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Preface

This book was written to be a readable introduction to Algebraic Topology with
rather broad coverage of the subject. Our viewpoint is quite classical in spirit, and
stays largely within the confines of pure Algebraic Topology. In a sense, the book
could have been written thirty years ago since virtually all its content is at least that
old. However, the passage of the intervening years has helped clarify what the most
important results and techniques are. For example, CW complexes have proved over
time to be the most natural class of spaces for Algebraic Topology, so they are em-
phasized here much more than in the books of an earlier generation. This emphasis
also illustrates the book’s general slant towards geometric, rather than algebraic, as-
pects of the subject. The geometry of Algebraic Topology is so pretty, it would seem
a pity to slight it and to miss all the intuition that it provides. At deeper levels, alge-
bra becomes increasingly important, so for the sake of balance it seems only fair to
emphasize geometry at the beginning.

Let us say something about the organization of the book. At the elementary level,
Algebraic Topology divides naturally into two channels, with the broad topic of Ho-
motopy on the one side and Homology on the other. We have divided this material
into four chapters, roughly according to increasing sophistication, with Homotopy
split between Chapters 1 and 4, and Homology and its mirror variant Cohomology
in Chapters 2 and 3. These four chapters do not have to be read in this order, how-
ever. One could begin with Homology and perhaps continue on with Cohomology
before turning to Homotopy. In the other direction, one could postpone Homology
and Cohomology until after parts of Chapter 4. However, we have not pushed this
latter approach to its natural limit, in which Homology and Cohomology arise just as
branches of Homotopy Theory. Appealing as this approach is from a strictly logical
point of view, it places more demands on the reader, and since readability is one of
our first priorities, we have delayed introducing this unifying viewpoint until later in
the book.

There is also a preliminary Chapter O introducing some of the basic geometric
concepts and constructions that play a central role in both the homological and ho-
motopical sides of the subject.

Each of the four main chapters concludes with a selection of Additional Topics
that the reader can sample at will, independent of the basic core of the book contained
in the earlier parts of the chapters. Many of these extra topics are in fact rather



important in the overall scheme of Algebraic Topology, though they might not fit into
the time constraints of a first course. Altogether, these Additional Topics amount
to nearly half the book, and we have included them both to make the book more
comprehensive and to give the reader who takes the time to delve into them a more
substantial sample of the true richness and beauty of the subject.

Not included in this book is the important but somewhat more sophisticated
topic of spectral sequences. It was very tempting to include something about this
marvelous tool here, but spectral sequences are such a big topic that it seemed best
to start with them afresh in a new volume. This is tentatively titled ‘Spectral Sequences
in Algebraic Topology’ and referred to herein as [SSAT]. There is also a third book in
progress, on vector bundles, characteristic classes, and K-theory, which will be largely
independent of [SSAT] and also of much of the present book. This is referred to as
[VBKT], its provisional title being ‘Vector Bundles and K-Theory.’

In terms of prerequisites, the present book assumes the reader has some famil-
iarity with the content of the standard undergraduate courses in algebra and point-set
topology. One topic that is not always a part of a first point-set topology course but
which is quite important for Algebraic Topology is quotient spaces, or identification
spaces as they are sometimes called. Good sources for this are the textbooks by Arm-
strong and Janich listed in the Bibliography.

A book such as this one, whose aim is to present classical material from a fairly
classical viewpoint, is not the place to indulge in wild innovation. Nevertheless there is
one new feature of the exposition that may be worth commenting upon, even though
in the book as a whole it plays a relatively minor role. This is a modest extension
of the classical notion of simplicial complexes, which we call A-complexes. These
have made brief appearances in the literature previously, without a standard name
emerging. The idea is to weaken the condition that each simplex be embedded, to
require only that the interiors of simplices are embedded. (In addition, an ordering
of the vertices of each simplex is also part of the structure of a A-complex.) For
example, if one takes the standard picture of the torus as a square with opposite
edges identified and divides the square into two triangles by cutting along a diagonal,
then the result is a A-complex structure on the torus having 2 triangles, 3 edges, and
1 vertex. By contrast, it is known that a simplicial complex structure on the torus
must have at least 14 triangles, 21 edges, and 7 vertices. So A-complexes provide
a significant improvement in efficiency, which is nice from a pedagogical viewpoint
since it cuts down on tedious calculations in examples. A more fundamental reason
for considering A-complexes is that they just seem to be very natural objects from
the viewpoint of Algebraic Topology. They are the natural domain of definition for
simplicial homology, and a number of standard constructions produce A-complexes
rather than simplicial complexes, for instance the singular complex of a space, or the
classifying space of a discrete group or category.



It is the author’s intention to keep this book available online permanently, as well
as publish it in the traditional manner for those who want the convenience of a bound
copy. With the electronic version it will be possible to continue making revisions and
additions, so comments and suggestions from readers will always be welcome. The
web address is:

http://www.math.cornell.edu/"hatcher

One can also find here the parts of the other two books that are currently available.



Standard Notations

R™: n-dimensional Euclidean space, with real coordinates
C™: complex n-space

I =10,1]: the unit interval
S™: the unit sphere in R"*!, all vectors of length 1

D™: the unit disk or ball in R", all vectors of length < 1

D™ = $™1: the boundary of the n-disk

1: the identity function from a set to itself

II: disjoint union

~: isomorphism

Z,,: the integers modn

A C B or B D A: set-theoretic containment, not necessarily proper



Chapter @

Some Underlying
Geometric Notions

The aim of this short preliminary chapter is to introduce a few of the most com-
mon geometric concepts and constructions in algebraic topology. The exposition is
somewhat informal, with no theorems or proofs until the last couple pages, and it
should be read in this informal spirit, skipping bits here and there. In fact, this whole
chapter could be skipped now, to be referred back to later for basic definitions.

To avoid overusing the word ‘continuous’ we adopt the convention that maps be-
tween spaces are always assumed to be continuous unless otherwise stated.

Homotopy and Homotopy Type

One of the main ideas of algebraic topology is to consider two spaces to be equiv-
alent if they have ‘the same shape’ in a sense that is much broader than homeo-
morphism. To take an everyday example, the letters of the alphabet can be written
either as unions of finitely many straight and curved line segments, or in thickened
forms that are compact subsurfaces of the plane bounded by simple closed curves.

~

|

\J

In each case the thin letter is a subspace of the thick letter, and we can continuously
shrink the thick letter to the thin one. A nice way to do this is to decompose a thick
letter, call it X, into line segments connecting each point on the outer boundary of X
to a unique point of the thin subletter X, as indicated in the figure. Then we can shrink
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X to X by sliding each point of X — X into X along the line segment that contains it.
Points that are already in X do not move.

We can think of this shrinking process as taking place during a time interval
0 <t <1, and then it defines a family of functions f;:X— X parametrizedby t €I =
[0,1], where f;(x) is the point to which a given point x € X has moved at time .
Naturally we would like f;(x) to depend continuously on both ¢t and x, and this will
be true if we have each x € X — X move along its line segment at constant speed so
as to reach its image point in X at time t = 1, while points x € X are stationary, as
remarked earlier.

These examples lead to the following general definition. A deformation retrac-
tion of a space X onto a subspace A is a family of maps f;:X—X, t € I, such
that f, = 1 (the identity map), f,(X) = A, and f,|A = 1 for all t. The family f,
should be continuous in the sense that the associated map X xI— X, (x,t) — f;(x),
is continuous.

It is easy to produce many more examples similar to the letter examples, with the
deformation retraction f; obtained by sliding along line segments. The first figure
below shows such a deformation retraction of a Mobius band onto its core circle. The
other three figures show deformation retractions in which a disk with two smaller
open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction
can be described by means of the following definition. For a map f:X—Y, the map-
ping cylinder M, is the quotient space of the disjoint union (X xI) Il Y obtained by
identifying each (x,1) € XxI with f(x) € Y.

In the letter examples, the space X is the outer boundary of the thick letter, Y is the
thin letter, and the map f:X—Y sends the outer endpoint of each line segment to
its inner endpoint. A similar description applies to the other examples. Then it is a
general fact that a mapping cylinder M, deformation retracts to the subspace Y by
sliding each point (x,t) along the segment {x}xI C M to the endpoint f(x) €Y.
Not all deformation retractions arise in this way from mapping cylinders, how-
ever. For example, the thick X deformation retracts to the thin X, which in turn
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deformation retracts to the point of intersection of its two crossbars. The net result
is a deformation retraction of X onto a point, during which certain pairs of points
follow paths that merge before reaching their final destination. Later in this section
we will describe a considerably more complicated example, the so-called ‘house with
two rooms,” where a deformation retraction to a point can be constructed abstractly,
but seeing the deformation with the naked eye is a real challenge.

A deformation retraction f;:X— X is a special case of the general notion of a
homotopy, which is simply any family of maps f;:X—Y, t € I, such that the asso-
ciated map F:XxI—Y given by F(x,t) = f;(x) is continuous. One says that two
maps fy, f;:X—Y are homotopic if there exists a homotopy f; connecting them,
and one writes f, = f.

In these terms, a deformation retraction of X onto a subspace A is a homotopy
from the identity map of X to a retraction of X onto A, a map 7:X— X such that
r(X) = A and 7 |A = 1. One could equally well regard a retraction as a map X — A
restricting to the identity on the subspace A C X. From a more formal viewpoint a
retraction is amap » : X — X with 72 = 7, since this equation says exactly that  is the
identity on its image. Retractions are the topological analogs of projection operators
in other parts of mathematics.

Not all retractions come from deformation retractions. For example, every space
X retracts onto any point x, € X via the map sending all of X to x,. But a space that
deformation retracts onto a point must certainly be path-connected, since a deforma-
tion retraction of X to a point x gives a path joining each x € X to x,. It is less
trivial to show that there are path-connected spaces that do not deformation retract
onto a point. One would expect this to be the case for the letters ‘with holes,” A, B,
D, O, P, Q, R. In Chapter 1 we will develop techniques to prove this.

A homotopy f;:X— X that gives a deformation retraction of X onto a subspace
A has the property that f;|A = 1 for all t. In general, a homotopy f;: X —Y whose
restriction to a subspace A C X is independent of t is called a homotopy relative
to A, or more concisely, a homotopy rel A. Thus, a deformation retraction of X onto
A is a homotopy rel A from the identity map of X to a retraction of X onto A.

If a space X deformation retracts onto a subspace A via f;:X—X, then if
v : X — A denotes the resulting retraction and i: A— X the inclusion, we have i = 1
and ir = 1, the latter homotopy being given by f;. Generalizing this situation, a
map f:X—Y is called a homotopy equivalence if there is amap g:Y — X such that
fg =1 and gf =~ 1. The spaces X and Y are said to be homotopy equivalent or to
have the same homotopy type. The notation is X ~ Y. It is an easy exercise to check
that this is an equivalence relation, in contrast with the nonsymmetric notion of de-
formation retraction. For example, the three graphs O-O OO CID are all homotopy
equivalent since they are deformation retracts of the same space, as we saw earlier,
but none of the three is a deformation retract of any other.
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It is true in general that two spaces X and Y are homotopy equivalent if and only
if there exists a third space Z containing both X and Y as deformation retracts. For
the less trivial implication one can in fact take Z to be the mapping cylinder My of
any homotopy equivalence f:X—Y. We observed previously that M, deformation
retracts to Y, so what needs to be proved is that M, also deformation retracts to its
other end X if f is a homotopy equivalence. This is shown in Corollary 0.21 near the
end of this chapter.

A space having the homotopy type of a point is called contractible. This amounts
to requiring that the identity map of the space be nullhomotopic, that is, homotopic
to a constant map. In general, this is slightly weaker than saying the space deforma-
tion retracts to a point; see the exercises at the end of the chapter for an example
distinguishing these two notions.

Let us describe now an example of a 2-dimensional subspace of R?, known as
the house with two rooms, which is contractible but not in any obvious way.

To build this space, start with a box divided into two chambers by a horizontal rect-
angle R, where by a ‘rectangle’ we mean not just the four edges of a rectangle but
also its interior. Access to the two chambers from outside the box is provided by two
vertical tunnels. The upper tunnel is made by punching out a square from the top
of the box and another square directly below it from R, then inserting four vertical
rectangles, the walls of the tunnel. This tunnel allows entry to the lower chamber
from outside the box. The lower tunnel is formed in similar fashion, providing entry
to the upper chamber. Finally, two vertical rectangles are inserted to form ‘support
walls’ for the two tunnels. The resulting space X thus consists of three horizontal
pieces homeomorphic to annuli $'xI, plus all the vertical rectangles that form the
walls of the two chambers: the exterior walls, the walls of the tunnels, and the two
support walls.

To see that X is contractible, consider a closed e-neighborhood N(X) of X.
This clearly deformation retracts onto X if ¢ is sufficiently small. In fact, N(X)
is the mapping cylinder of a map from the boundary surface of N(X) to X. Less
obvious is the fact that N(X) is homeomorphic to D3, the unit ball in R®. To see
this, imagine forming N (X) from a ball of clay by pushing a finger into the ball to



Cell Complexes 5

create the upper tunnel, then gradually hollowing out the lower chamber, and similarly
pushing a finger in to create the lower tunnel and hollowing out the upper chamber.
Mathematically, this process gives a family of embeddings h; :D®—R? starting with
the usual inclusion D3 < R® and ending with a homeomorphism onto N (X).

Thus we have X ~ N(X) = D® ~ point, so X is contractible since homotopy
equivalence is an equivalence relation.

In fact, X deformation retracts to a point. For if f; is a deformation retraction
of the ball N(X) to a point x, € X and if r:N(X)— X is a retraction, for example
the end result of a deformation retraction of N(X) to X, then the restriction of the
composition ¥ f; to X is a deformation retraction of X to x,. However, it is not
easy to see exactly what this deformation retraction looks like! A slightly easier test
of geometric visualization is to find a nullhomotopy in X of the loop formed by a
horizontal cross section of one of the tunnels. We leave this as a puzzle for the
reader.

Cell Complexes

A familiar way of constructing the torus S'x S! is by identifying opposite sides
of a square. More generally, an orientable surface M, of genus g can be constructed
from a 4g-sided polygon by identifying pairs of edges, as shown in the figure for the
cases g =1,2,3.

The 4g edges of the polygon become a union of 2g circles in the surface, all inter-
secting in a single point. One can think of the interior of the polygon as an open
disk, or 2-cell, attached to the union of these circles. One can also regard the union
of the circles as being obtained from a point, their common point of intersection, by
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attaching 2g open arcs, or 1-cells. Thus the surface can be built up in stages: Start
with a point, attach 1-cells to this point, then attach a 2-cell.
A natural generalization of this is to construct a space by the following procedure:

(1) Start with a discrete set X°, whose points are regarded as O-cells.

(2) Inductively, form the n-skeleton X" from X" ! by attaching n-cells el via
maps @,:S" '—X""!. Thatis, X" is the quotient space of the disjoint union
X" '1,DE of X" ! with a collection of n-disks D! under the identifications
X ~ @u(x) for x € OD". Thus as a set, X" = X" '[] e where each " is an
open n-disk.

(3) One can either stop this inductive process at a finite stage, setting X = X" for
some n < oo, or one can continue indefinitely, setting X = (J,, X"*. In the latter
case X is given the weak topology: A set A C X is open (or closed) iff A n X" is
open (or closed) in X" for each n.

A space X constructed in this way is called a cell complex, or more classically, a
CW complex. The explanation of the letters ‘CW’ is given in the Appendix, where a
number of basic topological properties of cell complexes are proved. The reader who
wonders about various point-set topological questions that lurk in the background of
the following discussion should consult the Appendix for details.

Example 0.1. A 1-dimensional cell complex X = X' is what is called a graph in
algebraic topology. It consists of vertices (the 0-cells) to which edges (the 1-cells) are
attached. The two ends of an edge can be attached to the same vertex.

Example 0.2. The house with two rooms, pictured earlier, has a visually obvious
2-dimensional cell complex structure. The O-cells are the vertices where three or more
of the depicted edges meet, and the 1-cells are the interiors of the edges connecting
these vertices. This gives the 1-skeleton X', and the 2-cells are the components of
the remainder of the space, X — X'. If one counts up, one finds there are 29 0-cells,
51 1-cells, and 23 2-cells, with the alternating sum 29 — 51 + 23 equal to 1. This is
the Euler characteristic, which for a cell complex with finitely many cells is defined
to be the number of even-dimensional cells minus the number of odd-dimensional
cells. As we shall show in Theorem 2.44, the Euler characteristic of a cell complex
depends only on its homotopy type, so the fact that the house with two rooms has the
homotopy type of a point implies that its Euler characteristic must be 1, no matter
how it is represented as a cell complex.

Example 0.3. The sphere S™ has the structure of a cell complex with just two cells, e’
and e", the n-cell being attached by the constant map S n=1_, 60 This is equivalent
to regarding S™ as the quotient space D"/oD".

Example 0.4. Real projective n-space RP" is defined to be the space of all lines
through the origin in R™*!. Each such line is determined by a nonzero vector in R"*!,
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unique up to scalar multiplication, and RP" is topologized as the quotient space of
R™"! — {0} under the equivalence relation v ~ Av for scalars A = 0. We can restrict
to vectors of length 1, so RP" is also the quotient space S"/(v ~ —v), the sphere
with antipodal points identified. This is equivalent to saying that RP" is the quotient
space of a hemisphere D" with antipodal points of D" identified. Since 0D™ with
antipodal points identified is just RP" !, we see that RP" is obtained from RP"! by
attaching an n-cell, with the quotient projection S ' —RP" ! as the attaching map.
It follows by induction on n that RP" has a cell complex structure e’ Ue! U --- U e™
with one cell e’ in each dimension i < n.

Example 0.5. Since RP" is obtained from RP™ ! by attaching an n-cell, the infinite
union RP* = J,, RP" becomes a cell complex with one cell in each dimension. We
can view RP” as the space of lines through the origin in R* = J,, R".

Example 0.6. Complex projective n-space CP" is the space of complex lines through
the origin in C""!, that is, 1-dimensional vector subspaces of C"*!. As in the case
of RP", each line is determined by a nonzero vector in C**!, unique up to scalar
multiplication, and CP" is topologized as the quotient space of C"*! — {0} under the
equivalence relation v ~ Av for A # 0. Equivalently, this is the quotient of the unit
sphere §2"*! ¢ C"*! with v ~ Av for |A| = 1. Itis also possible to obtain CP" as a
quotient space of the disk D" under the identifications v ~ Av for v € dD*", in the
following way. The vectors in $2"*! ¢ C"*! with last coordinate real and nonnegative
are precisely the vectors of the form (w,+/1 — [w]2) € C"xC with |w| < 1. Such
vectors form the graph of the function w — +/1 — [w|2. This is a disk D?" bounded
by the sphere $2"! ¢ §2"! consisting of vectors (w,0) € C"x C with |w| = 1. Each
vector in §°"*! is equivalent under the identifications v ~ Av to a vector in D", and
the latter vector is unique if its last coordinate is nonzero. If the last coordinate is
zero, we have just the identifications v ~ Av for v € §°"°L.

From this description of CP" as the quotient of Di" under the identifications
v ~ Av for v € $?"! it follows that CP" is obtained from CP"! by attaching a
cell e®" via the quotient map S°"* ' —CP" !. So by induction on n we obtain a cell
structure CP" = e® Ue® U - - - U e?" with cells only in even dimensions. Similarly, CP*

has a cell structure with one cell in each even dimension.

Each cell e}, in a cell complex X has a characteristic map ®,:Dy— X that
extends the attaching map @, and is a homeomorphism from the interior of D}
onto e”. Namely, we can take &, to be the composition D! — X" '[[ D" — X" — X
where the middle map is the quotient map defining X™. For example, in the canonical
cell structure on S described in Example 0.3, a characteristic map for the n-cell is
the quotient map D" —S™ collapsing dD" to a point. For RP" a characteristic map
for the cell ¢! is the quotient map D'— RP' c RP" identifying antipodal points of
dD', and similarly for CP".
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A subcomplex of a cell complex X is a closed subspace A C X that is a union
of cells of X. Since A is closed, the characteristic map of each cell in A has image
contained in A, and in particular the image of the attaching map of each cell in A is
contained in A, so A is a cell complex in its own right. A pair (X, A) consisting of a
cell complex X and a subcomplex A we call a CW pair.

For example, each skeleton X™ of a cell complex X is a subcomplex. Particular
cases of this are the subcomplexes RP* ¢ RP" and CP* c CP" for k < n. These are
in fact the only subcomplexes of RP"™ and CP".

There are natural inclusions S° c §!' c --- c $™, but these subspheres are not
subcomplexes of S™ inits usual cell structure with just two cells. However, we can give
S™ a different cell structure in which each of the subspheres S kisa subcomplex, by
regarding each sk as being obtained inductively from the equatorial S k=1 by attaching
two k-cells, the components of S k_gk=1_ The infinite-dimensional sphere §* =J,, S"
then becomes a cell complex as well. Note that the two-to-one quotient map S — RP®
that identifies antipodal points of S identifies the two n-cells of S* to the single
n-cell of RP”.

In the examples of cell complexes given so far, the closure of each cell is a sub-
complex, and more generally the closure of any collection of cells is a subcomplex.
Most naturally arising cell structures have this property, but it need not hold in gen-
eral. For example, if we start with S ! with its minimal cell structure and attach to this
a 2-cell by a map S!—S! whose image is a nontrivial subarc of S!, then the closure
of the 2-cell is not a subcomplex since it contains only a part of the 1-cell.

Operations on Spaces

Cell complexes have a very nice mixture of rigidity and flexibility, with enough
rigidity to allow many arguments to proceed in a combinatorial cell-by-cell fashion,
and enough flexibility to allow many natural constructions to be performed on them.
Here are some of those constructions.

Products. If X and Y are cell complexes, then X x Y has the structure of a cell complex
with cells the products ey’ < ez where ey’ ranges over the cells of X and ey ranges
over the cells of Y. For example, the cell structure on the torus S 1« S described at
the beginning of this section is obtained in this way from the standard cell structure
on S'. In the general case there is one small complication, however: The topology on
X XY as a cell complex is sometimes slightly weaker than the product topology, with
more open sets than the product topology has, though the two topologies coincide if
either X or Y has only finitely many cells, or if both X and Y have countably many
cells. This is explained in the Appendix. In practice this subtle point of point-set
topology rarely causes problems.
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Quotients. If (X, A) is a CW pair consisting of a cell complex X and a subcomplex A,
then the quotient space X/A inherits a natural cell complex structure from X. The
cells of X /A are the cells of X—A plus one new 0-cell, theimage of A in X/A. Foracell
e of X — A attached by @, :S" ' — X" the attaching map for the corresponding
cell in X/A is the composition §" ' — X" 1 — x""1/4"n"1,

For example, if we give S" ! any cell structure and build D" from S$"! by attach-
ing an n-cell, then the quotient D™ /™! is $™ with its usual cell structure. As another
example, take X to be a closed orientable surface with the cell structure described at
the beginning of this section, with a single 2-cell, and let A be the complement of this
2-cell, the 1-skeleton of X. Then X/A has a cell structure consisting of a 0-cell with
a 2-cell attached, and there is only one way to attach a cell to a 0-cell, by the constant
map, so X/A is s2.

Suspension. For a space X, the suspension SX is the quotient of XxI obtained
by collapsing X x {0} to one point and XX {1} to another point. The motivating
example is X = S, when SX = S™"! with the two ‘suspension points’ at A

the north and south poles of $™*!, the points (0,---,0,+1). One can

regard SX as a double cone on X, the union of two copies of the cone

CX = (XxI)/(Xx{0}). If X is a CW complex, so are SX and CX ‘
as quotients of X xI with its product cell structure, I being given the V4
standard cell structure of two 0-cells joined by a 1-cell.

Suspension becomes increasingly important the farther one goes into algebraic
topology, though why this should be so is certainly not evident in advance. One
especially useful property of suspension is that not only spaces but also maps can be
suspended. Namely, amap f:X—Y suspends to Sf:SX—SY, the quotient map of
fX1:XxI—>YXI.

Join. The cone CX is the union of all line segments joining points of X to an external
vertex, and similarly the suspension SX is the union of all line segments joining points
of X to two external vertices. More generally, given X and a second space Y, one can
define the space of all lines segments joining points in X to points in Y. This is
the join X * Y, the quotient space of XxY xI under the identifications (x,y;,0) ~
(x,¥,,0) and (x;,y,1) ~ (x,,y,1). Thus we are collapsing the subspace X x Y x {0}
to X and XxXYx {1} to Y. For example,
if X and Y are both closed intervals, then

we are collapsing two opposite faces of a y —>
cube onto line segments so that it becomes

X
a tetrahedron. In the general case, X x Y I

contains copies of X and Y atits two ‘ends,’ and every other point (x, y,t) in XY is

on a unique line segment joining the point x € X C X xY tothepoint y e Y Cc XxY,
the segment obtained by fixing x and y and letting the coordinate t in (x, y,t) vary.
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A nice way to write points of XY is as formal linear combinations t;x +¢,y with
0<t;<1andt, +t, =1, subject to the rules Ox + 1y = v and 1x + Oy = x which
correspond exactly to the identifications that define X % Y. In much the same way, an
iterated join X, * - - - % X, can be regarded as the space of formal linear combinations
byx, + - +t,x, withO0 <t; <1andt +---+t, =1, with the convention that
terms 0Ot; can be omitted. This viewpoint makes it easy to see that the join operation
is associative. A very special case that plays a central role in algebraic topology is
when each X; is just a point. For example, the join of two points is a line segment, the
join of three points is a triangle, and the join of four points is a tetrahedron. The join
of n points is a convex polyhedron of dimension n — 1 called a simplex. Concretely,
if the n points are the n standard basis vectors for R", then their join is the space
A= (-t ERM |t + - +t,=1andt; = 0}.

Another interesting example is when each X; is S 9 two points. If we take the two
points of X; to be the two unit vectors along the i'" coordinate axis in R", then the
join X, % - - - % X,, is the union of 2" copies of the simplex A""! and radial projection
from the origin gives a homeomorphism between X, * --- % X,, and S"'.

If X and Y are CW complexes, then there is a natural CW structure on X x Y
having the subspaces X and Y as subcomplexes, with the remaining cells being the
product cells of Xx Y x (0,1). As usual with products, the CW topology on X x Y may
be weaker than the quotient of the product topology on X XY XI.

Wedge Sum. This is a rather trivial but still quite useful operation. Given spaces X and
Y with chosen points x, € X and y, € Y, then the wedge sum X Vv Y is the quotient
of the disjoint union X II'Y obtained by identifying x, and y, to a single point. For
example, S' v S! is homeomorphic to the figure ‘8, two circles touching at a point.
More generally one could form the wedge sum \/, X, of an arbitrary collection of
spaces X, by starting with the disjoint union [[, X, and identifying points x, € X,
to a single point. In case the spaces X, are cell complexes and the points x, are
0-cells, then \/, X, is a cell complex since it is obtained from the cell complex [], X
by collapsing a subcomplex to a point.

For any cell complex X, the quotient X"/X" ! is awedge sum of n-spheres \/, S,
with one sphere for each n-cell of X.

Smash Product. Like suspension, this is another construction whose importance be-
comes evident only later. Inside a product space XxY there are copies of X and Y,
namely Xx {y,} and {x,}xY for points x, € X and y, € Y. These two copies of X
and Y in XxY intersect only at the point (x,,y,), so their union can be identified
with the wedge sum X Vv Y. The smash product X A Y is then defined to be the quo-
tient XxXY/X v Y. One can think of X A Y as a reduced version of XxY obtained
by collapsing away the parts that are not genuinely a product, the separate factors X
and Y.
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The smash product X AY is a cell complex if X and Y are cell complexes with x
and y, 0-cells, assuming that we give X x Y the cell-complex topology rather than the
product topology in cases when these two topologies differ. For example, "™ AS™ has
a cell structure with just two cells, of dimensions 0 and m +n, hence S™ AS™ = §™*",
In particular, when m = n = 1 we see that collapsing longitude and meridian circles
of a torus to a point produces a 2-sphere.

Two Criteria for Homotopy Equivalence

Earlier in this chapter the main tool we used for constructing homotopy equiva-
lences was the fact that a mapping cylinder deformation retracts onto its ‘target’ end.
By repeated application of this fact one can often produce homotopy equivalences
between rather different-looking spaces. However, this process can be a bit cumber-
some in practice, so it is useful to have other techniques available as well. Here is one
that can be quite helpful:

1 If (X, A) is a CW pair consisting of a CW complex X and a contractible subcom-

plex A, then the quotient map X — X /A is a homotopy equivalence.

A proof of this will be given later in Proposition 0.17, but let us look at some examples
Nnow.

Example 0.7: Graphs. The three graphs O-O ©O CID are homotopy equivalent
since each is a deformation retract of a disk with two holes, but we can also deduce
this from statement (1) above since collapsing the middle edge of the first and third
graphs produces the second graph.

More generally, suppose X is any graph with finitely many vertices and edges. If
the two endpoints of any edge of X are distinct, we can collapse this edge to a point,
producing a homotopy equivalent graph with one fewer edge. This simplification can
be repeated until all edges of X are loops, hence each component of X is either an
isolated vertex or a wedge sum of circles.

This raises the question of whether two such graphs, having only one vertex in
each component, can be homotopy equivalent if they are not in fact just isomorphic
graphs. Exercise 12 at the end of the chapter reduces the question to the case of
connected graphs. Then the task is to prove that awedge sum \/,, S ! of m circles isnot
homotopy equivalent to \/,, S Lif m = n. This sort of thing is hard to do directly. What
one would like is some sort of algebraic object associated to spaces, depending only
on their homotopy type, and taking different values for \/,, S ! and Vi S Vifm=n. In
fact the Euler characteristic does this since \/,, ' has Euler characteristic 1—m. But it
is a rather nontrivial theorem that the Euler characteristic of a space depends only on
its homotopy type. A different algebraic invariant that works equally well for graphs,
and whose rigorous development requires less effort than the Euler characteristic, is
the fundamental group of a space, the subject of Chapter 1.
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Example 0.8. Consider the space X obtained from S$? by attaching the two ends of
an arc A to two distinct points on the sphere, say the north and south poles. Let B
be an arc in S? joining the two points where A attaches. Then X can be given a CW
complex structure with the two endpoints of A and B as 0-cells, the interiors of A
and B as 1-cells, and the rest of S 2 as a 2-cell. Since A and B are contractible, X/A
and X/B are homotopy equivalent to X. The space X/A is the quotient $?/S°, the
sphere with two points identified, and X/B is st v §%. Hence SZ/S0 and S' v S? are
homotopy equivalent, which might not have been entirely obvious a priori.

\ A
(0-QJ-E0

Example 0.9. Let X be the union of a torus with n meridional disks. To obtain a CW
structure on X, choose a longitudinal circle in X, intersecting each of the meridional
disks in one point. These intersection points are then the 0-cells, the 1-cells are the
rest of the longitudinal circle and the boundary circles of the meridional disks, and

the 2-cells are the remaining regions of the torus and the interiors of the meridional
disks.
S
L AN
) — 83— &880 —oxe
"/

X Y VA W
Collapsing each meridional disk to a point yields a homotopy equivalent space Y
consisting of n 2-spheres, each tangent to its two neighbors, a ‘necklace with n
beads.” The third space Z in the figure, a strand of n beads with a string joining
its two ends, collapses to Y by collapsing the string to a point, so this collapse is a
homotopy equivalence. Finally, by collapsing the arc in Z formed by the front halves
of the equators of the n beads, we obtain the fourth space W, a wedge sum of S !

with n 2-spheres. (One can see why a wedge sum is sometimes called a ‘bouquet’ in
the older literature.)

Example 0.10: Reduced Suspension. Let X be a CW complex and x, € X a 0-cell.
Inside the suspension SX we have the line segment {x,}x I, and collapsing this to a
point yields a space XX homotopy equivalent to SX, called the reduced suspension
of X. For example, if we take X to be S' v S with x, the intersection point of the
two circles, then the ordinary suspension SX is the union of two spheres intersecting
along the arc {x,}xI, so the reduced suspension XX is $? v §2, a slightly simpler
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space. More generally we have (X v Y) = X v XY for arbitrary CW complexes X
and Y. Another way in which the reduced suspension XX is slightly simpler than SX
is in its CW structure. In SX there are two O-cells (the two suspension points) and an
(n+1)-cell e"x(0,1) for each n-cell e of X, whereas in XX there is a single 0-cell
and an (n + 1)-cell for each n-cell of X other than the 0-cell x,.

The reduced suspension XX is actually the same as the smash product X A S*
since both spaces are the quotient of X xI with XxdI U {x,} xI collapsed to a point.

Another common way to change a space without changing its homotopy type in-
volves the idea of continuously varying how its parts are attached together. A general
definition of ‘attaching one space to another’ that includes the case of attaching cells
is the following. We start with a space X, and another space X; that we wish to
attach to X, by identifying the points in a subspace A C X; with points of X,. The
data needed to do this is a map f:A—X,, for then we can form a quotient space
of X, II X; by identifying each point a € A with its image f(a) € X,,. Let us de-
note this quotient space by X, Li¢ X;, the space X, with X, attached along A via f.
When (X;,A) = (Dn,S"’l) we have the case of attaching an n-cell to X, via a map
fiS"loX,.

Mapping cylinders are examples of this construction, since the mapping cylinder
My of amap f:X—Y is the space obtained from Y by attaching X x I along X x {1}
via f. Closely related to the mapping cylinder M is the mapping cone C; =Y L ;CX
where CX is the cone (X x1I)/(Xx{0}) and we attach this to Y along
X x {1} via the identifications (x,1) ~ f(x). For example, when X
is a sphere S™! the mapping cone C ¢ is the space obtained from y
Y by attaching an n-cell via f:S" ' —Y. A mapping cone C ¢ can
also be viewed as the quotient M /X of the mapping cylinder M with the subspace
X = Xx {0} collapsed to a point.

Here is our second criterion for homotopy equivalence:

If (X,,A) is a CW pair and we have two attaching maps f,g:A— X, that are

2) homotopic, then X, Ly X; = X, Uy X .

Again let us defer the proof and look at some examples.

Example 0.11. Let us rederive the result in Example 0.8 that a sphere with two points
identified is homotopy equivalent to S' v §°. The sphere with
two points identified can be obtained by attaching S? to S*
by a map that wraps a closed arc A in S* around S', as
shown in the figure. Since A is contractible, this attaching

map is homotopic to a constant map, and attaching $% to S*
via a constant map of A yields S 1\ §2. The result then follows from (2) since (S 2, A)
is a CW pair, S° being obtained from A by attaching a 2-cell.
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Example 0.12. In similar fashion we can see that the necklace in Example 0.9 is
homotopy equivalent to the wedge sum of a circle with n 2-spheres. The necklace
can be obtained from a circle by attaching n 2-spheres along arcs, so the necklace
is homotopy equivalent to the space obtained by attaching n 2-spheres to a circle
at points. Then we can slide these attaching points around the circle until they all
coincide, producing the wedge sum.

Example 0.13. Here is an application of the earlier fact that collapsing a contractible
subcomplex is a homotopy equivalence: If (X,A) is a CW pair, consisting of a cell
complex X and a subcomplex A, then X/A ~ X U CA, the mapping cone of the
inclusion A— X. Forwe have X/A = (XUCA)/CA ~ XUCA since CA is a contractible
subcomplex of X U CA.

Example 0.14. If (X, A) is a CW pair and A is contractible in X, i.e., the inclusion
A — X is homotopic to a constant map, then X/A ~ X v SA. Namely, by the previous
example we have X/A ~ X U CA, and then since A is contractible in X, the mapping
cone X U CA of the inclusion A — X is homotopy equivalent to the mapping cone of
a constant map, which is X v SA. For example, S"/St ~ s v S for i < m, since
S' is contractible in S™ if i < n. In particular this gives $%/S° ~ §% v §!, which is
Example 0.8 again.

The Homotopy Extension Property

In this final section of the chapter we shall actually prove a few things, in particular
the two criteria for homotopy equivalence described above and the fact that any two
homotopy equivalent spaces can be embedded as deformation retracts of the same
space.

The proofs depend upon a technical property that arises in many other contexts
as well. Consider the following problem. Suppose one is given a map f;,: X—Y, and
on a subspace A C X one is also given a homotopy f;:A—Y of f;|A that one would
like to extend to a homotopy f;:X—Y of the given f,. If the pair (X, A) is such that
this extension problem can always be solved, one says that (X, A) has the homotopy
extension property. Thus (X, A) has the homotopy extension property if every map
XX {0} U AXI—Y canbe extended to amap XxXI—Y.

In particular, the homotopy extension property for (X, A) implies that the iden-
tity map XX {0} UAXI— XX {0} UAXI extends to amap XxXI—Xx {0} UAXI, so
Xx{0} U AxI is a retract of XxI. The converse is also true: If there is a retraction
XxI—Xx{0} u AxI, then by composing with this retraction we can extend every
map XX {0} UAXI—Y toamap XXI—Y. Thus the homotopy extension property
for (X, A) is equivalent to X x {0} U AXI being a retract of X xI. This implies for ex-
ample thatif (X, A) has the homotopy extension property, then so does (XX Z,AX Z)
for any space Z, a fact that would not be so easy to prove directly from the definition.
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If (X, A) has the homotopy extension property, then A must be a closed subspace
of X, at least when X is Hausdorff. For if v: X xI— X XxI is a retraction onto the
subspace Xx {0} u AxI, then the image of v is the set of points z € XXxI with
¥(z) = z, aclosed set if X is Hausdorff, so X x {0} UAXI is closed in X xI and hence
A is closed in X.

A simple example of a pair (X, A) with A closed for which the homotopy exten-
sion property fails is the pair (I, A) where A = {0, 1,Y,,/5,1/,,---}. It is not hard to
show that there is no continuous retraction I xI—Ix {0} U AxI. The breakdown of
homotopy extension here can be attributed to the bad structure of (X,A) near 0.
With nicer local structure the homotopy extension property does hold, as the next
example shows.

Example 0.15. A pair (X, A) has the homotopy extension property if A has a map-
ping cylinder neighborhood, in the following sense: There is a map f:Z—A and a
homeomorphism h from M, onto a closed neighborhood N of A in X, with h |A=1
and with h(M; — Z) an open neighborhood of A. Mapping cylinder neighborhoods
like this occur more frequently than one might think. For example, the thick let-
ters discussed at the beginning of the chapter provide such neighborhoods of the
thin letters, regarded as subspaces of the plane. To verify the homotopy extension
property, notice first that I xI retracts onto Ix {0} U 0IxI, hence ZxIXI retracts
onto ZxIx{0} U Zx0dIxI, and this retraction induces a retraction of M ¢x1I onto
M, X {0}u(ZI1A)xI. Thus (M 7z ITI A) has the homotopy extension property, which
implies that (X, A) does also since given a map X —Y and a homotopy of its restric-
tion to A, we can take the constant homotopy on the closure of X — N and then apply
the homotopy extension property for (Mg, Z 11 A) to extend the homotopy over N.

Most applications of the homotopy extension property in this book will stem from
the following general result:

Proposition 0.16. If (X, A) isa CW pair, then X x {0} UA X1 is a deformation retract
of Xx1I, hence (X,A) has the homotopy extension property.

Proof: There is a retraction v : D" xI—D"x {0} u D" x1I, for example

the radial projection from the point (0,2) € D"xR. Then setting

1, = tr + (1 — t)1 gives a deformation retraction of D" xI onto —

D"x {0} U 0D"xI. This deformation retraction gives rise to a

deformation retraction of X" xI onto X" x {0} u (X" 1 U A")xI

since X" x I is obtained from X" x {0} U (X"~ U A™) xI by attach-

ing copies of D" xI along D" x {0} U dD" xI. If we perform the deformation retrac-
tion of X"xI onto X"x {0} U (X" ' UA")xI during the t-interval [1/2""! 1/2"],
this infinite concatenation of homotopies is a deformation retraction of XxI onto
Xx {0} U AxI. (There is no problem with continuity of this deformation retraction
at t = 0 since it is continuous on X" x I, being stationary there during the t-interval
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[0, 1/2"*1], and CW complexes have the weak topology with respect to their skeleta
so a map is continuous iff its restriction to each skeleton is continuous.) O

Now we can prove the following generalization of the earlier criterion (1) for ho-
motopy equivalence:

’ Proposition 0.17. If the pair (X, A) satisfies the homotopy extension property and
A is contractible, then the quotient map q: X — X /A is a homotopy equivalence.

Proof: Let f,: X — X be a homotopy extending a contraction of A, with f, = 1. Since
f:(A) c A for all t, the composition qf; sends A to a point and hence factors as a

composition X L. x/A iR X/A. Thus we have qf; = ftq in the first of the following
two diagrams:

X S X X A X
Ql lq ql / lq
X/A J_i X/A X/A ~71 X/A

When t = 1 we have f;(A) equal to a point, the point to which A contracts, so f;
induces a map g:X/A—X with gq = f,. It follows that gqg = fl since qg(x) =
aga(x) = qf,(x) = flq(x) = fl(f). The maps g and g are inverse homotopy
equivalences since gq = f; ~ f, = 1 via f, and qg = f, = f, = 1 via f,. o

Another application of the homotopy extension property, giving a slightly more
refined version of the criterion (2) for homotopy equivalence, is the following:

Proposition 0.18. If (X, A) is a CW pair and we have attaching maps f,g:A— X,
that are homotopic, then X, U X; ~ X, Uy X, rel X;.

Here the definition of W ~ Z rel Y for pairs (W,Y) and (Z,Y) is that there are
maps @ :W—Z and ¢ :Z— W restricting to the identity on Y, such that ¢y ~ 1
and @y =~ 1 via homotopies that restrict to the identity on Y at all times.

Proof: If F: AxXI— X, is a homotopy from f to g, consider the space X, Ug (X;x1I).
This contains both X, L X; and X, L, X; as subspaces. A deformation retraction
of X;xI onto X;x{0} UAXI as in Proposition 0.16 induces a deformation retraction
of Xy Up (X;xI) onto X, Uy X;. Similarly X, L (X;xI) deformation retracts onto
XoUyX; . Both these deformation retractions restrict to the identity on X, so together
they give a homotopy equivalence X, L1y X; =~ X, U, X; rel X. O

We finish this chapter with a technical result whose proof will involve several
applications of the homotopy extension property:
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Proposition 0.19. Suppose (X,A) and (Y,A) satisfy the homotopy extension prop-
erty, and f:X—Y is a homotopy equivalence with f|A = 1. Then f is a homotopy
equivalence rel A.

Corollary 0.20. If (X, A) satisfies the homotopy extension property and the inclusion

A — X is a homotopy equivalence, then A is a deformation retract of X .

Proof: Apply the proposition to the inclusion A — X. |

Corollary 0.21. Amap f:X—Y is a homotopy equivalence iff X is a deformation
retract of the mapping cylinder M. Hence, two spaces X and Y are homotopy

equivalent iff there is a third space containing both X and Y as deformation retracts.

Proof: The inclusion i: X — My is homotopic to the composition jf where j is the
inclusion Y < M, a homotopy equivalence. It then follows from Exercise 3 at the
end of the chapter that i is a homotopy equivalence iff f is a homotopy equivalence.
This gives the ‘if’ half of the first statement of the corollary. For the converse, the pair
(Mg, X) satisfies the homotopy extension property by Example 0.15, so the ‘only if’
implication follows from the preceding corollary. O

Proof of 0.19: Let g:Y — X be a homotopy inverse for f, and let h,: X—X be a
homotopy from gf = h, to 1 = h;. We will use h, to deform g to a map g, with
g1]A =1. Since f|A =1, we can view h,|A as a homotopy from g|A to 1. Then
since we assume (X,A) has the homotopy extension property, we can extend this
homotopy to a homotopy g,:Y — X from g = g, to amap g, with g, |A = 1.

Our next task is to construct a homotopy g,f =~ 1 rel A. Since g ~ g, via g;
we have gf = g,f via g,f. We also have gf =~ 1 via h;, so since homotopy is an
equivalence relation by Exercise 3 at the end of the Chapter, we have g,f =~ 1. An
explicit homotopy that shows this is

K - 91-2tf, 0O<t<l),
Py, ,<t<1

Note that the two definitions agree when t = 1/, since f|A = 1 and g, = h, on A.
The homotopy k,|A starts and ends with the identity, and its second half simply
retraces its first half, thatis, k;, = k;_, on A. In this situation we define a ‘homotopy
of homotopies’ k;,, : A— A by means of the figure to the right showing the parameter
domain IxI for the pairs (t,u), with the t-axis horizontal and the
u-axis vertical. On the bottom edge of the square we define k,, = k, | A.
Below the ‘V’ we define k;,, tobe independent of u, and above the V' we
define k;,, to be independent of ¢. This is unambiguous since k; = k;_;
on A. Since k; = 1, we have k;,, = 1 for (f,u) in the left, right, and top edges of the
square. Since (X, A) has the homotopy extension property, so does (X xI,AXI) by

the initial remarks on the homotopy extension property. Viewing k;,, as a homotopy
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of k;, we can therefore extend k;,,:A— A to k;,: X— X with k;; = k; : X—X. Now
if we restrict this k;, to the left, top, and right edges of the (t,u)-square we get a
homotopy g, f = 1 rel A.

Since g, =~ g, wehave fg, =~ fg = 1, so the preceding argument can be repeated
with the pair f,g replaced by g,, f. The result is a map f;:X—X with f;|A =1

and f;g, = 1 rel A. Hence f; = fi(g,f) = (f191)f = frel Aandso fg, = f19, =
1 rel A. Thus g, is a homotopy inverse to f rel A. O

Exercises

1. Construct an explicit deformation retraction of the torus with one point deleted
onto a graph consisting of two circles intersecting in a point, namely, longitude and
meridian circles of the torus.

2. Construct an explicit deformation retraction of R" — {0} onto S n-1

3. (a) Show that the composition of homotopy equivalences X—Y and Y—Z7 is a
homotopy equivalence X — Z. Deduce that homotopy equivalence is an equivalence
relation.

(b) Show that the relation of homotopy among maps X — Y is an equivalence relation.
(c) Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

4. A deformation retraction in the weak sense of a space X to a subspace A is a
homotopy f;:X—X such that f, = 1, f;(X) C A, and f;(A) C A for all t. Show
that if X deformation retracts to A in this weak sense, then the inclusion A — X is
a homotopy equivalence.

5. Show that if a space X deformation retracts to a point x € X, then for each
neighborhood U of x in X there exists a neighborhood V C U of x such that the
inclusion V — U is nullhomotopic.

6. (a) Let X be the subspace of R? consisting of the horizontal seg-

ment [0,1]x {0} together with all the vertical segments {r}x[0,1—7]

for r arational number in [0,1]. Show that X deformation retracts

to any point in the segment [0, 1]x {0}, but not to any other point.

[See the preceding problem.]

(b) Let Y be the subspace of R? that is the union of an infinite number of copies of X
arranged as in the figure below. Show that Y is contractible but does not deformation
retract onto any point.
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(c) Let Z be the zigzag subspace of Y homeomorphic to R indicated by the heavier
line. Show there is a deformation retraction in the weak sense (see Exercise 4) of Y
onto Z, but no true deformation retraction.

7. Fill in the details in the following construction from [Edwards] of a compact space
Y c R? with the same properties as the space Y in Exercise 6, thatis, Y is contractible
but does not deformation retract to any point. To begin, let X be the union of an in-
finite sequence of cones on the Cantor set arranged end-to-end, as in the figure. Next,
form the one-point compactification of X x R. This

embeds i0.8 n R? as a closed disk with curved ‘fins’

attached along circular arcs, and with the one-point

compactification of X as a cross-sectional slice. Fi-

nally, Y is obtained from this by wrapping one more

cone on the Cantor set around the boundary of the

disk. X Y

8. For n > 2, construct an n-room analog of the house with two rooms.

9. Show that a retract of a contractible space is contractible.

10. Show that a space X is contractible iff every map f:X—Y, for arbitrary Y, is
nullhomotopic. Similarly, show X is contractible iff every map f:Y— X is nullho-
motopic.

11. Show that f:X—Y is a homotopy equivalence if there exist maps g,h:Y —X
such that fg ~ 1 and hf ~ 1. More generally, show that f is a homotopy equiva-
lence if fg and hf are homotopy equivalences.

12. Show that a homotopy equivalence f:X —Y induces a bijection between the set
of path-components of X and the set of path-components of Y, and that f restricts
to a homotopy equivalence from each path-component of X to the corresponding
path-component of Y.

13. Show that any two deformation retractions »_ and 7} of a space X onto a
subspace A can be joined by a continuous family of deformation retractions 7},
0 < s <1,o0of X onto A, where continuity means that themap XxIxI—X, (x,s,t)—
77 (x), is continuous.

14. Given positive integers v, e, and f satisfying v — e + f = 2, construct a cell
structure on S? having v 0-cells, e 1-cells, and f 2-cells.

15. Enumerate all the subcomplexes of S, with the cell structure described in this
section, having two cells in each dimension.

16. Show that S is contractible.

17. Construct a 2-dimensional cell complex that contains both an annulus S' x I and
a Mobius band as deformation retracts.

18. Show that $' * S* = §3, and more generally S™ * §" = §"*"*1,
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19. Show that the space obtained from S? by attaching n 2-cells along any collection
of n circles in S? is homotopy equivalent to the wedge sum of n + 1 2-spheres.

20. Show that the subspace X c R® formed by a Klein bottle in-
tersecting itself in a circle, as shown in the figure, is homotopy
equivalent to S' v §' v §2.

21. If X is a connected space that is a union of a finite number of 2-spheres, any
two of which intersect in at most one point, show that X is homotopy equivalent to a
wedge sum of S!’s and $°’s.

22. Let X be a finite graph lying in a half-plane P C R® and intersecting the edge
of P in a subset of the vertices of X. Describe the homotopy type of the ‘surface of
revolution’ obtained by rotating X about the edge line of P.

23. Show that a CW complex is contractible if it is the union of two contractible
subcomplexes whose intersection is also contractible.

24. Let X and Y be CW complexes with 0-cells x, and y,. Show that the quotient
spaces X x Y /(X * {yy}U{xg} xY) and S(XAY)/S({xg} A{yy}) are homeomorphic,
and deduce that X * Y = S(X AY).

25. Show that for a CW complex X with components X, the suspension S$X is
homotopy equivalent to Y\/,SX, where Y is a graph. In the case that X is a finite
graph, show that SX is homotopy equivalent to a wedge sum of circles and 2-spheres.

26. Use Corollary 0.20 to show that if (X, A) has the homotopy extension property,
then X xI deformation retracts to Xx {0} u AxI. Deduce from this that Proposi-
tion 0.18 holds more generally when (X, A) satisfies the homotopy extension prop-
erty.

27. Given a pair (X,A) and a map f:A— B, define X/f to be the quotient space
of X obtained by identifying points in A having the same image in B. Show that the
quotient map X — X/ f is ahomotopy equivalence if f is a surjective homotopy equiv-
alence and (X, A) has the homotopy extension property. [Hint: Consider X U M, and
use the preceding problem.] When B is a point this gives another proof of Proposi-
tion 0.17. Another interesting special case is when f is the projection AxXI— A.

28. Show thatif (X;, A) satisfies the homotopy extension property, then so does every
pair (X, Ur X;, X,) obtained by attaching X, to a space X, via a map fiA—=X,.
29. In case the CW complex X is obtained from a subcomplex A by attaching a single
cell e", describe exactly what the extension of a homotopy f;:A—Y to X given by
the proof of Proposition 0.16 looks like. That is, for a point x € ™ describe the path
Jfi(x) for the extended f;.



Chapter
The Fundamental Group

One of the main techniques of algebraic topology is to study topological spaces
by forming algebraic images of them. Most often these algebraic images are groups,
but more elaborate structures such as rings, modules, and algebras also arise. The
mechanisms which create these images — the ‘lanterns’ of algebraic topology, one
might say — are known formally as functors and have the characteristic feature that
they form images not only of spaces but also of maps. Thus, continuous maps be-
tween spaces are projected onto homomorphisms between their algebraic images, so
topologically related spaces have algebraically related images.

With suitably constructed lanterns one might hope to be able to form images with
enough detail to reconstruct accurately the shapes of all spaces, or at least of large
and interesting classes of spaces. This is one of the main goals of algebraic topology,
and to a surprising extent this goal is achieved. Of course, the lanterns necessary to
do this are somewhat complicated pieces of machinery. But this machinery also has
a certain intrinsic beauty.

This first chapter introduces one of the simplest and most important of the func-
tors of algebraic topology, the fundamental group, which creates an algebraic image
of a space from the loops in the space, that is, paths starting and ending at the same
point.

The Idea of the Fundamental Group

To get a feeling for what the fundamental group is about, let us look at a few
preliminary examples before giving the formal definitions.
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Consider two linked circles A and B in R?, as shown in
the figure. The fact that the circles are linked means, intu-
itively, that B cannot be separated from A by any continuous
motion of B, such as pushing, pulling, twisting, etc. We could A B
even take B to be made of rubber or stretchable string and allow completely general
continuous deformations of B, staying in the complement of A at all times, and it
would still be impossible to pull B off A. At least that is what intuition suggests,
and the fundamental group will give a way of making this intuition mathematically

rigorous.

Instead of having B link with A just once, we could make
it link A two or more times. As a further variation, by as- P
signing an orientation to B we can speak of B linking A a

positive or a negative number of times, say positive when B A B,
comes forward through A and negative for the reverse direc-

tion. Thus for each nonzero integer n we have an oriented b

circle B, linking A n times, where by ‘circle’ we mean a curve b
homeomorphic to a circle. To complete the scheme, we could A < B

let B, be a circle which doesn’t link A at all.

Now, integers not only measure quantity, but they form a group under addition.
Can the group operation be mimicked geometrically with some sort of addition op-
eration on the oriented circles B linking A? An oriented circle B can be thought of
as a path traversed in time, starting and ending at the same point x,, which we can
choose to be any point on the circle. Such a path starting and ending at the same point
is called a loop. Two different loops B and B’ both starting and ending at the same
point x,, can be ‘added’ to form a new loop B + B’ which travels first around B, then
around B’. For example, if B; and B; are loops each linking A once in the positive
direction, then their sum B, + B; is deformable to B,, linking A twice:

Bl B2
C§X‘J T G@xo
] ]

A B, A

In a similar way B; + B_; can be deformed to the loop B, unlinked from A:

Bl
% X, o~ E« — X,
/) 1
A Ba A By

More generally, B,, + B,, is deformable to B,,,, for arbitrary integers m and n, as
one can easily convince oneself of by drawing a few pictures like those above.
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Note that in forming sums of loops we produce loops which pass through the
basepoint more than once. This is one reason why loops are defined merely as contin-
uous paths, which are allowed to pass through the same point many times. So if one is
thinking of a loop as something made of stretchable string, one has to give the string
the magical power of being able to pass through itself unharmed. However, we must
be sure not to allow our loops to intersect the fixed circle A at any time, otherwise we
could always unlink them from A.

Next we consider a slightly more complicated sort of linking, involving three cir-
cles forming a configuration known as the Borromean rings, shown in the figure on
the left below. The interesting feature here is that if any one of the three circles is
removed, the other two are not linked.

A B

AL/~ (AR

In the same spirit as before, let us regard the third circle C as forming a loop in the
complement of the other two, A and B, and we ask whether C can be continuously
deformed to unlink it completely from A and B, always staying in the complement
of A and B during the deformation. We can redraw the picture by pulling A and B
apart, dragging C along, and then we see C winding back and forth between A and
B as shown in the second figure above. In this new position, if we start at the point of
C indicated by the dot and proceed in the direction given by the arrow, then we pass
in sequence: (1) forward through A, (2) forward through B, (3) backward through A,
and (4) backward through B. If we measure the linking of C with A and B by two
integers, then the ‘forwards’ and ‘backwards’ cancel and both integers are zero. This
reflects the fact that C is not linked with A or B individually.

To get amore accurate measure of how C links with A and B together, we regard
the four parts (1)-(4) of C as an ordered sequence. Taking into account the directions
in which these segments of C pass through A and B, we may deform C to the sum
a+ b —a — b of four loops as in the next figure. We write the third and fourth loops
as the negatives of the first two since they can be deformed to the first two, but with
the opposite orientations, and as we saw in the preceding example, the sum of two
oppositely-oriented loops is deformable to a trivial loop, not linked with anything.
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We would like to view the expression a + b —a — b as lying in a nonabelian group, so
that it is not automatically zero. Changing to the more usual multiplicative notation
for nonabelian groups, it would be written aba’lb’l, the commutator of a and b.

To shed further light on this example, suppose we modify it slightly so that the
circles A and B are now linked, as in the next figure.

A/_\_CBWAQ@CB

The circle C can then be deformed into the position shown at the right, where it again
represents the composite loop aba 'b~!, where a and b are loops linking A and
B. But it is apparent from the picture on the left that C can actually be unlinked
completely from A and B. So in this case the product aba 'b~! should be trivial,
i.e.,, a and b should commute.

The fundamental group of a space X will be defined so that its elements are
loops in X starting and ending at a fixed basepoint x, € X, but two such loops are
regarded as determining the same element of the fundamental group if one loop can
be continuously deformed to the other within the space X. (All loops which occur
during deformations must also start and end at x.) In the first example above, X is
the complement of the circle A, while in the other two examples X is the complement
of the two circles A and B. In the second section in this chapter we will show:

— The fundamental group of the complement of the circle A in the first example
is Z, with the loop B as a generator of this group. This amounts to saying that
every loop in the complement of A can be deformed to one of the loops B,,, and
that B,, cannot be deformed to B,, if n + m.

— The fundamental group of the complement of the two unlinked circles A and B in
the second example is the nonabelian free group on two generators, represented
by the loops a and b linking A and B. In particular, the commutator aba 'b~!
is a nontrivial element of this group.

— The fundamental group of the complement of the two linked circles A and B in
the third example is the free abelian group Zx Z on two generators, represented
by the loops a and b linking A and B.

As a result of these calculations, we have two ways to tell when a pair of circles A
and B is linked. The direct approach is given by the first example, where one circle
is regarded as an element of the fundamental group of the complement of the other
circle. An alternative and somewhat more subtle method is given by the second and
third examples, where one distinguishes a pair of linked circles from a pair of unlinked
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circles by the fundamental group of their complement, which is abelian in one case and
nonabelian in the other. This method is much more general: One can often show that
two spaces are not homeomorphic by showing that their fundamental groups are not
isomorphic, since it will be an easy consequence of the definition of the fundamental
group that homeomorphic spaces have isomorphic fundamental groups.

1.1 Basic Constructions

This first section begins with the basic definitions and constructions, and then
proceeds quickly to an important calculation, the fundamental group of the circle,
using notions developed more fully in §1.3. More systematic methods of calculation
are given in §1.2, sufficient to show for example that every group is realized as the
fundamental group of some space. This idea is exploited in the Additional Topics
at the end of the chapter, which give some illustrations of how algebraic facts about
groups can be derived topologically.

Paths and Homotopy

There are two basic ingredients in the definition of the fundamental group: the
idea of continuous deformation of paths, and an operation for composing paths to
form new paths. We begin with the first of these.

Let X be a space and let I denote the unit interval [0,1] in R. By a path in X
we mean a continuous map f:I—X. The idea of continuously deforming a path,
keeping its endpoints fixed, is made precise by the following definition. A homotopy
of paths in X is a family f,:I—X, 0 <t < 1, such that

(1) The endpoints f;(0) = x, and f;(1) = x, are independent of ¢.
(2) The associated map F:IxI— X defined by F(s,t) = f;(s) is continuous.

When two paths f;, and f; are connected in this way by a homotopy f;, we will say
they are homotopic and write f, = f;.

Example 1.1: Linear homotopies. Any two paths
fo and f; in R" having the same two endpoints x,
and x; are homotopic via the homotopy f;(s) =
(1 —t)fy(s) +tf(s). During this homotopy each
point f;,(s) travels along the line segment to f;(s) at constant speed. This is because
the line through f,,(s) and f; (s) is linearly parametrized as f,(s) +t[f;(s) — fp(s)] =
(1-t)fo(s)+tf1(s),soas t goes from O to 1, f;(s) traces out the segment from f;(s)
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to fi1(s). If f1(s) = fy(s) then this segment degenerates to a point, so f;(s) = f,(s)
for all t. This happens in particular for s = 0 and s = 1, so f; is a path from x, to x;
for all t. Continuity of the homotopy f; as amap IxI—R" follows from continuity
of f, and f; since the algebraic operations in the definition of f; are continuous.

This construction shows more generally that for a convex subspace X c R", all
paths in X with given endpoints x, and x; are homotopic.

Before proceeding further we need to verify a technical property:

Proposition 1.2. The relation of homotopy on paths with fixed endpoints in any space

is an equivalence relation.

Proof: The constant homotopy f; = f shows that f ~ f. If f, ~ f, via f,, then
f1 = fp via the homotopy f;_;. For transitivity, if f, = f; via f; and f; = g9 =~ 9;
via g;, then f, = g, via the homotopy h; which equals f,; for 0 < t < 1/, and
o for 1/, <t < 1. Continuity of the associated map H(s,t) = h,(s) comes from
the elementary fact, which will be used frequently without explicit mention, that a
function defined on the union of two closed sets is continuous if its restriction to
each of the closed sets is continuous. In the case at hand, H is clearly continuous on
each of Ix[0,1/,] and I x[Y/,,1], and on I x {!/,} the two definitions of H agree since
J1 = 9o, so H is continuous on IxI. O

The equivalence class of a path f under the equivalence relation of homotopy is
denoted by [f] and called the homotopy class of f.

Given two paths f,g:I— X such that f(1) = g(0), we can define a ‘composition’
or ‘product’ path f-g which traverses first f then g, by the formula

f(2s), 0<s<l

frats) = {g(ZS -1), Yy=s=<1

Thus the speed of traversal of f and g is doubled in order for f-g to be traversed
in unit time. This product operation respects homotopy classes since if f, =~ f; and
Jo = g, via homotopies f; and g;, and if f,(1) = g,(0) so that f,-g, is defined,
then f;-g; is defined and provides a homotopy f;-go = fi-9; -

In particular, suppose we restrict attention to paths f:I— X with the same start-
ing and ending point f(0) = f(1) = x, € X. Such paths are called loops, and the
common starting and ending point x, is referred to as the basepoint. The set of
homotopy classes of loops in X at the basepoint x, is denoted T, (X, x;).

H Proposition 1.3. ™, (X, Xo) IS a group with respect to the product [ f1lg]l = [f-g].

This group 1, (X, x)) is called the fundamental group of X at the basepoint x.

Proof: By restricting attention to loops with a fixed basepoint x, € X we guarantee
that the product f.g of any two such loops is defined. We have already observed
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that the homotopy class of f:g depends only on the homotopy classes of f and g,
so the product [ f][g] = [f-g] is well-defined. It remains to verify the three axioms
for a group.

As a preliminary step, define a reparametrization of a path f to be a composi-
tion f@ where @ :I—1I is any continuous map such that ¢ (0) = 0 and @(1) = 1.
Reparametrizing a path preserves its homotopy class since f@ ~ f via the homotopy
fo; where @;(s) = (1 - t)p(s) +ts so that p; = @ and @,(s) = s. Note that
(1 -1t)@(s) + ts lies between @(s) and s, henceisin I so f@;, is defined.

Given paths f, g, h with f(1) = g(0) and g(1) = h(0), then the composed paths
(f-g)-h and f-(g-h) are reparametrizations of each other, differing only in the speeds
at which f and h are traversed. Hence (f-g)-h ~ f-(g-h). Restricting attention to
loops at the basepoint x, this says the product in 1m; (X, x,) is associative.

Given a path f:I— X, let ¢ be the constant path at f(1), defined by c(s) = f(1)
for all s € I. Then f-c is a reparametrization of f via the function @(s) which
equals 25 on [0,/,]and 1 on [1/,,1],s0 f-c =~ f. Similarly, c-f ~ f where c is now
the constant path at f(0). Taking f to be a loop, we deduce that the homotopy class
of the constant path at x, is a two-sided identity in T (X, x) .

For a path f from x, to x,, the inverse path f from x, back to x, is defined
by f(s) = f(1 —s). Consider the homotopy h, = f,-g, where f, is the path which
equals f on the interval [0, t] and which is stationary at f(t) on the interval [t,1],
and g, is the inverse path of f;. Since f|, is the constant path ¢ at x, and f; = f,
we see that h; is a homotopy from c-c = ¢ to f . f. Now specialize to the case that
f is aloop at the basepoint x,. We have shown that f-f ~ ¢, and replacing f by f
gives f-f =~c. So [f] is a two-sided inverse for [ f] in ™ (X, Xq) - m]

In Chapter 4 we will see that 1T (X, x,)) is just the first in a sequence of groups
M, (X, x4), called homotopy groups, which are defined in an entirely analogous fash-
ion using the n-dimensional cube I" in place of I.

Example 1.4. A convex set X in R" has 11, (X, x,) = 0, the trivial group, for every
basepoint x, € X, since any two loops f; and f; based at x, are homotopic via the
linear homotopy f;(s) = (1 —t) fy(s) + tf,(s).

Itis not so easy to show that a space has a nontrivial fundamental group since one
must somehow demonstrate the nonexistence of homotopies between certain loops.
We will tackle the simplest example shortly, showing that this is the case for the circle.
But first let us address a theoretical issue which the reader may be wondering about.

How does 1, (X, x;) depend on the choice of the basepoint x,? Since 1, (X, x)
involves only the path component of X containing X, it is clear that we can hope to
find a relation between T, (X, x;) and T, (X, x;) for two basepoints x(, x; € X only
if xy and x; lie in the same path component of X. So let h:I—X be a path from
X, to xp, with the inverse path h(s) = h(1 - s) from x; back to x,. We can then
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associate to each loop f based at x; the loop h-f-h based at X, . Strictly speaking,
we should choose an order of forming the product h-f-h, either (h-f)-h or h-(f-h),
but the two choices are homotopic and we are only interested in homotopy classes
here. Alternatively, to avoid any ambiguity we could define a general n-fold product

Sl

fi+ -+ - f, so that the path f; is traversed in the time interval [

Proposition 1.5. The map B;,: 1, (X,x,) =1, (X, x,) defined by B,[f] = [h-f-h]
is an isomorphism.

Proof: If f, is a homotopy of loops based at x; then h- f, - h is a homotopy of
loops based at x,, so B, is well-defined. Further, B, is a homomorphism since
Bulf-gl = [h-f-g-h] = [h-f-h-h-g-h] = B,[f1B,[g]. Finally, B, is an isomorphism
with inverse By since B,B5[f]1 = Bplh-f-h]l =[h-h-f-h-h] = [f], and similarly
BrBulf1=1f]. O

Thus if X is path-connected, the group (X, x;) is, up to isomorphism, inde-
pendent of the choice of basepoint x;. In this case the notation 1, (X, x,) is often
abbreviated to 1T, (X), or one could go further and write just 1, X.

In general, a space is called simply-connected if it is path-connected and has
trivial fundamental group. The following result is probably the reason for this term.

Proposition 1.6. A space X is simply-connected iff there is a unique homotopy class

of paths connecting any two points in X.

Proof: Path-connectedness is the existence of paths connecting every pair of points,
so we need be concerned only with the uniqueness of connecting paths. Suppose
m(X) = 0. If y and n are two paths from x, to x;, then y =~ y-n-n = n, the
latter homotopy since the loop y -7 is nullhomotopic if (X, x,) = 0. Conversely,
if there is only one homotopy class of paths connecting a basepoint x|, to itself, then
M (X, xg) = 0. O

The Fundamental Group of the Circle

Our first real theorem will be the calculation 1T, (S 1) ~ Z. Besides its intrinsic
interest, this basic result will have several immediate applications of some substance,
and it will be the starting point for many more calculations in the next section. In view
of the importance of this result, we can expect the proof to involve some genuine work,
which it does. To maximize the payoff for this work, the proof is written so that its
main technical steps apply in a more general setting. This setting, covering spaces, is
the topic of §1.3.

Here is the theorem:
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Theorem 1.7. The map ¢ :Z— 1, (S 1) sending an integer n to the homotopy class

of the loop w,,(s) = (cos2mns,sin2mns) based at (1,0) is an isomorphism.

Proof: The idea is to compare paths in S' with paths in R via the map p:R—S !
given by p(s) = (cos2trs,sin2mrs). This map can be visualized geo-
metrically by embedding R in R® as the helix parametrized by s —
(cos2Ttrs,sin27rs,s), and then p is the restriction to the helix of the
projection of R3 onto R?, (x,¥,z) — (x,%), as in the figure. Ob-
serve that the loop w,, is the composition pw,, where @, :I—R is
the path @, (s) = ns, starting at 0 and ending at n, winding around
the helix |n| times, upward if n > 0 and downward if n < 0. The

(=

relation w,, = pw,, is expressed by saying that @, is a lift of w,,.

The definition of ¢ can be restated by setting ¢ (n) equal to the homotopy class
of the loop pf where f is any path in R from O to n. Such an f is homotopic to
w,, via the linear homotopy (1 — t)f + tw,,, hence pf is homotopic to pw,, = w,
and the new definition of @ (n) agrees with the old one.

To verify that ¢ is a homomorphism, let T,,:R— R be the translation ,,(x) =
x + m. Then @,, - (1,,W,) is a path in R from 0 to m + n, so Y(m + n) is the
homotopy class of the loop in S! which is the image of this path under p. This image
is just w,,-w,,so ym+n)=ywyim)-¢yn).

To show that  is an isomorphism we shall use two facts:

(a) For each path f:I—S' starting at a point x, € S' and each X, € p~'(x,) there

is a unique lift f: I—R starting at X,,.

(b) For each homotopy f;:I —S! of paths starting at x, and each X, € p‘l(xo)

there is a unique lifted homotopy ft :I—R of paths starting at X.

Before proving these facts, let us see how they imply the theorem. To show that y is
surjective, let f:1—S' be aloop at the basepoint (1, 0), representing a given element
of m (S 1y, By (a) there is a lift f starting at 0. This path f ends at some integer n
since pf(l) = f(1) = (1,0) and p’l(l,O) = 7Z C R. By the extended definition of
we then have @ (n) = [pf] = [f]. Hence y is surjective.

To show that ¢ is injective, suppose @ (m) = ¢ (n), i.e,, w,, = w,. Let f; be a
homotopy from w,, = f; to w,, = f;. By (b) this homotopy lifts to a homotopy ft of
paths starting at 0. The uniqueness part of (a) implies that fo = w,, and fl =w,.
Since ft is a homotopy of paths, the endpoint ﬂ(l) is independent of t. For t = 0
this endpoint is m and for t = 1 itis n, so m = n.

It remains to prove (a) and (b). These can both be deduced from a third statement:

(c) Given amap F: YxI—S!' and a map F:Yx {0} —R lifting F|Y x {0}, then there
is a unique map F:Y xI— R lifting F and restricting to the given F on Y x {0}.
Statement (a) is the special case that Y is a point, and (b) is obtained by applying (c)
with Y = I in the following way. The homotopy f; in (b) gives F:IXI—S ! by setting
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F(s,t) = fi(s) as usual. A unique lift F:Ix {0} —R is obtained by an application
of (a). Then (c) gives a unique F:IxI—R. The restrictions FN|{0}><I and ?I{l}x[
are paths lifting the constant path at x, hence they must also be constant by the
uniqueness part of (a). So ft(s) = F(s,t) is a homotopy of paths lifting Si-

We shall prove (c) using just one special property of the projection p:R—S?,
namely:

There is an open cover {U,} of S' such that for each &, p~'(U,) can be
(*)  decomposed as a disjoint union of open sets each of which is mapped homeo-
morphically onto U, by p.

For example, we could take the cover {U,} to consist of any two open arcs in st
whose union is S*.

To prove (c) we will first construct F:NxI—R where N is some neighborhood
in Y of a given point y, € Y. Since F is continuous, every point (y,,t) has a product
neighborhood N; x (a;, b;) such that F(N,x (a;,b;)) c U, for some «. By compact-
ness of {y,}xI, finitely many such products N, X (a;, b;) cover {y,}xI, so we can
choose a single neighborhood N of y, and a partition 0 = t, <t; < --- <&, =1 of
I so that for each i, F(Nx[t;,t;,,]) is contained in some Uy, - Assume inductively
that F has been constructed on Nx[0,t;]. We have F(Nx[t;t;,1]) C Uy, so by
() there is an open set ﬁai C R projecting homeomorphically onto U,, by p and
containing the point F( Yo, t;). After replacing N by a smaller neighborhood of y, we
may assume that F (Nx{t;}) C ﬁai, namely, replace N x {t;} by its intersection with
(F|Nx {ti})‘l(ﬁai). Now we can define F on Nx [£;,t;.;] to be the composition of
F with the homeomorphism p’l Uy, —>(7ai. After finitely many repetitions of this
induction step we eventually get a lift F:NxI—R, for some neighborhood N of y,.

Next we show the uniqueness part of (c) in the special case that Y is a point. In this
case we can omit Y from the notation. So suppose F and F' are two lifts of F:I—S*
such that F(0) = F'(0). As before, choose a partition 0 = o<ty <---<t,=10f
I so that for each i, F([t;,t;,;]) is contained in some U, . Assume inductively that
F=Fonlo, t;]. Since [t;,t;,;] is connected, so is f([ti, t;.11), which must therefore
lie in a single one of the disjoint open sets ﬁai lying over U, , whose existence is given
by (). By the same token, ﬁ’([ti, t;,1]) lies in a single ﬁo‘i, in fact in the same one
that contains f([ti, t;s11) since ﬁ/(ti) = ﬁ(ti). Because p is injective on each ﬁai and
pf =F ', it follows that F = F on [¢;,t;,1], and the induction step is finished.

The last step in the proof of (c) is to observe that since the F’s constructed above
on sets of the form N xI are unique when restricted to each segment {y}x1I, they
must agree whenever two such sets NxI overlap. So we obtain a well-defined lift F
on all of YxI. This F is continuous since it is continuous on each Nx I , and it is
unique since it is unique on each segment {y}xI. ]

Now we turn to some applications of this theorem. Although algebraic topology
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is usually ‘algebra serving topology,’ the roles are reversed in the following proof of
the Fundamental Theorem of Algebra.

|| Theorem 1.8. Every nonconstant polynomial with coefficients in C has a root in C.

Proof: We may assume the polynomial is of the form p(z) = z" +a,z" ' +--- + a,,.

If p(z) has no roots in C, then for each real number » > 0, the formula

2Tri§)

p(re /p(r)
lp(re2mis) /p(r)|

fr(s) =

defines a loop in the unit circle S' ¢ C based at 1. As 7 varies, f, is a homotopy of
loops based at 1. Since f; is the trivial loop, we deduce that the class [f, ] € Trl(Sl)
is zero for all *. Now fix a large value of v, bigger than 1 + |a,| + --- + |a,|. Then
for |z| = r we have

1

-1 -1 _
s (lay |+ s+ a2 2 a2 e+ ay

Iz" =vr" =7 -r

so for 0 <t <1 the polynomial p,(z) = z" + t(alz”’1

the circle |z| = . Replacing p by p; in the formula for f, above and letting t go

+ .-+ +a,) has no roots on
from 1 to 0, we obtain a homotopy from the loop £, to the loop w,, (s) = ™", By
Theorem 1.7, w,, represents n times a generator of the infinite cyclic group T, (S b,
Since we have shown that [w,,] = [f,] = 0, we conclude that n = 0. Thus the only
polynomials without roots in C are constants. O

For the next result we use the standard notation D" for the closed unit disk in
R™, all vectors x of length |x| < 1. Thus the boundary of D" is the unit sphere $™*.

’ Theorem 1.9. Every continuous map h:D*—D? has a fixed point, i.e., a point x
with h(x) = x.

Proof: Suppose on the contrary h(x) = x for all x € D?.

Then we can define a map »:D>—S' by letting 7 (x) be the

point of S' where the ray in R? starting at h(x) and passing

through x leaves D?. Continuity of # is clear since small per-

turbations of x produce small perturbations of h(x), hence r(x)

small perturbations of the ray through these two points. The

crucial property of 7, besides continuity, is that »(x) = x if x € S'. Thus » is a
retraction of D? onto S'. We will show that no such retraction can exist.

Let f, be any loop in S ! In D? there is a homotopy of Jo to a constant loop, for
example the linear homotopy f;(s) = (1 —t)f,(s) + tx, where x, is the basepoint
of f,. Since the retraction r is the identity on S, the composition * f; is then a
homotopy in $' from 7 f, = f, to the constant loop at x,. But this contradicts the
fact that 1, (S!) is nonzero. O
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This theorem was first proved by Brouwer around 1910, one of the early triumphs
of algebraic topology. Brouwer in fact proved the corresponding result for D", and
we shall obtain this generalization in Corollary 2.11 using homology groups in place
of 71;. One could also use the higher homotopy group ,,. Brouwer’s original proof
used neither homology nor homotopy groups, which had not been invented at the
time. Instead it used the notion of degree for maps S" — S", which we shall define in
§2.2 using homology but which Brouwer defined directly in more geometric terms.

All these versions of the proof of the fixed point theorem are arguments by con-
tradiction, and so they show just the existence of a fixed point without giving any clue
as to how to find it in explicit cases. Our proof of the fundamental theorem of algebra
was similar in this regard. There exist other proofs of the Brouwer fixed point theorem
which are somewhat more constructive, for example the elegant and quite elementary
proof by Sperner in 1928, which is explained very nicely in [Aigner-Ziegler].

The techniques used to calculate T, (S 1y can be applied to prove the Borsuk-Ulam
theorem in dimension two:

‘ Theorem 1.10. For every continuous map f:S 2> R? there exists a pair of antipodal
points x and —x in S% with f(x) = f(-x).

It may be that there is only one such pair of antipodal points x, —x, for example
if f is simply orthogonal projection of the standard sphere S 2 c R? onto a plane.

The Borsuk-Ulam theorem holds also for maps " — R", as we show in Proposi-
tion 2B.5. The proof for n = 1 is easy since the difference f(x) — f(—x) changes
sign as x goes halfway around the circle, hence must be zero for some x. For n > 2
the theorem is certainly less obvious. Is it apparent, for example, that at every instant
there must be a pair of antipodal points on the surface of the earth having the same
temperature and the same barometric pressure?

The theorem says in particular that there is no one-to-one continuous map from
$? to R?, so S? is not homeomorphic to a subspace of R?, an intuitively obvious fact
which is not easy to prove directly.

Proof: If the conclusion is false for f:5%— R?, we can define g:52—>51 by

f(x) - f(=x)

90V = TG0 = F o)l
Then g(—x) = —g(x). Define a loop n:I—»S2 c R® by n(s) = (cos27s,sin27s,0),
and let h:I—S! be the composed loop gn. Since g(—x) = —g(x), we have the
relation h(s + 1/,) = —h(s) for all s in the interval [0,1/,]. As we showed in the
calculation of 1r;(S'), the loop h can be lifted to a path h:I—R. The equation
h(s +1,) = —h(s) implies that FNL(S +1/,) = E(S) + 9/, for some odd integer q. The
integer g is independent of s € [0,1/,] since by solving the equation PNL(S + 1) =
PNL(S) +9/, for q we see that q depends continuously on s, so must be constant, being
constrained to integer values. In particular, we have I’Nl(l) = fNL(l/z) + 9/, = PNL(O) + q.
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This means that h represents q times a generator of 7T, (S 1y, Since g is odd, we
conclude that h is not nullhomotopic. But h was the composition gn:1—S*—S*,
and n is obviously nullhomotopic in S?, so gn is nullhomotopic in S ! by composing
a nullhomotopy of n with g. Thus we have arrived at a contradiction. O

Corollary 1.11. Whenever S? is expressed as the union of three closed sets A, A,,

and A;, then one of these sets must contain a pair of antipodal points x and —x.

Proof: Let d;: $%2 — R measure distance to A;, thatis, d;(x) = infyeAi |x—7y|. Thisisa
continuous function, so we may apply the Borsuk-Ulam theorem to the map $?—>R?,
x — (dy(x),d,(x)), obtaining a pair of antipodal points x and —x with d,(x) =
d,(—x) and d,(x) = d,(—x). If either of these two distances is zero, then x and —x
both lie in the same set A; or A, since these are closed sets. On the other hand, if
the distances from x and —x to A; and A, are both strictly positive, then x and —x
lie in neither A; nor A, so they must lie in A;. O

The number ‘three’ in this result is best possible. For consider a sphere inscribed
in a tetrahedron. Projecting the four faces of the tetrahedron radially onto the sphere,
we obtain a cover of S2 by four closed sets, none of which contains a pair of antipodal
points.

Assuming the higher-dimensional version of the Borsuk-Ulam theorem, the same
arguments show that §" cannot be covered by n + 1 closed sets without antipodal
pairs of points, though it can be covered by n + 2 such sets. Even the case n =1 is
somewhat interesting: If the circle is covered by two closed sets, one of them must
contain a pair of antipodal points.

The following simple fact will allow us to compute the fundamental groups of a
few more spaces.

Proposition 1.12. m(XXY) is isomorphic to 1w, (X)x 1, (Y) if X and Y are path-

connected.

Proof: A basic property of the product topology is that a map f:Z—XxY is con-
tinuous iff the maps g:Z— X and h:Z—Y defined by f(z) = (g(z),h(z)) are both
continuous. Hence aloop in X xY based at (x,, ) is equivalent to a pair of loops in
X and Y based at x, and y, respectively. Similarly, a homotopy of aloop in XxY is
equivalent to a pair of homotopies of the corresponding loops in X and Y. Thus we
obtain a bijection 11, (XX Y, (x4, ¥y)) = 1, (X, xo) X1, (Y, ), and this is obviously a
group isomorphism. m|

Example 1.13: The Torus. By the proposition we have an isomorphism 7t (S Lysh =
Zx 7. Under this isomorphism a pair (p,q) € ZxZ corresponds to a loop which winds
p times around one S! factor of the torus and q times around the other S' factor,
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for example the loop wpq(s) = (oop(s), wq(s)). More generally, the n-dimensional
torus, which is the product of n circles, has fundamental group the product of n
copies of Z. This follows by induction on n.

Induced Homomorphisms

Suppose @ : X —Y is amap taking the basepoint x, € X to the basepoint y, € Y.
For brevity we write @ : (X, x,y) — (Y, ;) in this situation. Then @ induces a homo-
morphism @, : 1, (X, x,) — 11, (Y, ), defined by composing loops f:1— X based at
xo with @, thatis, @.[f] = [@f]. This induced map @, is well-defined since a
homotopy f; of loops based at x|, yields a composed homotopy @ f; of loops based
at v, 80 @ [fo]l = [@fy]l = [@f1]1= @.[f,]. Furthermore, @, is a homomorphism
since @ (f-g) = (@f)-(pg).

Two basic properties of induced homomorphisms are:

(i) (py), = @y, for a composition (X, x) R (Y, yo) 2, (Z,zg).

(ii) 1, = 1, in other words, the identity map 1:X— X induces the identity map
1:11 (X, x) =11 (X, X)) .

The first of these follows since composition of maps is associative, (py)f = (@ f),
and the second is obvious. Properties (i) and (ii) of induced homomorphisms are
what makes the fundamental group into a functor. The formal definition of func-
tors requires the introduction of certain other preliminary concepts, however, so we
postpone this until it is needed in §2.3.

From (i) and (ii) it follows formally that if @ is a homeomorphism with inverse
Y, then @, is an isomorphism with inverse ¢, since @ ¢, = (py), =1, =1
and similarly ¢, @, = 1. We will use this fact to compute the fundamental groups
of higher-dimensional spheres:

| Proposition 1.14. m,(S") =0 if n > 2.

Proof: Let f be aloop in S™ at a chosen basepoint x,. If the image of f is disjoint
from some point x € §" then f is nullhomotopic since S"™ — {x} is homeomorphic
to R™ which is simply-connected. So it will suffice to homotope f to make it nonsur-
jective. To do this we will look closely at a small open ball B about any point x # x,
in §™ and see that f crosses B in such a way as to meet x only finitely many times,
and each time this happens the relevant portion of f can simply be pushed off x.
The set f’1 (B) is open in (0,1), hence is a disjoint union of at most countably
many open intervals (a;,b;). The compact set f ' (x) is contained in the union of
these intervals and can meet only finitely many of them, otherwise it would contain
points arbitrarily close to the set f71(S"™ — B) which is compact and disjoint from
f -1 (x), hence of strictly positive distance from f -1 (x). Consider one of the intervals
(a;, b;) meeting f1(x). The path f; obtained by restricting f to [a;, b;] lies in the
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closure of B, and its endpoints f(a;) and f(b;) lie in the boundary of B. If n > 2
we can choose a path g; from f(a;) to f(b;) in the closure of B but disjoint from
x . For example, we could choose g; to lie in the boundary of B, which is a sphere of
dimension n — 1, hence path-connected if n > 2. Since the closure of B is simply-
connected, being homeomorphic to a convex set in R", the path f; is homotopic to
g; by Proposition 1.6, so we may homotope f by deforming f; to g;. Repeating this
process for each of the intervals (a;, b;) which meet f ’l(x), we obtain eventually a
new loop homotopic to the given f and having image disjoint from x. a

Example 1.15. For x € R" we have R" — {x} homeomorphic to S" 'xR, so by
Proposition 1.12, 1, (R" — {x}) is isomorphic to 1T1(S”_1)><1T1(R), hence is 7 for
n = 2 and trivial for n > 2.

H Corollary 1.16. R? is not homeomorphic to R™ for n + 2.

Proof: Suppose f: R>—R" is a homeomorphism. The case n = 1 is easily disposed
of since R? — {0} is path-connected but the homeomorphic space R"™ — {£(0)} is not
path-connected when n = 1. When n > 2 we cannot distinguish R? — {0} from
R™ — {f(0)} by the number of path-components, but by Example 1.15 we can distin-
guish them by their fundamental groups instead. O

The more general statement that R™ is not homeomorphic to R" if m = n can
be proved in the same way using either higher homotopy groups or homology groups.
In fact, nonempty open sets in R™ and R" can be homeomorphic only if m = n, as
will be shown in Theorem 2.19 using homology.

Induced homomorphisms allow certain relations between spaces to be trans-
formed into relations between their fundamental groups. For example:

Proposition 1.17. If a space X retracts onto a subspace A, then the homomorphism
i, :1 (A, xq) — (X, xy) induced by the inclusion i:A — X is injective. If A is a
deformation retract of X, then i, is an isomorphism.

Proof: If v : X — A is a retraction, then 7i = 1, hence ¥, i, = 1, which implies that i,
is injective. If 7, : X — X is a deformation retraction of X onto A,so v, =1, 1;|A =1,
and 7, (X) C A, then for any loop f:1— X based at x, € A the composition 7; f gives
a homotopy of f to aloopin A, so i, is also surjective. a

In particular, this gives another way of seeing that S' is not a retract of D?, a
fact we showed earlier in the proof of the Brouwer fixed point theorem, since the
inclusion-induced map 1, (S 1 )— T (DZ) is a homomorphism Z— 0, which cannot be
injective.

The exact group-theoretic analog of a retraction is a homomorphism p of a group
G onto a subgroup H such that p restricts to the identity on H. In the notation
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above, if we identify 1T, (A) with its image under i, , then 7, is such a homomorphism
from 11, (X) onto the subgroup 1, (A). The existence of a retracting homomorphism
p:G— H is quite a strong condition on H. If H is a normal subgroup, it implies that
G is the direct product of H and the kernel of p. If H is not normal, then G is what
is called in group theory the semi-direct product of H and the kernel of p.

Recall from Chapter O the general definition of a homotopy: a family ¢,: X—Y,
t € I, such that the associated map ®: XxI—Y,®(x,t) = @,(x), is continuous. If @,
takes a subspace A C X to asubspace B C Y forall t, then we speak of a homotopy of
maps of pairs, @;:(X,A)— (Y,B). In particular, a basepoint-preserving homotopy
@; (X, x0)— (Y, y,) is the case that @,(x,) = v, for all ¢. A third basic property of
induced homomorphisms is their invariance under such homotopies:

(iii) If @;:(X,xy) — (Y, ) is a basepoint-preserving homotopy, then @, = @4, .

This holds since @, [f] = [@of] = [@1f] = @[ f], the middle equality coming
from the homotopy @, f.

There is a notion of homotopy equivalence for spaces with basepoints: (X, x) =
(Y,y,) if there are maps @: (X, x,)— (Y,y,) and @ :(Y,y,) — (X, x,) with homo-
topies @ ~ 1 and @ =~ 1 through maps fixing the basepoints. In this case the
induced maps on m; satisfy @, ¢, = (py), =1, = 1 and likewise ¢, @, =1, so
@, and y, are inverse isomorphisms 11, (X, x() = 1, (Y, ). This somewhat formal
argument gives another proof that a deformation retraction induces an isomorphism
on fundamental groups, since if X deformation retracts onto A then (X, x,) = (A, x,)
for any choice of basepoint x, € A.

Having to pay so much attention to basepoints when dealing with the fundamental
group is something of a nuisance. For homotopy equivalences one does not have to
be quite so careful, as the conditions on basepoints can actually be dropped:

Proposition 1.18. If @ : X —Y is a homotopy equivalence, then the induced homo-
morphism @ : 10, (X, xy) =11, (Y, @ (x,)) is an isomorphism for all x, € X .

The proof will use a simple fact about homotopies which do not preserve base-
point:

’ Lemma 1.19. If @, : X—Y is a homotopy and h is the path @,(x,) traced out by a

basepoint x, € X, then @y, = BpP1- y ™, (Y, @,(x))
Proof: Let h, be the restriction of h to (X, Xo) To—0 lBh
the interval [0, t], with a reparametriza- Pox (Y, @y (xX0))

tion so that the domain of h; is still [0,1]. Explicitly, we can take h,(s) = h(ts).
Then if f is a loop in X at the basepoint x,, the formula h, - (@, f)-h, defines a
homotopy of loops at @,(x,). Restricting this homotopy to t =0 and t = 1, we see

that @g, ([f1) = Bn (@1, ([f]). o
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Proof of 1.18: Let y:Y— X be a homotopy-inverse for ¢, so that @y =~ 1 and
Y@ =~ 1. Consider the maps

11 (X, X0) 25 11, (Y, @ (%)) 25 11 (X, o (x0)) 25 11 (Y, @urap (x)

The composition of the first two maps is an isomorphism since @ ~ 1 implies that
Y, @, = By, for some h, by the lemma. In particular, since ¢, @, is an isomorphism,
@, is injective. The same reasoning with the second and third maps shows that ¢,
is injective. Thus the first two of the three maps are injections and their composition
is an isomorphism, so the first map @, must be surjective as well as injective. |

Exercises

1. Show that composition of paths satisfies the following cancellation property: If
Jo-90 = f1-9, and g, = g, then f; = f;.

2. For the change-of-basepoint homomorphisms B;,, show that h ~ h’ implies B;, =
B -

3. For a path-connected space X, show that r, (X) is abelian iff all basepoint-change
homomorphisms f;, depend only on the endpoints of the path h.

4. A subspace X C R" is said to be star-shaped if there is a point x, € X such that for
all x € X, the line segment from x,, to x liesin X. Show that if a subspace X c R" is
locally star-shaped, i.e., every point of X has a star-shaped neighborhood in X, then
every path in X is homotopicin X to a piecewise linear path, that is, a path consisting
of a finite number of straight line segments traversed at constant speed. Show this
applies in particular when X is open or when X is a union of finitely many closed
convex sets.

5. Show that every homomorphism T, (S 1) — 1 (S 1) can be realized as the induced
homomorphism @, of amap @ :§t—gt,

6. Given a space X and a path-connected subspace A containing the basepoint x,,
show that the map T, (A, x) — 11 (X, X)) induced by the inclusion A — X is surjective
iff every path in X with endpoints in A is homotopic to a path in A.

7. Show that for a space X, the following three conditions are equivalent:

(i) Every map S ' Xis homotopic to a constant map, with image a point.

(ii) Every map S'— X extends to a map D°>— X.
(iii) (X, x,) =0 for all x, € X.
Deduce that a space X is simply-connected iff all maps S!— X are homotopic. [In
this problem, ‘homotopic’ means ‘homotopic without regard to basepoints.’]
8. We can regard (X, x,) as the set of basepoint-preserving homotopy classes of
maps (Sl, So) — (X, xq) . Let [Sl, X1 be the set of homotopy classes of maps st —X,
with no conditions on basepoints. Thus there is a natural map &: 1 (X, x,) —[S 1 Xx]
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obtained by ignoring basepoints. Show that & is onto if X is path-connected, and that
®([f]) = ®([g]) iff [f] and [g] are conjugate in 1T, (X, x,). Hence ® induces a one-
to-one correspondence between [S 1,X ] and the set of conjugacy classes in 11, (X),
when X is path-connected.

9. Define f:SlxI—>Sl><I by f(60,s) = (0 + 21s,s), so f restricts to the identity
on the two boundary circles of S'xI. Show that f is homotopic to the identity by
a homotopy f; which is stationary on one of the boundary circles, but not by any
homotopy f; which is stationary on both boundary circles. [Consider what f does to
the path s — (6,,s) for fixed 9, € Sl.]

10. Does the Borsuk-Ulam theorem hold for the torus? In other words, for every map
f:Slel—>[R§2 must there exist (x,y) € S'x ! such that fx,v)=f(-x,—-y)?
11. Let A;, A,, A; be compact sets in R>. Use the Borsuk-Ulam theorem to show
that there is one plane P ¢ R® which simultaneously divides each A; into two pieces
of equal measure.

B
12. Given amap f:X—Y and a path h:I1—X  m(X,x,) s (X, )
from x, to x;, show that f, B, = By, f, in the f*l £
dlagram tO the I‘lght. _n_l( Y, f(xl)) fh _n_l( Y, f(-xo))

13. Show, using fundamental groups and induced homomorphisms, that there is no
retraction of the Mobius band onto its boundary circle.

14. Construct infinitely many nonhomotopic retractions ! v §! —§*.

15. If X, is the path-component of a space X containing the basepoint x,, show that
the inclusion X, — X induces an isomorphism 1, (X, x) — 717 (X, x¢) .

16. Using the technique in the proof of Proposition 1.14, show that if a space X is
obtained from a path-connected subspace A by attaching a cell e with n > 2, then
the inclusion A — X induces a surjection on .

17. Suppose f;:X— X is a homotopy such that f,; and f; are each the identity map.
For a basepoint x, € X, show that the loop f;(x,) represents an element of the
center of 1 (X, x,). [See Lemma 1.19. One can interpret the result as saying that a
loop represents an element of the center of 7r;(X) if it extends to a ‘loop of maps
X—X.]
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1.2 Van Kampen's Theorem

The van Kampen theorem gives a method for computing the fundamental groups
of spaces which can be decomposed into simpler spaces whose fundamental groups
are already known. By systematic use of this theorem one can compute the funda-
mental groups of a very large number of spaces. We shall see for example that for
every group G there is a space X; whose fundamental group is isomorphic to G.

To give some idea of how one might hope to compute fundamental groups by
decomposing spaces into simpler pieces, let us look at an example. Consider the space
X formed by two circles A and B intersecting in a single point, which we choose as
the basepoint x,. By our preceding calculations we know that 7, (4) is infinite cyclic,
generated by a loop a which goes once around A. Similarly, 1T, (B) is a copy of Z
generated by aloop b going once around B. Each product of powers of a and b then
gives an element of 11, (X). For example, the product a’b’a3ba? is the loop which
goes five times around A, then twice around B, then three times around A in the
opposite direction, then once around B, then twice around A. The set of all words like
a’b’a3ba?, consisting of powers of a alternating with powers of b, forms a group
usually denoted Z 7. Multiplication in this group is defined just as one would expect,
e.g., (b*a’b*a3)(a*b~tab®) = b*a’b*ab 'ab®. The identity element is the empty
word, and inverses are what they have to be, e.g., (@’b3aba> ' =a’bla 'b3a?.

It would be very nice if such words in a and b corresponded exactly to elements of
1T, (X), so that 11, (X) was isomorphic to the group Z * Z. The van Kampen theorem
will imply that this is indeed the case. Similarly, if X is the union of three circles
touching at a single point, the van Kampen theorem will imply that mr; (X) is Z*x Z * Z,
the group consisting of words in powers of three letters a, b, c. The generalization
to a union of any number of circles touching at one point will also follow as a special
case of the van Kampen theorem.

The group Z *x Z is an example of a general construction called the free product
of groups. The statement of van Kampen’s theorem will be in terms of free products,
so before stating the theorem we should describe exactly what free products are, in
case the reader has not seen this algebraic construction previously.

Free Products of Groups

Suppose one is given a collection of groups G, and one wishes to construct a
single group containing all these groups as subgroups. One way to do this would be
to take the product group [],G,, whose elements can be regarded as the functions
& +— gy € G4. Or one could restrict to functions taking on nonidentity values at
most finitely often, forming the direct sum €, G,. Both these constructions produce
groups containing all the G,’s as subgroups, but with the property that elements of
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different subgroups G, commute with each other. In the realm of nonabelian groups
this commutativity is unnatural, and so one would like a ‘nonabelian’ version of [[, G,
or P, G, Since the sum P, G, is smaller and presumably simpler than [],G,, it
should be easier to construct a nonabelian version of &, G, and this is what the free
product *, G, achieves.

Here is the precise definition. As a set, the free product *, G, consists of all
words g,9, - -+ g,, of arbitrary finite length m > 0, where each letter g; belongs to
a group G,, and is not the identity element of G, and adjacent letters g; and g;,,
belong to different groups G, thatis, «; # «;,;. Words satisfying these conditions
are called reduced, the idea being that nonreduced words can always be simplified
until they are reduced by writing adjacent letters which lie in the same G, as a
single letter and by cancelling trivial letters. The empty word is allowed, and will
be the identity element of *,G,. The group operation in *, G, is juxtaposition,
Gy 9m)hy---hy) =g, gmhy -+ h,. This product may not be reduced, how-
ever: If g, and h, belong to the same G, they should be combined into a single letter
(gmh,) according to the multiplication in G, and if this new letter g, h; happens to
be the identity of G, it should be cancelled from the product. This may allow g,,,_;
and h, to be combined, and possibly cancelled too, etc. For example, in the product
(91 Gm) (Gt -+~ g1!) everything cancels and we get the identity element of *, G,
the empty word.

Verifying directly that this multiplication is associative would be rather tedious,
but there is an indirect approach which avoids most of the work. Let W be the set
of reduced words g, --- g, as above, including the empty word. To each g € G, we
associate the function L, : W — W given by multiplication on the left, L, (g; -+~ g,,) =
99: '+ 9, Where we combine g with g, if g, € G, to make gg, ---g,, a reduced
word. A key property of the association g — L, is the formula L,, = L,L, for
9,9 € Gy, ie., g(g (g, - 9m) = (9gg')(g; -+ g,,) . This special case of associativ-
ity follows rather trivially from associativity in G. The formula L,, = L L, implies
that L, is invertible with inverse L,.. Therefore the association g — L, defines a
homomorphism from G, to the group P(W) of all permutations of W. More gener-
ally, we can define L: W —P(W) by L(g, - - gp) =Ly, -+ - L, for eachreduced word
g1+ G- This function L is injective since the permutation L(g, --- g,,) sends the
empty word to g, - - - g,,- The product operation in W corresponds under L to com-
position in P(W); this follows from the relation ng, = Lng,. Since composition in
P(W) is associative, we conclude that the product in W is associative.

In particular, we have the free product Z * Z as described earlier. This is an
example of a free group, which is the free product of any number of copies of 7,
finite or infinite. The elements of a free group are uniquely representable as reduced
words in powers of generators for the various copies of Z, with one generator for each
Z, just as in the case of Z * Z. These generators are called a basis for the free group,
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and the number of basis elements is the rank of the free group. The abelianization
of a free group is a free abelian group with basis the same set of generators, so since
the rank of a free abelian group is well-defined, independent of the choice of basis,
the same is true for the rank of a free group.

An interesting example of a free product which is not a free group is Z, * Z,. This
is like Z*Z but simpler since a® = e = b?, so one doesn’t need powers of a and b, and
Z, x Z, consists of just the alternating words in a and b: a, b, ab, ba, aba, bab,
abab, baba, ababa, ---, together with the empty word. The structure of Z, * Z,
can be elucidated by looking at the homomorphism @:Z, * Z,—Z, associating to
each word its length mod 2. Obviously @ is surjective, and its kernel consists of the
words of even length. These form an infinite cyclic subgroup generated by ab since
ba = (ab)™! in Z, % Z,. In fact, Z, * Z, is the semi-direct product of the subgroups
Z and Z, generated by ab and a, with the conjugation relation a(ab)of1 = (ab)’l.
This group is sometimes called the infinite dihedral group.

For a general free product *, G, each group G, is naturally identified with a
subgroup of *, G, the subgroup consisting of the empty word and the nonidentity
one-letter words g € G,. From this viewpoint, the empty word is the common iden-
tity element of all the subgroups G, which are otherwise disjoint. A consequence
of associativity is that any product g, --- g,, of elements g; in the groups G, has
a unique reduced form, the element of *, G, obtained by performing the multipli-
cations in any order. In fact, any sequence of reduction operations on an unreduced
product g, - - - g,,, combining adjacent letters g; and g,,, which lie in the same G,
or cancelling a g; which is the identity, can be viewed as a way of inserting paren-
theses into g, - - - g,, and performing the resulting sequence of multiplications. Thus
associativity implies the nonobvious fact that any two sequences of reduction opera-
tions performed on the same unreduced word always yield the same reduced word in
the end.

A basic property of the free product *, G, is that any collection of homomor-
phisms @, :G,— H extends uniquely to a homomorphism @ : *, G,— H. Namely,
the value of @ onaword g, --- g, with g; € G,, mustbe @, (g;) --- P4, (g,), and
using this formula to define @ gives a well-defined homomorphism since the process
of reducing an unreduced product in *, G, does not affect its image under ¢. For
example, for a free product G *x H the inclusions G — GXH and H — G X H induce
a surjective homomorphism G * H—GXH.

The van Kampen Theorem

Suppose a space X is decomposed as the union of a collection of path-connected
open subsets A, each containing the basepoint x; € X. By the remarks made in the
preceding paragraph, the homomorphisms j,: 1 (A,) — 1, (X) induced by the inclu-
sions A, — X extend to a homomorphism &: *, 1; (A,) — 11 (X). The van Kampen
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theorem will say that ® is very often surjective, but we can expect ¢ to have a nontriv-
ial kernel in general. For if i,z: 71, (AN Ag) =111 (A,) is the homomorphism induced
by the inclusion A, N Ag — A, then j,i g = jgigs, both these compositions being
induced by the inclusion A, N Ag — X, so the kernel of ¢ contains all the elements
of the form io(B(ou)iﬁm(ou)’1 for w € T (AN AB)' Van Kampen’s theorem asserts
that under fairly broad hypotheses this gives a full description of ®:

Theorem 1.20. If X is the union of path-connected open sets A, each containing
the basepoint x, € X and if each intersection A, N Ag is path-connected, then
1k, 0 (Ay) = 11 (X) s surjective. If in addition each intersection A, N Ag N A,
is path-connected, then the kernel of ® is the normal subgroup N generated by all
elements of the form iaB(w)iBa(w)’l, and so ® induces an isomorphism 1, (X) =
*4 T (Ay) /N

Example 1.21: Wedge sums. In Chapter 0 we defined the wedge sum \/, X, of a col-
lection of spaces X, with basepoints x, € X, to be the quotient space of the disjoint
union [[, X,, in which all the basepoints x, are identified to a single point. If each x,,
is a deformation retract of an open neighborhood U, in X, then X, is a deformation
retract of its open neighborhood X, V., Us. Letting A, be this neighborhood, then
the intersection of two or more distinct A,’s is VU, which deformation retracts to
a point. Hence van Kampen’s theorem implies that ®: %, 11 (X,) — 1 (V4 Xy) is an
isomorphism.

In particular, for a wedge sum \/, S} of circles, mm; (\/, S%) is a free group, the free
product of copies of Z, one for each circle Sg(. For instance, 1, (Stvsh~zx17, as
in the example at the beginning of this section.

It is true more generally that the fundamental group of any connected graph is
free, as we show in §1A. Here is an example illustrating the general technique.

Example 1.22. Let X be the graph shown in the figure, consist-

ing of the twelve edges of a cube. The seven heavily shaded edges
form a maximal tree T C X, a contractible subgraph containing all

the vertices of X. We claim that 1, (X) is the free product of five

copies of Z, one for each edge not in T. To deduce this from van
Kampen’s theorem, choose for each edge e, of X — T an open neighborhood A, of
T Ue, in X which deformation retracts onto T U e, . The intersection of two or more
A,’s deformation retracts onto T, hence is contractible. The A,’s form a cover of
X satisfying the hypotheses of van Kampen’s theorem, and since the intersection of
any two of them is simply-connected we obtain an isomorphism 71, (X) = %, 1, (A,).
Each A, deformation retracts onto a circle, so 1;(X) is free on five generators, as
claimed. As explicit generators we can choose for each edge e, of X — T aloop f,
which starts at a basepoint in T, travels in T to one end of e,, then across e, then
back to the basepoint along a pathin T.
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Notice in this example that the graph is embedded in the plane with five bounded
complementary regions. The five boundary loops of these regions, when connected
to a common basepoint by paths, also form free generators for 7r; (X). This can be
shown by an inductive argument using van Kampen’s theorem.

Van Kampen’s theorem is often applied when there are just two sets A, and Ag
in the cover of X, so the condition on triple intersections A,NAgN A, is vacuous and
one obtains the isomorphism 1 (X) = 1m;(A,) * ™ (AB)/N , under the assumption
that A, n Ag is path-connected. The proof in this special case is virtually identical
with the proof in the general case, however.

One can see that the intersections A, N Ag need to be path-connected by con-
sidering the example of S' decomposed as the union of two open arcs. In this case
@ is not surjective. For an example showing that triple intersections A, N Ag N A,
need to be path-connected, let X be the suspension of three points
a, b, c,and let A,, Az, and A, be the complements of these three a<}> C
points. The theorem does apply to the covering {A,, AB}, so 1 (X) =
M (Ay) * T (AB) =~ Z*Z since AyN Aﬁ is contractible. If we tried to use the covering
{Aqx Aﬁ, Ay} which has each of the two-fold intersections path-connected but not the
triple intersection, then we would get 17, (X) = Z % Z x Z, but this is not isomorphic
to Z x Z since it has a different abelianization.

Proof of van Kampen’s theorem: First we show & is surjective. Given aloop f:1—X
at the basepoint x;, we claim there is a partition 0 = sy < §; < -+- <5, =1 of I
such that each subinterval [s;_;,s;] is mapped by f to a single A,. Namely, since f
is continuous, each s € I has an open neighborhood V, in I mapped by f to some
A,. We may in fact take V; to be an interval whose closure is mapped to a single
A,. Compactness of I implies that a finite number of these intervals cover I. The
endpoints of this finite set of intervals then define the desired partition of I.

Denote the A, containing f([s;_;,s;]) by A;, and let f; be the path obtained
by restricting f to [s;_;,s;]. Then f is the composition f;- --- - f,, with f; a path
in A;. Since A; N A;,; is path-connected, we may
choose a path g; in A; N A;,, from x to the point
f(s;)) € A;nA;,,. Consider the loop

(f1:910)@G1-f2+92) (G2 f5-93) =+ (Gm-1"Sm)

which is homotopic to f. This loop is a composition A
of loops each lying in a single A;, the loops indicated
by the parentheses. Hence [f] is in the image of ®, and & is surjective.

The harder part of the proof is to show that the kernel of ® is N. It may clarify
matters to introduce some terminology. By a factorization of an element [ f] € 1, (X)
we shall mean a formal product [ f;]--- [ f;] where:
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— Each f; is a loop in some A, at the basepoint x,, and [f;] € 1 (A,,) is the
homotopy class of f;.
— The loop f is homotopic to f}---- - f; in X.

Thus a factorization can be regarded as a word in *, 1, (A,), possibly unreduced,
which is mapped by ® onto the given [f] € m;(X). The proof of surjectivity of &
showed that every [ f] € 1T, (X) has a factorization.

We will be concerned now with the uniqueness of factorizations. Call two factor-
izations of [ f] equivalent if they are related by a sequence of the following two sorts
of moves or their inverses:

— Combine adjacent terms [ f;1[.f;,;] into a single term [ f;-f;, ;] if [f;] and [ fi,;]
lie in the same group 7, (A,), or in other words, if «; = ;..

— Regard the term [f;] as lying in the group (Aa;) rather than m, (Am,) if f; is
aloopin Ay, NAy.

The first move does not change the element of *, 11, (A,) defined by the factorization.
The second move does not change the image of this element in the quotient group
Q = %, 1 (A,) /N, by the definition of N. So equivalent factorizations give the same
element of Q.

If we can show that any two factorizations of [ f] are equivalent, this will say that
the map Q — 1, (X) induced by @ is injective, hence the kernel of ¢ is exactly N and
the proof will be complete.

Let [f11---[fi] and [f7]---[f;] be two factorizations of [f]. The composed

paths f;---- - fi and fi- --- - f, are then homotopic, so let F:I1xI— X be a homo-
topy from f; - -+ - fi to fi- -+ - f;. There exist partitions 0 = 55 < §; < +++ <5, =1
and 0 =t, <t; <--- <t, =1 such that each rectangle R;; = [s;_y,$;Ix[t;_;, ;] is

mapped by F into a single A, which we label A;;. These partitions may be obtained
by covering Ix1 by finitely many rectangles [a,b]x[c,d] each mapping to a single
Ay, using a compactness argument, then partitioning IxI by the union of all the
horizontal and vertical lines containing edges of these rectangles. We may assume
the s;-partition subdivides the partitions giving the prod-
ucts fi-----f, and f{-----f,. Since F maps a neigh- 9 10| 11| 12
borhood of R;; to A;;, we may perturb the vertical sides of s | e - s
the rectangles R;; so that each point of I'x[ lies in at most

three R;;’s. We may assume there are at least three rows of 1] 2|34
rectangles, so we can do this perturbation just on the rect-

angles in the intermediate rows, leaving the top and bottom rows unchanged. Let us
relabel the new rectangles R, R,, ---,R,,,, as in the figure.

If y is apathin IxI from the left edge to the right edge, then the restriction F|y
is aloop at the basepoint x,, since F maps both the left and right edges of I xI to x;.
Let y, be the path separating the first + rectangles R;,---,R, from the remaining
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rectangles. Thus y, is the bottom edge of IxI and y,,, is the top edge. We pass
from y, to y,,; by pushing across the rectangle R, , ;.

Let us call the corners of the R, ’s vertices. For each vertex v with F(v) # x;, let
g, beapath from x, to F(v). We can choose g, tolie in the intersection of the two or
three A;;’s corresponding to the R, ’s containing v since we assume the intersection
of any two or three A;;’s is path-connected. If we insert into F |y, the appropriate
paths g, g, atsuccessive vertices, as in the proof of surjectivity of ¢, then we obtain a
factorization of [F |y, ] by regarding the loop corresponding to a horizontal or vertical
segment between adjacent vertices as lying in the A;; for either of the R,’s containing
the segment. Different choices of these containing R,’s change the factorization of
[F|y,] to an equivalent factorization. Furthermore, the factorizations associated to
successive paths y, and y,.; are equivalent since pushing y, across R,,; t0 y,;
changes F|y, to F|y,,; by a homotopy within the A;; corresponding to R, ,,, and
we can choose this A;; for all the segments of y, and y,., in R, ;.

We can arrange that the factorization associated to y, is equivalent to the factor-
ization [f,]--- [fi] by choosing the path g, for each vertex v along the lower edge
of I'xI tolie not justin the two A;;’s corresponding to the R,’s containing v, but also
to lie in the A, for the f; containing v in its domain. In case v is the common end-
point of the domains of two consecutive f;’s we have F(v) = x,, so there is no need
to choose a g, . In similar fashion we may assume that the factorization associated
to the final y,,, is equivalent to [f{]---[ fé]. Since the factorizations associated
to all the y,’s are equivalent, we conclude that the factorizations [f;]---[f;] and
[fi1---[fy] are equivalent. O

Example 1.23: Linking of Circles. We can apply van Kampen’s theorem to calculate

the fundamental groups of three spaces discussed in the introduction to this chapter,

the complements in R? of a single circle, two unlinked circles, and two linked circles.
The complement R — A of a single circle A

deformation retracts onto a wedge sum S* v §°

embedded in R® — A as shown in the first of

the two figures. It may be easier to see that

R3 — A deformation retracts onto the the union v v

of S$? with a diameter, as in the second figure,

where points outside S deformation retract onto S?, and then points inside S? and

notin A can be pushed away from A toward S° or the diameter. Having this deforma-

tion retraction in mind, one can then see how it must be modified if the two endpoints

of the diameter are gradually moved towards each other along the equator until they

coincide, forming the §! summand of S' v $2. Another way of seeing the deforma-

tion retraction of R® — A onto S' v $? is to note first that an open &-neighborhood of

S'v $? obviously deformation retracts onto S' v S? if ¢ is sufficiently small. Then one
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observes that this neighborhood is homeomorphic to R* — A by a homeomorphism
which is the identity on S! v 2. In fact, the neighborhood can be gradually enlarged
by homeomorphisms until it becomes all of R® — A.

In any event, once we see that R3 — A deformation retracts to S' v S 2, then we
immediately obtain isomorphisms 1, (R® — A) ~ 11, (S* v §?) ~ Z since m,(5%) = 0.

In similar fashion, the complement R3 — (A U B)
of two unlinked circles A and B deformation retracts
onto S'vS!vS?vs?, asin the figure to the right. From
this we get 1, (R* = (AUB)) ~ Z % Z. vv
On the other hand, if A and B are
linked, then R — (A U B) deformation retracts onto the wedge
sum of S% and a torus S'xS! separating A and B, as shown in
v the figure to the left, and from this we get 1, (R> — (A U B)) ~
LSt

(S'xSYH ~7x17.

Example 1.24: Torus Knots. For relatively prime positive integers m and »n consider
the torus knot K = K,, ,, ¢ R* which is the image of the embedding f:5'—S'xS' ¢
[R3, f(z) = (z™,z"), where the torus S'xS! is embedded in R® in the standard way.
The knot K then winds around the torus a total of m

times in the longitudinal direction and n times in A

the meridional direction, as shown in the figure for ‘

the cases (m,n) = (2,3) and (3,4). One needs to V
assume that m and n are relatively prime in order

for the map f to be injective. Without this assumption f would be d-to-1 where
d is the greatest common divisor of m and n, and the image of f would be the
knot K4 ,,,4- One could also allow negative values for m or n, but this would only
change K to a mirror-image knot.

Let us compute 771([}&3 — K). It is slightly easier to do the calculation with R3
replaced by its one-point compactification S. An application of van Kampen’s theo-
rem shows that this does not affect 1, . Namely, write S 3 _ K as the union of R? — K
and an open ball B formed by the compactification point together with the comple-
ment of a large closed ball in R3 containing K. Then B and B N ([R3 — K) are both
simply-connected, the latter space being homeomorphic to $?xR. Hence van Kam-
pen’s theorem implies that the inclusion R® — K < §® — K induces an isomorphism
on ;.

We compute T, (8% — K) by showing that it deformation retracts onto a 2-dimen-
sional complex X = X, ,, homeomorphic to the quotient space of a cylinder § Ix1
under the identifications (z,0) ~ (e™/™z,0) and (z,1) ~ (e*™/"z,1). If we let X,,,
and X,, be the two halves of X formed by the quotients of stx [0,Y,] and stx [Y,,11,
then X,, and X,, are the mapping cylinders of z — z™ and z — z". The intersection
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X, N X, is the circle § L {1/,}, the domain end of each mapping cylinder.

To obtain an embedding of X in S® — K as a deformation retract we will use
the standard decomposition of S® into two solid tori S'xD? and D?x S!, the result
of writing S* = aD* = 3(D?xD?) = dD*xD? U D*xdD?. Geometrically, the first
solid torus S'x D? can be identified with the compact region in R? bounded by the
standard torus S'xS! containing K, and the second solid torus D?xS! is then the
closure of the complement of the first solid torus, together with the compactification
point at infinity. Notice that meridional circles in S!x S! bound disks in the first solid
torus, while it is longitudinal circles that bound disks in the second solid torus.

In the first solid torus, K intersects each of the meridian circles If
{x}xdD? in m equally-spaced points, as indicated in the figure, ,7’//‘\\\“

which shows a meridian disk {x} x D?. These m points can be ( / \)
A

| 2
these radial segments then trace out a copy of the mapping K ‘S 7 K
cylinder X, in the first solid torus. Symmetrically, there is a
copy of the other mapping cylinder X,, in the second solid torus. The complement

separated by a union of m radial line segments. Letting x vary,

of K in the first solid torus deformation retracts onto X,, by flowing within each
meridian disk as shown. In similar fashion the complement of K in the second solid
torus deformation retracts onto X,,. These two deformation retractions do not agree
on their common domain of definition S'xS' — K, but this is easy to correct by
distorting the flows in the two solid tori so that in S' x S' —K both flows are orthogonal
to K. After this modification we now have a well-defined deformation retraction of
$3 — K onto X. Another way of describing the situation would be to say that a small
e-neighborhood N of K has frontier a torus T, and S° — N is the mapping cylinder
ofamap T—X.

To compute 17, (X) we apply van Kampen’s theorem to the decomposition of X
as the union of X,, and X,,, or more properly, open neighborhoods of these two
sets which deformation retract onto them. Both X,, and X, are mapping cylinders
which deformation retract onto circles, and X,,, N X,, is a circle, so all three of these
spaces have fundamental group Z. A loop in X,, "N X,, representing a generator of
M (X,, N X,,) is homotopic in X,, to a loop representing m times a generator, and
in X,, to aloop representing n times a generator. Van Kampen'’s theorem then says
that T, (X) is the quotient of the free group on generators a and b obtained by
factoring out the normal subgroup generated by the element a™b~". Let us denote
this quotient group by G,,, ,,.

A basic question in knot theory is whether two given knots are equivalent in the
sense that one can be continuously deformed, without intersecting itself at any time,
until it coincides with the other. Itis not hard to see for example that all the knots K, ,,
and K,, ; are equivalent to the trivial knot K, ;, and also that K,, ,, is equivalent to
K, 1 - There are some subtleties in defining precisely which continuous deformations
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of knots are allowed, but after these have been sorted out one finds that if K and K’
are equivalent knots, then S°>—K and $°—K’ are homeomorphic. Thus if one can show
that the two fundamental groups T, (S 3 _K) and (S 3 _K’) are not isomorphic,
then K and K’ are not equivalent.

Deciding whether two given groups are isomorphic is a very difficult problem
in general, and it is hard even for the fundamental groups 1, (S 3 _K ). However,
in the special case of torus knots there is a rather simple answer: The group G, ,
uniquely determines m and n if m,n > 1. In other words, if there is an isomorphism
Gun = Gy s with m,n,r,s > 1, then {m,n} = {r,s}. To show this the first step is to
compute the center of G, ,,, the subgroup consisting of elements which commute with
all elements of G,, ,,. The element a™ = b" commutes with a and b, so the cyclic
subgroup C generated by this element lies in the center. In particular, C is a normal
subgroup, so we can pass to the quotient group G,,,/C, which is the free product
Z,,*1Z,. According to Exercise 1 at the end of this section, a free product of nontrivial
groups has trivial center, and from this it follows that C is exactly the center of G,,, ,,.
As we will see in Example 1.44, the elements a and b have infinite order in G,, ,, SO
C is infinite cyclic, but we do not need this fact for the present argument. Since the
center of a group is intrinsically defined, it remains to show that the integers m and
n are uniquely determined by the group Z,, * Z,,. The abelianization of this group
is Z,,x2,, of order mn, so the product mn is uniquely determined by Z,, * Z,,.
To determine m and n individually, we use another assertion from Exercise 1 at the
end of the section, which says that all torsion elements of Z,, * Z,, are conjugate to
elements of the subgroups 7,, and Z,,, hence have order dividing m or n. Thus the
maximum order of torsion elements of Z,, x Z,, is the larger of m and n. The larger
of these two numbers is therefore uniquely determined by the group Z,, * Z,,, hence
also the smaller since the product is uniquely determined.

Note that G,, ,, is nonabelian if m,n > 1, while G, ,, = G,,,; = Z. Thus no torus
knot K,, ,, with m,n > 1 is equivalent to the trivial knot K ;.

This method for distinguishing the groups 1T1(S3 — K) for different knots K by
factoring out the center only works for torus knots since it is known that for all other
knots the center of ($3 — K) is trivial. An obvious thing to consider in trying to
distinguish these groups would be the abelianization of ; (S 3_K ), but this is always
Z as we show in §2B. What does provide much useful information, however, is the
abelianization of the commutator subgroup of 1T, (S 3_K ); see [Rolfsen] for more on
this.

The preceding analysis of 1, (X, ,,) does not use the hypothesis that m and n
are relatively prime, which was used only to relate X,, ,, to torus knots. An interesting
factis that X, ,, canbe embedded in R3 only when m and n are relatively prime. This
follows from Corollary 3.44 since the abelianization of (X, ,) is easily computed
to be Zx7Z,; where d is the greatest common divisor of m and n, so if 4 > 1 this
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abelianization contains torsion, and this prevents X,, ,, from being embeddable in R3.
For example, X, , is the Klein bottle since it is the union of two copies of the Mobius
band X, with their boundary circles identified, so this nonembeddability statement
generalizes the fact that the Klein bottle cannot be embedded in R>.

Example 1.25: The Shrinking Wedge of Circles. Consider the sub-

space X c R? which is the union of the circles C,, of radius !/, and

center (1/,,,0) for n = 1,2, ---. With the subspace topology from

R?, an open neighborhood of the origin in X must contain all but

finitely many of the circles C,, so the subspace topology on X has

fewer open sets than the usual wedge sum /S I of an infinite sequence of circles,
which is a quotient space of []S?.

This difference in topologies has a big effect on 1, (X), making it much larger
than 1, (\/, S'). To see this, consider the retractions 7, : X — C,, collapsing all C;’s
except C,, to the origin. Each r,, induces a surjection p,, : 11, (X) — 11, (C,,) = Z, where
we take the origin as the basepoint. The product of the p,,’s is a homomorphism
p:11(X)—][,Z to the direct product (not the direct sum) of infinitely many copies
of Z, and p is surjective since for every sequence of integers k,, we can construct a
loop f:I— X which wraps k,, times around C,, in the time interval [1-1/,,,1-1/,,,;1.
This infinite composition of loops is continuous since X has the subspace topology
from R?. Since 1,7 is uncountable, so is 1, (X). On the other hand, (VS by s
free on countably many generators, hence is countable. Loops in V,, S' can go around
only finitely many of the circles since these circles are not shrinking to a point as they
are in X.

The group 11 (X) is actually far more complicated than [],Z. For one thing, it
is nonabelian, since the retraction X—C; U --- U C,, which collapses all the circles
smaller than C,, to the basepoint induces a surjection from 7T, (X) to a free group on
n generators. For a complete description of 1, (X) see [Cannon-Conner].

A theorem in [Shelah] asserts that for a compact metric space which is path-
connected and locally path-connected, the fundamental group is either finitely gener-
ated or uncountable.

Applications to Cell Complexes

For the remainder of this section we shall be interested in 2-dimensional cell
complexes, analyzing how the fundamental group is affected by attaching 2-cells.
According to an exercise at the end of this section, attaching cells of higher dimension
has no effect on 1, so all the interest lies in how the 2-cells are attached.

Suppose we attach a collection of 2-cells ei to a path-connected space X viamaps
cpo(:Sl—>X, producing a space Y. If s, is a basepoint of S then @, determines a
loop at @, (sy,) which we shall call ¢, even though technically loops are maps I — X
rather than S'— X. For different «’s the basepoints @ (Sg) of these loops @, may
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not all coincide. To remedy this, choose a basepoint x, € X and a path y, in X
from x, to @4(sy) for each «. Then y,p,Y, is a loop at x,. This loop may not
be nullhomotopic in X, but it will certainly be nullhomotopic in Y after the cell ei
is attached. Thus the normal subgroup N c (X, x,) generated by all the loops
YaPu«Y« for varying « lies in the kernel of the map m; (X, x,)— 1, (Y, x,) induced
by the inclusion X < Y.

Proposition 1.26. The inclusion X — Y induces a surjection 1, (X, Xo)— 1 (Y, Xxq)
whose kernel is N. Thus 1, (Y) = m;(X)/N.

It follows that N is independent of the choice of the paths y,, but this can also be
seen directly: If we replace y, by another path n, having the same endpoints, then

YaPaY« changes 1o ny@afy = No¥ o) VaPo¥xYValla)s SO YaPo¥« ANA NPTy
define conjugate elements of 1 (X, x;).

Proof: Letus expand Y to a slightly larger space Z which deformation retracts onto Y
and is more convenient for applying van Kampen’s theorem. The space Z is obtained
from Y by attaching rectangular strips S, = I xI, with the lower edge Ix {0} attached
along y,, the right edge {1} xI attached along an arc in ef;(, and all the left edges
{0} XI of the different strips identified together. The top edges of the strips are not
attached to anything, and this allows us to deformation retract Z onto Y.

In each cell e choose a point y, not in the arc along which S, is attached. Let
A=7Z-Uslys} andlet B=Z — X. Then A deformation retracts onto X, and B is
contractible. Since 11, (B) = 0, van Kampen’s theorem applied to the cover {A, B} says
that 1T, (Z) is isomorphic to the quotient of 1; (A) by the normal subgroup generated
by the image of the map m; (An B)—1;(A). So it remains only to see that 71, (AN B)
is generated by the loops y,®,¥«, Or rather by loops in A n B homotopic to these
loops. This can be shown by another application of van Kampen’s theorem, this time
to the cover of AN B by the open sets A, = AnNB— Uﬁm elz;. Since A, deformation
retracts onto a circle in elzx —{y4},wehave 1, (A,) = Z generated by a loop homotopic
t0 Y4®P Y« and the result follows. O

As a first application we compute the fundamental group of the orientable surface
M, of genus g. This has a cell structure with one 0-cell, 2g 1-cells, and one 2-cell, as
we saw in Chapter 0. The 1-skeleton is a wedge sum of 2g circles, with fundamental
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group free on 2g generators, and the 2-cell is attached along the loop given by the
product of the commutators of these generators, say [a,,b;]---[ag4, b,]. Therefore

(M) =~ (@, by, a4, b, | [ay,by]--[ag,b,])

where (g, | 75 ) denotes the group with generators g, and relators 7z, in other words
the free group on the generators g, modulo the normal subgroup generated by the
words 7 in these generators.

Corollary 1.27. The surface M, is not homeomorphic, or even homotopy equivalent,
toM, ifg+h.

Proof: The abelianization of 7, (M) is the direct sum of 2g copies of Z. So if
Mg ~ M, then m, (Mg) ~ 1, (M,,), hence the abelianizations of these groups are iso-
morphic, which implies g = h. a

Non-orientable surfaces can be treated in the same way. If we attach a 2-cell to the

2
g

For example, N, is the projective plane RP?, the quotient of D? with antipodal points

wedge sum of g circles by the word a% -+ - ay we obtain a nonorientable surface N, .

of dD? identified. And N, is the Klein bottle, though the more usual representation
a

N, = RP’: N, :

a

of the Klein bottle is as a square with opposite sides identified via the word aba'b.
If one cuts the square along a diagonal and reassembles the resulting two triangles
as shown in the figure, one obtains the other representation as a square with sides
identified via the word a°c?. By the proposition, m; (Ng) (A, - g | a% ---aé ).
This abelianizes to the direct sum of Z, with g — 1 copies of Z since in the abelian-
ization we can rechoose the generators to be a,, .-+, a,_; and a, + --- + a4, with
2(a; + -+ +a,) = 0. Hence N, is not homotopy equivalent to Nj, if g # h, nor is
N, homotopy equivalent to any orientable surface M,.

Another consequence of the preceding proposition is:

’ Corollary 1.28. For every group G there is a 2-dimensional cell complex X, with
7T1 (XG) =~ G.

Proof: Choose a presentation G = (g, | rg). This exists since every group is a
quotient of a free group, so the g,’s can be taken to be the generators of this free
group with the r4’s generators of the kernel of the map from the free group to G.
Now construct X from \/, S,i by attaching 2-cells e% by the loops specified by the
words 7g. a
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Example 1.29. If G = (a | a") = Z, then X is S! with a cell e® attached by the map
z +— z", thinking of § 1 as the unit circle in C. When n = 2 we get X = RP? , but
for m > 2 the space X is not a surface since there
are n ‘sheets’ of e’ attached at each point of the
circle S' ¢ X - For example, when n = 3 one can
construct a neighborhood N of S! in X¢ by taking
the product of the letter ‘Y’ with the interval I, then
identifying the two ends of this product via a one-third twist as shown in the figure.

The boundary of N consists of a single circle, formed by the three endpoints of each
‘Y’ cross section of N. To complete the construction of X; from N one attaches
a disk along the boundary circle of N. This cannot be done in R*, though it can in
R*. For n = 4 one would use the letter ‘X’ instead of ‘Y, with a one-quarter twist
instead of a one-third twist. For larger n one would use an n-pointed ‘asterisk’ and
a l/, twist.

Exercises

1. Show that the free product G * H of nontrivial groups G and H has trivial center,
and that the only elements of G x H of finite order are the conjugates of finite-order
elements of G and H.

2. Let X C R™ be the union of convex open sets X, - - -, X,, such that X;nX;nX; + @
for all i, j, k. Show that X is simply-connected.

3. Show that the complement of a finite set of points in R" is simply-connected if
n= 3.

4. Let X c R® be the union of n lines through the origin. Compute 1T1([R3 -X).

5. Let X C R? be a finite graph which is the union of the edges of a convex polygon

and a finite number of line segments having endpoints on these edges.
(@) Show that 1, (X) is free with a basis consisting of loops formed by the boundaries
of the bounded complementary regions of X, joined to a basepoint by pathsin X.

(b) Show this is true for all choices of paths to the basepoint.

6. Suppose a space Y is obtained from a path-connected subspace X by attaching
n-cells for a fixed n > 3. Show that the inclusion X — Y induces an isomorphism
on ;. [See the proof of Proposition 1.26.] Apply this to show that the complement
of a discrete subspace of R" is simply-connected if n > 3.

7. Let X be the quotient space of S° obtained by identifying the north and south
poles to a single point. Put a cell complex structure on X and use this to compute
M (X).
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8. Compute the fundamental group of the space obtained from two tori S'xS' by
identifying a circle S*x {xy} in one torus with the corresponding circle S Ly {xo} In
the other torus.

9. Let C be a circle in the surface M,

of genus g which separates M, into S c’
two compact subsurfaces M;, and M,

obtained from the closed surfaces M M, c M,

and M, by deleting an open disk from each. Show that M; does not retract onto
its boundary circle C, and hence M g does not retract onto C. [Hint: abelianize T .]
But show that M, does retract onto the nonseparating circle C " in the figure.

10. Consider two arcs « and B embedded in D?XI as \ \ 5

o
shown in the figure. The loop y is obviously nullhomo- ()I -
topic in D?xI, but show that there is no nullhomotopy of / > /

y in the complement of x U f.
11. The mapping torus T, of a map f:X—X is the quotient of XXI obtained
by identifying each point (x,0) with (f(x),1). In the case X = st v s! with f
basepoint-preserving, compute a presentation for 1, (Ty) in terms of the induced
map f, :1(X)— 1 (X). Do the same when X = stxst, [One way to do this is to
regard Ty as built from X v § ! by attaching cells.]

12. The Klein bottle is usually pictured as a subspace of R? like the subspace X c R*
shown in the first figure below. If one wanted a model which could actually function

Ces”

as a bottle, one would delete the open disk bounded by the circle of self-intersection
of X, producing a subspace Y ¢ X. Show that m;(X) = Z % Z and that 17;(Y) has
the presentation ( a, b, c | aba ‘b~ tebic! y for € = =1. (Changing the sign of ¢

gives an isomorphic group, as it happens.) Show also that m; (Y) is isomorphic to
m (R3 - Z) for Z the graph shown in the second figure. [The group 7, (Y) is not free;
see the discussion in Example 1B.13.]

13. The space Y in the preceding exercise can be obtained from a disk with two holes
by identifying its three boundary circles. There are only two essentially different ways
of identifying the three boundary circles. Show that the other way yields a space Z
with 11, (Z) not isomorphic to 1;(Y). [Abelianize the fundamental groups to show
they are not isomorphic.]

14. Consider the quotient space of a cube I° obtained by identifying each square
face with the opposite square face via the right-handed screw motion consisting of
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a translation by one unit in the direction perpendicular to the face combined with a
one-quarter twist of the face about its center point. Show this quotient space X is a
cell complex with two 0-cells, four 1-cells, three 2-cells, and one 3-cell. Using this
structure, show that T, (X) is the quaternion group {=1, +i, +j, =k}, of order eight.
15. Given a space X with basepoint x, € X, we may construct a CW complex L(X)
having a single 0-cell, a 1-cell for each loop in X based at x,, and a 2-cell for each
map of a standard triangle T into X taking the three vertices to the basepoint. Such
a 2-cell is attached to the three 1-cells which are the loops obtained by restricting the
map to the three edges of T. Show that 1, (L(X)) is isomorphic to (X, x,) via an
isomorphism induced by a natural map L(X)—X.

16. Show that the fundamental group of the surface of infinite genus shown below is
free on an infinite number of generators.

EE Tt

17. Show that 7T1([R2 — QZ) is uncountable.

18. If X is the subspace of R? consisting of the four sides of the square [0,1]x[0,1]
together with the portions of the vertical lines x = 1/, 1/5,1/,,--- inside the square,
show that 11, (X) is free on a countable set of generators.

19. Show that the subspace of R® which is the union of the spheres of radius !/,, and
center (1/,,,0,0) for n = 1,2, --- is simply-connected.

20. Let X be the subspace of R? which is the union of the circles C,, of radius n and
center (n,0) for n = 1,2, ---. Show that 11, (X) is the free group *,, ; (C,,), the same
as for the infinite wedge sum \/,S'. Show that X and \/_ S' are in fact homotopy
equivalent, but not homeomorphic.

21. Show that the join X * Y of two nonempty spaces X and Y is simply-connected
if X is path-connected.
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1.3 Covering Spaces

We come now to the second main topic of this chapter, covering spaces. We have
in fact already encountered one example of a covering space in our calculation of
™ (S ). This was the map R— S which we pictured as the projection of a helix onto
a circle. One thinks of the helix as lying above, or ‘covering,’ the circle. A number
of things we proved for this helix example hold true for all covering spaces, and this
allows covering spaces to serve as a useful tool for calculating fundamental groups in
general. But there is much more to the story than this, and the connection between
fundamental group and covering spaces is so close that in many ways they can be
regarded as two viewpoints toward the same thing. This means that algebraic features
of the fundamental group can often be translated into the geometric language of
covering spaces. This is exemplified in one of the main results in this section, giving
an exact correspondence between the various connected covering spaces of a given
space X and subgroups of 1r; (X). This is strikingly reminiscent of Galois theory, with
its correspondence between field extensions and subgroups of the Galois group.

~

Let us begin with the definition. A covering space of a space X is a space X
together with a map p X—X satisfying the following condition: There exists an
open cover {U,} of X such that for each «, p’l (Uy) is a disjoint union of open sets
in X, each of which is mapped by p homeomorphically onto U,. We do not require
that p~! (U,) be nonempty, so p need not be surjective.

In the helix example one has p: R—S! given by p(t) = (cos27rt,sin2mt), and
the cover {U,} can be taken to consist of any two open arcs whose union is § L
A related example is the helicoid surface S ¢ R® consisting of points of the form
(s cos2rtrt,ssin2mt,t) for (s,t) € (0,0)xR. This projects onto R% — {0} via the
map (x,y,z) — (x,y), and this projection defines a covering space p:S— R® — {0}
since for each open disk U in R®> — {0}, p~'(U) consists of countably many disjoint
open disks in S each mapped homeomorphically onto U by p.

Another example is the map p:S g 1, p(z) = z" where we
view z as a complex number with |z| = 1 and n is any positive -
integer. The closest one can come to realizing this covering space
as a linear projection in 3-space analogous to the projection of the
helix is to draw a circle wrapping around a cylinder n times and l p
intersecting itself in n — 1 points which one has to imagine are not
really intersections. For an alternative picture without this flaw, O
embed S! in the boundary torus of a solid torus S' xD? so that it winds n times
monotonically around the S' factor without self-intersections, then restrict the pro-
jection S'x D?— S x {0} to this embedded circle. The figure for Example 1.29 in the
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preceding section illustrates the case n = 3.

As our general theory will show, these examples for n > 1 together with the
helix example exhaust all the connected coverings spaces of S'. There are many
other disconnected covering spaces of S!, such as n disjoint circles each mapped
homeomorphically onto S', but these disconnected covering spaces are just disjoint
unions of connected ones. We will usually restrict our attention to connected covering
spaces as these contain most of the interesting features of covering spaces.

The covering spaces of S' v S! form a remarkably rich family illustrating most of
the general theory very concretely, so let us look at a small sample of these covering
spaces to get an idea of what is going on.

To abbreviate notation, set X = S' v S'. We view this as a
graph with one vertex and two edges. We label the edges a b C><> a
and b and we choose orientations for a and b. Now let X be
any other graph with four edges meeting at each vertex, and suppose the edges of X
have been assigned labels a and b and orientations in such a way that the local picture
near each vertex is the same as in X, so there is an a-edge oriented toward the vertex,
an a-edge oriented away from the vertex, a b-edge oriented toward the vertex, and a
b-edge oriented away from the vertex. To give a name to this structure, let us call X
a 2-oriented graph. The table on the next page shows a number of examples. (What
the pictures in (12)-(14) mean will become clear a couple paragraphs below when we
describe a similar example in more detail.)

Given a 2-oriented graph X we can construct a map p X—X sending all vertices
of X to the vertex of X and sending each edge of X to the edge of X with the same
label by a map which is a homeomorphism on the interior of the edge and preserves
orientation. It is clear that the covering space condition is satisfied for p. The con-
verse is also true: Every covering space of X is a graph which inherits a 2-orientation
from X.

As the reader will discover by experimentation, it seems that every graph having
four edges incident at each vertex can be 2-oriented. This can be proved for finite
graphs as follows. A very classical and easily shown fact is that every finite connected
graph with an even number of edges incident at each vertex has an Eulerian circuit,
a loop traversing each edge exactly once. If there are four edges at each vertex, then
labelling the edges of an Eulerian circuit alternately a and b produces a labelling with
two a and two b edges at each vertex. The union of the a edges is then a collection of
disjoint circles, as is the union of the b edges, and choosing orientations for all these
circles gives a 2-orientation. It is a theorem in graph theory that infinite graphs with
four edges incident at each vertex can also be 2-oriented; see Chapter 13 of [Koenig]
for a proof. There is also a generalization to n-oriented graphs, which are covering
spaces of the wedge sum of » circles.
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The figure to the right shows a rather special 2-oriented graph
which can be constructed concretely as a subspace of R? by the

following procedure. Start with the open intervals (—1,1) in
the x and  axes. Next, for a fixed number A, 0 < A < 1/, ﬁﬁ%

g

e
+ ,
for example A = 1/;, adjoin four open segments of length * %}
2A, at distance A from the ends of the previous segments I I
7

and perpendicular to them, the new shorter segments being bi-
sected by the older ones. For the third stage, add perpendicular

open segments of length 2A% at distance A® from the endpoints of all the previous
segments and bisected by them. The process is now repeated indefinitely, at the nth
stage adding open segments of length 2A™"! at distance A"~ ! from all the previous
endpoints. The union of all these open segments is a graph, with vertices the intersec-
tion points of horizontal and vertical segments, and edges the subsegments between
adjacent vertices. We label all the horizontal edges a, oriented to the right, and all
the vertical edges b, oriented upward.

The special feature of this covering space is that it is simply-connected. Itis called
the universal cover of X because, as our general theory will show, itis a covering space
of every other connected covering space of X.

The covering spaces (1)-(14) in the table are all nonsimply-connected. Their fun-
damental groups are free, namely, free products of Z’s with generators the loops
given by the listed words in a and b, starting at the basepoint X, indicated by the
heavily shaded vertex. This can be proved in each case by applying van Kampen’s the-
orem. One can also interpret the list of words as generators of the image subgroup
p, (m (X, X)) in 1 (X,x,) = (a,b). A general fact we shall prove about covering
spaces is that the induced map p, : 1, (X, %,) — (X, x,) is always injective. Thus
we have the at-first-glance-paradoxical fact that the free group on two generators can
contain as a subgroup a free group on any finite number of generators, or even on a
countably infinite set of generators as in examples (10) and (11).

Changing the basepoint vertex changes the subgroup p, (1, (X, X,)) to a conju-
gate subgroup in T, (X, X)), in fact conjugate by the element of T, (X, x,) defined by
a path joining one basepoint to the other. For example, the covering spaces (3) and
(4) differ only in the choice of basepoints, and the corresponding subgroups of Z x Z
differ by conjugation by b.

The main classification theorem for covering spaces says that by associating the
subgroup p, (m; ()?, X,)) to the covering space p :)?—»X, we obtain a one-to-one cor-
respondence between all the different connected covering spaces of X and the conju-
gacy classes of subgroups of 1, (X). If one keeps track of the basepoint vertex X, € X,
then this is a one-to-one correspondence between covering spaces p : (X, Xo) — (X, x¢)
and actual subgroups of 1, (X, x), not just conjugacy classes. Of course, for these
statements to make sense one has to have a precise notion of when two covering
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spaces are the same, or ‘isomorphic.’ In the case at hand, two covering spaces of
X are isomorphic iff there is a homeomorphism between them which preserves the
labeling and orientations of edges. Thus the covering spaces in (3) and (4) are isomor-
phic, but not by an isomorphism preserving basepoints, so the two corresponding
subgroups of Z x Z are distinct but conjugate. On the other hand, the two covering
spaces in (5) and (6) are not isomorphic, though the graphs are homeomorphic, so the
two corresponding subgroups of index 3 are isomorphic but not conjugate.

Another feature which might be observed is that some of the covering spaces
are more symmetric than others, where by a ‘symmetry’ we mean a homeomorphism
from the graph to itself which preserves the labelings and orientations. Specifically,
one can ask in each case whether there are symmetries taking any one vertex onto any
other. The examples (1), (2), (5)-(8), and (11) are the ones with this symmetry property.
We shall see that having this symmetry property is equivalent to the corresponding
subgroup of Z % Z being a normal subgroup. And if the covering space does have
this symmetry property, then its symmetries form a group isomorphic to the quotient
group of Z*Z7Z by the normal subgroup. Since every group generated by two elements is
a quotient group of Z* Z, this implies that every two-generator group is the symmetry
group of some covering space of X.

Lifting Properties

Covering spaces are defined in fairly geometric terms, as maps p:)? — X which
are local homeomorphisms in a rather strong sense. But from the viewpoint of alge-
braic topology, the distinctive feature of covering spaces is their behavior with respect
to lifting of maps. Recall the terminology from the proof of Theorem 1.7: a lift of a
map f:Y—X is a map f: Y — X such that pf = f. We will describe three special
lifting properties of covering spaces, and derive a few applications of these.

First we have the homotopy lifting property, or covering homotopy property
as it is sometimes called:

Proposulon 1.30. Given a covering space p : X —X,a homotopy fi:Y—=X,and a
map fO Y — X lifting Jo, then there exists a unique homotopy ft Y—X offo which

lifts f;.

Proof: For the covering space p:R—S! this is property (c) in the proof of Theo-
rem 1.7, and the proof there applies to any covering space. |

Taking Y to be a point gives the following path lifting property for a covering
space p : X — X: For each path f:1— X starting at a point x, € X and each X, €
p’l (x() there is a unique path f:l —X lifting f starting at X,. In particular, the
uniqueness of lifts implies that every lift of a constant path is constant, but this could
be deduced more simply from the fact that p’l (x() has the discrete topology, by the
definition of a covering space.
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Taking Y to be I, we see that every homotopy f; of a path f; in X lifts to a
homotopy ft of each lift fo of fy. The lifted homotopy ft is a homotopy of paths,
fixing the endpoints, since as t varies, each endpoint of ft traces out a path lifting a
constant path, which must therefore be constant.

Here is a simple application:

Proposition 1.31. Themap p,: 1, ()?, Xo) — 1 (X, x,) induced by a covering space
p:()?,?co)—%X, X,) is injective. The image subgroup p, (1, (X, X)) in (X, x0)
consists of the homotopy classes of loops in X based at x, whose lifts to X starting
at X, are loops.

Proof: An element of the kernel of p, is represented by a loop fo :I—X with a
homotopy f;:I—X of f, = pfo to the trivial loop f;. By the remarks preceding the
proposition, there is a lifted homotopy of loops ft starting with fo and ending with
a constant loop. Hence [fo] =0in m (X, X,) and p, is injective.

For the other statement of the proposition, certainly loops at x, lifting to loops
at X, represent elements of the image of p, :m ()? , Xo) — (X, xo). Conversely, a
loop representing an element of the image of p, is homotopic to a loop having such
a lift, hence, by homotopy lifting, the loop itself must have such a lift. =]

If p:)? — X is a covering space, then the cardinality of the set p~!(x) is locally
constant over X, hence if X is connected, this cardinality is constant as x ranges
over all of X. It is called the number of sheets of the covering.

Proposition 1.32. The number of sheets of a covering space p : ()?,?co)—> (X, x¢)
with X and X path-connected equals the index of p., (1r,(X, X)) in 1 (X, x,).

Proof: For aloop g in X based at x,, let g be its lift to X starting at X,,. A product
h-g with [h] € H = p, (,(X,X,)) has the lift h-§ ending at the same point as §
since h is a loop. Thus we may define a function ® from cosets H[g] to p_l(xo)
by sending H[g] to g(1). The path-connectedness of X implies that ® is surjective
since X, can be joined to any point in p_l (xy) by a path g projecting to a loop g at
Xo- To see that & is injective, observe that ®(H[g,]) = ®(H[g,]) implies that g,g,
lifts to a loop in X based at Xy, SO [gl][gz]_1 € H and hence H[g,] = H[g,]. O

It is useful to know about the existence and uniqueness of lifts not just of homo-
topies, but of general maps. For the question of when lifts exist an answer is provided
by the following lifting criterion:

Proposition 1.33. Suppose given a covering space p : (X, Xy)— (X, x,) and a map
(Y, yy)—(X,x,) with Y path-connected and locally path-connected. Then a lift
Fi(Y, 30— (X,%)) of f exists iff f,(m,(Y,59)) C p.(m(X,%)).
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When we say a space has a certain property locally, such as being locally path-
connected, we shall mean that each point has arbitrarily small open neighborhoods
with this property. Thus for Y to be locally path-connected means that for each point
v € Y and each neighborhood U of y, there is an open neighborhood V C U of
v which is path-connected. Some authors weaken the requirement that V be path-
connected to the condition that any two points in V be joinable by a path in U.
This broader definition would work just as well for our purposes, necessitating only
small adjustments in the proofs, but for simplicity we shall use the more restrictive
definition.

Proof: The ‘only if’ statement is obvious since f, = p*f*. For the converse, let
¥ €Y and let y be a pathin Y from y, to . The path fy in X starting at x,
has a unique lift f)j starting at X,. Define f(y) = ﬁ(l). To show this is well-
defined, independent of the choice of y, let y’ be another path from y, to . Then
(fy") - (fy) is aloop hg at x, with [hy] € f.(m,(Y,¥,)) € p,(m(X,X,)). This

means there isNa honlotopy h, of h, to aloop h, which Y

lifts to a loop h, in X based at X,. Apply the cover- fo)
ing hoanotopy property to h; to Nget a lifting I’Nlt. Eoﬁ@
Since h, is a loop at X, so is hy. By the 7

uniqueness of lifted paths, the first half / l"’

of rPNL\OJ is ﬁ and the second half Y’ f £y’ £)
is fy traversed backwards, y()@ y _'x

with the common midpoint Y 0 fy

E(l) = f\yJ’(l). This shows f is well-defined.

To see that f is continuous, let U C X be an open neighborhood of f(y) having
alift U c X containing f(y) such that p: U—U is a homeomorphism. Choose a
path-connected open neighborhood V of y with f(V) c U. For paths from y, to
points ¥’ € V we can take a fixed path y from y, to » followed by paths n in
V from y to the points y’. Then the paths (fy)-(fn) in X have lifts (E) . (}\ﬁ)
where }\ﬁ = p 'fn and p’l:U—>l7 is the inverse of p:ﬁ—»U. Thus f(\/) c U and
fIV = p_lf, hence f is continuous at y. a

An example showing the necessity of the local path-connectedness assumption
on Y is described in Exercise 7 at the end of the section.
Next we have the unique lifting property:

Proposition 1.34. Given a covering space p :X— X and a map f:Y—X with two
lifts f1, f>: Y — X which agree at one point of Y, then if Y is connected, these two
lifts must agree on all of Y.

Proof: For a point v € Y, let U; and U, be neighborhoods of fl (y) and fz (y),
respectively, mapping homeomorphically to a neighborhood U of Y by p, as in the
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definition of a covering space. By continuity there is a neighborhood N of y mapped
into U; by fl and into U, by fz. If fl(y) * fz(y) then U, # U,, hence U; and
U, are disjoint and fl +* fz throughout the neighborhood N. On the other hand, if
fl(y) = sz (y) then U, = U, so fl = fz on N since pfl = pfz and p is injective on
U, = U,. Thus the set of points where fl and fz agree is both open and closed in Y.
So if Y is connected this set is either empty or all of Y. |

The Classification of Covering Spaces

We consider next the problem of classifying all the different covering spaces of
a fixed space X. Since the whole chapter is about paths, it should not be surprising
that we will restrict attention to spaces X which are at least locally path-connected.
Path-components of X are then the same as components, and for the purpose of
classifying the covering spaces of X there is no loss in assuming X is connected,
or equivalently path-connected. Local path-connectedness is inherited by covering
spaces, so these too are connected iff they are path-connected. The main thrust of the
classification will be the Galois correspondence between connected covering spaces of
X and subgroups of 1, (X), but when this is finished we will also describe a different
method of classification which includes disconnected covering spaces as well.

The Galois correspondence will arise from the function which assigns to each cov-
ering space p:()?, X,) — (X, x,) the subgroup p, (m; (X, X)) of 1 (X,x,). First we
consider whether this function is surjective. That is, we ask whether every subgroup of
™, (X, x,) is realized as p, (1, (X, X,)) for some covering space p: (X, Xo) — (X, x,).
In particular we can ask whether the trivial subgroup is realized. Since p, is always
injective, this amounts to asking whether X has a simply-connnected covering space.
Answering this will take some work.

A necessary condition for X to have a simply-connected covering space is the
following: Each point x € X has a neighborhood U such that the inclusion-induced
map 1, (U, x)— 1, (X, x) is trivial; one says X is semilocally simply-connected if
this holds. To see the necessity of this condition, suppose p:)? — X is a covering
space with X simply-connected. Every point x € X has a neighborhood U having a
lift U c X projecting homeomorphically to U by p. Each loop in U lifts to a loop
in U, and the lifted loop is nullhomotopic in X since M (X) = 0. So, composing this
nullhomotopy with p, the original loop in U is nullhomotopic in X.

A locally simply-connected space is certainly semilocally simply-connected. For
example, CW complexes have the much stronger property of being locally contractible,
as we show in the Appendix. An example of a space which is not semilocally simply-
connected is the shrinking wedge of circles, the subspace X c R? consisting of the
circles of radius !/,, centered at the point (Y/,,,0) for n = 1,2, - - -, introduced in Exam-
ple 1.25. On the other hand, the cone CX = (XXI)/(Xx {0}) is semilocally simply-
connected since it is contractibe, but it is not locally simply-connected.
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We shall now show how to construct a simply-connected covering space of X if
X is path-connected, locally path-connected, and semilocally simply-connected. To
motivate the construction, suppose p: ()? , Xo) — (X, x,) is a simply-connected cover-
ing space. Each point X € X can then be joined to X, by a unique homotopy class of
paths, by Proposition 1.6, so we can view points of X as homotopy classes of paths
starting at X,,. The advantage of this is that, by the homotopy lifting property, homo-
topy classes of paths in X starting at X, are the same as homotopy classes of paths
in X starting at x,,. This gives a way of describing X purely in terms of X.

Given a path-connected, locally path-connected, semilocally simply-connected
space X with a basepoint x, € X, we are therefore led to define

X=1 [yllyisapathin X starting at x, }

where, as usual, [y] denotes the homotopy class of y with respect to homotopies
which fix the endpoints y(0) and y(1). The function p:)?—»X sending [y] to y(1)
is then well-defined. Since X is path-connected, the endpoint y(1) can be any point
of X, so p is surjective.

Before we define a topology on X we make a few preliminary observations. Let
U be the collection of path-connected open sets U C X such that m, (U)— 1, (X) is
trivial. Note that if the map T, (U) — 1, (X) is trivial for one choice of basepointin U,
it is trivial for all choices of basepoint since U is path-connected. A path-connected
open subset V C U € ‘U is also in ‘U since the composition 17, (V) — 11, (U) — 11, (X)
will also be trivial. It follows that ‘U is a basis for the topology on X if X is locally
path-connected and semilocally simply-connected.

Given a set U € ‘U and a path y in X from x, to a point in U, let

Upyy = {ly-nl | nisapathin U with n(0) = y(1) }.

As the notation indicates, U}, depends only on the homotopy class [y]. Observe
that p:Up,,;—U is surjective since U is path-connected and injective since differ-
ent choices of n joining y(1) to a fixed x € U are all homotopic in X, the map
1, (U) — 11, (X) being trivial. Another property is:

Upy) = Uy if [y'] € Upyy. Forif y’ = y-n then elements of U, have the
(x) form [y.n-u] and hence lie in Uj,;, while elements of Uj,; have the form
[y-ul=1[y-n-n-ul=1[y-n-ul and hence lie in Uj,;.
This can be used to show that the sets Uj,; form a basis for a topology on X. For if
we are given two such sets Uiys Viy and an element [y"'] € Upy) N Viyg, we have
Uty = Uy and Vi = Ve by (). Soif W € U is contained in UNV and contains
y" (1) then W,y C Uy NVyyeg and [y"'] € Wiy
The bijection p:U;,;— U is a homeomorphism since it gives a bijection between
the subsets V,,; C Uy, and the V € ‘U contained in U. Namely, in one direction
we have p(V;,;) =V, and in the other we have p (V) n Upy) = Viy forany [y'] €
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Upyy with endpoint in V, since Vi, C Uy = Upy; and Viy,; maps onto V by the
bijection p.

The preceding paragraph implies that p : X — X is continuous. We can also de-
duce that this is a covering space since for fixed U € ‘U, the sets Uy, for varying [y]
y1 = Uy = Uy by ().

A natural basepoint for X is [x,], the homotopy class of the constant path at x,.

partition p 1 (U) because if [y"] € Uiy) N Uy then Uy

Any [y] € X can be joined to [x,] by a path in X by restricting y to progressively
shorter segments [0,t] c [0,1], so X is path-connected. To see that T, ()A(I) =0, let
f:I—»)? be a loop based at [x,]. The composition pf is then a loop y in X based
at x;. Let y; be the path in X obtained by restricting the loop y to [0,t]. Then [y,]
for t varying from O to 1 forms a path in X lifting the loop y. This lift [y,] starts
at [yo] = [xy] = f(0), so by the unique lifting property of the cover space X—X we
must have [y,] = f(t) for all ¢t. In particular, [y;] = f(1) = [x,]. Since y; =y, this
says the loop y = pf is nullhomotopic. Thus p,([f]) = 0 in 1,(X). Since p, is
injective, [ f] = 0 and hence T, (X) = 0. This completes the construction.

In concrete cases one usually constructs a simply-connected covering space by
more direct methods. For example, suppose X is the union of subspaces A and B for
which simply-connected covering spaces A—A and B—B are already known. Then
one can attempt to build a simply-connected covering space X—X by assembling
copies of A and B. For example, for X = st v S if we take A and B to be the two
circles, then A and B are each R, and we can build the simply-connected cover X
described earlier in this section by glueing together infinitely many copies of A and
B, namely the horizontal and vertical lines in X. Here is another illustration of this
method:

Example 1.35. For integers m,n = 2, let Xnn be the quotient space of a cylinder
S'xI under the identifications (z,0) ~ (e>™/™z,0) and (z,1) ~ (e*™/"z,1). Let
A c X and B C X be the quotients of S'x [0, 17,1 and Slx[l/z,l], so A and B are
the mapping cylinders of z — z™ and z — z", with A n B = S'. The simplest case
is m =mn =2, when A and B are Mobius bands so X, is the Klein bottle. We
encountered the complexes X,, ,, previously in analyzing torus knot complements in
Example 1.24.

\

The figure for Example 1.29 at the end of the preceding section
shows what A looks like in the typical case m = 3. We have 1, (A) = Z,

and the universal cover A is homeomorphic to a product C,, xR where

C,, is the graph which is a cone on m points, as shown in the figure [
to the right. The situation for B is similar, and B is homeomorphic to

C, >: R. Now we attempt to build Ehe universal cover )?m’n from copies /I‘
of A and B. Start with a copy of A. Its boundary, the outer edges of its

[~
]
|
[~

fins, consists of m copies of R. Along each of these m boundary lines we attach a
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copy of B. Each of these copies of B has one of its boundary lines attached to the
initial copy of A, leaving n — 1 boundary lines free, and we attach a new copy of A
to each of these free boundary lines. Thus we now have m(n — 1) + 1 copies of A.
Each of the newly attached copies of A has m — 1 free boundary lines, and to each
of these lines we attach a new copy of B. The process is now repeated ad infinitim in
the evident way. Let )?m‘n be the resulting space.

The product structures A = C,, xR and B = C,, xR give
)?m‘n the structure of a product T, ,, xR where T,, ,, is an
infinite graph constructed by an inductive scheme just
like the construction of )?m’n. Thus T,,, ,, is the union of
a sequence of finite subgraphs, each obtained from the
preceding by attaching new copies of C,, or C,,. Each of
these finite subgraphs deformation retracts onto the pre-
ceding one. The infinite concatenation of these deformation
retractions, with the k" graph deformation retracting to the previous one during the

time interval [1/2", 1/ 2"‘1], gives a deformation retraction of T,,,, onto the initial

n
stage C,,. Since C,, is contractible, this means T,, ,, is contractible, hence also X,,, ,,

which is the product T,, ,, XR. In particular, )?m‘n is simply-connected.

The map which projects each copy of Ain )?m’n to A and L J
each copy of BtoBisa covering space. To define this map < >
precisely, choose a point x; € S ! and then the image of the | J
line segment {x,} X1 in X,, , meets A in aline segment whose ™ é J
preimage in A consists of an infinite number of line segments, i < P
appearing in the earlier figure as the horizontal segments spi- | J
ralling around the central vertical axis. The picture in B is ™ O
similar, and when we glue together all the copies of A and B

to form )?m,n, we do so in such a way that these horizontal segments always line up
exactly. This decomposes )?m’n into infinitely many rectangles, each formed from a
rectangle in an A and a rectangle in a B. The covering projection )?m,n—»xm,n is the
quotient map which identifies all these rectangles.

Now we return to the general theory. The hypotheses for constructing a simply-
connected covering space of X in fact suffice for constructing covering spaces realiz-
ing arbitrary subgroups of 1, (X):

Proposition 1.36. Suppose X is path-connected, locally path-connected, and semilo-
cally simply-connected. Then for every subgroup H C 11,(X,x,) there is a covering
space p:Xy— X such that p, (m,(Xy,X,)) = H for a suitably chosen basepoint
Xo € Xy .

Proof: For points [¥1, [y'] in the simply-connected covering space X constructed
above, define [y] ~ [y’] to mean y(1) = y'(1) and [yy’] € H. It is easy to see
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that this is an equivalence relation since H is a subgroup; namely, it is reflexive since
H contains the identity element, symmetric since H is closed under inverses, and
transitive since H is closed under multiplication. Let X;; be the quotient space of X
obtained by identifying [y] with [y'] if [y] ~ [y’]. Note that if y(1) = y'(1), then
[¥]~ [¥'1iff [yn] ~ [y’ n]. This means that if any two points in basic neighborhoods
Uy and Uy, are identified in Xj; then the whole neighborhoods are identified. Hence
the natural projection X — X induced by [y] — y(1) is a covering space.

If we choose for the basepoint X, € X;; the equivalence class of the constant path
¢ at x;, then the image of p, : 1, (X, X,) — 11, (X, x) is exactly H. This is because
for aloop y in X based at x, its lift to X starting at [c] ends at [y], so the image
of this lifted path in X} is aloop iff [y] ~ [c], i.e, [y] € H. O

Having taken care of the existence of covering spaces of X corresponding to all
subgroups of T, (X), we turn now to uniqueness up to isomorphism, where an iso-
morphism between covering spaces p, : X; — X and p,: X, — X is a homeomorphism
f :)?1—0?2 such that p; = p,f. This condition means exactly that f preserves the
covering space structures, taking p; L(x) to 1229 Y(x) for each x € X. The inverse
£7! is then also an isomorphism, and the composition of two isomorphisms is an
isomorphism, so we have an equivalence relation.

Proposition 1.37. If X is path-connected and locally path-connected, then two path-
connected covering spaces p, X 1— X and p, :)?2 — X are isomorphic via an isomor-
phism f:X,— X, taking a basepoint X, € p;'(x,) to a basepoint X%, € p;'(x,) iff
pl*(nl()?l’%l)) = Pz*(ﬁl()?z,%z))-

~

Proof: If there is an isomorphism f:(X,,%,) — (X,,X,), then the relations p, =
pof and p, = pif~" imply that p, (1, (X;, %)) = pos (m;(X,,%,)). Conversely,
suppose that py, (1, (X}, %)) = po, (11,(X,,%,)). By the lifting criterion, we may
lift p; to amap P, : (X, %) — (X,,%,) with p,p, = p,. Symmetrically, we obtain
Py:(X,,%,) — (X, ¥,) with p,P» = p,. Then by the unique lifting property, p;p, = 1
and p,p, = 1 since these composed lifts fix the basepoints. Thus p, and p, are
inverse isomorphisms. a

We have proved the first half of the following classification theorem:

Theorem 1.38. Let X be path-connected, locally path-connected, and semilocally
simply-connected. Then there is a bijection between the set of isomorphism classes
of path-connected covering spaces p : (X, Xy)— (X, x,) and the set of subgroups of
M, (X, x,) , obtained by associating the subgroup p,. (11, (X, X,)) to the covering space
(X, X,) - If basepoints are ignored, this correspondence gives a bijection between iso-
morphism classes of path-connected covering spaces p :X— X and con jugacy classes
of subgroups of ; (X, x) .
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Proof: It remains only to prove the last statement. We show that for a covering space
p:(X, Xy) — (X, x,), changing the basepoint X, within p‘l(xo) corresponds exactly
to changing p, (11, (X,%,)) to a conjugate subgroup of 1, (X,x,). Suppose that X,
is another basepoint in p ' (x,), and let ¥ be a path from %X, to X,. Then ¥y projects
to aloop y in X representing some element g € 1, (X, x,). Set H; = p, (1, (X, %,))
for i = 0,1. We have an inclusion g 'H,g ¢ H, since for F aloop at X0» Pfy isa
loop at X;. Similarly we have ngg’l C H,. Conjugating the latter relation by gt
gives H, ¢ g 'Hyg, so g 'Hyg = H,. Thus changing the basepoint from %, to X,
changes H,, to the conjugate subgroup H; = g’lHOg. Conversely, to change H, to
a conjugate subgroup H, = g‘lHOg, choose a loop y representing g, lift this to a
path y starting at X,,, and let X; = ¥(1). The preceding argument then shows that
we have the desired relation H, = g 'H,g. o

A consequence of the lifting criterion is that a simply-connected covering space
of a path-connected, locally path-connected space X is a covering space of every other
path-connected covering space of X. A simply-connected covering space of X is there-
fore called a universal cover. Such a covering space is unique up to isomorphism, so
one is justified in saying the universal cover.

More generally, there is a partial ordering on the collection of covering spaces
of X, according to which ones cover which others. This corresponds to the partial
ordering by inclusion of the various subgroups of 7T, (X), or conjugacy classes of
subgroups if basepoints are ignored.

Representing Covering Spaces by Permutations

We wish to describe now another way of classifying the different covering spaces
of a connected, locally path-connected space X, without restricting just to connected
covering spaces. To give the idea, consider the 3-sheeted covering spaces of S'. There
are three of these, )?1, )?2, and )?3, with the subscript in-
dicating the number of components. For each of these @ @
covering spaces p :)?i—nS‘ ! the three different lifts of a
loop in S! generating ™ (S l,xo) determine a permutation of p’l(xo) sending the
starting point of the lift to the ending point of the lift. For )?1 this is a cyclic per-
mutation, for )?2 it is a transposition of two points fixing the third point, and for )?3
it is the identity permutation. These permutations obviously determine the covering
spaces uniquely, up to isomorphism. The same would be true of n-sheeted coverings
for arbitrary n, even for n infinite.

There is a way to generalize this to covering spaces p :X—X of an arbitrary
connected, locally path-connected space X. Let y be a path in X. Then y can be
viewed as a homotopy of the composition p~!(y(0)) — X—X. The homotopy lift-
ing property yields a homotopy from the inclusion p’l(y(O)) < X toa bijection
Ly: p Yy (0))—p~t(y(1)). The inverse of this bijection is evidently Ly. For a com-
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position of paths yn we have L,, = L,L,, rather than L L,, since composition of
paths is written from left to right while composition of functions is written from right
to left. To correct for this discrepancy let us modify the definition by replacing L, with
its inverse. Thus the new L, is a bijection p ' (y(1))—p ' (y(0)),and L,, = L,L,.
Since L, depends only on the homotopy class of y, this means that if we restrict
attention to loops at a basepoint x, € X, then the association y — L, gives a homo-
morphism from (X, x,) to the group of permutations of p’l(xo). This is called
the action of 1, (X, x,) on the fiber p‘l(xo). We shall give a general definition of an

action of a group on a space in the next subsection.

Let us see how the covering space p : X — X can be reconstructed from the asso-
ciated action of 1, (X, x;) on the fiber F = p! (xg), assuming that X is semilocally
simply-connected, so it has a universal cover )?0—>X . We can take the points of the
universal cover )N(O to be homotopy classes of paths in X starting at x, as in the
earlier construction of a universal cover. Define a map h: )?0 xF—X sending a pair
([y],%,) to ¥(1) where ¥ is the lift of y to X starting at X,. Then h is continu-
ous, and in fact a local homeomorphism, since a neighborhood of ([y], X,) in )?0 X F
consists of the pairs ([yn], X,) with n a path in a neighborhood of y(1) as in the con-
struction of X,. It is obvious that h is surjective since X is path-connected. If h were
injective as well, it would be a homeomorphism, which is unlikely since )?O X F is prob-
ably not homeomorphic to X. Butin any case, h will induce a homeomorphism from
some quotient space of )?OXF onto X. To see what this quotient space is explicitly,
suppose h([yl,X,) = h([y'],X}). Then y and y’ are both 5
paths from x, to the same endpoint, and from the figure X, ::>
we see that X, = L, (X,). Letting A be the loop yy, this g
means that h([y],X;) = h([)\y],L)\(cho)). Conversely, for Ly’y(?(o) Y
any loop A we have h([y],X,) = h([Ay],L \(X;)). Thus h y
iilduces a well-defined map to X from the quotient space of X,

Xy x F obtained by identifying ([y],X,) with ([Ay],L (X)) Y’
for each [A] € (X, x;). Let this quotient space be denoted )?p where p is the ho-
momorphism from 1, (X, x) to the permutation group of F specified by the action.

Notice that the definition of )?p makes sense whenever we are given an action
p of m (X,x,) on a set F. There is a natural projection )?p—>X sending ([y], X,)
to y(1), and this is a covering space since if U C X is an open set over which the
universal cover X, is a product Ux 1, (X, X,), then the identifications defining X P
simply collapse U x 11, (X, x) XF to UXF.

Returning to our given covering space X — X with associated action p, the map
X P — X induced by h is a bijection and in fact a homeomorphism since h was a local
homeomorphism. Since this homeomorphism X, — X takes each fiber of X, to the
corresponding fiber of X, itis an isomorphism of covering spaces.

If two covering spaces p; :)?1—>X and p, :)?2—>X are isomorphic, how are the
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corresponding actions of 1, (X, x,) on the fibers F, and F, over x, related? An
isomorphism h:X, — X, restricts to a bijection F, — F,, and evidently L,(h(Xy)) =
h(Ly(%O)). Using the less cumbersome notation X, — yX, for X, — Ly()Nco), this
relation can be written more concisely as yh(X,) = h(yX,). A bijection F, —F, with
this property is what one would naturally call an isomorphism of sets with 1, (X, x)
action. Thus isomorphic covering spaces have isomorphic actions on fibers. The
converse is also true, and easy to prove. One just observes that for isomorphic actions
p; and p,, an isomorphism h:F; —F, induces a map )?m —X ,»and h™! induces a
similar map in the opposite direction, such that the compositions of these two maps,
in either order, are the identity.

Thus n-sheeted covering spaces of X are classified by equivalence classes of
homomorphisms 1 (X, x,) —%,, where X, is the symmetric group on n symbols
and the equivalence relation identifies a homomorphism p with each of its conjugates
h~!ph by elements h 2,

Deck Transformations and Group Actions

For a covering space p : X — X the isomorphisms X — X are called deck transfor-
mations or covering transformations. These form a group G(X) under composition.
For example, for the covering space p :R— S! projecting a vertical helix onto a circle,
the deck transformations are the vertical translations taking the helix onto itself, so
G(X) ~ Z in this case. For the n-sheeted covering space S' —S!, z — z", the deck
transformations are the rotations of S' through an angle which is a multiple of 27 /n,
so G(X) = Z,.

By the unique lifting property, a deck transformation is completely determined
by where it sends a single point, assuming Xis path-connected. In particular only the
identity deck transformation can fix a point of X.

A normal covering space p:)? — X is one for which G(X) acts transitively on
p’l (x) for all x € X, i.e., for any two lifts X, X’ of x there is a deck transformation
taking X to X'. For example, the covering spaces R—S! and S'—S! whose deck
transformations we just described are normal. Intuitively, a normal covering space
is one with ‘maximal symmetry.’ This can be seen in the coverings of S! v §! shown
in the table earlier in this section, where the normal coverings are numbers (1), (2),
(5)-(8), and (11). Note that in (7) the group of deck transformations is Z, while in (8)
itis Z,xZ,.

Sometimes normal covering spaces are called regular covering spaces. The term
‘normal’ is motivated by the following result.
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Proposition 1.39. Let p: X ,Xo) — (X,x,) be a path-connected covering space of

the path-connected, locally path-connected space X, and let H = p, (11,(X,%,)) C

™ (X, Xx() . Then:

(a) This covering space is normal iff H is a normal subgroup of 1, (X, x).

(b) G()?) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of
H in (X, xq).

In particular, G()?) is isomorphic to 1, (X, xq)/H if)? is a normal covering. Hence

for the universal cover X — X we have G(X) ~ 1, (X).

Proof: We observed earlier in the proof of the classification theorem that changing
the basepoint X, € p’l(xo) to X, € p’l(xo) corresponds precisely to conjugating
H by an element [y] € m, (X, x,) where y lifts to a path y from X, to X;. Thus [y]
is in the normalizer N(H) iff p, (m, (X, Xy)) = p*(nl()?, X1)), which by the lifting
criterion is equivalent to the existence of a deck transformation taking X, to X;.
Hence the covering space is normal iff N(H) = m; (X, x,),i.e., H is anormal subgroup
of (X, x,).

Define @ :N(H )—G(X) sending [y] to the deck transformation T taking X to
X, in the notation above. Then @ is a homomorphism, for if y’ is another loop corre-
sponding to the deck transformation 7’ taking X, to X; then y.y’ liftsto y-(t(y")),
a path from X, to T(}?i) =77 (Xy), SO 7T’ is the deck transformation corresponding
to [y][y’]. By the preceding paragraph @ is surjective. Its kernel consists of classes
[y] lifting to loops in X. These are exactly the elements of p. (11 (X, Xy))=H. 0O

The group of deck transformations is a special case of the general notion of
‘groups acting on spaces.” Given a group G and a space Y, then an action of G on
Y is a homomorphism p from G to the group Homeo(Y) of homeomorphisms of Y.
Thus to each g € G is associated a homeomorphism p(g):Y —Y, which for nota-
tional simplicity we write simply as g:Y —Y. For p to be a homomorphism amounts
to requiring that g,(g,(y)) = (g,9,)(y) for all g,,g, € G and y € Y. If p is in-
jective then it identifies G with a subgroup of Homeo(Y), and in practice not much
is lost in assuming p is an inclusion G — Homeo(Y) since in any case the subgroup
p(G) Cc Homeo(Y) contains all the topological information about the action.

We shall be interested in actions satisfying the following condition:

Each point v € Y has a neighborhood U such that all the images g(U) for

%
(x) varying g € G are disjoint, i.e., g, (U) n g»,(U) # @ implies g, = g-.

For deck transformations, one can see the action of G(X) on X satisfies () as fol-
lows. Suppose UcX projects homeomorphically to U C X. If gl(ﬁ) N gz(ﬁ) + O
for g,,9, € G(X), then we have g, (¥,) = g (X,) for points %,,%, € U. Since %, and
X, must lie in the same set p’l (x), which intersects U in only one point, we must
have X, = X,, and g;'g, fixes this point so g;'g, = 1 and g, = g,.
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Note that in () it suffices to take g, to be the identity since g,(U) ng,(U) = &
is equivalent to U n g;'g,(U) = @. Thus we have the equivalent condition that
Ung(U) = @ only for g the identity.

Given an action of a group G on a space Y, we can form a space Y /G, the quotient
space of Y in which each point y is identified with all its images g(y) as g ranges
over G. The points of Y /G are thus the orbits Gy = {g(y) | g € G} C Y, and
Y /G is called the orbit space of the action. For example, for a normal covering space
X — X, the orbit space X/G(X) is just X.

Proposition 1.40. Suppose we are given an action of a group G on a space Y satis-
fving the condition (x). Then:
(@) The quotient map p:Y—Y /G, p(y) = Gy, is a normal covering space.
(b) G is the group of deck transformations of this covering space Y =Y /G if Y is
path-connected.
(c) G isisomorphicto 1, (Y/G)/p, (11,(Y)) if Y is path-connected and locally path-

connected.

Proof: Given an open set U C Y as in condition (%), the quotient map p simply
identifies all the disjoint homeomorphic sets {g(U) | g € G} to a single open set
p(U) in Y/G. By the definition of the quotient topology on Y /G, p restricts to a
homeomorphism g(U) = p(U) for each g € G so we have a covering space. Each
element of G acts as a deck transformation, and the action is transitive by the defi-
inition of Y /G, so the covering space is normal. The group of deck transformations
contains G as a subgroup, and equals this subgroup if Y is path-connected, since if
f is any deck transformation, then for any point y € Y, p(y) = pf(y) so v and
f(y) are in the same orbit and thereisa g € G with g(y) = f(»), hence f = g since
deck transformations of a path-connected covering space are uniquely determined by
where they send a point. The final statement of the proposition is immediate from
part (b) of Proposition 1.39. O

In view of the preceding proposition, we shall call an action satisfying (%) a
covering space action. This is not standard terminology, but there does not seem to
be a universally accepted name for actions satisfying (x). Sometimes these are called
‘properly discontinuous’ actions, but more often this rather unattractive term means
something weaker: Every point x € X has a neighborhood U such that U n g(U)
is nonempty for only finitely many g € G. Many symmetry groups have this proper
discontinuity property without satisfying (x), for example the group of symmetries
of the familiar tiling of R? by regular hexagons. The reason why the action of this
group on R? fails to satisfy (%) is that there are fixed points: points vy for which
there is a nontrivial element g € G with g(y) = y. For example, the vertices of the
hexagons are fixed by the 120 degree rotations about these points, and the midpoints
of edges are fixed by 180 degree rotations. An action without fixed points is called
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a free action. Thus for a free action of G on Y, only the identity element of G fixes
any point of Y. This is equivalent to requiring that all the images g(y) of each
¥y € Y are distinct, i.e., g;(¥) = g>(y) implies g, = g,, since g,(y) = g»(y) is
equivalent to g; 1gz( y) = . Though condition (*) implies freeness, the converse is
not always true. An example is the action of Z on S in which a generator of Z acts by
rotation through an angle « which is an irrational multiple of 27r. In this case each
orbit Zy is dense in S 1 , so condition () cannot hold since it implies that orbits are
discrete subspaces. An exercise at the end of the section is to show that for actions
on Hausdorff spaces, freeness plus proper discontinuity implies condition (x). Note
that proper discontinuity is automatic for actions by a finite group.

Example 1.41. Let Y be the closed orientable surface of genus 11, an ‘11-hole torus’
as shown in the figure. This has a 5-fold rotational symmetry,
generated by a rotation of angle 21r/5. Thus we have the

cyclic group Z5 acting on Y, and the condition () is ob-
viously satisfied. The quotient space Y /Z; is a surface
of genus 3, obtained from one of the five subsurfaces
of Y cut off by the circles Cy,---,Cs by identifying its
two boundary circles C; and C;,; to form the circle C as
shown. Thus we have a covering space M;; —M; where

M, denotes the closed orientable surface of genus g. In l p
particular, we see that 11 (M3) contains the ‘larger’ group

1, (M;;) as a normal subgroup of index 5, with quotient C
Z5. This example obviously generalizes by replacing the two

holes in each ‘arm’ of M;; by m holes and the 5-fold symmetry by n-fold symmetry.
This gives a covering space M,,,,.; —M,,.; - An exercise in §2.2 is to show by an Euler
characteristic argument that if there is a covering space M, —M,, then g = mn +1
and h = m + 1 for some m and n.

As a special case of the final statement of the preceding proposition we see that
for a covering space action of a group G on a simply-connected locally path-connected
space Y, the orbit space Y /G has fundamental group isomorphic to G. Under this
isomorphism an element g € G corresponds to a loop in Y /G which is the projec-
tion of a path in Y from a chosen basepoint y, to g(y»,). Any two such paths are
homotopic since Y is simply-connected, so we get a well-defined element of (Y /G)
associated to g.

This method for computing fundamental groups via group actions on simply-
connected spaces is essentially how we computed T, (SY) in §1.1, via the covering
space R— S! arising from the action of Z on R by translations. This is a useful general
technique for computing fundamental groups, in fact. Here are some examples.
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Example 1.42. Two covering space actions on R?

are given by the groups of symmetries of the pat-

terns shown in the figure, square grids decorated

with arrows that rule out rotational and reflectional

symmetries. The only difference between the two

cases is that in the second case the horizontal arrows in adjacent lines point in op-
position directions. For the first grid the symmetry group G is isomorphic to Zx7Z
since it consists of all translations (x,y) — (x + m,y + n) for m,n € Z, assuming
the vertices of the grid are the points (x,y) € Z>. For the second grid, G contains
a subgroup of translations of the form (x,y) — (x + m,y + 2n) for m,n € Z, but
there are also ‘glide-reflection’ symmetries, consisting of vertical translation by an
odd integer distance followed by reflection across a vertical line, either a vertical line
of the grid or a vertical line halfway between two adjacent grid lines. For both grid
patterns there are elements of G taking any square to any other, but only the identity
element of G takes a square to itself. The minimum distance any point is moved by a
nontrivial element of G is 1, which easily implies the covering space condition ().
The orbit space R?/G is the quotient space of a square in the grid with opposite edges
identified according to the arrows. Thus we see that the fundamental groups of the
torus and the Klein bottle are the symmetry groups G in the two cases. In the second
case the subgroup of G formed by the translations has index two, and the orbit space
for this subgroup is a torus forming a two-sheeted covering space of the Klein bottle.

Example 1.43: RP". The antipodal map of S", x — —x, generates an action of Z,
on S™ with orbit space RP", real projective n-space, as defined in Example 0.4. The
action is a covering space action since each open hemisphere in S" is disjoint from
its antipodal image. As we saw in Proposition 1.14, S™ is simply-connected if n > 2,
so from the covering space S" —RP" we deduce that 1, (RP") ~ Z, for n > 2. A
generator for 7r; (RP") is any loop obtained by projecting a path in ™ connecting two
antipodal points. One can see explicitly that such a loop y has order two in 1, (RP")
if n > 2 since the composition y-y lifts to aloop in $", and this can be homotoped to
the trivial loop since 71, (S™) = 0, so the projection of this homotopy into RP" gives
a nullhomotopy of y.y.

Which other finite groups act freely on S$", defining covering spaces $" —S"/G?
We will show in Proposition 2.29 that Z, is the only possibility when 7 is even, but
for odd n the question is much more difficult. It is easy to construct a free action

of any cyclic group 7, on §2k=1, generated by the rotation v — e*™/™y of the unit

27Ti—é)/m,u with

sphere §2k=1 jn c* = R?*. The action is free since an equation v = e
0 < £ < m implies v = 0, but 0 is not a point of $?*~!, The orbit space $**"!/z,, is
one of a family of lens spaces defined in Example 2.43.

There are also noncyclic finite groups which act freely as rotations of S™ for
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odd n > 1. These actions are classified quite explicitly in [Wolf]. Examples in the
simplest case n = 3 can be produced as follows. View R* as the quaternion algebra
H. Multiplication of quaternions satisfies |ab| = |a||b| where |a| denotes the usual
Euclidean length of a vector a € R*. Thus if @ and b are unit vectors, so is ab,
so quaternion multiplication defines a map $°x$®—$3. This in fact makes S* into
a group, though associativity is all we need now since associativity implies that any
subgroup G of $° acts on S° by left-multiplication, g(x) = gx. This action is free
since an equation x = gx in the division algebra H implies g = 1 or x = 0. As a
concrete example, G could be the familiar quaternion group Qg = {*1, +1i, +j, =k}
from group theory. More generally, for a positive integer m, let Q4,,, be the subgroup
of $% generated by the two quaternions a = ¢™/™ € C c H and b = j. Thus a
has order 2m and b has order 4. The easily-verified relations a™ = b? = -1 and
bab' = a”! imply that the subgroup Z,,, generated by a is normal and of index
2 in Qu,,- Hence Q,, is a group of order 4m, called the generalized quaternion
group. Another common name for this group is the binary dihedral group D}, since
its quotient by the subgroup {+1} is the ordinary dihedral group D,,, of order 2m.

Besides the groups Q,, = D, there are just three other noncyclic finite sub-
groups of $3: the binary tetrahedral, octahedral, and icosahedral groups T, OJs,
and I;5,, of orders indicated by the subscripts. These project two-to-one onto the
groups of rotational symmetries of a regular tetrahedron, octahedron (or cube), and
icosahedron (or dodecahedron). In fact, it is not hard to see that the homomorphism
$3—S50(3) sending u € $3 C H to the isometry v —u 'vu of IR§3,Viewing R® as the
‘pure imaginary’ quaternions v = ai + bj + ck, is surjective with kernel {+1}. Then
the groups Dj,,, Tsy, Ols, I}5 are the preimages in S° of the groups of rotational
symmetries of a regular polygon or polyhedron in R3.

There are two conditions which a finite group G acting freely on S" must satisfy:

(a) Every abelian subgroup of G is cyclic. Equivalently, G contains no subgroup
Z,%x 17, with p prime.
(b) G contains at most one element of order 2.

Statement (a) is an exercise for §4.1, and for a proof of (b) the original source [Milnor57]
is recommended reading. The groups satisfying (a) have been completely classified,
as explained for example in [K.Brown, section VI.9]. An example of a group satisfying
(a) but not (b) is the dihedral group D, for odd m > 1.

There is also a much more difficult converse: A finite group satisfying (a) and (b)
acts freely on S™ for some n. See [Madsen-Thomas-Wall] or [Davis-Milgram]. There
is also almost complete information about which n’s are possible for a given group.

Example 1.44. In Example 1.35 we constructed a contractible 2-complex )N(m,n =
T,y n X R as the universal cover of a finite 2-complex X, ,,. The group of deck transfor-
mations of this covering space is therefore the fundamental group m, (X,, ,). Apply-
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ing van Kampen’s theorem to the decomposition of X, ,, into the mapping cylinders of
the maps S' —S!, z— z™ and z — z", we obtain the presentation (a,b | a™b™ ™)
for this group G, ,. It is interesting to look at the action of G,,, on )?m’n more
closely. We described a decomposition of )?m’n into rectangles, with X,, ,, the quo-
tient of one rectangle. These rectangles in fact define a cell structure on )?m,n lifting
a cell structure on X, , with two vertices, three edges, and one 2-cell. The group
Gy is thus a group of symmetries of this cell structure on )?m’n. If we orient the
three edges of X, , and lift these orientations to the edges of )?m,n, then G, , is
the group of all symmetries of )?m’n preserving the orientations of edges. For exam-
ple, the element a acts as a ‘screw motion,’ restricting to translation of a vertical line
{v,} xR with v, avertex of T, ,,, and b acts similarly for a vertex v,,.

Since the action of G,,, on )?m‘n preserves the cell structure, it also preserves
the product structure T,, ,xR. This means that there are actions of G,,, on T,, ,
and R such that the action on the product X, , = T, , xR is the diagonal action
g(x,y) = (9g(x),g(y)) for g € G, ,,. If we make the rectangles of unit height in
the R coordinate, then the element a™ = b™ acts on R as unit translation, while a
acts by 1/, translation, and b by !/, translation. The translation actions of a and b
on R generate an infinite cylic group of translations generated by translation by the
reciprocal of the least common multiple of m and n.

The action of G,,,, on T,,, has kernel consisting of the powers of the element
a™ = b". This infinite cyclic subgroup is precisely the center of Gy @s We saw in
Example 1.24. There is an induced action of the quotient group Z,, * Z,, on T,, ,,
but this is not a free action since the elements a and b and all their conjugates fix
vertices of T,,,. On the other hand, if we restrict the action of G,,, on T, , to
the kernel K of the map G,,,, —Z given by the action of G,,, on the R factor of
Xnn» then we do obtain a free action of K on T, ,,. Since this action takes vertices
to vertices and edges to edges, it is a covering space action, so K is a free group, the
fundamental group of the graph T, ,,/K. An exercise at the end of the section is to
determine T, , /K explicitly and compute the number of generators of K.

Cayley Complexes.

There is a very classical method for viewing groups geometrically as graphs, which
fits very nicely into covering space theory. Recall from Corollary 1.28 how we asso-
ciated to each group presentation G = (g, | 75) a 2-dimensional cell complex X
with 1, (X;) = G by taking a wedge-sum of circles, one for each generator g,, and
then attaching a 2-cell for each relator 7. We can construct a cell complex )?G with a
covering space action of G such that )?G /G = X, in the following way. Let the vertices
of )?G be the elements of G themselves. Then, at each vertex g € G, insert an edge
joining g to gg, for each of the chosen generators g,. The resulting graph is known
as the Cayley graph of G with respect to the generators g,. This graph is connected
since every element of G is a product of g,’s, so there is a path in the graph joining
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each vertex to the identity vertex e. Each relation 75 determines a loop in the graph,
starting at any vertex g, and we attach a 2-cell for each such loop. The resulting cell
complex )?G is the Cayley complex of G. The group G acts on )?G by multiplication
on the left. Thus, an element g € G sends a vertex g’ € G to the vertex gg’, and the
edge from g’ to g'g, is sent to the edge from gg’ to gg'g,. The action extends to
2-cells in the obvious way. This is clearly a covering space action, and the orbit space
is just X.

In fact X is the universal cover of X, since it is simply-connected. This can be
seen by considering the homomorphism @ : 11, (X;) — G defined in the proof of Propo-
sition 1.39. For an edge e, in X corresponding to a generator g, of G, it is clear
from the definition of @ that @([e,]) = g4, SO @ is an isomorphism. In particular
the kernel of @, p, (1;(X;;)), is zero, hence also 1, (X,;) since p, is injective.

Here are some examples.

Example 1.45. When G is the free group on B

two generators a and b, X is stv st and ba™ x1ii$/_ b ba

)?G is the Cayley graph of Z x Z pictured at the . }‘%j‘g’f‘_ b
right. The action of a on this graph is a right- C: b ?gi} %4_ 6;
ward shift along the central horizontal axis, a ﬁ e /+‘[:
while b acts by an upward shift along the cen- a2 S ala . _}*J#K a?
tral vertical axis. The composition ab of these a*lb*l_/if+ N gp!
two shifts then takes the vertex e to the ver- g _}%% bia

tex ab. Similarly, the action of any w € Z % Z 2 ST P

takes e to the vertex w.

Example 1.46. The group G = ZxZ with presentation {(x,y | xyx 'y~ !) has
X, = S'xS!, and X, is R? with vertices the integer lattice Z> ¢ R® and edges the
horizontal and vertical segments between these lattice points. The action of G is by
translations (x,y) — (x +m,y + n).

Example 1.47. For G = Z, = (x| xZ), Xg is RP? and )?G = S?. More generally, for
Z, ={x| x™), Xc is s! with a disk attached by the map z — z" and )?G consists of
n disks Dy, -- -, D, with their boundary circles identified. A generator of Z,, acts on
this union of disks by sending D; to D;,; via a 21r/n rotation, the subscript i being
taken mod n. The common boundary circle of the disks is rotated by 27 /n.

Example 1.48. If G =7, *Z, = (a,b | a’®,b?*) then the Cayley graph is a union of an
infinite sequence of circles each tangent to its two neighbors.
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We obtain )?G from this graph by making each circle the equator of a 2-sphere, yield-
ing an infinite sequence of tangent 2-spheres. FElements of the index-two normal
subgroup Z C Z, * Z, generated by ab act on )?G as translations by an even number
of units, while each of the remaining elements of Z, x Z, acts as the antipodal map on
one of the spheres and flips the whole chain of spheres end-for-end about this sphere.
The orbit space X, is RP? v RP?.

It is not hard to see the generalization of this example to Z,, * Z,, with the pre-
sentation (a,b | a™,b™), so that X consists of an infinite union of copies of the
Cayley complexes for Z,, and Z,, constructed in Example 1.47, arranged in a tree-like
pattern. The case of Z, * Z; is pictured below.

Exercises

1. For a covering space p :X— X and a subspace A C X, let A= p 1(A). Show that
the restriction p A—Aisa covering space.

2. Show that if p,: X, — X, and p,:X,— X, are covering spaces, so is their product
pP1X P> :)?1><)?2—>X1><X2.

3. Letp :X—X bea covering space with p ' (x) finite for all x € X. Show that X is
compact Hausdorff iff X is compact Hausdorff.

4. Construct a simply-connected covering space of the space X C R® which is the
union of a sphere and a diameter. Do the same when X is the union of a sphere and
a circle intersecting it in two points.

5. Let X be the subspace of R? consisting of the four sides of the square [0,1]x[0,1]
together with the segments of the vertical lines x = 1/,,1/5,1/,, - - - inside the square.
Show that for every covering space X — X there is some neighborhood of the left edge
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of X which lifts homeomorphically to X. Deduce that X has no simply-connected
covering space.

6. Let X be the shrinking wedge of circles in Example 1.25, and let X be its cover-
ing space shown in the figure below. Construct a two-sheeted covering space Y—X
such that the composition Y—X—X of the two covering spaces is not a cover-
ing space. Note that a compo-

sition of two covering spaces s @ @ @ @ s

does have the unique path lift-

ing property, however.

7. Let Y be the ‘quasi-circle’ shown in the figure, a closed subspace of R? consisting
of a portion of the graph of y = sin(1/x), the segment [—1,1] in the y-axis, and an
arc connecting these two pieces. Collapsing the segment of Y in

the y-axis to a point gives a quotient map f:Y —S'. Show that f

does not lift to the covering space R— S 1 , even though (YY) = 0.

Thus local path-connectedness of Y is a necessary hypothesis in

the lifting criterion.

8. Let X and Y be simply-connected covering spaces of the path-connected, locally
path-connected spaces X and Y. Show thatif X ~ Y then X ~ Y. [Hint: See exercise
10 in Chapter 0.]

9. Show that if a path-connected, locally path-connected space X has 7, (X) finite,
then every map X — S is nullhomotopic. [Use the covering space R— S'.]

10. Find all the connected 2-sheeted and 3-sheeted covering spaces of S Ly st upto
isomorphism of covering spaces without basepoints.

11. Construct finite graphs X; and X, having a common finite-sheeted covering space
X 1= )?2 , but such that there is no space having both X; and X, as covering spaces.

12. Let a and b be the generators of ,(S' v S') corresponding to the two S!
summands. Draw a picture of the covering space of S Ly gt corresponding to the
normal subgroup generated by a’, b?,and (ab)*, and prove that this covering space
is indeed the correct one.

13. Determine the covering space of S' v S!' corresponding to the subgroup of
(S Lysh generated by the cubes of all elements. [The covering space is 27-sheeted
and can be drawn on a torus so that the complementary regions are 9 triangles with
edges labelled aaa, 9 triangles with edges labelled bbb, and 9 hexagons with edges
labelled ababab. If the problem were modified by replacing ‘cubes’ with ‘sixth pow-
ers,’ the resulting covering space would have 2283%> sheets! And for kth powers with
k sufficiently large, the covering space would have infinitely many sheets. The under-
lying group theory question here, whether the quotient of Z % Z obtained by factoring
out all k" powers is finite, is known as Burnside’s problem. It can also be asked for
a free group on n generators.]
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14. Find all the connected covering spaces of RP? v RP?.

15. Let p:)?'—»X be a simply-connected covering space of X and let A ¢ X be a
path-connected, locally path-connected subspace, with AcXa path-component of
p 1(A). Show that p: A— A is the covering space corresponding to the kernel of the
map 11, (A) — 11 (X).

16. Given maps X —Y — Z such that both Y—Z and the composition X— Z are
covering spaces, show that X —Y is a covering space if Z is locally path-connected,
and show that this covering space is normal if X — Z is a normal covering space.

17. Given a group G and a normal subgroup N, show that there exists a normal
covering space X— X with m(X) =G, m (X) ~ N, and deck transformation group
G(X) =~ G/N.

18. For a path-connected, locally path-connected, and semilocally simply-connected
space X, call a path-connected covering space X — X abelian if it is normal and has
abelian deck transformation group. Show that X has an abelian covering space which
is a covering space of every other abelian covering space of X, and that such a ‘uni-
versal’ abelian covering space is unique up to isomorphism. Describe this covering
space explicitly for X = S' v S' and X = S' v St vS!.

19. Use the preceding problem to show that a closed orientable surface M, of genus
g has a connected normal covering space with group of deck transformations 7" (the
product of n copies of 7) iff n < 2g. For g = 3 and n = 3 describe such a covering
space explicitly as a subspace of R® with translations of R® as deck transformations.
Show that such a covering space in R® exists iff there is an embedding of M 4 in the
3-torus T° = S'xS'xS! such that the induced map T, (Mg) — T (T3) is surjective.
20. Construct nonnormal covering spaces of the Klein bottle by a Klein bottle and by
a torus.

21. Let X be the space obtained from a torus S!x S! by attaching a Mobius band via a
homeomorphism from the boundary circle of the Mébius band to the circle §!x {x0}
in the torus. Compute T, (X), describe the universal cover of X, and describe the
action of 7r;(X) on the universal cover. Do the same for the space Y obtained by
attaching a M6bius band to RP? via a homeomorphism of its boundary circle to RP! ¢
RP2.

22. Given covering space actions of groups G, on X; and G, on X,, show that the ac-
tion of G; X G, on X; X X, defined by (g;,95) (x;,x,) = (g,(x1),9>(x>)) is a covering
space action, and that (X; X X5)/(G %X G,) is homeomorphic to X;/G;xX,/G>.

23. Show that if a group G acts freely and properly discontinuously on a Hausdorff
space X, then the action is a covering space action. (Here ‘properly discontinuously’
means each x € X has a neighborhood U such that {g e G | Ung(U) = @} is
finite.) In particular, a free action of a finite group on a Hausdorff space is a covering
space action.
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24. Given a covering space action of a group G on a path-connected, locally path-

connected space X, then each subgroup H C G determines a composition of covering

spaces X— X/H— X/G. Show:

(a) Every path-connected covering space between X and X/G is isomorphic to X/H
for some subgroup H C G.

(b) Two such covering spaces X/H, and X/H, of X/G are isomorphic iff H; and
H, are conjugate subgroups of G.

(c) The covering space X/H — X /G is normal iff H is a normal subgroup of G, in
which case the group of deck transformations of this cover is G/H.

25. Let R?— R? be the linear transformation @(x,y) = (2x,y/2). This generates
an action of Z on X = R? — {0}. Show this action is a covering space action and
compute 11, (X/Z). Show the orbit space X/Z is non-Hausdorff, and describe how it
is a union of subspaces homeomorphic to S!xR, coming from the complementary
components of the x and y axes.

26. For a covering space p :X— X with X connected, locally path-connected, and
semilocally simply-connected, show:

(a) The components of X are in one-to-one correspondence with the orbits of the
action of 11, (X, x,) on the fiber p~!(x,).

(b) Under the Galois correspondence between connected covering spaces of X and
subgroups of (X, x,), the subgroup corresponding to the component of X
containing a given lift X, of x| is the stabilizer of X, the subgroup consisting
of elements whose action on the fiber leaves X, fixed.

27. For a universal cover p:X— X we have two actions of 1, (X, x,) on the fiber
p! (x(), namely the action given by lifting loops at x, and the action given by re-
stricting deck transformations to the fiber. Are these two actions the same when
X =S'"vs! or X =5'xS'? Do the actions always agree when 1, (X, xy) is abelian?

28. Generalize the proof of Theorem 1.7 to show that for a covering space action of a
group G on a simply-connected space Y, 11, (Y /G) is isomorphic to G. [If Y is locally
path-connected, this is a special case of part (b) of Proposition 1.40.]

29. Let Y be path-connected, locally path-connected, and simply-connected, and let
G, and G, be subgroups of Homeo(Y) defining covering space actions on Y. Show
that the orbit spaces Y/G, and Y/G, are homeomorphic iff G, and G, are conjugate
subgroups of Homeo(Y).

30. Draw the Cayley graph of the group Z x Z, = (a,b | b?).

31. Show that the normal covering spaces of S 1'v §! are precisely the graphs which
are Cayley graphs of groups with two generators. More generally, the normal cov-
ering spaces of the wedge sum of n circles are the Cayley graphs of groups with n
generators.
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32. Consider covering spaces p:)? — X with X and X connected CW complexes,
the cells of X projecting homeomorphically onto cells of X. Restricting p to the
1-skeleton then gives a covering space X' — X! over the 1-skeleton of X. Show:
(a) Two such covering spaces )N(l — X and )?2 — X are isomorphic iff the restrictions
)?11 — X! and )?21 — X! are isomorphic.
(b) X— X is a normal covering space iff X' — X' is normal.
(c) The groups of deck transformations of the coverings X—X and X'—> X! are
isomorphic, via the restriction map.

33. In Example 1.44 let d be the greatest common divisor of m and n, and write m =
dm’ and n = dn’. Show that the graph T,, /K consists of m’ vertices labelled a,
n’ vertices labelled b, together with d edges joining each a vertex to each b vertex.
Deduce that the subgroup K C G, ,, is free on fm’'n’ —m’ —n’ + 1 generators.

Additional Topics
1.A Graphs and Free Groups

Since all groups can be realized as fundamental groups of spaces, this opens the
way for using topology to study algebraic properties of groups. The topics in this
section and the next give some illustrations of this principle, mainly using covering
space theory.

We remind the reader that the ‘Additional Topics’ which form the remainder of
this chapter are not an essential part of the basic core of the book. Readers who are
eager to move on to new topics in later chapters should feel free to skip ahead.

By definition, a graph is a 1-dimensional CW complex, in other words, a space X
obtained from a discrete set X° by attaching a collection of 1-cells e,. Thus X is a
quotient space of the disjoint union X° [I4Iy, where I, is a copy of the interval I,
obtained by identifying the two endpoints of each I, with points of X°. The points
of X" are the vertices and the 1-cells the edges of X. Note that with this definition
an edge is an open subset of X, not containing its endpoints. The two endpoints of
an edge can be the same vertex, so the closure e, of an edge e, is homeomorphic
either to I or to S*.

Since X has the quotient topology from X 0 [II,asubsetof X isopen (or closed)
iff it intersects the closure e, of each edge e, in an open (or closed) set in e,. One
says X has the weak topology with respect to the subspaces e,. In this topology
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a sequence of points in the interiors of distinct edges forms a closed subset, hence
never converges. This is true in particular if the edges containing the sequence all
have a common vertex and one tries to choose the sequence so that it gets ‘closer and
closer’ to the vertex. Thus if there is a vertex which is the endpoint of infinitely many
edges, then the weak topology cannot be a metric topology. An exercise at the end
of this section is to show the converse, that the weak topology is a metric topology if
each vertex is an endpoint of only finitely many edges.

A basis for the topology of X consists of the open intervals in the edges together
with the path-connected neighborhoods of the vertices. A neighborhood of the latter
sort about a vertex v is the union of connected open neighborhoods U, of v in e,
for all e, containing v. In particular, we see that X is locally path-connected. Hence
a graph is connected iff it is path-connected.

If X has only finitely many vertices and edges, then X is compact, being the
continuous image of the compact space X o711 « - The converse is also true, and more
generally, a compact subset C of a graph X can meet only finitely many vertices and
edges of X. To see this, let the subspace D C C consist of the vertices in C together
with one point in each edge which C meets. Then D is a closed subset of X since it
meets each e, in a closed set. For the same reason, any subset of D is closed, so D
has the discrete topology. But D is compact, being a closed subset of the compact
space C, so D must be finite. By the definitio of D this means that C can meet only
finitely many vertices and edges.

A subgraph of a graph X is a subspace Y C X which is a union of vertices and
edges of X, such that e, C Y implies e, C Y. The latter condition just says that Y
is a closed subspace of X. A tree is a contractible graph. By a tree in a graph X we
mean a subgraph which is a tree. We call a tree in X maximal if it contains all the
vertices of X. This is equivalent to the more obvious meaning of maximality, as we
will see below.

Proposition 1A.1. Every connected graph contains a maximal tree, and in fact any

tree in the graph is contained in a maximal tree.

Proof: Let X be a connected graph. We will describe a contruction which embeds
an arbitrary subgraph X, ¢ X as a deformation retract of a subgraph Y ¢ X which
contains all the vertices of X. By choosing X, to be any subtree of X, for example a
single vertex, this will prove the proposition.

As a preliminary step, we construct a sequence of subgraphs X, c X; c X, c ---,
letting X, be obtained from X; by adjoining the closures e, of all edges e, C X - X;
having at least one endpoint in X;. The union |J; X; is openin X since a neighborhood
of a point in X; is contained in X;_ ;. Also UJ; X; is closed since it is a union of closed
edges and X has the weak topology. So X = |J; X; since X is connected.
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Now to construct Y we begin by setting Y, = X,;. Then inductively, assuming
that Y; C X; has been constructed so as to contain all the vertices of X;, let Y;,; be
obtained from Y; by adjoining one edge connecting each vertex of X;,; —X; to Y;, and
let Y = U;Y;. It is evident that Y;,; deformation retracts to Y;, and we may obtain
a deformation retraction of Y to Y, = X, by performing the deformation retraction
of Y;,, to Y; during the time interval [1/2”1, 1/2i]. Thus a point x € Y;,; - Y; is
stationary until this interval, when it moves into Y; and thereafter continues mov-

ing until it reaches Y. The resulting homotopy h;:Y —Y is continuous since it is
continuous on the closure of each edge and Y has the weak topology. O

Given a maximal tree T C X and a base vertex x, € T, then each edge e, of
X — T determines a loop f,, in X which goes first from x, to one endpoint of e, by
a path in T, then across e, then back to x, by a path in T. Strictly speaking, we
should first orient the edge e, in order to specify which direction to cross it. Note
that the homotopy class of f, is independent of the choice of the paths in T since T
is simply-connected.

Proposition 1A.2. For a connected graph X with maximal tree T, 1,(X) is a free
group with basis the classes [ f] corresponding to the edges e, of X — T.

In particular this implies that a maximal tree is maximal in the sense of not being
contained in any larger tree, since adjoining any edge to a maximal tree produces a
graph with nontrivial fundamental group. Another consequence is that a graph is a
tree iff it is simply-connected.

Proof: The quotient map X— X/T is a homotopy equivalence by Proposition 0.17.
The quotient X/T is a graph with only one vertex, hence is a wedge sum of circles,
whose fundamental group we showed in Example 1.21 to be free with basis the loops
given by the edges of X/T, which are the images of the loops f,, in X. ]

Here is a very useful fact about graphs:

Lemma 1A.3. Every covering space of a graph is also a graph, with vertices and
edges the lifts of the vertices and edges in the base graph.

Proof: Let p: X— X be the covering space. For the vertices of X we take the discrete
set X0 = p’l(XO). Writing X as a quotient space of X° [1,I, as in the definition
of a graph and applying the path lifting property to the resulting maps I,— X, we
get a unique lift Ia—>)N( passing through each point in p~'(x), for x € ey- These
lifts define the edges of a graph structure on X. The resulting topology on X is the
same as its original topology since both topologies have the same basic open sets, the
covering projection X—X being a local homeomorphism. a

We can now apply what we have proved about graphs and their fundamental
groups to prove a basic fact of group theory:
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|| Theorem 1A.4. Every subgroup of a free group is free.

Proof: Given a free group F, choose a graph X with 1, (X) = F, for example a wedge
of circles corresponding to a basis for F. For each subgroup G of F there is by
Proposition 1.36 a covering space p:X— X with p, (1, (X)) = G, hence 1, (X) ~ G
since p,, is injective by Proposition 1.31. Since Xisa graph by the preceding lemma,
the group G = m; (X) is free by Proposition 1A.2. O

The structure of trees can be elucidated by looking more closely at the construc-
tions in the proof of Proposition 1A.1. If X is a tree and v, is any vertex of X, then
the construction of a maximal tree Y C X starting with Y, = {v,} yields an increas-
ing sequence of subtrees Y,, ¢ X whose union is all of X since
a tree has only one maximal subtree, namely itself. We can think
of the vertices in Y,, — Y,,_; as being at ‘height’ n, with the edges
of Y,, — Y,,_, connecting these vertices to vertices of height n — 1.

In this way we get a ‘height function’ h: X — R assigning to each
vertex its height, and monotone on edges.

For each vertex v of X there is exactly one edge leading downward from v, so
by following these downward edges we obtain a path from v to the base vertex v.
This is an example of an edgepath, which is a composition of finitely many paths each
consisting of a single edge traversed monotonically. For any edgepath joining v to v,
other than the downward edgepath, the height function would not be monotone and
hence would have local maxima, occurring when the edgepath backtracked, retracing
some edge it had just crossed. Thus in a tree there is a unique nonbacktracking
edgepath joining any two points. All the vertices and edges along this edgepath are
distinct.

A tree can contain no subgraph homeomorphic to a circle, since two vertices
in such a subgraph could be joined by more than one nonbacktracking edgepath.
Conversely, if a connected graph X contains no circle subgraph then it must be a tree.
For if T is a maximal tree in X which is not equal to X, then the union of an edge of
X — T with the nonbacktracking edgepath in T joining the endpoints of this edge is a
circle subgraph of X. So if there are no circle subgraphs of X we must have X =T,
a tree.

For an arbitrary connected graph X and a pair of vertices v, and v, in X thereis
a unique nonbacktracking edgepath in each homotopy class of paths from v, to v;.
This can be seen by lifting to the universal cover X, which is a tree since it is simply-
connected. Choosing alift ¥, of v,, a homotopy class of paths from v, to v, lifts to
a homotopy class of paths starting at v, and ending at some lift ¥, of v,. Since X is
simply-connected, the homotopy class of paths from ¥, to ¥, is uniquely determined
by its endpoints. Nonbacktracking edgepaths in X lift to nonbacktracking edgepaths
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in X, and there is only one such edgepath from 7, to U, as we have seen, so we obtain
the result claimed.

Exercises

1. Let X be a graph in which each vertex is an endpoint of only finitely many edges.
Show the weak topology on X is a metric topology.

2. Show that a connected graph retracts onto any connected subgraph.

3. For a finite graph X define the Euler characteristic X (X) to be the number of
vertices minus the number of edges. Show that X (X) = 1 if X is a tree, and that the
number of free generators of 7, (X) is 1 — X (X) if X is connected.

4. If X is a finite graph and Y is a subgraph homeomorphic to S! and containing the
basepoint x,, show that 1, (X, x,) has a basis in which one element is represented
by the loop Y.

5. Construct a connected graph X and maps f, g:X— X such that fg = 1 but f
and g do not induce isomorphisms on ;. [Note that f,g, = 1 implies that f, is
surjective and g, is injective.]

6. Let F be the free group on 2 generators, F' its commutator subgroup. Find a
set of free generators for F' by considering the covering space of the graph S' v §1
corresponding to F’.

7. If F is a finitely generated free group and N is a nontrivial normal subgroup of
infinite index, show, using covering spaces, that N is not finitely generated.

8. Show that a finitely generated group has only a finite number of subgroups of a
given finite index. [First do the case of free groups, using covering spaces of graphs.
The general case then follows since every group is a quotient group of a free group.]

9. Using covering spaces, show that an index n subgroup H of a group G has at most
n conjugate subgroups gHg ! in G. Apply this to show that there exists a normal
subgroup K C G of finite index with K C H. [For the latter statement, consider
the intersection of all the conjugate subgroups gHg . This is the maximal normal
subgroup of G contained in H.]

10. Let X be the wedge sum of n circles, with its natural graph structure, and let
X—Xbea covering space with Y c X a finite connected subgraph. Show there is
a finite graph Z > Y having the same vertices as Y, such that the projection Y - X
extends to a covering space Z—X.

11. Apply the two preceding problems to show that if F is a finitely generated free
group and x € F is not the identity element, then there is a normal subgroup H C F
of finite index such that x ¢ H. Hence x has nontrivial image in a finite quotient
group of F. In this situation one says F is residually finite.
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12. Let F be a finitely generated free group, H C F a finitely generated subgroup, and
x € F — H. Show there is a subgroup K of finite index in F such that K > H and
x ¢ K. [Apply exercise 10.]

13. Let x be a nontrivial element of a finitely generated free group F. Show there is
a finite-index subgroup H C F in which x is one element of a basis. [Exercises 4 and
10 may be helpful.]

14. Show that the existence of maximal trees is equivalent to the Axiom of Choice.

1.B K(G,1) Spaces and Graphs of Groups

In this section we introduce a class of spaces whose homotopy type depends only
on their fundamental group. These spaces arise many places in topology, especially
where topology and group theory intermingle.

A path-connected space whose fundamental group is isomorphic to a given group
G and which has a contractible universal covering space is called a K(G,1) space. The
‘1’ here refers to 7T, . More general K (G, n) spaces are studied in §4.1. All these spaces
are called Eilenberg-MacLane spaces, though in the case n = 1 they were studied by
Hurewicz before Eilenberg and MacLane took up the general case. Here are some
examples:

Example 1B.1. S! isa K(Z,1). More generally, a connected graphis a K(G,1) with G
afree group, since by the results of §1A its universal cover is a tree, hence contractible.

Example 1B.2. Closed surfaces with infinite 17, , i.e., closed surfaces other than $? and
RP> ,are K(G, 1)’s. This will be shown in Example 1B.14 below. It also follows from the
theorem in surface theory that the only simply-connected surfaces without boundary
are S? and R?, so the universal cover of a closed surface with infinite fundamental
group must be noncompact, hence R?. Non-closed surfaces deformation retract onto
graphs, so are K(G,1)’s with G free.

Example 1B.3. The infinite-dimensional projective space RP* is a K(Z,,1) since its
universal cover is S which is contractible. To show the latter fact, a homotopy from
the identity map of S® to a constant map can be constructed in two stages as follows.
First, define f;:R*—R* by fi(x;,Xp,--) = (1 — £)(x], Xy, ++) + (0, X1, Xy, -+).
This takes nonzero vectors to nonzero vectors for all t € [0,1], so f;/|f;| gives a ho-
motopy from the identity map of S* to the map (x;, x5, --) — (0,x,X,,---). Thena
homotopy from this map to a constant map is given by g,/1g;| where g, (x;,x5,--+) =
(1-1t)(0,x7,%xp,+++) +t(1,0,0,---).
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Example 1B.4. Generalizing the preceding example, we can construct a K(Z,,,1) as
an infinite dimensional lens space $*/Z,,, where Z,, acts on S%, regarded as the
unit sphere in C*, by scalar multiplication by m'" roots of unity, a generator of this
action being the map (z,,z,,---) — e*™/™(z;,z,,---). It is not hard to check that

this is a covering space action.

Example 1B.5. A product K(G,1)xK(H,1) isa K(GxH, 1) since its universal cover
is the product of the universal covers of K(G,1) and K(H, 1). By taking products of
circles and infinite dimensional lens spaces we therefore get K(G,1)’s for arbitrary
finitely generated abelian groups G. For example the n-dimensional torus T", the
product of n circles, is a K(Z",1).

Example 1B.6. For a nonempty closed connected subspace K of S?, the complement
$3 — K is a K(G,1). This is a theorem in 3-manifold theory, but in the special case
that K is a torus knot the result follows from our study of torus knot complements
in Examples 1.24 and 1.35. Namely, we showed that for K the torus knot K, ,, there
is a deformation retraction of $3 — K onto a certain 2-dimensional complex Xonn
having contractible universal cover. The homotopy lifting property then implies that
the universal cover of S® — K is homotopy equivalent to the universal cover of Xns
hence is also contractible.

Example 1B.7. It is not hard to construct a K(G,1) for an arbitrary group G, us-
ing the notion of a A-complex defined in §2.1. Let EG be the A-complex whose
n-simplices are the ordered (n + 1)-tuples [gy, - --,4d,] of elements of G. Such an
n-simplex attaches to the (n — 1)-simplices [gg, -, J;, - -+, g, ] in the obvious way,
just as a standard simplex attaches to its faces. (The notation g; means that this ver-
tex is deleted.) The complex EG is contractible by the homotopy h; which deforms
each point in the simplex [gy, -, g,] linearly in the simplex [e, g, --,9,] to the
vertex [e], where e is the identity element of G. This is well defined in EG since
when we restrict to a face [gg, -+, J;, " -+ g, ] We have the linear homotopy to [e] in
le,gg, - ,Ji» ", 9y]). Note that h, carries [e] around the loop [e,e], so h, is not
actually a deformation retraction of EG onto [e].

The group G acts on EG by left multiplication, an element g € G taking the
simplex [gg, -, d,] linearly onto the simplex [ggg, --,99,]. Only the identity e
takes any simplex to itself, so by an exercise at the end of this section, the action
of G on EG is a covering space action. Hence the quotient map EG—EG/G is the
universal cover of the orbit space BG = EG/G, and BG is a K(G,1).

Since G acts on EG by freely permuting simplices, BG inherits a A-complex
structure from EG. The action of G on EG identifies all the vertices of EG, so BG
has just one vertex. To describe the A-complex structure on BG explicitly, note first
that every n-simplex of EG can be written uniquely in the form

(90, 9091,909192, 9091 """ Inl = Gole, 91,9192, 191 "+ Inl-
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The image of this simplex in BG may be denoted unambiguously by the symbol
[g,1g2]---1g9,]. In this ‘bar’ notation the g;’s and their ordered products can be

used to label edges, viewing an g

8 i & gOgng g0g1g2g3 :3 g()glgz
edge label as the ratio between 9.9
the two labels on the ver- 2
tices at the endpoints of 9.9 9, 99,93 | \ 9,
the edge, as indicated in
he fi ith thi h.
the figure. With this no- % > 99, a > 7,
tation, the boundary of a 9, g,

simplex [g;]---1g,] of BG consists of the simplices [g,|---1g,1, [g;]---19n_1]1,
and [g;l|---19i9is1l---lgy]l fori=1,---,n—1.

This construction of a K(G,1) produces a rather large space, since BG is al-
ways infinite-dimensional, and if G is infinite, BG has an infinite number of cells in
each positive dimension. For example, BZ is much bigger than S ! the most efficient
K(Z,1). On the other hand, BG has the virtue of being functorial: A homomorphism
f:G—H induces amap Bf:BG— BH sending a simplex [g, ]| ---1g,] to the simplex
[f(g)!---1f(g,)]. A different construction of a K(G, 1) is given in §4.1. Here one
starts with any 2-dimensional complex having fundamental group G, for example the
complex X associated to a presentation of G, and then one attaches cells of dimen-
sion 3 and higher to make the universal cover contractible without affecting ;. In
general, it is hard to get any control on the number of higher-dimensional cells needed
in this construction, so it too can be rather inefficient. Indeed, it is often a difficult
problem to construct an efficient K(G, 1) for a given group G. A curious and almost
paradoxical fact which is relevant to this efficiency question is that if G contains any
elements of finite order, then every K(G, 1) CW complex must be infinite-dimensional.
This is shown in Proposition 2.45. In particular the infinite-dimensional lens space
K(Z,,,1)’s in Example 1B.4 cannot be replaced by any finite-dimensional complex.

In spite of the great latitude possible in the construction of K(G,1)’s, there is a
very nice uniqueness statement which accounts for much of the interest in K(G, 1)’s:

’ Theorem 1B.8. The homotopy type of a CW complex K (G, 1) is uniquely determined
by G.

Having a unique homotopy type of K(G, 1)’s associated to each group G means
that algebraic invariants of spaces which depend only on homotopy type, such as ho-
mology and cohomology groups, become invariants of groups. This has proved to be a
quite fruitful idea, and has been much studied both from the algebraic and topological
viewpoints. The discussion following Proposition 2.45 gives a few references.

The preceding theorem will follow easily from:
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Proposition 1B.9. Let X be a connected CW complex and let Y be a K(G,1). Then
any homomorphism 1, (X, x,) — 1, (Y, ) is induced by a map (X, xy)— (Y, y,)
which is unique up to homotopy fixing x,, .

To deduce the theorem from this, let X and Y be CW complex K (G, 1)’s with iso-
morphic fundamental groups. The proposition gives maps f: (X, x,) — (Y, »,) and
g:(Y,y,)— (X, x,) inducing inverse isomorphisms 1, (X, x,) =~ 1m,(Y,y,). Then fg
and gf induce the identity on 7r; hence are homotopic to the identity maps.

Proof of 1B.9: Let us first consider the case that X has a single 0-cell, the base-
point x,. Given a homomorphism @ : 11, (X, xy) — 11 (Y, ), we begin the construc-

tion of a map f:(X,x,)— (Y,y,) with f, = @ by setting f(x,) = »,. Each 1-cell
1

e, of X has closure a circle determining an element

1 L m(Xix) L (v
[eqs] € T (X,Xx,), and we let f on the closure of e, T4 %0 MY, Yo
be a map representing (p([e}x]). If i:X' - X denotes k‘ /(p
the inclusion, then @i, = f, since 1 (X', x,) is generated (X, X,)

by the elements [ei(].

To extend f over a cell eé with attaching map @g:S 1 X1, all we need is for the
composition fg to be nullhomotopic. Choosing abasepoint s, € S ! and apathin X!
from WYg(sy) o xqy, Yp determines an element [(//B] em (X L Xg), and the existence
of a nullhomotopy of fyy; is equivalent to f,([@g]) being zero in 11, (Y, y,). We
have i, ([@g]) = 0 since the cell ef; provides a nullhomotopy of ¢, in X. Hence
FelwgD) = @i, ([yg]) =0, and so f can be extended over eé.

Extending f inductively over cells e; with n > 2 is possible since the attaching
maps tpy:S”’l—>X”’1 have nullhomotopic compositions fy,, :S"" 'Sy, This is
because fy, lifts to the universal cover of Y if n > 2, and this cover is contractible
by hypothesis, so the lift of f , is nullhomotopic, hence also f Y, itself.

Turning to the uniqueness statement, if two maps f, f;: (X, xy) — (Y, »,) in-
duce the same homomorphism on 77, , then we see immediately that their restrictions
to X! are homotopic, fixing Xo. To extend the resulting map X LI U Xx3I—Y
over the remaining cells e"x (0,1) of XxI we can proceed just as in the previous
paragraph since these cells have dimension n + 1 > 2. Thus we obtain a homotopy
Ji (X, x0) — (Y, ), finishing the proof in the case that X has a single 0-cell.

The case that X has more than one 0-cell can be treated by a small elaboration on
this argument. Choose a maximal tree T C X. To construct amap f realizing a given
@, begin by setting f(T) = »,. Then each edge e}x in X — T determines an element
[e;] € (X, x,), and we let f on the closure of e}, be a map representing @ ([ek]).
Extending f over higher-dimensional cells then proceeds just as before. Constructing
a homotopy f, joining two given maps f;, and f; with f,, = f1, also has an extra
step. Let h;: X ' X! be a homotopy, starting with h, = 1, which restricts to a
deformation retraction of T to x,. (It is easy to extend such a deformation retraction
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to a homotopy defined on all of X'.) To construct a homotopy JolX L fl1X ! one
first deforms f,|X' and f,|X' to take T to y, by composing with h,. Then the
earlier argument can be used to give a homotopy f;|X Lo filX ! and to extend this
homotopy over all of X. O

The first part of the preceding proof also works for the 2-dimensional complexes
X associated to presentations of groups. Thus every homomorphism G— H is re-
alized as the induced homomorphism of some map X; — X . However, there is no
uniqueness statement for this map, and it can easily happen that different presenta-
tions of a group G give X;’s which are not homotopy equivalent.

Graphs of Groups

As an illustration of how K (G, 1) spaces can be useful in group theory, we shall
describe a procedure for assembling a collection of K(G,1)’s together into a K(G, 1)
for a larger group G. Group-theoretically, this gives a method for assembling smaller
groups together to form a larger group, generalizing the notion of free products.

Let T be a graph which is connected and oriented, that is, its edges are viewed as
arrows, each edge having a specified direction. Suppose that at each vertex v of I we
place a group G, and along each edge e of I' we put a homomorphism @, from the
group at the tail of the edge to the group at the head of the edge. We call this data a
graph of groups. Now build a space BI' by putting the space BG, from Example 1B.7
at each vertex v of I' and then filling in a mapping cylinder of the map By, along
each edge e of T, identifying the two ends of the mapping cylinder with the two BG,,’s
at the ends of e. The resulting space BT is then a CW complex since the maps B,
take n-cells homeomorphically onto n-cells. In fact, the cell structure on BT can be
canonically subdivided into a A-complex structure using the prism construction from
the proof of Theorem 2.10, but we will not need to do this here.

More generally, instead of BG, one could take any CW complex K(G,,1) at the
vertex v, and then along edges put mapping cylinders of maps realizing the homo-
morphisms @,. We leave it for the reader to check that the resulting space KT is
homotopy equivalent to the BI' constructed above.

Example 1B.10. Suppose I' consists of one central vertex with a number of edges
radiating out from it, and the group G, at this central vertex is trivial, hence also all
the edge homomorphisms. Then van Kampen'’s theorem implies that 1, (KT) is the
free product of the groups at all the outer vertices.

In view of this example, we shall call 1, (KT) for a general graph of groups I' the
graph product of the vertex groups G, with respect to the edge homomorphisms @, .
The name for 7T, (KT) that is generally used in the literature is the rather awkward
phrase, ‘the fundamental group of the graph of groups.’
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Here is the main result we shall prove about graphs of groups:

Theorem 1B.11. If all the edge homomorphisms @, are injective, then KU is a
K(G,1) and the inclusions K(G,,1) — KT induce injective maps on Tt .

Before giving the proof, let us look at some interesting special cases:

Example 1B.12: Free Products with Amalgamation. Suppose the graph of groups is
A< C— B, with the two maps monomorphisms. One can regard this data as speci-
fying embeddings of C as subgroups of A and B. Applying van Kampen’s theorem
to the decomposition of KT into its two mapping cylinders, we see that T, (KT) is
the quotient of A * B obtained by identifying the subgroup C C A with the subgroup
C C B. The standard notation for this group is A *. B, the free product of A and
B amalgamated along the subgroup C. According to the theorem, A %~ B contains
both A and B as subgroups.

For example, a free product with amalgamation Z *;Z can be realized by mapping
cylinders of the maps S'«— S'—S! which are m-sheeted and n-sheeted covering
spaces, respectively. We studied this case in Examples 1.24 and 1.35 where we showed
that the complex KT is a deformation retract of the complement of a torus knot in
$3 if m and n are relatively prime. It is a basic result in 3-manifold theory that the
complement of every smooth knot in S* can be built up by iterated graph of groups
constructions with injective edge homomorphisms, starting with free groups, so the
theorem implies that these knot complements are K(G,1)’s. Their universal covers
are all R3, in fact.

Example 1B.13: HNN Extensions. This is the case that the graph of groups consists
of two monomorphisms @, : C— A. This is analogous to the previous case A % B,
but with the two groups A and B coalesced to a single group. Accordingly, 1, (KT)
is denoted A*.. To see what this group looks like, regard KT as obtained from
K(A,1) by attaching K(C,1)xI along the two ends K(C,1)x oI via maps realizing
the monomorphisms @ and . Using a K(C, 1) with a single O-cell, we see that KT
can be obtained from K(A,1) v S 1 by attaching cells of dimension two and greater,
so 11, (KT) is a quotient of A * Z, and it is not hard to figure out that the relations
defining this quotient are of the form t@(c)t ' = @(c) where t is a generator of the
Z factor and c ranges over C, or a set of generators for C. We leave the verification
of this for the Exercises.

As a very special case, taking @ = ¢ = 1 gives Ax, = AXZ since we can take
KT = K(A,1)xS! in this case. More generally, taking @ = 1 with ¢ an arbitrary
automorphism of A, we realize any semi-direct product of A and Z as A*,. For
example, the Klein bottle occurs this way, with @ realized by the identity map of '
and y by a reflection. In these cases when @ = 1 we could realize the same group
17, (KT') using a slightly simpler graph of groups, with a single vertex labelled A and
a single edge labelled .
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Here is another special case. Suppose we take a torus, delete a small open disk,
then identify the resulting boundary circle with a longitudinal circle of the torus.
This produces a space X which happens to be homeomorphic to a subspace of the
standard picture of a Klein bottle in R®; see Exercise 12 of §1.2. The fundamental
group 11, (X) has the form (Z * Z) *; Z with the defining relation th*'t7 ! = aba 'b~!
where a is a meridional loop and b is a longitudinal loop on the torus. (The sign
of the exponent in the term b*' is immaterial since the two ways of glueing the
boundary circle to the longitude produce homeomorphic spaces.) The abelianization
of m(X)={(a,b,t| tbt 'aba 'b7! ) is Zx Z, but it seems to be nontrivial to show
that 7r; (X) is not isomorphic to Z * Z. There is a surjection 77, (X) —Z * Z obtained
by setting b = 1. This has nontrivial kernel since b is nontrivial in r; (X) by the
preceding theorem. If 77, (X) were isomorphic to Z*Z we would then have a surjective
homomorphism Zx7Z — Z xZ which was not an isomorphism. However, it is a theorem
in group theory that a free group F is hopfian — every surjective homomorphism
F— F must be injective. Hence 11, (X) is not free.

Example 1B.14: Closed Surfaces. A closed orientable surface M of genus two or
greater can be cut along a circle into two compact surfaces M; and M, such that the
closed surfaces obtained from M; and M, by filling in their boundary circle with a
disk have smaller genus than M. Each of M; and M, is the mapping cylinder of a
map from S! to a finite graph. Namely, view M; as obtained from a closed surface
by deleting an open disk in the interior of the 2-cell in the standard CW structure
described in Chapter 0, so that M; becomes the mapping cylinder of the attaching
map of the 2-cell. This attaching map is not nullhomotopic, and therefore induces an
injection on 7r; since free groups are torsionfree. Thus we have realized the original
surface M as KT for I' a graph of groups of the form F, «— Z — F, with F, and F,
free and the two maps injective. The theorem then says that M is a K(G,1).

A similar argument works for closed nonorientable surfaces other than RP?. For
example, the Klein bottle is obtained from two Moébius bands by identifying their
boundary circles, and a Mobius band is the mapping cylinder of the two-sheeted cov-
ering space st—st,

Proof of 1B.11: We shall construct a covering space K—KT by gluing together copies
of the universal covering spaces of the various mapping cylinders in KT in such a way
that K will be contractible. Hence K will be the universal cover of KT, which will
therefore be a K(G,1).

First a preliminary observation: Given a universal covering space p :X— X and
a connected, locally path-connected subspace A C X such that the inclusion A — X
induces an injection on 1, then each component A of p~1(A) is a universal cover
of A. For the restriction p:g—>A is certainly a covering space, so the induced map
M (A) — 17, (A) is injective, and this map factors through (X) = 0, hence m (A) =
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0. For example if X is the torus StxS! and A is the circle S'x {xo}, then p’l(A)
consists of infinitely many parallel lines in R?, each of which is a universal cover of A.

In particular, consider the universal cover p M — M of the mapping cylinder
of amap f:A— B between connected CW complexes. Then M ¢ is itself the mapping
cylinder of a map f: p’l (A)— p’l (B) since the line segments in the mapping cylin-
der structure on M lift to line segments in M + defining a mapping cylinder structure.
Since M  is amapping cylinder, it deformation retracts onto p’l (B), so p’l (B) is also
simply-connected, hence is the universal cover of B. If f induces an injection on T,
then the remarks in the preceding paragraph apply, and the components of p’l (A)
are universal covers of A. If we assume further that A and B are K(G,1)’s, then M f
and the components of p’l(A) are contractible, and we claim that M I deformation
retracts onto each component A of A. Namely, the inclusion A < M, is a homo-
topy equivalence since both spaces are contractible, and then Corollary 0.20 implies
that M  deformation retracts onto A since the pair (M f,ﬁ) satisfies the homotopy
extension property, as shown in Example 0.15.

Now we can describe the construction of the covering space K of KT. It will be
the union of an increasing sequence of spaces K; ¢ K, c ---. For the first stage,
let El be the universal cover of one of the mapping cylinders M, of KI'. By the
preceding remarks, this contains various disjoint copies of universal covers of the
two K(G,,1)’s at the ends of M. We build K, from K, by attaching to each of
these universal covers of K(G,,1)’s a copy of the universal cover of each mapping
cylinder M, of KT meeting M, at the end of My in question. Now repeat the process
to construct K3 by attaching universal covers of mapping cylinders at all the universal
covers of K(G,,1)’s created in the previous step. In the same way, we construct ﬁn ‘1
from K,, for all n, and then we set K = U, K,,.

Note that K,,,, deformation retracts onto K, since it is formed by attaching
pieces to I?n which deformation retract onto the subspaces along which they attach,
by our earlier remarks. It follows that K is contractible since we can deformation
retract K,,,; onto K,, during the time interval [1/2"*!,1/2"], and then finish with a
contraction of I?l to a point during the time interval [1/2,1].

The natural projection R—KT is clearly a covering space, so this finishes the
proof that KT isa K(G,1).

The remaining statement that each inclusion K(G,, 1) — KT induces an injection
on Tr; can easily be deduced from the preceding constructions. For suppose a loop
y:St—K (G, 1) is nullhomotopic in KT. By the lifting criterion for covering spaces,
there is a lift y: S? — K. This has image contained in one of the copies of the universal
cover of K(G,,1), so y is nullhomotopic in this universal cover, and hence y is
nullhomotopic in K(G,,1). O
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The various mapping cylinders which make up the universal cover of KI' are
arranged in a tree-like pattern. The tree in question, call it TT, has one vertex for each
copy of a universal cover of a K(G,,1) in K, and two vertices are joined by an edge
whenever the two universal covers of K(G,,1)’s corresponding to these vertices are
connected by a line segment lifting a line segment in the mapping cylinder structure of
amapping cylinder of KT. The inductive construction of K is reflected in an inductive
construction of TT as a union of an increasing sequence of subtrees T, C T, C ---.
Corresponding to I?l isasubtree T; C TT consisting of a central vertex with a number
of edges radiating out from it, an ‘asterisk’ with possibly an infinite number of edges.
When we enlarge I?l to I?z, T, is correspondingly enlarged to a tree T, by attaching
a similar asterisk at the end of each outer vertex of T;. And so on at each stage. The
action of , (KT) on K as deck transformations induces an action on TT, permuting
its vertices and edges, and the orbit space of TT under this action is just the original
graph I'. The action on TT will not be a free action in general since the elements of
a subgroup G, C 11, (KT) fix a vertex corresponding to one of the universal covers of
K(G,,1). (Basepoints need to be chosen to make this precise.)

There is in fact an exact correspondence between graphs of groups and groups
acting on trees. See [Scott-Wall] for an exposition of this rather nice theory. From
the viewpoint of groups acting on trees, the definition of a graph of groups is usually
taken to be slightly more restrictive than the one we have given here, namely, one
considers only oriented graphs obtained from an unoriented graph by subdividing
each edge by adding a vertex at its midpoint, then orienting the two resulting edges
outward, away from the new vertex.

Exercises

1. Suppose a group G acts simplicially on a A-complex X, i.e., each element of G
takes each n-simplex of X onto another n-simplex by a linear homeomorphism. If
the action is free, show it is a covering space action.

2. Let X be a connected CW complex and G a group such that every homomorphism
1T, (X) — G is trivial. Show that every map X — K(G, 1) is nullhomotopic.

3. Show that every graph product of trivial groups is free.

4. Use van Kampen’s theorem to compute A* . as a quotient of A *x Z, as stated in
the text.

5. Consider the graph of groups I' having one vertex, Z, and one edge, the map Z— 7
which is multiplication by 2, realized by the 2-sheeted covering space S* — S!. Show
that 71, (KT') has presentation (a,b | bab’la’z) and describe the universal cover
of KT explicitly as a product TxR with T a tree. [The group m, (KT) is the first in
a family of groups called Baumslag-Solitar groups, having presentations of the form
(a,b | ba™b 'a ™). These are HNN extensions Zx;.]
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6. Show that for a graph of groups all of whose edge homomorphisms are injective
maps Z—Z we can choose KI' to have universal cover a product TxR with T a
tree. Work out in detail the case that the graph of groups is the infinite sequence
7-%57--7-%7— ... where the map Z — Z is multiplication by n. Show
that 71, (KT) is isomorphic to Q in this case. How would one modify this example
to get 77, (KT') isomorphic to the subgroup of Q consisting of rational numbers with

denominator a power of 2?

7. Show that every graph product of groups can be realized by a graph whose vertices
are partitioned into two subsets, with every oriented edge going from a vertex in the
first subset to a vertex in the second subset.

8. Show that a finite graph product of finitely generated groups is finitely generated,
and similarly for finitely presented groups.

9. Show that a finite graph product of finite groups has a free subgroup of finite
index, by constructing a finite-sheeted covering space of KT from universal covers of
the mapping cylinders of KT.) [The converse is also true for finitely generated groups;
see [Scott-Wall].]






Chapter
Homology

After the fundamental group 7, (X) it would be natural to continue with the
higher homotopy groups 7, (X), but unfortunately these are much harder to com-
pute than 77, (X). For this reason we shall change directions and begin to study the
homology groups H, (X) instead. These measure higher-dimensional properties of
X as the higher homotopy groups do, but they have the advantage of being much
more computable, so they allow many low-dimensional results obtainable via the fun-
damental group to be extended to arbitrary dimensions.

There is however a certain price to be paid for the generality and computability
of homology groups: Their definition is decidedly less transparent than the definition
of the fundamental group, and once one gets beyond the definition there is a cer-
tain amount of technical machinery which must be set up before any real calculations
and applications can be given. In the exposition below we approach the definition of
H, (X) by two preliminary stages, first giving a few motivating examples nonrigor-
ously, then constructing a restricted model of homology theory called simplicial ho-
mology, before plunging into the general theory, known as singular homology. After
the definition of singular homology has been assimilated, the real work of establish-
ing its basic properties begins. This takes close to 20 pages, and there is no getting
around the fact that it is a substantial effort. This takes up most of the first section
of the chapter, with small digressions only for two applications to classical theorems
of Brouwer: the fixed point theorem and ‘invariance of dimension.’

The second section of the chapter gives more applications, including the ho-
mology definition of Euler characteristic and Brouwer’s notion of degree for maps
S" — S™. However, the main thrust of this section is toward developing techniques
for calculating homology groups efficiently. The maximally efficient method is ‘cellu-
lar homology’ whose power comes perhaps from the fact that it is ‘homology squared’
— homology defined in terms of homology. Another quite useful tool we develop is
Mayer-Vietoris sequences, the analog for homology of van Kampen’s theorem for the
fundamental group.
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An interesting feature of homology which begins to emerge after one has worked
with it for a while is that it is the basic properties of homology which are used most
often, and not the actual definition itself. This suggests that an axiomatic approach
to homology might be possible. This is indeed the case, and in the third section of
the chapter we list axioms which completely characterize homology groups for CW
complexes. One could take the viewpoint that these rather algebraic axioms are all that
really matters about homology groups, that the geometry involved in the definition of
homology is secondary, needed only to show that the axiomatic theory is not vacuous.
The extent to which one adopts this viewpoint is a matter of taste, and the route taken
here of postponing the axioms until the theory is well-established is just one of several
possible approaches.

The chapter then concludes with three optional sections of ‘Additional Topics.’
The first is rather brief, relating the homology group H; (X) to the fundamental group
17, (X), while the other two contain a selection of classical applications of homology.
These include Brouwer’s generalization of the Jordan curve theorem, the ‘invariance
of domain’ theorem also due to Brouwer, and the Lefschetz fixed point theorem.

The Idea of Homology

The difficulty with the higher homotopy groups m,, is that they are not directly
computable from a cell structure as 1, is. For example, the 2-sphere has no cells in
dimensions greater than 2, yet its n-dimensional homotopy group 7, (S 2) is nonzero
for infinitely many values of n. Homology groups, by contrast, are quite directly
related to cell structures, and may indeed be regarded as simply an algebraization of
the first layer of geometry in cell structures: how cells of dimension # attach to cells
of dimension n — 1.

Let us look at some examples to see what this is about. Con- y
sider the graph X; shown in the figure, consisting of two ver-
tices joined by four edges. When studying the fundamen-
tal group of X; we consider loops formed by sequences of a a
edges, starting and ending at a fixed basepoint. For example,
at the basepoint x, the loop ab™! travels forward along the

edge a then backward along b, as indicated by the exponent —1. x

1 A salient feature of the funda-

A more complicated loop would be ac™'bd 'ca”
mental group is that it is generally nonabelian, which both enriches and complicates
the theory. Suppose we simplify matters by abelianizing. Thus for example the two
loops ab™! and b~ 'a are to be regarded as equal if we make a commute with b~ !.
These two loops ab™!' and b~'a are really the same circle, just with a different choice
of starting and ending point: x for ab™! and y for b 'a. The same thing happens
for all loops: Rechoosing the basepoint in a loop just permutes its letters cyclically,

so a byproduct of abelianizing is that we no longer have to pin all our loops down to
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a fixed basepoint. Thus loops become cycles, without a chosen basepoint.

Having abelianized, let us switch to additive notation, so cycles become linear
combinations of edges with integer coefficients, e.g., a — b + ¢ — d. Let us call these
linear combinations chains of edges. Some chains can be decomposed into cycles in
several different ways, for example (a —c) + (b —d) = (a—-4d) + (b - ¢), and if
we adopt an algebraic viewpoint then we do not want to distinguish between these
different decompositions. Thus we broaden the meaning of the term ‘cycle’ to be
simply any linear combination of edges for which at least one decomposition into
cycles in the previous more geometric sense exists.

What is the condition for a chain to be a cycle in this more algebraic sense? A
geometric cycle, thought of as a path traversed in time, is distinguished by the prop-
erty that it enters each vertex the same number of times that it leaves the vertex. For
an arbitrary chain ka + b + mc + nd, the net number of times this chain enters y
is k + £ + m + n since each of a, b, ¢, and d enters y once. Similarly, each of the
four edges leaves x once, so the net number of times the chain ka + £b + mc + nd
enters x is —k — £ — m — n. Thus the condition for ka + €b + mc + nd to be a cycle
is simply k + £+ m +n = 0.

To describe this result in a way which would generalize to all graphs, let C; be the
free abelian group with basis the edges a, b, c,d and let C, be the free abelian group
with basis the vertices x,y. Elements of C; are chains of edges, or 1-dimensional
chains, and elements of C, are linear combinations of vertices, or 0-dimensional
chains. Define a homomorphism 0:C; — C, by sending each basis element a, b, c,d
to y — x, the vertex at the head of the edge minus the vertex at the tail. Thus we have
dka+4¥€b+mc+nd) = (k+€+m+n)y— (k+4£+m+mn)x, and the cycles are
precisely the kernel of 0. It is a simple calculation to verify that a—b, b—c,and c—d
form a basis for this kernel. Thus every cycle in X; is a unique linear combination of
these three most obvious cycles. By means of these three basic cycles we convey the
geometric information that the graph X; has three visible ‘holes,” the empty spaces
between the four edges.

Let us now enlarge the preceding graph X; by attaching a y
2-cell A along the cycle a — b, producing a 2-dimensional cell =‘
complex X,. If we think of the 2-cell A as being oriented —
clockwise, then we can regard its boundary as the cycle a—b. a d
This cycle is now homotopically trivial since we can contract —\
it to a point by sliding over A. In other words, it no longer =‘

encloses a hole in X,. This suggests that we form a quotient of the X

group of cycles in the preceding example by factoring out the subgroup generated by
a — b. In this quotient the cycles a — ¢ and b — ¢, for example, become equivalent,
consistent with the fact that they are homotopic in X,.
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Algebraically, we can define now a pair of homomorphisms

where C, is the infinite cyclic group generated by A and 0,(A) = a — b. The map
0, is the boundary homomorphism in the previous example. The quotient group we
are interested in is Kero,/Imo,, i.e., the 1-dimensional cycles modulo those which
are boundaries, the multiples of a — b. This quotient group is the homology group
H,(X,). The previous example can be fit into this scheme too by taking C, to be zero
since there are no 2-cells in X;, so in this case H, (X;) = Ker 0,/Imd, = Ker 0;, which
as we saw was free abelian on three generators. In the present example, H;(X,) is
free abelian on two generators, b — ¢ and ¢ — d, expressing the geometric fact that by
filling in the 2-cell A we have reduced the number of ‘holes’ in our space from three
to two.

Next, suppose we build a space X5 by enlarging X, further y
by attaching a second 2-cell B along the same cycle a — b. </
This gives a 2-dimensional chain group C, consisting of lin- g
ear combinations of A and B, and the boundary homomor- a

phism 0, : C, — C; sends both A and B to a —b. The homol- l
ogy group H,(X3) = Kero,/Imo, is the same as for X,, but <)

now 0, has a nontrivial kernel, the infinite cyclic group generated X

by A — B. We view A — B as a 2-dimensional cycle, generating the homology group
H,(X;) =Kerod, =~ Z. Topologically, the cycle A — B is the sphere formed by the cells
A and B together with their common boundary circle. This spherical cycle detects
the presence of a ‘hole’ in X3, the missing interior of the sphere. However, since this
hole is enclosed by a sphere rather than a circle, it is of a different sort from the holes
detected by H;(X3) = Zx Z, which are detected by the cycles b —c and ¢ — d.

Let us continue one more step and construct a complex X, from X; by attaching
a 3-cell C along the 2-sphere formed by A and B. This creates a chain group Cj
generated by this 3-cell C, and we define a boundary homomorphism 05:C;—C,
sending C to A — B since the cycle A — B should be viewed as the boundary of C in
the same way that the 1-dimensional cycle a — b is the boundary of A. Now we have
a sequence of three boundary homomorphisms
03

02 01

G G G Co

and the quotient H,(X,) = Ker d,/Im 05 has become trivial. Also H;(X,) = Kerd; = 0.
The group H,(X,) is the same as H;(X3), namely Zx Z, so this is the only nontrivial
homology group of X,.

It is clear what the general pattern of the examples is. For a cell complex X one
has chain groups C, (X) which are free abelian groups with basis the n-cells of X,
and there are boundary homomorphisms 0,,: C, (X)—C,,_; (X), in terms of which
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one defines the homology group H, (X) = Kerod,,/Imd,,;. The major difficulty is
how to define 0,, in general. For n = 1 this is easy: the boundary of an oriented
edge is the vertex at its head minus the vertex at its tail. The next case n = 2 is also
not hard, at least for cells attached along cycles which are simply loops of edges, for
then the boundary of the cell is this cycle of edges, with the appropriate signs taking
orientations into account. But for larger n, matters become more complicated. Even
if one restricts attention to cell complexes formed from polyhedral cells with nice
attaching maps, there is still the matter of orientations to sort out.

The best solution to this problem seems to be to adopt an indirect approach.
Arbitrary polyhedra can always be subdivided into special polyhedra called simplices
(the triangle and the tetrahedron are the 2-dimensional and 3-dimensional instances)
so there is no loss of generality, though initially there is some loss of efficiency, in re-
stricting attention entirely to simplices. For simplices there is no difficulty in defining
boundary maps or in handling orientations. So one obtains a homology theory, called
simplicial homology, for cell complexes built from simplices. Still, this is a rather
restricted class of spaces, and the theory itself has a certain rigidity which makes it
awkward to work with.

The way around these obstacles is to step back from the geometry of spaces
decomposed into simplices, and just to consider all possible continuous maps of sim-
plices into a given space X. This produces tremendously large chain groups C,, (X),
but the quotients H,,(X) = Ker9,,/Imd,,, ;, called singular homology groups, turn out
to be much smaller, at least for reasonably nice spaces X. In particular, for spaces
like those in the four examples above, the singular homology groups coincide with
the homology groups we computed from the cellular chains. And as we shall see later
in this chapter, singular homology allows one to define these nice cellular homology
groups for all cell complexes, and in particular to solve the problem of defining the
boundary maps for cellular chains.
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2.1 Simplicial and Singular Homology

The most important homology theory in algebraic topology, and the one we shall
be studying almost exclusively, is called singular homology. But before starting this
we will first introduce a more primitive version, called simplicial homology, to give
some idea of how the technical apparatus works in a smaller-scale setting. The natural
domain of definition for simplicial homology is a class of spaces we call A-complexes,
which are a modest generalization of the more classical notion of a simplicial complex.

A-Complexes

We begin with three examples: the torus, the projective plane, and the Klein bottle.
Each of these surfaces can be obtained from a square by identifying opposite edges,
in the way indicated by the arrows in the figure below.

v, b v 2 w b v v, b v
T RP®: K:

a C a a a a c a

v b v v b w v b v

If we cut the square along a diagonal, we get two triangles, so each of these surfaces
can also be constructed from two triangles by identifying certain pairs of edges.

In similar fashion, a polygon with any number of sides can c
a

be cut along diagonals into triangles, so in fact all closed
surfaces can be constructed from triangles by identifying
edges. Thus we have a single building block, the triangle, ¢
from which all surfaces can be constructed. Using only tri-
angles we could also construct a large class of 2-dimensional d
spaces which are not surfaces by identifying more than two edges a
together at a time.

A-complexes are a generalization of this idea, using the n-dimensional ana-
log of the triangle, the n-simplex. This is the smallest convex set in R™ contain-

v
p
Vs
v
3
vl
v, 0

An equivalent condition would be that the vectors v, — vy, ---,v,, — vV, are linearly

ing n + 1 points vy, ---,v, which do not lie in
a hyperplane of dimension less than n, where
by a ‘hyperplane’ we mean the set of solu-
tions of a system .
. , 7
of linear equations. ©

——e P
W v Y

independent. The points v; are the vertices of the simplex, and the simplex itself
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will be denoted [v,, - -+, v, ]. For example, there is the standard n-simplex
A" ={(ty,---,t,) ER"™! | S.;t;=1and t; >0 foralli}

whose vertices are the unit vectors along the coordinate axes.

For purposes of homology it will be important to keep track of the order of the
vertices of a simplex, so ‘n-simplex’ will really mean ‘n-simplex with an ordering
of its vertices.” A by-product of ordering the vertices of a simplex [v,,---,v,] is
that this determines orientations of the edges [v;, v;] according to increasing sub-
scripts, as shown in the previous figure. Specifying the ordering of the vertices
also determines a canonical linear homeomorphism from the standard n-simplex
A™ onto any other n-simplex [vy, - -, v, ], preserving the order of vertices, namely,
(ty, -+, t,)— > t;v;. The coefficients t; are the barycentric coordinates of the point
ity in [vg, -+, v,1].

A face of a simplex [v, -+, v, ] is the subsimplex with vertices any nonempty
subset of the v;’s. The subset need not be a proper subset, so [vg, - -+, v, ] is regarded
as a face of itself. We adopt the convention that the vertices of a face will always be
ordered according to their order in the larger simplex.

The quick definition of a A-complex is that itis a quotient space of a collection of
disjoint simplices obtained by identifying certain of their faces via the canonical linear
homeomorphisms which preserve the ordering of vertices. Somewhat more formally,
the data one starts with is a collection of disjoint simplices A%} of various dimensions,
together with certain sets F; of faces of the A}’s, all the faces in each F; having the
same dimension. Then one forms a quotient space of [[, Al by identifying all the
faces in each F; to a single simplex via the canonical linear homeomorphisms between
them. Notice that the data which determines a A-complex is purely combinatorial,
with no topology involved. One can think of constructing a A-complex as a Lego-like
game in which one starts with a set of interchangeable pieces and snaps them together
according to certain specified rules.

The previously-described representations of the torus, projective plane, and Klein
bottle as pairs of triangles with edges identified are in fact A-complex structures,
because the indicated orientations of the three edges of each triangle are compatible
with a unique ordering of the vertices of the triangle, and the identifications of edges
preserve orientations, hence preserve orderings of vertices.

In general, the edges in any A-complex X inherit well-defined orientations from
the orderings of the vertices of the simplices from which X is built. These orientations
are not completely arbitrary, since the orientations of the various edges in the bound-
ary of each n-simplex of X must be related just as they are in a simplex [v, - -+, v, 1,
consistent with the ordering of the vertices. It is not hard to check that this com-
patibility condition on orientations amounts to requiring that no 2-simplex of X has
its three edges oriented cyclically, i.e., according to a clockwise or counterclockwise
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traversal of the three edges. Note that when the edges of a simplex are compatibly
oriented, these orientations uniquely determine the ordering of the vertices.

In the case of one-dimensional A-complexes the compatibility condition on ori-
entations of edges is vacuous, so a one-dimensional A-complex is exactly the same
thing as an oriented graph, that is, a graph with orientations specified for all its edges.

In the torus and Klein bottle examples, all three vertices of each triangle end up
being identified to a single point, and in the projective plane example, two of the
three vertices of each triangle are identified. Thus, certain identifications of points
in the boundary of a single simplex are allowed in A-complexes. As a more extreme
example, we could construct a A-complex from a 2-simplex by identifying all three
of its edges together, preserving the orientations of these edges. It is an interesting
exercise to see that these identifications can actually be performed in R®, with quite
a bit of stretching and bending of the 2-simplex. The resulting space is sometimes
called the ‘dunce cap.’ Like the house with two rooms in Chapter 0, it is contractible
but not in any obvious way.

Since the identifications of faces of simplices which produce a A-complex X al-
ways preserve the orderings of vertices, these identifications never result in two dis-
tinct points in the interior of a face being identified in X. This means that X, as a
set, is the disjoint union of a collection of open simplices — simplices with all their
proper faces deleted. Each such open simplex e of dimension n comes equipped
with a canonical map o, :A" — X restricting to a homeomorphism from the interior
of A™ onto eli. Namely, the closure of e}, is the quotient of one of the simplices
from which X was constructed, or of a face of one of these simplices, and o, is the
quotient map from this simplex or face to X. In the Appendix we show that the open
simplices e}, are the cells of a CW structure with the o,’s as characteristic maps.
Though we won’t need this fact in what follows, we will use the terminology that o,
is the characteristic map for the open simplex ey,.

A key property of each characteristic map o,:A" — X is that its restriction to
each (n — 1)-dimensional face of A" is the characteristic map (o for some open
(n — 1)-simplex eg‘l of X. (Implicit here is the canonical identification of each
(n — 1)-dimensional face of A™ with the standard (n — 1)-simplex A”’l, preserv-
ing the order of vertices.) This property can be used to give an equivalent definition
of a A-complex as a CW complex X in which each n-cell e} has a distinguished char-
acteristic map o: A™— X such that the restriction of 0, toeach (n—1)-dimensional
face of A" is the distinguished characteristic map for an (n — 1)-cell of X.

Simplicial Homology

Our goal now is to define the simplicial homology groups of a A-complex X. Let
A, (X) be the free abelian group with basis the open n-simplices e}, of X. Elements
of A,(X), called n-chains, can be written as finite formal sums >, n,es with co-
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efficients n, € Z. Equivalently, we could write > ,n,0, where o,:A" —X is the
characteristic map of el, with image the closure of el as described above. Such a
sum >, n,0, can be thought of as a finite collection, or ‘chain,” of n-simplices in X
with integer multiplicities, the coefficients n,.

As one can see in the next figure, the boundary of the n-simplex [v, ---,v,,] con-
sists of the various (n—1)-dimensional simplices [v, ---,7;, - -+, v, ], where the ‘hat’
symbol ~ over v; indicates that this vertex is deleted from the sequence vy, -, v,,.
In terms of chains, we might then wish to say that the boundary of [v, - -, v,,] is the
(n — 1)-chain formed by the sum of the faces [vg, -+, ¥}, -+, v, 1. However, it turns
out to be better to insert certain signs and instead let the boundary of [v,, -+, v, ] be
Zi(—l)i[vo, -+, 7;, -+, v,]. Heuristically, the signs are inserted to take orientations
into account, so that all the faces of a simplex are coherently oriented, as indicated in
the figure.

ve— s Ty 3[vy, 111 = [v,] - [1,]

olvg, V1, V5] = [V, V5] = [V, Vs ] + [V, V]

2 a[vo,vl,vz,v3]=[v1,v2,v3]—[v0,v2,v3]
+ [vg, vy, V3] = [V, V1, V5]

’UO vl

In the last case, the orientations of the two hidden faces are also counterclockwise
when viewed from outside the 3-simplex.

With this geometry in mind we define for a general A-complex X a boundary
homomorphism 0,,: A, (X) —A,,_; (X) by specifying its values on basis elements:

an(a-o() = Z(_l)lo-o( | [Uo, et l{)\i! et lvn]
i
Note that the right side of this equation does indeed lie in A,,_, (X) since each restric-
tion oy |[vy, -+, V;, -+, V,] is the characteristic map of an (n — 1)-simplex of X.

Lemma 2.1. The composition A (X)i»A 1 (X) MA _»(X) is zero.
n n-1 n-2

Proof: 9,(0) = >;(-1)'o |[vg, -+, D;, -+ +,V,], hence

0 10,(0) = D (=D (=1 |[vg, -+, V), gy e,y

Jj<i

+ Z(—l)i(—l)j_l()"[vo, o Dy ,ﬁj, I T
j>i
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The latter two summations cancel since after switching i and j in the second sum, it
becomes the negative of the first. O

The algebraic situation we have now is a sequence of homomorphisms of abelian
groups

Oni1 01 %

0
= Gy T = Gy e G G = 0

with 0,,0,,,; = 0 for all n. Such a sequence is called a chain complex. Note that we
have extended the sequence by a 0 at the right end, with ¢, = 0. From 0,,0,,,; = 0
it follows that ImoJ,,,; C Kerd,,, where Im and Ker denote image and kernel. So we
can define the n'" homology group of the chain complex to be the quotient group
H, =Kero,/Ima,_;. Elements of Kero, are called cycles and elements of Imad,,_;
are boundaries. Elements of H,, are cosets of Imo,,,,, called homology classes. Two
cycles representing the same homology class are said to be homologous. This means
their difference is a boundary.

Returning to the case that C,, = A,,(X), the homology group Kerd,,/Imo,,,; will
be denoted Hﬁ(X ) and called the n'"* simplicial homology group of X.

Example 2.2. X = S, with one vertex v and one edge e. Then A,(S') and A, (S")
are both Z and the boundary map 0, is zero since de = v — v. The groups A, (S by
are 0 for n > 2 since there are no simplices in these dimensions. Hence

Z forn=0,1
0 for n = 2.
This is an illustration of the general fact that if the boundary maps in a chain complex

HA(SY) z{

are all zero, then the homology groups of the complex are isomorphic to the chain
groups themselves.

Example 2.3. X = T, the torus with the A-complex structure pictured earlier, having
one vertex, three edges a, b, and c, and two 2-simplices U and L. As in the previous
example, 9; = 0 so HOA(T) ~ Z. Since 0,U =a+b—-c=0,L and {a,b,a+b —c} is
a basis for A, (T), it follows that Hf(T) ~ 7 ® Z with basis the homology classes [a]
and [b]. Since there are no 3-simplices, H5 (T) is equal to Ker d,, which is infinite
cyclic generated by U — L since o(pU +qL) = (p +q)(a+b—-c) =0 onlyif p = —q.
Thus

7®7 forn=1
HY(T)~11Z forn =0,2
0 for n > 3.

Example 2.4. X = RP?, as pictured earlier, with two vertices v and w, three edges
a, b, and c, and two 2-simplices U and L. Then Imo, is generated by w — v, so
H§ (X) ~ Z with either vertex as a generator. Since d,U = —a+b+c and d,L = a—b+c,
we see that 9, is injective, so H5' (X) = 0. Further, Kerd, ~ Z®Z with basis a — b and
¢, and Im 0, is an index-two subgroup of Ker 0, since we can choose ¢ and a—b +c¢
as a basis for Kerd; and a—b+c and 2c = (a—-b +c) + (—a+ b + ¢) as abasis for
Imd,. Thus H{ (X) = Z,.
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Example 2.5. We can obtain a A-complex structure on S" by taking two copies of A™
and identifying their boundaries via the identity map. Labeling these two n-simplices
U and L, then it is obvious that Kerd,, is infinite cyclic generated by U — L. Thus
Hﬁ(S") ~ 7 for this A-complex structure on S"™. Computing the other homology
groups would be more difficult.

Many similar examples could be worked out without much trouble, such as the
other closed orientable and nonorientable surfaces. However, the calculations do tend
to increase in complexity before long, particularly for higher dimensional complexes.

Some obvious general questions arise: Are the groups HYAL (X) independent of
the choice of A-complex structure on X? In other words, if two A-complexes are
homeomorphic, do they have isomorphic homology groups? More generally, do they
have isomorphic homology groups if they are merely homotopy equivalent? To answer
such questions and to develop a general theory it is best to leave the rather rigid
simplicial realm and introduce the singular homology groups. These have the added
advantage that they are defined for all spaces, not just A-complexes. At the end of
this section, after some theory has been developed, we will show that simplicial and
singular homology groups coincide for A-complexes.

Traditionally, simplicial homology is defined for simplicial complexes, which are
the A-complexes whose simplices are uniquely determined by their vertices. This
amounts to saying that each n-simplex has n + 1 distinct vertices, and that no other
n-simplex has this same set of vertices. Thus a simplicial complex can be described
combinatorially as a set X, of vertices together with sets X,, of n-simplices, which
are (n+ 1)-element subsets of X,,. The only requirement is that each (k + 1)-element
subset of the vertices of an n-simplex in X, is a k-simplex, in X . From this combi-
natorial data a A-complex X can be constructed, once we choose a partial ordering
of the vertices X, which restricts to a linear ordering on the vertices of each simplex
in X,,. For example, we could just choose a linear ordering of all the vertices. This
might perhaps involve invoking the Axiom of Choice for large vertex sets.

An exercise at the end of this section is to show that every A-complex can be
subdivided to be a simplicial complex. In particular, every A-complex is then homeo-
morphic to a simplicial complex.

Compared with simplicial complexes, A-complexes have the advantage of simpler
computations since fewer simplices are required. For example, to put a simplicial
complex structure on the torus one needs at least 14 triangles, 21 edges, and 7 vertices,
and for RP® one needs at least 10 triangles, 15 edges, and 6 vertices. This would slow
down calculations considerably!

Singular Homology

A singular n-simplex in a space X is by definition just a map o:A" —X. The
word ‘singular’ is used here to express the idea that o need not be a nice embedding
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but can have ‘singularities’ where its image does not look at all like a simplex. All that
is required is that o be continuous. Let C,,(X) be the free abelian group with basis
the set of singular n-simplices in X. Elements of C,(X), called n-chains, or more
precisely singular n-chains, are finite formal sums >; n;0; for n; € Z and o0;: A" — X.
A boundary map 9,,: C,,(X) —C,,_; (X) is defined by the same formula as before:

an(o-) = Z(_l)la- | [v()! Ut li}\i! Ut lvn]

Implicit in this formula is the canonical identification of [vy,---,?;, -, v, ] with
AL preserving the ordering of vertices, so that o |[vg, -+, V;, -+, V,,] is regarded
as a map AT S x , that is, a singular (n — 1)-simplex.

Often we write the boundary map 0,, from C,,(X) to C,,_;(X) simply as 0 when
this doesn’t lead to serious ambiguities. The proof of Lemma 2.1 shows that 0,,0,,,, =
0, or more concisely 3> = 0, so we can define the singular homology group H,(X) =
Kero, /Imao,, ;.

It is evident from the definition that homeomorphic spaces have isomorphic sin-
gular homology groups H,,, in contrast with the situation for Hﬁ. On the other hand,
since the groups C,,(X) are so large, the number of singular »n-simplices in X usually
being uncountable, it is not at all clear that for a A-complex X with finitely many sim-
plices, H, (X) should be finitely generated for all »n, or that H,(X) should be zero
for n larger than the dimension of X — two properties which are trivial for H,%(X ).

Though singular homology looks so much more general than simplicial homology,
it can actually be regarded as a special case of simplicial homology by means of the
following construction. For an arbitrary space X, define the singular complex S(X)
to be the A-complex with one n-simplex AL for each singular n-simplex o :A" — X,
with A} attached in the obvious way to the (n — 1)-simplices of S(X) which are
the restrictions of o to the various (n — 1)-simplices in 0A™. It is clear from the
definitions that Hﬁ(S(X )) is identical with H,(X) for all n, and in this sense the
singular homology group H,, (X) is a special case of a simplicial homology group. One
canregard S(X) as a A-complex model for X, although it is usually an extremely large
object compared to X, often with uncountably many simplices in each dimension.

Cycles in singular homology are defined algebraically, but they can be given a
somewhat more geometric interpretation in terms of maps from finite A-complexes.
To see this, note first that a singular n-chain & can always be written in the form
> &;0; with g; = =1, allowing repetitions of the singular n-simplices o;, so we shall
assume this has been done. Given such an n-chain & = > ; &;0;, when we compute
0& as a sum of singular (n — 1)-simplices with signs +1, there may be some can-
celling pairs consisting of two identical singular (n—1)-simplices with opposite signs.
Choosing a maximal collection of such cancelling pairs, construct an n-dimensional
A-complex K¢ from a disjoint union of n-simplices A, one for each o;, by identi-
fying the pairs of (n — 1)-dimensional faces corresponding to the chosen cancelling
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pairs. The o;’s then induce a map Ky — X. If & is a cycle, all the (n — 1)-simplices of
Ky come from cancelling pairs, hence are faces of exactly two n-simplices of K. Thus
Ky is a manifold, locally homeomorphic to R™, except at a subcomplex of dimension
atmost n—2. All the n-simplices of K¢ canbe coherently oriented by taking the signs
of the o;’s into account, so K is actually an oriented manifold away from its non-
manifold points — though to make this statement rigorous would take a considerable
effort, using heavy machinery from §3.3. (Parenthetical remark: A closer inspection
shows that K¢ is also a manifold near points in the interiors of (n — 2)-simplices, so
the nonmanifold points of Ky in fact have dimension at most n — 3. However, near
the interiors of (n — 3)-simplices it can very well happen that Ky is not a manifold.)

In particular, elements of H; (X) are represented by collections of oriented loops
in X, and elements of H,(X) are represented by maps of closed oriented surfaces
into X. With a bit more work it can be shown that an oriented 1-cycle [[,S,— X is
zero in H,(X) iff it extends to a map of an oriented surface into X, and there is an
analogous statement for 2-cycles. In the early days of homology theory it may have
been believed, or at least hoped, that this close connection with manifolds continued
in all higher dimensions, but this has turned out not to be the case. There is a sort
of homology theory built from manifolds, called bordism, but it is quite a bit more
complicated than the homology theory we are studying here.

After these preliminary remarks let us begin to see what can be proved about
singular homology.

Proposition 2.6. If'the path-components of X are denoted X, then H,,(X) splits as
the direct sum @y H, (X,).

Proof: Since a singular simplex always has path-connected image, C, (X) splits as the
direct sum of its subgroups C,, (X,). The boundary maps 0,, preserve this direct sum
decomposition, taking C,(X,) to C,_;(X,), so Kero,, and Imo,,,; split similarly as
direct sums, hence the homology groups also split, H,,(X) ~ @, H, (X,). O

Proposition 2.7. If X is nonempty and path-connected then Hy(X) = Z. Hence for
any space X, Hy(X) is a direct sum of Z's, one for each path-component of X .

Proof: By definition, Hy(X) = Cy(X)/Imo, since 9, = 0. Define a homomorphism
£:Cy(X)—Z by £(>;n;0;) = >;n;. This is obviously surjective if X is nonempty.
The claim is that Kere = Im 0, if X is path-connected, and hence ¢ induces an iso-
morphism Hy(X) = Z.

To verify the claim, observe first that Im 0, C Ker ¢ since for a singular 1-simplex
o:A'—> X we have €0,(0) = e(o|[v;] — o|lvg]l) = 1 =1 = 0. For the reverse
inclusion Kere c Imd,, suppose £(>;n;0;) = 0, i.e,, >;n; = 0. Here the o;’s are
singular 0-simplices, i.e., points of X. Choose a path T; from a basepoint x,, to o;(v,)
and let o, be the singular 0-simplex with image x,. Regarding the T;’s as singular
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1-simplices, we have 0 (>, n;T;) = X, n,0,— >, n;0, = >,; n;0; since > ; n; = 0. Thus
>.;mn;o; is a boundary, which shows that Ker& c Im o, . O

H Proposition 2.8. If X is a point, then H,(X) =0 forn>0 and Hy(X) = Z.

Proof: In this case there is a unique singular n-simplex o, for each n, and d(0,) =
S (=10, ;,asumof n + 1 terms, which is therefore 0 for n odd and o,,_; for n
even, n = 0. Thus we have the chain complex

0 0

7557 7—=>7 Z—0

with boundary maps alternately isomorphisms and trivial maps, except at the last Z.
The homology groups of this complex are trivial except for H, = Z. |

It is often very convenient to have a slightly modified version of homology for
which a point has trivial homology groups in all dimensions, including zero. This is
done by defining the reduced homology groups ﬁn(X ) to be the homology groups
of the augmented chain complex

L C(X) 2 (X)X (X)) =57 —0

where £(X;n;0;) = >;n; as in the proof of Proposition 2.7. Here we had better
require X to be nonempty, to avoid having a nontrivial homology group in dimension
—1. Since €0, = 0, ¢ vanishes on Im9d; and hence induces a map H,(X)—Z with
kernel PNIO(X), so Hy(X) = ﬁO(X) ®Z. Obviously H,(X) = }NIH(X) for n > 0.
Formally, one can think of the extra Z in the augmented chain complex as gener-
ated by the unique map [@]— X where [J] is the empty simplex, with no vertices.
The augmentation map ¢ is then the usual boundary map since d[v,] = [Vy] = [D].

Readers who know about the fundamental group 7, (X) may wish to digress here
to look at §2.A where it is shown that H,(X) is the abelianization of ,(X) for all
path-connected spaces X. This result will not be needed elsewhere in the chapter,
however.

Homotopy Invariance

The first substantial result we will prove about singular homology is that ho-
motopy equivalent spaces have isomorphic homology groups. This will be done by
showing thatamap f:X—Y induces a homomorphism f, :H, (X)—H, (Y) for each
n, and that f, is an isomorphism if f is a homotopy equivalence.

For a map f:X—Y, an induced homomorphism f,:C, (X)—C,(Y) is defined
by composing each singular n-simplex o : A" — X with f to get a singular n-simplex
f.(o) = fo:A"—>Y, then extending f, linearly via f,(>;n;0;) = X;n,f,(0;) =
2in;fo;. The maps f,:C,(X)—C,(Y) satisfy f,0 = 0f, since

fﬁa(o') = fﬁ(Zi(—l)iUI[vo, T ,ﬁi, T ,Un])
== fo|lvg, -, Dy, 0,1 = 3, (0).
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Thus we have a diagram

s (X)) — 2 (X)) — 2 G (X)) —— -
A VA
e Co(Y) —2— (YY) —2—, (V)

such that in each square the composition f,0 equals the composition df,. A diagram
of maps with the property that any two compositions of maps starting at one point in
the diagram and ending at another are equal is called a commutative diagram. In the
present case commutativity of the diagram is equivalent to the commutativity relation
f:0 = 0f,, but commutative diagrams can contain commutative triangles, pentagons,
etc., as well as commutative squares.

The fact that the maps f,:C, (X)—C,(Y) satisfy f,0 = 0f, is also expressed
by saying that the f,’s define a chain map from the singular chain complex of X
to that of Y. The relation f,0 = 0f, implies that f, takes cycles to cycles since
oo = 0 implies o(f,00) = f,(0x) = 0. Also, f, takes boundaries to boundaries
since f,(0B) = 9(f,B). Hence f, induces a homomorphism f, : H, (X)—H,(Y). An
algebraic statement of what we have just proved is:

‘ Proposition 2.9. A chain map between chain complexes induces homomorphisms
between the homology groups of the two complexes. a

Two basic properties of induced homomorphisms which are important in spite
of being rather trivial are:
(i) (fg)y = f.g, for a composed mapping X -&> v L, 7. This follows from
associativity of compositions A" L xLy iR Z.

(i) 1, = 1 where 1 denotes the identity map of a space or a group.

Less trivially, we have:

Theorem 2.10. If two maps f,g:X—Y are homotopic, then they induce the same
homomorphism f, = g,:H,(X)—H,(Y).

In view of the formal properties (fg), = f.gs and 1, = 1, this immediately
implies:

‘ Corollary 2.11. The maps f, :H,(X)—H, (Y) induced by a homotopy equivalence
f:X—Y are isomorphisms for all n. m|

For example, if X is contractible then ﬁn(X ) =0 for all n.

Proof of 2.10: The essential ingredient is a procedure for subdividing the product
A" x I into (n + 1)-simplices, as illustrated below in the cases n = 1,2.
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w,
w, w, w, w
X7
UZ
Y% vy Yo v
In A"XI, let A"x{0} = [vgy,---,v,] and A"x {1} = [w, -, w,], where v; and
w; have the same image under the projection A" xI—A". Then the n-simplex
[Vgy "+, Vi Wisqs -+, Wy] is the graph of the linear function @;:A"—1 defined in
barycentric coordinates by @;(ty,---,t,) =t;.; + --- + t,, since the vertices of this
simplex [vg, -+, V;, Wi, "+, W, ] are on the graph of @; and the simplex projects

homeomorphically onto A™ under the projection A" xI— A™. The graph of @; lies
below the graph of @;_; since @; < @,_;, and the region between these two graphs
is [vg, -+, V;,w;, -+, w,], which is a genuine (n + 1)-simplex since w; is not on
the graph of @;, hence is not in the n-simplex [vg, -+, v;, W1, -, W,]. From the
string of inequalities 0 = @, < @, < -+ < @y < @_; = 1 we deduce that A" xI
is the union of the (n + 1)-simplices [vg, -+, v;, w;, -+, W, ], each intersecting the
next in an n-simplex face.

Given a homotopy F:XxI—Y from f to g, we can define prism operators
P:C,(X)—C,,1(Y) by

P(o) =D (~1)'Fe(ox1)|[vg, -, vy, wy, -+, wy,]
i
for o : A" — X, where F- (o x 1) is the composition A" xI— X xI—Y. We will show
that these prism operators satisfy the basic relation

Geometrically, the left side of this equation represents the boundary of the prism, and
the three terms on the right side represent the top A" x {1}, the bottom A" x {0}, and
the sides 0A" xI of the prism. To prove the relation we calculate

aP(O—) = Z(—l)l(—l)JFo(Ux ]1)|[v0, Ut "i}\j’ ,vi’wi, e ’wn]
Jj=<i
+ D (=D =1 Fe(ox 1) [[vg, -+, v Wiy v+ W)y o0, W]
j=i
The terms with i = j in the two sums cancel except for Fo (o x 1) | [Ty, wp, -+, W, ]
whichis geo = g,(0),and —F-(ox1)|[v, -, v,, W,] whichis —f-0 = —f,(0).

The terms with i + j are exactly —Pd(o) since
PO(0) = D (-1)" (1) Fe(a x 1) [[Vg, -+, Uiy Wy, =+, Wy o+, Wy, ]
i<j

+ > (=D N =1DIFe(ox1)|[vg, -+, D

i>j

ITRERE
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Now we can finish the proof of the theorem. If « € C,,(X) is a cycle, then g, (x) —
Sfe() = 0P(x) + Po(x) = 0P(x) since dox = 0. Thus g, («x) - f,(x) is a boundary, so
g4 () and fﬁ(O() determine the same homology class, which means that g, equals
f« on the homology class of «. O

The relationship 0P + Pd = g, — f, is expressed by saying P is a chain homotopy
between the chain maps f, and g,. We have just shown:

Proposition 2.12. Chain-homotopic chain maps induce the same homomorphism on
homology. |

There are also induced homomorphisms f, :PNIn (X) —>ﬁn(Y) for reduced homol-
ogy groups since f,& = &f,. The properties of induced homomorphisms we proved
above hold equally well in the setting of reduced homology, with the same proofs.

Exact Sequences, Relative Homology, and Excision

It would certainly be nice if there were a simple relationship between the homol-
ogy groups of a space and the homology groups of a subspace, for then one could
hope to understand the homology groups of spaces which can be built up from succe-
sively more complicated subspaces. Perhaps the nicest possible relationship between
the homology groups of a space X and a subspace A would be that H,(X) con-
tains H,(A) as a subgroup, with the quotient group H, (X)/H,(A) isomorphic to
H, (X/A). While this does hold in some cases, it is much too simplistic a model to
hold in general. For example, every space X can be embedded as a subspace of a
space with trivial homology groups, namely the cone CX = (Xx1I)/(Xx{0}), which
is contractible, so if this model were valid, all spaces would have trivial homology.
The surprising thing is that one doesn’t have to retreat too far from this simple model
to get a statement which holds in fair generality. Naturally a more complicated rela-
tionship between H,,(X) and H, (A) is involved, and one aspect of this complication
is that different values of n are intertwined, but this is also an advantage in that it
sometimes allows higher-dimensional homology groups to be computed in terms of
lower-dimensional groups, which may be simpler.

In order to formulate the relationship we are looking for, we need an algebraic
definition which is central to algebraic topology. A sequence of homomorphisms

Kn+1

A AnLAn71_>"'

n+1

is said to be exact if Ker «,, = Im«,,,; for each n. The inclusions Im «,,,; C Ker «,,
are equivalent to «, «,,; = 0, so the sequence is a chain complex, and the opposite
inclusions Ker «,, € Im «,,,; say that the homology groups of this chain complex are
trivial.

A number of basic algebraic concepts can be expressed in terms of exact se-
quences, for example:
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(i) 0 — A= B is exact iff Ker x = 0 i.e., x is injective.
(i) A2 B— 0 is exact iff Imx = B i.e., & is surjective.
(iii) 0 — A =5 B — 0 is exact iff « is an isomorphism, by (i) and (ii).
(ivi 0 >A5B B, C — 0 is exact iff « is injective, B is surjective, and Ker =
Im «, so 8 induces an isomorphism C =~ B/Im «. This can be written C ~ B/A if
we think of « as an inclusion of A as a subgroup of B.

An exact sequence 0—A—B— C—0 as in (iv) is called a short exact sequence.

Exact sequences provide the right tool to relate the homology groups of a space,
a subspace, and the associated quotient space:

Theorem 2.13. If X is a space and A is a nonempty closed subspace which is a
deformation retract of some neighborhood in X, then there is an exact sequence

o H(A) B H (X)) -2 1L (X A) = B, (A = H, (X)) — - -
. — Hy(X/A) — 0

where i is the inclusion A — X and j is the quotient map X — X /A.

The map 0 will be constructed in the course of the proof. The idea is that an
element x € PNIn(X/A) can be represented by a chain « in X with dx a cycle in A
whose homology class is dx € I—NIn,1 (A).

Pairs of spaces (X, A) satisfying the hypothesis of the theorem we will call good
pairs. For example, if X is a CW complex and A is a nonempty subcomplex, then
(X, A) is a good pair by Proposition A.5 in the Appendix.

|| Corollary 2.14. ﬁn(S”) ~ 7 and PNIl-(S") =0 fori=n.

Proof: Take (X,A) = (D", " 1) so X/A = S™. The long exact sequence of homology
groups for the pair (X, A) has every third term ﬁi(D") zero since D" is contractible.
Exactness of the sequence then implies that the maps ﬁi(S”) 2, PNIl-,l(S"’l) are
isomorphims for all i and n. The result now follows by induction on n, starting with
the case of S°, where the result holds by Propositions 2.6 and 2.8. =]

As a corollary of this calculation we have the following classical theorem of
Brouwer, the 2-dimensional case of which was proved in §1.1.

’ Corollary 2.15. 3D" is not a retract of D™. Hence every map f:D"—D" has a
fixed point.

Proof: If v : D™ —0D™ were a retraction, we would have i = 1 for i:0D"™— D" the
inclusion map, hence the composition ﬁn,l(aD”) LI Nn,l(D") SEIN ﬁn,l(aD”)
would be the identity map on ﬁn_l(aD") ~ Z. But r, and i, are both 0 since
ﬁn,l(D") = 0, and we have a contradiction. The fixed-point result follows as in
Theorem 1.9. a
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The derivation of the exact sequence in the preceding theorem will be rather a long
story. We will in fact derive a more general exact sequence which holds for arbitrary
pairs (X, A), but with the homology groups of the quotient space X/A replaced by
relative homology groups, denoted H, (X,A). These turn out to be quite useful for
many other purposes as well.

Relative Homology Groups

It sometimes happens that by ignoring a certain amount of structure one obtains a
simpler, more flexible theory which, almost paradoxically, can give results not readily
obtainable in the original setting. A familiar instance of this is arithmetic mod n,
where one ignores multiples of n. Relative homology is another example. In this case
what one ignores is all singular chains in a subspace of the given space.

Here are the definitions. Given a space X and a subspace A C X, define C,,(X,A)
to be the quotient group C, (X)/C,,(A). Thus chains in A are regarded as trivial.
Since the boundary map 0:C, (X)—C,,_;(X) takes C,(A) to C,,_;(A), it induces a
quotient boundary map 0:C,(X,A)—C,,_; (X, A). The relation 9% = 0 holds for this
quotient map since it holds for the usual boundary map on C, (X). So we have a chain
complex

C— C (X, A) = Cy (X, A) — -

whose homology groups Kerd/Im ¢ are by definition the relative homology groups
H,(X,A).
By considering the definition of the relative boundary map we see:

— Elements of H, (X,A) are represented by relative cycles: n-chains « € C,(X)
such that 0x € C,,_;(A).

— Arrelative cycle « is trivial in H, (X, A) iff it is a relative boundary: o« =08 +y
for some B € C,,.;(X) and y € C,,(A).

These properties make precise the intuitive idea that H, (X, A) is ‘homology of X
modulo A.

The quotient C, (X)/C, (A) could also be viewed as the free abelian subgroup of
C,,(X) with basis the singular n-simplices ¢ : A" — X whose image is not contained
in A. However, the boundary map does not take this subgroup of C,(X) to the
corresponding subgroup of C,,_; (X), so it is usually better to regard C,(X,A) as a
quotient rather than a subgroup of C,, (X).

Our goal now is to show that the relative homology groups H,, (X, A) for any pair
(X, A) fit into a long exact sequence

- — Hy(X,A) — 0

This will be entirely a matter of algebra. To start the process, consider the diagram
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0 —— C,(A) —— C(X) —— (X, A)—— 0

|2 |2 |
0 —— Cy (A) —— C, (X)) —L— C, (X, A) — 0

where i isinclusion and j is the quotient map. The diagram is commutative by the def-
inition of the boundary maps. Letting n vary, and drawing these short exact sequences
vertically rather than horizontally, we have a large commutative diagram of the form

shown at the right, where the columns are ex- 0 0 0
act and the rows are chain complexes | ) | ; |
which we denote A, B,and C. Such - — A, A, Ay
a diagram is called a short exact se- li 5 l i ) 11'
quence of chain complexes. We will - — B, B, B,
show that when we pass to homology |7 ; |7 ; |7
groups, this short exact sequence of Rl G Cn Coa
chain complexes stretches out into a (l) (l) (1)

long exact sequence of homology groups

- — H,(A) = H, (B) 2> H, (C) -5 H, 1 (A) 2> H,,_1(B) — -+~

where H, (A) denotes the homology group Kerd/Imo at A,, in the chain complex A,
and H, (B) and H,(C) are defined similarly.

The commutativity of the squares in the short exact sequence of chain complexes
means that i and j are chain maps. These therefore induce maps i, and j, on
homology. To define the boundary map 0:H, (C)—H,_;(A), let ¢ € C,, be a cycle.
Since j is onto, ¢ = j(b) for some b € B,,. The element 0b € B,,_; a
is in Ker j since j(db) = 0j(b) = dc = 0. So db = i(a) for some I Ay
a € A,_; since Kerj = Imi. Note that da = 0 since i(da) = —> b li
di(a) = 00b = 0 and i isinjective. We define 0:H,,(C) —H,,_,(A) By, —> B,
by sending the homology class of ¢ to the homology class of a, l i
dlc] = [a]. This is well-defined since: C,

n-1

n-1

0 —T

.

— The element a is uniquely determined by db since i is injective.

— A different choice b’ for b would have j(b') = j(b),so b’ — b isin Kerj = Imi,
b"—b =i(a’) for some a’, and b’ = b + i(a’). The effect of replacing b by
b +i(a’) is to change a to the homologous element a + da’ since i(a + 0a’) =
i(a) +i(0a’) =ob +di(a’) =o(b +i(a’)).

— A different choice of ¢ within its homology class would have the form ¢ + dc’.
Since ¢’ = j(b") for some b’, we then have ¢ + oc’ = c +9j(b’) = c + j(Ob') =
j(b +0b'), so b is replaced by b + db’, which leaves b and therefore also a
unchanged.

The map 0:H,(C)—H,,_,(A) is a homomorphism since if 0[c;] = [a,] and 0[c,] =



Section 2.1. Simplicial and Singular Homology 117

[a,] via elements b, and b, as above, then j(b; + b,) = j(by) + j(by) = c; + ¢, and
ila; +a,) =ila;) +ila,) =0b; +0b, = 0(b; + b,) so o([c;] + [c;]) =[a,]+ [a,].

Theorem 2.16. The sequence of homology groups

= H,(A) =2 H,(B) L5 H,(C) -5 H, (A) 2> H, | (B) — -

is exact.
Proof: There are six things to verify:
Imi, C Ker j,. This is immediate since ji = O implies j, i, = 0.
Imj, C Kerd. We have 0j, = 0 since in this case 0b = 0 in the definition of 2.
Imo c Keri, . Here i,0 = 0 since i,0 takes [c] to [0b] = 0.

Kerj, ¢ Imi,. A homology class in Ker j, is represented by a cycle b € B, with
Jj(b) aboundary, so j(b) = dc’ for some ¢’ € C,,,,. Since j is surjective, ¢’ = j(b")
for some b’ € B,.,. We have j(b —0b’) = j(b) — j(db") = j(b) —3j(b") = 0 since
9j(b") = oc” = j(b). So b —0b" = i(a) for some a € A,. This a is a cycle since
i(da) = di(a) =d(b—0b’) = 0b = 0 and i is injective. Thus i, [a] = [b—0b'] = [b],
showing that i, maps onto Kerj,.

Kero c Imj, . In the notation used in the definition of 0, if ¢ represents a homology
class in Kerd, then a = da’ for some a’' € A,,. The element b — i(a’) is a cycle
since 0(b —i(a’)) = 0b — di(a’) = 0b —i(0a’) = 0b —i(a) = 0. And j(b —i(a’)) =
j(b) —ji(a') = j(b) = c, so j, maps [b—i(a’)] to [c].

Keri, c Imo. Given a cycle a € A,,_; such that i(a) = 0b for some b € B,,, then
j(b) is a cycle since 0j(b) = j(db) = ji(a) = 0, and 0 takes [j(b)] to [a]. m|

This theorem represents the beginnings of the subject of homological algebra.
The method of proof is sometimes called diagram chasing.

Returning to topology, the preceding algebraic theorem yields a long exact se-
quence of homology groups:

c— H(A) 2 H (X)L H, (X, A) -5 H, (A S H, (X)) — -
. — Hy(X,A) — 0

The boundary map 0:H, (X,A)—H,_;(A) has a very simple description: If a class
[x] € H,(X,A) is represented by a relative cycle «, then o[«] is the class of the
cycle 0x in H,,_; (A). This is immediate from the algebraic definition of the boundary
homomorphism in the long exact sequence of homology groups associated to a short
exact sequence of chain complexes.

This long exact sequence makes precise the idea that the groups H, (X, A) mea-
sure the difference between the groups H, (X) and H,(A). In particular, exactness
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implies thatif H, (X, A) = 0 for all n, then the inclusion A~ X induces isomorphisms
H,(A) = H,(X) for all n, by the remark (iii) following the definition of exactness. The
converse is also true according to an exercise at the end of this section.

There is a completely analogous long exact sequence of reduced homology groups
for a pair (X,A) with A # @. This comes from applying the preceding algebraic ma-
chinery to the short exact sequence of chain complexes formed by the short exact se-
quences 0—C,(A)—C,(X)—C,(X,A)—0 in nonnegative dimensions, augmented
by the short exact sequence 0 — 7 L, 7— 0— 0 in dimension —1. In particular
this means that PNI,,L(X,A) is the same as H,, (X, A) for all n, when A + @.

Example 2.17. When (X, A) = (D", 0D") the long exact sequence of reduced homol-
ogy groups implies that H,(D",0D") ~ Flk,l(S”‘l) for all k since PNIk(D”) = 0 for

all k. Thus
7 fork=n

H,(D",0D") =~ {
k(D7,0D%) 0 otherwise.

Example 2.18. Applying the long exact sequence of reduced homology groups to a
pair (X,x,) with x, € X yields isomorphisms H, (X, x;) = PNIn(X) for all n since

ﬁn(xo) =0 forall n.

There are induced homomorphisms for relative homology just as there are in the
nonrelative, or ‘absolute,” case. A map f:X—Y with f(A) C B, or more concisely
f:(X,A)—(Y,B), induces homomorphisms f,:C, (X,A)—C,(Y,B) since the chain
map f,:C,(X)—C,(Y) takes C,,(A) to C, (B), so we get a well-defined map on quo-
tients, f,:C,(X,A)—C,(Y,B). Therelation f,0 = df, holds for relative chains since
it holds for absolute chains. By Proposition 2.9 we then have induced homomorphisms
fo:H,(X,A)—H,(Y,B).

Proposition 2.19. Iftwomaps f,g:(X,A)— (Y, B) are homotopic through maps of
pairs (X,A)— (Y,B), then f, = g,:H,(X,A)—H,(Y,B).

Proof: The prism operator P from the proof of Theorem 2.10 takes C,,(A) to C,,(B),
hence induces a relative prism operator P:C,(X,A)—C,_;(Y,B). Since we are just
passing to quotient groups, the formula 0P + Po = g, — f, remains valid. Thus the
maps f, and g, onrelative chain groups are chain homotopic, and hence they induce
the same homomorphism on relative homology groups. O

An easy generalization of the long exact sequence of a pair (X,A) is the long
exact sequence of a triple (X,A,B), where BC A C X:

--—H,(A,B)—H,(X,B)—H,(X,A)—H,_ {(A,B) — ---

This is the long exact sequence of homology groups associated to the short exact
sequence of chain complexes which in dimension » is the short exact sequence

0— C,,(A,B) — C,(X,B) — C,,(X,A) — 0
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For example, taking B to be a point, the long exact sequence of the triple (X, A, B)
becomes the long exact sequence of reduced homology for the pair (X, A).

Excision

A fundamental property of relative homology groups is given by the following
Excision Theorem, describing when the relative groups H,, (X, A) are unaffected by
deleting, or excising, a subset Z C A.

Theorem 2.20. Given subspaces Z C A C X such that the closure of Z is contained
in the interior of A, then the inclusion (X — Z,A — Z) — (X,A) induces isomor-
phisms H, (X - Z,A-Z)—H, (X, A) for all n. Equivalently, for subspaces A,B ¢ X
whose interiors cover X, the inclusion (B,A n B) — (X, A) induces isomorphisms
H,(B,AnB)—H,(X,A) forall n.

The translation between the two versions is obtained by tak-

ing Z and B to be complementary subspaces of X,so Z = X —B @ A
and B=X—-Z,hence AnB=A-Z. The condition cl Z C intA

X

is equivalent to X = intA uintB since X —intB =cl Z.

The proof of the excision theorem will involve a rather lengthy technical detour
involving a construction known as barycentric subdivision, which allows homology
groups to be computed using small singular simplices. In a metric space ‘smallness’
can be defined in terms of diameters, but for general spaces it will be defined in terms
of covers.

For a space X, let U = {U;} be a collection of subspaces of X whose interiors
form an open cover of X, and let Cfﬁ(X ) be the subgroup of C, (X) consisting of
chains }}; n;0; such that each o; has image contained in some set in the cover ‘U. The
boundary map 0:C, (X)—C,,_; (X) takes C}f(X) to C#_I(X), so the groups C;‘f(X)
form a chain complex. We denote the homology groups of this chain complex by
HY(X).

Proposition 2.21. Theinclusion t: C,}’ (X) = C, (X) is a chain homotopy equivalence,
i.e., thereisachainmap p:C,(X)— C#(X) such that tp and pt are chain homotopic
to the identity. Hence t induces isomorphisms H'(X) ~ H,(X) for all n.

Proof: The barycentric subdivision process will be performed at four levels, beginning
with the most geometric and becoming increasingly algebraic.

1. Barycentric Subdivision of Simplices. The points of a simplex [v,---,v,] are the
linear combinations > ; t;v; with >;t; = 1 and t; > 0 for each i. The barycenter or
‘center of gravity’ of the simplex [v,, -- -, v,,] is the point b = > ; t;v; whose barycen-
tric coordinates f; are all equal, namely ¢; = 1/(n + 1) for each i. The barycentric
subdivision of [v,, - -+, v, ] is the decomposition of [v, - -, v,,] into the n-simplices
[b,wy,---,w,_;] where, inductively, [wg, -+, w,_;] is an (n — 1)-simplex in the
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barycentric subdivision of a face [v, - -+, D}, - -+, V,,]. The induction starts with n = 0
when the barycentric subdivision of [v,] is defined to be just
[vy] itself. The figure shows the

&

k&

next two cases n = 1,2 and
part of the case n = 3. ‘b

R N

It follows from the inductive definition that the vertices of simplices in the barycen-

tric subdivision of [v,,---,v,] are the barycenters of all the k-dimensional faces

[Vigs =+ v, ] of [vy,-+-,v,] for 0 < k < n. When k = 0 this gives the original ver-

tices v; since the barycenter of a 0-simplex is itself. The barycenter of [v; ,---,v; ]
has barycentric coordinates t; = 1/(k + 1) for i = iy, --,i; and t; = 0 otherwise.

The n-simplices of the barycentric subdivision of A", together with all their faces,
do in fact form a A-complex structure on A", indeed a simplicial complex structure,
though we shall not need to know this in what follows.

A fact we will need is that the diameter of each simplex of the barycentric subdivi-
sionof [vg, -+, v, ] isatmost n/(n+1) times the diameter of [v, - - -, v, ]. Here the
diameter of a simplex is by definition the maximum distance between any two of its
points, and we are using the metric from the ambient Euclidean space R containing
[vg, -+, V,]. The diameter of a simplex equals the maximum distance between any
of its vertices because the distance between two points v and > ; t;v; of [vy, -+, v,]
satisfies the inequality

(%) Jv=2tv;| = |2t;(v—v))| <>tjlv—v;| <>;t;max |v —v;| = max |v — v,

To obtain the bound n/(n + 1) on the ratio of diameters, we therefore need to verify
that the distance between any two vertices w; and w; of a simplex [w,, ---,w, ] of
the barycentric subdivision of [vg, -+, v, ] is at most n/(n + 1) times the diameter
of [vg, -+, v,]. If neither w; nor w; is the barycenter b of [vy,---,v,], then these
two points lie in a proper face of [v,, - - -, v,,] and we are done by induction on n. So
we may suppose w;, say, is the barycenter b, and then by (%) we may take w; to
be a vertex v;. Let b; be the barycenter of [vg,---,7;,--,v,], with all barycentric

coordinates equal to 1/n except for {; = 0. Then we have

1 n - .
b= "7v; + ;;;7 b;. The sum of the two coefficients is %\bi
1, so b lies on the line segment [v;, b;] from v; to b;, Vi

and the distance from b to v; is n/(n + 1) times the length of [v;, b;]. Hence the
distance from b to v; is bounded by n/(n + 1) times the diameter of [vg,---,v,].

The significance of the factor n/(n+1) is that by repeated barycentric subdivision
we can produce simplices of arbitrarily small diameter since (n/(n+1))" approaches
0 as r goes to infinity. It is important that the bound n/(n + 1) does not depend on
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the shape of the simplex since repeated barycentric subdivision produces simplices
of many different shapes.

2. Barycentric Subdivision of Linear Chains. The main part of the proof will be to
construct a subdivision operator S: C, (X)— C,,(X) and show this is chain homotopic
to the identity map. First we will construct S and the chain homotopy in a more
restricted linear setting.

For a convex set Y in some Euclidean space, the linear maps A" —Y generate
a subgroup LC, (Y) of C,(Y) consisting of the ‘linear chains.” The boundary map
0:C,(Y)—C,,_1(Y) restricts to a boundary map LC,(Y)—LC,_;(Y), so we have a
subcomplex of the singular chain complex of Y. We can uniquely designate a linear
map A:A"—Y by [w,---,w,] where w; is the image under A of the it" vertex of
A",

To avoid having to make exceptions for O-simplices it will be convenient to aug-
ment the complex LC(Y) by setting LC_;(Y) = Z generated by the empty simplex
[@], with o[w,] = [D] for all 0-simplices [w].

For a point b € Y, define a homomorphism b:LC,(Y)—LC,,,(Y) by setting
b([wy,---,w,]) =[b,wy,---,w,]. Applying the usual formula for 9, we obtain the
relation ob([wy, - -+, w,]) = [wy, -+ -, w, ] -bO@[wy, -+, w,]). So 0b(x) = x—b(0x)
for all @ € LC,(Y). Thus ob + bo = 1, so b can be viewed as a chain homotopy
between the identity map and the zero map on the augmented chain complex LC(Y).
This implies that this complex has trivial homology, which is perhaps not surprising
since Y is convex. In what follows we will only need the formula 0b+bo = 1, however.

Now we define a subdivision homomorphism S:LC,(Y)—LC, (Y) by induction
on n. Let A:A" —Y be a generator of LC, (Y). We also write A as [wy, ---,w,], as
described above. Let b, be the image of the barycenter of A™ under A. Then the induc-
tive formula for S is S(A) = b, (S0A) where b, :LC,,_,(Y)—LC, (Y) is the homomor-
phism defined in the preceding paragraph. The induction starts with S([&]) = [D],
so S is the identity on LC_,(Y). It is also the identity on LCy(Y) since when n = 0
the formula for S becomes S([w,]) = wy(0[wy]) = wy([D]) = [wy]. Note also that
when A is an embedding, with image a genuine n-simplex [w, ---,w,, ], then S(A)
is a linear combination of the various n-simplices in the barycentric subdivision of
[wy, -+, w,]. This is apparent by comparing the inductive definition of S with the
inductive definition of barycentric subdivision of a simplex.

Let us check that the maps S satisfy 0S = S0, and hence give a chain map from
the chain complex LC(Y) toitself. Since S = 1 on LCy(Y) and LC_,(Y) we certainly
have 0S = S0 on LC((Y). The result for larger n is given by the following calculation,
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in which we omit some parentheses to unclutter the formulas:
0SA = 0(b,(S0A))
= S0A — b, (0S0A) since 0b, + b,0 = 1
= S0A — b, (500A) by induction on n
= S0A since 00 =0

We next build a chain homotopy T:LC,,(Y)—LC,,.;(Y) between S and the iden-
tity, fitting into a diagram

- —— LC,(Y) LC,(Y) LC(Y) ——LC (Y)——0

ls / ls / SlIl %Sl]l

- —— LC,(Y) LC,(Y) LC,(Y) LC,(Y)——0

We define T on LC,(Y) inductively by setting T = 0 for n = —1 and letting TA =
by(A —ToA) for n = 0. The geometric motivation for this formula is an inductively
defined subdivision of A" xI obtained by joining all simplices in A™x {0} U 0A" X1

to the barycenter of A™x {1}, as indicated in the
figure in the case n = 2. What T actually does %
is take the image of this subdivision under e ~ =
the projection A" xI— A", l—
The chain homotopy formula 6T + T0 = 1 — S is trivial on LC_,(Y) where T =0
and S = 1. Verifying the formula on LC, (Y) with n > 0 is done by the calculation
OTA = 0(by(A—ToA))
=A—TOA—Db,(3(A —ToA)) since 0b, = 1 — b,0
=A—-TOA - b, (S0A + T0o0A) by induction on n
=A—T0oA-SA since 00 = 0 and SA = b, (S0A)

Now we are done with inductive arguments, and we can discard the group LC_;(Y)
which was used only as a convenience. The relation 0T+ T0d = 1 —S still holds without
LC_,(Y) since T was zeroon LC_,(Y).

3. Barycentric Subdivision of General Chains. Define S:C, (X)—C,(X) by So =
0,SA" for a singular n-simplex o : A" — X. Since SA" is the sum of the n-simplices
in the barycentric subdivision of A™, with certain signs, So is the corresponding
signed sum of the restrictions of o to the n-simplices of the barycentric subdivision
of A™. The operator S is a chain map since

0S0 = 00,SA" = 0,0SA" = 0,50A"
=0,5(3;(~1)'A")  where A" is the i'" face of A"
=3i(-1)'o,SA}
= Yi(=D'S(o]A])
=S(Z;(-1)ia|A") = S(30)
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In similar fashion we define T:C,,(X)—C,,,(X) by To = o, TA", and this gives a
chain homotopy between S and the identity, since the formula 0T + To = 1 — S holds
by the calculation

0To =00, TA" = 0,0TA" = 0,(A" - SA" —TOA") = 0 — S0 — 0, TOA"
=0-So-T(0o)
where the last equality follows just as in the previous displayed calculation, with S
replaced by T.
4. Iterated Barycentric Subdivision. A chain homotopy between 1 and the iterate $™

is given by the operator D,, = 3_;.,, T'S® since

oD, + D0 = > (dTS'+TS9) = > (aTS'+T3s') =

O<i<m O<i<m
> (@T+To)s'= > (1-5)S'= > (ST-s")=1-5™
O<i<m O<i<m O<i<m

For each singular n-simplex o :A" — X there exists an m such that $™ (o) lies in
Cff(X ) since the diameter of the simplices of S™(A") will be less than a Lebesgue
number of the cover of A" by the open sets o (int Uj) if m is large enough. (A
Lebesgue number for an open cover of a compact metric space is a number & such
that every set of diameter less than ¢ lies in some set of the cover. The existence of
such a number is shown by an elementary compactness argument.) We cannot expect
the same number m to work for all o’s, so let us define m (o) to be the smallest m
such that $"o isin CY(X).

Suppose we define D:C, (X)—C,,,(X) by Do = D, 0. To see whether D is
a chain homotopy, we manipulate the chain homotopy equation

0D ()T + Dypoy00 =0 = S™ V¢

into an equation whose left side is 0Do + Ddo by moving the second term on the left
side to the other side of the equation and adding Doo to both sides:

dDo + D30 =0 - [S™7 0 + D,y (30) = D(30)]

If we define p(0) to be the expression in brackets in this last equation, then this
equation has the form

(%) 0Do + Doo =0 — p(0)

We claim that p(o) € C(X). This is obvious for the term $™'?) o . For the remaining
part D, (00) — D(d0), note first that if o denotes the restriction of o to the jth
face of A", then m(o;) < m(o), so every term TS'(c;) in D(d0) will be a term in
D, (00). Thus D, ,(00) — D(d0) is a sum of terms TS‘(UJ-) with i > m(Uj),
and these terms lie in C)Y'(X) since T takes C}L,(X) to CH(X)

We can thus regard the equation (*) as defining p:C,, (X) —>C}L1(X ). For varying
n these p’s form a chain map since (x) implies dp(o) = 00 — 0Dd(0) = p(d0).
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The equation (%) says that 6D + Do = 1 — tp for L:C#(X) — C,,(X) the inclusion.
Furthermore, pt = 1 since D is identically zero on C#(X ), as m(o) = 0 for o €
Cfll(X ), hence the summation defining Do is empty. Thus we have shown that p is
a chain homotopy inverse for . O

Proof of the Excision Theorem: We prove the second version. For the cover U =
{A,B} we introduce the suggestive notation C,(A + B) for C,?(X), the sums of
chains in A and chains in B. At the end of the preceding proof we had formu-
las 0D + D0 = 1 — tp and pt = 1. All the maps appearing in these formulas
take chains in A to chains in A, hence induce quotient maps when we factor out
chains in A. These quotient maps automatically satisfy the same two formulas, so
the inclusion C,,(A + B)/C,,(A) — C,(X)/C,,(A) induces an isomorphism on homol-
ogy. The map C,(B)/C,(An B)—C, (A + B)/C, (A) induced by inclusion is obvi-
ously an isomorphism since both quotient groups are free with basis the singular
n-simplices in B which do not lie in A. Hence we obtain the desired isomorphism
H,(B,AnB) = H,(X,A), induced by inclusion. O

All that remains in the proof of Theorem 2.13 is to replace relative homology
groups with absolute homology groups. This is achieved by the following result.

Proposition 2.22. For good pairs (X, A), the quotient map q:(X,A)— (X/A,A/A)
induces isomorphisms q,. :H,(X,A)—H,(X/A,A/A) = ﬁn(X/A) for all n.

Proof: Let V be a neighborhood of A in X which deformation retracts onto A. We
have a commutative diagram

H,(X,A) H,(X,V) H,(X-A,V-A)

lq* 14* 161*

H,(X/A,AJA) —— H,(X/A,V/A) —— H,(X/A-A/A V/A-A/A)

The upper left horizontal map is an isomorphism since in the long exact sequence of
the triple (X,V,A) the groups H, (V,A) are zero for all n, because a deformation
retraction of V onto A gives a homotopy equivalence of pairs (V,A) ~ (A, A) and
H, (A,A) = 0. The deformation retraction of V onto A induces a deformation retrac-
tion of V/A onto A/A, so the same argument shows the lower left horizontal map is
an isomorphism as well. The other two horizontal maps are isomorphisms directly
from excision. The right-hand vertical map g, is an isomorphism since g restricts to
a homeomorphism on the complement of A. From the commutativity of the diagram
it follows that the left-hand g, is an isomorphism. O

This proposition shows that relative homology can be expressed as reduced abso-
lute homology in the case of good pairs (X, A), but in fact there is a way of doing this
for arbitrary pairs. Consider the space X U CA where CA is the cone (AXI)/(AXx{0})
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whose base Ax {1} we identify with A C X. Using terminology intro- p
duced in Chapter 0, X U CA can also be described as the mapping

cone of the inclusion A — X. The assertion is that H, (X,A) is cA
isomorphic to H, (X U CA) for all n via the sequence of isomor- X -

phisms
}NIn(XU CA)=H, (XUCA,CA) =H,(XUCA-{p},CA-{p}) = H,(X,A)

where p € CA is the tip of the cone. The first isomorphism comes from the exact
sequence of the pair, using the fact that CA is contractible. The second isomorphism
is excision, and the third isomorphism comes from the deformation retraction of
CA - {p} onto A.

Here is an application of the preceding proposition:

Example 2.23. Let us find explicit cycles representing generators of the infinite cyclic
groups H, (D",0D™) and H,,(S"). Instead of (D",0D") we can just as well consider
(A™,0A™), and we will show by induction on n that the identity map i, :A" — A",
viewed as a singular n-simplex, is a cycle generating H,, (A", 0A™). Thatitis a cycle is
clear since we are considering relative homology. When n = 0 it certainly represents
a generator. For the induction step, let A ¢ A™ be the union of all but one of the
(n — 1)-dimensional faces of A". Then we claim there are isomorphisms

H, (A", 0A™) —— H, ,(dA™ A) <—— H, (A" ! 2A"™)

The first isomorphism is a boundary map in the long exact sequence of the triple
(A™,0A",A), whose third terms H;(A",A) are zero since A" deformation retracts
onto A, hence (A", A) = (A,A). The second isomorphism comes from the preceding
proposition since we are dealing with good pairs and the inclusion A" ! < A" as
the face not contained in A induces a homeomorphism of quotients A" 1/9A™ ! ~
0A™/A. The induction step then follows since the cycle i, is sent under the first
isomorphism to the cycle 9i,, which equals +i,,_; in C,_,(dA™,A).

To find a cycle generating H,,(S™) let us regard S™ as two n-simplices A} and
A} with their boundaries identified in the obvious way, preserving the ordering of
vertices. The difference Al — A%, viewed as a singular n-chain, is then a cycle, and we
claim it represents a generator of H,,(S™), assuming n > 0 so that the latter group is
infinite cyclic. To see this, consider the isomorphisms

H, (8™ —=> H, (8", A}) <= H, (A}, 0AT)

where the first isomorphism comes from the long exact sequence of the pair (S", A%)
and the second isomorphism is justified by passing to quotients as before. Under
these isomorphisms the cycle A" — A} in the first group corresponds to the cycle A}
in the third group, which represents a generator of this group as we have seen, so
A} — A} represents a generator of H,, (S™).
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The preceding proposition implies that the excision property holds also for sub-
complexes of CW complexes:

Corollary 2.24. If the CW complex X is the union of subcomplexes A and B, then
the inclusion (B, ANB) — (X, A) induces isomorphisms H, (B,AnB)—H,(X,A) for
all n.

Proof: Since CW pairs are good, the proposition allows us to pass to the quotient
spaces B/(A N B) and X/A which are homeomorphic, assuming we are not in the
trivial case AN B = Q. O

Another application of the preceding proposition is:

Corollary 2.25. For a wedge sum Vy Xy, the inclusions i, : X, — \/, X, induce an iso-
morphism @By iy, : By H, (X,) — H, (V4 X,), provided that the wedge sum is formed
at basepoints x, € X, such that the pairs (X, x,) are good.

Proof: Since reduced homology is the same as homology relative to a basepoint, this
follows from the proposition by taking (X, A) = (11, Xu, L4 {xs})- O

Here is an application of the machinery we have developed, a classical result of
Brouwer from around 1910 known as ‘invariance of dimension,” which says in partic-
ular that R™ is not homeomorphic to R" if m = n.

‘ Theorem 2.26. If nonempty open sets U ¢ R™ and V c R"™ are homeomorphic,
then m = n.

Proof: For x € U we have Hy(U,U — {x}) = H,(R™,R™ - {x}) by excision. From
the long exact sequence for the pair (R",R™ — {x}) we get H; (R™,R™ — {x}) ~
H, | (R™ - {x}). Since R™ — {x} deformation retracts onto a sphere ™!, we con-
clude that H (U,U — {x}) is Z for k = m and 0 otherwise. By the same reasoning
H (V,V —{y}) is Z for k = n and 0 otherwise. Since a homeomorphism h:U—V
induces isomorphisms Hy (U,U — {x})—H,(V,V — {h(x)}) for all k, we must have
m=mn. O

Generalizing the idea of this proof, the local homology groups of a space X at
a point x € X are defined to be the groups H, (X,X — {x}). For any open neigh-
borhood U of x, excision gives isomorphisms H, (X,X — {x}) = H,(U,U — {x}),
so these groups depend only on the local topology of X near x. A homeomorphism
f:X—Y must induce isomorphisms H,(X,X — {x}) = H,(Y,Y — {f(x)}) for all x
and n, so these local homology groups can be used to tell when spaces are not locally
homeomorphic at certain points, as in the preceding proof. The exercises give some
further examples of this.
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Naturality

The exact sequences we have been constructing have an extra property which will
later become important at key points in many arguments, though at first glance this
property may seem just an idle technicality, not very interesting. We shall discuss this
property now rather than interrupting later arguments to check it when it is needed,
but the reader may well want to postpone a careful reading of what follows.

The property is called naturality. For example, to say that the long exact sequence
of a pair is natural means that whenever one has a map f:(X,A)— (Y, B), then the

diagram
s Hy(A) —2 s H(X) —L s B (X,A) H, (A) —— -+
lf* lf* lf* lf*
— H,(B) — s H(Y) —L g (YB) —2— H, (B) —— -~

is commutative. Commutativity of the squares involving i, and j, follows from the
obvious commutativity of

0 —— Ca(A) —— Co(X) —L— Cu(X,A) —— 0
e [
0 —— Co(B) —— Co(Y) —L— C.(Y,B) —— 0

Commutativity of the square containing 0: H, (X, A) —H,,_; (A) can be deduced from
the relation f,0 = df, on chains, which we noted when we defined induced homo-
morphisms. Namely, for a class [«] € H, (X, A) represented by a relative cycle «, we
have f,ola] = f,[0ax] = [f, 0] = [0f,x] = O[.f,x] = Of, [ex].

Alternatively, we could appeal to the general algebraic fact that the long exact
sequence of homology groups associated to a short exact sequence of chain complexes
is natural: Given two short exact sequences of chain complexes and a map between
them, producing commutative diagrams

0 An Bn Cn 0
[, 18 |7
4 i, 4 Jl 4
0 Al By Cn 0
for all n, then the diagram
- —— Hy(A) —— H,(B) —X— H,(C) —%— H,_(A) — ---

N N 2 [

s Hy(A) —2 H(B) —Ls H(C)) —2 Hy (A) —— -

is commutative. Commutativity of the first two squares is obvious since fi = i'«x
implies B,i, =i, «, and yj = j' B implies y,j, = j.B,. For the third square, recall
that the map 0:H,(C)—H,,_,(A) was defined by d[c] = [a] where ¢ = j(b) and
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i(a) = 0b. Then d[y(c)] = [x(a)] since y(c) = yj(b) = j(B(b)) and i'(x(a)) =
Bi(a) = Bo(b) = 0B(b). Hence 0y, [c] = a,[a] = «,0[c].

This algebraic fact also implies naturality of the long exact sequence of a triple
and the long exact sequence of reduced homology of a pair.

Finally, there is the naturality of the long exact sequence in Theorem 2.13, i.e.,
commutativity of the diagram

ix

C—— H,(A) H,(X) —X . |.(X/A) H, (A) — -
lf* lf* lﬂ lf*
S H,(B) — s H(Y) — S A.(v/B) —— H, (B) —— ---

where i and g denote inclusions and quotient maps, and T:X /A—Y /B is induced
by f. The first two squares commute since fi = if and fq = qf. The third square
expands into

F(X/A) —L s HL(X/A,A/A) —Z— H(X,A) —— , (A)

= |7 | |5

A,(/B) —L— H,(Y/B,B/B) —%— H,(Y,B) —2— H, (B)

~

~
~

We have already shown commutativity of the first and third squares, and the second
square commutes since fq = q.f.

The Equivalence of Simplicial and Singular Homology

We can use the preceding results to show that the simplicial and singular homol-
ogy groups of A-complexes are always isomorphic. For the proof it will be convenient
to consider the relative case as well, so let X be a A-complex with A ¢ X a subcom-
plex, i.e., a union of simplices of X, where ‘simplex’ means ‘closed simplex.” Thus A
is a A-complex itself. Relative groups Hﬁ(X ,A) can be defined in the same way as
for singular homology, via relative chains A, (X,A) = A, (X)/A, (A), and this yields
a long exact sequence of simplicial homology groups for the pair (X, A) by the same
algebraic argument as for singular homology. There is a canonical homomorphism
H4(X,A)—H,(X,A) induced by the chain map A,(X,A)—C,(X,A) sending each
n-simplex of X to its characteristic map o :A" —X. The possibility A = @ is not
excluded, in which case the relative groups reduce to absolute groups.

Theorem 2.27. The homomorphisms Hﬁ(X ,A)— H, (X, A) are isomorphisms for

all n and all A-complex pairs (X,A).

Proof: First we do the case that X is finite-dimensional and A is empty. For X*
the k-skeleton of X, consisting of all simplices of dimension k or less, we have a
commutative diagram of exact sequences:
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A
Hn+1

(XK X)) — HAX"") — HA(X") — HA(X X — H2 (X5

l l l l l

H, (x*x*"—H (X)) —H (X)) —H,/(X*X*")—H, (X*")

Let us first show that the first and fourth vertical maps are isomorphisms for all n.
The simplicial chain group A, (X k,X k’l) is zero for n # k, and is free abelian with
basis the k-simplices of X when n = k. Hence Hﬁ(Xk,Xk_l) has exactly the same
description. The corresponding singular homology groups H,, (X k x*1) can be com-
puted by considering the map &®:]] O((A’;(, aA’&) — (X*, x* 1y formed by the character-
istic maps AK— X for all the k-simplices of X. Since ® induces a homeomorphism
of quotient spaces [[,AX/11,0A% ~ x¥/x*~1 it induces isomorphisms on all singu-
lar homology groups. Thus Hn(Xk,Xk’l) is zero for n + k, while for n = k this
group is free abelian with basis represented by the relative cycles given by the char-
acteristic maps of all the k-simplices of X, in view of the fact that Hk(Ak, aAk) is
generated by the identity map AF— A¥ | as we showed in Example 2.23. Therefore the
map H,f(Xk,Xk‘l)ﬁHk(Xk,Xk‘l) is an isomorphism.

By induction on k we may assume the second and fifth vertical maps in the pre-
ceding diagram are isomorphisms as well. The following frequently-quoted basic alge-
braic lemma will then imply that the middle vertical map is an isomorphism, finishing
the proof when X is finite-dimensional and A = &.

The Five-Lemma. Suppose one has a commutative diagram of abelian groups

A—tp_d 0ok . p L .
(& B Y 1) £
T

in which the two rows are exact and «, B, 6, and € are isomorphisms. Then y is an

isomorphism also.

Proof: It suffices to show:
(a) y is surjective if B and 6 are surjective and ¢ is injective.
(b) y isinjective if B and ¢ are injective and « is surjective.

These are proved by straightforward diagram chasing. There is really no choice
about how the argument can proceed, and it would be a good exercise for the reader
to close the book now and reconstruct the proof without looking.

To prove (a), suppose ¢’ € C'. Then k'(c) = §(d) for some d € D since § is
surjective. Since ¢ is injective and &€(d) = €'5(d) = €'k'(c) = 0 we deduce that
£(d) = 0, hence d = k(c) for some ¢ € C by exactness of the upper row. The
difference ¢’ — y(c) maps to 0 under k' since k'(c¢’) — k'y(c) = k'(c) — Sk(c) =
k'(¢") — 8(d) = 0. Therefore ¢’ — y(c) = j'(b") for some b’ € B’ by exactness. Since
B is surjective, b’ = B(b) for some b € B, and then y(c + j(b)) = y(c) + yj(b) =
y(c) +j Bb) =y(c)+j(b") =c, showing that y is surjective.
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To prove (b), suppose y(c) = 0. Since § is injective, 6k(c) = k'y(c) = 0 implies
k(c) =0,s0 ¢ = j(b) for some b € B. The element B(b) satisfies j'B(b) = yj(b) =
y(c) = 0, so B(b) = i'(a’) for some a’ € A". Since « is surjective, a’ = «a(a)
for some a € A. Since B is injective, B(i(a) — b) = Bi(a) — B(b) = i'x(a) — B(b) =
i'(a’)—B(b) = 0 implies i(a)—b = 0. Thus b = i(a), and hence ¢ = j(b) = ji(a) =0
since ji = 0. This shows y has trivial kernel. O

Returning to the proof of the theorem, we next consider the case that X is infinite-
dimensional, where we will use the following fact: A compact set in X can meet only
finitely many open simplices of X, i.e., simplices with their proper faces deleted. This
is a general fact about CW complexes proved in the Appendix, but here is a direct proof
for A-complexes. If a compact set C intersected infinitely many open simplices, it
would contain an infinite sequence of points x; each lying in a different open simplex.
Then the sets U; = X — Uj;&l-{xj}, which are open since their pre-images under the
characteristic maps of all the simplices are clearly open, form an open cover of C with
no finite subcover.

This can be applied to show the map H,AL(X )—H, (X) is surjective. Represent a
given element of H,, (X) by a singular n-cycle z. Thisis alinear combination of finitely
many singular simplices with compact images, meeting only finitely many open sim-
plices of X, hence contained in X* for some k. We have shown that Hﬁ(Xk) —»Hn(Xk)
is an isomorphism, in particular surjective, so z is homologous in X* (hence in X) to
a simplicial cycle. This gives surjectivity. Injectivity is similar: If a simplicial n-cycle
z is the boundary of a singular chain in X, this chain has compact image and hence
must lie in some Xk, so z represents an element of the kernel of Hﬁ(Xk) —»Hn(Xk).
But we know this map is injective, so z is a simplicial boundary in X k and therefore
in X.

It remains to do the case of arbitrary X with A = &, but this follows from the
absolute case by applying the five-lemma to the canonical map from the long exact
sequence of simplicial homology groups for the pair (X, A) to the corresponding long
exact sequence of singular homology groups. O

We can deduce from this theorem that H,(X) is finitely generated whenever X
is a A-complex with finitely many n-simplices, since in this case the simplicial chain
group A, (X) is finitely generated, hence also its subgroup of cycles and therefore
also the latter group’s quotient H,%(X ). If we write H,,(X) as the direct sum of cyclic
groups, then the number of Z summands is known traditionally as the n'" Betti
number of X, and integers specifying the orders of the finite cyclic summands are
called torsion coefficients.

It is a curious historical fact that homology was not thought of originally as a
sequence of groups, but rather as Betti numbers and torsion coefficients. One can after
all compute Betti numbers and torsion coefficients from the simplicial boundary maps
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without actually mentioning the homology groups. This computational viewpoint,
with homology being numbers rather than groups, prevailed from when Poincaré first
started serious work on homology around 1900, up until the 1920’s when the more
abstract viewpoint of groups entered the picture. During this period ‘homology’ meant
primarily ‘simplicial homology,” and it was another 20 years before the shift to singular
homology was complete, with the final definition of singular homology emerging only
in a 1944 paper of Eilenberg, after contributions from quite a few others, particularly
Alexander and Lefschetz. Within the next few years the rest of the basic structure
of homology theory as we have presented it fell into place, and the first definitive
treatment appeared in the classic book [Eilenberg-Steenrod] of 1952.

Exercises

1. What familiar space is the quotient A-complex of a 2-simplex [v,, V1, V> ] obtained
by identifying the edges [vy, v,] and [v,, v, ], preserving the ordering of vertices?

2. Show that the A-complex obtained from A® by performing the edge identifications
[vg,v1] ~ [vy,v3] and [vg,v,] ~ [V,, V3] deformation retracts onto a Klein bottle.
Find other pairs of identifications of edges which produce A-complexes deformation
retracting onto a torus, a 2-sphere, and RP.

3. Construct a A-complex structure on RP" as a quotient of a A-complex structure

on S™ having vertices the two vectors of length 1 along each coordinate axis in R""!.

4. Compute the simplicial homology groups of the triangular parachute obtained from
A? by identifying its three vertices to a single point.
5. Compute the simplicial homology groups of the Klein bottle using the A-complex
structure described at the beginning of this section.

6. Compute the simplicial homology groups of the A-complex obtained from n + 1
2-simplices A3, - -+, A? by identifying all three edges of A3 to a single edge, and for
i > 0 identifying the edges [v,, v,] and [v,,v,] of A? to a single edge and the edge
[vg, V5] to the edge [v,,v,] of A? .

7. Find a way of identifying pairs of faces of A® to produce a A-complex structure
on §° having a single 3-simplex, and compute the simplicial homology groups of this
A-complex.

8. Construct a 3-dimensional A-complex X from n tetrahe-

dra Ty, ---,T, by the following two steps. First arrange the

tetrahedra in a cyclic pattern as in the figure, so that each T;

shares a common vertical face with its two neighbors T, _; and

T;,,, subscripts being taken mod #. Then identify the bottom face of T; with the top
face of T;,, for each i. Show the simplicial homology groups of X in dimensions 0,
1,2, 3 are 7, Z,,, 0, Z respectively. [The space X is an example of a lens space; see
Example 2.43 for the general case.]
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9. Compute the homology groups of the A-complex X obtained from A™ by identify-
ing all pairs of faces having the same dimension. Thus X has a single k-simplex for
each k < n.

10. Show that the quotient space of a finite collection of disjoint 2-simplices ob-
tained by identifying pairs of edges is always a surface, i.e., locally homeomorphic to
R?. [Optional refinement: show the edges can always be oriented so as to define a
A-complex structure on the surface.]

11. Show that if A is a retract of X then the map H, (A)— H,(X) induced by the
inclusion A C X is injective.

12. Show that chain homotopy of chain maps is an equivalence relation.

13. Verify that f ~ g implies f, = g, for induced homomorphisms of reduced
homology groups.

14. Determine whether there exists a short exact sequence 0—72,—Zg®7Z,—7Z,— 0.
More generally, determine which abelian groups A fit into a short exact sequence
0—Z,m—A—Z,»—0 with p prime. What about the case of short exact sequences
0—»2—A—17,—07?

15. For an exact sequence A—B—C— D —E show that C = 0 iff the map A—B
is surjective and D — E is injective. Thus a map A— X induces isomorphisms on all
homology groups iff H,(X,A) = 0 for all n.

16. Show: (a) Hy(X,A) = 0 iff A contains at least one point in each path-component
of X. (b) H,(X,A) =0 iff H,(A)— H,(X) is surjective and each path-component of
X contains at most one path-component of A.

17. (a) Compute the homology groups H,, (X, A) when X is S2or S'xS' and A isa
finite set of points in X.

(b) Compute the homology groups H, (X,A) and

H, (X,B) where X is a closed orientable surface >

of genus two and A and B are the circles shown in

the figure.

18. Show that for the subspace Q C R, the relative homology group H, (R, Q) is free
abelian and find a basis.

19. Compute the homology groups of the subspace of IxXI consisting of the four
boundary edges plus all points in the interior whose first coordinate is rational.

20. Show that H,(X) ~ H,,,(SX) for all n, where SX is the suspension of X.

21. Making the preceding problem more concrete, construct explicit chain maps
$:C,(X)—C,,,(SX) which induce isomorphisms H,(X)—H, ., (SX).

22. Prove by induction on dimension the following facts about the homology of a
finite-dimensional CW complex X, using the observation that X"/X"! is a wedge
sum of n-spheres:
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(@) If X has dimension n then H;(X) =0 for i > n and H,(X) is free.

(b) H, (X) is free with basis in bijective correspondence with the 7n-cells if there are
no cells of dimension n —1 or n + 1.

(c) If X has k n-cells, then H, (X) is generated by at most k elements.

23. Show that the second barycentric subdivision of a A-complex is a simplicial
complex. Namely, show that the first barycentric subdivision produces a A-complex
with the property that each simplex has all its vertices distinct, then show that for a
A-complex with this property, barycentric subdivision produces a simplicial complex.

24. Show that each n-simplex in the barycentric subdivision of A™ is defined by n
inequalities t; <t; <--- <t; inits barycentric coordinates, where (iy,---,i,) isa
permutation of (0,---,n).

25. Find an explicit, noninductive formula for the barycentric subdivision operator
S:C,(X)—=Cp(X).

26. Show that H,(X, A) is not isomorphic to ﬁl (X/A) if X = [0,1] and A is the
sequence 1, Y/, 1/;, - - - together with its limit 0. [See Example 1.25.]

27. Let f:(X,A)—(Y,B) be a map such that both f:X—Y and the restriction
f:A— B are homotopy equivalences.
(@) Show that f, :H,(X,A)—H,(Y,B) is an isomorphism for all n.
(b) For the case of the inclusion f: (D", S" ') < (D", D" — {0}), show that f is not
a homotopy equivalence of pairs, i.e., there is no g: (D", D" — {0}) — (D", S" 1)
such that fg and gf are homotopic to the identity through maps of pairs.

28. Let X be the cone on the 1-skeleton of A%, i.e., the union of all line segments
joining points in the six edges of A% to the barycenter of A%. Compute the local
homology groups H, (X,X — {x}) for all x € X. Define 0X to be the subspace of
points x such that H, (X, X — {x}) = 0 for all n, and compute the local homology
groups H,, (0X,0X — {x}). Use these calculations to determine which subsets A ¢ X
have the property that f(A) C A for all homeomorphisms f:X—X.

29. Show that S'xS! and S' v $' v §? have isomorphic homology groups in all
dimensions, but their universal covering spaces do not.

30. In each of the following commutative diagrams assume that all maps but one are
isomorphisms. Show that the remaining map must be an isomorphism as well.

A——B A——B A—B
N/ ! ! ! I
C C——D C——D

31. Using the notation of the five-lemma, give an example where the maps «, S, 6,
and ¢ are zero but y is nonzero. This can be done with short exact sequences in
which all the groups are either Z or 0.
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2.2 Computations and Applications

Now that the basic properties of homology have been established, we can begin
to move a little more freely. Our first topic, exploiting the calculation of H, (S™), is
Brouwer’s notion of degree for maps S"™— S™. Historically, Brouwer’s introduction
of this concept about 1910 preceded the rigorous development of homology, so his
definition was rather different, using the technique of simplicial approximation which
we explain in §2.C. The later definition in terms of homology is certainly more elegant,
though perhaps with some loss of geometric intuition. More in the spirit of Brouwer’s
definition is a third approach using differential topology, presented very lucidly in
[Milnor 65].

Degree

For a map f:S"—S", the induced f, :PNIn(S”)—>}NIn(S”) is a homomorphism
from an infinite cyclic group to itself and so must be of the form f, () = dx for
some integer d depending only on f. This integer is called the degree of f, deg f.
Here are some basic properties of degree.

(@) degll =1,since 1, = 1.

(b) deg f = 0 if f is not surjective. For if we choose a point x, € S — f(S™) then f
can be factored as a composition " —S" — {x,} — S" and H, (S" — {x,}) =0
since S™ — {x,} is contractible. Hence f, = 0.

(c) If f =g then deg f = degg since f, = g, . The converse statement, that f ~ g
if deg f = degg, is a fundamental theorem of Hopf from around 1925 which we
will prove in §4.2.

(d) deg fg =deg fdegg,since (fg), = f.9x- Aconsequence of this is that deg f =
+1 if f is ahomotopy equivalence since fg ~ 1 implies deg f degg = degl = 1.

(e) deg f = —1 if f is a reflection of S", fixing the points in a subsphere S"!
and interchanging the two complementary hemispheres. For we can give S" a
A-complex structure with these two hemispheres as its two n-simplices A}' and

%, and the n-chain A' — A} represents a generator of H, (S") as we saw in
Example 2.23, so the reflection interchanging A} and A} sends this generator to
its negative.

—1)™*! since it is the

(f) The antipodal map -1:S"—S", x — —x, has degree (
composition of n + 1 reflections, each changing the sign of one coordinate in
R™H,

(g) If f£:S8"—S™ has no fixed points then deg f = (—1)""!. Forif f(x) # x then the
line segment from f(x) to —x, defined by t — (1 —t)f(x) —tx for0<t <1,
does not pass through the origin. Hence if f has no fixed points, the formula
filx) =[(1 -t f(x)—tx]/I(1 —t)f(x) — tx]| defines a homotopy from f to
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the antipodal map. Note that the antipodal map has no fixed points, so the fact
that maps without fixed points are homotopic to the antipodal map is a sort of
converse statement.

Here is an interesting application of degree:

|| Theorem 2.28. S™ has a continuous field of nonzero tangent vectors iff n is odd.

Proof: Suppose x — v (x) is a tangent vector field on §™, assigning to a vector x € S™
the vector v (x) tangent to S™ at x. Regarding v (x) as a vector at the origin instead
of at x, tangency just means that x and v (x) are orthogonal in R"*!. If v(x) # 0 for
all x we may normalize v(x) so that |v(x)| =1 by replacing v(x) by v(x)/|v(x)].
Assuming this has been done, consider the great circle (cost)x + (sint)v(x) in the
plane spanned by x and v (x). Letting t go from 0 to 7t defines a homotopy f;(x) =
(cost)x + (sint)v(x) from the identity map of S™ to the antipodal map —1. This
implies that deg(—1) = deg 1, hence (-1t

Conversely, if n is odd, say n = 2k — 1, we can define v (x, X5, - -+, Xop_1, Xox) =

=1 and n must be odd.

(=%5,%X71, "y =Xy Xox—1)- Then v(x) is orthogonal to x, so v is a tangent vector
field on S™ which is nonzero at all points. a

For the much more difficult problem of finding the maximum number of tan-
gent vector fields on S™ which are linearly independent at each point, see [VBKT] or
[Husemoller].

Here is another nice application of degree, giving a partial answer to a question
raised in Example 1.43:

Proposition 2.29. 7, is the only nontrivial group which can act freely on S™ if n is

even.

Recall that an action of a group G on a space X is a homomorphism from G
to the group Homeo(X) of homeomorphisms X — X, and the action is free if the
homeomorphism corresponding to each nontrivial element of G has no fixed points.
In the case of S", the antipodal map x — —x generates a free action of 7.

Proof: Since the degree of a homeomorphism must be +1, an action of a group G
on S" determines a degree function d:G— {x1}. This is a homomorphism since
deg fg = deg f degg. If the action is free, then d sends every nontrivial element of
G to (—=1)""! by property (g) above. Thus when = is even, d has trivial kernel, so
GcC1Z,. m|

We shall next describe a technique for computing degrees which can be applied
to most maps that arise in practice. Suppose f:5"—S" has the property that for
some point y € S", the preimage f !(y) consists of only finitely many points, say
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X1y, Xy - Let Uy, ---, U, be disjoint neighborhoods of these points, mapped by f
into a neighborhood V of y. Then f(U; — x;) C V — y for each i, and we have a
commutative diagram

 HUU-x)—L g (v, v -y
S T
H,(S" S"-x;) ——— H,(§" S"- f " '(y) —=— H,(5" S"-y)

[ R

H,(S") H,(S")

where all the maps are the obvious ones, in particular k; and p; are induced by inclu-
sions. The two isomorphisms in the upper half of the diagram come from excision,
while the lower two isomorphisms come from exact sequences of pairs. Via these four
isomorphisms, the top two groups in the diagram can be identified with H,,(S") ~ Z,
and the top homomorphism f, becomes multiplication by an integer called the local
degree of f at x;, written deg f|x;.

For example, if f is a homeomorphism, then y can be any point and there is
only one corresponding x;, so all the maps in the diagram are isomorphisms and
deg f'|x; = deg f = +1. More generally, if f maps each U; homeomorphically onto
V, then deg f|x; = =1 for each i. This situation occurs quite often in applications,
and it is usually not hard to determine the correct signs.

Here is the formula which reduces degree calculations to computing local degrees:

| Proposition 2.30. deg f = 3, deg f|x;.

Proof: By excision, the central term H,,(S",S"™ — f~'()) in the preceding diagram
is the direct sum of the groups H, (U;,U; — x;) = Z, with k; the inclusion of the
i'" summand. Since the upper triangle commutes, the projections of this direct sum
onto its summands are given by the maps p;. Identifying the outer groups in the
diagram with Z as before, commutativity of the lower triangle says that p;j(1) = 1,
hence j(1) = (1,---,1) = >; k;(1). Commutativity of the upper square says that the
middle f, takes k;(1) to deg f|x;, hence > k;(1) = j(1) is taken to > ;deg f|x;.
Commutativity of the lower square then gives the formula deg f = > ;deg f|x;. O

Example 2.31. We can use this result to construct amap S™— S™ of any given degree,
for each n > 1. Let q:S"—\/, S be the quotient map obtained by collapsing the
complement of k disjoint openballs B; in ™ to a point, and let p:\/, S — S" identify
all the summands to a single sphere. Consider the composition f = pq. For almost all
y € S" we have f () consisting of one point x; in each B;. The local degree of f at
x; is =1 since f is a homeomorphism near x;. By pre-composing p with reflections
of the summands of \/;, S™ if necessary, we can make each local degree either +1 or
—1, whichever we wish. Thus we can produce a map S"—S" of degree +k.
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Example 2.32. In the case of Sl, the map f(z) = zk, where we view S' as the unit
circle in C, has degree k. This is evident in the case k = 0 since f is then constant.
The case k < 0 reduces to the case k > 0 by composing with z — z !, which is a
reflection, of degree —1. To compute the degree when k > 0, observe first that for
any y € st f’l(y) consists of k points xy, -- -, x; near each of which f is a local
homeomorphism. Near each x; the map f can be homotoped, stretching by a factor
of k without changing local degree, to become the restriction of a rotation of S'. A
rotation has degree +1 since it is homotopic to the identity, and since a rotation is a
homeomorphism, its degree equals its local degree at any point. Hence deg f|x; = 1

and deg f = k.

Another way of obtaining a map S"—S" of degree k is to take a repeated sus-
pension of the map z — zFin Example 2.32, since suspension preserves degree:

’ Proposition 2.33. degSf = deg f, where Sf:S""1—S"*! s the suspension of the
map f:S"—S".

Proof: Let CS™ denote the cone (S™xI)/(S™x1) with base S" = $"x0 c CS",
so CS™/S™ is the suspension of S™. The map f induces Cf:(CS", ™) — (CS",S™)

with quotient S f. The naturality of the boundary maps (s _o (5™
in the long exact sequence of the pair (CS",S™) then nel ~ "
gives commutativity of the diagram at the right. Hence le * lf *
if f, is multiplication by d, so is Sf, . 0 Hea(S™ Ta> H,(S™)

Note that for f:S™"—S", the suspension Sf maps only one point to each of the
two ‘poles’ of S™*1. This implies that the local degree of Sf at each pole must equal
the global degree of Sf. Thus the local degree of a map S —S" can be any integer
if n > 2, just as the degree itself can be any integer when n > 1.

Cellular Homology

Cellular homology is a very efficient tool for computing the homology groups of
CW complexes, based on degree calculations. Before giving the definition of cellular
homology, we first establish a few preliminary facts:

Lemma 2.34. If X is a CW complex, then:

(@) H, (X", X" 1 is zero for k + n, and is free abelian for k = n, with a basis in
one-to-one correspondence with the n-cells of X .

(b) Hi(X™) =0 for k > n. In particular, if X is finite-dimensional then H;(X) = 0
for k > dimX.

(c) The inclusion i: X" — X induces an isomorphism Ty :Hk(X") —H (X) ifk <n.

Proof: Statement (a) follows immediately from the observation that (X", X" !) is a
good pair and X”/X”’1 is a wedge sum of n-spheres, one for each n-cell of X. (We
are using Proposition 2.22 and Corollary 2.25 here.)
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The long exact sequence of the pair (X", X" ') contains segments
Hp (X", X" 1) — H (X" — Hy (X™) — Hp (X", X" 1)

If k is not equal to n or n — 1 then the outer two groups are zero by part (a), so
we have isomorphisms H, (X" ') ~ H,(X") for k # n, n — 1. Thus if k > n we
have Hj(X") ~ Hk(X"’l) ~ Hk(X"’Z) Ao ® Hk(XO) = 0, proving (b). Further, if
k < n then Hp(X") » Hk(X"”) ~ -0~ Hp (X™™) for all m > 0, proving (c) if X is
finite-dimensional.

The proof of (c) when X is infinite dimensional requires more work, and this can
be done in two different ways. The more direct approach is to descend to the chain
level and use the fact that a singular chain in X has compact image, hence meets only
finitely many cells of X by Proposition A.1 in the Appendix. Thus each chain lies
in a finite skeleton X™. So a k-cycle in X is a cycle in some X", and then by the
finite-dimensional case of (c), the cycle is homologous to a cycle in X" if n > k, so
i, :H(X")—H,(X) is surjective. Similarly for injectivity, if a k-cycle in X" bounds
a chain in X, this chain lies in some X™ with m = n, so by the finite-dimensional
case the cycle bounds a chain in X" if n > k.

The other approach is more general. From the long exact sequence of the pair
(X, X™) it suffices to show Hy(X,X") = 0 for k < n. Since H(X,X") ~ PNIk(X/X"),
this reduces us to showing:

() ﬁk(X) =0 for k < n if the n-skeleton of X is a point.

When X is finite-dimensional, (%) is immediate from the finite-dimensional case
of (c) which we have already shown. It will suffice therefore to reduce the infinite-
dimensional case to the finite-dimensional case. This reduction will be achieved by
stretching X out to a complex which is at least locally finite-dimensional, using a
special case of the ‘mapping telescope’ construction described in greater generality
in §3.F.

Consider X x [0, c) with its product cell structure, _
where we give [0, o) the cell structure with the integer '_'_|_|_|_|_ R

points as vertices. Let T = UiXix [i, ), a subcomplex -

of Xx[0,). The figure shows a schematic picture of T with [0, ) in the hor-
izontal direction and the subcomplexes X ix[i,i+ 1] as rectangles whose size in-
creases with i since X! ¢ X**!. The line labeled R can be ignored for now. We claim
that T = X, hence H,(X) = Hy(T) for all k. Since X is a deformation retract of
X X [0, ) it suffices to show that Xx [0, o) deformation retracts also onto T. Let
Y; = TU(XX[i,)). Then Y; deformation retracts onto Y;,, since Xx[i,i+1] defor-
mation retracts onto X'x [i,i+1]uXx{i+ 1} byProposition 0.16. If we perform the
deformation retraction of Y; onto Y,,; during the t-interval [1 — 1/2%,1 — 1/2"1],
then this gives a deformation retraction f; of Xx[0,o) onto T, with points in
X'x[0, %) stationary under fifort=1-1/ 2i+1  Continuity follows from the fact
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that CW complexes have the weak topology with respect to their skeleta, so a map is
continuous if its restriction to each skeleton is continuous.

Recalling that X% isa point,let R C T be the ray X% [0, ), andlet Z C T be the
union of this ray with all the subcomplexes X % {i}. Then Z/R is homeomorphic to
Vi X i a wedge sum of finite-dimensional complexes with #-skeleton a point, so the
finite-dimensional case of (*) together with Corollary 2.25 describing the homology
of wedge sums implies that ﬁk(Z /R) = 0 for k < n. The same is therefore true for
Z, from the long exact sequence of the pair (Z,R), since R is contractible. Similarly,
T/Z is a wedge sum of finite-dimensional complexes with (n + 1)-skeleton a point,
since if we first collapse each subcomplex X' x {i} of T to a point we obtain the infinite
sequence of suspensions SX' ‘skewered’ along the ray R, and then if we collapse R to
a point we obtain ;32X * where X' is the reduced suspension of X!, obtained from
SX' by collapsing the line segment X°x [4,i+1] to apoint, so =X’ has (n+1)-skeleton
a point. Thus ﬁk(T/Z) = 0 for k < n + 1, and then the long exact sequence of the
pair (T, Z) implies that ﬁk(T) = 0 for k < n, and we have proved (x). |

Let X be a CW complex. Using Lemma 2.34, portions of the long exact sequences
for the pairs (X", X™), (X", X" 1), and (X" !, X" ?) fit into a diagram

/0

. H,(X"™") = H,(X)
\ /
. HWXY
(Xn+1’Xn) &» Hn(Xn’anl) dn Hnil(anl,anZ) .
m /J'Yn,1
H, (X"

0

where d,,,, and d, are defined as the compositions j,0,,; and j,_,0

- Hn+1

i.e., the
‘relativized’ boundary maps 9,,.; and 0,,. The composition d,d,,,; includes two

no

successive maps in one of the exact sequences, hence is zero. Thus the horizontal
row in the diagram is a chain complex, called the cellular chain complex of X since
H, (X" X""1) is free with basis in one-to-one correspondence with the n-cells of X,
so one can think of elements of H, (X", X "-1y a5 linear combinations of n-cells of X.
The homology groups of this cellular chain complex are called the cellular homology
groups of X. Temporarily we denote them HﬁW(X ).

| Theorem 2.35. HS" (X) =~ H,,(X).

Proof: From the diagram above, H, (X) can be identified with Hn(X")/Im Optl-
Since j, is injective, it maps Imad,,, isomorphically onto Im(j,0,,,) = Imd,
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and H, (X") isomorphically onto Im j, = Kerd,,. Since j,_, is injective, Kerd, =
Kerd,. Thus j, induces an isomorphism of the quotient H, (X")/Imd, ,; onto
Kerd, /Imd,, ;. O

Here are a few immediate applications:

(i) H,(X) =0 if X is a CW complex with no n-cells.

(ii) More generally, if X is a CW complex with k n-cells, then H,(X) is generated
by at most k elements. For Hn(X",X”_l) is free abelian on k generators, so
the subgroup Kerd,, must be generated by at most k elements, hence also the
quotient Kerd, /Imd,, .

(iii) If X is a CW complex having no two of its cells in adjacent dimensions, then
H, (X) is free abelian with basis in one-to-one correspondence with the n-cells
of X. This is because the cellular boundary maps d,, are automatically zero in
this case.

This last observation applies for example to CP" which has a CW structure with one
cell of each even dimension 2k < 2n as we saw in Example 0.6. Thus

Z fori=0,2,4,---,2n
H; () ~ {0 otherwise
Another simple example is S" xS™ with n > 1, using the product CW structure con-
sisting of a 0-cell, two n-cells and a 2n-cell.
It is possible to prove the statements (i)-(iii) for finite-dimensional CW complexes
by induction on the dimension, without using cellular homology but only the basic
results from the previous section. However, the viewpoint of cellular homology makes

(i)-(iii) quite transparent.

Next we describe how the cellular boundary maps d,, can be computed in terms
of degrees of maps of spheres. Assuming for the moment that n > 1, consider the
commutative diagram

A(xﬁ*

H,(DI', D) H, (D) H, (S5

l‘ba* l(pzx* Iqﬂ*

Hn(thXn—l) On I’_‘Inil(Xn—]) q « Flnil(Xn—l/Xn—Z)

X = |~

H, (X"'X"%) =5 H, (X" /X" X"7X"?)

where:
— &, is the characteristic map of the cell e}, and @, is its attaching map.
— g: X" ' X"1/X"? is the quotient map.
— 4g XL xn? —»S[;“l collapses the complement of the cell e};‘l to a point, the
resulting quotient sphere being identified with S};L’l = Dg’l /aDE’1 via the char-
acteristic map ®g.
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— Aqpt apgqsg* is the composition qgq@,, in other words, the attaching map
of e followed by the quotient map X" ! —>S,§l‘1 collapsing the complement of

1

ey in X" to a point.

The map &,,, takes a chosen generator [D}] € H,,(D%,dDy) to a generator x, of the
Z summand of Hn(X”,X"’l) corresponding to elr. Commutativity of the left half
of the diagram then gives d,, (xy) = ju_1®Px+0[Dg]. In terms of the basis {y;} for
H, ;(X""!,X"2) corresponding to the cells eg’l, the map qg, is the projection of
H,_ (X" 1/X""?) onto its Z summand corresponding to . Commutativity of the
diagram then yields the formula we are looking for:

d,(xy) = Z dypyg Where dz is the degree of the map A 4.
B

Note that > 5 d s has only finitely many nonzero terms since ﬁn_l (X" X"?) s
the direct sum of the groups ﬁn,l (Sg“l).

When n = 1 we have X" 2 = @, and the preceding analysis applies if we define
Y /@ to be the disjoint union of Y with a point. There is some logic to this definition
if one considers that Y/ should be a larger space than Y/y, = Y for y, € Y.
For actual calculations it is not necessary to resort to this trick since the cellular
boundary map d,: H; (X 1 x9) —Hy(X %) is the same as the simplicial boundary map
A (X)— Ay (X), which is easy to compute. In many cases of interest X is connected
and has only one 0-cell, and then d; must be 0, otherwise H,(X) would not be Z.

Example 2.36. Let M 4 be the closed orientable surface of genus g with its usual CW
structure consisting of one 0-cell, 2g 1-cells, and one 2-cell attached by the product
of commutators [a,b,] - [ag, bg], the associated cellular chain complex is:

0— 274729 4,7 0
As observed above, d; must be 0O since there is only one 0-cell. Also d, is 0 in
this case because each a; or b; appears along with its inverse in [a,,b;,]---[ay, b,],
so the maps A,z are homotopic to constant maps. Since d; and d, are both zero,
the homology groups of M, are the same as the cellular chain groups, namely, Z in
dimensions 0 and 2, and 79 in dimension 1.

Example 2.37. The closed nonorientable surface N, of genus g has a cell structure
with one 0-cell, g 1-cells, and one 2-cell attached by the word ajas3 - - - af]. Again
d; =0,and dZ:Z—>Zg is specified by the equation d,(1) = (2,---,2) since each a;
appears in the attaching word of the 2-cell with total exponent 2, which means that

each Ayg is homotopic to the map z — 22, of degree 2. Since d,(1) = (2,---,2), we
have d, injective and hence H,(N,) = 0. If we change the basis for 79 by replacing
the last standard basis element (0,---,0,1) by (1,---,1), we see that H,; (Ng) =

79 'e1z,.
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Example 2.38. Let X be obtained from S' v S' by attaching two 2-cells by the words
a’b~3 and b*(ab)™2. Then d,:7>—7° has matrix (_; ‘f) The two columns come
from abelianizing a’b~3 and b? (ab)’2 to 5a—3b and —2a + b, in additive notation.
The matrix has determinant —1, hence is an isomorphism. Therefore ﬁi(X ) =0 for
all i. Such a space X is called acyclic.

It is interesting to note that this acyclic complex X is not contractible, since
its fundamental group is nontrivial. Namely, 7T, (X) has the presentation {(a,b |
a’b~3,b3(ab)~?), and there is a nontrivial homomorphism from this group to the
group G of rotational symmetries of a regular dodecahedron, sending a to the rota-
tion p, through angle 277/5 about the axis through the center of a pentagonal face,
and b to the rotation p,, through angle 21r/3 about the axis through a vertex of this
face. The composition p,p,, is arotation through angle 1t about the axis through the
midpoint of an edge abutting this vertex. Thus the relations a’>=b’= (ab)2 defin-
ing 1, (X) become pZ = p?, = (papb)2 =1 in G, which means there is a well-defined
homomorphism p: 1, (X)— G sending a to p, and b to p,,. [tis not hard to see that
G is generated by p, and p;,, so p is surjective. With more work one can compute
that the kernel of p is Z,, generated by the element a’> =b®= (ab)z, and this Z, is
in fact the center of mr, (X). In particular, 1, (X) has order 120 since G has order 60.

After these 2-dimensional examples, let us now move up to three dimensions,
where we have the additional task of computing the cellular boundary map ds.

Example 2.39. A 3-dimensional torus

C a a
T3 = S'xS'xS! can be constructed ¢ 2 y b
from a cube by identifying each pair pl ¢ b b a
of opposite square faces as in the first p a b b a b
of the two figures. The second figure ¢ 4 7 c 4 A

shows a slightly different pattern of
identifications of opposite faces, with the front and back faces now identified via a
rotation of the cube around a horizontal left-right axis. The space produced by these
identifications is the product KxS' of a Klein bottle and a circle. For both T3 and
KxS' we have a CW structure with one 3-cell, three 2-cells, three 1-cells, and one
0-cell. The cellular chain complexes thus have the form

0—z-2, 73 %,73 % 7 0

In the case of the 3-torus T the cellular boundary map d, is zero by the same
calculation as for the 2-dimensional torus. We claim that d5 is zero as well. This
amounts to saying that the three maps A,z: S 2 §2 corresponding to the three 2-cells
have degree zero. Each A, maps the interiors of two opposite faces of the cube
homeomorphically onto the complement of a point in the target $? and sends the
remaining four faces to this point. Computing local degrees at the center points of
the two opposite faces, we see that the local degree is +1 at one of these points and
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—1 at the other, since the restrictions of Ayp to these two faces differ by a reflection
of the boundary of the cube across the plane midway between them, and a reflection
has degree —1. Since the cellular boundary maps are all zero, we deduce that Hi(T3)
is Z fori =0, 3, 73 for i = 1,2,and O for i > 3.

For KxS!, when we compute local degrees for the front and back faces we find
that the degrees now have the same rather than opposite signs since the map A,z on
these two faces differs not by a reflection but by a rotation of the boundary of the cube.
The local degrees for the other faces are the same as before. Using the letters A, B, C
to denote the 2-cells given by the faces orthogonal to the edges a, b, c, respectively,
we have the boundary formulas dse® = 2C, d,A = 2b, d>B =0 =d,C. It
follows that Hy(KxS') =0, Hy(KxS') = Z®7,,and H;(KxS') = 7®7&7,.

Many more examples of a similar nature, quotients of a cube or other polyhedron
with faces identified in some pattern, could be worked out in similar fashion. But let
us instead turn to some higher-dimensional examples.

Example 2.40: Moore Spaces. Given an abelian group G and an integer n > 1, we
shall construct a CW complex X such that H,(X) ~ G and H;(X) = 0 for i + n.
Such a space is called a Moore space, commonly written M (G,n) to indicate the
dependence on G and n. It is probably best for the definition of a Moore space
to include the condition that M (G,n) be simply-connected if n > 1. The ones we
construct will have this property.

As an easy special case, when G = Z,, we can take X to be S™ with a cell el
attached by amap S™ — S™ of degree m. More generally, any finitely generated G can
be realized by taking wedge sums of examples of this type for finite cyclic summands
of G, together with copies of S™ for infinite cyclic summands of G.

In the general nonfinitely generated case let F— G be a homomorphism of a free
abelian group F onto G, sending a basis for F onto some set of generators of G. The
kernel K of this homomorphism is a subgroup of a free abelian group, hence is itself
free abelian. Choose bases {x,} for F and {yg} for K, and write vz = >, dgyXy-
Let X" = \/, Sk, so H,(X") ~ F via Corollary 2.25. We shall obtain X from X" by
attaching cells eg“ via maps fg:S" — X" such that the composition of fz with the
projection onto the summand S has degree dgy- Then the cellular boundary map
d,,.; will be the inclusion K — F, hence X will have the desired homology groups.

The construction of fj generalizes the earlier construction of a map § "—S" of
given degree. Let f; map the complement of ., |dg,| disjoint balls in S™ to the
0-cell of X™, while mapping ldgy!| of the balls onto the summand S by maps of
degree +1 if dg, > 0, or degree —1 in the opposite case.

Example 2.41. By taking a wedge sum of the Moore spaces constructed in the preced-
ing example for varying n we obtain a connected CW complex with any prescribed
sequence of homology groups in dimensions 1,2,3,---.
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Example 2.42: Real Projective Space RP". As we saw in Example 0.4, RP" has a
CW structure with one cell e* in each dimension k < n, and the attaching map for
ek is the 2-sheeted covering projection @:S k=1, rpk-t, Computing the boundary
map d,, is the same as computing the degree of the composition sk=1 2, gpk-1 4,
RP*1/RP*2 = s with q the quotient map. The map q@ is a homeomorphism
when restricted to each component of Sk _ g%=2 and these two homeomorphisms
are obtained from each other by pre-composing with the antipodal map of S k=1 which
has degree (-1)k. Hence degqp = degll +deg(—1) =1+ (-1)%, and so dy is either
0 or multiplication by 2 according to whether k is odd or even. Thus the cellular
chain complex for RP" is

7YX 71 %750 if n is even

27%7257%7—0 ifnisodd

0—7-27-5%...
0—7-%7-2% ...

From this it follows that

7 for k =0 and for k = n odd
H (RP") =17, forkodd,0<k<n
0 otherwise.

Example 2.43: Lens Spaces. This example is somewhat more complicated. Given an

integer m > 1 and integers ¥, - - -, £,, relatively prime to m, define the lens space L =
L,,({1,---,¥,) tobe the orbit space gon-l /Z,, of the unit sphere §27=1  C" with the
action of Z,, generated by the rotation p(z,, - --,z,) = (e2T0/Mz ... ?Tiluimy )

rotating the jth C factor of C™ by the angle 27t j/m. In particular, when m = 2, p
is the antipodal map, so L = RP?""! in this case. In the general case, the projection
§?"1 Ll isa covering space since the action of Z,,, on S 2n=1 g free: Only the identity

element fixes any point of $°"~! since each point of $?*~! has some coordinate z |

nonzero and then e2™ikti/m

z;# z; for 0 < k <m, as aresult of the assumption that
; is relatively prime to m.
We shall construct a CW structure on L with one cell e in each dimension k <

2n — 1 and show that the resulting cellular chain complex is

0 m 0 0
—_— ...

0—7-%7-"7 77 %70

with boundary maps alternately 0 and multiplication by »1. Hence

Z fork=0,2n-1
H (L, (y,---,4,)) =12,, forkodd,0<k<2n-1
0 otherwise.

To obtain the CW structure, first subdivide the unit circle C in the n'" C factor
of C" by taking the points ¢>™/™ < C as vertices, j = 1,---,m. Joining the j
vertex of C to the unit sphere c C"! by arcs of great circles in g2n-1 yields
a (2n — 2)-dimensional ball BJZ.”’2 bounded by $2"73. Specifically, BJZ-"’2 consists of

the points cos 0 (0, - -+ ,0,e2™/™) +sin @ (z,, -+ +,2,_1,0) for 0 < 6 < 1r/2. Similarly,

SZn—3
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joining the j" edge of C to $*" 2 gives a ball BJZ-”’1 bounded by BJZ-”’2 and sz-’ffz,
subscripts being taken mod . The rotation p carries to itself and rotates C

by the angle 2mf,,/m, hence p permutes the BJZ-”’Z’S and the B?"’l‘s. A suitable

SZ’I’L—3

power of p, namely p” where ¥, = 1 mod m, takes each BJZ.”‘Z‘ and B;f"‘l to the
next one. Since p” has order m, it is also a generator of the rotation group Z,,, and
hence we may obtain L as the quotient of one Bf"‘l by identifying its two faces szv"‘2
and B77;® together via p”.

In particular, when n = 2, B;”’l is a lens-shaped 3-ball and |
L is obtained from this ball by identifying its two curved

disk faces via p", which may be described as the com-
position of the reflection across the plane containing
the rim of the lens, taking one face of the lens to the
other, followed by a rotation of this face through the angle
2mtl/m where £ = r{,. The figure illustrates the case (m, ) =
(7,2), with the two dots indicating a typical pair of identified points in the upper and
lower faces of the lens. Since the lens space L is determined by the rotation angle
21l /m, it is conveniently written L, ym- Clearly only the mod m value of { matters.
Itis a classical theorem of Reidemeister from the 1930’s that L;,,, is homeomorphic
t0 Ly iff m" = m and ¢’ = +¢*! mod m. For example, when m = 7 there are only
two distinct lens spaces L;,; and L,,;. The ‘if’ part of this theorem is easy: Reflecting
the lens through a mirror shows that Ly, ~ L_y,,,, and by interchanging the roles
of the two C factors of C* one obtains Lyjm = Ly-1,,,- In the converse direction,
Loy = Ly clearly implies m = m’” since 1 (Ly,,,) = Z,,. The rest of the theorem
takes considerably more work, however, involving either special 3-dimensional tech-
niques or more algebraic methods which generalize to classify the higher-dimensional
lens spaces as well. The latter approach is explained in [Cohen)].

Returning to the construction of a CW structure on L,, (¢, --,¥,), observe that
the (2n — 3)-dimensional lens space L,, (¢, --,¥,_;) sitsin L, ({;,---,¥,) as the
quotient of $*" 3, and L,,(¢;,---,¥,) is obtained from this subspace by attaching
two cells, of dimensions 2n — 2 and 2n — 1, coming from the interiors of sz.”‘l and
its two identified faces BJZA"’2 and B?f{ 2. Inductively this gives a CW structure on
L,,({{y,---,L,) with one cell e* in each dimension k < 2n — 1.

The boundary maps in the associated cellular chain complex are computed as
follows. The first one, d,,_;, is zero since the identification of the two faces of
BJZ."’1 is via a reflection (degree —1) across sz-”’l fixing $"3, followed by a rota-
tion (degree +1), so d,, ;(e*"!) 2n=2 _ p2n=2 _ (), The next boundary map
d,,_, takes e*"% to me*" 3 since the attaching map for e*" 2 is the quotient map
S 3L, (4, -+, €, ;) and theballs Bi"~* in $*"~ which project down onto e*" >
are permuted cyclically by the rotation p of degree +1. Inductively, the subsequent

= e

boundary maps d, then alternate between 0 and multiplication by m.
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Also of interest are the infinite-dimensional lens spaces L,, (£;,5,--+) = S8%/Z,,
defined in the same way as in the finite-dimensional case, starting from a sequence of
integers ¥, ¥, - - - relatively prime to m. The space L, (£;,¥,,---) is the union of the
increasing sequence of finite-dimensional lens spaces L,, (¢, ---,¥,) for n =1,2,...,
each of which is a subcomplex of the next in the cell structure we have just con-
structed, so L,, (;,¥5,---) is also a CW complex. Its cellular chain complex consists
of a Z in each dimension with boundary maps alternately 0 and m, so its reduced
homology consists of a Z,,, in each odd dimension.

In the terminology of §1.B, the infinite-dimensional lens space L,, (£1,¥,,---) is
an Eilenberg-MacLane space K(Z,,,1) since its universal cover §* is contractible, as
we showed there. By Theorem 1B.8 the homotopy type of L, (#;,¥,,---) depends
only on m, and not on the #;’s. This is not true in the finite-dimensional case, when
two lens spaces L,,({y,---,¥,) and L,,({,---,¥,) have the same homotopy type
iff £,---¢, = +k™{} --- {,, mod m for some integer k. A proof of this is outlined
in exercise 2 in §3.E and exercise 45 in §4.1. For example, the three-dimensional
lens spaces L;,5 and L,,; are not homotopy equivalent, though they have the same
fundamental group and the same homology groups. On the other hand, L,,; and L, ,;
are homotopy equivalent but not homeomorphic.

Euler Characteristic

For a finite CW complex X, the Euler characteristic X (X) is defined to be the
alternating sum >, (—1)"c, where c, is the number of n-cells of X, generalizing
the familiar formula vertices — edges + faces for 2-dimensional simplicial complexes.
The following result shows that X (X) canbe defined purely in terms of homology, and
hence depends only on the homotopy type of X. In particular, X (X) is independent
of the choice of CW structure on X.

|| Theorem 2.44. x(X) = Sa(=1)"rank H, (X).

Here the rank of a finitely generated abelian group is the number of Z summands
when the group is expressed as a direct sum of cyclic groups. We shall need the
following fact, whose proof we leave as an exercise: If 0—A—B—C—0 is a short
exact sequence of finitely generated abelian groups, then rank B = rank A + rank C.

Proof of 2.44: This is purely algebraic. Let
0—C -2 — >, —0

be a chain complex of finitely generated abelian groups, with cycles Z,, = Kerd,,,
boundaries B,, = Imd,,.;, and homology H,, = Z,/B,,. Thus we have short exact
sequences 0— 2, —C,—B,,_,—0 and 0—B,—Z, —H, — 0, hence

rank C,, = rank Z,, + rank B,,_;

rank Z,, = rank B, + rank H,,
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Now substitute the second equation into the first, multiply the resulting equation by
(—-1)", and sum over n to get >, (—1)"rank C,, = >, (—1)" rank H,,. Applying this
with C,, = H,, (X", X"1) then gives the theorem. O

For example, the surfaces M 4, and N, have Euler characteristics X (M) =2 -2g
and X (N g) = 2 — g. Thus all the orientable surfaces M g are distinguished from each
other by their Euler characteristics, as are the nonorientable surfaces N, and there
are only the relations X (My) = X (Ny).

Split Exact Sequences

Suppose one has aretraction v : X — A, so ¥i = 1 where i: A— X is the inclusion.
The induced map i, :H, (A)—H,(X) is then injective since r,i, = 1. From this it
follows that the boundary maps in the long exact sequence for (X, A) are zero, so the
long exact sequence breaks up into short exact sequences

0— H,(A) ——H,(X) 1> H,(X,A) — 0

The relation r,i, = 1 actually gives more information than this, by the following
piece of elementary algebra:

Splitting Lemma. For a short exact sequence 0 — A - B R C — 0 of abelian
groups the following statements are equivalent:

(@) There is a homomorphism p:B— A such that pi=1:A—A.
(b) There is a homomorphism s:C— B such that js =1:C—C.

(c) There is an isomorphism B ~ A® C making a commutative diagram

bt
<k

where the maps in the lower row are the obvious ones, a— (a,0), and (a,c)—c.

A

c——0

AeC

If these conditions are satisfied the exact sequence is said to split. Note that (c)
is symmetric: There is no essential difference between the roles of A and C.

Sketch of Proof: For (a) = (c) one checks that the map B—A®C, b — (p(b),j(b)),
is an isomorphism with the desired properties. For (b) = (c) one uses instead the
map A®C—B, (a,c) — i(a) + s(c). The opposite implications (c) = (a) and (¢) =
(b) are fairly obvious. If one wants to show (b) = (a) directly, one can define p(b) =
i (b - 5j(b)). Further details are left to the reader. O

Except for the implications (b) = (a) and (b) = (c), the proof works equally well
for nonabelian groups. In the nonabelian case, (b) is definitely weaker than (a) and (c),
and short exact sequences satisfying (b) only determine B as a semi-direct product
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of A and C. The difficulty is that s(C) might not be a normal subgroup of B. In the
nonabelian case one defines ‘splitting’ to mean that (b) is satisfied.

In both the abelian and nonabelian contexts, if C is free then every exact sequence
0—A i B J, C — 0 splits, since one can define s:C— B by choosing a basis {c,}
for C and letting s(c,) be any element b, € B such that j(b,) = c,. The converse
is also true: If every short exact sequence ending in C splits, then C is free. This is
because for every C there is a short exact sequence 0—A— B— C—0 with B free
— choose generators for C and let B have a basis in one-to-one correspondence with
these generators, then let B— C send each basis element to the corresponding gen-
erator — so if this sequence 0—A— B— C— 0 splits, C is isomorphic to a subgroup
of a free group, hence is free.

From the Splitting Lemma and the remarks preceding it we deduce that a retrac-
tion 7 : X — A gives a splitting H, (X) =~ H,(A) ® H, (X, A). This can be used to show
the nonexistence of such a retraction in some cases, for example in the situation of
the Brouwer fixed point theorem, where a retraction D" —S""! would give an im-
possible splitting H,,_;(D") =~ Hn,l(S"’l) éBHn,l(D”,S”’l). For a somewhat more
subtle example, consider the mapping cylinder M, of a degree m map fiSt—>Ss".
For the inclusion i:S" — M + of the domain S™, the homology long exact sequence
reduces to a short exact sequence

0 —— H,(S") —— H,(M;) —— H,(M;,S™) —— 0
I I I

m

0 z z Z, 0

If m > 1 this sequence does not split since Z is not isomorphic to Z®7,,, so S™ is
not a retract of M. In the simplest case of the degree 2 map S'—S!, z s 22, this
says the Mobius band does not retract onto its boundary circle.

Homology of Groups

In §1.B we constructed for each group G a CW complex K(G,1) having a con-
tractible universal cover, and we showed that the homotopy type of such a space
K(G,1) is uniquely determined by G. The homology groups H,,(K(G, 1)) therefore
depend only on G, and are usually denoted simply by H,,(G). The calculations for
lens spaces in Example 2.43 show that H,(Z,,) is Z,, for odd n and 0 for even n > 0.
Since S! isa K(Z,1) and the torusis a K(ZxZ, 1), we also know the homology of these
two groups. More generally the homology of finitely-generated abelian groups can be
computed from these examples using the Kiinneth formula in §3.B and the fact that
a product K(G,1)xK(H,1) isa K(GxH,1).

Here is an application of the calculation of H,(Z,,):

Proposition 2.45. If a finite-dimensional CW complex X is a K(G, 1), then the group
G = 11, (X) must be torsionfree.
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This applies to quite a few manifolds, for example closed surfaces other than
$% and RP?, and also many 3-dimensional manifolds such as complements of knots
in §3.

Proof: If G had torsion, it would have a finite cyclic subgroup Z,, for some m > 1,
and the covering space of X corresponding to this subgroup of G = 17, (X) would be
aK(z,,,1). Since X is a finite-dimensional CW complex, the same would be true of its
covering space K(Z,,,1), hence the homology of the K(Z,,,1) would be nonzero in
only finitely many dimensions. But this contradicts the fact that H, (Z,,) is nonzero
for infinitely many values of n. ]

Reflecting the richness of group theory, the subject of Homology of Groups is
quite extensive. A good starting place for those wishing to learn more is the textbook
[K.Brown], and at a more advanced level the books [Adem-Milgram] and [Benson 1992]
treat the subject from a mostly topological viewpoint.

Mayer-Vietoris Sequences

In addition to the long exact sequence of homology groups for a pair (X, A), there
is another sort of long exact sequence, known as a Mayer-Vietoris sequence, which
is equally powerful but is sometimes more convenient to use. For a pair of subspaces
A, B C X such that X is the union of the interiors of A and B, this exact sequence
has the form

. —H,(ANB)—2>H,(A) ® H,(B) — H,(X) —>H, (ANB) — ---

In addition to its usefulness for calculations, the Mayer-Vietoris sequence is also ap-
plied frequently in induction arguments, where one might know that a certain state-
ment is true for A, B, and AN B by induction, and then deduce that it is true for AUB
by the exact sequence.

The Mayer-Vietoris sequence is easy to derive from the machinery of §2.1. Let
C,,(A+ B) be the subgroup of C, (X) consisting of chains which are sums of chains in
A and chains in B. The usual boundary map 0:C,,(X)—C,,_; (X) takes C,,(A + B) to
C,,_1(A+B), sothe C,(A+B)’s form a chain complex. According to Proposition 2.21,
the inclusions C, (A + B) — C, (X) induce isomorphisms on homology groups. The
Mayer-Vietoris sequence is then the long exact sequence of homology groups asso-
ciated to the short exact sequence of chain complexes formed by the short exact
sequences

0— C,(ANB) =2 C,(A) ® C,(B) =4 C,(A+B) —0

where @(x) = (x,—x) and @(x,y) = x + v. The exactness of this short exact
sequence can be checked as follows. First, Ker ¢ = 0 since a chain in A N B which
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is zero as a chain in A (or in B) must be the zero chain. Next, Im@ C Kery since
Yy =0, and Kery C Im@ since for a pair (x,y) € C,(A)®C, (B) the condition
x + y = 0 implies x = —y, so x is a chain in both A and B, i.e., x € C,,(AN B)
and (x,y) = (x,—x) € Im@. Finally, exactness at C, (A + B) is immediate from the
definition of C, (A + B).

The boundary map 0:H,,(X)—H,,_; (An B) can easily be described by recalling
how the boundary map in the long exact sequence of homology groups associated
to a short exact sequence of chain complexes is defined. An element & € H,,(X) is
represented by a cycle z, and by barycentric subdivision or some other method we
can choose z to be a sum x + y of chains in A and B, respectively. It need not be
true that x and y are cycles individually, but 0x = -0y since d(x + ) = 0, and the
element dx € H,,_, (A N B) is represented by the cycle 0x = —0y.

There is also a formally identical Mayer-Vietoris sequence for reduced homology
groups, obtained by augmenting the previous short exact sequence of chain complexes
in the obvious way:

0 — Cy(ANB) —2— Co(A)® Co(B) —2— Cy(A + B) — 0

15 15@5 lf
0 7 ki 767 d 7 0

Mayer-Vietoris sequences can be thought of as the homology version of the van
Kampen theorem since if AN B is path-connected, the H; terms of the reduced Mayer-
Vietoris sequence yield an isomorphism H; (X) = H; (A) ® H;(B)/Im®. Thisis exactly
the abelianized statement of the van Kampen theorem, and H; is the abelianization
of mr; for path-connected spaces, as we show in §2.A.

There are Mayer-Vietoris sequences also for decompositions X = A U B such that
A and B are deformation retracts of neighborhoods U and V with UNV deformation
retracting onto An B. Under these assumptions the five-lemma implies that the maps
C,(A + B)—C,(U + V) induce isomorphisms on homology, hence also the maps
C,,(A+B)—(C, (X), which was all that we needed to obtain a Mayer-Vietoris sequence.
For example if X is a CW complex and A and B are subcomplexes, then we can
choose for U and V neighborhoods of the form N,(A) and N,(B) constructed in the
Appendix, which have the property that N,(A) N N,(B) = N;(An B).

Example 2.46. Take X = S™ with A and B the northern and southern hemispheres,
so that An B = S™!. Then in the reduced Mayer-Vietoris sequence the terms
ﬁi(A) GBFIi(B) are zero, so we obtain isomorphisms ﬁi(S”) ~ I:Ii,l(S”’1 ). This gives
another way of calculating the homology groups of S™ by induction.

Example 2.47. We can decompose the Klein bottle K as the union of two Mdbius
bands A and B glued together by a homeomorphism between their boundary circles.
Then A, B, and A n B are homotopy equivalent to circles, so the interesting part of
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the reduced Mayer-Vietoris sequence for the decomposition K = AU B is the segment
0 — H,(K) — H,(ANB) - H,(A)®H,(B) — H,(K) — 0

Themap ®is Z—7® 7, 1— (2,-2), since the boundary circle of a Mobius band wraps
twice around the core circle. Since ¢ is injective we obtain H,(K) = 0. Furthermore
we have H,(K) = Z& Z, since we can choose (1,0) and (1,-1) asabasis for Z& Z. All
the higher homology groups of K are zero from the earlier part of the Mayer-Vietoris
sequence.

Example 2.48. Let us describe an exact sequence which is somewhat similar to the
Mayer-Vietoris sequence and which in some cases generalizes it. If we are given two
maps f,g:X—Y then we can form a quotient space Z of the disjoint union of X x1I
and Y via the identifications (x,0) ~ f(x) and (x,1) ~ g(x), thus attaching one
end of XxI to Y by f and the other end by g. For example, if f and g are each the
identity map X — X then Z = XxS'. If only one of f and g, say f, is the identity
map, then Z is homeomorphic to what is called the mapping torus of g, the quotient
space of XxI under the identifications (x,0) ~ (g(x),1). The Klein bottle is an
example, with g a reflection S'—S?.
The exact sequence we want has the form

(%) oo — Hy (X) L2 (V) 5 H, (2) — H,y () L2225 H, () — -

where i is the evident inclusion Y — Z. To derive this exact sequence, consider
the map q: (X xI,Xx0I)— (Z,Y) that is the restriction to X xI of the quotient map
XxIIY—Z. The map g induces a map of long exact sequences:

e Hy (XXX XOI) 2 Ho(X X 3I) —25 Hy (X XT) —2 ..

|a« la |-

e H,(Z)Y) — % H(Y) —2 s H,(Z)

In the upper row the middle term is the direct sum of two copies of H, (X), and the
map i, is surjective since X xI deformation retracts onto X x {0} and Xx {1}. Sur-
jectivity of the maps i, in the upper row implies that the next maps are 0, which
in turn implies that the maps 0 are injective. Thus the map 0 in the upper row
gives an isomorphism of H,; (XX I, X x0I) onto the kernel of i, , which consists of
the pairs («,—«) for «x € H,(X). This kernel is a copy of H,(X), and the middle
vertical map q, takes (&,—«) to f,(x) — g,(c). The left-hand g, is an isomor-
phism since these are good pairs and g induces a homeomorphism of quotient spaces
(XXI)/(Xx0I)—Z/Y. Hence if we replace H,, ;(Z,Y) in the lower exact sequence
by the isomorphic group H,,(X) = Ker i, we obtain the long exact sequence we want.

In the case of the mapping torus of a reflection g:S'—S!, with Z a Klein bottle,
the interesting portion of the exact sequence (%) is
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0—H,(Z) — H,(SY) 2% H,(SY) — H,(Z) — Hy(SY) =25 H,(S)) — 0

I I I o I
z Z z Z

Thus H,(Z) = 0 and we have a short exact sequence 0—Z,—H,(Z)—Z—0. This
splits since Z is free, so H,(Z) = Z, ® Z. Other examples are given in the exercises.

If Y is the disjoint union of spaces Y; and Y,,with f:X—Y, and g: X—Y,, then
Z is the union of the mapping cylinders of these two maps. For example, suppose we
have a CW complex decomposed as the union of two subcomplexes A and B and we
take f and g to be the inclusions AnB — A and AnB < B. Then the double mapping
cylinder Z is homotopy equivalent to A U B since we can view Z as (A N B)xI with
A and B attached at the two ends, and then slide the attaching of A down to the B
end to produce AU B with (AN B)XxI attached at one of its ends. By Proposition 0.18
the sliding operation preserves homotopy type, so we obtain a homotopy equivalence
Z ~ AU B. The exact sequence () in this case is the Mayer-Vietoris sequence.

A relative form of the Mayer-Vietoris sequence is sometimes useful. If one has a
pair of spaces (X,Y) = (AU B,CuD) with C ¢ A and D C B, such that X is the
union of the interiors of A and B, and Y is the union of the interiors of C and D,
then there is a relative Mayer-Vietoris sequence

.« —H,(AnB,CND)—>H,(AC)®H,(B,D) — H, (X,Y) =2 - -

To derive this, consider the commutative diagram

0 0 0
l @ 1 1

0 C,(CnD) c.(C)s C,(D) C(C+D)—— 0
| |

0 C,(ANB) C,(A)®C,(B) —Y C.(A+B) —— 0

|
0 — C,(ANB,CAD) -2 C,(A,C)® C,(B,D) —— C,(A+B,C+D) — 0

| | |
0 0 0

where C,(A + B,C + D) is the quotient of the subgroup C,,(A + B) c C,(X) by its
subgroup C,(C + D) C C,(Y). Thus the three columns of the diagram are exact.
We have seen that the first two rows are exact, and we claim that the third row is
exact also, with the maps @ and ¢ induced from the @ and  in the second row.
Since @@ = 0 in the second row, this holds also in the third row, so the third row
is at least a chain complex. Viewing the three rows as chain complexes, the diagram
then represents a short exact sequence of chain complexes. The associated long exact
sequence of homology groups has two out of every three terms zero since the first
two rows of the diagram are exact. Hence the remaining homology groups are zero
too, and the third row is exact.
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The third column maps to 0—C, (Y)—C, (X)—C,(X,Y)—0, inducing maps
of homology groups which are isomorphisms for the X and Y terms as we have
seen above. So by the five-lemma the maps C,,(A + B,C + D)—C, (X, Y) also induce
isomorphisms on homology. The relative Mayer-Vietoris sequence is then the long
exact sequence of homology groups associated to the short exact sequence of chain
complexes given by the third row of the diagram.

Homology with Coefficients

There is an easy generalization of the homology theory we have considered so
far which behaves in a very similar fashion and sometimes offers technical advan-
tages. The generalization is defined using chains of the form > ; n;o; where each
o; is a singular n-simplex in X as before, but now the coefficients n; are taken
to lie in a fixed abelian group G rather than Z. Such #n-chains form an abelian
group C, (X;G), and in the relative case one defines C,, (X, A; G) = C,(X;G)/C,,(A; G).
The old formula for the boundary maps ¢ can still be used for arbitrary G, namely
o(>in;oy) = Zi’j(—l)jniai|[vo, o, 05,000, v, ], and 0° = 0 by the same calcula-
tion. So the groups C, (X;G) and C,(X,A;G) form chain complexes, whose ho-
mology groups H,(X;G) and H, (X,A;G) are called homology groups with coef-
ficients in G. Reduced groups ﬁn (X; G) are defined via the augmented chain complex

- — (Cy(X;G) - G — 0 with ¢ again defined by summing coefficients.

The case G = Z, is particularly simple since one is just considering sums of sin-
gular simplices with coefficients 0 or 1, so by discarding terms with coefficient 0
one can think of chains as just finite ‘unions’ of singular simplices. The boundary
formulas also simplify since one no longer has to worry about signs. Since signs are
an algebraic representation of orientation considerations, one can also ignore orienta-
tions, so homology with Z, coefficients is often the most natural tool in the absence
of orientability.

All the theory we developed in §2.1 for Z coefficients carries over directly to gen-
eral coefficient groups G, with no change in the proofs. The equivalence of simplicial
and singular homology with G coefficients also carries over without complication.
The same is true for Mayer-Vietoris sequences.

Differences between H, (X;G) and H, (X) begin to appear only when one starts
making calculations. In the simplest case that X is a point, the method used for G = Z
shows that H,(X;G) is G for n = 0 and O for n > 0. From this it follows just as for
G = Z that H,(S;G) is G for n = k and 0 otherwise.

Cellular homology also generalizes to homology with coefficients, with the cellu-
lar chain group Hn(X",X”’l) replaced by Hn(X”,X"’l;G) which is a direct sum of
G’s, one for each n-cell. The proof that the cellular homology groups H,E W (X) agree
with singular homology H, (X) extends immediately to give ng(X ;G) = H,(X;G).
The cellular boundary maps are given by the same formula as for 7Z coefficients,
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A (Zangen) =y pgdagnaes + where dyg is the degree of amap A,g:S™ ' —8"1
This follows from:

’ Lemma 2.49. Iff:Sk—>Sk has degree m, then f*:Hk(Sk;G)—>Hk(Sk;G) is multi-
plication by m.

Proof: As a preliminary observation, note that a homomorphism @ : G, — G, induces
maps @, :C,(X,A;G,)—C, (X, A;G,) commuting with boundary maps, so there are
induced homomorphisms @, :H, (X, A;G,)—H, (X, A; G,). These have various nat-
urality properties. For example, they give a commutative diagram mapping the long
exact sequence of homology for the pair (X, A) with G, coefficients to the correspond-
ing sequence with G, coefficients. Also, the maps @, commute with homomorphisms
f« induced by maps f:(X,A)—(Y,B).

Now let f:Sk—>Sk have degree m and let ¢ :Z— G take 1 to a given element

g € G. Then we have a commutative Sx

. _ Z = H(S%2) —— H(S%7) ~ Z
diagram as at the right, where commu- l‘p lqj v lq)
tativity of the outer two squares comes ~ Y * £, ~ *
from the inductive calculation of these G~ H(S%G) H(§56) = G

homology groups, reducing to the case k = 0 when the commutativity is obvious.
Since the diagram commutes, the assumption that the map across the top takes
1 to m implies that the map across the bottom takes g to mg. O

Example 2.50. It is instructive to see what happens for RP" when the coefficient
group G is chosen to be a field F. The cellular chain complex is

L F A FLF A FLFES0
Hence if F has characteristic 2, for example if F = Z,, then H,(RP";F) ~ F for
0 < k < n,amore uniform answer than with Z coefficients. On the other hand if F has
characteristic different from 2, then the boundary maps F -2, F are isomorphisms,
hence H, (RP"™;F) is F for k = 0 and for k = n odd, and is zero otherwise.

In §3.A we will see that there is a general algebraic formula expressing homology
with arbitrary coefficients in terms of homology with Z coefficients. Some easy special
cases which give much of the flavor of the general result are included in the exercises.

In spite of the fact that homology with Z coefficients determines homology with
other coefficient groups, there are many situations where homology with a suitably
chosen coefficient group can provide more information than homology with Z coef-
ficients. A good example of this is the proof of the Borsuk-Ulam theorem using 7,
coefficients in §2.B.

As another illustration, we will now give an example of a map f:X—Y which
induces trivial maps f, on homology with Z coefficients but not on homology with
Z,, coefficients for suitably chosen m. Thus homology with Z,, coefficients tells us
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that f is not homotopic to a constant map, which we would not know using only Z
coefficients.

Example 2.51. Let X be a Moore space M(Z,,,n), obtained from S" by attaching

= $™1 induces

a cell ¢! by a map of degree m. The quotient map f:X—X/S"
trivial homomorphisms on reduced homology with Z coefficients since the nonzero
reduced homology groups of X and $™*! occur in different dimensions. But with Z,,
coefficients the story is different, as we can see by considering the long exact sequence

of the pair (X,S™), which contains the segment
0= ﬁn+l (8" L) — I_NIrH—l (X5Z,) —fi> ﬁn+1 (X/8™; L)

Exactness says that f, is injective, hence nonzero since ﬁnﬂ (X;2,,) is Z,,, the cel-
lular boundary map H,,,(X"*!, x";z,)—H,(X",X"1,z,,) being 7,, —> 7, .

Exercises

1. Prove the Brouwer fixed point theorem for maps f:D"— D™ by applying degree
theory to the map S™ — S™ which sends both the northern and southern hemispheres
of §™ to the southern hemisphere via f. [This was Brouwer’s original proof.]

2. Given a map f:5°"—S%", show that there is some point x € S>" with either
f(x) =x or f(x) = —x. Deduce that every map RP?" — RP°" has a fixed point. Con-
struct maps RP?""! — RP?""! without fixed points, e.g., from linear transformations
R%*" — R*" without eigenvectors.

3. Let f:S"—S" be a map of degree zero. Show that there exist points x,y € S"
with f(x) = x and f(y) = —y. Use this to show that if F is a continuous vector
field defined on the unit ball D" in R" such that F(x) = 0 for all x, then there exists
a point on dD™ where F points radially outward and another point on D" where F
points radially inward.

4. Construct a surjective map S™—S" of degree zero, for each n > 1.

5. Show that any two reflections of S™ across different hyperplanes are homotopic,
in fact homotopic through reflections. [The linear algebra formula for a reflection, in
terms of inner products, may be helpful.]

6. Show that every map S —S"™ can be homotoped to have a fixed point if n > 0.

7. For an invertible linear transformation f:R"—R" show that the induced map
on H,(R™",R" — {0}) =~ ﬁn_l(R" —{0}) = Z is 1 or —1 according to whether the
determinant of f is positive or negative. [Use Gaussian elimination to show that the
matrix of f can be joined by a path of invertible matrices to a diagonal matrix with
+1’s on the diagonal.]

8. A polynomial f(z) with complex coefficients, viewed as a map C— C, can always
be extended to a continuous map of one-point compactifications f :§2—S%. Show
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that the degree of f equals the degree of f as a polynomial. Show also that the local
degree of f at aroot of f is the multiplicity of the root.

9. Compute the homology groups of the following 2-complexes: (a) The quotient of
$? obtained by identifying north and south poles to a point. (b) S L (S lvs 1) . (c) The
space obtained from a disk D? with the interiors of two disjoint subdisks deleted by
identifying all three resulting boundary circles together via homeomorphisms preserv-
ing clockwise orientations of these circles. (d) The quotient space of S'xS! obtained
by identifying points in the circle S'x {x,} which differ by 27r/m rotation and also
identifying points in the circle {xy}xS$ ! which differ by 27/n rotation.

10. Let X be the quotient space of S under the identifications x ~ —x for x in the
equator S'. Compute the homology groups H;(X). Do the same for S 3 with antipodal
points of the equatorial S c S° identified.

11. In an exercise for §1.2 we described a 3-dimensional CW complex obtained from
the cube I’ by identifying opposite faces via a one-quarter twist. Compute the ho-
mology groups of this complex.

12. Show that the quotient map S'xS'—§? collapsing the subspace S lvsttoa
point is not nullhomotopic by showing that it induces an isomorphism on H,. On the
other hand, show via covering spaces that any map S 25 5% S! is nullhomotopic.

13. Let X be the 2-complex obtained from S' with its usual cell structure by attaching
two 2-cells by maps of degrees 2 and 3, respectively.
(a) Compute the homology groups of all the subcomplexes A C X and the corre-
sponding quotient complexes X/A.
(b) Show that X ~ S 2, and that the only subcomplex A ¢ X with X/A ~ S 2 is the
trivial subcomplex consisting of the 0-cell alone.

14. Show that a map f:S"—S™ which satisfies f(x) = f(—x) for all x (such an f
is called an even function) must have even degree. Show that the degree must in fact
be zero when n is even. When n is odd, show there are even maps of any given even
degree. [Hints: Since f is even, it factors as a composition S — RP" — S". Using the
calculation of H,(RP") in the text, show that the induced map H,(S")— H,,(RP")
sends a generator to twice a generator when n is odd. It may be helpful to show that
the quotient map RP" — RP"/RP""! induces an isomorphism on H,, when n is odd.]

15. Show that if X is a CW complex then H, (X") is free by identifying it with the
kernel of the cellular boundary map H, (X", X" 1 —H,_, (X", X2y,

16. Consider A™ = [vg, -+, V, ] withits natural A-complex structure with k-simplices
[Vigs - »v; ] for iy < --- <. Compute the ranks of the simplicial (or cellular) chain
groups Ai(An) and the subgroups of cycles and boundaries. [Hint: Pascal’s triangle.]
Apply this, using also the previous problem, to show that the k-skeleton of A" has
homology groups ﬁi((An)k) equal to O for i < k, and free of rank (k’ll) for i = k.
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17. Show the isomorphism between cellular and singular homology is natural in the
following sense: A cellular map f:X—Y, i.e., one satisfying f(X") c Y" for all n,
induces chain maps f, between the cellular chain complexes of X and Y, hence also
fio tHSY (X)—HSY (Y), and the latter map corresponds to f, : H,, (X) — H,,(Y) under
the isomorphism HS" ~ H,,.

18. For a CW pair (X, A) show there is a relative cellular chain complex formed by
the groups Hl-(Xi, Xy Ai), having homology groups isomorphic to H, (X, A).

19. Compute H;(RP"/RP™) for m < n by cellular homology, using the standard CW
structure on RP" with RP™ as its m-skeleton.

20. For finite CW complexes X and Y, show that X (XXY) = X (X)X (Y).

21. If a finite CW complex X is the union of subcomplexes A and B, show that
X(X)=X(A)+X(B)-XAnB).

22. For X a finite CW complex and p : X — X an n-sheeted covering space, show that
X (X) =nxX).

23. Show that if M, the closed orientable surface of genus g, is a covering space
of M), then g = n(h — 1) + 1 for some n, namely, n is the number of sheets in
the covering. [Conversely, if g = n(h — 1) + 1 then there is an n-sheeted covering
My, —M,, as we saw in Example 1.41.]

24. Suppose we build S? from a finite collection of polygons by identifying edges
in pairs. Show that in the resulting CW structure on

$? the 1-skeleton cannot be either of the two graphs

shown, with five and six vertices. [This is one step in a

proof that neither of these graphs embeds in R?.]

25. Show that for each n € Z there is a unique function @ assigning an integer to
each finite CW complex, such that (a) @ (X) = @(Y) if X and Y are homeomorphic,
(b) p(X) = @A) + p(X/A) if A is a subcomplex of X, and (c) (p(SO) = n. For such
a function @ show that @(X) = @(Y) if X = Y.
26. For a pair (X, A), consider the space X U CA obtained from X by attaching a cone
on A.
(a) Show that X is a retract of X u CA iff A is contractible in X, i.e., there is a
homotopy f;:A— X with f;, the inclusion A — X and f, a constant map.
(b) Show that if A is contractible in X then H,(X,A) ~ H,(X)®H,_,(A). [Hint:
(XUCA)/X = SA, the suspension of A.]
27. The short exact sequences 0— C,,(A)—C,(X)—C, (X,A)—0 always split, but
why does this not always yield splittings H, (X) ~ H,(A)®H, (X,A)?
28. Use the Mayer-Vietoris sequence to compute the homology groups of:
(@) The space obtained from a torus S!xS! by attaching a Mobius band via a homeo-
morphism from the boundary circle of the Mobius band to the circle S T {xo} in
the torus.
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(b) The space obtained by attaching a Mébius band to RP? via a homeomorphism of
its boundary circle to the standard RP' c RP?.

29. The surface M, of genus g, embedded in R? in the standard way, bounds a
compact region R. Two copies of R, glued together by the identity map between their
boundary surfaces M, form a closed 3-manifold X. Compute the homology groups
of X via the Mayer-Vietoris sequence for this decomposition of X into two copies of
R. Also compute the relative groups H; (R, M,).
30. For the mapping torus Ty of a map f:X—X, we constructed in Example 2.48 a
long exact sequence --- — H,, (X) Aok, H,(X) — Hn(Tf) —H, (X) — ---. Use
this to compute the homology of the mapping tori of the following maps:
(a) A reflection 5252,
(b) A map S*—S? of degree 2.
(c) Themap S Iy« s — 5% S! which is the identity on one factor and a reflection on
the other.
(d) The map S'xS'—S!x S which is a reflection on each factor.
(e) The map S v st s« st which interchanges the two factors and then reflects
one of the factors.

31. Use the Mayer-Vietoris sequence to show there are isomorphisms PNIn(X vVY) =
Fln(X) GBPNIH(Y) if the basepoints of X and Y which are identified in X v Y are defor-
mation retracts of neighborhoods U c X and V C Y.

32. For SX the suspension of X, show by a Mayer-Vietoris sequence that there are
isomorphisms ﬁn(SX) ~ I—NIn,l(X) for all n.

33. Suppose the space X is the union of open sets Ay, ---, A, such that each inter-
section A; N --- NA; is either empty or has trivial reduced homology groups. Show
that ﬁi(X ) =0 for i = n— 1, and give an example showing this inequality is best
possible, for each n.

34. Derive the long exact sequence of a pair (X, A) from the Mayer-Vietoris sequence
applied to X U CA, where CA is the cone on A. [We showed after the proof of

~

Proposition 2.22 that H,(X,A) ~ H,,(X u CA) for all n.]

35. Use the Mayer-Vietoris sequence to show that a nonorientable closed surface,
or more generally a finite simplicial complex X for which H,(X) contains torsion,
cannot be embedded as a subspace of R® in such a way as to have a neighborhood
homeomorphic to the mapping cylinder of some map from a closed orientable surface
to X. [This assumption on a neighborhood is in fact not needed if one deduces the
result from Alexander duality in §3.3.]

36. Show that Hi(XxS”) ~ H(X)®H,;_,(X) for all i and n, where H; = 0 for
i < 0 by definition. Namely, show H;(XxS") ~ H;(X) & H;(XxS", X% {x,}) and
H;(XxS", Xx{xy}) ~ H;_, (XxS" 1 xx {xo}). [For the latter isomorphism the rela-
tive Mayer-Vietoris sequence yields an easy proof.]
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37. Give an elementary derivation for the Mayer-Vietoris sequence in simplicial ho-
mology for a A-complex X decomposed as the union of subcomplexes A and B.

38. Show that a commutative diagram

- —> Chs B,—C, By y— -
a0 U a1
'—#En+1 \‘Dn—#En \Dn—l_’"'

with the two sequences across the top and bottom exact, gives rise to an exact se-
quence --- — E,., — B, — (C,®D,, — E, — B,,_; — --- where the maps
are obtained from those in the previous diagram in the obvious way, except that
B, — C, ®D,, has a minus sign in one coordinate.

39. Use the preceding exercise to derive relative Mayer-Vietoris sequences for CW
pairs (X,Y) =(AuB,CuD) withA=Bor C=D.

40. From the long exact sequence of homology groups associated to the short ex-
act sequence of chain complexes 0 — C;(X) SN C;(X) — (Ci(X;2,)) — 0 deduce
immediately that there are short exact sequences

0— H;(X)/nH;(X) — H;(X;Z,) — n-Torsion(H;_, (X)) — 0

where n-Torsion(G) is the kernel of the map G SN G, g — ng. Use this to show that
PNIi(X; Z,) =0 for all i and all primes p iff PNIi(X) is a vector space over Q for all i.

41. For X a finite CW complex and F a field, show that the Euler characteristic X (X)
can also be computed by the formula X (X) = >,,(—-1)" dim H,,(X; F), the alternating
sum of the dimensions of the vector spaces H, (X; F).

42. Let X be a finite connected graph having no vertex which is the endpoint of just
one edge, and suppose that H,(X;Z) is free abelian of rank n > 1, so the group of
automorphisms of H,(X;Z) is GL,(Z), the group of invertible nxn matrices with
integer entries whose inverse matrix also has integer entries. Show that if G is a finite
group of homeomorphisms of X, then the homomorphism G— GL, (Z) assigning to
g:X— X the induced homomorphism g, : H, (X;Z)— H, (X;Z) is injective. Show the
same result holds if the coefficient group Z is replaced by Z,,, with m > 2. What goes
wrong when m = 2?

43. Show that a chain complex of finitely generated free abelian groups splits as the
direct sum of subcomplexes with only one or two nonzero terms, of the form

Use this result to deduce that if X is a CW complex with finitely many cells in each
dimension, then H;(X; G) is the direct sum of the following groups:

(a) a copy of G for each Z summand of H;(X)

(b) a copy of G/mG for each Z,, summand of H;(X)

(c) a copy of the kernel of G ™, G for each Z,, summand of H;_;(X).
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2.3 The Formal Viewpoint

Sometimes it is good to step back from the forest of details and look for gen-
eral patterns. In this rather brief section we will first describe the general pattern of
homology by axioms, then we will look at some common formal features shared by
many of the constructions we have made.

Axioms for Homology

For simplicity let us restrict attention to CW complexes and focus on reduced
homology to avoid mentioning relative homology. Then a (reduced) homology the-
ory assigns to each nonempty CW complex X a sequence of abelian groups PNLn(X )
and to each map f:X—Y between CW complexes a sequence of homomorphisms
fu :PNLn(X)—>PNln(Y) such that (fg), = f.9, and 1, = 1, and so that the following
three axioms are satisfied.

W) If f~g:X—Y,then f, = g, :h,(X)—h,(Y).
(2) There are boundary homomorphisms 0: h,, (X/A)—h,,_; (A) defined for each CW
pair (X, A), fitting into an exact sequence

.. —a>17ln(A) L,ﬂn(x) &fln(X/A) _a,ﬂn_l(A) LI
where i is the inclusion and g is the quotient map. Furthermore the boundary

maps are natural: For f: (X, A)— (Y, B) inducing a quotient map f:X/A—Y/B,
there are commutative diagrams

ha(X/A) —2 R (A)
lﬁ lf*
. (Y/B) —2— Ji, (B)

(3) For a wedge sum X = \/, X, with inclusions i,:X, — X, the direct sum map
Brigs : Dy Ny (X,) —h,, (X) is an isomorphism for each n.

Negative values for the subscripts n are permitted. Ordinary singular homology is
zero in negative dimensions by definition, but interesting homology theories with
nontrivial groups in negative dimensions do exist.

The third axiom may seem less substantial than the first two, and indeed for finite
wedge sums it can be deduced from the first two axioms, though not in general for
infinite wedge sums, as an example in the exercises shows.

It is also possible, and not much more difficult, to give axioms for unreduced ho-
mology theories. One supposes one has relative groups h,, (X, A) defined, specializing
to absolute groups by setting h,,(X) = h,,(X,@). Axiom (1) is replaced by its obvi-
ous relative form, and the axiom (2) is broken into two parts, the first hypothesizing
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a long exact sequence involving these relative groups, with natural boundary maps,
the second stating some version of excision, for example h, (X,A) = h,(X/A,A/A)
if one is dealing with CW pairs. In axiom (3) the wedge sum is replaced by disjoint
union.

These axioms for unreduced homology are essentially the same as those origi-
nally laid out in the highly influential book [Eilenberg-Steenrod], except that axiom
(3) was omitted since the focus there was on finite complexes, and there was another
axiom specifying that the groups h,, (point) are zero for n # 0, as is true for singular
homology. This axiom was called the ‘dimension axiom,” presumably because it spec-
ifies that a point has nontrivial homology only in dimension zero. It can be regarded
as a normalization axiom, since one can trivially define a homology theory where it
fails by setting h,(X,A) = H, (X, A) for a fixed nonzero integer k. At the time
there were no interesting homology theories known for which the dimension axiom
did not hold, though only a short time afterwards a homology theory called ‘bordism’
was defined having the property that the bordism groups of a point are nonzero in
infinitely many dimensions. Axiom (3) seems to have appeared first in [Milnor 62].

Reduced and unreduced homology theories are essentially equivalent. From an
unreduced theory h one gets a reduced theory h by setting PNLn(X ) equal to the
kernel of the canonical map h, (X)— h, (point). In the other direction, one sets
h,(X) = PNLn(X +) where X, is the disjoint union of X with a point. We leave it
as an exercise to show that these two transformations between reduced and unre-
duced homology are inverses of each other. Just as with ordinary homology, one has
h,(X) = PNLn(X) ®h,,(x,) for any point x, € X, since the long exact sequence of the
pair (X, x,) splits via a retraction X — x,. Note that PNLn(xO) =0 for all n, as can be
seen by looking at the long exact sequence of reduced homology groups of the pair
(X0, Xg) -

The groups h,, (x,) = iNLn(SO) are called the coefficients of the homology theo-
ries h and FNL, in analogy with the case of singular homology with coefficients. One
can trivially realize any sequence of abelian groups G; as the coefficient groups of a
homology theory by setting h,, (X, A) = B, H,_;(X, A; G;).

In general, homology theories are not uniquely determined by their coefficient
groups, but this is true for singular homology: If h is a homology theory defined
for CW pairs, whose coefficient groups h,, (x,) are zero for n # 0, then there are
natural isomorphisms h, (X,A) =~ H,(X,A;G) for all CW pairs (X,A) and all n,
where G = h((x,). This will be proved in Theorem 4.58.

We have seen how Mayer-Vietoris sequences are quite useful for singular homol-
ogy, and in fact every homology theory has Mayer-Vietoris sequences, at least for CW
complexes. These sequences can be obtained directly from the axioms in the fol-
lowing way. For a CW complex X = A U B with A and B subcomplexes, consider
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the commutative diagram consisting of the exact sequences of the pairs (X,A) and
(B,AnB)

+ — h,.(B,ANB) — h,(ANB) — h,(B) — h,(B,ANB) — +-:

|~ l | =

+ —— hya(X,A) h,(A) h(X) —— h,(X,A) —

The vertical maps are induced by inclusions, and the vertical maps between relative
groups are isomorphisms since B/(A n B) = X/A. Then it is a purely algebraic fact,
whose proof is exercise 38 at the end of the previous section, that a diagram such as
this with every third vertical map an isomorphism gives rise to an exact sequence

c—nh,(AnB) L h,(A)eh,B) Lh, (X)-Sh, (ANB)— -

Categories and Functors

Formally, singular homology can be regarded as a sequence of functions H,, which
assign to each space X an abelian group H, (X) and to each map f:X—Y a homo-
morphism H,(f) = f, :H,(X)—H,(Y), and similarly for relative homology groups.
This sort of situation arises quite often, and not just in algebraic topology, so it is
useful to introduce some general terminology for it. Roughly speaking, ‘functions’
like H,, are called ‘functors,” and the domains and ranges of these functors are called
‘categories.” Thus for H,,, the domain category consists of topological spaces and con-
tinuous maps, or in the relative case, pairs of spaces and continuous maps of pairs,
and the range category consists of abelian groups and homomorphisms. A key point
is that one is interested not only in the objects in the category, e.g., spaces or groups,
but also in the maps, or ‘morphisms,’ between these objects.

Now for the precise definitions. A category C consists of:

(1) a collection Ob(C) of objects.

(2) sets Mor(X,Y) of morphisms for each pair X,Y € Ob(C), including a distin-
guished ‘identity’ morphism 1 = 1y € Mor(X, X) for each X.

(3) a‘composition of morphisms’ function - :Mor(X, Y) xMor(Y, Z) —Mor(X, Z) for
each triple X,Y,Z € Ob(C), satisfying f-1 = f, lof = f, and (f-g)-h =
Sfe(geh).

There are plenty of obvious examples, such as:

— The category of topological spaces, with continuous maps as the morphisms. Or
we could restrict to special classes of spaces such as CW complexes, keeping
continuous maps as the morphisms. We could also restrict the morphisms, e.g.,
the category of topological spaces with homeomorphisms as the morphisms.

— The category of groups, with homomorphisms as morphisms. Or the subcategory
of abelian groups, again with homomorphisms as the morphisms. Generalizing
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this is the category of modules over a fixed ring, with morphisms the module
homomorphisms.

— The category of sets, with arbitrary functions as the morphisms. Or the mor-
phisms could be restricted, e.g., to injections, or to surjections.

There are also many examples of categories where the morphisms are not simply
functions, for example:

— Any group G can be viewed as a category with only one object and with G as the
morphisms of this object, so that condition (3) reduces to two of the three axioms
for a group. If we require only these two axioms, associativity and a left and right
identity, we have a ‘group without inverses,’ usually called a monoid since it is
the same thing as a category with one object.

— A partially ordered set (X, <) can be considered a category where the objects are
the elements of X and there is a unique morphism from x to )y whenever x < y.
The relation x < x gives the morphism 1 and transitivity gives the composition
Mor(x, y)xMor(y,z)—Mor(x,z). The condition that x < yandy < x = x =
vy then says that Mor(x, y) UMor(y, x) contains at most one element for all pairs
X,y € X, i.e., there is at most one morphism between any two objects.

— There is a ‘homotopy category’ whose objects are topological spaces and whose
morphisms are homotopy classes of maps, rather than actual maps. This uses
the fact that composition is well-defined on homotopy classes: fyg, = f19; if
Jo=f1 and gy = g,.

— Chain complexes are the objects of a category, with chain maps as morphisms.
This category has various interesting subcategories, obtained by restricting the
objects. For example, we could take chain complexes whose groups are zero in
negative dimensions, or zero outside some finite range. Or we could restrict to
exact sequences, or short exact sequences. In each case we take morphisms to be
chain maps, i.e., commutative diagrams. Going a step further, there is a category
whose objects are short exact sequences of chain complexes and whose mor-
phisms are commutative diagrams of maps between such short exact sequences.

A functor F from a category C to a category D assigns to each object X in C
an object F(X) in D and to each morphism f € Mor(X,Y) a morphism F(f) €
Mor(F(X),F(Y)), such that F(1) = 1 and F(f-g) = F(f)<F(g). In the case of
the functor H, the latter two conditions are the familiar properties 1, = 1 and
(fg)yx = fi«g, of induced maps. Strictly speaking, what we have just defined is a
covariant functor. A contravariant functor would differ from this by assigning to
f € Mor(X,Y) a ‘backwards’ morphism F(f) € Mor(F(Y),F(X)) with F(1) = 1 and
F(f-g) = F(g)°F(f). A classical example of this is the dual vector space functor,
which assigns to a vector space V over a fixed scalar field K the dual vector space
F(V) = V* of linear maps V—K, and to each linear transformation f:V—W the
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dual map F(f) = f*:W*—V*, in the reverse direction. In the next chapter we will
study the contravariant version of homology, called cohomology.
A number of the constructions we have studied in this chapter are functors:

— The singular chain complex functor assigns to a space X the chain complex of
singular chains in X and to a map f:X—Y the induced chain map. This is
a functor from the category of spaces and continuous maps to the category of
chain complexes and chain maps.

— The algebraic homology functor assigns to a chain complex its sequence of ho-
mology groups and to a chain map the induced homomorphisms on homology
defines a functor from the category of chain complexes and chain maps to the
category whose objects are sequences of abelian groups and whose morphisms
are sequences of homomorphisms.

— The composition of the two preceding functors is the functor assigning to a space
its singular homology groups.

— The first example above, the singular chain complex functor, can itself be re-
garded as the composition of two functors. The first functor assigns to a space
X its singular complex A(X), a A-complex, and the second functor assigns to
a A-complex its simplicial chain complex. This is what the two functors do on
objects, and what they do on morphisms can be described in the following way. A
map of spaces f:X—Y induces amap f,:A(X)—A(Y) by composing singular
simplices A" — X with f. The map f, is a map between A-complexes taking the
distinguished characteristic maps in the domain A-complex to the distinguished
characteristic maps in the target A-complex. Call such maps A-maps and let
them be the morphisms in the category of A-complexes. Note that a A-map in-
duces a chain map between simplicial chain complexes, taking basis elements to
basis elements, so we have a simplicial chain complex functor taking the category
of A-complexes and A-maps to the category of chain complexes and chain maps.

— There is a functor assigning to a pair of spaces (X, A) the associated long exact
sequence of homology groups. Morphisms in the domain category are maps of
pairs, and in the target category morphisms are maps between exact sequences
forming commutative diagrams. This functor is the composition of two functors,
the first assigning to (X, A) a short exact sequence of chain complexes, the sec-
ond assigning to such a short exact sequence the associated long exact sequence
of homology groups. Morphisms in the intermediate category are the evident
commutative diagrams.

Another sort of process we have encountered is the transformation of one functor
into another, for example:
— Boundary maps H,(X,A)— H,_,(A) in singular homology, or indeed in any ho-
mology theory.



Section 2.3. The Formal Viewpoint 165

— Change-of-coefficient homomorphisms H,,(X;G,) — H,(X; G,) induced by a ho-
momorphism G, — G,, as in the proof of Lemma 2.49.

Formally, if one has two functors F,G:C— D then a natural transformation T from

F to G assigns amorphism Ty : F(X)— G(X) to each object F(X) F(f) F(Y)
X € C, in such a way that for each morphism f:X—Y in

C the square at the right commutes. The case that F and G 1TX 6 1TY
are contravariant rather than covariant is similar. G(X) G(Y)

We have been describing the passage from topology to the abstract world of cat-
egories and functors, but there is also a nice path in the opposite direction:

— To each category C there is associated a A-complex BC called the classifying
space of C, whose n-simplices are the strings X,— X; — --- — X,, of morphisms
in C. The n + 1 faces of this simpex are obtained by composing two adjacent
morphisms in the string (this yields n — 1 faces) or by deleting the first or last
morphism, to get the remaining two faces. In case C has a single object, whose
morphisms form a group G, then BC is the same as the A-complex BG con-
structed in Example 1B.7, a K(G, 1) space. In general, BC need not be a K(G, 1),
however. For example, if we start with a A-complex X and regard its set of sim-
plices as a partially ordered set C(X) under the relation of inclusion of faces,
then BC(X) is the barycentric subdivision of X.

— A functor F:C—D induces a map BC— BD. This is the A-map which sends an
n-simplex X,— X; — --- —X,, to the n-simplex F(Xy) = F(X;)— --- = F(X,,).

— A natural transformation from a functor F to a functor G induces a homotopy
between the induced maps of classifying spaces. We leave this for the reader to
make explicit, using the subdivision of A" xI into (n + 1)-simplices described
earlier in the chapter.

Exercises

1. If T,,(X,A) denotes the torsion subgroup of H, (X, A;Z), show that the functors
(X,A) — T,(X,A), with the obvious induced homomorphisms T,,(X,A)—T,(Y,B)
and boundary maps T, (X,A)—T,_;(A), do not define a homology theory. Do the
same for the ‘mod torsion’ functor MT, (X,A) = H,(X,A;2)/T,,(X,A).

2. Define a candidate for a reduced homology theory on CW complexes by PNln(X ) =
[1,,(X) /@®,H,(X). Thus h, (X) is independent of n and is zero if X is finite-
dimensional, but is not identically zero, e.g., for X =/, S ! Show that the axioms for
a homology theory are satisfied except that the wedge axiom fails.

3. Show that if & is a reduced homology theory, then fzn(point) = 0 for all n. Deduce
that there are suspension isomorphisms PNLn(X ) = ﬁn +1(8X) for all n.

4. Show that the wedge axiom for homology theories follows from the other axioms
in the case of finite wedge sums.
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Additional Topics
2.A Homology and Fundamental Group

There is a close connection between H; (X) and 1, (X), arising from the fact that
amap f:I— X can be viewed as either a path or a singular 1-simplex. If f is a loop,
with f(0) = f(1), this singular 1-simplex is a cycle since o f = f(1) — f(0).

Theorem 2A.1. By regarding loops as singular 1-cycles, we obtain a homomorphism
h:m(X,xy) —H,(X). If X is path-connected, then h is surjective and has kernel
the commutator subgroup of 1, (X), so h induces an isomorphism from the abelian-
ization of 1, (X) onto H, (X).

Proof: Recall the notation f =~ g for the relation of homotopy, fixing endpoints,
between paths f and g. Regarding f and g as chains, the notation f ~ g will mean
that f is homologous to g, thatis, f — g is the boundary of some 2-chain. Here are
some facts about this relation.

(i) If f is a constant path, then f ~ 0. Namely, f is the boundary of the constant
singular 2-simplex o having the same image point as f, since

00 = o |[vy,v,] -0 |[vg,vol + o |[vg,vi1=f—fF+f=f

(i) If f ~ g then f ~ g. To see this, consider a homo-

topy F:IxI—X from f to g. This yields a pair of singular 2 g Y3
2-simplices 0, and 0, in X by subdividing the square IxI 0,

into two triangles [v,,V;,v3] and [vg, V), V3], as shown in / o )
the figure. When one computes 0(o; — 05), the two restric- :
tions of F to the diagonal of the square cancel, leaving f — g % } Y

together with two constant singular 1-simplices from the left and right edges of the
square. By (i) these are boundaries, so f — g is also a boundary.

(iii) f+-g ~ f +g,where f.g denotes the product of the paths 2
f and g. In fact we have the formula 0o = g — f-g + f where g
0 : A’ =X is the composition of the orthogonal projection of g
A% = [vg, V1, Vo] onto the edge [vy, v,] followed by the map S
f-g:lvy,v]—X. Y f 1
(iv) f ~ —f, where f is the inverse path of f. This follows from the preceding three
observations, which give f + f ~ f-f ~ 0.

Applying (ii) and (iii) to loops, it follows that we have a well-defined homomor-
phism h: 1 (X, xy) — H; (X) sending the homotopy class of aloop f to the homology
class of the 1-cycle f.
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To show h is surjective when X is path-connected, leta 1-cycle > ; n;o; be given.
After relabeling the o;’s we may assume each n; is =1. By (iv) we may assume
each n; = +1, so our 1-cycle is >}; 0;. If some o; is not a loop, then the fact that
0(3; 0;) = 0 means there must be another o; such that the composed path o;-0; is
defined. By (iii) we may then combine the terms o; and o into a single term o; - gj.
Iterating this, we reduce to the case that each o; is aloop. Since X is path-connected
we may choose a path y; from x, to the basepoint of ;. We have y;-o0;-y; ~ 0; by
(iif) and (iv), so we may assume all o;’s are loops at x;,. Then we can combine all the
0;’s into a single o by (iii). Thus h is surjective.

The commutator subgroup of 1, (X) is contained in the kernel of h since H; (X)
is abelian. To obtain the reverse inclusion we will show that every class [f] in Kerh
is trivial in the abelianization ; (X),;, of 1 (X).

If h([f]) = 0 then f, as a 1-cycle, is the boundary of a 2-chain >}, n;0;. Again
we may assume each n; is 1. As in the discussion preceding Proposition 2.6, we can
associate to this chain > ; n;0; a 2-dimensional A-complex K by taking a 2-simplex
AIZ for each o; and identifying certain pairs of edges of these 2-simplices. Namely,
if we apply the usual boundary formula to write do; = T,y — T;; + T;» for singular

1-simplices T;;, then the formula

Jjo
() f = a(ziniO'i) = Zinia()'i = Zi,j ni(_l)jTij

implies that we can group all but one of the T;;’s into pairs for which the two coef-
ficients n;(—1)7 in each pair are of opposite sign. The one remaining T; ; 1s equal to
f. We then identify edges of the A? s corresponding to the paired T;;’s, preserving
orientations of these edges so that we obtain a A-complex K.

The maps o; fit together to give a map 0 :K—X. We can deform o, staying
fixed on the edge corresponding to f, so that each vertex maps to the basepoint x,,
in the following way. Paths from the images of these vertices to x, define such a
homotopy on the union of the 0-skeleton of K with the edge corresponding to f,
and then we can appeal to the homotopy extension property in Proposition 0.16 to
extend this homotopy to all of K. (Or one can just construct such an extension by
hand.) Restricting the new o to the simplices A7, we obtain a new chain 3 ; n;0; with
boundary equal to f, and with all T;;’s loops at x;.

We now interpret the formula (x) in 1, (X),,, using additive notation for the
group operation in this abelian group. The three summations in (%) are obviously
equal in 1, (X),;,, and the last summation equals [ f] in 1T, (X) 4, by the definition of
the pairing of the T;;’s. Each term 00; = ;5 —T;; + Tj, is zero in
M, (X) 4, since o; itself gives a nullhomotopy of the composed
loop T,y — T;; + T;». We conclude that the loop f is trivial in
T (X) 4p - O
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Omne can see quite clearly what is happening at the end of this proof by look-
ing more closely at the geometry. The complex K is in fact a compact surface with
boundary consisting of a single circle formed by the edge corresponding to f. This is
because any pattern of identifications of pairs of edges of a finite collection of disjoint
2-simplices produces a compact surface with boundary. From the algebraic formula
f = 9(2;n;o0;) itis not hard to check that K is an orientable surface. Quoting a
basic theorem from the topology of surfaces, we see that the
component of K containing the boundary circle is a closed ori-
entable surface of some genus g with an open disk removed.
Giving this surface the cell structure indicated in the figure, it
then becomes obvious that f is homotopic to a product of g
commutators in 1 (X).

Exercises

1. Verify the statement made in the preceding paragraph that K is an orientable
surface.

2. Show that the map h:mm (X, x,)— H;(X) can also be defined by h([f]) = f,(x)
where f:S'— X represents a given element of 1, (X, Xo), fyx is the induced map on
H,, and « is a suitable generator of H, (S 1) =~ 7.

2.B Classical Applications

In this section we use homology theory to prove some interesting results in topol-
ogy and algebra whose statements give no hint that algebraic topology might be in-
volved.

To begin, we have the following calculations:

Proposition 2B.1.
(@) If D is a subspace of S™ homeomorphic to D* for some k > 0, then ﬁi(s” -D)
is O forall i.
(b) If S is a subspace of S™ homeomorphic to S* for some k with 0 < k < n, then
ﬁi(S" —-S)isZ fori=n-k—1 and 0 otherwise.

As a special case of (b) we have the Jordan curve theorem: A subspace of S
homeomorphic to S' separates $° into two complementary components, or equiv-
alently, path-components since open subsets of S" are locally path-connected. One
could just as well use R? in place of S? here since deleting a point from an open set
in S? does not affect its connectedness. More generally, (b) says that a subspace of
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$™ homeomorphic to S™~! separates it into two components, and these components
have the same homology groups as a point. However, there are examples where these
complementary components are not simply-connected, for example the well-known
Alexander horned sphere in S*; see [Rolfsen]. These complications involving embed-
ded S ’sin S™ are all local in nature since any locally nicely embedded $" ! in §"
is equivalent to the standard S" ! c ™, in the sense that there is a homeomorphism
of S™ taking the embedded $™ ! onto the standard equatorial S"!, so in particular
both complementary regions are homeomorphic to open balls; see [M.Brown] for a pre-
cise statement and proof of this. When n = 2 it is a classical theorem of Schoenflies
that this holds for arbitrary embeddings S' — §°.

By contrast, when we come to embeddings of S "=2 in S™, even locally nice embed-
dings need not be equivalent to the standard one. This is the subject of knot theory,
including the classical case of knotted embeddings of S! in S or R®. For embeddings
of $"2 in S" the complement always has the same homology as S!, according to the
theorem, but the fundamental group can be quite different. In spite of the fact that
the homology of a knot complement does not detect knottedness, it is still possible to
use homology to distinguish different knots by looking at the homology of covering
spaces of their complements. For more on this see [Rolfsen].

Proof: We prove (a) by induction on k. When k = 0, S™ — D is homeomorphic to R",
so this case is trivial. For the induction step, let h: I KD bea homeomorphism, and
consider the open sets A = §" — h(I*"!x[0,1/,]) and B = §" — h(I* ' x[Y/,,1]), with
ANB=S"-Dand AUB = S"—h(I¥ ' x {/»}). By induction ﬁi(AuB) =0 forall i, so
the Mayer-Vietoris sequence gives isomorphisms <I>:ﬁi(5” - D) —»I—Nli(A) eaﬁi(B) for
all i. Modulo signs, the two components of ® are induced by the inclusions S"—-D — A
and S" — D < B, so if there exists an i-dimensional cycle « in S — D which is not
a boundary in S™ — D, then « is also not a boundary in at least one of A and B.
When i = 0 the word ‘cycle’ here is to be interpreted in the sense of augmented chain
complexes since we are dealing with reduced homology. Repeating this argument, we
can further subdivide the last I factor of I* into quarters, eighths, etc., producing a
nested sequence of closed subintervals I; > I, O --- with intersection a point p € I,
such that « is not a boundary in S" — h(Ik’lxIm) for any m. By induction on
k, « is the boundary of a chain B in S" — h(I* 1% {p}). This B is a finite linear
combination of singular simplices with compact image in S" — h(I k=1 {r}). The
union of these images is covered by the nested sequence of open sets S —h (I k=1 L),
so by compactness 8 must actually be a chain in S" — h(I* 1 % I,,,) for some m. This
contradiction shows that « must be a boundary in S™ — D, finishing the induction
step.

Part (b) is also proved by induction on k, starting with the trivial case k = 0
when $§™ — § is homeomorphic to S" ' x R. For the induction step, write S = D, U D,
with D; and D, homeomorphic to DX and D, n D, homeomorphic to S¥"!. The
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Mayer-Vietoris sequence for A = S — D, and B = S™ — D,, which have trivial reduced
homology by part (a), then gives isomorphisms H;(S™ — §) =~ H; ,(S" — (D, N D,))
for all 1. O

The next theorem says that for subspaces of R", the property of being open is
a topological invariant. This accounts for the classical name ‘Invariance of Domain’
associated to this result, ‘domain’ being a synonym for ‘open set’ in R".

‘ Theorem 2B.2. If a subspace X of R"™ is homeomorphic to an open set in R"™, then
X is itself open in R".

Proof: Regarding S" as the one-point compactification of R", an equivalent state-
ment is that X is open in S", and this is what we shall prove. Each x € X has a
neighborhood D in X homeomorphic to D", with x corresponding to the center of
D™ under this homeomorphism. Let § ¢ D correspond to $" ! = 9D™ under this
homeomorphism. Then S™ — D is open, and is connected by the case k =n, i = 0 in
part (a) of the previous proposition, using the fact that connectedness is equivalent
to path-connectedness for open sets in S". Also, S" — S is open and has exactly two
components by the case k = n — 1, i = 0 of (b) of the proposition. Thus we have
S™ — § decomposed as the disjoint union of the connected sets S" — D and D - S,
so these must be the two components of S" — S. In particular, D — S is open, being
a component of the open set S™ —S. So D — S is an open neighborhood of x in §",
and since this neighborhood is contained in X we conclude that X is open. O

Here is an application involving the notion of an n-manifold, which is a Hausdorff
space locally homeomorphic to R":

Corollary 2B.3. If M is a compact n-manifold and N is a connected n-manifold,

then an embedding M — N must be surjective.

Proof: M is closed in N since it is compact and N is Hausdorff. Hence it suffices
to show M is also openin N. For x € M let V ¢ N and U C M be neighborhoods
homeomorphic to R". We may assume U C V, and then the theorem implies that U
is open in V, hence in N. a

For example, the corollary says that S" cannot be embedded as a subspace of R",
since if it were we would have S" =~ R" but S” is compact while R" is not. A conse-
quence of this is that R" contains no subspace homeomorphic to R™ with m > n, for
if R™ contained such a subspace it would also contain a subspace homeomorphic to
S™ since S™ ¢ R™ if n < m. More generally, there cannot be a continuous injection
R™—R" when m > n since this would give a continuous injection S —R", which
would be a homeomorphism onto its image since S" is compact.
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The Invariance of Domain and the n-dimensional generalization of the Jordan
curve theorem were first proved by Brouwer around 1910, at a very early stage in the
development of algebraic topology.

Division Algebras

Here is an algebraic application of homology theory due to H. Hopf:

‘ Theorem 2B.4. R and C are the only finite-dimensional division algebras over R
which are commutative and have an identity.

By definition, an algebra structure on R" is simply a bilinear multiplication map
R"xR"—R", (a,b) — ab. Thus the product satisfies left and right distributivity,
a(b+c) =ab+ac and (a+b)c = ac+bc, and scalar associativity, x(ab) = (xa)b =
a(ab) for x € R. Commutativity, full associativity, and an identity element are not
assumed. An algebra is a division algebra if the equations ax = b and xa = b are
always solvable whenever a + 0. In other words, the linear transformations x — ax
and x+— xa are surjective when a # 0. These are linear maps R" — R", so surjectivity
is equivalent to having trivial kernel, i.e., the absence of zero-divisors.

The four classical examples are R, C, the quaternions H, and the octonions Q.

Frobenius proved in 1877 that R, C, and H are the only finite-dimensional associative
division algebras over R, and in 1898 Hurwitz proved that these three together with
QO are the only finite-dimensional division algebras over R with a product satisfying
lab| = |a||b|. See [Ebbinghaus]. We will show in §3.2 that a finite-dimensional divi-
sion algebra must have dimension a power of 2. By refinements of these topological
arguments, Adams showed that in fact the only possible dimensions are 1, 2, 4, and
8. A very nice proof using K-theory is in [Adams-Atiyah], and an exposition of this
proof can be found also in [VBKT].
Proof: Suppose first that R" has a commutative division algebra structure. Define
amap f:S" 1 —S""! by f(x) = x?/|x?|. This is well-defined since x = 0 implies
x? # 0 in a division algebra, hence |x%] > 0. The map f is continuous since the
multiplication map R"x R — R" is bilinear, hence continuous. Since f(-x) = f(x),
f induces a quotient map f:RP" 1 —$""1  The following argument shows that f
is injective. An equality f(x) = f(y) implies x* = «®*y? for a = (|x*|/|y*])/? >
0. Thus we have x° — o<2y2 = 0, which factors as (x + xy)(x — xy) = 0 using
commutativity and the fact that « is a real scalar. Since there are no divisors of zero
we deduce that x = +xy. Since x and y are unit vectors and « is a positive real
scalar, this yields x = +y, so x and » determine the same point of RP" !, which
means that f is injective.

Since f is an injective map of compact Hausdorff spaces, it must be a homeo-
morphism onto its image. By Corollary 2B.3, f must in fact be surjective if we are
not in the trivial case n = 1. Thus we have a homeomorphism RP" ! ~ §""1. This
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implies n = 2 since RP" ! and $™ ! have different fundamental groups and different
homology groups if n > 2.

It remains to show that a 2-dimensional commutative division algebra A with
identity is isomorphic to C. This is elementary algebra: If j € A is not a real scalar
multiple of the identity element 1 € A and we write j> = a + bj for a,b € R, then
(j—- b/2)°> =a+b?/4 so by rechoosing j we may assume that j2 =aeR.Ifa=0,
say a = ¢, then j* = c* implies (j +¢)(j —¢) = 0 so j = *c, contradicting the
choice of j. So j2 = —¢? and by rescaling j we may assume j2 = —1, hence A is
isomorphic to C. O

Leaving out the last paragraph, the proof shows that a finite-dimensional commu-
tative division algebra, not necessarily with an identity, must have dimension at most
2. Oddly enough, there do exist 2-dimensional commutative division algebras with-
out identity elements, for example C with the modified multiplication z - w = zw,
the bar denoting complex conjugation.

The Borsuk-Ulam Theorem
The proof of the following theorem of Borsuk shows how useful homology with

coefficients other than Z can be.

Proposition 2B.5. A map f:S™—S" which is odd, satisfying f(-x) = —f(x) for
all x, must have odd degree.

The corresponding result that even maps have even degree is easier, requiring
only homology with Z coefficients, and was an exercise for §2.2.

The main ingredient in the proof will be a certain exact sequence associated to a
two-sheeted covering space p X—X,

. — H, (X;Z,) => H,(X;Z,) £5 H, (X;Z,) — H,,_(X;Z,) — - --

This is the long exact sequence of homology groups associated to a short exact se-
quence of chain complexes

0—C,(X;7,) 5 C,(X;7,) 25 C,(X;Z,) — 0

The map p, is surjective since singular simplices o:A"— X always lift to X, as
A" is simply-connected. Each ¢ has in fact precisely two lifts & and «o for «
the nontrivial deck transformation of the covering space. Because we are using Z,
coefficients, the kernel of p, is generated by the sums ¢ + «&. So if we define T
to send each o : A" — X to the sum of its two lifts to ﬁ”, then the image of T is the
kernel of p,. Obviously T is injective, so we have the short exact sequence indicated.
Since T and p, commute with boundary maps, we have a short exact sequence of
chain complexes, yielding the long exact sequence of homology groups.

The map T, is a special case of more general transfer homomorphisms considered
in §3.H. The long exact sequence involving the transfer maps T, we call the transfer
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sequence. It can also be viewed as a special case of the Gysin sequences discussed
in §4.D. There is a generalization of the transfer sequence to homology with other
coefficients, but this uses a more elaborate form of homology called ‘homology with
local coefficients,” as we show in §3.1

Proof of 2B.5: If f is odd, it induces a quotient map f:RP"— RP", and the proof
will consist of examining the map from the transfer sequence for the covering space
p:S™—RP" to itself induced by f and f. This transfer sequence has the following
form, where to simplify notation we abbreviate RP" to P" and we let the coefficient
group Z, be implicit.

0 — Hy(P") —= H,(S") 25 H,(P") — H,, (P") — 0 — ---
" _>O_>Hi(Pn)T>Hi,l(Pn)_>0—> “ee

- — 0 — H,(P") —H,(P") ——H,(8") 2~ H,(P") — 0

The initial 0 is H,,,, (P";Z,), which vanishes since P" is an n-dimensional CW com-
plex. The other terms which are zero are H;(S™) for 0 < i < n. We assume n > 1,
leaving the minor modifications needed for the case n = 1 to the reader. All the terms
which are not zeroes are Z,, by cellular homology. (Alternatively, this exact sequence
can be used to compute the homology groups H;(RP™;Z,) if one does not already
know them.) Since all the nonzero groups in the sequence are Z,, exactness forces
the maps to be isomorphisms or zero as indicated.

The maps f and f induce a map from the transfer sequence to itself, and we
will need to know that the squares in the resulting diagram commute. This follows
from the naturality of the long exact sequence of homology associated to a short exact
sequence of chain complexes, once we verify commutativity of the diagram

0 —— C(P") —— Ci(S") — 2 ¢, (P") —— 0
|7 = |z
4

0 —— C;(P") —— Ci(S™)

Here the right-hand square commutes since pf = fp. The left-hand square com-
mutes since for a singular i-simplex o : A'— P" with lifts &, and &,, the two lifts of
fo are f&, and f&, since f takes antipodal points to antipodal points.

Now we can see that all the maps f, and f, in the commutative diagram of
transfer sequences are isomorphisms by induction on dimension, using the evident
fact that if three maps in a commutative square are isomorphisms, so is the fourth.
The induction starts with the trivial fact that f, and f, are isomorphisms in dimen-
sion zero.
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In particular we deduce that the map f, :Hn(S”; Z,) —»Hn(S"; Z5) is an isomor-
phism. By Lemma 2.49 this map is multiplication by the degree of f mod 2, so the
degree of f must be odd. O

The fact that odd maps have odd degree easily implies the Borsuk-Ulam theorem:

H Corollary 2B.6. For every map g:S"— R" there exists a point x € S™ with g(x) =
g(=x)

Proof: Let f(x) = g(x) — g(-x), so f is odd. We need to show f(x) = 0 for
some x. If this is not the case, we can replace f(x) by f(x)/|f(x)| to get a new
map f:5"—S""! which is still odd. The restriction of this f to the equator S !
then has odd degree by the proposition. But this restriction is nullhomotopic via the
restriction of f to one of the hemispheres bounded by §" L. O

Exercises

1. Compute H;(S™ — X) when X is a subspace of " homeomorphic to skvstorto
skirst.

2. Show that ﬁi(S" -X) = ﬁn,i,l (X) when X is homeomorphic to a finite connected
graph. [First do the case that the graph is a tree.]

3. In the unit sphere 77971 c RP*4 let SP! and $9°! be the subspheres consisting
of points whose last ¢ and first p coordinates are zero, respectively. Show that ¥ !
and S?7! are not the boundaries of any pair of disjointly embedded disks D? and D4
in DP*1,

4. Show that R*""! is not a division algebra over R if n > 0 by showing that if it were,
then for nonzero a € R*™**! the map $°"— $°", x — ax/|ax| would be homotopic
to x — —ax/|ax|, but these maps have different degrees.

5. Make the transfer sequence explicit in the case of a trivial covering X— X, where
X =XxxS°.
6. Use the transfer sequence for the covering S — RP® to compute H, (RP*;Z,).

7. Use the transfer sequence for the covering X xS — X x RP* to produce isomor-
phisms H, (X xRP*;Z,) ~ ®,_,"H;(X;Z,) for all n.
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2.C Simplicial Approximation

Many spaces of interest in algebraic topology can be given the structure of sim-
plicial complexes, and early in the history of the subject this structure was exploited
as one of the main technical tools. Later, CW complexes largely superceded simplicial
complexes in this role, but there are still some occasions when the extra structure of
simplicial complexes can be quite handy. This will be illustrated nicely by the proof
of the classical Lefschetz fixed point theorem in this section.

One of the good features of simplicial complexes is that arbitrary continuous
maps between them can always be deformed to maps which are linear on the sim-
plices of some subdivision of the domain complex. This is the idea of ‘simplicial
approximation,” which goes back all the way to Brouwer and Alexander before 1920.
To state this result in its most basic form we first need a definition. If K and L are
simplicial complexes, then a map f:K — L is simplicial if it sends each simplex of K
to a simplex of L by a linear map taking vertices to vertices. Since a linear map from
a simplex to a simplex is uniquely determined by its values on vertices, this means
that a simplicial map is uniquely determined by its values on vertices. Also, it is easy
to see that a map from the vertices of K to the vertices of L extends to a simplicial
map iff it sends the vertices of each simplex of K to the vertices of some simplex of
L.

Here then is the Simplicial Approximation Theorem:

Theorem 2C.1. If K is a finite simplicial complex and L is an arbitrary simplicial
complex, then any map f:K— L is homotopic to a map which is simplicial with
respect to some iterated barycentric subdivision of K .

To see that subdivision of K is essential for the validity of this result, consider
the case of maps S"™ — S™. With fixed simplicial structures on the domain and range
spheres there are only finitely many simplicial maps, hence only finitely many de-
grees are realized by simplicial maps. The latter statement remains true even if the
simplicial structure on the range sphere is allowed to vary, since if the range sphere
has more vertices than the domain sphere then the map cannot be surjective hence
must have degree zero, while if the number of vertices in the range sphere is bounded
then the number of possible simplicial structures on this sphere is finite, and each
simplicial structure can realize only finitely many degrees.

Before proving the simplicial approximation theorem we need some terminology
and a lemma. The star Sto of a simplex ¢ in a simplicial complex X is defined
to be the subcomplex consisting of all the simplices of X which contain o . Closely
related to this is the open star st o, which is the union of the interiors of all simplices



176 Chapter 2. Homology

containing o, where the interior of a simplex T is by definition T — 0T. Thus sto is
an open set in X whose closure is Sto .

Lemma 2C.2. For vertices vy, -+, VU, Of a simplicial complex X, the intersection
stv, N --- N stv,, is empty unless vy,---,v,, are the vertices of a simplex o of X,
in which case stv; N --- Nstv,, =sto.

Proof: The intersection stv, n --- N stv,, consists of the interiors of all simplices
T whose vertex set contains {v,,---,v,}. If stv; n--- nstv, is nonempty, such
a T exists and contains the simplex o = [v,,---,v,] C X. Since the simplices T
containing {v,,---,v,} are just the simplices containing o, we obtain the result that
stvyn---nNsty, =sto. O

Proof of 2C.1: Choose a metric on K which restricts to the standard Euclidean metric
on each simplex of K. For example, K can be viewed as a subcomplex of a sim-
plex AN whose vertices are all the vertices of K, and we can restrict a standard met-
ric on AN to give a metric on K. Let € be a Lebesgue number for the open cover
{fY(stw) | wis avertex of L} of K. After iterated barycentric subdivision of K we
may assume that each simplex has diameter less than &/2. The closed star of each
vertex v of K then has diameter less than &, hence this closed star maps by f to
the open star of some vertex g(v) of L. The resulting map g:K°—L° thus satisfies
f(Stv) c stg(v) for all vertices v of K.

To see that g extends to a simplicial map g:K— L, consider the problem of
extending g over a simplex [v,,---,v,] of K. An interior point x of this simplex
lies in stv; for each i, so f(x) liesin stg(v;) for each i, since f(stv;) C stg(v;) by
the definition of g(v;). Thus stg(v;)n---nstg(v,) = @,s0 [g(v,), - ,g(v,)]isa
simplex of L by the lemma, and we can extend g linearly over [v,, ---,v,,]. Both f(x)
and g(x) lie in a single simplex of L since g(x) liesin [g(v,),---,g(v,)] and f(x)
lies in the star of this simplex. So taking the linear path (1-t)f(x)+tg(x),0<t <1,
in the simplex containing f(x) and g(x) defines a homotopy from f to g. To check

continuity of this homotopy it suffices to restrict to the simplex [v,---, v, ], where
continuity is clear since f(x) varies continuously in the star of [g(v,),---,9(v,)]
and g(x) varies continuously in [g(v,),---,g(v,)]. O

Notice that if f already sends some vertices of K to vertices of L then we may
choose g to equal to f on these vertices, and hence the homotopy from f to g will
be stationary on these vertices. This is convenient if one is in a situation where one
wants maps and homotopies to preserve basepoints.

The proof makes it clear that the simplicial approximation g can be chosen not
just homotopic to f but also close to f if we allow subdivisions of L as well as K.



Section 2.C. Simplicial Approximation 177

The Lefschetz Fixed Point Theorem

This very classical application of homology is a considerable generalization of the
Brouwer fixed point theorem, and it is also related to the Euler characteristic formula.

For a homomorphism @ :7"— 7" with matrix [a;;], the trace tr@ is defined
to be >;a;;, the sum of the diagonal elements of [aij]. Since tr([aij][hij]) =
tr([b; J-][ai j]), conjugate matrices have the same trace, and it follows that tr @ is in-
dependent of the choice of basis for Z". For a homomorphism @ :A— A of a finitely
generated abelian group A we can then define tr to be the trace of the induced
homomorphism @ : A/ Torsion— A/ Torsion.

For amap f:X— X of afinite CW complex X, or more generally any space whose
homology groups are finitely generated and vanish in high dimensions, the Lefschetz
number 7(f) is defined to be >, (-1)"tr(f,:H,(X)—H, (X)). In particular, if f
is the identity, or is homotopic to the identity, then T(f) is the Euler characteristic
X (X) since the trace of the nxn identity matrix is n.

Here is the Lefschetz Fixed Point Theorem:

Theorem 2C.3. If X is a finite simplicial complex, or more generally a retract of a
finite simplicial complex, and f:X — X is a map with T(f) = 0, then f has a fixed
point.

As we show in Theorem A.7 in the Appendix, every compact, locally contractible
space which can be embedded in a Euclidean space of some dimension is a retract of a
finite simplicial complex. This includes compact manifolds and finite CW complexes,
for example. The compactness hypothesis is essential, since a translation of R has T =
1 butno fixed points. For an example showing that local properties are also significant,
let X be the compact subspace of R? consisting of two concentric circles together with
a copy of R between them whose two ends spiral into the two
circles, wrapping around them infinitely often, and let f: X —X
be a homeomorphism translating the R along itself and rotating
the circles, with no fixed points. Since f is homotopic to the
identity, we have T(f) = X (X), which equals 1 since the three
path components of X are two circles and a line.

If X has the same homology groups as a point, at least modulo torsion, the the-
orem says that every map has a fixed point. This holds for example for RP" if n is
even. The case of projective spaces is interesting because of its connection with linear
algebra. An invertible linear transformation f:R"™ — R" takes lines through 0 to lines
through 0, hence induces a map f:RP" ! —RP"!. Fixed points of f are equivalent
to eigenvectors of f. The characteristic polynomial of f has odd degree if n is odd,
hence has areal root, so an eigenvector exists in this case. This is in agreement with the
observation above that every map RP?K — RP%* has a fixed point. On the other hand
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the rotation of R?* defined by f(xy, -+, Xo) = (Xp, =X, X4, =X3,, Xog» =Xog_1)»
has no eigenvectors and its projectivization f :RP**~' — RP?*~! has no fixed points.

Similarly, in the complex case an invertible linear transformation f:C"— C" in-
duces f:CP" ! —CP"!, and this always has a fixed point since the characteristic
polynomial always has a complex root. Nevertheless, as in the real case there is a map
F:Cp*1 — cp?*! without fixed points. Namely, consider the map f: C**—C?* de-
fined by f(zy,--,2) = (Z5,-21,24,—Z3," ", Z2, —Zok_1) - This is only ‘conjugate-
linear’ over C, but this is still good enough to imply that f induces a well-defined map
f on CP?*~!. Then it is an easy algebra exercise to check that f has no fixed points.
The similarity between the real and complex cases persists in the fact that every map
CP?* — CP?* has a fixed point, though to deduce this one needs more structure than
just homology, so this will be left as an exercise for §3.2, using cup products.

One could go further and consider the quaternionic case. Oddly enough, every
map HP"— HP" has a fixed point if n > 1, according to an exercise in §4.K. When
n = 1 the antipodal map of §° = HP' has no fixed points.

Proof of 2C.3: The general case easily reduces to the case of finite simplicial com-
plexes, for suppose v :K — X is a retraction of the finite simplicial complex K onto
X. For amap f:X— X, the composition f7:K— X C K then has exactly the same
fixed points as f. Since 7, : H,,(K) — H,,(X) is projection onto a direct summand, we
clearly have tr f, v, =tr f,, s0 T(f,7y) = T(fy)-

For X a finite simplicial complex, suppose f:X— X has no fixed points. We
claim there is a subdivision L of X, a further subdivision K of L, and a simplicial
map g:K— L homotopic to f such that g(o) n o = @ for each simplex o of K. To
see this, first choose a metric d on X as in the proof of the preceding proposition.
Since f has no fixed points, d(x, f(x)) > 0 for all x € X, so by the compactness of X
there is an € > 0 such that d(x, f(x)) > € for all x. Choose a subdivision L of X so
that the stars of all simplices have diameter less than &/2. By the proposition, there is
a subdivision K of L and a simplicial map g:K — L homotopic to f. By construction,
this g has the property that for each simplex o of K, f (o) is contained in the star of
the simplex g(o). We may assume the subdivision K is chosen fine enough so that
its simplices all have diameter less than £/2. Then g(o) no = & for each simplex o
of K since for x € o, o lies within distance £/2 of x and g(o) lies within distance
£/2 of f(x),while d(x, f(x)) > .

For such a g:K—L, the Lefschetz numbers 7(f) and T(g) are equal since f
and g are homotopic. Since g is simplicial, it takes the n-skeleton K" of K to the
n-skeleton L™ of L, for each n. Since K is a subdivision of L, L" is contained in K",
and hence g(K™) c K" for all n. Thus g induces a chain map of the cellular chain
complex {Hn(K",K”_l)} to itself.
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The next thing to observe is that
T(@) = > (-D" (g, :H, (K", K" ") > H, (K", K"™)).
n
This is the analog of Theorem 2.44 for trace instead of rank, and is proved in pre-

cisely the same way, based on the elementary algebraic fact that trace is additive for
endomorphisms of short exact sequences, i.e., given a commutative diagram

0 A B C 0
O L
0 A B C 0

with exact rows, then tr § = tr «+try. This algebraic fact can be proved by reducing to
the easy case that A, B, and C are free by first factoring out the torsion in B, hence
also in A, then eliminating any remaining torsion in C by replacing A by a larger
subgroup A" C B, with A having finite index in A”. The details of this argument are
left to the reader.

Finally, note that g, :Hn(K",K"‘l) —»Hn(K",K"_l) has trace 0 since the matrix
for g, has zeros down the diagonal, in view of the fact that g(o) n o = @ for each
n-simplex o. So 7(f) = 1(g) = 0. m|

Fixed point theory is a well-developed side branch of algebraic topology which
will not be touched upon much in this book. For a nice introduction see [R.Brown].

Simplicial Approximations to CW Complexes

The simplicial approximation theorem concerns maps, and there is a somewhat
analogous statement about spaces:

Theorem 2cC.4. Every CW complex X is homotopy equivalent to a simplicial complex,
which can be chosen to be of the same dimension as X, finite if X is finite, and
countable if X is countable.

We will build a simplicial complex Y ~ X inductively as an increasing union of
subcomplexes Y, homotopy equivalent to the skeleta X™. For the inductive step,
assuming we have already constructed Y,, = X", let e"! bean (n + 1)-cell of X
attached by a map @ :S"— X". The map S"—Y, corresponding to @ under the
homotopy equivalence Y,, ~ X" is homotopic to a simplicial map f:S" —Y, by the
simplicial approximation theorem, and it is not hard to see that the spaces X" u,, el
and Y, Uy e""! are homotopy equivalent, where the subscripts denote attaching e™*!
via @ and f, respectively; see Proposition 0.18 for a proof. We can view Y, U el
as the mapping cone C, obtained from the mapping cylinder of f by collapsing the
domain end to a point. If we knew that the mapping cone of a simplicial map was a
simplicial complex, then by performing the same construction for all the (7 + 1)-cells
of X we would have completed the induction step. Unfortunately, and somewhat
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surprisingly, mapping cones and mapping cylinders are rather awkward objects in the
simplicial category. To avoid this awkwardness we will instead construct simplicial
analogs of mapping cones and cylinders which have all the essential features of actual
mapping cones and cylinders.

Let us first construct the simplicial analog of a mapping cylinder. For a simpli-
cial map f:K— L this will be a simplicial complex M (f) containing both L and the
barycentric subdivision K’ of K as subcomplexes, and such that there is a deforma-
tion retraction ¥, of M(f) onto L with 7, |K’ = f. The figure shows the case that f
is a simplicial surjection A?— A'. The construction proceeds

one simplex of K at a time, by induction on dimension. AN
To begin, the ordinary mapping cylinder of f|K O suffices
for M(f |K®). Assume inductively that we have already con-
structed M(f|K"’1). Let 0 be an n-simplex of K and let
T = f(0), asimplex of L of dimension n or less. In particular,
we assume we have already constructed M(f:00 — 1) with the desired properties,
and then we let M(f:0— 1) be the cone on M(f:00 — T), as shown in the figure.
The space M(f:00 —T) is contractible since by induction it deformation retracts
onto T which is contractible. The cone M(f:0—T) is of course contractible, so
the inclusion of M(f:00 —T) into M(f:0—T) is a homotopy equivalence. This
implies that M(f: 0 — 1) deformation retracts onto M (f:00 — 1) by Corollary 0.20
(or one can give a direct argument using the fact that M(f:00 — T) is contractible).
Performing these constructions for all n-simplices o, we obtain M(f|K") with a
deformation retraction onto M(f|K" !). Taking the union over all n yields M(f)
with a deformation retraction 7; onto L, namely the infinite concatenation of the
previous deformation retractions, with the deformation retraction of M(f|K") onto
M(f|K™ 1) performed in the t-interval [1/2""! 1/2"]. The map 7, |K produced
by this process may not equal f, but it is homotopic to f via the linear homotopy
tf+(1—t)r,, whichis defined since v, (o) C f (o) for all simplices o of K. By apply-
ing the homotopy extension property to the homotopy of r; which equals tf+(1-t)r;
on K and the identity map on L, we can improve our deformation retraction of M (f)
onto L so that its restriction to K at time 1 is f.

From the simplicial analog M (f) of a mapping cylinder we construct the simpli-
cial ‘mapping cone’ C(f) by attaching the ordinary cone on K’ to the subcomplex
K cM(f).

Proof of 2C.4: We will construct for each n a CW complex Z, containing X" as a
deformation retract and also containing as a deformation retract a subcomplex Y,,
which is a simplicial complex. Beginning with Y, = Z, = X Y suppose inductively that
we have already constructed Y,, and Z,,. Let the cells e:*! of X be attached by maps
@q:S"— X". Using the simplicial approximation theorem, there is a homotopy from

@, to a simplicial map f,:S"—Y,,. The CW complex W,, = Z, U, M (f,) contains a
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simplicial subcomplex S} homeomorphic to ™ at one end of M(f,), and the homeo-
morphism S" =~ S is homotopic in W,, to the map f,, hence also to @. Let Z, ., be
obtained from Z,, by attaching DZX‘“ x I’s via these homotopies between the @, ’s and
the inclusions S” < W,,. Thus Z,,,; contains X"*! at one end, and at the other end we
have a simplicial complex Y,,,; = Y,, Uy C(fy), where C(f,) is obtained from M (f,)
by attaching a cone on the subcomplex Sj. Since D™ 1 x T deformation retracts onto
D" 1T U D" x {0}, we see that Z,,,, deformation retracts onto Z, UY,,,, which
in turn deformation retracts onto Y, uY, ., = Y, ., by induction. Likewise, Z,
deformation retracts onto X"*! UW, which deformation retracts onto X"*' U Z, and
hence onto X" U X™ = X"*! by induction.

Let Y = U,Y, and Z = U, Z,,. The deformation retractions of Z, onto X"
give deformation retractions of X U Z, onto X, and the infinite concatenation of the
latter deformation retractions is a deformation retraction of Z onto X. Similarly, Z
deformation retracts onto Y. |

Exercises

1. Use the Lefschetz Fixed Point Theorem to show that a map S"—S" has a fixed
point unless its degree is equal to the degree of the antipodal map x — —x.

2. Verify that the formula f(z, -+, 2) = (Z5,-Z,,24, =23, ", Zog, —Z2x_;) defines
amap f:C*—C?* inducing a quotient map CP?*~' — CP?*~! without fixed points.
3. If X is a finite simplicial complex and f:X— X is a simplicial homeomorphism,
show that the Lefschetz number 7(f) equals the Euler characteristic of the set of fixed
points of f. In particular, T(f) is the number of fixed points if the fixed points are
isolated. [Hint: Barycentrically subdivide X to make the fixed point set a subcomplex.]

4. Let M be a closed orientable surface embedded in R? in such a way that reflection
across a plane P defines a homeomorphism 7 :M— M fixing M N P, a collection of
circles. Is it possible to homotope v to have no fixed points?

5. Let X be homotopy equivalent to a finite simplicial complex and let Y be homotopy
equivalent to a finite or countably infinite simplicial complex. Using the simplicial ap-
proximation theorem, show that there are at most countably many homotopy classes
of maps X—Y.

6. Show that there are only countably many homotopy types of finite CW complexes.






Chapter
Cohomology

Cohomology is an algebraic variant of homology, the result of a simple dualiza-
tion in the definition. Not surprisingly, cohomology groups satisfy axioms much like
the axioms for homology, except that induced homomorphisms go in the opposite
direction as a result of the dualization. The basic difference between homology and
cohomology is thus that cohomology groups are contravariant functors while homol-
ogy groups are covariant. In terms of intrinsic information, however, there is not a big
difference between homology groups and cohomology groups. The homology groups
of a space determine its cohomology groups, and the converse holds at least when
the homology groups are finitely generated.

What is a little surprising is that contravariance leads to extra structure in co-
homology. This first appears in a natural product, called cup product, which makes
the cohomology groups of a space into a ring. This is an extremely useful piece of
additional structure, and much of this chapter is devoted to studying cup products,
which are considerably more subtle than the additive structure of cohomology.

How does contravariance lead to a product in cohomology which is not present in
homology? There is indeed a natural product in homology, called ‘cross product,” but
this has a somewhat different form, Hi(X)xHj(Y) — HHJ'(XX Y). If X and Y are
CW complexes, this product is induced from a map of cellular chains sending a pair
(e',e’) consisting of a cell of X and a cell of Y to the product cell elxel in XxY.
The details of this construction are given in §3B. Taking X = Y, we thus have the first
half of a hypothetical product

The difficulty is in defining the second map. The natural thing would be for this to be
induced by a map X x X — X. The multiplication map in a topological group or more
generally an H-space is such a map, and the resulting product, called Pontryagin prod-
uct, can be quite useful; see §3C. But for general X, the only natural maps Xx X — X
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are the projections onto one of the factors, and since these projections collapse the
other factor to a point, the resulting product in homology is rather trivial.

With cohomology, however, the situation is better. One still has a cross product
HY(X)xH'(Y) — H'"J(XxY) which can be constructed in much the same way as in
homology, so one can again take X = Y and get the first half of a product

HY(X)xH (X) > H* (Xx X) — H* (X)

But now by contravariance the second map would be induced by a map X —Xx X,
and there is an obvious candidate for this map, the diagonal map A(x) = (x,x). This
turns out to work very nicely, giving a well-behaved product in cohomology, the cup
product.

Another sort of extra structure in cohomology whose existence is traceable to
contravariance is provided by cohomology operations. These make the cohomology
groups of a space into a module over a certain rather complicated ring. Cohomology
operations lie at a depth somewhat greater than the cup product structure, so we
defer their study to §4L.

The extra layer of algebra in cohomology arising from the dualization in its defi-
nition may seem at first to be separating it further from topology, but there are a quite
a few topological situations where cohomology arises quite naturally. One of these is
Poincaré duality, the topic of the third section of this chapter. Another is obstruction
theory, in §4.3. Characteristic classes in vector bundle theory (see [Milnor-Stasheff]
or [VBKT]) provide yet another instance.

From the viewpoint of homotopy theory, cohomology is in some ways more basic
than homology. As we shall see in §4.3, cohomology has a description in terms of
homotopy classes of maps which is very similar to, and in a sense dual to, the definition
of homotopy groups. There is an analog of this for homology described in §4F, but
the construction is more complicated.

The Idea of Cohomology

Let us look at a few low-dimensional examples to get an idea of how one might be
led naturally to consider cohomology groups, and to see what properties of a space
they might be measuring. For the sake of simplicity we consider simplicial cohomology
of A-complexes, rather than singular cohomology of more general spaces.

Taking the simplest case first, let X be a 1-dimensional A-complex, or in other
words an oriented graph. For a fixed abelian group G, the set of all functions from ver-
tices of X to G also forms an abelian group, which we denote by A°(X;G). Similarly
the set of all functions assigning an element of G to each edge of X forms an abelian
group Al (X;G). We will be interested in the homomorphism 6: AO(X; G)—A! (X;G)
sending @ € AO(X;G) to the function 6@ € AI(X;G) whose value on an oriented
edge [vy,v,] is the difference @ (v,) — @(v,). For example, X might be the graph
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formed by a system of trails on a mountain, with vertices at the junctions between
trails. The function @ could then assign to each junction its elevation above sea level,
in which case 6@ would measure the net change in elevation along the trail from one
junction to the next. Or X might represent a simple electrical circuit with @ mea-
suring voltages at the connection points, the vertices, and 6 measuring changes in
voltage across the components of the circuit, represented by edges.

Regarding themap §: AO(X; G)—Al (X; G) as a chain complex with 0’s before and
after these two terms, the homology groups of this chain complex are by definition the
simplicial cohomology groups of X. Specifically, these groups are H %X;G) =Kerés C
AO(X; G) and HI(X; G) = AI(X; G)/Imé. For simplicity we are using here the same
notation as will be used for singular cohomology later in the chapter, in anticipation
of the theorem that the two theories coincide for A-complexes, as we show in §3.1.

The group H’(X;G) is easy to describe explicitly. A function ¢ € A°(X;G) has
o0p = 0 iff @ takes the same value at both ends of each edge of X, and this is
equivalent to saying that @ is constant on each component of X. So H(X;G) is the
group of all functions from the set of components of X to G. This is a direct product
of copies of G, one for each component of X.

The cohomology group H'(X;:G) = A" (X;G)/Im & will be trivial iff the equation
5@ =  has a solution @ € A’(X;G) for each ¢ € A'(X;G). Solving this equation
means deciding whether specifying the change in @ across each edge of X determines
an actual function @ € A° (X; G). This is rather like the calculus problem of finding a
function having a specified derivative, with the difference operator 6 playing the role
of differentiation. As in calculus, if a solution of 6@ = y exists, it will be unique up
to adding an element of the kernel of §, that is, a function which is constant on each
component of X.

The equation @ =  is always solvable if X is a tree since if we choose arbitrarily
a value for @ at a basepoint vertex v, then if the change in ¢ across each edge of
X is specified, this uniquely determines the value of @ at every other vertex v by
induction along the unique path from v, to v in the tree. For a general X which is
not a tree, we may choose a maximal tree in each component of X, and then the values
of @ on the edges of these maximal trees determine @ uniquely up to a constant on
each component of X. But in order for the equation 6 = ¢ to hold, the value of
@ on each edge not in the maximal trees must equal the difference in the already-
determined values of @ at the two ends of the edge. This condition need not be
satisfied since ¢ can have arbitrary values on these edges. Thus we see that the
homology group H!(X;G) is a direct product of copies of the group G, one copy for
each edge of X not in one of the chosen maximal trees. This can be compared with
the homology group H,(X;G) which consists of a direct sum of copies of G, one
for each edge of X not in one of the maximal trees. Note that the relation between
H'(X;G) and H,(X;G) is the same as the relation between H°(X;G) and H,(X;G),
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with HO(X; G) being a direct product of copies of G and H,(X;G) a direct sum, with
one copy for each component of X in either case.

Now let us move up a dimension, taking X to be a 2-dimensional A-complex.
Define A°(X;G) and A'(X;G) as before, as functions from vertices and edges of X
to the abelian group G, and define A® (X; G) to be the functions from 2-simplices of
X to G. A homomorphism §:A'(X;G)— A%(X;G) is defined by Sy ([vy, vy, V,]) =
Y ([vg, v D) +yw (v, vo]) =@ ([vy, vs]), asigned sum of the values of ¢ on the three
edges in the boundary of [vg,v,,v,], just as 6@ for @ € AY(X:G) was a signed
sum of the values of @ on the boundary of [vy,v,;]. The two maps AY(X;G) 2,
AYX:G) 2, A2 (X;G) form a chain complex since for @ € A°(X;G) we have 6@ =
() —@y) + (p(vy) — ))) — (P(vy) — P(vy)) = 0. Extending this chain
complex by 0’s on each end, the resulting homology groups are by definition the
cohomology groups H i(X ;G).

The formula for the map 6: AY(X:G)— A%(X;G) can be looked at from a couple
different viewpoints. First, we see that 6y = 0 iff ¢ satisfies the ‘homomorphism’
property @ ([vy, vs]) = w([vy, v1]) + @ ([vy,vs]), where we think of the edge [v(, V5]
as the ‘product’ of the edges [v(,v,] and [v,,v,]. Thus dy measures the deviation
of ¢ from being additive.

From another point of view, ¢ can be regarded as an obstruction to finding
@ € A%X;G) with ¢ = §@, in that if ¢ = 5@ then Sy = 0, since §6@ = 0 as
we saw above. We can think of dy as a local obstruction to solving ¢y = d@ since
it depends only on the values of  within individual 2-simplices of X. If this local
obstruction vanishes, then ¢ defines an element of H' (X; G) whichis zeroiff ¢ = 5@
has an actual solution. This class in H' (X ; G) is thus the global obstruction to solving
@ = 6@. This situation is similar to the calculus problem of determining whether a
given vector field is the gradient vector field of some function. The local obstruction
here is the vanishing of the curl of the vector field, and the global obstruction is the
vanishing of all line integrals around closed loops in the domain of the vector field.

The ‘cocycle condition’ ¢ = 0 has a third interpretation of a more geometric
nature when X is a surface and the group G is Z or Z,. Consider first the simpler
case G = Z,. Then if 6@ = 0 on a simplex [v,, v, vV,], either ¢ is zero on all three
edges of the simplex, or ¢ is zero on one edge and 1 on the other two edges. In the
latter case, suppose we connect these two edges by a curve in [v,, v, V>].

v, v, v,
v, N v, v, 1 v, Y 0 Y

Doing this for all 2-simplices of X, we obtain a collection C,, of disjoint curves in X
crossing the 1-skeleton transversely. Since C,, determines (¢ uniquely, we can view
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C, as a sort of geometric representation of ¢ .

When G = Z we can refine this construction by putting a number of curves in
each 2-simplex, each curve having a trans- Y
verse orientation indicated by the arrow

in the figure, the orientation which 2 3
agrees or disagrees with the orien-
tation of each edge according to W 5 ¢’

the sign of the value of ¢ on the edge. The resulting collection C, of disjoint
curves in X can be thought of as something like level curves for a function @ with
0@ = y, if such a function exists. The value of 1

@ changes by 1 each time a curve of C,,
is crossed. For example, if X is a
disk then Hl(X;Z) = 0, as will be
shown in this chapter, so 6y = 0

0

implies ¢ = 6@ for some @, hence
every transverse curve system C,, forms
the level curves of a function . On the

other hand, if X is an annulus then this need no longer 1 1
be true, as illustrated in the example shown in the fig-

ure to the right, where the equation ¢ = 6@ obviously 1 1
has no solution even though 6y = 0. By identifying 2 0

the inner and outer boundary circles of this annulus we
obtain a similar example on the torus. ? 0

The key to relating cohomology groups to homology groups is the observation
that a function from i-simplices of X to G is equivalent to a homomorphism from the
simplicial chain group A;(X) to G. Thisis because A;(X) is free abelian with basis the
i-simplices of X, and a homomorphism with domain a free abelian group is uniquely
determined by its values on basis elements, which can be assigned arbitrarily. Thus we
have an identification of A’(X; G) with the group Hom(A;(X), G) of homomorphisms
A;(X)— G, whichis called the dual group of A;(X). Thereis also a simple relationship
of duality between the homomorphism & ‘ANX;G)— A" (X;G) and the boundary
homomorphism 0:A;,;(X)—A;(X). The general formula for ¢ is

S@([vg, -, V1) = D (=1 @([vy, - - Vg, Vi D)
J

and the latter sumis just @ (0[vg, -+, V;;1]1). Thus we have 6@ = @0. In other words,
0 sends each @ € Hom(A,;(X), G) to the composition A, ; (X) N A (X) -, G, which
in the language of linear algebra means that ¢ is the dual map of 0.

Thus we have the algebraic problem of understanding the relationship between
the homology groups of a chain complex and the homology groups of the dual complex
obtained by applying the functor C+— Hom(C, G). This is the first topic of the chapter.
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3.1 Cohomology Groups

Homology groups H,, (X) are the result of a two-stage process: First one forms a
chain complex --- — C, 2, C,,_; — --- of singular, simplicial, or cellular chains,
then one takes the homology groups of this chain complex, Kero/Imod. To obtain
the cohomology groups H"(X;G) we interpolate an intermediate step, replacing the
chain groups C,, by the dual groups Hom(C,,, G) and the boundary maps 0 by their
dual maps &, before forming the cohomology groups Ker6/Im . The plan for this
section is first to sort out the algebra of this dualization process and show that the
cohomology groups are determined algebraically by the homology groups, though
in a somewhat subtle way. Then after this algebraic excursion we will define the
cohomology groups of spaces and show these satisfy basic properties very much like
those for homology. The payoff for all this formal work will begin to be apparent in
subsequent sections.

The Universal Coefficient Theorem

Let us begin with a simple example. Consider the chain complex

0 2 0
0 Z Z z Z 0
I [ [ [

G G G Co
where 7 -5 7 is the map x — 2x. If we dualize by taking Hom(—, G) with G = Z,

we obtain the cochain complex

2
0 7—2 7 7—2 7 0
Il ] Il 1]

C3>k CZ* C]* Co*
In the original chain complex the homology groups are Z’s in dimensions 0 and 3,

together with a Z, in dimension 1. In the cohomology of the cochain complex we still
get Z’s in dimensions 0 and 3, but the Z, has shifted up a dimension, to dimension 2.

More generally, consider any chain complex of finitely generated free abelian
groups. It was an exercise in §2.2 to show that such a chain complex splits as
the direct sum of elementary complexes 0—Z—0 and 0—Z = Z—0. Applying
Hom(—, Z), we obtain the direct sum of the corresponding dual complexes 0« Z<« 0
and 0—Z <% Z<«0. Thus the cohomology groups are the same as the homology
groups except that torsion is shifted up one dimension. We will see later in this section
that the same relation between homology and cohomology holds whenever the homol-
ogy groups are finitely generated, even when the chain groups are not finitely gener-
ated. It would also be quite easy to see in this example what happens if Hom(—, Z) is
replaced by Hom(—, G), since the dual elementary cochain complexes would then be
0« G+« 0 and 0« G <= G« 0.
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Consider now a completely general chain complex C of free abelian groups, of
the form --- — C, N C,,_; — ---. To dualize this complex we replace each chain
group C,, by its dual cochain group C,; = Hom(C,,, G), the group of homomorphisms
C,, — G, and we replace each boundary map 0:C,, — C,,_; byits dual coboundary map
5§ =0%:C,)_,—C). The reason why § goes in the opposite direction from 9, increas-
ing rather than decreasing dimension, is that, for a homomorphism «:A— B, the
dual homomorphism «*:Hom(B, G) —Hom(A, G) is defined by o™ () = p«, so «*
sends @ :B— G to the composition A —=> B -2, G. Dual homomorphisms obviously
satisfy (xB)™ = B*«™, 1* = 1, and 0* = 0. In particular, since 00 = 0 it follows that
66 = 0, so the cohomology group H"(C;G) can be defined as the ‘homology group’
Ker§/Im§ at C* in the cochain complex - -- — C¥ -2 C* | — ...

Our goal is to show that the cohomology groups H"(C;G) are determined solely
by G and the homology groups H,(C) = Kerd/Imo. A first guess might be that
H"(C;G) is isomorphic to Hom(H,,(C), G), but this is overly optimistic, as shown by
the example above where H, was zero while H> was nonzero. Nevertheless, there is
a natural map h:H"(C;G) —Hom(H,(C),G), defined as follows. Denote the cycles
and boundaries by Z, = Kerd c C, and B, = Imd C C,,. A class in H"(C;G) is
represented by a homomorphism @ :C, — G such that ¢ = 0, i.e,, @0 = 0, or in
other words, @ vanishes on B,,. The restriction ¢, = @ | Z, then induces a quotient
homomorphism @, :Z,/B,,— G, an element of Hom(H,(C),G). If @ isin ImJ, say
@ =0y = Yo, then @ iszeroon Z,, so ¢, = 0 and hence also @, = 0. Thus there is
a well-defined quotient map h:H"(C;G) —Hom(H, (C), G) sending the cohomology
class of @ to @,. Obviously h is a homomorphism.

It is not hard to see that h is surjective. The short exact sequence

0—2,—C,—>B, ,—0

splits since B,,_; is free, being a subgroup of the free abelian group C,_;. Thus
there is a projection homomorphism p : C,, — Z,, which restricts to the identity on Z,,.
Composing with p gives a way of extending homomorphisms @ :Z,, — G to homo-
morphisms ¢ = @up:C,— G. In particular, this extends homomorphisms Z, —G
which vanish on B,, i.e.,, homomorphisms H, (C)— G, to homomorphisms C,, —G
which still vanish on B,,, i.e., elements of Kerd. Thus we have a homomorphism
Hom(H,(C),G)— Kerd. Composing this with the quotient map Ker6—H"(C;G)
gives a homomorphism from Hom(H,,(C),G) to H "(C;G). If we follow this map by
h we get the identity map on Hom(H, (C),G) since the effect of composing with h
is simply to undo the effect of extending homomorphisms via p. This shows that h
is surjective. In fact it shows that we have a split short exact sequence

0 — Kerh — H"(C;G) =% Hom(H,, (C),G) — 0

The remaining task is to analyze Ker h. A convenient way to start the process is
to consider not just the chain complex C, but also its subcomplexes consisting of the
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cycles and the boundaries. Thus we consider the commutative diagram of short exact

sequences

0 Zn+1 Cn+1 9 Bn O
(i Jo lo o

0 Zn Cn anl 0

where the vertical boundary maps on Z,,,; and B,, are the restrictions of the boundary
map in the complex C, hence are zero. Dualizing (i) gives a commutative diagram

0 Z;:+l C:+1 B: O
(if) To 15 1o
0 Zy Cn . 0

The rows here are exact since, as we have already remarked, the rows of (i) split, and
the dual of a split short exact sequence is a split short exact sequence because of the
natural isomorphism Hom(A & B, G) =~ Hom(A, G) @ Hom(B, G).

We may view (ii), like (i), as part of a short exact sequence of chain complexes,
with the coboundary maps in the Z,; and B;; complexes zero since they are the duals
of those in (i). The associated long exact sequence of homology groups then has the
form

(iii) cre— B — 7 «— H"(C;G)«— Bj_|— Zy — -~

The ‘boundary maps’ Z,, — B,: in this long exact sequence are in fact the dual maps

*
n

are defined: In (i) one takes an element of Z,;, pulls this back to C,;, applies § to
get an element of C;,, then pulls this back to B;;. The first of these steps extends

i,, of the inclusions i, :B,, — Z,, as one sees by recalling how these boundary maps

a homomorphism @,:Z,—G to ¢:C,,— G, the second step composes this ¢ with
0, and the third step undoes this composition and restricts ¢ to B,,. The net effect
is just to restrict @, from Z, to B,,.

A long exact sequence can always be broken up into short exact sequences, and
doing this for the sequence (iii) yields short exact sequences

(iv) 0«— Keri; «— H"(C;G) «— Cokeriy_, «— 0

The group Keri; can be identified naturally with Hom(H,,(C),G) since elements of
Keri) are homomorphisms Z, — G which vanish on the subgroup B,,, and such ho-
momorphisms are the same as homomorphisms Z,,/B,,— G. Under this identification
of Keri} with Hom(H,,(C),G), the map H"(C;G)— Keri} in (iv) becomes the map
h considered earlier. Thus we can rewrite (iv) as a short exact sequence

v) 0 — Cokeri*_, — H"(C;G) = Hom(H,,(C),G) — 0

which splits.
Our objective now is to show that the more mysterious term Cokeri)_, de-
pends only on H,_;(C) and G, in a natural, functorial way. First let us observe that
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Coker iy;_; would be zero if it were always true that the dual of a short exact sequence
was exact, since the dual of the short exact sequence

(vi) 0— By 1 =5 Z, 1 — Hy 1(C) =0
is the sequence
.. i

so if this were exact at B;;_,, i),_; would be surjective, hence Cokeri;_, would be
zero. This argument does apply if H,,_; (C) happens to be free, since (vi) splits in this
case, which implies that (vii) is also split exact. So in this case the map h in (v) is an
isomorphism. However, in the general case it is easy to produce examples of short
exact sequences whose duals are not exact, e.g., if we dualize 0 — Z 27— Z,—0
by applying Hom(—, Z) we get 0 «— Z <~ Z «— 0 «— 0 which fails to be exact at the
left-hand Z, precisely the place we are interested in for Cokeri, ;.

We might mention in passing that the loss of exactness at the left end of a short
exact sequence after dualization is in fact all that goes wrong, in view of the following:

Exercise. If A—B— C—0 is exact, then dualizing by applying Hom(—, G) yields an
exact sequence A*«— B*«— C*«0.

However, we will not need this fact in what follows.

The exact sequence (vi) has the special feature that both B,,_; and Z,_; are free,
so (vi) can be regarded as a free resolution of H,,_; (C), where a free resolution of an
abelian group H is an exact sequence

S2 H—0

bil F, fo

.—>F2 F1

with each F,, free. If we dualize this free resolution by applying Hom(—, G), we may
lose exactness, but at least we get a chain complex (or perhaps we should say ‘cochain
complex,’ but algebraically there is no difference):

<—F1*<£ S‘ﬁHh—o
Let us use the temporary notation H" (F; G) for the homology group Ker f,, ,/Im f,
of this dual complex. Note that the group Cokeri;;_, which we are interested in
is H 1(F ;G) where F is the free resolution in (vi). Part (b) of the following lemma
therefore shows that Cokeri,_; depends only on H, ,(C) and G.
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Lemma 3.1.
(@) Given free resolutions F and F’ of abelian groups H and H', then every homo-

morphism «:H—H' can be extended to a chain map between these two free

resolutions:
P'Z fZ Fl fl FO fO H 0
o, e o e
F’ le F’ fll F’ fO, H’ 0
2 1 0

Furthermore, any two such chain maps extending « are chain homotopic.
(b) Given any two free resolutions F and F' of H, there are canonical isomorphisms
H™(F;G) ~ H"(F';G) forall n.

Proof: The «;’s will be constructed inductively. Since the F;’s are free, it suffices to
define each «; on a basis for F;. To define «,, observe that surjectivity of fj; implies
that for each basis element x of F, there exists x’ € F; such that fj(x") = af,(x),
so we define o (x) = x’. We would like to define «y in the same way, sending a basis
element x € F; to an element x' € F; such that f](x') = &yf;(x). Such an x" will
exist if &, f) (x) lies in Im f] = Ker f;;, which it does since fj,f; = «fyf; = 0. The
same procedure defines all the subsequent «;’s.

If we have another chain map extending « given by maps «;:F;—F;, then the
differences B; = «; — «; define a chain map extending the zero map f:H—H'. It
will suffice to construct maps A;:F;—F;,, defining a chain homotopy from S; to 0,
i.e., with B; = f{,1A; + A,_,f;. The A;’s are constructed inductively by a procedure
much like the construction of the «;’s. When i = 0 we let A_;:H—F] be zero,
and then the desired relation becomes B, = fjA,. We can achieve this by letting
A, send a basis element x to an element x’ € F; such that f](x') = By(x). Such
an x' exists since Im f] = Ker fj and f;B,(x) = Bfy(x) = 0. For the inductive
step we wish to define A; to take a basis element x € F; to an element x" € F/
such that f/,;(x") = B;(x) — A;_,fi(x). This will be possible if B;(x) — A;_1fi(x)
lies in Im f;,; = Ker f;, which will hold if f;(B; — A,_;f;) = 0. Using the relation
fiB; = Bi_1f; and the relation B,_; = f{A,_; + A;_»f;_; which holds by induction, we
have

JiBi =i f)) = fiBi = fidii fi
=Bifi— fidicafi= Bioy — [idis)fi = Ao fia fi =0
as desired. This finishes the proof of (a).

The maps «,, constructed in (a) dualize to maps o, :F,* —F," forming a chain
map between the dual complexes F'* and F*. Therefore we have induced homomor-
phisms on cohomology «* : H" (F'; G) — H"(F; G). These do not depend on the choice
of «,’s since any other choices «;, are chain homotopic, say via chain homotopies
A,, and then «; and «," are chain homotopic via the dual maps A} since the dual

of the relation &; — o = fi 1 A; + A;_ 1 fi is of — o™ = Af fi5 + fFAL.
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The induced homomorphisms «™:H"(F';G) —H"(F;G) satisfy (Bo)* = «™B*
for a composition H > H’ £ H” with a free resolution F”" of H” also given, since
one can choose the compositions f, «, of extensions «, of « and f, of B as an
extension of B«x. In particular, if we take « to be an isomorphism and S to be its
inverse, with F"’ = F, then o«*B* = (Bx)* = 1, the latter equality coming from the
obvious extension of 1 :H— H by the identity map of F. The same reasoning shows
B*a* = 1, so «* is an isomorphism. Finally, if we specialize further, taking « to
be the identity but with two different free resolutions F and F’, we get a canonical
isomorphism 1*: H"(F';G)—H"(F;G). 0

Every abelian group H has a free resolution of the form 0—F, —F,—H—0,
with F; = 0 for i > 1. Namely, choose a set of generators for H and let F, be a free
abelian group with basis in one-to-one correspondence with these generators, and
then we have a surjective homomorphism f;,: F,— H sending the basis elements to
the chosen generators. The kernel of f, is free, being a subgroup of a free abelian
group, so we can let F; be this kernel with f; : F; — F, the inclusion, and we can then
take F; = 0 for i > 1. For this free resolution we obviously have H"(F;G) = 0 for
n > 1, so this must also be true for all free resolutions. Thus the only interesting group
H"™(F;G) is H! (F; G). As we have seen, this group depends only on H and G, and the
standard notation for it is Ext(H, G). This notation arises from the fact that Ext(H, G)
has an interpretation as the set of isomorphism classes of extensions of G by H, i.e.,
short exact sequences 0— G— J— H—0, with a natural definition of isomorphism
between such exact sequences. This is explained in books on homological algebra, for
example [K.Brown], [Hilton-Stammbach], or [MacLane 63]. However, this interpretation
of Ext(H, G) is rarely needed in algebraic topology.

Summarizing, we have established the following algebraic result:

Theorem 3.2. If a chain complex C of free abelian groups has homology groups
H, (C), then the cohomology groups H™(C;G) of the cochain complex Hom(C,,, G)
are determined by split exact sequences

0 — Ext(H, ,(C),G) — H"(C;G) - Hom(H,,(C),G) — 0 -

This is known as the universal coefficient theorem for cohomology because
it is formally analogous to the universal coefficient theorem for homology in §3.A
which expresses homology with arbitrary coefficients in terms of homology with Z
coefficients.

Computing Ext(H, G) for finitely generated H is not difficult using the following
three properties:

Ext(H®H',G) =~ Ext(H,G) @ Ext(H', G)
Ext(H,G) = 0 if H is free.
Ext(Z,,G) =~ G/nG
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The first of these comes from using the direct sum of free resolutions of H and H’
as a free resolution for H® H'. If H is free, the free resolution 0— H — H — 0 yields
the second property, while the third comes from dualizing the free resolution

0—>72-"-7—17,—0
to produce an exact sequence
0 «—— Ext(Z,,G) —— Hom(Z,G) ~—— Hom(Z,G) ~— Hom(Z,,G) <— 0
I

I I
G/nG G n G

In particular, these three properties imply that Ext(H, Z) is isomorphic to the torsion
subgroup of H if H is finitely generated. Since Hom(H, Z) is isomorphic to the free
part of H if H is finitely generated, we have:

Corollary 3.3. If the homology groups H, and H,_, of a chain complex C of free
abelian groups are finitely generated, with torsion subgroups T,, C H, and T,_; C
H,_,, then H"(C;Z) ~ (H,/T,) ® T,_; . O

It is useful in many situations to know that the short exact sequences in the
universal coefficient theorem are natural, i.e., a chain map « between chain complexes
C and C’ of free abelian groups induces a commutative diagram

0 — Ext(H, 1(C),G) — H"(C:G) —— Hom (H,(C),G) — 0

I(cxo* Ia* ](am
0 — Ext(H, ,(C"),G) — H"(C’:G) —— Hom (H,(C'),G) — 0

This is apparent if one just thinks about the construction; one obviously obtains a map
between the short exact sequences (iv) containing Ker i, and Cokeriy_,, the identi-
fication Ker ifl = Hom(H, (C), G) is certainly natural, and the proof of Lemma 3.1
shows that Ext(H, G) depends naturally on H.

However, the splitting in the universal coefficient theorem is not natural since
it depends on the choice of the projections p:C, — Z,,. An exercise at the end of
the section gives a topological example showing that the splitting in fact cannot be
natural.

The naturality property together with the five-lemma proves:

Corollary 3.4. If a chain map between chain complexes of free abelian groups in-
duces an isomorphism on homology groups, then it induces an isomorphism on co-
homology groups with any coefficient group G. m]

One could attempt to generalize the algebraic machinery of the universal coeffi-
cient theorem by replacing abelian groups by modules over a chosen ring R and Hom
by Hompg, the R-module homomorphisms. The key fact about abelian groups that
was needed was that subgroups of free abelian groups are free. Submodules of free
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R-modules are free if R is a principal ideal domain, so in this case the generalization
is automatic. One obtains natural split short exact sequences

0 — Extg(H,_,(C),G) — H"(C;G) = Homg (H,,(C),G) — 0

where C is a chain complex of free R-modules with boundary maps R-module ho-
momorphisms, and the coefficient group G is also an R-module. If R is a field, for
example, then R-modules are always free and so the Ext; term is always zero since
we may choose free resolutions of the form 0— Fy,— H— 0.

Itis interesting to note that the proof of Lemma 3.1 on the uniqueness of free res-
olutions is valid for modules over an arbitrary ring R. It is easy to see moveover that
every R-module H has a free resolution, constructed in the following way. Choose a
set of generators for H as an R-module, and let F, be a free R-modlue with basis in
one-to-one correspondence with these generators. Thus we have a surjective homo-
morphism f;,: F,— H sending the basis elements to the chosen generators. Now re-
peat the process with Ker f;, in place of H, constructing a homomorphism f; : F, — F,
sending a basis for a free R-module F; onto generators for Ker f,,. And similarly for
Ker f;, etc.

By Lemma 3.1 the groups H™(F;G) depend only on H and G, not the free res-
olution F. The standard notation for H"(F;G) is Ext}(H,G). For sufficiently com-
plicated rings R the groups EXt,’{(H ,G) can be nonzero for n > 1. In certain more
advanced topics in algebraic topology these Ext} groups play an essential role.

(A parenthetical remark about the definition of Extg (H, G): By the Exercise stated
earlier, exactness of F, — F,— H—0 implies exactness of F;« Fj«— H*<« 0. This
means that HO(F ;G) as defined above is zero. Rather than having EXt%(H ,G) be
automatically zero, it is better to define H"(F;G) as the nth homology group of
the complex --- « F"« Fj < 0 with the term H™* omitted. This can be viewed as
defining the groups H" (F; G) to be unreduced cohomology groups. With this modified
definition we have Ext%(H,G) = H°(F;G) = H* = Homg(H,G) by the exactness
of Ff<—Ff«— H*<«0. The real reason why unreduced Ext groups are better than
reduced groups is perhaps to be found in certain exact sequences involving Ext and
Hom derived in §3.G, which would not work with the Hom terms replaced by zeros.)

Cohomology of Spaces

Now we return to topology. Given a space X and an abelian group G, we define
the group C"(X; G) of singular n-cochains with coefficients in G to be the dual group
Hom(C,,(X), G) of the singular chain group C,,(X). Thus an n-cochain ¢ € C"(X:;:G)
assigns to each singular n-simplex o :A" — X avalue @ (o) € G. Since the singular
n-simplices form a basis for C, (X), these values can be chosen arbitrarily, hence
n-cochains are exactly equivalent to functions from singular n-simplices to G.

The coboundary map 5:C"(X;G) —»C"“(X; G) is the dual 9%, so for a cochain
@ € C"(X;G), its coboundary §@ is the composition C,,,; (X) =2, C,(X) -2, G. This
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means that for a singular (n + 1)-simplex o : A" — X we have

S (o) =D (-D)'@(a|[vg, -+, Ui+, Vg D)

It is automatic that 6> = 0 since &° is the dual of 3°> = 0. Therefore we can define the
cohomology group H" (X;G) with coefficients in G to be the quotient Ker §/Im § at
C"™(X;G) in the cochain complex

e — O X 6) < O (X 6) < CN(XG) — - — COUX;G) — O

Elements of Ker § are cocycles, and elements of Im ¢ are coboundaries. For a cochain
@ to be a cocycle means that 6@ = o = 0, i.e.,, @ vanishes on boundaries.

Since the chain groups C,,(X) are free, the algebraic universal coefficient theorem
takes on the topological guise of split short exact sequences

0 — Ext(H,_,(X),G) — H"(X;G) — Hom(H,,(X),G) — 0

which describe how cohomology groups with arbitrary coefficients are determined
purely algebraically by homology groups with Z coefficients. For example, if the ho-
mology groups of X are finitely generated then Corollary 3.3 tells how to compute
the cohomology groups H"(X;Z) from the homology groups.

When n = 0 there is no Ext term, and the universal coefficient theorem reduces
to an isomorphism H(X;G) ~ Hom(H, (X),G). This can also be seen directly from
the definitions. Since singular 0-simplices are just points of X, a cochain in C O(X ;G)
is an arbitrary function @ : X — G, not necessarily continuous. For this to be a cocycle
means that for each singular 1-simplex o :[vy, v;]— X we have d@(0) = @(00) =
o(v,)—-0o(vy) =0,ie., @ is constant on path-components of X. Thus HO(X; G) isall
the functions from path-components of X to G. This is the same as Hom(H,(X), G).

In the case of H 1(X ; G) the universal coefficient theorem also gives an isomor-
phism Hl(X;G) ~ Hom(H, (X), G) since Ext(H,(X),G) = 0 because H(X) is free.
If X is path-connected, H,(X) is the abelianization of r, (X), and we can identify
Hom(H, (X), G) with Hom(m, (X), G) since G is abelian.

The universal coefficient theorem has a simpler form if we take coefficients in
a field F for both homology and cohomology. In §2.2 we defined the homology
groups H,, (X;F) as the homology groups of the chain complex of free F-modules
C, (X;F), where C,(X;F) has basis the singular n-simplices in X. The dual com-
plex Homg(C,,(X; F), F) of F-module homomorphisms is the same as Hom(C,,(X), F)
since both can be identified with the functions from singular n-simplices to F. Hence
the homology groups of the dual complex Homy(C, (X;F),F) are the cohomology
groups H"(X;F). In the generalization of the universal coefficient theorem to the
case of modules over a principal ideal domain, the Ext; terms vanish since F is a
field, so we obtain isomorphisms

H™(X;F) ~ Homg(H,, (X;F),F)
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Thus, with field coefficients, cohomology is the exact dual of homology. Note that
when F = Z,, or Q we have Homg(H, G) = Hom(H, G), the group homomorphisms,
for arbitrary F-modules G and H.

For the remainder of this section we will go through the main features of singular
homology and check that they extend without much difficulty to cohomology.

(1) Reduced Groups. Reduced cohomology groups H "(X;G) can be defined by dual-
izing the augmented chain complex --- — Cy(X) —» 7—0, then taking Ker /Im. As
with homology, this gives }NI"(X; G) = H"(X;G) for n > 0, and the universal coeffi-
cient theorem identifies H°(X;G) with Hom(H,(X), G). We can describe the differ-
ence between H 0(X ;G) and HO(X ; G) more explicitly by using the interpretation of
H°(X;G) as functions X — G which are constant on path-components. Recall that the
augmentation map ¢:C,(X)—Z sends each singular O-simplex o to 1, so the dual
map ¢* sends a homomorphism @:Z— G to the composition Cy(X) =756,
which is the function o — @(1). This is a constant function X — G, and since @ (1)
can be any element of G, the image of £* consists of precisely the constant func-
tions. Thus H 0(X ; G) is all functions X — G which are constant on path-components,
modulo the functions which are constant on all of X.

(2) Relative Groups and the Long Exact Sequence of a Pair. To define relative groups
H™(X, A;G) for a pair (X, A) we first dualize the short exact sequence

0—C,(A) =5 ¢, (X) -5 €, (X, A) — 0
by applying Hom(—, G) to get
0— C"(A:G) <= C"(X;G) <L C"(X, A;G) — 0

where by definition C"(X, A;G) = Hom(C,, (X, A),G). This sequence is exact by the
following direct argument. The map i* restricts a cochain on X to a cochain on A.
Thus for a function from singular n-simplices in X to G, the image of this function
under i* is obtained by restricting the domain of the function to singular n-simplices
in A. Every function from singular #-simplices in A to G can be extended to be
defined on all singular n-simplices in X, for example by assigning the value 0 to
all singular n-simplices not in A, so i* is surjective. The kernel of i* consists of
cochains taking the value 0 on singular n-simplices in A. Such cochains are the
same as homomorphisms C, (X, A) = C,(X)/C,, (A) — G, so the kernel of i* is exactly
C"(X,A;G) = Hom(C,(X,A),G), giving the desired exactness. Notice that we can
view C"(X, A; G) as the functions from singular n-simplices in X to G which vanish
on simplices in A, since the basis for C, (X) consisting of singular n-simplices in X
is the disjoint union of the simplices with image contained in A and the simplices
with image not contained in A.

Relative coboundary maps §:C"(X, A; G) — cntl (X, A; G) are obtained as restric-
tions of the absolute §’s, so relative cohomology groups H" (X, A; G) are defined. The
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fact that the relative cochain group is a subgroup of the absolute cochains, namely the
cochains which vanish on chains in A, means that relative cohomology is conceptually
a little simpler than relative homology.

The maps i* and j* commute with § since i and j commute with 9, so the
preceding displayed short exact sequence of cochain groups is part of a short exact
sequence of cochain complexes, giving rise to an associated long exact sequence of
cohomology groups

S HM(X,AG) L HM (X 6) - HM(A:G) < HYU(X,AG) — - -

By similar reasoning one obtains a long exact sequence of reduced cohomology groups
for a pair (X, A) with A nonempty, where H"(X, A;G) = H"(X, A;G) for all n, as in
homology. Taking A to be a point x, this exact sequence gives an identification of
H™(X;G) with H™(X, x¢; G).

More generally there is a long exact sequence for a triple (X, A, B) coming from
the short exact sequences

0 C"(A,B:G) < C"(X,B:G) <= C"(X, A:G) — 0

The long exact sequence of reduced cohomology can be regarded as the special case
that B is a point.
The connecting homomorphism §:H"(A;G) —H"! (X, A;G) and its homology
analog 0:H,_ ,(X,A)—H,(A) are defined via the following diagrams:
C"(X;G) — C"(X,A;G) Coii(X;G) — Cpii(X,A;G)
- Fo

—

C"(A:G) — C"(X:G) ColA:G) — Co(X:G)

—_—

The connecting homomorphisms are represented by the dashed arrows, which are
well-defined only when the chain and cochain groups are replaced by homology and
cohomology groups. Since the left-hand diagram is the dual of the right-hand one,