ2

6ε

∫ X

X0

h1/2 dX , ξ =
µ2

6ε
σ , (12.8.6)

where the exponents of h are chosen so as to remove most of the variable
coefficients. Equation (12.8.5) reduces to

ψr − 6ψψσ + ψσσσ + ν(τ)ψ = 0 , (12.8.7)

where

ν =
9
4

hX

h3/2

(
6ε

µ2

)
(12.8.8)
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represents the effect of variable depth. Any finite-difference scheme devised
for the KdV equation works for Eq. (12.8.7) as well (see Johnson, 1972).

To apply Eq. (12.8.7) to soliton fission by a shelf, Johnson and Ono
proceeded along the following intuitive line inherent in the WKB approx-
imation. A pair of integral laws are first derived which relate the initial
and the end states of the transition. With the assumption that the soliton
preserves its qualitative shape while climbing the transition, the two inte-
gral laws give the size and width of the pulse at the end of the transition,
thereby specifying the initial data for the shallower shelf. The solution of
the previous section can then be employed to find the eventual number of
solitons.

Integrating Eq. (12.8.7) with respect to σ from −∞ to ∞, we get

∂

∂τ

∫ ∞

−∞
ψ dσ + (−3ψ2 + ψσσ)∞−∞ + ν(τ)

∫ ∞

−∞
ψ dσ = 0 .

If ψ and its derivatives are assumed to vanish at infinities, then(
exp

∫ τ

0

ν dτ

) ∫ ∞

−∞
ψ dσ = const ≡ I . (12.8.9)

Multiplying Eq. (12.8.7) by ψ and integrating with respect to σ, we get

∂

∂τ

∫ ∞

−∞

ψ2

2
dσ +

[
−2ψ3 + ψψσσ − 1

2
ψ2

σ

]∞
−∞

+ 2ν

∫ ∞

−∞

ψ2

2
dσ = 0 ,

which may be integrated with respect to τ to give(
exp 2

∫ τ

0

ν dτ

) ∫ ∞

−∞
ψ2 dσ = const = E . (12.8.10)

Equations (12.8.9) and (12.8.10) are two invariants of the approximate
equation (12.8.7). From Eq. (12.8.8), it may be shown that

exp
∫ τ

0

ν dτ = h9/4 ,

hence I and E may be written

I = h9/4

∫ ∞

−∞
ψ dσ (12.8.11a)

and

E = h9/2

∫ ∞

−∞
ψ2 dσ . (12.8.11b)
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Let us apply these invariants to a soliton climbing from a sea of unit
depth on the left, over a smooth transition, to a horizontal shelf of smaller
depth h < 1. We choose two stations X0 and X1 such that X0 is at
least half a wavelength before the transition, and X1 is equally far after
the transition; the corresponding τ values are τ = 0 and τ = τ1. For
L/L = O(ε), it is reasonable to expect that the incident soliton retains
roughly its pulse shape; hence

ψ = −α2

2
sech2β(σ − Cτ ) (12.8.12)

gives a good description. The parameters α and β are local height and
length measures, being equal to α0 and β0 at τ = 0, and to α1 and β1

at τ = τ1. With these values, two algebraic equations are obtained from
Eqs. (12.8.11a, b) for α1 and β1 which can be solved in terms of α0 and β0:

α2
1 = α2

0h
−9/4 , β1 = β0 .

Now assume that the initial pulse is a soliton so that α0 = 2 and β0 = 1.
At the beginning of the shelf the pulse parameters must be α2

1 = 4h−9/4

and β1 = 1, or,

ψ = −2h−9/4 sech2(σ − phase) (12.8.13)

which is no longer a soliton. Note from Eq. (12.8.6) that the peak amplitude
changes according to

ζ1

ζ0
∼ h−1/4 (12.8.14)

(Ostrovsky and Pelinovskiy, 1970) which is the same as Green’s law
governing linear sinusoidal waves.

The known shape of the pulse at the beginning of the shelf, that is,
Eq. (12.8.13), can be used as the initial data of the initial-value problem of
Section 11.7. Using the results (12.7.23)–(12.7.25), we may conclude that
N solitons will emerge ultimately if N is a positive integer and

N(N + 1) > 2h−9/4 > (N − 1)N (12.8.15a)

or (
N(N + 1)

2

)−4/9

> h >

(
(N − 1)N

2

)−4/9

. (12.8.15b)
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This simple result was found by Tappert and Zabusky (1971), Johnson
(1973), and Ono (1972) and is in accord with the numerical solution of the
Boussinesq equations by Madsen and Mei (1969) and the numerical solution
of Eq. (12.8.5) by Johnson (1972).

It should be remarked that for still longer transition L/L = O(ε2), say,
an incident soliton no longer emerges as a single pulse upon reaching the
shelf. Since the coefficient ν in Eq. (12.8.7) is slowly varying in τ (e.g.,
ν(ετ)), the WKB perturbation analysis may be applied. In this way Ko
and Kuehl (1978) found a low shelf trailing behind the primary pulse (see
also Kaup and Newell, 1978).

The approximation (12.8.5), valid for wave propagation to the right,
cannot account for reflection by the transition which, however, can be
predicted by the more complete equations of Boussinesq (Peregrine, 1967;
Madsen and Mei, 1969). In particular, Peregrine notes that weak reflec-
tion should be describable by the linearized Airy equations for variable
depth, which can be handled analytically by the method of characteris-
tics. The result is approximately a flat plateau having twice the length of
the transition. If the slope of the transition is s, then the physical height
of the plateau is 1

2s(1
3A/h)1/2h where A is the amplitude of the incident

soliton.
Miles (1979) points out that the invariant E implies energy conservation

since dσ ∝ h−1/2 dx and u ∼= ζh−1/2 to the first order,

E ∝ h1/2

∫ ∞

−∞
ζ2 dσ ∼

∫ ∞

−∞
ζ2 dx ;

the last integral above is twice the total potential energy and is equal to
the total energy by equipartition. The invariant I may be recast as

I ∝ h3/4

∫ ∞

−∞
ζ dx

which has no direct physical meaning. Miles further notes that Eq. (12.8.5)
does not conserve mass, that is

M =
∫ ∞

−∞
ζ dx 
= const ,

and that I and M are both conserved only by accounting for reflection
and the secondary shelf of Ko and Kuehl. This observation is consistent
with the fuller solution of Peregrine (1967).

Extensions of the preceding considerations for slowly varying width and
depth may be found in Miles (1979, 1980 and the references therein).
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12.9 Viscous Damping of Solitary Waves

In his experiments with solitary waves, Russell (1838) also studied the
effects of viscous damping. A proper theory, however, did not appear until
a century later (Keulegan, 1948). Because of nonlinearity and aperiodicity
of the wave, the necessary damping analysis is different in detail from that
for periodic waves. Apparently unaware of Keulegan’s work, Ott and Sudan
(1970) studied the same problem in a more general physical context and
applied a perturbation analysis similar to that in Chapter Nine. Damping
of cnoidal waves has been examined more recently by Issacson (1976) and
Miles (1976).

In this section we shall rederive Keulegan’s results by the perturbation
method7 of Ott and Sudan.

If the length scale of the solitary wave is λ, the time scale is λ(gh)−1/2 =
λ/C with C = (gh)1/2. The laminar boundary-layer thickness is of the order
δ where δ = (νλ/C)1/2. Since the length scale λ for solitary waves may
be defined by λ/h = ε−1/2 where ε = A0/h, the ratio of δ to the water
depth is

α =
δ

h
=

( ν

Ch

)1/2

ε−1/4 . (12.9.1)

In typical experiments, O(ε) = 0.1, ν = 10−2 cm s2, h = O(20 cm), the
value of α is ∼ 0.0033 which is very small. Even if ν is taken to be 1 cm s2

in order to approximate a turbulent boundary layer, α is still just 0.033.
Therefore, the inviscid approximation is expected to remain valid in most
of the fluid.

Let us recall the integrated equation of mass conservation

∂ζ

∂t
+ h

∂ū

∂x
+

∂(ūζ)
∂x

= 0 . (12.9.2)

The integrated equation of momentum conservation must now include the
effect of shear stress acting at the bottom

∂ū

∂x
+ ū

∂ū

∂x
+ g

∂ζ

∂x
+

gh2

3
∂3ζ

∂x3
=

τn

h
. (12.9.3)

For a laminar boundary layer the bottom shear stress is given by

τb = −ν
∂u

∂z

∣∣∣∣
z=−h

. (12.9.4)

7Details presented here were worked out by Dr. Philip L. F. Liu in 1974, at the suggestion
of C. C. Mei. Some errors exist in Ott and Sudan.



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

682 Nonlinear Long Waves in Shallow Water

Note that u, being the local velocity, depends on z, but ū does not. To help
recognize the relative magnitude of each term, the following normalized
variables are used:

ζ′ =
ζ

A0
, x′ =

x

λ
, t′ =

tC

λ
, ū′ = ū

(
A0

h
C

)−1

u′ = u

(
A0

h
C

)−1

, z′ =
z + h

δ
. (12.9.5)

The dimensionless equations are, after primes are omitted,

∂ζ

∂t
+

∂ū

∂x
+ ε

∂ūζ

∂x
= 0 , (12.9.6)

∂ū

∂t
+

∂ζ

∂x
+ εū

∂ū

∂x
+

ε

3
∂3ζ

∂x3
= −α

∂u

∂z

∣∣∣∣
0

. (12.9.7)

Since α � ε, we expect that viscosity may be ignored to the order O(ε). The
resulting equations lead to the solitary wave. Suppose that the coordinate
transformation (12.5.36) is used, then Eqs. (12.9.6) and (12.9.7) become

ε
∂ζ

∂τ
− ∂ζ

∂σ
+

∂ū

∂σ
+ ε

∂

∂σ
(ūζ) = 0 ,

ε
∂ū

∂τ
− ∂ū

∂σ
+

∂ζ̄

∂σ
+ εζ

∂ζ

∂σ
+

ε

3
∂3ζ

∂σ3
= −α

∂u

∂z

∣∣∣∣
0

.

The sum of the two equations above gives

∂

∂τ
(ū + ζ) +

∂

∂σ
(ūζ) + ζ

∂ζ

∂σ
+

1
3

∂3ζ

∂σ3
= −α

ε

∂u

∂z

∣∣∣∣
0

. (12.9.8)

Let us assume that ε2 � α � ε; we may substitute ū = ζ into the preceding
equation and obtain, with an error of O(ε2),

∂ζ

∂τ
+

3
2
ζ

∂ζ

∂σ
+

1
6

∂3ζ

∂σ3
= − α

2ε

∂u

∂z

∣∣∣∣
0

, (12.9.9)

where α/ε � 1.
Without terms of O(α/ε), the inviscid solitary wave is, in dimensionless

variables,

ζ = a sech2

[
(3a)1/2

2

(
σ − a

2
τ
)]

. (12.9.10)
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Since the bottom stress is expected to induce a slow decay, a new slow
variable is introduced,

τ̃ = ατ (12.9.11)

which characterizes the attenuation, that is, a = a(τ̃ ). Moreover, the phase
speed must also vary slowly through a, hence we introduce

ρ = σ − 1
2α

∫ τ̃

a(τ̃ ′) dτ̃ ′ = σ − 1
2

∫ τ

a(τ ′) dτ ′ (12.9.12)

in accordance with our earlier experience with slowly varying media.
Assuming the perturbation series

ζ = ζ0(ρ, τ̃) + αζ1(ρ, τ̃ ) + · · · ,

ū(x, t) = ū0(ρ, τ̃ ) + αū1(ρ, τ̃) + · · · ,

u(x, z, t) = u0(ρ, z, τ̃) + αu1(ρ, z, τ̃) + · · · , (12.9.13)

and noting that

∂

∂σ
=

∂

∂ρ
,

∂

∂τ
= −a

2
∂

∂ρ
+ α

∂

∂τ̃
,

we obtain from Eq. (12.9.9) that

−a

2
∂ζ0

∂ρ
+

3
2
ζ0

∂ζ0

∂ρ
+

1
6

∂3ζ0

∂ρ3
= 0 (12.9.14a)

and

−a

2
∂ζ1

∂ρ
+

3
2

∂

∂ρ
(ζ0ζ1) +

1
6

∂3ζ1

∂ρ3
= −1

2
∂u0

∂z

∣∣∣∣
0

− ∂ū0

∂τ̃
. (12.9.14b)

The solution to Eq. (12.9.14a) is simply

ζ0 = a sech2 (3a)1/2

2
ρ . (12.9.15)

Following Ott and Sudan (1970), we introduce the operators L0 and L1

and rewrite Eqs. (12.9.14a) and (12.9.14b) as

L0 ζ0 ≡ ∂

∂ρ

[
1
6

∂2

∂ρ2
+

3
4
ζ0 − a

2

]
ζ0 = 0 (12.9.16a)
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and

L1 ζ1 =
∂

∂ρ

[
1
6

∂2

∂ρ2
+

3
2
ζ0 − a

2

]
ζ1 = −1

2
∂u0

∂z

∣∣∣∣
0

− ∂ū0

∂τ̃
. (12.9.16b)

By straightforward partial integration, it can be shown that L0 and L1 are
adjoint operators of each other, namely,∫ ∞

−∞
dρ(ζ0 L1 ζ1 − ζ1 L0 ζ0) = 0 . (12.9.17)

Because of Eqs. (12.9.16a) and (12.9.16b), Eq. (12.9.17), implies a solvabil-
ity condition for ζ1 ∫ ∞

−∞
ζ0

(
−1

2
∂u0

∂z

∣∣∣∣
0

− ∂ū0

∂τ̃

)
dρ = 0 (12.9.18)

which gives a constraining equation for a. Note that up to this point the dis-
cussion is easily modified if the damping mechanism is a turbulent boundary
layer.

It is now necessary to calculate the bottom stress to the leading order in
terms of α. In the stationary reference frame the velocity in the boundary
layer can be approximated by

u0 = ū0 + ub ,

where ū0 is the inviscid approximation and ub is the boundary-layer cor-
rection. In terms of the dimensionless variables of Eq. (12.9.5), ub satisfies

∂ub

∂t
=

∂2ub

∂z2
(12.9.19)

to the required accuracy. In the moving reference frame of ρ, τ̃ , and z, the
preceding equation may be written

−∂ub

∂ρ
=

∂2ub

∂z2
, (12.9.20)

since ∂/∂t ∼= −∂/∂σ ∼= −∂/∂ρ. The boundary conditions are

ub(ρ, z, τ̃) = −ū(ρ, τ̃ ) = −ζ0 , z = 0

ub → 0 , z → ∞ . (12.9.21)

Since −ρ plays the role of time, the “initial” condition is

ub = 0 , ρ → +∞ .
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It should be stressed that the velocities ū0 and ub are measured in the rest
frame, although the space coordinate ρ refers to a moving frame. Because
the disturbance −ūb(ρ, τ̃ ) is effectively bounded in the range |ρ| = O(1), ub

is expected to vanish for ρ → −∞ also. Thus, we can take the exponential
Fourier transform with respect to ρ:

ũb(k) =
∫ ∞

−∞
ube

−ikρ dρ .

From Eq. (12.9.20) it follows that

∂2ũb

∂z2
= −ikũb .

The solution which is bounded for k → ±∞ is

ub = − 1
2π

∫ ∞

−∞
dk eikρζ̃0 exp

[√
|k|
2

z(−1 + i sgnk)

]
.

Substituting the inverse transform of ζ̃0 into the preceding formula, we
obtain

ub(ρ, z, τ̃) − 1
2π

∫ ∞

−∞
dρ′ζ0(ρ′)

∫ ∞

−∞
dk eik(ρ−ρ′)e−

√
|k|/2z

×
[
cos

(
sgnk

√
|k|
2

z

)
+ i sin

(
sgnk

√
|k|
2

z

)]

− 1
π

∫ ∞

−∞
dρ′ζ0(ρ′)

∫ ∞

0

dk e−
√

k/2z

×
[
cos k(ρ − ρ′) cos

√
k

2
z − sin k(ρ − ρ′) sin

√
k

2
z

]

= − 1
π

∫ ∞

−∞
dρ′ζ0(ρ′)

∫ ∞

0

dk e−
√

k/2z cos

[
k(ρ − ρ′) +

√
k

2
z

]
.

(12.9.22)

Keulegan further transformed Eq. (12.9.22) to the following single integral:

ub = − 2√
π

∫ ∞

0

ds e−s2
ζ0(θ) where θ =

z2

4s2
+ ρ . (12.9.23)
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Details are left in Appendix 12.B. After some manipulation, the shear stress
on the bottom can be calculated,

−1
2

∂u0

∂z

∣∣∣∣
0

= −1
2

∂ub

∂z

∣∣∣∣
0

= −
√

3
π

a3/2

∫ ∞

0

ds

× sech2

[√
3a

2
(ρ + s2)

]
tanh

[√
3a

2
(ρ + s2)

]
. (12.9.24)

Since ū0
∼= ζ0, we may differentiate Eq. (12.9.15) to obtain

−∂ū0

∂τ̃
= −da

dτ̃
sech2

(√
3a

2
ρ

){
1 −

√
3a

2
ρ tanh

(√
3a

2
ρ

)}
. (12.9.25)

Equations (12.9.24) and (12.9.25) may be substituted into Eq. (12.9.18),
yielding∫ ∞

−∞
dρ a sech2

√
3a

2
ρ

{√
3
π

a3/2

∫ ∞

0

ds sech2

[√
3a

2
(ρ + s2)

]

× tanh

[√
3a

2
(ρ + s2)

]
+

(
sech2

√
3a

2
ρ

)[
1 −

√
3a

2
ρ tanh

√
3a

2
ρ

]
da

dτ̃

}
=0 .

(12.9.26)

With the change of variables

r =
√

3a

2
ρ , S = (3a)1/42−1/2s ,

Eq. (12.9.26) may be transformed to

da

dτ̃

∫ ∞

0

dr(sech4r)(1 − r tanh r) + a5/4

∫ ∞

−∞
dr

(
2
π

31/2

)1/2

× sech2r

∫ ∞

0

dS[sech2(r + S2)][tanh(r + S2)] = 0 . (12.9.27)

We leave it as an exercise to show that the first single integral above is unity;
the second double integral has been evaluated numerically by Keulegan and
is approximately π−1. Hence, from Eq. (12.9.27),

da−1/4

dτ̃
∼= −1

4

(
2 · 31/2

π3

)1/2

= −0.08356
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which gives the law of attenuation:

1 − a−1/4 = −0.0836τ̃ (12.9.28a)

or, in physical variables,(
A0

A

)1/4

= 1 + 0.08356
(

νλ

C

)1/2 1
λ

Ct

h
. (12.9.28b)

Using the fact that λ = h(h/A0)1/2, we have, at last,

A−1/4 = A
−1/4
0 + 0.08356

(
ν

(gh)1/2h3/2

)1/2
Ct

h
, (12.9.29)

where Ct is essentially the distance traveled by the solitary wave. This
formula has been verified against the measurements of Russell.

Experiments with a rough bottom have been performed by Ippen and
Kulin (1957), Ippen and Mitchell (1957), Özhan and Shi-igai (1977), and
Naheer (1978). Theories based on an empirical formula for the bottom
stress have been proposed, but they are not yet completely satisfactory
when compared to experiments.

Finally, it is worth remarking that Eq. (12.9.18), which is the mathe-
matical result of the Fredholm alternative, also has the physical meaning
of energy conservation. Returning to physical variables, letting x′ = x−Ct

and using ū0
∼= ζ, we may rewrite Eq. (12.9.18)

∂

∂t
ρh

∫ ∞

−∞
dx′ū2

0 = −µ

∫ ∞

−∞
dx′ū0

∂u0

∂z

∣∣∣∣
0

. (12.9.30)

The left-hand side is the rate of change of the total wave energy per unit
length of crest. Consider the viscous dissipation in the boundary layer

−
∫ ∞

−∞
dx′

∫ ∞

−∞
µ

(
∂u0

∂z

)2

dx = −
∫ ∞

−∞
dx′

∫ ∞

−∞
µ

(
∂ub

∂z

)2

dz .

The integrand may be written

µ

(
∂ub

∂z

)2

= µ
∂

∂z

(
ub

∂ub

∂z

)
− µµb

∂2ub

∂z2
. (12.9.31)

Using the physical form of Eq. (12.9.20)

−ρC
∂ub

∂x′ = µ
∂2ub

∂z2
,
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we get, by integrating Eq. (12.9.31),∫ ∞

0

µ

(
∂ub

∂z

)2

dz = −µµb
∂ub

∂z

∣∣∣∣
0

+ ρC

∫ ∞

0

dz

∫ ∞

−∞
dx′ub

∂ub

∂x′ .

The last term may be integrated with respect to x′ and the result is zero.
Using the boundary condition at the bottom, ub = −ū0, we obtain

−
∫ ∞

−∞
dx

∫ ∞

0

µ

(
∂ub

∂z

)2

dz = −µ

∫ ∞

0

dz

∫ ∞

−∞
dxū0

∂ub

∂z

∣∣∣∣
0

.

Therefore, Eq. (12.9.30), or its dimensionless form (12.9.18), simply states
that the rate of change of wave energy is due to dissipation. Equa-
tion (12.9.30) was first derived by Boussinesq (1878) and can be modified
for other types of dissipation.

12.10 Remarks on Modeling Large-Scale Tsunamis

Most of the large-scale tsunamis are caused by ruptures at the edges of
great tectonic plates covering the earth. The extent of the fault of these
ruptures is usually very large. For example, the Alaskan earthquake of
1964 has an approximate fault area of 100 km× 700 km, while the Chilean
earthquake of 1960 has 200 km × 1000 km. While the maximum vertical
displacement of the ground is only 10 m or less, the rise time at any cross
section is short (< 5 s) so that a great deal of energy is suddenly imparted
to the fluid.

Despite its usually low amplitude (1 m or less) in the deep ocean,
tsunamis can reach large amplitudes near the coast as a result of refrac-
tion and local topography. Enormous losses of life and property have
been recorded in historical accounts of tsunamis (Murty, 1977; Bolt, 1978).
Clearly, efficient ways of calculating tsunami responses along the coast is
of practical importance. The reliability of a forecast depends on our know-
ledge of the location of the epicenter, the magnitude of the earthquake, the
extent of the fault area, and the type of rupture. Once estimated from
seismological recordings, these data can, in principle, be used in a hydro-
dynamic theory to predict the propagation of water waves across the ocean
and to forecast the run-up along the coast of particular concern.

Assuming that some crude estimates on the ground motion are available,
one must then choose the appropriate (simple, yet accurate) equations to
calculate the wave propagation. From several existing works and exchanges
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at a recent tsunami meeting (Hwang and Lee, 1980), a fairly clear picture
has emerged for tsunamis generated at epicenters in the deep ocean. For
simplicity the one-dimensional propagation will be discussed here.

For earthquakes of the Alaskan or Chilean magnitude, the sea surface
displacement above the epicenter is probably no more than 1 m. For the
typical values: L = 100 km and h = 4 km, the measure of nonlinearity and
dispersion are

ε =
A

h
= 2.5 × 10−4 , µ2 =

(
h

L

)2

= 1.6 × 10−3 .

Thus, the long-wave approximation is suitable here. Although Boussinesq
equations are the most uniformly valid, solving a simpler equation is more
preferable, if appropriate. In particular, let us first focus our attention to
the propagation across the ocean and assess the range of distance or time
over which the simplest linear nondispersive theory is adequate.

As a rough guidance for regions not too close to shore, it is sufficient to
examine the special case of constant depth and unidirectional propagation.
We start with the KdV equation which includes both nonlinearity and
dispersion to the leading order

ζt + (gh)1/2

(
1 +

3
2

ζ

h

)
ζx +

h2

6
(gh)1/2ζxxx = 0 (12.10.1)

in physical variables, or

ζ′t′ + ζ′x′ +
3
2
εζ′ζ′x′ +

µ2

6
ζ′x′x′x′ = 0 (12.10.2)

in the following dimensionless variables:

t =
L

(gh)1/2
t′ , x = Lx′ , ζ = Aζ′ , (12.10.3)

where x and x′ refer to the stationary frame. Assuming that ε and µ2 are
both small, we expand

ζ′ = ζ0 + εζ1 + · · · .

The linear nondispersive equation gives the first approximation

ζ0t′ + ζ0x′ = 0 . (12.10.4)

In terms of σ = x′ − t′ and ξ = x′ + t′, the solution is

ζ0 = F (σ) , (12.10.5)
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where F = ζ′(x′, 0) is the initial form of ζ′. The next approximation must
be (

∂

∂t′
+

∂

∂x′

)
ζ1 =

∂ζ1

∂ξ
= −3

2
FFσ − 1

6
µ2

ε
Fσσσ

or

εζ1 =
1
2
εξ

(
−3

2
FFσ − 1

6
µ2

ε
Fσσσ

)
. (12.10.6)

Certainly, after a sufficiently long time or distance the perturbation ex-
pansion breaks down so that either nonlinearity or dispersion, or both,
becomes important (Cole, 1968, p. 253). If the Ursell number Ur = ε/µ2 is
large, nonlinearity is more important than dispersion; thus the linear and
nondispersive approximation (12.10.4) can be used for fixed x′ if εt′ � 1,
that is,

A

h

(gh)1/2

L
t � 1 or

( g

h

)1/2

t � L

A
. (12.10.7)

When εξ increases to O(1), Airy’s nonlinear nondispersive approximation is
needed. If, however, Ur � 1, then Eq. (12.10.4) is valid as long as µ2ξ � 1
or ( g

h

)1/2

t �
(

L

h

)3

(12.10.8)

for fixed x′. When µ2ξ = O(1), dispersive effects must be added, but not
nonlinearity. If Ur = O(1), both inequalities (12.10.7) and (12.10.8) apply.
When εt′ ∼ µ2t′ = O(1), the full KdV equation must be used.

To have some quantitative idea, let us take a wide fault in a deep ocean,
h = 4 × 103 m, L = 2 × 105 m, and the maximum vertical surface dis-
placement A = 1 m. Then Ur = ε/µ2 = 0.625 = O(1) and the time for
the linear nondispersive theory to break down is t ∼ (h/g)1/2(L/h)3 =
2.5× 106 s. During this time the fastest wave has propagated the distance
x = (gh)1/2t ∼ 5× 105 km, which is far greater than the typical dimension
of the world oceans. Hence the linear nondispersive theory is quite ade-
quate throughout the deep ocean, which justifies its use for transoceanic
propagation as mentioned in Section 4.11.

For a fault of much smaller width, or at a short distance away from the
edge of a continental shelf, the length scale L can be less. Take h = 4 km,
L = 2 × 104 m, and A = 1 m as an illustration. The time for a linear
nondispersive theory to break down is t ∼ 2500 s over which the leading
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wave has only propagated x ∼ 500 km. Since ε/µ2 = 0.00125, the linear
dispersive equation must be used if the distance from the fault is comparable
to or greater than 500 km.

As we have discussed in Chapter Two, dispersion is important for lead-
ing waves of a transient disturbance. Let us examine how far the linear but
dispersive theory can be applied. In a penetrating paper, Hammack and
Segur (1978) showed that for the leading wave a more precise measure for
nonlinearity involved the volume of the initial disturbance, not just A/h.
We shall present their reasoning by first normalizing Eq. (12.10.1) with

α =
x − (gh)1/2t

h
, τ =

1
6

( g

h

)1/2

t , f =
3
2

ζ

h
. (12.10.9)

The KdV equation then becomes

fτ + 6ffα + fααα = 0 , (12.10.10)

whose linear dispersive approximation is

fτ + fααα = 0 . (12.10.11)

The initial condition is assumed to be

f(α, 0) = φ(α)
(

=
3
2ζ(x, 0)

h

)
. (12.10.12)

Now the dimensionless total volume for a unit length along the fault is

δ =
∫ ∞

−∞
φ(α) dα =

3
2

1
h2

∫ ∞

−∞
ζ(x, 0) dx = O

(
AL

h2

)
. (12.10.13)

Clearly, δ is an important parameter characterizing the magnitude of the
initial disturbance. Note that the Ursell number may be written

Ur =
Lδ

h
=

AL2

h3
. (12.10.14)

For small δ, a perturbation solution f = δf1 + δ2f2 + · · · may be sought so
that

f1τ + f1ααα = 0 with δf1(α, 0) = φ(α) (12.10.15a)

f2τ + f2ααα = −6f1f1α with f2(α, 0) = 0 . (12.10.15b)

The objective now is to examine when the perturbation expansion breaks
down and the KdV equation is needed. The solution to Eq. (12.10.15a) can
be found by Fourier transform
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δf1 =
1
2π

∫ ∞

−∞
φ̄(k)ei(kα+k3τ) dk , (12.10.16)

where φ̄ is the exponential Fourier transform of φ(ξ). For large τ and fixed
α, the method of stationary phase may be applied to yield

δf1(α, τ) = δ(3τ)−1/3

[
Ai(χ) + C1

Ur

δ
(3τ)−1/3Ai′(χ)

+ C2

(
Ur

δ

)2

(3τ)−2/3Ai′′(χ) + O

(
Ur

δ

)3 1
3τ

]
, (12.10.17)

where Ai(χ) is the Airy integral with the argument

χ =
α

(3τ)1/3
. (12.10.18)

The constants C1 and C2 are of order unity and depend only on the precise
profile of φ(α). The approximate Eq. (12.10.17) is valid if

Ur

δ
(3τ)−1/3 � 1 or

( g

h

)1/2

t �
(

L

h

)3

. (12.10.19)

The second-order solution is lengthy and only the result is cited here:

f2 = f2p + f2h , (12.10.20)

where

f2p = −
[∫ α

−∞
f1(z, τ) dz

]2

, (12.10.21)

f2h =
{∫ χ

−∞
Ai(z) dz +

1
2π

∫ ∞

−∞

[
Θ̃(k) − 1

ik

]
ei(kα+k3τ) dk

}
, (12.10.22)

with

Θ(α) =
1
δ2

[∫ α

−∞
φ(α) dα

]2

,

and Θ̃(k) being the Fourier transform of Θ(α). f2p is a particular so-
lution satisfying the inhomogeneous governing equation, and f2h is the
homogeneous solution which helps satisfy the zero initial condition. For
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large time, we use the first terms of Eqs. (12.10.17) and (12.10.22) to
approximate the perturbation series:

f = δf1 + δ2f2
∼= δ(3τ)−1/3Ai(χ)

+ δ2

∫ χ

−∞
Ai(z) dz + δ2

[∫ χ

−∞
Ai(z) dz

]2

. (12.10.23)

The second-order terms do not involve powers of τ .
Evidently, for nonlinearity to remain small we must have

(3τ)−1/3 � δ or
( g

h

)1/2

t �
(

h2

AL

)3

(12.10.24)

otherwise the perturbation expansion breaks down and the full KdV equa-
tion is needed.

We can summarize the time range of validity for each approximation
in Table 12.1. Hammack and Segur (1978) further studied theoretically
and experimentally the oscillatory tails behind solitons and found them
to be accurately described by the KdV equation (12.10.10), but not by
Eq. (12.10.11). In reality, the finite length of the fault, and hence the
two-dimensional spreading, must reduce the importance of nonlinearity in
KdV or Boussinesq equations. More precise criteria should be sought by
examining the two-dimensional KdV equation, as the problem warrants.

Table 12.1: Choice of approximate equations.

Ur =
AL2

h3
τ =

( g

h

)1/2 t

6
Approximate Equation

� 1
� L

A
Linear nondispersive

O

(
L

A

)
Nonlinear nondispersive

� 1
�

(
L

h

)3

Linear nondispersive

O

(
L

h

)3

Linear dispersive

� 0(1)

(
h2

AL

)3

� τ �
(

L

h

)3

Linear dispersive for leading waves

O

(
h2

AL

)3

Nonlinear dispersive for leading waves
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Finally, when the leading waves of a deep ocean tsunami reach a con-
tinental shelf, the depth is drastically reduced (h ∼ 100 m, say), then for
L = 100 km, A = 1 m

ε =
A

h
= 10−2 , µ2 =

(
h

L

)2

= 10−6 , and Ur = 104 .

A linear nondispersive theory is valid unless

O(τ) =
L

A
= 105 or O(t) = 2 × 106 s .

The corresponding travel distance is x = (gh)1/2t = O(60, 000) km which
far exceeds the width of all continental shelves. On the other hand, if a fault
of width L = 1 km8 occurs near the edge of the shelf, we get for the same
A, (h/L)2 = 10−2 and Ur = 1. The linear nondispersive theory remains
applicable if τ � L/A = 103 or t � 2 × 104 s. The corresponding distance
traveled by the leading wave is � 600 km. Since the typical width of
continental shelves is of the order of 200 km, KdV or Boussinesq equations
may be needed as the basis of calculation.

12.11 Evolution of Periodic Waves Over Constant
Depth–Harmonic Generation

It has long been known experimentally (Goda, 1967) that it is extremely
difficult to generate long, simple harmonic progressive waves of finite am-
plitude in a shallow tank. Even when the wavemaker oscillates sinu-
soidally, the recorded waves at different stations along the tank differ
from a sinusoidal wave markedly. In particular, within a period defined
by the linearized theory, there are smaller secondary crests whose phase
and size vary for different recording stations. A typical series of records
are shown in Fig. 12.14 (Boczar-Karakiewicz, 1972) where the numbers in
circles correspond to successive gauges spaced at equal intervals. A har-
monic analysis of the wave records at various stations indicates that all
the harmonics of the period ω vary periodically with respect to the dis-
tance from the wavemaker. This phenomenon suggests that nonlinearity

8This is the typical crater size of a nuclear explosion. Waves generated by such explosions
near the shelf edge is of interest to the deployment of submarine weapons (see the article
by G. C. Wilson, Washington Post, p.A.3. 1980 (3/26).
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Figure 12.14: Free-surface records at various stations from the wavemaker. Numbers
identify the recording stations. The distance between two adjacent stations is 30 cm.
Station (I) is 80 cm from the wavemaker. (a) A = 5 cm: H = 30 cm, T = 1.90 s,
λ = 3.23 m (Ur = 0.45); (b) A = 5 cm: H = 20 cm, T = 2.75 s, λ = 3.86 m (Ur = 2.35)
(from Boczar-Karakiewicz, 1972 Arch. Hydrorechniki).
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Figure 12.14: (Continued)

alone can render the wave spectrum nonuniform in space or unsteady in
time.

In experiments with a submerged shelf of rectangular cross section, Jolas
(1960) reported that a simple harmonic incident wave sometimes produced
waves of higher harmonics on the transmission side. A similar phenomenon
is known in the vastly different subject of nonlinear optics. If a monochro-
matic laser beam of frequency ω and high intensity shines through a slab
of quartz crystal, the transmitted waves contain frequencies ω and 2ω, that
is, first and second harmonics. In the most dramatic case only second har-
monics are found on the transmission side; this phenomenon is now called
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second harmonic generation (SHG). Thus, light of one color can emerge
in a different color after passing through the quartz crystal. A theoret-
ical explanation of this optical phenomenon was given in the celebrated
paper by the physicists Armstrong, Bloembergen, Ducuing and Pershan
(1962) who showed the decisive role played by the mechanism of nonlinear
resonant interaction. At the same time, very similar theories for deep-water
waves were developed independently by Phillips (1960), Benney (1962), and
Bretherton (1964). Since then, these ideas have brought about fundamental
advances in the dynamics of surface and internal waves.

In this section we examine the effects of nonlinear interaction in shallow
water with a view to understanding the observed phenomena (Mei and
Ünlüata, 1972; Bryant, 1973).

12.11.1 The Initial Development of Near-Resonant
Interaction in Water of Constant Depth

Let long sinusoidal waves be generated at one end of a uniform channel of
infinite length and constant depth. How do they evolve as they propagate
downstream?

The KdV equation is appropriate here. For reasons explained later we
choose the following form,

ζt + ζx − 3
2
εζζt − µ2

6
ζttt = 0 , (12.11.1)

which corresponds to Eq. (12.5.39d). Let the characteristic time scale be
2π/ω where ω is the frequency of the fundamental harmonic, and let the
characteristic horizontal length be (gh)1/2/ω so that

µ = ω

(
h

g

)1/2

.

At x = 0, the free-surface displacement is prescribed

ζ(0, t) =
1
2
a(e−it + eit) . (12.11.2)

Let us treat ε to be small and µ2 to be arbitrary, and first try a naive
expansion in powers of ε,

ζ = ζ0 + εζ1 + · · · . (12.11.3)
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At the leading order, ζ0 satisfies the linear dispersive equation

ζ0t + ζ0x − µ2

6
ζ0ttt = 0 . (12.11.4)

The following solutions

e±i(Kx−Ωt)

are admissible if Ω and K are related by

Ω +
µ2

6
Ω3 = K , (12.11.5)

or, in dimensional form, by

Ω′
(

1 +
1
6

Ω′2h
g

)
= K ′(gh)1/2 where Ω′ = ωΩ , K ′ =

ω

(gh)1/2
= K .

(12.11.6)

In particular, if Ω = n (Ω′ = nω in physical variables), the corresponding
wavenumber is

Kn = n +
µ2

6
n3 . (12.11.7)

Among the four alternative forms of the KdV equation, Eq. (12.5.39d) [or,
Eq. (12.11.1)] is chosen because its implied dispersion relation (12.11.5) is
the closest to the exact linear dispersion relation

Ω =
K

µ
tanhKµ , (12.11.8)

even for very high Ω and K. The comparison is shown in Fig. 12.15 for
µ = (0.05)1/2. To satisfy condition (12.11.2) we take

ζ0 =
1
2
a{exp[i(K1x − t) + ∗} =

1
2
a{exp(iφ1) + ∗] , (12.11.9)

where

φ1 = K1x − t (12.11.10)

and

K1 = 1 +
µ2

6
. (12.11.11)



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

12.11. Evolution of Periodic Waves 699

Figure 12.15: Comparison of dispersion curves for µ = ω(h/g)1/2 = 0.05. The straight
line refers to the nondispersive limit. Ω has been normalized by the first harmonic
frequency ω and K by ω(gh)−1/2.

At the next order, ζ1 satisfies

ζ1t + ζ1x − µ2

6
ζ1ttt =

3
2
ζ0ζ0t . (12.11.12)

The nonlinear forcing term is

−3
8
a2[ie2i(K1x−t) + ∗] = −3

8
a2[ie2iφ1 + ∗] .

Because the phase mismatch

K2 − 2K1 = 2 +
µ2

6
23 − 2

[
1 +

µ2

6

]
= µ2 (12.11.13)

is small, the forcing term exp(2iφ1) is very close to the second harmonic
exp[i(K2x − 2t)] which is a homogeneous solution of Eq. (12.11.12). We
therefore expect the second harmonic e±iφ2 to be nearly resonated. The
explicit solution to (12.11.12) is

ζ1 =
3a2

8µ2
(e2iK1x − eiK2x)e−2it + ∗ (12.11.14)
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where a homogeneous solution has been added to satisfy the boundary
condition that ζ1(0) = 0. Now εζ1 may be regarded as a second harmonic
with a slowly and periodically varying amplitude

εζ1 =
3
8

ε

µ2
a2[(e−iµ2x − 1)eiφ2 + ∗]

=
3
8

ε

µ2
a2(−2ie−iµ2x/2eiφ2) sin

µ2

2
x . (12.11.15)

In general εζ1 is of the order O(ε/µ2) and is small only if ε � µ2. As µ

diminishes to zero, εζ1 becomes unbounded. By expanding Eq. (12.11.15)
for small εx, we find

εζ1 = −3
8
a2εx(ieiφ2 + ∗) (12.11.16)

so that the second harmonic is resonated to grow linearly as εx.
If both first and second harmonics are comparable, then their product

can resonate the third harmonic e±iφ3 also. The reason lies with the dis-
persion curve (Ω versus K) which is nearly straight for small µ so that
K3 − (K1 + K2) is also small. In fact, if any two among e±iφ1 , e±iφ2 , and
e±iφ3 are present at the first order, the third can be resonated to the first
order. Thus, the first three harmonics interact resonantly also. However,
the corresponding phase mismatch

K3 − (K1 + K2) ∼= 3 +
µ2

6
33 −

(
1 − µ2

6
+ 2 +

µ2

6
23

)
= 3µ2 (12.11.17)

is greater than K2−2K1. The maximum amplitude attainable by the third
harmonic can be estimated to be only one-third of the second harmonic.
By an extension of the argument, still higher harmonics can be resonated
by a similar nonlinear mechanism. In particular, the nth harmonic can be
resonated by any of the pairs (1, n − 1), (2, n − 2), or (3, n − 3). Since the
smallest phase mismatch is

Kn − (K1 + Kn−1) =
µ2

6
{n3 − [13 + (n − 1)3]}

=
µ2

6
n(n − 1) ,

the amplitude of the nth harmonic is roughly

ε

µ2

2
n(n − 1)
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times as big as the first harmonic. The accuracy of this estimate deteriorates
for large n because of the limited validity of Eq. (12.11.7).

The naive perturbation method as just described is clearly inadequate
for εx = O(1). If the nonlinearity is so weak that only the first few har-
monics are important, it is possible to use the method of multiple scales
(Mei and Ünlüata, 1972). A more accurate method by Bryant (1973) is
to assume a Fourier series which involves a large number of harmonics, as
follows.

12.11.2 Governing Equations for
Coupled Harmonics

The result of Eq. (12.11.16) suggests that amplitudes of the various har-
monics vary in x. We therefore assume the solution

ζ =
1
2

∞∑
1

[An(x)ein(x−t) + A∗
n(x)e−in(x−t)] , (12.11.18)

where the simplest nondispersive phase function

ψ = x − t (12.11.19)

is used for convenience. The following alternative is also possible:

ζ =
1
2

∞∑
1

[Bn(x)eiφn + B∗
n(x)e−iφn ] , (12.11.20)

with

φn = Knx − nt . (12.11.21)

The coefficients An and Bn are related by

An = Bneix(Kn−n) = Bnei(µ2/6)n3x , n = 1, 2, 3, . . . . (12.11.22)

Substituting Eq. (12.11.18) into the KdV equation (12.11.1), we obtain,
from the linear terms,

ζ1 + ζx − µ2

6
ζttt =

1
2

∞∑
n=1

[(
dAn

dx
− i

µ2

6
n3An

)
einψ + ∗

]

=
1
2

∞∑
n=1

[(
dBn

dx

)
eiφn + ∗

]
. (12.11.23)
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The nonlinear term in Eq. (12.11.1) can be manipulated to give

3
4
ε(ζ2)t

=
3
16

ε
∂

∂t

{[ ∞∑
l=1

(Ale
ilψ + A∗

l e
−ilψ)

][ ∞∑
m=1

(Ameimψ + A∗
me−imψ)

]}

=
3
16

ε
∂

∂t

{ ∞∑
l=1

A∗
l Al +

∞∑
n=1

{
einψ

[∑
l=1

′
αlAlAn−l + 2

∞∑
l=1

A∗
l An+l

]
+ ∗

}}

=
3
16

ε

∞∑
n=1

{
einψ

[ ′∑
l=1

(−inαl)AlAn−l + (−2in)
∞∑
l=1

A∗
l An+l

]
+ ∗

}
.

(12.11.24)

The inner series
∑′ terminates at 1

2n for even n and 1
2 (n−1) for odd n. The

coefficient αl is 2 if l = 1, 2, 3, . . . , 1
2 (n−1) and αl = 1 if l = 1

2n. Details are
given in Appendix 12.C. Substituting Eqs. (12.11.23) and (12.11.24) into
Eq. (12.11.1), we obtain from the coefficients of einψ that(

dAn

dx
− i

µ2

6
n3An

)

= −iε
3
8

{ ′∑
l=1

(nα1)AlAn−1 +
∞∑

l=1

2nA∗
l An+1

}
, n = 1, 2, 3, . . . .

(12.11.25)

From the coefficients of e−inψ, conjugate equations are obtained. Equa-
tion (12.11.25) is an infinite set of coupled nonlinear ordinary differential
equations for all harmonics. If nonlinearity is not too severe, the importance
of higher harmonics should diminish with n. We can, therefore, truncate the
Fourier series after a finite number of terms (say N) and solve N equations
for N unknown coefficients An with given initial values at x = 0.

If the Fourier series is truncated at n = 1, then

dA1

dx
− i

µ2

6
A1 = 0 . (12.11.26)

which is possible only when nonlinearity is very weak. A correction for the
second harmonic is obtained by assuming that A2 � A1

dA2

dx
− iµ2 4

3
A2 = −iε

3
4
A2

1 (12.11.27)
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which may be written

ei4µ2x/3 d

dx
(e−i4µ2x/3A2) = −iε

3
4
A2

1 . (12.11.28)

Subject to the initial conditions A1 = a0 and A2 = 0 at x = 0, the solutions
to Eqs. (12.11.27) and (12.11.28) are easily found to be

A1 = a0e
i(µ2/6)x , (12.11.29)

A2 =
3
4

ε

µ2
A2

0(e
iµ2x/3 − ei4µ2x/3) , (12.11.30)

which may be shown to correspond to εζ1 in Eq. (12.11.15).
If we truncate the Fourier series after two terms, that is, disregard

A3 = A4 = · · · = 0 in the first two equations of Eq. (12.11.25) (Mei and
Ünlüata, 1972; Bryant, 1973), we then have

dA1

dx
− i

µ2

6
A1 = −iε

3
4
A∗

1A2 , (12.11.31)

dA2

dx
− iµ2 4

3
A2 = −iε

3
4
A2

1 , (12.11.32)

or, by using Eq. (12.11.22),

dB1

dx
= −iε

3
4
B∗

1B2e
iµ2x (12.11.33)

and

dB2

dx
= −iε

3
4
B2

1e−iµ2x . (12.11.34)

The last two equations are identical to those governing two coupled har-
monics in nonlinear optics and were solved by Armstrong, Bloembergen,
Ducuing, and Pershan (1962) in the following manner.

12.11.3 Exact Solution of the
Two-Harmonics Problem

Let

B1(x) = ρ1e
iβ1(x) and B2(x) = ρ2e

iβ2(x) (12.11.35)
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so that ρ1 and ρ2 are the amplitudes and β1 and β2 are the phases. Sub-
stituting Eq. (12.11.35) into the conjugate of (12.11.33) and (12.11.34), we
get

ρ′1e
−iβ1 − iβ′

1ρ1e
−iβ1 = iSρ1ρ2e

i(β1−β2−∆x) , (12.11.36)

ρ′2e
iβ2 − iβ′

2ρ2e
iβ2 = −iSρ2

1e
i(2β1−∆x) , (12.11.37)

where S = 3
4ε, ∆ = µ2 and primes denote derivatives with respect to x.

Let us introduce

θ = 2β1 − β2 − ∆x . (12.11.38)

Equations (12.11.36) and (12.11.37) become

ρ′1 − iβ′
1ρ1 = iSρ1ρ2e

iθ , (12.11.39)

ρ′2 + iβ′
2ρ2 = −iSρ2

1e
iθ . (12.11.40)

From the real parts of the two preceding equations we get

ρ′1 = −Sρ1ρ
2 sin θ , (12.11.41)

ρ′2 = Sρ2
1 sin θ , (12.11.42)

which may be combined and integrated to give

ρ1
1 + ρ2

1 = ρ2
0 = ρ2

1(0) + ρ2
2(0) . (12.11.43)

This relation, called the Manley–Rowe relation in electronics, asserts that
a loss of energy in one harmonic must result in a gain in the other. The
imaginary parts of Eqs. (12.11.39) and (12.11.40) yield

β′
1 = −Sρ2 cos θ , β′

2 = − 1
ρ2

Sρ2
1 cos θ .

From Eq. (12.11.38) it follows that

θ′ = 2β′
1 − β′

2 − ∆ = −∆ −
(

2ρ2S − ρ2
1

ρ2
S

)
cos θ (12.11.44)

which, after we eliminate S from Eq. (12.11.42), and use the Manley–Rowe
relation (12.11.43), may be rewritten
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θ′ = −∆ +
(
−2ρ2ρ

′
1

ρ2
1

+
ρ′2
ρ2

)
cot θ

= −∆ +
(

2ρ′1
ρ1

+
ρ′2
ρ2

)
cot θ . (12.11.45)

In terms of the normalized variables

u =
ρ1

ρ0
and v =

ρ2

ρ0
, ζ = Sρ0x , (12.11.46)

Eqs. (12.11.41), (12.11.42), (12.11.43), and (12.11.45) become

du

dζ
= −uv sin θ , (12.11.47)

dv

dζ
= u2 sin θ , (12.11.48)

u2 + v2 = 1 , (12.11.49)

dθ

dζ
= −δ +

(
2
du/dζ

u
+

dv/dζ

v

)
cot θ . (12.11.50)

Thus, there are three unknowns u, v, and θ governed by three differential
equations (12.11.47), (12.11.48), and (12.11.50). The dimensionless param-
eter for phase mismatch between the two harmonics is

δ =
∆

Sρ0
=

µ2

3
4ε

=
4
3

h

a0
(k1h)2 (12.11.51)

which is essentially the inverse of the Ursell parameter.
A little manipulation of Eq. (12.11.50) leads to

d

dζ
(u2v cos θ) = δu2v sin θ .

Upon combining the above result with an alternate form of Eq. (12.11.48)

δ

2
dv2

dζ
= δu2v sin θ , (12.11.52)

we get

d

dζ
(u2v cos θ) =

δ

2
dv2

dζ
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which gives another integral

−δv2

2
+ u2v cos θ = const = Γδ . (12.11.53)

The constant Γδ can be related to the initial data

Γδ = − δ

2
v2(0) + u2(0)v(0) cos[2β1(0) − β2(0)] (12.11.54a)

= Γ0 − δ

2
v2(0) , (12.11.54b)

with

Γ0 = u2(0)v(0) cos[2β1(0) − β2(0)] (12.11.54c)

in terms of which Eq. (12.11.53) may be written

u2v cos θ = Γ0 +
δ

2
[v2 − v2(0)] . (12.11.55)

There are now two integrals for the three unknowns u, v, and θ. Only
one differential equation remains to be integrated. If we eliminate u from
Eq. (12.11.48) by using Eq. (12.11.49), then

1
2

dv2

dζ
= v(1 − v2) sin θ .

Squaring Eq. (12.11.52), we get(
1
2

dv2

dζ

)2

= u4v2 sin2 θ = u4v2(1 − cos2 θ)

= v2(1 − v2)2 −
{

Γ0 +
δ

2
[v2 − v2(0)]

}2

≡ Q(v2) (12.11.56)

after using Eqs. (12.11.49) and (12.11.55). The quantity Q(v2) is a cubic
polynomial for v2. Bounded solutions exist only if Q(r2) has three real
zeros v2

a < v2
b < v2

c . Letting

Q = (v2
c − v2)(v2

b − v2)(v2 − v2
a) , (12.11.57)

we get

ζ = ±
∫ v2(ζ)

v2(0)

dv2

2[Q(v2)]1/2
, (12.11.58)
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which can be expressed in terms of elliptic integrals, as in the case of cnoidal
waves. The result is

v2 = v2
a + (v2

b − v2
c ) Sn2[(v2

c − v2
a)1/2(ζ − ζ0), m] , (12.11.59)

with

m =
(

v2
b − v2

a

v2
c − v2

a

)1/2

< 1 . (12.11.60)

The period of Sn is 4K with

K =
∫ π/2

0

dθ

(1 − m2 sin2 θ)1/2
(12.11.61)

so that the period of Sn2 is 2K. In terms of the normalized, coordinate ζ

the dimensionless wavelength is

λ =
2K

(v2
c − v2

a)1/2
. (12.11.62)

For the general case where both harmonics have nonzero initial values
u(0) 
= 0 and v(0) 
= 0, numerical results can be found in Armstrong et al.
(1962).

Let us examine the special case where v(0) = 0, u(0) = 1, then Γ0 = 0
and

Q(v2) = v2

{
v4 −

[
2 +

(
δ

2

)2
]

v2 + 1

}

= v2(v2 − v2
b )(v2 − v2

c ) , (12.11.63)

where

v2
b =

1
v2

c

=

[(
1 +

δ2

16

)1/2

+
δ

4

]−2

. (12.11.64)

The maximum modulation amplitude of v is vb. From Eq. (12.11.60), we
have

m =
vb

vc
=

1
v2

c

=

[(
1 +

δ2

16

)1/2

+
δ

4

]−2

. (12.11.65)

As the initial amplitude a0 increases and/or the first harmonic wave-
length decreases, the Ursell parameter increases, hence δ decreases. From
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Eqs. (12.11.64) and (12.11.65), v2
b increases while m and K both in-

crease. Thus, the maximum second harmonic amplitude increases. Since
m ∼= 1− 1

2δ and K ∼= 1
2 ln(32/δ) for small δ (Abramowitz and Stegun, 1972,

p. 591), the spatial period of modulation, which may be called the beat or
recurrence distance, is, on the dimensionless scale of x [cf. Eq. (12.11.46c)]:

λ ∼= 2K

2Sρ0

∼= 2
3

δ

µ2
ln

32
δ

which decreases with δ. Thus, for smaller δ, more energy exchange between
first and second harmonics takes place within a shorter distance. Recall,
however, that for sufficiently small δ the third or higher harmonics may no
longer be negligible.

For very small amplitudes, δ � 1, m ∼= (2/δ)2 � 1 and K ∼= π/2. The
recurrence distance is λ ∼= 2π/δ in normalized terms and 2πh(kh)−3 in phys-
ical terms, as is also implied by Eq. (12.11.15). Longuet–Higgins (1977b)
has deduced this result more physically by considering two linearized free
waves of frequencies ω and 2ω. Because of dispersion, a first-harmonic crest
gains in phase relative to a second-harmonic crest. The recurrence distance
is simply the distance over which the net gain is exactly one wavelength of
the second harmonic.

The theory based on two interacting harmonics agrees reasonably well in
both amplitude variation and recurrence distance, with the measurements
of Boczar-Karakiewicz (1972), see Fig. 12.16, and of Goda (1967); compar-
ison of recurrence distance is given in Mei and Ünlüata, (1972, Fig. 1). By
extending the idea of phase gain to two cnoidal wavetrains of periods 2π/ω

and 4π/ω, and ignoring their interactions, Longuet–Higgins (1977) has also
calculated the recurrence length which conforms with the experiments of
Boczar-Karakiewicz. Bryant (1973) has made more accurate computations
by including 11 harmonics and integrating numerically the coupled equa-
tions which are deduced from both the KdV equation and the Laplace
equation with the free-surface conditions approximated only to the second
order in wave slope. A sample of his results is shown in Fig. 12.17; note in
particular the third harmonic and its short beat length. Thus, as a peri-
odic small-amplitude swell propagated toward a beach, second harmonics
are first generated, then third and fourth. . . , until the depth is so small
that many harmonics are present and the wave breaks, causing further
small-scale fluctuations.

Qualitatively, the present results are already relevant to a submerged
shelf of length L. Let a small-amplitude simple harmonic wave of frequency
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Figure 12.16: Comparison of two-harmonics theory with experiments by Boczar-
Karakiewicz (1972) (comparison is due to Ü. Ünlüata, private communication). All
harmonic amplitudes Aj are normalized by |A1(0)|. (a) δ = 2.61; (b) δ = 3.12.

Figure 12.17: The first three harmonics using 11 coupled equations from µ-exact for-
mulation. ε = 0.05; µ = (0.2)1/2 (from Bryant, 1973, J. Fluid Mech. Reproduced by
permission of Cambridge University Press).
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ω arrive from the left. Upon striking the shelf, the transmitted wave under-
goes harmonic generation if the Ursell parameter on the shelf is not small.
When L is half of the beat or recurrence distance, a large amount of second
harmonic will enter the deep water on the transmission side of the shelf.
On the other hand, when L is nearly equal to the beat length, very little
second harmonic will be seen on the transmission side. This explanation is
supported by the observations of Jolas (1960) for a submerged bar.

For variable depth involving a sandbar, an approximate theory has been
given by Lau and Barcilon (1972). Otherwise, the numerical solution of
Eq. (12.8.5) for slowly varying depth is straightforward. If the depth varia-
tion has the same length scale as the waves, reflection is no longer negligible
and a numerical solution of Boussinesq equations is necessary (Peregrine,
1967; Madsen, Mei and Savage, 1970).

12.12 Nonlinear Resonance in a Narrow Bay

In Chapter Five the phenomenon of harbor resonance was studied on the
basis of an inviscid linearized theory. For a sufficiently narrow mouth and
steady forcing, the amplification was typically tenfold or larger. With some
uncertainties in the friction coefficient, the effect of entrance loss was found
in Chapter Six to reduce the peak amplitude. However, friction is not the
only mechanism for reducing resonant amplification. Indeed, results in the
preceding section suggest that nonlinearity provides an alternative mecha-
nism in converting energy from first to higher harmonics. A quantitative
assessment of nonlinear effects should be interesting and is given below for
the simplest configuration of a narrow rectangular bay (Rogers and Mei,
1977).

The bay has the length L and width 2a. The coastline is designated
by the y axis and the axis of the bay coincides with the x axis. The sea
depth is constant h everywhere. An incident wave arrives normally from
x ∼ +∞.

Rogers and Mei adopted the Boussinesq equations and the following
dimensionless variables:

t′ = ωt , (x′, y′) =
(x, y)ω
(gh)1/2

, z′ =
z

h

ζ′ =
ζ

h
, u′ =

u
(gh)1/2

. (12.12.1)
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After primes are omitted, Eqs. (12.1.36) and (12.1.37) become

ζ1 + ∇ · u + ∇ · (ζu) = 0 , (12.12.2)

ut + ∇ζ +
1
2
∇ · u2 +

1
3
µ2∇ζtt = 0 , (12.12.3)

where µ2 = ω2h/g � 1. The normalized quantities u and ζ are of the order
O(ε). The error includes terms of the order O(ε)2, O(εµ2), and O(µ4).

Because of nonlinearity, the response contains higher harmonics

ζ(x, y, t)

u(x, y, t)

}
=

1
2

∑
n

[
ζn(x, y)

un(x, y)

]
e−int , n = 0,±1,±2, . . . (12.12.4)

where ζ−n and u−n are the complex conjugates of ζn and un, respectively.
Substituting Eq. (12.12.4) into Eqs. (12.12.2) and (12.12.3) and separating
the harmonics, we get

−inζn + ∇ · un +
1
2

∑
s

∇ · (ζsun−s) = 0 , (12.12.5)

−inun +
(

1 +
1
3
µ2n2

)
∇ζn +

1
4

∑
s

∇ · (us · un−s) = 0 , (12.12.6)

which may be combined to give

(∇2 + k2
n)ζn =

∑
n

[−i

2
n∇ · (ζnun−s) − 1

4
∇2(us · un−s)

]
, (12.12.7)

where

k2
n =

n2

(1 − 1
3µ2n2)

. (12.12.8)

Although there is an infinite number of terms in the Fourier series (hence an
infinite set of coupled equations (12.12.7)), in practice, truncation after a
finite number of terms is necessary. In general, the task of solving the two-
dimensional coupled equations is still formidable, and the mathematical
statement for the radiation condition does not appear simple. If, however,
the harbor mouth is sufficiently narrow, δ ≡ ωa/(gh)1/2 � 1, the radi-
ated waves due to the piston action at the mouth must be weak. Thus,
if the nonlinear effect is unimportant in the incoming waves, it remains
unimportant in the ocean. A more precise reasoning is as follows. For order
estimates it suffices to consider the first harmonic which is expected to
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be the largest. From the linearized theory of Section 5.6.2b, it is known
that the amplification factor in the harbor is proportional to O(δ−1), so
that in the harbor ζ = O(A1/δ) where A1 is the amplitude of the incident
wave. By assumption A1/δ = O(ε). From Eqs. (5.6.3) and (5.6.19) or
Eq. (5.7.38), Chapter 5, the radiated wave ζR outside the harbor is of the
order ∼ A1H

(1)
0 (k1r) at resonance. Since the Hankel function is large for

small r, we take the wave near the harbor entrance r = O(δ)

O(ζR) = A1 ln δ = εδ ln δ

and

ζI + ζR = O(εδ) .

Hence the quadratic terms in the ocean are of the order O(εδ ln δ)2 at most
and are negligible compared to the nonlinear terms O(ε2) in the harbor.
Thus, in the harbor we keep terms of O(A1/δ) = O(ε) and O(ε2), while in
the ocean we only keep the linear terms O(εδ ln δ) and drop the nonlinear
terms which are at most of O(εδ ln δ)2.

In the ocean, the linear solution for each harmonic may be expressed
by

ζn = An cos knx + ζR
n , (12.12.9a)

with

ζR
n =

k2
n

2n

∫ δ

−δ

dy′Un(y′)H(1)
0 (kn[x2 + (y − y′)2]1/2) . (12.12.9b)

The functions Un are just the piston velocities corresponding to the nth
harmonic and are related to the surface gradient by

∂ζn

∂x
=

ik2
n

n
Un , |y| < δ , x = 0 . (12.12.10)

In the far field at a distance O(k1r) from the entrance, the Hankel function
in Eq. (12.12.9b) may be approximated to give

ζR
n =

k2
n

2n
UnknδH

(1)
0 (knr)[1 + O(nδ)] , r = (x2 + y2)1/2 (12.12.11)

where Un is the average of Un. Across the entrance, hence in the near field,
the approximation of Eq. (12.12.9b) for small kn is
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ζR
n (0, y) =

k2
n

n

{
δUn +

1
π

∫ δ

−δ

dy′Un(y′) ln
γkn

2
|y − y′| + O(knδ)2 ln knδ

}
.

(12.12.12)

If the average of Eq. (12.12.12) is taken across the entrance, then

ζ̄R
n |x=0 = ZnUn ≡ Un

k2
nδ

n

×
{

1 +
2i

π

(
ln knδ + ln

γ

2

)
+

1
4

∫∫ 1

−1

ln |α − α′|Un(α′)
Un

dα dα′
}

.

(12.12.13)

Taking the average of Eq. (12.12.10) and eliminating Un with the help of
Eq. (12.12.13), we get for the average of ζn [cf. Eq. (12.12.9a)]

− in

k2
n

Zn
∂ζ̄n

∂x
+ An = ζ̄n , x = 0 , |y| < δ . (12.12.14)

The quantity Zn will be called the entrance impedance which depends on
the profile of Un(y). Equation (12.12.14) will be viewed as a boundary con-
dition which must be satisfied by the solution within the harbor. Assuming
that knδ is small enough so that Un may be approximated quasi-statically
as in Section 2, we find the impedance explicitly:

Zn =
kn

n
knδ

(
1 +

2i

π
ln

2γknδ

πe

)
. (12.12.15)

This approximation is good only if the higher harmonics are unimportant.
That an analytical expression for Zn is possible is due to the assumption of
a straight coast and horizontal ocean bottom. For a more general coastline
and ocean depth the impedance must be found numerically.

The narrowness of a harbor entrance enables us to decouple the harbor
and the ocean and to study the harbor as a separate but interior boundary-
value problem with ∂ζn/∂n = 0 on the solid boundary and Eq. (12.12.14)
at the entrance. If the harbor shape and depth are not simple, direct
numerical methods such as finite elements may be applied. For a narrow
rectangular bay, the numerical work is less demanding since the problem is
essentially one dimensional (∂ζ/∂y ∼ ∂u/∂y = O(δ2)) everywhere except
in the O(δ) neighborhood of the entrance. The justification follows from
Section 4.1.1.



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

714 Nonlinear Long Waves in Shallow Water

The one-dimensional version of Eq. (12.12.7) is

ζ′′n + knζn = − in

2

∑
s

(ζsun−s)′ − 1
4

∑
s

(usun−s)′′ (12.12.16)

where ( )′ = d( )/dx. From Eqs. (12.12.5) and (12.12.6), u′
n = inζn(1 +

O(ε)) and un = −(i/n)ζ′n(1 + O(εµ)2) for n 
= 0. Within the Boussinesq
approximation we have∑

s

(ζsun−s)′ =
∑

s

(ζnu′
n−s + ζ′n−s)

=
∑
s�=n

(
i(n − s)ζnζn−s − i

n − s
ζ′sζ

′
n−s

)
,

and

1
2

∑
s

(usun−s)′′ =
∑

s

(un−su
′′
s + u′

su
′
n−s)

=
∑
s�=n

i

n − s
ζ′sζ

′
n−s −

∑
s

(n − s)ζsζn−s .

Substituting these two equations into Eq. (12.12.16), we obtain

ζ′′n + k2
nζn =

1
2

∑
s

(n2 − s2)ζsζn−s − 1
2

∑
s�=n

n + s

n − s
ζ′sζ

′
n−s . (12.12.17)

Since ζn is independent of y, it is equal to its own average. We now impose
the no-flux condition at the end x = −L and Eq. (12.12.14) at the entrance,
that is,

∂ζn

∂x
= 0 , x = −L , (12.12.18)

− in

k2
n

Zn
∂ζn

∂x
+ An = ζn , x = 0 . (12.12.19)

The nonlinear truncated system of the boundary-value problems (12.12.17)–
(12.12.19) can be solved numerically.

The zeroth harmonic corresponds to mean-sea-level changes ζ0 or mean
current u0, which can be obtained by integrating the one-dimensional ver-
sion of Eqs. (12.12.5) and (12.12.6)
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u0(x) = −1
2

∑
s

ζsu−s , (12.12.20)

ζ0(x) = −1
4

∑
s

|us|2 + const . (12.12.21)

Note that Eq. (12.12.20) already satisfies us = 0 at x = −l for all s. By
properly defining the mean sea level of the ocean, A0 = 0. Since Z0 = 0,
we have ζ0(0) = 0 by the impedance condition (12.12.19), implying that

ζ0(x) =
1
4

∑
s

|us(0)|2 − |ux(x)|2 . (12.12.22)

From Eqs. (12.12.20) and (12.12.22), ζ0 and u0 = O(ε2), and may be
omitted in the nonlinear equations for other harmonics. Spatially, the
mean-sea-level change is the greatest at x = −l. As a function of frequency
ζ0 is resonated along with the first harmonic ζ1.

The two-point nonlinear boundary-value problem for N harmonics can
be solved by an iterative method. If the solution of the last iteration is
used to linearize the nonlinear terms, then at each iterative step the result-
ing problem is linear and can be solved by the method of complementary
functions. For details Rogers and Mei (1978) may be consulted.

Let us show some of the computed and experimental results for two
bays of the same width and depth, but of different lengths, which cor-
respond to the first and third resonant modes for the same fundamental
frequency. Now it can be inferred from the linearized theory [Eq. (5.6.20),
Chapter Five] that the first and third resonant modes are at L = 1

2π, and
5
2π for fixed k but varying L, while all peaks are of equal height. The ac-
tual resonant values of L were found experimentally to be L = 1.227 and
7.23. For each bay, three different incident wave amplitudes were exam-
ined by Rogers and Mei (1978), but only two will be presented here. The
dimensionless inputs are

L =
L′ω

(gh)1/2
= 1.227, 7.23 , δ =

aω

(gh)1/2
= 0.169 ,

µ2 =
ω2h

g
= 0.257 , ε = |A1| = 0.015, 0.04 .

From the measurements, the magnitude and phase of the second and third
harmonics A2, A3 were also obtained and used as inputs for computation. In
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Figure 12.18: Resonance in a narrow bay. ©, +, ×: measured amplitudes of |ζ1|, |ζ2|,
and |ζ3|. Calculated first harmonic: - - - -: linear theory; : inviscid nonlinear

theory; — · — ·: nonlinear theory with entrance loss; — - — -: nonlinear theory with
entrance and boundary-layer losses. (a) L′ = 1.211 ft, A1 = 0.015; (b) L′ = 1.211 ft,
A1 = 0.04 (from Rogers and Mei, 1978, J. Fluid Mech. Reproduced by permission of
Cambridge University Press).
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Figure 12.19: See Fig. 12.18 for caption. Calculated second and third harmonics by
inviscid nonlinear theory are also shown by solid curves. (a) L′ = 7.136 ft, A1 = 0.015;
(b) L′ = 7.136 ft, A1 = 0.040 (from Rogers and Mei, 1978, J. Fluid Mech. Reproduced
by permission of Cambridge University Press).
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Figs. 12.18 and 12.19 the numerical results are compared with the measured
harmonics along the center line of the bay. Although minor discrepancies
can be seen, they can be corrected after accounting for the entrance loss
and for the laminar friction in the wall boundary layers of the bay. Several
conclusions are apparent for the present problem:

1 For the shortest bay at quarter wavelength mode, a linear theory is
sufficient if the entrance friction is accounted for.

2 As the bay becomes longer nonlinearity is more influential in gener-
ating higher harmonics; entrance and boundary-layer losses become
less important. For a sufficiently long bay nonlinearity can overwhelm
frictional effects.

A numerical study of the nonlinear response in an arbitrarily shaped
harbor to transient inputs has been reported by Lepelletier (1980).

12.13 Solitons Ahead of a Ship Advancing
in a River

If a slender ship travels steadily on the surface of water, waves are expected
in the wake. In deep water, Kelvin’s linearized theory reveals two systems of
waves, the divergent and the transverse, in a wedge-like wake of half-angle
equal to 19.28◦ (see Lamb, 1932; Stoker, 1953; Newman, 1977; or We-
hausen and Laitone, 1960). For finite depth, the linearized theory shows
that the half-angle rises sharply to 90◦ as the ship speed U increases to
the phase speed

√
gh of the fastest long wave. Higher than this critical

speed, the transverse waves disappear while the half-angle decreases from
90◦ (Wehausen and Laitone 1960). Towing-tank experiments for a ship
cruising steadily near the critical speed have revealed a much more complex
phenomenon. In particular, in addition to the conventional waves in the
wake, transient waves are radiated upstream of a steadily advancing ship
(Thiews and Landweber, 1935; Izubuchi and Nagasawa, 1937). More recent
experiments by Huang et al. (1983), Ertekin (1984) and Ertekin et al.
(1986) have further identified these upstream waves to be solitons. The
experimental setup of Ertekin is shown in Fig. 12.20, and sample records
in Figs. 12.21 and 12.22. These records have stimulated much theoretical
studies by Wu and Wu (1982); Cole (1985); Akylas (1984); Mei (1986);
Mei and Choi (1987); Chen and Sharma (1995); and others. Studies of
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Figure 12.20: Towing-tank setup of Ertekin (1984). Stations for wave recording are
marked as G1–G4. Distances are in centimeters. Three ship models were tested in the
same tank.

upstream solitons have also been advanced in oceanography for tidal flows
through a narrow strait Melville and Helfrich (1987).

In the theory of compressible fluids, transonic aerodynamics is known
to require a nonlinear treatment involving shocks. Nevertheless, the flow
around an aircraft at constant transonic speed is still steady, describable
by the celebrated theory of Tricomi equation. Our water-wave problem
is more intricate as it is further affected by dispersion, and provides an
example that in nonlinear dynamics, a steady forcing does not necessarily
lead to a steady response.
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Figure 12.21: Sample time series of wave recorded at stations G-1 to G-4 for subcritical

ship speeds, Ertekin (1984).

Figure 12.22: Sample time series of wave recorded at stations G-1 to G-4 for critical
and superciritcal ship speeds, Ertekin (1984).
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Figure 12.23: A ship cruising in a shallow channel of finite width. The coordinate

system is fixed on the ship.

Let us examine the surface waves generated by the moving ship in a
channel of constant depth h and width 2W . It is convenient to choose
the coordinate system fixed on the ship so that there is a steady current
of equal speed flowing in the opposite direction. For simplicity we shall
further treat a ship which has vertical side walls extending the full depth
of the channel, as shown in Fig. 12.23. Modification for a ship with draft
less than the channel depth is treated in Mei and Choi (1987).

Referring to Fig. 12.23, let the centerline of the channel be the x axis,
the ship hull be

y = ±Y (x) , −L < x < L (12.13.1)

and the channel bank be at y = ±W . By symmetry we need only treat one
half of the channel and the ship. Thus the fluid region is defined by

−∞ < x < ∞ , W > y >

{
Y (x) , |x| < L

0 , |x| > L
, −h < z < ζ . (12.13.2)

We shall focus our attention on slender ships (W/L � 1), so that non-
linearity is weak, i.e., ε ≡ A/h � 1 where A will be related to the ship cross
section later. We also assume that the ship is very long compared to the
water depth, i.e., µ2 = (h/L)2 � 1. The Boussinesq approximation in Sec-
tion 12.1.3 is therefore appropriate, except that the horizontal length scale
1/k is here replaced by the ship length L. Let the total depth-averaged
horizontal velocity be (U +u, v), where (u, v) denote the components of the
perturbation velocity. We get from the Boussinesq equations (12.1.36) and
(12.1.37) the following dimensionless equations

Dζ + ∇ · [(1 + εζ)u] = 0 (12.13.3)
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Du + εu · ∇u + ∇ζ − µ2

3
∇∇ · (Du) = 0 (12.13.4)

where

D ≡ ∂

∂t
+ U

∂

∂x
. (12.13.5)

Introducing the depth-averaged velocity potential, u = ∇φ̄, we rewrite the
last equation as

∇
(
Dφ̄ +

ε

2
(∇φ̄)2 + ζ − µ2

3
∇ · ∇(Dφ̄)

)
= 0 (12.13.6)

which can be integrated to give

Dφ̄ +
ε

2
(∇φ̄)2 + ζ − µ2

3
∇ · ∇(Dφ̄) = 0 . (12.13.7)

Eliminating ζ from (12.13.3) and (12.13.7), we get

∇2φ̄−D2φ̄− ε

2
D(∇φ̄)2ε−∇· (Dφ̄∇φ̄)+−µ2

3
∇2(D2φ̄) = 0 . (12.13.8)

As a historical digression, Tuck (1966) studied the problem of a uni-
form flow past a slender ship in shallow and unbounded sea, based on
the steady, linearized and nondispersive limit of (12.13.8), i.e., in physical
coordinates,

U2 ∂2Φ
∂x2

= gh

(
∂2Φ
∂x2

+
∂2Φ
∂y2

)
. (12.13.9)

On the ship hull, vanishing of the normal flux requires

∂Φ
∂y

= 0 , y = W (12.13.10)

and

∂Φ
∂y

=


U

∂Y

∂x
, |x| < L, y = 0 ;

0 , |x| > L , y = 0 .

(12.13.11)

In addition, waves are expected only far downstream at x ∼ ∞. Interesting
results on hydrodynamic forces (lift and drag) on the ship can be found by
slender-body approximation for both subcritical (U <

√
gh) and supercriti-

cal (U >
√

gh) speeds. However, when U is close to the linearized long-wave
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speed
√

gh, i.e., the transcritical speed, the linearized approximation gives
unbounded results and fails. Keeping the nonlinear terms is not enough,
as shocks must result and would require additional account of dispersion
represented by terms of higher derivatives.

Normalizing Y by the maximum beam B, i.e., Y = BY ′, the dimen-
sionless boundary condition on the sides are, to the leading order,

∂φ̄

∂y
=


(

B

L

F

ε

)
dY (x)

dx
, |x| < 1 ;

0 , |x| > 1 ,

(12.13.12)

where F = U/
√

gh is the Froude number, and

∂φ̄

∂y
= 0 , −∞ < x < ∞, y = W/L . (12.13.13)

We now focus attention to the neighborhood of the critical speed by
assuming

F 2 = 1 − 2αµ2 (12.13.14)

where α = O(1). Note that α < 0 for supercritical flows F > 1 and α > 0
for subcritical flows (F < 1). In order to account for the transients observed
in the reported experiments, we need to estimate the time scale, say, µ−m

in dimensionless terms. Let a new time τ = µmt be introduced. The linear
terms can be expanded to

∇2φ̄ −D2φ̄ = (1 − F 2)
∂2φ̄

∂x2
+

∂2φ̄

∂y2
− ∂2φ̄

∂t2
− 2F

∂φ̄

∂t

= 2αµ2 ∂2φ̄

∂x2
+

∂2φ̄

∂y2
− µ2m ∂2φ̄

∂τ2
− 2µm(1 − 2αµ2)

∂2φ̄

∂τ∂x
.

(12.13.15)

Clearly near the critical speed, nonlinearity O(ε) and dispersion O(µ2) are
important to the transient evolution if m = 2. With this choice the leading
transient term is the last, which is approximately,

−2µ2 ∂2φ̄

∂τ∂x
.

Keeping the terms up to O(ε, µ2), we get from (12.13.8)
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2αµ2 ∂2φ̄

∂x2
+

∂2φ̄

∂y2
− 2µ2 ∂2φ̄

∂τ∂x

=
ε

2
∂

∂x
(∇φ̄)2 + ε∇ ·

(
∂φ̄

∂x
∇φ̄

)
+

µ2

3
∇2

(
∂2φ̄

∂x2

)
.

Next we consider a wide channel with W/L � 1. It is physically more
natural to normalize the y coordinate by W instead of L. Introducing a
new dimensionless coordinate η = Ly/W , the above equation becomes

∂2φ̄

∂η2
=

µ2W 2

L2

{
−2α

∂2φ̄

∂x2
+ 2

∂2φ̄

∂τ∂x
+

ε

2µ2

∂

∂x

[(
∂φ̄

∂x

)2

+
L2

W 2

(
∂φ̄

∂y

)2
]

+
ε

µ2

[
∂

∂x

(
∂φ̄

∂x

)2

+
L2

W 2

∂

∂η

(
∂φ̄

∂x

∂φ̄

∂η

)]
+

1
3

[
∂2

∂x2
+

L2

W 2

∂2

∂η2

]
∂2φ̄

∂x2

}
.

(12.13.16)

For L/W � 1, this equation further reduces to

∂2φ̄

∂η2
= µ2 W 2

L2

{
−2α

∂2φ̄

∂x2
+ 2

∂2φ̄

∂τ∂x
+

3ε

2µ2

∂

∂x

(
∂φ̄

∂x

)2

+
1
3

∂4φ̄

∂x4

}
.

(12.13.17)

The boundary conditions on the sides are

∂φ̄

∂η
=

BW

εL2

dY

dx
=

BW

h2

µ2

ε

dY

dx
, η = 0 (12.13.18)

∂φ̄

∂η
= 0 , η = 1 . (12.13.19)

We define A such that ε = µ2 and get

∂φ̄

∂η
=

BW

h2

dY

dx
, η = 0 . (12.13.20)

In terms of the velocity components defined by

ū =
∂φ̄

∂x
= u , v̄ =

∂φ̄

∂η
=

L

W
v , (12.13.21)

we have from (12.13.17):

∂v̄

∂η
= µ2 W 2

L2

{
−2α

∂ū

∂x
+ 2

∂ū

∂τ
+

3ε

2µ2

∂ū2

∂x
− 1

3
∂ū

∂x3

}
. (12.13.22)
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The boundary condition on the sides are

v̄ =
BW

h2

dY

dx
, η = 0 ; v̄ = 0 , η = 1 . (12.13.23)

Let us consider two cases:

Case (i): Moderately wide channel : W 2/L2 = c1/µ with c1 = O(1). Now

µ2 W 2

L2
= c1µ . (12.13.24)

We must let
BW

h2
= b1µ = O(µ) , implying

B

W
= O(µ4) (12.13.25)

so that

v̄ = b1µ
dY

dx
, η = 0 . (12.13.26)

In the ship literature, the ratio B/W is called the blockage coefficient. At
the leading order v̄ = ∂φ̄/∂η = 0, implying that φ̄ is independent of η

and ū = ū(x, τ) for all 0 < η < 1. Thus the motion is approximately one
dimensional. Going to the next order we integrate (12.13.22) from η = 0
to η = 1 and get

∂ū

∂τ
− α

∂ū

∂x
+

3
2
ū

∂ū

∂x
+

1
6

∂ū

∂x3
=

b1

2c1

dY

dx
=

B

2Wµ4

dY

dx
(12.13.27)

which is an inhomogeneous KdV equation with forcing.
Away from the ship dY/dx = 0; (12.13.27) becomes homogeneous and

has the soliton solution:

ζ = ζ0 sech2

[
1
4
(3ζ0)1/2(x + Cτ)

]
(12.13.28)

where the phase speed relative to the ship is

C =
ζ0

2
+ α . (12.13.29)

As smaller α corresponds to larger F , for the same amplitude a soliton is
slower if the ship moves faster.

Equation (12.13.27) must be solved numerically. For a parabolic hull
Y = 1 − x2 Mei (1985) has reported computations for various blockage
coefficients corresponding to the experiments of Ertekin et al. (1982). Typ-
ical evolution of upstream solitons are shown in Figs. 12.24 and 12.25 for
one case with B/Wµ4 = 10.4 for a range of speeds. It is seen that as α
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Figure 12.24: Free-surface evolution for slender ship advancing at a subcritical speed
in a shallow channel (Mei, 1986).

Figure 12.25: Free-surface evolution for a slender ship advancing at critical and su-
percritical speed in a shallow channel (from Mei, 1986, J. Fluid Mech. Reproduced by
permission of Cambridge University Press).
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Figure 12.26: Comparison of theory with experiments of leading soliton amplitude (from
Mei, 1986, J. Fluid Mech. Reproduced by permission of Cambridge University Press).

decreases from positive values (the ship speed increases from subcritical
range), upstream solitons are born and grow with time. At supercritical
speeds their amplitudes and wavelengths become uniform. At sufficiently
high supercritical speed, no solitons are radiated upstream. Figure 12.26
shows a comparison of the amplitudes of the leading soliton for a range
of speeds. Despite the large blockage coefficients (10.4 and 26), and the
more complex wake surface in the experiments, the agreement for the main
feature upstream is surprisingly good.

Case (ii): Very wide channel : W/L = c2/µ with c2 = O(1). Thus

µ2 W 2

L2
= c2µ = O(µ) . (12.13.30)

We must assume

BW

h2
= b2 = O(1) implying

B

W
= O(µ3) , (12.13.31)
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so that

∂v̄

∂η
= 2c2

{
∂ū

∂τ
− α

∂ū

∂x
+

3
2
ū

∂ū

∂x
+

1
6

∂3ū

∂x3

}
. (12.13.32)

Consistent with the existence of the depth-averaged potential, the mean
flow is irrotational in the horizontal plane

∂v̄

∂x
=

∂ū

∂η
. (12.13.33)

The last two equations constitute the two dimensional extension of the KdV
theory and are called Kademtsev–Petrashivilli (K–P) equations. They can
also be combined to give a single equation

∂2ū

∂η2
= 2c2

∂

∂x

{
∂ū

∂τ
− α

∂ū

∂x
+

3
2
ū

∂ū

∂x
+

1
6

∂3ū

∂x3

}
. (12.13.34)

Because of the orders of the highest derivatives in x and η are in the 2:1
ratio, (12.13.34) is the parabolic extension of KdV equation. Together with
the boundary conditions on the sides

v̄ = b2
dY

dx
, η = 0 (12.13.35)

v̄ = 0 , η = 1 (12.13.36)

and the initial conditions, the problem must be solved numerically. The K–
P equations have been used Chen and Sharma (1995) for predicting forces
on a ship with finite draft. Typical forms of the free surfaces are shown in
Fig. 12.27.

Li and Scalvounos (2002) has exxtended the above theories to hior-
izontally unbounded shallw water, for a slender ship moving at near-
critical speed. By solving thje Boussinesq equations numerically they found
upstream soliton-like waves with parabolic axes. Thus one-dimensional
solitons are the results of finite channel width.

Exercise 12.2: Upstream Soliton Due to a Moving Surface Pres-
sure (Akylas, 1984)

Consider the effect of a moving one-dimensional atmospheric pressure dis-
tribution P (x − Ut) over a layer of water of constant depth h. P (ξ) is a
prescribed function of ξ with its characteristic length scale L being quite
large compared to the depth h, i.e., µ = h/L � 1. Water is incompressible
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Figure 12.27: Snap-shots of free-surface at dimensionless instants τ = 5, 10, 15 for a
slender ship advancing at critical speed in a wide shallow channel (from Chen and
Sharma, 1995, J. Fluid Mech. Reproduced by permission of Cambridge University
Press).
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and of constant density. If U is close to
√

gh, find the nonlinear equation
governing the free-surface displacement ζ(x, t).

Show that if the order of magnitude of the pressure intensity is p =
O(ρgA(kh)2), the equation governing the free-surface displacement is a one-
dimensional forced KdV equation.

Exercise 12.3: Near-Critical Flow Over a Bump (Cole, 1985)

Consider the two-dimensional problem of a steady uniform flow of speed U

passing over a bump on an otherwise horizontal bottom, z = −h + D(x).
The length of the bump L is very large compared to the mean depth h, i.e.,
µ = h/L � 1. Show that when D/L = O(µ5) and U is close to the critical
speed

√
gh, F 2 = U/

√
gh = 1+αµ2 where α = O(1), the free-surface height

is governed by the dimensionless forced KdV equation

ζt +
α

2
ζx − 3

2
ζζx − 1

6
ζxxx =

1
2
Dx .

12.14 Localization of Solitons Over a
Randomly Rough Seabed

In Chapter 8 we studied infinitesimal and monochromatic waves over
randomly irregular seabed of intermediate depth. For long periodic waves
in shallow water, the mutual influence of harmonic generation and local-
ization over a very large domain of disorder has been studied by Grataloup
and Mei (2003). It is found that the amplitudes of the fundamental and
higher harmonics are governed by coupled nonlinear equations similar to
those in optics, but with additional terms whose complex coefficients are
deterministic and related to certain correlation functions of disorder.

In this section we examine the propagation of a soliton over a shallow
water with a weakly random bathymetry. The basic equation was first
derived by Kawahara (1976) who did not exmamine the implied physics
in detail. Following Mei and Li (2004), we first show how the asymp-
totic equation governing the coherent motion is derived. Analytical and
numerical results will be discussed. For earlier works, see Howe (1971) and
Rosales and Papanicolau (1983).

12.14.1 Asymptotic Equation for
Uni-Directional Waves

We consider a simple case where the still water depth h(x) = H(1−µb(x))
differs slightly from the constant H where µb(x) is a random function of x
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with zero mean. The height of the irregularities is of the order µ = KH � 1
and K is a constant characteristic wavenumber. For ε = A/H � 1 and
KH � 1 but ε = O(µ2), it is easy to show that the normalized Boussinesq
approximation (12.1.47) and (12.1.48) hold so that the normalized equa-
tions read

∂ζ

∂t
+

∂

∂x
[(1 − µb + εζ)u] = 0 (12.14.1)

and

∂u

∂t
+ εu

∂u

∂x
+

∂ζ

∂x
=

µ2

3
∂3u

∂x2∂t
. (12.14.2)

Within the stated accuracy, the preceding two equations can be com-
bined to give the stochastic differential equation,

∂2ζ

∂t2
− ∂2ζ

∂x2
= −µ

∂

∂x

(
b(x)

∂ζ

∂x

)
+ ε

∂2

∂x2

(
u2 +

ζ2

2

)
+

µ2

3
∂4ζ

∂x4
.

(12.14.3)

Let the seabed be rought only in x > 0. In the smooth region x < 0
where b = 0, the incident soliton is described, in dimensional foarm, by

ζ∗(x∗, t∗) = A sech2

√
3

2

(
A

H3

)1/2

(x∗ − Ct∗) , with

C =
√

gH

(
1 +

A

H

)
. (12.14.4)

It is convenient to choose the length of the incident soliton of amplitude A,
1/K, as the horizontal scale, i.e.,

K =
(

A

H3

)1/2

(12.14.5)

so that ε = µ2.
Let us derive the statistical average of (12.14.3). Anticipating that

the small disorder affects the leading order after a long distance inversely
proportional to the mean square of the disorder, we introduce two space
variables x and X = µ2x and expand u and ζ as power series of µ:

ζ(x, X ; t) = ζ0 + µζ1 + µ2ζ2 + O(µ3) ,

u(x, X ; t) = u0 + µu1 + µ2u2 + O(µ3) .
(12.14.6)
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The perturbation equations are simply

∂2ζ0

∂t2
− ∂2ζ0

∂x2
= 0 (12.14.7)

∂2ζ1

∂t2
− ∂2ζ1

∂x2
= − ∂

∂x

(
b(x)

∂ζ0

∂x

)
(12.14.8)

∂2ζ2

∂t2
− ∂2ζ2

∂x2
= − ∂

∂x

(
b(x)

∂ζ1

∂x

)
+ 2

∂2ζ0

∂x∂X

+
∂

∂x

(
u2

0 +
ζ2
0

2

)
+

1
3

∂4ζ0

∂x4
. (12.14.9)

At the leading order, O(1), the governing wave equation (12.14.7) is
homogeneous and deterministic. We consider only a right-going wave with
vanishing amplitude at x − t ∼ −∞,

ζ0(x, X ; t) = u0(x, X ; t) = ζ̄(X ; σ) , (12.14.10)

where σ = x − t. The explicit dependence of ζ̄ on X and σ is yet undeter-
mined.

At the first order O(µ), the inhomogeneous equation (12.14.8) has
random forcing, hence the response ζ1 is random, and can be solved by
means of Green’s function defined by

Gtt − Gxx = δ(x − x′)δ(t − t′) (12.14.11)

subject to

G = Gt = 0 , −∞ < x < ∞ , t < t′ . (12.14.12)

The formal solution is

ζ1(x, X ; t) = −
∫ t

−∞
dt′

∫ ∞

−∞
dx′G(x, t; x′, t′)

∂

∂x′

(
b(x′)

∂ζ̄(x′ − t′, X ′)
∂x

)
.

(12.14.13)

We leave it as an exercise to show that the Green function is

G(x, t; x′, t′) =
1
2
H((t − t′) − |x − x′|) (12.14.14)

where H(z) is the Heaviside step function. Clearly ζ1 represents the inco-
herently scattered wave and has zero mean.
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Denoting the ensemble average by 〈·〉, we obtain from (12.14.9),

∂2〈ζ2〉
∂t2

− ∂2〈ζ2〉
∂x2

= − ∂

∂x

〈
b(x)

∂ζ1

∂x

〉
+ 2

∂2ζ̄

∂x∂X
+

3
2

∂ζ̄2

∂x
+

1
3

∂4ζ̄

∂x4
.

(12.14.15)

By virtue of (12.14.10), the last three terms are all functions of σ = x − t,
hence are homogeneous solutions of the averaged wave equation. Together
they can be transformed to

2
∂2ζ̄

∂σ∂X
+

3
2

∂2ζ̄2

∂σ2
+

1
3

∂4ζ̄

∂σ4
. (12.14.16)

Let us rewrite the first forcing term in (12.14.15) by using (12.14.13),〈
−b(x)

∂ζ1

∂x

〉
=

∫ ∞

−∞
dt′

∫ ∞

−∞
dx′

[
∂

∂x′

(
〈b(x)b(x′)〉 ∂ζ

∂x′

)]
∂G(x, x′, t, t′)

∂x
.

(12.14.17)

We now add the assumption that the disorder is statistically homogeneous
on the short scale, i.e.,

〈b(x)b(x′)〉 ≡ Γ(ξ, X) = Γ(x′ − x, X) (12.14.18)

where Γ(ξ, X) is a positive and even function of ξ = x′ − x. It is shown in
Appendix 12.A that〈

−b(x)
∂ζ1

∂x

〉
=

1
π

∫ ∞

−∞
β(κ, X)̂̄ζ(X ; κ)eiκ(x−t) dκ (12.14.19)

where ̂̄ζ is the Fourier transform of ζ,

̂̄ζ(κ, X) =
∫ ∞

−∞
ζ̄(x′ − t′; X)e−iκ(x′−t′) d(x′ − t′) ,

and β(κ, X) is the complex coefficient defined by

β =
ik

4

∫ ∞

−∞

∂

∂ξ
(Γ(ξ, X)eiκξ) sgn (ξ)eiκ|ξ| dξ . (12.14.20)

In view of (12.14.19), we get

− ∂

∂x

〈
b(x)

∂ζ1

∂x

〉
=

1
π

∂

∂σ

∫ ∞

−∞
eiκσβ(κ, X)̂̄ζ(κ, X) dκ . (12.14.21)
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Thus all forcing terms on the right of (12.14.15) are function of σ = x−t. To
avoid unbounded resonance for 〈ζ2〉, their sum must vanish. After integrat-
ing this solvability condition with respect to σ, we obtain the asymptotic
equation for the leading-order displacement, as seen by an observer travel-
ing at the linear phase speed9 during a very long course of propagation,

∂ζ̄

∂X
+

3
2
ζ̄

∂ζ̄

∂σ
+

1
6

∂2ζ̄

∂σ3
= − 1

2π

∫ ∞

−∞
β(κ, X)̂̄ζ(κ, X)eiκσ dκ . (12.14.22)

This is just a KdV equation modified by the additional term on the right
representing the scattering effect of disorder. The time-like coordinate X

represents the distance traveled by the wave.
In Appendix 12.E the coefficient β is shown to be

β = iκ
Γ(0)

2
+ κ2

{
1
2
Γ̂(0) +

1
2
Γ̂(2κ) + iκP̂ (2κ)

}
. (12.14.23)

where Γ̂(κ) is the exponential Fourier Transform of Γ(ξ) and P is the
integral

P (ξ) =
∫ ∞

|ξ|
Γ(u)du .

Substituting (12.14.23) into (12.14.22), we get, after using the convolu-
tion theorem,

∂ζ̄

∂X
+

3
2
ζ̄

∂ζ̄

∂σ
+

1
6

∂3ζ̄

∂σ3

=
Γ(0)

2
∂ζ̄

∂σ
+

Γ̂(0)
8

∂2ζ̄

∂σ2
+

1
16

∫ ∞

−∞
Γ

(
σ − σ′

2

)
∂2ζ̄

∂σ′2 dσ′

+
1
8

∫ ∞

−∞
P

(
σ − σ′

2

)
∂3ζ̄

∂σ′3 dσ′ . (12.14.24)

Incoherent (random) scattering affects the leading-order part of the wave
(which is coherent) only on the average, through new terms on the right-
hand side of the extended KdV equation. First, all these new terms are
of the order of the root-mean-square of the disorder. The first and fourth
terms represent, respectively, the effects of disorder on the phase velocity
and dispersion, hence on the wave phase. Because Γ(ξ) is positive-definite,
disorder tends to reduce both the wave speed and dispersion. On the other
hand, the second and third terms signify diffusion, making (12.14.31) a

9The linear phase speed is unity in dimensionless form and
√

gH in physical scale.
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hybrid of KdV and Burgers, hence would lead to spatial attenuation, i.e.,
localization.

Spatial attenuation can be seen alternately from the energy of the
coherent wave. Multiplying both sides of (12.14.22) and integrating the
result with respect to σ, we get

d

dX

∫ ∞

−∞

ζ̄2

2
dσ = − 1

2π

∫ ∞

−∞
β(κ)|̂̄ζ(κ)|2 dκ .

Since ζ̄(σ) is real in all σ, its Fourier transform ̂̄ζ(κ) and its complex conju-

gate must satisfy ̂̄ζ(−κ) = ̂̄ζ∗(κ). From (12.14.23), it is seen that Re (β(κ))
is even and Im (β(κ)) is odd in κ. It follows that

d

dX

∫ ∞

−∞

ζ̄2

2
dσ = − 1

π

∫ ∞

0

Re (β(κ))|̂̄ζ(κ)|2 dκ . (12.14.25)

Since Re (β(κ)) > 0 for all positive κ (cf. (12.14.23), the right-hand side
of (12.14.25) is negative. Physically, energy is drained from the coherent
wave for the radiation of the much smaller, randomly scattered incoherent
waves, leading to spatial attenuation of ζ̄.

12.14.2 Gaussian Correlation Function

For better insight we choose the correlation function to be Gaussian,
with the correlation length taken to be l∗. The dimensional correlation
function is,

〈b∗(x∗)b∗(x∗′)〉 = D∗2 exp
(

(x∗′ − x∗)2

2l∗2

)
(12.14.26)

where D∗ is the root-mean-square amplitude of the random roughness. The
normalized correlation function is

Γ(ξ) = D2 exp
(
− ξ2

2l2

)
(12.14.27)

where

l = Kl∗ , D2 =
D∗2

H2

1
µ2

=
D∗2

AH
= O(1) . (12.14.28)

It follows that

Γ̂(κ) =
√

2πD2l exp
(
−κ2l2

2

)
(12.14.29)
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and

P (ξ) =
∫ ∞

|ξ|
Γ(u) du =

√
π

2
D2l erfc

( |ξ|√
2 l

)
(12.14.30)

where erfc (z) is the complementary error function.
The Fourier transform of P (ξ) is

P̂ (κ) =
√

2πD2l2

κl
exp

(
−κ2l2

2

)
erfi

(
κl√
2

)
(12.14.31)

where erfi (z) is the imaginary error function defined by

erfi (z) =
2√
π

∫ z

0

et2 dt . (12.14.32)

Consequently (12.14.24) becomes

∂ζ̄

∂X
+

3
2
ζ̄

∂ζ̄

∂σ
+

1
6

∂3ζ̄

∂σ3

= D2

{
1
2

∂ζ̄

∂σ
+

√
2π l

8
∂2ζ̄

∂σ2
+

1
16

∫ ∞

−∞
exp

(
−|σ − σ′|2

8 l2

)
∂2ζ̄

∂σ′2 dσ′

+
√

2π l

16

∫ ∞

−∞
erfc

( |σ − σ′|
2
√

2 l

)
∂3ζ̄

∂σ′3 dσ′
}

. (12.14.33)

Asymptotic analysis has been carried out by Mei and Li (2004) for weak
disorder (small D) and for long travel distance (large X). Specifically, if a
soliton enters a semi-infinite zone of disorder X > 0 where D is small, the
amplitude decays with X algebraically as

A(X) ∼= 5√
2π

1
D2X

(12.14.34)

which differs from the exponential decay of small-amplitude and periodic
waves. For any finite D, dispersion becomes less important than diffu-
sion after a long travel distance, so that (12.14.33) is reduced to Burger’s
equation

∂ζ̄

∂X
+

3ζ̄

2
∂ζ̄

∂σ
=

D2

2
∂ζ̄

∂σ
+

√
2πD2l

4
∂2ζ̄

∂σ2
. (12.14.35)

By making use of the analytical solution due to Cole and Hopf (see
Whitham, 1974), it can be shown that a soliton crest attenuates in height
as 1/

√
X while spreads in width as

√
X.
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Figure 12.28: Effects of roughness amplitude on soliton evolution over a random seabed
of the same correlation length l = 1. The total travel distance is 100 (0 ≤ X ≤ 100).
Wave profiles are shown at every ∆X = 10. (a) D2 = 0.10; (b) D2 = 0.25; (c) D2 = 0.50;
(d) D2 = 1.0 (from Mei and Li, 2004, Phys. Rev. E. Reproduced by permission of Amer.
Phy. Soc.).

12.14.3 Computed Results of Soliton Evolution Over
a Long Rough Seabed

We now discuss numerical solutions of initial-value problems to the non-
linear integro-differential equation (12.14.33). Details of the numerical
method can be found in Mei and Li (2004). Two seabeds with low-amplitude
roughness are first chosen for the same correlation length of l = 1. The
numerical solutions are shown in Figs. 12.28(a) and 12.28(b). As the prop-
agation distance X increases, the wave profile flattens gradually. For the
lower roughness, the wave crest first travels forward in the moving coordi-
nate, therefore faster than the linear phase speed over a smooth bed (1 in
dimensionless form or

√
gH in physical dimensions, in the stationary frame

of reference). As the crest loses its height with X , it also slows down to
below the linear phase speed. By comparing Figs. 12.28(a) and 12.28(b),
the soliton is slowed down sooner by the bed with higher roughness.

With still higher roughness, solitons are further slowed, as shown in
Figs. 12.28(c) and 12.28(d). For D2 = 0.5, the forward push by inertia
loses more ground to retardation by roughness, see Fig. 12.28(c). For the
highest roughness with D2 = 1.0 (see Fig. 12.28(d)). Inertia is overpowered
by roughness and nonlinearity is no longer effective. The wave crest travels
always at a speed lower than the linear wave speed for a smooth bed.

A larger l corresponds also to a stronger disorder. Enhanced slowing
down, stronger dissipation and faster attenuation are expected; these
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Figure 12.29: Effects of correlation length on soliton evolution over a random seabed.
The total distance of travel is 100 (0 ≤ X ≤ 100). Wave profiles are shown at every
∆X = 10. Left : D2 = 0.10, (a) l = 0.5; (b) l = 2.0. Right : D2 = 0.50, (a) l = 0.5;
(b) l = 2.0 (from Mei and Li, 2004, Phys. Rev. E. Reproduced by permission of Amer.
Phys. Soc.).

features are confirmed by Figs. 12.29(a) and 12.29(b) for D2 = 0.1. If
the seabed roughness is higher with D = 0.5, these effects are further
augmented, as seen in Figs. 12.28(c) and 12.29(b).

Mei and Li have also examined soliton passage of over a finite stretch
of random seabed. They found that, after being flattened, the wave pulse
undergoes fission and disintegrates into several small solitons according to
the analytical theory of Section 12.7.

Appendix 12.A Evaluation of Certain Integrals
in Section 12.4

The typical integral is

I(f) =
∫ ∞

0

dζ e−2ζ(2fζ + fζζ) . (12.A.1)

By partial integration

I(f) = −4f(0)− fζ(0) + 8
∫ ∞

−∞
dζ e−2ζf . (12.A.2)

Let f = J0(4ζ1/2), then J0(0) = 1, but

lim
ζ→0

J0ζ = lim
ζ→0

J ′
0

2
ζ1/2

=
2
ζ1/2

(
−4ζ1/2

2

)
= −4 .
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Hence,

I(J0) = 8
∫ ∞

0

dζ e−2ζJ0(4ζ1/2) =
8

2e2
= 0.0541314 (12.A.3)

which can be found from Abramowitz and Stegun (1972).
Let f = G(ζ). From the defining equation (12.4.18b) we find

G(0) = E2(∞) − iE1(∞) , (12.A.4)

and

Gζ(0) =
1
π
− 4(E2(∞) − iE1(∞)) , (12.A.5)

therefore

−4G(0)− Gζ(0) = − 1
π

. (12.A.6)

Now

EG ≡
∫ ∞

0

dζ e−2ζG = −
∫ ∞

0

dζ e−2ζJ0(4ζ1/2)
∫ ζ

0

dξ e−2ξY0(4ξ1/2)

+
∫ ∞

0

dζ e−2ζY0(4ζ1/2)
∫ ζ

0

dξ e−2ζJ0(4ξ1/2)

+ (E2(∞) − iE1(∞))E1(∞)

= −i(E1(∞))2 + 2
∫ ∞

0

dζ e−2ζY0(4ζ1/2)
∫ ζ

0

dξ e−2ξJ0(4ξ1/2) .

(12.A.7)

The last double integral above can be numerically evaluated to be
0.01431331. Upon using Eq. (12.A.3), we obtain

EG = 0.02862− 0.0045992i . (12.A.8)

Appendix 12.B Reduction of an Integral
in Section 12.9

Keulegan’s manipulations are as follows: Equation (12.9.22) is first broken
into two parts

ub = − 1
π

{∫ ρ

−∞
dρ′ +

∫ ∞

ρ

dρ′
}∫ ∞

0

dk [ ] (12.B.1)
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with the same integrand. In the first integral, to be denoted by I1, we let

k(ρ − ρ′) = 2a2 and
(

k

2z

)1/2

= qa ,

so that

I1 = − 4
π

∫ ρ

−∞

dρ′

ρ − ρ′
ζ0(ρ′)

∫ ∞

0

ae−qa cos(2a2 + qa) da .

The a integral above vanishes identically [see Gradshteyn and Ryzhik, 1965,
p. 499, formula 3.966(1)]. In the second integral of (12.B.1), we let

k(ρ′ − ρ) = 2a2 and
(

k

2z

)1/2

= qa ,

and use a and q to replace k and ρ′ as new variables; then

ub = I2 = − 4
π

∫ ∞

0

dq

q
2ζ0

∫ ∞

0

ae−qa cos(2a2 − qa) da .

The a integral here can again be found from Gradshteyn and Ryzhik [1965,
3.966(2)] as

π

8

1/2
qe−q2/4 .

With a further change from q to 2s, Eq. (12.9.23) follows at once.

Appendix 12.C The Square of a Fourier Series

We wish to rearrange the following product:

(∑)2

=

( ∞∑
l=−∞

Ale
ilθ

) ( ∞∑
m=−∞

Ameimθ

)

=
∞∑
−∞

∞∑
−∞

AlAmei(l+m)θ , A0 = 0 . (12.C.1)

Let n = l + m, then(∑)2

=
∞∑

n=−∞
einθ

∞∑
l=−∞

AlAn−l . (12.C.2)
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Consider the l series. Using the fact that A0 = 0, we break up the series as
follows: ∑

l

≡
∞∑

l=−∞
AlAn−l

=
−1∑

l=−∞
AlAn−l +

n−1∑
l=1

AlAn−l +
∞∑

l=n

AlAn−l . (12.C.3)

In the first series we change l to −l′; in the last series we change n − l to
−l′. The two series can be added to give

2
∞∑

l=1

A−lAn+l . (12.C.4)

The second series on the right-hand side of Eq. (12.C.3) can be rewritten
depending on the parity of n, that is, whether n is odd or even. If n =
even = 2p, then

2p−1∑
l=1

AlA2p−l = A1A2p−1 + A2A2p−2 + · · ·ApAp + · · ·A2p−2A2 + A2p−1A1 .

Except for ApAp, the above terms may be added in pairs (e.g., the first and
the last, etc.) to give

p∑
l=1

αlAlA2p−l =
n/2∑
l=1

αlAlAn−l , (12.C.5)

where α1 is defined by

αl = 2 if l = 1, 2, . . . ,
n

2
− 1 ,

αl = 1 if l =
n

2
. (12.C.6)

If n = odd = 2p + 1, p = 0, 1, 2, . . . , then

2p∑
l=1

AlA2p+1−l = A1A2p + A2A2p−1 + · · ·ApAp+1 + Ap+1Ap + · · ·A2pA1

=
p∑

l=1

2AlA2p+1−l =
(n−1)/2∑

l=1

αlAlAn−l . (12.C.7)
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The two alternatives (12.C.5) and (12.C.7) can be written as a single series,
so that the second series on the right of Eq. (12.C.3) becomes

′∑
l=1

αlAlAn−l (12.C.8)

where the upper limit of
∑′ is 1

2n if n is even and 1
2 (n − 1) if n is odd.

Finally, by combining Eqs. (12.C.4) and (12.C.8) into Eq. (12.C.2), we
obtain(∑)2

=
∞∑

n=1

einθ

{ ′∑
l=1

αlAlAn−l +
∞∑

l=1

2A∗
l An+l

}
+

∞∑
l=1

2AlA−l + ∗ .

(12.C.9)

Appendix 12.D Details of Random Forcing

In terms of the Fourier transform, we can write

∂ζ̄

∂x′ =
1
2π

∫ ∞

−∞
iκeiκ(x′−x−(t′−t))̂̄ζ(κ, X)eiκ(x−t) dκ

=
1
2π

∫ ∞

−∞
iκeiκξe−iκτ ̂̄ζ(κ, X)eiκ(x−t) dκ (12.D.1)

where

ξ = x′ − x , τ = t′ − t .

Note that
∂G

∂x
=

∂G

∂|ξ| sgn (ξ) = −1
2
δ(τ − |ξ|) sgn (ξ) . (12.D.2)

Using these results in (12.14.17), we get, after simple variable transforma-
tions, that

−
〈

b(x)
∂ζ1

∂x

〉
=

1
4π

∫∫∫ ∞

−∞
dτ dξ dκ eiκ(x−t)iκ

× ∂

∂ξ
[Γ(ξ)ζ̂(κ)e−iκξ]eiκτ δ(τ − |ξ|) sgn (ξ) .

Since ∫ ∞

−∞
dτeiκτ δ(τ − |ξ|) = eiκ|ξ|
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the triple integral above becomes

−
〈

b(x)
∂ζ1

∂x

〉
=

1
2π

∫∫ ∞

−∞
dξ dκ eiκ(x−t)̂̄ζ(κ)

× iκ

2
∂

∂ξ
[Γ(ξ, X)e−iκξ]eiκ|ξ| sgn (ξ)

which gives (12.14.19) after using the definition (12.14.20).

Appendix 12.E Details of β

Let us perform partial integration of (12.14.20)

β =
iκ

4
{Γ(ξ)eiκξ sgn (ξ)eiκ|ξ|}ξ=∞

ξ=−∞

− iκ

4

∫ ∞

−∞
(Γ(ξ)eiκξ)iκeiκ|ξ| dξ

= −iκ
Γ(0)

2
+

κ2

4

∫ ∞

−∞
Γ(ξ)eiκξeiκ|ξ| dξ (12.E.1)

where

d

dξ
(sgn (ξ)eiκ|ξ|) = ikeiκ|ξ| (12.E.2)

is used. Since the integrand in the last integral is even in ξ, we find∫ ∞

−∞
Γ(ξ)eiκξeiκ|ξ| dξ =

1
2

∫ ∞

−∞
Γ(ξ) dξ +

∫ ∞

0

Γ(ξ) cos 2κξ dξ

+ i

∫ ∞

0

Γ(ξ) sin κξ dξ . (12.E.3)

Note that

1
2

∫ ∞

−∞
Γ(ξ) dξ =

1
2
Γ̂(0) ,

∫ ∞

0

Γ(ξ) cos 2κξ dξ =
1
2
Γ̂(2κ) , (12.E.4)

and the third term in (12.E.3) can be manipulated by partial integration
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i

∫ ∞

0

Γ(ξ) sin 2κξ dξ = −i

∫ ∞

0

sin 2κξ d

∫ ∞

ξ

Γ(u) du

= 2iκ

∫ ∞

0

du

∫ ∞

ξ

Γ(u) cos 2κξ dξ

= 2iκ

∫ ∞

0

P (ξ) cos 2κξ dξ

= ikP̂ (2κ) (12.E.5)

where P (ξ) is

P (ξ) =
∫ ∞

|ξ|
Γ(u) du . (12.E.6)

With (12.E.4) and (12.E.5), β in (12.E.1) can be rewritten as

β = −iκ
Γ(0)

2
+ κ2

{
1
2
Γ̂(0) +

1
2
Γ̂(2κ) + iκP̂ (2κ)

}
. (12.E.7)
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Narrow-Banded
Nonlinear Waves in
Water of Intermediate
or Great Depth 13
13.1 Introduction

For arbitrary depth, O(kh) ≥ 1, the effects of finite amplitude have been of
long-standing interest. In older literature considerable attention was paid
to the calculation of periodic progressive or standing waves. In particular,
Stokes’ contribution (1847) on higher-order waves of uniform amplitude set
the tone of research for nearly 100 years. Much of the subsequent effort
has been devoted to the maximum wave height when the depth is either
constant or infinite. These classical contributions have been thoroughly
summarized in Wehausen and Laitone (1960).

More recent interest in nonlinear deep-water waves owes its impetus
to our need for a better understanding of the sea spectrum development.
Shortly after the birth of two complementary theories of wave generation by
wind, due separately to Miles (1957) and Phillips (1957), a cornerstone was
laid by Phillips (1960) who introduced the mechanism of nonlinear resonant
interaction in which four wavetrains slowly exchanged energy among one
another if their phases were suitably matched; an era of examining nonlinear
waves for their transient evolution was then launched. This resonance
mechanism is now regarded as one of the most important factors in the
sea spectrum formation. For an authoritative account of this vital area of
oceanography the reader is referred to Phillips (1977).

Also of great interest is a special kind of resonant interaction pertaining
to a wavetrain with a narrow band of frequencies and wavelengths. We are
indebted to Benjamin and Feir (1967) for their decisive demonstration that
Stokes’ waves are unstable to slowly modulated periodic (side-band) distur-
bances. The same instability mechanism was confirmed and extended by

745
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the elegant theory of Whitham (1967) and further extended by Benney and
Roskes (1969). The early stage of the nonlinear evolution of a wave packet
subsequent to the initial stability was pursued by Lighthill (1967), who used
a pair of nonlinear equations of conservation type due to Whitham. With
additional accounts for higher-order dispersive effects, Chu and Mei (1971)
modified Whitham’s equations and traced the evolution of a wave packet
for a longer time. An alternative line of development is based on the cubic
Schrödinger equation (Zakharov, 1968; Benney and Roskes, 1969), which
was shown by Davey (1972) to be equivalent to the conservation equations
used by Chu and Mei. Further theoretical advances received a strong boost
by Zakharov and Shabat (1972) for their exact analytical solution of the cu-
bic Schrödinger equation. Extensive efforts, including both numerical and
experimental, by Yuen, Lake, and associates (see Yuen and Lake, 1980)
have now unveiled many new physical secrets of Stokes’ waves on deep
water.

Of greater complexity are sea waves with a broad distribution of fre-
quencies and directions. A deterministic theory accurate to third order
in wave steepness will be the subject of Chapter Fourteen, with emaphsis
on Phillips’ quartet resonance and Zakharov’s theory of the Fourier spec-
trum. Theories for strongly nonlinear waves have also taken giant strides
with the help of new computing techniques. Employing Pade’s approxi-
mant, Schwartz (1974) was able to solve accurately for progressive waves of
arbitrary steepness (up to the limiting height) on water of constant depth.
The mathematically awesome problem of breaking has been the subject
of determined attacks by Longuet–Higgins and associates. By ingeneous
approximations, incisive local, global, and stability analyses, and direct
numerical integration, these pioneering contributions have not only led to
many remarkable results (see, Longuet–Higgins, 1975, 1978a, b; Longuet–
Higgins and Cokelet 1976, 1978; Longuet–Higgins and Fox, 1977, 1978,
Vinje and Brevig, 1981), but also inspired futher breakthroughs with the
aid of ever-faster computer. A relatively new and powerful numerical tech-
nique for highly nonlinear waves is described in Chapter Fifteen.

The scope of the present chapter is limited to the slow evolution of
nearly periodic waves, i.e., narrow-banded waves. First, general evolution
equations are deduced for nearly uniform Stokes’ waves over a horiaontal
seabed. The initial instability due to periodic side-band disturbances is dis-
cussed next. Typical features of the nonlinear evolution of unidirectional
waves are shown through numerical examples. Attention is then shifted to
long (infragravity) waves forced by short waves advancing over a variable
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depth of parallel contours. As engineering applications we also examine the
encounter of nonlinear waves with horizontally two-dimensional bodies. In
the first example we treat the diffraction of uniform Stokes waves by a thin
wedge. In the second the far field of a slender ship advancing and oscillat-
ing in head seas is studied as an application of the two-dimensional wave-
modulation theory. Finally the diffraction of second-order Stokes waves by
a blunt body is solved analytically.

A more realistic analysis of sea surface requires the consideration of
nonlinear interaction of waves within a broad frequency or wave-number
band. This difficult topic is the focus of Chapter Fourteen. Recent advances
in computational wave hydrodynamics will be surveyed in Chapter Fifteen.

13.2 Evolution Equations for Slowly Modulated
Weakly Nonlinear Waves Over
Horizontal Seabed

The objective of this section is to deduce a general set of conditions
governing a slowly varying train of surface waves which are essentially
sinusoidal and propagating in one direction. To this end we shall apply the
method of multiple scales.1 The following account is a mixture of Benney
and Roskes (1969), Chu and Mei (1970), and Davey and Stewartson (1974).

13.2.1 Intermediate Depth

For simplicity, the sea bottom is taken to be horizontal at a finite depth h,

∂Φ
∂z

= 0 , z = −h . (13.2.1)

Now any analytic function [f(x, y, z, t)]z=ζ may be expanded into a Taylor
series about z = 0,

f(x, y, ζ, t) = [f ]0 + ζ

[
∂f

∂z

]
0

+
ζ2

2

[
∂2f

∂z2

]
0

+ · · · ,

where

[f ]0 = f(x, y, 0, t) · · · .

1Another formalism which is applicable to this class of problems is Whitham’s method
of averaged Lagrangian. For a full exposition, see Whitham (1974).
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Let it be assumed that ∂f/∂z = O(kf) where k is the characteristic
wavenumber. For small ζ = O(A) the successive terms in the expansion
are progressively smaller, essentially in increasing powers of kA. The expan-
sions for the free-surface boundary conditions [Eqs. (1.1.16) and (1.1.14),
Chapter 1] are[

∂2Φ
∂t2

+ g
∂Φ
∂z

]
0

+ ζ

[
∂

∂z

(
∂2Φ
∂t2

+ g
∂Φ
∂z

)]
0

+
[

∂

∂t
u2

]
0

+
ζ2

2

[
∂2

∂z2

(
∂2Φ
∂t2

+ g
∂Φ
∂z

)]
0

+ ζ

[
∂2

∂t∂z
u2

]
0

+
1
2
[u · ∇u2]0 + · · · = 0 (13.2.2)

and

−gζ =
[
∂Φ
∂t

]
0

+ ζ

[
∂2Φ
∂t ∂z

]
0

+
[
u2

2

]
0

+
ζ2

2

[
∂

∂t

∂2Φ
∂z2

]
0

+ ζ

[
∂

∂z

u2

2

]
0

+ · · · (13.2.3)

up to the third order 0(kA)3.
Let x be the direction of the carrier wave. To allow for slow modulation,

we introduce the following cascade of variables:

x , x1 = εx , x2 = ε2x . . . ,

y1 = εy , y2 = ε2y . . . ,

t , t1 = εt , t2 = ε2t . . . ,

(13.2.4)

where ε = kA � 1, and assume the following perturbation expansions for
the unknowns:

Φ =
∑
n=1

εnφn , ζ =
∑
n=1

εnζn , (13.2.5)

where

φn = φn(x, x1, x2, . . . ; y1, y2, . . . ; z ; t, t1, t2, . . .) ,

ζn = ζn(x, x1, x2, . . . ; y1, y2, . . . ; t, t1, t2, . . .) . (13.2.6)

The original derivatives are first changed according to Eq. (2.4.3),
Chapter Two, and then substituted into Laplace’s equation, the perturbed



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

13.2. Evolution Equations for Slowly Modulated Weakly Nonlinear Waves 749

free-surface conditions (13.2.2) and (13.2.3), and the bottom condition
(13.2.1). The first three orders are collected below.

Laplace equation: (
∂2

∂x2
+

∂2

∂z2

)
φn = Fn , n = 1, 2, 3 , (13.2.7a)

where

F1 = 0 , (13.2.7b)

F2 = −2φ1xx1
, (13.2.7c)

F3 = −
[(

∂2

∂x2
1

+
∂2

∂y2
1

)
φ1 + 2φ1xx2

+ 2φ2xx1

]
. (13.2.7d)

Free-surface condition (13.2.2):

Γφn = Gn on z = 0 , (13.2.8a)

where

Γ = g
∂

∂z
+

∂2

∂t2
, (13.2.8b)

G1 = 0 , (13.2.8c)

G2 = −[ζ1Γzφ1 + (φ2
1x

+ φ2
1z

)t + 2φ1tt1
] , (13.2.8d)

G3 = −
[
ζ2Γzφ1 + ζ1Γzφ2 +

1
2
ζ2
1Γzzφ1 + 2(φ1xφ2x + φ1z φ2z )t

+ ζ1(φ2
1x

+ φ2
1z

)tz +
1
2

(
φ1x

∂

∂x
+ φ1z

∂

∂z

)
(φ2

1x
+ φ2

1z
)

+ 2φ2tt1
+ 2φ1z φ1zt1

+ 2φ1x1
φ1xt + 2φ1xφ1xt1

+ 2φ1xφ1tx1
+ 2ζ1φ1ztt1

+ 2φ1tt2
+ φ1t1t1

]
. (13.2.8e)

Bernoulli equation on the free surface:

−gζn = Hn , on z = 0 , (13.2.9a)
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where

H1 = φ1t , (13.2.9b)

H2 = φ2t +
1
2
(φ2

1x
+ φ2

1z
) + φ1t1

+ ζ1φ1zt , (13.2.9c)

H3 = φ3t + φ1xφ2x + φ1z φ2z + ζ1φ2zt + ζ2φ1zt

+
1
2
ζ2
1φ1zzt +

1
2
ζ1(φ2

1x
+ φ2

1z
)z + φ2t1

+ φ1xφ1x1
+ φ1t1

+ ζ1φ1zt1
. (13.2.9d)

Condition on the bottom:

∂φn

∂z
= 0 , z = −h . (13.2.10)

The first-order solution is the usual linearized propagating wave. At the
higher orders the nonlinear forcing terms on the free surface imply that
higher harmonics must be present in the higher-order solutions. We there-
fore expand

{φn, Fn, Gn} =
n∑

m=−n

eimψ{φnm, Fnm, Gnm} , (13.2.11a)

where

ψ = kx − ωt (13.2.11b)

is the phase of the fundamental harmonic at the leading order. For the
resulting φ to be real, we require that

φn,−m = (φnm)∗ . (13.2.12)

Furthermore, the amplitudes depend on the slow variables and z

(φnm, Fnm) = functions of (x1, x2, . . . , y1, y2, . . . , z, t1, t2, . . .) ,

Gnm = Gnm(x1, x2, . . . , y1, y2, . . . , t1, t2, . . .) . (13.2.13)

Substituting Eq. (13.2.11a) into the perturbation equations (13.2.7a),
(13.2.8), and (13.2.10), we obtain at each order (n) and harmonic (m)
a boundary-value problem in z:
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(
∂2

∂z2
− m2k2

)
φnm = Fnm , −h < z < 0 , (13.2.14)

(
g

∂

∂z
− m2ω2

)
φnm = Gnm , z = 0 , (13.2.15)

∂

∂z
φnm = 0 , z = −h . (13.2.16)

The above boundary-value problems will be solved sequentially. For
convenience the following abbreviations will be employed:

Q = k(z + h) , q = kh ,

ch q = cosh q , sh q = sinh q , th q = tanh q .
(13.2.17)

n = 1: The forcing terms are

F10 = G10 = 0, F11 = G11 = 0 . (13.2.18)

The solutions, which are homogeneous, are

m = 0 : φ10 = φ10(x1, x2, y1, y2, t1, t2, . . .) = φ∗
10 , (13.2.19)

m = 1 : φ11 = − g chQ

2ω ch q
iA , (13.2.20a)

with

ω2 = gk th kh , (13.2.20b)

and A = A(x1, x2, y1, y2, t1, t2, . . .). The total first-order solution is

φ1 = φ10 − g chQ

2ω ch q
(iAeiψ + ∗) , (13.2.21)

ζ1 =
1
2
(Aeiψ + ∗) . (13.2.22)

Both φ10 and A are, so far, arbitrary functions of the slow variables.
n = 2: For n � 2, special care regarding solvability must be given

to m = 0 (the zeroth harmonic, or the mean), and to m = 1 (the first
harmonic), as the homogeneous problems have nontrivial solutions. For
m = 0, the homogeneous solution is constant in z; the solvability condition
for φn0 is simply

1
g
Gn0 −

∫ 0

−h

dz Fn0 . (13.2.23)



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

752 Narrow-Banded Nonlinear Waves in Water of Intermediate or Great Depth

For m = 1, the homogeneous solution is proportional to cosh k(z + h), and
the solvability condition for φn1 follows from Green’s formula

1
g
Gn1 =

∫ 0

−h

dz Fn1
cosh k(z + h)

cosh kh
. (13.2.24)

Equations (13.2.23) and (13.2.24) will lead to the so-called evolution
equations.

For higher harmonics |m| ≥ 2, the boundary-value problems admit
no homogeneous solution. Indeed, if there were one, it would be of the
form (13.2.20a) with (k, ω) replaced by (mk, mω). However, mk and mω

would then be subjected to the dispersion relation (13.2.20b), which is not
possible. Consequently, the inhomogeneous problems for |m| ≥ 2 are always
solvable.

The forcing terms for the second-order problems are

F20 = G20 = 0 , (13.2.25)

F21 = −ω chQ

sh q

∂A

∂x1
, F22 = 0 , (13.2.26)

G21 =
ω2 ch q

k sh q

∂A

∂t1
, G22 =

3iω3A2

4 sh2q
. (13.2.27)

The solution for the zeroth harmonic is

φ20 = φ20(x1, x2, y1, y2, t1, t2, . . .) = φ∗
20 . (13.2.28)

For m = 1, we invoke the solvability condition by substituting Eqs. (13.2.26)
and (13.2.27) into Eq. (13.2.24), and obtain

∂A

∂t1
+ Cg

∂A

∂x1
= 0 with Cg =

∂ω

∂k
, (13.2.29)

which has been found before in Section 2.4. The solution is

φ21 = − ω

2k2 sh q
(Q shQ)

∂A

∂x1
. (13.2.30)

We note immediately that φ21 blows up as kh ↑ ∞, which is not sur-
prising, because the limiting process violates the original premise that
O(x1), O(x2), . . . > O(h). Therefore, we restrict the present solution to
kh = O(1) and deal later with the infinite depth separately.
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For m = 2, the inhomogeneous solution is straightforward:

φ22 = − 3
16

ω ch 2Q

sh4q
iA2 . (13.2.31)

The total second-order solution is

φ2 = φ20 − ω

2k2 sh q
(Q sh Q)

(
∂A

∂x1
eiψ + ∗

)

− 3
16

ω ch 2Q

sh4q
(iA2e2iψ + ∗) , (13.2.32)

and

ζ2 =
{
−1

g
φ10t1

− k

2 sh 2q
|A|2

}
+

1
2ω

(
i
∂A

∂t1

eiψ + ∗
)

− q sh q

2k ch q

(
i
∂A

∂x1
eiψ + ∗

)
+

k ch q(2 ch2q + 1)
8 sh3q

(A2e2iψ + ∗) .

(13.2.33)

n = 3: For m = 0, the forcing terms are

F30 = −
(

∂2

∂x2
1

+
∂2

∂y2
1

)
φ10 , (13.2.34)

G30 =
ω3 ch2q

2k sh2q
(AA∗)x1 −

ω2

4 sh2q
(AA∗)t1 −

∂2φ10

∂t21
, (13.2.35)

where Eq. (13.2.29) has been used. Condition (13.2.23) requires that G30 =
ghF30 so that

∂2φ10

∂t21
− gh

(
∂2

∂x2
1

+
∂2

∂y2
1

)
φ10

=
ω3 ch2q

2k sh2q
(AA∗)x1 −

ω2

4 sh2q
(AA∗)t1 . (13.2.36)

Physically, Eq. (13.2.36) describes a long wave generated by short-wave
modulation. For m = 1, the forcing terms are

F31 =
ω

k sh q

[
Q sh Q +

1
2

ch Q

]
i
∂2A

∂x2
1

− ω ch Q

sh q

(
∂A

∂x2
− i

2k

∂2A

∂y2
1

)
(13.2.37)
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and

G31 =
1

16 sh5q
ω3k ch q(ch 4q + 8 − 2 th2q)i|A|2A

− ωk

sh 2q

(
∂φ10

∂t1
− 2ω ch2q

k

∂φ10

∂x1

)
iA

+
ω ch q

2k sh q
i
∂2A

∂t21
− ω2q

k2
i

∂2A

∂x1 ∂t1
+

ω2 ch q

k sh q

∂A

∂t2
. (13.2.38)

Invoking the solvability condition (13.2.24), we have

∂A

∂t2
+ Cg

∂A

∂x2
− iCg

2k

∂2A

∂y2
1

− iωq

k2 sh 2q
ch2q

∂2A

∂x2
1

+
i

2ω

∂2A

∂t21
− ik2A

2ω ch2q

(
∂φ10

∂t1
− 2ω ch2q

k

∂φ10

∂x1

)
− iq sh q

k ch q

∂2A

∂x1 ∂t1

+
iωk2(ch 4q + 8 − 2 th2q)

16 sh4q
|A|2A = 0 . (13.2.39)

With the help of Eq. (13.2.29) we write

∂2A

∂t21
= C2

g

∂2A

∂x2
1

,
∂2A

∂t ∂x1
= Cg

∂2A

∂x2
1

in Eq. (13.2.39). Finally, we add Eqs. (13.2.29) and (13.2.39), and consider
φ10 and A as functions of x1, y1, and t1 only, that is,

∂

∂t1
+ ε

∂

∂t2
→ ∂

∂t1
,

∂

∂x1
+ ε

∂

∂x2
→ ∂

∂x1
,

yielding(
∂

∂t1
+ Cg

∂

∂x1

)
A + iε

{
− 1

2

(
∂2ω

∂k2

)
∂2A

∂x2
1

− Cg

2k

∂2A

∂y2
1

+
ωk2(ch 4q + 8 − 2 th2q)

16 sh4q
|A|2A −

(
k2

2ω ch2q

∂φ10

∂t1
− k

∂φ10

∂x1

)
A

}
= 0 ,

(13.2.40)

where

−1
2

∂2ω

∂k2
=

C2
g

2ω
− ωq ch2q

k2 sh 2q
+

q sh q

k ch q
Cg > 0 . (13.2.41)
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Equations (13.2.36) and (13.2.40) were first obtained by Benney and
Roskes. Together, they govern the coupled slow evolution of first-order
amplitude A and the mean flow potential φ10. It is significant that third-
order nonlinearity affects first-order amplitude if the time and distance are
ε−2 times greater than the wave period and length, respectively.

For two-dimensional problems (∂/∂y1 = 0), further simplifications are
possible. If we let

ξ = x1 − Cgt1 , τ = εt1 , (13.2.42)

then

∂

∂t1
= ε

∂

∂τ
− Cg

∂

∂ξ
and

∂

∂x1
=

∂

∂ξ
,

and Eq. (13.2.36) may be integrated once with respect to ξ, yielding

∂φ10

∂ξ
= S(τ) − ω2(2ω ch2q + kCg)

4k sh2q(gh − C2
g )

|A|2 + O(ε) ,

where S(τ) is an arbitrary function of τ. Substituting this result into
Eq. (13.2.40), we get

−i
∂A

∂τ
+ α

∂2A

∂ξ2
+ β|A|2A + γA = 0 , (13.2.43a)

where

α = −1
2
ω′′(k) (13.2.43b)

β =
ωk2

16 sh4q
(ch 4q + 8 − 2 th2q) − ω

2 sh22q

(2ω ch2q + kCg)2

(gh − C2
g )

, (13.2.43c)

and

γ(τ) =
S(τ)k

2ω ch2q
(2ω ch2q + kCg) . (13.2.43d)

The function S(τ) vanishes for a wavetrain beginning from rest where A

and ∂φ10/∂ξ tend to zero as ξ → ∞. Otherwise, the term γA may be
eliminated from Eq. (13.2.43a) by introducing

A = B exp
(
−i

∫
γ dτ

)
, (13.2.44)
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resulting in the cubic Schrödinger equation

−iBτ + αBξξ + β|B|2B = 0 (13.2.45)

which was derived for finite depth by Hashimoto and Ono (1972). A similar
equation was deduced earlier for infinite depth by Zakharov (1968).

Equation (13.2.43) or (13.2.45) may be expressed in real functions by
letting

A = a exp
[
i

(∫
W dξ −

∫
γ dτ

)]
(13.2.46a)

in Eq. (13.2.43), or, equivalently, by letting

B = a exp
(

i

∫
W dξ

)
(13.2.46b)

in Eq. (13.2.45), where W = W (ξ, τ). Separating the real and imaginary
parts, we get

∂a2

∂τ
− 2α

∂

∂ξ
(Wa2) = 0 , (13.2.47a)

∂W

∂τ
+

∂

∂ξ

[
α

(
1
a

∂2a

∂ξ2
− W 2

)
+ βa2

]
= 0 . (13.2.47b)

These equations are in the form of conservation laws ∂P/∂τ + ∂Q/∂ξ = 0;
they were derived for deep-water waves by Chu and Mei (1970), and by
Whitham (1967) without the term (1/a)∂2a/∂ξ2. The connection between
Eqs. (13.2.45) and (13.2.47) was pointed out by Davey (1972).

13.2.2 Deep Water Limit

The formal limits of Eqs. (13.2.36) and (13.2.40) for kh → ∞ are(
∂2

∂x2
1

+
∂2

∂y2
1

)
φ10 = 0 , (13.2.48)

(
∂

∂t1
+Cg

∂

∂x1

)
A+iε

{
ω

4k2

(
1
2
Ax1x1−Ay1y1

)
+

1
2
ωk2|A|2A+kφ10x1

A

}
=0 ,

(13.2.49)
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which appear to be quite reasonable results. The kinematic or total
boundary condition on the free surface requires that

∂φ10

∂z
= 0 , z = 0 . (13.2.50)

A possible solution for φ10 is a time-varying current

∂φ10

∂t1
= f(t1) , (13.2.51)

where f is prescribed from upstream conditions. Equation (13.2.49) then
governs A only. Nevertheless, the solution for φ21, is no longer meaningful
as pointed out after Eq. (13.2.30). Inconsistency also arises at the third-
order free-surface condition, (13.2.8a), which gives for h → ∞

∂2φ10

∂t21
=

ω3

2k
(AA∗)x1 (13.2.52)

and renders the problem for A and φ10 overdetermined. To remedy this
difficulty, Roskes (1969) reasoned that by assuming kh � 1 at the start
one should allow slow modulation in the vertical direction as well. Thus,
he introduced

z1 = εz , z2 = ε2z · · · . (13.2.53)

However, these coordinates should only enter the long-scale quantities
φ10, φ20, . . . , and so on; the short-wave potential is nonzero only within
a wavelength from the free surface (hence in the region z1, z2, . . . � 1).
Carrying out the perturbation analysis, one finds, instead of Eq. (13.2.36),(

∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂z2
1

)
φ10 = 0 , (13.2.54)

and instead of Eq. (13.2.39),

(At2 + CgAx2) + i

{
ω

8k2
(Ax1x1 − 2Ay1y1) +

1
2
ωk2|A|2A

}

+ k

(
∂φ10

∂z1
+ i

∂φ10

∂x1

)
A = 0 . (13.2.55)

If h = O(εk)−1, the bottom condition can be generalized slightly so that

∂φ10

∂n1
= 0 , z1 = 0 and − h1(x1, y1) with h1 = O(1) . (13.2.56)
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Thus, the potential φ10 of the large-scale current is deflected by bottom
variations, which then affect the short-wave amplitude indirectly through
Eq. (13.2.55). Furthermore, Eq. (13.2.52) is replaced by

g
∂φ20

∂z1
= −∂2φ10

∂t21
+

ω3

2k
(AA∗)x1 (13.2.57)

which provides a boundary condition for φ20 and removes the overdetermi-
nancy on φ10 and A.

In the simplest case of constant h1 we can take

∂φ10

∂x1
= U (τ) (13.2.58)

which is a spatially constant current determined by the condition far
upstream. Note that the magnitude of the current is ε∂φ10/∂x =
ε2∂φ10/∂x1 = ε2U = O(ε2). Equation (13.2.55) can be further simplified
by the coordinate transformation (13.2.42); the result is

∂A

∂τ
+ i

{
ω

4k2

(
1
2
Aξξ − Ay1y1

)
+ kU A +

ωk2

2
|A|2A

}
= 0 . (13.2.59)

The current term may be removed by A = B exp(−ik
∫

U dr), yielding,

∂B

∂τ
+ i

{
ω

8k2
(Bξξ − 2By1y1) +

ωk2

2
|B|2B

}
= 0 , (13.2.60)

which was first derived by Zakharov (1968). In the limit of ∂/∂y1 = 0,
Eq. (13.2.60) reduces to Eq. (13.2.45) with

α =
ω

8k2
and β =

ωk2

2
. (13.2.61)

13.3 Uniform Stokes’ Waves

We seek a solution which has no slow modulation in x and y, that is,
A, ∂φ10/∂x1, ∂φ10/∂t1, . . . do not depend on x1, x2, . . . and y1, y2, . . . .

Equation (13.2.29) requires that A be independent of t1; thus, A = A(t2).
From Eq. (13.2.36) we get

φ10 = U x1 − gbt1 (13.3.1)

where U and b are arbitrary constants. With Eq. (13.3.1), Eq. (13.2.39) is
reduced to
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∂A

∂t2
+ iω2|A|2A = 0 , (13.3.2)

where

ω2 =
ωk2

16 sh4q
(8 + ch4q − 2 th2q) − 1

|A|2
(

kU +
gk2b

2ω ch2q

)
. (13.3.3)

The solution is readily found to be

A = a0 exp(−iω2a
2
0t2) , (13.3.4)

with a0 real and an arbitrary phase ignored. Thus, up to O(ε2) nonlinearity
changes the wave phase only. The wave profile is, to the leading order,

ζ1 =
1
2
(a0e

iψ̃ + ∗) , (13.3.5a)

where

ψ̃ = (kx − ω̃t) (13.3.5b)

is the new phase, and

ω̃ = ω + ε2ω2a
2
0 (13.3.6)

is the nonlinear dispersion relation. The phase speed also depends on
amplitude

C̃ =
ω

k
+ ε2 ω2

k
a2
0 . (13.3.7)

The ordering parameter ε has served its purpose and may be removed.
The second-order solution is

φ2 = φ20 − 3
16

ω ch 2Q

sh4q
(ia2

0e
2iψ̃ + ∗) , (13.3.8)

ζ2 = b − k

2 sh 2q
a2
0 +

k ch q(2 ch2q + 1)
8 sh3q

(a2
0e

2iψ̃ + ∗) . (13.3.9)

From the solvability of φ40 it may be shown that ∂φ20/∂z = 0, implying
that φ20 = φ20(x1, x2, . . . , y1, y2, . . .) which does not affect the velocity field
at the second order. The second harmonic in ζ2 is always positive for
ψ̃ = 0, π, 2π, . . . and elevates the crests and the troughs; therefore, the total
free surface is more peaked at the crests and flatter at the troughs. The
second term in Eq. (13.3.9) represents the mean sea-level set-down which
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corresponds to Eq. (13.3.5), and has been deduced before in Section 11.6
[cf. Eq. (11.6.6)].

The ratio of ζ2 to ζ1 is of the order ka0/(kh)3 when kh � 1. Thus,
Stokes’ theory is valid in shallow water only if

ka0

(kh)3
� 1 . (13.3.10)

The above ratio is precisely the Ursell parameter mentioned in the preceding
chapter and is a measure of frequency dispersion versus nonlinearity.

Because of the arbitrariness of U and b, various expressions for the
Stokes wave have been used in the literature. For example, by letting A be
indcpendent of ξ and S be a constant, we may integrate Eq. (13.2.43a) to
obtain Eq. (13.3.4) with

ω2
2a

2
0 = βa2

0 + γ . (13.3.11)

This dispersion relation can be reconciled with Eq. (13.3.3) if

U = S − ω(2ω ch2q + kCg)
4k sh2q(gh − C2

g )
a2
0 (13.3.12a)

and

b =
1
g
U Cg . (13.3.12b)

The preceding expressions are equivalent to those given by Davey and
Stewartson (1974).

13.4 Side-Band Instability of Stokes’ Waves

The uniform Stokes waves have been applied for many years in engineering
literature as a basis of computing wave forces. Massive work has been
devoted to higher-order corrections in order to gain a fuller account of
nonlinearity. Nevertheless, it is a common experience in the laboratory
that a uniform train of relatively steep waves is difficult to maintain in a
long-wave tank (see, e.g., Russell and Osorio, 1957). This difficulty was first
explained theoretically by the penetrating work of Benjamin and Feir (1967)
who found that Stokes’ waves were unstable to side-band disturbances, that
is, disturbances whose frequencies deviated slightly from the fundamental
frequency of the carrier waves.
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Let us start from the nonlinear Schrödinger equation [NLS, (13.2.45)].
The basic Stokes wave

B0 = a0e
−iβa2

0τ (13.4.1)

is the solution to

−i
∂B0

∂τ
+ β|B0|2B0 = −i

∂B0

∂τ
+ βa2

0B0 = 0 . (13.4.2)

Let the following small disturbance

B = B0(1 + δ) , δ � 1 (13.4.3)

be introduced into (13.2.45) so that

−i
∂B0

∂τ
(1 + δ) − iB0

∂δ

∂τ
+ αB0

∂2δ

∂ξ2
+ βa2

0B0(1 + δ)2(1 + δ∗) = 0 .

Keeping only first-order terms in δ, we get

B0

{
−i

∂B0

∂τ

δ

B0
− i

∂δ

∂τ
+ α

∂2δ

∂ξ2
+ βa2

0(2δ + δ∗)
}

= 0

which can be simplified to

−i
∂δ

∂τ
+ α

∂2δ

∂ξ2
+ βa2

0(δ + δ∗) = 0 (13.4.4)

after using (13.4.2). Putting δ = c + id in the preceding equation and
separating the real and imaginary parts, we obtain

∂c

∂τ
+ α

∂2d

∂ξ2
= 0 ,

−∂d

∂τ
+ α

∂2c

∂ξ2
+ 2βa2

0c = 0 .

Either c or d can be eliminated by cross differentiation to give

α2 ∂4(c, d)
∂ξ4

+ 2αβa2
0

∂2(c, d)
∂ξ2

− ∂2(c, d)
∂τ2

= 0 . (13.4.5)

Consider the following traveling wave disturbance

c = Re {Cei(Kξ−Ωτ)} , d = Re {Dei4(Kξ−Ωτ)} (13.4.6)
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where C and D are complex constants. As will be explained later, this
disturbance represents physically the side-bands. For a nontrivial solution
to (13.4.5), the following dispersion relation must hold,

Ω = ±
√

α2K2 − 2αβa2
0 . (13.4.7)

If αβ < 0, the square root is always real and the side-band disturbance is
purely sinusoidal, hence is neutrally stable. If, however, αβ > 0, Ω can be
imaginary and the side-band disturbance can increase exponentially with
time, hence is unstable; this occurs when

K2 <
2βa2

0

α
. (13.4.8)

Because of Eq. (13.2.61), Stokes’ waves on deep water are unstable if∣∣∣∣Kk
∣∣∣∣ < 81/2ka0 . (13.4.9)

The steeper the waves, the broader the unstable side band. The dispersion
relation corresponding to Eq. (13.4.7) is

Ω = ±ω

[
K2

8k2

(
K2

8k2
− k2a2

0

)]1/2

. (13.4.10)

The unstable growth rate is zero at both K = 0 and 81/2k2a0. The maxi-
mum growth rate occurs when ∣∣∣∣Kk

∣∣∣∣ = 2ka0 , (13.4.11)

at which

MaxΩ = ±i
1
2
ω(k2a2

0) . (13.4.12)

The corresponding ā′ and W
′
are out of phase by 1

2π. Generally, the growth
rate Im Ω varies with the wavelength of the side-band disturbance as shown
in Fig. 13.1.

To see the physical meaning of the disturbance represented by (13.4.6),
we return to the free-surface displacement

ζ = Re {Aeikx−iωt} = Re
{

B exp
(

ikx − iωt − i

∫
γ dτ

)}
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Figure 13.1: The asymptotic growth rate of the side-band amplitudes as ȧ function of a
modulational wavenumber (from Benjamin and Feir, 1967, J. Fluid Mech. Reproduced
by permission of Cambridge University Press).

and substitute (13.4.3) and then (13.4.6) to get

ζ = Re

{
a0

[
exp

(
ikx − iωt − iβa2

0ε
2t − i

∫
γ dτ

)]

·
[
1 +

1
2
(C + iD) exp(iK(x1 − Cgt1) − iΩt2)

+
1
2
(C∗ − iD∗) exp(−iK(x1 − Cgt1) + iΩt2)

]}
.

The first term in the curley brackets is the carrier (Stokes) waves. The next
two are small disturbances with the frequency shifts ±εΩ = εKCg from the
carrier wave, hence they are called side-bands.

A physical explanation of this side-band instability has been given by
Lighthill (1978, p. 462). Consider a Stokes wavetrain with a slowly modu-
lated envelope. The crests near a peak of the envelope are faster than those
on either side of the peak and, therefore, tend to shorten the waves ahead
and lengthen the waves behind. Now the group velocity in deep water is
larger for longer waves. The rate of energy transport is lower in front and
higher behind, hence accumulation occurs near the envelope peak, whose
height must increase. Similarly, the trough of the envelope will tend to
decrease, resulting in instability.

Controlled experiments by Feir as reported in Benjamin (1967) and by
Lake and Yuen (1977) support the theory fairly well as shown in Fig. 13.2.
The discrepancy decreases for smaller wave slope or slower rate of modula-
tion (smaller K/k).
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Figure 13.2: Comparison of calculated amplification rate with experimental results as
a function of wave slope. Theoretical results: solid curve, by Eq. (13.4.10); dashed
curve, Crawford et al. (1981). For K/k = 0.2, the Longuet–Higgins (1978b) results by
exact theory cannot be distinguished from the dashed line. Experimental results: ©,
K/k = 0.4 and •, K/k = 0.2, by Lake et al. (1977); �, K/k = 0.2 by Benjamin (1967)
(from Crawford et al., 1981, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).

From the expressions of α and β in Eqs. (13.2.43b) and (13.2.43c), it
can be shown that the Stokes waves on finite depth are unstable to colinear
side-band disturbances if kh > 1.36.

Benney and Roskes (1969) further studied side-band disturbances which
propagated obliquely to the primary Stokes waves [cf. Eqs. (13.3.1) and
(13.3.4)]. Starting from Eqs. (13.2.36) and (13.2.40) directly and letting

A = (a0 + A′) exp(−iω2a
2
0τ) ,

φ10 = U x1 − gbt1 + φ′
10 ,

with (
A′

φ′
10

)
∝ exp(i(K1x1 + K2y1 − Ωt1)) ,
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(a)

(b)

Figure 13.3: Instability of side-band waves which are inclined to the primary Stokes
waves for various values of kh. Unstable regions are shaded. The maximum growth
rate Im Ω/ωk2a2

0 is also marked (from Benney and Roskes, 1969, Studies Appl. Math.
Reproduced by permission of the Editor). (a) kh = 2.00; (b) kh = 1.36; (c) kh = 0.7;
(d) kh = 0.30. At kh = 0.38 the instability region reduces to a straight line.
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(c)

(d)

Figure 13.3: (Continued)
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they showed that in the K1, K2 plane there were always regions in which
the Stokes waves were unstable, except for kh = 0.38. Sample regions of
instability are plotted in Fig. 13.3. Because of the difference in the shaded
area, the likelihood of instability is greater for greater water depth. In
nature, modulation in any direction is possible; therefore, Stokes’ waves
are always susceptible to instability.

The subject of wave instability in infinitely deep water has been studied
in several ways in the ensuing years. For disturbances colinear with the
primary waves, Longuet–Higgins (1978a, b) started from the numerically
exact solution for a steady progressive wave and superimposed perturba-
tions both shorter (superharmonics) and longer (subharmonics) than the
primary wave. In particular, the subharmonic disturbance is an exten-
sion of the Benjamin-Feir wave. In the first quadrant of the plane K/2k

(ordinate) versus ka0 (abscissa), the zone of instability in the first quad-
rant was found to be a crest-like region, instead of the whole region to the
right of the straight line K/2k = 21/2ka0 according to Eq. (13.4.9) (see
Fig. 13.4). Thus for sufficiently high ka0 the waves are restabilized. In
addition Longuet–Higgins (1978b) found that infinitely long perturbations

Figure 13.4: Stability diagram for numerically exact periodic nonlinear waves in deep
water. The tangent at the origin corresponds to K/2k =

√
2ka0 [cf. Eq. (13.4.9)] (from

Longuet–Higgins, 1978b, Proc. R. Soc. Lond. Reproduced by permission of the Royal
Society of London).
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could induce very rapid instability at ka0
∼= 0.41. (The maximum possible

steepness is ka0 = 0.4434.)
There are now two approximate theories which improve the results of the

cubic Schrödinger equation. One is due to Dysthe (1979) who retained the
slow modulation assumption (Ω/ω, K/k � 1) but included nonlinear terms
of the fourth order. His instability region was bounded only on the left by a
curve which roughly coincided with the left boundary of the crest shown in
Fig. 13.4. The predicted wavenumber of the most unstable side-band mode
was, however, below Eq. (13.4.11), the exact numerical theory and the
experimental values. The second approximate theory is due to Crawford et
al. (1981) who applied an integro-differential equation of Zakharov (1968)
which is valid to third order in wave slope but not restricted to side-band
disturbances adjacent to the main waves (namely, K/k need not be small).
Their instability region was also a finite crest whose left side agreed with
Longuet–Higgins remarkably well, and the predicted growth rates were also
closer to the measured values, as shown in Fig. 13.2. More details of the
broad-band approximation will be discussed in Chapter Fourteen.

The subsequent evolution of initial instability must, of course, be treated
as a nonlinear problem, to which we turn within the framework of the cubic
Schrödinger equation (namely, small ka0).

Exercise 13.1

Consider a progressive edge wave of the lowest mode on a plane beach of
slope ε:

φ = − igD

2Ω
exp(−Kx1) exp i(Ky1 − Ωt1) + ∗ + higher-order terms

for x1 > 0, where x1 = εx, y1 = εy, t1 = εt, and Ω2 = gK. Show by using
Eq. (12.1.49), and assuming D = D(y2, y3, . . . , t2, t3, . . .), that the envelope
evolves according to the following equations:(

∂

∂t2
+ Cg

∂

∂y2

)
D = 0

and

i

(
∂

∂t3
+ Cg

∂

∂y3

)
D − 1

2
∂2Ω
∂K2

∂2D

∂y2
2

− ΩK4

4
|D|2D +

Ω
4

D = 0

where Cg = g/2Ω is the group velocity of the edge wave along the shore
and −a2Ω/∂K2 = g2/4Ω3. Note that the envelope is unstable to side-band
disturbances.
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Exercise 13.2

Derive the instability criterion for obliquely incident side-band disturbances
and confirm Fig. 13.3.

Exercise 13.3: Short-Crested Waves in a Long Tank2

Consider a long wave tank of rectangular cross section of width 2a. Choose
the coordinate system so that the tank axis is x > 0 and the side walls are
y = ±a. At the end x = 0 a wavemaker is a rigid plate performing angular
oscillations about a vertical hinge coinciding with the z axis. Assume that
the wavelength and the tank width are comparable in order of magnitude
to the mean depth h.

Show first by a linearized theory for monochromatic waves, that there
are special forcing frequencies ωm across which a propagating mode turns
to an evanescent mode, and that at ω = ωm unbounded resonance occurs.
Now examine how the linearized theory breaks down near resonance. Let
ω = ωm + µ2Ω, µ � 1. Examine the next-order approximation to decide
the appropriate slow time and space coordinates that describe the resonant
growth in space and in time, i.e., find the powers a and b in xa = µax, tb =
µbt. Finally by including weak nonlinearity show that the amplitude of the
resonant mode is governed by a nonlinear Schrödinger equation. Deduce
the coefficients of the asymptotic equation.

Excercise 13.4: Snake Wavemaker in a Large Basin

Let there be a programmable wave-generator consisting of many narrow
pistons along one side (y = 0) of a wide test basin (−∞ < x < ∞, y >

0). Let the transverse displacement of the pistons be approximated by a
continuous function

Y (x, z, t) =
ε2a

2
f(z)ei(αx−ωt) + ∗

where a, ω, α can be controlled by computer programing, and

f(z) ≡ cosh k(z + h)
cosh kh

.

(i) Show by a linearized theory that the free-surface displacement in an
infinitely large basin is an obliquely progressive wave

ζ = −i
ε2aω2

2gβ
ei(αx+βy−ωt) + ∗

2For a related problem in an acoustic duct, see Aranha, Mei and Yue, 1982.
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where α2 + β2 = k2, with ω2 = gk tanh kh.

(ii) If β → 0, the crests become perpendicular to the x-axis (the line of
wavemakers) and spatial resonance occurs. Give reasons that you should
introduce y1 = εy, and possibly t1, t2.

(iii) Consider a nonlinear theory in which the wave amplitude can be
much larger than the forcing, i.e., ζ ∝ ε while Y ∝ ε2. Assume uniformity
in x, i.e., infinitely wide tank, i.e., ∂/∂x1, ∂/∂x2 = 0. What limiting form
of (13.2.36) and (13.2.39) can be used to describe the slow and nonlinear
evolution of A?

(iv) From the fully nonlinear boundary condition on the wavemaker
deduce the boundary condition ∂A/∂y1 = 2ω2a/g.

(v) By first showing that A has constant phase if a is real, show that
the steady-state limit of A is

|A(y1)| =
(2ka)1/2/(2kK

Cg
)1/4

1 + y1
2 (2kK

Cg
)1/4(2Ka)1/2

where

K =
ω2k2(cosh 4kh + 8 − 2 tanh2 kh)

16 sinh4 kh
.

Exercise 13.5: Uniform Flow Over a Wavy Bed (Sammarco, Mei
and Trulsen, 1994)

A steady uniform flow of velocity U passes over a series of periodic sandbars
on the seabed:

z = −h + b sin Kx , where Kh = O(1) .

If the number of bars is infinite find the steady waves on the free surface
caused by the bars for any general U. Observe that there is a special U =
Uc at which the linearized result fails. To avert unbounded growth near
resonance U = Uc(1 + εU1), derive a nonlinear theory by allowing the free-
surface amplitude to be much larger than the bar amplitude, i.e., kA =
O(ε), but Kb = O(ε2).

13.5 Permanent Envelopes in Deep Water:
Nonlinear Solutions of the Evolution Equation

Benney and Newell (1967) first showed that Eq. (13.2.45) admits permanent
wave envelopes as solutions which are functions of (x−Ut) (also see Chu and
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Mei, 1970; Hashimoto and Ono, 1972; Zakharov and Shabat, 1972; Scott,
Chu, and McLaughlin, 1973, etc.). For illustration we consider the deep
water solution by Scott, et al. Let us first nondimensionalize Eq. (13.2.60),
with U = ∂/∂y1 = 0, by letting

A′ =
A

a0
, ξ′ = k2a0ξ , τ ′ = ω(ka0)2τ . (13.5.1)

With the primes omitted for brevity, the cubic Schrödinger equation
becomes

−i
∂A

∂τ
+

1
8

∂2A

∂ξ2
+

1
2
|A|2A = 0 . (13.5.2)

We seek a solution of the form

A = aeir(ξ−Vτ−δ) where a = a(ξ − Uτ) , r, δ = const , (13.5.3)

that is, a carrier wave with envelope a. The phase angle δ specifies the initial
position. Substituting Eqs. (13.5.3) into (13.5.2) and denoting derivatives
with respect to the argument by primes, we have

1
8
a′′ − r

(
1
8
r + V

)
a +

1
2
a3 + i

(
U +

r

4

)
a′ = 0 . (13.5.4)

The imaginary part implies

r = −4U (13.5.5)

which may be used in the real part to yield

1
8
a′′ + 4U

(
V − U

2

)
a +

1
2
a3 = 0 . (13.5.6)

Multipling Eq. (13.5.6) by a′ and integrating, we get

(a′)2 + 32U

(
V − U

2

)
a2 + 2a4 = C (13.5.7)

where C is a constant. Multiplying Eq. (13.5.7) by a2 and defining

E = a2 , (13.5.8)

we further get

(E′)2 + 64U(2V − U)E2 + 8E3 = 4CE ,

which may be rewritten

(E′)2 = 8(Emax − E)(E − Emin)E ≡ P (E) . (13.5.9)
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Figure 13.5: Cnoidal and solitary envelopes.

Note that

8(Emax + Emin) = −64U(2V − U) , (13.5.10)

and, by definition (13.5.8), Emin > 0; hence, we must insist that U(2V −
U) < 0. The cubic polynomial P (E) is sketched in Fig. 13.5, and the
corresponding P (a2) which is a sixth-degree polynomial is also sketched. A
solution exists only if P is positive.

When C = 0, Emin vanishes, and Eq. (13.5.9) becomes

(E′)2 = 8E2(Emax − E) . (13.5.11)

P (E) has two zeroes as shown in Fig. 13.5(a). Upon integration we obtain

E = Emax sech2[(2Emax)1/2(ξ − Uτ)] (13.5.12)

or

a = amax sech [21/2amax(ξ − Uτ)] (13.5.13a)
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which describes a solitary wave packet or an envelope soliton. Note that
amax = E

1/2
max, while U and V are related by Eq. (13.5.10) with Emin = 0.

In particular, one may take U = 0, V U = −1/16 and amax = 1 so that

a = sech 21/2ξ , A = (sech 21/2ξ)e−i(τ/4+δ) . (13.5.13b)

More generally, C 
= 0 and Emin > 0 [as shown in Fig. 13.5(b)]. The
solution to Eq. (13.5.9) can be expressed in a cosine-elliptic function which
has been discussed more fully in the shallow water theory,

E = Emin + ∆E Cn2{(2∆E)1/2γ−1(ξ − Uτ)} , (13.5.14)

with

∆E = Emax − Emin = energy amplitude ,

γ =
(

∆E

Emax

)1/2

.

The wavelength of the envelope is

λ =
21/2

(∆E)1/2

∫ π/2

0

du

(1 − γ2 sin2 u)1/2
(13.5.15)

(see, e.g., Chu and Mei, 1970). Again ∇E, U , and V can be specified,
subject to Eq. (13.5.10).

For finite depth, Eq. (13.2.45) may be rescaled by

ξ = αξ̄ and τ = ατ̄

to give the following canonical equation:

−i
∂B

∂τ̄
+

∂2B

∂ξ̄2
+ κ|B|2B = 0 , (13.5.16)

where κ = αβ. For κ > 0 (i.e., kh > 1.36) the extension to Eq. (13.5.13a)
is easily verified to be

B = a exp
[
−i

U

2
(ξ̄ − V τ − ξ̄1)

]
, (13.5.17)

where

a = amax sech
[(κ

2

)1/2

amax(ξ̄ − ξ̄0 − Uτ̄ )
]

, (13.5.18)
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with

amax =
2
κ

U

(
U

8
− V

)
. (13.5.19)

The soliton is characterized by the free parameters amax and U and by the
phases ξ̄0 and ξ̄1.

For αβ < 0, a soliton exists which is a depression at the center and
approaches a finite constant at |ξ| ∼ ∞. The expression is

B =
(

2
|κ|

)1/2 (λ − iν)2 + e2ν(ξ̄−ξ̄0−2λτ̄)

1 + e2ν(ξ̄−ξ̄0−2λτ̄)
, (13.5.20)

where

v = (1 − λ2)1/2 (13.5.21)

(Zakharov and Shabat, 1973). A little manipulation shows that

|B| =
(

2
|κ|

)1/2

[1 − ν sech2ν(ξ̄ − ξ̄0 − 2λτ̄ )]1/2 . (13.5.22)

Thus, the soliton is characterized by ξ0 and the amplitude ν. A slightly
more general solution was deduced independently by Hesegawa and Tappert
(1973). These solutions are known either as the dark soliton or the envelope-
hole soliton. Note that as ν increases toward 1, λ decreases so that a deeper
hole travels more slowly. In the limit of ν → 1, λ → 0 and

B →
(

2
|κ|

)1/2

tanh(ξ̄ − ξ̄0) (13.5.23)

which is called the phase jump because of the sign change from −1 at
ξ̄ ∼ −∞ to +1 at ξ̄ ∼ ∞.

Periodic permanent envelopes for both αβ ≷ 0 have been given by
Hashimoto and Ono (1972).

13.6 Transient Evolution of One-Dimensional Wave
Envelope on Deep Water

As the linearized instability theory must fail beyond the initial stage of
exponential growth, the fuller nonlinear theory must be employed for the
evolution over long periods of time. Early experiments by Feir (1967)
showed that the envelope of a wave packet tended to break up into several
groups strung together. Numerical solution of Eq. (13.2.47) by Chu and
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Mei (1971) confirmed this trend. Both these attempts, however, did not
cover a long enough time interval to reveal the entire physical picture. A
theoretical breakthrough was scored by Zakharov and Shabat (1972) who
extended the technique of Gardner et al. (1967) and solved Eq. (13.5.16)
exactly for both κ (= αβ) ≷ 0 when the initial data B(ξ, 0) vanished suffi-
ciently fast as |ξ̄| ↑ ∞. Their success is based on an important observation
by Lax (1968): To solve any nonlinear evolution equation

∂B

∂τ̄
= NB (13.6.1)

where N is a nonlinear operator, one must first seek two linear operators
L and M , both involving only derivatives with respect to ξ̄ and containing
B(ξ̄, τ̄) in the coefficients, such that

Lτ̄ = LM − ML (13.6.2)

and

iψτ̄ = Mψ . (13.6.3)

If the operators are found, the eigenvalues σ of the problem

Lψ = σψ (13.6.4)

will remain constant for all time (τ̄ ). This statement can be verified by
differentiating Eq. (13.6.4) with respect to τ̄ ,

στ̄ψ = Lτ̄ψ + (L − σ)ψτ̄

= LMψ − MLψ + (L − σ)ψτ̄

= (L − σ)(iψτ̄ − Mψ) = 0

where Eqs. (13.6.2)–(13.6.4) have been used. Thanks to this invariance, the
initial data B(ξ̄, 0) alone enables one to solve Eq. (13.6.4) for the spectrum
of σ and also ψ(x, 0). For localized initial data, we expect B(ξ̄, τ̄ ) to be
localized in ξ̄ too; the operator M can be simplified so that Eq. (13.6.3)
may be easily solved for ψ(±∞, τ̄), based on the knowledge of ψ(±∞, 0).
Now the eigenvalues σ and the far field ψ(±∞, τ̄) are known for all τ̄ ;
the inverse scattering theory may be called upon to solve B(ξ̄, τ̄) for all ξ̄,
with τ̄ being a parameter. The mathematical background of the last step
is unfortunately very complicated, leaning heavily on the complex function
theory. For a thorough treatise of the inverse scattering theory, see Ablowitz
and Segur (1981).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

776 Narrow-Banded Nonlinear Waves in Water of Intermediate or Great Depth

For the cubic Schrödinger equation (13.5.16), Zakharov and Shabat
found that the eigenfunction ψ is a two-component vector ψ = (ψ1, ψ2)
and that L and M are 2 × 2 matrices:

L = i

[
1 + p 0

0 1 − p

]
∂

∂ξ̄
+

[
0 B

B∗ 0

]
with κ =

2
1 − p2

(13.6.5a)

M = −p

[
1 0

0 1

]
∂2

∂ξ̄2
+


|B|2
1 + p

iBξ̄

−iB∗̄
ξ

−|B|2
1 − p

 . (13.6.5b)

In general, the search for these operators is no trivial task, but a systematic
approach for a certain class of problems has now been found by Ablowitz
et al. (1974).

The theory of Zakharov and Shabat has since been elaborated for
detailed implications by Satsuma and Yajima (1974)3 and confirmed nu-
merically and experimentally by Yuen and Lake (1975). The main physical
features of these works for κ > 0 are summarized below.

1 An arbitrarily shaped envelope will eventually evolve into a finite
number of solitons, plus minor oscillations which decay as t−1/2.

2 The jth soliton is given by

Bj(ξ̄, τ̄ ) = 2
(

2
κ

)1/2

bj{sech 2bj(ξ̄ − ξ̄j − 4aj τ̄)}

× {exp[4i(a2
j − b2

j)τ̄ − 2iaj ξ̄ + iφj ]} , (13.6.6)

where aj and bj are the real and imaginary parts of the discrete eigen-
value σj of Eq. (13.6.4). The soliton has the amplitude 2(2/κ)1/2bj ,

phase speed 4aj , and phases ξ̄j and φj which are related to the reflec-
tion coefficient of the scattering problem (the continuous eigenvalue
spectrum). In general, these complex eigenvalues σj may have dis-
tinct real parts; thus, the solitons may drift apart with time. A
special case is the so-called N -soliton solution which corresponds to
N distinct eigenvalues σj , j = 1, . . . , N. If there are N solitons at
t = 0 with the slowest one in front, then the faster solitons will over-
take the slower ones at sufficiently large τ̄ . The only effect of collision
between a pair of solitons is a shift of phases ξ̄i and φi.

3I thank Professor Harvey Segur for this reference.
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3 When the initial data B(ξ̄, 0) is real and not antisymmetric in ξ̄, the
discrete eigenvalues are purely imaginary. In this case all solitons
stay together and form bound solitons. As a slight extension, if the
initial

B(ξ̄, 0) = B(ξ̄)eiV ξ

where V is a real constant and B(ξ̄) is real and nonantisymmetric in
ξ̄, then all solitons have the same speed −2V (relative to the group
velocity in the rest frame). Because each soliton oscillates at the pe-
riod 4b2

j , the composite envelope exhibits recurrence with frequencies
4(b2

i −b2
j). The number of recurrence frequencies is equal to the num-

ber of distinct differences between b2
i and b2

j . For example, if N is
the number of solitons, then for N = 2 there is only one recurrence
frequency; for N = 3, there are two recurrence frequencies, . . . , and
so on.

For the special case of

B(ξ̄, 0) = B0 sech
ξ̄

λ̄
, B0 real , (13.6.7)

Eq. (13.6.4) with Eq. (13.6.5a) can be reduced to a hypergeometric equa-
tion for ψ; the discrete eigenvalues and the scattering coefficients for the
continuous eigenvalues can be obtained explicitly (Satsuma and Yajima,
1974; Kuehl, 1976). In particular, the discrete eigenvalues are

σj = i

((κ

2

)1/2

B0λ̄ − j +
1
2

)
, j = 1, 2, 3, . . . . (13.6.8)

Thus, for N solitons to emerge, the initial size B0λ̄ must be such that(κ

2

)1/2

B0λ̄ − N +
1
2

> 0 . (13.6.9)

Moreover, when(κ

2

)1/2

B0λ̄ = N , N = positive integer , (13.6.10)

the inverse scattering problem can be solved for B(ξ̄, τ̄) explicitly; the result
only involves N bound solitons.

To apply the above criteria to Eq. (13.5.2) with the initial data A(ξ, 0) =
A0 sech ξ/λ, the following changes are necessary:

B0 → A0 , λ̄ → λ

α
, κ → αβ .
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Criteria (13.6.9) and (13.6.10) then become(
β

2α

)1/2

A0λ > N − 1
2

for N solitons with tail (13.6.11)

and (
β

2α

)1/2

A0λ = N for N solitons only . (13.6.12)

For deep water α = 1
8 , β = 1

2 , the left side of Eqs. (13.6.11) and (13.6.12)
becomes 21/2A0λ.

To confirm their analytical results, Satsuma and Yajima (1974) also
computed numerically, from Eq. (13.5.2), a number of cases including
solitons either in a bounded state or emerging with different speeds.
There are now several numerical techniques (Lake, Yuan, Rungaldier, and
Ferguson, 1977; Fornberg and Whitham, 1978) which are relatively straight-
forward to execute. They can be readily applied to, or modified for, cases yet
unsolvable by the inverse scattering theory, such as semi-infinite domains,
periodic boundary conditions, two space dimensions, variable coefficients
for inhomogenous media, and so on. We cite below a simple implicit scheme
of the Crank–Nicolsen type, which was applied by Yue (1980) to two of the
three cases to be discussed. Referring to Eq. (13.5.2), let ∆ξ and ∆τ be
the discrete intervals on the ξ and τ axes and denote

An
j = A(j∆ξ, n∆τ) .

Equation (13.5.2) is approximated by

An+1
j = An

j − ∆τ

2

{
i

8(∆ξ)2
(An+1

j+1 − 2An+1
j + An+1

j−1 ) +
i

2
|Ãn+1

j |2An+1
j

+
i

8(∆ξ)2
(An

j+1 − 2An
j + An

j−1) +
i

2
|Ãn

j |2An
j

}
+ O(∆τ3, ∆ξ2) .

(13.6.13)

In the nonlinear terms, Ãn+1
j is estimated by the results at the nth time

step according to an Euler scheme:

Ãn+1
j = An

j − ∆τ

{
i

8(∆ξ)2
(An

j+1 − 2An
j + An

j−1) +
i

2
|An

j |2An
j

}
+ O(∆τ2, ∆ξ2) . (13.6.14)
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As examples, numerical solutions for the following types of initial data will
be discussed for physical pictures:

1 A single pulse.
2 A step envelope.
3 Periodic modulation of a uniform wavetrain.

In cases 1 and 2, the initial data are not localized, and analytical solutions
are not yet possible.

13.6.1 Evolution of a Single Pulse

For convenience, we express the initial data by

A(ξ, 0) = sech
(

21/2ξ

λ

)
. (13.6.15)

Recall from Eq. (13.5.13b) that A(ξ, 0) coincides with a soliton of unit
height if λ = 1.

First, we take λ = 2, corresponding to an initial pulse twice as long as a
soliton of equal height. It follows from Eq. (13.6.12) that N = 2 so that two
and only two solitons should emerge. For this case, the explicit solution has
been given by Satsuma and Yajima (1975, p. 300 after the transformation
u → NA, x → 21/2ξ/N , and t → τ/2N2)

A(ξ, τ) =
2[ch(3ξ/21/2) + 3e−iτ/2 ch(ξ/21/2)]
ch 2(2)1/2ξ + 4 ch21/2ξ + 3 cos 1

2τ
exp

(
− iτ

16

)
. (13.6.16)

Numerical confirmation is shown in Fig. 13.6(a). From the time history of
the pulse center |A(0, τ)|, shown in Fig. 13.6(b), the recurrence period is
seen to be τ0 = 12.6, while the theoretical value is 2π/ 1

2 = 12.566. Typical
snapshots |A(ξ, τi)| are given in Fig. 13.6(c) at quarter-period intervals to
show the stages of evolution. Figure 13.6(d) shows the phase p defined by
A(ξ, τ) = |A|eipπ at these same instants. Note first that the phase curves
for two instants separated by a recurrence period differ only by a constant.
Thus, the phase variation, that is, the wavenumber, is unchanged. Also
note that at the instant c0 (or c1, . . .) when the envelope has a node, the
phase changes sharply, implying that the frequency distribution has a sharp
trough in the front half of the group. By symmetry, there is a peak in the
frequency distribution in the rear half of the group. These predictions (Chu
and Mei, 1971) are in qualitative agreement with Feir’s experiments. Due
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Figure 13.6: Evolution of an initial pulse envelope twice the length of the soliton of equal
height A(ξ, 0) = sech (ξ/21/2) (from Yue, 1980). (a) The overall view for 0 < τ < 30,
0 < ξ < 6. (b) Centerline amplitude |A(ξ = 0, τ)| as a function of slow time τ. The
recurrence period is τ0 = 12.6. The marked points ajs and ci’s are at τ0 apart, while bi’s
are at 1

2
τ0 apart. (c) Snapshots of |A(ξ, τ)| at instants marked on (a). (d) Snapshots of

the phase factor p. (pπ = phase of A) at the instants marked on (a).
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Figure 13.6: (Continued)
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Figure 13.7: Evolution of an initial pulse envelope thrice as long as a soliton of equal
height A(ξ, 0) = sech (21/2ξ/3) (from Yue, 1980). (a) Overall view for 0 < ξ < 6,
0 < τ < 30. (b) Centerline amplitude |A(ξ = 0, τ)|. (c) Snapshots of the envelope
amplitude at sample instants of a recurrence period as marked in (b). (d) Snapshots of
envelope phase at sample instants of a recurrence period.
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Figure 13.7: (Continued)
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to the long time scales, it is difficult to check recurrence quantitatively in
a laboratory unless damping is taken into account.

Let us take λ = 3 next. The corresponding N is 3 according to
Eq. (13.6.12). The overall view is given by Fig. 13.7(a). In Fig. 13.7(b)
the history of the pulse center shows distinctly the existence of more than
one recurrence period. Figure 13.7(c) shows the typical profile at various
stages. Again the nodes of the envelope are accompanied by rapid changes
of phases which are not shown here.

Yue (1980) also computed for two initial pulses with the same carrier
frequency and the same shape, but which were well separated,

A(ξ, 0) = sech [2
√

2(ξ − ξ0)] + sech [2
√

2(ξ + ξ0)] .

In particular, each pulse was half as wide as a soliton of unit height but the
combined profile had the same area as a single soliton of unit height. His
results showed that after a complex evolution the two pulses coalesced into
a single soliton of height 0.4.

More generally, two initial pulses with complex amplitudes may lead to
solitons traveling at different speeds (see Satsuma and Yajima for a variety
of numerical examples).

13.6.2 Evolution of the Front of a Uniform Wavetrain

In Section 2.4 the front of a suddenly started sinusoidal wavetrain was
found to be governed by a linear Schrödinger equation. As the envelope
advanced, undulations developed behind the front in a way describable by
Fresnel integrals. We now reexamine the problem by including nonlinearity.
The task is to solve Eq. (13.5.2) with the following initial data:

A(ξ) =
1
2

(
1 + tanh

ξ

λ

)
. (13.6.17)

Far ahead of the front there is no disturbance,

A → 0 , ξ → ∞ . (13.6.18)

Far behind the front, a uniform Stokes wave should be approached,

A → e−iτ/2 , ξ → ∞ . (13.6.19)

Note from the definitions of ξ and τ by Eq. (13.5.1), with primes omitted
but implied, that a smaller ε = ka0 corresponds to greater physical distance
and longer time.
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Figure 13.8: Evolution of the front of a periodic wavetrain (from Yue, 1980). (a) Linear
theory; (b) nonlinear theory.
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Figure 13.8 shows the contrast between linear and nonlinear theories
for an abrupt transition λ ≈ 0. The effect of finite amplitudes dramati-
cally changes the front of the envelope, creating much stronger undulations.
There are yet no appropriate experiments with which the nonlinear inviscid
theory can be compared. Yue (1980) examined other values of λ but found
no qualitatively new features.

13.6.3 Periodic Modulation of a Uniform
Wavetrain — Evolution Beyond the
Initial Stage of Instability

After the initial period of instability, the side-band disturbance grows so
large that the full nonlinear effect of Eq. (13.5.2) becomes important. Chu
and Mei (1971) calculated the nonlinear evolution for the most unstable
case K/k = 2ka0 by using Eqs. (13.2.47a) and (13.2.47b), but could not

Figure 13.9: Sample records of the free-surface displacement of an initially uniform
wavetrain. Initial wave frequency is 3.6 Hz (from Lake et al., 1977, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

13.6. Transient Evolution Wave Envelope on Deep Water 787

carry the computations beyond the first occurrence of an envelope node
(a ≈ 0). Based on Eq. (13.5.2) with the requirement of periodicity over
one modulational period, more extensive calculations have been accom-
plished by Yuen and Ferguson (1978a, b). They found recurrence to be
the dominant feature so that the envelope with a modulational wavelength
evolved periodically from one crest to several and back to one again. A
sample of experimental evidence is shown in Fig. 13.9. Correspondingly,
energy in the lower harmonics spread to higher harmonics and then re-
turned to the lower harmonics, and so on. The intermediate stage became
progressively more complex in appearance if K/k was reduced. By vary-
ing K/k, Yuen and Ferguson found a systematic pattern for this complex
variation. For 2ka0 < K/k < 2(2)1/2ka0, only the first harmonic in the
Stokes wavetrain was unstable to the disturbance, and the evolution was
the simplest. However, when K/k fell slightly below 2ka0, both the first
and second harmonics were unstable; the evolution became more involved.
Figure 13.10(a) shows the wavelengths and growth rates of several initial
modulational disturbances, all of the form a = a0(1 − 0.1 cosKξ) with
the appropriate phase in accordance with Eqs. (13.4.5) and (13.4.6); corre-
sponding evolutions are depicted in Fig. 13.10(b).

An approximate analytical theory has been worked out also by Stiassnie
and Kroszynski (1982) by ignoring the higher harmonics of the disturbance,
that is, by assuming

B = C0 + C−1e
−2iπξ̄ + C1e

2iπξ̄ . (13.6.20)

where C0(τ̄ ) corresponds to the carrier wave and C±1(τ̄ ) correspond to
the side-band disturbances. As in the case of harmonic generation in
shallow-water waves (cf. Section 12.11), we can substitute Eq. (13.6.20)
into Eq. (13.5.16) to obtain two coupled nonlinear ordinary differential
equations for C0 and C1 subject to the initial conditions C0(0) = 1 and
C±1(0) = δeiθ, C−1 being equal to C1. These two equations may be solved
explicitly in terms of elliptic integrals. When the coefficient κ = αβ in
Eq. (13.5.16) is such as to render the first harmonic unstable, C±1 oscillate
at an amplitude comparable to C0. The period of modulational recurrence
so obtained agrees well with the numerically computed result by adding
a large number of higher harmonics to Eq. (13.6.20). The approximate
amplitude is, however, less satisfactory.

The regularity in the long-time evolution of Stokes wave suggests that
for waves that are not too steep, nonlinearity tends to bring coherence
rather than chaos. This fact may have important ramifications on the
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Figure 13.10: Relationship between initial conditions and long-time evolution of solutions of the nonlinear Schrödinger equation. (a)
The perturbation wavenumber K of the various cases, and (b) their corresponding time evolution. The initial conditions consist of
a uniform wavetrain with wavenumber k0 and amplitude a0 subject to a 10% perturbation. The numerals circled in (a) identify the
cases in (b), and also correspond to the number of harmonics of the perturbation (including the primary) that lie within the unstable
regime according to the stability analysis. Note that the number of unstable harmonics corresponds exactly to the number of modes
that dominate the evolution. For example, Case 4 shows an evolution in which the lst, 2nd, 3rd, 4th, lst, and 2nd harmonics, in that
order, took turns dominating the evolution as indicated by the number of peaks at various stages of evolution in the amplitude plot
(from Yuen and Ferguson 1978. Physics of Fluids. Reprinted by permission of American Institute of Physics).
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development of the wind-wave spectrum (Lake and Yuen, 1978; Mollo-
Christensen and Ramamonjiarisoa, 1978). For still steeper waves, Lake
et al. (1977) observed experimentally that the carrier frequency tended to
reduce with propagation distance (compare the records at 5 ft. and 30 ft.
in Fig. 13.9), and that the reduction was associated with the faster growth
of the lower sideband [C−1 in Eq. (13.6.20)]. By experimenting with a
wide range of ka, Melville (1982) found for ka0 < 0.29 and for sponta-
neous disturbances, that the lower sideband also grew faster than the up-
per sideband [C1 in Eq. (13.6.20)]. In addition, breaking was prevalent for
0.21 < ka0 < 0.29 which partially eroded the phenomenon of recurrence.
Further down the wave channel both sidebands fell to local minima while
breaking ceased, and then rose again. He also found breaking to be ac-
companied by an amplitude reduction of the upper sideband relative to
the lower sideband, thereby enhancing the frequency downshift. Beyond
ka0 > 0.3 three-dimensional instability dominated. It is well known that
the peak of a typical wind-wave spectrum shifts to lower frequencies with
increasing fetch (see Hasselman et al., 1973, Fig. 2.5). Therefore, the cited
experiments suggest that this downward shift may be contributed partly
by nonlinearity and not by wind alone. This feature is not present in the
solutions of the cubic Schrödinger equation, which predicts that opposite
sidebands with equal initial amplitudes remain equal throughout cycles of
rise and fall (Yuen and Ferguson, 1978a). Numerical solution of Dysthe’s
extended nonlinear Schrödinger equation with higher order dispersive terms
has indeed shown higher growth of the lower side-band at the periodically
recurring maxima of both side-bands (Lo and Mei, 1985). With an empirical
model of breaking, Trulsen and Dysthe (1990) have found the downshift to
be sustained. Theoretical efforts for frequency downshift of broad-banded
sea specturm are still in progress.

We now turn to nonlinear effects in waves over variable depth.

13.7 Infragravity Waves Over Slowly Varying Depth

From swell records along beaches, Munk (1949) and Tucker (1950) ob-
served long waves of period between 1 to 5 minutes, and found strong
correlation between the long wave and the swell envelope. For storms of
1–2 days duration, the long-wave height is roughly one-tenth of the swell
amplitude. Munk attributed this correlation to the nonlinear interaction
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between waves and coined the term surf beats for these long waves. He
suggested that they may be of relevance to harbor or bay oscillations.
Since the natural frequencies of moored ships and floating platforms for
oil-drilling platforms are in the similar range, the presence of infragrav-
ity waves has the potential to induce either straining of the mooring lines
or excessive oscillations. The nonlinear mechanism of surf beats was first
explained theoretically by Longuet–Higgins and Stewart (1962) through the
idea of the radiation stresses. Interests on this topic was further advanced
by the field observations of Herbers, Elgar and Guza (1994, 1995a, b).
These authors introduced the term infragravity waves which is now widely
used in the literature on coastal engineering and oceanography.

In Section 13.2, it was shown by a perturbation analysis that slowly
modulated short waves over horizontal seabed forces long waves. A similiar
result (11.10.5) was derived earlier by a different reasoning in terms of
radiation stresses. In this section we follow Mei and Benmoussa (1984) and
first extend these results for one train of refracted waves over bathymetries
with horizontal length scales much greater than a typical wavelength, then
discuss the physics of infragravity waves.

13.7.1 Equation for Long Waves Forced by
One Train of Short Waves

We extend the ray approximation in Chapter 3 and begin as in
Section 13.2.1 by requiring the following boundary condition on the seabed

φz + hxφx + hyφy = 0 , z = −h(x, y) . (13.7.1)

For slowly varying bathymetry we again let, without loss of generality, the
same small parameter ε characterize both the wave steepness kA and the
slow modulation in space and time, i.e., h = h(x1).

The nonlinear boundary conditions on the free surface are approximated
by Taylor expansion for small ζ. Multiple-scale expansions (13.2.5) are again
assumed, so that (13.2.6) to (13.2.9) still hold. Instead of (13.2.11), the
following WKB expansions are introduced,

φ(x, z, t) =
∞∑

n=1

εnφn =
∞∑

n=1

εn
m=n∑

m=−n

φnm(x1, z, t1)eimS/ε (13.7.2)

ζ(x, t) =
∞∑

n=1

εnζn =
∞∑

n=1

εn
m=n∑

m=−n

ζnm(x1, t1)eimS/ε (13.7.3)
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where S(x1, t1)/ε is the phase function of the fundamental harmonic, re-
lated to the wave frequency and wavenumber by

ω = − ∂S

∂t1
, k = ∇1S (13.7.4)

with ∇1 = (∂/∂x1, ∂/∂y1) being the horizontal gradient with respect to
the slow coordinates. After separating different orders and harmonics, the
perturbation equations are deduced for nth order and mth harmonic as
before. Only the seabed boundary condition must now be changed to:

∂ψnm

∂z
= Bnm , z = −h (13.7.5)

where

B10 = B11 = B20 = 0 ,

B21 = −∇1h · (ikφ11) , (13.7.6)

B30 = −∇1h · ∇1φ10.

· · ·

The vertical boundary-value problems for φ10, φ11 and φ20 are homoge-
neous and that for φ21 has been treated in the lineaized theory of Chapter 3.
In particular, we still have φ10 = φ(x1, t1), and φ11 is the same as that given
by the ray approximation. From Bernoulli equation on the free surface, we
still get

ζ20 = −A

4
ω2

g sinh2 kh
− 1

g

∂φ10

∂t1
. (13.7.7)

As for the long wave, changes come at the third order, where the problem
for φ30 is now inhomogeneous. By applying Green’s formula to φ10 and φ30,
we get the solvability condition

G30

g
=

∫ 0

−h

F30 dz + B30 (13.7.8)

which gives

∂ζ20

∂t1
+ ∇1 ·

(
h∇1φ10 +

gk
2ω

|A|2
)

= 0 . (13.7.9)

Taking the time derivative of this result and making use of (13.7.7), we get
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∇1 · (gh∇1ζ20) − ∂2ζ20

∂t21

= ∇1 ·
(

gk
2ω

∂|A|2
∂t1

)
−∇1 ·

(
h∇1

(
ω|A|2

4 sinh2 kh

))
. (13.7.10)

We leave it as an exercise to show the equivalence of (13.7.10) and (13.2.36)
for constant h.

By using

∇1k = − ωk∇1h

Cg sinh 2kh
(13.7.11)

and

∂|A|2
∂t1

+ ∇1 · (Cg|A|2) = 0 , (13.7.12)

the right-hand-side of (13.7.10) can be written in a different form

−∇1 ·
{
∇1

(
gkh|A|2

2 sinh 2kh

)
+

g

2ω
[k · ∇1(Cg|A|2) + |A|2Cg∇1k]

}
.

(13.7.13)

Now the first term above can be rewritten as

− ∂2

∂x1i∂x1j

[
g|A|2

2

(
Cg

C
− 1

2

)
δij

]
,

the second term as

− g

2ω

∂

∂x1i

[
ki

∂

∂x1j

(
Cg|A|2 kj

k

)]

= − g

2ω

∂2

∂x1i∂x1j

(
Cg|A|2 kikj

k

)
+

g

2ω

∂

∂x1i

[(
Cg|A|2 kj

k

)
∂ki

∂x1j

]
,

and the third term as

− g

2ω

∂

∂x1i

[
Cg|A|2

2k

∂(kjkj)
∂x1i

]
= − g

2ω

∂

∂x1i

[
Cg|A|2kj

k

∂kj

∂x1i

]

= − g

2ω

∂

∂x1i

[
Cg|A|2kj

k

∂ki

∂x1j

]
,
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where the irrotationality of k has been used. Therefore (13.7.10) can be
reduced to the following form,

∇1 · (gh∇1ζ20) − ∂2ζ20

∂t21
= −1

ρ

∂2Sij

∂x1i∂x1j

, (13.7.14)

where Sij with i, j = 1, 2 are the components of the radiation stress tensor
for a progressive wave

Sij =
ρg|A|2

2

[(
Cg

C
− 1

2

)
δij +

Cg

C

kikj

k2

]
. (13.7.15)

If ζ20 is identifed with ζ̄, Eqs. (13.7.14) and (12.10.5) are the same.
From the form of (13.7.14), two kinds of long waves can be foreseen. One

corresponds to the homogeneous solution, propagating at the characteristic
speed

√
gh. The other is forced by the inhomogeneous terms on the right,

which are associated with the slowly mudulated short waves. Since the
short-wave envelope propagates at the (slower) group velocity Cg, the forced
long wave must do likewise, hence is bound to the short-wave envelope. It
is known in Chapter Four that a submarine ridge may refract, reflect or
trap long waves. When there is forcing by the radiation stress in the short
waves, what can we expect of the long waves? This matter is of interest to
the dependence of the sea spectrum on local bathymetry.

Let us introduce the normalization

x1 =
X
k∞

t1 =
T

ω
h → h

k∞
h0 → h0

k∞
k → k∞k

A → a0A ζ̄ → (k∞a2
0)ξ Cg → ω

k∞
Cg , (13.7.16)

where k∞ = ω2/g. The dispersion relation becomes

1 = k tanh kh (13.7.17)

while (13.7.12) and (13.7.10) become

∂|A|2
∂T

+ ∇ ·Cg|A|2 = 0 ∇ =
(

∂

∂X
,

∂

∂Y

)
(13.7.18)

∇ · (h∇ξ) − ∂2ξ

∂T 2
=

∂

∂T
∇ ·

(
k|A2|

2

)

−∇ ·
[
h∇

( |A|2
4 sinh2 kh

)]
. (13.7.19)



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

794 Narrow-Banded Nonlinear Waves in Water of Intermediate or Great Depth

In the sequel we only consider a one-dimensional bathymetry where the
seabed is not horizontal only in a finite strip,

h =


h0 , X < X0 ;

h(X) , X0 < X < X1 .

h = h1 , X > X1 ;

(13.7.20)

13.7.2 Short-Wave Envelope

Refraction of the short waves is analyzed by the ray theory in Chapter 3.
Let the obliquely incident wave from x ∼ −∞ be long-crested and si-

nusoidally modulated, and that the envelope is in the form of a progressive
wave colinear with the short waves. If the central frequency of the carrier
wave is ω, the corresponding central wavenumber vector in the three regions
are

k = (kx, ky) =


(k0 cosα0, k0 sin α0) , X < X0 ;

(kx = k cosα, k0 sinα0) , X0 < X < X1 .

(k1 cosα1, k1 sin α1) , X > X1 ;

(13.7.21)

In the region of variable depth, the local wavenumber k(X) and the angle of
incidence α(X) vary slowly in X according to the local dispersion relation
and Snell’s law. A simple model of slowly modulated incident short waves is
the superposition of two colinear sinusoidal wavetrains of slightly different
wavenumbers k± = k0(1± ε), and the same normalized amplitude (unity).
Let ω± = ω0 ± εΩ denote the frequency corresponding to k±, respectively.
Then according to the dispersion relation ω0 = ω(k0) and ω± = ω(k0(1±ε)),
we must have

ω ± εΩ = ω(k0(1 ± ε)) = ω(k0) ± εk0

[
dω

dk

]
0

+ O(ε2),

hence,

Ω = k0

[
dω

dk

]
0

= Cg0k0 . (13.7.22)

The incident-wave displacement can be written at the leading order as

ζ =
A

2
exp(ik0 cosα0x + ik0 sin α0y − iωt) + ∗ (13.7.23)
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where the incident wave amplitude is

A(X, Y, T ) =
1
2

exp[i(kx0X + ky0Y − ΩT )] + ∗

= cos((kx0X + ky0Y − ΩT )) (13.7.24)

which is sinusoidally modulated.
In the region of varying depth, (13.7.18) can be written as

∂|A|2
∂T

+
∂

∂X
(Cgx |A|2) +

∂

∂Y
(Cgy |A|2) = 0 . (13.7.25)

Since Cgx and Cgy are both functions of X , we assume the solution to be
of the following form

A =
1
2
Âeiψ + ∗ (13.7.26)

where

ψ ≡
∫ X

X0

KxdX + kyY − ΩT (13.7.27)

and Â is a real function of X. Note that

|A|2 =
1
2
Â2 +

1
4
Â2(e2iψ + ∗) . (13.7.28)

By substituting (13.7.28) into (13.7.25) and extracting from the coefficient
of the zeroth harmonic, we get

Â(X) =
√

(Cgx)0/Cgx , (13.7.29)

which is the well-known result for a shoaling wavetrain. From the coeffi-
cients of the second harmonic, we get,

Ω = KxCgx + kyCgy = (Kxkx + k2
y)

Cg

k
, (13.7.30)

which describes the phase hence the propagation of the envelope. Dividing
the preceding equation by Ω = Cg0k0, we get

1 =
Cg

Cg0

(
Kxkx

k0k
+

k2
0

k0k

)



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

796 Narrow-Banded Nonlinear Waves in Water of Intermediate or Great Depth

or

Kx =
Cg0k0k

Cgkx
− k2

y

kx
=

Cg0k0

Cgk

k2

kx
− k2

x + k2
y

kx
+ kx

= kx +
(

Cg0

C0

C

Cg
− 1

)
k2

kx
, (13.7.31)

where

CCg0

C0Cg
=

(1 + 2k0h0
sinh 2k0h0

)

(1 + 2kh
sinh 2kh )

.

In very deep water, kh ↑ ∞, the above ratio is greater than unity, hence
Kx > kx. On the other hand in very shallow water, kh ↓ 0, this ratio can
be less than unity, hence Kx can be less than kx.

Let h increase with X. For sufficiently large angle of incidence, a caustic
may exist such that kx ↓ 0; the short waves are reflected. Then Kx ↑ ∞

Figure 13.11: Effects of depth and incidence angle on the dimensionless wavenumber
components kx (solid curves) and Kx (dashed curves) of short and long waves (from Mei
and Benmoussa, 1984, J. Fluid Mech. Reprinted by permission of Cambridge University
Press).
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and the envelope is in the X-direction hence is orthogonal to the short-wave
crests. Thus short waves and their envelope propagate in different direc-
tions! If on the other hand h(X) decreases with X , Kx is smaller than kx,
and the difference diminishes as h ↓ 0. Sample variations of kx and Kx for
different incidence angles and depths are shown in Fig. 13.11 for h0 = 0.5.

Very near the caustic, the ray theory breaks down, hence the result above
loses validity locally.

The direction of the short-wave envelope is tan β = ky/Kx. If through
the strip X0 < X < X1 the depth increases with X from h0 to h1 > h0,
then on the transmission side

Kx1 > Kx0 = kx0

so that

tanβ1 < tan β0(= tanα) .

If h decreases in X , the inequality signs are reversed.

13.7.3 Mean Sea-Level

Now let us turn to the long-scale response. The forcing term on the right
of (13.7.19) consists of a steady part ξ0 and a sinusoidal part. Therefore,
we assume the long-scale displacement to be

ξ = ξ0(X) +
1
2
[ξ̃(X) exp 2i(kyY − ΩT ) + ∗] . (13.7.32)

The steady part is the mean sea level which satisfies

∂

∂X

(
h

∂ξ0

∂X

)
= − ∂

∂X

[
h

∂

∂X

(
|A|2

4 sinh2 kh

)]
.

It follows easily that

ξ0 = − Â2

8 sinh2 kh
. (13.7.33)

The integration constants are chosen so that ξ0 is zero in deep water. The
result is a depression, i.e., set-down. Sample variations of the mean set-
down ξ0 with depth are shown in Fig. 13.12. Again, the prediction near the
caustic is not reliable and needs refinement.
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Figure 13.12: Effects of depth and incidence angle on mean sea level set-down xi0.

Depth on the incidence side is h0 = 0.5 (from Mei and Benmoussa, 1984, J. Fluid Mech.
Reprinted by permission of Cambridge University Press).

13.7.4 Free and Bound Infragravity Waves

The second harmonic part of (13.7.32) represents long (infragravity) waves
and must satisfy

d

dX
h

dξ̃

dX
+ 4(Ω2 − k2

yh)ξ̃ =

{ [
kh(K2

x + k2
y)

sinh 2kh
+

Ω2k

Cg

]
(Cgx)0
Cgx

+
[

d

dX
h

dξ0

dX
+ i

(
4Kxh

dξ0

dX
+ 2ξ0

d

dX
(Kxh)

)]

− i

2
ΩCgx0

d

dX

(
k

Cg

) }
exp

(
2i

∫ X

X0

Kx dX

)
.

(13.7.34)

This is an inhomogeneous differential equation with variable coefficients.
Let us examine the solutions in regions of constant and variable depths
separately.



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

13.7. Infragravity Waves Over Slowly Varying Depth 799

In regions of constant depth, the last two lines on the right-hand side
of (13.7.34) vanish. The particular solution can be written as

ξL = (ξL)j exp

(
2i

∫ X1

X0

KxdX

)
,

j = 0 , if X < X0 ,

j = 1 , if X > X1 .
(13.7.35)

where

(ξL)0 = −
 [

kh(K2
x+k2

y)

sinh 2kh + Ω2k
Cg

]

4[(K2
x + k2

y)h − Ω2]


0

, (13.7.36)

(ξL)1 = −


(Cgx)0
Cgx

[kh(K2
x+k2

y)

sinh 2kh + Ω2k
Cg

]

4[(K2
x + k2

y)h − Ω2]


1

. (13.7.37)

Quantities inside brackets {.}0 and {.}1 are defined by evaluating h = h0

and h = h1, respectively.

Figure 13.13: Effects of depth and incidence angle on the amplitude ξL of the bound
long wave (from Mei and Benmoussa, 1984, J. Fluid Mech. Reprinted by permission of
Cambridge University Press).
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From (13.7.32) and (13.7.35), ξL travels with the envelope of the short
waves, hence they are the bound (or locked) long waves. The amplitude
(ξL)0 on the incidence side is plotted in Fig. 13.13 as a function of h for
several angles of incidence.

We now define the free long waves in the two regions of constant depth
X < X0, X > X1 by

ξ̃ = (ξF )j + (ξL)j exp

(
2i

∫ X1

X0

KxdX

)
,

j = 0 , if X < X0 ,

j = 1 , if X > X1 .

(13.7.38)

The free long waves satisfy the homogeneous differential equation with
constant coefficients:

d

dX

(
hj

d(ξF )j

dX

)
+ 4(Ω2 − k2

yhj)(ξF )j = 0 j = 0, 1 . (13.7.39)

The nature of the free long wave in each region depends on the sign of

λ2
j =

1
hj

(Ω2 − k2
yhj) = k2

[
C 2

g0

hj
− sin2 α0

]
. (13.7.40)

If hj is small enough so that λ2
j > 0, (ξF )j must be outgoing waves

(ξF )j = (ξF )j exp(2i|λj | |X |) (13.7.41)

which propagate in the direction

tan θj = ± ky

|λj | (13.7.42)

The propagation speed is Cj =
√

hj . On the other hand, if hj is suf-
ficiently large so that λ2

j < 0, then (ξF )j must attenuate exponentially
with distance

(ξF )j = (ξF )j exp(−2|λj ||X |) . (13.7.43)

Thus, the free long wave is trapped in the shallow zone only, despite the
fact the short waves pass over the strip. The critical depth h∗ at which
λj = 0 is plotted as a function of h0 and α0 in Fig. 13.14.
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Figure 13.14: The critical depth h∗ vs. h0 for several angles of incidence α0. For α0 =
π/2 (dashed curve), the critical depth is at h∗ = C2

g0 (from Mei and Benmoussa, 1984,
J. Fluid Mech. Reprinted by permission of Cambridge University Press).

In the zone of variable depth X0 < X < X1, we introduce the locked
and free long waves by

ξ̃ = ξL(X) exp

(
2i

∫ X

X0

KxdX

)
+ ξF (X) (13.7.44)

where ξL is formally defined to be

ξL = −
(Cgx)0

Cgx
[kh(K2

x+k2
y)

sinh 2kh + Ω2k
Cg

]

4[(K2
x + k2

y)h − Ω2]
(13.7.45)

with k, h, Kx, Cg, etc., being functions of X depending on the local bathy-
metry. The dimensionless equation governing ξF is
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d

dX

(
h

dξF

dX

)
+ [4(Ω2 − k2

yh)]ξF

=

{
h

d2Z

dX2
+

dh

dX

dZ

dX
+ i

(
4hKx

dZ

dX
+ 2Z

d

dX
[Kxh]

)

− 1
2
C 2

g0
k2
0 cosα0

d

dX

(
k

Cg

)}
exp

(
2i

∫ X

X0

dXkx

)
(13.7.46)

where Z = ξ0 − ξL.

At X0 and X1, continuity of the surface displacement is required

ξF = (ξF )j at x = Xj . (13.7.47)

Assume that the slope of the seabed dh/dX is also continuous,4 then
dξ0/dX and dξL/dX must also be continuous, implying the continuity of
the free wave slope [

dξF

dX

]X0+

X0−
= 0 ,

[
dξF

dX

]X1+

X1−
= 0 . (13.7.49)

The resulting boundary-value problem for ξF in the region X0 < X < X1

is then solved numerically.
Sample results of ξF are shown in Fig. 13.15 for a submarine ridge

connecting two regions of equal and constant depth:

h =

h0 +
∆h

2

(
1 − cos

2X

L

)
, 0 < X < L ;

h0 , X < 0, X < L .

(13.7.50)

Over the narrower ridge with L = 2, incoming waves with all three inci-
dence angles produce only outgoing free long waves. This result is because
these waves are much longer than L. For a wider ridge, free long waves are
relatively strong on the transmission side, if the incidence is nearly normal.

4It was pointed out by Liu(1989) that if dh/dX is discontinuous, then dξ0/dX and
dξB/dX must also be discontinuous. Integration of Eq. (13.7.46) across the line Xj we

get instead[
h

dξ

dX

]Xj+δ

Xj−δ

=

[
h

dξ0

dX

]Xj+δ

Xj−δ

exp

{
2i

∫ Xj

X0

KxdX

}
j = 0, 1 . (13.7.48)

implying that dξF /dX is not continuous.
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Figure 13.15: Amplitude of trapped free long waves over a ridge with h0 = 1, ∆h =
−0.5. for various incidence angles (from Mei and Benmoussa, 1984, J. Fluid Mech.
Reprinted by permission of Cambridge Univeristy Press).
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However, the free long waves are trapped over the ridge, if the incidence is
sufficiently oblique. (See Fig. 13.15 for α0 = π/4).

Thus, the physics of infragravity waves is very much affected directly,
as well as indirectly through the short waves, by bathymetry.

Other results over a submarine canyon can be found in Mei and Ben-
moussa (1984). Corrections for a bathymetry with discontinuous slope has
been reported by Liu (1989).

13.8 Infragravity Waves Over Periodic Bars

In Section 7.2 we studied by linearized approximation the Bragg scattering
of infinitesimal waves by periodic bars. Let us examine here the second-
order long waves.

By assuming that ε characterizes both the wave steepness and the rate
of resonant growth, the perturbation analysis of Section 7.2 can be extended
to periodic bars over a slowly varying depth, and to the second order. In
particular, let the bars be described by

δ =
D

2

(
exp

2i

ε

∫ x1

α(x1) dx1 + ∗
)

. (13.8.1)

At the first order the first harmonic solution (φ11, ζ11) exp(−iωt) is still
given by the linearized theory of Section 8.2, i.e.,

φ11 = − ig

2ω
(AeiS+ + BeiS−)

cosh k(z + h)
cosh kh

,

ζ11 =
1
2
(AeiS+ + BeiS−)

(13.8.2)

where

S± = ±1
ε

∫ x1

α(x1) dx1 + βy , (13.8.3)

with θ being the local angle of incidence and

α = k cos θ , β = k sin θ . (13.8.4)

The amplitudes of the incident and reflected waves are coupled by

∂A

∂t1
+ C+

g · ∇1A +
1
2
A∇1 · C+

g = −iΩ0B cos 2θ (13.8.5)
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∂B

∂t1
+ C−

g · ∇1B +
1
2
B∇1 ·C−

g = −iΩ0A cos 2θ (13.8.6)

where

Ω0 =
ωkD

2 sinh 2kh
. (13.8.7)

Solvability of φ30 gives the governing equation for the long-wave
displacment

∂2ζ20

∂t21
− g∇1(h∇1ζ20)

= g∇1 ·
{

h∇1

[
k(|A|2 + |B|2)

2 sinh 2kh

]}
− g

2ω

∂

∂t1

{
α

∂

∂x1
(|A|2 − |B|2) + β

∂

∂y1
(|A|2 + |B|2)

}
. (13.8.8)

The corresponding long-wave potential is related by the averaged Bernoulli
equation:

ζ20 = −∂φ10

∂t1
− k(|A|2 + |B|2)

2 sinh 2kh
. (13.8.9)

Let the bars be confined in a finite domain 0 < x1 < L. Continuity of
pressure and normal velocity requires

[A]+− = 0 , [B]+− = 0 (13.8.10)

at O(ε), and [
∂φ10

∂t1
+ |∇φ11|2 +

∣∣∣∣∂φ11

∂z

∣∣∣∣2
]+

−
= 0 ,

[
∂φ10

∂x1
+

∂φ20

∂x

]+

−
= 0

(13.8.11)

at O(ε2). After using (13.8.10) and (13.8.9), the matching conditions
(13.8.11) become

[ζ20]+− = 0 ,[
∂ζ20

∂x1

]+

−
= − k

2 sinh 2kh

∂

∂x1
(|A|2 + |B|2)

(13.8.12)

at x1 = 0, L.
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Restricting further to normal incidence, the amplitude equations reduce
to

∂A

∂t1
+ Cg

∂A

∂x1
= −iΩ0B ,

∂B

∂t1
− Cg

∂B

∂x1
= −iΩ0A ,

(13.8.13)

and the long-wave equation becomes

∂2ζ20

∂t21
− gh

∂2ζ20

∂x2
1

=
g

2

(
2Cg

C
− 1

2

)
∂

∂x2
!

(|A|2 + |B|2)

+
gΩ0

C

∂

∂x1
(iA∗B + ∗) . (13.8.14)

The system (13.8.13) and (13.8.14) are hyperbolic partial differential equa-
tions and can be solved numerically by standard methods for any initial
data. Computational details can be found in Hara and Mei (1987).

As a numerical example we show in Fig. 13.16 some computed results
for the scattering of a packet of short waves incident from the left of a bar
patch. In terms of the dimensionless coordinates where x is normalized by
L, t by L/Cg, and (A, B) by the maximum of the incident wave packet,
the profiles of |A|, |B| and ζ20 are shown for three instants: t = 0, 3π, and
6π. The bars are located within 0 < x < σ where σ = Ω0L/Cg is the
normalized patch width. At t = 0 the front of the incident-wave group is
just touching the first bar. There is no reflection, and the long wave consists
only of the set-down. At t = 3π, considerable reflection has taken place.
Both the incident and the reflected packets have split into several groups,
exhibiting the dispersive property of the envelope. On the transmission
side the leading trough advances at the high speed

√
gh, and is followed

by a slower crest, then by a bound (set-down) trough moving at the group
velocity of the short waves. On the reflection side, a crest is moving ahead
of the bound long wave toward the left. At a later time t = 6π, dispersion
of the short-wave envelopes is fully developed. The leading long waves
on both sides are far outrunning the short-wave envelopes and the bound
set-downs.

If the patch is sufficiently wide, all the short waves can be reflected.
While there are no short waves on the transmission side, free long waves
can still be radiated to both sides. Thus, shelter cannot be found behind
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Figure 13.16: Scattering of a wave packet by a patch of periodic bars. The bars are
confined within o < x < σ = 5. A: amplitude of incident short waves. B: amplitude
of reflected short waves. ζ (same as ζ20 in the text): long-wave displacement (from
Hara and Mei, 1987, J. Fluid Mech. Reprinted by permission of Cambridge University
Press).
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the bar patch, which becomes a magic wall transforming the pitch of a tune.
On one side the violin is played; on the other side the cello is heard.

13.9 Remarks on Third-Order Effects of Short
Waves Over Slowing Varying Depth

For coastal interest the evolution of short waves (swell) on variable depth
is of obvious importance. To avoid analytical difficulties in the general
case, existing theories on the effect of cubic nonlinearity are all limited
to slowly varying one-dimensional topography [h = h(x)]. As suggested
by Eq. (13.2.39) where x2 and t2 appear, bottom variation becomes as
important as nonlinearity if its horizontal length scale is no greater than
O(ε−2) times the swell length, that is, h = h(x2). This class of bottom has
been studied by Djordjevic and Redekopp (1978) who extended the work
of Ono (1974) for slowly modulated periodic waves on very shallow water
(describable by the KdV equation).

Djordjevic and Redekopp (1978) used the perturbation method de-
scribed in Section 13.2 with the new boundary condition on the bottom:

∂Φ
∂z

= ε2 dh

dx2

∂Φ
∂x

. (13.9.1)

Instead of Eq. (13.2.42) they introduced

ξ =
1
ε

∫ X dX

Cg(X)
− εt , X = ε2x (13.9.2)

[cf. Eq. (12.8.3), Section 12.8], and obtained for the envelope

−iµA − iAx + α′Aξξ + β′|A|2A + γ′A = 0 , (13.9.3)

which is similar to Eq. (13.2.43a), where

α′ =
α

C3
g

, β′ =
β

Cg
, γ′ =

γ

Cg
, γ = γ(X) (13.9.4)

with α, β, and γ given by Eqs. (13.2.43b)–(13.2.43d), γ being a function of
X through the integration constant S(X) in Eq. (13.2.43d). The first term
in Eq. (13.9.3) is new and depends on the local slope

µ =
dq

dX

(1 − th2q)(1 − q th q)
th q + q(1 − th2q)

, q = kh . (13.9.5)
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Since X = O(ε) for ξ = O(1) according to definition (13.9.2), Eq. (13.9.3)
is a suitable basis for a numerical solution of the initial-value problem for
a given A(ξ, X = 0). Introducing further approximations to Eq. (13.9.3),
Djordjevic and Redekopp examined analytically the evolution of a soliton
for both α′β′ < 0 and > 0. In the former case, it was necessary to limit the
bottom slope still further to O(δ3/2ε2) so that the new coordinates

X̃ = δ3/2X , ξ̃ = δ−1

∫ X̃ dX̃

C(X̃)
− δ1/2ξ

could be introduced. A perturbation analysis was then pursued. For very
shallow water kh � 1, a KdV equation with variable coefficients similar to
Eq. (12.8.5) was obtained. Following the heuristic argument of Section 12.8,
they studied the evolution of an envelope-hole soliton climbing a shelf. If
the depths on two sides of the sloping regions were h0 and h1 with h0 > h1

fission into n envelope-hole solitons was found to occur when

h1

h0
>

[
n(n + 1)

2

]−8/27

, h = 1, 2, 3 .

For the case α′β′ > 0 everywhere, Djordjevic and Redekopp applied the
method of Section 12.8 to Eq. (13.9.3) directly. One of their conclusions
was that fission of convex solitons was possible only if the propagation was
from shallower to deeper water. Numerical and experimental confirmations
of these results are desirable.

The additional effects of a nonuniform current in the x direction has
been studied by Turpin, Benmoussa and Mei (1983).

We now leave the topic of unidirectional propagation and one-
dimensional bathymetry and discuss some two-dimensional examples of
nonlinear waves encountering solid bodies. In the first two the body is
slender, while in the third, the body is blunt.

13.10 Diffraction of Steady Stokes’ Waves by a Thin
Wedge or a Slightly Slanted Breakwater

For solitary waves incident obliquely on a straight wall in shallow water,
experiments have been performed by Perroud (1957) and Chen (1961) and
reported by Wiegel (l964). For an angle of incidence θi > 45◦, the incident
and reflected wave crests intersected at the wall with equal angles, that
is, specular reflection. However, when the incidence angle was reduced
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(20◦ < θi < 45◦), there was a third wave crest (called the stem) which
intersected the wall normally; the incident crest, the reflected crest, and the
stem met at a point some distance away from the wall. For incidence angles
less than 20◦, the reflected crest disappeared, leaving only the incident crest
and the stem. Because of its geometrical resemblance to the reflection of
shock waves in gas dynamics (see Lighthill, 1949; Whitham, 1974), the
phenomenon in shallow-water waves has also been called the Mach stem
effect by Wiegel.

Similar experiments of oblique incidence of periodic waves in finite water
depth have been performed by Nielsen (1962) and by Berger and Kohlhase
(1976). The kinematics of the wave crests resembled that of the solitary
waves. The wave amplitude along the barrier, that is, the stem height,
increased downwave for a finite distance and then leveled off gradually.
At any station this amplitude increased with the angle of incidence. The
width of the stem region, which generally increased with distance along the
wall, was larger with smaller incidence angle and water depth. The stem
width appeared to be greater for longer incident waves. Data scatter was
substantial in all these experiments.

For shallow waters a theory for the Mach stems and Mach reflection
of solitary waves has been proposed by Miles (1977), whose deductions
have been compared with experiments by Melville (1980). Noting that the
evolution equation of the present chapter is the nonlinear extension of the
parabolic approximation of Section 4.10, Yue and Mei (1980) carried out a
nonlinear study of grazing incidence on a thin wedge; their main findings
are summarized in this section.

Recall from Section 4.10 that the parabolic approximation applies when

Ly

Lx
= ε � 1 and kLx � 1 , (13.10.1)

where Lx and Ly denote the characteristic lengths of modulation along x

and y, respectively. Now for Stokes’ waves the wave slope kA0 affects the
phase over the length scale O(k3A2

0)
−1, as Eq. (13.3.4) implies. Therefore,

nonlinearity must be taken into account if the body length scale is such
that

kLx = O(kA0)−2 . (13.10.2a)

The parabolic approximation implies a lateral length scale such that

kLy = O(kA0) = O(ε) . (13.10.2b)
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Figure 13.17: Head-sea incidence on a long and slender obstacle.

Equations (13.10.2a) and (13.10.2b) suggest that only

x2 = ε2x ≡ X and y1 = εy ≡ Y (13.10.3)

are the pertinent slow coordinates. If steady state is assumed, then there
is no time dependence. Therefore, we can put

∂

∂t1
=

∂

∂t2
=

∂

∂x1
= 0 (13.10.4)

into Eq. (13.2.39) and obtain again a cubic Schrödinger equation

2
∂A

∂X
− i

k

∂2A

∂Y 2
+ iK ′|A|2A = 0 , (13.10.5)

where

K ′ = k3Θ ≡ k3 C

Cg

ch 4q + 8 − 2 th2q

8 sh4q
(13.10.6)

is always positive. φ10 is taken to be zero.
Assume that the body is bounded by vertical walls which are symmetric

about the x axis (see Fig. 13.17) and is described by

y = ±yB(x) or Y = ±εyB (13.10.7)

in normalized coordinates. Vanishing of the normal velocity on the body
requires that

Φy = Φx
dyB

dx
on y = yB

or

εΦY =
[(

∂

∂x
+ ε2 ∂

∂X

)
Φ

]
dyB

dx
on Y = εyB . (13.10.8)
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A similar condition holds on y = −yB. Substituting the first-order potential
(13.2.21) (without φ10) into Eq. (13.10.8), we find, to the leading order,

∂A

∂Y
= ikA

1
ε

dyB

dx
on Y = εyB . (13.10.9)

With considerable generality one may assume dyB/dx = O(ε) so that

kB = O(ε−1) . (13.10.10)

For a wedge, yB = εx, Eq. (13.10.9) becomes simply

∂A

∂Y
= ikA on Y = X . (13.10.11)

The remaining boundary conditions are

A → A0e
−iK′A2

0X/2 , Y → +∞ (13.10.12)

and

A = A0 , X = 0 . (13.10.13)

The reduced problem for A is of the initial-boundary-value type and can
be solved numerically. In terms of the normalized variables

A =
A

A0
, X = kX = ε2kx , Y = kY = εky , (13.10.14)

Eq. (13.10.5) becomes

2i
∂A

∂X
+

∂2A

∂Y
2 − K|A|2A = 0 . (13.10.15)

The only parameter is

K =
(

kA0

ε

)2

Θ(kh) , (13.10.16)

where Θ is defined in Eq. (13.10.6) and plotted in Fig. 13.18. For fixed kh,
K is a measure of nonlinearity versus the wedge angle ε.

Figure 13.19 shows the square of the envelope height (proportional to
the mean setup) along the wall. The linear result (K = 0) oscillates in X

and gradually attenuates toward 4. With increasing nonlinearity (K = 4),
the envelope height decreases and rapidly approaches a constant. Three-
dimensional views of the free surface are given in Fig. 13.20 showing that
for nonlinear waves, stems are evident within a wedge next to the wall;
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Figure 13.18: The function Θ(kh) defined by Eq. (13.10.6).

Figure 13.19: Squared-amplitude along the wall of a wedge for different values of non-
linearity K (from Yue and Mei, 1980, J. Fluid Mech. Reproduced by permission of
Cambridge University Press).
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Figure 13.20: Snapshot of free surface near a wedge of half angle α = 17.55◦ (ε2 = 0.1)
shown in undistorted horizontal coordinates. (a) K = 0 (linear); (b) K = 1; (c) K = 2.
Note the forward bending of crests near the wedge (shaded) for K = 1, 2 (from Yue and
Mei, 1980, J. Fluid Mech. Reproduced by permission of Cambridge University Press).
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Figure 13.21: Snapshot of free-surface contours for the same three cases of Fig. 13.20.
The slope of the dash–dot line is drawn according to Eq. (13.10.17) (from Yue and Mei,
1980, J. Fluid Mech. Reproduced by permission of Cambridge University Press).
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the wedge angle increases with nonlinearity K. Finally, in Fig. 13.21 the
contour plots of the free-surface displacement show distinctly the sudden
bending of wave crests within the plateau.

Outside the plateau, A2 undulates in a way expected of diffraction. By
ignoring these undulations, Yue and Mei found that a discontinuous shock
approximation gave a crude estimate of the envelope height of the plateau
region E− = A2

− and of the apex angle β of the plateau. The results are

E− =
1

2K
[2K + 1 + (8K + 1)1/2] , (13.10.17)

and

β =
3 + (8K + 1)1/2

4
, (13.10.18)

which compare well with the numerical results. The corresponding theo-
retical prediction on the bending angle of the stems is given by

tan δ ∼= ε3

[
K

2
+

3 + (8K + 1)1/2

4

]
. (13.10.19)

The smallness of δ implies that the stems are nearly perpendicular to
the wall, Fig. 13.21. Despite its closeness to the numerical theory, the
shock approximation is a poor representation of the diffraction phenomenon
outside the wedge, and hence is not elaborated here.

The present example combines the parabolic approximation and the
cubic nonlinearity. Similar numerical analysis can be readily made for the
nonlinear diffraction near the shadow boundary of a thin breakwater or
for other problems where the direction of the incident wave is not changed
significantly by diffraction (see Yue, 1980). Extension of the nonlinear
parabolic approximation to include refraction by slowly varying depth has
been reviewed by Liu (1989).

13.11 Soliton Envelopes in the Wake of a Ship

One of the puzzles revealed by satellite images of the ocean surface is the
very long and narrow wake extending many kilometers (Fu and Holt, 1982).
This wake is in sharp contrast to the Kelvin ship wake which is a wedge of
half angle of θ = 19.8◦ (tan θ = 1/

√
8) enclosing divergent and transverse

waves (Lamb, 1932; Wehausen and Laitone, 1960).
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Figure 13.22: Aerial photograph of the wake of the Coast Guard cutter Point Brower
traveling at 7.7 m/s. The solitary feature is visible inside the 19.5◦ Kelvin cusp line.
The experimentally determined wake’s half-angle of the feature is 10.9◦. The lengths of
the starboard and port rays in the photo are about 1.1 and 0.7 km, respectively. The
width of each feature is increasing for the first 0.5 km while the change in the width is
reduced thereafter (from Brown et al., 1987, J. Fluid Mech. Reprinted by permission of
Cambridge University Press).

Various hypotheses have been offered so far to explain the narrow V-
wakes; numerous physical factors such as bubbles and vortices generated
by ship propellers are thought to be important. Motivated by these satel-
lite images, Brown et al. (1987) measured at several fixed stations free-
surface displacements due to a passing ship in a wavy sea. One of the
distinctive features observed by them is the appearance of a pair of steady
wave envelopes, one on each side of the ship’s path. Beginning from the
bow, the envelope is a straight line inclined at 11◦ from the ship path.
Each envelope is close in shape to a steady two-dimensional soliton, see
Fig. 13.22.

It is not clear that the observations by Brown et al. are central to the
V-wake i the satellite images. Nevertheless, soliton envelopes in the wake
of a ship are interesting by themselves and have prompted a theory by
Mei and Naciri (1991) summarized below. By Doppler’s effect, an incident
wave of frequency ω0 propagating parallel to the ship’s path appears to a
ship-bound observer as oscillations at the encounter frequency

ω = ω0 − V ω2
0/g (13.11.1)
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Figure 13.23: Plan view of ship-bound coordinates. Segment BO represents the cen-
terline of the ship (from Mei and Naciri, 1991, Proc. Roy. Soc. London. Reprinted by
permission of The Royal Society).

where V is the ship speed. According to the linearized theory, the ship
must be induced to oscillate at the same encounter frequency ω. For a head
sea, V < 0, hence ω > ω0. For a following sea, V > 0 and ω < ω0. The
oscillating and advancing ship acts as a plane piston, radiating sideways
relatively short, nearly plane waves away from its course, resulting in wave
packets trailing in the wake.

In principle steady Kelvin waves due to the finite ship volume must
coexist with the oscillating waves radiated by the ship (Stoker, 1957; We-
hausen and Laitone, 1969; Newman, 1977). Since the two waves ap-
pear quite separate in the observed records, let us consider only a ship
of negligible volume, and focus attention to the evolution of the radiated
waves in the far wake. Specifically, we choose a ship-bound coordinate
system with the y axis coinciding with the ship axis and the positive x

axis pointing to the port side of the ship. A uniform ambient current V

along the y axis is then present, see Fig. 13.23. To a far-wake observer,
the amplitude of the radiated waves near the ship can be considered as
given along the centerline of the ship from separate calculations based on
existing linearized theories in ship hydrodynamics (e.g., Sclavounos and
Nakos, 1990).

We assume the ship length L to be long compared to the length of the
waves induced by ship oscillation (2π/k = 2πg/ω2), so that
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kL = O(ε−1) , ε = kĀ , (13.11.2)

where Ā is the characteristic amplitude of the radiated waves. Since

kL =
ω2L

g
=

ω2
0L

g

(
1 +

V ω0

g

)2

, (13.11.3)

this assumption is reasonable as long as ω0 is sufficiently high. Let us
define the near wake to be kx, ky = O(ε−1) and the far wake to be kx,
ky = O(ε−2). Let the multiple-scale coordinates be introduced t, t1 = εt,
t2 = ε2t; x, x1 = εx, x2 = ε2x; y, y1 = εy, y2 = ε2y. To the leading order
the ship appears as a line segment (x1 = 0, 0 < y1 < � = εL). In either
a head sea or a following sea, only heave and pitch motions are dominant;
mirror symmetry with respect to the y allows one to treat only the side of
x > 0. An observer in the far-wake sees the free-surface displacement near
the ship as

ζ =
εA

2
eikx−iωt + ∗ , as kx1 → 0 . (13.11.4)

Let us assume that the form of A near the ship is already calculated
from a linearized theory. Along the ship’s path, the boundary conditions
for the wave envelope are

A = A0(y1, t1) , x1 = x2 = 0 , −� < y1 < 0 , (13.11.5)

where A0 is known, and

∂A

∂x1
= 0 , x1 = x2 = 0 , y1 > 0 (13.11.6)

by symmetry.
If the ship speed is zero, the envelope equation for A is given by (13.2.59)

with U = 0,

∂A

∂t1
+ Cg

∂A

∂x1
+ iε

[
ω

8k2

(
∂2A

∂x2
1

− 2
∂2A

∂y2
1

)
+

ωk2

2
|A|2A

]
= 0 x1 > 0 .

(13.11.7)

With a steady current V along the y axis, (13.11.7) must be modified by
Galilean transformation so that

∂A

∂t1
+ Cg

∂A

∂x1
+ V

∂A

∂y1
+ iε

[
ω

8k2

(
∂2A

∂x2
1

− 2
∂2A

∂y2
1

)
+

ωk2

2
|A|2A

]
= 0 .

(13.11.8)
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This equations holds in both near and far wakes O ≤ (kx1, ky1) ≤ O(1/ε).
In addition to the boundary conditions (13.11.5) and (13.11.6) we impose
also

A(x1,−�, εt1) = 0 x1 > 0 (13.11.9)

and

A(∞, y1, εt1) = 0 y1 > 0 . (13.11.10)

Using the following dimensionless variables,

a = kA ξ = kx1 − Cg

V
ky1 ,

η = ε
Cg

V
ky1 , τ = εk(y1 − V t1)

(13.11.11)

then

∂

∂t1
= −εkV

∂

∂τ
,

∂

∂x1
= k

∂

∂ξ
,

∂

∂y1
= k

Cg

V

(
− ∂

∂ξ
+ ε

∂

∂η

)
+ ε

∂

∂τ
.

(13.11.12)

Omitting terms of order O(ε), we get from (13.11.8) for a(ξ, η, τ)

−iaη +
1
4

[
1 − 2

(
Cg

V

)2
]

aξξ + |a|2a = 0 . (13.11.13)

Note that the variable τ does not appear explicitly. In the new coordinate
system η is time-like and ξ is space-like. From here on we further assume
A0 to be independent of t1 so that ∂A/∂t1 = 0.

Referring to Fig. 13.23 the boundary data on the segment BO : (x1 =
0,−� < y1 < 0), where � = ε(Cg/V )kL is the normalized length of the ship,
can be transferred to the segment OC on the stern line as follows. Since
both lines are in the near-wake region, the leading-order part of (13.11.8)
suffices, i.e.,

Cg
∂A

∂x1
+ V

∂A

∂y1
= 0 .

The simple hyperbolic equation can be solved to give

A = A

(
kx1 − Cg

V
ky1

)
+ O(ε) .
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Figure 13.24: The transformed plane.

To satisfy the boundary condition (13.11.5) (without t1), we require

A

(
−ky1

Cg

V

)
= A0

(y1

�

)
, x1 = 0 . (13.11.14)

In the ξ, η plane (see Fig. 13.24), the corresponding condition is

a = a0

(
− ξ

ξ0

)
eiβV ξ/Cg 0 < ξ < ξ0 , η = 0 (13.11.15)

with

a0 = kA0 , ξ0 =
Cg

V
k� . (13.11.16)

Equation (13.11.15) is now an initial condition on the segment O′C′ along
the ξ axis in Fig. 13.24. The condition (13.11.9) on BE in Fig. 13.23
becomes an initial data and can be transfered to CD and then to C′D′ on
the ξ axis (initial line) of Fig. 13.24, i.e.,

a(ξ, 0) = 0 ξ > ξ0 . (13.11.17)

From (13.11.11) and (13.11.12) the boundary condition (13.11.6) is trans-
formed to

∂a

∂ξ
= 0 on εξ + η = 0 (13.11.18)

in the (ξ, η) plane which implies, to leading order,

a = 0 η = 0 , −∞ < ξ < 0 . (13.11.19)



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

822 Narrow-Banded Nonlinear Waves in Water of Intermediate or Great Depth

Thus the original boundary-value problem for A in the first quadrant of
the (x1, y1) plane becomes the standard initial-value problem governed by
(13.11.13) in the upper half (ξ, η) plane, subject to the initial constraints
(13.11.15), (13.11.17), and (13.11.19) along the entire line η = 0.

The theoretical results summarized in Sections 13.5 and 13.6 may now
be applied. Firstly, a is linearly unstable in η if

Cg

V
<

1√
2

, (13.11.20)

i.e., if the speed or the frequency is high enough. Equation (13.11.13) can
be futher tranformed into canonical form by the following change of variable

σ =
(

ξ − ξ0

2

) /√
1 − 2

(
Cg

V

)2

.

The initial-value problem now becomes

−iaη +
1
4
aσσ + |a|2a = 0 |σ| < ∞, η > 0 (13.11.21)

a(σ, 0) =


0 , |σ| >

σ0

2
,

a0

(
− σ

σ0

)
eiλσ , |σ| <

σ0

2
,

(13.11.22)

where

σ0 =
ξ0√

1 − 2(Cg

V )2
=

Cg

V k2LĀ√
1 − 2(Cg

V )2
. (13.11.23)

For a ship heaving while advancing in waves,

a(σ, 0) = sech(σ/σ0) (13.11.24)

is qualitatively representative of the initial data. The controlling parameter
here is σ0, which increases with the chracteristic wave steepness ε = kĀ,
the ship length L, and also with the ratio Cg/V which is smaller for short
radiated waves or higher V.

Let us recall from Section 13.6 some known analytical properties of
the time-dependent soliton theory and discuss their implications. Under the
condition (13.11.20) the simplest solution to (13.11.21) is a soliton envelope
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a = sech
√

2(σ − Wη) (13.11.25)

where W is arbitrary. The area under the envelope is π/
√

2 ≈ 2.22. With
the initial data given by (13.11.24), a(ξ, η) will flatten for large η if the
area under the initial profile is less than the soliton area, i.e., σ0 < 1

√
2,

otherwise a will evolve into N bound solitons with N being the integer part
of the area ratio

√
2σ0.

From the definition of σ, the axis of the bound soliton(s) is σ = 0 which
is the line y = V x/Cg in the physical plane; it is inclined with respect to
the y axis at the angle

θ = tan−1 Cg

V
. (13.11.26)

Since the apex angle of the Kelvin wake is tan θ = 1/
√

8 (Stoker, 1953;
Wehausen and Laitone, 1960), the soliton axis lies within the Kelvin wake
if

Cg

V
<

1√
8

. (13.11.27)

If the ship speed V increases in a head sea, the encounter frequency (the
frequency of ship oscillations) and k increase while Cg decreases; hence the
angle θ decreases. In a following sea the encounter frequency is less than
the incident sea-wave frequency ω0. The group velocity Cg of the radiated
waves can be rather large. For low enough ship speed such that

1√
8

<
Cg

V
<

1√
2

or 19.5◦ < θ < 35.23◦ (13.11.28)

the envelope solitons are then outside the Kelvin wake.
By using an Adams-Bashforth method, Mei and Naciri have performed

numerical calculations for the initial envelope

a(ξ, 0) =
1
2

tanh
1
p

(
σ

σ0
+

1
2

)
− 1

2
tanh

1
p

(
σ

σ0
− 1

2

)
. (13.11.29)

This near-field profile, symmetric about σ = 0, has unit height and an
area equal to σ0. The parameter p characterizes the taper with a small
p corresponding to a nearly rectangular envelope. Figs. 13.25(a), (b) and
(c) show the envelope evolution for σ0 = 1.6, 3 and 5, and for p = 0.3.

For smaller σ0, the envelope flattens out with distance η behind the stern.
Case (a) with σ0 = 1.6 corresponds to an initial envelope with an area
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Figure 13.25: Heave-induced wake envelope in the distorted plane of (σ, η) for different
σ0. (a): σ0 = 1.6, (b): σ0 = 3, and (c): σ0 = 5 (from Mei and Naciri, 1991, Proc. Roy.
Soc. London. Reprinted by permission of The Royal Society).
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less than that of a soliton. The envelope first flattens in η, then gradually
sharpens, and approaches a bound soliton. For σ0 = 3, Case (b), the initial
area is nearly twice that of a soliton. Two bound solitons are present,
as is evidenced by one modulational period along η. The largest envelope
(σ0 = 5) is less than 3 times as large as the soliton, yet three bound solitons
are apparent.

On the other hand, if a(σ, 0) is real and odd in σ, then two solitons
may emerge with axes inclined in opposite directions away from the η axis.
This case corresponds qualitatively to an advancing ship perfoming pitch
oscillations about the midship line. Detailed discussion of this case can be
found in Mei ad Naciri (1991).

Based on the time series recorded by Brown et al. for 24 runs at a fixed
measuring station, and for the same ship speed of 7.7 m/sec, the averaged
carrier frequency at the distance 0.5 km aft is about ω = 3.28 rad/sec.
With these values, the inclination of the soliton axis can be calculated from
(13.11.26) to be θ = 10.96◦, which is close to the reported value of 11◦.
Periodic depressions in the envelope are also observed.

Since the data of the sea state and on-board records of ship motion have
not been reported by Brown et al., detailed checks of the present theory
cannot be made. For further discussions on the order-of-magnitude rele-
vance, the reader is refered to Mei and Naciri. A more complete theory
for ships in waves must of course include the effects of the finite ship
volume, and possible interactions between Kelvin wake and the soliton
envelopes.

13.12 Second-Order Diffraction by a
Vertical Cylinder

Second-order forces on a large body due to waves of finite amplitude are
of vital interest in offshore engineering. Due to quadratic interactions of
two first-order incident waves of nearly equal frequencies, second-order drift
force oscillating at the difference frequency may induce significant slow os-
cillations inside a harbor or around a floating platform for oil-drilling. These
drift forces can cause severe strains in the mooring or anchoring systems,
and must be accoiunted for in the design of the dynamic-positioning sys-
tem. Forcing at the sum frequency can also lead to undesirable ringing
around an offshore structure.
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Even for a vertical circular cylinder, the second-order diffraction prob-
lem has challenged many authors (Charkrabarti, 1972; Yamaguchi and
Tsuchiya, 1974; Raman and Venkatanarasalah, 1976; Issacson, 1977;
Charkrabarti, 1978; Molin, 1979; Miloh, 1980; Wehausen, 1980; Hunt
and Baddour, 1981). It was not until (1989) that the numerical method
of boundary integral equations was applied successfully by Kim and Yue
(1989) for a body axially symmetric with respect to the vertical axis. Later
the special case of a vertical circular cylinder was solved analytically by
Chau and Eatok Taylor (1992), by means of eigenfunction expansions and
three-dimensional Green’s functions.

In real seas, the varying bathymetry around a scatterer requires the
treatment of both refraction and diffraction. By extending the mild-slope
approximation to the second order in wave steepness, Chen (2005) has
developed a theory for both monochromatic and random incident waves
of broad bandwidth and for quite general boundaries and bathymetry. In
this section we shall demonstrate her method by deriving the analytical
solution for the special case of a circular cylinder standing vertically in a
sea of constant depth.

13.12.1 First-Order Solution

After the usual Taylor expansion about z = 0, and the introduction of
pertubation series in powers of ε = kA, we get the perturbation equations
for the first- and second-order problems. Let

Φ1 = − igη

ω

cosh k(z + h)
cosh kh

e−iωt + ∗ , ζ1 = ηe−iωt + ∗ (13.12.1)

be the first-order potential and free surface displacement respectively. We
recall the familiar result

η = ηI + ηS

where

ηI =
A

2
eikr cos θ =

A

2

∞∑
n=0

εninJn(kr) cos θ , (13.12.2)

ηS = −A

2

∞∑
n=0

εnin
J ′

n(ka)
H ′

n(ka)
Hn(kr) cos nθ (13.12.3)

are the incident and the scattered waves respectively.
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13.12.2 The Second-Order Problem

At the second order, O(ε2), the velocity potential Φ2 satisfies

∇2Φ2 +
∂2Φ2

∂z2
= 0 , −h < z < 0 , (13.12.4)

in water, where ∇ denotes the horizontal gradient operator,

∂Φ2

∂z
= 0 , z = −h , (13.12.5)

on the seabed,

∂Φ2

∂r
= 0 , r = a , (13.12.6)

on the cylinder, and

∂Φ2

∂z
+

1
g

∂2Φ2

∂t2
=

1
g2

∂Φ1

∂t

∂

∂z

[
g

(
∂Φ1

∂z

)
+

∂2Φ1

∂t2

]
− 1

g

∂

∂t
(∇3Φ1)2 , z = 0 ,

(13.12.7)
on the mean sea surface, where ∇3 denotes the three-dimensional gradient
operator. After using the first-order potential in the inhomogeneous terms
on the right, (13.12.7) can be rewritten as follows

∂Φ2

∂z
+

1
g

∂2Φ2

∂t2
=

A2

4
Fe−2iωt + ∗ , (13.12.8)

where the forcing function is found after some alegbra to be

F = β̂ηη + β̄∇η · ∇η , (13.12.9)

with

β̂ =
igk2

ω
− 3iω3

g
, β̄ = −2ig

ω
. (13.12.10)

Bernoulli’s equation on the free surface gives the second-order free-
surface dispacement,

ζ2 =
[
−1

g

∂Φ2

∂t
+

1
g2

∂Φ1

∂t

∂2Φ1

∂t∂z
− 1

2g
(∇3Φ1)2

]
z=0

, z = 0 . (13.12.11)

which can be decomposed as follows,

ζ2 = ζ
(1)
2 + ζ

(2)
2 (13.12.12)
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where

ζ
(1)
2 =

[
1
g2

∂Φ1

∂t

∂2Φ1

∂t∂z
− 1

2g
(∇3Φ1)2

]
z=0

,

ζ
(2)
2 =

[
−1

g

∂Φ2

∂t

]
z=0

.

(13.12.13)

The first part ζ
(1)
2 can be calculated immediately from the first-order po-

tential. The second part ζ
(2)
2 is associated with the unknown second-order

potential Φ2, which is the main object of mathematical task. Note that the
first part consists of zeroth and second harmonics,

ζ
(1)
2 = η

(1)
2,0 + η

(1)
2,2e

−2iωt + ∗ . (13.12.14)

The zeroth harmonic corresponds to the mean setup/setdown

η
(1)
2,0 =

ω2

g
|η|2 − g

ω2
|∇η|2 . (13.12.15)

while the second-harmonic has the amplitude

η
(1)
2,2 =

3ω2

2g
η2 +

g

2ω2
(∇η)2 . (13.12.16)

13.12.3 Second-Order Forcing

The forcing term F can be split into two parts,

F = I + S (13.12.17)

where

I = β̂ηIηI + β̄∇ηI · ∇ηI , (13.12.18)

represents the self-interaction of the progressive incident wave, and

S ≡ SIS + SSS (13.12.19)

with

SIS = 2[β̂ηIηS + β̄∇ηI · ∇ηS ] (13.12.20)

being the cross-interaction between incident and scattered waves, and

SSS = [β̂ηSηS + β̄∇ηS · ∇ηS ] , (13.12.21)

the self-interaction of the scattered wave.
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By straightforward calculation, we obtain, explicitly

I =
A2

4
(β̂ − β̄k2)ei2kr cos θ

=
A2

4
3iωk

sinh kh cosh kh
ei2kr cos θ . (13.12.22)

To calculate the forcing function S, we first abreviate the first-order
incident wave as

ηI =
∞∑

m=−∞
Tmeimθ , with Tn(r) =

A

2
imJm(kr) , (13.12.23)

and the first-order scattered waves as

η(S) =
∞∑

m=−∞
Ŝmeimθ , where Ŝm(r) =

A

2
imαmHm(kr) (13.12.24)

with αm = α−m = −J ′
m(ka)/H ′

m(ka). Note that both the Tm and Ŝm are
even with respect to m, i.e., Tm = T−m and Ŝm = Ŝ−m.

Typical quadratic products of the first-order incident wave and the first-
order scattered wave are of the form

η(I))η(S) =
∞∑

m=−∞
Tmeimθ

∞∑
n=−∞

Ŝneinθ

=
∞∑

m=−∞

∞∑
n=−∞

Tm−nŜneimθ . (13.12.25)

Therefore, S can be expressed as a Fourier series

S =
∞∑

m=−∞
Smeimθ =

∞∑
m=0

εmSm(r) cos mθ , (13.12.26)

with

Sm =
∞∑

n=−∞

{[
β̂ − n(m − n)

r2
β̄

]
Ŝn(2Tm−n + Ŝm−n)

+ β̄
∂Ŝn

∂r

(
2
∂Tm−n

∂r
+

∂Ŝm−n

∂r

)}
. (13.12.27)
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13.12.4 Second-Order Boundary-Value Problems

In view of (13.12.8), we seek the second-order potential of the following
form

Φ2 = (Ξ + Ψ)e−2iωt + ∗ , (13.12.28)

where Ξ and Ψ represent respectively the responses to I and S. Specifically,
(Ξ, Ψ) satisfy the following boundary-value problem

∇2(Ξ, Ψ) +
∂2(Ξ, Ψ)

∂z2
= 0 , −h < z < 0 , (13.12.29)

∂(Ξ, Ψ)
∂z

= 0 , z = −h , (13.12.30)

∂(Ξ, Ψ)
∂z

− 4ω2

g
(Ξ, Ψ) = (I,S) , z = 0 , (13.12.31)

∂(Ξ, Ψ)
∂r

= 0 , r = a . (13.12.32)

Due to the different asymptotic behaviours of I and S, Ξ and Ψ must
satisfy different boundary conditions at large r, to be specified later.

To solve the three-dimensional boundary-value problems for Ξ and Ψ,
we shall apply the method in Section 3.5 to derive two-dimensional depth-
averaged equations and the solutions.

13.12.5 Response to I
The response to I can be sought as the sum of two parts:

Ξ = ΞI + ΞF (13.12.33)

Both parts satisfy (13.12.29) and (13.12.30). In addition ΞI only satisfies
the inhomogeneous condition (13.12.31) on z = 0. The solution is just the
second-order correction of Stokes’ wave,

ΞI = −3iωA2

16
cosh 2k(z + h)

sinh4 kh
e2ikr cos θ . (13.12.34)

The part ΞF satisfies the homogeneous free-surface condition but the inho-
mogeneous condition on the cylinder

∂ΞF

∂r
= −∂ΞI

∂r
, r = a , (13.12.35)
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hence can be regarded as a free wave radiating energy to infinity.
To solve for ΞF we first rewrite the boundary condition by using partial

wave expansion

e2ikr cos θ =
∞∑

m=0

εmimJm(2kr) cos mθ (13.12.36)

and also expand

cosh 2k(z + h) =
∞∑

�=0

al
cosκl(z + h)

cosκlh
(13.12.37)

where cosκl(z + h) is a vertical eigen-function corresponding to frequency
2ω. For any non-zero integer l = 1, 2, 3, . . . , κl is the l-th positve real root
of

−4ω2 = gκl tan κlh , l = 1, 2, 3, . . . (13.12.38)

and κ0 = iκ is imaginary where κ is the positive real root of

4ω2 = gκ tanhκh . (13.12.39)

We leave it as an exercise to show by orthogonality of the eigenfunctions
that

al = − g

Al

4k sinh3 kh

cosh kh

1
4k2 + κ2

l

(13.12.40)

where

Al =
gh

2 cos2 κlh

(
1 +

sin 2κlh

2κlh

)
. (13.12.41)

Condition (13.12.35) becomes

∂ΞF

∂r
=

3iωA2

16 sinh4 kh

∞∑
l=0

al
cosκl(z + h)

cosκlh

∞∑
m=0

εmimJ ′
m(2ka) cosmθ , r = a .

(13.12.42)
We now solve for ΞF by assuming

ΞF = − ig

2ω

∑
σl(r, θ)

cos κl(z + h)
cosκlh

. (13.12.43)

From the Laplace equation we find

∇2σl − κ2
l σl = 0 , l = 0, 1, 2, 3, . . . , r > a . (13.12.44)
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The solution is a Bessel-Fourier series,

σl =
∞∑

m=0

εmim cosmθαlmKm(κlr) (13.12.45)

where for l = 0, Km(κ0r) = Km(−iκr) = π
2 im+1H

(1)
m (κr) is the Hankel

function of the first kind representing outgoing wave, and

αlm =
3ω2A2

4g sinh4 kh

alJ
′
m(2ka)

κlK ′
m(κla)

. (13.12.46)

13.12.6 Response to S
We also express Ψ as a series of depth-eigenfuntions5 for frequency 2ω,

Ψ = − ig

2ω

∞∑
l=0

ξl(r, θ)
cosh κl(z + h)

cosκlh
. (13.12.47)

By applying Green’s formula to Ψl and coshκl(z+h) in the vertical direction
as in Section 3.5, and using orthogonality, we obtain

∇2ξl − κ2
l ξl = −i

2ω

Al
S , l = 0, 1, 2, 3, . . . . (13.12.48)

To solve these inhomogeneous equations, we employ the method of
Green’s function, defined here by the following equations

∇2Gl − κ2
l Gl =

1
r
δ(r − r0)(δ(θ − θ0) . r, r0 > a , (13.12.49)

∂Gl

∂r
= 0 , r = a , (13.12.50)

and

√
r

(
∂G0

∂r
− iκ0G0

)
→ 0 , r → ∞ , (13.12.51)

but

Gl → 0 , r → ∞ , l = 1, 2, 3, . . . . (13.12.52)

5A similar procedure has been used by Massel (1993) and Porter and Staziger (1995)
to extend the realm of the mild-slope equation in the linearized theory. See review in
Dingemans (1996).
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By the standard method of eigenfunction expansions, one can derive the
following result,

Gl =
1
2π

∞∑
m=0

εmglm cosm(θ − θ0) (13.12.53)

where

glm(r, r0) =
[

I ′m(κla)
K ′

m(κla)
Km(κlr0) − Im(κlr0)

]
Km(κlr) , r > r0 ;

(13.12.54)

and

glm(r, r0) =
[

I ′m(κla)
K ′

m(κla)
Km(κlr) − Im(κlr)

]
Km(κlr0) , r < r0 .

(13.12.55)

Clearly this Green function is symmetric: Gl(r, θ; r0, θ0) = Gl(r0, θ0; r, θ).
Defining

r> = Max(r, r0) , r< = Min(r, r0) (13.12.56)

the Green function can be expressed more compactly as,

Gl =
∞∑

m=0

εm

2π

[
I ′m(κla)
K ′

m(κla)
Km(κlr<) − Im(κlr<)

]
Km(κlr>) cosm(θ − θ0) .

(13.12.57)

Let us apply Green’s theorem for the entire fluid area Ω bounded within
by the cylinder and by a circle of infinite radius on the outside,∫ 2π

0

∫ ∞

a

(ξl∇2Gl − Gl∇2ξl)r dθ dr =
∮

∂Ω

(
ξl

∂Gl

∂n
− Gl

∂ξl

∂n

)
dS .

(13.12.58)

The left-hand side is 2πξl(r0, θ0). On the right-hand side, the line integral
vanishes on the cylinder and on the sea bottom. The line integral along the
infinitely large circle vanishes for all evanescent modes l = 1.2.3, . . . . For
l = 0 it can also be shown to vanish in the limit,∫

∂Ω∞

(
ξ0

∂G0

∂n
− G0

∂ξ0

∂n

)
dS = O

(
1√
r

)
→ 0 , r → ∞ . (13.12.59)
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After invoking the symmetry of Gl, we find at any field point (r, θ),

ξl(r, θ) =
∫ 2π

0

∫ ∞

a

−i
2ωS
Al

Gl(r, θ; r0, θ0) r0 dr0 dθ0 . (13.12.60)

Because the quadratic forcing term attenuate slowly with r, ξ0 does
not satisfy the standard radiation condition (13.12.51) at every point along
the infinite circle. Instead it is the entire integral but not the integrand
in (13.12.59) that vanishes. This result is called the weak radiation con-
dition the proof of which requires the asymptotic behavior of ξ0 at large
r (Appendix 13.A) and the use of the method of stationary phase (see
Appendix 13.B).

Substituting the Green function (13.12.57) into (13.12.60), we obtain

ξl(r, θ) =
∫ ∞

a

r0 dr0

∫ 2π

0

dθ0

[
−i

2ωS(r0, θ0)
Al

] ∞∑
m=0

εm

2π
cosm(θ − θ0)

×
[

I ′m(κla)
K ′

m(κla)
Km(κlr<) − Im(κlr<)

]
Km(κlr>) . (13.12.61)

In particular, the value on the cylinder r = a can be obtained after using
the Fourier expansion (13.12.26) for S(r, θ), the orthgonality of cosines, and
the Wronakian identity of Bessel functions,

ξl(a, θ) =
∞∑

m=0

εm

κla
cosmθ

∫ ∞

a

r0 dr0

[
−i

2ωSm(r)
Al

]
Km(κlr)
K ′

m(κla)
.

(13.12.62)

The infinite integrals above must be computed numerically. Again for
l = 0 the asympotic behavior of the integrand can be utilized to facil-
itate the numerical integration as in Chau and Eatok Taylor, who ob-
tained an equivalent analytical solution by a three-dimensional Green
function.

Equation (13.12.61) can be subtituted into (13.12.44) to get Ψ, and then
be combined with Ξ to get Φ2. The result is an exact solution requiring
merely numerical quadrature.

Finally the second-order displacement ζ
(2)
2 (r, θ, t) is

ζ
(2)
2 = η

(2)
2,2e

−2iωt + ∗ (13.12.63)

where



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

13.12. Second-Order Diffraction by a Vertical Cylinder 835

η
(2)
2,2(r, θ) = L

∞∑
m=0

εmi
m cosmθ

[
Jm(2kr) − 2k

p

J ′
m(2ka)
H ′
m(pa)

Hm(pr)
]

+
∞∑
l=0

∞∑
m=0

{
εm cos(mθ)

∫ ∞

a

r dr

[
−iωnSm(r)

Al,l

]
Km(κlr>)

×
[
I ′m(κla)
K ′
m(κla)

Km(κlr<) − Im(κlr<)
]}

. (13.12.64)

Combined with (13.12.14), the second-order free surface height is com-
pletely detemined.

13.12.7 Sample Numerical Results

Sample variation of the amplitude of the zeroth and second harmonic,
η
(0)
2,2, η

(2)
2,2 , due to the first-order motion, as well as η(2)

2,2 due to Φ2, are shown

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

θ/π

Figure 13.26: Dimensionless amplitudes of the second-order free surface elevations on

a vertical cylinder. Solid line : mean setup η
(1)
2,0a/A

2 (zeroth harmonic component due

to Φ1. Dashed line: second-harmonic component due to Φ1, η
(1)
2,2a/A

2. Dotted line:

second-harmonic component due to Φ2, η
(1)
2,2a/A

2. Crosses are the numerical results of
Kim and Yue and of Chau and Eatok Taylor. The input parameters are r/a = 1, h/a = 1
and ω2a/g = 2 (from Chen, 2005).
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in Fig. 13.26. These numerical results agree with the theories of Kim and
Yue (1989) and of Chau and Eatok-Taylor (1992).

In conclusion, it may be pointed out that the present method not only
reduces the three dimensional problem to two dimensions but can also be
extended to mildly sloping seabed and for random incident waves of a broad
freequency band (Chen, 2005).

Appendix 13.A Asymptotic Behavior ξ0 in the
Far-Field

We seek the asymptotic solution of

∇2ξ0 + κ2ξ0 = −i
ωS
A0

. (13.A.1)

Let us first examine the the forcing terms SIS and SIS defined in
(13.12.19) and (13.12.20). For large r, we can approximate the first-order
scattered wave as

ηS ≈ Q(θ)
eikr

√
kr

(13.A.2)

where Q(θ) is the angular intensity factor

Q(θ) =
∞∑

m=0

√
2
π

[
−εmim

J ′
m(ka)

H ′
m(kr)

cosmθ

]
e−iπ( m

2 + 1
4 ) . (13.A.3)

In order to estimate the forcing term SIS , we need only estimate ηSηI

ηSηI ≈ AQ
eikr(cos θ+1)

√
kr

, (13.A.4)

and

∇ηS · ∇ηI ≈ AQk2 cos θ
eikr(cos θ+1)

√
kr

. (13.A.5)

Therefore, we obtain

SIS ≈ [β̂ − β̄k2 cos θ]
A

2
Q(θ)

eikr(cos θ+1)

√
kr

+ O(r−3/2) . (13.A.6)

It is easy to see that
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SSS = O

(
ei2kr

kr

)
(13.A.7)

which is negligible compared to SIS . Hence S is dominated by SIS at large
kr. From Eq. (13.A.1), it can be seen that

ξ0 ≈ F (θ)
eikr(cos θ+1)

√
kr

(13.A.8)

where F (θ) is a known function of θ.

Appendix 13.B Weak Radiation Condition

We show here that the following line integral vanishes

I =
∫

∂Ω∞

(
ξ0

∂G0

∂r
− G0

∂ξ0

∂r

)
dS → 0 . (13.B.1)

Since G0 satisfies the strong radiation condition,

G0 ≈ H(θ)√
kr

eiκr . (13.B.2)

Putting the asymptotic expressions of ξ0 and G0 into Eq. (13.B.1), we
obtain for large r,

I =
∫ 2π

0

r dθ H(θ)F (θ)
eiκr

√
κr

eikr(cos θ+1)

√
kr

[−ik(cos θ + 1) + iκ]

= i

∫ 2π

0

dθ
H(θ)√

κ

L(θ)√
k

eir[κ+k(cos θ+1)][−k(cos θ + 1) + κ] . (13.B.3)

For large r, we use the method of stationary phase, and let

ϕ(θ) = k cos θ + k + κ (13.B.4)

be the phase function. Since

dϕ

dθ
= −k sin θ

the stationary phase points are at θ = (0, π), where

d2ϕ

dθ2
= −k cos θ = (−k, k) .
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It follows from (2.1.28) that

I≈
{

i
F (0)√

κ

H(0)√
k

eir(κ+2k)(κ − 2k)e−iπ/4 + i
F (π)√

κ

H(π)√
k

eirκκeiπ/4

}√
2π

kr
.

(13.B.5)

Clearly

I = O

(
1√
kr

)
→ 0 , kr → ∞ ,

hence the weak radiation condition is satisfied.
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Broad-Banded Nonlinear
Surface Waves in the
Open Sea 14
Wind-generated waves on the open ocean surface are usually too complex
to be described by one regular slowly varying wavetrain, and require more
elaborate spectral representations to acount for sea states with a broad band
of wavelengths and directions. For infinitesimal waves, there are spectral
theories to describe the random sea surface based on linear superposition of
many simple wavetrains. The amplitude-spectrum (which contains the am-
plitudes and phases), or sometimes only the energy spectrum, can be used
to convey the information about the complicated geometry and kinematics
of the ocean surface. Statistical stationarity is often assumed. A detailed
description of such classical treatments can be found in Ochi (1998).

The evolution of gravity-wave spectra is, however, a very dynamical
process governed in general by three physical processes: (a) energy input
by the wind, (b) energy transfer between the different spectral modes
due to nonlinear interaction, and (c) energy dissipation by wave breaking
and/or complex interactions with the seabed. Wind input and dissipation
are pronounced in windy conditions and in shallow water, whereas nonlinear
interaction is always present even outside the storm area and in deep
water. Since the early 1960’s much fundamental progress has been made
on the nonlinear processes in ocean waves, pioneered in particular by Owen
M. Phillips, Klaus Hasselmann, and Vladimir E. Zakharov. In recent years
the so-called weak-turbulence theory initiated by Zakharov has made a
strong impact on the advances of ocean-wave physics. This chapter is
intended as an introduction to the weak-turbulence theory with a view to
preparing the reader for studying the expanding literature. For the deriva-
tion of Zakharov’s equation we follow a procedure described by Yuen and
Lake (1982). The mathematical details are however dauntingly lengthy. In

839
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order that the reader does not lose sight of the main line of reasoning, we
leave many steps of derivation to the Appendices. After deriving Zakharov’s
equation we shall show a few of its applications. In addition to simple
solutions of one or two wavetrains, we shall derive the exact solution of
four waves in resonant interactions. We shall also show how the cubic
Schrödinger equation can be obtained as the limit of narrow frequency
band. Benjamin–Feir instability is then revisited with a view to demon-
strate several predictions beyond the usual narrow-band approximation.
Hasselmann’s kinetic equation, which is the basis of forecasting models
of random waves, is derived here from Zakharov’s equation. Thus, vari-
ous theories developed for specific conditions are unified by the work of
Zakharov. Finally references to more general theories are given in the con-
cluding section.

14.1 Background

We first recall the Laplace equation

∇2φ = 0 , −h < z < ζ (14.1.1)

for the velocity potential φ(x, z, t), where x = (x, y) denotes the horizontal
position vector and z the vertical coordinate measured upward from the
still-water level. Recall also the kinematic and dynamic boundary condi-
tions on the free surface z = ζ:

ζt + (∇xφ) · (∇xζ) − φz = 0 , (14.1.2)

where ∇x denotes the horizontal gradient operator, and

φt +
1
2
(∇φ)2 + gζ = 0 . (14.1.3)

In this chapter we shall only consider a horizontal bottom z = −h on which
no flux is permitted

φz = 0 . (14.1.4)

Laplace equation (14.1.1) has a unique solution when the free-surface
displacement ζ(x, t), and the velocity potential on the free surface

φs = φ(x, ζ(x, t), t) (14.1.5)
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are specified. To show in principle that ζ and φs can be obtained for all
subsequent time from their values at an earlier instant, let us begin with
the chain rule:

∇xφs = (∇xφ)ζ +
(

∂φ

∂z

)
ζ

∇xζ .

Denoting the vertical velocity on the free surface by ws, i.e.,

ws =
(

∂φ

∂z

)
ζ

the free surface conditions (14.1.2) and (14.1.3) can be rewritten as

ζt + (∇xφs) · (∇xζ) − ws[1 + (∇xζ)2] = 0 , (14.1.6)

φs
t + gζ +

1
2
(∇xφs)2 − 1

2
(ws)2[1 + (∇xζ)2] = 0 . (14.1.7)

Now, at any time step when ζ and φs are known for all x, one can
in principle solve the boundary value problem for φ governed by (14.1.1),
subject to the no-flux boundary condition on the seabed. From the re-
sult one can calculate ws. Equations (14.1.6) and (14.1.7) then provide
ζt and φs

t which can be integrated to obtain ζ and φs at the next time
step, and so on. This is indeed the basis of a numerical theory for highly
nonlinear waves by Liu, Dommermuth and Yue (1992), to be discussed in
Chapter 15.

To motivate later nonlinear analysis, we recall from the linearized theory
discussed in Section 1.1.4, that for a progressive wave the free-surface height
and the potential on the surface can be written as:

ζ =
1
2π

(
ω

2g

)1/2

(B ei(k·x−wt) + B∗ e−i(k·x−wt)) (14.1.8)

and

φs =
−i

2π

( g

2ω

)1/2

(B ei(k·x−wt) − B∗ e−i(k·x−wt)) , (14.1.9)

where the wave frequency ω is related to the wavenumber vector k by the
dispersion relation

ω = [g|k| tan(|k|h)]1/2 . (14.1.10)
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B is a complex amplitude of constant magnitude, and the asterisk denotes
its complex conjugate.

For weakly nonlinear waves, we shall first derive two conditions for the
Fourier transforms of the surface quantities φs and ζ, and then combine
them to get a single relation for the amplitude spectrum B. The relation
will be an integro-differential equation, as we shall derive next.

14.2 Fourier Formulation

Let us define the two-dimensional Fourier transform1 of a function f(x) by

f̂(k) =
1
2π

∫ ∞

−∞
f(x) exp[−ik · x] dx .

By repeated use of the following properties of the delta function:∫ ∞

−∞
δ(k) e−ik·xdk = 1 (14.2.1)

and

δ(k) =
1

(2π)2

∫ ∞

−∞
eik·x dx

=
1

(2π)2

∫ ∞

−∞
e−ik·x dx , (14.2.2)

it is shown in Appendix 14.A.1 that the horizontal Fourier tranforms of
(14.1.6) and (14.1.7) yield

ζ̂t(k, t) − 1
(2π)

∫∫ ∞

−∞
(k1 · k2)φ̂s(k1, t)ζ̂(k2, t)

· δ(k − k1 − k2) dk1 dk2 − ŵs

+
1

(2π)2

∫∫∫ ∞

−∞
(k2 · k3)ŵs(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k − k1 − k2 − k3) dk1 dk2 dk3 = 0 , (14.2.3)

1The definition of Fourier transform here is different from that in Chapter Two only by
the numerical factor 1/2π.
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and

φ̂s
t (k, t) + gζ̂(k, t) − 1

4π

∫∫ ∞

−∞
(k1 · k2)φ̂s(k1, t)

· φ̂s(k2, t)δ(k − k1 − k2) dk1 dk2

− 1
4π

∫∫ ∞

−∞
ŵs(k1, t)ŵs(k2, t)

· δ(k − k1 − k2) dk1 dk2 = 0 . (14.2.4)

Let us eliminate the surface vertical velocity ŵs so that the two con-
ditions above involve two unknowns φ̂s(k, t) and ζ̂(k, t) only. The results
will then be combined to give a single relation for B(k, t). For this purpose
we must first derive ws from the interior velocity potential φ̂(k, z, t). This
procedure is lengthy and is outlined below.

The Fourier transform of the Laplace equation (14.1.1) gives

∂2φ̂(k, z, t)
∂z2

+ |k|2φ̂(k, z, t) = 0 .

Its solution, which satisfies the seabed boundary condition Eq. (14.1.4), is

φ̂(k, z, t) = Φ̂(k, t) cosh(|k|(z + h)) . (14.2.5)

By opening the brackets in (14.2.5), substituting z = ζ(x, t) and taking
the inverse Fourier transform, we get for the velocity potential on the free
surface

φs(x, t) =
1
2π

∫ ∞

−∞
Φ̂(k, t)[cosh(|k|h) cosh(|k|ζ(x, t))

+ sinh(|k|h) sinh(|k|ζ(x, t))] exp[ik · x] dk . (14.2.6)

On the other hand, by differentiating (14.2.5) with respect to z and taking
the inverse transform, we obtain an integral expression for the vertical
velocity on the free surface

ws(x, t) =
1
2π

∫ ∞

−∞
|k|Φ̂(k, t)[cosh(|k|h) sinh(|k|ζ(x, t))

+ sinh(|k|h) cosh(|k|ζ(x, t))] exp[ik · x] dk . (14.2.7)

So far no approximations have been made.
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We shall now make an additional assumption that the wave steepness
is small, i.e., |k|ζ = O(ε) � 1. This assumption allows us to expand all
functions of |k|ζ in (14.2.6) and (14.2.7) in Taylor series up to the order
(|k|ζ)2. Thus,

φs(x, t) =
1
2π

∫ ∞

−∞
φ̂(k1, t)

[
cosh(k1h)

(
1 +

|k1|2
2

ζ2

)
+ |k1| sinh(|k1|h)ζ

]
· eik1·x dk1 . (14.2.8)

Taking the Fourier transform of (14.2.8), and expressing ζ as a Fourier
integral

ζ(x, t) =
1
2π

∫ ∞

−∞
ζ̂(k, t) exp[ik · x] dk ,

we get

φ̂s(k, t) = Φ̂(k, t) cosh(|k|h) +
1
2π

∫∫ ∞

−∞
|k1| sinh(|k1|h)

· Φ̂(k1, t)ζ̂(k2, t)δ(k − k1 − k2) dk1 dk2

+
1

(2π)2

∫∫∫ ∞

−∞

1
2
|k1|2 cosh(|k1|h)Φ̂(k1, t)

· ζ̂(k2, t)ζ̂(k3, t)δ(k − k1 − k2 − k3) dk1 dk2 dk3 . (14.2.9)

Details are given in Appendix 14.A.2. Similarly (14.2.7) can be trans-
formed to

ŵs(k, t) = |k|Φ̂(k, t) sinh(|k|h) +
1
2π

∫∫ ∞

−∞
|k1|2 cosh(|k1|h)

· Φ̂(k1, t)ζ̂(k2, t)δ(k − k1 − k2) dk1 dk2

+
1

(2π)2

∫∫∫ ∞

−∞

1
2
|k1|3 sinh(|k1|h)Φ̂(k1, t)

· ζ̂(k2, t)ζ̂(k3, t)δ(k − k1 − k2 − k3) dk1 dk2 dk3 . (14.2.10)

We now invert (14.2.9) iteratively so as to express Φ̂(k, t) in terms of
the surface unknowns φ̂s and ζ̂. Leaving the details in Appendix 15.A.3, we
only cite the result:
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Φ̂(k) =
φ̂s(k, t)

cosh(|k|h)
− 1

cosh(|k|h)
· 1
2π

∫∫ ∞

−∞
|k1|φ̂s(k1, t)ζ̂(k2, t)

· tanh(|k1|h)δ(k − k1 − k2) dk1 dk2

− 1
cosh(|k|h)

1
(2π)2

∫∫∫ ∞

−∞

|k1|
4

· {2|k1| − tanh(|k1|h) · [|k − k2| · tanh(|k − k2|h)

+ |k− k3| · tanh(|k − k3|h) + |k1 + k2| · tanh(|k1 + k2|h)

+ |k1 + k3| · tanh(|k1 + k3|h)]}φ̂s(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k − k1 − k2 − k3) dk1 dk2 dk3 . (14.2.11)

Substituting this result into (14.2.10) yields

ŵs(k, t) = |k| tanh(|k|h)φ̂s(k, t)

− 1
2π

∫∫ ∞

−∞
|k1|[|k| tanh(|k|h) tanh(|k1|h) − |k1|]

· φ̂s(k1, t)ζ̂(k2, t)δ(k − k1 − k2) dk1 dk2

− 1
(2π)2

∫∫∫ ∞

−∞
S(1)(k,k1,k2,k3)φ̂s(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k − k1 − k2 − k3) dk1 dk2 dk3 . (14.2.12)

The lengthy expression of the kernel S(1) is given in Apppendix 14.B
along with other kernels to be introduced later.

The transformed vertical velocity at the free surface ŵs, given by
(14.2.12), is now substituted into the two free surface conditions (14.2.3)
and (14.2.4) so that the terms up to the third order of wave steepness are
retained.

Finally, we multiply (14.2.3) by [g/2ω(k)]1/2, and (14.2.4) by i[ω(k)/
2g]1/2, then take their sum and define the new complex amplitude,

b(k, t) =
(

g

2ω(k)

)1/2

ζ̂(k, t) + i

(
ω(k)
2g

)1/2

φ̂s(k, t) , (14.2.13)

where the wave frequency ω is related to the wavenumber by the dispersion
relation (14.1.10). The following integral-differential equation is obtained
for the evolution of b,
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db(k, t)
dt

+ iω(k)b(k, t)

+ i

∫∫ ∞

−∞
V (1)(k,k1,k2)b(k1, t)b(k2, t) · δ(k − k1 − k2) dk1 dk2

+ i

∫∫ ∞

−∞
V (2)(k,k1,k2)b∗(k1, t)b(k2, t)δ(k + k1 − k2) dk1 dk2

+ i

∫∫ ∞

−∞
V (3)(k,k1,k2)b∗(k1, t)b∗(k2, t)δ(k + k1 + k2) dk1 dk2

+ i

∫∫∫ ∞

−∞
W (1)(k,k1,k2,k3)b(k1, t)b(k2, t)b(k3, t)

· δ(k − k1 − k2 − k3) dk1 dk2 dk3

+ i

∫∫∫ ∞

−∞
W (2)(k,k1,k2,k3)b∗(k1, t)b(k2, t)b(k3, t)

· δ(k + k1 − k2 − k3) dk1 dk2 dk3

+ i

∫∫∫ ∞

−∞
W (3)(k,k1,k2,k3)b∗(k1, t)b∗(k2, t)b(k3, t)

· δ(k + k1 + k2 − k3) dk1 dk2 dk3

+ i

∫∫∫ ∞

−∞
W (4)(k,k1,k2,k3)b∗(k1, t)b∗(k2, t)b∗(k3, t)

· δ(k + k1 + k2 + k3) dk1 dk2 dk3 = 0 . (14.2.14)

The explicit expressions of all kernals V (n) and W (n) are given in Ap-
pendix 14.B.

After b is solved, the transforms ζ̂ and φ̂s are obtained from

ζ̂(k, t) =

√
ω(k)
2g

[b(k, t) + b∗(−k, t)] , (14.2.15)

φ̂s(k, t) = −i

√
g

2ω(k)
[b(k, t) − b∗(−k, t)] . (14.2.16)

14.3 Multiple Time Scales

Equation (14.2.14) is accurate to the third order in the small parameter of
the problem, |k|ζ. Its complexity, however, prevents one from using it in
practice in most cases. Let us distill the most important effect of resonant
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interactions from the less important parts of bound waves. It was first
discovered by Phillips (1960) that for gravity waves without surface tension,
resonance is possible with four interacting wavetrains. Anticipating that
weakly nonlinear resonance evolves over a much longer time scale, we apply
the method of multiple-scale expansions and introduce two time variables2

(t, t2 = ε2t). In particular let us follow Zakharov (1968) and assume that
the wave field can be divided into several parts with the leading part B̃,

varying slowly in time, and other smaller parts B′, B′′ varying rapidly in
time, thus,

b(k, t) = [εB̃(k, t2) + ε2B′(k, t, t2) + ε3B′′(k, t, t2) + · · · ]
· exp[−iω(k)t] . (14.3.1)

Substituting (14.3.1) into (14.2.14) and noting that

∂b(k, t)
∂t

→ −iω(k)[εB̃ + ε2B′ + ε3B′′ + · · · ]e−iω(k)t

+

(
ε2 ∂B′

∂t
+ ε3 ∂B′′

∂t
+ ε3 ∂B̃

∂t2
+ · · ·

)
e−iω(k)t,

we obtain after separating terms according to their order in ε the following
perturbation equations:

Order ε is satisfied identically;
Order ε2 gives the following equation for B′:

i
∂B′

∂t
=

∫∫ ∞

−∞

[
V

(1)
0,1,2B̃1B̃2δ0−1−2 exp[i(ω − ω1 − ω2)t]

+ V
(2)
0,1,2B̃

∗
1 B̃2δ0+1−2 exp[i(ω + ω1 − ω2)t]

+ V
(3)
0,1,2B̃

∗
1 B̃∗

2δ0+1+2 exp[i(ω + ω1 + ω2)t]
]
dk1 dk2 , (14.3.2)

where a compact notation is introduced, in which the arguments ki of all
functions are replaced by subscripts i, with the subscript zero assigned to
k, e.g.,

ω1 = ω(|k1|) , B̃1 = B̃(k1, t2) ,

V
(3)
0,1,2 = V (3)(k,k1,k2) , δ0+1−2 = δ(k + k1 − k2) ,

2It can be shown that there is no need for t1 = εt because no resonance is possible with
just three waves.
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etc. The explicit forms of all kernels V
(3)
�,m,n are given in Appendix 14.B.

Integrating (14.3.2) with respect to t, while keeping t2 constant, we get

B′ = −
∫∫ ∞

−∞

[
V

(1)
0,1,2B̃1B̃2δ0−1−2

exp[i(ω − ω1 − ω2)t]
ω − ω1 − ω2

+ V
(2)
0,1,2B̃

∗
1B̃2δ0+1−2

exp[i(ω + ω1 − ω2)t]
ω + ω1 − ω2

+ V
(3)
0,1,2B̃

∗
1B̃∗

2δ0+1+2
exp[i(ω + ω1 + ω2)t]

ω + ω1 + ω2

]
dk1 dk2 . (14.3.3)

It can be shown (Hasselmann, 1962) by using the convexity of the
dispersion curve (14.1.10) that the two equalities

k± k1 ± k2 = 0 , and ω ± ω1 ± ω2 = 0 (14.3.4)

cannot be simultaneously satisfied for any gravity wavetrains, i.e., three
sinusoidal gravity waves cannot resonate one another.3 All the denomina-
tors in (14.3.3) differ from zero under the constraints of the corresponding
δ-functions. The constant of integration in (14.3.3) has been set to zero
without loss of generality.

At order O(ε3) of (14.2.14) the following equation is obtained:

i
∂B̃

∂t2
+ i

∂B′′

∂t

=
∫∫∫ ∞

−∞

{
T̃

(1)
0,1,2,3B̃1B̃2B̃3δ0−1−2−3 exp[i(ω − ω1 − ω2 − ω3)t]

+ T̃
(2)
0,1,2,3B̃

∗
1B̃2B̃3δ0+1−2−3 exp[i(ω + ω1 − ω2 − ω3)t]

+ T̃
(3)
0,1,2,3B̃

∗
1B̃∗

2B̃3δ0+1+2−3 exp[i(ω + ω1 + ω2 − ω3)t]

+ T̃
(4)
0,1,2,3B̃

∗
1B̃∗

2B̃∗
3δ0+1+2+3 exp[i(ω + ω1 + ω2 + ω3)t]

}
· dk1 dk2 dk3 , (14.3.5)

3Triplet resonance can happen in capillary-gravity waves for which the dispersion relation
(14.1.10) must be replaced by ω2 = (g|k| + σ|k|3) tanh(|k|h) where σ is the coefficient

of surface tension (see McGoldrick, 1965). In this case, resonant interactions of three
waves are possible and an appropriate modification of (14.3.1) and (14.3.2) is required.
These extremely short waves are not considered here.
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where the kernels T̃
(n)
0,1,2,3 are given in Appendix 14.B.

Note first that the structure of the integrals in (14.3.5) allows some
freedom in the choice of the kernels. In particular, T̃ (2)(k,k1,k3,k2) can be
replaced by αT̃ (2)(k,k1,k2,k3)+(1−α)T̃ (2)(k,k1,k3,k2) with arbitrary α,
without altering the value of the second integral. Any T̃ (2) properly derived
can be made symmetric in k2,k3 by choosing α = 0.5. This symmetrized
T̃ (2) is denoted by T (2) in the sequel, i.e.,

T
(2)
0,1,2,3 =

1
2

(
T̃

(2)
0,1,2,3 + T̃

(2)
0,1,3,2

)
. (14.3.6)

Second, the term associated with T̃ (2) requires special treatment, since
the argument of its exponent may become close to zero under the constraints
imposed by the δ-function. This happens under the conditions

k + k1 − k2 − k3 = 0 , |ω + ω1 − ω2 − ω3| ≤ O(ε2) . (14.3.7)

Physically, (14.3.7) gives the conditions for resonance, first discovered by
Phillips (1960). Let us, therefore, separate the nearly resonating quartet
and non-resonating quartets. It can now be seen that (14.3.5) consists of
terms of two types: those depending on the fast time t and those depending
only on the slow time. This enables us to split (14.3.5) into two separate
equations, one representing the slow variation of the leading order and the
other representing fast variations of higher order. This splitting is achieved
by introducing a new kernel T defined as follows:

T0,1,2,3

=

T
(2)
0,1,2,3 =

1
2

(
T̃

(2)
0,1,2,3 + T̃

(2)
0,1,3,2

)
for nearly resonating quartets ,

0 , otherwise .

(14.3.8)

Thus, the slowly varying part is governed by

i
∂B̃

∂t2
=

∫∫∫ ∞

−∞
T0,1,2,3B̃

∗
1 B̃2B̃3δ0+1−2−3

· exp[i(ω + ω1 − ω2 − ω3)t] dk1 dk2 dk3 ,
(14.3.9)

and the fast varying part is concerned with the higher order:
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i
∂B′′

∂t
=

∫∫∫ ∞

−∞

{
T̃

(1)
0,1,2,3B̃1B̃2B̃3δ0−1−2−3 exp[i(ω − ω1 − ω2 − ω3)t]

+
(
T̃

(2)
0,1,2,3 − T0,1,2,3

)
B̃∗

1 B̃2B̃3δ0+1−2−3 exp[i(ω + ω1 − ω2 − ω3)t]

+ T̃
(3)
0,1,2,3B̃

∗
1B̃∗

2B̃3δ0+1+2−3 exp[i(ω + ω1 + ω2 − ω3)t]

+ T̃
(4)
0,1,2,3B̃

∗
1B̃∗

2B̃∗
3δ0+1+2+3 exp[i(ω + ω1 + ω2 + ω3)t]

}
· dk1 dk2 dk3 . (14.3.10)

Note that with this splitting (14.3.10) can be integrated with respect to t

without difficulty.
Also, we can add to T0,1,2,3 in (14.3.9) a term of the form

(ω + ω1 − ω2 − ω3)B0,1,2,3

where B0,1,2,3 is given in Appendix 14.B, without loss of generality. We
remark further that, under exact resonance conditions, i.e., when the right-
hand side of the second equation in (14.3.7) equals zero, T0,1,2,3 satisfies
additional symmetries

T0,1,2,3 = T1,0,2,3 = T2,3,0,1 . (14.3.11)

For near resonance, we can define a new kernel which possesses the above
symmetries,

T̂0,1,2,3 =
1
4
(T0,1,2,3 + T1,0,2,3 + T2,3,0,1 + T3,2,0,1) . (14.3.12)

It can be shown that

T̂0,1,2,3 = T0,1,2,3 + (ω + ω1 − ω2 − ω3)B0,1,2,3 . (14.3.13)

Equation (14.3.9), either with T or with the symmetric T̂ , is called
Zakharov’s equation. Since only the slow time is involved, we shall write t

instead of t2 from here on for the sake of brevity.
With the symmetric kernel T̂0,1,2,3 (14.3.12) in Zakharov’s equation

(14.3.9), one can derive the following three integrals of motion, related
to the conservation of energy, momentum, and wave-action, respectively,

H =
∫ ∞

−∞
ω|B̃|2 dk +

1
2

∫∫∫∫ ∞

−∞
T̂0,1,2,3B̃

∗B̃∗
1B̃2B̃3δ0+1−2−3

· exp[i(ω + ω1 − ω2 − ω3)t] dk dk1 dk2 dk3 (14.3.14)
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M =
∫ ∞

−∞
k|B̃|2 dk (14.3.15)

A =
∫ ∞

−∞
|B̃|2 dk . (14.3.16)

Krasitski (1994), who used a Hamiltonian approach to derive (14.3.9) and
these integrals, maintains that the very existence of the above conservation
laws indicates the superiority of T̂0,1,2,3 over T0,1,2,3. In the balance of this
chapter we will use T̂0,1,2,3, but drop the “hat” for the sake of brevity.

14.4 Conditions for Quartet Resonance

The importance of four-wave resonance in Zakharov’s equation can be
clearly seen from (14.3.9) and (14.3.8). In this section we demonstrate how
to calculate the Phillips’ quartet. Mathematically, for given k0,k1, we need
to find k2,k3 which satisfy

k0 + k1 = k2 + k3 (14.4.1)

and

ω0 + ω1 = ω2 + ω3 . (14.4.2)

For simplicity we restrict the discussion to deep-water waves, for which the
dispersion relation is

ω2 = g|k| . (14.4.3)

Note that besides k0 and k1, we have an additional free parameter, since
(14.4.1) and (14.4.2) provide three scalar equations for the four scalar com-
ponents of k2 and k3; i.e., for k2,x, k2,y, k3,x, k3,y.

For the sake of clarity, we switch from the original coordinate system
(x, y) to an auxiliary system (x̃, ỹ), for which the coordinate x̃ is chosen
in the direction of the vector k0 + k1, as shown in Fig. 14.1(a), where the
length AC = k0,x̃ + k1,x̃. We have chosen to write the wavenumbers k2 and
k3 in the auxiliary system in terms of the dimensionless variables (p, q):

k2 =
1
2
(k0,x̃ + k1,x̃){1 + p, q} =

AC

2
{1 + p, q} =

ω2
0+1

2g
{1 + p, q} , (14.4.4)

k3 =
1
2
(k0,x̃ + k1,x̃){1 − p,−q} =

AC

2
{1 − p,−q} =

ω2
0+1

2g
{1 − p,−q} .

(14.4.5)
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(a) (b)

Figure 14.1: Quartet resonance. (a) The original wavenumber vectors and definition
of two coordinate systems (the original system x, y is arbitrary and the orientation of
x̃, ỹ is dictated by the direction of k0 + k1); (b) Resonance curves for deep water waves
(wavenumber vectors are normalized by 1

2
|k0 + k1|).

Equations (14.4.4) and (14.4.5) guarantee the fulfillment of (14.4.1).
Similarly we write ω2, ω3 in terms of the dimensionless Ω:

ω2 =
1
2
(ω0 + ω1) +

ω0+1√
2

Ω =
ω0+1√

2
(I + Ω) , (14.4.6)

ω3 =
1
2
(ω0 + ω1) − ω0+1√

2
Ω =

ω0+1√
2

(I − Ω) , (14.4.7)

where the value of

I = (ω0 + ω1)/
√

2ω0+1 (14.4.8)

is defined by k0 and k1.

We express ω2, ω3 in (14.4.6) and (14.4.7) in a way so that (14.4.2) is
satisfied. From (14.4.8) and (14.4.3) it is clear that I ∈ (1/

√
2,∞). We

choose

Ω = |ω2 − ω3|/
√

2ω0+1 (14.4.9)

as the additional free parameter.
From Fig. 14.1(a), one can see that k2

2,ỹ = k2
3,ỹ, which can be written as

ω4
2

g2
− k2

2,x̃ =
ω4

3

g2
− k2

3,x̃ . (14.4.10)
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Equations (14.4.4)–(14.4.7) are now substituted into (14.4.10) to yield

p = ±2IΩ(I2 + Ω2) . (14.4.11)

In the relation

k2,ỹ =
ω4

2

g2
− k2

2,x̃ (14.4.12)

(14.4.4) and (14.4.6) can be used to give

q = ±
√

(I + Ω)4 − [1 + 2IΩ (I2 + Ω2)]2 . (14.4.13)

Note that (14.4.11) and (14.4.13) fix (p, q) in terms of I and Ω. From
(14.4.13) it can be seen that the range of the free parameter Ω is restricted
by

Ω ∈
{

(
√

1 − I2, 1/2I) , for I ≤ 1

(0, 1/2I) , for I > 1 .
(14.4.14)

From Fig. 14.1(a), one can also see that

sin α = (k0,y + k1,y)/AC , cosα = (k0,x + k1,x)/AC . (14.4.15)

The coordinate rotation gives, for any vector k, the relations:

kx = kx̃ cosα − kỹ sinα (14.4.16)

ky = kx̃ sinα + kỹ cosα . (14.4.17)

Applying (14.4.16) and (14.4.17) for k2 and k3 and substituting from
(14.4.4)–(14.4.5) and (14.4.15), we finally obtain

k2 =
1
2
{(1 + p)(k0,x + k1,x) − q(k0,y + k1,y); (1 + p)(k0,y + k1,y)

+ q(k0,x + k1,x)} , (14.4.18)

k3 =
1
2
{(1 − p)(k0,x + k1,x) + q(k0,y + k1,y); (1 − p)(k0,y + k1,y)

− q(k0,x + k1,x)} , (14.4.19)

in the original coordinate system (x, y) in the terms of the vectors k0,k1

and (p, q).
In Fig. 14.1(b) we plot the curves of constant I in the (p, q) plane; the

parameter Ω varies along each curve. Beginning from the two focal points
(p = ±1, q = 0), any pair of vectors k0,k1 which meet at a point on a curve
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of constant I are in resonance with another pair k2,k3, meeting at any
point on the same curve. The figure-of-eight curve (for k0 = k1, i.e., I = 1)
is of particular interest, due to its relevance to the sideband stability of
Stokes waves. It also separates the two domains indicated in (14.4.14).

14.5 Simple Solutions

The simplest solution of Zakharov’s equation (14.3.9) is that for a Stokes
wave in deep water with the wavenumber k0 = (k0, 0). Let the solution be
of the form

B̃(k, t) = b(t)δ(k − k0) . (14.5.1)

It follows from Zakharov’s equation that

i
∂b

∂t
= T0,0,0,0|b|2b .

The solution is

b = B0 exp(−iT0,0,0,0|B0|2t) .

It can be shown that

T0,0,0,0 = T (k0,k0,k0,k0) = |k0|3/4π2 = k3
0/4π2 . (14.5.2)

Recall that the free-surface displacement ζ at the leading order is

ζ =
1
2π

∫ ∞

−∞

(
ω(k)
2g

)1/2

{B̃(k, t) ei[k·x−ω(k)t] + ∗}dk , (14.5.3)

hence

ζ =
1
2π

√
ω0

2g
{B0 exp[i(k0x − ω0t − k3

0 |B0|2t/4π2)] + ∗} . (14.5.4)

Defining

1
2π

√
ω0

2g
B0 =

a0

2
(14.5.5)

so that a0 is the surface-wave amplitude, we get

B̃(k, t) = 2πa0

√
ω0

2k0
e−iω0(a0k0)2t/2δ(k − k0) (14.5.6)
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and

ζ = a0 cos
(

k0x − ω0t − 1
2
ω0a

2
0k

2
0t

)
(14.5.7)

where ω0 = (gk0)1/2 is used.
The surface potential is given to the leading order by

φs =
−i

2π

∫ ∞

−∞

(
g

2ω(k)

)1/2

{B̃(k, t) ei[k·x−ω(k)t] − ∗} dk , (14.5.8)

or,

φs = a0
ω0

k0
sin

(
k0x − ω0t − 1

2
ω0a

2
0k

2
0t

)
. (14.5.9)

The Stokes-wave frequency now depends on the amplitude

ω = ω0

(
1 +

1
2
a2
0k

2
0

)
, (14.5.10)

as found in Chapter 13.
Another simple solution is that for the standing wave with amplitude

a0:

B̃(k, t) = πa0

√
ω0

2k0
e+iω0(a0k0)

2t/8{δ(k − k0) + δ(k + k0)} . (14.5.11)

It can be verified that

T (k0,k0,k0,k0) = T (−k0,−k0,−k0,−k0)

= −T (k0,−k0,k0,−k0)

= k3
0/4π2 . (14.5.12)

The free-surface elevation is obtained by substituting (14.5.11) into (14.5.3).

ζ = a cos(k0x) cos(ω0t − ω0k
2
0a

2
0t/8) (14.5.13)

so that Stokes’ corrected frequency for a standing wave is

ω = ω0

(
1 − 1

8
a2
0k

2
0

)
. (14.5.14)

Second-order terms for the progressive and standing waves can be obtained
by substituting (14.5.6) and (14.5.11) into (14.3.3), respectively.
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14.6 Interaction of Two Waves

We consider the interaction of two weakly nonlinear wavetrains in any two
directions, denoted by subscripts a and b. By taking

B̃(k, t) = Ba(t)δ(k − ka) + Bb(t)δ(k − kb) (14.6.1)

and substituting (14.6.1) into (14.3.9), we find

i
dBa

dt
= Ta,a,a,a|Ba|2Ba + {Ta,b,a,b + Ta,b,b,a}|Bb|2Ba (14.6.2)

i
dBb

dt
= Tb,b,b,b|Bb|2Bb + {Tb,a,b,a + Tb,a,a,b}|Ba|2Bb . (14.6.3)

In what follows, we denote Ta.a.a.a by Ta and Tb,b,b,b by Tb for brevity. The
symmetry properties of T0,1,2,3, (14.3.11), allows us to write both expres-
sions in the curly brackets of (14.6.2) and (14.6.3) as 2Ta,b,a,b, which will be
denoted by 2Ta,b. The solution of the pair of ordinary differential equations
(14.6.2) and (14.6.3) is given by

Ba(t) = Aa exp{−i(TaA
2
a + 2Ta,bA

2
b)t} (14.6.4)

Bb(t) = Ab exp{−i(TbA
2
b + 2Ta,bA

2
a)t} . (14.6.5)

We now substitute (14.6.1), (14.6.4) and (14.6.5) in (14.5.3) and write the
result in the form

ζ(x, t) = aa cos(ka · x − Ωat) + ab cos(kb · x − Ωbt) (14.6.6)

where aa and ab represent the amplitudes of the two wavetrains, and are
related to the constants Aa and Ab by

A0 = 2π

(
ωa

2ka

)1/2

aa ,

Ab = 2π

(
ωb

2kb

)1/2

ab .

(14.6.7)

The frequencies of the wavetrains are given by

Ωa = ωa + TaA
2
a + 2Ta,bA

2
b (14.6.8)

Ωb = ωb + TbA
2
b + 2Ta,bA

2
a . (14.6.9)

Clearly this result is just an extension of Stokes waves theory. The primary
effect of nonlinearity is to change the frequencies. The change is composed
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of two parts. Take wavetrain b for example. In (14.6.9), the first correction
to ωb is

TbA
2
b =

k3
b

4π2
· 4π2 ωb

2kb
a2

b

=
1
2
ωb(kbab)2 , (14.6.10)

which is the Stokes correction [cf. (14.5.10)] due to the nonlinearity of
the wavetrain itself and is present even if the other wavetrain is absent.
The second correction in (14.6.9) is given by 2Ta,bA

2
a and is entirely due to

the presence of the other wavetrain. It is of the same order as the usual
Stokes correction. For more details, see Hogan et al. (1988).

14.7 Interaction of Four Waves (Quartet Interaction)

In this section we study the evolution of wave fields which consist of a
resonating quartet of free waves, all in deep water, so that

B̃(k, t) = Ba(t)δ(k − ka) + Bb(t)δ(k − kb)

+ Bc(t)δ(k − kc) + Bd(t)δ(k − kd) (14.7.1)

where

ka + kb − kc − kd = 0 (14.7.2)

ωa + ωb − ωc − ωd = ∆a,b,c,d ; ωj = (g|kj |)1/2 . (14.7.3)

Substitution of (14.7.1) into (14.3.9) under the constraint (14.7.2) gives a
system of four first-order nonlinear ordinary differential equations:

i
dBa

dt
= (Ωa − ωa)Ba + 2Tabcd ei∆a,b,c,dtB∗

b BcBd (14.7.4)

i
dBb

dt
= (Ωb − ωb)Bb + 2Tabcd ei∆a,b,c,dtB∗

aBcBd (14.7.5)

i
dBc

dt
= (Ωc − ωc)Bc + 2Tabcd e−i∆a,b,c,dtB∗

dBaBb (14.7.6)

i
dBd

dt
= (Ωd − ωc)Bd + 2Tabcd e−i∆a,b,c,dtB∗

c BaBb (14.7.7)
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where the Stokes-corrected frequencies are:

Ωa = ωa + Taaaa|Ba|2 + 2Tabab|Bb|2

+ 2Tacac|Bc|2 + 2Tadad|Bd|2 (14.7.8)

Ωb = ωb + 2Tbabc|Ba|2 + Tbbbb|Bb|2

+ 2Tbcbc|Bc|2 + 2Tbdbd|Bd|2 (14.7.9)

Ωc = ωc + 2Tcaca|Ba|2 + 2Tcbcb|Bc|2

+ Tcccc|Bc|2 + 2Tcdcd|Bd|2 (14.7.10)

Ωd = ωd + 2Tdada|Ba|2 + 2Tdbdb|Bd|2

+ 2Tcdcd|Bc|2 + Tdddd|Bd|2 . (14.7.11)

These equations have been derived by the multiple-scales method by
Benney (1962). The solution to be described below for periodic envelopes
follows Bretherton (1964).

14.7.1 Reduction to One Unknown

Multiplying (14.7.4), (14.7.5), (14.7.6) and (14.7.7) by B∗
a, B∗

b , B∗
c and B∗

d ,
respectively, and substracting their complex conjugates, we obtain

d

dt
|Ba|2 =

d

dt
|Bb|2 = − d

dt
|Bc|2 = − d

dt
|Bd|2

= 4Tabcd Im{B∗
aB∗

b BcBd ei∆a,b,c,dt} . (14.7.12)

An auxiliary real function Z(t) is defined by

dZ

dt
= Im{B∗

aB∗
b BcBd ei∆a,b,c,dt} , Z(0) = 0 . (14.7.13)

Substituting (14.7.13) into (14.7.12) and integrating, we get

|Ba|2 − |βa|2 = |Bb|2 − |βb|2 = −|Bc|2 + |βc|2

= −|Bd|2 + |βd|2 = 4TabcdZ (14.7.14)

where βj = Bj(0).
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Using the rule for the derivative of a product and Eqs. (14.7.4) to
(14.7.7), we obtain

d

dt
{B∗

aB∗
b BcBd ei∆a,b,c,dt}

= i{Ωa − ωa + Ωb − ωb − Ωc + ωc − Ωd − ωd}B∗
aB∗

b BcBd ei∆a,b,c,dt

+ 2iTabcd{|Ba|2|Bc|2|Bd|2 + |Bb|2|Bc|2|Bd|2 − |Ba|2|Bb|2|Bc|2

− |Ba|2|Bb|2|Bd|2} + i∆a,b,c,dB
∗
aB∗

b BcBd ei∆a,b,c,dt . (14.7.15)

We can now substitute (14.7.3) into (14.7.15) and denote

Ω = Ωa + Ωb − Ωc − Ωd (14.7.16)

so that

d

dt
{B∗

aB∗
b BcBd ei∆a,b,c,dt}

= iΩ{B∗
aB∗

b BcBd ei∆a,b,c,dt}
+ 2iTabcd{|Ba|2|Bc|2|Bd|2 + |Bb|2|Bc|2|Bd|2

− |Ba|2|Bb|2|Bc|2 − |Ba|2|Bb|2|Bd|2} . (14.7.17)

In view of the definition (14.7.13), the real part of both sides of (14.7.17)
gives

d

dt
Re {B∗

aB∗
b BcBd ei∆a,b,c,dt} = −Ω

dZ

dt
. (14.7.18)

Equation (14.7.14) enables us to write (14.7.16) as

Ω = Ω0 + Ω1Z (14.7.19)

where

Ω0 = ∆a,b,c,d + (Taaaa + 2Tabab − Tacac − 2Tadad)|βa|2

+ (2Tabab + Tbbbb − 2Tbcbc − 2Tbdbd)|βb|2

+ (2Tcaca + 2Tcbcb − Tcccc − 2Tcdcd)|βc|2

+ (2Tdada + 2Tdbdb − 2Tdcdc − Tdddd)|βd|2 (14.7.20)
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and

Ω1 = 4Tabcd{Taaaa + Tbbbb + Tcccc + Tdddd + 4Tabab

− 4Tacac − 4Tadad − 4Tbcbc − 4Tbdbd + 4Tcdcd} . (14.7.21)

Let us integrate (14.7.18) from t = 0 to give

Re {B∗
aB∗

b BcBd ei∆a,b,c,dt}

= Re {β∗
aβ∗

b βcβd ei∆a,b,c,dt} −
∫ z

0

Ω dZ . (14.7.22)

From (14.7.13) and (14.7.22) we get{
dZ

dt

}2

= |Ba|2|Bb|2|Bc|2|Bd|2

−
[
Re {β∗

aβ∗
b βcβd} − Ω0Z − Ω1

2
Z2

]2

(14.7.23)

which can be rewritten as(
dZ

dt

)2

= P4(Z) =
4∑

�=0

a�Z
4−� (14.7.24)

where the coefficients of the fourth-order polynomial are

a0 = −1
4
Ω2

1 + 256T 4
abcd (14.7.25)

a1 = −Ω0Ω1 + 64T 4
abcd(|βa|2 + |βb|2 − |βc|2 − |βd|2) (14.7.26)

a2 = −Ω2
0 + Ω1|βaβbβcβd| cos(arg βa + arg βb − argβc − arg βd)

+ 16T 2
abcd(|βaβb|2 − |βaβc|2 − |βaβd|2 − |βbβc|2

− |βbβd|2 + |βcβd|2) (14.7.27)

a3 = 2Ω0(|βaβbβcβd| cos(argβa + argβb − arg βc − arg βd)

− 4Tabcd(|βaβbβc|2 + |βaβbβd|2 − |βaβcβd|2 − |βbβcβd|2) (14.7.28)

a4 = |βaβbβcβd|2 sin2(arg βa + arg βb − arg βc − arg βd) . (14.7.29)
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14.7.2 Solution for Periodic Envelopes

The formal solution of (14.7.24) is

t =
∫ Z

0

dZ√
P4(Z)

. (14.7.30)

The details depend on the number and values of the real roots of the poly-
nomial. In principle, various scenarios may exist. However, for the example
at hand, the polynomial P4 has four real roots, z4 > z3 > 0 > z2 > z1,

and a0 > 0. The solution can be expressed in terms of elliptic functions.
Applying a known property of elliptic functions [see formula (255.00) in
Byrd and Friedman (1971)] to Eq. (14.7.30), we obtain

a
1/2
0 t = γ

{
sn−1

(√
(z4 − z2)(z3 − z)
(z3 − z2)(z4 − z)

, κ

)
+ sn−1(δ, κ)

}
(14.7.31)

where sn is the Jacobian elliptic function with modolus

κ =

√
(z3 − z2)(z4 − z1)
(z4 − z2)(z3 − z1)

(14.7.32)

and

γ =

√
2

(z4 − z2)(z3 − z1)
, δ =

√
z3(z4 − z2)
z4(z3 − z2)

. (14.7.33)

It follows by inverting (14.7.31) that

Z =
z4(z3 − z2) sn2u − z3(z4 − z2)

(z3 − z2) sn2u − (z4 − z2)
;

u = sn−1(δ, κ) − a
1/2
0 t/γ .

(14.7.34)

Utilizing known formulas [(123.01) and (131.01) in Byrd and Friedman
(1971)], we obtain

sn(u, κ)=
δcn(a1/2

0 t/γ)dn(a1/2
0 t/γ) + s[(1 − δ2)(1 − κ2δ2)]1/2sn(a1/2

0 t/γ)

1 − (κδ)2sn2(a1/2
0 t/γ)

,

(14.7.35)
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where

s = sgn(sin θ) (14.7.36)

and

θ = − argβa − argβb + argβc + argβd . (14.7.37)

Note that the amplitudes |Bj |, j = a, b, c, d in (14.7.14) depend on Z and
are periodic, with the period

T = 2
∫ z3

z2

dZ/
√

P4 =
2γ

a
1/2
0

sn−1(1, κ) =
2γ

a
1/2
0

K(κ) (14.7.38)

where K is the complete elliptic integral of first kind.
In Fig. 14.2 we show the computed evolution of the nondimensional

wave amplitudes kaaa, kaab, kaac, and kaad as a function of time t/Ta,

where Ta is the period of wave a. The amplitudes aj are related to the
variable Bj through

aj =
1
π

(
ωj

2g

)1/2

|Bj | . (14.7.39)

For illustration, we fix the wavenumbers ka = (0.9806,−0.1961) and kb =
(0.9806, 0.1961) in all three cases, and the initial steepness and phases of
all four waves. The chosen initial conditions are

kaaa = 0.2 , kbab = 0.15 ,

kcac = 0.08 , kdad = 0.03
(14.7.40)

and

arg βa = π/6 , argβb = 0 ,

argβc = −π/6 , arg βd = 0 .
(14.7.41)

The wavenumbers in Fig. 14.2(a) have been chosen to give exact reso-
nance with kc = (1.2902, 0.2747) and kd = (0.6709, −0.2747). The con-
ditions in Figs. 14.2(b) correspond to near-resonance and weak-resonance,
respectively. Specifically, in Fig. 14.2(b), kc = (1.1767, 0.1961), kd =
(0.7845, −0.1961), and the detuning [ωa + ωb − ωc − ωd]/ωa = 0.0086;
whereas in Fig. 14.2(c), kc = (1.3728, 0.4903), kd = (0.5883, −0.4903),
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Figure 14.2: Slow evolution of wave amplitudes for four waves in resonant interaction:
(a) exact resonance; (b) near-resonance; (c) far from resonance.
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and the detuning is −0.083. The periodic nature of the evolution is evi-
dent. The evolution periods and the intensity of nonlinear interaction are
seen to diminish when the system moves away from resonance.

14.8 The Cubic Schr ödinger Equation

As shown by Zakharov (1968), the cubic Schrödinger equation discussed in
Chapter 13 for narrow-banded seas is a special case of (14.3.9) with energy
concentrated around k = k0 = (k0, 0). Let all wavenumbers be rewritten as

k = k0 + m (14.8.1)

with

m = (m, λ) , |m|/k0 � 1 . (14.8.2)

We now introduce a new spectral amplitude

A(m, t) = B̃(k, t) exp{−i[ω(k) − ω(k0)]t} (14.8.3)

first in (14.3.9)

i
∂A(m, t)

∂t
− [ω(k) − ω(k0)]A(m, t)

=
∫∫∫ ∞

−∞
T (k0 + m,k0 + m1,k0 + m2,k0 + m3)

·A∗(m1)A(m2)A(m3)δ(m + m1 − m2 − m3) dm1 dm2 dm3 ,

(14.8.4)

and next in (14.5.3)

ζ(x, t) =
1
2π

(
ω(k0)

2g

)1/2

·
{

ei[k0x−ω(k0)t]

∫ ∞

−∞

(
1 +

m

4k0

)
A(m, t)eim·x dm + ∗

}
.

(14.8.5)

The last equation is rewritten as

ζ(x, t) = Re {a(x, t)ei[k0x−ω(k0)t]} (14.8.6)
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where a(x, t) is given by the following Fourier transform

a(x, t) =
(

2ω(k0)
g

)1/2 1
2π

∫ ∞

−∞

(
1 +

m

4k0

)
A(m, t)eim·x dm . (14.8.7)

Let us approximate, for deep water only, the frequency difference ω(k) −
ω(k0) on the left of (14.8.4) by Taylor expansion in powers of the spectral
width

ω(k) − ω(k0) =
1
2

(
g

k0

)1/2 [
m − m2

4k0
+

λ2

2k0
+ O

( |m|3
k3
0

)]
, (14.8.8)

see (14.8.2).
It follows by mulitplying (14.8.4) by [2ω(k0)/g]1/2(1+m/4k0) and taking

its inverse Fourier transform that

i
∂a

∂t
+

1
2

(
g

k0

)1/2 [
i
∂a

∂x
− 1

4k0

∂2a

∂x2
+

1
2k0

∂2a

∂y2

]

·
(

2ω(k0)
g

)1/2 1
2π

∫∫∫ ∞

−∞

(
1 +

m2 + m3 − m1

4k0

)
·T (k0 + m2 + m3 − m1,k0 + m1,k0 + m2,k0 + m3)

·A∗(m1)A(m2)A(m3) ei(m2+m3−m1)·x dm1 dm2 dm3 . (14.8.9)

Next, one can show by Taylor expansion of T , that

T (k0 + m2 + m3 − m1,k0 + m1,k0 + m2,k0 + m3) =
k3
0

4π2
(14.8.10)

to zero order in the spectral width. Substituting (14.8.10) on the right-
hand side of (14.8.9) and evaluating the Fourier integrals, we get the two-
dimensional Schrödinger equation,

i

(
a,x +

2k0

ω0
a,t

)
− 1

4k0
a,xx +

1
2k0

a,yy = k3
0 |a|2a . (14.8.11)

By including higher order approximations, Dysthe’s (1979) modification
of the Schrödinger equation can also be derived, see Stiassnie (1984).

The Schrödinger equation is best known for its exact envelope soliton
solution

a = a0 e−iω0k2
0a2

0t/4 sech
[√

2a0k
2
0

(
x − ω0

2k0
t

)]
(14.8.12)

where ω2
0 = gk0.



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

866 Broad-Banded Nonlinear Surface Waves in the Open Sea

From (14.8.6) one can see that

ζ = a0 sech
[√

2a0k
2
0

(
x − ω0

2k0
t

)]
cos

[
k0x − ω0

(
1 +

1
4
k2
0a

2
0

)
t

]
.

(14.8.13)

Envelope solitons, which go through mutual interactions with only minor
changes, have attracted wide interest, see Sections 13.5 and 13.6 in this
book and Ablowitz and Segur (1981).

14.9 Benjamin–Feir Instability of Stokes Waves

The special quartet for which kb = ka and 2ka = kc + kd, is important
for studying the stability of the ka wave when exposed to two disturbances
at kc = ka + K and kd = ka − K. For this case (14.7.4)–(14.7.7) and
(14.7.8)–(14.7.11) are reduced to

i
dBa

dt
= (Ωa − ωa)Ba + 2Taacd ei∆aacdtB∗

aBcBd (14.9.1)

i
dBc

dt
= (Ωc − ωc)Bc + Taacd ei∆aacdtB2

aB∗
d (14.9.2)

i
dBd

dt
= (Ωd − ωd)Bd + Taacd ei∆aacdtB2

aB∗
c (14.9.3)

and

Ωa = ωa + Taaaa|Ba|2 + 2Tacac|Bc|2 + 2Tadad|Bd|2 (14.9.4)

Ωc = ωc + 2Tacac|Ba|2 + Tcccc|Bc|2 + 2Tcdcd|Bd|2 (14.9.5)

Ωd = ωd + 2Tadad|Ba|2 + 2Tcdcd|Bc|2 + Tdddd|Bd|2 . (14.9.6)

Nonlinear periodic solutions very similar to (14.7.34) have been obtained,
see Shemer and Stiassnie (1985).

Crawford et al. (1981) have used Zakharov’s equation to examine the
problem that Benjamin–Feir examined earlier by the cubic Schrödinger
equation, and found a number of improved results. To this end, we assume
Bc, Bd � Ba and linearize (14.9.1)–(14.9.3).
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At the zeroth order

i
dBa

dt
= Taaaa|Ba|2Ba , (14.9.7)

and at the first order

i
dBc

dt
= 2Tacac|Ba|2Bc + Taacd e−i∆aacdtB2

aB∗
d , (14.9.8)

i
dBd

dt
= 2Tadad|Ba|2Bd + Taacd e−i∆aacdtB2

aB∗
c , (14.9.9)

where ∆aacd = 2ωa − ωc − ωd.

The solution of (14.9.7) is just the Stokes wave

Ba = βae−iTaaaa|βa|2t (14.9.10)

where βa = Ba(0) is assumed to be real and positive.
Substituting (14.9.10) into (14.9.8) and (14.9.9), we get

i
dBc

dt
= 2Tacacβ

2
aBc + Taacd e−i(∆aacd+2Taaaaβ2

a)t β2
aB∗

d (14.9.11)

and

i
dBd

dt
= 2Tadadβ

2
aBd + Taacd e−i(∆aacd+2Taaaaβ2

a)tβ2
aB∗

c . (14.9.12)

Assuming a solution of the form

Bc = βce
−i[ 12∆aacd+Taaaaβ2

a+σ]t , βc = Bc(0) , (14.9.13)

and

Bd = βde
−i[ 12 ∆aacd+Taaaaβ2

a−σ∗]t , βd = Bd(0) , (14.9.14)

one can show that the eigenvalue σ must be given by

σ = (Tacac − Tadad)β2
a ± D1/2 (14.9.15)

where

D =
[
1
2
∆aacd + (Taaaa − Tacac − Tadad)β2

a

]2

− T 2
aacdβ

4
a (14.9.16)

is the discriminant of a quadratic eigenvalue condition.
Positive values of D correspond to stability. When D is negative, the

imaginary part of σ, i.e., Imσ = Im[(−D)1/2] is the growth rate of insta-
bility (Crawford et al., 1981).
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For the simplest two-dimensional case where the Stokes wave is in deep
water and the sidebands are in the same direction, ka = (ko, 0), K = (κ, 0).
If we further assume narrow sidebands κ/k0 � 1, then the following rela-
tions hold: (

ωc

ωd

)
= ω(k0 ± κ) = ω(k0)

(
1 ± κ

2k0
− κ2

8k2
0

+ ·
)

(14.9.17)

βa =
(

2g

ω0

)1/2

π a0 , (14.9.18)

where a0 is the first-order amplitude of ka.

Due to the narrowness of the spectrum

Tacac ≈ Tadad ≈ Taacd ≈ Taaaa = k3
0/4π2 , (14.9.19)

and

∆aacd = 2ω(k0) − ω(k0 + κ) − ω(k0 − κ) ≈ 1
4
ω0κ

2/k2
0 ,

ω0 = ω(k0) =
√

g k0 . (14.9.20)

From (14.9.16) it is clear that instability prevails as long as

κ/k0 < 2
√

2(a0k0) . (14.9.21)

The growth rate is given by

(−D)1/2 =
ω0

2
√

2

(
κ

k0

) [
(k0a0)2 − 1

8

(
κ

k0

)2
]1/2

(14.9.22)

which attains its maximum at κmax = 2k2
0a0, and where its value is

ω0k
2
0a

2
0/2. These are just the results predicted in Section 13.4 by the cubic

Schrödinger equation.
Crawford et al. (1981) have used (14.9.15) to compute the growth rate

for a wider range of wave steepness despite the theoretical limitation of
Zakharov’s equation. The numerical growth rate for different values of
k0a0 are shown in Fig. 14.3 as a function of the dimensionless modulation
wavenumber

∆ ≡ κ

2k2
0a0

. (14.9.23)
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Figure 14.3: Instability growth rate as a function of perturbation wavenumber for
various values of wave steepness (from Crawford et al. (1981), J. Fluid Mech. Reprinted
by permission of Cambridge University Press).

These results show that as k0a0 increases, the growth rate decreases.
When k0a0 > 0.39, sideband disturbances with long modulational wave-
length are stable! Although such high steepness should lie beyond the realm
of validity of Zakharov’s theory, comparison with the numerical theory for
steep waves by Longuet–Higgins (1978) shows remarkable agreement, as
seen in Fig. 14.4. When numerical predictions from (14.9.15) are compared
with experiments, the agreement up to moderate k0a0 is much better than
that from cubic Schrödinger equation, see Fig. 13.2.

In the three-dimensional case where the sidebands are in different
directions from the carrier wave, k0 = (k0, 0) and K = (Kx, Ky), the
stability boundary is defined by the vanishing of D defined by (14.9.16)
where |K|/k0 is not necessarily small. Figure 14.5 gives a sample result
from (14.9.15), which shows that in the first quadrant of the K plane,
the region of instability is limited to the interior of the horn-like domain.
In contrast, the instability region is unbounded according to the cubic



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

870 Broad-Banded Nonlinear Surface Waves in the Open Sea

Figure 14.4: Stability boundary for growth of unstable disturbances for uni-directional
wavetrains, and comparison with results by Longuet–Higgins (1978). Note that Eq. (13),
noted in the figure, is the same as (14.9.15) (from Crawford et al. (1981), J. Fluid Mech.

Reprinted by permission of Cambridge University Press).

Schrödinger equation (Benney and Roskes, 1969) and bounded in a horn
with a straight side according to Dysthe (1979), both of which are limited
to small |K|/k0.

Beyond the initial stage of unstable growth, the long-time evolution
is obtained from an analytical solution of (14.9.1)–(14.9.3), which is very
similar to (14.7.34), see Shemer and Stiassnie (1985). The notable feature is
the periodic recurrence. Initially, the sidebands kc,kd grow at the expense
of the carrier wave ka, but after reaching their peaks their energy is returned
to the carrier wave. This exchange recurs periodically, in accordance with
(14.7.38). A sample of this behaviour is shown in Fig. 14.6 for which initially
kaaa = k0a0 = 0.13, ac = ad = 0.1 aa, argβc +argβd = −π/4 and κ = 0.22.

The recurrence period T for this case is about 190 carrier periods.
Note that the lower sideband grows to a slightly higher peak than

the upper sideband. This unequal growth of sidebands is not predictable
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Figure 14.5: Instability growth rate for two values of wave steepness according to
(14.9.15). (a) k0a0 = 0.1, (b) k0a0 = 0.2, as k0a0 increases, the horn is lower in height
and has a larger curvature (from Crawford et al. (1981), J. Fluid Mech. Reprinted by
permission of Cambridge University Press).
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Figure 14.6: Long-time evolution initiated by the Benjamin–Feir instability of a Stokes
wave.

by solving the cubic Schrödinger equation which can only reproduce the
periodic recurrence. This of course implies that Zakharov’s equation is
more accurate than the cubic Schrödinger equation and contains Dysthe’s
extension.

It is well known that the peak frequency of a wind-wave spectrum de-
creases with the propagation distance, while the peak amplitude increases.
This phenomenon is known as the frequency downshift. Lake et al. (1977)
have suggested that the faster growth of the lower sideband can contribute
to the downshift of the spectral peak. Their reasoning is as follows.
Inevitable nonlinear effects cause sidebands around the peak frequency to
grow with fetch. When the faster growth of the lower sideband over-
takes both the upper sideband and the carrier wave, downward shift of
the spectral peak occurs. If the waves are steep enough, breaking may
intervene so that the downshift is not reversible. Experiments by Melville
(1982, 1983) confirms this suggestion. Further discussions of frequency
downshift by using theories of narrow frequency band have been examined
by Lo and Mei (1985) and Trulsen and Dysthe (1992).

14.10 Kinetic Equation of Hasselmann

Surface waves in an open ocean are so complex that they must be considered
as a random process for practical predictions. In past decades numerical
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models have been developed on the basis of the so-called kinetic equation
for the action spectrum C(k, t) (to be defined later)

dC

dt
= Sin + Snl + Sds + Sbot (14.10.1)

where the right-hand side consists of source terms representing the physical
mechanisms of wind-input, nonlinear wave-wave interactions, dissipation
due to breaking and bottom friction. Of the four mechanisms, our theoreti-
cal understanding of Snl is the most advanced. All others must be modeled
by including considerble empirical data. A comprehensive survey of all
source terms and the numerical implementation can be found in Komen et
al. (1994). We shall derive the nonlinear source term as an application of
Zakharov’s theory.

Treating the free surface displacement as random, we first discretize the
amplitude spectrum defined by (14.1.8) as follows

B̃(k, t) =
∑

n

Bn(t)δ(k − kn) (14.10.2)

where the phases of all Bn are assumed to be random variables uncorrelated
and uniformly distributed in [−π, π] at the lowest order. In (14.10.2) and
elsewhere n is a large number, so that in the limit the discretized terms are
densely distributed over the wavenumber plane. The Zakharov equation
(14.3.9) is then replaced by

i
dBn

dt
=

∑
p,q,r

T̂npqrδnpqre
i∆npqrtB∗

pBqBr (14.10.3)

where δnpqr is the generlized Kronecker delta defined by

δnpqr =

{
1 , kn + kp = kq + kr ,

0 , otherwise
,

and

∆npqr = ωn + ωp − ωq + ωr .

Multiplying (14.10.3) by −iB∗
n and adding the complex conjugate to

the result give

d|Bn|2
dt

= 2 Im
∑
p,q,r

T̂npqrδnpqre
i∆npqrtB∗

nB∗
pBqBr . (14.10.4)
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We now take the ensemble average of (14.10.4). Note that the as-
sumed statistical independence and uniform probability of the phases of
Bn, Bp, Bq, Br implies that to the leading order

〈B∗
nB∗

pBqBr〉 =
|Bn||Bp||Bq||Br|

(2π)4

∫∫∫∫ π

−π

· e−i(θn+θp−θq−θr) dθn dθp dθq dθr

which vanishes unless p = q, n = r or n = q, p = r. Thus the ensemble
average of the sum on the right is, to the leading order,

2 Im

{
〈|Bn|2〉

∑
r

T̂nrnr〈|Bn|2〉
}

which is zero. To calculate the same term to higher order accuracy, the
product B∗

nB∗
pBqBr is differentiated with respect to t and (14.10.3) is sub-

stituted for the derivatives

i
d

dt
(B∗

nB∗
pBqBr) = −B∗

pBqBr

∑
u,v,w

T̂nuvwδnuvwe−i∆nuvwtBuB∗
vB∗

w

−B∗
nBqBr

∑
u,v,w

T̂puvwδpuvwe−i∆puvwtBuB∗
vB∗

w

+ B∗
nB∗

pBr

∑
u,v,w

T̂quvwδquvwei∆quvwtB∗
uBvBw

+ B∗
nB∗

pBq

∑
u,v,w

T̂ruvwδruvwei∆ruvwtB∗
uBvBw

(14.10.5)

where the symmetry of the kernel, T̂npqr = T̂nprq = T̂pnqr = T̂qrnp has been
used. Upon taking the ensemble average, contributions of most of the terms
on the right-hand-side of (14.10.5) cancel out, leaving,

i
d

dt
〈B∗

nB∗
pBqBr〉 = −2T̂npqrδnpqre

−i∆npqrt

· [CqCr(Cp + Cn) − CnCp(Cq + Cr)] (14.10.6)

where

Cn = 〈|Bn|2〉 (14.10.7)
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which is the discrete representation of the action spectrum, in view of the
definition, (14.1.7).

We now integrate (14.10.6) with respect to t by assuming the initial
condition,

〈B∗
nB∗

pBqB〉 = 0 t = t0 , (14.10.8)

where t0 is negative and very large. Antipating that Cn varies slowly in
time and noting that the largest contribution of the integral

Re
∫ t

t0

e−i∆pqnr(t−τ) dτ =
sin(∆npqr(t − t0))

∆npqr
(14.10.9)

comes from the viscinity of ∆npqr = 0 if to → −∞, we make the approxi-
mation

〈B∗
nB∗

pBqBr〉 ≈ 2iT̂npqrδnpqr · [CqCr(Cp + Cn) − CnCp(Cq + Cr)]

·
∫ t

t0

e−i∆npqrτ dτ (14.10.10)

so that the ensemble average of Eq.(14.10.4) becomes

dCn

dt
= 4

∑
p,q,r

T̂ 2
npqrδnpqr

sin(∆npqr(t − t0))
∆npqr

· [CqCr(Cp + Cn) − CnCp(Cq + Cr)] . (14.10.11)

Taking the limit t0 → −∞ and using the fact that

lim
t0→−∞

sin(−∆npqrt0)
π∆npqr

= δ(∆npqr)

= δ(ωn + ωp − ωq − ωr) , (14.10.12)

we obtain

dCn

dt
= 4π

∑
p,q,r

T̂ 2
npqrδnpqrδ(ωn + ωp − ωq − ωr)

· [CqCr(Cp + Cn) − CnCp(Cq + Cr)] . (14.10.13)

Note that this limit signifies the dominance of the Phillips’ four-wave
resonance.
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Returning to the continuous form, the action spectrum is governed by

dC(k, t)
dt

= 4π

∫∫∫ ∫ ∞

−∞
dk1 dk2 dk3

· T̂ 2(k,k1,k2,k3)δ(k1 + k2 − k3 − k4)δ(ω + ω1 − ω2 − ω3)

· {C(k2)C(k3)[C(k) + C(k1)] − C(k)C(k1)[(C(k2) + C(k3)]} .

(14.10.14)

This is Hasselmann’s kinetic equation for energy transfer among waves of
different wavenumbers. With additional terms representing energy input
from wind, and outputs through dissipation at the free surface and the sea
bed, the action spectrum at any time can be numerically integrated from
a known initial state. Information on full wave forecasting models and the
numerical integration schemes can be found in Komen et al. (1994).

It may be pointed out that the derivation here hinges on the choice of
t0 = −∞ in the assumption (14.10.8). Other choices are possible. For ex-
ample Janssen (2003) chooses t0 = 0 so that the delta function in frequency
in (14.10.14) is replaced by a smeared function

δ(ω + ω1 − ω2 − ω3) → sin∆npqrt

π∆nprq
.

This has the physical effect of giving more weight to waves that are slightly
phase-mismatched according to Phillips’ quartet resonance condition. For
sufficiently large time, Janssen’s choice would approach Hasselmann’s
asymptotically. Further theoretical study is warranted.

14.11 Extensions

In this chapter Zakharov’s equation (14.3.9) has been developed by taking
into account third-order nonlinear interactions among a quartet of waves;
this order is the lowest that causes a significant change of the leading-order
gravity-wave amplitudes, albeit on the slow time-scale t2.

Resonant interactions among five wavetrains (quintet resonance) can
occur if fourth-order nonlinearity is taken into account, and will affect the
leading-order amplitudes on the time-scale t3. This topic has been studied
by Stiassnie and Shemer (1984, 1987), Krasitskii (1994), Annenkov and
Shrira (2001). By this extension the so-called class-II instabilities, first
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found numerically by McLean (1982), was also predicted analytically. So
far experimental verifications are scarce, and available mainly for quartet
resonance [see McGoldrick et al. (1966); Shemer et al. (2001)].

One drawback of Zakharov’s equation is the fact that it treats the whole
(x, y) plane, i.e., the whole ocean surface, as one unit. To overcome this
limitation, Rasmussen (1998) allows for spatial variations, and derives the
equation:

i
∂B

∂t
+ icg · ∇xB − g

8ωk

·
{

k2
x − 2k2

y

k2

∂2B

∂x2
+

6kxky

k2

∂2B

∂xdy
+

k2
y − 2k2

x

k2

∂2B

∂y2

}

=
∫∫∫ ∞

−∞
T0,1,2,3B

∗
1B2B3δ0+1−2−3e

i(ω0+ω1−ω2−ω3)t dk1 dk2 dk3 .

(14.11.1)

The left-hand side of (14.11.1) is similar to the linear part of the cubic
Schrödinger equation (14.8.11), and the right-hand side to that of the
original Zakharov equation (14.3.9). Note, that (14.11.1) depends on the
spatial variable x1, and on the time variables t1 and t2. If the actual spatial
coordinate is x2 the second-order derivatives on the left-hand side can be
omitted. A relatively easy derivation of (14.11.1) and its relation to the
physical variables ζ, φs are given in Rasmussen and Stiassnie (1999). It is
fair to mention that difficulties related to the question of scale-separation
still shed some doubt on the applicability of (14.11.1), and await further
research.

From (14.10.14) one can see that the energy transfer occurs on the
rather long time-scale t4, since the rate of change of the action density
C is proportional to C3. A much faster energy transfer, with time-scale
t2, is possible in the presence of spatial inhomogeneities. This was clearly
demonstrated by Alber (1978) who derived an equation describing the evo-
lution of a random narrowband wavetrain. Recently, Stiassnie (2001) has
derived a mathematical model for nonlinear interactions of an inhomoge-
neous random and broadbanded water-wave field, using two-point spectral
correlation functions as dependent variables. In Stiassnie (2001) the au-
thor conjectures that almost any homogeneous wave-field is unstable to
inhomogeneous disturbances; but this has to await future proof.
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For a recent review about evolution models of nonlinear gravity waves
over uneven topography, the reader is referred to Agnon and Sheremet
(2000).

Appendix 14.A Details of Derivation

Appendix 14.A.1 Fourier Transforms of the
Free Surface Conditions

We shall only illustrate the transform of a typical quadratic term ∇xφs·∇xζ,
see (14.1.6),

̂∇xφs · ∇xζ

=
1
2π

∫ ∞

−∞
∇xφs · ∇xζe−ik·x dx

=
1

(2π)3

∫ ∞

−∞
e−ik·x dx

∫ ∞

−∞
(∇̂xφs)1e+ik1·x dk1

∫ ∞

−∞
(∇̂xζ)2e+ik2·x dk2

=
1

(2π)3

∫∫∫ ∞

−∞
(∇̂xφs)1(∇̂xζ)2e+i(k1+k2−k)·x) dk1 dk2 dx . (14.A.1)

Since

(∇̂xφs)1 ≡ 1
2π

∫ ∞

−∞
∇φse−ik1·x dx = ik1φ̂

s(k1, t)

(∇̂xζ)2 ≡ 1
2π

∫ ∞

−∞
∇ζ e−ik2·x dx = ik2ζ̂(k2, t)

and

1
(2π)2

∫ ∞

−∞
ei(k1+k2−k)·x dx = δ(k − k1 − k2), (14.A.2)

it follows that

̂∇xφs · ∇xζ = − 1
2π

∫ ∞

−∞
k1 · k2φ̂

s(k1, t)ζ̂(k2, t)

· δ(k − k1 − k2) dk1 dk2 . (14.A.3)

Conditions (14.2.3) and (14.2.4) follow easily.
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Appendix 14.A.2 Surface Properties for Waves of
Small Steepness

After Taylor expansion of (14.2.6) up to O(ε3) we get (14.2.8)

φs(x, t) =
1
2π

∫ ∞

−∞
φ̂(k1, t)

·
[
cosh(k1h)

(
1 +

|k1|2
2

ζ2

)
+ |k1| sinh(|k1|h) ζ

]
eik1·x dk1 .

(14.A.4)

Expressing ζ as a Fourier integral

ζ(x, t) =
1
2π

∫ ∞

−∞
ζ̂(k, t) exp[ik · x] dk .

Substituting it into (14.A.4) and taking the Fourier transform of the result,
we get,

φ̂s(k, t) = Φ̂(k, t) cosh(|k|h) +
1

(2π)3

∫∫∫ ∞

−∞
|k1| sinh(|k1|h)

· Φ̂(k1, t)ζ̂(k2, t)ei(k−k1−k2)·x dx dk1 dk2

+
1

(2π)4

∫∫∫∫ ∞

−∞

1
2
|k1|2 cosh(|k1|h)Φ̂(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· ei(k−k1−k2−k3)·x dx dk1 dk2 dk3 .

Making use of (14.A.2), we obtain

φ̂s(k, t) = Φ̂(k, t) cosh(|k|h) +
1

(2π)

∫∫ ∞

−∞
|k1| sinh(|k1|h)

· Φ̂(k1, t)ζ̂(k2, t)δ(k − k1 − k2) dk1 dk2

+
1

(2π)2

∫∫∫ ∞

−∞

1
2
|k1|2 cosh(|k1|h)Φ̂(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k − k1 − k2 − k3) dk1 dk2 dk3

which is (14.2.9). Equation (14.2.10) is derived similarly.
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Appendix 14.A.3 Inverting (14.2.9) by Iteration

To start with, we subsitute the crudest approximation (zeroth iterate)

Φ̂(0)(k, t) =
φ̂s(k, t)

cosh(|k|h)

into the right-hand side of (14.2.9), and get the first iterate

Φ̂(1)(k, t) =
φ̂s(k, t)

cosh(|k|h)
− 1

cosh(|k|h)
1
2π

∫∫ ∞

−∞
|k1| tanh(|k1|h)

· φ̂s(k1, t)ζ̂(k2, t)δ(k − k1 − k2) dk1 dk2

− 1
cosh(|k|h)

1
(2π)2

∫∫∫ ∞

−∞

|k1|2
2

φ̂s(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k − k1 − k2 − k3) dk1 dk2 dk3 .

For the second iterate, we substitute Φ̂(1) into the right of (14.2.9),

Φ̂(2)(k, t) =
φ̂2(k, t)

cosh(|k|h)
− 1

cosh(|k|h)
1
2π

∫∫ ∞

−∞
|k1| tanh(|k1|h)

· φ̂s(k1, t)ζ̂(k2, t)δ(k − k1 − k2) dk1 dk2

− 1
cosh(|k|h)

1
(2π)2

∫∫∫ ∞

−∞

|k1|2
2

φ̂s(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k − k1 − k2 − k3) dk1 dk2 dk3

+
1

cosh(|k|h)
1

(2π)2

∫∫∫∫ ∞

−∞
|k1| tanh(|k1|h)|km| tanh(|km|h)

· φ̂s(km, t)ζ̂(kn, t)ζ̂(k2, t)

· δ(km + kn − k1)δ(k1 + k2 − k) dkm dkn dk1 dk2 . (14.A.5)

Now the four-fold integral can be integrated with respect to k1 in two ways.
One is to get rid of the first delta function,∫∫∫ ∞

−∞
|km + kn| tanh(|km + kn|h)|km| tanh(|km|h)

· φ̂s(km, t)ζ̂(kn, t)ζ̂(k2, t)

· δ(km + kn + k2 − k) dkm dkn dk2 (14.A.6)
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which can in turn be rewritten in two ways. In the first we change the
dummy variables from km → k1 and kn → k3 to get∫∫∫ ∞

−∞
|k1 + k3| tanh(|k1 + k3|h)|k1| tanh(|k1|h)

· φ̂s(k1, t)ζ̂(k3, t)ζ̂(k2, t)

· δ(k1 + k3 + k2 − k) dk1 dk3 dk2 . (14.A.7)

In the second we change the notations from km → k1, kn → k2, and
k2 → k3, to get∫∫∫ ∞

−∞
|k1 + k2| tanh(|k1 + k2|h)|k1| tanh(|k1|h)

· φ̂s(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k3 + k1 + k2 − k) dk3 dk1 dk2 . (14.A.8)

The other way is to get rid of the second delta function,∫∫∫ ∞

−∞
|k − k2| tanh(|k − k2|h)|km| tanh(|km|h)

· φ̂s(km, t)ζ̂(kn, t)ζ̂(k2, t)

· δ(km + kn + k2 − k) dkm dkn dk2 .

Making the same two replacements of dummy variables, we get two equiv-
alent expressions,∫∫∫ ∞

−∞
|k − k2| tanh(|k − k2|h)|k1| tanh(|k1|h)

· φ̂s(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k1 + k2 + k3 − k) dk1 dk2 dk3 (14.A.9)

and ∫∫∫ ∞

−∞
|k − k3| tanh(|k − k3|h)|k1| tanh(|k1|h)

· φ̂s(k1, t)ζ̂(k2, t)ζ̂(k3, t)

· δ(k1 + k2 + k3 − k) dk1 dk2 dk3 . (14.A.10)
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We now replace the 4-fold integral in (14.A.5) by the average of (14.A.7)–
(14.A.10). The result is (14.2.11).

Appendix 14.B Kernels

The kernel in (14.2.12) is

S
(1)
0,1,2,3 =

ω2
0

g

|k1|
4

{
2|k1|− tanh(|k1|h)

g
(ω2

0−2+ω2
0−3+ω2

1+2+ω2
1+3)

}

− ω2
1

2g

{
|k1|2− 1

2
(|k−k2|2+|k−k3|2+|k1+k2|2+|k1+k3|2)

}
.

(14.B.1)

The interaction coefficients in (14.2.14) are as follows:
Second order :

V
(1)
0,1,2 = −2V−0,1,2 + V1,2,0 (14.B.2)

V
(2)
0,1,2 = 2(V0,1,2 − V−0,2,1 − V−1,2,0) (14.B.3)

V
(3)
0,1,2 = 2V0,1,2 + V1,2,0 , (14.B.4)

where

V0,1,2 =
1
8π

(
gω2

2ω0ω1

)1/2
[
k · k1 +

(
ω0ω1

g

)2
]

. (14.B.5)

Third order :

W
(1)
0,1,2,3 = W1,2,−0,3 − W−0,1,2,3 (14.B.6)

W
(2)
0,1,2,3 = W−0,−1,2,3 + W2,3,−0,−1 − W2,−1,−0,3

−W−0,2,−1,3 − W−0,3,2,−1 − W3,−1,2,−0 , (14.B.7)

W
(3)
0,1,2,3 = 2W−0,−1,−2,3 − W−0,3,−1,−2

+ W−1,−2,−0,3 − 2W−1,3,−0,−2 , (14.B.8)

W
(4)
0,1,2,3 = W0,1,2,3 + W1,2,0,3 , (14.B.9)
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where

W0,1,2,3 =
1

64π2

(
ω2ω3

ω0ω1

)1/2

|k||k1|

·
{

2|k| tanh(|k1|h) + 2||k1| tanh(|k|h)

− 1
g

tanh(|k|h) tanh(|k1|h)[ω(2)
0+2 + ω

(2)
0+3 + ω

(2)
1+2 + ω

(2)
1+3]

}
.

(14.B.10)

The kernels of (14.3.5) are

T̃
(1)
0,1,2,3 = W

(1)
0,1,2,3 −

V
(1)
0,1,2+3V

(1)
2+3,3,2

ω2+3 − ω2 − ω3
− V

(1)
0,1+3,2V

(1)
1+3,3,1

ω1+3 − ω1 − ω3

− V
(2)
0,−1−3,2V

(3)
−1−3,3,1

ω1+3 + ω1 + ω3
, (14.B.11)

T̃
(2)
0,1,2,3 = W

(2)
0,1,2,3 −

V
(1)
0,2,3−1V

(2)
3−1,1,3

ω3−1 + ω1 − ω3
− V

(1)
0,3−1,2V

(2)
3−1,1,3

ω3−1 + ω1 − ω3

− V
(2)
0,2−0,2V

(2)
1−3,3,1

ω1−3 + ω3 − ω1
− V

(3)
0,−0−1,1V

(3)
−2−3,3,2

ω2+3 + ω2 + ω3

− V
(3)
0,1,−0−1V

(3)
−2−3,3,2

ω2+3 + ω2 + ω3
− V

(1)
2+3,2,3V

(2)
0,1,0+1

ω2+3 − ω2 − ω3
(14.B.12)

T
(2)
0,1,2,3 =

1
2
(T̃ (2)

0,1,2,3 + T̃
(2)
0,1,3,2) (14.B.13)

T̃
(3)
0,1,2,3 = W

(3)
0,1,2,3 −

V
(2)
0,1+2,3V

(1)
1+2,2,1

ω1+2 − ω1 − ω2
− V

(2)
0,1−2+3V

(2)
−2+3,2,3

ω2−3 + ω2 − ω3

− V
(3)
0,1,2−3V

(2)
2−3,3,2

ω2−3 + ω3 − ω2
− V

(3)
0,1−3,2V

(2)
1−3,3,1

ω1−3 + ω3 − ω1

− V
(1)
0,3,−1−2V

(3)
−1−2,1,2

ω1+2 + ω1 + ω2
− V

(1)
0,−1−2,3V

(3)
−1−2,2,1

ω1+2 + ω1 + ω2
(14.B.14)
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T̃
(4)
0,1,2,3 = W

(4)
0,1,2,3 −

V
(3)
0,1,2+3V

(1)
2+3,3,2

ω2+3 − ω2 − ω3
− V

(3)
0,1+3,2V

(1)
1+3,3,1

ω1+3 − ω1 − ω3

− V
(2)
0,1,−2−3V

(3)
−2−3,3,2

ω2+3 + ω2 + ω3
. (14.B.15)

The kernel in (14.3.13) is

B0,1,2,3 =
(V (3)

0,1,−0−1 + V
(3)
0,−0−1,1)(V

(3)
2,3,−2−3 + V

(3)
2,−2−3,3)

4(ω0 + ω1 + ω0+1)(ω2 + ω3 + ω2+3)

+
(V (1)

1,2,1−2 + V
(1)
1,1−2,2)(V

(1)
3,0,3−0 + V

(1)
3,3−0,0)

4(ω1 − ω2 − ω1−2)(ω3 − ω0 − ω3−0)

+
(V (1)

1,3,1−3 + V
(1)
1,1−3,3)(V

(1)
2,0,2−0 + V

(1)
2,2−0,0)

4(ω1 − ω3 − ω1−3)(ω2 − ω0 − ω2−0)

− (V (1)
0+1,0,1 + V

(1)
0+1,1,0)(V

(1)
2+3,2,3 + V

(1)
2+3,3,2)

4(ω0+1 − ω0 − ω1)(ω2+3 − ω2 − ω3)

− (V (1)
0,2,0−2 + V

(1)
0,0−2,2)(V

(1)
3,1,3−1 + V

(1)
3,3−1,1)

4(ω0 − ω2 − ω0−2)(ω3 − ω1 − ω3−1)

− (V (1)
0,3,0−3 + V

(1)
0,0−3,3)(V

(1)
2,1,2−1 + V

(1)
2,2−1,1)

4(ω0 − ω3 − ω0−3)(ω2 − ω1 − ω2−1)
. (14.B.16)
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Numerical Simulation of
Nonlinear Wave Dynamics 15
15.1 Introduction

For time-dependent and nonlinear free-surface motions, analytical solutions
are rarely available, and theoretical studies and practical applications rely
very much on numerical simulations. Numerical methods are developed
according to the specific applications of interest, based on assumptions
regarding the dominant physical processes involved.

For instance, for marine structures and ships with characteristic
dimensions larger than those of the surface waves, viscous effects and
surface tension can often be neglected. On the other hand, nonlinear free-
surface effects become important under conditions of large motions and
extreme loads, for which high performance, safety and ultimate surviva-
bility are of concern.

Significant advances in the simulation of nonlinear wave dynamics have
been made in the past 30 years. A number of articles give comprehensive
reviews of this progress. These include the excellent reviews by Mei (1978)
for ideal, linear free-surface flows using integral-equation and finite-element
methods; Schwartz and Fenton (1982) for ideal, nonlinear flows with em-
phasis on theoretical methods; Yeung (1982) for both linear and nonlinear
ideal flows; Floryan and Rasmussen (1989) for viscous flows with moving
interfaces; Tsai and Yue (1996) for incompressible, nonlinear free-surface
flow; and Scardovelli and Zaleski (1999) for viscous free-surface and inter-
facial flows focusing on fixed-grid volume-of-fluid methods.

Numerical methods in nonlinear free-surface flow computations
can be generally categorized into volume-discretization and boundary-
discretization approaches. Volume-discretization methods are applicable to

885
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both inviscid and viscous flows, while boundary-discretization approaches
are mainly used when the flow is inviscid and irrotational.

Volume discretization methods can be broadly classified in terms of their
use of structured versus unstructured grids. The former includes approaches
such as finite difference (e.g. Rogers and Kwak, 1991; Colagrossi et al., 2003)
and finite volume (e.g. Kothe, 1998; Tryggvason et al., 2001); the latter is
characterized by methods such as finite-elements (e.g. Ma et al., 2001a, b;
Tezduyar, 2003; Idelsohn et al., 2003) and its variations. A key distinction
when nonlinear waves are involved is the way the interface is tracked or
captured. Recent reviews of these include Tryggvason et al. (2003) and
Sethian and Smereka (2003). Volume-discretization methods are in general
more versatile but also more computationally expensive because of the extra
spatial dimension involved.

In many wave hydrodynamics applications in ocean and coastal engi-
neering, the assumption of inviscid irrotational flow is valid, while the de-
mands for high resolution and large spatial-temporal domains are high. In
this context, boundary-discretization methods (and their variations) are
the favored choice and these methods and their applications to nonlinear
wave dynamics is the focus of this chapter.

We describe in detail two relatively modern developments: (a) the high-
order spectral method; (b) the high-order spectral element method; and (c)
the mixed Euler-Lagrangian method. The spectral methods in (a) and (b)
are powerful methods that account for high-order wave interactions and
are extremely efficient computationally; while method (c) is useful for fully
nonlinear (e.g. overturning wave) simulations but is relatively more compu-
tationally expensive. For (a), we present detailed formulation and numerical
implementation, and example applications to two- and three-dimensional
nonlinear wave interactions and to cases involving variable current, bottom
topography and submerged bodies. The method can be extended to more
complex situations involving surface-piercing bodies and/or walls. Details
of the formulation and implementation of this extension (b) are provided,
and illustrated by an application of the method to study the classical prob-
lem of instability of steep standing waves in a tank. For (c), both Cauchy
and Green integral formulations are given. For the latter, a development of
a high-order boundary-element method is presented. As illustration, appli-
cations to two- and three-dimensional breaking waves, steep crescent waves,
plunging wave impact, and nonlinear wave diffraction by surface-piercing
structures are discussed.
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15.2 General Initial Boundary-Value Problem

For convenience, we recall the equations for the initial-boundary-value prob-
lem governing the general problem of steep interacting waves, with or with-
out the presence of a floating or submerged body. We define a Cartesian
coordinate system r ≡ (x, y, z), and let (x, y) ≡ x be the horizontal coordi-
nates, z the vertical coordinate, positive upward, and z = 0 the mean free
surface.

The fluid is assumed homogeneous, incompressible, inviscid, and its
motion irrotational. The flow is described by a velocity potential Φ(r, t),
which satisfies the Laplace equation,

∇2Φ(r, t) = 0 , r ∈ V(t) , (15.2.1)

where V(t) represents the fluid domain. On a prescribed impervious bound-
ary, B(t), the normal velocity of the flow equals that of the boundary:

∂Φ
∂n

≡ Φn = U(r, t) · n , r ∈ B(t) , (15.2.2)

where n is the unit normal out of B(t) and U the prescribed velocity of
B(t). On the free surface, F(t), the dynamic boundary condition can be
written in Lagrangian form:

DΦ
Dt

=
1
2
|∇Φ|2 − gz − PF

ρ
, r ∈ F(t) , (15.2.3)

where D/Dt ≡ ∂/∂t+∇Φ ·∇ denotes material derivative and PF the given
pressure on F(t). The kinematic boundary condition on F(t) in Lagrangian
form is:

Dr
Dt

= ∇Φ , r ∈ F(t) . (15.2.4)

For deep water, the appropriate far-field condition is

∇Φ(r, t) → 0 , as z → −∞ . (15.2.5)

At the initial time, t = 0, the free surface position F(0) and the velocity
potential on the free surface Φ(r ∈ F(0)) are given, while B(t) and U(r ∈
B(t), t) are presumed given (or can be solved for) for all t. The initial
boundary-value problem is complete with the imposition of appropriate
radiation conditions in the far field.
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In the case of non-overturning waves, the free surface (F(t)) can be
represented by z = ζ(x, t) where ζ is continuous and a single-valued function
of x. The kinematic and dynamic boundary conditions ((15.2.4), (15.2.3))
can be written in Eulerian form in terms of ζ:

ζt + ∇xζ · ∇xΦ − Φz = 0 ,

Φt + gζ +
1
2
(∇Φ · ∇Φ) +

PF
ρ

= 0 ,

 z = ζ(x, t) (15.2.6)

where ∇x ≡ (∂/∂x, ∂/∂y) denotes the horizontal gradient.
The pressure in the fluid or on the body is determined in terms of Φ

according to Bernoulli’s equation:

P (r, t)
ρ

= −Φt − 1
2
∇Φ · ∇Φ − gz . (15.2.7)

The instantaneous hydrodynamic force on the body is obtained by direct
integration of (15.2.7) over the instantaneous body wetted surface.

15.3 High-Order Spectral (HOS) Method

Obtaining useful solutions to the general nonlinear wave hydrodynamic
problem stated above is a challenging task. Although linearized theory is
often sufficient for routine design and analysis in ocean engineering appli-
cations, it is precisely the conditions of extreme loads and motions essential
to the critical performance, safety, and even survival, for which nonlinear
effects must be considered. Despite this, fully-nonlinear results are so far
still relatively limited due to both theoretical and computational difficulties
(e.g. see Tsai and Yue, 1996 for a review). Much of the attention in the past
has been devoted to the understanding of weakly-nonlinear waves using a
variety of perturbation techniques.

As described in Chapter Thirteen, a powerful approach for study-
ing weakly-nonlinear slowly-modulated waves is the nonlinear Schrödinger
equation (NLS) first derived for water waves by Zakharov (1968). By in-
cluding the leading nonlinearity at third order (in wave slope), NLS pre-
dicts salient phenomena such as envelope solitons (Zakharov and Shabat,
1972) and recurrence (Yuen and Ferguson, 1978). Dysthe (1979) extended
NLS to fourth order which is able to model nonsymmetric features such
as the unequal growth of side-band perturbations of a Stokes wave train,
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and the forward steepening and fission of wave packets (Lo and Mei, 1985).
The main shortcomings of NLS are the requirements of narrow-bandedness
and slow modulation which limits its usefulness in many applications. In
three dimensions, the limitations of NLS are much more severe in that per-
turbations which are initially confined in a narrow band do not necessarily
remain so (Martin and Yuen, 1980).

Somewhat more general alternatives to NLS are the so-called Zakharov
equations (Zakharov, 1968; Crawford et al., 1981) and the closely related
mode-coupling approaches (e.g. Phillips, 1960; Benney, 1962; West et al.,
1974; Cohen et al., 1976). These weakly nonlinear theories do not rely
on the narrow-banded assumption, and obtain useful results in two and
three dimensions such as linear instability, restablization at large ampli-
tudes, and bifurcation (e.g. Yuen and Lake, 1982). These matters have
been summarized in Chapter Fourteen. For computations, the Zakharov
equation is discretized in terms of a fixed number of free waves whose
amplitudes are governed by coupled nonlinear evolution equations. These
differential equations resemble the so-called mode-coupling equations which
are obtained by directly substituting a series of Fourier modes into the gov-
erning equations and expanding to a given order. In both theories, all the
nonlinear interactions among the wave modes are accounted for up to the
desired perturbation order. Generalizing to include more free wave modes
and to higher order is straightforward in theory. In practice, however, this
is severely limited by the intractable complexity of the algebra involved
with increasing mode number and order. Thus, only a small number, say
O(10), of free wave modes and low perturbation orders are typically used
in practice. Examples include Stiassnie and Shemer (1984)’s extension of
the Zakharov equation to include quintet (fourth-order) interactions, and
extensive studies of the mode-coupling equations (mainly at third order).

By extending the Zakharov/mode-coupling idea into a direct com-
putational approach, Dommermuth and Yue (1987a) and West et al. (1987)
independently developed a powerful numerical method: the high-order
spectral (HOS) method. This method computationally accounts for non-
linear interactions up to an arbitrary specified order M in wave steepness;
and a large number of free wave modes, say N = O(1000) per horizontal
dimension, are typically used in nonlinear simulations. Each of the latter
wave components is free in that it is subject to its own evolution equa-
tion. HOS accounts for nonlinear interactions among all these modes, up
to the desired perturbation order M , according to the nonlinear free-surface



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

890 Numerical Simulation of Nonlinear Wave Dynamics

boundary conditions, which are treated in a pseudo-spectral manner (Forn-
berg and Whitham, 1978). By using fast transform techniques, the com-
putational effort is only linearly proportional the total number of modes
N and the order M . The convergence with N and M is shown to be
exponentially fast for waves up to approximately 80% of Stokes limiting
steepness (ε ∼ 0.35). Such high efficiency and accuracy makes the HOS
an ideal approach for mechanism studies in nonlinear wave dynamics. The
HOS method has been tested extensively and compared to experiments and
other weakly and fully nonlinear predictions for wave-wave interactions in
two and three dimensions (Dommermuth and Yue, 1987a; Dommermuth
and Yue, 1987c). The method has been generalized to include the presence
of atmospheric forcing (Dommermuth and Yue, 1988a), long-short waves
(Zhang et al., 1993), finite depth and depth variations (Liu and Yue, 1998),
variable current (Wu, 2004), and fixed and moving submerged bodies (Liu
et al., 1992; Zhu et al., 1999). Recently, HOS has been applied and further
developed for the prediction of nonlinear ocean wave-field evolution over
large spatial-temporal domains.

The basic mathematic formulation and implementation issues of HOS
are described in this section. Representative applications of the HOS
method for nonlinear wave-wave, wave-current, and wave-bottom inter-
actions are presented in Section 15.4. The extension of the method to
nonlinear wave-body interactions is discussed in Section 15.5.

15.3.1 Mathematical Formulation

For clarity, we first consider the relatively simple case of interaction of
nonlinear waves in deep water. Extensions to include the presence of finite
depth and variable bottom, variable current, and submerged bodies are
described subsequently. As in Zakharov (1968), we define the potential on
the free surface

Φs(x, t) ≡ Φ(x, ζ(x, t), t) . (15.3.1)

Upon using chain rules

Φt(x, ζ, t) = Φs
t (x, t) − Φz(x, ζ, t)ζt , and (15.3.2)

∇xΦ(x, ζ, t) = ∇xΦs(x, t) − Φz(x, ζ, t)∇xζ , (15.3.3)

we can rewrite the free surface boundary conditions (15.2.6) as:
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ζt + ∇xζ · ∇xΦs − (1 + ∇xζ · ∇xζ)Φz(x, ζ, t) = 0 ,

Φs
t + gζ +

1
2
∇xΦs · ∇xΦs − 1

2
(1 + ∇xζ · ∇xζ)Φ2

z(x, ζ, t) = −PF
ρ

.


(15.3.4)

An apparent advantage of using (15.3.4) instead of (15.2.6) as free-surface
boundary conditions is that given the initial values of ζ and Φs, (15.3.4)
can be directly integrated in time for the new values of ζ and Φs in terms
of the surface vertical velocity Φz(x, ζ, t) (only) to be obtained from the
boundary-value problem. A more subtle but important advantage of the
Zakharov representation (15.3.4) is that it leads naturally and effectively
to the high-order perturbation expansion in wave steepness below.

High-order expansions

We assume that Φ and ζ are O(ε) quantities, where ε, a small parameter, is
a measure of the wave steepness. We consider a consistent approximation
up to a given order M in ε, and write Φ in a perturbation series in ε:

Φ(x, z, t) =
M∑

m=1

Φ(m)(x, z, t) , (15.3.5)

where Φ(m) = O(εm) are the perturbation potentials and ()(m) denotes a
quantity of O(εm).

We then further expand each Φ(m) evaluated on the instantaneous free
surface z = ζ in Taylor series about the mean free surface z = 0, so that

Φs(x, t) =
M∑

m=1

M−m∑
�=0

ζ�

�!
∂�Φ(m)

∂z�

∣∣∣∣
z=0

. (15.3.6)

The method in principle is capable of accounting for nonlinearities up to
an arbitrary order M in ε. In practice, however, (15.3.6) places a limit on
the maximum steepness of the free surface we can consider. In particular,
the validity and convergence of (15.3.6) is limited by the radius of conver-
gence (from z = 0) of Φ, which cannot extend beyond the first singularity
in the analytic continuation of Φ above z = ζ.

At a given time instant, ζ and Φs are obtained by the nonlinear evolution
equations (15.3.4). Thus, we can treat (15.3.6) as a Dirichlet boundary
condition for the unknown Φ. Expanding (15.3.6) and collecting terms at
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each order, we obtain a sequence of Dirichlet boundary conditions for the
unknown Φ(m) on z = 0:

Φ(m)(x, 0, t) = f (m) , m = 1, 2, . . . , M , (15.3.7)

where 
f (1) = Φs

f (m) = −
m−1∑
�=1

ζ�

�!
∂�Φ(m−�)

∂z�

∣∣∣∣
z=0

, m = 2, 3, . . . , M .
(15.3.8)

These boundary conditions, in addition to Laplace’s equation and the deep
water condition

∇Φ(m) → 0 , as z → −∞ , m = 1, 2, . . . , M , (15.3.9)

define a sequence of boundary-value problems for Φ(m), m = 1, 2, . . . , M , in
the domain z ≤ 0. These problems can be solved successively at increasing
orders for any prescribed Φs and ζ.

Spectral approach for the boundary-value problem solution

As in a typical mode-coupling approach, we represent each Φ(m) as an
eigenfunction expansion of free modes which satisfy all but the Dirichlet
free-surface condition (15.3.7). Thus we write

Φ(m)(x, z, t) =
∞∑

n=1

Φ(m)
n (t)Ψn(x, z) , z ≤ 0 , (15.3.10)

where, in practice, the number of eigenmodes in (15.3.10) is truncated at
some suitable number N . Substitution of (15.3.10) into (15.3.7) determines
the modal amplitudes Φ(m)

n (t) in terms of the modal components of Φs and
ζ. After the boundary-value problems for Φ(m) are solved up to the desired
order M , the vertical velocity on the free surface is given by

Φz(x, ζ, t) =
M∑

m=1

M−m∑
�=0

ζ�

�!

N∑
n=1

Φ(m)
n (t)

∂�+1

∂z�+1
Ψn(x, z)

∣∣∣∣
z=0

. (15.3.11)

Substitution of (15.3.11) into (15.3.4) yields the final result:

ζt + ∇xζ · ∇xΦs − (1 + ∇xζ · ∇xζ)

×
[

M∑
m=1

M−m∑
�=0

ζ�

�!

N∑
n=1

Φ(m)
n (t)

∂�+1

∂z�+1
Ψn(x, z)

∣∣∣∣
z=0

]
= 0 , (15.3.12)
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and

Φs
t + gζ +

1
2
∇xΦs · ∇xΦs − 1

2
(1 + ∇xζ · ∇xζ)

×
[

M∑
m=1

M−m∑
�=0

ζ�

�!

N∑
n=1

Φ(m)
n (t)

∂�+1

∂z�+1
Ψn(x, z)

∣∣∣∣
z=0

]2

= −PF
ρ

. (15.3.13)

Equations (15.3.12) and 15.3.13) are the evolution equations for ζ and Φs

in terms of the modal amplitudes Φ(m)
n . These evolution equations can

then be integrated for the new values of Φs and ζ. The process is repeated
starting from initial conditions.

Comparison to direct collocation method

In a variation that does not involve the expansions (15.3.5) and (15.3.6),
the eigenfunctions are continued above z = 0, and (15.3.1) is written
directly as

Φ(x, ζ, t) =
N∑

n=1

Φn(t) exp[|Kn|ζ + iKn · x] = Φs(x, t) . (15.3.14)

By collocating (15.3.14) at discrete points xj on the exact free surface, the
modal amplitudes are obtained as solution of a system of algebraic equa-
tions. Examples of this method include Rienecker and Fenton (1981) who
performed the collocation in physical space, and Bryant (1983) who col-
located in Fourier Space. For maximum and minimum surface elevation
ζmax and ζmin respectively, the ratio exp |Kn|ζmax/ exp |Kn|ζmin increases
rapidly with n for finite ε. As N increases, the conditioning of the equation
system deteriorates severely, independent of convergence of (15.3.6). More-
over, the operation count is typically O(N3) per time step. The present
scheme using (15.3.7) has an operation count linearly proportional to N

(see Section 15.3.2) and may be viewed as a more effective and efficient
perturbation solution of the system (15.3.14).

Basis function in deep water

In deep water, the eigenfunctions in (15.3.10) can be obtained in simple
closed form. Assuming a rectangular domain, −L/2 ≤ x ≤ L/2 and
−W/2 ≤ y ≤ W/2, and periodic boundary conditions in both horizontal
dimensions, we write

Ψn(x, z) = exp(|Kn|z + iKn · x) . (15.3.15)
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Here the wavenumber vector Kn ≡ (Kxn, Kyn) = (2πp/L, 2πq/W ), p =
0,±1, . . . ,±(Nx − 1), q = 0,±1, . . . ,±(Ny − 1), where Nx and Ny are the
maximum numbers of Fourier modes considered in the x- and y-directions,
respectively. Clearly, Ψn in (15.3.15) is harmonic and satisfies the deep
water condition. With (15.3.15), the perturbation potential (15.3.10) and
the surface vertical velocity (15.3.11) can be written as:

Φ(m)(x, z, t) =
N∑

n=1

Φ(m)
n (t) exp(|Kn|z + iKn · x) , z ≤ 0 , (15.3.16)

and

Φz(x, ζ, t) =
M∑

m=1

M−m∑
�=0

ζ�

�!

N∑
n=1

Φ(m)
n (t)|Kn|�+1 exp(iKn · x) . (15.3.17)

Basis function in constant finite depth

In the case of constant finite depth h, the eigenfunction Ψn can be expressed
as:

Ψn(x, z) =
cosh[|Kn|(z + h)]

cosh |Kn|h exp(iKn · x) . (15.3.18)

which reduces to (15.3.15) as h → ∞. In this case, (15.3.10) and (15.3.11)
can be expressed as:

Φ(m)(x, z, t) =
N∑

n=1

Φ(m)
n (t)

cosh[|Kn|(z + h)]
cosh |Kn|h exp(iKn · x) , z ≤ 0 ,

(15.3.19)

and

Φz(x, ζ, t) =
M∑

m=1

M−m∑
�=0

ζ�

�!

N∑
n=1

Φ(m)
n (t)

exp(iKn · x)
cosh(|Kn|h)

× ∂�+1

∂z�+1
{cosh[|Kn|(z + h)]}

∣∣∣∣
z=0

. (15.3.20)

Basis function in the presence of a varying bottom

The analysis is slightly more complicated for a mildly varying bottom given
by z = −h + b(x). The kinematic condition on the bottom is

Φz −∇xb · ∇xΦ = 0 , z = −h + b(x) . (15.3.21)
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In the spirit of (15.3.5) and (15.3.6), we expand the bottom condition
(15.3.21) in a Taylor series with respect to the mean bottom z = −h.
For simplicity, we assume the bottom variation b(x) = O(ε). After substi-
tuting the perturbation expansion of the potential (15.3.5) and collecting
terms at the respective orders, we obtain for successive orders a sequence
of Neumann conditions on z = −h:

Φ(m)
z (x,−h, t) = B(m) , m = 1, 2, . . . , M , (15.3.22)

where B(1) = 0, and

B(m) =
m−1∑
�=1

{
∂

∂x

[
b�

�!
∂(�−1)

∂z(�−1)
Φ(m−�)

x

∣∣∣∣
z=−h

]

+
∂

∂y

[
b�

�!
∂(�−1)

∂z(�−1)
Φ(m−�)

y

∣∣∣∣
z=−h

]}
, m = 2, 3, . . . , M . (15.3.23)

At each order m, we express the perturbation potential as:

Φ(m) = α(m) + β(m) (15.3.24)

where

α(m)(x, z, t) =
N∑

n=1

α(m)
n (t)

cosh[|Kn|(z + h)]
cosh(|Kn|h)

eiKn·x (15.3.25)

and

β(m)(x, z, t) = β
(m)
0 z +

N∑
n=1

β(m)
n (t)

sinh(|Kn|z)
|Kn| cosh(|Kn|h)

eiKn·x . (15.3.26)

Note that α(m) and β(m) respectively satisfy zero Neumann condition on
z = −h and zero Dirichlet condition on z = 0. In general, the number of
free-surface and bottom wavenumbers, say Nf and Nb, can be chosen inde-
pendently in the HOS method. For simplicity and without loss of generality,
we use Nf = Nb = N , where applicable, in subsequent discussions.

In the presence of submerged bodies, the present HOS method can
be extended using different basis functions. The details are described in
Section 15.5. In the case of surface-piercing bodies/boundaries, the free-
surface becomes discontinuous, Fourier spectral basis functions can no
longer be applied without losing the spectral convergence, due to Gibb’s
phenomenon. In this case, expansions using basis functions (such as Cheby-
shev polynomial) whose convergence does not depend on the end conditions
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must be employed. When large N is involved, however, the conditioning
of the resulting system of algebraic equations deteriorates rapidly with in-
creasing N . In this case, a special approach, the high-order spectral element
(HOSE) method, has been developed and used with efficacy. The HOSE
method is presented in Section 15.6.

15.3.2 Numerical Implementation

The time simulation of the nonlinear wave problem using N wave modes
and retaining nonlinearities up to a specified order M consists of three main
steps. Beginning from initial values for ζ and Φs, at each successive time
step: (i) solve the boundary-value problem for the perturbation velocity
potentials Φ(m)(x, z, t), m = 1, . . . , M ; (ii) evaluate the vertical velocity
at the free surface Φz(x, ζ, t); and (iii) integrate the evolution equations
(15.3.12) and (15.3.13) forward in time for ζ(x, t + ∆t) and Φs(x, t + ∆t);
and the process (i)–(iii) is repeated.

In the HOS method, the modal amplitudes of the perturbation potential
Φ(m)

n (t) subject to the Dirichlet condition (15.3.7) are solved using a pseudo-
spectral method. Specifically, all spatial derivatives of Φ(m), Φs and ζ are
evaluated in wavenumber space while nonlinear products (such as those in
(15.3.8) and (15.3.11)) are calculated in physical space at a discrete set of
points xj . For periodic boundary conditions using the Fourier expansions
((15.3.16) in deep water and (15.3.19) in finite depth), xj are equally spaced
and fast-Fourier transforms are used to project between the wavenumber
and physical domains. At each order, (15.3.7) is solved in wavenumber
space by equating Fourier modes, and the number of operations required is
O(N lnN). For perturbations up to order M , the operation count is then
O(MN lnN) per time step.1 The (near) linear computational effort with
mode number N and perturbation order M , and the exponential conver-
gence with both M and N (see Section 15.3.3) are notable characteristics
of the computational efficacy of HOS methods.

After the surface vertical velocity is obtained from (15.3.11), the nonlin-
ear evolution equations (15.3.12) and (15.3.13) are integrated as a coupled

1At first glance, the effort for computing the summation in (15.3.11) appears to be
proportional to M2. After the summation is rewritten as

M∑
�=0

ζ�

�!

N∑
n=1

[
M−�∑
m=1

Φ
(m)
n (t)

]
∂�+1

∂z�+1
Ψn(x, z)

∣∣∣∣
z=0

,

however, it becomes clear that the effort in fact is linearly proportional to M .
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set of nonlinear ordinary differential equations. We typically employ the
fourth-order Runge-Kutta (RK4) scheme which requires twice as many
evaluations as the commonly used multi-step predictor-corrector (e.g. the
Adams-Bashforth-Moulton, ABM) methods of the same order but has a
somewhat lower global truncation error and a larger stability region (see,
e.g. Dommermuth et al., 1988).

15.3.3 Error Considerations

The main sources of computational error for the high-order nonlinear simu-
lations are: (i) errors due to truncation in the number of spectral modes N ,
and the perturbation order M ; (ii) error due to the finite (periodic) com-
putational domain for a given simulation time, TS ; (iii) amplification of
round-off and truncation errors; (iv) aliasing errors of the pseudo-spectral
method; (v) errors due to numerical time integration; and (vi) for esti-
mates of steady-state quantities (e.g. mean and harmonic force coefficients)
from limit cycle results, errors due to the finite simulation time, TS , of the
initial-value problem.

Errors due to truncation in the number of modes N and order M

For sufficiently smooth ζ and Φs, the numerical error in the spectral rep-
resentations of Φ(m), m = 1, . . . , M , vanishes exponentially as N → ∞.
Similarly, for mild nonlinearities, the truncation errors after order M is
O(εM+1), and the convergence is exponential with increasing M . As
pointed out after (15.3.6), such convergence ceases beyond a certain wave
steepness owing to singularities in the analytic continuation of the veloc-
ity potential. For regular Stokes waves, the maximum wave steepness for
exponential convergence of the method is found to be ε = kA ∼ 0.35 (see
Table 15.1 in Section 15.4.1). The corresponding maximum local slope is
εL ≡ (∂ζ/∂x)max ∼ 0.38. One notes that the incident Stokes wave steep-
ness ε is neither the limiting nor most useful parameter for the general
diffraction problem due to local wave steepening/transformation as they
self interact or are diffracted/refracted by current, bottom or body. The
maximum local steepness, εL, is thus a more general and useful measure.
The limiting value of εL ∼ 0.38 for exponential convergence has been con-
firmed in a variety of HOS simulations. For local wave steepness beyond
this limit, exponentially fast convergence is generally lost. It is very impor-
tant to point out that even in this situation, (algebraically) converged HOS
results may still obtain; for example, converged HOS results with εL ∼ 1.5
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are reported in Liu et al. (1992) for steep waves over a horizontal submerged
cylinder.

Error due to the finite computational domain

For a computational domain fixed relative to wavelength and dimension
of the body (or variable current or bottom topography), the solution in
the near field of the body will eventually be distorted due to “reflections”
from the periodic boundaries as the simulation time, TS , is increased. This
error is avoided by successively increasing the size of the periodic domain
until the quantities of interest no longer vary. Alternatively, or in addi-
tion, a spatial tapering filter can be effectively applied (as, for example in
Section 15.4.5). With the O(N) efficiency of the HOS method, the com-
putation cost increases only linearly with the area of the computational
domain, and this source of error has not been a critical factor in practice
for even very large applications.

Amplification of round-off and truncation errors

The integrity of the numerical results can be severely limited by the am-
plification of computational errors. Consider, for instance, a small random
error δmn in the modal amplitude Φ(m)

n , i.e. Φ(m)
n = Φ̃(m)

n (1 + δmn), where
the tilde denotes “exact” values. The error in f (m), (15.3.8), after using
(15.3.10) is then given by

f (m) − f̃ (m) = −
m−1∑
�=1

ζ�

�!

N∑
n=1

Φ̃(m)
n δ(m−�),n

∂�Ψn

∂z�
. (15.3.27)

In general, |∂�Ψn/∂z�| ≈ |Kn|�, while |Kn| ∼ n, so that at any order the
error in the highest wavenumber modes is the most amplified. On the other
hand, in any computational model without dissipation, nonlinear interac-
tions cause energy in the lower modes to cascade to higher modes which
eventually accumulates at the highest wavenumbers retained in the model.
The combined effect is probably a root cause of large wavenumber insta-
bilities encountered in many nonlinear free-surface simulations where large
wavenumbers (or fine spatial resolutions) are used. To eliminate such high-
wavenumber instabilities, we follow Longuet–Higgins and Cokelet (1976)
and apply a smoothing function to ζ and Φs. Their five-point smoothing
function can be effectively applied in wavenumber space, which is equivalent
to the low-pass filter

Λ(Kn) =
1
8

[
5 + 4 cos

(
π|Kn|
|KN |

)
− cos

(
2π|Kn|
|KN |

)]
. (15.3.28)
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Alternatively, we may simply use an ideal low-pass filter:

ΛI(Kn, ν) =


1 for

|Kn|
|KN | ≤ ν

0 for
|Kn|
|KN | > ν

 0 < ν ≤ 1 . (15.3.29)

Since the ideal filter does not affect the lower wavenumbers, (15.3.29) is
often preferred. In many simulations no smoothing or filtering is necessary.
For very steep waves (involving possibility of wave breaking in the under-
lying physical problem) a useful alternative or additional treatment is to
introduce wavenumber-dependent damping terms explicitly in the spectral
equations.

Aliasing errors

In a pseudo-spectral approach, the product h(x) = f(x) · g(x), represented
respectively by Fourier modes hn, fn, gn, n ≤ N , is performed in physical
space at equally-spaced points. This results in aliasing errors due to the
finite Fourier representations. It is well known that in this case the best
approximation (in the mean square sense) to the product is the so-called
alias-free sum (e.g. Orszag, 1971). To obtain this, we double the number
of Fourier modes and the number of collocation points to 2N , calculate the
product H = FG, as before in physical space, where (Fn, Gn) = (fn, gn)
for |n| ≤ N , and (Fn, Gn) = (0, 0) for N < |n| ≤ 2N , and define the
alias-free product, h, by hn = Hn for |n| ≤ N . For products involving two
or more terms, the multiplication is done successively where each factor is
made alias-free before multiplying by the next term.

Errors due to numerical time integration

Provided that the boundary-value solution is obtained with the desired
accuracy, the specific formula used for time integration of the evolution
equations (15.3.12) and (15.3.13) is not critical, provided the criteria for
stability and accuracy are obtained. For the linearized free-surface problem
it is straightforward to carry out the linear stability analysis (e.g. Yeung,
1982) obtaining, for example, that Runge-Kutta and leap-frog methods
can be conditionally stable, and implicit or semi-implicit (Crank-Nicolson)
methods are generally (unconditionally) stable. Implicit methods involve
additional computational effort and the preferred choices are stable multi-
step explicit methods. We typically use the fourth-order Runge-Kutta
(RK4) scheme which is explicit, and has a larger stability region and
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a smaller truncation error than the leap-frog method. For stability, the
Courant condition for RK4 is (Dommermuth and Yue, 1988)

∆t2 ≤ 8∆x

πg
(15.3.30)

where ∆t is the time step and ∆x the local grid spacing. The local trun-
cation error of RK4 is (∆t5). The global truncation error for t = O(1) is
fourth order in ∆t.

Errors in the estimation of mean and limit-cycle force coefficients

In many engineering applications, the quantities of practical interest are
often steady-state values such as the mean and harmonic coefficients (under
periodic input). In HOS simulations, a time history of the quantity of
interest is obtained, and, after steady state (limit-cycle) is reached, the
harmonics of the quantity are extracted. To obtain such harmonic co-
efficients from the initial-value simulation we define for definiteness

Fn(τ0) =
1
T

∫ τ0+T

τ0

F (t)e−inωt dt , n = 0, 1, . . . , (15.3.31)

where F (t) is the time-dependent force on the body obtained from the sim-
ulation, T the fundamental period (of the incident wave), ω = 2π/T , and τ0

a time beyond which limit-cycle values are obtained (or assumed). In prac-
tice, Fn(τ0) is evaluated for successively increasing τ0 until convergence is
obtained. As in most simulation methods, the computational effort of HOS
is linearly proportional to simulation time. In many applications, involving
bodies for example, substantial care goes into the numerical implementa-
tion of HOS to minimize per time step effort to obtain efficient long-time
simulations (see Section 15.5.2).

15.3.4 Relation to Frequency-Domain
Perturbation Results

As pointed out above, steady and harmonic amplitudes are obtained via
harmonic analysis of the limit-cycle time histories of HOS time-domain
(initial-value problem) simulations. These results can be related in a direct
way to the coefficients of frequency domain perturbation methods (e.g. lin-
ear and second-order wave forces and runup on a fixed cylinder analyzed
in Section 13.11). In a typical frequency-domain approach the time depen-
dence is factored out explicitly and the velocity potential, for instance, is
written as:
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Φ =
∞∑

n=0

�(φ̃ne−inωt) , (15.3.32)

where ω = 2π/T . Each φ̃n is then expanded in a perturbation series in the
wave steepness, ε:

φ̃n =
∞∑

m=1

εmφ̃(m)
n , (15.3.33)

and the boundary-value problems for φ̃
(m)
n are solved.

In HOS simulation, the initial-boundary-value problem for Φ(x, z, t) is
integrated to the specified order M in ε up to the requisite time. Despite the
truncation at M (see (15.3.5) and (15.3.6)), the presence of the nonlinear
terms in (15.3.4) eventually causes all time harmonics to be present in Φ,
in fact in each Φ(m). Assuming a limit cycle is reached, the (complex)
amplitudes of these harmonics are extracted via Fourier decomposition:

φ(m)
n =

1
T

∫ τ0+T

τ0

Φ(m)(t)e−inωt dt , n = 1, 2, . . . ; m = 1, 2, . . . , M .

(15.3.34)

It should be pointed out that, in general, φ
(m)
n , n > m (and φ

(1)
0 ), are small,

as expected, but do not vanish. In the high-order time-domain approach,
there is no direct relationship between m-th order terms in (15.3.34) and
those in (15.3.33). For direct comparisons, it is useful to define the ampli-
tude:

φ〈M〉
n =

M∑
m=1

φ(m)
n , n = 1, 2, . . . . (15.3.35)

Note that the magnitude of φ
〈M〉
n is O(εn), except for φ

〈M〉
0 , which is of

second order. With this notation, then, the amplitudes in (15.3.33) and
(15.3.35) are related by:

φ̃
(2)
0 = φ

〈2〉
0 + O(ε3)

φ̃
(n)
n = φ

〈M〉
n + O(εn+1) , n > 0 , and M ≥ n ;

 (15.3.36)

while such simple relationships cannot, in general, be written for the ampli-
tudes in (15.3.34). Similar formulae and results apply also to other quan-
tities such as forces, wave amplitudes, etc. The relationships in (15.3.36)
have been verified in the direct studies of nonlinear wave diffractions by a
submerged circular cylinder (Section 15.5) and a surface-piercing vertical
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cylinder (Section 15.7.8). We remark that, in some sense, the present time-
domain results are more ‘physical’ in that they correspond directly to what
one would actually measure in a laboratory.

15.4 Applications of HOS to Nonlinear Wave-Wave,
Wave-Current, and Wave-Bottom Interactions

We apply HOS simulations to a number of gravity surface wave prob-
lems involving nonlinear wave-wave, wave-current, and wave-bottom in-
teractions in this section to illustrate the usefulness and efficacy of the
method. To assess the essential convergence property of HOS simulations
with the number of spectral modes N and interaction order M , we first
compute finite-amplitude Stokes waves and compare the results with the
exact (“infinite-order”) Stokes solution (Schwartz, 1974) (Section 15.4.1).
To evaluate HOS accuracy and performance in simulating steep waves and
long-time nonlinear evolution, we compare the HOS results to experiments
and other existing theories for three different applications: an overturning
wave created by an asymmetrically applied surface pressure computed us-
ing a fully-nonlinear mixed-Eulerian-Lagrangian scheme (MEL) (Longuet–
Higgins and Cokelet, 1976; Vinje and Brevig, 1981; see Section 15.4.2); the
long-time evolution of a two-dimensional wave train calculated using the
modified (fourth-order) Zakharov equation (Stiassnie and Shemer, 1987)
(Section 15.4.3); and experimental measurements of the evolution of a wave
packet (Su, 1982) (Section 15.4.4). After its convergence and accuracy are
verified, as illustrations, we generalize and apply HOS simulations to sev-
eral more advanced studies: the nonlinear steady ship waves created by a
moving pressure disturbance (Section 15.4.5); the nonlinear wave blocking
by a variable current (Section 15.4.6); and the mechanisms of generalized
high-order Bragg resonant interactions of surface waves with periodic bot-
tom undulations (Section 15.4.7).

15.4.1 Stokes Waves

We test the accuracy and convergence with respect to the number of spec-
tral modes N , order M , and time step ∆t of the HOS method using exact
progressive Stokes waves as a benchmark. For the solution of the latter,
we follow Schwartz (1974), but solve the nonlinear equations associated
with the mapping function (Schwartz’ Eqs. 2.6) directly using Newton
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iteration rather than high-order perturbation. The final results are ex-
act to 14 significant figures. For simplicity, we consider deep water and
use a computational domain of length L = λ = 2π, where λ is the fun-
damental wavelength of the Stokes wave. The eigenfunctions are given by
(15.3.16) with integer wavenumbers Kn = (n, 0), n = 0,±1,±2, . . . ,±N .
The numerical tests consist of two parts:

(a) Convergence of the boundary-value problem solution

This corresponds to steps (i) and (ii) in Section 15.3.2. We prescribe here ζ

and Φs from exact Stokes waves and solve (15.3.7) for the velocity potential.
In particular we compare the surface vertical velocity Φz|z=ζ against the
exact value.

Table 15.1 shows the maximum absolute error in Φz|z=ζ as a function
of the order M and the maximum alias-free wavenumber N for a range of
steepness ε, defined here for the Stokes wave as ε ≡ k(ζmax − ζmin)/2 where
k = 1 is the fundamental wavenumber. From Table 15.1, it is clear that
for the ε � 0.35 (approximately 80% of the Stokes limiting steepness), the
error decreases exponentially fast with both N and M as they increase.
For any given M , the results converge to a limit exponentially rapidly
as N is increased. For sufficiently large N , exponential convergence with
M also takes place. At ε = 0.40, which is approximately 90% of Stokes
limiting steepness, the expected convergence rate with respect to M is not
realized.

(b) Convergence of the numerical time integration

We again use Stokes waves to evaluate the time integration truncation error
of the HOS method. The initial conditions for Φs and ζ are prescribed
from the exact Stokes solution for a specified ε, and the wave is allowed
to propagate across the computational domain. We consider the maximum
absolute error in the surface elevation after time t/T = 1 and 10 for funda-
mental wave period T. No smoothing or filtering is used. Table 15.2 gives
a summary of this error for a range of time-step sizes ∆t/T for ε = 0.1
(N = 16, M = 6) and ε = 0.2 (N = 16, M = 8). By examining the ratios
of the errors as ∆t is decreased, it is seen that the expected O(∆t4) global
error is attained (provided that the solution to the boundary-value problem
is sufficiently accurate).

For practical computations, the parameters M , N , and ∆t are chosen
to give a desired accuracy (say δ ≈ 10−5) using the simple procedure: (i)
select the order of the perturbation M so that δ ≈ εM ; (ii) choose the
minimum number of Fourier modes N based on Table 15.1 to realize the
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Table 15.1: Maximum absolute error in the free-surface velocity (∂Φ/∂z)z=ζ of a Stokes wave of steepness ε for
different values of mode number N and order of approximation M .a

M

ε N 2 4 6 8 10 12 14

0.1 8 0.75 × 10−3 0.68 × 10−5 0.72 × 10−7 0.22 × 10−8 0.10 × 10−8

16 0.75 × 10−3 0.68 × 10−5 0.65 × 10−7 0.64 × 10−9 0.49 × 10−10

0.2 8 0.59 × 10−2 0.22 × 10−3 0.15 × 10−4 0.18 × 10−5 0.13 × 10−5

16 0.60 × 10−2 0.22 × 10−3 0.87 × 10−5 0.37 × 10−6 0.38 × 10−7

32 0.60 × 10−2 0.22 × 10−3 0.88 × 10−5 0.35 × 10−6 0.14 × 10−7 0.75 × 10−9

0.3 8 0.19 × 10−1 0.22 × 10−2 0.47 × 10−3 0.14 × 10−3 0.16 × 10−3

16 0.20 × 10−1 0.18 × 10−2 0.19 × 10−3 0.59 × 10−4 0.24 × 10−4

32 0.20 × 10−1 0.18 × 10−2 0.17 × 10−3 0.16 × 10−4 0.17 × 10−5

64 0.20 × 10−1 0.18 × 10−2 0.17 × 10−3 0.16 × 10−4 0.16 × 10−5 0.21 × 10−6 0.33 × 10−7

0.35 8 0.31 × 10−1 0.64 × 10−2 0.22 × 10−3 0.13 × 10−2 0.13 × 10−2

16 0.31 × 10−1 0.41 × 10−2 0.99 × 10−3 0.71 × 10−3 0.22 × 10−3

32 0.31 × 10−1 0.40 × 10−2 0.53 × 10−3 0.94 × 10−4 0.95 × 10−4 0.16 × 10−3

64 0.31 × 10−1 0.40 × 10−2 0.53 × 10−3 0.73 × 10−4 0.11 × 10−4 0.38 × 10−5 0.68 × 10−3

0.40 32 0.45 × 10−1 0.79 × 10−2 0.28 × 10−2 0.81 × 10−2

64 0.45 × 10−1 0.79 × 10−2 0.15 × 10−2 0.35 × 10−3 0.91 × 10−3

128 0.45 × 10−1 0.79 × 10−2 0.15 × 10−2 0.30 × 10−3 0.89 × 10−3

aFrom Dommermuth and Yue (1987a).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

15.4. HOS to Nonlinear Wave-Wave, Wave-Current, and Wave-Bottom 905

Table 15.2: Maximum absolute error in the free-surface elevation ζ of a progressive
Stokes wave of steepness ε and period T after integration time t for different values of
time step ∆t.a

T/∆t

ε t/T 20 30 40 50 60

0.1 1 0.79 × 10−4 0.16 × 10−4 0.49 × 10−5 0.19 × 10−5 0.88 × 10−6

10 0.63 × 10−3 0.12 × 10−3 0.38 × 10−4 0.15 × 10−4 0.66 × 10−5

0.2 1 0.30 × 10−3 0.63 × 10−4 0.21 × 10−4 0.88 × 10−5

10 0.28 × 10−2 0.51 × 10−3 0.16 × 10−3 0.66 × 10−4

aFrom Dommermuth and Yue (1987a).

required accuracy; and (iii) choose ∆t according to Table 15.2 subject to
the linear Courant stability condition (15.3.30).

15.4.2 Wave Steepening

The HOS method is developed based on the assumption that the free sur-
face is single-valued, and, because of expansions of the potential about
the mean free surface in (15.3.6), limited to waves that are not too steep
(see Table 15.1). We consider here a wave which gradually steepens (and
eventually overturns) and make quantitative comparisons between the pre-
dictions of HOS and fully-nonlinear mixed Euler-Lagrangian (MEL) cal-
culations. The primary objective is to see how far the HOS simulation
can be continued before it fails, and to elucidate on the overall behavior
of the HOS simulation (for example, deviation from energy conservation)
near that limit.

We consider the same problem for HOS and MEL simulations: we start
with an initial exact deep-water Stokes wave with [ε, k] = [0.15, 1] and apply
(temporarily) a surface pressure moving with the wave:

PF (x, t) =


P0 sin

(
2πt

T

)
cos(x − ct) , 0 ≤ t ≤ T

2
,

0 , t >
T

2
,

 (15.4.1)

where T and c are, respectively, the fundamental period and phase speed
of the Stokes wave, and P0 = .35 for this simulation. (For simplicity, the
time and mass units are chosen so that the fluid density ρ = 1 and the
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Table 15.3: Convergence in the maximum total energy ratio E(T/2)/E(0)
of a Stokes wave with an applied asymmetric surface pressure. RK4 with
T/∆t = 100 is used for all the calculations. For the case with smoothing, a
five-point smoothing filter (15.3.28) is applied at every time step.a

MEL HOS

No smoothing With smoothing

Nm = 32 7.04 N = 16 M = 4 7.03 6.98
Nm = 64 7.11 N = 16 M = 5 7.15 7.10
Nm = 128 7.13 N = 16 M = 6 7.16 7.11
Nm = 256 7.14

aFrom Dommermuth and Yue (1987a).

gravitational acceleration g = 1.) The wave increases in energy until it
reaches its maximum at t = T/2 at which point the pressure is turned off.
Table 15.3 shows the convergence of results for the ratio of the maximum
total energy to the initial energy of the wave E(T/2)/E(0). The MEL
formulation used here is similar to that of Vinje and Brevig (1981) (see
Section 15.7.1). Cauchy’s integral theorem is applied for this periodic deep
water case and the free surface is discretized into Nm linear segments with
piecewise linear variation of the complex potential on each segment. For
definiteness, no smoothing is used in the MEL calculation. For the HOS
method, we consider both the case when there is no smoothing and when
five-point smoothing (15.3.28) is applied at every time step. At t = T/2, the
wave has acquired a total energy over seven times its initial value. Even
for this steep wave, the HOS method appears to converge rapidly as M

increases (N = 16 already gives more than sufficient accuracy at M = 6).
Hereafter, all the results are obtained using Nm = 64 for MEL calculations;
N = 16 and M = 6 for HOS simulations; and RK4 with T/∆t = 100 for
both time integrations.

One objective of these simulations is to compare how well the numerical
methods conserve energy as the wave evolves with time. The results show
that, up to the point when the HOS without smoothing fails, it conserves
total energy better than the other two methods. The failure occurs at
t ≈ .9T which is shortly after the kinetic energy of the wave has reached its
maximum. The wave itself begins to turn over after the next maxima of the
kinetic energy, and both the HOS with smoothing as well as MEL (without
smoothing) break down soon after at ≈ 1.5T . In the HOS simulations, the
amplitudes of the high-wavenumber modes increase as the wave steepens,
and the final failure is marked by a change in the total energy due to a rapid
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Figure 15.1: Free-surface profiles ζ of a steepening wave, fundamental period T and
wavelength λ, under an asymmetric pressure calculated using MEL (——) and spectral
method with smoothing (– - - –) at times t/T = 0.96 and 1.46. The vertical scale is ex-
agerated (from Dommermuth and Yue, 1987a, J. Fluid Mech. Reproduced by permission
of Cambridge University Press).

growth of energy of the modes near the truncated end. An unrelated source
of error is the saw-tooth instability (see Section 15.7.3) which also affects
the highest wavenumbers. Thus, smoothing filters (15.3.28) and (15.3.29)
help to alleviate both problems.

Figure 15.1 plots the free-surface profiles obtained using MEL and
HOS (with smoothing) for two relatively late times t/T = .96 and 1.46.
Note that for earlier times the comparisons are substantially better and
the profiles cannot be distinguished graphically. For the later phase, the
comparisons are satisfactory over most of the wave profile with the main
discrepancies occurring on the forward face (where the slope predicted by
HOS is not as steep as that by MEL), and at the crest as the wave steepens
(and eventually overturns). For the HOS computation, the maximum local
wave slope reached is (∂ζ/∂x)max ≈ 0.9 (six times the initial steepness) at
t ≈ 1.05T , at which point the total wave height is over three times its initial
value. These results provide important answers regarding how high-order
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simulations using the HOS method behave when the wave becomes steep or
breaking: (a) away from the breaking (spatially and temporally), the pre-
diction remains quantitatively good; and (b) near the breaking, the HOS
prediction deviates from the correct solution but significantly remains qual-
itatively close and well-behaved.

This comparison study allows us to make a passing remark on relative
computational efforts. For this relatively small problem, the MEL simu-
lation with Nm = 64 takes O(20) times longer computationally than the
HOS simulation with N = 16 and M = 6 using the same processor. Impor-
tantly, the computational effort for HOS increases only linearly with N and
M , while the computation time for MEL, which has only a second-order
accuracy, increases quadratically with the number of segments Nm.

15.4.3 Modulation of a Stokes Wave Train
Due to Type I Instabilities

Stiassnie and Shemer (1984) extended Zakarov’s equation to fourth order
which they used in a later work (Stiassnie and Shemer, 1987, hereafter
denoted as S&S) to simulate the coupled evolution of class I and class II
instabilities of surface gravity waves on deep water. We here compare HOS
calculations to their simulation for type I instability of a Stokes wave train.
For their Airy wave steepness of ε0 = (κa)0 = .13, the wavenumbers of
the most unstable class I modes are k ± ∆k with ∆k/k ≈ 22%, where k is
the wavenumber of the fundamental wave. In order to make a comparison,
we use as initial condition a Stokes wave, [ε, k] = [.13, 9], modulated by
two Airy sideband waves (k = 9 is chosen so that integral numbers of the
sideband modes can be fitted into the computational domain):

ζ(x, 0) = ζ0[0.13, 9] + 0.1a0 cos
(
7x − π

4

)
+ 0.1a0 cos

(
11x − π

4

)
,

Φs(x, 0) = Φs
0[0.13, 9] + 0.1

a0√
7
e7ζ cos

(
7x − π

4

)
+ 0.1

a0√
11

e11ζ cos
(
11x − π

4

)
,


(15.4.2)

which to leading order is the same as that used by S&S. Here ζ(ε, k)
and Φs(ε, k) are respectively the free-surface elevation and potential of a
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Figure 15.2: Time histories of the amplitudes of the fundamental (k = 9), subharmonic
(k = 7) and superharmonic (k = 11) modes relative to the initial amplitude of the
fundamental for an evolving Stokes wavetrain. (a) From Stiassnie and Shemer (1987);
(b) the HOS result. T is the period of the fundamental (from Dommermuth and Yue,
1987a, J. Fluid Mech. Reproduced by permission of Cambridge University Press).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

910 Numerical Simulation of Nonlinear Wave Dynamics

right-going Stokes wave of steepness ε and wavelength λ = 2π/k whose
phase is such that there is a crest at x = −π at time t = 0. In S&S’s
fourth-order simulation, only a limited approximation with 5 free waves
were used. To compare with S&S, we set M = 4 but consider a total of
N = 64 free wave modes. The time step is ∆t = T/50, and no smoothing
filter is used.

The time histories of the fundamental (k = 9), subharmonic (k = 7),
and superharmonic (k = 11) are plotted in Fig. 15.2 and compared to S&S’s
results (their Fig. 1). Both computations predict a first minimum of the
fundamental near t ≈ 60T which closely corresponds to the time scale for
type I interactions, T/ε20. The amplitudes of each harmonic relative to the
initial amplitude of the fundamental do not agree as well, but the overall
qualitative behavior (for example the relative amplitudes of the two side
harmonics at their maximum and minimum) is preserved.

Unlike S&S, the HOS simulation breaks down after t ≈ 140, at which
time the wave steepens and possible local breaking cannot be ruled out.
This is further indicated by the conservation of total energy for the HOS
computation. The total energy is conserved to within 0.01% for t < 40T , to
within 0.1% for t < 50T , and to within 2% for the duration of the simula-
tion. (For comparison, S&S reported total energy conserved to within 1%).
Near t ≈ 60T , which corresponds to the minimum of the fundamental am-
plitude and maxima of the sideband amplitudes, there is an abrupt change
(of the order of 0.5%) in the total energy, after which the numerical result
recovers but eventually breaks down at t ≈ 140, which again corresponds
to maxima in the sideband perturbations.

Figure 15.3 shows the actual free-surface elevations at times t/T = 0,
57, and 104. At t/T = 0 and 104, the fundamental dominates, while at
t/T = 57 the sidebands do. The maximum local wave slope reaches almost
four times ((∂ζ/∂x)max ≈ 0.6) that of the initial wave at t = 57T , which
also indicates why the computed total energy is not as well conserved near
that time.

To study the effect of modulation bandwidth (∆k/k), we perform large
HOS simulations with N = 2048 and M = 4. To avoid wave breaking,
we choose the fundamental wave with smaller wave steepness ε0 = (ka)0 =
0.05. Two modulation bandwidths are considered: ∆k/k = 0.1 and 0.05.
For both cases, the initial amplitudes of the subharmonic (a+1) and super-
harmonic (a−1) sidebands are set to be a±1/a0 = 0.1. Figure 15.4 shows
the long-time evolution of the amplitudes of the fundamental and two side-
bands. Qualitatively different evolution features are observed with different
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Figure 15.3: Instantaneous free-surface elevation of an evolving Stokes wavetrain (fun-
damental period T and wavelength λ) at times: (a) t/T = 0; (b) 57; and (c) 104.
The vertical scales are exaggerated (from Dommermuth and Yue, 1987a, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).

modulation bandwidths. For large modulation bandwidth (∆k/k = 0.1,
Fig. 15.4(a)), simple recurrence obtains as predicted by S&S. For small
modulation bandwidth (∆k/k = 0.05, Fig. 15.4(b)), complex evolution
patterns for both fundamental and sidebands are observed, and no recur-
rence is seen for the simulation up to t/T = 1600. Based on a spectral
analysis of the wavefield, it is found that in this case, in addition to the
initial sidebands, additional unstable sidebands (resulted from nonlinear
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Figure 15.4: Time histories of the amplitudes of the fundamental (a0), subharmonic
(a−1) and superharmonic (a+1) modes relative to the initial amplitude of the funda-
mental for an evolving Stokes wavetrain with modulation bandwidth ∆k/k = 0.1 (a)
and 0.05 (b). T is the period of the fundamental.

interactions of the fundamental and the initial sidebands) are also signifi-
cantly developed during the evolution.

15.4.4 Evolution of a Wave Packet

Su (1982) studied experimentally the evolution of wave groups that had ini-
tially square envelopes. For (Airy) wave steepnesses ranging from ε0 = 0.09
to 0.28, he measured the free-surface elevation at eight stations down the
tank. For wave steepnesses ε0 ≥ 0.14, he observed intense two- dimen-
sional breaking at distances between ten and twenty carrier wavelengths
from the wavemaker. Fifteen to twenty-five wavelengths from the wave-
maker, crescent-shaped breaking waves often developed, and from twenty
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to forty-five wavelengths away, two-dimensional spilling breaking was com-
mon. We here compare the HOS simulation to one of Su’s experiments
which initially had an steepness of ε0 = 0.15 and a packet which contained
approximately five fundamental waves at the beginning. To simulate this
experiment, we begin with a Stokes wavetrain which has 15 waves in the
computational domain, i.e. [ε, k] = [.15, 15], and modulate it with a tapering
function of the form:

F (x; σ, xb, xe) = 0.5{tanh[σ(x − xb)] − tanh[σ(x − xe)]} . (15.4.3)

The parameter σ measures the steepness of the taper at the beginning and
end positions, xb and xe, respectively, of the resulting envelope. To avoid
Gibb’s phenomenon at the boundaries, (15.4.3) is periodically extended.
The initial condition which approximately gives the desired five waves in
the packet is then

ζ(x, 0) = F

(
x;

30
π

,−π

3
,
π

3

)
ζ0[0.15, 15] ,

Φs(x, 0) = F

(
x;

30
π

,−π

3
,
π

3

)
Φs

0[0.15, 15] .

 (15.4.4)

The parameters for the HOS simulation are N = 256, M = 6, and T/∆t =
40. To allow the computations to continue after the waves may have become
locally too steep, and possibly also to model some loss of wave energy due to
breaking, we apply the ideal filter ΛI with ν = .5 whenever the total energy
of the wave packet changes by more than 1%. This smoothing operation
eliminates all Fourier modes whose wavenumbers are greater than eight
times the fundamental.

Figure 15.5 shows the comparisons between Su’s wave probe measure-
ments and the HOS simulation results. The experimental traces are re-
produced directly from Su (1982) and do not have a vertical scale. The
horizontal scales are, however, the same. Overall, the agreement is quali-
tatively good and appears to improve as the wave group travels down the
tank. At about fifty wavelengths from the wavemaker, we confirm the ex-
perimental observation that the wave group fissions into two packets. Our
results are comparable to the computations for the same experiment by Lo
and Mei (1985), who used Dysthe’s fourth-order (nonlinear) Schrödinger
equation.

Figure 15.6 displays the total energy time-history of the simulation.
The energy is conserved well except at approximately t/T ≈ 40–50. In
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Figure 15.5: Comparison between experiments (Su, 1982) and theory (i.e. the HOS simulation) for the free-surface elevation of an
evolving wave packet (fundamental period T and wavelength λ) at positions from the wavemaker x/λ = 4.88, 14.6, 19.5, 34.2 and 48.4
(from Dommermuth and Yue, 1987a, J. Fluid Mech. Reproduced by permission of Cambridge University Press).
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Figure 15.6: Computed total energy of an evolving wave packet, fundamental period T
and wavelength λ. Diamond symbols indicate the use of ideal filter ΛI(ν = 0.5) which
is applied whenever the total energy changes by more than 1% (from Dommermuth and
Yue, 1987a, J. Fluid Mech. Reproduced by permission of Cambridge University Press).

this region, the filter ΛI(k, 0.5) (triggered by a 1% change in energy) is re-
peatedly applied which eventually removed almost 20% of the energy from
the system. It is found that filtering (singly or in close succession) is often
required at intervals of approximately two fundamental periods which may
be related to the relative motion between the waves and their envelope as
suggested by Longuet–Higgins (1974). It is interesting to note that the time
range over which smoothing is used roughly corresponds to times at which
wave breaking was observed in the experiments. By monitoring the total
energy and suitably removing energy in the higher wavenumber modes, the
HOS computations can be continued beyond the stages of apparent local
breaking, and, significantly, produce (qualitatively) good results compared
to experiments. More recently, Wu (2004) generalized the smoothing tech-
nique here to the physical space and obtained good agreement between HOS
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simulation and the experiment of Tulin and Waseda (1999) for waves that
have undergone plunging breaking. Ironically, and not insignificant from a
practical perspective, this type of robust behavior of HOS simulations in
the presence of wave breaking, renders HOS more useful for many general
steep-wave applications than even fully-nonlinear methods such as MEL
(Section 15.7), which break down as soon as the wave begins to spill or
plunge into itself.

15.4.5 Nonlinear Three-Dimensional Waves
Due to a Moving Surface Disturbance

In this section, high-resolution HOS simulations are used to study the three-
dimensional nonlinear wave pattern associated with a surface pressure dis-
tribution moving in deep water. This is treated as an initial-boundary-value
problem starting from rest in the context of potential flow. A novel taper-
ing function procedure is employed to model the outflow boundaries for
long-time simulations in a finite computational domain. The focus here
is the understanding of free-surface nonlinear effects on three-dimensional
ship wakes.

For linearized free-surface conditions, the resulting Neumann-Kelvin
problem has been studied since Kelvin (1886). Considering the waves
created by a localized pressure distribution moving with constant speed
U , Kelvin developed the method of stationary phase to show that the
far-field steady wave pattern consists of a superposition of diverging and
transverse wave systems which are confined within two rays forming angles
of ±θ0 with the track. The angle of the rays, or cusp lines, is given by
θ0 = sin−1(1/3) ∼= 19.5o. This far-field result can be derived by simple
geometric arguments (e.g. Havelock, 1908; Lamb, 1932; Lighthill, 1956).
Details of the wave pattern are quite complicated and mathematically may
be expressed as the sum of a double and a single integral with the far-field
waves given predominantly by the latter (e.g. Peters, 1949). Ursell (1960)
analyzed the far-field behavior in the cusp region and near the track, and
found that the wave amplitudes are respectively O(r−1/2) and O(r−3) in-
side and outside the cusp lines and that in a finite region of width O(r1/3)
across θ = θ0 there is a transition from oscillatory to exponentially decaying
behavior in an Airy-function-like manner where the amplitude is O(r−1/3)
where r is distance from the source normalized by g/U2.
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Despite the analytical developments, the accurate numerical calculation
of even linear ship waves is still not without challenge, in part due to the
inherent inconsistency of the Neumann-Kelvin approximation, and the sub-
stantive computational effort required for realistic three-dimensional geo-
metries (e.g. Doctors and Beck, 1987; Guevel et al., 1977). The difficulty
is more severe when one is primarily interested in the short-wave field,
for instance, as observed by back-scattered synthetic-aperture radar signals
(e.g. Vesecky and Stewart, 1982; Fu and Holt, 1982), where the calculations
based on discrete distributions of singularities may not be able to provide
the necessary resolution (Milgram, 1987).

Interest in nonlinear ship wave effects has been motivated by the lack
of agreement between linearized theory and observations (see, e.g. the sur-
vey by Tulin, 1978). A deficiency known since Hovgaard (1909) is the fact
that bow wave crests tend to lie outside the theoretical cusp lines and by
an amount which varies with speed. To account for this, Gadd (1969) in-
cluded second-order corrections to both the singularity distributions on the
ship centerplane and the condition at the free surface, but with limited
success. In a discussion of Gadd’s paper, Lighthill (in Gadd, 1969) sug-
gested a more useful approach to account for the nonlinear effects on wave
propagation speed, using Whitham’s theory for slowly-varying dispersive
waves (Lighthill, 1967; Whitham, 1974). This approach was in fact fol-
lowed by Howe (1967, 1968) (for a simpler problem involving a wavetrain
resulting from open-channel flow past a slowly-modulated wavy wall) where
he predicted phase jumps or “shocks”, a result which violates the original
assumption of slow variations and appears to be nonphysical (Newman,
1970).

Subsequently, a number of attempts to account for some free-surface
nonlinearities were made (e.g. Newman, 1970; Hogben, 1972; Dagan, 1972a;
Kitazawa and Takagi, 1976). Much of the work is analytic in nature and
involves perturbations to higher order in one or more of the small param-
eters of the problem. Such approaches are not without difficulties, and
the uniformity of the expansion, for example, around the zero-speed limit
(Ogilvie, 1968; Dagan, 1972b, 1975) is still problematic (Miloh and Dagan,
1985). This has prompted the introduction of a number of quasi-linear tech-
niques (Dawson, 1977; Inui and Kajitani, 1977), which have found useful
numerical applications (e.g. Xia and Larsson, 1986). The related problem
of nonlinearity specifically in the Kelvin cusp region has received some-
what less attention (Newman, 1971; Akylas, 1987), but we now know that
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resonant quartet interactions along the cusp lines may not be as strong as
first conjectured by Newman (1971). These studies typically utilize per-
turbation techniques in a far-field local analysis and, therefore, cannot be
readily extended to an examination of the total wave pattern.

We apply the HOS method to the nonlinear ship waves problem
(Dommermuth and Yue, 1988a). For simplicity, we consider the steady
three-dimensional nonlinear waves generated by a moving surface pressure
disturbance. The disturbance moves forward at a constant speed U . We
define a Cartesian coordinates system fixed with the moving pressure dis-
turbance. Referring to this coordinate system, the pressure disturbance
is stationary, and a uniform current moves towards the pressure distur-
bance (with a speed −U). We set the origin at the mean water level, the
x-axis pointing into the uniform current (of speed −U), and the z-axis pos-
itive upward. The gravity waves created by a surface pressure distribution,
PF (x), turned on at t = 0, can be described by a total velocity potential,
−Ux + Φ(x, z, t), where Φ(x, z, t) satisfies Laplace’s equation within the
fluid. In terms of Φs and ζ, the kinematic and dynamic free-surface bound-
ary conditions in the Zakharonv form in the presence of a uniform current
of speed −U are:

ζt − Uζx + ∇xζ · ∇xΦs

−(1 + ∇xζ · ∇xζ)Φz(x, ζ, t) = 0 ,

Φs
t − UΦs

x + gζ +
1
2
∇xΦs · ∇xΦs

−1
2
(1 + ∇xζ · ∇xζ)Φ2

z(x, ζ, t) = −PF(x)
ρ

.


(15.4.5)

The initial conditions are Φs(x, 0) = 0 and ζ(x, 0) = 0 at t = 0, at which
time the pressure distribution, PF (x), is applied instantaneously. With
the exception of the terms proportional to U , the initial-boundary-value
problem is identical to Section 15.3.1, and the modification of the HOS
method for the present problem is straightforward.

As before, we choose periodic boundary conditions in both horizontal
dimensions, and consider the rectangular domain, −L/2 < x < L/2 and
−W/2 < y < W/2. As an example, we consider an axisymmetric pressure
distribution, PF (x) = PF (r), centered at (x, y) = (xc, 0) with radial extents
R < L/2, W/2. The radial distance from the center of the pressure r is
given by r2 = (x− xc)2 + y2. To retain spectral convergence and accuracy,
the pressure distribution must be chosen to be smooth enough to avoid
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Gibb’s phenomena. To do this, we specify the surface pressure in terms of
a Hermitian polynomial:

PF (r) =

PmaxΠ
( r

R

)
, 0 ≤ r ≤ R

0 , r > R

(15.4.6)

where Pmax is the maximum pressure at the center r = 0; and the Hermitian
polynomial, Π(s), 0 ≤ s ≤ 1,

Π(s) = 1 − 462s6 + 1980s7 − 3465s8

+ 3080s9 − 1386s10 + 252s11 (15.4.7)

has the property

Π(0) = 1 , Π(1) = 0 , and(
dk

dsk

)
Π(0) =

(
dk

dsk

)
Π(1) = 0 for k = 1, 2, 3, 4, 5 .

To allow for long-time simulations, we develop a procedure wherein the
free-surface elevation and potential are truncated smoothly (tapered) at
the longitudinal ends of the computational domain after each time step.
Specifically, we multiply ζ and Φs by a tapering function Ω(x, ∆) which is
equal to one in the middle and smoothly approaches zero at the ends:

Ω(x, ∆) =


1 , |x| <

L

2
− ∆

Π
(

(|x|−L
2 +∆)

∆

)
,

L

2
− ∆ ≤ |x| ≤ L

2

(15.4.8)

where ∆ measures the width of the tapering region and is a parameter to
be chosen. In Dommermuth and Yue (1988a), systematic numerical tests
indicate that this simple tapering procedure is remarkably effective and
allows us to carry out long simulations to obtain the steady-state wake.

For convenience, the mass, time, and length units are chosen such that
the density ρ = 1, the gravitational acceleration g = 1, and the diameter
of the pressure distribution 2R = 1. For this computation, we fix U = 0.4
and Pmax = 0.015. The pressure distribution is placed at xc = 5 in a
computational domain with L = 16 and W = 8

√
2. This allows us to

simulate up to approximately 12 transverse waves behind the pressure. The
numbers of unaliased Fourier modes we use are Nx = Ny = 128. Nonlinear
interactions up to third order (M = 3) are included. A tapering function
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Ω(x, 0.5λ0) and an ideal smoothing filter Λ(Kn, 0.9) are applied to ζ and
ΦS after each time step. We use a constant time step ∆t = T/50 = 2πU/50
and carry out the simulation up to t/T = 20. Here T ≡ 2πU is the time it
takes to travel one fundamental wavelength λ0 ≡ 2πU2 at speed U . Note
that for this problem, the linear transient solution in a periodic domain and
the linear steady-state solution in an unbounded domain can be obtain in
closed form (see Dommermuth and Yue, 1988a for details).

Figure 15.7 plots the free-surface elevation along the linear cusp line
(x − xc) = y

√
8 at t/T = 20. In this case, the linear time-domain theory

does not agree as well with the linear far-field asymptotes. The surprising
result is the substantial forward shift of the nonlinear wave phase which
increases progressively with distance along the cusp line. This phase shift
is almost half a wavelength at a distance of r ∼ 14. The amplitudes on the
cusp line also show large differences, with the nonlinear wave amplitudes
typically greater by as much as 25%, say, at r ∼ 10. The present results

Figure 15.7: Cusp-line profiles (on x − xc = y
√

8) of the free-surface elevation at
t/T = 20. The curves are for the nonlinear computation (– – –), the linear transient
result (— - - - —), and the linear steady-state far-field asymptotic result (——) (from
Dommermuth and Yue, 1988a, 17th Symp. on Naval Hydrodynamics. Reproduced by
permission of National Academy Press).
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Figure 15.8: Transverse profiles of the free-surface elevation across the track at t/T = 20
at downstream distances x − xc = (a) -4; (b) −6; (c) −8; and (d) −10. The curves
are for the nonlinear computation (——) and the linear transient result (– – –) (from
Dommermuth and Yue, 1988a, 17th Symp. on Naval Hydrodynamics. Reproduced by
permission of National Academy Press).
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Figure 15.8 (Continued)
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differ qualitatively from the far-field perturbation analysis of Akylas (1987),
who found only a small change in phase and almost no change in amplitude
along the cusp lines. This indicates the importance of a nonlinear model
which includes the interactions in the near and intermediate fields.

The overall difference between the linear and nonlinear wave patterns
is further clarified by the transverse wave elevation cuts in Figs. 15.8 at
a number of downstream stations all at t/T = 20. The deviation of the
nonlinear profiles from the linearized results are appreciable, with typically
lower troughs on the track, higher crests towards the cusp lines, and an
outward phase shift at the outer edge of the cusp lines which appears to
increase with distance downstream. Taken together, Figs. 15.7 and 15.8
indicate a forward shift and a somewhat wider wake angle for the non-
linear wave pattern in the near and intermediate field. This is in general
agreement with physical observations.

Details of the three-dimensional wave pattern in a rectangular domain
over the cusp region are show in Fig. 15.9 in the form of contour plots of
the free-surface elevation (at t/T = 20). For clarity, the vertical coordinate
is magnified by a factor of

√
8 so that the Kelvin cusp line has a slope of

one on the plot. For the nonlinear case, the highest crests and the lowest
troughs move outside of the linear cusp angle as the distance downstream
increases. The peaks and troughs of the linear free surface are inside of the
cusp lines, which agrees with Ursell’s (1960) calculations. In the patch of
the free surface shown, the highest nonlinear elevation is 30% greater than
the highest linear elevation, and the lowest nonlinear wave trough is 10%
deeper than the lowest linear wave.

Finally, one notes that the present nonlinear simulations also confirm
the existence of a nonlinear steady-state of waves on the cusp line. (Detailed
results are shown in Dommermuth and Yue, 1988a.) This contradicts the
conclusion of Newman (1971), but is in agreement with the result of Akylas
(1987).

15.4.6 Nonlinear Wave Interaction with
Ambient Current

Wave-current interactions play a role in ocean wave evolution, hydrody-
namic loads on offshore structures, and in the interpretation of remote
sensing surface data. For this problem, Longuet–Higgins and Stewart
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Figure 15.9: Contour plots of the free-surface elevation, ζ/Pmax, at t/T = 20, in a
rectangular region on the Kelvin cusp line for (a) the nonlinear computations; and (b)
linear transient result. For clarity, the height of the plots is magnified by a factor of

√
8,

so that the cusp lines (——) now have a slope of one. Note that the gray scales under
the plots are different for the linear and nonlinear cases (from Dommermuth and Yue,
1988a, 17th Symp. on Naval Hydrodynamics. Reproduced by permission of National
Academy Press).
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Figure 15.9 (Continued)
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(1960, 1961) introduced the concept of radiation stress and derived the cor-
rect energy equation. They showed that for waves on steady nonuniform
currents, the total wave energy is not conserved due to energy exchange
between wave and current. Later, Bretherton and Garrett (1968) showed
that instead of total wave energy, the wave action is conserved for waves
travelling on a slowly varying current. Since then, much progress has been
made in this problem area (for a review, see Peregrine, 1976 and Jonsson,
1990).

Wave blocking and wave focusing are two important phenomena associ-
ated with wave-current interactions which have attracted special attention.
When a propagating wave encounters an opposing current of increasing
magnitude, wave blocking phenomenon occurs at a place where the current
speed matches the group velocity of the wave (e.g. Jonsson and Arneborg,
1995). In the blocking region, the wave becomes shorter and steeper, and
eventually breaks as it is reflected and travels back (Smith, 1975; Shyu and
Phillips, 1990; Shyu and Tung, 1999). The large wave steepness that oc-
curs here make it important to consider the effects of nonlinearity. Steep
waves may also be generated due to focusing of waves refracted by a curved
shearing current. This is believed to be the mechanism for the generation of
giant waves in the Agulhas Currents (e.g. Gerber, 1993). These phenomena
also occur for irregular waves and thus are important to the understanding
of ocean wave evolution (e.g. Huang et al., 1972; Tayfun et al., 1976; Lai
et al., 1989; Tung, 1992). A linearized account of these effects is given in
Section 3.7, Part 1, of this book.

Although it is clear that nonlinear effects associated with wave-current
interactions could be important (e.g. Thomas, 1981, 1990), theoretical stud-
ies have been limited. Peregrine and Thomas (1978) applied the finite-
amplitude wave theory of Whitham (1974) and showed that the basic char-
acteristics of a wave travelling on a slowly varying current differ significantly
from the linear-theory prediction. This theory, however, does not include
the effect of wave reflection and fails in the blocking region where the as-
sumption of slowly-varying waves breaks down.

We here extend and apply the HOS method of Section 15.3 to study the
problem of nonlinear wave interactions with variable current. We assume
that the spatial scale of the current is much larger than that of waves and
focus on the effect of the current upon the wave motion. For simplicity,
we assume that the current field is steady and prescribed, and ignore the
feedback effect of waves on the current. We assume that the total flow
velocity V can be decomposed into two parts:
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V(x, z, t) = ∇Φ(x, z, t) + U(x, z) (15.4.9)

where ∇Φ is the velocity due to wave motion, and U the velocity of the
current. The potential flow assumption in (15.4.9) has been supported by
experiments of wave interactions with collinear currents, Thomas (1981,
1990), for a current that is essentially irrotational with vorticity restricted
to thin layers. We further assume that the current is slowly varying with
|∇ × U| = O(εM+1), where ε is the wave steepness and M is the order of
nonlinearity considered in the wave interactions.

Based on (15.4.9), we rewrite the nonlinear kinematic and dynamic
boundary conditions (15.3.4) for the wave motion in the presence of a slowly
varying current as:

ζt + ∇xζ · (∇xΦs + U)

−(1 + ∇xζ · ∇xζ)Φz(x, ζ, t) = 0 ,

Φs
t + gζ + ∇xΦs · U +

1
2
∇xΦs · ∇xΦs

−1
2
(1 + ∇xζ · ∇xζ)Φ2

z(x, ζ, t) = −PF
ρ

.


(15.4.10)

In the above, Φs ≡ Φ(x, ζ(x, t), t), and ζ is the free-surface elevation due
to wave motion. The condition (15.4.10) is applied on the instantaneous
free surface z = ζ(x, t). Using (15.4.10) in place of (15.3.4) as the evolu-
tion equation, the HOS procedure in Section 15.3 is directly applied here.
This method has been recently employed by Wu (2004) in a study of the
nonlinear wave-current blocking problem.

As an illustration, we consider a two-dimensional problem where the
waves and current can be co- or counter-propagating. Figure 15.10 shows
a sketch of the variation of the current speed in a periodic computational
domain. The interest is in the left half of the computational domain, and

x

U=0 U=U (x) U=Um U=U (x) U=0

Figure 15.10: Sketch of the variation of current speed in a periodic computational
domain for HOS computations of nonlinear wave-current interactions.
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the right half is included in order to create periodic boundaries in x for HOS
computations. The actual length of the computational domain depends on
the U(x) considered. The incident wave propagates from left to right with
wavelength λ0, wavenumber k0 = 2π/λ0, amplitude a0, period T0, and
phase speed c0 in the absence of current. For the HOS simulation, the
initial free-surface elevation and velocity potential of the incident wave are
obtained using the exact Stokes wave solution (Schwartz, 1974). To enable
long-time simulations for obtaining the steady-state prediction, we apply a
simple tapering function procedure (see (15.4.8)) in a small region at the
periodic boundaries.

Figure 15.11 plots the nonlinear (M = 3) HOS results for the variation
of the amplitude, wavenumber, and steepness of the wave as it travels in
a following current. For comparison, the linear solution (e.g. Longuett–
Higgins and Stewart, 1961; or Section 3.7.3, Part 1, of this book) is also
shown. For the computations, we use the incident wave steepness (ka)0 =
0.2, a computational domain of length 256λ0, the number of wave modes
N = 4096, and the time step T0/∆t = 64. The steady state of the wave-
field of interest is reached after a simulation time of ∼ 160T0. As Fig. 15.11
shows, the nonlinear solution differs only slightly from the linear prediction.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

a/a0

k/k0

(ka)/(ka)0

a/a0, k/k0, (ka)/(ka)0

U/c0

Figure 15.11: Variation of the wave amplitude a, wavenumber k, and steepness ka as
a function of current speed U for an incident wave (amplitude a0, wavenumber k0, and
steepness (ka)0 = 0.2) travelling in a variable following current. The plotted are from
the linear theory (——) and HOS simulations with M = 3 ( • for a, � for k, and � for
ka).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

15.4. HOS to Nonlinear Wave-Wave, Wave-Current, and Wave-Bottom 929

-0.2 -0.15 -0.1 -0.05 01

2

3

4

a/a0

k/k0

(ka)/(ka)0

a/a0, k/k0, (ka)/(ka)0

U/c0

Figure 15.12: Variation of the wave amplitude a, wavenumber k, and steepness ka as
a function of current speed U for an incident wave (amplitude a0, wavenumber k0, and
steepness (ka)0 = 0.05) travelling in a variable opposing current. The plotted are from
the linear theory (——) and HOS simulations with M = 3 (• for a, � for k, and � for
ka).

This is not surprising since the wave steepness becomes smaller with U in
the following current.

Figure 15.12 plots the comparisons for the case of an opposing current.
In this case, the incident wave steepness (ka)0 = 0.05, and the steady state
of the wave-field is reached after ∼ 250T0. The linear theory in general over-
predicts the amplitude, wave number, and steepness of the wave. The over-
estimation increases with the current speed. As |U |/c0 approaches 0.25
(the stopping point), the wave steepens rapidly and nonlinear effects are
critical.

To elucidate the nonlinear effects in wave blocking, we consider a strong
opposing current and focus on the wave-field in the blocking region. In this
case, we use a computational domain of length 16λ0 and N = 4096 wave
modes. The incident wave steepness is (ka)0 = 0.015 (in the presence of
U/c0 = −0.2). Figure 15.13 plots the total wave profile of the wave-field
at t = 256T0, obtained using HOS simulations with M = 1 and 3. In
both linear (M = 1) and nonlinear (M = 3) results, the wave steepens
significantly as it travels toward the stopping point and is largely reflected
there. Both the amplitude and phase of the wave differ significantly between
the linear and nonlinear solutions in this vicinity of wave blocking. As the
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Figure 15.13: Free-surface profile of the total wave-field in the blocking region for an
incident wave of steepness (ka)0 = 0.015 travelling in a strong opposing current. The
plotted are: HOS computations of the wave profile with M = 3 (——) and M = 1
(· · · · ), and current profile (– – –). x = 0 corresponds to the stopping point predicted
by the linear theory.

reflected wave moves away from the stopping point, it becomes shorter
and steeper, and eventually breaks. In the nonlinear computations, wave
breaking is “modelled” by filtering and is the reason that the nonlinear
wave amplitude is much smaller than the linear solution in the region far
away from the stopping point (x/λ < −3.5).

15.4.7 Generalized Bragg Scattering of
Surface Waves by Bottom Ripples

A natural and important application of HOS simulations in surface wave
dynamics is the nonlinear wave interaction with variable bottom topogra-
phy. When an incident wave travels over and interacts with nonuniform
bottom depth, the wave is modified and may be partially reflected. For
mild bottom variations the reflection is in general weak. When the bottom
contains periodic undulations and the incident wave and bottom ripple
wavenumbers satisfy so-called Bragg conditions, however, the Bragg scat-
tered wave becomes resonant and can be greatly amplified. For larger wave
and/or bottom steepnesses, higher-order Bragg resonances resulting from
nonlinear interactions among the surface and bottom wave components can
be expected. Such resonant wave interactions with bottom ripples play a
significant role in the evolution of nearshore surface waves and in the de-
velopment of shore-parallel bars (e.g. Heathershaw and Davies, 1985; Mei,
1985; Hara and Mei, 1987; Yu and Mei, 2000). The leading second-order
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triad (class I) Bragg resonance is thoroughly considered using the linearized
theory in Part 1, Chapter 7, where the effect of randomness of the bottom
variation is also addressed. We here focus on the study of third-order quar-
tet (class II and class III) wave-bottom interactions (Liu and Yue, 1988)
using direct HOS simulations.

Class I Bragg resonance

The mechanism for Bragg resonances can be viewed in a way that is
analogous to that for nonlinear surface wave-wave resonant interactions in
the absence of bottom undulations. Thus, general Bragg conditions can be
deduced from the well-known resonance condition for nonlinear wave-wave
interactions (e.g. Phillips, 1960). For a wave field over uniform depth h, in-
teractions among different wave components become resonant at order m in
wave steepness if the wave numbers kj and the corresponding frequencies
ωj satisfy:

k1 ± k2 ± · · · ± km+1 = 0

ω1 ± ω2 ± · · · ± ωm+1 = 0

}
(m ≥ 2) , (15.4.11)

where the same combination of signs is to be taken in both equations, and
kj and ωj satisfy the linear dispersion relation

ω2
j = g|kj | tanh |kj |h . (15.4.12)

Generalized Bragg resonance conditions in the presence of bottom ripples
are obtained by replacing one or more of the free-surface wave compo-
nents in (15.4.11) by periodic bottom ripple components of corresponding
wavenumbers kbj but with zero frequencies (since the ripples are fixed).
Thus, by combining wavenumbers and frequencies of surface waves and
bottom ripples, we obtain general conditions for Bragg resonances at each
order, m = 2, 3, . . . .

Consider two surface wave components, wavenumbers k1 and k2, prop-
agating over a rippled horizontal bottom containing a single wavenumber
kb (analogous to surface waves, this refers to a fixed sinusoidally varying
bottom with crest lines normal to kb and with wavelength λb = 2π/|kb|).
From (15.4.11) with m = 2, we obtain the condition for class I Bragg
resonance

k1 − k2 − kb = 0

ω1 − ω2 = 0

}
. (15.4.13)
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This is the classical Bragg resonance involving the triad interaction of the
bottom (kb), the incident (k1 say) and the Bragg reflected wave (k2) com-
ponents. This condition has been studied experimentally by Davies and
Heathershaw (1984). For small incident wave and bottom slopes, reflection
at or near the class I Bragg resonance is predicted well by multiple-scales
perturbation theory under the assumption of linearized surface waves (Mei,
1985; Part 1, Chapter 7). Here we obtain direct computational demonstra-
tion of class I Bragg resonance using the HOS method which also allows us
to investigate higher-order nonlinear effects of the free surface and bottom
on this class of resonant reflection.

To compare with experiments, we choose a case of Davies and Heather-
shaw (1984) with the length of the bottom patch L0/λb = 10 and the slope
of the bottom undulations kbd = 0.31. In addition to the normal incidence
they consider, we study also the more general case of oblique incidence.
We perform direct HOS simulations to obtain the steady-state (limit-cycle)
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Figure 15.14: Spatial variation of the class I Bragg reflection coefficient over a bottom
ripple patch −5λb < x < 5λb, for kA = 0.05, kbd = 0.31. Results plotted are: experi-
ments (Davies and Heathershaw, 1984) (�); perturbation theory (Mei, 1985) (— · —);
and HOS computations for M = 3 (——) (from Liu and Yue, 1998, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).
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free-surface elevation ζ(x, t) from which the reflection and transmission
wave amplitudes are extracted (see Liu and Yue, 1998 for details).

In the case of normal incidence, k1 and kb, and consequently k2, are in
the same direction and the problem is two dimensional. Figure 15.14 shows
the HOS solution, M = 3 for the spatial variation of the Bragg reflection
coefficient R(x) at the (linearized) Bragg resonance value, k ≡ k1 = k2 =
kb/2, for two different mean water depths corresponding to d/h = 0.1 and
0.14. For this computation, the other physical and computational param-
eters used are: the incident wave steepness kA = 0.05, the computational
domain length L = 32λ, the number of wave modes N = 2048, and the
time step ∆t = T/64, where λ, T , and A are the wavelength, period,
and amplitude of the incident wave, respectively. Note that the result for
M = 2 hardly differs from that for M = 3 for this case, and thus is not
shown in the figure. The small oscillations in the HOS results are due to
the use of Goda and Suzuki (1976)’s simple formula to extract steady-state
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Figure 15.15: Class I Bragg reflection coefficient near the class I condition, 2k/kb = 1,
for kA = 0.05, kbd = 0.31, d/h = 0.16. Results plotted are: experiments (Davies and
Heathershaw, 1984) (�); perturbation theory (Mei, 1985) (— · —); and HOS computa-
tions for M = 3 (�) (from Liu and Yue, 1998, J. Fluid Mech. Reproduced by permission
of Cambridge University Press).
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coefficient from time history. For comparison, we show also results from
the experiments of Davies and Heathershaw (1984), and the multiple-scale
perturbation theory of Mei (1985). The agreement is satisfactory, with
all three results showing the linear variations and slopes of R(x) over the
bottom patch (x/λb ∈ [−5, 5]).

Figure 15.15 shows the variation of the Bragg reflection coefficient in
the neighborhood of the class I Bragg resonance for the case d/h = 0.16.
The HOS results (with M = 3) are compared with the measured values
of Davies and Heathershaw (1984) and the perturbation solution of Mei
(1985) (described in detail in Part 1, Chapter 7). The agreement among
them is overall satisfactory. One effect seen in the experimental data is the
down shift in wavenumber of the peak Bragg reflected wave relative to the
linearized Bragg point, 2k/kb = 1. This is predicted by the high-order HOS
computation but is not present in Mei’s perturbation theory.

The resonant wavenumber down-shift is attributed to nonlinear effects
associated with the problem. In the present case, free-surface nonlinear-
ity is manifest primarily in the Stokesian decrease in surface wavenumber
with increasing steepness which should result in an increase of the resonant
(linearized) value of k relative to kb. On the other hand, nonlinear effects
associated with the bottom variations would in general lead to a downshift
of the resonant wavenumber. To obtain an estimate of this effect, we as-
sume small-amplitude surface waves and slowly-varying bottom variations,
and write the dispersion relation as:

ω2 = gk tanhk[h + b(x)] . (15.4.14)

For kb � kh = O(1), we expand the wavenumber k(x) in a perturbation
series:

k(x) = k0 + k1(x) + k2(x) + · · · , (15.4.15)

where k0 is independent of x and given by ω2 = gk0 tanh k0h. Substituting
(15.4.15) into (15.4.14) and solving for the perturbation wavenumbers, we
obtain:

k1(x)
k0

= − 2k0

2k0h + sinh 2k0h
, (15.4.16)

and

k2(x)
k0

=
2(k0b)2

(2k0h + sinh 2k0h)3

× [4k0h + (3 + cosh 2k0h) sinh 2k0h] . (15.4.17)
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After taking the spatial average ( ) of k(x), it follows that

k̄ = k0 +
(k0|b|)2

(2k0h + sinh 2k0h)3

× [4k0h + (3 + cosh 2k0h) sinh 2k0h] + · · · . (15.4.18)

The second term in (15.4.18) is always positive, so that bottom nonlinearity
in general increases the average free-surface wavenumber and thus shifts the
peak Bragg reflection to a lower wavenumber relative to the linearized Bragg
point. Note that non-constant k(x) also leads to evanescent wave modes
which have been attributed as a cause of the resonant frequency down-shift
(Guazzelli et al., 1992).

Nonlinear free-surface and bottom effects on class I Bragg reflection
can be obtained systematically by repeating the simulations varying the
free-surface and bottom wave steepnesses. This has been performed by
Liu (1994). The results indicate that nonlinearities of the free-surface and
bottom boundaries are second order in the associated steepness and are
generally small as far as the Bragg reflected wave amplitude is concerned.
This has also been found by Kirby (1986) based on the extended-mild-slope
equation.

As indicated by (15.4.13), class I Bragg resonance also occurs when the
incident wave (k1) is oblique to the bottom ripples (kb). We consider the
same bottom geometry (d/h = 0.16) but vary the angle θ between kb and
k1 (measured counter-clockwise from kb which we set parallel to the x axis).
The problem is now three-dimensional, and for the numerical simulation,
we employ a (doubly-periodic) computational domain of dimensions Nwxλx

by Nwyλy , where the incident wavelength is λ = 2π/|k1| = λx cos θ =
λy sin θ and (Nwy/Nwx)1/2 = tan θ. The simulations are carried out until
steady-state free-surface elevation is obtained, from which the reflection
and transmission coefficients are determined.

Figure 15.16 plots the class I Bragg reflection coefficient at class I Bragg
resonance (15.4.13) as a function of the oblique incidence angle θ. Com-
parison is made to the perturbation theory of Mei et al. (1988), and the
agreement is excellent. For both the numerical solution and the perturba-
tion theory, Fig. 15.16 shows that at the critical incidence angle of θ = π/4,
wave propagation is unaffected by the presence of the bottom ripples. For
oblique incidence, the magnitude of the incident wavenumber kh increases
(in order to still satisfy Bragg condition) and the relative effect of the bot-
tom variations diminishes. Thus the downshift observed in Fig. 15.16 as
well as the Bragg resonance effect itself become weak as θ increases.
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Figure 15.16: Class I Bragg reflection coefficient as a function of incidence wave angle
θ relative to the bottom ripples, for kA = 0.05, kbd = 0.31, d/h = 0.16. Results plotted
are: perturbation theory (Mei et al., 1988)(— · —); and HOS computations for M = 2
(�), and M = 3 (�) (from Liu and Yue, 1998, J. Fluid Mech. Reproduced by permission
of Cambridge University Press).

Class II Bragg resonance

At third order (m = 3), quartet Bragg resonance conditions satisfying
(15.4.11) obtain involving either two/two or three/one surface/bottom wave
components. We denote these, respectively, as class II and class III Bragg
resonances. For the former, consider a doubly-sinusoidal bottom contain-
ing ripples with wavenumbers kb1 and kb2. The class II Bragg resonance
condition is obtained simply by replacing kb in (15.4.13) by the sum or
difference of kb1 and kb2:

k1 − k2 − (kb1 ± kb2) = 0 ,

ω1 − ω2 = 0 .

}
(15.4.19)

The −/+ sign above refers to sub-/super-harmonic resonances, respectively.
Although class II Bragg resonance involves quartet interactions (two

bottom components) and is in theory one order higher than class I Bragg
reflection, for realistic bottom conditions the resonant wave can in fact have
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amplitudes which are comparable in magnitude to class I reflection (and
occurs at distinct frequencies). This has been observed, for example, in the
experiments of Guazzelli et al. (1992) who consider the two-dimensional
problem of normal incidence of a wave over a bottom containing doubly-
sinusoidal ripples.

To illustrate the effect of class II Bragg resonance, we study the case
of Guazzelli et al. (1992) involving normal incidence over bottom un-
dulations containing unidirectional doubly-sinusoidal (two different wave-
lengths) ripples. The bottom topography they consider is: ripple patch
length L0 = 48 cm, ripple amplitudes d1 = d2 = 1 cm, ripple wavenumbers
kb1 = π/3 cm−1 and kb2 = π/2 cm−1, and mean water depth h = 4 cm.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
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Figure 15.17: Bragg reflection coefficient for a wave incident normally upon a dou-
bly periodic ripple bottom in the neighborhood of frequencies satisfying class I Bragg
resonances: f1 at k = kb1/2; f2 at k = kb2/2; and sub-harmonic class II Bragg reso-
nance: f− at k = (kb1 − kb2)/2. Results plotted are: experiments (Guazzelli et al.,
1992) (�), HOS computations for M = 3 (�); and, near f−, SAMM numerical results
(Guazzelli et al., 1992) (- - -), and perturbation theory (Rey et al., 1996) (— · —) (from
Liu and Yue, 1998, J. Fluid Mech. Reproduced by permission of Cambridge University
Press).
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For these conditions, we perform HOS (M = 3) simulations for a range of
incident wavenumber k.

Figure 15.17 shows the Bragg reflection coefficient in the neighborhood
of the two class I and the sub-harmonic class II Bragg resonances. The
HOS results are compared with the experimental data and the successive-
application-matrix model (SAMM) prediction of Guazzelli et al. (1992),
and the multiple-scale perturbation solution of Rey et al. (1996). The
HOS computations agree well with measurements at all three resonances
for both the peak frequencies and amplitudes. As in the case of class I
Bragg resonance (see Fig. 15.15), perturbation theory does not predict the
down-shift of the peak frequency, and in this case also overestimates the
peak reflection amplitude for the class II Bragg resonance. As pointed out
by Guazzelli et al. (1992), the downshift at f− is predicted by SAMM, which
accounts for bottom nonlinearities. Note that, for the conditions chosen,
the sub-harmonic class II reflected wave is comparable in magnitude to
the lower-order class I Bragg reflection, and is appreciable relative to the
incident wave.

We remark that, in theory, a super-harmonic class II Bragg resonance
also exists in this case and is observed in HOS simulations. In this case,
however, the amplitude of this high wavenumber super-harmonic class II
reflected wave is very small relative to those associated with class I and
sub-harmonic class II resonances shown in Fig. 15.17.

As indicated by the condition (15.4.19), class II resonance also occurs
when the bottom contains bidirectional ripples. In this case, the problem
becomes three-dimensional and is of more practical interest. In Liu and
Yue (1998), it is shown that a super-harmonic Bragg reflected wave, which
propagates in the direction perpendicular to the incident wave, is resonantly
excited with a proper wavenumber combination of the incident wave and
bottom ripples.

Class III Bragg resonance

The other wave-bottom resonance at third-order involves the quartet in-
teraction of three surface and one bottom wave components. Consider the
propagation of three surface waves, wavenumbers k1, k2, k3, over a horizon-
tal bottom containing uniformly-sinusoidal ripples, wavenumber kb. From
(15.4.11), it follows that Bragg resonance obtains at m = 3 if

k1 ± k2 − k3 ± kb = 0 ,

ω1 ± ω2 − ω3 = 0 .

}
(15.4.20)
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(Without loss of generality, ω1 ≥ ω2 is assumed here.) We denote this
resonance, which is quadratic in the surface wave slope and linear in the
bottom slope, class III Bragg resonance. Unlike class I and class II Bragg
reflections, the class III resonant wave may be reflected or transmitted
(relative to the incident waves) depending on the wave-bottom geometry
(see Section 3.3 of Liu and Yue, 1998).

To illustrate the mechanism of this class of Bragg resonance, we consider
the simplest possible case involving a single incident wave, wavenumber k,
frequency ω, incident normally upon uniformly sinusoidal ripples of a single
wavenumber kb. For this case, the class III Bragg resonance condition
(15.4.20) can be satisfied by accounting for the incident wave twice (i.e. k2 =
k1 ≡ k), and a reflected sub-harmonic (k3 ≡ kr = 2k− kb) or transmitted
super-harmonic (k3 ≡ kt = 2k+kb) wave is generated at double-frequency
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0.2
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Figure 15.18: Class III sub-harmonic Bragg reflection coefficient near the linearized
Bragg resonance condition, k/kb = 0.227 (indicated by ↓) for kbh = 2.642, kbd = 0.25
and L0 = 36λb. Results for two incident steepnesses are given for: (i) kA = 0.03 for
HOS simulations with M = 3 (—�—), M = 4 (—©—); and regular perturbation theory
(- - -) of Liu and Yue (1998); and (ii) kA = 0.06 for HOS simulations with M = 3 (—�—
), M = 4 (—♦—), and regular perturbation theory of Liu and Yue (1998) (— ·—) (from
Liu and Yue, 1998, J. Fluid Mech. Reproduced by permission of Cambridge University
Press).
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(2ω) as a result of quartet interactions among the surface waves and the
bottom ripple.

For numerical illustration, we choose a patch of bottom ripples with
the patch width L0 = 36λb and the bottom steepness kbd = 0.25 in a
mean depth of kbh = 2.642. For such a bottom topography, according to
(15.4.20), class III Bragg resonance occurs when the incident wavenumber is
k ≈ 0.227kb resulting in the generation of a sub-harmonic wave, wavenum-
ber kr ≈ 0.546kb, which is reflected (i.e. propagates in a direction opposite
to the incident wave).

Figure 15.18 shows the variation of the sub-harmonic reflection coef-
ficient in the neighborhood of the class III resonance wavenumber (k =
0.227kb). The numerical results are obtained from HOS using orders M = 3
and M = 4. For both incident wave steepnesses kA = 0.03 and 0.06, it is
clear that the class III Bragg phenomenon is captured well by accounting
for interactions up to third order, M = 3. For comparison, the prediction
by the regular perturbation theory of Liu and Yue (1998) is also plotted
in Fig. 15.18. For both incident wave steepnesses kA = 0.03 and 0.06, it
is seen that the comparisons are excellent except that the location of peak
reflection is down-shifted in wavenumber relative to the linearized Bragg
point. Unlike the earlier class I and II resonances, nonlinear surface wave
interactions enter the picture, and the downshift is greater for larger surface
wave steepness in this case.

Figure 15.19 shows the comparison between the simulation results and
the regular perturbation solution of Liu and Yue (1998) for the spatial
variation of the sub-harmonic class III Bragg reflection coefficient over the
bottom ripple patch. For the present bottom geometry, the perturbation
solution of the reflected sub-harmonic wave amplitude (Ar) over the bottom
ripple is obtained to be

Ar(x) ≈ 0.0058(kA)2(kbd)
(

L0

2 − x

)
, −L0

2
< x <

L0

2
. (15.4.21)

The comparison is excellent for the smaller incident wave steepness case of
kA = 0.03, and, as expected, is less so but still satisfactory for the larger
steepness case of kA = 0.06, where the perturbation theory somewhat
overestimates Ar.

For class III super-harmonic wave transmission, analogous results are
obtained. For illustration, we consider a case where L0 = 5λb, kbd = 0.025,
and kbh = 0.325. According to (15.4.20), for class III Bragg resonance,
we set incident wavenumber k = 2.031kb, and anticipate the resonant
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Figure 15.19: Spatial variation of the class III sub-harmonic Bragg reflected wave ampli-
tude over a bottom patch (|x|/λb ≤ 18) of sinusoidal ripples, kbd = 0.25 and kbh = 2.642.
The perturbation solution of Liu and Yue (1998)(——) is obtained at the exact lin-
earized class III condition, k/kb = 0.227; while the HOS simulations with M = 3 (- - -)
and M = 4 (— · —) are obtained at k/kb = 0.225 for kA = 0.03 and k/kb = 0.222
for kA = 0.06, corresponding respectively to peak amplitudes in the reflected wave (see

Fig. 15.18) (from Liu and Yue, 1998, J. Fluid Mech. Reproduced by permission of
Cambridge University Press).

generation of a super-harmonic transmitted wave (traveling in the same
direction as the incident wave) of wavenumber kt ≈ 5.062kb.

Figure 15.20 shows the spatial variation of the class III super-harmonic
transmitted wave amplitude At(x) obtained using HOS with M = 3 and
M = 4 compared with the perturbation solution of Liu and Yue (1998)
which is obtained to be

At(x) ≈ 6.3862(kA)2(kbd)
(

x +
L0

2

)
, −L0

2
< x <

L0

2
. (15.4.22)

The agreement is again excellent for the smaller incident wave steepness
kA = 0.03, and is acceptable for kA = 0.06 for which the perturbation
solution still somewhat overestimates At.

Class III Bragg resonance can also occur when the incident wave (k)
is oblique to the bottom ripples (kb). For this case, a main interest is
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Figure 15.20: Spatial variation of the class III super-harmonic Bragg transmitted wave
amplitude over a bottom patch (|x|/λb ≤ 2.5) of sinusoidal ripples, kbd = 0.025 and
kbh = 0.325. The perturbation solution of Liu and Yue (1998) (——) is obtained at the
exact linearized class III condition, k/kb = 2.031; while the HOS simulations with M = 3
(- - -) and M = 4 (— · —) are obtained at k/kb = 2.021 for kA = 0.03 and k/kb = 2.025
for kA = 0.06, corresponding respectively to peak amplitudes in the transmitted wave
(from Liu and Yue, 1998, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).

the effect of the incident angle θ between k and kb upon the develop-
ment and amplitudes of the class III resonant reflected/transmitted double-
frequency waves. This is investigated in Liu and Yue (1998) using direct
HOS simulations.

Analytical understanding aside, the general class of problems involving
irregular three-dimensional waves travelling over complex bottom varia-
tions and undergoing (possibly) multiple linear and nonlinear wave-wave
and wave-bottom resonances over different domains is intriguing and of
potential practical importance. In most cases, explicit enumeration of
the (possible) resonant interactions is infeasible and of limited value. On
the other hand, the HOS method provides a direct and remarkably effective
computational tool for such problems and is a subject of ongoing research.
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15.5 HOS Method for Nonlinear Wave Interaction
with Submerged Bodies

The HOS method developed in the preceding two sections for simulating
nonlinear wave-wave, wave-current, and wave-bottom interactions can be
extended to include the presence of submerged (fixed or moving) bodies.
This has been achieved in two dimensions by Liu et al. (1992) and in three
dimensions by Liu (1994) and Zhu et al. (1999). Using separate singularity
distributions on the free surface and body surface, and employing global
spectral representations for each of these, the method retains exponential
convergence with the numbers of body (NB) and free-surface (NF ) modes
and with perturbation order M . With the use of fast transform techniques,
the computational burden remains effectively linear functions of the number
of unknown modes NF +NB and of M . To illustrate the method, we follow
Liu et al. (1992) and consider the two-dimensional problem. The specific
problem considered is the nonlinear wave diffraction by a fixed submerged
circular cylinder (with axis parallel to the mean free surface).

15.5.1 Mathematical Formulation

For convenience, a local cylindrical coordinate system (r, θ) is placed at the
center of the cylinder, which is at a depth H below the mean water level.
Thus, r2 = x2 +(z+H)2 and θ is measured counter-clockwise from positive
x. On the cylinder boundary, a no-flux condition

Φr(R, θ, t) = 0 , for 0 ≤ θ < 2π , (15.5.1)

is specified, where R is the radius of the cylinder. One notes that the initial
boundary-value problem for the nonlinear wave-body interaction is basically
that for nonlinear wave-wave interaction except for the additional body
boundary condition (15.5.1). The whole formulation of the HOS method
for the nonlinear wave problem in Section 15.3.1 thus applies here with
the exception of the boundary-value solution for the perturbation potential
Φ(m). For computation, periodic conditions far upstream and downstream,
say at x = ±L/2 are also assumed.

To solve for Φ(m), we distribute dipoles µ(m)(x, t) over the mean position
of the free surface, and sources σ(m)(θ, t) over the surface of the cylinder.
Noting that µ(m) and σ(m) are L- and 2π-periodic in x and θ respectively,
we expand them as Fourier series:
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µ(m)(x, t) =
∞∑

n=0

µ(m)
n (t)ei2nπx/L , σ(m)(θ, t) =

∞∑
n=0

σ(m)
n (t)einθ , (15.5.2)

where real parts of the complex quantities are implied. The unknown per-
turbation potential Φ(m) is then given in terms of the modal amplitudes
µ

(m)
n (t) and σ

(m)
n (t):

Φ(m)(x, z, t) =
∞∑

n=0

µ(m)
n (t)ΨFn(x, z) +

∞∑
n=0

σ(m)
n (t)ΨBn(x, z) , (15.5.3)

where ΨFn and ΨBn are influence functions of the n-th mode dipole and
source distributions on the free surface and body, respectively. These in-
fluence functions are given in terms of the Fourier integrals:

ΨFn(x, z) =
∫ L/2

−L/2

ei2nπx′/LGz′(x, z; x′, 0) dx′ , (15.5.4)

ΨBn(x, z) =
∫ 2π

0

einθ′
G(r, θ; R, θ′)R dθ′ , (15.5.5)

where G(x, z; x′, z′) is the L-periodic source potential in two dimensions:

G(x, z; x′, z′) =
1
2

log

[
sin2

(
x − x′

L
π

)
+ sinh2

(
z − z′

L
π

)]
. (15.5.6)

With this construction, (15.5.3) satisfies Laplace’s equation and all the
boundary conditions with the exception of those on the mean free surface
and the body. Substituting (15.5.3) into (15.3.7) and (15.5.1) for each order,
the modal amplitudes µ

(m)
n (t) and σ

(m)
n (t) are determined successively for

m = 1, . . . , M , in terms of Φ(m)(x, 0, t), which ultimately is given by the
known Φs(x, t) and ζ(x, t) according to (15.3.8).

After the boundary-value problems for Φ(m) are solved up to the desired
order M , the vertical velocity on the free surface is given by

Φz(x, ζ, t) =
M∑

m=1

M−�∑
�=0

ζ�

�!
∂�+1

∂z�+1
Φ(m)(x, z, t)

∣∣∣∣
z=0

. (15.5.7)

The vertical derivatives here (and in (15.3.8)) are obtained in terms of the
modal amplitudes:
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Φ(m)
z (x, 0, t) =

∞∑
n=0

µ(m)
n (t)

∂

∂z
ΨFn(x, 0)

+
∞∑

n=0

σ(m)
n (t)

∂

∂z
ΨBn(x, 0) . (15.5.8)

Thereafter, higher derivatives are found by using Laplace’s equation
(e.g. Φ(m)

zz = −Φ(m)
xx , Φ(m)

zzz = −(Φ(m)
z )xx, . . .), and the x-derivatives are eas-

ily evaluated in the Fourier space. The potential on the body is available
from (15.5.3), and the pressure on the cylinder can be evaluated according
to Bernoulli’s equation:

P (θ, t)
ρ

= − ∂

∂t

M∑
m=1

Φ(m)(R, θ, t)

− 1
2R2

[
∂

∂θ

M∑
m=1

Φ(m)(R, θ, t)

]2

. (15.5.9)

15.5.2 Numerical Implementation

In implementation, the numbers of Fourier modes for the dipole and source
distributions are truncated at some suitable number, say, NF for µ(m) and
NB for σ(m). Note that since µ(m) and σ(m) are in general smooth periodic
functions of x and θ respectively, the convergence of (15.5.2) with NF and
NB is exponentially rapid. At each time, the modal amplitudes µ

(m)
n (t),

n = 0, . . . , NF , and σ
(m)
n (t), n = 0, . . . , NB, are determined by satisfying the

Dirichlet and Neumann conditions at NF and NB equally-spaced control
points on the mean free surface and body, respectively. The resulting NF +
NB linear equations can be formally represented as:

[Cµµ]{µ(m)} + [Cµσ]{σ(m)} = {f (m)} ,

[Cσµ]{µ(m)} + [Cσσ]{σ(m)} = 0 ,

}
(15.5.10)

where [Cµµ], [Cµσ], [Cσµ], and [Cσσ] are, respectively, the NF ×NF , NF ×
NB, NB × NF , and NB × NB modal influence matrices given in terms of
the basis functions; and {µ(m)}, {σ(m)}, the vectors of the unknown modal
amplitudes µ

(m)
n , n = 0, . . . , NF , and σ

(m)
n , n = 0, . . . , NB. Solving these

equations, we obtain:
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{σ(m)} = [Tσf ]{f (m)} ,

{µ(m)} = [Tµf ]{f (m)} + [Tµσ]{σ(m)} ,

}
(15.5.11)

where [Tσf ] (NB×NF ), [Tµf ] (NF×NF ), and [Tµσ] (NF×NB), are related to
the inverses of the influence matrices in (15.5.10). Once {µ(m)} and {σ(m)}
are obtained, the perturbation vertical velocities at the control points on
the free surface follow from (15.5.8), which take the form:

{Φ(m)
z } = [Wµ]{µ(m)} + [Wσ]{σ(m)} , (15.5.12)

where [Wµ] (NF ×NF ), and [Wσ] (NF ×NB) are known matrices given by
(15.5.8) in terms of the basis functions.

It is very important to note that in the HOS method, the [T ] and [W ]
matrices in (15.5.11) and (15.5.12) are functions of the (mean) geometry
only. For the diffraction problem, then, they are independent of time and
need to be evaluated only once for the entire simulation. More significantly,
since for typical applications (especially for three-dimensional problems),
NF � NB, in the spectral approach, the NF × NF matrices [Tµf ] and
[Wµ] need not be explicitly realized as the contributions [Tµf ]{f (m)} and
[Wµ]{µ(m)} can be evaluated in O(NF lnNF ) operations via fast trans-
forms. Consequently, the net computational effort is approximately pro-
portional to NF and not N2

F . Specifically, the total operational count of
the method is [O(MNF lnNF )+O(MNF NB)] per time step, with an initial
set-up effort of [O(N2

BNF ) + O(NBNF lnNF )].
If the body is not fixed, the boundary condition (15.5.1) becomes:

Φn(r, θ, t) = U(t) · n , (r, θ) ∈ B(t) (15.5.13)

where U(t) represents the instantaneous velocity of the body, and B(t) the
position of the body. For small body motions, we can apply the pertur-
bation expansion (15.3.5) to the boundary condition (15.5.13) and expand
each term in (15.5.13) in Taylor series about the mean position of the body
B̄. Upon doing this, we derive a sequence of Neumann body boundary con-
ditions for the perturbation potential Φ(m) applied on B̄, with which the
above procedure of the generalized HOS method can be directly applied
(Liu et al., 1999). For large body motions this approach is ineffective as
Taylor series expansion of (15.5.13) about B̄ converges slowly. In this case,
the condition (15.5.13) needs to be imposed at the instantaneous position
B(t). To reduce the effort in computing the influence matrices [Tσf ], [Tµf ],
[Tµσ], [Wµ], and [Wσ] in (15.5.11) and (15.5.12) at each time, we expand
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each element of these matrices in a rapidly convergent series (e.g. Chebyshev
polynomials) in space with the coefficients pre-calculated. This technique
has been implemented and found to be effective by Zhu et al. (1999) who
studied the nonlinear response of a near-surface buoy tethered to the ocean
bottom by a cable subject to the action of surface waves.

15.5.3 Application to Nonlinear Wave Diffraction
by a Submerged Circular Cylinder

We apply the generalized HOS to study the diffraction of Stokes waves
by a fixed, two-dimensional submerged circular cylinder with horizontal
axis. This is a classical problem for which a number of established theoreti-
cal, computational and experimental results are available. Using conformal
mapping, Dean (1948) found, to leading order in wave steepness, that a
fixed circular cylinder under waves does not reflect waves, and the trans-
mitted waves merely experience a change in phase but not amplitude. Ursell
(1950), using a multipole expansion, found the complete linear solution and
showed that it is unique. Following Ursell’s approach, Ogilvie (1963) showed
that the linear potential leads to a mean (second-order) vertical force but
that the horizontal mean force at second order vanishes identically.

This last result is in contrast to experimental observations (e.g. Salter
et al., 1976) that a free cylinder just awash experiences a negative drift
force which causes it to move towards the wavemaker. Longuet–Higgins
(1977a) argued that this negative drift force can be attributed mostly to
wave breaking, and, to a lesser degree, to the second-harmonic component
of the transmitted wave. This is not supported by measurements of Miyata
et al. (1988) and Inoue and Kyozuka (1984) who found that as the cylinder
was moved closer to the free surface, which led to more intense breaking,
the negative horizontal drift force was actually reduced and ultimately re-
versed sign. Using a Stokes expansion, Vada (1987) solved the second-order
(frequency-domain) diffraction problem but was unable to calculate all the
terms (at fourth order) of the non-vanishing mean horizontal force, since
third-order potentials are involved. For the second-order oscillatory forces,
however, Vada’s results were in good agreement with the measurements of
Chaplin (1984), thereby confirming Chaplin’s suggestion that inviscid flow
models would be good for Keulegan-Carpenter numbers less than about
two for second-order forces. As pointed out by Chaplin, however, this is
not necessarily true for first-order forces.
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A number of fully-nonlinear time-domain computations of this problem
were also attempted. Vinje and Brevig (1981) used the mixed Eulerian-
Lagrangian method of Longuet–Higgins and Cokelet (1976) to study the
forces acting on a cylinder under a breaking wave, but their results were
only qualitative. Using a similar method, Cointe (1989) obtained higher-
order harmonic forces and transmission coefficients but did not focus on
the question of the horizontal drift force. Stansby and Slaouti (1983) used
the method of Zaroodny and Greenberg (1973) to study the forces on cylin-
ders under waves and found that steady-state was rapidly approached. No
conclusions were made, however, regarding the steady forces.

For the reflected and transmitted waves, the theoretical prediction of
Dean (1948) and Ursell (1950) of no leading-order reflected waves was con-
firmed by the measurements of Chaplin (1984) to even higher order for mild
waves. Grue (1991) performed a careful set of experiments which showed
that the transmitted waves are, however, significantly affected by nonlin-
ear wave interactions over the submerged body. Motivated by these results,
there are a number of recent theoretical demonstrations (Friis, 1990; McIver
and McIver, 1990; Wu, 1991) of the fact that the reflection coefficient is
identically zero to second order. The most general result to date is the
work of Palm (1991), who proved that the leading order component of any
harmonic of the reflected wave also vanishes.

We apply the general HOS method to this problem and used the an-
alytical results and experimental observations to validate and assess the
accuracy and performance of method. In the computation, we choose
as initial conditions exact deep-water Stokes waves of steepness ε = kA

(2A ≡ ζmax − ζmin), wavelength λ = L/Nw, i.e. Nw complete waves in
the periodic domain [−L/2, L/2], and period T . The numerical parameters
used are: Nw = 16, NF = 64Nw, NB = 256, and ∆t = T/64. Convergence
tests show that the maximum error in the (fourth-order) mean horizontal
wave force on the cylinder F̄x obtained using these parameters is less than
1% (Liu et al., 1992).

Diffracted waves

In the HOS simulations, we record the time series of the free-surface eleva-
tion at a location far upstream (at x = −8R), and another far downstream
(x = 8R), the latter corresponding to the measurement position of Grue
(1991). At these positions, the limit cycle for the surface elevation up to
third harmonics is approached after simulation time of TS/T ∼ 7–8. The
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harmonic amplitudes of the transmitted and reflected waves are then ob-
tained via Fourier analysis of the limit-cycle time histories at these two
locations. The reflection and transmission coefficients for the n-th har-
monic are defined respectively to be Rn = a′

n/a1 and Tn = bn/a1, where
a1 is the incident wave amplitude of the first harmonic, and a′

n and bn

are respectively the reflected and transmitted wave amplitudes of the n-th
harmonic.

To study the effect of nonlinearity on wave reflection and transmission,
we first fix kR = 0.4 and kH = 0.6, and consider the dependence of Rn and
Tn on the incident wave slope ε = kA. The HOS simulation results show
that Rn, n = 1, 2, 3, is at most of O(εn) and is at least one order smaller
than the transmission coefficients. These results provide a direct numerical
confirmation of the analytical predictions of Palm (1991).

The dependence of the first-harmonic transmission coefficient, T1, on in-
cident wave steepness ε = kA is shown in Fig. 15.21(a). For linear theory,
T1 ≡ 1 and is not a function of ε. However, the measurements of Grue
(1991) show that T1 in fact decreases appreciably from 1 as ε increases.
The converged numerical results confirm this nonlinear dependence quan-
titatively up to ε ∼ 0.08. (Beyond ε ∼ 0.08, extensive wave breaking over
the cylinder is reported by Grue (1991)). From Fig. 15.21(a), we also con-
clude that it is necessary to include third-order (M = 3) contributions to
correctly account for the behavior of T1.

Figure 15.21(b) shows the comparisons for the second-harmonic trans-
mission coefficient T2 among the HOS simulation results, Vada (1987)’s
second-order frequency-domain computations, and Grue (1991)’s experi-
mental data. The strong nonlinear interactions over the cylinder result in a
significant reduction of T2 from the second-order perturbation result (which
predicts a linear dependence on ε). Although our numerical results show
some indication of convergence at M = 4, comparison to the measured data
indicates that still higher order effects are present in T2 for near-breaking
conditions.

The dependence of Tn on the body submergence H/R is studied by
fixing kR = 0.4, kA = 0.08 and varying kH . The numerical results for
T1 and T2 are shown in Fig. 15.22. For this case, two experimental points
at H/R = 1.5 and 2 are available from Grue (1991). For large H/R, T1

approaches 1 rapidly, while T2 decreases monotonically. The coefficients are
overpredicted by these asymptotes, however, as the cylinder approaches the
surface and nonlinear effects evidently become important. This is seen from
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Figure 15.21: Dependence of (a) the first-harmonic (T1) and (b) second-harmonic (T2)
wave transmission coefficients on the incident wave slope kA. Experiments (Grue, 1991)
(♦) and HOS simulation results for M = 2 (�), M = 3 (�), and M = 4 (•). (——): linear
solution in (a), and second-order computation (Vada, 1987) in (b). (kR = 0.4, H/R =
1.5) (from Liu et al., 1992, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).
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Figure 15.22: Dependence of the first- and second-harmonic wave transmission coeffi-
cients on the body submergence H/R. Experiments (Grue, 1991) (♦); and HOS simula-
tion results for M = 2 (�), M = 3 (�), and M = 4 (•). (kR = 0.4, kA = 0.08) (from Liu
et al., 1992, J. Fluid Mech. Reproduced by permission of Cambridge University Press).

the differences among the results for M = 2, 3, and 4. Indeed, comparison
with experimental data suggests again that even higher-order interactions
play a role.

Oscillating forces

Figure 15.23(a) shows the comparisons for the first-harmonic horizontal
force amplitude Fx1 among the HOS (M = 4) simulation results, linear
(potential flow) analytic solution (Ogilvie, 1963), and experimental mea-
surements of Chaplin (1984). Following Chaplin, Fx1 is plotted here as a
function of the Keulegan-Carpenter number defined as KC = πe−kHA/R,
based on linear deep water waves. Comparing just the theoretical and com-
puted results, it is remarkable that the first-harmonic amplitude is affected
very little by nonlinear effects at least up to KC ∼ 1. On the other hand,
as suggested by Chaplin, effects of (clockwise) circulation around the cylin-
der result in a sharp decrease of Fx1 for KC >∼ 0.5 (possible effects of
flow separation and wave breaking also cannot be ruled out). The HOS
simulation results also show a reduction due to nonlinear diffraction but
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(a)

(b)

Figure 15.23: (a) The first-harmonic (Fx1) and (b) The second- and third-harmonic
(Fx2, Fx3) horizontal forces as a function of Keulegen-Carpenter number Kc. Experi-
ments (Chaplin, 1984) (♦); In (a), linear result (Ogilvie, 1963) (——); and HOS simula-
tion results for M = 4 (•). In (b), HOS simulation results with M = 4 for Fx2 (�) and
Fx3 (•). (kR = 0.21, H/R = 2.0) (from Liu et al., 1992, J. Fluid Mech. Reproduced by
permission of Cambridge University Press).
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the magnitude is small compared to that due to circulation or real fluid
effects.

In direct contrast to the first-harmonic force, circulation does not ap-
pear to affect the higher-harmonic forces as shown in Fig. 15.23(b) for Fx2

and Fx3. The higher-order (potential flow) results are in excellent agree-
ment with Chaplin’s data up to KC ∼ 1, beyond which the effects of wave
breaking evidently are important. The computed data also readily confirm
the expected quadratic and cubic dependencies respectively of Fx2 and Fx3

on the Keulegan-Carpenter number.

Mean forces

First, we show the dependence of mean forces on body submergence by vary-
ing kH with fixed kR = 0.4 and kA = 0.12. This is shown in Figs. 15.24
where HOS calculations using M = 2, 3, 4 are compared with the measure-
ments of Miyata et al. (1988). The horizontal drift force F̄x, Fig. 15.24(a),
is negative (against the direction of wave propagation) with a magnitude
which increases, as expected, with decreasing submergence. Except for
relatively shallow submergence, H/R <∼ 1.75, the numerical predictions
agree well with measurements. Since our computations do not account
for wave breaking, it is evident that nonlinear diffraction effects rather
than wave breaking is the dominant cause of the negative drift force. For
H/R <∼ 1.75, extensive wave breaking is observed in the experiments,
and the magnitude of the negative drift force is smaller compared to the
diffraction results. This provides indirect evidence that the presence of
wave breaking lead to positive mean horizontal forces on the cylinder.

For the mean uplift force F̄z , Fig. 15.24(b), the HOS simulation results
compare well with both the second-order analytic solution (Ogilvie, 1963)
and the measurements of Miyata et al. (1988). Higher (then second) order
interactions and wave breaking effects are less important for the vertical
mean force.

Since F̄x = 0 up to second order in wave steepness (Ogilvie, 1963),
the next available contribution is at most fourth order. Likewise, one may
expect a fourth-order correction to the second-order F̄z. These expecta-
tions are confirmed by HOS computations of the mean forces for varying
incident wave slopes kA while fixing kR and kH . Further investigation
of the negative horizontal drift force using HOS computations reveals that
the dominant contribution of this force is primarily due to the quadratic
interaction of the first- and third-order first-harmonic waves rather than
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Figure 15.24: (a) Horizontal and (b) vertical drift force as functions of body submer-
gence. Experiments (Miyata et al., 1988) (♦); linear potential solution (Ogilvie, 1963)
(— · —); and HOS simulation results for M = 2 (�), M = 3 (�), and M = 4 (•).
(kR = 0.4, ε = kA = 0.12) (from Liu et al., 1992, J. Fluid Mech. Reproduced by
permission of Cambridge University Press).
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the self-interaction of the second-order second-harmonic waves, which, in
fact, reduces the magnitude of the negative drift force (for details, see Liu
et al., 1992).

The generalized HOS method for nonlinear wave-body interactions has
been extended to the case of three-dimensional submerged bodies (Liu,
1994) and body motions (Liu et al., 1999; Zhu et al., 1999). Liu (1994)
considered the high-order nonlinear wave diffraction effects upon a near-
surface (three-dimensional) submarine-shaped body. Of special interest
for this problem are the mean forces and moments on the body. For this
problem, the mean vertical force is second order and always positive (up-
wards) and is predicted from linear theory. The behavior of the important
mean pitch moment has been less clear. For a spheroid in head seas, linear
slender-body theory predicts zero mean pitch moment while linearized full
three-dimensional computations (Lee and Newman, 1991) obtain a mean
pitch moment that is bow-down. The question arises as to what the sign
and magnitude of the nonlinear contribution to the mean pitch moment
might be and whether, for small slenderness, it might be comparable to the
(linearized theory) three-dimensional effect. Liu (1994) found using three-
dimensional HOS calculations that the nonlinear theory contributions to
the mean pitch moment is of opposite sign (bow-up in head seas) of that
due to three-dimensionality. In fact, for a given slenderness, the mean pitch
moment changes sign as the incident wave steepens, or when the body is
moved closer to the free surface.

Zhu et al. (1999) studied the response of a tethered near-surface spheri-
cal buoy under the action of ambient incident waves. The generalized HOS
method is coupled to a nonlinear cable dynamics program which is capable
of modelling the complete slack and snapping of the cable. For a range of
realistic parameters, they found that beyond a threshold value of the in-
cident wave amplitude the buoy performs chaotic motion characterized by
the snapping of the cable and the generation of high-frequency short surface
waves. This is a heretofore unexpected and highly efficient mechanism for
transfer of incident wave energy to (very) high wavenumbers.

15.6 High-Order Spectral Element (HOSE) Method

Due to the use of global basis functions, the HOS methods in Sections 15.4
and 15.5 are limited to problems with relatively simple boundaries. For
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problems involving complex boundaries, direct extension of the HOS
method requires global basis functions which are difficult to obtain. In the
presence of a surface-piercing body, for example, Fourier basis functions
should not be used for the free surface because of Gibb’s phenomenon and
poor convergence. Basis functions such as Chebyshev polynomials whose
convergence does not depend on smooth boundary conditions can be used
in these cases (see e.g. Gottlieb and Orszag, 1977), but the resulting equa-
tion system using such basis functions is known to be ill-conditioned as the
mode number increases (Canuto et al., 1988). To date, realistic direct HOS
simulations for these problems have not been achieved.

To overcome these difficulties and to retain the merits of HOS, Zhu, Liu
and Yue (2003) developed a high-order spectral element (HOSE) method
which is based on the idea of HOS but is now applicable to general wave-
body problems involving complex boundaries. Instead of global spectral
expansions, in HOSE the boundary domain is divided into elements and
spectral expansions using local basis functions are applied over each ele-
ment. Since global fast transform techniques can no longer be used, the
computational effort is increased but the exponential convergence with re-
spect to the total number of spectral modes/unknowns (for fixed number
of elements) and the interaction order is retained. Significantly, HOSE is
shown to be efficacious for problems with surface-piercing bodies. In this
section, the detailed formulation and implementation of HOSE is given,
and as an illustrative application, we use HOSE simulations and the tran-
sition matrix (TM) approach to investigate the stability of finite-amplitude
standing surface waves in a circular tank under the influence of gravity (Zhu
et al., 2003).

15.6.1 Mathematical Formulation

To illustrate the formulation of the HOSE method, we consider as a canon-
ical example the (standing) wave motion in a tank (or basin) in the context
of potential flow. We define a Cartesian coordinate system r ≡ (x, y, z) with
the vertical axis z positive upwards and z = 0 on the mean free surface. For
later convenience, we also define a polar coordinate system (r, θ) in the hor-
izontal plane with x = r cos θ and y = r sin θ. The initial boundary-value
problem for the velocity potential Φ(r, t) consists of the Laplace equation
(15.2.1) inside the fluid, the nonlinear kinematic and dynamic boundary
conditions (15.3.4) on the instantaneous free surface z = ζ(x, t), and the
no-flux condition on the side and bottom of the tank,



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

15.6. High-Order Spectral Element (HOSE) Method 957

∂Φ
∂n

≡ Φn = 0 . (15.6.1)

As initial conditions, both the free-surface elevation and velocity potential
at the initial time t = 0 are specified. For standing waves of period T , we
impose an additional condition (in lieu of an initial condition), say:

Φs(x, 0) = Φs

(
x,

T

2

)
= 0 , (15.6.2)

corresponding to stationary conditions at t/T = 0, 0.5, . . . .

The procedures of the HOSE method differ to those of the HOS method
in Sections 15.3 and 15.4 primarily in the construction of the boundary-
value solutions for the perturbation potentials. In HOSE, a spectral-element
approach is used for the boundary-value solution while in HOS, global basis
functions representation is used.

Spectral-element approach for the boundary-value solution

In HOSE, as in HOS, we decompose (with the perturbation expansions) the
original nonlinear boundary-value problem for Φ into a sequence of linear
boundary-value problems for Φ(m), m = 1, . . . , M , consisting of the Laplace
equation (∇2Φ(m) = 0) inside the mean fluid domain, Dirichlet boundary
condition (15.3.7) on the mean free surface S̄F , and Neumann boundary
condition on the mean body/wall/bottom surface S̄B (Φ(m)

n = 0). The
sequence of linear problems for Φ(m), m = 1, 2, . . . , M are solved in order
starting from m = 1.

To solve the boundary-value problem for Φ(m), m = 1, 2, . . . , M , we
divide the boundary S̄F and S̄B respectively into NFE and NBE piece-wise
smooth elements. On each element, we expand the potential Φ(m) and
normal velocity Φ(m)

n in spectral series:

Φ(m)(r, t) =
∞∑

�=1

αF
j�(t)Ψ

F
j�(r) , Φ(m)

n (r, t) =
∞∑

�=1

βF
j�(t)Θ

F
j�(r) (15.6.3)

for r ∈ S̄Fj , j = 1, . . . , NFE and

Φ(m)(r, t) =
∞∑

�=1

αB
j�(t)Ψ

B
j�(r) , Φ(m)

n (r, t) =
∞∑

�=1

βB
j�(t)Θ

B
j�(r) (15.6.4)

for r ∈ S̄Bj , j = 1, . . . , NBE . In the above, ΨF
j� (ΘF

j�) and ΨB
j� (ΘB

j�) are

the �-th spectral basis functions for Φ(m) (Φ(m)
n ) on the j-th free-surface
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and body elements, respectively; and αF
j� (βF

j�) and αB
j� (βB

j�) are the corre-
sponding modal amplitudes.

We now apply Green’s theorem to Φ(m) and the appropriate free-space
(Rankine) Green function, and upon truncating the expansions (15.6.3) and
(15.6.4) to finite numbers of free-surface (NFM) and body (NBM ) spectral
modes (per element), we obtain the following linear system of equations:

NBE∑
j=1

NBM∑
�=1

αB
j�(t)C

BF
j� (r) −

NF E∑
j=1

NF M∑
�=1

βF
j�(t)D

FF
j� (r) = RF (r, t) , (15.6.5)

for r ∈ S̄Fj and

NBE∑
j=1

NBM∑
�=1

αB
j�(t)C

BB
j� (r) −

NF E∑
j=1

NF M∑
�=1

βF
j�(t)D

FB
j� (r) = RB(r, t) , (15.6.6)

for r ∈ S̄Bj . The forcing terms RF and RB are known:

RF (r, t) = −
NFE∑
j=1

NF M∑
�=1

αF
j�(t)C

FF
j� (r) +

NBE∑
j=1

NBM∑
�=1

βB
j�(t)D

BF
j� (r) (15.6.7)

and

RB(r, t) = −
NF E∑
j=1

NFM∑
�=1

αF
j�(t)C

FB
j� (r) +

NBE∑
j=1

NBM∑
�=1

βB
j�(t)D

BB
j� (r) . (15.6.8)

In the above, the influence coefficients are known and given by integrals over
the boundary elements in terms of the free-surface and body basis functions
and the Green function. From (15.6.5) and (15.6.6), the unknown modal
amplitudes αB

j� and βF
j� are solved.

Choice of spectral basis functions

Unlike in HOS, the HOSE local basis functions (Ψ and Θ) in (15.6.3) and
(15.6.4) are not required to satisfy specific essential boundary conditions.
While there is significant flexibility in the choice of these functions, a desir-
able requirement is the exponential convergence of the expansions for the
element.

For standing waves in a circular tank with vertical side wall and a
horizontal bottom (say of radius R and depth h), we divide S̄F into
NFE concentric (circular) annular elements SFj , j = 1, . . . , NFE , with
(j − 1)∆R ≤ r ≤ j∆R, ∆R ≡ R/NFE (and 0 ≤ θ ≤ 2π). The side
wall (r = R, −h ≤ z ≤ 0) and bottom (z = −h, 0 ≤ r ≤ R) of the
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tank are each treated as single element, tagged as S̄w and S̄b, respec-
tively (i.e. S̄B = S̄w + S̄b). For these spectral elements, an appropriate
choice for the basis functions for both the free-surface and wall/bottom
elements is Fourier-Chebyshev in the azimuthal-radial directions. For SFj ,
j = 1, . . . , NFE, we employ a double expansion with NFθ and NFr Fourier
and Chebyshev modes:

ΨF
jpq(r) ≡ ΨF

pq = Tq(r)eipθ , |p| = 0, 1, . . . ,
NFθ

2
; q = 0, 1, . . . , NFr ;

(15.6.9)

where Tq represents the q-th order Chebyshev polynomial of the first kind.
For S̄w and S̄b, we use, respectively, the basis functions:

Ψw
pq(r) = Tq(z)eipθ , |p| = 0, 1, . . . ,

Nwθ

2
; q = 0, 1, . . . , Nwz ; (15.6.10)

Ψb
pq(r) = Tq(r)eipθ , |p| = 0, 1, . . . ,

Nbθ

2
; q = 0, 1, . . . , Nbr . (15.6.11)

The same sets of basis functions are used for ΘF and ΘB, B = w, b.
Note that, for this geometry, in theory NFE = 1 (with sufficiently large

Chebyshev modes) suffices. In practice, for given machine accuracy, the
maximum number of Chebyshev modes, say NC , we can use in an element
is strongly limited by the condition number of the resulting equation system
(e.g. Canuto et al., 1988). Thus, as a practical matter, we place an upper
limit on NC (typically NC � 32 for double precision) and increase the
number of elements, in this case NFE , to achieve the necessary accuracy.
For this problem, a single element for each S̄b and S̄w is found to be sufficient
for the value of NC we use.

Evaluation of high z-derivatives of Φ(m)

To evaluate the Dirichlet boundary condition for Φ(m) (cf. (15.3.8)) and the
free-surface vertical velocity (15.3.11) or (15.5.7), we need to determine, to
high orders, the z-derivatives of Φ(m) (i.e. Φ(m)

zz , Φ(m)
zzz , . . .) on the mean free

surface S̄F . To do that, we employ an approach wherein the high-order
z-derivatives of Φ(m) are solved directly via the associated boundary-value
problems. For example, to evaluate Φ(m)

zz , the boundary-value problem is
the same as that for Φ(m) but with Φ(m) replaced by Φ(m)

z . The additional
computational effort is not significant since the equation system for the
boundary-value problem is the same and needs to be inverted only once (for
a given mean geometry, independent of order or time). Note that to obtain
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high accuracy in the evaluation, it is important to ensure the requisite
continuity across inter-element boundaries, at least C1, for example, for
Φ(m)

z on S̄F . To do that, we replace the Dirichlet boundary condition at
the edges of boundary elements by the continuity condition.

15.6.2 Numerical Implementation

Implementation

In a pseudo-spectral approach, we employ a collocation method to solve
(15.6.5) and (15.6.6) for the unknown modal amplitudes αB

j� and βF
j�. To

ensure exponential convergence, the collocation points are distributed uni-
formly for the Fourier expansion and placed at the maxima of TNC (r) for
the Chebyshev spectral representation containing NC terms. The resulting
system contains NF + NB equations (NF = NFMNFE , NB = NBMNBE)
which are written formally as:[

CBF DFF

CBB DFB

] {
αB

βF

}
=

{
RF

RB

}
. (15.6.12)

Here CBF , DFF , CBB and DFB are, respectively, the NB ×NF , NF ×NF ,
NB×NB and NF ×NB modal influence matrices given in terms of the basis
functions; RF and RB are vectors given, respectively, by RF and RB; and
αB and βF are the vectors of unknown modal amplitudes.

Note that the matrix inversion in (15.6.12) is required only once for
a given problem geometry, and is independent of the time, order or base
flow. In practice, the computational effort of HOSE is dominated by the
operation account at each time step. For the general wave-body interaction
problem, an operation of O((NF + NB)2) is required. For the problem of
standing wave motion in a circular basin, the computational effort is re-
duced by a factor NFθ by using fast Fourier transforms in the azimuthal
direction, where NFθ is the total number of Fourier modes. The total
operation count for the simulation of finite-amplitude waves in a circu-
lar tank including wave-wave and wave-wall interactions up to order M is
O(M(NF + NB)2/NFθ) per time step.

Determination of the base flow for a nonlinear standing wave

To determine the frequency and configuration of a nonlinear standing wave
(satisfying (15.6.2)), we seek an initial free-surface profile ζ(x, t = 0) for an
initial free-surface velocity potential Φs(x, t = 0) = 0 such that Φs, through
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the nonlinear evolution, returns to zero again after some time (correspond-
ing to T/2). To do this, we follow the Newtonian iteration method of
Mercer and Roberts (1992) but use HOSE computations for the nonlinear
wave simulation.

The procedure to obtain a standing wave of a specified amplitude A is as
follows: (i) given an initial (estimate of) ζ(x, 0) and T (and Φs(x, 0) = 0),
use HOSE to obtain ζ(x, T/2) and Φs(x, T/2); (ii) compute the error vector
E = {Ej}:

Ej =


Φs

(
xj ,

T

2

)
, j = 1, . . . , NF

ζ(x, 0)max − ζ

(
x,

T

2

)
min

− 2A , j = NF + 1

(15.6.13)

where xj , j = 1, . . . , NF are the HOSE collocation points on S̄F ; (iii)
compute the Jacobian matrix J = [Jj�]:

Jj� =


∂Ej

∂ζ(x�, 0)
, � = 1, . . . , NF

∂Ej

∂T
, � = NF + 1

(15.6.14)

for j = 1, . . . , NF + 1; (iv) update ζ(x, t = 0) and T using J . The Newto-
nian iteration process (i)-(iv) is repeated until ‖E‖ becomes smaller than a
preset tolerance (set to be 10−12 in this study).

Generally, we use the linearized ζ(x, 0) and T as initial guess. To accel-
erate the convergence for steeper waves, a useful alternative is to obtain the
initial guess using (Richardson) extrapolation of the (converged) nonlinear
solutions for smaller amplitudes.

Convergence test

The accuracy and performance of the HOSE method are verified through
extensive and systematic convergence tests (Zhu, 2000; Zhu et al., 2003).
We present here two representative results for the case of nonlinear standing
waves in a circular tank.

We first show the convergence of the HOSE boundary-value solver itself.
The analytic solution of linear standing waves in a circular tank is used as
the benchmark solution:

Φ(r, θ, z, t) =
A

ω�,ν
Jν(k�,νr)

cosh k�,ν(z + h)
cosh k�,νh

cos(�θ) cos(ω�,νt) (15.6.15)
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Table 15.4: Convergence of the normalized maximum error of the vertical
velocity on the mean free surface of a standing wave (with wavenumber
k3,4 and amplitude A/R = 0.05) in a circular tank (h/R = 0.5) with
respect to the number of free-surface elements NF E and the number of
free-surface Chebyshev modes NF r. The symbol ∗ indicates the error
to be smaller than 10−6 and affected by machine precision limitations
(NF θ = Nwθ = Nbθ = 16, Nwz = Nbr = 16).a

NF E\NF r 4 8 16

1 7.60 × 10−1 1.01 × 10−1 1.10 × 10−4

2 1.04 × 10−1 5.93 × 10−4 3.28 × 10−6

3 4.04 × 10−2 3.83 × 10−5 ∗
4 1.27 × 10−2 3.65 × 10−6 ∗
8 5.09 × 10−4 ∗ ∗

aFrom Zhu et al. (2003).

where A denotes the wave amplitude, � and ν are non-negative integers
representing the wavenumbers in the azimuthal and radial directions re-
spectively, and Jν is the ν-th order Bessel function of the first kind. In
(15.6.15), the (linear) frequency ω�,ν is related to the wavenumber k�,ν by
the linear dispersion relation: ω2

�,ν = gk�,ν tanh(k�,νh), where k�,ν is the
root of the equation

J ′
ν(k�,νR) = 0 , � = 0, 1, . . . , and ν = 1, 2, . . . . (15.6.16)

With the velocity potential on the mean free surface S̄F specified using
(15.6.15) (say at t = 0), HOSE is used to solve for the vertical velocity
Φz on S̄F . Table 15.4 shows the maximum error of Φz on S̄F of standing
wave k3,4 with amplitude A/R = 0.05 in a tank with h/R = 0.5. It is
computed with fixed numbers of Fourier modes (in the azimuthal direction)
on the free surface (NFθ = 16) and the side wall and bottom of the tank
(Nwθ = Nbθ = 16), and numbers of Chebyshev modes on the side wall and
bottom of the tank (Nwz = Nbr = 16), but with varying the number of free
surface elements NFE and the number of free-surface Chebyshev modes
NFr. As expected, for fixed (and sufficient) NFE , exponential convergence
with NFr is observed; while for fixed NFr, rapid convergence with NFE is
obtained. Similar fast convergence features are also obtained by varying
Nwz and Nbr with fixed NFE = NFr = 8 and NFθ = Nwθ = Nbθ = 16 (see
Zhu et al., 2003 for details).

To show the convergence of HOSE with the interaction order M , we
consider the problem of determining the finite-amplitude standing waves
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Table 15.5: Nonlinear frequency Ω0,6 (normalized by its linearized value
ω0,6) of nonlinear axisymmetric standing wave with wavenumber k0,6 in
a circular tank, obtained using varying numbers of free-surface elements
NF E and order M (NF r = 8, NF θ = Nwθ = Nbθ = 16, Nwz = Nbr = 16,
T/∆t = 128, h/R = 0.5).a

M\NF E 1 2 4 8

1 1.00000 1.00000 1.00000 1.00000
2 1.04388 0.99953 0.99938 0.99938
3 1.04387 0.99897 0.99881 0.99881
4 1.04387 0.99896 0.99880 0.99880

aFrom Zhu et al. (2003).

in a circular tank. For the time integration of the evolution equations in
HOSE, a fourth-order Runge-Kutta scheme is employed. For reference, we
denote the nonlinear frequency of a nonlinear standing wave in a circular
tank with wavenumber k�,ν by Ω�,ν . Since Ω�,ν has a direct dependence on
the wave amplitude (see e.g. Tsai and Yue, 1987), we here fix the amplitude
of the standing wave: A ≡ (ζmax − ζmin)/2 = 0.016R, and consider the
convergence of Ω�,ν with respect to M . Table 15.5 shows the case for
Ω0,6 with NFr = 8, NFθ = Nwθ = Nbθ = 16, Nwz = Nbr = 16, and
T/∆t = 128. When nonlinear effects are included (M > 1), the value of
of Ω0,6 becomes smaller than that for the linear standing wave (M = 1) :
ω0,6 = [gk0,6 tanh(k0,6h)]1/2. For fixed NFE, exponential convergence for
Ω0,6 with respect to M is obtained; while for a fixed M , comparably rapid
convergence with NFE is achieved.

15.6.3 Application of HOSE to the Study of Stability
of Standing Waves in a Circular Tank

Transition Matrix Method

To investigate the instability of standing waves, the base flow of which
cannot be rendered steady in any reference frame, the transition matrix
approach (e.g. von Kerczek and Davis, 1975) based on Floquet theory is
adopted. For completeness, we outline this standard approach below.

We write the evolution equations (15.3.4) symbolically in terms of a
nonlinear operator N :

∂u
∂t

= N (u) , (15.6.17)
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where u = (ζ(x, t), Φs(x, t)). In a linear stability analysis, we write u as the
sum of a base standing wave u0, satisfying (15.2.1), (15.3.4) (15.6.1) and
(15.6.2); and a small perturbation u′, which satisfies (15.2.1) and (15.6.1)
only:

u(x, t) = u0(x, t) + u′(x, t) . (15.6.18)

Substituting (15.6.18) into (15.6.17) then gives:

∂u′

∂t
= L(u′) (15.6.19)

where L is a time-periodic linearized (variable-coefficient) operator given
by the Jacobian of N with respect to u (evaluated at u0).

For a disturbance with N degrees of freedom, we express the solu-
tion of (15.6.19) as a combination of N linearly independent solutions u′

i,
i = 1, . . . , N :

u′ =
N∑

i=1

γiu′
i (15.6.20)

where the coefficients γi, i = 1, . . . , N , are obtained from the initial con-
dition for u′. Using separation of variables, we write:

u′
i(x, t) =

N∑
j=1

µij(t)ψj(x) (15.6.21)

where ψj(x), j = 1, . . . , N , are spatial basis functions and µij , i, j =
1, . . . , N , are the time-dependent modal amplitudes.

Substituting(15.6.20) and (15.6.21) into (15.6.19), we obtain an equation
involving the N × N coefficient matrix U = [µij ]. Following standard
Floquet theory (Coddington and Levinson, 1955), we write:

U(t) = P(t) exp(Ct) (15.6.22)

where the N × N matrices P and C are respectively time-periodic and
time-independent. The instability of the flow depends on the eigenvalues
λj (j = 1, . . . , N) of C: the flow is stable if Re(λj) ≤ 0, for all j = 1, . . . , N ;
and unstable if Re(λj) > 0, for any j = 1, . . . , N (the unstable mode is the
eigenvector corresponding to λj with frequency Im(λj)).

It is difficult to obtain C analytically, and one generally resorts to a
numerical determination from (15.6.19) of the so-called transition matrix
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Q ≡ exp(CT ). In terms of the eigenvalues σj , j = 1, . . . , N of Q, the
eigenvalues of C are:

λj =
log σj

T
, j = 1, . . . , N . (15.6.23)

In practice, given a base flow u0, we obtain the N × N transition matrix
Q ≡ [qij ] by numerically integrating (15.6.17) with the initial condition:

ui(x, 0) = u0(x, 0) + u′
i(x, 0) = u0(x, 0) + δψi(x) , δ � 1 , (15.6.24)

for i = 1, . . . , N , to obtain ui(x, T ) and hence u′
i(x, T ) (from (15.6.18)

with u0(x, T ) = u0(x, 0)). Upon using (15.6.21), we obtain the modal
amplitudes µij of u′

i(x, T ). The process is repeated for each i = 1, . . . , N .
The elements of Q are:

qij =
µij(T )

δ
, i, j = 1, . . . , N . (15.6.25)

The key to the instability analysis above is the accurate (numerical)
evaluation of u′(x, T ) = u(x, T ) − u0. Hence, two high-accuracy compu-
tational capabilities are required: (a) the determination of nonlinear base
standing waves u0 satisfying (15.2.1), (15.3.4) (15.6.1) and (15.6.2); and
(b) the integration in time of the nonlinear initial-boundary-value problem,
(15.2.1), (15.3.4), and (15.6.1), to obtain u(x, T ) given u(x, 0). An efficient
and highly accurate approach based on the HOSE method is applied to
accomplish both (a) and (b).

Instability of Standing Waves in a Circular Tank

Consider the three-dimensional instability of finite-amplitude standing
waves in a circular tank, radius R and mean water depth h. For a
base (large-amplitude) standing wave with wavenumber k�,ν (azimuthal
wavenumber � and radial wavenumber ν), we investigate its stability
to three-dimensional perturbations given by a Fourier-Bessel series with
components:

Jν(κ�,νr)ei�θ , � = 0, 1, . . . ; ν = 1, 2, . . . , (15.6.26)

where Jν is the νth-order Bessel function of the first kind, and k�,ν is the
root of the equation J ′ν(k�,νR) = 0, � = 0, 1, . . . , ν = 1, 2, . . . . Hereafter,
to avoid possible confusion, we use k for the wavenumber of the base stand-
ing wave and κ for the wavenumber of each component of a perturbation,
although numerically k�,ν = κ�,ν .
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In the following, we consider separately the case of axisymmetric (� = 0)
and non-axisymmetric (� > 0) base standing waves. For specificity, we set
h/R = 0.5, and in the HOSE computations, use: M = 3, NFE = 16,
NFθ = Nwθ = Nbθ = 64, NFr = 8, Nwz = Nbr = 32, and T/∆t = 128.

(a) Axisymmetric standing waves

Based on systematic computations for � = 0 and ν = 1, 2, . . . for a range
of base wave steepness ε, the stability analysis results are summed up as
follows: the axisymmetric standing wave is unstable to three-dimensional
disturbances for all ν (which is computed to beyond ν = 7) when ε exceeds
some threshold value εc (function of ν for a given h/R). The (most) unstable
mode contains a pair of dominant components: (κ1,ν , κ1,ν−1). The wave
steepness ε is defined as ε ≡ |∇ζ|max (at t = 0).
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Figure 15.25: Growth rate Re(λ) (——) and eigen-frequency Im(λ) (- - -) of the per-
turbation containing (κ1,5, κ1,6) for the axisymmetric standing wave k0,6 in a circular
tank (h/R = 0.5) as a function of the fundamental wave steepness ε (from Zhu et al.,
2003, J. Fluid Mech. Reproduced by permission of Cambridge University Press).
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The instability here resembles that of plane standing waves (Mercer and
Roberts, 1992). Figure 15.25 shows a typical result for the variation of the
eigen-frequency and growth rate as ε increases from zero to beyond εc. The
result is obtained for the axisymmetric wave k0,6. When ε < εc, the eigen-
frequencies of two perturbations, with (dominant) components κ1,5 and κ1,6

respectively, differ and the fundamental wave is stable. When ε > εc (� 0.12
in this case), the eigen-frequencies of these two modes coalesce, and the base
wave becomes unstable (indicated by a positive growth rate in Fig. 15.25)
to the perturbation containing these as dominant components.

Similar results are obtained for other values of ν (from 1 to 7). The
salient features are similar to those for ν = 6, shown in Fig. 15.25. Fig-
ure 15.26 plots the region of instability in the ε-ν plane for axisymmetric
base standing waves. εc decreases as the radial wavenumber ν increases
resulting in a upward concave stability boundary. This feature bears a re-
semblance to a different but related problem in which axisymmetric waves
propagating radially from a heaving hemisphere develop an instability re-
sulting in a distinct three-dimensional wave pattern (Tatsuno et al., 1969).

2 3 4 5 6 7
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Figure 15.26: Region of (in)stability for axisymmetric standing waves k0,ν as a func-
tion of ν and fundamental wave steepness ε. The plotted are: ◦, stable and •, unstable
standing waves (from Zhu et al., 2003, J. Fluid Mech. Reproduced by permission of
Cambridge University Press).
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(b) Non-axisymmetric waves

Extensive computations and stability analyses are performed also for
non-axisymmetric base standing waves for varying �, ν and ε. Similar
to axisymmetric standing waves, non-axisymmetric standing waves with
azimuthal mode number � ≥ 1 (calculated to beyond � = 3) are found
to be unstable to three-dimensional perturbations beyond a certain criti-
cal base wave steepness ε > εc, where εc depends on � and ν (for given
h/R). For � = 1, the unstable perturbation is a single mode contain-
ing a pair of dominant Fourier-Bessel components: κ0,ν and κ0,ν+1. For
� > 1, the situation is more complex and involves two unstable modes
with pairs of dominant Fourier-Bessel components: (κ�−1,ν+1, κ�+1,ν−1)
and (κ�−1,ν , κ�+1,ν). Depending on the base wave � and ν, the values
of the critical steepness εc for these modes are generally close but not
identical.

Figure 15.27(a) shows a typical � = 1 result for the case of a base
standing wave with wavenumber k1,5. The results are qualitatively sim-
ilar to the axisymmetric case: beyond a certain εc, the eigen-frequencies
of two separate (stable) modes with dominant components κ0,5 and κ0,6

coalesce forming a single unstable mode containing these dominant com-
ponents. The growth rate of this unstable mode depends on increasing
ε > εc in a non-monotonic fashion in contrast to the axisymmetric cases
(cf. Fig. 15.26). Analyzing the components of the unstable mode, it is found
that, for ε >∼ 0.17, two additional components, κ2,4 and κ2,5 (correspond-
ing to κ�+1,ν−1 and κ�+1,ν), begin to grow in amplitude, and eventually
become co-dominant (with κ0,5 and κ0,6) for ε ≥ 0.20.

For � > 1, the results differ qualitatively. In this case, two unstable
perturbations are found, each containing a pair of dominant components,
(κ�−1,ν+1, κ�+1,ν−1) and (κ�−1,ν , κ�+1,ν). Figure 15.27(b) shows a sample
result for the non-axisymmetric base standing wave with wavenumber k3,5.
The two unstable modes are plotted. For each of the modes, as ε ap-
proaches εc, instability is initiated by the merging of the eigen-frequencies
of two separate modes (with different dominant components) to form a sin-
gle unstable mode containing both the dominant components. The critical
steepnesses of the unstable modes are close and the growth rate behaviors
are qualitatively similar.

To assist in visualizing the features of the instabilities, Fig. 15.28
displays the instantaneous free-surface patterns for three sample cases. The
figure shows, for example, how an initially axisymmetric base standing
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Figure 15.27: Growth rate Re(λ) (——) and eigen-frequency Im(λ) (- - -) of three-
dimensional perturbations (labeled by their dominant components) for non-axisymmetric
base standing waves with wavenumber k1,5 (a) and k3,5 (b) in a circular tank as a function
of the fundamental wave steepness ε (from Zhu et al., 2003, J. Fluid Mech. Reproduced
by permission of Cambridge University Press).
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Figure 15.27 (Continued)

wave (wavenumber k0,4) loses its axisymmetry as the dominant unstable
mode (with wavenumber components κ1,3, κ1,4) develops, case (I). Similarly,
a non-axisymmetric base standing wave (wavenumber k1,5) will, depending
on its initial steepness, develop into an axisymmetric standing wave (with
dominant components κ0,5, κ0,6), case (II); or a non-axisymmetric stand-
ing wave with higher azimuthal wavenumber (with dominant components
κ2,4, κ2,5), case (III).

Based on a frequency component analysis of the nonlinear wave in-
teraction mechanisms, it is shown that, like propagating waves (McLean,
1982), the instabilities are associated with nonlinear (third-order quartet
and higher) resonant interactions between the base flow and the unstable
mode (for details, see Zhu et al., 2003). The mechanism of such non-
linear resonance of standing waves, in fact, closely resembles the internal
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Figure 15.28: (a) Instantaneous free surface elevation of the base standing waves, and
(b) the corresponding result, after significant development of the (dominant) unstable
perturbations. The base flow (k) and perturbation (κ) wavenumbers for the sample cases
are respectively: (I) k0,4, and κ1,3, κ1,4; (II) k1,5, and κ0,5, κ0,6; (III) k1,5, and κ2,4,
κ2,5 (from Zhu et al., 2003, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).
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combination resonance observed, for example, in beams and plates
(e.g. Nayfeh and Mook, 1979).

We have seen that the HOS method and generalizations represent
powerful computational tools for the direct simulation and study of nonlin-
ear wave and wave-body dynamics. The key characteristics are (arbitrary)
high order M ; large numbers of (body and wave) modes N ; exponential
convergence of the solution with respect to M and N ; and computational
effort approximately linearly proportional to M and (wave modes) N . The
versatility of the HOS approach is demonstrated in the high-resolution re-
sults one can obtain for nonlinear wave evolution and interaction problems
involving currents, bottom and bodies in direct physics-based simulations.

With modern high-performance parallel computing capabilities and con-
tinuous refinements in the method and algorithms, the efficiency and accu-
racy of HOS have recently been exploited to obtain direct phase-resolved
predictions of large-scale nonlinear wavefields. For instance, Wu (2004) ob-
tained a direct simulation of nonlinear ocean wave-field evolution in a do-
main of 30 km×30 km for an evolution time of 30 minutes. The simulation
used interaction order M = 3, number of wave modes N = 4096 × 4096,
and time step ∆t = Tp/64. The peak period of the irregular wave field is
Tp = 12 seconds. The computation was performed on an IBM SP3 high-
performance parallel platform using 256 processors, and took ∼ 100 hours.
Such large-scale computations open new possibilities for modelling and pre-
dicting wavefield evolutions in the ocean, and in obtaining basic mechanistic
(and simulation-based statistical) understanding of important phenomena
such as wave groups, freak wave generation, and breaking wave distribution.

Novel engineering applications involving large-scale HOS wave simula-
tions are also under development. An exciting recent attempt (Wu, 2004)
is to use direct wave sensing data and HOS simulation to deterministi-
cally reconstruct a space-time wavefield, and to combine this prediction
with large-amplitude ship motion calculations and ship control and path-
planning optimizations for improved operations in severe seas.

15.7 Mixed Euler-Lagrangian Method

When waves are very steep or overturning/breaking, the HOS and HOSE
methods, which are based on perturbation expansions (albeit high order),
become ineffective or invalid. In this case, it is necessary to adopt an
approach capable of handling fully nonlinear waves.
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The simulation of fully-nonlinear unsteady wave-wave and wave-body
problems in the context of potential flow began in earnest with the develop-
ment of the mixed-Eulerian-Lagrangian (MEL) boundary-integral-equation
(BIE) approach in the late 1970’s. Almost all of the early efforts were in
two dimensions, including the seminal work of Longuet–Higgins and Cokelet
(1976) for steep over-turning waves, and Faltinsen (1977) who considered
the presence of a floating body. With advances in computer capabilities
and algorithm innovations and development, it became realistic only very
recently to perform fully-nonlinear computations of three-dimensional prob-
lems (e.g. Xue et al., 2001; Liu et al., 2001).

The MEL approach shares a strategy common to many simulations of
nonlinear initial-boundary-value problems, namely an effective decoupling
of the (nonlinear) time evolution and the spatial compatibility (boundary-
value problem) part of the problem. MEL takes special advantage of the
potential flow free-surface problem (Section 15.2): the time evolution in-
volves only boundary values and can be efficaciously followed using (free-
surface) Lagrangian points; while the spatial problem is a linear Cauchy
problem that can be effectively solved and coupled with the former using a
boundary-integral equation (BIE) formulation (in the Eulerian variables).
To be specific, consider that at any time t, we are given the position of
the impervious boundary B(t), its velocity U(r ∈ B(t), t), the free-surface
position F(t), and the free-surface potential Φ(r ∈ F(t), t). The boundary-
value problem for Φ satisfying (15.2.1) is a generalized Cauchy problem
whose solution is determined in terms of values on the boundary only. The
numerical solution to the fully-nonlinear initial-boundary-value problem us-
ing a MEL approach then consists of a repeated two-step procedure starting
from initial conditions:

I. Given B(t), Φn(r ∈ B), F(t) and Φ(r ∈ F), solve the boundary-
value problem (BVP) for Φn(r ∈ F), and in particular obtain thg
velocity ∇Φ(r ∈ F).

II. Integrate in time the dynamic and kinematic free-surface boundary
conditions (15.2.3) and (15.2.4) for Φ(r ∈ F(t+∆t)) and F(t+∆t).
Repeat the process.

This approach has three important characteristics: (i) the linear BVP is
solved in step I with the actual (time exact) boundary at that time step;
(ii) the integration of the nonlinear boundary conditions in time in step
II is explicit; and (iii) only boundary values of the unknown (Φ and Φn)
are involved on account of the elliptic field equation (15.2.1). As can be
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expected, computation time and storage are generally dominated by step
I; while computational complexities, associated for example with stability
of the nonlinear free-surface boundary conditions, are mainly confined to
step II. The key to the success of the MEL method has tended to be in the
robust, efficient and accurate solution of step I.

15.7.1 Cauchy’s Integral Formulation

For two-dimensional flows, an integral equation can be obtained, upon
applying Cauchy’s integral theorem, for the complex potential β(ξ, t) =
Φ(x, z, t) + iΨ(x, z, t), where ξ ≡ x + iz and Ψ is the stream function.
Taking the imaginary and real parts of the complex integral equation for
ξ ∈ F and B respectively, one obtains second-kind Fredholm integral equa-
tions for Ψ on F and Φ on B. Such a formulation for the BVP solution was
proposed and implemented by Vinje and Brevig (1981).

Since that time, there have been numerous applications of this Cauchy’s
integral formulation of the MEL method. Some representative examples
include: Greenhow et al. (1982) who studied the large-amplitude mo-
tions of a floating wave-energy device; Grosenbaugh and Yeung (1989)
who investigated the unsteady bow wave of a two-dimensional body in
forward motion; and Tsai and Yue (1993) who combined the free-surface
simulation with vortex-sheet tracing to study the interactions between a
vortex sheet shed in the wake of a surface-piercing body and the free
surface.

For simplicity, we consider the case of deep water with periodic condi-
tions in the horizontal (x) direction. Consider the region (in physical space
ξ) bounded by the closed contour C which consists of the free surface F ,
impervious (body) boundary B, and the (vertical) periodic boundaries C+

and C− (up- and down-stream). Using the conformal mapping χ = exp(iξ),
F is mapped into a circle and the periodic boundaries are eliminated. In
the mapped space (χ), the contour C contains F and B only. Since the
complex potential β(χ, t) is analytic within C, Cauchy’s theorem applies

1
2πi

∮
C

Φ(χ, t) + iΨ(χ, t)
χ − χ0

dχ = 0 , (15.7.1)

where χ0 lies outside C. Let χ0 approach a point on the boundary C.

Introducing a small semicircular arc of radius ε and computing the integral
along this small arc, (15.7.1) becomes
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1
2
{Φ(x0, z0, t) + iΨ(x0, z0, t)}

− 1
2πi

−
∫

C

dχ

χ − χ0
{Φ(x, z, t) + iΨ(x, z, t)} = 0 , (15.7.2)2

where −∫ denotes the Cauchy principal value.
Separating the real and imaginary parts, we get{

πΨ(x0, z0, t)

−πΦ(x0, z0, t)

}
+

{
Re

Im

}
−
∫

C

dχ

χ − χ0
{Φ + iΨ} = 0 , (15.7.3)

which is a pair of coupled Fredholm integral equations of the second kind
for Φ and Ψ along C(= F ∪B) for any instant t. In the MEL approach, at
any t, the position of the impervious boundary B(χ, t) and the stream func-
tion Ψ(χ, t) on B are prescribed based on the specified boundary condition
(15.2.2), and the free-surface elevation F(χ, t) and the velocity potential
Φ(χ, t) on it are given from integration of the evolution equations (15.2.3)
and (15.2.4). Equation (15.7.3) is used to solve for the unknown Φ(χ, t) on
B and Ψ(χ, t) on F .

The integral equation (15.7.3) is solved numerically by discretizing the
boundary C = F ∪ B into, say, piecewise-linear segments: (i) subdivide
F and B into NF and NB linear segments, respectively, (ii) represent Φ
and Ψ by linear basis functions over each segment, and (iii) collocate at
selected points on F and B corresponding to the end points of the segments.
The resulting influence coefficients and their asymptotic approximations are
given in Vinje and Brevig (1981). The resulting system of N (= NF +NB)
linear algebraic equations can be solved by iteration method (e.g. Baker
et al., 1982) or direct Gaussian elimination. Once Φ and Ψ are known
everywhere on C, a second-order difference formula can be used to find the
velocities on the boundary, and the complex potential within C can then
be obtained by the Cauchy formula

β(χ, t) =
1

2πi

∮
C

β(χ0, t)
χ0 − χ

dχ0 , χ within C . (15.7.4)

After the velocities on C are obtained, we can integrate the evolution equa-
tions (15.2.3) and (15.2.4) for the new Lagrangian value of Φ(χ, t + ∆t) on
the free surface and its position F(χ, t + ∆t). As in HOS and HOSE, RK4
scheme can be used in time integration.

2If z0 coincides with a sharp corner of interior angle απ, the first curly brackets should
be multiplied by α.
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A useful extension of Cauchy’s integral formulation (Dold, 1992) is
obtained by applying the integral theorem to the complex velocity q∗ =
Φx + iΦz = Rs(Φs + iΦn), where Rs is the complex unit tangent, and
Φs and Φn are tangential and normal gradients of Φ on the boundary.
Upon taking the real part of the complex integral equation, one obtains
and solves, given Φ on F , a second-kind integral equation for Φn on F ,
and thereby obtains q on F directly. The free-surface evolution equations
(15.2.3) and (15.2.4) can then be updated directly using q without the need
for numerical differentiation. Representative examples using this approach
include: Tanaka et al. (1987) who studied the instability and breaking of a
solitary wave; and Cooker et al. (1990) who studied the interaction between
a solitary wave and a submerged semicircular cylinder.

When (horizontally) periodic conditions do not apply, the method here
can be generalized by proper incorporation of the boundary conditions on
far up- and downstream side boundaries (C+ and C−). For example, Dom-
mermuth et al. (1988) employed this method to study plunging breaking
waves generated by a wavemaker at one end of a tank (see Section 15.7.4).

Cauchy’s integral formulation is confined to two dimensions. For three-
dimensional problems, MEL BIE solution can be obtained using Green’s
integral formulation.

15.7.2 Green’s Integral Formulation

To formulate the BVP for the velocity potential Φ into a boundary integral
equation (BIE), we introduce the Rankine (free-space) Green function

G(r, r′) =
1

|r − r′| (15.7.5)

where r ≡ (x, y, z) is the field point while r′ ≡ (x′, y′, z′) is the source point.
Applying Green’s second identity to Φ and G and taking the limit r → ∂V,
where ∂V is the boundary of the fluid domain V , we obtain a BIE:

α(r)Φ(r)+
∫∫

∂V
[Φ(r′)Gn(r, r′)−Φn(r′)G(r, r′)] dS(r′) = 0 , (15.7.6)

for r ∈ ∂V, where the Cauchy principal part of the singular integral is
assumed here and hereafter. Here n is the normal at r′. In (15.7.6), the
interior solid angle α(r) can be evaluated by

α(r) = −
∫∫

∂V
Gn(r, r′) dS(r′) , (15.7.7)
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which obtains from (15.7.6) with a constant Φ. The boundary ∂V of the
domain consists of the free surface F , impervious boundary B, and the
boundary at far field. The far-field closure can generally be realized by im-
posing periodic boundary conditions or implementing an artificial damping
layer on the free surface in the far field (as discussed in next Section 15.6.3).
In either case, the contribution from the far-field boundary is eliminated.
In the following, we consider ∂V to be a sum of F and B only.

At any time t, the free-surface elevation F and the velocity potential
Φ on it are given from integration of the evolution equations (15.2.3) and
(15.2.4). Thus, for r ∈ F , Dirichlet boundary condition is applied, and
(15.7.6) is a Fredholm integral equation of the first kind for the unknown
Φn(r ∈ F , t). For r ∈ B, on the other hand, Neumann boundary condition
(15.2.2) is applied, and (15.7.6) becomes a Fredholm integral equation of the
second kind for the unknown Φ(r ∈ B, t). From integral equation (15.7.6),
we solve for unknown Φn on F and Φ on B.

After obtaining the solution on the boundary from (15.7.6), the solution
in the whole flow field can be evaluated using

Φ(r) =
1
4π

∫∫
∂V

[Φn(r′)G(r, r′) − Φ(r′)Gn(r, r′)] dS(r′) , (15.7.8)

for r ∈ V for the velocity potential, and

∇Φ(r) =
1
4π

∫∫
∂V

[Φn(r′)∇rG(r, r′) − Φ(r′)∇rGn(r, r′)] dS(r′) , (15.7.9)

for r ∈ V for the velocity, where ∇r ≡ (∂/∂x, ∂/∂y, ∂/∂z). Once the
velocity on F is obtained, we integrate the evolution equations (15.2.3) and
(15.2.4) for the new Lagrangian value of Φ(r, t + ∆t) on the free surface
and its position F(r, t + ∆t).

The integral equation (15.7.6) is solved numerically by discretizing the
boundary. We first subdivide the boundaries F and B into two sets of
piecewise smooth elements

SF =
NF⋃
j=1

Ej , SB =
NB⋃
j=1

Ej (15.7.10)

where Ej represents a generic element of the boundary, and NF and NB
are the total numbers of elements of F and B, respectively. Let NE =
NF + NB denote the total number of boundary elements of the problem.
The discretized form of (15.7.6) can be written as
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NB∑
j=1

Id(r) −
NF∑
j=1

Is(r)

= −α(r)Φ(r) −
NF∑
j=1

Id(r) +
NB∑
j=1

Is(r), r ∈ F , (15.7.11)

and

α(r)Φ(r) +
NB∑
j=1

Id(r) −
NF∑
j=1

Is(r)

=
NB∑
j=1

Is(r) −
NF∑
j=1

Id(r) , r ∈ B . (15.7.12)

Here the elemental integrals Is and Id are defined by

Is(r) =
∫∫

Ej

Φn(r′)G(r, r′) dS(r′) (15.7.13)

and

Id(r) =
∫∫

Ej

Φ(r′)Gn(r, r′) dS(r′) (15.7.14)

where the Cauchy principal part of the singular integral is assumed if
r ∈ Ej . The terms on the left-hand side of (15.7.11) and (15.7.12) in-
volve unknowns Φ(r ∈ B, t) and Φn(r ∈ F , t), while all the terms on the
right-hand side of (15.7.11) and (15.7.12) are known. To solve (15.7.11)
and (15.7.12), three inter-related approximations are required: (a) approx-
imation of the boundaries F and B in terms of boundary elements Ej ; (b)
approximation of the functions Φ and Φn on Ej ; and (c) using (15.7.11) and
(15.7.12) to obtain discrete equations, say, by deploying point collocations
or general weighted-residual approaches. We consider below two examples
of these approximation schemes.

Constant panel method (CPM )

The simplest scheme is the so-called constant panel method (see e.g. Hess
and Smith, 1964), which employs piecewise linear approximation of the
geometry, piecewise constant approximations for the functions, and point
collocations at element (“panel”) centroids. Specifically, in CPM, Ej is
approximated by a quadrilateral boundary element Ec

j , and over each
boundary element Ec

j ,

Φ(r, t) = Φj(r0, t) , Φn(r, t) = Φnj(r0, t) (15.7.15)
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where r ∈ Ec
j and r0 is the centroid of Ec

j . With these approximation, Is

and Id in (15.7.13) and (15.7.14) become:

Is(r) = ΦnjPj(r) , Id(r) = ΦjQj(r) (15.7.16)

where

Pj(r) =
∫∫

Ec
j

G(r, r′) dS(r′) , (15.7.17)

Qj(r) =
∫∫

Ec
j

Gn(r, r′) dS(r′) . (15.7.18)

For r /∈ Ec
j , the influence coefficients Pj and Qj can be evaluated by direct

quadrature. For r ∈ Ec
j , the kernels in (15.7.17) and (15.7.18) are singular,

but amenable to integration analytically (e.g. Newman, 1986).
Substituting (15.7.16) into (15.7.11) and (15.7.12), we obtain

NB∑
j=1

ΦjQj(r) −
NF∑
j=1

ΦnjPj(r)

= −α(r)Φ(r) −
NF∑
j=1

ΦjQj(r) +
NB∑
j=1

ΦnjPj(r) , r ∈ F , (15.7.19)

and

α(r)Φ(r) +
NB∑
j=1

ΦjQj(r) −
NF∑
j=1

ΦnjPj(r)

=
NB∑
j=1

ΦnjPj(r) −
NF∑
j=1

ΦjQj(r), r ∈ B . (15.7.20)

Upon collocating (15.7.19) at NF element centroids on F and (15.7.20) at
NB element centroids on B, we obtain a system of NE (= NF + NB) linear
algebraic equations for NE unknowns, from which we solve for the NF
unknown centroid values of Φn on F and NB unknown centroid values of Φ
on B. Finally, (tangential) velocities on the boundaries can be calculated
using a finite-difference scheme.

CPM is highly popular because of its relative simplicity. In the con-
text of the MEL approach, CPM has a number of basic shortcomings. In
MEL, free-surface Lagrangian points are updated using BIE solution on
the boundary (using (15.2.3) and (15.2.4) which in particular require the
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evaluation of tangential velocities). Inaccuracies in the latter results in dis-
tortions in subsequent BIE surface panelizations and values and the errors
are compounded and amplified. A direct and critical consequence is that
the overall accuracy and robustness of the MEL method is in general gov-
erned by the maximum (rather than the average) error of the BIE solution.
In most applications, the linear convergence of CPM with panel size is too
slow/expensive for accurate three-dimensional nonlinear simulations. In ad-
dition, at intersections of the free surface (“F” or Dirichlet) and body (“B”
or Neumann) boundaries with discontinuous slopes, the local maximum
error of CPM in general fails to converge with decreasing panel size (see
e.g. Xü and Yue, 1992). Finally, in problems with non-wall-sided or moving
body boundaries B that intersect the free surface F , robust treatment of the
weak singularity that arise at the F ∩B intersection line generally requires
collocation at the intersection itself (see e.g. Lin, Newman and Yue, 1984;
Dommermuth et al., 1988). This requirement is, however, fundamentally
incompatible with CPM.

Quadratic boundary element method (QBEM )

To circumvent the shortcomings of CPM, higher-order panel (or BIE)
methods must be sought. Based on a systematic study of higher-order
panels including super- and sub-parametric elements (order of the geome-
try representation respectively higher and lower than that for the bound-
ary unknowns), Xü and Yue (1992) found that an iso-parametric quadratic
boundary-element method (QBEM) is effective and economical.

In QBEM, we employ piecewise bi-quadratic representation of both
boundary F ∪ B and the unknowns Φ and Φn on F ∪ B. The boundary
panels are now curvilinear quadrilaterals or (degenerate) curvilinear trian-
gles with nine and seven nodes respectively where boundary positions, and
Φ and Φn values are specified/collocated. Specifically, we use bi-quadratic

�

�

�

�

Figure 15.29: A generic nine-node curvilinear element Eq
j (x, y, z) and its image in para-

metric space Eq
j (ξ, η) : ξ ∈ [−1, 1], η ∈ [−1, 1].
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isoparametric interpolation to represent the boundary and unknowns on
the boundary. In doing that, a curvilinear quadrilateral with nine nodes
or degenerate curvilinear triangle with seven nodes Eq

j (x, y, z) is mapped
into a square Eq

j (ξ, η), ξ ∈ [−1, 1], η ∈ [−1, 1] in the parametric space, as
illustrated in Fig. 15.29; and then all variables of interest (x, y, z, Φ, Φn) on
Eq

j (x, y, z) are represented by a two-dimensional Lagrangian polynomial in
ξ, η for interpolations.

Let Υ signify a variable from the set of (x, y, z, Φ, Φn). The value of Υ
at a point on the element surface is defined in terms of its nine nodal values
and Lagrangian interpolation functions, viz.

Υ(ξ, η) =
9∑

m=1

Nm(ξ, η)Υm (15.7.21)

where Υm denotes the m-th nodal value of Υ. Let the m-th nodal location
in the parametric space be (ξm, ηm). The nine interpolation functions can
be written explicitly as

Nm(ξ, η) =
1
4
ξ(ξ + ξm)η(η + ηm) m = 1, 3, 5, 7 ,

Nm(ξ, η) =
1
2
(1 − ξ2

mξ2 − ξ2
mη2)

× [ηmη(1 + ηmη) + ξmξ(1 + ξmξ)] m = 2, 4, 6, 8 ,

N9(ξ, η) = (1 − ξ2)(1 − η2)

(15.7.22)

Substituting (15.7.21) into (15.7.13) and (15.7.14), we have

Is(r) =
9∑

m=1

(Φn)jmPjm(r) , Id(r) =
9∑

m=1

ΦjmQjm(r) (15.7.23)

where the influence coefficients Pjm and Qjm are defined by

Pjm(r) =
∫∫

Eq
j (ξ,η)

Nm(ξ, η)G(r, ξ, η)J(ξ, η) dξ dη , (15.7.24)

Qjm(r) =
∫∫

Eq
j (ξ,η)

Nm(ξ, η)Gn(r, ξ, η)J(ξ, η) dξ dη . (15.7.25)

In (15.7.24) and (15.7.25), J(ξ, η) is the Jacobian associated with the
change of integration variable from dS(r) to dξ dη. When r /∈ Eq

j (ξ, η),
the integrals in Pjm and Qjm are regular and can be evaluated by numerical
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integration. When r ∈ Ej(ξ, η), the kernels of Pjm and Qjm become singu-
lar. Unlike in CPM, they cannot be integrated analytically for quadratic
panels. In this case, they can be evaluated, for example, by direct quadra-
ture after regularizing the kernels using polar coordinate transformations
(for details, see Liu and Lu, 1988 and Xü, 1992).

Substituting (15.7.23) into (15.7.11) and (15.7.12), we obtain

NB∑
j=1

9∑
m=1

ΦjmQjm(r) −
NF∑
j=1

9∑
m=1

(Φn)jmPjm(r)

= −α(r)Φ(r) −
NF∑
j=1

9∑
m=1

ΦjmQjm(r)

+
NB∑
j=1

9∑
m=1

(Φn)jmPjm(r) , r ∈ F , (15.7.26)

and

α(r)Φ(r) +
NB∑
j=1

9∑
m=1

ΦjmQjm(r) −
NF∑
j=1

9∑
m=1

(Φn)jmPjm(r)

=
NB∑
j=1

9∑
m=1

(Φn)jmPjm(r) −
NF∑
j=1

9∑
m=1

ΦjmQjm(r) , r ∈ B . (15.7.27)

Equations (15.7.26) and (15.7.27) are the discretized forms of the BIE in
QBEM.

For a total of NE (= NF + NB) quadratic boundary elements (among
which NF elements are on F , and NB elements on B respectively), say,
there are a total of N nodal points. Note that the exact relation between
N and NE depends on the specific configuration and discretization of the
boundary surface. Among N unknowns, the type of unknown (Φ or Φn)
at each node depends on whether the node is located on F or B. In order
to determine these N unknowns, we collocate (15.7.26) or (15.7.27) at N

nodes to obtain a system of N linear algebraic equations. The resulting
linear algebraic system is in general dense, non-symmetric and, because of
the first-kind equations on F , not diagonally dominant. This algebraic
system can be effectively solved using a generalized minimum residual
(GMRES) algorithm (Saad and Schultz, 1986) with symmetric successive
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over-relaxation (SSOR) pre-conditioning. Xü and Yue (1992) found that the
required computational effort of this algorithm for the QBEM equations is
less than ∼ O(N2.3).

Once Φ and Φn at each node are obtained, the velocity of the boundary
is evaluated using (15.7.21). Upon using chain rule differentiation and the
definition of normal velocity, we have the following relations:

Φξ = Φxxξ + Φyyξ + Φzzξ ,

Φη = Φxxη + Φyyη + Φzzη ,

Φn = Φxnx + Φyny + Φznz ,

 (15.7.28)

where n ≡ (nx, ny, nz) is the unit normal of the boundary. On each ele-
ment, ξ- and η-derivatives of Φ, x, y, and z as well as unit normal n are
uniquely determined by (15.7.21). If the node is at the center of an element,
we obtain a unique solution of ∇Φ using (15.7.28). If the node is at the
edge or corner of an element, the solutions of ∇Φ obtained from neighbor-
ing elements may (slightly) differ. In practice, we may take the average of
these different values as the solution of the velocity ∇Φ for the edge/corner
nodes. An alternate is to form a virtual element with the node under con-
sideration at the center of the element. (This element is formed only for the
purpose of calculating the velocity of the center node.) With this element,
we solve for the velocity of the central node using (15.7.28). Xü (1992) com-
pared these two approaches and found that they give a similar accuracy for
the evaluation of the boundary velocity.

In general, QBEM obtains quadratic to cubic convergence with element
size ∆� even in the presence of F ∩ B intersections with discontinuous
boundary slopes. Furthermore, boundary nodes at panel edges provide ro-
bust treatment of boundary intersections. Significantly, for a given minimax
(relative) error, say O(10−3), QBEM is some two orders of magnitude more
efficient than CPM for general applications. The efficiency and accuracy of
the present MEL/BIE implementation is to a large extent a result of the
efficacy of QBEM. Details of the QBEM implementation and performance
can be found in Xü (1992), Xü and Yue (1992).

15.7.3 Numerical Implementation

A number of issues associated with the numerical implementation of the
MEL/BIE method require special attention.
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Far-field closure

As pointed out earlier, the proper formulation of the IBVP requires some
specification of boundary conditions in the far field. In problems where
periodic boundary conditions obtain or can be applied, the BIE domain is
simplified by introducing the periodic Green function. In two dimensions,
a periodic Green function in closed form is given by (15.5.6). In three
dimensions, a doubly-periodic Green function Gp, for a periodic domain of
dimensions L by W , can be written as a double sum of Rankine sources:

Gp(r, r′) =
∞∑

m=−∞

∞∑
n=−∞

{[(x + mL − x′)2 + (y + nW − y′)2

+ (z − z′)2]−
1
2 − [(mL)2 + (nW )2]−

1
2 } +

2πz

LW
, (15.7.29)

where, m and n are integers, and the last term is included to ensure
∇Gp → 0 as z → −∞. Efficient summation formulas are available for
rapid evaluation of (15.7.29) (Breit, 1991; Newman, 1992).

In practice, periodic boundary conditions offers a useful closure even
when the problem is non-periodic. In this case, the periodic boundaries
are placed sufficiently far away (relative to the duration of the simula-
tion) and the calculations are stopped before scattered waves from fictitious
“periodic” images of the body arrive at the body itself.

A simple far-field closure scheme which avoids the added computational
effort associated with the evaluation of the (doubly-)periodic Green func-
tion is the use of numerical damping (“sponge”) layer (see e.g. Nakos, Kring
and Sclavounos, 1993; Clément, 1996). In practice, a sponge layer is placed
in a strip around the perimeter of the computational domain centered at
the body. Within the sponge layer, we introduce artificial linear damp-
ing terms into the kinematic and dynamic boundary conditions on the free
surface F , for example:

Dr
Dt

= ∇Φ − ν(x, y)(r − rI) , r ∈ F , (15.7.30)

DΦ
Dt

=
1
2
|∇Φ|2 − z − ν(x, y)(Φ − ΦI) , r ∈ F (15.7.31)

where D/Dt is the Lagrangian (material) time derivative; rI and ΦI are the
free-surface position and velocity potential of the incident/ambient flow;
and ν is an empirical damping coefficient which is, in general, a function of
space.
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In three-dimensional problems, where the energy density of the scattered
wave must decrease with radial distance, a far-field matching technique
can be applied. In this approach, the nonlinear computational solution is
matched to a general linear solution of transient outgoing radiated waves.
The determination of the linear wavefield as well as specification of the
boundary condition for the nonlinear interior problem are obtained through
a matching of the two on a boundary some distance away. Such a scheme
is, in principle, untenable in two-dimensional flows since the nonlinearity
of the radiated waves persists into the far field, and a matching to linear
outer solutions is problematic (e.g. Vinje, Maogang and Brevig, 1982). This
approach of far-field matching to a linear solution has been found to be
effective in three dimensions. A special case is vertically axisymmetric flow
problems where far-field matching closure is used by Dommermuth and Yue
(1987b) and Xue and Yue (1998).

Time integration

Once the BVP at each time step is solved and the velocity ∇Φ on F ob-
tained from Φ and Φn on F , the free-surface boundary conditions (15.2.3)
and (15.2.4) can be integrated in time in a straightforward manner. A typi-
cal scheme is a fourth-order Adams-Bashforth-Moulton (ABM4) integrator
coupled with a fourth-order Runge-Kutta (RK4) scheme for (re)starting
(whenever there is a change in time step size). ABM4 and RK4 require two
and four solutions of the BVP per time step, respectively.

In the simulations, we adopt dynamic time stepping (because of the
changing Lagrangian grid), with the time step size determined by:

∆t ≤ Cn(∆l)min

|(∇Φ)F |max
, (15.7.32)

where (∆l)min is the minimum distance between two neighboring nodes on
F and |(∇Φ)F |max is the magnitude of the maximum (nodal) velocity on
F . Equation (15.7.32) can be derived directly from (15.2.3), with Cn, the
Courant number, a computational parameter to be selected for stability
(typically Cn <1). In practice, it is useful also to impose minimum and
maximum time-step limits: ∆tmin ≤ ∆t ≤ ∆tmax.

Sawtooth instability

A numerical problem encountered by most MEL simulations, and first
reported by Longuet–Higgins and Cokelet (1976), is the appearance of
“sawtooth” (wavelength twice the grid size) instabilities on the free sur-
face as the waves become steep. Such instabilities appear to be intrinsic to
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the discretized equations and are not strictly instability of the time integra-
tion itself (Roberts, 1983). The precise cause of such shortwave instabilities
is still not completely understood. Moore (1983) suggested, through exam-
ining a nonlinear modal differential equation, that the instability is due
to a resonant interaction between the numerically induced discrete waves
and the (physical) continuous wave motions. That high-wavenumber in-
stabilities should arise in an inviscid model can in some sense be expected
from first principles in that strong nonlinear interactions should cause en-
ergy to transfer to and ultimately accumulate at the highest wavenumber
modes represented in the discretization. Such instabilities can generally be
removed by introducing some degree of numerical filtering (or damping) of
the highest wavenumber modes. Some of the successful schemes include ap-
plying: smoothing formulae (e.g. Longuet–Higgins and Cokelet, 1976; Dold,
1992); regriding (e.g. Fink and Soh, 1978; Dommermuth et al., 1988); and
smoothing surface fitting (e.g. Tsai and Yue, 1993).

Free-surface and body grid (re)generation

In the MEL approach, nodes on the free surface are Lagrangian particles
which are advected and distorted with the underlying flow. One feature, for
example, is the tendency for surface Lagrangian particles to concentrate in
regions of high flow gradients. While this may be desirable from a physical
point of view, the clustering of nodal points may be a root cause of instabil-
ities in the time integration (see (15.7.32)) and subsequent development of
“sawtooth” errors. In addition, such clustering may lead to unacceptable
distortions of the boundary elements especially in the three-dimensional
problem. An effective way to overcome these difficulties is found to be con-
tinuous or periodic regridding of free-surface and body boundary elements
(Dommermuth and Yue, 1987b). In a typical regridding, cubic splines in
both parametric directions are employed to create new sets of optimally
spaced (in arclength) grid points on the free surface and on the body. Al-
ternatively, we may employ elliptical grid generators with controlling factors
on the free surface and transfinite interpolations on the body. Such grid
regeneration in conjunction with updating of the free-surface body intersec-
tion line is an essential requirement of successful fully-nonlinear simulations
involving changing wetted body surfaces (Liu, Xue and Yue, 2001).

Double-node technique for intersections of two surfaces

As pointed out earlier, the overall accuracy of the MEL solution is gov-
erned by the minimax error of the BIE problem. In a BIE solution of the
BVP, non-uniform convergence may occur at boundary edges. In the MEL
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approach, Dirichlet (D) and Neumann (N) boundary conditions (for the
velocity potential) are specified on the free surface (F) and body surfaces
(B) respectively. At F -B intersections, which may have surface slope dis-
continuities, we have a confluence of boundary conditions of a D-N type.
At such a confluence, the general solution to the BVP exhibits a weak sin-
gularity (Lewy, 1950) which results in a loss of local convergence of the
numerical solution in the absence of special treatment. For example, nu-
merical tests confirm that the maximum CPM error does not converge with
increasing number of panels at such F -B intersections (Xü and Yue, 1992).
Similar poor convergence for CPM (but for a somewhat different reason)
occurs even when there is no confluence of boundary conditions, say at
B-B boundary intersections with discontinuous slopes. A remarkably effec-
tive and robust treatment that overcomes these difficulties is the so-called
“double-node” technique (e.g. Lin, Newman and Yue, 1984; Dommermuth
and Yue, 1987b) whereby both the D and N conditions are specified at
F ∩ B edged; N-N double nodes where two Neumann boundary conditions
are specified at discontinuous slope B-B edges; N-N-D triple nodes at B-B-F
corners; etc.

In the double-node technique, the coincident nodes belonging to dif-
ferent surfaces are retained as separate nodes and treated distinctly, with
different boundary conditions and/or different surface normals correspond-
ing to the surface to which they belong applied. The trick is to apply both
sets of boundary conditions (for the respective intersection surfaces) and
solve for both sets of unknowns on these points. At a F ∩ B point, for
example, three variables are in general involved: Φ and ∇Φ ·n with respect
to the normals (n) to F and B respectively. A D-N double node there
specifies the D and N boundary conditions for Φ and its derivative with
respect to the B-normal at that point. Collocation at that point provides
a single equation for the unknown F -normal derivative of the potential.
Similar multiple-node treatments of the N-N, D-N-N, N-N-N, . . . , types
can be worked out for intersections involving F and (discontinuous slope)
B surfaces. In all cases, at each node point, there remains a single unknown
involving the potential or its derivative with respect to a specified normal,
which can be solved for by a collocation of the integral equation (15.7.6) at
that point.

Intersection updating

Proper updating of the free-surface intersection line has proven to be of
much importance to MEL simulations involving surface-piercing bodies (see
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Liu, Xue and Yue, 2001). Kinematic boundary condition specifies that
points on the F -B intersection line must remain on both F and B. In
MEL, where the new positions P of these points are obtained from direct
integration of the Lagrangian equations, neither (a) P ∈ F nor (b) P ∈ B
is guaranteed, even for very small time steps. This often leads (eventually)
to a break down of the overall simulation. To overcome this, a general
scheme for updating the free-surface intersection points (applicable in three
dimensions) is developed.

To satisfy condition (a), we impose the velocity of an intersection point
P , Vp, to be always along the tangential direction, eτ , of the body surface.
Here eτ denotes a unit tangential vector on the body surface at P . For
three-dimensional problems, eτ is non-unique although either choice of the
unit tangential vector will assure (a). In practice, we choose eτ to be that
which is closest to the Lagrangian velocity at that point.

To satisfy condition (b), we now choose the magnitude of Vp to be
given by

Vp =
∇Φ · nF
eτ · nF

(15.7.33)

where nF is the unit normal vector to the free surface at P . Note that the
classical Eulerian and Lagrangian forms of the intersection point velocities
can be recovered from (15.7.33) if we set eτ = (0, 0, 1) and ∇Φ/|∇Φ|,
respectively.

The potential at the new position of the intersection point can be ob-
tained by direct time integration:

DΦ
Dt

=
∂Φ
∂t

+ Vp · ∇Φ (15.7.34)

where D/Dt is substantial time derivative. For a moving body, the velocity
of the intersection point can be written in the form:

Vp =
(∇Φ − U) · nF

eτ · nF
eτ + U (15.7.35)

where U is the velocity of the body at P .

15.7.4 Application to Two- and Three-Dimensional
Breaking Waves

Steep overturning waves are ubiquitous in the ocean environment. The
dynamics of such waves is of importance in the consideration of extreme
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slamming loads and wave over-topping on ships and marine structures,
energy and momentum transfer from surface waves to currents, and turbu-
lence mixing of the upper marine layer. The understanding and modelling
of breaking waves is thus of fundamental and practical interests in ocean
science and engineering.

For wave breaking, controlled experiments and numerical computations
have generally assumed that the waves are two dimensional (see Rapp and
Melville, 1990 for a review of experiments; and Banner and Peregrine, 1993,
and Tsai and Yue, 1996 for reviews of numerical simulations). For simula-
tion of steep two-dimensional waves, a seminal work was Longuet–Higgins
and Cokelet (1976), who developed the MEL approach using a BIE for-
mulation. Since then, a number of improvements/extensions were made,
notably Vinje and Brevig (1981)’s development of Cauchy-integral formu-
lation and Dold (1992)’s treatment of time evolution terms. The under-
standing of two-dimensional breaking waves was improved by New, McIver
and Peregrine (1985) who performed detailed computations; Dommermuth
et al. (1988) who obtained quantitative comparisons to breaking wave tank
measurements; Yao, Wang and Tulin (1994) who considered wave-group
dynamics; and Longuet–Higgins and Dommermuth (1997) who examined
the role of crest instabilities.

Reliable results for truly three-dimensional problems are still relatively
rare (e.g. Isaacson, 1982; Romate, 1989) because of limitations on accu-
racy/resolution which also affect stability, and computational efficiency
and power. Recently, Xue et al. (2001) extended MEL/BIE to three di-
mensions using a high-order quadratic boundary-element method (QBEM).
They applied this efficient approach for fully nonlinear computation of the
dynamics of three-dimensional overturning waves. As in Longuet–Higgins
and Cokelet (1976), they started with plane progressive Stokes waves (fun-
damental wavelength L) but applied briefly a three-dimensional surface
pressure (of transverse wavelength W ). Varying the ratio γ ≡ W/L over a
broad range, they performed high-resolution simulations of plunging waves
with different degrees of three dimensionality. From these simulations, de-
tailed wave kinematics and the three-dimensional effects on the kinematics
were quantified.

In this section, we first describe a fully-nonlinear simulation of a two-
dimensional plunging waves and its direct quantitative comparison to
tank experiment (Dommermuth et al., 1988). The simulation of the two-
dimensional problem is based on the MEL approach with Cauchy’s integral
formulation (Section 15.6.1). We then present sample computational results
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of three-dimensional overturning waves (Xue et al., 2001), obtained using
the MEL approach using QBEM for the BIE solution (Section 15.7.2).

Two-dimensional overturning waves — direct comparison to experiments

Ever since the work of Ursell, Dean and Yu (1959), who compared the waves
created by a piston wavemaker to theoretical predictions based on linearized
equations, the validity and limitations of classical small-amplitude wave
theory have been well established. In particular, they found that for small
wave steepness, H/λ < 0.03, (wave height H , wavelength λ), the error in
the wave height in front of the wavemaker is of the order of 3%, although for
steeper waves (0.045 < H/λ < 0.048) the deviations, presumably primarily
due to nonlinearity, can be as much as 10%

Dommermuth et al. (1988) verified against carefully controlled experi-
ments in a wave tank the validity of fully-nonlinear potential flow theory
for steep gravity waves up to and including overturning. Surface tension
is ignored. Specifically, the problem of a single plunging breaker created
downstream of a piston wavemaker is considered. The breaking wave is
produced by generating a spectrum of waves whose phases are adjusted so
that their superposition gives rise to a rapid increase in wave amplitude
a prescribed distance away from the wavemaker (Longuet–Higgins, 1974;
Greenhow et al., 1982).

The experiments are conducted at the Ralph M. Parsons Laboratory of
M.I.T. in a glass-walled channel 25 m long, 0.7 m wide, filled to a depth
of 0.6 m with fresh water. A wooden beach of slope 0.1 covered with
5 cm thick fibrous mats dissipates the waves at the far end of the tank so
that less than 4% of the incident wave amplitude is reflected. The beach
toe is 19.5 m from the rest position of the paddle and extends to 25 m
at the waterline. In the experiments, the wavemaker is programmed to
give a single plunging wave. The wave plunges, that is the forward face
touches the forward trough, at approximately 7.25 m from the wavemaker
paddel at a time approximately 12.9 seconds from the paddle start. The
wave gauges are positioned at x = 1.9, 3.0, 4.0, 5.0, 5.5, 6.0, 6.5, 7.1, and
7.3 meters (see Fig. 15.31(a)). The velocities are measured at x = 3.0
and 5.0 meters from near the bottom of the tank to above the still-water
level. Measurements are obtained from repeated runs of the experiment
which is repeatable to within 0.01 seconds over the duration, and to within
±2 cm horizontally over the distance to breaking. Complete details of the
experimental setup and procedure can be found in Chan (1986) and Rapp
(1986).
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High resolution fully nonlinear computations are carried out using the
MEL solution scheme with the Cauchy’s integral formulation for the BVP
solution as described in Section 15.6.1. For normalization, the units of
length, time, and mass are chosen so that the initial depth of the water,
the gravitational acceleration, and the fluid density are all unity. For com-
parison with the single plunging wave experiment, we use a numerical tank
of length 20 (corresponding to a length of 12 m for a physical tank depth
of 0.6 m) with 500 linear segments on the free surface and 25 segments on
the wavemaker and the far wall for a total of N ≈ 550 unknowns. Alto-
gether, about 4000 time steps are used to complete the simulation to the
point where the plunger reenters the free surface. Of these, we use regriding
every 15 time steps for the first 3000 steps, and employ smoothing every
5 steps for the final 1000 steps. In the dynamic time stepping procedure,
the largest time step used is .08 at the beginning of the simulation and
the smallest is .0004 near the end to capture the overturning wave. Conse-
quently, more than half of the computational effort is used in the final 20%
of the simulation time.

The velocity of the piston wavemaker is calculated by taking centered
finite-differences of the wavemaker displacement which is measured in the
experiment. This velocity is the only input to the numerical simulation.
The measured time-history of the wavemaker velocity U(t) is given as a
Fourier-cosine series:

U(t) =
72∑

n=1

Un cos(ωnt − θn) (15.7.36)

where, to achieve about 3 significant figures of accuracy, 72 components
are required. The amplitudes Un, frequencies ωn, and phases θn from the
experiments are used directly in the MEL simulation. (The actual values of
these quantities are tabulated in Appendix B of Dommermuth et al. 1988).

In Fig. 15.30(a), the free-surface elevations according to linearized the-
ory are compared to wave probe measurements at x = 3.17, 5.00, 6.67,
8.33, 10.00, and 12.17. The agreement becomes less satisfactory as the
wave group steepens and travels down the tank. Near the plunging point
the predicted linear wave amplitudes are in error by as much as 100% al-
though the phases appear to agree somewhat better.

Figure 15.30(b) shows the comparisons between the surface elevations
predicted by the nonlinear potential theory and those measured by wave
probes at x = 3.17, 5.00, 6.67, 9.17, 10.83, and 11.83. The computed and
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Figure 15.30: Comparison of free-surface elevation ζ among linear theory (——) (left
column), nonlinear computations (——)(right column), and wave-probe measurements
(– - - –) as a function of time. For the linear solution, the comparisons are made at
distances from the wavemaker (normalized by mean water depth) of x = 3.17 (a), 5.00 (b),
6.67 (c), 8.33 (d), 10.00 (e), and 12.17 (f). For the nonlinear solution, the comparisons
are made at x = 3.17 (a), 5.00 (b), 6.67 (c), 9.17 (d), 10.83 (e), and 11.83 (f) (from
Dommermuth et al., 1988, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).

measured profiles can be barely distinguished up to the plunging location.
Note that the nonlinear numerical simulation stops near t = 52 which is the
time when the cusp of the plunging wave meets the wave trough in front
(see Fig. 15.31).

Figure 15.31 plots the computed instantaneous free-surface profiles near
the plunging location at times t = 51.11, 51.24, 51.34, 51.45, and 51.55
which are compared to the wave probe measurements at x = 11.83 taken
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Figure 15.31: (a) Instantaneous free-surface profile of the simulated plunging wave at
t = 51.55 showing the actual (undistorted) computational tank as well as the positions
of the 9 wave probes in experiments. (b) Details of the computed overturning wave (to
scale) at times t = 51.11, 51.24, 51.34, 51.45, and 51.55 from left to right respectively.
Symbols (�) represent wave probe measurements at x = 11.83 (probe 8) at the same
time instants from bottom to top respectively (from Dommermuth et al., 1988, J. Fluid
Mech. Reproduced by permission of Cambridge University Press).

at the same time instants. (Note that the wave has not yet become multi-
valued at the probe.) The nonlinear computations predict a slightly earlier
plunging breaking in both time and distance from the wavemaker. The
deviations in the estimated plunging position and time are respectively
∆x ≈ 0.15 and ∆t ≈ 0.25. From the figure, the wave trough immediately
in front of the breaker appears to rise faster and higher in the numeri-
cal simulation suggesting that the some of the errors can be attributed
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Figure 15.32: Water-particle velocities from nonlinear theory (——) compared to
measurements using a laser-doppler anemometer (– - - –) as a function of time. (a)
u(8.33,−0.10, t), (b) v(8.33,−0.10, t), (c) u(8.33, 0.10, t), and (d) v(8.33, 0.10, t) (from
Dommermuth et al., 1988, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).
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Figure 15.32 (Continued)
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to reflection from the far wall. Another possible effect is the presence
of some (albeit small) dissipation in the physical experiment which tends
to delay the breaking event. Given the large local velocities and accel-
erations of the plunging wave (see Figs. 15.32) the observed discrepan-
cies are, however, within the expected accuracies of the computation and
experiment.

As a final comparison, we examine the fluid particle velocities mea-
sured using a laser-doppler anemometer and the velocities computed us-
ing Cauchy’s integral formulation. Figure 15.32 shows these comparisons
for the horizontal and vertical velocities u(x0, y0, t) and v(x0, y0, t) for
x0 = 8.33 and y0 = 0.1 and −0.1. As before, the agreement is excellent.
For points above the still-water level the velocity traces show intermittent
pulses (positive for u and changing sign for v) which correspond to the pas-
sage of individual wave crests. When y0 is below but close to the still-water
level, the velocity curves may appear cut off at zero (truncated peaks for u

and at upward zero-crossings for v) as the sampling point exits the water
at the troughs.

New et al. (1985) examined the velocities and accelerations of particles
in the free surface of periodic overturning waves on finite (shallow) depth
and observed maximum horizontal velocities almost twice the linear phase
speed and maximum accelerations up to six times that of gravity. It is
of interest to examine these quantities in the present case of deep-water
breaking waves created by the superposition of a spectrum of waves whose
phases have been judiciously chosen. The vector velocities and accelera-
tions of surface particles at time t = 51.5 just before reentry are shown
in Fig. 15.33. The maximum velocity amplitude occurs in the cusp of the
wave and is roughly twice as large as the linear phase speed based on a
central frequency of ωc ≈ 1.4. The maximum Lagrangian accelerations,
which occur inside the loop, are of the order of 6g and are directed radially
inward. In the cusp of the wave the maximum acceleration is approximately
one g and is directed downward so that the tip of this overhanging wave
is essentially in free fall. The resemblance of the kinematics of the deep-
water plunging wave in the present case and that of the periodic shallow-
water overturning wave computed by New et al. (1985) as well as that
created by an asymmetrically applied surface pressure (Longuet–Higgins
and Cokelet, 1976) is quite remarkable. This further confirms New et al.’s
conjecture that the evolution of an overturning wave must be relatively
independent of the interior dynamics, so that a local solution for the jet
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Figure 15.33: (a) Vector velocities and (b) Lagrangian accelerations of fluid surface
particles of the deep-water plunging breaker at time t = 51.5 just before reentry occurs
(from Dommermuth et al., 1988, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).
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(Longuet–Higgins, 1982; New, 1983; Greenhow, 1983) may be surprisingly
useful.

These simulations and detailed direct comparisons to experimental mea-
surements for steep overturning waves illustrate the efficacy of the MEL
method. They also confirm the validity and usefulness of potential-flow cal-
culations for such waves and that physical mechanisms not accounted for by
potential theory must play a very minor role up to the point of wave reentry.

Three-dimensional overturning waves

We turn to study the dynamics of three-dimensional overturning waves
using a MEL approach deploying the quadratic boundary element method
(QBEM) developed in Section 15.7.2. The problem we consider is the three-
dimensional extension of the two-dimensional overturning wave considered
by Longuet–Higgins and Cokelet (1976). Following Longuet–Higgins and
Cokelet, we start with a plane Stokes wave but now apply, for a short time,
a three-dimensional surface pressure to raise the energy density beyond the
maximum for a steady Stokes wave.

As initial conditions, we choose the Stokes wave parameters: wavelength
L = 2π, steepness ε = 0.4, period T ∼= 5.806 and phase speed c ∼= 1.082.
The imposed surface pressure has the same temporal (t) and longitudinal
(x) dependencies as in the fourth case studied by Longuet–Higgins and
Cokelet (1976), but is now further modulated by a periodic transverse vari-
ation of wavelength W :

PF =

p0 cos2
(πy

W

)
sin t sin(x − ct) 0 ≤ t ≤ π

0 t > π

, (15.7.37)

where p0 = 0.146. The co-propagating surface pressure increases from 0 at
t = 0 to its maximum amplitude at t = π/2 (t/T ∼= 0.271) and decreases
to zero for t ≥ π. Note that (15.7.37) is symmetric with respect to y = 0
and ±W/2, so that the unknowns in the double-periodic domain of L by
W can be halved by further taking advantage of symmetry. Physically, the
problem can be thought of as one in a wave tank with side walls at any two
values of mW/2, m = 0,±1,±2, . . . . For definiteness, we refer hereafter to
y = 0 where PF = p0 is maximum as the “center”, and y = ±W/2 where
PF = 0 is minimum as the “sides”.

The geometric aspect ratio γ ≡ W/L provides a measure of the three-
dimensionality of the wave. To illustrate the importance of the three-
dimensional effect and the difference from two-dimensional results, we
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perform systematic simulations for a range of γ = 0.5, 0.75, 1.0, 1.25,
and 1.5. Based on convergence tests, we employ 65 × 25 free-surface grids
(384 9-node quadratic elements) corresponding to N = 1600 unknowns for
half of the computational domain, [0, L]× [−W/2, 0]. The Courant number
is set to be Cn = 0.6 for t ≤ π and Cn = 0.4 for t > π. Thirteen-point
Savitzky-Golay type smoothing is applied every 3 time steps. The initial
free-surface Lagrangian points are distributed non-uniformly according to
the curvature of the Stokes waves and are followed throughout the simu-
lation without regridding. The energy loss due to smoothing is less than
0.01% for the entire simulation.

(a) Basic features

Figure 15.34 shows the free-surface profiles and particle velocity compo-
nents u, v, w, near the final stages of the three-dimensional overturning
waves, for γ = 1.5, 1.0, 0.75 and 0.5. The free-surface profile, u and w are
symmetric while v is antisymmetric about the centerline y = 0. The results
for different values of γ can be qualitatively quite different. In particular,
the three-dimensional wave plunging occurs near the center (where the
pressure forcing was maximum) for γ = 1.5 and 1.0; while for γ = 0.5, the
plunging wave develops near the side (where the forcing was minimum).
For γ = 0.75, the plunging tip is located between the center and the side
of the tank. Since the breaking location depends in general on the bal-
ance between the transverse dynamics and the nonlinear development of
the plunging wave, three-dimensional breakers need not develop directly
behind the region of maximum (surface or bottom) forcing.

The sequence of development in time of the plunging wave profiles and
surface velocity components u, v, w is shown in Fig. 15.35 for γ = 1.5.
When the surface forcing is turned off at t = π, the deviation from the
two-dimensional Stokes wave is relatively small, although three-dimensional
features of this “initial” condition are evident. As the wave steepens and
the free surface eventually plunges forward and overturns, the horizontal
velocity u on the centerline increases to almost three times its initial value.
In contrast, changes in the magnitudes of the maximum and minimum ver-
tical velocity w as the plunging wave develops are insignificant. Overall, the
ratio of maximum u to maximum w, (u/w)m, increases from an initial value
of 1.4 to 3.5 as the wave overturns. Thus, wave overturning is primarily a
result of the longitudinal motion.

From Fig. 15.35 for the surface v, it is seen that by virtue of symmetry,
v vanishes at y = 0, ±W/2, and is only nonzero in between. This transverse
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Figure 15.34: Distributions of the surface longitudinal velocity u (left column), transverse velocity v (middle column), and vertical
velocity w (right column) at the late stage of three-dimensional overturning waves for different values of γ = (a) 1.5 (at t/T = 0.840);
(b) 1.0 (t/T = 0.850); (c) 0.75 (t/T = 0.861); and (d) 0.5 (t/T = 0.880). (The phase speed of the initial Stokes wave c = 1.082) (from
Xue et al., 2001, J. Fluid Mech. Reproduced by permission of Cambridge University Press).
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U: -0.20 0.03 0.26 0.49 0.71 0.94 1.17 1.40

(d)

V: -0.14 -0.10 -0.06 -0.02 0.02 0.06 0.10 0.14

(e) (f)

W: -0.34 -0.20 -0.06 0.08 0.23 0.37 0.51 0.65

Figure 15.35: Distributions of the surface velocity components u, v and w for γ = 1.5.
The results plotted are for u at t/T = (a) 0.541 and (b) 0.840; for v at t/T = (c) 0.541
and (d) 0.840; and for w at t/T = (e) 0.541 and (f) 0.840. (The phase speed of the
initial Stokes wave c = 1.082) (from Xue et al., 2001, J. Fluid Mech. Reproduced by
permission of Cambridge University Press).

velocity is positive (towards the plunger at the centerline) on the front face,
and negative near and behind the wave crest. At the final time instant
shown, the ratio of maximum u to v for this value of γ = 1.5 is (u/v)m =
20.1 and the overall effect of the transverse velocity is small.

(b) Effect of three-dimensionality

To address the effect of three-dimensionality, we make direct comparisons
of wave characteristics such as profiles, velocities and accelerations, and
kinetic and potential energies, for plunging waves with different three-
dimensionality parameter γ. To do this, it is useful to define a reference
time t∗ at which such comparisons can be made. One choice is t∗ = tv, the
instant at which the free surface first becomes vertical. In these simulations,
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Table 15.6: Time t∗ (normalized by the fundamental period of the initial
Stokes wave T = 5.806), and the tip position (Xtip, Ytip, Ztip), amplitude of
the tip velocity Vtip and its three components (utip, vtip, wtip), at t = t∗, of
overturning waves for a wide range of γ values.a

γ 0.50 0.75 1.00 1.25 1.50 ∞
t∗

T
0.879 0.861 0.849 0.842 0.839 0.813

Xtip 6.234 6.313 6.328 6.316 6.313 6.080
Ytip −1.312 0.000 0.000 0.000 0.000 0.000
Ztip 0.695 0.755 0.749 0.725 0.707 0.660

|Vtip| 1.665 1.487 1.618 1.708 1.751 1.771
utip 1.633 1.474 1.613 1.706 1.751 1.771
vtip −0.304 0.000 0.000 0.000 0.000 0.000
wtip 0.112 0.180 0.115 0.060 0.005 −0.035

aFrom Xue et al. (2001).

however, tv occurs at a relatively early stage of the plunging wave devel-
opment. For t > tv, the plunging wave kinematics continues to change
rapidly. A more useful choice is to define t∗ to be the instant at which
the condition of free fall (An ≈ 0) at the plunging tip first obtains. Here
An represents the component of the free-surface particle acceleration in the
normal direction of the free surface. (For definiteness, we define t∗ to be
given by (An)min(t∗) = 0.02, say, where (An)min is the minimum value of
An on the entire free surface.) At the tip region for t ≈ t∗, the longitudinal
velocity has effectively reached its maximum value, while the (subsequent)
vertical velocity is predictable given essentially by the condition of free fall.
While this choice of t∗ is by no means unique, it is a pragmatic one since
it is a late time we can (quantitatively) identify beyond which the good
fidelity of numerical simulations cannot be guaranteed.

Table 15.6 gives the time t∗, and the plunging tip position and velocity
at that instant for three-dimensional overturning waves with a range of
the three-dimensionality parameter γ. Here the tip is defined to be the
point where An = (An)min = 0.02 at t = t∗. For comparison, the corre-
sponding values for a two-dimensional overturning wave (corresponding to
γ = ∞) are also given. It is observed that t∗ for the three-dimensional
wave is always larger than that for the two-dimensional wave, and that
t∗ decreases uniformly as γ increases. This confirms the general expec-
tation that breaking of a three-dimensional wave would take longer to
develop.
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As a result of the larger t∗, Xtip and Ztip are generally greater for the
three-dimensional overturning wave than in the two-dimensional case. For
small γ (< 0.75), Xtip and Ztip increase with γ while Ytip is negative as a
result of shift of wave breaking from the center to the side. Beyond this
value of γ, Xtip, Ztip approach the two-dimensional values monotonically
as γ increases, while Ytip = 0 (wave breaking at the center).

The tip velocity amplitude |Vtip| is generally smaller than the two-
dimensional value. |Vtip| generally increases with γ except for very small
γ where the transverse sloshing can significantly increase the magnitude
of the tip velocity. The behavior of Vtip is dominated by its longitudinal
component utip which is an order of magnitude larger than the transverse
and vertical velocities vtip and wtip. For three-dimensional plunging waves,
wtip is positive and decreases monotonically with increasing γ for γ > 0.75.
On the other hand, wtip is negative for the two-dimensional case. This
is consistent with the larger value of Ztip for the three-dimensional case.
The transverse tip velocity vtip for the three-dimensional wave is generally
negligible except for the case of small γ where it is negative as a result of
the shift of the plunging tip from the center to the side.

Table 15.7 displays the maximum and minimum values of the velocity
and acceleration amplitudes and components on the free surface at the
time t∗. Note that the plunging wave Vmax is substantially greater than the
phase speed of the initial Stokes wave (c ∼= 1.082). Vmax usually obtains at
a point near but not at the tip. Compared to Vtip, Vmax is about 10% larger.
From the simulations, Vmax is achieved at the center for γ ≥ 1.0 and on the
side for γ = 0.5. For γ = 0.75, which is a transitional case, Vmax obtains
between the center and the side. Unlike Vtip, Vmax of the three-dimensional
wave can be greater than that of the two-dimensional wave. Similar to utip,
(Vx)max is much larger than (Vy)max and (Vz)max and behaves similarly to
Vmax. Due to the effect of transverse sloshing, (Vz)max varies inversely with
|(Vy)min|. Thus there is a strong energy and momentum transfer from the
vertical to transverse motion in the development of the three-dimensional
overturning waves.

The variation of the maximum free-surface acceleration magnitude Amax

with γ is similar to that of Vmax. Amax usually occurs under the tip at the
front face of the overturning wave and reaches values of O(5g). Amax of
the three-dimensional overturning wave can be larger or smaller than the
two-dimensional result depending on γ. Specifically, for γ >/< 1.25, Amax

is greater/smaller than that of the two-dimensional value. This behavior
of Amax is seen to be strongly correlated with the magnitude of (Az)min.
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Table 15.7: Maximum (( )max) and minimum (( )min) values on the free surface of the
velocity amplitude, V , and velocity components, Vx, Vy , Vz ; acceleration amplitude,
A, and acceleration components, Ax, Ay , Az ; and wave elevation, ζ, at t = t∗, of
overturning waves for a wide range of γ values.a

γ 0.50 0.75 1.00 1.25 1.50 ∞

Vmax 1.885 1.536 1.748 1.859 1.921 1.846
(Vx)max 1.875 1.500 1.742 1.859 1.920 1.831
(Vy)max 0.056 0.043 0.056 0.059 0.056 0.000
(Vz)max 0.748 0.591 0.678 0.710 0.721 0.692

Vmin 0.260 0.268 0.255 0.249 0.246 0.327
(Vx)min −0.295 −0.305 −0.321 −0.328 −0.331 −0.336
(Vy)min −0.321 −0.371 −0.268 −0.199 −0.160 0.000
(Vz)min −0.453 −0.398 −0.410 −0.413 −0.413 −0.428

Amax 3.587 2.552 3.210 4.102 5.073 3.988
(Ax)max 3.224 2.201 2.720 3.119 3.368 3.682
(Ay)max 0.383 0.128 0.079 0.060 0.049 0.000
(Az)max 0.511 0.386 0.406 0.427 0.442 0.494

Amin 0.089 0.063 0.085 0.057 0.044 0.247
(Ax)min −0.425 −0.402 −0.388 −0.388 −0.392 −0.365
(Ay)min −0.252 −0.750 −0.667 −0.573 −0.506 0.000
(Az)min −2.224 −1.873 −2.571 −3.861 −4.934 −2.941

ζmax 0.811 0.761 0.758 0.746 0.735 0.696
ζmin −0.266 −0.259 −0.263 −0.266 −0.269 −0.286

ζmax − ζmin 1.077 1.020 1.021 1.011 1.004 0.983

aFrom Xue et al. (2001).

For longitudinal free-surface acceleration, (Ax)max is generally smaller in
the presence of three-dimensionality. In the transverse direction, there is
appreciable Ay primarily associated with the sloshing motion towards the
side (as reflected in larger |(Ay)min| values).

The dependence on γ of the maximum and minimum wave elevations
ζmax, ζmin and wave height h ≡ ζmax−ζmin at t∗ is also shown in Table 15.7.
In general, h and ζmax of the three-dimensional overturning wave exceed
those of the two-dimensional case. Both h and ζmax are seen to decrease
uniformly as γ increases. For small γ, the three-dimensional h can be
about 15% larger than the two-dimensional value. As for ζmin, there is no
significant difference between the two-dimensional and three-dimensional
cases.

The free-surface profiles of the overturning wave on the center- and side-
planes at the time t∗ are shown in Fig. 15.36 for different γ’s. Except for
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Figure 15.36: Free-surface profiles of two- and three-dimensional overturning waves at
the time t∗ on (a) the center-plane; and (b) the side for: γ = ∞, ——; γ = 1.5, - - -;
γ = 1.25, — · —; γ = 1.0, · · · · ; γ = 0.75, – – –; and γ = 0.5, — · · — (from Xue
et al., 2001, J. Fluid Mech. Reproduced by permission of Cambridge University Press).
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γ = 0.5 where wave breaking occurs near the side, three-dimensional waves
break with higher tip/crest at the center-plane than the two-dimensional
wave. Careful examination of the center-plane profiles reveals that the
γ = 1.25 case has a profile shape most similar to the two-dimensional
plunging wave. For γ < / > 1.25, the overturning waves have less/more
arced (concaved) front faces than that of the two-dimensional case.

Two main factors affect the development of the overturning profile. One
is the nonlinear free-surface focusing from both the longitudinal and trans-
verse directions. The latter explains why the three-dimensional wave can be
more energetic on the center-plane. The other is transverse sloshing which
spreads the energy from the center-plane to the side. For γ < / > 1.25, the
second/first factor dominates, resulting in less/more forward-face concaved
center-plane profiles.

The side-wall profiles (Fig. 15.36(b)) show the wave breaking there of
the γ = 0.5 case. The concentration of energy here results in much higher
crest/tip than the two-dimensional overturning wave. The large t∗ also
results in a more forward profile position. For larger γ(> 0.5), the side-wall
profiles are lower and non-breaking.

The role of wave energy in the development of wave overturning can
be better understood by examining the ratio between the kinetic-energy
increase ∆Ek and the potential-energy increase ∆Ep (from the initial time).
Figure 15.37 plots the results at the time t∗ as a function of γ. It is seen that
∆Ek/∆Ep of the three-dimensional overturning wave is smaller than the
two-dimensional result with ∆Ek/∆Ep increasing with γ and approaching
the two-dimensional value for large γ. Thus the three-dimensional wave
breaks with a larger potential energy increase but is less kinetically energetic
relative to the two-dimensional case. This is consistent with earlier results
that the three-dimensional breaking wave has larger wave height but smaller
tip velocity than the two-dimensional wave.

One notes that the above characteristics of three-dimensional overturn-
ing waves are obtained for a particular class of such waves, namely those
obtained with a short-duration artificial surface pressure forcing specified
by a three-dimensional parameter γ. The features and conclusions found
above can also be obtained for deep-water overturning waves generated via
other mechanisms. One such mechanism is the steepening to breaking of
a (transversely modulated) large-amplitude wave given initially by (linear)
Airy theory (Schultz et al., 1994). The similarity of the overall features are
confirmed by systematic simulations also of that case (see Xue, 1997 for
details).
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15.7.5 Application to Steep Crescent Waves

The phenomenon of regularly-distributed crescent-shaped wave patterns
(also called “horseshoe” waves) has been observed in the open ocean
(Kinsman, 1984; Shrira et al., 1996) and in laboratory basins (Su et al.,
1982; Su 1982). Mechanisms for the development of such three-dimensional
steep waves have only recently become more conclusive. Su et al. (1982)
speculated that such waves result from three-dimensional (class II) instabil-
ity of Stokes waves; while Saffman and Yuen (1980) and Meiron et al. (1982)
assumed the crescent wave patterns to be steady three-dimensional bifurca-
tions of Stokes waves. Recently, Shrira et al. (1996) added non-conservative
effects into the model Zakharov equation and obtained a qualitative predic-
tion of the persistent asymmetric pattern. In any event, since these theories
are based either on linear stability analysis or on weakly-nonlinear model
equations, it is not clear that quantitative comparisons to crescent waves
in experiments (which tend to be quite steep) can be obtained. Recently,
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Figure 15.37: Ratio between the increases in the kinetic and potential energies ∆Ek

and ∆Ep at the instant t∗ of the three-dimensional overturning wave as a function of γ.
The two-dimensional result is also plotted (- - -) (from Xue et al., 2001, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).
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Xue et al. (2001) carried out direct simulations, using QBEM MEL ap-
proach, of three-dimensional crescent waves by following the evolution
of steep two-dimensional Stokes waves with small initial class II (three-
dimensional) unstable perturbations (according to Mclean, 1982). Follow-
ing the fully-nonlinear evolutions, they found that, depending on the initial
perturbations, fully-featured 1:2 sub-harmonic (L2) and 1:3 sub-harmonic
(L3) crescent waves arise naturally from such nonlinear evolutions. Sig-
nificantly, detailed crescent features and geometry from the simulations
compare quantitatively well with experimental wave basin measurements.
These simulations indicate that the formation of crescent waves is directly
(and possibly solely) a result of fully-nonlinear three-dimensional evolution
of unstable Stokes waves.

In this section, we follow the study of Xue et al. (2001) to elucidate
the mechanism for the generation and development of three-dimensional
steep crescent waves using direct MEL simulations. We start the simula-
tions with a train of exact plane Stokes wave (Schwartz, 1974), propagat-
ing in the +x direction, with fundamental wavelength L = 2π/k, steepness
kA, and phase such that the maximum elevation is at x = 0 at t = 0.
We then consider initial three-dimensional perturbations in the free-surface
elevation and velocity potential (ζ′ and φ′) given by a single sinusoidal wave
component:

ζ′ = εA sin(kxx + β) cos kyy , (15.7.38)

φ′ = − εA

(k2
x + k2

y)1/4
cos(kxx + β) cos kyy exp[(k2

x + k2
y)1/2z] , (15.7.39)

on z = ζ̄, where ε is the small parameter measuring the amplitude of the
disturbance and ζ̄ is the free-surface elevation of the undisturbed Stokes
wave. Here the wavenumbers (kx, ky) = (p + k, q), where p and q are the
longitudinal and transverse perturbation wavenumbers (cf. McLean, 1982).
In the above, β is the phase of the perturbation.

We set k = 1 for the Stokes wave. For MEL computations, we use a
rectangular domain given by x ∈ [0, L/p] and y ∈ [−L/(2|q|), 0] (due to
transverse symmetry of the problem, only half of the y domain is needed).
Based on convergence tests and the required resolution for the crescent wave
features, we employ 40 nodes (corresponding to 20 quadratic elements)
per wavelength in both longitudinal and transverse directions. For time
integration, dynamic stepping with Courant number Cn = 0.4 is used. With
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these numerical parameters, the total energy is conserved to O(0.01%) in
the simulations.

Development of L2 crescent waves

To simulate a L2 crescent wave case, we choose kA = 0.33 (for this steep-
ness, the fundamental period is T ∼= 5.951) for the Stokes wave; and
ε = 0.16, (kx, ky) = (1.5, 1.23) (kx = 1.5 corresponds to p = 1/2), and
β = 0 for the initial three-dimensional perturbation. According to McLean
(1982), the latter corresponds to the dominant component of the most un-
stable (p = 1/2 sub-harmonic class II) mode for this kA.

Figure 15.38 shows a representative sequence of free-surface profiles dur-
ing the nonlinear evolution. Figure 15.38(a) shows the initial perturbated
Stokes wave profile. With β = 0, the elevation perturbation is zero at the
crests but is discernible (though very small) elsewhere. As will be shown
later, the choice of β does not affect the overall development of the L2 cres-
cent wave. At t ∼ T/2, Fig. 15.38(b), clear three-dimensional wave features
have developed. At this stage, the largest wave slope obtains on the back
faces of the Stokes wave.

At t ∼ T , Fig. 15.38(c), distinct crescent shape of the waves can be
observed. Along the Stokes wave crest line, forward fronts of the cres-
cents have sharper crest angles than the edges (where two crescents meet).
Even at this early stage, the staggered row-shift crescent pattern has al-
ready been formed. As the evolution continues, the crescent shape becomes
more rounded. Interestingly, the crescent pattern are seen to subsequently
weaken a bit at t ∼ 2T , Fig. 15.38(d).

At t ∼ 3T , Fig. 15.38(e), the crescent wave development regains
strength, the crescent trough now becomes deeper, and the crescent crest
becomes sharper. Meanwhile, the edges of the crescent lines are seen to
extend further in the −x direction. At t ∼ 4T , the development appears
to reach a quasi-steady state. This steady state lasts for about two peri-
ods (Figs. 15.38(f), (g) at t/T ≈ 4.3, 5.0 respectively). At this state, the
sharp-crested round semi-circular and staggered row-shifted crescent crests
are well formed.

As the evolution continues further, the quasi-steady state of t/T ∼5 with
the rounded crescent wave pattern is lost. The crescent crest sharpness is
diminished and the deep trough regions flatten up. Meanwhile, steep tri-
angular “Delta” (∆) regions appear in front of the crescent forward fronts.
The flattening of the trough and rising of the Delta region eventually cause
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Figure 15.38: Free-surface patterns during the nonlinear evolution of a plane Stokes
wave of steepness kA = 0.33 (fundamental period T = 5.951), with three-dimensional
initial disturbance given by ε = 0.16, (kx, ky) = (1.5, 1.23) and β = 0 at time t/T =: (a)
0; (b) 0.635; (c) 1.078; (d) 2.002; (e) 3.172; (f) 4.338; (g) 4.955; and (h) 5.641 (from Xue
et al., 2001, J. Fluid Mech. Reproduced by permission of Cambridge University Press).
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Figure 15.39: Comparison of a L2 crescent wave train observed in a wave basin (a)
(Fig. 17 of Su et al., 1992, reproduced with permission); and in simulation (b) (at t/T ≈
5.641, cf. Fig. 15.38(h) (from Xue et al., 2001, J. Fluid Mech. Reproduced by permission
of Cambridge University Press).
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the crescent crests to break in the form of spilling waves on the shoulders
of the crescent wave. Figure 15.38(h) shows a typical L2 crescent wave
pattern just before breaking.

The qualitative features in Fig. 15.38 compare extremely well with ob-
served crescent waves in experiments. Figure 15.39 compares a wave basin
aerial photograph of a L2 crescent wave (Fig. 17 of Su et al., 1982) with
the simulated result in Fig. 15.38(h) (at t/T ≈ 5.641). For the sake of com-
parison, the simulation result is rotated to match the perspective of the
wave basin photograph. The resemblance is quite remarkable. The simu-
lated L2 crescent wave possesses all the notable features observed in the
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Figure 15.40: Longitudinal profiles of the L2 crescent wave on the planes y = (a) −W/2
and (b) −W/4 at t/T = 4.338 obtained from simulation (kA = 0.33, ε = 0.16, β = 0,
and (kx, ky) = (1.5, 1.23)). Characteristic length and height parameters according to

Su (1982) are labelled in (a) (from Xue et al., 2001, J. Fluid Mech. Reproduced by
permission of Cambridge University Press).
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basin experiment, including the fully-extended semi-circular crests, stag-
gered row-shift crescent pattern, flattened troughs, rising Deltas, and steep
crescent wave shoulders. Remarkably, although the (initial) disturbance
in the simulation most likely differs from that in the physical experiment,
the time durations required for the full development of the L2 wave with
the distinct crescent wave features in both simulation and experiment are
quite close (t/T ∼5).

For quantitative comparisons of the crescent wave features to exper-
iment, Fig. 15.40 shows longitudinal surface profiles (at y = −W/2 and
y = −W/4 at t/T = 4.338) wherein the characteristic length and height
parameters (according to Su, 1982) are also labelled. (Here W denotes the
width of the computational domain, i.e. period in the transverse direction of
the crescent wave.) Figure 15.40(a) shows typical L2 feature of alternating
peak and trough, while Fig. 15.40(b) on y = −W/4 displays a (steepened)
Stokes-wave-like regular profile.

Table 15.8 shows comparisons of the characteristic crescent wave geo-
metric parameters at four representative times in the simulation with
t/T ∈ (3, 5) during which quasi-steady state approximately obtains. The
agreements between simulation results and experimental measurements of
Su (1982) are remarkably good for the wave height ratios h11/h12, h21/h22,
and h11/h21, and the maximum local wave steepness smax. The comparisons

Table 15.8: Comparisons of geometric parameters of L2 crescent waves
between the MEL QBEM simulation (kA = 0.33, ε = 0.16, β = 0, and
(kx, ky) = (1.5, 1.23)) and the experimental measurements of Su (1982).a

Experiment Simulation

Su (1982)
t

T
= 3.171

t

T
= 4.338

t

T
= 4.955

t

T
= 5.150

λ2

λ1
1.28 1.05 1.07 1.03 1.17

h11

h12
1.10 1.18 1.09 1.18 1.26

h21

h22
0.88 0.81 0.88 0.80 0.75

h11

h21
1.66 1.49 1.64 1.63 1.60

smax 0.65 0.45 0.64 0.69 0.51

aFrom Xue et al. (2001).



June 24, 2005 15:19 Theory and Applications of Ocean Surface Waves bk04-002

1014 Numerical Simulation of Nonlinear Wave Dynamics

are particularly good at t/T = 4.338 and t/T = 4.955 when the L2 crescent
features are fully developed. The comparison of the wavelength ratio λ2/λ1

is acceptable but not as good as the other parameters. The reason is not
clear but may be due to a lower accuracy in measuring wavelengths in the
experiments.

As expected from physical reasoning, the development of the L2 crescent
waves depends on physical parameters of the problem such as the precise
phase β of the initial disturbance, the initial disturbance amplitude ε, and
the longitudinal direction of propagation of the initial disturbance relative
to the underlying Stokes waves. This is confirmed by simulations (for de-
tails, see Xue et al. (2001).

Development of L3 crescent waves

In Su (1982), under natural conditions, it is reported that of the crescent
wave observed, L2, L3 and L4 configurations occur, respectively, approxi-
mately 90%, 10% and 1% of the time. The preceding results suggest these
other crescent wave configurations may obtain as a result of similar insta-
bility mode development mechanisms.

As a demonstration, we obtain L3 crescent configuration by nonlin-
ear simulation of a Stokes wave with initial three-dimensional disturbance

XY

Z

4

5

6

1
2

3

Figure 15.41: Free-surface wave pattern at t/T = 4.198 during the fully-nonlinear
evolution of a Stokes wave (kA = 0.33, T = 5.951) with an initial three-dimensional
disturbance (ε = 0.12, (kx, ky) = (1.33, 1.23), β = 0). The consecutive crest rows corre-
sponding to the original Stokes wave are labelled (from Xue et al., 2001, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).
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corresponding to (linearly) unstable sub-harmonic mode with p = 1/3
(i.e. kx = 4/3). Figure 15.41 plots a representative stage in the develop-
ment of L3 crescent waves of such a case (kA = 0.33, ε = 0.12, (kx, ky) =
(1.33, 1.23), β = 0). The three-row staggered structure of the L3 cres-
cent wave pattern is clearly shown, which obtains qualitative comparison
to observations of such waves in the tank (e.g. Su, 1982 Fig. 11). The
simulations indicate that, unlike the L2 crescent pattern, such an L3 pat-
tern is non-stationary relative to the Stokes carrier. Furthermore, the L3

configuration is characterized by different crescent crest shapes at differ-
ent rows. This is indicated by the “high-high-low” (HHL) pattern of wave
crest amplitudes in Fig. 15.41. All these features match well experimental
observations of L3 crescent waves (Su, 1982).

The results in this section using direct QBEM MEL simulations show
that nonlinear evolutions of (linearly) unstable three-dimensional (class II)
modes co-propagating on a steep Stokes wave train provide the sufficient
mechanism for the development of crescent waves. This is confirmed by
qualitative and quantitative comparisons to the physical measurements of
crescent waves.

15.7.6 Application to Free-Surface Flow Over
an Impulsively Started Point Sink

We consider the fully-nonlinear MEL simulation of the incompressible
irrotational axisymmetric flow caused by an impulsively started point sink
beneath a free surface (Xue and Yue, 1998). This example illustrates an
application of the MEL approach to a vertically axisymmetric problem
(using a ring-source Green function) and the use of the matching technique
to achieve far-field closure. These two techniques in the context of the MEL
method were first developed in Dommermuth and Yue (1987b).

The fluid “withdrawal” problem has been the subject of many inves-
tigations in recent years because of its fundamental scientific interest and
engineering importance in applications such as optimal pumping from stor-
age tanks, ocean thermal power plants, cooling and solar ponds, as well
as water quality control in reservoirs and lakes. The bulk of the studies
of this problem are for the two-dimensional case assuming steady flow
(Peregrine, 1972; Vanden-Broeck et al., 1987; Tuck and Vanden-Broeck,
1984; Sahin and Magnuson, 1984; Hocking, 1985; Collings, 1986; Vanden-
Broeck and Keller, 1987; Hocking, 1988; King and Bloor, 1988; Mekias
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and Vanden-Broeck, 1989; Mekias and Vanden-Broeck, 1991; Mekias and
Vanden-Broeck, 1993). For infinite depth, stagnation-point solutions, those
characterized by a stagnation point at the free surface directly above the
sink, are found for Froude number Fr (based on the volume flux rate and
submergence) below a critical value. Above this value, steady-state so-
lutions have not been found, except for a cusp solution (the free-surface
profile is a downward facing cusp with its tip above the sink).

A notable exception to these steady solutions is Tyvand (1992) who
focused on the initial evolution of the free surface for the two-dimensional
problem using a small-time expansion. Arguing that nonlinear free-surface
effects are exactly cancelled by gravitational effects for a particular Froude
number, he finds the critical value of Fr ≡ Q/2π(gh3)1/2 = 1/3 for the
formation of a center dip, where Q is the volume flux rate of the sink,
h its submergence with respect to the far-field/initial free surface, and g

the gravitational acceleration. This value is much lower than the upper
limit of Fr = 1.42 of Hocking and Forbes (1991) based on a steady-state
analysis.

Investigations of the three-dimensional problem are fewer with the ex-
ception of linear analyses (e.g. Wehausen and Laitone, 1960) and exper-
iments (e.g. Lubin and Springer, 1967; and Miloh and Tyvand, 1993).
The salient feature of the experimental observations is the formation of
a dip on the surface above a critical Froude number. Assuming steady
state and a stagnation point at the surface above the sink, Forbes and
Hocking (1990) used a boundary-integral-equation (BIE) computation
as well as a small-Froude-number analysis to show that such a steady
stagnation-point solution exists for small Froude numbers, in this case
Fr ≡ Q/4π(gh5)1/2 < 0.509. Above this value of Fr, their calculation
fails to give a steady-state solution. Whether the unsteady withdrawal
flow with a cusp pointing towards the sink is the only permissible out-
come for large Froude number remains unclear. Zhou and Graebel (1990)
performed numerical simulations of drainage from a cylindrical basin us-
ing a nonlinear axisymmetric BIE method. Their results of the unsteady
problem show two different phenomena depending on the drain rate. For
relatively large Q, a dip forms at center of the free surface which is rapidly
drawn into the drain. For small Q, they observe an upward jet depend-
ing on the drain size. In their problem, the Froude number is defined
with respect to the tank radius. Since this is not the only physically im-
portant parameter, the precise dependence on Fr for this problem is not
established.
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More recently, Miloh and Tyvand (1993) extended the small-time per-
turbation analysis of Tyvand (1992) to axisymmetric flow and identified
the corresponding critical Froude number to be Fr = 15−1/2 ≈ 0.258. Pre-
sumably, a dip forms on the free surface and eventually collapses towards
the sink only for Fr greater than this value. This analysis depends only on
the third-order (leading order of gravitational effect) time derivative of the
center surface elevation at time t = 0, and its validity for the long time evo-
lution of the actual physical problem is unclear. Using direct fully-nonlinear
computations, Xue and Yue (1998) obtained a complete quantification of
the solution of this problem. They found that, depending on Fr, there are
three distinct flow regimes: (i) Fr < Fr1 ≈ 0.1924: a “sub-critical” regime
marked by a damped wave-like behavior of the free surface which reaches
an asymptotic steady state; (ii) Rr1 < Fr < Fr2 ≈ 0.1930: the “trans-
critical” regime characterized by a reversal of the downward motion of the
free surface above the sink, eventually developing into a sharp upward jet;
(iii) Fr > Fr2: a “super-critical” regime marked by the cusp-like collapse of
the free surface towards the sink. In the following, we outline the approach
and some of the key results of Xue and Yue (1998).

We consider the unsteady fully-nonlinear free-surface flow in deep water
above a submerged three-dimensional point sink started abruptly from
rest to a constant volumetric withdrawal rate Q. The problem is gov-
erned by a single dimensionless physical parameter, the Froude number
Fr ≡ Q/4π(gh5)1/2. We computationally map out the entire solution of
the problem, systematically varying Fr.

We assume that the fluid is inviscid and incompressible, and the flow
is irrotational. Surface tension is ignored. For simplicity, we choose time,
length and mass units such that the depth h, the gravitational acceler-
ation g, and the fluid density ρ are all unity. For numerical solution of
the initial-boundary-value problem, we adopt the fully-nonlinear mixed
Eulerian-Lagrangian (MEL) approach. We further assume axisymmetry,
and for the solution of the field equation (i.e. BVP) we use an axisymmetric
(ring-source) BIE technique (Dommermuth and Yue, 1987b). For compu-
tation, the domain in deep water is simply closed at some large constant
depth z = −H . For far-field closure in the horizontal plane, we match the
fully-nonlinear inner MEL solution to a general time-dependent linearized
outer wavefield at a fixed radius on a matching cylinder: r = R0. Since
the far-field wave amplitude must necessarily decay with radius in three
dimensions, for a suitably chosen matching radius R0 (based on nonlin-
earity only), fully-nonlinear inner simulations can be carried indefinitely in
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time (Dommermuth and Yue, 1987b). This is especially important for the
present problem where the approach to asymptotic steady state (or not) is
a central question. Details on the implementation of the matching can be
found in Dommermuth and Yue (1987b) where the validity and efficacy of
this (matching) scheme are demonstrated.

For the numerical solution of the axisymmetric BIE problem, the trace of
the free surface, bottom, and matching boundary is approximated by cubic
splines over (Lagrangian) nodes, and Φ and Φn are represented by linear
basis functions based on arclength between adjacent nodes. To maximize
stability of the time integration, for which we employ a consistent fourth-
order Runge-Kutta scheme, the nodes on the free surface are maintained
at equal arclength spacing via a regridding procedure after each time step.
To track the rapid cusp-like development of the free surface, dynamic time
stepping based on (15.7.32) is adopted.

The computational method for this problem is validated systematically
through convergence tests with varying the panel length ∆�, the depth of
the computational domain H , the matching radius R0, and the maximum
and minimum time-step sizes, ∆tmax and ∆tmin, which are the upper and
lower bounds of the time step ∆t in the dynamic time integration scheme.
The details can be found in Xue and Yue (1998). Systematic tests confirm
the generally quadratic and fourth-order convergence rates of the absolute
error with ∆� and ∆t, respectively. Based on convergence tests for the full
range of Fr we consider, we choose for all our computations: ∆� = 0.05,
∆tmax = 0.032, ∆tmin = 0.001, and R0 = 6. The expected error in the
free-surface elevation is less than O(1%) in all cases shown below.

Sub-critical regime: Fr < Fr1 ≈ 0.1924

In this sub-critical regime, the flow is marked by a damped wave-like be-
havior of the free surface which eventually tends to an asymptotic steady
state. Figure 15.42 shows the time-histories of the free-surface elevation at
specific radii. At each r, the free surface behaves like a damped oscillator
eventually reaching an asymptotic steady state. The free surface near the
origin initially goes down, reaches a minimum value, then rises and settles
towards an asymptotic value in an oscillatory manner emitting outwardly
propagating radial waves in the process. Note that with the use of the
matching boundary, we are able to continue simulations to well beyond
O(10) characteristic time (limited only by computational effort).

For sufficiently small Fr, one may apply linearized free-surface boundary
conditions throughout, and the solution of the linearized problem can be
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Figure 15.42: Time histories of the free-surface elevation for sub-critical Fr = 0.1 at
different radii r = (1) 0; (2) 1; (3) 2; (4) 4; (5) 6. The dashed line is the elevation at
r = 0 from linear theory according to Eq. (15.7.40) (from Xue and Yue, 1998, J. Fluid
Mech. Reproduced by permission of Cambridge University Press).

written in closed form (Wehausen and Laitone, 1960). The corresponding
free-surface elevation is given by

ζ(r, t) = −2Fr

∫ ∞

0

k1/2 sin(k1/2t)e−kJ0(kr) dk . (15.7.40)

It is easy to see (e.g. using integration by parts) that the integral terms in
(15.7.40) vanish with increasing time for any finite r, so that the linearized
result does predict asymptotic steady state. In Fig. 15.42, we plot the linear
solution of the free-surface elevation at the origin ζ(0, t). It is seen that the
linear solution behaves similarly to the fully-nonlinear result.

Super-critical regime: Fr > Fr2 ≈ 0.1930

For Fr greater than a critical value of Fr2 ≈ 0.1930, the solution is char-
acterized by a rapid cusp-like collapse of the free surface towards the sink.
The decrease of the surface elevation is everywhere monotonic in time.
We are able to compute well after the cusp is developed, limited by the
spatial discretizations and minimum temporal increment we use. Eventu-
ally, as the free surface approaches the sink, the velocity asymptotically
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Figure 15.43: Free-surface profiles at different times for super-critical Fr = 0.24. The
horizontal and vertical scales are different, and the sink is at z = −1 (from Xue and Yue,
1998, J. Fluid Mech. Reproduced by permission of Cambridge University Press).

develops an inverse square singularity, and the simulations finally break
down.

Figure 15.43 shows typical super-critical results for the case of Fr = 0.24
for the instantaneous free-surface profiles ζ(r, t) at different times of the
development of the center dip. The decrease in elevation is everywhere
monotonic in time and monotonically increasing with decreasing radial dis-
tance for all time, eventually developing a cusp-like profile. Such a solution
behavior for the super-critical regime can be expected from physical argu-
ments at least in the limiting case. As Fr increases, the effect of the sink
eventually dominates that of gravity, and the solution then resembles that
of a single point sink.

The overall dynamics can be elucidated by examining the pressure field
(e.g. Zhou and Graebel, 1990). Figure 15.44 plots the pressure contours at
three instants corresponding to early, intermediate and late stages of the
free-surface collapse. At an early time (Fig. 15.44(a)), there are two zero
pressure lines: the free surface, and an another line inside the fluid do-
main around the sink. There exist then a region of positive pressure and a
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Figure 15.44: Constant pressure contours for super-critical Fr = 0.24 at three stages of the evolution at t = (a) 0.288; (b) 0.592; (c)
0.828. The vertical and horizontal scales are different (from Xue and Yue, 1998, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).
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pressure maxima above the sink below the free surface. As time progresses
(Fig. 15.44(b)), the interior zero pressure line connects to the free surface,
eliminating the positive pressure region above the sink. The pressure gra-
dient on the centerline above the sink obtains a single sign (directed from
the sink to the free surface). This pressure gradient increases rapidly as
the free surface drops closer to the sink (Fig. 15.44(c)). The simulation
eventually breaks down when the free surface reaches the location of the
sink.

Trans-critical regime: 0.1924 ≈ Fr1 < Fr < Fr2 ≈ 0.1930

As we pointed out, the sub-critical solution behavior (with an asymptotic
steady state) is suggested, at least for small Fr, from linear theory, while
the super-critical solution (with a developing center dip) can be anticipated
from physical arguments, at least in the limit of very large Fr. Careful and
systematic search of the solution space, however, reveal clearly a small but
distinct trans-critical regime.

The solution in this trans-critical regime is characterized by a sharp
reversal near the origin of the initially downward motion of the free surface
eventually developing into a sharp upward jet immediately above the sink.
Such an upward jet has some resemblance to that observed in Zhou and
Graebel (1990) for a tank with small draining rate. Similar jets are also
often observed when the cavity in a bubble collapses or when steep gravity
waves approach a vertical sea-wall or a ship’s hull (Longuet–Higgins and
Oguz, 1997).

A plot of the flow field after the free-surface reversal reveals clearly the
flow structure. This is shown in Fig. 15.45 at t = 1.38 which is in the
final stage of the upward jet development. The most prominent feature is
the presence of a stagnation point above the sink (at z ∼ −0.52) similar to
that in the case of sub-critical withdrawal. A dividing streamline emanating
from this stagnation point and becoming almost parallel to the free surface
some distance away divides the flow field into two regions. In the lower
region, the flow converges smoothly towards the sink. In the region above
the dividing streamline, the velocity is tangent to the free surface some
distance away forming a slightly downward converging jet-like sheet. As
this radial jet converges towards the center, the velocity is directed upwards
over a very small distance, reaching large magnitudes at the origin near the
free surface below a sharp upward jet.

We remark that the present results are for an abrupt start-up of the
sink. For the effect of gradual start-up, the reader is referred to Xue (1997)
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Figure 15.45: Velocity field for trans-critical F = 0.1927 at t = 1.38 for (a) “outer”;
and (b) close-up views. In (b) the dividing streamline ending at the stagnation point
near (0,−0.52) is also plotted. The sink is at z = −1 and the vertical and horizontal
scales are equal in each case. Reference vectors are given above (from Xue and Yue,
1998, J. Fluid Mech. Reproduced by permission of Cambridge University Press).

and Xue and Yue (1998). The problem considered here of a fixed sink and
constant volume flux rate is also a special case. The computational method
used here is, in fact, general and can be extended in straightforward ways
to account for effects such as a sink in motion, time varying drain rates,
and the presence of boundaries.

15.7.7 Application to Plunging Wave Impact
on a Vertical Wall

Large pressures and loads associated with breaking wave impact on sea
walls, ships, and offshore structures are important subjects in ocean engi-
neering. The magnitudes of the impact pressure maxima are related to the
type of breaking waves, among which plunging breakers usually produce
the largest impact pressures on the structures. In this section, the impact
of a plunging breaker on a rigid vertical wall is considered.
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Both field measurements (Miller et al., 1974; Blackmore and Hewson,
1984; Führböter, 1986; Whillock, 1987) and model experiments (Bagnold,
1939; Hayashi and Hattori, 1958; Kirkgöz, 1990, 1991; Schmidt et al., 1992;
Oumeraci et al., 1993; Hattori et al., 1994, for impact of shallow-water
breaking waves; Chan and Melville, 1988, Chan, 1994, for impact of deep-
water breaking waves) have shown that the impact pressure history due to a
plunging breaker striking a vertical wall is of high intensity (10 ∼ 100 kPa)
and short duration (10−1 ∼ 10−3 sec.). One mechanism responsible for the
generation of high pressure intensities is attributed to the direct collision
of the fluid body in the region of the plunger tip and the wall surface
(Lundgren, 1969; Schmidt et al., 1992). Another mechanism is related to
the effect of an air cushion trapped between the concave boundary of the
plunger surface and the wall (Bagnold, 1939; Hayashi and Hattori, 1958;
Chan and Melville, 1988; Hattori et al., 1994). These studies also show
that the measured magnitude and rise time of the impact pressure maxima
are marked by large scatter and lack of repeatability, even under nearly
identical experimental conditions. Furthermore, they are highly sensitive
to local impact conditions, such as the inclination angle and position of
the wall relative to the approaching breaker (e.g. Whillock, 1987; Kirkgöz,
1990, 1991; Chan and Melville, 1988).

Significantly, effective scaling laws for extrapolating from model to pro-
totype scales are as yet unavailable (e.g. Führböter, 1986), in large part due
to the lack of understanding of mechanisms associated with the trapped air.
Bagnold (1939) presented a piston model to approximate the trapped-air
impact process as an adiabatic compression of a column of fluid mass in an
air-filled rigid cylinder. His model correlates the impact pressure maxima
to the ratio of the length of the column of the ‘kinetic mass’ of water to the
thickness of the air pocket. Führböter (1986) pointed out that different pa-
rameters, and hence scaling laws, must be employed in different flow regions
in the impact process. Stive (1984) indicated that the parameter P0/ρU2

must be scaled if the deceleration of the water after impact is governed by
the compression of the enclosed air. Here, P0 is the initial air (atmospheric)
pressure in the air pocket, ρ the fluid density, and U the (initial) impact
velocity of breaking waves normal to the wall. A number of other scaling
criteria have also been proposed in wave impact and water-entry problems
(Whiteman and Pancione, 1973; see also summaries in Hayashi and Hattori,
1958; Stive, 1984; Blackmore and Hewson, 1984).

Although there are many experimental studies on breaking wave im-
pact, few corresponding analytical and numerical studies are available. The
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essential physics involved in the impact process however can be captured in
the simplified theoretical framework of potential flow. Compressibility of
the fluid is ignored in view of the fact that the impacting plunging breaker
is wedge-like as it strikes the wall and that the impact velocity is much less
than the speed of sound in the fluid (Korobkin and Pukhnachov, 1988). Fur-
thermore, viscosity and surface tension effects can be neglected since inertia
forces are dominant during the impact (Cooker and Peregrine, 1991).

In this context, numerical simulations were performed by Vinje and
Brevig (1980, 1981) who employed a MEL boundary-integral method to
calculate the forces on solid bodies due to plunging breaker impact. Due
to difficulties in evaluating the impact pressures, particularly at the initial
stage of the impact, the forces were obtained by calculating the time deriva-
tive of the pressure impulse. Using classical impulse theory (Lamb, 1932)
and the MEL boundary-integral method of Dold and Peregrine (1986),
Cooker and Peregrine (1992, 1995) obtained the pressure impulse due to
a breaking wave striking a vertical wall. Their theory was used by Chan
(1994) to compare with experiments, and it was extended by Topliss (1994)
to cases involving waves sloshing in a container, and wave impact with en-
trained air and its effect on a flexible wall. Since these studies rely on the
impulse theory, they do not provide a complete description of the impact
process and require ad hoc parameters to estimate the size of the impact
area and the duration of the impact.

Despite recent progress, a number of important questions associated
with the plunging wave impact problem remain unresolved. For instance:
(1) How can the initial stage of the plunger impingement on the wall be
properly characterized and simulated? (2) What are the most important
scaling parameters governing the trapped-air wave impact process? (3)
How do the maximum value and duration of the impact pressure scale with
these parameters? To assist in answering these open questions, Zhang et al.
(1996) performed a numerical study of the impact of a two-dimensional
plunging wave on a rigid vertical wall in the context of potential flow. The
plunging wave generated by a piston wavemaker is simulated using a MEL-
BIE scheme (described in Section 15.6.1). The initial stage of the impact
is characterized by an oblique impact of a liquid wedge on the wall and de-
scribed by a similarity solution. Following the initial impact, the simulation
with a trapped air pocket is continued using MEL with the trapped air de-
scribed by polytropic gas law. Based on systematic MEL simulations (sixty
in all) and direct comparisons to experiments, they concluded that the max-
imum wall impact pressure can be well scaled by the local parameters of
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the breaker at the instant of impact: U , the horizontal impact velocity;
h, the depth of the plunger tip; � and H , the width and height of the
air cushion; and P0 the initial air pocket pressure (atmospheric pressure).
Among these, the dimensionless parameters P0/ρU2 and �/h are found to
be most important, and provide the scaling laws for the maximum impact
pressure, Pm/ρU2, and the rise time of this pressure, TrU/

√
H�. In the

following, we briefly outline their simulation procedure and present repre-
sentative results of the free-surface profiles and maximum impact pressure
on the wall during impact.

Simulation scheme

The simulation of a plunging wave impacting a vertical wall can be divided
into three stages: (i) the generation of the plunger to the point just before
the impact (0 ≤ t < tI); (ii) the initial stage of the impact from the instant
t = tI when the plunger tip touches the wall, to the instant t = tI +∆tI just
after the converging plunger jet tip converts into a diverging jet spreading
along the wall; and (iii) the subsequent evolution (t > tI + ∆tI) involving
a trapped air pocket. In the present approach, the direct MEL simulations
are carried out for the stages before and after the initial impact, and a
similarity solution is derived and used for the initial impact stage (ii).

Definition sketches corresponding to stages (i) and (iii) are shown in
Figs. 15.46(a) and 15.46(b), respectively. The fluid flow in a rectangular
numerical tank of length L0 and initial water depth h0 is described by
Cartesian coordinates (x, y) and time t. The origin of the coordinate system
is located at the intersection between the still water level (y = 0) and the
y-axis which is directed vertically up. A piston wave maker, SL, is located
at x = 0 initially, and a rigid wall, SR, is on the right end of the tank
at x = L0. The bottom of the tank and the free surface are denoted as
SB and Sf , respectively. Unless otherwise noted, we non-dimensionalize
the problem, hereafter (in this section), by selecting mass, length and time
units such that the fluid density ρ ≡ 1, the gravitational acceleration g ≡ 1,
and initial tank depth h0 ≡ 1.

At t = 0, the piston wave maker SL moves abruptly from rest to a
constant velocity U0. It travels a distance L1 and then stops. Due to the
phase focusing of the different frequency components, a plunging breaker
is created towards the far wall. To provide an additional adjustment of
the characteristics of the resulting breaking wave, a channel of length Le

and height he at the bottom of SR is opened at t = 0, maintained up
to the instant of impact tI , and is closed thereafter. For definiteness, we
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(a)

(b)

Figure 15.46: Definition sketches for a plunging wave impact on a vertical wall in a
numerical tank for (a) before impact; and (b) after impact (from Zhang et al., 1996,
J. Fluid Mech. Reproduced by permission of Cambridge University Press).

fix Le = L0/5, and set the horizontal exit velocity in the channel to be
uniform given by Ue =

√
10yR, where yR is the height of the water line on

SR. The channel height he is left as a parameter of the simulation to be
adjusted. This is a convenient procedure to create trapped air pockets of
different sizes and at different locations on the wall. Different breaking wave
profiles and kinematics are obtained by numerical testing and adjusting the
parameters L0, L1, U0 and he. Typically, a plunging breaker impacts SR in
the form of an oblique wedge. After impact (see Fig. 15.46(b)), this plunger
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tip spreads out into a wetted area SW on the wall, trapping an air pocket
below between the interior free surface of the breaker, Sa, and the wall.

During the short period of the initial stage of impact, tI ≤ t ≤ tI +∆tI ,
the effect of the trapped air represented by its volume change is negligible,
and a local solution can be obtained by modeling the jet tip as a liquid
wedge moving with uniform constant velocity towards the plane wall. A
similarity solution for the case of non-symmetric oblique impact of a liquid
wedge can be obtained using the method of Borisova et al. (1959) who
considered the case of symmetric normal impact.

For t > tI +∆tI , the trapped air significantly affects the impact process,
especially the maximum impact pressure. On Sa, as a dynamic bound-
ary condition, the (water) pressure equals the trapped air pressure Pa(t).
Assuming an adiabatic process in the air pocket, Pa is modelled using a
polytropic gas law (e.g. Cole, 1948),

Pa(t)
P0

=
(

V0

Va(t)

)γa

(15.7.41)

where Va(t) is the instantaneous volume (area) of the air pocket, V0 its
initial value at impact, and γa the polytropic gas constant. For air, γa = 1.4
is used in the simulations. One simple way to account for air leakage effects
is to adjust the value of γa.

The MEL simulations for the plunging wave impact on a vertical wall
are carried out starting from rest (t = 0) until the time of impact at t = tI .
During the initial stage of the impact, tI < t < tI + ∆tI , the similarity
solution of oblique impact of a liquid wedge on a wall is applied. At t =
tI + ∆tI , the numerical solution at a small horizontal distance from the
wall is then matched to the similarity solution. The numerical simulations
are continued again with a trapped air pocket for t > tI + ∆tI . Such
a patching allows a smooth continuation of the MEL simulation and a
convergent pressure history. With appropriate treatment of the spray roots
(e.g. Zhao and Faltinsen, 1993), the MEL simulations can be carried out
through a number of oscillations of the air pocket.

Direct comparison with experiments

To assess the validity and usefulness of the simulation scheme, a direct
simulation of and comparison to the experiment of Chan and Melville
(1988) is performed for the impact of a deep-water breaking wave against
a vertical wall. The specific case considered corresponds to case “(b)” of
Chan and Melville (1988). The numerical simulation duplicates exactly the
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experimental conditions in terms of the vertical wall location, L0 = 11.75,
and the paddle motion of the wave maker (Dommermuth et al., 1988).
In the experiments, the physical still water depth is h0 = 0.6 m, and for
comparison to the measurements, the density of water ρ, gravity g and
atmospheric pressure P0 are set at 103 kg/m3, 10 m/s2 and 102 kN/m2,
respectively.

Figure 15.47 shows the free-surface profiles before and after impact at
different time instants obtained from nonlinear MEL simulations and from

(a)

Figure 15.47: (a) Surface profiles of the experiments of Chan and Melville (1988) ob-
tained from high-speed films at ca. 1100 frames per second. The time from the start
of the wave maker in seconds for each profile are: (i) 17.014; (ii) 17.004; (iii) 16.984;
(iv) 16.979; (v) 16.968; (vi) 16.964; (vii) 16.944; and (viii) 16.924. Elevations relative
to still water level (SWL) are also indicated. The parameters of the experiment are:
h0 = 0.6 m, L0/h0 = 11.755, and characteristic incident wave period Tc = 1.136 s and
wavelength Lc = 1.936 m. Free-surface profiles from nonlinear MEL simulations before
impact (b) at t − tI = −0.134 (— ·· —); −0.072 (— · — ); −0.053 (—––); −0.017 (- -
- - ); −0.001 (——); and during impact (c) at t − tI = 0 (——); 0.017 (- - - - ) ; 0.026
(— · — ); 0.039 (— — —); 0.054 (— ·· —) (from Zhang et al., 1996, J. Fluid Mech.
Reproduced by permission of Cambridge University Press).
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Figure 15.47 (Continued)
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experiments of Chan and Melville (1988). Before impact, at t−tI ≈ −0.053,
as the contact point on the wall ascends to about y = 0.08, the computed
height of the plunger tip is 0.14. The corresponding value from the exper-
iment (cf. profile (vii) in Fig. 15.47(a) is about 0.15 (the conversion factor
from the experiment is Lc/h0 � 3.23). At the instant of impact, the height
of the computed impact point is approximately 0.16, while this value in the
experiment is between 0.17 ∼ 0.20. The time of impact is tI � 51.18 from
the calculation, while the estimated value from the experiment is between
51.15 ∼ 51.19. As for the size of the air pocket at impact, an accurate
reading from the experiment is difficult, although a qualitative estimate is
still possible. From Fig. 15.47(a), if one measures the vertical distance be-
tween z/L = 0.051 and 0.064 and estimates the actual pocket dimension at
the instant of impact to be approximately half that distance, one obtains a
value of H ≈ � ≈ 0.021. This is to be compared with calculated values of
H = 0.016 and � = 0.013. The qualitative agreement is still reasonable.

In the experiment of Chan and Melville (1988), the maximum horizontal
crest speed of the breaking wave is measured in the absence of the vertical
wall to be about 2 m/s (U � 0.82), but no impact velocity at the instant of
the impact is given. The numerical simulation shows a horizontal velocity
of the plunger tip, U , increasing from ∼ 1.0 at an instant t − tI � −0.07
before impact to ∼ 1.37 at the instant of impact. The upward vertical tip
velocity of the spreading jet on the wall just after impact at y = 0.17 and
t − tI � 0.0012 is about 5.4. From Fig. 10(j) of Chan and Melville (1988),
the vertical velocity of the jet tip at a similar stage is estimated to be about
4.9. Overall, the simulation of the impact wave profile and velocities agree
with the experimental values to within about 10%.

Figure 15.48 compares the computed and measured maximum impact
pressures on the wall. The simulation results, Fig. 15.48(a), give the wall
pressure distribution at the instant, Tr, when Pm is reached. Our simu-
lations show that the maximum pressures in the vicinity of Pm (close to
the air pocket) are also reached at approximately the same time instant.
Thus the pressure profile(s) in Fig. 15.48(a) near Pm can be considered to
be also the maximum wall pressures at these locations. Far from Pm, this
is no longer true, and the value there should not be considered to be the
maxima reached. The main interest, of course, is in Pm and values in its
vicinity.

For comparison, the measured peak pressures at seven locations from
repeated runs of Chan and Melville (1988) (see also Chan, 1986) are plotted
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Figure 15.48: Wall impact pressure profile at the instant Pm is reached. (a) Numerical

simulations for: γa = 1.4 (at t − tI = 0.003) (——); γa = 0.5 (at t − tI = 0.004)
(- - -); and γa = 0.5 for an elastic wall (at t − tI = 0.004) (— · —). (b) Experimental
measurements of Chan (1986) and Chan and Melville (1988) in repeated runs at seven
locations. The three vertical bars indicate respectively the mean value and mean plus
and minus one standard deviation of the measured values (from Zhang et al., 1996, J.
Fluid Mech. Reproduced by permission of Cambridge University Press).
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on the same scale in Fig. 15.48(b). Comparing the two, we note that the
computed Pm (using γa = 1.4) is � 20.2 which is reached at t−tI � 0.003 at
a location of y � 0.16. This maximum pressure is about three times (∼ 4.5
standard deviations) higher than the mean measured value of the maxi-
mum wall pressure (Pm � 6) which is obtained at approximately the same
location. Away from Pm, the measured maximum values decrease rapidly
with depth and are lower than those from the computed profile. Indeed, the
overall qualitative comparison would be better if the computed profile(s)
can be reduced (shifted) by a constant value. For discussions on the effects
of other physical factors such as spray, air leakage, and hydroelasticity, the
reader is referred to Zhang et al. (1996).

15.7.8 Application to Nonlinear Wave Interaction
with Floating Bodies

As a final illustration of the MEL approach, we apply the method (using
QBEM) to the problem of nonlinear wave diffraction of periodic Stokes
waves by a surface-piercing truncated vertical cylinder. Of particular inter-
est is the quantification of high-order high-frequency “ringing” loads on the
cylinder that have been observed in the field and measured in experiments.

Large compliant offshore structure with high-natural-frequency low-
damping resonances are often observed to be excited by high-harmonic
nonlinear wave loads. Such phenomena are termed “ringing” and have been
reported in a number of recent studies (e.g. Davies, Leverette and Spillane,
1994; Krokstad and Stansberg, 1995; Chaplin, Rainey and Yemm, 1997).
To evaluate the importance of nonlinear diffraction effects to ringing exci-
tation, frequency-domain perturbation analysis can be extended to higher-
order. The extension to second-order is now well established (e.g. Kim and
Yue, 1989; Chau and Eatock Taylor, 19923). The observation that ring-
ing often occurs at the third (or even higher) harmonic of the fundamental
incident frequency spurred recent perturbation analysis at the third order.
These include the third-order diffraction theory of Faltinsen, Newman and
Vinje (1995), who made a further assumption of long incident waves; and
Malenica and Molin (1995), who solved the problem for arbitrary incident
wavelength. Both theories apply (only) to the case of a vertical circular

3For a variation of Chau and Eatock Taylor (1992) which can be extended to a sea bed
of mild slope, see Section 13.12.
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cylinder in a regular (mono-chromatic) incident wave. The predictions of
Faltinsen, Newman and Vinje (1995) and Malenica and Molin (1995) differ
appreciably in the magnitude of the third-order force (except for very small
incident frequency) and markedly in the phase of that force. In addition to
expected difficulties in extending such theories to more general geometries,
fully-nonlinear effects for steep waves may also limit the usefulness of such
perturbation approaches. Given the analytic complexity even at third or-
der, extension to multiple wave interactions and especially to higher orders
(which may be called for in some applications) is formidable. Recently,
Rainey (1995) refined Morison’s formula to include third-order effects of
the incident wave field. Chaplin, Rainey and Yemm (1997) showed that
this simple model tends to substantially over-estimate the ringing wave
excitation even for a small cylinder.

Given the physical nature of this problem, a perhaps more efficacious
approach is to tackle the nonlinear wave-body interaction problem directly
in time domain and then obtain the harmonic forcing of interest from the
nonlinear limit-cycle force histories. In this direction, Ferrant (1996) de-
veloped a linear boundary element method based on the semi-Lagrangian
formulation and applied it to study the problem of wave diffraction of
mild long waves by a bottom-mounted vertical cylinder. Recently, Liu,
Xue and Yue (2001) employed the MEL/BIE approach with quadratic
boundary elements for a fully-nonlinear time-domain simulation of the
diffraction of Stokes incident waves by a surface-piercing cylinder. Their
prediction of the high-harmonic (ringing) force components compares re-
markably well to available experimental measurements for the third har-
monic third-order horizontal forcing on the cylinder. These results are
outlined below.

We consider the fully-nonlinear three-dimensional wave diffraction by
a surface-piercing body in a Stokes incident wave. To be specific, we
perform fully-nonlinear three-dimensional MEL simulation of the diffrac-
tion of an exact (2D) Stokes wave train (Schwartz, 1974) by a surface-
piercing vertical truncated circular cylinder radius R and (still-water)
draft D. The Stokes wave has wavelength λ = 2π/k, fundamental pe-
riod T = 2π/ω, and steepness kA. We consider the initial-value problem
(cf. Section 15.2) to obtain the nonlinear (horizontal) force history F (t).
The simulations are continued until (limit-cycle) steady-state F (t) is ob-
tained from which the harmonic force amplitudes and phases are extracted
by Fourier analysis.
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The approach to steady state of the normalized complex amplitudes of
the harmonic components is monitored by using Fourier integration over
moving time:

f (0)(t) = (kA)−2 · 1
T

∫ t+T

t

F (τ) dτ , (15.7.42)

f (m)(t) = (kA)−m · 2
T

∫ t+T

t

F (τ)einωτ dτ , m = 1, 2, . . . ; (15.7.43)

where the leading-order magnitudes of the harmonics are factored out. The
amplitude of f (m)(t) is simply |f (m)(t)|, while its phase (relative to the
incident wave) is:

θ(m)(t) ≡ 1
m
{arg[f (m)(t)] + 2nπ} , m = 1, 2, . . . ; n = 0,±1,±2, . . . .

(15.7.44)

In the simulation, for spatial discretization, Nc × Nz QBEM nodes on
the vertical cylinder surface are used. For the cylinder geometries consid-
ered, typically Nz = Nc/2 is used. Accounting for elements on the cylinder
bottom, we thus have a total of 9N2

c /64 (9-node) quadratic elements on
the body surface. (For a doubly-periodic computational domain of length
L/λ = 1 and width W/L = 0.6, the total number of free-surface quadratic
elements is approximately 0.006N2

c LW/R2.) For time evolution, dynamic
time stepping with Courant number Cn = 0.2 and ∆tmax = T/100 is em-
ployed. Due to the transverse symmetry of the problem, only half of the
computational domain and cylinder are used in the simulation.

A main interest is to predict the (steady-state) harmonic force ampli-
tudes/phases using fully-nonlinear time-domain (MEL) simulations. In par-
ticular, we seek to obtain prediction up to third harmonic m = 3, for which
experimental (ringing force) data are available. For the regular (exact)
Stokes incident waves, we study three wavelengths (relative to body di-
mension) given by: kR = 0.22, 0.29 and 0.39; and three wave amplitudes
to wavelength ratios: kA = 0.130, 0.148 and 0.20 (A/R varies from 0.34 to
0.91).

Based on convergence tests, we use Nc = 24, and continue simulations
up to tS = O(5T ). With this tS , a (doubly periodic) computational domain
size L = 3λ and W = 1.5λ is found to be sufficient. With these compu-
tational parameters, for all cases, relative mass and energy are conserved
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to within O(10−7) and O(10−4) respectively; and convergence in f (m) is
expected to be less than O(1%) for m = 0, 1 and 2; and well within O(5%)
for m = 3.

First- and second-harmonic forces

Figure 15.49 shows the approach to steady-state of the harmonic ampli-
tudes (m = 0, 1, 2, 3) for the problem with kR = 0.22 and kA = 0.133. At
t/T = O(3.5), the coefficient |f (1)| has converged to less than 1%, while
|f (2)| exhibits a small oscillation of less than 2% amplitude. Table 15.9
shows the comparisons of predicted |f (m)|, m = 1, 2 (MEL) with: exper-
imental measurements (Krokstad and Stansberg, 1995, hereafter MARIN-
TEK); second-order frequency-domain (axisymmetric) computations (Kim
and Yue, 1989, hereafter KY); and the (frequency-domain) small-body
asymptotic theory of Faltinsen, Newman and Vinje (1995) (hereafter FNV).
It should be pointed out that the fully-nonlinear time-domain prediction
differs from frequency-domain results (even for the first harmonic) because
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Figure 15.49: Time evolutions of the magnitude of the harmonic components, |f(m)|,
m = 0 (— · —), 1 ( – – –), 2 (- - -) and 3 (——), of the nonlinear longitudinal force
F (t) on a vertical circular cylinder in Stokes incident waves (kR = 0.22, kA = 0.133,
D/R = 3) (from Liu et al., 2001, J. Fluid Mech. Reproduced by permission of Cambridge
University Press).
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Table 15.9: Comparisons of the first- and second-harmonic force amplitude |f(1)|
and |f(2)| on a truncated vertical cylinder (D/R = 3) among: experimental mea-
surements (Krokstad and Stansberg, 1995, MARINTEK); fully-nonlinear (MEL)
simulations; second-order frequency-domain (axisymmetric) computations (Kim
and Yue, 1989, KY); and (c) (frequency-domain) small-body asymptotic the-
ory of Faltinsen, Newman and Vinje (1995) (FNV). For MARINTEK and MEL,
kA = 0.133 and 0.148 for kR = 0.22 and 0.39 respectively.a

|f(1)|
(ρgR3)

|f(2)|
(ρgR3)

kR = 0.22 kR = 0.39 kR = 0.22 kR = 0.39

MARINTEK 13.64 11.07 10.85 3.04
MEL 13.41 11.18 12.97 2.87
KY 13.28 10.99 14.86 4.38
FNV 13.93 11.31 16.64 9.85

aFrom Liu et al. (2001).

the former, in general, contains all other nonlinear interactions also operat-
ing at this harmonic (Section 15.3.4). In this sense, the frequency-domain
result of harmonic m is merely the leading-order term of the fully-nonlinear
m-th harmonic amplitude. With this understanding, the differences be-
tween MEL and KY predictions are expected to increase with nonlinearity.
Thus the differences between MEL and KY in Table 15.9 increase with kA

and kR, as expected.
Comparing MEL to MARINTEK, the values for |f (1)| agree to about

1 ∼ 2%, while for |f (2)| the discrepancies range from 6 ∼ 19%. In contrast,
FNV substantially over-predicts the harmonic amplitudes in all cases, with
the over-prediction increasing rapidly with increasing kR. This is not un-
expected since FNV is formally a low-kR and low-kA theory with a range of
validity for the wavelength likely to be lower than the kR range considered
here (see e.g. Malenica and Molin, 1995).

Third-harmonic force

This is the case of main interest in the context of ringing excitations.
Table 15.10 compares the values of |f (3)| obtained from: fully-nonlinear
(MEL) simulations; experiments (MARINTEK); small-body asymptotic
theory (FNV); and the third-order (frequency-domain) theory of Malenica
and Molin (1995) (hereafter MM). Considering that the quantities in ques-
tion are third order (in wave steepness), the present MEL results com-
pare remarkably well with the experimental measurements of MARINTEK
with the differences between the two within O(2%) for the shorter incident
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Table 15.10: Comparisons of the third-harmonic force amplitude
|f(3)|k3/(ρg) on a truncated vertical cylinder (D/R = 3) among: ex-
perimental measurements (MARINTEK); fully-nonlinear (MEL) sim-
ulations; small-body asymptotic theory (FNV); and the third-order
(frequency-domain) theory of Malenica and Molin (1995) (MM). For
MARINTEK and MEL, kA = 0.133, 0.130 and 0.148 for kR = 0.22,
0.29 and 0.39 respectively.a

kR = 0.22 kR = 0.29 kR = 0.39

MARINTEK 0.27 0.489 0.50
MEL 0.33 0.47 0.50
FNV 0.30 0.51 0.95
MM 0.28 0.52 0.97

aFrom Liu et al. (2001).

wavelengths kR = 0.29 and 0.39, and O(20%) for the longer wavelength
kR = 0.22. In the physical experiment, the lower kR ∼0.22 case has an
associated Keulegan-Carpenter number Kc ≡ πA/R ∼2, and non-potential
flow effects may play a (minor) role. To assess this, we add a Morison-type
quadratic drag term to F (t):

FD(t) = F (t) + ρRCD

∫ ζ

−D

U |U | dz , (15.7.45)

where CD is an empirical drag coefficient, and U = U(z, t) is the (nonlinear)
incident wave field velocity on the central axis of the cylinder. With CD = 1,
we obtain |f (3)

D |k3/(ρg) = 0.291 which halves the original difference and is
now ∼ 12% above the measurement value. For the cases with KR = 0.29
and 0.39, Kc = 1.4 and 1.2, respectively, and non-potential flow effects are
much less important.

The frequency-domain perturbation theories compare reasonably well
to each other and acceptably so relative to MEL and experiments for the
smaller kR cases. As kR increases, FNV and MM increasingly over-predict
|f (3)|, and for the kR = 0.39 case we studied they exceed measurements and
fully-nonlinear computations by almost a factor of 2. As noted earlier, fully-
nonlinear time-domain MEL differs from frequency-domain perturbation
theories because, in addition to the leading-order term(s) perturbation the-
ories predict, MEL contains also higher-order nonlinear contributions at a
given harmonic. Such higher-order contributions increase with nonlinearity.
In general, nonlinearity increases due to two independent factors: increase
in the incident wave steepness kA, and increase in the (local) diffracted wave
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Figure 15.50: Phases (relative to incident wave) of the longitudinal force harmonics
on a vertical circular cylinder (D/R = 3) in Stokes incident waves: (a) kA = 0.133,
kR = 0.22; and (b) kA = 0.130, kR = 0.29. The results shown are: fully-nonlinear MEL
θ(m)(t), m = 1 (– – –); 2 (- - -); 3 (——); and frequency-domain predictions of θ(3)

from MM and FNV (from Liu et al., 2001, J. Fluid Mech. Reproduced by permission of
Cambridge University Press).
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steepness which generally increases with the diffraction parameter kR. Our
computations and experimental measurements indicate that, for this range
of kR, the latter factor is dominant. This explains the substantially larger
discrepancies in the frequency-domain perturbation results for larger kR.

For the range of kR in Table 15.10, the FNV and MM predictions of
|f (3)| agree reasonably well with each other. As shown in Fig. 15.51, ap-
preciable differences in |f (3)| appear for kR > 0.4. This is somewhat in
deviance with the results of Malenica and Molin (1995) which show a large
discrepancy between FNV and MM (in the contribution associated with the
product of the first- and second-order potentials) even for very small kR

(50% difference for kR ∼ 0.035). The significant difference between FNV
and MM, however, is the prediction of the phase θ(3) of f (3). According
to FNV, θ(3) = π/6 + 2nπ/3 (for some integer n) and is independent of
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Figure 15.51: Third-harmonic “ringing” horizontal wave force amplitude |f(3)|k3/ρg
for a surface-piercing vertical circular cylinder (D/R = 3) in Stokes incident waves of
different (relative) wavelengths kR and amplitudes kA. The results shown are: experi-
mental measurements, MARINTEK for kA ∼ 0.15 (�) and 0.20 (�); and fully-nonlinear
MEL simulations for kA ∼ 0.10 (

⊗
/©, with/without drag correction), 0.15 (�/�,

with/without drag correction) and 0.20 (�). The range of Keulegan-Carpenter numbers
Kc ≡ πA/R for the range of kA considered are indicated. For comparison, frequency-
domain perturbation results of FNV (- - -) and MM (——) (which are independent of
kA after the normalization in |f(3)|) are also plotted (from Liu et al., 2001, J. Fluid
Mech. Reproduced by permission of Cambridge University Press).
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kR. As expected, θ(3) from the complete (arbitrary kR) third-order MM
varies with kR. Figure 15.50 shows the time histories of θ(m), m = 1,
2, 3 from fully-nonlinear MEL simulations for two values of kR (see Xue
(1997) for additional cases). For the simulation time used, the time his-
tories have long approached their limit-cycle values. These values can be
compared to the (frequency-domain) predictions of FNV and MM, which
are also shown. The present fully-nonlinear predictions tend to agree with
MM. The comparison is better for lower kR values (as expected from the
discussions of the diffracted wave nonlinearity earlier). On the other hand,
the FNV predictions differ appreciably for these values of kR.

Systematic MEL computations similar to the above are conducted for a
range of incident wave parameters. The selection of parameters is guided by
the experimental cases reported in MARINTEK. Figure 15.51 summarizes
the comparisons for the normalized third-harmonic (“ringing”) force am-
plitude |f (3)|. Also plotted are the frequency-domain perturbation results
of FNV and MM. As mentioned earlier, for the lower kR, flow separation
effects may play a role. To provide an assessment, the Keulegan-Carpenter
number Kc ≡ πA/R (for the range of kA considered) is noted on a second
horizontal axis. For the lowest kR = 0.22 case, the MEL result with the
(Morison-type) drag correction (cf. (15.7.45)) is also shown.

Considering the fact that |f (3)| is a third-order quantity, the overall
excellent agreement between MEL and MARINTEK is remarkable. For
kR = 0.22, the addition of a Morison-type correction improves the compar-
ison somewhat but the discrepancies are small in either case. In contrast,
the FNV and MM predictions are acceptable only for lower kR and smaller
values of kA. For the case of kR = 0.29, for example, perturbation re-
sults are good for kA < 0.15 but differ from fully-nonlinear simulations
and experiments by O(70%) for kA ∼ 0.20. As (local diffracted wave) non-
linearity increases with kR, these discrepancies increase and perturbation
theories over-predict |f (3)| by O(100%), for example, for kR = 0.39, even
for relatively small incident steepness of kA ∼ 0.1.

We remark that the computational parameters for the present MEL
simulations are chosen to provide reliable predictions up to m = 3. In
theory even higher-order force harmonics m = 4, 5, . . . , can be of practical
interest. These can, in principle, be obtained similarly by direct fully-
nonlinear MEL computations at higher resolutions.

In addition to the work we described, recent years have seen continuous
active development and extensions of MEL applications to fully-nonlinear
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wave and wave-body problems. Notable representative examples include
the calculation of three-dimensional breaking waves on sloping beach (Grill
et al., 2001), simulation of ship slamming and water impact (Zhao and
Faltinsen 1993), and recent extensions to include wave overtopping and
green-water on deck (Greco and Faltinsen, 2005).

Taken together, these and the recent and ongoing developments in HOS
methods we described earlier, have brought the simulation of potential-flow
based nonlinear wave dynamics to a relatively mature level. These help set
the stage for developments into new directions and areas replete with op-
portunities and challenges. These developments, broadly speaking, fall into
two categories. First is the extension of these simulations into large-scale
applications taking advantage of modern high-performance computing ca-
pabilities. Several such developments are mentioned at the conclusion of
Section 15.6. Second is the incorporation of important physics and pro-
cesses not now modelled or not describable by potential-flow free-surface
formulation. Basic examples of the latter include computational investiga-
tions of free-surface turbulence (e.g. Shen et al., 1999; Shen and Yue, 2001),
and effects of surfactant on free-surface vortical/turbulent flows (e.g. Tsai
and Yue, 1995; Shen, Triantafyllou and Yue, 2004), and air-sea coupled
wave boundary layers (Liu et al. 2004). Advanced topics include simula-
tion of breaking and post-breaking processes, and the interactions of these
with bodies and bottom.
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