
I l@ve RuBoard

  
• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata

ASP.NET in a Nutshell
By G. Andrew Duthie, Matthew MacDonald

  

Publisher : O'Reilly

Pub Date : June 2002

ISBN : 0-596-00116-9
Pages : 808

As a quick reference and tutorial in one, ASP.NET in a Nutshell goes beyond the published
documentation to highlight little-known details, stress practical uses for particular features, and
provide real-world examples that show how features can be used in a working application. This book
covers application and web service development, custom controls, data access, security, deployment,
and error handling. There's also an overview of web-related class libraries. Examples use Visual Basic
.NET.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

  
• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata

ASP.NET in a Nutshell
By G. Andrew Duthie, Matthew MacDonald

  

Publisher : O'Reilly

Pub Date : June 2002

ISBN : 0-596-00116-9
Pages : 808

   Copyright

   Preface

    Who Is This Book for?

    How to Use This Book

    How This Book Is Structured

    Conventions Used in This Book

    How to Contact Us

    Acknowledgments

   
   Part I:  Introduction

    Chapter 1.  Introduction

    Section 1.1.  .NET Platform Fundamentals

    Section 1.2.  Object Orientation in the .NET Platform

    Section 1.3.  Choosing a Language

    Section 1.4.  Why and When Would I Use ASP.NET?

    Section 1.5.  Why and When Would I Port an Existing Application to ASP.NET?

    Section 1.6.  New Features in ASP.NET

   
    Chapter 2.  ASP.NET Applications

    Section 2.1.  Application Types

    Section 2.2.  Application Structure and Boundaries

    Section 2.3.  Application File Types

   
    Chapter 3.  Web Forms

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 3.1.  Structuring an ASP.NET Page

    Section 3.2.  Stages of Page Processing

    Section 3.3.  State Management

    Section 3.4.  Caching Page Output

    Section 3.5.  Additional Resources

   
    Chapter 4.  Web Services

    Section 4.1.  Standards

    Section 4.2.  Web Services Architecture

    Section 4.3.  Creating a Web Service

    Section 4.4.  Consuming a Web Service

    Section 4.5.  Additional Resources

   
    Chapter 5.  ASP.NET Server Controls

    Section 5.1.  HTML Controls

    Section 5.2.  Web Controls

    Section 5.3.  Using Controls

    Section 5.4.  Types of Web Controls

    Section 5.5.  Handling Control Events

    Section 5.6.  Modifying Control Appearance

    Section 5.7.  Additional Resources

   
    Chapter 6.  User Controls and Custom Server Controls

    Section 6.1.  User Controls

    Section 6.2.  Custom Server Controls

    Section 6.3.  Sharing Controls Across Applications

    Section 6.4.  Additional Resources

   
    Chapter 7.  Data Access and Data Binding

    Section 7.1.  ADO.NET: An Overview

    Section 7.2.  Reading Data

    Section 7.3.  Data Binding

    Section 7.4.  Inserting and Updating Data

    Section 7.5.  Deleting Data

    Section 7.6.  Additional Resources

   
    Chapter 8.  ASP.NET Configuration

    Section 8.1.  Understanding Configuration Files

    Section 8.2.  Modifying Configuration Settings

    Section 8.3.  Locking Down Configuration Settings

    Section 8.4.  Additional Resources

   
    Chapter 9.  ASP.NET Security

    Section 9.1.  Authentication Methods

    Section 9.2.  Authorization

    Section 9.3.  Code Access Security

    Section 9.4.  Additional Resources

   
    Chapter 10.  Error Handling, Debugging, and Tracing

    Section 10.1.  Error Handling

    Section 10.2.  Debugging

    Section 10.3.  Tracing

    Section 10.4.  Additional Resources

   

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Chapter 11.  ASP.NET Deployment

    Section 11.1.  Deploying ASP.NET Applications

    Section 11.2.  Deploying Assemblies

    Section 11.3.  Deploying Through Visual Studio .NET

    Section 11.4.  Additional Resources

   
   
   Part II:  Intrinsic Class Reference

    Chapter 12.  The Page Class

    Section 12.1.  Comments/Troubleshooting

    Section 12.2.  Properties Reference

    Section 12.3.  Collections Reference

    Section 12.4.  Methods Reference

    Section 12.5.  Events Reference

   
    Chapter 13.  The HttpApplicationState Class

    Section 13.1.  Comments/Troubleshooting

    Section 13.2.  Properties Reference

    Section 13.3.  Collections Reference

    Section 13.4.  Methods Reference

    Section 13.5.  Events Reference

   
    Chapter 14.  The HttpContext Class

    Section 14.1.  Comments/Troubleshooting

    Section 14.2.  Properties Reference

    Section 14.3.  Collections Reference

    Section 14.4.  Methods Reference

   
    Chapter 15.  The HttpException Class

    Section 15.1.  Comments/Troubleshooting

    Section 15.2.  Constructor Reference

    Section 15.3.  Properties Reference

    Section 15.4.  Methods Reference

   
    Chapter 16.  The HttpRequest Class

    Section 16.1.  Comments/Troubleshooting

    Section 16.2.  Properties Reference

    Section 16.3.  Collections Reference

    Section 16.4.  Methods Reference

   
    Chapter 17.  The HttpResponse Class

    Section 17.1.  Comments/Troubleshooting

    Section 17.2.  Properties Reference

    Section 17.3.  Collections Reference

    Section 17.4.  Methods Reference

   
    Chapter 18.  The HttpServerUtility Class

    Section 18.1.  Comments/Troubleshooting

    Section 18.2.  Properties Reference

    Section 18.3.  Methods Reference

   
    Chapter 19.  The HttpSessionState Class

    Section 19.1.  Comments/Troubleshooting

    Section 19.2.  Properties Reference

    Section 19.3.  Collections Reference

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 19.3.  Collections Reference

    Section 19.4.  Methods Reference

    Section 19.5.  Events Reference

   
    Chapter 20.  web.config Reference

    Section 20.1.  Comments/Troubleshooting

    Section 20.2.  web.config Elements

   
   
   Part III:  Namespace Reference

    Chapter 21.  Namespace Reference

    Section 21.1.  Reading a Quick-Reference Entry

   
    Chapter 22.  The System.Web Namespace

    BeginEventHandler

    EndEventHandler

    HttpApplication

    HttpApplicationState

    HttpBrowserCapabilities

    HttpCacheability

    HttpCachePolicy

    HttpCacheRevalidation

    HttpCacheValidateHandler

    HttpCacheVaryByHeaders

    HttpCacheVaryByParams

    HttpClientCertificate

    HttpCompileException

    HttpContext

    HttpCookie

    HttpCookieCollection

    HttpException

    HttpFileCollection

    HttpModuleCollection

    HttpParseException

    HttpPostedFile

    HttpRequest

    HttpResponse

    HttpRuntime

    HttpServerUtility

    HttpStaticObjectsCollection

    HttpUnhandledException

    HttpUtility

    HttpValidationStatus

    HttpWorkerRequest

    HttpWorkerRequest.EndOfSendNotification

    HttpWriter

    IHttpAsyncHandler

    IHttpHandler

    IHttpHandlerFactory

    IHttpModule

    ProcessInfo

    ProcessModelInfo

    ProcessShutdownReason

    ProcessStatus

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    TraceContext

    TraceMode

   
    Chapter 23.  The System.Web.Caching Namespace

    Cache

    CacheDependency

    CacheItemPriority

    CacheItemRemovedCallback

    CacheItemRemovedReason

   
    Chapter 24.  The System.Web.ConfigurationNamespace

    AuthenticationMode

    ClientTargetSectionHandler

    FormsAuthPasswordFormat

    FormsProtectionEnum

    HttpCapabilitiesBase

    HttpConfigurationContext

   
    Chapter 25.  The System.Web.Hosting Namespace

    AppDomainFactory

    ApplicationHost

    IAppDomainFactory

    IISAPIRuntime

    ISAPIRuntime

    SimpleWorkerRequest

   
    Chapter 26.  The System.Web.Mail Namespace

    MailAttachment

    MailEncoding

    MailFormat

    MailMessage

    MailPriority

    SmtpMail

   
    Chapter 27.  The System.Web.Security Namespace

    DefaultAuthenticationEventArgs

    DefaultAuthenticationEventHandler

    DefaultAuthenticationModule

    FileAuthorizationModule

    FormsAuthentication

    FormsAuthenticationEventArgs

    FormsAuthenticationEventHandler

    FormsAuthenticationModule

    FormsAuthenticationTicket

    FormsIdentity

    PassportAuthenticationEventArgs

    PassportAuthenticationEventHandler

    PassportAuthenticationModule

    PassportIdentity

    UrlAuthorizationModule

    WindowsAuthenticationEventArgs

    WindowsAuthenticationEventHandler

    WindowsAuthenticationModule

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   
    Chapter 28.  The System.Web.Services Namespace

    WebMethodAttribute

    WebService

    WebServiceAttribute

    WebServiceBindingAttribute

   
    Chapter 29.  The System.Web.Services.ConfigurationNamespace

    XmlFormatExtensionAttribute

    XmlFormatExtensionPointAttribute

    XmlFormatExtensionPrefixAttribute

   
    Chapter 30.  The System.Web.Services.DescriptionNamespace

    Binding

    BindingCollection

    DocumentableItem

    FaultBinding

    FaultBindingCollection

    HttpAddressBinding

    HttpBinding

    HttpOperationBinding

    HttpUrlEncodedBinding

    HttpUrlReplacementBinding

    Import

    ImportCollection

    InputBinding

    Message

    MessageBinding

    MessageCollection

    MessagePart

    MessagePartCollection

    MimeContentBinding

    MimeMultipartRelatedBinding

    MimePart

    MimePartCollection

    MimeTextBinding

    MimeTextMatch

    MimeTextMatchCollection

    MimeXmlBinding

    Operation

    OperationBinding

    OperationBindingCollection

    OperationCollection

    OperationFault

    OperationFaultCollection

    OperationFlow

    OperationInput

    OperationMessage

    OperationMessageCollection

    OperationOutput

    OutputBinding

    Port

    PortCollection

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    PortType

    PortTypeCollection

    ProtocolImporter

    ProtocolReflector

    Service

    ServiceCollection

    ServiceDescription

    ServiceDescriptionBaseCollection

    ServiceDescriptionCollection

    ServiceDescriptionFormatExtension

    ServiceDescriptionFormatExtensionCollection

    ServiceDescriptionImporter

    ServiceDescriptionImportStyle

    ServiceDescriptionImportWarnings

    ServiceDescriptionReflector

    SoapAddressBinding

    SoapBinding

    SoapBindingStyle

    SoapBindingUse

    SoapBodyBinding

    SoapExtensionImporter

    SoapExtensionReflector

    SoapFaultBinding

    SoapHeaderBinding

    SoapHeaderFaultBinding

    SoapOperationBinding

    SoapProtocolImporter

    SoapTransportImporter

    Types

   
    Chapter 31.  The System.Web.Services.DiscoveryNamespace

    ContractReference

    ContractSearchPattern

    DiscoveryClientDocumentCollection

    DiscoveryClientProtocol

    DiscoveryClientProtocol.DiscoveryClientResultsFile

    DiscoveryClientReferenceCollection

    DiscoveryClientResult

    DiscoveryClientResultCollection

    DiscoveryDocument

    DiscoveryDocumentLinksPattern

    DiscoveryDocumentReference

    DiscoveryDocumentSearchPattern

    DiscoveryExceptionDictionary

    DiscoveryReference

    DiscoveryReferenceCollection

    DiscoveryRequestHandler

    DiscoverySearchPattern

    DynamicDiscoveryDocument

    ExcludePathInfo

    SchemaReference

    SoapBinding

    XmlSchemaSearchPattern

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    XmlSchemaSearchPattern

   
    Chapter 32.  The System.Web.Services.ProtocolsNamespace

    AnyReturnReader

    HtmlFormParameterReader

    HtmlFormParameterWriter

    HttpGetClientProtocol

    HttpMethodAttribute

    HttpPostClientProtocol

    HttpSimpleClientProtocol

    HttpWebClientProtocol

    LogicalMethodInfo

    LogicalMethodTypes

    MatchAttribute

    MimeFormatter

    MimeParameterReader

    MimeParameterWriter

    MimeReturnReader

    NopReturnReader

    PatternMatcher

    SoapClientMessage

    SoapDocumentMethodAttribute

    SoapDocumentServiceAttribute

    SoapException

    SoapExtension

    SoapExtensionAttribute

    SoapHeader

    SoapHeaderAttribute

    SoapHeaderCollection

    SoapHeaderDirection

    SoapHeaderException

    SoapHttpClientProtocol

    SoapMessage

    SoapMessageStage

    SoapParameterStyle

    SoapRpcMethodAttribute

    SoapRpcServiceAttribute

    SoapServerMessage

    SoapServiceRoutingStyle

    SoapUnknownHeader

    TextReturnReader

    UrlEncodedParameterWriter

    UrlParameterReader

    UrlParameterWriter

    ValueCollectionParameterReader

    WebClientAsyncResult

    WebClientProtocol

    WebServiceHandlerFactory

    XmlReturnReader

   
    Chapter 33.  The System.Web.SessionStateNamespace

    HttpSessionState

    IReadOnlySessionState

    IRequiresSessionState

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    IRequiresSessionState

    IStateRuntime

    SessionStateMode

    SessionStateModule

    SessionStateSectionHandler

    StateRuntime

   
    Chapter 34.  The System.Web.UI Namespace

    AttributeCollection

    BaseParser

    BasePartialCachingControl

    BuildMethod

    BuildTemplateMethod

    CompiledTemplateBuilder

    ConstructorNeedsTagAttribute

    Control

    ControlBuilder

    ControlBuilderAttribute

    ControlCollection

    CssStyleCollection

    DataBinder

    DataBinding

    DataBindingCollection

    DataBindingHandlerAttribute

    DataBoundLiteralControl

    DesignTimeParseData

    DesignTimeTemplateParser

    EmptyControlCollection

    Html32TextWriter

    HtmlTextWriter

    HtmlTextWriterAttribute

    HtmlTextWriterStyle

    HtmlTextWriterTag

    IAttributeAccessor

    IDataBindingsAccessor

    ImageClickEventArgs

    ImageClickEventHandler

    INamingContainer

    IParserAccessor

    IPostBackDataHandler

    IPostBackEventHandler

    IStateManager

    ITagNameToTypeMapper

    ITemplate

    IValidator

    LiteralControl

    LosFormatter

    ObjectConverter

    ObjectTagBuilder

    OutputCacheLocation

    Page

    PageParser

    Pair

    ParseChildrenAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    ParseChildrenAttribute

    PartialCachingAttribute

    PartialCachingControl

    PersistChildrenAttribute

    PersistenceMode

    PersistenceModeAttribute

    PropertyConverter

    RenderMethod

    RootBuilder

    SimpleWebHandlerParser

    StateBag

    StateItem

    StaticPartialCachingControl

    TagPrefixAttribute

    TemplateBuilder

    TemplateContainerAttribute

    TemplateControl

    TemplateControlParser

    TemplateParser

    ToolboxDataAttribute

    Triplet

    UserControl

    ValidationPropertyAttribute

    ValidatorCollection

    WebServiceParser

   
    Chapter 35.  The System.Web.UI.Design Namespace

    CalendarDataBindingHandler

    ColorBuilder

    ControlDesigner

    ControlParser

    ControlPersister

    DataBindingCollectionConverter

    DataBindingCollectionEditor

    DataBindingHandler

    DataBindingValueUIHandler

    DataFieldConverter

    DataMemberConverter

    DataSourceConverter

    DesignTimeData

    HtmlControlDesigner

    HtmlIntrinsicControlDesigner

    HyperLinkDataBindingHandler

    IControlDesignerBehavior

    IDataSourceProvider

    IHtmlControlDesignerBehavior

    ImageUrlEditor

    ITemplateEditingFrame

    ITemplateEditingService

    IWebFormReferenceManager

    IWebFormsBuilderUIService

    IWebFormsDocumentService

    ReadWriteControlDesigner

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    TemplatedControlDesigner

    TemplateEditingService

    TemplateEditingVerb

    TextDataBindingHandler

    UrlBuilder

    UrlBuilderOptions

    UrlEditor

    UserControlDesigner

    WebControlToolboxItem

    XmlFileEditor

    XmlUrlEditor

    XslUrlEditor

   
    Chapter 36.  The System.Web.UI.Design.WebControlsNamespace

    AdRotatorDesigner

    BaseDataListComponentEditor

    BaseDataListDesigner

    BaseValidatorDesigner

    ButtonDesigner

    CalendarAutoFormatDialog

    CalendarDesigner

    CheckBoxDesigner

    DataGridColumnCollectionEditor

    DataGridComponentEditor

    DataGridDesigner

    DataListComponentEditor

    DataListDesigner

    HyperLinkDesigner

    LabelDesigner

    LinkButtonDesigner

    ListControlDataBindingHandler

    ListControlDesigner

    ListItemsCollectionEditor

    PanelDesigner

    RegexEditorDialog

    RegexTypeEditor

    RepeaterDesigner

    TableCellsCollectionEditor

    TableDesigner

    TableRowsCollectionEditor

    XmlDesigner

   
    Chapter 37.  The System.Web.UI.HtmlControlsNamespace

    HtmlAnchor

    HtmlButton

    HtmlContainerControl

    HtmlControl

    HtmlForm

    HtmlGenericControl

    HtmlImage

    HtmlInputButton

    HtmlInputCheckBox

    HtmlInputControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    HtmlInputFile

    HtmlInputHidden

    HtmlInputImage

    HtmlInputRadioButton

    HtmlInputText

    HtmlSelect

    HtmlTable

    HtmlTableCell

    HtmlTableCellCollection

    HtmlTableRow

    HtmlTableRowCollection

    HtmlTextArea

   
    Chapter 38.  The System.Web.UI.WebControlsNamespace

    AdCreatedEventArgs

    AdCreatedEventHandler

    AdRotator

    BaseCompareValidator

    BaseDataList

    BaseValidator

    BorderStyle

    BoundColumn

    Button

    ButtonColumn

    ButtonColumnType

    Calendar

    CalendarDay

    CalendarSelectionMode

    CheckBox

    CheckBoxList

    CommandEventArgs

    CommandEventHandler

    CompareValidator

    CustomValidator

    DataGrid

    DataGridColumn

    DataGridColumnCollection

    DataGridCommandEventArgs

    DataGridCommandEventHandler

    DataGridItem

    DataGridItemCollection

    DataGridItemEventArgs

    DataGridItemEventHandler

    DataGridPageChangedEventArgs

    DataGridPageChangedEventHandler

    DataGridPagerStyle

    DataGridSortCommandEventArgs

    DataGridSortCommandEventHandler

    DataKeyCollection

    DataList

    DataListCommandEventArgs

    DataListCommandEventHandler

    DataListItem

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    DataListItem

    DataListItemCollection

    DataListItemEventArgs

    DataListItemEventHandler

    DayNameFormat

    DayRenderEventArgs

    DayRenderEventHandler

    DropDownList

    EditCommandColumn

    FirstDayOfWeek

    FontInfo

    FontNamesConverter

    FontSize

    FontUnit

    FontUnitConverter

    GridLines

    HorizontalAlign

    HyperLink

    HyperLinkColumn

    HyperLinkControlBuilder

    Image

    ImageAlign

    ImageButton

    IRepeatInfoUser

    Label

    LabelControlBuilder

    LinkButton

    LinkButtonControlBuilder

    ListBox

    ListControl

    ListItem

    ListItemCollection

    ListItemControlBuilder

    ListItemType

    ListSelectionMode

    Literal

    LiteralControlBuilder

    MonthChangedEventArgs

    MonthChangedEventHandler

    NextPrevFormat

    PagedDataSource

    PagerMode

    PagerPosition

    Panel

    PlaceHolder

    PlaceHolderControlBuilder

    RadioButton

    RadioButtonList

    RangeValidator

    RegularExpressionValidator

    RepeatDirection

    Repeater

    RepeaterCommandEventArgs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    RepeaterCommandEventHandler

    RepeaterItem

    RepeaterItemCollection

    RepeaterItemEventArgs

    RepeaterItemEventHandler

    RepeatInfo

    RepeatLayout

    RequiredFieldValidator

    SelectedDatesCollection

    ServerValidateEventArgs

    ServerValidateEventHandler

    Style

    Table

    TableCell

    TableCellCollection

    TableCellControlBuilder

    TableHeaderCell

    TableItemStyle

    TableRow

    TableRowCollection

    TableStyle

    TargetConverter

    TemplateColumn

    TextAlign

    TextBox

    TextBoxControlBuilder

    TextBoxMode

    TitleFormat

    Unit

    UnitConverter

    UnitType

    ValidatedControlConverter

    ValidationCompareOperator

    ValidationDataType

    ValidationSummary

    ValidationSummaryDisplayMode

    ValidatorDisplay

    VerticalAlign

    WebColorConverter

    WebControl

    Xml

   
   
   Type, Method, Property, Event, and Field Index

    A

    B

    C

    D

    E

    F

    G

    H

    I

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    J

    K

    L

    M

    N

    O

    P

    Q

    R

    S

    T

    U

    V

    W

    X

    Y

   
   Colophon

   Index

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Copyright

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. JScript, Microsoft, Visual Basic, Visual C++, Visual Studio, Windows, and
Windows NT are registered trademarks, and Visual C# is a trademark of Microsoft Corporation. Many
of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware
of a trademark claim, the designations have been printed in caps or initial caps. The association
between the image of a stingray and the topic of ASP.NET is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Preface

ASP.NET is the web development technology of Microsoft's .NET development platform. While it has a
lot in common with its predecessor, Active Server Pages, ASP.NET is a quantum leap over classic ASP;
it adds such new features as rich server controls, a much more powerful programming model, and
built-in support for XML web services.

ASP.NET also allows you to access the full richness of the .NET Framework Class Library, which
provides classes for everything from sending mail via SMTP to performing multithreaded operations.
ASP.NET also brings object-oriented programming to the Web. Object orientation is at the very heart
of the .NET Framework, and ASP.NET takes full advantage of it -- particularly in the area of its robust
server control model.

ASP.NET has many new features and aspects, but with the help of this reference, you'll be up and
running before you know it.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Who Is This Book for?

This book is intended primarily as a reference and learning tool for developers who have experience in
web development. Both professional and amateur developers should find this book helpful in making
the transition from classic ASP (or other web development technologies) to ASP.NET.

This book is not intended for beginners or those with no experience with web development. While the
tutorial section that begins the book is intended to bring you up to speed on ASP.NET quickly, it does
not teach basic web development skills. Beginners or those with no experience with classic ASP would
do well to find a good introductory web development book and then return to this book once they
understand the fundamentals of web development.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

How to Use This Book

This book consists of an introductory tutorial section, two reference sections, and an appendix. If
you're new to ASP.NET, you may want to read through the entire tutorial section from start to finish.
This will give you a good exposure to all of the features of ASP.NET and experience writing ASP.NET
code.

Once you've become comfortable with the concepts introduced in the tutorial section, the remaining
reference sections will help you work through everyday ASP.NET development tasks.

The first reference section provides detailed information on the classes that replace classic ASP
intrinsic objects, on the Page class, and on the elements found in the web.config file. Each chapter is
divided into the following sections to help you locate the information you're looking for quickly:

Introduction

This section introduces the class and describes its purpose and common uses.

Summary

This section lists the most commonly used properties, methods, collections, and events of the
class. Members that are inherited from a base class or not typically used may be omitted.

Comments/Troubleshooting

This section provides information about gotchas to watch out for when using the class, as well
as other important things to be aware of.

Properties

This section describes the properties for the class and provides examples of their use.

Collections

This section describes the collections for the class and provides examples of their use.

Methods

This section describes the methods for the class and provides examples of their use.

Events

This section describes the Events for the class, and provides examples of their use. Note that
not all classes expose events, so not every chapter will have an Events section.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

How This Book Is Structured

ASP.NET in a Nutshell consists of four parts. Part I, Introduction to ASP.NET, provides an introductory
tutorial to ASP.NET consisting of the following 11 chapters:

Chapter 1

Provides an overview of the .NET Framework and the features of ASP.NET.

Chapter 2

Describes the types of applications that can be written with ASP.NET and discusses the file
types used by ASP.NET and the structure of an ASP.NET application.

Chapter 3

Describes the structure of ASP.NET Web Forms, including page directives, coding styles, event
handling, and page output caching.

Chapter 4

Describes the web services architecture provided by ASP.NET and shows how to create and
consume web services in ASP.NET. It also shows how to publish and locate web services.

Chapter 5

Describes the HTML controls and web controls built into ASP.NET and shows how to use them
in your ASP.NET pages.

Chapter 6

Describes two of the reuse techniques available in ASP.NET, user controls and custom server
controls, and shows when and how to take advantage of each to enable code reuse in your
applications.

Chapter 7

Describes ADO.NET, the new technology for data access in the .NET Framework, and shows you
how to use ADO.NET and the new data binding framework of ASP.NET to quickly build robust
data-driven pages.

Chapter 8

Describes the new configuration system in ASP.NET and shows you how to configure your
application for several common scenarios.

Chapter 9

Describes the new authentication and authorization features in ASP.NET and shows you how to
take advantage of them in your applications.

Chapter 10

Describes the new structured exception handling features of the Visual Basic .NET language
and the tracing feature of ASP.NET. It also shows you how to use these new features, along
with the .NET Framework SDK Debugger and/or Visual Studio .NET, to troubleshoot and debug
your applications.

Chapter 11

Describes the options available for deploying ASP.NET applications and shows you how to take
advantage of them.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Like classic ASP, ASP.NET exposes a number of intrinsic objects to every page. These objects provide
information on requests, allow sending of or manipulation of responses, and provide useful utility
functions. Part II, Intrinsic Class Reference, documents each of the classes that provide the
functionality for the Application, Context, Request, Response, Server, and Session intrinsics, as well
as for the HttpException class and the Page class, which forms the basis for each ASP.NET page. Part
II also includes a reference of the most common elements of the web.config configuration file.

Because ASP.NET is considerably broader in the scope of its APIs than classic ASP, Part III,
Namespace Reference, provides a high-level reference of the namespaces that are most relevant to
ASP.NET development. These namespaces include:

System.Web
System.Web.Caching
System.Web.Configuration
System.Web.Hosting
System.Web.Mail
System.Web.Security
System.Web.Services
System.Web.Services.Configuration
System.Web.Services.Description
System.Web.Services.Discovery
System.Web.Services.Protocols
System.Web.SessionState
System.Web.UI
System.Web.UI.Design
System.Web.UI.Design.WebControls
System.Web.UI.HtmlControls
System.Web.UI.WebControls

The chapter covering each namespace describes each of the types contained in the namespace, and
lists all members of each type.

Finally, the book includes one appendix, Type, Method, Property, Event, and Field Index, which
contains an alphabetical listing of the types and members found in Part III. You can use it to
determine the namespace to which a particular type or member in which you're interested belongs.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Conventions Used in This Book

Te following font conventions are used in this book:

Italic

Used for pathnames, filenames, program names, Internet addresses, such as domain names
and URLs, and new terms where they are defined.

Constant Width

Used for command lines and options that should be typed verbatim, and names and keywords
in program examples. Also used for parameters, attributes, configuration file elements,
expressions, statements, and values.

Constant-Width Italic

Used for replaceable terms, such as variables or optional elements, within syntax lines.

Constant-Width Bold

Used for emphasis within program code.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

There is a web site for this book, which lists errata, examples, or any additional information. You can
access this page at:

http://www.oreilly.com/catalog/aspdotnetnut

For more information about our books, conferences, resource centers, and the O'Reilly Network, see
the O'Reilly web site at::

http://www.oreilly.com

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Acknowledgments

I'd like to start by thanking my editor Ron Petrusha for his patience, skills, and technical savvy. It is a
pleasure working with an editor who is not only good with words, but sharp with technology. Thanks
also to Val Quercia for helping me to sound good and make sense, and to Daniel Creeron, for making
sure the book was technically sound.

Thanks to both Doug Reilly and Raja Mani for their contributions to the book. I truly appreciate your
efforts. Thanks also to Matthew MacDonald, for his work on the namespace reference, which will
hopefully make my work that much more comprehensible.

A big thank you to the ASP.NET team at Microsoft, without whose efforts we would not have this
fabulous new technology, and without whose willingness to explain and answer questions, this book
would not be nearly as useful. Rob Howard, Susan Warren, and Erik Olson in particular have provided
me with much insight and information into how ASP.NET works. I thank you all.

Thanks to Stacey Giard and all the folks at Microsoft who make sure that authors get both the
information and the software necessary to do their jobs. It might be possible without their efforts, but
it would sure be a lot harder.

Thanks to my mom, for believing in me, encouraging me, and listening to me kvetch when I'm close
to a deadline.

And, saving the best for last, I'd like to thank my wife Jennifer, whose cheerful support and tolerance
for late nights and long weekends made it possible to finish this book, and whose love makes it all
worthwhile.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Part I: Introduction
This part is an introduction to ASP.NET, Microsoft's next-generation technology for
developing server-side web applications and web services that work with Internet
Information Server. Part I consists of the following chapters:

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 1. Introduction

The predecessor to this book, ASP in a Nutshell, began with a brief history of the Web development
technologies leading up to Active Server Pages. In this book, we're going to leave history to the
historians and focus on the future of web development, ASP.NET. To better understand ASP.NET, it is
important to understand some key concepts of the .NET development platform. It is also helpful to
grasp object-oriented development; OOD is at the very heart of the .NET Framework, which provides
the foundation for ASP.NET development. In this chapter, we'll review these concepts, look at new
features in ASP.NET, and discuss choosing a language to suit your needs.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

1.1 .NET Platform Fundamentals

A t the core of Microsoft's .NET platform initiative is a new set of technologies known collectively as
the .NET Framework, which we'll refer to commonly as the Framework. The Framework provides a
platform for simplified rapid development of both web-based and Windows-based applications. The
Framework has two primary components, the Common Language Runtime (CLR) and the Framework
Class Library (FCL) .

As with many new technologies, there are a host of new terms and acronyms to understand, so we'll
assay over the next several sections to introduce and explain the most important ones in the
Framework.

1.1.1 The Common Language Runtime (CLR)

The CLR is an execution environment for code written for the .NET Framework. The CLR manages the
execution of .NET code, including memory allocation and garbage collection (which helps avoid
memory leaks), security (including applying differing trust levels to code from different sources),
thread management, enforcing type-safety, and many other tasks.

The CLR works with every language available for the .NET Framework. Thus, instead of having a
separate runtime for each language, the CLR works for all. Code developed in a .NET language is
compiled by the individual language compiler (such as the Visual Basic.NET compiler) into an
intermediate format called (appropriately enough) Intermediate Language (IL). At runtime, this IL
code generated by the compiler is just-in-time (JIT) compiled by the CLR into native code for the
processor type the CLR is running on. This compilation provides the flexibility of being able to develop
with multiple languages and target multiple processor types while still retaining the performance of
native code at execution time.

While there is some up-front cost on first execution to the JIT compilation
model, the Framework also offers the ability to pregenerate native code at
install time through a utility called NGen.exe. This utility eliminates the
startup cost of JIT compiling the code, at the expense of some of the
optimizations that are available with JIT compiling.

1.1.2 The .NET Framework Class Library (FCL)

The FCL is a set of reusable object-oriented classes that provide basic platform functionality, from the
data access classes of ADO.NET, to filesystem utility classes (including file, directory, and stream
classes), to networking classes that allow easy implementation of DNS resolution, WHOIS lookups,
and other network-related functionality. Developers can use the base classes directly or derive from
these classes to provide customized functionality.

The FCL also contains all classes that make up ASP.NET. These include classes that implement all of
the functionality of the ASP intrinsic objects, as well as classes that provide additional functionality,
from a rich engine for caching output and data to the ASP.NET Server Control model. This
functionality brings to ASP.NET the simplicity of control-based development that has long been
available to Visual Basic developers.

In addition to classes that support Web development, the FCL provides classes for developing console
applications, Windows applications, and Windows NT or Windows 2000 Services.

1.1.3 The Common Type System (CTS)

The CTS describes the set of types that are supported by the CLR. This includes both value types,
which include primitive data types such as Byte, Int16, Double, and Boolean, and Reference types,
which include arrays, classes, and the Object and String types.

Value types are types that store their values directly in memory and are accessed directly by name,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Value types are types that store their values directly in memory and are accessed directly by name,
as shown below:

'VB.NET
Dim myFloat As Single
myFloat = 3.1415
  
// C#
float myFloat;
myFloat = 3.1415;

In addition to the built-in data types mentioned above, value types also include user-defined value
types (types derived from the System.ValueType class) as well as enumerations.

Reference types are types that store a reference to the location of their values, rather than storing the
value directly. Frequently, the value is stored as part of a defined class and is referenced through a
class member on an instance of the class, as shown here:

'VB.NET
'Define class
Class myFloatClass
   Public myFloat As Single
End Class
  
'Create class instance and assign value
Dim myInstance As New myFloatClass(  )
myInstance.myFloat = 3.1415
  
// C#
// Define class
class myFloatClass
{
   float myFloat;
}
  
// Create class instance and assign value
myFloatClass myInstance = new myFloatClass(  );
myFloatClass.myFloat = 3.1415;

Individual language compilers may implement types using their own terminology. For example, while
the .NET representation of a 32-bit integer is referred to as Int32, in Visual Basic.NET, a 32-bit
integer is referred to as Integer and in C#, a 32-bit integer is referred to as int. Internally, however,
both Visual Basic's Integer and C#'s int are implemented as the .NET Int32 type.

1.1.3.1 Boxing and unboxing

Converting to and from value and reference types is accomplished through a process called boxing
and unboxing. Boxing refers to the implicit conversion of a value type, such as a C# int, to a
reference type (usually Object). For this conversion to take place, an instance of type Object is
created and the value type's value and type is copied into it -- in this case, int. Unboxing refers to the
explicit conversion of an Object type into a specific value type. The code example shown here
demonstrates boxing and unboxing.

// C#
int myInt = 123; // declare an int and set its value to 123
object myObj = myInt; // value of myInt is boxed into myObject
int myOtherInt = (int)myObject; // unbox myObject into
 myOtherInt

1.1.4 The Common Language Infrastructure (CLI)

The CLI is a subset of the .NET Framework that has been submitted for standardization through the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The CLI is a subset of the .NET Framework that has been submitted for standardization through the
ECMA standards body. The CLI includes the functionality of the Common Language Runtime, as well
as specifications for the Common Type System, type safety rules, Metadata, and Intermediate
Language. It also includes a subset of the Framework Class Library that includes a Base Class Library
(for built-in types and basic runtime functionality), a Network Library (for simple networking services
and access to network ports), a Reflection Library (for examining types and retrieving information
about types at runtime), an XML Library (for parsing XML), and Floating Point and Extended Array
Libraries.

Microsoft has also committed to providing what they refer to as a "shared-source" implementation of
the CLI, which will be available for both the FreeBSD and Windows operating systems.

Information on the ECMA standardization process, including documentation of the proposed
standards, is available at http://msdn.microsoft.com/net/ecma/.

1.1.5 The Common Language Specification (CLS)

The CLS is a subset of the types supported by the CLR, as well as a set of rules that language and
compiler designers must follow. The purpose of the CLS is to provide robust interoperability between
.NET languages, including the ability to inherit classes written in one .NET language in any other .NET
language and cross-language debugging.

The rules defined by the CLS apply only to publicly exposed features of a class. For example, the
internal implementation of a class can use non-CLS compliant types (such as the unsigned integer
types), but as long as only CLS-compliant members are exposed publicly, the class can still take full
advantage of the interoperability features enabled by the CLS.

1.1.6 Classes

While not a term specific to the .NET platform, the term class may be new to many ASP developers. A
class is essentially the blueprint for an object. It contains the definition for how a particular object will
be instantiated at runtime, such as the properties and methods that will be exposed publicly by the
object and any internal storage structures.

Developers work with classes by creating instances of the class at runtime using the new keyword, as
shown here:

// Instantiate the .NET File class in C#
System.IO.StreamReader sr;
sr = new System.IO.StreamReader("C:\\Test.txt");
string Line;
  
while(sr.Peek(  ) != -1)
{
   Line = sr.ReadLine(  );
   Response.Write(Server.HtmlEncode(Line) + "<br/>");
}

We preface the name of the class, StreamReader, with its namespace name, System.IO, to prevent
naming collisions with other classes in different assemblies that might have the same name and to
ensure that we get the StreamReader class we expect. We'll discuss namespaces and assemblies later
in this section.

In C#, the lowercase new keyword is used to instantiate classes. In Visual
Basic.NET, the New keyword is uppercase, but since the Visual Basic
language is not case-sensitive, this is a standard practice, rather than a
requirement enforced by the compiler. C#, on the other hand, is case-
sensitive, so keep this in mind when switching between C# and VB.NET.

1.1.7 Namespaces

Namespaces, a key part of the .NET Framework, provide scope to both preinstalled framework classes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Namespaces, a key part of the .NET Framework, provide scope to both preinstalled framework classes
and custom-developed classes. Namespaces are declared for a given set of classes by enclosing those
classes in one of the following declarations:

// C#
namespace myNamespace
{
   class myClass
   {
      // class implementation code
   }
}
  
' VB.NET
Namespace myNamespace
   Class myCls
      ' class implementation code
   End Class
End Namespace

Namespaces may also be nested, as shown below:

' VB.NET
Namespace myFirstNamespace
   Public Class myCls
      ' class implementation code
   End Class
   Namespace mySecondNamespace
      Public Class myCls
         ' class implementation code
      End Class
      Public Class myCls2
         ' class implementation code
      End Class
   End Namespace
End Namespace

The above code is perfectly valid because we've declared the second myCls in the nested namespace
mySecondNamespace. If we tried to declare two identically named classes within the same
namespace, we would get an error. To use the classes we just declared, we can do something like the
following:

' VB.NET
Imports System
Imports myFirstNamespace
Imports myFirstNamespace.mySecondNamespace
  
Module namespaces_client_vb
  
   Sub Main(  )
      Dim newClass As New myFirstNamespace.myCls
      Dim newClass2 As New myCls2
      Console.WriteLine("Object creation succeeded!")
   End Sub
  
End Module

We use the Imports keyword in Visual Basic.NET to enable the use of member names from these
namespaces without explicitly using the namespace name. However, because we used the class name
myCls in both the myFirstNamespace and mySecondNamespace namespaces, we need to use the fully
qualified name for this class, while we are able to instantiate myCls2 with only the class name. We can
just as easily use these classes from C#, as shown here:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


using System;
using myFirstNamespace;
using myFirstNamespace.mySecondNamespace;
  
class namespaces_client
{
   public static void Main(  )
   {
      myFirstNamespace.myCls newClass = new myFirstNamespace.myCls(  );
      myCls2 newClass2 = new myCls2(  );
      Console.WriteLine("Object creation succeeded!");
   }
}

C# uses the using keyword for importing namespaces. Notice that in both cases, in addition to
importing the namespaces we defined, we've also imported the System namespace. This is what
allows us to use the Console class defined in the System namespace to write to a console window
without referring explicitly to System.Console.

Classes that are part of the .NET Framework are organized by functionality into namespaces that
make them easier to locate and use. All classes that are a part of the .NET Framework begin with
either System or Microsoft. Examples include:

System

Contains all the .NET primitive data types as well as utility classes such as Console and Math
that are apt to be widely used in .NET applications.

System.Collections

Contains classes used to implement various kinds of collections in .NET, including ArrayList,
Dictionary, and Hashtable.

System.Data

Contains classes used to access and manipulate data, as well as child namespaces such as
System.Data.SqlClient, which contain data access classes specific to a particular data provider.

System.Web

Contains classes used to process web requests, as well as child namespaces such as
System.Web.UI, which contains such classes as the Page class, which is the basis for all
ASP.NET pages.

1.1.8 Assemblies

Also known as Managed DLLs, Assemblies are the fundamental unit of deployment for the .NET
platform. The .NET Framework itself is made up of a number of assemblies, including mscorlib.dll,
among others. The assembly boundary is also where versioning and security are applied.

An assembly contains Intermediate Language (IL) generated by a specific language compiler, an
assembly manifest (containing information about the assembly), type metadata, and resources. We'll
discuss IL, manifests, and metadata later in this section.

Assemblies can be either private, residing in the directory of the client application from which they are
used (or, in the case of ASP.NET, in the /bin subdirectory of the Web application), or shared. Shared
assemblies are stored in a common location called the Global Assembly Cache (GAC) . Assemblies
that are to be installed in the GAC must be strongly named. Strong naming can be accomplished
either through Visual Studio .NET, or you can use the sn.exe tool supplied with the .NET Framework
SDK to generate a key pair for signing the assembly, and then use the al.exe tool to create the signed
assembly based on the generated key. We'll demonstrate creating and sharing strongly named
assemblies in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Assemblies are self-describing, thanks to the manifest contained within them. One advantage of their
self-describing nature is that it makes it possible for different versions of the same assembly to be run
side by side. Clients can then specify the version of the assembly that they require, and the CLR will
make sure that the correct version of the assembly is loaded for that client at runtime.

1.1.9 Intermediate Language (IL)

IL, also known as MSIL, is a processor-independent representation of executable code. IL is similar in
some ways to assembly code, but it is not specific to a particular CPU; rather, it is specific to the CLR.
IL is generated by each of the language compilers that target the CLR. As mentioned above, .NET
assemblies contain IL that is to be executed by the CLR.

At runtime, the CLR just-in-time (JIT) compiles the IL to native code, which is then executed. There is
also a tool called ngen.exe, which is supplied with the .NET Framework SDK and allows you to
precompile assemblies to native code at install time and cache the precompiled code to disk.
However, while precompiling an assembly to native code will improve the startup time of an
assembly, the JIT process used by the CLR performs optimizations that may allow JITed code to
perform better than precompiled code.

1.1.10 Managed Execution

Managed execution refers to code whose execution is managed by the CLR. This execution includes
memory management, access security, cross-language integration for debugging and/or exception
handling, and many other features. Managed assemblies are required to supply metadata that
describes the types and members of the code contained within the assembly. This information allows
the CLR to manage the execution of the code.

Note that not all languages in Visual Studio .NET are managed. While Visual
C++ offers what are called the "Managed Extensions for Visual C++," it is
still possible to write unmanaged code in Visual C++.

1.1.11 Manifests, Metadata, and Attributes

Metadata and manifests are key pieces of the managed execution world. Manifests are the portion of
an assembly that contains descriptive information about the types contained in the assembly, the
members exposed by the assembly, and the resources required by the assembly. The manifest
contains metadata, which, simply put, is data that describes the assembly. Some metadata is
generated by the language compiler at compile time. The developer may add other metadata at
design time through the use of attributes. Attributes are declarations added to code that describe
some aspect of the code or modify the code's behavior at runtime.

Attributes are stored with an assembly as metadata and are used for many purposes in the .NET
Framework -- from the <webMethod( )> attribute used to turn a normal method into a web service to
attributes used to define how custom controls interact with the Visual Studio .NET environment.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

1.2 Object Orientation in the .NET Platform

The .NET Framework was built to be object oriented from the ground up. What does this mean? For
those of you who are unfamiliar with object-oriented programming, here's a quick review:

We've already discussed classes. Classes are the blueprints or templates from which objects are
created. Objects, the heart of object-oriented programming, are usable instances of a class. Objects
expose properties, which contain data related to or about the object, and/or methods, which allow
actions to be performed on the object.

In object-oriented programming, objects need to support three important qualities: encapsulation,
inheritance, and polymorphism.

Encapsulation refers to the ability of an object to hide its internal data from outside view and allow
access to only that data through publicly available methods. This helps prevent clients from
accidentally or purposefully leaving object data in a corrupt state and make it easier for the developer
of the class on which the object is based to change the internal implementation of these data
members without breaking its clients.

Inheritance refers to the ability to derive one class from another. This allows developers to create a
new class based on an existing class. The new class inherits all methods and properties of the existing
class. The developer can then add new methods or properties or override existing methods.
Inheritance allows you to develop specialized versions of objects that are customized to meet your
precise needs. We'll discuss this type of scenario more in Chapter 6.

The .NET Framework offers only single inheritance -- that is, a class may only
derive from a single base class. This is different from languages such as
C++, which allow classes to be derived from multiple base classes.

Polymorphism refers to the ability of multiple classes derived from the same base class to expose
methods with the same name -- all of which clients can call in exactly the same way, regardless of the
underlying implementation. Thus, a Car class could expose a Start method and a derived class
SportsCar could override that Start method to provide a different implementation. From the client's
perspective, however, both methods are used the same way.

This is a very high-level overview of object-oriented programming. While we'll discuss object-oriented
techniques in more depth throughout the book, those unfamiliar with the topic may want to pick up a
book that specifically addresses object-oriented programming.

1.2.1 Why Is It Important? Rapid Development and Reuse!

What's important about the object-oriented nature of the .NET platform is that it allows much faster
development than did previous generations of Windows development technologies and offers much
greater opportunities for reuse.

Because the functionality of the .NET Framework is exposed as a set of object-oriented classes rather
than a set of obscure and finicky API calls, many operations that were difficult or downright
impossible in classic ASP are simple in ASP.NET. For example, about ten lines of code can perform a
DNS lookup on a domain name using the classes in the System.Net and System.Net.Sockets
namespaces.

What's more, because many classes in the .NET framework can be used as base classes, it is easy to
reuse them in your own applications by deriving from a class to provide common functionality and
then extending the derived class to add functionality specific to your application. In fact, much of the
.NET Framework is built this way. For example, all classes that make up the ASP.NET Server Controls
are ultimately derived from the Control class of the System.Web.UI namespace, which provides
properties and methods common to all server controls.

1.2.2 OO Is at the Heart of Every ASP.NET Page

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One of the coolest things about object orientation in ASP.NET is that you don't have to know a thing
about how to use it. Every ASP.NET page implicitly inherits from the Page class of the System.Web.UI
namespace, which provides access to all ASP.NET implementations of the ASP intrinsic objects such as
Request, Response, Session, and Application., and to a number of new properties and methods. One
advantage of this is that each page is compiled into an assembly based on the Page class, providing
substantial performance improvements over classic ASP.

Object orientation is also the key to another important new feature of ASP.NET: Code-behind. Code-
behind allows developers to separate executable code from the HTML markup that makes up the user
interface. Executable code is placed in a module called a code-behind file, which is associated with the
ASP.NET page via an attribute in the page. The code-behind file contains a class that inherits from the
Page class. The ASP.NET page then inherits from the code-behind class, and at runtime, the two are
compiled into a single executable assembly. This compilation allows a combination of easy separation
of UI and executable code at design time with high performance at runtime.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

1.3 Choosing a Language

Choosing which language to use when developing ASP.NET applications is both easier and harder than
choosing a language for classic ASP development. It is harder because it may be intimidating for some
to choose between a substantially revised Visual Basic and a completely new language, C#. It is
easier because the choice of language no longer requires giving up substantial amounts of
functionality for your preferred language.

As in many other cases, including language choice in classic ASP, a lot of the decision is determined
by where you're coming from. If you're:

An experienced ASP developer who has used VBScript

You'll probably prefer Visual Basic.NET.

An experienced ASP developer who's used JScript

You'll want to look at C# or JScript.NET (keeping in mind that finding code examples in C# is
easier, since the novelty of the language makes it more interesting for many).

An experienced Visual Basic developer

Visual Basic.NET is the obvious choice, but you may also find it worthwhile to check out C#,
which offers a lot of the power of C++ without such a steep learning curve.

An experienced C, C++, or Java developer

You'll probably feel right at home with C#, which, as a C-derived language, shares a lot of
syntax with these languages.

New to ASP.NET development, with no prior ASP experience

Visual Basic.NET will probably be easiest to learn, although C# runs a close second.

Because of the level of cross-language interoperability in .NET, your choice needn't be an either/or.
You can feel free to create applications and classes in Visual Basic.NET, C#, JScript.NET, or any .NET-
enabled language, knowing that they will be able to work together smoothly and easily, thanks to the
CLR.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

1.4 Why and When Would I Use ASP.NET?

New projects starting development should use ASP.NET for the following reasons:

Reduced development time

Increased performance

Increased application stability

Increased scalability

New ASP.NET features (see the discussion later in this chapter)

In addition to the above factors, ASP.NET, like ASP, is available for free. The only costs associated
with ASP.NET development are the costs of the operating system on which you wish to run your
application (Windows 2000, Windows XP, or the upcoming Windows .NET Server) and the cost of any
development environment you choose to use. Of course, as with classic ASP, you can use free or
inexpensive text editors to create your applications. Given that the .NET Framework is a free add-on
to Windows (and will be installed by default in the Windows .NET Server line), it is possible to create
ASP.NET applications without spending a penny beyond the cost of the operating system and
hardware on which it will run. Integrated Development Environments, such as Microsoft Visual Studio
.NET, are also available at higher cost.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

1.5 Why and When Would I Port an Existing Application to ASP.NET?

A trickier question is, "When will it be worthwhile to make the effort to migrate an existing application
from ASP to ASP.NET?" The reality is that while classic ASP and ASP.NET have many common
features, for most applications, it will not be a trivial task to migrate an application from one to the
other. Changes in languages, as well as some changes in the way that ASP.NET operates compared to
classic ASP, mean that depending on how your classic ASP application is structured, migration could
require a significant amount of effort.

How do you decide whether a migration is worthwhile? If your application is in production, meets your
needs functionally and in terms of performance and scalability, and you do not anticipate further
development on the application, it's probably best to simply run it as a classic ASP application. One
big plus of the ASP.NET architecture is that it runs side by side with classic ASP, so you don't have to
migrate applications. Keep in mind, however, that while classic ASP and ASP.NET applications can run
side by side, even in the same directory, they do not share Session and Application context. Thus, you
will need to devise your own means of transferring any information you store in the Session or
Application collections to and from ASP and ASP.NET, if you want to share that information between
classic ASP and ASP.NET pages.

If your application is due for a new development cycle or revision, it's worth examining the types of
functionality that your application uses and examining whether ASP.NET would be helpful in meeting
the needs of the application. For example, if you have an application that struggles to meet your
needs in terms of performance and scalability, the improved performance of the compiled-code model
of ASP.NET and its new out-of-process Session State support may enable you to meet these goals
easily.

What's important to consider is balancing the cost of migration against the benefits offered by
migration. In this book, we will discuss the improvements and benefits offered by ASP.NET. It is left
as an exercise for the reader to weigh these improvements against one another and determine
whether to migrate a particular application.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

1.6 New Features in ASP.NET

We'll close our introductory look at the .NET platform with a list of new features in ASP.NET and the
chapter in which we'll discuss the new feature.

Web Forms

A new feature that, in combination with an editor such as Visual Studio .NET, provides the
ASP.NET developer the same drag and drop development convenience enjoyed by Visual Basic
developers for years. Web Forms improve the speed of development by encapsulating
frequently used features into server controls, which are declared using a tag-based syntax
similar to HTML and XML. We'll discuss Web Forms in Chapter 3 and Chapter 12.

Web services

Web services allow developers to expose the functionality of their applications via HTTP and
XML so that any client who understands these protocols can call them. Web services can make
the task of application integration easier, particularly in situations in which application-to-
application integration is made difficult by firewalls and/or differing platforms. We'll discuss
web services in Chapter 4.

Server controls

Server controls, as mentioned previously, are declared using an HTML-like syntax, making
them easier to work with for page UI designers. They are executed on the server, returning
HTML to the browser. Server controls may be manipulated on the server programmatically and
provide power and flexibility for applications that must support a variety of browsers. We'll
discuss using server controls in Chapter 5 and custom server control development in Chapter 6.

Validation

One group of server controls is designed to simplify the task of validating user input. It
includes controls to validate required fields, to compare one field to another or to a specific
value for validation, and to validate user input using regular expressions, which allow you to
specify a format that user input must follow to be valid. Validation controls will be discussed in
Chapter 5.

Improved security

ASP.NET offers tighter integration with Windows-based authentication, as well as two new
authentication modes: forms-based authentication (which allows users to enter authentication
credentials in a standard HTML form, with the credentials validated against your choice of
backend credential store) and Passport authentication (which makes use of Microsoft's Passport
authentication service). We'll discuss these improvements and new techniques in Chapter 9.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 2. ASP.NET Applications

In the last chapter, we introduced the .NET platform, some of its most important concepts, and new
features available in ASP.NET. In this chapter, we'll look at the types of applications you can create
with ASP.NET, discuss when you might want to use one type over another, explore the structure of
ASP.NET applications, and look at the various file types that make up an ASP.NET application.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

2.1 Application Types

In classic ASP, there was really only one type of application -- one in which a client accessed a page
with the .asp extension and in which that page, either through embedded VBScript or JScript or
through script in combination with components built on Microsoft's COM standard, returned HTML to
the browser to form the user interface with which the client would interact. Clients typically interacted
with the application only through this user interface and did not have the option of creating their own
alternative interface to the functionality exposed by the application.

ASP.NET provides an enhanced version of this type of application, which we'll discuss in the next
section. ASP.NET also introduces a new type of application, called a web service, which provides
clients the ability to use functionality exposed by an application without being tied into that
application's user interface implementation.

2.1.1 ASP.NET Web Applications

The ASP.NET Web Application is the type of application most developers will work with on a regular
basis. The terminology comes from the description used in the Visual Studio .NET environment to
describe the project type used to create this type of application. You may also hear this type of
application described as an ASP.NET Web Forms Application. For reasons we'll explore in the next
chapter, we prefer the former term.

An ASP.NET Web Application, in its simplest form, consists of a directory made available via HTTP
using the IIS administration tool or through the Web Sharing tab of a folder's Properties dialog (or by
creating a web application project in Visual Studio .NET) and at least one ASP.NET page, designated
by the .aspx file extension. This file (or files), whose structure we'll discuss in detail in the next
chapter, typically contains a mix of HTML and server-side code. This HTML and server-side code
combine to create the final output of the page, which is typically HTML that is sent to the client
browser. A simple ASP.NET page is shown in Example 2-1.

Example 2-1. A simple ASP.NET page

<%@ Page Language="VB" %>
<html>
<head>
   <title>Simple ASP.NET Page</title>
   <script runat="server">
  
      Sub SayHello(  )
  
         Response.Write("Hello, World!")
  
      End Sub
  
   </script>
</head>
<body>
  
<% SayHello %>
  
</body>
</html>

The page shown in Example 2-1 simply executes the code appearing in the <script runat="server"> as
well as the code appearing in the <% %> render block, and will return any resulting text or HTML to
the browser, along with the standard HTML tags that are contained in the file. Figure 2-1 shows the
output of the page as viewed in Notepad by using the View Source option in Internet Explorer. In this
case, the SayHello method uses the Write method of the Response object (the HttpResponse class,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


case, the SayHello method uses the Write method of the Response object (the HttpResponse class,
which supplies this functionality, is discussed in Chapter 17) to output the text "Hello, World!".
Because the SayHello method is called from a render block within the body section of the HTML
document, "Hello, World!" will appear here in the output that is sent to the browser.

Figure 2-1. Output of a simple ASP.NET page

The key to understanding how ASP.NET Web Applications work is understanding that the code in a
<script runat="server"> block or <% %> render block(s) is executed on the server -- after the client
requests the page, but before the output of the page request is sent to the client browser. This allows
developers to decide, based on the code they write and the input received from the user, just what
output actually is sent to the browser. It also allows additional functionality, such as server-side state
management, to be provided to these applications.

Besides the containing directory and ASP.NET file(s), an ASP.NET Web Application may also contain
configuration files (Web.Config), User Control files (.ascx), and an application settings file
(Global.asax), as well as code-behind and class files that provide additional functionality to the
application. We'll discuss each of these file types later in this chapter.

2.1.2 ASP.NET Web Services

The other type of application available to ASP.NET developers is the ASP.NET Web Service. Like
ASP.NET Web Applications, there are a number of terms floating around for this type of application.
(Microsoft refers to web services as "XML Web Services," perhaps in hopes of a positive association
between web services and the XML standard.) A web service is an application that exposes
programmatic functionality to clients over the Internet or an intranet using the underlying plumbing of
a developing W3C standard called SOAP. In simple terms, it can be seen as a simple function call
across the Internet.

What Is SOAP?

The proposed SOAP standard, which at the time of this writing was a W3C Submission (see
http://www.w3.org/Submission/ for information on current submissions) and versioned at
1.1, describes a protocol that may be used within the framework of HTTP (other transport
protocols are possible, but the SOAP specification does not define how to use them) to
send and receive requests and responses consisting of either specific data or remote
procedure calls and responses, or both. The SOAP specification defines the format for
messages sent via SOAP, methods for communicating how a message should be
processed, and encoding rules for communicating data types across heterogeneous
platforms.

Assuming that the proposed SOAP standard is adopted as a W3C Recommendation
(recommendation is the term used by the W3C to describe stable standards such as HTML
4.01; see http://www.w3.org for more information on current recommendations),

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.01; see http://www.w3.org for more information on current recommendations),
application developers on a given platform can expose their functionality to others on
different platforms in a fashion that makes the differences in platform transparent. As long
as both the server and the client follow the SOAP specification, the applications can
communicate, regardless of the platform differences.

Since SOAP has not yet been adopted as a recommendation and is still under
development, current implementations from Microsoft and other vendors have not yet
achieved the level of cross platform interoperability that is promised once SOAP is adopted
as a recommendation. As such, you should take the time to test and evaluate the
interoperability of your chosen platform(s) before committing substantial resources to web
services, if you are planning to use web services to facilitate cross-platform
interoperability.

The simplest form of an ASP.NET Web Service consists of a directory made available via HTTP using
the IIS administration tool or through the Web Sharing tab of a folder's Properties dialog (or by
creating a Web Application project in Visual Studio .NET) and at least one web service file, designated
by the .asmx file extension. Unlike an ASP.NET page, this file (or files), whose structure we'll discuss
in detail in Chapter 4, typically does not contain HTML, but consists solely of server-side code. The
methods to be exposed by the web service carry the WebMethod attribute (note that the syntax of the
WebMethod attribute varies depending on the language used). A simple web service is shown in
Example 2-2.

Example 2-2. A simple web service

<%@ WebService Language="VB" Class="Hello" %>
  
Imports System
Imports System.Web.Services
  
Public Class Hello : Inherits WebService
     <WebMethod()> Public Function SayHello(  ) As String
          Return("Hello, World!")
     End Function
End Class

If the .asmx file that makes up the above web service is called from a browser, ASP.NET will output a
page that documents how the web service should be called, and also provides the ability to test the
invocation of the web service. This page is shown in Figure 2-2.

Figure 2-2. Output of a simple web service

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


When invoked, the web service shown in Example 2-2 will return "Hello, World!" as an XML-formatted
response, according to the SOAP 1.1 specification, as shown here:

<?xml version="1.0" encoding="utf-8" ?> 
<string xmlns="http://tempuri.org/">Hello, World!</string>

The documentation page provided by ASP.NET also allows you to review the Web Service Description
Language (WSDL) description of your web service. WSDL, which we'll discuss further in Chapter 4, is
an XML-based format for describing the functionality exposed by a web service, including the format
and data type of input and output parameters, and can be considered a contract for how clients
interact with the web service. In this way, WSDL plays a role similar to that of Interface Description
Language (IDL) in Microsoft's COM component specification.

Besides providing a detailed discussion of how to create a web service,
Chapter 4 shows you how to consume a web service.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

2.2 Application Structure and Boundaries

Although it is convenient, for the sake of discussing application types, to divide ASP.NET applications
into web applications and web services, the truth is that from a practical standpoint, ASP.NET
applications can be comprised of both types; an ASP.NET Web Application may contain .asmx files
that implement web services, and a web service application may contain .aspx files that implement
user interfaces for web services or functionality contained in .NET assemblies. Thus, from the
standpoint of application structure, ASP.NET Web Applications and ASP.NET Web Services are quite
similar.

2.2.1 Application Structure

The structure of an ASP.NET application consists of a site or virtual directory in IIS and at least one
ASP.NET page or web service. Optionally, each ASP.NET application may have:

A single global.asax file, located in the root of the application.

One or more web.config files. There can be only one web.config file per directory or
subdirectory in the application.

One or more User Control files bearing the .ascx extension.

One or more class files, either for ASP.NET code-behinds or for assemblies used in your
application.

A /bin directory containing .NET assemblies you wish to use in your application. Assemblies in
the /bin directory are automatically made available to your application.

ASP.NET Web Applications created in Visual Studio .NET should contain Solution and Project-
related files (.sln, .suo, .vbproj, and .csproj, for example), a dynamic discovery file for web
services (.vsdisco), and a default cascading style sheets file (.css). These applications may
optionally contain resource files (.resx), dataset and/or XML schema definitions (.xsd), and
other file types.

All ASP.NET applications can contain any type of file (.htm, .asp, images, etc.) that a classic
ASP application could contain. Note, however, that .asp pages within an ASP.NET application
will not share an Application and Session state with the ASP.NET application.

Figure 2-3 provides a visual explanation of how an ASP.NET application is structured.

Figure 2-3. Structure of an ASP.NET application

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.2.2 Application Boundaries

In ASP.NET, as in classic ASP, the boundary of an application is determined primarily by the site or
virtual directory defined for that application in IIS. Requests for ASP.NET pages or web services that
reside within that site or virtual directory and its subdirectories are treated as part of the application
and have access to application-specific items such as the Application and Session intrinsic objects
(provided, respectively, by the HttpApplicationState and HttpSessionState classes). They also share
resources with other requests to the application.

2.2.3 Request Lifecycle and Handling

When a request comes in from a client for a file within the purview of IIS (i.e., an HTTP request for a
file within one of the sites or virtual directories set up in IIS), IIS checks the file extension of the file
being requested and then checks its mapping of file types to handler programs to determine which
program should be used to process the request. In the case of a classic ASP application, a request for
a file with the .asp extension is handled by the asp.dll ISAPI application. The App Mappings tab of the
Application Configuration dialog for IIS, shown in Figure 2-4, allows you to view and modify the
mappings of file extensions to the executables used to handle those extensions, as well as to
determine the HTTP verbs (GET, POST, etc.) that qualify the mapping.

Figure 2-4. The IIS Application Configuration dialog

Requests for files with the .aspx and .asmx extensions and for other ASP.NET-related files are handled
by the aspnet_wp.dll ISAPI application. This application, in turn, hands the requests off to the
aspnet_wp.exe worker process. Once the request is handed off to the ASP.NET worker process, it
handles the rest of the processing:

If no cached compiled version of the requested resource exists, compiling the code in the page
(and in any code-behind page identified with the src attribute).

Executing the compiled assembly associated with the page or web service, including refreshing
any control or page state from a previous request, handling events raised by the request, and
rendering the appropriate output to the client.

Releasing used resources and discarding any transient state information (information not
stored in either the Application or Session state collections).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


With the exception of the Application state collection, which is available to all clients within a given
ASP.NET application, and the Session state collection, which is associated with a specific client by a
value either stored in an HTTP cookie on the client or munged into the URL for the application, each
individual request to the application is independent from any other, even for that client.

The practical effect is that each request must contain sufficient information to successfully process the
request -- whether that information comes from form fields passed from the client, information stored
in the Application or Session collections, or even information from cookies or a database.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

2.3 Application File Types

A number of different file types are associated with an ASP.NET application, and it's important to
understand the purpose of each type, even if you aren't using all of them in your current applications.
In this section, we'll look at the major file types associated with ASP.NET Web Applications and web
services and what each of them does.

2.3.1 web.config

web.config is the file type used for configuration of various settings within an ASP.NET application.
Applications may contain more than one web.config file (though there may be only one per directory
or subdirectory), and the web.config files are applied in an hierarchical fashion. What this means is
that if you have defined a particular setting (such as the user accounts permitted to access that
directory) in the web.config file at the root of your application, this setting applies to the application
and all of its subdirectories, if it has any. You can override that setting for a particular subdirectory by
using a web.config file in a subdirectory of the application. The web.config files use an XML-based
syntax, and both the tag names and their attributes are case-sensitive.

web.config provides configuration settings for:

Application-specific settings, such as connection string information (since the web.config file
resides within the web application's file space, it is probably best to avoid storing sensitive
information such as passwords in a configuration file).

Authentication and authorization.

Browser capabilities (mapping specific functionality to the information retrieved from a User
Agent string).

Compilation settings, including whether an application should be run in debug mode.

Custom error handling information.

Globalization settings.

HttpHandlers and HttpModules associated with the application.

HttpRuntime settings.

Application Identity and encryption/decryption key settings.

ASP.NET Page defaults (for the @ Page directive).

ASP.NET Process settings, including settings for Web Gardens, and proactive restart of
applications based on memory used or number of requests received.

Code-access security settings, including mappings of trust levels to security policy files, and
trust setting for an application.

Session state settings, including whether to run Session state in process, out of process, or in
SQL Server.

Application Trace settings. Tracing is a useful new feature for debugging and troubleshooting
that we'll discuss in Chapter 10.

Web service settings.

Note that web.config is an optional file. Any configuration settings not set in a web.config file within

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Note that web.config is an optional file. Any configuration settings not set in a web.config file within
the application will be inherited from the server-level configuration file, machine.config. A sample
web.config file is shown in Example 2-3.

Example 2-3. Sample web.config file

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
  
   <system.web>
  
      <compilation 
         defaultLanguage="c#"
         debug="true"/>
  
      <trace
         enabled="true"
         requestLimit="10"
         pageOutput="false"
         traceMode="SortByTime"
         localOnly="true"/>
  
      <sessionState 
         mode="InProc"
         stateConnectionString="tcpip=127.0.0.1:42424"
         sqlConnectionString="data source=127.0.0.1;user id=sa;password="
         cookieless="false" 
         timeout="20"/>
   </system.web>
  
</configuration>

We'll discuss how to make changes to web.config, and the syntax of the various configuration
sections, in Chapter 8.

2.3.2 global.asax

global.asax performs the same function in ASP.NET that global.asa performs in classic ASP. That is, it
is an optional file that may contain code to respond to Application or Session-level events. Like
global.asa, there can be only one global.asax file per ASP.NET application. Unlike the global.asa file in
classic ASP, which was parsed, the global.asax application file is compiled at runtime into a .NET
managed assembly derived from the HttpApplication class. In addition to handling Application and
Session-level events, such as Session_OnStart, global.asax also allows you to handle events raised by
HttpModules associated with your application (in fact, the Session state in ASP.NET is implemented as
an HttpModule, so its events are already handled this way).

The global.asax file can be constructed one of two ways. The file can contain the event handlers and
other code you want associated with your application directly, or it can reference a code-behind class
file that contains the event handlers and code to associate with the application. Note that the code-
behind used, if any, must inherit from the HttpApplication class in the System.Web namespace. The
latter is the way that the global.asax files in ASP.NET applications created with Visual Studio .NET are
constructed. Example 2-4 shows a typical global.asax file that uses code-behind, while Example 2-5
shows the code-behind file it uses.

Example 2-4. global.asax using code-behind

<% -- Global.asax file-- %>
<%@ Application Codebehind="Global.asax.vb" Inherits="<namespacename>.Global" %>

Example 2-5. Codebehind file for global.asax in Example 2-4

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 2-5. Codebehind file for global.asax in Example 2-4

'Global.asax.vb codebehind file
  
Imports System.Web
Imports System.Web.SessionState
  
Public Class Global
   Inherits System.Web.HttpApplication
  
   Sub Application_BeginRequest(ByVal sender As Object, _
      ByVal e As EventArgs)
      ' Fires at the beginning of each request
   End Sub
  
   Sub Application_AuthenticateRequest(ByVal sender As Object, _
      ByVal e As EventArgs)
      ' Fires upon attempting to authenticate the user
   End Sub
  
   Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
      ' Fires when an error occurs
   End Sub
  
End Class

We'll discuss the uses of the global.asax file in more detail in Chapter 13 and Chapter 19.

2.3.3 .aspx Files

.aspx files, also known as ASP.NET pages or Web Forms, are the meat and potatoes of an ASP.NET
Web Application. These files contain the HTML tags, server controls, and code that present a user
interface to your users, and process their requests (or call helper functions in business-tier
components to do so). Like the global.asax file, .aspx files may either contain code directly or refer to
a code-behind class that contains the code for that page. Note that the code-behind used, if any, must
inherit from the Page class in the System.Web.UI namespace. We'll discuss .aspx files in detail in
Chapter 3.

2.3.4 .asmx Files

.asmx files are the files used to implement ASP.NET Web Services. These files contain the methods,
marked with the WebMethod attribute, that will be exposed by your application as web services. Like
global.asax and .aspx files, .asmx files may either contain code directly or refer to a code-behind class
that implements the methods to be exposed as web services. Note that the code-behind used, if any,
must inherit from the WebService class in the System.Web.Services namespace We'll discuss .asmx
files in detail in Chapter 4.

2.3.5 .ascx Files

.ascx files are used to implement what are known as ASP.NET User Controls. User controls are a
technique for code reuse that lies somewhere between the function of the #Include directive in classic
ASP (which you can still use in ASP.NET, if you choose) and the function of custom ASP.NET Server
Controls. User controls are made up of HTML tags, server controls, and code (or any combination of
the above), and can be reused through a simple tag-based syntax. They have the advantages of being
simpler to develop than custom Server Controls, as well as offering greater functionality than includes
(such as the ability to expose properties and methods). We'll discuss user controls further in Chapter
3 and Chapter 6.

2.3.6 Code-Behind and Class Files

In addition to the file types mentioned here, you'll also frequently deal with cod-behind and/or class

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In addition to the file types mentioned here, you'll also frequently deal with cod-behind and/or class
files. A code-behind file, also known as a code-behind class file, is a file containing .NET managed
code (such as VB.NET or C#) that defines a class from which an ASP.NET page file, web service file,
or application file, inherits. This inherited relationship is indicated by the codebehind or src attribute,
which indicates the file containing the code-behind class, and the inherits attribute, which indicates
the namespace name (if any) and the class name of the class to inherit. Example 2-4 shows these
attributes in action. At runtime, when the page, the web service, or the application is initialized for
the first time, the ASP.NET runtime locates the code-behind file and either executes the compiled
assembly associated with it (in the case of the codebehind attribute, which is used when the class will
be precompiled) or compiles the class into an assembly dynamically (in the case of the src attribute).
We'll discuss the use of code-behind classes and the choice of which attribute to use in greater detail
in Chapter 3 and Chapter 4.

Class files are simply source code files containing .NET managed code that is organized into
namespaces and classes and that has been compiled, using either the Visual Studio .NET environment
or the appropriate command-line compiler, into a .NET managed assembly. Class files are typically
kept separate from the web application in which their assemblies are used, just as the source code for
COM components used in classic ASP applications is typically kept separate from the web tree.

2.3.6.1 .vb

The .vb extension indicates source code files written in Visual Basic .NET. By default, code-behind
classes created by the Visual Studio .NET environment use the naming convention
filename.parentfileextension.languageextension. Thus, a VB .NET code-behind file for an ASP.NET page
might have the name WebForm1.aspx.vb. This naming convention clearly conveys the relationship
between the code-behind file and the page that inherits from it, as well as the language used in the
code-behind file, so you can adopt this naming convention or use a similar one, even when not
developing in the Visual Studio .NET environment.

2.3.6.2 .cs

The .cs extension indicates source code files written in Microsoft's new C# (pronounced "C Sharp")
language. These files, when created by Visual Studio .NET, use the same naming convention as the
one just described.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 3. Web Forms

Web Forms are an ASP.NET technology used to create programmable web pages. The main goal of
Web Forms is to bring the same productivity to web applications that Visual Basic brought to Windows
applications. Web Forms consist of the user interface (UI) and the UI logic written on the server side.
The UI and UI logic can reside either in the same file or in separate files.

Web Forms in ASP.NET offer a number of advantages over ASP and other technologies for generating
web applications. ASP.NET Web Forms:

Provide support for any HTML 3.2-compliant browser. Even ASP.NET Server Controls that
provide advanced client-side functionality will gracefully degrade for browsers that do not
support DHTML or script. These controls will, however, take advantage of such support in
browsers such as Internet Explorer 5.0 or later.

Are built on the Common Language Runtime and provide all the benefits of the runtime, such
as managed execution, type safety, and inheritance.

Can be built with any Common Language Runtime language, including C#, Visual Basic .NET,
and JScript .NET.

Can be created using rapid application development tools such as Visual Studio .NET. You can
build a Web Forms page simply by dragging and dropping controls from the VS.NET toolbox
onto the page.

Provide a rich set of server controls that provide almost all the functionality required for a web
application. ASP.NET ships with a broad array of built-in server controls.

Offer a flexible programming model, in which code may be included in the same file as the Web
Form, as in the classic ASP model or in separate module files, referred to as code-behind files.
Code-behind promotes the separation of code and content, which can improve your code's
readability, maintainability, and reusability.

Include state management features that preserve the state of the page and its controls
between requests. This facility is explained in detail in Section 3.3 later in this chapter.

Provide an extensible model that allows you to develop your own controls or purchase third-
party controls to add functionality to your application.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

3.1 Structuring an ASP.NET Page

An ASP.NET page is a declarative text file with the extension .aspx. A page consists of structural
elements that can perform various operations -- ultimately resulting in output of HTML or other MIME-
type output that can be handled by the browser. An ASP.NET page can contain any or all of the
following elements:

Page directives

Start with the @ symbol, followed by attribute/value pairs, and are used to specify page-level
settings, such as the language used in the page or namespaces to be imported. For example,
the following code specifies the C# programming language:

<%@ Page Language="C#" %>

Code declaration blocks

Consist of variable and member declarations within <script>...</script> tags, as follows:

<script language="C#" runat="server"> 
' code goes here
</script> 

Note that there are limitations on what code you can place in <script> blocks in ASP.NET. In
classic ASP, you can write executable code in a <script> block without wrapping that code in a
subroutine. In ASP.NET, only variable declarations can be placed outside of a subroutine. Any
other executable code not contained in a subroutine will result in an error.

Render code blocks

Used to write inline code and inline expressions within HTML elements. For example:

<% int i; %>
<H1><%=Heading%> </H1>

There are limitations on what code you can place in render blocks in ASP.NET. In classic ASP,
you can define subroutines in render blocks. In ASP.NET, this is not permitted and results in an
error.

Server-side comments

As always, comments are used for documentation and testing purposes. You can use them to
prevent any code from executing, as in the following example:

<%-- Debugging Code To Be Removed --%>

Server controls

HTML and web controls declared with the runat="server" attribute/value pair. For example, the
following code declares an HTML input server control and an ASP TextBox control:

<input type="text" id="MyText" runat="server">
<asp:TextBox id="Mytext" runat="server">

Server-side object tags

Used to declare and instantiate classic COM components and .NET classes. For example:

<object id="MyDataSet" class="System.Data.DataSet">

Server-side include directives

Used to include any text file into your page. This is analogous to the code reuse mechanism in
classic ASP. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<!-- #Include file="TopNavigation.inc" -- >
<!-- #Include virtual="Menus.inc" -- >

Literal text

Any text that is not one of the elements listed previously is literal text and appears as it is in
the output. This text also includes standard HTML tags. In the following example, "Name" is the
literal text:

Name: <input type="text" id="txtName">

3.1.1 Using @ Directives

ASP.NET provides a number of @ directives -- processing instructions that give the runtime and
compiler additional information about how you want your code to run. These directives let you enable
certain features, specify whether you want your pages to be based on the System.Web.UI.Page class
(the default) or on a custom class that you name, etc. Under ASP.NET, @ directives can also have
attributes that further enhance the configuration ability of the directive.

The list of @ directives in ASP.NET is greatly expanded from classic ASP, which provides only five
directives (whose functionality is now provided by attributes of the @ Page directive). The following @
directives are available in ASP.NET:

@ Page

Arguably the most important directive, @ Page is included at the top of each ASP.NET page and
allows you to set the page language and enable or disable such features as buffering, session
state, and debugging. The @ Page directive has the following attributes:

AspCompat

<%@ Page AspCompat="True|False" %>

Specifies that the page should be executed in a single-threaded apartment (STA) to provide compatibility with COM
components written in Visual Basic 6.0 (or other development tools that create only STA components). This attribute also
provides access to unmanaged wrappers of the ASP intrinsic objects (Request, Response, etc.) for components that need
access to these objects through ObjectContext or the OnStartPage method. By default, ASP.NET pages run in a
multithreaded apartment, so enabling this feature by setting AspCompat to True can have a negative impact on the
performance of your pages. The default value of this setting is False.

AutoEventWireup

<%@ Page AutoEventWireup="True|False" %>

Specifies that standard events (Page_Load, Page_PreRender, etc.) will be automatically wired to any handlers you
provide. The default for this attribute (set in the machine.config configuration file) is True. Pages created with Visual
Studio .NET have this attribute set to False, since Visual Studio creates the code to wire up events in a code-behind file
for you. As such, turning on AutoEventWireup in a page created with Visual Studio .NET results in event handlers firing
multiple times.

Buffer

<%@ Page Buffer="True|False" %>

Specifies whether or not ASP.NET page output should be buffered in memory and sent to the client when the entire page
has been rendered, or until the End or Flush method of the HttpResponse class is called. (See Chapter 17 for more
information on the HttpResponse class.) The default value is set to True.

ClassName

<%@ Page ClassName="classname" %>

Specifies the class name to be used for a dynamically compiled page. The default is the filename of the page, with the dot
between the filename and the .aspx file extension replaced by an underscore ( _ ). This class name appears as the top-
level object in the Control Tree when ASP.NET tracing is enabled. See Chapter 10 for more information on tracing in
ASP.NET pages and applications.

ClientTarget

<%@ Page ClientTarget="UserAgent/Alias" %>

Specifies that the page should be rendered using the defined capabilities of one of the browsers defined in the
<clientTarget> section of the web.config or machine.config configuration files. Use of this attribute substitutes the user
agent string defined in the <clientTarget> section for the one sent by the actual client browser, causing server controls
that query browser capabilities to render for the browser type specified in the ClientTarget attribute. Note that setting this
attribute to a value other than those defined in the <clientTarget> configuration section results in an exception.

Codebehind

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Codebehind

<%@ Page Codebehind="path" %>

Specifies the code-behind class file that contains code for the page. This attribute is used by the Visual Studio .NET
environment when building a project and is ignored by the ASP.NET runtime. Pages using the Codebehind attribute must
compile their code-behind class manually.

CodePage

<%@ Page CodePage="codepage" %>

Specifies the code page to be used for the page output.

CompilerOptions

<%@ Page CompilerOptions="options" %>

Specifies one or more command-line switches to be passed to the compiler for the language specified in the Language
attribute. Behavior and availability of this attribute may vary depending on the language used for the page.

ContentType

<%@ Page ContentType="MIMEtype" %>

Specifies the HTTP content type sent as part of the HTTP headers for the response generated by the page. Can be set to
any standard MIME type. This attribute is especially useful when returning types other than text/html -- such as when
using an ASP.NET page to generate binary image output. In this case, you would set the ContentType attribute to the
appropriate MIME type, such as image/jpeg. This attribute performs the same function as the ContentType property of the
HttpResponse class. (See Chapter 17 for more information on the HttpResponse class.)

Culture

<%@ Page Culture="culturename" %>

Specifies the name of the culture to use for formatting numbers, dates, etc. For example, the culture name for United
States English is en-US, which is also the default. Setting the Culture attribute to another culture name will result in
alternate values, such as the date returned by the Visual Basic Now function being formatted for the specified culture.

Debug

<%@ Page Debug="True|False" %>

Specifies whether the page will be compiled with debug symbols. Enabling debugging allows the use of debuggers to step
through code and provides more detailed information in the event of an exception, but also entails a performance
penalty. For this reason, the Debug attribute should always be set to False in production applications. Note that the
default value, which is False, is set in the <compilation> section of the machine.config configuration file.

Description

<%@ Page Description="textdescription" %>

Specifies a text description of the page. This attribute is ignored by the ASP.NET runtime.

EnableSessionState

<%@ Page EnableSessionState="True|False|ReadOnly" %>

Specifies whether the page supports session state. This attribute can be used to disable or delay the creation of sessions,
which are used for state management. Setting this attribute to False when session state is not utilized can improve the
performance of your application. If set to True, code within the page may read or write session values, and if no current
session exists for the user, a new Session is created. If set to False, attempts to read or write session values result in an
exception, browsing the page will not result in the creation of a new session, and if a session exists for the user, it will be
unaffected. If set to ReadOnly, an existing session may be read from, but not written to, and browsing the page will not
result in the creation of a new session. The default value, which is set in the <pages> section of the machine.config
configuration file, is True.

EnableViewState

<%@ Page EnableViewState="True|False" %>

Specifies whether ViewState is supported for the page. ViewState is a new feature of ASP.NET that allows server control
state (as well as developer-specified values) to be persisted across multiple requests to the page. ViewState is stored as
a hidden form field containing an encoded text string representing the state of all controls for which ViewState is enabled;
thus, any controls for which you want ASP.NET to manage state should be placed inside a server-side <form> tag pair.
When ViewState is enabled for a page, individual controls can disable their own ViewState for better performance.
Because ViewState is round-tripped between the server and client, you should be cognizant of the size of the ViewState
field for the page. Disabling ViewState where it is not necessary (either at the page or control level) may improve
performance. The default value, which is set in the <pages> section of the machine.config configuration file, is True.

EnableViewStateMac

<%@ Page EnableViewStateMAC="True|False" %>

Specifies whether ASP.NET should run a machine authentication check (MAC) on the ViewState contents to ensure that
the ViewState was not tampered with on the client. This can make your page more secure, but may carry a performance
penalty. The default value, which is set in the <pages> section of the machine.config configuration file, is False.

ErrorPage

<%@ Page ErrorPage="URL" %>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Specifies the URL of a page to which the user will be redirected if an unhandled exception occurs. This attribute should be
considered a last line of defense in error handling and not a substitute for proper error/exception handling. See Chapter
10 for more information on handling exceptions.

Explicit

<%@ Page Explicit="True|False" %>

Specifies whether pages written in Visual Basic .NET will be compiled using Option Explicit mode. This mode requires that
all variables be explicitly declared before use. The default value, which is set in the <compilation> section of the
machine.config configuration file, is True. Note that the documentation for the @ Page directive indicates that the default
for this attribute is False (while also indicating that the value is set to True in machine.config). This may refer to the
vbc.exe compiler having option explicit turned off by default. Since the explicit attribute in the <compilation> element of
machine.config is set to True, however, the default for ASP.NET pages is effectively True.

Inherits

<%@ Page Src="path" Inherits="namespace.class" %>

Specifies the namespace (optional) and class name of a class from which the page will inherit. This attribute is used with
the Src or Codebehind attribute to specify a code-behind file from which the page should inherit, thus making any
properties and/or methods of that class available to the page.

Language

<%@ Page Language="languagealias" %>

Specifies the language that will be used for server-side <script> blocks and render blocks on the page. Typical values are
VB (for Visual Basic .NET) and C#. You can also use the Language attribute of a server-side <script> tag to specify the
desired language for individual <script> blocks. Unlike classic ASP, ASP.NET only supports one language per page.

LCID

<%@ Page LCID="localeidentifier" %>

Specifies the locale identifier (LCID) for the page. The locale identifier is used by functions such as the Visual Basic .NET
FormatCurrency function to determine the desired format. For example, setting the LCID attribute to 1041 results in
FormatCurrency returning values formatted as Japanese yen (¥).

ResponseEncoding

<%@ Page ResponseEncoding="encodingname" %>

Specifies the encoding to be used for the page response. This attribute can be set to any valid encoding supported by
System.Text.Encoding. The default is Unicode (UTF-8).

Src

<%@ Page Src="path" Inherits="namespace.class" %>

Specifies the path to a code-behind class to compile dynamically. This attribute is used in conjunction with the Inherits
attribute to specify a code-behind class for the page that will be compiled when the page is requested (unless a cached
version of the compiled assembly for the page already exists). Unlike the Codebehind attribute, which is only used by
Visual Studio .NET (and is ignored by the ASP.NET runtime), the class file specified by the Src attribute is compiled
dynamically at runtime.

SmartNavigation

<%@ Page SmartNavigation="True|False" %>

Specifies whether ASP.NET's SmartNavigation feature is enabled. SmartNavigation, which is supported only by IE 5.x and
later, uses IFrame elements to allow only portions of the page to be refreshed when an ASP.NET page containing a form
is posted to the server. This can eliminate the flicker associated with page refresh, and also prevents multiple entries in
the browser history from postbacks. The default value, which is set in the <pages> section of the machine.config
configuration file, is False.

Strict

<%@ Page Strict="True|False" %>

Specifies whether pages written in Visual Basic .NET will be compiled using Option Strict mode. This mode does not permit
any implicit data type conversion that would result in data loss (also known as narrowing conversions) and does not allow
late binding. Option Strict also includes the restrictions of Option Explicit, so setting the Strict attribute to True also
requires that all variables be explicitly declared before use. The default value, which is set in the <compilation> section of
the machine.config configuration file, is False.

Trace

<%@ Page Trace="True|False" %>

Specifies whether the ASP.NET tracing feature is enabled for the page. Enabling tracing at the page level results in
information about the current request -- including request time, HTTP status code, cookie information, page control tree,
and HTTP header information -- being appended to the page output. Tracing can provide a great deal of information
useful for debugging or understanding what is happening with a given page. For performance and security reasons,
tracing should not be enabled for production applications. The default value, which is set in the <trace> section of the
machine.config configuration file, is False.

TraceMode

<%@ Page TraceMode="tracemode" %>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Specifies the sort order of entries in the Trace Information section of the page trace. Valid values include SortByTime,
which sorts entries in the order in which they are processed, and SortByCategory, which sorts entries based on the
category assigned to the entry. Developers can write custom entries to the trace output using the Trace.Write method
and assign categories to these entries. In the SortByCategory trace mode, all custom entries using the same category
would appear together. The default value, which is set in the <trace> section of the machine.config configuration file, is
SortByTime.

Transaction

<%@ Page Transaction="transactionmode" %>

Specifies the transaction mode of the page. Valid values are Disabled, NotSupported, Required, RequiresNew, and
Supported. Default is Disabled.

UICulture

<%@ Page UICulture="culturename" %>

Specifies the culture that should be used when loading language-specific resources for pages that use resource files.

WarningLevel

<%@ Page WarningLevel="warninglevel" %>

Specifies the compiler warning level at which ASP.NET should abort compilation of the page and display the warning. The
available values for this attribute depend on the language in use. See the documentation for the appropriate compiler for
more information.

@ Control

Provides much the same functionality as the @ Page directive, only for ASP.NET user controls.
The attributes available for the @ Control directive, which are a subset of those for the @ Page
directive, include the following:

AutoEventWireup
ClassName
Codebehind (Visual Studio .NET only)
CompilerOptions
Debug
Description
EnableViewState
Explicit
Inherits
Language
Strict
Src
WarningLevel

@ Import

Allows access to members of a namespace without using the fully qualified (namespace and
member name) name. The @ Import directive has a single attribute, Namespace, which
specifies the namespace to import. Multiple @ Import directives must be used to import
multiple namespaces, with one @ Import directive for each desired namespace.

@ Implements

Used to specify an interface that the page or control in which the directive appears implements.
By implementing an interface, the page developer agrees to provide implementations of all
methods and/or properties defined by the interface. Failure to implement any of the members
defined by the interface results in a compiler error. The @ Implements directive has a single
attribute, Interface, that specifies the .NET interface to be implemented.

@ Register

Allows the instantiation and use of user controls and custom server controls in ASP.NET pages
and user controls through an HTML-like tag-based syntax. The @ Register directive is used to
specify the tag prefix (similar to the asp: prefix for built-in ASP.NET Server Controls) and the
information necessary to locate the user control or custom server control. The @ Register
directive supports the following attributes:

TagPrefix

Specifies the prefix to be used to differentiate the tag used to create an instance of the user control or custom server
control.

TagName (user controls only)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Specifies the tag name (the portion of the tag immediately following the tag prefix, which is separated from the tag name
by a colon) used to create an instance of a user control. For custom server controls, the class name of the class that
defines the server control is used for the tag name, so this attribute is not necessary.

Namespace (custom server controls only)

Specifies the namespace of the custom server control.

Src (user controls only)

Specifies the path to the .ascx file containing the desired user control.

Assembly (custom server controls only)

Specifies the assembly containing the custom server control class.

A complete @ Register directive for a custom server control is:

<%@ Register TagPrefix="foo" Namespace="foo" Assembly="bar" %>

Assuming a class name of "baz" for the custom server control, the corresponding tag for an
instance of the control is shown here:

<foo:baz id="myBaz" runat="server"/>

See Chapter 6 for additional examples.

@ Assembly

Specifies the name or path to an assembly to be linked in with the current page. This
specification makes any classes or interfaces in the assembly available to the page. Note that
the following assemblies are linked into pages by default based on the <assemblies> child
element of the <compilation> element in the machine.config configuration file (see Chapter 8
and Chapter 20 for more information on configuration files):

mscorlib
System
System.Data
System.Drawing
System.EnterpriseServices
System.Web
System.Web.Services
System.Xml

Note that the <assemblies> element of machine.config also contains a wildcard reference (*)
that tells it to link any assemblies residing in the bin subdirectory of the application. Any
custom assemblies you place in this directory (including custom control assemblies) will be
available to your application automatically. Unlike the @ Import directive, this directive does
not make it possible to access members of an assembly without using the fully qualified name.
The @ Import directive is still required for that. The @ Assembly directive supports two
attributes, which are exclusive of one another:

Name

Specifies the name of the assembly to link. This is typically the same as the filename of the assembly, without the file
extension (i.e., the assembly name for System.Web.dll would be System.Web).

Src

Specifies the path to a class module that is to be dynamically compiled and linked into the current page.

@ OutputCache

Enables and specifies settings for caching the output of ASP.NET pages or user controls.
Caching can significantly improve the performance of ASP.NET applications. Output may be
cached on the server, on the client, or on intermediate machines, depending on the value of
the Location attribute. The @ OutputCache directive supports the following attributes:

Duration

Specifies the time in seconds for the output of the page to be cached. Note that for output cached by the ASP.NET cache
engine on the server, cached output may be evicted from the cache before this duration has elapsed if the page is
requested infrequently or if there is a shortage of available memory on the web server. This attribute is required.

Location (pages only)

Specifies where page output should be cached. Valid values include Any, Client, Downstream, None, or Server. The default

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Specifies where page output should be cached. Valid values include Any, Client, Downstream, None, or Server. The default
is Any. This attribute is supported only for output caching with ASP.NET pages. Attempting to use this attribute for
caching user controls results in a parser error.

VaryByCustom

Specifies a custom caching variation scheme. Setting the value to browser varies the cache based on the name and major
version number of the client's browser. To use this attribute for any other custom value, you must override the
GetVaryByCustomString method of the HttpApplication class in the global.asax file.

VaryByHeader (pages only)

Specifies a list of one or more HTTP headers, delimited by semicolons, to be used to vary the output cache. Requests with
identical values for the specified headers will be served a cached version of the page (if one exists). If no matching page
exists in the cache, the page is processed and the resulting output is cached. This attribute is supported only for output
caching with ASP.NET pages. Attempting to use this attribute for caching user controls will result in a parser error.

VaryByParam

Specifies a list of one or more HTTP GET or POST parameters, delimited by semicolons, to be used to vary the output
cache. Requests with identical values for the specified parameters will receive a cached version of the page (if one
exists). If no matching page exists in the cache, the page is processed and the resulting output is cached. This attribute is
required. To disable varying the cache by parameter, set the value to none. To vary by all parameters, set the value to
the * wildcard.

VaryByControl (user controls only)

Specifies a list of one or more properties of a user control, delimited by semicolons, to be used to vary the output cache.
Requests with identical values for the specified parameters will receive a cached version of the user control (if one
exists). If no matching user control exists in the cache, the user control is processed and the resulting output is cached.
This attribute is required unless a VaryByParam attribute has been specified for the user control's @ OutputCache
directive.

@ Reference

Specifies the path to an ASP.NET page or user control that will be compiled dynamically and
linked into the current page. The @ Reference directive supports the following attributes:

Page

Specifies the path to a page to be dynamically compiled and linked.

Control

Specifies the path to a user control to be dynamically compiled and linked.

3.1.2 Combining User Interface and Code

Although ASP.NET makes it possible to create much more complex, structured web applications, you
can continue to use the simple coding style characteristic of ASP in which code and HTML are
combined. This is illustrated in Example 3-1, a simple form that displays the message "Hello World" in
the browser window.

Example 3-1. A simple Web Form (HelloWorld.aspx)

<%@ Page Language="VB" %>
<html>
<head>
<title>My First Web Form</title>
<script runat="server">
   Sub Page_Load(Sender As Object , e As EventArgs )
      Message.Text = "Hello World!"
   End Sub
</script>
</head>
<body>
   <form runat="server">
      <asp:Label id="Message" runat="server" />
   </form>
</body>
</html>

This Web Form uses a server control, <asp:Label>, to output the text "Hello World". The server
control is declared using a tag with the prefix asp: followed by the attribute runat="server". The
attribute runat="server" indicates that the code will run on the server and the output will be sent to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


attribute runat="server" indicates that the code will run on the server and the output will be sent to
the browser. The Label control is used to display static text and can be changed using the control's
Text property. The entrypoint into the executable code in Example 3-1 is the event handler for the
Page object's Load event, which is called automatically when the page loads.

The tag prefix asp: denotes the namespace. Namespaces define the scope of the controls.
Namespaces allow the existence of multiple controls with the same name. Using namespaces, the
.NET Framework classes are neatly grouped under hierarchies based on their functionality.

When the page is requested from the browser for the first time, it is compiled and cached. The
compiled code is then used to generate the content dynamically. You may notice a delay when you
request any ASP.NET page for the first time because of the compilation. Subsequent requests will
execute much faster.

To understand how an ASP.NET page is rendered on the browser, you should look at the generated
HTML content from within the browser, which is accessible by selecting Internet Explorer's View |
Source menu option. The generated HTML from Example 3-1 is shown in Example 3-2.

Example 3-2. Generated HTML from an ASP.NET page

<html>
<head>
<title>My First Web Form</title>
  
</head>
<body>
   <form name="_ctl0" method="post" action="HelloWorld.aspx" id="_ctl0">
<input type="hidden" name="_  _VIEWSTATE" 
value="dDw4MDE0NzI0MDA7dDw7bDxpPDI+Oz47bDx0PDtsPGk8MT47PjtsPHQ8cDxwPGw8VGV4dD
s+O2w8SGVsbG8gV29ybGQhOz4+Oz47Oz47Pj47Pj47Pg==" />
  
      <span id="Message">Hello World!</span>
   </form>
</body>
</html>

As you can see by comparing Example 3-1 and Example 3-2, the Label server control has been
modified to become the HTML <span> tag. Also notice that a hidden form field stores the state of the
Label server control.

3.1.3 Code-Behind Files

ASP.NET promotes the separation of code and content. The use of code-behind files is one of the
mechanisms that aides the separation of the UI and the UI logic. Developing an ASP.NET page using
code-behind files requires two steps:

1. Developing the page's UI using HTML and web controls.

2. Developing the UI logic (code-behind) using any of the .NET languages.

A code-behind file consists of a class inherited from the Page class. It provides an object-oriented way
of developing the UI logic of an ASP.NET page. The code-behind file has member variables, event
handlers, and helper methods that are called from the event handlers specific to an ASP.NET page.
The ASP.NET page and the code-behind file are tightly coupled.

The extension of the code-behind file varies depending upon the .NET programming language you
choose to develop the code. Typically, it will be .cs for C#, .vb for Visual Basic, or .js for JScript. You
can decide to either precompile the code-behind file or let ASP.NET compile the code-behind file for
you.

The Page directive provides the glue between an ASP.NET page and a code-behind file at the
beginning of your ASP.NET page. The Inherits attribute of the Page directive specifies the name of the
.NET class that encapsulates the UI logic. The Src or Codebehind attribute specifies the path to the
filename that contains the .NET class itself. Use the Codebehind attribute if the code-behind file is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


filename that contains the .NET class itself. Use the Codebehind attribute if the code-behind file is
precompiled; otherwise, use the Src attribute. Note that the Codebehind attribute is used only by
Visual Studio .NET; it is ignored by the ASP.NET parser. By contrast, the ASP.NET parser uses the Src
attribute to locate and compile the code-behind class.

One of the most commonly used pages in any web application is a sign-in page. Example 3-3 shows
the HTML source for a simple ASP.NET sign-in page that uses a code-behind file. Note that this
example is not designed to show a secure login procedure, but rather to demonstrate the use of code-
behind with a Web Forms page. We'll look at creating a login page in Chapter 9. Also note that this
example requires that either the page and code-behind class belong to a Visual Studio .NET project,
which Visual Studio would need to build before the page is browsed, or the code-behind class be
manually compiled and placed in the application's bin subdirectory before the page is browsed.

Example 3-3. ASP.NET page using a code-behind file (CodeBehind.aspx)

<%@ Page language="vb" Codebehind="Codebehind.vb" 
   Inherits="aspnetian.CodeBehind" %>
<html>
<head></head>
<body>
   <form runat="server">
      <h1>Code-behind demonstration</h1>
      <p>
         <asp:label id="Message" runat="server">
         Enter your name to sign in:
         </asp:label>         
      </p>
      <p>
         <table id="SignInTable" cellpadding="5"
            cellspacing="1" bgcolor="Silver" runat="server">
            <tr>
           <td align="right">Name:</td>
               <td align="left">
                  <asp:textbox id="SignInBox" width="200" runat="server"/>
               </td>
            </tr>
            <tr>
               <td colspan="2" align="middle">
                  <asp:button id="SignInButton" runat="server" 
                     text="Sign in"/>
               </td>
            </tr>
         </table>
      </p>
   </form>
</body>
</html>

The first line of the page is a Page directive that has the Codebehind and Inherits attributes set to
appropriate values. Note that when declaring server controls, we have the option of using both an
opening and closing tag (as exemplified by the Message Label control) when the tags contain text to
be applied to one of the control's properties (in this case, the Text property), or using a single tag
with a closing (/ ). This follows the standard for XML/XHTML syntax.

The source code for the code-behind file is given in Example 3-4. If you look at the member variables
of the code-behind class, they have a one-to-one mapping with the IDs of the controls in the ASP.NET
page. This mapping is very important because these member variables are the programmatic
accessors to the controls in the page. You should also note that they are declared as Protected, which
means that they are accessible only within the code-behind class and the Web Form that inherits from
the code-behind class.

Example 3-4. Code-behind file (CodeBehind.vb)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 3-4. Code-behind file (CodeBehind.vb)

Imports System
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Web.UI.HtmlControls
Namespace aspnetian
  
Public Class CodeBehind : Inherits System.Web.UI.Page
   Protected Message As Label 
   Protected SignInTable As HtmlTable 
   Protected WithEvents SignInButton As Button 
   Protected SignInBox As TextBox
  
   Protected Sub Page_Load(sender As Object, e As EventArgs)
      If Page.IsPostBack Then
         Message.Text = "Time is: " & DateTime.Now(  ) & "<br />" & _
           Message.Text
      End If
   End Sub
  
   Protected Sub SignInButton_Click(obj As Object, e As EventArgs ) _
      Handles SignInButton.Click
      Message.Text = "Congratulations, " & SignInBox.Text & _
         "!!! You have successfully signed in."
      SignInTable.Visible = false
   End Sub
  
End Class
End Namespace

All code for the page has been removed from the Web Forms page into the code-behind class.

Because the Src attribute is specified in the Page directive, the code-behind file needs to be compiled
into a .dll file and deployed into the /bin folder of your application. Since the code-behind file shown
in Example 3-4 uses Visual Basic, you will typically invoke the VB compiler with the options shown
here:

vbc.exe /out:bin\Codebehind.dll /r:System.dll,System.web.dll /t:library 
Codebehind.vb

For convenience sake, it's usually a good idea to set up a DOS batch file (.bat extension) with the
compilation instructions. Then you can double-click the batch file in Windows Explorer to recompile
the code-behind class. Example 3-5 adds the pause command to allow you to view any warnings or
errors returned by the compiler before the command-line window is closed.

Example 3-5. Batch compilation file (MakeCodebehind.bat)

vbc.exe /t:library /r:System.dll,System.web.dll /out:bin\Codebehind.dll 
Codebehind.vb 
  
pause

Because the .NET Framework SDK setup program does not register the path to the command-line
compilers, the command in Example 3-5 will work only if you add the path to the compilers to the
PATH environment variable. Otherwise, you will need to use the full path to vbc.exe in your batch file.
To add the path to vbc.exe to the PATH environment variable:

1. Right-click the My Computer icon on the desktop and select Properties from the menu.

2. Select the Advanced tab and then click the Environment Variables... button.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3. Under System Variables, scroll to the Path variable, select it, then click Edit...

4. Add a semicolon, followed by the path to vbc.exe (typically
C:\%windir%\Microsoft.NET\Framework\%version%\) and click OK.

5. Click OK on the Environment Variables and System Properties dialogs to close them. You may
need to reboot for this change to take effect.

In Visual Studio .NET, the compilation of a code-behind class is taken care of automatically when you
build the project containing the Web Form that uses it. This is tracked by the Codebehind attribute of
the @ Page directive.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

3.2 Stages of Page Processing

During Web Forms processing, the page goes through distinct stages, which are illustrated in Figure
3-1. The Web Forms processor calls a corresponding page processing event at each stage.

Figure 3-1. The stages of Web Forms page processing

In ASP pages other than global.asa, you have to write your program logic sequentially because your
code is executed in the order in which it appears (termed procedural programming). ASP.NET, on the
other hand, features event-driven programming, in which the order of execution of a particular code
block is not predetermined. You write a block of code called an event handler that is executed
whenever that event occurs.

If you've developed client-side code or have programmed using Visual Basic, you're already familiar
with event-driven programming. ASP.NET takes event-driven programming to the server side,
encouraging you to structure your programming logic into event handlers. In ASP.NET, the Page
object is the representation of your ASP.NET page, and you can write handlers at the page level. ASP,
on the other hand, supports only events at the application and session levels.

The Page class inherits all of its important events from the System.Web.UI.Control class, which is the
ultimate parent of all server controls. This means that all events described below also apply to both
built-in and custom server controls because all of these controls ultimately derive from
System.Web.UI.Control.

We'll examine these events in detail. First, however, we'll examine how an event is associated with a
particular event handler in Visual Basic .NET and C#.

3.2.1 Handling Events

There are three main techniques for handling events in ASP.NET, one of which takes advantage of
ASP.NET's ability to wire up standard event handlers automatically and two of which rely on wiring up
event handlers manually.

3.2.1.1 Automatic event wiring

When handling events in a page that consists of a single .aspx page, it is often simplest to create
event handlers in the standard objectname_eventname syntax familiar to most Visual Basic
programmers. By default, ASP.NET will automatically look for handlers such as Page_Init, Page_Load,
Page_PreRender, and Page_UnLoad, and will call them automatically at the appropriate time during
page processing.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


While not strictly required, it's a good idea to use the objectname_eventname
syntax for event handlers you write for server controls used in your page. By
using a consistent standard for naming event handlers, it will be much
clearer to anyone reading your code (including yourself, if you haven't looked
at it in a while) which procedures are event handlers. Unlike the standard
page events inherited from Control, server control events are not wired
automatically. You can wire a server control event by adding an
OnEventName attribute to the tag that defines the control, with the value of
the attribute set to the name of the event handler, or by using one of the two
methods described in the following sections.

3.2.1.2 Using AddHandler or += to wire events

One method of wiring up events to event handlers manually is to use the Visual Basic .NET
AddHandler statement or the C# += operator to hook up an event to a delegate. Delegates, which are
used to create event handlers, are similar to function pointers, but are type-safe. The following code
snippets illustrate hooking up an event handler for the Click event of an ASP.NET Button server
control named Button1:

// C#
Button1.Click += new System.EventHandler(Button1_Click)
  
' Visual Basic .NET
AddHandler Button1.Click AddressOf Button1_Click

In both cases, the code tells ASP.NET where to find the procedure to execute when the Click event
(namely, Button1.Click) is fired. If, for some reason, you want to unwire an event handler, you can
use the Visual Basic .NET RemoveHandler statement or the C# -= operator to accomplish the reverse
of AddHandler and +=.

3.2.1.3 Using the WithEvents and Handles keywords to wire events

Visual Basic .NET developers have a third option for wiring up events: the WithEvents and Handles
keywords. The WithEvents keyword precedes the name of a declared control (usually in a code-behind
class) and tells ASP.NET that you want to be able to handle the control's events using the Handles
keyword. The Handles keyword is appended to the first line of the event handler procedure and is
followed by the object name and the name of the event it handles. The syntax of these keywords is
shown in the following code snippet. Note the use of the VB line continuation character, which
indicates that both the Sub declaration and the Handles keyword should be interpreted as a single line
of code:

Protected WithEvents MyButton As New Button
  
Private Sub MyButton_Click(sender As Object, e As EventArgs) _
   Handles MyButton.Click
   'Event handling code
End Sub

When using the AddHandler, +=, or WithEvents/Handles techniques for wiring
up the standard events (Init, Load, etc.) manually, you should add the
AutoEventWireup attribute to your page's @ Page directive, with the value set
to False. Otherwise, the event handlers will be called more than once.
Fortunately, new pages added to a web project in Visual Studio .NET have
this attribute set to False by default.

3.2.2 ASP.NET Page and Control Events

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Each stage of Web Forms processing shown in Figure 3-1 exposes particular events that can be
handled in your code. In this section, we'll examine those events in detail.

3.2.2.1 Init

The Init event, which is fired with each request, is used to initialize the page. If variables need to be
declared and initialized before the majority of page processing begins, the event handler for the Init
event is the place to do it. A good example of this is that for C# web projects in Visual Studio .NET,
the Page_Init event handler is used to wire up other events handled by a page's code-behind class.
The Page_Init handler, in turn, is wired up in the constructor for the code-behind class.

3.2.2.2 Load

The Load event is fired on every request to the page, immediately after all the controls on the page
have been initialized. You can use this event handler for initialization code specific to that page. Since
this event is fired every time the page is loaded, and if your page is posted to itself (known as a
postback), you can use the IsPostBack property of the Page object to write logic that executes only
once. For instance, in the code in Example 3-6, you will see the label "Before PostBack" the first time
you load the page because, since the page has not been submitted to itself yet, the IsPostBack
property is False. When the page is posted back, you will see the label "Posted Back" because the
IsPostBack property has become True.

Example 3-6. An ASP.NET page using the Postback property

<%@ Page Language="vb" %>
<html>
<head>
<title>IsPostBack Demonstration</title>
<script runat="server" >
   Sub Page_Load(Sender As Object, e As EventArgs)
      If Not IsPostBack Then
         lblMessage.Text = "Before PostBack" 
      Else
         lblMessage.Text = "Posted Back" 
      End If
   End Sub
</script>
</head>
<body> 
   <h1>Demonstration of IsPostBack property</h1>
   <form id="frmPostBack" runat="server">
      <asp:label id="lblMessage" runat="server"/>
     <asp:Button type="Submit" text="Post Back" runat="server"/>
   </form>
</body>
</html>

3.2.2.3 DataBinding

The DataBinding event is fired when the page (or a control) is bound to a data source. This will
usually occur when the DataBind method of the Page object is called, generally from the Page_Load
event handler. The DataBinding event handler can be used to do any special processing related to the
data-binding portion of page processing.

3.2.2.4 Control events

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.2.2.4 Control events

Server control events are used primarily in an ASP.NET page to write the UI and programming logic of
that page. Control events can be categorized broadly as either change events or action events.

The control event handlers are identified by an attribute of the control's tag. For example, in the
following tag:

<asp:Button id="MyButton" onClick="MyButton_Clicked" runat="server">

the attribute/value pair onClick="MyButton_Clicked" connects the control event (the Click event) with
its event handler (the MyButton_Clicked procedure).

Change events execute only on the next request to the server. For example, if you have written an
event handler for the TextBox_Changed event, only when the page is submitted to the server will the
code inside the handler be executed. Server-side change events are not the same as the client-side
change events that execute instantly.

The most commonly used Change events and the controls that raise these events are listed in Table
3-1.

Table 3-1. Change events
Event Description Controls

OnAdCreated

Raised after creation of the control and immediately
before the page is rendered. If an Advertisement file is
provided, OnAdCreated is raised after an ad has been
selected from the file.

AdRotator

OnDayRender Raised as each cell is created. Calendar

OnVisibleMonthChanged Raised when the user clicks a button for the next or
previous month in the Calendar's title. Calendar

OnSelectionChanged Raised when the user selects a day, week, or month
selector

Calendar

List

OnSelectedIndexChanged Raised when the user changes the selection.

CheckBoxList

DropDownList

ListBox

RadioButtonList

OnCheckedChanged Raised when the user clicks the control.
CheckBox

RadioButton
OnPageIndexChanged Raised when the user clicks a page selection element. DataGrid

Action events, unlike Change events, are immediately posted back to the server. For example, if you
have an event handler for the Command_Click event, the logic inside the handler will be executed the
moment you click that command button. Action events exhibit the same behavior whether they are
executed on the server or client side.

The most commonly used Action events and the controls that raise them are listed in Table 3-2.

Table 3-2. Action events
Event Description Controls

OnClick Raised when the user clicks the control.
Button,
ImageButton,
LinkButton

OnCancelCommand
Raised by a control whose Command property is Cancel.
Typically, this Button or LinkButton control is declared in the
EditItemTemplate.

DataGrid,
DataList

Raised by a control whose Command property is Delete. DataGrid,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


OnDeleteCommand Typically, this Button or LinkButton control is declared in the
ItemTemplate.

DataGrid,
DataList

OnEditCommand
Raised by a control whose Command property is Edit. Typically,
this Button or LinkButton control is declared in the
ItemTemplate.

DataGrid,
DataList

OnItemCommand Raised in the control when an embedded control raises an event
that is not already covered by Edit, Cancel, Delete or Update.

DataGrid,
DataList

OnUpdateCommand
Raised by a control whose Command property is Update.
Typically, this Button or LinkButton control is declared in the
EditItemTemplate.

DataGrid,
DataList

OnItemCreated Raised on the server each time a control is created. DataGrid,
DataList

OnSortCommand Raised when a column is sorted. DataGrid

3.2.2.5 PreRender

The PreRender event is fired just before the page (or control) is rendered and sent to the client. The
PreRender event is the last chance for page output to be modified before it is sent to the browser. It
is also the last event that fires before the ViewState of the controls on the page is saved, so any
control changes you wish to have saved to ViewState should be made either before or during this
event. ViewState is discussed more fully in Section 3.3 later in this chapter.

3.2.2.6 Unload

The Page_Unload event is fired after the page is rendered. You can use the Page_Unload event
handler to write cleanup code.

For example, in the following snippet, the database connection objConnection is closed:

Sub Page_Unload(sender As Object, e As EventArgs )
    ' Close the database connection
    objConnection.Close(  )
End Sub
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

3.3 State Management

In a typical web page, it is very common for data entry forms to retain their values after the form has
been posted and the same page is returned to the client (that is, to retain the values from a posted
form in the postback). To implement this feature in classic ASP, you need to determine whether or not
the page is requested by a client for the first time. You also need to write code that will display the
submitted value in the controls. In contrast, ASP.NET performs state management automatically in
postbacks.

ASP.NET uses a simple hidden HTML form field to retain the values automatically during postbacks.
There are no ActiveX controls or applets or client-side scripts used to maintain state. Thus, you need
not write code to retain values explicitly.

ASP.NET maintains only the state of server controls -- i.e., the controls
declared with the runat="server" attribute/value pair. State management can
be enabled or disabled for individual controls or an entire page by setting the
MaintainState property to True (its default value) or False.

Now let's revisit the concept of ViewState, which was introduced earlier in this chapter. ViewState is a
collection of information about the properties of an ASP.NET page and its controls (maintained in a
hidden form field named _VIEWSTATE.) It exists solely to store the properties of controls that are not
transmitted between client and server during postbacks. As the name itself implies, ViewState
preserves the state associated with a particular view of a page. It is used by the noninput controls
(such as Label and DataGrid) to store their ambient state across requests. Thus, when a page is
posted back to the server, and the result of the postback is rendered to the browser, controls such as
textboxes and listboxes, will automatically retain their state, unless the control's EnableViewState
property has been set to False or the state of the control was modified programmatically on the
server.

Only base properties are persisted in the ViewState. Any change in these
properties before rendering the page will be persisted.

If your page is not posted back to itself, you can set the property MaintainState to False at the page
level to avoid the extra processing and storage space required for maintaining ViewState. You can
also disable/enable view state on per control basis.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

3.4 Caching Page Output

Another new feature of ASP.NET that should not be overlooked is its support for caching -- in
particular, output caching. Output caching provides the ability to have the rendered output of a page
cached for a specified duration simply and easily. By caching the rendered output in memory,
subsequent requests for the page can be delivered substantially faster and with considerably less
processor utilization than if the page needs to be re-rendered for each request. This can lead to
substantial performance increases. The ASP.NET team has reported page delivery two to three times
faster when using output caching. Output caching is available for both ASP.NET pages and ASP.NET
user controls.

Not every page can be cached in its entirety. Some pages contain too much dynamic information to
be cached as a whole, but even these pages may have portions that seldom change. By moving these
static portions into user controls (which also provides the possibility of reuse) and then output caching
the user controls, at least some performance benefit can be realized -- even for very dynamic pages.

The best part about output caching is its simplicity. In its most basic state, caching the output of a
page requires a directive like the following (which you should add directly below the @ Page or @
Control directive):

<%@ OutputCache Duration="20" VaryByParam="None" %>

This directive tells ASP.NET to cache the output of the page for 20 seconds and to return the same
cached version of the page for all requests. Example 3-7 demonstrates how to cache the output of a
page for 60 seconds and to cache a different version of the page for each different value of the name
parameter, when sent as part of the query string of a GET request (for example,
http://localhost/aspnetian/OutCache.aspx?name=John). The cache can be varied by form fields in a
POST request as well, if desired, by setting the value of the VaryByParam attribute to the name of the
form field to vary by.

Example 3-7. Output caching in ASP.NET

<%@ Page Language="vb" %>
<%@ OutputCache Duration="60" VaryByParam="name" %>
<html>
<head>
<title>Output Cache Demonstration</title>
<script runat="server" >
   Sub Page_Load(Sender As Object, e As EventArgs)
      lblMessage.Text = "Current time is: " & _
         DateTime.Now(  )
   End Sub
</script>
</head>
<body> 
   <h1>Demonstration of Output Caching</h1>
   <form id="frmPostBack" runat="server">
      <asp:label id="lblMessage" runat="server"/>
   </form>
</body>
</html>

As explained in Section 3.1.1 earlier in this chapter, you can also have ASP.NET cache multiple
versions of a page on the basis of specific HTTP headers by using the VaryByHeader attribute, or you
can cache multiple versions of a user control on the basis of some of its properties by using the
VaryByControl attribute. Caching the output of a user control is essentially the same process as that
shown in Example 3-7, except that you may not use the VaryByHeader attribute in a user control.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

3.5 Additional Resources

The following sites provide more information on topics discussed in this chapter:

http://www.aspfriends.com/aspfriends/aspngcache.asp

The home page for the AspFriends.com mailing list (for questions relating to output caching).
This page is an excellent resource for caching questions, and members of the ASP.NET team
have even been known to answer a question or two here.

http://www.gotdotnet.com/QuickStart/aspplus/

The ASP.NET QuickStart samples, which can also be installed locally, provide a wide range of
examples and sample code and explanations that can be very useful when starting out. The
GotDotNet.com site also has sample code available from other users.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 4. Web Services

The primary purpose of ASP.NET web services is to provide access to application functionality through
standard web protocols (including HTTP and XML), regardless of the application's location or the
platform on which it is built. When your application exposes functionality as a web service, that
functionality can be consumed by clients on any platform, presuming the clients understand XML and
SOAP and can communicate via the HTTP protocol. More plainly, a web service is a function that is
called over the Internet.

An ASP.NET web service can be very simple or it can provide complex functionality. It can return a
variety of data types -- from simple strings and integer values to complex data types such as classes
and datasets. Web services are traditionally thought of as providing only business services (e.g., you
call a method, perhaps passing in some parameters, and you receive a return value), but there's no
reason why you can't create a web service that returns a chunk of HTML. Doing so would allow you to
provide cross-platform access to functionality similar to that provided by ASP.NET Server Controls.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

4.1 Standards

The ability of web services to fulfill their mission of providing cross-platform interoperability and
application integration depends on a number of existing and emerging standards and specifications.
The following list describes the most important standards, including their current standardization
status. Note that the W3C term for a stable standard is Recommendation.

HTTP (Current version 1.1, Recommendation; http://www.w3.org/Protocols)

HTTP is the standard protocol of the World Wide Web. HTTP is essential to web services
because most organizations allow communication over TCP port 80 (the default HTTP port) to
traverse their firewalls. This contrasts with protocols such as DCOM, which use ports that are
routinely blocked -- making them virtually useless for the Internet.

XML (Current version 1.0, Recommendation; http://www.w3.org/XML)

eXtensible Markup Language (XML) provides a standardized way of structuring and
communicating data via a tag-based text syntax. Combined with the XML Schema standard,
XML allows simple and complex data types to be serialized and deserialized to text for
transmission over an HTTP connection.

SOAP (Current version 1.1, Submission; http://www.w3.org/2000/xp)

Simple Object Access Protocol (SOAP) is an emerging standard that specifies how to format
RPC-style requests and responses using XML and communicating over HTTP. SOAP is essential
to web services. See the sidebar What is SOAP? in Chapter 2, for more information on the
SOAP protocol status and its impact on developing web services.

WSDL (Current version 1.1, Submission; http://www.w3.org/TR/wsdl.html)

Web Services Description Language (WSDL) is a specification for creating XML schemas that
describe a web service. This description is analogous to a COM type library in the sense that a
WSDL file provides a contract of the publicly exposed members of a web service, just as a type
library does for a COM object. By reading the WSDL contract for a web service, clients can
learn what methods are exposed by the web service and how to call them.

UDDI (http://www.uddi.org)

Universal Description, Discovery, and Integration (UDDI) is an open platform-neutral
framework being developed by Microsoft, IBM, and other vendors to address the need for a
way to publish, locate, and integrate web services simply and robustly. Web service developers
can register their web services with one of the UDDI directories, and potential clients can
search the UDDI directory for web services appropriate to their needs.

SOAP, WSDL, and UDDI are not settled standards. Thus, incompatibilities between different
implementations of SOAP and web services are possible if those implementations use different drafts
of a given standard. A good example of this possibility is WSDL, which is a successor to an earlier
draft specification called SDL. Because of incompatibilities between SDL and WSDL, communicating
between a client using SDL and a web service using WSDL (or vice-versa) will probably require some
tweaking to achieve interoperability. As specifications such as SOAP and WSDL work their way
through the standards process (or in the case of vendor specifications, as they gain acceptance),
instances of incompatibility should become rarer.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

4.2 Web Services Architecture

In ASP.NET, a web service is essentially a listener that monitors a particular URL exposed via HTTP,
looking for requests packaged as SOAP messages. When a request arrives, the ASP.NET runtime
unpackages the request and calls the method for which the request is intended, passing in any
parameters included with the request. If the request has a return value (which is not required), the
ASP.NET runtime packages up the return value (based on the XML schema datatype specifications)
and sends it to the client as a SOAP message. What this means to developers is that your application
doesn't need to know anything about the client that will consume it, other than the fact that it can
understand XML and SOAP. Thus, developers can essentially write methods that will be called as web
services just as though they were writing methods that would be called locally.

This functionality is provided by the runtime largely for free. Developers expose their functionality as
web services by marking their methods with a specific metadata attribute, the WebService attribute.
The Common Language Runtime (CLR) takes care of the rest -- from packaging and unpackaging
SOAP requests to automatically providing HTML documentation of the web service -- if it is called from
a web browser (rather than by a SOAP request).

Metadata Attributes

Metadata attributes are somewhat similar in concept to attributes on HTML tags or XML
elements. Metadata attributes provide additional information about assemblies, classes,
and class members to the CLR. Attributes tell the CLR to treat a particular member a
certain way or to automatically provide certain functionality (such as the automatic
packaging/unpackaging of SOAP requests for web services).

Figure 4-1 illustrates how an ASP.NET web service works.

Figure 4-1. Inside an ASP.NET web service

In terms of file structure, web services in ASP.NET are implemented by .asmx pages. An .asmx page
begins with the @ WebService directive, which contains attributes instructing the CLR how to run the
web service. The .asmx page can either directly contain the code necessary for the web service to
operate or can contain a Class attribute in its @ WebService directive that points to a compiled class
containing the implementation code. In this latter case, the file containing the source code for the
compiled class is called a code-behind file , as introduced in Chapter 3 and illustrated in Figure 4-2.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 4-2. How code-behind works

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

4.3 Creating a Web Service

There are two different coding techniques with which one can construct a web service: inline code and
code-behind.

4.3.1 Web Service with Inline Code

Creating a single-file web service is quite simple. All that's required is to create a new file, add an @
WebService directive and a class containing the implementation for the methods you want to expose,
and decorate the methods to be exposed with the WebMethod attribute. The @ WebService directive
supports the following attributes:

Class

Specifies the name of the class containing the implementation of the web service. This attribute
is necessary to allow the ASP.NET runtime to locate the compiled class at runtime.

CodeBehind

Specifies the name of a code-behind file that contains the class that implements the web
service. This attribute is used by Visual Studio .NET when building the project containing the
code-behind class.

Debug

Specifies whether the web service should be compiled with debug symbols.

Language

Specifies the language used for code written inline in the .asmx file.

To demonstrate the creation of a web service, look at Example 4-1, which implements a simple
"Quote of the Day" web service.

Example 4-1. Quote of the day application (Qotd.asmx)

<%@ WebService Language="VB" Class="Qotd" %>
Imports System
Imports System.Data
Imports System.Web
Imports System.Web.Services
  
Public Class Qotd
  
   <WebMethod(  )> _
   Public Function GetQotd(  ) As String
      Dim QuoteDS As New DataSet(  )
      Dim Context As HttpContext = HttpContext.Current(  )
      Dim QuoteXML As String = Context.Server.MapPath("qotd.xml")
      Dim QuoteCount As Integer
      Dim QuoteToReturn As Integer
      Dim Randomizer As New Random(  )
  
      QuoteDS.ReadXml(QuoteXML)
      QuoteCount = QuoteDS.Tables(0).Rows.Count
      QuoteToReturn = Randomizer.Next(0, QuoteCount)
      Return QuoteDS.Tables(0).Rows(QuoteToReturn)(0) & _
         "<br /><br />" & QuoteDS.Tables(0).Rows(QuoteToReturn)(1)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         "<br /><br />" & QuoteDS.Tables(0).Rows(QuoteToReturn)(1)
   End Function
  
End Class

The WebService directive in Example 4-1 specifies Visual Basic .NET as the language used in the web
service and specifies that the web service's implementation is contained in a class named Qotd. The
next four lines import several namespaces to save the effort of typing in the namespace name each
time a member is used in the code.

Next comes the class definition for the Qotd class. This class contains a single function, GetQotd,
which returns a string containing a quote and the name of its author, separated by two HTML line
breaks. Note that this definition assumes that the consumer of the web service will display the results
as HTML. In a later example, we'll provide a more flexible implementation.

Within the method, you create an ADO.NET dataset (see Chapter 7 for more information on ADO.NET)
and use the ReadXml method of the DataSet class to read in the stored quotes from a simple XML file.
The contents of this file are shown in Example 4-2. Once the data is loaded into the dataset, you
check the Count property to determine how many records exist and then use an instance of the
Random class to return a random number from 0 to the record count. This number is then used to
retrieve the first and second values (which also happen to be the only values) of the desired row, as
shown in the following snippet, and return it to the caller of the method:

Return QuoteDS.Tables(0).Rows(QuoteToReturn)(0) & _
         "<br /><br />" & QuoteDS.Tables(0).Rows(QuoteToReturn)(1)

Note that since collections in .NET are zero-based, Tables(0) refers to the first table in the Tables
collection of the dataset (in this case, the only table). You can access the value of a particular field in
a particular row in a specific table by using the following syntax:

MyVariable = MyDataset.Tables(tableindex).Rows(rowindex)(fieldindex)

Example 4-2. Qotd.xml

<Quotes>
   <Quote>
      <QuoteText>Never give in--never, never, never, never, in nothing great 
or small, large or petty, never give in except to convictions of honour and 
good sense. Never yield to force; never yield to the apparently overwhelming 
might of the enemy.</QuoteText>
      <QuoteAuthor>Winston Churchill</QuoteAuthor>
   </Quote>
   <Quote>
      <QuoteText>We shall fight on the beaches. We shall fight on the landing 
grounds. We shall fight in the fields, and in the streets, we shall fight in 
the hills. We shall never surrender!</QuoteText>
      <QuoteAuthor>Winston Churchill</QuoteAuthor>
   </Quote> 
   <Quote>
      <QuoteText>An appeaser is one who feeds a crocodile-hoping it will eat 
him last.</QuoteText>
      <QuoteAuthor>Winston Churchill</QuoteAuthor>
   </Quote> 
   <Quote>
      <QuoteText>We shape our buildings: thereafter they shape us.</QuoteText>
      <QuoteAuthor>Winston Churchill</QuoteAuthor>
   </Quote>
   <Quote>
      <QuoteText>Science without religion is lame, religion without science 
is blind.</QuoteText>
      <QuoteAuthor>Albert Einstein</QuoteAuthor>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      <QuoteAuthor>Albert Einstein</QuoteAuthor>
   </Quote> 
   <Quote>
      <QuoteText>As far as the laws of mathematics refer to reality, they are 
not certain, and as far as they are certain, they do not refer to reality.</QuoteText>
      <QuoteAuthor>Albert Einstein</QuoteAuthor>
   </Quote> 
   <Quote>
      <QuoteText>If A equals success, then the formula is A equals X plus Y 
plus Z. X is work. Y is play. Z is keep your mouth shut.</QuoteText>
      <QuoteAuthor>Albert Einstein</QuoteAuthor>
   </Quote> 
   <Quote>
      <QuoteText>When a man sits with a pretty girl for an hour, it seems 
like a minute. But let him sit on a hot stove for a minute-and it's longer 
than any hour. That's relativity.</QuoteText>
      <QuoteAuthor>Albert Einstein</QuoteAuthor>
   </Quote> 
</Quotes>

Once you've added the code in Example 4-1 to a file, saved it with the .asmx extension, and created a
file called Qotd.xml with the text in Example 4-2 in the same virtual directory, you can open the
.asmx file in a browser to test the implementation. The result should be similar to Figure 4-3.

Figure 4-3. Browsing a web service

The main documentation page displayed in Figure 4-3 is generated automatically by the ASP.NET
runtime whenever a web service (.asmx file) is called from a browser rather than by a SOAP request.
You should note three things about the page in Figure 4-3:

The link to the service description. Accessing this link displays the WSDL contract (see Figure
4-4), which describes the methods exposed by the web service (in much the same way as an
IDL file describes a COM object). This contract is also used by .NET clients to generate proxy
classes for consuming the web service. This topic is discussed in more detail later in the
chapter.

The link that provides access to a documentation page for the GetQotd method, which is shown
in Figure 4-5. If the web service exposed multiple methods, the main documentation page
would provide a link for each.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The main documentation page also displays a recommendation about the default namespace
for the web service. This recommendation refers to the XML namespace, which if not specified,
defaults to http://tempuri.org and should not be confused with the .NET namespaces. A later
example demonstrates how to set the default namespace to a unique URL.

Figure 4-4. Service description for Qotd.asmx

As shown in Figure 4-5, the documentation page for the GetQotd method provides an Invoke button
that allows you to test the web service method and that provides documentation on creating SOAP,
HTTP GET, and HTTP POST requests for the selected method. In this case, HTTP GET and POST are
not shown.

Figure 4-5. GetQotd documentation

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you click the Invoke button, a new browser window should open, displaying XML text similar to the
following snippet. (Note that the quotation and author may vary, since they are selected randomly.)

<?xml version="1.0" encoding="utf-8" ?> 
<string xmlns="http://tempuri.org/">We shape our buildings: thereafter
   they shape us.<br><br>Winston Churchill</string>

Because the GetQotd method returns a string containing HTML formatting (the <br /> tags), it will
automatically display the quote and author on separate lines if shown in a browser. But what if a
consumer of the web service wants to apply a different format to the quote than the author?

With this implementation, they're out of luck, unless they are willing to parse out the two parts and
apply the formatting individually that way. To address this issue, look at a modified version of the
Qotd web service that uses a code-behind class for its implementation.

4.3.2 Web Service Using Code-Behind

The following snippet is all that's required for the .asmx file for our code-behind version of the Qotd
web service (Qotd_cb.asmx):

<%@ WebService Language="VB" Class="aspnetian.Qotd_cb" %>

Note that instead of providing the class name, Qotd_cb, we've also added a namespace name,
"aspnetian," to reduce the likelihood of naming conflicts. Example 4-3, which contains the code-
behind class that implements the web service, defines this namespace.

Example 4-3. Qotd_cb.vb

Imports System
Imports System.Data
Imports System.Web
Imports System.Web.Services
  
Namespace aspnetian
  
<WebService(Namespace:="http://www.aspnetian.com/webservices/")> _
Public Class Qotd_cb
   Inherits WebService
  
   <WebMethod(  )> _
   Public Function GetQotd(  ) As String
      Dim QuoteDS As New DataSet(  )
      Dim QuoteXML As String = Server.MapPath("qotd.xml")
      Dim QuoteCount As Integer
      Dim QuoteNumber As Integer
      Dim Randomizer As New Random(  )
  
      QuoteDS.ReadXml(QuoteXML)
      QuoteCount = QuoteDS.Tables(0).Rows.Count
      QuoteNumber = Randomizer.Next(0, QuoteCount)
      Return QuoteDS.Tables(0).Rows(QuoteNumber)(0) & "<br /><br />" _
          & QuoteDS.Tables(0).Rows(QuoteNumber)(1)
   End Function
  
   <WebMethod(  )> _
   Public Function GetQuoteNumber(  ) As Integer
      Dim QuoteDS As New DataSet(  )
      Dim QuoteXML As String = Server.MapPath("qotd.xml")
      Dim QuoteCount As Integer
      Dim Randomizer As New Random(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      Dim Randomizer As New Random(  )
  
      QuoteDS.ReadXml(QuoteXML)
      QuoteCount = QuoteDS.Tables(0).Rows.Count
      Return Randomizer.Next(0, QuoteCount)
   End Function
  
   <WebMethod(  )> _
   Public Function GetQuote(QuoteNumber As Integer) As String
      Dim QuoteDS As New DataSet(  )
      Dim QuoteXML As String = Server.MapPath("qotd.xml")
      Dim QuoteCount As Integer
      Dim QuoteToReturn As String
  
      QuoteDS.ReadXml(QuoteXML)
      QuoteToReturn = QuoteDS.Tables(0).Rows(QuoteNumber)(0) 
      Return QuoteToReturn
   End Function
  
   <WebMethod(  )> _
   Public Function GetAuthor(QuoteNumber As Integer) As String
      Dim QuoteDS As New DataSet(  )
      Dim QuoteXML As String = Server.MapPath("qotd.xml")
      Dim QuoteCount As Integer
      Dim AuthorToReturn As String
  
      QuoteDS.ReadXml(QuoteXML)
      AuthorToReturn = QuoteDS.Tables(0).Rows(QuoteNumber)(1) 
      Return AuthorToReturn
   End Function
  
End Class
  
End Namespace

In addition to wrapping the class declaration in a namespace declaration, this example adds a new
attribute, WebService, and several new methods. The WebService attribute is added at the class level
so we can specify the default namespace (XML namespace) for the web service. This namespace
needs to be a value unique to your web service. In the example, the namespace is
http://www.aspnetian.com/webservices/; for your own web services, you should use your own unique
value. You may want to substitute a URL that you control, as doing so will assure you that web
services created by others will not use the same value.

The added methods are GetQuoteNumber, GetQuote, and GetAuthor. These methods demonstrate
that even though web service requests are sent as XML text, the input and output parameters of web
service methods are still strongly typed. These methods address the potential formatting issue
discussed previously by allowing clients to retrieve a quote and its author separately in order to
accommodate different formatting for each. To ensure that the matching author for the quote is
retrieved, the client would first call GetQuoteNumber to retrieve a randomly generated quote number,
and then call GetQuote and/or GetAuthor, passing in the received quote number. This provides the
client more flexibility, but does not require the web service to keep track of which quote number was
sent to a given client.

An important difference between the single-file web service and the code-behind implementation is
that for the code-behind version, you must compile the code-behind class into an assembly manually
and place it in the bin directory before the web service will work. Note that this step is automatic
when you build a web service project in Visual Studio .NET. If you're writing code by hand, this step
can be accomplished by using a DOS batch file containing the commands shown in the following
snippet:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


vbc /t:library /r:System.Web.dll /r:System.dll /r:System.Web.Services.dll 
/r:System.Xml.dll /r:System.Data.dll /out:bin\qotd_cb.dll qotd_cb.vb
  
pause

Note that all command-line options for the vbc.exe compiler should be part of a single command. The
pause command allows you to see any warnings or errors generated during compilation before the
command window is closed.

4.3.3 Inheriting from WebService

In Example 4-1, the Current property of the HttpContext class is used to get a reference to the
Context object for the current request. Getting this reference is necessary to access to the Server
intrinsic object so that we can call its MapPath method to get the local path to the XML file used to
store the quotes. However, as you add more methods that use the XML file, you end up with
redundant calls to HttpContext.Current.

For better readability and maintainability, you can eliminate these calls by having the web service
class inherit from System.Web.Services.WebService. Inheriting from WebService automatically provides
access to the Server, Session, and Application intrinsic objects, as well as to the HttpContext instance
for the current request and the User object representing the authenticated user. In the case of
Example 4-3, inheriting from WebService eliminates the calls to HttpContext.Current entirely.

Web services that inherit from the WebService class have access to the
ASP.NET Session object. However, you should carefully consider whether
your application will benefit from storing state information in the Session
collection before using it -- particularly if your application may need to scale
to more than one web server. ASP.NET now provides out-of-process Session
state options that can be used in web farm situations. Unfortunately, because
these solutions require, at best, an out-of-process call (and at worst, a cross-
machine call), using them results in a significant performance penalty.
Regardless of your decision, you should always load-test your application to
ensure that it will meet your performance and scalability needs.

Figure 4-6 shows the main documentation page for the code-behind version of the Qotd web service.
Note that the main documentation page contains links for each new method exposed by the web
service. Also note that the page no longer displays the namespace warning/recommendation, since
we set the default namespace in this version.

Figure 4-6. Browsing Qotd_cb.asmx

You've written a web service and you tested it by opening the .asmx file in a browser and invoking the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You've written a web service and you tested it by opening the .asmx file in a browser and invoking the
methods. What's next? Unless your web service will be consumed only by yourself or by someone with
whom you have regular communication, you need to publish or advertise your web service in some
way. Potential clients also need to locate your web service to use it.

Publishing a web service can be accomplished in either of two ways: through a discovery document or
by registering the web service with a UDDI directory.

4.3.4 Discovery Documents

A discovery document is a file with the extension .disco that contains references to the WDSL
contracts for web services you want to publish, references to documentation for your web services,
and/or references to other discovery documents.

4.3.5 Publishing and Locating Web Services

You can publish a discovery document on your web server and provide clients with a link to or a URL
for the discovery document. Clients can then use the disco.exe .NET command-line utility to generate
WSDL contracts locally for creating proxy classes to communicate with the web service. Example 4-4
shows the format of a discovery document for the Qotd web service.

Example 4-4. Qotd.disco

<?xml version="1.0"?>
<discovery xmlns="http://schemas.xmlsoap.org/disco/">
   <contractRef 
      ref="http://localhost/aspnetian/Chapter_4/Qotd.asmx?wsdl" 
      docRef="http://localhost/aspnetian/Chapter_4/Qotd.asmx" 
      xmlns="http://schemas.xmlsoap.org/disco/scl/" />
   <contractRef 
      ref="http://localhost/aspnetian/Chapter_4/Qotd_cb.asmx?wsdl" 
      docRef="http://localhost/aspnetian/Chapter_4/Qotd_cb.asmx" 
      xmlns="http://schemas.xmlsoap.org/disco/scl/" />
</discovery>

Once clients know the location of the discovery file, they can use the disco.exe command-line utility to
create local WSDL files for all of their web services, as shown in the following code snippet:

disco http://localhost/aspnetian/Chapter_4/Qotd.disco

This line creates local WSDL files for both the Qotd and Qotd_cb web services.

4.3.6 UDDI

The other method used for publishing and locating web services is UDDI. Still in the process of
maturing, UDDI works on the principle of providing multiple replicated directories in which public web
services are registered. The UDDI web site (http://www.uddi.com) contains a list of the participating
directory sites from which clients or providers of web services can choose. Providers of web services
give relevant information, such as the type of web service, an appropriate category (such as
Construction or Financial and Insurance.), and most importantly, the URL for the application's WSDL
file. Potential clients can search the UDDI directory for web services that match their needs and then
locate and consume them via their WSDL contract.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

4.4 Consuming a Web Service

In ASP.NET, consuming a web service is nearly as easy as creating one. ASP.NET provides a utility
called wsdl.exe that can create a proxy class, which is a class that knows all of the necessary details
of communicating with the web service via SOAP, as shown in Figure 4-1, and which can be called
from a client application the same way as any other managed class, In this way, the proxy class
abstracts away the complexities of communication with the web service.

Consuming a web service in ASP.NET requires four steps:

1. Locate the WSDL contract for the desired web service.

2. Create a proxy class by using the wsdl.exe command-line utility.

3. Compile the proxy class.

4. Create a new instance of the proxy class in the client application (WinForms, Console, or
ASP.NET) and call the desired methods.

In the case of our Qotd_cb web service, you would execute the following command (again,
conveniently saved as a DOS batch file) to generate a proxy class based on the web service:

wsdl /l:vb /out:Qotd_cb_proxy.vb http://localhost/ASPdotNET_iaN/Chapter
_4/Qotd_cb.asmx?WSDL
  
pause

The /l parameter specifies that the proxy class should be generated in Visual Basic .NET (the default is
C#). The /out parameter specifies the name and, optionally, the path of the output file. This is
important if you are compiling your proxy class in the same directory as the code-behind class that
implements the web service. In this case, if you do not specify the output filename, the file
Qotd_cb.vb will be overwritten. Once the proxy class has been generated, it should be compiled, and
the resulting assembly should be placed in the bin directory. This can be accomplished using a
command such as the one in the following snippet:

vbc /t:library /r:System.Web.dll,System.dll,System.Web.Services.dll, 
System.Xml.dll,System.Data.dll /out:bin\qotd_cb_proxy.dll 
qotd_cb_proxy.vb
  
pause

Remember that all parameters for the vbc.exe compiler should be part of the same command;
therefore, there should not be any line breaks if you choose to save the command to a batch file.

Once you've generated and compiled your proxy class, using the web service is exactly like using any
other .NET class. You simply create an instance and call the desired methods. Example 4-5 shows the
code for a simple ASP.NET page that consumes the Qotd_cb web service.

Example 4-5. Qotd_cb.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="aspnetian" %>
<html>
<head>
<title>Quote of the Day Web service example</title>
<script runat="server">
   Sub Page_Load(Sender As Object , e As EventArgs )
      Dim Quote As New Qotd_cb(  )
      Dim QuoteNumber As Integer
      QuoteNumber = Quote.GetQuoteNumber

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      QuoteNumber = Quote.GetQuoteNumber
      Message1.Text = Quote.GetQuote(QuoteNumber)
      Message2.Text = Quote.GetAuthor(QuoteNumber)
   End Sub
</script>
</head>
<body>
   <h1>Demonstration of Quote of the Day Web service</h1>
   <form runat="server">
      <h4><i>"<asp:Literal id="Message1" runat="server" />"</i></h4>
      <h3>--<asp:Literal id="Message2" runat="server" /></h3>
   </form>
</body>
</html>

The page imports the aspnetian namespace defined in the Qotd_cb web service class, creates an
instance of the proxy class, and then calls the GetQuoteNumber method to retrieve a random quote
number. The page then calls the GetQuote and GetAuthor methods, passing in the quote number each
time, and returns the result to the Text property of two ASP.NET literal controls. The output of this
page is shown in Figure 4-7.

Figure 4-7. Qotd_cb.aspx output

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

4.5 Additional Resources

The following sites provide additional information on the topics discussed in this chapter:

http://www.aspfriends.com/aspfriends/aspngwebservices.asp

The home page for the AspFriends.com mailing list (for questions relating to ASP.NET web
services). This home page is an excellent resource for questions on web services, and a wide
variety of web services experts answer questions, including well-known authors.

http://www.gotdotnet.com/QuickStart/aspplus/

The ASP.NET QuickStart samples, which can also be installed locally, provide a wide range of
examples and sample code and explanations that can be very useful when starting out. The
GotDotNet.com site has sample code available from other users and many other features.

http://www.learnXmlws.com/

Run by noted web services expert Yasser Shohoud, this site contains articles, live web services,
and code examples intended to teach you how to develop web services of your own.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 5. ASP.NET Server Controls

Controls provide the familiar elements of a graphical user interface (GUI): buttons, drop-down boxes,
checkboxes, etc. Server controls are controls that allow server-side processing. They provide a range
of functionality -- from simple data entry to complex data validation.

ASP.NET ships with a suite of server controls you can use to develop powerful Web Forms pages. A
key component of the ASP.NET development model, these server controls abstract significant
amounts of programming logic into simple-to-use tags. Server controls make it easy to separate
programmatic logic from UI elements using code-behind. In ASP.NET, it's easy for developers to
create their own controls from scratch or to build on the functionality of existing controls by creating
user controls that combine HTML, server controls and other page elements, or by creating their own
custom server controls. We'll discuss both techniques in Chapter 6.

ASP.NET Server Controls are classified as either HTMLcontrols or webcontrols. The current chapter
summarizes the standard controls and the various methods for creating and modifying them.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

5.1 HTML Controls

The HTML controls have a one-to-one mapping with HTML tags. You can create HTML controls and
change their appearance by modifying their properties. HTML controls have an object model that
closely resembles the HTML syntax of the elements, as well as the Dynamic HTML (DHTML) object
model.

The attributes of an HTML tag correspond to the properties of the HTML control. The HTML controls
are declared by using the standard HTML tags with the attribute runat="server". For example:

<input type="text" id="txtName" runat="server">

The id attribute is very important for all server controls if you plan to access
your control programmatically, since it defines the name by which the object
will be referenced in code.

In ASP.NET, the following HTML tags are supported as HTML controls:

<a>
<img>
<form>
<table>
<tr>
<th>
<td>
<select>
<textarea>
<button>
All <input> tags

You can declare other HTML tags as server-side controls by using the runat="server" attribute/value
pair. However, these controls are not supported; instead, unsupported HTML elements are handled by
a generic super HTML server control called HtmlGenericControl. The HTML elements you might
typically handle in this way include <div>, <span>, <body>, and <font>.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

5.2 Web Controls

One of the challenges in developing web applications is to provide support for different browsers that
have different capabilities, proprietary extensions to HTML, and support for different scripting
languages. The only way to render content consistently is to detect the browser type and send the
appropriate version of the page to that browser. ASP.NET web controls relieve us of this burden by
sniffing the browser type and sending the appropriate content based on the capabilities of the
browser. ASP.NET Server Controls use HTML 3.2 for the downlevel clients (older browsers that do not
support DHTML and CSS) and can generate Dynamic HTML for the uplevel clients (such as Internet
Explorer 5.5 or later). In the current release of ASP.NET, the only controls that make extensive use of
DHTML in up-level browsers are the validation controls (which are discussed in more detail in Section
5.4.7 later in this chapter). Other controls, such as the Button server control, use client-side
JavaScript for initiating postbacks. These postback scripts are designed to work with any Javascript-
compatible browser.

Web controls provide an abstract, consistent, and strongly typed object model. They are abstract
because their object model does not necessarily reflect HTML syntax. These controls include standard
controls like text boxes and radio buttons, as well as rich controls like calendars and data grids. Web
controls are always declared with the ASP namespace prefix, sometimes using self-closing tags as
follows:

<asp:textbox id="txtName" text="Hello, World!" runat="server" />

You can alternatively declare a web control by using an opening and closing tag pair. For certain
controls, such as the Label and TextBox controls, any text contained between the opening and closing
tags will be assigned to the Text property of the control. Thus, the following code fragment is
equivalent to the previous one:

<asp:textbox id="txtName" runat="server">
   Hello, World!
</asp:textbox>

Like element and attribute names in page declarations, the tag and attribute
names used to create server controls declaratively are not case-sensitive.
However, because the HTML 4.0 standard specifies that tags and attributes
should be in lowercase, it's good coding practice to follow this guideline, even
though server control tags are not sent to the browser.

When creating controls programmatically (as discussed later in this chapter),
if the language you're using is case-sensitive (such as C#), you'll need to use
the correct case when creating controls (e.g., TextBox versus textbox).

The attributes of web controls declared using the ASP. NET syntax become the properties of the
control, and you can access them programmatically. Unlike the HTML controls, the object model of the
web controls does not necessarily reflect HTML syntax. The main reason for this behavior is that,
depending on the attributes applied to a Web control, it may render one of many HTML elements to
the browser. For example, <asp:textbox> can render <input type="text">, <input type="password">,
or <textarea>, based on the value of the TextBoxMode attribute supplied by the developer at design
time.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

5.3 Using Controls

Server controls have two distinct techniques for using a control in a Web Forms page that can be both
useful and confusing: declarative and programmatic techniques. Each has its own purpose, and in
some situations (such as when using code-behind), both techniques must be used.

Typically, when you write your pages without code-behind files, you use the declarative technique for
using controls in your page. If you need to access those controls programmatically, you would do so
by referring to the value of the control's id attribute. For example, if you have an ASP.NET Label
control declared as follows:

<asp:label id="Message" runat="server"/>

you would refer to this control in server-side code as follows:

<script runat="server">
   Sub Page_Load(  )
      Message.Text = "Hello, World!"
   End Sub
</script>

If you use code-behind with your pages, or if you wish to create a control dynamically at runtime, you
may wish to declare and use a control programmatically, as shown here:

Dim Message As New Label(  )
Message.Text = "Hello, World!"
Page.Controls.Add(Message)

5.3.1 Declarative Control Use

Declarative control use is the simpler of the two techniques. Declarative control use utilizes HTML-like
tags to declare a server control instance and uses attributes to set control properties. The location of
the output of the server control is determined by where in the page the tag is located. This technique
also allows HTML visual designers to move tags around, if necessary, without impacting the
programmatic logic of the page, which would be contained in either a server-side <script> block or in
a code-behind class.

Because this technique is so similar to writing plain vanilla HTML (albeit with different tags), it's
frequently used by those familiar with classic ASP programming, once they start using server controls.
Example 5-1 shows this technique in action, performing an action that in classic ASP would normally
be accomplished using Response.Write. The example uses a Literal control which, unlike using
Response.Write from a <script> block, allows more precise control of where the rendered output will
appear. Instead of writing output to the browser with Response.Write, the code in the Page_Load
event handling procedure sets the Text property of the control to the desired output. When the page
is rendered, this output is then sent to the browser.

Example 5-1. SimpleWrite.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Declarative Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         'Instead of using Response.Write, we set
         '   the Text property of a literal control.
         '   The placement of the literal control 
         '   determines where output appears
         Message.Text = "This text set from Page_Load!"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         Message.Text = "This text set from Page_Load!"
      End Sub
   </script>
</head>
<body>
   <form runat="server">
      <asp:literal id="Message" runat="server"/>
   </form>
</body>
</html>

In addition to the precise control of output, another advantage of this technique is better control over
the appearance of the rendered output. Developers can use CSS Styles or templates to modify the
appearance of the control, as described later in this chapter in Section 5.6.

5.3.2 Programmatic Control Use

While the declarative technique for control creation is generally simpler and more straightforward, at
times you may want or need to create controls dynamically (e.g., in response to some user action). In
such cases, developers can create controls programmatically -- either in a server-side <script> block
within the Web Forms page or in its accompanying code-behind class. You can use either HTML server
controls or web controls with this technique.

You define controls programmatically by declaring a variable of the control's type, as shown in the
following code snippet (Example 5-2 shows a complete page using this technique):

' Visual Basic .NET
Dim myText As New TextBox(  )
  
// C#
TextBox myText = new TextBox(  );

The New keyword (new in C#) creates a new instance of the desired control. Note that some controls
will accept arguments passed into the constructor for the control. A Literal control, for example, can
accept the desired text for the control as an argument passed to the control's constructor, as shown in
the following code snippet:

Dim Hello As New Literal("Hello, World!")

Once the desired control instance has been created, the control must then be added to the Controls
collection of either the page itself or of a container control on the page that will be rendered (allowing
its child controls to be rendered as well). The following snippet shows adding a control named Hello to
the Controls collection exposed by the Page object:

Page.Controls.Add(Hello)         ' VB

or:

Page.Controls.Add(Hello);          // C#

It's important to understand that the previous code snippet will add the control named Hello at the
end of the Controls collection. This means that the output of the control can actually appear after any
static HTML tags because, unless the page contains <% %> render blocks, ASP.NET treats static
HTML in the page as Literal controls at runtime. To place a control at a specific point in the page's (or
another control's) Controls collection, use the AddAt method instead of Add:

Page.Controls.AddAt(3, Hello)

The first argument to the AddAt method is the position (starting from 0) at which you'd like to add the
control, while the second is a variable representing the control itself.

To better understand how ASP.NET renders static HTML, <% %> render
blocks, and server controls, turn on tracing for a page (as discussed in
Chapter 10) and look at the control tree generated for pages with various

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Chapter 10) and look at the control tree generated for pages with various
combinations of static HTML, server controls, and render blocks. You will find
that for pages containing just static HTML, ASP.NET creates a single
LiteralControl to represent this HTML on the server. When you add server
controls, any static HTML before, after, or between server controls will be
represented on the server as a separate LiteralControl. If you add <% %>
render blocks, however, controls will not be created on the server for any
static HTML. This means that if you wish to manipulate the HTML content of
the page on the server, you should avoid using render blocks.

Using the AddAt method, however, may not always allow you to place your control as precisely as you
might like. A more precise technique for positioning dynamically created controls on the page is to
add a Placeholder control to the page using the declarative technique and then add the dynamically
created control(s) to its Controls collection. Because the Placeholder control has no UI of its own, if no
controls are added to its Controls collection, nothing is rendered to the browser.

Adding controls dynamically in the middle of a control collection can have
unpredictable results when used with pages that post back to the server and
maintain their state in ViewState (the default). On postback, the ViewState
for controls declared in the Web Forms page is loaded before that of any
dynamically created controls. If a control is added to the middle of a control
collection, then the page is posted back; you may get errors because the
dynamic control for which the ViewState was saved does not exist at the time
that ViewState is repopulated.

Example 5-2 shows the use of this technique to create the same output as Example 5-1.

Example 5-2. ProgControl.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Programmatic Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         'The placement of the Placeholder control 
         '   determines where output appears
         Dim Message As New Literal(  )
         Message.Text = "This text set from Page_Load!"
         PH.Controls.Add(Message)
      End Sub
   </script>
</head>
<body>
   <form runat="server">
      <asp:placeholder id="PH" runat="server"/>
   </form>
</body>
</html>

Finally, if you wish to create controls declaratively in your Web Forms page and manipulate those
controls from within a code-behind class, you must programmatically create instances of your controls
in the code-behind class with IDs that match those declared in the Web Forms page. Example 5-3
shows a Web Forms page that specifies a code-behind page containing its programmatic logic.

Example 5-3. ProgControl_cb.aspx

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 5-3. ProgControl_cb.aspx

<%@ Page Language="c#" src="ProgControl_cb.cs" Inherits="aspnetian.
ProgControl" %>
<html>
<head>
   <title>Programmatic Control Example using Code-behind</title>
</head>
<body>
   <form runat="server">
      <asp:placeholder id="PH" runat="server"/>
   </form>
</body>
</html>

Example 5-4 shows the code-behind class (written in C#) for the web page in Example 5-3. It creates
the control dynamically and adds it to the Controls collection of the PH Placeholder control. Note that
the code-behind class declares an instance of the Placeholder class and gives it the same name (ID) as
the control declared in the Web Forms page. This allows the code in the code-behind page to
manipulate the control at runtime. Also note that this control instance is declared as a protected
member, which means that only code within the code-behind class (or classes that inherit from it,
including the Web Forms page in Example 5-3) can access it.

Example 5-4. ProgControl_cb.cs

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
  
namespace aspnetian 
{
   public class ProgControl:Page
   {
      protected PlaceHolder PH = new PlaceHolder(  );
  
      void Page_Load(  )
      {
         // The placement of the Placeholder control 
         //   determines where output appears
         Literal Message = new Literal(  );
         Message.Text = "This text set from Page_Load!";
         PH.Controls.Add(Message);
      }
   }
}

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

5.4 Types of Web Controls

Web controls fall into five categories: display, input, selection, validation, and special purpose.

5.4.1 Input Controls

Input controls let the user enter data into the application. ASP.NET supports only one input web
control: the TextBox. The TextBox behaves like a single-line or multiline edit control, depending on
the value of its TextMode property. Its simplified syntax is:

<asp:textbox id="SingleText" 
   text="Single Line TextBox" 
   runat="server" />
  
<asp:textbox id="PasswordText" 
   text="Password" 
   textmode="Password" 
   runat="server" />
  
<asp:textbox id="MultiText" 
   text="Multiline TextBox" 
   textmode="Multiline" 
   runat="server" />

The TextBox control can then be accessed programmatically with a code fragment like:

SingleText.Text = "Hello ASP.NET"
PasswordText.Attributes("Value") = "New Password"
MultiText.Text = "Multiline TextBox can hold many lines of text"

Note that the text of a TextBox control using the Password text mode cannot be set directly.

The appearance of input controls when rendered to the browser is shown in Figure 5-1. The code used
to generate this figure is shown in Example 5-5.

Figure 5-1. Rendering of input controls

Example 5-5. InputControls.aspx

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 5-5. InputControls.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Input Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         SingleText.Text = "Hello ASP.NET"
         PasswordText.Attributes("Value") = "New Password"
         MultiText.Text = "Multiline TextBox can hold many lines of text"
      End Sub
   </script>
</head>
<body>
   <h1>Input Control Example</h1>
   <form runat="server">
      <table border="1" cellpadding="5" cellspacing="0">
         <tr>
            <td>
               Single Line TextBox:
            </td>
            <td>
               <asp:textbox id="SingleText" 
                  text="Single Line TextBox" 
                  runat="server" />
            </td>
         </tr>
         <tr>
            <td>
               Password TextBox:
            </td>
            <td>
               <asp:textbox id="PasswordText" 
                  text="Password" 
                  textmode="Password" 
                  runat="server" />
            </td>
         </tr>
         <tr>
            <td>
               Multiline TextBox:
            </td>
            <td>
               <asp:textbox id="MultiText" 
                  text="Multiline TextBox" 
                  textmode="Multiline" 
                  runat="server" />
            </td>
         </tr>
      </table>
   </form>
</body>
</html>

5.4.2 Display Controls

Web display controls simply represent static text or images. Table 5-1 lists the display controls
ASP.NET supports.

Table 5-1. Display controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 5-1. Display controls
Control Purpose

Image Displays the image specified in the control's ImageUrl property.
Label Displays the text specified in the control's Text property.
Panel Groups a set of controls (like a Frame control in Windows).

Table Displays a table of information. This control has two collections: TableRows, which
contains the rows; and TableCells, which contains the columns in a row.

TableCell Represents a cell in a row of a Table control.
TableRow Represents a row inside a Table control.

The syntax of these web controls is as follows:

<asp:label id="MyLabel" 
   text="This is a Label Control"
   borderstyle="solid" 
   bordercolor="Green" 
   runat="Server" />
  
<asp:image id="MyImage" 
   imageurl="aspnet.gif" 
   runat="Server" />
  
<asp:panel id="MyPanel"
   backcolor="lightblue"
   bordercolor="Green"
   borderwidth="1" >            
   <asp:label id="MyLabel2" 
      text="Static Text within the Panel" 
      runat="Server"/>
   <br>
   <asp:textbox id="PanelTB" text="TextBox inside Panel" runat="Server"/>
</asp:Panel>

They can then be accessed programmatically with a code fragment like the following:

MyLabel.Text = "New Label"
MyImage.ImageUrl = "NewImage.gif"
MyPanel.BackImageUrl = "NewImage.gif"

The appearance of display controls when rendered to the browser is shown in Figure 5-2. The code
used to generate this figure is shown in Example 5-6.

Figure 5-2. Rendering of display controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 5-6. DisplayControls.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Display Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         MyLabel.Text = "New Label"
         MyImage.ImageUrl = "aspnetian.jpg"
      End Sub
   </script>
</head>
<body>
   <h1>Display Control Example</h1>
   <form runat="server">
      <asp:table id="MyTable" 
         border="1" 
         cellpadding="5" 
         cellspacing="0" 
         runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell colspan="2" runat="server">
               Table Control
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Label Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:label id="MyLabel" 
                  text="This is a Label Control"
                  borderstyle="solid" 
                  bordercolor="Green" 
                  runat="Server" />
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Image Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:image id="MyImage" 
                  imageurl="image.jpg" 
                  runat="Server" />
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Panel Control:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               Panel Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:panel id="MyPanel"
                  backcolor="lightblue"
                  bordercolor="Green"
                  borderwidth="1"
                  runat="server">            
                  <asp:label id="MyLabel2" 
                     text="Static Text within the Panel" 
                     runat="Server"/>
                  <br>
                  <asp:textbox id="PanelTB" 
                     text="TextBox inside Panel" runat="Server"/>
               </asp:panel>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
   </form>
</body>
</html>

5.4.3 Action Controls

Action controls allow users to perform some action on that page, such as navigating to a different
URL, submitting a form, resetting a form's values, or executing a client script. Table 5-2 lists the
action controls.

Table 5-2. Action controls
Control Purpose

Button Displays a command button that posts a form to the server when clicked.
ImageButton Displays an image that posts a form to the server when clicked.
LinkButton Displays a hyperlink text that posts a form to the server when clicked.
Hyperlink Displays a hyperlink text that navigates from one page to another when clicked.

The simplified syntax of these controls is as follows:

<asp:button id="MyButton" text="Click Me!!" runat="server"/>
  
<asp:imagebutton id="MyImageButton" 
   imageurl="aspnetian.jpg" runat="Server"/>
  
<asp:linkbutton id="MyLinkButton" text="Click Me" runat="server"/>
  
<asp:hyperlink id="MyHyperLink" 
   text="Click Me" 
   navigateurl="ActionControls.aspx"
   target="_blank" 
   runat="server"/>

The controls can then be accessed programmatically with code fragments like the following:

MyButton.CommandName = "Sort"
MyImageButton.CommandArgument = "Ascending"
MyLinkButton.CommandName = "Filter"
MyHyperLink.NavigateUrl = "http://dotnet.oreilly.com/"

The appearance of action controls when rendered to the browser is shown in Figure 5-3. The code
used to generate this figure is shown in Example 5-7.

Figure 5-3. Rendering of action controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 5-3. Rendering of action controls

Example 5-7. ActionControls.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Display Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         MyButton.CommandName = "Sort"
         MyImageButton.CommandArgument = "Ascending"
         MyLinkButton.CommandName = "Filter"
         MyHyperLink.NavigateUrl = " http://dotnet.oreilly.com/"
      End Sub
   </script>
</head>
<body>
   <h1>Display Control Example</h1>
   <form runat="server">
      <asp:table id="MyTable"
         border="1"
         cellpadding="5"
         cellspacing="0"
         runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Button Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:button id="MyButton" text="Click Me!!" runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               ImageButton Control:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               ImageButton Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:imagebutton id="MyImageButton" 
                  imageurl="aspnetian.jpg" runat="Server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               LinkButton Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:linkbutton id="MyLinkButton" 
                  text="Click Me" runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               HyperLink Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:hyperlink id="MyHyperLink" 
                  text="Click Me" 
                  navigateurl="ActionControls.aspx" 
                  target="_blank" 
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
   </form>
</body>
</html>

5.4.4 Selection Controls

Selection controls allow the user to select one or more values from a list. They include both the
CheckBox and RadioButton controls, which are designed to work in a group. The RadioButton control
allows you to select only one option out of the group, whereas the CheckBox control allows you to
select zero or more options. Table 5-3 lists the selection controls.

Table 5-3. Selection controls
Control Purpose

CheckBox Selects or unselects an option. You can toggle the selection.

RadioButton Selects only one option out of a group. You can unselect an option only by selecting
another RadioButton control in the group.

ListBox Allows the user to select one or more options from a list represented by ListItem
controls. This control always occupies a fixed space in the form.

DropDownList Allows the user to select only one option out of a list represented by ListItem
controls. This control is used where the space in the form is limited.

RadioButtonList Presents a list of radio buttons represented by ListItem controls and allows selection
of only one option.

CheckBoxList Presents a list of checkboxes represented by ListItem controls and allows you to
select zero or more of the options.

The simplified syntax of the selection controls is:

<asp:checkbox id="MyCheckBox1" 
   text="Vanilla" runat="server"/>
  
<asp:checkbox id="MyCheckBox2" 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<asp:checkbox id="MyCheckBox2" 
   text="Chocolate" runat="server"/>
  
<asp:radiobutton id="MyRadioButton1" groupname="Group1" 
   checked="True" text="Yes" runat="Server"/>
  
<asp:radiobutton id="MyRadioButton2" groupname="Group1"
   text="No" runat="Server"/>
  
<asp:listbox id="MyListBox" runat="server">
   <asp:listitem value="Vanilla" selected="true">Vanilla</asp:listitem>
   <asp:listitem value="Chocolate">Chocolate</asp:listitem>
   <asp:listitem value="Strawberry">Strawberry</asp:listitem>
</asp:listbox>
  
<asp:dropdownlist id="MyDropDownList" runat="server">
   <asp:listitem value="Single" selected="true">Single</asp:listitem>
   <asp:listitem value="Multiline">Multiline</asp:listitem>
   <asp:listitem value="Password">Password</asp:listitem>
</asp:dropdownlist>
  
<asp:checkboxlist id="MyCheckBoxList"
   repeatdirection="vertical" runat="server">
   <asp:listitem value="Vanilla" text="Vanilla"/>
   <asp:listitem value="Chocolate" text="Chocolate"/>
   <asp:listitem value="Strawberry" text="Strawberry"/>
</asp:checkboxlist>
  
<asp:radiobuttonlist id="MyRadioButtonList" 
   repeatdirection="Horizontal" runat="server">
   <asp:listitem value="Female" text="Female" selected="true"/>
   <asp:listitem value="Male" text="Male"/>
</asp:radiobuttonlist>

The controls can then be referenced programmatically with code fragments like the following:

MyCheckBox1.Checked = True
MyRadioButton1.Checked = False
MyListBox.SelectionMode = ListSelectionMode.Multiple
MyDropDownList.SelectedIndex = 1
MyCheckBoxList.RepeatDirection = RepeatDirection.Horizontal
MyRadioButtonList.RepeatLayout = RepeatLayout.Table

The appearance of the selection controls when rendered to the browser is shown in Figure 5-4. The
code used to generate this figure is shown in Example 5-8.

Figure 5-4. Rendering of selection controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 5-8. SelectionControls.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Selection Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         MyCheckBox1.Checked = True
         MyRadioButton1.Checked = False
         MyListBox.SelectionMode = ListSelectionMode.Multiple
         MyDropDownList.SelectedIndex = 1
         MyCheckBoxList.RepeatDirection = RepeatDirection.Horizontal
         MyRadioButtonList.RepeatLayout = RepeatLayout.Table
      End Sub
   </script>
</head>
<body>
   <h1>Selection Control Example</h1>
   <form runat="server">
      <asp:table id="MyTable"
         border="1"
         cellpadding="5"
         cellspacing="0"
         runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               CheckBox Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:checkbox id="MyCheckBox1" 
                  text="Vanilla" runat="server" />
               <asp:checkbox id="MyCheckBox2" 
                  text="Chocolate" runat="server" />
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               RadioButton Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:radiobutton id="MyRadioButton1" groupname="Group1" 
                  checked="True" text="Yes" runat="Server"/>
               <asp:radiobutton id="MyRadioButton2" groupname="Group1"
                  text="No" runat="Server"/>
            </asp:tablecell>
         </asp:tablerow>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               ListBox Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:listbox id="MyListBox" runat="server">
                  <asp:listitem value="Vanilla"
                     selected="true">Vanilla</asp:listitem>
                  <asp:listitem value="Chocolate">Chocolate</asp:listitem>
                  <asp:listitem value="Strawberry">Strawberry</asp:listitem>
               </asp:listbox>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               DropDownList Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:dropdownlist id="MyDropDownList" runat="server">
                  <asp:listitem value="Single"
                     selected="true">Single</asp:listitem>
                  <asp:listitem value="Multiline">Multiline</asp:listitem>
                  <asp:listitem value="Password">Password</asp:listitem>
               </asp:dropdownlist>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               CheckBoxList Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:checkboxlist id="MyCheckBoxList"
                  repeatdirection="vertical" runat="server">
                  <asp:listitem value="Vanilla" text="Vanilla"/>
                  <asp:listitem value="Chocolate" text="Chocolate"/>
                  <asp:listitem value="Strawberry" text="Strawberry"/>
               </asp:checkboxlist>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               RadioButtonList Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:radiobuttonlist id="MyRadioButtonList" 
                  repeatdirection="Horizontal" runat="server">
                  <asp:listitem value="Female" 
                     text="Female" selected="true"/>
                  <asp:listitem value="Male" text="Male"/>
               </asp:radiobuttonlist>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
   </form>
</body>
</html>

5.4.5 List Controls

List controls render repetitive data and use templates for the customized rendering of data (the so-
called lookless UI). For example, you can define separate templates for the header, body, and footer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


called lookless UI). For example, you can define separate templates for the header, body, and footer
of a table of data.

The list controls are also the most common controls used with data binding. We'll discuss data binding
in more detail in Chapter 7. Table 5-4 shows the list controls.

Table 5-4. List controls and their purpose
Control Purpose

DataGrid In addition to displaying tabular data, this control can function as an Editable Grid that
supports selecting, editing, sorting, and paging of data.

DataList Displays a list of items that the user can select and edit.

Repeater Displays a repeating list of data items. Their control and layout can be specified using
templates.

Remember that DataGrid and DataList controls can be used with or without templates, but Repeater
controls must have at least one ItemTemplate. You can also modify the appearance of DataGrids and
DataLists by using a series of style properties, each of which ends with Style. These properties include
HeaderStyle, ItemStyle, and FooterStyle. For more information on templates and styles, see Section
5.6 later in this chapter.

The simplified syntax of the list controls is:

<asp:datagrid id="MyDataGrid"
   allowpaging="true"
   allowsorting="true"
   alternatingitemstyle-backcolor="LightSkyBlue"
   backcolor="Blue"
   forecolor="White"
   cellpadding="2"
   cellspacing="0"
   headerstyle-backcolor="DarkBlue"
   headerstyle-forecolor="Yellow"
   pagerstyle-mode="NumericPages"
   pagesize="5"
   runat="server"/>
  
<asp:datalist id="MyDataList"
   alternatingitemstyle-backcolor="LightSkyBlue"
   backcolor="Blue"
   bordercolor="Black"
   cellpadding="2"
   cellspacing="0"
   forecolor="White"
   headerstyle-backcolor="DarkBlue"
   headerstyle-forecolor="Yellow"
   repeatcolumns="1"
   repeatdirection="vertical"
   repeatlayout="table" 
   runat="server">
   <template name="headertemplate">
      Composers
   </template>
   <template name="itemtemplate">
      <%# databinder.eval(container.dataitem, "name") %>
   </template>
</asp:datalist>
  
<asp:repeater id="MyRepeater" runat="server">
   <template name="headertemplate">
      <table cellpadding="5" cellspacing="0">
         <tr>
            <td>Name<hr/></td>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            <td>Name<hr/></td>
            <td>City<hr/></td>
         </tr>
   </template>
   <template name="itemtemplate">
         <tr>
            <td><%# DataBinder.Eval(Container.DataItem, "name") %></td>
            <td><%# DataBinder.Eval(Container.DataItem, "city") %></td>
         </tr>
   </template>
   <template name="footertemplate">
      </table>
   </template>
</asp:repeater>

The controls can then be referenced programmatically with code fragments like the following:

MyDataGrid.DataSource = CreateData(  )
MyDataGrid.DataBind(  )
MyDataList.DataSource = CreateData(  )
MyDataList.DataBind(  )
MyRepeater.DataSource = CreateData(  )
MyRepeater.DataBind(  )

Figure 5-5. Rendering of list controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The appearance of list controls when rendered to the browser is shown in Figure 5-5. The code used
to generate this figure is shown in Example 5-9.

Example 5-9. ListControls.aspx

<%@ Page Language="vb" %>
<%@ Import Namespace="System.Data" %>
<html>
<head>
   <title>List Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         MyDataGrid.DataSource = CreateData(  )
         MyDataGrid.DataBind(  )
         MyDataList.DataSource = CreateData(  )
         MyDataList.DataBind(  )
         MyRepeater.DataSource = CreateData(  )
         MyRepeater.DataBind(  )
      End Sub
      Function CreateData(  ) As DataTable
         Dim DT As New DataTable(  )
         Dim Row1, Row2, Row3, Row4 As DataRow
         DT.Columns.Add(New DataColumn("name", _
            System.Type.GetType("System.String")))
         DT.Columns.Add(New DataColumn("city", _
            System.Type.GetType("System.String")))
         Row1 = DT.NewRow(  )
         Row1("name") = "W.A. Mozart"
         Row1("city") = "Salzburg"
         DT.Rows.Add(Row1)
         Row2 = DT.NewRow(  )
         Row2("name") = "Nikolai Rimsky-Korsakov"
         Row2("city") = "Tikhvin"
         DT.Rows.Add(Row2)
         Row3 = DT.NewRow(  )
         Row3("name") = "George Frideric Handel"
         Row3("city") = "Halle"
         DT.Rows.Add(Row3)
         Row4 = DT.NewRow(  )
         Row4("name") = "J.S. Bach"
         Row4("city") = "Eisenach"
         DT.Rows.Add(Row4)
         Return DT
      End Function
   </script>
</head>
<body>
   <h1>List Control Example</h1>
   <form runat="server">
      <asp:table id="MyTable"
         border="1"
         cellpadding="5"
         cellspacing="0"
         runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               DataGrid Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:datagrid id="MyDataGrid"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               <asp:datagrid id="MyDataGrid"
                  allowpaging="true"
                  allowsorting="true"
                  alternatingitemstyle-backcolor="LightSkyBlue"
                  backcolor="Blue"
                  forecolor="White"
                  cellpadding="2"
                  cellspacing="0"
                  headerstyle-backcolor="DarkBlue"
                  headerstyle-forecolor="Yellow"
                  pagerstyle-mode="NumericPages"
                  pagesize="5"
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               DataList Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:datalist id="MyDataList"
                  alternatingitemstyle-backcolor="LightSkyBlue"
                  backcolor="Blue"
                  bordercolor="Black"
                  cellpadding="2"
                  cellspacing="0"
                  forecolor="White"
                  headerstyle-backcolor="DarkBlue"
                  headerstyle-forecolor="Yellow"
                  repeatcolumns="1"
                  repeatdirection="vertical"
                  repeatlayout="table" 
                  runat="server">
                  <headertemplate>
                     Composers
                  </headertemplate>
                  <itemtemplate>
                     <%# databinder.eval(container.dataitem, "name") %>
                  </itemtemplate>
               </asp:datalist>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Repeater Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:repeater id="MyRepeater" runat="server">
                  <headertemplate>
                     <table cellpadding="5" cellspacing="0">
                        <tr>
                           <td>Name<hr/></td>
                           <td>City<hr/></td>
                        </tr>
                  </headertemplate>
                  <itemtemplate>
                        <tr>
                           <td><%# DataBinder.Eval(Container.DataItem, _
                                  "name") %></td>
                           <td><%# DataBinder.Eval(Container.DataItem, _
                                  "city") %></td>
                        </tr>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                        </tr>
                  </itemtemplate>
                  <footertemplate>
                     </table>
                  </footertemplate>
               </asp:repeater>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
   </form>
</body>
</html>

5.4.6 Rich Controls

These high-level custom controls provide rich user interface and functionality. This release of ASP.NET
includes two rich controls: the Calendar control and the AdRotator control. Table 5-5 lists the rich
controls.

Table 5-5. Rich controls and their purpose
Control Purpose

AdRotator Displays different ad images and, when clicked, will navigate to the URL associated with
that image. You can define the rotation schedule in an XML file.

Calendar Displays a monthly calendar and lets the user select a date.

The simplified syntax of the rich controls is:

<asp:adrotator id="MyAdRotator" advertisementfile="ads.xml" 
   runat="server" />
  
<asp:calendar id="MyCalendar" 
   showdayheader="true" 
   todaydaystyle-backcolor="yellow"
   todaydaystyle-forecolor="blue"
   runat="server"/>

These controls can then be referenced programmatically with code fragments like the following:

MyAdRotator.KeywordFilter = "Nutshell"
Dim ShortDate As String
ShortDate = MyCalendar.TodaysDate.ToString("D")
MyLabel.Text = "Today is " & ShortDate

The appearance of rich controls when rendered to the browser is shown in Figure 5-6. The code used
to generate this figure is shown in Example 5-10.

Figure 5-6. Rendering of rich controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 5-10. RichControls.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Rich Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         MyAdRotator.KeywordFilter = "Nutshell"
         Dim ShortDate As String
         ShortDate = MyCalendar.TodaysDate.ToString("D")
         MyLabel.Text = "Today is " & ShortDate
      End Sub
   </script>
</head>
<body>
   <h1>Rich Control Example</h1>
   <form runat="server">
      <asp:table id="MyTable"
         border="1"
         cellpadding="5"
         cellspacing="0"
         runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               AdRotator Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:adrotator id="MyAdRotator"
                  advertisementfile="ads.xml"
                  runat="server" />
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Calendar Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:calendar id="MyCalendar" 
                  showdayheader="true" 
                  todaydaystyle-backcolor="yellow"
                  todaydaystyle-forecolor="blue"
                  runat="server"/>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
      <asp:label id="MyLabel" runat="server"/>
   </form>
</body>
</html>

5.4.7 Validation Controls

ASP.NET removes the hassle of duplicating validation code, a common problem of performing data
validation using ASP, by neatly encapsulating the standard validations into server controls. You can
attach the validation control to the control whose value needs to be validated. You can also attach
multiple validation controls to a single control. The ASP.NET validation server controls provide server-
side validation for all browsers and supply client-side validation via JavaScript for browsers that
support Javascript and DHTML. You can also write your own custom client and/or server-side
validation functions, as you'll see in the code example for this section.

One feature that most web programmers would like to have is a summary of the validation errors for
the values entered into a page's controls. The ValidationSummary control provides this much-desired
feature. Table 5-6 lists the validation controls.

Table 5-6. Validation controls
Control Purpose

CompareValidator Compares the input in the attached control with a constant value or the
property value of another control.

CustomValidator Invokes custom validation code that you have written.
RangeValidator Checks if the value is between specified upper and lower limits.
RegularExpressionValidator Checks if the input matches a pattern defined by a regular expression.
RequiredFieldValidator Makes sure that the user can't skip the required value.
ValidationSummary Shows a summary of errors emitted by all validators in that form.

The simplified syntax of the validation controls is:

<asp:comparevalidator id="cvCompare" 
   controltovalidate="value1" 
   controltocompare="value2" 
   operator="equal" 
   type="integer" 
   errormessage="Fields are not equal!" 
   display="dynamic" 
   runat="server"/>
  
<asp:customvalidator id="cvDate" 
   controltovalidate="year"
   errormessage="Not a valid year!"
   onservervalidate="servervalidation"
   clientvalidationfunction="ClientValidate"
   display="dynamic"
   runat="server"/>
  
<asp:rangevalidator id="rvCompare"
   controltovalidate="value" 
   minimumvalue="0"
   maximumvalue="100" 
   type="integer" 
   errormessage="Value not in valid range!" 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   errormessage="Value not in valid range!" 
   runat="server"/>
  
<asp:regularexpressionvalidator id="reZipCode"
   controltovalidate="zipcode"
   validationexpression="^\d{5}$|^\d{5}-\d{4}$"
   errormessage="Not a valid Zip code!"
   display="static"
   runat="server"/>
  
<asp:requiredfieldvalidator id="rfvLogin"
   controltovalidate="login" 
   display="static"
   errormessage="Login cannot be blank!"
   runat="server"/>
  
<asp:validationsummary id="vsSummary"
   displaymode="bulletlist" 
   headertext="Page has the following errors: "
   showsummary="true" 
   showmessagebox="false"
   runat="server"/>

The controls can then be referenced programmatically with code fragments like this:

cvCompare.ControlToCompare = "Value3"
cvDate.ClientValidationFunction="ClientValidateLeapYear"
reZipCode.ValidationExpression="^\d{5}$|^\d{5}$"
rfvLogin.InitialValue = "SomeUser"
vsSummary.DisplayMode = ValidationSummaryDisplayMode.List

The appearance of validation controls that have detected invalid input when rendered to the browser
is shown in Figure 5-7.

Figure 5-7. Rendering of validation controls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The code used to generate this figure is shown in Example 5-11.

Example 5-11. ValidationControls.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Validation Control Example</title>
    <script language="javascript">
    <!--
      function ClientValidate(source, arguments)
      {
         //Declare variables.
         var r, re;
         //Create regular expression object.
         re = new RegExp(/^[1-9][0-9][0-9][0-9]$/);
         //Test for match.
         r = re.test(arguments.Value);
         //Return results.
         arguments.IsValid = r;
      }
   -->
   </script>
   <script runat="server">
      Sub Page_Load(  )
         vsSummary.DisplayMode = ValidationSummaryDisplayMode.List
      End Sub
      Sub ServerValidation (source As object, args _
         As ServerValidateEventArgs)
         Dim RegExVal As New System.Text.RegularExpressions.Regex("^\d{4}$")
         If RegExVal.IsMatch(args.Value) Then
            args.IsValid = True
         Else
            args.IsValid = False
         End If
      End Sub
   </script>
</head>
<body>
   <h1>Validation Control Example</h1>
   <form runat="server">
      <asp:table id="MyTable"
         border="1"
         cellpadding="5"
         cellspacing="0"
         runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Compare Validator Control:
               <br><br>
               Enter two numbers to compare
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:textbox id="value1" runat="server"/><br>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               <asp:textbox id="value1" runat="server"/><br>
               <asp:textbox id="value2" runat="server"/><br>
               <asp:comparevalidator id="cvCompare" 
                  controltovalidate="value1" 
                  controltocompare="value2" 
                  operator="equal" 
                  type="integer" 
                  errormessage="Fields are not equal!" 
                  display="dynamic" 
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               CustomValidator Control:
               <br><br>
               Enter a 4-digit year
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:textbox id="year" runat="server"/><br>
               <asp:customvalidator id="cvDate" 
                  controltovalidate="year"
                  errormessage="Not a valid year!"
                  onservervalidate="servervalidation"
                  clientvalidationfunction="ClientValidate"
                  display="dynamic"
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               RangeValidator Control:
               <br><br>
               Enter an integer between 0 and 100
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:textbox id="value" runat="server"/><br>
               <asp:rangevalidator id="rvCompare"
                  controltovalidate="value" 
                  minimumvalue="0"
                  maximumvalue="100" 
                  type="integer" 
                  errormessage="Value not in valid range!" 
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               RegularExpressionValidator Control:
               <br><br>
               Enter a valid 5 or 9-digit zip code
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:textbox id="zipcode" runat="server"/><br>
               <asp:regularexpressionvalidator id="reZipCode"
                  controltovalidate="zipcode"
                  validationexpression="^\d{5}$|^\d{5}-\d{4}$"
                  errormessage="Not a valid Zip code!"
                  display="static"
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               RequiredFieldValidator Control:
               <br><br>
               Enter a login name
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:textbox id="login" runat="server"/><br>
               <asp:requiredfieldvalidator id="rfvLogin"
                  controltovalidate="login" 
                  display="static"
                  errormessage="Login cannot be blank!"
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               ValidationSummary Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:validationsummary id="vsSummary"
                  displaymode="bulletlist" 
                  headertext="Page has the following errors: "
                  showsummary="true" 
                  showmessagebox="false"
                  runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell colspan="2" runat="server">
               <asp:button text="submit" runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
      <asp:label id="MyLabel" runat="server"/>
   </form>
</body>
</html>
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

5.5 Handling Control Events

One of the most convenient aspects of the new ASP.NET Web Forms model is that it brings event-
driven programming, popularized by Visual Basic, to the web world without all the kludginess of the
late unlamented Visual Basic WebClasses. As explained in Chapter 3, ASP.NET has a number of built-
in events at the page level for which you can write event handlers to execute code.

Moreover, most server controls expose one or more events for which you can write handlers. Table 5-
7 shows a list of common events and the controls that support them. These events and controls are in
addition to the standard events, such as Init, Load, PreRender, and UnLoad, that are inherited from
the base Control class. For example, the Button server control exposes the Click and Command
events. These events are both raised when the button is clicked, but while the Click event is usually
used simply to handle the event for a single button, the Command event can be used to handle
clicking on several buttons (so long as the buttons' CommandName property is set). The
CommandName property, along with an optional CommandArgument property, become properties of
the CommandEventArgs object, which is passed as a parameter of the Command event handler. You
can then examine the CommandName and CommandArgument properties within the event handler
code to determine what action(s) to take.

Table 5-7. Control events

Event Event
type Description Controls

OnAdCreated Change

Raised after creation of the control and
immediately before the page is rendered. If an
Advertisement file is provided, OnAdCreated is
raised after an ad has been selected from the file.
Passes an AdCreatedEventArgs argument.

AdRotator

OnClick Action Raised when the user clicks the control. Passes an
EventArgs argument.

Button

ImageButton

LinkButton

OnCommand Action

Raised when a button containing OnCommand,
CommandName, and CommandArgument attributes
is clicked. Passes an CommandEventArgs
argument containing the CommandName and
CommandArgument attribute values.

Button

ImageButton

LinkButton

OnSelectedIndexChanged Change Raised when the user changes the selection.
Passes an EventArgs argument.

CheckBoxList

DropDownList

ListBox

RadioButtonList

OnCheckedChanged Change Raised when the user clicks the control. Passes an
EventArgs argument.

CheckBox

RadioButton

OnPageIndexChanged Change
Raised when the user clicks a page selection
element. Passes a
DataGridPageChangedEventArgs argument.

DataGrid

The basic format of an event handler is as follows:

' VB.NET
Sub MyButton_Click(Sender As Object, E As EventArgs)
   'Event handling code

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   'Event handling code
End Sub
  
// C#
void MyButton_Click(object Sender, EventArgs e)
{
   // Event handling code
}

While you can name your event handling procedures whatever you like, it's common to use the
ObjectName_EventName convention, which makes it very easy to immediately see which procedures
are event handlers. All event handlers are passed an Object argument that is a reference to the
control from which the event was fired. They are also passed an instance of the EventArgs class or of a
class that derives from EventArgs. For example, the OnCommand event of a Button control passes an
argument of type CommandEventArgs, which contains information about the command represented
by the button:

Sub MyButton_Command(Sender As Object, E As CommandEventArgs)
   Message.Text = "Command " & E.CommandName & _
      "was sent."
End Sub

As with creating controls, two techniques are available for creating and wiring up event handlers in
ASP.NET: declarative and programmatic.

5.5.1 Wiring Up Events in Declarative Tags

The technique typically used to wire up events that are handled in a server-side <script> block, which
is probably the simplest way to wire an event handler, is to add the appropriate attribute to the
declarative tag used to create the control. The following code snippet sets the OnClick event handler
to SubmitBtn_Click:

<asp:button id="MyBtn" text="Submit" onclick="MyBtn_Click" 
runat="server"/>

To handle this event, you would then add the following code to your page in a server-side <script>
block:

' Visual Basic .NET
Sub MyBtn_Click(sender As Object, e As EventArgs)
   'event handling code
End Sub
  
//C#
void MyBtn_Click(Object sender, EventArgs e)
{
   // event handling code
}

The event handler for the Command event of the Button control is wired up in much the same
fashion:

<asp:button id="Sort" 
   text="Sort" 
   commandname="Sort"
   commandargument="Descending"
   oncommand="Button_Command"
   runat="server"/>
  
<asp:button id="Filter" 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<asp:button id="Filter" 
   text="Filter" 
   commandname="Filter"
   commandargument="B"
   oncommand="Button_Command"
   runat="server"/>

Note that the event handler changes slightly (EventArgs is replaced by the CommandEventArgs
subclass, which contains information about the clicked command button):

' Visual Basic .NET
Sub Button_Command(sender As Object, ce As CommandEventArgs)
   Select ce.CommandName
      Case "Sort"
         ' Sort logic
      Case "Filter"
         ' Filter logic
   End Select
End Sub
  
//C#
void Button_Command(Object sender, CommandEventArgs ce)
{
   switch(cs.CommandName)
   {
      case "Sort":
         // Sort logic
      case "Filter":
         // Filter logic
   }
}

It's a good habit to name your event handlers based on the name of the control whose event they
handle and the name of the event, separated by an underscore (e.g., MyBtn_Click). However, as you
can see from the OnCommand event example, you may want to make an exception sometimes.

5.5.2 Wiring Up Events Programmatically

Programmatic wiring of control events is typically used with code-behind classes; it's a little more
complicated than the declarative technique, but still pretty straightforward. Note that programmatic
event wiring is language dependent. Two techniques wire up events programmatically in Visual Basic
.NET and one wires up events in C#.

The preferred approach for programmatically wiring events in Visual Basic .NET uses the WithEvents
and Handles keywords to associate event handlers with events. As the following snippet illustrates,
you first declare an instance of the desired control using the WithEvents keyword to indicate that you
want event support for the instance.

Then you add the Handles clause to the procedure declaration for the event handler, specifying the
object and event that it will handle:

Sub Page_Load(  )
   Protected WithEvents MyButton As New Button(  )
End Sub
  
Sub MyButton_Click(sender As Object, e As EventArgs) _
Handles MyButton.Click
   'Event handling code
End Sub

When declaring control instances in a code-behind class, it's a good idea to
use the Protected keyword to ensure that the instance is available only to the
class itself and to any class (such as the .aspx page) that inherits from it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


class itself and to any class (such as the .aspx page) that inherits from it.

An alternate technique in Visual Basic .NET uses the AddHandler statement to specify a control event
along with the address of the procedure that should be invoked when that event occurs:

Sub Page_Load(  )
   Protected MyButton As New Button(  )
   AddHandler MyButton.Click, AddressOf MyButton_Click
End Sub
  
Sub MyButton_Click(sender As Object, e As EventArgs)
   'Event handling code
End Sub

A corresponding RemoveHandler statement also allows you to stop handling a particular event. The
advantage of this technique is that you can stop and start handling a particular event dynamically. In
C#, the += operator is used to assign an event handler to an event:

void Page_Load(  )
{
   Button MyButton = new Button(  );
   MyButton.Click += new EventHandler(this.MyButton_Click);
}
  
void MyButton_Click(Object sender, EventArgs e)
{
   // Event handling code
}

As with Visual Basic's AddHandler keyword, the += operator has a corresponding -= operator that
allows you to unwire an event from its handler dynamically.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

5.6 Modifying Control Appearance

One of the great things about ASP.NET Server Controls is that they are incredibly flexible in allowing
developers to define how they should appear on the page. Most server controls expose properties that
allow simple formatting, such as fonts and background colors. All server controls also expose
properties that allow for setting cascading style sheets (CSS) styles to modify the appearance of a
control. Finally, some controls allow the use of templates to further define how the output of the
control should appear. Together or individually, these techniques allow ASP.NET developers extensive
control over the appearance of their controls.

5.6.1 Properties

Using control properties is the simplest and least powerful technique for modifying the appearance of
a control. Example 5-12 shows a page with two Label controls, one of which uses its default settings.
The second Label control has one attribute used to set the Font-Name property. Font is a property
that is represented by the FontInfo class. Setting the Font-Name attribute sets the value of the
FontInfo class' Name member. Note that this second Label control also has the BackColor property set
(in this case, to blue) in the Page_Load event handler. The output from Example 5-12 is shown in
Figure 5-8.

Example 5-12. ControlProps.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Control Properties Example</title>
   <script runat="server">
      Sub Page_Load(  )
         Label2.BackColor = System.Drawing.Color.LightBlue
      End Sub
   </script>
</head>
<body>
   <h1>Control Properties Example</h1>
   <form runat="server">
      <asp:table id="MyTable" border="1" cellpadding="5" 
         cellspacing="0" runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Default Label:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:label id="Label1" runat="server">
                  Hello, World!
               </asp:label>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Label with Properties:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:label id="Label2" font-name="arial" 
                  runat="server">
                  Hello, World!
               </asp:label>
            </asp:tablecell>
         </asp:tablerow>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         </asp:tablerow>
      </asp:table>
   </form>
</body>
</html>

Figure 5-8. Control properties

5.6.2 CSS Styles

A more powerful technique for modifying control appearance involves the use of CSS styles. The base
HtmlControl class (from which all HTML controls inherit) exposes a Style property, which contains a
collection of CSS styles that are rendered at runtime as attributes on the tag generated by the
control. The base WebControl class (from which all web controls inherit) also exposes a Style property
and adds a CssClass property, which renders the value of the property as a class attribute on the
control. This property allows you to set the style of a control using a CSS class defined in a stylesheet,
rather than by setting individual styles. Like many other properties of web and HTML controls, the
Style and CssClass properties can be set either declaratively (using attributes) or programmatically.
Example 5-13 illustrates the use of both properties. Example 5-14 shows the HTML that would be
rendered to the browser by Example 5-13. Note that the ViewState hidden field has been removed for
clarity.

Example 5-13. ControlStyles.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <title>Control Properties Example</title>
   <script runat="server">
      Sub Page_Load(  )
         Label2.Style("background-color") = "silver"
      End Sub
   </script>
   <style>
       .Hello   
       { 
           font: 14pt arial; 
           color:blue;
       }
   </style>
</head>
<body>
   <h1>Control Properties Example</h1>
   <form runat="server">
      <asp:table id="MyTable" border="1" cellpadding="5" cellspacing="0" 
         runat="server">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               HtmlInputText Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
              <input id="Text1" type="text" 
               style="font: 12pt arial; background-color:silver; color:red;" 
               runat="server"/>
            </asp:tablecell>
         </asp:tablerow>
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Label with Style:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:label id="Label2" cssclass="Hello" runat="server">
                  Hello, World!
               </asp:label>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
   </form>
</body>
</html>

Example 5-14. Rendered HTML from ControlStyles.aspx

<html>
<head>
   <title>Control Properties Example</title>
   <style>
       .Hello   
       { 
           font: 14pt arial; 
           color:blue;
       }
   </style>
</head>
<body>
   <h1>Control Properties Example</h1>
   <form name="_ctl0" method="post" action="ControlStyles.aspx" 
      id="_ctl0">
      <table id="MyTable" cellspacing="0" cellpadding="5" border="1" 
         border="0" style="border-collapse:collapse;">
         <tr>
         <td>
               HtmlInputText Control:
            </td>
            <td>
               <input name="Text1" id="Text1" type="text" 
               style="font: 12pt arial; background-color:silver; color:red;" 
               />
            </td>
         </tr>
         <tr>
            <td>
               Label with Style:
            </td>
            <td>
               <span id="Label2" class="Hello" 
                  style="background-color:silver;">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                  style="background-color:silver;">
                  Hello, World!
               </span>
            </td>
         </tr>
      </table>
   </form>
</body>
</html>

5.6.3 Templates

Certain controls, most notably the Repeater data-bound control, can also use templates to specify the
appearance of the control output. In fact, the Repeater control requires at least one template (the
ItemTemplate) to display anything at all.

The Repeater works by rendering anything contained in the HeaderTemplate (if defined) and then
rendering the contents of its data source based on the ItemTemplate, AlternatingItemTemplate (if
defined), and SeparatorTemplate (if defined).

Once all rows of the data source have been rendered, the Repeater then renders the contents of the
FooterTemplate (if defined). Example 5-15 illustrates the use of templates in modifying control
output. Figure 5-9 shows the output of ControlTemplates.aspx.

Figure 5-9. Template output

Example 5-15. ControlTemplates.aspx

<%@ Page Language="vb" %>
<%@ Import Namespace="System.Data" %>
<html>
<head>
   <title>List Control Example</title>
   <script runat="server">
      Sub Page_Load(  )
         MyRepeater.DataSource = CreateData(  )
         MyRepeater.DataBind(  )
      End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      End Sub
      Function CreateData(  ) As DataTable
         Dim DT As New DataTable(  )
         Dim Row1, Row2, Row3, Row4 As DataRow
         DT.Columns.Add(New _
            DataColumn("name", System.Type.GetType("System.String")))
         DT.Columns.Add(New _
            DataColumn("city", System.Type.GetType("System.String")))
         Row1 = DT.NewRow(  )
         Row1("name") = "W.A. Mozart"
         Row1("city") = "Salzburg"
         DT.Rows.Add(Row1)
         Row2 = DT.NewRow(  )
         Row2("name") = "Nikolai Rimsky-Korsakov"
         Row2("city") = "Tikhvin"
         DT.Rows.Add(Row2)
         Row3 = DT.NewRow(  )
         Row3("name") = "George Frideric Handel"
         Row3("city") = "Halle"
         DT.Rows.Add(Row3)
         Row4 = DT.NewRow(  )
         Row4("name") = "J.S. Bach"
         Row4("city") = "Eisenach"
         DT.Rows.Add(Row4)
         Return DT
      End Function
   </script>
</head>
<body>
   <h1>Control Templates Example</h1>
   <form runat="server">
      <asp:table id="MyTable" 
         border="1" cellpadding="5" cellspacing="0" runat="server">
         <asp:tablerow runat="server">
            <asp:tablecell runat="server">
               Repeater Control:
            </asp:tablecell>
            <asp:tablecell runat="server">
               <asp:repeater id="MyRepeater" runat="server">
                  <headertemplate>
                     <h3>Famous Composers' Birthplaces</h3>
                     <table cellpadding="5" cellspacing="0">
                        <tr>
                           <td>Name<hr/></td>
                           <td>City<hr/></td>
                        </tr>
                  </headertemplate>
                  <itemtemplate>
                        <tr>
                           <td>
                              <strong>
                         <%# DataBinder.Eval(Container.DataItem, "name") %>
                              <strong>
                           </td>
                           <td>
                         <%# DataBinder.Eval(Container.DataItem, "city") %>
                           </td>
                        </tr>
                  </itemtemplate>
                  <footertemplate>
                     </table>
                  </footertemplate>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                  </footertemplate>
               </asp:repeater>
            </asp:tablecell>
         </asp:tablerow>
      </asp:table>
   </form>
</body>
</html>

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

5.7 Additional Resources

The following sites provide additional information on the topics discussed in this chapter:

http://www.aspfriends.com/aspfriends/aspngfreeforall.asp

The home page for the AspFriends.com mailing list (for any questions relating to ASP.NET).
This home page is an excellent resource for ASP.NET questions. A number of experts answer
questions, including several well-known authors.

http://www.aspfriends.com/aspfriends/aspngdatagridrepeaterdatalist.asp

The home page for the AspFriends.com mailing list for DataGrid, DataList, and Repeater
questions. This is an excellent resource for getting focused answers on working with these
controls.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 6. User Controls and Custom Server Controls

Reuse is a technique that is important to most developers. Reuse allows you to avoid constantly
reinventing the wheel by using functionality that has already been built and tested. It increases
productivity, by reducing the total amount of code you need to write, and reliability, since by using
tested code, you (presumably) already know the code works reliably.

ASP.NET provides a range of options for reuse. The first is the wide variety of built-in server controls
that ship with ASP.NET. These server controls alone can eliminate hundreds, or even thousands, of
lines of code that needed to be written to achieve the same effect in classic ASP. In addition, the .NET
Framework Class Library (FCL) provides hundreds of classes to perform actions (such as sending
SMTP email or making network calls) that in classic ASP would have required purchasing a third-party
component or making calls into the Win32 API.

Going hand-in-hand with reuse is the concept of extensibility, the ability to take the existing
functionality provided by the .NET Framework and ASP.NET and extend it to perform actions that are
more tailored to your particular applications and problem domains. ASP.NET provides a significant
number of avenues for extensibility:

Custom server controls

Allow you to create entirely new controls for use with ASP.NET or to derive from existing
controls and extend or modify their functionality.

Components

As in classic ASP, components are the primary means for extending an ASP.NET application by
encapsulating the application's business logic into an easily reusable form. With the .NET
Framework, it's easier than ever to build components, and components are more interoperable
across languages than in the COM world. .NET components can also communicate with COM
components through an interoperability layer.

HttpHandlers and HttpModules

HttpHandlers are components that are called to perform the processing of specific types of
requests made to IIS. HttpModules are components that participate in the processing pipeline
of all requests for a given ASP.NET application. These extensibility techniques are beyond the
scope of this book, but you can get answers to questions on these topics at
http://www.aspfriends.com/aspfriends/aspnghttphandlers.asp.

The rest of this chapter discusses employing ASP.NET user controls and custom server controls for
reuse and employing custom server controls for extensibility. The chapter also explains how custom
server controls can easily be shared across multiple applications, making reuse simpler than ever.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

6.1 User Controls

The simplest form of reuse in classic ASP is the include file. By adding the following directive:

<!-- #include file = "filename.inc" -->

ASP developers could place the contents of the specified file inline with the page in which the directive
appeared. Unfortunately, this reuse technique is a bit crude and sometimes makes applications harder
to debug.

While ASP.NET still supports include files, a better way to provide the same kinds of reuse is through
a new feature called user controls. User controls consist of HTML, a server-side script, and controls, in
a file with the .ascx file extension. When added to a Web Forms page, ASP.NET treats user controls as
objects; these user controls can expose properties and methods like any other object. The rendered
output of user controls can also be cached to improve application performance.

Example 6-1 shows a simple user control that provides navigational links to other examples in this
chapter. The user control appears in each example page to demonstrate how the use of a user control
can provide a single point for modifying such frequently used elements as headers, footers, and
navigation bars.

Example 6-1. Nav.ascx

<%@ Control Language="vb" %>
<table cellpadding="0" cellspacing="0">
   <tr>
      <td valign="top">
         <strong>Navigation Bar</strong><br/>
         <hr width='80%'>
         <a href="NavBarClient.aspx" 
            onmouseover="img1.src='node_rev.jpg';"
            onmouseout="img1.src='node.jpg';">
            <img border='0' align='absMiddle' alt='NavBar Client' 
               src='node.jpg' id='img1' name='img1'></a>
         <a href="NavBarClient.aspx" 
            onmouseover="img1.src='node_rev.jpg';" 
            onmouseout="img1.src='node.jpg';">NavBar Client</a>
         <hr width='80%'>
         <a href="UCClient.aspx" 
            onmouseover="img2.src='alt_node_rev.jpg';" 
            onmouseout="img2.src='alt_node.jpg';">
            <img border='0' align='absMiddle' alt='User Control Client'
               src='alt_node.jpg' id='img2' name='img2'></a>
         <a href="UCClient.aspx" 
            onmouseover="img2.src='alt_node_rev.jpg';" 
            onmouseout="img2.src='alt_node.jpg';">User Control Client</a>
         <hr width='80%'>
         <a href="BlogClient.aspx" 
            onmouseover="img3.src='node_rev.jpg';" 
            onmouseout="img3.src='node.jpg';">
            <img border='0' align='absMiddle' alt='Blog Client'
               src='node.jpg' id='img3' name='img3'></a>
         <a href="BlogClient.aspx" 
            onmouseover="img3.src='node_rev.jpg';" 
            onmouseout="img3.src='node.jpg';">Blog Client</a>
         <hr width='80%'>
         <a href="BlogAdd.aspx" 
            onmouseover="img3.src='alt_node_rev.jpg';" 
            onmouseout="img3.src='alt_node.jpg';">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            onmouseout="img3.src='alt_node.jpg';">
            <img border='0' align='absMiddle' alt='Add New Blog' 
               src='alt_node.jpg' id='img3' name='img3'></a>
         <a href="BlogAdd.aspx" 
            onmouseover="img3.src='node_rev.jpg';" 
            onmouseout="img3.src='node.jpg';">Add New Blog</a>
         <hr width='80%'>
      </td>
   </tr>
</table>

With the exception of the @ Control directive, which is not strictly required, the code in Example 6-1
consists exclusively of HTML and client-side script (for performing a simple mouseover graphics
switch). However, the user control could just as easily contain server controls and/or server-side
script to perform more complicated tasks.

The @ Control directive performs essentially the same task as the @ Page directive, only for user
controls. Chapter 3 lists the attributes of the @ Page and @ Control directives and the purpose of
each.

The advantage of using a user control for this type of functionality is that it places all of our
navigation logic in a single location. This placement makes it considerably easier to maintain the
navigation links for a site. If you used ASP.NET's built-in server controls instead of raw HTML in your
navigation user control, you could manipulate those server controls programmatically from the page
on which the control is used. For example, you could hide the link to the page that's currently
displayed or highlight it in some fashion.

The disadvantage of a user control is that it is not reusable across multiple sites. It's also not usually
a good idea to tightly couple user interface elements and data, as this control does, because doing so
tends to reduce the reusability of a control. Later in this chapter, you'll see how to improve this user
control by turning it into a custom server control.

User controls are made available to a page through the use of either the @ Register directive, which
prepares a user control on a page declaratively (i.e., using a tag-based syntax like server controls), or
to be included programmatically using the LoadControl method of the TemplateControl class (from
which both the Page class and the UserControl class derive).

Example 6-2 shows a page that uses the @ Register directive and a declarative tag to create the user
control shown in Example 6-1. The @ Register directive in Example 6-2 tells ASP.NET to look for any
<aspnetian:nav> tags with the runat="server" attribute, and when it finds one, create an instance of
the user control and place its output where the tag is located. This allows us to place our control very
precisely.

Example 6-2. UCClient.aspx

<%@ Page Language="vb" %>
<%@ Register TagPrefix="aspnetian" TagName="nav" Src="Nav.ascx" %>
<html>
<head>
</head>
<body>
   <table border="1" width="100%" cellpadding="20" cellspacing="0">
      <tr>
         <td align="center" width="150">
            <img src="aspnetian.jpg"/>
         </td>
         <td align="center">
            <h1>User Control Client Page<h1>
         </td>
      </tr>
      <tr>
         <td width="150">
            <aspnetian:nav runat="server"/>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            <aspnetian:nav runat="server"/>
         </td>
         <td>
            This is where page content might be placed
            <br/><br/><br/><br/><br/><br/><br/><br/><br/>
         </td>
      </tr>
   </table>
</body>
</html>

You can instead create the control dynamically using the LoadControl method and add the control to
either the Controls collection of the page, or, better yet, to the Controls collection of a PlaceHolder
control. The latter allows you to control the location of the user control based on the location of the
placeholder. This technique is shown in Example 6-3.

Example 6-3. UCClient_Prog.aspx

<%@ Page Language="vb" %>
<html>
<head>
   <script runat="server">
      Sub Page_Load(  )
         PH.Controls.Add(LoadControl("Nav.ascx"))
      End Sub
   </script>
</head>
<body>
   <table border="1" width="100%" cellpadding="20" cellspacing="0">
      <tr>
         <td align="center" width="150">
            <img src="aspnetian.jpg"/>
         </td>
         <td align="center">
            <h1>User Control Client Page<h1>
         </td>
      </tr>
      <tr>
         <td width="150">
            <asp:placeholder id="PH" runat="server"/>
         </td>
         <td>
            This is where page content might be placed
            <br/><br/><br/><br/><br/><br/><br/><br/><br/>
         </td>
      </tr>
   </table>
</body>
</html>

If you want to work with the control after loading it using LoadControl, you
need to cast the control to the correct type using the CType function in Visual
Basic .NET or by preceding the control with (typename) in C#. Note that this
requires that the user control be defined in a class that inherits from
UserControl, so this technique would not work with the user control in
Example 6-1.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

6.2 Custom Server Controls

For the reasons cited earlier in the chapter, user controls are not always the ideal choice for reuse.
They tend to be very good for quickly reusing existing user interface elements and code, but are not
especially useful for developing reusable building blocks for multiple web applications. This is where
custom server controls come in.

A custom server control is, in its essence, a class that derives from either the Control or WebControl
class of the System.Web.UI namespace, or from one of the classes that derive from these controls.
Custom server controls can be used in your ASP.NET Web Forms pages in very much the same way
you use the built-in server controls that come with ASP.NET. There are two primary categories of
custom server controls:

Rendered controls

Rendered controls consist largely of custom rendering of the text, tags, and any other output
you desire, which may be combined with the rendered output of any base class your control is
derived from. Rendered controls override the Render method of the control they derive from.
This method is called automatically by the page containing the control when it's time for the
control output to be displayed.

Compositional controls

Compositional controls get their name from the fact that they are composed of existing controls
whose rendered output forms the UI of the custom control. Compositional controls create their
constituent controls by overriding the CreateChildControls method of the control they derive
from. This method, like the Render method, is automatically called by ASP.NET at the
appropriate time.

When designing a new custom server control, you need to consider some issues to decide which type
of control to create:

Does one existing control provide most, but not all, of the functionality you desire? Then a
rendered control that derives from that control may be the right choice.

Could the desired functionality be provided by a group of existing controls? Then a
compositional control may be a great way to reuse those controls as a group.

Do you want to do something that is completely beyond any existing control? Then you may
want to derive your control from the Control class and override the Render method to create
your custom output.

Note that by default, custom server controls expose all public members of the class from which they
are derived. This exposure is important to consider when designing a control for use by other
developers if you want to limit the customizations they can make. For instance, you might not want
developers to change the font size of your control. In such a case, you should avoid deriving from a
control that exposes that property.

6.2.1 Rendered Controls

Perhaps the best way to understand the process of creating a rendered custom server control is to see
one. Example 6-4 shows a class written in Visual Basic .NET that implements a custom navigation
control with the same functionality as the Nav.ascx user control discussed earlier in this chapter.
Unlike the user control, which has the linked pages and images hardcoded into the control itself, the
custom control in Example 6-4 gets this information from an XML file.

Example 6-4. NavBar.vb

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 6-4. NavBar.vb

Imports Microsoft.VisualBasic
Imports System
Imports System.Data
Imports System.Drawing
Imports System.IO
Imports System.Text
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls
  
Namespace aspnetian
  
Public Class NavBar 
   Inherits Panel
  
   Private NavDS As DataSet
   Private _showDividers As Boolean = True
  
   Public Property ShowDividers(  ) As Boolean
      Get
         Return _showDividers
      End Get
      Set
         _showDividers = value
      End Set
   End Property
  
   Sub NavBar_Load(sender As Object, e As EventArgs) Handles MyBase.Load
  
      LoadData(  )
  
   End Sub
  
   Protected Overrides Sub Render(Writer As HtmlTextWriter)
  
      Dim NavDR As DataRow
      Dim RowNum As Integer = 1
      Dim SB As StringBuilder
  
      MyBase.RenderBeginTag(Writer)
      MyBase.RenderContents(Writer)
  
      Writer.Write("<hr width='80%'>" & vbCrLf)
  
      For Each NavDR In NavDS.Tables(0).Rows
  
         SB = new StringBuilder(  )
         SB.Append(vbTab)
         SB.Append("<a href=""")
         SB.Append(NavDR("url"))
         SB.Append(""" onmouseover=""")
         SB.Append("img")
         SB.Append(RowNum.ToString(  ))
         SB.Append(".src='")
         SB.Append(NavDR("moimageUrl"))
         SB.Append("';""")
         SB.Append(" onmouseout=""")
         SB.Append("img")
         SB.Append(RowNum.ToString(  ))
         SB.Append(".src='")

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         SB.Append(".src='")
         SB.Append(NavDR("imageUrl"))
         SB.Append("';""")
         SB.Append(" target='")
         SB.Append(NavDR("targetFrame"))
         SB.Append("'>")
         SB.Append(vbCrLf)
         SB.Append(vbTab)
         SB.Append(vbTab)
         SB.Append("<img border='0' align='absMiddle' alt='")
         SB.Append(NavDR("text"))
         SB.Append("' src='")
         SB.Append(NavDR("imageUrl"))
         SB.Append("' id='")
         SB.Append("img")
         SB.Append(RowNum.ToString(  ))
         SB.Append("' name='")
         SB.Append("img")
         SB.Append(RowNum.ToString(  ))
         SB.Append("'></a>")
         SB.Append(vbTab)
         SB.Append("<a href=""")
         SB.Append(NavDR("url"))
         SB.Append(""" onmouseover=""")
         SB.Append("img")
         SB.Append(RowNum.ToString(  ))
         SB.Append(".src='")
         SB.Append(NavDR("moimageUrl"))
         SB.Append("';""")
         SB.Append(" onmouseout=""")
         SB.Append("img")
         SB.Append(RowNum.ToString(  ))
         SB.Append(".src='")
         SB.Append(NavDR("imageUrl"))
         SB.Append("';""")
         SB.Append(" target='")
         SB.Append(NavDR("targetFrame"))
         SB.Append("'>")
         SB.Append(NavDR("text"))
         SB.Append("</a>")
         SB.Append(vbCrLf)
         If _showDividers = True Then
            SB.Append("<hr width='80%'>")
         Else
            SB.Append("<br/><br/>")
         End If
         SB.Append(vbCrLf)
         Writer.Write(SB.ToString(  ))
  
         RowNum += 1
  
      Next
  
      MyBase.RenderEndTag(Writer)
  
   End Sub
  
   Protected Sub LoadData(  )
  
      NavDS = New DataSet(  )
  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  
      Try
         NavDS.ReadXml(Page.Server.MapPath("NavBar.xml"))
      Catch fnfEx As FileNotFoundException
         CreateBlankFile(  )
         Dim Html As String
         Html = "<br>No NavBar.xml file was found, so one was " & _
            "created for you. Follow the directions in the file " & _
            "to populate the required fields and, if desired, " & _
            "the optional fields."
         Me.Controls.Add(New LiteralControl(Html))
      End Try
  
   End Sub   
  
   Public Sub CreateBlankFile(  )
      'Code to create a blank XML file with the fields used by
      '   the control. This code is included as a part of the file
      '   NavBar.vb, included with the sample files for the book.
   End Sub
  
End Class
  
End Namespace

The real meat of the NavBar control begins with the class declaration, which uses the Inherits keyword
to declare that the control derives from the Panel control. This gives the control the ability to show a
background color, to be hidden or shown as a unit, and to display the contents of its begin and end
tags as part of the control.

Next, a couple of local member variables are declared. The location of the declaration is important,
since these members need to be accessible to any procedure in the control. A property procedure is
then added for the ShowDividers property, which will determine whether the control renders a
horizontal line between each node of the control.

In the NavBar_Load method, which handles the Load event for the control (fired automatically by
ASP.NET), the LoadData method is called to load the NavBar data from the XML file associated with
the control.

Skipping over the Render method temporarily, the LoadData method creates a new instance of the
ADO.NET DataSet class and calls its ReadXml method to read the data from the XML file. If no file
exists, the LoadData method calls another method (CreateBlankFile) to create a blank XML file with
the correct format for use by the developer consuming the control. This technique not only deals
gracefully with an error condition; it provides an easier starting point for the developer using the
control. Note that the CreateBlankFile method is declared as public, which means it can be called
deliberately to create a blank file, if desired.

Last, but certainly not least, the overridden Render method, which is called automatically at runtime
when the control is created, iterates through the first (and only) table in the dataset and uses an
instance of the StringBuilder class to build the HTML output to render. Once the desired output has
been built, the method uses the HtmlTextWriter passed to it by ASP.NET to write the output to the
client browser. Note that prior to looping through the rows in the dataset, the render method calls the
RenderBeginTag and RenderContents methods of the base Panel control. This renders the opening
<div> tag that is the client-side representation of the Panel control, plus anything contained within
the opening and closing tags of the NavBar control. Once all the rows have been iterated and their
output sent to the browser, the RenderEndTag method is called to send the closing </div> tag to the
browser.

You can compile the code in Example 6-4 by using the following single-line command (which can
alternatively be placed in a batch file):

vbc /t:library /out:bin\NavBar.dll /r:System.dll,System.Data.dll,
System.Drawing.dll,System.Web.dll,System.Xml.dll NavBar.vb

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Drawing.dll,System.Web.dll,System.Xml.dll NavBar.vb

The preceding command requires that you create a bin subdirectory under the directory from which
the command is launched and that you register the path to the Visual Basic compiler in your PATH
environment variable. If you have not registered this path, you will need to provide the full path to
the Visual Basic .NET compiler (by default, this path is
%windir%\Microsoft.NET\Framework\%version%).

Example 6-5 shows the XML file used to populate the control, Example 6-6 shows the code necessary
to use the NavBar control in a Web Forms page, and Figure 6-1 shows the output of this page.

Example 6-5. NavBar.xml

<navBar>
    <!-- node field describes a single node of the control -->
    <node>
        <!-- Required Fields -->
        <!-- url field should contain the absolute or relative 
           URL to link to -->
        <url>NavBarClient.aspx</url>
        <!-- text field should contain the descriptive text for 
           this node -->
        <text>NavBar Client</text>
        <!-- End Required Fields -->
        <!-- Optional Fields -->
        <!-- imageUrl field should contain the absolute or relative 
           URL for an image to be displayed in front of the link -->
        <imageUrl>node.jpg</imageUrl>
        <!-- moimageUrl field should contain the absolute or 
           relative URL for an image to be displayed in front of 
           the link on mouseover -->
        <moImageUrl>node_rev.jpg</moImageUrl>
        <!-- targetFrame field should contain one of the following: 
           _blank, _parent, _self, _top  -->
        <targetFrame>_self</targetFrame>
        <!-- End Optional Fields -->
    </node>
    <node>
        <url>UCClient.aspx</url>
        <text>User Control Client</text>
        <imageUrl>alt_node.jpg</imageUrl>
        <moImageUrl>alt_node_rev.jpg</moImageUrl>
        <targetFrame>_self</targetFrame>
    </node>
    <node>
        <url>BlogClient.aspx</url>
        <text>Blog Client</text>
        <imageUrl>node.jpg</imageUrl>
        <moImageUrl>node_rev.jpg</moImageUrl>
        <targetFrame>
        </targetFrame>
    </node>
    <node>
        <url>BlogAdd.aspx</url>
        <text>Add New Blog</text>
        <imageUrl>alt_node.jpg</imageUrl>
        <moImageUrl>alt_node_rev.jpg</moImageUrl>
        <targetFrame>
        </targetFrame>
    </node>
</navBar>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 6-6. NavBarClient.aspx

<%@ Page Language="vb" %>
<%@ Register TagPrefix="aspnetian" Namespace="aspnetian" 
   Assembly="NavBar" %>
<html>
<head>
   <script runat="server">
      Sub Page_Load(  )
         'NB1.CreateBlankFile(  )
      End Sub
   </script>
</head>
<body>
   <table border="1" width="100%" cellpadding="20" cellspacing="0">
      <tr>
         <td align="center" width="150">
            <img src="aspnetian.jpg"/>
         </td>
         <td align="center">
            <h1>NavBar Control Client Page<h1>
         </td>
      </tr>
      <tr>
         <td width="150">
            <form runat="server">
               <aspnetian:NavBar id="NB1" 
                  showdividers="False" runat="server">
                  <strong>Navigation Bar</strong>
                  <br/>
               </aspnetian:NavBar>
            </form>
         </td>
         <td>
            This is where page content might be placed
            <br/><br/><br/><br/><br/><br/><br/><br/><br/>
         </td>
      </tr>
   </table>
</body>
</html>

Figure 6-1. NavBarClient.aspx output

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


6.2.2 Compositional Controls

As mentioned earlier in the chapter, compositional controls render their output by combining
appropriate controls within the CreateChildControls method, which is overridden in the custom
control.

Example 6-7 shows the C# code for a compositional control that provides simple functionality for a
blog (which is short for web log). The control has two modes: Add and Display. The mode is
determined by the internal member _mode, which can be accessed by the public Mode property.

Like the NavBar control created in the previous example, the class definition for the Blog control
specifies that the class derives from the Panel control (using C#'s : syntax), and also implements the
INamingContainer interface. The INamingContainer interface contains no members, so there's nothing
to actually implement. It's simply used to tell the ASP.NET runtime to provide a separate naming
scope for controls contained within the custom control. This helps avoid the possibility of naming
conflicts at runtime.

Also like the NavBar control, the Blog control uses an XML file to store the individual Blog entries. The
example uses the same method of retrieving the data, namely creating a dataset and calling its
ReadXml method, passing in the name of the XML file.

In addition to declaring the _mode member variable and the BlogDS dataset, the example declares
two Textbox controls (which will be used when adding a new blog entry) and two more string member
variables (_addRedirect and _email).

The code in Example 6-7 then creates public property accessors for all three string variables. The
Mode property determines whether the control displays existing blogs or displays fields for creating a
new blog. The AddRedirect property takes the URL for a page to redirect to when a new blog is added.
The Email property takes an email address to link to in each new blog field.

Next, the program overrides the OnInit method of the derived control to handle the Init event when it
is called by the runtime. In this event handler, you call the LoadData method, which, like the same
method in the NavBar control, loads the data from the XML file or, if no file exists, creates a blank file.
It then calls the OnInit method of the base class to ensure that necessary initialization work is taken
care of.

Next is the overridden CreateChildControls method. Like the Render method, this method is called
automatically by the ASP.NET runtime when the page is instantiated on the server. Unlike the Render
method, you don't want to call the CreateChildControls method of the base class, or you'll create a
loop in which this method calls itself recursively (and the ASP.NET process will hang). In the
CreateChildControls method, you check the value of the _mode member variable and call either the
DisplayBlogs method or the NewBlog method, depending on the value of _mode. Note that this value
is set by default to display, so if the property is not set, the control will be in display mode. Also note
that the example uses the ToLower method of the String class to ensure that either uppercase or
lowercase attribute values work properly.

The DisplayBlogs method iterates through the data returned in the dataset and instantiates controls to
display this data. We use an if statement to determine whether more than one entry in a row has the
same date. If so, we display only a single date header for the group of entries with the same date. We
add an HtmlAnchor control to each entry to facilitate the readers' ability to bookmark the URL for a
given entry. Then we write out the entry itself and add a contact email address and a link to the
specific entry at the end of each entry.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 6-7. Blog.cs

using System;
using System.Data;
using System.Drawing;
using System.IO;
using System.Web;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
  
namespace aspnetian
{
  
public class Blog:Panel, INamingContainer
{
  
   protected DataSet BlogDS;
   protected TextBox TitleTB;
   protected TextBox BlogText;
  
   private string _addRedirect;
   private string _email;
   private string _mode = "display";
  
   public string AddRedirect
   {
      get
      {
         return this._addRedirect;
      }
      set
      {
         this._addRedirect = value;
      }
   }
  
   public string Email
   {
      get
      {
         return this._email;
      }
      set
      {
         this._email = value;
      }
   }
  
   public string Mode
   {
      get
      {
         return this._mode;
      }
      set
      {
         this._mode = value;
      }
   }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   }
  
   protected override void OnInit(EventArgs e)
   {
      LoadData(  );
      base.OnInit(e);
   }
  
   protected override void CreateChildControls(  )
   {
      if (this._mode.ToLower(  ) != "add")
      {
         DisplayBlogs(  );
      }
      else
      {
         NewBlog(  );
      }
   }
  
   protected void LoadData(  )
   {
      BlogDS = new DataSet(  );
  
      try
      {
         BlogDS.ReadXml(Page.Server.MapPath("Blog.xml"));
      }
      catch (FileNotFoundException fnfEx)
      {
         CreateBlankFile(  );
         LoadData(  );
      }
   }
  
   protected void DisplayBlogs(  )
   {
      DateTime BlogDate;
      DateTime CurrentDate = new DateTime(  );
  
      DataRowCollection BlogRows = BlogDS.Tables[0].Rows;
      foreach (DataRow BlogDR in BlogRows)
      {
         string BDate = BlogDR["date"].ToString(  );
         BlogDate = new DateTime(Convert.ToInt32(BDate.Substring(4, 4)), 
            Convert.ToInt32(BDate.Substring(0, 2)),
            Convert.ToInt32(BDate.Substring(2, 2)));
  
         if (CurrentDate != BlogDate)
         {
            Label Date = new Label(  );
            Date.Text = BlogDate.ToLongDateString(  );
            Date.Font.Size = FontUnit.Large;
            Date.Font.Bold = true;
            this.Controls.Add(Date);
            this.Controls.Add(new LiteralControl("<br/><br/>"));
            CurrentDate = BlogDate;
         }
  
         HtmlAnchor Anchor = new HtmlAnchor(  );
         Anchor.Name = "#" + BlogDR["anchorID"].ToString(  );
         this.Controls.Add(Anchor);

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         this.Controls.Add(Anchor);
  
         Label Title = new Label(  );
         Title.Text = BlogDR["title"].ToString(  );
         Title.Font.Size = FontUnit.Larger;
         Title.Font.Bold = true;
         this.Controls.Add(Title);
         
         this.Controls.Add(new LiteralControl("<p>"));
         LiteralControl BlogText = new LiteralControl("<div>" +
            BlogDR["text"].ToString(  ) + "</div>");
         this.Controls.Add(BlogText);
         this.Controls.Add(new LiteralControl("</p>"));
  
         HyperLink Email = new HyperLink(  );
         Email.NavigateUrl = "mailto:" + BlogDR["email"].ToString(  );
         Email.Text = "E-mail me";
         this.Controls.Add(Email);
  
         this.Controls.Add(new LiteralControl(" | "));
  
         HyperLink AnchorLink = new HyperLink(  );
         AnchorLink.NavigateUrl = Page.Request.Url.ToString(  ) + "#" +
            BlogDR["anchorID"].ToString(  );
         AnchorLink.Text = "Link";
         this.Controls.Add(AnchorLink);
  
         this.Controls.Add(new LiteralControl("<hr width='100%'/><br/>"));
      }
   }
  
   protected void NewBlog(  )
   {
      Label Title = new Label(  );
      Title.Text = "Create New Blog";
      Title.Font.Size = FontUnit.Larger;
      Title.Font.Bold = true;
      this.Controls.Add(Title);
  
      this.Controls.Add(new LiteralControl("<br/><br/>"));
  
      Label TitleLabel = new Label(  );
      TitleLabel.Text = "Title: ";
      TitleLabel.Font.Bold = true;
      this.Controls.Add(TitleLabel);
      TitleTB = new TextBox(  );
      this.Controls.Add(TitleTB);
  
      this.Controls.Add(new LiteralControl("<br/>"));
      
      Label BlogTextLabel = new Label(  );
      BlogTextLabel.Text = "Text: ";
      BlogTextLabel.Font.Bold = true;
      this.Controls.Add(BlogTextLabel);
      BlogText = new TextBox(  );
      BlogText.TextMode = TextBoxMode.MultiLine;
      BlogText.Rows = 10;
      BlogText.Columns = 40;
      this.Controls.Add(BlogText);      
  
      this.Controls.Add(new LiteralControl("<br/>"));

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      this.Controls.Add(new LiteralControl("<br/>"));
  
      Button Submit = new Button(  );
      Submit.Text = "Submit";
      Submit.Click += new EventHandler(this.Submit_Click);
      this.Controls.Add(Submit);
   }
  
   protected void Submit_Click(object sender, EventArgs e)
   {
      EnsureChildControls(  );
      AddBlog(  );
   }
  
   protected void AddBlog(  )
   {
      DataRow NewBlogDR;
      NewBlogDR = BlogDS.Tables[0].NewRow(  );
      NewBlogDR["date"] = FormatDate(DateTime.Today);
      NewBlogDR["title"] = TitleTB.Text;
      NewBlogDR["text"] = BlogText.Text;
      NewBlogDR["anchorID"] = Guid.NewGuid().ToString(  );
      NewBlogDR["email"] = _email;
      BlogDS.Tables[0].Rows.InsertAt(NewBlogDR, 0);
      BlogDS.WriteXml(Page.Server.MapPath("Blog.xml"));
      Page.Response.Redirect(_addRedirect);
   }
  
   protected string FormatDate(DateTime dt)
   {
      string retString;
  
      retString = String.Format("{0:D2}", dt.Month);
      retString += String.Format("{0:D2}", dt.Day);
      retString += String.Format("{0:D2}", dt.Year);
      return retString;
   }
  
   protected void CreateBlankFile(  )
   {
      // code to create new file...omitted to conserve space
   }
  
} // closing bracket for class declaration
  
} // closing bracket for namespace declaration

Figure 6-2. Output of BlogClient.aspx

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Displaying the blog entries is only half the battle. While it would certainly be possible to edit the XML
file directly in order to add a new blog entry, it makes much more sense to make this a feature of the
control. This is what the NewBlog method does. In the NewBlog method, we instantiate Label and
TextBox controls for data entry and a Button control to submit the new blog entry. When the Button is
clicked, the Submit_Click event handler method is called when the control is re-created on the server.
The Submit_Click event handler, in turn, calls the AddBlog method to insert a new row into the
BlogDS dataset and then writes the contents of the dataset back to the underlying XML file. Before
using the control, of course, we'll need to compile it and place it in the application's bin directory. The
following snippet can be used to compile the control:

csc /t:library /out:bin\blog.dll /r:system.dll,system.data.dll,
system.xml.dll,system.web.dll blog.cs

Example 6-8 shows the ASP.NET code necessary to instantiate the Blog control programmatically.
Note the use of the PlaceHolder control to precisely locate the Blog control output. For this code to
work correctly, the compiled assembly containing the Blog control must reside in the application's bin
subdirectory.Figure 6-2 shows the output of the control when used in the client page shown in
Example 6-8.

Example 6-8. BlogClient.aspx

<%@ Page Language="vb" debug="true" %>
<%@ Register TagPrefix="aspnetian" Namespace="aspnetian" 
   Assembly="NavBar" %>
<html>
<head>
   <script runat="server">
      Sub Page_Load(  )
         Dim Blog1 As New Blog(  )
         PH.Controls.Add(Blog1)
      End Sub
   </script>
</head>
<body>
   <form runat="server">
   <table border="1" width="100%" cellpadding="20" cellspacing="0">
      <tr>
         <td align="center" width="150">
            <img src="aspnetian.jpg"/>
         </td>
         <td align="center">
            <h1>Blog Display Page<h1>
         </td>
      </tr>
      <tr>
         <td width="150" valign="top">
            <aspnetian:NavBar id="NB1" runat="server">
               <strong>Navigation Bar</strong>
               <br/>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               <br/>
            </aspnetian:NavBar>
         </td>
         <td>
            <asp:placeholder id="PH" runat="server"/>
         </td>
      </tr>
   </table>
   </form>
</body>
</html>

Example 6-9 shows the code necessary to instantiate the control declaratively. The example uses the
TagPrefix aspnetian2 because both the NavBar control and the Blog control use the same namespace,
but are compiled into separate assemblies (which means that using the same TagPrefix for both would
result in an error).

Example 6-9. BlogAdd.aspx

<%@ Page Language="vb" debug="true" %>
<%@ Register TagPrefix="aspnetian" Namespace="aspnetian" 
    Assembly="NavBar" %>
<%@ Register TagPrefix="aspnetian2" Namespace="aspnetian" 
    Assembly="Blog" %>
<html>
<head>
   <script runat="server">
      Sub Page_Load(  )
         'Uncomment the line below to explicitly create a blank
         '   XML file, then comment the line out again to run the control
         'NB1.CreateBlankFile(  )
      End Sub
   </script>
</head>
<body>
   <form runat="server">
   <table border="1" width="100%" cellpadding="20" cellspacing="0">
      <tr>
         <td align="center" width="150">
            <img src="aspnetian.jpg"/>
         </td>
         <td align="center">
            <h1>Blog Add Page<h1>
         </td>
      </tr>
      <tr>
         <td width="150" valign="top">
            <aspnetian:NavBar id="NB1" runat="server">
               <strong>Navigation Bar</strong>
               <br/>
            </aspnetian:NavBar>
         </td>
         <td>
            <aspnetian2:Blog id="Blog1" 
               mode="Add" 
               addredirect="BlogClient.aspx" 
               email="graymad@att.net" 
               runat="server"/>
         </td>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         </td>
      </tr>
   </table>
   </form>
</body>
</html>

As you can see, whether the control is used programmatically or declaratively, the amount of code
necessary to provide simple blogging functionality is made trivial by the use of a custom server
control. Note that you can also have the same page use the Blog control in either Display or Add
mode, depending on the user's actions, as explained in the following section.

6.2.3 Adding Design-Time Support

While using the Blog control in a Web Forms page is fairly simple, it's still not 100 percent intuitive.
For example, without documentation, there's no way for someone using the Blog control to know what
the appropriate values for the Mode property are. Without explicitly telling developers using the
control about the Add mode, it would be difficult for them to discover and use this mode on their own.

For developers using Visual Studio .NET (or another IDE that supports IntelliSense), you can solve
this problem by adding design-time support to the control. This is done by using a combination of
special metadata attributes added to the control and custom XSD schemas to support IntelliSense
statement completion for Web Forms pages. IntelliSense support in code-behind modules is automatic
and requires no additional coding.

Part of the challenge of providing design-time support for custom server controls is that different
editors in the Visual Studio IDE require different techniques to support design-time functionality.
Custom controls automatically support IntelliSense statement completion when working with code-
behind modules in Visual Basic .NET or C#. Figure 6-3 shows this statement completion in action for
the Blog control.

Figure 6-3. IntelliSense in code-behind

Unfortunately, when editing Web Forms pages, automatic support for statement completion does not
extend to the Design or HTML views (nor does Visual Studio provide built-in support for viewing and
editing properties in the Property browser without additional work in your control). To complicate
things further, one technique is necessary for supporting IntelliSense in the Property browser and
Design view of the Web Forms editor, while another is necessary for supporting it in the HTML view of
the Web Forms editor.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The technique required for supporting property browsing in Design view uses metadata attributes to
inform Visual Studio .NET about how to handle the properties. Supporting statement completion and
property browsing in HTML view requires creating a custom XSD schema that describes the types in
your control. We'll discuss both techniques in the next sections.

6.2.3.1 Metadata attributes

Visual Studio .NET provides rich support for designing and modifying controls visually by using drag-
and-drop techniques and tools, such as the Property browser, and related designers, such as the color
picker. Support for these tools is provided by a series of metadata attributes that you can add to your
control. These attributes tell the Visual Studio IDE whether to display any properties that your control
exposes in the Properties browser, what type the properties are, and which designer should be used
to set the properties' values.

To support editing of the AddRedirect property in the Property browser, we would add the following
attributes before the Property procedure, as shown in the following code snippet:

[
Browsable(true),
Category("Behavior"),
Description("URL to which the page should redirect after 
   successful submission of a new Blog entry."),
Editor(typeof(System.Web.UI.Design.UrlEditor), typeof(UITypeEditor))
]
public string AddRedirect
{ // property procedure code }

These attribute declarations allow the property to be displayed in the Property browser, set the
desired category for the property (when properties are sorted by category), provide a description of
the property, and tell Visual Studio .NET to use the UrlEditor designer to edit the property's value.

The attribute syntax shown in this section is for C#. In C#, attributes take
the form:

[AttributeName(AttributeParams)]

In Visual Basic .NET, attributes are declared with the following syntax:

<AttributeName(AttributeParams)>

Visual Basic .NET requires that the attribute declaration appear on the same
line as the member it's modifying, so it's usually a good idea to follow the
attribute with a VB line continuation character to improve readability:

<AttributeName(AttributeParams)> _
Public Membername(  )

In both C# and VB, you can declare multiple attributes within a single set of [
] or <> brackets by separating multiple attributes with commas.

In addition to setting attributes at the property level, you can set certain attributes at the class and
assembly levels. For example, you can use the assembly-level attribute TagPrefix to specify the tag
prefix to use for any controls contained in the assembly. Visual Studio .NET then inserts this tag prefix
automatically when you add an instance of the control to a Web Forms page from the Visual Studio
toolbox. The following code snippet shows the syntax for the TagPrefix attribute. This attribute should
be placed within the class module that defines the control, but outside the class and namespace
declarations.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[
assembly: TagPrefix("aspnetian", "aspnetian")
]
  
namespace aspnetian
{ // control classes, etc. }

To complete the integration of a control in the Visual Studio .NET environment, add the ToolBoxData
attribute (which tells Visual Studio .NET your preferred tag name for controls inserted from the
toolbox) to the class that implements the control:

[
ToolboxData("<{0}:Blog runat=server></{0}:Blog>")
]
public class Blog:Panel, INamingContainer
{ // control implementation }

Once compiled, the control will support automatic insertion of the @ Register directive, tag prefix, and
tag name for the Blog control. To add the control to the Visual Studio .NET toolbox, follow these
simple steps:

1. In Design view, select the Web Forms tab of the Visual Studio .NET toolbox.

2. Right-click anywhere in the tab and select Customize Toolbox.

3. Select the .NET Framework Components tab, and then click Browse.

4. Browse to the location of the compiled control assembly, select it, and click Open.

5. Click OK.

Once the control has been added to the toolbox, you can add it to a Web Forms page by either
double-clicking the control or dragging and dropping it from the toolbox onto the Web Forms page. In
either case, Visual Studio .NET will automatically insert the correct @ Register directive, including
setting the TagPrefix based on the assembly-level attribute, and will also create a set of tags for the
control with the tag name specified in the ToolBoxData attribute.

6.2.3.2 Adding a designer

As written, the Blog control will not have any visible interface in the Design view of the Web Forms
editor. This can make it more difficult to select the control on the page, and also may make it more
difficult to understand what the control will look like at runtime. To correct this problem, we can add
support for a designer that will render HTML at design time that approximates the look of the Blog
control at runtime. Note that you can also create designers that completely reproduce the runtime
output of a control, but doing so is more involved and beyond the scope of this book

All server control designers derive from the class System.Web.UI.Design.ControlDesigner, which
exposes a number of methods you can override to provide design-time rendering for your control.
Example 6-10 overrides the GetDesignTimeHtml method to return simple HTML. Note that the
example shows the entire designer class for the Blog control, which you can add to the existing
Blog.cs class file (making sure that the class declaration is within the namespace curly braces).

Example 6-10. BlogDesigner class

public class BlogDesigner:ControlDesigner
{
   public override string GetDesignTimeHtml(  ) 
   {
      return "<h1>Blog</h1><hr/><hr/>";
   }
}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


}

To tie this designer into the Blog class, we use the Designer attribute, as shown in the following
snippet. Note that this code also adds a Description attribute that describes what the control does.

[
Description("Simple Blog control. Supports display of Web log / news 
   items from an XML file."),
Designer(typeof(aspnetian.BlogDesigner)),
ToolboxData("<{0}:Blog runat=server></{0}:Blog>")
]
public class Blog:Panel, INamingContainer
{ // class implementation }

As you can see, the BlogDesigner class is extremely simple, but it adds a lot to the control's design-
time appearance on a web page, as shown in Figure 6-4.

Figure 6-4. Adding design-time rendering

Example 6-11 shows the code for the Blog control, updated with attributes to enable design-time
support for the control in Design view and the Property browser. Note that the example adds several
using directives to import the namespaces needed to support the attributes and designer classes
we've used. The example also adds an enumeration to be used for the value of the Mode property and
a new property, SeparatorColor.

Example 6-11. Updated Blog.cs

using System;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Design;
using System.IO;
using System.Web;
using System.Web.UI;
using System.Web.UI.Design;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


using System.Web.UI.WebControls;
  
[
assembly: TagPrefix("aspnetian", "aspnetian")
]
  
namespace aspnetian
{
  
public enum BlogMode
{
   Add,
   Display
}
  
[
Description(@"Simple Blog control. Supports display of Web log / news 
   items from an XML file."),
Designer(typeof(aspnetian.BlogDesigner)),
ToolboxData("<{0}:Blog runat=server></{0}:Blog>")
]
public class Blog:Panel, INamingContainer
{
  
   protected DataSet BlogDS;
   protected TextBox TitleTB;
   protected TextBox BlogText;
  
   private string _addRedirect;
   private string _email;
   private BlogMode _mode;
   private Color _separatorColor = Color.Black;
  
   [
   Browsable(true),
   Category("Behavior"),
   Description("URL to which the page should redirect after 
      successful submission of a new Blog entry."),
   Editor(typeof(System.Web.UI.Design.UrlEditor), typeof(UITypeEditor))
   ]
   public string AddRedirect
   {
      get
      {
         return this._addRedirect;
      }
      set
      {
         this._addRedirect = value;
      }
   }
  
   [
   Browsable(true),
   Category("Behavior"),
   Description("Email address the control will use for listing in new 
      Blog entries.")
   ]
   public string Email
   {
      get
      {

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      {
         return this._email;
      }
      set
      {
         this._email = value;
      }
   }
  
   [
   Browsable(true),
   Category("Behavior"),
   Description("Controls whether existing Blogs are displayed, or 
      fields for creating a new Blog entry.")
   ]
   public BlogMode Mode
   {
      get
      {
         return this._mode;
      }
      set
      {
         this._mode = value;
      }
   }
  
   [
   Browsable(true),
   Category("Appearance"),
   Description("Controls the color of the line that separates Blog 
      entries when in display mode.")
   ]
   public Color SeparatorColor
   {
      get
      {
         return this._separatorColor;
      }
      set
      {
         this._separatorColor = value;
      }
   }
  
   protected override void OnInit(EventArgs e)
   {
      LoadData(  );
      base.OnInit(e);
   }
   
   protected override void CreateChildControls(  )
   {
      if (this._mode != BlogMode.Add)
      {
         DisplayBlogs(  );
      }
      else
      {
         NewBlog(  );
      }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      }
   }
  
   protected void LoadData(  )
   {
      BlogDS = new DataSet(  );
  
      try
      {
         BlogDS.ReadXml(Page.Server.MapPath("Blog.xml"));
      }
      catch (FileNotFoundException fnfEx)
      {
         CreateBlankFile(  );
         LoadData(  );
      }
   }
  
   protected void DisplayBlogs(  )
   {
      DateTime BlogDate;
      DateTime CurrentDate = new DateTime(  );
  
      DataRowCollection BlogRows = BlogDS.Tables[0].Rows;
      foreach (DataRow BlogDR in BlogRows)
      {
         string BDate = BlogDR["date"].ToString(  );
         BlogDate = new DateTime(Convert.ToInt32(BDate.Substring(4, 4)), 
            Convert.ToInt32(BDate.Substring(0, 2)),
            Convert.ToInt32(BDate.Substring(2, 2)));
  
         if (CurrentDate != BlogDate)
         {
            Label Date = new Label(  );
            Date.Text = BlogDate.ToLongDateString(  );
            Date.Font.Size = FontUnit.Large;
            Date.Font.Bold = true;
            this.Controls.Add(Date);
            this.Controls.Add(new LiteralControl("<br/><br/>"));
            CurrentDate = BlogDate;
         }
  
         HtmlAnchor Anchor = new HtmlAnchor(  );
         Anchor.Name = "#" + BlogDR["anchorID"].ToString(  );
         this.Controls.Add(Anchor);
  
         Label Title = new Label(  );
         Title.Text = BlogDR["title"].ToString(  );
         Title.Font.Size = FontUnit.Larger;
         Title.Font.Bold = true;
         this.Controls.Add(Title);
         
         this.Controls.Add(new LiteralControl("<p>"));
         LiteralControl BlogText = new LiteralControl("<div>" +
            BlogDR["text"].ToString(  ) + "</div>");
         this.Controls.Add(BlogText);
         this.Controls.Add(new LiteralControl("</p>"));
  
         HyperLink Email = new HyperLink(  );
         Email.NavigateUrl = "mailto:" + BlogDR["email"].ToString(  );
         Email.Text = "E-mail me";
         this.Controls.Add(Email);

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         this.Controls.Add(Email);
  
         this.Controls.Add(new LiteralControl(" | "));
         HyperLink AnchorLink = new HyperLink(  );
         AnchorLink.NavigateUrl = Page.Request.Url.ToString(  ) + "#" +
            BlogDR["anchorID"].ToString(  );
         AnchorLink.Text = "Link";
         this.Controls.Add(AnchorLink);
  
         this.Controls.Add(new LiteralControl("<hr color='" +
            _separatorColor.ToKnownColor(  ) + "' width='100%'/><br/>"));
      }
   }
  
   protected void NewBlog(  )
   {
      Label Title = new Label(  );
      Title.Text = "Create New Blog";
      Title.Font.Size = FontUnit.Larger;
      Title.Font.Bold = true;
      this.Controls.Add(Title);
  
      this.Controls.Add(new LiteralControl("<br/><br/>"));
  
      Label TitleLabel = new Label(  );
      TitleLabel.Text = "Title: ";
      TitleLabel.Font.Bold = true;
      this.Controls.Add(TitleLabel);
      TitleTB = new TextBox(  );
      this.Controls.Add(TitleTB);
  
      this.Controls.Add(new LiteralControl("<br/>"));
      
      Label BlogTextLabel = new Label(  );
      BlogTextLabel.Text = "Text: ";
      BlogTextLabel.Font.Bold = true;
      this.Controls.Add(BlogTextLabel);
      BlogText = new TextBox(  );
      BlogText.TextMode = TextBoxMode.MultiLine;
      BlogText.Rows = 10;
      BlogText.Columns = 40;
      this.Controls.Add(BlogText);      
  
      this.Controls.Add(new LiteralControl("<br/>"));
  
      Button Submit = new Button(  );
      Submit.Text = "Submit";
      Submit.Click += new EventHandler(this.Submit_Click);
      this.Controls.Add(Submit);
   }
  
   protected void Submit_Click(object sender, EventArgs e)
   {
      EnsureChildControls(  );
      AddBlog(  );
   }
  
   protected void AddBlog(  )
   {
      DataRow NewBlogDR;
      NewBlogDR = BlogDS.Tables[0].NewRow(  );
      NewBlogDR["date"] = FormatDate(DateTime.Today);

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      NewBlogDR["date"] = FormatDate(DateTime.Today);
      NewBlogDR["title"] = TitleTB.Text;
      NewBlogDR["text"] = BlogText.Text;
      NewBlogDR["anchorID"] = Guid.NewGuid().ToString(  );
      NewBlogDR["email"] = _email;
      BlogDS.Tables[0].Rows.InsertAt(NewBlogDR, 0);
      BlogDS.WriteXml(Page.Server.MapPath("Blog.xml"));
      Page.Response.Redirect(_addRedirect);
   }
  
   protected string FormatDate(DateTime dt)
   {
      string retString;
      retString = String.Format("{0:D2}", dt.Month);
      retString += String.Format("{0:D2}", dt.Day);
      retString += String.Format("{0:D2}", dt.Year);
      return retString;
   }
  
   public void CreateBlankFile(  )
   {
      // code to create new file...omitted to conserve space
   }
  
}
  
public class BlogDesigner:ControlDesigner
{
   public override string GetDesignTimeHtml(  ) 
   {
      return "<h1>Blog</h1><hr/><hr/>";
   }
}
  
}

6.2.3.3 Custom schemas and Visual Studio annotations

As much as the metadata attributes described in the previous section help provide support for the
Blog control at design time, they're missing one important piece: IntelliSense support for adding tags
and attributes in the HTML view of the Web Forms editor. For developers who are more comfortable
working in HTML than in WYSIWYG style, this oversight is significant.

Since the HTML view of the Web Forms editor uses XSD schemas to determine which elements and
attributes to make available in a Web Forms page, to correct the oversight, we need to implement an
XSD schema that describes the Blog control and the attributes that it supports. Optionally, we can add
annotations to the schema that tell Visual Studio .NET about the various elements and how we'd like
them to behave.

Example 6-12 contains the portion of the XSD schema specific to the Blog control. The actual schema
file (which is available in the sample code for the book) also contains type definitions for the Panel
control from which the Blog control is derived, as well as other necessary attribute and type
definitions. These definitions were copied from the asp.xsd schema file created for the built-in
ASP.NET Server Controls.

You should never modify the asp.xsd schema file directly, but should copy
any necessary type or attribute definitions to your custom schema file. While
this may seem redundant, if you edit asp.xsd directly and a later installation
or service pack for the .NET Framework overwrites this file, your custom
schema entries would be lost.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 6-12. Blog.xsd

<?xml version="1.0" encoding="utf-8" ?> 
<xsd:schema targetNamespace="urn:http://www.aspnetian.com/schemas"
   elementFormDefault="qualified"
   xmlns="urn:http://www.aspnetian.com/schemas"
   xmlns:xsd="http://www.w3.org/2001/XMLSchema"
   xmlns:vs="http://schemas.microsoft.com/Visual-Studio-Intellisense"
   vs:friendlyname="Blog Control Schema"
   vs:ishtmlschema="false" 
   vs:iscasesensitive="false" 
   vs:requireattributequotes="true" >
   <xsd:annotation>
      <xsd:documentation>
         Blog Control schema.
      </xsd:documentation>
   </xsd:annotation>
  
   <xsd:element name="Blog" type="BlogDef" />
  
   <!-- <aspnetian:Blog> -->
   <xsd:complexType name="BlogDef">
      <!-- <aspnetian:Blog>-specific attributes -->
      <xsd:attribute name="AddRedirect" type="xsd:string"
         vs:builder="url"/>
      <xsd:attribute name="Email" type="xsd:string"/>
      <xsd:attribute name="Mode" type="BlogMode"/>
      <xsd:attribute name="SeparatorColor" type="xsd:string" 
         vs:builder="color"/>
      <!-- <asp:Panel>-specific attributes -->
      <xsd:attribute name="BackImageUrl" type="xsd:anyURI" />
      <xsd:attribute name="HorizontalAlign" type="HorizontalAlign" />
      <xsd:attribute name="Wrap" type="xsd:boolean" />
      <xsd:attribute name="Enabled" type="xsd:boolean" />
      <xsd:attribute name="BorderWidth" type="ui4" />
      <xsd:attribute name="BorderColor" type="xsd:string" 
         vs:builder="color" />
      <xsd:attribute name="BorderStyle" type="BorderStyle" />
      <xsd:attributeGroup ref="WebControlAttributes" />
   </xsd:complexType>
  
   <!-- DataTypes -->
   <xsd:simpleType name="BlogMode">
      <xsd:restriction base="xsd:string">
         <xsd:enumeration value="Add" />
         <xsd:enumeration value="Display" />
      </xsd:restriction>
   </xsd:simpleType>
</xsd:schema>

In Example 6-12, note the targetNamespace and xmlns attributes on the root schema element, which
define the XML namespace for the control's schema. The value of the targetNamespace and xmlns
attributes will also be used as an attribute in your Web Forms page to "wire up" the schema. The
<xsd:element> tag defines the root Blog element. The <xsd:complexType> tag defines the attributes
for the Blog element, which includes the web control attributes referenced by the
<xsd:attributeGroup> tag. Finally, the <xsd:simpleType> tag defines the enumeration for the BlogMode
type used as one of the attributes for the Blog element.

Note that Example 6-12 uses the vs:builder annotation to tell Visual Studio .NET to use the Url builder
for the AddRedirect attribute and the Color builder for the SeparatorColor attribute. The vs:builder

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


for the AddRedirect attribute and the Color builder for the SeparatorColor attribute. The vs:builder
annotation is one of many annotations available to modify schemas. The most commonly used
annotations are listed in Table 6-1.

Table 6-1. Common Visual Studio .NET annotations

Annotation Purpose Valid
values

vs:absolutepositioning Used at the root <schema> element to determine whether Visual
Studio may insert style attributes for positioning. true/false

vs:blockformatted Indicates whether leading whitespace may be added to the
element during automatic formatting. true/false

vs:builder Specifies the builder to be used for editing the related property's
value.

color,
style, or
url

vs:deprecated
Allows a related property to be marked as `deprecated', which
prevents it from showing up in the Properties browser and in
statement completion.

true/false

vs:empty Used at the element level to indicate that Visual Studio .NET
should use single tag syntax for the related tag (no end tag). true/false

vs:friendlyname Used at the root level to provide a display name for the schema.  

vs:iscasesensitive Used at the root level and specifies whether Visual Studio .NET
will treat the related tags in a case-sensitive manner. true/false

vs:ishtmlschema Used at the root level and specifies whether the schema is an
HTML document schema. true/false

vs:nonbrowseable Used at the attribute level and specifies that the attribute should
not appear in statement completion. true/false

vs:readonly Used at the attribute level and specifies that the attribute may
not be modified in the Properties window. true/false

vs:requireattributequotes Used at the root level and specifies that the attribute values
must have quotes. true/false

Once you've built your XSD schema, save it to the same location as the asp.xsd file (which defaults to
C:\ProgramFiles\MicrosoftVisualStudio.NET\Common7\Packages\schemas\xml).

To allow Visual Studio .NET to read your custom schema, you'll need to add an xmlns attribute to the
<body> tag of the page in which you wish to use the schema, as shown in the following snippet:

<body xmlns:aspnetian="urn:http://www.aspnetian.com/schemas">

Notice that this code uses the aspnetian prefix with the xmlns attribute to specify that the schema is
for controls prefixed with the aspnetian tag prefix. This recall is set up by the TagPrefix attribute
(described in the previous section Section 6.2.3.1). The value of the xmlns attribute should be the
same as the targetNamespace attribute defined at the root of the schema.

Once you've wired up your schema via the xmlns attribute, you should be able to type an opening <
character and have the Blog control appear as one of the options for statement completion, as shown
in Figure 6-5.

Figure 6-5. Statement completion in HTML view

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 6-13 shows the code for a page that uses the Blog control from Visual Studio .NET, including
the xmlns attribute added to the <body> element.

Example 6-13. BlogClient_VS.aspx

<%@ Register TagPrefix="aspnetian" Namespace="aspnetian" 
   Assembly="Blog" %>
<%@ Page Language="vb" AutoEventWireup="True" Debug="True"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
   <head>
      <title>Blog Client</title>
      <meta content="Microsoft Visual Studio.NET 7.0" name="GENERATOR">
      <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
      <meta content="JavaScript" name="vs_defaultClientScript">
      <meta content="http://schemas.microsoft.com/intellisense/ie5" 
        name="vs_targetSchema">
      <script runat="server">
         Sub Page_Load(  )
            If Request.QueryString("mode") = "add" Then
               Blog1.Mode = BlogMode.Add
               Link1.Visible = False
               Link2.Visible = False
            Else
               Blog1.Mode = BlogMode.Display
               Link1.Visible = True
               Link2.Visible = True
            End If
         End Sub
      </script>
   </head>
   <body xmlns:aspnetian="urn:http://www.aspnetian.com/schemas">
      <form id="Form1" method="post" runat="server">
         <p><asp:hyperlink id="Link1" runat="server" 
               navigateurl="WebForm1.aspx?mode=add">
               Add Blog
            </asp:hyperlink></p>
         <p><aspnetian:blog id="Blog1" addredirect="WebForm1.aspx" 
               email="andrew@aspnetian.com" runat="server" >
            </aspnetian:blog></p>
         <p><asp:hyperlink id="Link2" runat="server" 
               navigateurl="WebForm1.aspx?mode=add">
               Add Blog
            </asp:hyperlink></p>
      </form>
   </body>
</html>

Notice that Example 6-13 provides support for both displaying and adding blog entries from within the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notice that Example 6-13 provides support for both displaying and adding blog entries from within the
same page; this is done by omitting the Mode property in the tag that defines the control and setting
the Mode programmatically (based on whether or not the page request was the result of the user
clicking one of the "Add Blog" Hyperlink controls added to the page).

When the page is loaded for the first time, it will be in Display mode. Clicking one of the hyperlinks
will request the page with the mode QueryString element set to add, which wil l cause the page to
render in Add mode.

6.2.4 Adding Client Script

Sometimes you may want to use client-side script in your ASP.NET pages, either with controls or
independent of them. In classic ASP, it was possible to write client script to the browser using
Response.Write. However, this could get very messy -- particularly if you needed to write the same
set of code for use with more than one form element.

The ASP.NET Page class provides several methods for sending client script to the browser that make
this process simpler and more reliable.

These methods include:

RegisterClientScriptBlock

Renders a string containing the specified client script to the browser.

RegisterHiddenField

Adds an <input> element whose type is set to hidden.

IsClientScriptBlockRegistered

Allows you to test whether a given named script block has been already registered by another
control to avoid redundancy.

You might use these methods to pop up a message box on the client with the number of Blogs that
currently exist in the XML file. To accomplish this, add the following snippet to the DisplayBlogs
method of the Blog control:

Page.RegisterClientScriptBlock("Blog", "<script>alert('There are now " +
   BlogRows.Count + " Blogs!');</script>");

Then, if any other controls need to use the same script, call IsClientScriptBlockRegistered, passing it
the name of the script shown above, Blog, to determine whether to call RegisterClientScriptBlock
again. In this way, a single client-side script block may be shared among multiple controls.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

6.3 Sharing Controls Across Applications

The architecture of the .NET Framework makes using a custom server control or other assembly as
simple as copying that assembly to the bin subdirectory of your application and adding the
appropriate directives and tags to your page. However, there may be times when you would like
multiple applications on the same machine to be able to use the same control, without having multiple
local copies of the control's assembly floating around.

Fortunately, .NET addresses this need with the Global Assembly Cache (GAC), a repository of shared
assemblies that are accessible to all .NET applications on a given machine. Adding your own control
assemblies to the GAC is a relatively straightforward process that requires four steps:

1. Use the sn.exe command-line utility to create a public key pair for use in signing your control:

sn.exe -k Blog.snk

2. Add the AssemblyKeyFileAttribute to the file containing the control code, passing the path to the
keyfile created in Step 1 as an argument. (This is an assembly-level attribute, so it should be
placed outside of any namespace or class definitions.) When compiled, this attribute will result
in a strongly named assembly that can be placed in the GAC:

[assembly: AssemblyKeyFileAttribute("Blog.snk")]

3. Recompile the control.

4. Add the control to the GAC, either by dragging and dropping the assembly in Windows Explorer
or by using the gacutil.exe utility, as follows:

gacutil -i Blog.dll

Note that as with the csc.exe and vbc.exe command-line compilers,
using the sn.exe and gacutil.exe utilities without a fully qualified path
requires that you have the path to these utilities registered as part of
your PATH environment variable. The sn.exe and gacutil.exe utilities
are typically located in the \FrameworkSDK\bin directory, which is
installed either under ProgramFiles\Microsoft.NET or
ProgramFiles\MicrosoftVisualStudio.NET, depending on whether you've
installed just the .NET Framework SDK or Visual Studio .NET.

Once you've added the control assembly to the GAC, you can now use it from any application on the
machine. One caveat: to use custom controls that are installed in the GAC, you must supply the
version, culture, and public key information for the assembly when adding the @ Register directive for
the control, as shown in the following snippet (which should appear on a single line):

<%@ Register TagPrefix="aspnetian" Namespace="aspnetian" Assembly="Blog,
   Version=0.0.0.0, Culture=neutral, PublicKeyToken=6bd31f35fc9a113b" %>

If you've added your control to the Visual Studio .NET toolbox, when you use the control from the
toolbox, the correct @ Register directive will be generated for you automatically.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

6.4 Additional Resources

The following sites provide additional information on the topics discussed in this chapter:

http://www.aspfriends.com/aspfriends/aspngcontrolscs.asp

Home page for the AspFriends.com mailing list (for any questions relating to building custom
server controls in C#).

http://www.aspfriends.com/aspfriends/aspngcontrolsvb.asp

Home page for the AspFriends.com mailing list (for any questions relating to building custom
server controls in Visual Basic .NET).

http://www.aspfriends.com/aspfriends/aspngreuse.asp

Home page for the AspFriends.com mailing list (for general reuse questions). Whether you're
working on user controls or custom server controls, you can get good answers to your
questions on this list.

http://www.aspnextgen.com/

The DotNetJunkies site, run by Microsoft MVP Award winners Donny Mack and Doug Seven,
contains many ASP.NET tutorials, including some on building custom server controls and user
controls.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 7. Data Access and Data Binding

While writing simple applications without ever accessing data from a backend data store is certainly
possible, most applications will, at some point, need to do so. Fortunately, the .NET Framework
provides a rich set of classes designed to simplify the process of reading and writing data to both SQL
Server and other backend data stores. These classes are collectively referred to as ADO.NET.

This chapter provides an overview of ADO.NET and the various tasks it facilitates -- from reading data
with the SqlDataReader class to updating data with the DataSet and SqlDataAdapter classes. The
chapter also discusses reading from and writing to XML files and provides examples of binding
retrieved data to ASP.NET Server Controls.

Data Access and Architecture

Almost everyone agrees that in all but the smallest applications, it is important to avoid
performing data access directly from the ASP.NET Web Forms themselves. Accessing data
directly from within a Web Form inherently ties the user interface code to the database
and table schema that currently exist, making it more difficult to reuse data-access code
and maintain the user interface code and backend data.

To keep the code as simple and straightforward as possible, the examples in this chapter
perform data access directly from the pages. In a production application, this code should
generally reside in either data-tier or business-tier components, which should return XML,
a dataset, or some other database-independent structure to the presentation tier for data
binding. Remember that you should always perform data calculations and modifications on
a tier other than the presentation tier.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

7.1 ADO.NET: An Overview

The combination of ASP.NET and ADO.NET provides great flexibility in terms of data sources. Unlike
classic ADO, in which support for XML was bolted on after the basic interfaces were written, ADO.NET
was written from the ground up to deal with XML and does so quite handily. For example, the DataSet
class provides built-in support for reading from and writing to XML files and streams, and also
provides support for reading, writing, and inferring (from the structure of a table retrieved from a
DBMS) XSD schemas. This makes working with XML data quite easy, as demonstrated in the custom
control examples in Chapter 6.

ADO.NET also provides excellent support for reading data from a DBMS, including a set of classes for
fast, efficient access to data in SQL Server databases and another set of classes to support OLE DB
data sources. Most importantly, in the DataSet class, ADO.NET provides an abstract, in-memory
representation of data. By design, once the DataSet class is populated, it knows nothing about the
backend source from which its data was retrieved; it only knows about the structure of the tables and
data it contains and the relationships between them. This allows a great deal of flexibility when
manipulating data, passing data between application tiers, or translating data between different DBMS
systems.

The .NET Framework ships with two .NET Data Providers. These data providers are represented by the
System.Data.SqlClient namespace, which contains classes for accessing SQL Server data, and the
System.Data.OleDb namespace, which contains classes for accessing data sources using an OLE DB
provider. Each provider has a class that derives from the DbDataAdapter base class, which acts as a
translator between a data source and the DataSet class, as explained in the next section. For the
SqlClient namespace, this class is SqlDataAdapter. For OleDB, it is OleDbDataAdapter.

Authentication and Security

When accessing data from a backend database, one of the decisions you'll need to make is
how to authenticate the user or application against the database's login credentials. It is
fairly common for applications to pass a user ID and password as part of the connection
string when opening a connection to the database. However, this is generally not the most
secure method, since it requires storing this information in a place where the application
can retrieve it when needed.

An even more serious mistake is to have an application log into the database using a
privileged account, such as the SQL Server sa account. This mode of access allows all
queries to run with sa privileges. If a malicious user were able to insert a query, they could
delete data, modify security settings, or worse, possibly run the xp_cmdshell stored
procedure, which would allow them to do just about anything on the database server.

Application code should never be run with a system administrator-level account. In fact, if
you're going to run application code using a specific user ID and password to log into the
database, you should create separate accounts for each application, including distinct
accounts for reading and updating. If a particular part of an application requires only read
access to the data, then it should use account credentials that are restricted to read-only
access. This can help prevent the database or data from being compromised.

When using SQL Server, however, database access should be performed using a trusted
connection wherever possible. All examples in this chapter use trusted connections
because they do not require storing sensitive information (user IDs and passwords) where
someone might be able to get at them.

Because of the security context in which the ASP.NET worker process is run, using trusted
connections requires you to take one of two actions:

Setting up the desired database to allow access to the ASPNET account used to run
the ASP.NET worker process.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Turning on Windows Authentication and Impersonation and providing the individual
user accounts of those who will access the application with required access to the
database. See Chapter 9 and Chapter 20 for more information on changing the
authentication mode.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

7.2 Reading Data

There are two basic techniques for reading data in ADO.NET: using data readers and datasets.
Additionally, data may be read from either a backend DBMS, such as SQL Server, or from a simple (or
complex) XML file. In the next several sections, we'll discuss these techniques and data sources.

7.2.1 Reading from a Database

The following sections describe the use of data readers and datasets, provide an example, and discuss
why one would use one technique over the other.

7.2.1.1 Using a data reader

The data reader technique consists of using an instance of either the SqlDataReader or
OleDbDataReader class to retrieve the data in a similar fashion to a forward-only, read-only database
cursor. Data readers provide lightweight access to data that is recommended when retrieving data for
display in a Web Forms page or for other circumstances in which the overhead of a dataset is not
desirable.

About the Examples

For the sake of simplicity and consistency, all examples in this chapter that access data
from a DBMS use the Pubs sample database in the NetSDK named instance of the
Microsoft Data Engine (MSDE). MSDE is a slimmed-down version of SQL Server that fills a
role that is similar to Microsoft Access for desktop applications. The NetSDK instance may
be installed along with the .NET Framework SDK samples, after installing either the .NET
Framework SDK or Visual Studio .NET.

All examples in this chapter use trusted connections rather than pass a user ID and
password as part of the connection string. As explained later in the chapter, this requires
either adding the ASPNET account under which ASP.NET is run to the desired database or
enabling Windows authentication and impersonation in the web.config file for the
application. The examples in this chapter use the former technique.

Among the sample files included with the book is a batch file named Add_ASPNET.bat that
adds the ASPNET account to the NetSDK MSDE instance and assigns it the required
permissions in the Pubs sample database. This batch file uses the Add_ASPNET.sql file for
its commands. Before running Add_ASPNET.bat, you will need to open Add_ASPNET.sql in
a text editor and change all instances of <machine or domain> to the name of the machine
or domain containing the ASPNET account. If you modify the machine.config file to have
the ASP.NET worker process run under a different account than ASPNET, you should
modify Add_ASPNET.sql to use that account name -- including the machine or domain
name of the account.

Add_ASPNET.bat itself uses a trusted connection to access MSDE, so you must run this
batch file while logged in using an account that has administrative access to the NetSDK
instance of MSDE (by default, this will include any members of the Administrators group
on the machine on which MSDE is installed). Running Add_ASPNET.bat should result in
output that looks like that shown in Figure 7-1.

Figure 7-1. Output of Add_ASPNET.bat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 7-1. Output of Add_ASPNET.bat

Once you've run Add_ASPNET.bat, you're ready to run the samples included with this
chapter, which are downloadable from the O'Reilly web site at
http://examples.oreilly.com/aspdotnetnut/.

Example 7-1 shows the implementation of a SqlDataReader object, which retrieves two columns from
the Titles table of the Pubs sample database from the NetSDK instance of MSDE. The output from
Example 7-1 should look similar to Figure 7-2.

Example 7-1. ReadTitles.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
   <title>SqlDataReader Example</title>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            Dim ConnStr As String = "Data Source=(local)\NetSDK;" & _
               "Initial Catalog=Pubs;Trusted_Connection=True;"
            Dim SQL As String = "SELECT title, price FROM titles " & _ 
               "WHERE PRICE IS NOT NULL"
            Dim PubsConn As New SqlConnection(ConnStr)
            Dim TitlesCmd As New SqlCommand(SQL, PubsConn)
            Dim Titles As SqlDataReader
            PubsConn.Open(  )
            Titles = TitlesCmd.ExecuteReader(  )
            Output.Text = "<table>"
            While Titles.Read(  )
               Output.Text &= "<tr>"
               Output.Text &= "<td>" & Titles.GetString(0) & "</td>"
               Output.Text &= "<td>$" & _
                  Format(Titles.GetDecimal(1), "##0.00") & "</td>"
               Output.Text &= "</tr>"
            End While
            Output.Text &= "</table>"
            Titles.Close(  )
            PubsConn.Close(  )
         End Sub
      </script>
   </head>
<body>
   <h1>SqlDataReader Example</h1>
   <asp:label id="Output" runat="server"/>
</body>
</html>

Example 7-1 begins by adding an @ Import directive to import the System.Data.SqlClient namespace.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 7-1 begins by adding an @ Import directive to import the System.Data.SqlClient namespace.
The example uses an ASP.NET Label control called Output for the display of the retrieved data. To get
the data, we create string variables for the connection string and the desired SQL statement and then
create a new SqlConnection instance, passing the variable containing the desired connection string to
its constructor, which initializes the appropriate properties on the connection. We then create a new
SqlCommand instance, passing the SQL string and the new connection object to its constructor. Then
we create a SqlDataReader object variable, open the connection to the database, and set the
SqlDataReader object variable to the instance returned by the ExecuteReader method of the
SqlCommand class.

To display the data, we begin by sending an HTML <table> tag to the Text property of the Label
control and then loop through the contents of the data reader, adding a row with two cells for each
row in the data reader. The SqlDataReaders' Read method advances the reader to the next available
row and returns a Boolean indicating whether there is more data to read. This makes it ideal for
looping through data. Note that the example uses the Visual Basic .NET Format function to format the
price data with trailing zeros.

Finally, once we've read through all the rows in the data reader, we append a closing </table> tag to
the Text property of the label and close both the data reader and the connection. It is very important
that you close both when using a data reader, since failing to close either object can negatively
impact the scalability of your application by interfering with the built-in connection pooling mechanism
provided by ADO.NET.

Figure 7-2. Output of ReadTitles.aspx

7.2.1.2 Dataset and data adapter

For circumstances when simply reading through a set of rows once is not sufficient, or if you plan to
modify data that you've retrieved for later updating on the backend data store, the data reader will
not be sufficient to meet your needs. For these occasions, the DataSet class (part of the System.Data

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


not be sufficient to meet your needs. For these occasions, the DataSet class (part of the System.Data
namespace) and the SqlDataAdapter provide more functionality and flexibility than the SqlDataReader,
albeit at the cost of additional overhead.

Example 7-2 retrieves the same data as Example 7-1, but uses a SqlDataAdapter and a DataSet
instead of the SqlDataReader. This example is written in C#, to demonstrate that the basic syntax of
calling the ADO.NET classes is very similar in both VB.NET and C#, with the major difference being
the variable declaration syntax.

Example 7-2. ReadTitles_DataSet.aspx

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
   <title>DataSet Example</title>
   <head>
      <script runat="server">
         void Page_Load(  )
         {
            String ConnStr = "Data Source=(local)\\NetSDK;" 
               + "Initial Catalog=Pubs;Trusted_Connection=True;";
            String SQL = "SELECT title, price FROM titles " 
               + "WHERE PRICE IS NOT NULL";
            SqlDataAdapter TitlesAdpt = new SqlDataAdapter(SQL, ConnStr);
            DataSet Titles = new DataSet(  );
            // No need to open or close the connection
            //   since the SqlDataAdapter will do this automatically.
            TitlesAdpt.Fill(Titles);
            Output.Text = "<table>";
            foreach (DataRow Title in Titles.Tables[0].Rows)
            {
               Output.Text += "<tr>";
               Output.Text += "<td>" + Title[0] + "</td>";
               Output.Text += "<td>" + String.Format("{0:c}", Title[1]) 
                  + "</td>";
               Output.Text += "</tr>";
            }
            Output.Text += "</table>";
         }
      </script>
   </head>
<body>
   <h1>DataSet Example</h1>
   <asp:label id="Output" runat="server"/>
</body>
</html>

In addition to the @ Import statement for the System.Data.SqlClient namespace, we add another @
Import statement to import the System.Data namespace, which allows us to call the DataSet and
DataRow classes without fully qualifying their namespace name.

As in Example 7-1, we begin by creating a connection string and a SQL statement, but unlike Example
7-1, we do not need to create instances of the SqlConnection and SqlCommand objects; by passing
the SQL statement and connection string to the constructor of the SqlDataAdapter class, the data
adapter instance creates the connection and command objects internally.

Now, instead of creating a SqlDataReader, we create a new SqlDataAdapter, passing in the SQL
statement and connection string created earlier, and then create a new dataset. We then call the
SqlDataAdapter's Fill method to retrieve the data and store it in the dataset. When the Fill method is
called, the SqlDataAdapter creates a connection based on the provided connection string, opens it,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


called, the SqlDataAdapter creates a connection based on the provided connection string, opens it,
executes the query, and then closes the connection. This feature results in simpler and cleaner code
and reduces the likelihood of forgetting to close a connection.

If you open a connection associated with a SqlDataAdapter object (or an
OleDbDataAdapter object) before calling Fill or Update, the data adapter will
not close the connection automatically. If you open the connection explicitly,
always be sure to close it, or you may find your scalability suffering.

Once the dataset has been filled, we loop through the rows in the first (and only) table of the dataset
by using the C# foreach statement, sending output to the Text property of the Label control, as in
Example 7-1. Note that the example actually declares the DataRow instance Title within the foreach
statement. In Visual Basic .NET, you would declare the instance outside of the loop and then refer to
it by name in the For Each statement.

Also note that in C#, when referring by index to items such as the tables in the DataSet object or the
items in a DataRow object, you must use square brackets (rather than the parentheses you would use
in Visual Basic .NET). This is consistently one of the biggest gotchas in moving from VB.NET to C#
and vice-versa. One final difference in the looping code between Examples 7-1 and 7-2 is that since
the VB.NET Format function is not available for formatting the price data, we use the static Format
method exposed by the String class instead; it formats the data as currency and includes the
appropriate regional currency symbol for the current system.

Another important point to observe about the code in Example 7-2 is that
because we're not keeping a database connection open while looping through
the data, we can take as much time as we'd like in displaying the data
without affecting the ability of others to obtain connections to the database.
We can also use the ASP.NET cache engine to cache the entire dataset for
later use, if desired, so that we don't have to retrieve the data again. For
data that is updated infrequently, this can result in a significant performance
improvement, since it is far faster to retrieve a dataset from memory than to
requery the data from the database.

The output of Example 7-2 should look much like Figure 7-2 (with the exception of the heading, which
will read "DataSet Example").

7.2.2 Reading from XML

One of the neat things about the DataSet class is that it doesn't require a data adapter or a backend
DBMS. Instead, you can populate a dataset from an XML file or stream by using the DataSet's
ReadXml method. The ReadXml method is overloaded and can read from a Stream, a TextReader, an
XmlReader, or from a file by passing the filename as a string. This last technique is illustrated in the
custom control examples in Chapter 6, both of which use the ReadXml method to populate a dataset
with data from an XML file.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

7.3 Data Binding

Although Examples 7-1 and 7-2 are written in different languages and use different techniques for
retrieving data, they both write out the rendering code for formatting the data manually. In simple
examples like these, this does not seem too burdensome. When doing more complex rendering,
though, it can become quite involved and produce code that is difficult to maintain.

When working with data in a rich client application, the solution has been to use data-bound controls
to display data, allowing the controls to take care of the rendering of each row of data based on
control properties set by the developer. Microsoft introduced a similar idea for web development by
adding client-side data-binding features to Internet Explorer. However, these features were only
useful when you could be certain that all of your clients were using Internet Explorer, and in some
cases, their use entailed expensive marshalling of data to the client.

ASP.NET introduces a new server-side data binding feature that addresses these issues. Data binding
to server controls in ASP.NET can significantly reduce the amount of code that needs to be written
and maintained for displaying data. In addition, since all data binding occurs on the server side and
only HTML is returned to the client, server-side data binding provides great cross-browser
compatibility.

You can perform data binding against properties for single-value binding or against data sources that
contain multiple rows, such as collections, data tables, and data views, allowing rich formatting of
data with a minimum of code. Data binding can be performed explicitly by using the <%# %> syntax,
or implicitly by setting the data source of a bindable control to an appropriate object (objects to be
bound to must implement the IEnumerable interface). In both cases, the data binding occurs when the
Databind method of the page or control is called. Note that when Databind is called at the page level,
the Page class will, in turn, call Databind on all of its constituent controls. Therefore, if you have a
large number of controls on a page, only a few of which are databound, it may be more efficient to
call the Databind method of these controls directly.

7.3.1 Binding to Properties

Example 7-3, one of the simplest possible implementations of data binding, binds to a property
exposed at the page level. In this example, we create a public member variable called FontColor, and
in the Page_Load event handler, we set its value to "Red". In the body of the page, we use the <%#
%> syntax to tell ASP.NET to evaluate the contents of these brackets when the DataBind method of
the page is called. Back in Page_Load, we call DataBind, which substitutes the value of the FontColor
property for the two data binding expressions in the body. The output of Example 7-3 is shown in
Figure 7-3. Example 7-4 shows the HTML produced by Example 7-3.

Example 7-3. BindProperty.aspx

<%@ Page Language="VB" %>
<html>
<head>
   <title>Simple DataBinding Example</title>
   <script runat="server">
      Dim FontColor As String
      Sub Page_Load(  )
         FontColor = "Red"
         DataBind(  )
      End Sub
   </script>
</head>
<body>
   <h1>Simple DataBinding Example</h1>
   The value for FontColor is 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   The value for FontColor is 
      <font color="<%# FontColor %>"><%# FontColor %></font>.
</body>
</html>

Figure 7-3. Output of BindProperty.aspx

Example 7-4. HTML Output of BindProperty.aspx

<html>
<head>
   <title>Simple DataBinding Example</title>
</head>
<body>
   <h1>Simple DataBinding Example</h1>
   The value for FontColor is 
      <font color="Red">Red</font>.
</body>
</html>

7.3.2 Binding to Collections

While more involved than binding to a property, binding to a collection is still quite simple. Example
7-5 uses an ArrayList to store values that will be bound to an ASP.NET DropDownList control. The
DropDownList control and a Label control for output are declared in the body of the page. Setting the
autopostback attribute of the DropDownList control to True results in the page being posted back to
the server any time the selection in the dropdown is changed. In the Page_Load event handler, if the
page request is not the result of a postback, we declare a new ArrayList and add three items to it.
Next, we set the DataSource property of the DropDownList control to be the ArrayList, call the page's
DataBind method (which calls DataBind on its children), and then set the initial selection of the
DropDownList to the first item.

Whether or not the request is the result of a postback, we then set the output text via the Label's Text
property and set the foreground color of the Label control based on the value of the selected item in
the dropdown. Note that because the ForeColor property is of type System.Drawing.Color, the
example uses the FromName method exposed by the Color class to translate the string containing the
color name to an appropriate instance of the Color class. The output of Example 7-5 is shown in Figure
7-4.

Example 7-5. BindCollection.aspx

<%@ Page Language="VB" %>
<html>
<head>
   <title>Collection DataBinding Example</title>
   <script runat="server">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   <script runat="server">
      Dim FontColor As String
      Sub Page_Load(  )
         If Not IsPostBack Then
            Dim Colors As New ArrayList(  )
            Colors.Add("Red")
            Colors.Add("Green")
            Colors.Add("Blue")
            Color.DataSource = Colors
            DataBind(  )
            Color.SelectedIndex = 0
         End If
         Output.Text = "The value for FontColor is " & _
            Color.SelectedItem.Value & "."
         Output.ForeColor = _
            System.Drawing.Color.FromName(Color.SelectedItem.Value)
         End Sub
    </script>
</head>
<body>
   <h1>Collection DataBinding Example</h1>
   <form runat="server">
      Choose a color from the list for the font color:
      <asp:dropdownlist id="Color" autopostback="True" runat="server"/>
      <br/>
      <asp:label id="Output" runat="server"/>
   </form>
</body>
</html>

Figure 7-4. Output of BindCollection.aspx

7.3.3 Binding to DataViews

Binding to richer data sources, such as DataTables and DataViews , is even more powerful than binding
to collections, though still relatively simple. The DataView class provides a representation of the data
in a DataTable that can be sorted and filtered, and also implements the necessary interfaces that allow
it to be databound. These data sources can be used by:

Retrieving data in a dataset and binding to the constituent DataTables

Building DataViews, based on the data in the data table, or retrieving the table's DefaultView
property, which returns an unsorted, unfiltered DataView

Creating DataTables and/or DataViews programmatically

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Creating DataTables and/or DataViews programmatically

Binding a DataTable or DataView to controls such as DataGrid, DataList, and Repeater provides an
extremely powerful technique for displaying and editing data with a minimum of code. It also provides
substantial flexibility in how the data is formatted and displayed.

The examples in Section 7.4 and Section 7.5 demonstrate how to bind the default DataView of a table
to a DataGrid for display.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

7.4 Inserting and Updating Data

Reading and binding data is all very well, but for most applications, it's only part of what the
application needs to do. Another important feature is the ability to insert new rows and/or update
existing rows of data. As with reading data, the DataSet and SqlDataAdapter (or OleDbDataAdapter)
classes come in handy. Another class that is extremely useful is the SqlCommandBuilder (or
OleDbCommandBuilder) class, which is discussed later in this section.

Example 7-6, while more complicated than previous examples, adds a relatively small amount of code
to support adding and updating rows to the Pubs Titles table.

Example 7-6. InsertUpdateTitles.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
<head>
   <title>Insert/Update Example</title>
   <script runat="server">
      Dim Titles As New DataSet(  )
      Dim TitlesAdpt As New SqlDataAdapter(  )
  
      Sub Page_Load(Sender As Object, e As EventArgs)
         If Not IsPostBack Then
            GetTitleData("")
            BindGrid(  )
         End If
      End Sub
  
      Sub Add_Click(Sender As Object, e As EventArgs)
         Page.RegisterHiddenField("EditMode", "Add")
         title_id.ReadOnly = False
         Display.Visible = False
         InsertUpdate.Visible = True        
      End Sub
  
      Sub Cancel_Click(Sender As Object, e As EventArgs)
         Response.Redirect("InsertUpdateTitles.aspx")
      End Sub
  
      Sub Edit_Click(sender As Object, e As DataGridCommandEventArgs)
         GetTitleData("WHERE title_id = '" & e.Item.Cells(1).Text & "'")
         title_id.Text = Titles.Tables(0).Rows(0)(0)
         title.Text = Titles.Tables(0).Rows(0)(1)
         type.Text = Titles.Tables(0).Rows(0)(2)
         pub_id.Text = Titles.Tables(0).Rows(0)(3)
         price.Text = String.Format("{0:c}", Titles.Tables(0).Rows(0)(4))
         advance.Text = Titles.Tables(0).Rows(0)(5)
         royalty.Text = Titles.Tables(0).Rows(0)(6)
         ytd_sales.Text = Titles.Tables(0).Rows(0)(7)
         notes.Text = Titles.Tables(0).Rows(0)(8)
         pubdate.Text = Titles.Tables(0).Rows(0)(9)
         Page.RegisterHiddenField("EditMode", "Update")
         Display.Visible = False
         InsertUpdate.Visible = True
      End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      End Sub
  
      Sub BindGrid(  )
         TitleGrid.DataSource = Titles.Tables(0).DefaultView
         TitleGrid.DataBind(  )
      End Sub
  
      Sub GetTitleData(WhereClause As String)
         Dim ConnStr As String = "Data Source=(local)\NetSDK;" & _
            "Initial Catalog=Pubs;Trusted_Connection=True;"
         Dim SQL As String = "SELECT * FROM titles " & WhereClause
         Dim PubsConn As New SqlConnection(ConnStr)
         Dim TitlesCmd As New SqlCommand(SQL, PubsConn)
         TitlesAdpt.SelectCommand = TitlesCmd
         Dim TitlesCB As New SqlCommandBuilder(TitlesAdpt)
         ' No need to open or close connection,
         '   since the SqlDataAdapter will do this automatically.
         TitlesAdpt.Fill(Titles)
      End Sub
  
      Sub Submit_Click(Sender As Object, e As EventArgs)
         Select Case Request.Form("EditMode")
            Case "Add"
               GetTitleData("")
               Dim NewRow As DataRow = Titles.Tables(0).NewRow
               NewRow(0) = title_id.Text
               NewRow(1) = title.Text
               NewRow(2) = type.Text
               NewRow(3) = pub_id.Text
               NewRow(4) = Convert.ToDecimal(price.Text.Replace("$", ""))
               NewRow(5) = advance.Text
               NewRow(6) = royalty.Text
               NewRow(7) = ytd_sales.Text
               NewRow(8) = notes.Text
               NewRow(9) = pubdate.Text
               Titles.Tables(0).Rows.Add(NewRow)
               TitlesAdpt.Update(Titles)                    
            Case "Update"
               GetTitleData("WHERE title_id = '" & title_id.Text & "'")
               Titles.Tables(0).Rows(0)(0) = title_id.Text
               Titles.Tables(0).Rows(0)(1) = title.Text
               Titles.Tables(0).Rows(0)(2) = type.Text
               Titles.Tables(0).Rows(0)(3) = pub_id.Text
               Titles.Tables(0).Rows(0)(4) = _
                  Convert.ToDecimal(price.Text.Replace("$", ""))
               Titles.Tables(0).Rows(0)(5) = advance.Text
               Titles.Tables(0).Rows(0)(6) = royalty.Text
               Titles.Tables(0).Rows(0)(7) = ytd_sales.Text
               Titles.Tables(0).Rows(0)(8) = notes.Text
               Titles.Tables(0).Rows(0)(9) = pubdate.Text
               TitlesAdpt.Update(Titles)                    
         End Select
         Response.Redirect("InsertUpdateTitles.aspx")
      End Sub
   </script>
</head>
<body>
   <h1>Insert/Update Example</h1>
   <form runat="server">
      <asp:panel id="Display" runat="server">
         <asp:datagrid id="TitleGrid"
            oneditcommand="Edit_Click"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            oneditcommand="Edit_Click"
            runat="server">
            <columns>
               <asp:editcommandcolumn 
                  buttontype="PushButton" edittext="Edit"/>
            </columns>
         </asp:datagrid>
         <asp:button id="Add" 
            text="Add New Title" onclick="Add_Click" runat="server"/>
      </asp:panel>
      <asp:panel id="InsertUpdate" visible="False" runat="server">
         <table border="0">
            <tr>
               <td>Title ID</td>
               <td>
                  <asp:textbox id="title_id" 
                     readonly="True" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Title</td>
               <td>
                  <asp:textbox id="title" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Type</td>
               <td>
                  <asp:textbox id="type" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Publisher ID</td>
               <td>
                  <asp:textbox id="pub_id" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Price</td>
               <td>
                  <asp:textbox id="price" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Advance</td>
               <td>
                  <asp:textbox id="advance" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Royalty</td>
               <td>
                  <asp:textbox id="royalty" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Year-to-date Sales</td>
               <td>
                  <asp:textbox id="ytd_sales" runat="server"/>
               </td>
            </tr>
            <tr>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            <tr>
               <td>Notes</td>
               <td>
                  <asp:textbox id="notes" 
                     textmode="MultiLine" 
                     rows="5"
                     columns="20"
                     runat="server"/>
               </td>
            </tr>
            <tr>
               <td>Publishing Date</td>
               <td>
                  <asp:textbox id="pubdate" runat="server"/>
               </td>
            </tr>
            <tr>
               <td>
                  <asp:button id="Submit" 
                     text="Submit" onclick="Submit_Click" runat="server"/>
               </td>
               <td>
                  <asp:button id="Cancel" 
                     text="Cancel" onclick="Cancel_Click" runat="server"/>
               </td>
            </tr>
         </table>        
      </asp:panel>
   </form>
</body>
</html>

The discussion of the code begins with the <body> section of the page. This section contains a server-
side <form> element, which provides support for page postbacks and adds automatic support for such
things as control state management. Contained within the form are two Panel controls, which render
as <div> elements on the client. Panel controls are very useful when you want to provide more than
one set of user interface elements on a page, but only want to display one at a given time.

Inside the first Panel control, which will display items from the Titles table, we declare a DataGrid
control, to which we add a ButtonColumn control to provide access to the edit mode of the page and a
Button control that will allow us to add a new item. To enable handling of the Edit button in the
DataGrid, we set the DataGrid's onEditCommand attribute to the name of the event handler for the
Edit button.

The second Panel control contains the form fields that will be used to edit or add a new item, as well
as Submit and Cancel buttons. It makes sense for the default mode for the page to be displayed, so
we set the Visible property of the second panel control to False. Note that we also set the ReadOnly
property of the title_id textbox to True to prevent this field from being edited for existing data, since
the Title ID field is what uniquely identifies a title in the table.

Turning to the code, note that the example declares both the DataSet and SqlDataAdapter classes at
the page level so that they will be available to all procedures.

In the Page_Load event handler, we check to see if the current request is the result of a postback. If
not, we call the GetTitleData method (passing an empty string). The GetTitleData method, which
allows us to pass a Where clause argument to be appended to the SQL string, uses the techniques
demonstrated previously to retrieve the desired set of rows from the Titles table in the Pubs database.

The main difference between Example 7-5 and the previous examples is that the code in Example 7-5
declares a new SqlCommandBuilder instance, passing it a SqlDataAdapter instance whose
SelectCommand property is already set. Here's where ADO.NET magic really happens. The
SqlCommandBuilder will automatically generate appropriate Insert, Update, and Delete commands for
the Select statement set on the data adapter and populate the InsertCommand, UpdateCommand, and

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DeleteCommand properties of the SqlDataAdapter with these values. This step saves us the trouble of
having to create these statements manually.

If you want to construct Insert, Update, and Delete statements yourself or use stored procedures for
these commands, you are free to do so. You can do so by creating separate SqlCommand objects with
the desired properties and then setting the InsertCommand, UpdateCommand, or DeleteCommand
property of the SqlDataAdapter to the newly created SqlCommand instance.

Once we've filled the dataset with data from the Titles table, we call BindGrid from Page_Load. Calling
BindGrid sets the DataSource property of the DataGrid control to the DefaultView property of the first
table in the dataset, which returns a DataView containing all the data in the table. At this point, the
output of the page should look like Figure 7-5.

Figure 7-5. Display mode output of InsertUpdateTitles.aspx

The user viewing the page has two options: click the Edit button for one of the rows or scroll down to
the bottom of the page and click the Add New Title button (not shown in Figure 7-5).

Clicking the Edit button invokes the Edit_Click event handler, which calls GetTitleData, passing a
WHERE clause that causes it to retrieve only the selected row. Next, it sets the form fields in the
second panel control to the values returned from GetTitleData, and then registers a hidden form field
that indicates that we're updating a row (as opposed to adding a new row). This will become
important later, when we submit our changes. Finally, we set the Visible property of the first panel to
False and the second to True, which displays the form fields for editing.

If the Add New Title button is clicked, we register a hidden form field (indicating that the Add mode is
enabled), set the ReadOnly property of the title_id textbox to False (since we'll need a title ID for the
new row), and then reverse the visibility properties of the panel controls again to display the blank
form fields. At this point, the output of the page should look like Figure 7-6.

Figure 7-6. Add mode output of InsertUpdateTitles.aspx

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In Edit or Add mode, if the user clicks the Cancel button, we simply call Response.Redirect and
redirect back to the original page, essentially starting the whole process over again.

If the user clicks Submit, we use a Select Case statement to evaluate whether we're adding a new row
or updating an existing one. If we're adding a new row, we call GetTitleData, call the NewRow method
of the first table object to create a new DataRow instance, and then set the item values of the new
row to the values in the form fields. Once all values have been set, we add the row to the DataTable
and (outside of the Select Case statement) call the SqlDataAdapter's Update method, which updates
the backend database with the new row.

If we're updating an existing row, we call GetTitleData with a WHERE clause for that specific row, set
its items to the values in the form fields, and call Update again to save the changes to the backend
database. Once we've called Update, we call Response.Redirect to redirect the user back to the
original page, which again clears the decks and starts from scratch (with the new data, of course).

Example 7-5 demonstrates "last-in-wins" data concurrency. Be aware that
using this type of concurrency control can result in overwriting changes made
by another user between the time data was queried and when it was
updated. In a multiuser environment, you should always carefully consider
the potential costs and effects of multiple users attempting to update the
same data simultaneously and design your applications accordingly.
Strategies can include locking data from the time it is read until the update is
complete, or using a timestamp before updating to ensure that the data was
not modified from its last known state.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

7.5 Deleting Data

Example 7-7 shows how you can use the DataSet and SqlDataAdapter classes to delete data from the
Titles table. This example shows the implementation of an ASP.NET page that displays data from the
Titles table and allows users to delete a row from the table by clicking a button.

Unless you don't care about the state of the Pubs sample database, it would
probably be a good idea to back up the database before deleting any of the
rows in the Titles table (just in case you want to restore the database to its
original state later).

As with the previous example, we use a DataGrid control to display the items in the dataset. However,
in this case, we set the AutoGenerateColumns property of the DataGrid to False and supply
BoundColumn controls for each displayed column. This provides greater flexibility in displaying the
data, including the ability to determine which columns are displayed, the header to use for each
column, and in the case of the price data, the ability to specify a format string for the data. This
example also adds an <alternatingitemstyle> tag to specify that every other row should have a
background color of silver. To enable handling of the Delete button, we set the DataGrid's
onDeleteCommand method to the name of the event handler for the Delete button.

As with the previous example, Example 7-7 declares both the DataSet and SqlDataAdapter instances at
the page level to make them available to all procedures; in the Page_Load event handler, we call
GetTitleData and BindGrid, which perform the same operations as in the previous example (although
this version of GetTitleData does not allow a WHERE clause).

Once the data is displayed, the user can click the Delete button for a row, which invokes the
Delete_Click event handler. In Delete_Click, we call GetTitleData to fill the dataset, and then call the
Delete method of the selected row (using the Item.ItemIndex property of the
DataGridCommandEventArgs parameter passed to the event handler to determine the correct row to
delete). Once the row is deleted from the dataset, we call the Update method of the SqlDataAdapter,
passing it the modified dataset, and then call Response.Redirect to redirect the user to the original
page.

Example 7-7. DeleteTitles.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
<head>
   <title>Delete Example</title>
   <script runat="server">
      Dim Titles As New DataSet(  )
      Dim TitlesAdpt As New SqlDataAdapter(  )
      
      Sub Page_Load(Sender As Object, e As EventArgs)
         If Not IsPostBack Then
            GetTitleData(  )
            BindGrid(  )
         End If
      End Sub
      
      Sub BindGrid(  )
         TitleGrid.DataSource = Titles.Tables(0).DefaultView
         TitleGrid.DataBind(  )
      End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      End Sub
      
      Sub GetTitleData(  )
         Dim ConnStr As String = "Data Source=(local)\NetSDK;" & _
            "Initial Catalog=Pubs;Trusted_Connection=True;"
         Dim SQL As String = "SELECT * FROM titles"
         Dim PubsConn As New SqlConnection(ConnStr)
         Dim TitlesCmd As New SqlCommand(SQL, PubsConn)
         TitlesAdpt.SelectCommand = TitlesCmd
         Dim TitlesCB As New SqlCommandBuilder(TitlesAdpt)
         ' No need to open or close connection,
         '   since the SqlDataAdapter will do this automatically.
         TitlesAdpt.Fill(Titles)
      End Sub
  
      Sub Delete_Click(Sender As Object, e As DataGridCommandEventArgs)
         GetTitleData(  )
         Titles.Tables(0).Rows(e.Item.ItemIndex).Delete
         TitlesAdpt.Update(Titles)
         Response.Redirect("DeleteTitles.aspx")
      End Sub
   </script>
</head>
<body>
   <h1>Delete Example</h1>
   <form runat="server">
      <asp:datagrid id="TitleGrid"
         ondeletecommand="Delete_Click"
         cellpadding="3"
         autogeneratecolumns="false"
         runat="server">
         <columns>
            <asp:buttoncolumn buttontype="PushButton" 
               text="Delete" commandname="Delete" />
            <asp:boundcolumn headertext="Title ID"
               datafield="title_id"/>
            <asp:boundcolumn headertext="Title"
               datafield="title"/>
            <asp:boundcolumn headertext="Type"
               datafield="type"/>
            <asp:boundcolumn headertext="Publisher ID"
               datafield="pub_id"/>
            <asp:boundcolumn headertext="Price"
               datafield="price" dataformatstring="{0:c}"/>
         </columns>
      </asp:datagrid>
   </form>
</body>
</html>

The output of Example 7-7 is shown in Figure 7-7.

Figure 7-7. Output of DeleteTitles.aspx

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

7.6 Additional Resources

The following sites provide additional information on the topics discussed in this chapter:

http://www.aspfriends.com/aspfriends/aspngdata.asp

Home page for the AspFriends.com mailing list (for questions relating to ASP.NET data access).

http://www.aspfriends.com/aspfriends/aspngdatagridrepeaterdatalist.asp

Home page for the AspFriends.com mailing list (for questions relating to the use of the data-
bound controls, including DataGrid, DataList, and Repeater controls).

http://www.aspnextgen.com/

The DotNetJunkies site, run by Microsoft MVP Award winners Donny Mack and Doug Seven.
This site contains many ASP.NET tutorials, including tutorials on data access and data binding.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 8. ASP.NET Configuration

When working with ASP.NET, you'll be called on to configure an ASP.NET application. One major
advantage that ASP.NET has over classic ASP is that most of the important configuration options for
ASP.NET applications are stored in configuration files that reside in the web application directory. This
makes it considerably easier to migrate an application from one server to another or to replicate an
application across a Web Form, since the application's configuration information will be copied along
with the Web Forms, code-behind classes, and assemblies that make up the application.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

8.1 Understanding Configuration Files

In ASP.NET, configuration information is stored in one of two files: machine.config or web.config.
There is only one machine.config file per machine; it contains the default configuration information for
every web application, as well as other application types, on the machine. This information includes
Windows Forms applications, remoting settings, and other network settings. You should use extreme
caution when editing machine.config to avoid accidentally making changes that break other
applications. It's probably a good idea to back up the machine.config file before editing it, in case you
need to restore the original settings.

web.config is an optional configuration file that is stored with each web application. If an application
contains a web.config file, the file takes precedence over machine.config (i.e., the settings in
web.config override those in machine.config). If a web application does not contain a web.config file,
it inherits its settings from machine.config. An application may have multiple web.config files, but
each must reside in its own directory or subdirectory.

The web.config files in an application are hierarchical. Just as the settings in a web.config file in the
application root will override the settings in machine.config, the settings in a web.config file in a
subdirectory will override those in a web.config file in the parent directory.

ASP.NET provides a facility for locking down configuration settings so they
cannot be overridden by child configuration files. If a configuration setting
has been locked down in machine.config, an exception will be thrown if you
attempt to override that setting in web.config. In addition, certain settings
are limited to machine or application scope, Attempting to override these
settings at application or subdirectory scope will also result in an exception
being thrown.

The syntax of the machine.config and web.config files is based on XML. Each configuration section
consists of a parent element that may in turn contain attributes or child elements. In the following
snippet, the <configuration> and <system.web> elements are standard elements that are required in
each web.config file. The <authentication> and <authorization> elements are parent configuration
elements, while the <deny> element is a child element of the <authorization> element:

<configuration>
   <system.web>
      <authentication mode="Windows"/>
      <authorization>
         <deny users="?"/>
      </authorization>
   </system.web>
<configuration>

The configuration of an ASP.NET application depends on which elements you include in your
web.config file and on the values of their attributes (and any attributes of their child elements).
Chapter 20 documents the configuration elements in detail. Most of this chapter looks at practical
examples of how to set common configuration settings.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

8.2 Modifying Configuration Settings

The most important part of configuration for the web developer is, of course, understanding how to
modify the configuration files to achieve the desired ends. Unfortunately, in the first release of the
.NET Framework and Visual Studio .NET, there aren't any rich GUI tools for editing configuration files
(which sounds like a great third-party opportunity). As a result, editing configuration files is not
terribly straightforward. The next several examples illustrate the basic techniques for editing
web.config files.

Remember that ASP.NET configuration files follow XML syntax rules, including case-sensitivity of
element and attribute names. Element and attribute names in ASP.NET configuration files typically
use camel casing, in which the first letter of the initial word is lowercase and the first letter of each
subsequent word is uppercase.

Also note that some (but not all) attribute values are case sensitive. While this case sensitivity is
specific to the ASP.NET implementation rather than to XML, it's still a good idea to follow the case
used in the examples when modifying configuration files.

Related IIS Settings

It is very important to understand that ASP.NET configuration is distinct from IIS
configuration. In most cases, configuring an ASP.NET application requires no changes to
the configuration of IIS. One exception is that the settings for IIS may still need to be
configured to make certain authentication modes, such as Windows authentication, work
(although in many cases, the defaults will work fine).

The reason why most configuration settings do not require changes to IIS configuration is
that when a request is made for a resource that is handled by ASP.NET, IIS is only
involved long enough to hand that request over to the ASP.NET worker process, which is
completely separate from IIS. In fact, you can host ASP.NET applications without even
using IIS with the classes in the System.Web.Hosting namespace. The operation of the
ASP.NET worker process is configured by machine.config and web.config, while IIS
configuration settings remain in the IIS metabase.

8.2.1 Changing the Authentication Mode

Modifying the <authentication> element of web.config should give you a good idea how configuration
files work. The <authentication> element is included in the machine.config file with the following
default settings:

<!-- 
   authentication Attributes:
      mode="[Windows|Forms|Passport|None]"
-->
<authentication mode="Windows">
  
   <!--
      forms Attributes:
         name="[cookie name]" - Name of the cookie used for Forms
            Authentication
         loginUrl="[url]" - Url to redirect client to for Authentication
         protection="[All|None|Encryption|Validation]" - Protection mode
            for data in cookie
         timeout="[seconds]" - Duration of time for cookie to be valid 
            (reset on each request)
         path="/" - Sets the path for the cookie
   -->
   <forms name=".ASPXAUTH" loginUrl="login.aspx" protection="All" 
      timeout="30" path="/">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      timeout="30" path="/">
  
      <!--
         credentials Attributes:
            passwordFormat="[Clear|SHA1|MD5]" - format of user password
               value stored in <user>
      -->
      <credentials passwordFormat="SHA1">
         <!-- <user name="UserName" password="password"/> -->
      </credentials>
  
   </forms>
  
   <!--
      passport Attributes:
         redirectUrl=["url"] - Specifies the page to redirect to, if the
            page requires authentication, and the user has not signed on
            with passport
   -->
   <passport redirectUrl="internal"/>
  
</authentication>

These configuration settings give the machine-wide defaults for authentication in ASP.NET
applications. Windows authentication is enabled by default. Note that for Windows authentication to
function properly, some form of IIS authentication other than Anonymous must be enabled. The
machine.config settings also specify defaults for the attributes of the <forms> element, which is used
in Forms authentication, and for the <passport> element.

Notice that the formatting of the configuration settings denotes the parent/child relationships of the
elements. Both the <forms> and <passport> elements are children of the <authentication> element,
while the <credentials> element is the child of the <forms> element. The <user> element
(commented out in the preceding code) is in turn the child of the <credentials> element.

You would see the <forms> element specified only in machine.config when the mode attribute of the
<authentication> element is set to Windows, a setting that does not require any child elements. The
reason for this is that these settings are used as defaults for various authentication methods.
Supplying values for the attributes of the <forms> element at the machine level provides defaults that
are inherited by any application using Forms authentication automatically, while any attribute values
for the <forms> element contained in web.config files for specific applications override these settings.

Example 8-1 shows an <authentication> element for an application that uses Windows authentication.
The <authorization> element is also shown. In this case, this element denies access to anonymous
users, which forces authentication, if it has not already occurred.

Example 8-1. Windows authentication settings

<configuration>
   <system.web>
      <authentication mode="Windows"/>
      <authorization>
         <deny users="?"/>
      </authorization>
   </system.web>
<configuration>

Consider an application in which you want to use Forms authentication (discussed further in Chapter
9) to enable authentication against your own custom credential store. In this case, you would use an
authentication element such as that shown in Example 8-2, along with its child <forms> element, and
the <authorization> element shown in Example 8-1. Note that the <forms> element is required only if
you want to override the settings specified in machine.config. Example 8-2 specifies a different login
page (myLogin.aspx) to which unauthenticated users are redirected.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 8-2. Forms authentication settings

<configuration>
   <system.web>
      <authentication mode="Forms">
         <forms loginUrl="myLogin.aspx"/>
      </authentication>
      <authorization>
         <deny users="?"/>
      </authorization>
   </system.web>
<configuration>

8.2.2 Configuring Out-of-Process Session State

The <sessionState> configuration element in machine.config sets the following machine-wide defaults:

<!-- sessionState Attributes:
   mode="[Off|InProc|StateServer|SQLServer]"
   stateConnectionString="tcpip=server:port"
   stateNetworkTimeout="timeout for network operations with State Server,
      in seconds"
   sqlConnectionString="valid System.Data.SqlClient.SqlConnection string,
      minus Initial Catalog"
   cookieless="[true|false]"
   timeout="timeout in minutes"
-->
<sessionState mode="InProc" 
   stateConnectionString="tcpip=127.0.0.1:42424" 
   stateNetworkTimeout="10" 
   sqlConnectionString="data source=127.0.0.1;user id=sa;password="
   cookieless="false" 
   timeout="20"/>

Unlike the <authentication> element, the <sessionState> element has no children, only attributes. Like
the <authentication> element, the usage of the <sessionState> element in machine.config contains a
combination of attributes not normally seen in practice, since the purpose of the attributes is to set
machine-wide defaults. For example, the default mode of in-process session state (InProc) requires
no additional attributes to function. In fact, if you want to use InProc, you do not need to add a
<sessionState> element to your web.config file at all. Example 8-3 and Example 8-4 show the
appropriate settings for the <sessionState> element for out-of-process session state using the
ASP.NET state service and SQL Server session state, respectively.

Example 8-3. Out-of-process state with state service

<configuration>
   <system.web>
      <sessionState mode="StateServer" 
         stateConnectionString="tcpip=StateServerName:42424" 
         stateNetworkTimeout="30" />
   </system.web>
<configuration>

Example 8-3 sets the mode attribute to StateServer, which uses the ASP.NET state NT service installed
with ASP.NET to store session state settings for multiple machines. This setting requires the
stateConnectionString attribute; Since the default setting of 127.0.0.1 (the local machine loopback
address) is not terribly useful for sharing state information across multiple machines, you need to
replace it with the name of the machine that is responsible for maintaining this information
(StateServerName, in the example).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In out-of-process session state scenarios, a single machine is designated to maintain session values
for multiple ASP.NET servers. Therefore, each server using the shared session information should be
configured to point to the same state server. To compensate for potential network latency issues, the
example changes the default stateNetworkTimeout value of 10 seconds to 30 seconds. Note that
inherent in this decision is a tradeoff between avoiding timeouts and potentially poorer application
performance.

Inherent in either type of out-of-process session state is a substantial
performance hit due to the need to cross process and/or machine boundaries
to retrieve session state information. You should use out-of-process session
state only when your need for scalability outweighs your need for absolute
performance. You should also test the performance of your chosen session
state mode with a tool such as the Microsoft Web Stress tool to ensure that it
meets your performance and scalability needs.

Example 8-4. Out-of-process state with SQL Server

<configuration>
   <system.web>
      <sessionState mode="SQLServer" 
         sqlConnectionString="data source=ServerName;user id=name;password=pwd"
         cookieless="true"/>
   </system.web>
</configuration>

Example 8-4 sets the mode attribute to SQLServer, which uses an SQL Server database called
ASPState to store session state values to be shared across multiple machines. This database is set up
using the InstallSqlState.sql batch file installed by default in the directory
%windir%\Microsoft.NET\Framework\%version%, where %windir% is the Windows directory and
%version% is the version number of the installed framework (the version number is prefixed with a v
in the actual path).

The SQLServer mode requires the use of the sqlConnectionString attribute. You should always override
this attribute, since its default uses the local 127.0.0.1 loopback address and uses the SQL Server sa
account to connect to the ASPState database. Neither is a good practice in a production application. In
Example 8-4, set the data source portion of the connection string to the name of the designated SQL
Server state machine and set the user ID and password to an account set up to read and write state
data.

Example 8-4 also sets the cookieless attribute to True, anticipating that some users may have disabled
cookies. Setting this attribute to True places the session identifier within the URL of all requests,
allowing session use without cookies. Note that applications designed for cookieless sessions should
use relative rather than absolute URLs for internal links.

A word on security: As noted previously, the default settings for
sqlConnectionString use the SQL Server sa, or system administrator, account
to connect to the ASPState database. This is not a good security practice.
Instead, you should always set up a separate account that is purpose-specific
(in this case, to read and write session state data) and use that account for
connecting to the state database. You may even want to consider setting up
a separate account for each ASP.NET application for this purpose; this allows
you to track and audit access to the ASPState database on a per application
basis more easily. These steps can help minimize the possibility of database
security being compromised through over-permissive security settings.

8.2.3 Modifying Trace Settings

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Tracing is a nifty feature of ASP.NET that allows recording and viewing of a host of valuable
information about page requests. Like the other configuration elements considered in this chapter, the
<trace> element appears in machine.config to set machine-wide default values:

<!--
   trace Attributes:
      enabled="[true|false]" - Enable application tracing
      localOnly="[true|false]" - View trace results from localhost only
      pageOutput="[true|false]" - Display trace ouput on individual pages
      requestLimit="[number]" - Number of trace results available in
         trace.axd
      traceMode="[SortByTime|SortByCategory]" - Sorts trace result
         displays based on Time or Category
-->
<trace enabled="false" 
   localOnly="true" 
   pageOutput="false" 
   requestLimit="10" 
   traceMode="SortByTime"/>

The settings in machine.config turn tracing off by default, which is a good thing. Since tracing carries
performance overhead, you should enable it only when you are actually using it -- usually during
development or troubleshooting of an ASP.NET application. You should rarely enable tracing on a
deployed production application, both for performance reasons and also to avoid the possibility of
trace information being viewed by site visitors. See Chapter 10 for a more detailed discussion of
application tracing. Example 8-5 shows the <trace> element modified to enable tracing for an
application, with trace output being displayed on each page.

Example 8-5. Enabling tracing

<configuration>
   <system.web>
      <trace enabled="true" 
         pageOutput="true"/>
   </system.web>
</configuration>

You can enable tracing by setting the enabled attribute to True and direct the trace output to the page
by setting the pageOutput attribute to True. The remaining attributes should retain their default values
as set in machine.config.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

8.3 Locking Down Configuration Settings

All of the previous examples rely on the ability to override settings in machine.config with settings in
the web.config file for an individual application. As mentioned earlier, you can also use a web.config
file located in a child folder of an application to override settings in a parent web.config file. However,
what if the application developer or the server administrator doesn't want certain settings to be
overridden? No problem. The configuration system provides a special element, <location>, that serves
this purpose handily.

The basic structure of the <location> element consists of the opening element tag with two attributes,
path and allowOverride, followed by the elements to be locked down, and the closing element tag. For
example:

<location path="pathtocontrol" allowOverride="True|False">
    <!-- Settings to lock down -->
</location>

The path attribute, which is optional when locking down configuration settings, is used to specify the
application or filename to be controlled by the <location> element. If omitted, the <location>
element's settings apply to all children of the configuration file in which it appears. Example 8-6
shows a <location> element which, when added to machine.config, requires all ASP.NET applications
on the machine to use Windows authentication.

Example 8-6. Locking down configuration settings

<configuration>
   <system.web>
      <location allowOverride="False">
         <authentication mode="Windows"/>
      </location>
   </system.web>
<configuration>

Note that the <location> element can also be used to configure settings for a child application,
directory, or file from a parent configuration file. When used in this manner, the path attribute is
required and the allowOverride attribute is optional.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

8.4 Additional Resources

The following sites provide additional information on the topics discussed in this chapter:

http://www.aspfriends.com/aspfriends/aspngconfig.asp

The home page for the AspFriends.com mailing list (for questions relating to ASP.NET
configuration).

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/gngrfaspnetconfigurationsectionschema.asp

The MSDN online reference for the ASP.NET configuration file schema.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 9. ASP.NET Security

Security is an extremely complicated subject, and ASP.NET security is not much less so. This chapter
discusses the approaches you can take to secure your ASP.NET applications. Absent from the
discussion are the topics of network, server, and infrastructure security. This should not be
interpreted to mean these topics are unimportant. On the contrary, without properly securing any
supporting servers and infrastructure, the measures you take to secure your application with the tools
made available by the .NET Framework will be for naught. A discussion of these topics, however, is
beyond the scope of this book. The security section of the Microsoft TechNet web site, referenced at
the end of this chapter, contains a wealth of information on how to properly secure your servers and
network, including tools to assist you in this important task.

Securing access to an application or to the resources belonging to an application involves two
processes: authentication and authorization. This chapter explains how these processes relate to
ASP.NET and how each fits into the overall scheme of allowing or preventing access to ASP.NET
application resources. The discussion focuses on the three authentication methods the ASP.NET
runtime provides: Windows, Forms, and Passport. The chapter also discusses ACL-based and URL
authorization, as well as strategies for obtaining secure access to data and securing web services. The
discussion also touches briefly on code access security, which underlies the ASP.NET security model.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

9.1 Authentication Methods

Authentication is the process of positively identifying the person or program making a request.
Authentication does not inherently grant access to resources (a function performed by authorization),
but provides developers (or the runtime) with a known identity on which to base the decision of
whether the request should be granted.

In a classic ASP application, you had essentially two options for authenticating users: rely on IIS to
authenticate users based on Windows accounts and later authorize these users based on NT Access
Control Lists (ACLs); or roll your own authentication from the ground up to authenticate users against
a back-end credentials data store (or potentially against Microsoft Active Directory). Each option had
disadvantages. Windows authentication's most secure mode, Integrated Security, required all users to
use Internet Explorer (and would not work over many proxy servers), while the roll-your-own option
required an extraordinary amount of work to build and test.

ASP.NET provides three built-in options for authentication:

Windows

Provides similar functionality to IIS authentication in classic ASP, though with some important
differences, described in the next section.

Forms

Provides a rich infrastructure for "roll-your-own" security scenarios. This authentication
provider will be used most often in Internet scenarios.

Passport

Allows ASP.NET developers to take advantage of Microsoft's Passport single sign-in solution.

All authentication options for ASP.NET are configured either at the machine-level using the
machine.config file or at the application level using the web.config file. Appropriately, you configure
the authentication settings using the <authentication> element, along with its associated attributes
and children.

Authentication settings cannot be configured below the application level. If
you need to set different authentication settings on a child directory of an
application, you will need to configure that directory as an application in IIS.

9.1.1 Windows

As mentioned earlier, Windows authentication provides much the same functionality in ASP.NET as IIS
authentication did in classic ASP; it authenticates users based on Windows accounts stored either on
the local server or on an associated domain controller. The main reason for choosing the Windows
authentication provider is that it requires the least code to implement. Of the three modes of built-in
authentication in ASP.NET, Windows authentication is the only one that requires you to configure IIS
in addition to configuring the authentication settings in machine.config or web.config.

As with IIS authentication in classic ASP, Windows authentication is primarily useful in situations in
which one of the following conditions exists:

All clients are using Internet Explorer 4.x or higher, and there are no proxy servers for
authentication requests to cross. This is most commonly the case in an intranet scenario and is
rare for Internet applications.

The security requirements of the application make it acceptable to use Basic or Digest IIS
authentication (which both have limitations that make them somewhat less secure than
Integrated authentication).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The security requirements for the application make it acceptable to allow anonymous users
access to the entire application.

Typically, Windows authentication is used in conjunction with impersonation (see the upcoming
section Section 9.1.1.1 for more information) to allow the ASP.NET process to make requests using
the security context of the authenticated user. You can then restrict access to resources using NTFS
Access Control Lists (ACLs) or grant database access by setting up the Windows account of the
desired user as a login for the database in question. For more information about this technique, see
Section 9.3 later in this chapter.

ASP.NET Windows authentication works by obtaining the security context of the user from IIS (see
Figure 9-1). The first step in configuring an application to use Windows authentication is to modify the
IIS configuration settings to require one of the nonanonymous authentication methods. To do so,
follow these directions:

1. Open the Internet Services Manager.

2. In the lefthand pane, drill down to the web site or virtual root of the application you want to
configure.

3. Right-click the application's folder and select Properties to display the <application name>
Properties dialog.

4. Click the Directory Security tab, and then click the Edit... button in the Anonymous access and
authentication control section.

5. Deselect the Anonymous access checkbox and select one or more of the authentication
checkboxes (Basic, Digest, or Integrated Windows).

6. Click OK to dismiss the Authentication methods dialog; then click OK again to dismiss the
Properties dialog. Now you're ready to configure your ASP.NET application.

While Basic authentication enables the use of Windows accounts for authentication in a wider array of
scenarios, remember that Basic authentication sends the username and password in clear text. This
can be an unacceptable risk, particularly if the application does not use Secure Sockets Layer (SSL)
encryption to protect the communications. Before selecting Basic authentication as an option, make
sure you understand the security ramifications of this choice and that you've taken the necessary
steps to mitigate risks associated with this approach.

Similarly, Digest authentication requires that passwords be stored in clear text on the domain
controller where the accounts exist. If you decide to use Digest authentication, make sure that the
domain controller is secured from network attacks and is physically secured to prevent unauthorized
parties from accessing the passwords.

Figure 9-1. Windows authentication process

As shown in Figure 9-1, once a client making a request is authenticated by IIS, the request, along

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


As shown in Figure 9-1, once a client making a request is authenticated by IIS, the request, along
with the security context of the authenticated user, is handed off to the ASP.NET worker process.
From this point on, ASP.NET alone is in control.

For ASP.NET to use the security context provided by IIS, the ASP.NET application must be configured
for Windows authentication. This configuration is done by adding an <authentication> element to the
web.config file for the application and setting its mode attribute to Windows, as shown in the following
code snippet:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
   <system.web>
      <authentication mode="Windows"/>
      <!--
         Other configuration elements
      -->
   </system.web>
</configuration>

Note that because the <authentication> element does not require any child elements for Windows
mode, you can use a single tag with a closing / character rather than using a full closing tag.

9.1.1.1 Impersonation

By default, the ASP.NET worker process runs in the context of a special account called ASPNET. This
account has very few privileges, so requests made for ACL-protected resources (such as files in the
filesystem) will fail unless permissions are explicitly granted to the ASPNET account. This mechanism
helps make ASP.NET applications more secure out of the box.

An alternative to granting explicit permissions to the ASPNET account is to
run the ASP.NET worker process in the context of the SYSTEM account, a
highly privileged account that allows many types of requests to succeed
without a need for impersonation. For example, since SQL Server by default
allows access to anyone in the local administrators group, running the
ASP.NET worker process as SYSTEM makes it possible to connect to a local
SQL Server database using a trusted connection without using
impersonation.

While this may solve some permissions problems, in practice, running as
SYSTEM is not a good idea, since it provides more privileges than are
necessary for running most ASP.NET applications. One consequence of this is
that any vulnerabilities that occur in IIS or the ASP.NET runtime may then
potentially provide system-level access to those who exploit them. Running
the ASP.NET worker process using the ASPNET account significantly reduces
the risk of such an exploit.

This setting is controlled by the username attribute of the <processModel>
element in machine.config.

In most Windows authentication situations, you should enable impersonation to allow the ASP.NET
worker process to make requests using the security context of the authenticated user. In classic ASP,
impersonation is enabled by default. You can enable impersonation in ASP.NET by adding the
<identity> element to the web.config file for the application, with its impersonate attribute set to True,
as shown in the following code snippet:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
   <system.web>
      <authentication mode="Windows"/>
      <identity impersonate="true"/>
      <!--
         Other configuration elements

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         Other configuration elements
      -->
   </system.web>
</configuration>

Once impersonation is enabled, you can use NTFS ACLs to authorize accounts for access to resources.
For more information on this technique, see Section 9.2, later in this chapter.

9.1.2 Passport

The Passport authentication module enables ASP.NET applications to take advantage of Microsoft's
Passport universal sign-in infrastructure to authenticate users. The Passport system allows each user
to have a single password and login (the email address associated with their Passport account) for
multiple web sites or applications. This can greatly simplify the login process from the user's
perspective, as well as reduce the administrative overhead associated with maintaining user accounts
(such as having to send forgetful users their password via email).

To enable Passport authentication in ASP.NET, you need to download and install the Passport SDK.
See http://www.passport.com/business for instructions on where and how to obtain the SDK.

While you can obtain the Passport SDK and set up a test site for free, you
have to pay a license fee to use Passport in a production application. Make
sure that you understand all the costs involved before implementing Passport
authentication.

Once you've installed the SDK, you need to configure Passport according to the accompanying
instructions. Finally, you need to configure the ASP.NET application to use Passport authentication, as
shown in the following code snippet:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
   <system.web>
      <authentication mode="Passport">
         <passport redirectUrl="someLocalpage.aspx"/>
      </authentication>
      <!--
         Other configuration elements
      -->
   </system.web>
</configuration>

Note that the <passport> element and the redirectUrl attribute are optional and are used to specify an
internal URL to redirect to if the users making the request have not signed in using their Passport
account. If the <passport> element is omitted, users who have not logged in using their Passport
account will be redirected to a login page on a Passport login server.

9.1.3 Forms

Forms authentication is probably the most useful built-in ASP.NET authentication module because it
provides a very flexible infrastructure for roll-your-own security scenarios. When an application is
configured to use Forms authentication, requests for protected resources are redirected to a specified
login page, unless the request is accompanied by an authentication token contained in a cookie. For
more information on protecting resources when using Forms authentication, see Section 9.2, later in
this chapter.

9.1.3.1 Logging in

In the login page, the site developer writes code to check the credentials entered by the user against
a backend credentials store. This store can be a relational database such as SQL Server, an XML file,
Microsoft Active Directory, or any other storage location of your choice. If the credentials match those
stored in the backend credential store, the developer calls the RedirectFromLoginPage method of the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


stored in the backend credential store, the developer calls the RedirectFromLoginPage method of the
FormsAuthentication helper class to send the user back to the page that they originally requested and
to set either a session cookie or a persistent cookie containing the authentication token on the user's
machine. Once the user is authenticated, he or she can access other resources in the same application
without logging in again.

To better illustrate the process by which Forms authentication operates, let's look at an example. In
this example, which is based on live code I use to protect downloads on my company site, files in a
specific subdirectory of an application are protected using Forms authentication.

The example uses the following files:

web.config

Configuration file used to enable Forms authentication and to specify the desired access
restrictions. See Chapter 8 and Chapter 20 for more information on web.config.

Login.aspx

Login page for the application. Accepts login credentials from the user and, if they are valid,
redirects the user to the requested URL.

Register.aspx

Registration page for the application. Allows unregistered users to select login credentials for
accessing the application.

Logout.aspx

Clears the Forms authentication cookie, effectively logging the user out of the secure portion of
the application.

Users.xml

XML file containing the credentials of registered users. Passwords are stored as SHA1-hashed
text strings.

To set up Forms authentication, the application is configured with the web.config file shown in
Example 9-1, which is placed in the root of the application.

Example 9-1. web.config file for Forms authentication

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
   <location path="files">
      <system.web>
         <authorization>
            <deny users="?"/>
         </authorization>
      </system.web>
   </location>
   <system.web>
      <authentication mode="Forms">
         <forms name=".ASPNETIAN" 
            loginUrl="Login.aspx" 
            protection="All" 
            timeout="60" />
      </authentication>
   </system.web>
</configuration>

The <authentication> element in Example 9-1 configures the application to use Forms authentication.
Its child element, <forms>, provides a number of key security elements: a name for the Forms

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Its child element, <forms>, provides a number of key security elements: a name for the Forms
authentication cookie (.ASPNETIAN); the type of protection (encryption, validation, all, or none) for
the authentication cookie; the timeout for the cookie (60 minutes in this case, the default being 30);
and a login page to send unauthenticated users to. Note that since the example uses Login.aspx, the
default, we could omit this attribute.

The <authorization> element, which is tied to the files subdirectory through the use of the <location>
tag, denies access to any nonauthenticated user. For a more complete discussion of the
<authorization> element, see Section 9.2, later in this chapter.

With this configuration in place, if a user does not already have an authentication cookie, a request
for any files in the filessubdirectory (presuming the file type is handled by ASP.NET) results in the
user being redirected to the login page. What if the file type that you want to protect isn't handled by
ASP.NET by default? In that case, you can follow these steps to add that type in the IIS configuration
for the application:

1. Open the Internet Services Manager applet and locate the application you want to configure.

2. Right-click the application's icon and select Properties.

3. In the Properties dialog, select the Directory (or Home Directory) tab, and click the
Configuration... button.

4. On the App Mappings tab, click the Add button.

5. In the Add/Edit Application Extension Mapping dialog, click the Browse... button and browse to
the location of aspnet_isapi.dll. Typically, this location will be the directory
%windir%\Microsoft.NET\Framework\%version%\, where %version% is the version number of
the installed .NET Framework. You may need to change the Files of type: drop-down to *.dll to
locate this file. Once you've located it, select it and click Open.

6. Now enter the file extension you want to protect (such as .zip) or enter .* to associate all file
types with ASP.NET.

7. Click OK to accept changes and close each open dialog.

8. Repeat for additional desired file types.

Using .* to map all file types to ASP.NET is a quick and easy way to protect
all types of files for an application configured to use Forms authentication.
You should not, however, use this technique if your application contains files,
such as classic ASP pages, that are handled by a different ISAPI application
because the .* mapping will take precedence and will prevent these file types
from working properly.

Once all desired file types are mapped to the ASP.NET ISAPI handler,[1] any request made for one of
those file types in the files subdirectory results in the user being redirected to Login.aspx if they do
not already have a Forms authentication cookie for this application. The code for Login.aspx is shown
in Example 9-2.

[1] The ISAPI hander takes requests from IIS and hands them off to the ASP.NET
worker process, which runs as a separate executable.

Example 9-2. Login.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Web.Security" %>
<html>
<head>
<title>Login Page</title>
<script runat="server">
   Sub Login_Click(Sender As Object, e As EventArgs)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Sub Login_Click(Sender As Object, e As EventArgs)
      Dim LoginDS as DataSet
      If Cache("LoginDS") Is Nothing Then
         LoginDS = New DataSet(  )
         LoginDS.ReadXml(Server.MapPath("Users.xml"))
         Cache.Insert("LoginDS", LoginDS, _
            New CacheDependency(Server.MapPath("Users.xml")))
      Else
         LoginDS = Cache("LoginDS")
      End If
      If LoginDS.Tables(0).Select("Email='" & _
         Email.text & "'").Length > 0 Then
         Dim LoginRow(  ) As DataRow = LoginDS.Tables(0).Select("Email='" _
            & Email.text & "'")
         If LoginRow(0).Item("Password").ToString = _
            FormsAuthentication.HashPasswordForStoringInConfigFile( _
            Password.Text, "SHA1") Then
            FormsAuthentication.RedirectFromLoginPage( _
            Email.Text, Persist.Checked)
         Else
            Message.Text = "Incorrect Password!"
         End If
      Else
         Message.Text = "Email not found. Have you " & _
            "<a href='register.aspx?page=" & _
            Server.UrlEncode(Request.RawUrl) & "'>registered</a>?"
      End If 
   End Sub
</script>
</head>
<body>
   <form runat="server">
      <table border="0">
         <tr>
            <td>Email: </td>
            <td><asp:textbox id="Email" runat="server"/></td>
         </tr>
         <tr>
            <td>Password: </td>
            <td><asp:textbox id="Password" 
                   textmode="Password" runat="server"/></td>
         </tr>
         <tr>
            <td>Persist Authentication Cookie?</td>
            <td><asp:checkbox id="Persist" 
                   checked="False" runat="server"/></td>
         </tr>
         <tr>
            <td><asp:button text="Submit" 
                   onclick="Login_Click" runat="server"/></td>
            <td><input type="reset" value="Cancel" runat="server"/></td>
         </tr>
      </table>
      <asp:label id="Message" forecolor="Red" runat="server"/>
   </form>
</body>
</html>

The tag-based section of Login.aspx is fairly straightforward and presents the user with textboxes in
which to input an email address (used for a login ID) and password. The tag-based section also
specifies a checkbox that allows users to persist the authentication cookie (so they won't need to login
again from their machine).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To make coding a little easier, the example adds @ Import directives for both the System.Data and
System.Web.Security namespaces. Thus, you can access their members without explicitly adding the
namespace name.

In the Login_Click event handler, the example declares a local DataSet variable and populates it
either from the ASP.NET cache or the Users.xml file (see Example 9-5), which contains the credentials
of registered users. If the dataset is populated from the XML file, we then insert the dataset into the
cache for later retrieval (which eliminates the need to read the file, if it has not changed).

The call to Cache.Insert sets up a file dependency on the Users.xml file. If that file changes, the
cached dataset will be ejected from the cache and the new data will be loaded from the file on the
next login request. This allows us to take advantage of the performance advantages of caching, but
still ensure that we're always dealing with fresh data.

Once we have a dataset containing all current users, we ensure that the email entered by the user is
contained in the table, using the DataTable's Select method:

If LoginDS.Tables(0).Select("Email='" & _
         Email.text & "'").Length > 0 Then

If the email exists, we get a DataRow containing the credentials associated with that user. We can
then compare this hashed password in the dataset with a hashed version of the password entered by
the user, which is returned by the HashPasswordForStoringInConfigFile method of the
FormsAuthentication class. If the two versions of the password match, we redirect the user back to the
page he or she requested by calling the RedirectFromLoginPage method of the FormsAuthentication
class. RedirectFromLoginPage automatically redirects the user to the page specified by the ReturnUrl
query string argument. This argument is automatically appended when the user is initially redirected
to Login.aspx. RedirectFromLoginPage also sets the .ASPNETIAN cookie containing the Forms
authentication token. The following code snippet illustrates this process:

Dim LoginRow(  ) As DataRow = LoginDS.Tables(0).Select("Email='" _
   & Email.text & "'")
If LoginRow(0).Item("Password").ToString = _
   FormsAuthentication.HashPasswordForStoringInConfigFile( _
   Password.Text, "SHA1") Then
   FormsAuthentication.RedirectFromLoginPage(Email.Text, _
   Persist.Checked)
Else
   Message.Text = "Incorrect Password!"
End If

If the email address exists, but the password is incorrect, we set the Text property of the Message
Label control to inform the user. If the entered email address does not exist, we set the label text to a
message that includes a link to a registration page so that the user can self-register. Note that the
link includes a query string argument named page, which Register.aspx uses to redirect the user back
to Login.aspx with the original ReturnUrl query string argument intact. Registration is handled by the
Register.aspx page, shown in Example 9-3.

Example 9-3. Register.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Web.Security" %>
<html>
<head>
<title>Registration Page</title>
<script runat="server">
   Sub Register_Click(Sender As Object, e As EventArgs)
      If Page.IsValid Then
         Dim LoginDS as New DataSet(  )
         LoginDS.ReadXml(Server.MapPath("Users.xml"))

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


         LoginDS.ReadXml(Server.MapPath("Users.xml"))
         If LoginDS.Tables(0).Select("Email='" & _
            Email.text & "'").Length = 0 Then
            Dim NewUser As DataRow
            NewUser = LoginDS.Tables(0).NewRow(  )
            NewUser("Email") = Email.Text
            NewUser("Password") = _
               FormsAuthentication.HashPasswordForStoringInConfigFile( _
               Password.Text, "SHA1")
            LoginDS.Tables(0).Rows.Add(NewUser)
            LoginDS.WriteXml(Server.MapPath("Users.xml"))
            Response.Redirect(Request.QueryString("Page"))
         Else
            Message.Text = "User with email: <i>" & Email.Text & _
               "</i> already exists. Please choose another email address."
         End If
      End If
   End Sub
</script>
</head>
<body>
   <form runat="server">
      <table border="0" cellspacing="10">
         <tr>
            <td>Email: </td>
            <td><asp:textbox id="Email" runat="server"/></td>
         </tr>
         <tr>
            <td>Desired Password: </td>
            <td><asp:textbox id="Password" 
                   textmode="Password" runat="server"/></td>
         </tr>
         <tr>
            <td>Confirm Password: </td>
            <td><asp:textbox id="PasswordConfirm" 
                   textmode="Password" runat="server"/></td>
         </tr>
         <tr>
            <td><asp:button text="Submit" 
                   onclick="Register_Click" runat="server"/></td>
            <td><input type="reset" value="Cancel" runat="server"/></td>
         </tr>
      </table>
      <asp:comparevalidator id="comparePasswords" 
         controltovalidate="Password" 
         controltocompare="PasswordConfirm"
         display="dynamic"
         text="Passwords must match!"
         operator="Equal"
         runat="server"/>
      <asp:requiredfieldvalidator id="requireEmail"
         controltovalidate="Email" 
         display="dynamic"
         text="Email address required!"
         runat="server"/>
      <asp:requiredfieldvalidator id="requirePassword"
         controltovalidate="Password" 
         display="dynamic"
         text="Password required!"
         runat="server"/>
      <asp:label id="Message" runat="server"/>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      <asp:label id="Message" runat="server"/>
   </form>
</body>
</html>

The tag-based portion of Register.aspx is similar to Login.aspx, except that the example adds a
textbox (for confirmation of the desired password) and the following three validation controls:

A CompareValidator control to validate that the Password and PasswordConfirm textbox values
match.

A RequiredFieldValidator to ensure that the user enters an email address so we don't have
entries in the XML file with null email values.

A RequiredFieldValidator to ensure that the user enters a password so we don't have entries in
the XML file with null password values.

If we want to provide even more validation measures, we could also add a RegularExpressionValidator
to ensure that the provided email address is valid (or at least in the correct format for a valid email
address). However, the previously mentioned validators are sufficient to at least ensure that the user
enters something.

In the Register_Click event handler, we first test to ensure that the page is valid (i.e., that all
validation controls on the page report are valid). This test avoids wasting processor time to perform
work on invalid data. If the user's browser supports DHTML, the page will not even be submitted until
the validation control's requirements have been met, thanks to the ability of these controls to perform
client-side validation (in addition to the server-side validation that is always performed).

If the page is valid, we declare a local DataSet variable and populate it from the Users.xml file. Then
we check to make sure that the email address the user entered does not already exist in the file. If it
does, we use the Text property of an ASP.NET Label control to ask the user to choose another email
address.

If the email address does not exist in the file, we create a new DataRow, populate it with the user's
chosen email address and a hashed version of the password,[2] add the new row to the dataset, and
save the dataset back to the XML file, as shown in the following code snippet. Note that this technique
does not control concurrency, so if someone modified the contents of the XML file between the time
this code read from the file and when it writes to the file, those changes would be overwritten:

[2] Again, you use the FormsAuthentication.HashPasswordForStoringInConfigFile
method to hash the password.

Dim NewUser As DataRow
NewUser = LoginDS.Tables(0).NewRow(  )
NewUser("Email") = Email.Text
NewUser("Password") = _
   FormsAuthentication.HashPasswordForStoringInConfigFile( _
   Password.Text, "SHA1")
LoginDS.Tables(0).Rows.Add(NewUser)
LoginDS.WriteXml(Server.MapPath("Users.xml"))

Once we've written the new user's information to Users.xml, we redirect the user to the page
specified by the page's query string argument, as shown in the following line of code:

Response.Redirect(Request.QueryString("Page"))

Once the user is registered, they should be able to log in successfully. But what about logging out?
Although the need for such a mechanism might not be immediately obvious, it is valuable in some
instances.

9.1.3.2 Logging out

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.1.3.2 Logging out

Consider an application that deals with sensitive information or is likely to be used from public
computers. In such cases, you might want to provide the user with some way to log out to prevent
others from accessing private information or accessing application resources using the user's account.
In Forms authentication, this is quite simple. You call the static SignOut method of the
FormsAuthentication class, as Example 9-4 illustrates. You would redirect users to Logout.aspx to
accomplish the logout. You could also create a user control containing a button that, when clicked,
calls the SignOut method and add that user control to all secured pages of your application.

Example 9-4. Logout.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Web.Security" %>
<html>
<head>
<title>Logout Page</title>
<script runat="server">
   Sub Page_Load(Sender As Object, e As EventArgs)
      FormsAuthentication.SignOut(  )
      Message.Text = "You have been logged out."
   End Sub
</script>
</head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

Example 9-5 shows the contents of the Users.xml file. This example shows how simple an XML file for
this purpose can be.

Example 9-5. Users.xml

<?xml version="1.0" standalone="yes"?>
<Users>
  <User>
    <Email>andrew@aspnetian.com</Email>
    <Password>816010E041FA485C6E2383C649343D3A0CAD4D25</Password>
  </User>
</Users>

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

9.2 Authorization

Authorization is the process of determining whether the user identified by the authentication process
is allowed to access the resource that they're requesting or whether to take the action that they're
attempting to take (such as updating data in a database). While authentication asks the question
"Who are you?", authorization asks the question "Are you allowed to do that?" The answer to that
question determines whether the user's action is allowed.

Authorization in ASP.NET takes three forms, which are all discussed in this section: ACL-based
authorization, URL authorization, and programmatic authorization.

9.2.1 ACL-Based Authorization

Access Control Lists (ACLs) are used in Windows NT, Windows 2000, and Windows XP to control
access to system resources, such as files and folders in the NTFS filesystem. You can assign Windows
user accounts or groups to the ACL for a given resource to allow that user or group access to the
resource, or determine what type of access (read, write, change, etc.) is authorized.

ACL-based authorization is useful primarily when using Windows authentication in ASP.NET. ASP.NET
can use the authenticated user identity to perform ACL checks and can also make requests for ACL-
protected resources by using the user's security context, if impersonation has been enabled.

To protect a file using ACL authorization, right-click the desired file in Windows Explorer and select
Properties. Next, click the Security tab to view the current users, groups, and permissions on the file
(as shown in Figure 9-2). Use the Add and Remove buttons to add or remove user or group accounts
and the checkboxes in the Permissions section to modify permissions for the selected user.

In Windows XP, the Security tab may not appear in the Properties dialog for
a file or folder if Simple File Sharing is enabled. To see if this feature is
enabled (and to disable it and make the Security tab available), Select Tools 

 Folder Options in Windows Explorer. Then select the View tab, and then
in the Advanced Settings section, clear the "Use simple file sharing
(recommended)" checkbox.

Figure 9-2. File properties dialog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One of the first things you might do in the example above is remove the Everyone group from the
folder, since this group (as the name suggests) allows anyone who can access the computer to access
this file.

Use caution when removing special accounts (such as the SYSTEM account)
from the ACLs for a given resource. Some operating system files require the
SYSTEM account to have access to them for the OS to function, so removing
those permissions can cause major problems, up to and including not being
able to start the OS.

9.2.2 URL Authorization

URL authorization uses the <allow> or <deny> elements of the <authorization> configuration element
to control access to folders and files within the application, as we saw in the example on Forms
authentication. Access can be allowed or denied based on username, role, and/or HTTP verb used to
request the resource. Thus, to allow user Marcie to access any resource in the application with any
HTTP verb, but to prevent user Charles from making POST requests, we'd add the following
<authentication> section to the web.config file at the root of the application:

<authorization>
     <allow verb="GET" users="*" />
     <allow verb="POST" users="Marcie" />
     <deny verb="POST" users="Charles" />
     <deny users="?" />
</authorization>

As we saw in Example 9-1, you can also use the <location> tag with the path attribute to control
access to a specific folder or file:

<location path="filetoprotect.aspx">
   <system.web>
      <authorization>
         <deny users="?"/>
      </authorization>
   </system.web>
</location>

Because the <location> tag in web.config requires its own <system.web> tag pair, the <location> tag
should always appear inside the <configuration> and </configuration> tags, but outside the
<system.web> and </system.web> tags. You can define as many different <location> tags as you like,
and each can contain its own URL authorization restrictions.

To specify domain rather than local accounts or groups, use the domainname\userorgroupname format
when specifying the name in the <allow> or <deny> element. There are two wildcards for users, both
of which we've seen already. The asterisk (*) refers to all users, while the question mark (?) refers to
anonymous (unauthenticated) users. Finally, multiple users or groups can be specified in the <allow>
or <deny> elements by separating the list of users or groups with commas.

9.2.3 Programmatic Authorization

You can also perform programmatic checks at runtime to determine whether a user should be allowed
to perform certain actions. The primary means of doing this is the IsInRole method, which is defined
by the IPrincipal interface and accessible from the User property of the Page class. As with ACL-based
authorization, this method is most useful when you're using Windows authentication and want to
check whether the authenticated user belongs to a particular Windows group, such as a managers
group. The use of IsInRole is shown in the following code snippet:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If Page.User.IsInRole("Managers") Then
   'perform some action restricted to managers
Else
   Message.Text = "You must be a manager to perform this action"
End If

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

9.3 Code Access Security

Code access security is a new .NET runtime feature that can dramatically reduce the likelihood of
applications performing damaging actions by putting significant restrictions in place on untrusted or
partially trusted code. While using code access security programmatically in an application is well
beyond the scope of this book, even if you never call a single method related to code access security,
your ASP.NET applications still use it through settings configured in the machine.config configuration
file.

The <trustLevel> element in machine.config defines the mapping of named trust levels to policy files
that define the code access security policies associated with a given named trust level. The <trust>
element in machine.config sets the default trust level to Full.

If you want to restrict the actions that a given application can take, you can do so by adding a
<location> tag to machine.config that specifies the path to that application and contains a <trust>
element specifying the desired trust level, as shown in the following code snippet. Setting the
allowOverride attribute to False will prevent the trust level from being overridden in the application's
web.config file:

<location path="Application1" allowOverride="False">
   <system.web>
      <trust level="Low"/>
   </system.web>
</location>

As with web.config, the <location> tag in machine.config must be placed
outside of the <system.web> tags, but must also appear after the
<configSections> section, or an exception will be thrown.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

9.4 Additional Resources

The following sites provide additional information on the topics discussed in this chapter:

http://www.aspfriends.com/aspfriends/aspngsec.asp

The home page for the AspFriends.com mailing list (for questions relating to ASP.NET security).

http://www.gotdotnet.com/team/upgrade/v1/aspnet_account_readme.doc

The GotDotNet reference on changes to the ASP.NET worker process security identity and the
effects these changes have had on performing tasks in ASP.NET that require elevated security
permissions.

http://msdn.microsoft.com/nhp/Default.asp?contentid=28001369

The MSDN reference for .NET security.

http://www.microsoft.com/technet/security/

The Microsoft TechNet Security home page. The TechNet security site contains articles,
patches, and tools that can help you properly configure and secure Windows 2000, IIS, and
other Microsoft products to ensure that your applications are not compromised through
incorrect server configuration or unpatched vulnerabilities.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 10. Error Handling, Debugging, and Tracing

Most code samples in this book don't include code intended to handle errors. It's not that error
handling isn't important; but error handling can be complex, and for the most part we've tried to keep
the sample code as simple and clear as possible. Since you'll need to deal with errors in the real world
of application programming, the first part of this chapter discusses the variety of techniques available
in ASP.NET for handling errors, including custom error pages and structured exception handling -- a
new feature of Visual Basic .NET.

In addition to handling errors in ASP.NET applications, most developers want to figure out what's
causing those errors. To that end, the latter part of this chapter discusses debugging using either the
.NET Framework SDK debugger or Visual Studio .NET. The chapter also covers use of the ASP.NET
trace feature to troubleshoot application problems.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

10.1 Error Handling

The goal of error handling (also known as exception handling) is quite simple: to prevent exceptions
or errors thrown during the execution of an application request from reaching users. Ideally, users
should not know that an exception occurred, or they should at least be provided with an informative
message that tells them what they can do to resolve the problem. ASP.NET provides three techniques
for achieving this goal:

Custom error pages

Allow you to assign one or more error pages to be displayed when an exception occurs.

Page_Error and Application_Error events

Writing event handlers for either or both of these events allows you to catch and handle
exceptions at the page or application level.

Structured exception handling

New to Visual Basic .NET, this type of exception handling allows exceptions to be caught and
handled in particular blocks of code.

These three techniques provide broadest (custom error pages, which can handle exceptions from any
page in the application) to narrowest (structured exception handling, which handles exceptions for a
specific block of code) coverage for handling application exceptions. Figure 10-1 illustrates the
relationship of these exception handling techniques to both the exception (shown at the center) and
the user, who you're trying to prevent from encountering the exception.

Figure 10-1. Exception handling techniques

The following sections describe these techniques and explain how they fit into an ASP.NET application.
Note that you can use all three techniques together, individually, or in whatever combination you like.
Using all three techniques in combination would provide broad coverage for most exceptions and
more robust specific exceptions handling, but at the cost of maintaining your exception-handling logic
in more places.

10.1.1 Custom Error Pages

The most general, but arguably the simplest, technique for handling exceptions in ASP.NET
applications is to implement one or more custom error pages. You can do this by creating a web page
to display an error message to the user. Then you specify that page as the default error page (or to
handle a specific class of error) in web.config, using the <customError> configuration element.
Example 10-1 shows a web.config file that defines a default custom error page called Error.aspx.
Example 10-2 shows the custom error page itself, which simply displays the path of the page on
which the error occurred. Example 10-3 shows the code for a page that will generate a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


which the error occurred. Example 10-3 shows the code for a page that will generate a
NullReferenceException (which has an HTTP status code of 500).

Example 10-1. Enabling custom errors in web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
   <system.web>
      <customErrors defaultRedirect="Error.aspx" mode="On" />
   </system.web>
</configuration>

Example 10-2. Error.aspx

<%@ Page Language="VB" %>
<html>
<head>
   <title>Error page</title>
</head>
<body>
<h1>Error page</h1>
Error originated on: <%=Request.QueryString("aspxerrorpath") %>
</body>
</html>

Example 10-3. Throw500.aspx

<%@ Page Language="VB" Debug="True" %>
<html>
<head>
   <title>Throw an Error</title>
   <script runat="server">
      Sub Page_Load(  )
         Dim NullText As String = Nothing
         Message.Text = NullText.ToString(  )
      End Sub
   </script>
</head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

Instead of the On mode setting for the <customErrors> element, you can set the mode to RemoteOnly
or Off (note that these values are case sensitive). Off will cause detailed error messages containing
information about an unhandled exception to be returned to the client, regardless of whether the
request is local or remote. Since you don't want users to see error messages if you can avoid it, it's
best not to use this value in a production application. RemoteOnly (the default) displays detailed error
messages for requests originating from the local host, but displays custom errors to remote clients.
On displays custom errors to any client, regardless of whether the request is local or remote. This is a
good practice for production applications, since it prevents potentially sensitive information or source
code from being displayed to clients, while allowing administrators or developers to view the page
locally to read this information.

In addition to providing a default error page, the <customErrors> element also supports the use of
child <error> elements to specify custom error pages for specific classes of errors, such as
authentication (HTTP 403) or Not Found (HTTP 404) errors, as shown in the following code snippet:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<customErrors defaultRedirect="Error.aspx" mode="On">
   <error statusCode="403" redirect="ErrorAccessDenied.aspx"/>
   <error statusCode="404" redirect="ErrorNotFound.aspx"/>
</customErrors>

Any errors for which there is not a specific <error> element defined are handled by the page specified
by the defaultRedirect attribute. Having different error pages for specific errors allows you to provide
more informative messages to users, and perhaps offer some instructions on how the errors can be
remedied, while still providing a generic handler for errors outside the scope of the specified handlers.

Another important thing you can do in a custom error page, whether specific or generic, is provide
logging or notification of the error so that the site developer or administrator knows that there is a
problem and can take action to fix it. In ASP.NET, this process is fairly simple and can be
accomplished through the use of the MailMessage and SmtpMail classes, which reside in the
System.Web.Mail namespace. Example 10-4 shows a custom error page that uses these classes to
notify a site administrator of the error and the page on which it occurred.

Example 10-4. Error_SendMail.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Web.Mail" %>
<html>
<head>
   <title>Error page</title>
   <script runat="server">
      Sub Page_Load(  )
         Dim Mail as New MailMessage(  )
         'Change the values below to valid email addresses
         Mail.To = "<valid email address>"
         Mail.From = "<valid email address>"
         Mail.Subject = "aspnetian.com error"
         Mail.Body = "An Exception occurred in page " & _
            Request.QueryString("aspxerrorpath")
         'If your SMTP server is not local, change the property below
         '   to a valid server or domain name for the SMTP server
         SmtpMail.SmtpServer = "localhost"
         SmtpMail.Send(Mail)
      End Sub
   </script>
</head>
<body>
<h1>Error page</h1>
Error originated on: <%=Request.QueryString("aspxerrorpath") %>
<br/>
An email has been sent to the administrator of this site notifying them of the error.
</body>
</html>

For the code in Example 10-4 to work, you need to provide valid email addresses for the To and From
properties of the MailMessage object instance.

If an unhandled exception occurs in a custom error page, no further redirect will occur, so the user
will see a blank page. This situation makes it extremely important for you to ensure that no
unhandled exceptions occur in custom error pages. For example, it might be a good idea to wrap the
call to SmtpMail.Send in Example 10-4 in a Try...Catch block) to handle potential problems with
connecting to the specified SMTP server. For more information about using the Try...Catch block, see
Section 10.1.3, later in this chapter.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The advantage of using custom error pages is that it allows you to handle a lot of errors from a single
location (or a small number of locations). The disadvantage is that there's not much you can do to
handle the error, other than display a helpful message and notify someone that an error occurred. The
reason for this is that you don't have access to the actual exception object in a custom error page,
which means you can neither display information about the specific exception nor take steps to handle
it.

10.1.2 Page_Error and Application_Error

A technique that overcomes the limitations of custom error pages, while still providing the ability to
handle a broad range of application errors, is the use of the Error event defined by the Page and
HttpApplication classes. Unless AutoEventWireup has been set to False (the default in Web Forms pages
created with Visual Studio .NET), ASP.NET automatically calls page or application-level handlers with
the name Page_Error or Application_Error if an unhandled exception occurs at the page or application
level, respectively. The handler for Page_Error should be defined at the page level, as shown in
Example 10-5, while the handler for Application_Error should be defined in the application's
global.asax file, as shown in Example 10-6.

Example 10-5. Throw500_Page_Error.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Web.Mail" %>
<html>
<head>
   <title>Throw an Error</title>
   <script runat="server">
      Sub Page_Load(  )
         Dim NullText As String = Nothing
         Message.Text = NullText.ToString(  )
      End Sub
      Sub Page_Error(Source As Object, E As EventArgs)
         Dim ex As Exception = Server.GetLastError(  )
         If Not ex Is Nothing Then
            Dim Mail as New MailMessage(  )
            'Change the values below to valid email addresses
            Mail.To = "<valid email address>"
            Mail.From = "<valid email address>"
            Mail.Subject = "aspnetian.com error"
            Mail.Body = "An Exception occurred in page " & _
               Request.RawUrl & ":" & vbCrLf
            Mail.Body &= ex.ToString(  ) & vbCrlf & vbCrlf
            Mail.Body &= "was handled from Page_Error."
            'If your SMTP server is not local, change the property below
            '   to a valid server or domain name for the SMTP server
            SmtpMail.SmtpServer = "localhost"
            SmtpMail.Send(Mail)
            Server.ClearError(  )
         End If
         Response.Write("An error has occurred. " & _
            "The site administrator has been notified.<br/>" & _
            "Please try your request again later.")
      End Sub
   </script>
</head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

Example 10-5 deliberately causes a NullReferenceException exception by calling ToString on an object

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 10-5 deliberately causes a NullReferenceException exception by calling ToString on an object
that is set to Nothing. In Page_Error, we retrieve this exception by calling Server.GetLastError. The
example then creates and sends an email that includes the exception details (calling ToString on an
exception object returns the error message and the call stack as a string).

Finally, the code clears the exception by calling Server.ClearError. This last step is important because
neither the Page_Error nor the Application_Error handler clears the exception by default. If you don't
call ClearError, the exception will bubble up to the next level of handling. For example, if you define
both a Page_Error handler at the page level and an Application_Error handler in global.asax, and you
do not call ClearError in Page_Error, the Application_Error handler is invoked in addition to
Page_Error. This can be a useful behavior if expected -- for example, if you wish to use Page_Error to
generate useful messages, while using Application_Error to log all errors or send notifications. If
you're not expecting it, though, this behavior can be confusing, to say the least.

Example 10-6 does essentially the same thing as Example 10-5, but handles errors at the application
level, rather than at the page level. You can still access the Server object to get the exception that
was thrown. Since Application_Error may handle exceptions for web services as well as for Web Forms
pages, Example 10-6 does not attempt to use Response.Write to send a message to the user.

Example 10-6. global.asax

<%@ Import Namespace="System.Web.Mail" %>
<script language="VB" runat="server">
   Sub Application_Error(sender As Object, e As EventArgs)
      Dim ex As Exception = Server.GetLastError(  )
      If Not ex Is Nothing Then
         Dim Mail as New MailMessage(  )
         'Change the values below to valid email addresses
         Mail.To = <valid email address>
         Mail.From = <valid email address>
         Mail.Subject = "aspnetian.com error"
         Mail.Body = "An Exception occurred in page " & _
            Request.RawUrl & ":" & vbCrLf
         Mail.Body &= ex.ToString(  ) & vbCrlf & vbCrlf
         Mail.Body &= "was handled from Application_Error."
         'If your SMTP server is not local, change the property below
         '   to a valid server or domain name for the SMTP server
         SmtpMail.SmtpServer = "localhost"
         SmtpMail.Send(Mail)
         Server.ClearError(  )
      End If
   End Sub
</script>

10.1.3 Structured Exception Handling

The most specific technique for exception handling, and the most useful in terms of gracefully
recovering from the exception, is structured exception handling. Structured exception handling should
be familiar to developers of Java and C++, for which it is standard practice, but it is new to the Visual
Basic .NET language. Microsoft's new language, C#, also provides built-in support for structured
exception handling.

In structured exception handling, you wrap code that may throw an exception in a Try...Catch block,
as shown in the following code snippet:

'VB.NET
Try
   ' Code that may cause an exception
Catch ex As Exception
   ' Exception handling code
Finally
   ' Code executes whether or not an exception occurs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   ' Code executes whether or not an exception occurs
End Try
  
//C#
try
{
   // Code that may cause an exception
}
catch (Exception ex)
{
   // Exception handling code
}
finally
{
   // Code executes whether or not an exception occurs

The Try statement (lowercase try in C#) warns the runtime that the code contained within the Try
block may cause an exception; the Catch statement (catch in C#) provides code to handle the
exception. You can provide more than one Catch statement, with each handling a specific exception,
as shown in the following code snippet. Note that each exception to be handled must be of a type
derived from the base Exception class:

'VB.NET
Try
   ' Code that may cause an exception
Catch nullRefEx As NullReferenceException
   ' Code to handle null reference exception
Catch ex As Exception
   ' Generic exception handling code
End Try
  
//C#
try
{
   // Code that may cause an exception
}
catch (NullReferenceException nullRefEx)
{
   // Code to handle null reference exception
}
catch (Exception ex)
{
   // Generic exception handling code
}

When using multiple Catch blocks, the blocks for specific exceptions should
always appear before any Catch block for generic exceptions, or the specific
exceptions will be caught by the generic exception handler.

The Finally statement (finally in C#) is also useful in structured exception handling. When used in
conjunction with a Try...Catch block, the Finally statement allows you to specify code that will always
be run regardless of whether an exception is thrown. This can be especially useful if you need to run
clean-up code that might not otherwise run if an exception occurred, such as code that closes a
database connection. Example 10-7 shows a page that attempts to connect to the Pubs SQL Server
database and execute a command that returns a SqlDataReader. If either the connection attempt or
the command results in an exception, the code in the Catch block will be executed. The code in the
Finally block tests to see if the data reader and/or connection are open. If they are, it closes them.

Example 10-7. ReadTitles.aspx

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 10-7. ReadTitles.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
   <title>Try-Catch-Finally Example</title>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            Dim ConnStr As String = "Data Source=(local)\NetSDK;" & _
               "Initial Catalog=Pubs;Trusted_Connection=True;"
            Dim SQL As String = "SELECT title, price FROM title " & _ 
               "WHERE PRICE IS NOT NULL"
            Dim PubsConn As New SqlConnection(ConnStr)
            Dim TitlesCmd As New SqlCommand(SQL, PubsConn)
            Dim Titles As SqlDataReader
            Try
               PubsConn.Open(  )
               Titles = TitlesCmd.ExecuteReader(  )
               Output.Text = "<table>"
               While Titles.Read(  )
                  Output.Text &= "<tr>"
                  Output.Text &= "<td>" & Titles.GetString(0) & "</td>"
                  Output.Text &= "<td>$" & _
                     Format(Titles.GetDecimal(1), "##0.00") & "</td>"
                  Output.Text &= "</tr>"
               End While
               Output.Text &= "</table>"
            Catch sqlEx As SqlException
               Response.Write("A SqlException has occurred.")
            Catch ex As Exception
               Response.Write("An Exception has occurred.")
            Finally
               If Not Titles Is Nothing Then
                  If Not Titles.IsClosed Then
                     Titles.Close(  )
                  End If
               End If
               If PubsConn.State = ConnectionState.Open Then
                  PubsConn.Close(  )
               End If
            End Try
            Response.Write("<br/>The current connection state is: " & _
               PubsConn.State.ToString(  ) & ".")
         End Sub
      </script>
   </head>
<body>
   <h1>SqlDataReader Example</h1>
   <asp:label id="Output" runat="server"/>
</body>
</html>

As you can see from the examples in this section, of the available exception-handling techniques,
structured exception handling is likely to require the most code to implement. However, it also
provides you with the ability to handle the exception transparently to the user in cases when it is
possible to recover from the exception. For example, you could modify the code in Example 10-6 to
test whether the exception was related to the attempt to open the connection and, if so, retry the
connection a predefined number of times. This way, if the exception is the result of a temporary
network problem, the exception handling code can potentially handle this problem without the user
ever being aware that a problem exists (apart from the slight delay in connecting).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

10.2 Debugging

Debugging is the process of locating and eliminating errors in an application. Each error falls into one
of three categories:

Syntax errors

These errors result from writing code that violates the rules of the language. A good example
of a syntax error is failing to end a statement in C# with a semicolon. Syntax errors are
typically caught and reported by the compiler, and thus are the easiest to debug.

Crashing semantic errors

These errors result when code that is syntactically correct results in a condition that causes the
program to terminate unexpectedly or to hang (for example, looping code whose loop counter
is never incremented). Depending on the condition that causes the program to terminate, you
may get an error message indicating the cause and (if debugging is enabled for the page) the
line number on which the error occurred.

Noncrashing semantic errors

These errors result when code that is syntactically correct and does not cause the application to
crash or hang nonetheless results in variables containing data outside of the range expected by
the developer, or program code executing in an unexpected order. This type of error is the
most difficult to debug.

Both types of semantic errors are most typically the target of debugging efforts, since syntax errors
are fairly easy to fix once they are identified by the compiler.

Two main tools are useful for debugging ASP.NET applications: the ASP.NET trace feature (discussed
later in this chapter) and debuggers.

Two debuggers are of primary interest to ASP.NET developers: the .NET Framework SDK debugger,
which has the substantial advantage of being free, and the Visual Studio .NET debugger, which
provides additional debugging features such as remote debugging and the ability to debug native
Win32 applications. An important limitation of the SDK debugger is that you cannot use it to edit
source files, so you need to use another editor to make changes as you debug. The debugger in Visual
Studio .NET allows you to edit your source files (although you need to stop debugging before editing
and rebuild the application before restarting the debugger).

To start a debugging session with either debugger, follow these basic steps:

1. Open the debugger (or the Visual Studio .NET IDE).

2. Open the project or files you wish to debug.

3. Ensure that debugging is enabled for all pages and classes that you wish to debug.

4. Set breakpoints in the source code that will halt execution at a chosen point and allow you to
step through subsequent code.

5. Start the debugger, either by attaching to running processes for your application or by running
the Debug  Start command in the Visual Studio .NET IDE. Note that you may need to set
the desired start page as described in Section 10.2.2, later in this chapter.

The key to debugging in either debugger is ensuring that all code to be debugged is compiled in
debug mode. This mode inserts symbols into the compiled assemblies that allow the debuggers to
attach to the running code and allows you to step through this code line by line.

In the next two sections we'll look at the specific steps taken to enable debug mode, start debugging
sessions, and step through code in both debuggers.

10.2.1 Using the SDK Debugger

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Debugging in the SDK debugger, DbgCLR.exe, is fairly straightforward. The program is located by
default in the \FrameworkSDK\GuiDebug folder of either the Visual Studio .NET or .NET Framework
install folder. Start by opening the debugger by double-clicking on its executable. The resulting
window should look similar to Figure 10-2.

Figure 10-2. The .NET Framework SDK debugger

Now open the ASP.NET pages, code-behind files, and associated class files (for custom server
controls, for example) that you wish to debug, using either the File  Open  File... menu
command, or by clicking the Open File button on the toolbar.

Before you go any further, you should ensure that debugging is enabled for all of the pages and class
files you've opened. For code contained in ASP.NET pages, enabling it is simple: just add the Debug
attribute to the @ Page directive and set its value to True:

<%@ Page Language="VB" Debug="True" %>

This step will also enable debugging of code contained within a code-behind file that is referenced by
the Src attribute of the @ Page directive, which is compiled dynamically the first time the page is
requested.

For code contained within precompiled code-behind files or other precompiled assemblies, you must
compile the assembly with the compiler's debug flag set to enable debugging.

Once you've ensured that all your code is ready for debugging, it's time to set a breakpoint. The
easiest way to do this is to click in the lefthand margin next to the line of code at which you want the
debugger to halt execution. Note that you can set breakpoints only on executable lines of code or
procedure declarations. The result will look similar to Figure 10-3.

Figure 10-3. Setting a breakpoint

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once you've set your breakpoint, you'll need to open the desired page in Internet Explorer to start the
processes to which the debugger will be attached. Once that's done, you can attach the debugger to
the necessary processes by selecting Processes... from the Debug menu. This will open the Processes
dialog. Select the aspnet_wp.exe process, and then click Attach... Next, locate the Internet Explorer
process that corresponds to the page you loaded earlier, and attach that as well. At this point, the
Processes dialog should look similar to Figure 10-4.

Figure 10-4. Processes dialog

Now simply refresh the page in the browser, and assuming that the line on which you set the
breakpoint is in the current flow of the application, the debugger should halt execution at the
breakpoint, as shown in Figure 10-5. Then you can view the value of local variables using the Locals
window (shown in Figure 10-5) or take advantage of other debugger features to examine your code.

Figure 10-5. Halting on a breakpoint

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once program execution has halted at a breakpoint, you can also step through your code line by line
using the Step Into, Step Over, and Step Out commands in the Debug menu (or their keyboard
shortcuts). This allows you to examine the value of variables as you walk through your code, as well
as better determine exactly where a given error is occurring.

In addition to setting breakpoints by clicking in the left margin, you can use the New Breakpoint
dialog to set conditional breakpoints (i.e., breakpoints that only halt execution every x number of
times they're hit). To open the New Breakpoint dialog, select New Breakpoint... from the Debug
menu. The dialog appears in Figure 10-6.

Figure 10-6. New Breakpoint dialog

10.2.2 Using the Visual Studio .NET Debugger

Getting started with debugging in the Visual Studio .NET environment is simpler than with the SDK
debugger, even though more debugging options and features are available, because projects are set
up by default to support debugging. Assemblies generated for code-behind files in Visual Studio will
be compiled in debug mode unless you explicitly tell the IDE to compile them in Release mode. Thus,
as long as all of your code is in code-behind, you don't need to do anything further to enable
debugging.

If you have a mix of code within server-side <script> blocks in your .aspx files and code-behind
pages, you'll still need to add the Debug attribute to your .aspx files as described in the previous
section.

To start debugging in Visual Studio .NET, open the project you want to debug, and then open the
page (or pages), code-behind file(s), and/or class file(s) you want to debug. Because the Visual
Studio .NET debugger can automatically attach itself to the correct processes when you want to start
debugging, you don't need to explicitly attach the processes as described in the previous section
(although you can still do it that way if you want to). However, in order to automatically attach the
processes, you need to provide a starting point, which should be the first page you want to debug.
Simply right-click that page in the Solution Explorer window and select Set As Start Page.

Next, set breakpoints as desired in your code-behind or class files. Setting breakpoints is done the
same way in the Visual Studio .NET debugger and the SDK debugger (which is discussed in the
previous section).

Once all your breakpoints are set, start debugging by selecting Start from the Debug menu. This
should result in a new browser window being opened to the page that you set as the start page and
the first breakpoint being hit. At this point, the IDE should look similar to Figure 10-7.

Figure 10-7. Debugging in Visual Studio .NET

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 10-7. Debugging in Visual Studio .NET

Now you can walk through your code or examine local variables the way you can in the SDK
debugger.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

10.3 Tracing

The other useful tool provided by ASP.NET for debugging is the trace feature. Tracing allows you,
through a simple configuration setting or page-level attribute, to have ASP.NET write a whole host of
information about the currently executing request to the page or to a trace log. This information
includes the SessionID; the time, type, and status code of the request; timing information for events
such as Init, PreRender, SaveViewState, and Render; a Control Tree of all controls in the page; and
the contents of the Cookies collection, the HTTP Headers, the QueryString collection (if any
QueryString values were passed), the Form collection (if any form fields were passed), and the
ServerVariables collection.

Essentially, tracing allows you to automatically write out the contents of all collections exposed by the
classic ASP Request object, plus some really useful additional information. This allows you to examine
a great deal of information about a request on a single page, which can assist greatly in debugging.

More importantly, you can also write to the trace output using the Trace.Write and Trace.Warn
methods, which are exposed by the Trace property of the Page class. These methods can now be used
in place of Response.Write when you determine the value of a variable on a page at a certain point in
page execution or write out a notification that a certain point in the page has been hit. With
Trace.Write or Trace.Warn, once you've disabled tracing, you can leave the statements in your code
and you don't have to worry about anyone seeing the output. If you've ever deployed a page to
production without removing or commenting out your Response.Write statements used for debugging,
you'll be grateful for this feature.

10.3.1 Page-Level Tracing

Enabling tracing at the page level is very simple. Simply add the Trace attribute to the @ Page
directive and set its value to True, as shown in the following code snippet:

<%@ Page Language="VB" Trace="True" %>

This provides a quick and easy way to get an overview of what's going on for a given page. The
output from a page with tracing enabled looks similar to Figure 10-8.

Figure 10-8. Page-level tracing

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One downside to enabling tracing at the page level is that if you use it with many pages, it's more
work to add and remove the Trace attribute for each page (or to set the attributes to False). This can
also make it more likely that you'll forget one and end up with trace information being written out in a
production application. Not what you want.

10.3.2 Application-Level Tracing

ASP.NET provides the ability to enable tracing at the application level through the <trace> element in
web.config. Application-level tracing makes it possible to disable tracing in a single location in your
application and makes it easier to enable tracing for multiple pages. Example 10-8 shows a
web.config file with tracing enabled at the application level.

While the <trace> element allows you to enable or disable tracing at the
application level, the page-level Trace attribute overrides the setting in
web.config. Thus, if any pages have the Trace attribute set to True, disabling
tracing at the application level will not disable tracing for these pages.

Example 10-8. The <trace> element

<configuration>
   <system.web>
      <trace enabled="true"
         localOnly="true" 
         pageOutput="true"
         requestLimit="15"
         traceMode="SortByCategory" />
   <system.web>
</configuration>

In addition to providing a single point of control over enabling/disabling tracing, the <trace> element
allows you to control several other factors: whether trace output is visible to machines other than the
local host (using the localOnly attribute); whether the output is sent to the page or to a trace log
(using the pageOutput attribute); the number of traces that are kept in the trace log (requestLimit);
and how the Trace Information section of the trace output is sorted (traceMode).

If pageOutput is set to False, you can still view the trace output by entering the special URL
Trace.axd(which isn't an actual file, but a URL that invokes an HttpHandler for the trace functionality)
from the root of the application. Trace.axd lists all saved traces for the application. Note that once the
number of traces specified by the requestLimit attribute is met, no more traces are saved until the
trace log is cleared. Trace.axd provides a link for this purpose.

10.3.3 Using Trace.Write and Trace.Warn

Finally, as mentioned in the introduction to this section, instead of using Response.Write (as done in
classic ASP) to write out variable values or flag certain points in your code, ASP.NET enables you to
use Trace.Write and Trace.Warn. Both the Write and Warn methods are overloaded and can take one
of the following sets of arguments:

A single string argument containing the text to write to the trace output.

One string argument containing a user-defined category for the entry and a second string
argument containing the text to write to the trace output.

One string argument containing a user-defined category for the entry, a second string
argument containing the text to write to the trace output, and an Exception argument.

The only difference between Write and Warn is that entries written with the Warn method appear in
red text, making them ideal for conditions that require special attention. Example 10-9 shows an

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


red text, making them ideal for conditions that require special attention. Example 10-9 shows an
ASP.NET page with tracing enabled that uses Trace.Write and Trace.Warn to write to the trace output.
Figure 10-9 shows the output of this page.

Example 10-9. Trace.aspx

<%@ Page Language="VB" Trace="True" %>
<html>
<head>
   <title>Tracing Sample</title>
   <script runat="server">
      Sub Page_Load(  )
         Trace.Write("MyCategory", "Hello, Trace!")
         Trace.Warn("MyCategory", "This text will be red!")
         If Page.Trace.IsEnabled = True Then
            Message.Text = "Tracing is enabled for this page."
         Else
            Message.Text = "Tracing is not enabled for this page."
         End If
      End Sub
   </script>
</head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

Figure 10-9. Output of Trace.aspx

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

10.4 Additional Resources

The following site provides additional information on the topics discussed in this chapter:

http://samples.gotdotnet.com/quickstart/aspplus/doc/debugcomsdk.aspx

The ASP.NET QuickStart reference to the .NET Framework SDK Debugger.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 11. ASP.NET Deployment

To end Part 1 of the book, we've saved the best for last. Why do we call it the best? Because
compared to classic ASP, deploying an ASP.NET application is extremely simple. In fact, in many
cases, you can deploy an application by copying the entire application structure to a new IIS
application folder on the target server.

This chapter discusses both simple deployment scenarios, for which the DOS XCOPY command or
Windows Explorer are all you'll need. It also discusses more involved scenarios, such as using the
Visual Studio Web Setup project type to deploy your application.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

11.1 Deploying ASP.NET Applications

For most common applications, all you need to do to deploy the application is set up an IIS virtual
directory on the target machine and copy the application's files to it. Assuming that the .NET
Framework is installed on the target machine, the application should then run without further
configuration or setup.

This type of scenario includes both ASP.NET applications written with their code inline in .aspx files
and those that use code-behind files. Note, however, that deploying the code-behind files
themselvesis not necessary, as long as you deploy the assembly or assemblies compiled from them.

To deploy an ASP.NET application:

1. Create a new IIS virtual directory (or web site) on the target machine using Internet Services
Manager.

2. Use Windows Explorer, XCOPY, FTP, or another transfer mechanism to copy the files and
folders contained in the application's root directory to the new directory on the target machine.

As long as any assemblies you're using are in the bin subdirectory of your application and you're not
using COM components through COM Interop, it's really that simple. Because all application-specific
configuration information is contained in your web.config file(s), this information is automatically
copied with the application. In situations when you use shared assemblies, a little more work is
necessary, as we'll discuss in the next section.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

11.2 Deploying Assemblies

Assemblies are the basic unit of deployment for managed applications, including ASP.NET
applications. Assemblies are used in ASP.NET in several ways, each of which has different implications
for deployment. The three categories of assembly are described below. The steps required to deploy
application-specific and global assemblies appear in subsequent sections.

Automatically generated assemblies

Includes assemblies that are dynamically generated by the ASP.NET runtime for each .aspx
page in your application, as well as for code-behind files identified by the src attribute of the @
Page directive. Because these assemblies are generated at runtime automatically, no action is
required on the part of the developer at deployment time.

Application-specific assemblies

Includes assemblies resulting from the compilation of code-behind files, whether through
building an application in Visual Studio .NET or using the command-line compilers. This
category also includes compiled assemblies containing business logic code, and/or assemblies
containing custom server controls. All application-specific assemblies should reside in the
application's bin subdirectory (also known as the local assembly cache), which allows your
application to locate and use the assembly's members. There they are automatically loaded
into memory by the ASP.NET runtime. Because these assemblies reside within the folder tree
of the application, when you deploy the application using XCOPY, FTP, or Windows Explorer,
they are copied with the rest of the files in your application and available to the deployed
application automatically. Additionally, the ASP.NET runtime automatically modifies the IIS
permissions on the local assembly cache directory to deny all HTTP access to the directory,
which prevents anyone from reading or accessing assemblies directly.

Global assemblies

Includes any assemblies that are shared across all applications on a machine by installing them
in the global assembly cache (GAC). Assemblies must be strongly named in order to be
installed in the GAC and can be versioned to support side-by-side installation of multiple
versions of the same assembly.

11.2.1 Deploying Application-Specific Assemblies

As noted in the preceding section, deploying application-specific assemblies is as simple as deploying
other application files. As long as the assemblies reside in the bin subdirectory of the application, no
further action is required on the part of the developer apart from copying the application's files to the
target server.

The magic of the bin directory is enabled by the <assemblies> configuration element in
machine.config, which contains the following <add> element by default:

<add assembly="*" />

This element tells the ASP.NET runtime to load any assemblies residing in the bin subdirectory for use
by the application.

Another important point is that when assemblies are loaded by the ASP.NET runtime, the actual
physical DLL containing the assembly is never loaded into memory. Instead, the ASP.NET runtime
makes a shadow copy of the DLL and loads and locks it on the disk instead (while setting up a file
monitor on the original DLL file). This means that you can update the .NET assemblies associated with
your application at any time, without the need to shut down IIS or restart the server. The ASP.NET
runtime automatically detects when an assembly is updated and serves all new requests using the
new version of the assembly. This makes it significantly easier to maintain and update applications
with a minimum of downtime.

If you use code-behind for your page-specific logic, you can deploy only the .aspx pages and the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you use code-behind for your page-specific logic, you can deploy only the .aspx pages and the
precompiled assembly (or assemblies) for your code-behind files, without deploying the code-behind
files. This allows you to run your application while protecting the source code contained in the actual
code-behind files.

Some have argued that, as with Java bytecode, the Intermediate Language
(IL) contained in .NET managed assemblies is readily decompiled into a
managed language such as C#. Thus, even if you do not deploy the code-
behind files for an application, it may still be possible for someone to derive
this code from the assemblies by using an IL decompiler.

Application developers should consider the relative value represented by
their code versus the effort required to decompile that code, and determine
whether additional means for protecting the code are warranted. One such
measure is a code obfuscator, which renders most member names
meaningless to make understanding of decompiled code more difficult.

11.2.2 Deploying Global Assemblies

The global assembly cache (GAC) provides a centralized location for the storage of assemblies that
are to be shared across applications on a given machine. As noted previously, to be stored in the
GAC, an assembly must be named strongly. This process is outlined in this section. Because of this
requirement, the extra deployment effort entailed, and the fact that global assemblies are available to
all applications on a machine by default, you should only use the GAC for assemblies that fit the
following profile:

They need to be shared by many applications.

The effort of maintaining and/or updating individual local copies of the assembly for each
application outweighs the effort of strongly naming and deploying the assembly to the GAC.

The first step in deploying an assembly to the GAC is to provide the assembly with a strong name.
This is a three-step process:

1. Generate a cryptographic key pair using the sn.exe command line tool:

sn -k keyPair.snk

To see all the options for the sn.exe tool, run sn /? at a command prompt.

2. Add an assembly-level AssemblyKeyFile attribute. You can also optionally add an
AssemblyVersion attribute to provide a version number for the assembly. The * in the following
version number example auto-increments the last two of the four version number parts with
each compilation:

' VB.NET
<Assembly: AssemblyKeyFile("keyfile.snk")>
<Assembly: AssemblyVersion("0.1.*")>
  
// C#
[assembly: AssemblyKeyFile(@"..\..\sgKey.snk")]
[Assembly: AssemblyVersion("0.1.*")]

3. Compile the assembly using the appropriate command-line compiler. Note that the key pair
should be copied to the location of the code files to be compiled, since this location is where
the compiler will look for the file based on the AssemblyKeyFile attribute shown previously.

Once the assembly has been strongly named, you can install it into the GAC in any one of three ways:

Use the gacutil.exe command line tool to install (or uninstall) an assembly into the GAC, as
follows:

gacutil -i myAssembly.dll

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


gacutil -i myAssembly.dll

Note that this syntax assumes that gacutil.exe is called from the directory containing the
assembly's physical file. The gacutil.exe utility is recommended only for development systems.

Use Windows Explorer to drag and drop a copy of the assembly to the GAC. Access to the GAC
is provided via a Windows Explorer shell extension, which displays the contents of the GAC as
the folder %windir%\Assembly.

Use Microsoft Windows Installer 2.0 to create an installation package that will install the
assembly or assemblies to the GAC. This installation ensures easier rollback of assemblies and
other benefits. See the Windows Installer 2.0 documentation for information on creating
Installer packages.

What About COM Components?

If you're using only managed assemblies in your application, the deployment picture is
pretty rosy. It's considerably easier to deploy, update, and maintain managed assemblies
than it was to maintain COM components in classic ASP. But what if your application
requires you to use COM components through the .NET COM interoperability layer?

The good news is that if the version of the COM component you are using is already
installed on the target machine, you should need to deploy only the runtime-callable
wrapper (RCW) assembly for the component, since that assembly contains the information
necessary to locate the component based on information in the registry.

However, if the COM component is a custom component or is not installed on the target
system, you need to deploy the COM component to the target system and register it using
regsvr32.exe as follows:

regsvr32 <dllname>

Note that you would replace <dllname> with the name of the component to register.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

11.3 Deploying Through Visual Studio .NET

If you are using Visual Studio .NET to create your web applications, you have some additional
deployment options at your disposal. These options include simply using Visual Studio's Copy Project
command to copy some or all project files to a new location and using a Web Setup project to create a
Windows Installer package to install the web application, including creating the necessary IIS
directories. These techniques are discussed in the following sections.

In addition to these options, Visual Studio .NET allows you to open a project directly from the Web, so
you could theoretically create the project directly on the target server and edit it there. This is only
recommended for development systems, since incorrect edits made using this technique on
production systems could result in application errors or downtime. To open a project from the Web,
simply open Visual Studio .NET and select File  Open  Project From Web....

11.3.1 Deploying Using Copy Project

The simplest option for deploying a project from Visual Studio is to use the Copy Project command.
You can access Copy Project by either selecting Copy Project... from the Project menu or clicking the
Copy Project button in the Solution Explorer toolbar, as shown in Figure 11-1.

Figure 11-1. Copy Project button in Solution Explorer

Either method will open the Copy Project dialog, shown in Figure 11-2.

Figure 11-2. Copy Project dialog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Copy Project dialog gives you a number of options. The first is the destination folder for the
project, which is expressed as a URL. You can either enter this URL manually or browse to the desired
URL by clicking the ellipsis (...) button.

If you use the browse feature, however, you must select a resource that resolves to a valid URL, such
as a web folder in My Network Places.

To copy the project files, you can use either File share access (for copying locally or to a network
share) or FrontPage access. FrontPage access requires author permission on the destination web
server. If you use FrontPage as the web access method, the destination project folder will be created
automatically in IIS, while the File share method requires that you set up this folder manually.

Finally, you have three choices of which files to copy:

Only files needed to run this application

Copies only the Web Forms, web services, and associated assemblies, without copying any
code-behind files to the destination server. This allows you to copy and run your project on
another machine without exposing the source code.

All project files

Copies all files associated with the project to the destination machine, including code-behind
files. This option will not copy files contained in the project folder that are not associated with
the project. To keep a file from being copied, you can right-click the file in the Solution
Explorer window and select Exclude From Project.

All files in the source project folder

Copies all files from the project folder, whether they are associated with the project or not. This
option is useful for moving a project from one development machine to another, particularly if
you will need to continue developing the application on the target machine.

Note that regardless of the options you choose, you must build your project before deploying it, so
that any code in code-behind modules is compiled into assemblies.

11.3.2 Deploying Using a Web Setup Project

Visual Studio .NET also adds a completely new project type that now makes it possible to create an
installation package for installing (and uninstalling) a web application as easily as any other
application. The new project type is called the Web Setup Project, and it is available in the Setup and
Deployment Projects folder in the New Project dialog, as shown in Figure 11-3. You can create a Web
Setup Project in a standalone solution or as part of the solution containing your web application
project. This section provides an overview of this project type and of how you can use it to deploy
your web application.

Figure 11-3. New Project dialog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To create a Web Setup Project, select File  New  Project.... Then select the Setup and
Deployment Projects folder in the lefthand pane of the New Project dialog. Next, select Web Setup
Project in the righthand pane. Then fill in the Name and Location boxes and click OK. If you want to
add the new project to an existing solution, you should open that solution first and then click the Add
to Solution radio button in the New Project dialog.

Once the project is created, you'll be presented with the File System window (see Figure 11-4), which
allows you to add files to be deployed to the target system. In addition to the File System window, the
Web Setup Project type offers windows for adding Registry entries and File Type associations, as well
as for modifying the user interface that will be displayed by the installer. These windows can be
viewed by right-clicking the project name in the Solution Explorer and selecting View 
<windowname>.

If you created your web setup project as part of the solution containing your web application, you can
add all of the necessary files from the application to the setup project simply by right-clicking the Web
Application Folder, selecting Add  Project Output..., and then selecting both Primary Output and
Content Files, as shown in Figure 11-5.

Figure 11-4. File System window

Figure 11-5. Add Project Output dialog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now, if you build the setup project (note that you should create a fresh build of the web application
project first), all necessary files for the web application will be included in the generated setup files.

These files will be located in either the Debug or Release subfolder of the project, depending on
whether the Debug or Release configuration is selected in the solution's Configuration Manager.

If you created the web setup project in its own standalone solution, you'll need to add the files
manually. Perhaps the easiest way to do this is to highlight the desired files in Windows Explorer and
then drag and drop them from Windows Explorer onto the Web Application folder. This will add all
selected files and folders to the web application. This step should work fine unless you need to mark
any of the subfolders of the application as IIS applications.

In this case, you'll need to create separate folders for them by right-clicking the File System on Target
Machine entry in the File System window, and then selecting Add Special Folder  Web Custom
Folder. By default, the folder's IsApplication property, which determines whether the folder will be
configured as an IIS Application, is set to True. You can use the Property Browser to modify this
setting, if desired.

In addition to setting the IsApplication property for Web Custom Folders, you can use the property
browser to set a variety of other IIS-specific configuration options for the folders in your setup
project. For example, you can specify whether a given folder will allow read or write access or
directory browsing, as well as whether the folder should be indexed. This way, you can provide all of
the application configuration automatically, allowing the person installing the application to simply
double-click the setup file generated by the project and follow a few brief wizard steps to install the
application.

Once you've configured the application folders, you will need to build the project to create the setup
files. Then you can copy or transfer those files to another machine, run Setup.exe, and the application
should install and run normally.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

11.4 Additional Resources

The following site provides additional information on the topics discussed in this chapter:

http://www.gotdotnet.com/quickstart/aspplus/doc/deployment.aspx

The ASP.NET QuickStart reference for application deployment.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Part II: Intrinsic Class Reference
This section devotes a chapter to each of the following major classes that are available
as part of the ASP.NET object model:

Page
HttpApplication and HttpApplicatonState
HttpContext
HttpException
HttpRequest
HttpResponse
HttpServerUtility
HttpSessionState

Each chapter adheres to a standardized format that includes the following elements:

An introduction, which provides a background on the class and how it is used in
an ASP.NET application.

A list of the class members (properties, collections, methods, and events)
documented in the chapter.

A Comments/Troubleshooting section that provides helpful tips on using the class
or discusses pitfalls commonly encountered when working with the class.

Detailed documentation on class properties, with a separate entry devoted to
each property.

Detailed documentation on collections returned by properties of the class, if the
class has any, with a separate entry devoted to each collection.

Detailed documentation on class methods, with a separate entry devoted to each
method

Detailed documentation on events raised by the class, if the class exposes any,
with a separate entry devoted to each event.

In addition, Chapter 20 documents configuration settings that can be found in either
machine.config or web.config.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 12. The Page Class

In contrast to classic ASP, ASP.NET features a far richer object model that allows virtually every part
of an ASP.NET application to be generated and modified dynamically. Central to this ability to
generate -- and particularly, to modify -- content programmatically is the Page class, which is new to
ASP.NET.

The Page class (or a class derived from the Page class) represents a request to an .aspx page that is
processed by the ASP.NET extension to Internet Information Server or to another web server
supporting the .NET Framework. The web page may contain simple HTML and text, .NET code, or a
combination of both; in other words, the Page class represents a single Web Forms page. The
requests for that page are served by the compiled object that sends HTML or other content back to
the client.

The Page object is recompiled if any source files that form this page, such as a user control, a code-
behind file, the .aspx page itself, or the application configuration file, are changed.

In the case of single-file ASP.NET pages (i.e., .aspx files that combine user interface elements with
script), the .aspx page is compiled into an instance of a class that derives directly from the Page class.
This is evident from the following code:

Public Sub Page_Load(o AS Object, e AS EventArgs)
   Dim oType As Type
   oType = Me.GetType
   Do
      Response.Write(oType.Name & "<BR />")
      oType = oType.BaseType
   Loop While Not oType Is Nothing
End Sub 

The output produced by this code appears as follows:

Page1_aspx
Page
TemplateControl
Control
Object

Web Forms pages produced by Visual Studio, in contrast, consist of separate .aspx and code-behind
files. In this case, the .aspx page is compiled into an instance of a class that derives from the class in
the code-behind file, which in turn derives from the Page class. This is illustrated by the following
code-behind file:

Option Strict On
  
Imports Microsoft.VisualBasic
Imports System
Imports System.ComponentModel
Imports System.Web
Imports System.Web.UI
  
Namespace AspNetPages
   Public Class Page2Class : Inherits Page
      Public Sub Page_Load(o AS Object, e AS EventArgs) _
                 Handles MyBase.Load
         Dim oType As Type
         oType = Me.GetType
         Do
            Response.Write(oType.Name & "<BR />")
            oType = oType.BaseType

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            oType = oType.BaseType
         Loop While Not oType Is Nothing
      End Sub
   End Class
End Namespace

The page produces the following output:

Page2_aspx
Page2Class
Page
TemplateControl
Control
Object

As the output from these two code examples shows, the Page class derives from the
System.Web.UI.TemplateControl class, which defines the functionality common to both the Page class
and the UserControl class. Such Page class members as the LoadControl method (which dynamically
loads a control at runtime), the AbortTransaction and CommitTransaction events, and the Error event
are all inherited from TemplateControl. The TemplateControl class in turn derives from the
System.Web.UI.Control class, which defines the members common to all ASP.NET Server Controls.
The Control class in turn derives from the Object class, the class from which all .NET reference types
are derived directly or indirectly.

Because an object derived from the Page class is globally available whenever ASP.NET is processing a
Web Forms page, you do not have to reference the Page object specifically in order to access its
members. For example, to access the Session property of the Page class, we can use either:

Dim oSess As HttpSessionState = Page.Session

or:

Dim oSess As HttpSessionState = Session

In addition to representing the Web Form, the Page object is the container for all controls hosted by
the page. All child controls on the page can be accessed through the Page object's Controls collection,
which returns a ControlCollection object. For example, the following code iterates the
ControlCollection collection and lists the name of each control:

Private Sub Page_Load(o As Object, e AS EventArgs)
   Dim ctl As Control
   For each ctl in Controls
      Response.Write(TypeName(ctl) & ": " & ctl.ID & "<BR />")
   Next
End Sub

Table 12-1 lists the properties, collections, and methods exposed by the Page class that are
documented in this chapter.

Table 12-1. Page class summary
Properties Collections Methods Events

Application Controls DataBind Error
Cache Validators FindControl Init

ClientTarget  HasControls Load

Context  LoadControl Unload

EnableViewState  MapPath  
ErrorPage  ResolveUrl  
IsPostBack  Validate  
IsValid    
Request    

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   
Response    
Server    
Session    
SmartNavigation    
Trace    
User    
ViewState    

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

12.1 Comments/Troubleshooting

The ASP.NET equivalents of most classic ASP intrinsic objects are returned by properties of the
ASP.NET Page class. These properties are shown in Table 12-2.

Table 12-2. ASP.NET equivalents of ASP intrinsic objects
ASP object Equivalent ASP.NET class Returned by

Application HttpApplication and HttpApplicationState Page.Application property

ASPError None (ASP.NET uses Structured Exception Handling)  
ObjectContext HttpContext Page.Context property
Request HttpRequest Page.Request property
Response HttpResponse Page.Response property
Server HttpServerUtility Page.Server property
Session HttpSessionState Page.Session property

In this chapter, we'll use the following code listing as the basis for most examples. Unless otherwise
noted, each example will consist of just the Page_Load event handler for that particular example. Any
displayed output messages or return values will be shown as the Text property of the ASP.NET Label
control named Message or displayed by calling Response.Write:

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

12.2 Properties Reference

Application

HttpApplicationState = Page.Application

Returns an instance of the HttpApplicationState class, which is the equivalent of the ASP intrinsic
Application object. An instance of the HttpApplicationState class contains global information that can be
shared across multiple sessions and requests within an ASP.NET application. For more information on
the HttpApplicationState class and its members, see Chapter 13.

Parameters

HttpApplicationState

A variable of type HttpApplicationState that receives the instance of the HttpApplicationState
class.

Example

The following code example uses Page object's Application property to add a name/value pair to the
Application object and display the value in a label control. Since all of the properties of the Page
object are exposed directly to any code associated with the page, it is not necessary to explicitly
name the Page class (i.e., Page.Application) to access the Application property.

Sub Page_Load(  )
   Application("Name") = "John Doe"
   Message.Text = "The value <em>" & CStr(Application("Name")) & _
      "</em> has been added to the Application collection."
End Sub

Notes

Although you can retrieve a local object reference to the HttpApplicationState instance for the
application, the more common use of this property is to access it directly through the Application
property, as shown in the example.

Cache

Cache = Page.Cache

Returns an instance of the Cache class, which represents the cache for an application domain. Using
the Cache property, data can be added to and retrieved from the cache.

Parameters

Cache

A variable of type Cache that will receive the Cache instance.

Example

The following code example adds two name/value pairs to the Cache object using the Cache property
of the Page class and displays the values in a label control using the Page object's Cache property:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(o As Object, e As EventArgs)
   Cache("Name") = "John Doe"
   Cache("Age") = 42
   Message.Text = CStr(Cache.Item("Name")) & " is " & _
      CStr(Cache("Age")) & " years old."
End Sub

Notes

Like the Application object, the Cache object is more commonly accessed directly through the Cache
property, rather than by obtaining a local object reference to the Cache instance for the application.

Chapter 13 discusses when you might use the ASP.NET Cache rather than the Application state
collection, and vice-versa.

The Cache class includes the following members:

Cache
member Description

Add
method Adds an item to the cache

Count
property Indicates the number of items contained in the cache

Get
method Returns an object representing data in the cache with a particular key value

Insert
method Inserts an item into the cache and assigns it a key

Item
property

Returns an object representing a cache item based on its key value or sets an item of
data in the cache while assigning it a key value

Remove
method Removes an item with a particular key value from the cache

ClientTarget

String = Page.ClientTarget

Gets or sets a string value that allows you to override automatic browser detection in ASP.NET, force
the page to be rendered for a browser type configured in machine.config or web.config, and specified
by this property. The available preconfigured values for this property are:

downlevel

The page will be rendered based on the browser capabilities defined for unknown browsers in
the <browserCaps> element of machine.config.

ie4

The page will be rendered based on the values for Internet Explorer 4.0 configured in the
<browserCaps> element of machine.config.

ie5

The page will be rendered based on the values for Internet Explorer 5.0 configured in the
<browserCaps> element of machine.config.

Parameters

String

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


String

A string that specifies the alias for the browser capabilities that the page will target.

Example

The following code example initializes the ClientTarget property of the Page class to downlevel,
indicating that ASP.NET must render the page for an unknown browser type, which will result in HTML
3.2-compliant output. The example then displays a message indicating whether a set of features is
supported. In the case of downlevel, none of the listed features is supported.

Sub Page_Load(  )
   Page.ClientTarget = "downlevel"
      Message.Text = "Page is set to render for the " & _
   Page.ClientTarget & " alias.<br/>"
   Message.Text &= "Supported features:<br/>"
   Message.Text &= " - JavaScript: " & _
      Request.Browser.JavaScript & "<br/>"
   Message.Text &= " - ActiveX Controls: " & _
      Request.Browser.ActiveXControls & "<br/>"
   Message.Text &= " - Frames: " & _
      Request.Browser.Frames & "<br/>"
End Sub

Notes

The ClientTarget can also be specified by using the ClientTarget attribute of the @ Page directive.

Changing the value of the ClientTarget property in the example to ie4 will result in output indicating
that all of the listed features are supported.

While most server controls render HTML 3.2 for all browsers, the validation controls are an example of
controls that render differently, depending on the value of ClientTarget. If the ClientTarget property is
set to downlevel, then validation is performed on the server side, meaning that if we view the source,
no client-side script will perform the validation.

If the ClientTarget is set to uplevel, then the validation controls emit client-side JavaScript to perform
client-side validation.

Context

HttpContext = Page.Context

Returns an HttpContext instance containing context information for the current HTTP request.

Parameters

HttpContext

A variable of type HttpContext that will receive the reference to the current HttpContext
instance.

Example

The following code example uses the Context property to return the name of the currently logged in
user. This information is also available from the User property of the Page class, which is derived from
the HttpContext associated with the current request.

Sub Page_Load(  )
   Message.Text = "Currently logged in as: " & _
      Context.User.Identity.Name
End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


End Sub

Notes

A common use of this property is to pass a reference to the HttpContext for the current request to a
business object that needs access to the ASP.NET intrinsic objects (Request, Response, etc.). In
addition to providing access to the Application, Request, Response, Server, and Session intrinsics, the
HttpContext class provides access to the Trace and User information for the current HTTP request.

EnableViewState

Boolean = Page.EnableViewState
Page.EnableViewState = Boolean

Returns or sets a Boolean value that indicates whether the Page maintains its view state and that of
server controls it contains. The default value of this property is True, which means that the page
maintains its view state.

Parameters

Boolean

A Boolean value that indicates whether the page maintains its view state.

Example

The following code example sets EnableViewState to False using the EnableViewState attribute of the
@ Page directive and displays its value on the page:

<%@ Page Language="vb" EnableViewState="True" %>
<html>
   <head>
      <title></title>
      <script runat="server">
         Sub Page_Load(  )
            If Page.EnableViewState = True Then
               Message.Text = "ViewState is enabled."
            Else
               Message.Text = "ViewState is disabled."
            End If
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      <asp:label id="Message" runat="server"/>
   </form>
</body>
</html>

Notes

The EnableViewState property can also be specified using the EnableViewState attribute of the @ Page
directive, as shown in the example.

Examining a page's HTML source using a browser's View Source feature shows the effect of the
EnableViewState property. If the EnableViewState property is set to False, the source will look similar
to:

<input type="hidden" name="_  _VIEWSTATE" 
       value="dDwxMDA3MzE2MzEyOzs+" />

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       value="dDwxMDA3MzE2MzEyOzs+" />

If the EnableViewState property is set to True, the source will look similar to:

<input type="hidden" name="_  _VIEWSTATE" 
value="dDwxMDA3MzE2MzEyO3Q8O2w8aTwxPjs+O2w8dDw7bDxpPDM+Oz47bDx0PHA8cDxsPF
RleHQ7PjtsPFZhbHVlIG9mIHRoZSBFbmFibGVWaWV3U3RhdGUgcHJvcGVydHkgaXMgVHJ1ZTs
+Pjs+Ozs+Oz4+Oz4+Oz4=" />

The extra characters in the value of the _ _VIEWSTATE hidden field indicate the view state of the
current page. The view state of a page includes the transient properties of server controls, such as
BackColor or ForeColor.

Note that pages that do not contain a <form> element with the runat="server" attribute will not save
view state, regardless of the value of the EnableViewState property.

ErrorPage

String = Page.ErrorPage
Page.ErrorPage = String

Returns or sets the name of the page to redirect to in the event of an unhandled page exception.

Parameters

String

A String value that indicates the name of the page to redirect to in the event of an unhandled
page exception.

Example

The example below changes the ErrorPage property and shows that executed page when an
unhandled exception occurs in the page:

Sub Page_Load(  )
   Page.ErrorPage = "ErrorPage_Handler.aspx"
   Dim x, y, overflow As Integer
   x = 1
   y = 0
   overflow = x/y
   'This code will not be executed
   Message.Text = "Error Page is " & Page.ErrorPage & "."
End Sub

The Page_Load for ErrorPage_Handler.aspx is shown below:

Sub Page_Load(  )
   Message.Text = "We're sorry. An error occurred during the" & _
      " processing of your request. Please try again later."
End Sub

Notes

The ErrorPage property can also be specified using the ErrorPage attribute of the @ Page directive.

IsPostBack

Boolean = Page.IsPostBack

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns a Boolean value that indicates if the page is loaded for the first time (False) or is loaded as a
result of the client postback (True). This property comes handy for the logic that needs to be executed
the first time the page is executed or every time the page is posted back to itself, depending on how
you structure your If statement.

Parameters

Boolean

A Boolean value that indicates if the page is loaded for the first time or is loaded as a result of
the client postback.

Example

The code example below uses the IsPostBack property to display different messages in the Label
control, depending on whether the page is loaded for the first time or is loaded as a result of the
client postback. The first time the page is loaded, the IsPostBack property returns False, causing the
string "Non-PostBack" to be displayed. Clicking the button posts the page back to itself, causing
IsPostBack to return True and the string "PostBack" to be displayed.

<%@ Page Language="vb" %>
<html>
   <head>
      <title></title>
      <script runat="server">
         Sub Page_Load(  )
            If Page.IsPostBack Then
               Message.Text = "PostBack"
            Else
               Message.Text = "Non-PostBack"
            End If
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      <asp:button id="post" Text="Post page" runat="server"/>
      <asp:label id="Message" runat="server"/>
   </form>
</body>
</html>

Notes

The IsPostBack property will return True only for pages that contain a <form> element with the
runat="server" attribute and at least one control that causes a postback. This can be a Button control,
as shown in the example, or another control, such as a DropDownList control, whose AutoPostBack
property is set to True.

IsValid

Boolean = Page.IsValid

Returns a Boolean value, indicating whether any validation controls on the page were unable to
successfully validate user input.

Parameters

Boolean

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Boolean

A Boolean indicating whether the validation succeeded.

Example

The example uses the IsValid property to determine whether validation on the current page
succeeded, and displays a message:

<%@ Page Language="vb" %>
<html>
   <head>
      <title></title>
      <script runat="server">
         Sub Page_Load(  )
            If IsPostBack Then
               Page.Validate(  )
               If Page.IsValid Then
                  Message.Text = "Page is valid."
               Else
                  Message.Text = "Page is not valid."
               End If
            End If
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      Enter your name:
      <asp:textbox id="name" runat="server"/>
      <asp:requiredfieldvalidator 
         id="rfvName"
         controltovalidate="name"
         enableclientscript="false"
         errormessage="Required!"
         runat="server"/>
      <br/>
      <asp:button id="submit" Text="Submit" runat="server"/>
      <br/>
      <asp:label id="Message" runat="server"/>
   </form>
</body>
</html>

Notes

The IsValid property determines whether the overall validation performed by a form's validator
controls has succeeded. If the page has no validator controls, the property's value is always True.
Before checking the value of IsValid, you must either call the Page.Validate method, as shown in the
example, or have submitted the page with a control (such as a Button, ImageButton, or LinkButton
control) whose CausesValidation property is set to True. Otherwise, an exception will occur.

In the example, the EnableClientScript property of the RequiredFieldValidator control is set to False,
which disables client-side validation. By default, client-side validation is enabled and the page is never
submitted to the server if the validation fails. Uplevel browsers perform validation on the client using
client-side scripts, and only when validation succeeds is the page submitted. Only when the page is
submitted is the server-side event handler code executed and the message displayed based on the
value of the IsValid property.

Checking the IsValid property is important whether client-side validation is enabled, since a malicious
client could bypass client-side validation

Request

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Request

HttpRequest = Page.Request

Returns an instance of the HttpRequest class that allows us to access data from the incoming HTTP
requests. It's the equivalent of the ASP intrinsic Request object. For more information on the
HttpRequest class, see Chapter 16.

Parameters

HttpRequest

An object of type HttpRequest that contains the data from the incoming HTTP requests.

Example

The following code example uses the ServerVariables collection of the HttpRequest object to display
the IP address of the client making the request:

Sub Page_Load(  )
   Message.Text = "The current request is from: " & _
      CStr(Request.ServerVariables.Item("REMOTE_ADDRESS"))
End Sub

Notes

As with the Application and Cache properties, while you can retrieve a local reference to the
HttpRequest instance associated with the request, it is more common to access this instance directly
through the Request property, as shown in this example.

Response

HttpResponse  = Page.Response

Returns an instance of the HttpResponse class that stores information about the response and allows
us to send HTTP response data to a browser. It's the equivalent of the ASP intrinsic Response object.
For information on the HttpResponse class, see Chapter 17.

Parameters

HttpResponse

An object of type HttpResponse that receives the instance of the HttpResponse class.

Example

The following example uses the Response property of the page object to set the ContentType property
of the HttpResponse class to text/xml. Setting this property will result in the output of the page being
displayed as XML markup in Internet Explorer 5.0 or above.

Sub Page_Load(  )
   Response.ContentType = "text/xml"
   Message.Text = "This page will be displayed as XML in " & _
      "Internet Explorer 5.0 or above."
End Sub

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

As with the Application and Cache properties, while you can retrieve a local reference to the
HttpResponse instance associated with the request, it is more common to access this instance directly
through the Request property, as shown in this example.

Server

HttpServerUtility = Page.Server

Returns an instance of the HttpServerUtility class, which exposes useful methods for working with
ASP.NET requests. For more information on the HttpServerUtility class, see Chapter 18.

Parameters

HttpServerUtility

An object of type HttpServerUtility that may be used to access useful properties and methods
exposed by this class.

Example

The following code example uses the Server property to access the HtmlEncode method of the
HttpServerUtility class, which allows you to encode HTML tags and characters so that they will be
displayed to the user, rather than interpreted and rendered by the browser:

Sub Page_Load(  )
   Message.Text = Server.HtmlEncode("<em>Hello, World!</em>")
End Sub

The HTML rendered from this page would look like the following:

<html>
   <head>
      <title>Server property example</title>
   </head>
<body>
   <span id="Message">&lt;em&gt;Hello, World!&lt;/em&gt;</span>
</body>
</html>

Notes

As with the Request and Response properties, while you can retrieve a local reference to the
HttpServerUtility instance associated with the application, it is more common to access this instance
directly through the Server property, as shown in this example.

Session

HttpSessionState = Page.Session

Returns an object that represents the current user session. A Session object is maintained for each
user that requests a page from an ASP.NET application. You can store session-specific data in the
Session object and then access it across multiple pages in an ASP.NET application. For more
information on the HttpSessionState class, see Chapter 19.

Parameters

HttpSessionState

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpSessionState

An HttpSessionState object that represents the current user session.

Example

The example uses the Session object to display the value of the Mode property, which indicates where
session state information is stored:

Sub Page_Load(  )
   Message.Text = "Current Session State Mode: " &_
           Session.Mode.ToString(  )
End Sub

Notes

As with the Request and Response properties, while you can retrieve a local reference to the
HttpSessionState instance associated with the request, it is more common to access this instance
directly through the Session property, as shown in this example.

SmartNavigation

Boolean = Page.SmartNavigation
Page.SmartNavigation = Boolean

Returns or sets a Boolean indicating whether the SmartNavigation feature is turned on. The
SmartNavigation feature, which is compatible only with Internet Explorer, uses <iframe> elements to
allow only portions of the page to be refreshed when the page is posted back. This can help eliminate
the annoying visual flicker associated with postbacks.

Parameters

Boolean

A Boolean value that indicates whether or not SmartNavigation is enabled.

Example

The following code example sets the SmartNavigation property to True using the SmartNavigation
attribute of the @ Page directive. When the page is posted back, only the current page will be stored
in the browser's history, so the Back button will be disabled.

<%@ Page Language="vb" SmartNavigation="True" %>
<html>
   <head>
      <title>SmartNavigation property example</title>
      <script runat="server">
         Sub Page_Load(  )
            Message.Text = "This Label will change."
            Message2.Text = "This Label will not change."
         End Sub
         Sub UpdateLabel(Sender As Object, e As EventArgs)
            Message.Text = "This Label has changed."
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      <asp:label id="Message" runat="server"/>
      <asp:button id="update" 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      <asp:button id="update" 
         onClick="UpdateLabel"
         text="Click to update label text"
         runat="server"/>
   </form>
   <asp:label id="Message2" runat="server"/>
</body>
</html>

Notes

In addition to eliminating flicker when navigating or posting back, SmartNavigation maintains the
current scroll position when a page is posted back and maintains only a single page in the browser's
history, which prevents users from clicking the browser's Back button to go to a previous state of the
page.

While you can set this property from code, it is recommended that this property be set using the
SmartNavigation attribute of the @ Page directive, as shown in this example.

Trace

TraceContext = Page.Trace

Returns the TraceContext object for the current web request. Tracing provides the details about the
execution of the web request. The TraceContext class includes the following members:

Member Description
IsEnabled Indicates whether tracing is enabled for the current page.

TraceMode
A member of the TraceMode enumeration that indicates how items should be sorted.
Possible values are SortByCategory and SortByTime. The latter is the default value defined
in machine.config.

Warn
method Writes a message to the trace log using red text.

Write
method Writes a message to the trace log.

Parameters

TraceContext

An instance of the TraceContext class.

Example

The example turns tracing on programmatically by using the Trace property of the Page class:

Sub Page_Load(  )
   If Trace.IsEnabled = True Then
      Message.Text = "Tracing is enabled."
   Else
      Message.Text = "Tracing is not enabled."
   End If
End Sub

Notes

As with the Request and Response properties, while you can retrieve a local reference to the
TraceContext instance associated with the request, it is more common to access this instance directly
through the Trace property, as shown in the following example. For more information on application
tracing, see Chapter 10.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


User

IPrincipal = Page.User

Returns an instance of an object implementing the IPrincipal interface containing security information
about the user making the page request. The IPrincipal interface implements the following members:

Member Description
Identity property Returns the IIdentity object representing the user requesting the page
IsInRole property Indicates whether the user requesting the page is in a particular role

Parameters

IPrincipal

An object variable that implements IPrincipal.

Example

The example obtains the user's authentication status and name using the User property and displays
it in the browser:

Sub Page_Load(  )
   Message.Text = "Authenticated: " & _
      User.Identity.IsAuthenticated & "<br/>"
   Message.Text &= "User Name: " & User.Identity.Name
End Sub

Notes

In order for the IPrincipal object returned by the User property to be populated, some form of
authentication must be configured in either machine.config or web.config, and at a minimum, an
authorization rule must be configured that excludes anonymous users. If these conditions are not
met, the IsAuthenticated property of the IIdentity object will return False and the Name property will
return an empty string.

ViewState

StateBag = Page.ViewState

The ViewState property returns an instance of the StateBag class containing state information for
server controls on the page. This StateBag instance can also be used to store arbitrary data that
needs to be preserved across multiple requests for the same page.

Parameters

StateBag

An object of type StateBag that contains the property values for server controls on the page.
This StateBag instance can also be used to store arbitrary data that needs to be preserved
across multiple requests for the same page.

Example

The following code example sets the ForeColor property of the Message control, and then stores the
value of that color in the ViewState StateBag instance. If the page is posted back, the code retrieves
the color that was stored, and depending on the name of the color, changes the color from Red to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the color that was stored, and depending on the name of the color, changes the color from Red to
Black, or vice-versa.

<%@ Page Language="vb" %>
<html>
   <head>
      <title>ViewState property example</title>
      <script runat="server">
         Sub Page_Load(  )
            Dim LocalColor As System.Drawing.Color
            If IsPostBack Then
               LocalColor = CType(ViewState("LabelColor"), _
                  System.Drawing.Color)
               If LocalColor.Name = "Black" Then
                  LocalColor = System.Drawing.Color.Red
               Else
                  LocalColor = System.Drawing.Color.Black
               End If
               Message.ForeColor = LocalColor
               Message.Text = "Label color is " & LocalColor.Name
               ViewState("LabelColor") = LocalColor
            Else
               Message.ForeColor = System.Drawing.Color.Black
               LocalColor = Message.ForeColor
               Message.Text = "Label color is " & LocalColor.Name
               ViewState("LabelColor") = LocalColor
            End If
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      <asp:button id="button" 
         text="Click to change label color"
         runat="server"/>
      <asp:label id="Message" runat="server"/>
   </form>
</body>
</html>

Notes

ViewState, in addition to managing state for server controls automatically, is a convenient place for
ambient page state that needs to be maintained from request to request. In addition to storing
primitive data types such as integers and strings, the StateBag class can be used to store objects, as
long as those objects support serialization, as does the Color structure in the example. When you
store an object that supports serialization in ViewState, the object's state is automatically serialized
into a form that can be stored in ViewState and deserialized into an object instance when you
reference the object again.

Because ViewState does not store type information with the object, you must cast the object retrieved
from ViewState to the correct type. In the case of the example, this type is System.Drawing.Color.

Finally, think carefully before storing large objects (such as datasets) in ViewState. Because
ViewState is stored as a hidden form field, it is sent to the browser with each request. Storing large
objects in ViewState will result in slower page load times.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

12.3 Collections Reference

Controls

ControlCollection = Page.Controls

Provides access to the ControlCollection instance associated with the page, with which you can add or
manipulate controls at runtime.

Parameters

ControlCollection

An object of type ControlCollection containing the controls associated with the page.

Example

The code example uses the Controls property to display the Count property of the ControlCollection
class instance associated with the page. It then adds a new Label control to the collection and displays
the updated Count property by using the new label.

Sub Page_Load(  )
   Message.Text = "There are currently " & Controls.Count & _
      " controls on the page.<br/>"
   Dim Message2 As New Label
   Controls.AddAt(Controls.Count - 1, Message2)
   Message2.Text = "There are now " & Controls.Count & _
      " controls on the page."
End Sub

Notes

As with the Session and Trace properties, while you can retrieve a local reference to the Controls
collection associated with the page, it is more common to access this instance directly through the
Controls property, as shown in the example.

Note that when adding a control to a page that already contains controls, using the AddAt method of
the ControlCollection class allows more precise placement of the control when compared to the Add
method, which simply places the control at the end of the collection. In the example, using the Add
method would result in the output from the added Label control appearing after the page's closing
</html> tag, which is not well-formed HTML and could cause the page to render incorrectly in some
browsers.

Validators

ValidatorCollection = Page.Validators

Returns an instance of the ValidatorCollection class containing all the validator controls contained on
the requested page. We can access each validator control by iterating the ValidatorCollection
collection.

Parameters

ValidatorCollection

An object variable of type ValidatorCollection.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The code example displays a Textbox control with a RequiredFieldValidator and
RegularExpressionValidator control assigned to it. In Page_Load, the code iterates through the
ValidatorCollection returned by the Validators property and displays the ID and ErrorMessage property
of each validator in the collection:

<%@ Page Language="vb" %>
<html>
   <head>
      <title></title>
      <script runat="server">
         Sub Page_Load(  )
            Dim Validator as BaseValidator
            For Each Validator in Validators
               Message.Text &= Validator.ID & " error message: "
               Message.Text &= Validator.ErrorMessage & "<br/>"
            Next     
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      Phone: <asp:textbox id="phone" runat="server"/>
      <asp:requiredfieldvalidator 
         id="rfvPhone"
         controltovalidate="phone"
         display="dynamic"
         errormessage="Required!"
         runat="server"/>
      <asp:regularexpressionvalidator 
         id="revPhone"
         controltovalidate="phone"
         display="dynamic"
         validationexpression="^[2-9]\d{2}-\d{3}-\d{4}$"
         errormessage="Enter a phone number in the form xxx-xxx-xxxx"
             runat="server"/>
      <br/>
      <asp:button id="submit" text="Submit" runat="server"/>
   </form>
   <br/>
   <asp:label id="Message" runat="server"/>
</body>
</html>

Notes

Because we are displaying only properties from the validator controls that are inherited from the
BaseValidator control (from which all validation controls are derived), we don't need to cast the
validator to its specific type before accessing the properties. If, however, we wanted to display a
property that was specific to the type of validator used (such as the ValidationExpression property of
the RegularExpressionValidator class), we would need to cast the control to the correct type. In Visual
Basic .NET, this is done using the CType keyword.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

12.4 Methods Reference

DataBind

Page.DataBind(  )

Evaluates and resolves any data binding expressions in the page. It also calls DataBind on all child
controls.

Parameters

None

Example

The following code example uses a data binding expression to set the ForeColor attribute of a label
control tag to the value of local variable named color. When the DataBind method is called in
Page_Load, the value of the Color variable is assigned to the ForeColor attribute (which is effectively
the same as setting the ForeColor property in code):

<%@ Page Language="vb" %>
<html>
   <head>
      <title></title>
      <script runat="server">
         Dim Color As System.Drawing.Color = System.Drawing.Color.Red
         Sub Page_Load(  )
            Message.Text = "ForeColor is: " & Color.Name
            DataBind(  )
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" ForeColor="<%# Color %>" runat="server"/>
</body>
</html>

Notes

If you want to perform data binding on a specific control on the page, such as a DataGrid or DataList
control, it may be more efficient to call DataBind on that control rather than on the page, since calling
it on the control will avoid any overhead in calling DataBind on controls for which data binding is not
needed.

FindControl

Control = Page.FindControl(String)

Returns a reference to the control object whose name corresponds to a search string. The FindControl
method is a member of the base Control class.

Parameters

Control

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Control

An instance of the Control class that represents the control that is found using the FindControl
method. This control must be cast to the correct control type to access members that are
specific to the control type.

String

A string containing the programmatic identifier of the control. This value is the same as the ID
attribute of a declarative control, or in the case of controls created at runtime, is the same as
the object name defined for the control.

Example

The example finds a control using its ID and changes its background color:

Sub Page_Load(  )
   Dim TheControl As Control = FindControl("Message")
   If Not TheControl Is Nothing Then
      Dim TheLabel As Label = CType(TheControl, Label)
      TheLabel.Text = "Found the label named Message!"
      TheLabel.BackColor = System.Drawing.Color.Blue
   End If
End Sub

Notes

The FindControl method, which is inherited from the Control class (from which the Page class is
derived), is useful when dealing with nested controls or user controls that need to manipulate a
control in their parent page. For example, code in a user control could call FindControl on the page
containing the user control to locate and manipulate a control contained within the page (but outside
the user control).

HasControls

Boolean = Page.HasControls(  )

Returns a Boolean value that indicates whether the page contains child controls.

Parameters

Boolean

A Boolean value that indicates whether the page contains child controls.

Example

The code example displays a message indicating whether the page has controls in its Controls
collection, based on the value returned by HasControls:

Sub Page_Load(  )
   If Page.HasControls = True Then
      Message.Text = "The page contains controls."
   Else
      Message.Text = "The page does not contain controls."
   End If 
End Sub

LoadControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


objControl = Page.LoadControl(strPath)

Returns an instance of the user control defined in the strPath user control file. This allows dynamic
loading of user controls instead of using the @ Register directive.

Parameters

objControl

An object of type Control that represents the user control specified in the given path.

strPath

The virtual path to a user control file.

Example

The example uses the LoadControl to load a user control at runtime and adds it to the page's Controls
collection:

Sub Page_Load(  )
   Dim Hello As UserControl = LoadControl("hello.ascx")
   Page.Controls.Add(Hello)
End Sub

The user control hello.ascx is as follows:

<h1>Hello, World!</h1>

MapPath

String = Page.MapPath(virtualPath)

Returns the physical path that corresponds to a given virtual path.

Parameters

String

A String containing the physical path that corresponds to virtualPath.

virtualPath

A string containing an absolute or relative virtual path.

Example

The example maps the virtual path of the named page to its physical path:

Sub Page_Load(  )
   Message.Text = MapPath("MapPath.aspx")
End Sub

Notes

The Page.MapPath method duplicates the functionality of the Server.MapPath method.

ResolveUrl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


String = Page.ResolveUrl(strRelativeUrl)

Returns an absolute URL corresponding to a relative URL.

Parameters

String

A string containing the absolute URL.

strRelativeUrl

A relative URL.

Example

The example maps the current relative URL to an absolute URL:

Sub Page_Load(  )
   Message.Text = Page.ResolveUrl("ResolveUrl.aspx")
End Sub

Validate

Page.Validate(  )

Invokes the validation logic for each validator control on the page. When this method is invoked, it
iterates the Page object's ValidatorCollection collection and executes the validation logic associated
with each validator control.

Example

See the example for the IsValid property.

Notes

The Validate method is called automatically when the user clicks any HTML or ASP button control
whose CausesValidation property is True.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

12.5 Events Reference

Error

Sub Page_Error(Sender As Object, e As EventArgs)
   'error handling code
End Sub

The Error event is fired when an unhandled exception occurs on the page. If no event handler is
defined for this event, the Application_Error event is fired. If the exception is still not handled, control
is passed to the page (or pages) defined in the <customErrors> element in web.config.

Parameters

Sender

An argument containing information about the object that raised the event.

e

An object of type EventArgs containing additional information about the event.

Example

The following code example deliberately causes an overflow exception and then handles that
exception in the Page_Error handler, displaying the text of the exception and then clearing it:

Sub Page_Load(  )
   Dim x, y, overflow As Integer
   x = 1
   y = 0
   overflow = x / y
End Sub
  
Sub Page_Error(  )
   Response.Write(Server.GetLastError.ToString(  ))
   Server.ClearError
End Sub

Notes

The current exception is obtained using the GetLastError method of the Server class. Once you've
finished with your error handling, you can either clear the exception by calling Server.ClearError, as
shown in the example, or allow the exception to bubble up to the next level of error handling.

Note that the Sender and e arguments are optional for this event, as shown in the example.

When the AutoEventWireup attribute of the @ Page directive is set to True (the default), ASP.NET will
automatically call the event handler for this event, as long as it has the correct Page_Error signature.

Init

Sub Page_Init(Sender As Object, e As EventArgs)
    'initialization code
End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

Sender

An argument containing information about the object that raised the event.

e

An object of type EventArgs containing additional information about the event.

Example

The code example initializes a variable for setting the ForeColor property of a label in Page_Init, and
then modifies that value to set the ForeColor property of another label in Page_Load:

<%@ Page Language="vb" %>
<html>
   <head>
      <title>Init event example</title>
      <script runat="server">
         Dim TheColor As System.Drawing.Color
         Sub Page_Init(  )
            TheColor = System.Drawing.Color.Red
         End Sub
         Sub Page_Load(  )
            Message.ForeColor = TheColor
            Message.Text = "The color of the text was set in Page_Init."
            TheColor = System.Drawing.Color.Blue
            Message2.ForeColor = TheColor
            Message2.Text = "The color of the text was set in Page_Load."
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
   <br/>
   <asp:label id="Message2" runat="server"/>
</body>
</html>

Notes

Note that the Sender and e arguments are optional for this event, as shown in the example.

When the AutoEventWireup attribute of the @ Page directive is set to True (the default), ASP.NET will
automatically call the event handler for this event, as long as it has the signature Page_Init.

Load

Sub Page_Load(Sender As Object, e As EventArgs)
   'code
End Sub

Fired when the page is loaded. Since this event is fired on every page request, we can add any
initialization code that needs to be executed at the page level, including the initialization of the page's
child controls. When the Load event fires, the page's view state information is also accessible.

The Load event is passed the following arguments by ASP.NET:

Sender

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sender

An argument containing information about the object that raised the event.

e

An object of type EventArgs containing additional information about the event.

Example

See the example for Init.

Notes

Note that the Sender and e arguments are optional for this event, as shown in the example.

When the AutoEventWireup attribute of the @ Page directive is set to True (the default), ASP.NET will
automatically call the event handler for this event, as long as it has the correct Page_Load event
signature.

Unload

Sub Page_Unload(Sender As Object, e As EventArgs)
   'cleanup code
End Sub

Fired when the page is unloaded from memory. Since this event is fired before the page is unloaded,
we can perform cleanup operations, such as closing open files and database connections.

The Unload event is passed the following arguments by ASP.NET:

Sender

An argument containing information about the object that raised the event.

e

An object of type EventArgs containing additional information about the event.

Example

The example demonstrates the Unload event by closing a file that was opened for display in the
Page_Load event handler:

Dim TheFile As System.IO.StreamReader
Sub Page_Load(  )
   TheFile = System.IO.File.OpenText(MapPath("Init.aspx"))
   Message.Text = "<pre>" & _
      Server.HtmlEncode(TheFile.ReadToEnd(  )) & "</pre>"
End Sub
  
Sub Page_Unload(  )
   TheFile.Close(  )
End Sub

Notes

While the Unload event is useful for performing page-level cleanup tasks, for resources such as
databases, for which it is possible that an exception will interrupt the normal flow of page processing,
it may be better to place the cleanup code for that resource in the Finally block of a
Try...Catch...Finally statement, which will ensure that the cleanup code is always executed. For more
information on Try...Catch...Finally, see Chapter 10.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Note that the Sender and e arguments are optional for this event, as shown in the example.

When the AutoEventWireup attribute of the @ Page directive is set to True (the default), ASP.NET will
automatically call the event handler for this event, as long as it has the signature Page_Unload.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 13. The HttpApplicationState Class

Developers who are new to Web-based development encounter several challenges. Among the most
serious is the realization that rather than a single monolithic application, web-based applications are
just a series of pages. A web server is like an unusually inattentive waiter. Imagine sitting down for
dinner and placing your order for drinks. When you next see the waiter, he asks you again what you
would like to drink, as if he has never seen you before. Each request to the web browser is seen as a
completely new request, totally unrelated to any previous request.

Several problems with the way Web-based applications are structured need to be resolved:

Session data (data specific to a single user across all pages) needs to be available. While it is
always a good idea to minimize session state, it is generally not possible to completely
eliminate session state.

Global data (data required across all pages and to all users) needs to be exposed. Traditional
rich-client applications use global variables to store needed data application-wide. Classes
instantiated on one page are not available to other pages, so creating global classes is not a
solution.

Session data in ASP.NET can be managed in the HttpSessionState class, which will be covered in
Chapter 19. Global data can be stored in the HttpApplicationState class, which is covered in this
chapter.

ASP.NET creates the illusion that pages are grouped into an application. An instance of the
HttpApplicationState class is created the first time any client requests a URL resource from within the
virtual directory of a particular application. The HttpContext class (covered in Chapter 14) exposes a
property named Application that provides access to the HttpApplicationState class for the application.
The Application property and the HttpApplicationState object it returns are also available from the
Page class. Since each ASP.NET page inherits from the Page class, the Application property is
available to code on every page.

While this chapter covers the HttpApplicationState class, ASP.NET offers an alternative way to store
information with an application global scope. The Cache class allows a developer to store data with an
application scope. In addition to caching page output (a topic covered in Chapter 3), ASP.NET allows
the developer to store other information within the Cache -- in some ways similar to the way
information can be stored in the HttpApplicationState class. There are, however, significant
differences:

Information stored in the HttpApplicationState object is stored for the life of the application.
Information stored in the Cache may be stored for the life of the application (and in any event,
may survive at most for the lifetime of the application), but might be purged sooner. The
ASP.NET runtime can purge any cached item at any time if system memory becomes scarce.
Cached items that are seldom used or unimportant (as the ASP.NET runtime defines these
terms) are discarded using a technique called scavenging.

Information stored in the Cache can be invalidated based upon a specific date and time or a
time span. HttpApplicationState has no such ability.

The developer can supply dependency rules to force the cache to be refreshed. For instance,
you can use a Rube Goldberg-like setup, for which you cache a dataset and use a trigger in
SQL Server to modify a file in the filesystem on the web server whenever the underlying table
is modified. The cache for a given item can be invalidated based upon that file changing. Thus,
you can cache a dataset and have the cached dataset refreshed whenever the underlying SQL
Server table is changed. This is not possible with information stored in the HttpApplicationState
object.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One significant limitation of both the Cache and the HttpApplicationState objects is that they are not
shared across servers in a web farm. While classic ASP programmers will not be surprised by this,
ASP.NET programmers who are familiar with the HttpSessionState object might be surprised, since in
ASP.NET, session state can be shared across a server farm -- either in a state server or a special SQL
Server database. While having cached items available across all servers on a Web farm would be
convenient, the nature of what is stored in the HttpApplicationState object makes the lack of a shared
data store less critical.

The implications of the difference between HttpApplicationState and the Cache are clear:

Large chunks of information that might be important should be stored in the cache. There is
little harm in caching something because if it is not used and the memory is needed, the item
will be scavenged and the memory used by it freed for the more pressing need.

Information that can change frequently throughout the life of the application should be stored
in the Cache rather than the HttpApplicationState object.

Information that is stable during the life of the application is best stored in the
HttpApplicationState object.

Information that must always be available and must not be purged be stored in the
HttpApplicationState object rather than the Cache.

The Cache class is safe for multithreaded operations and does not require separate
synchronization, unlike the Application collection (see the method references for the Lock and
UnLock methods later in this chapter).

Classic ASP developers often used the Application object to store things like database connection
strings. In ASP.NET, there is another alternative for storing small, possibly sensitive bits of
information like connection strings. Inside the configuration files for the machine or applications, you
can place values called appSettings within the <configuration> tag. For instance:

<appSettings>
   <add key="TestKey" value="TestValue" />
</appSettings>

Multiple add tags can be placed in the configuration file. To retrieve the value within code, you the
System.Configuration.ConfigurationSettings class. Specifically, to retrieve the value saved in the
TestKey key above, use the following code:

localVar = ConfigurationSettings.AppSettings("TestKey")

While you can place the appSettings section in web.config or machine.config, sensitive values are
better stored in the machine.config file. machine.config is not located in a folder that is in any way
mapped within the web-accessible space. Of course, this solution for storing application-level
information is really only suitable for static information that does not need to change under program
control as the application is running. Often, you can use AppSettings and Application state together,
caching the value from AppSettings within the Application object. If a setting with the same key is
contained in both the machine.config and web.config file, the value in web.config will be the value
returned for the setting.

Much of HttpApplicationState will be familiar to classic ASP developers. The visible additions and
changes from classic ASP are not dramatic. Most importantly, virtually all existing classic ASP code
dealing with the Application object will work in ASP.NET.

When the first client requests a URL from the application, the Application object's start event is fired.
This event can be handled by creating an event handler in the global.asax file (the ASP.NET
equivalent of global.asa) with the following signature:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Application_OnStart(  )
   'Application initialization code
End Sub

The Application start event is called only once within the lifetime of an application. This is where you
would usually set Application variables. When the Application ends, a similar event is called with the
following signature:

Sub Application_OnEnd(  )
   'Application cleanup code
End Sub

In the Application end event, you would dispose of any resources created in the Application start
event. There are a few limitations to what you can do in the Application-level events, since the
Response, Session, and Request objects are all unavailable.

The fact that the Application start event is called once within the lifetime of an application was
mentioned above. However, what exactly is the lifetime of an application? Whenever the web server
starts up, the first client to request a URL from an application marks the beginning of the application's
lifetime. Similarly, as the web server stops, either because the underlying service is stopped or the
server itself is restarted, the application's lifetime ends. Thus, can you presume that unless the Web
service restarts or the server itself restarts, the application will continue running? The short answer is
"No."

The longer answer is that to ensure that the Application start and Application end events called are
coherent (i.e., that code has not been added to Application_End that would require changes to
Application_Start after it had already fired, or vice-versa), any time the global.asax is changed, the
ASP.NET framework detects that the file has changed. Upon sensing the file change, the framework
completes any current requests and fires the Application end event (as it existed before the change to
global.asax). Once the Application end event has fired, the application restarts, flushing all application
information and client state information. When the next incoming client request is received, the
ASP.NET framework reparses and recompiles the global.asax file and raises the Application start event
as it appears in the newly saved version of global.asax. The moral of this story is that changes to the
global.asax file should be infrequent, presuming the application must be available 24/7.

One question that sometimes arises is, "Can the Application state of one application be accessed from
within another application?" The short answer is "No." The longer answer is that if the other
application cooperates, you can create a page in one application that can be called by making an HTTP
Request from the other application. There is no support within the ASP.NET Framework to do this
explicitly.

Items can be stored in the Application collection in one of four ways:

By calling the Add method, passing in the name (or key) to assign to the item, and the item's
value. This value can be of any type supported by the CLR, including object instances, which
are serialized automatically before being stored.

By calling the Set method, passing in the name (or key) to assign to the item, and the item's
value. This value can be any type supported by the CLR, including object instances, which are
automatically serialized before being stored.

By explicitly referring to the Item property, passing a name or index to assign to the new item.

By implicitly referring to the Item property, passing a name to assign to the new item. This was
the most common technique used in classic ASP.

Items can be accessed in one of four ways:

By retrieving and iterating over the collection of keys in the Application collection (see the Keys
collection description for an example).

By calling the Get method, passing the name of the item to retrieve.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


By calling the Get method, passing the name of the item to retrieve.

By explicitly referring to the Item property, passing the name of the item to retrieve.

By implicitly referring to the Item property, passing the name of the item to retrieve. This was
the most common technique used in classic ASP.

Items can be removed from the Application collection in one of several ways:

By calling the Clear method (clears all items).

By calling the RemoveAll method (removes all items).

By calling the Remove method, passing the name of the item to remove.

By calling the RemoveAt method, passing the index of the item to remove.

Table 13-1 lists the properties, collections, and methods exposed by the HttpApplicationState class.

Table 13-1. HttpApplicationState class summary
Properties Collections Methods Events[1]

Count AllKeys Add Start
Item Contents Clear End

 Keys Get  
 StaticObjects GetKey  
  Lock  
  Remove  
  RemoveAll  
  RemoveAt  
  Set  
  Unlock  
  Events  
  Start  
  End  

[1] Events are exposed by the HttpApplication class rather than the
HttpApplicationState class.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

13.1 Comments/Troubleshooting

Understanding the scope of the Application collection for a given application is important. As
mentioned above, the Application object is created the first time a client requests a URL within the
application. The boundary of that ASP.NET application is defined by the boundary of an IIS
application; the boundary of the ASP.NET application includes all of the ASP.NET pages within a single
IIS Application and all of its subfolders and virtual directories. It does not, however, include any
subfolders that are defined as IIS Applications. Figure 13-1 illustrates the different folder types in IIS.
In Figure 13-1, the SubApp subfolder is a child folder of the Chapter_13 application and shares
Application state with it. If, however, the SubApp folder is configured as an IIS Application (by
accessing the Virtual Directory tab of the Properties dialog for the folder and clicking the Create
button in the Application Settings section), it will then define its own application boundaries, which
will not be shared with the parent Chapter_13 application.

Figure 13-1. IIS folder types

In classic ASP, a big no-no was storing non-thread-safe COM objects (which meant any COM object
written in Visual Basic) in the Application collection. This was because such components would force
IIS to process requests to the Application that stored the COM object only from the same thread that
created the object, which substantially limited scalability. In ASP.NET, this is less of an issue, since all
managed .NET components can be stored safely in the Application collection without impacting
scalability due to threading model considerations.

When accessing any resource potentially shared by many clients, one concern is the synchronization
of access to that resource. For instance, imagine that you declare a variable in the application
collection to track the number of users currently logged into your application. To do so, in your
Session start event handler (also defined in the global.asax file and covered completely in Chapter
19), you can place code such as this:

LocalVal = Application("Counter")
Application("Counter") = localVal + 1

This contrived example (don't use it in your application) shows a problem that can occur with global
variables shared by multiple threads. Imagine that two sessions are created simultaneously. Each
session gets its local copy of the Application variable, which will be the same since they were
requested simultaneously. Then each thread sets the Application variable to its own local value plus
one. In the end, though two clients incremented the value of our counter, the value will increase by
only one.

Fortunately, a solution is provided within the HttpApplicationState class. The Lock and UnLock methods
allow a developer to synchronize access to shared resources. Lock and UnLock must be called in
matched pairs. The Lock method is entered only when no other client executes code between calls to
Lock and UnLock. Win32 programmers may recognize the similarity between the use of Lock and
Unlock in the HttpApplicationState class and Win32 critical sections.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The example above could be rewritten to be thread safe as follows:

Application.Lock(  )
LocalVal = Application("Counter")
Application("Counter") = LocalVal + 1
Application.UnLock(  )

While using Lock and UnLock solves the problem, their use should be absolutely essential. For
instance, synchronization of Application-level variables is not required in the Application start or
Application end event, since these events are called only once -- just before the first client operation
starts and just after the last client operation ends, respectively. Excessive use of Lock and UnLock can
degrade both performance and scalability.

In addition to properties and methods provided for backwards compatibility with classic ASP, the
ASP.NET version of the Application object adds several useful new properties and methods, including
the AllKeys collection, the Count property, and the Clear, Get, GetKey, RemoveAll, RemoveAt, and Set
methods.

In this chapter, we'll use the following code listing as the basis for most examples in the chapter.
Unless otherwise noted, each example consists of just the Page_Load event handler for that particular
example. Any output messages or return values displayed are shown as the Text property of the
ASP.NET Label control named Message or displayed by calling Response.Write.

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

13.2 Properties Reference

Count

Integer = Application.Count

Returns an Integer containing the number of items currently in the Application collection. The Count
member is derived from the ICollection interface, which is implemented by the HttpApplicationState
class.

Parameters

Integer

An Integer variable that will receive the Count property value.

Example

The example adds two values to the Application collection, displays the count of items in the
Application collection, and then uses the Count property as a looping control value to display each
item:

Sub Page_Load(  )
   Application.Clear(  )
   Application("foo") = "Hello, "
   Application("bar") = "World!"
   Message.Text = "The Application collection contains " & _
      Application.Count & " items: "
      Dim I as Integer
      For I = 0 To Application.Count - 1
         Message.Text &= Application(I)
      Next
End Sub

Notes

The Count property is new for ASP.NET. In addition to using the Count property for looping through
the Application collection, you can use the property to keep track of how many items the Application
stores at any given time. For example, you could write this information to a log for later review.

Item

Object = Application.Item(ByVal name As String)
Application.Item(ByVal name As String) = Object
Object = Application.Item(ByVal index As Integer)
Application.Item(ByVal index As Integer) = Object

Returns or sets an Object associated with a particular name or index.

Parameters

Object

A variable of any type (since all .NET types are ultimately derived from Object) that will receive
or set the item's value.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


name

A String argument containing the text key to apply to the item (or by which to retrieve the
item).

index

An Integer argument containing the index of the item whose value will be retrieved or
modified.

Example

The example sets the values of two items in the Application collection. If these items do not already
exist in the collection, they will be added. The example then displays the two values.

Sub Page_Load(  )
   Application.Clear(  )
   Application.Item("foo") = "foo"
   Application.Item("foo2") = "foo2"
   Message.Text = Application.Item("foo") & "<br/>"
   Message.Text &= Application.Item(1)
End Sub

Notes

The Item property is accessed implicitly when using the syntax:

Application("foo") = "foo"

This syntax is often seen in classic ASP code. Explicitly referencing the Item property is not required,
but listing it may make your code more readable and understandable than accessing it implicitly.

Note that an index may only be used as an argument when modifying a value, not when creating a
new item, and the index must be less than the number of items in the Application collection, or an
exception will be thrown.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

13.3 Collections Reference

AllKeys

Dim StateVars(Application.Count) As String 
StateVars = Application.AllKeys

Returns a string array of key names stored in the HttpApplicationState object.

Parameters

StateVars

A variable of type String array that will receive the array of key names.

Example

The example displays all keys of data stored to the Application object:

Sub Page_Load(  )
   Dim I as Integer
   Dim StateVars(Application.Count - 1) As String
   StateVars = Application.AllKeys
   For I = 0 to StateVars.Length - 1 
      Message.Text = Message.Text + StateVars(I) + "<br/>"
   Next I
End Sub 

Notes

This property provides a list of key names assigned to all current Application variables.

Contents

HttpApplicationState = Application.Contents

Returns a reference to the current HttpApplicationState instance.

Parameters

HttpApplicationState

A variable of type HttpApplicaitonState that will receive the Contents reference.

Example

The example below calls the RemoveAll method through the Contents collection reference and then
writes a message:

Sub Page_Load(  )
Application.Contents.RemoveAll(  )
Message.Text = "Removed all items from current Application."
End Sub

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

This property is provided for backward compatibility with classic ASP. Properties such as the Item
property and methods such as Remove and RemoveAll were accessed via the Contents property in
classic ASP. In new ASP.NET development, you should access these members directly. For example,
instead of calling the RemoveAll method through the Contents property, you can call RemoveAll
method directly:

Application.RemoveAll(  )

Keys

KeysCollection = Application.Keys

Returns a NameObjectCollectionBase.KeysCollection containing the string keys associated with all
values stored in the Application collection.

Parameters

KeysCollection

A variable of type NameObjectCollectionBase.KeysCollection that will receive the Keys property
value.

Example

The example loops through the collection of keys in the Application collection, and then displays the
key name and the value associated with it by using the Text property of the Message control:

Sub Page_Load(  )
   Dim Key As String
   Message.Text = "Application Keys:"
   For Each Key in Application.Keys
      Message.Text &= "<br/>Key:&nbsp;&nbsp;&nbsp;" & Key
      Message.Text &= "<br/>Value:&nbsp;&nbsp;&nbsp;" & Application(Key)
   Next
End Sub

Notes

The Keys property provides one of many ways to iterate over the contents of the Application
collection.

StaticObjects

HttpStaticObjectsCollection = Application.StaticObjects

Returns an HttpStaticObjectsCollection containing all objects instantiated in global.asax using the
<object runat="server"> syntax whose scope attribute is set to Application.

Parameters

HttpStaticObjectsCollection

A variable of type HttpStaticObjectsCollection that will receive the StaticObjects property value.

Example

The example uses the Count property of the HttpStaticObjectsCollection class to display the number of
objects in the current application declared with the <object scope="Application" runat="server"/>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


objects in the current application declared with the <object scope="Application" runat="server"/>
syntax in global.asax. It then checks the type of each object, and if it is a Web TextBox control, adds
it to the Controls collection of the current page.

Sub Page_Load(  )
   Message.Text = "There are " & Application.StaticObjects.Count & _
      " objects declared with the " & _
      "&lt;object runat=&quot;server&quot;&gt; syntax " & _ 
      "in Application scope."
   Dim myobj As Object
   For Each myObj in Application.StaticObjects
      If myObj.Value.GetType.ToString(  ) = _
         "System.Web.UI.WebControls.TextBox" Then
         Page.Controls.Add(myObj.Value)
      End If
   Next
End Sub

Notes

This property is provided for backward compatibility with classic ASP. You should think carefully
before instantiating objects with Session or Application scope because of the impact such objects have
on resource usage and application scalability. In most cases, it is advisable to limit objects to page
scope.

Note that each object in the collection is represented by the DictionaryEntry structure, so its key and
value are not directly accessible. To access the key and/or value, use the Key and/or Value members
of the DictionaryEntry structure.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

13.4 Methods Reference

Add

Application.Add(ByVal name As String, ByVal value As Object)

Adds a value to the Application collection.

Parameters

Name

A variable of type String that specifies the name of the item to be added to the Application
collection.

Value

A variable of type Object that contains the value for the item to be added to the Application
collection.

Example

The example adds an item to the Application collection and then displays it:

Sub Page_Load(  )
   Application.Add("Added", "AddedValue")
   Message.Text = Application("Added")
End Sub

Notes

The Add method, which is new in ASP.NET, provides a technique for adding items to the Application
collection that is consistent with the technique used for adding items to other .NET collections. Of
course, the classic ASP syntax of directly indexing the Application object by using the key name of
index works correctly as well.

Clear

Application.Clear(  )

Clears the contents of the Application collection.

Parameters

None

Example

The example clears the contents of the Application collection and writes a message to the Text
property of the Message control that includes the current count of the collection, which should be 0:

Sub Page_Load(  )
   Application.Clear(  )
   Message.Text = "There are " & Application.Count & _
      " items in the Application collection."
End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


End Sub

Notes

The Clear method, which is new for ASP.NET, clears only the contents of the Application collection
itself. It does not clear the contents of the StaticObjects collection.

Get

Application.Get(ByVal name As String)
Application.Get(ByVal Index As Integer)

Gets an element of the Application collection either by name or ordinal position (index) within the
Application collection. Generally, the name is used in calls to Get unless you need to get members of
the collection inside a loop.

Parameters

name

A variable of type String that specifies the name of the item to be retrieved from the
Application collection.

Index

A variable of type Integer that specifies the index of the item to be retrieved from the
Application collection.

Example

The example below sets and gets a value from the Application collection. It also uses the Get method
to write a message to the Text property of the Message control that includes the current value of the
newly added element of the Application collection.

Sub Page_Load(  )
   Application("GetTest") = "Got it!"
   Message.Text = "GetTest = " & Application.Get("GetTest")
End Sub

Notes

You can see whether a named value is saved in the Application collection by checking to ensure that
its value is not null, as shown in the following code:

If Not Application("Foo") is Nothing then
   Message.Text = "Foo is set to " & Application.Get("Foo")
End If

GetKey

Application.GetKey(ByVal Index As Integer)

Retrieves the key name corresponding to the index of a data item stored to the Application object.

Parameters

Index

A variable of type Integer that specifies the index of the key to be retrieved from the
Application collection.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example removes all values from the Application collection in order to start from a known state.
Next, it writes a single value to the Application collection. Finally, it saves the key from the first
element (index 0) retrieved by a call to GetKey into the Message control.

Sub Page_Load(  )
   Application.RemoveAll(  )
   Application("GetKeyTest") = "Got it!"
   Message.Text = "Key of Application(0) = " & _ 
                   Application.GetKey(0) & _
                   "<br/>(Should be GetKeyTest)"
End Sub

Notes

If Index is less than 0 or greater than Application.Count - 1, an ArgumentOutOfRangeException
exception will be thrown.

Lock

Application.Lock

Locks access to an Application collection to facilitate access synchronization.

Parameters

None

Example

The example locks the application, sets an application page load counter variable, unlocks the
application, and displays the value:

Sub Page_Load(  )
   Application.Lock(  )
   Application("Counter") = Application("Counter") + 1
   Application.UnLock(  )
   Message.Text = "Counter = " & Application("Counter") 
End Sub

Notes

In the example, note that we Lock the application, perform any operations that modify values within
the Application collection, and UnLock the application as quickly as possible. Any read access to the
Application collection can safely take place outside the Lock/UnLock method calls.

Remove

Application.Remove(ByVal name As String)

Removes an item by name from the Application collection.

Parameters

name

A String argument containing the name (key) of the item to remove.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example determines whether the item with the key "foo" exists in the Application collection and,
if it does, removes the item and displays an appropriate message:

Sub Page_Load(  )
   If Not Application("foo") Is Nothing Then
      Application.Remove("foo")
      Message.Text = "Item 'foo' was removed."
   Else
      Message.Text = "Item 'foo' does not exist."
   End If
End Sub

Notes

The Remove method is provided for backwards compatibility with classic ASP. In classic ASP, this
method was accessed through the Contents collection. In ASP.NET, this method can be accessed
either directly, as shown above, or through the Contents collection.

RemoveAll

Application.RemoveAll(  )

Removes all items from the Application collection.

Parameters

None

Example

The example checks to ensure that at least one item is in the Application collection, and if it is, it
clears the collection by calling the RemoveAll method.

Sub Page_Load(  )
   If Application.Count > 0 Then
      Application.RemoveAll(  )
      Message.Text = "Application collection cleared."
   Else
      Message.Text = "Application collection is already empty."
   End If
End Sub

Notes

The RemoveAll method is provided for backwards compatibility with classic ASP. In classic ASP, this
method was accessed through the Contents collection. In ASP.NET, this method can be accessed
either directly, as shown above, or through the Contents collection.

RemoveAt

Application.RemoveAt(ByVal index As Integer)

Removes an item from the Application collection by index. This is a new companion to the Remove
method, which removes an item by key.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

index

An Integer argument containing the index location of the item to remove from the Application
collection.

Example

Sub Page_Load(  )
   If Application.Count > 0 Then
      Application.RemoveAt(0)
      Message.Text = "The item at index 0 was removed."
   Else
      Message.Text = "The item at index 0 does not exist."
   End If
End Sub

Notes

The RemoveAt method allows items to be removed from the Application collection by index rather
than by key. As in the example above, the items that follow the removed item will shift one position in
the collection when the item is removed. If you remove an item by index and then call RemoveAt
again with the same index, you will remove the item that immediately followed the original removed
item. If a single item is in the Application collection and you call RemoveAt a second time, an
ArgumentOutOfRangeException exception will be thrown.

Set

Application.Set(ByVal name As String, ByVal value As Object)

Updates the value of an object in the Application collection. This new method allows you to set objects
in the Application collection.

Parameters

Name

A String argument containing the name of the object in the Application collection to be
updated.

Value

An Object argument containing the new value of the Application collection object to be
updated.

Example

The example uses Set twice -- once to set a new item in the Application collection and again to
change that value.

Sub Page_Load(  )
   Application.RemoveAll(  )
   Application.Set("TotallyNewVariable","Test!")
   Message.Text = "First: " + Application("TotallyNewVariable") + "<br/>"
   Application.Set("TotallyNewVariable","Test again!")
   Message.Text = Message.Text & "First after Set: " +     
   Application("TotallyNewVariable") + "<br/>"
End Sub

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

Set can be used to add values to the Application collection, but you will normally just use the simple
syntax you are used to from classic ASP:

    Application("TotallyNewVariable") = "Test!"

UnLock

Application.UnLock

Unlocks access to an Application collection to facilitate access synchronization.

Parameters

None

Example

The example locks the application, sets an application page load counter variable, unlocks the
application, and displays the value:

Sub Page_Load(  )
   Application.Lock(  )
   Application("Counter") = Application("Counter") + 1
   Application.UnLock(  )
   Message.Text = "Counter = " & Application("Counter") 
End Sub

Notes

In the example, note that we Lock the application, perform any operations that modify values within
the Application collection, and UnLock the application as quickly as possible. Any read access to the
Application collection can safely take place outside the Lock/UnLock method calls.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

13.5 Events Reference

Start

Sub Application_OnStart( )
   'Event handler logic
End Sub

Fired when the Application is created. The event handler for this event should be defined in the
global.asax application file.

Parameters

None

Example

The example writes an entry to both the Application Event log and the IIS log for the application to
indicate that the Start event has fired:

<Script language="VB" runat="server">
   Sub Application_OnStart(  )
      Dim EventLog1 As New System.Diagnostics.EventLog ("Application", _
         ".", "mySource")
      EventLog1.WriteEntry("Application_OnStart fired!")
      Context.Response.AppendToLog("Application_OnStart fired!")
   End Sub
</script>

There is one issue with the code above. Security in the released version of the .NET framework has
been tightened, so writing to the event log will not work by default in an ASP.NET application.

Notes

The Start event is useful for performing initialization tasks when the application is initialized. You can
initialize Application variables that are mostly static.

End

Sub Application_OnEnd(  )
   'Event handler logic
End Sub

Fired when the application is torn down, either when the web server is stopped or when the
global.asax file is modified. The event handler for this event should be defined in the global.asax
application file.

Parameters

None

Example

The example below writes an entry to the Application Event log to indicate that the End event has
fired.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<Script language="VB" runat="server">
   Sub Application_OnEnd(  )
      Dim EventLog1 As New System.Diagnostics.EventLog ("Application", _
         ".", "mySource")
      EventLog1.WriteEntry("Application_OnEnd fired!")
   End Sub
</script>

Notes

The End event is useful for performing cleanup tasks when the Application ends, either because the
web service stops or the global.asax file is changed.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 14. The HttpContext Class

With all the knowledge gained about the HttpApplicationState class covered in the last chapter, the
next question is, "How you gain access to a copy of the HttpApplicationState within your application?"
The good news is that within an ASP.NET page, the Application instance of the HttpApplicationState
class is available exactly as it appears in a classic ASP page. The Response, Request and other objects
familiar to classic ASP are also available. These and other objects are available by using the
HttpContext class.

Unlike many classes within ASP.NET, the HttpContext class adds new methods and properties but does
not contain any significant methods or properties carried over from classic ASP that are deprecated in
ASP.NET. New properties include IsCustomErrorEnabled, IsDebuggingEnabled, SkipAuthorization, and
Trace.

The HttpContext class encapsulates all the HTTP-specific information about a given HTTP request. The
HttpContext class contains an Items collection that allows the developer to store information for the
duration of the current request. In some ways, this class is similar to HttpSessionState (discussed in
Chapter 19). However, information stored in the HttpContext collection is held only for the duration of
the current request. While this might not initially seem useful, it is often helpful.

For instance, suppose an application is structured so that the user enters information into a form and
clicks a button with a server-side event handler. When the button's Click handler is called, a different
page must get the information. After placing the information gathered from the form in the
HttpContext class, the click handler can use the server-side Server.Transfer method to go to the
second page without requiring another round trip from the server to the client. In addition to other
pages, HttpHandlers and HttpModules that might participate in a given request have access to the
context.

The HttpContext object will seem a bit redundant for developers who only write traditional ASP.NET
pages. Most of the properties and methods are duplicated in the Page object, so they might not seem
important. However, if you are creating other types of ASP.NET code, such as HttpModules and
HttpHandlers, the HttpContext class can be a lifesaver. Even developers creating only standard
ASP.NET pages might need to use the HttpContext object if they are creating event handlers in the
global.asax file. In some contexts, the traditional objects used within ASP.NET pages are not available
within these global.asax event handlers.

Table 14-1 lists the properties, collections, and methods exposed by the HttpContext class.

Table 14-1. HttpContext class summary
Properties Collections Methods (instance) Methods (static/shared)

Application AllErrors AddError GetAppConfig

ApplicationInstance Items ClearError  
Cache  GetConfig  
Current  RewritePath  
Error    
Handler    
IsCustomErrorEnabled    
IsDebuggingEnabled    
Request    
Response    
Server    
Session    
SkipAuthorization    

   

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Timestamp    
Trace    
User    

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

14.1 Comments/Troubleshooting

Many HttpContext class properties are topics in their own right. For instance, the Application,
Response, Request and Session properties are accessible here, but covered in detail elsewhere in this
book. A couple of methods within HttpContext, however, might require further explanation.

GetConfig sounds like it might be a way to get the appSettings configuration information mentioned in
the previous chapter. While it is possible to use GetConfig("appSettings") for that purpose, it requires
some casting. GetConfig returns an instance of System.Configuration.ReadOnlyNameValueCollection,
which is a private class. To actually use the returned value, you need to cast it to a
System.Collections.Specialized.NameValueCollection. Instead of doing this, using
ConfigurationSettings.AppSettings is safer and easier. Why is GetConfig there, then? In addition to
the appSettings section, a developer can place custom sections within the configuration files, which is
what GetConfig is designed for.

The other somewhat unusual (although much more useful) method in HttpContext is RewritePath. The
MSDN documentation on this method is, shall we say, sparse. The real use for this method is to
silently redirect the user to a different URL.

In this chapter, as in others in the book, we'll use the following code listing as the basis for most
examples in the chapter. Unless otherwise noted, each example will consist of the Page_Load event
handler for just that particular example. Any output messages or return values displayed will be
shown as the Text property of the ASP.NET Label control named Message or displayed by calling
Response.Write.

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

Some examples will show Application handlers within global.asax rather than the Page_Load method
of a page.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

14.2 Properties Reference

Application

HttpApplicationState = Context.Application

Returns the current Application state object.

Parameters

HttpApplicationState

An HttpApplicationState object that will receive the value of the property.

Example

The example sets an application value using the Application instance exposed by the Page class and
gets the instance from Context. Finally, it displays the newly set value by using the
HttpApplicationState instance retrieved from the Context object (proving they are the same object):

Sub Page_Load(  )
    Dim App as HttpApplicationState
    Page.Application("Test")="Value"
    App = Context.Application
    Message.Text = App("Test")
End Sub

Notes

Often, you will use the copy of Application from the Page class. However, for objects not derived from
Page (for instance, HttpHandlers and HttpModules) this is a convenient way to access the Application
state.

Do not confuse this property, which returns an instance of type HttpApplicationState, with the
ApplicationInstance property, which returns an instance of type HttpApplication.

ApplicationInstance

Context.ApplicationInstance = HttpApplication
HttpApplication = Context.ApplicationInstance

Returns or sets the current HttpApplication object.

Parameters

HttpApplication

An HttpApplication object that will receive or set the value of the ApplicationInstance property.

Notes

Generally, you do not need to use the HttpApplication object, since the properties it exposes are
usually available through other objects. One exception is is when accessing all the methods that allow
you to add event handlers for this request.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Cache

HttpCache = Context.Cache

Returns an instance of the Cache class.

Parameters

HttpCache

An Object variable of type Cache.

Example

The example retrieves an instance of the Cache class into a local variable and then adds a value to the
cache:

Sub Application_BeginRequest(  )
   Dim myCache As Cache
   myCache = Context.Cache
   myCache.Add("Test", "Test", Nothing, _ 
      System.DateTime.Now.AddHours(1), Nothing, _ 
      CacheItemPriority.High, Nothing)
End Sub

Notes

Note that rather than using the Page_Load event, the example above shows the
Application_BeginRequest event handler in global.asax; a common use of the Cache property is to
access the cache at points during request processing when the Cache property of the Page object is
not available, such as before the Page object is instantiated.

Current

HttpContext = HttpContext.Current

Retrieves the current HttpContext instance.

Parameters

HttpContext

The current context.

Example

This example uses the IsDebuggingEnabled property, described later in this chapter, to show whether
debugging is enabled:

Sub Page_Load(  )
   Message.Text = HttpContext.Current.IsDebuggingEnabled.ToString(  )
End Sub

Notes

Current is a shared (static) property, indicating that you can access it without creating an instance of
the HttpContext class.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Error

Exception = Context.Error

Returns the first error, if any, associated with the current request.

Parameters

Exception

An Exception variable to receive the value of the property.

Example

The example checks to see if the Error property on the current context object is null (Nothing in
VB.NET). If it is not null, it displays the error; otherwise, it displays a message indicating there is no
error.

Sub Page_Load(  )
   If Not HttpContext.Current.Error Is Nothing then
      Message.Text = HttpContext.Current.Error.ToString(  )
   Else
      Message.Text = "No error detected"
   End If 
End Sub

Handler

IHttpHandler = Context.Handler
Context.Handler = IHttpHandler

Sets or returns an instance of the IHttpHandler for the current request.

Parameters

IHttpHandler

An Object variable of a type that implements the IHttpHandler interface.

Notes

The Handler property can be used to specify special handling for this request. To understand this idea,
you need to understand how requests are processed in IIS. When a request comes in, unless the item
requested is a simple HTML file, the request is generally handled by an Internet Server API (ISAPI)
extension. For instance, classic ASP and ASP.NET pages are directed to ISAPI applications that
process the request. ISAPI applications are reasonably easy to write in principal, but are very difficult
to create in practice. The IHttpHandler interface is the .NET way of allowing the developer to write
code to for requests to be handled in a way similar to ISAPI applications in IIS, without all of the
problems of ISAPI.

IsCustomErrorEnabled

Boolean = Context.IsCustomErrorEnabled

Returns a Boolean value specifying whether custom errors are enabled for the current request.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

Boolean

A Boolean variable to receive the value of this property.

Example

The following example displays True if custom errors are enabled; otherwise, it displays False.

Sub Page_Load(  )
    Message.Text = "Custom Error Enabled?" & _
        Context.IsCustomErrorEnabled
End Sub

Notes

This flag is controlled by the customErrors section in web.config. If the customErrors element's mode
attribute is set to On,, IsCustomErrorEnabled returns True. If the customErrors element's mode
attribute is set to False or RemoteOnly, this flag is False.

IsDebuggingEnabled

Boolean = Context.IsDebuggingEnabled

Returns a Boolean value specifying whether debugging is enabled for the current request.

Parameters

Boolean

A Boolean variable to receive value of this flag.

Example

The example displays True if debugging enabled; otherwise, it displays False:

Sub Page_Load(  )
   Message.Text = "Debugging Enabled?" & _
      Context.IsDebuggingEnabled
End Sub

Notes

This flag is controlled by the compilation section in web.config. If the compilation section's debug
attribute is set to True, IsDebuggingEnabled returns True. If the debug attribute in the compilation
section is set to False, this property is False.

Request

HttpRequest = Context.Request

Returns the HttpRequest object for the current request.

Parameters

HttpRequest

An HttpRequest variable to receive the current HttpRequest object.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

This property is provided for applications other than ASP.NET pages (where the Page.Request
property is normally used to retrieve the HttpRequest object). Code that does not have access to the
properties of the Page class includes HttpHandlers and HttpModules, as well as event handlers in
global.asax.

Response

HttpResponse = Context.Response

Returns the HttpResponse object for the current request.

Parameters

HttpResponse

An HttpResponse variable to receive the current HttpResponse object.

Notes

This property is provided for applications other than ASP.NET pages (where the Page.Response
property is normally used to retrieve the HttpResponse object). Code that does not have access to the
properties of the Page class includes HttpHandlers and HttpModules, as well as global.asax. One
common reason for using Context.Response is to write cookies in an HttpModule.

Session

HttpSessionState = Context.Session

Returns the HttpSession object for the current request.

Parameters

HttpSessionState

An HttpSessionState object to receive the current session.

Notes

This property is provided for applications other than ASP.NET pages (where the Page.Session property
is normally used to retrieve the HttpSessionState object). Code that does not have access to the
properties of the Page class includes HttpHandlers and HttpModules, as well as global.asax. When
using Context.Session in the Application event handlers of global.asax, Session is not available in the
Application BeginRequest event, but can be used in, for instance, the
Application_PreRequestHandlerExecute event.

SkipAuthorization

Boolean = Context.SkipAuthorization
Context.SkipAuthentication = Boolean

Set s or returns a flag indicating whether the URLAuthorization module will skip the authorization
check. The default is False.

Parameters

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

Boolean

A Boolean variable returning or setting the flag regarding authorization checks.

Example

The following example retrieves the status of the SkipAuthorization property and displays it in the
Message label control:

Sub Page_Load(  )
   Message.Text = "SkipAuthorization? " _ 
      & Context.SkipAuthorization
End Sub

Notes

To set this value, the ControlPrincipal Flag must be set in the Flags property of the SecurityPermission
object. This property is used internally by the Forms and Passport authentication modules.

Timestamp

timestamp = Context.Timestamp

Returns a DateTime object containing the date and time of the request on the server.

Parameters

timestamp

An Object variable of type DateTime.

Example

The following example retrieves the date and time of the request and displays it in the Message label
control:

Sub Page_Load(  )
   Message.Text = "Date/Time of Request: " _ 
   & Context.Timestamp
End Sub

Trace

TraceContext = Context.Trace

Returns the TraceContext for the current request. The members of the TraceContext class are listed in
the entry for the Trace Property in Chapter 12.

Parameters

TraceContext

A TraceContext variable to receive the TraceContext object for the current request.

Example

The example retrieves the date and time of the request and displays it in the Message label control.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   Message.Text = "Trace Enabled? " _ 
      & Context.Trace.IsEnabled
End Sub

Notes

Trace can be enabled by setting the Trace attribute of the @ Page directive to True.

User

IPrincipal = Context.User
Context.User = IPrincipal

Returns or sets the IPrincipal object for the current request.

Parameters

IPrincipal

An object that implements the IPrincipal interface. The IPrincipal interface is implemented by
the GenericPrincipal and the WindowsPrincipal classes. IPrincipal defines one property and one
method.

Identity

A property that returns a class that implements the IIdentity interface.

IsInRole(Role as String)

A method that returns a Boolean indicating whether the current principal belongs to the specified Role.

The IIdentity interface provides several useful properties:

AuthenticationType

A property that returns the type of authentication used, if the request is authenticated.

IsAuthenticated

A property that returns a Boolean indicating if the user has been authenticated. This property should be checked (to
ensure it is True) before checking for AuthenticationType or Name. IsAuthenticated returns False if anonymous
authentication is enabled in Internet Information Server and neither Forms nor another authentication method is in use
by ASP.NET.

Name

A property that returns the Name of the current user. The user name format depends upon the type of authentication
used. For Windows authentication, the name is in the format of DOMAIN\UserName.

Example

The example checks to see if the user is authenticated and if so, returns the name of the user:

Sub Page_Load(  )
   Message.Text = "User.Identity.IsAuthenticated?  " _
      & Context.User.Identity.IsAuthenticated & "<br/>"
   If Context.User.Identity.IsAuthenticated Then
      Message.Text = Message.Text & "User.Identity.Name?  " _
          & Context.User.Identity.Name & "<br/>"
   End If
End Sub

Notes

Understanding the values you receive back when checking the User property requires an
understanding of ASP.NET and Internet Information Server, since the returned values depend on

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


understanding of ASP.NET and Internet Information Server, since the returned values depend on
settings in both.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

14.3 Collections Reference

The Context object in ASP.NET supports one collection, Items, and an array called AllErrors.

AllErrors

ExceptionArray = Context.AllErrors

Returns an array of Exception objects representing all accumulated errors that occurred in the current
request.

As in classic ASP, the Server.GetLastError method returns an ASPError object. This mechanism is still
available, though the returned value is now of type Exception rather than ASPError.

Parameters

None

Example

The example checks to see if the AllErrors array contains any elements and if so, displays them:

Sub Page_Load(  )
    Dim i as Integer
    Dim e As New Exception("A generalized error.")
    Context.AddError(e)
    If Not Context.AllErrors Is Nothing Then
        For i = 0 to Context.AllErrors.Length - 1 
            Message.Text = Message.Text & _ 
                "Exception: " & _
                Context.AllErrors(i).ToString(  ) & "<br/>"
        Next
    Else
        Message.Text = "No Errors to report."
    End if
End Sub

Notes

Unlike classic ASP, arrays in ASP.NET are zero-based, so the first element in any collection or array
will be 0, not 1. Thus, in the example above, the array is indexed from 0 to Length - 1, not from 1 to
Length.

Items

Context.Items(Name as String) = Value
Value = Context.Items(Index as Integer)
Value = Context.Items(Name as String)

The Items collection is a key-value collection that can contain any object the developer wishes to save
for, at most, the duration of the request. Unlike Session- or Application-level collections that can be
used to store values, this collection does not survive past the current request. This collection is the
ideal place to store values that need not survive past the current request, especially if the items need
to be stored or retrieved in places where the Session or Application objects are not available.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

Name

The key name for the value to be stored.

Value

The object to be stored in the Items collection, or the value to be retrieved.

Index

The index of the value to be retrieved.

Example

The example adds two values to the Context.Items collection. The first is added traditionally, referring
to the key in the Items collection directly. The second is added using the Item's collection's Add
method. Finally, the Message label control displays whether the "Foo" value has been set. To display
the string key used, you need to use two double quotes, which displays as the literal quote character.
In C#, the quote character would need to be escaped by placing a backslash (\) in front of it.

Sub Page_Load(  )
   Context.Items("Foo")="Bar"
   Context.Items.Add("Bar","Foo")
   Message.Text = "Context.Items.Contains(""Foo"") is " & _
                  Context.Items.Contains("Foo")
End Sub

Notes

Unlike classic ASP, collections in ASP.NET are zero-based, so the first element in any collection or
array is 0, not 1. While you can, as in the example above, use the Add method to add values to the
Items collection; this is virtually never done. Values are almost always retrieved by referring to the
Items collection directly, either by using a numeric index or indexing using a key string.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

14.4 Methods Reference

AddError

Context.AddError(ByVal ErrorInfo As Exception)

Adds an Exception object to the array of exceptions returned by the AllErrors property.

Parameters

ErrorInfo

An Exception object to be added to the array.

Example

The example shows how you can use AddError to add an error to the current request context. The
exception is created within a Try block. In the Finally block, the ToString method is used to display the
error and the ClearError method is used to clear the error so that the page will display properly.

Sub Page_Load(  )
    Try
        Context.AddError(New Exception("Test"))
    Finally
        Message.Text = "Context.Error.ToString(  ) is " & _
           Context.Error.ToString(  )
        Context.ClearError(  )
    End Try
End Sub

Notes

Adding an exception by using AddError should not be confused with throwing an exception. Using
AddError only adds the exception to the array returned by the AllErrors property and does not invoke
any of the error handling mechanisms in the application.

ClearError

Context.ClearError(  )

Clears all errors for the current request. Note that even though ClearError is singular, it clears all
errors for the current request.

Parameters

None

Example

The example checks whether there are any errors and then clears them. Finally, it reports if it has
cleared any errors.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   If Not Context.AllErrors Is Nothing Then
      Context.ClearError(  )
      Message.Text = "Errors cleared."
   Else
      Message.Text = "No Errors to clear."
   End If
End Sub

GetAppConfig

Object = HttpContext.GetAppConfig(ByVal name As String)

Returns the collection of key/value pairs that are contained in the configuration specified by the name
argument.

Parameters

Object

An object containing the keys and values in the configuration sections specified by name. This
object is often of a type derived from NameValueCollection.

Name

The name of the section to retrieve.

Example

The example shows how you can use the GetAppConfig method to retrieve all items in a configuration
by setting from the web.config or machine.config XML configuration file. While GetAppConfig returns
an Object, you must cast the returned object to the NameValueCollection-derived type defined in the
configuration section to actually access the information. This method is static, so an instance of the
HttpContext class is not required.

Sub Page_Load(  )
   Dim i As Integer
   Dim nv As NameValueCollection
   nv = CType(HttpContext.GetAppConfig("appSettings"), _
              NameValueCollection)
   For i = 0 To nv.Count - 1
       Response.Write(nv.GetKey(i) & " = " & nv(i) & "<br/>")
   Next         
End Sub

Notes

Generally you will not use GetAppConfig to get the appSettings section from the configuration file. It is
much easier and safer to use ConfigurationSettings.AppSettings to get at these values. This method,
however, can be used to get information from custom configuration sections.

GetConfig

Object = Context.GetConfig(ByVal name As String)

Returns the collection of key/value pairs that are contained in the configuration specified by the name
argument.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

Object

An object containing the keys and values in the configuration sections specified by name. This
object is often of a type derived from NameValueCollection.

Name

The name of the section to retrieve.

Example

The example shows how you can use the GetConfig method to retrieve all items in a configuration
setting from the web.config or machine.config XML configuration file. While GetAppConfig returns an
object, you must cast the returned object to the NameValueCollection-derived type defined in the
configuration section to actually access the information.

Sub Page_Load(  )
   Dim i As Integer
   Dim nv As NameValueCollection
   nv = CType(Context.GetConfig("appSettings"), _
              NameValueCollection)
   For i = 0 To nv.Count - 1
      Response.Write(nv.GetKey(i) & " = " & nv(i) & "<br/>")
   Next         
End Sub

Notes

Generally, you will not use GetConfig to get the appSettings section from the configuration file. It is
much easier and safer to use ConfigurationSettings.AppSettings to get these values. This method,
however, can be used to get information from custom configuration sections.

RewritePath

Context.RewritePath(ByVal newURL As String)

Assigns an internal rewrite path.

Parameters

newURL

A String containing a local path to redirect the user silently.

Example

The example below shows how to change the path in a way that is completely transparent to the user.
The URL shown in the address bar remains the original URL, and the redirection to the new page does
not require a round trip to and from the server. RewritePath is almost always called from global.asax
rather than an actual page. That is what this example shows.

Sub Application_BeginRequest(ByVal sender As Object, _ 
   ByVal e As EventArgs)
   ' No matter the URL, redirect to this URL...
   Context.RewritePath("/aspnetian/ShowGetConfig.aspx")
End Sub

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

This method seems to be redundant when compared with methods like Server.Transfer, which allow
the developer to change the page being displayed. In fact, RewritePath serves a very unique purpose.

Perhaps you have seen or registered at Web sites that give registered users a unique URL. For
instance, you might be given a URL like this:

http://www.SomeDomain.com/YourName/default.aspx

Implementing such a system that gives a virtual directory to each user is not practical unless you
have very few registered users. Using RewritePath, the developer can essentially remove a level of
directory hierarchy. This removal occurs without a redirect that would require a round trip to the
server, and without changing the URL as it appears in the browser. Some information will be
extracted and saved in the Context Items collection for use by pages that will be displayed while
translating from the URL entered by the user to the URL used for RewritePath.

In the example above, RewritePath might be sent a URL like this:

http://www.SomeDomain.com/default.aspx

The "YourName" folder name was removed from the URL, and the application can then be customized
for the user identified as "YourName."
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 15. The HttpException Class

The HttpException class provides a container for communicating error information from various classes
used in ASP.NET. The Page, HttpRequest, HttpResponse, HttpServerUtility, and other classes all use the
HttpException class to communicate information about errors that occur when calling their methods or
properties.

The HttpException class is derived from the Exception class, the base class for all exceptions in the
.NET Framework. HttpException adds two methods, GetHtmlErrorMessage and GetHttpCode, as well
as other constructor overloads that create HttpException instances based on HTTP error codes.

In addition to its role in communicating error information from the Request, Response, and other
ASP.NET intrinsic objects, the HttpException class can be useful in communicating error information
from custom components or controls that communicate via HTTP. When an HTTP error occurs in such
a component, you can use one of the constructor overloads for the HttpException class to create an
instance of HttpException that contains the HTTP status code associated with the result, along with a
custom error message, if desired, to the client of the component. This allows you to provide clients
with rich, specific error information that they can handle as they choose. Table 15-1 lists the
properties, collections, and methods exposed by the HttpException class.

Table 15-1. HttpException class summary
Properties Methods (public instance)

ErrorCode (inherited from Exception) GetBaseException (inherited from Exception)
HelpLink (inherited from Exception) GetHtmlErrorMessage
InnerException (inherited from Exception) GetHttpCode
Message (inherited from Exception) ToString (inherited from Exception)

Source (inherited from Exception)  
StackTrace (inherited from Exception)  
TargetSite (inherited from Exception)  

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

15.1 Comments/Troubleshooting

In this chapter, as in others in the book, we'll use the following code listing as the basis for most
examples in the chapter. Unless otherwise noted, each example will consist of just the Page_Load
event handler for that particular example. Any displayed output messages or return values will be
shown as the Text property of the ASP.NET Label control named Message or displayed by calling
Response.Write:

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" forecolor="red" runat="server"/>
</body>
</html>
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

15.2 Constructor Reference

The HttpException provides several overloaded constructors for communicating custom HTTP error
information:

Dim MyHttpEx As New HttpException( )

Creates an empty instance of HttpException.

Throw New HttpException(string)

Throws an HttpException whose Message property is set to the value of the string passed into
the constructor.

Throw New HttpException(integer, string)

Throws an HttpException whose GetHttpCode method will return the integer value passed into
the constructor, and whose Message property is set to the value of the string passed into the
constructor.

Throw New HttpException(string, Exception)

Throws an HttpException whose Message property is set to the value of the string passed into
the constructor, and whose InnerException property is set to the Exception object passed into
the constructor.

Throw New HttpException(string, integer)

Throws an HttpException whose Message property is set to the value of the string passed into
the constructor, and whose ErrorCode property is set to the value of the integer passed into the
constructor.

Throw New HttpException(integer, string, Exception)

Throws an HttpException whose GetHttpCode method returns the integer value passed into the
constructor, whose Message property is set to the value of the string passed into the
constructor, and whose InnerException property is set to the Exception object passed into the
constructor.

Throw New HttpException(integer, string, integer)

Throws an HttpException whose GetHttpCode method returns the first integer value passed into
the constructor, whose Message property is set to the value of the string passed into the
constructor, and whose ErrorCode property is set to the value of the second integer passed into
the constructor.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

15.3 Properties Reference

ErrorCode

integer = HttpException.ErrorCode

Returns an integer representing the Win32 error code or HRESULT of the exception. This property is
especially useful in situations when you are working with COM objects through COM Interop and need
to return or evaluate the HRESULT returned from a COM object failure. When creating HttpException
instances in your own code, you can use one of two overloaded constructors (shown earlier in Section
15.1) to set this property for HttpExceptions that you throw.

Parameters

integer

An integer that will receive the HRESULT or Win32 error code from the property.

Example

The code example uses the Page_Load event handler to throw an HttpException with a custom error
message and error code, and then uses structured exception handling to catch the exception and
display the error message and error code as the text of an ASP.NET Label control:

Sub Page_Load(  )
   Try
      Throw New HttpException("Threw an error from Page_Load", 100)
   Catch HttpEx As HttpException
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
      Message.Text &= "Error Code: " & HttpEx.ErrorCode & "<br/>"
   End Try
End Sub

Notes

While the ErrorCode property is primarily useful when working with COM objects, this property is also
set by the ASP.NET intrinsic objects when an exception is thrown.

HelpLink

string = HttpException.HelpLink
HttpException.HelpLink = string

Sets or returns a string containing the URN or URL to a help file containing information about the
exception.

Parameters

string

A string that will set the HelpLink property or receive the help link from the property.

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The code example will display the help link associated with a custom HttpException:

Sub Page_Load(  )
   Try
      Dim myHttpEx As _
         New HttpException("Threw an exception from Page_Load")
      myHttpEx.HelpLink = "file://C:/myHelpDir/myHelpFile.htm"
      Throw myHttpEx
   Catch HttpEx As HttpException
      Message.ForeColor = System.Drawing.Color.Red
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
      Message.Text &= "Error Code: " & HttpEx.ErrorCode & "<br/>"
      Message.Text &= "Help Link: " & HttpEx.HelpLink & "<br/>"
   End Try
End Sub

Notes

The HelpLink is not always set by exceptions thrown from the ASP.NET intrinsic objects. For example,
if you attempt to access the Session intrinsic object when Session state is disabled, an HttpException
will be thrown, but its HelpLink property will return an empty string.

InnerException

Exception = HttpException.InnerException

Returns an Exception object containing the inner exception of the HttpException object.

Parameters

Exception

An Exception instance that will be populated by the property.

Example

The code example creates two exceptions, the second of which is created with an overloaded
constructor that sets the InnerException property to the first exception. The code throws the second
exception, which is caught by the Catch statement. The Catch block then displays the error messages
of both the outer and inner exceptions:

Sub Page_Load(  )
   Try
      Dim myHttpEx As _
         New HttpException("This is a nested exception")
      Throw New HttpException("Threw an exception from Page_Load", _
         myHttpEx)
   Catch HttpEx As HttpException
      Dim InnerHttpEx As HttpException
      InnerHttpEx = CType(HttpEx.InnerException, HttpException)
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
      Message.Text &= "Inner Exception Message: " & _
         InnerHttpEx.Message & "<br/>"
   End Try
End Sub

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

The InnerException property allows exceptions to be nested, which can allow developers to track
down the root cause of an exception, even when multiple exceptions are thrown. Because the
InnerException property is inherited from the Exception class, other types of exceptions can be nested
within an HttpException, and HttpExceptions can be nested within other exception types. The
InnerException property can only be set manually through one of the overloaded constructors of the
HttpException class.

Message

string = HttpException.Message

Returns a string representing the error message associated with the exception. The error message is
the human-readable text description of the error.

Parameters

string

A string that will receive the error message value from the property.

Example

The code example creates and throws an exception, passing the desired error message into the
HttpException constructor, and then displays the Message property of the exception as the Text
property of an ASP.NET Label control:

Sub Page_Load(  )
   Try
      Throw New HttpException("Threw an error from Page_Load")
   Catch HttpEx As HttpException
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
   End Try
End Sub

Notes

The ease with which the Message property can be accessed makes it temping to simply display this
property when an error occurs. A better approach to error handling, however, is to log this
information either in the NT Event Log or in your own private application log and handle the error to
the user transparently. This provides you with better information to troubleshoot your applications
and gives your users a more satisfying (and less frustrating) experience.

Source

string = HttpException.Source
HttpException.Source = string

Sets or returns a string representing the source of the exception. For custom exceptions that you
create and throw, this code may be set to the name of the method and/or class from which the
exception is thrown.

Parameters

string

A string that will receive the value from the property.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The code example causes an exception by attempting to set a Session value on a page for which the
enableSessionState attribute of the @ Page directive has been set to False. The example code then
displays the resulting error message and source:

<%@ Page Language="vb" EnableSessionState="false" %>
  
...
  
Sub Page_Load(  )
   Try
      Session("foo") = "Foo"
   Catch HttpEx As HttpException
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
      Message.Text &= "Source: " & HttpEx.Source & "<br/>"
   End Try
End Sub

Notes

In the example, the Source property returns the value System.Web as the source of the Exception,
which is not very specific. When creating and throwing your own custom exceptions, be as specific as
possible with error messages and source descriptions. Just remember that providing specific
information about an exception you're throwing is no substitute for handling the exception condition
within your code instead of throwing an exception. If you have sufficient information about what went
wrong to correct the problem, doing so is almost always preferable to throwing an exception that will
interrupt the flow of the application from your users' standpoint.

StackTrace

string = HttpException.StackTrace

Returns a string containing a list of the methods in the current call stack in which the exception
occurred. The method in which the exception occurred is listed first, followed by any additional
methods in the call stack (methods that called the method in which the exception occurred), up to the
point at which the exception was handled.

Parameters

string

A string that will receive the stack trace value from the property.

Example

In the code example, the Page_Load event handler calls the ThrowMeAnException method, which
throws an HttpException. The exception handler in Page_Load then displays the error message and
stack trace:

Sub Page_Load(  )
   Try
      ThrowMeAnException
   Catch HttpEx As HttpException
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
      Message.Text &= "Stack Trace: " & HttpEx.StackTrace & "<br/>"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      Message.Text &= "Stack Trace: " & HttpEx.StackTrace & "<br/>"
   End Try
End Sub
Sub ThrowMeAnException(  )
   Throw New HttpException("Threw an error from ThrowMeAnException")
End Sub

Notes

The stack trace for the example first lists the ThrowMeAnException method, including the local path to
the .aspx file containing the method and the line number at which the exception was thrown, and
then lists the Page_Load method, including the path and line number where the exception originated.

TargetSite

MethodBase = HttpException.TargetSite

Returns a MethodBase instance (the MethodBase class resides in the System.Reflection namespace)
representing the method from which the exception was thrown. You can query the properties of
MethodBase, such as the Name property, which returns the name of the method. You can also call
ToString on the instance to return information about the method in a usable format.

Parameters

MethodBase

An instance of the MethodBase class representing the method from which the exception was
thrown.

Example

The code example causes an exception by attempting to set a Session value on a page for which the
EnableSessionState attribute of the @ Page directive has been set to False. The example code then
displays the resulting error message and uses the Name property of the MethodBase instance
returned by the TargetSite property to display the name of the method from which the exception was
thrown:

<%@ Page Language="vb" EnableSessionState="false" %>
  
...
  
Sub Page_Load(  )
   Try
      Session("foo") = "Foo"
   Catch HttpEx As HttpException
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
      Message.Text &= "Target Site: " & HttpEx.TargetSite.Name & "<br/>"
   End Try
End Sub

Notes

In the example, we access the Name property of the MethodBase instance directly, without creating a
separate local variable of type MethodBase. This direct access saves us the trouble of either adding an
@ Import statement to import the System.Reflection namespace or explicitly declaring the local
variable using syntax such as:

Dim myMethodBase As System.Reflection.MethodBase
myMethodBase = HttpEx.TargetSite

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


myMethodBase = HttpEx.TargetSite

Accessing the Name property of MethodBase directly reduces the amount of code we need to write,
but it does so at the expense of being less explicit about what we are actually doing. You should
always keep such tradeoffs in mind when writing your code. Writing less code usually seems like a
good idea, but if someone other than the original programmer needs to maintain the code, using such
shortcuts can make it more difficult for the maintainer to understand what's going on in the code.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

15.4 Methods Reference

GetBaseException

Exception = HttpException.GetBaseException( )

Returns an Exception object representing the original exception in a set of nested exceptions. This
property provides a shortcut to the innermost exception accessible via the InnerException property.

Parameters

Exception

An Exception instance that will be populated by the method.

Example

The following code example creates a set of three nested exceptions, the second and third of which
are created with an overloaded constructor that sets the InnerException property to the prior
exception. The code throws the third exception, which is caught by the Catch statement. The Catch
block displays the error message of both the immediate inner exception by using the InnerException
property and the original exception by using the Message property of the exception returned by the
GetBaseException method:

Sub Page_Load(  )
   Try
      Dim myHttpEx As _
         New HttpException("This is the original exception")
      Dim myHttpEx2 As _
         New HttpException("This is a nested exception", myHttpEx)
      Throw New HttpException("Threw an exception from Page_Load", _
         myHttpEx2)
   Catch HttpEx As HttpException
      Dim InnerHttpEx As HttpException
      InnerHttpEx = CType(HttpEx.InnerException, HttpException)
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Message: " & HttpEx.Message & "<br/>"
      Message.Text &= "Inner Exception Message: " & _
         InnerHttpEx.Message & "<br/>"
      Message.Text &= "Base Exception Message: " & _
         InnerHttpEx.GetBaseException.Message & "<br/>"
   End Try
End Sub

Notes

Like the TargetSite property example, this example accesses a property of the instance returned by
the GetBaseException method directly, rather than creating a local instance variable first. The same
caveats about reduction in code versus readability apply here.

GetHtmlErrorMessage

string = HttpException.GetHtmlErrorMessage( )

Returns a string containing the HTTP error message (if any) set by the originator of the exception.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

string

A string variable that will receive the value from the method.

Notes

This method will return a value only if the HttpException contains an HTTP error message.

GetHttpCode

integer = HttpException.GetHttpCode(  )

Returns an integer containing the HTTP status code contained within the exception. For most
exceptions thrown by the ASP.NET intrinsic objects, this integer will be 500, indicating an HTTP server
error.

Parameters

integer

An integer variable to receive the HTTP code from the method.

Example

The code example causes an exception by calling Server.Execute on a page that does not exist. The
exception is then caught and the HTTP status code is displayed by calling GetHttpCode:

Sub Page_Load(  )
   Try
      Server.Execute("Foo.aspx")
   Catch HttpEx As HttpException
      Message.Text = "ERROR:<br/>"
      Message.Text &= "Http Status Code: " & _
         HttpEx.GetHttpCode(  ) & "<br/>"
   End Try
End Sub

Notes

This method is most useful for custom exceptions raised in methods that make HTTP calls, since it
allows you to pass back the HTTP result code (404 for not found, 403 for access denied, etc.) to the
calling client.

ToString

string = HttpException.ToString(  )

Returns a string containing the fully qualified name of the exception, the error message (if available),
the name of the inner exception, and the stack trace.

Parameters

string

A string variable to receive the value from the method.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The code example causes an exception by attempting to set a Session value on a page for which the
EnableSessionState attribute of the @ Page directive has been set to False. The example code then
displays the string representation of the resulting exception:

<%@ Page Language="vb" EnableSessionState="false" %>
  
Sub Page_Load(  )
   Try
      Session("foo") = "Foo"
   Catch HttpEx As HttpException
      Message.Text = "ERROR:<br/>"
      Message.Text &= "String Representation of Exception: " & _
         HttpEx.ToString(  ) & "<br/>"
   End Try
End Sub

Notes

This method provides a quick and easy shortcut for displaying the available information about a given
exception without having to call the individual methods and properties of the HttpException object.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 16. The HttpRequest Class

The HttpRequest class is ASP.NET's replacement for ASP's Request intrinsic object. Because the
HttpRequest class instance for a given ASP.NET page is exposed as the Request property of the Page
class (from which all pages are derived), you can code to the HttpRequest class just as you did in ASP.
Thus, your existing ASP code will be that much easier to migrate.

The HttpRequest class is used to access information related to a particular HTTP request made by a
web client. The HttpRequest class provides access to this information through its properties,
collections, and methods.

Each HTTP request from a client consists of an HTTP header and, optionally, a body. The header and
body are separated by a blank line. The code following shows a typical HTTP request (without a
body):

GET /ASPdotNET_iaN/Chapter_16/showHTTP.aspx HTTP/1.0
Connection: Keep-Alive
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Charset: iso-8859-1,*,utf-8
Accept-Encoding: gzip
Accept-Language: en
Host: localhost
User-Agent: Mozilla/4.08 [en] (WinNT; U ;Nav)

The first line of the HTTP header contains the request type, followed by a space, followed by the
requested URL (URI), another space, and the HTTP version number. In the previous example, the
request type is GET, the URL is /ASPdotNET_iaN/Chapter_16/showHTTP.aspx (this URL is relative to
the server or domain name), and the HTTP version is 1.0.

HTTP Request Types

The current HTTP 1.1 standard (which can be found at
http://www.w3.org/Protocols/rfc2616/rfc2616.html) defines the valid request types for an
HTTP request. These types are:

OPTIONS

GET

HEAD

POST

PUT

DELETE

TRACE

CONNECT

While this list shows the valid request types, only the GET and HEAD are required to be
supported by general-purpose servers. In practice, most, if not all, requests you'll deal
with will be GET and POST type requests.

GET requests simply ask the server to return a resource (such as an HTML or ASP.NET
page) specified by the URL passed with the request. GET requests can also pass data to
the server by appending it to the URL in the following format:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GET /Chapter_16/showHTTP.aspx?name=andrew HTTP/1.0

This GET request fragment passes a key/value pair with the value "andrew" represented
by the key "name." When more than one key/value pair is passed, each pair is separated
by the ampersand (&) character. When using GET requests for passing data, in most
cases, data passed with a GET request is limited to around 2K, which is limiting for
complex or lengthy data. Pages using data passed by a GET request may be subject to
alteration by a user before the request is made. Any data received via a GET request
should be validated to ensure that processing or storing it will not cause an undesirable
result.

POST requests are used to post data to the server. Like GET requests, this data is passed
as one or more key/value pairs, separated by ampersands. Unlike GET requests, the
key/value pairs in a POST request are passed in the request body:

POST /Chapter_16/showHTTP.aspx HTTP/1.0
name=andrew

While we can gain much information from the text of an HTTP request header (which can be accessed
either as a URL-encoded string in the Headers collection or by saving the request to disk by using the
SaveAs method), having to parse the text each time we wanted to find a particular piece of
information would be a pain.

The HttpRequest class does this work for us, allowing us to deal only with the specific piece(s) of
information that we're interested in. Table 16-1 lists the properties, collections, and methods exposed
by the HttpRequest class.

Table 16-1. HttpRequest class summary
Properties Collections Methods (public instance)

AcceptTypes Cookies BinaryRead
ApplicationPath Files MapPath
Browser Form SaveAs

ClientCertificate Headers  
ContentEncoding Params  
ContentLength QueryString  
ContentType ServerVariables  
FilePath   
HttpMethod   
InputStream   
IsAuthenticated   
IsSecureConnection   
Path   
PathInfo   
PhysicalApplicationPath   
PhysicalPath   
RawUrl   
RequestType   
TotalBytes   
Url   
UrlReferrer   

  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


UserAgent   
UserHostAddress   
UserHostName   
UserLanguages   
Collections   

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

16.1 Comments/Troubleshooting

In ASP, the Request object provided relatively few properties and methods (one each, in fact),
supplying most of the information from requests through its collections: ClientCertificate, Cookies,
Form, QueryString, and in particular, the ServerVariables collection. With the exception of
ClientCertificate (which now returns an instance of the HttpClientCertificate class representing the
client's security certificate settings), all of these collections also exist in ASP.NET. A big difference is
that the HttpRequest class exposes a substantial number of new properties (many of which are
derived from information that was previously available only through the ServerVariables collection),
as well as several new methods.

As was the case with ASP, you can request particular GET or POST values (or ServerVariable or
Cookie values, for that matter) by passing the key for the value to the Request object (the current
instance of the HttpRequest class):

Message.Text = Request("myKey")

If the key "myKey" exists in any of the collections that the HttpRequest class exposed, the previous
code will return it.

Although accessing values as shown in the previous example may seem easy,
there are two very good reasons not to use this method.

First, accessing values without specifying the collection in which the value
should be found requires ASP.NET to search through each collection until it
finds the key (if it finds it). While ASP.NET generally performs significantly
faster than ASP, there is still no reason to suffer the unnecessary overhead of
this method of accessing values.

Second, using the method shown previously makes your code more difficult
to understand, debug, and maintain. Someone attempting to understand how
your page operates would not be able to figure out from this code whether
the page was expected to be accessed via a GET request or a POST request.
Explicitly specifying the desired collection clarifies your intent and makes it
easier to track down a problem if your code doesn't work.

In this chapter, we'll use the following code listing as the basis for most examples in the chapter.
Unless otherwise noted, each example will consist of only the Page_Load event handler for that
particular example. Any displayed output messages or return values will be shown as the Text
property of the ASP.NET Label control named Message or displayed by calling Response.Write:

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

16.2 Properties Reference

AcceptTypes

stringArray = Request.AcceptTypes

Return s a String array containing the Multipurpose Internet Mail Extension (MIME) types accepted by
the client. You can use this property to determine whether a client can accept certain response types,
including application types such as Word or Excel, which are supported only by Internet Explorer.

The following table lists some common MIME types:

MIME type Description
text/html HTML text content
text/xml XML text content
image/gif GIF-encoded image data
image/jpg JPEG-encoded image data
application/msword Binary data for Microsoft Word

Parameters

stringArray

A String array that receives the array of accept types from the property.

Example

The code example declares a string array and an integer counter variable and assigns the
AcceptTypes property value to the array variable. It then iterates the array members using the
counter variable, writing each value to the browser by using the Message label control:

Sub Page_Load(  )
   'Display Accept Types
   Dim MyArray(  ) As String
   Dim I As Integer 
   MyArray = Request.AcceptTypes
   For I = 0 To MyArray.GetUpperBound(0)
      Message.Text &= "Type " & CStr(I) & ": " & CStr(MyArray(I)) & _     
              "<br/>"
   Next I
End Sub

The output of the code would look something like this:

Type 0: image/gif
Type 1: image/x-xbitmap
Type 2: image/jpeg
Type 3: image/pjpeg
Type 4: application/vnd.ms-powerpoint
Type 5: application/vnd.ms-excel
Type 6: application/msword
Type 7: */*

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

This property can prevent the server from wasting time sending responses to the client that the client
cannot handle. For example, a request that would normally be fulfilled by returning an Excel
spreadsheet could be fulfilled with an alternate response type for clients that do not support the Excel
MIME type, application/vnd.ms-excel.

ApplicationPath

stringvar = Request.ApplicationPath

Returns a String containing the path to the virtual root of the current application.

Parameters

stringvar

A string variable to receive the value of the ApplicationPath property.

Example

The code example retrieves the ApplicationPath and writes it to the client using the Message label
control:

Sub Page_Load(  )
   Message.Text = Request.ApplicationPath
End Sub

The output of the code should be the name of the virtual root of the application to which the request
was sent.

Browser

bc = Request.Browser

Returns an instance of the HttpBrowserCapabilities class that describes the capabilities of the client
browser. You can then use the class instance to determine what capabilities the client browser
supports. The HttpBrowserCapabilities class exposes the capabilities of the client browser as a set of
Boolean and String properties. Properties of the HttpBrowserCapabilities class include:

ActiveXControls

A Boolean indicating whether the browser supports ActiveX controls.

AOL

A Boolean indicating whether the browser is an AOL browser.

BackgroundSounds

A Boolean indicating whether the browser supports background sounds.

Beta

A Boolean indicating whether the browser is beta software.

Browser

A String containing the User-Agent header value.

CDF

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A Boolean indicating whether the browser supports the Channel Definition Format for pushing
content.

ClrVersion

Returns a System.Version object containing version information about the CLR (if any) installed
on the client machine (from the User-Agent header). If ClrVersion is not Nothing, you can
retrieve version information from four of its Integer properties: Major, Minor, Revision, and
Build.

Cookies

A Boolean indicating whether the browser supports cookies.

Crawler

A Boolean indicating whether the browser is a search engine web crawler.

EcmaScriptVersion

Returns an instance of the Version class containing information about the version of ECMAScript
supported by the client browser. If EcmaScriptVersion is not Nothing, you can retrieve version
information from four of its Integer properties: Major, Minor, Revision, and Build.

Frames

A Boolean indicating whether the browser supports frames.

Item

A Dictionary interface to values (i.e., Request.Browser.Item(keyname)).

JavaApplets

A Boolean indicating whether the browser supports Java applets.

JavaScript

A Boolean indicating whether the browser supports JavaScript.

MajorVersion

An Integer representing the browser major version number (for example, for IE 3.01, the
MajorVersion property would return 3).

MinorVersion

A Double representing the browser minor version number (for example, for IE 3.01, the
MinorVersion property would return .01).

MSDomVersion

Returns an instance of the Version class containing information about the version of the
Microsoft XML Document Object Model (DOM) supported by the client browser. If
MSDomVersion is not Nothing, you can retrieve version information from four of its Integer
properties: Major, Minor, Revision, and Build.

Platform

A String containing the platform name (if any) included in the User-Agent header.

Tables

A Boolean indicating whether the browser supports HTML tables.

Type

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A String containing the name and major version of the client browser.

VBScript

A Boolean indicating whether the browser supports VBScript.

Version

A String containing both the major and minor version numbers of the client browser.

W3CDomVersion

Returns an instance of the Version class containing information about the version of the World
Wide Web Consortium (W3C) XML DOM supported by the client browser. If W3CDomVersion is
not Nothing, you can retrieve version information from four of its Integer properties: Major,
Minor, Revision, and Build.

Win16

A Boolean indicating whether the client is a Win16 machine.

Win32

A Boolean indicating whether the client is a Win32 machine.

Parameters

bc

An Object variable of type HttpBrowserCapabilities.

Example

Sub Page_Load(  )
   Dim bc As HttpBrowserCapabilities
   bc = Request.Browser
   If bc.Cookies Then
      Message.Text = "Cookies are available with this browser"
   Else
      Message.Text = "Cookies are not available with this browser"
   End If
End Sub

Notes

You will probably use this property a lot if you plan to support multiple browsers and must provide the
highest level of functionality on uplevel browsers such as Internet Explorer 5 or 6 or Netscape 6. For
some properties, such as Cookies and JavaScript, the returned Boolean indicates only whether the
browser version sending the request supports these features, not whether they are currently enabled
in the current user's browser.

This property is especially important when developing custom server controls, since it allows you to
have your custom controls automatically tailor their output to a specific browser (or class of
browsers). See Chapter 6 for more information on custom control development.

ClientCertificate

cs = Request.ClientCertificate

Returns an instance of the HttpClientCertificate class, which exposes information about the client
security certificate settings. These properties include issuer information, key size, and certificate
validity dates.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

cs

An Object variable of type HttpClientCertificate.

Example

Sub Page_Load(  )
   Dim cs As HttpClientCertificate
   cs = Request.ClientCertificate
   Message.Text = "Certificate Issuer is: " & cs.Issuer & "."
End Sub

Notes

You will probably use this property in intranet settings, where you have provided a limited set of
clients with certificates (issued from your own Certificate Server) for accessing your application,
rather than requiring them to authenticate by using a set of credentials entered via the browser. In
this case, client certificates are mapped to NT user accounts to provide secure access. Client
certificates can also be issued by trusted third parties, but this method is rarely used. If no client
certificate is installed on the requesting client, this property returns an HttpClientCertificate instance
with no valid property values.

ContentEncoding

ce = Request.ContentEncoding

Returns an instance of the Encoding class (located in the System.Text namespace), which represents
the character encoding of the body of the current request.

Parameters

ce

An Object variable of type Encoding.

Example

The example demonstrates how to display the current ContentEncoding to the user:

Sub Page_Load(  )
   Dim ce As System.Text.Encoding
   ce = Request.ContentEncoding
   Message.Text = "Current encoding is: " & ce.EncodingName & "."
End Sub

For a request using UTF-8 content encoding, the output of this example would be:

Current encoding is: Unicode (UTF-8).

ContentLength

intvar = Request.ContentLength

Returns an integer containing the length, in bytes, of the request sent from the client. This property

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns an integer containing the length, in bytes, of the request sent from the client. This property
includes only the content sent in the body of the HTTP request and does not include the length of the
HTTP headers or of any data sent as part of an HTTP GET request (which would appear in the
headers). If the HTTP request contains no body, its value is 0.

Parameters

intvar

An Integer variable to receive the length, in bytes, of the content.

Example

This example demonstrates how to display the length of the current request in the browser:

Sub Page_Load(  )
   Dim length As Integer
   length = Request.ContentLength
   Message.Text = "Length of request was: " & length & " bytes."
End Sub

The following code can be used to post to the example page:

<html>
   <head>
      <title>Submit a named parameter via POST</title>
   </head>
<body>
   <form id="form1" action="ContentLength.aspx" method="POST">
      <h3>Name:</h3>
      <input type="text" name="name">
      <input type="submit">
   </form>
</body>
</html>

Notes

You can use this property to test the length of content posted via a POST request before acting on
that content. For example, if your page receives files from a file input field, you could check the
ContentLength property before saving or processing the uploaded file to prevent users from uploading
files greater than a specific size. Note that in cases when you receive multiple form fields, you can get
more specific data on the size of an uploaded file by referring to the PostedFile.ContentLength
property of an HtmlInputFile control used for submitting files.

ContentType

stringvar = Request.ContentType

Returns a String containing the MIME type of the current client request. On GET requests, this
property may return an empty string.

Parameters

stringvar

A String variable to receive the content type.

Example

The example shows how you can take different actions in your page, depending on the ContentType of
the request:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   Dim ct As String
   ct = Request.ContentType
   If ct = "application/x-www-form-urlencoded" Then
      'Process form input
      Message.Text = "Form data was submitted."
   Else
      Message.Text = "Content Type of request is: " & ct
   End If
End Sub

The following code can be used to post to the example page:

<html>
   <head>
      <title>Submit a named parameter via POST</title>
   </head>
<body>
   <form id="form1" action="ContentType.aspx" method="POST">
      <h3>Name:</h3>
      <input type="text" name="name">
      <input type="submit">
   </form>
</body>
</html>

Notes

One potential use for this property is to ensure that the content type of the request is what you
expect it to be. This can help avoid wasting processor time with invalid requests and prevent
malicious users from attempting to forge requests to your application that send unexpected content.

FilePath

stringvar = Request.FilePath

Returns a String containing the virtual path of the current client request. The virtual path includes the
name of the application root folder, any subfolders in the request path, and the requested filename.

Parameters

stringvar

A String variable to receive the file path.

Example

The example displays the FilePath property to the user.

Sub Page_Load(  )
   Dim fp As String
   fp = Request.FilePath
   Message.Text = "The virtual path of the current request is: _
           & "<strong>" & fp & "</strong>"
End Sub

Notes

This property is identical to the Path property listed later in this chapter.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpMethod

stringvar = Request.HttpMethod

Returns a String containing the method (i.e., GET, POST, or HEAD) of the current request.

Parameters

stringvar

A String variable to receive the HTTP method of the current request.

Example

The example uses the HttpMethod property to determine what action to take for a given request:

Sub Page_Load(  )
   Select Case Request.HttpMethod
      Case "POST"
         Response.Write("POST requests not allowed!<br/>")
         Response.End
      Case "HEAD"
         Response.Write("HEAD requests not allowed!<br/>")
         Response.End
      Case "GET"
         'Process request
         Message.Text = "GET requests are allowed!<br/>"
      Case Else
         Response.Write("Unknown request: not allowed!<br/>")
         Response.End      
   End Select
End Sub

Note that we use Response.Write to send the message before calling Response.End. Calling
Response.End will immediately terminate processing of the page, which will also prevent rendering of
any server control output. The code for a page that makes a POST request to the example page is
shown here:

<html>
   <head>
      <title>Submit a named parameter via POST</title>
   </head>
<body>
   <form id="form1" action="HttpMethod.aspx" method="POST">
      <h3>Name:</h3>
      <input type="text" name="name">
      <input type="submit">
   </form>
</body>
</html>

Notes

In classic ASP, the request method was typically retrieved using the REQUEST_METHOD key of the
ServerVariables collection. Often, this key was used to create self-submitting form pages by
displaying a set of form fields when the GET method was detected and processing the input received
from the form fields when the POST method was detected. ASP.NET Web Forms provide built-in
plumbing for self-submitting forms. By adding a form with the runat="server" attribute and adding one

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


plumbing for self-submitting forms. By adding a form with the runat="server" attribute and adding one
or more input type server controls to the form, the developer only needs to check the page's
IsPostBack property to determine whether a POST or GET request has been received, and execute the
desired code based on that property.

InputStream

inputstream = Request.InputStream

Returns a Stream object containing the body of the incoming HTTP request.

Parameters

inputstream

An Object variable of type Stream.

Example

The example uses a byte array to search for a specified character and then copies that character and
the remaining contents of the stream to a string. The @ Import directive shown in the example should
be placed at the top of the page:

<% @ Import Namespace="System.IO" %>
  
Sub Page_Load(  )
   Dim InStream As Stream
   Dim iCounter, StreamLength, iRead As Integer
   Dim OutString As String
   Dim Found As Boolean
  
   InStream = Request.InputStream
   StreamLength = CInt(InStream.Length)
   Dim ByteArray(StreamLength) As Byte
   iRead = InStream.Read(ByteArray, 0, StreamLength)
   InStream.Close(  )
  
   For iCounter = 0 to StreamLength - 1
      If Found = True Then
         OutString &= Chr(ByteArray(iCounter))
      End If
      If Chr(ByteArray(iCounter)) = "A" Then
         Found = True
         OutString &= Chr(ByteArray(iCounter))
      End If
   Next iCounter
  
   Message.Text = "Output: " & OutString
End Sub

The following code can be used to post to the example page:

<html>
   <head>
   </head>
<body>
   <form id="form1" action="InputStream.aspx" method="POST">
      <h3>Name:</h3>
      <input type="text" name="name">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      <input type="text" name="name">
      <input type="submit">
   </form>
</body>
</html>

The code returns as output the first capital A appearing in the request body. Any characters after it
are returned to the end of the stream.

Notes

This property is useful if you wish to perform byte-level filtering of the request body. It works only
with POST requests, since these requests are the only commonly used HTTP requests that provide a
request body.

IsAuthenticated

boolvar = Request.IsAuthenticated

Returns a Boolean indicating whether the current request is coming from a user who is authenticated.
This property refers to authentication against the NTLM account database.

Parameters

boolvar

A Boolean variable to receive the authentication status of the user.

Example

The example checks to see if the current user is authenticated and it outputs one of two messages,
depending on the authentication status of the user. Note that the message delivered to authenticated
users utilizes the User property of the page to output the current user's name and domain.

Sub Page_Load(  )
   Dim boolAuth As Boolean
  
   boolAuth = Request.IsAuthenticated
  
   If boolAuth Then
      Message.Text = "User " & Page.User.Identity.Name & " is authenticated."
   Else
      Message.Text = "Current user is not authenticated."
   End If
End Sub

Notes

In addition to the IsAuthenticated property that the HttpRequest class exposes, the FormsIdentity,
WindowsIdentity, and PassportIdentity classes expose an IsAuthenticated property for much the same
purpose as the HttpRequest class. Note that the IsAuthenticated property of the HttpRequest class
returns the authentication status of the user regardless of the authentication method used.

IsSecureConnection

boolvar = Request.IsSecureConnection

Returns a Boolean indicating whether the current connection uses secure sockets (SSL) for
communication.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

boolvar

A Boolean variable to receive the SSL status of the current request.

Example

The example shows how you can take different actions depending on whether or not the current
request was made via SSL:

Sub Page_Load(  )
   Dim boolvar As Boolean
   boolvar = Request.IsSecureConnection
   If boolvar = True Then
      Message.Text = "Connection is HTTPS."
   Else
      Message.Text = "Connection is HTTP."
   End If
End Sub

Notes

You would typically use this property to determine whether or not to fulfill a request that requires an
SSL connection in order to encrypt sensitive data (such as credit card numbers) that might be
submitted via the requested page. Additionally, you could use this property on a page that may or
may not use SSL to determine how to render output to the page depending on the SSL status. Since
encrypting and decrypting content for SSL communication exacts a performance penalty, reducing the
number and/or size of graphics used on SSL-enabled pages is generally considered good practice.
With this property, you could render more and/or higher-resolution graphics when SSL is not enabled
for the request, and render fewer and/or lower-resolution graphics for SSL requests.

Path

stringvar = Request.Path

Returns a String containing the virtual path of the current client request. The virtual path includes the
name of the application root folder, subfolders in the request path, and the requested filename.

Parameters

stringvar

A String variable to receive the file path.

Example

The example displays the Path property to the user:

Sub Page_Load(  )
   Dim path As String
   path = Request.FilePath
   Message.Text = "The virtual path of the current request is: " & path
End Sub

Notes

This property is identical to the FilePath property listed earlier in this chapter.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PathInfo

stringvar = Request.PathInfo

Returns a String containing any additional path information (including path information appended to a
URL after the filename of the requested resource) passed with the current request.

Parameters

stringvar

A String variable to receive the additional path information.

Example

The example writes both the Path and PathInfo properties to the client browser:

Sub Page_Load(  )
   Message.Text = "Path = " & Request.Path & "<br/>"
   Message.Text &= "Additional Path Info = " & Request.PathInfo & "<br/>"
End Sub

Notes

PathInfo does not return information such as query string values. PathInfo returns any characters
following a forward-slash (/) after the resource (file) name, including the forward-slash itself.

PhysicalApplicationPath

stringvar  = Request.PhysicalApplicationPath

Returns a String containing the physical path to the root of the current application.

Parameters

stringvar

A String variable to receive the application path.

Example

The example writes the PhysicalApplicationPath property to the browser:

Sub Page_Load(  )
   Dim physAppPath As String
   physAppPath = Request.PhysicalApplicationPath
   Message.Text = "Physical Application Path = " & physAppPath
End Sub

Notes

This property is useful when you need to create or write to a file within your web application. Rather
than hardcoding a filesystem path in your page, you can use this property in combination with a
filename to create or edit a file in the same folder as the page containing the code, regardless of the
page's location.

PhysicalPath

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


stringvar  = Request.PhysicalPath

Returns a String containing the physical path to the requested file.

Parameters

stringvar

A String variable to receive the physical path.

Example

The example writes the PhysicalPath property to the browser:

Sub Page_Load(  )
   Dim physicalPath As String
   physicalPath = Request.PhysicalPath
   Message.Text = "Physical Path = " & physicalPath
End Sub

Notes

Unlike the PhysicalApplicationPath, which returns only the path to the root of the application, the
PhysicalPath property returns the full physical path of the requested resource, including any
intervening folders and the resource's filename. This property may be useful in combination with
ASP.NET's Trace functionality in troubleshooting situations when files you are attempting to write to or
read from are not found, or when created files aren't located where you expect them to be. Adding
Trace.Write statements to your page to write the Path, PhysicalApplicationPath, and PhysicalPath
properties to the trace log (which you can enable by adding the Trace="true" attribute to the @ Page
directive) may help you track down such bugs.

RawUrl

stringvar = Request.RawUrl

Returns a String containing the raw URL of the current request. The raw URL consists of the portion of
the URL following the domain information. Thus, for the URL
http://search.support.microsoft.com/kb/c.asp, the raw URL is /kb/c.asp. The raw URL includes the
query string, if one is present.

Parameters

stringvar

A String variable to receive the raw URL.

Example

The example writes the RawUrl property to the browser:

Sub Page_Load(  )
   Dim stringvar As String
   stringvar = Request.RawUrl
   Message.Text = "The raw URL is: " & stringvar
End Sub

RequestType

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


stringvar  = Request.RequestType

The RequestType property returns a String containing the request type (i.e., GET or POST) of the
current request.

Parameters

stringvar

A String variable to receive the request type.

Example

The example writes the RequestType property to the browser:

Sub Page_Load(  )
   Dim stringvar As String
   stringvar = Request.RequestType
   Message.Text = "The request type is: " & stringvar
End Sub

Notes

This property is listed as read/write; however, there really aren't any situations where it would be
useful to change its value. From the read standpoint, this property returns the same information as
the read-only HttpMethod property listed earlier in this chapter. If you attempt to change its value, no
corresponding change occurs in the value of HttpMethod.

TotalBytes

intvar = Request.TotalBytes

Returns an Integer representing the size of the HTTP request body. The TotalBytes property does not
include the size of the HTTP request headers, or the size of query string values passed with a GET
request.

Parameters

intvar

An Integer variable to receive the size, in bytes, of the current request body.

Example

The example writes the TotalBytes property to the browser:

Sub Page_Load(  )
   Dim intvar As Integer
   intvar = Request.TotalBytes
   Message.Text = "The size of the current request body is: <br/>"
   Message.Text &= intvar & " bytes."
End Sub

The following code can be used to post to the example page:

<html>
   <head>
      <title>Submit a named parameter via POST</title>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      <title>Submit a named parameter via POST</title>
   </head>
<body>
   <form id="form1" action="TotalBytes.aspx" method="POST">
      <h3>Name:</h3>
      <input type="text" name="name">
      <input type="submit">
   </form>
</body>
</html>

Notes

This property's behavior is identical to that of the ContentLength property described earlier in this
chapter.

Url

uriObj = Request.Url

Returns an instance of the Uri class containing properties that describe the current URL requested by
the user. Properties exposed by the Uri class include Scheme (protocol), Port, and Host.

Parameters

uriObj

An Object variable of type Uri.

Example

The example uses the Uri object that the Url property returns to write information about the URL for
the current request to the browser:

Sub Page_Load(  )
   Dim myUri As Uri
   myUri = Request.Url
  
   Message.Text = "Current request URL info - <br/><br/>"
   Message.Text &= "Protocol: " & myUri.Scheme & "<br/>"
   Message.Text &= "Port: " & myUri.Port & "<br/>"
   Message.Text &= "Host Name: " & myUri.Host & "<br/>"
End Sub

Notes

While the Uri class this property returns has methods as well as properties, you're more likely to use
these methods (particularly the CheckHostName and CheckSchemeName methods) when creating
your own Uri resource from scratch, rather than when receiving the Uri instance from the Url
property.

A note on URIs: Uniform Resource Identifier (URI) (compare to Uniform Resource Locator, or URL) is
a more general version of URLs and URNs. In most cases today, URI and URL are identical, although
this may change as URNs are used more frequently. For the purposes of the Url property, the terms
carry the same meaning.

UrlReferrer

uriObj = Request.UrlReferrer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns an instance of the Uri class containing properties that describe the URL for the resource from
which the user navigated to the current requested resource. If the user did not navigate to the current
resource (i.e., if the current resource is accessed directly), the UrlReferrer property returns Nothing.

Parameters

uriObj

An Object variable of type Uri.

Example

The example uses the Uri object that the UrlReferrer property returned in order to write information
about the URL for the referring resource to the browser:

Sub Page_Load(  )
   Dim myUri As Uri
   myUri = Request.UrlReferrer
  
   If Not (myUri Is Nothing) Then
      Message.Text = "Referral URL info - <br/><br/>"
      Message.Text &= "Protocol: " & myUri.Scheme & "<br/>"
      Message.Text &= "Port: " & myUri.Port & "<br/>"
      Message.Text &= "Host Name: " & myUri.Host & "<br/>"
      Message.Text &= "App Path: " & myUri.AbsolutePath & "<br/>"
   Else
      Message.Text = "No referral URL info available."
   End If
End Sub

The following code can link to the example page:

<html>
   <head>
      <title>Link to UrlReferrer</title>
   </head>
<body>
   <a href="UrlReferrer.aspx">Go to UrlReferrer.aspx</a>
</body>
</html>

Notes

The example code makes sure that the UrlReferrer property returns a valid instance of the Uri class.
The UrlReferrer property returns Nothing if the page is accessed directly, rather than from a link on
another page.

UserAgent

stringvar = Request.UserAgent

Returns a String containing the User-Agent header. The User-Agent string identifies the browser (or
other HTTP-capable client software, such as that used on mobile phones, etc.) the client uses to make
the request. Depending on the browser and platform, this string may also identify the operating
system the client uses, as well as the version of the installed .NET Framework (IE only).

Parameters

stringvar

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


stringvar

A String variable to receive the User-Agent string.

Example

The example writes the UserAgent property to the browser:

Sub Page_Load(  )
   Dim stringvar As String
   stringvar = Request.UserAgent
   Message.Text = "User Agent: " & stringvar
End Sub

Notes

When you attempt to discern the capabilities of the client browser, using the properties of the
HttpBrowserCapabilities object returned by the Request.Browser property is generally easier.
However, there may be cases in which the User-Agent for a given client returns information that is
not checked for by the HttpBrowserCapabilities class. In this case, you could add the desired
information to the <browserCaps> configuration section handler in machine.config (see Chapter 8 and
Chapter 20 for more information on ASP.NET configuration) and then create your own version of the
HttpBrowserCapabilities class by inheriting from the built-in class and adding your own property or
properties for the User-Agent attribute you're looking for. Or, if you don't want to make that effort,
you could simply parse the User-Agent string for the desired attribute by using the UserAgent
property.

UserHostAddress

stringvar = Request.UserHostAddress

Returns the IP address of the client making the request.

Parameters

stringvar

A String variable to receive the client IP address.

Example

The example writes the UserHostAddress, UserHostName, and UserLanguages properties to the
browser:

Sub Page_Load(  )
   Dim HostAddress, HostName, Languages(  ) As String
   Dim iCounter As Integer
  
   HostAddress = Request.UserHostAddress
   HostName = Request.UserHostName
   Languages = Request.UserLanguages
  
   Message.Text = "Client IP Address: " & HostAddress & "<br/>"
   Message.Text &= "Client Machine Name: " & HostName & "<br/>"
   For iCounter = 0 To Languages.GetUpperBound(0)
      Message.Text &= "Client Language " & iCounter & ": " & _ 
         CStr(Languages(iCounter)) & "<br/>" 
   Next iCounter
End Sub

UserHostName

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

stringvar = Request.UserHostName

Returns a string that contains the DNS hostname of the client making the request.

stringvar

A String variable to receive the hostname.

Example

See the example for the UserHostAddress property.

Notes

If no DNS server is available that can resolve the client IP address to a DNS name, the UserHostName
property returns the IP address of the client (just like the UserHostAddress property).

UserLanguages

stringArray = Request.UserLanguages

Returns a sorted String array containing the list of languages supported by the client.

Parameters

stringArray

A String array variable to receive the list of client-supported languages.

Example

See the example for the UserHostAddress property.

Notes

To test this property, you can set support for additional languages in your browser.

In Internet Explorer 6, select Internet Options... from the Tools menu. On the General tab of
the Internet Options dialog, click the Languages... button. Use the Language Preference dialog
to add, remove, or move languages up or down on the list of preferred languages.

In Netscape Navigator 6, select Preferences... from the Edit menu and then select the
Languages node in the lefthand tree view. Use the options on the right to add, remove, or
move languages up or down on the list.

Now if you browse a page containing the code in the UserHostAddress example, all languages you
select will be listed in the order you chose.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

16.3 Collections Reference

The Request object in ASP.NET supports seven collections, four of which were supported in ASP
(Cookies, Forms, QueryString, and ServerVariables), and three of which are new (Files, Headers, and
Params).

The collections of the Request class support the following common set of properties:

AllKeys

Returns a string array of all keys in the collection.

Count

Returns an integer count of name/value pairs in the collection.

Item(Index|Key)

Returns an instance of the collection class based on the index or passed-in key. This is the
default property, which is why, for example, calling:

Response.Cookies (KeyVal)

returns the HttpCookie instance corresponding to KeyVal.

Keys

Returns a collection of the keys for the collection.

In addition, each collection class exposes the following methods:

CopyTo(Array, Index)

Copies the contents of the collection object to the provided Array argument, starting at the
provided Index argument. Note that the array must be dimensioned to a sufficient size to
contain the collection before calling CopyTo.

GetKey(Index)

Returns a string containing the key corresponding to the provided Index argument.

With the exception of the Cookies collection, the code used to access keys and values in the
collections the Request class exposes is nearly identical in every case. This similarity makes it simple
to create your own reusable classes or methods for manipulating the values from these collections,
regardless of which collection you are working with.

Cookies

HttpCookieCollection = Request.Cookies

The Cookies collection returns an instance of the HttpCookieCollection class containing all cookies sent
as a part of the current request. The HttpCookieCollection class contains an instance of the HttpCookie
class for each cookie passed as part of the client request. The properties of these HttpCookie
instances can be used to access information about the cookie(s).

As in classic ASP, the Cookies collection is still implemented as a collection (in fact, the
HttpCookieCollection inherits from the .NET NameObjectCollectionBase class), but rather than a
collection of string keys and string values, the ASP.NET implementation is a collection of string keys
and objects (instances of the HttpCookie class). Individual cookies are retrieved into variables of type
HttpCookie, providing access to the cookies' values through class properties.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Dictionary-style cookies (cookies with more than one value) are accessible through the Values
property of the HttpCookie class, which returns a NameValueCollection containing the cookie subkeys
and values. You can also retrieve individual values by their key with the following syntax:

HttpCookie.Values("keyname")

Parameters

HttpCookieCollection

An Object variable of type HttpCookieCollection.

Example

The example retrieves the collection of cookies from the Cookies property and writes out the key and
value of each, along with any subkeys of dictionary cookies:

Sub Page_Load(  )
   Dim Counter1, Counter2 As Integer
   Dim Keys(), SubKeys(  ) As String
   Dim CookieColl As HttpCookieCollection 
   Dim Cookie As HttpCookie
  
   ' Get Cookie collection
   CookieColl = Request.Cookies
  
   ' Get Cookie keys
   Keys = CookieColl.AllKeys
  
   ' Get cookies by index
   For Counter1 = 0 To Keys.GetUpperBound(0)
      Cookie = CookieColl(Keys(Counter1))
      Message.Text = "Cookie: " & Cookie.Name & "<br/>"
      Message.Text &= "Expires: " & Cookie.Expires & "<br/>"
  
      ' Get keys for dictionary cookie into an array
      SubKeys = Cookie.Values.AllKeys
      ' Write dictionary cookie values to the browser
      For Counter2 = 0 To SubKeys.GetUpperBound(0)
         Message.Text &= "Key " & CStr(Counter2) + ": " & _
            SubKeys(Counter2) & "<br/>"
         Message.Text &= "Value " & CStr(Counter2) + ": " & _
            Cookie.Values(Counter2) & "<br/>"
      Next Counter2
      Message.Text &= "<br/>"
   Next Counter1
End Sub

Notes

The ASP implementation of the Cookies collection and the HttpCookieCollection class returned by the
Cookies property expose a common set of properties; these properties are described in Section 16.3.

While it is still possible in ASP.NET to retrieve an individual cookie by its text key as well as its
numerical index, the differences in the operation make wholesale migration of ASP cookie-handling
code to ASP.NET impractical without significant changes. For example, the following code will raise
exceptions:

For Each strKey In Request.Cookies
   Response.Write strKey & " = " & Request.Cookies(strKey) & _
                  "<br/>"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                  "<br/>"
   If Request.Cookies(strKey).HasKeys Then
      For Each strSubKey In Request.Cookies(strKey)
         Response.Write "->" & strKey & "(" & strSubKey & _
            ") = " & Request.Cookies(strKey)(strSubKey) & "<br/>"
      Next
   End If
Next

Apart from the fact that this code does not explicitly declare its variables or their types (both of which
are required by default in ASP.NET), the previous code fails because the Request.Cookies(key)
property returns an instance of HttpCookie, rather than a string, and the HttpCookie instance cannot
be implicitly converted to a string for the Response.Write statement, which expects a string.
Additionally, the call to Request.Cookies(key) does not get the subkeys for a dictionary cookie.
Fortunately, the modifications necessary to make the previous code work are fairly simple and are
shown here:

For Each strKey In Request.Cookies
   Message.Text = strKey & " = " & _
      Request.Cookies(strKey).ToString(  ) & "<br/>"
   If Request.Cookies(strKey).HasKeys Then
      For Each strSubKey In Request.Cookies(strKey).Values
         Message.Text = "->" & strKey & "(" & strSubKey & _
            ") = " & Request.Cookies(strKey)(strSubKey).ToString(  ) _
            & "<br/>"
      Next
   End If
Next

To solve the first issue, we use the HttpCookie's Value method to get the value of the cookie as a
string. The solution to the second issue is to call the Values property of the HttpCookie instance,
which allows us to retrieve the subkeys of a dictionary cookie.

Another quirk of the change from the mostly text-based manipulation of cookie keys and values in
ASP to class-based manipulation in ASP.NET is that the Expires property of the HttpCookie class is
available whether you read or write to a cookie. In ASP, however, attempting to read the Expires
property of a cookie would result in an error. Unfortunately, at the time of this writing, the Expires
property of HttpCookie does not actually return the expiration of the cookie. Instead, it returns the
value 12:00:00 AM, which suggests that despite its readability, the property is not designed to be
read from.

Finally, unlike classic ASP, the collections in ASP.NET are zero-based, so the first element in any
collection or array is 0, not 1. This is especially important to remember when retrieving values by
their index.

Files

HttpFileCollection = Request.Files

The Files collection, which is new to ASP.NET, returns a collection of type HttpFileCollection that
contains any files uploaded by the user's current request. This collection is especially useful in
combination with the HtmlInputFile Server Control, which provides the basic plumbing necessary to
upload files via an HTTP POST request. When a user submits one or more files (one per HtmlInputFile
control on the submitting page), you can retrieve the files by using the Files collection.

Parameters

HttpFileCollection

An Object variable of type HttpFileCollection.

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example uses two HtmlInputFile server controls and a server-side <script> block to upload files
and process them. The example shows both the <form> section of the page and its controls and the
<script> block containing the UploadBtn_OnClick method called by the onServerClick event of the
HtmlInputButton control:

<!--Place between the <head> and </head> tags -->
<script runat="server">
   Sub UploadBtn_Click(Sender as Object, e as EventArgs)
      UploadForm.Visible = False
      If InStr(Request.ContentType, "multipart/form-data") Then
         Dim Counter1 As Integer
         Dim Keys(  ) As String
         Dim Files As HttpFileCollection
  
         ' Load File collection
         Files = Request.Files
         ' Get names of all files into an array
         Keys = Files.AllKeys
         For Counter1 = 0 To Keys.GetUpperBound(0)
            Message.Text &= "File ID: " & Keys(Counter1) & "<br/>"
            Message.Text &= "File Name/Path: " & _
               Files(Counter1).FileName & "<br/>"
         Next Counter1
      Else
         Message.Text = "Wrong content type!"
      End If
   End Sub
</script>
  
<!-- This section resides between the <body> and </body> tags -->
<form id="UploadForm" enctype="multipart/form-data" runat="server">
   Select File To Upload to Server: 
   <br/>
   <%-- MyFile and MyFile2 are HtmlInputFile controls --%>
   <%-- note the runat attribute --%>
   <input id="MyFile" type="file" runat="server">
   <br/>
   <input id="MyFile2" type="file" runat="server">
   <br/>
   <input id="Submit1" type="submit" value="Upload!"
      onserverclick="UploadBtn_Click" runat="server" >
</form>
<asp:label id="Message" runat="server"/>

Notes

In classic ASP, file uploading was a painful process that usually involved finding and purchasing a
third-party upload control to use on the receiving ASP page to parse and save uploaded files. Thanks
to the Files collection, you no longer need to locate and learn how to use third-party controls to
upload files. This is bad for the control developers (although we suspect they'll more than make up for
the loss by writing new Server Controls), but great for ASP.NET developers.

Two important points to remember about the Files collection to successfully upload files:

If using a client-side HTML form (no runat="server" attribute), set the method attribute of the
form to POST.

Set the enctype attribute of the form to multipart/form-data.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Set the enctype attribute of the form to multipart/form-data.

The upload will succeed only if you take both steps. Note that the code example checks to see if the
incoming request is multipart/form-data before attempting to retrieve the files.

It is not necessary to use the HtmlInputFile control to upload files that can be retrieved via the Files
collection. As long as the submitting page uses the POST method and the multipart/form-data enctype
attribute, you can use the standard HTML file input tags:

<input type="file" id="myFile" name="myFile">

Note the use of the name attribute, without which the files collection will not contain the uploaded file
for the control.

Form

NameValueCollection = Request.Form

The Form collection returns an instance of the NameValueCollection class containing all form fields
passed along with an HTTP POST request. This collection will contain data only when the Content-Type
of the HTTP request is either application/x-www-form-urlencoded or multipart/form-data.

The Form collection is one of two ways to retrieve data, depending on the HTTP method used to
submit the data. The Form collection retrieves data submitted by an HTML form whose method
attribute is set to POST, while the QueryString collection (covered later in this section) retrieves
values submitted by HTML forms whose method attribute is set to GET.

Parameters

NameValueCollection

An Object variable of type NameValueCollection.

Example

The example demonstrates how ASP.NET allows a single page to be used to submit values via HTTP
POST and retrieve and display the values to the user. The example uses the IsPostBack property of
the Page class to determine whether the request is a result of the form being submitted. If the
request is not a postback, the form fields are displayed to allow the user to enter values. If the
request is a postback, the page retrieves the Form collection and displays the name and value of each
field in the browser.

Sub Page_Load(  )
   If IsPostBack Then
      Form1.Visible = False
      If Request.HttpMethod = "POST" Then
         Dim Counter1 As Integer
         Dim Keys(  ) As String
         Dim FormElements As NameValueCollection
  
         ' Get Form keys/elements
         FormElements=Request.Form
         ' Get names of form fields into array
         Keys = FormElements.AllKeys
         For Counter1 = 0 To Keys.GetUpperBound(0)
            Message.Text &= "Form " & Counter1 & " name: " & _
               Keys(Counter1) & "<br/>"
            Message.Text &= "Form " & Counter1 & " value: " & _
               FormElements(Counter1) & "<br/>"
         Next Counter1
      End If 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      End If 
   Else
      Form1.Visible = True
   End If 
End Sub
  
<!-- This section resides between the <body> and </body> tags -->
<form id="Form1" runat="server">
   First Name: 
   <br/>
   <asp:Textbox id="txtFName" runat="server"/>
   <br/>
   Last Name: 
   <br/>
   <asp:Textbox id="txtLName" runat="server"/>
   <br/>
   <asp:Button id="Submit" Text="Submit" runat="server"/>
</form>
<asp:label id="Message" runat="server"/>

Notes

The Form collection exposes the same properties and methods described in Section 16.3 and adds the
following methods:

Get(Index|Key)

Returns the contents of the specified item in the NameValueCollection as a comma-delimited
String.

GetValues(Index|Key)

Returns the contents of the specified item in the NameValueCollection as a String array.

Headers

NameValueCollection = Request.Headers

The Headers collection returns an instance of the NameValueCollection class containing all HTTP
headers sent with the current request. This collection provides the same information that is returned
by calling the Request.ServerVariables collection with the ALL_HTTP key.

Parameters

NameValueCollection

An Object variable of type NameValueCollection.

Example

The example writes the HTTP headers passed with the request to the browser, first by using the
ServerVariables("ALL_HTTP") method and then by using the Headers collection:

Sub Page_Load(  )
   Dim AllHttp As String
   ' Get a String with all the HTTP headers
   AllHttp = Request.ServerVariables("ALL_HTTP")
   ' Use Replace to format the String
   AllHttp = Replace(AllHttp, "HTTP", "<br/>HTTP"
   Message.Text &= AllHttp & "<br/><br/>"
  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  
   Dim Counter1, Counter2 As Integer
   Dim Keys(), subKeys(  ) As String
   Dim HeaderColl As NameValueCollection
  
   ' Load Headers into NameValueCollection
   HeaderColl=Request.Headers
   ' Get keys into an array
   Keys = HeaderColl.AllKeys
   For Counter1 = 0 To Keys.GetUpperBound(0)
      Message.Text &= "Key: " & Keys(Counter1) & "<br/>"
      ' Get all values under this key
      subKeys = HeaderColl.GetValues(Counter1) 
      For Counter2 = 0 To subKeys.GetUpperBound(0)
         Message.Text &= "Value " & CStr(Counter2) & ": " & _
            subKeys(Counter2) & "<br/>"
      Next Counter2
   Next Counter1
End Sub

Notes

The Headers collection returns only the HTTP headers that were sent as a part of the current request,
as opposed to the ServerVariables collection (described later in this section), which contains keys for
every HTTP header, regardless of whether a value was passed.

If all you need to do is write the HTTP headers to a file or display them in the browser, it may be
simpler to use the ServerVariables collection. In cases when you need to access a specific HTTP
header by name or loop through the collection, the Headers collection is the way to go.

Params

NameValueCollection = Request.Params

The Params collection returns an instance of the NameValueCollection class containing key/value pairs
for the QueryString, Form, ServerVariables, and Cookies collections. You can use the Params
collection to dump all of these collections to a file or to the browser and to troubleshoot an application
or track the form values your application receives, regardless of whether they come via GET
(QueryString collection) or POST (Form collection).

Parameters

NameValueCollection

An Object variable of type NameValueCollection.

Example

The example writes the keys and values contained in the Params collection to the browser:

Sub Page_Load(  )
   Dim Counter1, Counter2 As Integer
   Dim Keys(), subKeys(  ) As String
   Dim ParamColl As NameValueCollection
  
   ' Load Params into NameValueCollection
   ParamColl=Request.Params
   ' Get keys into an array
   Keys = ParamColl.AllKeys
   For Counter1 = 0 To Keys.GetUpperBound(0)
      Message.Text &= "Key: " & Keys(Counter1) & "<br/>"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      Message.Text &= "Key: " & Keys(Counter1) & "<br/>"
      ' Get all values under this key
      subKeys = ParamColl.GetValues(Counter1) 
      For Counter2 = 0 To subKeys.GetUpperBound(0)
         Message.Text &= "Value " & CStr(Counter2) & ": " & _
            subKeys(Counter2) & "<br/>"
      Next Counter2
      Message.Text &= "<br/>"
   Next Counter1
End Sub

The following code can be used to post to the example page:

<html>
   <head>
      <title>Submit a named parameter via POST</title>
   </head>
<body>
   <form id="form1" action="Params.aspx" method="POST">
      <h3>Name:</h3>
      <input type="text" name="name">
      <input type="submit">
   </form>
</body>
</html>

Notes

The collections are listed in the following order:

QueryString

Form

Cookies

ServerVariables

While it is possible to have both the Form and QueryString collections populated (for example, if a
query string name/value pair is added to the URL for the action attribute of a form by using the POST
method), you will normally see one or the other, not both.

QueryString

NameValueCollection = Request.QueryString

The QueryString collection returns an instance of the NameValueCollection class containing all the keys
and values passed as a part of the query string (typically by submitting an HTML form that uses the
GET method instead of POST).

Parameters

NameValueCollection

An Object variable of type NameValueCollection.

Example

The example writes the contents of the QueryString collection to the browser:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   Dim Counter1, Counter2 As Integer
   Dim Keys(), subKeys(  ) As String
   Dim QSColl As NameValueCollection
  
   ' Load QS into NameValueCollection
   QSColl=Request.QueryString
   ' Get keys into an array
   Keys = QSColl.AllKeys
   For Counter1 = 0 To Keys.GetUpperBound(0)
     Message.Text &= "Key: " & Keys(Counter1) & "<br/>"
     subKeys = QSCol1.GetValues(Counter1) 'Get all values under this key
     For Counter2 = 0 To subKeys.GetUpperBound(0)
        Message.Text &= "Value " & CStr(Counter2) & ": " & _
           subKeys(Counter2) & "<br/>"
     Next Counter2
     Message.Text &= "<br/>"
  Next Counter1
End Sub

The following code can be used to post to the example page (note that the form method attribute has
been set to GET, which is required for the form value to be sent as part of the query string):

<html>
   <head>
      <title>Submit a named parameter via POST</title>
   </head>
<body>
   <form id="form1" action="QueryString.aspx" method="GET">
      <h3>Name:</h3>
      <input type="text" name="name">
      <input type="submit">
   </form>
</body>
</html>

Notes

One advantage that the QueryString collection has over the Form collection is that you do not always
need to have the user submit a form to use it. Because the query string values are appended to the
URL, it is relatively simple to statically add query strings to links within pages or dynamically create
anchor tags with query string values appended. In fact, many online stores use this method to drive
their catalog pages (by passing a product ID appended onto a link to the page designed to display the
product). That page can then retrieve the ID by using the QueryString collection.

Because query string values are passed as plain text appended to the URL, they are more vulnerable
to tampering than values passed as a result of a POST operation. If you need to pass important data
or data that, if tampered with, could create problems for your application, you should consider
encrypting values before adding them to the query string or using another method to pass the values.

Certain characters used in query string processing, including &, ?, %, and +, must be encoded to
avoid confusion between their use in your key/value pair and their role as special characters in a
query string. The following table lists the encoding for each of these special characters:

Character Encoding
& %26
? %3f
% %25
+ %2b
Space %20

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Rather than memorizing these values, you could make your life easier by simply using the UrlEncode
method provided by the HttpServerUtility class (covered in Chapter 18), which automatically
substitutes the appropriate encoding for any special characters in a string passed to it.

ServerVariables

NameValueCollection  = Request.ServerVariables

Parameters

NameValueCollection

An Object variable of type NameValueCollection.

Example

The example, as in the previous collection-related examples, writes the contents of the
ServerVariables collection to the browser:

Sub Page_Load(  )
   Dim Counter1, Counter2 As Integer
   Dim Keys(), subKeys(  ) As String
   Dim SVarsColl As NameValueCollection
  
   ' Load ServerVariables into NameValueCollection
   SVarsColl=Request.ServerVariables
   ' Get keys into an array
   Keys = SVarsColl.AllKeys
   For Counter1 = 0 To Keys.GetUpperBound(0)
      Message.Text &= "Key: " & Keys(Counter1) & "<br/>"
      subKeys = SVarsColl.GetValues(Counter1) 
      ' Get all values under this key
      For Counter2 = 0 To subKeys.GetUpperBound(0)
         Message.Text &= "Value " & CStr(Counter2) & ": " & _
            subKeys(Counter2) & "<br/>"
      Next Counter2
      Message.Text &= "<br/>"
   Next Counter1
End Sub

Notes

In addition to retrieving all the values by looping through the Keys, you can access individual values if
you know their key. The following list shows the available keys for the ServerVariable collection:

ALL_HTTP

Returns a string containing all HTTP headers with each header name taking the form
HTTP_headername, for which headername is the name of an HTTP header in all capital letters.

ALL_RAW

Provides the same information as ALL_HTTP, but header names are not all capital letters and
are not prefixed with HTTP_.

APPL_MD_PATH

Returns the path of the application in the IIS metabase.

APPL_PHYSICAL_PATH

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


APPL_PHYSICAL_PATH

Returns the physical path that corresponds to APPL_MD_PATH.

AUTH_TYPE

Returns the authentication method used to validate access to protected content.

AUTH_USER

Returns the username of the authenticated user in raw form.

AUTH_PASSWORD

Returns the password entered in the browser's authentication dialog, assuming Basic
authentication was used.

LOGON_USER

Returns the name of the Windows account the current user is logged in to.

REMOTE_USER

Returns the username string sent by the browser before any authentication filtering has taken
place.

CERT_COOKIE

Returns a unique string identifier for the client certificate.

CERT_FLAGS

Returns bit flags that represent whether a certificate is present (bit0) and whether the
certificate authority for the client certificate is in the list of recognized certificate authorities on
the server (bit1).

CERT_ISSUER

Returns the issuer of the client certificate.

CERT_KEYSIZE

Returns the number of bits for the SSL key (e.g., 40 or 128).

CERT_SECRETKEYSIZE

Returns the number of bits in the server's private key.

CERT_SERIALNUMBER

Returns the serial number of the client certificate.

CERT_SERVER_ISSUER

Returns the issuer of the server certificate.

CERT_SERVER_SUBJECT

Returns the subject field of the server certificate.

CERT_SUBJECT

Returns the subject field of the client certificate.

CONTENT_LENGTH

Returns the length of the content in the body of the HTTP request.

CONTENT_TYPE

Returns the MIME type of the content in the HTTP request.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GATEWAY_INTERFACE

Returns the revision number of the CGI specification used by the server.

HTTPS

Returns either on or off, depending on whether the request came through a secure socket
(HTTPS) connection.

HTTPS_KEYSIZE

Returns the size, in bits, of the SSL key.

HTTPS_SECRETKEYSIZE

Returns the number of bits in the server's private key.

HTTPS_SERVER_ISSUER

Returns the issuer of the server certificate.

HTTPS_SERVER_SUBJECT

Returns the subject field of the server certificate.

INSTANCE_ID

Returns the ID for the IIS instance associated with the request. Unless more than one instance
of IIS is running, this value is always 1.

INSTANCE_META_PATH

Returns the metabase path to the instance of IIS that responds to the current request.

LOCAL_ADDR

Returns the server address on which the request was received. Useful for servers with multiple
NICs and IP addresses to determine which address received the request.

PATH_INFO

Returns any extra path information passed with the request. See the.PathInfo property earlier
in the chapter for more information.

PATH_TRANSLATED

Returns the physical path corresponding to the virtual path for the request.

QUERY_STRING

Returns the raw query string (if any) passed with the request.

REMOTE_ADDR

Returns the IP address of the machine making the request.

REMOTE_HOST

Returns the DNS name of the machine making the request, if available. Otherwise, returns the
IP address.

REQUEST_METHOD

Returns the HTTP request method (GET, POST, etc.) used in the request.

SCRIPT_NAME

Returns a virtual path to the page being executed.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SERVER_NAME

Returns the server name, DNS name, or IP address of the server.

SERVER_PORT

Returns the port number on which the request was received.

SERVER_PORT_SECURE

Returns a string containing either 0 or 1, depending on whether the request was received on a
secure port (1) or not (0).

SERVER_PROTOCOL

Returns the name and version of the protocol used to handle the client request. For IE 5.5 and
IIS 5, this name and version would be "HTTP/1.1".

SERVER_SOFTWARE

Returns the name and version of the web server software.

URL

Returns the base URL of the request (i.e., everything after the domain name).

HTTP_CONNECTION

Returns the type of connection established.

HTTP_ACCEPT

Returns the value of the HTTP Accept header.

HTTP_ACCEPT_ENCODING

Returns the value of the HTTP Accept-Encoding header.

HTTP_ACCEPT_LANGUAGE

Returns the value of the HTTP Accept-Language header.

HTTP_HOST

Returns the value of the HTTP Host header.

HTTP_USER_AGENT

Returns the value of the HTTP User-Agent header.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

16.4 Methods Reference

BinaryRead

byteArray = Request.BinaryRead(byteCount)

Returns a byte array containing the number of bytes specified by the byteCount argument.

Parameters

byteArray

An Array variable of type Byte to receive the specified number of bytes from the method.

byteCount

An integer specifying the number of bytes to return.

Notes

This method provides backward compatibility with classic ASP applications. For new development,
using other means (such as the Files collection, etc.) is preferable to achieve the results that this
method was used for.

MapPath

stringvar = Request.MapPath(virtualPath)
stringvar = Request.MapPath(virtualPath, _ 
             baseVirtualDirectory, allowCrossMapping)

The MapPath method, which the Server object exposed in classic ASP, allows you to retrieve a
physical path on the server for a provided virtual path. In ASP.NET, this method is overloaded,
meaning that it can be called with two different sets of arguments, as shown in the previous code.
The first style, which is the same as in classic ASP, simply passes in a String containing the virtual
path to be mapped. The second adds the baseVirtualDirectory argument, which specifies a base from
which to resolve relative paths, and the allowCrossMapping argument, which allows you to map virtual
paths that belong to other applications.

Parameters

stringvar

A String variable to receive the mapped physical path.

virtualPath

A String argument containing the virtual path to map.

baseVirtualDirectory

A String argument containing a base path to be used for resolving relative paths.

allowCrossMapping

A Boolean argument specifying whether paths can be mapped across applications.

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example maps the path of the .NET Framework SDK samples' /QuickStart directory and writes the
result to the browser:

Sub Page_Load(  )
   Dim VirPath, PhysPath, BasePath As String
   Dim BoolCross As Boolean = True
  
   VirPath = "/QuickStart"
   BasePath = ""
  
   Message.Text = Request.MapPath(VirPath, BasePath, BoolCross)
End Sub

Notes

In the previous example, if we had set the BoolCross variable to False and called the example code
from outside the QuickStart application, an HttpException would be thrown, since this argument must
be set to True to map paths across applications.

SaveAs

Request.SaveAs(filename, includeHeaders)

Saves the current HTTP request to disk, using the filename argument as the path and filename under
which to save the request.

Parameters

filename

A String argument containing the path and filename under which the request should be saved.

includeHeaders

A Boolean argument indicating whether to save the HTTP header information as part of the
request. Note that unless this is a POST request (or other request type with a request body),
no information is saved if this argument is set to False.

Example

The example writes the HTTP request headers to the browser (for comparison purposes) and then
saves the current request both with and without header information:

Sub Page_Load(  )
   Message.Text = Request.Headers
  
   ' Save HTTP Request and Headers to a file
   Request.SaveAs((Request.PhysicalApplicationPath & _
      "HTTPRequest.txt"), True)
   ' Save HTTP Request to a file
   Request.SaveAs((Request.PhysicalApplicationPath & _
      "HTTPRequest_NoHeaders.txt"), False)
End Sub

Notes

This method can be very useful when debugging because it allows you to look at all the information
sent in a given request (which is particularly useful in POST requests).

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 17. The HttpResponse Class

Just as the HttpRequest class covered in Chapter 16 is the replacement for the classic ASP intrinsic
Request object, the HttpResponse class is ASP.NET's replacement for ASP's intrinsic Response object.
Like the HttpRequest class, the HttpResponse class instance for a given ASP.NET page is exposed as a
property (the Response property) of the Page class (from which all pages are derived), so code for the
HttpResponse class is the same as in classic ASP. For those of you with classic ASP applications that
migrate to ASP.NET, this class will save you a lot of work.

The HttpResponse class controls a variety of factors related to ASP.NET's response to a given HTTP
request and provides access to the output stream of the response, allowing the writing of text or
binary content to the client browser programmatically. The HttpResponse class provides access to this
functionality through its properties, collections, and methods, which are shown in Table 17-1.

The control over page output that the HttpResponse class provides includes the character set used and
encoding of the response, as well as whether the response is buffered and sent all at once (the
default) or sent as output is processed. Methods of the HttpResponse class provide granular control
over output sent to the browser, including sending binary or text content and sending HTTP headers
and cookies to the client.

Note that several properties and methods exposed by the Response object in classic ASP have been
deprecated in ASP.NET in favor of new properties and methods exposed by the HttpResponse class
(or, in some cases, by other functionality available in ASP.NET). For properties and methods that have
been deprecated and/or replaced by new members in ASP.NET, that fact will be notated in the Notes
section of the reference for that property or method.

Table 17-1. HttpResponse class summary
Properties Collections Methods (instance)

Buffer Cookies AddCacheItemDependencies

BufferOutput  AddCacheItemDependency

Cache  AddFileDependencies

CacheControl  AddFileDependency

Charset  AddHeader

ContentEncoding  AppendHeader

ContentType  AppendToLog

Expires  ApplyAppPathModifier

ExpiresAbsolute  BinaryWrite

IsClientConnected  Clear

Output  ClearContent

OutputStream  ClearHeaders

Status  Close

StatusCode  End

StatusDescription  Flush

SuppressContent  Pics

  Redirect

  Write

  WriteFile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

17.1 Comments/Troubleshooting

The Response object provides control over both the format of the output sent to the browser and the
content. In fact, an ASP.NET page can be written with no static HTML content whatsoever, and can
generate that content exclusively through calls to the properties and methods of the response object,
if desired. This provides the ability to programmatically generate not just HTML output dynamically,
but any output the browser is capable of displaying, including image content and XML. This generation
allows ASP.NET to be incredibly flexible in its response to user actions.

In classic ASP, the Response object's Write method was often used for quick and dirty debugging,
such as to display a message indicating that a certain point in a page was reached or to display the
value of variables used within the page. This simple and effective debugging technique had one major
flaw: frequently, these calls to Response.Write were left in a page that was moved from a
development server to a production server, resulting in end users seeing the debugging message --
hardly a desirable outcome. In ASP.NET, the new Trace object (a property of the Page class) provides
the ability to write messages to a central trace log rather than to the page itself (although trace
output can optionally be directed to the page). This feature allows developers to use the same simple
debugging techniques while significantly reducing the likelihood of end users inadvertently seeing
debug messages. Tracing in ASP.NET is discussed in Chapter 10.

In this chapter, we'll use the following code listing as the basis for most examples in the chapter.
Unless otherwise noted, each example will consist of only the Page_Load event handler for that
particular example. Any output messages or return values displayed will be shown as the Text
property of the ASP.NET Label control named Message or displayed by calling Response.Write:

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

17.2 Properties Reference

Buffer

Boolean = Response.Buffer
Response.Buffer = Boolean

Returns or sets a Boolean value that represents whether output is buffered on the server and sent
when the request has completely finished processing, or when either the Response.Flush or
Response.End methods are called. The default value is True.

Parameters

Boolean

A Boolean that will receive or set the value of the property.

Notes

This property is supplied for backward compatibility with classic ASP and has been deprecated in favor
of the BufferOutput property. New ASP.NET code should use BufferOutput in place of Buffer.

One important difference between Response.Buffer property in classic ASP and the Buffer and
BufferOutput properties in ASP.NET is that in classic ASP, you could not modify the Buffer property
beyond the point at which output had been sent to the browser without causing an error. In ASP.NET,
because of its compiled (rather than interpreted) nature, you can modify the Buffer or BufferOutput
property at any time, and the change only affects how buffering occurs. This gives developers much
more flexibility over how and when their output is buffered. See the BufferOutput example for a
demonstration.

BufferOutput

Boolean = Response.BufferOutput
Response.BufferOutput = Boolean

Returns or sets a Boolean value that represents whether output is buffered on the server and sent
when the request has completely finished processing, or when either the Response.Flush or
Response.End methods are called. The default value is True.

Parameters

Boolean

A Boolean that will receive or set the value of the property.

Example

The example sets the BufferOutput property to False and then loops 50 times, writing a period to the
HTTP output with each loop iteration. It also writes the same output to the Text property of the
Message Label control. For the first 10 and the last 21 iterations, BufferOutput is set to False; for
iterations 11 through 29, it is set to True.

Sub Page_Load(  )
   Response.BufferOutput = False
   Dim i As Integer
   For i = 1 To 50

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   For i = 1 To 50
      If (i > 10 And i < 30) Then 
         Response.BufferOutput = True
      Else
         Response.BufferOutput = False
      End If
      System.Threading.Thread.Sleep(500)
      Response.Write(".")
      Message.Text &= "."
      'Response.Flush
   Next
   Response.Write("<br/>Done!<br/>")
   Message.Text &= "<br/>Done!<br/>"
End Sub

The output of the code would look something like this:

.................................................. Done! .................................................. Done!

The first line of periods should appear one by one until ten have appeared, then pause, and then 20
more should appear, followed one by one by the rest and finally by the "Done!" statement. The
identical output produced by the ASP.NET Label control (as an HTML <span>) will appear at once,
since the output of controls on the server is not sent to the client until the control is rendered. This
means that for each loop in the example, the code simply adds to a property of the control that will be
rendered at a later time, while the text sent by the call to Response.Write is sent to the browser
immediately after buffering is turned off.

You can see similar behavior by commenting out the Response.BufferOutput lines in the example (by
prepending a single-quote (') character to the line), and uncommenting the Response.Flush line. This
commenting and uncommenting will eliminate the pause in the output described previously.

The call to the Shared (static) Thread.Sleep method allows us to pause processing of an ASP.NET
request for a given number of milliseconds. This can be useful when you need to wait during
processing for whatever reason. However, using this method can impact the total time each request
takes to process. In applications requiring high scalability, this may result in an unacceptable impact
on the overall throughput of the application, since only a limited number of threads are available to
process requests.

To avoid explicitly providing the namespace name when calling Thread.Sleep, add the following line to
the page, immediately following the @ Page declaration:

<%@ Import Namespace="System.Threading" %>

Notes

This property is the ASP.NET equivalent of classic ASP's Buffer property and is preferred over Buffer
for new development.

Cache

HttpCachePolicy = Response.Cache

Returns an instance of the HttpCachePolicy class that contains the cache policy of the page. You can
use the methods exposed by the HttpCachePolicy class with this class instance to examine which
headers or parameters (if any) have been set to vary the output cache, or to modify the current cache
settings. The HttpCachePolicy class includes the following members:

HttpCachePolicy
member Description

SetCacheability
method Controls caching by setting the HTTP Cache-Control header.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SetExpires
method

Sets the HTTP Expires header. This method takes a DateTime argument that
represents the absolute expiration time for the header.

SetLastModified
method

Sets the HTTP Last-Modified header. This method takes a DateTime argument that
represents the absolute expiration time for the header.

Insert method Inserts an item into the cache and assigns it a key.

Item property Returns an Object representing a cache item based on its key value or sets an
item of data in the cache while assigning it a key value.

Remove method Removes an item with a particular key value from the cache.

Parameters

HttpCachePolicy

An Object variable of type HttpCachePolicy.

Example

The example retrieves an instance of the HttpCachePolicy class into a local variable, sets the expiration
time to two minutes after the page is processed, and then sets the cacheability of the of the page to
Public. Finally, the Text property of the Message label control is set to the current time.

Sub Page_Load(  )
   Dim myCachePol As HttpCachePolicy
   myCachePol = Response.Cache
   myCachePol.SetExpires(DateTime.Now.AddSeconds(120))
   myCachePol.SetCacheability(HttpCacheability.Public)
   Message.Text = Now.ToString(  )
End Sub

The output of the page should be the current date and time. If refreshed, the output should not
change until two minutes have elapsed.

Notes

The HttpCachePolicy object returned by this property is the preferred method in ASP.NET for
modifying the cache policy for a given page. HttpCachePolicy provides the functionality provided by
the classic ASP CacheControl, Expires, and ExpiresAbsolute properties. For example, the
HttpCachePolicy class allows you to explicitly prevent the server from caching the response in
question, but still allows downstream caching of the response.

You can also set the output caching policies for a page through the @ OutputCache directive and its
attributes, although this provides less granular control than that provided by the methods of the
HttpCachePolicy class. Caching through the @ OutputCache directive is discussed in Chapter 3.

CacheControl

Response.CacheControl = String

Sets the cacheability of the current page.

Parameters

String

A string variable containing the value to set for the CacheControl property. Valid values include
"Public" and "Private".

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

Sub Page_Load(  )
   Response.CacheControl = "Public"
   Response.Expires = 2
   Message.Text = Now.ToString(  ) 
End Sub

The output of the code above should be identical to the previous example.

Notes

This property has been deprecated in favor of the HttpCacheability class methods.

Charset

String = Response.Charset
Response.Charset = String

Returns or sets a string representing the character set of the current response. When explicitly set,
the value assigned to the Charset property is added to the HTTP Content-Type response header.

Parameters

String

A string variable to receive or set the value of the property. The default is utf-8.

Example

The example below sets the character set for the HTTP response to Windows-1255 (note that as the
name suggests, this character set is only available on Internet Explorer on Windows clients and may
cause other browsers or browsers on other operating systems to display the page incorrectly). It then
writes the value of the character set to the Text property of the Message label control. To see the
difference between this character set and the default utf-8 character set, load the page into Internet
Explorer, and comment out the line that sets the Charset property, save the page, and reload it in the
browser.

Sub Page_Load(  )
   Response.Charset = "Windows-1255"
   Message.Text = "Current character set is " & Response.Charset
End Sub

Notes

Attempting to modify this property after the HTTP headers are sent to the browser results in an
HttpException being thrown. This would most likely occur if you disabled output buffering by using the
BufferOutput property and then wrote content to the browser by using Response.Write.

If the character set specified by the Charset property is not valid for the browser used by the client, it
will be ignored and the default character set for that browser will be used instead. As mentioned
above, using the default character set may cause the page to be displayed differently than intended.

ContentEncoding

Encoding = Response.ContentEncoding
Response.ContentEncoding = Encoding

Returns an instance of the Encoding class representing the encoding of the current response. The
Encoding class exposes properties and methods that allow you to examine and modify the system's

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Encoding class exposes properties and methods that allow you to examine and modify the system's
character encoding -- i.e., the way in which characters are stored internally in the system. For
example, you can convert a Unicode string to ASCII, UTF-7, or UTF-8.

Parameters

Encoding

An Object variable of type Encoding. Its EncodingName property provides the human-readable
name of the encoding type.

Example

The example uses the properties of the Encoding class instance returned from the ContentEncoding
property to display the human-readable name and the registered (IANA) name of the current
encoding.

Sub Page_Load(  )
   Message.Text = "Current encoding is " & _
      Response.ContentEncoding.EncodingName & "<br/>"
   Message.Text &= "Current encoding IANA name is " & _
      Response.ContentEncoding.WebName & "<br/>" 
End Sub

Notes

The ContentEncoding property is new in ASP.NET and provides a richer interface for examining and
modifying character set and code page information for the current response. It also provides the only
way to convert one character-encoded string to another character encoding (i.e., Unicode to ANSI).

ContentType

String = Response.ContentType
Response.ContentType = String

Returns or sets a String containing the MIME type of the current response. This allows you to retrieve
or set the value of the HTTP Content-Type response header.

Parameters

String

A string variable to receive or set the content type. The default is "text/html."

Example

The following example displays the current MIME content type in the client browser.

Sub Page_Load(  )
   Message.Text = "Current content type is " & _
      Response.ContentType & "<br/>" 
End Sub

Notes

The ContentType property is very important, since it enables you to send content to the client browser
other than the default HTML. For example, if you want to use the Response.BinaryWrite method to
send binary image data to the client browser, you must also set the ContentType property to the
appropriate MIME type ("image/jpg" or "image/gif", for example). See the BinaryWrite example for an
example of how this is done.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Expires

Integer = Response.Expires
Response.Expires = Integer

Returns or sets an integer representing the number of minutes before a cached page expires. This
property is used in concert with the CacheControl property to control caching of responses.

Parameters

Integer

An Integer variable to receive or set the expiration in minutes.

Notes

This property is provided for backward compatibility with classic ASP. It has been deprecated in favor
of the methods of the HttpCachePolicy instance returned by the Cache property.

ExpiresAbsolute

DateTime = Response.Expires
Response.Expires = DateTime

Returns or sets a DateTime value representing the date and time at which a cached response should
expire.

Parameters

DateTime

A DateTime variable to receive or set the absolute expiration.

Example

The following example makes the current response cacheable by using the CacheControl property and
then sets the absolute expiration to 30 seconds from the current time.

Sub Page_Load(  )
   Response.CacheControl = "Public"
   Response.ExpiresAbsolute = DateTime.Now.AddSeconds(30)
   Message.Text = Now.ToString(  ) 
End Sub

Notes

This property is provided for backward compatibility with classic ASP. It has been deprecated in favor
of the methods of the HttpCachePolicy instance returned by the Cache property.

IsClientConnected

Boolean = Response.IsClientConnected

Returns a Boolean indicating whether the client is still connected. Returns False if the client is no
longer connected.

Parameters

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

Boolean

A Boolean variable to receive the value of the property.

Example

The example checks the IsClientConnected property before starting a long-running processing task in
order to avoid the expense of running the task if the client is no longer connected. If the property
returns False, the code calls the Response.End method. Even though the client has disconnected and
can no longer receive the buffered output (which is sent when the End method is called), calling the
End method is still a good idea, since it will halt further processing of the page and fire the
Application_EndRequest event. If you have written cleanup code for the page that is run by the event
handler for Application_EndRequest, calling Response.End will ensure that the cleanup code is
executed, even if the client disconnects.

Sub Page_Load(  )
   'Check client connection status
   If Response.IsClientConnected = False Then
      Response.End
   Else
      'Start long-running processing task
   End If
End Sub

Notes

The IsClientConnected property is especially useful for long-running processes that require a
significant amount of processing resources on the server. By querying the IsClientConnected property
before starting an expensive processing task, or by querying the property periodically during
processing, you can bypass further processing if the client has disconnected for some reason.

Output

TextWriter = Response.Output

Returns a write-only TextWriter object that can be used to write text directly to the output stream of
the current response.

Parameters

TextWriter

An Object variable of type TextWriter. The TextWriter class includes the following members:

Member Description
Close
method Closes the text writer and releases its resources.

Flush
method Clears the text writer's buffer and writes output to its underlying device.

NewLine
property Gets or sets the new line character(s) used by the TextWriter object.

Write
method Writes data to the text stream.

WriteLine
method

Writes data followed by a newline character to the text stream. The NewLine property
defines the newline character.

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example declares a local variable of type TextWriter, retrieves an instance of TextWriter from the
Output property, and then uses the WriteLine method to write the text "Hello, World!" to the output
stream. The WriteLine method writes the specified text (or text representation of nonstring data
types), along with a line terminator, specified by setting the NewLine property of the TextWriter.
Without setting the NewLine property, the line terminator would affect the formatting of the text sent
to the browser. However, it would not alter the formatting of the output as rendered by the browser,
since browsers typically ignore whitespace such as non-HTML line terminators when rendering HTML.

Sub Page_Load(  )
   Dim myWriter As System.IO.TextWriter
   myWriter = Response.Output
   myWriter.NewLine = "<br/>"
   myWriter.WriteLine("Hello, World!")
   myWriter.WriteLine("Hello, World, once again!")
End Sub

Notes

The Output property provides an alternative to the Response.Write method when outputting text to
the output stream. You could also pass the TextWriter instance retrieved from the Output property to
a method of a custom component to allow that component to write text directly to the output stream
for the current response.

Like the Response.Write method, the result of writing text to the output stream by using the
TextWriter returned from the Output property depends on the location of the code that writes the
text. For example, in the code above, the text "Hello, World!" will appear before any static HTML in
the page output. This is because the output of the TextWriter and the Response.Write method in this
case is processed before the controls on the page are rendered. To make the output of the TextWriter
instance or Response.Write appear inline, you could put the code above in a <% %> render block
where you want the output to appear. A better approach for locating output in ASP.NET precisely is to
add an ASP.NET Literal Server Control at the point in the file where you wish the output to appear and
pass the desired output text to the Text property of the Literal control.

To use the TextWriter class without explicitly adding the System.IO namespace to the variable
declaration, you can add the @ Import directive directly below the @ Page directive with the
namespace attribute set to System.IO, as shown here:

<% @ Import Namespace="System.IO" %>

OutputStream

Stream = Response.OutputStream

Returns a write-only Stream object that can be used to write binary content directly to the output
stream of the current request.

Parameters

Stream

An Object variable of type Stream. The Stream class includes the following members:

Member Description
BeginWrite
method Begins an asynchronous write operation.

Close method Closes the stream and releases its resources.
EndWrite method Ends an asynchronous write operation.
Write method Writes data to the stream.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


WriteByte
method

Writes a single byte to the stream and advances the position within the stream
one byte.

Notes

The OutputStream property provides an alternative to the Response.BinaryWrite method when
outputting binary content to the output stream is desired. You could also pass the Stream instance
retrieved from the OutputStream property to a method of a custom component to allow that
component to write binary content directly to the output stream for the current response.

Status

String = Response.Status
Response.Status = String

Returns or sets a String that contains the HTTP status line that will be sent to the client browser.

Parameters

String

A String variable to set or receive the status code of the current request. The default is "200
OK."

Notes

This property is provided for backward compatibility with classic ASP and has been deprecated in
ASP.NET in favor of the StatusDescription property. Unlike the Status property, the StatusCode and
StatusDescription properties allow you to control the numeric status code portion of the status line
and the text description individually.

StatusCode

Integer = Response.StatusCode
Response.StatusCode = Integer

Returns or sets an Integer that represents the HTTP status code that will be returned to the browser.

Parameters

Integer

An integer variable to set or receive the status code. The default is 200. The possible status
codes fall into the following ranges:

1xx

The 100 range is for informational messages.

2xx

The 200 range is for success messages.

3xx

The 300 range is for redirection messages. The specific status code indicates whether a page has been moved temporarily
or permanently.

4xx

The 400 range is for client error messages. The best-known message is the 404 Not Found message, which indicates that
the client has asked for a resource that does not exist on the server. This range also includes status error messages
related to client authentication.

5xx

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The 500 range is for server error messages. For example, if more requests are received by IIS then can be processed or
queued for later processing, clients will receive a 500-series status code with the "Server Too Busy" message.

Example

The example uses the StatusCode and StatusDescription properties to send an HTTP status message
to the client. The Response.End method halts further processing and sends the currently buffered
output to the client.

Sub Page_Load(  )
   Response.StatusCode = 542
   Response.StatusDescription = "Server Error - The code is the answer."
   Response.End(  )
End Sub

Notes

As with other properties that set HTTP response headers, this property cannot be set once HTTP body
output is sent to the client using Response.Write or similar methods when buffering has been turned
off.

StatusDescription

String = Response.StatusDescription
Response.StatusDescription = String

Returns or sets a String containing the text HTTP status message that will be sent to the browser
along with the status code contained in the StatusCode property.

Parameters

String

A string variable to set or receive the additional path information. The default is "OK."

Example

See the example for the StatusCode property.

Notes

As with other properties that set HTTP response headers, this property cannot be set once HTTP body
output has been sent to the client (using Response.Write or similar methods) when buffering has been
turned off.

SuppressContent

Boolean = Response.SuppressContent
Response.SuppressContent = Boolean

Returns or sets a Boolean indicating whether HTTP output should be sent to the client.

Parameters

Boolean

A Boolean variable to receive or set the value of the property. The default is False; content is
sent to the client.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The following example writes the text "Hello, World!" to the output (which is buffered by default) and
sets SuppressContent to True so that no output is sent to the client.

Sub Page_Load(  )
   Response.Write("Hello, World!")
   Response.SuppressContent = True
   If Response.SuppressContent Then Response.Close(  )
End Sub

Notes

Since SuppressContent prevents any output from being returned to the client (including any error
messages), the Response.Close method (which closes the network connection to the client) must be
called to prevent the client browser from hanging indefinitely.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

17.3 Collections Reference

The Response object in ASP.NET supports only a single collection, the Cookies collection.

Cookies

HttpCookieCollection = Response.Cookies

The Cookies collection returns an instance of the HttpCookieCollection class containing all cookies sent
as a part of the current request. The HttpCookieCollection class contains an instance of the HttpCookie
class for each cookie passed as part of the client request. The properties of these HttpCookie
instances can be used to access information about the cookie(s). The Cookies collection of the
Response class supports the following set of properties:

AllKeys

Returns a string array of all keys in the collection.

Count

Returns an integer count of the number of name/value pairs in the collection.

Item(Index|Key)

Returns an instance of the collection class based on the index or passed-in key. This is the
default property, which is why calling:

Response.Cookies (KeyVal)

returns the HttpCookie instance corresponding to KeyVal.

Keys

Returns a collection of the keys for the collection.

In addition, the HttpCookieCollection class exposes the following methods:

CopyTo(Array, Index)

Copies the contents of the collection object to the provided Array argument, starting at the
provided Index argument. Note that the array must be dimensioned to a sufficient size to
contain the collection before calling CopyTo.

GetKey(Index)

Returns a string containing the key corresponding to the provided Index argument.

As in classic ASP, the Cookies collection is still implemented as a collection (in fact, the
HttpCookieCollection class inherits from the .NET NameObjectCollectionBase class), but rather than a
collection of string keys and string values, the ASP.NET implementation is a collection of string keys
and objects (instances of the HttpCookie class). Individual cookies are retrieved into variables of type
HttpCookie, providing access to the cookies values through class properties.

Dictionary-style cookies (cookies with more than one value) are accessible through the Values
property of the HttpCookie class, which returns a NameValueCollection containing the cookie subkeys
and values. You can also set individual values by their key with the following syntax:

HttpCookie.Values("keyname") = "value"

Parameters

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

HttpCookieCollection

An Object variable of type HttpCookieCollection.

Example

The example creates a login cookie, sets the expiration of the cookie for 30 minutes from the current
time, and adds the cookie to the Cookies collection.

Sub Page_Load(  )
   Dim myCookie As New HttpCookie("LoggedIn")
   myCookie.Value = "True"
   myCookie.Expires = DateTime.Now.AddMinutes(30)
   Response.Cookies.Add(myCookie)
End Sub

Notes

Unlike classic ASP, the collections in ASP.NET are zero-based, so the first element in any collection or
array will be 0, not 1. This is especially important to remember when retrieving values by their index.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

17.4 Methods Reference

AddCacheItemDependencies

Response.AddCacheItemDependencies(ByVal cacheKeys As ArrayList)

Adds a list of cache keys contained in an ArrayList to the list of Cache item keys upon which the
output cache of the current response depends. If one of the cache items identified by the keys is
modified, the output cache of the current response will be invalidated and a fresh response will be
generated.

Parameters

cacheKeys

An ArrayList containing one or more Cache item key names.

Example

The example shows how you can use the AddCacheItemDependencies method to set a number of
cache keys as dependencies for the output cache of the current response. If any of the cache items
represented by these keys is modified, the output cache is invalidated and the page is refreshed by
using Response.Redirect.

<%@ Page Language="vb" %>
<%@ OutputCache Duration="300" VaryByParam="None" %>
<html>
   <head>
      <title>Adding cache dependencies in ASP.NET</title>
      <script runat="server">
         Sub Page_Load(  )
            Dim myArrayList As New ArrayList
            myArrayList.Add("Key1")
            myArrayList.Add("Key2")
            Response.AddCacheItemDependencies(myArrayList)
            Message.Text = DateTime.Now.ToString(  )
         End Sub
         Sub Button1_Click(sender As Object, e As EventArgs)
            Cache("Key1") = "foo" & DateTime.Now.ToString(  )
            Response.Redirect("AddCacheItemDependencies.aspx")
         End Sub
         Sub Button2_Click(sender As Object, e As EventArgs)
            Cache("Key2") = "bar" & DateTime.Now.ToString(  )
            Response.Redirect("AddCacheItemDependencies.aspx")
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      <asp:label id="Message" runat="server"/>
      <asp:button id="Button1" text="Change Key 1" 
         onClick="Button1_Click" runat="server"/>
      <asp:button id="Button2" text="Change Key 2" 
         onClick="Button2_Click" runat="server"/>
   </form>
</body>
</html>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


</html>

Notes

The AddCacheItemDependencies method is useful when you want to output cache a page, but the
page depends on the value of several items stored in the ASP.NET cache. Rather than caching the
page with a very short duration to avoid stale data, you can use AddCacheItemDependencies to
automatically invalidate the output cache when the dependencies change.

AddCacheItemDependency

Response.AddCacheItemDependency(ByVal cacheKey As String)

Adds a cache item key to the list of cache keys upon which the output cache of the current response
depends. If the cache item identified by the key is modified, the output cache of the current response
will be invalidated and a fresh response will be generated.

Parameters

cacheKey

A String containing the cache item key to add.

Example

The example shows how you can use the AddCacheItemDependency method to set a cache key as a
dependency for the output cache of the current response. If the cache item represented by this key is
modified, the output cache is invalidated and the page is refreshed by using Response.Redirect.

<%@ Page Language="vb" %>
<%@ OutputCache Duration="300" VaryByParam="None" %>
<html>
   <head>
      <title>Adding a cache dependency in ASP.NET</title>
      <script runat="server">
         Sub Page_Load(  )
            Response.AddCacheItemDependency("Key1")
            Message.Text = DateTime.Now.ToString(  )
         End Sub
         Sub Button1_Click(sender As Object, e As EventArgs)
            Cache("Key1") = "foo" & DateTime.Now.ToString(  )
            Response.Redirect("AddCacheItemDependency.aspx")
         End Sub
      </script>
   </head>
<body>
   <form runat="server">
      <asp:label id="Message" runat="server"/>
      <asp:button id="Button1" text="Change Key 1" onClick="Button1_
Click"          runat="server"/>
   </form>
</body>
</html>

Notes

The AddCacheItemDependency method provides the same functionality as the
AddCacheItemDependencies method, but for a single cache item rather than multiple items.

AddFileDependencies

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Response.AddFileDependencies(ByVal filenames As ArrayList)

Adds a list of files contained in an ArrayList to the list of files upon which the output cache of the
current request depends. If any of these files is modified, the output cache is invalidated.

Parameters

filenames

An ArrayList containing one or more path/filenames.

Example

The example shows how you can use the AddFileDependencies method to set a number of files as
dependencies for the output cache of the current response. If any of these files is modified, the output
cache is invalidated.

<%@ Page Language="vb" %>
<%@ OutputCache Duration="300" VaryByParam="None" %>
<html>
   <head>
      <title>Adding file dependencies in ASP.NET</title>
      <script runat="server">
         Sub Page_Load(  )
            Dim myArrayList As New ArrayList
            myArrayList.Add(Server.MapPath("dep.txt"))
            myArrayList.Add(Server.MapPath("dep1.txt"))
            Response.AddFileDependencies(myArrayList)
            Message.Text = DateTime.Now.ToString(  )
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

Notes

The AddFileDependencies method is useful when you want to output cache a page, but the page
depends on the value of several files on the web server (which can be accessed by a file path from the
web server). Rather than caching the page with a very short duration to avoid stale data, you can use
AddFileDependencies to automatically invalidate the output cache when the dependencies change.

AddFileDependency

Response.AddFileDependency(ByVal filename As String)

Adds a file to the list of files upon which the output cache of the current request depends. If the
named by the filename argument is modified, the output cache is invalidated.

Parameters

filename

A String containing the path and filename to add.

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example below shows how you can use the AddFileDependency method to set a file as a
dependency for the output cache of the current response. If the file is modified, the output cache is
invalidated.

<%@ Page Language="vb" %>
<%@ OutputCache Duration="300" VaryByParam="None" %>
<html>
   <head>
      <title>Adding a file dependency in ASP.NET</title>
      <script runat="server">
         Sub Page_Load(  )
            Response.AddFileDependency(Server.MapPath("dep.txt"))
            Message.Text = DateTime.Now.ToString(  )
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

The dep.txt file named in the code above should reside in the same directory as the page. The
contents of the page can be whatever you choose. If the file content is changed, the cache will be
invalidated.

Notes

The AddFileDependency method provides the same functionality as the AddFileDependencies method,
but for a single file rather than multiple files.

AddHeader

Response.AddHeader(ByVal name As String, ByVal value As String)

Adds an HTTP header with the specified name and value to the output stream.

Parameters

name

A String argument containing the name for the header.

value

A String argument containing the value for the header.

Notes

The AddHeader property provides for backward compatibility with classic ASP. This property has been
deprecated in favor of the new AppendHeader method.

AppendHeader

Response.AppendHeader(ByVal name As String, _
                      ByVal value As String)

Adds an HTTP header with the specified name and value to the output stream. This method can be
used to add custom HTTP headers or to modify the value of standard HTTP headers.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

name

A String argument containing the name for the header.

value

A String argument containing the value for the header.

Example

The example sets the HTTP Content-Type header to "text/xml" and then displays the new value by
setting the Text property of the Message Label control to the value of the ContentType property. This
causes the page output to be treated as XML.

Sub Page_Load(  )
   Response.AppendHeader("Content-Type", "text/xml")
   Message.Text = Response.ContentType
End Sub

Notes

When using this method with HTTP headers related to caching policy, if more restrictive settings are
applied through the use of the ASP.NET cache APIs, the more restrictive settings will take priority
over the settings applied using AppendHeader.

AppendToLog

Response.AppendToLog(ByVal param As String)

Appends the text specified by the param argument to the IIS log file for the current IIS application.

Parameters

param

A String argument containing the text to be appended to the IIS log.

Example

The following example writes a message to the IIS log for the application the page is a part of, and
then writes a message to the ASP.NET Message label control indicating that the message was written:

Sub Page_Load(  )
   Response.AppendToLog("Hello from Page_Load!")
   Message.Text = "Message written to IIS Log!"
End Sub

The IIS log entry generated by the example above looks similar to the following:

2001-10-14 00:13:14 127.0.0.1 - 127.0.0.1 80 GET 
/ASPdotNET_iaN/Chapter_17/AppendToLog.aspx 
Hello+from+Page_Load! 200 BrowserString

Notes

Unlike the AppendToLog method in classic ASP, which had a limit of 80 characters per call, you can
write as much text as you wish to the log by using AppendToLog in ASP.NET. The IIS Log files are
located by default in %windir%\System32\LogFiles\W3SVCx\exdate.log, where %windir% is the name

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


located by default in %windir%\System32\LogFiles\W3SVCx\exdate.log, where %windir% is the name
of the Windows directory, x is the number of the Web site for the log (this is the IIS Metabase name
for the desired application), and date is the creation date of the log file.

ApplyAppPathModifier

String = Response.ApplyAppPathModifier(ByVal virtualPath_
                                       As String)

Given a virtual path to a resource, returns a string containing a new virtual path containing the
SessionID. This new virtual path can be used to create absolute URLs for use in applications that use
cookieless Sessions.

Parameters

String

A String argument that will receive the modified virtual path.

virtualPath

A String argument containing the virtual path to be modified.

Example

The following example retrieves a virtual path including the SessionID and displays the path by using
the Text property of the Message label control:

Sub Page_Load(  )
   Dim NewPath As String
   NewPath = Response.ApplyAppPathModifier(Request.Path)
   Message.Text = "Modified virtual path = " & NewPath
End Sub

The web.config file to set the Session state handler to use cookieless Sessions is shown below:

<configuration>
   <system.web>
      <sessionState mode="InProc" cookieless="true"/>
   </system.web>
</configuration>

Notes

This method is very useful when making use of the cookieless Session state functionality introduced
by ASP.NET. If the cookieless attribute of the sessionState config section in web.config is not set to
True, this method will simply return the virtual path passed in without modification.

BinaryWrite

Response.BinaryWrite(ByVal buffer( ) As Byte)

Allows writing of binary content to the output stream. No modification of the output is performed
before sending the binary content to the client.

Parameters

buffer( )

A Byte array containing the binary data to be written to the output stream.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

Here is an example of BinaryWrite:

Sub Page_Load(  )
   Dim ImageStream As New FileStream(MapPath("aspnetian.jpg"), _
      FileMode.Open, FileAccess.Read)
   Dim ImageBytes(ImageStream.Length) As Byte
   ImageStream.Read(ImageBytes, 0, ImageStream.Length)
   ImageStream.Close(  )
   Response.ContentType = "image/bmp"
   Response.BinaryWrite(ImageBytes)
   Response.End(  )
End Sub

Notes

This method is especially useful for writing binary content retrieved from a database to the browser.
When writing image or other nontext data to the browser, you should set the Response.ContentType
property to the appropriate MIME type for the image type being sent (such as "image/jpg").

Clear

Response.Clear(  )

Clears the content of the current output stream.

Parameters

None

Notes

The Clear method clears all currently buffered output, but does not clear the HTTP response headers.
If buffering of output is disabled by setting the BufferOutput property to False, this method will not
have any effect, since it only clears buffered content. This behavior is different from classic ASP, in
which calling Clear when buffering is disabled results in an error.

ClearContent

Response.ClearContent(  )

Clears the content of the current output stream.

Parameters

None

Example

The example writes a text message using Response.Write and then clears the buffered output by
calling Response.Clear. If buffering is on, the text message will never be sent to the browser.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   Response.Write("This content will not be seen.")
   Response.Clear(  )
   Message.Text = _
      "Content written with <i>Response.Write</i> was cleared."
End Sub

Notes

The ClearContent method clears all currently buffered output, but does not clear the HTTP response
headers. HTTP headers can be cleared by calling the ClearHeaders method. If buffering of output has
been disabled by setting the BufferOutput property to False, the ClearContent method will not have
any effect, since it only clears buffered content.

ClearHeaders

Response.ClearHeaders(  )

Clears the HTTP headers from the current output stream.

Parameters

None

Example

The example sets the HTTP Content-Type header to "text/xml", clears the HTTP headers by calling the
ClearHeaders method, and then writes the value of the Response.ContentType property to the Text
property of the Message ASP.NET Label control. The displayed Content-Type is the default of
"text/html".

Sub Page_Load(  )
   Response.AppendHeader("Content-Type", "text/xml")
   Response.ClearHeaders(  )
   Message.Text = Response.ContentType
End Sub

Notes

The ClearHeaders method clears only the HTTP response headers, not the buffered content.

Close

Response.Close(  )

Closes the network socket for the current response.

Parameters

None

Example

See the example for the SuppressContent property.

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

The Close method can be used to immediately close the network socket for the current response. This
closure will typically result in a browser error (such as "Cannot find server") being displayed to the
client.

End

Response.End(  )

Stops processing the current request and sends all buffered content to the client immediately.

Parameters

None

Example

The example below writes the text "Hello, World!" to the browser, calls Response.End, and then
attempts to set the Text property of the Message ASP.NET Label control to "Hello, World!" However,
that code will not be executed, as the End method immediately halts execution of page processing.

Sub Page_Load(  )
   Response.Write("Hello, World!")
   Response.End(  )
   Message.Text = "Hello, World!"
End Sub

In fact, the code above will result in only the "Hello, World!" text being output to the browser, as even
the rendering of the static HTML and controls in the page will not occur.

Notes

When the End method is called, in addition to sending buffered output to the client and terminating
processing, the Application_EndRequest event is fired.

Flush

Response.Flush(  )

Immediately sends all buffered output to the client.

Parameters

None

Example

See the example for the BufferOutput property. If you comment out the lines that set BufferOutput to
False and then uncomment the line that calls Response.Flush, you will see that the Flush method
allows you to explicitly send buffered content to the browser.

Notes

Since buffering is on by default in ASP.NET, the Flush method becomes especially useful. Rather than
turning off buffering, which results in any content sent from a Response.Write call being sent
immediately to the browser, you can use Response.Flush to send content in discrete chunks or to
ensure that an entire operation completes before sending the currently buffered content.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can also combine calls to Response.Flush with calls to Response.Clear to allow you to perform
preverification on content before it is sent to the browser. If a given set of calculations or output
encounters an error, you can call Response.Clear to clear the problematic output and then replace it
with an error message or with other replacement content. If there are no problems with the output,
you can call Response.Flush to send the buffered output to the browser and then continue processing.

Pics

Response.Pics(ByVal value As String)

Adds a PICS-Label header to the output stream for the current response. The Platform for Internet
Content Selection (PICS) is used to rate Internet content based on violence, sexual content, language,
and nudity.

Parameters

value

A String argument containing the text for the PICS-Label header.

Example

The following example sets a PICS header that specifies RSAC as the rating organization, sets the
rating effective period from 8/1/2001 to 2/28/2002, and sets the ratings as follows:

Violence - 1

Sexual content - 2

Adult Language - 3

Nudity - 4

Sub Page_Load(  )
   Dim PICSLabel As String
   PICSLabel &= "(PICS-1.1 <http://www.rsac.org/ratingsv01.html> "
   PICSLabel &= "labels on " & Chr(34)
   PICSLabel &= "2001.08.01T06:00-0000" & Chr(34)
   PICSLabel &= " until " & Chr(34)
   PICSLabel &= "2002.02.28T23:59-0000" & Chr(34)
   PICSLabel &= " ratings (V 1 S 2 L 3 N 4))"
   Response.PICS(PICSLabel)
   Message.Text = PICSLabel
End Sub

Notes

The PICS-Label header is used for rating the content of a site. Users can configure their browsers to
disallow viewing of sites that send PICS-Label headers, and whose ratings state that the site contains
a higher level of content in one of the rated categories than the browser is configured to allow.
Additional information on the PICS standard for content ratings is available at the World Wide Web
Consortium web site at http://www.w3c.org.

Redirect

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Response.Redirect(ByVal url As String) 
Response.Redirect(ByVal url As String, _) 
                  ByVal endResponse As Boolean)

Redirects the currently executing page to another page specified by the URL argument, optionally
terminating the processing of the current page.

Parameters

url

A String argument containing the URL for the page to redirect to.

endResponse

A Boolean argument indicating whether to terminate processing of the current page. If the
argument is omitted, the method call causes processing of the current page to be discontinued.

Example

The example redirects the current request to BufferOutput.aspx and directs ASP.NET to discontinue
processing of the current page:

Sub Page_Load(  )
   Response.Redirect("BufferOutput.aspx", True)
End Sub

Notes

Unless additional processing needs to be done in the page from which you call Response.Redirect, you
should always pass True as the second argument to Response.Redirect to prevent server resources
from being wasted by continuing to process the current page. This feature is new for ASP.NET. When
calling Response.Redirect with only the url argument, processing of the current page is discontinued
automatically.

Note that when redirecting to a page such as BufferOutput.aspx in which buffering is turned off, or to
a page that calls Response.Flush, the redirect will not complete until the target page has completed
processing. This means that all content on the target page will be seen at once, rather than as it is
rendered or flushed from the buffer.

Write

Response.Write(ByVal ch As Char)
Response.Write(ByVal obj As Object)
Response.Write(ByVal s As String)
Response.Write(ByVal buffer( ) As Char, ByVal index As Integer, _
   ByVal count As Integer)

Allows writing of arbitrary content to the output stream. Content may be character data, an Object
(using the object's ToString( ) method), or String data.

Parameters

ch

A Char argument containing a character to write to the output stream.

obj

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


obj

An Object argument containing an object whose string representation will be written to the
output stream.

s

A String argument containing text to write to the output stream.

buffer( )

A Char array argument containing the characters to write to the output stream.

index

An Integer argument containing the starting point in the Char array from which to being
writing.

count

An Integer argument containing the number of characters to write.

Example

The example creates an array of Chars, sets the values of the Chars, and then loops through the array
and displays its contents by calling Response.Write:

Sub Page_Load(  )
   Dim MyChars(2) As Char
   Dim MyChar As Char
   MyChars(0) = CChar("A")
   MyChars(1) = CChar("B")
   MyChars(2) = CChar("C")
   For Each MyChar in MyChars
      Response.Write(MyChar)
   Next
End Sub

Notes

As shown above, the Write method in ASP.NET gains a number of new overloaded implementations.
The above code could also be written by using another overloaded implementation that accepts an
array of Chars, a starting index, and the count of Chars to write, as follows:

Response.Write(MyChars, 0, 3)

The implementation of the Write method that takes an Object as an argument takes advantage of the
built-in ToString method of the object class to display the string representation of the object. ToString
is inherited by every .NET class and, by default, returns the namespace and class name of the object's
class. Classes that wish to send other information about themselves can override the inherited
implementation of ToString to send this information.

WriteFile

Response.WriteFile(ByVal fileName As String)
Response.WriteFile(ByVal fileName As String, _
   ByVal includeHeaders As Boolean)
Response.WriteFile(ByVal fileHandle As IntPtr, _
   ByVal offset As Long, ByVal size As Long)
Response.WriteFile(ByVal fileName As String, _
   ByVal offset As Long, ByVal size As Long)

Writes a file specified in one of the overloaded arguments to the output stream.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

fileName

A String argument containing the path and filename of the file whose content should be written
to the output stream.

includeHeaders

A Boolean argument indicating whether the contents of the file should be written to a memory
block.

fileHandle

An Argument of type IntPtr containing a handle to a file. You can get the handle by creating a
new FileStream object from the file and then querying the FileStream's Handle property.

offset

An Argument of type Long containing the byte position in the file from which writing should
start.

size

An Argument of type Long containing the number of bytes that should be written to the output
stream.

Example

The example writes the contents of the file dep.txt to the output stream of the current response.

Sub Page_Load(  )
   Response.WriteFile("dep.txt")
End Sub

Notes

The WriteFile method can be used in a variety of ways to output text content directly from a file.
Attempts to write other content types (such as image data) will fail.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 18. The HttpServerUtility Class

The HttpServerUtility class is ASP.NET's replacement for ASP's intrinsic Server object. Because the
Server property of the Page class (from which all pages are derived) exposes the HttpServerUtility
class instance for a given ASP.NET page, you can code to the HttpServerUtility class as you did in the
Server object in classic ASP, meaning that your existing ASP code is much easier to migrate.

The HttpServerUtility class performs utility functions such as encoding and decoding strings for use in
URLs or for plain-text display of content that may contain HTML markup tags. The HttpServerUtility
class also provides access to limited error information and provides methods (Execute, Transfer) for
modifying the execution of the current request. Table 18-1 lists the properties and methods exposed
by the HttpServerUtility class.

Table 18-1. HttpServerUtility class summary
Properties Collections Methods (public instance)

MachineName None ClearError

ScriptTimeout  CreateObject

  CreateObjectFromClsid

  Execute

  GetLastError

  HtmlDecode

  HtmlEncode

  MapPath

  Transfer

  UrlDecode

  UrlEncode

  UrlPathEncode

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

18.1 Comments/Troubleshooting

In classic ASP, the Server object was used to create COM component instances by using the
Server.CreateObject method. CreateObject still exists in ASP.NET, along with a new method,
CreateObjectFromClsid, which uses a COM class ID (CLSID) instead of a ProgID to locate the object to
create. You should use both methods only when necessary, since even though the details are handled
for you, using these methods incurs the cost of interoperating between COM and .NET (unmanaged
and managed) code. If there is a .NET alternative to using a COM object, you will get better
performance by sticking with the .NET solution.

The ASP.NET version of the Server object also adds a number of useful new utility functions, including
HtmlDecode, UrlDecode, and UrlPathEncode. HtmlDecode and UrlDecode are particularly welcome,
given that classic ASP developers were stuck either manually implementing functionality to remove
URL or HTML encoding from strings that they'd encoded on another page or relying on third party
components or scripts to do so. Now this functionality is built in.

In this chapter, we'll use the following code listing as the basis for most examples in the chapter.
Unless otherwise noted, each example will consist of the Page_Load event handler for that particular
example. Any output messages or return values displayed are shown as the Text property of the
ASP.NET Label named Message, or displayed by calling Response.Write.

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

18.2 Properties Reference

MachineName

stringvar = Server.MachineName

Returns a String containing the name of the server on which the code is executing.

Parameters

stringvar

A String variable that receives the machine name from the property.

Example

This code example declares a string variable, assigns the MachineName property value to the string
variable, and then sets the text property of the Message label to the value of ServerName:

Sub Page_Load(  )
   Dim ServerName As String
   ServerName = Server.MachineName
   Message.Text = "The name of the server is " & ServerName & ".<br/>"
End Sub

Notes

This property can be useful for code that needs to be easily portable, but needs to access resources
that require the server name.

ScriptTimeout

intvar = Server.ScriptTimeout

Returns an Integer containing the length, in milliseconds, a request is allowed to run before timing
out.

Parameters

intvar

An Integer variable that receives the script timeout value.

Example

This code example declares an integer variable, sets the ScriptTimeout value to 120 seconds, assigns
the ScriptTimeout property value to the variable, and then sets the text property of the Message label
to the value of the variable:

Sub Page_Load(  )
   Dim Timeout As String
   Server.ScriptTimeout = 120
   Timeout = CStr(Server.ScriptTimeout)
   Message.Text = "The current ScriptTimeout value is  " & _
      Timeout & ".<br/>"
End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


End Sub

Notes

You can use this property to extend or reduce the timeout value in order to allow longer-running
processes time to complete, or you can use ScriptTimeout to reduce the overhead associated with
inefficient processes by terminating them before completion. The default for this value is set to an
extremely high number so that a script will not time out by default. This is for backward compatibility
with classic ASP.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

18.3 Methods Reference

ClearError

Server.ClearError( )

Clears the last exception thrown.

Parameters

None

Notes

The ClearError method is new to ASP.NET. You can use this method at the beginning of page
processing to clear the last exception so that the information provided by the GetLastError method is
specific to an exception occurring on the current page.

CreateObject

objvar = Server.CreateObject(ProgID)
objvar = Server.CreateObject(Type)

Returns a reference to a COM object created based on the supplied ProgID.

Parameters

objvar

A variable of type Object to receive the reference to the newly created object.

ProgID

A String variable or literal containing the COM programmatic ID of the desired object.

Type

The type name of a runtime callable wrapper (RCW) class that the tlbimp.exe utility generated
to expose a COM object to managed code.

Example

The code example declares an object variable, uses Server.CreateObject to assign a reference to a
newly created ADO Recordset object to the variable, and then opens the recordset and returns the
RecordCount property to the browser by using the Message label control:

Sub Page_Load(  )
   Dim rs1
   Dim ConnString As String
   ConnString = "driver={SQL Server};server=(local)\NetSDK;"
   ConnString =  ConnString & "database=Pubs;Trusted_Connection=yes"
   rs1 = Server.CreateObject("ADODB.Recordset")
   ' 1 and 3 are the values for adOpenKeyset and adLockOptimistic
   rs1.Open("SELECT * FROM Authors", ConnString, 1, 3)
   Message.Text = "There are " & rs1.RecordCount & _

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Message.Text = "There are " & rs1.RecordCount & _
      " records in the Authors table.<br/>"
End Sub

Figure 18-1 shows the output of a page that combines the example for the CreateObject method with
the example for the CreateObjectFromClsid method.

Figure 18-1. Output of CreateObject and CreateObjectFromClsid examples

Notes

This method enables backward compatibility with classic ASP applications and allows the late-bound
use of COM components in ASP.NET applications. For new development, it is preferable to use other
means to achieve the results that this method was used for in classic ASP. These means include:

Using the TlbImp.exe utility to create a RCW for the component, which enables early binding
and optimizes the performance of calls between managed and unmanaged code. If you add a
reference to a COM component in the Visual Studio .NET IDE, the RCW is created for you
automatically.

Rewriting custom COM components to run in the managed environment. This method is
preferable, as it entirely eliminates the marshalling cost of switching between managed and
unmanaged code.

It is important for you to consider the second alternative for COM components that are called
frequently and perform a little work each time they're called (as opposed to components that are
called once and perform larger amounts of work per call). The distinction between these models is
often referred to as "chatty" versus "chunky" communications. The cost of chatty components in
marshalling between managed and unmanaged code tends to be significantly higher compared to the
amount of work being done in each call. When upgrading COM components to run in the managed
environment, you should convert chatty components first and then look at chunky components.

If you want ASP.NET to fire the OnStartPage and OnEndPage events used in some COM components
to access the ASP intrinsics, you must add the ASPCompat attribute to the page's @ Page directive:

<%@ Page ASPCompat="true" %>

When ASPCompat is set to True, ASP.NET creates unmanaged intrinsic objects to pass to the
component's OnStartPage method. ASP.NET also switches from executing in multithreaded apartment
(MTA) to single-threaded apartment (STA) mode to ensure compatibility with COM components
created in Visual Basic 5 or 6. This can have a significant negative impact on performance, so be sure
to test your application carefully to determine whether the performance will be acceptable when using
this attribute.

In ASP.NET, unlike in ASP, it isn't necessary to use the Set keyword with CreateObject, as shown in
the previous example. It also isn't necessary to use Set objName = Nothing to release the reference to
the object, since the managed reference is eventually garbage collected, at which point the COM
object is dereferenced and destroyed.

CreateObjectFromClsid

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


objvar = Server.CreateObjectFromClsid(Clsid)

Returns a reference to a COM object created based on the supplied COM CLSID.

Parameters

objvar

A variable of type Object to receive the reference to the newly created object.

Clsid

A String variable or literal containing the COM CLSID (a type of globally unique identifier
(GUID) for the component that is found in the Registry) of the desired object.

Example

The code example declares an object variable, uses Server.CreateObjectFromClsid to assign a
reference to a newly created ADO Recordset object to the variable, and then opens the recordset and
returns the RecordCount property to the browser using the Message label control.

Sub Page_Load(  )
   Dim rs1
   Dim ConnString As String
   ConnString = "driver={SQL Server};server=(local)\NetSDK;"
   ConnString =  ConnString & "database=Pubs;Trusted_Connection=yes"
   rs1 = Server.CreateObjectFromClsid( _
      "00000535-0000-0010-8000-00AA006D2EA4")
   ' 1 and 3 are the values for adOpenKeyset and adLockOptimistic
   rs1.Open("SELECT * FROM Titles", ConnString, 1, 3)
   Message.Text &= "There are " & rs1.RecordCount & _
      " records in the Titles table.<br/>"
End Sub

Notes

This method is new to ASP.NET and, like the CreateObject method, it allows the late-bound use of
COM components in ASP.NET applications.

The other notes relating to the CreateObject method also apply equally to the CreateObjectFromClsid
method.

Execute

Server.Execute(Path)
Server.Execute(Path, Writer)

Executes a request on the URL passed by the Path argument and optionally captures the output of the
requested page by using an instance of the TextWriter class supplied by the Writer argument.

Parameters

Path

A String variable or literal specifying the URL to execute. The URL passed to the Execute
method may be absolute (containing all the information needed to locate the resource,
including the protocol type and server name) or relative (containing only the relative path of
the resource).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Writer

An instance of any class derived from the TextWriter class (found in the System.IO
namespace); used to capture the output of the execution of the requested URL.

Example

The code example declares a string variable, creates a new TextWriter, and then calls Server.Execute
to execute a page based on the CreateObject example code and capture its results. Figure 18-2 shows
the output of the example.

Sub Page_Load(  )
   Dim Url As String = "CreateObject.aspx"
   Dim sw As New System.IO.StringWriter(  )
   Server.Execute(Url, sw)
   Message.Text = "Request output:<br/><br/>" & sw.ToString(  )
End Sub

Figure 18-2. Output of CreateObject and CreateObjectFromClsid examples

Notes

The Execute method is a useful feature that first appeared in the IIS 5.0 version of Active Server
Pages. ASP.NET includes an overloaded version of the method, adding the Writer argument for
capturing, manipulating, and/or saving the output of the request being executed.

When called passing only the URL, the Execute method automatically inserts the output of the request
into the HTML output stream of the calling page.

When called passing both the URL and an object reference derived from the TextWriter class (such as
StringWriter, StreamWriter, or HtmlTextWriter), the output is not automatically added to the HTML
output stream, but may be obtained, as in the previous example, by calling the ToString method of
the writer class.

GetLastError

LastException = Server.GetLastError(  )

Returns the last exception thrown.

Parameters

LastException

An object of type Exception to receive the application's last exception.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The code in GetLastError.aspx displays a button that, when clicked, calls a server-side event handler
that declares three Integers and purposely divides by zero (a no-no) to cause an exception. The code
in the Page_Error event handler declares an Exception object and a String, gets the Exception using
GetLastError, tests whether the object reference is valid and assigns the Message property of the
exception to the string variable, and then writes the value to the browser using the Response.Write
method. You can also call the GetLastError method from the Application_Error event handler, which
you can place in the global.asax file to catch errors that have not been handled at the page level.

<%@ Page Language="VB" %>
<html>
<head>
   <title>Examining the Last Error</title>
   <script runat="server">
      Sub CauseError(sender As Object, e As EventArgs)
         Dim x, y, z As Integer
         
         y = 1
         z = 0
         x = y / z
      End Sub
      Sub Page_Error(Source As Object, E As EventArgs)
         Dim LastError As Exception
         Dim ErrMessage As String
         LastError = Server.GetLastError(  )
         If Not LastError Is Nothing Then
            ErrMessage = LastError.Message
         Else
            ErrMessage = "No Errors"
         End If
         Response.Write("Last Error = " & ErrMessage & "<br/><br/>")
         Server.ClearError(  )
      End Sub
   </script>
</head>
<body>
   <form runat="server">
      <h4><font face="verdana">Cause an Error to Occur...</font></h4>
      <asp:button text="CauseError" OnClick="CauseError" runat="server"/>
   </form>
</body>
</html>

Notes

You'll find this method useful for getting information about an error from a custom error-handling
page. GetLastError returns information only when called in the Page_Error or Application_Error event
handlers because once these events have been fired, the exception is cleared automatically.

HtmlDecode

returnstring = Server.HtmlDecode(s)
Server.HtmlDecode(s,output)

Returns a string in which any HTML information encoded by the HtmlEncode method (described later
in this chapter) is decoded back into its standard HTML format.

Parameters

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

returnstring

A String variable to receive the decoded string from the method.

s

A string variable containing the encoded HTML that the method will decode.

output

An instance of any class derived from the TextWriter class (found in the System.IO namespace)
used to capture the decoded string.

Example

The code example declares two string variables, sets the value of StrToDecode to the encoded
equivalent of <p>Hello, World!</p>, assigns the return value of the Server.HtmlDecode call to
StrToReturn, and then writes the value to the browser using the Message label control:

Sub Page_Load(  )
   Dim StrToDecode As String
   Dim StrToReturn As String
   StrToDecode = "&lt;p&gt;Hello, World!&lt;/p&gt;"
   StrToReturn = Server.HtmlDecode(StrToDecode)
   Message.Text = StrToReturn
End Sub

Notes

This method provides a simple way to undo the effects of calling HtmlEncode on a given string. You
can also use it as an educational tool to demonstrate the relationship between various characters used
in HTML and ASP (such as the greater-than (>) and less-than (<) symbols) and their encoded
equivalents.

When called with only the s argument, this method returns a string. When called with both an s
argument and an output argument (such as a StringWriter or HtmlTextWriter class instance), the
method does not return a value; instead, you can obtain the decoded string by calling the ToString
method of the writer object.

While this method is useful, you probably won't use it as frequently as its cousin, UrlDecode, which is
described later in this chapter.

HtmlEncode

returnstring = Server.HtmlEncode(s)
Server.HtmlEncode(s, output)

Returns a string in which any HTML tags found are encoded by using the HTML literal equivalents of
symbols such as > (&gt;), < (&lt;), and even quotes (&quot;). This allows developers to display HTML
and ASP source code on the page, rather than treating it as rendered output or code to execute.

Parameters

returnstring

A String variable to receive the encoded string from the method.

s

A string variable containing the HTML that the method will encode.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


output

An instance of any class derived from the TextWriter class, such as a StringWriter class instance
(found in the System.IO namespace), used to capture the encoded string.

Example

The code example declares two string variables, sets the value of StrToEncode, assigns the return
value of the Server.HtmlEncode call to StrToReturn, and then writes the value to the browser using
the Message label control. Note that you have to view the HTML source to see the actual string
returned by the method call.

Sub Page_Load(  )
   Dim StrToEncode As String
   Dim StrToReturn As String
   StrToEncode = "<%@ Page Language=""VB"" %>"
   StrToReturn = Server.HtmlEncode(StrToEncode)
   Message.Text = StrToReturn
End Sub

Notes

This method is great for displaying the source of a page for educational purposes. It is also
particularly useful for encoding text entered by users that may or may not be displayed or written to
the browser. Without this encoding (or some form of filtering or validation of the input), it might be
possible for the user to enter script or other code that the browser or server could execute. This
possibility could pose a very large security risk.

Whether with HtmlEncode or with some form of filtering or validation, you should always ensure that
text entered by your users that will be used or displayed by your application does not contain
unexpected characters or content.

Like the HtmlDecode method, HtmlEncode is overloaded. It returns a string when called with the s
argument alone, and it does not return a value when called with both an s and an output argument.
Instead, it sends the encoded HTML to the output class instance.

MapPath

PhysicalPath = Server.MapPath(Path)

Returns a string containing the physical path in the server's filesystem that corresponds to the virtual
or relative path specified by the Path argument.

Parameters

PhysicalPath

A String variable to receive the physical path from the method.

Path

A String variable containing the virtual or relative path to be mapped.

Example

The code example declares two string variables, sets the value of RelativePath, assigns the return
value of the Server.MapPath call to PhysicalPath, and then writes the value to the browser by using
the Message label control:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   Dim RelativePath As String
   Dim PhysicalPath As String
   RelativePath = "HtmlEncode.aspx"
   PhysicalPath = Server.MapPath(RelativePath)
   Message.Text = PhysicalPath
End Sub

Notes

You can use this method to determine the physical location for creating a new file in response to a
user action or code event.

In classic ASP, attempting to use this method with the MS-DOS (.) and (..) relative directory syntax
would result in an error. In ASP.NET, no error occurs. In the previous example, using
"../HtmlEncode.aspx" for the Path returns a physical path mapping the file HtmlEncode.aspx to the
parent folder of its physical location. Using "./HtmlEncode.aspx" for the Path returns the same physical
path mapping as in the original example.

The MapPath method dynamically determines whether the provided path is a relative or virtual path
based on whether the leading character is a slash (/) or backslash (\). If the leading character is
either one, the path is assumed to be a complete virtual path. If not, the path is assumed to be
relative to the physical path of the currently executing page.

If the last component in Path is a filename, the MapPath method does not verify its existence. In other
words, the code example returns the same absolute path whether or not HtmlEncode.aspx exists.

A more flexible version of the MapPath method has been added to the Request object that enables
you to specify a base directory for resolving mappings and lets you allow mapping of paths across
different applications. You can read more about the Request.MapPath method in Chapter 16.

Transfer

Server.Transfer(Path)
Server.Transfer(Path, preserveForm)

Discontinues execution of the current page and transfers execution to the page specified by the Path
argument. This allows control of an application to be redirected to the page specified by the Path
argument without any response being sent to the client.

In contrast to the Execute method, which returns control to the page in which it is called once the
page specified in the Execute method finishes processing, the Transfer method does not return control
to the calling page.

Parameters

Path

A String variable containing the path to the page to which execution will be transferred.

preserveForm

A Boolean variable that indicates whether the Form and QueryString collections should be
cleared before transferring control to the page that the Path argument specifies.

Example

The code example declares a string variable containing the name of the page to transfer control to,
and then calls Server.Transfer. Note that the call that sets the Message.Text property will never be
executed.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   Dim Url As String = "CreateObject.aspx"
   Server.Transfer(Url)
   Message.Text = "This code will never be executed!"
End Sub

Notes

The ability to clear the Form and QueryString collections prior to passing control to the page that the
Path argument specifies is new in ASP.NET. This is convenient for passing control to pages that you
did not create and that might break if they encounter unexpected values, or if you want to keep the
Form or QueryString contents private. If you do not pass a preserveForm argument, the default
behavior is for the Form and QueryString collections to be preserved.

Make sure that no code in your page must execute after a Server.Transfer. If you have such code, you
may want to consider using Server.Execute instead.

UrlDecode

returnstring = Server.UrlDecode(s)
Server.UrlDecode(s,output)

Returns a string in which any special character sequences resulting from encoding by the UrlEncode
method (described later in this chapter) are decoded back into the original format. For example, a
URL with a query string such as:

http://localhost/ASPdotNET_iaN/Chapter_18/UrlDecode.
aspx?strtodecode=This%20is%20a%20good%20string.

would return the following string from the UrlDecode method:

This is a good string.

Parameters

returnstring

A String variable to receive the decoded string from the method.

s

A String variable containing the encoded URL to be decoded by the method.

output

An instance of any class derived from the TextWriter class (found in the System.IO namespace)
used to capture the decoded string. Examples are the StringWriter and HtmlTextWriter classes.

Example

The code example declares two string variables, sets the value of StrToDecode to the encoded
equivalent of the QueryString's StrToDecode value, assigns the return value of the Server.UrlDecode
call to StrToReturn, and then writes the value to the browser using the Message label control:

Sub Page_Load(  )
   Dim StrToDecode As String
   Dim StrToReturn As String
   StrToDecode = Request.QueryString("StrToDecode")
   StrToReturn = Server.UrlDecode(StrToDecode)
   Message.Text = StrToReturn
End Sub

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


End Sub

Notes

New in ASP.NET, this method provides a simple way to undo the effects of calling UrlEncode on a
given string. It is especially useful for retrieving values passed in the query string, since these values
commonly contain characters, such as spaces and commas, that are not allowed in URLs.

When called with only the s argument, this method returns a string. When called with both the s
argument and output argument, the method does not return a value; instead, the decoded string is
sent to the output writer.

UrlEncode

returnstring = Server.UrlEncode(s)
Server.UrlEncode(s, output)

Returns a string in which any characters not allowed in URLs are encoded by using the URL literal
equivalents, such as %2c for comma and + for space. This makes it very simple to pass any string as
a query string value and, thanks to the new UrlDecode method, just as simple to retrieve the
unencoded value.

Parameters

returnstring

A String variable to receive the encoded string from the method.

s

A String variable containing the value to be encoded by the method.

output

An instance of any class derived from the TextWriter class (found in the System.IO
namespace); used to capture the encoded string. Classes derived from TextWriter include
StringWriter and HtmlTextWriter.

Example

The code example declares two string variables, sets the value of StrToEncode, assigns the return
value of the Server.UrlEncode call to StrToReturn, and then writes the HTML anchor tag containing a
query string with the encoded value to the browser using the Message label control:

Sub Page_Load(  )
   Dim StrToEncode As String
   Dim StrToReturn As String
   StrToEncode = "Hello, World!"
   StrToReturn = Server.UrlEncode(StrToEncode)
   Message.Text = "<a href=""UrlDecode.aspx?StrToDecode=" & StrToReturn
   Message.Text &= """>" & StrToReturn & " - Click to Decode!</a>"
End Sub

Notes

This method replaces non-URL-allowable characters in strings that need to be passed as part of a
URL. For example, one of the most difficult things to pass as part of a URL is another URL. The
UrlEncode method replaces all slash (/), dot (.), and colon (:) characters for you. Figure 18-3 shows
the output of the previous example.

Figure 18-3. Output of server UrlEncode

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 18-3. Output of server UrlEncode

Like the UrlDecode method, UrlEncode is overloaded. It returns a string when called with the s
argument alone and does not return a value when called with both the s and output arguments.
Instead, the encoded URL is sent to the writer object.

UrlPathEncode

returnstring = Server.UrlPathEncode(s)

Returns a string containing a URL whose path portion is encoded using the URL literal equivalents of
symbols such as slash (/), colon (:), and dot (.). The method also encodes any spaces in the
remaining portion of the URL, since spaces in the query string may be unexpectedly truncated by
some browsers.

Parameters

returnstring

A String variable to receive the encoded string from the method.

s

A String variable containing the URL to be encoded by the method.

Example

The code example declares two string variables, sets the value of StrToEncode, assigns the return
value of the Server.UrlPathEncode call to StrToReturn, and then writes the value to the browser as
part of a hyperlink:

Sub Page_Load(  )
   Dim StrToEncode As String
   Dim StrToReturn As String
   StrToEncode = "http://www.aspnetian.com/Chapter18/UrlPathEncode.aspx"
   StrToReturn = Server.UrlPathEncode(StrToEncode)
   Message.Text = "<a href=""UrlPathEncode.aspx?target=" & _
      StrToReturn & """>" & StrToReturn & "</a><br/>"
   Message.Text &= "Target = " & Request("Target")
End Sub

Notes

This method existed in classic ASP, but was undocumented.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 19. The HttpSessionState Class

A significant challenge for any Web-based application is managing user state. Unlike rich client
applications, in which user state can be stored in persistent variables local to the client application,
web browsers do not have a comparable built-in facility for persistently storing user state locally. This
is because HTTP, the basic communication protocol used in web applications, is essentially a
connectionless protocol (the HTTP specification allows persistent connections, but problems with
persistent HTTP connections prevent this specification from being widely used). Each HTTP
request/response is treated as completely separate from every other request/response. As such, any
local variable storage cannot be reliably mapped from the request/response in which they were
created to any subsequent request/response.

An early solution to this challenge was the creation of cookies, which are bits of text that are stored
either in memory (per-session cookies) or on disk (persistent cookies) and are associated with the
domain name from which they originated. This solves the problem of being able to associate a bit of
data with more than one request/response, but it has limitations that made it less than an ideal
solution:

Cookies can only store text (or a textual representation of other data), which means that
cookie data cannot be made typesafe.

Cookies are limited in size (the size limit depends on the browser, but is often 4k).

Cookies can be manipulated on the client. If an application relying on cookies for user state
does not take this into account, it is possible that a malicious user could use a manipulated
cookie to breach the security of the application.

Most browsers allow users to turn off or refuse cookies. If users do so, an application that relies
on cookies for storing user state may not function correctly.

Cookies present a potential performance and scalability problem, since all cookies for a given
domain are sent with each request/response cycle. This means that sites making substantial
use of cookies for state management will send a lot of information over the wire with each
request/response cycle, whether that information is needed for that request/response or not.

For these reasons, classic ASP implemented state management through the Session intrinsic object,
which provided a collection of key/value pairs for each user for storing user-specific state in memory
on the web server. In classic ASP, each user session was identified by a unique identifier called the
SessionID, which was sent as a per-session cookie. This alleviated several concerns of using cookies
alone for storing user state, including the performance/scalability issue and cookie size limits.
However, it still failed to address some issues, including the problem of users who disable cookies.
ASP.NET addresses this issue by allowing both cookie-based and cookieless sessions, which are
configurable at the application level.

The HttpSessionState class is ASP.NET's replacement for classic ASP's Session intrinsic object. Like the
other classes that replace ASP intrinsics, HttpSessionState is exposed as a property of the Page class -
- in this case, the Session property. Since each ASP.NET page inherits from the Page class, these
properties are available to any code in the page. This means that migrating classic ASP code that uses
the Session object should be relatively painless.

The HttpSessionState class is used primarily for storing and accessing data that is shared across all the
pages accessed by a particular user during a given session of interacting with the application. The
HttpSessionState class provides properties and methods that map to the properties, methods, and
collections of the classic ASP Session object for backward compatibility. It also adds a number of new
properties and methods that increase the convenience of dealing with session state.

As in classic ASP, each user session in ASP.NET is identified by a unique SessionID, which is created
at the same time as the user's session, is exposed as a property of the HttpSessionState class. In most

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


at the same time as the user's session, is exposed as a property of the HttpSessionState class. In most
cases, developers do not need to concern themselves with this SessionID, since ASP.NET handles it
transparently.

A new SessionID is created the first time a user who does not have a current session accesses a page
within an ASP.NET application whose session state has not been disabled by setting the
enableSessionState attribute of the @ Page directive to False. If the page stores information in the
Session collection, or if an event handler is defined for the Session.Start event in the global.asax file,
then a new session is created and the newly created SessionID is assigned to that session. This
delayed creation of the session until it is actually used helps conserve the limited resources of the web
server and can help improve the scalability of ASP.NET applications.

When the session is created, the Session.Start event is fired. This event can be handled by creating
an event handler in the global.asax file (the ASP.NET equivalent of global.asa) with the following
signature:

Sub Session_OnStart(  )
   'Session initialization code
End Sub

By default, the lifetime of the session for a given user is 20 minutes from the time of the user's last
request. This setting is configurable at the application level via the ASP.NET web.config configuration
file or at the machine level via the machine.config configuration file. Refer to Chapter 20 for more
information on configuring the session timeout value. When a session ends, either by exceeding the
timeout value or by code that calls the Session.Abandon method, the Session.End event is fired. Like
the Start event, you can handle this event by adding an event handler to global.asax with the
following signature:

Sub Session_OnEnd(  )
   'Session cleanup code
End Sub

Note that the session does not end automatically when the user closes their browser, so if you want to
explicitly end the session when a user is finished, you should implement some kind of logout feature
that calls the Session.Abandon method.

In ASP.NET, session state is managed through the SessionStateModule class, which is an HttpModule.
HttpModules are classes that derive from IHttpModule and that participate in each HTTP request in an
ASP.NET application. The SessionStateModule class is responsible for generating and/or retrieving
SessionIDs, firing the Start and End events of the Session object, and abstracting the underlying
Session store from the HttpSessionState class.

Session state configuration is handled through the sessionState configuration section of the
machine.config and web.config configuration files. (The sessionState configuration section of the
Web.config configuration file will be discussed in detail in Chapter 20.) The machine.config file
contains the default settings for all applications on the machine, and may be overridden by adding a
sessionState section to the web.config file for an application. If no sessionState section appears in the
application-level configuration file, the defaults in machine.config are inherited by the application. As
installed, machine.config enables in-process session state by using cookies to track the SessionID by
default.

ASP.NET adds two new configuration options in addition to the timeout value and enabling/disabling
of sessions that were configurable in classic ASP. The first provides built-in support for cookieless
sessions. Cookieless sessions are configured in the web.config (or machine.config) file and
implemented through the SessionStateModule class, which automatically modifies all relative URLs in
the application and embeds the SessionID, allowing the application to maintain user state without
using cookies. ASP.NET also provides the Response.ApplyAppPathModifier method, which can create
absolute URLs containing the embedded SessionID given a virtual path to a resource. This allows even
applications to take advantage of cookieless sessions by using absolute URLs.

The second new configuration option allows session state in ASP.NET to span multiple servers through
new out-of-process storage options. ASP.NET state can now be stored in-process (the same as classic
ASP), in a special ASP.NET state NT service, or in a SQL Server database. The latter two options allow
multiple machines to use the same state storage facility, albeit at the expense of making out-of-

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


multiple machines to use the same state storage facility, albeit at the expense of making out-of-
process calls to set and retrieve state information. More importantly, all storage options are
transparent to the developer. Information is added to and retrieved from the session state store in
exactly the same fashion, regardless of which underlying session state store is used. This allows
applications to be developed by initially using in-process state storage for the best performance, and
later moved to out-of process storage to facilitate scaling out by adding more web servers -- all
without changing a single line of code in the application.

Items can be stored in the Session collection in one of three ways:

By calling the Add method, passing in the name to assign to the item and the item's value. This
value can be of any type supported by the CLR, including object instances, which are
automatically serialized before being stored. The Add method takes the form:

Session.Add(itemName, itemValue)

By explicitly referring to the Item property, passing a name or index to assign to the new item:

Session.Item(itemName) = itemValue

By implicitly referring to the Item property, passing a name to assign to the new item. This was
the most common technique used in classic ASP.

Session(itemName) = itemValue

Items in the Session collection can be accessed in one of three ways:

By retrieving and iterating over the collection of keys in the Session collection (see the Keys
collection description for an example).

By explicitly referring to the Item property, passing the name of the item to retrieve:

localVar = Session.Item(itemName)

By implicitly referring to the Item property, passing the name of the item to retrieve. This was
the most common technique used in classic ASP:

localVar = Session(itemName)

Items can be removed from the Session collection in one of several ways:

By calling the Clear method (clears all items).

By calling the RemoveAll method (removes all items, which is effectively the same as calling
the Clear method).

By calling the Remove method, passing the name of the item to remove.

By calling the RemoveAt method, passing the index of the item to remove.

Table 19-1 lists the properties, collections, methods, and events exposed by the HttpSessionState
class.

Table 19-1. HttpSessionState class summary
Properties Collections Methods (public instance) Events[1]

CodePage Contents Abandon Start
Count Keys Add End

IsCookieless StaticObjects Clear  
IsNewSession  CopyTo  

  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IsReadOnly  Remove  
Item  RemoveAll  
LCID  RemoveAt  
Mode    
SessionID    
Timeout    
    

[1] These events are exposed by the SessionStateModule class, rather than the
HttpSessionState class.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

19.1 Comments/Troubleshooting

Understanding both the scope and the lifetime of the Session collection for a given user is important
when using the Session object. As mentioned above, a new session is created when a user first
requests a page within an ASP.NET application for which session state is enabled (session state is
enabled by default in in-process mode) and that stores a value in the Session collection. The
boundary of that ASP.NET application is defined by the boundary of an IIS application. That is, the
boundary of the ASP.NET session includes all ASP.NET pages within a single IIS application and all of
its subfolders and virtual directories. It does not, however, include subfolders that are defined as IIS
applications. Figure 19-1 illustrates the different folder types in IIS. In Figure 19-1, the
SessionWrite.aspx file writes a value to the Session collection. Because the folder containing
SessionWrite.aspx is a virtual directory that is a part of the Chapter_19 application folder and is not
defined as its own folder, the session value written by SessionWrite.aspx will be available to any page
in either the Chapter_19 folder or the SubApp subfolder. If, however, the SubApp folder is configured
as an IIS Application (by accessing the Virtual Directory tab of the Properties dialog for the folder and
clicking the Create button in the Application Settings section), it will then define its own session
boundaries, which will not be shared with the parent Chapter_19 application.

Figure 19-1. IIS folder types

The lifetime of an ASP.NET session is set by default to 20 minutes from the time of the last request to
the application that created the session, or until the Session.Abandon method is called.

Keep this lifetime in mind for two reasons:

Any information that you store at the session level will continue to consume resources
(memory, in the case of in-process or state service storage; memory and/or disk space, in the
case of SQL Server state storage) for a minimum of 20 minutes (or whatever length you've set
for the timeout value), and possibly longer depending on the user's activity in the application.
For this reason, you should always carefully consider the potential costs associated with storing
an item (particularly object instances) in the Session collection.

If code in your page relies on an item being in the Session collection, your code could break if
and when the session timeout value is exceeded. For this reason, you should always check to
make sure that the item exists by testing whether the item evaluates to Nothing (or null in C#)
before attempting to access the item's value.

In classic ASP, a big no-no was storing non-thread-safe COM objects (i.e., any COM object written in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In classic ASP, a big no-no was storing non-thread-safe COM objects (i.e., any COM object written in
Visual Basic) in the Session collection. This was because such components would force IIS to process
requests only to the Session that stored the COM object from the same thread that created the
object, which could limit scalability substantially. In ASP.NET, this is less of an issue, since all
managed .NET components can be stored safely in the Session collection without the threading model
impacting scalability. The concerns about resource usage and scalability still apply, however, so
before storing objects in the Session collection, carefully consider just how much memory will
probably be consumed by multiple serialized instances of the object being stored by multiple sessions.

The difference between objects added to the Session collection and objects created with Session
scope using the <object> tag in global.asax is also important. While objects added to the Session
collection can be removed by using the Remove, RemoveAll, or Clear methods, objects in the
StaticObjects collection (those created in global.asax) are not affected by any of these methods.

In addition to properties and methods provided for backward compatibility with classic ASP, the
ASP.NET version of the Session object also adds useful new properties and methods, including the
Count, IsCookieless, IsNewSession, and IsReadOnly properties, and the Clear, CopyTo, and RemoveAt
methods. The Count and CopyTo members are derived from the ICollection interface, which is
implemented by the HttpSessionState class.

In this chapter, we'll use the following code listing as the basis for most examples in the chapter.
Unless otherwise noted, each example will consist of the Page_Load event handler for that particular
example. Any displayed output messages or return values will be shown as the Text property of the
ASP.NET Label named Message or by calling Response.Write.

<%@ Page Language="vb" %>
<html>
   <head>
      <script runat="server">
         Sub Page_Load(  )
            'Example code will go here
         End Sub
      </script>
   </head>
<body>
   <asp:label id="Message" runat="server"/>
</body>
</html>

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

19.2 Properties Reference

CodePage

Integer = Session.CodePage
Session.CodePage = Integer

Returns or sets an Integer indicating the code page to be used in generating the page output. The
code page is the character set that contains all characters and punctuation for a given locale setting.

Parameters

Integer

An Integer variable that will receive or set the code page property value.

Example

The example writes the current code page value to the Text property of the Message label control:

Sub Page_Load(  )
   Message.Text = "Current Code Page is: " & Session.CodePage
End Sub

Notes

The CodePage property is provided for compatibility with classic ASP. For new ASP.NET development,
you should use the ContentEncoding property of the Response class for formatting output to a given
code page, or configure globalization settings in web.config (see Chapter 8 and Chapter 20 for more
information on globalization settings).

In the example above, although the property value is an Integer, ASP.NET automatically casts the
Integer value to a String, which is then assigned to the Text property. This works because any .NET
object or data type can be represented as a String.

Count

Integer = Session.Count

Returns an Integer containing the number of items currently in the Session collection.

Parameters

Integer

An Integer variable that will receive the count property value.

Example

The example adds two values to the Session collection, displays the count of the items in the Session
collection, and then displays each item, using the Count property as a looping control value:

Sub Page_Load(  )
   Session("foo") = "Hello, "
   Session("bar") = "World!"
   Message.Text = "The Session collection contains " & _

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Message.Text = "The Session collection contains " & _
         Session.Count & " items.</br>"
      Dim I as Integer
      For I = 0 To Session.Count - 1
         Message.Text &= CStr(Session(I)) & "</br>"
      Next
End Sub

Notes

The Count property is new for ASP.NET. In addition to using the Count property for looping through
the Session collection, you can use the property to keep track of how many items a given Session
stores at any given time. For example, you could write this information to a log for later review.

IsCookieless

Boolean = Session.IsCookieless

Returns a Boolean indicating whether the application is configured for cookieless Session operation.

Parameters

Boolean

A Boolean variable that will receive the IsCookieless property value.

Example

The example displays a message indicating whether cookieless sessions have been enabled for the
current session:

Sub Page_Load(  )
   If Session.IsCookieless Then
      Message.Text = "The current Session does not use cookies."
   Else
      Message.Text = "The current Session uses cookies."
   End If
End Sub

Notes

The IsCookieless property is new for ASP.NET, and is especially useful in combination with the
Response.ApplyAppPathModifier method, which allows you to create absolute URLs containing the
current SessionID for use with cookieless sessions.

IsNewSession

Boolean = Session.IsNewSession

Returns a Boolean indicating whether the current session was created as a result of the current
request.

Parameters

Boolean

A Boolean variable that will receive the IsNewSession property value. Returns True on the
request that creates a Session and False for each subsequent request from the same client.

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example tests to see if the current request created a new session and if so, adds a value to the
Session collection and then displays a message containing the SessionID of the current session:

Sub Page_Load(  )
   If Session.IsNewSession Then
      Session("foo") = "foo"
      Message.Text = "The current Session (SessionID: " & _
         Session.SessionID & ") was created with this request."
   Else
      Message.Text = "The current Session (SessionID: " & _
         Session.SessionID & ") existed prior to this request."
   End If
End Sub

Notes

The IsNewSession property is very useful when you want to initialize Session collection items for only
certain pages. Unlike the Session_OnStart event handler in global.asax, which is called when a
session is created, regardless of which page creates the session, this property gives you finer-grained
control over initialization and session behavior.

As mentioned in the introduction to this chapter, while a new SessionID is generated for each request
that does not already have a session, a new session is not created for a given request unless the
requested page stores a value in the Session collection or an event handler exists in global.asax for
the Session Start event.

Thus, if you commented out the line:

Session("foo") = "foo"

in the example above, and no Session_OnStart event handler was defined in global.asax, each
request to the page would result in a new SessionID being generated, but no session would actually
be created by the request.

IsReadOnly

Boolean = Session.IsReadOnly

Returns a Boolean indicating whether the current session can be written to from the current page.
This property is set to True when the EnableSessionState attribute of the @ Page directive is set to
ReadOnly.

Parameters

Boolean

A Boolean variable that will receive the IsReadOnly property value. The default is False.

Example

The example tests whether the session is set to ReadOnly for the page and if so, displays an
appropriate message. If not, it writes a value to the Session collection and then displays a different
message:

Sub Page_Load(  )
   If Session.IsReadOnly Then
      Message.Text = "The current Session (SessionID: " & _
         Session.SessionID & ") is read-only for this page."
   Else

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Else
      Session("foo") = "foo"
      Message.Text = "The current Session (SessionID: " & _
         Session.SessionID & ") can be written to from this page."
   End If
End Sub

To test this page, add the EnableSessionState attribute to the @ Page directive for the page, setting its
value to ReadOnly, as shown here:

<%@ Page Language="vb" EnableSessionState="ReadOnly" %>

Notes

Read-only session state is new in ASP.NET and is designed to improve the efficiency of pages that
require only read access to the Session collection. Attempting to write to the Session collection from a
page with the EnableSessionState attribute set to ReadOnly will result in an exception being thrown.

Item

Object = Session.Item(ByVal name As String)
Session.Item(ByVal name As String) = Object
Object = Session.Item(ByVal index As Integer)
Session.Item(ByVal index As Integer) = Object

Returns or sets an Object associated with a particular name or index.

Parameters

Object

A variable of any type (since all .NET types are ultimately derived from Object) that will receive
or set the item's value.

name

A String argument containing the text key to apply to the item or by which to retrieve the item.

index

An Integer argument containing the index of the item whose value will be retrieved or
modified.

Example

The example sets the values of two items in the Session collection. If these items do not already exist
in the collection, they will be added. The example then displays the two values:

Sub Page_Load(  )
   Session.Item("foo") = "foo"
   Session.Item("foo2") = "foo2"
   Message.Text = CStr(Session.Item("foo")) & "</br>"
   Message.Text &= CStr(Session.Item(1))
End Sub

Notes

The Item property is accessed implicitly when using the syntax:

Session("foo") = "foo"

which is commonly seen in classic ASP code. Using the Item property is not required, but it may make
your code more readable and understandable than accessing it implicitly.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Note that an index may be used only as an argument when modifying a value, not to create a new
item. The index must also be smaller than the number of items in the Session collection or an
exception will be thrown.

LCID

Integer = Session.LCID
Session.LCID = Integer

Returns or sets an Integer containing the locale identifier for the session. The locale identifier
determines how information such as date/time values is formatted.

Parameters

Integer

An Integer variable that will receive or set the LCID property value.

Example

The example displays the current LCID value and displays the current date and time formatted based
on the current LCID. It then changes the LCID to the value for French, displays the LCID value, and
displays the current date and time again, this time formatted based on the new LCID:

Sub Page_Load(  )
   Message.Text = "Current locale ID is: " & Session.LCID & "</br>"
   Message.Text &= "Current date and time is: " & DateTime.Now(  ) & "</br>"
   Session.LCID = 1036 'France
   Message.Text &= "Current locale ID is: " & Session.LCID & "</br>"
   Message.Text &= "Current date and time is: " & DateTime.Now(  ) & "</br>"
End Sub

Notes

The LCID property is provided for backward compatibility with classic ASP. For new ASP.NET
development, you should use the System.Threading.CurrentThread.CurrentCulture.LCID property
instead. ASP.NET stores and retrieves the Session.LCID property in
System.Threading.CurrentThread.CurrentCulture.LCID.

Mode

SessionStateMode = Session.Mode

Returns one of the values of the SessionStateMode enumeration that describes the mode for which
session state for the application has been configured.

Parameters

SessionStateMode

One of the following members of the SessionStateMode enumeration:

InProc

Indicates that session state is stored in-process. This setting provides the best performance when using session state
storage, but cannot be shared across multiple servers.

Off

Indicates that session state is disabled. This setting provides the best performance overall, but at the expense of not
using session state storage.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SQLServer

Indicates that session state is stored out-of-process in a SQL Server database. This setting allows state sharing across
machines at the expense of some performance.

StateServer

Indicates that session state is stored out of process in a special NT service. This setting also allows state sharing across
machines at the expense of some performance.

Example

The example writes a message containing the current Session state mode to the Text property of the
Message ASP.NET Label control. To get the string representation of the enumeration value, call
ToString on the Mode property value as shown:

Sub Page_Load(  )
   Message.Text = "The current Session state mode is: " & _
      Session.Mode.ToString(  ) & ".</br>"
End Sub

Notes

The Mode property allows you to test the current mode of session state storage. One use for this
property is to determine whether to store information in the Session collection, depending on the
mode. Because both the StateServer and SQLServer modes require cross-process communication
(which can be very expensive relative to in-process communication), you may wish to provide
alternative means for storing certain information if one of these modes is used. Using the Mode
property, you can write conditional statements that will decide at runtime whether or not to store a
particular value based on the current session state mode. That way, if the session state mode is
changed administratively, no change to your code is required.

SessionID

String = Session.SessionID

Returns a String containing the unique identifier for the current session.

Parameters

String

A String variable that will receive the session ID property value.

Example

See the example for the IsReadOnly property.

Notes

The SessionID property value is generated the first time that a page for which session state has not
been disabled is requested. As noted earlier, the actual session is not created unless either an event
handler is provided in global.asax for the Session.Start event or a value is stored in the Session
collection. The SessionID is stored on the client in a nonpersistent cookie, or if cookieless sessions are
enabled, is passed as part of each URL request.

Note that if the client's browser is closed, the client will be unable to access their session (since the
nonpersistent cookie will be destroyed when the browser is closed), but the session will continue to
exist on the server until the configured timeout period has elapsed. If you want to explicitly expire a
session, you can check the IsClientConnected property of the HttpResponse class, which returns a
Boolean indicating whether the client has disconnected. If it returns False, you can then call
Session.Abandon to expire the session.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


While the SessionID value, which is a 120-bit ASCII string in ASP.NET, is unique to a given IIS
application instance, it is not guaranteed to be universally unique and therefore should not be used
for database identity values or for other purposes requiring universally unique values.

Timeout

Integer = Session.Timeout
Session. Timeout = Integer

Returns or sets an Integer containing the amount of time, in minutes, that can elapse between
requests without the session being destroyed. If the timeout value is exceeded, the current session is
destroyed and the Session.End event is fired.

Parameters

Integer

An Integer variable that will receive or set the Timeout property value.

Example

The example writes the current value of the Timeout property to the Text property of the Message
ASP.NET Label control:

Sub Page_Load(  )
   Message.Text = "Current Session timeout value is " & _
      Session.Timeout & " minutes."
End Sub

Notes

You can use the Timeout property to temporarily override the timeout setting configured in web.config
or machine.config, if you wish to make the value more restrictive for some reason.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

19.3 Collections Reference

Contents

HttpSessionState = Session.Contents

Returns a reference to the current HttpSessionState instance.

Parameters

HttpSessionState

A variable of type HttpSessionState that will receive the Contents reference.

Example

The example below calls the RemoveAll method through the Contents collection reference and then
writes a message:

Sub Page_Load(  )
   Session.Contents.RemoveAll(  )
   Message.Text = "Removed all items from current Session."
End Sub

Notes

This property is provided for backward compatibility with classic ASP. Properties such as the Item
property and methods such as Remove and RemoveAll were accessed via the Contents property in
classic ASP. In new ASP.NET development, you should access these members directly.

Keys

KeysCollection = Session.Keys

Returns a NameObjectCollectionBase.KeysCollection containing the string keys associated with all of
the values stored in the Session collection.

Parameters

KeysCollection

A variable of type NameObjectCollectionBase.KeysCollection that will receive the Keys property
value.

Example

The example loops through the collection of Keys in the Session collection and then displays the key
name and the value associated with it by using the Text property of the Message label control:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   Dim Key As String
   Message.Text = "Session Keys:"
   For Each Key in Session.Keys
      Message.Text &= "<br/>Key:&nbsp;&nbsp;&nbsp;" & Key
      Message.Text &= "<br/>Value:&nbsp;&nbsp;&nbsp;" & _
                      CStr(Session(Key))
   Next
End Sub

Notes

The Keys property provides one of many ways to iterate over the contents of the Session collection.

StaticObjects

HttpStaticObjectsCollection = Session.StaticObjects

Returns an HttpStaticObjectsCollection containing all objects instantiated in global.asax by using the
<object runat="server"> syntax whose scope is set to Session.

Parameters

HttpStaticObjectsCollection

A variable of type HttpStaticObjectsCollection that will receive the StaticObjects property value.

Example

The example uses the Count property of the HttpStaticObjectsCollection class to display the number of
objects in the current application declared with the <object scope="session" runat="server"/> syntax in
global.asax. It then checks the type of each object and, if it is a TextBox web control, adds it to the
Controls collection of the form:

Sub Page_Load(  )
   Message.Text = "There are " & Session.StaticObjects.Count & _
      " objects declared with the " & _
      "&lt;object runat=&quot;server&quot;&gt; syntax in Session scope."
   Dim myobj As Object
   For Each myObj in Session.StaticObjects
      If myObj.Value.GetType.ToString(  ) = _
         "System.Web.UI.WebControls.TextBox" Then
         myForm.Controls.Add(myObj.Value)
      End If
   Next
End Sub

You also need to modify the <body> section of the document as follows:

<body>
   <form id="myForm" runat="server">
      <asp:label id="Message" runat="server"/>
   </form>
</body>

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

This property is provided for backward compatibility with classic ASP. You should think carefully
before instantiating objects with Session or Application scope because of the impact such objects have
on resource usage and application scalability. In most cases, it is advisable to limit objects to page
scope.

Each object in the collection is represented by the DictionaryEntry structure, so its key and value are
not directly accessible. To access the key and/or value, use the Key and/or Value members of the
DictionaryEntry structure, as shown in the example.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

19.4 Methods Reference

Abandon

Session.Abandon( )

Immediately terminates the current user's session and causes the Session.End event to be fired.

Parameters

None

Example

The example examines the IsNewSession property to determine if the current request has resulted in
a new session. If so, it adds a value to the Session collection and then displays a message indicating
that a new session was created. If a session already exists, the example displays a button that, when
clicked, causes a postback. This postback results in the Session.Abandon method being called and the
session terminated:

If Not IsPostBack
   If Session.IsNewSession Then
      Session("foo") = "foo"
      Message.Text = "The current Session (SessionID: " & _
      Session.SessionID & ") was created with this request."
   Else
      Message.Text = "Click the button to abandon the current session."
      Dim AbandonButton As New Button
      AbandonButton.Text = "Abandon Session"
      myForm.Controls.Add(AbandonButton)
   End If
Else
   Session.Abandon(  )
   Message.Text = "Session abandoned."
End If

In order for the postback to work correctly, a server-side form needs to be added within the <body>
tags, as shown below:

<form id="myForm" runat="server">
   <asp:label id="Message" runat="server"/>
</form>

Notes

The Abandon method is very important for controlling resource usage in ASP.NET applications that
use session state. If you use session state for storing application data, you should implement a logout
method that calls Session.Abandon and make it as easy as possible for your users to access this
method (via a button or link on each page). Implementing this method will help prevent resources
from being consumed for longer than necessary when a user has already quit using the application.

Note that the End event will be fired only when session state has been configured for in-process
operation.

Add

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Session.Add(ByVal name As String, ByVal value As Object)

Adds an item to the Session collection.

Parameters

name

A String argument containing the name that will be used to refer to the new item.

value

An Object argument containing the value of the new item.

Example

The example declares a local variable, sets its value, and adds an item to the Session collection with
the value of the local variable:

Sub Page_Load(  )
   Dim myBaz As String = "baz"
   Session.Add("baz", myBaz)
   Dim I as Integer
   For I = 0 To Session.Count - 1
      Message.Text &= CStr(Session(I)) & "<br/>"
   Next
End Sub

Notes

The Add method, which is new in ASP.NET, provides a technique for adding items to the Session
collection, which is consistent with the technique used for adding items to other .NET collections.

Clear

Session.Clear( )

Clears the contents of the Session collection for the current user.

Parameters

None

Example

The example clears the contents of the Session collection and writes a message to the Text property
of the Message label control that includes the current count of the collection, which should be 0:

Sub Page_Load(  )
   Session.Clear(  )
   Message.Text = "There are " & Session.Count & _
      " items in the Session collection."
End Sub

Notes

The Clear method, which is new for ASP.NET, clears only the contents of the Session collection itself.
It does not clear the contents of the StaticObjects collection.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CopyTo

Session.CopyTo(ByVal array As Array, ByVal index As Integer)

Copies the contents of the Session collection to a one-dimensional array.

Parameters

array

An Array argument that will receive the session collection values.

index

An Integer argument specifying the point in the array at which to begin copying.

Example

The example checks to ensure that at least one item is in the Session collection, and if there is, it
creates a local object array, copies the contents of the Session collection to it, and displays the value
of the first item:

Sub Page_Load(  )
   If Session.Count > 0 Then
      Dim myArray As Array = Array.CreateInstance(GetType(Object), _
         Session.Count)
      Session.CopyTo(myArray, 0)
      Message.Text = "The first item in the array is: " & _    
         CStr(myArray(0))
   End If
End Sub

Notes

The CopyTo method is useful if you have a large number of items stored in the Session collection. In
such cases, accessing values from a local array variable may be faster and more efficient than
accessing the values from the Session collection, particularly when session state is configured to run
out of process. The improved efficiency and performance comes at the cost of ease of use, since
arrays do not provide the same feature richness as the Session collection.

Remove

Session.Remove(ByVal name As String)

Removes an item from the Session collection by name.

Parameters

name

A String argument containing the name (key) of the item to remove.

Example

The example determines whether the item with the key "foo" exists in the Session collection and if it
does, removes the item and displays an appropriate message:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sub Page_Load(  )
   If Not Session("foo") Is Nothing Then
      Session.Remove("foo")
      Message.Text = "Item 'foo' was removed."
   Else
      Message.Text = "Item 'foo' does not exist."
   End If
End Sub

Notes

The Remove method is provided for backward compatibility with classic ASP. In classic ASP, this
method was accessed through the Contents collection. In ASP.NET, this method can be accessed
either directly, as shown above, or through the Contents collection.

RemoveAll

Session.RemoveAll( )

Removes all items from the Session collection.

Parameters

None

Example

The example checks to ensure that at least one item is in the Session collection (although if
RemoveAll is called on an empty Session collection, no error will occur), and if it is, it clears the
collection by calling the RemoveAll method:

Sub Page_Load(  )
   If Session.Count > 0 Then
      Session.RemoveAll(  )
      Message.Text = "Session collection cleared."
   Else
      Message.Text = "Session collection is already empty."
   End If
End Sub

Notes

The RemoveAll method is provided for backward compatibility with classic ASP. In classic ASP, this
method was accessed through the Contents collection. In ASP.NET, this method can be accessed
either directly, as shown above, or through the Contents collection.

RemoveAll has the same effect as calling the Clear method and like Clear, it clears the contents of the
Session collection, but does not remove Session-scoped objects from the StaticObjects collection.

RemoveAt

Session.RemoveAt(ByVal index As Integer)

Removes an item from the Session collection by index. This is a new companion to the Remove
method, which removes an item by key.

Parameters

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Parameters

index

An Integer argument containing the index location of the item to remove from the Session
collection.

Example

Sub Page_Load(  )
   If Session.Count > 0 Then
      Session.RemoveAt(0)
      Message.Text = "The item at index 0 was removed."
   Else
      Message.Text = "The item at index 0 does not exist."
   End If
End Sub

Notes

The RemoveAt method allows items to be removed from the Session collection by index rather than
by key. As in the example above, the items that follow the removed item will shift one position in the
collection when the item is removed. If you remove an item by index and call RemoveAt again with
the same index, you will remove the item that immediately followed the original removed item.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

19.5 Events Reference

Start

Sub Session_OnStart( )
   'Event handler logic
End Sub

Fired when the session is created. The event handler for this event should be defined in the
global.asax application file.

Parameters

None

Example

The example writes an entry to both the Application Event log and the IIS log for the application to
indicate that the Start event has fired:

<Script language="VB" runat="server">
   Sub Session_OnStart(  )
      Dim EventLog1 As New System.Diagnostics.EventLog ("Application", _
         ".", "mySource")
      EventLog1.WriteEntry("Session_OnStart fired!")
      Context.Response.AppendToLog("Session_OnStart fired!")
   End Sub
</script>

Notes

The Start event is useful for performing initialization tasks for a new session. One limitation of classic
ASP, the inability to access the Server.MapPath method in the Session_OnStart event handler, is
eliminated in ASP.NET. You can now successfully call Server.MapPath from within this event handler.

End

Sub Session_OnEnd(  )
   'Event handler logic
End Sub

Fired when the session is torn down -- either by calling the Abandon method or when the
Session.Timeout value expires. The event handler for this event should be defined in the global.asax
application file.

Parameters

None

Example

The example below writes an entry to the Application Event log to indicate that the End event has
fired:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<Script language="VB" runat="server">
   Sub Session_OnEnd(  )
      Dim EventLog1 As New System.Diagnostics.EventLog ("Application", _
         ".", "mySource")
      EventLog1.WriteEntry("Session_OnEnd fired!")
      ' Response is not available in this event handler
      ' Context.Response.AppendToLog("Session_OnEnd fired!")
   End Sub
</script>

Notes

The End event is useful for performing cleanup tasks when the user's session ends -- either when the
Abandon method is called or when the session times out. Note that the Response object is not
available in the context of the Session_OnEnd event handler. Unlike Session_OnStart, the
Server.MapPath method is not available. Attempts to access the Response object or the
Server.MapPath method from within this event handler will result in an exception being thrown. Since
there is no context for displaying exception information, you will not see an error message. You can
handle an exception thrown in the Session_OnEnd event handler by creating a handler for the
Application.Error event, as shown below:

Sub Application_OnError(  )
   Dim EventLog1 As New System.Diagnostics.EventLog ("Application", _
      ".", "mySource")
   EventLog1.WriteEntry("Error Occurred. Error info:" &    Server.
GetLastError().ToString(  ))
End Sub

Note that the End event will be fired only when session state has been configured for in-process
operation.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 20. web.config Reference

ASP.NET provides a completely new model for configuring web applications. This greatly simplified
process makes it considerably easier to deploy application configuration settings, the application's
content, and its components. Central to this new configuration model is web.config, an XML-based file
that contains the configuration settings for your application. Because the file is written in XML, it is
both human- and machine-readable.

web.config files configure applications hierarchically -- i.e., an application can contain more than one
web.config file, with each file residing in a separate folder of the application. Settings in a web.config
file in a child folder of the application root override the settings of the web.config file in the parent
folder. Settings not defined in the child web.config file inherit the settings from the parent web.config
file. Figure 20-1 demonstrates these rules of precedence.

Figure 20-1. Inheriting and overriding web.config settings

In addition to inheriting settings from a web.config file defined in a parent folder, all applications on a
given machine inherit settings from a file called machine.config. The machine.config file contains
default ASP.NET configuration settings, as well as settings for other .NET application types. Thus, in
Figure 20-1, the Chapter20 folder inherits the machine.config setting for the enableSessionState
attribute of the <pages> element, which is True by default. The web.config file in the Chapter20 folder
overrides the machine.config default settings for the <authorization> element, denying access to any
anonymous user (any user who has not logged in). The Sub1 subfolder inherits this setting (as well as
all settings defined in machine.config) and adds a setting to override the machine.config setting for
the <pages> element, disabling session state for all pages contained in the Sub1 folder.

Web.config is made up of one or more of the elements listed in Section 20.2 later in this section. The
<configuration> element is required, as is its child, <system.web>. All child elements of <system.web>
(i.e., the elements that actually provide the configuration information) are optional; however, the use
of certain elements may require you to include other elements or child elements. Each element may
also contain one or more attributes that affect the behavior of that element.

Certain elements are limited in the scope at which they can be used. Some elements can be used only
at the Application level (in the web.config file at the root of the application), some only at the
machine level (in machine.config), and some can be used at any scope (in machine.config or in any
web.config file, whether at application root or subfolder level).

The elements in the table below are organized both functionally and hierarchically. That is, elements
with related functions, such as <authentication> and <authorization>, are grouped together, and child
elements immediately follow their parent elements. Thus, the <credentials> element immediately
follows the <forms> element, which is its parent, and is immediately followed by <user>, which is a
child of <credentials>. Table 20-1 summarizes the web.config elements covered in this chapter.

Table 20-1. web.config element summary
<configuration> <case> <clear>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<appSettings> <clientTarget> <httpModules>
<add> <add> <add>
<remove> <remove> <remove>
<clear> <clear> <clear>
<system.web> <compilation> <httpRuntime>
<authentication> <compilers> <identity>
<forms> <compiler> <machineKey>
<credentials> <assemblies> <pages>
<user> <add> <processModel>
<passport> <remove> <securityPolicy>
<authorization> <clear> <trustLevel>
<allow> <customErrors> <sessionState>
<deny> <error> <trace>
<browserCaps> <globalization> <trust>
<result> <httpHandlers> <location>

<use> <add>  
<filter> <remove>  

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

20.1 Comments/Troubleshooting

Probably the most common error that is encountered with web.config and machine.config relates to
capitalization. Tags and elements within both these files are case sensitive. Tags and elements follow
the naming convention referred to as camel-casing, in which the first letter of the first word of the
element or attribute is lowercase, and the first letter of each subsequent word is uppercase. Attribute
values are also case sensitive, but do not follow any particular naming convention.

While the ability of applications and folders to inherit settings from parent web.config files is very
convenient, it presents security implications. For example, the <appSettings> element can be used to
store key/value pairs for runtime retrieval from your application. If this element is used to store
values in the machine.config file, these values are available to any application on that machine. In a
shared server environment, this could potentially expose information to others in undesirable ways.

Another security issue with both machine.config and web.config is how to prevent modification of
inherited settings. For example, a server administrator might want to configure authentication
settings globally in the machine.config file and prevent application developers from overriding these
settings in their applications. This can be accomplished by using the <location> element, setting its
allowOverride attribute to False and optionally, setting the path attribute to an application path (if the
locked-down settings are to apply only to a specific file or folder).

It is important to exercise caution when working with the machine.config file to avoid making changes
if you are uncertain of their impact (particularly on other applications). Remember that
machine.config contains configuration settings not only for all ASP.NET web applications for a given
machine, but also for all .NET applications on that machine. Thus, changes to machine.config can
have a broad impact. It's a good idea to back up the machine.config file before editing it, so that if
your changes result in problems, you can always restore the previous copy. Another alternative is to
place the machine.config file under a source code control system, such as Visual Source Safe, and
require checkout of the file to make modifications. This provides the ability to roll back changes, as
well as the additional ability to track who has made changes to the file.

Finally, your application is required to have a web.config file. If the default settings from
machine.config (or a parent web.config) file serve your needs, then omitting this file will simplify your
deployment and maintenance tasks. Only use web.config when you need to make changes to the
default configuration provided by machine.config.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

20.2 web.config Elements

<configuration>

<configuration>
</configuration>

The root element for all configuration files; it is required.

Scope

All

Attributes

None

<appSettings>

<appSettings>
</appSettings>

The <appSettings> element can be used to configure custom application settings as key/value pairs.
These settings can later be retrieved at runtime using the AppSettings property of the
ConfigurationSettings class, as shown in the example. This property is shared (static) and does not
require the ConfigurationSettings class to be instantiated before accessing the property.

Scope

Any

Attributes

None

Child Elements

<add>

The pattern to match.

<remove>

The pattern to match.

<clear>

The pattern to match.

Example

The following web.config section sets an application level key/value pair:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<configuration>
   <appSettings>
      <add key="applicationConfigKey" value="bar"/>
   </appSettings>
</configuration>

The following ASP.NET page retrieves the value set by the preceding code and also retrieves a value
set at the machine.config level:

<%@ Page Language="VB" %>
<html>
<head>
   <script runat="server">
      Sub Page_Load(  )
         Message1.Text &= _
            ConfigurationSettings.AppSettings("machineConfigKey")
         Message2.Text &= _
            ConfigurationSettings.AppSettings("applicationConfigKey")
      End Sub
   </script>
</head>
<body>
   <asp:label id="Message1" runat="server">Machine.Config setting: </asp:label>
   <br/>
   <asp:label id="Message2" runat="server">Web.Config setting: </asp:label>
</body>
</html>

Notes

As shown in the example, the <appSettings> element can be used separately from the <system.web>
element and its children.

For security reasons, use caution when deciding what kinds of data to store using the <appSettings>
element. Remember that while the ASP.NET runtime is set up to prevent an application's web.config
file from being requested or read, this file could still be vulnerable if the security of the web server
were breached in some other way. Thus, you should generally avoid storing sensitive information such
as usernames and passwords, or connection strings containing usernames and passwords, in the
web.config file. A better, although still moderately vulnerable, alternative is to store this information
at the machine.config level, since this file is not within the web space of the application and is not as
vulnerable to compromise through attacks on IIS. However, remember that this information will be
available to any application on the machine.

<system.web>

<system.web>
</system.web>

Container element for all elements used in web.config files.

Scope

All

Attributes

None

Child Elements

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Child Elements

<authentication>, <authorization>, <browserCaps>, <clientTarget>, <compilation>, <customErrors>,
<globalization>, <httpHandlers>, <httpModules>, <httpRuntime>, <identity>, <iisFilter>,
<machineKey>, <pages>, <processModel>, <securityPolicy>, <sessionState>, <trace>, <trust>,
<webServices>

Notes

This element is required in order to use any of its child elements.

<authentication>

<authentication>
</authentication>

Provides attributes and contains child elements used to configure authentication options in ASP.NET.

Scope

Machine, Application

Attributes

Mode

Determines the type of authentication that will be used by ASP.NET. Valid values are:

Windows (default)

Uses credentials provided by IIS authentication methods (Basic, Digest, Integrated Windows Authentication, or
Certificates) to authenticate user requests. Requests can then be permitted or denied based on settings contained within
the <authorization> element, using the authenticated username (or an associated group/role name) to allow or deny the
request. This is the default authentication mode defined in machine.config.

Forms

Provides an infrastructure for performing custom authentication in situations when Windows authentication is not
possible. When Forms authentication is enabled, users who have not logged in are automatically redirected to a login URL
provided as an attribute of the <forms> element. Once logged in, a cookie is sent as an authentication token. Users can
be authenticated against any credentials database the developer chooses -- from Active Directory to a custom credentials
database. This mode requires the inclusion of the <forms> child element.

Passport

Takes advantage of Microsoft's Passport authentication service. This mode requires inclusion of the <passport> child
element.

None

Specifies that no authentication be performed at the ASP.NET level. Requests can still be authenticated at the IIS level
using one of the IIS authentication modes in combination with NTFS access control lists (ACLs).

Child Elements

<forms>, <passport>

Example

The example configures the pages within the scope of the configuration file to use ASP.NET forms-
based authentication:

<configuration>
   <system.web>
      <authentication mode="Forms">
         <forms name="myAuthCookie"
            loginUrl="login.aspx" 
            protection="All"
            timeout="30" 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            timeout="30" 
            path="/" />
      </authentication>
   </system.web>
</configuration>

Notes

The <location> element can be used to configure authentication at the machine level, if desired, and
its allowOverride attribute can be used to prevent overriding these settings in individual applications.

Authentication can be a fairly involved topic. For more information on the various ASP.NET
authentication methods and how they relate to IIS authentication, please see Chapter 9.

<forms>

<forms
   loginUrl=String
   name=String
   path=String
   protection="All|None|Encryption|Validation"
   timeout=Integer>
</forms>

Provides attributes and one child element (<credentials>) to configure ASP.NET to use forms-based
authentication.

Scope

Machine, Application

Attributes

name

Specifies the name of the authentication cookie. If this attribute is omitted, the value defaults
to .ASPXAUTH. When running multiple applications that use forms-based authentication on the
same server, it's usually a good idea to give each application its own authentication cookie
name -- to minimize the risk of authenticated users from one application being treated as
authenticated in others.

loginUrl

Specifies the redirect URL for users who do not have a valid authentication cookie. If a user
with no authentication cookie requests a page in the application, they will be redirected to this
URL to log in. The login page can then redirect the user back to the originally requested page.
If this attribute is omitted, the value defaults to login.aspx.

protection

Specifies the type of protection used to prevent the authentication cookie from being modified
during transit. Valid values are:

All

Cookies are both encrypted (using triple DES encryption, if available) and subjected to data validation. Data validation is
performed based on the settings of the <machineKey> element. All is the default value and is the recommended setting
for securing the authentication cookie.

Encryption

Cookies are only encrypted. This reduces overhead associated with cookie protection, but may leave cookies vulnerable to
plain-text attacks.

None

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


None

Neither encryption nor validation is enabled for cookie protection. This reduces overhead when using forms-based
authentication, but provides no protection of the authentication cookie. This attribute is not recommended.

Validation

A validation key is concatenated with cookie data. This key is checked to ensure that cookie data has not been altered in
transit.

timeout

Specifies the amount of time, in minutes, before the authentication cookie expires. This is a
sliding value, which is reset when a request is received after more than half of the timeout
period has elapsed. Note that this attribute does not apply to persistent cookies. The default
value is 30.

path

Specifies the path for the authentication cookie. Because many browsers treat the path in a
case-sensitive manner, the default is set to the backslash (\) character.

Child Elements

<credentials>

Example

See the example for the <authentication> element.

Notes

Forms-based authentication is only effective when used in conjunction with the <authorization>
element to deny anonymous users access to pages within the application.

It's a good idea to use SSL encryption to protect the forms authentication credentials and cookie to
prevent the possibility of these credentials being hijacked. If you can't (or don't want to) use SSL, you
should at least reduce the default timeout value to lessen the likelihood of someone capturing and
impersonating the authentication cookie.

<credentials>

<credentials
   passwordFormat="Clear|SHA1|MD5">
</credentials>

Allows you to store one or more sets of credentials in the application (or machine) configuration file
for later use in authenticating requests. The child <user> element is used to store the actual
credentials.

Scope

Machine, Application

Attributes

passwordFormat

Specifies the format in which passwords will be stored (and compared). Valid options are Clear,
SHA1, and MD5.

Child Elements

<user>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

The example shows the <credentials> element, which is used to store two user accounts to
authenticate against:

<credentials passwordFormat = "SHA1">
   <user name="foo" password="794ED3D18464BAFF93F8DED1CFD00D9A2D9FE316"/>
   <user name="bar" password="B7CDD2A2B0F05E6948E5CEED22FA9A38EB28DEC8"/>
</credentials>

Notes

Once you've stored the credentials, you can authenticate against them by calling the static (shared)
Authenticate method of the FormsAuthentication helper class. You can use the static (shared)
HashPasswordForStoringInConfigFile method of FormsAuthentication to create an MD5 or SHA1 hash of
the password for storing in the <user> element. When using the <credentials> element to store
credentials, you should always hash passwords, since storing them in readable text presents a
potential security risk. Although theoretically, no one should be able to read the configuration file, a
server misconfiguration or security vulnerability could conceivably expose this file.

<user>

Stores the username and password for each user defined in the <credentials> element.

Scope

Machine, Application

Attributes

name

The username to be authenticated against.

password

The password to be authenticated against.

Child Elements

None

Example

See the example for the <credentials> element.

Notes

You should always use the HashPasswordForStoringInConfigFile method to hash passwords stored in
the password attribute. A utility page that creates SHA1 or MD5 hashes of plain text passwords is
provided in the examples for Chapter 9.

<passport>

<passport redirectUrl=Url />

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This optional element configures an internal URL to which unauthenticated requests will be redirected
when using Microsoft's Passport authentication provider. This element should be used only when the
<authentication> element's mode attribute is set to Passport.

Scope

Machine, Application

Attributes

redirectUrl

A URL in the application to which requests lacking a Passport authentication token are
redirected.

Child Elements

None

Example

This example shows a web.config file that configures an application for Passport authentication:

<configuration>
   <system.web>
      <authentication mode="Passport">
         <passport redirectUrl="Login.aspx"/>
      </authentication>
   </system.web>
</configuration>

Notes

For more information on configuring Passport authentication, see the Passport SDK documentation,
which is available from http://www.passport.com.

<authorization>

Provides two child elements, <allow> and <deny>, that allow you to configure the users, roles, or
HTTP verbs that can be used to access application resources.

Scope

Any

Attributes

None

Child Elements

<allow>, <deny>

Example

The example allows users Mary and John to access application resources using any HTTP verb, while
denying POST access to nonauthenticated users:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<configuration>
   <system.web>
      <authorization>
         <allow users="Mary, John" />
         <deny users="?" verbs="POST" />
      </authorization>
   </system.web>
</configuration>

Notes

The type of authorization implemented by the <authorization> element is referred to as URL
authorization. You can read more about URL authorization in Chapter 9.

You can specify authorization settings for a specific file or directory in your application that differs
from the defaults configured in the root web.config file for the application in either of two ways:

By adding an <authorization> element to the web.config file of the desired child directory, as
shown in the example.

By using a <location> tag in the root web.config file and setting its path attribute to the desired
path, as follows:

<configuration>
   <location path="files">
      <system.web>
         <authorization>
            <deny users="?" />
         </authorization>
      </system.web>
   </location>
   <system.web>
      <!--other configuration settings -->
   </system.web>
</configuration>

<allow>

Specifies users, roles, and/or HTTP verbs to be authorized for the application.

Scope

Any

Attributes

users

A comma-delimited list of authorized usernames.

roles

A comma-delimited list of authorized roles (NT groups).

verbs

A comma-delimited list of authorized HTTP verbs (GET, HEAD, POST, or DEBUG).

Child Elements

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Child Elements

None

Example

See the example for the <authorization> element.

Notes

You can use two wildcards to specify special groups of users:

*

When used for the value of the user attribute, allows access for all users. This is the default
configuration setting, as defined in machine.config.

?

When used for the value of the user attribute, allows access to anonymous users. This wildcard
is more commonly used with the <deny> element.

<deny>

Specifies users, roles, and/or HTTP verbs to be denied authorization for the application.

Scope

Any

Attributes

users

A comma-delimited list of authorized usernames.

roles

A comma-delimited list of authorized roles (NT groups).

verbs

A comma-delimited list of authorized HTTP verbs (GET, HEAD, POST, or DEBUG).

Child Elements

None

Example

See the example for the <authorization> element.

Notes

The same wildcards used by the <allow> element also apply to the deny element. To deny access to
anonymous (non-authenticated) users, set the value of the users attribute of the <deny> element to
?.

<browserCaps>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<browserCaps>
   <result type=className />
   <use var=serverVarName />
       property1=value
       property2=value
       propertyN=value
   <filter match=string>
       property1=value
       property2=value
       propertyN=value
   </filter>
   <filter match=string>
      <filter match=string with=expressionToSearch>
          property1=value
          property2=value
          propertyN=value
      </filter>
   </filter>
   <filter>
      <case match=string>
          property1=value
          property2=value
          propertyN=value
      </case>
      <case match=string>
          property1=value
          property2=value
          propertyN=value
      </case>
   </filter>
</browserCaps>

Controls the configuration of the browser capabilities component returned by the Response.Browser
property. The property/value pairs under the <use> element configure the default values of the
browser capabilities component properties; the property/value pairs in the <filter> elements update
these properties based on a match between the string value specified for the match attribute of the
<case> element and the value of the var attribute of the <use> element (which is typically set to
HTTP_USER_AGENT).

Scope

Any

Attributes

None

Child Elements

<result>, <use>, <filter>

Example

The machine.config configuration file contains the default settings for the <browserCaps> element.
The default settings provide the best example for modifying or updating this element.

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

The primary purpose of this configuration element and its children is to allow the addition of new
browser types and updating the capabilities of these browsers. Thus, when a page calls the browser
capabilities component, it will receive accurate information about the capabilities of the browser used
for the current request.

<result>

<result type=className />

Specifies the class.

Scope

Any

Attributes

type

The class name, and optionally, version, culture, and key information that specifies the class
that will contain the results of the browser capabilities analysis. This class must derive from
HttpCapabilitiesBase. The default (set in machine.config) is
System.Web.HttpBrowserCapabilities.

Child Elements

None

Notes

The default type of System.Web.HttpBrowserCapabilities is fine in most cases. If you want to add
additional properties beyond those defined by the HttpBrowserCapabilities class, you can create your
own class (derived from HttpCapabilitiesBase or HttpBrowserCapabilities) and use the <result> element
to substitute it.

<use>

<use var=serverVariableName as=aliasName />

Sets the name of the server variable to use when evaluating browser capabilities.

Scope

Any

Attributes

var

The name of the server variable to use. The default is HTTP_USER_AGENT.

as

The string containing a name by which the server variable can be referenced in <case>
elements and regular expressions.

Child Elements

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Child Elements

None

Notes

The <use> element is followed by property/value pairs that specify the default properties for the
browser capabilities component if no match is found with a <filter> element's match attribute (or that
of its child <case> element). This usage is demonstrated in the entry for the <browserCaps> element.

<filter>

<filter match=string>
    property1=value
    property2=value
    propertyN=value
</filter>
<filter match=string>
    <filter match=string with=expressionToSearch>
        property1=value
        property2=value
        propertyN=value
   </filter>
</filter>
<filter>
   <case match=string>
        property1=value
        property2=value
        propertyN=value
   </case>
   <case match=string>
        property1=value
        property2=value
        propertyN=value
   </case>
</filter>

Specifies a regular expression pattern to search for in the server variable given in the <use> element
(or optionally, another expression). Multiple <filter> elements can be contained in the <browserCaps>
element; likewise, each <filter> element can contain <case> elements or other <filter> elements. All
property assignments for matching <filter> elements will be executed, regardless of their order.

Scope

Any

Attributes

match

The pattern to match. Uses .NET Framework regular expression syntax. This attribute is
optional. If omitted, all requests will be assumed to match and any property/value assignments
contained within the <filter> element will be executed.

with

The regular expression or string to search for. This attribute is optional. If omitted, the server
variable specified in the <use> element will be searched.

Child Elements

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Child Elements

<case>

Notes

The fact that <filter> elements can be nested makes them very flexible in terms of locating subsets of
information. For example, the default <browserCaps> element in machine.config uses nested <filter>
elements to locate both the major and minor browser versions contained in the HTTP_USER_AGENT
server variable so that it can assign specific properties that vary among minor versions (i.e., the x in
4.x) of a browser.

<case>

<case match=string>
    property1=value
    property2=value
    propertyN=value
</case>

Specifies one of a group of exclusive matching cases for which property assignments will be executed.
Only the first matching <case> element within a given <filter> element will be executed. The rest will
be ignored.

Scope

Any

Attributes

match

The pattern to match. Uses the .NET Framework regular expression syntax. This attribute is
optional. If omitted, all requests will be assumed to match, and any property/value
assignments contained within the <filter> element will be executed.

with

The regular expression or string to search for. This attribute is optional. If omitted, the server
variable specified in the <use> element will be searched.

Child Elements

None

Notes

This element is useful in situations when you only want a single match. For example, the default
<browserCaps> configuration in machine.config uses the <case> element to assign the platform,
win16, and win32 attributes.

<clientTarget>

<clientTarget>
   <add alias=aliasName 
      userAgent=userAgentString />
   <remove alias=aliasName />
   <clear />
</clientTarget>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Assigns aliases for specified browser user agent strings to be used by ASP.NET Server Controls in
deciding what type of content to render.

Scope

Any

Attributes

None

Child Elements

<add>

Adds an alias with the name specified by the alias attribute for the User Agent string specified
by the userAgent attribute.

<remove>

Removes a previously configured alias with the name specified by the alias attribute.

<clear>

Clears all previously configured aliases.

Example

This example comes from the default <clientTarget> element:

<clientTarget>
   <add alias="ie5"
      userAgent="Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)" />
   <add alias="ie4"
      userAgent="Mozilla/4.0 (compatible; MSIE 4.0; Windows NT 4.0)" />
   <add alias="uplevel"
      userAgent="Mozilla/4.0 (compatible; MSIE 4.0; Windows NT 4.0)" />
   <add alias="downlevel"
      userAgent="Unknown" />
</clientTarget>

Notes

This element is used primarily by the built-in ASP.NET Server Controls. Thus, you should avoid
making changes to the existing aliases to avoid preventing these controls from rendering uplevel
content.

<compilation>

<compilation
   batch=boolean
   batchTimeout=numSeconds
   debug=boolean 
   defaultLanguage=languageAlias
   explicit=boolean 
   maxBatchSize=maxPages
   maxBatchGeneratedFileSize=maxSize
   numRecompilesBeforeAppRestart=numRecompiles
   strict=boolean
   tempDirectory=dirName >

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   tempDirectory=dirName >
   <compilers>
      <compiler language=languageAlias
         extension=fileExt
         type=typeName 
         warningLevel=number 
         compilerOptions=optionString />
   </compilers>
   <assemblies>
      <add assembly=assemblyName />
      <remove assembly=assemblyName />
      <clear />
   </assemblies>
</compilation>

Provides attributes and child elements for configuring the compilation options of ASP.NET applications.
All attributes are optional.

Scope

Any

Attributes

batch

Specifies whether ASP.NET should attempt to batch compile all pages in the application when
the first request for a page is made. The default is True.

batchTimeout

Specifies the amount of time, in seconds, that the compiler will spend attempting to batch
compile pages in the application. If the timeout is exceeded, pages will be compiled as they are
requested for the first time. The default is 15.

debug

Specifies whether pages will be compiled with debug symbols. The default is False.

defaultLanguage

Specifies the language compiler that will be used to compile inline code in ASP.NET pages for
which no language is specified. The default is VB (Visual Basic .NET).

explicit

Specifies whether the Visual Basic .NET Option Explicit compiler option is enabled. The default is
True.

maxBatchSize

Specifies the maximum number of classes generated during batch compilation. The default is
1000.

maxBatchGeneratedFileSize

Specifies the maximum combined size in KB of generated source files created during batch
compilation. The default is 3000.

numRecompilesBeforeAppRestart

Specifies the number of recompiles before the appDomain containing the application is cycled
(a new appDomain is created and the old one is torn down). The default is 15.

strict

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


strict

Specifies whether the Visual Basic .NET Option Strict compiler option (which disallows implicit
narrowing conversions) is enabled. The default is False.

tempDirectory

Specifies the directory in which temporary files from dynamically compiled code for the
application will be stored. The default is
%windir%\Microsoft.NET\Framework\%version%\Temporary ASP.NET Files.

Child Elements

<assemblies>, <compilers>

Example

The example enables the Visual Basic .NET Option Strict compiler option and disables batch
compilation:

<configuration>
   <system.web>
      <compilation
         batch="false"
         strict="true">
      </compilation>
   </system.web>
</configuration>

Notes

Make sure you understand the impact of changes to this element before making modifications. For
example, setting the debug attribute to True will have a significant negative impact on performance.
While setting the strict attribute to True will reduce the likelihood of bugs from implicit data type
conversion, it could also increase the number of compiler errors you get while developing your code.

<assemblies>

<assemblies>
   <add assembly=assemblyInfo />
   <remove assembly=assemblyInfo />
   <clear />
</assemblies>

Adds or removes assemblies to be referenced and linked during dynamic compilation of ASP.NET
pages. By default, the mscorlib, System, System.Drawing, System.EnterpriseServices, System.Web,
System.Data, System.Web.Services, and System.Xml assemblies are referenced during dynamic
compilation, as are any assemblies located in the application directory's bin subdirectory.

Scope

Any

Attributes

None

Child Elements

<add>

Adds an assembly specified by the assembly attribute to the list of assemblies to be linked

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Adds an assembly specified by the assembly attribute to the list of assemblies to be linked
during dynamic resource compilation.

<remove>

Removes a previously configured assembly specified by the assembly attribute from the list of
assemblies to be linked during dynamic resource compilation.

<clear>

Clears all previously configured assemblies.

Example

This example shows the <add> element used by the Mobile Internet Toolkit to add the assembly
System.Web.Mobile to the list of assemblies for dynamic compilation:

<assemblies>
   <add assembly="System.Web.Mobile,
      Version=1.0.3300.0,
      Culture=neutral,
      PublicKeyToken=b03f5f7f11d50a3a" />
</assemblies>

Notes

The asterisk (*) wildcard is used with the <add> element to indicate that all assemblies in the
application's private assembly cache (by default, the bin subdirectory of the application) should be
added to the list of assemblies linked during dynamic compilation. This ensures that all members of
these assemblies will be available to all the pages in your application automatically.

<compilers>

<compilers>
   <compiler language=languageAlias
      extension=fileExt
      type=typeName 
      warningLevel=number 
      compilerOptions=optionString />
</compilers>

Contains one or more <compiler> elements, each of which defines configuration options for a
particular compiler to be used with ASP.NET.

Scope

Any

Attributes

None

Child Elements

<compiler>

Notes

Thanks to the <compilers> and <compiler> elements, adding support for a new .NET language in
ASP.NET is as simple as adding a new <compiler> element specifying the language aliases, the file
extension for class files for the language, and the type information for the language compiler.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<compiler>

<compiler language=languageAlias
   extension=fileExt
   type=typeName 
   warningLevel=number 
   compilerOptions=optionString />

Specifies configuration options for a given language.

Scope

Any

Attributes

language

Specifies the name or names by which the language will be specified in the language attribute
of the @ Page directive. Multiple names should be separated by semicolons. This attribute is
required.

extension

Specifies the extension(s) used by code-behind files for the specified language. Multiple entries
should be separated by semicolons. This attribute is required.

type

Specifies the .NET type information for the class to be used to compile resources for the
specified language. This attribute is required.

warningLevel

Specifies the compiler warning level for the language. This attribute is optional and may not be
supported for all compilers.

compilerOptions

Specifies a string containing valid compiler options to be passed to the compiler.

Child Elements

None

Notes

The <compilers> element in machine.config provides a good example of the use of this element.
Review that configuration section to see how the Visual Basic .NET, C#, and JScript .NET compilers
are configured.

<customErrors>

<customErrors
   defaultRedirect=Url
   mode=mode >
   <error statusCode=httpStatusCode
      redirect=Url />
</customErrors>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Specifies one or more pages to which users should be redirected if an unhandled exception is detected
in an ASP.NET application. A default error page can be specified, as well as one or more error pages
for specific HTTP error codes.

Scope

Any

Attributes

defaultRedirect

Specifies the URL of the page to which all errors should be redirected when no specific error
page is configured for the HTTP status code of the error. This attribute is optional.

mode

Specifies the custom errors mode. Valid values are Off, On, and RemoteOnly. Off disables
custom error handling, On enables custom error pages for both local and remote requests.
RemoteOnly enables custom error pages for remote requests, while sending detailed error
messages for local requests. This attribute is required.

Child Elements

<error>

Example

The example configures a default page to be displayed to remote clients when an unhandled
exception is encountered:

<configuration>
   <system.web>
      <customErrors
         defaultRedirect="Error.aspx" />
   </system.web>
</configuration>

Notes

If you set the mode attribute to RemoteOnly, you will only be able to see detailed error information
from the local machine on which the pages are running. Remote requests will return the custom error
page (if any) configured for the status code of the error that occurred.

If you want to see the debug information provided by ASP.NET when an error occurs, the mode
attribute should be set to Off.

<error>

<error statusCode=httpStatusCode
   redirect=Url />

Specifies a custom error page to handle redirections for a specific HTTP status code.

Scope

Any

Attributes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Attributes

statusCode

Specifies the HTTP status code (such as 404 for a "Not Found" error) for the specified custom
error page. This attribute is optional.

redirect

Specifies the URL of the page to which requests with a matching HTTP status code should be
redirected. This attribute is optional.

Child Elements

None

Example

The example configures a custom error page for 404 errors, and the default error page configured in
the previous example:

<configuration>
   <system.web>
      <customErrors
         defaultRedirect="Error.aspx">
         <error statusCode="404" redirect="My404ErrorPage.aspx"/>
      </customErrors>
   </system.web>
</configuration>

Notes

While custom error pages provide a convenient way to prevent users from seeing raw error messages
(and perhaps provide more helpful messages), they are not a substitute for proper exception
handling. By the time an error reaches a custom error page, recovering from the error gracefully will
be much more difficult, which can degrade the experience of your users.

<globalization>

<globalization
   requestEncoding=encodingString
   responseEncoding=encodingString
   fileEncoding=encodingString
   culture=cultureString
   uiCulture=cultureString />

Provides attributes for configuring encoding and culture settings. These attributes are used as the
basis for the expected encoding of requests, responses, and files for internationalization.

Scope

Any

Attributes

requestEncoding

Specifies the assumed encoding of incoming requests. This can be any valid encoding string
and should match the responseEncoding attribute. The default is UTF-8. This attribute is
optional.

responseEncoding

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


responseEncoding

Specifies the content encoding of responses. This can be any valid encoding string and should
match the requestEncoding attribute. The default is UTF-8. This attribute is optional.

fileEncoding

Specifies the encoding used to parse .aspx, .asmx, and .asax files. This attribute is optional.

culture

Specifies the assumed culture for incoming requests. The value can be any valid culture string.
This attribute is optional.

uiCulture

Specifies the culture for locale-specific resource searches. The value can be any valid culture
string. This attribute is optional.

Child Elements

None

Example

This example shows how the default <globalization> settings are configured in web.config:

<configuration>
   <system.web>
      <globalization
         requestEncoding="utf-8"
         responseEncoding="utf-8" />
   </system.web>
</configuration>

Notes

A list of valid culture strings can be found in the .NET Framework documentation for the
System.Globalization.CultureInfo class.

<httpHandlers>

<httpHandlers>
   <add verb=httpVerbs 
      path=pathInfo 
      type=typeInfo 
      validate=boolean />
   <remove verb=httpVerbs 
      path=pathInfo />
   <clear />
</httpHandlers>

Adds or removes HttpHandlers, which are used to provide request processing for a specified HTTP
verb and/or file type or path. ASP.NET itself is set up as an HttpHandler for .aspx and .asmx files, and
HttpHandlers are used to prevent downloading of source code for other ASP.NET file types, such as
global.asax.

Scope

Any

Attributes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Attributes

None

Child Elements

<add>

Adds an HttpHandler. The HTTP verbs (GET, POST, etc.) handled by the HttpHandler are
specified by the verb attribute; the asterisk (*) wildcard is used to specify all verbs. The path or
file extension to be handled by the HttpHandler is specified by the path attribute. The class
used to process the request is specified by the type attribute. This class must implement the
IHttpHandler interface. Finally, the validate attribute tells ASP.NET whether or not to attempt to
load the class specified by the type attribute before a matching request comes in.

<remove>

Removes a previously configured HttpHandler, based on the specified verb and path attributes.
The attributes must match a previously configured <add> element.

<clear>

Clears all previously configured HttpHandlers.

Example

The example configures a custom HttpHandler for the file extension .aspnetian:

<configuration>
   <system.web>
      <httpHandlers>
         <add verb="*" 
            path="*.aspnetian" 
            type="aspnetian.aspnetianHandler" />
      </httpHandlers>
   </system.web>
</configuration>

Notes

To make the example work properly, you need to map the file extension .aspnetian to the ASP.NET
ISAPI handler, Otherwise, the request would never be handed to the custom HttpHandler. Chapter 9
has a step-by-step walkthrough of the process for mapping additional file types to the ASP.NET ISAPI
handler.

<httpModules>

<httpModules>
   <add 
      name=moduleName 
      type=typeInfo />
   <remove name=moduleName />
   <clear />
</httpModules>

Adds or removes HttpModules. HttpModules are special classes that participate in the processing of all
application requests. Both ASP.NET caching and session state are implemented as HttpModules, as
are the authentication and authorization features of ASP.NET.

Scope

Any

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Attributes

None

Child Elements

<add>

Adds an HttpModule. The class that implements the HttpModule is specified by the type
attribute. This class must implement the IHttpModule interface. The name attribute provides an
alias by which the HttpModule can be referred to -- for example, in a later <remove> element.

<remove>

Removes a previously configured HttpModule, based on the specified name attribute. The
attribute must match a previously configured <add> element.

<clear>

Clears all previously configured HttpModules.

Example

The example removes the HttpModule for the Session state provider, which can be useful if you're not
using it:

<configuration>
   <system.web>
      <httpModules>
         <remove name="Session" />
      </httpModules>
   </system.web>
</configuration>

Notes

If you're not using a particular HttpModule, such as the Session state module or authentication
modules, you may be able to save overhead by removing these HttpModules from an application's
web.config file by using the <remove> element.

<httpRuntime>

<httpRuntime
   appRequestQueueLimit=numRequests
   executionTimeout=numSeconds
   maxRequestLength=numKBytes
   minFreeLocalRequestFreeThreads=numThreads
   minFreeThreads=numThreads
   useFullyQualifiedRedirectUrl=boolean />

Contains attributes used to configure the settings for the ASP.NET HTTP runtime.

Scope

Any

Attributes

appRequestQueueLimit

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


appRequestQueueLimit

Specifies the upper limit for request queuing. Once this limit has been reached, additional
requests will receive a response of "503 - Server Too Busy". The default is 100.

executionTimeout

Specifies the amount of time, in seconds, that a request can execute before being terminated
by the runtime. The default is 90.

maxRequestLength

Specifies the maximum file size, in KB, that can be uploaded by a client to an ASP.NET
application. This attribute is used primarily to prevent denial of launched service attacks by
attempting to upload very large files to the server. The default is 4096.

minFreeLocalRequestFreeThreads

Specifies the minimum number of threads that will be reserved for requests from the local host
that require additional threads. The default is 4.

minFreeThreads

Specifies the minimum number of threads that will be reserved for requests that require
additional threads. The default is 8.

useFullyQualifiedRedirectUrl

Specifies whether URLs sent to the client for redirects are fully qualified or relative. The default
is False, which specifies that the URL is relative.

Child Elements

None

Example

This example forces client-side redirect URLs to be fully qualified, which is required for some of the
mobile controls supplied in the Microsoft Mobile Internet Toolkit:

<configuration>
   <system.web>
      <httpRuntime
         useFullyQualifiedRedirectUrl="true" />
   </system.web>
</configuration>

Notes

One of the most commonly customized attributes is maxRequestLength, since for sites that need to
upload files, 4MB can be fairly limiting. Use caution when increasing this value, however; only
increase it as much as necessary for the maximum file size you expect. Making this value too large
can make your site vulnerable to denial-of-service attacks.

<identity>

<identity
   impersonate=boolean
   userName=string
   password=string />

Specifies whether request impersonation is enabled, as well as the identity to be used for requests
made from the ASP.NET worker process and the password for that identity.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Scope

Any

Attributes

impersonate

Specifies whether impersonation is enabled for the application. If True, requests made by the
ASP.NET worker process will be made with the security context of the account specified by the
userName attribute; if that attribute is blank, the context of the account of the logged on user.
The default is False.

userName

Specifies the username of the Windows account to use for impersonation. If the value is left
blank or is omitted, requests will be made in the context of the logged-in user.

password

Specifies the password for the account named in the userName attribute. This password is
stored in clear text.

Child Elements

None

Example

The example turns on impersonation for the logged-in user authenticated by IIS:

<configuration>
   <system.web>
      <identity
         impersonate="true"
         userName="" />
   </system.web>
</configuration>

Notes

Because the password attribute stores passwords in readable text, you should carefully consider
whether it makes sense to use this functionality. Storing sensitive information such as passwords in
text files presents a potential security risk.

<machineKey>

<machineKey
   validationKey="autogenerate|value"
   decryptionKey="autogenerate|value"
   validation="SHA1|MD5|3DES" />

Specifies the settings for cryptographic keys used for validation and decryption of Forms
Authentication cookies.

Scope

All

Attributes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Attributes

validationKey

The key used for validation of forms authentication cookie data, MAC checking of ViewState,
and session state cookies. The default is autogenerate, which generates and stores a random
key. For web farm implementations, you can set this value to the same 40 to 128-character
key value on each server to ensure that all servers can validate successfully.

decryptionKey

The key used for decryption of forms authentication cookie data. The default is autogenerate,
which generates and stores a random key. For web farm implementations, you can set this
value to the same 40 to 128-character key value on each server to ensure that all servers can
validate successfully.

validation

Specifies the type of encryption used for data validation.

Child Elements

None

Notes

For web farms, ensuring that the validationKey and decryptionKey values are synchronized across all
servers in the farm is important. If they are not synchronized, you may get errors in Forms
Authentication, ViewState errors, or problems with session state.

<pages>

<pages
   buffer=boolean
   enableSessionState="true|false|ReadOnly"
   enableViewState=boolean
   enableViewStateMac=boolean
   autoEventWireup=boolean
   smartNavigation=boolean
   pageBaseType=typeInfo
   userControlBaseType=typeInfo />

Contains attributes used to configure the default settings for ASP.NET pages and user controls. These
settings can be overridden by attributes on the @ Page or @ Control directive.

Scope

Any

Attributes

buffer

Specifies whether buffering of page output is on or off. The default is True.

enableSessionState

Specifies whether a page has access to the Session state module. Acceptable values include
True, False, and ReadOnly. The default is True.

enableViewState

Specifies whether ViewState is enabled at the page level. The default is True.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


enableViewStateMac

Specifies at the page level whether a machine authentication check (MAC) is performed on the
ViewState hidden field. This specification can help identify client-side tampering with the
ViewState. The default is True.

autoEventWireup

Specifies whether ASP.NET will automatically support specific page events, such as Page_Load.
The default is True.

smartNavigation

Specifies whether the Smart Navigation feature, for which IE 5 or above provides support for
posting back and refreshing only portions of a page, is turned on at the page level. The default
is False.

pageBaseType

Specifies the base class from which all pages are derived. The default is System.Web.UI.Page.

userControlBaseType

Specifies the base class from which all user controls are derived. The default is
System.Web.UI.UserControl.

Child Elements

None

Example

The example disables both Session state and ViewState at the page level:

<configuration>
   <system.web>
      <pages
         enableSessionState="false"
         enableViewState="false" />
   </system.web>
</configuration>

Notes

The <pages> element is very useful for setting application-level (or folder-level) defaults for pages in
your application. One possible use is to place pages that do not require access to session state in a
separate folder and use the <pages> element to disable session state for that folder. In this case, a
session will not be created for a user until the user requests a page in your application for which
EnableSessionState is True.

The default setting of EnableViewStateMac is True. It's important to remember this because the MAC
check uses the settings in the <machineKey> element to create an encrypted version of the ViewState
hidden field. In a web farm scenario, the <machineKey> settings for each server in the farm must
match. Otherwise, the MAC check will fail when a user's initial request is handled by one server, while
a subsequent postback is handled by another server with different settings for <machineKey>.

<processModel>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<processModel
   enable=boolean
   timeout="Infinite"|HH:MM:SS
   idleTimeout="Infinite"|HH:MM:SS
   shutdownTimeout="Infinite"|HH:MM:SS
   requestLimit=numRequests
   requestQueueLimit="Infinite"|numRequests
   restartQueueLimit="Infinite"|numRequests
   memoryLimit=percentMemory
   cpuMask=cpuNumBitMask
   webGarden=boolean
   userName=username
   password=password
   logLevel="All|None|Errors"
   clientConnectedCheck=HH:MM:SS
   comAuthenticationLevel="Default|None|Connect|Call|Pkt|
      PktIntegrity|PktPrivacy"
comImpersonationLevel="Default|Anonymous|Identify|Impersonate|
   Delegate"
   responseRestartDeadlockInterval="Infinite"|HH:MM:SS
   responseDeadlockInterval="Infinite"|HH:MM:SS
   maxWorkerThreads=numThreads
   maxIoThreads=numThreads 
   serverErrorMessageFile=fileName />

Contains attributes used to configure the ASP.NET worker process in IIS 5.

Scope

Machine only

Attributes

enable

Specifies whether the <processModel> settings are enabled. The default is True.

timeout

Specifies the life span, in the format hh:mm:ss, of the process. When this value expires, a new
process is started and the current process is shut down. To disable the timeout, use the value
Infinite. The default is Infinite.

idleTimeout

Specifies the life span of the process, when idle, in the format hh:mm:ss. When this value
expires, the current process is shut down. To disable the timeout, use the value Infinite. The
default is Infinite.

shutdownTimeout

Specifies the amount of time, in the format hh:mm:ss, that the process is given to shut down
gracefully. When this value expires, the process will be killed. To disable the timeout, use the
value Infinite. The default is 0:00:05.

requestLimit

Specifies the number of requests that can be served by the ASP.NET process before it is shut
down and restarted. This attribute can be used to proactively restart the ASP.NET process to
compensate for memory leaks or other problems that may be associated with legacy resources
(such as COM components) that you need to use in your applications. The default is Infinite,
which disables this feature.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


requestQueueLimit

Specifies the number of requests that can be queued by ASP.NET before it is shut down and
restarted. This attribute can be used to proactively remedy situations in which resource
contention causes requests to be queued. The default is 5000.

restartQueueLimit

Specifies the number of requests that will remain in the request queue while a process restart
based on the requestQueueLimit setting occurs. The default is 10.

memoryLimit

Specifies the upper limit, as a percentage, of the server's physical memory that the ASP.NET
process will be allowed to use. If this value is exceeded, a new process will be started up and
the current process will be shut down. The default is 60.

cpuMask

Used in web garden scenarios to specify the CPU or CPUs in a multiprocessor server that will
run the ASP.NET process. This value is a bitmask. The default is 0xffffffff, which specifies that a
worker process should be created for every CPU.

webGarden

Specifies whether web gardening, in which worker processes are tied to specific processors
within a multiprocessor server, is enabled. The default is False.

userName

Specifies the identity under which the ASP.NET worker process will be run. This can be a valid
NT account or one of two special values:

SYSTEM

Runs the ASP.NET process as the SYSTEM account, which is a highly privileged administrative account.

machine

Runs the ASP.NET process as the ASPNET account (installed with the .NET Framework), which is a special account with
few privileges. This process is the default and provides superior out-of-the box security for web applications written with
ASP.NET. Note that the documentation for the <processModel> element incorrectly states that SYSTEM is the default.

password

Specifies the password of the account specified by the userName attribute. Use the value
AutoGenerate (the default) when using the SYSTEM or machine accounts.

logLevel

Specifies the type of process events that are logged to the NT event log. Valid values are:

All

All process events will be logged.

Errors

Only errors will be logged; this is the default.

None

No process events will be logged.

clientConnectedCheck

Specifies the amount of time, in the format hh:mm:ss, that a request remains in the queue
before the ASP.NET process checks to ensure that the client is still connected. The default is
0:00:05.

comAuthenticationLevel

Specifies the authentication level used for DCOM security. The default is Connect.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


comImpersonationLevel

Specifies the authentication level used for COM security. The default is Impersonate.

responseRestartDeadlockInterval

Specifies the amount of time, in the format hh:mm:ss, that will be allowed to elapse between
process restarts due to the responseDeadlockInterval attribute value. This specification prevents
constant process cycling due to deadlocks. To disable this feature, use the value Infinite. The
default is 0:09:00.

responseDeadlockInterval

Specifies the amount of time, in the format hh:mm:ss, that may elapse without a response
when requests are queued. When this value expires, the process will be shut down and
restarted. To disable this feature, use the value Infinite. The default is 0:03:00.

maxWorkerThreads

Specifies the upper limit for worker threads per CPU in the thread pool. The default is 25.

maxIoThreads

Specifies the upper limit for IO threads per CPU in the thread pool. The default is 25.

serverErrorMessageFile

Specifies the filename of a file to be displayed when a "Server Unavailable" error occurs.

Child Elements

None

Notes

In IIS 6 native mode, the settings in the <processModel> element will be ignored.

Because the settings in the <processModel> element are read by and applied to the unmanaged
aspnet_isapi.dll handler that passes requests to the managed aspnet_wp.exe worker process (rather
than by managed code), changes to the <processModel> element will not be applied until IIS is
restarted.

<securityPolicy>

<securityPolicy>
   <trustLevel
      name=trustLevelName
      policyFile=fileName />
</securityPolicy>

Configures mappings of trust names (used by the <trust> element) to security policy files. The
security policy files contain elements that configure the code access security permissions that are
specific to that trust level. <securityPolicy> can contain one or more <trustLevel> elements.

Scope

Machine, Application

Attributes

None

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Child Elements

<trustLevel>

Each <trustLevel> element maps a trust-level name to a specific policy file that implements the
code access security permissions for that trust level. The name attribute specifies the name by
which the trust level will be referred in the <trust> element, while the policyFile attribute
specifies the name of the policy file to map to the name.

Example

This example comes from the default <securityPolicy> element in machine.config:

<securityPolicy>
   <trustLevel
      name="Full"
      policyFile="internal" />
   <trustLevel
      name="High"
      policyFile="web_hightrust.config" />
   <trustLevel
      name="Low"
      policyFile="web_lowtrust.config" />
   <trustLevel
      name="None"
      policyFile="web_notrust.config" />
</securityPolicy>

Notes

For a specific application, if you want to modify the code access security permissions applied, you
could create a new CAS policy file and map that file to a custom trust level by using the <trustLevel>
element. To implement the new security policy, you would add a <trust> element to the web.config
file of the desired application and use it to specify the mapped policy file by name.

<sessionState>

<sessionState
   mode="Off|Inproc|StateServer|SQLServer"
   cookieless=boolean
   timeout=numMinutes
   stateNetworkTimeout=numSeconds
   stateConnectionString="tcpip=server:port"
   sqlConnectionString=connString />

Scope

Machine, Application

Attributes

mode

Specifies whether session state is enabled, and if so, how the state data will be stored. Valid
values are:

Off

The session state is disabled.

InProc

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


InProc

The session state data will be stored in memory on the local server. This is the same model as session state in classic
ASP. This session state mode does not allow session state to be shared across servers in a web farm.

StateServer

The session state data will be stored in memory in a special NT state service on a designated state server. This session
state mode allows session state to be shared across servers in a web farm.

SQLServer

The session state data will be stored in a special SQL Server database on a designated SQL Server. This session state
mode allows session state to be shared across servers in a web farm. This mode also requires running a SQL query
(which is included with the .NET Framework SDK) to set up the SQL Server database.

The default is InProc.

cookieless

Specifies whether or not cookies will be used to associate users with specific sessions. If set to
True, the session identifier will be automatically munged into the URL for each request. This
requires that your application use relative URLs to work correctly. The default is False.

timeout

Specifies the amount of time, in minutes, before the session will time out when inactive (no
requests are received with that SessionID). The default is 20.

stateNetworkTimeout

Specifies the amount of time, in seconds, that network operations will time out when working
with the StateServer session state mode. The default is 10.

stateConnectionString

Specifies the server name or IP address and TCP port number for the session state server when
using StateServer mode. This attribute is required when the mode attribute is StateServer. The
default is tcpip=127.0.0.1:42424.

sqlConnectionString

Specifies the SQL Server name and authentication credentials when using SQLServer session
mode. This attribute is required when the mode attribute is SQLServer. The default is data
source=127.0.0.1;user id=sa;password=. Where possible, this value should use trusted
connections to avoid storing a SQL userID and password in the web.config or machine.config
file. To support SQL Server state mode, you need to run the InstallSqlState.sql batch file on the
target SQL server to create the ASPState database and its associated tables and stored
procedures. This file is installed by default in the
%windir%\Microsoft.NET\Framework\%version% folder.

Child Elements

None

Example

The example configures session state to run in SQL Server mode without cookies:

<configuration>
   <system.web>
      <sessionState
         mode="SQLServer"
         cookieless="true"
         sqlConnectionString="data source=myServer;trusted_
connection=true" />
   </system.web>
</configuration>

Notes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notes

To use SQL Server mode with a trusted connection, the account identity of the ASP.NET worker
process must have a login to the SQL Server database and must have permission to access the
ASPState and TempDB databases. If you cannot use a trusted connection, you should create a special
account specifically to access the state database, and use that account for the sqlConnectionString
attribute.

Note that when using either of the out-of-process session state modes, it's wise to use the
EnableSessionState attribute of the @ Page directive to disable session state for pages in your
application that do not use it. Otherwise, these pages will make unnecessary cross-machine calls to
retrieve unused session state information. If you have a page that reads session data but does not
alter it, you can also set the EnableSessionState attribute to ReadOnly to avoid the cross-machine call
to store updated session data.

<trace>

<trace
   enabled=boolean
   localOnly=boolean
   pageOutput=boolean
   requestLimit=numRequests 
   traceMode="SortByTime|SortByCategory" />

Scope

Any

Attributes

enabled

Specifies whether tracing is enabled. The default is False.

localOnly

Specifies whether or not trace output can be viewed by machines other than the local host. The
default is True.

pageOutput

Specifies whether trace output is rendered to the page or stored in memory and made
accessible by the special Trace.axd URL. Trace.axd maps to an HttpHandler that displays all
currently stored traces for a given application. The default is False.

requestLimit

Specifies the number of requests that can be stored in the trace buffer read by Trace.axd. Once
the total number of request traces specified by this attribute has been stored, no more traces
will be stored until the trace log has been cleared. The page displayed by Trace.axd includes a
link for clearing the trace log. The default is 10.

traceMode

Specifies the sort order of items in the Trace Information section of the trace. Valid values are
SortByTime and SortByCategory. SortByCategory is useful when you are using Trace.Write and
Trace.Warn with your own category names passed as parameters. The default is SortByTime.

Child Elements

None

Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example

This example turns tracing on at the application level:

<configuration>
   <system.web>
      <trace enabled="true" />
   </system.web>
</configuration>

Notes

Chapter 10 provides an overview of how to use the trace functionality of ASP.NET.

<trust>

<trust
   level="Full|High|Low|None"
   originUrl=URL />

Assigns a named trust level created with the <trustLevel> child element of the <securityPolicy>
element to a machine, a site, or an application.

Scope

Machine, Application

Attributes

level

Specifies the trust level to be applied. This attribute can be any value defined by the
<securityPolicy> element. The default is Full. This attribute is required.

originUrl

Specifies URL of origin of an application. This attribute allows classes such as WebRequest,
which may need the origin host information for certain security permissions, to work properly.
This attribute is optional.

Child Elements

None

Example

This example sets the application CAS permissions, based on a custom trust level:

<configuration>
   <system.web>
      <trust level="myTrustLevel" />
   </system.web>
</configuration>

Notes

Make sure that you understand the security implications of using custom security policy mappings
before using this element. Incorrect permissions can cause major problems for your application.

<location>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<location
   path=pathToConfigure
   allowOverride=boolean >
   <system.web>
      <! --  Configuration settings  -- >
   </system.web>
</location>

Allows you to prevent settings in machine.config or web.config from being overridden in child
configuration files. You can also use it to configure settings for specific files or folders from a
configuration file in a parent folder.

Scope

Any

Attributes

path

Specifies the path to the file or folder to which the configuration settings contained in the
<location> tag pair should be applied.

allowOverride

Specifies whether child configuration files can override values configured within the <location>
tag pair. This attribute locks down configuration settings (i.e., at the machine.config level) for
which you want to enforce uniformity.

Child Elements

<system.web>

Example

The example, if used in machine.config, would force all applications on the machine to use Windows
authentication:

<configuration>
   <location
      allowOverride="false">
      <system.web>
         <authentication mode="Windows">
      </system.web>
   </location>
   <system.web>
      <!-- Other configuration settings -->
   </system.web>
</configuration>

Notes

This tag provides powerful control over configuration. In addition to the scenario of enforcing an
authentication method across all applications, you can also use the path attribute to configure multiple
child folders or files from the web.config file in the root of the application. Using this configuration can
avoid having a large number of child web.config files to manage for a larger application.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Part III: Namespace Reference
The quick-reference section that follows packs a lot of information into a small space.
This introductory section explains how to get the most out of that information: it
describes how the quick reference is organized and how to read the individual quick
reference entries.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 21. Namespace Reference

The quick reference is organized into chapters-one per namespace. Each chapter begins with an
overview of the namespace and includes a hierarchy diagram for the types (classes, interfaces,
enumerations, delegates, and structs) in the namespace. Quick-reference entries for all the types in
the namespace follow the overview.

Figure 21-1 is a sample diagram showing the notation used in this book. This notation is similar to
that used in O'Reilly's Java in a Nutshell, but it borrows some features from UML.

Figure 21-1. Class hierarchy notation

Classes marked as MustInherit are shown as a slanted rectangle; classes marked as NonInheritable are
shown as an octagonal rectangle. Inheritance is shown as a solid line from the subtype, ending with a
hollow triangle that points to the base class. Two notations indicate interface implementation. The
lollipop notation is used most of the time, since it is easier to read. In some cases, especially when
many types implement a given interface, the shaded box notation with the dashed line is used.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Important relationships between types (associations) are shown with a dashed line ending with an
arrow. The figures don't show every possible association. Some types have strong containing
relationships with one another. For example, a System.Net.WebException object instance includes a
System.Net.WebResponse object instance that represents the HTTP response containing the error
details (HTTP status code and error message). To show this relationship, a filled diamond is attached
to the containing type with a solid line that points to the contained type.

Entries are organized alphabetically by type and namespace so that related types are grouped near
one another. Thus, in order to look up a quick reference entry for a particular type, you must also
know the name of the namespace that contains that type. Usually, the namespace is obvious from the
context, and you should have no trouble looking up the quick-reference entry you want. Use the tabs
on the outside edge of the book and the dictionary-style headers on the upper corner of each page to
help you find the namespace and type you are looking for.

Occasionally, you may need to look up a type for which you do not already know the namespace. In
this case, refer to the Appendix at the end of this book. This index allows you to look up a type by its
name and identify what namespace it is part of.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

21.1 Reading a Quick-Reference Entry

Each quick-reference entry contains quite a bit of information. The sections that follow describe the
structure of a quick-reference entry, explaining what information is available, where it is found, and
what it means. While reading the descriptions that follow, you will find it helpful to flip through the
reference section itself to find examples of the described features.

21.1.1 Type Name, Namespace, Assembly, Type Category,and Flags

Each quick-reference entry begins with a four-part title that specifies the name, namespace (followed
by the assembly in parentheses), and type category of the type, and may also specify various
additional flags that describe the type. The type name appears in bold at the upper-left side of the
title. The namespace and assembly appear in smaller print in the lower-left side, below the type
name.

The upper-right portion of the title indicates the type category of the type (class, delegate, enum,
interface, or struct). The "class" category may include modifiers such as NonInheritable or MustInherit.

In the lower-right corner of the title, you may find a list of flags that describe the type. The possible
flags and their meanings are as follows:

ECMA

Specifies that the type is part of the ECMA CLI specification.

serializable

Specifies that the type, or a base class, implements System.Runtime.Serialization.ISerializable
or has been flagged with the System.Serializable attribute.

marshal by reference

This class, or a superclass, derives from System.MarshalByRefObject.

context bound

This class, or a superclass, derives from System.ContextBoundObject.

disposable

Specifies that the type implements the System.IDisposable interface.

flag

Specifies that the enumeration be marked with the System.FlagsAttribute attribute.

21.1.2 Description

The title of each quick-reference entry is followed by a short description of the most important
features of the type. This description may be anywhere from a couple of sentences to several
paragraphs long.

21.1.3 Synopsis

The most important part of every quick-reference entry is the synopsis, which follows the title and
description. The synopsis for a type looks much like its source code, except that the member bodies
are omitted and some additional annotations are added. If you know VB.NET syntax, you know how to
read the type synopsis.

The first line of the synopsis contains information about the type itself. It begins with a list of type
modifiers, such as MustInherit and NonInheritable. These modifiers are followed by the Class, Delegate,
Enum, Interface, or Struct keyword and then by the name of the type. The type name may be followed

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Enum, Interface, or Struct keyword and then by the name of the type. The type name may be followed
by a colon (:) and a base class or interfaces that the type implements.

The type definition line is followed by a list of the members that the type defines. This list includes
only members that are explicitly declared in the type, are overridden from a base class, or are
implementations of an interface member. Members that are simply inherited from a base class are not
shown; you will need to look up the base class definition to find those members.

Once again, if you understand basic VB.NET syntax, you should have no trouble making sense of
these lines. The listing for each member includes the modifiers, type, and name of the member. For
methods, the synopsis also includes the type and name of each method parameter. The member
names are in boldface, so it is easy to scan the list of members looking for the one you want. The
names of method parameters are in italics to indicate that they should not be used literally. The
member listings are printed on alternating gray and white backgrounds to keep them visually
separate.

21.1.3.1 Member Availability and Flags

Each member listing is a single line that defines the syntax for that member. These listings use
VB.NET syntax, so their meaning is immediately clear to any VB.NET programmer. Some auxiliary
information associated with each member synopsis, however, requires explanation.

The area to the right of the member synopsis displays a variety of flags that provide additional
information about the member. Some flags indicate additional specification details that do not appear
in the member syntax itself.

The following flags may be displayed to the right of a member synopsis:

Overrides

Indicates that a method overrides a method in one of its base classes. The flag is followed by
the name of the base class that the method overrides.

Implements

Indicates that a method implements a method in an interface. The flag is followed by the name
of the implemented interface.

=

For enumeration fields and constant fields, this flag is followed by the constant value of the
field. Only constants of primitive and String types and constants with the value Nothing are
displayed. Some constant values are specification details, while others are implementation
details. Some constants, such as System.BitConverter.IsLittleEndian, are platform dependent.
Platform-dependent values shown in this book conform to the System.PlatformID.Win32NT
platform (32-bit Windows NT, 2000, or XP). The reason why symbolic constants are defined,
however, is so you can write code that does not rely directly upon the constant value. Use this
flag to help you understand the type, but do not rely upon the constant values in your own
programs.

21.1.3.2 Functional Grouping of Members

Within a type synopsis, the members are not listed in strict alphabetical order. Instead, they are
broken down into functional groups and listed alphabetically within each group. Constructors, events,
fields, methods, and properties are all listed separately. Instance methods are kept separate from
shared (class) methods. Public members are listed separately from protected members. Grouping
members by category breaks a type down into smaller, more comprehensible segments, making the
type easier to understand. This grouping also makes it easier for you to find a desired member.

Functional groups are separated from one another in a type synopsis with VB.NET comments, such
as:

Public Constructors

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Public Constructors

or:

' Protected Instance Properties

or:

' Events

The various functional categories follow below (in the order in which they appear in a type synopsis):

Constructors

Displays the constructors for the type. Public and protected constructors are displayed
separately in subgroupings. If a type defines no constructor at all, the VB.NET compiler adds a
default parameterless constructor that is displayed here. If a type defines only private
constructors, it cannot be instantiated, so no constructor appears. Constructors are listed first
because the first thing you do with most types is instantiate them by calling a constructor.

Fields

Displays all fields defined by the type, including constants. Public and protected fields are
displayed in separate subgroups. Fields are listed here, near the top of the synopsis, because
constant values are often used throughout the type as legal values for method parameters and
return values.

Properties

Lists all the properties of the type, breaking them down into subgroups for public and protected
shared properties and public and protected instance properties. After the property name, its
accessors (get or set) are shown.

Shared methods

Lists the shared methods (class methods) of the type, broken down into subgroups for public
shared methods and protected shared methods.

Public instance methods

Contains all public instance methods.

Protected instance methods

Contains all protected instance methods.

21.1.4 Class Hierarchy

For any type that has a nontrivial inheritance hierarchy, the synopsis is followed by a "Hierarchy"
section. This section lists all of the base classes of the type, as well as any interfaces implemented by
those base classes. It also lists any interfaces implemented by an interface. In the hierarchy listing,
arrows indicate base class to derived class relationships, while the interfaces implemented by a type
follow the type name in parentheses. For example, the following hierarchy indicates that
System.IO.Stream implements IDisposable and extends MarshalByRefObject, which itself extends
Object:

System.Object | System.MarshalByRefObject | System.IO.Stream(System.IDisposable)

If a type has subtypes, the "Hierarchy" section is followed by a "Subtypes" section that lists those
subtypes. If an interface has implementations, the "Hierarchy" section is followed by an
"Implementations" section that lists those implementations. While the "Hierarchy" section shows
ancestors of the type, the "Subtypes" or "Implementations" section shows descendants.

21.1.5 Cross References

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The hierarchy section of a quick-reference entry is followed by optional cross reference sections that
indicate other related types and methods that may be of interest. These sections include:

Passed to

This section lists all members (from other types) that are passed an object of this type as an
argument, including properties whose values can be set to this type. It is useful when you have
an object of a given type and want to know where it can be used.

Returned by

This section lists all members that return an object of this type, including properties whose
values can take on this type. It is useful when you know that you want to work with an object
of this type, but don't know how to obtain one.

Valid on

For attributes, this section lists the attribute targets that the attribute can be applied to.

Associated events

For delegates, this section lists the events it can handle.

21.1.6 A Note About Type Names

Throughout the quick reference, you'll notice that types are sometimes referred to by type name
alone, and at other times are referred to by type name and namespace. If namespaces were always
used, the type synopses would become long and hard to read. On the other hand, if namespaces were
never used, it would sometimes be difficult to know what type was being referred to. The rules for
including or omitting the namespace name are complex. However, they can be summarized as
follows:

If the type name alone is ambiguous, the namespace name is always used.

If the type is part of the System namespace or is a commonly used type like
System.Collection.ICollection, the namespace is omitted.

If the type being referred to is part of the current namespace (and has a quick-reference entry
in the current chapter), the namespace is omitted. The namespace is also omitted if the type
being referred to is part of a namespace that contains the current namespace.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 22. The System.Web Namespace

The System.Web namespace contains some of the fundamental ingredients for ASP.NET applications.
These ingredients include the classes used for the original built-in ASP objects (Request, Response,
Application, and Server), as well as classes for managing cookies, configuring page caching,
implementing tracing, and retrieving information about the web server and client browser. Aside from
the classes required for web services and the Web Forms user interface, the System.Web namespace
contains the heart of ASP.NET's functionality. Figure 22-1 and Figure 22-2 show the types in this
namespace.

One confusing aspect about the System.Web namespace is Microsoft's "all roads lead to Rome"
approach to backward compatibility. For example, the HttpRequest class can be accessed on a Web
Form through the Page class (Page.Request), the HttpContext class (Page.Context.Request), and the
HttpApplication class (Page.Context.ApplicationInstance.Request). In all cases, the reference is pointing
to the same object. Essentially, the HttpContext class encapsulates the fundamental types that relate
to an HTTP request. The HttpContext object is made available to all IHttpModule and IHttpHandler
instances (which includes HttpApplication, System.Web.UI.Page, and System.Web.UI.UserControl), and
some of its properties are "magically" copied into these classes for convenience and backward
compatibility. When you use the built-in Request object on a Web Forms page, for example, you use
the Request property from the Page class.

Due to backward compatibility, some class names don't match the name of the corresponding built-in
object. For example, the Application object is an instance of the HttpApplicationState class, not the
HttpApplication class. Similarly, the built-in Response.Cache object references an instance of the
HttpCachePolicy class, while the built-in Cache object references the System.Web.Caching.Cache class.

Figure 22-1. Fundamental types from System.Web

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 22-2. More System.Web types, including collections and exceptions

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BeginEventHandler Delegate

System.Web (system.web.dll) serializable

This class is used to connect an event handler to an HttpApplication event. It is used transparently by
the ASP.NET framework.

Public Delegate Function BeginEventHandler(
        ByVal sender As Object, ByVal e As EventArgs, 
        ByVal cb As AsyncCallback, 
        ByVal extraData As Object) As IAsyncResult  

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

EndEventHandler Delegate

System.Web (system.web.dll) serializable

This class is used to connect an event handler to an HttpApplication event. It is used transparently by
the ASP.NET framework.

Public Delegate Sub EndEventHandler(
        ByVal ar As IAsyncResult) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpApplication Class

System.Web (system.web.dll) disposable

HttpApplication is the default base class from which your web application derives. This class is most notable 
the application-level events it provides. You can code event handlers that react to global application events in the
global.asax file. If you use Visual Studio .NET to create a code-behind class (like global.asax.vb), the event
handler code will be created in a class called Global, which inherits from HttpApplication. Note that the application
event handlers are not connected with a Handles keyword or AddHandler() statement. Instead, they are
recognized by their method names, which must match the event name and be preceded by "Application_" (as in
Application_AuthenticateRequest or Application_EndRequest).

The first time a user navigates to a page in your application, the ASP.NET engine creates a pool of HttpApplication
objects. Whenever your application receives a request, the ASP.NET engine automatically assigns one of these
HttpApplication instances to serve the request. This HttpApplication instance will be reused, but only once the
request is complete.

Public Class HttpApplication : Implements IHttpAsyncHandler, IHttpHandler, System.ComponentModel.IComponent,_
       IDisposable
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Application As HttpApplicationState  
   Public ReadOnly Property Context As HttpContext  
   Public ReadOnly Property Modules As HttpModuleCollection  
   Public ReadOnly Property Request As HttpRequest  
   Public ReadOnly Property Response As HttpResponse  
   Public ReadOnly Property Server As HttpServerUtility  
   Public ReadOnly Property Session As HttpSessionState  
   Public Property Site As ISite Implements IComponent.Site 
   Public ReadOnly Property User As IPrincipal  
' Protected Instance Properties
   Protected Property Events As EventHandlerList  
' Public Instance Methods
   Public Sub AddOnAcquireRequestStateAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnAuthenticateRequestAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnAuthorizeRequestAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnBeginRequestAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnEndRequestAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnPostRequestHandlerExecuteAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnPreRequestHandlerExecuteAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnReleaseRequestStateAsync(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Sub AddOnReleaseRequestStateAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnResolveRequestCacheAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub AddOnUpdateRequestCacheAsync(
        ByVal bh As BeginEventHandler, 
        ByVal eh As EndEventHandler) 
   Public Sub CompleteRequest() 
   Overridable Public Sub Dispose(
        ) Implements IDisposable.Dispose 
   Overridable Public Function GetVaryByCustomString(
        ByVal context As HttpContext, 
        ByVal custom As String) As String  
   Overridable Public Sub Init() 
' Events
   Public Event AcquireRequestState As EventHandler  
   Public Event AuthenticateRequest As EventHandler  
   Public Event AuthorizeRequest As EventHandler  
   Public Event BeginRequest As EventHandler  
   Public Event Disposed As EventHandler Implements IComponent.Disposed 
   Public Event EndRequest As EventHandler  
   Public Event Error As EventHandler  
   Public Event PostRequestHandlerExecute As EventHandler  
   Public Event PreRequestHandlerExecute As EventHandler  
   Public Event PreSendRequestContent As EventHandler  
   Public Event PreSendRequestHeaders As EventHandler  
   Public Event ReleaseRequestState As EventHandler  
   Public Event ResolveRequestCache As EventHandler  
   Public Event UpdateRequestCache As EventHandler  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpApplicationState NotInheritable Class

System.Web (system.web.dll)

This class provides server-side state management that is available globally across all client sessions in
an ASP.NET application. Application state is not shared across multiple ASP.NET applications, or
across multiple processes or multiple computers in a single application (for example, proxy load
balancing in a web farm can thwart this type of state management).

The HttpApplicationState class exposes a name/value collection of items that can store simple value
types or instances of .NET objects. A single instance of the class is created automatically the first time
a client requests a page in the ASP.NET virtual directory. A reference is provided through the built-in
Application object.

The HttpApplicationState class combines two state collections: Contents and StaticObjects. The
StaticObjects collection contains the application state objects that are defined in the global.asax file
with <object runat=server> tags. This collection is immutable. The Contents collection contains all the
state objects added at runtime.

The Item collection is the default indexer for HttpApplicationState, so you can use the name of a state
object as an index, as in: Application("globalcounter") = 1. If you assign a value to a state object that
does not exist, it is created automatically. Items are stored as the generic System.Object type and
must be cast to the appropriate types when you retrieve them.

Multiple clients or threads can access application state values simultaneously. To avoid
synchronization problems, use the Lock() method to gain exclusive access before writing to a
property, followed by the UnLock() method. This approach can result in performance degradation,
which makes this type of state management unsuitable for frequently modified values. Using another
form of state management or a relational database is usually a better alternative. HttpApplicationState
objects should also be thread-safe, or you should use synchronization techniques (like the SyncLock
statement).

Public NotInheritable Class HttpApplicationState : Inherits_
        System.Collections.Specialized.NameObjectCollectionBase
' Public Instance Properties
   Public ReadOnly Property AllKeys As String()  
   Public ReadOnly Property Contents As HttpApplicationState  
   Overrides Public ReadOnly Property Count As Integer  
   Public Default Property Item(
        ByVal name As String) As Object  
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As Object  
   Public ReadOnly Property StaticObjects As HttpStaticObjectsCollection  
' Public Instance Methods
   Public Sub Add(ByVal name As String, ByVal value As Object) 
   Public Sub Clear() 
   Public Function Get(ByVal index As Integer) As Object  
   Public Function Get(ByVal name As String) As Object  
   Public Function GetKey(ByVal index As Integer) As String  
   Public Sub Lock() 
   Public Sub Remove(ByVal name As String) 
   Public Sub RemoveAll() 
   Public Sub RemoveAt(ByVal index As Integer) 
   Public Sub Set(ByVal name As String, ByVal value As Object) 
   Public Sub UnLock() 
End Class

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Hierarchy

System.Object
System.Collections.Specialized.NameObjectCollectionBase(System.Collections.ICollection,
System.Collections.IEnumerable, System.Runtime.Serialization.ISerializable,
System.Runtime.Serialization.IDeserializationCallback)  HttpApplicationState
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpBrowserCapabilities Class

System.Web (system.web.dll)

This class allows you to take advantage of features enabled in the client's browser. It is automatically
available through the Browser property of the built-in Request object and corresponds roughly to the
MSWC.BrowserCapabilities component that existed in ASP.

Essentially, the HttpBrowserCapabilities class is a list of properties that describe the client's browser.
Many properties return True or False, depending on whether a given capability is enabled in the
browser, such as ActiveXControls, BackgroundSounds, CDF (the channel definition format used in
webcasting), Cookies, Frames, JavaApplets, JavaScript, and VBScript. Other Boolean values tell you
whether or not the browser is AOL-based, a beta, and running on the Win16 or Win32 platform (the
AOL, Beta, Win16, and Win32 properties, respectively). Additionally, you can retrieve information such
as version number (MajorVersion and MinorVersion), the Platform name (e.g., "Win32"), the browser
Type (e.g., "Microsoft Internet Explorer 5"), and the full Version number as a string.

Public Class HttpBrowserCapabilities : Inherits System.Web.Configuration.HttpCapabilitiesBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property ActiveXControls As Boolean  
   Public ReadOnly Property AOL As Boolean  
   Public ReadOnly Property BackgroundSounds As Boolean  
   Public ReadOnly Property Beta As Boolean  
   Public ReadOnly Property Browser As String  
   Public ReadOnly Property CDF As Boolean  
   Public ReadOnly Property ClrVersion As Version  
   Public ReadOnly Property Cookies As Boolean  
   Public ReadOnly Property Crawler As Boolean  
   Public ReadOnly Property EcmaScriptVersion As Version  
   Public ReadOnly Property Frames As Boolean  
   Public ReadOnly Property JavaApplets As Boolean  
   Public ReadOnly Property JavaScript As Boolean  
   Public ReadOnly Property MajorVersion As Integer  
   Public ReadOnly Property MinorVersion As Double  
   Public ReadOnly Property MSDomVersion As Version  
   Public ReadOnly Property Platform As String  
   Public ReadOnly Property Tables As Boolean  
   Public ReadOnly Property TagWriter As Type  
   Public ReadOnly Property Type As String  
   Public ReadOnly Property VBScript As Boolean  
   Public ReadOnly Property Version As String  
   Public ReadOnly Property W3CDomVersion As Version  
   Public ReadOnly Property Win16 As Boolean  
   Public ReadOnly Property Win32 As Boolean  
End Class

Hierarchy

System.Object  System.Web.Configuration.HttpCapabilitiesBase  HttpBrowserCapabilities

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCacheability Enum

System.Web (system.web.dll) serializable

This enumeration is used by the HttpCachePolicy.SetCacheability() method of the HttpCachePolicy class.
It allows you to configure how a cached page is shared among users. A value of Public means that the
page can be stored in shared caches on a proxy server, or ASP.NET's own output cache, and made
available to all clients. Private means that the page can be cached only on the client's computer, will
not be stored in the ASP.NET output cache or on a proxy server, and cannot benefit other users.

Public Enum HttpCacheability
   NoCache = 1
   Private = 2
   Server = 3
   Public = 4
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  HttpCacheability
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCachePolicy NotInheritable Class

System.Web (system.web.dll)

This class allows you to configure "page" or output caching for an ASP.NET application, which stores a
fully rendered page for automatic reuse. A cached page will be used for GET requests until it expires,
as long as the URL request does not have different query string arguments. A cached page will not be
used for POST requests, so postbacks (such as when a user clicks on button) will bypass the cached
page. (This behavior is slightly and mysteriously different than just using the <OutputCache> page
directive, which always reuses the cached page for any type of request when the VaryByParam
attribute is set to None.) To specifically modify this behavior, you can use the VaryByParams property
and the HttpCacheVaryByParams class.

To enable caching for a page, use the SetCacheability() method to set the page's visibility to Public so
it can be stored in the shared cache. Then use the SetExpires() method to determine the lifetime of
the page in the cache. For example, Response.Cache.SetExpires(DateTime.Now.AddSeconds(60)) will
keep a page for 60 seconds, which is enough to make a substantial performance difference. By
default, the cache uses absolute expiration. You can also invoke the SetSlidingExpiration() method,
with the parameter True, to enable sliding expiration. In sliding expiration, the time limit is compared
to the time elapsed since the most recent request, not the time since the first request. You can also
use the AddValidationCallback() method to add a callback that decides on a page-by-page basis
whether to allow a cached page to be served. Finally, you can use fragment caching by developing a
Web Form user control for a portion of a page, and caching just that portion using page directives or
the methods of this class.

If your page requires customization based on Session variables or user- specific details other than a
query string, you shouldn't cache the page! In these cases, data caching will be more useful. With
data caching, you manually store specific information, such as binary data or recordsets. For more
information on data caching, refer to the System.Web.Caching.Cache class.

The HttpCachePolicy class is available through the Cache property of the built-in Response object. It
replaces properties of the Response object that were used to configure caching in ASP (like
CacheControl and Expires). Microsoft uses somewhat confusing nomenclature. An instance of the
HttpCachePolicy class (used to configure page caching) is available through the built-in Response.Cache
object, and the System.Web.Caching.Cache class (used for data caching) is available through the built-
in Cache object. Cache and Response.Cache are not the same!

Public NotInheritable Class HttpCachePolicy
' Public Instance Properties
   Public ReadOnly Property VaryByHeaders As HttpCacheVaryByHeaders  
   Public ReadOnly Property VaryByParams As HttpCacheVaryByParams  
' Public Instance Methods
   Public Sub AddValidationCallback(
        ByVal handler As HttpCacheValidateHandler, 
        ByVal data As Object) 
   Public Sub AppendCacheExtension(ByVal extension As String) 
   Public Sub SetCacheability(
        ByVal cacheability As HttpCacheability) 
   Public Sub SetCacheability(
        ByVal cacheability As HttpCacheability, 
        ByVal field As String) 
   Public Sub SetETag(ByVal etag As String) 
   Public Sub SetETagFromFileDependencies() 
   Public Sub SetExpires(ByVal date As Date) 
   Public Sub SetLastModified(ByVal date As Date) 
   Public Sub SetLastModifiedFromFileDependencies() 
   Public Sub SetMaxAge(ByVal delta As TimeSpan) 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Sub SetMaxAge(ByVal delta As TimeSpan) 
   Public Sub SetNoServerCaching() 
   Public Sub SetNoStore() 
   Public Sub SetNoTransforms() 
   Public Sub SetProxyMaxAge(ByVal delta As TimeSpan) 
   Public Sub SetRevalidation(
        ByVal revalidation As HttpCacheRevalidation) 
   Public Sub SetSlidingExpiration(ByVal slide As Boolean) 
   Public Sub SetValidUntilExpires(
        ByVal validUntilExpires As Boolean) 
   Public Sub SetVaryByCustom(ByVal custom As String) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCacheRevalidation Enum

System.Web (system.web.dll) serializable

This enumeration is used by the SetRevalidation() method of the HttpCachePolicy class, which
programmatically forces the revalidation of a page. If you use ProxyCaches with this method, the page
will be dropped from all shared caches, but potentially left in the client's local cache. If you use
AllCaches, the page will be dropped from all caches.

Public Enum HttpCacheRevalidation
   AllCaches = 1
   ProxyCaches = 2
   None = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  HttpCacheRevalidation

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCacheValidateHandler Delegate

System.Web (system.web.dll) serializable

A function with this signature can be used for the AddValidationCallback() method of the
HttpCachePolicy class. Using this signature gives you the opportunity to check other dependencies that
a cached page may have and either allow the page to be served or invalidate it and require the page
to be recompiled. To invalidate a page, set the validationStatus parameter to
HttpValidationStatus.Invalid.

Public Delegate Sub HttpCacheValidateHandler(
        ByVal context As HttpContext, ByVal data As Object, 
        ByRef validationStatus As HttpValidationStatus) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCacheVaryByHeaders NotInheritable Class

System.Web (system.web.dll)

This class is used to set the VaryByHeaders property of the HttpCachePolicy class. It allows you to
specify that separate versions of a page should be cached for different languages or character sets.
For example, if you set the UserCharSet property of this class to True, the "Accept-Charset" field will
be included in the HTTP Vary header and a separate version of the page will be cached for each
request that has a different character set. The cache page will be reused only among requests that
have the same Accept-Charset header.

Alternatively, if type safety is not important, you can set the default Item property to a string that
contains the name of a header, or a list of header names separated by semi-colons (;). Cached pages
will then be reused only among requests that have the same values for the headers you identify.

Public NotInheritable Class HttpCacheVaryByHeaders
' Public Instance Properties
   Public Property AcceptTypes As Boolean  
   Public Default Property Item(
        ByVal header As String) As Boolean  
   Public Property UserAgent As Boolean  
   Public Property UserCharSet As Boolean  
   Public Property UserLanguage As Boolean  
' Public Instance Methods
   Public Sub VaryByUnspecifiedParameters() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCacheVaryByParams NotInheritable Class

System.Web (system.web.dll)

This class is used to set the VaryByParams property of the HttpCachePolicy class. By default, cached
pages will be reused only for GET requests with identical query string arguments. However, if you
supply an instance of an HttpCacheVaryByParams class, the parameters that you specify will be the
only criteria that determine whether or not a cached page can be reused. For example, if you specify
ProductID, a separate copy of the page's output will be cached every time ASP.NET receives a request
for the page with a different ProductID value. You can also use the wildcard asterisk (*) to indicate
that all variables will be used to determine whether a page should be cached. This technique is
discouraged because it could lead to excesssive copies of the page being stored in the cache, which
could cause ASP.NET to clear out other, more useful data.

To specify parameters, set the default item property to a string that contains the name of a variable
or to a list of variable names separated by semi-colons (;). Cached pages will be reused among
requests that have the same values for these variables (in either the query string or form POST
collection). All other variables will be ignored and will not stop a cached page from being reused.

Public NotInheritable Class HttpCacheVaryByParams
' Public Instance Properties
   Public Property IgnoreParams As Boolean  
   Public Default Property Item(
        ByVal header As String) As Boolean  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpClientCertificate Class

System.Web (system.web.dll)

This class exposes a name/value collection of certification fields specified in the X.509 standard. To
get the certification fields for the current request, use the ClientCertificate property of the HttpRequest
class. Note that the certification fields are sent only if the client browser is accessing the page through
SSL (indicated by a URL starting with https:// instead of http://).

Public Class HttpClientCertificate : Inherits System.Collections.Specialized.NameValueCollection
' Public Instance Properties
   Public ReadOnly Property BinaryIssuer As Byte()  
   Public ReadOnly Property CertEncoding As Integer  
   Public ReadOnly Property Certificate As Byte()  
   Public ReadOnly Property Cookie As String  
   Public ReadOnly Property Flags As Integer  
   Public ReadOnly Property IsPresent As Boolean  
   Public ReadOnly Property Issuer As String  
   Public ReadOnly Property IsValid As Boolean  
   Public ReadOnly Property KeySize As Integer  
   Public ReadOnly Property PublicKey As Byte()  
   Public ReadOnly Property SecretKeySize As Integer  
   Public ReadOnly Property SerialNumber As String  
   Public ReadOnly Property ServerIssuer As String  
   Public ReadOnly Property ServerSubject As String  
   Public ReadOnly Property Subject As String  
   Public ReadOnly Property ValidFrom As Date  
   Public ReadOnly Property ValidUntil As Date  
' Public Instance Methods
   Overrides Public Function Get(
        ByVal field As String) As String  
End Class

Hierarchy

System.Object
System.Collections.Specialized.NameObjectCollectionBase(System.Collections.ICollection,
System.Collections.IEnumerable, System.Runtime.Serialization.ISerializable,
System.Runtime.Serialization.IDeserializationCallback)
System.Collections.Specialized.NameValueCollection  HttpClientCertificate

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCompileException NotInheritable Class

System.Web (system.web.dll)

This class represents an HTTP compiler exception.

Public NotInheritable Class HttpCompileException : Inherits HttpException
' Public Instance Properties
   Public ReadOnly Property Results As CompilerResults  
   Public ReadOnly Property SourceCode As String  
End Class

Hierarchy

System.Object  System.Exception(System.Runtime.Serialization.ISerializable)
System.SystemException  System.Runtime.InteropServices.ExternalException  HttpException
HttpCompileException

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpContext NotInheritable Class

System.Web (system.web.dll)

The HttpContext class represents the "operating context" of an ASP.NET application. It provides
references to instances of fundamental classes like HttpApplicationState and HttpRequest, which are
known as intrinsic or "built-in" objects. The HttpContext class is provided to IHttpModule and
IHttpHandler instances (like System.Web.UI.Page and HttpApplication), which provide these classes
through their own properties. The shared (static) property Current returns the current HttpContext,
and is useful if you need to access the built-in ASP.NET objects from another code module like a class
(where you won't have access to the System.Web.UI.Page properties). One example is a web service
that doesn't inherit from System.Web.Services.WebService. You can also use the shared GetAppConfig()
method to retrieve a collection object from the web.config file that contains configuration information.
Just specify the configuration section you want to examine as a parameter (like "appSettings").

If you are creating your own IHttpHandler class, you will receive the current instance of the
HttpContext class as a parameter of the IHttpHandler.ProcessRequest() method. To use the Session
property of the HttpContext lass, you must also implement either the
System.Web.SessionState.IReadOnlySessionState interface or the
System.Web.SessionState.IRequiresSessionState interface.

Public NotInheritable Class HttpContext : Implements IServiceProvider
' Public Constructors
   Public Sub New(ByVal request As HttpRequest, 
        ByVal response As HttpResponse) 
   Public Sub New(ByVal wr As HttpWorkerRequest) 
' Public Shared Properties
   Public Shared ReadOnly Property Current As HttpContext  
' Public Instance Properties
   Public ReadOnly Property AllErrors As Exception()  
   Public ReadOnly Property Application As HttpApplicationState  
   Public Property ApplicationInstance As HttpApplication  
   Public ReadOnly Property Cache As Cache  
   Public ReadOnly Property Error As Exception  
   Public Property Handler As IHttpHandler  
   Public ReadOnly Property IsCustomErrorEnabled As Boolean  
   Public ReadOnly Property IsDebuggingEnabled As Boolean  
   Public ReadOnly Property Items As IDictionary  
   Public ReadOnly Property Request As HttpRequest  
   Public ReadOnly Property Response As HttpResponse  
   Public ReadOnly Property Server As HttpServerUtility  
   Public ReadOnly Property Session As HttpSessionState  
   Public Property SkipAuthorization As Boolean  
   Public ReadOnly Property Timestamp As Date  
   Public ReadOnly Property Trace As TraceContext  
   Public Property User As IPrincipal  
' Public Shared Methods
   Public Shared Function GetAppConfig(
        ByVal name As String) As Object  
' Public Instance Methods
   Public Sub AddError(ByVal errorInfo As Exception) 
   Public Sub ClearError() 
   Public Function GetConfig(ByVal name As String) As Object  
   Public Sub RewritePath(ByVal path As String) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCookie NotInheritable Class

System.Web (system.web.dll)

Use this class to create a client-side cookie. The HttpCookie constructor takes a string representing the
name of the cookie. After creating a cookie, you can add information to it in the form of name/value
pairs by using the HttpCookieCollection.Add() method as follows: objCookies.Values.Add("Name",
"John"). Values can be retrieved by using their name with a syntax like strName =
objCookies.Values("Name").

To send the cookie to the client browser as part of the HTTP response, use the AppendCookie()
method of the HttpResponse class. This method stores the cookie on the client browser. You can then
retrieve a cookie from the HttpResponse class's cookie collection on other pages by using the cookie
name, as in Response.Cookies("NameList"). To ensure compatibility with all browsers, you should not
store more than 4096 bytes in a single cookie.

To make a cookie persist between sessions, set the Expires property for the HttpCookie to a date in the
future. You can also set the Secure property to True to restrict the cookie to Secure Socket Layer
(SSL) transmission. A cookie is usually considered less secure than Application or Session state
variables, as information is maintained on the client and transmitted back and forth continuously.

Public NotInheritable Class HttpCookie
' Public Constructors
   Public Sub New(ByVal name As String) 
   Public Sub New(ByVal name As String, ByVal value As String) 
' Public Instance Properties
   Public Property Domain As String  
   Public Property Expires As Date  
   Public ReadOnly Property HasKeys As Boolean  
   Public Default Property Item(
        ByVal key As String) As String  
   Public Property Name As String  
   Public Property Path As String  
   Public Property Secure As Boolean  
   Public Property Value As String  
   Public ReadOnly Property Values As NameValueCollection  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCookieCollection NotInheritable Class

System.Web (system.web.dll)

HttpCookieCollection is a name/value collection of HttpCookie objects. The Cookies property of the
HttpResponse class contains the cookies sent from the client with the current request. The Cookies
property of the HttpRequest class contains the cookies sent back from the server.

These collections contain all the transmitted cookies, including those you have created automatically
in code, and other cookies used by the ASP.NET framework like the Forms Authentication cookie and
the Session state cookie (named ASP.NET_SessionId).

Public NotInheritable Class HttpCookieCollection : Inherits_
        System.Collections.Specialized.NameObjectCollectionBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property AllKeys As String()  
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As HttpCookie  
   Public Default ReadOnly Property Item(
        ByVal name As String) As HttpCookie  
' Public Instance Methods
   Public Sub Add(ByVal cookie As HttpCookie) 
   Public Sub Clear() 
   Public Sub CopyTo(ByVal dest As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function Get(ByVal index As Integer) As HttpCookie  
   Public Function Get(ByVal name As String) As HttpCookie  
   Public Function GetKey(ByVal index As Integer) As String  
   Public Sub Remove(ByVal name As String) 
   Public Sub Set(ByVal cookie As HttpCookie) 
End Class

Hierarchy

System.Object
System.Collections.Specialized.NameObjectCollectionBase(System.Collections.ICollection,
System.Collections.IEnumerable, System.Runtime.Serialization.ISerializable,
System.Runtime.Serialization.IDeserializationCallback)  HttpCookieCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpException Class

System.Web (system.web.dll)

This class encapsulates an ASP.NET exception. It is a standard exception object, with the addition of
the GetHtmlErrorMessage() method and the GetHttpCode() method, that returns the HTTP error code
representing the error (like 404 for file not found) as an integer. If no HTTP error code exists for the
current exception or the InnerException, the status code 500 is returned.

Public Class HttpException : Inherits System.Runtime.InteropServices.ExternalException
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal httpCode As Integer, 
        ByVal message As String) 
   Public Sub New(ByVal httpCode As Integer, 
        ByVal message As String, 
        ByVal innerException As Exception) 
   Public Sub New(ByVal httpCode As Integer, 
        ByVal message As String, ByVal hr As Integer) 
   Public Sub New(ByVal message As String) 
   Public Sub New(ByVal message As String, 
        ByVal innerException As Exception) 
   Public Sub New(ByVal message As String, 
        ByVal hr As Integer) 
' Public Shared Methods
   Public Shared Function CreateFromLastError(
        ByVal message As String) As HttpException  
' Public Instance Methods
   Public Function GetHtmlErrorMessage() As String  
   Public Function GetHttpCode() As Integer  
End Class

Hierarchy

System.Object  System.Exception(System.Runtime.Serialization.ISerializable)
System.SystemException  System.Runtime.InteropServices.ExternalException  HttpException
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpFileCollection NotInheritable Class

System.Web (system.web.dll)

This class is a name/value collection of HttpPostedFile instances, which represents incoming files
uploaded by a client (using multipart MIME and the HTTP content type of multipart/formdata). The
HtmlInputFile class in the System.Web.UI.HtmlControls namespace provides an easier way to allow a
user to upload files.

Public NotInheritable Class HttpFileCollection : Inherits_
       System.Collections.Specialized.NameObjectCollectionBase
' Public Instance Properties
   Public ReadOnly Property AllKeys As String()  
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As HttpPostedFile  
   Public Default ReadOnly Property Item(
        ByVal name As String) As HttpPostedFile  
' Public Instance Methods
   Public Sub CopyTo(ByVal dest As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function Get(
        ByVal index As Integer) As HttpPostedFile  
   Public Function Get(
        ByVal name As String) As HttpPostedFile  
   Public Function GetKey(ByVal index As Integer) As String  
End Class

Hierarchy

System.Object
System.Collections.Specialized.NameObjectCollectionBase(System.Collections.ICollection,
System.Collections.IEnumerable, System.Runtime.Serialization.ISerializable,
System.Runtime.Serialization.IDeserializationCallback)  HttpFileCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpModuleCollection NotInheritable Class

System.Web (system.web.dll)

This is a name/value collection of IHttpModule instances. It's used by the Modules property of the
HttpApplication class to provide a collection of all modules used by your application (as defined in the
<httpmodules> section of the application's web.config file).

Public NotInheritable Class HttpModuleCollection : Inherits_
       System.Collections.Specialized.NameObjectCollectionBase
' Public Instance Properties
   Public ReadOnly Property AllKeys As String()  
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As IHttpModule  
   Public Default ReadOnly Property Item(
        ByVal name As String) As IHttpModule  
' Public Instance Methods
   Public Sub CopyTo(ByVal dest As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function Get(ByVal index As Integer) As IHttpModule  
   Public Function Get(ByVal name As String) As IHttpModule  
   Public Function GetKey(ByVal index As Integer) As String  
End Class

Hierarchy

System.Object
System.Collections.Specialized.NameObjectCollectionBase(System.Collections.ICollection,
System.Collections.IEnumerable, System.Runtime.Serialization.ISerializable,
System.Runtime.Serialization.IDeserializationCallback)  HttpModuleCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpParseException NotInheritable Class

System.Web (system.web.dll)

This class represents an exception generated when parsing an ASP.NET file.

Public NotInheritable Class HttpParseException : Inherits HttpException
' Public Instance Properties
   Public ReadOnly Property FileName As String  
   Public ReadOnly Property Line As Integer  
End Class

Hierarchy

System.Object  System.Exception(System.Runtime.Serialization.ISerializable)
System.SystemException  System.Runtime.InteropServices.ExternalException  HttpException
HttpParseException
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpPostedFile NotInheritable Class

System.Web (system.web.dll)

The HttpPostedFile class allows you to easily manipulate files that are uploaded by the client. An
HttpPostedFile instance is provided by the PostedFile property of the
System.Web.UI.HtmlControls.HtmlInputFile control.

You can use the SaveAs() method to save a posted file to disk synchronously. The method will return
once the file is completely uploaded. Alternatively, you can get a System.IO.Stream object containing
the file from the InputStream property and use it to work with the file asynchronously (while it is being
uploaded).

Public NotInheritable Class HttpPostedFile
' Public Instance Properties
   Public ReadOnly Property ContentLength As Integer  
   Public ReadOnly Property ContentType As String  
   Public ReadOnly Property FileName As String  
   Public ReadOnly Property InputStream As Stream  
' Public Instance Methods
   Public Sub SaveAs(ByVal filename As String) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpRequest NotInheritable Class

System.Web (system.web.dll)

The HttpRequest class wraps all information that a client browser passes to the server during an HTTP
request. It includes client certificates, cookies, and values submitted through HTML form elements.
You can access this information in its entirety as a System.IO.Stream object through the InputStream
property, or you can use one of the more useful higher-level properties.

The QueryString property allows you to retrieve values from the URL's query string, which can transfer
information from one ASP.NET page to another. This query string takes the form of a series of
name/value pairs appended to the URL after a question mark (for example, the client request
http://www.myapp.com/mypage.aspx?var1=hi will result in a value of "hi" for
Request.QueryString("var1")). The QueryString collection is limited to string data and should not contain
sensitive information, as it is clearly visible to the user. To ensure compatibility with all browsers, you
should not store more than about 1000 bytes in the query string.

The HttpRequest class also exposes an HttpCookieCollection object in the Cookies property. This is a
collection of client-side cookies that your script (or other scripts on your server) have created. They
are transmitted to the server with each request in the HTTP Cookie header. This collection is read-
only. If you want to modify or add a cookie, use the HttpResponse.Cookies property instead.

The HttpRequestClass class provides some frequently used, lower-level properties. For example, the
Form collection wraps the information returned from the HTML form elements, which you will typically
access through the higher-level web control abstraction. Similarly, the Headers and ServerVariables
collections allow you to access HTML headers and server variables directly, provided you know their
names. Many of these variables now have corresponding read-only properties that you can use more
easily, like HttpMethod (the data transfer method like GET or POST), UserHostAddress (the IP address
of the client), and UserHostName (the DNS name of remote client). The Browser property is a
reference to an HttpBrowserCapabilities object with full information about the user's browser.

Additional information available in the HttpRequest class includes the currently requested URL (Url),
the URL from which the request is being made (UrlReferrer), and the root path for the current
ASP.NET application as a virtual path (ApplicationPath) or physical filesystem path
(PhysicalApplicationPath).

Public NotInheritable Class HttpRequest
' Public Constructors
   Public Sub New(ByVal filename As String, 
        ByVal url As String, ByVal queryString As String) 
' Public Instance Properties
   Public ReadOnly Property AcceptTypes As String()  
   Public ReadOnly Property ApplicationPath As String  
   Public Property Browser As HttpBrowserCapabilities  
   Public ReadOnly Property ClientCertificate As HttpClientCertificate  
   Public Property ContentEncoding As Encoding  
   Public ReadOnly Property ContentLength As Integer  
   Public ReadOnly Property ContentType As String  
   Public ReadOnly Property Cookies As HttpCookieCollection  
   Public ReadOnly Property CurrentExecutionFilePath As String  
   Public ReadOnly Property FilePath As String  
   Public ReadOnly Property Files As HttpFileCollection  
   Public Property Filter As Stream  
   Public ReadOnly Property Form As NameValueCollection  
   Public ReadOnly Property Headers As NameValueCollection  
   Public ReadOnly Property HttpMethod As String  
   Public ReadOnly Property InputStream As Stream  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public ReadOnly Property InputStream As Stream  
   Public ReadOnly Property IsAuthenticated As Boolean  
   Public ReadOnly Property IsSecureConnection As Boolean  
   Public Default ReadOnly Property Item(
        ByVal key As String) As String  
   Public ReadOnly Property Params As NameValueCollection  
   Public ReadOnly Property Path As String  
   Public ReadOnly Property PathInfo As String  
   Public ReadOnly Property PhysicalApplicationPath As String  
   Public ReadOnly Property PhysicalPath As String  
   Public ReadOnly Property QueryString As NameValueCollection  
   Public ReadOnly Property RawUrl As String  
   Public Property RequestType As String  
   Public ReadOnly Property ServerVariables As NameValueCollection  
   Public ReadOnly Property TotalBytes As Integer  
   Public ReadOnly Property Url As Uri  
   Public ReadOnly Property UrlReferrer As Uri  
   Public ReadOnly Property UserAgent As String  
   Public ReadOnly Property UserHostAddress As String  
   Public ReadOnly Property UserHostName As String  
   Public ReadOnly Property UserLanguages As String()  
' Public Instance Methods
   Public Function BinaryRead(
        ByVal count As Integer) As Byte()  
   Public Function MapImageCoordinates(
        ByVal imageFieldName As String) As Integer()  
   Public Function MapPath(
        ByVal virtualPath As String) As String  
   Public Function MapPath(ByVal virtualPath As String, 
        ByVal baseVirtualDir As String, 
        ByVal allowCrossAppMapping As Boolean) As String  
   Public Sub SaveAs(ByVal filename As String, 
        ByVal includeHeaders As Boolean) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpResponse NotInheritable Class

System.Web (system.web.dll)

The HttpResponse class is used to send information to the client's browser, including HTML content,
HTML headers, and customized cookies. Its name derives from the fact that it is used to "respond" to
an HTTP request.

The Redirect() method of the HttpResponse class provides the easiest way to programmatically send
the user to another web page. You supply the name of the HTML or ASPX file as an argument (e.g.,
Response.Redirect ("newpage.aspx")). As long as the file is in the same directory as the current page,
you don't need to provide a full URL (like http://www.mysite/myapplication/newpage.aspx), although
you can use a relative path or fully-qualified URL. Other ways to transfer a user between pages in an
ASP.NET program include the HttpServerUtility.Transfer() method and the
System.Web.UI.WebControls.HyperLink web control.

The Cookies property of the HttpResponse class provides a reference to the application's
HttpCookieCollection, which can send custom cookies to the client. The Cache property provides a
reference to the application's HttpCachePolicy settings. Both classes are described separately. These
properties, along with the Redirect() method, are the most commonly used members of HttpResponse.

In traditional ASP development, the Write() method was often used to append HTML to a web page
(e.g., Reponse.Write "<h1>Hello World</h1>"). ASP.NET programs will rarely use this method because
it is much easier to handle dynamic content by changing the properties of full-featured web controls
on Web Forms. Similarly, the BinaryWrite() method, which allows you to write binary information into
the HTTP text stream by supplying a byte array, or the WriteFile() method, which allows you to write
the content from a named text file into the output stream, are rarely used.

The BufferOutput property is a Boolean value that determines whether or not the HTTP output is
buffered. It is sent to the client only when it is fully rendered and all code has executed. The default is
True. The HttpResponse class also provides low-level control over the management of the output
buffer, with the Clear(), Flush(), and End() methods. You can also use the AppendToLog() method to
write a string of information to the IIS log file on the web server. This method should not be used for
debugging, as better options are provided by the TraceContext class.

Public NotInheritable Class HttpResponse
' Public Constructors
   Public Sub New(ByVal writer As System.IO.TextWriter) 
' Public Instance Properties
   Public Property Buffer As Boolean  
   Public Property BufferOutput As Boolean  
   Public ReadOnly Property Cache As HttpCachePolicy  
   Public Property CacheControl As String  
   Public Property Charset As String  
   Public Property ContentEncoding As Encoding  
   Public Property ContentType As String  
   Public ReadOnly Property Cookies As HttpCookieCollection  
   Public Property Expires As Integer  
   Public Property ExpiresAbsolute As Date  
   Public Property Filter As Stream  
   Public ReadOnly Property IsClientConnected As Boolean  
   Public ReadOnly Property Output As TextWriter  
   Public ReadOnly Property OutputStream As Stream  
   Public Property Status As String  
   Public Property StatusCode As Integer  
   Public Property StatusDescription As String  
   Public Property SuppressContent As Boolean  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Property SuppressContent As Boolean  
' Public Shared Methods
   Public Shared Sub RemoveOutputCacheItem(
        ByVal path As String) 
' Public Instance Methods
   Public Sub AddCacheItemDependencies(
        ByVal cacheKeys As System.Collections.ArrayList) 
   Public Sub AddCacheItemDependency(ByVal cacheKey As String) 
   Public Sub AddFileDependencies(
        ByVal filenames As System.Collections.ArrayList) 
   Public Sub AddFileDependency(ByVal filename As String) 
   Public Sub AddHeader(ByVal name As String, 
        ByVal value As String) 
   Public Sub AppendCookie(ByVal cookie As HttpCookie) 
   Public Sub AppendHeader(ByVal name As String, 
        ByVal value As String) 
   Public Sub AppendToLog(ByVal param As String) 
   Public Function ApplyAppPathModifier(
        ByVal virtualPath As String) As String  
   Public Sub BinaryWrite(ByVal buffer As Byte()) 
   Public Sub Clear() 
   Public Sub ClearContent() 
   Public Sub ClearHeaders() 
   Public Sub Close() 
   Public Sub End() 
   Public Sub Flush() 
   Public Sub Pics(ByVal value As String) 
   Public Sub Redirect(ByVal url As String) 
   Public Sub Redirect(ByVal url As String, 
        ByVal endResponse As Boolean) 
   Public Sub SetCookie(ByVal cookie As HttpCookie) 
   Public Sub Write(ByVal ch As Char) 
   Public Sub Write(ByVal buffer As Char(), 
        ByVal index As Integer, ByVal count As Integer) 
   Public Sub Write(ByVal obj As Object) 
   Public Sub Write(ByVal s As String) 
   Public Sub WriteFile(ByVal fileHandle As IntPtr, 
        ByVal offset As Long, ByVal size As Long) 
   Public Sub WriteFile(ByVal filename As String) 
   Public Sub WriteFile(ByVal filename As String, 
        ByVal readIntoMemory As Boolean) 
   Public Sub WriteFile(ByVal filename As String, 
        ByVal offset As Long, ByVal size As Long) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpRuntime NotInheritable Class

System.Web (system.web.dll)

The HttpRuntime class provides ASP.NET runtime services and is used transparently by the ASP.NET
framework. In some rare cases, you may want to use it. For example, you can use the
ProcessRequest() static (shared) method to process an ASP.NET request outside of Internet
Information Server and Close() to clear the cache and shutdown the Common Language Runtime.

Public NotInheritable Class HttpRuntime
' Public Constructors
   Public Sub New() 
' Public Shared Properties
   Public Shared ReadOnly Property AppDomainAppId As String  
   Public Shared ReadOnly Property AppDomainAppPath As String  
   Public Shared ReadOnly Property AppDomainAppVirtualPath As String  
   Public Shared ReadOnly Property AppDomainId As String  
   Public Shared ReadOnly Property AspInstallDirectory As String  
   Public Shared ReadOnly Property BinDirectory As String  
   Public Shared ReadOnly Property Cache As Cache  
   Public Shared ReadOnly Property ClrInstallDirectory As String  
   Public Shared ReadOnly Property CodegenDir As String  
   Public Shared ReadOnly Property IsOnUNCShare As Boolean  
   Public Shared ReadOnly Property MachineConfigurationDirectory As String  
' Public Shared Methods
   Public Shared Sub Close() 
   Public Shared Sub ProcessRequest(
        ByVal wr As HttpWorkerRequest) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpServerUtility NotInheritable Class

System.Web (system.web.dll)

This class provides helper methods and is available through the built-in Server object. It provides the
useful UrlEncode() method, which converts a string into a form suitable for use as a query string
variable, and the HtmlEncode() method, which converts nonlegal HTML characters in a string into the
equivalent HTML entity (i.e., "<" is converted to &lt;) so they can be displayed on a page. Some
ASP.NET web controls (like buttons) do not require this conversion, but label controls do. You may
need to use the HtmlEncode() method manually if you bind a field with URL information from a
database.

The HttpServerUtility class provides the MapPath() method, which takes a string representing a virtual
path and returns the real (physical) path (for example, it could convert "/myapp/index.html" to
"E:\Inetpub\wwwroot\myapp\index.html"). It also provides a CreateObject() method for instantiating a
COM object by using its ProgID (i.e., objInfo=Server.CreateObject ("MSWC.MyInfo")) and the two flow
control methods Execute() and Transfer(). The Execute() method, which runs the script in a separate
ASP.NET page and then returns control to the current page, is rarely used in class-based ASP.NET
programming. The Transfer() method halts the execution of the current page and transfers execution
to the specified page. It is similar to the HttpResponse.Redirect() method, but does not require a
roundtrip to the client and back and cannot transfer execution to a page on another server (or from
an ASP.NET page to an ASP page).

Public NotInheritable Class HttpServerUtility
' Public Instance Properties
   Public ReadOnly Property MachineName As String  
   Public Property ScriptTimeout As Integer  
' Public Instance Methods
   Public Sub ClearError() 
   Public Function CreateObject(
        ByVal progID As String) As Object  
   Public Function CreateObject(ByVal type As Type) As Object  
   Public Function CreateObjectFromClsid(
        ByVal clsid As String) As Object  
   Public Sub Execute(ByVal path As String) 
   Public Sub Execute(ByVal path As String, 
        ByVal writer As System.IO.TextWriter) 
   Public Function GetLastError() As Exception  
   Public Function HtmlDecode(ByVal s As String) As String  
   Public Sub HtmlDecode(ByVal s As String, 
        ByVal output As System.IO.TextWriter) 
   Public Function HtmlEncode(ByVal s As String) As String  
   Public Sub HtmlEncode(ByVal s As String, 
        ByVal output As System.IO.TextWriter) 
   Public Function MapPath(ByVal path As String) As String  
   Public Sub Transfer(ByVal path As String) 
   Public Sub Transfer(ByVal path As String, 
        ByVal preserveForm As Boolean) 
   Public Function UrlDecode(ByVal s As String) As String  
   Public Sub UrlDecode(ByVal s As String, 
        ByVal output As System.IO.TextWriter) 
   Public Function UrlEncode(ByVal s As String) As String  
   Public Sub UrlEncode(ByVal s As String, 
        ByVal output As System.IO.TextWriter) 
   Public Function UrlPathEncode(ByVal s As String) As String  
End Class

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpStaticObjectsCollection NotInheritable Class

System.Web (system.web.dll)

This class provides an immutable name/value collection of objects that is used for the
HttpApplicationState.StaticObjects and System.Web.SessionState.HttpSessionState.StaticObjects
collections.

Public NotInheritable Class HttpStaticObjectsCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal name As String) As Object  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Function GetObject(ByVal name As String) As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpUnhandledException NotInheritable Class

System.Web (system.web.dll)

This class represents a generic HTTP exception.

Public NotInheritable Class HttpUnhandledException : Inherits HttpException
' No public or protected members
End Class

Hierarchy

System.Object  System.Exception(System.Runtime.Serialization.ISerializable)
System.SystemException  System.Runtime.InteropServices.ExternalException  HttpException
HttpUnhandledException

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpUtility NotInheritable Class

System.Web (system.web.dll)

This class provides static (shared) helper methods. The UrlEncode() and UrlDecode() methods are the
same as those provided by the HttpServerUtility class for encoding a string into a format that's safe for
use in a URL. Additionally, a UrlEncodeToBytes() method is provided to convert a string into an array
of bytes and a UrlEncodeUnicode() method converts a string into a Unicode (wide-character) string.

Public NotInheritable Class HttpUtility
' Public Constructors
   Public Sub New() 
' Public Shared Methods
   Public Shared Function HtmlAttributeEncode(
        ByVal s As String) As String  
   Public Shared Sub HtmlAttributeEncode(ByVal s As String, 
        ByVal output As System.IO.TextWriter) 
   Public Shared Function HtmlDecode(
        ByVal s As String) As String  
   Public Shared Sub HtmlDecode(ByVal s As String, 
        ByVal output As System.IO.TextWriter) 
   Public Shared Function HtmlEncode(
        ByVal s As String) As String  
   Public Shared Sub HtmlEncode(ByVal s As String, 
        ByVal output As System.IO.TextWriter) 
   Public Shared Function UrlDecode(ByVal bytes As Byte(), 
        ByVal e As System.Text.Encoding) As String  
   Public Shared Function UrlDecode(ByVal bytes As Byte(), 
        ByVal offset As Integer, ByVal count As Integer, 
        ByVal e As System.Text.Encoding) As String  
   Public Shared Function UrlDecode(
        ByVal str As String) As String  
   Public Shared Function UrlDecode(ByVal str As String, 
        ByVal e As System.Text.Encoding) As String  
   Public Shared Function UrlDecodeToBytes(
        ByVal bytes As Byte()) As Byte()  
   Public Shared Function UrlDecodeToBytes(
        ByVal bytes As Byte(), ByVal offset As Integer, 
        ByVal count As Integer) As Byte()  
   Public Shared Function UrlDecodeToBytes(
        ByVal str As String) As Byte()  
   Public Shared Function UrlDecodeToBytes(
        ByVal str As String, 
        ByVal e As System.Text.Encoding) As Byte()  
   Public Shared Function UrlEncode(
        ByVal bytes As Byte()) As String  
   Public Shared Function UrlEncode(ByVal bytes As Byte(), 
        ByVal offset As Integer, 
        ByVal count As Integer) As String  
   Public Shared Function UrlEncode(
        ByVal str As String) As String  
   Public Shared Function UrlEncode(ByVal str As String, 
        ByVal e As System.Text.Encoding) As String  
   Public Shared Function UrlEncodeToBytes(
        ByVal bytes As Byte()) As Byte()  
   Public Shared Function UrlEncodeToBytes(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Shared Function UrlEncodeToBytes(
        ByVal bytes As Byte(), ByVal offset As Integer, 
        ByVal count As Integer) As Byte()  
   Public Shared Function UrlEncodeToBytes(
        ByVal str As String) As Byte()  
   Public Shared Function UrlEncodeToBytes(
        ByVal str As String, 
        ByVal e As System.Text.Encoding) As Byte()  
   Public Shared Function UrlEncodeUnicode(
        ByVal str As String) As String  
   Public Shared Function UrlEncodeUnicodeToBytes(
        ByVal str As String) As Byte()  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpValidationStatus Enum

System.Web (system.web.dll) serializable

This enumeration is used by the HttpCacheValidateHandler delegate. It allows you to specify whether a
cached page should remain valid or be invalidated (and then recreated).

Public Enum HttpValidationStatus
   Invalid = 1
   IgnoreThisRequest = 2
   Valid = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  HttpValidationStatus

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpWorkerRequest MustInherit Class

System.Web (system.web.dll)

This abstract class defines the base worker methods and enumerations used for request processing by
the ASP.NET engine. It is used by the HttpContext constructor and the ProcessRequest() method of the
HttpRuntime class. You will not need to use it directly in your code because ASP.NET provides higher-
level objects like HttpResponse and HttpRequest. However, you can use the
System.Web.Hosting.SimpleWorkerRequest class, which extends HttpWorkerRequest and allows you to
host ASP.NET outside of IIS.

Public MustInherit Class HttpWorkerRequest : Implements IHttpMapPath
' Protected Constructors
   Protected Sub New() 
' Public Shared Fields
   public const HeaderAccept As Integer                          // =20
   public const HeaderAcceptCharset As Integer                   // =21
   public const HeaderAcceptEncoding As Integer                  // =22
   public const HeaderAcceptLanguage As Integer                  // =23
   public const HeaderAcceptRanges As Integer                    // =20
   public const HeaderAge As Integer                             // =21
   public const HeaderAllow As Integer                           // =10
   public const HeaderAuthorization As Integer                   // =24
   public const HeaderCacheControl As Integer                    // =0
   public const HeaderConnection As Integer                      // =1
   public const HeaderContentEncoding As Integer                 // =13
   public const HeaderContentLanguage As Integer                 // =14
   public const HeaderContentLength As Integer                   // =11
   public const HeaderContentLocation As Integer                 // =15
   public const HeaderContentMd5 As Integer                      // =16
   public const HeaderContentRange As Integer                    // =17
   public const HeaderContentType As Integer                     // =12
   public const HeaderCookie As Integer                          // =25
   public const HeaderDate As Integer                            // =2
   public const HeaderEtag As Integer                            // =22
   public const HeaderExpect As Integer                          // =26
   public const HeaderExpires As Integer                         // =18
   public const HeaderFrom As Integer                            // =27
   public const HeaderHost As Integer                            // =28
   public const HeaderIfMatch As Integer                         // =29
   public const HeaderIfModifiedSince As Integer                 // =30
   public const HeaderIfNoneMatch As Integer                     // =31
   public const HeaderIfRange As Integer                         // =32
   public const HeaderIfUnmodifiedSince As Integer               // =33
   public const HeaderKeepAlive As Integer                       // =3
   public const HeaderLastModified As Integer                    // =19
   public const HeaderLocation As Integer                        // =23
   public const HeaderMaxForwards As Integer                     // =34
   public const HeaderPragma As Integer                          // =4
   public const HeaderProxyAuthenticate As Integer               // =24
   public const HeaderProxyAuthorization As Integer              // =35
   public const HeaderRange As Integer                           // =37
   public const HeaderReferer As Integer                         // =36
   public const HeaderRetryAfter As Integer                      // =25
   public const HeaderServer As Integer                          // =26
   public const HeaderSetCookie As Integer                       // =27

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   public const HeaderSetCookie As Integer                       // =27
   public const HeaderTe As Integer                              // =38
   public const HeaderTrailer As Integer                         // =5
   public const HeaderTransferEncoding As Integer                // =6
   public const HeaderUpgrade As Integer                         // =7
   public const HeaderUserAgent As Integer                       // =39
   public const HeaderVary As Integer                            // =28
   public const HeaderVia As Integer                             // =8
   public const HeaderWarning As Integer                         // =9
   public const HeaderWwwAuthenticate As Integer                 // =29
   public const ReasonCachePolicy As Integer                     // =2
   public const ReasonCacheSecurity As Integer                   // =3
   public const ReasonClientDisconnect As Integer                // =4
   public const ReasonDefault As Integer                         // =0
   public const ReasonFileHandleCacheMiss As Integer             // =1
   public const ReasonResponseCacheMiss As Integer               // =0
   public const RequestHeaderMaximum As Integer                  // =40
   public const ResponseHeaderMaximum As Integer                 // =30
' Public Instance Properties
   Overridable Public ReadOnly Property MachineConfigPath As String_
        Implements IHttpMapPath.MachineConfigPath 
   Overridable Public ReadOnly Property MachineInstallDirectory As String  
' Public Shared Methods
   Public Shared Function GetKnownRequestHeaderIndex(
        ByVal header As String) As Integer  
   Public Shared Function GetKnownRequestHeaderName(
        ByVal index As Integer) As String  
   Public Shared Function GetKnownResponseHeaderIndex(
        ByVal header As String) As Integer  
   Public Shared Function GetKnownResponseHeaderName(
        ByVal index As Integer) As String  
   Public Shared Function GetStatusDescription(
        ByVal code As Integer) As String  
' Public Instance Methods
   Overridable Public Sub CloseConnection() 
   MustInherit Public Sub EndOfRequest() 
   MustInherit Public Sub FlushResponse(
        ByVal finalFlush As Boolean) 
   Overridable Public Function GetAppPath() As String  
   Overridable Public Function GetAppPathTranslated(
        ) As String  
   Overridable Public Function GetAppPoolID() As String  
   Overridable Public Function GetBytesRead() As Long  
   Overridable Public Function GetClientCertificate(
        ) As Byte()  
   Overridable Public Function GetClientCertificateBinaryIssuer(
        ) As Byte()  
   Overridable Public Function GetClientCertificateEncoding(
        ) As Integer  
   Overridable Public Function GetClientCertificatePublicKey(
        ) As Byte()  
   Overridable Public Function GetClientCertificateValidFrom(
        ) As Date  
   Overridable Public Function GetClientCertificateValidUntil(
        ) As Date  
   Overridable Public Function GetConnectionID() As Long  
   Overridable Public Function GetFilePath() As String  
   Overridable Public Function GetFilePathTranslated(
        ) As String  
   MustInherit Public Function GetHttpVerbName() As String  
   MustInherit Public Function GetHttpVersion() As String  
   Overridable Public Function GetKnownRequestHeader(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overridable Public Function GetKnownRequestHeader(
        ByVal index As Integer) As String  
   MustInherit Public Function GetLocalAddress() As String  
   MustInherit Public Function GetLocalPort() As Integer  
   Overridable Public Function GetPathInfo() As String  
   Overridable Public Function GetPreloadedEntityBody(
        ) As Byte()  
   Overridable Public Function GetProtocol() As String  
   MustInherit Public Function GetQueryString() As String  
   Overridable Public Function GetQueryStringRawBytes(
        ) As Byte()  
   MustInherit Public Function GetRawUrl() As String  
   MustInherit Public Function GetRemoteAddress() As String  
   Overridable Public Function GetRemoteName() As String  
   MustInherit Public Function GetRemotePort() As Integer  
   Overridable Public Function GetRequestReason() As Integer  
   Overridable Public Function GetServerName() As String  
   Overridable Public Function GetServerVariable(
        ByVal name As String) As String  
   Overridable Public Function GetUnknownRequestHeader(
        ByVal name As String) As String  
   Overridable Public Function GetUnknownRequestHeaders(
        ) As String()()  
   MustInherit Public Function GetUriPath() As String  
   Overridable Public Function GetUrlContextID() As Long  
   Overridable Public Function GetUserToken() As IntPtr  
   Overridable Public Function GetVirtualPathToken(
        ) As IntPtr  
   Public Function HasEntityBody() As Boolean  
   Overridable Public Function HeadersSent() As Boolean  
   Overridable Public Function IsClientConnected() As Boolean  
   Overridable Public Function IsEntireEntityBodyIsPreloaded() As Boolean  
   Overridable Public Function IsSecure() As Boolean  
   Overridable Public Function MapPath(
        ByVal virtualPath As String) As String Implements IHttpMapPath.MapPath 
   Overridable Public Function ReadEntityBody(
        ByVal buffer As Byte(), 
        ByVal size As Integer) As Integer  
   Overridable Public Sub SendCalculatedContentLength(
        ByVal contentLength As Integer) 
   MustInherit Public Sub SendKnownResponseHeader(
        ByVal index As Integer, ByVal value As String) 
   MustInherit Public Sub SendResponseFromFile(
        ByVal handle As IntPtr, ByVal offset As Long, 
        ByVal length As Long) 
   MustInherit Public Sub SendResponseFromFile(
        ByVal filename As String, ByVal offset As Long, 
        ByVal length As Long) 
   MustInherit Public Sub SendResponseFromMemory(
        ByVal data As Byte(), ByVal length As Integer) 
   Overridable Public Sub SendResponseFromMemory(
        ByVal data As IntPtr, ByVal length As Integer) 
   MustInherit Public Sub SendStatus(
        ByVal statusCode As Integer, 
        ByVal statusDescription As String) 
   MustInherit Public Sub SendUnknownResponseHeader(
        ByVal name As String, ByVal value As String) 
   Overridable Public Sub SetEndOfSendNotification(
        ByVal callback As EndOfSendNotification, 
        ByVal extraData As Object) 
End Class

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpWorkerRequest.EndOfSendNotification Delegate

System.Web (system.web.dll) serializable

This delegate is used by the SetEndOfSendNotification() method of the HttpWorkerRequest class.

Public Delegate Sub HttpWorkerRequest.EndOfSendNotification(
        ByVal wr As HttpWorkerRequest, 
        ByVal extraData As Object) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpWriter NotInheritable Class

System.Web (system.web.dll) marshal by reference, disposable

This is System.IO.TextWriter object that is used to write directly to an HTTP output stream. It is used
transparently by the Write() method of the HttpResponse class.

Public NotInheritable Class HttpWriter : Inherits System.IO.TextWriter
' Public Instance Properties
   Overrides Public ReadOnly Property Encoding As Encoding  
   Public ReadOnly Property OutputStream As Stream  
' Public Instance Methods
   Overrides Public Sub Close() 
   Overrides Public Sub Flush() 
   Overrides Public Sub Write(ByVal ch As Char) 
   Overrides Public Sub Write(ByVal buffer As Char(), 
        ByVal index As Integer, ByVal count As Integer) 
   Overrides Public Sub Write(ByVal obj As Object) 
   Overrides Public Sub Write(ByVal s As String) 
   Public Sub WriteBytes(ByVal buffer As Byte(), 
        ByVal index As Integer, ByVal count As Integer) 
   Overrides Public Sub WriteLine() 
   Public Sub WriteString(ByVal s As String, 
        ByVal index As Integer, ByVal count As Integer) 
End Class

Hierarchy

System.Object  System.MarshalByRefObject  System.IO.TextWriter(System.IDisposable)
HttpWriter
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IHttpAsyncHandler Interface

System.Web (system.web.dll)

This interface is implemented by the HttpApplication class and defines the requirements for
asynchronous processing. It is an integral part of the ASP.NET framework and is not used directly by
ASP.NET application code.

Public Interface IHttpAsyncHandler : Implements IHttpHandler
' Public Instance Methods
   Public Function BeginProcessRequest(
        ByVal context As HttpContext, 
        ByVal cb As AsyncCallback, 
        ByVal extraData As Object) As IAsyncResult  
   Public Sub EndProcessRequest(ByVal result As IAsyncResult) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IHttpHandler Interface

System.Web (system.web.dll)

This interface is required to process HTTP requests. It's implemented by the System.Web.UI.Page and
HttpApplication classes, but you can use IHttpHandler to create a custom HttpHandler for a lower-level
programming model. You can still access the HttpContext object (and, through its properties, built in
objects like HttpRequest and HttpResponse), but you cannot use the higher-level Page abstraction.
Common uses of handlers include filters and CGI-like applications, especially those returning binary
data.

When using the IHttpHandler interface, you must implement the ProcessRequest() method and
IsReusable property. The ProcessRequest() method receives an HttpContext object, which gives you
access to ASP.NET's built-in objects. Use the IsReusable property to declare whether a single instance
of your handler can serve multiple requests.

You will also need to modify <httphandlers> section of the web.config file to make your custom
handler a target for HTTP requests. You can map requests based on the requested page, file type, or
HTTP method (GET, PUT, or POST). If you want to create a handler that can process all requests, you
should create a custom HttpModule using the IHttpModule interface.

Public Interface IHttpHandler
' Public Instance Properties
   Public ReadOnly Property IsReusable As Boolean  
' Public Instance Methods
   Public Sub ProcessRequest(ByVal context As HttpContext) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IHttpHandlerFactory Interface

System.Web (system.web.dll)

You can implement this interface to create a factory class that can create IHttpHandler instances
dynamically. ASP.NET includes standard IHttpHandlerFactory classes like PageHandlerFactory,
RestrictedResourceFactory, and WebServiceHandlerFactory (which are not shown in the class library
documentation because they are private types).

Using the <httphandlers> section of the web.config file, you can map specific requests to directly to an
IHttpHandler class or to an IHttpHandlerFactory class, which will dynamically create an appropriate
IHttpHandler class by using the GetHandler() method.

Note that the standard factory classes used by ASP.NET do not appear in the MSDN help or this
reference. These classes are marked Private and are used exclusively by the ASP.NET framework.

Public Interface IHttpHandlerFactory
' Public Instance Methods
   Public Function GetHandler(ByVal context As HttpContext, 
        ByVal requestType As String, ByVal url As String, 
        ByVal pathTranslated As String) As IHttpHandler  
   Public Sub ReleaseHandler(ByVal handler As IHttpHandler) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IHttpModule Interface

System.Web (system.web.dll)

You can use this interface to create custom HttpModules. HttpModules are added through the
<httpmodules> section of the web.config file. Some HttpModules that are available to you include
FormsAuthenticationModule, PassportAuthenticationModule, and other security modules in the
System.Web.Security namespace.

HttpModules are often used for security or logging because they can participate in the processing of
every request into an application. HttpModules work by reacting to ASP.NET events. For example, if
you want an HttpModule to participate in every web request, you could react to the
HttpApplication.BeginRequest event. You can also specify that a HttpModule process other files (for
example, JPEG and BMP) rather than just ASP.NET file types by updating the Application Extension
Mapping to use aspnet_ISAPI.dll to manage the appropriate extension.

Public Interface IHttpModule
' Public Instance Methods
   Public Sub Dispose() 
   Public Sub Init(ByVal context As HttpApplication) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ProcessInfo Class

System.Web (system.web.dll)

This class encapsulates information about the ASP.NET worker process on the server. It is returned by
the ProcessModelInfo class. It includes properties such as the time the process started (StartTime),
how long it has been running (Age), and the most memory used so far in bytes (PeakMemoryUsed).
The Status property indicates the current state of a process; the ShutdownReason property indicates
why the process was terminated, unless it is the current process.

Public Class ProcessInfo
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal startTime As Date, 
        ByVal age As TimeSpan, ByVal processID As Integer, 
        ByVal requestCount As Integer, 
        ByVal status As ProcessStatus, 
        ByVal shutdownReason As ProcessShutdownReason, 
        ByVal peakMemoryUsed As Integer) 
' Public Instance Properties
   Public ReadOnly Property Age As TimeSpan  
   Public ReadOnly Property PeakMemoryUsed As Integer  
   Public ReadOnly Property ProcessID As Integer  
   Public ReadOnly Property RequestCount As Integer  
   Public ReadOnly Property ShutdownReason As ProcessShutdownReason  
   Public ReadOnly Property StartTime As Date  
   Public ReadOnly Property Status As ProcessStatus  
' Public Instance Methods
   Public Sub SetAll(ByVal startTime As Date, 
        ByVal age As TimeSpan, ByVal processID As Integer, 
        ByVal requestCount As Integer, 
        ByVal status As ProcessStatus, 
        ByVal shutdownReason As ProcessShutdownReason, 
        ByVal peakMemoryUsed As Integer) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ProcessModelInfo Class

System.Web (system.web.dll)

ASP.NET includes automated features for restarting a process when memory leaks or crashes occur.
This class allows you to retrieve information about how the ASP.NET worker process is performing,
along with the history of approximately the last 100 process restarts (a process restart may be in
response to an unrecoverble error, blocked thread, or just automatic maintaince when a certain time
or memory threshold is reached, according to machine.config settings). This gives you a basic idea
about the health of your web application and the ASP.NET service.

You can use the static (shared) GetCurrentProcessInfo() method to retrieve a ProcessInfo object
representing the current process. You can also use the static GetHistory() method and supply the
number of ProcessInfo objects that you want as an argument. The method will return an array of
ProcessInfo objects, starting with the most recent (current) process.

Public Class ProcessModelInfo
' Public Constructors
   Public Sub New() 
' Public Shared Methods
   Public Shared Function GetCurrentProcessInfo(
        ) As ProcessInfo  
   Public Shared Function GetHistory(
        ByVal numRecords As Integer) As ProcessInfo()  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ProcessShutdownReason Enum

System.Web (system.web.dll) serializable

This enumeration defines constants used by the ProcessInfo class that indicate the reason a process
was ended (or None if it is the current process).

Public Enum ProcessShutdownReason
   None = 0
   Unexpected = 1
   RequestsLimit = 2
   RequestQueueLimit = 3
   Timeout = 4
   IdleTimeout = 5
   MemoryLimitExceeded = 6
   PingFailed = 7
   DeadlockSuspected = 8
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ProcessShutdownReason
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ProcessStatus Enum

System.Web (system.web.dll) serializable

This enumeration is used by the ProcessInfo class to indicate the status of a process.

Public Enum ProcessStatus
   Alive = 1
   ShuttingDown = 2
   ShutDown = 3
   Terminated = 4
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ProcessStatus
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TraceContext NotInheritable Class

System.Web (system.web.dll)

The TraceContext class allows you display trace messages that can help you debug ASP.NET
applications. To enable tracing for a specific page, insert the page directive Trace="True" in the ASPX
file or set the IsEnabled property of the TraceContext class in your code-behind module.

The TraceContext class provides two methods: Write() and Warn(). Both display a message in the
current page's trace log, but Warn() uses red lettering that is meant to indicate exception information.
You can invoke the Write() or Warn() method with a category string and message string. Often, the
category string indicates the position in the code ("In FunctionA"), while the message string indicates
specific information ("Exception while opening database"). Additionally, an overloaded version of
Write() and Warn() allows you supply an exception object that ASP.NET will use to extract the
appropriate information. Even if you don't use the Write() and Warn() methods, ASP.NET automatically
inserts trace log entries to indicate standard events, and appends a great deal of information after the
list of trace message, including performance data, tree-structure information, and state management
content.

The TraceContext class is provided as the built-in Trace object. You can use the web.config file to set
additional tracing options like the default TraceMode, and enable application-wide tracing. Application-
wide tracing can be displayed on the page or cached exclusively in memory.

Public NotInheritable Class TraceContext
' Public Constructors
   Public Sub New(ByVal context As HttpContext) 
' Public Instance Properties
   Public Property IsEnabled As Boolean  
   Public Property TraceMode As TraceMode  
' Public Instance Methods
   Public Sub Warn(ByVal message As String) 
   Public Sub Warn(ByVal category As String, 
        ByVal message As String) 
   Public Sub Warn(ByVal category As String, 
        ByVal message As String, 
        ByVal errorInfo As Exception) 
   Public Sub Write(ByVal message As String) 
   Public Sub Write(ByVal category As String, 
        ByVal message As String) 
   Public Sub Write(ByVal category As String, 
        ByVal message As String, 
        ByVal errorInfo As Exception) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TraceMode Enum

System.Web (system.web.dll) serializable

This enumeration is used to set the TraceMode property of the TraceContext class. It specifies whether
entries in the trace log will be listed alphabetically (SortByCategory) or chronologically (SortByTime).

Public Enum TraceMode
   SortByTime = 0
   SortByCategory = 1
   Default = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  TraceMode

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 23. The System.Web.Caching Namespace

The System.Web.Caching namespace includes types used for ASP.NET caching. The Cache class is the
focal point of this namespace; it contains a collection of cached objects and allows you to set
expiration policies and dependencies for each item in the cache. The CacheDependency class
encapsulates a cache dependency and allows you to link the validity of a cache item to another item
or a file on the web server. The CacheItemRemovedCallback delegate allows you to respond when an
object is dropped from the cache. Both types work in conjunction with the Cache class. Together, they
allow you to implement sophisticated data caching.

ASP.NET also supports page caching, which stores entire compiled pages for automatic reuse. To
configure settings for page caching, you must use the System.Web.HttpCachePolicy class. Figure 23-1
shows the types in this namespace.

Figure 23-1. The System.Web.Caching namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Cache NotInheritable Class

System.Web.Caching (system.web.dll)

The Cache class allows your application to use data caching. The Cache class works by exposing a key-
value collection where you can store objects that are expensive to create or frequently used. Its use is
analogous to the System.Web.HttpApplicationState class, although you use the
System.Web.HttpApplicationState to store information that must be retained for long periods of time
and the Cache class for volatile objects that may quickly expire and can be dropped automatically
when memory declines.

Much like the System.Web.HttpApplicationState class, the Cache class is globally accessible to all clients
on a single web server, persists for the lifetime of the ASP.NET application, and has only one instance
per application. Unlike the System.Web.HttpApplicationState class, the Cache class is thread-safe.

You can add items to the cache as you would with other state collections like
System.Web.HttpApplicationState (for example, Cache("myobject") = rsCustomerData). However, using
the overloaded Insert() method allows much more control. For example, you can set an absolute
expiration policy in which an item will be removed after a specified time (Cache.Insert("Data", rsData,
Nothing, DateTime.Now.AddMinutes(10), NoSlidingExpiration) or a sliding expiration policy in which an
item will be removed after a specified interval of disuse (Cache.Insert("Data", rsData, Nothing,
NoAbsoluteExpiration, TimeSpan.FromMinutes(10)). Note that the NoAbsoluteExpiration and
NoSlidingExpiration fields from the Cache class allow you to disable the type of caching you don't want
to use. Attempts to retrieve a removed cached item will return Nothing (or null).

You can also use a version of the Insert() method with additional parameters for setting cache
dependencies (by supplying an instance of a CacheDependency class), priorities (by using the
CacheItemPriority enumeration), and a callback (by supplying a CacheItemRemovedCallback delegate).

The Cache class is available through the built-in Cache object and shouldn't be confused with the
System.Web.HttpCachePolicy class, which is used to configure page caching and is available through
the Response.Cache reference.

Public NotInheritable Class Cache : Implements IEnumerable
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public Shared ReadOnly NoAbsoluteExpiration As Date           // =12/31/9999 11:59:59 PM
   public Shared ReadOnly NoSlidingExpiration As TimeSpan        // =00:00:00
' Public Instance Properties
   Public ReadOnly Property Count As Integer  
   Public Default Property Item(
        ByVal key As String) As Object  
' Public Instance Methods
   Public Function Add(ByVal key As String, 
        ByVal value As Object, 
        ByVal dependencies As CacheDependency, 
        ByVal absoluteExpiration As Date, 
        ByVal slidingExpiration As TimeSpan, 
        ByVal priority As CacheItemPriority, 
        ByVal onRemoveCallback As CacheItemRemovedCallback) As Object  
   Public Function Get(ByVal key As String) As Object  
   Public Function GetEnumerator() As IDictionaryEnumerator  
   Public Sub Insert(ByVal key As String, 
        ByVal value As Object) 
   Public Sub Insert(ByVal key As String, 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Sub Insert(ByVal key As String, 
        ByVal value As Object, 
        ByVal dependencies As CacheDependency) 
   Public Sub Insert(ByVal key As String, 
        ByVal value As Object, 
        ByVal dependencies As CacheDependency, 
        ByVal absoluteExpiration As Date, 
        ByVal slidingExpiration As TimeSpan) 
   Public Sub Insert(ByVal key As String, 
        ByVal value As Object, 
        ByVal dependencies As CacheDependency, 
        ByVal absoluteExpiration As Date, 
        ByVal slidingExpiration As TimeSpan, 
        ByVal priority As CacheItemPriority, 
        ByVal onRemoveCallback As CacheItemRemovedCallback) 
   Public Function Remove(ByVal key As String) As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CacheDependency NotInheritable Class

System.Web.Caching (system.web.dll) disposable

Cache dependencies allow the validity of a cache item to be based on a file or directory on the web
server, or on another cache item. When the dependency object changes, the dependent cache item is
invalidated and removed automatically. To set up a dependency, you first create a CacheDependency
object that references the file, directory, or cache item upon which the dependency will be based. You
then use the Cache.Insert() method to add the dependent cache item, with the CacheDependency
object supplied as a parameter.

The overloaded constructor of the CacheDependency class determines the type of dependency. You
can pass a single string argument to set up a dependency on a file or directory
(CacheDependency(Server.MapPath("data.xml")) or you can use a second string argument with the key
of another cache item (CacheDependency(Nothing, "MyData")). Other versions of the constructor allow
you to specify an array of strings specifying files or cache objects. If any one file or object changes,
the dependent cache item will be invalidated.

The CacheDependency object begins to monitor for changes as soon as it is created to account for
changes that may occur in the brief delay before the dependent cache item is added to the Cache
class.

Public NotInheritable Class CacheDependency : Implements IDisposable
' Public Constructors
   Public Sub New(ByVal filename As String) 
   Public Sub New(ByVal filenames As String()) 
   Public Sub New(ByVal filenames As String(), 
        ByVal start As Date) 
   Public Sub New(ByVal filenames As String(), 
        ByVal cachekeys As String()) 
   Public Sub New(ByVal filenames As String(), 
        ByVal cachekeys As String(), 
        ByVal dependency As CacheDependency) 
   Public Sub New(ByVal filenames As String(), 
        ByVal cachekeys As String(), 
        ByVal dependency As CacheDependency, 
        ByVal start As Date) 
   Public Sub New(ByVal filenames As String(), 
        ByVal cachekeys As String(), ByVal start As Date) 
   Public Sub New(ByVal filename As String, 
        ByVal start As Date) 
' Public Instance Properties
   Public ReadOnly Property HasChanged As Boolean  
' Public Instance Methods
   Public Sub Dispose() Implements IDisposable.Dispose 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CacheItemPriority Enum

System.Web.Caching (system.web.dll) serializable

Priorities are hints that can optimize cache scavenging. Essentially, if the ASP.NET engine decides to
remove cache items because memory is scarce, it will remove items with a lower priority cost first.
The CacheItemPriority enumeration also includes a NotRemovable member that you can use to prevent
ASP.NET from removing an object from the cache automatically when memory is low.

Public Enum CacheItemPriority
   Low = 1
   BelowNormal = 2
   Normal = 3
   Default = 3
   AboveNormal = 4
   High = 5
   NotRemovable = 6
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  CacheItemPriority

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CacheItemRemovedCallback Delegate

System.Web.Caching (system.web.dll) serializable

Functions with the CacheItemRemovedCallback signature can be used to respond to the
onRemoveCallback event when an item is dropped from the cache. For example, this could allow you
to perform related cleanup tasks. You are provided with the cache object, its key, and the reason why
it was removed (using the CacheItemRemovedReason enumeration).

To use this event, pass the function name as an argument in the Cache.Insert() method.

Public Delegate Sub CacheItemRemovedCallback(
        ByVal key As String, ByVal value As Object, 
        ByVal reason As CacheItemRemovedReason) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CacheItemRemovedReason Enum

System.Web.Caching (system.web.dll) serializable

If you have set a callback to occur when a cached item is removed, you will be provided with a
CacheItemRemovedReason argument. The CacheItemRemovedReason will be Expired if the sliding or
absolute expiration time interval passed, Removed if the object was removed programmatically with
the Cache.Remove() method or by an Cache.Insert() method with the same key, DependencyChanged if
the object was invalidated because of a dependency, or Underused if it has been removed to free
memory.

Public Enum CacheItemRemovedReason
   Removed = 1
   Expired = 2
   Underused = 3
   DependencyChanged = 4
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  CacheItemRemovedReason

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 24. The System.Web.ConfigurationNamespace

The System.Web.Configuration namespace includes a few miscellaneous types used in ASP.NET
configuration with the web.config file; AuthenticationMode, FormsAuthPasswordFormat, and
FormsProtectionEnum are all involved in ASP.NET security services. It also provides a
ClientTargetSectionHandler class, which provides the basic functionality for processing tags in the
web.config file, and HttpCapabilitiesBase, which stores a collection of client browser information used
by the System.Web.HttpBrowserCapabilities class.

If you've explored the machine.config file, you have probably noticed that many other types
referenced there don't appear in the ASP.NET reference (including configuration types like
HttpCapabilitiesSectionHandler and AuthenticationConfigHandler). These private types aren't available to
the client programmer and are part of the low-level ASP.NET infrastructure. Figure 24-1 shows the
types in this namespace.

Figure 24-1. The System.Web.Configuration namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AuthenticationMode Enum

System.Web.Configuration (system.web.dll) serializable

This enumeration allows you to specify a type of ASP.NET authentication. It is not used in ASP.NET
code, but in the web.config file by the mode attribute in the authentication tag (for example,
<authentication mode="Forms">). The authentication mode you select determines which HttpModule
from the System.Web.Security namespace is used to validate a user's credentials.

Public Enum AuthenticationMode
   None = 0
   Windows = 1
   Passport = 2
   Forms = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  AuthenticationMode

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ClientTargetSectionHandler Class

System.Web.Configuration (system.web.dll)

ASP.NET delegates the processing of web.config data to configuration section handlers. Section
handlers are declared in the web.config file using "add" directives inside the <configsections>
element. Each element identifies a specific section of configuration data, and the associated
System.Configuration.IConfigurationSectionHandler class is used to process it. By inheriting from this
class, you could create your own custom section handler. Note that you do not need to create your
own custom section handler just to add application-specific constants to your web.config file; these
constants can be added to the <appSettings> section and retrieved through the
System.Configuration.ConfigurationSettings class.

Class ClientTargetSectionHandler : Inherits System.Configuration.NameValueSectionHandler
' Public Constructors
   Public Sub New() 
' Protected Instance Properties
   Overrides Protected Property KeyAttributeName As String  
   Overrides Protected Property ValueAttributeName As String  
End Class

Hierarchy

System.Object
System.Configuration.NameValueSectionHandler(System.Configuration.IConfigurationSectionHandler)
ClientTargetSectionHandler

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsAuthPasswordFormat Enum

System.Web.Configuration (system.web.dll) serializable

This enumeration specifies the format that ASP.NET uses for encrypting passwords (if you are using
Forms Authentication and the System.Web.Security.FormsAuthenticationModule). It is not used in
ASP.NET code, but in the web.config file by the passwordFormat attribute in the <credentials> element
(for example, <credentials passwordFormat="Clear">). When using any format other than clear, the
user's password is hashed with an appropriate algorithm and compared to the value stored in the
web.config file each time authentication is performed. No matter what encryption you use for the
password, usernames will still be transmitted in clear text.

Public Enum FormsAuthPasswordFormat
   Clear = 0
   SHA1 = 1
   MD5 = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  FormsAuthPasswordFormat

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsProtectionEnum Enum

System.Web.Configuration (system.web.dll) serializable

This enumeration specifies how ASP.NET protects the Forms Authentication cookie. It is not used in
ASP.NET code, but in the web.config file by the protection attribute of the forms element (for example,
<forms name="name" loginUrl="url" protection="None ">). Encryption uses Triple-DES or DES to
encode the cookie before it is transmitted. Validation verifies the cookie hasn't been altered in transit
by appending a validation key and then a Message Authentication Code (MAC) to the cookie.

Public Enum FormsProtectionEnum
   All = 0
   None = 1
   Encryption = 2
   Validation = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  FormsProtectionEnum
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpCapabilitiesBase Class

System.Web.Configuration (system.web.dll)

This is the base class for the System.Web.HttpBrowserCapabilities class. HttpCapabilitiesBase is weakly
typed with a name/value collection of browser settings. These settings are provided (more usefully)
as properties by the System.Web.HttpBrowserCapabilities class.

Public Class HttpCapabilitiesBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Default ReadOnly Property Item(
        ByVal key As String) As String  
' Public Shared Methods
   Public Shared Function GetConfigCapabilities(
        ByVal configKey As String, 
        ByVal request As System.Web.HttpRequest) As HttpCapabilitiesBase  
' Protected Instance Methods
   Overridable Protected Sub Init() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpConfigurationContext Class

System.Web.Configuration (system.web.dll)

This class supplies the current context information to configuration section handlers in ASP.NET
applications. The single VirtualPath property provides the path to the current web.config file that is
evaluated, unless it is the root web.config for the site or the machine.config file is being evaluated
instead (in which case, it will return an empty string).

You don't need to use this class directly in your code.

Public Class HttpConfigurationContext
' Public Instance Properties
   Public ReadOnly Property VirtualPath As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 25. The System.Web.Hosting Namespace

The System.Web.Hosting namespace is not used in ASP.NET web applications; instead, it provides
support for hosting the ASP.NET service outside of Internet Information Services (IIS) in a custom
hosting application (which you would write using .NET). The two important classes in this namespace
are ApplicationHost and SimpleWorkerRequest. The other classes provide lower-level framework
support and are not used directly in an application. Figure 25-1 shows the types in this namespace.

Figure 25-1. The System.Web.Hosting namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AppDomainFactory NotInheritable Class

System.Web.Hosting (system.web.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public NotInheritable Class AppDomainFactory : Implements IAppDomainFactory
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Function Create(ByVal module As String, 
        ByVal typeName As String, ByVal appId As String, 
        ByVal appPath As String, 
        ByVal strUrlOfAppOrigin As String, 
        ByVal iZone As Integer) As Object Implements IAppDomainFactory.Create 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ApplicationHost NotInheritable Class

System.Web.Hosting (system.web.dll)

This class exposes a single shared CreateApplicationHost() method, which allows you to create an
application domain that will be used to process ASP.NET requests. This method accepts three
parameters—the hostType (your request-handling class, which will be created in the new domain),
virtualDir (the virtual directory for the application domain, such as "/MyApp"), and physicalDir (the
physical directory for the application domain where the ASP.NET pages are located, such as
"c:\MyApp"). The CreateApplicationHost() method returns the live instance of the hostType class.

Public NotInheritable Class ApplicationHost
' Public Shared Methods
   Public Shared Function CreateApplicationHost(
        ByVal hostType As Type, ByVal virtualDir As String, 
        ByVal physicalDir As String) As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IAppDomainFactory Interface

System.Web.Hosting (system.web.dll)

This interface supports the .NET Framework infrastructure. You do not need to use it directly in your
code.

Public Interface IAppDomainFactory
' Public Instance Methods
   Public Function Create(ByVal module As String, 
        ByVal typeName As String, ByVal appId As String, 
        ByVal appPath As String, 
        ByVal strUrlOfAppOrigin As String, 
        ByVal iZone As Integer) As Object  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IISAPIRuntime Interface

System.Web.Hosting (system.web.dll)

This interface supports the .NET Framework infrastructure. You do not need to use it directly in your
code.

Public Interface IISAPIRuntime
' Public Instance Methods
   Public Sub DoGCCollect() 
   Public Function ProcessRequest(ByVal ecb As IntPtr, 
        ByVal useProcessModel As Integer) As Integer  
   Public Sub StartProcessing() 
   Public Sub StopProcessing() 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ISAPIRuntime NotInheritable Class

System.Web.Hosting (system.web.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public NotInheritable Class ISAPIRuntime : Implements IISAPIRuntime
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub DoGCCollect(
        ) Implements IISAPIRuntime.DoGCCollect 
   Public Function ProcessRequest(ByVal ecb As IntPtr, 
        ByVal iWRType As Integer) As Integer Implements IISAPIRuntime.ProcessRequest 
   Public Sub StartProcessing(
        ) Implements IISAPIRuntime.StartProcessing 
   Public Sub StopProcessing(
        ) Implements IISAPIRuntime.StopProcessing 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SimpleWorkerRequest Class

System.Web.Hosting (system.web.dll)

This class extends the abstract System.Web.HttpWorkerRequest class. It provides features that allow
you to read the incoming HTTP request and send an appropriate HTTP response. You can retrieve the
URL request with the query string appended (through GetRawUrl()), a server variable by name from a
dictionary collection (GetServerVariable()), and the physical file path of the requested URL
(GetFilePathTranslated()). You send a response as series of bytes with the SendResponseFromFile() or
SendResponseFromMemory() methods. Use FlushResponse() to send all pending data to the client. If
you want to provide higher-level methods or properties, such as those found in the
System.Web.HttpResponse and System.Web.HttpRequest classes, you should extend
SimpleWorkerRequest.

Public Class SimpleWorkerRequest : Inherits System.Web.HttpWorkerRequest
' Public Constructors
   Public Sub New(ByVal appVirtualDir As String, 
        ByVal appPhysicalDir As String, 
        ByVal page As String, ByVal query As String, 
        ByVal output As System.IO.TextWriter) 
   Public Sub New(ByVal page As String, ByVal query As String, 
        ByVal output As System.IO.TextWriter) 
' Public Instance Properties
   Overrides Public ReadOnly Property MachineConfigPath As String  
   Overrides Public ReadOnly Property MachineInstallDirectory As String  
' Public Instance Methods
   Overrides Public Sub EndOfRequest() 
   Overrides Public Sub FlushResponse(
        ByVal finalFlush As Boolean) 
   Overrides Public Function GetAppPath() As String  
   Overrides Public Function GetAppPathTranslated() As String  
   Overrides Public Function GetFilePath() As String  
   Overrides Public Function GetFilePathTranslated(
        ) As String  
   Overrides Public Function GetHttpVerbName() As String  
   Overrides Public Function GetHttpVersion() As String  
   Overrides Public Function GetLocalAddress() As String  
   Overrides Public Function GetLocalPort() As Integer  
   Overrides Public Function GetPathInfo() As String  
   Overrides Public Function GetQueryString() As String  
   Overrides Public Function GetRawUrl() As String  
   Overrides Public Function GetRemoteAddress() As String  
   Overrides Public Function GetRemotePort() As Integer  
   Overrides Public Function GetServerVariable(
        ByVal name As String) As String  
   Overrides Public Function GetUriPath() As String  
   Overrides Public Function GetUserToken() As IntPtr  
   Overrides Public Function MapPath(
        ByVal path As String) As String  
   Overrides Public Sub SendKnownResponseHeader(
        ByVal index As Integer, ByVal value As String) 
   Overrides Public Sub SendResponseFromFile(
        ByVal handle As IntPtr, ByVal offset As Long, 
        ByVal length As Long) 
   Overrides Public Sub SendResponseFromFile(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overrides Public Sub SendResponseFromFile(
        ByVal filename As String, ByVal offset As Long, 
        ByVal length As Long) 
   Overrides Public Sub SendResponseFromMemory(
        ByVal data As Byte(), ByVal length As Integer) 
   Overrides Public Sub SendStatus(
        ByVal statusCode As Integer, 
        ByVal statusDescription As String) 
   Overrides Public Sub SendUnknownResponseHeader(
        ByVal name As String, ByVal value As String) 
End Class

Hierarchy

System.Object  System.Web.HttpWorkerRequest(System.Web.IHttpMapPath)
SimpleWorkerRequest
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 26. The System.Web.Mail Namespace

The System.Web.Mail namespace allows you to send email messages from your ASP.NET application.
This capability uses the built-in SMTP service included with IIS, and is similar to the CDO component
used in traditional ASP development. The SMTP service maps its Inbox and Outbox to directories on
the server. Message transfer is handled so that the Outbox is always empty and the Inbox never has
an incoming queue.

Messages and attachments are encapsulated in MailMessage and MailAttachment objects and sent
using the SmtpMail helper class, which provides a single Send() method. Figure 26-1 shows the types
in this namespace.

Figure 26-1. The System.Web.Mail namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MailAttachment Class

System.Web.Mail (system.web.dll)

This class encapsulates an attachment to an email message. The constructor takes a string argument
that identifies the local path to the file, as in MailAttachment("c:\temp\report.pdf"). An optional second
argument lets you set the encoding (which will be System.Web.Mail.Encoding.UUEncode if omitted).
Once you create an instance of MailAttachment, you can add it to an instance of the MailMessage class
with the MailMessage.Attachments collection. The easiest way to do this is through the Add() method of
the MailMessage.Attachments class, like this: objMessage.Attachments.Add(objAttachment).

Public Class MailAttachment
' Public Constructors
   Public Sub New(ByVal filename As String) 
   Public Sub New(ByVal filename As String, 
        ByVal encoding As MailEncoding) 
' Public Instance Properties
   Public ReadOnly Property Encoding As MailEncoding  
   Public ReadOnly Property Filename As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MailEncoding Enum

System.Web.Mail (system.web.dll) serializable

This enumeration sets the BodyEncoding property of the MailMessage class and the Encoding property
of the MailAttachment class.

Public Enum MailEncoding
   UUEncode = 0
   Base64 = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  MailEncoding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MailFormat Enum

System.Web.Mail (system.web.dll) serializable

This enumeration sets the BodyFormat property of the MailMessage class. If you use Html, you can
include standard HTML markup tags in the Body property of a MailMessage instance and they will be
rendered in the recepient's email program, if supported.

Public Enum MailFormat
   Text = 0
   Html = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  MailFormat

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MailMessage Class

System.Web.Mail (system.web.dll)

This class encapsulates an email message. To send an email message programmatically, create a
MailMessage object, set the appropriate properties and use the SmtpMail.Send() method.

The properties of the MailMessage class are fairly straightforward and include all the typical details
entered in an email program, such as subject, priority, and the email addresses for the sender,
recipient, and any carbon-copied recipients (all as strings). You can also use the Attachments
collection to add MailAttachment objects to a message.

The actual body of the email message is set as a string through the Body property. You will have to
add line return characters (for example msg.Body = "Hi Bob, " & System.Environment.NewLine & "This is
it!") as required. If you set the BodyFormat property to MailFormat.Html, you can also insert standard
HTML markup tags.

Public Class MailMessage
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Attachments As IList  
   Public Property Bcc As String  
   Public Property Body As String  
   Public Property BodyEncoding As Encoding  
   Public Property BodyFormat As MailFormat  
   Public Property Cc As String  
   Public Property From As String  
   Public ReadOnly Property Headers As IDictionary  
   Public Property Priority As MailPriority  
   Public Property Subject As String  
   Public Property To As String  
   Public Property UrlContentBase As String  
   Public Property UrlContentLocation As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MailPriority Enum

System.Web.Mail (system.web.dll) serializable

This enumeration sets the Priority property of a MailMessage object.

Public Enum MailPriority
   Normal = 0
   Low = 1
   High = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  MailPriority

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SmtpMail Class

System.Web.Mail (system.web.dll)

The SmtpMail class represents the SMTP Server. It includes a shared (static) Send() method that you
can use to send email programmatically. There are two versions of the Send() method: one accepts a
MailMessage object, and the other provides a quick and simple way to send an e-mail message
without creating a MailMessage instance (by specifying the sender's e-mail address, the recipient, the
subject, and the body text as string parameters).

Public Class SmtpMail
' Public Shared Properties
   Public Shared Property SmtpServer As String  
' Public Shared Methods
   Public Shared Sub Send(ByVal message As MailMessage) 
   Public Shared Sub Send(ByVal from As String, 
        ByVal to As String, ByVal subject As String, 
        ByVal messageText As String) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 27. The System.Web.Security Namespace

The System.Web.Security namespace includes the modules that implement various types of ASP.NET
authentication, such as WindowsAuthenticationModule, FormsAuthenticationModule, and
PassportAuthenticationModule. You don't interact directly with these modules in an ASP.NET
application; instead, the ASP.NET framework uses the appropriate module (based on the options you
have set in the web.config file) to authenticate the user. After this point, ASP.NET provides identity
information in the System.Web.HttpContext.User property and uses this identity to authorize access to
resources such as files and URLs (using modules like UrlAuthorizationModule and
FileAuthorizationModule, which are also found in this namespace).

One reason you might use the types in this namespace is to handle authentication events. Generic
security events, like System.Web.HttpApplication.AuthenticateRequest and
System.Web.HttpApplication.AuthorizeRequest are already available in the global.asax file. However,
each authentication module also provides its own Authenticate event, which can be used to validate a
user programmatically or attach a new System.Security.Principal.IIdentity instance. Event handlers for
Authenticate events are coded in the global.asax file, but defined in this namespace.

Another important class in this namespace is FormsAuthentication. This class provides the shared
methods you need to use in your login page if you use ASP.NET's forms-based security. These
methods let you authenticate a user, instruct ASP.NET to issue the authenticated forms cookie, and
redirect the user to the original requested page.

Note that many security options are not reflected in these classes. When implementing a custom
authorization/authentication scheme, you should first examine all the security options provided in the
web.config file. Internet Information Server (IIS) also provides an additional layer of security
configuration. Figure 27-1 and Figure 27-2 show the types in this namespace.

Figure 27-1. Core types from the System.Web.Security namespace

Figure 27-2. Delegates and event arguments in the System.Web.Security namespace

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 27-2. Delegates and event arguments in the System.Web.Security namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DefaultAuthenticationEventArgs NotInheritable Class

System.Web.Security (system.web.dll)

This class provides a reference to the System.Web.HttpContext object for the
DefaultAuthenticationModule.Authenticate event. Unlike all other Authenticate events, this event does
not provide objects that allow you to set or examine user identity information; the
DefaultAuthenticationModule is used only when the authentication mode is set to "None."

Public NotInheritable Class DefaultAuthenticationEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal context As System.Web.HttpContext) 
' Public Instance Properties
   Public ReadOnly Property Context As HttpContext  
End Class

Hierarchy

System.Object  System.EventArgs  DefaultAuthenticationEventArgs

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DefaultAuthenticationEventHandler Delegate

System.Web.Security (system.web.dll) serializable

This delegate represents an event handler for the DefaultAuthenticationModule.Authenticate event. It
provides a custom DefaultAuthenticationEventArgs object with a reference to the current
System.Web.HttpContext. This event handler must be coded in the global.asax, using the event name
DefaultAuthentication_OnAuthenticate (and it does not need to be connected with a Handles keyword or
the AddHandler() command).

Public Delegate Sub DefaultAuthenticationEventHandler(
        ByVal sender As Object, 
        ByVal e As DefaultAuthenticationEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DefaultAuthenticationModule NotInheritable Class

System.Web.Security (system.web.dll)

The ASP.NET framework uses this authentication module automatically when no other authentication
module is specified in the current context (for example, when you set <authentication mode="None">
in the web.config file. This is similar to how many traditional ASP applications work. IIS authentication
is still used and access to local system resources is provided in the context of a local system process
account (or the IUSR_MACHINENAME account) according to the IIS settings. However, ASP.NET page
requests will not require additional authentication.

Public NotInheritable Class DefaultAuthenticationModule : Implements System.Web.IHttpModule
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Dispose() Implements IHttpModule.Dispose 
   Public Sub Init(
        ByVal app As System.Web.HttpApplication) Implements IHttpModule.Init 
' Events
   Public Event Authenticate As DefaultAuthenticationEventHandler  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FileAuthorizationModule NotInheritable Class

System.Web.Security (system.web.dll)

This class is used automatically when you use the WindowsAuthenticationModule class. ASP.NET uses
FileAuthorizationModule to determine whether a specified file operation should be allowed or denied,
based on the currently authenticated NT user account (and using Access Control Lists (ACLs)).

Public NotInheritable Class FileAuthorizationModule : Implements System.Web.IHttpModule
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Dispose() Implements IHttpModule.Dispose 
   Public Sub Init(
        ByVal app As System.Web.HttpApplication) Implements IHttpModule.Init 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsAuthentication NotInheritable Class

System.Web.Security (system.web.dll)

This class contains the shared (static) methods that you use in your custom login page to authenticate
a user when using the FormsAuthenticationModule class. Typically, the first method your login page
uses is the Authenticate() method, which compares a supplied user ID and password against the list of
allowed logins defined in the web.config file. If this method returns True, the information is valid and
you can use the RedirectFromLoginPage() method to issue the Forms cookie and redirect the user to
the previously requested page, all at once. You need to supply the user ID to this method, along with
a boolean createPersistentCookie parameter. If createPersistentCookie is set to True, a "permanent"
cookie (with an expiration date of fifty years into the future) will be created so that the user never
needs to log in when they return to the site. This cookie is suitable only for applications that use
authentication for personalization rather than security.

Other methods you might want to use in this class include SignOut(), which removes the current
Forms cookie, and SetAuthCookie(), which creates the Forms cookie but does not redirect the user.
(You could then retrieve the original requested URL by using the GetRedirectUrl() method and make a
decision about whether to redirect the user to this page or to a default main page.)

You can also use the GetAuthCookie() method, which returns the Forms cookie as a
System.Web.HttpCookie object. In this case, the user is not authenticated (and won't be able to access
other pages in your application) until the cookie is added to the System.Web.HttpResponse.Cookies
collection. You can work with this cookie on a lower level by using methods like Decrypt().

Public NotInheritable Class FormsAuthentication
' Public Constructors
   Public Sub New() 
' Public Shared Properties
   Public Shared ReadOnly Property FormsCookieName As String  
   Public Shared ReadOnly Property FormsCookiePath As String  
' Public Shared Methods
   Public Shared Function Authenticate(ByVal name As String, 
        ByVal password As String) As Boolean  
   Public Shared Function Decrypt(
        ByVal encryptedTicket As String) As FormsAuthenticationTicket  
   Public Shared Function Encrypt(
        ByVal ticket As FormsAuthenticationTicket) As String  
   Public Shared Function GetAuthCookie(
        ByVal userName As String, 
        ByVal createPersistentCookie As Boolean) As HttpCookie  
   Public Shared Function GetAuthCookie(
        ByVal userName As String, 
        ByVal createPersistentCookie As Boolean, 
        ByVal strCookiePath As String) As HttpCookie  
   Public Shared Function GetRedirectUrl(
        ByVal userName As String, 
        ByVal createPersistentCookie As Boolean) As String  
   Public Shared Function HashPasswordForStoringInConfigFile(
        ByVal password As String, 
        ByVal passwordFormat As String) As String  
   Public Shared Sub Initialize() 
   Public Shared Sub RedirectFromLoginPage(
        ByVal userName As String, 
        ByVal createPersistentCookie As Boolean) 
   Public Shared Sub RedirectFromLoginPage(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Shared Sub RedirectFromLoginPage(
        ByVal userName As String, 
        ByVal createPersistentCookie As Boolean, 
        ByVal strCookiePath As String) 
   Public Shared Function RenewTicketIfOld(
        ByVal tOld As FormsAuthenticationTicket) As FormsAuthenticationTicket  
   Public Shared Sub SetAuthCookie(ByVal userName As String, 
        ByVal createPersistentCookie As Boolean) 
   Public Shared Sub SetAuthCookie(ByVal userName As String, 
        ByVal createPersistentCookie As Boolean, 
        ByVal strCookiePath As String) 
   Public Shared Sub SignOut() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsAuthenticationEventArgs NotInheritable Class

System.Web.Security (system.web.dll)

This class is a custom System.EventArgs that is used in the event handler for the
FormsAuthenticationModule.Authenticate event. It provides two properties—Context, which provides a
reference to the current System.Web.HttpContext, and User, which will be a null reference (Nothing)
because information is not yet retrieved from the Forms authentication cookie. This event is not
typically used because Forms authentication already uses the custom code you have created for the
login page.

Public NotInheritable Class FormsAuthenticationEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal context As System.Web.HttpContext) 
' Public Instance Properties
   Public ReadOnly Property Context As HttpContext  
   Public Property User As IPrincipal  
End Class

Hierarchy

System.Object  System.EventArgs  FormsAuthenticationEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsAuthenticationEventHandler Delegate

System.Web.Security (system.web.dll) serializable

This delegate represents the event handler that can be used to handle the
FormsAuthenticationModule.Authenticate event. This event handler must be coded in global.asax, using
the event name WindowsAuthentication_OnAuthenticate (and it does not need to be connected with a
Handles keyword or the AddHandler() command).

Public Delegate Sub FormsAuthenticationEventHandler(
        ByVal sender As Object, 
        ByVal e As FormsAuthenticationEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsAuthenticationModule NotInheritable Class

System.Web.Security (system.web.dll)

This module, when loaded through the web.config file (<authentication mode="Forms">), provides
Forms-based authentication. In this model, the ASP.NET framework uses a special authentication
cookie. If it is not present, users are redirected to a custom ASP.NET page where they can acquire the
cookie once they log in successfully. If the cookie is present, ASP.NET fires the Authenticate event,
places identity information in the System.Web.HttpContext.User property, and allows access. You can
react to this event by creating an event handler called FormsAuthentication_OnAuthenticate in the
global.asax file.

Several additional settings, including the URL for the login page and the length of time before the
cookie expires, can be set in the web.config file. The actual authentication for the user is performed in
the custom code you create for the login page. This code uses the helper methods in the
FormsAuthentication class to authenticate the user and assign the Forms authentication cookie.

Public NotInheritable Class FormsAuthenticationModule : Implements System.Web.IHttpModule
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Dispose() Implements IHttpModule.Dispose 
   Public Sub Init(
        ByVal app As System.Web.HttpApplication) Implements IHttpModule.Init 
' Events
   Public Event Authenticate As FormsAuthenticationEventHandler  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsAuthenticationTicket NotInheritable Class

System.Web.Security (system.web.dll) serializable

This class wraps the information in the Forms authentication cookie. This information includes the
expiration and issue date (Expiration and IssueDate), the username (Name), and an application-
defined string that can be stored in the cookie (UserData). An instance of this class is provided
through the FormsIdentity.Ticket property.

Public NotInheritable Class FormsAuthenticationTicket
' Public Constructors
   Public Sub New(ByVal version As Integer, 
        ByVal name As String, ByVal issueDate As Date, 
        ByVal expiration As Date, 
        ByVal isPersistent As Boolean, 
        ByVal userData As String) 
   Public Sub New(ByVal version As Integer, 
        ByVal name As String, ByVal issueDate As Date, 
        ByVal expiration As Date, 
        ByVal isPersistent As Boolean, 
        ByVal userData As String, 
        ByVal cookiePath As String) 
   Public Sub New(ByVal name As String, 
        ByVal isPersistent As Boolean, 
        ByVal timeout As Integer) 
' Public Instance Properties
   Public ReadOnly Property CookiePath As String  
   Public ReadOnly Property Expiration As Date  
   Public ReadOnly Property Expired As Boolean  
   Public ReadOnly Property IsPersistent As Boolean  
   Public ReadOnly Property IssueDate As Date  
   Public ReadOnly Property Name As String  
   Public ReadOnly Property UserData As String  
   Public ReadOnly Property Version As Integer  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FormsIdentity NotInheritable Class

System.Web.Security (system.web.dll) serializable

This System.Security.Principal.IIdentity instance provides information to the FormsAuthenticationModule
about the current user identity. This information consists of the username (Name), the type of
authentication (AuthenticationType), which will always be "Forms," and the corresponding ticket object
(Ticket).

Public NotInheritable Class FormsIdentity : Implements System.Security.Principal.IIdentity
' Public Constructors
   Public Sub New(ByVal ticket As FormsAuthenticationTicket) 
' Public Instance Properties
   Public ReadOnly Property AuthenticationType As String Implements IIdentity.AuthenticationType 
   Public ReadOnly Property IsAuthenticated As Boolean Implements IIdentity.IsAuthenticated 
   Public ReadOnly Property Name As String Implements IIdentity.Name 
   Public ReadOnly Property Ticket As FormsAuthenticationTicket  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PassportAuthenticationEventArgs NotInheritable Class

System.Web.Security (system.web.dll)

This class is a custom System.EventArgs object that is used in the event handler for the
PassportAuthenticationModule.Authenticate event. It provides three properties: Context, which provides
a reference to the current System.Web.HttpContext; User, which will be a null reference (Nothing); and
Identity, which will contain the information received from Passport as a PassportIdentity object.

You can implement a custom authentication scheme and set the User value programmatically to the
appropriate user identity. If you do not set it to a non-null value, the PassportAuthenticationModule will
create a System.Security.Principal.WindowsPrincipal object based on the information supplied in the
PassportIdentity object and assign it to the System.Web.HttpContext.User property.

Public NotInheritable Class PassportAuthenticationEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal identity As PassportIdentity, 
        ByVal context As System.Web.HttpContext) 
' Public Instance Properties
   Public ReadOnly Property Context As HttpContext  
   Public ReadOnly Property Identity As PassportIdentity  
   Public Property User As IPrincipal  
End Class

Hierarchy

System.Object  System.EventArgs  PassportAuthenticationEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PassportAuthenticationEventHandler Delegate

System.Web.Security (system.web.dll) serializable

This delegate represents the event handler that can be used to handle the
PassportAuthenticationModule.Authenticate event. This event handler must be coded in the global.asax
file, using the event handler name PassportAuthentication_OnAuthenticate (and it does not need to be
connected with a Handles keyword or the AddHandler() command).

Public Delegate Sub PassportAuthenticationEventHandler(
        ByVal sender As Object, 
        ByVal e As PassportAuthenticationEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PassportAuthenticationModule NotInheritable Class

System.Web.Security (system.web.dll)

This module, when loaded through the web.config file (<authentication mode="Passport">), provides
authentication using Microsoft's Passport service. In this model, the ASP.NET framework will check for
the Passport "ticket" (an encrypted value in a cookie or the query string) and use it to authenticate
the user. If no ticket is present, or if it has expired, the user will be redirected to the Passport
service's login page. The user will be redirected automatically to the original ASP.NET page with the
correct ticket after logging in. At this point, the Authenticate event will be fired. You can handle this
event with an event handler named PassportAuthentication_OnAuthenticate in the global.asax file.

The location of the Passport login page is set using the <passport redirectUrl> element in the
web.config file.

Public NotInheritable Class PassportAuthenticationModule : Implements System.Web.IHttpModule
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Dispose() Implements IHttpModule.Dispose 
   Public Sub Init(
        ByVal app As System.Web.HttpApplication) Implements IHttpModule.Init 
' Events
   Public Event Authenticate As PassportAuthenticationEventHandler  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PassportIdentity NotInheritable Class

System.Web.Security (system.web.dll)

This class wraps information from the Passport user profile. For example, you can retrieve the 64-bit
Passport User ID (PUID) from the Name property, along with information about how long the user has
been signed in (TimeSinceSignIn), how old the current ticket is (TicketAge), and whether the password
is currently saved on the user's Passport login page (HasSavedPassword). Additionally, you can get
information about any error associated with the current ticket (Error), although you must compare the
number to values in the Passport documentation, as no enumeration is currently supplied. Other
information from the Passport profile (including everything from the user's birth date to the user's
language preference) is available through the Item key/value collection. For information on valid
attribute names, consult the Passport documentation.

The PassportIdentity class also provides several methods, many of which are shared and available
without a PassportIdentity instance (such as those used for encryption and compression). You can use
LoginUser() to redirect a user to the Passport sign-in page, initiate a Passport-aware client
authentication exchange. You can also use SignOut() to end the user's session.

Note that you can pass -1 to any Passport method in place of an optional integer parameter. This
indicates that Passport should use the default value from the registry and is equivalent to omitting
optional parameters.

Public NotInheritable Class PassportIdentity : Implements System.Security.Principal.IIdentity
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property AuthenticationType As String Implements IIdentity.AuthenticationType 
   Public ReadOnly Property Error As Integer  
   Public ReadOnly Property GetFromNetworkServer As Boolean  
   Public ReadOnly Property HasSavedPassword As Boolean  
   Public ReadOnly Property HasTicket As Boolean  
   Public ReadOnly Property HexPUID As String  
   Public ReadOnly Property IsAuthenticated As Boolean Implements IIdentity.IsAuthenticated 
   Public Default ReadOnly Property Item(
        ByVal strProfileName As String) As String  
   Public ReadOnly Property Name As String Implements IIdentity.Name 
   Public ReadOnly Property TicketAge As Integer  
   Public ReadOnly Property TimeSinceSignIn As Integer  
' Public Shared Methods
   Public Shared Function Compress(
        ByVal strData As String) As String  
   Public Shared Function CryptIsValid() As Boolean  
   Public Shared Function CryptPutHost(
        ByVal strHost As String) As Integer  
   Public Shared Function CryptPutSite(
        ByVal strSite As String) As Integer  
   Public Shared Function Decompress(
        ByVal strData As String) As String  
   Public Shared Function Decrypt(
        ByVal strData As String) As String  
   Public Shared Function Encrypt(
        ByVal strData As String) As String  
   Public Shared Sub SignOut(
        ByVal strSignOutDotGifFileName As String) 
' Public Instance Methods
   Public Function AuthUrl() As String  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Function AuthUrl() As String  
   Public Function AuthUrl(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal fForceLogin As Boolean, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal bUseSecureAuth As Boolean) As String  
   Public Function AuthUrl(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal iForceLogin As Integer, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal iUseSecureAuth As Integer) As String  
   Public Function AuthUrl2() As String  
   Public Function AuthUrl2(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal fForceLogin As Boolean, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal bUseSecureAuth As Boolean) As String  
   Public Function AuthUrl2(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal iForceLogin As Integer, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal iUseSecureAuth As Integer) As String  
   Public Function GetCurrentConfig(
        ByVal strAttribute As String) As Object  
   Public Function GetDomainAttribute(
        ByVal strAttribute As String, 
        ByVal iLCID As Integer, 
        ByVal strDomain As String) As String  
   Public Function GetDomainFromMemberName(
        ByVal strMemberName As String) As String  
   Public Function GetIsAuthenticated(
        ByVal iTimeWindow As Integer, 
        ByVal bForceLogin As Boolean, 
        ByVal bCheckSecure As Boolean) As Boolean  
   Public Function GetIsAuthenticated(
        ByVal iTimeWindow As Integer, 
        ByVal iForceLogin As Integer, 
        ByVal iCheckSecure As Integer) As Boolean  
   Public Function GetLoginChallenge() As String  
   Public Function GetLoginChallenge(ByVal szRetURL As String, 
        ByVal iTimeWindow As Integer, 
        ByVal fForceLogin As Integer, 
        ByVal szCOBrandArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal iUseSecureAuth As Integer, 
        ByVal oExtraParams As Object) As String  
   Public Function GetOption(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Function GetOption(
        ByVal strOpt As String) As Object  
   Public Function GetProfileObject(
        ByVal strProfileName As String) As Object  
   Public Function HasFlag(
        ByVal iFlagMask As Integer) As Boolean  
   Public Function HasProfile(
        ByVal strProfile As String) As Boolean  
   Public Function HaveConsent(
        ByVal bNeedFullConsent As Boolean, 
        ByVal bNeedBirthdate As Boolean) As Boolean  
   Public Function LoginUser() As Integer  
   Public Function LoginUser(ByVal szRetURL As String, 
        ByVal iTimeWindow As Integer, 
        ByVal fForceLogin As Boolean, 
        ByVal szCOBrandArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal fUseSecureAuth As Boolean, 
        ByVal oExtraParams As Object) As Integer  
   Public Function LoginUser(ByVal szRetURL As String, 
        ByVal iTimeWindow As Integer, 
        ByVal fForceLogin As Integer, 
        ByVal szCOBrandArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal iUseSecureAuth As Integer, 
        ByVal oExtraParams As Object) As Integer  
   Public Function LogoTag() As String  
   Public Function LogoTag(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal fForceLogin As Boolean, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, ByVal fSecure As Boolean, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal bUseSecureAuth As Boolean) As String  
   Public Function LogoTag(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal iForceLogin As Integer, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, ByVal iSecure As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal iUseSecureAuth As Integer) As String  
   Public Function LogoTag2() As String  
   Public Function LogoTag2(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal fForceLogin As Boolean, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, ByVal fSecure As Boolean, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal bUseSecureAuth As Boolean) As String  
   Public Function LogoTag2(ByVal strReturnUrl As String, 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Function LogoTag2(ByVal strReturnUrl As String, 
        ByVal iTimeWindow As Integer, 
        ByVal iForceLogin As Integer, 
        ByVal strCoBrandedArgs As String, 
        ByVal iLangID As Integer, ByVal iSecure As Integer, 
        ByVal strNameSpace As String, 
        ByVal iKPP As Integer, 
        ByVal iUseSecureAuth As Integer) As String  
   Public Function LogoutURL() As String  
   Public Function LogoutURL(ByVal szReturnURL As String, 
        ByVal szCOBrandArgs As String, 
        ByVal iLangID As Integer, 
        ByVal strDomain As String, 
        ByVal iUseSecureAuth As Integer) As String  
   Public Sub SetOption(ByVal strOpt As String, 
        ByVal vOpt As Object) 
   Public Function Ticket(
        ByVal strAttribute As String) As Object  
' Protected Instance Methods
   Overrides Protected Sub Finalize() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UrlAuthorizationModule NotInheritable Class

System.Web.Security (system.web.dll)

ASP.NET uses this class automatically to determine whether access to a specified resource (a URL
requested by the client) should be allowed or denied, based on the identity of the currently
authenticated user. This class is used as needed, but is not directly referenced in the web.config file.
You can configure URL authorization by adding a list of users or roles in the <allow> or <deny>
elements of the <authorization> section of a configuration file.

Both the FormsAuthenticationModule and PassportAuthenticationModule set the
System.Web.HttpContext.SkipAuthorization property to True when redirecting the client to a login page
so they can bypass the UrlAuthorizationModule checks.

Public NotInheritable Class UrlAuthorizationModule : Implements System.Web.IHttpModule
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Dispose() Implements IHttpModule.Dispose 
   Public Sub Init(
        ByVal app As System.Web.HttpApplication) Implements IHttpModule.Init 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WindowsAuthenticationEventArgs NotInheritable Class

System.Web.Security (system.web.dll)

This class is a custom System.EventArgs that is used in the event handler for the
WindowsAuthenticationModule.Authenticate event. It provides three properties: Context, which provides
a reference to the current System.Web.HttpContext; User, which will be a null reference (Nothing); and
Identity, which will contain the information received from IIS. You can implement a custom
authentication scheme and set the User property programmatically to the appropriate user identity. If
you don't set it to a non-null value, the WindowsAuthenticationModule creates a
System.Security.Principal.WindowsPrincipal object based on the information supplied by IIS and assign
it to the System.Web.HttpContext.User property.

The easiest way to set a default identity for impersonation is by using the settings in the web.config
file. You should use this event only if you need to implement a custom authentication scheme.

Public NotInheritable Class WindowsAuthenticationEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(
        ByVal identity As System.Security.Principal.WindowsIdentity, 
        ByVal context As System.Web.HttpContext) 
' Public Instance Properties
   Public ReadOnly Property Context As HttpContext  
   Public ReadOnly Property Identity As WindowsIdentity  
   Public Property User As IPrincipal  
End Class

Hierarchy

System.Object  System.EventArgs  WindowsAuthenticationEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WindowsAuthenticationEventHandler Delegate

System.Web.Security (system.web.dll) serializable

This delegate represents the event handler that can be used to handle the
WindowsAuthenticationModule.Authenticate event. This event handler must be coded in global.asax,
using an event handler named WindowsAuthentication_OnAuthenticate (and it does not need to be
connected with a Handles keyword or the AddHandler() command.

Public Delegate Sub WindowsAuthenticationEventHandler(
        ByVal sender As Object, 
        ByVal e As WindowsAuthenticationEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WindowsAuthenticationModule NotInheritable Class

System.Web.Security (system.web.dll)

This module, when loaded through the web.config file (<authentication mode="Windows">), provides
Windows/IIS authentication. In this model, IIS authenticates the user identity for the current web
request using any supported method (including Basic, Digest, or Integrated Windows), and then
passes that account to the ASP.NET application, which it uses to access the resources it needs. The
WindowsAuthenticationModule uses a System.Security.Principal.WindowsIdentity object to hold user
information received from IIS and constructs a System.Security.Principal.WindowsPrincipal object to
provide information about group memberships. The System.Security.Principal.WindowsPrincipal object is
attached to the application context and provided through the System.Web.HttpContext.User property.
This module also provides a single event, Authenticate, which you can access through the
WindowsAuthentication_OnAuthenticate event handler in the global.asax file.

This type of authentication scheme is particularly useful in corporate intranet scenarios, where IIS can
be set to Integrated Windows authentication and all users can access the application under their
network accounts.

Public NotInheritable Class WindowsAuthenticationModule : Implements System.Web.IHttpModule
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Dispose() Implements IHttpModule.Dispose 
   Public Sub Init(
        ByVal app As System.Web.HttpApplication) Implements IHttpModule.Init 
' Events
   Public Event Authenticate As WindowsAuthenticationEventHandler  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 28. The System.Web.Services Namespace

The System.Web.Services namespace contains the types used for creating web services. Web services
are "component-like" units of programming logic that exist on a web server as .asmx files. Web
services can be incorporated seamlessly into Windows or ASP.NET applications. Web services differ
from many other methods of remote method invocation (like DCOM) in that they use open XML-based
standards, work over normal text HTTP channels, and can be consumed (with a little more
programming work) from applications on other platforms and non-Windows operating systems.

The System.Web.Services namespace is the starting point for creating web services. It contains a
WebService class that custom web services can inherit from and the WebMethodAttribute and
WebServiceAttribute, which are used to mark web service classes and methods and add additional
information. Most types in other web service namespaces are used seamlessly by the .NET framework
and are not used directly by the .NET programmer. Figure 28-1 shows the types in this namespace.

Figure 28-1. The System.Web.Services namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebMethodAttribute NotInheritable Class

System.Web.Services (system.web.services.dll)

Use the WebMethodAttribute to mark all the methods that should be made available to web service
clients. All methods marked with this attribute will be accessible automatically and will be included in
the WSDL document (and the proxy class) that .NET generates. Methods that are not marked with
this attribute will not visible or usable, even if they are public.

You can set various properties when you use this attribute. For example, the Description property
contains a string of information about a web method and is used for automatically generated
description documents and the Internet Explorer test page. CacheDuration specifies (in seconds) how
long a response will be cached and reused for web method requests with identical parameter values.
EnableSession allows you to configure whether session support is enabled for your web method. By
default, a web service method will not be cached at all, and session support will not be enabled. The
BufferResponse property is rarely used, as it only applies to HTTP requests. By default, BufferResponse
is True, all as responses are serialized to memory and transferred only when complete.

The MessageName property is used to add an alias to a method. This property is most commonly used
with polymorphic (overloaded) methods, which must be given unique names, or "disambiguated"
before you can use them as web methods. When adding overloaded methods, the original method
should retain its name for compatibility with existing clients.

The TransactionOption property allows a web method to take part in a COM+ transaction. Due to the
stateless nature of the HTTP protocol, web service methods can only participate as the root object in a
transaction. This means that both System.EnterpriseServices.TransactionOption.RequiresNew and
System.EnterpriseServices.TransactionOption.Required will have the same effect, causing the web
method to start a new transaction when it is invoked. Other COM objects that require transactions can
then be created and used by the web method. A transaction started in this way is committed
automatically when the method ends, unless the method explicitly calls
System.EnterpriseServices.ContextUtil.SetAbort() or an unhandled exception occurs.

To set a property of the WebMethodAttribute, specify it by name in the attribute declaration (as in
<WebMethod(EnableSession := True)>).

Public NotInheritable Class WebMethodAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal enableSession As Boolean) 
   Public Sub New(ByVal enableSession As Boolean, 
        ByVal transactionOption As System.EnterpriseServices.TransactionOption) 
   Public Sub New(ByVal enableSession As Boolean, 
        ByVal transactionOption As System.EnterpriseServices.TransactionOption, 
        ByVal cacheDuration As Integer) 
   Public Sub New(ByVal enableSession As Boolean, 
        ByVal transactionOption As System.EnterpriseServices.TransactionOption, 
        ByVal cacheDuration As Integer, 
        ByVal bufferResponse As Boolean) 
' Public Instance Properties
   Public Property BufferResponse As Boolean  
   Public Property CacheDuration As Integer  
   Public Property Description As String  
   Public Property EnableSession As Boolean  
   Public Property MessageName As String  
   Public Property TransactionOption As TransactionOption  
End Class

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Hierarchy

System.Object  System.Attribute  WebMethodAttribute

Valid On

Method

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebService Class

System.Web.Services (system.web.services.dll) disposable

When creating a web service, you can inherit from this class to gain access to the built-in ASP.NET
objects Application (the current System.Web.HttpApplicationState collection), Server, Session, User, and
Context (which provides access to the built-in Request and Response objects). If you don't need to
access these objects (or if you choose to go through the System.Web.HttpContext.Context property)
you don't need to derive your web service from this class.

When creating a web service class, all web methods must be marked with the WebMethodAttribute. To
configure additional activities, you should also add the WebServiceAttribute to the class declaration.

Public Class WebService : Inherits System.ComponentModel.MarshalByValueComponent
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Application As HttpApplicationState  
   Public ReadOnly Property Context As HttpContext  
   Public ReadOnly Property Server As HttpServerUtility  
   Public ReadOnly Property Session As HttpSessionState  
   Public ReadOnly Property User As IPrincipal  
End Class

Hierarchy

System.Object
System.ComponentModel.MarshalByValueComponent(System.ComponentModel.IComponent,
System.IDisposable, System.IServiceProvider)  WebService
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebServiceAttribute NotInheritable Class

System.Web.Services (system.web.services.dll)

This attribute is not required to create a web service, but it should be used before a web service is
deployed to specify a unique XML namespace and allow clients to distinguish your web service from
others on the Web. By default, if you do not use this attribute, the default namespace
http://tempuri.org/ is used. Namespaces look like URLs, but they do not actually need to correspond
to valid locations on the Web. In a web service, the XML namespace is used to uniquely identify parts
of the Service Description (WSDL) file that specifically pertain to the web service. The Name property
identifies the local portion of the XML qualified name, which will be the web service class name by
default. Elements of the WSDL contract that are specific to WSDL use the
http://schemas.xmlsoap.org/wsdl/ namespace.

Ideally, you should use a namespace that you control, such as your company's web site address. This
XML namespace should not be confused with the .NET namespace used programmatically by clients.
For more information on XML qualified names, see http://www.w3.org/TR/REC-xml-names.

You can also set a Description property, which contains information about your web service that will be
displayed in automatically generated description documents and the Internet Explorer test page.

Public NotInheritable Class WebServiceAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const DefaultNamespace As String                       // =http://tempuri.org/
' Public Instance Properties
   Public Property Description As String  
   Public Property Name As String  
   Public Property Namespace As String  
End Class

Hierarchy

System.Object  System.Attribute  WebServiceAttribute

Valid On

Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebServiceBindingAttribute NotInheritable Class

System.Web.Services (system.web.services.dll)

This attribute is used to mark the class declaration of the proxy class that allows communication
between a client and a web service. It defines a Web Service Description Language (WSDL) binding.
The Name and the Namespace properties must be set to the name and XML namespace of the Web
Service. An example is <WebServiceBinding(Name := "StockQuote", Namespace :=
"http://www.mysite.com/MyServices")>. These properties match the corresponding properties in the
WebServiceAttribute.

You must also use a System.Web.Services.Protocols.SoapDocumentMethodAttribute or
System.Web.Services.Protocols.SoapRpcMethodAttribute to describe the binding for each individual web
service method represented in the proxy class. This code is generated automatically in the proxy class
by adding a Visual Studio .NET web reference or using the WSDL.exe utility included with ASP.NET.

Public NotInheritable Class WebServiceBindingAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal name As String) 
   Public Sub New(ByVal name As String, ByVal ns As String) 
   Public Sub New(ByVal name As String, ByVal ns As String, 
        ByVal location As String) 
' Public Instance Properties
   Public Property Location As String  
   Public Property Name As String  
   Public Property Namespace As String  
End Class

Hierarchy

System.Object  System.Attribute  WebServiceBindingAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 29. The System.Web.Services.ConfigurationNamespace

The System.Web.Services.Configuration namespace contains three .NET attributes that are useful if you
want to add custom format extensions to your web services (in other words, if you want to insert
additional XML elements to your web service's WSDL service description). One practical reason to use
a format extension is if your web service requires a SOAP extension that runs at both the server and
the client end. By default, no information about SOAP extensions is added to the service description,
meaning that clients may not be aware that they need to use a given extension (for example, a
security or encryption extension) before they can use the web service.

To use a format extension in this way, you need to start by deriving a custom class from
System.Web.Services.Description.ServiceDescriptionFormatExtension, which represents the actual format
extension. Next, you use the XmlFormatExtensionAttribute in this namespace with the class to define
the extension points where the extension should apply. Optionally, you can use the
XmlFormatExtensionPointAttribute class with the custom format extension class to specify a member in
the class that will act as a new extension point, and the XmlFormatExtensionPrefixAttribute to set an
XML namespace for the elements generated by the format extension. Finally, you configure your
format extension to run within the <serviceDescriptionFormatExtensionTypes> section of the
configuration file. Figure 29-1 shows the types in this namespace.

Figure 29-1. The System.Web.Services.Configuration namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlFormatExtensionAttribute NotInheritable Class

System.Web.Services.Configuration (system.web.services.dll)

This attribute is applied to the declaraction of a custom
System.Web.Services.Description.ServiceDescriptionFormatExtension class. It specifes that the format
extension runs at one or more extension points. The constructors specify the name of the XML
element that will be added to the WSDL document by the service description format extension
(elementName) and the XML namespace for this element (ns). Depending on the constructor you use,
you can supply up to four points where the format extension should run (extensionPoint).

Public NotInheritable Class XmlFormatExtensionAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal elementName As String, 
        ByVal ns As String, ByVal extensionPoint1 As Type) 
   Public Sub New(ByVal elementName As String, 
        ByVal ns As String, 
        ByVal extensionPoints As Type()) 
   Public Sub New(ByVal elementName As String, 
        ByVal ns As String, ByVal extensionPoint1 As Type, 
        ByVal extensionPoint2 As Type) 
   Public Sub New(ByVal elementName As String, 
        ByVal ns As String, ByVal extensionPoint1 As Type, 
        ByVal extensionPoint2 As Type, 
        ByVal extensionPoint3 As Type) 
   Public Sub New(ByVal elementName As String, 
        ByVal ns As String, ByVal extensionPoint1 As Type, 
        ByVal extensionPoint2 As Type, 
        ByVal extensionPoint3 As Type, 
        ByVal extensionPoint4 As Type) 
' Public Instance Properties
   Public Property ElementName As String  
   Public Property ExtensionPoints As Type()  
   Public Property Namespace As String  
End Class

Hierarchy

System.Object  System.Attribute  XmlFormatExtensionAttribute

Valid On

Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlFormatExtensionPointAttribute NotInheritable Class

System.Web.Services.Configuration (system.web.services.dll)

Like all the attributes in this namespace, the XmlFormatExtensionPointAttribute is applied to the custom
System.Web.Services.Description.ServiceDescriptionFormatExtension class. Use this attribute to specifiy
that a member of the custom format extension class should have its own custom format extension
associated with it. MemberName specifies the member of the format extension class (as a string) that
has its own format extension. AllowElements is True (the default) if the member of the class
implementing the format extension can accept raw XML elements.

Public NotInheritable Class XmlFormatExtensionPointAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal memberName As String) 
' Public Instance Properties
   Public Property AllowElements As Boolean  
   Public Property MemberName As String  
End Class

Hierarchy

System.Object  System.Attribute  XmlFormatExtensionPointAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlFormatExtensionPrefixAttribute NotInheritable Class

System.Web.Services.Configuration (system.web.services.dll)

This attribute specifies the XML namespace (the constructor's ns parameter) and XML namespace
prefix (the constructor's prefix parameter) that will be used for all format extensions generated by a
custom format extension class. This attribute is applied to the custom
System.Web.Services.Description.ServiceDescriptionFormatExtension class.

Public NotInheritable Class XmlFormatExtensionPrefixAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal prefix As String, ByVal ns As String) 
' Public Instance Properties
   Public Property Namespace As String  
   Public Property Prefix As String  
End Class

Hierarchy

System.Object  System.Attribute  XmlFormatExtensionPrefixAttribute

Valid On

Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 30. The System.Web.Services.DescriptionNamespace

The System.Web.Services.Description namespace includes types used to represent the elements of Web
Service Description Language (WSDL), an XML grammar that describes web services and specifies
how to interact with them. Web services created with ASP.NET automatically generate their own
WSDL documents, which contain all the information a client needs to interact with them and invoke
their methods. You can retrieve this document by requesting the appropriate .asmx file with ?WSDL
appended to the end of the URL (as in http://www.mysite.com/myservice.asmx?WSDL).

The starting point for understanding this namespace is the ServiceDescription class, which represents
the complete WSDL document and provides collections of Binding, Message, Types, and Service
objects. The ServiceDescription class also provides Read() and Write() methods, which allow you to
convert between actual WSDL documents and their object representation. Finally, you can also use
the ServiceDescriptionReflector class to create a ServiceDescription object based on an existing web
service by supplying the web service's URL.

Another interesting class in this namespace is ServiceDescriptionImporter, which provides the
functionality .NET uses to create proxy classes based on WSDL documents. Most other classes
represent a paticular portion of a WSDL document, and you do not provide any additional
functionality.

All details of WSDL implementation are "abstracted away" from you when creating or consuming a
web service with .NET. For that reason, you may have little need to use the types in this namespace.
To learn more about the specifics of the WSDL standard on which these types are based, refer to
http://www.w3.org/TR/wsdl. Figure 30-1 shows ServiceDescriptionFormatDescription-derived types and
Figure 30-2 shows other types. Figure 30-3 contains the collections in this namespace.

Figure 30-1. ServiceDescriptionFormatDescription-derived types

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 30-2. More types from the System.Web.Services.Description namespace

Figure 30-3. Collection classes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Binding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

A WSDL document defines abstract information for data types, messages, and operations. A binding
bridges the gap between abstract, protocol-independent information, and the encoding of that
information (the concrete physical representation of messages on the wire). The Binding class
represents the WSDL <binding> element, which provides binding information for a single protocol. For
example, the WSDL document ASP.NET generates for a web service called StockQuotes would have
three bindings: StockQuotesHttpGet, StockQuotesHttpPost, and StockQuotesSoap.

A Binding contains a collection of OperationBinding objects (provided through the Operations property).
Bindings must define WSDL ports (represented by the Port class).

Public NotInheritable Class Binding : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
   Public Property Name As String  
   Public ReadOnly Property Operations As OperationBindingCollection  
   Public ReadOnly Property ServiceDescription As ServiceDescription  
   Public Property Type As XmlQualifiedName  
End Class

Hierarchy

System.Object  DocumentableItem  Binding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BindingCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of Binding objects is used by the Bindings property of the ServiceDescription class.
Bindings can be accessed by name or by position (index number).

Public NotInheritable Class BindingCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As Binding  
   Public Default Property Item(
        ByVal index As Integer) As Binding  
' Public Instance Methods
   Public Function Add(ByVal binding As Binding) As Integer  
   Public Function Contains(
        ByVal binding As Binding) As Boolean  
   Public Sub CopyTo(ByVal array As Binding(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal binding As Binding) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal binding As Binding) 
   Public Sub Remove(ByVal binding As Binding) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
BindingCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DocumentableItem MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This abstract base class is used by several different classes in the System.Web.Services.Description
namespace. It provides only one property, Documentation, which represents the <documentation>
element that can be added inside other WSDL language elements to provide human-readable
information (like a descriptive comment). This tag is generated automatically when you use the
Description property of the System.Web.Services.WebMethodAttribute or
System.Web.Services.WebServiceAttribute.

Public MustInherit Class DocumentableItem
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property Documentation As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FaultBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This binding specifies the concrete transmission format for any error messages that occur during an
operation. It maps to the WSDL <fault> element in the <binding> element.

Public NotInheritable Class FaultBinding : Inherits MessageBinding
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
End Class

Hierarchy

System.Object  DocumentableItem  MessageBinding  FaultBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FaultBindingCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of FaultBinding objects is used by the OperationBinding.Faults property. Each
FaultBinding can be accessed by name or position (index number).

Public NotInheritable Class FaultBindingCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As FaultBinding  
   Public Default Property Item(
        ByVal index As Integer) As FaultBinding  
' Public Instance Methods
   Public Function Add(
        ByVal bindingOperationFault As FaultBinding) As Integer  
   Public Function Contains(
        ByVal bindingOperationFault As FaultBinding) As Boolean  
   Public Sub CopyTo(ByVal array As FaultBinding(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal bindingOperationFault As FaultBinding) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal bindingOperationFault As FaultBinding) 
   Public Sub Remove(
        ByVal bindingOperationFault As FaultBinding) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
FaultBindingCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpAddressBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

Represents an extensibility element added to the WSDL <port> element, which enables HTTP binding
to a specific web service address. The Location property specifies the base URL address for the web
service.

Public NotInheritable Class HttpAddressBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Location As String  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  HttpAddressBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

Represents an extensibility element added to the WSDL <binding> element, which allows information
to be transmitted by HTTP. The Verb property is a string that can have three values: an empty string
(the default), "POST" (which specifies that requests will use HTTP POST), or "GET" (which specifies
that requests will use HTTP GET).

Public NotInheritable Class HttpBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const Namespace As String        // =http://schemas.xmlsoap.org/wsdl/http/
' Public Instance Properties
   Public Property Verb As String  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  HttpBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpOperationBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

Represents an extensibility element added to the WSDL <operation> element, which allows a web
service method to be invoked over HTTP. The Location property specifes the relative URL of a web
service operation (using the base specified by HttpOperationBinding).

Public NotInheritable Class HttpOperationBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Location As String  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  HttpOperationBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpUrlEncodedBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

Represents an extensibility element added to a WSDL InputBinding object. It indicates that the request
will send data using the standard URL encoding format ("name=value&name2=value2") over HTTP.
This class does not provide any properties.

Public NotInheritable Class HttpUrlEncodedBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  HttpUrlEncodedBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpUrlReplacementBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

Represents an extensibility element added to a WSDL InputBinding object. It indicates that the request
will send data using a custom format over HTTP.

Public NotInheritable Class HttpUrlReplacementBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  HttpUrlReplacementBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Import NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <import> element, which associates an XML namespace with a
document location. The familiar XML equivalent is <import namespace="uri" location="uri"/>. This
equivalent allows a WSDL document to be split into multiple subdocuments, each with a unique XML
namespace, which can then be imported as needed.

Public NotInheritable Class Import : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Location As String  
   Public Property Namespace As String  
   Public ReadOnly Property ServiceDescription As ServiceDescription  
End Class

Hierarchy

System.Object  DocumentableItem  Import

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ImportCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of Import objects is used by the Imports property of the ServiceDescription class to
specify XML namespaces for a WSDL document. You can retrieve an individual Import object by index
number.

Public NotInheritable Class ImportCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default Property Item(
        ByVal index As Integer) As Import  
' Public Instance Methods
   Public Function Add(ByVal import As Import) As Integer  
   Public Function Contains(
        ByVal import As Import) As Boolean  
   Public Sub CopyTo(ByVal array As Import(), 
        ByVal index As Integer) 
   Public Function IndexOf(ByVal import As Import) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal import As Import) 
   Public Sub Remove(ByVal import As Import) 
' Protected Instance Methods
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
ImportCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

InputBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This specific binding is used to specify the encoding of an input message. The InputBinding class
provides a Extensions property, which contains a collection consisting of a single binding. This binding
varies depending on the type of protocol that this element applies to (HTTP POST, HTTP GET, or
SOAP). For example, this collection would contain a HttpUrlEncodedBinding for HTTP GET messages, a
MimeContentBinding for HTTP POST messages, or a SoapBodyBinding for SOAP messages.

Public NotInheritable Class InputBinding : Inherits MessageBinding
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
End Class

Hierarchy

System.Object  DocumentableItem  MessageBinding  InputBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Message NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <message> element, which is used to describe the contents of
message exchanged between a client and the Web Service. For every method in a web service, a
WSDL document contains an input and output message. There are also separate message definitions
for every protocol type. For example, for a method called GetInfo, ASP.NET would generate
GetInfoHttpPostIn and GetInfoHttpPostOut messages, along with corresponding messages for HTTP
GET and SOAP. Messages consist of zero or more MessagePart objects, which specify method
parameters and return values.

Public NotInheritable Class Message : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Name As String  
   Public ReadOnly Property Parts As MessagePartCollection  
   Public ReadOnly Property ServiceDescription As ServiceDescription  
' Public Instance Methods
   Public Function FindPartByName(
        ByVal partName As String) As MessagePart  
   Public Function FindPartsByName(
        ByVal partNames As String()) As MessagePart()  
End Class

Hierarchy

System.Object  DocumentableItem  Message

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MessageBinding MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This abstract class is implemented by FaultBinding, InputBinding, and OutputBinding. Binding specifies
how abstract data formats are mapped to the concrete protocol used for transmission.

Public MustInherit Class MessageBinding : Inherits DocumentableItem
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   MustInherit Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
   Public Property Name As String  
   Public ReadOnly Property OperationBinding As OperationBinding  
End Class

Hierarchy

System.Object  DocumentableItem  MessageBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MessageCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of Message objects is used by the Messages property of the ServiceDescription class to
represent all <message> elements in a WSDL document. You can access an invidual Message by name
or position (index number).

Public NotInheritable Class MessageCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As Message  
   Public Default Property Item(
        ByVal index As Integer) As Message  
' Public Instance Methods
   Public Function Add(ByVal message As Message) As Integer  
   Public Function Contains(
        ByVal message As Message) As Boolean  
   Public Sub CopyTo(ByVal array As Message(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal message As Message) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal message As Message) 
   Public Sub Remove(ByVal message As Message) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
MessageCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MessagePart NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents a WSDL <part> element, which is contained in a <message> element. Each
MessagePart object corresponds to a single parameter or a return value for a function, and specifies
the variable's Name and either an XML Type or an XML Element, which refers to an element from the
Types collection.

For example, a GetStockQuote method would have several messages, including
GetStockQuoteHttpGetOut, and would have a single MessagePart representing the return value. Return
values are given the Name "parameters" for a SOAP request or "Body" for an HTTP request.

Public NotInheritable Class MessagePart : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Element As XmlQualifiedName  
   Public ReadOnly Property Message As Message  
   Public Property Name As String  
   Public Property Type As XmlQualifiedName  
End Class

Hierarchy

System.Object  DocumentableItem  MessagePart

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MessagePartCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of MessagePart objects is used by the Parts property of the Message class to represent
the return value and parameters of a message. You can access an invidual MessagePart by name or
position (index number).

Public NotInheritable Class MessagePartCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As MessagePart  
   Public Default Property Item(
        ByVal index As Integer) As MessagePart  
' Public Instance Methods
   Public Function Add(
        ByVal messagePart As MessagePart) As Integer  
   Public Function Contains(
        ByVal messagePart As MessagePart) As Boolean  
   Public Sub CopyTo(ByVal array As MessagePart(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal messagePart As MessagePart) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal messagePart As MessagePart) 
   Public Sub Remove(ByVal messagePart As MessagePart) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
MessagePartCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeContentBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This binding represents an extensibility element added to an InputBinding or an OutputBinding
element.

This binding is generally used for an HTTP POST input message (represented by OperationInput). It
includes a Type property, which specifies the MIME encoding type (typically application/x-www-form-
urlencoded) used for encoding data for HTTP transmission. The Part property specifes the name of the
message part to which the binding applies.

Public NotInheritable Class MimeContentBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const Namespace As String       // =http://schemas.xmlsoap.org/wsdl/mime/
' Public Instance Properties
   Public Property Part As String  
   Public Property Type As String  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  MimeContentBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeMultipartRelatedBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

Represents an extensibility element added to an InputBinding or an OutputBinding element. This class
supports multipart MIME messages that use different MIME types for different portions of the message
body.

The Parts property provides a collection of MessagePart objects. Each one represents an extensibility
element added to the MimeMultipartRelatedBinding to specify the MIME format for a single portion of
the MIME message.

Public NotInheritable Class MimeMultipartRelatedBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Parts As MimePartCollection  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  MimeMultipartRelatedBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimePart NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to a MimeMultipartRelatedBinding object. The
Extensions collection can include MimeContentBinding, MimeXmlBinding, and SoapBodyBinding objects.
Each one specifies the concrete MIME type for a portion of the multipart MIME message (these classes
all provide a Part property that references the MessagePart object to which the MIME binding applies).

Public NotInheritable Class MimePart : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  MimePart

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimePartCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class provides a collection of MimePart objects used by the MimeMultipartRelatedBinding class.
Individual MimePart objects can be retrieved only by index number.

Public NotInheritable Class MimePartCollection : Inherits CollectionBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal index As Integer) As MimePart  
' Public Instance Methods
   Public Function Add(ByVal mimePart As MimePart) As Integer  
   Public Function Contains(
        ByVal mimePart As MimePart) As Boolean  
   Public Sub CopyTo(ByVal array As MimePart(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal mimePart As MimePart) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal mimePart As MimePart) 
   Public Sub Remove(ByVal mimePart As MimePart) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  MimePartCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeTextBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to an InputBinding, an OutputBinding, or a MimePart
object. It includes a single Matches property, which specifies the text patterns for which the HTTP
transmission is searched.

Public NotInheritable Class MimeTextBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const Namespace As String                              // =http://microsoft.com/wsdl/mime/textMatching/
' Public Instance Properties
   Public ReadOnly Property Matches As MimeTextMatchCollection  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  MimeTextBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeTextMatch NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents a text pattern that will be searched for in the HTTP transmission. Type specifies
the MIME type of the message, Pattern specifies the pattern, and Repeats sets the number of times
the search will be performed (the default is 1, but you can specify System.Int32.MaxValue to get all
matches.)

Public NotInheritable Class MimeTextMatch
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Capture As Integer  
   Public Property Group As Integer  
   Public Property IgnoreCase As Boolean  
   Public ReadOnly Property Matches As MimeTextMatchCollection  
   Public Property Name As String  
   Public Property Pattern As String  
   Public Property Repeats As Integer  
   Public Property RepeatsString As String  
   Public Property Type As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeTextMatchCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class provides a collection of MimeTextMatch objects used by the MimeTextBinding class.
Individual MimePart objects can be retrieved only by index number.

Public NotInheritable Class MimeTextMatchCollection : Inherits CollectionBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal index As Integer) As MimeTextMatch  
' Public Instance Methods
   Public Function Add(
        ByVal match As MimeTextMatch) As Integer  
   Public Function Contains(
        ByVal match As MimeTextMatch) As Boolean  
   Public Sub CopyTo(ByVal array As MimeTextMatch(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal match As MimeTextMatch) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal match As MimeTextMatch) 
   Public Sub Remove(ByVal match As MimeTextMatch) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  MimeTextMatchCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeXmlBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to an InputBinding, an OutputBinding, or a
MimePart object. It specifies an XML schema for messages, but is not SOAP-compliant. By default,
ASP.NET uses this binding for HTTP GET and POST output messages, which are represented by the
OperationOutput class.

Public NotInheritable Class MimeXmlBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Part As String  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  MimeXmlBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Operation NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <operation> element. It describes an operation, which consists of one
or more OperationMessage objects. In a WSDL document, an <operation> element exists for every
method in your web service. (Actually, there will be three copies of this set of operation elements—
one for each different type of transmission, contained in differently named <portType> elements.)

Every operation is associated with exactly one OperationInput and one OperationOutput object.

Public NotInheritable Class Operation : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Faults As OperationFaultCollection  
   Public ReadOnly Property Messages As OperationMessageCollection  
   Public Property Name As String  
   Public Property ParameterOrder As String()  
   Public Property ParameterOrderString As String  
   Public ReadOnly Property PortType As PortType  
' Public Instance Methods
   Public Function IsBoundBy(
        ByVal operationBinding As OperationBinding) As Boolean  
End Class

Hierarchy

System.Object  DocumentableItem  Operation
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the <operation> element in the <binding> element of a WSDL document. Each
OperationBinding specifies how the abstract data for input and output messages is encoded. The
binding thus consists of InputBinding and OutputBinding objects, and optionally, a FaultBinding object.

Public NotInheritable Class OperationBinding : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Binding As Binding  
   Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
   Public ReadOnly Property Faults As FaultBindingCollection  
   Public Property Input As InputBinding  
   Public Property Name As String  
   Public Property Output As OutputBinding  
End Class

Hierarchy

System.Object  DocumentableItem  OperationBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationBindingCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of OperationBinding objects is used for the Operations property of the Binding class. You
can access each OperationBinding element by position (index number).

Public NotInheritable Class OperationBindingCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default Property Item(
        ByVal index As Integer) As OperationBinding  
' Public Instance Methods
   Public Function Add(
        ByVal bindingOperation As OperationBinding) As Integer  
   Public Function Contains(
        ByVal bindingOperation As OperationBinding) As Boolean  
   Public Sub CopyTo(ByVal array As OperationBinding(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal bindingOperation As OperationBinding) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal bindingOperation As OperationBinding) 
   Public Sub Remove(
        ByVal bindingOperation As OperationBinding) 
' Protected Instance Methods
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
OperationBindingCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of Operation objects is used by the Operations property of the PortType class. You can
access each Operation element by position (index number).

Public NotInheritable Class OperationCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default Property Item(
        ByVal index As Integer) As Operation  
' Public Instance Methods
   Public Function Add(
        ByVal operation As Operation) As Integer  
   Public Function Contains(
        ByVal operation As Operation) As Boolean  
   Public Sub CopyTo(ByVal array As Operation(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal operation As Operation) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal operation As Operation) 
   Public Sub Remove(ByVal operation As Operation) 
' Protected Instance Methods
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
OperationCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationFault NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents a OperationMessage object that defines the specifications for error messages
returned by a Web Service.

Public NotInheritable Class OperationFault : Inherits OperationMessage
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object  DocumentableItem  OperationMessage  OperationFault

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationFaultCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of OperationFault objects is used by the Operation.Faults property. You can access each
OperationFault element by name or position (index number).

Public NotInheritable Class OperationFaultCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As OperationFault  
   Public Default Property Item(
        ByVal index As Integer) As OperationFault  
' Public Instance Methods
   Public Function Add(
        ByVal operationFaultMessage As OperationFault) As Integer  
   Public Function Contains(
        ByVal operationFaultMessage As OperationFault) As Boolean  
   Public Sub CopyTo(ByVal array As OperationFault(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal operationFaultMessage As OperationFault) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal operationFaultMessage As OperationFault) 
   Public Sub Remove(
        ByVal operationFaultMessage As OperationFault) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
OperationFaultCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationFlow Enum

System.Web.Services.Description
(system.web.services.dll) serializable

This enumeration is used for the OperationMessageCollection.Flow property. It indicates the direction of
message transmission. Notification indicates that an endpoint or service sends a message. OneWay
indicates that the endpoint or service receives a message. RequestResponse indicates that an endpoint
or services receives the message, and then sends a response, while SolicitResponse indicates the
reverse.

Public Enum OperationFlow
   None = 0
   OneWay = 1
   Notification = 2
   RequestResponse = 3
   SolicitResponse = 4
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  OperationFlow

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationInput NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <input> element. It defines an abstract message format for sending
information to a specific web method by referring to the appropriate Message object.

Public NotInheritable Class OperationInput : Inherits OperationMessage
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object  DocumentableItem  OperationMessage  OperationInput

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationMessage MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This abstract class represents the WSDL <message> element. There are two types of operations
recognized in WSDL, input and output. These operations are represented specifically by the classes
OperationInput and OperationOutput, both of which derive from this class. OperationFault also derives
from this class.

Public MustInherit Class OperationMessage : Inherits DocumentableItem
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property Message As XmlQualifiedName  
   Public Property Name As String  
   Public ReadOnly Property Operation As Operation  
End Class

Hierarchy

System.Object  DocumentableItem  OperationMessage

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationMessageCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of OperationMessage objects is used by the Messages property of the Operation class.
You can access each OperationMessage element by position (index number).

Public NotInheritable Class OperationMessageCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public ReadOnly Property Flow As OperationFlow  
   Public ReadOnly Property Input As OperationInput  
   Public Default Property Item(
        ByVal index As Integer) As OperationMessage  
   Public ReadOnly Property Output As OperationOutput  
' Public Instance Methods
   Public Function Add(
        ByVal operationMessage As OperationMessage) As Integer  
   Public Function Contains(
        ByVal operationMessage As OperationMessage) As Boolean  
   Public Sub CopyTo(ByVal array As OperationMessage(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal operationMessage As OperationMessage) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal operationMessage As OperationMessage) 
   Public Sub Remove(
        ByVal operationMessage As OperationMessage) 
' Protected Instance Methods
   Overrides Protected Sub OnInsert(ByVal index As Integer, 
        ByVal value As Object) 
   Overrides Protected Sub OnSet(ByVal index As Integer, 
        ByVal oldValue As Object, ByVal newValue As Object) 
   Overrides Protected Sub OnValidate(ByVal value As Object) 
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
OperationMessageCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OperationOutput NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <output> element. It defines an abstract message format for
retrieving information from a specific web method (by referring to the appropriate Message object).

Public NotInheritable Class OperationOutput : Inherits OperationMessage
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object  DocumentableItem  OperationMessage  OperationOutput
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OutputBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This specific binding is used to specify the encoding of an output message. The OutputBinding class
provides a Extensions property, which contains a collection of one binding. This binding varies
depending on the type of protocol that this element applies to (HTTP POST, HTTP GET, or SOAP). For
example, this collection would contain a MimeXmlBinding for HTTP messages and a SoapBodyBinding
for SOAP messages.

Public NotInheritable Class OutputBinding : Inherits MessageBinding
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
End Class

Hierarchy

System.Object  DocumentableItem  MessageBinding  OutputBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Port NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <port> element. It defines a service endpoint, which is the URL
required to access the web service. In a WSDL document generated by ASP.NET, you will find three
<port> elements—one for each type of transmission (HTTP GET, HTTP POST, and SOAP). Each
element will point to the same URL, which is the fully qualified location of your .asmx file (for
example, http://www.mysite.com/ws/MyService.asmx)

Public NotInheritable Class Port : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Binding As XmlQualifiedName  
   Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
   Public Property Name As String  
   Public ReadOnly Property Service As Service  
End Class

Hierarchy

System.Object  DocumentableItem  Port

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PortCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of Port objects is used by the Ports property of the Service class to represent all the
<port> elements in a WSDL document. You can access each Port element by name or position (index
number).

Public NotInheritable Class PortCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As Port  
   Public Default Property Item(
        ByVal index As Integer) As Port  
' Public Instance Methods
   Public Function Add(ByVal port As Port) As Integer  
   Public Function Contains(ByVal port As Port) As Boolean  
   Public Sub CopyTo(ByVal array As Port(), 
        ByVal index As Integer) 
   Public Function IndexOf(ByVal port As Port) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal port As Port) 
   Public Sub Remove(ByVal port As Port) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
PortCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PortType NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <portType> element. It groups a set of related Operation objects, and
identifies them with a Name. In a WSDL document generated by ASP.NET, there are three <portType>
elements—one relating to HTTP GET, another for HTTP POST, and one for SOAP transmissions.
ASP.NET creates these elements using the name of your web service and adding a suffix describing
the type of transmission (for example, MyWebServiceHttpGet).

Public NotInheritable Class PortType : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Name As String  
   Public ReadOnly Property Operations As OperationCollection  
   Public ReadOnly Property ServiceDescription As ServiceDescription  
End Class

Hierarchy

System.Object  DocumentableItem  PortType

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PortTypeCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of PortType objects (which are themselves collections of Operation objects) is used by
the PortTypes property of the ServiceDescription class to represent all <portType> elements in a WSDL
document. You can access each PortType element by name or position (index number).

Public NotInheritable Class PortTypeCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As PortType  
   Public Default Property Item(
        ByVal index As Integer) As PortType  
' Public Instance Methods
   Public Function Add(ByVal portType As PortType) As Integer  
   Public Function Contains(
        ByVal portType As PortType) As Boolean  
   Public Sub CopyTo(ByVal array As PortType(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal portType As PortType) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal portType As PortType) 
   Public Sub Remove(ByVal portType As PortType) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
PortTypeCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ProtocolImporter MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This type supports the .NET Framework infrastructure. You don't need to use it directly in your code.

Public MustInherit Class ProtocolImporter
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public ReadOnly Property AbstractSchemas As XmlSchemas  
   Public ReadOnly Property Binding As Binding  
   Public ReadOnly Property ClassName As String  
   Public ReadOnly Property ClassNames As CodeIdentifiers  
   Public ReadOnly Property CodeNamespace As CodeNamespace  
   Public ReadOnly Property CodeTypeDeclaration As CodeTypeDeclaration  
   Public ReadOnly Property ConcreteSchemas As XmlSchemas  
   Public ReadOnly Property InputMessage As Message  
   Public ReadOnly Property MethodName As String  
   Public ReadOnly Property Operation As Operation  
   Public ReadOnly Property OperationBinding As OperationBinding  
   Public ReadOnly Property OutputMessage As Message  
   Public ReadOnly Property Port As Port  
   Public ReadOnly Property PortType As PortType  
   MustInherit Public ReadOnly Property ProtocolName As String  
   Public ReadOnly Property Schemas As XmlSchemas  
   Public ReadOnly Property Service As Service  
   Public ReadOnly Property ServiceDescriptions As ServiceDescriptionCollection  
   Public ReadOnly Property Style As ServiceDescriptionImportStyle  
   Public Property Warnings As ServiceDescriptionImportWarnings  
' Public Instance Methods
   Public Sub AddExtensionWarningComments(
        ByVal comments As System.CodeDom.CodeCommentStatementCollection, 
        ByVal extensions As ServiceDescriptionFormatExtensionCollection) 
   Public Function OperationBindingSyntaxException(
        ByVal text As String) As Exception  
   Public Function OperationSyntaxException(
        ByVal text As String) As Exception  
   Public Sub UnsupportedBindingWarning(ByVal text As String) 
   Public Sub UnsupportedOperationBindingWarning(
        ByVal text As String) 
   Public Sub UnsupportedOperationWarning(
        ByVal text As String) 
' Protected Instance Methods
   MustInherit Protected Function BeginClass(
        ) As CodeTypeDeclaration  
   Overridable Protected Sub BeginNamespace() 
   Overridable Protected Sub EndClass() 
   Overridable Protected Sub EndNamespace() 
   MustInherit Protected Function GenerateMethod(
        ) As CodeMemberMethod  
   MustInherit Protected Function IsBindingSupported() As Boolean  
   MustInherit Protected Function IsOperationFlowSupported(
        ByVal flow As OperationFlow) As Boolean  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ProtocolReflector MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This type supports the .NET Framework infrastructure. You don't need to use it directly in your code.

Public MustInherit Class ProtocolReflector
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public ReadOnly Property Binding As Binding  
   Public ReadOnly Property DefaultNamespace As String  
   Public ReadOnly Property HeaderMessages As MessageCollection  
   Public ReadOnly Property InputMessage As Message  
   Public ReadOnly Property Method As LogicalMethodInfo  
   Public ReadOnly Property MethodAttribute As WebMethodAttribute  
   Public ReadOnly Property Methods As LogicalMethodInfo()  
   Public ReadOnly Property Operation As Operation  
   Public ReadOnly Property OperationBinding As OperationBinding  
   Public ReadOnly Property OutputMessage As Message  
   Public ReadOnly Property Port As Port  
   Public ReadOnly Property PortType As PortType  
   MustInherit Public ReadOnly Property ProtocolName As String  
   Public ReadOnly Property ReflectionImporter As XmlReflectionImporter  
   Public ReadOnly Property SchemaExporter As XmlSchemaExporter  
   Public ReadOnly Property Schemas As XmlSchemas  
   Public ReadOnly Property Service As Service  
   Public ReadOnly Property ServiceDescription As ServiceDescription  
   Public ReadOnly Property ServiceDescriptions As ServiceDescriptionCollection  
   Public ReadOnly Property ServiceType As Type  
   Public ReadOnly Property ServiceUrl As String  
' Public Instance Methods
   Public Function GetServiceDescription(
        ByVal ns As String) As ServiceDescription  
' Protected Instance Methods
   Overridable Protected Sub BeginClass() 
   Overridable Protected Sub EndClass() 
   MustInherit Protected Function ReflectMethod() As Boolean  
   Overridable Protected Function ReflectMethodBinding(
        ) As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Service NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <service> element. It groups multiple related Port objects and
identifies them with a Name. To invoke a web service method, a client sends a SOAP request
identifying the service, the port in that service, and the operation it wants executed along with the
input parameter values.

Public NotInheritable Class Service : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
   Public Property Name As String  
   Public ReadOnly Property Ports As PortCollection  
   Public ReadOnly Property ServiceDescription As ServiceDescription  
End Class

Hierarchy

System.Object  DocumentableItem  Service
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of Service objects is used by the Services property of the ServiceDescription class to
represent all <service> elements in a WSDL document. You can access each Service element by name
or position (index number).

Public NotInheritable Class ServiceCollection : Inherits ServiceDescriptionBaseCollection
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal name As String) As Service  
   Public Default Property Item(
        ByVal index As Integer) As Service  
' Public Instance Methods
   Public Function Add(ByVal service As Service) As Integer  
   Public Function Contains(
        ByVal service As Service) As Boolean  
   Public Sub CopyTo(ByVal array As Service(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal service As Service) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal service As Service) 
   Public Sub Remove(ByVal service As Service) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
ServiceCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescription NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

The ServiceDescription class represents a valid WSDL document, complete with appropriate
namespaces, elements and attributes. The elements of the WSDL file are all represented by other,
distinct classes in the System.Web.Services.Description namespace, and provided through the
properties of the ServiceDescription class. At the top level, a WSDL document contains a series of
definitions in a <definitions> element. These definitions define Types, Message, PortType, Binding, and
Service elements.

The ServiceDescription class also provides a Read() and Write() method. Both methods are overloaded
to allow you serialize information to or from a System.IO.Stream, a System.IO.TextReader, a
System.IO.TextWriter, a System.Xml.XmlReader, a System.Xml.XmlWriter, or a string containing a fully
qualified path and filename.

There are three ways to create a ServiceDescription object. You can use the New keyword and create
one manually, you can use the ServiceDescriptionReflector to create one from a live web service, or
you can use the shared Read() method to create one from a WSDL file. For example, you can create a
ServiceDescription object with all its fully populated subobjects by using a syntax like MyServiceDesc =
ServiceDescription.Read("MyFile.xml").

Public NotInheritable Class ServiceDescription : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const Namespace As String       // =http://schemas.xmlsoap.org/wsdl/
' Public Shared Properties
   Public Shared ReadOnly Property Serializer As XmlSerializer  
' Public Instance Properties
   Public ReadOnly Property Bindings As BindingCollection  
   Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
   Public ReadOnly Property Imports As ImportCollection  
   Public ReadOnly Property Messages As MessageCollection  
   Public Property Name As String  
   Public ReadOnly Property PortTypes As PortTypeCollection  
   Public Property RetrievalUrl As String  
   Public ReadOnly Property ServiceDescriptions As ServiceDescriptionCollection  
   Public ReadOnly Property Services As ServiceCollection  
   Public Property TargetNamespace As String  
   Public Property Types As Types  
' Public Shared Methods
   Public Shared Function CanRead(
        ByVal reader As System.Xml.XmlReader) As Boolean  
   Public Shared Function Read(
        ByVal stream As System.IO.Stream) As ServiceDescription  
   Public Shared Function Read(
        ByVal fileName As String) As ServiceDescription  
   Public Shared Function Read(
        ByVal textReader As System.IO.TextReader) As ServiceDescription  
   Public Shared Function Read(
        ByVal reader As System.Xml.XmlReader) As ServiceDescription  
' Public Instance Methods
   Public Sub Write(ByVal stream As System.IO.Stream) 
   Public Sub Write(ByVal fileName As String) 
   Public Sub Write(ByVal writer As System.IO.TextWriter) 
   Public Sub Write(ByVal writer As System.Xml.XmlWriter) 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Sub Write(ByVal writer As System.Xml.XmlWriter) 
End Class

Hierarchy

System.Object  DocumentableItem  ServiceDescription

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionBaseCollection MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This is the base class for many of the strongly typed collection classes in this namespace. Classes that
derive from ServiceDescriptionBaseCollection end with the word "Collection," as in PortCollection. These
classes are strongly typed, but not named. This differs from the classes that represent WSDL
language elements. For example, the PortType class represents a WSDL language element, contains
other elements as Operation objects, and does not inherit from ServiceDescriptionBaseCollection.

Public MustInherit Class ServiceDescriptionBaseCollection : Inherits CollectionBase
' Protected Instance Properties
   Overridable Protected Property Table As IDictionary  
' Protected Instance Methods
   Overridable Protected Function GetKey(
        ByVal value As Object) As String  
   Overrides Protected Sub OnClear() 
   Overrides Protected Sub OnInsertComplete(
        ByVal index As Integer, ByVal value As Object) 
   Overrides Protected Sub OnRemove(ByVal index As Integer, 
        ByVal value As Object) 
   Overrides Protected Sub OnSet(ByVal index As Integer, 
        ByVal oldValue As Object, ByVal newValue As Object) 
   Overridable Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This is a collection of ServiceDescription objects. Every ServiceDescription object provides a reference to
the ServiceDescriptionCollection that it is a part of in its ServiceDescription.ServiceDescriptions property.
You can access each ServiceDescription element by name or position (index number).

Public NotInheritable Class ServiceDescriptionCollection : Inherits ServiceDescriptionBaseCollection
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default ReadOnly Property Item(
        ByVal ns As String) As ServiceDescription  
   Public Default Property Item(
        ByVal index As Integer) As ServiceDescription  
' Public Instance Methods
   Public Function Add(
        ByVal serviceDescription As ServiceDescription) As Integer  
   Public Function Contains(
        ByVal serviceDescription As ServiceDescription) As Boolean  
   Public Sub CopyTo(ByVal array As ServiceDescription(), 
        ByVal index As Integer) 
   Public Function GetBinding(
        ByVal name As System.Xml.XmlQualifiedName) As Binding  
   Public Function GetMessage(
        ByVal name As System.Xml.XmlQualifiedName) As Message  
   Public Function GetPortType(
        ByVal name As System.Xml.XmlQualifiedName) As PortType  
   Public Function GetService(
        ByVal name As System.Xml.XmlQualifiedName) As Service  
   Public Function IndexOf(
        ByVal serviceDescription As ServiceDescription) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal serviceDescription As ServiceDescription) 
   Public Sub Remove(
        ByVal serviceDescription As ServiceDescription) 
' Protected Instance Methods
   Overrides Protected Function GetKey(
        ByVal value As Object) As String  
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
ServiceDescriptionCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionFormatExtension MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This abstract class allows you to create a WSDL extensibility element. Extensibility elements can be
added at many levels by adding a ServiceDescriptionFormatExtension object to the Extensions collection
of a class in this namespace. Note that you will also need to derive your own SoapExtensionImporter
class if you need to extend the import process to use your extensibility element when generating a
proxy class.

Public MustInherit Class ServiceDescriptionFormatExtension
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property Handled As Boolean  
   Public ReadOnly Property Parent As Object  
   Public Property Required As Boolean  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionFormatExtensionCollection NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This collection of objects is derived from ServiceDescriptionFormatExtension. It is used in various
classes in this namespace, including Types, Port, Service, and Binding, allowing you to implement type
extensions at several different levels. For example, the InputBinding.Extensions property provides a
ServiceDescriptionFormatExtensionCollection that could contain a HttpUrlEncodedBinding or
SoapBodyBinding.

Public NotInheritable Class ServiceDescriptionFormatExtensionCollection : Inherits_
        ServiceDescriptionBaseCollection
' Public Constructors
   Public Sub New(ByVal parent As Object) 
' Public Instance Properties
   Public Default Property Item(
        ByVal index As Integer) As Object Implements IList.Item 
' Public Instance Methods
   Public Function Add(
        ByVal extension As Object) As Integer Implements IList.Add 
   Public Function Contains(
        ByVal extension As Object) As Boolean Implements IList.Contains 
   Public Sub CopyTo(ByVal array As Object(), 
        ByVal index As Integer) 
   Public Function Find(ByVal type As Type) As Object  
   Public Function Find(ByVal name As String, 
        ByVal ns As String) As XmlElement  
   Public Function FindAll(ByVal type As Type) As Object()  
   Public Function FindAll(ByVal name As String, 
        ByVal ns As String) As XmlElement()  
   Public Function IndexOf(
        ByVal extension As Object) As Integer Implements IList.IndexOf 
   Public Sub Insert(ByVal index As Integer, 
        ByVal extension As Object) Implements IList.Insert 
   Public Function IsHandled(ByVal item As Object) As Boolean  
   Public Function IsRequired(
        ByVal item As Object) As Boolean  
   Public Sub Remove(
        ByVal extension As Object) Implements IList.Remove 
' Protected Instance Methods
   Overrides Protected Sub OnValidate(ByVal value As Object) 
   Overrides Protected Sub SetParent(ByVal value As Object, 
        ByVal parent As Object) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  ServiceDescriptionBaseCollection
ServiceDescriptionFormatExtensionCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionImporter Class

System.Web.Services.Description (system.web.services.dll)

The ServiceDescriptionImporter is used to programmatically create a proxy class for a web service.
Clients invoke web service methods by creating an instance of the proxy class and invoking the
corresponding method on the proxy class.

To create a proxy class, first use the AddServiceDescription() method to add a ServiceDescription to the
ServiceDescriptions collection. Then create the proxy class with the Import() method.

When using the AddServiceDescription() method, use the appSettingUrlKey and appSettingBaseUrl
parameters to specify how the Url property will be generated for the web service proxy class.

Public Class ServiceDescriptionImporter
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property ProtocolName As String  
   Public ReadOnly Property Schemas As XmlSchemas  
   Public ReadOnly Property ServiceDescriptions As ServiceDescriptionCollection  
   Public Property Style As ServiceDescriptionImportStyle  
' Public Instance Methods
   Public Sub AddServiceDescription(
        ByVal serviceDescription As ServiceDescription, 
        ByVal appSettingUrlKey As String, 
        ByVal appSettingBaseUrl As String) 
   Public Function Import(
        ByVal codeNamespace As System.CodeDom.CodeNamespace, 
        ByVal codeCompileUnit As System.CodeDom.CodeCompileUnit) As_
         ServiceDescriptionImportWarnings  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionImportStyle Enum

System.Web.Services.Description
(system.web.services.dll) serializable

This enumeration is used for the ServiceDescriptionImporter.Style property; it specifies whether a
ServiceDescriptionImporter.Import() method call will be made to the server or client. When you import
to the client computer, you will receive a proxy class with synchronous and asynchronous methods for
invoking each method within the web service, just as if .NET generated the proxy class for you
automatically. A server import, however, will generate an abstract class with abstract members,
which you must override to provide the appropriate implementation.

Public Enum ServiceDescriptionImportStyle
   Client = 0
   Server = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ServiceDescriptionImportStyle

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionImportWarnings Enum

System.Web.Services.Description
(system.web.services.dll) serializable

This enumeration is used for the return value from the ServiceDescriptionImporter.Import() method. It
can indicate common problems creating the proxy class, including the failure to create a required or
optional ServiceDescriptionFormatExtension or an unsupported type of Binding or Operation.

Public Enum ServiceDescriptionImportWarnings
   NoCodeGenerated = 1
   OptionalExtensionsIgnored = 2
   RequiredExtensionsIgnored = 4
   UnsupportedOperationsIgnored = 8
   UnsupportedBindingsIgnored = 16
   NoMethodsGenerated = 32
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ServiceDescriptionImportWarnings
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServiceDescriptionReflector Class

System.Web.Services.Description (system.web.services.dll)

This class allows you to dynamically create a ServiceDescription object that represents a "live" web
service. To use this class, invoke the Reflect() method with the web service URL as a string. The WSDL
document for the web service will be added to the ServiceDescriptions collection. You can also retrieve
any associated XML schemas from the Schemas collection.

Public Class ServiceDescriptionReflector
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Schemas As XmlSchemas  
   Public ReadOnly Property ServiceDescriptions As ServiceDescriptionCollection  
' Public Instance Methods
   Public Sub Reflect(ByVal type As Type, ByVal url As String) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapAddressBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to the WSDL <port> element, which enables
SOAP binding to a specific web service address. The Location property specifies the base URI for the
web service port.

Public NotInheritable Class SoapAddressBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Location As String  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  SoapAddressBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to the WSDL <binding> element, which allows
information to be transmitted via SOAP encoding. The Style property specifies whether Document or
RPC encoding is used, and the Transport property specifies a URI (such as "SMTP" or "HTTP").

Public NotInheritable Class SoapBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const HttpTransport As String       // =http://schemas.xmlsoap.org/soap/http
   public const Namespace As String       // =http://schemas.xmlsoap.org/wsdl/soap/
' Public Instance Properties
   Public Property Style As SoapBindingStyle  
   Public Property Transport As String  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  SoapBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapBindingStyle Enum

System.Web.Services.Description
(system.web.services.dll) serializable

This enumeration provides different SOAP transport options. Procedure-oriented messages use the
Rpc value and can contain parameters and return values. Document-oriented messages, however, use
the value Document and typically contain documents.

Public Enum SoapBindingStyle
   Default = 0
   Document = 1
   Rpc = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  SoapBindingStyle

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapBindingUse Enum

System.Web.Services.Description
(system.web.services.dll) serializable

This enumeration applies to SOAP extensibility elements and specifies the XML encoding of a
message. Encoded specifies that the message parts are encoded using the given encoding rules
(which are usually specified in a corresponding Encoding property), while Literal indicates that the
message parts represent a concrete schema and Default specifies an empty string for the
corresponding XML use attribute. Classes that use this enumeration expose a Use property (as in
SoapBodyBinding.Use and SoapFaultBinding.Use).

Public Enum SoapBindingUse
   Default = 0
   Encoded = 1
   Literal = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  SoapBindingUse

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapBodyBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to an InputBinding or an OutputBinding object.
This binding is used for an SOAP input and output messages (represented by OperationInput and
OperationOutput objects). It specifies that data is encoded for SOAP transmission and does not
provide any properties.

Public NotInheritable Class SoapBodyBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Encoding As String  
   Public Property Namespace As String  
   Public Property Parts As String()  
   Public Property PartsString As String  
   Public Property Use As SoapBindingUse  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  SoapBodyBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapExtensionImporter MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This class is used by the .NET framework, not directly by your code.

Public MustInherit Class SoapExtensionImporter
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property ImportContext As SoapProtocolImporter  
' Public Instance Methods
   MustInherit Public Sub ImportMethod(
        ByVal metadata As System.CodeDom.CodeAttributeDeclarationCollection) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapExtensionReflector MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This class is used by the .NET framework, not directly by your code.

Public MustInherit Class SoapExtensionReflector
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property ReflectionContext As ProtocolReflector  
' Public Instance Methods
   MustInherit Public Sub ReflectMethod() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapFaultBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to the WSDL <fault> element (enclosed in the
<operation> element) that allows information to be transmitted via SOAP. The encoding is indicated
with the Encoding and Use properties and the namespace with the Namespace property.

Public NotInheritable Class SoapFaultBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Encoding As String  
   Public Property Namespace As String  
   Public Property Use As SoapBindingUse  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  SoapFaultBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHeaderBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to the WSDL <input> or <output> element
(enclosed in the <operation> element), which allows information to be transmitted via SOAP. The
encoding is indicated with the SoapFaultBinding.Encoding and SoapFaultBinding.Use properties, and the
namespace is indicated with the SoapFaultBinding.Namespace property.

Public NotInheritable Class SoapHeaderBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Encoding As String  
   Public Property MapToProperty As Boolean  
   Public Property Message As XmlQualifiedName  
   Public Property Namespace As String  
   Public Property Part As String  
   Public Property Use As SoapBindingUse  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  SoapHeaderBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHeaderFaultBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to the WSDL <input> or <output> element
(enclosed in the <operation> element) that allows information to be transmitted via SOAP. It specifies
the SOAP header types used to transmit error information within the SOAP header. The encoding is
indicated with the SoapFaultBinding.Encoding and SoapFaultBinding.Use properties and the namespace
with the SoapFaultBinding.Namespace property.

Public NotInheritable Class SoapHeaderFaultBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Encoding As String  
   Public Property Message As XmlQualifiedName  
   Public Property Namespace As String  
   Public Property Part As String  
   Public Property Use As SoapBindingUse  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  SoapHeaderFaultBinding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapOperationBinding NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents an extensibility element added to the WSDL <operation> element, which allows
information to be transmitted via SOAP encoding. The Style property specifies whether Document or
RPC encoding is used, and the SoapAction property contains a string with the URI for the SOAP
header.

Public NotInheritable Class SoapOperationBinding : Inherits ServiceDescriptionFormatExtension
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property SoapAction As String  
   Public Property Style As SoapBindingStyle  
End Class

Hierarchy

System.Object  ServiceDescriptionFormatExtension  SoapOperationBinding
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapProtocolImporter NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class is used by the .NET framework, not directly by your code.

Public NotInheritable Class SoapProtocolImporter : Inherits ProtocolImporter
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property ProtocolName As String  
   Public ReadOnly Property SoapBinding As SoapBinding  
   Public ReadOnly Property SoapExporter As SoapCodeExporter  
   Public ReadOnly Property SoapImporter As SoapSchemaImporter  
   Public ReadOnly Property XmlExporter As XmlCodeExporter  
   Public ReadOnly Property XmlImporter As XmlSchemaImporter  
' Protected Instance Methods
   Overrides Protected Function BeginClass(
        ) As CodeTypeDeclaration  
   Overrides Protected Sub BeginNamespace() 
   Overrides Protected Sub EndClass() 
   Overrides Protected Sub EndNamespace() 
   Overrides Protected Function GenerateMethod(
        ) As CodeMemberMethod  
   Overrides Protected Function IsBindingSupported() As Boolean  
   Overrides Protected Function IsOperationFlowSupported(
        ByVal flow As OperationFlow) As Boolean  
End Class

Hierarchy

System.Object  ProtocolImporter  SoapProtocolImporter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapTransportImporter MustInherit Class

System.Web.Services.Description (system.web.services.dll)

This class serves as a base class for custom classes that import SOAP transmission protocols into web
services. Note, however, that the current implementation of web services does not support these
user-defined classes.

Public MustInherit Class SoapTransportImporter
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property ImportContext As SoapProtocolImporter  
' Public Instance Methods
   MustInherit Public Sub ImportClass() 
   MustInherit Public Function IsSupportedTransport(
        ByVal transport As String) As Boolean  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Types NotInheritable Class

System.Web.Services.Description (system.web.services.dll)

This class represents the WSDL <types> element. It provides abstract data type definitions that can
be used for the WSDL messages. You can access them through the Schemas property. The preferred
(and default) type system used with WSDL is XSD. You can also add type extensibility elements,
which are represented in this class by the Extensions property. This property will contain an empty
collection in the default implementation of this class.

When ASP.NET generates a WSDL document for your web service, it includes an entry in the <types>
element for every method, specifying the input parameter information. It also specifies the return
value information, if applicable, in an entry that has your method name with the word "Response"
added (for example, GetStockQuoteResponse). Additionally, if your Web Method accepts or returns a
custom class or structure, a separate entry will be added to the <types> element to describe the data
members of that class.

Public NotInheritable Class Types : Inherits DocumentableItem
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Extensions As ServiceDescriptionFormatExtensionCollection  
   Public ReadOnly Property Schemas As XmlSchemas  
End Class

Hierarchy

System.Object  DocumentableItem  Types
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 31. The System.Web.Services.DiscoveryNamespace

The System.Web.Services.Discovery namespace includes the classes that model .NET web service
discovery documents (usually seen as .disco or .vsdisco files). These classes are generally not used
directly, as the discovery process is automated in tools such as Visual Studio .NET. However, they
could be used to create programs that worked with discovery documents for reasons other than
consuming a given web service. For example, you could create a utility that parses multiple discovery
documents and retrieves aggregate information.

The discovery process has little to do with Universal Description, Design, Discovery, and Integration
(UDDI), the cross-vendor initiative for publishing information about business and their web services in
an online repository. (In fact, UDDI repositories can provide links to web services or discovery
documents.) Discovery documents are a simple approach--essentially nothing more than a collection
of links without any associated documentation or categorization. These "links" can point to WSDL
service descriptions, XSD schemas, or other discovery documents.

A good starting point to understanding this namespace is the DiscoveryDocument class, which
represents a single .disco or .vsdisco file. The most useful type in this namespace is the
DiscoveryClientProtocol class, which allows you to invoke web service discovery programmatically.
Figure 31-1 shows the types in this namespace.

Figure 31-1. The System.Web.Services.Discovery namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ContractReference Class

System.Web.Services.Discovery (system.web.services.dll)

This class represents a discovery document reference to a WSDL service description. This is the most
common type of reference in a discovery document and the most useful, as it directly corresponds to
a web service that the client can consume. The Contract property returns the
System.Web.Services.Description.ServiceDescription object that represents the service description. Ref
provides the URL to the WSDL document as a string, while DocRef provides the URL to the web
service that the WSDL document describes.

Public Class ContractReference : Inherits DiscoveryReference
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal href As String) 
   Public Sub New(ByVal href As String, 
        ByVal docRef As String) 
' Public Shared Fields
   public const Namespace As String        // =http://schemas.xmlsoap.org/disco/scl/
' Public Instance Properties
   Public ReadOnly Property Contract As ServiceDescription  
   Overrides Public ReadOnly Property DefaultFilename As String  
   Public Property DocRef As String  
   Public Property Ref As String  
   Overrides Public Property Url As String  
' Public Instance Methods
   Overrides Public Function ReadDocument(
        ByVal stream As System.IO.Stream) As Object  
   Overrides Public Sub WriteDocument(
        ByVal document As Object, 
        ByVal stream As System.IO.Stream) 
' Protected Instance Methods
   Overrides Protected Friend Sub Resolve(
        ByVal contentType As String, 
        ByVal stream As System.IO.Stream) 
End Class

Hierarchy

System.Object  DiscoveryReference  ContractReference

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ContractSearchPattern NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public NotInheritable Class ContractSearchPattern : Inherits DiscoverySearchPattern
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Pattern As String  
' Public Instance Methods
   Overrides Public Function GetDiscoveryReference(
        ByVal filename As String) As DiscoveryReference  
End Class

Hierarchy

System.Object  DiscoverySearchPattern  ContractSearchPattern

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryClientDocumentCollection NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class is a collection of DiscoveryDocument instances. It can be used to represent the discovery
documents that are downloaded to a client during the discovery process.

Public NotInheritable Class DiscoveryClientDocumentCollection : Inherits DictionaryBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal url As String) As Object  
   Public ReadOnly Property Keys As ICollection Implements IDictionary.Keys 
   Public ReadOnly Property Values As ICollection Implements IDictionary.Values 
' Public Instance Methods
   Public Sub Add(ByVal url As String, ByVal value As Object) 
   Public Function Contains(ByVal url As String) As Boolean  
   Public Sub Remove(ByVal url As String) 
End Class

Hierarchy

System.Object  System.Collections.DictionaryBase(System.Collections.IDictionary,
System.Collections.ICollection, System.Collections.IEnumerable)  DiscoveryClientDocumentCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryClientProtocol Class

System.Web.Services.Discovery
(system.web.services.dll)

marshal by reference,
disposable

Most types in this namespace are used for modelling discovery documents. This class provides the
utility methods that allow you to reflect on URLs and create the appropriate discovery document
objects. This class is based on two properties: Documents, which contains a collection of discovery
documents, and the References, which will contain a collection of disovery document references when
the discovery process is complete.

To start the discovery process, you need to know the location of the discovery document you want to
process (which could have been retrieved through a service like UDDI). You can then use the
Discover() method and supply the appropriate URL as a string. (Alternatively, you can use the
DiscoverAny() method if you are not sure whether the URL points to a discovery document, WSDL
service description, or XSD file). If the document is valid, the document will be added to the
References and Documents collection. In addition, all references contained in the discovery document
are added to the References collection, but they are not validated.

To verify the discovery document's references (the next stage of the discovery process), you should
use the ResolveOneLevel() method, which moves through the References collection and ensures that all
valid references are added to the Documents collection. Alternatively, you can use the ResolveAll()
method, which will examine any nested discovery documents. For example, if you have a discovery
document that references another discovery document, which references a third discovery document,
the ResolveAll() method will burrow through all the levels. Errors found during the reference resolving
process are not thrown and caught in your code, but added to the Errors collection. Additional
information found in the discovery document (such as SOAP bindings), will be added to the
AdditionalInformation collection.

The DiscoveryClientProtocol class also contains methods that let you download discovery documents to
files on the client computer. You can use the Download() method to send the discovery document at a
specified URL to a System.IO.Stream, and the WriteAll() method writes all discovery documents, XSD
files, and Service Descriptions in the Documents property to the supplied directory. In this case, the
file designated by the topLevelFileName argument is used to store a map of saved documents, which
you can read to recreate the DiscoveryClientProtocol instance by using the ReadAll() method. The
format used in this file is XML.

Public Class DiscoveryClientProtocol : Inherits System.Web.Services.Protocols.HttpWebClientProtocol
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property AdditionalInformation As IList  
   Public ReadOnly Property Documents As DiscoveryClientDocumentCollection  
   Public ReadOnly Property Errors As DiscoveryExceptionDictionary  
   Public ReadOnly Property References As DiscoveryClientReferenceCollection  
' Public Instance Methods
   Public Function Discover(
        ByVal url As String) As DiscoveryDocument  
   Public Function DiscoverAny(
        ByVal url As String) As DiscoveryDocument  
   Public Function Download(ByRef url As String) As Stream  
   Public Function Download(ByRef url As String, 
        ByRef contentType As String) As Stream  
   Public Function ReadAll(
        ByVal topLevelFilename As String) As DiscoveryClientResultCollection  
   Public Sub ResolveAll() 
   Public Sub ResolveOneLevel() 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Sub ResolveOneLevel() 
   Public Function WriteAll(ByVal directory As String, 
        ByVal topLevelFilename As String) As DiscoveryClientResultCollection  
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
System.Web.Services.Protocols.WebClientProtocol
System.Web.Services.Protocols.HttpWebClientProtocol  DiscoveryClientProtocol

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryClientProtocol.DiscoveryClientResultsFile NotInheritable
Class

System.Web.Services.Discovery (system.web.services.dll)

This class provides the results of the DiscoveryClientProtocol.WriteAll() method. The
System.Web.Services.Discovery.DiscoveryClientProtocol.DiscoveryClientResultsFile.Results property
provides a collection of DiscoveryClientResult objects with information about all references that were
written to disk.

Public NotInheritable Class DiscoveryClientProtocol.DiscoveryClientResultsFile
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Results As DiscoveryClientResultCollection  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryClientReferenceCollection NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class represents a collection of discovery document references (links to WSDL service
descriptions, XSD files, or other discovery documents), much like the DiscoveryClientResultCollection
class. However, the DiscoveryClientResultCollection class provides the discovery references from a
single discovery document, while DiscoveryClientReferenceCollection is usually used to provide the
aggregated references from multiple documents. The DiscoveryClientReferenceCollection class is used
by the DiscoveryClientProtocol.References property.

Public NotInheritable Class DiscoveryClientReferenceCollection : Inherits DictionaryBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal url As String) As DiscoveryReference  
   Public ReadOnly Property Keys As ICollection Implements IDictionary.Keys 
   Public ReadOnly Property Values As ICollection Implements IDictionary.Values 
' Public Instance Methods
   Public Sub Add(ByVal value As DiscoveryReference) 
   Public Sub Add(ByVal url As String, 
        ByVal value As DiscoveryReference) 
   Public Function Contains(ByVal url As String) As Boolean  
   Public Sub Remove(ByVal url As String) 
End Class

Hierarchy

System.Object  System.Collections.DictionaryBase(System.Collections.IDictionary,
System.Collections.ICollection, System.Collections.IEnumerable)  DiscoveryClientReferenceCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryClientResult NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class represents some of the details in a discovery document reference. It's used in conjunction
with the DiscoveryClientProtocol.WriteAll() method, which writes the references from multiple discovery
documents to disk in one batch operation, and summarizes the results with a collection of
DiscoveryClientResult objects. You can use the Filename property to determine the file that the
corresponding discovery reference is saved in.

Public NotInheritable Class DiscoveryClientResult
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal referenceType As Type, 
        ByVal url As String, ByVal filename As String) 
' Public Instance Properties
   Public Property Filename As String  
   Public Property ReferenceTypeName As String  
   Public Property Url As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryClientResultCollection NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class contains a collection of DiscoveryClientResult objects. It's used by the the
System.Web.Services.Discovery.DiscoveryClientProtocol.DiscoveryClientResultsFile.Results property in
conjunction with the DiscoveryClientProtocol.WriteAll() method, and can contain information about the
references from multiple discovery documents.

Public NotInheritable Class DiscoveryClientResultCollection : Inherits CollectionBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal i As Integer) As DiscoveryClientResult  
' Public Instance Methods
   Public Function Add(
        ByVal value As DiscoveryClientResult) As Integer  
   Public Function Contains(
        ByVal value As DiscoveryClientResult) As Boolean  
   Public Sub Remove(ByVal value As DiscoveryClientResult) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  DiscoveryClientResultCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryDocument NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class represents a discovery document (usually found as a .disco or .vsdisco file). The discovery
document is an XML document that contains references to any number of web services (actually, it
points to their WSDL service descriptions), XSD files, or other discovery documents. The References
property contains a list of the discover document references. The Read() and Write() methods serialize
or deserialize the DiscoveryDocument to or from a System.IO.Stream, System.IO.TextWriter, or
System.Xml.XmlWriter.

Public NotInheritable Class DiscoveryDocument
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const Namespace As String        // =http://schemas.xmlsoap.org/disco/
' Public Instance Properties
   Public ReadOnly Property References As IList  
' Public Shared Methods
   Public Shared Function CanRead(
        ByVal xmlReader As System.Xml.XmlReader) As Boolean  
   Public Shared Function Read(
        ByVal stream As System.IO.Stream) As DiscoveryDocument  
   Public Shared Function Read(
        ByVal reader As System.IO.TextReader) As DiscoveryDocument  
   Public Shared Function Read(
        ByVal xmlReader As System.Xml.XmlReader) As DiscoveryDocument  
' Public Instance Methods
   Public Sub Write(ByVal stream As System.IO.Stream) 
   Public Sub Write(ByVal writer As System.IO.TextWriter) 
   Public Sub Write(ByVal writer As System.Xml.XmlWriter) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryDocumentLinksPattern Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public Class DiscoveryDocumentLinksPattern : Inherits DiscoverySearchPattern
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Pattern As String  
' Public Instance Methods
   Overrides Public Function GetDiscoveryReference(
        ByVal filename As String) As DiscoveryReference  
End Class

Hierarchy

System.Object  DiscoverySearchPattern  DiscoveryDocumentLinksPattern
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryDocumentReference NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class represents a discovery document reference to another discovery document. The Ref
property provides a string with the discovery document's URL. The
System.Web.Services.DiscoveryDocumentReference.Documents property returns another
DiscoveryDocument object that represents the discovery document and its references.

Public NotInheritable Class DiscoveryDocumentReference : Inherits DiscoveryReference
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal href As String) 
' Public Instance Properties
   Overrides Public ReadOnly Property DefaultFilename As String  
   Public ReadOnly Property Document As DiscoveryDocument  
   Public Property Ref As String  
   Overrides Public Property Url As String  
' Public Instance Methods
   Overrides Public Function ReadDocument(
        ByVal stream As System.IO.Stream) As Object  
   Public Sub ResolveAll() 
   Overrides Public Sub WriteDocument(
        ByVal document As Object, 
        ByVal stream As System.IO.Stream) 
' Protected Instance Methods
   Overrides Protected Friend Sub Resolve(
        ByVal contentType As String, 
        ByVal stream As System.IO.Stream) 
End Class

Hierarchy

System.Object  DiscoveryReference  DiscoveryDocumentReference

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryDocumentSearchPattern NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public NotInheritable Class DiscoveryDocumentSearchPattern : Inherits DiscoverySearchPattern
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Pattern As String  
' Public Instance Methods
   Overrides Public Function GetDiscoveryReference(
        ByVal filename As String) As DiscoveryReference  
End Class

Hierarchy

System.Object  DiscoverySearchPattern  DiscoveryDocumentSearchPattern

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryExceptionDictionary NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class is a collection of exception objects. It is used by the DiscoveryClientProtocol.Errors property
to represent all errors that occured during the discovery process.

Public NotInheritable Class DiscoveryExceptionDictionary : Inherits DictionaryBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal url As String) As Exception  
   Public ReadOnly Property Keys As ICollection Implements IDictionary.Keys 
   Public ReadOnly Property Values As ICollection Implements IDictionary.Values 
' Public Instance Methods
   Public Sub Add(ByVal url As String, 
        ByVal value As Exception) 
   Public Function Contains(ByVal url As String) As Boolean  
   Public Sub Remove(ByVal url As String) 
End Class

Hierarchy

System.Object  System.Collections.DictionaryBase(System.Collections.IDictionary,
System.Collections.ICollection, System.Collections.IEnumerable)  DiscoveryExceptionDictionary
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryReference MustInherit Class

System.Web.Services.Discovery (system.web.services.dll)

A discovery document can refer to three things: WSDL service descriptions, XSD documents, or other
discovery files. These references are represented by three different classes in this namespace
(ContractReference, DiscoveryDocumentReference, and SchemaReference), all of which inherit from this
abstract base class.

Public MustInherit Class DiscoveryReference
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property ClientProtocol As DiscoveryClientProtocol  
   Overridable Public ReadOnly Property DefaultFilename As String  
   MustInherit Public Property Url As String  
' Protected Shared Methods
   Shared Protected Function FilenameFromUrl(
        ByVal url As String) As String  
' Public Instance Methods
   MustInherit Public Function ReadDocument(
        ByVal stream As System.IO.Stream) As Object  
   Public Sub Resolve() 
   MustInherit Public Sub WriteDocument(
        ByVal document As Object, 
        ByVal stream As System.IO.Stream) 
' Protected Instance Methods
   MustInherit Protected Friend Sub Resolve(
        ByVal contentType As String, 
        ByVal stream As System.IO.Stream) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryReferenceCollection NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class provides a collection of discovery references (instances of one of the three classes that
inherit from DiscoveryReference). It can be used to represent all the references in a given discovery
document.

Public NotInheritable Class DiscoveryReferenceCollection : Inherits CollectionBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal i As Integer) As DiscoveryReference  
' Public Instance Methods
   Public Function Add(
        ByVal value As DiscoveryReference) As Integer  
   Public Function Contains(
        ByVal value As DiscoveryReference) As Boolean  
   Public Sub Remove(ByVal value As DiscoveryReference) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  DiscoveryReferenceCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoveryRequestHandler NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public NotInheritable Class DiscoveryRequestHandler : Implements System.Web.IHttpHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property IsReusable As Boolean Implements IHttpHandler.IsReusable 
' Public Instance Methods
   Public Sub ProcessRequest(
        ByVal context As System.Web.HttpContext) Implements IHttpHandler.ProcessRequest 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DiscoverySearchPattern MustInherit Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public MustInherit Class DiscoverySearchPattern
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   MustInherit Public ReadOnly Property Pattern As String  
' Public Instance Methods
   MustInherit Public Function GetDiscoveryReference(
        ByVal filename As String) As DiscoveryReference  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DynamicDiscoveryDocument NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public NotInheritable Class DynamicDiscoveryDocument
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const Namespace As String       // =urn:schemas-dynamicdiscovery:disco.2000-03-17
' Public Instance Properties
   Public Property ExcludePaths As ExcludePathInfo()  
' Public Shared Methods
   Public Shared Function Load(
        ByVal stream As System.IO.Stream) As DynamicDiscoveryDocument  
' Public Instance Methods
   Public Sub Write(ByVal stream As System.IO.Stream) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ExcludePathInfo NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public NotInheritable Class ExcludePathInfo
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal path As String) 
' Public Instance Properties
   Public Property Path As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SchemaReference NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class represents a discovery document reference to an XML Schema Definition (XSD) document.
This is the least common type of reference in a discovery document. The Ref property provides a
string with the XSD file's URL. The System.Web.Services.Discovery.Schema property returns a full
System.Xml.Schema.XmlSchema object that represents the XSD document.

Public NotInheritable Class SchemaReference : Inherits DiscoveryReference
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal url As String) 
' Public Shared Fields
   public const Namespace As String        // =http://schemas.xmlsoap.org/disco/schema/
' Public Instance Properties
   Overrides Public ReadOnly Property DefaultFilename As String  
   Public Property Ref As String  
   Public ReadOnly Property Schema As XmlSchema  
   Public Property TargetNamespace As String  
   Overrides Public Property Url As String  
' Public Instance Methods
   Overrides Public Function ReadDocument(
        ByVal stream As System.IO.Stream) As Object  
   Overrides Public Sub WriteDocument(
        ByVal document As Object, 
        ByVal stream As System.IO.Stream) 
' Protected Instance Methods
   Overrides Protected Friend Sub Resolve(
        ByVal contentType As String, 
        ByVal stream As System.IO.Stream) 
End Class

Hierarchy

System.Object  DiscoveryReference  SchemaReference
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapBinding NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This class represents a SOAP binding in a discovery document. You could add a SOAP binding for
versioning (or to indicate additional information about a group of web services). SOAP bindings are
specified in the discovery document by adding a SOAP XML element with an XML namespace equal to
the Namespace constant.

Public NotInheritable Class SoapBinding
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const Namespace As String        // =http://schemas.xmlsoap.org/disco/soap/
' Public Instance Properties
   Public Property Address As String  
   Public Property Binding As XmlQualifiedName  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlSchemaSearchPattern NotInheritable Class

System.Web.Services.Discovery (system.web.services.dll)

This type is used by the .NET framework and is never used directly by your code.

Public NotInheritable Class XmlSchemaSearchPattern : Inherits DiscoverySearchPattern
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Pattern As String  
' Public Instance Methods
   Overrides Public Function GetDiscoveryReference(
        ByVal filename As String) As DiscoveryReference  
End Class

Hierarchy

System.Object  DiscoverySearchPattern  XmlSchemaSearchPattern
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 32. The System.Web.Services.ProtocolsNamespace

The System.Web.Services.Protocols namespace contains types that support communication between a
client and a web service. They define protocols that encode and transmit data across an Internet
connection, including HTTP GET, HTTP POST, and SOAP.

The primary use of these types is to support the proxy class that manages the communication
between web service and client. You can create this proxy class automatically by using the Visual
Studio .NET IDE or the WSDL.exe command-line utility, or you can code it by hand. This class will
inherit from HttpGetClientProtocol, HttpPostClientProtocol, or SoapHttpClientProtocol (which is the most
common choice and the default for automatically generated proxy classes). Other important types in
this namespace include the attributes that you use to set the encoding for SOAP request and response
messages, such as SoapDocumentMethodAttribute.

This class also provides types you can use to create SOAP extensions. Typically, SOAP extensions are
used to directly access the SOAP messages exchanged between web services and clients before they
are sent or deserialized into objects. The SoapExtension class and SoapExtensionAttribute are the basic
building blocks for SOAP extensions. You can also use SoapHeader and SoapHeaderAttribute classes to
create custom SOAP headers for your message. You can then create web service methods that require
specific custom SOAP headers. Figure 32-1 and Figure 32-2 show the types in this namespace.

Figure 32-1. Some types from the System.Web.Services.Protocols namespace

Figure 32-2. More types from the System.Web.Services.Protocols namespace

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AnyReturnReader Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class AnyReturnReader : Inherits MimeReturnReader
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Overrides Public Sub Initialize(ByVal o As Object) 
   Overrides Public Function Read(
        ByVal response As System.Net.WebResponse, 
        ByVal responseStream As System.IO.Stream) As Object  
End Class

Hierarchy

System.Object  MimeFormatter  MimeReturnReader  AnyReturnReader

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlFormParameterReader Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class HtmlFormParameterReader : Inherits ValueCollectionParameterReader
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function Read(
        ByVal request As System.Web.HttpRequest) As Object()  
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterReader  ValueCollectionParameterReader
HtmlFormParameterReader

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlFormParameterWriter Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class HtmlFormParameterWriter : Inherits UrlEncodedParameterWriter
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property UsesWriteRequest As Boolean  
' Public Instance Methods
   Overrides Public Sub InitializeRequest(
        ByVal request As System.Net.WebRequest, 
        ByVal values As Object()) 
   Overrides Public Sub WriteRequest(
        ByVal requestStream As System.IO.Stream, 
        ByVal values As Object()) 
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterWriter  UrlEncodedParameterWriter
HtmlFormParameterWriter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpGetClientProtocol Class

System.Web.Services.Protocols
(system.web.services.dll)

marshal by reference,
disposable

You can inherit from this class to create a proxy class that communicates by using the HTTP GET
protocol, which sends parameters in the query string portion of the URL. When using this class, you
must use the corresponding HttpMethodAttribute to bind proxy class methods to web service methods.

Public Class HttpGetClientProtocol : Inherits HttpSimpleClientProtocol
' Public Constructors
   Public Sub New() 
' Protected Instance Methods
   Overrides Protected Function GetWebRequest(
        ByVal uri As Uri) As WebRequest  
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
WebClientProtocol  HttpWebClientProtocol  HttpSimpleClientProtocol  HttpGetClientProtocol

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpMethodAttribute NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This attribute is used to bind methods in an HttpGetClientProtocol or HttpPostClientProtocol proxy class
to web service methods.

The ParameterFormatter property specifies how the proxy encodes parameters before sending them to
a web service method. The ReturnFormatter property specifies how the proxy class decodes the web
method's return value. Both values must be set, as there is no default value. Set ReturnFormatter to
the UrlParameterWriter type if you are using HTTP GET or the HtmlFormParameterWriter type if you are
using HTTP POST. Always set ParameterFormatter to the XmlReturnReader type. An example attribute
declaration for HTTP GET is <HttpMethodAttribute(GetType(XmlReturnReader),
GetType(UrlParameterWriter))>.

Public NotInheritable Class HttpMethodAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal returnFormatter As Type, 
        ByVal parameterFormatter As Type) 
' Public Instance Properties
   Public Property ParameterFormatter As Type  
   Public Property ReturnFormatter As Type  
End Class

Hierarchy

System.Object  System.Attribute  HttpMethodAttribute

Valid On

Method
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpPostClientProtocol Class

System.Web.Services.Protocols
(system.web.services.dll)

marshal by reference,
disposable

You can inherit from this class to create a proxy class that communicates by using the HTTP POST
protocol, which encodes parameters in the body of the HTTP request. When using this class, you must
use the corresponding HttpMethodAttribute to bind proxy class methods to web service methods.

Public Class HttpPostClientProtocol : Inherits HttpSimpleClientProtocol
' Public Constructors
   Public Sub New() 
' Protected Instance Methods
   Overrides Protected Function GetWebRequest(
        ByVal uri As Uri) As WebRequest  
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
WebClientProtocol  HttpWebClientProtocol  HttpSimpleClientProtocol  HttpPostClientProtocol
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpSimpleClientProtocol MustInherit Class

System.Web.Services.Protocols
(system.web.services.dll)

marshal by reference,
disposable

This abstract class provides basic functionality for communicating with a web service over HTTP. This
class is inherited by HttpGetClientProtocol and HttpPostClientProtocol, both of which your proxy classes
can derive from directly. Parameters for an HTTP proxy are encoded by using application/x-www-form-
urlencoded content type.

Public MustInherit Class HttpSimpleClientProtocol : Inherits HttpWebClientProtocol
' Protected Constructors
   Protected Sub New() 
' Protected Instance Methods
   Protected Function BeginInvoke(ByVal methodName As String, 
        ByVal requestUrl As String, 
        ByVal parameters As Object(), 
        ByVal callback As AsyncCallback, 
        ByVal asyncState As Object) As IAsyncResult  
   Protected Function EndInvoke(
        ByVal asyncResult As IAsyncResult) As Object  
   Protected Function Invoke(ByVal methodName As String, 
        ByVal requestUrl As String, 
        ByVal parameters As Object()) As Object  
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
WebClientProtocol  HttpWebClientProtocol  HttpSimpleClientProtocol
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpWebClientProtocol MustInherit Class

System.Web.Services.Protocols
(system.web.services.dll)

marshal by reference,
disposable

This abstract base class provides basic functionality for communication between a web service and
proxy class. The System.Web.Services.Discovery.DiscoveryClientProtocol, HttpSimpleClientProtocol, and
SoapHttpClientProtocol classes all inherit from HttpWebClientProtocol. The proxy class inherits from one
of these derived classes, depending on which transmission protocol it uses.

You can use the Proxy property to connect to a web service through a firewall, as in WS.Proxy = New
WebProxy("http://proxyserver:80", True). This property will override the computer's default Internet
settings. You can also set the AllowAutoRedirect property to allow a client to follow server redirects.
This is False by default for security reasons. The UserAgent property is automatically set to something
like "MS Web Services Client Protocol 1.0.2509.0," where 1.0.2509.0 is the Common Language
Runtime version.

The CookieContainer property is important when connecting to a web service that uses ASP.NET's
session state facility. To allow a proxy class to reuse the same session on subsequent calls, you must
explicitly create a new (empty) System.Net.CookieContainer object and assign it to the CookieContainer
property. This allows the proxy class to store the session cookie with each call. If you want multiple
proxy class instances to access the same session, or if you want to recreate a proxy class and use a
previous session that has not yet timed out, you must take extra steps to transfer or store the
System.Net.CookieContainer object.

Public MustInherit Class HttpWebClientProtocol : Inherits WebClientProtocol
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property AllowAutoRedirect As Boolean  
   Public ReadOnly Property ClientCertificates As X509CertificateCollection  
   Public Property CookieContainer As CookieContainer  
   Public Property Proxy As IWebProxy  
   Public Property UserAgent As String  
' Protected Instance Methods
   Overrides Protected Function GetWebRequest(
        ByVal uri As Uri) As WebRequest  
   Overrides Protected Function GetWebResponse(
        ByVal request As System.Net.WebRequest) As WebResponse  
   Overrides Protected Function GetWebResponse(
        ByVal request As System.Net.WebRequest, 
        ByVal result As IAsyncResult) As WebResponse  
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
WebClientProtocol  HttpWebClientProtocol
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LogicalMethodInfo NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

A LogicalMethodInfo object is provided to the SoapExtension.GetInitializer() method. This object
contains information about the web service or proxy class method where the custom
SoapExtensionAttribute is applied.

Public NotInheritable Class LogicalMethodInfo
' Public Constructors
   Public Sub New(
        ByVal methodInfo As System.Reflection.MethodInfo) 
' Public Instance Properties
   Public ReadOnly Property AsyncCallbackParameter As ParameterInfo  
   Public ReadOnly Property AsyncResultParameter As ParameterInfo  
   Public ReadOnly Property AsyncStateParameter As ParameterInfo  
   Public ReadOnly Property BeginMethodInfo As MethodInfo  
   Public ReadOnly Property CustomAttributeProvider As ICustomAttributeProvider  
   Public ReadOnly Property DeclaringType As Type  
   Public ReadOnly Property EndMethodInfo As MethodInfo  
   Public ReadOnly Property InParameters As ParameterInfo()  
   Public ReadOnly Property IsAsync As Boolean  
   Public ReadOnly Property IsVoid As Boolean  
   Public ReadOnly Property MethodInfo As MethodInfo  
   Public ReadOnly Property Name As String  
   Public ReadOnly Property OutParameters As ParameterInfo()  
   Public ReadOnly Property Parameters As ParameterInfo()  
   Public ReadOnly Property ReturnType As Type  
   Public ReadOnly Property ReturnTypeCustomAttributeProvider As ICustomAttributeProvider  
' Public Shared Methods
   Public Shared Function Create(
        ByVal methodInfos As System.Reflection.MethodInfo()) As LogicalMethodInfo()  
   Public Shared Function Create(
        ByVal methodInfos As System.Reflection.MethodInfo(), 
        ByVal types As LogicalMethodTypes) As LogicalMethodInfo()  
   Public Shared Function IsBeginMethod(
        ByVal methodInfo As System.Reflection.MethodInfo) As Boolean  
   Public Shared Function IsEndMethod(
        ByVal methodInfo As System.Reflection.MethodInfo) As Boolean  
' Public Instance Methods
   Public Function BeginInvoke(ByVal target As Object, 
        ByVal values As Object(), 
        ByVal callback As AsyncCallback, 
        ByVal asyncState As Object) As IAsyncResult  
   Public Function EndInvoke(ByVal target As Object, 
        ByVal asyncResult As IAsyncResult) As Object()  
   Public Function GetCustomAttribute(
        ByVal type As Type) As Object  
   Public Function GetCustomAttributes(
        ByVal type As Type) As Object()  
   Public Function Invoke(ByVal target As Object, 
        ByVal values As Object()) As Object()  
   Overrides Public Function ToString() As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LogicalMethodTypes Enum

System.Web.Services.Protocols (system.web.services.dll) serializable

This enumeration specifies whether a web service method was invoked synchronously or
asynchronously with the corresponding "Begin" method.

Public Enum LogicalMethodTypes
   Sync = 1
   Async = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  LogicalMethodTypes
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MatchAttribute NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

.NET allows you to create screen-scraping web services that search the HTML content on a web page
by using a regular expression. To create a pattern matching web service, you need to create a WSDL
document with <match> elements. These match elements specify the regular expression to use when
parsing the contents of the page and how many matches should be returned. When the client builds
the proxy class for a pattern-matching web service, it will include a MatchAttribute that describes the
match elements you added to the WSDL document.

The Pattern property specfies the regular expression pattern to use when searching the web page.
IgnoreCase specifies whether the regular expression should be run in case-sensitive mode (the
default). MaxRepeats specifies the maximum number of matches that will be returned (-1, the default,
indicates all). Finally, Group specifies a grouping of related matches, while Capture specifies the index
of a match within a group.

Public NotInheritable Class MatchAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal pattern As String) 
' Public Instance Properties
   Public Property Capture As Integer  
   Public Property Group As Integer  
   Public Property IgnoreCase As Boolean  
   Public Property MaxRepeats As Integer  
   Public Property Pattern As String  
End Class

Hierarchy

System.Object  System.Attribute  MatchAttribute

Valid On

All

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeFormatter MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public MustInherit Class MimeFormatter
' Protected Constructors
   Protected Sub New() 
' Public Shared Methods
   Public Shared Function CreateInstance(ByVal type As Type, 
        ByVal initializer As Object) As MimeFormatter  
   Public Shared Function GetInitializer(ByVal type As Type, 
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Public Shared Function GetInitializers(ByVal type As Type, 
        ByVal methodInfos As LogicalMethodInfo()) As Object()  
' Public Instance Methods
   MustInherit Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Overridable Public Function GetInitializers(
        ByVal methodInfos As LogicalMethodInfo()) As Object()  
   MustInherit Public Sub Initialize(
        ByVal initializer As Object) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeParameterReader MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public MustInherit Class MimeParameterReader : Inherits MimeFormatter
' Protected Constructors
   Protected Sub New() 
' Public Instance Methods
   MustInherit Public Function Read(
        ByVal request As System.Web.HttpRequest) As Object()  
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterReader
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeParameterWriter MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public MustInherit Class MimeParameterWriter : Inherits MimeFormatter
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Overridable Public Property RequestEncoding As Encoding  
   Overridable Public ReadOnly Property UsesWriteRequest As Boolean  
' Public Instance Methods
   Overridable Public Function GetRequestUrl(
        ByVal url As String, 
        ByVal parameters As Object()) As String  
   Overridable Public Sub InitializeRequest(
        ByVal request As System.Net.WebRequest, 
        ByVal values As Object()) 
   Overridable Public Sub WriteRequest(
        ByVal requestStream As System.IO.Stream, 
        ByVal values As Object()) 
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterWriter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MimeReturnReader MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public MustInherit Class MimeReturnReader : Inherits MimeFormatter
' Protected Constructors
   Protected Sub New() 
' Public Instance Methods
   MustInherit Public Function Read(
        ByVal response As System.Net.WebResponse, 
        ByVal responseStream As System.IO.Stream) As Object  
End Class

Hierarchy

System.Object  MimeFormatter  MimeReturnReader
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

NopReturnReader Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class NopReturnReader : Inherits MimeReturnReader
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Overrides Public Sub Initialize(
        ByVal initializer As Object) 
   Overrides Public Function Read(
        ByVal response As System.Net.WebResponse, 
        ByVal responseStream As System.IO.Stream) As Object  
End Class

Hierarchy

System.Object  MimeFormatter  MimeReturnReader  NopReturnReader

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PatternMatcher NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public NotInheritable Class PatternMatcher
' Public Constructors
   Public Sub New(ByVal type As Type) 
' Public Instance Methods
   Public Function Match(ByVal text As String) As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapClientMessage NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This class represents a SOAP request sent by a proxy client or SOAP response received by a proxy
client. It inherits from SoapMessage, which defines most of the functionality used for SOAP messages.

Public NotInheritable Class SoapClientMessage : Inherits SoapMessage
' Public Instance Properties
   Overrides Public ReadOnly Property Action As String  
   Public ReadOnly Property Client As SoapHttpClientProtocol  
   Overrides Public ReadOnly Property MethodInfo As LogicalMethodInfo  
   Overrides Public ReadOnly Property OneWay As Boolean  
   Overrides Public ReadOnly Property Url As String  
' Protected Instance Methods
   Overrides Protected Sub EnsureInStage() 
   Overrides Protected Sub EnsureOutStage() 
End Class

Hierarchy

System.Object  SoapMessage  SoapClientMessage

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapDocumentMethodAttribute NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This attribute is used to specify the encoding for SOAP request and response messages. You can apply
this attribute to methods in a web service or in methods in a proxy class that derives from
SoapHttpClientProtocol (where it's required to bind the messages to the appropriate web method). You
use this attribute, instead of SoapRpcMethodAttribute, when you want to use the Document encoding
standard.

There are two options for encoding XML information in a SOAP message: RPC and Document.
ASP.NET's default is Document. The Document style specifies that messages are encoded as described
in an XSD schema. When Document style is used, the WSDL document defines the XSD schemas for
SOAP requests and SOAP responses. For more information on the SOAP specification, see
http://www.w3.org/TR/SOAP/.

One reason you might want to apply this attribute to a web method is to explicitly set the OneWay
property. For example, by adding <SoapDocumentMethod(OneWay := True)> before a web method,
you ensure that the method will return immediately and can finish processing asynchronously. This
ensures that the client doesn't need to wait for the method to return or call it asynchronously.
However, this web method will not be able to access the System.Web.HttpContext for the client and
will not be able to set a return value. If the client needs to know about the success or result of such a
web method, you will have to implement a second method and use some type of ticket-issuing system
to keep track of the outstanding request.

Public NotInheritable Class SoapDocumentMethodAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal action As String) 
' Public Instance Properties
   Public Property Action As String  
   Public Property Binding As String  
   Public Property OneWay As Boolean  
   Public Property ParameterStyle As SoapParameterStyle  
   Public Property RequestElementName As String  
   Public Property RequestNamespace As String  
   Public Property ResponseElementName As String  
   Public Property ResponseNamespace As String  
   Public Property Use As SoapBindingUse  
End Class

Hierarchy

System.Object  System.Attribute  SoapDocumentMethodAttribute

Valid On

Method
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapDocumentServiceAttribute NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This attribute can be applied to web service's class declaration. It specifies that the default encoding
for SOAP request and response messages will be Document. The client can override this default by
using the SoapRpcMethodAttribute. This attribute is rarely used because the default in ASP.NET proxy
classes is already Document encoding.

Public NotInheritable Class SoapDocumentServiceAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(
        ByVal use As System.Web.Services.Description.SoapBindingUse) 
   Public Sub New(
        ByVal use As System.Web.Services.Description.SoapBindingUse, 
        ByVal paramStyle As SoapParameterStyle) 
' Public Instance Properties
   Public Property ParameterStyle As SoapParameterStyle  
   Public Property RoutingStyle As SoapServiceRoutingStyle  
   Public Property Use As SoapBindingUse  
End Class

Hierarchy

System.Object  System.Attribute  SoapDocumentServiceAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapException Class

System.Web.Services.Protocols (system.web.services.dll)

This class is a generic exception for SOAP-related problems. The Common Language Runtime can
throw a SoapException when it encounters an incorrectly formatted SOAP message. Also, any error
that occurs inside a web service method is caught on the server and returned to the client as a
SoapException. ASP.NET will then set the SoapException property (which identifies the web service
URL) and the Code property (using one of the fault code fields) automatically.

When you are creating your own web methods, you may need to provide more information about
exceptions. To do so, catch any server errors and create and throw a corresponding SoapException
object. You can specify application-specific details about the error by adding custom XML content to
the Detail property.

Public Class SoapException : Inherits SystemException
' Public Constructors
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal innerException As Exception) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal actor As String) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal actor As String, 
        ByVal innerException As Exception) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal actor As String, 
        ByVal detail As System.Xml.XmlNode) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal actor As String, 
        ByVal detail As System.Xml.XmlNode, 
        ByVal innerException As Exception) 
' Public Shared Fields
   public Shared ReadOnly ClientFaultCode As XmlQualifiedName    
        // =http://schemas.xmlsoap.org/soap/envelope/:Client
   public Shared ReadOnly DetailElementName As XmlQualifiedName    
        // =detail
   public Shared ReadOnly MustUnderstandFaultCode As XmlQualifiedName    
        // =http://schemas.xmlsoap.org/soap/envelope/:MustUnderstand
   public Shared ReadOnly ServerFaultCode As XmlQualifiedName    
        // =http://schemas.xmlsoap.org/soap/envelope/:Server
   public Shared ReadOnly VersionMismatchFaultCode As XmlQualifiedName    
        // =http://schemas.xmlsoap.org/soap/envelope/:VersionMismatch
' Public Instance Properties
   Public ReadOnly Property Actor As String  
   Public ReadOnly Property Code As XmlQualifiedName  
   Public ReadOnly Property Detail As XmlNode  
End Class

Hierarchy

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Hierarchy

System.Object  System.Exception(System.Runtime.Serialization.ISerializable)
System.SystemException  SoapException
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapExtension MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

You can inherit from this class to create a custom SOAP extension, which allows you to access and
manipulate SOAP messages before they are sent or converted into objects. SOAP extensions can be
used to implement additional encryption, compression, or tracing. They can also be applied to web
wervices or web service clients.

The key to using a derived SoapExtension class is overriding the ProcessMessage() method. This
method is called automatically by the ASP.NET framework at several different SoapMessageStages and
provides you with the current SoapMessage object. You also connect your SoapExtension to a proxy
class or web service method by using a custom SoapExtensionAttribute.

You can initialize a SoapExtension with a constructor method and the Initialize() and GetInitializer()
methods. The GetInitializer() method is called only once the first time a SOAP request is made. It gives
you the opportunity to retrieve information about the web service or proxy method (in the methodInfo
parameter) and custom SoapExtensionAttribute and return an appropriate initialization object. This
object will be cached and provided to the Initialize() method, which is called every time a SOAP
request is made.

Public MustInherit Class SoapExtension
' Protected Constructors
   Protected Sub New() 
' Public Instance Methods
   Overridable Public Function ChainStream(
        ByVal stream As System.IO.Stream) As Stream  
   MustInherit Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo, 
        ByVal attribute As SoapExtensionAttribute) As Object  
   MustInherit Public Function GetInitializer(
        ByVal serviceType As Type) As Object  
   MustInherit Public Sub Initialize(
        ByVal initializer As Object) 
   MustInherit Public Sub ProcessMessage(
        ByVal message As SoapMessage) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapExtensionAttribute MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

When using a SoapExtension, you must also derive a custom SoapExtensionAttribute. This attribute is
used to "connect" methods in your web service or proxy class to the corresponding extension.

When creating a custom SoapExtensionAttribute, you need to override the ExtensionType property so
that it returns the type of your custom SoapExtension class. You can then use your custom attribute to
mark methods in your web service or proxy class. ASP.NET will automatically use the specified
SoapExtension when the associated method is invoked.

Public MustInherit Class SoapExtensionAttribute : Inherits Attribute
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   MustInherit Public ReadOnly Property ExtensionType As Type  
   MustInherit Public Property Priority As Integer  
End Class

Hierarchy

System.Object  System.Attribute  SoapExtensionAttribute

Valid On

All
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHeader MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class allows you to create custom SOAP headers, which are used to send additional information
to or from a web service. For example, rather than require an extra security parameter to
authenticate every web service method, you could use a custom SoapHeader. The client could then set
a simple property of the proxy class, and the header would be sent automatically with every web
method request.

To use a custom SoapHeader, create a class that inherits from SoapHeader, and add the member
variables you need to contain additional information (in this case, some sort of security credentials).
When invoking a method, instantiate your custom SoapHeader, set its properties accordingly, and
send it to the web service or proxy class. The web service must provide a member variable to receive
the SoapHeader and must indicate which methods will process the custom header. It marks these
methods with a SoapHeaderAttribute.

The Actor property is specified by the SOAP standard and should be set to the URL of the web service.
If you set the MustUnderstand property to True, the method in the class receiving the message must
set the DidUnderstand property to True, or a SoapHeaderException will be thrown. Note that ASP.NET
automatically defaults MustUnderstand to True and automatically defaults DidUnderstand to True as
long as the recipient (for example, the web service) contains the custom header class definition. The
only time DidUnderstand will not be automatically set to True is when you explicitly retrieve unknown
SOAP headers.

Public MustInherit Class SoapHeader
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property Actor As String  
   Public Property DidUnderstand As Boolean  
   Public Property EncodedMustUnderstand As String  
   Public Property MustUnderstand As Boolean  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHeaderAttribute NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This attribute is used to receive a custom SoapHeader. Before you can use this attribute, you need to
add a member variable of the appropriate SoapHeader type to your web service or proxy class (for
example, Public ReceivedHeader As MyCustomHeader). Before invoking a method, the client will set this
member to the appropriate header object. You must also add a SoapHeaderAttribute to each method
that wants to process the custom header. This declaration specifies the class member that received
the custom header object, as in SoapHeader(MemberName := "ReceivedHeader").

If a method will process more than one SoapHeader, just add multiple SoapHeaderAttribute
declarations. You can also receive all headers that are not defined in the web service by creating a
member array of SoapUnknownHeader objects and using it in the SoapHeaderAttribute declaration.

Public NotInheritable Class SoapHeaderAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal memberName As String) 
' Public Instance Properties
   Public Property Direction As SoapHeaderDirection  
   Public Property MemberName As String  
   Public Property Required As Boolean  
End Class

Hierarchy

System.Object  System.Attribute  SoapHeaderAttribute

Valid On

Method

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHeaderCollection Class

System.Web.Services.Protocols (system.web.services.dll)

This class contains a collection of SoapHeader objects. It is used for the SoapMessage.Headers
property, which contains all the headers in a single SOAP request or response message.

Public Class SoapHeaderCollection : Inherits CollectionBase
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Default Property Item(
        ByVal index As Integer) As SoapHeader  
' Public Instance Methods
   Public Function Add(ByVal header As SoapHeader) As Integer  
   Public Function Contains(
        ByVal header As SoapHeader) As Boolean  
   Public Sub CopyTo(ByVal array As SoapHeader(), 
        ByVal index As Integer) 
   Public Function IndexOf(
        ByVal header As SoapHeader) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal header As SoapHeader) 
   Public Sub Remove(ByVal header As SoapHeader) 
End Class

Hierarchy

System.Object  System.Collections.CollectionBase(System.Collections.IList,
System.Collections.ICollection, System.Collections.IEnumerable)  SoapHeaderCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHeaderDirection Enum

System.Web.Services.Protocols
(system.web.services.dll)

serializable,
flag

This enumeration is used to set the SoapHeaderAttribute.Direction property. The direction is relative to
the receiving method where the attribute is placed. A value of InOut on a web method specifies that
the SoapHeader is sent to the method and back to the client with possible modifications.

Public Enum SoapHeaderDirection
   In = &H000000001
   Out = &H000000002
   InOut = &H000000003
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  SoapHeaderDirection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHeaderException Class

System.Web.Services.Protocols (system.web.services.dll)

This class represents an error processing a SoapHeader. Typically, it results when a header with a
SoapHeader.MustUnderstand property of True is processed by the receiving method, but the
corresponding SoapHeader.DidUnderstand property is not set to True.

Public Class SoapHeaderException : Inherits SoapException
' Public Constructors
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal innerException As Exception) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal actor As String) 
   Public Sub New(ByVal message As String, 
        ByVal code As System.Xml.XmlQualifiedName, 
        ByVal actor As String, 
        ByVal innerException As Exception) 
End Class

Hierarchy

System.Object  System.Exception(System.Runtime.Serialization.ISerializable)
System.SystemException  SoapException  SoapHeaderException

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapHttpClientProtocol Class

System.Web.Services.Protocols
(system.web.services.dll)

marshal by reference,
disposable

You can inherit from this class to create a proxy class that communicates by using the SOAP protocol
over HTTP. This is the most commonly used class for creating proxies, and the default in proxy classes
.NET generates automatically. When using this class, you must also use the corresponding
SoapDocumentMethodAttribute or SoapRpcMethodAttribute to bind a proxy class method to a web
service method.

Public Class SoapHttpClientProtocol : Inherits HttpWebClientProtocol
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Discover() 
' Protected Instance Methods
   Protected Function BeginInvoke(ByVal methodName As String, 
        ByVal parameters As Object(), 
        ByVal callback As AsyncCallback, 
        ByVal asyncState As Object) As IAsyncResult  
   Protected Function EndInvoke(
        ByVal asyncResult As IAsyncResult) As Object()  
   Overrides Protected Function GetWebRequest(
        ByVal uri As Uri) As WebRequest  
   Protected Function Invoke(ByVal methodName As String, 
        ByVal parameters As Object()) As Object()  
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
WebClientProtocol  HttpWebClientProtocol  SoapHttpClientProtocol

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapMessage MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class represents a SOAP request or SOAP response used to communicate between a web service
and proxy class. The SoapMessage class is used primarily for SOAP extensions. SOAP extensions,
which derive from SoapExtension, receive a SoapMessage object at each SoapMessageStage as an
argument to SoapExtension.ProcessMessage() method, which is called automatically by the ASP.NET
framework.

The SoapMessage class provides methods that allow you to retrieve the web service method
parameters and the return value encoded in the SOAP message. For a SoapClientMessage, you should
use the GetInParameterValue() method if the SOAP message is in the SoapMessageStage.BeforeSerialize
stage, or the GetOutParameterValue() method if it's in the SoapMessageStage.AfterSerialize stage. For a
SoapServerMessage, the reverse is true.

To verify that the parameters are available, you can use the EnsureInStage() or EnsureOutStage()
method (a System.InvalidOperationException will be thrown if the message is not in a compatible
stage). Alternatively, you can use the Stage property to determine the state when the SoapMessage
was generated.

Public MustInherit Class SoapMessage
' Public Instance Properties
   MustInherit Public ReadOnly Property Action As String  
   Public Property ContentType As String  
   Public ReadOnly Property Exception As SoapException  
   Public ReadOnly Property Headers As SoapHeaderCollection  
   MustInherit Public ReadOnly Property MethodInfo As LogicalMethodInfo  
   MustInherit Public ReadOnly Property OneWay As Boolean  
   Public ReadOnly Property Stage As SoapMessageStage  
   Public ReadOnly Property Stream As Stream  
   MustInherit Public ReadOnly Property Url As String  
' Public Instance Methods
   Public Function GetInParameterValue(
        ByVal index As Integer) As Object  
   Public Function GetOutParameterValue(
        ByVal index As Integer) As Object  
   Public Function GetReturnValue() As Object  
' Protected Instance Methods
   MustInherit Protected Sub EnsureInStage() 
   MustInherit Protected Sub EnsureOutStage() 
   Protected Sub EnsureStage(ByVal stage As SoapMessageStage) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapMessageStage Enum

System.Web.Services.Protocols (system.web.services.dll) serializable

This enumeration indicates the stage that a SoapMessage is in. Messages are serialized into SOAP
before they are transmitted over the Internet and deserialized when they are received. Both the web
service and the proxy client send and receive messages, so both participate in the serialization and
deserialization process.

Public Enum SoapMessageStage
   BeforeSerialize = 1
   AfterSerialize = 2
   BeforeDeserialize = 4
   AfterDeserialize = 8
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  SoapMessageStage

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapParameterStyle Enum

System.Web.Services.Protocols (system.web.services.dll) serializable

This enumeration is used when applying a SoapDocumentMethodAttribute or
SoapDocumentServiceAttribute. It specifies how web service parameter information is encoded in a
SOAP message. If you use Bare, parameter information will be placed in multiple elements under the
Body element. If you specify Wrapped, all parameters will be wrapped in a single element beneath the
Body element. Default uses the default web service parameter style, which will be Wrapped unless the
web service includes a SoapDocumentServiceAttribute in its class declaration that specifies differently.

Public Enum SoapParameterStyle
   Default = 0
   Bare = 1
   Wrapped = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  SoapParameterStyle

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapRpcMethodAttribute NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This attribute is used to specify the encoding for SOAP request and response messages. You can apply
this attribute to methods in a web service or in methods in a proxy class that derives from
SoapHttpClientProtocol (where it's required to bind the messages to the appropriate web method). You
use this attribute, instead of SoapDocumentMethodAttribute, when you want to use the RPC encoding
standard.

There are two options for encoding XML information in a SOAP message: RPC and Document.
ASP.NET's default is Document. RPC (found in section 7 of the SOAP specification) specifies that all
method parameters be wrapped in a single element named after the web service method and that
each element be named after their respective parameter name. If you apply this attribute to a web
method, it will not be able to return objects because no XSD schema will be generated.

Public NotInheritable Class SoapRpcMethodAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal action As String) 
' Public Instance Properties
   Public Property Action As String  
   Public Property Binding As String  
   Public Property OneWay As Boolean  
   Public Property RequestElementName As String  
   Public Property RequestNamespace As String  
   Public Property ResponseElementName As String  
   Public Property ResponseNamespace As String  
End Class

Hierarchy

System.Object  System.Attribute  SoapRpcMethodAttribute

Valid On

Method

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapRpcServiceAttribute NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This attribute can be applied to a web service's class declaration. It specifies that the default encoding
for SOAP request and response messages will be RPC. The client can override this default by using the
SoapDocumentMethodAttribute. If you apply this attribute, the web service will not be able to return
objects because no XSD schema will be generated.

Public NotInheritable Class SoapRpcServiceAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property RoutingStyle As SoapServiceRoutingStyle  
End Class

Hierarchy

System.Object  System.Attribute  SoapRpcServiceAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapServerMessage NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This class represents a SOAP request sent by a web service or SOAP response received by a web
service. It inherits from the SoapMessage class, which contains most of the functionality for SOAP
messages.

Public NotInheritable Class SoapServerMessage : Inherits SoapMessage
' Public Instance Properties
   Overrides Public ReadOnly Property Action As String  
   Overrides Public ReadOnly Property MethodInfo As LogicalMethodInfo  
   Overrides Public ReadOnly Property OneWay As Boolean  
   Public ReadOnly Property Server As Object  
   Overrides Public ReadOnly Property Url As String  
' Protected Instance Methods
   Overrides Protected Sub EnsureInStage() 
   Overrides Protected Sub EnsureOutStage() 
End Class

Hierarchy

System.Object  SoapMessage  SoapServerMessage
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapServiceRoutingStyle Enum

System.Web.Services.Protocols (system.web.services.dll) serializable

This enumeration is used to specify the SoapDocumentServiceAttribute.RoutingStyle and the
SoapRpcServiceAttribute.RoutingStyle properties. Allowed values are RequestElement (the message is
routed based on the first child element in the body of the SOAP message) and SoapAction (the SOAP
message is routed based on the SOAPAction HTTP header).

Public Enum SoapServiceRoutingStyle
   SoapAction = 0
   RequestElement = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  SoapServiceRoutingStyle
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SoapUnknownHeader NotInheritable Class

System.Web.Services.Protocols (system.web.services.dll)

This class represents a SoapHeader that was not understood by the receiving method in the web
service or proxy class. You can receive all unknown headers by creating an array of
SoapUnknownHeader objects and using it with the SoapHeaderAttribute.

Public NotInheritable Class SoapUnknownHeader : Inherits SoapHeader
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Element As XmlElement  
End Class

Hierarchy

System.Object  SoapHeader  SoapUnknownHeader

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TextReturnReader Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class TextReturnReader : Inherits MimeReturnReader
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Overrides Public Sub Initialize(ByVal o As Object) 
   Overrides Public Function Read(
        ByVal response As System.Net.WebResponse, 
        ByVal responseStream As System.IO.Stream) As Object  
End Class

Hierarchy

System.Object  MimeFormatter  MimeReturnReader  TextReturnReader

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UrlEncodedParameterWriter MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public MustInherit Class UrlEncodedParameterWriter : Inherits MimeParameterWriter
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Overrides Public Property RequestEncoding As Encoding  
' Public Instance Methods
   Overrides Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Overrides Public Sub Initialize(
        ByVal initializer As Object) 
' Protected Instance Methods
   Protected Sub Encode(ByVal writer As System.IO.TextWriter, 
        ByVal values As Object()) 
   Protected Sub Encode(ByVal writer As System.IO.TextWriter, 
        ByVal name As String, ByVal value As Object) 
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterWriter  UrlEncodedParameterWriter
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UrlParameterReader Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class UrlParameterReader : Inherits ValueCollectionParameterReader
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function Read(
        ByVal request As System.Web.HttpRequest) As Object()  
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterReader  ValueCollectionParameterReader
UrlParameterReader
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UrlParameterWriter Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class UrlParameterWriter : Inherits UrlEncodedParameterWriter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetRequestUrl(
        ByVal url As String, 
        ByVal parameters As Object()) As String  
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterWriter  UrlEncodedParameterWriter
UrlParameterWriter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValueCollectionParameterReader MustInherit Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public MustInherit Class ValueCollectionParameterReader : Inherits MimeParameterReader
' Protected Constructors
   Protected Sub New() 
' Public Shared Methods
   Public Shared Function IsSupported(
        ByVal methodInfo As LogicalMethodInfo) As Boolean  
   Public Shared Function IsSupported(
        ByVal paramInfo As System.Reflection.ParameterInfo) As Boolean  
' Public Instance Methods
   Overrides Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Overrides Public Sub Initialize(ByVal o As Object) 
' Protected Instance Methods
   Protected Function Read(
        ByVal collection As System.Collections.Specialized.NameValueCollection) As Object()  
End Class

Hierarchy

System.Object  MimeFormatter  MimeParameterReader  ValueCollectionParameterReader

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebClientAsyncResult Class

System.Web.Services.Protocols (system.web.services.dll)

This class is used to return a result when invoking a web service method asynchronously, through the
corresponding "Begin" and "End" methods. These method variants are created for you when you
generate a proxy automatically by using Visual Studio .NET or WSDL.exe.

Public Class WebClientAsyncResult : Implements IAsyncResult
' Public Instance Properties
   Public ReadOnly Property AsyncState As Object Implements IAsyncResult.AsyncState 
   Public ReadOnly Property AsyncWaitHandle As WaitHandle Implements IAsyncResult.AsyncWaitHandle 
   Public ReadOnly Property CompletedSynchronously As Boolean Implements_
        IAsyncResult.CompletedSynchronously 
   Public ReadOnly Property IsCompleted As Boolean_
        Implements IAsyncResult.IsCompleted 
' Public Instance Methods
   Public Sub Abort() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebClientProtocol MustInherit Class

System.Web.Services.Protocols
(system.web.services.dll)

marshal by reference,
disposable

This is the base class for all web server proxy classes. It includes basic properties like Url, which is
usually set to the appropriate web service address in the proxy class's constructor, and Timeout,
which specifies a value in milliseconds. By default, the proxy class uses a Timeout of -1, which
represents infinity, although the web server can still time out the request on the server side. The
RequestEncoding property is overridden by derived classes to provide the appropriate character
encoding.

To set Credentials, you must use an System.Net.ICredentials object like System.Net.NetworkCredential
and set the credentials that are specific to the type of authentication you are using. You can also set
the PreAuthenticate property to True, which will cause the proxy class to automatically send
authentication information with every request.

Public MustInherit Class WebClientProtocol : Inherits System.ComponentModel.Component
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property ConnectionGroupName As String  
   Public Property Credentials As ICredentials  
   Public Property PreAuthenticate As Boolean  
   Public Property RequestEncoding As Encoding  
   Public Property Timeout As Integer  
   Public Property Url As String  
' Protected Shared Methods
   Shared Protected Sub AddToCache(ByVal type As Type, 
        ByVal value As Object) 
   Shared Protected Function GetFromCache(
        ByVal type As Type) As Object  
' Public Instance Methods
   Overridable Public Sub Abort() 
' Protected Instance Methods
   Overridable Protected Function GetWebRequest(
        ByVal uri As Uri) As WebRequest  
   Overridable Protected Function GetWebResponse(
        ByVal request As System.Net.WebRequest) As WebResponse  
   Overridable Protected Function GetWebResponse(
        ByVal request As System.Net.WebRequest, 
        ByVal result As IAsyncResult) As WebResponse  
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
WebClientProtocol
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebServiceHandlerFactory Class

System.Web.Services.Protocols (system.web.services.dll)

This class is used by ASP.NET to instantiate an appropriate HttpHandler for handling web service
requests. You do not need to use this class directly in your code.

Public Class WebServiceHandlerFactory : Implements System.Web.IHttpHandlerFactory
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Function GetHandler(
        ByVal context As System.Web.HttpContext, 
        ByVal verb As String, ByVal url As String, 
        ByVal filePath As String) As IHttpHandler Implements_
         IHttpHandlerFactory.GetHandler 
   Public Sub ReleaseHandler(
        ByVal handler As System.Web.IHttpHandler)_
         Implements IHttpHandlerFactory.ReleaseHandler 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlReturnReader Class

System.Web.Services.Protocols (system.web.services.dll)

This class supports the .NET Framework infrastructure. You do not need to use it directly in your code.

Public Class XmlReturnReader : Inherits MimeReturnReader
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetInitializer(
        ByVal methodInfo As LogicalMethodInfo) As Object  
   Overrides Public Function GetInitializers(
        ByVal methodInfos As LogicalMethodInfo()) As Object()  
   Overrides Public Sub Initialize(ByVal o As Object) 
   Overrides Public Function Read(
        ByVal response As System.Net.WebResponse, 
        ByVal responseStream As System.IO.Stream) As Object  
End Class

Hierarchy

System.Object  MimeFormatter  MimeReturnReader  XmlReturnReader

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 33. The System.Web.SessionStateNamespace

The System.Web.SessionState namespace provides the types used for session state management,
which stores information that is specific to one session or client. Each user accessing an ASP.NET
application has a separate session state collection. Session state is ideal for sensitive data (like credit
card numbers and mailing addresses) because it is stored exclusively on the server. It is also well
suited for complex data (like recordsets, .NET class instances, or COM objects) that cannot be easily
serialized to a client-side cookie.

To support session state, each active ASP.NET session is identified and tracked with a unique 120-bit
session ID string. Session ID values are created and managed automatically by the ASP.NET
framework by using an algorithm that guarantees uniqueness and randomness so that they can't be
regenerated by a malicious user. When a client requests an ASP.NET page, the appropriate ID is
transmitted from the client by a cookie or a modified ("munged") URL. ASP.NET worker processes
then retrieve the serialized data from the state server as a binary stream, convert it into live objects,
and place these objects into the HttpSessionState class's key/value collection. This class is the core of
the System.Web.SessionState namespace. Most other classes in this namespace are used transparently
by the ASP.NET framework, except the IReadOnlySessionState and IRequiresSessionState interfaces,
which allow custom System.Web.IHttpHandler instances to access session data.

Session state is typically removed if no requests are received within a specified timeframe (typically
about 20 minutes). This is the main trade-off of session state storage: you must choose a timeframe
short enough to allow valuable memory to be reclaimed on the server, but long enough to allow a
user to continue a session after a short delay.

Note that most session state settings, including the method session ID transmission, the type of
storage, and the timeout, are all configured through the <sessionstate> section of the web.config file.
Figure 33-1 shows the types in this namespace.

Figure 33-1. The System.Web.SessionState namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HttpSessionState NotInheritable Class

System.Web.SessionState (system.web.dll)

The HttpSessionState class provides server-side state management that is stored on a per-client basis.
The HttpSessionState class exposes a key/value collection of items that can store simple value types or
instances of .NET objects. You can add and access items in the HttpSessionState collection as you
would with other ASP.NET collections, including System.Web.HttpApplicationState and
System.Web.Caching.Cache. Unlike these classes, session state can be stored outside of the main
ASP.NET process. This allows it to be shared across multiple computers in a web farm and persist
after server restarts.

The HttpSessionState class combines two state collections: Contents and StaticObjects. The
StaticObjects collection contains the application state objects that are defined in the global.asax file
with <object runat="server"> tags. This collection is immutable. The Contents collection contains all
the state objects added at runtime.

The Item collection is the default indexer for HttpSessionState, so you can use the name of a state
object as an index, as in: Session("userName") = "Lucy". If you assign a value to a state object that
does not exist, it is created automatically. Items are stored as the generic System.Object type and
must be cast to the appropriate types when you retrieve them.

Other properties allow you to get information about whether or not the session has just been created
with the current request (IsNewSession) and what type of session ID transmission (IsCookieless) and
session storage (Mode) is being used. You can use the SessionID property to retrieve the session ID
string, but you will not need to, as it is created and managed automatically by the ASP.NET
framework. A reference is provided to the HttpSessionState class through the built-in Session object.
Use Abandon() to end a session immediately and release memory occupied by session state objects
without waiting for the session to time out.

Public NotInheritable Class HttpSessionState : Implements ICollection, IEnumerable
' Public Instance Properties
   Public Property CodePage As Integer  
   Public ReadOnly Property Contents As HttpSessionState  
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsCookieless As Boolean  
   Public ReadOnly Property IsNewSession As Boolean  
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default Property Item(
        ByVal name As String) As Object  
   Public Default Property Item(
        ByVal index As Integer) As Object  
   Public ReadOnly Property Keys As KeysCollection  
   Public Property LCID As Integer  
   Public ReadOnly Property Mode As SessionStateMode  
   Public ReadOnly Property SessionID As String  
   Public ReadOnly Property StaticObjects As HttpStaticObjectsCollection  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
   Public Property Timeout As Integer  
' Public Instance Methods
   Public Sub Abandon() 
   Public Sub Add(ByVal name As String, ByVal value As Object) 
   Public Sub Clear() 
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Sub Remove(ByVal name As String) 
   Public Sub RemoveAll() 
   Public Sub RemoveAt(ByVal index As Integer) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IReadOnlySessionState Interface

System.Web.SessionState (system.web.dll)

This interface should be implemented by a custom HttpHandler (any class that interprets web
requests and implements System.Web.IHttpHandler). The IReadOnlySessionState interface contains no
members and is used only as a marker. When present, it tells ASP.NET that the HttpHandler should be
given readonly access to the HttpSessionState collection.

Every HttpHandler should implement either IReadOnlySessionState or IRequiresSessionState, or session
state variables will not be accessible.

Public Interface IReadOnlySessionState : Implements IRequiresSessionState
' No public or protected members
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IRequiresSessionState Interface

System.Web.SessionState (system.web.dll)

This interface should be implemented by a custom HttpHandler. This interface contains no members
and is used only as a marker. When present, it tells ASP.NET that the HttpHandler should be given
read and write access to the HttpSessionState collection.

Every HttpHandler should implement either IReadOnlySessionState or IRequiresSessionState, or session
state variables will not be accessible.

Public Interface IRequiresSessionState
' No public or protected members
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IStateRuntime Interface

System.Web.SessionState (system.web.dll)

This interface defines a contract for the StateRuntime class.

Public Interface IStateRuntime
' Public Instance Methods
   Public Sub ProcessRequest(ByVal tracker As IntPtr, 
        ByVal verb As Integer, ByVal uri As String, 
        ByVal exclusive As Integer, 
        ByVal timeout As Integer, 
        ByVal lockCookieExists As Integer, 
        ByVal lockCookie As Integer, 
        ByVal contentLength As Integer, 
        ByVal content As IntPtr) 
   Public Sub StopProcessing() 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SessionStateMode Enum

System.Web.SessionState (system.web.dll) serializable

This enumeration allows you to identify the type of ASP.NET session storage by using the
HttpSessionState.Mode property. It also allows you to specify it by using the mode attribute of the
<sessionState> tag in the web.config file (for example, <sessionState mode="SQLServer">).

Session state can be stored locally in the ASP.NET process (InProc, the method used in traditional ASP
applications), in a separate server (StateServer), or serialized to a temporary table in an SQL Server
database (SQLServer), which the ASP.NET worker processes access and manage automatically. Note
that both StateServer and SQLServer methods allow state to be shared across servers in web farm/web
garden scenarios and retained in the case of a server restart.

Public Enum SessionStateMode
   Off = 0
   InProc = 1
   StateServer = 2
   SQLServer = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  SessionStateMode
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SessionStateModule NotInheritable Class

System.Web.SessionState (system.web.dll)

This class implements session state storage, taking care of tasks like the generation of unique session
IDs and the storage and retrieval of state information from an external state provider, as directed by
the ASP.NET framework. It is not used directly in your code, but is specified in the machine.config file.

Public NotInheritable Class SessionStateModule : Implements System.Web.IHttpModule
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub Dispose() Implements IHttpModule.Dispose 
   Public Sub Init(
        ByVal app As System.Web.HttpApplication) Implements IHttpModule.Init 
' Events
   Public Event End As EventHandler  
   Public Event Start As EventHandler  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SessionStateSectionHandler Class

System.Web.SessionState (system.web.dll)

The SessionStateSectionHandler class, like all section handlers, is responsible for parsing a portion of
the web.config file and applying ASP.NET settings accordingly. The SessionStateSectionHandler
considers the data in the <sessionstate> sections. This class is used transparently by the ASP.NET
framework and is not used directly in your code.

Class SessionStateSectionHandler : Implements System.Configuration.IConfigurationSectionHandler
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Function Create(ByVal parent As Object, 
        ByVal contextObject As Object, 
        ByVal section As System.Xml.XmlNode) As Object Implements_
         IConfigurationSectionHandler.Create 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

StateRuntime NotInheritable Class

System.Web.SessionState (system.web.dll)

This class is used by the ASP.NET framework to provide session state support. It is not used directly
in your code.

Public NotInheritable Class StateRuntime : Implements IStateRuntime
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub ProcessRequest(ByVal tracker As IntPtr, 
        ByVal verb As Integer, ByVal uri As String, 
        ByVal exclusive As Integer, 
        ByVal timeout As Integer, 
        ByVal lockCookieExists As Integer, 
        ByVal lockCookie As Integer, 
        ByVal contentLength As Integer, 
        ByVal content As IntPtr) Implements IStateRuntime.ProcessRequest 
   Public Sub StopProcessing(
        ) Implements IStateRuntime.StopProcessing 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 34. The System.Web.UI Namespace

The System.Web.UI namespace provides types that allow you to create controls and Web Forms (.aspx
pages). Many of these types provide support for controls in the System.Web.UI.HtmlControls and
System.Web.UI.WebControls namespaces and are not used directly in your code. Some of these types
provide parsing, data binding, and template functionality. The System.Web.UI namespace also
includes a number of fundamental classes like Control (the base class for all HTML, Web, and user
controls), Page (the base class for every .aspx Web Forms page you create), and UserControl (the
class representing all .ascx user controls).

Many of the types in this namespace are useful if you want to create your own custom controls. These
types include the IPostBackDataHandler and IPostBackEventHandler interfaces (used to access postback
data and raise control events), the HtmlTextWriter class (used to create a control's HTML user
interface), the INamingContainer interface (used to create composite controls), and the ITemplate
interface (used to create templated controls with configurable HTML). Additionally, the System.Web.UI
namespace also contains types used for control styles (AttributeCollection and CssStyleCollection) and
view state management (StateBag and StateItem).

Figure 34-1 shows the controls and control builders for this namespace. Figure 34-2 shows attributes
as well as a delegate and its related event arguments. Figure 34-3 shows the remaining types.

Figure 34-1. Controls and control builders

Figure 34-2. Attributes and other types

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 34-2. Attributes and other types

Figure 34-3. More types from System.Web.UI

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AttributeCollection NotInheritable Class

System.Web.UI (system.web.dll)

AttributeCollection is a name/value collection of all attributes declared in the opening tag of an
ASP.NET server control (which should not be confused with .NET metadata attributes). For example,
an HTML text area element has rows and cols attributes that specify its size. You can access and
modify the collection of control attributes for any HTML server control through the
System.Web.UI.HtmlControls.HtmlControl.Attributes collection. You can also access most important
attributes as control properties. Note that you cannot iterate through the AttributeCollection class
because it does not directly implement the System.Collections.IEnumerable interface. Use the read-only
Keys collection instead.

Web Controls also provide an attribute collection through the
System.Web.UI.WebControls.WebControl.Attributes property. However, because web controls are
"abstracted away" from the underlying HTML interface code, you cannot directly access the underlying
attributes for the composite HTML elements of a control. Instead, this collection will typically contain a
single style attribute. You can still add your own attributes to the collection (for example,
TextBox1.Attributes("key") = strKey).

One useful way to use the AttributeCollection class is to add a JavaScript event to a control. For
example, TextBox1.Attributes("onblur") = "javascript:alert('Focus lost!);" adds a "lost focus" JavaScript
event. This will work for HTML controls and some simple Web Controls (like
System.Web.UI.WebControls.TextBox), but not for others (like System.Web.UI.WebControls.Calendar).

Public NotInheritable Class AttributeCollection
' Public Constructors
   Public Sub New(ByVal bag As StateBag) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer  
   Public ReadOnly Property CssStyle As CssStyleCollection  
   Public Default Property Item(
        ByVal key As String) As String  
   Public ReadOnly Property Keys As ICollection  
' Public Instance Methods
   Public Sub Add(ByVal key As String, ByVal value As String) 
   Public Sub AddAttributes(ByVal writer As HtmlTextWriter) 
   Public Sub Clear() 
   Public Sub Remove(ByVal key As String) 
   Public Sub Render(ByVal writer As HtmlTextWriter) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BaseParser Class

System.Web.UI (system.web.dll)

This class is used transparently by the .NET framework. It is the base class used for parsing—the
process by which code in an .aspx file is interpreted and ultimately rendered as HTML.

Public Class BaseParser
' Public Constructors
   Public Sub New() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BasePartialCachingControl MustInherit Class

System.Web.UI (system.web.dll) disposable

This base class supports fragment caching, which allows portions of an ASP.NET page to be cached.
This page is inherited by the PartialCachingControl and StaticPartialCachingControl classes.

Public MustInherit Class BasePartialCachingControl : Inherits Control
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property Dependency As CacheDependency  
' Public Instance Methods
   Overrides Public Sub Dispose() 
' Protected Instance Methods
   Overrides Protected Sub OnInit(ByVal e As EventArgs) 
   Overrides Protected Sub Render(
        ByVal output As HtmlTextWriter) 
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  BasePartialCachingControl
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BuildMethod Delegate

System.Web.UI (system.web.dll) serializable

This delegate is used exclusively by the ASP.NET framework. It specifies the signature for a method
used to build a control and is used in the StaticPartialCachingControl.BuildCachedControl() method. It is
not used in your code.

Public Delegate Function BuildMethod() As Control  

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BuildTemplateMethod Delegate

System.Web.UI (system.web.dll) serializable

This delegate is used exclusively by the ASP.NET framework. It specifies the signature for a method
used to build a template-based control like a Page and is used by the CompiledTemplateBuilder class. It
is not used in your code.

Public Delegate Sub BuildTemplateMethod(
        ByVal control As Control) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CompiledTemplateBuilder NotInheritable Class

System.Web.UI (system.web.dll)

This utility class is used exclusively by the ASP.NET framework when generating controls. It is not
used in your code.

Public NotInheritable Class CompiledTemplateBuilder : Implements ITemplate
' Public Constructors
   Public Sub New(
        ByVal buildTemplateMethod As BuildTemplateMethod) 
' Public Instance Methods
   Public Sub InstantiateIn(
        ByVal container As Control) Implements ITemplate.InstantiateIn 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ConstructorNeedsTagAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This attribute is used in the class declaration for a control. You add it, with the parameter set to True,
to indicate that a control's constructor requires an HTML tag. This tag is used for the
System.Web.UI.HtmlControls.HtmlTableCell and System.Web.UI.HtmlControls.HtmlGenericControl classes,
which can represent different HTML elements. For example, a
System.Web.UI.HtmlControls.HtmlTableCell could represent a <td> or <th> tag, depending on what tag
is provided in the constructor.

Public NotInheritable Class ConstructorNeedsTagAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal needsTag As Boolean) 
' Public Instance Properties
   Public ReadOnly Property NeedsTag As Boolean  
End Class

Hierarchy

System.Object  System.Attribute  ConstructorNeedsTagAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Control Class

System.Web.UI (system.web.dll) disposable

The Control class defines properties, methods, and events that all server controls in ASP.NET require.
ASP.NET controls do not inherit directly from this class; instead, they inherit from either the
System.Web.UI.HtmlControls.HtmlControl or the System.Web.UI.WebControls.WebControl class, both of
which inherit from the Control class. Similarly, the Page and UserControl classes inherit from
TemplateControl, which inherits from this class.

The Control class contains many of the typical members you would expect in a control, including
properties that reference the parent Web Form (Page) and a collection of contained controls
(Controls). The EnableViewState property determines whether ASP.NET maintains the control's state
automatically by using a hidden field. The ViewState property provides the StateBag collection of state
information.

Most Control methods are used transparently by the ASP.NET framework, such as Render(), which
generates the HTML output of a control, and LoadViewState() and SaveViewState(), which manage view
state automatically. One interesting method is DataBind(), which binds controls to arrays or data
tables. If you are creating a page that interacts with information from a database, you may need to
use this method frequently.

You can inherit from the Control class to create a simple ASP.NET control. Override the Render()
method so that the control can generate its own output by using the supplied HtmlTextWriter. If you
are creating a composite control, you must also override the CreateChildControls() method. Use this
method to instantiate new server-based ASP.NET controls or LiteralControl objects and add them by
using the System.Web.UI.Control.Controls.Add() method. If you need to access child controls from
another procedure and you are not sure if they have been created yet, you can use the
EnsureChildControls() method, which automatically calls CreateChildControls(), if needed. You should
also implement the INamingContainer interface to ensure that child controls are created in a distinct
namespace.

Usually, it is easier to derive from System.Web.UI.WebControls.WebControl when creating a custom
control, as this class provides basic style and color options and manages the state for these properties
automatically.

Public Class Control : Implements System.ComponentModel.IComponent, IDisposable, IParserAccessor,_
       IDataBindingsAccessor
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property BindingContainer As Control  
   Overridable Public ReadOnly Property ClientID As String  
   Overridable Public ReadOnly Property Controls As ControlCollection  
   Overridable Public Property EnableViewState As Boolean  
   Overridable Public Property ID As String  
   Overridable Public ReadOnly Property NamingContainer As Control  
   Overridable Public Property Page As Page  
   Overridable Public ReadOnly Property Parent As Control  
   Public Property Site As ISite Implements IComponent.Site 
   Overridable Public ReadOnly Property TemplateSourceDirectory As String  
   Overridable Public ReadOnly Property UniqueID As String  
   Overridable Public Property Visible As Boolean  
' Protected Instance Properties
   Protected Property ChildControlsCreated As Boolean  
   Overridable Protected Property Context As HttpContext  
   Protected Property Events As EventHandlerList  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Protected Property Events As EventHandlerList  
   Protected Property HasChildViewState As Boolean  
   Protected Property IsTrackingViewState As Boolean  
   Overridable Protected Property ViewState As StateBag  
   Overridable Protected Property ViewStateIgnoresCase As Boolean  
' Public Instance Methods
   Overridable Public Sub DataBind() 
   Overridable Public Sub Dispose(
        ) Implements IDisposable.Dispose 
   Overridable Public Function FindControl(
        ByVal id As String) As Control  
   Overridable Public Function HasControls() As Boolean  
   Public Sub RenderControl(ByVal writer As HtmlTextWriter) 
   Public Function ResolveUrl(
        ByVal relativeUrl As String) As String  
   Public Sub SetRenderMethodDelegate(
        ByVal renderMethod As RenderMethod) 
' Protected Instance Methods
   Overridable Protected Friend Sub AddedControl(
        ByVal control As Control, ByVal index As Integer) 
   Overridable Protected Sub AddParsedSubObject(
        ByVal obj As Object) Implements IParserAccessor.AddParsedSubObject 
   Protected Sub BuildProfileTree(ByVal parentId As String, 
        ByVal calcViewState As Boolean) 
   Protected Sub ClearChildViewState() 
   Overridable Protected Sub CreateChildControls() 
   Overridable Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overridable Protected Sub EnsureChildControls() 
   Overridable Protected Function FindControl(
        ByVal id As String, 
        ByVal pathOffset As Integer) As Control  
   Protected Function IsLiteralContent() As Boolean  
   Overridable Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Protected Function MapPathSecure(
        ByVal virtualPath As String) As String  
   Overridable Protected Function OnBubbleEvent(
        ByVal source As Object, 
        ByVal args As EventArgs) As Boolean  
   Overridable Protected Sub OnDataBinding(
        ByVal e As EventArgs) 
   Overridable Protected Sub OnInit(ByVal e As EventArgs) 
   Overridable Protected Sub OnLoad(ByVal e As EventArgs) 
   Overridable Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnUnload(ByVal e As EventArgs) 
   Protected Sub RaiseBubbleEvent(ByVal source As Object, 
        ByVal args As EventArgs) 
   Overridable Protected Friend Sub RemovedControl(
        ByVal control As Control) 
   Overridable Protected Sub Render(
        ByVal writer As HtmlTextWriter) 
   Overridable Protected Sub RenderChildren(
        ByVal writer As HtmlTextWriter) 
   Overridable Protected Function SaveViewState() As Object  
   Overridable Protected Sub TrackViewState() 
' Events
   Public Event DataBinding As EventHandler  
   Public Event Disposed As EventHandler Implements IComponent.Disposed 
   Public Event Init As EventHandler  
   Public Event Load As EventHandler  
   Public Event PreRender As EventHandler  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Event PreRender As EventHandler  
   Public Event Unload As EventHandler  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ControlBuilder Class

System.Web.UI (system.web.dll)

This class is used transparently by the ASP.NET network when generating a Web Forms page. It works
with the appropriate parser object to build the relevant controls. You can derive from this class to
create your custom control builders for your custom controls. Just override the appropriate methods
and apply the ControlBuilderAttribute to your control class to instruct ASP.NET to use your custom
ControlBuilder. For example, you could override the AllowWhitespaceLiterals() method to return False.
This override instructs ASP.NET to refrain from creating LiteralControl objects for any whitespace it
finds inside a control. Note, however, that it is easiest and most common to use the standard
ControlBuilder for your custom controls.

Public Class ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property ControlType As Type  
   Public ReadOnly Property HasAspCode As Boolean  
   Public Property ID As String  
   Public ReadOnly Property NamingContainerType As Type  
   Public ReadOnly Property TagName As String  
' Protected Instance Properties
   Protected Property FChildrenAsProperties As Boolean  
   Protected Property FIsNonParserAccessor As Boolean  
   Protected Property InDesigner As Boolean  
   Protected Property Parser As TemplateParser  
' Public Shared Methods
   Public Shared Function CreateBuilderFromType(
        ByVal parser As TemplateParser, 
        ByVal parentBuilder As ControlBuilder, 
        ByVal type As Type, ByVal tagName As String, 
        ByVal id As String, 
        ByVal attribs As System.Collections.IDictionary, 
        ByVal line As Integer, 
        ByVal sourceFileName As String) As ControlBuilder  
' Public Instance Methods
   Overridable Public Function AllowWhitespaceLiterals() As Boolean  
   Overridable Public Sub AppendLiteralString(
        ByVal s As String) 
   Overridable Public Sub AppendSubBuilder(
        ByVal subBuilder As ControlBuilder) 
   Overridable Public Sub CloseControl() 
   Overridable Public Function GetChildControlType(
        ByVal tagName As String, 
        ByVal attribs As System.Collections.IDictionary) As Type  
   Overridable Public Function HasBody() As Boolean  
   Overridable Public Function HtmlDecodeLiterals() As Boolean  
   Overridable Public Sub Init(ByVal parser As TemplateParser, 
        ByVal parentBuilder As ControlBuilder, 
        ByVal type As Type, ByVal tagName As String, 
        ByVal id As String, 
        ByVal attribs As System.Collections.IDictionary) 
   Overridable Public Function NeedsTagInnerText() As Boolean  
   Overridable Public Sub OnAppendToParentBuilder(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overridable Public Sub OnAppendToParentBuilder(
        ByVal parentBuilder As ControlBuilder) 
   Overridable Public Sub SetTagInnerText(
        ByVal text As String) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ControlBuilderAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This attribute specifies the control builder that a custom control should use. If you want your control
to use the standard control builder, you do not need to use this attribute. If you have created a
custom ControlBuilder class, you can instruct ASP.NET to use it to create a control by adding this
attribute to the control's class declaration, as in <ControlBuilder(GetType(MyControlBuilder))>.

Public NotInheritable Class ControlBuilderAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal builderType As Type) 
' Public Shared Fields
   public Shared ReadOnly Default As ControlBuilderAttribute     
         =System.Web.UI.ControlBuilderAttribute
' Public Instance Properties
   Public ReadOnly Property BuilderType As Type  
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function IsDefaultAttribute() As Boolean  
End Class

Hierarchy

System.Object  System.Attribute  ControlBuilderAttribute

Valid On

Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ControlCollection Class

System.Web.UI (system.web.dll)

This class represents a collection of controls. It allows pages and other controls to specify their child
controls (as with the Page.Controls Property).

Public Class ControlCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New(ByVal owner As Control) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Overridable Public Default ReadOnly Property Item(
        ByVal index As Integer) As Control  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Protected Instance Properties
   Protected Property Owner As Control  
' Public Instance Methods
   Overridable Public Sub Add(ByVal child As Control) 
   Overridable Public Sub AddAt(ByVal index As Integer, 
        ByVal child As Control) 
   Overridable Public Sub Clear() 
   Overridable Public Function Contains(
        ByVal c As Control) As Boolean  
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Overridable Public Function IndexOf(
        ByVal value As Control) As Integer  
   Overridable Public Sub Remove(ByVal value As Control) 
   Overridable Public Sub RemoveAt(ByVal index As Integer) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CssStyleCollection NotInheritable Class

System.Web.UI (system.web.dll)

This class contains a name-value collection of cascading style sheet (CSS) attributes for a specific
control. CSS styles are used to configure many aspects of a control's appearance (such as font and
color) and are supported for both web controls and HTML controls. A CssStyleCollection is provided
through the System.Web.UI.HtmlControls.HtmlControl.Style and
System.Web.UI.WebControls.WebControl.Style properties. This collection is similar to the
AttributeCollection class, and you can retrieve values by using the specific attribute name or
enumerating through the read-only Keys collection.

Public NotInheritable Class CssStyleCollection
' Public Instance Properties
   Public ReadOnly Property Count As Integer  
   Public Default Property Item(
        ByVal key As String) As String  
   Public ReadOnly Property Keys As ICollection  
' Public Instance Methods
   Public Sub Add(ByVal key As String, ByVal value As String) 
   Public Sub Clear() 
   Public Sub Remove(ByVal key As String) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBinder NotInheritable Class

System.Web.UI (system.web.dll)

This class contains a single shared utility method, Eval(), which allows you to specify data binding for
controls like System.Web.UI.WebControls.DataList and System.Web.UI.WebControls.Repeater. The Eval()
method accepts a string that identifies a field in the control's data source and uses it to retrieve the
corresponding information. For example, the statement <%# DataBinder.Eval(Container.DataItem,
"Name") %> in a template for a data control would retrieve data from the Name field of the control's
bound data table. Note that you don't need to use this method to create a data binding expression
(you can just use the <%# Container.DataItem("Name") %> syntax, which is faster). However, using
the DataBinder method gives you the chance to supply a format string to configure date or numeric
values.

Public NotInheritable Class DataBinder
' Public Constructors
   Public Sub New() 
' Public Shared Methods
   Public Shared Function Eval(ByVal container As Object, 
        ByVal expression As String) As Object  
   Public Shared Function Eval(ByVal container As Object, 
        ByVal expression As String, 
        ByVal format As String) As String  
   Public Shared Function GetIndexedPropertyValue(
        ByVal container As Object, 
        ByVal expr As String) As Object  
   Public Shared Function GetIndexedPropertyValue(
        ByVal container As Object, 
        ByVal propName As String, 
        ByVal format As String) As String  
   Public Shared Function GetPropertyValue(
        ByVal container As Object, 
        ByVal propName As String) As Object  
   Public Shared Function GetPropertyValue(
        ByVal container As Object, 
        ByVal propName As String, 
        ByVal format As String) As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBinding NotInheritable Class

System.Web.UI (system.web.dll)

This class represents a design-time data binding, which is contained in the DataBindingCollection.
Generally, most developers will create data bindings at runtime instead, which allows increased
flexibility and more transparent code.

You can configure data binding expressions by clicking the ellipsis (...) next to the (DataBindings)
option in the Visual Studio .NET Properties window. Every data binding consists of an expression
identifying the source (Expression), the bound property (PropertyName), and the data type
(PropertyType).

Public NotInheritable Class DataBinding
' Public Constructors
   Public Sub New(ByVal propertyName As String, 
        ByVal propertyType As Type, 
        ByVal expression As String) 
' Public Instance Properties
   Public Property Expression As String  
   Public ReadOnly Property PropertyName As String  
   Public ReadOnly Property PropertyType As Type  
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBindingCollection NotInheritable Class

System.Web.UI (system.web.dll)

This collection of DataBinding objects represents data binding expressions configured at design time.

Public NotInheritable Class DataBindingCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal propertyName As String) As DataBinding  
   Public ReadOnly Property RemovedBindings As String()  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub Add(ByVal binding As DataBinding) 
   Public Sub Clear() 
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Sub Remove(ByVal binding As DataBinding) 
   Public Sub Remove(ByVal propertyName As String) 
   Public Sub Remove(ByVal propertyName As String, 
        ByVal addToRemovedList As Boolean) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBindingHandlerAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This class is used for controls requiring special data binding handlers. For example, the
System.Web.UI.WebControls.Calendar control uses a System.Web.UI.Design.CalendarDataBindingHandler
class that derives from System.Web.UI.Design.DataBindingHandler. This custom data binding handler is
specified by using the DataBindingHandlerAttribute in the control's class declaration.

Public NotInheritable Class DataBindingHandlerAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal typeName As String) 
   Public Sub New(ByVal type As Type) 
' Public Shared Fields
   public Shared ReadOnly Default As DataBindingHandlerAttribute    
         =System.Web.UI.DataBindingHandlerAttribute
' Public Instance Properties
   Public ReadOnly Property HandlerTypeName As String  
End Class

Hierarchy

System.Object  System.Attribute  DataBindingHandlerAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBoundLiteralControl NotInheritable Class

System.Web.UI (system.web.dll) disposable

ASP.NET creates a DataBoundLiteralControl for each data binding expression it finds on a page (such
as <%# Container.DataItem("Name") %>). You do not need to create this control directly.

Public NotInheritable Class DataBoundLiteralControl : Inherits Control
' Public Constructors
   Public Sub New(ByVal staticLiteralsCount As Integer, 
        ByVal dataBoundLiteralCount As Integer) 
' Public Instance Properties
   Public ReadOnly Property Text As String  
' Public Instance Methods
   Public Sub SetDataBoundString(ByVal index As Integer, 
        ByVal s As String) 
   Public Sub SetStaticString(ByVal index As Integer, 
        ByVal s As String) 
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub Render(
        ByVal output As HtmlTextWriter) 
   Overrides Protected Function SaveViewState() As Object  
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  DataBoundLiteralControl

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DesignTimeParseData NotInheritable Class

System.Web.UI (system.web.dll)

This class is used by the ASP.NET framework to parse .aspx files at design time. You do not use it in
your code.

Public NotInheritable Class DesignTimeParseData
' Public Constructors
   Public Sub New(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal parseText As String) 
' Public Instance Properties
   Public Property DataBindingHandler As EventHandler  
   Public ReadOnly Property DesignerHost As IDesignerHost  
   Public Property DocumentUrl As String  
   Public ReadOnly Property ParseText As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DesignTimeTemplateParser NotInheritable Class

System.Web.UI (system.web.dll)

This control is used by the ASP.NET framework to parse templated controls in .aspx files at design
time. You do not use it in your code.

Public NotInheritable Class DesignTimeTemplateParser
' Public Shared Methods
   Public Shared Function ParseControl(
        ByVal data As DesignTimeParseData) As Control  
   Public Shared Function ParseTemplate(
        ByVal data As DesignTimeParseData) As ITemplate  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

EmptyControlCollection Class

System.Web.UI (system.web.dll)

This class represents a collection of controls that is always empty. Using the Add() method will trigger
an exception.

Public Class EmptyControlCollection : Inherits ControlCollection
' Public Constructors
   Public Sub New(ByVal owner As Control) 
' Public Instance Methods
   Overrides Public Sub Add(ByVal child As Control) 
   Overrides Public Sub AddAt(ByVal index As Integer, 
        ByVal child As Control) 
End Class

Hierarchy

System.Object  ControlCollection(System.Collections.ICollection, System.Collections.IEnumerable)
EmptyControlCollection
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Html32TextWriter Class

System.Web.UI (system.web.dll) marshal by reference, disposable

This class derives from HtmlTextWriter and is used by the ASP.NET framework to generate HTML
output for ASP.NET controls.

Public Class Html32TextWriter : Inherits HtmlTextWriter
' Public Constructors
   Public Sub New(ByVal writer As System.IO.TextWriter) 
   Public Sub New(ByVal writer As System.IO.TextWriter, 
        ByVal tabString As String) 
' Protected Instance Properties
   Protected Property FontStack As Stack  
' Public Instance Methods
   Overrides Public Sub RenderBeginTag(
        ByVal tagKey As HtmlTextWriterTag) 
   Overrides Public Sub RenderEndTag() 
' Protected Instance Methods
   Overrides Protected Function GetTagName(
        ByVal tagKey As HtmlTextWriterTag) As String  
   Overrides Protected Function OnStyleAttributeRender(
        ByVal name As String, ByVal value As String, 
        ByVal key As HtmlTextWriterStyle) As Boolean  
   Overrides Protected Function OnTagRender(
        ByVal name As String, 
        ByVal key As HtmlTextWriterTag) As Boolean  
   Overrides Protected Function RenderAfterContent(
        ) As String  
   Overrides Protected Function RenderAfterTag() As String  
   Overrides Protected Function RenderBeforeContent(
        ) As String  
   Overrides Protected Function RenderBeforeTag() As String  
End Class

Hierarchy

System.Object  System.MarshalByRefObject  System.IO.TextWriter(System.IDisposable)
HtmlTextWriter  Html32TextWriter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTextWriter Class

System.Web.UI (system.web.dll) marshal by reference, disposable

The ASP.NET framework uses this class when writing the client-side HTML for a Web Forms page. It
contains a wealth of methods for rendering the appropriate content, and derives from the more
generic System.IO.TextWriter. Typically, you will not use this class directly in your code, unless you
are a control developer.

When deriving custom controls from Control or System.Web.UI.WebControls.WebControl, you can
override the Render() or RenderContents() method and create the control's output by using the
supplied HtmlTextWriter. Commonly used methods include Write(), which can output text or HTML
tags, AddStyleAttribute(), which specifies a CSS style attribute for the next tag, and RenderBeginTag()
and RenderEndTag(), which make it easy to insert open and closing HTML tags while keeping the code
readable. The HtmlTextWriter also performs automatic indentation of the HTML output.

Public Class HtmlTextWriter : Inherits System.IO.TextWriter
' Public Constructors
   Public Sub New(ByVal writer As System.IO.TextWriter) 
   Public Sub New(ByVal writer As System.IO.TextWriter, 
        ByVal tabString As String) 
' Public Shared Fields
   public const DefaultTabString As String
        //  = 
   public const DoubleQuoteChar As Char   
        //  =&H000000022
   public const EndTagLeftChars As String 
        //  =</
   public const EqualsChar As Char        
        //  =&H00000003D
   public const EqualsDoubleQuoteString As String                // =="
   public const SelfClosingChars As String
        //  = /
   public const SelfClosingTagEnd As String                      // = />
   public const SemicolonChar As Char     
        //  =&H00000003B
   public const SingleQuoteChar As Char   
        //  =&H000000027
   public const SlashChar As Char         
        //  =&H00000002F
   public const SpaceChar As Char         
        //  =&H000000020
   public const StyleEqualsChar As Char   
        //  =&H00000003A
   public const TagLeftChar As Char       
        //  =&H00000003C
   public const TagRightChar As Char      
        //  =&H00000003E
' Public Instance Properties
   Overrides Public ReadOnly Property Encoding As Encoding  
   Public Property Indent As Integer  
   Public Property InnerWriter As TextWriter  
   Overrides Public Property NewLine As String  
' Protected Instance Properties
   Protected Property TagKey As HtmlTextWriterTag  
   Protected Property TagName As String  
' Protected Shared Methods

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


' Protected Shared Methods
   Shared Protected Sub RegisterAttribute(
        ByVal name As String, 
        ByVal key As HtmlTextWriterAttribute) 
   Shared Protected Sub RegisterStyle(ByVal name As String, 
        ByVal key As HtmlTextWriterStyle) 
   Shared Protected Sub RegisterTag(ByVal name As String, 
        ByVal key As HtmlTextWriterTag) 
' Public Instance Methods
   Overridable Public Sub AddAttribute(
        ByVal key As HtmlTextWriterAttribute, 
        ByVal value As String) 
   Overridable Public Sub AddAttribute(
        ByVal key As HtmlTextWriterAttribute, 
        ByVal value As String, ByVal fEncode As Boolean) 
   Overridable Public Sub AddAttribute(ByVal name As String, 
        ByVal value As String) 
   Overridable Public Sub AddAttribute(ByVal name As String, 
        ByVal value As String, ByVal fEndode As Boolean) 
   Overridable Public Sub AddStyleAttribute(
        ByVal key As HtmlTextWriterStyle, 
        ByVal value As String) 
   Overridable Public Sub AddStyleAttribute(
        ByVal name As String, ByVal value As String) 
   Overrides Public Sub Close() 
   Overrides Public Sub Flush() 
   Overridable Public Sub RenderBeginTag(
        ByVal tagKey As HtmlTextWriterTag) 
   Overridable Public Sub RenderBeginTag(
        ByVal tagName As String) 
   Overridable Public Sub RenderEndTag() 
   Overrides Public Sub Write(ByVal value As Boolean) 
   Overrides Public Sub Write(ByVal value As Char) 
   Overrides Public Sub Write(ByVal buffer As Char()) 
   Overrides Public Sub Write(ByVal buffer As Char(), 
        ByVal index As Integer, ByVal count As Integer) 
   Overrides Public Sub Write(ByVal value As Double) 
   Overrides Public Sub Write(ByVal value As Integer) 
   Overrides Public Sub Write(ByVal value As Long) 
   Overrides Public Sub Write(ByVal value As Object) 
   Overrides Public Sub Write(ByVal value As Single) 
   Overrides Public Sub Write(ByVal s As String) 
   Overrides Public Sub Write(ByVal format As String, 
        ByVal arg0 As Object) 
   Overrides Public Sub Write(ByVal format As String, 
        ParamArray arg As Object()) 
   Overrides Public Sub Write(ByVal format As String, 
        ByVal arg0 As Object, ByVal arg1 As Object) 
   Overridable Public Sub WriteAttribute(ByVal name As String, 
        ByVal value As String) 
   Overridable Public Sub WriteAttribute(ByVal name As String, 
        ByVal value As String, ByVal fEncode As Boolean) 
   Overridable Public Sub WriteBeginTag(
        ByVal tagName As String) 
   Overridable Public Sub WriteEndTag(ByVal tagName As String) 
   Overridable Public Sub WriteFullBeginTag(
        ByVal tagName As String) 
   Overrides Public Sub WriteLine() 
   Overrides Public Sub WriteLine(ByVal value As Boolean) 
   Overrides Public Sub WriteLine(ByVal value As Char) 
   Overrides Public Sub WriteLine(ByVal buffer As Char()) 
   Overrides Public Sub WriteLine(ByVal buffer As Char(), 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overrides Public Sub WriteLine(ByVal buffer As Char(), 
        ByVal index As Integer, ByVal count As Integer) 
   Overrides Public Sub WriteLine(ByVal value As Double) 
   Overrides Public Sub WriteLine(ByVal value As Integer) 
   Overrides Public Sub WriteLine(ByVal value As Long) 
   Overrides Public Sub WriteLine(ByVal value As Object) 
   Overrides Public Sub WriteLine(ByVal value As Single) 
   Overrides Public Sub WriteLine(ByVal s As String) 
   Overrides Public Sub WriteLine(ByVal format As String, 
        ByVal arg0 As Object) 
   Overrides Public Sub WriteLine(ByVal format As String, 
        ParamArray arg As Object()) 
   Overrides Public Sub WriteLine(ByVal format As String, 
        ByVal arg0 As Object, ByVal arg1 As Object) 
   Overrides Public Sub WriteLine(ByVal value As UInt32) 
   Public Sub WriteLineNoTabs(ByVal s As String) 
   Overridable Public Sub WriteStyleAttribute(
        ByVal name As String, ByVal value As String) 
   Overridable Public Sub WriteStyleAttribute(
        ByVal name As String, ByVal value As String, 
        ByVal fEncode As Boolean) 
' Protected Instance Methods
   Overridable Protected Sub AddAttribute(
        ByVal name As String, ByVal value As String, 
        ByVal key As HtmlTextWriterAttribute) 
   Overridable Protected Sub AddStyleAttribute(
        ByVal name As String, ByVal value As String, 
        ByVal key As HtmlTextWriterStyle) 
   Overridable Protected Function EncodeAttributeValue(
        ByVal attrKey As HtmlTextWriterAttribute, 
        ByVal value As String) As String  
   Protected Function EncodeAttributeValue(
        ByVal value As String, 
        ByVal fEncode As Boolean) As String  
   Protected Function EncodeUrl(
        ByVal url As String) As String  
   Overridable Protected Sub FilterAttributes() 
   Protected Function GetAttributeKey(
        ByVal attrName As String) As HtmlTextWriterAttribute  
   Protected Function GetAttributeName(
        ByVal attrKey As HtmlTextWriterAttribute) As String  
   Protected Function GetStyleKey(
        ByVal styleName As String) As HtmlTextWriterStyle  
   Protected Function GetStyleName(
        ByVal styleKey As HtmlTextWriterStyle) As String  
   Overridable Protected Function GetTagKey(
        ByVal tagName As String) As HtmlTextWriterTag  
   Overridable Protected Function GetTagName(
        ByVal tagKey As HtmlTextWriterTag) As String  
   Protected Function IsAttributeDefined(
        ByVal key As HtmlTextWriterAttribute) As Boolean  
   Protected Function IsAttributeDefined(
        ByVal key As HtmlTextWriterAttribute, 
        ByRef value As String) As Boolean  
   Protected Function IsStyleAttributeDefined(
        ByVal key As HtmlTextWriterStyle) As Boolean  
   Protected Function IsStyleAttributeDefined(
        ByVal key As HtmlTextWriterStyle, 
        ByRef value As String) As Boolean  
   Overridable Protected Function OnAttributeRender(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overridable Protected Function OnAttributeRender(
        ByVal name As String, ByVal value As String, 
        ByVal key As HtmlTextWriterAttribute) As Boolean  
   Overridable Protected Function OnStyleAttributeRender(
        ByVal name As String, ByVal value As String, 
        ByVal key As HtmlTextWriterStyle) As Boolean  
   Overridable Protected Function OnTagRender(
        ByVal name As String, 
        ByVal key As HtmlTextWriterTag) As Boolean  
   Overridable Protected Sub OutputTabs() 
   Protected Function PopEndTag() As String  
   Protected Sub PushEndTag(ByVal endTag As String) 
   Overridable Protected Function RenderAfterContent(
        ) As String  
   Overridable Protected Function RenderAfterTag() As String  
   Overridable Protected Function RenderBeforeContent(
        ) As String  
   Overridable Protected Function RenderBeforeTag() As String  
End Class

Hierarchy

System.Object  System.MarshalByRefObject  System.IO.TextWriter(System.IDisposable)
HtmlTextWriter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTextWriterAttribute Enum

System.Web.UI (system.web.dll) serializable

This enumeration specifies the HTML attributes that should be written to the opening tag of an HTML
element when a client request is processed. It is used by several methods in the HtmlTextWriter class.

Public Enum HtmlTextWriterAttribute
   Accesskey = 0
   Align = 1
   Alt = 2
   Background = 3
   Bgcolor = 4
   Border = 5
   Bordercolor = 6
   Cellpadding = 7
   Cellspacing = 8
   Checked = 9
   Class = 10
   Cols = 11
   Colspan = 12
   Disabled = 13
   For = 14
   Height = 15
   Href = 16
   Id = 17
   Maxlength = 18
   Multiple = 19
   Name = 20
   Nowrap = 21
   Onchange = 22
   Onclick = 23
   ReadOnly = 24
   Rows = 25
   Rowspan = 26
   Rules = 27
   Selected = 28
   Size = 29
   Src = 30
   Style = 31
   Tabindex = 32
   Target = 33
   Title = 34
   Type = 35
   Valign = 36
   Value = 37
   Width = 38
   Wrap = 39
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  HtmlTextWriterAttribute

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTextWriterStyle Enum

System.Web.UI (system.web.dll) serializable

This enumeration specifies HTML styles that the methods in the HtmlTextWriter class can use to create
output.

Public Enum HtmlTextWriterStyle
   BackgroundColor = 0
   BackgroundImage = 1
   BorderCollapse = 2
   BorderColor = 3
   BorderStyle = 4
   BorderWidth = 5
   Color = 6
   FontFamily = 7
   FontSize = 8
   FontStyle = 9
   FontWeight = 10
   Height = 11
   TextDecoration = 12
   Width = 13
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  HtmlTextWriterStyle

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTextWriterTag Enum

System.Web.UI (system.web.dll) serializable

This enumeration represents different HTML tags for the HtmlTextWriter class. For example, you can
use a value from this enumeration as a parameter for the HtmlTextWriter.RenderBeginTag() method to
specify what tag should be written to the output stream.

Public Enum HtmlTextWriterTag
   Unknown = 0
   A = 1
   Acronym = 2
   Address = 3
   Area = 4
   B = 5
   Base = 6
   Basefont = 7
   Bdo = 8
   Bgsound = 9
   Big = 10
   Blockquote = 11
   Body = 12
   Br = 13
   Button = 14
   Caption = 15
   Center = 16
   Cite = 17
   Code = 18
   Col = 19
   Colgroup = 20
   Dd = 21
   Del = 22
   Dfn = 23
   Dir = 24
   Div = 25
   Dl = 26
   Dt = 27
   Em = 28
   Embed = 29
   Fieldset = 30
   Font = 31
   Form = 32
   Frame = 33
   Frameset = 34
   H1 = 35
   H2 = 36
   H3 = 37
   H4 = 38
   H5 = 39
   H6 = 40
   Head = 41
   Hr = 42
   Html = 43
   I = 44
   Iframe = 45
   Img = 46

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Img = 46
   Input = 47
   Ins = 48
   Isindex = 49
   Kbd = 50
   Label = 51
   Legend = 52
   Li = 53
   Link = 54
   Map = 55
   Marquee = 56
   Menu = 57
   Meta = 58
   Nobr = 59
   Noframes = 60
   Noscript = 61
   Object = 62
   Ol = 63
   Option = 64
   P = 65
   Param = 66
   Pre = 67
   Q = 68
   Rt = 69
   Ruby = 70
   S = 71
   Samp = 72
   Script = 73
   Select = 74
   Small = 75
   Span = 76
   Strike = 77
   Strong = 78
   Style = 79
   Sub = 80
   Sup = 81
   Table = 82
   Tbody = 83
   Td = 84
   Textarea = 85
   Tfoot = 86
   Th = 87
   Thead = 88
   Title = 89
   Tr = 90
   Tt = 91
   U = 92
   Ul = 93
   Var = 94
   Wbr = 95
   Xml = 96
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  HtmlTextWriterTag

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IAttributeAccessor Interface

System.Web.UI (system.web.dll)

This interface defines a GetAttribute() and a SetAttribute() method that provide programmatic access to
the style attributes defined in the opening tag for a server control. This interface is implemented by
System.Web.UI.WebControls.WebControl and System.Web.UI.HtmlControls.HtmlControl, both of which
also provide an AttributeCollection through the Style property. Although you can use this interface if
you create a custom control that derives from Control, it is easier to just inherit directly from
System.Web.UI.WebControls.WebControl.

Public Interface IAttributeAccessor
' Public Instance Methods
   Public Function GetAttribute(
        ByVal key As String) As String  
   Public Sub SetAttribute(ByVal key As String, 
        ByVal value As String) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IDataBindingsAccessor Interface

System.Web.UI (system.web.dll)

This interface is implemented by all controls that derive from Control. It allows access to the
corresponding DataBindingCollection through the DataBindings property. As the DataBindingCollection
represents data bindings created in the IDE, the properties in this interface are only valid at design
time.

Public Interface IDataBindingsAccessor
' Public Instance Properties
   Public ReadOnly Property DataBindings As DataBindingCollection  
   Public ReadOnly Property HasDataBindings As Boolean  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ImageClickEventArgs NotInheritable Class

System.Web.UI (system.web.dll)

This custom System.EventArgs object provides extra information for some image-click events. These
include the System.Web.UI.WebControls.ImageButton.Click and
System.Web.UI.HtmlControls.HtmlInputImage.ServerClick events. Note that the
System.Web.UI.WebControls.Image and System.Web.UI.HtmlControls.HtmlImage controls do not use this
class.

The extra information consists of two coordinates indicating the exact position where the image was
clicked: X and Y. These coordinates are measured from the top-left corner, which has the coordinates
(0, 0) by convention.

Public NotInheritable Class ImageClickEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal x As Integer, ByVal y As Integer) 
' Public Instance Fields
   public X As Integer  
   public Y As Integer  
End Class

Hierarchy

System.Object  System.EventArgs  ImageClickEventArgs

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ImageClickEventHandler Delegate

System.Web.UI (system.web.dll) serializable

This delegate specifies the signature for the event handler that handles the
System.Web.UI.WebControls.ImageButton.Click and
System.Web.UI.HtmlControls.HtmlInputImage.ServerClick events. This event handler receives extra
information about the exact coordinates where the image was clicked.

Public Delegate Sub ImageClickEventHandler(
        ByVal sender As Object, 
        ByVal e As ImageClickEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

INamingContainer Interface

System.Web.UI (system.web.dll)

This is a marker interface. When ASP.NET renders a control that implements INamingContainer, it
creates a new namespace and uses it for any child controls. This guarantees that the child control IDs
will be unique on the page. This interface is used for controls that dynamically generate a series of
similar controls, such as System.Web.UI.WebControls.Repeater and
System.Web.UI.WebControls.RadioButtonList. If you are developing your own composite control, you
will also need to implement this interface.

Public Interface INamingContainer
' No public or protected members
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IParserAccessor Interface

System.Web.UI (system.web.dll)

This interface is implemented by the Control class. It allows the ASP.NET framework to access the
parser for the control.

Public Interface IParserAccessor
' Public Instance Methods
   Public Sub AddParsedSubObject(ByVal obj As Object) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IPostBackDataHandler Interface

System.Web.UI (system.web.dll)

This interface, which is implemented by many ASP.NET Server Controls, allows a control to receive
and process postback data. It consists of two methods. The first, LoadPostData(), allows a control to
receive the form data and update its properties as required. ASP.NET calls this method automatically
on postback. It provides form data as a collection in the postCollection argument and a postDataKey
argument identifying the control's key (i.e., postCollection(postDataKey) will contain the posted
information for the control). The control returns True from this method to indicate that its state has
changed, or False if it hasn't. ASP.NET calls the second method, RaisePostDataChangedEvent(),
automatically after LoadPostData() if the control's state is changed. The control can use this method to
raise any required events. Events should never be raised from the LoadPostData() method because
other controls may not have loaded their state information yet.

Public Interface IPostBackDataHandler
' Public Instance Methods
   Public Function LoadPostData(ByVal postDataKey As String, 
        ByVal postCollection As System.Collections.Specialized.NameValueCollection) As Boolean  
   Public Sub RaisePostDataChangedEvent() 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IPostBackEventHandler Interface

System.Web.UI (system.web.dll)

This interface allows a control to raise events in response to a postback operation. This interface is
commonly used for button controls like System.Web.UI.WebControls.Button and
System.Web.UI.WebControls.ImageButton. It can be used instead of, or in conjunction with, the
IPostBackDataHandler interface. The distinction is that the RaisePostBackEvent() method is always
called when a postback event occurs. The IPostBackDataHandler.RaisePostDataChangedEvent() method
is called only if the control's state has changed, and is thus more suited for a "Change" event than a
"Click" event.

Public Interface IPostBackEventHandler
' Public Instance Methods
   Public Sub RaisePostBackEvent(
        ByVal eventArgument As String) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IStateManager Interface

System.Web.UI (system.web.dll)

This interface provides methods that are used to manage view state, which is the set of information
that describes a control's current state. View state is stored in a hidden field on a Web Forms page, so
it can be maintained across postbacks. State management is built into the Control class, and you can
write values into the Control.ViewState collection to store any information you need without using
IStateManager. However, you can also create a custom control that implements this interface to
customize how state management works. The IStateManager consists of three methods:
SaveViewState(), which stores changes to an object, LoadViewState(), which retrieves and applies
previously stored values, and TrackViewState(), which sets the IsTrackingViewState property to True
and instructs ASP.NET to track changes to the control's view state.

Public Interface IStateManager
' Public Instance Properties
   Public ReadOnly Property IsTrackingViewState As Boolean  
' Public Instance Methods
   Public Sub LoadViewState(ByVal state As Object) 
   Public Function SaveViewState() As Object  
   Public Sub TrackViewState() 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ITagNameToTypeMapper Interface

System.Web.UI (system.web.dll)

This interface consists of a single method GetControlType(), which accepts a string containing a control
tag and returns a System.Type object identifying the corresponding control class.

Interface ITagNameToTypeMapper
' Public Instance Methods
   Public Function GetControlType(ByVal tagName As String, 
        ByVal attribs As System.Collections.IDictionary) As Type  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ITemplate Interface

System.Web.UI (system.web.dll)

Templates allow controls to make portions of their user interface configurable. Templates are used in
classes like System.Web.UI.WebControls.DataList and can be added in your own custom controls by
declaring properties of type ITemplate (for example, an ItemStyle or HeaderStyle property). This
allows the user to specify a template for a portion of your control.

Your custom control code uses a supplied template by invoking the InstantiateIn() method. This
method accepts a control reference and populates its Control.Controls collection with one or more
server controls that represent the user interface defined in the template. The control you supply to
the InstantiateIn() method could be the current control, or one of the current control's children. Note
that you do not need to write the implementation code for this method, as the .NET framework
provides it intrinsically.

Public Interface ITemplate
' Public Instance Methods
   Public Sub InstantiateIn(ByVal container As Control) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IValidator Interface

System.Web.UI (system.web.dll)

This interface defines members used for validation controls. The Validate() method is used to examine
supplied information, compare it with the valid parameters, and update IsValid property appropriately.
The ErrorMessage contains the message that should be generated for the user when the supplied
information is not valid.

When creating a custom validation control, you do not need to implement this interface. Instead, you
should inherit from one of the validation classes in the System.Web.UI.WebControls namespace. The
base class, System.Web.UI.WebControls.BaseValidator, implements this interface.

Public Interface IValidator
' Public Instance Properties
   Public Property ErrorMessage As String  
   Public Property IsValid As Boolean  
' Public Instance Methods
   Public Sub Validate() 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LiteralControl Class

System.Web.UI (system.web.dll) disposable

The ASP.NET parser automatically creates LiteralControl instances for any text or HTML it finds in a
page that does not correspond to a server control, and then adds them to the containing control's
Control.Controls collection. You should not confuse this class with the
System.Web.UI.WebControls.Literal control class, which can be used to add simple text to a web page
(much like an unformatted Label control).

Public Class LiteralControl : Inherits Control
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal text As String) 
' Public Instance Properties
   Overridable Public Property Text As String  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub Render(
        ByVal output As HtmlTextWriter) 
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  LiteralControl
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LosFormatter NotInheritable Class

System.Web.UI (system.web.dll)

This class is used by ASP.NET to implement Limited Object Serialization (LOS) for view state. It
converts the data stored in every control's StateBag into a lightly encrypted, condensed ASCII field
that is added to the page as a hidden input control. While you can store complex information in the
StateBag, the LosFormatter is optimized for strings, arrays, hashtables, and other primitive .NET types
defined in the System namespace. This class provides functionality through the methods Serialize() and
Deserialize().

Public NotInheritable Class LosFormatter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Function Deserialize(
        ByVal stream As System.IO.Stream) As Object  
   Public Function Deserialize(
        ByVal input As String) As Object  
   Public Function Deserialize(
        ByVal input As System.IO.TextReader) As Object  
   Public Sub Serialize(ByVal stream As System.IO.Stream, 
        ByVal value As Object) 
   Public Sub Serialize(ByVal output As System.IO.TextWriter, 
        ByVal value As Object) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ObjectConverter NotInheritable Class

System.Web.UI (system.web.dll)

This class is used automatically by the ASP.NET framework and never used directly in your code.

Public NotInheritable Class ObjectConverter
' Public Constructors
   Public Sub New() 
' Public Shared Methods
   Public Shared Function ConvertValue(ByVal value As Object, 
        ByVal toType As Type, 
        ByVal formatString As String) As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ObjectTagBuilder NotInheritable Class

System.Web.UI (system.web.dll)

This class is used automatically by the ASP.NET framework and never used directly in your code.

Public NotInheritable Class ObjectTagBuilder : Inherits ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Sub AppendLiteralString(ByVal s As String) 
   Overrides Public Sub AppendSubBuilder(
        ByVal subBuilder As ControlBuilder) 
   Overrides Public Sub Init(ByVal parser As TemplateParser, 
        ByVal parentBuilder As ControlBuilder, 
        ByVal type As Type, ByVal tagName As String, 
        ByVal id As String, 
        ByVal attribs As System.Collections.IDictionary) 
End Class

Hierarchy

System.Object  ControlBuilder  ObjectTagBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

OutputCacheLocation Enum

System.Web.UI (system.web.dll) serializable

You can enable output caching for an ASP.NET page by using the System.Web.HttpCachePolicy class or
adding a page directive. This enumeration is used by ASP.NET when it calls the Page.InitOutputCache()
method. It specifies whether the page is cached locally on the client (Client), on the web server
(Server), or on another server between the client and the web server (Downstream).

Public Enum OutputCacheLocation
   Any = 0
   Client = 1
   Downstream = 2
   Server = 3
   None = 4
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  OutputCacheLocation

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Page Class

System.Web.UI (system.web.dll) disposable

All Web Forms you create for an ASP.NET application derive implicitly or explicitly from Page. This
class, which is a special subclass of Control, adds additional page-specific functionality. For example,
rather than simply providing the Control.Context property, the Page class provides the traditional built-
in objects through references like Response, Request, and Application. The Page class also provides
properties that allow you to use tracing (Trace and TraceEnabled) and access all the validation controls
and information about whether their validation was successful (Validators and IsValid).

Another useful property is IsPostBack, which you can test in the Load event. Typically, you will skip
control initialization if this property returns True, indicating that the page has already been displayed
and the control values will be persisted in view state. You can also set AspCompatMode to True so the
Page will be executed on a single-threaded apartment (STA) thread. This setting allows the page to
call other STA components, such as those you may have developed with Visual Basic 6 (although it
can hamper performance significantly).

Most Page methods are used by the ASP.NET framework and will never be used in your code. One
exception is MapPath(), which returns the physical path on the server that corresponds to a specified
virtual path (URL).

Public Class Page : Inherits TemplateControl : Implements System.Web.IHttpHandler
' Public Constructors
   Public Sub New() 
' Protected Shared Fields
   protected const postEventArgumentID As String                 // =__EVENTARGUMENT
   protected const postEventSourceID As String                   // =__EVENTTARGET
' Public Instance Properties
   Public ReadOnly Property Application As HttpApplicationState  
   Public ReadOnly Property Cache As Cache  
   Public Property ClientTarget As String  
   Overrides Public Property EnableViewState As Boolean  
   Public Property ErrorPage As String  
   Overrides Public Property ID As String  
   Public ReadOnly Property IsPostBack As Boolean  
   Public ReadOnly Property IsReusable As Boolean Implements IHttpHandler.IsReusable 
   Public ReadOnly Property IsValid As Boolean  
   Public ReadOnly Property Request As HttpRequest  
   Public ReadOnly Property Response As HttpResponse  
   Public ReadOnly Property Server As HttpServerUtility  
   Overridable Public ReadOnly Property Session As HttpSessionState  
   Public Property SmartNavigation As Boolean  
   Public ReadOnly Property Trace As TraceContext  
   Public ReadOnly Property User As IPrincipal  
   Public ReadOnly Property Validators As ValidatorCollection  
   Overrides Public Property Visible As Boolean  
' Protected Instance Properties
   Protected Property AspCompatMode As Boolean  
   Protected Property Buffer As Boolean  
   Protected Property CodePage As Integer  
   Protected Property ContentType As String  
   Overrides Protected Property Context As HttpContext  
   Protected Property Culture As String  
   Protected Property EnableViewStateMac As Boolean  
   Protected Property FileDependencies As ArrayList  
   Protected Property LCID As Integer  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Protected Property LCID As Integer  
   Protected Property ResponseEncoding As String  
   Protected Property TraceEnabled As Boolean  
   Protected Property TraceModeValue As TraceMode  
   Protected Property TransactionMode As Integer  
   Protected Property UICulture As String  
' Public Instance Methods
   Public Sub DesignerInitialize() 
   Public Function GetPostBackClientEvent(
        ByVal control As Control, 
        ByVal argument As String) As String  
   Public Function GetPostBackClientHyperlink(
        ByVal control As Control, 
        ByVal argument As String) As String  
   Public Function GetPostBackEventReference(
        ByVal control As Control) As String  
   Public Function GetPostBackEventReference(
        ByVal control As Control, 
        ByVal argument As String) As String  
   Overridable Public Function GetTypeHashCode() As Integer  
   Public Function IsClientScriptBlockRegistered(
        ByVal key As String) As Boolean  
   Public Function IsStartupScriptRegistered(
        ByVal key As String) As Boolean  
   Public Function MapPath(
        ByVal virtualPath As String) As String  
   Public Sub ProcessRequest(
        ByVal context As System.Web.HttpContext) Implements IHttpHandler.ProcessRequest 
   Public Sub RegisterArrayDeclaration(
        ByVal arrayName As String, 
        ByVal arrayValue As String) 
   Overridable Public Sub RegisterClientScriptBlock(
        ByVal key As String, ByVal script As String) 
   Overridable Public Sub RegisterHiddenField(
        ByVal hiddenFieldName As String, 
        ByVal hiddenFieldInitialValue As String) 
   Public Sub RegisterOnSubmitStatement(ByVal key As String, 
        ByVal script As String) 
   Public Sub RegisterRequiresPostBack(
        ByVal control As Control) 
   Overridable Public Sub RegisterRequiresRaiseEvent(
        ByVal control As IPostBackEventHandler) 
   Overridable Public Sub RegisterStartupScript(
        ByVal key As String, ByVal script As String) 
   Public Sub RegisterViewStateHandler() 
   Overridable Public Sub Validate() 
   Overridable Public Sub VerifyRenderingInServerForm(
        ByVal control As Control) 
' Protected Instance Methods
   Protected Function AspCompatBeginProcessRequest(
        ByVal context As System.Web.HttpContext, 
        ByVal cb As AsyncCallback, 
        ByVal extraData As Object) As IAsyncResult  
   Protected Sub AspCompatEndProcessRequest(
        ByVal result As IAsyncResult) 
   Overridable Protected Function CreateHtmlTextWriter(
        ByVal tw As System.IO.TextWriter) As HtmlTextWriter  
   Overridable Protected Function DeterminePostBackMode(
        ) As NameValueCollection  
   Overridable Protected Sub InitOutputCache(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overridable Protected Sub InitOutputCache(
        ByVal duration As Integer, 
        ByVal varyByHeader As String, 
        ByVal varyByCustom As String, 
        ByVal location As OutputCacheLocation, 
        ByVal varyByParam As String) 
   Overridable Protected Function LoadPageStateFromPersistenceMedium(
        ) As Object  
   Overridable Protected Sub RaisePostBackEvent(
        ByVal sourceControl As IPostBackEventHandler, 
        ByVal eventArgument As String) 
   Overridable Protected Sub SavePageStateToPersistenceMedium(
        ByVal viewState As Object) 
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  TemplateControl(INamingContainer)  Page(System.Web.IHttpHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PageParser NotInheritable Class

System.Web.UI (system.web.dll)

This class provides a page parser that compiles an .aspx file into a custom Page object.

Public NotInheritable Class PageParser : Inherits TemplateControlParser
' Public Constructors
   Public Sub New() 
' Public Shared Methods
   Public Shared Function GetCompiledPageInstance(
        ByVal virtualPath As String, 
        ByVal inputFile As String, 
        ByVal context As System.Web.HttpContext) As IHttpHandler  
' Protected Instance Methods
   Overrides Protected Function CompileIntoType() As Type  
End Class

Hierarchy

System.Object  BaseParser  TemplateParser  TemplateControlParser  PageParser
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Pair Class

System.Web.UI (system.web.dll)

This class is used internally for the LosFormatter. It contains two types that can be serialized into view
state.

Public Class Pair
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal x As Object, ByVal y As Object) 
' Public Instance Fields
   public First As Object  
   public Second As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ParseChildrenAttribute NotInheritable Class

System.Web.UI (system.web.dll)

You can use this attribute to mark the class declaration for any custom controls that you create. If you
specify True for the ChildrenAsProperties property, the ASP.NET parser will treat any subelements
inside your control tag as object properties. If you do not use this attribute or you specify False,
ASP.NET will assume that nested elements should be added as child controls. In this case, you can still
set object properties by using the "object walker" syntax, where properties are split by using a dash
(as in <MyControls MyObject-MyProperty="Value" />).

Public NotInheritable Class ParseChildrenAttribute : Inherits Attribute
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal childrenAsProperties As Boolean) 
   Public Sub New(ByVal childrenAsProperties As Boolean, 
        ByVal defaultProperty As String) 
' Public Shared Fields
   public Shared ReadOnly Default As ParseChildrenAttribute      // =System.Web.UI.ParseChildrenAttribute
' Public Instance Properties
   Public Property ChildrenAsProperties As Boolean  
   Public Property DefaultProperty As String  
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function IsDefaultAttribute() As Boolean  
End Class

Hierarchy

System.Object  System.Attribute  ParseChildrenAttribute

Valid On

Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PartialCachingAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This class specifies the attributes that can be set on user controls for fragment caching. To enable
fragment caching, use the <OutputCache> directive at the beginning of the appropriate .ascx file.
ASP.NET will automatically generate this attribute when the user control is requested. Alternatively,
you can leave out the directive and use this attribute in the code-behind class for the user control.

Public NotInheritable Class PartialCachingAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal duration As Integer) 
   Public Sub New(ByVal duration As Integer, 
        ByVal varyByParams As String, 
        ByVal varyByControls As String, 
        ByVal varyByCustom As String) 
' Public Instance Properties
   Public ReadOnly Property Duration As Integer  
   Public ReadOnly Property VaryByControls As String  
   Public ReadOnly Property VaryByCustom As String  
   Public ReadOnly Property VaryByParams As String  
End Class

Hierarchy

System.Object  System.Attribute  PartialCachingAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PartialCachingControl Class

System.Web.UI (system.web.dll) disposable

This class is utilized by the ASP.NET framework to use fragment caching with user controls. You can
enable fragment caching by using the <OutputCache> directive at the beginning of the appropriate
.ascx file.

Public Class PartialCachingControl : Inherits BasePartialCachingControl
' Public Instance Properties
   Public ReadOnly Property CachedControl As Control  
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  BasePartialCachingControl  PartialCachingControl
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PersistChildrenAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This attribute indicates how the child controls of an ASP.NET Server Control should be persisted at
design time. If set to True, the child controls are persisted as nested inner server control tags. If False,
the properties of the control may be persisted as inner tags.

Public NotInheritable Class PersistChildrenAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal persist As Boolean) 
' Public Shared Fields
   public Shared ReadOnly Default As PersistChildrenAttribute    // =System.Web.UI.PersistChildrenAttribute
   public Shared ReadOnly No As PersistChildrenAttribute         // =System.Web.UI.PersistChildrenAttribute
   public Shared ReadOnly Yes As PersistChildrenAttribute        // =System.Web.UI.PersistChildrenAttribute
' Public Instance Properties
   Public ReadOnly Property Persist As Boolean  
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function IsDefaultAttribute() As Boolean  
End Class

Hierarchy

System.Object  System.Attribute  PersistChildrenAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PersistenceMode Enum

System.Web.UI (system.web.dll) serializable

This enumeration provides values for the PersistenceModeAttribute. PersistenceModeAttribute.Attribute
instructs ASP.NET to persist a property in a control's HTML tag as an attribute. This is the default and
does not require the use of the PersistenceModeAttribute. You can also use
PersistenceModeAttribute.InnerDefaultProperty or PersistenceModeAttribute.EncodedInnerDefaultProperty
to designate a property as the inner content of control tag. Only one property can be used in this way,
and the only difference between these two options is whether the ASP.NET framework will
automatically perform HTML encoding before persisting the value. Finally,
PersistenceModeAttribute.InnerProperty persists the property as a nested tag inside the control tag.

Public Enum PersistenceMode
   Attribute = 0
   InnerProperty = 1
   InnerDefaultProperty = 2
   EncodedInnerDefaultProperty = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  PersistenceMode

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PersistenceModeAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This attribute specifies how a control property should be persisted in the opening tag in the .aspx file,
using one of the PersistenceMode values. You can use this attribute for the properties in any custom
controls that you make.

Public NotInheritable Class PersistenceModeAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal mode As PersistenceMode) 
' Public Shared Fields
   public Shared ReadOnly Attribute As PersistenceModeAttribute    
        // =System.Web.UI.PersistenceModeAttribute
   public Shared ReadOnly Default As PersistenceModeAttribute    
        // =System.Web.UI.PersistenceModeAttribute
   public Shared ReadOnly EncodedInnerDefaultProperty As PersistenceModeAttribute    
        // =System.Web.UI.PersistenceModeAttribute
   public Shared ReadOnly InnerDefaultProperty As PersistenceModeAttribute    
        // =System.Web.UI.PersistenceModeAttribute
   public Shared ReadOnly InnerProperty As PersistenceModeAttribute    
        // =System.Web.UI.PersistenceModeAttribute
' Public Instance Properties
   Public ReadOnly Property Mode As PersistenceMode  
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function IsDefaultAttribute() As Boolean  
End Class

Hierarchy

System.Object  System.Attribute  PersistenceModeAttribute

Valid On

All

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PropertyConverter NotInheritable Class

System.Web.UI (system.web.dll)

This class is used by the .NET framework, not directly by your own code.

Public NotInheritable Class PropertyConverter
' Public Shared Methods
   Public Shared Function EnumFromString(
        ByVal enumType As Type, 
        ByVal value As String) As Object  
   Public Shared Function EnumToString(ByVal enumType As Type, 
        ByVal enumValue As Object) As String  
   Public Shared Function ObjectFromString(
        ByVal objType As Type, 
        ByVal propertyInfo As System.Reflection.MemberInfo, 
        ByVal value As String) As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RenderMethod Delegate

System.Web.UI (system.web.dll) serializable

This delegate is used exclusively by the ASP.NET framework. It specifies the signature for a method
used to render a control.

Public Delegate Sub RenderMethod(
        ByVal output As HtmlTextWriter, 
        ByVal container As Control) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RootBuilder NotInheritable Class

System.Web.UI (system.web.dll)

This class is used by the .NET framework, not directly by your own code.

Public NotInheritable Class RootBuilder : Inherits TemplateBuilder
' Public Constructors
   Public Sub New(ByVal parser As TemplateParser) 
' Public Instance Methods
   Overrides Public Function GetChildControlType(
        ByVal tagName As String, 
        ByVal attribs As System.Collections.IDictionary) As Type  
End Class

Hierarchy

System.Object  ControlBuilder  TemplateBuilder(ITemplate)  RootBuilder

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SimpleWebHandlerParser MustInherit Class

System.Web.UI (system.web.dll)

This class provides basic functionality used to parse web handler files. It is used by the .NET
framework, not directly by your own code.

Public MustInherit Class SimpleWebHandlerParser
' Protected Constructors
   Protected Sub New(ByVal context As System.Web.HttpContext, 
        ByVal virtualPath As String, 
        ByVal physicalPath As String) 
' Protected Instance Properties
   MustInherit Protected Property DefaultDirectiveName As String  
' Protected Instance Methods
   Protected Function GetCompiledTypeFromCache() As Type  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

StateBag NotInheritable Class

System.Web.UI (system.web.dll)

Every control stores view state information in a StateBag provided in the Control.ViewState property, if
you enabled the Control.EnableViewState property. View state includes information representing all
properties of a control or page and any custom items you added. Information is provided in a
key/value collection and is accessed much like the System.Web.SessionState.HttpSessionState or
System.Web.Caching.Cache class. You can add a value to the StateBag collection like this:
ViewState("NewObject") = dsNorthwind.

The StateBag can contain primitive types or full-fledged serializable objects. When retrieving an
object, you will have to cast it to the correct type. Also note that you can enumerate through the
StateBag collection by using the StateItem enumerator.

Public NotInheritable Class StateBag : Implements IStateManager, IDictionary, ICollection, IEnumerable
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal ignoreCase As Boolean) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public Default Property Item(
        ByVal key As String) As Object  
   Public ReadOnly Property Keys As ICollection Implements IDictionary.Keys 
   Public ReadOnly Property Values As ICollection Implements IDictionary.Values 
' Public Instance Methods
   Public Function Add(ByVal key As String, 
        ByVal value As Object) As StateItem  
   Public Sub Clear() Implements IDictionary.Clear 
   Public Function GetEnumerator(
        ) As IDictionaryEnumerator Implements IDictionary.GetEnumerator 
   Public Function IsItemDirty(
        ByVal key As String) As Boolean  
   Public Sub Remove(ByVal key As String) 
   Public Sub SetItemDirty(ByVal key As String, 
        ByVal dirty As Boolean) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

StateItem NotInheritable Class

System.Web.UI (system.web.dll)

This class represents an item in the StateBag collection and is used to track changes to that item. The
actual stored object is contained in the Value property. An additional piece of information is provided
in the IsDirty property, which is True if the item has been changed since being saved into the StateBag
collection. Changes to an item in the StateBag are saved when the ASP.NET framework calls the
Control.SaveViewState() method.

When you retrieve an option from the StateBag collection using the default indexer StateBag.Item, you
will receive the actual object. If, however, you want to enumerate through the StateBag collection
using for each syntax, you should create a StateItem enumerator. You can also retrieve a StateItem
object from the StateBag.Add() method.

Public NotInheritable Class StateItem
' Public Instance Properties
   Public Property IsDirty As Boolean  
   Public Property Value As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

StaticPartialCachingControl Class

System.Web.UI (system.web.dll) disposable

When you include a user control on your page, and specify that it should be cached (either by using
the standard <OutputCache> directive in the .ascx file, or the PartialCachingAttribute in the the user
control's code-behind file), an instance of the StaticPartialCachingControl class will be placed in the
control hierarchy of the page as a parent to the cached user control.

Public Class StaticPartialCachingControl : Inherits BasePartialCachingControl
' Public Constructors
   Public Sub New(ByVal ctrlID As String, 
        ByVal guid As String, ByVal duration As Integer, 
        ByVal varyByParams As String, 
        ByVal varyByControls As String, 
        ByVal varyByCustom As String, 
        ByVal buildMethod As BuildMethod) 
' Public Shared Methods
   Public Shared Sub BuildCachedControl(
        ByVal parent As Control, ByVal ctrlID As String, 
        ByVal guid As String, ByVal duration As Integer, 
        ByVal varyByParams As String, 
        ByVal varyByControls As String, 
        ByVal varyByCustom As String, 
        ByVal buildMethod As BuildMethod) 
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  BasePartialCachingControl  StaticPartialCachingControl

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TagPrefixAttribute NotInheritable Class

System.Web.UI (system.web.dll)

Tag prefixes are used to identify control elements in an .aspx file. For example, all pre-built ASP.NET
controls have a tag prefix of asp:, as in <asp:Label />. You can use the TagPrefixAttribute for your
custom controls to define a different tag, which can help you distinguish your controls easily. The
portion of the tag after the tag prefix is the control class name. Alternatively, you can use the
<Register> directive in the .aspx file (not the code-behind file).

Public NotInheritable Class TagPrefixAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal namespaceName As String, 
        ByVal tagPrefix As String) 
' Public Instance Properties
   Public ReadOnly Property NamespaceName As String  
   Public ReadOnly Property TagPrefix As String  
End Class

Hierarchy

System.Object  System.Attribute  TagPrefixAttribute

Valid On

Assembly

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateBuilder Class

System.Web.UI (system.web.dll)

This class works with the ASP.NET framework to parse and build a templated control when a request
is made for a Web Forms page. It is not used in your code.

Public Class TemplateBuilder : Inherits ControlBuilder : Implements ITemplate
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property Text As String  
' Public Instance Methods
   Overrides Public Sub Init(ByVal parser As TemplateParser, 
        ByVal parentBuilder As ControlBuilder, 
        ByVal type As Type, ByVal tagName As String, 
        ByVal ID As String, 
        ByVal attribs As System.Collections.IDictionary) 
   Overridable Public Sub InstantiateIn(
        ByVal container As Control) Implements ITemplate.InstantiateIn 
   Overrides Public Function NeedsTagInnerText() As Boolean  
   Overrides Public Sub SetTagInnerText(ByVal text As String) 
End Class

Hierarchy

System.Object  ControlBuilder  TemplateBuilder(ITemplate)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateContainerAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This attribute is used when creating templated controls, which allow the control user to specify a
portion of the control's user interface. This functionality is implemented in controls like
System.Web.UI.WebControls.Repeater and System.Web.UI.WebControls.DataList, which format bound
data according to specified templates. In these controls, and in any custom templated controls you
make, the TemplateContainerAttribute is applied to every ITemplate property. The attribute specifies
the type of the container control the template will be instantiated in, so that casting is not required to
evaluate data binding expressions. For example, the
System.Web.UI.WebControls.DataList.ItemTemplate property is a ITemplate property that allows you to
set or retrieve the template for items in the list. This particular property has the attribute
<TemplateContainer(typeof(System.Web.UI.WebControls.DataListItem ))>.

Public NotInheritable Class TemplateContainerAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal containerType As Type) 
' Public Instance Properties
   Public ReadOnly Property ContainerType As Type  
End Class

Hierarchy

System.Object  System.Attribute  TemplateContainerAttribute

Valid On

Property

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateControl MustInherit Class

System.Web.UI (system.web.dll) disposable

This abstract class provides basic functionality for template controls, which include Page and
UserControl. This functionality includes transaction support and various properties, methods, and
events that are used and managed transparently by the ASP.NET framework.

Public MustInherit Class TemplateControl : Inherits Control : Implements INamingContainer
' Protected Constructors
   Protected Sub New() 
' Protected Instance Properties
   Overridable Protected Property AutoHandlers As Integer  
   Overridable Protected Property SupportAutoEvents As Boolean  
' Public Shared Methods
   Public Shared Function ReadStringResource(
        ByVal t As Type) As Object  
' Public Instance Methods
   Public Function LoadControl(
        ByVal virtualPath As String) As Control  
   Public Function LoadTemplate(
        ByVal virtualPath As String) As ITemplate  
   Public Function ParseControl(
        ByVal content As String) As Control  
' Protected Instance Methods
   Overridable Protected Sub Construct() 
   Protected Function CreateResourceBasedLiteralControl(
        ByVal offset As Integer, ByVal size As Integer, 
        ByVal fAsciiOnly As Boolean) As LiteralControl  
   Overridable Protected Sub FrameworkInitialize() 
   Overridable Protected Sub OnAbortTransaction(
        ByVal e As EventArgs) 
   Overridable Protected Sub OnCommitTransaction(
        ByVal e As EventArgs) 
   Overridable Protected Sub OnError(ByVal e As EventArgs) 
   Protected Sub SetStringResourcePointer(
        ByVal stringResourcePointer As Object, 
        ByVal maxResourceOffset As Integer) 
   Protected Sub WriteUTF8ResourceString(
        ByVal output As HtmlTextWriter, 
        ByVal offset As Integer, ByVal size As Integer, 
        ByVal fAsciiOnly As Boolean) 
' Events
   Public Event AbortTransaction As EventHandler  
   Public Event CommitTransaction As EventHandler  
   Public Event Error As EventHandler  
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  TemplateControl(INamingContainer)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateControlParser MustInherit Class

System.Web.UI (system.web.dll)

This abstract class includes some of the functionality for parsing ASP.NET files and interpreting tags
as controls. PageParser derives from this class. It is not used in your code.

Public MustInherit Class TemplateControlParser : Inherits TemplateParser
' Protected Constructors
   Protected Sub New() 
End Class

Hierarchy

System.Object  BaseParser  TemplateParser  TemplateControlParser
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateParser MustInherit Class

System.Web.UI (system.web.dll)

This abstract class includes some of the functionality for parsing ASP.NET files. TemplateControlParser
derives directly from this class. It is not used in your code.

Public MustInherit Class TemplateParser : Inherits BaseParser
' Protected Instance Methods
   MustInherit Protected Function CompileIntoType() As Type  
End Class

Hierarchy

System.Object  BaseParser  TemplateParser

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ToolboxDataAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This attribute is used when you are creating your own custom controls (typically by inheriting from
System.Web.UI.WebControls.WebControl or Control). By default, designers like Visual Studio .NET will
create an empty tag when you drag a control from the toolbox onto the design surface. This empty
tag represents a control in its default state. Rather than using the empty tag, you can specify initial
values and default HTML will be placed inside the control tag by using this attribute. For example, the
attribute <ToolboxData("<{0}:MyLabel Text='MyLabel' BackColor='Yellow' runat='server'>
</{0}:MyLabel>")> configures the initial tag for a custom label control with a yellow background. Note
that all occurences of {0} in the supplied Data string will be replaced, by the designer, with the tag
prefix associated with the MyLabel class.

Public NotInheritable Class ToolboxDataAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal data As String) 
' Public Shared Fields
   public Shared ReadOnly Default As ToolboxDataAttribute        // =System.Web.UI.ToolboxDataAttribute
' Public Instance Properties
   Public ReadOnly Property Data As String  
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function IsDefaultAttribute() As Boolean  
End Class

Hierarchy

System.Object  System.Attribute  ToolboxDataAttribute

Valid On

Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Triplet Class

System.Web.UI (system.web.dll)

This class is used internally for the LosFormatter. It contains three types that can be combined and
serialized into view state.

Public Class Triplet
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal x As Object, ByVal y As Object) 
   Public Sub New(ByVal x As Object, ByVal y As Object, 
        ByVal z As Object) 
' Public Instance Fields
   public First As Object  
   public Second As Object  
   public Third As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UserControl Class

System.Web.UI (system.web.dll) disposable

This class represents a user control, or .ascx file, inside a Web Form. A user control allows you to
share commonly used portions of user interface. User controls are similar to .aspx pages and can
contain HTML, server controls, and event handling logic. They are instantiated and cached in much
the same was as Page objects and contain many of the same properties. The difference is that user
controls must be situated inside a Web Forms page. User controls should not be confused with custom
web controls, which you can create by inheriting from System.Web.UI.WebControls.WebControl.

When using fragment caching with user controls, remember that you will not be able to modify any of
the properties of the UserControl; the cached control will be loaded as straight HTML rather than a
UserControl object.

Public Class UserControl : Inherits TemplateControl : Implements_
        IAttributeAccessor, IUserControlDesignerAccessor
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Application As HttpApplicationState  
   Public ReadOnly Property Attributes As AttributeCollection  
   Public ReadOnly Property Cache As Cache  
   Public ReadOnly Property IsPostBack As Boolean  
   Public ReadOnly Property Request As HttpRequest  
   Public ReadOnly Property Response As HttpResponse  
   Public ReadOnly Property Server As HttpServerUtility  
   Public ReadOnly Property Session As HttpSessionState  
   Public ReadOnly Property Trace As TraceContext  
' Public Instance Methods
   Public Sub DesignerInitialize() 
   Public Sub InitializeAsUserControl(ByVal page As Page) 
   Public Function MapPath(
        ByVal virtualPath As String) As String  
' Protected Instance Methods
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub OnInit(ByVal e As EventArgs) 
   Overrides Protected Function SaveViewState() As Object  
End Class

Hierarchy

System.Object  Control(System.ComponentModel.IComponent, System.IDisposable, IParserAccessor,
IDataBindingsAccessor)  TemplateControl(INamingContainer)  UserControl(IAttributeAccessor,
IUserControlDesignerAccessor)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidationPropertyAttribute NotInheritable Class

System.Web.UI (system.web.dll)

This attribute specifies which property of a server control should be used for validation. Typically, this
is a property like Text, Value, or SelectedItem. The ValidationPropertyAttribute is used only when you
create custom controls; existing ASP.NET controls use it intrinsically.

This attribute is applied to the class declaration, not a specific property. You can specify the property
to validate through the attribute's Name property, as in: <ValidationProperty("Text")>.

Public NotInheritable Class ValidationPropertyAttribute : Inherits Attribute
' Public Constructors
   Public Sub New(ByVal name As String) 
' Public Instance Properties
   Public ReadOnly Property Name As String  
End Class

Hierarchy

System.Object  System.Attribute  ValidationPropertyAttribute

Valid On

Class
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidatorCollection NotInheritable Class

System.Web.UI (system.web.dll)

This class contains a collection of validation controls (controls that implement IValidator, usually by
deriving from System.Web.UI.WebControls.BaseValidator). It is used for the Page.Validators property,
which provides a collection of all validation controls on a Web Forms page. For more information
about validation controls, refer to the System.Web.UI.WebControls namespace.

Public NotInheritable Class ValidatorCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As IValidator  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub Add(ByVal validator As IValidator) 
   Public Function Contains(
        ByVal validator As IValidator) As Boolean  
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Sub Remove(ByVal validator As IValidator) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebServiceParser Class

System.Web.UI (system.web.dll)

This class is used by the ASP.NET framework when handling web service requests. It is not used
directly in your code.

Public Class WebServiceParser : Inherits SimpleWebHandlerParser
' Protected Instance Properties
   Overrides Protected Property DefaultDirectiveName As String  
' Public Shared Methods
   Public Shared Function GetCompiledType(
        ByVal inputFile As String, 
        ByVal context As System.Web.HttpContext) As Type  
End Class

Hierarchy

System.Object  SimpleWebHandlerParser  WebServiceParser
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 35. The System.Web.UI.Design Namespace

The System.Web.UI.Design namespace contains types used for providing design-time support for the
Web Forms user interface. These types fall into four basic categories: type converters, UI type
editors, designers, and other helper classes (such as classes that provide ASP.NET data binding
support). Type converters allow control properties to be converted to and from base data types, which
allows them to be displayed and edited in the Properties Window. Type converters also extend
runtime support, but they are only used implicitly and never instantiated directly. Type converter
classes derive from System.ComponentModel.TypeConverter and end with the word "Converter" by
convention. Unlike type converters, UI type editors are used exclusively in the design environment.
They provide the custom user interface that is used to select special property values from the
Properties Window (like a control's color). UI type editors derive from
System.Drawing.Design.UITypeEditor and end with the word "Editor."

Designers help provide the design-time representation of a control. They derive from
System.ComponentModel.Design.ComponentDesigner and end with the word "Designer." The
System.Web.UI.Design namespace contains the base designers used for ASP.NET controls. ASP.NET
controls use different designers than Windows Form controls because they are rendered by using
HTML rather than Windows-specific GDI+ functions. For custom designers that extend specific
controls, refer to the System.Web.UI.Design.WebControls namespace.

Generally, the types in the System.Web.UI.Design namespace are never used directly in the runtime
logic of an application. However, they are useful for ASP.NET control designers. For example, if you
are creating a custom Web Forms control from scratch, you may want to derive from ControlDesigner
to create a custom designer. However, you may find it more convenient to extend an existing web
control—in which case, you would continue using the default designers, type converters, and UI type
editors, or derive custom versions from the corresponding control-specific class in the
System.Web.UI.Design.WebControls namespace, if it exists.

Figure 35-1 shows the fundamental types in this namespace, and Figure 35-2 shows the remaining
types.

Figure 35-1. Fundamental types from the System.Web.UI.Design namespace

Figure 35-2. More types from the System.Web.UI.Design namespace.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 35-2. More types from the System.Web.UI.Design namespace.

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CalendarDataBindingHandler Class

System.Web.UI.Design (system.design.dll)

Provides the type of data binding used by the System.Web.UI.WebControls.Calendar control.

Public Class CalendarDataBindingHandler : Inherits DataBindingHandler
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Sub DataBindControl(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal control As System.Web.UI.Control) 
End Class

Hierarchy

System.Object  DataBindingHandler  CalendarDataBindingHandler

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ColorBuilder NotInheritable Class

System.Web.UI.Design (system.design.dll)

This class launches the graphical color editor you see when you modify a control property like
System.Web.UI.WebControls.WebControl.ForeColor in the Properties Window. The shared BuildColor()
method launches the color builder for the appropriate control.

Public NotInheritable Class ColorBuilder
' Public Shared Methods
   Public Shared Function BuildColor(
        ByVal component As System.ComponentModel.IComponent, 
        ByVal owner As System.Windows.Forms.Control, 
        ByVal initialColor As String) As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ControlDesigner Class

System.Web.UI.Design (system.design.dll) disposable

This is base class for web control designers like System.Web.UI.Design.WebControls.AdRotatorDesigner.
These designers create the design-time appearance that a control provides to the design editor (like
Visual Studio .NET). This HTML code is provided through the GetDesignTimeHtml() method, which is
called by the host. The base implementation of the GetDesignTimeHtml() method invokes the
System.Web.UI.Control.Render() method of the appropriate control to create the same HTML at design
time as at runtime. A custom designer modifies this behavior by overriding the GetDesignTimeHtml()
to provide HTML that is more suitable for a design-time representation.

You can create your own custom designer to use with a custom
System.Web.UI.WebControls.WebControl. In this case, you use the
System.ComponentModel.DesignerAttribute on the class declaration of your control to connect it with
the appropriate designer. You can set various ControlDesigner properties—the most useful of which is
AllowResize, which restricts your control to a fixed size. When your control is resized, the designer will
call corresponding methods like OnControlResize() to give you a chance to refresh the appearance of
your control accordingly.

The GetDesignTimeHtml() method should call GetEmptyDesignTimeHtml() if the rendered HTML string is
empty (for example, when required control properties are not set). The base implementation of
GetEmptyDesignTimeHtml() returns the fully qualified name of the control. Alternatively, you may want
to override this property to supply a place holder using the CreatePlaceHolderDesignTimeHtml(). You
may also want to override GetErrorDesignTimeHtml() method with specific information based on the
exception object that is provided.

Public Class ControlDesigner : Inherits HtmlControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public ReadOnly Property AllowResize As Boolean  
   Overridable Public ReadOnly Property DesignTimeHtmlRequiresLoadComplete As Boolean  
   Overridable Public Property ID As String  
   Public Property IsDirty As Boolean  
   Public Property ReadOnly As Boolean  
' Protected Instance Properties
   Protected Property DesignTimeElementView As Object  
' Public Instance Methods
   Overridable Public Function GetDesignTimeHtml() As String  
   Overridable Public Function GetPersistInnerHtml(
        ) As String  
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
   Public Function IsPropertyBound(
        ByVal propName As String) As Boolean  
   Overridable Public Sub OnComponentChanged(
        ByVal sender As Object, 
        ByVal ce As System.ComponentModel.Design.ComponentChangedEventArgs) 
   Public Sub RaiseResizeEvent() 
   Overridable Public Sub UpdateDesignTimeHtml() 
' Protected Instance Methods
   Protected Function CreatePlaceHolderDesignTimeHtml(
        ) As String  
   Protected Function CreatePlaceHolderDesignTimeHtml(
        ByVal instruction As String) As String  
   Overridable Protected Function GetEmptyDesignTimeHtml(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overridable Protected Function GetEmptyDesignTimeHtml(
        ) As String  
   Overridable Protected Function GetErrorDesignTimeHtml(
        ByVal e As Exception) As String  
   Overrides Protected Sub OnBehaviorAttached() 
   Overrides Protected Sub OnBindingsCollectionChanged(
        ByVal propName As String) 
   Overridable Protected Sub OnControlResize() 
   Overrides Protected Sub PreFilterProperties(
        ByVal properties As System.Collections.IDictionary) 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)  HtmlControlDesigner
ControlDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ControlParser NotInheritable Class

System.Web.UI.Design (system.design.dll)

This class is used by the ASP.NET framework. It provides basic functionality used to parse the code
for a Web Forms control.

Public NotInheritable Class ControlParser
' Public Shared Methods
   Public Shared Function ParseControl(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal controlText As String) As Control  
   Public Shared Function ParseControl(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal controlText As String, 
        ByVal directives As String) As Control  
   Public Shared Function ParseTemplate(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal templateText As String) As ITemplate  
   Public Shared Function ParseTemplate(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal templateText As String, 
        ByVal directives As String) As ITemplate  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ControlPersister NotInheritable Class

System.Web.UI.Design (system.design.dll)

This class provides shared (static) helper methods that retrieve the information used to persist a
control and its state. For example, the PersistControl() method returns a string that looks very similar
to the control tag used in the .aspx file, with the named class used instead of the "asp:" prefix.
Typically, this class is used only by the IDE.

Public NotInheritable Class ControlPersister
' Public Shared Methods
   Public Shared Function PersistControl(
        ByVal control As System.Web.UI.Control) As String  
   Public Shared Function PersistControl(
        ByVal control As System.Web.UI.Control, 
        ByVal host As System.ComponentModel.Design.IDesignerHost) As String  
   Public Shared Sub PersistControl(
        ByVal sw As System.IO.TextWriter, 
        ByVal control As System.Web.UI.Control) 
   Public Shared Sub PersistControl(
        ByVal sw As System.IO.TextWriter, 
        ByVal control As System.Web.UI.Control, 
        ByVal host As System.ComponentModel.Design.IDesignerHost) 
   Public Shared Function PersistInnerProperties(
        ByVal component As Object, 
        ByVal host As System.ComponentModel.Design.IDesignerHost) As String  
   Public Shared Sub PersistInnerProperties(
        ByVal sw As System.IO.TextWriter, 
        ByVal component As Object, 
        ByVal host As System.ComponentModel.Design.IDesignerHost) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBindingCollectionConverter Class

System.Web.UI.Design (system.design.dll)

This custom System.ComponentModel.TypeConverter class provides a single method, ConvertTo(),
which is used to convert System.Web.UI.DataBindingCollection objects.

Public Class DataBindingCollectionConverter : Inherits System.ComponentModel.TypeConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function ConvertTo(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object, 
        ByVal destinationType As Type) As Object  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  DataBindingCollectionConverter
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBindingCollectionEditor Class

System.Web.UI.Design (system.design.dll)

This class is a custom System.Drawing.Design.UITypeEditor used for editing data binding collections.

Public Class DataBindingCollectionEditor : Inherits System.Drawing.Design.UITypeEditor
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function EditValue(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal provider As IServiceProvider, 
        ByVal value As Object) As Object  
   Overrides Public Function GetEditStyle(
        ByVal context As System.ComponentModel.ITypeDescriptorContext)_
    As UITypeEditorEditStyle  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  DataBindingCollectionEditor

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBindingHandler MustInherit Class

System.Web.UI.Design (system.design.dll)

This a base class for all design-time data-binding handlers. In provides a single method,
DataBindControl(), which binds the specified control.

Public MustInherit Class DataBindingHandler
' Protected Constructors
   Protected Sub New() 
' Public Instance Methods
   MustInherit Public Sub DataBindControl(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal control As System.Web.UI.Control) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataBindingValueUIHandler Class

System.Web.UI.Design (system.design.dll)

This class helps create a user interface for editing control data binding. The OnGetUIValueItem()
method adds the actual binding.

Public Class DataBindingValueUIHandler
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Public Sub OnGetUIValueItem(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal propDesc As System.ComponentModel.PropertyDescriptor, 
        ByVal valueUIItemList As System.Collections.ArrayList) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataFieldConverter Class

System.Web.UI.Design (system.design.dll)

This class provides a System.ComponentModel.TypeConverter that can be used to convert a string to
and from a data field. You will not need to access this class directly, unless you want to use it for a
custom ASP.NET control—in which case, you can bind it to the appropriate property by using the
System.ComponentModel.TypeConverterAttribute.

Public Class DataFieldConverter : Inherits System.ComponentModel.TypeConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function CanConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal sourceType As Type) As Boolean  
   Overrides Public Function ConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object) As Object  
   Overrides Public Function GetStandardValues(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As StandardValuesCollection  
   Overrides Public Function GetStandardValuesExclusive(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
   Overrides Public Function GetStandardValuesSupported(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  DataFieldConverter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataMemberConverter Class

System.Web.UI.Design (system.design.dll)

This class provides a System.ComponentModel.TypeConverter that can be used to convert a string to a
database table name, and vice versa. You will not need to access this class directly, unless you want
to use it for a custom ASP.NET control—in which case you can bind it to the DataMember property by
using the System.ComponentModel.TypeConverterAttribute.

Public Class DataMemberConverter : Inherits System.ComponentModel.TypeConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function CanConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal sourceType As Type) As Boolean  
   Overrides Public Function ConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object) As Object  
   Overrides Public Function GetStandardValues(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As StandardValuesCollection  
   Overrides Public Function GetStandardValuesExclusive(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
   Overrides Public Function GetStandardValuesSupported(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  DataMemberConverter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataSourceConverter Class

System.Web.UI.Design (system.design.dll)

This class provides a System.ComponentModel.TypeConverter that can be used to convert a string to a
data source object and vice versa. You will not need to access this class directly, unless you want to
use it for a custom ASP.NET control—in which case you can bind it to the DataSource property by
using the System.ComponentModel.TypeConverterAttribute.

Public Class DataSourceConverter : Inherits System.ComponentModel.TypeConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function CanConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal sourceType As Type) As Boolean  
   Overrides Public Function ConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object) As Object  
   Overrides Public Function GetStandardValues(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As StandardValuesCollection  
   Overrides Public Function GetStandardValuesExclusive(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
   Overrides Public Function GetStandardValuesSupported(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  DataSourceConverter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DesignTimeData NotInheritable Class

System.Web.UI.Design (system.design.dll)

This class provides shared helper methods that the design-time host (IDE) can use to generate
"dummy" information for a sample rendering of a complex control. Typically, this class is used with
table controls, as maintaining a database connection in design mode would be too resource intensive,
and the data source provider may not even be available. Using the CreateDummyDataTable() method,
a default table is created that uses no information from the actual data source. This table could be
used before a control's DataSource property is set.

Visual Studio .NET can also use a minimum amount of information to help present a design-time
rendering of data tables. The GetDataFields() and GetDataMembers() methods retrieve a basic amount
of information about the structure of the data source, which is then used when a dummy table is
created with CreateSampleDataTable(). The GetDesignTimeDataSource() method adds sample rows into
the specified data table control.

Public NotInheritable Class DesignTimeData
' Public Shared Fields
   public Shared ReadOnly DataBindingHandler As EventHandler     // =System.EventHandler
' Public Shared Methods
   Public Shared Function CreateDummyDataTable() As DataTable  
   Public Shared Function CreateSampleDataTable(
        ByVal referenceData As System.Collections.IEnumerable) As DataTable  
   Public Shared Function GetDataFields(
        ByVal dataSource As System.Collections.IEnumerable)_
    As PropertyDescriptorCollection  
   Public Shared Function GetDataMember(
        ByVal dataSource As System.ComponentModel.IListSource, 
        ByVal dataMember As String) As IEnumerable  
   Public Shared Function GetDataMembers(
        ByVal dataSource As Object) As String()  
   Public Shared Function GetDesignTimeDataSource(
        ByVal dataTable As System.Data.DataTable, 
        ByVal minimumRows As Integer) As IEnumerable  
   Public Shared Function GetSelectedDataSource(
        ByVal component As System.ComponentModel.IComponent, 
        ByVal dataSource As String, 
        ByVal dataMember As String) As IEnumerable  
   Public Shared Function GetSelectedDataSource(
        ByVal component As System.ComponentModel.IComponent, 
        ByVal dataSource As String) As Object  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlControlDesigner Class

System.Web.UI.Design (system.design.dll) disposable

This class provides basic functionality for all ASP.NET control designers. If you want to create your
own control designer, inherit instead from ControlDesigner, which derives from HtmlControlDesigner.

Public Class HtmlControlDesigner : Inherits System.ComponentModel.Design.ComponentDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Behavior As IHtmlControlDesignerBehavior  
   Public ReadOnly Property DataBindings As DataBindingCollection  
   Overridable Public Property ShouldCodeSerialize As Boolean  
' Protected Instance Properties
   Protected Property DesignTimeElement As Object  
' Public Instance Methods
   Overridable Public Sub OnSetParent() 
' Protected Instance Methods
   Overrides Protected Sub Dispose(ByVal disposing As Boolean) 
   Overridable Protected Sub OnBehaviorAttached() 
   Overridable Protected Sub OnBehaviorDetaching() 
   Overridable Protected Sub OnBindingsCollectionChanged(
        ByVal propName As String) 
   Overrides Protected Sub PreFilterEvents(
        ByVal events As System.Collections.IDictionary) 
   Overrides Protected Sub PreFilterProperties(
        ByVal properties As System.Collections.IDictionary) 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)  HtmlControlDesigner
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlIntrinsicControlDesigner Class

System.Web.UI.Design (system.design.dll) disposable

This base class provides a basic designer for HTML controls (the controls contained in the
System.Web.UI.HtmlControls namespace).

Public Class HtmlIntrinsicControlDesigner : Inherits HtmlControlDesigner
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)  HtmlControlDesigner
HtmlIntrinsicControlDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HyperLinkDataBindingHandler Class

System.Web.UI.Design (system.design.dll)

This class provides a data-binding handler for the hyperlink property used in some ASP.NET controls.

Public Class HyperLinkDataBindingHandler : Inherits DataBindingHandler
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Sub DataBindControl(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal control As System.Web.UI.Control) 
End Class

Hierarchy

System.Object  DataBindingHandler  HyperLinkDataBindingHandler

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IControlDesignerBehavior Interface

System.Web.UI.Design (system.design.dll)

IControlDesignerBehavior defines an interface that enables the extension of specific behaviors of a
control designer.

Public Interface IControlDesignerBehavior
' Public Instance Properties
   Public ReadOnly Property DesignTimeElementView As Object  
   Public Property DesignTimeHtml As String  
' Public Instance Methods
   Public Sub OnTemplateModeChanged() 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IDataSourceProvider Interface

System.Web.UI.Design (system.design.dll)

This interface specifies the behavior required for designers that interact with a data source, such as
System.Web.UI.Design.WebControls.ListControlDesigner and
System.Web.UI.Design.WebControls.DataGridDesigner. The interface provides two methods designed to
convert a data source to a more useful object. GetSelectedDataSource() retrieves the selected data
source object as a loosely typed System.Object. GetResolvedSelectedDataSource() retrieves the
resolved data source as a System.Collections.IEnumerable object, like a System.Array or a
System.Data.DataView instance.

Public Interface IDataSourceProvider
' Public Instance Methods
   Public Function GetResolvedSelectedDataSource(
        ) As IEnumerable  
   Public Function GetSelectedDataSource() As Object  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IHtmlControlDesignerBehavior Interface

System.Web.UI.Design (system.design.dll)

IHtmlControlDesignerBehavior defines an interface that enables the extension of specific behaviors of
an HTML control designer.

Public Interface IHtmlControlDesignerBehavior
' Public Instance Properties
   Public Property Designer As HtmlControlDesigner  
   Public ReadOnly Property DesignTimeElement As Object  
' Public Instance Methods
   Public Function GetAttribute(ByVal attribute As String, 
        ByVal ignoreCase As Boolean) As Object  
   Public Function GetStyleAttribute(
        ByVal attribute As String, 
        ByVal designTimeOnly As Boolean, 
        ByVal ignoreCase As Boolean) As Object  
   Public Sub RemoveAttribute(ByVal attribute As String, 
        ByVal ignoreCase As Boolean) 
   Public Sub RemoveStyleAttribute(ByVal attribute As String, 
        ByVal designTimeOnly As Boolean, 
        ByVal ignoreCase As Boolean) 
   Public Sub SetAttribute(ByVal attribute As String, 
        ByVal value As Object, ByVal ignoreCase As Boolean) 
   Public Sub SetStyleAttribute(ByVal attribute As String, 
        ByVal designTimeOnly As Boolean, 
        ByVal value As Object, ByVal ignoreCase As Boolean) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ImageUrlEditor Class

System.Web.UI.Design (system.design.dll)

This class provides a System.Drawing.Design.UITypeEditor that can be used when modifying properties
that correspond to Internet URLs. This class extends on the basic UrlEditor class and is customized for
creating URLs that point to image files. The differences are minor: the Filter property is overridden to
provide the "*.gif; *.jpg; *.jpeg; *.bmp; *.wmf; *.pgn" file filter, and the Caption of the designer
window is modified to "Select Image File." This class is used, for example, by the ImageUrl property of
the System.Web.UI.WebControls.HyperLink control.

Public Class ImageUrlEditor : Inherits UrlEditor
' Public Constructors
   Public Sub New() 
' Protected Instance Properties
   Overrides Protected Property Caption As String  
   Overrides Protected Property Filter As String  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  UrlEditor  ImageUrlEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ITemplateEditingFrame Interface

System.Web.UI.Design (system.design.dll) disposable

This interface is implemented by System.Web.UI.Design.WebControls.DataListDesigner and
System.Web.UI.Design.WebControls.DataGridDesigner. It allows them to support in-place editing of a
control template at design time. The properties of this interface represent the characteristics of the
template editing area (like InitialHeight, InitialWidth, and ControlStyle). The methods are used to
manage the template editing area (like Save() and Resize()).

Note that a System.Web.UI.WebControls.DataGrid control uses templates (and hence template editing)
only if you have added a System.Web.UI.WebControls.TemplateColumn.

Public Interface ITemplateEditingFrame : Implements IDisposable
' Public Instance Properties
   Public ReadOnly Property ControlStyle As Style  
   Public Property InitialHeight As Integer  
   Public Property InitialWidth As Integer  
   Public ReadOnly Property Name As String  
   Public ReadOnly Property TemplateNames As String()  
   Public ReadOnly Property TemplateStyles As Style()  
   Public Property Verb As TemplateEditingVerb  
' Public Instance Methods
   Public Sub Close(ByVal saveChanges As Boolean) 
   Public Sub Open() 
   Public Sub Resize(ByVal width As Integer, 
        ByVal height As Integer) 
   Public Sub Save() 
   Public Sub UpdateControlName(ByVal newName As String) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ITemplateEditingService Interface

System.Web.UI.Design (system.design.dll)

This class supports design-time control template editing.

Public Interface ITemplateEditingService
' Public Instance Properties
   Public ReadOnly Property SupportsNestedTemplateEditing As Boolean  
' Public Instance Methods
   Public Function CreateFrame(
        ByVal designer As TemplatedControlDesigner, 
        ByVal frameName As String, 
        ByVal templateNames As String()) As ITemplateEditingFrame  
   Public Function CreateFrame(
        ByVal designer As TemplatedControlDesigner, 
        ByVal frameName As String, 
        ByVal templateNames As String(), 
        ByVal controlStyle As System.Web.UI.WebControls.Style, 
        ByVal templateStyles As System.Web.UI.WebControls.Style()) As ITemplateEditingFrame  
   Public Function GetContainingTemplateName(
        ByVal control As System.Web.UI.Control) As String  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IWebFormReferenceManager Interface

System.Web.UI.Design (system.design.dll)

This interface allows the IDE to look up and manage references (to .NET types) used in a web form.

Public Interface IWebFormReferenceManager
' Public Instance Methods
   Public Function GetObjectType(ByVal tagPrefix As String, 
        ByVal typeName As String) As Type  
   Public Function GetRegisterDirectives() As String  
   Public Function GetTagPrefix(
        ByVal objectType As Type) As String  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IWebFormsBuilderUIService Interface

System.Web.UI.Design (system.design.dll)

This interface defines methods that can be used to launch a custom
System.Drawing.Design.UITypeEditor object for assigning URLs (BuildUrl()) or colors (BuildColor()).

Public Interface IWebFormsBuilderUIService
' Public Instance Methods
   Public Function BuildColor(
        ByVal owner As System.Windows.Forms.Control, 
        ByVal initialColor As String) As String  
   Public Function BuildUrl(
        ByVal owner As System.Windows.Forms.Control, 
        ByVal initialUrl As String, 
        ByVal baseUrl As String, ByVal caption As String, 
        ByVal filter As String, 
        ByVal options As UrlBuilderOptions) As String  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IWebFormsDocumentService Interface

System.Web.UI.Design (system.design.dll)

This interface provides methods for tracking the state of a Web Forms document, handling load-time
events, determining a document's location, setting a document selection, and managing a document's
"Undo" service.

Public Interface IWebFormsDocumentService
' Public Instance Properties
   Public ReadOnly Property DocumentUrl As String  
   Public ReadOnly Property IsLoading As Boolean  
' Public Instance Methods
   Public Function CreateDiscardableUndoUnit() As Object  
   Public Sub DiscardUndoUnit(
        ByVal discardableUndoUnit As Object) 
   Public Sub EnableUndo(ByVal enable As Boolean) 
   Public Sub UpdateSelection() 
' Events
   Public Event LoadComplete As EventHandler  
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ReadWriteControlDesigner Class

System.Web.UI.Design (system.design.dll) disposable

This class provides functionality for designers. In the .NET framework, only the
System.Web.UI.Design.WebControls.PanelDesigner derives from this class. It uses read/write
functionality to provide a design-time surface where you can directly type static inner text for the
Panel control.

Public Class ReadWriteControlDesigner : Inherits ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Sub OnComponentChanged(
        ByVal sender As Object, 
        ByVal ce As System.ComponentModel.Design.ComponentChangedEventArgs) 
' Protected Instance Methods
   Overridable Protected Sub MapPropertyToStyle(
        ByVal propName As String, 
        ByVal varPropValue As Object) 
   Overrides Protected Sub OnBehaviorAttached() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)  HtmlControlDesigner
ControlDesigner  ReadWriteControlDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplatedControlDesigner MustInherit Class

System.Web.UI.Design (system.design.dll) disposable

This designer supports the template editing features that allow you to enter template information into
a control at design-time. These features include a slew of methods for creating a template-editing
frame, updating the control properties and design-time HTML accordingly, and providing context
menu verbs. System.Web.UI.Design.WebControls.BaseDataListDesigner inherits from this class.

Public MustInherit Class TemplatedControlDesigner : Inherits ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public ReadOnly Property ActiveTemplateEditingFrame As ITemplateEditingFrame  
   Public ReadOnly Property CanEnterTemplateMode As Boolean  
   Public ReadOnly Property InTemplateMode As Boolean  
' Protected Instance Properties
   Overridable Protected Property HidePropertiesInTemplateMode As Boolean  
' Public Instance Methods
   Public Sub EnterTemplateMode(
        ByVal newTemplateEditingFrame As ITemplateEditingFrame) 
   Public Sub ExitTemplateMode(
        ByVal fSwitchingTemplates As Boolean, 
        ByVal fNested As Boolean, ByVal fSave As Boolean) 
   Overrides Public Function GetPersistInnerHtml() As String  
   Overridable Public Function GetTemplateContainerDataItemProperty(
        ByVal templateName As String) As String  
   Overridable Public Function GetTemplateContainerDataSource(
        ByVal templateName As String) As IEnumerable  
   MustInherit Public Function GetTemplateContent(
        ByVal editingFrame As ITemplateEditingFrame, 
        ByVal templateName As String, 
        ByRef allowEditing As Boolean) As String  
   Public Function GetTemplateEditingVerbs(
        ) As TemplateEditingVerb()  
   Overridable Public Function GetTemplatePropertyParentType(
        ByVal templateName As String) As Type  
   Overrides Public Sub OnComponentChanged(
        ByVal sender As Object, 
        ByVal ce As System.ComponentModel.Design.ComponentChangedEventArgs) 
   Overrides Public Sub OnSetParent() 
   MustInherit Public Sub SetTemplateContent(
        ByVal editingFrame As ITemplateEditingFrame, 
        ByVal templateName As String, 
        ByVal templateContent As String) 
   Overrides Public Sub UpdateDesignTimeHtml() 
' Protected Instance Methods
   MustInherit Protected Function CreateTemplateEditingFrame(
        ByVal verb As TemplateEditingVerb) As ITemplateEditingFrame  
   MustInherit Protected Function GetCachedTemplateEditingVerbs(
        ) As TemplateEditingVerb()  
   Protected Function GetTemplateFromText(
        ByVal text As String) As ITemplate  
   Protected Function GetTextFromTemplate(
        ByVal template As System.Web.UI.ITemplate) As String  
   Overrides Protected Sub OnBehaviorAttached() 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overrides Protected Sub OnBehaviorAttached() 
   Overridable Protected Sub OnTemplateModeChanged() 
   Overrides Protected Sub PreFilterProperties(
        ByVal properties As System.Collections.IDictionary) 
   Protected Sub SaveActiveTemplateEditingFrame() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)  HtmlControlDesigner
ControlDesigner  TemplatedControlDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateEditingService NotInheritable Class

System.Web.UI.Design (system.design.dll) disposable

This class implements the ITemplateEditingService interface and provides IDE functionality for editing
the templates for controls like System.Web.UI.WebControls.DataList and
System.Web.UI.WebControls.DataGrid. This class offers a CreateFrame() method, which takes a
reference to a TemplatedControlDesigner and returns an ITemplateEditingFrame instance for it.

Public NotInheritable Class TemplateEditingService : Implements_
        ITemplateEditingService, IDisposable
' Public Constructors
   Public Sub New(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost) 
' Public Instance Properties
   Public ReadOnly Property SupportsNestedTemplateEditing As Boolean_
        Implements ITemplateEditingService.SupportsNestedTemplateEditing 
' Public Instance Methods
   Public Function CreateFrame(
        ByVal designer As TemplatedControlDesigner, 
        ByVal frameName As String, 
        ByVal templateNames As String()) As ITemplateEditingFrame_
    Implements ITemplateEditingService.CreateFrame 
   Public Function CreateFrame(
        ByVal designer As TemplatedControlDesigner, 
        ByVal frameName As String, 
        ByVal templateNames As String(), 
        ByVal controlStyle As System.Web.UI.WebControls.Style, 
        ByVal templateStyles As System.Web.UI.WebControls.Style()) As ITemplateEditingFrame_
    Implements ITemplateEditingService.CreateFrame 
   Public Sub Dispose() Implements IDisposable.Dispose 
   Public Function GetContainingTemplateName(
        ByVal control As System.Web.UI.Control) As String_
    Implements ITemplateEditingService.GetContainingTemplateName 
' Protected Instance Methods
   Overrides Protected Sub Finalize() 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateEditingVerb Class

System.Web.UI.Design (system.design.dll) disposable

This class represents a type of verb that can be invoked only by a template editor (like
TemplatedControlDesigner, System.Web.UI.Design.WebControls.DataListDesigner, and
System.Web.UI.Design.WebControls.DataGridDesigner). A verb is a menu command that appears in the
context menu when you right-click a control.

Public Class TemplateEditingVerb : Inherits System.ComponentModel.Design.DesignerVerb : Implements_
          IDisposable
' Public Constructors
   Public Sub New(ByVal text As String, 
        ByVal index As Integer, 
        ByVal designer As TemplatedControlDesigner) 
' Public Instance Properties
   Public ReadOnly Property Index As Integer  
' Public Instance Methods
   Public Sub Dispose() Implements IDisposable.Dispose 
' Protected Instance Methods
   Overridable Protected Sub Dispose(
        ByVal disposing As Boolean) 
   Overrides Protected Sub Finalize() 
End Class

Hierarchy

System.Object  System.ComponentModel.Design.MenuCommand
System.ComponentModel.Design.DesignerVerb  TemplateEditingVerb(System.IDisposable)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TextDataBindingHandler Class

System.Web.UI.Design (system.design.dll)

This DataBindingHandler class provides data binding for the Text property of a control, using an
overridden DataBindingHandler.DataBindControl() method.

Public Class TextDataBindingHandler : Inherits DataBindingHandler
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Sub DataBindControl(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal control As System.Web.UI.Control) 
End Class

Hierarchy

System.Object  DataBindingHandler  TextDataBindingHandler
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UrlBuilder NotInheritable Class

System.Web.UI.Design (system.design.dll)

This class contains shared (static) helper methods that support the various UrlEditor classes.
Essentially, the UrlEditor class provides the user interface used for choosing a URL for a property at
design time, and the BuildUrl() method is invoked to create a string representing the selected URL.

Public NotInheritable Class UrlBuilder
' Public Shared Methods
   Public Shared Function BuildUrl(
        ByVal component As System.ComponentModel.IComponent, 
        ByVal owner As System.Windows.Forms.Control, 
        ByVal initialUrl As String, 
        ByVal caption As String, 
        ByVal filter As String) As String  
   Public Shared Function BuildUrl(
        ByVal component As System.ComponentModel.IComponent, 
        ByVal owner As System.Windows.Forms.Control, 
        ByVal initialUrl As String, 
        ByVal caption As String, ByVal filter As String, 
        ByVal options As UrlBuilderOptions) As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UrlBuilderOptions Enum

System.Web.UI.Design (system.design.dll) serializable, flag

This enumeration specifies whether a URL is fully qualified (None) or relative to the current document
(NoAbsolute). This enumeration is set by the various UrlEditor classes and ultimately used by
UrlBuilder.BuildUrl() to create a string representing the specified URL.

Public Enum UrlBuilderOptions
   None = &H000000000
   NoAbsolute = &H000000001
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  UrlBuilderOptions

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UrlEditor Class

System.Web.UI.Design (system.design.dll)

This class provides a System.Drawing.Design.UITypeEditor that can be used when modifying properties
that correspond to Internet URLs. An example is the System.Web.UI.WebControls.HyperLink.NavigateUrl
property of the System.Web.UI.WebControls.HyperLink control. Note that this class, like all type
editors, implements the user interface linked to the appropriate property in the Properties Window.
The actual construction of the URL is supported by the methods in the UrlBuilder class.

Public Class UrlEditor : Inherits System.Drawing.Design.UITypeEditor
' Public Constructors
   Public Sub New() 
' Protected Instance Properties
   Overridable Protected Property Caption As String  
   Overridable Protected Property Filter As String  
   Overridable Protected Property Options As UrlBuilderOptions  
' Public Instance Methods
   Overrides Public Function EditValue(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal provider As IServiceProvider, 
        ByVal value As Object) As Object  
   Overrides Public Function GetEditStyle(
        ByVal context As System.ComponentModel.ITypeDescriptorContext)_
    As UITypeEditorEditStyle  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  UrlEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UserControlDesigner Class

System.Web.UI.Design (system.design.dll) disposable

This class provides a custom designer for user controls (page-like groups of text, controls, and
scripting contained in .ascx files). This designer provides the design-time HTML used when you insert
a user control onto a Web Forms page. This design-time HTML consists of a generic, labeled gray box
that does not render any of the actual content.

Public Class UserControlDesigner : Inherits ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property AllowResize As Boolean  
   Overrides Public Property ShouldCodeSerialize As Boolean  
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
   Overrides Public Function GetPersistInnerHtml() As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)  HtmlControlDesigner
ControlDesigner  UserControlDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebControlToolboxItem Class

System.Web.UI.Design (system.design.dll) serializable

This class represents a toolbox item for a web control. Toolbox items are the icons you use to insert
controls when designing a Web Forms page.

Public Class WebControlToolboxItem : Inherits System.Drawing.Design.ToolboxItem
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal type As Type) 
' Public Instance Methods
   Public Function GetToolAttributeValue(
        ByVal host As System.ComponentModel.Design.IDesignerHost, 
        ByVal attributeType As Type) As Object  
   Public Function GetToolHtml(
        ByVal host As System.ComponentModel.Design.IDesignerHost) As String  
   Public Function GetToolType(
        ByVal host As System.ComponentModel.Design.IDesignerHost) As Type  
   Overrides Public Sub Initialize(ByVal type As Type) 
' Protected Instance Methods
   Overrides Protected Function CreateComponentsCore(
        ByVal host As System.ComponentModel.Design.IDesignerHost) As IComponent()  
   Overrides Protected Sub Deserialize(
        ByVal info As System.Runtime.Serialization.SerializationInfo, 
        ByVal context As System.Runtime.Serialization.StreamingContext) 
   Overrides Protected Sub Serialize(
        ByVal info As System.Runtime.Serialization.SerializationInfo, 
        ByVal context As System.Runtime.Serialization.StreamingContext) 
End Class

Hierarchy

System.Object  System.Drawing.Design.ToolboxItem(System.Runtime.Serialization.ISerializable)
WebControlToolboxItem
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlFileEditor Class

System.Web.UI.Design (system.design.dll)

This class provides the interface used for selecting an XML file from the standard open file dialog. It
works in conjunction with XmlUrlEditor.

Public Class XmlFileEditor : Inherits System.Drawing.Design.UITypeEditor
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function EditValue(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal provider As IServiceProvider, 
        ByVal value As Object) As Object  
   Overrides Public Function GetEditStyle(
        ByVal context As System.ComponentModel.ITypeDescriptorContext)_
    As UITypeEditorEditStyle  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  XmlFileEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlUrlEditor Class

System.Web.UI.Design (system.design.dll)

This class provides a System.Drawing.Design.UITypeEditor that can be used when modifying properties
that correspond to Internet URLs. This class extends on the basic UrlEditor, and is customized for
creating URLs that point to XML files. The differences are minor: the ImageUrlEditor.Filter property is
overridden to provide the "*.xml" file filter and the ImageUrlEditor.Caption of the designer window is
modified to "Select XML File." This class is used, for example, by the DocumentSource property of the
System.Web.UI.WebControls.Xml control.

Public Class XmlUrlEditor : Inherits UrlEditor
' Public Constructors
   Public Sub New() 
' Protected Instance Properties
   Overrides Protected Property Caption As String  
   Overrides Protected Property Filter As String  
   Overrides Protected Property Options As UrlBuilderOptions  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  UrlEditor  XmlUrlEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XslUrlEditor Class

System.Web.UI.Design (system.design.dll)

This class provides a System.Drawing.Design.UITypeEditor that can be used when modifying properties
that correspond to Internet URLs. This class extends on the basic UrlEditor and is customized for
creating URLs that point to XSL transform files. The differences are minor: the ImageUrlEditor.Filter
property is overridden to provide the "*.xsl; *.xslt" file filter and the ImageUrlEditor.Caption of the
designer window is modified to "Select XSL Transform File." This class is used, for example, by the
TransformSource property of the System.Web.UI.WebControls.Xml control.

Public Class XslUrlEditor : Inherits UrlEditor
' Public Constructors
   Public Sub New() 
' Protected Instance Properties
   Overrides Protected Property Caption As String  
   Overrides Protected Property Filter As String  
   Overrides Protected Property Options As UrlBuilderOptions  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  UrlEditor  XslUrlEditor

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 36. The System.Web.UI.Design.WebControlsNamespace

The types in the System.Web.UI.Design.WebControls namespace extend Visual Studio's design-time
support for creating web controls. Most types in this namespace are designers that provide special
design-time specific HTML (which may be only slightly different than runtime HTML) and custom
System.Drawing.Design.UITypeEditor classes that provide the graphic interface for modifying some
special properties. The most detailed implementations of these features can be found in the types
used for the System.Web.UI.WebControls.DataGrid and System.Web.UI.WebControls.DataList controls,
such as DataGridComponentEditor and DataGridDesigner. These classes provide sophisticated property
builders that offer complete design-time customization in a multipage "applet."

These designers, UI type editors, and component editors have no effect on the runtime capabilities of
a control. They are also not used directly in code. That means that the
System.Web.UI.Design.WebControls namespace is probably of most interest to developers who are
interested in creating controls and add-ins of their own and want to review Microsoft's examples.
Unfortunately, while you can review the interfaces these types have and extend them in your own
code, the implementation details are not provided.

Figure 36-1 and Figure 36-2 show the types in this namespace.

Figure 36-1. Some types from the System.Web.UI.Design.WebControls namespace

Figure 36-2. More types from the System.Web.UI.Design.WebControls namespace

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 36-2. More types from the System.Web.UI.Design.WebControls namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AdRotatorDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.AdRotator control,
using an overridden GetDesignTimeHtml() method. This control ignores the
System.Web.UI.WebControls.AdRotator.AdvertisementFile property at design time and just displays the
control's name and a blank picture icon in the corner.

Public Class AdRotatorDesigner : Inherits System.Web.UI.Design.ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
AdRotatorDesigner
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BaseDataListComponentEditor MustInherit Class

System.Web.UI.Design.WebControls (system.design.dll)

This abstract class provides basic functionality for the DataListComponentEditor and
DataGridComponentEditor classes, which provide the Property Builder user interface for editing
complex properties for these controls.

Public MustInherit Class BaseDataListComponentEditor : Inherits_
        System.Windows.Forms.Design.WindowsFormsComponentEditor
' Public Constructors
   Public Sub New(ByVal initialPage As Integer) 
' Public Instance Methods
   Overrides Public Function EditComponent(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal obj As Object, 
        ByVal parent As System.Windows.Forms.IWin32Window) As Boolean  
' Protected Instance Methods
   Overrides Protected Function GetInitialComponentEditorPageIndex(
        ) As Integer  
End Class

Hierarchy

System.Object  System.ComponentModel.ComponentEditor
System.Windows.Forms.Design.WindowsFormsComponentEditor  BaseDataListComponentEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BaseDataListDesigner MustInherit Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This abstract class provides basic functionality for the DataListDesigner and DataGridDesigner classes.
This includes functionality for styles, additional verbs for the context menu, and other helper methods
for data binding.

Public MustInherit Class BaseDataListDesigner : Inherits_
       System.Web.UI.Design.TemplatedControlDesigner : Implements_
       System.Web.UI.Design.IDataSourceProvider
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property DataKeyField As String  
   Public Property DataMember As String  
   Public Property DataSource As String  
   Overrides Public ReadOnly Property DesignTimeHtmlRequiresLoadComplete As Boolean  
   Overrides Public ReadOnly Property Verbs As DesignerVerbCollection  
' Public Instance Methods
   Public Function GetResolvedSelectedDataSource(
        ) As IEnumerable Implements IDataSourceProvider.GetResolvedSelectedDataSource 
   Public Function GetSelectedDataSource(
        ) As Object Implements IDataSourceProvider.GetSelectedDataSource 
   Overrides Public Function GetTemplateContainerDataSource(
        ByVal templateName As String) As IEnumerable  
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
   Overrides Public Sub OnComponentChanged(
        ByVal sender As Object, 
        ByVal e As System.ComponentModel.Design.ComponentChangedEventArgs) 
' Protected Instance Methods
   Overrides Protected Sub Dispose(ByVal disposing As Boolean) 
   Protected Function GetDesignTimeDataSource(
        ByVal selectedDataSource As System.Collections.IEnumerable, 
        ByVal minimumRows As Integer, 
        ByRef dummyDataSource As Boolean) As IEnumerable  
   Protected Function GetDesignTimeDataSource(
        ByVal minimumRows As Integer, 
        ByRef dummyDataSource As Boolean) As IEnumerable  
   Protected Friend Sub InvokePropertyBuilder(
        ByVal initialPage As Integer) 
   Protected Sub OnAutoFormat(ByVal sender As Object, 
        ByVal e As EventArgs) 
   Overridable Protected Friend Sub OnDataSourceChanged() 
   Protected Sub OnPropertyBuilder(ByVal sender As Object, 
        ByVal e As EventArgs) 
   Protected Friend Sub OnStylesChanged() 
   MustInherit Protected Sub OnTemplateEditingVerbsChanged() 
   Overrides Protected Sub PreFilterProperties(
        ByVal properties As System.Collections.IDictionary) 
End Class

Hierarchy

System.Object

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
System.Web.UI.Design.TemplatedControlDesigner
BaseDataListDesigner(System.Web.UI.Design.IDataSourceProvider)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BaseValidatorDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of controls that inherit from the
System.Web.UI.WebControls.BaseValidator control, including
System.Web.UI.WebControls.CompareValidator, System.Web.UI.WebControls.CustomValidator,
System.Web.UI.WebControls.RangeValidator, System.Web.UI.WebControls.RegularExpressionValidator,
and System.Web.UI.WebControls.RequiredFieldValidator. It uses an overridden GetDesignTimeHtml()
method. Validation controls display the control class name in red lettering at design time.

Public Class BaseValidatorDesigner : Inherits System.Web.UI.Design.ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
BaseValidatorDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ButtonDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.Button control,
using an overridden GetDesignTimeHtml() method. If the System.Web.UI.WebControls.Button.Text
property is empty, you will see the control's name displayed in square brackets.

Public Class ButtonDesigner : Inherits System.Web.UI.Design.ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
ButtonDesigner
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CalendarAutoFormatDialog Class

System.Web.UI.Design.WebControls
(system.design.dll)

marshal by reference,
disposable

This class works in conjunction with the CalendarDesigner class. It displays an "auto format" window
that allows the user to change several formatting-related properties at once by choosing one of the
presets it provides.

Public Class CalendarAutoFormatDialog : Inherits System.Windows.Forms.Form
' Public Constructors
   Public Sub New(
        ByVal calendar As System.Web.UI.WebControls.Calendar) 
' Protected Instance Methods
   Protected Sub DoDelayLoadActions() 
   Protected Sub OnActivated(ByVal source As Object, 
        ByVal e As EventArgs) 
   Protected Sub OnOKClicked(ByVal source As Object, 
        ByVal e As EventArgs) 
   Protected Sub OnSelChangedScheme(ByVal source As Object, 
        ByVal e As EventArgs) 
   Protected Sub SaveComponent() 
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
System.Windows.Forms.Control(System.Windows.Forms.IOleControl, System.Windows.Forms.IOleObject,
System.Windows.Forms.IOleInPlaceObject, System.Windows.Forms.IOleInPlaceActiveObject,
System.Windows.Forms.IOleWindow, System.Windows.Forms.IViewObject,
System.Windows.Forms.IViewObject2, System.Windows.Forms.IPersist,
System.Windows.Forms.IPersistStreamInit, System.Windows.Forms.IPersistPropertyBag,
System.Windows.Forms.IPersistStorage, System.Windows.Forms.IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window)
System.Windows.Forms.ScrollableControl
System.Windows.Forms.ContainerControl(System.Windows.Forms.IContainerControl)
System.Windows.Forms.Form  CalendarAutoFormatDialog

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CalendarDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation for the System.Web.UI.WebControls.Calendar
control. It works in conjunction with the CalendarAutoFormatDialog class to provide an "auto format"
window, adding a special verb to the context menu and responding to format changes by updating the
corresponding properties.

Public Class CalendarDesigner : Inherits System.Web.UI.Design.ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property Verbs As DesignerVerbCollection  
' Public Instance Methods
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
' Protected Instance Methods
   Protected Sub OnAutoFormat(ByVal sender As Object, 
        ByVal e As EventArgs) 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
CalendarDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CheckBoxDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.CheckBox control,
using an overridden GetDesignTimeHtml() method. If the System.Web.UI.WebControls.CheckBox.Text
property is empty, the control's name will be displayed in square brackets.

Public Class CheckBoxDesigner : Inherits System.Web.UI.Design.ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
CheckBoxDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridColumnCollectionEditor Class

System.Web.UI.Design.WebControls (system.design.dll)

This class is a System.Drawing.Design.UITypeEditor that provides a graphical interface for configuring
the column collection provided in the System.Web.UI.WebControls.DataGrid.Columns property.

Public Class DataGridColumnCollectionEditor : Inherits System.Drawing.Design.UITypeEditor
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function EditValue(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal provider As IServiceProvider, 
        ByVal value As Object) As Object  
   Overrides Public Function GetEditStyle(
        ByVal context As System.ComponentModel.ITypeDescriptorContext)_
    As UITypeEditorEditStyle  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  DataGridColumnCollectionEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridComponentEditor Class

System.Web.UI.Design.WebControls (system.design.dll)

This class provides a custom System.ComponentModel.ComponentEditor used to edit complex property
information for the System.Web.UI.WebControls.DataGrid control in a special graphical window with
multiple pages. This window, which includes information for configuring columns, paging, format, and
borders, can be displayed by choosing "Property Builder" from the context menu.

Public Class DataGridComponentEditor : Inherits BaseDataListComponentEditor
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal initialPage As Integer) 
' Protected Instance Methods
   Overrides Protected Function GetComponentEditorPages(
        ) As Type()  
End Class

Hierarchy

System.Object  System.ComponentModel.ComponentEditor
System.Windows.Forms.Design.WindowsFormsComponentEditor  BaseDataListComponentEditor
DataGridComponentEditor

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.DataGrid control. A
sample table is displayed if no connection is made. If you bind to a data source at design time, the
schema is used to create column headings, and the formatting options you have selected are also
shown. However, the actual data rows use dummy values (like "abc") generated by the
System.Web.UI.Design.DesignTimeData class.

Public Class DataGridDesigner : Inherits BaseDataListDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
   Overrides Public Function GetTemplateContainerDataItemProperty(
        ByVal templateName As String) As String  
   Overrides Public Function GetTemplateContent(
        ByVal editingFrame As System.Web.UI.Design.ITemplateEditingFrame, 
        ByVal templateName As String, 
        ByRef allowEditing As Boolean) As String  
   Overrides Public Function GetTemplatePropertyParentType(
        ByVal templateName As String) As Type  
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
   Overridable Public Sub OnColumnsChanged() 
   Overrides Public Sub SetTemplateContent(
        ByVal editingFrame As System.Web.UI.Design.ITemplateEditingFrame, 
        ByVal templateName As String, 
        ByVal templateContent As String) 
' Protected Instance Methods
   Overrides Protected Function CreateTemplateEditingFrame(
        ByVal verb As System.Web.UI.Design.TemplateEditingVerb) As ITemplateEditingFrame  
   Overrides Protected Sub Dispose(ByVal disposing As Boolean) 
   Overrides Protected Function GetCachedTemplateEditingVerbs(
        ) As TemplateEditingVerb()  
   Overrides Protected Function GetEmptyDesignTimeHtml(
        ) As String  
   Overrides Protected Function GetErrorDesignTimeHtml(
        ByVal e As Exception) As String  
   Overrides Protected Sub OnTemplateEditingVerbsChanged() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
System.Web.UI.Design.TemplatedControlDesigner
BaseDataListDesigner(System.Web.UI.Design.IDataSourceProvider)  DataGridDesigner
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListComponentEditor Class

System.Web.UI.Design.WebControls (system.design.dll)

This class provides a custom System.ComponentModel.ComponentEditor used to edit complex property
information for the System.Web.UI.WebControls.DataList in a special graphical window with multiple
pages. This window can be displayed by choosing "Property Builder" from the context menu.

Public Class DataListComponentEditor : Inherits BaseDataListComponentEditor
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal initialPage As Integer) 
' Protected Instance Methods
   Overrides Protected Function GetComponentEditorPages(
        ) As Type()  
End Class

Hierarchy

System.Object  System.ComponentModel.ComponentEditor
System.Windows.Forms.Design.WindowsFormsComponentEditor  BaseDataListComponentEditor
DataListComponentEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.DataList control. A
message indicating how to configure template options is displayed if no template information is
entered.

Public Class DataListDesigner : Inherits BaseDataListDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public ReadOnly Property AllowResize As Boolean  
' Protected Instance Properties
   Protected Property TemplatesExist As Boolean  
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
   Overrides Public Function GetTemplateContainerDataItemProperty(
        ByVal templateName As String) As String  
   Overrides Public Function GetTemplateContent(
        ByVal editingFrame As System.Web.UI.Design.ITemplateEditingFrame, 
        ByVal templateName As String, 
        ByRef allowEditing As Boolean) As String  
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
   Overrides Public Sub SetTemplateContent(
        ByVal editingFrame As System.Web.UI.Design.ITemplateEditingFrame, 
        ByVal templateName As String, 
        ByVal templateContent As String) 
' Protected Instance Methods
   Overrides Protected Function CreateTemplateEditingFrame(
        ByVal verb As System.Web.UI.Design.TemplateEditingVerb) As ITemplateEditingFrame  
   Overrides Protected Sub Dispose(ByVal disposing As Boolean) 
   Overrides Protected Function GetCachedTemplateEditingVerbs(
        ) As TemplateEditingVerb()  
   Overrides Protected Function GetEmptyDesignTimeHtml(
        ) As String  
   Overrides Protected Function GetErrorDesignTimeHtml(
        ByVal e As Exception) As String  
   Overrides Protected Sub OnTemplateEditingVerbsChanged() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
System.Web.UI.Design.TemplatedControlDesigner
BaseDataListDesigner(System.Web.UI.Design.IDataSourceProvider)  DataListDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HyperLinkDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.HyperLink control,
using an overridden GetDesignTimeHtml() method. If the System.Web.UI.WebControls.HyperLink.Text
property is empty, the control's name will be displayed in square brackets.

Public Class HyperLinkDesigner : Inherits System.Web.UI.Design.TextControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
System.Web.UI.Design.TextControlDesigner  HyperLinkDesigner
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LabelDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.Label control,
using an overridden GetDesignTimeHtml() method. If the System.Web.UI.WebControls.Label.Text
property is empty, the control's name will be displayed in square brackets.

Public Class LabelDesigner : Inherits System.Web.UI.Design.TextControlDesigner
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
System.Web.UI.Design.TextControlDesigner  LabelDesigner
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LinkButtonDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of a System.Web.UI.WebControls.LinkButton control,
using an overridden GetDesignTimeHtml() method. If the System.Web.UI.WebControls.LinkButton.Text
property is empty, the control's name will be displayed in square brackets.

Public Class LinkButtonDesigner : Inherits System.Web.UI.Design.TextControlDesigner
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
System.Web.UI.Design.TextControlDesigner  LinkButtonDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListControlDataBindingHandler Class

System.Web.UI.Design.WebControls (system.design.dll)

This class provides a data binding handler that lets you connect controls derived from
System.Web.UI.WebControls.ListControl to a data source.

Public Class ListControlDataBindingHandler : Inherits System.Web.UI.Design.DataBindingHandler
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Sub DataBindControl(
        ByVal designerHost As System.ComponentModel.Design.IDesignerHost, 
        ByVal control As System.Web.UI.Control) 
End Class

Hierarchy

System.Object  System.Web.UI.Design.DataBindingHandler  ListControlDataBindingHandler
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListControlDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation for several list controls derived from
System.Web.UI.WebControls.ListControl. The design-time view displays any items you have added
through the ListItemsCollectionEditor, or it may show the text "Unbound" if no data is entered or
"Databound" if it is linked to a data source.

Public Class ListControlDesigner : Inherits System.Web.UI.Design.ControlDesigner : Implements_
       System.Web.UI.Design.IDataSourceProvider
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property DataMember As String  
   Public Property DataSource As String  
   Public Property DataTextField As String  
   Public Property DataValueField As String  
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
   Public Function GetResolvedSelectedDataSource(
        ) As IEnumerable Implements IDataSourceProvider.GetResolvedSelectedDataSource 
   Public Function GetSelectedDataSource(
        ) As Object Implements IDataSourceProvider.GetSelectedDataSource 
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
   Overrides Public Sub OnComponentChanged(
        ByVal source As Object, 
        ByVal ce As System.ComponentModel.Design.ComponentChangedEventArgs) 
   Overridable Public Sub OnDataSourceChanged() 
' Protected Instance Methods
   Overrides Protected Sub PreFilterProperties(
        ByVal properties As System.Collections.IDictionary) 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
ListControlDesigner(System.Web.UI.Design.IDataSourceProvider)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListItemsCollectionEditor Class

System.Web.UI.Design.WebControls (system.design.dll)

This class is a System.Drawing.Design.UITypeEditor that provides a graphical interface for adding list
items and configuring their properties at design time. It's used to configure the Items property for
controls such as System.Web.UI.WebControls.CheckBoxList,
System.Web.UI.WebControls.RadioButtonList, and System.Web.UI.WebControls.ListBox.

Public Class ListItemsCollectionEditor : Inherits System.ComponentModel.Design.CollectionEditor
' Public Constructors
   Public Sub New(ByVal type As Type) 
' Protected Instance Methods
   Overrides Protected Function CanSelectMultipleInstances() As Boolean  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor
System.ComponentModel.Design.CollectionEditor  ListItemsCollectionEditor

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PanelDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation for the System.Web.UI.WebControls.Panel control.
The design-time view corresponds closely with the runtime view, except it adds a thin border to make
the Panel control's size and position clearly visible.

Public Class PanelDesigner : Inherits System.Web.UI.Design.ReadWriteControlDesigner
' Public Constructors
   Public Sub New() 
' Protected Instance Methods
   Overrides Protected Sub MapPropertyToStyle(
        ByVal propName As String, 
        ByVal varPropValue As Object) 
   Overrides Protected Sub OnBehaviorAttached() 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
System.Web.UI.Design.ReadWriteControlDesigner  PanelDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RegexEditorDialog Class

System.Web.UI.Design.WebControls
(system.design.dll)

marshal by reference,
disposable

This class works in conjunction with the RegexTypeEditor to provide a dialog box for editing regular
expressions at design time.

Public Class RegexEditorDialog : Inherits System.Windows.Forms.Form
' Public Constructors
   Public Sub New(ByVal site As System.ComponentModel.ISite) 
' Public Instance Properties
   Public Property RegularExpression As String  
' Protected Instance Methods
   Protected Sub cmdHelp_Click(ByVal sender As Object, 
        ByVal e As EventArgs) 
   Protected Sub cmdOK_Click(ByVal sender As Object, 
        ByVal e As EventArgs) 
   Protected Sub cmdTestValidate_Click(ByVal sender As Object, 
        ByVal args As EventArgs) 
   Overrides Protected Sub Dispose(ByVal disposing As Boolean) 
   Protected Sub lstStandardExpressions_SelectedIndexChanged(
        ByVal sender As Object, ByVal e As EventArgs) 
   Protected Sub RegexTypeEditor_Activated(
        ByVal sender As Object, ByVal e As EventArgs) 
   Protected Sub txtExpression_TextChanged(
        ByVal sender As Object, ByVal e As EventArgs) 
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
System.Windows.Forms.Control(System.Windows.Forms.IOleControl, System.Windows.Forms.IOleObject,
System.Windows.Forms.IOleInPlaceObject, System.Windows.Forms.IOleInPlaceActiveObject,
System.Windows.Forms.IOleWindow, System.Windows.Forms.IViewObject,
System.Windows.Forms.IViewObject2, System.Windows.Forms.IPersist,
System.Windows.Forms.IPersistStreamInit, System.Windows.Forms.IPersistPropertyBag,
System.Windows.Forms.IPersistStorage, System.Windows.Forms.IQuickActivate,
System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window)
System.Windows.Forms.ScrollableControl
System.Windows.Forms.ContainerControl(System.Windows.Forms.IContainerControl)
System.Windows.Forms.Form  RegexEditorDialog

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RegexTypeEditor Class

System.Web.UI.Design.WebControls (system.design.dll)

This class is a System.Drawing.Design.UITypeEditor that provides a graphical interface for configuring
the ValidationExpression for the System.Web.UI.WebControls.RegularExpressionValidator control. It
works in conjunction with the RegexEditorDialog to provide a window that allows you to enter new
regular expressions or choose from a list of common options.

Public Class RegexTypeEditor : Inherits System.Drawing.Design.UITypeEditor
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function EditValue(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal provider As IServiceProvider, 
        ByVal value As Object) As Object  
   Overrides Public Function GetEditStyle(
        ByVal context As System.ComponentModel.ITypeDescriptorContext)_
    As UITypeEditorEditStyle  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor  RegexTypeEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeaterDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation for the System.Web.UI.WebControls.Repeater
control. The design-time view shows headings and other static content, but not data-bound items. If
no templates are entered, the control displays the message "Switch to HTML view to edit the control's
templates."

Public Class RepeaterDesigner : Inherits System.Web.UI.Design.ControlDesigner : Implements_
       System.Web.UI.Design.IDataSourceProvider
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property DataMember As String  
   Public Property DataSource As String  
' Protected Instance Properties
   Protected Property TemplatesExist As Boolean  
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
   Public Function GetResolvedSelectedDataSource() As IEnumerable_
        Implements IDataSourceProvider.GetResolvedSelectedDataSource 
   Public Function GetSelectedDataSource() As Object_
        Implements IDataSourceProvider.GetSelectedDataSource 
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
   Overrides Public Sub OnComponentChanged(
        ByVal source As Object, 
        ByVal ce As System.ComponentModel.Design.ComponentChangedEventArgs) 
   Overridable Public Sub OnDataSourceChanged() 
' Protected Instance Methods
   Overrides Protected Sub Dispose(ByVal disposing As Boolean) 
   Protected Function GetDesignTimeDataSource(
        ByVal selectedDataSource As System.Collections.IEnumerable, 
        ByVal minimumRows As Integer) As IEnumerable  
   Protected Function GetDesignTimeDataSource(
        ByVal minimumRows As Integer) As IEnumerable  
   Overrides Protected Function GetEmptyDesignTimeHtml(
        ) As String  
   Overrides Protected Function GetErrorDesignTimeHtml(
        ByVal e As Exception) As String  
   Overrides Protected Sub PreFilterProperties(
        ByVal properties As System.Collections.IDictionary) 
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
RepeaterDesigner(System.Web.UI.Design.IDataSourceProvider)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableCellsCollectionEditor Class

System.Web.UI.Design.WebControls (system.design.dll)

This class is a System.Drawing.Design.UITypeEditor that provides a graphical interface for adding
System.Web.UI.WebControls.TableCell objects to a System.Web.UI.WebControls.TableRow at design
time. The same window also allows you to configure System.Web.UI.WebControls.TableCell properties.
This designer is accessed through the TableRowsCollectionEditor.

Public Class TableCellsCollectionEditor : Inherits_
        System.ComponentModel.Design.CollectionEditor
' Public Constructors
   Public Sub New(ByVal type As Type) 
' Protected Instance Methods
   Overrides Protected Function CanSelectMultipleInstances() As Boolean  
   Overrides Protected Function CreateInstance(
        ByVal itemType As Type) As Object  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor
System.ComponentModel.Design.CollectionEditor  TableCellsCollectionEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation of the System.Web.UI.WebControls.Table control.
This closely resembles the runtime representation, except when the table is empty (in which case
dummy data is used) or if you use code to modify the table programmatically before it is displayed.

Public Class TableDesigner : Inherits System.Web.UI.Design.ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
   Overrides Public Function GetPersistInnerHtml() As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner
TableDesigner

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableRowsCollectionEditor Class

System.Web.UI.Design.WebControls (system.design.dll)

This class is a System.Drawing.Design.UITypeEditor that provides a graphical interface for adding
System.Web.UI.WebControls.TableRow objects to a System.Web.UI.WebControls.Table at design time.
The same window also allows you to configure System.Web.UI.WebControls.TableRow properties.

Public Class TableRowsCollectionEditor : Inherits System.ComponentModel.Design.CollectionEditor
' Public Constructors
   Public Sub New(ByVal type As Type) 
' Protected Instance Methods
   Overrides Protected Function CanSelectMultipleInstances() As Boolean  
   Overrides Protected Function CreateInstance(
        ByVal itemType As Type) As Object  
End Class

Hierarchy

System.Object  System.Drawing.Design.UITypeEditor
System.ComponentModel.Design.CollectionEditor  TableRowsCollectionEditor
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

XmlDesigner Class

System.Web.UI.Design.WebControls (system.design.dll) disposable

This class provides the design-time representation for the System.Web.UI.WebControls.Xml control.
The design-time view shows the default message "Use this control to perform XSL transforms" rather
than the actual XML content.

Public Class XmlDesigner : Inherits System.Web.UI.Design.ControlDesigner
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetDesignTimeHtml() As String  
   Overrides Public Sub Initialize(
        ByVal component As System.ComponentModel.IComponent) 
' Protected Instance Methods
   Overrides Protected Sub Dispose(ByVal disposing As Boolean) 
   Overrides Protected Function GetEmptyDesignTimeHtml(
        ) As String  
End Class

Hierarchy

System.Object
System.ComponentModel.Design.ComponentDesigner(System.ComponentModel.Design.IDesigner,
System.IDisposable, System.ComponentModel.Design.IDesignerFilter)
System.Web.UI.Design.HtmlControlDesigner  System.Web.UI.Design.ControlDesigner  XmlDesigner
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 37. The System.Web.UI.HtmlControlsNamespace

The System.Web.UI.HtmlControls namespace includes classes for HTML server controls. HTML server
controls are ASP.NET controls that raise events on the server and provide a simple object model that
allows you to set some basic properties. Unlike web controls, which are found in the
System.Web.UI.WebControls namespace, each HTML server control corresponds directly to an HTML
element like <textarea> or <input>. Web controls are generally preferred in ASP.NET development
because they are abstracted away from the low-level HTML details and they provide a richer object
model with many more events, sophisticated data binding, automatic state management, and
validation controls. HTML server controls are most often used when upgrading existing ASP pages. A
standard HTML element can be converted into an HTML server control by adding the attribute
runat="server" in the tag. This makes it extremely simple to convert a static HTML page into a
dynamic page that allows controls to be manipulated as objects during postbacks.

All controls in this namespace derive from HtmlControl. This class provides basic functionality,
including a name/value collection of attributes and CSS style properties. In addition, controls that
require both an opening and closing tag inherit from HtmlContainerControl. This class adds a
HtmlContainerControl.InnerText and HtmlContainerControl.InnerHtml property which allow you to access
the text contained inside the tag. HTML elements that don't have corresponding classes can be
represented by the HtmlGenericControl class. Note that only button and hyperlink controls trigger
server postbacks. Many controls provide a ServerChanged event, which won't fire after a control is
modified until a postback occurs.

To understand all the available attributes and CSS properties, you may want to refer to an HTML
reference. There are many excellent HTML references on the web, or you can refer to O'Reilly's HTML
& XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy.

Figure 37-1 shows the types in this namespace.

Figure 37-1. The System.Web.UI.HtmlControls namespace

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlAnchor Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the <A> anchor tag in HTML, which provides a hyperlink. The linked text is
contained inside the tag and can be accessed through the InnerHtml property. You can also
programmatically change the linked page (HRef), the target frame (Target), and the window title for
the target (Title). Even if the HRef property is not set, you can handle the ServerClick event and use a
Response.Redirect statement to load a different page. The HtmlAnchor control also supports data
binding to the HRef and InnerHtml properties.

You can use an anchor tag to mark a bookmark in a page, in which case you set the Name property
but not the HRef property. In this case, you don't need to include any text inside the tag, as in <a
Name="TopicName"/>. To make a link to this bookmark, add #TopicName at the end of the URL
requesting this page.

Public Class HtmlAnchor : Inherits HtmlContainerControl : Implements_
        System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property HRef As String  
   Public Property Name As String  
   Public Property Target As String  
   Public Property Title As String  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerClick(
        ByVal e As EventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event ServerClick As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl
HtmlAnchor(System.Web.UI.IPostBackEventHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlButton Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML 4.0 <button> tag, which is only supported in Internet Explorer 4.0 and
later. It differs from other button types, including the standard HtmlInputButton control, because it
can be composed from embedded HTML elements like images and other ASP.NET server controls. As
with all buttons, it provides a click event that you can handle directly (HtmlInputButton.ServerClick)
and a property that lets you disable automatic page validation when a postback is triggered by this
control (HtmlInputButton.CausesValidation).

Public Class HtmlButton : Inherits HtmlContainerControl : Implements_
        System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property CausesValidation As Boolean  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerClick(
        ByVal e As EventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event ServerClick As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl
HtmlButton(System.Web.UI.IPostBackEventHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlContainerControl MustInherit Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This abstract class provides functionality for all HTML server controls that require closing tags. For
example, an HtmlAnchor control must always be closed (<a>Text</a> and <a/> are valid anchor tags,
but <a> alone is not). A HtmlImage control, on the other hand, does not need a closing tag.

Every control that requires a closing tag has the ability to contain text. This information is provided
through the InnerText and InnerHtml properties. Both properties retrieve all the content between the
opening and closing control tag. The difference is that InnerText automatically encodes and decodes
special characters into their corresponding HTML entities. For example, if you set the InnerText
property to <b>Hello</b>, the < and > symbols are converted to the HTML equivalents &lt; and &gt;.
This instructs the browser to display <b>Hello</b> as plain text. However, if you set the InnerHtml
property to <b>Hello</b>, the < and > symbols will be interpreted as HTML markup tags and the
word "Hello" will be displayed in bold.

Public MustInherit Class HtmlContainerControl : Inherits HtmlControl
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal tag As String) 
' Public Instance Properties
   Overridable Public Property InnerHtml As String  
   Overridable Public Property InnerText As String  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Protected Sub RenderEndTag(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlControl MustInherit Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This is the base class for all HTML server controls. It includes basic functionality—like the Disabled
property, which you can use to make a control read-only, and the TagName property, which identifies
the HTML tag that underlies this control (for example, "div" or "a").

Additionally, you can set and retrieve various other properties through the weakly typed Attributes
collection, which contains a name/value collection of all the attributes applied to a tag. You can add a
new attribute by assigning to it, as in MyText.Attributes("onblur")="javascript:alert('Focus lost!');". This
statement, which adds a client-side JavaScript event through an attribute, is the equivalent of using
the tag <input type="text" id="MyText" onblur="javascript:alert('Focus lost!');" runat="server"/>. Some
attributes may be provided as properties in the derived class. Another dictionary collection, Style,
allows you to specify CSS properties for a tag (as in MyText.Style("width") = "120px").

Public MustInherit Class HtmlControl : Inherits System.Web.UI.Control : Implements_
        System.Web.UI.IAttributeAccessor
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal tag As String) 
' Public Instance Properties
   Public ReadOnly Property Attributes As AttributeCollection  
   Public Property Disabled As Boolean  
   Public ReadOnly Property Style As CssStyleCollection  
   Overridable Public ReadOnly Property TagName As String  
' Protected Instance Properties
   Overrides Protected Property ViewStateIgnoresCase As Boolean  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Protected Sub RenderBeginTag(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlForm Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <form> tag, which is used as a container for other input controls. All
ASP.NET Server Controls that post back to the server must be contained in a HtmlForm tag. The
properties of this control shouldn't be changed. The Method property (set to "post") is particularly
important. If modified, you may not be able to use the built-in postback and control state
management services provided by ASP.NET.

Public Class HtmlForm : Inherits HtmlContainerControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Enctype As String  
   Public Property Method As String  
   Overridable Public Property Name As String  
   Public Property Target As String  
' Protected Instance Methods
   Overrides Protected Sub OnInit(ByVal e As EventArgs) 
   Overrides Protected Sub Render(
        ByVal output As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub RenderChildren(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl  HtmlForm

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlGenericControl Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class is used for HTML elements that are not directly represented by other controls in this
namespace (including <span>, <div>, and <body>). The primary use of the HtmlGenericControl is
usually to set or modify attributes and styles, using the Attributes and Style properties inherited from
HtmlControl. Note that the TagName property can be modified, allowing you to change the tag
programmatically before the page is rendered as HTML and sent to the client browser.

Public Class HtmlGenericControl : Inherits HtmlContainerControl
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal tag As String) 
' Public Instance Properties
   Public Property TagName As String  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl  HtmlGenericControl

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlImage Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <img> tag, which is used to display a picture file specified by a URL.
You can set various properties for this control, including the image file (Src), and the alignment and
size of the picture. The Alt property specifies the alternate text, which will appear in place of the
image if it cannot be downloaded, and may be displayed as a tooltip over a successfully downloaded
image in uplevel browsers.

Public Class HtmlImage : Inherits HtmlControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Align As String  
   Public Property Alt As String  
   Public Property Border As Integer  
   Public Property Height As Integer  
   Public Property Src As String  
   Public Property Width As Integer  
' Protected Instance Methods
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlImage
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputButton Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class can represent the HTML <input type=button> tag, the <input type=submit> tag, and the
<input type=reset> tag. Reset buttons are used to clear input fields on the current form and do not
trigger a postback. Submit and input buttons in ASP.NET trigger a postback and provide a ServerClick
event that you can use to perform other tasks. Additionally, you can use the CausesValidation property
to skip postback page validation when this button is clicked.

Public Class HtmlInputButton : Inherits HtmlInputControl : Implements_
       System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal type As String) 
' Public Instance Properties
   Public Property CausesValidation As Boolean  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerClick(
        ByVal e As EventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event ServerClick As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
HtmlInputButton(System.Web.UI.IPostBackEventHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputCheckBox Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <input type=checkbox> tag and indicates the user's selection through
its Checked property. You can also react to the ServerChange event, which will fire only after a
postback is triggered (for example, by clicking a submit button). Note that this control does not have
an associated text label.

Public Class HtmlInputCheckBox : Inherits HtmlInputControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Checked As Boolean  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerChange(
        ByVal e As EventArgs) 
' Events
   Public Event ServerChange As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
HtmlInputCheckBox(System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputControl MustInherit Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This abstract class provides basic functionality for all controls based on the HTML <input> tag. The
Value property represents the information entered in the control, and the Type property is a string
that identifies the value of the input element's type attribute (for example, a checkbox or text). By
default, the Name property is identical to System.Web.UI.Control.UniqueID, although it can be used to
group together related HtmlInputRadioButton controls with different identifiers.

Public MustInherit Class HtmlInputControl : Inherits HtmlControl
' Public Constructors
   Public Sub New(ByVal type As String) 
' Public Instance Properties
   Overridable Public Property Name As String  
   Public ReadOnly Property Type As String  
   Overridable Public Property Value As String  
' Protected Instance Methods
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputFile Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <input type=file> tag, which allows the user to upload a binary or text
file. This control is rendered as a text box with a paired Browse button. The Browse button opens a
standard file selection dialog box. The chosen file is not transmitted until the form is posted to the
server (usually through a submit button). You can then add code in the event handler of this button to
save or otherwise manipulate the file using the PostedFile property, which provides a
System.Web.HttpPostedFile object.

You can use the HtmlInputFile property to specify a comma-separated list of MIME file types that your
control will accept. You can also change the maximum path length for the filename (MaxLength) and
the width of the file path text box (Size). The HtmlForm.Enctype property of the containing form must
be set to "multipart/form-data" to allow file uploads.

Public Class HtmlInputFile : Inherits HtmlInputControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Accept As String  
   Public Property MaxLength As Integer  
   Public ReadOnly Property PostedFile As HttpPostedFile  
   Public Property Size As Integer  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
HtmlInputFile(System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputHidden Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <input type=hidden> tag, which allows you to store hidden information
that will be sent with all postbacks. This technique is commonly used to store information without
using cookies or session state. ASP.NET automatically uses a hidden input field to preserve the
contents of server controls that have the System.Web.UI.Control.EnableViewState property set to True.

You can also react to the ServerChange event. Because the hidden input field will be changed only
through code on the server, this event will fire immediately in response to changes implemented by
your code.

Public Class HtmlInputHidden : Inherits HtmlInputControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerChange(
        ByVal e As EventArgs) 
' Events
   Public Event ServerChange As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
HtmlInputHidden(System.Web.UI.IPostBackDataHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputImage Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <input type=image> element, which creates a graphical button. Unlike
HtmlButton controls, HtmlInputImage controls are supported on all standard browsers. This class
includes many of the same properties as HtmlImage, such as settings for alignment. It also includes
the alternate text and Src, which specifies the file used for the button image. As with all button
controls, it provides a click event you can handle directly (ServerClick) and a property that lets you
disable automatic page validation when a postback is triggered by this control (CausesValidation).

Public Class HtmlInputImage : Inherits HtmlInputControl : Implements_
       System.Web.UI.IPostBackDataHandler,_
       System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Align As String  
   Public Property Alt As String  
   Public Property Border As Integer  
   Public Property CausesValidation As Boolean  
   Public Property Src As String  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerClick(
        ByVal e As System.Web.UI.ImageClickEventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event ServerClick As ImageClickEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
HtmlInputImage(System.Web.UI.IPostBackDataHandler, System.Web.UI.IPostBackEventHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputRadioButton Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <input type=radio> tag. The Checked property indicates whether the
radio button is selected. If you set the Name property of more than one radio button to the same
value, you form a group that allows only one option to be selected at a time. Note that this control
does not have any associated text.

Public Class HtmlInputRadioButton : Inherits HtmlInputControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Checked As Boolean  
   Overrides Public Property Name As String  
   Overrides Public Property Value As String  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerChange(
        ByVal e As EventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event ServerChange As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
HtmlInputRadioButton(System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlInputText Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <input type=text> or <input type=password> tag, which allow the user
to enter a single line of text. If you use the password type, the user's input will be masked with the
"*" character for display purposes.

Text entered in this control is provided in the Value property. You can specify the width of the textbox
by using the Size property and the maximum number of allowed characters by using MaxLength. You
can also react to the ServerChange event, which will fire only after a postback is triggered (for
example, when the user clicks a submit button).

Public Class HtmlInputText : Inherits HtmlInputControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal type As String) 
' Public Instance Properties
   Public Property MaxLength As Integer  
   Public Property Size As Integer  
   Overrides Public Property Value As String  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerChange(
        ByVal e As EventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event ServerChange As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlInputControl
HtmlInputText(System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlSelect Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <select> tag, which allows the user to choose an option from a drop-
down list box. To add an item to the list, use the Add() method of the Items property. The HtmlSelect
control also supports data binding to its Items property.

To retrieve the currently selected item, you can use SelectedIndex property to find the ordinal number
of the chosen item (-1 if no selection has been made), or the Value property to retrieve the text of the
selected item. If you have set Multiple to True, more than one item may be selected and only the first
item will be returned by the SelectedIndex and Value properties. Instead, you will have to iterate
through the Items collection and check the System.Web.UI.WebControls.ListItem.Selected property for
each one.

You can also react to the ServerChange event, which will fire only after a postback is triggered (for
example, when the user clicks a submit button).

Public Class HtmlSelect : Inherits HtmlContainerControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property DataMember As String  
   Overridable Public Property DataSource As Object  
   Overridable Public Property DataTextField As String  
   Overridable Public Property DataValueField As String  
   Overrides Public Property InnerHtml As String  
   Overrides Public Property InnerText As String  
   Public ReadOnly Property Items As ListItemCollection  
   Public Property Multiple As Boolean  
   Public Property Name As String  
   Overridable Public Property SelectedIndex As Integer  
   Public Property Size As Integer  
   Public Property Value As String  
' Protected Instance Properties
   Overridable Protected Property SelectedIndices As Integer()  
' Protected Instance Methods
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overridable Protected Sub ClearSelection() 
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub OnDataBinding(ByVal e As EventArgs) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerChange(
        ByVal e As EventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub RenderChildren(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function SaveViewState() As Object  
   Overridable Protected Sub Select(
        ByVal selectedIndices As Integer()) 
   Overrides Protected Sub TrackViewState() 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overrides Protected Sub TrackViewState() 
' Events
   Public Event ServerChange As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl
HtmlSelect(System.Web.UI.IPostBackDataHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTable Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class provides a powerful way to access the HTML <table> element. You can also use it to
dynamically generate an HTML table by adding HtmlTableRow objects to the Rows collection and
adding HtmlTableCell objects to each row. Programmatically created tables must be recreated with
every postback.

Most other properties for the HtmlTable class correspond to formatting options, including the
background color (BgColor), alignment (Align), and dimensions (Height and Width). You can also set
values in pixels for the width of the border around the table (Border), the spacing between cells
(CellSpacing), and the spacing between cell borders and content (CellPadding).

Public Class HtmlTable : Inherits HtmlContainerControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Align As String  
   Public Property BgColor As String  
   Public Property Border As Integer  
   Public Property BorderColor As String  
   Public Property CellPadding As Integer  
   Public Property CellSpacing As Integer  
   Public Property Height As String  
   Overrides Public Property InnerHtml As String  
   Overrides Public Property InnerText As String  
   Overridable Public ReadOnly Property Rows As HtmlTableRowCollection  
   Public Property Width As String  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub RenderChildren(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub RenderEndTag(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl  HtmlTable

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTableCell Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents individual <td> (table data) and <th> (table header) elements contained in an
HTML table row. The InnerHtml and InnerText properties allow you to access the content stored in an
individual cell. Most other properties are used to fine-tune the appearance of a particular cell. You can
set NoWrap to configure whether or not the contents in a cell will wrap and RowSpan and ColSpan to
specify that a cell should span the specified number of columns or rows.

Public Class HtmlTableCell : Inherits HtmlContainerControl
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal tagName As String) 
' Public Instance Properties
   Public Property Align As String  
   Public Property BgColor As String  
   Public Property BorderColor As String  
   Public Property ColSpan As Integer  
   Public Property Height As String  
   Public Property NoWrap As Boolean  
   Public Property RowSpan As Integer  
   Public Property VAlign As String  
   Public Property Width As String  
' Protected Instance Methods
   Overrides Protected Sub RenderEndTag(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl  HtmlTableCell
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTableCellCollection NotInheritable Class

System.Web.UI.HtmlControls (system.web.dll)

This collection of HtmlTableCell objects is used by the Cells property of the HtmlTableRow class.

Public NotInheritable Class HtmlTableCellCollection : Implements ICollection, IEnumerable
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As HtmlTableCell  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub Add(ByVal cell As HtmlTableCell) 
   Public Sub Clear() 
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Sub Insert(ByVal index As Integer, 
        ByVal cell As HtmlTableCell) 
   Public Sub Remove(ByVal cell As HtmlTableCell) 
   Public Sub RemoveAt(ByVal index As Integer) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTableRow Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents an individual <tr> table row element in an HTML table. Each table row contains
a group of HtmlTableCell objects, which is provided through the Cells property. Most other properties
are used for fine-tuning the appearance of a row.

Public Class HtmlTableRow : Inherits HtmlContainerControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Align As String  
   Public Property BgColor As String  
   Public Property BorderColor As String  
   Overridable Public ReadOnly Property Cells As HtmlTableCellCollection  
   Public Property Height As String  
   Overrides Public Property InnerHtml As String  
   Overrides Public Property InnerText As String  
   Public Property VAlign As String  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub RenderChildren(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub RenderEndTag(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl  HtmlTableRow
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTableRowCollection NotInheritable Class

System.Web.UI.HtmlControls (system.web.dll)

This collection of HtmlTableRow objects is used by the Rows property of the HtmlTable class.

Public NotInheritable Class HtmlTableRowCollection : Implements ICollection, IEnumerable
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As HtmlTableRow  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub Add(ByVal row As HtmlTableRow) 
   Public Sub Clear() 
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Sub Insert(ByVal index As Integer, 
        ByVal row As HtmlTableRow) 
   Public Sub Remove(ByVal row As HtmlTableRow) 
   Public Sub RemoveAt(ByVal index As Integer) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HtmlTextArea Class

System.Web.UI.HtmlControls (system.web.dll) disposable

This class represents the HTML <textarea> tag, which allows the user to enter multiple lines of text.
Text entered in this control is provided in the Value property. You can specify the size of the text box
by using the Rows property and the Cols property (the character width). Both default to -1 to indicate
that a standard size will be used. You can also react to the ServerChange event, which will fire only
after a postback is triggered (for example, when a user clicks a submit button).

Public Class HtmlTextArea : Inherits HtmlContainerControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Cols As Integer  
   Overridable Public Property Name As String  
   Public Property Rows As Integer  
   Public Property Value As String  
' Protected Instance Methods
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnServerChange(
        ByVal e As EventArgs) 
   Overrides Protected Sub RenderAttributes(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event ServerChange As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
HtmlControl(System.Web.UI.IAttributeAccessor)  HtmlContainerControl
HtmlTextArea(System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Chapter 38. The System.Web.UI.WebControlsNamespace

The System.Web.UI.WebControls namespace contains types used for web controls. Web controls are
ASP.NET's most full-featured controls and range from straightforward elements like Button to
sophisticated controls like Calendar, AdRotator, and DataGrid. Web controls are more abstract than
HTML controls. Rather than wrapping specific HTML elements, web controls can consist of a
combination of HTML elements and vary their user interface depending on the capabilities of the client
browser. They also provide a richer set of formatting properties and events. For example, all input
controls provide an AutoPostback property that, when set to True, allows your code to react
immediately to a Change event (like a checkbox being checked or a new list selection).

This namespace contains the WebControl class, which is the base class for all web controls. Web
controls include traditional standards like TextBox, Button, RadioButton, and CheckBox, and more
unusual and advanced controls like Calendar, AdRotator, and the list controls CheckBoxList and
RadioButtonList.

Some of the most interesting controls in this namespace include those used for data-bound tables.
Typically, DataGrid provides the most powerful options, with features for paging, sorting, and
automatic selection and editing. You can also use the DataList class for a templated list or the
Repeater class for a simple data-bound repeater that allows completely customized layout but has no
built-in formatting or support for higher-level features like selection and editing.

Other useful controls in this namespace include the validation controls that derive from BaseValidator.
These controls include CompareValidator (which compares data to an expected value), RangeValidator
(which ensures that data falls in a specified range), RegularExpressionValidator (which validates data
using a regular expression), RequiredFieldValidator (which ensures that data has been entered), and
CustomValidator (which allows you to create your own validation routines). Optionally, validation
results can be displayed using the ValidationSummary control.

Figure 38-1 shows the controls in this namespace. Figure 38-2 and Figure 38-3 show the remaining
types, including delegates and events.

Figure 38-1. Controls in the System.Web.UI.WebControls namespace

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 38-2. Delegates, events, and other types

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 38-3. Remaining types from the System.Web.UI.WebControls namespace

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AdCreatedEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class supplies additional information to the AdRotator.AdCreated event. This information is drawn
from the corresponding entry in the XML file defining the advertisements for the AdRotator control. In
addition, the AdProperties property provides a read-only collection that provides all properties of the
current advertisement.

One use of the AdCreatedEventArgs class and AdRotator.AdCreated event is to update a Web Forms
page to correspond with the current advertisement. For example, you could use code like this:
Sponsor.Text = "Visit our sponsor at" & e.NavigateURL.

Public NotInheritable Class AdCreatedEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(
        ByVal adProperties As System.Collections.IDictionary) 
' Public Instance Properties
   Public ReadOnly Property AdProperties As IDictionary  
   Public Property AlternateText As String  
   Public Property ImageUrl As String  
   Public Property NavigateUrl As String  
End Class

Hierarchy

System.Object  System.EventArgs  AdCreatedEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AdCreatedEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate defines the signature required for the AdRotator.AdCreated event handler.

Public Delegate Sub AdCreatedEventHandler(
        ByVal sender As Object, 
        ByVal e As AdCreatedEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

AdRotator Class

System.Web.UI.WebControls (system.web.dll) disposable

The AdRotator class allows you to provide one of the hallmarks of the Internet: banner ads. The
AdRotator randomly chooses a different graphic to display every time the page is refreshed by reading
from a list of entries specified in an XML file (and referenced by the AdvertisementFile property). The
XML file specifies details like image URL, the link URL, and an "impressions" value that allows you to
weigh an advertisement so that it is displayed more or less frequently than others in the file. If the
picture does not fit the size or aspect ratio of the control, it will be stretched, compressed, or
otherwise mangled to fit.

The Target property allows you to specify the frame that will be used to display the linked page if the
user clicks on a banner ad. You can specify a frame in the current window, or you can use special
values like "_blank", "_parent", "_top", or "_self". The KeywordFilter property allows you to specify a
subset of advertisements to use for the AdRotator. For example, your site could use a single XML file
for all ads, but assign different keywords to different types of ads. Depending on what page the
AdRotator is used on, you can decide to use only the group of advertisements that matches the
current content.

Clicking on the AdRotator does not fire an event, but automatically transfers the users to the
appropriate page. Use the AdCreated event to integrate the current page with the current
advertisement. This event provides information in an AdCreatedEventArgs object about the selected
ad, which can be modified or used to set corresponding properties on other controls on the current
page.

Public Class AdRotator : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property AdvertisementFile As String  
   Overrides Public ReadOnly Property Font As FontInfo  
   Public Property KeywordFilter As String  
   Public Property Target As String  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overridable Protected Sub OnAdCreated(
        ByVal e As AdCreatedEventArgs) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event AdCreated As AdCreatedEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  AdRotator

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BaseCompareValidator MustInherit Class

System.Web.UI.WebControls (system.web.dll) disposable

This abstract class provides basic functionality for the CompareValidator and RangeValidator classes,
which perform validation through comparisons. The shared (static) GetFullYear() method converts a
two-digit year (like "98") to a four-digit representation ("1998"), while CutoffYear sets the maximum
four-digit year value that it will allow to be represented in two digits. The shared CanConvert() method
determines whether a string can be converted to a given ValidationDataType, while the Type property
sets the ValidationDataType that the current instance of the control is validating text against.

Public MustInherit Class BaseCompareValidator : Inherits BaseValidator
' Protected Constructors
   Protected Sub New() 
' Protected Shared Properties
   Shared Protected Property CutoffYear As Integer  
' Public Instance Properties
   Public Property Type As ValidationDataType  
' Public Shared Methods
   Public Shared Function CanConvert(ByVal text As String, 
        ByVal type As ValidationDataType) As Boolean  
' Protected Shared Methods
   Shared Protected Function Compare(ByVal leftText As String, 
        ByVal rightText As String, 
        ByVal op As ValidationCompareOperator, 
        ByVal type As ValidationDataType) As Boolean  
   Shared Protected Function Convert(ByVal text As String, 
        ByVal type As ValidationDataType, 
        ByRef value As Object) As Boolean  
   Shared Protected Function GetDateElementOrder() As String  
   Shared Protected Function GetFullYear(
        ByVal shortYear As Integer) As Integer  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function DetermineRenderUplevel() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label  BaseValidator(System.Web.UI.IValidator)

 BaseCompareValidator

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BaseDataList MustInherit Class

System.Web.UI.WebControls (system.web.dll) disposable

This abstract class provides basic functionality for the DataList and DataGrid web controls. These
controls include data binding (through the DataBind() method, properties like DataSource), and simple
formatting through various table-specific properties, including CellPadding (the space between content
in a cell and the cell borders), CellSpacing (the space between cells), and HorizontalAlign (the position
of the table relative to the page or adjacent content).

Public MustInherit Class BaseDataList : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property CellPadding As Integer  
   Overridable Public Property CellSpacing As Integer  
   Overrides Public ReadOnly Property Controls As ControlCollection  
   Overridable Public Property DataKeyField As String  
   Public ReadOnly Property DataKeys As DataKeyCollection  
   Public Property DataMember As String  
   Overridable Public Property DataSource As Object  
   Overridable Public Property GridLines As GridLines  
   Overridable Public Property HorizontalAlign As HorizontalAlign  
' Protected Instance Properties
   Protected Property DataKeysArray As ArrayList  
' Public Shared Methods
   Public Shared Function IsBindableType(
        ByVal type As Type) As Boolean  
' Public Instance Methods
   Overrides Public Sub DataBind() 
' Protected Instance Methods
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Sub CreateChildControls() 
   MustInherit Protected Sub CreateControlHierarchy(
        ByVal useDataSource As Boolean) 
   Overrides Protected Sub OnDataBinding(ByVal e As EventArgs) 
   Overridable Protected Sub OnSelectedIndexChanged(
        ByVal e As EventArgs) 
   MustInherit Protected Sub PrepareControlHierarchy() 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event SelectedIndexChanged As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  BaseDataList
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BaseValidator MustInherit Class

System.Web.UI.WebControls (system.web.dll) disposable

This abstract class is the basis for all validation controls. It supplies a Validate() method, which does
not return a value, but updates the IsValid property. When using validation controls on a Web Forms
page, you should check the System.Web.UI.Page.IsValid property. This value will be True only if all
validation controls on the page have successfully validated their input. The BaseValidator class also
provides various other methods that are not used directly when creating a Web Forms page.

The ControlToValidate property specifies the control that a validator will verify. The ErrorMessage
property specifies the message that will be displayed in the validation control if validation fails,
although this text can be overridden by changing the validation control's Text property. The
ErrorMessage will also appear in a page's ValidationSummary control, if present.

By default, ASP.NET will not render any HTML for a control if it is not visible. This means that space
will not be allocated for a validation control unless validation fails. The Display property allows you to
allocate space for a validation control by specifying ValidatorDisplay.Static, which may be required if
your validation control is in a table. You can also set this property to ValidatorDisplay.None to specify
that no validation message will be displayed in the control, although one will still be shown in the
ValidationSummary control, if used.

Public MustInherit Class BaseValidator : Inherits Label : Implements System.Web.UI.IValidator
' Protected Constructors
   Protected Sub New() 
' Public Instance Properties
   Public Property ControlToValidate As String  
   Public Property Display As ValidatorDisplay  
   Public Property EnableClientScript As Boolean  
   Overrides Public Property Enabled As Boolean  
   Public Property ErrorMessage As String Implements IValidator.ErrorMessage 
   Overrides Public Property ForeColor As Color  
   Public Property IsValid As Boolean Implements IValidator.IsValid 
' Protected Instance Properties
   Protected Property PropertiesValid As Boolean  
   Protected Property RenderUplevel As Boolean  
' Public Shared Methods
   Public Shared Function GetValidationProperty(
        ByVal component As Object) As PropertyDescriptor  
' Public Instance Methods
   Public Sub Validate() Implements IValidator.Validate 
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Protected Sub CheckControlValidationProperty(
        ByVal name As String, ByVal propertyName As String) 
   Overridable Protected Function ControlPropertiesValid() As Boolean  
   Overridable Protected Function DetermineRenderUplevel() As Boolean  
   MustInherit Protected Function EvaluateIsValid() As Boolean  
   Protected Function GetControlRenderID(
        ByVal name As String) As String  
   Protected Function GetControlValidationValue(
        ByVal name As String) As String  
   Overrides Protected Sub OnInit(ByVal e As EventArgs) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overrides Protected Sub OnUnload(ByVal e As EventArgs) 
   Protected Sub RegisterValidatorCommonScript() 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Protected Sub RegisterValidatorCommonScript() 
   Overridable Protected Sub RegisterValidatorDeclaration() 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label  BaseValidator(System.Web.UI.IValidator)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BorderStyle Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used to set the border style for most web controls. It is used by the
WebControl.BorderStyle property.

Public Enum BorderStyle
   NotSet = 0
   None = 1
   Dotted = 2
   Dashed = 3
   Solid = 4
   Double = 5
   Groove = 6
   Ridge = 7
   Inset = 8
   Outset = 9
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  BorderStyle
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

BoundColumn Class

System.Web.UI.WebControls (system.web.dll)

The BoundColumn class represents the default type of column used in a DataGrid control. A
BoundColumn is "bound," or linked, to a specific field in a data source. It provides a DataField property
that specifies the field used from the data source for the column's content. As with all ASP.NET data
binding, the "bind" is in one direction: from the database to the output control.

Public Class BoundColumn : Inherits DataGridColumn
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public Shared ReadOnly thisExpr As String                     // =!
' Public Instance Properties
   Overridable Public Property DataField As String  
   Overridable Public Property DataFormatString As String  
   Overridable Public Property ReadOnly As Boolean  
' Public Instance Methods
   Overrides Public Sub Initialize() 
   Overrides Public Sub InitializeCell(
        ByVal cell As TableCell, 
        ByVal columnIndex As Integer, 
        ByVal itemType As ListItemType) 
' Protected Instance Methods
   Overridable Protected Function FormatDataValue(
        ByVal dataValue As Object) As String  
End Class

Hierarchy

System.Object  DataGridColumn(System.Web.UI.IStateManager)  BoundColumn
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Button Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a simple command button (also known as a push button). Button controls always
generate a postback when clicked. As with all button-like server controls, you can set the
CausesValidation property to determine whether page validation will be performed when the button is
clicked, before the button event handling code is executed. Depending on the client browser's support
for DHTML, an invalid page may prevent the postback from occurring and the button event handling
code from executing if CausesValidation is True.

When clicked, a Button raises a Click event followed by a Command event. The Command event passes
extra information about the button in a CommandEventArgs object. This information includes the
CommandName and CommandArgument properties of the Button. A typical CommandName identifies
the requested action (like "Sort").

Public Class Button : Inherits WebControl : Implements_
       System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property CausesValidation As Boolean  
   Public Property CommandArgument As String  
   Public Property CommandName As String  
   Public Property Text As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Protected Sub OnClick(ByVal e As EventArgs) 
   Overridable Protected Sub OnCommand(
        ByVal e As CommandEventArgs) 
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event Click As EventHandler  
   Public Event Command As CommandEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Button(System.Web.UI.IPostBackEventHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ButtonColumn Class

System.Web.UI.WebControls (system.web.dll)

The ButtonColumn class represents a type of column that can be used in a DataGrid control. This
column consists of buttons that raise the DataGrid.ItemCommand event. These buttons can be
displayed as graphical push buttons (like Button) or text links, depending on the ButtonType property.

The Text property determines what text is displayed for the button, while the CommandName property
specifies a string of additional information that will be sent to the DataGrid.ItemCommand event
through the DataGridCommandEventArgs object.

If you set the Text and CommandName properties, all buttons in the column will share the same
information. Alternatively, you can set the DataTextField property to use data binding and the
DataTextFormatString property to specify formatting rules.

Public Class ButtonColumn : Inherits DataGridColumn
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property ButtonType As ButtonColumnType  
   Overridable Public Property CommandName As String  
   Overridable Public Property DataTextField As String  
   Overridable Public Property DataTextFormatString As String  
   Overridable Public Property Text As String  
' Public Instance Methods
   Overrides Public Sub Initialize() 
   Overrides Public Sub InitializeCell(
        ByVal cell As TableCell, 
        ByVal columnIndex As Integer, 
        ByVal itemType As ListItemType) 
' Protected Instance Methods
   Overridable Protected Function FormatDataTextValue(
        ByVal dataTextValue As Object) As String  
End Class

Hierarchy

System.Object  DataGridColumn(System.Web.UI.IStateManager)  ButtonColumn

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ButtonColumnType Enum

System.Web.UI.WebControls (system.web.dll) serializable

You can use this enumeration to set the ButtonColumn.ButtonType property. Use PushButton to create
graphical buttons that look like individual Button controls and LinkButton to create hyperlink-style
buttons that look like individual LinkButton controls.

Public Enum ButtonColumnType
   LinkButton = 0
   PushButton = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ButtonColumnType
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Calendar Class

System.Web.UI.WebControls (system.web.dll) disposable

The class is used for the Calendar control, which displays a single month of the year at a time and
allows users to move forward and backward from month to month and select one or more dates. The
SelectionMode property determines what type of selections are allowed (day, week, or month). You
can also create an event handler for the DayRender event, use it to examine each day in the calendar
and decide if you would like to apply special formatting, add additional content in the corresponding
table cell, or make the day unselectable.

If only a single day is selected, it will be provided in the SelectedDate property. If you use a
SelectionMode that allows the user to select multiple dates, they will be contained in the SelectedDates
collection.

The other properties of the calendar are used to customize its appearance, allowing you to hide
header and title information, choose styles, and disable month-to-month navigation. Note that if you
hide the title portion by setting the ShowTitle property to False, the month navigation controls will also
be hidden. You can also respond to a SelectionChanged event that fires when the user chooses a new
date and the VisibleMonthChanged event that fires when the user navigates to a different month.

Public Class Calendar : Inherits WebControl : Implements_
       System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property CellPadding As Integer  
   Public Property CellSpacing As Integer  
   Public ReadOnly Property DayHeaderStyle As TableItemStyle  
   Public Property DayNameFormat As DayNameFormat  
   Public ReadOnly Property DayStyle As TableItemStyle  
   Public Property FirstDayOfWeek As FirstDayOfWeek  
   Public Property NextMonthText As String  
   Public Property NextPrevFormat As NextPrevFormat  
   Public ReadOnly Property NextPrevStyle As TableItemStyle  
   Public ReadOnly Property OtherMonthDayStyle As TableItemStyle  
   Public Property PrevMonthText As String  
   Public Property SelectedDate As Date  
   Public ReadOnly Property SelectedDates As SelectedDatesCollection  
   Public ReadOnly Property SelectedDayStyle As TableItemStyle  
   Public Property SelectionMode As CalendarSelectionMode  
   Public Property SelectMonthText As String  
   Public ReadOnly Property SelectorStyle As TableItemStyle  
   Public Property SelectWeekText As String  
   Public Property ShowDayHeader As Boolean  
   Public Property ShowGridLines As Boolean  
   Public Property ShowNextPrevMonth As Boolean  
   Public Property ShowTitle As Boolean  
   Public Property TitleFormat As TitleFormat  
   Public ReadOnly Property TitleStyle As TableItemStyle  
   Public ReadOnly Property TodayDayStyle As TableItemStyle  
   Public Property TodaysDate As Date  
   Public Property VisibleDate As Date  
   Public ReadOnly Property WeekendDayStyle As TableItemStyle  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Protected Function HasWeekSelectors(
        ByVal selectionMode As CalendarSelectionMode) As Boolean  
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overridable Protected Sub OnDayRender(
        ByVal cell As TableCell, ByVal day As CalendarDay) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnSelectionChanged() 
   Overridable Protected Sub OnVisibleMonthChanged(
        ByVal newDate As Date, ByVal previousDate As Date) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function SaveViewState() As Object  
   Overrides Protected Sub TrackViewState() 
' Events
   Public Event DayRender As DayRenderEventHandler  
   Public Event SelectionChanged As EventHandler  
   Public Event VisibleMonthChanged As MonthChangedEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Calendar(System.Web.UI.IPostBackEventHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CalendarDay Class

System.Web.UI.WebControls (system.web.dll)

This class represents a single day in the Calendar control. You can use this class in the
Calendar.DayRender event to programmatically configure specific dates. The Calendar.DayRender event
fires once for each day in the Calendar, and it provides the CalendarDay object for that day. At this
point, you can modify its properties.

For example, you can compare dates against valid date ranges stored in a database and set the
IsSelectable property to False for all dates that you don't want the user to be able to select. Or you
could examine the IsOtherMonth property to verify that the day is in the currently displayed month
and the IsWeekend property to confirm that the day is on a weekend, and then change the
background color of the containing cell to highlight it. Note, however, that the background color is not
a property of the CalendarDay object. Instead, it is a property of the TableCell object that is also
provided to you in the event through the DayRenderEventArgs class. For more information, refer to the
DayRenderEventArgs object.

Public Class CalendarDay
' Public Constructors
   Public Sub New(ByVal date As Date, 
        ByVal isWeekend As Boolean, 
        ByVal isToday As Boolean, 
        ByVal isSelected As Boolean, 
        ByVal isOtherMonth As Boolean, 
        ByVal dayNumberText As String) 
' Public Instance Properties
   Public ReadOnly Property Date As Date  
   Public ReadOnly Property DayNumberText As String  
   Public ReadOnly Property IsOtherMonth As Boolean  
   Public Property IsSelectable As Boolean  
   Public ReadOnly Property IsSelected As Boolean  
   Public ReadOnly Property IsToday As Boolean  
   Public ReadOnly Property IsWeekend As Boolean  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CalendarSelectionMode Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the type of selection that a user can perform with a Calendar control. Day
allows the user to select a single day, DayWeek allows the user to select a single day or an entire
week, DayWeekMonth allows a specific day, week, or month to be chosen, and None does not allow
any kind of date selection. The calendar does not support noncontiguous multiple day selections.

Public Enum CalendarSelectionMode
   None = 0
   Day = 1
   DayWeek = 2
   DayWeekMonth = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  CalendarSelectionMode

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CheckBox Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a single checkbox that can be selected (True) or left unchecked (False). The
CheckBox class also provides a TextAlign property, which specifies whether text will appear on the
right or left side of the checkbox. To determine whether a checkbox is selected, examine the Checked
property. If you want to use a checkbox with list data, the CheckBoxList control may be more
convenient.

Public Class CheckBox : Inherits WebControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property AutoPostBack As Boolean  
   Overridable Public Property Checked As Boolean  
   Overridable Public Property Text As String  
   Overridable Public Property TextAlign As TextAlign  
' Protected Instance Methods
   Overridable Protected Sub OnCheckedChanged(
        ByVal e As EventArgs) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event CheckedChanged As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  CheckBox(System.Web.UI.IPostBackDataHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CheckBoxList Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a list of checkboxes that can be selected in any combination. Though this class is
generated out of individual checkboxes, it acts like an integrated list. For example, ASP.NET will add
or remove checkbox items as needed when you bind it to a data source. You can use RepeatDirection
to specify how checkboxes will be grouped together if RepeatColumns is greater than 1. For example,
if you set RepeatDirection to RepeatDirection.Vertical, and RepeatColumns to 2, the first two list items
will be displayed in the first columns, the next two will be displayed on the second column, and so on.
If you set RepeatDirection to RepeatDirection.Horizontal, your list will still have the same number of
rows and columns, but checkbox items will be filled first by column, and then by row.

Individual checkboxes are grouped together automatically in an HTML table, which you can fine-tune
with the CellPadding and CellSpacing properties. Alternatively, you can set RepeatLayout to
RepeatLayout.Flow to specify that an HTML table should not be used.

Most of the list-specific functionality, such as determining the selected item and reacting to a
SelectedIndexChanged event, is provided by the ListControl class, which CheckBoxList inherits from. To
determine what items are checked in a checkbox list, iterate through the Items collection and test the
ListItem.Selected property of each item in the list.

Public Class CheckBoxList : Inherits ListControl : Implements_
       IRepeatInfoUser, System.Web.UI.INamingContainer,_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property CellPadding As Integer  
   Overridable Public Property CellSpacing As Integer  
   Overridable Public Property RepeatColumns As Integer  
   Overridable Public Property RepeatDirection As RepeatDirection  
   Overridable Public Property RepeatLayout As RepeatLayout  
   Overridable Public Property TextAlign As TextAlign  
' Protected Instance Methods
   Overrides Protected Function CreateControlStyle() As Style  
   Overrides Protected Function FindControl(
        ByVal id As String, 
        ByVal pathOffset As Integer) As Control  
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  ListControl  CheckBoxList(IRepeatInfoUser,
System.Web.UI.INamingContainer, System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CommandEventArgs Class

System.Web.UI.WebControls (system.web.dll)

This class is used by the CommandEventHandler to provide extra information to a Command event
handler. This information is stored in two properties: CommandName and CommandArgument, which
are both strings. These properties are used only by your code, and can thus be used to store any
information you need. For example, you might set CommandName to "Sort" and CommandArgument to
"Ascending."

Public Class CommandEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal e As CommandEventArgs) 
   Public Sub New(ByVal commandName As String, 
        ByVal argument As Object) 
' Public Instance Properties
   Public ReadOnly Property CommandArgument As Object  
   Public ReadOnly Property CommandName As String  
End Class

Hierarchy

System.Object  System.EventArgs  CommandEventArgs

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CommandEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

Many button controls, such as Button, ImageButton, and LinkButton, provide both a Click and a
Command event. The Command event allows you to send extra information identifying a command
name and command arguments in an instance of CommandEventArgs.

Public Delegate Sub CommandEventHandler(
        ByVal sender As Object, 
        ByVal e As CommandEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CompareValidator Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a validation control that compares the input control (ControlToValidate) to a
specified value (ValueToCompare) or a value in another control (ControlToCompare). Both values will
be converted to the data type specified by Type before they are compared. Note that if you set both
ValueToCompare and ControlToCompare, the latter will take precedence.

The Operator property specifies the expression that must be met in order for validation to succeed. In
other words, ControlToValidate <Operator> ControlToCompare must be true.

Public Class CompareValidator : Inherits BaseCompareValidator
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property ControlToCompare As String  
   Public Property Operator As ValidationCompareOperator  
   Public Property ValueToCompare As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function ControlPropertiesValid() As Boolean  
   Overrides Protected Function EvaluateIsValid() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label  BaseValidator(System.Web.UI.IValidator)

 BaseCompareValidator  CompareValidator
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

CustomValidator Class

System.Web.UI.WebControls (system.web.dll) disposable

The CustomValidator control allows you to define your own validation routines. A similar task could be
performed by writing manual validation code in the click event for a submit button, but using a
CustomValidator allows you to configure client-side validation, create an error message that will be
included in the validation summary, and provide a "vote" used for the combined
System.Web.UI.Page.IsValid property along with all other validation controls. A CustomValidator can
also be reused easily to validate multiple controls.

To provide server-side validation, create an event handler for the ServerValidate event. The string
from the input control and the result of the validation is stored in the provided ServerValidateEventArgs
object. You can also perform client-side validation, which can improve the responsiveness of your
application by reducing the need for round trips to the server. However, because client-side validation
will not be performed in some browsers and is easy to circumvent, it should never be used in place of
server validation. To use client-side validation, set the ClientValidationFunction to the name of a
JavaScript or VBScript function in the .aspx code portion of your page (not the code-behind class).
This script function should be in a language that the client browser can understand, which means that
JavaScript is the best choice if you are supporting non-Microsoft browsers. The function must be in
the form function ValidationFunctionName(source, value), where value is the validated value that. This
function should return True or False to indicate whether the validation succeeded. ASP.NET will take
care of the code necessary to display the corresponding error message. Note that this is a very bad
idea if your function uses "secret" logic to validate a password or key, as this logic will be easily
retrievable by the client!

Public Class CustomValidator : Inherits BaseValidator
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property ClientValidationFunction As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function ControlPropertiesValid() As Boolean  
   Overrides Protected Function EvaluateIsValid() As Boolean  
   Overridable Protected Function OnServerValidate(
        ByVal value As String) As Boolean  
' Events
   Public Event ServerValidate As ServerValidateEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label  BaseValidator(System.Web.UI.IValidator)

 CustomValidator
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGrid Class

System.Web.UI.WebControls (system.web.dll) disposable

The DataGrid control is, at its simplest, a data-bound list displayed in a table grid structure. It
provides a rich set of functionality that makes it the most versatile data-bound control, including
support for selection, editing, deleting, paging, and sorting.

Columns can be added to a DataGrid in two ways. First, if the AutoGenerateColumns property is True, a
BoundColumn will be created for every column in the data source specified by DataSource.
Alternatively, you can define columns by adding nested tags in the .aspx file. (If you mix both
approaches, the automatically generated columns will always be added last.) Columns can be
BoundColumn, ButtonColumn, EditCommandColumn, HyperLinkColumn, or TemplateColumn controls
(each of which are described separately in this namespace). The order that the columns appear is
determined by the order the column tags are listed in the .aspx, and you can manipulate them
programmatically through the Columns collection. Note that this collection does not contain
automatically generated columns—only ones that have defined templates.

The DataGrid has a number of properties that allow you to control its appearance. You can set
TableItemStyle objects for various properties, including footers, headers (used automatically for
column titles), and items. (The corresponding DataGrid properties end with the word "Style.") You can
also use the ShowHeader and ShowFooter properties to configure whether headers and footers will be
displayed.

To allow row selection for DataGrid, set the SelectedItemTemplate to look different than the
ItemTemplate. Then add a button column that allows selection (for example, you might use the text
"Select") and set the SelectedIndex property to the appropriate row in the ItemCommand event
handler. To allow in-place editing, add an EditCommandColumn column and set the EditItemIndex
(then rebind to the data source) in the EditCommand event handler. Any properties that are not
marked as read-only in the template will be editable through automatically provided text boxes. You
can handle the UpdateCommand event to commit the actual change. To disable editing or selection for
a DataGrid, set the EditItemIndex or SelectedIndex to -1.

To provide sorting, enable the AllowSorting property and rebind the appropriate sorted data in
response to the SortCommand event. Finally, to provide paging, enable the AllowPaging property and
set a number of rows in the PageSize property. When the PageIndexChanged event is triggered, set
the CurrentPageIndex to the appropriate page. Note that automatic paging causes the complete data
table to be retrieved, even though only a few rows are being displayed. To optimize performance, you
should enable the AllowCustomPaging property and provide custom data access code in the
CurrentPageIndex event handler. When using custom paging, you must also set the VirtualItemCount
property to the total number of records to allow the DataGrid to determine the total number of pages
needed.

Public Class DataGrid : Inherits BaseDataList : Implements System.Web.UI.INamingContainer
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const CancelCommandName As String                      // =Cancel
   public const DeleteCommandName As String                      // =Delete
   public const EditCommandName As String                        // =Edit
   public const NextPageCommandArgument As String                // =Next
   public const PageCommandName As String                        // =Page
   public const PrevPageCommandArgument As String                // =Prev
   public const SelectCommandName As String                      // =Select
   public const SortCommandName As String                        // =Sort
   public const UpdateCommandName As String                      // =Update
' Public Instance Properties

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


' Public Instance Properties
   Overridable Public Property AllowCustomPaging As Boolean  
   Overridable Public Property AllowPaging As Boolean  
   Overridable Public Property AllowSorting As Boolean  
   Overridable Public ReadOnly Property AlternatingItemStyle As TableItemStyle  
   Overridable Public Property AutoGenerateColumns As Boolean  
   Overridable Public Property BackImageUrl As String  
   Overridable Public ReadOnly Property Columns As DataGridColumnCollection  
   Public Property CurrentPageIndex As Integer  
   Overridable Public Property EditItemIndex As Integer  
   Overridable Public ReadOnly Property EditItemStyle As TableItemStyle  
   Overridable Public ReadOnly Property FooterStyle As TableItemStyle  
   Overridable Public ReadOnly Property HeaderStyle As TableItemStyle  
   Overridable Public ReadOnly Property Items As DataGridItemCollection  
   Overridable Public ReadOnly Property ItemStyle As TableItemStyle  
   Public ReadOnly Property PageCount As Integer  
   Overridable Public ReadOnly Property PagerStyle As DataGridPagerStyle  
   Overridable Public Property PageSize As Integer  
   Overridable Public Property SelectedIndex As Integer  
   Overridable Public ReadOnly Property SelectedItem As DataGridItem  
   Overridable Public ReadOnly Property SelectedItemStyle As TableItemStyle  
   Overridable Public Property ShowFooter As Boolean  
   Overridable Public Property ShowHeader As Boolean  
   Overridable Public Property VirtualItemCount As Integer  
' Protected Instance Methods
   Overridable Protected Function CreateColumnSet(
        ByVal dataSource As PagedDataSource, 
        ByVal useDataSource As Boolean) As ArrayList  
   Overrides Protected Sub CreateControlHierarchy(
        ByVal useDataSource As Boolean) 
   Overrides Protected Function CreateControlStyle() As Style  
   Overridable Protected Function CreateItem(
        ByVal itemIndex As Integer, 
        ByVal dataSourceIndex As Integer, 
        ByVal itemType As ListItemType) As DataGridItem  
   Overridable Protected Sub InitializeItem(
        ByVal item As DataGridItem, 
        ByVal columns As DataGridColumn()) 
   Overridable Protected Sub InitializePager(
        ByVal item As DataGridItem, 
        ByVal columnSpan As Integer, 
        ByVal pagedDataSource As PagedDataSource) 
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Function OnBubbleEvent(
        ByVal source As Object, 
        ByVal e As EventArgs) As Boolean  
   Overridable Protected Sub OnCancelCommand(
        ByVal e As DataGridCommandEventArgs) 
   Overridable Protected Sub OnDeleteCommand(
        ByVal e As DataGridCommandEventArgs) 
   Overridable Protected Sub OnEditCommand(
        ByVal e As DataGridCommandEventArgs) 
   Overridable Protected Sub OnItemCommand(
        ByVal e As DataGridCommandEventArgs) 
   Overridable Protected Sub OnItemCreated(
        ByVal e As DataGridItemEventArgs) 
   Overridable Protected Sub OnItemDataBound(
        ByVal e As DataGridItemEventArgs) 
   Overridable Protected Sub OnPageIndexChanged(
        ByVal e As DataGridPageChangedEventArgs) 
   Overridable Protected Sub OnSortCommand(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overridable Protected Sub OnSortCommand(
        ByVal e As DataGridSortCommandEventArgs) 
   Overridable Protected Sub OnUpdateCommand(
        ByVal e As DataGridCommandEventArgs) 
   Overrides Protected Sub PrepareControlHierarchy() 
   Overrides Protected Function SaveViewState() As Object  
   Overrides Protected Sub TrackViewState() 
' Events
   Public Event CancelCommand As DataGridCommandEventHandler  
   Public Event DeleteCommand As DataGridCommandEventHandler  
   Public Event EditCommand As DataGridCommandEventHandler  
   Public Event ItemCommand As DataGridCommandEventHandler  
   Public Event ItemCreated As DataGridItemEventHandler  
   Public Event ItemDataBound As DataGridItemEventHandler  
   Public Event PageIndexChanged As DataGridPageChangedEventHandler  
   Public Event SortCommand As DataGridSortCommandEventHandler  
   Public Event UpdateCommand As DataGridCommandEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  BaseDataList
DataGrid(System.Web.UI.INamingContainer)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridColumn MustInherit Class

System.Web.UI.WebControls (system.web.dll)

The abstract base class is used for all types of columns that can be added to a DataGrid control,
including BoundColumn, ButtonColumn, HyperLinkColumn, EditCommandColumn, and TemplateColumn.
It includes basic formatting-related properties, including TableItemStyle objects for the header, footer,
and items, and an image file to be displayed in the header (HeaderImageUrl). The SortExpression
property specifies the field that will be used to order the DataGrid when sorting according to this
column.

Public MustInherit Class DataGridColumn : Implements System.Web.UI.IStateManager
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public ReadOnly Property FooterStyle As TableItemStyle  
   Overridable Public Property FooterText As String  
   Overridable Public Property HeaderImageUrl As String  
   Overridable Public ReadOnly Property HeaderStyle As TableItemStyle  
   Overridable Public Property HeaderText As String  
   Overridable Public ReadOnly Property ItemStyle As TableItemStyle  
   Overridable Public Property SortExpression As String  
   Public Property Visible As Boolean  
' Protected Instance Properties
   Protected Property DesignMode As Boolean  
   Protected Property IsTrackingViewState As Boolean Implements IStateManager.IsTrackingViewState 
   Protected Property Owner As DataGrid  
   Protected Property ViewState As StateBag  
' Public Instance Methods
   Overridable Public Sub Initialize() 
   Overridable Public Sub InitializeCell(
        ByVal cell As TableCell, 
        ByVal columnIndex As Integer, 
        ByVal itemType As ListItemType) 
   Overrides Public Function ToString() As String  
' Protected Instance Methods
   Overridable Protected Sub LoadViewState(
        ByVal savedState As Object) Implements IStateManager.LoadViewState 
   Overridable Protected Sub OnColumnChanged() 
   Overridable Protected Function SaveViewState(
        ) As Object Implements IStateManager.SaveViewState 
   Overridable Protected Sub TrackViewState(
        ) Implements IStateManager.TrackViewState 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridColumnCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This is the collection of DataGridColumn objects in a DataGrid control. It is provided through the
DataGrid.Columns property. You can use this collection to programmatically add or remove columns,
but these changes will not be automatically persisted over postbacks because the DataGrid.Columns
property is not stored in view state. This collection will only contain columns that have been added
through templates, not automatically generated ones.

Public NotInheritable Class DataGridColumnCollection : Implements_
       ICollection, IEnumerable, System.Web.UI.IStateManager
' Public Constructors
   Public Sub New(ByVal owner As DataGrid, 
        ByVal columns As System.Collections.ArrayList) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As DataGridColumn  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub Add(ByVal column As DataGridColumn) 
   Public Sub AddAt(ByVal index As Integer, 
        ByVal column As DataGridColumn) 
   Public Sub Clear() 
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Function IndexOf(
        ByVal column As DataGridColumn) As Integer  
   Public Sub Remove(ByVal column As DataGridColumn) 
   Public Sub RemoveAt(ByVal index As Integer) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridCommandEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

The DataGridCommandEventArgs class provides more information for the ItemCommand,
CancelCommand, DeleteCommand, EditCommand, and UpdateCommand events of the DataGrid control.
This information consists of an Item property identifying the affected DataGridItem and a
CommandSource property that refers to the button or hyperlink that was clicked. You have to cast this
object to an appropriate type to read its properties.

Public NotInheritable Class DataGridCommandEventArgs : Inherits CommandEventArgs
' Public Constructors
   Public Sub New(ByVal item As DataGridItem, 
        ByVal commandSource As Object, 
        ByVal originalArgs As CommandEventArgs) 
' Public Instance Properties
   Public ReadOnly Property CommandSource As Object  
   Public ReadOnly Property Item As DataGridItem  
End Class

Hierarchy

System.Object  System.EventArgs  CommandEventArgs  DataGridCommandEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridCommandEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the parameters for the event handler routine that handles the ItemCommand,
CancelCommand, DeleteCommand, EditCommand, and UpdateCommand events of the DataGrid control.
This event handler receives additional information about the item that was clicked.

Public Delegate Sub DataGridCommandEventHandler(
        ByVal source As Object, 
        ByVal e As DataGridCommandEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridItem Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents an individual item in the DataGrid control. You can access a DataGridItem
through the DataGrid.Items collection or from a DataGrid event handler.

The DataGridItem class inherits most of its properties from System.Web.UI.Control. In addition, it
provides a ItemIndex that gives its index in the DataGrid.Items collection, an ItemType property that
identifies what type of item this is (a header, footer, alternating row, etc.), and a DataItem property
that returns the corresponding data item (such as a System.Data.DataRowView instance).

Public Class DataGridItem : Inherits TableRow : Implements System.Web.UI.INamingContainer
' Public Constructors
   Public Sub New(ByVal itemIndex As Integer, 
        ByVal dataSetIndex As Integer, 
        ByVal itemType As ListItemType) 
' Public Instance Properties
   Overridable Public Property DataItem As Object  
   Overridable Public ReadOnly Property DataSetIndex As Integer  
   Overridable Public ReadOnly Property ItemIndex As Integer  
   Overridable Public ReadOnly Property ItemType As ListItemType  
' Protected Instance Methods
   Overrides Protected Function OnBubbleEvent(
        ByVal source As Object, 
        ByVal e As EventArgs) As Boolean  
   Overridable Protected Friend Sub SetItemType(
        ByVal itemType As ListItemType) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  TableRow
DataGridItem(System.Web.UI.INamingContainer)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridItemCollection Class

System.Web.UI.WebControls (system.web.dll)

This custom collection class contains DataGridItem objects. It is used for the DataGrid.Items property
of the DataGrid control.

Public Class DataGridItemCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New(ByVal items As System.Collections.ArrayList) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As DataGridItem  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridItemEventArgs Class

System.Web.UI.WebControls (system.web.dll)

This class provides extra information for the DataGrid.ItemCreated and DataGrid.ItemDataBound
events, which consists of an Item property with the current DataGridItem object.

Public Class DataGridItemEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal item As DataGridItem) 
' Public Instance Properties
   Public ReadOnly Property Item As DataGridItem  
End Class

Hierarchy

System.Object  System.EventArgs  DataGridItemEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridItemEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate defines the parameter list for methods that handle the DataGrid.ItemCreated and
DataGrid.ItemDataBound events. These events provides extra information about the current
DataGridItem through the DataGridItemEventArgs class.

Public Delegate Sub DataGridItemEventHandler(
        ByVal sender As Object, 
        ByVal e As DataGridItemEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridPageChangedEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class provides extra information for the DataGrid.PageIndexChanged event. This information
includes the CommandSource, which will always be the DataGridItem that represents the page
selection control, and the NewPageIndex, which indicates the selected page (the first page is 0,
although it the corresponding link in the DataGrid will be displayed as "1").

Public NotInheritable Class DataGridPageChangedEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal commandSource As Object, 
        ByVal newPageIndex As Integer) 
' Public Instance Properties
   Public ReadOnly Property CommandSource As Object  
   Public ReadOnly Property NewPageIndex As Integer  
End Class

Hierarchy

System.Object  System.EventArgs  DataGridPageChangedEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridPageChangedEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the parameter list that a method must have to handle the
DataGrid.PageIndexChanged event. If you are using automatic paging (and have set the
DataGrid.AllowPaging property to True, but the DataGrid.AllowCustomPaging property to False), your
event handler only needs to set the new DataGrid.CurrentPageIndex (for example,
ItemsGrid.CurrentPageIndex = e.NewPageIndex), recreate the data source, and then rebind it.

Public Delegate Sub DataGridPageChangedEventHandler(
        ByVal source As Object, 
        ByVal e As DataGridPageChangedEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridPagerStyle NotInheritable Class

System.Web.UI.WebControls
(system.web.dll)

marshal by reference,
disposable

This class represents a special style class derived from TableItemStyle that allows you to configure the
pager controls for the DataGrid control. It is provided through the DataGrid.PagerStyle property. Pager
controls (special links that allow you to see one "page" of data at a time) are displayed in a separate
row at the bottom of the table, provided you have enabled the DataGrid.AllowPaging property.

Aside from setting the standard style properties, you can also use the Mode property to configure the
type of pager buttons used (multiple numeric or previous/next). If you are using previous/next
buttons (PagerMode.NextPrev), you can also set the associated text for the links using the
NextPageText and PrevPageText properties (which default to the < and > signs). If you use numeric
link buttons (PagerMode.NumericPages), you can also set the maximum number of links that will be
displayed at a time through the PageButtonCount property. If there are more pages than specified in
this property, a link with ellipses (...) is automatically displayed in the pager row, which allows the
user to show the next or previous set of numeric links.

Public NotInheritable Class DataGridPagerStyle : Inherits TableItemStyle
' Public Instance Properties
   Public Property Mode As PagerMode  
   Public Property NextPageText As String  
   Public Property PageButtonCount As Integer  
   Public Property Position As PagerPosition  
   Public Property PrevPageText As String  
   Public Property Visible As Boolean  
' Public Instance Methods
   Overrides Public Sub CopyFrom(ByVal s As Style) 
   Overrides Public Sub MergeWith(ByVal s As Style) 
   Overrides Public Sub Reset() 
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
Style(System.Web.UI.IStateManager)  TableItemStyle  DataGridPagerStyle

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridSortCommandEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class provides extra information for the DataGrid.SortCommand event. This information includes
the CommandSource, which will always be the DataGridItem that represents the header row, and the
SortExpression, which indicates the column (field) title. If you use a System.Data.DataView for your
data source, you can assign this expression to the Sort property.

Public NotInheritable Class DataGridSortCommandEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal commandSource As Object, 
        ByVal dce As DataGridCommandEventArgs) 
' Public Instance Properties
   Public ReadOnly Property CommandSource As Object  
   Public ReadOnly Property SortExpression As String  
End Class

Hierarchy

System.Object  System.EventArgs  DataGridSortCommandEventArgs

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataGridSortCommandEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the parameter list that a subroutine must have to handle the
DataGrid.SortCommand event. This event specifies additional information about the selected column
(DataGridSortCommandEventArgs.SortExpression), which you can use to build a new data source. This
event handler should then rebind the data source to the DataGrid control to update the display.

Public Delegate Sub DataGridSortCommandEventHandler(
        ByVal source As Object, 
        ByVal e As DataGridSortCommandEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataKeyCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

The DataKeyCollection class contains a read-only collection of primary field key names as strings. This
class is used by the BaseDataList.DataKeys property to facillitate editing (for example, you can use a
unique ID for your key field and use it to build SQL statements when you need to update a record in
response to a user edit operation). You must specify the data key you want to use in the
BaseDataList.DataKeyField property before you bind the data list.

Public NotInheritable Class DataKeyCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New(ByVal keys As System.Collections.ArrayList) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As Object  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataList Class

System.Web.UI.WebControls (system.web.dll) disposable

The DataList control is a databound list that is configured through templates in the .aspx file. It does
not provide quite the extent of features found in the DataGrid control. It does provide support for
automatic selection (by setting the SelectedIndex property) and editing (by setting the EditItemIndex
property), but not for automatic paging or sorting. Also, there is no support for default column types
or automatically generated rows, so you will always need to specify at least an ItemTemplate.
Templates for the DataList are bracketed inside the appropriate template tag (like <ItemTemplate>)
and may contain a data binding expression (for example, <%# Container.DataItem("Description") %>).
You can also add HTML tags or tags for ASP.NET controls to these templates manually for a
customized appearance.

You can use the AlternatingItemTemplate property to allow items to alternate between two styles, the
EditItemTemplate to specify how items will appear when they are being edited, and the
SelectedItemTemplate to specify how items will appear when they are selected. The HeaderTemplate,
FooterTemplate, and SeparatorTemplate allow you specify layout and content for special rows. The
DataList has a number of properties that allow you to control its appearance. You can set
TableItemStyle objects for various properties, including footers, headers (used automatically for
column titles), and items. (The corresponding DataList properties end with the word "Style.") You can
also use the ShowHeader and ShowFooter properties to configure whether headers and footers will be
displayed.

Public Class DataList : Inherits BaseDataList : Implements_
       System.Web.UI.INamingContainer, IRepeatInfoUser
' Public Constructors
   Public Sub New() 
' Public Shared Fields
   public const CancelCommandName As String                      // =Cancel
   public const DeleteCommandName As String                      // =Delete
   public const EditCommandName As String                        // =Edit
   public const SelectCommandName As String                      // =Select
   public const UpdateCommandName As String                      // =Update
' Public Instance Properties
   Overridable Public ReadOnly Property AlternatingItemStyle As TableItemStyle  
   Overridable Public Property AlternatingItemTemplate As ITemplate  
   Overridable Public Property EditItemIndex As Integer  
   Overridable Public ReadOnly Property EditItemStyle As TableItemStyle  
   Overridable Public Property EditItemTemplate As ITemplate  
   Overridable Public Property ExtractTemplateRows As Boolean  
   Overridable Public ReadOnly Property FooterStyle As TableItemStyle  
   Overridable Public Property FooterTemplate As ITemplate  
   Overrides Public Property GridLines As GridLines  
   Overridable Public ReadOnly Property HeaderStyle As TableItemStyle  
   Overridable Public Property HeaderTemplate As ITemplate  
   Overridable Public ReadOnly Property Items As DataListItemCollection  
   Overridable Public ReadOnly Property ItemStyle As TableItemStyle  
   Overridable Public Property ItemTemplate As ITemplate  
   Overridable Public Property RepeatColumns As Integer  
   Overridable Public Property RepeatDirection As RepeatDirection  
   Overridable Public Property RepeatLayout As RepeatLayout  
   Overridable Public Property SelectedIndex As Integer  
   Overridable Public ReadOnly Property SelectedItem As DataListItem  
   Overridable Public ReadOnly Property SelectedItemStyle As TableItemStyle  
   Overridable Public Property SelectedItemTemplate As ITemplate  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overridable Public Property SelectedItemTemplate As ITemplate  
   Overridable Public ReadOnly Property SeparatorStyle As TableItemStyle  
   Overridable Public Property SeparatorTemplate As ITemplate  
   Overridable Public Property ShowFooter As Boolean  
   Overridable Public Property ShowHeader As Boolean  
' Protected Instance Methods
   Overrides Protected Sub CreateControlHierarchy(
        ByVal useDataSource As Boolean) 
   Overrides Protected Function CreateControlStyle() As Style  
   Overridable Protected Function CreateItem(
        ByVal itemIndex As Integer, 
        ByVal itemType As ListItemType) As DataListItem  
   Overridable Protected Sub InitializeItem(
        ByVal item As DataListItem) 
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Function OnBubbleEvent(
        ByVal source As Object, 
        ByVal e As EventArgs) As Boolean  
   Overridable Protected Sub OnCancelCommand(
        ByVal e As DataListCommandEventArgs) 
   Overridable Protected Sub OnDeleteCommand(
        ByVal e As DataListCommandEventArgs) 
   Overridable Protected Sub OnEditCommand(
        ByVal e As DataListCommandEventArgs) 
   Overridable Protected Sub OnItemCommand(
        ByVal e As DataListCommandEventArgs) 
   Overridable Protected Sub OnItemCreated(
        ByVal e As DataListItemEventArgs) 
   Overridable Protected Sub OnItemDataBound(
        ByVal e As DataListItemEventArgs) 
   Overridable Protected Sub OnUpdateCommand(
        ByVal e As DataListCommandEventArgs) 
   Overrides Protected Sub PrepareControlHierarchy() 
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function SaveViewState() As Object  
   Overrides Protected Sub TrackViewState() 
' Events
   Public Event CancelCommand As DataListCommandEventHandler  
   Public Event DeleteCommand As DataListCommandEventHandler  
   Public Event EditCommand As DataListCommandEventHandler  
   Public Event ItemCommand As DataListCommandEventHandler  
   Public Event ItemCreated As DataListItemEventHandler  
   Public Event ItemDataBound As DataListItemEventHandler  
   Public Event UpdateCommand As DataListCommandEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  BaseDataList
DataList(System.Web.UI.INamingContainer, IRepeatInfoUser)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListCommandEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

The DataListCommandEventArgs class provides more information for the ItemCommand,
CancelCommand, DeleteCommand, EditCommand, and UpdateCommand events of the DataList control.
This information consists of an Item property identifying the affected DataListItem, and a
CommandSource property that refers to the button or hyperlink that was clicked. You will have to cast
this object to an appropriate type to read its properties.

Public NotInheritable Class DataListCommandEventArgs : Inherits CommandEventArgs
' Public Constructors
   Public Sub New(ByVal item As DataListItem, 
        ByVal commandSource As Object, 
        ByVal originalArgs As CommandEventArgs) 
' Public Instance Properties
   Public ReadOnly Property CommandSource As Object  
   Public ReadOnly Property Item As DataListItem  
End Class

Hierarchy

System.Object  System.EventArgs  CommandEventArgs  DataListCommandEventArgs

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListCommandEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the parameters for the event handler routine that handles the ItemCommand,
CancelCommand, DeleteCommand, EditCommand, and UpdateCommand events of the DataList control.
This event handler receives additional information about the item that was clicked.

Public Delegate Sub DataListCommandEventHandler(
        ByVal source As Object, 
        ByVal e As DataListCommandEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListItem Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents an individual item in the DataList control. You can access it through the
DataList.Items collection or from a DataList event.

DataListItem inherits most of its properties from System.Web.UI.Control. In addition, it provides a
ItemIndex that gives its index in the DataList.Items collection, a ItemType property that identifies what
type of item this is (a header, footer, alternating row, etc.), and a DataItem property that returns the
corresponding data item (such as a System.Data.DataRowView instance).

Public Class DataListItem : Inherits WebControl : Implements_
        System.Web.UI.INamingContainer
' Public Constructors
   Public Sub New(ByVal itemIndex As Integer, 
        ByVal itemType As ListItemType) 
' Public Instance Properties
   Overridable Public Property DataItem As Object  
   Overridable Public ReadOnly Property ItemIndex As Integer  
   Overridable Public ReadOnly Property ItemType As ListItemType  
' Public Instance Methods
   Overridable Public Sub RenderItem(
        ByVal writer As System.Web.UI.HtmlTextWriter, 
        ByVal extractRows As Boolean, 
        ByVal tableLayout As Boolean) 
' Protected Instance Methods
   Overrides Protected Function CreateControlStyle() As Style  
   Overrides Protected Function OnBubbleEvent(
        ByVal source As Object, 
        ByVal e As EventArgs) As Boolean  
   Overridable Protected Friend Sub SetItemType(
        ByVal itemType As ListItemType) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  DataListItem(System.Web.UI.INamingContainer)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListItemCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This custom collection class contains DataListItem objects. It is used for the DataList.Items property of
the DataList control.

Public NotInheritable Class DataListItemCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New(ByVal items As System.Collections.ArrayList) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As DataListItem  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListItemEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class provides extra information for the DataList.ItemCreated and DataList.ItemDataBound events.
This information consists of an Item property that contains the current DataListItem object.

Public NotInheritable Class DataListItemEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal item As DataListItem) 
' Public Instance Properties
   Public ReadOnly Property Item As DataListItem  
End Class

Hierarchy

System.Object  System.EventArgs  DataListItemEventArgs

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DataListItemEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate defines the parameter list for methods that handle the DataList.ItemCreated and
DataList.ItemDataBound events. These events provide extra information about the current DataListItem
through the DataListItemEventArgs class.

Public Delegate Sub DataListItemEventHandler(
        ByVal sender As Object, 
        ByVal e As DataListItemEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DayNameFormat Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used to set the Calendar.DayNameFormat property, which configures how days are
displayed at the top of the calendar grid. Days can be displayed in Full (e.g., "Tuesday"), in a Short
version ("Tues"), or by using the FirstLetter or FirstTwoLetters ("T" or "Tu").

Public Enum DayNameFormat
   Full = 0
   Short = 1
   FirstLetter = 2
   FirstTwoLetters = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  DayNameFormat
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DayRenderEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This object is provided to the DayRenderEventHandler. It identifies the CalendarDay that is about to be
added and the TableCell that contains the date, as well as the Day and Cell properties. The
Calendar.DayRender event is fired for every currently displayed day. This includes days from the
preceding and following month, which are used to fill out the first and last week on the calendar.

Public NotInheritable Class DayRenderEventArgs
' Public Constructors
   Public Sub New(ByVal cell As TableCell, 
        ByVal day As CalendarDay) 
' Public Instance Properties
   Public ReadOnly Property Cell As TableCell  
   Public ReadOnly Property Day As CalendarDay  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DayRenderEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate defines the subroutine used to handle the Calendar.DayRender event. This event fires as
each day is added to the currently displayed calendar month and provides additional information
about the day in a DayRenderEventArgs object. The properties of this object can be modified to
programmatically change the display color for a specific date or to make certain dates unselectable.

Public Delegate Sub DayRenderEventHandler(
        ByVal sender As Object, 
        ByVal e As DayRenderEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

DropDownList Class

System.Web.UI.WebControls (system.web.dll) disposable

This class provides a single-selection drop-down list control. Various properties, such as BorderColor,
BorderStyle, and BorderWidth, allow you to configure its appearance. To add items programmatically,
use the Items collection or use the DataBind() method to bind to a data source (such as a
System.Data.DataTable or a System.Array).

Use the SelectedIndex property to determine the selected item or the SelectedItem property, which
returns a ListItem object that specifies the associated text.

Public Class DropDownList : Inherits ListControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public Property BorderColor As Color  
   Overrides Public Property BorderStyle As BorderStyle  
   Overrides Public Property BorderWidth As Unit  
   Overrides Public Property SelectedIndex As Integer  
   Overrides Public Property ToolTip As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  ListControl
DropDownList(System.Web.UI.IPostBackDataHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

EditCommandColumn Class

System.Web.UI.WebControls (system.web.dll)

The EditCommandColumn class is a special type of column used with the DataGrid control. It provides
an "Edit" button or link (depending on the ButtonType property) that, when clicked, fires the
DataGrid.EditCommand event. This event allows you to initiate editing for a row by using the
DataGrid.EditItemIndex property (after which you must rebind to the data source).

While editing is in progress, the EditCommandColumn displays "Cancel" and "Update" buttons instead
of an "Edit" button. These will trigger the DataGrid.CancelCommand and DataGrid.UpdateCommand
events, respectively. In these events, you can add the code required to commit changes to the data
source and cancel editing (by setting DataGrid.EditItemIndex to -1). Rebind to the data source before
returning the page.

Note that you must provide values for the CancelText, EditText, and UpdateText properties (like
"Cancel", "Edit", and "Update"). Otherwise, the associated command buttons will not appear in the
column when editing is underway.

Public Class EditCommandColumn : Inherits DataGridColumn
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property ButtonType As ButtonColumnType  
   Overridable Public Property CancelText As String  
   Overridable Public Property EditText As String  
   Overridable Public Property UpdateText As String  
' Public Instance Methods
   Overrides Public Sub InitializeCell(
        ByVal cell As TableCell, 
        ByVal columnIndex As Integer, 
        ByVal itemType As ListItemType) 
End Class

Hierarchy

System.Object  DataGridColumn(System.Web.UI.IStateManager)  EditCommandColumn
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FirstDayOfWeek Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used by the Calendar.FirstDayOfWeek property to determine how a month is
broken up into rows of weeks in the display. If you choose the value Sunday, every row in the
calendar display will start on Sunday and end with Saturday. Default instructs ASP.NET to use the
current regional settings defined on the web server.

Public Enum FirstDayOfWeek
   Sunday = 0
   Monday = 1
   Tuesday = 2
   Wednesday = 3
   Thursday = 4
   Friday = 5
   Saturday = 6
   Default = 7
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  FirstDayOfWeek

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FontInfo NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class represents font information and is used in many controls through the WebControl.Font
property. This class contains the font properties that are supported in ASP.NET Web Forms and differs
slightly from the System.Drawing.Font object used in other types of .NET applications.

Public NotInheritable Class FontInfo
' Public Instance Properties
   Public Property Bold As Boolean  
   Public Property Italic As Boolean  
   Public Property Name As String  
   Public Property Names As String()  
   Public Property Overline As Boolean  
   Public Property Size As FontUnit  
   Public Property Strikeout As Boolean  
   Public Property Underline As Boolean  
' Public Instance Methods
   Public Sub CopyFrom(ByVal f As FontInfo) 
   Public Sub MergeWith(ByVal f As FontInfo) 
   Public Function ShouldSerializeNames() As Boolean  
   Overrides Public Function ToString() As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FontNamesConverter Class

System.Web.UI.WebControls (system.web.dll)

The FontNamesConverter class is a type converter that can convert between a font name array and a
string that contains a list of font names separated by commas (as often appears in an HTML page).
This class is never accessed directly. You can access its functionality through the
System.ComponentModel.TypeDescriptor helper class.

Public Class FontNamesConverter : Inherits System.ComponentModel.TypeConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function CanConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal sourceType As Type) As Boolean  
   Overrides Public Function ConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object) As Object  
   Overrides Public Function ConvertTo(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object, 
        ByVal destinationType As Type) As Object  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  FontNamesConverter
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FontSize Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used to set the FontUnit.Type property using one of the font size constants
defined by the HTML 4.0 standard.

Public Enum FontSize
   NotSet = 0
   AsUnit = 1
   Smaller = 2
   Larger = 3
   XXSmall = 4
   XSmall = 5
   Small = 6
   Medium = 7
   Large = 8
   XLarge = 9
   XXLarge = 10
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  FontSize
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FontUnit Structure

System.Web.UI.WebControls (system.web.dll)

This class represents the size of a font and is used by the FontInfo.Size property. The size of the font
can be specified in two ways. You can use the Type property, which uses one of the HTML 4.0
standard font size specifications (which are duplicated as shared read-only fields in this class) or the
Unit property, which uses a Unit structure that can specify an exact point size.

Public Structure FontUnit
' Public Constructors
   Public Sub New(ByVal type As FontSize) 
   Public Sub New(ByVal value As Integer) 
   Public Sub New(ByVal value As String) 
   Public Sub New(ByVal value As String, 
        ByVal culture As System.Globalization.CultureInfo) 
   Public Sub New(ByVal value As Unit) 
' Public Shared Fields
   public Shared ReadOnly Empty As FontUnit  
   public Shared ReadOnly Large As FontUnit                      // =Large
   public Shared ReadOnly Larger As FontUnit                     // =Larger
   public Shared ReadOnly Medium As FontUnit                     // =Medium
   public Shared ReadOnly Small As FontUnit                      // =Small
   public Shared ReadOnly Smaller As FontUnit                    // =Smaller
   public Shared ReadOnly XLarge As FontUnit                     // =X-Large
   public Shared ReadOnly XSmall As FontUnit                     // =X-Small
   public Shared ReadOnly XXLarge As FontUnit                    // =XX-Large
   public Shared ReadOnly XXSmall As FontUnit                    // =XX-Small
' Public Instance Properties
   Public ReadOnly Property IsEmpty As Boolean  
   Public ReadOnly Property Type As FontSize  
   Public ReadOnly Property Unit As Unit  
' Public Shared Methods
   Public Shared Function Parse(
        ByVal s As String) As FontUnit  
   Public Shared Function Parse(ByVal s As String, 
        ByVal culture As System.Globalization.CultureInfo) As FontUnit  
   Public Shared Function Point(
        ByVal n As Integer) As FontUnit  
   Public Shared Boolean operator Sub !=(
        ByVal left As FontUnit, ByVal right As FontUnit) 
   Public Shared Boolean operator Sub ==(
        ByVal left As FontUnit, ByVal right As FontUnit) 
   Public Shared implicit operator Sub FontUnit(
        ByVal n As Integer) 
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function ToString() As String  
   Public Function ToString(
        ByVal culture As System.Globalization.CultureInfo) As String  
End Structure

Hierarchy

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Hierarchy

System.Object  System.ValueType  FontUnit

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

FontUnitConverter Class

System.Web.UI.WebControls (system.web.dll)

The FontUnitConverter class is a type converter that can convert between a FontUnit and other basic
data types. This class is never accessed directly. You can access its functionality through the
System.ComponentModel.TypeDescriptor helper class.

Public Class FontUnitConverter : Inherits System.ComponentModel.TypeConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function CanConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal sourceType As Type) As Boolean  
   Overrides Public Function ConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object) As Object  
   Overrides Public Function ConvertTo(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object, 
        ByVal destinationType As Type) As Object  
   Overrides Public Function GetStandardValues(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As StandardValuesCollection  
   Overrides Public Function GetStandardValuesExclusive(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
   Overrides Public Function GetStandardValuesSupported(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  FontUnitConverter
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

GridLines Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies what grid lines are visible in a table. It is used by the DataGrid, DataList,
and Table classes.

Public Enum GridLines
   None = 0
   Horizontal = 1
   Vertical = 2
   Both = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  GridLines
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HorizontalAlign Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies how contents will be laid out in a container. The classes that use it include
DataGrid, Table, and Panel.

Public Enum HorizontalAlign
   NotSet = 0
   Left = 1
   Center = 2
   Right = 3
   Justify = 4
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  HorizontalAlign
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HyperLink Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a link to another web page, which is specified by the NavigateUrl property. The
control can be displayed as text specified by the Text property or as the image located at ImageUrl. If
both properties are set, ImageUrl takes precedence, provided the image file is available, and the Text
is used for an image tooltip. The Target property specifies the name of the frame that the linked page
will be loaded into. Note that you cannot respond to the link click in code. If you want to provide this
type of behavior, use the LinkButton control instead.

The HyperLink control also supports databinding to its Text and NavigateUrl properties.

Public Class HyperLink : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property ImageUrl As String  
   Public Property NavigateUrl As String  
   Public Property Target As String  
   Overridable Public Property Text As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  HyperLink
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HyperLinkColumn Class

System.Web.UI.WebControls (system.web.dll)

The HyperLinkColumn class represents a column that can be used in a DataGrid control. To have a
column with the same hyperlink in every row, you can set Text (the displayed anchor text) and
NavigateUrl (the link destination). Alternatively, you can bind a data field to the DataTextField and
DataNavigateUrlField properties (which will then take precedence over any set values for the Text and
NavigateUrl properties). Typically, this information will be specified by using a data binding expression
in a template definition in the .aspx file.

Additionally, you can set the Target property to indicate the target window or frame name for the
hyperlink. You can also use the DataTextFormatString property to provide a custom format string to
use with the DataTextField property.

Public Class HyperLinkColumn : Inherits DataGridColumn
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property DataNavigateUrlField As String  
   Overridable Public Property DataNavigateUrlFormatString As String  
   Overridable Public Property DataTextField As String  
   Overridable Public Property DataTextFormatString As String  
   Overridable Public Property NavigateUrl As String  
   Overridable Public Property Target As String  
   Overridable Public Property Text As String  
' Public Instance Methods
   Overrides Public Sub Initialize() 
   Overrides Public Sub InitializeCell(
        ByVal cell As TableCell, 
        ByVal columnIndex As Integer, 
        ByVal itemType As ListItemType) 
' Protected Instance Methods
   Overridable Protected Function FormatDataNavigateUrlValue(
        ByVal dataUrlValue As Object) As String  
   Overridable Protected Function FormatDataTextValue(
        ByVal dataTextValue As Object) As String  
End Class

Hierarchy

System.Object  DataGridColumn(System.Web.UI.IStateManager)  HyperLinkColumn

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

HyperLinkControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for any HyperLink controls on a requested Web
Forms page. The AllowWhitespaceLiterals() property is overridden to always return False. You will not
need to use this class directly in application code.

Public Class HyperLinkControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  HyperLinkControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Image Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents an Image control on a Web Forms page, which is used to display any supported
graphic (including .jpg, .bmp, .gif, and .png files). To specify the picture that should appear in this
control, set a URL to the file by using the ImageUrl property. You can specify a string of AlternateText,
which will be displayed in browsers that do not support graphics or if the picture file is not available.
You can also set a Font for the alternate text. Many browsers also show this text as a tooltip when the
user positions the mouse over the image.

An Image control cannot capture mouse clicks. To respond to image click events, use the ImageButton
control instead.

Public Class Image : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property AlternateText As String  
   Overrides Public Property Enabled As Boolean  
   Overrides Public ReadOnly Property Font As FontInfo  
   Overridable Public Property ImageAlign As ImageAlign  
   Overridable Public Property ImageUrl As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Image

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ImageAlign Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the alignment used for an Image control. Left and Right specify an
alignment relative to the web page. Text will wrap around an Image control on the opposite side.
Other values are relative to the current text line. For example, Bottom and Middle align the bottom or
middle of an image with the lower edge of a text line. AbsBottom, AbsMiddle, and Top, on the other
hand, are relative to the bottom, middle, or top of the largest element in the same line.

Public Enum ImageAlign
   NotSet = 0
   Left = 1
   Right = 2
   Baseline = 3
   Top = 4
   Middle = 5
   Bottom = 6
   AbsBottom = 7
   AbsMiddle = 8
   TextTop = 9
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ImageAlign

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ImageButton Class

System.Web.UI.WebControls (system.web.dll) disposable

This class extends the Image class to provide an image control that can respond to button clicks. The
ImageButton class provides both a Click and a Command event, which will fire when the image is
clicked. Use the Command event and the CommandName property to specify additional information
that will be provided to the event handler. This technique is sometimes used to allow the same event
handler to respond to clicks from multiple ImageButton controls and determine what control fired the
event.

By default, clicking an ImageButton control will cause page validation to occur. To change this
behavior, set the CausesValidation property to False.

Public Class ImageButton : Inherits Image : Implements_
       System.Web.UI.IPostBackDataHandler,_
       System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property CausesValidation As Boolean  
   Public Property CommandArgument As String  
   Public Property CommandName As String  
' Protected Instance Properties
   Overrides Protected Property TagKey As HtmlTextWriterTag  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Protected Sub OnClick(
        ByVal e As System.Web.UI.ImageClickEventArgs) 
   Overridable Protected Sub OnCommand(
        ByVal e As CommandEventArgs) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
' Events
   Public Event Click As ImageClickEventHandler  
   Public Event Command As CommandEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Image
ImageButton(System.Web.UI.IPostBackDataHandler, System.Web.UI.IPostBackEventHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

IRepeatInfoUser Interface

System.Web.UI.WebControls (system.web.dll)

This interface specifies the contract for the RepeatInfo class. These requirements include properties
that identify whether footer or header information is present (HasFooter and HasHeader) and identify
the number of times the chosen control will be repeated (RepeatedItemCount). This interface also
requires a method for rendering the chosen control (RenderItem()), which will be used for each
repetition.

Public Interface IRepeatInfoUser
' Public Instance Properties
   Public ReadOnly Property HasFooter As Boolean  
   Public ReadOnly Property HasHeader As Boolean  
   Public ReadOnly Property HasSeparators As Boolean  
   Public ReadOnly Property RepeatedItemCount As Integer  
' Public Instance Methods
   Public Function GetItemStyle(
        ByVal itemType As ListItemType, 
        ByVal repeatIndex As Integer) As Style  
   Public Sub RenderItem(ByVal itemType As ListItemType, 
        ByVal repeatIndex As Integer, 
        ByVal repeatInfo As RepeatInfo, 
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Interface

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Label Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a Label control, which allows you to place text on a page and modify it in later
by using the Text property. You can use HTML tags like <br> and <i> in the text string to format
portions of the control.

Public Class Label : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property Text As String  
' Protected Instance Methods
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LabelControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for Label controls on a requested Web Forms
page. You don't need to use this class directly in application code.

Public Class LabelControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  LabelControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LinkButton Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a control that appears like a HyperLink control, but fires a Click and Command
event like a Button control would. A good use of this control is to provide a hyperlink that navigates to
another web page but allows you to perform some programmatic cleanup (for example, clearing
session variables) before you redirect the user.

Like all button controls, the LinkButton class provides a CausesValidation property you can set to
prevent page validation from occurring when the control is clicked. It also provides the standard
CommandName and CommandArgument properties that allow you to specify additional information that
will be sent to a Command event.

Public Class LinkButton : Inherits WebControl : Implements_
       System.Web.UI.IPostBackEventHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property CausesValidation As Boolean  
   Public Property CommandArgument As String  
   Public Property CommandName As String  
   Overridable Public Property Text As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overridable Protected Sub OnClick(ByVal e As EventArgs) 
   Overridable Protected Sub OnCommand(
        ByVal e As CommandEventArgs) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event Click As EventHandler  
   Public Event Command As CommandEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  LinkButton(System.Web.UI.IPostBackEventHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LinkButtonControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for any LinkButton controls on a requested Web
Forms page. You will not need to use this class directly in application code.

Public Class LinkButtonControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  LinkButtonControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListBox Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a list box control. Use the Rows property to set how many rows you want to be
displayed in the control at once (and hence, how much space the list box will occupy). You can also
set the SelectionMode property to ListSelectionMode.Multiple if you want a user to be able to select
more than one item from the list box at once.

Most of the list-specific functionality, such as determining the selected item and reacting to a
SelectedIndexChanged event, is provided by the ListControl class, which ListBox inherits from.

Public Class ListBox : Inherits ListControl : Implements_
       System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overrides Public Property BorderColor As Color  
   Overrides Public Property BorderStyle As BorderStyle  
   Overrides Public Property BorderWidth As Unit  
   Overridable Public Property Rows As Integer  
   Overridable Public Property SelectionMode As ListSelectionMode  
   Overrides Public Property ToolTip As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  ListControl
ListBox(System.Web.UI.IPostBackDataHandler)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListControl MustInherit Class

System.Web.UI.WebControls (system.web.dll) disposable

This abstract base class for all list controls includes data-binding functionality (such as
DataTextFormatString, which specifies the formatting of bound text), an Items collection, and
properties for returning the first selected item (SelectedIndex and SelectedItem).

Note that items in the ListControl class do not correspond to the specific derived control type. For
example, a CheckBoxList control returns its selected item as a ListItem, as all list controls do, not as an
individual checkbox control.

Public MustInherit Class ListControl : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property AutoPostBack As Boolean  
   Overridable Public Property DataMember As String  
   Overridable Public Property DataSource As Object  
   Overridable Public Property DataTextField As String  
   Overridable Public Property DataTextFormatString As String  
   Overridable Public Property DataValueField As String  
   Overridable Public ReadOnly Property Items As ListItemCollection  
   Overridable Public Property SelectedIndex As Integer  
   Overridable Public ReadOnly Property SelectedItem As ListItem  
' Public Instance Methods
   Overridable Public Sub ClearSelection() 
' Protected Instance Methods
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub OnDataBinding(ByVal e As EventArgs) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnSelectedIndexChanged(
        ByVal e As EventArgs) 
   Overrides Protected Function SaveViewState() As Object  
   Overrides Protected Sub TrackViewState() 
' Events
   Public Event SelectedIndexChanged As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  ListControl

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListItem NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class represents an individual item from the list of a ListControl, such as CheckBoxList,
DropDownList, RadioButtonList, and ListBox. The Text property returns the text for the list item, the
Value property returns the contents of the "hidden" value attribute, and the Selected property
indicates whether or not it is currently selected, which is useful for list controls that allow multiple
selections.

Public NotInheritable Class ListItem : Implements_
       System.Web.UI.IStateManager, System.Web.UI.IParserAccessor,_
       System.Web.UI.IAttributeAccessor
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal text As String) 
   Public Sub New(ByVal text As String, ByVal value As String) 
' Public Instance Properties
   Public ReadOnly Property Attributes As AttributeCollection  
   Public Property Selected As Boolean  
   Public Property Text As String  
   Public Property Value As String  
' Public Shared Methods
   Public Shared Function FromString(
        ByVal s As String) As ListItem  
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal o As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function ToString() As String  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListItemCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class contains a collection of ListItem objects, which represents the items in a list control. This
collection is used by the ListControl.Items property.

Public NotInheritable Class ListItemCollection : Implements_
       IList, ICollection, IEnumerable, System.Web.UI.IStateManager
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Capacity As Integer  
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean Implements IList.IsReadOnly 
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As ListItem  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub Add(ByVal item As ListItem) 
   Public Sub Add(ByVal item As String) 
   Public Sub AddRange(ByVal items As ListItem()) 
   Public Sub Clear() Implements IList.Clear 
   Public Function Contains(
        ByVal item As ListItem) As Boolean  
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function FindByText(
        ByVal text As String) As ListItem  
   Public Function FindByValue(
        ByVal value As String) As ListItem  
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Function IndexOf(ByVal item As ListItem) As Integer  
   Public Sub Insert(ByVal index As Integer, 
        ByVal item As ListItem) 
   Public Sub Insert(ByVal index As Integer, 
        ByVal item As String) 
   Public Sub Remove(ByVal item As ListItem) 
   Public Sub Remove(ByVal item As String) 
   Public Sub RemoveAt(
        ByVal index As Integer) Implements IList.RemoveAt 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListItemControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for any ListItem controls on a requested Web
Forms page. You will not need to use this class directly in application code.

Public Class ListItemControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
   Overrides Public Function HtmlDecodeLiterals() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  ListItemControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListItemType Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the type of item for a row in a DataList, DataGrid, or Repeater control. It is
not used for other list controls that derive from ListControl.

Item types include headers and footers, separators, and the controls used to move from one data
page to the next (Pager). If an item is currently in edit mode, the value EditItem is returned; if the
item is selected, SelectedItem is used. AlternatingItem indicates a alternating item, which will be an
even-numbered item (counting is zero-based).

Public Enum ListItemType
   Header = 0
   Footer = 1
   Item = 2
   AlternatingItem = 3
   SelectedItem = 4
   EditItem = 5
   Separator = 6
   Pager = 7
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ListItemType
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ListSelectionMode Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies whether list controls (which derive from ListControl) allow only one
selection at a time or multiple selections.

Public Enum ListSelectionMode
   Single = 0
   Multiple = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ListSelectionMode
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Literal Class

System.Web.UI.WebControls (system.web.dll) disposable

You can use a Literal control to put plain text on a page (optionally, with embedded HTML markup
tags). In this respect, the Literal control is somewhat like the Label control, except it cannot use any
special formatting, styles, or fonts.

Do not confuse the Literal control with the System.Web.UI.LiteralControl class. The latter is used by
ASP.NET to represent static HTML content found on a web page that will not be made available to
your code as a server-side control.

Public Class Literal : Inherits System.Web.UI.Control
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Text As String  
' Protected Instance Methods
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Sub Render(
        ByVal output As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)  Literal
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

LiteralControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for any Literal controls on a requested Web
Forms page. You will not need to use this class directly in application code.

Public Class LiteralControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
   Overrides Public Sub AppendSubBuilder(
        ByVal subBuilder As System.Web.UI.ControlBuilder) 
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  LiteralControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MonthChangedEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This custom System.EventArgs class provides additional information for the
Calendar.VisibleMonthChanged event. The additional information consists of two properties:
PreviousDate and NewDate (which will typically be the first of the newly selected month).

Public NotInheritable Class MonthChangedEventArgs
' Public Constructors
   Public Sub New(ByVal newDate As Date, 
        ByVal previousDate As Date) 
' Public Instance Properties
   Public ReadOnly Property NewDate As Date  
   Public ReadOnly Property PreviousDate As Date  
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

MonthChangedEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the parameter list a subroutine requires to handle the
Calendar.VisibleMonthChanged event, which occurs when the user clicks one of the navigation controls
to "page" to another month. This event provides additional information about the previous and new
selected date.

Public Delegate Sub MonthChangedEventHandler(
        ByVal sender As Object, 
        ByVal e As MonthChangedEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

NextPrevFormat Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used to set the Calendar.NextPrevFormat property. It determines the appearance
of the navigation controls that allow the user to move from month to month. ShortMonth will display
an abbreviated month name on the previous and next month controls (like "Jan"), with which
FullMonth will display the full name of the month. If you use CustomText, you must set the
corresponding Calendar.NextMonthText and Calendar.PrevMonthText programmatically (typically, in the
Calendar.VisibleMonthChanged event handler).

Public Enum NextPrevFormat
   CustomText = 0
   ShortMonth = 1
   FullMonth = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  NextPrevFormat

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PagedDataSource NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

The PagedDataSource class wraps a System.Collections.ICollection data source to implement "paged
views" using the best available interface to enumerate over the data. This class uses indexed access if
it is available (as in classes derived from System.Array or implementing System.Collections.IList) or the
System.Collections.IEnumerable interface if indexed access is not available.

This class is used internally by the DataGrid control to provide its paging abilities. It is not used in
your code unless you develop a data bound control that supports paging.

Public NotInheritable Class PagedDataSource : Implements_
       ICollection, IEnumerable, System.ComponentModel.ITypedList
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property AllowCustomPaging As Boolean  
   Public Property AllowPaging As Boolean  
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public Property CurrentPageIndex As Integer  
   Public Property DataSource As IEnumerable  
   Public ReadOnly Property DataSourceCount As Integer  
   Public ReadOnly Property FirstIndexInPage As Integer  
   Public ReadOnly Property IsCustomPagingEnabled As Boolean  
   Public ReadOnly Property IsFirstPage As Boolean  
   Public ReadOnly Property IsLastPage As Boolean  
   Public ReadOnly Property IsPagingEnabled As Boolean  
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public ReadOnly Property PageCount As Integer  
   Public Property PageSize As Integer  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
   Public Property VirtualCount As Integer  
' Public Instance Methods
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Function GetItemProperties(
        ByVal listAccessors As System.ComponentModel.PropertyDescriptor())_
    As PropertyDescriptorCollection Implements ITypedList.GetItemProperties 
   Public Function GetListName(
        ByVal listAccessors As System.ComponentModel.PropertyDescriptor()) As String_
    Implements ITypedList.GetListName 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PagerMode Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration allows you to configure the type of pager controls used on the DataGrid control to
browse from page to page. Each "page" shows a table with a subset of the data. If you use NextPrev,
next/previous buttons will be displayed (which are typically rendered as greater-than and less-than
signs). If you use NumericPages, each page will give a number and a series of number links (starting
at 1) will be displayed that allow a user to jump to a nonsequential page. Additional pager options,
such as the text for next/previous buttons and the number of numeric pages displayed at a time, are
available through the properties of the DataGridPagerStyle class.

Public Enum PagerMode
   NextPrev = 0
   NumericPages = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  PagerMode
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PagerPosition Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the alignment of the pager controls for a DataGrid within the appropriate
cell. The pager controls are always placed in the last row after the data and footer.

Public Enum PagerPosition
   Bottom = 0
   Top = 1
   TopAndBottom = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  PagerPosition

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Panel Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a Panel control, which acts as a simple container for other web controls. A panel
is often used to group related controls, such as RadioButton controls that share the same
RadioButton.GroupName. Panels are also used to disable or hide entire groups of controls at once, by
setting the Visible or Enabled property of the containing panel. They are also useful for adding
dynamically generated controls, as in Panel1.Controls.Add(New LiteralControl("<br>")).

You can set a background image for your panel by specifying a URL for the BackImageUrl property.
You can also type text directly into a panel on the design-time surface in Visual Studio.NET. Use the
Wrap property to set whether this content is wrapped. If it is not, the Panel is automatically extended
to the required width.

Public Class Panel : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property BackImageUrl As String  
   Overridable Public Property HorizontalAlign As HorizontalAlign  
   Overridable Public Property Wrap As Boolean  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Panel

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PlaceHolder Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a "placeholder" control, which is a container used to store controls that may be
added to a page dynamically at some point in its processing. Placeholders prevent an HTML page from
"collapsing." For example, if you create a text box control and set the TextBox.Visible property to
False, no HTML will be rendered for the control. This could cause the layout of the page to change
unexpectedly, particularly with tables. Placeholders avert this problem. To add a control to a
placeholder, use System.Web.UI.WebControls.PlaceHolder.Controls.Add(). Note that placeholders, unlike
most web controls, derive directly from System.Web.UI.Control, not WebControl.

Public Class PlaceHolder : Inherits System.Web.UI.Control
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)  PlaceHolder

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

PlaceHolderControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for any PlaceHolder controls on a requested Web
Forms page. You will not need to use this class directly in application code.

Public Class PlaceHolderControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  PlaceHolderControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RadioButton Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a radio button control that allows a user to select one item from a selection of
options. Each option in a group of radio buttons is a distinct RadioButton object, but each control
shares the same GroupName. To determine whether a radio button has been selected, examine the
Checked property. If you want to use a radio button with list data, the CheckBoxList control may be
more convenient.

Public Class RadioButton : Inherits CheckBox
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property GroupName As String  
' Protected Instance Methods
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  CheckBox(System.Web.UI.IPostBackDataHandler)
RadioButton

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RadioButtonList Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a list of radio buttons that allow only a single selection. Though this class is
generated out of individual radio buttons, it acts like an integrated list. For example, ASP.NET will add
or remove items as needed when you bind this control to a data source. You can use RepeatDirection
to specify how items will be grouped together if RepeatColumns is greater than 1. For example, if you
set RepeatDirection to RepeatDirection.Vertical, and RepeatColumns to 2, the first two list items will be
displayed in the first columns, the next two will be displayed on the second column, and so on. If you
set RepeatDirection to RepeatDirection.Horizontal, your list will still have the same number of rows and
columns, but radio button items will be filled first by column, and then by row.

Individual radio buttons are automatically grouped together in an HTML table, which you can fine-tune
with the CellPadding and CellSpacing properties. Alternatively, you can set RepeatLayout to
RepeatLayout.Flow to specify that an HTML table should not be used.

Most list-specific functionality, such as determining the selected item and reacting to a
SelectedIndexChanged event, is provided by the ListControl class, from which RadioButtonList inherits.

Public Class RadioButtonList : Inherits ListControl : Implements_
       IRepeatInfoUser, System.Web.UI.INamingContainer,_ 
        System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property CellPadding As Integer  
   Overridable Public Property CellSpacing As Integer  
   Overridable Public Property RepeatColumns As Integer  
   Overridable Public Property RepeatDirection As RepeatDirection  
   Overridable Public Property RepeatLayout As RepeatLayout  
   Overridable Public Property TextAlign As TextAlign  
' Protected Instance Methods
   Overrides Protected Function CreateControlStyle() As Style  
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  ListControl  RadioButtonList(IRepeatInfoUser,
System.Web.UI.INamingContainer, System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RangeValidator Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a validation control that tests to make sure the value of the input control
(ControlToValidate) is equal to or between the MinimumValue and MaximumValue. All values will be
converted to the data type specified by CompareValidator.Type before validation is performed. Valid
data types include integer, double, date, currency, and string (which uses an alphabetic character-
code based comparison).

Validation automatically succeeds if the input control is empty. To require a value, use the
RequiredFieldValidator control in addition to the RangeValidator control.

Public Class RangeValidator : Inherits BaseCompareValidator
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property MaximumValue As String  
   Public Property MinimumValue As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function ControlPropertiesValid() As Boolean  
   Overrides Protected Function EvaluateIsValid() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label  BaseValidator(System.Web.UI.IValidator)

 BaseCompareValidator  RangeValidator
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RegularExpressionValidator Class

System.Web.UI.WebControls (system.web.dll) disposable

The RegularExpressionValidator is a type of validation control that compares an input control against a
pattern specified in the ValidationExpression. Regular expression validation is ideally suited for
verifying predictable sequences of characters, such as those in social security numbers, email
addresses, telephone numbers, and postal codes. Validation will succeed if the input control is empty,
unless you also use a RequiredFieldValidator control.

Validation is always performed on the server. If the client browser supports JavaScript, validation will
be performed there as well, which can save a roundtrip if errors are present. The regular expression
validation performed by the JavaScript code is a subset of the full
System.Text.RegularExpressions.Regex syntax.

Public Class RegularExpressionValidator : Inherits BaseValidator
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property ValidationExpression As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function EvaluateIsValid() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label  BaseValidator(System.Web.UI.IValidator)

 RegularExpressionValidator

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeatDirection Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies how items are organized in some list controls. It usually works in
conjunction with a RepeatColumns property, which sets the dimensions of the table. For example, if
you have a list with twenty elements and you set RepeatColumns to five, you automatically have four
rows, regardless of what RepeatDirection you choose.

If RepeatDirection is Vertical, items are filled into columns from left to right, and then row-by-row. If
you use Horizontal, the items are filled from top to bottom, and then column-by-column to satisfy the
required number of columns.

Public Enum RepeatDirection
   Horizontal = 0
   Vertical = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  RepeatDirection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Repeater Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a special kind of data-bound list control that can contain repeating buttons,
static text, and other controls. The Repeater control requires more work than a straightforward
DataGrid or DataList control because it contains no built-in styles or layout. Instead, you must create
templates for the Repeater using HTML and ASP.NET tags in the .aspx file. Each template is bracketed
inside the appropriate template tag (like <ItemTemplate>). You do not set the corresponding
System.Web.UI.ITemplate properties of this class directly.

Every Repeater control requires an ItemTemplate. Additionally, an AlternatingItemTemplate can be used
to allow items to alternate between two styles. These two templates will be bound when you use the
DataBind() method. The other templates, like HeaderTemplate, FooterTemplate, and SeparatorTemplate,
will not. If the DataSource property is set but no data is returned, only the HeaderTemplate and
FooterTemplate will be rendered. If the DataSource property is not set (it will be Nothing by default),
the control is not rendered at all.

The Repeater control is unique because it allows you enter any HTML content in a template, and even
split HTML tags across more than one template. To use a table in your Repeater control, you should
include the begin table tag (<table>) in the HeaderTemplate and the end table tag (</table>) in the
FooterTemplate. You can then use a single table row tag (<tr>) in the ItemTemplate and multiple table
data tags (<td>).

The Repeater has no built-in support for item selection or editing. You can include a Button control
inside an ItemTemplate, although you will have to write its tag manually, rather than using the Visual
Studio.NET designer. When the user clicks this button, a ItemCommand event will be fired. This event
provides additional information about the selected button and list item.

Public Class Repeater : Inherits System.Web.UI.Control : Implements_
        System.Web.UI.INamingContainer
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property AlternatingItemTemplate As ITemplate  
   Overrides Public ReadOnly Property Controls As ControlCollection  
   Overridable Public Property DataMember As String  
   Overridable Public Property DataSource As Object  
   Overridable Public Property FooterTemplate As ITemplate  
   Overridable Public Property HeaderTemplate As ITemplate  
   Overridable Public ReadOnly Property Items As RepeaterItemCollection  
   Overridable Public Property ItemTemplate As ITemplate  
   Overridable Public Property SeparatorTemplate As ITemplate  
' Public Instance Methods
   Overrides Public Sub DataBind() 
' Protected Instance Methods
   Overrides Protected Sub CreateChildControls() 
   Overridable Protected Sub CreateControlHierarchy(
        ByVal useDataSource As Boolean) 
   Overridable Protected Function CreateItem(
        ByVal itemIndex As Integer, 
        ByVal itemType As ListItemType) As RepeaterItem  
   Overridable Protected Sub InitializeItem(
        ByVal item As RepeaterItem) 
   Overrides Protected Function OnBubbleEvent(

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Overrides Protected Function OnBubbleEvent(
        ByVal sender As Object, 
        ByVal e As EventArgs) As Boolean  
   Overrides Protected Sub OnDataBinding(ByVal e As EventArgs) 
   Overridable Protected Sub OnItemCommand(
        ByVal e As RepeaterCommandEventArgs) 
   Overridable Protected Sub OnItemCreated(
        ByVal e As RepeaterItemEventArgs) 
   Overridable Protected Sub OnItemDataBound(
        ByVal e As RepeaterItemEventArgs) 
' Events
   Public Event ItemCommand As RepeaterCommandEventHandler  
   Public Event ItemCreated As RepeaterItemEventHandler  
   Public Event ItemDataBound As RepeaterItemEventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
Repeater(System.Web.UI.INamingContainer)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeaterCommandEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class provides additional information for the ItemCommand event of the Repeater control, which
occurs when a button in an item is clicked. This additional information consists of a Item property,
which represents the repeater item where the button is located and a CommandSource property, which
refers to the button in the item that fired this event. Before using the CommandSource property, you
will have to cast it to the appropriate type (e.g., CType(e.CommandSource,
System.Web.UI.WebControls.Button)).

It may seem that the Repeater.ItemCommand event provides more than one way to determine its
source. However, these references are not equivalent. The sender parameter indicates the Repeater
instance where the event took place, while the Item property specifies the item in the Repeater and
the CommandSource property identifies the specific button in the item.

Public NotInheritable Class RepeaterCommandEventArgs : Inherits CommandEventArgs
' Public Constructors
   Public Sub New(ByVal item As RepeaterItem, 
        ByVal commandSource As Object, 
        ByVal originalArgs As CommandEventArgs) 
' Public Instance Properties
   Public ReadOnly Property CommandSource As Object  
   Public ReadOnly Property Item As RepeaterItem  
End Class

Hierarchy

System.Object  System.EventArgs  CommandEventArgs  RepeaterCommandEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeaterCommandEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the parameters for the event handler routine that handles the ItemCommand
event of the Repeater control. This event handler receives additional information about the item that
was clicked.

Public Delegate Sub RepeaterCommandEventHandler(
        ByVal source As Object, 
        ByVal e As RepeaterCommandEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeaterItem Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents an individual item in the Repeater control. You can access a RepeaterItem
through the Repeater.Items collection or from a Repeater event.

RepeaterItem inherits most of its properties from System.Web.UI.Control. In addition, it provides a
ItemIndex that gives its index in the Repeater.Items collection, a ItemType property that identifies
what type of item this is (a header, footer, alternating row, etc.), and a DataItem property that
returns the corresponding data item (such as a System.Data.DataRowView instance).

Public Class RepeaterItem : Inherits System.Web.UI.Control : Implements_
        System.Web.UI.INamingContainer
' Public Constructors
   Public Sub New(ByVal itemIndex As Integer, 
        ByVal itemType As ListItemType) 
' Public Instance Properties
   Overridable Public Property DataItem As Object  
   Overridable Public ReadOnly Property ItemIndex As Integer  
   Overridable Public ReadOnly Property ItemType As ListItemType  
' Protected Instance Methods
   Overrides Protected Function OnBubbleEvent(
        ByVal source As Object, 
        ByVal e As EventArgs) As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
RepeaterItem(System.Web.UI.INamingContainer)

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeaterItemCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This custom collection class contains RepeaterItem objects. It is used for the Repeater.Items property
of the Repeater control.

Public NotInheritable Class RepeaterItemCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New(ByVal items As System.Collections.ArrayList) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As RepeaterItem  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeaterItemEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class provides additional information for the ItemCreated and ItemDataBound events of the
Repeater control. This additional information consists of a Item property, which represents the item
that was just added to the Repeater control or bound to the data source.

Public NotInheritable Class RepeaterItemEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal item As RepeaterItem) 
' Public Instance Properties
   Public ReadOnly Property Item As RepeaterItem  
End Class

Hierarchy

System.Object  System.EventArgs  RepeaterItemEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeaterItemEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the parameters for the event handler routine that handles the ItemCreated and
ItemDataBound events of the Repeater control. This event handler receives additional information
about the item that was just created or bound through the RepeaterItemEventArgs class.

Public Delegate Sub RepeaterItemEventHandler(
        ByVal sender As Object, 
        ByVal e As RepeaterItemEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeatInfo NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class includes information about how various list controls, including CheckBoxList, DataList, and
RadioButtonList, should repeat their items in a list. It is used primarily by control developers.

Public NotInheritable Class RepeatInfo
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property OuterTableImplied As Boolean  
   Public Property RepeatColumns As Integer  
   Public Property RepeatDirection As RepeatDirection  
   Public Property RepeatLayout As RepeatLayout  
' Public Instance Methods
   Public Sub RenderRepeater(
        ByVal writer As System.Web.UI.HtmlTextWriter, 
        ByVal user As IRepeatInfoUser, 
        ByVal controlStyle As Style, 
        ByVal baseControl As WebControl) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RepeatLayout Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the layout of items in certain list controls. Table specifies that items are
held in separate cells in a table structure, while Flow specifies that no special formatting is used.

Public Enum RepeatLayout
   Table = 0
   Flow = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  RepeatLayout
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

RequiredFieldValidator Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents a validation control that is used to force user entry in a corresponding input
control, like a TextBox. Validation fails if the value in the input control does not differ from the
InitialValue property. By default, InitialValue is set to System.String.Empty and validation will succeed
as long as some information has been added to the input control.

You can use a combination of different validation controls for a single control. For example, you could
use a RequiredFieldValidator to ensure that a value is entered and a RangeValidator to ensure that the
value is within a specified data range. This is often required, as validators like RangeValidator will
automatically validate a control if it is empty, regardless of the properties you have set.

Public Class RequiredFieldValidator : Inherits BaseValidator
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property InitialValue As String  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function EvaluateIsValid() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Label  BaseValidator(System.Web.UI.IValidator)

 RequiredFieldValidator

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

SelectedDatesCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This class represents a collection of System.DateTime objects. It is used by the SelectedDates property
of the Calendar class to provide all the dates that have been selected.

The Calendar.SelectedDates property is used when the Calendar.SelectionMode property is set to either
CalendarSelectionMode.DayWeek or CalendarSelectionMode.DayWeekMonth, both of which allow multiple
selections (by week or month). If the Calendar.SelectionMode property is set to
CalendarSelectionMode.Day, the Calendar.SelectedDate property should be used to determine the
selected date instead.

Public NotInheritable Class SelectedDatesCollection : Implements ICollection, IEnumerable
' Public Constructors
   Public Sub New(
        ByVal dateList As System.Collections.ArrayList) 
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean  
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As Date  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Sub Add(ByVal date As Date) 
   Public Sub Clear() 
   Public Function Contains(ByVal date As Date) As Boolean  
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Sub Remove(ByVal date As Date) 
   Public Sub SelectRange(ByVal fromDate As Date, 
        ByVal toDate As Date) 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServerValidateEventArgs NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This derived System.EventArgs class is used for the CustomValidator.ServerValidate event. This class
provides a Value property, which specifies the value that needs to be examined, and an IsValid
property, which the event handling code sets to indicate whether the value is valid (True) or invalid
(False).

Public NotInheritable Class ServerValidateEventArgs : Inherits EventArgs
' Public Constructors
   Public Sub New(ByVal value As String, 
        ByVal isValid As Boolean) 
' Public Instance Properties
   Public Property IsValid As Boolean  
   Public ReadOnly Property Value As String  
End Class

Hierarchy

System.Object  System.EventArgs  ServerValidateEventArgs
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ServerValidateEventHandler Delegate

System.Web.UI.WebControls (system.web.dll) serializable

This delegate specifies the signature an event handler method must receive the ServerValidate event
of the CustomValidator control. This delegate uses a special System.EventArgs object,
ServerValidateEventArgs, which passes the value that needs to be validated and allows the event
handling code to specify whether validation was successful.

Public Delegate Sub ServerValidateEventHandler(
        ByVal source As Object, 
        ByVal args As ServerValidateEventArgs) 

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Style Class

System.Web.UI.WebControls
(system.web.dll)

marshal by reference,
disposable

This class represents style attributes that can be applied to a portion of the user interface on a web
page. This class is not used by web controls or HTML controls, which allow programmatic access to
style attributes through a System.Web.UI.CssStyleCollection object provided through their own Style
property. Instead, the Style class is used as a base class for the TableStyle and TableItemStyle classes.

Public Class Style : Inherits System.ComponentModel.Component : Implements_
        System.Web.UI.IStateManager
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal bag As System.Web.UI.StateBag) 
' Public Instance Properties
   Public Property BackColor As Color  
   Public Property BorderColor As Color  
   Public Property BorderStyle As BorderStyle  
   Public Property BorderWidth As Unit  
   Public Property CssClass As String  
   Public ReadOnly Property Font As FontInfo  
   Public Property ForeColor As Color  
   Public Property Height As Unit  
   Public Property Width As Unit  
' Protected Instance Properties
   Overridable Protected Friend Property IsEmpty As Boolean  
   Protected Property IsTrackingViewState As Boolean Implements IStateManager.IsTrackingViewState 
   Protected Friend Property ViewState As StateBag  
' Public Instance Methods
   Public Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Public Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter, 
        ByVal owner As WebControl) 
   Overridable Public Sub CopyFrom(ByVal s As Style) 
   Overridable Public Sub MergeWith(ByVal s As Style) 
   Overridable Public Sub Reset() 
   Overrides Public Function ToString() As String  
' Protected Instance Methods
   Protected Friend Sub LoadViewState(
        ByVal state As Object) Implements IStateManager.LoadViewState 
   Overridable Protected Friend Function SaveViewState(
        ) As Object Implements IStateManager.SaveViewState 
   Overridable Protected Friend Sub SetBit(
        ByVal bit As Integer) 
   Overridable Protected Friend Sub TrackViewState(
        ) Implements IStateManager.TrackViewState 
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
Style(System.Web.UI.IStateManager)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Table Class

System.Web.UI.WebControls (system.web.dll) disposable

This class provides a powerful object model for creating HTML tables. It is similar to, but more
abstract than, the System.Web.UI.HtmlControls.HtmlTable class. It also allows ASP.NET to optimize
rendering for both down-level and up-level browsers. You can use it to dynamically generate an HTML
table by adding TableRow objects to the Rows collection and adding TableCell objects to each row.
Note that if you create or modify a table's structure programmatically, these changes will not be
preserved across postbacks and you will have to reconstruct them manually; table rows and cells are
controls of their own, not properties of Table.

Most other properties for the Table class correspond to formatting options, including a background
image (BackImageUrl), alignment (HorizontalAlign), gridlines (GridLines), the spacing between cells
(CellSpacing), and the spacing between cell borders and content (CellPadding).

This class is often used by control developers, while the DataGrid and DataList controls are preferred
for ASP.NET applications, particularly if data binding is required.

Public Class Table : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property BackImageUrl As String  
   Overridable Public Property CellPadding As Integer  
   Overridable Public Property CellSpacing As Integer  
   Overridable Public Property GridLines As GridLines  
   Overridable Public Property HorizontalAlign As HorizontalAlign  
   Overridable Public ReadOnly Property Rows As TableRowCollection  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Function CreateControlStyle() As Style  
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  Table

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableCell Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents individual table cells in a TableRow. The Text property allows you to access the
content stored in the cell. Most other properties are used to fine-tune its appearance. You can set
Wrap to configure whether or not the contents in a cell will wrap, and RowSpan and ColumnSpan to
specify that a cell should span the specified number of columns or rows.

Public Class TableCell : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property ColumnSpan As Integer  
   Overridable Public Property HorizontalAlign As HorizontalAlign  
   Overridable Public Property RowSpan As Integer  
   Overridable Public Property Text As String  
   Overridable Public Property VerticalAlign As VerticalAlign  
   Overridable Public Property Wrap As Boolean  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Function CreateControlStyle() As Style  
   Overrides Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  TableCell

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableCellCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This collection of TableCell and TableHeaderCell objects is used by the Cells property of the TableRow
class.

Public NotInheritable Class TableCellCollection : Implements IList, ICollection, IEnumerable
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean Implements IList.IsReadOnly 
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As TableCell  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Function Add(ByVal cell As TableCell) As Integer  
   Public Sub AddAt(ByVal index As Integer, 
        ByVal cell As TableCell) 
   Public Sub AddRange(ByVal cells As TableCell()) 
   Public Sub Clear() Implements IList.Clear 
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetCellIndex(
        ByVal cell As TableCell) As Integer  
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Sub Remove(ByVal cell As TableCell) 
   Public Sub RemoveAt(
        ByVal index As Integer) Implements IList.RemoveAt 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableCellControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for any TableCell controls on a requested Web
Forms page. You will not need to use this class directly in application code.

Public Class TableCellControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  TableCellControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableHeaderCell Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents individual table header cells in a TableRow. It derives all of its properties from
TableCell.

Public Class TableHeaderCell : Inherits TableCell
' Public Constructors
   Public Sub New() 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  TableCell  TableHeaderCell

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableItemStyle Class

System.Web.UI.WebControls
(system.web.dll)

marshal by reference,
disposable

This class encapsulates the formatting for a row in a table-based control. It is used to apply
formatting to headers, footers, and other items in the DataGrid and Calendar controls. It is not used
for the Table control.

Public Class TableItemStyle : Inherits Style
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal bag As System.Web.UI.StateBag) 
' Public Instance Properties
   Overridable Public Property HorizontalAlign As HorizontalAlign  
   Overridable Public Property VerticalAlign As VerticalAlign  
   Overridable Public Property Wrap As Boolean  
' Public Instance Methods
   Overrides Public Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter, 
        ByVal owner As WebControl) 
   Overrides Public Sub CopyFrom(ByVal s As Style) 
   Overrides Public Sub MergeWith(ByVal s As Style) 
   Overrides Public Sub Reset() 
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
Style(System.Web.UI.IStateManager)  TableItemStyle
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableRow Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents an individual row element in a Table control. Each table row contains a group of
TableCell objects, which is provided through the Cells property. Most other properties are used for
fine-tuning the appearance of a row.

Public Class TableRow : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public ReadOnly Property Cells As TableCellCollection  
   Overridable Public Property HorizontalAlign As HorizontalAlign  
   Overridable Public Property VerticalAlign As VerticalAlign  
' Protected Instance Methods
   Overrides Protected Function CreateControlCollection(
        ) As ControlCollection  
   Overrides Protected Function CreateControlStyle() As Style  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  TableRow
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableRowCollection NotInheritable Class

System.Web.UI.WebControls (system.web.dll)

This collection of TableRow objects is used by the Rows property of the Table class.

Public NotInheritable Class TableRowCollection : Implements IList, ICollection, IEnumerable
' Public Instance Properties
   Public ReadOnly Property Count As Integer Implements ICollection.Count 
   Public ReadOnly Property IsReadOnly As Boolean Implements IList.IsReadOnly 
   Public ReadOnly Property IsSynchronized As Boolean Implements ICollection.IsSynchronized 
   Public Default ReadOnly Property Item(
        ByVal index As Integer) As TableRow  
   Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot 
' Public Instance Methods
   Public Function Add(ByVal row As TableRow) As Integer  
   Public Sub AddAt(ByVal index As Integer, 
        ByVal row As TableRow) 
   Public Sub AddRange(ByVal rows As TableRow()) 
   Public Sub Clear() Implements IList.Clear 
   Public Sub CopyTo(ByVal array As Array, 
        ByVal index As Integer) Implements ICollection.CopyTo 
   Public Function GetEnumerator(
        ) As IEnumerator Implements IEnumerable.GetEnumerator 
   Public Function GetRowIndex(
        ByVal row As TableRow) As Integer  
   Public Sub Remove(ByVal row As TableRow) 
   Public Sub RemoveAt(
        ByVal index As Integer) Implements IList.RemoveAt 
End Class

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TableStyle Class

System.Web.UI.WebControls
(system.web.dll)

marshal by reference,
disposable

The TableStyle class is primarily used by control developers. It encapsulates some the formatting
options that can be applied to an HTML table. These options correspond to properties of the Table
class.

Public Class TableStyle : Inherits Style
' Public Constructors
   Public Sub New() 
   Public Sub New(ByVal bag As System.Web.UI.StateBag) 
' Public Instance Properties
   Overridable Public Property BackImageUrl As String  
   Overridable Public Property CellPadding As Integer  
   Overridable Public Property CellSpacing As Integer  
   Overridable Public Property GridLines As GridLines  
   Overridable Public Property HorizontalAlign As HorizontalAlign  
' Public Instance Methods
   Overrides Public Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter, 
        ByVal owner As WebControl) 
   Overrides Public Sub CopyFrom(ByVal s As Style) 
   Overrides Public Sub MergeWith(ByVal s As Style) 
   Overrides Public Sub Reset() 
End Class

Hierarchy

System.Object  System.MarshalByRefObject
System.ComponentModel.Component(System.ComponentModel.IComponent, System.IDisposable)
Style(System.Web.UI.IStateManager)  TableStyle
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TargetConverter Class

System.Web.UI.WebControls (system.web.dll)

The TargetConverter class is a type converter that allows conversions between an ordinary string and
the "target" string used to specify the target frame or window for a hyperlink, as in AdRotator.Target).
This conversion allows the target property to be displayed in the Property Window. This class is never
accessed directly. You can access its functionality through the System.ComponentModel.TypeDescriptor
helper class.

Public Class TargetConverter : Inherits System.ComponentModel.StringConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetStandardValues(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As StandardValuesCollection  
   Overrides Public Function GetStandardValuesExclusive(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
   Overrides Public Function GetStandardValuesSupported(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  System.ComponentModel.StringConverter
 TargetConverter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TemplateColumn Class

System.Web.UI.WebControls (system.web.dll)

This class represents a type of column that can be added to the DataGrid control. A TemplateColumn
allows you to create fully customized output in the DataGrid by using templates. These templates are
defined by using the .aspx (not the properties of this class), which is similar to the method used by
the DataList and Repeater controls. Templates allow you to combine several different fields in a single
column and add other HTML elements and ASP.NET controls.

In the TemplateColumn definition in the .aspx file, you can define up to four templates:
HeaderTemplate, ItemTemplate, EditItemTemplate, and FooterTemplate. Inside these template
definitions, you can insert data binding expressions or HTML and ASP.NET elements.

Public Class TemplateColumn : Inherits DataGridColumn
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property EditItemTemplate As ITemplate  
   Overridable Public Property FooterTemplate As ITemplate  
   Overridable Public Property HeaderTemplate As ITemplate  
   Overridable Public Property ItemTemplate As ITemplate  
' Public Instance Methods
   Overrides Public Sub InitializeCell(
        ByVal cell As TableCell, 
        ByVal columnIndex As Integer, 
        ByVal itemType As ListItemType) 
End Class

Hierarchy

System.Object  DataGridColumn(System.Web.UI.IStateManager)  TemplateColumn

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TextAlign Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used to set the CheckBox.TextAlign and RadioButton.TextAlign properties. This
value specifies whether text will be placed to the left or right of the control.

Public Enum TextAlign
   Left = 1
   Right = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  TextAlign
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TextBox Class

System.Web.UI.WebControls (system.web.dll) disposable

This class represents the text box web control and provides properties to configure text wrapping, the
maximum accepted length, and the size in fixed character widths and row-heights (Columns and
Rows). This class also includes a single event, TextChanged, which will fire only when the text box
loses focus and a post back is generated.

The text box is abstracted away from any specific HTML element. Depending on your settings,
ASP.NET will use the appropriate <input type="text">, <input type="password">, or <textarea> HTML
tag.

Public Class TextBox : Inherits WebControl : Implements System.Web.UI.IPostBackDataHandler
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Overridable Public Property AutoPostBack As Boolean  
   Overridable Public Property Columns As Integer  
   Overridable Public Property MaxLength As Integer  
   Overridable Public Property ReadOnly As Boolean  
   Overridable Public Property Rows As Integer  
   Overridable Public Property Text As String  
   Overridable Public Property TextMode As TextBoxMode  
   Overridable Public Property Wrap As Boolean  
' Protected Instance Properties
   Overrides Protected Property TagKey As HtmlTextWriterTag  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overridable Protected Sub OnTextChanged(
        ByVal e As EventArgs) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Events
   Public Event TextChanged As EventHandler  
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  TextBox(System.Web.UI.IPostBackDataHandler)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TextBoxControlBuilder Class

System.Web.UI.WebControls (system.web.dll)

The ASP.NET parser uses this class to generate HTML for any TextBox controls on a requested Web
Forms page. You will not need to use this class directly in application code.

Public Class TextBoxControlBuilder : Inherits System.Web.UI.ControlBuilder
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function AllowWhitespaceLiterals() As Boolean  
   Overrides Public Function HtmlDecodeLiterals() As Boolean  
End Class

Hierarchy

System.Object  System.Web.UI.ControlBuilder  TextBoxControlBuilder
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TextBoxMode Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used for the TextBox.TextMode property. It allows special text box styles,
including Password, where all characters will be displayed as asterisks (*) and MultiLine. MultiLine
allows text on multiple lines and will automatically wrap text as it is entered (if the TextBox.Wrap
property is True).

Public Enum TextBoxMode
   SingleLine = 0
   MultiLine = 1
   Password = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  TextBoxMode
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

TitleFormat Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the format used for the title of the Calendar control. Month displays the
month but not the year (for example, "September"). MonthYear displays both the month and year (for
example, "September 2001").

Public Enum TitleFormat
   Month = 0
   MonthYear = 1
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  TitleFormat
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Unit Structure

System.Web.UI.WebControls (system.web.dll)

This class is a simple value type used to represent a specific increment of a specific unit of
measurement. The Unit class combines a numeric Value property that quantifies the size with a Type
property that indicates what scale of measurement is being used. Several shared (static) methods are
provided to convert a value of a specific scale to a unit. For example, you can use Percentage() to
convert a percentage value to a unit that has the corresponding Type set to UnitType.Percentage.

Public Structure Unit
' Public Constructors
   Public Sub New(ByVal value As Double) 
   Public Sub New(ByVal value As Double, 
        ByVal type As UnitType) 
   Public Sub New(ByVal value As Integer) 
   Public Sub New(ByVal value As String) 
   Public Sub New(ByVal value As String, 
        ByVal culture As System.Globalization.CultureInfo) 
' Public Shared Fields
   public Shared ReadOnly Empty As Unit  
' Public Instance Properties
   Public ReadOnly Property IsEmpty As Boolean  
   Public ReadOnly Property Type As UnitType  
   Public ReadOnly Property Value As Double  
' Public Shared Methods
   Public Shared Function Parse(ByVal s As String) As Unit  
   Public Shared Function Parse(ByVal s As String, 
        ByVal culture As System.Globalization.CultureInfo) As Unit  
   Public Shared Function Percentage(
        ByVal n As Double) As Unit  
   Public Shared Function Pixel(ByVal n As Integer) As Unit  
   Public Shared Function Point(ByVal n As Integer) As Unit  
   Public Shared Boolean operator Sub !=(
        ByVal left As Unit, ByVal right As Unit) 
   Public Shared Boolean operator Sub ==(
        ByVal left As Unit, ByVal right As Unit) 
   Public Shared implicit operator Sub Unit(
        ByVal n As Integer) 
' Public Instance Methods
   Overrides Public Function Equals(
        ByVal obj As Object) As Boolean  
   Overrides Public Function GetHashCode() As Integer  
   Overrides Public Function ToString() As String  
   Public Function ToString(
        ByVal culture As System.Globalization.CultureInfo) As String  
End Structure

Hierarchy

System.Object  System.ValueType  Unit

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UnitConverter Class

System.Web.UI.WebControls (system.web.dll)

This class provides the functionality needed to convert a Unit structure to a System.Int32 value. This
class is never accessed directly. You can access its functionality through the
System.ComponentModel.TypeDescriptor helper class.

Public Class UnitConverter : Inherits System.ComponentModel.TypeConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function CanConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal sourceType As Type) As Boolean  
   Overrides Public Function ConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object) As Object  
   Overrides Public Function ConvertTo(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object, 
        ByVal destinationType As Type) As Object  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  UnitConverter
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

UnitType Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used to support different measurement units, which are used for setting various
properties in controls, including WebControl.Height, WebControl.Width, and
System.Web.UI.WebControls.WebControl.Font.Size.Unit.

A Point is a unit of measurement that represents 1/72 of an inch. A Pica is equivalent to 12 points.
The Percentage value is relative to the parent element. An Em is relative to the height of a parent
element's font (so 2 em specifies a font size that is twice as large as that of the parent). An Ex is
relative to the height of the lowercase letter "x" of the parent element's font.

Public Enum UnitType
   Pixel = 1
   Point = 2
   Pica = 3
   Inch = 4
   Mm = 5
   Cm = 6
   Percentage = 7
   Em = 8
   Ex = 9
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  UnitType
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidatedControlConverter Class

System.Web.UI.WebControls (system.web.dll)

This class is used to provide a list of validatable controls in the property browser. It allows you to set
properties like CompareValidator.ControlToValidate at design time.

Public Class ValidatedControlConverter : Inherits System.ComponentModel.StringConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function GetStandardValues(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As StandardValuesCollection  
   Overrides Public Function GetStandardValuesExclusive(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
   Overrides Public Function GetStandardValuesSupported(
        ByVal context As System.ComponentModel.ITypeDescriptorContext) As Boolean  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  System.ComponentModel.StringConverter
 ValidatedControlConverter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidationCompareOperator Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the type of comparison that will be performed by a CompareValidator
control. The CompareValidator control evaluates the expression ControlToValidate <Operator>
ControlToCompare. (You can also substitute CompareValidator.ValueToCompare instead of
CompareValidator.ControlToCompare). If the expression evaluates True, the validation result is valid.

Public Enum ValidationCompareOperator
   Equal = 0
   NotEqual = 1
   GreaterThan = 2
   GreaterThanEqual = 3
   LessThan = 4
   LessThanEqual = 5
   DataTypeCheck = 6
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ValidationCompareOperator
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidationDataType Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the data type that is used for the CompareValidator and RangeValidator
controls.

Public Enum ValidationDataType
   String = 0
   Integer = 1
   Double = 2
   Date = 3
   Currency = 4
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ValidationDataType

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidationSummary Class

System.Web.UI.WebControls (system.web.dll) disposable

The ValidationSummary control receives the error text messages from all validation controls on the
Web Forms page and presents them in a single paragraph or list. This occurs automatically on post
back, provided that the ShowSummary property is set to True. Alternatively (or in addition), you can
set the ShowMessageBox property to True to display a message box with the summary when validation
errors occur. This message box uses client-side JavaScript and will be provided only if the browser
supports it and the EnableClientScript property is set to True. You can also add a title to the summary
by using the HeaderText property.

Public Class ValidationSummary : Inherits WebControl
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property DisplayMode As ValidationSummaryDisplayMode  
   Public Property EnableClientScript As Boolean  
   Overrides Public Property ForeColor As Color  
   Public Property HeaderText As String  
   Public Property ShowMessageBox As Boolean  
   Public Property ShowSummary As Boolean  
' Protected Instance Methods
   Overrides Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Sub OnPreRender(ByVal e As EventArgs) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)  ValidationSummary
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidationSummaryDisplayMode Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration specifies the way that a ValidationSummary control will display error messages—
either as a combined SingleParagraph, as a List, or as a BulletList.

Public Enum ValidationSummaryDisplayMode
   List = 0
   BulletList = 1
   SingleParagraph = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ValidationSummaryDisplayMode

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

ValidatorDisplay Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration is used to specify how a validation control should display error messages. Static
instructs ASP.NET to reserve space on your Web Forms page for a validation control so that the page
layout won't change when an error message is displayed. Dynamic specifies that you want to
dynamically add the error message to the page. It means that several validation controls can share
the same place on the page and that the page layout may change when an error message is displayed
(unless you have enclosed the validator in an HTML element that is large enough to accommodate its
maximum size).

This enumeration does not affect the display of the error message in a ValidationSummary control.

Public Enum ValidatorDisplay
   None = 0
   Static = 1
   Dynamic = 2
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  ValidatorDisplay
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

VerticalAlign Enum

System.Web.UI.WebControls (system.web.dll) serializable

This enumeration allows you to align an object or text along the vertical axis. It is used in TableRow
and TableCell controls.

Public Enum VerticalAlign
   NotSet = 0
   Top = 1
   Middle = 2
   Bottom = 3
End Enum

Hierarchy

System.Object  System.ValueType  System.Enum(System.IComparable, System.IFormattable,
System.IConvertible)  VerticalAlign
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebColorConverter Class

System.Web.UI.WebControls (system.web.dll)

The WebColorConverter class is a type converter that allows control color properties to be converted
from one data type to another. This allows color value to be displayed in the property browser. This
class is never accessed directly; you can access its functionality through the
System.ComponentModel.TypeDescriptor helper class.

Public Class WebColorConverter : Inherits System.Drawing.ColorConverter
' Public Constructors
   Public Sub New() 
' Public Instance Methods
   Overrides Public Function ConvertFrom(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object) As Object  
   Overrides Public Function ConvertTo(
        ByVal context As System.ComponentModel.ITypeDescriptorContext, 
        ByVal culture As System.Globalization.CultureInfo, 
        ByVal value As Object, 
        ByVal destinationType As Type) As Object  
End Class

Hierarchy

System.Object  System.ComponentModel.TypeConverter  System.Drawing.ColorConverter
WebColorConverter
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

WebControl Class

System.Web.UI.WebControls (system.web.dll) disposable

This class is the base class for all web controls. The WebControl class derives much of its basic
functionality from System.Web.UI.Control, including functionality for data binding and using view state.
The WebControl class adds additional user-interface specific members for configuring the control's
appearance—including a collection of CSS attributes (Style), color options (BackColor and ForeColor), a
shortcut key (AccessKey), and various border style, font, and dimension properties. One interesting
property that is specific to web controls is CssClass, which sets the Cascading Style Sheet class
applied to the control. This is rendered as the class attribute in HTML (for example, <input type=text
class="class1" style="ForeColor:red">). Some properties, such as AccessKey, may not be supported on
down-level browsers.

All methods and the TagName, TagKey, Attributes, and Style properties are provided for developers to
use or override in custom web controls. If you want to create a server control that renders user
interface (HTML), you should extend one of the web control classes or inherit directly from WebControl
rather than the more basic System.Web.UI.Control class. You should override the RenderContents()
method, which provides a System.Web.UI.HtmlTextWriter for generating output. You do not need to
manually output style attributes (or the basic HTML tag, if you have supplied it to the base WebControl
constructor), as the WebControl class will handle these details automatically. Alternatively, you can
override Render() for more fine-grained control. You may also want to implement the interfaces
System.Web.UI.IPostBackDataHandler and System.Web.UI.IPostBackEventHandler to allow the control to
retrieve postback data and fire events on postback.

Public Class WebControl : Inherits System.Web.UI.Control : Implements_
        System.Web.UI.IAttributeAccessor
' Public Constructors
   Public Sub New(
        ByVal tag As System.Web.UI.HtmlTextWriterTag) 
' Protected Constructors
   Protected Sub New() 
   Protected Sub New(ByVal tag As String) 
' Public Instance Properties
   Overridable Public Property AccessKey As String  
   Public ReadOnly Property Attributes As AttributeCollection  
   Overridable Public Property BackColor As Color  
   Overridable Public Property BorderColor As Color  
   Overridable Public Property BorderStyle As BorderStyle  
   Overridable Public Property BorderWidth As Unit  
   Public ReadOnly Property ControlStyle As Style  
   Public ReadOnly Property ControlStyleCreated As Boolean  
   Overridable Public Property CssClass As String  
   Overridable Public Property Enabled As Boolean  
   Overridable Public ReadOnly Property Font As FontInfo  
   Overridable Public Property ForeColor As Color  
   Overridable Public Property Height As Unit  
   Public ReadOnly Property Style As CssStyleCollection  
   Overridable Public Property TabIndex As Short  
   Overridable Public Property ToolTip As String  
   Overridable Public Property Width As Unit  
' Protected Instance Properties
   Overridable Protected Property TagKey As HtmlTextWriterTag  
   Overridable Protected Property TagName As String  
' Public Instance Methods
   Public Sub ApplyStyle(ByVal s As Style) 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Public Sub ApplyStyle(ByVal s As Style) 
   Public Sub CopyBaseAttributes(
        ByVal controlSrc As WebControl) 
   Public Sub MergeStyle(ByVal s As Style) 
   Overridable Public Sub RenderBeginTag(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Public Sub RenderEndTag(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
' Protected Instance Methods
   Overridable Protected Sub AddAttributesToRender(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Protected Function CreateControlStyle(
        ) As Style  
   Overrides Protected Sub LoadViewState(
        ByVal savedState As Object) 
   Overrides Protected Sub Render(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overridable Protected Sub RenderContents(
        ByVal writer As System.Web.UI.HtmlTextWriter) 
   Overrides Protected Function SaveViewState() As Object  
   Overrides Protected Sub TrackViewState() 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)
WebControl(System.Web.UI.IAttributeAccessor)
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Xml Class

System.Web.UI.WebControls (system.web.dll) disposable

The Xml control is used to display an XML document on your Web Forms page. To specify the XML
document, set the Document property to a System.Xml.XmlDocument object, set the DocumentContent
property to a string containing XML content, or set the DocumentSource property with a string
specifying a filename. If you set more than one property, the most recent one will take effect.

Optionally, you can specify an XSL Transform document, which will format the XML document before
it is displayed. To specify an XSL Transform document, set the Transform property to a
System.Xml.Xsl.XslTransform object or set the TransformSource property with a string specifying a
filename for the XSL file.

Public Class Xml : Inherits System.Web.UI.Control
' Public Constructors
   Public Sub New() 
' Public Instance Properties
   Public Property Document As XmlDocument  
   Public Property DocumentContent As String  
   Public Property DocumentSource As String  
   Public Property Transform As XslTransform  
   Public Property TransformArgumentList As XsltArgumentList  
   Public Property TransformSource As String  
' Protected Instance Methods
   Overrides Protected Sub AddParsedSubObject(
        ByVal obj As Object) 
   Overrides Protected Sub Render(
        ByVal output As System.Web.UI.HtmlTextWriter) 
End Class

Hierarchy

System.Object  System.Web.UI.Control(System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor)  Xml
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Type, Method, Property, Event, and Field Index

Use this index to look up a type or member and see where it is defined. For a type (a class or
interface), you can find the enclosing namespace. If you know the name of a member (a method,
property, event, or field), you can find all the types that define it.
I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

A

A:

HtmlTextWriterTag

Abandon( ):

HttpSessionState

Abort( ):

WebClientAsyncResult, WebClientProtocol

AbortTransaction:

TemplateControl

AboveNormal:

CacheItemPriority

AbsBottom:

ImageAlign

AbsMiddle:

ImageAlign

AbstractSchemas:

ProtocolImporter

Accept:

HtmlInputFile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AcceptTypes:

HttpCacheVaryByHeaders, HttpRequest

Accesskey:

HtmlTextWriterAttribute

AccessKey:

WebControl

AcquireRequestState:

HttpApplication

Acronym:

HtmlTextWriterTag

Action:

SoapClientMessage, SoapDocumentMethodAttribute, SoapMessage, SoapRpcMethodAttribute,
SoapServerMessage

ActiveTemplateEditingFrame:

TemplatedControlDesigner

ActiveXControls:

HttpBrowserCapabilities

Actor:

SoapException, SoapHeader

AdCreated:

AdRotator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AdCreatedEventArgs:

System.Web.UI.WebControls

AdCreatedEventHandler:

System.Web.UI.WebControls

Add( ):

AttributeCollection, BindingCollection, Cache, ControlCollection, CssStyleCollection,
DataBindingCollection, DataGridColumnCollection, DiscoveryClientDocumentCollection,
DiscoveryClientReferenceCollection, DiscoveryClientResultCollection,
DiscoveryExceptionDictionary, DiscoveryReferenceCollection, EmptyControlCollection,
FaultBindingCollection, HtmlTableCellCollection, HtmlTableRowCollection, HttpApplicationState,
HttpCookieCollection, HttpSessionState, ImportCollection, ListItemCollection,
MessageCollection, MessagePartCollection, MimePartCollection, MimeTextMatchCollection,
OperationBindingCollection, OperationCollection, OperationFaultCollection,
OperationMessageCollection, PortCollection, PortTypeCollection, SelectedDatesCollection,
ServiceCollection, ServiceDescriptionCollection, ServiceDescriptionFormatExtensionCollection,
SoapHeaderCollection, StateBag, TableCellCollection, TableRowCollection, ValidatorCollection

AddAt( ):

ControlCollection, DataGridColumnCollection, EmptyControlCollection, TableCellCollection,
TableRowCollection

AddAttribute( ):

HtmlTextWriter

AddAttributes( ):

AttributeCollection

AddAttributesToRender( ):

BaseCompareValidator, BaseValidator, Button, CompareValidator, CustomValidator,
DropDownList, HyperLink, Image, ImageButton, LinkButton, ListBox, Panel, RangeValidator,
RegularExpressionValidator, RequiredFieldValidator, Style, Table, TableCell, TableItemStyle,
TableStyle, TextBox, ValidationSummary, WebControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AddCacheItemDependencies( ):

HttpResponse

AddCacheItemDependency( ):

HttpResponse

AddError( ):

HttpContext

AddExtensionWarningComments( ):

ProtocolImporter

AddFileDependencies( ):

HttpResponse

AddFileDependency( ):

HttpResponse

AddHeader( ):

HttpResponse

AdditionalInformation:

DiscoveryClientProtocol

AddOnAcquireRequestStateAsync( ):

HttpApplication

AddOnAuthenticateRequestAsync( ):

HttpApplication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AddOnAuthorizeRequestAsync( ):

HttpApplication

AddOnBeginRequestAsync( ):

HttpApplication

AddOnEndRequestAsync( ):

HttpApplication

AddOnPostRequestHandlerExecuteAsync( ):

HttpApplication

AddOnPreRequestHandlerExecuteAsync( ):

HttpApplication

AddOnReleaseRequestStateAsync( ):

HttpApplication

AddOnResolveRequestCacheAsync( ):

HttpApplication

AddOnUpdateRequestCacheAsync( ):

HttpApplication

AddParsedSubObject( ):

BaseDataList, Control, HtmlSelect, HtmlTextArea, HyperLink, IParserAccessor, Label,
LinkButton, Literal, TableCell, TextBox, Xml

AddRange( ):

ListItemCollection, TableCellCollection, TableRowCollection

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Address:

HtmlTextWriterTag, SoapBinding

AddServiceDescription( ):

ServiceDescriptionImporter

AddStyleAttribute( ):

HtmlTextWriter

AddToCache( ):

WebClientProtocol

AddValidationCallback( ):

HttpCachePolicy

AdProperties:

AdCreatedEventArgs

AdRotator:

System.Web.UI.WebControls

AdRotatorDesigner:

System.Web.UI.Design.WebControls

AdvertisementFile:

AdRotator

AfterDeserialize:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SoapMessageStage

AfterSerialize:

SoapMessageStage

Age:

ProcessInfo

Align:

HtmlImage, HtmlInputImage, HtmlTable, HtmlTableCell, HtmlTableRow,
HtmlTextWriterAttribute

Alive:

ProcessStatus

All:

FormsProtectionEnum

AllCaches:

HttpCacheRevalidation

AllErrors:

HttpContext

AllKeys:

HttpApplicationState, HttpCookieCollection, HttpFileCollection, HttpModuleCollection

AllowAutoRedirect:

HttpWebClientProtocol

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AllowCustomPaging:

DataGrid, PagedDataSource

AllowElements:

XmlFormatExtensionPointAttribute

AllowPaging:

DataGrid, PagedDataSource

AllowResize:

ControlDesigner, DataListDesigner, UserControlDesigner

AllowSorting:

DataGrid

AllowWhitespaceLiterals( ):

ControlBuilder, HyperLinkControlBuilder, LabelControlBuilder, LinkButtonControlBuilder,
ListItemControlBuilder, LiteralControlBuilder, PlaceHolderControlBuilder,
TableCellControlBuilder, TextBoxControlBuilder

Alt:

HtmlImage, HtmlInputImage, HtmlTextWriterAttribute

AlternateText:

AdCreatedEventArgs, Image

AlternatingItem:

ListItemType

AlternatingItemStyle:

DataGrid, DataList

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AlternatingItemTemplate:

DataList, Repeater

Any:

OutputCacheLocation

AnyReturnReader:

System.Web.Services.Protocols

AOL:

HttpBrowserCapabilities

AppDomainAppId:

HttpRuntime

AppDomainAppPath:

HttpRuntime

AppDomainAppVirtualPath:

HttpRuntime

AppDomainFactory:

System.Web.Hosting

AppDomainId:

HttpRuntime

AppendCacheExtension( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpCachePolicy

AppendCookie( ):

HttpResponse

AppendHeader( ):

HttpResponse

AppendLiteralString( ):

ControlBuilder, ObjectTagBuilder

AppendSubBuilder( ):

ControlBuilder, LiteralControlBuilder, ObjectTagBuilder

AppendToLog( ):

HttpResponse

Application:

HttpApplication, HttpContext, Page, UserControl, WebService

ApplicationHost:

System.Web.Hosting

ApplicationInstance:

HttpContext

ApplicationPath:

HttpRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ApplyAppPathModifier( ):

HttpResponse

ApplyStyle( ):

WebControl

Area:

HtmlTextWriterTag

AspCompatBeginProcessRequest( ):

Page

AspCompatEndProcessRequest( ):

Page

AspInstallDirectory:

HttpRuntime

AsUnit:

FontSize

Async:

LogicalMethodTypes

AsyncCallbackParameter:

LogicalMethodInfo

AsyncResultParameter:

LogicalMethodInfo

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AsyncState:

WebClientAsyncResult

AsyncStateParameter:

LogicalMethodInfo

AsyncWaitHandle:

WebClientAsyncResult

Attachments:

MailMessage

Attribute:

PersistenceMode, PersistenceModeAttribute

AttributeCollection:

System.Web.UI

Attributes:

HtmlControl, ListItem, UserControl, WebControl

Authenticate:

DefaultAuthenticationModule, FormsAuthenticationModule, PassportAuthenticationModule,
WindowsAuthenticationModule

Authenticate( ):

FormsAuthentication

AuthenticateRequest:

HttpApplication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AuthenticationMode:

System.Web.Configuration

AuthenticationType:

FormsIdentity, PassportIdentity

AuthorizeRequest:

HttpApplication

AuthUrl( ):

PassportIdentity

AuthUrl2( ):

PassportIdentity

AutoGenerateColumns:

DataGrid

AutoPostBack:

CheckBox, ListControl, TextBox

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

B

B:

HtmlTextWriterTag

BackColor:

Style, WebControl

Background:

HtmlTextWriterAttribute

BackgroundColor:

HtmlTextWriterStyle

BackgroundImage:

HtmlTextWriterStyle

BackgroundSounds:

HttpBrowserCapabilities

BackImageUrl:

DataGrid, Panel, Table, TableStyle

Bare:

SoapParameterStyle

Base:

HtmlTextWriterTag

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Base64:

MailEncoding

BaseCompareValidator:

System.Web.UI.WebControls

BaseDataList:

System.Web.UI.WebControls

BaseDataListComponentEditor:

System.Web.UI.Design.WebControls

BaseDataListDesigner:

System.Web.UI.Design.WebControls

Basefont:

HtmlTextWriterTag

Baseline:

ImageAlign

BaseParser:

System.Web.UI

BasePartialCachingControl:

System.Web.UI

BaseValidator:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


BaseValidatorDesigner:

System.Web.UI.Design.WebControls

Bcc:

MailMessage

Bdo:

HtmlTextWriterTag

BeforeDeserialize:

SoapMessageStage

BeforeDoneWithSession:

HttpContext

BeforeSerialize:

SoapMessageStage

BeginClass( ):

ProtocolImporter, ProtocolReflector, SoapProtocolImporter

BeginEventHandler:

System.Web

BeginInvoke( ):

AdCreatedEventHandler, BeginEventHandler, BuildMethod, BuildTemplateMethod,
CacheItemRemovedCallback, CommandEventHandler, DataGridCommandEventHandler,
DataGridItemEventHandler, DataGridPageChangedEventHandler,
DataGridSortCommandEventHandler, DataListCommandEventHandler,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataListItemEventHandler, DayRenderEventHandler, DefaultAuthenticationEventHandler,
EndEventHandler, EndOfSendNotification, FormsAuthenticationEventHandler,
HttpCacheValidateHandler, HttpSimpleClientProtocol, ImageClickEventHandler,
LogicalMethodInfo, MonthChangedEventHandler, PassportAuthenticationEventHandler,
RenderMethod, RepeaterCommandEventHandler, RepeaterItemEventHandler,
ServerValidateEventHandler, SoapHttpClientProtocol, WindowsAuthenticationEventHandler

BeginMethodInfo:

LogicalMethodInfo

BeginNamespace( ):

ProtocolImporter, SoapProtocolImporter

BeginProcessRequest( ):

IHttpAsyncHandler

BeginRequest:

HttpApplication

Behavior:

HtmlControlDesigner

BelowNormal:

CacheItemPriority

Beta:

HttpBrowserCapabilities

Bgcolor:

HtmlTextWriterAttribute

BgColor:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTable, HtmlTableCell, HtmlTableRow

Bgsound:

HtmlTextWriterTag

Big:

HtmlTextWriterTag

BinaryIssuer:

HttpClientCertificate

BinaryRead( ):

HttpRequest

BinaryWrite( ):

HttpResponse

Binding:

OperationBinding, Port, ProtocolImporter, ProtocolReflector, SoapBinding,
SoapDocumentMethodAttribute, SoapRpcMethodAttribute, System.Web.Services.Description

BindingCollection:

System.Web.Services.Description

BindingContainer:

Control

Bindings:

ServiceDescription

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


BinDirectory:

HttpRuntime

Blockquote:

HtmlTextWriterTag

Body:

HtmlTextWriterTag, MailMessage

BodyEncoding:

MailMessage

BodyFormat:

MailMessage

Bold:

FontInfo

Border:

HtmlImage, HtmlInputImage, HtmlTable, HtmlTextWriterAttribute

BorderCollapse:

HtmlTextWriterStyle

Bordercolor:

HtmlTextWriterAttribute

BorderColor:

DropDownList, HtmlTable, HtmlTableCell, HtmlTableRow, HtmlTextWriterStyle, ListBox, Style,
WebControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


BorderStyle:

DropDownList, HtmlTextWriterStyle, ListBox, Style, System.Web.UI.WebControls, WebControl

BorderWidth:

DropDownList, HtmlTextWriterStyle, ListBox, Style, WebControl

Both:

GridLines

Bottom:

ImageAlign, PagerPosition, VerticalAlign

BoundColumn:

System.Web.UI.WebControls

Br:

HtmlTextWriterTag

Browser:

HttpBrowserCapabilities, HttpRequest

Buffer:

HttpResponse

BufferOutput:

HttpResponse

BufferResponse:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


WebMethodAttribute

BuildCachedControl( ):

StaticPartialCachingControl

BuildColor( ):

ColorBuilder, IWebFormsBuilderUIService

BuilderType:

ControlBuilderAttribute

BuildMethod:

System.Web.UI

BuildProfileTree( ):

Control

BuildTemplateMethod:

System.Web.UI

BuildUrl( ):

IWebFormsBuilderUIService, UrlBuilder

BulletList:

ValidationSummaryDisplayMode

Button:

HtmlTextWriterTag, System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ButtonColumn:

System.Web.UI.WebControls

ButtonColumnType:

System.Web.UI.WebControls

ButtonDesigner:

System.Web.UI.Design.WebControls

ButtonType:

ButtonColumn, EditCommandColumn

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

C

Cache:

HttpContext, HttpResponse, HttpRuntime, Page, System.Web.Caching, UserControl

CacheControl:

HttpResponse

CachedControl:

PartialCachingControl

CacheDependency:

System.Web.Caching

CacheDuration:

WebMethodAttribute

CacheItemPriority:

System.Web.Caching

CacheItemRemovedCallback:

System.Web.Caching

CacheItemRemovedReason:

System.Web.Caching

Calendar:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CalendarAutoFormatDialog:

System.Web.UI.Design.WebControls

CalendarDataBindingHandler:

System.Web.UI.Design

CalendarDay:

System.Web.UI.WebControls

CalendarDesigner:

System.Web.UI.Design.WebControls

CalendarSelectionMode:

System.Web.UI.WebControls

CancelCommand:

DataGrid, DataList

CancelCommandName:

DataGrid, DataList

CancelText:

EditCommandColumn

CanConvert( ):

BaseCompareValidator

CanConvertFrom( ):

DataFieldConverter, DataMemberConverter, DataSourceConverter, FontNamesConverter,
FontUnitConverter, UnitConverter

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CanEnterTemplateMode:

TemplatedControlDesigner

CanRead( ):

DiscoveryDocument, ServiceDescription

CanSelectMultipleInstances( ):

ListItemsCollectionEditor, TableCellsCollectionEditor, TableRowsCollectionEditor

Capacity:

ListItemCollection

Caption:

HtmlTextWriterTag

Capture:

MatchAttribute, MimeTextMatch

CausesValidation:

Button, HtmlButton, HtmlInputButton, HtmlInputImage, ImageButton, LinkButton

Cc:

MailMessage

CDF:

HttpBrowserCapabilities

Cell:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DayRenderEventArgs

Cellpadding:

HtmlTextWriterAttribute

CellPadding:

BaseDataList, Calendar, CheckBoxList, HtmlTable, RadioButtonList, Table, TableStyle

Cells:

HtmlTableRow, TableRow

Cellspacing:

HtmlTextWriterAttribute

CellSpacing:

BaseDataList, Calendar, CheckBoxList, HtmlTable, RadioButtonList, Table, TableStyle

Center:

HorizontalAlign, HtmlTextWriterTag

CertEncoding:

HttpClientCertificate

Certificate:

HttpClientCertificate

ChainStream( ):

SoapExtension

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Changed:

CacheDependency

Charset:

HttpResponse

CheckBox:

System.Web.UI.WebControls

CheckBoxDesigner:

System.Web.UI.Design.WebControls

CheckBoxList:

System.Web.UI.WebControls

CheckControlValidationProperty( ):

BaseValidator

Checked:

CheckBox, HtmlInputCheckBox, HtmlInputRadioButton, HtmlTextWriterAttribute

CheckedChanged:

CheckBox

ChildrenAsProperties:

ParseChildrenAttribute

Cite:

HtmlTextWriterTag

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Class:

HtmlTextWriterAttribute

ClassName:

ProtocolImporter

ClassNames:

ProtocolImporter

Clear:

FormsAuthPasswordFormat

Clear( ):

AttributeCollection, ControlCollection, CssStyleCollection, DataBindingCollection,
DataGridColumnCollection, HtmlTableCellCollection, HtmlTableRowCollection,
HttpApplicationState, HttpCookieCollection, HttpResponse, HttpSessionState,
ListItemCollection, SelectedDatesCollection, StateBag, TableCellCollection, TableRowCollection

ClearChildViewState( ):

Control

ClearContent( ):

HttpResponse

ClearError( ):

HttpContext, HttpServerUtility

ClearHeaders( ):

HttpResponse

ClearSelection( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlSelect, ListControl

Click:

Button, ImageButton, LinkButton

Client:

OutputCacheLocation, ServiceDescriptionImportStyle, SoapClientMessage

ClientCertificate:

HttpRequest

ClientCertificates:

HttpWebClientProtocol

ClientFaultCode:

SoapException

ClientID:

Control

ClientProtocol:

DiscoveryReference

ClientTarget:

Page

ClientValidationFunction:

CustomValidator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Close( ):

HtmlTextWriter, HttpResponse, HttpRuntime, HttpWriter, ITemplateEditingFrame

CloseConnection( ):

HttpWorkerRequest

CloseControl( ):

ControlBuilder

ClrInstallDirectory:

HttpRuntime

ClrVersion:

HttpBrowserCapabilities

Cm:

UnitType

cmdHelp_Click( ):

RegexEditorDialog

cmdOK_Click( ):

RegexEditorDialog

cmdTestValidate_Click( ):

RegexEditorDialog

Code:

HtmlTextWriterTag, SoapException

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CodegenDir:

HttpRuntime

CodeNamespace:

ProtocolImporter

CodePage:

HttpSessionState

CodeTypeDeclaration:

ProtocolImporter

Col:

HtmlTextWriterTag

Colgroup:

HtmlTextWriterTag

Color:

HtmlTextWriterStyle

ColorBuilder:

System.Web.UI.Design

Cols:

HtmlTextArea, HtmlTextWriterAttribute

Colspan:

HtmlTextWriterAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ColSpan:

HtmlTableCell

Columns:

DataGrid, TextBox

ColumnSpan:

TableCell

Command:

Button, ImageButton, LinkButton

CommandArgument:

Button, CommandEventArgs, ImageButton, LinkButton

CommandEventArgs:

System.Web.UI.WebControls

CommandEventHandler:

System.Web.UI.WebControls

CommandName:

Button, ButtonColumn, CommandEventArgs, ImageButton, LinkButton

CommandSource:

DataGridCommandEventArgs, DataGridPageChangedEventArgs,
DataGridSortCommandEventArgs, DataListCommandEventArgs, RepeaterCommandEventArgs

CommitTransaction:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TemplateControl

Compare( ):

BaseCompareValidator

CompareValidator:

System.Web.UI.WebControls

CompiledTemplateBuilder:

System.Web.UI

CompileIntoType( ):

PageParser, TemplateParser

CompletedSynchronously:

WebClientAsyncResult

CompleteRequest( ):

HttpApplication

Compress( ):

PassportIdentity

ConcreteSchemas:

ProtocolImporter

ConnectionGroupName:

WebClientProtocol

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Construct( ):

TemplateControl

ConstructorNeedsTagAttribute:

System.Web.UI

ContainerType:

TemplateContainerAttribute

Contains( ):

BindingCollection, ControlCollection, DiscoveryClientDocumentCollection,
DiscoveryClientReferenceCollection, DiscoveryClientResultCollection,
DiscoveryExceptionDictionary, DiscoveryReferenceCollection, FaultBindingCollection,
ImportCollection, ListItemCollection, MessageCollection, MessagePartCollection,
MimePartCollection, MimeTextMatchCollection, OperationBindingCollection, OperationCollection,
OperationFaultCollection, OperationMessageCollection, PortCollection, PortTypeCollection,
SelectedDatesCollection, ServiceCollection, ServiceDescriptionCollection,
ServiceDescriptionFormatExtensionCollection, SoapHeaderCollection, ValidatorCollection

ContentEncoding:

HttpRequest, HttpResponse

ContentLength:

HttpPostedFile, HttpRequest

Contents:

HttpApplicationState, HttpSessionState

ContentType:

HttpPostedFile, HttpRequest, HttpResponse, SoapMessage

Context:

DefaultAuthenticationEventArgs, FormsAuthenticationEventArgs, HttpApplication,
PassportAuthenticationEventArgs, WebService, WindowsAuthenticationEventArgs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Contract:

ContractReference

ContractReference:

System.Web.Services.Discovery

ContractSearchPattern:

System.Web.Services.Discovery

Control:

System.Web.UI

ControlBuilder:

System.Web.UI

ControlBuilderAttribute:

System.Web.UI

ControlCollection:

System.Web.UI

ControlDesigner:

System.Web.UI.Design

ControlParser:

System.Web.UI.Design

ControlPersister:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.UI.Design

ControlPropertiesValid( ):

BaseValidator, CompareValidator, CustomValidator, RangeValidator

Controls:

BaseDataList, Control, Repeater

ControlStyle:

ITemplateEditingFrame, WebControl

ControlStyleCreated:

WebControl

ControlToCompare:

CompareValidator

ControlToValidate:

BaseValidator

ControlType:

ControlBuilder

Convert( ):

BaseCompareValidator

ConvertFrom( ):

DataFieldConverter, DataMemberConverter, DataSourceConverter, FontNamesConverter,
FontUnitConverter, UnitConverter, WebColorConverter

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ConvertTo( ):

DataBindingCollectionConverter, FontNamesConverter, FontUnitConverter, UnitConverter,
WebColorConverter

ConvertValue( ):

ObjectConverter

Cookie:

HttpClientCertificate

CookieContainer:

HttpWebClientProtocol

CookiePath:

FormsAuthenticationTicket

Cookies:

HttpBrowserCapabilities, HttpRequest, HttpResponse

CopyBaseAttributes( ):

WebControl

CopyFrom( ):

DataGridPagerStyle, FontInfo, Style, TableItemStyle, TableStyle

CopyTo( ):

BindingCollection, ControlCollection, DataBindingCollection, DataGridColumnCollection,
DataGridItemCollection, DataKeyCollection, DataListItemCollection, FaultBindingCollection,
HtmlTableCellCollection, HtmlTableRowCollection, HttpCookieCollection, HttpFileCollection,
HttpModuleCollection, HttpSessionState, HttpStaticObjectsCollection, ImportCollection,
ListItemCollection, MessageCollection, MessagePartCollection, MimePartCollection,
MimeTextMatchCollection, OperationBindingCollection, OperationCollection,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MimeTextMatchCollection, OperationBindingCollection, OperationCollection,
OperationFaultCollection, OperationMessageCollection, PagedDataSource, PortCollection,
PortTypeCollection, RepeaterItemCollection, SelectedDatesCollection, ServiceCollection,
ServiceDescriptionCollection, ServiceDescriptionFormatExtensionCollection,
SoapHeaderCollection, TableCellCollection, TableRowCollection, ValidatorCollection

Count:

AttributeCollection, Cache, ControlCollection, CssStyleCollection, DataBindingCollection,
DataGridColumnCollection, DataGridItemCollection, DataKeyCollection, DataListItemCollection,
HtmlTableCellCollection, HtmlTableRowCollection, HttpApplicationState, HttpSessionState,
HttpStaticObjectsCollection, ListItemCollection, PagedDataSource, RepeaterItemCollection,
SelectedDatesCollection, StateBag, TableCellCollection, TableRowCollection, ValidatorCollection

Crawler:

HttpBrowserCapabilities

Create( ):

AppDomainFactory, IAppDomainFactory, LogicalMethodInfo

CreateApplicationHost( ):

ApplicationHost

CreateBuilderFromType( ):

ControlBuilder

CreateChildControls( ):

BaseDataList, Control, Repeater

CreateColumnSet( ):

DataGrid

CreateComponentsCore( ):

WebControlToolboxItem

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CreateControlCollection( ):

AdRotator, Calendar, Control, DataBoundLiteralControl, DesignerDataBoundLiteralControl,
DropDownList, HtmlContainerControl, HtmlControl, HtmlSelect, HtmlTable, HtmlTableRow,
Literal, LiteralControl, Table, TableRow

CreateControlHierarchy( ):

BaseDataList, DataGrid, DataList, Repeater

CreateControlStyle( ):

CheckBoxList, DataGrid, DataList, DataListItem, RadioButtonList, Table, TableCell, TableRow,
WebControl

CreateDiscardableUndoUnit( ):

IWebFormsDocumentService

CreateDummyDataTable( ):

DesignTimeData

CreateFrame( ):

ITemplateEditingService, TemplateEditingService

CreateFromLastError( ):

HttpException

CreateHtmlTextWriter( ):

Page

CreateInstance( ):

MimeFormatter, TableCellsCollectionEditor, TableRowsCollectionEditor

CreateItem( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataGrid, DataList, Repeater

CreateObject( ):

HttpServerUtility

CreateObjectFromClsid( ):

HttpServerUtility

CreatePlaceHolderDesignTimeHtml( ):

ControlDesigner

CreateResourceBasedLiteralControl( ):

TemplateControl

CreateSampleDataTable( ):

DesignTimeData

CreateTemplateEditingFrame( ):

DataGridDesigner, DataListDesigner, TemplatedControlDesigner

Credentials:

WebClientProtocol

CryptIsValid( ):

PassportIdentity

CryptPutHost( ):

PassportIdentity

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CryptPutSite( ):

PassportIdentity

CssClass:

Style, WebControl

CssStyle:

AttributeCollection

CssStyleCollection:

System.Web.UI

Currency:

ValidationDataType

Current:

HttpContext

CurrentExecutionFilePath:

HttpRequest

CurrentPageIndex:

DataGrid, PagedDataSource

CustomAttributeProvider:

LogicalMethodInfo

CustomText:

NextPrevFormat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CustomValidator:

System.Web.UI.WebControls

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

D

Dashed:

BorderStyle

Data:

ToolboxDataAttribute

DataBind( ):

BaseDataList, Control, Repeater

DataBindControl( ):

CalendarDataBindingHandler, DataBindingHandler, HyperLinkDataBindingHandler,
ListControlDataBindingHandler, TextDataBindingHandler

DataBinder:

System.Web.UI

DataBinding:

Control, System.Web.UI

DataBindingCollection:

System.Web.UI

DataBindingCollectionConverter:

System.Web.UI.Design

DataBindingCollectionEditor:

System.Web.UI.Design

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataBindingHandler:

DesignTimeData, DesignTimeParseData, System.Web.UI.Design

DataBindingHandlerAttribute:

System.Web.UI

DataBindings:

HtmlControlDesigner, IDataBindingsAccessor

DataBindingValueUIHandler:

System.Web.UI.Design

DataBoundLiteralControl:

System.Web.UI

DataField:

BoundColumn

DataFieldConverter:

System.Web.UI.Design

DataFormatString:

BoundColumn

DataGrid:

System.Web.UI.WebControls

DataGridColumn:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataGridColumnCollection:

System.Web.UI.WebControls

DataGridColumnCollectionEditor:

System.Web.UI.Design.WebControls

DataGridCommandEventArgs:

System.Web.UI.WebControls

DataGridCommandEventHandler:

System.Web.UI.WebControls

DataGridComponentEditor:

System.Web.UI.Design.WebControls

DataGridDesigner:

System.Web.UI.Design.WebControls

DataGridItem:

System.Web.UI.WebControls

DataGridItemCollection:

System.Web.UI.WebControls

DataGridItemEventArgs:

System.Web.UI.WebControls

DataGridItemEventHandler:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.UI.WebControls

DataGridPageChangedEventArgs:

System.Web.UI.WebControls

DataGridPageChangedEventHandler:

System.Web.UI.WebControls

DataGridPagerStyle:

System.Web.UI.WebControls

DataGridSortCommandEventArgs:

System.Web.UI.WebControls

DataGridSortCommandEventHandler:

System.Web.UI.WebControls

DataItem:

DataGridItem, DataListItem, RepeaterItem

DataKeyCollection:

System.Web.UI.WebControls

DataKeyField:

BaseDataList, BaseDataListDesigner

DataKeys:

BaseDataList

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataList:

System.Web.UI.WebControls

DataListCommandEventArgs:

System.Web.UI.WebControls

DataListCommandEventHandler:

System.Web.UI.WebControls

DataListComponentEditor:

System.Web.UI.Design.WebControls

DataListDesigner:

System.Web.UI.Design.WebControls

DataListItem:

System.Web.UI.WebControls

DataListItemCollection:

System.Web.UI.WebControls

DataListItemEventArgs:

System.Web.UI.WebControls

DataListItemEventHandler:

System.Web.UI.WebControls

DataMember:

BaseDataList, BaseDataListDesigner, HtmlSelect, ListControl, ListControlDesigner, Repeater,
RepeaterDesigner

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataMemberConverter:

System.Web.UI.Design

DataNavigateUrlField:

HyperLinkColumn

DataNavigateUrlFormatString:

HyperLinkColumn

DataSetIndex:

DataGridItem

DataSource:

BaseDataList, BaseDataListDesigner, HtmlSelect, ListControl, ListControlDesigner,
PagedDataSource, Repeater, RepeaterDesigner

DataSourceConverter:

System.Web.UI.Design

DataSourceCount:

PagedDataSource

DataTextField:

ButtonColumn, HtmlSelect, HyperLinkColumn, ListControl, ListControlDesigner

DataTextFormatString:

ButtonColumn, HyperLinkColumn, ListControl

DataTypeCheck:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ValidationCompareOperator

DataValueField:

HtmlSelect, ListControl, ListControlDesigner

Date:

CalendarDay, ValidationDataType

Day:

CalendarSelectionMode, DayRenderEventArgs

DayHeaderStyle:

Calendar

DayNameFormat:

Calendar, System.Web.UI.WebControls

DayNumberText:

CalendarDay

DayRender:

Calendar

DayRenderEventArgs:

System.Web.UI.WebControls

DayRenderEventHandler:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DayStyle:

Calendar

DayWeek:

CalendarSelectionMode

DayWeekMonth:

CalendarSelectionMode

Dd:

HtmlTextWriterTag

DeadlockSuspected:

ProcessShutdownReason

DeclaringType:

LogicalMethodInfo

Decompress( ):

PassportIdentity

Decrypt( ):

FormsAuthentication, PassportIdentity

Default:

CacheItemPriority, ControlBuilderAttribute, DataBindingHandlerAttribute, FirstDayOfWeek,
ParseChildrenAttribute, PersistChildrenAttribute, PersistenceModeAttribute, SoapBindingStyle,
SoapBindingUse, SoapParameterStyle, ToolboxDataAttribute, TraceMode

DefaultAuthentication:

HttpApplication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DefaultAuthenticationEventArgs:

System.Web.Security

DefaultAuthenticationEventHandler:

System.Web.Security

DefaultAuthenticationModule:

System.Web.Security

DefaultFilename:

ContractReference, DiscoveryDocumentReference, DiscoveryReference, SchemaReference

DefaultNamespace:

ProtocolReflector, WebServiceAttribute

DefaultProperty:

ParseChildrenAttribute

DefaultTabString:

HtmlTextWriter

Del:

HtmlTextWriterTag

DeleteCommand:

DataGrid, DataList

DeleteCommandName:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataGrid, DataList

Dependency:

BasePartialCachingControl

DependencyChanged:

CacheItemRemovedReason

Description:

WebMethodAttribute, WebServiceAttribute

Deserialize( ):

LosFormatter, WebControlToolboxItem

Designer:

IHtmlControlDesignerBehavior

DesignerDataBoundLiteralControl:

System.Web.UI

DesignerHost:

DesignTimeParseData

DesignerInitialize( ):

Page, UserControl

DesignTimeData:

System.Web.UI.Design

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DesignTimeElement:

IHtmlControlDesignerBehavior

DesignTimeElementView:

IControlDesignerBehavior

DesignTimeHtml:

IControlDesignerBehavior

DesignTimeHtmlRequiresLoadComplete:

BaseDataListDesigner, ControlDesigner

DesignTimeParseData:

System.Web.UI

DesignTimeTemplateParser:

System.Web.UI

Detail:

SoapException

DetailElementName:

SoapException

DeterminePostBackMode( ):

Page

DetermineRenderUplevel( ):

BaseCompareValidator, BaseValidator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Dfn:

HtmlTextWriterTag

DidUnderstand:

SoapHeader

Dir:

HtmlTextWriterTag

Direction:

SoapHeaderAttribute

Disabled:

HtmlControl, HtmlTextWriterAttribute

DiscardUndoUnit( ):

IWebFormsDocumentService

Discover( ):

DiscoveryClientProtocol, SoapHttpClientProtocol

DiscoverAny( ):

DiscoveryClientProtocol

DiscoveryClientDocumentCollection:

System.Web.Services.Discovery

DiscoveryClientProtocol:

System.Web.Services.Discovery

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DiscoveryClientReferenceCollection:

System.Web.Services.Discovery

DiscoveryClientResult:

System.Web.Services.Discovery

DiscoveryClientResultCollection:

System.Web.Services.Discovery

DiscoveryClientResultsFile:

System.Web.Services.Discovery

DiscoveryDocument:

System.Web.Services.Discovery

DiscoveryDocumentLinksPattern:

System.Web.Services.Discovery

DiscoveryDocumentReference:

System.Web.Services.Discovery

DiscoveryDocumentSearchPattern:

System.Web.Services.Discovery

DiscoveryExceptionDictionary:

System.Web.Services.Discovery

DiscoveryReference:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.Services.Discovery

DiscoveryReferenceCollection:

System.Web.Services.Discovery

DiscoveryRequestHandler:

System.Web.Services.Discovery

DiscoverySearchPattern:

System.Web.Services.Discovery

Display:

BaseValidator

DisplayMode:

ValidationSummary

Dispose( ):

BaseDataListDesigner, BasePartialCachingControl, CacheDependency, Control,
DataGridDesigner, DataListDesigner, DefaultAuthenticationModule, FileAuthorizationModule,
FormsAuthenticationModule, HtmlControlDesigner, HttpApplication, IHttpModule,
PassportAuthenticationModule, RegexEditorDialog, RepeaterDesigner, SessionStateModule,
TemplateEditingService, TemplateEditingVerb, UrlAuthorizationModule,
WindowsAuthenticationModule, XmlDesigner

Disposed:

Control, HttpApplication

Div:

HtmlTextWriterTag

Dl:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriterTag

DocRef:

ContractReference

Document:

DiscoveryDocumentReference, SoapBindingStyle, Xml

DocumentableItem:

System.Web.Services.Description

Documentation:

DocumentableItem

DocumentContent:

Xml

Documents:

DiscoveryClientProtocol

DocumentSource:

Xml

DocumentUrl:

DesignTimeParseData, IWebFormsDocumentService

DoDelayLoadActions( ):

CalendarAutoFormatDialog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DoGCCollect( ):

IISAPIRuntime, ISAPIRuntime

Domain:

HttpCookie

Dotted:

BorderStyle

Double:

BorderStyle, ValidationDataType

DoubleQuoteChar:

HtmlTextWriter

Download( ):

DiscoveryClientProtocol

Downstream:

OutputCacheLocation

DropDownList:

System.Web.UI.WebControls

Dt:

HtmlTextWriterTag

Duration:

PartialCachingAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Dynamic:

ValidatorDisplay

DynamicDiscoveryDocument:

System.Web.Services.Discovery

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

E

EcmaScriptVersion:

HttpBrowserCapabilities

EditCommand:

DataGrid, DataList

EditCommandColumn:

System.Web.UI.WebControls

EditCommandName:

DataGrid, DataList

EditComponent( ):

BaseDataListComponentEditor

EditItem:

ListItemType

EditItemIndex:

DataGrid, DataList

EditItemStyle:

DataGrid, DataList

EditItemTemplate:

DataList, TemplateColumn

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


EditText:

EditCommandColumn

EditValue( ):

DataBindingCollectionEditor, DataGridColumnCollectionEditor, RegexTypeEditor, UrlEditor,
XmlFileEditor

Element:

MessagePart, SoapUnknownHeader

ElementName:

XmlFormatExtensionAttribute

Em:

HtmlTextWriterTag, UnitType

Embed:

HtmlTextWriterTag

Empty:

FontUnit, Unit

EmptyControlCollection:

System.Web.UI

EnableClientScript:

BaseValidator, ValidationSummary

Enabled:

BaseValidator, Image, WebControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


EnableSession:

WebMethodAttribute

EnableUndo( ):

IWebFormsDocumentService

EnableViewState:

Control, Page

Encode( ):

UrlEncodedParameterWriter

EncodeAttributeValue( ):

HtmlTextWriter

Encoded:

SoapBindingUse

EncodedInnerDefaultProperty:

PersistenceMode, PersistenceModeAttribute

EncodedMustUnderstand:

SoapHeader

EncodeUrl( ):

HtmlTextWriter

Encoding:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriter, HttpWriter, MailAttachment, SoapBodyBinding, SoapFaultBinding,
SoapHeaderBinding, SoapHeaderFaultBinding

Encrypt( ):

FormsAuthentication, PassportIdentity

Encryption:

FormsProtectionEnum

Enctype:

HtmlForm

End:

SessionStateModule

End( ):

HttpResponse

EndClass( ):

ProtocolImporter, ProtocolReflector, SoapProtocolImporter

EndEventHandler:

System.Web

EndInvoke( ):

AdCreatedEventHandler, BeginEventHandler, BuildMethod, BuildTemplateMethod,
CacheItemRemovedCallback, CommandEventHandler, DataGridCommandEventHandler,
DataGridItemEventHandler, DataGridPageChangedEventHandler,
DataGridSortCommandEventHandler, DataListCommandEventHandler,
DataListItemEventHandler, DayRenderEventHandler, DefaultAuthenticationEventHandler,
EndEventHandler, EndOfSendNotification, FormsAuthenticationEventHandler,
HttpCacheValidateHandler, HttpSimpleClientProtocol, ImageClickEventHandler,
LogicalMethodInfo, MonthChangedEventHandler, PassportAuthenticationEventHandler,
RenderMethod, RepeaterCommandEventHandler, RepeaterItemEventHandler,
ServerValidateEventHandler, SoapHttpClientProtocol, WindowsAuthenticationEventHandler

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


EndMethodInfo:

LogicalMethodInfo

EndNamespace( ):

ProtocolImporter, SoapProtocolImporter

EndOfRequest( ):

HttpWorkerRequest, SimpleWorkerRequest

EndOfSendNotification:

System.Web

EndProcessRequest( ):

IHttpAsyncHandler

EndRequest:

HttpApplication

EndTagLeftChars:

HtmlTextWriter

EnsureChildControls( ):

Control

EnsureInStage( ):

SoapClientMessage, SoapMessage, SoapServerMessage

EnsureOutStage( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SoapClientMessage, SoapMessage, SoapServerMessage

EnsureStage( ):

SoapMessage

EnterTemplateMode( ):

TemplatedControlDesigner

EnumFromString( ):

PropertyConverter

EnumToString( ):

PropertyConverter

Equal:

ValidationCompareOperator

Equals( ):

ControlBuilderAttribute, DataBinding, FontUnit, ListItem, ParseChildrenAttribute,
PersistChildrenAttribute, PersistenceModeAttribute, ToolboxDataAttribute, Unit

EqualsChar:

HtmlTextWriter

EqualsDoubleQuoteString:

HtmlTextWriter

Error:

HttpApplication, HttpContext, PassportIdentity, TemplateControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ErrorMessage:

BaseValidator, IValidator

ErrorPage:

Page

Errors:

DiscoveryClientProtocol

Eval( ):

DataBinder

EvaluateIsValid( ):

BaseValidator, CompareValidator, CustomValidator, RangeValidator,
RegularExpressionValidator, RequiredFieldValidator

Ex:

UnitType

Exception:

SoapMessage

ExcludePathInfo:

System.Web.Services.Discovery

ExcludePaths:

DynamicDiscoveryDocument

Execute( ):

HttpServerUtility

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ExitTemplateMode( ):

TemplatedControlDesigner

Expiration:

FormsAuthenticationTicket

Expired:

CacheItemRemovedReason, FormsAuthenticationTicket

Expires:

HttpCookie, HttpResponse

ExpiresAbsolute:

HttpResponse

Expression:

DataBinding

ExtensionPoints:

XmlFormatExtensionAttribute

Extensions:

Binding, FaultBinding, InputBinding, MessageBinding, MimePart, OperationBinding,
OutputBinding, Port, Service, ServiceDescription, Types

ExtensionType:

SoapExtensionAttribute

ExtractTemplateRows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DataList

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

F

FaultBinding:

System.Web.Services.Description

FaultBindingCollection:

System.Web.Services.Description

Faults:

Operation, OperationBinding

Fieldset:

HtmlTextWriterTag

FileAuthorizationModule:

System.Web.Security

Filename:

DiscoveryClientResult, MailAttachment

FileName:

HttpParseException, HttpPostedFile

FilenameFromUrl( ):

DiscoveryReference

FilePath:

HttpRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Files:

HttpRequest

Filter:

HttpRequest, HttpResponse

FilterAttributes( ):

HtmlTextWriter

Finalize( ):

PassportIdentity, TemplateEditingService, TemplateEditingVerb

Find( ):

ServiceDescriptionFormatExtensionCollection

FindAll( ):

ServiceDescriptionFormatExtensionCollection

FindByText( ):

ListItemCollection

FindByValue( ):

ListItemCollection

FindControl( ):

CheckBoxList, Control

FindPartByName( ):

Message

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


FindPartsByName( ):

Message

First:

Pair, Triplet

FirstDayOfWeek:

Calendar, System.Web.UI.WebControls

FirstIndexInPage:

PagedDataSource

FirstLetter:

DayNameFormat

FirstTwoLetters:

DayNameFormat

Flags:

HttpClientCertificate

Flow:

OperationMessageCollection, RepeatLayout

Flush( ):

HtmlTextWriter, HttpResponse, HttpWriter

FlushResponse( ):

HttpWorkerRequest, SimpleWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Font:

AdRotator, HtmlTextWriterTag, Image, Style, WebControl

FontFamily:

HtmlTextWriterStyle

FontInfo:

System.Web.UI.WebControls

FontNamesConverter:

System.Web.UI.WebControls

FontSize:

HtmlTextWriterStyle, System.Web.UI.WebControls

FontStyle:

HtmlTextWriterStyle

FontUnit:

System.Web.UI.WebControls

FontUnitConverter:

System.Web.UI.WebControls

FontWeight:

HtmlTextWriterStyle

Footer:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ListItemType

FooterStyle:

DataGrid, DataGridColumn, DataList

FooterTemplate:

DataList, Repeater, TemplateColumn

FooterText:

DataGridColumn

For:

HtmlTextWriterAttribute

ForeColor:

BaseValidator, Style, ValidationSummary, WebControl

Form:

HtmlTextWriterTag, HttpRequest

FormatDataNavigateUrlValue( ):

HyperLinkColumn

FormatDataTextValue( ):

ButtonColumn, HyperLinkColumn

FormatDataValue( ):

BoundColumn

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Forms:

AuthenticationMode

FormsAuthentication:

System.Web.Security

FormsAuthenticationEventArgs:

System.Web.Security

FormsAuthenticationEventHandler:

System.Web.Security

FormsAuthenticationModule:

System.Web.Security

FormsAuthenticationTicket:

System.Web.Security

FormsAuthPasswordFormat:

System.Web.Configuration

FormsCookieName:

FormsAuthentication

FormsCookiePath:

FormsAuthentication

FormsIdentity:

System.Web.Security

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


FormsProtectionEnum:

System.Web.Configuration

Frame:

HtmlTextWriterTag

Frames:

HttpBrowserCapabilities

Frameset:

HtmlTextWriterTag

FrameworkInitialize( ):

TemplateControl

Friday:

FirstDayOfWeek

From:

MailMessage

FromString( ):

ListItem

Full:

DayNameFormat

FullMonth:

NextPrevFormat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

G

GenerateMethod( ):

ProtocolImporter, SoapProtocolImporter

Get( ):

Cache, HttpApplicationState, HttpClientCertificate, HttpCookieCollection, HttpFileCollection,
HttpModuleCollection

GetAppConfig( ):

HttpContext

GetAppPath( ):

HttpWorkerRequest, SimpleWorkerRequest

GetAppPathTranslated( ):

HttpWorkerRequest, SimpleWorkerRequest

GetAppPoolID( ):

HttpWorkerRequest

GetAttribute( ):

IAttributeAccessor, IHtmlControlDesignerBehavior

GetAttributeKey( ):

HtmlTextWriter

GetAttributeName( ):

HtmlTextWriter

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetAuthCookie( ):

FormsAuthentication

GetBinding( ):

ServiceDescriptionCollection

GetBytesRead( ):

HttpWorkerRequest

GetCachedTemplateEditingVerbs( ):

DataGridDesigner, DataListDesigner, TemplatedControlDesigner

GetCellIndex( ):

TableCellCollection

GetChildControlType( ):

ControlBuilder, RootBuilder

GetClientCertificate( ):

HttpWorkerRequest

GetClientCertificateBinaryIssuer( ):

HttpWorkerRequest

GetClientCertificateEncoding( ):

HttpWorkerRequest

GetClientCertificatePublicKey( ):

HttpWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetClientCertificateValidFrom( ):

HttpWorkerRequest

GetClientCertificateValidUntil( ):

HttpWorkerRequest

GetCompiledPageInstance( ):

PageParser

GetCompiledType( ):

WebServiceParser

GetCompiledTypeFromCache( ):

SimpleWebHandlerParser

GetComponentEditorPages( ):

DataGridComponentEditor, DataListComponentEditor

GetConfig( ):

HttpContext

GetConfigCapabilities( ):

HttpCapabilitiesBase

GetConnectionID( ):

HttpWorkerRequest

GetContainingTemplateName( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ITemplateEditingService, TemplateEditingService

GetControlRenderID( ):

BaseValidator

GetControlValidationValue( ):

BaseValidator

GetCurrentConfig( ):

PassportIdentity

GetCurrentProcessInfo( ):

ProcessModelInfo

GetCustomAttribute( ):

LogicalMethodInfo

GetCustomAttributes( ):

LogicalMethodInfo

GetDataFields( ):

DesignTimeData

GetDataMember( ):

DesignTimeData

GetDataMembers( ):

DesignTimeData

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetDateElementOrder( ):

BaseCompareValidator

GetDesignTimeDataSource( ):

BaseDataListDesigner, DesignTimeData, RepeaterDesigner

GetDesignTimeHtml( ):

AdRotatorDesigner, BaseValidatorDesigner, ButtonDesigner, CheckBoxDesigner,
ControlDesigner, DataGridDesigner, DataListDesigner, HyperLinkDesigner, ListControlDesigner,
RepeaterDesigner, TableDesigner, TextControlDesigner, UserControlDesigner, XmlDesigner

GetDiscoveryReference( ):

ContractSearchPattern, DiscoveryDocumentLinksPattern, DiscoveryDocumentSearchPattern,
DiscoverySearchPattern, XmlSchemaSearchPattern

GetDomainAttribute( ):

PassportIdentity

GetDomainFromMemberName( ):

PassportIdentity

GetEditStyle( ):

DataBindingCollectionEditor, DataGridColumnCollectionEditor, RegexTypeEditor, UrlEditor,
XmlFileEditor

GetEmptyDesignTimeHtml( ):

ControlDesigner, DataGridDesigner, DataListDesigner, RepeaterDesigner, XmlDesigner

GetEnumerator( ):

Cache, ControlCollection, DataBindingCollection, DataGridColumnCollection,
DataGridItemCollection, DataKeyCollection, DataListItemCollection, HtmlTableCellCollection,
HtmlTableRowCollection, HttpSessionState, HttpStaticObjectsCollection, ListItemCollection,
PagedDataSource, RepeaterItemCollection, SelectedDatesCollection, StateBag,
TableCellCollection, TableRowCollection, ValidatorCollection

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetErrorDesignTimeHtml( ):

ControlDesigner, DataGridDesigner, DataListDesigner, RepeaterDesigner

GetFilePath( ):

HttpWorkerRequest, SimpleWorkerRequest

GetFilePathTranslated( ):

HttpWorkerRequest, SimpleWorkerRequest

GetFromCache( ):

WebClientProtocol

GetFromNetworkServer:

PassportIdentity

GetFullYear( ):

BaseCompareValidator

GetHandler( ):

IHttpHandlerFactory, WebServiceHandlerFactory

GetHashCode( ):

ControlBuilderAttribute, DataBinding, FontUnit, ListItem, ParseChildrenAttribute,
PersistChildrenAttribute, PersistenceModeAttribute, ToolboxDataAttribute, Unit

GetHistory( ):

ProcessModelInfo

GetHtmlErrorMessage( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpException

GetHttpCode( ):

HttpException

GetHttpVerbName( ):

HttpWorkerRequest, SimpleWorkerRequest

GetHttpVersion( ):

HttpWorkerRequest, SimpleWorkerRequest

GetIndexedPropertyValue( ):

DataBinder

GetInitialComponentEditorPageIndex( ):

BaseDataListComponentEditor

GetInitializer( ):

AnyReturnReader, MimeFormatter, NopReturnReader, SoapExtension, TextReturnReader,
UrlEncodedParameterWriter, ValueCollectionParameterReader, XmlReturnReader

GetInitializers( ):

MimeFormatter, XmlReturnReader

GetInParameterValue( ):

SoapMessage

GetIsAuthenticated( ):

PassportIdentity

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetItemProperties( ):

PagedDataSource

GetItemStyle( ):

IRepeatInfoUser

GetKey( ):

BindingCollection, FaultBindingCollection, HttpApplicationState, HttpCookieCollection,
HttpFileCollection, HttpModuleCollection, MessageCollection, MessagePartCollection,
OperationFaultCollection, PortCollection, PortTypeCollection, ServiceCollection,
ServiceDescriptionBaseCollection, ServiceDescriptionCollection

GetKnownRequestHeader( ):

HttpWorkerRequest

GetKnownRequestHeaderIndex( ):

HttpWorkerRequest

GetKnownRequestHeaderName( ):

HttpWorkerRequest

GetKnownResponseHeaderIndex( ):

HttpWorkerRequest

GetKnownResponseHeaderName( ):

HttpWorkerRequest

GetLastError( ):

HttpServerUtility

GetListName( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PagedDataSource

GetLocalAddress( ):

HttpWorkerRequest, SimpleWorkerRequest

GetLocalPort( ):

HttpWorkerRequest, SimpleWorkerRequest

GetLoginChallenge( ):

PassportIdentity

GetMessage( ):

ServiceDescriptionCollection

GetObject( ):

HttpStaticObjectsCollection

GetObjectType( ):

IWebFormReferenceManager

GetOption( ):

PassportIdentity

GetOutParameterValue( ):

SoapMessage

GetPathInfo( ):

HttpWorkerRequest, SimpleWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetPersistInnerHtml( ):

ControlDesigner, TableDesigner, TemplatedControlDesigner, TextControlDesigner,
UserControlDesigner

GetPortType( ):

ServiceDescriptionCollection

GetPostBackClientEvent( ):

Page

GetPostBackClientHyperlink( ):

Page

GetPostBackEventReference( ):

Page

GetPreloadedEntityBody( ):

HttpWorkerRequest

GetProfileObject( ):

PassportIdentity

GetPropertyValue( ):

DataBinder

GetProtocol( ):

HttpWorkerRequest

GetQueryString( ):

HttpWorkerRequest, SimpleWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetQueryStringRawBytes( ):

HttpWorkerRequest

GetRawUrl( ):

HttpWorkerRequest, SimpleWorkerRequest

GetRedirectUrl( ):

FormsAuthentication

GetRegisterDirectives( ):

IWebFormReferenceManager

GetRemoteAddress( ):

HttpWorkerRequest, SimpleWorkerRequest

GetRemoteName( ):

HttpWorkerRequest

GetRemotePort( ):

HttpWorkerRequest, SimpleWorkerRequest

GetRequestReason( ):

HttpWorkerRequest

GetRequestUrl( ):

MimeParameterWriter, UrlParameterWriter

GetResolvedSelectedDataSource( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


BaseDataListDesigner, IDataSourceProvider, ListControlDesigner, RepeaterDesigner

GetReturnValue( ):

SoapMessage

GetRowIndex( ):

TableRowCollection

GetSelectedDataSource( ):

BaseDataListDesigner, DesignTimeData, IDataSourceProvider, ListControlDesigner,
RepeaterDesigner

GetServerName( ):

HttpWorkerRequest

GetServerVariable( ):

HttpWorkerRequest, SimpleWorkerRequest

GetService( ):

ServiceDescriptionCollection

GetServiceDescription( ):

ProtocolReflector

GetStandardValues( ):

DataFieldConverter, DataMemberConverter, DataSourceConverter, FontUnitConverter,
TargetConverter, ValidatedControlConverter

GetStandardValuesExclusive( ):

DataFieldConverter, DataMemberConverter, DataSourceConverter, FontUnitConverter,
TargetConverter, ValidatedControlConverter

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetStandardValuesSupported( ):

DataFieldConverter, DataMemberConverter, DataSourceConverter, FontUnitConverter,
TargetConverter, ValidatedControlConverter

GetStatusDescription( ):

HttpWorkerRequest

GetStyleAttribute( ):

IHtmlControlDesignerBehavior

GetStyleKey( ):

HtmlTextWriter

GetStyleName( ):

HtmlTextWriter

GetTagKey( ):

HtmlTextWriter

GetTagName( ):

Html32TextWriter, HtmlTextWriter

GetTagPrefix( ):

IWebFormReferenceManager

GetTemplateContainerDataItemProperty( ):

DataGridDesigner, DataListDesigner, TemplatedControlDesigner

GetTemplateContainerDataSource( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


BaseDataListDesigner, TemplatedControlDesigner

GetTemplateContent( ):

DataGridDesigner, DataListDesigner, TemplatedControlDesigner

GetTemplateEditingVerbs( ):

TemplatedControlDesigner

GetTemplateFromText( ):

TemplatedControlDesigner

GetTemplatePropertyParentType( ):

DataGridDesigner, TemplatedControlDesigner

GetTextFromTemplate( ):

TemplatedControlDesigner

GetToolAttributeValue( ):

WebControlToolboxItem

GetToolHtml( ):

WebControlToolboxItem

GetToolType( ):

WebControlToolboxItem

GetTypeHashCode( ):

Page

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GetUnknownRequestHeader( ):

HttpWorkerRequest

GetUnknownRequestHeaders( ):

HttpWorkerRequest

GetUriPath( ):

HttpWorkerRequest, SimpleWorkerRequest

GetUrlContextID( ):

HttpWorkerRequest

GetUserToken( ):

HttpWorkerRequest, SimpleWorkerRequest

GetValidationProperty( ):

BaseValidator

GetVaryByCustomString( ):

HttpApplication

GetVirtualPathToken( ):

HttpWorkerRequest

GetWebRequest( ):

HttpGetClientProtocol, HttpPostClientProtocol, HttpWebClientProtocol, SoapHttpClientProtocol,
WebClientProtocol

GetWebResponse( ):

HttpWebClientProtocol, WebClientProtocol

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


GreaterThan:

ValidationCompareOperator

GreaterThanEqual:

ValidationCompareOperator

GridLines:

BaseDataList, DataList, System.Web.UI.WebControls, Table, TableStyle

Groove:

BorderStyle

Group:

MatchAttribute, MimeTextMatch

GroupName:

RadioButton

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

H

H1:

HtmlTextWriterTag

H2:

HtmlTextWriterTag

H3:

HtmlTextWriterTag

H4:

HtmlTextWriterTag

H5:

HtmlTextWriterTag

H6:

HtmlTextWriterTag

Handled:

ServiceDescriptionFormatExtension

Handler:

HttpContext

HandlerTypeName:

DataBindingHandlerAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HasAspCode:

ControlBuilder

HasBody( ):

ControlBuilder

HasChanged:

CacheDependency

HasControls( ):

Control

HasDataBindings:

IDataBindingsAccessor

HasEntityBody( ):

HttpWorkerRequest

HasFlag( ):

PassportIdentity

HasFooter:

IRepeatInfoUser

HasHeader:

IRepeatInfoUser

HashPasswordForStoringInConfigFile( ):

FormsAuthentication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HasKeys:

HttpCookie

HasProfile( ):

PassportIdentity

HasSavedPassword:

PassportIdentity

HasSeparators:

IRepeatInfoUser

HasTicket:

PassportIdentity

HasWeekSelectors( ):

Calendar

HaveConsent( ):

PassportIdentity

Head:

HtmlTextWriterTag

Header:

ListItemType

HeaderAccept:

HttpWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HeaderAcceptCharset:

HttpWorkerRequest

HeaderAcceptEncoding:

HttpWorkerRequest

HeaderAcceptLanguage:

HttpWorkerRequest

HeaderAcceptRanges:

HttpWorkerRequest

HeaderAge:

HttpWorkerRequest

HeaderAllow:

HttpWorkerRequest

HeaderAuthorization:

HttpWorkerRequest

HeaderCacheControl:

HttpWorkerRequest

HeaderConnection:

HttpWorkerRequest

HeaderContentEncoding:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpWorkerRequest

HeaderContentLanguage:

HttpWorkerRequest

HeaderContentLength:

HttpWorkerRequest

HeaderContentLocation:

HttpWorkerRequest

HeaderContentMd5:

HttpWorkerRequest

HeaderContentRange:

HttpWorkerRequest

HeaderContentType:

HttpWorkerRequest

HeaderCookie:

HttpWorkerRequest

HeaderDate:

HttpWorkerRequest

HeaderEtag:

HttpWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HeaderExpect:

HttpWorkerRequest

HeaderExpires:

HttpWorkerRequest

HeaderFrom:

HttpWorkerRequest

HeaderHost:

HttpWorkerRequest

HeaderIfMatch:

HttpWorkerRequest

HeaderIfModifiedSince:

HttpWorkerRequest

HeaderIfNoneMatch:

HttpWorkerRequest

HeaderIfRange:

HttpWorkerRequest

HeaderIfUnmodifiedSince:

HttpWorkerRequest

HeaderImageUrl:

DataGridColumn

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HeaderKeepAlive:

HttpWorkerRequest

HeaderLastModified:

HttpWorkerRequest

HeaderLocation:

HttpWorkerRequest

HeaderMaxForwards:

HttpWorkerRequest

HeaderMessages:

ProtocolReflector

HeaderPragma:

HttpWorkerRequest

HeaderProxyAuthenticate:

HttpWorkerRequest

HeaderProxyAuthorization:

HttpWorkerRequest

HeaderRange:

HttpWorkerRequest

HeaderReferer:

HttpWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HeaderRetryAfter:

HttpWorkerRequest

Headers:

HttpRequest, MailMessage, SoapMessage

HeaderServer:

HttpWorkerRequest

HeaderSetCookie:

HttpWorkerRequest

HeadersSent( ):

HttpWorkerRequest

HeaderStyle:

DataGrid, DataGridColumn, DataList

HeaderTe:

HttpWorkerRequest

HeaderTemplate:

DataList, Repeater, TemplateColumn

HeaderText:

DataGridColumn, ValidationSummary

HeaderTrailer:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpWorkerRequest

HeaderTransferEncoding:

HttpWorkerRequest

HeaderUpgrade:

HttpWorkerRequest

HeaderUserAgent:

HttpWorkerRequest

HeaderVary:

HttpWorkerRequest

HeaderVia:

HttpWorkerRequest

HeaderWarning:

HttpWorkerRequest

HeaderWwwAuthenticate:

HttpWorkerRequest

Height:

HtmlImage, HtmlTable, HtmlTableCell, HtmlTableRow, HtmlTextWriterAttribute,
HtmlTextWriterStyle, Style, WebControl

HexPUID:

PassportIdentity

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


High:

CacheItemPriority, MailPriority

Horizontal:

GridLines, RepeatDirection

HorizontalAlign:

BaseDataList, Panel, System.Web.UI.WebControls, Table, TableCell, TableItemStyle, TableRow,
TableStyle

Hr:

HtmlTextWriterTag

Href:

HtmlTextWriterAttribute

HRef:

HtmlAnchor

Html:

HtmlTextWriterTag, MailFormat

Html32TextWriter:

System.Web.UI

HtmlAnchor:

System.Web.UI.HtmlControls

HtmlAttributeEncode( ):

HttpUtility

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlButton:

System.Web.UI.HtmlControls

HtmlContainerControl:

System.Web.UI.HtmlControls

HtmlControl:

System.Web.UI.HtmlControls

HtmlControlDesigner:

System.Web.UI.Design

HtmlDecode( ):

HttpServerUtility, HttpUtility

HtmlDecodeLiterals( ):

ControlBuilder, ListItemControlBuilder, TextBoxControlBuilder

HtmlEncode( ):

HttpServerUtility, HttpUtility

HtmlForm:

System.Web.UI.HtmlControls

HtmlFormParameterReader:

System.Web.Services.Protocols

HtmlFormParameterWriter:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.Services.Protocols

HtmlGenericControl:

System.Web.UI.HtmlControls

HtmlImage:

System.Web.UI.HtmlControls

HtmlInputButton:

System.Web.UI.HtmlControls

HtmlInputCheckBox:

System.Web.UI.HtmlControls

HtmlInputControl:

System.Web.UI.HtmlControls

HtmlInputFile:

System.Web.UI.HtmlControls

HtmlInputHidden:

System.Web.UI.HtmlControls

HtmlInputImage:

System.Web.UI.HtmlControls

HtmlInputRadioButton:

System.Web.UI.HtmlControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlInputText:

System.Web.UI.HtmlControls

HtmlIntrinsicControlDesigner:

System.Web.UI.Design

HtmlSelect:

System.Web.UI.HtmlControls

HtmlTable:

System.Web.UI.HtmlControls

HtmlTableCell:

System.Web.UI.HtmlControls

HtmlTableCellCollection:

System.Web.UI.HtmlControls

HtmlTableRow:

System.Web.UI.HtmlControls

HtmlTableRowCollection:

System.Web.UI.HtmlControls

HtmlTextArea:

System.Web.UI.HtmlControls

HtmlTextWriter:

System.Web.UI

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriterAttribute:

System.Web.UI

HtmlTextWriterStyle:

System.Web.UI

HtmlTextWriterTag:

System.Web.UI

HttpAddressBinding:

System.Web.Services.Description

HttpApplication:

System.Web

HttpApplicationState:

System.Web

HttpBinding:

System.Web.Services.Description

HttpBrowserCapabilities:

System.Web

HttpCacheability:

System.Web

HttpCachePolicy:

System.Web

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpCacheRevalidation:

System.Web

HttpCacheValidateHandler:

System.Web

HttpCacheVaryByHeaders:

System.Web

HttpCacheVaryByParams:

System.Web

HttpCapabilitiesBase:

System.Web.Configuration

HttpClientCertificate:

System.Web

HttpCompileException:

System.Web

HttpConfigurationContext:

System.Web.Configuration

HttpContext:

System.Web

HttpCookie:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web

HttpCookieCollection:

System.Web

HttpException:

System.Web

HttpFileCollection:

System.Web

HttpGetClientProtocol:

System.Web.Services.Protocols

HttpMethod:

HttpRequest

HttpMethodAttribute:

System.Web.Services.Protocols

HttpModuleCollection:

System.Web

HttpOperationBinding:

System.Web.Services.Description

HttpParseException:

System.Web

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpPostClientProtocol:

System.Web.Services.Protocols

HttpPostedFile:

System.Web

HttpRequest:

System.Web

HttpResponse:

System.Web

HttpRuntime:

System.Web

HttpServerUtility:

System.Web

HttpSessionState:

System.Web.SessionState

HttpSimpleClientProtocol:

System.Web.Services.Protocols

HttpStaticObjectsCollection:

System.Web

HttpTransport:

SoapBinding

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpUnhandledException:

System.Web

HttpUrlEncodedBinding:

System.Web.Services.Description

HttpUrlReplacementBinding:

System.Web.Services.Description

HttpUtility:

System.Web

HttpValidationStatus:

System.Web

HttpWebClientProtocol:

System.Web.Services.Protocols

HttpWorkerRequest:

System.Web

HttpWriter:

System.Web

HyperLink:

System.Web.UI.WebControls

HyperLinkColumn:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HyperLinkControlBuilder:

System.Web.UI.WebControls

HyperLinkDataBindingHandler:

System.Web.UI.Design

HyperLinkDesigner:

System.Web.UI.Design.WebControls

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

I

I:

HtmlTextWriterTag

IAppDomainFactory:

System.Web.Hosting

IAttributeAccessor:

System.Web.UI

IControlDesignerBehavior:

System.Web.UI.Design

Id:

HtmlTextWriterAttribute

ID:

Control, ControlBuilder, ControlDesigner, Page

IDataBindingsAccessor:

System.Web.UI

IDataSourceProvider:

System.Web.UI.Design

Identity:

PassportAuthenticationEventArgs, WindowsAuthenticationEventArgs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IdleTimeout:

ProcessShutdownReason

Iframe:

HtmlTextWriterTag

IgnoreCase:

MatchAttribute, MimeTextMatch

IgnoreParams:

HttpCacheVaryByParams

IgnoreThisRequest:

HttpValidationStatus

IHtmlControlDesignerBehavior:

System.Web.UI.Design

IHttpAsyncHandler:

System.Web

IHttpHandler:

System.Web

IHttpHandlerFactory:

System.Web

IHttpModule:

System.Web

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IISAPIRuntime:

System.Web.Hosting

Image:

System.Web.UI.WebControls

ImageAlign:

Image, System.Web.UI.WebControls

ImageButton:

System.Web.UI.WebControls

ImageClickEventArgs:

System.Web.UI

ImageClickEventHandler:

System.Web.UI

ImageUrl:

AdCreatedEventArgs, HyperLink, Image

ImageUrlEditor:

System.Web.UI.Design

Img:

HtmlTextWriterTag

Import:

System.Web.Services.Description

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Import( ):

ServiceDescriptionImporter

ImportClass( ):

SoapTransportImporter

ImportCollection:

System.Web.Services.Description

ImportContext:

SoapExtensionImporter, SoapTransportImporter

ImportMethod( ):

SoapExtensionImporter

Imports:

ServiceDescription

In:

SoapHeaderDirection

INamingContainer:

System.Web.UI

Inch:

UnitType

Indent:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriter

Index:

TemplateEditingVerb

IndexOf( ):

BindingCollection, ControlCollection, DataGridColumnCollection, FaultBindingCollection,
ImportCollection, ListItemCollection, MessageCollection, MessagePartCollection,
MimePartCollection, MimeTextMatchCollection, OperationBindingCollection, OperationCollection,
OperationFaultCollection, OperationMessageCollection, PortCollection, PortTypeCollection,
ServiceCollection, ServiceDescriptionCollection, ServiceDescriptionFormatExtensionCollection,
SoapHeaderCollection

Init:

Control

Init( ):

ControlBuilder, DefaultAuthenticationModule, FileAuthorizationModule,
FormsAuthenticationModule, HttpApplication, HttpCapabilitiesBase, IHttpModule,
ObjectTagBuilder, PassportAuthenticationModule, SessionStateModule, TemplateBuilder,
UrlAuthorizationModule, WindowsAuthenticationModule

InitialHeight:

ITemplateEditingFrame

Initialize( ):

AnyReturnReader, BaseDataListDesigner, BoundColumn, ButtonColumn, CalendarDesigner,
ControlDesigner, DataGridColumn, DataGridDesigner, DataListDesigner, FormsAuthentication,
HyperLinkColumn, ListControlDesigner, MimeFormatter, NopReturnReader, RepeaterDesigner,
SoapExtension, TextControlDesigner, TextReturnReader, UrlEncodedParameterWriter,
ValueCollectionParameterReader, WebControlToolboxItem, XmlDesigner, XmlReturnReader

InitializeAsUserControl( ):

UserControl

InitializeCell( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


InitializeCell( ):

BoundColumn, ButtonColumn, DataGridColumn, EditCommandColumn, HyperLinkColumn,
TemplateColumn

InitializeItem( ):

DataGrid, DataList, Repeater

InitializePager( ):

DataGrid

InitializeRequest( ):

HtmlFormParameterWriter, MimeParameterWriter

InitialValue:

RequiredFieldValidator

InitialWidth:

ITemplateEditingFrame

InitOutputCache( ):

Page

InnerDefaultProperty:

PersistenceMode, PersistenceModeAttribute

InnerHtml:

HtmlContainerControl, HtmlSelect, HtmlTable, HtmlTableRow

InnerProperty:

PersistenceMode, PersistenceModeAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


InnerText:

HtmlContainerControl, HtmlSelect, HtmlTable, HtmlTableRow, IUserControlDesignerAccessor

InnerWriter:

HtmlTextWriter

InOut:

SoapHeaderDirection

InParameters:

LogicalMethodInfo

InProc:

SessionStateMode

Input:

HtmlTextWriterTag, OperationBinding, OperationMessageCollection

InputBinding:

System.Web.Services.Description

InputMessage:

ProtocolImporter, ProtocolReflector

InputStream:

HttpPostedFile, HttpRequest

Ins:

HtmlTextWriterTag

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Insert( ):

BindingCollection, Cache, FaultBindingCollection, HtmlTableCellCollection,
HtmlTableRowCollection, ImportCollection, ListItemCollection, MessageCollection,
MessagePartCollection, MimePartCollection, MimeTextMatchCollection,
OperationBindingCollection, OperationCollection, OperationFaultCollection,
OperationMessageCollection, PortCollection, PortTypeCollection, ServiceCollection,
ServiceDescriptionCollection, ServiceDescriptionFormatExtensionCollection,
SoapHeaderCollection

Inset:

BorderStyle

InstantiateIn( ):

CompiledTemplateBuilder, ITemplate, TemplateBuilder

Integer:

ValidationDataType

InTemplateMode:

TemplatedControlDesigner

Invalid:

HttpValidationStatus

Invoke( ):

AdCreatedEventHandler, BeginEventHandler, BuildMethod, BuildTemplateMethod,
CacheItemRemovedCallback, CommandEventHandler, DataGridCommandEventHandler,
DataGridItemEventHandler, DataGridPageChangedEventHandler,
DataGridSortCommandEventHandler, DataListCommandEventHandler,
DataListItemEventHandler, DayRenderEventHandler, DefaultAuthenticationEventHandler,
EndEventHandler, EndOfSendNotification, FormsAuthenticationEventHandler,
HttpCacheValidateHandler, HttpSimpleClientProtocol, ImageClickEventHandler,
LogicalMethodInfo, MonthChangedEventHandler, PassportAuthenticationEventHandler,
RenderMethod, RepeaterCommandEventHandler, RepeaterItemEventHandler,
ServerValidateEventHandler, SoapHttpClientProtocol, WindowsAuthenticationEventHandler

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IParserAccessor:

System.Web.UI

IPostBackDataHandler:

System.Web.UI

IPostBackEventHandler:

System.Web.UI

IReadOnlySessionState:

System.Web.SessionState

IRepeatInfoUser:

System.Web.UI.WebControls

IRequiresSessionState:

System.Web.SessionState

ISAPIRuntime:

System.Web.Hosting

IsAsync:

LogicalMethodInfo

IsAttributeDefined( ):

HtmlTextWriter

IsAuthenticated:

FormsIdentity, HttpRequest, PassportIdentity

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IsBeginMethod( ):

LogicalMethodInfo

IsBindableType( ):

BaseDataList

IsBindingSupported( ):

ProtocolImporter, SoapProtocolImporter

IsBoundBy( ):

Operation

IsClientConnected:

HttpResponse

IsClientConnected( ):

HttpWorkerRequest

IsClientScriptBlockRegistered( ):

Page

IsCompleted:

WebClientAsyncResult

IsCookieless:

HttpSessionState

IsCustomErrorEnabled:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpContext

IsCustomPagingEnabled:

PagedDataSource

IsDebuggingEnabled:

HttpContext

IsDefaultAttribute( ):

ControlBuilderAttribute, ParseChildrenAttribute, PersistChildrenAttribute,
PersistenceModeAttribute, ToolboxDataAttribute

IsDirty:

ControlDesigner, StateItem

IsEmpty:

FontUnit, Unit

IsEnabled:

TraceContext

IsEndMethod( ):

LogicalMethodInfo

IsEntireEntityBodyIsPreloaded( ):

HttpWorkerRequest

IsFirstPage:

PagedDataSource

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IsHandled( ):

ServiceDescriptionFormatExtensionCollection

Isindex:

HtmlTextWriterTag

IsItemDirty( ):

StateBag

IsLastPage:

PagedDataSource

IsLiteralContent( ):

Control

IsLoading:

IWebFormsDocumentService

IsNewSession:

HttpSessionState

IsOnUNCShare:

HttpRuntime

IsOperationFlowSupported( ):

ProtocolImporter, SoapProtocolImporter

IsOtherMonth:

CalendarDay

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IsPagingEnabled:

PagedDataSource

IsPersistent:

FormsAuthenticationTicket

IsPostBack:

Page, UserControl

IsPresent:

HttpClientCertificate

IsPropertyBound( ):

ControlDesigner

IsReadOnly:

ControlCollection, DataBindingCollection, DataGridColumnCollection, DataGridItemCollection,
DataKeyCollection, DataListItemCollection, HtmlTableCellCollection, HtmlTableRowCollection,
HttpSessionState, HttpStaticObjectsCollection, ListItemCollection, PagedDataSource,
RepeaterItemCollection, SelectedDatesCollection, TableCellCollection, TableRowCollection,
ValidatorCollection

IsRequired( ):

ServiceDescriptionFormatExtensionCollection

IsReusable:

DiscoveryRequestHandler, IHttpHandler, Page

IsSecure( ):

HttpWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IsSecureConnection:

HttpRequest

IsSelectable:

CalendarDay

IsSelected:

CalendarDay

IsStartupScriptRegistered( ):

Page

IsStyleAttributeDefined( ):

HtmlTextWriter

IssueDate:

FormsAuthenticationTicket

Issuer:

HttpClientCertificate

IsSupported( ):

ValueCollectionParameterReader

IsSupportedTransport( ):

SoapTransportImporter

IsSynchronized:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ControlCollection, DataBindingCollection, DataGridColumnCollection, DataGridItemCollection,
DataKeyCollection, DataListItemCollection, HtmlTableCellCollection, HtmlTableRowCollection,
HttpSessionState, HttpStaticObjectsCollection, ListItemCollection, PagedDataSource,
RepeaterItemCollection, SelectedDatesCollection, TableCellCollection, TableRowCollection,
ValidatorCollection

IStateManager:

System.Web.UI

IStateRuntime:

System.Web.SessionState

IsToday:

CalendarDay

IsTrackingViewState:

IStateManager

IsValid:

BaseValidator, HttpClientCertificate, IValidator, Page, ServerValidateEventArgs

IsVoid:

LogicalMethodInfo

IsWeekend:

CalendarDay

Italic:

FontInfo

Item:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AttributeCollection, BindingCollection, Cache, ControlCollection, CssStyleCollection,
DataBindingCollection, DataGridColumnCollection, DataGridCommandEventArgs,
DataGridItemCollection, DataGridItemEventArgs, DataKeyCollection,
DataListCommandEventArgs, DataListItemCollection, DataListItemEventArgs,
DiscoveryClientDocumentCollection, DiscoveryClientReferenceCollection,
DiscoveryClientResultCollection, DiscoveryExceptionDictionary, DiscoveryReferenceCollection,
FaultBindingCollection, HtmlTableCellCollection, HtmlTableRowCollection, HttpApplicationState,
HttpCacheVaryByHeaders, HttpCacheVaryByParams, HttpCapabilitiesBase, HttpCookie,
HttpCookieCollection, HttpFileCollection, HttpModuleCollection, HttpRequest, HttpSessionState,
HttpStaticObjectsCollection, ImportCollection, ListItemCollection, ListItemType,
MessageCollection, MessagePartCollection, MimePartCollection, MimeTextMatchCollection,
OperationBindingCollection, OperationCollection, OperationFaultCollection,
OperationMessageCollection, PassportIdentity, PortCollection, PortTypeCollection,
RepeaterCommandEventArgs, RepeaterItemCollection, RepeaterItemEventArgs,
SelectedDatesCollection, ServiceCollection, ServiceDescriptionCollection,
ServiceDescriptionFormatExtensionCollection, SoapHeaderCollection, StateBag,
TableCellCollection, TableRowCollection, ValidatorCollection

ItemCommand:

DataGrid, DataList, Repeater

ItemCreated:

DataGrid, DataList, Repeater

ItemDataBound:

DataGrid, DataList, Repeater

ItemIndex:

DataGridItem, DataListItem, RepeaterItem

ITemplate:

System.Web.UI

ITemplateEditingFrame:

System.Web.UI.Design

ITemplateEditingService:

System.Web.UI.Design

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Items:

DataGrid, DataList, HtmlSelect, HttpContext, ListControl, Repeater

ItemStyle:

DataGrid, DataGridColumn, DataList

ItemTemplate:

DataList, Repeater, TemplateColumn

ItemType:

DataGridItem, DataListItem, RepeaterItem

IUserControlDesignerAccessor:

System.Web.UI

IValidator:

System.Web.UI

IWebFormReferenceManager:

System.Web.UI.Design

IWebFormsBuilderUIService:

System.Web.UI.Design

IWebFormsDocumentService:

System.Web.UI.Design

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

J

JavaApplets:

HttpBrowserCapabilities

JavaScript:

HttpBrowserCapabilities

Justify:

HorizontalAlign

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

K

Kbd:

HtmlTextWriterTag

Keys:

AttributeCollection, CssStyleCollection, DiscoveryClientDocumentCollection,
DiscoveryClientReferenceCollection, DiscoveryExceptionDictionary, HttpSessionState, StateBag

KeySize:

HttpClientCertificate

KeywordFilter:

AdRotator

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

L

Label:

HtmlTextWriterTag, System.Web.UI.WebControls

LabelControlBuilder:

System.Web.UI.WebControls

LabelDesigner:

System.Web.UI.Design.WebControls

Large:

FontSize, FontUnit

Larger:

FontSize, FontUnit

LCID:

HttpSessionState

Left:

HorizontalAlign, ImageAlign, TextAlign

Legend:

HtmlTextWriterTag

LessThan:

ValidationCompareOperator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


LessThanEqual:

ValidationCompareOperator

Li:

HtmlTextWriterTag

Line:

HttpParseException

Link:

HtmlTextWriterTag

LinkButton:

ButtonColumnType, System.Web.UI.WebControls

LinkButtonControlBuilder:

System.Web.UI.WebControls

LinkButtonDesigner:

System.Web.UI.Design.WebControls

List:

ValidationSummaryDisplayMode

ListBox:

System.Web.UI.WebControls

ListControl:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ListControlDataBindingHandler:

System.Web.UI.Design.WebControls

ListControlDesigner:

System.Web.UI.Design.WebControls

ListItem:

System.Web.UI.WebControls

ListItemCollection:

System.Web.UI.WebControls

ListItemControlBuilder:

System.Web.UI.WebControls

ListItemsCollectionEditor:

System.Web.UI.Design.WebControls

ListItemType:

System.Web.UI.WebControls

ListSelectionMode:

System.Web.UI.WebControls

Literal:

SoapBindingUse, System.Web.UI.WebControls

LiteralControl:

System.Web.UI

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


LiteralControlBuilder:

System.Web.UI.WebControls

Load:

Control

Load( ):

DynamicDiscoveryDocument

LoadComplete:

IWebFormsDocumentService

LoadControl( ):

TemplateControl

LoadPageStateFromPersistenceMedium( ):

Page

LoadPostData( ):

IPostBackDataHandler

LoadTemplate( ):

TemplateControl

LoadViewState( ):

Calendar, Control, DataBoundLiteralControl, DataGrid, DataGridColumn, DataList,
DesignerDataBoundLiteralControl, HtmlContainerControl, HtmlSelect, HyperLink,
IStateManager, Label, LinkButton, ListControl, UserControl, WebControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Location:

HttpAddressBinding, HttpOperationBinding, Import, SoapAddressBinding,
WebServiceBindingAttribute

Lock( ):

HttpApplicationState

LogicalMethodInfo:

System.Web.Services.Protocols

LogicalMethodTypes:

System.Web.Services.Protocols

LoginUser( ):

PassportIdentity

LogoTag( ):

PassportIdentity

LogoTag2( ):

PassportIdentity

LogoutURL( ):

PassportIdentity

LosFormatter:

System.Web.UI

Low:

CacheItemPriority, MailPriority

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


lstStandardExpressions_SelectedIndexChanged( ):

RegexEditorDialog

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

M

MachineConfigPath:

HttpWorkerRequest, SimpleWorkerRequest

MachineConfigurationDirectory:

HttpRuntime

MachineInstallDirectory:

HttpWorkerRequest, SimpleWorkerRequest

MachineName:

HttpServerUtility

MailAttachment:

System.Web.Mail

MailEncoding:

System.Web.Mail

MailFormat:

System.Web.Mail

MailMessage:

System.Web.Mail

MailPriority:

System.Web.Mail

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MajorVersion:

HttpBrowserCapabilities

Map:

HtmlTextWriterTag

MapImageCoordinates( ):

HttpRequest

MapPath( ):

HttpRequest, HttpServerUtility, HttpWorkerRequest, Page, SimpleWorkerRequest, UserControl

MapPathSecure( ):

Control

MapPropertyToStyle( ):

PanelDesigner, ReadWriteControlDesigner

MapToProperty:

SoapHeaderBinding

Marquee:

HtmlTextWriterTag

Match( ):

PatternMatcher

MatchAttribute:

System.Web.Services.Protocols

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Matches:

MimeTextBinding, MimeTextMatch

MaximumValue:

RangeValidator

Maxlength:

HtmlTextWriterAttribute

MaxLength:

HtmlInputFile, HtmlInputText, TextBox

MaxRepeats:

MatchAttribute

MD5:

FormsAuthPasswordFormat

Medium:

FontSize, FontUnit

MemberName:

SoapHeaderAttribute, XmlFormatExtensionPointAttribute

MemoryLimitExceeded:

ProcessShutdownReason

Menu:

HtmlTextWriterTag

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MergeStyle( ):

WebControl

MergeWith( ):

DataGridPagerStyle, FontInfo, Style, TableItemStyle, TableStyle

Message:

MessagePart, OperationMessage, SoapHeaderBinding, SoapHeaderFaultBinding,
System.Web.Services.Description

MessageBinding:

System.Web.Services.Description

MessageCollection:

System.Web.Services.Description

MessageName:

WebMethodAttribute

MessagePart:

System.Web.Services.Description

MessagePartCollection:

System.Web.Services.Description

Messages:

Operation, ServiceDescription

Meta:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriterTag

Method:

HtmlForm, ProtocolReflector

MethodAttribute:

ProtocolReflector

MethodInfo:

LogicalMethodInfo, SoapClientMessage, SoapMessage, SoapServerMessage

MethodName:

ProtocolImporter

Methods:

ProtocolReflector

Middle:

ImageAlign, VerticalAlign

MimeContentBinding:

System.Web.Services.Description

MimeFormatter:

System.Web.Services.Protocols

MimeMultipartRelatedBinding:

System.Web.Services.Description

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MimeParameterReader:

System.Web.Services.Protocols

MimeParameterWriter:

System.Web.Services.Protocols

MimePart:

System.Web.Services.Description

MimePartCollection:

System.Web.Services.Description

MimeReturnReader:

System.Web.Services.Protocols

MimeTextBinding:

System.Web.Services.Description

MimeTextMatch:

System.Web.Services.Description

MimeTextMatchCollection:

System.Web.Services.Description

MimeXmlBinding:

System.Web.Services.Description

MinimumValue:

RangeValidator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MinorVersion:

HttpBrowserCapabilities

Mm:

UnitType

Mode:

DataGridPagerStyle, HttpSessionState, PersistenceModeAttribute

Modules:

HttpApplication

Monday:

FirstDayOfWeek

Month:

TitleFormat

MonthChangedEventArgs:

System.Web.UI.WebControls

MonthChangedEventHandler:

System.Web.UI.WebControls

MonthYear:

TitleFormat

MSDomVersion:

HttpBrowserCapabilities

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


MultiLine:

TextBoxMode

Multiple:

HtmlSelect, HtmlTextWriterAttribute, ListSelectionMode

MustUnderstand:

SoapHeader

MustUnderstandFaultCode:

SoapException

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

N

Name:

Binding, FontInfo, FormsAuthenticationTicket, FormsIdentity, HtmlAnchor, HtmlForm,
HtmlInputControl, HtmlInputRadioButton, HtmlSelect, HtmlTextArea, HtmlTextWriterAttribute,
HttpCookie, ITemplateEditingFrame, LogicalMethodInfo, Message, MessageBinding,
MessagePart, MimeTextMatch, Operation, OperationBinding, OperationMessage,
PassportIdentity, Port, PortType, Service, ServiceDescription, ValidationPropertyAttribute,
WebServiceAttribute, WebServiceBindingAttribute

Names:

FontInfo

Namespace:

ContractReference, DiscoveryDocument, DynamicDiscoveryDocument, HttpBinding, Import,
MimeContentBinding, MimeTextBinding, SchemaReference, ServiceDescription, SoapBinding,
SoapBodyBinding, SoapFaultBinding, SoapHeaderBinding, SoapHeaderFaultBinding,
WebServiceAttribute, WebServiceBindingAttribute, XmlFormatExtensionAttribute,
XmlFormatExtensionPrefixAttribute

NamespaceName:

TagPrefixAttribute

NamingContainer:

Control

NamingContainerType:

ControlBuilder

NavigateUrl:

AdCreatedEventArgs, HyperLink, HyperLinkColumn

NeedsTag:

ConstructorNeedsTagAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


NeedsTagInnerText( ):

ControlBuilder, TemplateBuilder, UserControlControlBuilder

NewDate:

MonthChangedEventArgs

NewLine:

HtmlTextWriter

NewPageIndex:

DataGridPageChangedEventArgs

NextMonthText:

Calendar

NextPageCommandArgument:

DataGrid

NextPageText:

DataGridPagerStyle

NextPrev:

PagerMode

NextPrevFormat:

Calendar, System.Web.UI.WebControls

NextPrevStyle:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Calendar

No:

PersistChildrenAttribute

NoAbsolute:

UrlBuilderOptions

NoAbsoluteExpiration:

Cache

Nobr:

HtmlTextWriterTag

NoCache:

HttpCacheability

NoCodeGenerated:

ServiceDescriptionImportWarnings

Noframes:

HtmlTextWriterTag

NoMethodsGenerated:

ServiceDescriptionImportWarnings

None:

AuthenticationMode, BorderStyle, CalendarSelectionMode, FormsProtectionEnum, GridLines,
HttpCacheRevalidation, OperationFlow, OutputCacheLocation, ProcessShutdownReason,
UrlBuilderOptions, ValidatorDisplay

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


NopReturnReader:

System.Web.Services.Protocols

Normal:

CacheItemPriority, MailPriority

Noscript:

HtmlTextWriterTag

NoSlidingExpiration:

Cache

NotEqual:

ValidationCompareOperator

Notification:

OperationFlow

NotRemovable:

CacheItemPriority

NotSet:

BorderStyle, FontSize, HorizontalAlign, ImageAlign, VerticalAlign

Nowrap:

HtmlTextWriterAttribute

NoWrap:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTableCell

NumericPages:

PagerMode

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

O

Object:

HtmlTextWriterTag

ObjectConverter:

System.Web.UI

ObjectFromString( ):

PropertyConverter

ObjectTagBuilder:

System.Web.UI

Off:

SessionStateMode

Ol:

HtmlTextWriterTag

OnAbortTransaction( ):

TemplateControl

OnActivated( ):

CalendarAutoFormatDialog

OnAdCreated( ):

AdRotator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


OnAppendToParentBuilder( ):

ControlBuilder

OnAttributeRender( ):

HtmlTextWriter

OnAutoFormat( ):

BaseDataListDesigner, CalendarDesigner

OnBehaviorAttached( ):

ControlDesigner, HtmlControlDesigner, PanelDesigner, ReadWriteControlDesigner,
TemplatedControlDesigner

OnBehaviorDetaching( ):

HtmlControlDesigner

OnBindingsCollectionChanged( ):

ControlDesigner, HtmlControlDesigner

OnBubbleEvent( ):

Control, DataGrid, DataGridItem, DataList, DataListItem, Repeater, RepeaterItem

OnCancelCommand( ):

DataGrid, DataList

Onchange:

HtmlTextWriterAttribute

OnCheckedChanged( ):

CheckBox

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


OnClear( ):

ServiceDescriptionBaseCollection

Onclick:

HtmlTextWriterAttribute

OnClick( ):

Button, ImageButton, LinkButton

OnColumnChanged( ):

DataGridColumn

OnColumnsChanged( ):

DataGridDesigner

OnCommand( ):

Button, ImageButton, LinkButton

OnCommitTransaction( ):

TemplateControl

OnComponentChanged( ):

BaseDataListDesigner, ControlDesigner, ListControlDesigner, ReadWriteControlDesigner,
RepeaterDesigner, TemplatedControlDesigner

OnControlResize( ):

ControlDesigner

OnDataBinding( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


BaseDataList, Control, HtmlSelect, ListControl, Repeater

OnDataSourceChanged( ):

ListControlDesigner, RepeaterDesigner

OnDayRender( ):

Calendar

OnDeleteCommand( ):

DataGrid, DataList

OnEditCommand( ):

DataGrid, DataList

OnError( ):

TemplateControl

OneWay:

OperationFlow, SoapClientMessage, SoapDocumentMethodAttribute, SoapMessage,
SoapRpcMethodAttribute, SoapServerMessage

OnGetUIValueItem( ):

DataBindingValueUIHandler

OnInit( ):

BasePartialCachingControl, BaseValidator, Control, HtmlForm, UserControl

OnInsert( ):

OperationMessageCollection

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


OnInsertComplete( ):

ServiceDescriptionBaseCollection

OnItemCommand( ):

DataGrid, DataList, Repeater

OnItemCreated( ):

DataGrid, DataList, Repeater

OnItemDataBound( ):

DataGrid, DataList, Repeater

OnLoad( ):

Control

OnOKClicked( ):

CalendarAutoFormatDialog

OnPageIndexChanged( ):

DataGrid

OnPreRender( ):

AdRotator, BaseValidator, Calendar, CheckBox, CheckBoxList, Control, HtmlAnchor,
HtmlButton, HtmlInputButton, HtmlInputCheckBox, HtmlInputHidden, HtmlInputImage,
HtmlInputRadioButton, HtmlInputText, HtmlSelect, HtmlTextArea, ImageButton, LinkButton,
ListBox, ListControl, RadioButton, TextBox, ValidationSummary

OnPropertyBuilder( ):

BaseDataListDesigner

OnRemove( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ServiceDescriptionBaseCollection

OnSelChangedScheme( ):

CalendarAutoFormatDialog

OnSelectedIndexChanged( ):

BaseDataList, ListControl

OnSelectionChanged( ):

Calendar

OnServerChange( ):

HtmlInputCheckBox, HtmlInputHidden, HtmlInputRadioButton, HtmlInputText, HtmlSelect,
HtmlTextArea

OnServerClick( ):

HtmlAnchor, HtmlButton, HtmlInputButton, HtmlInputImage

OnServerValidate( ):

CustomValidator

OnSet( ):

OperationMessageCollection, ServiceDescriptionBaseCollection

OnSetParent( ):

HtmlControlDesigner, TemplatedControlDesigner

OnSortCommand( ):

DataGrid

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


OnStyleAttributeRender( ):

Html32TextWriter, HtmlTextWriter

OnTagRender( ):

Html32TextWriter, HtmlTextWriter

OnTemplateEditingVerbsChanged( ):

BaseDataListDesigner, DataGridDesigner, DataListDesigner

OnTemplateModeChanged( ):

IControlDesignerBehavior, TemplatedControlDesigner

OnTextChanged( ):

TextBox

OnUnload( ):

BaseValidator, Control

OnUpdateCommand( ):

DataGrid, DataList

OnValidate( ):

OperationMessageCollection, ServiceDescriptionFormatExtensionCollection

OnVisibleMonthChanged( ):

Calendar

Open( ):

ITemplateEditingFrame

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Operation:

OperationMessage, ProtocolImporter, ProtocolReflector, System.Web.Services.Description

OperationBinding:

MessageBinding, ProtocolImporter, ProtocolReflector, System.Web.Services.Description

OperationBindingCollection:

System.Web.Services.Description

OperationBindingSyntaxException( ):

ProtocolImporter

OperationCollection:

System.Web.Services.Description

OperationFault:

System.Web.Services.Description

OperationFaultCollection:

System.Web.Services.Description

OperationFlow:

System.Web.Services.Description

OperationInput:

System.Web.Services.Description

OperationMessage:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.Services.Description

OperationMessageCollection:

System.Web.Services.Description

OperationOutput:

System.Web.Services.Description

Operations:

Binding, PortType

OperationSyntaxException( ):

ProtocolImporter

Operator:

CompareValidator

Option:

HtmlTextWriterTag

OptionalExtensionsIgnored:

ServiceDescriptionImportWarnings

OtherMonthDayStyle:

Calendar

Out:

SoapHeaderDirection

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


OuterTableImplied:

RepeatInfo

OutParameters:

LogicalMethodInfo

Output:

HttpResponse, OperationBinding, OperationMessageCollection

OutputBinding:

System.Web.Services.Description

OutputCacheLocation:

System.Web.UI

OutputMessage:

ProtocolImporter, ProtocolReflector

OutputStream:

HttpResponse, HttpWriter

OutputTabs( ):

HtmlTextWriter

Outset:

BorderStyle

Overline:

FontInfo

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

P

P:

HtmlTextWriterTag

Page:

Control, System.Web.UI

PageButtonCount:

DataGridPagerStyle

PageCommandName:

DataGrid

PageCount:

DataGrid, PagedDataSource

PagedDataSource:

System.Web.UI.WebControls

PageIndexChanged:

DataGrid

PageParser:

System.Web.UI

Pager:

ListItemType

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PagerMode:

System.Web.UI.WebControls

PagerPosition:

System.Web.UI.WebControls

PagerStyle:

DataGrid

PageSize:

DataGrid, PagedDataSource

Pair:

System.Web.UI

Panel:

System.Web.UI.WebControls

PanelDesigner:

System.Web.UI.Design.WebControls

Param:

HtmlTextWriterTag

ParameterFormatter:

HttpMethodAttribute

ParameterOrder:

Operation

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ParameterOrderString:

Operation

Parameters:

LogicalMethodInfo

ParameterStyle:

SoapDocumentMethodAttribute, SoapDocumentServiceAttribute

Params:

HttpRequest

Parent:

Control, ServiceDescriptionFormatExtension

Parse( ):

FontUnit, Unit

ParseChildrenAttribute:

System.Web.UI

ParseControl( ):

ControlParser, DesignTimeTemplateParser, TemplateControl

ParseTemplate( ):

ControlParser, DesignTimeTemplateParser

ParseText:

DesignTimeParseData

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Part:

MimeContentBinding, MimeXmlBinding, SoapHeaderBinding, SoapHeaderFaultBinding

PartialCachingAttribute:

System.Web.UI

PartialCachingControl:

System.Web.UI

Parts:

Message, MimeMultipartRelatedBinding, SoapBodyBinding

PartsString:

SoapBodyBinding

Passport:

AuthenticationMode

PassportAuthenticationEventArgs:

System.Web.Security

PassportAuthenticationEventHandler:

System.Web.Security

PassportAuthenticationModule:

System.Web.Security

PassportIdentity:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.Security

Password:

TextBoxMode

Path:

ExcludePathInfo, HttpCookie, HttpRequest

PathInfo:

HttpRequest

Pattern:

ContractSearchPattern, DiscoveryDocumentLinksPattern, DiscoveryDocumentSearchPattern,
DiscoverySearchPattern, MatchAttribute, MimeTextMatch, XmlSchemaSearchPattern

PatternMatcher:

System.Web.Services.Protocols

PeakMemoryUsed:

ProcessInfo

Percentage:

UnitType

Percentage( ):

Unit

Persist:

PersistChildrenAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PersistChildrenAttribute:

System.Web.UI

PersistControl( ):

ControlPersister

PersistenceMode:

System.Web.UI

PersistenceModeAttribute:

System.Web.UI

PersistInnerProperties( ):

ControlPersister

PhysicalApplicationPath:

HttpRequest

PhysicalPath:

HttpRequest

Pica:

UnitType

Pics( ):

HttpResponse

PingFailed:

ProcessShutdownReason

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Pixel:

UnitType

Pixel( ):

Unit

PlaceHolder:

System.Web.UI.WebControls

PlaceHolderControlBuilder:

System.Web.UI.WebControls

Platform:

HttpBrowserCapabilities

Point:

UnitType

Point( ):

FontUnit, Unit

PopEndTag( ):

HtmlTextWriter

Port:

ProtocolImporter, ProtocolReflector, System.Web.Services.Description

PortCollection:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.Services.Description

Ports:

Service

PortType:

Operation, ProtocolImporter, ProtocolReflector, System.Web.Services.Description

PortTypeCollection:

System.Web.Services.Description

PortTypes:

ServiceDescription

Position:

DataGridPagerStyle

PostedFile:

HtmlInputFile

postEventArgumentID:

Page

postEventSourceID:

Page

PostRequestHandlerExecute:

HttpApplication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Pre:

HtmlTextWriterTag

PreAuthenticate:

WebClientProtocol

PreFilterEvents( ):

HtmlControlDesigner

PreFilterProperties( ):

BaseDataListDesigner, ControlDesigner, HtmlControlDesigner, ListControlDesigner,
RepeaterDesigner, TemplatedControlDesigner

Prefix:

XmlFormatExtensionPrefixAttribute

PrepareControlHierarchy( ):

BaseDataList, DataGrid, DataList

PreRender:

Control

PreRequestHandlerExecute:

HttpApplication

PreSendRequestContent:

HttpApplication

PreSendRequestHeaders:

HttpApplication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PreviousDate:

MonthChangedEventArgs

PrevMonthText:

Calendar

PrevPageCommandArgument:

DataGrid

PrevPageText:

DataGridPagerStyle

Priority:

MailMessage, SoapExtensionAttribute

Private:

HttpCacheability

ProcessID:

ProcessInfo

ProcessInfo:

System.Web

ProcessMessage( ):

SoapExtension

ProcessModelInfo:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web

ProcessRequest( ):

DiscoveryRequestHandler, HttpRuntime, IHttpHandler, IISAPIRuntime, ISAPIRuntime,
IStateRuntime, Page, StateRuntime

ProcessShutdownReason:

System.Web

ProcessStatus:

System.Web

PropertyConverter:

System.Web.UI

PropertyName:

DataBinding

PropertyType:

DataBinding

ProtocolImporter:

System.Web.Services.Description

ProtocolName:

ProtocolImporter, ProtocolReflector, ServiceDescriptionImporter, SoapProtocolImporter

ProtocolReflector:

System.Web.Services.Description

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Proxy:

HttpWebClientProtocol

ProxyCaches:

HttpCacheRevalidation

Public:

HttpCacheability

PublicKey:

HttpClientCertificate

PushButton:

ButtonColumnType

PushEndTag( ):

HtmlTextWriter

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Q

Q:

HtmlTextWriterTag

QueryString:

HttpRequest

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

R

RadioButton:

System.Web.UI.WebControls

RadioButtonList:

System.Web.UI.WebControls

RaiseBubbleEvent( ):

Control

RaisePostBackEvent( ):

IPostBackEventHandler, Page

RaisePostDataChangedEvent( ):

IPostBackDataHandler

RaiseResizeEvent( ):

ControlDesigner

RangeValidator:

System.Web.UI.WebControls

RawUrl:

HttpRequest

Read( ):

AnyReturnReader, DiscoveryDocument, HtmlFormParameterReader, MimeParameterReader,
MimeReturnReader, NopReturnReader, ServiceDescription, TextReturnReader,
UrlParameterReader, ValueCollectionParameterReader, XmlReturnReader

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ReadAll( ):

DiscoveryClientProtocol

ReadDocument( ):

ContractReference, DiscoveryDocumentReference, DiscoveryReference, SchemaReference

ReadEntityBody( ):

HttpWorkerRequest

ReadOnly:

BoundColumn, ControlDesigner, HtmlTextWriterAttribute, TextBox

ReadStringResource( ):

TemplateControl

ReadWriteControlDesigner:

System.Web.UI.Design

ReasonCachePolicy:

HttpWorkerRequest

ReasonCacheSecurity:

HttpWorkerRequest

ReasonClientDisconnect:

HttpWorkerRequest

ReasonDefault:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HttpWorkerRequest

ReasonFileHandleCacheMiss:

HttpWorkerRequest

ReasonResponseCacheMiss:

HttpWorkerRequest

Redirect( ):

HttpResponse

RedirectFromLoginPage( ):

FormsAuthentication

Ref:

ContractReference, DiscoveryDocumentReference, SchemaReference

References:

DiscoveryClientProtocol, DiscoveryDocument

ReferenceTypeName:

DiscoveryClientResult

Reflect( ):

ServiceDescriptionReflector

ReflectionContext:

SoapExtensionReflector

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ReflectionImporter:

ProtocolReflector

ReflectMethod( ):

ProtocolReflector, SoapExtensionReflector

ReflectMethodBinding( ):

ProtocolReflector

RegexEditorDialog:

System.Web.UI.Design.WebControls

RegexTypeEditor:

System.Web.UI.Design.WebControls

RegexTypeEditor_Activated( ):

RegexEditorDialog

RegisterArrayDeclaration( ):

Page

RegisterAttribute( ):

HtmlTextWriter

RegisterClientScriptBlock( ):

Page

RegisterHiddenField( ):

Page

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


RegisterOnSubmitStatement( ):

Page

RegisterRequiresPostBack( ):

Page

RegisterRequiresRaiseEvent( ):

Page

RegisterStartupScript( ):

Page

RegisterStyle( ):

HtmlTextWriter

RegisterTag( ):

HtmlTextWriter

RegisterValidatorCommonScript( ):

BaseValidator

RegisterValidatorDeclaration( ):

BaseValidator

RegisterViewStateHandler( ):

Page

RegularExpression:

RegexEditorDialog

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


RegularExpressionValidator:

System.Web.UI.WebControls

ReleaseHandler( ):

IHttpHandlerFactory, WebServiceHandlerFactory

ReleaseRequestState:

HttpApplication

Remove( ):

AttributeCollection, BindingCollection, Cache, ControlCollection, CssStyleCollection,
DataBindingCollection, DataGridColumnCollection, DiscoveryClientDocumentCollection,
DiscoveryClientReferenceCollection, DiscoveryClientResultCollection,
DiscoveryExceptionDictionary, DiscoveryReferenceCollection, FaultBindingCollection,
HtmlTableCellCollection, HtmlTableRowCollection, HttpApplicationState, HttpCookieCollection,
HttpSessionState, ImportCollection, ListItemCollection, MessageCollection,
MessagePartCollection, MimePartCollection, MimeTextMatchCollection,
OperationBindingCollection, OperationCollection, OperationFaultCollection,
OperationMessageCollection, PortCollection, PortTypeCollection, SelectedDatesCollection,
ServiceCollection, ServiceDescriptionCollection, ServiceDescriptionFormatExtensionCollection,
SoapHeaderCollection, StateBag, TableCellCollection, TableRowCollection, ValidatorCollection

RemoveAll( ):

HttpApplicationState, HttpSessionState

RemoveAt( ):

ControlCollection, DataGridColumnCollection, HtmlTableCellCollection, HtmlTableRowCollection,
HttpApplicationState, HttpSessionState, ListItemCollection, TableCellCollection,
TableRowCollection

RemoveAttribute( ):

IHtmlControlDesignerBehavior

Removed:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CacheItemRemovedReason

RemovedBindings:

DataBindingCollection

RemoveOutputCacheItem( ):

HttpResponse

RemoveStyleAttribute( ):

IHtmlControlDesignerBehavior

Render( ):

AdRotator, AttributeCollection, BaseDataList, BasePartialCachingControl, BaseValidator,
Calendar, CheckBox, CheckBoxList, Control, DataBoundLiteralControl,
DesignerDataBoundLiteralControl, HtmlContainerControl, HtmlControl, HtmlForm, Literal,
LiteralControl, RadioButtonList, TextBox, ValidationSummary, WebControl, Xml

RenderAfterContent( ):

Html32TextWriter, HtmlTextWriter

RenderAfterTag( ):

Html32TextWriter, HtmlTextWriter

RenderAttributes( ):

HtmlAnchor, HtmlButton, HtmlContainerControl, HtmlControl, HtmlForm, HtmlImage,
HtmlInputButton, HtmlInputControl, HtmlInputImage, HtmlInputRadioButton, HtmlInputText,
HtmlSelect, HtmlTextArea

RenderBeforeContent( ):

Html32TextWriter, HtmlTextWriter

RenderBeforeTag( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Html32TextWriter, HtmlTextWriter

RenderBeginTag( ):

Html32TextWriter, HtmlControl, HtmlTextWriter, WebControl

RenderChildren( ):

Control, HtmlForm, HtmlSelect, HtmlTable, HtmlTableRow

RenderContents( ):

Button, DataList, DropDownList, HyperLink, Image, Label, LinkButton, ListBox, Table,
TableCell, WebControl

RenderControl( ):

Control

RenderEndTag( ):

Html32TextWriter, HtmlContainerControl, HtmlTable, HtmlTableCell, HtmlTableRow,
HtmlTextWriter, WebControl

RenderItem( ):

DataListItem, IRepeatInfoUser

RenderMethod:

System.Web.UI

RenderRepeater( ):

RepeatInfo

RenewTicketIfOld( ):

FormsAuthentication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


RepeatColumns:

CheckBoxList, DataList, RadioButtonList, RepeatInfo

RepeatDirection:

CheckBoxList, DataList, RadioButtonList, RepeatInfo, System.Web.UI.WebControls

RepeatedItemCount:

IRepeatInfoUser

Repeater:

System.Web.UI.WebControls

RepeaterCommandEventArgs:

System.Web.UI.WebControls

RepeaterCommandEventHandler:

System.Web.UI.WebControls

RepeaterDesigner:

System.Web.UI.Design.WebControls

RepeaterItem:

System.Web.UI.WebControls

RepeaterItemCollection:

System.Web.UI.WebControls

RepeaterItemEventArgs:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.UI.WebControls

RepeaterItemEventHandler:

System.Web.UI.WebControls

RepeatInfo:

System.Web.UI.WebControls

RepeatLayout:

CheckBoxList, DataList, RadioButtonList, RepeatInfo, System.Web.UI.WebControls

Repeats:

MimeTextMatch

RepeatsString:

MimeTextMatch

Request:

HttpApplication, HttpContext, Page, UserControl

RequestCount:

ProcessInfo

RequestElement:

SoapServiceRoutingStyle

RequestElementName:

SoapDocumentMethodAttribute, SoapRpcMethodAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


RequestEncoding:

MimeParameterWriter, UrlEncodedParameterWriter, WebClientProtocol

RequestHeaderMaximum:

HttpWorkerRequest

RequestNamespace:

SoapDocumentMethodAttribute, SoapRpcMethodAttribute

RequestQueueLimit:

ProcessShutdownReason

RequestResponse:

OperationFlow

RequestsLimit:

ProcessShutdownReason

RequestType:

HttpRequest

Required:

ServiceDescriptionFormatExtension, SoapHeaderAttribute

RequiredExtensionsIgnored:

ServiceDescriptionImportWarnings

RequiredFieldValidator:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Reset( ):

DataGridPagerStyle, Style, TableItemStyle, TableStyle

Resize( ):

ITemplateEditingFrame

Resolve( ):

DiscoveryReference

ResolveAll( ):

DiscoveryClientProtocol, DiscoveryDocumentReference

ResolveOneLevel( ):

DiscoveryClientProtocol

ResolveRequestCache:

HttpApplication

ResolveUrl( ):

Control

Response:

HttpApplication, HttpContext, Page, UserControl

ResponseElementName:

SoapDocumentMethodAttribute, SoapRpcMethodAttribute

ResponseHeaderMaximum:

HttpWorkerRequest

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ResponseNamespace:

SoapDocumentMethodAttribute, SoapRpcMethodAttribute

Results:

DiscoveryClientResultsFile, HttpCompileException

RetrievalUrl:

ServiceDescription

ReturnFormatter:

HttpMethodAttribute

ReturnType:

LogicalMethodInfo

ReturnTypeCustomAttributeProvider:

LogicalMethodInfo

RewritePath( ):

HttpContext

Ridge:

BorderStyle

Right:

HorizontalAlign, ImageAlign, TextAlign

RootBuilder:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.UI

RoutingStyle:

SoapDocumentServiceAttribute, SoapRpcServiceAttribute

Rows:

HtmlTable, HtmlTextArea, HtmlTextWriterAttribute, ListBox, Table, TextBox

Rowspan:

HtmlTextWriterAttribute

RowSpan:

HtmlTableCell, TableCell

Rpc:

SoapBindingStyle

Rt:

HtmlTextWriterTag

Ruby:

HtmlTextWriterTag

Rules:

HtmlTextWriterAttribute

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

S

S:

HtmlTextWriterTag

Samp:

HtmlTextWriterTag

Saturday:

FirstDayOfWeek

Save( ):

ITemplateEditingFrame

SaveActiveTemplateEditingFrame( ):

TemplatedControlDesigner

SaveAs( ):

HttpPostedFile, HttpRequest

SaveComponent( ):

CalendarAutoFormatDialog

SavePageStateToPersistenceMedium( ):

Page

SaveViewState( ):

Calendar, Control, DataBoundLiteralControl, DataGrid, DataGridColumn, DataList,
DesignerDataBoundLiteralControl, HtmlSelect, IStateManager, ListControl, UserControl,
WebControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Schema:

SchemaReference

SchemaExporter:

ProtocolReflector

SchemaReference:

System.Web.Services.Discovery

Schemas:

ProtocolImporter, ProtocolReflector, ServiceDescriptionImporter, ServiceDescriptionReflector,
Types

Script:

HtmlTextWriterTag

ScriptTimeout:

HttpServerUtility

Second:

Pair, Triplet

SecretKeySize:

HttpClientCertificate

Secure:

HttpCookie

Select:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriterTag

Select( ):

HtmlSelect

SelectCommandName:

DataGrid, DataList

Selected:

HtmlTextWriterAttribute, ListItem

SelectedDate:

Calendar

SelectedDates:

Calendar

SelectedDatesCollection:

System.Web.UI.WebControls

SelectedDayStyle:

Calendar

SelectedIndex:

DataGrid, DataList, DropDownList, HtmlSelect, ListControl

SelectedIndexChanged:

BaseDataList, ListControl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SelectedItem:

DataGrid, DataList, ListControl, ListItemType

SelectedItemStyle:

DataGrid, DataList

SelectedItemTemplate:

DataList

SelectionChanged:

Calendar

SelectionMode:

Calendar, ListBox

SelectMonthText:

Calendar

SelectorStyle:

Calendar

SelectRange( ):

SelectedDatesCollection

SelectWeekText:

Calendar

SelfClosingChars:

HtmlTextWriter

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SelfClosingTagEnd:

HtmlTextWriter

SemicolonChar:

HtmlTextWriter

Send( ):

SmtpMail

SendCalculatedContentLength( ):

HttpWorkerRequest

SendKnownResponseHeader( ):

HttpWorkerRequest, SimpleWorkerRequest

SendResponseFromFile( ):

HttpWorkerRequest, SimpleWorkerRequest

SendResponseFromMemory( ):

HttpWorkerRequest, SimpleWorkerRequest

SendStatus( ):

HttpWorkerRequest, SimpleWorkerRequest

SendUnknownResponseHeader( ):

HttpWorkerRequest, SimpleWorkerRequest

Separator:

ListItemType

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SeparatorStyle:

DataList

SeparatorTemplate:

DataList, Repeater

Serialize( ):

LosFormatter, WebControlToolboxItem

Serializer:

ServiceDescription

SerialNumber:

HttpClientCertificate

Server:

HttpApplication, HttpCacheability, HttpContext, OutputCacheLocation, Page,
ServiceDescriptionImportStyle, SoapServerMessage, UserControl, WebService

ServerChange:

HtmlInputCheckBox, HtmlInputHidden, HtmlInputRadioButton, HtmlInputText, HtmlSelect,
HtmlTextArea

ServerClick:

HtmlAnchor, HtmlButton, HtmlInputButton, HtmlInputImage

ServerFaultCode:

SoapException

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ServerIssuer:

HttpClientCertificate

ServerSubject:

HttpClientCertificate

ServerValidate:

CustomValidator

ServerValidateEventArgs:

System.Web.UI.WebControls

ServerValidateEventHandler:

System.Web.UI.WebControls

ServerVariables:

HttpRequest

Service:

Port, ProtocolImporter, ProtocolReflector, System.Web.Services.Description

ServiceCollection:

System.Web.Services.Description

ServiceDescription:

Binding, Import, Message, PortType, ProtocolReflector, Service,
System.Web.Services.Description

ServiceDescriptionBaseCollection:

System.Web.Services.Description

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ServiceDescriptionCollection:

System.Web.Services.Description

ServiceDescriptionFormatExtension:

System.Web.Services.Description

ServiceDescriptionFormatExtensionCollection:

System.Web.Services.Description

ServiceDescriptionImporter:

System.Web.Services.Description

ServiceDescriptionImportStyle:

System.Web.Services.Description

ServiceDescriptionImportWarnings:

System.Web.Services.Description

ServiceDescriptionReflector:

System.Web.Services.Description

ServiceDescriptions:

ProtocolImporter, ProtocolReflector, ServiceDescription, ServiceDescriptionImporter,
ServiceDescriptionReflector

Services:

ServiceDescription

ServiceType:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ProtocolReflector

ServiceUrl:

ProtocolReflector

Session:

HttpApplication, HttpContext, Page, UserControl, WebService

SessionID:

HttpSessionState

SessionStateMode:

System.Web.SessionState

SessionStateModule:

System.Web.SessionState

Set( ):

HttpApplicationState, HttpCookieCollection

SetAll( ):

ProcessInfo

SetAttribute( ):

IAttributeAccessor, IHtmlControlDesignerBehavior

SetAuthCookie( ):

FormsAuthentication

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SetCacheability( ):

HttpCachePolicy

SetCookie( ):

HttpResponse

SetDataBoundString( ):

DataBoundLiteralControl

SetEndOfSendNotification( ):

HttpWorkerRequest

SetETag( ):

HttpCachePolicy

SetETagFromFileDependencies( ):

HttpCachePolicy

SetExpires( ):

HttpCachePolicy

SetItemDirty( ):

StateBag

SetLastModified( ):

HttpCachePolicy

SetLastModifiedFromFileDependencies( ):

HttpCachePolicy

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SetMaxAge( ):

HttpCachePolicy

SetNoServerCaching( ):

HttpCachePolicy

SetNoStore( ):

HttpCachePolicy

SetNoTransforms( ):

HttpCachePolicy

SetOption( ):

PassportIdentity

SetParent( ):

BindingCollection, FaultBindingCollection, ImportCollection, MessageCollection,
MessagePartCollection, OperationBindingCollection, OperationCollection,
OperationFaultCollection, OperationMessageCollection, PortCollection, PortTypeCollection,
ServiceCollection, ServiceDescriptionBaseCollection,
ServiceDescriptionFormatExtensionCollection

SetProxyMaxAge( ):

HttpCachePolicy

SetRenderMethodDelegate( ):

Control

SetRevalidation( ):

HttpCachePolicy

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SetSlidingExpiration( ):

HttpCachePolicy

SetStaticString( ):

DataBoundLiteralControl

SetStringResourcePointer( ):

TemplateControl

SetStyleAttribute( ):

IHtmlControlDesignerBehavior

SetTagInnerText( ):

ControlBuilder, TemplateBuilder, UserControlControlBuilder

SetTemplateContent( ):

DataGridDesigner, DataListDesigner, TemplatedControlDesigner

SetValidUntilExpires( ):

HttpCachePolicy

SetVaryByCustom( ):

HttpCachePolicy

SHA1:

FormsAuthPasswordFormat

Short:

DayNameFormat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ShortMonth:

NextPrevFormat

ShouldCodeSerialize:

HtmlControlDesigner, UserControlDesigner

ShouldSerializeNames( ):

FontInfo

ShowDayHeader:

Calendar

ShowFooter:

DataGrid, DataList

ShowGridLines:

Calendar

ShowHeader:

DataGrid, DataList

ShowMessageBox:

ValidationSummary

ShowNextPrevMonth:

Calendar

ShowSummary:

ValidationSummary

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ShowTitle:

Calendar

ShutDown:

ProcessStatus

ShutdownReason:

ProcessInfo

ShuttingDown:

ProcessStatus

SignOut( ):

FormsAuthentication, PassportIdentity

SimpleWebHandlerParser:

System.Web.UI

SimpleWorkerRequest:

System.Web.Hosting

Single:

ListSelectionMode

SingleLine:

TextBoxMode

SingleParagraph:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ValidationSummaryDisplayMode

SingleQuoteChar:

HtmlTextWriter

Site:

Control, HttpApplication

Size:

FontInfo, HtmlInputFile, HtmlInputText, HtmlSelect, HtmlTextWriterAttribute

SkipAuthorization:

HttpContext

SlashChar:

HtmlTextWriter

Small:

FontSize, FontUnit, HtmlTextWriterTag

Smaller:

FontSize, FontUnit

SmartNavigation:

Page

SmtpMail:

System.Web.Mail

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SmtpServer:

SmtpMail

SoapAction:

SoapOperationBinding, SoapServiceRoutingStyle

SoapAddressBinding:

System.Web.Services.Description

SoapBinding:

SoapProtocolImporter, System.Web.Services.Description, System.Web.Services.Discovery

SoapBindingStyle:

System.Web.Services.Description

SoapBindingUse:

System.Web.Services.Description

SoapBodyBinding:

System.Web.Services.Description

SoapClientMessage:

System.Web.Services.Protocols

SoapDocumentMethodAttribute:

System.Web.Services.Protocols

SoapDocumentServiceAttribute:

System.Web.Services.Protocols

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SoapException:

System.Web.Services.Protocols

SoapExporter:

SoapProtocolImporter

SoapExtension:

System.Web.Services.Protocols

SoapExtensionAttribute:

System.Web.Services.Protocols

SoapExtensionImporter:

System.Web.Services.Description

SoapExtensionReflector:

System.Web.Services.Description

SoapFaultBinding:

System.Web.Services.Description

SoapHeader:

System.Web.Services.Protocols

SoapHeaderAttribute:

System.Web.Services.Protocols

SoapHeaderBinding:

System.Web.Services.Description

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SoapHeaderCollection:

System.Web.Services.Protocols

SoapHeaderDirection:

System.Web.Services.Protocols

SoapHeaderException:

System.Web.Services.Protocols

SoapHeaderFaultBinding:

System.Web.Services.Description

SoapHttpClientProtocol:

System.Web.Services.Protocols

SoapImporter:

SoapProtocolImporter

SoapMessage:

System.Web.Services.Protocols

SoapMessageStage:

System.Web.Services.Protocols

SoapOperationBinding:

System.Web.Services.Description

SoapParameterStyle:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.Services.Protocols

SoapProtocolImporter:

System.Web.Services.Description

SoapRpcMethodAttribute:

System.Web.Services.Protocols

SoapRpcServiceAttribute:

System.Web.Services.Protocols

SoapServerMessage:

System.Web.Services.Protocols

SoapServiceRoutingStyle:

System.Web.Services.Protocols

SoapTransportImporter:

System.Web.Services.Description

SoapUnknownHeader:

System.Web.Services.Protocols

SolicitResponse:

OperationFlow

Solid:

BorderStyle

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SortByCategory:

TraceMode

SortByTime:

TraceMode

SortCommand:

DataGrid

SortCommandName:

DataGrid

SortExpression:

DataGridColumn, DataGridSortCommandEventArgs

SourceCode:

HttpCompileException

SpaceChar:

HtmlTextWriter

Span:

HtmlTextWriterTag

SQLServer:

SessionStateMode

Src:

HtmlImage, HtmlInputImage, HtmlTextWriterAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Stage:

SoapMessage

Start:

SessionStateModule

StartProcessing( ):

IISAPIRuntime, ISAPIRuntime

StartTime:

ProcessInfo

StateBag:

System.Web.UI

StateItem:

System.Web.UI

StateRuntime:

System.Web.SessionState

StateServer:

SessionStateMode

Static:

ValidatorDisplay

StaticObjects:

HttpApplicationState, HttpSessionState

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


StaticPartialCachingControl:

System.Web.UI

Status:

HttpResponse, ProcessInfo

StatusCode:

HttpResponse

StatusDescription:

HttpResponse

StopProcessing( ):

IISAPIRuntime, ISAPIRuntime, IStateRuntime, StateRuntime

Stream:

SoapMessage

Strike:

HtmlTextWriterTag

Strikeout:

FontInfo

String:

ValidationDataType

Strong:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriterTag

Style:

HtmlControl, HtmlTextWriterAttribute, HtmlTextWriterTag, ProtocolImporter,
ServiceDescriptionImporter, SoapBinding, SoapOperationBinding, System.Web.UI.WebControls,
WebControl

StyleEqualsChar:

HtmlTextWriter

Sub:

HtmlTextWriterTag

Subject:

HttpClientCertificate, MailMessage

Sunday:

FirstDayOfWeek

Sup:

HtmlTextWriterTag

SupportsNestedTemplateEditing:

ITemplateEditingService, TemplateEditingService

SuppressContent:

HttpResponse

Sync:

LogicalMethodTypes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SyncRoot:

ControlCollection, DataBindingCollection, DataGridColumnCollection, DataGridItemCollection,
DataKeyCollection, DataListItemCollection, HtmlTableCellCollection, HtmlTableRowCollection,
HttpSessionState, HttpStaticObjectsCollection, ListItemCollection, PagedDataSource,
RepeaterItemCollection, SelectedDatesCollection, TableCellCollection, TableRowCollection,
ValidatorCollection

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

T

Tabindex:

HtmlTextWriterAttribute

TabIndex:

WebControl

Table:

HtmlTextWriterTag, RepeatLayout, System.Web.UI.WebControls

TableCell:

System.Web.UI.WebControls

TableCellCollection:

System.Web.UI.WebControls

TableCellControlBuilder:

System.Web.UI.WebControls

TableCellsCollectionEditor:

System.Web.UI.Design.WebControls

TableDesigner:

System.Web.UI.Design.WebControls

TableHeaderCell:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TableItemStyle:

System.Web.UI.WebControls

TableRow:

System.Web.UI.WebControls

TableRowCollection:

System.Web.UI.WebControls

TableRowsCollectionEditor:

System.Web.UI.Design.WebControls

Tables:

HttpBrowserCapabilities

TableStyle:

System.Web.UI.WebControls

TagLeftChar:

HtmlTextWriter

TagName:

ControlBuilder, HtmlControl, HtmlGenericControl, IUserControlDesignerAccessor

TagPrefix:

TagPrefixAttribute

TagPrefixAttribute:

System.Web.UI

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TagRightChar:

HtmlTextWriter

TagWriter:

HttpBrowserCapabilities

Target:

AdRotator, HtmlAnchor, HtmlForm, HtmlTextWriterAttribute, HyperLink, HyperLinkColumn

TargetConverter:

System.Web.UI.WebControls

TargetNamespace:

SchemaReference, ServiceDescription

Tbody:

HtmlTextWriterTag

Td:

HtmlTextWriterTag

TemplateBuilder:

System.Web.UI

TemplateColumn:

System.Web.UI.WebControls

TemplateContainerAttribute:

System.Web.UI

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TemplateControl:

System.Web.UI

TemplateControlParser:

System.Web.UI

TemplatedControlDesigner:

System.Web.UI.Design

TemplateEditingService:

System.Web.UI.Design

TemplateEditingVerb:

System.Web.UI.Design

TemplateNames:

ITemplateEditingFrame

TemplateParser:

System.Web.UI

TemplateSourceDirectory:

Control

TemplateStyles:

ITemplateEditingFrame

Terminated:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ProcessStatus

Text:

Button, ButtonColumn, CheckBox, DataBoundLiteralControl, DesignerDataBoundLiteralControl,
HyperLink, HyperLinkColumn, Label, LinkButton, ListItem, Literal, LiteralControl, MailFormat,
TableCell, TemplateBuilder, TextBox

TextAlign:

CheckBox, CheckBoxList, RadioButtonList, System.Web.UI.WebControls

Textarea:

HtmlTextWriterTag

TextBox:

System.Web.UI.WebControls

TextBoxControlBuilder:

System.Web.UI.WebControls

TextBoxMode:

System.Web.UI.WebControls

TextChanged:

TextBox

TextControlDesigner:

System.Web.UI.Design

TextDataBindingHandler:

System.Web.UI.Design

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TextDecoration:

HtmlTextWriterStyle

TextMode:

TextBox

TextReturnReader:

System.Web.Services.Protocols

TextTop:

ImageAlign

Tfoot:

HtmlTextWriterTag

Th:

HtmlTextWriterTag

Thead:

HtmlTextWriterTag

Third:

Triplet

thisExpr:

BoundColumn

Thursday:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


FirstDayOfWeek

Ticket:

FormsIdentity

Ticket( ):

PassportIdentity

TicketAge:

PassportIdentity

Timeout:

HttpSessionState, ProcessShutdownReason, WebClientProtocol

TimeSinceSignIn:

PassportIdentity

Timestamp:

HttpContext

Title:

HtmlAnchor, HtmlTextWriterAttribute, HtmlTextWriterTag

TitleFormat:

Calendar, System.Web.UI.WebControls

TitleStyle:

Calendar

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To:

MailMessage

TodayDayStyle:

Calendar

TodaysDate:

Calendar

ToolboxDataAttribute:

System.Web.UI

ToolTip:

DropDownList, ListBox, WebControl

Top:

ImageAlign, PagerPosition, VerticalAlign

TopAndBottom:

PagerPosition

ToString( ):

DataGridColumn, FontInfo, FontUnit, ListItem, LogicalMethodInfo, Style, Unit

TotalBytes:

HttpRequest

Tr:

HtmlTextWriterTag

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Trace:

HttpContext, Page, UserControl

TraceContext:

System.Web

TraceMode:

System.Web, TraceContext

TrackViewState( ):

Calendar, Control, DataGrid, DataGridColumn, DataList, HtmlSelect, IStateManager,
ListControl, WebControl

TransactionOption:

WebMethodAttribute

Transfer( ):

HttpServerUtility

Transform:

Xml

TransformArgumentList:

Xml

TransformSource:

Xml

Transport:

SoapBinding

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Triplet:

System.Web.UI

Tt:

HtmlTextWriterTag

Tuesday:

FirstDayOfWeek

txtExpression_TextChanged( ):

RegexEditorDialog

Type:

BaseCompareValidator, Binding, FontUnit, HtmlInputControl, HtmlTextWriterAttribute,
HttpBrowserCapabilities, MessagePart, MimeContentBinding, MimeTextMatch, Unit

Types:

ServiceDescription, System.Web.Services.Description

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

U

U:

HtmlTextWriterTag

Ul:

HtmlTextWriterTag

Underline:

FontInfo

Underused:

CacheItemRemovedReason

Unexpected:

ProcessShutdownReason

UniqueID:

Control

Unit:

FontUnit, System.Web.UI.WebControls

UnitConverter:

System.Web.UI.WebControls

UnitType:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unknown:

HtmlTextWriterTag

Unload:

Control

UnLock( ):

HttpApplicationState

UnsupportedBindingsIgnored:

ServiceDescriptionImportWarnings

UnsupportedBindingWarning( ):

ProtocolImporter

UnsupportedOperationBindingWarning( ):

ProtocolImporter

UnsupportedOperationsIgnored:

ServiceDescriptionImportWarnings

UnsupportedOperationWarning( ):

ProtocolImporter

UpdateCommand:

DataGrid, DataList

UpdateCommandName:

DataGrid, DataList

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


UpdateControlName( ):

ITemplateEditingFrame

UpdateDesignTimeHtml( ):

ControlDesigner, TemplatedControlDesigner

UpdateRequestCache:

HttpApplication

UpdateSelection( ):

IWebFormsDocumentService

UpdateText:

EditCommandColumn

Url:

ContractReference, DiscoveryClientResult, DiscoveryDocumentReference, DiscoveryReference,
HttpRequest, SchemaReference, SoapClientMessage, SoapMessage, SoapServerMessage,
WebClientProtocol

UrlAuthorizationModule:

System.Web.Security

UrlBuilder:

System.Web.UI.Design

UrlBuilderOptions:

System.Web.UI.Design

UrlContentBase:

MailMessage

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


UrlContentLocation:

MailMessage

UrlDecode( ):

HttpServerUtility, HttpUtility

UrlDecodeToBytes( ):

HttpUtility

UrlEditor:

System.Web.UI.Design

UrlEncode( ):

HttpServerUtility, HttpUtility

UrlEncodedParameterWriter:

System.Web.Services.Protocols

UrlEncodeToBytes( ):

HttpUtility

UrlEncodeUnicode( ):

HttpUtility

UrlEncodeUnicodeToBytes( ):

HttpUtility

UrlParameterReader:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


System.Web.Services.Protocols

UrlParameterWriter:

System.Web.Services.Protocols

UrlPathEncode( ):

HttpServerUtility

UrlReferrer:

HttpRequest

Use:

SoapBodyBinding, SoapDocumentMethodAttribute, SoapDocumentServiceAttribute,
SoapFaultBinding, SoapHeaderBinding, SoapHeaderFaultBinding

User:

FormsAuthenticationEventArgs, HttpApplication, HttpContext, Page,
PassportAuthenticationEventArgs, WebService, WindowsAuthenticationEventArgs

UserAgent:

HttpCacheVaryByHeaders, HttpRequest, HttpWebClientProtocol

UserCharSet:

HttpCacheVaryByHeaders

UserControl:

System.Web.UI

UserControlControlBuilder:

System.Web.UI

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


UserControlDesigner:

System.Web.UI.Design

UserData:

FormsAuthenticationTicket

UserHostAddress:

HttpRequest

UserHostName:

HttpRequest

UserLanguage:

HttpCacheVaryByHeaders

UserLanguages:

HttpRequest

UsesWriteRequest:

HtmlFormParameterWriter, MimeParameterWriter

UUEncode:

MailEncoding

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

V

Valid:

HttpValidationStatus

Validate( ):

BaseValidator, IValidator, Page

ValidatedControlConverter:

System.Web.UI.WebControls

Validation:

FormsProtectionEnum

ValidationCompareOperator:

System.Web.UI.WebControls

ValidationDataType:

System.Web.UI.WebControls

ValidationExpression:

RegularExpressionValidator

ValidationPropertyAttribute:

System.Web.UI

ValidationSummary:

System.Web.UI.WebControls

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ValidationSummaryDisplayMode:

System.Web.UI.WebControls

ValidatorCollection:

System.Web.UI

ValidatorDisplay:

System.Web.UI.WebControls

Validators:

Page

ValidFrom:

HttpClientCertificate

ValidUntil:

HttpClientCertificate

Valign:

HtmlTextWriterAttribute

VAlign:

HtmlTableCell, HtmlTableRow

Value:

HtmlInputControl, HtmlInputRadioButton, HtmlInputText, HtmlSelect, HtmlTextArea,
HtmlTextWriterAttribute, HttpCookie, ListItem, ServerValidateEventArgs, StateItem, Unit

value__:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


AuthenticationMode, BorderStyle, ButtonColumnType, CacheItemPriority,
CacheItemRemovedReason, CalendarSelectionMode, DayNameFormat, FirstDayOfWeek,
FontSize, FormsAuthPasswordFormat, FormsProtectionEnum, GridLines, HorizontalAlign,
HtmlTextWriterAttribute, HtmlTextWriterStyle, HtmlTextWriterTag, HttpCacheability,
HttpCacheRevalidation, HttpValidationStatus, ImageAlign, ListItemType, ListSelectionMode,
LogicalMethodTypes, MailEncoding, MailFormat, MailPriority, NextPrevFormat, OperationFlow,
OutputCacheLocation, PagerMode, PagerPosition, PersistenceMode, ProcessShutdownReason,
ProcessStatus, RepeatDirection, RepeatLayout, ServiceDescriptionImportStyle,
ServiceDescriptionImportWarnings, SessionStateMode, SoapBindingStyle, SoapBindingUse,
SoapHeaderDirection, SoapMessageStage, SoapParameterStyle, SoapServiceRoutingStyle,
TextAlign, TextBoxMode, TitleFormat, TraceMode, UnitType, UrlBuilderOptions,
ValidationCompareOperator, ValidationDataType, ValidationSummaryDisplayMode,
ValidatorDisplay, VerticalAlign

ValueCollectionParameterReader:

System.Web.Services.Protocols

Values:

DiscoveryClientDocumentCollection, DiscoveryClientReferenceCollection,
DiscoveryExceptionDictionary, HttpCookie, StateBag

ValueToCompare:

CompareValidator

Var:

HtmlTextWriterTag

VaryByControls:

PartialCachingAttribute

VaryByCustom:

PartialCachingAttribute

VaryByHeaders:

HttpCachePolicy

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


VaryByParams:

HttpCachePolicy, PartialCachingAttribute

VaryByUnspecifiedParameters( ):

HttpCacheVaryByHeaders

VBScript:

HttpBrowserCapabilities

Verb:

HttpBinding, ITemplateEditingFrame

Verbs:

BaseDataListDesigner, CalendarDesigner

VerifyRenderingInServerForm( ):

Page

Version:

FormsAuthenticationTicket, HttpBrowserCapabilities

VersionMismatchFaultCode:

SoapException

Vertical:

GridLines, RepeatDirection

VerticalAlign:

System.Web.UI.WebControls, TableCell, TableItemStyle, TableRow

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


VirtualCount:

PagedDataSource

VirtualItemCount:

DataGrid

VirtualPath:

HttpConfigurationContext

Visible:

Control, DataGridColumn, DataGridPagerStyle, Page

VisibleDate:

Calendar

VisibleMonthChanged:

Calendar

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

W

W3CDomVersion:

HttpBrowserCapabilities

Warn( ):

TraceContext

Warnings:

ProtocolImporter

Wbr:

HtmlTextWriterTag

WebClientAsyncResult:

System.Web.Services.Protocols

WebClientProtocol:

System.Web.Services.Protocols

WebColorConverter:

System.Web.UI.WebControls

WebControl:

System.Web.UI.WebControls

WebControlToolboxItem:

System.Web.UI.Design

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


WebMethodAttribute:

System.Web.Services

WebService:

System.Web.Services

WebServiceAttribute:

System.Web.Services

WebServiceBindingAttribute:

System.Web.Services

WebServiceHandlerFactory:

System.Web.Services.Protocols

WebServiceParser:

System.Web.UI

Wednesday:

FirstDayOfWeek

WeekendDayStyle:

Calendar

Width:

HtmlImage, HtmlTable, HtmlTableCell, HtmlTextWriterAttribute, HtmlTextWriterStyle, Style,
WebControl

Win16:

HttpBrowserCapabilities

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Win32:

HttpBrowserCapabilities

Windows:

AuthenticationMode

WindowsAuthenticationEventArgs:

System.Web.Security

WindowsAuthenticationEventHandler:

System.Web.Security

WindowsAuthenticationModule:

System.Web.Security

Wrap:

HtmlTextWriterAttribute, Panel, TableCell, TableItemStyle, TextBox

Wrapped:

SoapParameterStyle

Write( ):

DiscoveryDocument, DynamicDiscoveryDocument, HtmlTextWriter, HttpResponse, HttpWriter,
ServiceDescription, TraceContext

WriteAll( ):

DiscoveryClientProtocol

WriteAttribute( ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HtmlTextWriter

WriteBeginTag( ):

HtmlTextWriter

WriteBytes( ):

HttpWriter

WriteDocument( ):

ContractReference, DiscoveryDocumentReference, DiscoveryReference, SchemaReference

WriteEndTag( ):

HtmlTextWriter

WriteFile( ):

HttpResponse

WriteFullBeginTag( ):

HtmlTextWriter

WriteLine( ):

HtmlTextWriter, HttpWriter

WriteLineNoTabs( ):

HtmlTextWriter

WriteRequest( ):

HtmlFormParameterWriter, MimeParameterWriter

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


WriteString( ):

HttpWriter

WriteStyleAttribute( ):

HtmlTextWriter

WriteUTF8ResourceString( ):

TemplateControl

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

X

X:

ImageClickEventArgs

XLarge:

FontSize, FontUnit

Xml:

HtmlTextWriterTag, System.Web.UI.WebControls

XmlDesigner:

System.Web.UI.Design.WebControls

XmlExporter:

SoapProtocolImporter

XmlFileEditor:

System.Web.UI.Design

XmlFormatExtensionAttribute:

System.Web.Services.Configuration

XmlFormatExtensionPointAttribute:

System.Web.Services.Configuration

XmlFormatExtensionPrefixAttribute:

System.Web.Services.Configuration

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


XmlImporter:

SoapProtocolImporter

XmlReturnReader:

System.Web.Services.Protocols

XmlSchemaSearchPattern:

System.Web.Services.Discovery

XmlUrlEditor:

System.Web.UI.Design

XslUrlEditor:

System.Web.UI.Design

XSmall:

FontSize, FontUnit

XXLarge:

FontSize, FontUnit

XXSmall:

FontSize, FontUnit

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard  

Y

Y:

ImageClickEventArgs

Yes:

PersistChildrenAttribute

I l@ve RuBoard  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of ASP.NET in a Nutshell is a stingray. The stingray is a flat, rectangular fish
with no dorsal or anal fins that lives in shallow coastal areas around the world. It hides itself in the
sandy or silty sea bottom while feeding on fish, crustaceans, and mollusks. The stingray is best known
for its long tail, which holds a serrated spine near the tail base. When threatened, this spine injects a
powerful, and often fatal, venom into its victim. The venom contains proteins that can slow an
animal's respiration rate to dangerous levels. Humans are often surprised to learn, however, that the
animal is normally gentle and nonaggressive.

Contrary to popular belief, stingrays usually sting humans only when stepped on by unsuspecting
swimmers. When threatened in this manner, the animal reflexively whips its tail back to defend itself.
This defense is effective against most animals, except for its main predator, the shark.

Populations living near stingrays have valued the animal for centuries-particularly in Polynesia,
Malaysia, Central America, and Coastal Africa, where the stingray's spine was used to create spears,
knives, and other tools. More recently, the stingray has become a popular tourist attraction; the
stingray has been a major source of tourist income over the past decade in some island resorts in the
Carribbean. Resorts in the Cayman Islands have taken special measures to educate humans about the
stingray. Some resorts in this area even advertise beaches where tourists can swim and play with the
animal.

Ann Schirmer was the production editor and copyeditor for ASP.NET in a Nutshell. Claire Cloutier, Jane
Ellin, and Colleen Gorman provided quality control. Phil Dangler provided production assistance. Joe
Wizda wrote the index.

Emma Colby designed the cover of this book. The cover image is a 19th-century engraving from the
Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's
ITC Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest. The Intrinsic Class
Reference was created by translating DocBook XML source into a set of gtroff macros using a Perl
filter developed at O'Reilly by Norman Walsh. Steve Talbott designed and wrote the underlying macro
set on the basis of the GNU gtroff -gs macros; Lenny Muellner adapted them to XML and implemented
the book design. The GNU gtroff text formatter Version 1.11.1 was used to generate PostScript
output. The rest of the book was converted into FrameMaker 5.5.6 with a format conversion tool
created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text and heading fonts are ITC Garamond Light and Garamond Book. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Ann Schirmer.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

& (ampersand), separating pairs of keys/values  
<% %> render blocks  2nd  
    in ASP.NET pages  
<%# %> syntax, for data binding  
<allow> element  
<authorization> element
    URL authorization  
<customErrors> element  
<deny> element  
<form> tag  
<location> element  2nd  
<trace> element  
<trust> element  
<trustLevel> element  
+= operator (C#)  
-= operator (C#)  
@ directives, using  
32-bit integers  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

<a> tag  
Abandon method  2nd  
AcceptTypes property  2nd  
Access Control Lists  [See ACLs]
ACLs (Access Control Lists)  2nd  
Action controls  
ActiveXControls property (HttpBrowserCapabilities class)  
<add> element  2nd  
Add method  2nd  
    Cache member (Page class)  
    HttpApplicationState class  2nd  
Add_ASPNET.bat batch file  
AddAt method  
AddCacheItemDependencies method  2nd  
AddCacheItemDependency method  2nd  
AddError method  
AddFileDependencies method  2nd  
AddFileDependency method  2nd  
AddHeader method  2nd  
AddRedirect property  2nd  
ADO.NET  
AdRotator control  2nd  
ALL_HTTP key (ServerVariable collection)  
ALL_RAW key (ServerVariable collection)  
AllErrors collection  
AllKeys collection  2nd  
AllKeys property  2nd  
<allow> element  2nd  
allowOverride attribute of <location> element  
ampersand (&), separating pairs of keys/values  
AOL property (HttpBrowserCapabilities class)  
AppendHeader method  2nd  
AppendToLog method  2nd  
APPL_MD_PATH key (ServerVariable collection)  
APPL_PHYSICAL_PATH key (ServerVariable collection)  
Application collection  
Application property  2nd  3rd  
application settings files (Global.asax)  
application-level tracing  
application-specific assemblies  
Application_Error event  2nd  
ApplicationInstance property  2nd  
ApplicationPath property  2nd  
applications  
    boundaries  
    controls, sharing across  
    deploying  
    file types  
    porting to ASP.NET  
    requests, handling/lifecycles  
    structure  
    types  
    web  
ApplyAppPathModifier method  2nd  
<appSettings> element  2nd  
architecture
    controls, sharing across applications  
    data access and  
architecture (Web Services)  
arrays  
.ascx file extension  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    user controls  
.asmx file extension  2nd  3rd  
    request handling and  
.asp extension  
ASP, porting to ASP.NET  
ASP.NET pages
    caching output  
    control events  
    structuring  
<asp\:Label> server control  
AspCompat attributes (@ Page directive)  
ASPError ASP object  
<aspnetian\:nav> tags  
.aspx file extension  2nd  
    ASP.NET pages, structuring  
    automatic event wiring  
    request handling and  
assemblies  
    deploying  
<assemblies> element  2nd  
Assembly attribute (@ Register directive)  
@ Assembly directive  
AssemblyKeyFile attribute  
attribute values of .config files  
attributes  
attributes for @ directives  
AUTH_PASSWORD key (ServerVariable collection)  
AUTH_TYPE key (ServerVariable collection)  
AUTH_USER key (ServerVariable collection)  
authentication  
    methods  
<authentication> element  2nd  3rd  
    authentication methods  
    logging in  
    modifying  
authorization  
<authorization> element  2nd  
AutoEventWireup attribute (@ Page directive)  
automatically generated assemblies  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

BackgroundSounds property (HttpBrowserCapabilities class)  
Basic authentication  
.bat file extension  
BeginWrite method  
Beta property (HttpBrowserCapabilities class)  
BinaryRead method  2nd  
BinaryWrite method  2nd  
binding  [See data binding]
Blog control  2nd  
BlogDesigner class  
BlogDS dataset  
boolean datatype  
boundaries (applications)  
boxing  
Browser property  2nd  
<browserCaps> element  2nd  
Buffer attribute (@ Page directive)  
Buffer property  
BufferOutput property  2nd  
Button control  2nd  3rd  
<button> tag  
byte datatype  
byteCount argument  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

C programming language  
C# programming language
    file extension for  
    new keyword and  
C++ programming language  2nd  
    Visual  [See Visual C++]
Cache property  2nd  3rd  
    HttpContext class  
    HttpResponse class  2nd  
CacheControl property  2nd  
Calendar control  2nd  
Cascading Style Sheets (CSS) styles  
<case> element  2nd  
case sensitivity of attribute values in .config files  
Catch blocks  
CDF property (HttpBrowserCapabilities class)  
CERT_COOKIE key (ServerVariable collection)  
CERT_FLAGS key (ServerVariable collection)  
CERT_ISSUER key (ServerVariable collection)  
CERT_KEYSIZE key (ServerVariable collection)  
CERT_SECRETKEYSIZE key (ServerVariable collection)  
CERT_SERIALNUMBER key (ServerVariable collection)  
CERT_SERVER_ISSUER key (ServerVariable collection)  
CERT_SERVER_SUBJECT key (ServerVariable collection)  
CERT_SUBJECT key (ServerVariable collection)  
characters, encoding for string processing  
Charset property  2nd  
CheckBox control  2nd  
CheckBoxList control  2nd  
Class attribute (@ WebService directive)  
class files  
classes  2nd  
    namespaces  
ClassName attribute (@ Page directive)  
<clear> element  
Clear method  2nd  3rd  4th  5th  6th  7th  
ClearContent method  2nd  
ClearError method  2nd  3rd  
ClearHeaders method  2nd  
CLI (Common Language Infrastructure)  
client script, adding  
ClientCertificate property  2nd  
ClientTarget attribute (@ Page directive)  
<clientTarget> element  2nd  
ClientTarget property  2nd  
Close method  2nd  
CLR (Common Language Runtime)  
    Web Forms and  
    Web Services architecture  
ClrVersion property (HttpBrowserCapabilities class)  
CLS (Common Language Specification)  
code
    combining with user interface  
    compiling  
    inline  
    reuse  
code access security  
code declaration blocks  
Code-behind  
    deploying assemblies  
    web services, using  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Codebehind attribute  
    @ Page directive  2nd  
    @ WebService directive  
CodePage attribute (@ Page directive)  
CodePage property  2nd  
collections  
    HttpApplicationState class  
    HttpContext class  
        AllErrors collection  
    HttpRequest class  
    HttpResponse class  
Collections property  
collections, binding to  
COM components  
COM objects  
Common Language Infrastructure (CLI)  
Common Language Runtime  [See CLR]
Common Language Specification (CLS)  
Common Type System (CTS)  
CompareValidator control  
<compilation> element  2nd  
<compiler> element  2nd  
CompilerOptions attribute (@ Page directive)  
compilers  
<compilers> element  2nd  
components  
compositional controls  2nd  
<configuration> element  2nd  
configuration files (Web.Config)  
configuration options for ASP.NET  
    locking down settings  
    settings, modifying  
CONNECT HTTP request  
constructors for HttpException class  
CONTENT_LENGTH key (ServerVariable collection)  
CONTENT_TYPE key (ServerVariable collection)  
ContentEncoding property  2nd  3rd  
ContentLength property  2nd  
Contents collection  2nd  
    HttpSessionState class  
Contents property  
ContentType attribute (@ Page directive)  
ContentType property  2nd  3rd  4th  
Context property  2nd  
Control attribute (@ Reference directive)  
@ Control directive  2nd  
control events  
ControlCollection instance  
controls (custom server)  
    design-time support  
controls (server)  
    appearance, modifying  
    programmatic control use  
    using  
    web controls, type of  
controls (user)  
cookieless attribute for <sessionState> element  
cookies  2nd  
Cookies collection
    HttpRequest class  2nd  
    HttpResponse class  2nd  
Cookies property (HttpBrowserCapabilities class)  
Copy Project
    deploying  
    dialog  
CopyTo method  2nd  3rd  4th  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<customErrors> element  
Count property  2nd  3rd  4th  
    Cache member  
    HttpApplicationState class  2nd  
crashing semantic errors  
Crawler property (HttpBrowserCapabilities class)  
CreateChildControls method  
CreateObject method  2nd  
CreateObjectFromClsid method  2nd  
<credentials> element  2nd  3rd  
.cs file extension  
CSS (Cascading Style Sheets) styles  
CssClass property  
CTS (Common Type System)  
CType function  
Culture attribute (@ Page directive)  
Current property  2nd  
custom error pages  
custom schemas  
custom server controls  
    design-time support, adding  
<customErrors> element  2nd  
CustomValidator control  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

data access  
    deleting  
    inserting and updating  
data adapters  
data binding  
    collections  
    DataViews  
    properties  
data readers  
DataBind method  
DataBinding event  
DataGrid control  2nd  3rd  
DataList control  2nd  
DataSet class  2nd  
DataSet variable  
datasets  
    binding to DataViews  
    deleting data  
    inserting and updating  
    XML files, reading from  
DataTables  
datatypes  
DataViews, binding to  
Debug attribute
    @ Page directive  
    @ WebService directive  
debuggers (Visual Studio .NET)  
debugging  
Declarative control use  
defaultRedirect attribute  
DELETE HTTP request  
DeleteCommand property  
<deny> element  2nd  
deployment  
    Copy Project, using  
    Visual Studio .NET  
    Web Setup project  
Deployment Projects folder  
Description attribute  
    @ Page directive  
Design view (web form editor)  
design-time support  
Designer attribute (Blog class)  
DHTML (Dynamic HTML)  
Digest IIS authentication  
directives  
    for code reuse  
.disco file extension  
discovery documents  
display controls  
DisplayBlogs method  
DOS batch file, compiling code-behind files  
double datatype  
downlevel value (ClientTarget property)  
DropDownList control  2nd  
Duration attribute (@ OutputCache directive)  
Dynamic HTML (DHTML)  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

EcmaScriptVersion property (HttpBrowserCapabilities class)  
Edit_Click event handler  
elements in machine.config/web.config files  
ellipsis (...) button  
enabled attribute of <trace> element  
EnableSessionState attribute (@ Page directive)  
EnableViewState attribute (@ Page directive)  
EnableViewState property  2nd  
EnableViewStateMac attribute (@ Page directive)  
encapsulation  
Encoding class  
End event  2nd  3rd  
End method  2nd  3rd  
EndWrite method  
entrypoint (executable code)  
enumerations  
<error> element  2nd  3rd  
Error event  
error handling  
Error property (HttpContext class)  2nd  
Error.aspx file  
ErrorCode property  2nd  
ErrorPage attribute (@ Page directive)  
ErrorPage property  2nd  
event-driven programming  
events  
    Declarative tags, wiring up  
    handling  
    HttpApplicationState class  
    HttpSessionState class  
    programmatically, wiring up  
Events method  
exception handling (structured)  
Execute method  2nd  
Expires property  2nd  
ExpiresAbsolute property  2nd  
Explicit attribute (@ Page directive)  
eXtensible Markup Language (XML)  2nd  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

FCL (Framework Class Library)  
file extensions, using code-behind files  
file types (applications)  
FilePath property  2nd  
files
    configuration  
    reading from  
Files collection  
Files property  
<filter> element  2nd  
Finally statement  
FindControl method  
Flush method  2nd  3rd  
Form collection  
Form property  
<form> tag  
forms (Web)  
Forms authentication option  2nd  
    logging in  
<forms> element  2nd  3rd  4th  
Frames property (HttpBrowserCapabilities class)  
Framework Class Library (FCL)  
FrontPage  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

GAC (global assembly cache)  2nd  
    deploying  
gacutil.exe command line tool  
GATEWAY_INTERFACE key (ServerVariable collection)  
GET HTTP request  
Get method  2nd  
    Cache member  
    HttpApplicationState class  
GetAppConfig method  
GetAuthor method  
GetBaseException method  
GetConfig method  
GetDesignTimeHtml method  
GetHtmlErrorMessage method  
GetHttpCode method  
GetKey method  2nd  3rd  4th  
GetLastError method  2nd  
GetQotd() function  2nd  
GetQuote method  
GetQuoteNumber method  
global assemblies  
global assembly cache (GAC)  2nd  
    deploying  
Global.asax application settings files  
global.asax file  2nd  
<globalization> element  2nd  
GUI (graphical user) interface  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Handler property  2nd  
Handles keywords, for wiring events  
HasControls method  
HEAD HTTP request  
Headers collection  
Headers property  
HelpLink property  2nd  
HTMLcontrols  
HtmlDecode method  2nd  
HtmlEncode method  2nd  
HTTP  
    request types  
HTTP_ACCEPT key (ServerVariable collection)  
HTTP_ACCEPT_ENCODING key (ServerVariable collection)  
HTTP_ACCEPT_LANGUAGE key (ServerVariable collection)  
HTTP_CONNECTION key (ServerVariable collection)  
HTTP_HOST key (ServerVariable collection)  
HTTP_USER_AGENT key (ServerVariable collection)  
HttpApplication class  
HttpApplicationState class  2nd  
    AllKeys collection  
    Clear method  
    Contents collection  
    Count property  
    End event  
    Get method  
    GetKey method  
    Item property  
    Keys collection  
    Lock method  
    Remove method  
    RemoveAll method  
    RemoveAt method  
    Set method  
    start event  
    StaticObjects collection  
    Unlock method  
HttpBrowserCapabilities class  
HttpCachePolicy members  
HttpClientCertificate class  
HttpContext class  2nd  3rd  
    AddError method  
    Application property  
    ApplicationInstance property  
    Cache property  
    ClearError method  
    Current property  
    GetAppConfig method  
    GetConfig method  
    Handler property  
    IsCustomErrorEnabled property  
    IsDebuggingEnabled property  
    Items collection  
    RewritePath method  
    Session property  
    SkipAuthorization property  
    Timestamp property  
    Trace property  
    User property  
HttpCookieCollection class  
HttpException class  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    ErrorCode property  
    GetBaseException method  
    GetHtmlErrorMessage method  
    GetHttpCode method  
    HelpLink property  
    InnerException property  
    Message property  
    Source property  
    StackTrace property  
    TargetSite property  
    ToString method  
HttpHandlers  
    configuring with web.config  
<httpHandlers> element  2nd  
HttpMethod property  2nd  
HttpModules  
    configuring with web.config  
<httpModules> element  2nd  
HttpRequest class  
    AcceptTypes property  
    Application Path property  
    BinaryRead method  
    Browser property  
    ClientCertificate property  
    ContentLength property  
    ContentType property  
    Cookies collection  
    FilePath property  
    Files collection  
    Form collection  
    Headers collection  
    HttpMethod property  
    InputStream property  
    IsAuthenticated property  
    IsSecureConnection property  
    MapPath method  
    Params collection  
    Path property  
    PathInfo property  
    PhysicalApplicationPath property  
    PhysicalPath property  
    QueryString collection  
    RawUrl property  
    RequestType property  
    SaveAs method  
    ServerVariables collection  
    TotalBytes property  
    Url property  
    UrlReferrer property  
    UserAgent property  
    UserHostAddress property  
    UserHostName property  
    UserLanguages property  
HttpResponse class  2nd  
    AddCacheItemDependencies method  
    AddCacheItemDependency method  
    AddFileDependencies method  
    AddFileDependency method  
    AddHeader method  
    AppendHeader method  
    AppendToLog method  
    ApplyAppPathModifer method  
    BinaryWrite method  
    BufferOutput property  
    Cache property  
    CacheControl property  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Charset property  
    Clear method  
    ClearContent method  
    ClearHeaders method  
    ContentEncoding property  
    ContentType property  
    End method  
    Expires property  
    ExpiresAbsolute property  
    Flush method  
    IsClientConnected property  
    Output property  
    OutputStream property  
    Pics method  
    Redirect method  
    Status property  
    StatusCode property  
    StatusDescription property  
    SuppressContent property  
    Write method  
    WriteFile method  
<httpRuntime> element  2nd  
HttpRuntime settings.  
HTTPS key (ServerVariable collection)  
HTTPS_KEYSIZE key (ServerVariable collection)  
HTTPS_SECRETKEYSIZE key (ServerVariable collection)  
HTTPS_SERVER_ISSUER key (ServerVariable collection)  
HTTPS_SERVER_SUBJECT key (ServerVariable collection)  
HttpServerUtility class  2nd  
    ClearError method  
    CreateObject method  
    CreateObjectFromClsid method  
    Execute method  
    GetLastError method  
    HtmlDecode method  
    HtmlEncode method  
    MachineName property  
    MapPath method  
    ScriptTimeout property  
    Transfer method  
    UrlDecode method  
    UrlEncode method  
    UrlpathEncode method  
HttpSessionState class  2nd  
    Abandon method  
    Add method  
    Clear method  
    CodePage property  
    Contents property  
    CopyTo method  
    Count property  
    End event  
    IsCookieless property  
    IsNewSession property  
    IsReadOnly property  
    Item property  
    LCID property  
    Mode property  
    Remove method  
    RemoveAll method  
    RemoveAt method  
    SessionID property  
    Start event  
    Timeout property  
Hyperlink control  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

id attribute (server controls)  
<identity> element  2nd  3rd  
Identity property  
IDL (Interface Description Language)  
ie4 value (ClientTarget property)  
ie5 value (ClientTarget property)  
IIS (Internet Information Server)  
    administration tool  
    authentication and  
    configuring  
IL (Intermediate Language)  2nd  3rd  
    assemblies  
Image display control  
ImageButton control  2nd  
<img> tag  
impersonation (authentication)  
@ Implements directive  
@ Import directive  2nd  3rd  
Imports keyword  
Improved Security  
INamingContainer interface  
include directives (server-side)  
#include file directive, for user controls  
inheritance  
Inherits attribute (@ Page directive)  
Init event  2nd  
inline code, creating web services with  
InnerException property  2nd  
input controls  
<input> tag  
InputStream property  2nd  
Insert method  
Insert method (Cache member)  
InsertCommand property  
INSTANCE_ID key (ServerVariable collection)  
INSTANCE_META_PATH key (ServerVariable collection)  
instances (control)  
instances, creating  
int (32-bit integer)  
int16 datatype  
IntelliSense  
Interface Description Language (IDL)  
Intermediate Language (IL)  2nd  3rd  
    assemblies  
Internet Information Server  [See IIS]
Internet Services Manager applet  
IPrincipal interface  
IsAuthenticated property  2nd  
IsClientConnected property  2nd  
IsClientScriptBlockRegistered method  
IsCookieless property  2nd  
IsCustomErrorEnabled property  2nd  
IsDebuggingEnabled property  2nd  
IsEnabled member (Trace property)  
IsInRole property  
IsNewSession property  2nd  
IsPostBack property  2nd  
IsReadOnly property  2nd  
IsSecureConnection property  2nd  
IsValid property  2nd  
Item property  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Cache member  
    HttpApplicationState class  2nd  
    HttpBrowserCapabilities class  
    HttpSessionState class  
    Response class  
Items collection  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Java programming language  
JavaApplets property (HttpBrowserCapabilities class)  
JavaScript property (HttpBrowserCapabilities class)  
JavaScript, using web controls  
just-in-time (JIT) compiler  2nd  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Keys collection  2nd  3rd  
Keys property  2nd  3rd  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Label control  2nd  3rd  
Language attribute
    @ Page directive  
    @ WebService directive  
languages, for developing ASP.NET applications  
LCID attribute (@ Page directive)  
LCID property  2nd  
LinkButton control  2nd  
list controls  2nd  
ListBox control  2nd  
literal text  
Load event  2nd  
LoadControl method  2nd  
LoadData method  
LOCAL_ADDR key (ServerVariable collection)  
Location (@ OutputCache directive)  
<location> element  2nd  3rd  
Lock method  2nd  
logging out, using Forms authentication option  
Login.aspx file  2nd  
logins  
    using Forms authentication option  
LOGON_USER key (ServerVariable collection)  
Logout.aspx file  2nd  
lookless UI  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

machine.config file  
    authentication methods and  
    authentication mode, changing  
    locking down configuration settings  
<machineKey> element  2nd  
MachineName property  
MailMessage class  
MaintainState property  
MajorVersion property (HttpBrowserCapabilities class)  
managed execution  
manifests  
MapPath method  2nd  3rd  4th  
MapPath property  
Message property  2nd  
metadata  
    attributes  2nd  
methods  
    HttpApplicationState class  
    HttpContext class  
    HttpException class  
    HttpRequest class  
    HttpResponse class  
    HttpServerUtility class  
    HttpSessionState class  
Microsoft Active Directory  
Microsoft Data Engine (MSDE)  
MinorVersion property (HttpBrowserCapabilities class)  
mode attribute for <sessionState> element  
Mode property  2nd  
mscorlib.dll  
MSDE (Microsoft Data Engine)  
MSDomVersion property (HttpBrowserCapabilities class)  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Name attribute (@ Assembly directive)  
Namespace attribute (@ Register directive)  
namespaces  
    <asp\:Label> server control and[namespaces
        asp\:Label server control and  
    Web Services using Code-behind and  
NavBar control  
NavBar_Load method  
.NET platform  [See platform]
New keyword  
    creating instances  
NewBlog method  
NewLine property  
ngen.exe tool  
noncrashing semantic errors  
NTFS filesystem  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

objControl LoadControl parameter  
<object> tag  
object types  
object-orientation (OO)  2nd  
ObjectContext ASP object  
objects tags (<object>)  
OleDbDataAdapter class  2nd  
OleDbDataReader class  
OnAdCreated event  2nd  
OnCancelCommand event  
OnCheckedChanged event  2nd  
OnClick event  2nd  
OnCommand event  
OnDayRender event  
OnDeleteCommand event  
OnEditCommand event  2nd  
OnItemCommand event  
OnItemCreated event  
OnPageIndexChanged event  2nd  
OnSelectedIndexChanged event  2nd  
OnSelectionChanged event  
OnSortCommand event  
OnUpdateCommand event  
OnVisibleMonthChanged event  
OO (object-orientation)  2nd  
OPTIONS HTTP requests  
out-of-process session state  
Output property  2nd  
@ OutputCache directive  
OutputStream property  2nd  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Page attribute (@ Reference directive)  
Page class  
    Application property  
    Cache property  
    ClientTarget property  
    code-behind files, using  
    Context property  
    ControlCollection instance  
    DataBind method  
    EnableViewState property  
    Error events  
    ErrorPage property  
    event-driven programming  
    FindControl method  
    HasControls methods  
    Init event  
    IsPostBack property  
    IsValid property  
    LoadControl method  
    MapPath method  
    Request property  
    ResolveUrl method  
    Response property  
    Server property  
    Session property  
    SmartNavigation property  
    Trace property  
    Unload method  
    Validate method  
    ValidatorCollection class  
@ Page directive  2nd  
    code-behind files, using  
    deploying assemblies  
page directives  
page-level tracing  
Page_Error event  2nd  
Page_Unload event  
pageOutput attribute of <trace> element  
pages  [See ASP.NET pages]
<pages> element  2nd  
Panel controls  
Panel display control  
Params collection  
Params property  
Passport authentication option  2nd  
<passport> element  2nd  3rd  
Passport SDK  
path attribute of <location> element  
Path property  2nd  
PATH_INFO key (ServerVariable collection)  
PATH_TRANSLATED key (ServerVariable collection)  
PathInfo property  2nd  
persistent cookie  
PhysicalApplicationPath property  2nd  
PhysicalPath property  2nd  
Pics method  2nd  
platform (.NET)  
    object-orientation  
Platform property (HttpBrowserCapabilities class)  
polymorphism  
POST HTTP request  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PreRender event  
procedural programming  
<processModel> element  2nd  
programmatic accessors  
programmatic authorization  
programmatic control use  
programmatic event wiring  
properties  
    HttpApplicationState class  
    Httpcontext class  
    HttpException class  
    HttpRequest class  
    HttpResponse class  
    HttpServerUtiltiy class  
    HttpSessionState class  
    Page class  
PUT HTTP request  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Qotd class  
QUERY_STRING key (ServerVariable collection)  
QueryString collection  
QueryString property  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

RadioButton control  2nd  
RadioButtonList control  2nd  
Random class, returning random numbers  
RangeValidator control  
RawUrl property  2nd  
RCW (runtime callable wrapper)  2nd  
ReadXml method  2nd  3rd  
Redirect method  2nd  
RedirectFromLoginPage method  
@ Reference directive  
Reference Types  
@ Register directive  2nd  
Register.aspx file  
RegisterClientScriptBlock method  
RegisterHiddenField method  
RegularExpressionValidator control  
REMOTE_ADDR key (ServerVariable collection)  
REMOTE_HOST key (ServerVariable collection)  
REMOTE_USER key (ServerVariable collection)  
<remove> element  2nd  
Remove method  2nd  3rd  4th  5th  
Remove method (Cache member)  
RemoveAll method  2nd  3rd  4th  
RemoveAt method  2nd  3rd  4th  
render blocks (<% %>)  2nd  
    in ASP.NET pages  
Render method  
rendered controls  
Repeater control  
Repeater data-bound control  
Request class  [See HttpRequest class]
Request property  2nd  
    HttpContext class  2nd  
request types (HTTP)  
REQUEST_METHOD key (ServerVariable collection)  
requests, handling/lifecycles  
RequestType property  2nd  
RequiredFieldValidator control  
ResolveUrl method  
Response object  2nd  [See also HttpResponse class]
Response property  2nd  
    HttpContext class  2nd  
ResponseEncoding attribute (@ Page directive)  
<result> element  2nd  
reuse (code)  
RewritePath method  
rich controls  
runat attribute  2nd  
runtime callable wrapper (RCW)  2nd  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

SaveAs method  
SaveAs property  
schemas (custom)  
<script> tag  
    using Declarative control use  2nd  
SCRIPT_NAME key (ServerVariable collection)  
ScriptTimeout property  2nd  
SDK debugger, using  
Secure Sockets Layer (SSL)  
security  2nd  
    authentication methods and  
    authorization  
<securityPolicy> element  2nd  
<select> tag  
SelectCommand property  
selection controls  
semantic errors, crashing/noncrashing  
server controls  2nd  3rd  
    appearance, modifying  
    programmatic control use  
    using  
    web controls  
Server property  2nd  
    HttpContext class  
server-side comments  
server-side include directives  
server-side object tags (<object>)  
SERVER_NAME key (ServerVariable collection)  
SERVER_PORT key (ServerVariable collection)  
SERVER_PORT_SECURE key (ServerVariable collection)  
SERVER_PROTOCOL key (ServerVariable collection)  
SERVER_SOFTWARE key (ServerVariable collection)  
ServerVariables collection  
ServerVariables property  
session cookies  
Session property  2nd  
    HttpContext class  2nd  
SessionID property  2nd  
<sessionState> element  2nd  3rd  
SessionStateModule class  
Set method  2nd  
SetCacheability method  
SetLastModified method  
SignOut method  
Simple Object Access Protocol  [See SOAP]
single-threaded apartment (STA)  
SkipAuthorization property  2nd  
SmartNavigation attribute (@ Page directive)  
SmartNavigation property  2nd  
SmtpMail class  
sn.exe  
SOAP (Simple Object Access Protocol)  2nd  
    consuming Web Services  
Solution Explorer  
Source property  2nd  
sqlConnectionString attribute for <sessionState> element  
SqlDataAdapter class  2nd  3rd  
Src attribute
    @ Assembly directive  
    @ Page directive  
    @ Register directive  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SSL (Secure Sockets Layer)  
STA (single-threaded apartment)  
StackTrace property  2nd  
stages of page processing  
Start event  2nd  3rd  
Start method  
state management  
StateBag class  
stateConnectionString attribute for <sessionState> element  
StaticObjects collection  
    HttpSessionState class  
StaticObjects collections  
Status property  2nd  
StatusCode property  2nd  
StatusDescription property  2nd  
Strict attribute (@ Page directive)  
String parameter (ClientTarget property)  
strings  
    characters, encoding  
strPath LoadControl parameter  
strRelativeUrl ResolveUrl parameter  
structured exception handling  2nd  
Style properties  
Submit_Click event handler  
SuppressContent property  2nd  
syntax error  
syntax for event handlers  
System namespace  
System.Collections namespace  
System.Data namespaces  
System.Data.SqlClient namespace  
<system.web> element  2nd  
System.Web namespaces  
System.Web.UI namespace  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Table display control  
<table> tag  
TableCell display control  
TableRow display control  
Tables property (HttpBrowserCapabilities class)  
TagName attribute (@ Register directive)  
TagPrefix attribute  
    @ Register directive  
targetNamespace attribute  
TargetSite property  2nd  
<td> tag  
templates for control properties  
text (literal)  
<textarea> tag  
TextBox web control  2nd  3rd  
<th> tag  
Timeout property  2nd  
Timestamp property  2nd  
ToolBoxData attribute  
ToString method  
TotalBytes property  2nd  
<tr> tag  
Trace attribute (@ Page directive)  
<trace> element  2nd  3rd  
TRACE HTTP request  
Trace property  2nd  3rd  4th  
Trace.axd URL  
Trace.Warn method  
Trace.Write method  
TraceContext class  
TraceMode attribute (@ Page directive)  
TraceMode member (Trace property)  
tracing  
    application  
    page-level  
    settings, modifying  
    Trace property  
    Write/Warn methods, using  
Transaction attribute (@ Page directive)  
Transfer method  2nd  
<trust> element  2nd  
<trustLevel> element  
Try statement  
Type property (HttpBrowserCapabilities class)  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

UDDI (Universal Description, Discovery, and Integration)  2nd  
UI (user interface)  
    combining with code  
UICulture attribute (@ Page directive)  
unboxing  
Universal Description, Discovery, and Integration (UDDI)  2nd  
Unload event  
Unload event handler  
Unlock method  2nd  
UpdateCommand property  
URL authorization  
URL key (ServerVariable collection)  
Url property  2nd  
UrlDecode method  2nd  
UrlEncode method  2nd  
UrlPathEncode method  2nd  
UrlReferrer property  2nd  
<use> element  2nd  
User Control files  
user controls  
<user> element  2nd  3rd  
user interface (UI)  
    combining with code  
User property  2nd  3rd  
    HttpContext class  
UserAgent property  2nd  
UserControl class  
UserHostAddress property  2nd  
UserHostName property  2nd  
UserLanguages property  2nd  
Users.xml file  2nd  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

Validate method  
validation controls  2nd  
ValidationSummary control  
ValidatorCollection class  
Value Types  
VaryByControl (@ OutputCache directive)  
VaryByCustom (@ OutputCache directive)  
VaryByHeader (@ OutputCache directive)  
VaryByParam (@ OutputCache directive)  
.vb file extension  
VBScript property (HttpBrowserCapabilities class)  
Version property (HttpBrowserCapabilities class)  
_VIEWSTATE field  
ViewState property  2nd  
Visual Basic language
    new keyword and  
Visual Basic.NET  
    Imports keyword  
    New keyword and  
Visual Basic.NET compiler  
Visual C++  
    managed executions and  
Visual Studio .NET
    custom schemas and  
    debuggers  
    deploying  
    design-time support, adding  
vs\:absolutepositioning Visual Studio .NET annotation  
vs\:blockformatted Visual Studio .NET annotation  
vs\:builder Visual Studio .NET annotation  
vs\:deprecated Visual Studio .NET annotation  
vs\:empty Visual Studio .NET annotation  
vs\:friendlyname Visual Studio .NET annotation  
vs\:iscasesensitive Visual Studio .NET annotation  
vs\:ishtmlschema Visual Studio .NET annotation  
vs\:nonbrowseable Visual Studio .NET annotation  
vs\:readonly Visual Studio .NET annotation  
vs\:requireattributequotes Visual Studio .NET annotation  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

W3C (World Wide Web Consortium)  
W3CDomVersion property (HttpBrowserCapabilities class)  
Warn method  
    Trace property  
WarningLevel attribute (@ Page directive)  
Web Applications  
Web applications
    HttpApplicationState class and  
web controls  
    types of  
Web Forms  2nd  
    @ directives and  
    ASP.NET pages, structuring  
    code-behind files  
    page processing  
    user interface, combining with code  
web logs (blogs)  
Web Services  2nd  3rd  
    architecture  
    Code-behind, using  
    consuming  
    creating  
    standards  
Web Services Description Language (WSDL)  
Web Setup project, deployment  
Web Sharing tab (Properties dialog)  
Web.Config configuration files  
web.config file  2nd  
    application-level tracing  
    authentication methods and  
    authentication mode, changing  
    elements for  
    Forms authentication option  
    inheriting/overriding settings  
    locking down configuration settings  
web.config file type  
WebControl class  
WebMethod attribute  
    web services, creating  
<webMethod()> attribute  
WebService attribute  2nd  
@ WebService directive  2nd  
WebService, inheriting from  
WHERE clause
    deleting data  
    inserting and updating data  
Win16 property (HttpBrowserCapabilities class)  
Win32 property (HttpBrowserCapabilities class)  
Windows .NET Server  
Windows 2000  2nd  
Windows authentication option  
Windows NT  
Windows XP  2nd  
WithEvents keyword, wiring events  
World Wide Web Consortium (W3C)  
Write method  2nd  
    error handling  
    Response object  2nd  
    Trace property  
WriteByte method  
WriteFile method  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


WriteLine method  
WSDL (Web Services Description Language)  
wsdl.exe  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] 

XML (eXtensible Markup Language)  
    reading from  
xmlns attribute  
XSD schemas  

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

