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“The Hollow of the Deep-Sea Wave off Kanagawa” (Kanagawa Oki Uranami), a color
woodcut, No. 20 from the series Thirty-Six Views of Fuji, circa 1831, by Katsushika
Hokusai, a famous late 18th- and early 19th-century Japanese artist. Textbooks and many
websites depict this wave as a tsunami wave, but in fact it is a wind-generated wave. It has a
special shape called an N-wave, characterized by a deep leading trough and a very peaked crest.
Some tsunami, such as the one that struck the Aitape coast of Papua New Guinea on July 17,
1998, emulate this form close to shore.
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Preface

Before 10 aM, March 18, 1989, I was a process geomorphologist who had dabbled into
the coastal evolution of rock platforms and sand barriers along the New South Wales
coastline of eastern Australia. I was aware of tsunami, and indeed had written about
them, but they were not my area of research expertise. No one had considered that
tsunami could be an important coastal process along the east coast of Australia. On
that March morning in brilliant sunshine, with the hint of a freshening sea breeze, my
life was about to change. I stood with my close colleague Bob Young, marveling at a
section of collapsed cliff at the back of a rock platform, at Haycock Point south of
Merimbula. We saw a series of angular, fresh boulders jammed into a crevice at the
top of a rock platform that did not appear to be exposed to storm waves. Unlike many
before us, we decided that we could no longer walk away from this deposit without
coming up with a scientific reason for the field evidence that was staring us in the face.
After agonizing for over an hour and exhausting all avenues, we were left with the
preposterous hypothesis that one or two tsunami waves had impinged on the coast.
These tsunami were responsible, not only for jamming the rocks into the crevice, but
also for the rockfall that had put the rocks on the platform in the first place. We did
not need a big tsunami wave, just one of about 1 m—2 m depth running about 5m—-6m
above the highest limits of ocean swell on the platform. Over the next eight years that
wave grew immensely until we finally found evidence for a mega-tsunami overwashing
a headland 130 m above sea level at Jervis Bay along the same coastline. Subsequent
discoveries revealed that more than one wave had struck the New South Wales coast
in the last 7,000 years, that mega-tsunami were also ubiquitous around the Australian
coast, and that the magnitude of the field evidence was so large that only a comet or
asteroid impact with the Earth could conceivably have generated such waves. From
being a trendy process geomorphologist wrapped in the ambience of the 1960s, I had
descended into the abyss of catastrophism dredged from the dark ages of geology
when it was an infant discipline. Bob Young subsequently retired in 1996, but his
clarity of thinking about the larger picture and his excellent eye for the landscape are
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present in all of our publications and reflected in this textbook. There was not a day in
the field with Bob that did not lead to excitement and discovery.

Since 1995, I have worked closely with Jon Nott from James Cook University in
Cairns, Queensland. Bob Young trained Jon, so I have lost none of Bob’s appreciation
for landscape. Jon has enthusiastically continued field research with me in remote
locations, and has uncanny luck for being able to obtain funding for a strange topic in
an age where economic rationalism and blinkered adherence to the safe academe of
the 1960s dominates. To stand with Jon at Point Samson, Western Australia, and both
realize simultaneously that we were looking at a landscape where a mega-tsunami had
washed inland 5 km—not only swamping hills 60 m high, but also cutting through
them—was a privilege. Few geomorphologists who have twigged for the first time to a
catastrophic event have been able to share that experience in the field with anyone else.
Jon, Bob, and I formulated the signatures of tsunami described in Chapter 3, while
Jon developed the equations for boulder transport also used in this chapter. David
Wheeler did the fieldwork that first identified the dramatic tsunami chevron-shaped
dunes at Steamers Beach, Jervis Bay. Since 2002, I have had the fortune of working
with Simon Haslett of Bath Spa University in the U.K. By chance, a brief academic
visit to the shores of the Bristol Channel in Wales with time to inspect medieval
churches led us to stumble across what we believe was a tsunami on January 30, 1607.
Much of the material about this event in the book is due to Simon’s ability to search
for, and interrelate, obscure manuscripts, and his dogged attention to detail in the
field. All of us have withstood the rebuff of peers that goes with ideas on catastrophism
in an age of “minimal astonishment™. I hope that this book conveys to some the
excitement of our discoveries about tsunami.

It is difficult to write a book on tsunami without using equations. The relation-
ships among tsunami wave height, flow depth at shore, boulder size, and bedform
dimensions were crucial in our conceptualization of mega-tsunami and their role in
shaping coastal landscapes. In this second edition, the formulas have been either
simplified further or kept to a minimum. Wherever I have used equations, I have tried
to explain them by including a supporting figure or photograph. Terms used in
equations are only defined once where they first occur in the text, unless there could
be confusion about their meaning at a later point in the book. For reference, all terms
and symbols are summarized at the beginning of the text. Many dates are only
reported by year. Where ambiguity could exist, the prefix AD (Anno Domini) or
the suffix BC (Before Christ) is used. If there is no ambiguity, then the affix is dropped
and the year refers to AD. In some cases the term BP is used to measure time. This
refers to years before present and is commonly used when reporting radiocarbon or
thermoluminescence dates. Units of measurement follow the International System of
Units except for the use of the terms kilotons and megatons. There are many
definitions of the terms meteorite, asteroid, and comet. We have used the terminology
favored by those studying the possibility of near Earth objects (NEOs) colliding with
the Earth. A comet is any object consisting mostly of ice. An asteroid is any object
consisting of rock and larger than 50 m in diameter. If it is less than 50 m in diameter,
then the object is a meteoroid. If an asteroid impacts with the Earth, it is still an
asteroid, whereas if a meteoroid impacts with the Earth, it is called a meteorite. In
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order to convey viewpoints and arguments, unobstructed by copious referencing,
strict adherence to formal, academic referencing has been relaxed. Usually, each
section begins by listing the relevant journal articles or books that either have
influenced my thinking or are central to the topic. Again, I apologize to anyone
who feels that I have ignored their crucial work but the breadth of coverage precluded
a complete review of the literature on many topics. All references to publications can
be found at the end of the book. Some articles and data were acquired from the
Internet. The Internet addresses in these cases are also referenced. Such material may
not be readily available because the addresses have changed or because of the lack of
an archival tradition for this new resource medium. Where material is not available in
the literature or through these forums, it has been acknowledged at the beginning of
the text.

Finally many researchers have published their field descriptions and interpreta-
tions without ever invoking mega-tsunami as an explanation. To find somebody re-
interpreting their results may appear offensive. We publish our results not necessarily
to duplicate the past, but to further knowledge. In many cases, I have found that
tsunami explain the field evidence in publications better than the explanation given at
the time.

Ted Bryant
August 2, 2007
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Symbols in formulas and Greek symbols

a length of a boulder (m)

b the intermediate axis or width of a boulder (m)

b; the distance between wave orthogonals at any shoreward
point (m)

b, the distance between wave orthogonals at a source point
(m)

b; intermediate diameter of largest boulders (m)

¢ thickness of a boulder (m) or

thickness of a submarine slide (m) or
soil cohesion (kPa)

C wave speed or velocity of a wave (ms™)
Cy the coefficient of drag (dimensionless)

C; wave speed at any shoreward point (m s’l)
C the coefficient of lift (dimensionless)

C, the coefficient of mass (dimensionless)

C, wave speed at a source point (ms™ ')

d water depth below mean sea level (m) or

the initial depth of a slide in the ocean (m) or

the depth of water flow over land (m)

water depth at any shoreward point (m)

water depth at a source point (m)

diameter of an impact crater (m)

gravitational acceleration (9.81 ms™')
crest-to-trough wave height (m)

wave height at the breaker point (m)

the maximum height of a tsunami wave above still water
crest-to-trough wave height at the source point (m)
tsunami run-up height above mean sea level (m)
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Umin

xmax

mean tsunami run-up height above mean sea level (m)
maximum tsunami run-up height above mean sea level (m)
wave height at shore or at the toe of a beach (m)
tsunami wave height above mean sea level (m)

mean maximum tsunami wave height along a coast (m)
Soloviev’s tsunami magnitude scale (dimensionless)

a constant (dimensionless)

refraction coefficient (dimensionless)

shoaling coefficient (dimensionless)

coeflicient of geometrical spreading on a sphere
(dimensionless)

wavelength of a tsunami wave (m)

length of a bay, basin, or harbor (m)

bedform wavelength (m)

mass of an asteroid (kg)

tsunami magnitude, Imamura—Iida scale (dimensionless)
seismic moment measured (N m)

tsunami magnitude (dimensionless)

moment magnitude scale (dimensionless)

Manning’s roughness coefficient (dimensionless) or

an exponential term

the radius of the crater made by an asteroid impact in the
ocean (m)

radius of an asteroid (m)

the shortest distance from a location to the epicenter of an
earthquake (km)

the distance a tsunami travels from the center of an asteroid
impact (m)

density correction for an asteroid impact (gcm °)

area of seabed generating a tsunami (m?)

time(s)

wave period(s)

wave period of seiching in a bay, basin, or harbor(s)
instantaneous flow velocity (ms™')

flow velocity (m s")

mean flow velocity of water (m s7h

impact velocity of an asteroid (ms™')

minimum flow velocity of water (ms™')

velocity of tsunami run-up (ms ')

kinetic energy of an asteroid impact (kilotons of TNT)
limit of tsunami penetration landward (m)



GREEK SYMBOLS

Symbols in formulas and Greek symbols xxxi

the angle a wave crest makes to the bottom contours at any
shoreward point (degrees)

the angle a wave crest makes to the bottom contours at a
source point (degrees)

slope of the seabed (degrees)

slope of the water surface (degrees)

angle of spreading on a sphere relative to a wave’s direction
of travel

a small correction on tsunami magnitude dependent on
source region

pore water pressure (kPa)

density of an asteroid (gem ™)

density of material ejected from an impact crater (gcm )
density of sediment (gcm ~°)

density of seawater (gcm )

3.141592654

the shear strength of the soil (kPa)

the normal stress at right angles to the slope (kPa)

the angle of internal friction or shearing resistance (degrees)



Abbreviations and acronyms

AMS Accelerator-based Mass Spectrometry

AUD AUstralian Dollar

CCNet Cambridge Conference Network

CNES Centre National d’Etudes Spatiales (French space agency)
K/T Cretaceous—Tertiary

DART Deep-Ocean Assessment and Reporting of Tsunami
DMSP Defense Meteorological Satellite Program

EAS Emergency Alert System

GMT Generic Mapping Tools (software)

GEOS GEOStationary satellite

GLORIA Geologic LOng-Range Inclined Asdic)

GPS Global Positioning System

HMR Hawaii Mapping Research

10C Intergovernmental Oceanographic Commission
ITIC International Tsunami Information Center

ITWS International Tsunami Warning System

LADESS Local Automatic Data Editing and Switching System
MF Medium Frequency

NGDC National Geophysical Data Center

NOAA National Oceanic and Atmospheric Administration
NEA Near Earth Asteroid

NEO Near Earth Object

OLS Operational Linescan System

PTWC Pacific Tsunami Warning Center

PTWS Pacific Tsunami Warning System

PNG Papua New Guinea

SeaMARC Sea Floor Mapping And Remote Characterization

SAWS Simultaneous Announcement Wireless System



xxxiv  Abbreviations and acronyms

SWAN

TL
THRUST
TOPES
TOPEX
TREMORS

UNESCO
VHF
WRAH
WC/ATWC

Shallow WAter Nonlinear

ThermoLuminescence (dating method)

Tsunami Hazards Reduction Utilizing Systems Technology
TOPography Experiment Satellite

TOPography EXperiment (science project)

Tsunami Risk Evaluation through seismic MOment in a
Real time System

U.N. Educational, Scientific and Cultural Organization
Very High Frequency

Weather Radio All Hazards system

West Coast/Alaska Tsunami Warning Center



